diff --git a/changelog b/changelog index 4552868..9839b73 100644 --- a/changelog +++ b/changelog @@ -1,3 +1,11 @@ +20100706 tpd src/axiom-website/patches.html 20100706.02.tpd.patch +20100706 tpd src/share/algebra/operation.daase update databases +20100706 tpd src/share/algebra/interp.daase update databases +20100706 tpd src/share/algebra/compress.daase update databases +20100706 tpd src/share/algebra/category.daase update databases +20100706 tpd src/share/algebra/browse.daase update databases +20100706 tpd src/share/algebra/users.daase/users.daase/index.kaf +20100706 tpd src/share/algebra/dependents.daase/dependents.daase/index.kaf 20100706 myb src/axiom-website/patches.html 20100706.01.myb.patch 20100706 myb src/interp/vmlisp.lisp HTMLFormat support code 20100706 myb src/interp/i-output.lisp HTMLFormat support code diff --git a/src/axiom-website/patches.html b/src/axiom-website/patches.html index d5ef5a5..f158e5a 100644 --- a/src/axiom-website/patches.html +++ b/src/axiom-website/patches.html @@ -2984,5 +2984,7 @@ books/bookvol10.3 add DoubleFloatMatrix
books/bookvol10.3 add ComplexDoubleFloatMatrix
20100706.01.myb.patch books/bookvol10.3 add HTMLFormat
+20100706.02.tpd.patch +src/share/algebra/*.daase update databases
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase index 722574a..77e2634 100644 --- a/src/share/algebra/browse.daase +++ b/src/share/algebra/browse.daase @@ -1,12 +1,12 @@ -(2456427 . 3483827107) +(2465038 . 3487447480) (-18 A S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) NIL NIL (-19 S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) -((-4506 . T) (-4505 . T) (-2537 . T)) +((-4520 . T) (-4519 . T) (-3973 . T)) NIL (-20 S) ((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline Axioms\\spad{\\br} \\tab{5}\\spad{-(-x) = x}\\spad{\\br} \\tab{5}\\spad{x+(-x) = 0}")) (* (($ (|Integer|) $) "\\spad{n*x} is the product of \\spad{x} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}."))) @@ -38,7 +38,7 @@ NIL NIL (-27) ((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\indented{1}{zerosOf(\\spad{p},{} \\spad{y}) returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}.} \\indented{1}{The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise} \\indented{1}{as implicit algebraic quantities} \\indented{1}{which display as \\spad{'yi}.} \\indented{1}{The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter} \\indented{1}{to respective root values.} \\blankline \\spad{X} a:SparseUnivariatePolynomial(Integer)\\spad{:=}-3*x^3+2*x+13 \\spad{X} zerosOf(a,{}\\spad{x})") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\indented{1}{zerosOf(\\spad{p}) returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}.} \\indented{1}{The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise} \\indented{1}{as implicit algebraic quantities.} \\indented{1}{The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter} \\indented{1}{to respective root values.} \\blankline \\spad{X} a:SparseUnivariatePolynomial(Integer)\\spad{:=}-3*x^3+2*x+13 \\spad{X} zerosOf(a)") (((|List| $) (|Polynomial| $)) "\\indented{1}{zerosOf(\\spad{p}) returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}.} \\indented{1}{The \\spad{yi}\\spad{'s} are expressed in radicals if possible.} \\indented{1}{Otherwise they are implicit algebraic quantities.} \\indented{1}{The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter} \\indented{1}{to respective root values.} \\indented{1}{Error: if \\spad{p} has more than one variable \\spad{y}.} \\blankline \\spad{X} a:Polynomial(Integer)\\spad{:=}-3*x^2+2*x-13 \\spad{X} zerosOf(a)")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\indented{1}{zeroOf(\\spad{p},{} \\spad{y}) returns \\spad{y} such that \\spad{p(y) = 0};} \\indented{1}{if possible,{} \\spad{y} is expressed in terms of radicals.} \\indented{1}{Otherwise it is an implicit algebraic quantity which} \\indented{1}{displays as \\spad{'y}.} \\blankline \\spad{X} a:SparseUnivariatePolynomial(Integer)\\spad{:=}-3*x^3+2*x+13 \\spad{X} zeroOf(a,{}\\spad{x})") (($ (|SparseUnivariatePolynomial| $)) "\\indented{1}{zeroOf(\\spad{p}) returns \\spad{y} such that \\spad{p(y) = 0};} \\indented{1}{if possible,{} \\spad{y} is expressed in terms of radicals.} \\indented{1}{Otherwise it is an implicit algebraic quantity.} \\blankline \\spad{X} a:SparseUnivariatePolynomial(Integer)\\spad{:=}-3*x^3+2*x+13 \\spad{X} zeroOf(a)") (($ (|Polynomial| $)) "\\indented{1}{zeroOf(\\spad{p}) returns \\spad{y} such that \\spad{p(y) = 0}.} \\indented{1}{If possible,{} \\spad{y} is expressed in terms of radicals.} \\indented{1}{Otherwise it is an implicit algebraic quantity.} \\indented{1}{Error: if \\spad{p} has more than one variable \\spad{y}.} \\blankline \\spad{X} a:Polynomial(Integer)\\spad{:=}-3*x^2+2*x-13 \\spad{X} zeroOf(a)")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\indented{1}{rootsOf(\\spad{p},{} \\spad{y}) returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0};} \\indented{1}{The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}.} \\indented{1}{Note that the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter} \\indented{1}{to respective root values.} \\blankline \\spad{X} a:SparseUnivariatePolynomial(Integer)\\spad{:=}-3*x^3+2*x+13 \\spad{X} rootsOf(a,{}\\spad{x})") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\indented{1}{rootsOf(\\spad{p}) returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}.} \\indented{1}{Note that the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter} \\indented{1}{to respective root values.} \\blankline \\spad{X} a:SparseUnivariatePolynomial(Integer)\\spad{:=}-3*x^3+2*x+13 \\spad{X} rootsOf(a)") (((|List| $) (|Polynomial| $)) "\\indented{1}{rootsOf(\\spad{p}) returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}.} \\indented{1}{Note that the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the} \\indented{1}{interpreter to respective root values.} \\indented{1}{Error: if \\spad{p} has more than one variable \\spad{y}.} \\blankline \\spad{X} a:Polynomial(Integer)\\spad{:=}-3*x^3+2*x+13 \\spad{X} rootsOf(a)")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\indented{1}{rootOf(\\spad{p},{} \\spad{y}) returns \\spad{y} such that \\spad{p(y) = 0}.} \\indented{1}{The object returned displays as \\spad{'y}.} \\blankline \\spad{X} a:SparseUnivariatePolynomial(Integer)\\spad{:=}-3*x^3+2*x+13 \\spad{X} rootOf(a,{}\\spad{x})") (($ (|SparseUnivariatePolynomial| $)) "\\indented{1}{rootOf(\\spad{p}) returns \\spad{y} such that \\spad{p(y) = 0}.} \\blankline \\spad{X} a:SparseUnivariatePolynomial(Integer)\\spad{:=}-3*x^3+2*x+13 \\spad{X} rootOf(a)") (($ (|Polynomial| $)) "\\indented{1}{rootOf(\\spad{p}) returns \\spad{y} such that \\spad{p(y) = 0}.} \\indented{1}{Error: if \\spad{p} has more than one variable \\spad{y}.} \\blankline \\spad{X} a:Polynomial(Integer)\\spad{:=}-3*x^3+2*x+13 \\spad{X} rootOf(a)"))) -((-4497 . T) (-4503 . T) (-4498 . T) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) +((-4511 . T) (-4517 . T) (-4512 . T) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) NIL (-28 S R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note that the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note that the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) @@ -46,7 +46,7 @@ NIL NIL (-29 R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note that the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note that the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4502 . T) (-4500 . T) (-4499 . T) ((-4507 "*") . T) (-4498 . T) (-4503 . T) (-4497 . T) (-2537 . T)) +((-4516 . T) (-4514 . T) (-4513 . T) ((-4521 "*") . T) (-4512 . T) (-4517 . T) (-4511 . T) (-3973 . T)) NIL (-30) ((|constructor| (NIL "Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.")) (|refine| (($ $ (|DoubleFloat|)) "\\indented{1}{refine(\\spad{p},{}\\spad{x}) is not documented} \\blankline \\spad{X} sketch:=makeSketch(x+y,{}\\spad{x},{}\\spad{y},{}\\spad{-1/2}..1/2,{}\\spad{-1/2}..1/2)\\$ACPLOT \\spad{X} refined:=refine(sketch,{}0.1)")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\indented{1}{makeSketch(\\spad{p},{}\\spad{x},{}\\spad{y},{}a..\\spad{b},{}\\spad{c}..\\spad{d}) creates an ACPLOT of the} \\indented{1}{curve \\spad{p = 0} in the region a \\spad{<=} \\spad{x} \\spad{<=} \\spad{b},{} \\spad{c} \\spad{<=} \\spad{y} \\spad{<=} \\spad{d}.} \\indented{1}{More specifically,{} 'makeSketch' plots a non-singular algebraic curve} \\indented{1}{\\spad{p = 0} in an rectangular region xMin \\spad{<=} \\spad{x} \\spad{<=} xMax,{}} \\indented{1}{yMin \\spad{<=} \\spad{y} \\spad{<=} yMax. The user inputs} \\indented{1}{\\spad{makeSketch(p,{}x,{}y,{}xMin..xMax,{}yMin..yMax)}.} \\indented{1}{Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with} \\indented{1}{integer coefficients (\\spad{p} belongs to the domain} \\indented{1}{\\spad{Polynomial Integer}). The case} \\indented{1}{where \\spad{p} is a polynomial in only one of the variables is} \\indented{1}{allowed.\\space{2}The variables \\spad{x} and \\spad{y} are input to specify the} \\indented{1}{the coordinate axes.\\space{2}The horizontal axis is the \\spad{x}-axis and} \\indented{1}{the vertical axis is the \\spad{y}-axis.\\space{2}The rational numbers} \\indented{1}{xMin,{}...,{}yMax specify the boundaries of the region in} \\indented{1}{which the curve is to be plotted.} \\blankline \\spad{X} makeSketch(x+y,{}\\spad{x},{}\\spad{y},{}\\spad{-1/2}..1/2,{}\\spad{-1/2}..1/2)\\$ACPLOT"))) @@ -68,14 +68,14 @@ NIL ((|constructor| (NIL "The following is all the categories and domains related to projective space and part of the PAFF package"))) NIL NIL -(-35 -2050 K) +(-35 -2570 K) ((|constructor| (NIL "The following is all the categories and domains related to projective space and part of the PAFF package"))) NIL NIL -(-36 R -1333) +(-36 R -1478) ((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p,{} n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p,{} x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -1029) (QUOTE (-560))))) +((|HasCategory| |#1| (LIST (QUOTE -1037) (QUOTE (-568))))) (-37 K) ((|constructor| (NIL "The following is all the categories and domains related to projective space and part of the PAFF package")) (|pointValue| (((|List| |#1|) $) "\\spad{pointValue returns} the coordinates of the point or of the point of origin that represent an infinitly close point")) (|setelt| ((|#1| $ (|Integer|) |#1|) "\\spad{setelt sets} the value of a specified coordinates")) (|elt| ((|#1| $ (|Integer|)) "\\spad{elt returns} the value of a specified coordinates")) (|list| (((|List| |#1|) $) "\\spad{list returns} the list of the coordinates")) (|rational?| (((|Boolean|) $) "\\spad{rational?(p)} test if the point is rational according to the characteristic of the ground field.") (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{rational?(p,{}n)} test if the point is rational according to \\spad{n}.")) (|removeConjugate| (((|List| $) (|List| $)) "\\spad{removeConjugate(lp)} returns removeConjugate(\\spad{lp},{}\\spad{n}) where \\spad{n} is the characteristic of the ground field.") (((|List| $) (|List| $) (|NonNegativeInteger|)) "\\spad{removeConjugate(lp,{}n)} returns a list of points such that no points in the list is the conjugate (according to \\spad{n}) of another point.")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns conjugate(\\spad{p},{}\\spad{n}) where \\spad{n} is the characteristic of the ground field.") (($ $ (|NonNegativeInteger|)) "\\spad{conjugate(p,{}n)} returns p**n,{} that is all the coordinates of \\spad{p} to the power of \\spad{n}")) (|orbit| (((|List| $) $ (|NonNegativeInteger|)) "\\spad{orbit(p,{}n)} returns the orbit of the point \\spad{p} according to \\spad{n},{} that is orbit(\\spad{p},{}\\spad{n}) = \\spad{\\{} \\spad{p},{} p**n,{} \\spad{p**}(\\spad{n**2}),{} \\spad{p**}(\\spad{n**3}),{} ..... \\spad{\\}}") (((|List| $) $) "\\spad{orbit(p)} returns the orbit of the point \\spad{p} according to the characteristic of \\spad{K},{} that is,{} for \\spad{q=} char \\spad{K},{} orbit(\\spad{p}) = \\spad{\\{} \\spad{p},{} p**q,{} \\spad{p**}(\\spad{q**2}),{} \\spad{p**}(\\spad{q**3}),{} ..... \\spad{\\}}")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce a} list of \\spad{K} to a affine point.")) (|affinePoint| (($ (|List| |#1|)) "\\spad{affinePoint creates} a affine point from a list"))) NIL @@ -83,10 +83,10 @@ NIL (-38 S) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation \\spad{r}(\\spad{x})\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note that The \\$\\spad{D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note that for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL -((|HasAttribute| |#1| (QUOTE -4505))) +((|HasAttribute| |#1| (QUOTE -4519))) (-39) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation \\spad{r}(\\spad{x})\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note that The \\$\\spad{D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note that for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects."))) -((-2537 . T)) +((-3973 . T)) NIL (-40) ((|constructor| (NIL "Category for the inverse hyperbolic trigonometric functions.")) (|atanh| (($ $) "\\spad{atanh(x)} returns the hyperbolic arc-tangent of \\spad{x}.")) (|asinh| (($ $) "\\spad{asinh(x)} returns the hyperbolic arc-sine of \\spad{x}.")) (|asech| (($ $) "\\spad{asech(x)} returns the hyperbolic arc-secant of \\spad{x}.")) (|acsch| (($ $) "\\spad{acsch(x)} returns the hyperbolic arc-cosecant of \\spad{x}.")) (|acoth| (($ $) "\\spad{acoth(x)} returns the hyperbolic arc-cotangent of \\spad{x}.")) (|acosh| (($ $) "\\spad{acosh(x)} returns the hyperbolic arc-cosine of \\spad{x}."))) @@ -94,7 +94,7 @@ NIL NIL (-41 |Key| |Entry|) ((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,{}u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}."))) -((-4505 . T) (-4506 . T) (-2537 . T)) +((-4519 . T) (-4520 . T) (-3973 . T)) NIL (-42 S R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline Axioms\\spad{\\br} \\tab{5}\\spad{(b+c)::\\% = (b::\\%) + (c::\\%)}\\spad{\\br} \\tab{5}\\spad{(b*c)::\\% = (b::\\%) * (c::\\%)}\\spad{\\br} \\tab{5}\\spad{(1::R)::\\% = 1::\\%}\\spad{\\br} \\tab{5}\\spad{b*x = (b::\\%)*x}\\spad{\\br} \\tab{5}\\spad{r*(a*b) = (r*a)*b = a*(r*b)}")) (|coerce| (($ |#2|) "\\spad{coerce(r)} maps the ring element \\spad{r} to a member of the algebra."))) @@ -102,20 +102,20 @@ NIL NIL (-43 R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline Axioms\\spad{\\br} \\tab{5}\\spad{(b+c)::\\% = (b::\\%) + (c::\\%)}\\spad{\\br} \\tab{5}\\spad{(b*c)::\\% = (b::\\%) * (c::\\%)}\\spad{\\br} \\tab{5}\\spad{(1::R)::\\% = 1::\\%}\\spad{\\br} \\tab{5}\\spad{b*x = (b::\\%)*x}\\spad{\\br} \\tab{5}\\spad{r*(a*b) = (r*a)*b = a*(r*b)}")) (|coerce| (($ |#1|) "\\spad{coerce(r)} maps the ring element \\spad{r} to a member of the algebra."))) -((-4499 . T) (-4500 . T) (-4502 . T)) +((-4513 . T) (-4514 . T) (-4516 . T)) NIL (-44 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{} [a1,{}...,{}an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and \\spad{a1},{}...,{}an."))) NIL NIL -(-45 -1333 UP UPUP -3254) +(-45 -1478 UP UPUP -3094) ((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} is not documented"))) -((-4498 |has| (-403 |#2|) (-359)) (-4503 |has| (-403 |#2|) (-359)) (-4497 |has| (-403 |#2|) (-359)) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) -((|HasCategory| (-403 |#2|) (QUOTE (-146))) (|HasCategory| (-403 |#2|) (QUOTE (-148))) (|HasCategory| (-403 |#2|) (QUOTE (-344))) (|HasCategory| (-403 |#2|) (QUOTE (-359))) (-2318 (|HasCategory| (-403 |#2|) (QUOTE (-359))) (|HasCategory| (-403 |#2|) (QUOTE (-344)))) (|HasCategory| (-403 |#2|) (QUOTE (-364))) (|HasCategory| (-403 |#2|) (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| (-403 |#2|) (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| (-403 |#2|) (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-364))) (-2318 (|HasCategory| (-403 |#2|) (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| (-403 |#2|) (QUOTE (-359)))) (-12 (|HasCategory| (-403 |#2|) (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| (-403 |#2|) (QUOTE (-359)))) (-2318 (-12 (|HasCategory| (-403 |#2|) (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| (-403 |#2|) (QUOTE (-359)))) (-12 (|HasCategory| (-403 |#2|) (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| (-403 |#2|) (QUOTE (-344))))) (-12 (|HasCategory| (-403 |#2|) (QUOTE (-221))) (|HasCategory| (-403 |#2|) (QUOTE (-359)))) (-2318 (-12 (|HasCategory| (-403 |#2|) (QUOTE (-221))) (|HasCategory| (-403 |#2|) (QUOTE (-359)))) (|HasCategory| (-403 |#2|) (QUOTE (-344))))) -(-46 R -1333) +((-4512 |has| (-409 |#2|) (-365)) (-4517 |has| (-409 |#2|) (-365)) (-4511 |has| (-409 |#2|) (-365)) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) +((|HasCategory| (-409 |#2|) (QUOTE (-148))) (|HasCategory| (-409 |#2|) (QUOTE (-150))) (|HasCategory| (-409 |#2|) (QUOTE (-350))) (|HasCategory| (-409 |#2|) (QUOTE (-365))) (-2198 (|HasCategory| (-409 |#2|) (QUOTE (-365))) (|HasCategory| (-409 |#2|) (QUOTE (-350)))) (|HasCategory| (-409 |#2|) (QUOTE (-370))) (|HasCategory| (-409 |#2|) (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| (-409 |#2|) (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| (-409 |#2|) (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-370))) (-2198 (|HasCategory| (-409 |#2|) (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))) (-12 (|HasCategory| (-409 |#2|) (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))) (-2198 (-12 (|HasCategory| (-409 |#2|) (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))) (-12 (|HasCategory| (-409 |#2|) (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| (-409 |#2|) (QUOTE (-350))))) (-12 (|HasCategory| (-409 |#2|) (QUOTE (-225))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))) (-2198 (-12 (|HasCategory| (-409 |#2|) (QUOTE (-225))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))) (|HasCategory| (-409 |#2|) (QUOTE (-350))))) +(-46 R -1478) ((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,{}f,{}n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f,{} a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented"))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-447))) (|HasCategory| |#1| (QUOTE (-834))) (|HasCategory| |#2| (LIST (QUOTE -426) (|devaluate| |#1|))))) +((-12 (|HasCategory| |#1| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#2| (LIST (QUOTE -432) (|devaluate| |#1|))))) (-47 OV E P) ((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}."))) NIL @@ -123,34 +123,34 @@ NIL (-48 R A) ((|constructor| (NIL "AlgebraPackage assembles a variety of useful functions for general algebras.")) (|basis| (((|Vector| |#2|) (|Vector| |#2|)) "\\spad{basis(va)} selects a basis from the elements of \\spad{va}.")) (|radicalOfLeftTraceForm| (((|List| |#2|)) "\\spad{radicalOfLeftTraceForm()} returns basis for null space of \\spad{leftTraceMatrix()},{} if the algebra is associative,{} alternative or a Jordan algebra,{} then this space equals the radical (maximal nil ideal) of the algebra.")) (|basisOfCentroid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfCentroid()} returns a basis of the centroid,{} \\spadignore{i.e.} the endomorphism ring of \\spad{A} considered as \\spad{(A,{}A)}-bimodule.")) (|basisOfRightNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfRightNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as left module. Note that right nucloid coincides with right nucleus if \\spad{A} has a unit.")) (|basisOfLeftNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfLeftNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as right module. Note that left nucloid coincides with left nucleus if \\spad{A} has a unit.")) (|basisOfCenter| (((|List| |#2|)) "\\spad{basisOfCenter()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{commutator(x,{}a) = 0} and \\spad{associator(x,{}a,{}b) = associator(a,{}x,{}b) = associator(a,{}b,{}x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfNucleus| (((|List| |#2|)) "\\spad{basisOfNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{associator(x,{}a,{}b) = associator(a,{}x,{}b) = associator(a,{}b,{}x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfMiddleNucleus| (((|List| |#2|)) "\\spad{basisOfMiddleNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,{}x,{}b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightNucleus| (((|List| |#2|)) "\\spad{basisOfRightNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,{}b,{}x)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfLeftNucleus| (((|List| |#2|)) "\\spad{basisOfLeftNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(x,{}a,{}b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfRightAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = a*x}.")) (|basisOfLeftAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfLeftAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = x*a}.")) (|basisOfCommutingElements| (((|List| |#2|)) "\\spad{basisOfCommutingElements()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = commutator(x,{}a)} for all \\spad{a} in \\spad{A}.")) (|biRank| (((|NonNegativeInteger|) |#2|) "\\spad{biRank(x)} determines the number of linearly independent elements in \\spad{x},{} \\spad{x*bi},{} \\spad{bi*x},{} \\spad{bi*x*bj},{} \\spad{i,{}j=1,{}...,{}n},{} where \\spad{b=[b1,{}...,{}bn]} is a basis. Note that if \\spad{A} has a unit,{} then doubleRank,{} weakBiRank,{} and biRank coincide.")) (|weakBiRank| (((|NonNegativeInteger|) |#2|) "\\spad{weakBiRank(x)} determines the number of linearly independent elements in the \\spad{bi*x*bj},{} \\spad{i,{}j=1,{}...,{}n},{} where \\spad{b=[b1,{}...,{}bn]} is a basis.")) (|doubleRank| (((|NonNegativeInteger|) |#2|) "\\spad{doubleRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,{}...,{}bn]} is a basis.")) (|rightRank| (((|NonNegativeInteger|) |#2|) "\\spad{rightRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{bn*x},{} where \\spad{b=[b1,{}...,{}bn]} is a basis.")) (|leftRank| (((|NonNegativeInteger|) |#2|) "\\spad{leftRank(x)} determines the number of linearly independent elements in \\spad{x*b1},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,{}...,{}bn]} is a basis."))) NIL -((|HasCategory| |#1| (QUOTE (-296)))) +((|HasCategory| |#1| (QUOTE (-301)))) (-49 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,{}..,{}an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{ai} * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra."))) -((-4502 |has| |#1| (-550)) (-4500 . T) (-4499 . T)) -((|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-550)))) +((-4516 |has| |#1| (-558)) (-4514 . T) (-4513 . T)) +((|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-50 |Key| |Entry|) ((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data."))) -((-4505 . T) (-4506 . T)) -((|HasCategory| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (QUOTE (-834))) (|HasCategory| |#1| (QUOTE (-834))) (|HasCategory| |#2| (QUOTE (-1082))) (-12 (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1082)))) (|HasCategory| (-560) (QUOTE (-834))) (|HasCategory| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (QUOTE (-1082))) (-2318 (|HasCategory| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (QUOTE (-1082))) (|HasCategory| |#2| (QUOTE (-1082)))) (-2318 (|HasCategory| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (QUOTE (-834))) (|HasCategory| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (QUOTE (-1082))) (|HasCategory| |#2| (QUOTE (-1082)))) (-12 (|HasCategory| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (LIST (QUOTE -298) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3655) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2371) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (QUOTE (-1082)))) (-2318 (-12 (|HasCategory| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (LIST (QUOTE -298) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3655) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2371) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (QUOTE (-834)))) (-12 (|HasCategory| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (LIST (QUOTE -298) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3655) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2371) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (QUOTE (-1082)))))) +((-4519 . T) (-4520 . T)) +((|HasCategory| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-1090))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1090)))) (|HasCategory| (-568) (QUOTE (-842))) (|HasCategory| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (QUOTE (-1090))) (-2198 (|HasCategory| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (QUOTE (-1090))) (|HasCategory| |#2| (QUOTE (-1090)))) (-2198 (|HasCategory| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (QUOTE (-842))) (|HasCategory| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (QUOTE (-1090))) (|HasCategory| |#2| (QUOTE (-1090)))) (-12 (|HasCategory| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (LIST (QUOTE -303) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3649) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4083) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (QUOTE (-1090)))) (-2198 (-12 (|HasCategory| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (LIST (QUOTE -303) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3649) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4083) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (QUOTE (-842)))) (-12 (|HasCategory| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (LIST (QUOTE -303) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3649) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4083) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (QUOTE (-1090)))))) (-51 S R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-359)))) +((|HasCategory| |#2| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-150))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365)))) (-52 R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) -(((-4507 "*") |has| |#1| (-170)) (-4498 |has| |#1| (-550)) (-4499 . T) (-4500 . T) (-4502 . T)) +(((-4521 "*") |has| |#1| (-172)) (-4512 |has| |#1| (-558)) (-4513 . T) (-4514 . T) (-4516 . T)) NIL (-53) ((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4497 . T) (-4503 . T) (-4498 . T) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) -((|HasCategory| $ (QUOTE (-1039))) (|HasCategory| $ (LIST (QUOTE -1029) (QUOTE (-560))))) +((-4511 . T) (-4517 . T) (-4512 . T) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) +((|HasCategory| $ (QUOTE (-1047))) (|HasCategory| $ (LIST (QUOTE -1037) (QUOTE (-568))))) (-54) ((|constructor| (NIL "This domain implements anonymous functions"))) NIL NIL (-55 R |lVar|) ((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,{}...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,{}u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}."))) -((-4502 . T)) +((-4516 . T)) NIL (-56 S) ((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}."))) @@ -168,7 +168,7 @@ NIL ((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p,{} f,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}."))) NIL NIL -(-60 |Base| R -1333) +(-60 |Base| R -1478) ((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,{}ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,{}...,{}rn],{} expr,{} n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,{}...,{}rn],{} expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression."))) NIL NIL @@ -178,7 +178,7 @@ NIL NIL (-62 R |Row| |Col|) ((|constructor| (NIL "Two dimensional array categories and domains")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\indented{1}{map!(\\spad{f},{}a)\\space{2}assign \\spad{a(i,{}j)} to \\spad{f(a(i,{}j))}} \\indented{1}{for all \\spad{i,{} j}} \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,{}4,{}10) \\spad{X} map!(-,{}arr)")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\indented{1}{map(\\spad{f},{}a,{}\\spad{b},{}\\spad{r}) returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))}} \\indented{1}{when both \\spad{a(i,{}j)} and \\spad{b(i,{}j)} exist;} \\indented{1}{else \\spad{c(i,{}j) = f(r,{} b(i,{}j))} when \\spad{a(i,{}j)} does not exist;} \\indented{1}{else \\spad{c(i,{}j) = f(a(i,{}j),{}r)} when \\spad{b(i,{}j)} does not exist;} \\indented{1}{otherwise \\spad{c(i,{}j) = f(r,{}r)}.} \\blankline \\spad{X} adder(a:Integer,{}b:Integer):Integer \\spad{==} a+b \\spad{X} \\spad{arr1} : \\spad{ARRAY2} INT \\spad{:=} new(5,{}4,{}10) \\spad{X} \\spad{arr2} : \\spad{ARRAY2} INT \\spad{:=} new(3,{}3,{}10) \\spad{X} map(adder,{}\\spad{arr1},{}\\spad{arr2},{}17)") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\indented{1}{map(\\spad{f},{}a,{}\\spad{b}) returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))}} \\indented{1}{for all \\spad{i,{} j}} \\blankline \\spad{X} adder(a:Integer,{}b:Integer):Integer \\spad{==} a+b \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,{}4,{}10) \\spad{X} map(adder,{}arr,{}arr)") (($ (|Mapping| |#1| |#1|) $) "\\indented{1}{map(\\spad{f},{}a) returns \\spad{b},{} where \\spad{b(i,{}j) = f(a(i,{}j))}} \\indented{1}{for all \\spad{i,{} j}} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,{}4,{}10) \\spad{X} map(-,{}arr) \\spad{X} map((\\spad{x} +-> \\spad{x} + \\spad{x}),{}arr)")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\indented{1}{setColumn!(\\spad{m},{}\\spad{j},{}\\spad{v}) sets to \\spad{j}th column of \\spad{m} to \\spad{v}} \\blankline \\spad{X} T1:=TwoDimensionalArray Integer \\spad{X} arr:T1:= new(5,{}4,{}0) \\spad{X} T2:=OneDimensionalArray Integer \\spad{X} acol:=construct([1,{}2,{}3,{}4,{}5]::List(INT))\\$\\spad{T2} \\spad{X} setColumn!(arr,{}1,{}acol)\\$\\spad{T1}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\indented{1}{setRow!(\\spad{m},{}\\spad{i},{}\\spad{v}) sets to \\spad{i}th row of \\spad{m} to \\spad{v}} \\blankline \\spad{X} T1:=TwoDimensionalArray Integer \\spad{X} arr:T1:= new(5,{}4,{}0) \\spad{X} T2:=OneDimensionalArray Integer \\spad{X} arow:=construct([1,{}2,{}3,{}4]::List(INT))\\$\\spad{T2} \\spad{X} setRow!(arr,{}1,{}arow)\\$\\spad{T1}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\indented{1}{qsetelt!(\\spad{m},{}\\spad{i},{}\\spad{j},{}\\spad{r}) sets the element in the \\spad{i}th row and \\spad{j}th} \\indented{1}{column of \\spad{m} to \\spad{r}} \\indented{1}{NO error check to determine if indices are in proper ranges} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,{}4,{}0) \\spad{X} qsetelt!(arr,{}1,{}1,{}17)")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\indented{1}{setelt(\\spad{m},{}\\spad{i},{}\\spad{j},{}\\spad{r}) sets the element in the \\spad{i}th row and \\spad{j}th} \\indented{1}{column of \\spad{m} to \\spad{r}} \\indented{1}{error check to determine if indices are in proper ranges} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,{}4,{}0) \\spad{X} setelt(arr,{}1,{}1,{}17)")) (|parts| (((|List| |#1|) $) "\\indented{1}{parts(\\spad{m}) returns a list of the elements of \\spad{m} in row major order} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,{}4,{}10) \\spad{X} parts(arr)")) (|column| ((|#3| $ (|Integer|)) "\\indented{1}{column(\\spad{m},{}\\spad{j}) returns the \\spad{j}th column of \\spad{m}} \\indented{1}{error check to determine if index is in proper ranges} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,{}4,{}10) \\spad{X} column(arr,{}1)")) (|row| ((|#2| $ (|Integer|)) "\\indented{1}{row(\\spad{m},{}\\spad{i}) returns the \\spad{i}th row of \\spad{m}} \\indented{1}{error check to determine if index is in proper ranges} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,{}4,{}10) \\spad{X} row(arr,{}1)")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\indented{1}{qelt(\\spad{m},{}\\spad{i},{}\\spad{j}) returns the element in the \\spad{i}th row and \\spad{j}th} \\indented{1}{column of the array \\spad{m}} \\indented{1}{NO error check to determine if indices are in proper ranges} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,{}4,{}10) \\spad{X} qelt(arr,{}1,{}1)")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\indented{1}{elt(\\spad{m},{}\\spad{i},{}\\spad{j},{}\\spad{r}) returns the element in the \\spad{i}th row and \\spad{j}th} \\indented{1}{column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{}} \\indented{1}{and returns \\spad{r} otherwise} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,{}4,{}10) \\spad{X} elt(arr,{}1,{}1,{}6) \\spad{X} elt(arr,{}1,{}10,{}6)") ((|#1| $ (|Integer|) (|Integer|)) "\\indented{1}{elt(\\spad{m},{}\\spad{i},{}\\spad{j}) returns the element in the \\spad{i}th row and \\spad{j}th} \\indented{1}{column of the array \\spad{m}} \\indented{1}{error check to determine if indices are in proper ranges} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,{}4,{}10) \\spad{X} elt(arr,{}1,{}1)")) (|ncols| (((|NonNegativeInteger|) $) "\\indented{1}{ncols(\\spad{m}) returns the number of columns in the array \\spad{m}} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,{}4,{}10) \\spad{X} ncols(arr)")) (|nrows| (((|NonNegativeInteger|) $) "\\indented{1}{nrows(\\spad{m}) returns the number of rows in the array \\spad{m}} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,{}4,{}10) \\spad{X} nrows(arr)")) (|maxColIndex| (((|Integer|) $) "\\indented{1}{maxColIndex(\\spad{m}) returns the index of the 'last' column of the array \\spad{m}} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,{}4,{}10) \\spad{X} maxColIndex(arr)")) (|minColIndex| (((|Integer|) $) "\\indented{1}{minColIndex(\\spad{m}) returns the index of the 'first' column of the array \\spad{m}} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,{}4,{}10) \\spad{X} minColIndex(arr)")) (|maxRowIndex| (((|Integer|) $) "\\indented{1}{maxRowIndex(\\spad{m}) returns the index of the 'last' row of the array \\spad{m}} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,{}4,{}10) \\spad{X} maxRowIndex(arr)")) (|minRowIndex| (((|Integer|) $) "\\indented{1}{minRowIndex(\\spad{m}) returns the index of the 'first' row of the array \\spad{m}} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,{}4,{}10) \\spad{X} minRowIndex(arr)")) (|fill!| (($ $ |#1|) "\\indented{1}{fill!(\\spad{m},{}\\spad{r}) fills \\spad{m} with \\spad{r}\\spad{'s}} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,{}4,{}0) \\spad{X} fill!(arr,{}10)")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\indented{1}{new(\\spad{m},{}\\spad{n},{}\\spad{r}) is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}} \\blankline \\spad{X} arr : \\spad{ARRAY2} INT \\spad{:=} new(5,{}4,{}0)")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays"))) -((-4505 . T) (-4506 . T) (-2537 . T)) +((-4519 . T) (-4520 . T) (-3973 . T)) NIL (-63 A B) ((|constructor| (NIL "This package provides tools for operating on one-dimensional arrays with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\indented{1}{map(\\spad{f},{}a) applies function \\spad{f} to each member of one-dimensional array} \\indented{1}{\\spad{a} resulting in a new one-dimensional array over a} \\indented{1}{possibly different underlying domain.} \\blankline \\spad{X} \\spad{T1:=OneDimensionalArrayFunctions2}(Integer,{}Integer) \\spad{X} map(\\spad{x+}-\\spad{>x+2},{}[\\spad{i} for \\spad{i} in 1..10])\\$\\spad{T1}")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\indented{1}{reduce(\\spad{f},{}a,{}\\spad{r}) applies function \\spad{f} to each} \\indented{1}{successive element of the} \\indented{1}{one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}.} \\indented{1}{For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)}} \\indented{1}{does \\spad{3+(2+(1+0))}. Note that third argument \\spad{r}} \\indented{1}{may be regarded as the identity element for the function \\spad{f}.} \\blankline \\spad{X} \\spad{T1:=OneDimensionalArrayFunctions2}(Integer,{}Integer) \\spad{X} adder(a:Integer,{}b:Integer):Integer \\spad{==} a+b \\spad{X} reduce(adder,{}[\\spad{i} for \\spad{i} in 1..10],{}0)\\$\\spad{T1}")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\indented{1}{scan(\\spad{f},{}a,{}\\spad{r}) successively applies} \\indented{1}{\\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays} \\indented{1}{\\spad{x} of one-dimensional array \\spad{a}.} \\indented{1}{More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then} \\indented{1}{\\spad{scan(f,{}a,{}r)} returns} \\indented{1}{\\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.} \\blankline \\spad{X} \\spad{T1:=OneDimensionalArrayFunctions2}(Integer,{}Integer) \\spad{X} adder(a:Integer,{}b:Integer):Integer \\spad{==} a+b \\spad{X} scan(adder,{}[\\spad{i} for \\spad{i} in 1..10],{}0)\\$\\spad{T1}"))) @@ -186,65 +186,65 @@ NIL NIL (-64 S) ((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\indented{1}{oneDimensionalArray(\\spad{n},{}\\spad{s}) creates an array from \\spad{n} copies of element \\spad{s}} \\blankline \\spad{X} oneDimensionalArray(10,{}0.0)") (($ (|List| |#1|)) "\\indented{1}{oneDimensionalArray(\\spad{l}) creates an array from a list of elements \\spad{l}} \\blankline \\spad{X} oneDimensionalArray [\\spad{i**2} for \\spad{i} in 1..10]"))) -((-4506 . T) (-4505 . T)) -((|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-834))) (-2318 (|HasCategory| |#1| (QUOTE (-834))) (|HasCategory| |#1| (QUOTE (-1082)))) (|HasCategory| (-560) (QUOTE (-834))) (-12 (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1082)))) (-2318 (-12 (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-834)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1082)))))) +((-4520 . T) (-4519 . T)) +((|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-842))) (-2198 (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-1090)))) (|HasCategory| (-568) (QUOTE (-842))) (-12 (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1090)))) (-2198 (-12 (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-842)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1090)))))) (-65 R) ((|constructor| (NIL "A TwoDimensionalArray is a two dimensional array with 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}."))) -((-4505 . T) (-4506 . T)) -((|HasCategory| |#1| (QUOTE (-1082))) (-12 (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1082))))) -(-66 -1337) +((-4519 . T) (-4520 . T)) +((|HasCategory| |#1| (QUOTE (-1090))) (-12 (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1090))))) +(-66 -3391) ((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine d02kef. This ASP computes the values of a set of functions,{} for example: \\blankline \\tab{5}SUBROUTINE COEFFN(\\spad{P},{}\\spad{Q},{}DQDL,{}\\spad{X},{}ELAM,{}JINT)\\spad{\\br} \\tab{5}DOUBLE PRECISION ELAM,{}\\spad{P},{}\\spad{Q},{}\\spad{X},{}DQDL\\spad{\\br} \\tab{5}INTEGER JINT\\spad{\\br} \\tab{5}\\spad{P=1}.0D0\\spad{\\br} \\tab{5}\\spad{Q=}((\\spad{-1}.0D0*X**3)+ELAM*X*X-2.0D0)/(\\spad{X*X})\\spad{\\br} \\tab{5}\\spad{DQDL=1}.0D0\\spad{\\br} \\tab{5}RETURN\\spad{\\br} \\tab{5}END")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-67 -1337) +(-67 -3391) ((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine d02kef etc.,{} for example: \\blankline \\tab{5}SUBROUTINE MONIT (MAXIT,{}IFLAG,{}ELAM,{}FINFO)\\spad{\\br} \\tab{5}DOUBLE PRECISION ELAM,{}FINFO(15)\\spad{\\br} \\tab{5}INTEGER MAXIT,{}IFLAG\\spad{\\br} \\tab{5}IF(MAXIT.EQ.\\spad{-1})THEN\\spad{\\br} \\tab{7}PRINT*,{}\"Output from Monit\"\\spad{\\br} \\tab{5}ENDIF\\spad{\\br} \\tab{5}PRINT*,{}MAXIT,{}IFLAG,{}ELAM,{}(FINFO(\\spad{I}),{}\\spad{I=1},{}4)\\spad{\\br} \\tab{5}RETURN\\spad{\\br} \\tab{5}END\\")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}."))) NIL NIL -(-68 -1337) +(-68 -3391) ((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example: \\blankline \\tab{5}SUBROUTINE \\spad{LSFUN2}(\\spad{M},{}\\spad{N},{}\\spad{XC},{}FVECC,{}FJACC,{}\\spad{LJC})\\spad{\\br} \\tab{5}DOUBLE PRECISION FVECC(\\spad{M}),{}FJACC(\\spad{LJC},{}\\spad{N}),{}\\spad{XC}(\\spad{N})\\spad{\\br} \\tab{5}INTEGER \\spad{M},{}\\spad{N},{}\\spad{LJC}\\spad{\\br} \\tab{5}INTEGER \\spad{I},{}\\spad{J}\\spad{\\br} \\tab{5}DO 25003 \\spad{I=1},{}\\spad{LJC}\\spad{\\br} \\tab{7}DO 25004 \\spad{J=1},{}\\spad{N}\\spad{\\br} \\tab{9}FJACC(\\spad{I},{}\\spad{J})\\spad{=0}.0D0\\spad{\\br} 25004 CONTINUE\\spad{\\br} 25003 CONTINUE\\spad{\\br} \\tab{5}FVECC(1)=((\\spad{XC}(1)\\spad{-0}.14D0)\\spad{*XC}(3)+(15.0D0*XC(1)\\spad{-2}.1D0)\\spad{*XC}(2)\\spad{+1}.0D0)/(\\spad{\\br} \\tab{4}\\spad{&XC}(3)\\spad{+15}.0D0*XC(2))\\spad{\\br} \\tab{5}FVECC(2)=((\\spad{XC}(1)\\spad{-0}.18D0)\\spad{*XC}(3)+(7.0D0*XC(1)\\spad{-1}.26D0)\\spad{*XC}(2)\\spad{+1}.0D0)/(\\spad{\\br} \\tab{4}\\spad{&XC}(3)\\spad{+7}.0D0*XC(2))\\spad{\\br} \\tab{5}FVECC(3)=((\\spad{XC}(1)\\spad{-0}.22D0)\\spad{*XC}(3)+(4.333333333333333D0*XC(1)\\spad{-0}.953333\\spad{\\br} \\tab{4}\\spad{&3333333333D0})\\spad{*XC}(2)\\spad{+1}.0D0)/(\\spad{XC}(3)\\spad{+4}.333333333333333D0*XC(2))\\spad{\\br} \\tab{5}FVECC(4)=((\\spad{XC}(1)\\spad{-0}.25D0)\\spad{*XC}(3)+(3.0D0*XC(1)\\spad{-0}.75D0)\\spad{*XC}(2)\\spad{+1}.0D0)/(\\spad{\\br} \\tab{4}\\spad{&XC}(3)\\spad{+3}.0D0*XC(2))\\spad{\\br} \\tab{5}FVECC(5)=((\\spad{XC}(1)\\spad{-0}.29D0)\\spad{*XC}(3)+(2.2D0*XC(1)\\spad{-0}.6379999999999999D0)*\\spad{\\br} \\tab{4}\\spad{&XC}(2)\\spad{+1}.0D0)/(\\spad{XC}(3)\\spad{+2}.2D0*XC(2))\\spad{\\br} \\tab{5}FVECC(6)=((\\spad{XC}(1)\\spad{-0}.32D0)\\spad{*XC}(3)+(1.666666666666667D0*XC(1)\\spad{-0}.533333\\spad{\\br} \\tab{4}\\spad{&3333333333D0})\\spad{*XC}(2)\\spad{+1}.0D0)/(\\spad{XC}(3)\\spad{+1}.666666666666667D0*XC(2))\\spad{\\br} \\tab{5}FVECC(7)=((\\spad{XC}(1)\\spad{-0}.35D0)\\spad{*XC}(3)+(1.285714285714286D0*XC(1)\\spad{-0}.45D0)*\\spad{\\br} \\tab{4}\\spad{&XC}(2)\\spad{+1}.0D0)/(\\spad{XC}(3)\\spad{+1}.285714285714286D0*XC(2))\\spad{\\br} \\tab{5}FVECC(8)=((\\spad{XC}(1)\\spad{-0}.39D0)\\spad{*XC}(3)+(\\spad{XC}(1)\\spad{-0}.39D0)\\spad{*XC}(2)\\spad{+1}.0D0)/(\\spad{XC}(3)+\\spad{\\br} \\tab{4}\\spad{&XC}(2))\\spad{\\br} \\tab{5}FVECC(9)=((\\spad{XC}(1)\\spad{-0}.37D0)\\spad{*XC}(3)+(\\spad{XC}(1)\\spad{-0}.37D0)\\spad{*XC}(2)\\spad{+1}.285714285714\\spad{\\br} \\tab{4}\\spad{&286D0})/(\\spad{XC}(3)\\spad{+XC}(2))\\spad{\\br} \\tab{5}FVECC(10)=((\\spad{XC}(1)\\spad{-0}.58D0)\\spad{*XC}(3)+(\\spad{XC}(1)\\spad{-0}.58D0)\\spad{*XC}(2)\\spad{+1}.66666666666\\spad{\\br} \\tab{4}\\spad{&6667D0})/(\\spad{XC}(3)\\spad{+XC}(2))\\spad{\\br} \\tab{5}FVECC(11)=((\\spad{XC}(1)\\spad{-0}.73D0)\\spad{*XC}(3)+(\\spad{XC}(1)\\spad{-0}.73D0)\\spad{*XC}(2)\\spad{+2}.2D0)/(\\spad{XC}(3)\\spad{\\br} \\tab{4}&+XC(2))\\spad{\\br} \\tab{5}FVECC(12)=((\\spad{XC}(1)\\spad{-0}.96D0)\\spad{*XC}(3)+(\\spad{XC}(1)\\spad{-0}.96D0)\\spad{*XC}(2)\\spad{+3}.0D0)/(\\spad{XC}(3)\\spad{\\br} \\tab{4}&+XC(2))\\spad{\\br} \\tab{5}FVECC(13)=((\\spad{XC}(1)\\spad{-1}.34D0)\\spad{*XC}(3)+(\\spad{XC}(1)\\spad{-1}.34D0)\\spad{*XC}(2)\\spad{+4}.33333333333\\spad{\\br} \\tab{4}\\spad{&3333D0})/(\\spad{XC}(3)\\spad{+XC}(2))\\spad{\\br} \\tab{5}FVECC(14)=((\\spad{XC}(1)\\spad{-2}.1D0)\\spad{*XC}(3)+(\\spad{XC}(1)\\spad{-2}.1D0)\\spad{*XC}(2)\\spad{+7}.0D0)/(\\spad{XC}(3)\\spad{+X}\\spad{\\br} \\tab{4}\\spad{&C}(2))\\spad{\\br} \\tab{5}FVECC(15)=((\\spad{XC}(1)\\spad{-4}.39D0)\\spad{*XC}(3)+(\\spad{XC}(1)\\spad{-4}.39D0)\\spad{*XC}(2)\\spad{+15}.0D0)/(\\spad{XC}(3\\spad{\\br} \\tab{4}&)\\spad{+XC}(2))\\spad{\\br} \\tab{5}FJACC(1,{}1)\\spad{=1}.0D0\\spad{\\br} \\tab{5}FJACC(1,{}2)=-15.0D0/(\\spad{XC}(3)\\spad{**2+30}.0D0*XC(2)\\spad{*XC}(3)\\spad{+225}.0D0*XC(2)\\spad{**2})\\spad{\\br} \\tab{5}FJACC(1,{}3)=-1.0D0/(\\spad{XC}(3)\\spad{**2+30}.0D0*XC(2)\\spad{*XC}(3)\\spad{+225}.0D0*XC(2)\\spad{**2})\\spad{\\br} \\tab{5}FJACC(2,{}1)\\spad{=1}.0D0\\spad{\\br} \\tab{5}FJACC(2,{}2)=-7.0D0/(\\spad{XC}(3)\\spad{**2+14}.0D0*XC(2)\\spad{*XC}(3)\\spad{+49}.0D0*XC(2)\\spad{**2})\\spad{\\br} \\tab{5}FJACC(2,{}3)=-1.0D0/(\\spad{XC}(3)\\spad{**2+14}.0D0*XC(2)\\spad{*XC}(3)\\spad{+49}.0D0*XC(2)\\spad{**2})\\spad{\\br} \\tab{5}FJACC(3,{}1)\\spad{=1}.0D0\\spad{\\br} \\tab{5}FJACC(3,{}2)=((\\spad{-0}.1110223024625157D-15*XC(3))\\spad{-4}.333333333333333D0)/(\\spad{\\br} \\tab{4}\\spad{&XC}(3)\\spad{**2+8}.666666666666666D0*XC(2)\\spad{*XC}(3)\\spad{+18}.77777777777778D0*XC(2)\\spad{\\br} \\tab{4}\\spad{&**2})\\spad{\\br} \\tab{5}FJACC(3,{}3)=(0.1110223024625157D-15*XC(2)\\spad{-1}.0D0)/(\\spad{XC}(3)\\spad{**2+8}.666666\\spad{\\br} \\tab{4}&666666666D0*XC(2)\\spad{*XC}(3)\\spad{+18}.77777777777778D0*XC(2)\\spad{**2})\\spad{\\br} \\tab{5}FJACC(4,{}1)\\spad{=1}.0D0\\spad{\\br} \\tab{5}FJACC(4,{}2)=-3.0D0/(\\spad{XC}(3)\\spad{**2+6}.0D0*XC(2)\\spad{*XC}(3)\\spad{+9}.0D0*XC(2)\\spad{**2})\\spad{\\br} \\tab{5}FJACC(4,{}3)=-1.0D0/(\\spad{XC}(3)\\spad{**2+6}.0D0*XC(2)\\spad{*XC}(3)\\spad{+9}.0D0*XC(2)\\spad{**2})\\spad{\\br} \\tab{5}FJACC(5,{}1)\\spad{=1}.0D0\\spad{\\br} \\tab{5}FJACC(5,{}2)=((\\spad{-0}.1110223024625157D-15*XC(3))\\spad{-2}.2D0)/(\\spad{XC}(3)\\spad{**2+4}.399\\spad{\\br} \\tab{4}&999999999999D0*XC(2)\\spad{*XC}(3)\\spad{+4}.839999999999998D0*XC(2)\\spad{**2})\\spad{\\br} \\tab{5}FJACC(5,{}3)=(0.1110223024625157D-15*XC(2)\\spad{-1}.0D0)/(\\spad{XC}(3)\\spad{**2+4}.399999\\spad{\\br} \\tab{4}&999999999D0*XC(2)\\spad{*XC}(3)\\spad{+4}.839999999999998D0*XC(2)\\spad{**2})\\spad{\\br} \\tab{5}FJACC(6,{}1)\\spad{=1}.0D0\\spad{\\br} \\tab{5}FJACC(6,{}2)=((\\spad{-0}.2220446049250313D-15*XC(3))\\spad{-1}.666666666666667D0)/(\\spad{\\br} \\tab{4}\\spad{&XC}(3)\\spad{**2+3}.333333333333333D0*XC(2)\\spad{*XC}(3)\\spad{+2}.777777777777777D0*XC(2)\\spad{\\br} \\tab{4}\\spad{&**2})\\spad{\\br} \\tab{5}FJACC(6,{}3)=(0.2220446049250313D-15*XC(2)\\spad{-1}.0D0)/(\\spad{XC}(3)\\spad{**2+3}.333333\\spad{\\br} \\tab{4}&333333333D0*XC(2)\\spad{*XC}(3)\\spad{+2}.777777777777777D0*XC(2)\\spad{**2})\\spad{\\br} \\tab{5}FJACC(7,{}1)\\spad{=1}.0D0\\spad{\\br} \\tab{5}FJACC(7,{}2)=((\\spad{-0}.5551115123125783D-16*XC(3))\\spad{-1}.285714285714286D0)/(\\spad{\\br} \\tab{4}\\spad{&XC}(3)\\spad{**2+2}.571428571428571D0*XC(2)\\spad{*XC}(3)\\spad{+1}.653061224489796D0*XC(2)\\spad{\\br} \\tab{4}\\spad{&**2})\\spad{\\br} \\tab{5}FJACC(7,{}3)=(0.5551115123125783D-16*XC(2)\\spad{-1}.0D0)/(\\spad{XC}(3)\\spad{**2+2}.571428\\spad{\\br} \\tab{4}&571428571D0*XC(2)\\spad{*XC}(3)\\spad{+1}.653061224489796D0*XC(2)\\spad{**2})\\spad{\\br} \\tab{5}FJACC(8,{}1)\\spad{=1}.0D0\\spad{\\br} \\tab{5}FJACC(8,{}2)=-1.0D0/(\\spad{XC}(3)\\spad{**2+2}.0D0*XC(2)\\spad{*XC}(3)\\spad{+XC}(2)\\spad{**2})\\spad{\\br} \\tab{5}FJACC(8,{}3)=-1.0D0/(\\spad{XC}(3)\\spad{**2+2}.0D0*XC(2)\\spad{*XC}(3)\\spad{+XC}(2)\\spad{**2})\\spad{\\br} \\tab{5}FJACC(9,{}1)\\spad{=1}.0D0\\spad{\\br} \\tab{5}FJACC(9,{}2)=-1.285714285714286D0/(\\spad{XC}(3)\\spad{**2+2}.0D0*XC(2)\\spad{*XC}(3)\\spad{+XC}(2)*\\spad{\\br} \\tab{4}\\spad{&*2})\\spad{\\br} \\tab{5}FJACC(9,{}3)=-1.285714285714286D0/(\\spad{XC}(3)\\spad{**2+2}.0D0*XC(2)\\spad{*XC}(3)\\spad{+XC}(2)*\\spad{\\br} \\tab{4}\\spad{&*2})\\spad{\\br} \\tab{5}FJACC(10,{}1)\\spad{=1}.0D0\\spad{\\br} \\tab{5}FJACC(10,{}2)=-1.666666666666667D0/(\\spad{XC}(3)\\spad{**2+2}.0D0*XC(2)\\spad{*XC}(3)\\spad{+XC}(2)\\spad{\\br} \\tab{4}\\spad{&**2})\\spad{\\br} \\tab{5}FJACC(10,{}3)=-1.666666666666667D0/(\\spad{XC}(3)\\spad{**2+2}.0D0*XC(2)\\spad{*XC}(3)\\spad{+XC}(2)\\spad{\\br} \\tab{4}\\spad{&**2})\\spad{\\br} \\tab{5}FJACC(11,{}1)\\spad{=1}.0D0\\spad{\\br} \\tab{5}FJACC(11,{}2)=-2.2D0/(\\spad{XC}(3)\\spad{**2+2}.0D0*XC(2)\\spad{*XC}(3)\\spad{+XC}(2)\\spad{**2})\\spad{\\br} \\tab{5}FJACC(11,{}3)=-2.2D0/(\\spad{XC}(3)\\spad{**2+2}.0D0*XC(2)\\spad{*XC}(3)\\spad{+XC}(2)\\spad{**2})\\spad{\\br} \\tab{5}FJACC(12,{}1)\\spad{=1}.0D0\\spad{\\br} \\tab{5}FJACC(12,{}2)=-3.0D0/(\\spad{XC}(3)\\spad{**2+2}.0D0*XC(2)\\spad{*XC}(3)\\spad{+XC}(2)\\spad{**2})\\spad{\\br} \\tab{5}FJACC(12,{}3)=-3.0D0/(\\spad{XC}(3)\\spad{**2+2}.0D0*XC(2)\\spad{*XC}(3)\\spad{+XC}(2)\\spad{**2})\\spad{\\br} \\tab{5}FJACC(13,{}1)\\spad{=1}.0D0\\spad{\\br} \\tab{5}FJACC(13,{}2)=-4.333333333333333D0/(\\spad{XC}(3)\\spad{**2+2}.0D0*XC(2)\\spad{*XC}(3)\\spad{+XC}(2)\\spad{\\br} \\tab{4}\\spad{&**2})\\spad{\\br} \\tab{5}FJACC(13,{}3)=-4.333333333333333D0/(\\spad{XC}(3)\\spad{**2+2}.0D0*XC(2)\\spad{*XC}(3)\\spad{+XC}(2)\\spad{\\br} \\tab{4}\\spad{&**2})\\spad{\\br} \\tab{5}FJACC(14,{}1)\\spad{=1}.0D0\\spad{\\br} \\tab{5}FJACC(14,{}2)=-7.0D0/(\\spad{XC}(3)\\spad{**2+2}.0D0*XC(2)\\spad{*XC}(3)\\spad{+XC}(2)\\spad{**2})\\spad{\\br} \\tab{5}FJACC(14,{}3)=-7.0D0/(\\spad{XC}(3)\\spad{**2+2}.0D0*XC(2)\\spad{*XC}(3)\\spad{+XC}(2)\\spad{**2})\\spad{\\br} \\tab{5}FJACC(15,{}1)\\spad{=1}.0D0\\spad{\\br} \\tab{5}FJACC(15,{}2)=-15.0D0/(\\spad{XC}(3)\\spad{**2+2}.0D0*XC(2)\\spad{*XC}(3)\\spad{+XC}(2)\\spad{**2})\\spad{\\br} \\tab{5}FJACC(15,{}3)=-15.0D0/(\\spad{XC}(3)\\spad{**2+2}.0D0*XC(2)\\spad{*XC}(3)\\spad{+XC}(2)\\spad{**2})\\spad{\\br} \\tab{5}RETURN\\spad{\\br} \\tab{5}END")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-69 -1337) +(-69 -3391) ((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{x}) and turn it into a Fortran Function like the following: \\blankline \\tab{5}DOUBLE PRECISION FUNCTION \\spad{F}(\\spad{X})\\spad{\\br} \\tab{5}DOUBLE PRECISION \\spad{X}\\spad{\\br} \\tab{5}F=DSIN(\\spad{X})\\spad{\\br} \\tab{5}RETURN\\spad{\\br} \\tab{5}END")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-70 -1337) +(-70 -3391) ((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example: \\blankline \\tab{5}SUBROUTINE QPHESS(\\spad{N},{}NROWH,{}NCOLH,{}JTHCOL,{}HESS,{}\\spad{X},{}\\spad{HX})\\spad{\\br} \\tab{5}DOUBLE PRECISION \\spad{HX}(\\spad{N}),{}\\spad{X}(\\spad{N}),{}HESS(NROWH,{}NCOLH)\\spad{\\br} \\tab{5}INTEGER JTHCOL,{}\\spad{N},{}NROWH,{}NCOLH\\spad{\\br} \\tab{5}\\spad{HX}(1)\\spad{=2}.0D0*X(1)\\spad{\\br} \\tab{5}\\spad{HX}(2)\\spad{=2}.0D0*X(2)\\spad{\\br} \\tab{5}\\spad{HX}(3)\\spad{=2}.0D0*X(4)\\spad{+2}.0D0*X(3)\\spad{\\br} \\tab{5}\\spad{HX}(4)\\spad{=2}.0D0*X(4)\\spad{+2}.0D0*X(3)\\spad{\\br} \\tab{5}\\spad{HX}(5)\\spad{=2}.0D0*X(5)\\spad{\\br} \\tab{5}\\spad{HX}(6)=(\\spad{-2}.0D0*X(7))+(\\spad{-2}.0D0*X(6))\\spad{\\br} \\tab{5}\\spad{HX}(7)=(\\spad{-2}.0D0*X(7))+(\\spad{-2}.0D0*X(6))\\spad{\\br} \\tab{5}RETURN\\spad{\\br} \\tab{5}END")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct|) (|construct| (QUOTE X) (QUOTE HESS)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-71 -1337) +(-71 -3391) ((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine e04jaf),{} for example: \\blankline \\tab{5}SUBROUTINE \\spad{FUNCT1}(\\spad{N},{}\\spad{XC},{}\\spad{FC})\\spad{\\br} \\tab{5}DOUBLE PRECISION \\spad{FC},{}\\spad{XC}(\\spad{N})\\spad{\\br} \\tab{5}INTEGER \\spad{N}\\spad{\\br} \\tab{5}\\spad{FC=10}.0D0*XC(4)**4+(\\spad{-40}.0D0*XC(1)\\spad{*XC}(4)\\spad{**3})+(60.0D0*XC(1)\\spad{**2+5}\\spad{\\br} \\tab{4}&.0D0)\\spad{*XC}(4)**2+((\\spad{-10}.0D0*XC(3))+(\\spad{-40}.0D0*XC(1)\\spad{**3}))\\spad{*XC}(4)\\spad{+16}.0D0*X\\spad{\\br} \\tab{4}\\spad{&C}(3)**4+(\\spad{-32}.0D0*XC(2)\\spad{*XC}(3)\\spad{**3})+(24.0D0*XC(2)\\spad{**2+5}.0D0)\\spad{*XC}(3)**2+\\spad{\\br} \\tab{4}&(\\spad{-8}.0D0*XC(2)**3*XC(3))\\spad{+XC}(2)\\spad{**4+100}.0D0*XC(2)\\spad{**2+20}.0D0*XC(1)\\spad{*XC}(\\spad{\\br} \\tab{4}\\spad{&2})\\spad{+10}.0D0*XC(1)**4+XC(1)\\spad{**2}\\spad{\\br} \\tab{5}RETURN\\spad{\\br} \\tab{5}END\\spad{\\br}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spadtype{FortranExpression} and turns it into an ASP. coerce(\\spad{f}) takes an object from the appropriate instantiation of"))) NIL NIL -(-72 -1337) +(-72 -3391) ((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine f02fjf ,{}for example: \\blankline \\tab{5}FUNCTION DOT(IFLAG,{}\\spad{N},{}\\spad{Z},{}\\spad{W},{}RWORK,{}LRWORK,{}IWORK,{}LIWORK)\\spad{\\br} \\tab{5}DOUBLE PRECISION \\spad{W}(\\spad{N}),{}\\spad{Z}(\\spad{N}),{}RWORK(LRWORK)\\spad{\\br} \\tab{5}INTEGER \\spad{N},{}LIWORK,{}IFLAG,{}LRWORK,{}IWORK(LIWORK)\\spad{\\br} \\tab{5}DOT=(\\spad{W}(16)+(\\spad{-0}.5D0*W(15)))\\spad{*Z}(16)+((\\spad{-0}.5D0*W(16))\\spad{+W}(15)+(\\spad{-0}.5D0*W(1\\spad{\\br} \\tab{4}\\spad{&4})))\\spad{*Z}(15)+((\\spad{-0}.5D0*W(15))\\spad{+W}(14)+(\\spad{-0}.5D0*W(13)))\\spad{*Z}(14)+((\\spad{-0}.5D0*W(\\spad{\\br} \\tab{4}\\spad{&14}))\\spad{+W}(13)+(\\spad{-0}.5D0*W(12)))\\spad{*Z}(13)+((\\spad{-0}.5D0*W(13))\\spad{+W}(12)+(\\spad{-0}.5D0*W(1\\spad{\\br} \\tab{4}\\spad{&1})))\\spad{*Z}(12)+((\\spad{-0}.5D0*W(12))\\spad{+W}(11)+(\\spad{-0}.5D0*W(10)))\\spad{*Z}(11)+((\\spad{-0}.5D0*W(\\spad{\\br} \\tab{4}\\spad{&11}))\\spad{+W}(10)+(\\spad{-0}.5D0*W(9)))\\spad{*Z}(10)+((\\spad{-0}.5D0*W(10))\\spad{+W}(9)+(\\spad{-0}.5D0*W(8))\\spad{\\br} \\tab{4}&)\\spad{*Z}(9)+((\\spad{-0}.5D0*W(9))\\spad{+W}(8)+(\\spad{-0}.5D0*W(7)))\\spad{*Z}(8)+((\\spad{-0}.5D0*W(8))\\spad{+W}(7)\\spad{\\br} \\tab{4}\\spad{&+}(\\spad{-0}.5D0*W(6)))\\spad{*Z}(7)+((\\spad{-0}.5D0*W(7))\\spad{+W}(6)+(\\spad{-0}.5D0*W(5)))\\spad{*Z}(6)+((\\spad{-0}.\\spad{\\br} \\tab{4}&5D0*W(6))\\spad{+W}(5)+(\\spad{-0}.5D0*W(4)))\\spad{*Z}(5)+((\\spad{-0}.5D0*W(5))\\spad{+W}(4)+(\\spad{-0}.5D0*W(3\\spad{\\br} \\tab{4}&)))\\spad{*Z}(4)+((\\spad{-0}.5D0*W(4))\\spad{+W}(3)+(\\spad{-0}.5D0*W(2)))\\spad{*Z}(3)+((\\spad{-0}.5D0*W(3))\\spad{+W}(\\spad{\\br} \\tab{4}\\spad{&2})+(\\spad{-0}.5D0*W(1)))\\spad{*Z}(2)+((\\spad{-0}.5D0*W(2))\\spad{+W}(1))\\spad{*Z}(1)\\spad{\\br} \\tab{5}RETURN\\spad{\\br} \\tab{5}END"))) NIL NIL -(-73 -1337) +(-73 -3391) ((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine f02fjf,{} for example: \\blankline \\tab{5}SUBROUTINE IMAGE(IFLAG,{}\\spad{N},{}\\spad{Z},{}\\spad{W},{}RWORK,{}LRWORK,{}IWORK,{}LIWORK)\\spad{\\br} \\tab{5}DOUBLE PRECISION \\spad{Z}(\\spad{N}),{}\\spad{W}(\\spad{N}),{}IWORK(LRWORK),{}RWORK(LRWORK)\\spad{\\br} \\tab{5}INTEGER \\spad{N},{}LIWORK,{}IFLAG,{}LRWORK\\spad{\\br} \\tab{5}\\spad{W}(1)\\spad{=0}.01707454969713436D0*Z(16)\\spad{+0}.001747395874954051D0*Z(15)\\spad{+0}.00\\spad{\\br} \\tab{4}&2106973900813502D0*Z(14)\\spad{+0}.002957434991769087D0*Z(13)+(\\spad{-0}.00700554\\spad{\\br} \\tab{4}&0882865317D0*Z(12))+(\\spad{-0}.01219194009813166D0*Z(11))\\spad{+0}.0037230647365\\spad{\\br} \\tab{4}&3087D0*Z(10)\\spad{+0}.04932374658377151D0*Z(9)+(\\spad{-0}.03586220812223305D0*Z(\\spad{\\br} \\tab{4}\\spad{&8}))+(\\spad{-0}.04723268012114625D0*Z(7))+(\\spad{-0}.02434652144032987D0*Z(6))\\spad{+0}.\\spad{\\br} \\tab{4}&2264766947290192D0*Z(5)+(\\spad{-0}.1385343580686922D0*Z(4))+(\\spad{-0}.116530050\\spad{\\br} \\tab{4}&8238904D0*Z(3))+(\\spad{-0}.2803531651057233D0*Z(2))\\spad{+1}.019463911841327D0*Z\\spad{\\br} \\tab{4}&(1)\\spad{\\br} \\tab{5}\\spad{W}(2)\\spad{=0}.0227345011107737D0*Z(16)\\spad{+0}.008812321197398072D0*Z(15)\\spad{+0}.010\\spad{\\br} \\tab{4}&94012210519586D0*Z(14)+(\\spad{-0}.01764072463999744D0*Z(13))+(\\spad{-0}.01357136\\spad{\\br} \\tab{4}&72105995D0*Z(12))\\spad{+0}.00157466157362272D0*Z(11)\\spad{+0}.05258889186338282D\\spad{\\br} \\tab{4}&0*Z(10)+(\\spad{-0}.01981532388243379D0*Z(9))+(\\spad{-0}.06095390688679697D0*Z(8)\\spad{\\br} \\tab{4}&)+(\\spad{-0}.04153119955569051D0*Z(7))\\spad{+0}.2176561076571465D0*Z(6)+(\\spad{-0}.0532\\spad{\\br} \\tab{4}&5555586632358D0*Z(5))+(\\spad{-0}.1688977368984641D0*Z(4))+(\\spad{-0}.32440166056\\spad{\\br} \\tab{4}&67343D0*Z(3))\\spad{+0}.9128222941872173D0*Z(2)+(\\spad{-0}.2419652703415429D0*Z(1\\spad{\\br} \\tab{4}&))\\spad{\\br} \\tab{5}\\spad{W}(3)\\spad{=0}.03371198197190302D0*Z(16)\\spad{+0}.02021603150122265D0*Z(15)+(\\spad{-0}.0\\spad{\\br} \\tab{4}&06607305534689702D0*Z(14))+(\\spad{-0}.03032392238968179D0*Z(13))\\spad{+0}.002033\\spad{\\br} \\tab{4}&305231024948D0*Z(12)\\spad{+0}.05375944956767728D0*Z(11)+(\\spad{-0}.0163213312502\\spad{\\br} \\tab{4}&9967D0*Z(10))+(\\spad{-0}.05483186562035512D0*Z(9))+(\\spad{-0}.04901428822579872D\\spad{\\br} \\tab{4}&0*Z(8))\\spad{+0}.2091097927887612D0*Z(7)+(\\spad{-0}.05760560341383113D0*Z(6))+(-\\spad{\\br} \\tab{4}\\spad{&0}.1236679206156403D0*Z(5))+(\\spad{-0}.3523683853026259D0*Z(4))\\spad{+0}.88929961\\spad{\\br} \\tab{4}&32269974D0*Z(3)+(\\spad{-0}.2995429545781457D0*Z(2))+(\\spad{-0}.02986582812574917\\spad{\\br} \\tab{4}&D0*Z(1))\\spad{\\br} \\tab{5}\\spad{W}(4)\\spad{=0}.05141563713660119D0*Z(16)\\spad{+0}.005239165960779299D0*Z(15)+(\\spad{-0}.\\spad{\\br} \\tab{4}&01623427735779699D0*Z(14))+(\\spad{-0}.01965809746040371D0*Z(13))\\spad{+0}.054688\\spad{\\br} \\tab{4}&97337339577D0*Z(12)+(\\spad{-0}.014224695935687D0*Z(11))+(\\spad{-0}.0505181779315\\spad{\\br} \\tab{4}&6355D0*Z(10))+(\\spad{-0}.04353074206076491D0*Z(9))\\spad{+0}.2012230497530726D0*Z\\spad{\\br} \\tab{4}&(8)+(\\spad{-0}.06630874514535952D0*Z(7))+(\\spad{-0}.1280829963720053D0*Z(6))+(\\spad{-0}\\spad{\\br} \\tab{4}&.305169742604165D0*Z(5))\\spad{+0}.8600427128450191D0*Z(4)+(\\spad{-0}.32415033802\\spad{\\br} \\tab{4}&68184D0*Z(3))+(\\spad{-0}.09033531980693314D0*Z(2))\\spad{+0}.09089205517109111D0*\\spad{\\br} \\tab{4}\\spad{&Z}(1)\\spad{\\br} \\tab{5}\\spad{W}(5)\\spad{=0}.04556369767776375D0*Z(16)+(\\spad{-0}.001822737697581869D0*Z(15))+(\\spad{\\br} \\tab{4}&-0.002512226501941856D0*Z(14))\\spad{+0}.02947046460707379D0*Z(13)+(\\spad{-0}.014\\spad{\\br} \\tab{4}&45079632086177D0*Z(12))+(\\spad{-0}.05034242196614937D0*Z(11))+(\\spad{-0}.0376966\\spad{\\br} \\tab{4}&3291725935D0*Z(10))\\spad{+0}.2171103102175198D0*Z(9)+(\\spad{-0}.0824949256021352\\spad{\\br} \\tab{4}&4D0*Z(8))+(\\spad{-0}.1473995209288945D0*Z(7))+(\\spad{-0}.315042193418466D0*Z(6))\\spad{\\br} \\tab{4}\\spad{&+0}.9591623347824002D0*Z(5)+(\\spad{-0}.3852396953763045D0*Z(4))+(\\spad{-0}.141718\\spad{\\br} \\tab{4}&5427288274D0*Z(3))+(\\spad{-0}.03423495461011043D0*Z(2))\\spad{+0}.319820917706851\\spad{\\br} \\tab{4}&6D0*Z(1)\\spad{\\br} \\tab{5}\\spad{W}(6)\\spad{=0}.04015147277405744D0*Z(16)\\spad{+0}.01328585741341559D0*Z(15)\\spad{+0}.048\\spad{\\br} \\tab{4}&26082005465965D0*Z(14)+(\\spad{-0}.04319641116207706D0*Z(13))+(\\spad{-0}.04931323\\spad{\\br} \\tab{4}&319055762D0*Z(12))+(\\spad{-0}.03526886317505474D0*Z(11))\\spad{+0}.22295383396730\\spad{\\br} \\tab{4}&01D0*Z(10)+(\\spad{-0}.07375317649315155D0*Z(9))+(\\spad{-0}.1589391311991561D0*Z(\\spad{\\br} \\tab{4}\\spad{&8}))+(\\spad{-0}.328001910890377D0*Z(7))\\spad{+0}.952576555482747D0*Z(6)+(\\spad{-0}.31583\\spad{\\br} \\tab{4}&09975786731D0*Z(5))+(\\spad{-0}.1846882042225383D0*Z(4))+(\\spad{-0}.0703762046700\\spad{\\br} \\tab{4}&4427D0*Z(3))\\spad{+0}.2311852964327382D0*Z(2)\\spad{+0}.04254083491825025D0*Z(1)\\spad{\\br} \\tab{5}\\spad{W}(7)\\spad{=0}.06069778964023718D0*Z(16)\\spad{+0}.06681263884671322D0*Z(15)+(\\spad{-0}.0\\spad{\\br} \\tab{4}&2113506688615768D0*Z(14))+(\\spad{-0}.083996867458326D0*Z(13))+(\\spad{-0}.0329843\\spad{\\br} \\tab{4}&8523869648D0*Z(12))\\spad{+0}.2276878326327734D0*Z(11)+(\\spad{-0}.067356038933017\\spad{\\br} \\tab{4}&95D0*Z(10))+(\\spad{-0}.1559813965382218D0*Z(9))+(\\spad{-0}.3363262957694705D0*Z(\\spad{\\br} \\tab{4}\\spad{&8}))\\spad{+0}.9442791158560948D0*Z(7)+(\\spad{-0}.3199955249404657D0*Z(6))+(\\spad{-0}.136\\spad{\\br} \\tab{4}&2463839920727D0*Z(5))+(\\spad{-0}.1006185171570586D0*Z(4))\\spad{+0}.2057504515015\\spad{\\br} \\tab{4}&423D0*Z(3)+(\\spad{-0}.02065879269286707D0*Z(2))\\spad{+0}.03160990266745513D0*Z(1\\spad{\\br} \\tab{4}&)\\spad{\\br} \\tab{5}\\spad{W}(8)\\spad{=0}.126386868896738D0*Z(16)\\spad{+0}.002563370039476418D0*Z(15)+(\\spad{-0}.05\\spad{\\br} \\tab{4}&581757739455641D0*Z(14))+(\\spad{-0}.07777893205900685D0*Z(13))\\spad{+0}.23117338\\spad{\\br} \\tab{4}&45834199D0*Z(12)+(\\spad{-0}.06031581134427592D0*Z(11))+(\\spad{-0}.14805474755869\\spad{\\br} \\tab{4}&52D0*Z(10))+(\\spad{-0}.3364014128402243D0*Z(9))\\spad{+0}.9364014128402244D0*Z(8)\\spad{\\br} \\tab{4}\\spad{&+}(\\spad{-0}.3269452524413048D0*Z(7))+(\\spad{-0}.1396841886557241D0*Z(6))+(\\spad{-0}.056\\spad{\\br} \\tab{4}&1733845834199D0*Z(5))\\spad{+0}.1777789320590069D0*Z(4)+(\\spad{-0}.04418242260544\\spad{\\br} \\tab{4}&359D0*Z(3))+(\\spad{-0}.02756337003947642D0*Z(2))\\spad{+0}.07361313110326199D0*Z(\\spad{\\br} \\tab{4}\\spad{&1})\\spad{\\br} \\tab{5}\\spad{W}(9)\\spad{=0}.07361313110326199D0*Z(16)+(\\spad{-0}.02756337003947642D0*Z(15))+(-\\spad{\\br} \\tab{4}\\spad{&0}.04418242260544359D0*Z(14))\\spad{+0}.1777789320590069D0*Z(13)+(\\spad{-0}.056173\\spad{\\br} \\tab{4}&3845834199D0*Z(12))+(\\spad{-0}.1396841886557241D0*Z(11))+(\\spad{-0}.326945252441\\spad{\\br} \\tab{4}&3048D0*Z(10))\\spad{+0}.9364014128402244D0*Z(9)+(\\spad{-0}.3364014128402243D0*Z(8\\spad{\\br} \\tab{4}&))+(\\spad{-0}.1480547475586952D0*Z(7))+(\\spad{-0}.06031581134427592D0*Z(6))\\spad{+0}.23\\spad{\\br} \\tab{4}&11733845834199D0*Z(5)+(\\spad{-0}.07777893205900685D0*Z(4))+(\\spad{-0}.0558175773\\spad{\\br} \\tab{4}&9455641D0*Z(3))\\spad{+0}.002563370039476418D0*Z(2)\\spad{+0}.126386868896738D0*Z(\\spad{\\br} \\tab{4}\\spad{&1})\\spad{\\br} \\tab{5}\\spad{W}(10)\\spad{=0}.03160990266745513D0*Z(16)+(\\spad{-0}.02065879269286707D0*Z(15))\\spad{+0}\\spad{\\br} \\tab{4}&.2057504515015423D0*Z(14)+(\\spad{-0}.1006185171570586D0*Z(13))+(\\spad{-0}.136246\\spad{\\br} \\tab{4}&3839920727D0*Z(12))+(\\spad{-0}.3199955249404657D0*Z(11))\\spad{+0}.94427911585609\\spad{\\br} \\tab{4}&48D0*Z(10)+(\\spad{-0}.3363262957694705D0*Z(9))+(\\spad{-0}.1559813965382218D0*Z(8\\spad{\\br} \\tab{4}&))+(\\spad{-0}.06735603893301795D0*Z(7))\\spad{+0}.2276878326327734D0*Z(6)+(\\spad{-0}.032\\spad{\\br} \\tab{4}&98438523869648D0*Z(5))+(\\spad{-0}.083996867458326D0*Z(4))+(\\spad{-0}.02113506688\\spad{\\br} \\tab{4}&615768D0*Z(3))\\spad{+0}.06681263884671322D0*Z(2)\\spad{+0}.06069778964023718D0*Z(\\spad{\\br} \\tab{4}\\spad{&1})\\spad{\\br} \\tab{5}\\spad{W}(11)\\spad{=0}.04254083491825025D0*Z(16)\\spad{+0}.2311852964327382D0*Z(15)+(\\spad{-0}.0\\spad{\\br} \\tab{4}&7037620467004427D0*Z(14))+(\\spad{-0}.1846882042225383D0*Z(13))+(\\spad{-0}.315830\\spad{\\br} \\tab{4}&9975786731D0*Z(12))\\spad{+0}.952576555482747D0*Z(11)+(\\spad{-0}.328001910890377D\\spad{\\br} \\tab{4}&0*Z(10))+(\\spad{-0}.1589391311991561D0*Z(9))+(\\spad{-0}.07375317649315155D0*Z(8)\\spad{\\br} \\tab{4}&)\\spad{+0}.2229538339673001D0*Z(7)+(\\spad{-0}.03526886317505474D0*Z(6))+(\\spad{-0}.0493\\spad{\\br} \\tab{4}&1323319055762D0*Z(5))+(\\spad{-0}.04319641116207706D0*Z(4))\\spad{+0}.048260820054\\spad{\\br} \\tab{4}&65965D0*Z(3)\\spad{+0}.01328585741341559D0*Z(2)\\spad{+0}.04015147277405744D0*Z(1)\\spad{\\br} \\tab{5}\\spad{W}(12)\\spad{=0}.3198209177068516D0*Z(16)+(\\spad{-0}.03423495461011043D0*Z(15))+(-\\spad{\\br} \\tab{4}\\spad{&0}.1417185427288274D0*Z(14))+(\\spad{-0}.3852396953763045D0*Z(13))\\spad{+0}.959162\\spad{\\br} \\tab{4}&3347824002D0*Z(12)+(\\spad{-0}.315042193418466D0*Z(11))+(\\spad{-0}.14739952092889\\spad{\\br} \\tab{4}&45D0*Z(10))+(\\spad{-0}.08249492560213524D0*Z(9))\\spad{+0}.2171103102175198D0*Z(8\\spad{\\br} \\tab{4}&)+(\\spad{-0}.03769663291725935D0*Z(7))+(\\spad{-0}.05034242196614937D0*Z(6))+(\\spad{-0}.\\spad{\\br} \\tab{4}&01445079632086177D0*Z(5))\\spad{+0}.02947046460707379D0*Z(4)+(\\spad{-0}.002512226\\spad{\\br} \\tab{4}&501941856D0*Z(3))+(\\spad{-0}.001822737697581869D0*Z(2))\\spad{+0}.045563697677763\\spad{\\br} \\tab{4}&75D0*Z(1)\\spad{\\br} \\tab{5}\\spad{W}(13)\\spad{=0}.09089205517109111D0*Z(16)+(\\spad{-0}.09033531980693314D0*Z(15))+(\\spad{\\br} \\tab{4}&-0.3241503380268184D0*Z(14))\\spad{+0}.8600427128450191D0*Z(13)+(\\spad{-0}.305169\\spad{\\br} \\tab{4}&742604165D0*Z(12))+(\\spad{-0}.1280829963720053D0*Z(11))+(\\spad{-0}.0663087451453\\spad{\\br} \\tab{4}&5952D0*Z(10))\\spad{+0}.2012230497530726D0*Z(9)+(\\spad{-0}.04353074206076491D0*Z(\\spad{\\br} \\tab{4}\\spad{&8}))+(\\spad{-0}.05051817793156355D0*Z(7))+(\\spad{-0}.014224695935687D0*Z(6))\\spad{+0}.05\\spad{\\br} \\tab{4}&468897337339577D0*Z(5)+(\\spad{-0}.01965809746040371D0*Z(4))+(\\spad{-0}.016234277\\spad{\\br} \\tab{4}&35779699D0*Z(3))\\spad{+0}.005239165960779299D0*Z(2)\\spad{+0}.05141563713660119D0\\spad{\\br} \\tab{4}\\spad{&*Z}(1)\\spad{\\br} \\tab{5}\\spad{W}(14)=(\\spad{-0}.02986582812574917D0*Z(16))+(\\spad{-0}.2995429545781457D0*Z(15))\\spad{\\br} \\tab{4}\\spad{&+0}.8892996132269974D0*Z(14)+(\\spad{-0}.3523683853026259D0*Z(13))+(\\spad{-0}.1236\\spad{\\br} \\tab{4}&679206156403D0*Z(12))+(\\spad{-0}.05760560341383113D0*Z(11))\\spad{+0}.20910979278\\spad{\\br} \\tab{4}&87612D0*Z(10)+(\\spad{-0}.04901428822579872D0*Z(9))+(\\spad{-0}.05483186562035512D\\spad{\\br} \\tab{4}&0*Z(8))+(\\spad{-0}.01632133125029967D0*Z(7))\\spad{+0}.05375944956767728D0*Z(6)\\spad{+0}\\spad{\\br} \\tab{4}&.002033305231024948D0*Z(5)+(\\spad{-0}.03032392238968179D0*Z(4))+(\\spad{-0}.00660\\spad{\\br} \\tab{4}&7305534689702D0*Z(3))\\spad{+0}.02021603150122265D0*Z(2)\\spad{+0}.033711981971903\\spad{\\br} \\tab{4}&02D0*Z(1)\\spad{\\br} \\tab{5}\\spad{W}(15)=(\\spad{-0}.2419652703415429D0*Z(16))\\spad{+0}.9128222941872173D0*Z(15)+(\\spad{-0}\\spad{\\br} \\tab{4}&.3244016605667343D0*Z(14))+(\\spad{-0}.1688977368984641D0*Z(13))+(\\spad{-0}.05325\\spad{\\br} \\tab{4}&555586632358D0*Z(12))\\spad{+0}.2176561076571465D0*Z(11)+(\\spad{-0}.0415311995556\\spad{\\br} \\tab{4}&9051D0*Z(10))+(\\spad{-0}.06095390688679697D0*Z(9))+(\\spad{-0}.01981532388243379D\\spad{\\br} \\tab{4}&0*Z(8))\\spad{+0}.05258889186338282D0*Z(7)\\spad{+0}.00157466157362272D0*Z(6)+(\\spad{-0}.\\spad{\\br} \\tab{4}&0135713672105995D0*Z(5))+(\\spad{-0}.01764072463999744D0*Z(4))\\spad{+0}.010940122\\spad{\\br} \\tab{4}&10519586D0*Z(3)\\spad{+0}.008812321197398072D0*Z(2)\\spad{+0}.0227345011107737D0*Z\\spad{\\br} \\tab{4}&(1)\\spad{\\br} \\tab{5}\\spad{W}(16)\\spad{=1}.019463911841327D0*Z(16)+(\\spad{-0}.2803531651057233D0*Z(15))+(\\spad{-0}.\\spad{\\br} \\tab{4}&1165300508238904D0*Z(14))+(\\spad{-0}.1385343580686922D0*Z(13))\\spad{+0}.22647669\\spad{\\br} \\tab{4}&47290192D0*Z(12)+(\\spad{-0}.02434652144032987D0*Z(11))+(\\spad{-0}.04723268012114\\spad{\\br} \\tab{4}&625D0*Z(10))+(\\spad{-0}.03586220812223305D0*Z(9))\\spad{+0}.04932374658377151D0*Z\\spad{\\br} \\tab{4}&(8)\\spad{+0}.00372306473653087D0*Z(7)+(\\spad{-0}.01219194009813166D0*Z(6))+(\\spad{-0}.0\\spad{\\br} \\tab{4}&07005540882865317D0*Z(5))\\spad{+0}.002957434991769087D0*Z(4)\\spad{+0}.0021069739\\spad{\\br} \\tab{4}&00813502D0*Z(3)\\spad{+0}.001747395874954051D0*Z(2)\\spad{+0}.01707454969713436D0*\\spad{\\br} \\tab{4}\\spad{&Z}(1)\\spad{\\br} \\tab{5}RETURN\\spad{\\br} \\tab{5}END\\spad{\\br}"))) NIL NIL -(-74 -1337) +(-74 -3391) ((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine f02fjf,{} for example: \\blankline \\tab{5}SUBROUTINE MONIT(ISTATE,{}NEXTIT,{}NEVALS,{}NEVECS,{}\\spad{K},{}\\spad{F},{}\\spad{D})\\spad{\\br} \\tab{5}DOUBLE PRECISION \\spad{D}(\\spad{K}),{}\\spad{F}(\\spad{K})\\spad{\\br} \\tab{5}INTEGER \\spad{K},{}NEXTIT,{}NEVALS,{}NVECS,{}ISTATE\\spad{\\br} \\tab{5}CALL F02FJZ(ISTATE,{}NEXTIT,{}NEVALS,{}NEVECS,{}\\spad{K},{}\\spad{F},{}\\spad{D})\\spad{\\br} \\tab{5}RETURN\\spad{\\br} \\tab{5}END\\spad{\\br}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}."))) NIL NIL -(-75 -1337) +(-75 -3391) ((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine f04qaf,{} for example: \\blankline \\tab{5}SUBROUTINE APROD(MODE,{}\\spad{M},{}\\spad{N},{}\\spad{X},{}\\spad{Y},{}RWORK,{}LRWORK,{}IWORK,{}LIWORK)\\spad{\\br} \\tab{5}DOUBLE PRECISION \\spad{X}(\\spad{N}),{}\\spad{Y}(\\spad{M}),{}RWORK(LRWORK)\\spad{\\br} \\tab{5}INTEGER \\spad{M},{}\\spad{N},{}LIWORK,{}IFAIL,{}LRWORK,{}IWORK(LIWORK),{}MODE\\spad{\\br} \\tab{5}DOUBLE PRECISION A(5,{}5)\\spad{\\br} \\tab{5}EXTERNAL F06PAF\\spad{\\br} \\tab{5}A(1,{}1)\\spad{=1}.0D0\\spad{\\br} \\tab{5}A(1,{}2)\\spad{=0}.0D0\\spad{\\br} \\tab{5}A(1,{}3)\\spad{=0}.0D0\\spad{\\br} \\tab{5}A(1,{}4)=-1.0D0\\spad{\\br} \\tab{5}A(1,{}5)\\spad{=0}.0D0\\spad{\\br} \\tab{5}A(2,{}1)\\spad{=0}.0D0\\spad{\\br} \\tab{5}A(2,{}2)\\spad{=1}.0D0\\spad{\\br} \\tab{5}A(2,{}3)\\spad{=0}.0D0\\spad{\\br} \\tab{5}A(2,{}4)\\spad{=0}.0D0\\spad{\\br} \\tab{5}A(2,{}5)=-1.0D0\\spad{\\br} \\tab{5}A(3,{}1)\\spad{=0}.0D0\\spad{\\br} \\tab{5}A(3,{}2)\\spad{=0}.0D0\\spad{\\br} \\tab{5}A(3,{}3)\\spad{=1}.0D0\\spad{\\br} \\tab{5}A(3,{}4)=-1.0D0\\spad{\\br} \\tab{5}A(3,{}5)\\spad{=0}.0D0\\spad{\\br} \\tab{5}A(4,{}1)=-1.0D0\\spad{\\br} \\tab{5}A(4,{}2)\\spad{=0}.0D0\\spad{\\br} \\tab{5}A(4,{}3)=-1.0D0\\spad{\\br} \\tab{5}A(4,{}4)\\spad{=4}.0D0\\spad{\\br} \\tab{5}A(4,{}5)=-1.0D0\\spad{\\br} \\tab{5}A(5,{}1)\\spad{=0}.0D0\\spad{\\br} \\tab{5}A(5,{}2)=-1.0D0\\spad{\\br} \\tab{5}A(5,{}3)\\spad{=0}.0D0\\spad{\\br} \\tab{5}A(5,{}4)=-1.0D0\\spad{\\br} \\tab{5}A(5,{}5)\\spad{=4}.0D0\\spad{\\br} \\tab{5}IF(MODE.EQ.1)THEN\\spad{\\br} \\tab{7}CALL F06PAF(\\spad{'N'},{}\\spad{M},{}\\spad{N},{}1.0D0,{}A,{}\\spad{M},{}\\spad{X},{}1,{}1.0D0,{}\\spad{Y},{}1)\\spad{\\br} \\tab{5}ELSEIF(MODE.EQ.2)THEN\\spad{\\br} \\tab{7}CALL F06PAF(\\spad{'T'},{}\\spad{M},{}\\spad{N},{}1.0D0,{}A,{}\\spad{M},{}\\spad{Y},{}1,{}1.0D0,{}\\spad{X},{}1)\\spad{\\br} \\tab{5}ENDIF\\spad{\\br} \\tab{5}RETURN\\spad{\\br} \\tab{5}END"))) NIL NIL -(-76 -1337) +(-76 -3391) ((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine d02ejf,{} for example: \\blankline \\tab{5}SUBROUTINE PEDERV(\\spad{X},{}\\spad{Y},{}\\spad{PW})\\spad{\\br} \\tab{5}DOUBLE PRECISION \\spad{X},{}\\spad{Y}(*)\\spad{\\br} \\tab{5}DOUBLE PRECISION \\spad{PW}(3,{}3)\\spad{\\br} \\tab{5}\\spad{PW}(1,{}1)=-0.03999999999999999D0\\spad{\\br} \\tab{5}\\spad{PW}(1,{}2)\\spad{=10000}.0D0*Y(3)\\spad{\\br} \\tab{5}\\spad{PW}(1,{}3)\\spad{=10000}.0D0*Y(2)\\spad{\\br} \\tab{5}\\spad{PW}(2,{}1)\\spad{=0}.03999999999999999D0\\spad{\\br} \\tab{5}\\spad{PW}(2,{}2)=(\\spad{-10000}.0D0*Y(3))+(\\spad{-60000000}.0D0*Y(2))\\spad{\\br} \\tab{5}\\spad{PW}(2,{}3)=-10000.0D0*Y(2)\\spad{\\br} \\tab{5}\\spad{PW}(3,{}1)\\spad{=0}.0D0\\spad{\\br} \\tab{5}\\spad{PW}(3,{}2)\\spad{=60000000}.0D0*Y(2)\\spad{\\br} \\tab{5}\\spad{PW}(3,{}3)\\spad{=0}.0D0\\spad{\\br} \\tab{5}RETURN\\spad{\\br} \\tab{5}END")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-77 -1337) +(-77 -3391) ((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine d02kef. The code is a dummy ASP: \\blankline \\tab{5}SUBROUTINE REPORT(\\spad{X},{}\\spad{V},{}JINT)\\spad{\\br} \\tab{5}DOUBLE PRECISION \\spad{V}(3),{}\\spad{X}\\spad{\\br} \\tab{5}INTEGER JINT\\spad{\\br} \\tab{5}RETURN\\spad{\\br} \\tab{5}END")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}."))) NIL NIL -(-78 -1337) +(-78 -3391) ((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine f04mbf,{} for example: \\blankline \\tab{5}SUBROUTINE MSOLVE(IFLAG,{}\\spad{N},{}\\spad{X},{}\\spad{Y},{}RWORK,{}LRWORK,{}IWORK,{}LIWORK)\\spad{\\br} \\tab{5}DOUBLE PRECISION RWORK(LRWORK),{}\\spad{X}(\\spad{N}),{}\\spad{Y}(\\spad{N})\\spad{\\br} \\tab{5}INTEGER \\spad{I},{}\\spad{J},{}\\spad{N},{}LIWORK,{}IFLAG,{}LRWORK,{}IWORK(LIWORK)\\spad{\\br} \\tab{5}DOUBLE PRECISION \\spad{W1}(3),{}\\spad{W2}(3),{}\\spad{MS}(3,{}3)\\spad{\\br} \\tab{5}IFLAG=-1\\spad{\\br} \\tab{5}\\spad{MS}(1,{}1)\\spad{=2}.0D0\\spad{\\br} \\tab{5}\\spad{MS}(1,{}2)\\spad{=1}.0D0\\spad{\\br} \\tab{5}\\spad{MS}(1,{}3)\\spad{=0}.0D0\\spad{\\br} \\tab{5}\\spad{MS}(2,{}1)\\spad{=1}.0D0\\spad{\\br} \\tab{5}\\spad{MS}(2,{}2)\\spad{=2}.0D0\\spad{\\br} \\tab{5}\\spad{MS}(2,{}3)\\spad{=1}.0D0\\spad{\\br} \\tab{5}\\spad{MS}(3,{}1)\\spad{=0}.0D0\\spad{\\br} \\tab{5}\\spad{MS}(3,{}2)\\spad{=1}.0D0\\spad{\\br} \\tab{5}\\spad{MS}(3,{}3)\\spad{=2}.0D0\\spad{\\br} \\tab{5}CALL F04ASF(\\spad{MS},{}\\spad{N},{}\\spad{X},{}\\spad{N},{}\\spad{Y},{}\\spad{W1},{}\\spad{W2},{}IFLAG)\\spad{\\br} \\tab{5}IFLAG=-IFLAG\\spad{\\br} \\tab{5}RETURN\\spad{\\br} \\tab{5}END"))) NIL NIL -(-79 -1337) +(-79 -3391) ((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines c05pbf,{} c05pcf,{} for example: \\blankline \\tab{5}SUBROUTINE \\spad{FCN}(\\spad{N},{}\\spad{X},{}FVEC,{}FJAC,{}LDFJAC,{}IFLAG)\\spad{\\br} \\tab{5}DOUBLE PRECISION \\spad{X}(\\spad{N}),{}FVEC(\\spad{N}),{}FJAC(LDFJAC,{}\\spad{N})\\spad{\\br} \\tab{5}INTEGER LDFJAC,{}\\spad{N},{}IFLAG\\spad{\\br} \\tab{5}IF(IFLAG.EQ.1)THEN\\spad{\\br} \\tab{7}FVEC(1)=(\\spad{-1}.0D0*X(2))\\spad{+X}(1)\\spad{\\br} \\tab{7}FVEC(2)=(\\spad{-1}.0D0*X(3))\\spad{+2}.0D0*X(2)\\spad{\\br} \\tab{7}FVEC(3)\\spad{=3}.0D0*X(3)\\spad{\\br} \\tab{5}ELSEIF(IFLAG.EQ.2)THEN\\spad{\\br} \\tab{7}FJAC(1,{}1)\\spad{=1}.0D0\\spad{\\br} \\tab{7}FJAC(1,{}2)=-1.0D0\\spad{\\br} \\tab{7}FJAC(1,{}3)\\spad{=0}.0D0\\spad{\\br} \\tab{7}FJAC(2,{}1)\\spad{=0}.0D0\\spad{\\br} \\tab{7}FJAC(2,{}2)\\spad{=2}.0D0\\spad{\\br} \\tab{7}FJAC(2,{}3)=-1.0D0\\spad{\\br} \\tab{7}FJAC(3,{}1)\\spad{=0}.0D0\\spad{\\br} \\tab{7}FJAC(3,{}2)\\spad{=0}.0D0\\spad{\\br} \\tab{7}FJAC(3,{}3)\\spad{=3}.0D0\\spad{\\br} \\tab{5}ENDIF\\spad{\\br} \\tab{5}END")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL @@ -256,66 +256,66 @@ NIL ((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines d02raf and d02saf in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example: \\blankline \\tab{5}SUBROUTINE \\spad{G}(EPS,{}YA,{}\\spad{YB},{}\\spad{BC},{}\\spad{N})\\spad{\\br} \\tab{5}DOUBLE PRECISION EPS,{}YA(\\spad{N}),{}\\spad{YB}(\\spad{N}),{}\\spad{BC}(\\spad{N})\\spad{\\br} \\tab{5}INTEGER \\spad{N}\\spad{\\br} \\tab{5}\\spad{BC}(1)=YA(1)\\spad{\\br} \\tab{5}\\spad{BC}(2)=YA(2)\\spad{\\br} \\tab{5}\\spad{BC}(3)\\spad{=YB}(2)\\spad{-1}.0D0\\spad{\\br} \\tab{5}RETURN\\spad{\\br} \\tab{5}END\\spad{\\br} \\tab{5}SUBROUTINE JACOBG(EPS,{}YA,{}\\spad{YB},{}AJ,{}\\spad{BJ},{}\\spad{N})\\spad{\\br} \\tab{5}DOUBLE PRECISION EPS,{}YA(\\spad{N}),{}AJ(\\spad{N},{}\\spad{N}),{}\\spad{BJ}(\\spad{N},{}\\spad{N}),{}\\spad{YB}(\\spad{N})\\spad{\\br} \\tab{5}INTEGER \\spad{N}\\spad{\\br} \\tab{5}AJ(1,{}1)\\spad{=1}.0D0\\spad{\\br} \\tab{5}AJ(1,{}2)\\spad{=0}.0D0\\spad{\\br} \\tab{5}AJ(1,{}3)\\spad{=0}.0D0\\spad{\\br} \\tab{5}AJ(2,{}1)\\spad{=0}.0D0\\spad{\\br} \\tab{5}AJ(2,{}2)\\spad{=1}.0D0\\spad{\\br} \\tab{5}AJ(2,{}3)\\spad{=0}.0D0\\spad{\\br} \\tab{5}AJ(3,{}1)\\spad{=0}.0D0\\spad{\\br} \\tab{5}AJ(3,{}2)\\spad{=0}.0D0\\spad{\\br} \\tab{5}AJ(3,{}3)\\spad{=0}.0D0\\spad{\\br} \\tab{5}\\spad{BJ}(1,{}1)\\spad{=0}.0D0\\spad{\\br} \\tab{5}\\spad{BJ}(1,{}2)\\spad{=0}.0D0\\spad{\\br} \\tab{5}\\spad{BJ}(1,{}3)\\spad{=0}.0D0\\spad{\\br} \\tab{5}\\spad{BJ}(2,{}1)\\spad{=0}.0D0\\spad{\\br} \\tab{5}\\spad{BJ}(2,{}2)\\spad{=0}.0D0\\spad{\\br} \\tab{5}\\spad{BJ}(2,{}3)\\spad{=0}.0D0\\spad{\\br} \\tab{5}\\spad{BJ}(3,{}1)\\spad{=0}.0D0\\spad{\\br} \\tab{5}\\spad{BJ}(3,{}2)\\spad{=1}.0D0\\spad{\\br} \\tab{5}\\spad{BJ}(3,{}3)\\spad{=0}.0D0\\spad{\\br} \\tab{5}RETURN\\spad{\\br} \\tab{5}END\\spad{\\br} \\tab{5}SUBROUTINE JACGEP(EPS,{}YA,{}\\spad{YB},{}BCEP,{}\\spad{N})\\spad{\\br} \\tab{5}DOUBLE PRECISION EPS,{}YA(\\spad{N}),{}\\spad{YB}(\\spad{N}),{}BCEP(\\spad{N})\\spad{\\br} \\tab{5}INTEGER \\spad{N}\\spad{\\br} \\tab{5}BCEP(1)\\spad{=0}.0D0\\spad{\\br} \\tab{5}BCEP(2)\\spad{=0}.0D0\\spad{\\br} \\tab{5}BCEP(3)\\spad{=0}.0D0\\spad{\\br} \\tab{5}RETURN\\spad{\\br} \\tab{5}END")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-82 -1337) +(-82 -3391) ((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines e04dgf,{} e04ucf,{} for example: \\blankline \\tab{5}SUBROUTINE OBJFUN(MODE,{}\\spad{N},{}\\spad{X},{}OBJF,{}OBJGRD,{}NSTATE,{}IUSER,{}USER)\\spad{\\br} \\tab{5}DOUBLE PRECISION \\spad{X}(\\spad{N}),{}OBJF,{}OBJGRD(\\spad{N}),{}USER(*)\\spad{\\br} \\tab{5}INTEGER \\spad{N},{}IUSER(*),{}MODE,{}NSTATE\\spad{\\br} \\tab{5}OBJF=X(4)\\spad{*X}(9)+((\\spad{-1}.0D0*X(5))\\spad{+X}(3))\\spad{*X}(8)+((\\spad{-1}.0D0*X(3))\\spad{+X}(1))\\spad{*X}(7)\\spad{\\br} \\tab{4}\\spad{&+}(\\spad{-1}.0D0*X(2)\\spad{*X}(6))\\spad{\\br} \\tab{5}OBJGRD(1)\\spad{=X}(7)\\spad{\\br} \\tab{5}OBJGRD(2)=-1.0D0*X(6)\\spad{\\br} \\tab{5}OBJGRD(3)\\spad{=X}(8)+(\\spad{-1}.0D0*X(7))\\spad{\\br} \\tab{5}OBJGRD(4)\\spad{=X}(9)\\spad{\\br} \\tab{5}OBJGRD(5)=-1.0D0*X(8)\\spad{\\br} \\tab{5}OBJGRD(6)=-1.0D0*X(2)\\spad{\\br} \\tab{5}OBJGRD(7)=(\\spad{-1}.0D0*X(3))\\spad{+X}(1)\\spad{\\br} \\tab{5}OBJGRD(8)=(\\spad{-1}.0D0*X(5))\\spad{+X}(3)\\spad{\\br} \\tab{5}OBJGRD(9)\\spad{=X}(4)\\spad{\\br} \\tab{5}RETURN\\spad{\\br} \\tab{5}END")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-83 -1337) +(-83 -3391) ((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form: \\blankline \\tab{5}DOUBLE PRECISION FUNCTION FUNCTN(NDIM,{}\\spad{X})\\spad{\\br} \\tab{5}DOUBLE PRECISION \\spad{X}(NDIM)\\spad{\\br} \\tab{5}INTEGER NDIM\\spad{\\br} \\tab{5}FUNCTN=(4.0D0*X(1)\\spad{*X}(3)**2*DEXP(2.0D0*X(1)\\spad{*X}(3)))/(\\spad{X}(4)**2+(2.0D0*\\spad{\\br} \\tab{4}\\spad{&X}(2)\\spad{+2}.0D0)\\spad{*X}(4)\\spad{+X}(2)\\spad{**2+2}.0D0*X(2)\\spad{+1}.0D0)\\spad{\\br} \\tab{5}RETURN\\spad{\\br} \\tab{5}END")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-84 -1337) +(-84 -3391) ((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine e04fdf,{} for example: \\blankline \\tab{5}SUBROUTINE \\spad{LSFUN1}(\\spad{M},{}\\spad{N},{}\\spad{XC},{}FVECC)\\spad{\\br} \\tab{5}DOUBLE PRECISION FVECC(\\spad{M}),{}\\spad{XC}(\\spad{N})\\spad{\\br} \\tab{5}INTEGER \\spad{I},{}\\spad{M},{}\\spad{N}\\spad{\\br} \\tab{5}FVECC(1)=((\\spad{XC}(1)\\spad{-2}.4D0)\\spad{*XC}(3)+(15.0D0*XC(1)\\spad{-36}.0D0)\\spad{*XC}(2)\\spad{+1}.0D0)/(\\spad{\\br} \\tab{4}\\spad{&XC}(3)\\spad{+15}.0D0*XC(2))\\spad{\\br} \\tab{5}FVECC(2)=((\\spad{XC}(1)\\spad{-2}.8D0)\\spad{*XC}(3)+(7.0D0*XC(1)\\spad{-19}.6D0)\\spad{*XC}(2)\\spad{+1}.0D0)/(\\spad{X}\\spad{\\br} \\tab{4}\\spad{&C}(3)\\spad{+7}.0D0*XC(2))\\spad{\\br} \\tab{5}FVECC(3)=((\\spad{XC}(1)\\spad{-3}.2D0)\\spad{*XC}(3)+(4.333333333333333D0*XC(1)\\spad{-13}.866666\\spad{\\br} \\tab{4}\\spad{&66666667D0})\\spad{*XC}(2)\\spad{+1}.0D0)/(\\spad{XC}(3)\\spad{+4}.333333333333333D0*XC(2))\\spad{\\br} \\tab{5}FVECC(4)=((\\spad{XC}(1)\\spad{-3}.5D0)\\spad{*XC}(3)+(3.0D0*XC(1)\\spad{-10}.5D0)\\spad{*XC}(2)\\spad{+1}.0D0)/(\\spad{X}\\spad{\\br} \\tab{4}\\spad{&C}(3)\\spad{+3}.0D0*XC(2))\\spad{\\br} \\tab{5}FVECC(5)=((\\spad{XC}(1)\\spad{-3}.9D0)\\spad{*XC}(3)+(2.2D0*XC(1)\\spad{-8}.579999999999998D0)\\spad{*XC}\\spad{\\br} \\tab{4}&(2)\\spad{+1}.0D0)/(\\spad{XC}(3)\\spad{+2}.2D0*XC(2))\\spad{\\br} \\tab{5}FVECC(6)=((\\spad{XC}(1)\\spad{-4}.199999999999999D0)\\spad{*XC}(3)+(1.666666666666667D0*X\\spad{\\br} \\tab{4}\\spad{&C}(1)\\spad{-7}.0D0)\\spad{*XC}(2)\\spad{+1}.0D0)/(\\spad{XC}(3)\\spad{+1}.666666666666667D0*XC(2))\\spad{\\br} \\tab{5}FVECC(7)=((\\spad{XC}(1)\\spad{-4}.5D0)\\spad{*XC}(3)+(1.285714285714286D0*XC(1)\\spad{-5}.7857142\\spad{\\br} \\tab{4}\\spad{&85714286D0})\\spad{*XC}(2)\\spad{+1}.0D0)/(\\spad{XC}(3)\\spad{+1}.285714285714286D0*XC(2))\\spad{\\br} \\tab{5}FVECC(8)=((\\spad{XC}(1)\\spad{-4}.899999999999999D0)\\spad{*XC}(3)+(\\spad{XC}(1)\\spad{-4}.8999999999999\\spad{\\br} \\tab{4}\\spad{&99D0})\\spad{*XC}(2)\\spad{+1}.0D0)/(\\spad{XC}(3)\\spad{+XC}(2))\\spad{\\br} \\tab{5}FVECC(9)=((\\spad{XC}(1)\\spad{-4}.699999999999999D0)\\spad{*XC}(3)+(\\spad{XC}(1)\\spad{-4}.6999999999999\\spad{\\br} \\tab{4}\\spad{&99D0})\\spad{*XC}(2)\\spad{+1}.285714285714286D0)/(\\spad{XC}(3)\\spad{+XC}(2))\\spad{\\br} \\tab{5}FVECC(10)=((\\spad{XC}(1)\\spad{-6}.8D0)\\spad{*XC}(3)+(\\spad{XC}(1)\\spad{-6}.8D0)\\spad{*XC}(2)\\spad{+1}.6666666666666\\spad{\\br} \\tab{4}\\spad{&67D0})/(\\spad{XC}(3)\\spad{+XC}(2))\\spad{\\br} \\tab{5}FVECC(11)=((\\spad{XC}(1)\\spad{-8}.299999999999999D0)\\spad{*XC}(3)+(\\spad{XC}(1)\\spad{-8}.299999999999\\spad{\\br} \\tab{4}\\spad{&999D0})\\spad{*XC}(2)\\spad{+2}.2D0)/(\\spad{XC}(3)\\spad{+XC}(2))\\spad{\\br} \\tab{5}FVECC(12)=((\\spad{XC}(1)\\spad{-10}.6D0)\\spad{*XC}(3)+(\\spad{XC}(1)\\spad{-10}.6D0)\\spad{*XC}(2)\\spad{+3}.0D0)/(\\spad{XC}(3)\\spad{\\br} \\tab{4}&+XC(2))\\spad{\\br} \\tab{5}FVECC(13)=((\\spad{XC}(1)\\spad{-1}.34D0)\\spad{*XC}(3)+(\\spad{XC}(1)\\spad{-1}.34D0)\\spad{*XC}(2)\\spad{+4}.33333333333\\spad{\\br} \\tab{4}\\spad{&3333D0})/(\\spad{XC}(3)\\spad{+XC}(2))\\spad{\\br} \\tab{5}FVECC(14)=((\\spad{XC}(1)\\spad{-2}.1D0)\\spad{*XC}(3)+(\\spad{XC}(1)\\spad{-2}.1D0)\\spad{*XC}(2)\\spad{+7}.0D0)/(\\spad{XC}(3)\\spad{+X}\\spad{\\br} \\tab{4}\\spad{&C}(2))\\spad{\\br} \\tab{5}FVECC(15)=((\\spad{XC}(1)\\spad{-4}.39D0)\\spad{*XC}(3)+(\\spad{XC}(1)\\spad{-4}.39D0)\\spad{*XC}(2)\\spad{+15}.0D0)/(\\spad{XC}(3\\spad{\\br} \\tab{4}&)\\spad{+XC}(2))\\spad{\\br} \\tab{5}END")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-85 -1337) +(-85 -3391) ((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines e04dgf and e04ucf,{} for example: \\blankline \\tab{5}SUBROUTINE CONFUN(MODE,{}NCNLN,{}\\spad{N},{}NROWJ,{}NEEDC,{}\\spad{X},{}\\spad{C},{}CJAC,{}NSTATE,{}IUSER\\spad{\\br} \\tab{4}&,{}USER)\\spad{\\br} \\tab{5}DOUBLE PRECISION \\spad{C}(NCNLN),{}\\spad{X}(\\spad{N}),{}CJAC(NROWJ,{}\\spad{N}),{}USER(*)\\spad{\\br} \\tab{5}INTEGER \\spad{N},{}IUSER(*),{}NEEDC(NCNLN),{}NROWJ,{}MODE,{}NCNLN,{}NSTATE\\spad{\\br} \\tab{5}IF(NEEDC(1).\\spad{GT}.0)THEN\\spad{\\br} \\tab{7}\\spad{C}(1)\\spad{=X}(6)**2+X(1)\\spad{**2}\\spad{\\br} \\tab{7}CJAC(1,{}1)\\spad{=2}.0D0*X(1)\\spad{\\br} \\tab{7}CJAC(1,{}2)\\spad{=0}.0D0\\spad{\\br} \\tab{7}CJAC(1,{}3)\\spad{=0}.0D0\\spad{\\br} \\tab{7}CJAC(1,{}4)\\spad{=0}.0D0\\spad{\\br} \\tab{7}CJAC(1,{}5)\\spad{=0}.0D0\\spad{\\br} \\tab{7}CJAC(1,{}6)\\spad{=2}.0D0*X(6)\\spad{\\br} \\tab{5}ENDIF\\spad{\\br} \\tab{5}IF(NEEDC(2).\\spad{GT}.0)THEN\\spad{\\br} \\tab{7}\\spad{C}(2)\\spad{=X}(2)**2+(\\spad{-2}.0D0*X(1)\\spad{*X}(2))\\spad{+X}(1)\\spad{**2}\\spad{\\br} \\tab{7}CJAC(2,{}1)=(\\spad{-2}.0D0*X(2))\\spad{+2}.0D0*X(1)\\spad{\\br} \\tab{7}CJAC(2,{}2)\\spad{=2}.0D0*X(2)+(\\spad{-2}.0D0*X(1))\\spad{\\br} \\tab{7}CJAC(2,{}3)\\spad{=0}.0D0\\spad{\\br} \\tab{7}CJAC(2,{}4)\\spad{=0}.0D0\\spad{\\br} \\tab{7}CJAC(2,{}5)\\spad{=0}.0D0\\spad{\\br} \\tab{7}CJAC(2,{}6)\\spad{=0}.0D0\\spad{\\br} \\tab{5}ENDIF\\spad{\\br} \\tab{5}IF(NEEDC(3).\\spad{GT}.0)THEN\\spad{\\br} \\tab{7}\\spad{C}(3)\\spad{=X}(3)**2+(\\spad{-2}.0D0*X(1)\\spad{*X}(3))\\spad{+X}(2)**2+X(1)\\spad{**2}\\spad{\\br} \\tab{7}CJAC(3,{}1)=(\\spad{-2}.0D0*X(3))\\spad{+2}.0D0*X(1)\\spad{\\br} \\tab{7}CJAC(3,{}2)\\spad{=2}.0D0*X(2)\\spad{\\br} \\tab{7}CJAC(3,{}3)\\spad{=2}.0D0*X(3)+(\\spad{-2}.0D0*X(1))\\spad{\\br} \\tab{7}CJAC(3,{}4)\\spad{=0}.0D0\\spad{\\br} \\tab{7}CJAC(3,{}5)\\spad{=0}.0D0\\spad{\\br} \\tab{7}CJAC(3,{}6)\\spad{=0}.0D0\\spad{\\br} \\tab{5}ENDIF\\spad{\\br} \\tab{5}RETURN\\spad{\\br} \\tab{5}END")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-86 -1337) +(-86 -3391) ((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines c05nbf,{} c05ncf. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like: \\blankline \\tab{5}SUBROUTINE \\spad{FCN}(\\spad{N},{}\\spad{X},{}FVEC,{}IFLAG) \\tab{5}DOUBLE PRECISION \\spad{X}(\\spad{N}),{}FVEC(\\spad{N}) \\tab{5}INTEGER \\spad{N},{}IFLAG \\tab{5}FVEC(1)=(\\spad{-2}.0D0*X(2))+(\\spad{-2}.0D0*X(1)\\spad{**2})\\spad{+3}.0D0*X(1)\\spad{+1}.0D0 \\tab{5}FVEC(2)=(\\spad{-2}.0D0*X(3))+(\\spad{-2}.0D0*X(2)\\spad{**2})\\spad{+3}.0D0*X(2)+(\\spad{-1}.0D0*X(1))\\spad{+1}. \\tab{4}\\spad{&0D0} \\tab{5}FVEC(3)=(\\spad{-2}.0D0*X(4))+(\\spad{-2}.0D0*X(3)\\spad{**2})\\spad{+3}.0D0*X(3)+(\\spad{-1}.0D0*X(2))\\spad{+1}. \\tab{4}\\spad{&0D0} \\tab{5}FVEC(4)=(\\spad{-2}.0D0*X(5))+(\\spad{-2}.0D0*X(4)\\spad{**2})\\spad{+3}.0D0*X(4)+(\\spad{-1}.0D0*X(3))\\spad{+1}. \\tab{4}\\spad{&0D0} \\tab{5}FVEC(5)=(\\spad{-2}.0D0*X(6))+(\\spad{-2}.0D0*X(5)\\spad{**2})\\spad{+3}.0D0*X(5)+(\\spad{-1}.0D0*X(4))\\spad{+1}. \\tab{4}\\spad{&0D0} \\tab{5}FVEC(6)=(\\spad{-2}.0D0*X(7))+(\\spad{-2}.0D0*X(6)\\spad{**2})\\spad{+3}.0D0*X(6)+(\\spad{-1}.0D0*X(5))\\spad{+1}. \\tab{4}\\spad{&0D0} \\tab{5}FVEC(7)=(\\spad{-2}.0D0*X(8))+(\\spad{-2}.0D0*X(7)\\spad{**2})\\spad{+3}.0D0*X(7)+(\\spad{-1}.0D0*X(6))\\spad{+1}. \\tab{4}\\spad{&0D0} \\tab{5}FVEC(8)=(\\spad{-2}.0D0*X(9))+(\\spad{-2}.0D0*X(8)\\spad{**2})\\spad{+3}.0D0*X(8)+(\\spad{-1}.0D0*X(7))\\spad{+1}. \\tab{4}\\spad{&0D0} \\tab{5}FVEC(9)=(\\spad{-2}.0D0*X(9)\\spad{**2})\\spad{+3}.0D0*X(9)+(\\spad{-1}.0D0*X(8))\\spad{+1}.0D0 \\tab{5}RETURN \\tab{5}END")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-87 -1337) +(-87 -3391) ((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine d03eef,{} for example: \\blankline \\tab{5}SUBROUTINE PDEF(\\spad{X},{}\\spad{Y},{}ALPHA,{}BETA,{}GAMMA,{}DELTA,{}EPSOLN,{}PHI,{}PSI)\\spad{\\br} \\tab{5}DOUBLE PRECISION ALPHA,{}EPSOLN,{}PHI,{}\\spad{X},{}\\spad{Y},{}BETA,{}DELTA,{}GAMMA,{}PSI\\spad{\\br} \\tab{5}ALPHA=DSIN(\\spad{X})\\spad{\\br} \\tab{5}BETA=Y\\spad{\\br} \\tab{5}GAMMA=X*Y\\spad{\\br} \\tab{5}DELTA=DCOS(\\spad{X})*DSIN(\\spad{Y})\\spad{\\br} \\tab{5}EPSOLN=Y+X\\spad{\\br} \\tab{5}PHI=X\\spad{\\br} \\tab{5}PSI=Y\\spad{\\br} \\tab{5}RETURN\\spad{\\br} \\tab{5}END")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-88 -1337) +(-88 -3391) ((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine d03eef,{} for example: \\blankline \\tab{5} SUBROUTINE BNDY(\\spad{X},{}\\spad{Y},{}A,{}\\spad{B},{}\\spad{C},{}IBND)\\spad{\\br} \\tab{5} DOUBLE PRECISION A,{}\\spad{B},{}\\spad{C},{}\\spad{X},{}\\spad{Y}\\spad{\\br} \\tab{5} INTEGER IBND\\spad{\\br} \\tab{5} IF(IBND.EQ.0)THEN\\spad{\\br} \\tab{7} \\spad{A=0}.0D0\\spad{\\br} \\tab{7} \\spad{B=1}.0D0\\spad{\\br} \\tab{7} \\spad{C=}-1.0D0*DSIN(\\spad{X})\\spad{\\br} \\tab{5} ELSEIF(IBND.EQ.1)THEN\\spad{\\br} \\tab{7} \\spad{A=1}.0D0\\spad{\\br} \\tab{7} \\spad{B=0}.0D0\\spad{\\br} \\tab{7} C=DSIN(\\spad{X})*DSIN(\\spad{Y})\\spad{\\br} \\tab{5} ELSEIF(IBND.EQ.2)THEN\\spad{\\br} \\tab{7} \\spad{A=1}.0D0\\spad{\\br} \\tab{7} \\spad{B=0}.0D0\\spad{\\br} \\tab{7} C=DSIN(\\spad{X})*DSIN(\\spad{Y})\\spad{\\br} \\tab{5} ELSEIF(IBND.EQ.3)THEN\\spad{\\br} \\tab{7} \\spad{A=0}.0D0\\spad{\\br} \\tab{7} \\spad{B=1}.0D0\\spad{\\br} \\tab{7} \\spad{C=}-1.0D0*DSIN(\\spad{Y})\\spad{\\br} \\tab{5} ENDIF\\spad{\\br} \\tab{5} END")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-89 -1337) +(-89 -3391) ((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine d02gbf,{} for example: \\blankline \\tab{5}SUBROUTINE FCNF(\\spad{X},{}\\spad{F})\\spad{\\br} \\tab{5}DOUBLE PRECISION \\spad{X}\\spad{\\br} \\tab{5}DOUBLE PRECISION \\spad{F}(2,{}2)\\spad{\\br} \\tab{5}\\spad{F}(1,{}1)\\spad{=0}.0D0\\spad{\\br} \\tab{5}\\spad{F}(1,{}2)\\spad{=1}.0D0\\spad{\\br} \\tab{5}\\spad{F}(2,{}1)\\spad{=0}.0D0\\spad{\\br} \\tab{5}\\spad{F}(2,{}2)=-10.0D0\\spad{\\br} \\tab{5}RETURN\\spad{\\br} \\tab{5}END")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-90 -1337) +(-90 -3391) ((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine d02gbf,{} for example: \\blankline \\tab{5}SUBROUTINE FCNG(\\spad{X},{}\\spad{G})\\spad{\\br} \\tab{5}DOUBLE PRECISION \\spad{G}(*),{}\\spad{X}\\spad{\\br} \\tab{5}\\spad{G}(1)\\spad{=0}.0D0\\spad{\\br} \\tab{5}\\spad{G}(2)\\spad{=0}.0D0\\spad{\\br} \\tab{5}END")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-91 -1337) +(-91 -3391) ((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines d02bbf,{} d02gaf. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like: \\blankline \\tab{5}SUBROUTINE \\spad{FCN}(\\spad{X},{}\\spad{Z},{}\\spad{F})\\spad{\\br} \\tab{5}DOUBLE PRECISION \\spad{F}(*),{}\\spad{X},{}\\spad{Z}(*)\\spad{\\br} \\tab{5}\\spad{F}(1)=DTAN(\\spad{Z}(3))\\spad{\\br} \\tab{5}\\spad{F}(2)=((\\spad{-0}.03199999999999999D0*DCOS(\\spad{Z}(3))*DTAN(\\spad{Z}(3)))+(\\spad{-0}.02D0*Z(2)\\spad{\\br} \\tab{4}\\spad{&**2}))/(\\spad{Z}(2)*DCOS(\\spad{Z}(3)))\\spad{\\br} \\tab{5}\\spad{F}(3)=-0.03199999999999999D0/(\\spad{X*Z}(2)\\spad{**2})\\spad{\\br} \\tab{5}RETURN\\spad{\\br} \\tab{5}END")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-92 -1337) +(-92 -3391) ((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine d02kef,{} for example: \\blankline \\tab{5}SUBROUTINE BDYVAL(\\spad{XL},{}\\spad{XR},{}ELAM,{}\\spad{YL},{}\\spad{YR})\\spad{\\br} \\tab{5}DOUBLE PRECISION ELAM,{}\\spad{XL},{}\\spad{YL}(3),{}\\spad{XR},{}\\spad{YR}(3)\\spad{\\br} \\tab{5}\\spad{YL}(1)\\spad{=XL}\\spad{\\br} \\tab{5}\\spad{YL}(2)\\spad{=2}.0D0\\spad{\\br} \\tab{5}\\spad{YR}(1)\\spad{=1}.0D0\\spad{\\br} \\tab{5}\\spad{YR}(2)=-1.0D0*DSQRT(\\spad{XR+}(\\spad{-1}.0D0*ELAM))\\spad{\\br} \\tab{5}RETURN\\spad{\\br} \\tab{5}END")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-93 -1337) +(-93 -3391) ((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine d02bbf. This ASP prints intermediate values of the computed solution of an ODE and might look like: \\blankline \\tab{5}SUBROUTINE OUTPUT(XSOL,{}\\spad{Y},{}COUNT,{}\\spad{M},{}\\spad{N},{}RESULT,{}FORWRD)\\spad{\\br} \\tab{5}DOUBLE PRECISION \\spad{Y}(\\spad{N}),{}RESULT(\\spad{M},{}\\spad{N}),{}XSOL\\spad{\\br} \\tab{5}INTEGER \\spad{M},{}\\spad{N},{}COUNT\\spad{\\br} \\tab{5}LOGICAL FORWRD\\spad{\\br} \\tab{5}DOUBLE PRECISION X02ALF,{}POINTS(8)\\spad{\\br} \\tab{5}EXTERNAL X02ALF\\spad{\\br} \\tab{5}INTEGER \\spad{I}\\spad{\\br} \\tab{5}POINTS(1)\\spad{=1}.0D0\\spad{\\br} \\tab{5}POINTS(2)\\spad{=2}.0D0\\spad{\\br} \\tab{5}POINTS(3)\\spad{=3}.0D0\\spad{\\br} \\tab{5}POINTS(4)\\spad{=4}.0D0\\spad{\\br} \\tab{5}POINTS(5)\\spad{=5}.0D0\\spad{\\br} \\tab{5}POINTS(6)\\spad{=6}.0D0\\spad{\\br} \\tab{5}POINTS(7)\\spad{=7}.0D0\\spad{\\br} \\tab{5}POINTS(8)\\spad{=8}.0D0\\spad{\\br} \\tab{5}\\spad{COUNT=COUNT+1}\\spad{\\br} \\tab{5}DO 25001 \\spad{I=1},{}\\spad{N}\\spad{\\br} \\tab{7} RESULT(COUNT,{}\\spad{I})\\spad{=Y}(\\spad{I})\\spad{\\br} 25001 CONTINUE\\spad{\\br} \\tab{5}IF(COUNT.EQ.\\spad{M})THEN\\spad{\\br} \\tab{7}IF(FORWRD)THEN\\spad{\\br} \\tab{9}XSOL=X02ALF()\\spad{\\br} \\tab{7}ELSE\\spad{\\br} \\tab{9}XSOL=-X02ALF()\\spad{\\br} \\tab{7}ENDIF\\spad{\\br} \\tab{5}ELSE\\spad{\\br} \\tab{7} XSOL=POINTS(COUNT)\\spad{\\br} \\tab{5}ENDIF\\spad{\\br} \\tab{5}END"))) NIL NIL -(-94 -1337) +(-94 -3391) ((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines d02bhf,{} d02cjf,{} d02ejf. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example: \\blankline \\tab{5}DOUBLE PRECISION FUNCTION \\spad{G}(\\spad{X},{}\\spad{Y})\\spad{\\br} \\tab{5}DOUBLE PRECISION \\spad{X},{}\\spad{Y}(*)\\spad{\\br} \\tab{5}G=X+Y(1)\\spad{\\br} \\tab{5}RETURN\\spad{\\br} \\tab{5}END \\blankline If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL (-95 R L) ((|constructor| (NIL "\\spadtype{AssociatedEquations} provides functions to compute the associated equations needed for factoring operators")) (|associatedEquations| (((|Record| (|:| |minor| (|List| (|PositiveInteger|))) (|:| |eq| |#2|) (|:| |minors| (|List| (|List| (|PositiveInteger|)))) (|:| |ops| (|List| |#2|))) |#2| (|PositiveInteger|)) "\\spad{associatedEquations(op,{} m)} returns \\spad{[w,{} eq,{} lw,{} lop]} such that \\spad{eq(w) = 0} where \\spad{w} is the given minor,{} and \\spad{lw_i = lop_i(w)} for all the other minors.")) (|uncouplingMatrices| (((|Vector| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{uncouplingMatrices(M)} returns \\spad{[A_1,{}...,{}A_n]} such that if \\spad{y = [y_1,{}...,{}y_n]} is a solution of \\spad{y' = M y},{} then \\spad{[\\$y_j',{}y_j'',{}...,{}y_j^{(n)}\\$] = \\$A_j y\\$} for all \\spad{j}\\spad{'s}.")) (|associatedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| (|List| (|PositiveInteger|))))) |#2| (|PositiveInteger|)) "\\spad{associatedSystem(op,{} m)} returns \\spad{[M,{}w]} such that the \\spad{m}-th associated equation system to \\spad{L} is \\spad{w' = M w}."))) NIL -((|HasCategory| |#1| (QUOTE (-359)))) +((|HasCategory| |#1| (QUOTE (-365)))) (-96 S) ((|constructor| (NIL "A stack represented as a flexible array.")) (|member?| (((|Boolean|) |#1| $) "\\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,{}2,{}3,{}4,{}5] \\spad{X} member?(3,{}a)")) (|members| (((|List| |#1|) $) "\\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,{}2,{}3,{}4,{}5] \\spad{X} members a")) (|parts| (((|List| |#1|) $) "\\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,{}2,{}3,{}4,{}5] \\spad{X} parts a")) (|#| (((|NonNegativeInteger|) $) "\\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,{}2,{}3,{}4,{}5] \\spad{X} \\#a")) (|count| (((|NonNegativeInteger|) |#1| $) "\\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,{}2,{}3,{}4,{}5] \\spad{X} count(4,{}a)") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,{}2,{}3,{}4,{}5] \\spad{X} count(\\spad{x+}->(\\spad{x>2}),{}a)")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,{}2,{}3,{}4,{}5] \\spad{X} any?(\\spad{x+}->(\\spad{x=4}),{}a)")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,{}2,{}3,{}4,{}5] \\spad{X} every?(\\spad{x+}->(\\spad{x=4}),{}a)")) (~= (((|Boolean|) $ $) "\\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,{}2,{}3,{}4,{}5] \\spad{X} b:=copy a \\spad{X} (a~=b)")) (= (((|Boolean|) $ $) "\\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,{}2,{}3,{}4,{}5] \\spad{X} b:ArrayStack INT:= arrayStack [1,{}2,{}3,{}4,{}5] \\spad{X} (a=b)@Boolean")) (|coerce| (((|OutputForm|) $) "\\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,{}2,{}3,{}4,{}5] \\spad{X} coerce a")) (|hash| (((|SingleInteger|) $) "\\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,{}2,{}3,{}4,{}5] \\spad{X} hash a")) (|latex| (((|String|) $) "\\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,{}2,{}3,{}4,{}5] \\spad{X} latex a")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,{}2,{}3,{}4,{}5] \\spad{X} map!(\\spad{x+}-\\spad{>x+10},{}a) \\spad{X} a")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,{}2,{}3,{}4,{}5] \\spad{X} map(\\spad{x+}-\\spad{>x+10},{}a) \\spad{X} a")) (|eq?| (((|Boolean|) $ $) "\\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,{}2,{}3,{}4,{}5] \\spad{X} b:=copy a \\spad{X} eq?(a,{}\\spad{b})")) (|copy| (($ $) "\\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,{}2,{}3,{}4,{}5] \\spad{X} copy a")) (|sample| (($) "\\blankline \\spad{X} sample()\\$ArrayStack(INT)")) (|empty| (($) "\\blankline \\spad{X} b:=empty()\\$(ArrayStack INT)")) (|empty?| (((|Boolean|) $) "\\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,{}2,{}3,{}4,{}5] \\spad{X} empty? a")) (|bag| (($ (|List| |#1|)) "\\blankline \\spad{X} bag([1,{}2,{}3,{}4,{}5])\\$ArrayStack(INT)")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,{}2,{}3,{}4,{}5] \\spad{X} size?(a,{}5)")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,{}2,{}3,{}4,{}5] \\spad{X} more?(a,{}9)")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,{}2,{}3,{}4,{}5] \\spad{X} less?(a,{}9)")) (|depth| (((|NonNegativeInteger|) $) "\\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,{}2,{}3,{}4,{}5] \\spad{X} depth a")) (|top| ((|#1| $) "\\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,{}2,{}3,{}4,{}5] \\spad{X} top a")) (|inspect| ((|#1| $) "\\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,{}2,{}3,{}4,{}5] \\spad{X} inspect a")) (|insert!| (($ |#1| $) "\\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,{}2,{}3,{}4,{}5] \\spad{X} insert!(8,{}a) \\spad{X} a")) (|push!| ((|#1| |#1| $) "\\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,{}2,{}3,{}4,{}5] \\spad{X} push!(9,{}a) \\spad{X} a")) (|extract!| ((|#1| $) "\\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,{}2,{}3,{}4,{}5] \\spad{X} extract! a \\spad{X} a")) (|pop!| ((|#1| $) "\\blankline \\spad{X} a:ArrayStack INT:= arrayStack [1,{}2,{}3,{}4,{}5] \\spad{X} pop! a \\spad{X} a")) (|arrayStack| (($ (|List| |#1|)) "\\indented{1}{arrayStack([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) creates an array stack with first (top)} \\indented{1}{element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.} \\blankline \\spad{E} c:ArrayStack INT:= arrayStack [1,{}2,{}3,{}4,{}5]"))) -((-4505 . T) (-4506 . T)) -((|HasCategory| |#1| (QUOTE (-1082))) (-12 (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1082))))) +((-4519 . T) (-4520 . T)) +((|HasCategory| |#1| (QUOTE (-1090))) (-12 (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1090))))) (-97 S) ((|constructor| (NIL "Category for the inverse trigonometric functions.")) (|atan| (($ $) "\\spad{atan(x)} returns the arc-tangent of \\spad{x}.")) (|asin| (($ $) "\\spad{asin(x)} returns the arc-sine of \\spad{x}.")) (|asec| (($ $) "\\spad{asec(x)} returns the arc-secant of \\spad{x}.")) (|acsc| (($ $) "\\spad{acsc(x)} returns the arc-cosecant of \\spad{x}.")) (|acot| (($ $) "\\spad{acot(x)} returns the arc-cotangent of \\spad{x}.")) (|acos| (($ $) "\\spad{acos(x)} returns the arc-cosine of \\spad{x}."))) NIL @@ -326,15 +326,15 @@ NIL NIL (-99) ((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved.")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\"."))) -((-4505 . T)) +((-4519 . T)) NIL (-100) ((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements."))) -((-4505 . T) ((-4507 "*") . T) (-4506 . T) (-4502 . T) (-4500 . T) (-4499 . T) (-4498 . T) (-4503 . T) (-4497 . T) (-4496 . T) (-4495 . T) (-4494 . T) (-4493 . T) (-4501 . T) (-4504 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4492 . T) (-2550 . T)) +((-4519 . T) ((-4521 "*") . T) (-4520 . T) (-4516 . T) (-4514 . T) (-4513 . T) (-4512 . T) (-4517 . T) (-4511 . T) (-4510 . T) (-4509 . T) (-4508 . T) (-4507 . T) (-4515 . T) (-4518 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4506 . T) (-3996 . T)) NIL (-101 R) ((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,{}n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f,{} g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}."))) -((-4502 . T)) +((-4516 . T)) NIL (-102) ((|constructor| (NIL "This package provides a functions to support a web server for the new Axiom Browser functions."))) @@ -354,8 +354,8 @@ NIL NIL (-106 S) ((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\indented{1}{mapDown!(\\spad{t},{}\\spad{p},{}\\spad{f}) returns \\spad{t} after traversing \\spad{t} in \"preorder\"} \\indented{1}{(node then left then right) fashion replacing the successive} \\indented{1}{interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and} \\indented{1}{right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}.} \\indented{1}{Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left} \\indented{1}{and right subtrees of \\spad{t},{} is evaluated producing two values} \\indented{1}{\\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,{}pl,{}f)} and \\spad{mapDown!(l,{}pr,{}f)}} \\indented{1}{are evaluated.} \\blankline \\spad{X} T1:=BalancedBinaryTree Integer \\spad{X} t2:=balancedBinaryTree(4,{} 0)\\$\\spad{T1} \\spad{X} setleaves!(\\spad{t2},{}[1,{}2,{}3,{}4]::List(Integer)) \\spad{X} \\spad{adder3}(i:Integer,{}j:Integer,{}k:Integer):List Integer \\spad{==} [i+j,{}\\spad{j+k}] \\spad{X} mapDown!(\\spad{t2},{}4::INT,{}\\spad{adder3}) \\spad{X} \\spad{t2}") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\indented{1}{mapDown!(\\spad{t},{}\\spad{p},{}\\spad{f}) returns \\spad{t} after traversing \\spad{t} in \"preorder\"} \\indented{1}{(node then left then right) fashion replacing the successive} \\indented{1}{interior nodes as follows. The root value \\spad{x} is} \\indented{1}{replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and} \\indented{1}{mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees} \\indented{1}{\\spad{l} and \\spad{r} of \\spad{t}.} \\blankline \\spad{X} T1:=BalancedBinaryTree Integer \\spad{X} t2:=balancedBinaryTree(4,{} 0)\\$\\spad{T1} \\spad{X} setleaves!(\\spad{t2},{}[1,{}2,{}3,{}4]::List(Integer)) \\spad{X} adder(i:Integer,{}j:Integer):Integer \\spad{==} i+j \\spad{X} mapDown!(\\spad{t2},{}4::INT,{}adder) \\spad{X} \\spad{t2}")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\indented{1}{mapUp!(\\spad{t},{}\\spad{t1},{}\\spad{f}) traverses balanced binary tree \\spad{t} in an \"endorder\"} \\indented{1}{(left then right then node) fashion returning \\spad{t} with the value} \\indented{1}{at each successive interior node of \\spad{t} replaced by} \\indented{1}{\\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate} \\indented{1}{left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the} \\indented{1}{corresponding nodes of a balanced binary tree \\spad{t1},{} of identical} \\indented{1}{shape at \\spad{t}.} \\blankline \\spad{X} T1:=BalancedBinaryTree Integer \\spad{X} t2:=balancedBinaryTree(4,{} 0)\\$\\spad{T1} \\spad{X} setleaves!(\\spad{t2},{}[1,{}2,{}3,{}4]::List(Integer)) \\spad{X} \\spad{adder4}(i:INT,{}j:INT,{}k:INT,{}l:INT):INT \\spad{==} i+j+k+l \\spad{X} mapUp!(\\spad{t2},{}\\spad{t2},{}\\spad{adder4}) \\spad{X} \\spad{t2}") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\indented{1}{mapUp!(\\spad{t},{}\\spad{f}) traverses balanced binary tree \\spad{t} in an \"endorder\"} \\indented{1}{(left then right then node) fashion returning \\spad{t} with the value} \\indented{1}{at each successive interior node of \\spad{t} replaced by} \\indented{1}{\\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate} \\indented{1}{left and right nodes.} \\blankline \\spad{X} T1:=BalancedBinaryTree Integer \\spad{X} t2:=balancedBinaryTree(4,{} 0)\\$\\spad{T1} \\spad{X} setleaves!(\\spad{t2},{}[1,{}2,{}3,{}4]::List(Integer)) \\spad{X} adder(a:Integer,{}b:Integer):Integer \\spad{==} a+b \\spad{X} mapUp!(\\spad{t2},{}adder) \\spad{X} \\spad{t2}")) (|setleaves!| (($ $ (|List| |#1|)) "\\indented{1}{setleaves!(\\spad{t},{} \\spad{ls}) sets the leaves of \\spad{t} in left-to-right order} \\indented{1}{to the elements of \\spad{ls}.} \\blankline \\spad{X} t1:=balancedBinaryTree(4,{} 0) \\spad{X} setleaves!(\\spad{t1},{}[1,{}2,{}3,{}4])")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\indented{1}{balancedBinaryTree(\\spad{n},{} \\spad{s}) creates a balanced binary tree with} \\indented{1}{\\spad{n} nodes each with value \\spad{s}.} \\blankline \\spad{X} balancedBinaryTree(4,{} 0)"))) -((-4505 . T) (-4506 . T)) -((|HasCategory| |#1| (QUOTE (-1082))) (-12 (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1082))))) +((-4519 . T) (-4520 . T)) +((|HasCategory| |#1| (QUOTE (-1090))) (-12 (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1090))))) (-107 R) ((|constructor| (NIL "Provide linear,{} quadratic,{} and cubic spline bezier curves")) (|cubicBezier| (((|Mapping| (|List| |#1|) |#1|) (|List| |#1|) (|List| |#1|) (|List| |#1|) (|List| |#1|)) "\\indented{1}{A cubic Bezier curve is a simple interpolation between the} \\indented{1}{starting point,{} a left-middle point,{},{} a right-middle point,{}} \\indented{1}{and the ending point based on a parameter \\spad{t}.} \\indented{1}{Given a start point a=[\\spad{x1},{}\\spad{y1}],{} the left-middle point \\spad{b=}[\\spad{x2},{}\\spad{y2}],{}} \\indented{1}{the right-middle point \\spad{c=}[\\spad{x3},{}\\spad{y3}] and an endpoint \\spad{d=}[\\spad{x4},{}\\spad{y4}]} \\indented{1}{\\spad{f}(\\spad{t}) \\spad{==} [(1-\\spad{t})\\spad{^3} \\spad{x1} + 3t(1-\\spad{t})\\spad{^2} \\spad{x2} + 3t^2 (1-\\spad{t}) \\spad{x3} + \\spad{t^3} \\spad{x4},{}} \\indented{10}{(1-\\spad{t})\\spad{^3} \\spad{y1} + 3t(1-\\spad{t})\\spad{^2} \\spad{y2} + 3t^2 (1-\\spad{t}) \\spad{y3} + \\spad{t^3} \\spad{y4}]} \\blankline \\spad{X} n:=cubicBezier([2.0,{}2.0],{}[2.0,{}4.0],{}[6.0,{}4.0],{}[6.0,{}2.0]) \\spad{X} [\\spad{n}(\\spad{t/10}.0) for \\spad{t} in 0..10 by 1]")) (|quadraticBezier| (((|Mapping| (|List| |#1|) |#1|) (|List| |#1|) (|List| |#1|) (|List| |#1|)) "\\indented{1}{A quadratic Bezier curve is a simple interpolation between the} \\indented{1}{starting point,{} a middle point,{} and the ending point based on} \\indented{1}{a parameter \\spad{t}.} \\indented{1}{Given a start point a=[\\spad{x1},{}\\spad{y1}],{} a middle point \\spad{b=}[\\spad{x2},{}\\spad{y2}],{}} \\indented{1}{and an endpoint \\spad{c=}[\\spad{x3},{}\\spad{y3}]} \\indented{1}{\\spad{f}(\\spad{t}) \\spad{==} [(1-\\spad{t})\\spad{^2} \\spad{x1} + 2t(1-\\spad{t}) \\spad{x2} + \\spad{t^2} \\spad{x3},{}} \\indented{10}{(1-\\spad{t})\\spad{^2} \\spad{y1} + 2t(1-\\spad{t}) \\spad{y2} + \\spad{t^2} \\spad{y3}]} \\blankline \\spad{X} n:=quadraticBezier([2.0,{}2.0],{}[4.0,{}4.0],{}[6.0,{}2.0]) \\spad{X} [\\spad{n}(\\spad{t/10}.0) for \\spad{t} in 0..10 by 1]")) (|linearBezier| (((|Mapping| (|List| |#1|) |#1|) (|List| |#1|) (|List| |#1|)) "\\indented{1}{A linear Bezier curve is a simple interpolation between the} \\indented{1}{starting point and the ending point based on a parameter \\spad{t}.} \\indented{1}{Given a start point a=[\\spad{x1},{}\\spad{y1}] and an endpoint \\spad{b=}[\\spad{x2},{}\\spad{y2}]} \\indented{1}{\\spad{f}(\\spad{t}) \\spad{==} [(1-\\spad{t})\\spad{*x1} + \\spad{t*x2},{} (1-\\spad{t})\\spad{*y1} + \\spad{t*y2}]} \\blankline \\spad{X} n:=linearBezier([2.0,{}2.0],{}[4.0,{}4.0]) \\spad{X} [\\spad{n}(\\spad{t/10}.0) for \\spad{t} in 0..10 by 1]"))) NIL @@ -363,10 +363,10 @@ NIL (-108 R UP M |Row| |Col|) ((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,{}q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,{}q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,{}q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}."))) NIL -((|HasAttribute| |#1| (QUOTE (-4507 "*")))) +((|HasAttribute| |#1| (QUOTE (-4521 "*")))) (-109) ((|constructor| (NIL "A Domain which implements a table containing details of points at which particular functions have evaluation problems.")) (|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table"))) -((-4505 . T)) +((-4519 . T)) NIL (-110 A S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) @@ -374,22 +374,22 @@ NIL NIL (-111 S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) -((-4506 . T) (-2537 . T)) +((-4520 . T) (-3973 . T)) NIL (-112) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\indented{1}{binary(\\spad{r}) converts a rational number to a binary expansion.} \\blankline \\spad{X} binary(22/7)")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion.")) (|coerce| (((|RadixExpansion| 2) $) "\\spad{coerce(b)} converts a binary expansion to a radix expansion with base 2.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(b)} converts a binary expansion to a rational number."))) -((-4497 . T) (-4503 . T) (-4498 . T) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) -((|HasCategory| (-560) (QUOTE (-896))) (|HasCategory| (-560) (LIST (QUOTE -1029) (QUOTE (-1153)))) (|HasCategory| (-560) (QUOTE (-146))) (|HasCategory| (-560) (QUOTE (-148))) (|HasCategory| (-560) (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| (-560) (QUOTE (-1013))) (|HasCategory| (-560) (QUOTE (-807))) (|HasCategory| (-560) (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-1128))) (|HasCategory| (-560) (LIST (QUOTE -873) (QUOTE (-560)))) (|HasCategory| (-560) (LIST (QUOTE -873) (QUOTE (-375)))) (|HasCategory| (-560) (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-375))))) (|HasCategory| (-560) (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-560))))) (|HasCategory| (-560) (QUOTE (-221))) (|HasCategory| (-560) (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| (-560) (LIST (QUOTE -515) (QUOTE (-1153)) (QUOTE (-560)))) (|HasCategory| (-560) (LIST (QUOTE -298) (QUOTE (-560)))) (|HasCategory| (-560) (LIST (QUOTE -276) (QUOTE (-560)) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-296))) (|HasCategory| (-560) (QUOTE (-542))) (|HasCategory| (-560) (QUOTE (-834))) (-2318 (|HasCategory| (-560) (QUOTE (-807))) (|HasCategory| (-560) (QUOTE (-834)))) (|HasCategory| (-560) (LIST (QUOTE -622) (QUOTE (-560)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-560) (QUOTE (-896)))) (-2318 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-560) (QUOTE (-896)))) (|HasCategory| (-560) (QUOTE (-146))))) +((-4511 . T) (-4517 . T) (-4512 . T) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) +((|HasCategory| (-568) (QUOTE (-904))) (|HasCategory| (-568) (LIST (QUOTE -1037) (QUOTE (-1161)))) (|HasCategory| (-568) (QUOTE (-148))) (|HasCategory| (-568) (QUOTE (-150))) (|HasCategory| (-568) (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| (-568) (QUOTE (-1021))) (|HasCategory| (-568) (QUOTE (-815))) (|HasCategory| (-568) (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| (-568) (QUOTE (-1136))) (|HasCategory| (-568) (LIST (QUOTE -881) (QUOTE (-568)))) (|HasCategory| (-568) (LIST (QUOTE -881) (QUOTE (-381)))) (|HasCategory| (-568) (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-381))))) (|HasCategory| (-568) (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-568))))) (|HasCategory| (-568) (QUOTE (-225))) (|HasCategory| (-568) (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| (-568) (LIST (QUOTE -523) (QUOTE (-1161)) (QUOTE (-568)))) (|HasCategory| (-568) (LIST (QUOTE -303) (QUOTE (-568)))) (|HasCategory| (-568) (LIST (QUOTE -281) (QUOTE (-568)) (QUOTE (-568)))) (|HasCategory| (-568) (QUOTE (-301))) (|HasCategory| (-568) (QUOTE (-550))) (|HasCategory| (-568) (QUOTE (-842))) (-2198 (|HasCategory| (-568) (QUOTE (-815))) (|HasCategory| (-568) (QUOTE (-842)))) (|HasCategory| (-568) (LIST (QUOTE -630) (QUOTE (-568)))) (-12 (|HasCategory| $ (QUOTE (-148))) (|HasCategory| (-568) (QUOTE (-904)))) (-2198 (-12 (|HasCategory| $ (QUOTE (-148))) (|HasCategory| (-568) (QUOTE (-904)))) (|HasCategory| (-568) (QUOTE (-148))))) (-113) ((|constructor| (NIL "This domain provides an implementation of binary files. Data is accessed one byte at a time as a small integer.")) (|position!| (((|SingleInteger|) $ (|SingleInteger|)) "\\spad{position!(f,{} i)} sets the current byte-position to \\spad{i}.")) (|position| (((|SingleInteger|) $) "\\spad{position(f)} returns the current byte-position in the file \\spad{f}.")) (|readIfCan!| (((|Union| (|SingleInteger|) "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result."))) NIL NIL (-114) ((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,{}b)} creates bits with \\spad{n} values of \\spad{b}"))) -((-4506 . T) (-4505 . T)) -((|HasCategory| (-121) (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| (-121) (QUOTE (-834))) (|HasCategory| (-560) (QUOTE (-834))) (|HasCategory| (-121) (QUOTE (-1082))) (-12 (|HasCategory| (-121) (LIST (QUOTE -298) (QUOTE (-121)))) (|HasCategory| (-121) (QUOTE (-1082))))) +((-4520 . T) (-4519 . T)) +((|HasCategory| (-121) (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| (-121) (QUOTE (-842))) (|HasCategory| (-568) (QUOTE (-842))) (|HasCategory| (-121) (QUOTE (-1090))) (-12 (|HasCategory| (-121) (LIST (QUOTE -303) (QUOTE (-121)))) (|HasCategory| (-121) (QUOTE (-1090))))) (-115) -((|constructor| (NIL "This package provides an interface to the Blas library (level 1)")) (|dcopy| (((|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|)) "\\indented{1}{dcopy(\\spad{n},{}\\spad{x},{}incx,{}\\spad{y},{}incy) copies \\spad{y} from \\spad{x}} \\indented{1}{for each of the chosen elements of the vectors \\spad{x} and \\spad{y}} \\indented{1}{Note that the vector \\spad{y} is modified with the results.} \\blankline \\spad{X} x:PRIMARR(DFLOAT)\\spad{:=}[[1.0,{}2.0,{}3.0,{}4.0,{}5.0,{}6.0]] \\spad{X} y:PRIMARR(DFLOAT)\\spad{:=}[[0.0,{}0.0,{}0.0,{}0.0,{}0.0,{}0.0]] \\spad{X} dcopy(6,{}\\spad{x},{}1,{}\\spad{y},{}1) \\spad{X} \\spad{y} \\spad{X} m:PRIMARR(DFLOAT)\\spad{:=}[[1.0,{}2.0,{}3.0]] \\spad{X} n:PRIMARR(DFLOAT)\\spad{:=}[[0.0,{}0.0,{}0.0,{}0.0,{}0.0,{}0.0]] \\spad{X} dcopy(3,{}\\spad{m},{}1,{}\\spad{n},{}2) \\spad{X} \\spad{n}")) (|daxpy| (((|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|) (|DoubleFloat|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|)) "\\indented{1}{daxpy(\\spad{n},{}da,{}\\spad{x},{}incx,{}\\spad{y},{}incy) computes a \\spad{y} = a*x + \\spad{y}} \\indented{1}{for each of the chosen elements of the vectors \\spad{x} and \\spad{y}} \\indented{1}{and a constant multiplier a} \\indented{1}{Note that the vector \\spad{y} is modified with the results.} \\blankline \\spad{X} x:PRIMARR(DFLOAT)\\spad{:=}[[1.0,{}2.0,{}3.0,{}4.0,{}5.0,{}6.0]] \\spad{X} y:PRIMARR(DFLOAT)\\spad{:=}[[1.0,{}2.0,{}3.0,{}4.0,{}5.0,{}6.0]] \\spad{X} daxpy(6,{}2.0,{}\\spad{x},{}1,{}\\spad{y},{}1) \\spad{X} \\spad{y} \\spad{X} m:PRIMARR(DFLOAT)\\spad{:=}[[1.0,{}2.0,{}3.0]] \\spad{X} n:PRIMARR(DFLOAT)\\spad{:=}[[1.0,{}2.0,{}3.0,{}4.0,{}5.0,{}6.0]] \\spad{X} daxpy(3,{}\\spad{-2}.0,{}\\spad{m},{}1,{}\\spad{n},{}2) \\spad{X} \\spad{n}")) (|dasum| (((|DoubleFloat|) (|SingleInteger|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|)) "\\indented{1}{dasum(\\spad{n},{}array,{}incx) computes the sum of \\spad{n} elements in array} \\indented{1}{using a stride of incx} \\blankline \\spad{X} dx:PRIMARR(DFLOAT)\\spad{:=}[[1.0,{}2.0,{}3.0,{}4.0,{}5.0,{}6.0]] \\spad{X} dasum(6,{}\\spad{dx},{}1) \\spad{X} dasum(3,{}\\spad{dx},{}2)")) (|dcabs1| (((|DoubleFloat|) (|Complex| (|DoubleFloat|))) "\\indented{1}{\\spad{dcabs1}(\\spad{z}) computes (+ (abs (realpart \\spad{z})) (abs (imagpart \\spad{z})))} \\blankline \\spad{X} t1:Complex DoubleFloat \\spad{:=} complex(1.0,{}0) \\spad{X} dcabs(\\spad{t1})"))) +((|constructor| (NIL "This package provides an interface to the Blas library (level 1)")) (|dcopy| (((|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|)) "\\indented{1}{dcopy(\\spad{n},{}\\spad{x},{}incx,{}\\spad{y},{}incy) copies \\spad{y} from \\spad{x}} \\indented{1}{for each of the chosen elements of the vectors \\spad{x} and \\spad{y}} \\indented{1}{Note that the vector \\spad{y} is modified with the results.} \\blankline \\spad{X} x:PRIMARR(DFLOAT)\\spad{:=}[ [1.0,{}2.0,{}3.0,{}4.0,{}5.0,{}6.0] ] \\spad{X} y:PRIMARR(DFLOAT)\\spad{:=}[ [0.0,{}0.0,{}0.0,{}0.0,{}0.0,{}0.0] ] \\spad{X} dcopy(6,{}\\spad{x},{}1,{}\\spad{y},{}1) \\spad{X} \\spad{y} \\spad{X} m:PRIMARR(DFLOAT)\\spad{:=}[ [1.0,{}2.0,{}3.0] ] \\spad{X} n:PRIMARR(DFLOAT)\\spad{:=}[ [0.0,{}0.0,{}0.0,{}0.0,{}0.0,{}0.0] ] \\spad{X} dcopy(3,{}\\spad{m},{}1,{}\\spad{n},{}2) \\spad{X} \\spad{n}")) (|daxpy| (((|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|) (|DoubleFloat|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|)) "\\indented{1}{daxpy(\\spad{n},{}da,{}\\spad{x},{}incx,{}\\spad{y},{}incy) computes a \\spad{y} = a*x + \\spad{y}} \\indented{1}{for each of the chosen elements of the vectors \\spad{x} and \\spad{y}} \\indented{1}{and a constant multiplier a} \\indented{1}{Note that the vector \\spad{y} is modified with the results.} \\blankline \\spad{X} x:PRIMARR(DFLOAT)\\spad{:=}[ [1.0,{}2.0,{}3.0,{}4.0,{}5.0,{}6.0] ] \\spad{X} y:PRIMARR(DFLOAT)\\spad{:=}[ [1.0,{}2.0,{}3.0,{}4.0,{}5.0,{}6.0] ] \\spad{X} daxpy(6,{}2.0,{}\\spad{x},{}1,{}\\spad{y},{}1) \\spad{X} \\spad{y} \\spad{X} m:PRIMARR(DFLOAT)\\spad{:=}[ [1.0,{}2.0,{}3.0] ] \\spad{X} n:PRIMARR(DFLOAT)\\spad{:=}[ [1.0,{}2.0,{}3.0,{}4.0,{}5.0,{}6.0] ] \\spad{X} daxpy(3,{}\\spad{-2}.0,{}\\spad{m},{}1,{}\\spad{n},{}2) \\spad{X} \\spad{n}")) (|dasum| (((|DoubleFloat|) (|SingleInteger|) (|PrimitiveArray| (|DoubleFloat|)) (|SingleInteger|)) "\\indented{1}{dasum(\\spad{n},{}array,{}incx) computes the sum of \\spad{n} elements in array} \\indented{1}{using a stride of incx} \\blankline \\spad{X} dx:PRIMARR(DFLOAT)\\spad{:=}[ [1.0,{}2.0,{}3.0,{}4.0,{}5.0,{}6.0] ] \\spad{X} dasum(6,{}\\spad{dx},{}1) \\spad{X} dasum(3,{}\\spad{dx},{}2)")) (|dcabs1| (((|DoubleFloat|) (|Complex| (|DoubleFloat|))) "\\indented{1}{\\spad{dcabs1}(\\spad{z}) computes (+ (abs (realpart \\spad{z})) (abs (imagpart \\spad{z})))} \\blankline \\spad{X} t1:Complex DoubleFloat \\spad{:=} complex(1.0,{}0) \\spad{X} dcabs(\\spad{t1})"))) NIL NIL (-116) @@ -410,7 +410,7 @@ NIL NIL (-120 R S) ((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline Axiom\\spad{\\br} \\tab{5}\\spad{ r*(x*s) = (r*x)*s }")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}"))) -((-4500 . T) (-4499 . T)) +((-4514 . T) (-4513 . T)) NIL (-121) ((|constructor| (NIL "\\spadtype{Boolean} is the elementary logic with 2 values: \\spad{true} and \\spad{false}")) (|test| (((|Boolean|) $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|implies| (($ $ $) "\\spad{implies(a,{}b)} returns the logical implication of Boolean \\spad{a} and \\spad{b}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical exclusive or of Boolean \\spad{a} and \\spad{b}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical inclusive or of Boolean \\spad{a} and \\spad{b}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical and of Boolean \\spad{a} and \\spad{b}.")) (|not| (($ $) "\\spad{not n} returns the negation of \\spad{n}.")) (^ (($ $) "\\spad{^ n} returns the negation of \\spad{n}.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant."))) @@ -419,30 +419,30 @@ NIL (-122 A) ((|constructor| (NIL "This package exports functions to set some commonly used properties of operators,{} including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a},{} \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op,{} foo)} attaches foo as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{f},{} then applying a derivation \\spad{D} to \\spad{op}(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op,{} [foo1,{}...,{}foon])} attaches [\\spad{foo1},{}...,{}foon] as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,{}...,{}fn]} then applying a derivation \\spad{D} to \\spad{op(a1,{}...,{}an)} returns \\spad{f1(a1,{}...,{}an) * D(a1) + ... + fn(a1,{}...,{}an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to \\spad{(a1,{}...,{}an)} returns the result of \\spad{f(a1,{}...,{}an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op,{} [a1,{}...,{}an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f}. If it has,{} then \\spad{f(a1,{}...,{}an)} is returned,{} and \"failed\" otherwise."))) NIL -((|HasCategory| |#1| (QUOTE (-834)))) +((|HasCategory| |#1| (QUOTE (-842)))) (-123) ((|constructor| (NIL "Basic system operators. A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op,{} l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|String|) (|None|)) "\\spad{setProperty(op,{} s,{} v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op,{} s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|String|)) "\\spad{deleteProperty!(op,{} s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|String|)) "\\spad{assert(op,{} s)} attaches property \\spad{s} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|String|)) "\\spad{has?(op,{} s)} tests if property \\spad{s} is attached to \\spad{op}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op,{} s)} tests if the name of \\spad{op} is \\spad{s}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op,{} foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to InputForm as \\spad{f(a1,{}...,{}an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to OutputForm as \\spad{f(a1,{}...,{}an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op,{} foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If \\spad{op1} and \\spad{op2} have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op,{} foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If \\spad{op1} and \\spad{op2} have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether \\spad{op1} and \\spad{op2} should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op,{} n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|arity| (((|Union| (|NonNegativeInteger|) "failed") $) "\\spad{arity(op)} returns \\spad{n} if \\spad{op} is \\spad{n}-ary,{} and \"failed\" if \\spad{op} has arbitrary arity.")) (|operator| (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f,{} n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}.")) (|name| (((|Symbol|) $) "\\spad{name(op)} returns the name of \\spad{op}."))) NIL NIL -(-124 -1333 UP) +(-124 -1478 UP) ((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots."))) NIL NIL (-125 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4498 . T) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) +((-4512 . T) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) NIL (-126 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4497 . T) (-4503 . T) (-4498 . T) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) -((|HasCategory| (-125 |#1|) (QUOTE (-896))) (|HasCategory| (-125 |#1|) (LIST (QUOTE -1029) (QUOTE (-1153)))) (|HasCategory| (-125 |#1|) (QUOTE (-146))) (|HasCategory| (-125 |#1|) (QUOTE (-148))) (|HasCategory| (-125 |#1|) (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| (-125 |#1|) (QUOTE (-1013))) (|HasCategory| (-125 |#1|) (QUOTE (-807))) (|HasCategory| (-125 |#1|) (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| (-125 |#1|) (QUOTE (-1128))) (|HasCategory| (-125 |#1|) (LIST (QUOTE -873) (QUOTE (-560)))) (|HasCategory| (-125 |#1|) (LIST (QUOTE -873) (QUOTE (-375)))) (|HasCategory| (-125 |#1|) (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-375))))) (|HasCategory| (-125 |#1|) (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-560))))) (|HasCategory| (-125 |#1|) (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| (-125 |#1|) (QUOTE (-221))) (|HasCategory| (-125 |#1|) (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| (-125 |#1|) (LIST (QUOTE -515) (QUOTE (-1153)) (LIST (QUOTE -125) (|devaluate| |#1|)))) (|HasCategory| (-125 |#1|) (LIST (QUOTE -298) (LIST (QUOTE -125) (|devaluate| |#1|)))) (|HasCategory| (-125 |#1|) (LIST (QUOTE -276) (LIST (QUOTE -125) (|devaluate| |#1|)) (LIST (QUOTE -125) (|devaluate| |#1|)))) (|HasCategory| (-125 |#1|) (QUOTE (-296))) (|HasCategory| (-125 |#1|) (QUOTE (-542))) (|HasCategory| (-125 |#1|) (QUOTE (-834))) (-2318 (|HasCategory| (-125 |#1|) (QUOTE (-807))) (|HasCategory| (-125 |#1|) (QUOTE (-834)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-125 |#1|) (QUOTE (-896)))) (-2318 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-125 |#1|) (QUOTE (-896)))) (|HasCategory| (-125 |#1|) (QUOTE (-146))))) +((-4511 . T) (-4517 . T) (-4512 . T) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) +((|HasCategory| (-125 |#1|) (QUOTE (-904))) (|HasCategory| (-125 |#1|) (LIST (QUOTE -1037) (QUOTE (-1161)))) (|HasCategory| (-125 |#1|) (QUOTE (-148))) (|HasCategory| (-125 |#1|) (QUOTE (-150))) (|HasCategory| (-125 |#1|) (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| (-125 |#1|) (QUOTE (-1021))) (|HasCategory| (-125 |#1|) (QUOTE (-815))) (|HasCategory| (-125 |#1|) (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| (-125 |#1|) (QUOTE (-1136))) (|HasCategory| (-125 |#1|) (LIST (QUOTE -881) (QUOTE (-568)))) (|HasCategory| (-125 |#1|) (LIST (QUOTE -881) (QUOTE (-381)))) (|HasCategory| (-125 |#1|) (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-381))))) (|HasCategory| (-125 |#1|) (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-568))))) (|HasCategory| (-125 |#1|) (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| (-125 |#1|) (QUOTE (-225))) (|HasCategory| (-125 |#1|) (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| (-125 |#1|) (LIST (QUOTE -523) (QUOTE (-1161)) (LIST (QUOTE -125) (|devaluate| |#1|)))) (|HasCategory| (-125 |#1|) (LIST (QUOTE -303) (LIST (QUOTE -125) (|devaluate| |#1|)))) (|HasCategory| (-125 |#1|) (LIST (QUOTE -281) (LIST (QUOTE -125) (|devaluate| |#1|)) (LIST (QUOTE -125) (|devaluate| |#1|)))) (|HasCategory| (-125 |#1|) (QUOTE (-301))) (|HasCategory| (-125 |#1|) (QUOTE (-550))) (|HasCategory| (-125 |#1|) (QUOTE (-842))) (-2198 (|HasCategory| (-125 |#1|) (QUOTE (-815))) (|HasCategory| (-125 |#1|) (QUOTE (-842)))) (-12 (|HasCategory| $ (QUOTE (-148))) (|HasCategory| (-125 |#1|) (QUOTE (-904)))) (-2198 (-12 (|HasCategory| $ (QUOTE (-148))) (|HasCategory| (-125 |#1|) (QUOTE (-904)))) (|HasCategory| (-125 |#1|) (QUOTE (-148))))) (-127 A S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL -((|HasAttribute| |#1| (QUOTE -4506))) +((|HasAttribute| |#1| (QUOTE -4520))) (-128 S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) -((-2537 . T)) +((-3973 . T)) NIL (-129 UP) ((|constructor| (NIL "This package has no description")) (|noLinearFactor?| (((|Boolean|) |#1|) "\\spad{noLinearFactor?(p)} returns \\spad{true} if \\spad{p} can be shown to have no linear factor by a theorem of Lehmer,{} \\spad{false} else. \\spad{I} insist on the fact that \\spad{false} does not mean that \\spad{p} has a linear factor.")) (|brillhartTrials| (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{brillhartTrials(n)} sets to \\spad{n} the number of tests in \\spadfun{brillhartIrreducible?} and returns the previous value.") (((|NonNegativeInteger|)) "\\spad{brillhartTrials()} returns the number of tests in \\spadfun{brillhartIrreducible?}.")) (|brillhartIrreducible?| (((|Boolean|) |#1| (|Boolean|)) "\\spad{brillhartIrreducible?(p,{}noLinears)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} else. If \\spad{noLinears} is \\spad{true},{} we are being told \\spad{p} has no linear factors \\spad{false} does not mean that \\spad{p} is reducible.") (((|Boolean|) |#1|) "\\spad{brillhartIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} is inconclusive."))) @@ -450,15 +450,15 @@ NIL NIL (-130 S) ((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\indented{1}{split(\\spad{x},{}\\spad{b}) splits binary tree \\spad{b} into two trees,{} one with elements} \\indented{1}{greater than \\spad{x},{} the other with elements less than \\spad{x}.} \\blankline \\spad{X} t1:=binarySearchTree [1,{}2,{}3,{}4] \\spad{X} split(3,{}\\spad{t1})")) (|insertRoot!| (($ |#1| $) "\\indented{1}{insertRoot!(\\spad{x},{}\\spad{b}) inserts element \\spad{x} as a root of binary search tree \\spad{b}.} \\blankline \\spad{X} t1:=binarySearchTree [1,{}2,{}3,{}4] \\spad{X} insertRoot!(5,{}\\spad{t1})")) (|insert!| (($ |#1| $) "\\indented{1}{insert!(\\spad{x},{}\\spad{b}) inserts element \\spad{x} as leaves into binary search tree \\spad{b}.} \\blankline \\spad{X} t1:=binarySearchTree [1,{}2,{}3,{}4] \\spad{X} insert!(5,{}\\spad{t1})")) (|binarySearchTree| (($ (|List| |#1|)) "\\indented{1}{binarySearchTree(\\spad{l}) is not documented} \\blankline \\spad{X} binarySearchTree [1,{}2,{}3,{}4]"))) -((-4505 . T) (-4506 . T)) -((|HasCategory| |#1| (QUOTE (-1082))) (-12 (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1082))))) +((-4519 . T) (-4520 . T)) +((|HasCategory| |#1| (QUOTE (-1090))) (-12 (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1090))))) (-131 S) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical exclusive-or of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical or of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical and of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical nor of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical nand of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (^ (($ $) "\\spad{^ b} returns the logical not of bit aggregate \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical not of bit aggregate \\axiom{\\spad{b}}."))) NIL NIL (-132) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical exclusive-or of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical or of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical and of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical nor of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical nand of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (^ (($ $) "\\spad{^ b} returns the logical not of bit aggregate \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical not of bit aggregate \\axiom{\\spad{b}}."))) -((-4506 . T) (-4505 . T) (-2537 . T)) +((-4520 . T) (-4519 . T) (-3973 . T)) NIL (-133 A S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}. \\blankline")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) @@ -466,16 +466,16 @@ NIL NIL (-134 S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}. \\blankline")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) -((-4505 . T) (-4506 . T) (-2537 . T)) +((-4519 . T) (-4520 . T) (-3973 . T)) NIL (-135 S) ((|constructor| (NIL "BinaryTournament creates a binary tournament with the elements of \\spad{ls} as values at the nodes.")) (|insert!| (($ |#1| $) "\\indented{1}{insert!(\\spad{x},{}\\spad{b}) inserts element \\spad{x} as leaves into binary tournament \\spad{b}.} \\blankline \\spad{X} t1:=binaryTournament [1,{}2,{}3,{}4] \\spad{X} insert!(5,{}\\spad{t1}) \\spad{X} \\spad{t1}")) (|binaryTournament| (($ (|List| |#1|)) "\\indented{1}{binaryTournament(\\spad{ls}) creates a binary tournament with the} \\indented{1}{elements of \\spad{ls} as values at the nodes.} \\blankline \\spad{X} binaryTournament [1,{}2,{}3,{}4]"))) -((-4505 . T) (-4506 . T)) -((|HasCategory| |#1| (QUOTE (-1082))) (-12 (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1082))))) +((-4519 . T) (-4520 . T)) +((|HasCategory| |#1| (QUOTE (-1090))) (-12 (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1090))))) (-136 S) ((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\indented{1}{binaryTree(\\spad{l},{}\\spad{v},{}\\spad{r}) creates a binary tree with} \\indented{1}{value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.} \\blankline \\spad{X} t1:=binaryTree([1,{}2,{}3]) \\spad{X} t2:=binaryTree([4,{}5,{}6]) \\spad{X} binaryTree(\\spad{t1},{}[7,{}8,{}9],{}\\spad{t2})") (($ |#1|) "\\indented{1}{binaryTree(\\spad{v}) is an non-empty binary tree} \\indented{1}{with value \\spad{v},{} and left and right empty.} \\blankline \\spad{X} t1:=binaryTree([1,{}2,{}3])"))) -((-4505 . T) (-4506 . T)) -((|HasCategory| |#1| (QUOTE (-1082))) (-12 (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1082))))) +((-4519 . T) (-4520 . T)) +((|HasCategory| |#1| (QUOTE (-1090))) (-12 (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1090))))) (-137) ((|constructor| (NIL "This is an \\spadtype{AbelianMonoid} with the cancellation property,{} \\spadignore{i.e.} \\tab{5}\\spad{ a+b = a+c => b=c }.\\spad{\\br} This is formalised by the partial subtraction operator,{} which satisfies the Axioms\\spad{\\br} \\tab{5}\\spad{c = a+b <=> c-b = a}")) (|subtractIfCan| (((|Union| $ "failed") $ $) "\\spad{subtractIfCan(x,{} y)} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists."))) NIL @@ -486,4499 +486,4531 @@ NIL NIL (-139) ((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then\\spad{\\br} \\tab{5}\\spad{x+y = \\#(X+Y)} \\tab{5}disjoint union\\spad{\\br} \\tab{5}\\spad{x-y = \\#(X-Y)} \\tab{5}relative complement\\spad{\\br} \\tab{5}\\spad{x*y = \\#(X*Y)} \\tab{5}cartesian product\\spad{\\br} \\tab{5}\\spad{x**y = \\#(X**Y)} \\tab{4}\\spad{X**Y = g| g:Y->X} \\blankline The non-negative integers have a natural construction as cardinals\\spad{\\br} \\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0,{} 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}. \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\spad{\\br} \\spad{2**Aleph i = Aleph(i+1)} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are\\spad{\\br} \\tab{5}\\spad{a = \\#Z} \\tab{5}countable infinity\\spad{\\br} \\tab{5}\\spad{c = \\#R} \\tab{5}the continuum\\spad{\\br} \\tab{5}\\spad{f = \\# g | g:[0,{}1]->R\\} \\blankline In this domain,{} these values are obtained using\\br \\tab{5}\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\indented{1}{generalizedContinuumHypothesisAssumed(bool)} \\indented{1}{is used to dictate whether the hypothesis is to be assumed.} \\blankline \\spad{X} generalizedContinuumHypothesisAssumed \\spad{true} \\spad{X} a:=Aleph 0 \\spad{X} c:=2**a \\spad{X} f:=2**c")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\indented{1}{generalizedContinuumHypothesisAssumed?()} \\indented{1}{tests if the hypothesis is currently assumed.} \\blankline \\spad{X} generalizedContinuumHypothesisAssumed?")) (|countable?| (((|Boolean|) $) "\\indented{1}{countable?(\\spad{a}) determines} \\indented{1}{whether \\spad{a} is a countable cardinal,{}} \\indented{1}{\\spadignore{i.e.} an integer or \\spad{Aleph 0}.} \\blankline \\spad{X} c2:=2::CardinalNumber \\spad{X} countable? \\spad{c2} \\spad{X} A0:=Aleph 0 \\spad{X} countable? \\spad{A0} \\spad{X} A1:=Aleph 1 \\spad{X} countable? \\spad{A1}")) (|finite?| (((|Boolean|) $) "\\indented{1}{finite?(\\spad{a}) determines whether} \\indented{1}{\\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.} \\blankline \\spad{X} c2:=2::CardinalNumber \\spad{X} finite? \\spad{c2} \\spad{X} A0:=Aleph 0 \\spad{X} finite? \\spad{A0}")) (|Aleph| (($ (|NonNegativeInteger|)) "\\indented{1}{Aleph(\\spad{n}) provides the named (infinite) cardinal number.} \\blankline \\spad{X} A0:=Aleph 0")) (** (($ $ $) "\\indented{1}{\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined} \\indented{2}{as \\spad{\\{g| g:Y->X\\}}.} \\blankline \\spad{X} c2:=2::CardinalNumber \\spad{X} \\spad{c2**c2} \\spad{X} A1:=Aleph 1 \\spad{X} \\spad{A1**c2} \\spad{X} generalizedContinuumHypothesisAssumed \\spad{true} \\spad{X} \\spad{A1**A1}")) (- (((|Union| $ "failed") $ $) "\\indented{1}{\\spad{x - y} returns an element \\spad{z} such that} \\indented{1}{\\spad{z+y=x} or \"failed\" if no such element exists.} \\blankline \\spad{X} c2:=2::CardinalNumber \\spad{X} \\spad{c2}-\\spad{c2} \\spad{X} A1:=Aleph 1 \\spad{X} \\spad{A1}-\\spad{c2}")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative."))) -(((-4507 "*") . T)) +(((-4521 "*") . T)) NIL -(-140 |minix| -2050 S T$) +(-140 |minix| -2570 S T$) ((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,{}ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,{}ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}."))) NIL NIL -(-141 |minix| -2050 R) +(-141 |minix| -2570 R) ((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\indented{1}{ravel(\\spad{t}) produces a list of components from a tensor such that} \\indented{3}{\\spad{unravel(ravel(t)) = t}.} \\blankline \\spad{X} n:SquareMatrix(2,{}Integer):=matrix [[2,{}3],{}[0,{}1]] \\spad{X} tn:CartesianTensor(1,{}2,{}Integer)\\spad{:=n} \\spad{X} ravel \\spad{tn}")) (|leviCivitaSymbol| (($) "\\indented{1}{leviCivitaSymbol() is the rank \\spad{dim} tensor defined by} \\indented{1}{\\spad{leviCivitaSymbol()(i1,{}...idim) = +1/0/-1}} \\indented{1}{if \\spad{i1,{}...,{}idim} is an even/is nota /is an odd permutation} \\indented{1}{of \\spad{minix,{}...,{}minix+dim-1}.} \\blankline \\spad{X} lcs:CartesianTensor(1,{}2,{}Integer):=leviCivitaSymbol()")) (|kroneckerDelta| (($) "\\indented{1}{kroneckerDelta() is the rank 2 tensor defined by} \\indented{4}{\\spad{kroneckerDelta()(i,{}j)}} \\indented{7}{\\spad{= 1\\space{2}if i = j}} \\indented{7}{\\spad{= 0 if\\space{2}i \\^= j}} \\blankline \\spad{X} delta:CartesianTensor(1,{}2,{}Integer):=kroneckerDelta()")) (|reindex| (($ $ (|List| (|Integer|))) "\\indented{1}{reindex(\\spad{t},{}[\\spad{i1},{}...,{}idim]) permutes the indices of \\spad{t}.} \\indented{1}{For example,{} if \\spad{r = reindex(t,{} [4,{}1,{}2,{}3])}} \\indented{1}{for a rank 4 tensor \\spad{t},{}} \\indented{1}{then \\spad{r} is the rank for tensor given by} \\indented{5}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}i,{}j,{}k)}.} \\blankline \\spad{X} n:SquareMatrix(2,{}Integer):=matrix [[2,{}3],{}[0,{}1]] \\spad{X} tn:CartesianTensor(1,{}2,{}Integer)\\spad{:=n} \\spad{X} p:=product(\\spad{tn},{}\\spad{tn}) \\spad{X} reindex(\\spad{p},{}[4,{}3,{}2,{}1])")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\indented{1}{transpose(\\spad{t},{}\\spad{i},{}\\spad{j}) exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th} \\indented{1}{indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,{}2,{}3)}} \\indented{1}{for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor} \\indented{1}{given by} \\indented{5}{\\spad{r(i,{}j,{}k,{}l) = t(i,{}k,{}j,{}l)}.} \\blankline \\spad{X} m:SquareMatrix(2,{}Integer):=matrix [[1,{}2],{}[4,{}5]] \\spad{X} tm:CartesianTensor(1,{}2,{}Integer)\\spad{:=m} \\spad{X} tn:CartesianTensor(1,{}2,{}Integer)\\spad{:=}[\\spad{tm},{}\\spad{tm}] \\spad{X} transpose(\\spad{tn},{}1,{}2)") (($ $) "\\indented{1}{transpose(\\spad{t}) exchanges the first and last indices of \\spad{t}.} \\indented{1}{For example,{} if \\spad{r = transpose(t)} for a rank 4} \\indented{1}{tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by} \\indented{5}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}j,{}k,{}i)}.} \\blankline \\spad{X} m:SquareMatrix(2,{}Integer):=matrix [[1,{}2],{}[4,{}5]] \\spad{X} Tm:CartesianTensor(1,{}2,{}Integer)\\spad{:=m} \\spad{X} transpose(\\spad{Tm})")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\indented{1}{contract(\\spad{t},{}\\spad{i},{}\\spad{j}) is the contraction of tensor \\spad{t} which} \\indented{1}{sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices.} \\indented{1}{For example,{}\\space{2}if} \\indented{1}{\\spad{r = contract(t,{}1,{}3)} for a rank 4 tensor \\spad{t},{} then} \\indented{1}{\\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by} \\indented{5}{\\spad{r(i,{}j) = sum(h=1..dim,{}t(h,{}i,{}h,{}j))}.} \\blankline \\spad{X} m:SquareMatrix(2,{}Integer):=matrix [[1,{}2],{}[4,{}5]] \\spad{X} Tm:CartesianTensor(1,{}2,{}Integer)\\spad{:=m} \\spad{X} v:DirectProduct(2,{}Integer):=directProduct [3,{}4] \\spad{X} Tv:CartesianTensor(1,{}2,{}Integer)\\spad{:=v} \\spad{X} Tmv:=contract(\\spad{Tm},{}2,{}1)") (($ $ (|Integer|) $ (|Integer|)) "\\indented{1}{contract(\\spad{t},{}\\spad{i},{}\\spad{s},{}\\spad{j}) is the inner product of tenors \\spad{s} and \\spad{t}} \\indented{1}{which sums along the \\spad{k1}\\spad{-}th index of} \\indented{1}{\\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}.} \\indented{1}{For example,{} if \\spad{r = contract(s,{}2,{}t,{}1)} for rank 3 tensors} \\indented{1}{rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is} \\indented{1}{the rank 4 \\spad{(= 3 + 3 - 2)} tensor\\space{2}given by} \\indented{5}{\\spad{r(i,{}j,{}k,{}l) = sum(h=1..dim,{}s(i,{}h,{}j)*t(h,{}k,{}l))}.} \\blankline \\spad{X} m:SquareMatrix(2,{}Integer):=matrix [[1,{}2],{}[4,{}5]] \\spad{X} Tm:CartesianTensor(1,{}2,{}Integer)\\spad{:=m} \\spad{X} v:DirectProduct(2,{}Integer):=directProduct [3,{}4] \\spad{X} Tv:CartesianTensor(1,{}2,{}Integer)\\spad{:=v} \\spad{X} Tmv:=contract(\\spad{Tm},{}2,{}\\spad{Tv},{}1)")) (* (($ $ $) "\\indented{1}{\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts} \\indented{1}{the last index of \\spad{s} with the first index of \\spad{t},{} that is,{}} \\indented{5}{\\spad{t*s = contract(t,{}rank t,{} s,{} 1)}} \\indented{5}{\\spad{t*s = sum(k=1..N,{} t[i1,{}..,{}iN,{}k]*s[k,{}j1,{}..,{}jM])}} \\indented{1}{This is compatible with the use of \\spad{M*v} to denote} \\indented{1}{the matrix-vector inner product.} \\blankline \\spad{X} m:SquareMatrix(2,{}Integer):=matrix [[1,{}2],{}[4,{}5]] \\spad{X} Tm:CartesianTensor(1,{}2,{}Integer)\\spad{:=m} \\spad{X} v:DirectProduct(2,{}Integer):=directProduct [3,{}4] \\spad{X} Tv:CartesianTensor(1,{}2,{}Integer)\\spad{:=v} \\spad{X} Tm*Tv")) (|product| (($ $ $) "\\indented{1}{product(\\spad{s},{}\\spad{t}) is the outer product of the tensors \\spad{s} and \\spad{t}.} \\indented{1}{For example,{} if \\spad{r = product(s,{}t)} for rank 2 tensors} \\indented{1}{\\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by} \\indented{5}{\\spad{r(i,{}j,{}k,{}l) = s(i,{}j)*t(k,{}l)}.} \\blankline \\spad{X} m:SquareMatrix(2,{}Integer):=matrix [[1,{}2],{}[4,{}5]] \\spad{X} Tm:CartesianTensor(1,{}2,{}Integer)\\spad{:=m} \\spad{X} n:SquareMatrix(2,{}Integer):=matrix [[2,{}3],{}[0,{}1]] \\spad{X} Tn:CartesianTensor(1,{}2,{}Integer)\\spad{:=n} \\spad{X} Tmn:=product(\\spad{Tm},{}\\spad{Tn})")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\indented{1}{elt(\\spad{t},{}[\\spad{i1},{}...,{}iN]) gives a component of a rank \\spad{N} tensor.} \\blankline \\spad{X} \\spad{v:=}[2,{}3] \\spad{X} tv:CartesianTensor(1,{}2,{}Integer)\\spad{:=v} \\spad{X} tm:CartesianTensor(1,{}2,{}Integer)\\spad{:=}[\\spad{tv},{}\\spad{tv}] \\spad{X} tn:CartesianTensor(1,{}2,{}Integer)\\spad{:=}[\\spad{tm},{}\\spad{tm}] \\spad{X} tp:CartesianTensor(1,{}2,{}Integer)\\spad{:=}[\\spad{tn},{}\\spad{tn}] \\spad{X} tq:CartesianTensor(1,{}2,{}Integer)\\spad{:=}[\\spad{tp},{}\\spad{tp}] \\spad{X} elt(\\spad{tq},{}[2,{}2,{}2,{}2,{}2])") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\indented{1}{elt(\\spad{t},{}\\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{l}) gives a component of a rank 4 tensor.} \\blankline \\spad{X} \\spad{v:=}[2,{}3] \\spad{X} tv:CartesianTensor(1,{}2,{}Integer)\\spad{:=v} \\spad{X} tm:CartesianTensor(1,{}2,{}Integer)\\spad{:=}[\\spad{tv},{}\\spad{tv}] \\spad{X} tn:CartesianTensor(1,{}2,{}Integer)\\spad{:=}[\\spad{tm},{}\\spad{tm}] \\spad{X} tp:CartesianTensor(1,{}2,{}Integer)\\spad{:=}[\\spad{tn},{}\\spad{tn}] \\spad{X} elt(\\spad{tp},{}2,{}2,{}2,{}2) \\spad{X} \\spad{tp}[2,{}2,{}2,{}2]") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\indented{1}{elt(\\spad{t},{}\\spad{i},{}\\spad{j},{}\\spad{k}) gives a component of a rank 3 tensor.} \\blankline \\spad{X} \\spad{v:=}[2,{}3] \\spad{X} tv:CartesianTensor(1,{}2,{}Integer)\\spad{:=v} \\spad{X} tm:CartesianTensor(1,{}2,{}Integer)\\spad{:=}[\\spad{tv},{}\\spad{tv}] \\spad{X} tn:CartesianTensor(1,{}2,{}Integer)\\spad{:=}[\\spad{tm},{}\\spad{tm}] \\spad{X} elt(\\spad{tn},{}2,{}2,{}2) \\spad{X} \\spad{tn}[2,{}2,{}2]") ((|#3| $ (|Integer|) (|Integer|)) "\\indented{1}{elt(\\spad{t},{}\\spad{i},{}\\spad{j}) gives a component of a rank 2 tensor.} \\blankline \\spad{X} \\spad{v:=}[2,{}3] \\spad{X} tv:CartesianTensor(1,{}2,{}Integer)\\spad{:=v} \\spad{X} tm:CartesianTensor(1,{}2,{}Integer)\\spad{:=}[\\spad{tv},{}\\spad{tv}] \\spad{X} elt(\\spad{tm},{}2,{}2) \\spad{X} \\spad{tm}[2,{}2]") ((|#3| $ (|Integer|)) "\\indented{1}{elt(\\spad{t},{}\\spad{i}) gives a component of a rank 1 tensor.} \\blankline \\spad{X} \\spad{v:=}[2,{}3] \\spad{X} tv:CartesianTensor(1,{}2,{}Integer)\\spad{:=v} \\spad{X} elt(\\spad{tv},{}2) \\spad{X} \\spad{tv}[2]") ((|#3| $) "\\indented{1}{elt(\\spad{t}) gives the component of a rank 0 tensor.} \\blankline \\spad{X} tv:CartesianTensor(1,{}2,{}Integer)\\spad{:=8} \\spad{X} elt(\\spad{tv}) \\spad{X} \\spad{tv}[]")) (|rank| (((|NonNegativeInteger|) $) "\\indented{1}{rank(\\spad{t}) returns the tensorial rank of \\spad{t} (that is,{} the} \\indented{1}{number of indices).\\space{2}This is the same as the graded module} \\indented{1}{degree.} \\blankline \\spad{X} CT:=CARTEN(1,{}2,{}Integer) \\spad{X} \\spad{t0:CT:=8} \\spad{X} rank \\spad{t0}")) (|coerce| (($ (|List| $)) "\\indented{1}{coerce([\\spad{t_1},{}...,{}t_dim]) allows tensors to be constructed} \\indented{1}{using lists.} \\blankline \\spad{X} \\spad{v:=}[2,{}3] \\spad{X} tv:CartesianTensor(1,{}2,{}Integer)\\spad{:=v} \\spad{X} tm:CartesianTensor(1,{}2,{}Integer)\\spad{:=}[\\spad{tv},{}\\spad{tv}]") (($ (|List| |#3|)) "\\indented{1}{coerce([\\spad{r_1},{}...,{}r_dim]) allows tensors to be constructed} \\indented{1}{using lists.} \\blankline \\spad{X} \\spad{v:=}[2,{}3] \\spad{X} tv:CartesianTensor(1,{}2,{}Integer)\\spad{:=v}") (($ (|SquareMatrix| |#2| |#3|)) "\\indented{1}{coerce(\\spad{m}) views a matrix as a rank 2 tensor.} \\blankline \\spad{X} v:SquareMatrix(2,{}Integer)\\spad{:=}[[1,{}2],{}[3,{}4]] \\spad{X} tv:CartesianTensor(1,{}2,{}Integer)\\spad{:=v}") (($ (|DirectProduct| |#2| |#3|)) "\\indented{1}{coerce(\\spad{v}) views a vector as a rank 1 tensor.} \\blankline \\spad{X} v:DirectProduct(2,{}Integer):=directProduct [3,{}4] \\spad{X} tv:CartesianTensor(1,{}2,{}Integer)\\spad{:=v}"))) NIL NIL (-142) ((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which alphanumeric? is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which alphabetic? is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which lowerCase? is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which upperCase? is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which hexDigit? is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which digit? is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}."))) -((-4505 . T) (-4495 . T) (-4506 . T)) -((|HasCategory| (-145) (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| (-145) (QUOTE (-364))) (|HasCategory| (-145) (QUOTE (-834))) (|HasCategory| (-145) (QUOTE (-1082))) (-12 (|HasCategory| (-145) (LIST (QUOTE -298) (QUOTE (-145)))) (|HasCategory| (-145) (QUOTE (-1082)))) (-2318 (-12 (|HasCategory| (-145) (LIST (QUOTE -298) (QUOTE (-145)))) (|HasCategory| (-145) (QUOTE (-364)))) (-12 (|HasCategory| (-145) (LIST (QUOTE -298) (QUOTE (-145)))) (|HasCategory| (-145) (QUOTE (-1082)))))) +((-4519 . T) (-4509 . T) (-4520 . T)) +((|HasCategory| (-147) (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| (-147) (QUOTE (-370))) (|HasCategory| (-147) (QUOTE (-842))) (|HasCategory| (-147) (QUOTE (-1090))) (-12 (|HasCategory| (-147) (LIST (QUOTE -303) (QUOTE (-147)))) (|HasCategory| (-147) (QUOTE (-1090)))) (-2198 (-12 (|HasCategory| (-147) (LIST (QUOTE -303) (QUOTE (-147)))) (|HasCategory| (-147) (QUOTE (-370)))) (-12 (|HasCategory| (-147) (LIST (QUOTE -303) (QUOTE (-147)))) (|HasCategory| (-147) (QUOTE (-1090)))))) (-143 R Q A) ((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL NIL (-144) +((|constructor| (NIL "This is a low-level domain which implements matrices (two dimensional arrays) of complex double precision floating point numbers. Indexing is 0 based,{} there is no bound checking (unless provided by lower level).")) (|qnew| (($ (|Integer|) (|Integer|)) "\\indented{1}{qnew(\\spad{n},{} \\spad{m}) creates a new uninitialized \\spad{n} by \\spad{m} matrix.} \\blankline \\spad{X} t1:CDFMAT:=qnew(3,{}4)"))) +((-4519 . T) (-4520 . T)) +((|HasCategory| (-169 (-215)) (QUOTE (-1090))) (-12 (|HasCategory| (-169 (-215)) (LIST (QUOTE -303) (LIST (QUOTE -169) (QUOTE (-215))))) (|HasCategory| (-169 (-215)) (QUOTE (-1090)))) (|HasCategory| (-169 (-215)) (QUOTE (-301))) (|HasCategory| (-169 (-215)) (QUOTE (-558))) (|HasAttribute| (-169 (-215)) (QUOTE (-4521 "*"))) (|HasCategory| (-169 (-215)) (QUOTE (-172))) (|HasCategory| (-169 (-215)) (QUOTE (-365)))) +(-145) +((|constructor| (NIL "This is a low-level domain which implements vectors (one dimensional arrays) of complex double precision floating point numbers. Indexing is 0 based,{} there is no bound checking (unless provided by lower level).")) (|vector| (($ (|List| (|Complex| (|DoubleFloat|)))) "\\indented{1}{vector(\\spad{l}) converts the list \\spad{l} to a vector.} \\blankline \\spad{X} t1:List(Complex(DoubleFloat))\\spad{:=}[1+2*\\%\\spad{i},{}3+4*\\%\\spad{i},{}\\spad{-5}-6*\\%\\spad{i}] \\spad{X} t2:CDFVEC:=vector(\\spad{t1})")) (|qnew| (($ (|Integer|)) "\\indented{1}{qnew(\\spad{n}) creates a new uninitialized vector of length \\spad{n}.} \\blankline \\spad{X} t1:CDFVEC:=qnew 7"))) +((-4520 . T) (-4519 . T)) +((|HasCategory| (-169 (-215)) (QUOTE (-1090))) (|HasCategory| (-169 (-215)) (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| (-169 (-215)) (QUOTE (-842))) (-2198 (|HasCategory| (-169 (-215)) (QUOTE (-842))) (|HasCategory| (-169 (-215)) (QUOTE (-1090)))) (|HasCategory| (-568) (QUOTE (-842))) (|HasCategory| (-169 (-215)) (QUOTE (-25))) (|HasCategory| (-169 (-215)) (QUOTE (-23))) (|HasCategory| (-169 (-215)) (QUOTE (-21))) (|HasCategory| (-169 (-215)) (QUOTE (-716))) (|HasCategory| (-169 (-215)) (QUOTE (-1047))) (-12 (|HasCategory| (-169 (-215)) (QUOTE (-1002))) (|HasCategory| (-169 (-215)) (QUOTE (-1047)))) (-12 (|HasCategory| (-169 (-215)) (LIST (QUOTE -303) (LIST (QUOTE -169) (QUOTE (-215))))) (|HasCategory| (-169 (-215)) (QUOTE (-1090)))) (-2198 (-12 (|HasCategory| (-169 (-215)) (LIST (QUOTE -303) (LIST (QUOTE -169) (QUOTE (-215))))) (|HasCategory| (-169 (-215)) (QUOTE (-842)))) (-12 (|HasCategory| (-169 (-215)) (LIST (QUOTE -303) (LIST (QUOTE -169) (QUOTE (-215))))) (|HasCategory| (-169 (-215)) (QUOTE (-1090)))))) +(-146) ((|constructor| (NIL "Category for the usual combinatorial functions.")) (|permutation| (($ $ $) "\\spad{permutation(n,{} m)} returns the number of permutations of \\spad{n} objects taken \\spad{m} at a time. Note that \\spad{permutation(n,{}m) = n!/(n-m)!}.")) (|factorial| (($ $) "\\spad{factorial(n)} computes the factorial of \\spad{n} (denoted in the literature by \\spad{n!}) Note that \\spad{n! = n (n-1)! when n > 0}; also,{} \\spad{0! = 1}.")) (|binomial| (($ $ $) "\\indented{1}{binomial(\\spad{n},{}\\spad{r}) returns the \\spad{(n,{}r)} binomial coefficient} \\indented{1}{(often denoted in the literature by \\spad{C(n,{}r)}).} \\indented{1}{Note that \\spad{C(n,{}r) = n!/(r!(n-r)!)} where \\spad{n >= r >= 0}.} \\blankline \\spad{X} [binomial(5,{}\\spad{i}) for \\spad{i} in 0..5]"))) NIL NIL -(-145) +(-147) ((|constructor| (NIL "This domain provides the basic character data type.")) (|alphanumeric?| (((|Boolean|) $) "\\indented{1}{alphanumeric?(\\spad{c}) tests if \\spad{c} is either a letter or number,{}} \\indented{1}{\\spadignore{i.e.} one of 0..9,{} a..\\spad{z} or A..\\spad{Z}.} \\blankline \\spad{X} chars \\spad{:=} [char \"a\",{} char \"A\",{} char \\spad{\"X\"},{} char \\spad{\"8\"},{} char \\spad{\"+\"}] \\spad{X} [alphanumeric? \\spad{c} for \\spad{c} in chars]")) (|lowerCase?| (((|Boolean|) $) "\\indented{1}{lowerCase?(\\spad{c}) tests if \\spad{c} is an lower case letter,{}} \\indented{1}{\\spadignore{i.e.} one of a..\\spad{z}.} \\blankline \\spad{X} chars \\spad{:=} [char \"a\",{} char \"A\",{} char \\spad{\"X\"},{} char \\spad{\"8\"},{} char \\spad{\"+\"}] \\spad{X} [lowerCase? \\spad{c} for \\spad{c} in chars]")) (|upperCase?| (((|Boolean|) $) "\\indented{1}{upperCase?(\\spad{c}) tests if \\spad{c} is an upper case letter,{}} \\indented{1}{\\spadignore{i.e.} one of A..\\spad{Z}.} \\blankline \\spad{X} chars \\spad{:=} [char \"a\",{} char \"A\",{} char \\spad{\"X\"},{} char \\spad{\"8\"},{} char \\spad{\"+\"}] \\spad{X} [upperCase? \\spad{c} for \\spad{c} in chars]")) (|alphabetic?| (((|Boolean|) $) "\\indented{1}{alphabetic?(\\spad{c}) tests if \\spad{c} is a letter,{}} \\indented{1}{\\spadignore{i.e.} one of a..\\spad{z} or A..\\spad{Z}.} \\blankline \\spad{X} chars \\spad{:=} [char \"a\",{} char \"A\",{} char \\spad{\"X\"},{} char \\spad{\"8\"},{} char \\spad{\"+\"}] \\spad{X} [alphabetic? \\spad{c} for \\spad{c} in chars]")) (|hexDigit?| (((|Boolean|) $) "\\indented{1}{hexDigit?(\\spad{c}) tests if \\spad{c} is a hexadecimal numeral,{}} \\indented{1}{\\spadignore{i.e.} one of 0..9,{} a..\\spad{f} or A..\\spad{F}.} \\blankline \\spad{X} chars \\spad{:=} [char \"a\",{} char \"A\",{} char \\spad{\"X\"},{} char \\spad{\"8\"},{} char \\spad{\"+\"}] \\spad{X} [hexDigit? \\spad{c} for \\spad{c} in chars]")) (|digit?| (((|Boolean|) $) "\\indented{1}{digit?(\\spad{c}) tests if \\spad{c} is a digit character,{}} \\indented{1}{\\spadignore{i.e.} one of 0..9.} \\blankline \\spad{X} chars \\spad{:=} [char \"a\",{} char \"A\",{} char \\spad{\"X\"},{} char \\spad{\"8\"},{} char \\spad{\"+\"}] \\spad{X} [digit? \\spad{c} for \\spad{c} in chars]")) (|lowerCase| (($ $) "\\indented{1}{lowerCase(\\spad{c}) converts an upper case letter to the corresponding} \\indented{1}{lower case letter.\\space{2}If \\spad{c} is not an upper case letter,{} then} \\indented{1}{it is returned unchanged.} \\blankline \\spad{X} chars \\spad{:=} [char \"a\",{} char \"A\",{} char \\spad{\"X\"},{} char \\spad{\"8\"},{} char \\spad{\"+\"}] \\spad{X} [lowerCase \\spad{c} for \\spad{c} in chars]")) (|upperCase| (($ $) "\\indented{1}{upperCase(\\spad{c}) converts a lower case letter to the corresponding} \\indented{1}{upper case letter.\\space{2}If \\spad{c} is not a lower case letter,{} then} \\indented{1}{it is returned unchanged.} \\blankline \\spad{X} chars \\spad{:=} [char \"a\",{} char \"A\",{} char \\spad{\"X\"},{} char \\spad{\"8\"},{} char \\spad{\"+\"}] \\spad{X} [upperCase \\spad{c} for \\spad{c} in chars]")) (|escape| (($) "\\indented{1}{escape() provides the escape character,{} \\spad{_},{} which} \\indented{1}{is used to allow quotes and other characters within} \\indented{1}{strings.} \\blankline \\spad{X} escape()")) (|quote| (($) "\\indented{1}{quote() provides the string quote character,{} \\spad{\"}.} \\blankline \\spad{X} quote()")) (|space| (($) "\\indented{1}{space() provides the blank character.} \\blankline \\spad{X} space()")) (|char| (($ (|String|)) "\\indented{1}{char(\\spad{s}) provides a character from a string \\spad{s} of length one.} \\blankline \\spad{X} [char \\spad{c} for \\spad{c} in [\"a\",{}\"A\",{}\\spad{\"X\"},{}\\spad{\"8\"},{}\\spad{\"+\"}]]") (($ (|Integer|)) "\\indented{1}{char(\\spad{i}) provides a character corresponding to the integer} \\indented{1}{code \\spad{i}. It is always \\spad{true} that \\spad{ord char i = i}.} \\blankline \\spad{X} [char \\spad{c} for \\spad{c} in [97,{}65,{}88,{}56,{}43]]")) (|ord| (((|Integer|) $) "\\indented{1}{ord(\\spad{c}) provides an integral code corresponding to the} \\indented{1}{character \\spad{c}.\\space{2}It is always \\spad{true} that \\spad{char ord c = c}.} \\blankline \\spad{X} chars \\spad{:=} [char \"a\",{} char \"A\",{} char \\spad{\"X\"},{} char \\spad{\"8\"},{} char \\spad{\"+\"}] \\spad{X} [ord \\spad{c} for \\spad{c} in chars]"))) NIL NIL -(-146) +(-148) ((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring."))) -((-4502 . T)) +((-4516 . T)) NIL -(-147 R) +(-149 R) ((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,{}r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial \\spad{'x},{} then it returns the characteristic polynomial expressed as a polynomial in \\spad{'x}."))) NIL NIL -(-148) +(-150) ((|constructor| (NIL "Rings of Characteristic Zero."))) -((-4502 . T)) +((-4516 . T)) NIL -(-149 -1333 UP UPUP) +(-151 -1478 UP UPUP) ((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,{}y),{} p(x,{}y))} returns \\spad{[g(z,{}t),{} q(z,{}t),{} c1(z),{} c2(z),{} n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,{}y) = g(z,{}t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z,{} t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,{}y),{} f(x),{} g(x))} returns \\spad{p(f(x),{} y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p,{} q)} returns an integer a such that a is neither a pole of \\spad{p(x,{}y)} nor a branch point of \\spad{q(x,{}y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g,{} n)} returns \\spad{[m,{} c,{} P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x,{} y))} returns \\spad{[c(x),{} n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,{}y))} returns \\spad{[c(x),{} q(x,{}z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x,{} z) = 0}."))) NIL NIL -(-150 R CR) +(-152 R CR) ((|constructor| (NIL "This package provides the generalized euclidean algorithm which is needed as the basic step for factoring polynomials.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} where (\\spad{fi} relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g} = sum \\spad{ai} prod \\spad{fj} (\\spad{j} \\spad{\\=} \\spad{i}) or equivalently g/prod \\spad{fj} = sum (ai/fi) or returns \"failed\" if no such list exists"))) NIL NIL -(-151 A S) +(-153 A S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note that \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note that \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{^=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note that \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\indented{1}{reduce(\\spad{f},{}\\spad{u}) reduces the binary operation \\spad{f} across \\spad{u}. For example,{}} \\indented{1}{if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})}} \\indented{1}{returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}.} \\indented{1}{Note that if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}.} \\indented{1}{Error: if \\spad{u} is empty.} \\blankline \\spad{C} )clear all \\spad{X} reduce(+,{}[\\spad{C}[\\spad{i}]*x**i for \\spad{i} in 1..5])")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| |#2| (QUOTE (-1082))) (|HasAttribute| |#1| (QUOTE -4505))) -(-152 S) +((|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| |#2| (QUOTE (-1090))) (|HasAttribute| |#1| (QUOTE -4519))) +(-154 S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note that \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note that \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{^=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note that \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\indented{1}{reduce(\\spad{f},{}\\spad{u}) reduces the binary operation \\spad{f} across \\spad{u}. For example,{}} \\indented{1}{if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})}} \\indented{1}{returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}.} \\indented{1}{Note that if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}.} \\indented{1}{Error: if \\spad{u} is empty.} \\blankline \\spad{C} )clear all \\spad{X} reduce(+,{}[\\spad{C}[\\spad{i}]*x**i for \\spad{i} in 1..5])")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) -((-2537 . T)) +((-3973 . T)) NIL -(-153 |n| K Q) +(-155 |n| K Q) ((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then 1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]} (\\spad{1<=i1= r >= 0}.} \\indented{1}{This is the number of combinations of \\spad{n} objects taken \\spad{r} at a time.} \\blankline \\spad{X} [binomial(5,{}\\spad{i}) for \\spad{i} in 0..5]"))) NIL NIL -(-159) +(-161) ((|constructor| (NIL "CombinatorialOpsCategory is the category obtaining by adjoining summations and products to the usual combinatorial operations.")) (|product| (($ $ (|SegmentBinding| $)) "\\spad{product(f(n),{} n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") (($ $ (|Symbol|)) "\\spad{product(f(n),{} n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| (($ $ (|SegmentBinding| $)) "\\spad{summation(f(n),{} n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") (($ $ (|Symbol|)) "\\spad{summation(f(n),{} n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| (($ $ (|Symbol|)) "\\spad{factorials(f,{} x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") (($ $) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials."))) NIL NIL -(-160) +(-162) ((|constructor| (NIL "A type for basic commutators")) (|mkcomm| (($ $ $) "\\spad{mkcomm(i,{}j)} is not documented") (($ (|Integer|)) "\\spad{mkcomm(i)} is not documented"))) NIL NIL -(-161) +(-163) ((|constructor| (NIL "This package exports the elementary operators,{} with some semantics already attached to them. The semantics that is attached here is not dependent on the set in which the operators will be applied.")) (|operator| (((|BasicOperator|) (|Symbol|)) "\\spad{operator(s)} returns an operator with name \\spad{s},{} with the appropriate semantics if \\spad{s} is known. If \\spad{s} is not known,{} the result has no semantics."))) NIL NIL -(-162 R UP UPUP) +(-164 R UP UPUP) ((|constructor| (NIL "A package for swapping the order of two variables in a tower of two UnivariatePolynomialCategory extensions.")) (|swap| ((|#3| |#3|) "\\spad{swap(p(x,{}y))} returns \\spad{p}(\\spad{y},{}\\spad{x})."))) NIL NIL -(-163 S R) +(-165 S R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) NIL -((|HasCategory| |#2| (QUOTE (-896))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-994))) (|HasCategory| |#2| (QUOTE (-1173))) (|HasCategory| |#2| (QUOTE (-1048))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| |#2| (QUOTE (-359))) (|HasAttribute| |#2| (QUOTE -4501)) (|HasAttribute| |#2| (QUOTE -4504)) (|HasCategory| |#2| (QUOTE (-296))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-834)))) -(-164 R) +((|HasCategory| |#2| (QUOTE (-904))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-1002))) (|HasCategory| |#2| (QUOTE (-1181))) (|HasCategory| |#2| (QUOTE (-1056))) (|HasCategory| |#2| (QUOTE (-1021))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-150))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4515)) (|HasAttribute| |#2| (QUOTE -4518)) (|HasCategory| |#2| (QUOTE (-301))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-842)))) +(-166 R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) -((-4498 -2318 (|has| |#1| (-550)) (-12 (|has| |#1| (-296)) (|has| |#1| (-896)))) (-4503 |has| |#1| (-359)) (-4497 |has| |#1| (-359)) (-4501 |has| |#1| (-6 -4501)) (-4504 |has| |#1| (-6 -4504)) (-2556 . T) (-2537 . T) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) +((-4512 -2198 (|has| |#1| (-558)) (-12 (|has| |#1| (-301)) (|has| |#1| (-904)))) (-4517 |has| |#1| (-365)) (-4511 |has| |#1| (-365)) (-4515 |has| |#1| (-6 -4515)) (-4518 |has| |#1| (-6 -4518)) (-4003 . T) (-3973 . T) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) NIL -(-165 RR PR) +(-167 RR PR) ((|constructor| (NIL "This package has no description")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients."))) NIL NIL -(-166 R S) +(-168 R S) ((|constructor| (NIL "This package extends maps from underlying rings to maps between complex over those rings.")) (|map| (((|Complex| |#2|) (|Mapping| |#2| |#1|) (|Complex| |#1|)) "\\spad{map(f,{}u)} maps \\spad{f} onto real and imaginary parts of \\spad{u}."))) NIL NIL -(-167 R) +(-169 R) ((|constructor| (NIL "\\spadtype{Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}."))) -((-4498 -2318 (|has| |#1| (-550)) (-12 (|has| |#1| (-296)) (|has| |#1| (-896)))) (-4503 |has| |#1| (-359)) (-4497 |has| |#1| (-359)) (-4501 |has| |#1| (-6 -4501)) (-4504 |has| |#1| (-6 -4504)) (-2556 . T) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-359))) (-2318 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-364))) (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1029) (QUOTE (-560)))) (-2318 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-1173))) (-12 (|HasCategory| |#1| (QUOTE (-994))) (|HasCategory| |#1| (QUOTE (-1173)))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-834))) (|HasCategory| |#1| (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-375))))) (|HasCategory| |#1| (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -873) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -873) (QUOTE (-375)))) (|HasCategory| |#1| (LIST (QUOTE -515) (QUOTE (-1153)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -276) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#1| (QUOTE (-1048))) (-12 (|HasCategory| |#1| (QUOTE (-1048))) (|HasCategory| |#1| (QUOTE (-1173)))) (|HasCategory| |#1| (QUOTE (-542))) (-2318 (|HasCategory| |#1| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-359)))) (|HasCategory| |#1| (QUOTE (-296))) (-2318 (|HasCategory| |#1| (QUOTE (-296))) (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-550)))) (-2318 (|HasCategory| |#1| (QUOTE (-296))) (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-896))) (|HasCategory| |#1| (QUOTE (-221))) (-2318 (-12 (|HasCategory| |#1| (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-375))))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -276) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -515) (QUOTE (-1153)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -873) (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -873) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-221))) (-12 (|HasCategory| |#1| (QUOTE (-296))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-364)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-815)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-834)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-1013)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-1173))))) (-12 (|HasCategory| |#1| (QUOTE (-296))) (|HasCategory| |#1| (QUOTE (-896)))) (-2318 (-12 (|HasCategory| |#1| (QUOTE (-296))) (|HasCategory| |#1| (QUOTE (-896)))) (|HasCategory| |#1| (QUOTE (-359))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-896))))) (-2318 (-12 (|HasCategory| |#1| (QUOTE (-296))) (|HasCategory| |#1| (QUOTE (-896)))) (-12 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-896)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-896))))) (-2318 (-12 (|HasCategory| |#1| (QUOTE (-296))) (|HasCategory| |#1| (QUOTE (-896)))) (|HasCategory| |#1| (QUOTE (-359)))) (-2318 (-12 (|HasCategory| |#1| (QUOTE (-296))) (|HasCategory| |#1| (QUOTE (-896)))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasAttribute| |#1| (QUOTE -4501)) (|HasAttribute| |#1| (QUOTE -4504)) (-12 (|HasCategory| |#1| (QUOTE (-221))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#1| (QUOTE (-359)))) (-2318 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-296))) (|HasCategory| |#1| (QUOTE (-896)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2318 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-296))) (|HasCategory| |#1| (QUOTE (-896)))) (|HasCategory| |#1| (QUOTE (-344))))) -(-168 R S CS) +((-4512 -2198 (|has| |#1| (-558)) (-12 (|has| |#1| (-301)) (|has| |#1| (-904)))) (-4517 |has| |#1| (-365)) (-4511 |has| |#1| (-365)) (-4515 |has| |#1| (-6 -4515)) (-4518 |has| |#1| (-6 -4518)) (-4003 . T) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) +((|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-150))) (|HasCategory| |#1| (QUOTE (-350))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-365))) (-2198 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-350)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#1| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#1| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (LIST (QUOTE -1037) (QUOTE (-568)))) (-2198 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-1181))) (-12 (|HasCategory| |#1| (QUOTE (-1002))) (|HasCategory| |#1| (QUOTE (-1181)))) (|HasCategory| |#1| (QUOTE (-1021))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-568))))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-568)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -523) (QUOTE (-1161)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -281) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1056))) (-12 (|HasCategory| |#1| (QUOTE (-1056))) (|HasCategory| |#1| (QUOTE (-1181)))) (|HasCategory| |#1| (QUOTE (-550))) (-2198 (|HasCategory| |#1| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-301))) (-2198 (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-350))) (|HasCategory| |#1| (QUOTE (-558)))) (-2198 (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-350)))) (|HasCategory| |#1| (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-225))) (-2198 (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-350)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-568))))) (|HasCategory| |#1| (QUOTE (-350)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-350)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -281) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-350)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-350)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -523) (QUOTE (-1161)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-350)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-350)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#1| (QUOTE (-350)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-350)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-350)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (QUOTE (-350)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-350)))) (-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-350)))) (-12 (|HasCategory| |#1| (QUOTE (-150))) (|HasCategory| |#1| (QUOTE (-350)))) (|HasCategory| |#1| (QUOTE (-225))) (-12 (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-350)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-350)))) (-12 (|HasCategory| |#1| (QUOTE (-350))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| |#1| (QUOTE (-350))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| |#1| (QUOTE (-350))) (|HasCategory| |#1| (QUOTE (-823)))) (-12 (|HasCategory| |#1| (QUOTE (-350))) (|HasCategory| |#1| (QUOTE (-842)))) (-12 (|HasCategory| |#1| (QUOTE (-350))) (|HasCategory| |#1| (QUOTE (-1021)))) (-12 (|HasCategory| |#1| (QUOTE (-350))) (|HasCategory| |#1| (QUOTE (-1181))))) (-12 (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-904)))) (-2198 (-12 (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| |#1| (QUOTE (-350))) (|HasCategory| |#1| (QUOTE (-904))))) (-2198 (-12 (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-904)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-904)))) (-12 (|HasCategory| |#1| (QUOTE (-350))) (|HasCategory| |#1| (QUOTE (-904))))) (-2198 (-12 (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-365)))) (-2198 (-12 (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasAttribute| |#1| (QUOTE -4515)) (|HasAttribute| |#1| (QUOTE -4518)) (-12 (|HasCategory| |#1| (QUOTE (-225))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#1| (QUOTE (-365)))) (-2198 (-12 (|HasCategory| $ (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2198 (-12 (|HasCategory| $ (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-350))))) +(-170 R S CS) ((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern"))) NIL NIL -(-169) +(-171) ((|constructor| (NIL "This domain implements some global properties of subspaces.")) (|copy| (($ $) "\\spad{copy(x)} is not documented")) (|solid| (((|Boolean|) $ (|Boolean|)) "\\spad{solid(x,{}b)} is not documented")) (|close| (((|Boolean|) $ (|Boolean|)) "\\spad{close(x,{}b)} is not documented")) (|solid?| (((|Boolean|) $) "\\spad{solid?(x)} is not documented")) (|closed?| (((|Boolean|) $) "\\spad{closed?(x)} is not documented")) (|new| (($) "\\spad{new()} is not documented"))) NIL NIL -(-170) +(-172) ((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity element.")) (|commutative| ((|attribute| "*") "multiplication is commutative."))) -(((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) +(((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) NIL -(-171 R) +(-173 R) ((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general continued fractions. This version is not restricted to simple,{} finite fractions and uses the \\spadtype{Stream} as a representation. The arithmetic functions assume that the approximants alternate below/above the convergence point. This is enforced by ensuring the partial numerators and partial denominators are greater than 0 in the Euclidean domain view of \\spad{R} (\\spadignore{i.e.} \\spad{sizeLess?(0,{} x)}).")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialQuotients(x) = [b0,{}b1,{}b2,{}b3,{}...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialDenominators(x) = [b1,{}b2,{}b3,{}...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialNumerators(x) = [a1,{}a2,{}a3,{}...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,{}b)} constructs a continued fraction in the following way: if \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,{}a,{}b)} constructs a continued fraction in the following way: if \\spad{a = [a1,{}a2,{}...]} and \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}."))) -(((-4507 "*") . T) (-4498 . T) (-4503 . T) (-4497 . T) (-4499 . T) (-4500 . T) (-4502 . T)) +(((-4521 "*") . T) (-4512 . T) (-4517 . T) (-4511 . T) (-4513 . T) (-4514 . T) (-4516 . T)) NIL -(-172 R) +(-174 R) ((|constructor| (NIL "CoordinateSystems provides coordinate transformation functions for plotting. Functions in this package return conversion functions which take points expressed in other coordinate systems and return points with the corresponding Cartesian coordinates.")) (|conical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1| |#1|) "\\spad{conical(a,{}b)} transforms from conical coordinates to Cartesian coordinates: \\spad{conical(a,{}b)} is a function which will map the point \\spad{(lambda,{}mu,{}nu)} to \\spad{x = lambda*mu*nu/(a*b)},{} \\spad{y = lambda/a*sqrt((mu**2-a**2)*(nu**2-a**2)/(a**2-b**2))},{} \\spad{z = lambda/b*sqrt((mu**2-b**2)*(nu**2-b**2)/(b**2-a**2))}.")) (|toroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{toroidal(a)} transforms from toroidal coordinates to Cartesian coordinates: \\spad{toroidal(a)} is a function which will map the point \\spad{(u,{}v,{}phi)} to \\spad{x = a*sinh(v)*cos(phi)/(cosh(v)-cos(u))},{} \\spad{y = a*sinh(v)*sin(phi)/(cosh(v)-cos(u))},{} \\spad{z = a*sin(u)/(cosh(v)-cos(u))}.")) (|bipolarCylindrical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{bipolarCylindrical(a)} transforms from bipolar cylindrical coordinates to Cartesian coordinates: \\spad{bipolarCylindrical(a)} is a function which will map the point \\spad{(u,{}v,{}z)} to \\spad{x = a*sinh(v)/(cosh(v)-cos(u))},{} \\spad{y = a*sin(u)/(cosh(v)-cos(u))},{} \\spad{z}.")) (|bipolar| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{bipolar(a)} transforms from bipolar coordinates to Cartesian coordinates: \\spad{bipolar(a)} is a function which will map the point \\spad{(u,{}v)} to \\spad{x = a*sinh(v)/(cosh(v)-cos(u))},{} \\spad{y = a*sin(u)/(cosh(v)-cos(u))}.")) (|oblateSpheroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{oblateSpheroidal(a)} transforms from oblate spheroidal coordinates to Cartesian coordinates: \\spad{oblateSpheroidal(a)} is a function which will map the point \\spad{(\\spad{xi},{}eta,{}phi)} to \\spad{x = a*sinh(\\spad{xi})*sin(eta)*cos(phi)},{} \\spad{y = a*sinh(\\spad{xi})*sin(eta)*sin(phi)},{} \\spad{z = a*cosh(\\spad{xi})*cos(eta)}.")) (|prolateSpheroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{prolateSpheroidal(a)} transforms from prolate spheroidal coordinates to Cartesian coordinates: \\spad{prolateSpheroidal(a)} is a function which will map the point \\spad{(\\spad{xi},{}eta,{}phi)} to \\spad{x = a*sinh(\\spad{xi})*sin(eta)*cos(phi)},{} \\spad{y = a*sinh(\\spad{xi})*sin(eta)*sin(phi)},{} \\spad{z = a*cosh(\\spad{xi})*cos(eta)}.")) (|ellipticCylindrical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{ellipticCylindrical(a)} transforms from elliptic cylindrical coordinates to Cartesian coordinates: \\spad{ellipticCylindrical(a)} is a function which will map the point \\spad{(u,{}v,{}z)} to \\spad{x = a*cosh(u)*cos(v)},{} \\spad{y = a*sinh(u)*sin(v)},{} \\spad{z}.")) (|elliptic| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{elliptic(a)} transforms from elliptic coordinates to Cartesian coordinates: \\spad{elliptic(a)} is a function which will map the point \\spad{(u,{}v)} to \\spad{x = a*cosh(u)*cos(v)},{} \\spad{y = a*sinh(u)*sin(v)}.")) (|paraboloidal| (((|Point| |#1|) (|Point| |#1|)) "\\spad{paraboloidal(pt)} transforms \\spad{pt} from paraboloidal coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,{}v,{}phi)} to \\spad{x = u*v*cos(phi)},{} \\spad{y = u*v*sin(phi)},{} \\spad{z = 1/2 * (u**2 - v**2)}.")) (|parabolicCylindrical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{parabolicCylindrical(pt)} transforms \\spad{pt} from parabolic cylindrical coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,{}v,{}z)} to \\spad{x = 1/2*(u**2 - v**2)},{} \\spad{y = u*v},{} \\spad{z}.")) (|parabolic| (((|Point| |#1|) (|Point| |#1|)) "\\spad{parabolic(pt)} transforms \\spad{pt} from parabolic coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,{}v)} to \\spad{x = 1/2*(u**2 - v**2)},{} \\spad{y = u*v}.")) (|spherical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{spherical(pt)} transforms \\spad{pt} from spherical coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,{}theta,{}phi)} to \\spad{x = r*sin(phi)*cos(theta)},{} \\spad{y = r*sin(phi)*sin(theta)},{} \\spad{z = r*cos(phi)}.")) (|cylindrical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{cylindrical(pt)} transforms \\spad{pt} from polar coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,{}theta,{}z)} to \\spad{x = r * cos(theta)},{} \\spad{y = r * sin(theta)},{} \\spad{z}.")) (|polar| (((|Point| |#1|) (|Point| |#1|)) "\\spad{polar(pt)} transforms \\spad{pt} from polar coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,{}theta)} to \\spad{x = r * cos(theta)} ,{} \\spad{y = r * sin(theta)}.")) (|cartesian| (((|Point| |#1|) (|Point| |#1|)) "\\spad{cartesian(pt)} returns the Cartesian coordinates of point \\spad{pt}."))) NIL NIL -(-173 R |PolR| E) +(-175 R |PolR| E) ((|constructor| (NIL "This package implements characteristicPolynomials for monogenic algebras using resultants")) (|characteristicPolynomial| ((|#2| |#3|) "\\spad{characteristicPolynomial(e)} returns the characteristic polynomial of \\spad{e} using resultants"))) NIL NIL -(-174 R S CS) +(-176 R S CS) ((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr,{} pat,{} res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL -((|HasCategory| (-945 |#2|) (LIST (QUOTE -873) (|devaluate| |#1|)))) -(-175 R) +((|HasCategory| (-953 |#2|) (LIST (QUOTE -881) (|devaluate| |#1|)))) +(-177 R) ((|constructor| (NIL "This package has no documentation")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,{}r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,{}lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,{}lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)\\spad{*lm}(2)*...\\spad{*lm}(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,{}l)} \\undocumented{}"))) NIL NIL -(-176 R UP) +(-178 R UP) ((|constructor| (NIL "\\spadtype{ComplexRootFindingPackage} provides functions to find all roots of a polynomial \\spad{p} over the complex number by using Plesken\\spad{'s} idea to calculate in the polynomial ring modulo \\spad{f} and employing the Chinese Remainder Theorem. In this first version,{} the precision (see digits) is not increased when this is necessary to avoid rounding errors. Hence it is the user\\spad{'s} responsibility to increase the precision if necessary. Note also,{} if this package is called with \\spadignore{e.g.} \\spadtype{Fraction Integer},{} the precise calculations could require a lot of time. Also note that evaluating the zeros is not necessarily a good check whether the result is correct: already evaluation can cause rounding errors.")) (|startPolynomial| (((|Record| (|:| |start| |#2|) (|:| |factors| (|Factored| |#2|))) |#2|) "\\spad{startPolynomial(p)} uses the ideas of Schoenhage\\spad{'s} variant of Graeffe\\spad{'s} method to construct circles which separate roots to get a good start polynomial,{} \\spadignore{i.e.} one whose image under the Chinese Remainder Isomorphism has both entries of norm smaller and greater or equal to 1. In case the roots are found during internal calculations. The corresponding factors are in factors which are otherwise 1.")) (|setErrorBound| ((|#1| |#1|) "\\spad{setErrorBound(eps)} changes the internal error bound,{} by default being 10 \\spad{**} (\\spad{-3}) to \\spad{eps},{} if \\spad{R} is a member in the category \\spadtype{QuotientFieldCategory Integer}. The internal globalDigits is set to \\em ceiling(1/r)\\spad{**2*10} being 10**7 by default.")) (|schwerpunkt| (((|Complex| |#1|) |#2|) "\\spad{schwerpunkt(p)} determines the 'Schwerpunkt' of the roots of the polynomial \\spad{p} of degree \\spad{n},{} \\spadignore{i.e.} the center of gravity,{} which is coeffient of \\spad{x**(n-1)} divided by \\spad{n} times coefficient of \\spad{x**n}.")) (|rootRadius| ((|#1| |#2|) "\\spad{rootRadius(p)} calculates the root radius of \\spad{p} with a maximal error quotient of 1+globalEps,{} where globalEps is the internal error bound,{} which can be set by setErrorBound.") ((|#1| |#2| |#1|) "\\spad{rootRadius(p,{}errQuot)} calculates the root radius of \\spad{p} with a maximal error quotient of \\spad{errQuot}.")) (|reciprocalPolynomial| ((|#2| |#2|) "\\spad{reciprocalPolynomial(p)} calulates a polynomial which has exactly the inverses of the non-zero roots of \\spad{p} as roots,{} and the same number of 0-roots.")) (|pleskenSplit| (((|Factored| |#2|) |#2| |#1|) "\\spad{pleskenSplit(poly,{} eps)} determines a start polynomial start by using \"startPolynomial then it increases the exponent \\spad{n} of start \\spad{**} \\spad{n} mod \\spad{poly} to get an approximate factor of \\spad{poly},{} in general of degree \"degree \\spad{poly} \\spad{-1\"}. Then a divisor cascade is calculated and the best splitting is chosen,{} as soon as the error is small enough.") (((|Factored| |#2|) |#2| |#1| (|Boolean|)) "\\spad{pleskenSplit(poly,{}eps,{}info)} determines a start polynomial start by using \"startPolynomial then it increases the exponent \\spad{n} of start \\spad{**} \\spad{n} mod \\spad{poly} to get an approximate factor of \\spad{poly},{} in general of degree \"degree \\spad{poly} \\spad{-1\"}. Then a divisor cascade is calculated and the best splitting is chosen,{} as soon as the error is small enough. If \\spad{info} is \\spad{true},{} then information messages are issued.")) (|norm| ((|#1| |#2|) "\\spad{norm(p)} determines sum of absolute values of coefficients Note that this function depends on abs.")) (|graeffe| ((|#2| |#2|) "\\spad{graeffe p} determines \\spad{q} such that \\spad{q(-z**2) = p(z)*p(-z)}. Note that the roots of \\spad{q} are the squares of the roots of \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} tries to factor \\spad{p} into linear factors with error atmost globalEps,{} the internal error bound,{} which can be set by setErrorBound. An overall error bound \\spad{eps0} is determined and iterated tree-like calls to pleskenSplit are used to get the factorization.") (((|Factored| |#2|) |#2| |#1|) "\\spad{factor(p,{} eps)} tries to factor \\spad{p} into linear factors with error atmost eps. An overall error bound \\spad{eps0} is determined and iterated tree-like calls to pleskenSplit are used to get the factorization.") (((|Factored| |#2|) |#2| |#1| (|Boolean|)) "\\spad{factor(p,{} eps,{} info)} tries to factor \\spad{p} into linear factors with error atmost \\spad{eps}. An overall error bound \\spad{eps0} is determined and iterated tree-like calls to pleskenSplit are used to get the factorization. If info is \\spad{true},{} then information messages are given.")) (|divisorCascade| (((|List| (|Record| (|:| |factors| (|List| |#2|)) (|:| |error| |#1|))) |#2| |#2|) "\\spad{divisorCascade(p,{}tp)} assumes that degree of polynomial \\spad{tp} is smaller than degree of polynomial \\spad{p},{} both monic. A sequence of divisions is calculated using the remainder,{} made monic,{} as divisor for the the next division. The result contains also the error of the factorizations,{} \\spadignore{i.e.} the norm of the remainder polynomial.") (((|List| (|Record| (|:| |factors| (|List| |#2|)) (|:| |error| |#1|))) |#2| |#2| (|Boolean|)) "\\spad{divisorCascade(p,{}tp)} assumes that degree of polynomial \\spad{tp} is smaller than degree of polynomial \\spad{p},{} both monic. A sequence of divisions are calculated using the remainder,{} made monic,{} as divisor for the the next division. The result contains also the error of the factorizations,{} \\spadignore{i.e.} the norm of the remainder polynomial. If info is \\spad{true},{} then information messages are issued.")) (|complexZeros| (((|List| (|Complex| |#1|)) |#2| |#1|) "\\spad{complexZeros(p,{} eps)} tries to determine all complex zeros of the polynomial \\spad{p} with accuracy given by eps.") (((|List| (|Complex| |#1|)) |#2|) "\\spad{complexZeros(p)} tries to determine all complex zeros of the polynomial \\spad{p} with accuracy given by the package constant globalEps which you may change by setErrorBound."))) NIL NIL -(-177 S ST) +(-179 S ST) ((|constructor| (NIL "This package provides tools for working with cyclic streams.")) (|computeCycleEntry| ((|#2| |#2| |#2|) "\\indented{1}{computeCycleEntry(\\spad{x},{}cycElt),{} where cycElt is a pointer to a} \\indented{1}{node in the cyclic part of the cyclic stream \\spad{x},{} returns a} \\indented{1}{pointer to the first node in the cycle} \\blankline \\spad{X} p:=repeating([1,{}2,{}3]) \\spad{X} q:=cons(4,{}\\spad{p}) \\spad{X} computeCycleEntry(\\spad{q},{}cycleElt(\\spad{q}))")) (|computeCycleLength| (((|NonNegativeInteger|) |#2|) "\\indented{1}{computeCycleLength(\\spad{s}) returns the length of the cycle of a} \\indented{1}{cyclic stream \\spad{t},{} where \\spad{s} is a pointer to a node in the} \\indented{1}{cyclic part of \\spad{t}.} \\blankline \\spad{X} p:=repeating([1,{}2,{}3]) \\spad{X} q:=cons(4,{}\\spad{p}) \\spad{X} computeCycleLength(cycleElt(\\spad{q}))")) (|cycleElt| (((|Union| |#2| "failed") |#2|) "\\indented{1}{cycleElt(\\spad{s}) returns a pointer to a node in the cycle if the stream} \\indented{1}{\\spad{s} is cyclic and returns \"failed\" if \\spad{s} is not cyclic} \\blankline \\spad{X} p:=repeating([1,{}2,{}3]) \\spad{X} q:=cons(4,{}\\spad{p}) \\spad{X} cycleElt \\spad{q} \\spad{X} \\spad{r:=}[1,{}2,{}3]::Stream(Integer) \\spad{X} cycleElt \\spad{r}"))) NIL NIL -(-178 R -1333) +(-180 R -1478) ((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL -(-179 R) +(-181 R) ((|constructor| (NIL "CoerceVectorMatrixPackage is an unexposed,{} technical package for data conversions")) (|coerce| (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Vector| (|Matrix| |#1|))) "\\spad{coerce(v)} coerces a vector \\spad{v} with entries in \\spadtype{Matrix R} as vector over \\spadtype{Matrix Fraction Polynomial R}")) (|coerceP| (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|Vector| (|Matrix| |#1|))) "\\spad{coerceP(v)} coerces a vector \\spad{v} with entries in \\spadtype{Matrix R} as vector over \\spadtype{Matrix Polynomial R}"))) NIL NIL -(-180) +(-182) ((|constructor| (NIL "Polya-Redfield enumeration by cycle indices.")) (|skewSFunction| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{skewSFunction(li1,{}li2)} is the \\spad{S}-function \\indented{1}{of the partition difference \\spad{li1 - li2}} \\indented{1}{expressed in terms of power sum symmetric functions.}")) (|SFunction| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|List| (|Integer|))) "\\spad{SFunction(\\spad{li})} is the \\spad{S}-function of the partition \\spad{\\spad{li}} \\indented{1}{expressed in terms of power sum symmetric functions.}")) (|wreath| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{wreath(s1,{}s2)} is the cycle index of the wreath product \\indented{1}{of the two groups whose cycle indices are \\spad{s1} and} \\indented{1}{\\spad{s2}.}")) (|eval| (((|Fraction| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval s} is the sum of the coefficients of a cycle index.")) (|cup| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{cup(s1,{}s2)},{} introduced by Redfield,{} \\indented{1}{is the scalar product of two cycle indices,{} in which the} \\indented{1}{power sums are retained to produce a cycle index.}")) (|cap| (((|Fraction| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{cap(s1,{}s2)},{} introduced by Redfield,{} \\indented{1}{is the scalar product of two cycle indices.}")) (|graphs| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{graphs n} is the cycle index of the group induced on \\indented{1}{the edges of a graph by applying the symmetric function to the} \\indented{1}{\\spad{n} nodes.}")) (|dihedral| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{dihedral n} is the cycle index of the \\indented{1}{dihedral group of degree \\spad{n}.}")) (|cyclic| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{cyclic n} is the cycle index of the \\indented{1}{cyclic group of degree \\spad{n}.}")) (|alternating| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{alternating n} is the cycle index of the \\indented{1}{alternating group of degree \\spad{n}.}")) (|elementary| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{elementary n} is the \\spad{n} th elementary symmetric \\indented{1}{function expressed in terms of power sums.}")) (|powerSum| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{powerSum n} is the \\spad{n} th power sum symmetric \\indented{1}{function.}")) (|complete| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{complete n} is the \\spad{n} th complete homogeneous \\indented{1}{symmetric function expressed in terms of power sums.} \\indented{1}{Alternatively it is the cycle index of the symmetric} \\indented{1}{group of degree \\spad{n}.}"))) NIL NIL -(-181) +(-183) ((|constructor| (NIL "This package has no description")) (|cyclotomicFactorization| (((|Factored| (|SparseUnivariatePolynomial| (|Integer|))) (|Integer|)) "\\spad{cyclotomicFactorization(n)} \\undocumented{}")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} \\undocumented{}")) (|cyclotomicDecomposition| (((|List| (|SparseUnivariatePolynomial| (|Integer|))) (|Integer|)) "\\spad{cyclotomicDecomposition(n)} \\undocumented{}"))) NIL NIL -(-182) +(-184) ((|constructor| (NIL "\\axiomType{d01AgentsPackage} is a package of numerical agents to be used to investigate attributes of an input function so as to decide the \\axiomFun{measure} of an appropriate numerical integration routine. It contains functions \\axiomFun{rangeIsFinite} to test the input range and \\axiomFun{functionIsContinuousAtEndPoints} to check for continuity at the end points of the range.")) (|changeName| (((|Result|) (|Symbol|) (|Symbol|) (|Result|)) "\\spad{changeName(s,{}t,{}r)} changes the name of item \\axiom{\\spad{s}} in \\axiom{\\spad{r}} to \\axiom{\\spad{t}}.")) (|commaSeparate| (((|String|) (|List| (|String|))) "\\spad{commaSeparate(l)} produces a comma separated string from a list of strings.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{singularitiesOf(args)} returns a list of potential singularities of the function within the given range")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,{}var,{}range)} returns a list of possible problem points by looking at the zeros of the denominator of the function if it can be retracted to \\axiomType{Polynomial DoubleFloat}.")) (|functionIsOscillatory| (((|Float|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsOscillatory(a)} tests whether the function \\spad{a.fn} has many zeros of its derivative.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(x)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{x}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(x)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{x}}")) (|functionIsContinuousAtEndPoints| (((|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsContinuousAtEndPoints(args)} uses power series limits to check for problems at the end points of the range of \\spad{args}.")) (|rangeIsFinite| (((|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{rangeIsFinite(args)} tests the endpoints of \\spad{args.range} for infinite end points."))) NIL NIL -(-183) +(-185) ((|constructor| (NIL "\\axiomType{d01ajfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AJF,{} a general numerical integration routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine D01AJF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-184) +(-186) ((|constructor| (NIL "\\axiomType{d01akfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AKF,{} a numerical integration routine which is is suitable for oscillating,{} non-singular functions. The function \\axiomFun{measure} measures the usefulness of the routine D01AKF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-185) +(-187) ((|constructor| (NIL "\\axiomType{d01alfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01ALF,{} a general numerical integration routine which can handle a list of singularities. The function \\axiomFun{measure} measures the usefulness of the routine D01ALF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-186) +(-188) ((|constructor| (NIL "\\axiomType{d01amfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AMF,{} a general numerical integration routine which can handle infinite or semi-infinite range of the input function. The function \\axiomFun{measure} measures the usefulness of the routine D01AMF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-187) +(-189) ((|constructor| (NIL "\\axiomType{d01anfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01ANF,{} a numerical integration routine which can handle weight functions of the form cos(\\omega \\spad{x}) or sin(\\omega \\spad{x}). The function \\axiomFun{measure} measures the usefulness of the routine D01ANF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-188) +(-190) ((|constructor| (NIL "\\axiomType{d01apfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01APF,{} a general numerical integration routine which can handle end point singularities of the algebraico-logarithmic form \\spad{w}(\\spad{x}) = (\\spad{x}-a)\\spad{^c} * (\\spad{b}-\\spad{x})\\spad{^d}. The function \\axiomFun{measure} measures the usefulness of the routine D01APF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-189) +(-191) ((|constructor| (NIL "\\axiomType{d01aqfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AQF,{} a general numerical integration routine which can solve an integral of the form /home/bjd/Axiom/anna/hypertex/bitmaps/d01aqf.\\spad{xbm} The function \\axiomFun{measure} measures the usefulness of the routine D01AQF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-190) +(-192) ((|constructor| (NIL "\\axiomType{d01asfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01ASF,{} a numerical integration routine which can handle weight functions of the form cos(\\omega \\spad{x}) or sin(\\omega \\spad{x}) on an semi-infinite range. The function \\axiomFun{measure} measures the usefulness of the routine D01ASF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-191) +(-193) ((|constructor| (NIL "\\axiomType{d01fcfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01FCF,{} a numerical integration routine which can handle multi-dimensional quadrature over a finite region. The function \\axiomFun{measure} measures the usefulness of the routine D01GBF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-192) +(-194) ((|constructor| (NIL "\\axiomType{d01gbfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01GBF,{} a numerical integration routine which can handle multi-dimensional quadrature over a finite region. The function \\axiomFun{measure} measures the usefulness of the routine D01GBF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-193) +(-195) NIL NIL NIL -(-194) +(-196) ((|constructor| (NIL "\\axiom{d01WeightsPackage} is a package for functions used to investigate whether a function can be divided into a simpler function and a weight function. The types of weights investigated are those giving rise to end-point singularities of the algebraico-logarithmic type,{} and trigonometric weights.")) (|exprHasLogarithmicWeights| (((|Integer|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\axiom{exprHasLogarithmicWeights} looks for logarithmic weights giving rise to singularities of the function at the end-points.")) (|exprHasAlgebraicWeight| (((|Union| (|List| (|DoubleFloat|)) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\axiom{exprHasAlgebraicWeight} looks for algebraic weights giving rise to singularities of the function at the end-points.")) (|exprHasWeightCosWXorSinWX| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |w| (|DoubleFloat|))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\axiom{exprHasWeightCosWXorSinWX} looks for trigonometric weights in an expression of the form \\axiom{cos \\omega \\spad{x}} or \\axiom{sin \\omega \\spad{x}},{} returning the value of \\omega (\\notequal 1) and the operator."))) NIL NIL -(-195) +(-197) ((|constructor| (NIL "\\axiom{d02AgentsPackage} contains a set of computational agents for use with Ordinary Differential Equation solvers.")) (|intermediateResultsIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{intermediateResultsIF(o)} returns a value corresponding to the required number of intermediate results required and,{} therefore,{} an indication of how much this would affect the step-length of the calculation. It returns a value in the range [0,{}1].")) (|accuracyIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{accuracyIF(o)} returns the intensity value of the accuracy requirements of the input ODE. A request of accuracy of 10^-6 corresponds to the neutral intensity. It returns a value in the range [0,{}1].")) (|expenseOfEvaluationIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{expenseOfEvaluationIF(o)} returns the intensity value of the cost of evaluating the input ODE. This is in terms of the number of ``operational units\\spad{''}. It returns a value in the range [0,{}1].\\indent{20} 400 ``operation units\\spad{''} \\spad{->} 0.75 200 ``operation units\\spad{''} \\spad{->} 0.5 83 ``operation units\\spad{''} \\spad{->} 0.25 \\indent{15} exponentiation = 4 units ,{} function calls = 10 units.")) (|systemSizeIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{systemSizeIF(ode)} returns the intensity value of the size of the system of ODEs. 20 equations corresponds to the neutral value. It returns a value in the range [0,{}1].")) (|stiffnessAndStabilityOfODEIF| (((|Record| (|:| |stiffnessFactor| (|Float|)) (|:| |stabilityFactor| (|Float|))) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{stiffnessAndStabilityOfODEIF(ode)} calculates the intensity values of stiffness of a system of first-order differential equations (by evaluating the maximum difference in the real parts of the negative eigenvalues of the jacobian of the system for which \\spad{O}(10) equates to mildly stiff wheras stiffness ratios of \\spad{O}(10^6) are not uncommon) and whether the system is likely to show any oscillations (identified by the closeness to the imaginary axis of the complex eigenvalues of the jacobian). \\blankline It returns two values in the range [0,{}1].")) (|stiffnessAndStabilityFactor| (((|Record| (|:| |stiffnessFactor| (|Float|)) (|:| |stabilityFactor| (|Float|))) (|Matrix| (|Expression| (|DoubleFloat|)))) "\\spad{stiffnessAndStabilityFactor(me)} calculates the stability and stiffness factor of a system of first-order differential equations (by evaluating the maximum difference in the real parts of the negative eigenvalues of the jacobian of the system for which \\spad{O}(10) equates to mildly stiff wheras stiffness ratios of \\spad{O}(10^6) are not uncommon) and whether the system is likely to show any oscillations (identified by the closeness to the imaginary axis of the complex eigenvalues of the jacobian).")) (|eval| (((|Matrix| (|Expression| (|DoubleFloat|))) (|Matrix| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{eval(mat,{}symbols,{}values)} evaluates a multivariable matrix at given \\spad{values} for each of a list of variables")) (|jacobian| (((|Matrix| (|Expression| (|DoubleFloat|))) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|))) "\\spad{jacobian(v,{}w)} is a local function to make a jacobian matrix")) (|sparsityIF| (((|Float|) (|Matrix| (|Expression| (|DoubleFloat|)))) "\\spad{sparsityIF(m)} calculates the sparsity of a jacobian matrix")) (|combineFeatureCompatibility| (((|Float|) (|Float|) (|List| (|Float|))) "\\spad{combineFeatureCompatibility(C1,{}L)} is for interacting attributes") (((|Float|) (|Float|) (|Float|)) "\\spad{combineFeatureCompatibility(C1,{}C2)} is for interacting attributes"))) NIL NIL -(-196) +(-198) ((|constructor| (NIL "\\axiomType{d02bbfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02BBF,{} a ODE routine which uses an Runge-Kutta method to solve a system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02BBF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) NIL NIL -(-197) +(-199) ((|constructor| (NIL "\\axiomType{d02bhfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02BHF,{} a ODE routine which uses an Runge-Kutta method to solve a system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02BHF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) NIL NIL -(-198) +(-200) ((|constructor| (NIL "\\axiomType{d02cjfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02CJF,{} a ODE routine which uses an Adams-Moulton-Bashworth method to solve a system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02CJF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) NIL NIL -(-199) +(-201) ((|constructor| (NIL "\\axiomType{d02ejfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02EJF,{} a ODE routine which uses a backward differentiation formulae method to handle a stiff system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02EJF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) NIL NIL -(-200) +(-202) ((|constructor| (NIL "\\axiom{d03AgentsPackage} contains a set of computational agents for use with Partial Differential Equation solvers.")) (|elliptic?| (((|Boolean|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{elliptic?(r)} \\undocumented{}")) (|central?| (((|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{central?(f,{}g,{}l)} \\undocumented{}")) (|subscriptedVariables| (((|Expression| (|DoubleFloat|)) (|Expression| (|DoubleFloat|))) "\\spad{subscriptedVariables(e)} \\undocumented{}")) (|varList| (((|List| (|Symbol|)) (|Symbol|) (|NonNegativeInteger|)) "\\spad{varList(s,{}n)} \\undocumented{}"))) NIL NIL -(-201) +(-203) ((|constructor| (NIL "\\axiomType{d03eefAnnaType} is a domain of \\axiomType{PartialDifferentialEquationsSolverCategory} for the NAG routines D03EEF/D03EDF."))) NIL NIL -(-202) +(-204) ((|constructor| (NIL "\\axiomType{d03fafAnnaType} is a domain of \\axiomType{PartialDifferentialEquationsSolverCategory} for the NAG routine D03FAF."))) NIL NIL -(-203 S) +(-205 S) ((|constructor| (NIL "This domain implements a simple view of a database whose fields are indexed by symbols")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} makes a database out of a list")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,{}start,{}end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,{}s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,{}q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,{}s)} returns an element of \\spad{x} indexed by \\spad{s}"))) NIL NIL -(-204 -1333 UP UPUP R) +(-206 -1478 UP UPUP R) ((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f,{} ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use."))) NIL NIL -(-205 -1333 FP) +(-207 -1478 FP) ((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,{}k,{}v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,{}k,{}v)} produces the sum of u**(2**i) for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,{}k,{}v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by separateDegrees and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,{}sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}."))) NIL NIL -(-206) +(-208) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion.")) (|coerce| (((|RadixExpansion| 10) $) "\\spad{coerce(d)} converts a decimal expansion to a radix expansion with base 10.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(d)} converts a decimal expansion to a rational number."))) -((-4497 . T) (-4503 . T) (-4498 . T) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) -((|HasCategory| (-560) (QUOTE (-896))) (|HasCategory| (-560) (LIST (QUOTE -1029) (QUOTE (-1153)))) (|HasCategory| (-560) (QUOTE (-146))) (|HasCategory| (-560) (QUOTE (-148))) (|HasCategory| (-560) (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| (-560) (QUOTE (-1013))) (|HasCategory| (-560) (QUOTE (-807))) (|HasCategory| (-560) (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-1128))) (|HasCategory| (-560) (LIST (QUOTE -873) (QUOTE (-560)))) (|HasCategory| (-560) (LIST (QUOTE -873) (QUOTE (-375)))) (|HasCategory| (-560) (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-375))))) (|HasCategory| (-560) (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-560))))) (|HasCategory| (-560) (QUOTE (-221))) (|HasCategory| (-560) (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| (-560) (LIST (QUOTE -515) (QUOTE (-1153)) (QUOTE (-560)))) (|HasCategory| (-560) (LIST (QUOTE -298) (QUOTE (-560)))) (|HasCategory| (-560) (LIST (QUOTE -276) (QUOTE (-560)) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-296))) (|HasCategory| (-560) (QUOTE (-542))) (|HasCategory| (-560) (QUOTE (-834))) (-2318 (|HasCategory| (-560) (QUOTE (-807))) (|HasCategory| (-560) (QUOTE (-834)))) (|HasCategory| (-560) (LIST (QUOTE -622) (QUOTE (-560)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-560) (QUOTE (-896)))) (-2318 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-560) (QUOTE (-896)))) (|HasCategory| (-560) (QUOTE (-146))))) -(-207 R -1333) +((-4511 . T) (-4517 . T) (-4512 . T) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) +((|HasCategory| (-568) (QUOTE (-904))) (|HasCategory| (-568) (LIST (QUOTE -1037) (QUOTE (-1161)))) (|HasCategory| (-568) (QUOTE (-148))) (|HasCategory| (-568) (QUOTE (-150))) (|HasCategory| (-568) (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| (-568) (QUOTE (-1021))) (|HasCategory| (-568) (QUOTE (-815))) (|HasCategory| (-568) (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| (-568) (QUOTE (-1136))) (|HasCategory| (-568) (LIST (QUOTE -881) (QUOTE (-568)))) (|HasCategory| (-568) (LIST (QUOTE -881) (QUOTE (-381)))) (|HasCategory| (-568) (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-381))))) (|HasCategory| (-568) (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-568))))) (|HasCategory| (-568) (QUOTE (-225))) (|HasCategory| (-568) (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| (-568) (LIST (QUOTE -523) (QUOTE (-1161)) (QUOTE (-568)))) (|HasCategory| (-568) (LIST (QUOTE -303) (QUOTE (-568)))) (|HasCategory| (-568) (LIST (QUOTE -281) (QUOTE (-568)) (QUOTE (-568)))) (|HasCategory| (-568) (QUOTE (-301))) (|HasCategory| (-568) (QUOTE (-550))) (|HasCategory| (-568) (QUOTE (-842))) (-2198 (|HasCategory| (-568) (QUOTE (-815))) (|HasCategory| (-568) (QUOTE (-842)))) (|HasCategory| (-568) (LIST (QUOTE -630) (QUOTE (-568)))) (-12 (|HasCategory| $ (QUOTE (-148))) (|HasCategory| (-568) (QUOTE (-904)))) (-2198 (-12 (|HasCategory| $ (QUOTE (-148))) (|HasCategory| (-568) (QUOTE (-904)))) (|HasCategory| (-568) (QUOTE (-148))))) +(-209 R -1478) ((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f,{} x,{} a,{} b,{} ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL -(-208 R) +(-210 R) ((|constructor| (NIL "Definite integration of rational functions. \\spadtype{RationalFunctionDefiniteIntegration} provides functions to compute definite integrals of rational functions.")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|))) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|)))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL -(-209 R1 R2) +(-211 R1 R2) ((|constructor| (NIL "This package has no description")) (|expand| (((|List| (|Expression| |#2|)) (|Expression| |#2|) (|PositiveInteger|)) "\\spad{expand(f,{}n)} \\undocumented{}")) (|reduce| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#1|)) (|:| |deg| (|PositiveInteger|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reduce(p)} \\undocumented{}"))) NIL NIL -(-210 S) +(-212 S) ((|constructor| (NIL "Linked list implementation of a Dequeue")) (|member?| (((|Boolean|) |#1| $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,{}2,{}3,{}4,{}5] \\spad{X} member?(3,{}a)")) (|members| (((|List| |#1|) $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,{}2,{}3,{}4,{}5] \\spad{X} members a")) (|parts| (((|List| |#1|) $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,{}2,{}3,{}4,{}5] \\spad{X} parts a")) (|#| (((|NonNegativeInteger|) $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,{}2,{}3,{}4,{}5] \\spad{X} \\#a")) (|count| (((|NonNegativeInteger|) |#1| $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,{}2,{}3,{}4,{}5] \\spad{X} count(4,{}a)") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,{}2,{}3,{}4,{}5] \\spad{X} count(\\spad{x+}->(\\spad{x>2}),{}a)")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,{}2,{}3,{}4,{}5] \\spad{X} any?(\\spad{x+}->(\\spad{x=4}),{}a)")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,{}2,{}3,{}4,{}5] \\spad{X} every?(\\spad{x+}->(\\spad{x=4}),{}a)")) (~= (((|Boolean|) $ $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,{}2,{}3,{}4,{}5] \\spad{X} b:=copy a \\spad{X} (a~=b)")) (= (((|Boolean|) $ $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,{}2,{}3,{}4,{}5] \\spad{X} b:Dequeue INT:= dequeue [1,{}2,{}3,{}4,{}5] \\spad{X} (a=b)@Boolean")) (|coerce| (((|OutputForm|) $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,{}2,{}3,{}4,{}5] \\spad{X} coerce a")) (|hash| (((|SingleInteger|) $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,{}2,{}3,{}4,{}5] \\spad{X} hash a")) (|latex| (((|String|) $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,{}2,{}3,{}4,{}5] \\spad{X} latex a")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,{}2,{}3,{}4,{}5] \\spad{X} map!(\\spad{x+}-\\spad{>x+10},{}a) \\spad{X} a")) (|top!| ((|#1| $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,{}2,{}3,{}4,{}5] \\spad{X} top! a \\spad{X} a")) (|reverse!| (($ $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,{}2,{}3,{}4,{}5] \\spad{X} reverse! a \\spad{X} a")) (|push!| ((|#1| |#1| $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,{}2,{}3,{}4,{}5] \\spad{X} push! a \\spad{X} a")) (|pop!| ((|#1| $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,{}2,{}3,{}4,{}5] \\spad{X} pop! a \\spad{X} a")) (|insertTop!| ((|#1| |#1| $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,{}2,{}3,{}4,{}5] \\spad{X} insertTop! a \\spad{X} a")) (|insertBottom!| ((|#1| |#1| $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,{}2,{}3,{}4,{}5] \\spad{X} insertBottom! a \\spad{X} a")) (|extractTop!| ((|#1| $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,{}2,{}3,{}4,{}5] \\spad{X} extractTop! a \\spad{X} a")) (|extractBottom!| ((|#1| $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,{}2,{}3,{}4,{}5] \\spad{X} extractBottom! a \\spad{X} a")) (|bottom!| ((|#1| $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,{}2,{}3,{}4,{}5] \\spad{X} bottom! a \\spad{X} a")) (|top| ((|#1| $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,{}2,{}3,{}4,{}5] \\spad{X} top a")) (|height| (((|NonNegativeInteger|) $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,{}2,{}3,{}4,{}5] \\spad{X} height a")) (|depth| (((|NonNegativeInteger|) $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,{}2,{}3,{}4,{}5] \\spad{X} depth a")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,{}2,{}3,{}4,{}5] \\spad{X} map(\\spad{x+}-\\spad{>x+10},{}a) \\spad{X} a")) (|eq?| (((|Boolean|) $ $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,{}2,{}3,{}4,{}5] \\spad{X} b:=copy a \\spad{X} eq?(a,{}\\spad{b})")) (|copy| (($ $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,{}2,{}3,{}4,{}5] \\spad{X} copy a")) (|sample| (($) "\\blankline \\spad{X} sample()\\$Dequeue(INT)")) (|empty| (($) "\\blankline \\spad{X} b:=empty()\\$(Dequeue INT)")) (|empty?| (((|Boolean|) $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,{}2,{}3,{}4,{}5] \\spad{X} empty? a")) (|bag| (($ (|List| |#1|)) "\\blankline \\spad{X} bag([1,{}2,{}3,{}4,{}5])\\$Dequeue(INT)")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,{}2,{}3,{}4,{}5] \\spad{X} size?(a,{}5)")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,{}2,{}3,{}4,{}5] \\spad{X} more?(a,{}9)")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,{}2,{}3,{}4,{}5] \\spad{X} less?(a,{}9)")) (|length| (((|NonNegativeInteger|) $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,{}2,{}3,{}4,{}5] \\spad{X} length a")) (|rotate!| (($ $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,{}2,{}3,{}4,{}5] \\spad{X} rotate! a")) (|back| ((|#1| $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,{}2,{}3,{}4,{}5] \\spad{X} back a")) (|front| ((|#1| $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,{}2,{}3,{}4,{}5] \\spad{X} front a")) (|inspect| ((|#1| $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,{}2,{}3,{}4,{}5] \\spad{X} inspect a")) (|insert!| (($ |#1| $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,{}2,{}3,{}4,{}5] \\spad{X} insert! (8,{}a) \\spad{X} a")) (|enqueue!| ((|#1| |#1| $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,{}2,{}3,{}4,{}5] \\spad{X} enqueue! (9,{}a) \\spad{X} a")) (|extract!| ((|#1| $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,{}2,{}3,{}4,{}5] \\spad{X} extract! a \\spad{X} a")) (|dequeue!| ((|#1| $) "\\blankline \\spad{X} a:Dequeue INT:= dequeue [1,{}2,{}3,{}4,{}5] \\spad{X} dequeue! a \\spad{X} a")) (|dequeue| (($) "\\blankline \\spad{X} a:Dequeue INT:= dequeue ()") (($ (|List| |#1|)) "\\indented{1}{dequeue([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) creates a dequeue with first (top or front)} \\indented{1}{element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.} \\blankline \\spad{E} g:Dequeue INT:= dequeue [1,{}2,{}3,{}4,{}5]"))) -((-4505 . T) (-4506 . T)) -((|HasCategory| |#1| (QUOTE (-1082))) (-12 (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1082))))) -(-211 |CoefRing| |listIndVar|) +((-4519 . T) (-4520 . T)) +((|HasCategory| |#1| (QUOTE (-1090))) (-12 (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1090))))) +(-213 |CoefRing| |listIndVar|) ((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,{}df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,{}u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}."))) -((-4502 . T)) +((-4516 . T)) NIL -(-212 R -1333) +(-214 R -1478) ((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} x,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x,{} g,{} a,{} b,{} eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval."))) NIL NIL -(-213) +(-215) ((|constructor| (NIL "\\spadtype{DoubleFloat} is intended to make accessible hardware floating point arithmetic in Axiom,{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spad{++} +,{} *,{} / and possibly also the sqrt operation. The operations exp,{} log,{} sin,{} cos,{} atan are normally coded in software based on minimax polynomial/rational approximations. \\blankline Some general comments about the accuracy of the operations: the operations +,{} *,{} / and sqrt are expected to be fully accurate. The operations exp,{} log,{} sin,{} cos and atan are not expected to be fully accurate. In particular,{} sin and cos will lose all precision for large arguments. \\blankline The Float domain provides an alternative to the DoubleFloat domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as erf,{} the error function in addition to the elementary functions. The disadvantage of Float is that it is much more expensive than small floats when the latter can be used.")) (|integerDecode| (((|List| (|Integer|)) $) "\\indented{1}{integerDecode(\\spad{x}) returns the multiple values of the\\space{2}common} \\indented{1}{lisp integer-decode-float function.} \\indented{1}{See Steele,{} ISBN 0-13-152414-3 \\spad{p354}. This function can be used} \\indented{1}{to ensure that the results are bit-exact and do not depend on} \\indented{1}{the binary-to-decimal conversions.} \\blankline \\spad{X} a:DFLOAT:=-1.0/3.0 \\spad{X} integerDecode a")) (|machineFraction| (((|Fraction| (|Integer|)) $) "\\indented{1}{machineFraction(\\spad{x}) returns a bit-exact fraction of the machine} \\indented{1}{floating point number using the common lisp integer-decode-float} \\indented{1}{function. See Steele,{} ISBN 0-13-152414-3 \\spad{p354}} \\indented{1}{This function can be used to print results which do not depend} \\indented{1}{on binary-to-decimal conversions} \\blankline \\spad{X} a:DFLOAT:=-1.0/3.0 \\spad{X} machineFraction a")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|hash| (((|Integer|) $) "\\spad{hash(x)} returns the hash key for \\spad{x}")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-2550 . T) (-4497 . T) (-4503 . T) (-4498 . T) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) +((-3996 . T) (-4511 . T) (-4517 . T) (-4512 . T) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) NIL -(-214) +(-216) +((|constructor| (NIL "This is a low-level domain which implements matrices (two dimensional arrays) of double precision floating point numbers. Indexing is 0 based,{} there is no bound checking (unless provided by lower level).")) (|qnew| (($ (|Integer|) (|Integer|)) "\\indented{1}{qnew(\\spad{n},{} \\spad{m}) creates a new uninitialized \\spad{n} by \\spad{m} matrix.} \\blankline \\spad{X} t1:DFMAT:=qnew(3,{}4)"))) +((-4519 . T) (-4520 . T)) +((|HasCategory| (-215) (QUOTE (-1090))) (-12 (|HasCategory| (-215) (LIST (QUOTE -303) (QUOTE (-215)))) (|HasCategory| (-215) (QUOTE (-1090)))) (|HasCategory| (-215) (QUOTE (-301))) (|HasCategory| (-215) (QUOTE (-558))) (|HasAttribute| (-215) (QUOTE (-4521 "*"))) (|HasCategory| (-215) (QUOTE (-172))) (|HasCategory| (-215) (QUOTE (-365)))) +(-217) ((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,{}x)} is the modified Bessel function of the second kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note that the default implementation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,{}x)} is the modified Bessel function of the second kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note that the default implementation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note that the default implementation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note that the default implementation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Ei6| (((|OnePointCompletion| (|DoubleFloat|)) (|OnePointCompletion| (|DoubleFloat|))) "\\spad{Ei6} is the first approximation of \\spad{Ei} where the result is \\spad{x*}\\%e^-x*Ei(\\spad{x}) from 32 to infinity (preserves digits)")) (|Ei5| (((|OnePointCompletion| (|DoubleFloat|)) (|OnePointCompletion| (|DoubleFloat|))) "\\spad{Ei5} is the first approximation of \\spad{Ei} where the result is \\spad{x*}\\%e^-x*Ei(\\spad{x}) from 12 to 32 (preserves digits)")) (|Ei4| (((|OnePointCompletion| (|DoubleFloat|)) (|OnePointCompletion| (|DoubleFloat|))) "\\spad{Ei4} is the first approximation of \\spad{Ei} where the result is \\spad{x*}\\%e^-x*Ei(\\spad{x}) from 4 to 12 (preserves digits)")) (|Ei3| (((|OnePointCompletion| (|DoubleFloat|)) (|OnePointCompletion| (|DoubleFloat|))) "\\spad{Ei3} is the first approximation of \\spad{Ei} where the result is (\\spad{Ei}(\\spad{x})-log \\spad{|x|} - gamma)\\spad{/x} from \\spad{-4} to 4 (preserves digits)")) (|Ei2| (((|OnePointCompletion| (|DoubleFloat|)) (|OnePointCompletion| (|DoubleFloat|))) "\\spad{Ei2} is the first approximation of \\spad{Ei} where the result is \\spad{x*}\\%e^-x*Ei(\\spad{x}) from \\spad{-10} to \\spad{-4} (preserves digits)")) (|Ei1| (((|OnePointCompletion| (|DoubleFloat|)) (|OnePointCompletion| (|DoubleFloat|))) "\\spad{Ei1} is the first approximation of \\spad{Ei} where the result is \\spad{x*}\\%e^-x*Ei(\\spad{x}) from -infinity to \\spad{-10} (preserves digits)")) (|Ei| (((|OnePointCompletion| (|DoubleFloat|)) (|OnePointCompletion| (|DoubleFloat|))) "\\spad{Ei} is the Exponential Integral function This is computed using a 6 part piecewise approximation. DoubleFloat can only preserve about 16 digits but the Chebyshev approximation used can give 30 digits.")) (|En| (((|OnePointCompletion| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|)) "\\spad{En(n,{}x)} is the \\spad{n}th Exponential Integral Function")) (E1 (((|OnePointCompletion| (|DoubleFloat|)) (|DoubleFloat|)) "\\spad{E1(x)} is the Exponential Integral function The current implementation is a piecewise approximation involving one poly from \\spad{-4}..4 and a second poly for \\spad{x} > 4")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}"))) NIL NIL -(-215 R) +(-218) +((|constructor| (NIL "This is a low-level domain which implements vectors (one dimensional arrays) of double precision floating point numbers. Indexing is 0 based,{} there is no bound checking (unless provided by lower level).")) (|qnew| (($ (|Integer|)) "\\indented{1}{qnew(\\spad{n}) creates a new uninitialized vector of length \\spad{n}.} \\blankline \\spad{X} t1:DFVEC:=qnew(7)"))) +((-4520 . T) (-4519 . T)) +((|HasCategory| (-215) (QUOTE (-1090))) (|HasCategory| (-215) (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| (-215) (QUOTE (-842))) (-2198 (|HasCategory| (-215) (QUOTE (-842))) (|HasCategory| (-215) (QUOTE (-1090)))) (|HasCategory| (-568) (QUOTE (-842))) (|HasCategory| (-215) (QUOTE (-25))) (|HasCategory| (-215) (QUOTE (-23))) (|HasCategory| (-215) (QUOTE (-21))) (|HasCategory| (-215) (QUOTE (-716))) (|HasCategory| (-215) (QUOTE (-1047))) (-12 (|HasCategory| (-215) (QUOTE (-1002))) (|HasCategory| (-215) (QUOTE (-1047)))) (-12 (|HasCategory| (-215) (LIST (QUOTE -303) (QUOTE (-215)))) (|HasCategory| (-215) (QUOTE (-1090)))) (-2198 (-12 (|HasCategory| (-215) (LIST (QUOTE -303) (QUOTE (-215)))) (|HasCategory| (-215) (QUOTE (-842)))) (-12 (|HasCategory| (-215) (LIST (QUOTE -303) (QUOTE (-215)))) (|HasCategory| (-215) (QUOTE (-1090)))))) +(-219 R) ((|constructor| (NIL "4x4 Matrices for coordinate transformations\\spad{\\br} This package contains functions to create 4x4 matrices useful for rotating and transforming coordinate systems. These matrices are useful for graphics and robotics. (Reference: Robot Manipulators Richard Paul MIT Press 1981) \\blankline A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:\\spad{\\br} \\tab{5}\\spad{nx ox ax px}\\spad{\\br} \\tab{5}\\spad{ny oy ay py}\\spad{\\br} \\tab{5}\\spad{nz oz az pz}\\spad{\\br} \\tab{5}\\spad{0 0 0 1}\\spad{\\br} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(x,{}y,{}z)} returns a dhmatrix for translation by \\spad{x},{} \\spad{y},{} and \\spad{z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,{}sy,{}sz)} returns a dhmatrix for scaling in the \\spad{x},{} \\spad{y} and \\spad{z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{x} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}"))) -((-4505 . T) (-4506 . T)) -((|HasCategory| |#1| (QUOTE (-1082))) (-12 (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1082)))) (|HasCategory| |#1| (QUOTE (-296))) (|HasCategory| |#1| (QUOTE (-550))) (|HasAttribute| |#1| (QUOTE (-4507 "*"))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-359)))) -(-216 A S) +((-4519 . T) (-4520 . T)) +((|HasCategory| |#1| (QUOTE (-1090))) (-12 (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-558))) (|HasAttribute| |#1| (QUOTE (-4521 "*"))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365)))) +(-220 A S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) NIL NIL -(-217 S) +(-221 S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) -((-4506 . T) (-2537 . T)) +((-4520 . T) (-3973 . T)) NIL -(-218 S R) +(-222 S R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#2| (QUOTE (-221)))) -(-219 R) +((|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#2| (QUOTE (-225)))) +(-223 R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}."))) -((-4502 . T)) +((-4516 . T)) NIL -(-220 S) +(-224 S) ((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline Axioms\\spad{\\br} \\tab{5}\\spad{differentiate(x+y) = differentiate(x)+differentiate(y)}\\spad{\\br} \\tab{5}\\spad{differentiate(x*y) = x*differentiate(y) + differentiate(x)*y}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified."))) NIL NIL -(-221) +(-225) ((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline Axioms\\spad{\\br} \\tab{5}\\spad{differentiate(x+y) = differentiate(x)+differentiate(y)}\\spad{\\br} \\tab{5}\\spad{differentiate(x*y) = x*differentiate(y) + differentiate(x)*y}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified."))) -((-4502 . T)) +((-4516 . T)) NIL -(-222 A S) +(-226 A S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) NIL -((|HasAttribute| |#1| (QUOTE -4505))) -(-223 S) +((|HasAttribute| |#1| (QUOTE -4519))) +(-227 S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) -((-4506 . T) (-2537 . T)) +((-4520 . T) (-3973 . T)) NIL -(-224) +(-228) ((|constructor| (NIL "Any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets:\\spad{\\br} \\tab{5}1. all minimal inhomogeneous solutions\\spad{\\br} \\tab{5}2. all minimal homogeneous solutions\\spad{\\br} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation"))) NIL NIL -(-225 S -2050 R) +(-229 S -2570 R) ((|constructor| (NIL "This category represents a finite cartesian product of a given type. Many categorical properties are preserved under this construction.")) (|dot| ((|#3| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) NIL -((|HasCategory| |#3| (QUOTE (-359))) (|HasCategory| |#3| (QUOTE (-780))) (|HasCategory| |#3| (QUOTE (-832))) (|HasAttribute| |#3| (QUOTE -4502)) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-364))) (|HasCategory| |#3| (QUOTE (-708))) (|HasCategory| |#3| (QUOTE (-137))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (QUOTE (-1082)))) -(-226 -2050 R) +((|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-788))) (|HasCategory| |#3| (QUOTE (-840))) (|HasAttribute| |#3| (QUOTE -4516)) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (QUOTE (-716))) (|HasCategory| |#3| (QUOTE (-137))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1047))) (|HasCategory| |#3| (QUOTE (-1090)))) +(-230 -2570 R) ((|constructor| (NIL "This category represents a finite cartesian product of a given type. Many categorical properties are preserved under this construction.")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) -((-4499 |has| |#2| (-1039)) (-4500 |has| |#2| (-1039)) (-4502 |has| |#2| (-6 -4502)) ((-4507 "*") |has| |#2| (-170)) (-4505 . T) (-2537 . T)) +((-4513 |has| |#2| (-1047)) (-4514 |has| |#2| (-1047)) (-4516 |has| |#2| (-6 -4516)) ((-4521 "*") |has| |#2| (-172)) (-4519 . T) (-3973 . T)) NIL -(-227 -2050 A B) +(-231 -2570 A B) ((|constructor| (NIL "This package provides operations which all take as arguments direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-228 -2050 R) +(-232 -2570 R) ((|constructor| (NIL "This type represents the finite direct or cartesian product of an underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation."))) -((-4499 |has| |#2| (-1039)) (-4500 |has| |#2| (-1039)) (-4502 |has| |#2| (-6 -4502)) ((-4507 "*") |has| |#2| (-170)) (-4505 . T)) -((|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (QUOTE (-359))) (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (QUOTE (-780))) (|HasCategory| |#2| (QUOTE (-832))) (-2318 (|HasCategory| |#2| (QUOTE (-780))) (|HasCategory| |#2| (QUOTE (-832)))) (|HasCategory| |#2| (QUOTE (-708))) (|HasCategory| |#2| (QUOTE (-170))) (-2318 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-359))) (|HasCategory| |#2| (QUOTE (-1039)))) (-2318 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-359)))) (-2318 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-1039)))) (|HasCategory| |#2| (QUOTE (-364))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#2| (QUOTE (-221))) (-2318 (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-221))) (|HasCategory| |#2| (QUOTE (-359))) (|HasCategory| |#2| (QUOTE (-1039)))) (-2318 (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-221))) (|HasCategory| |#2| (QUOTE (-1039)))) (|HasCategory| (-560) (QUOTE (-834))) (-12 (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1039)))) (-12 (|HasCategory| |#2| (QUOTE (-221))) (|HasCategory| |#2| (QUOTE (-1039)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#2| (QUOTE (-1039)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1082)))) (-2318 (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1082)))) (|HasCategory| |#2| (QUOTE (-1039)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1082)))) (|HasAttribute| |#2| (QUOTE -4502)) (|HasCategory| |#2| (QUOTE (-137))) (-2318 (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#2| (QUOTE (-137))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-221))) (|HasCategory| |#2| (QUOTE (-359))) (|HasCategory| |#2| (QUOTE (-1039)))) (|HasCategory| |#2| (QUOTE (-25))) (-2318 (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-137))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-221))) (|HasCategory| |#2| (QUOTE (-359))) (|HasCategory| |#2| (QUOTE (-364))) (|HasCategory| |#2| (QUOTE (-708))) (|HasCategory| |#2| (QUOTE (-780))) (|HasCategory| |#2| (QUOTE (-832))) (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (QUOTE (-1082)))) (-2318 (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-137))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-221))) (|HasCategory| |#2| (QUOTE (-359))) (|HasCategory| |#2| (QUOTE (-1039)))) (-2318 (-12 (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#2| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-137)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-170)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-221)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-359)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-364)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-708)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-780)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-832)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1039)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1082))))) (-2318 (-12 (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-137)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-170)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-221)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-359)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-364)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-708)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-780)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-832)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1039)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1082))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1082)))) (-2318 (-12 (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-1153))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-137)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-170)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-221)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-359)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-364)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-708)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-780)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-832)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1039)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1082)))))) -(-229) +((-4513 |has| |#2| (-1047)) (-4514 |has| |#2| (-1047)) (-4516 |has| |#2| (-6 -4516)) ((-4521 "*") |has| |#2| (-172)) (-4519 . T)) +((|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1047))) (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (QUOTE (-840))) (-2198 (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (QUOTE (-840)))) (|HasCategory| |#2| (QUOTE (-716))) (|HasCategory| |#2| (QUOTE (-172))) (-2198 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1047)))) (-2198 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365)))) (-2198 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1047)))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#2| (QUOTE (-225))) (-2198 (|HasCategory| |#2| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1047)))) (-2198 (|HasCategory| |#2| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (QUOTE (-1047)))) (|HasCategory| (-568) (QUOTE (-842))) (-12 (|HasCategory| |#2| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#2| (QUOTE (-1047)))) (-12 (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (QUOTE (-1047)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#2| (QUOTE (-1047)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#2| (QUOTE (-1090)))) (-2198 (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#2| (QUOTE (-1090)))) (|HasCategory| |#2| (QUOTE (-1047)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#2| (QUOTE (-1090)))) (|HasAttribute| |#2| (QUOTE -4516)) (|HasCategory| |#2| (QUOTE (-137))) (-2198 (|HasCategory| |#2| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#2| (QUOTE (-137))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1047)))) (|HasCategory| |#2| (QUOTE (-25))) (-2198 (|HasCategory| |#2| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-137))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-716))) (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (QUOTE (-840))) (|HasCategory| |#2| (QUOTE (-1047))) (|HasCategory| |#2| (QUOTE (-1090)))) (-2198 (|HasCategory| |#2| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-137))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1047)))) (-2198 (-12 (|HasCategory| |#2| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#2| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#2| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#2| (QUOTE (-137)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#2| (QUOTE (-225)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#2| (QUOTE (-365)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#2| (QUOTE (-370)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#2| (QUOTE (-716)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#2| (QUOTE (-788)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#2| (QUOTE (-840)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#2| (QUOTE (-1047)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#2| (QUOTE (-1090))))) (-2198 (-12 (|HasCategory| |#2| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-568))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-568))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#2| (QUOTE (-137)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#2| (QUOTE (-225)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#2| (QUOTE (-365)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#2| (QUOTE (-370)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#2| (QUOTE (-716)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#2| (QUOTE (-788)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#2| (QUOTE (-840)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#2| (QUOTE (-1047)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#2| (QUOTE (-1090))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1090)))) (-2198 (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -630) (QUOTE (-568))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1161))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-137)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-225)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-365)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-370)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-716)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-788)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-840)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1047)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1090)))))) +(-233 |Coef|) +((|constructor| (NIL "DirichletRing is the ring of arithmetical functions with Dirichlet convolution as multiplication")) (|additive?| (((|Boolean|) $ (|PositiveInteger|)) "\\spad{additive?(a,{} n)} returns \\spad{true} if the first \\spad{n} coefficients of a are additive")) (|multiplicative?| (((|Boolean|) $ (|PositiveInteger|)) "\\spad{multiplicative?(a,{} n)} returns \\spad{true} if the first \\spad{n} coefficients of a are multiplicative")) (|zeta| (($) "\\spad{zeta()} returns the function which is constantly one"))) +((-4514 |has| |#1| (-172)) (-4513 |has| |#1| (-172)) ((-4521 "*") |has| |#1| (-172)) (-4512 |has| |#1| (-172)) (-4516 . T)) +((|HasCategory| |#1| (QUOTE (-172)))) +(-234) ((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,{}i,{}s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,{}i,{}s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,{}s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type."))) NIL NIL -(-230 S) +(-235 S) ((|constructor| (NIL "This category exports the function for domains")) (|divOfPole| (($ $) "\\spad{divOfPole(d)} returns the negative part of \\spad{d}.")) (|divOfZero| (($ $) "\\spad{divOfZero(d)} returns the positive part of \\spad{d}.")) (|suppOfPole| (((|List| |#1|) $) "suppOfZero(\\spad{d}) returns the elements of the support of \\spad{d} that have a negative coefficient.")) (|suppOfZero| (((|List| |#1|) $) "\\spad{suppOfZero(d)} returns the elements of the support of \\spad{d} that have a positive coefficient.")) (|supp| (((|List| |#1|) $) "\\spad{supp(d)} returns the support of the divisor \\spad{d}.")) (|effective?| (((|Boolean|) $) "\\spad{effective?(d)} returns \\spad{true} if \\spad{d} \\spad{>=} 0.")) (|concat| (($ $ $) "\\spad{concat(a,{}b)} concats the divisor a and \\spad{b} without collecting the duplicative points.")) (|collect| (($ $) "\\spad{collect collects} the duplicative points in the divisor.")) (|split| (((|List| $) $) "\\spad{split(d)} splits the divisor \\spad{d}. For example,{} split( 2 \\spad{p1} + 3p2 ) returns the list [ 2 \\spad{p1},{} 3 \\spad{p2} ].")) (|degree| (((|Integer|) $) "\\spad{degree(d)} returns the degree of the divisor \\spad{d}"))) -((-4500 . T) (-4499 . T)) +((-4514 . T) (-4513 . T)) NIL -(-231 S) +(-236 S) ((|constructor| (NIL "The following is part of the PAFF package"))) -((-4500 . T) (-4499 . T)) -((|HasCategory| (-560) (QUOTE (-779)))) -(-232 S) +((-4514 . T) (-4513 . T)) +((|HasCategory| (-568) (QUOTE (-787)))) +(-237 S) ((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (^ (($ $ (|Integer|)) "\\spad{x^n} returns \\spad{x} raised to the integer power \\spad{n}.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}."))) NIL NIL -(-233) +(-238) ((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (^ (($ $ (|Integer|)) "\\spad{x^n} returns \\spad{x} raised to the integer power \\spad{n}.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}."))) -((-4498 . T) (-4499 . T) (-4500 . T) (-4502 . T)) +((-4512 . T) (-4513 . T) (-4514 . T) (-4516 . T)) NIL -(-234 S) +(-239 S) ((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,{}v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,{}v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note that \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note that \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty."))) -((-2537 . T)) +((-3973 . T)) NIL -(-235 S) +(-240 S) ((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}")) (|coerce| (((|List| |#1|) $) "\\spad{coerce(x)} returns the list of elements in \\spad{x}") (($ (|List| |#1|)) "\\spad{coerce(l)} creates a datalist from \\spad{l}"))) -((-4506 . T) (-4505 . T)) -((|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-834))) (-2318 (|HasCategory| |#1| (QUOTE (-834))) (|HasCategory| |#1| (QUOTE (-1082)))) (|HasCategory| (-560) (QUOTE (-834))) (-12 (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1082)))) (-2318 (-12 (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-834)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1082)))))) -(-236 M) +((-4520 . T) (-4519 . T)) +((|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-842))) (-2198 (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-1090)))) (|HasCategory| (-568) (QUOTE (-842))) (-12 (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1090)))) (-2198 (-12 (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-842)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1090)))))) +(-241 M) ((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,{}a,{}p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note that this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}"))) NIL NIL -(-237 |vl| R) +(-242 |vl| R) ((|constructor| (NIL "This type supports distributed multivariate polynomials whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4507 "*") |has| |#2| (-170)) (-4498 |has| |#2| (-550)) (-4503 |has| |#2| (-6 -4503)) (-4500 . T) (-4499 . T) (-4502 . T)) -((|HasCategory| |#2| (QUOTE (-896))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-170))) (-2318 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-550)))) (-12 (|HasCategory| (-844 |#1|) (LIST (QUOTE -873) (QUOTE (-375)))) (|HasCategory| |#2| (LIST (QUOTE -873) (QUOTE (-375))))) (-12 (|HasCategory| (-844 |#1|) (LIST (QUOTE -873) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -873) (QUOTE (-560))))) (-12 (|HasCategory| (-844 |#1|) (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-375))))) (|HasCategory| |#2| (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-375)))))) (-12 (|HasCategory| (-844 |#1|) (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-560)))))) (-12 (|HasCategory| (-844 |#1|) (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-533))))) (|HasCategory| |#2| (QUOTE (-834))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-359))) (-2318 (|HasCategory| |#2| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560)))))) (|HasAttribute| |#2| (QUOTE -4503)) (|HasCategory| |#2| (QUOTE (-447))) (-2318 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-447))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-896)))) (-2318 (|HasCategory| |#2| (QUOTE (-447))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-896)))) (-2318 (|HasCategory| |#2| (QUOTE (-447))) (|HasCategory| |#2| (QUOTE (-896)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-896)))) (-2318 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-896)))) (|HasCategory| |#2| (QUOTE (-146))))) -(-238 |n| R M S) +(((-4521 "*") |has| |#2| (-172)) (-4512 |has| |#2| (-558)) (-4517 |has| |#2| (-6 -4517)) (-4514 . T) (-4513 . T) (-4516 . T)) +((|HasCategory| |#2| (QUOTE (-904))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-172))) (-2198 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-558)))) (-12 (|HasCategory| (-852 |#1|) (LIST (QUOTE -881) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-381))))) (-12 (|HasCategory| (-852 |#1|) (LIST (QUOTE -881) (QUOTE (-568)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-568))))) (-12 (|HasCategory| (-852 |#1|) (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-381)))))) (-12 (|HasCategory| (-852 |#1|) (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-568))))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-568)))))) (-12 (|HasCategory| (-852 |#1|) (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-541))))) (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#2| (QUOTE (-150))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#2| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#2| (QUOTE (-365))) (-2198 (|HasCategory| |#2| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#2| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568)))))) (|HasAttribute| |#2| (QUOTE -4517)) (|HasCategory| |#2| (QUOTE (-453))) (-2198 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-453))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-904)))) (-2198 (|HasCategory| |#2| (QUOTE (-453))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-904)))) (-2198 (|HasCategory| |#2| (QUOTE (-453))) (|HasCategory| |#2| (QUOTE (-904)))) (-12 (|HasCategory| $ (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-904)))) (-2198 (-12 (|HasCategory| $ (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-904)))) (|HasCategory| |#2| (QUOTE (-148))))) +(-243 |n| R M S) ((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view."))) -((-4502 -2318 (-2256 (|has| |#4| (-1039)) (|has| |#4| (-221))) (-2256 (|has| |#4| (-1039)) (|has| |#4| (-887 (-1153)))) (|has| |#4| (-6 -4502)) (-2256 (|has| |#4| (-1039)) (|has| |#4| (-622 (-560))))) (-4499 |has| |#4| (-1039)) (-4500 |has| |#4| (-1039)) ((-4507 "*") |has| |#4| (-170)) (-4505 . T)) -((|HasCategory| |#4| (QUOTE (-359))) (|HasCategory| |#4| (QUOTE (-1039))) (|HasCategory| |#4| (QUOTE (-780))) (|HasCategory| |#4| (QUOTE (-832))) (-2318 (|HasCategory| |#4| (QUOTE (-780))) (|HasCategory| |#4| (QUOTE (-832)))) (|HasCategory| |#4| (QUOTE (-708))) (|HasCategory| |#4| (QUOTE (-170))) (-2318 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (QUOTE (-359))) (|HasCategory| |#4| (QUOTE (-1039)))) (-2318 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (QUOTE (-359)))) (-2318 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (QUOTE (-1039)))) (|HasCategory| |#4| (QUOTE (-364))) (|HasCategory| |#4| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#4| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#4| (QUOTE (-221))) (-2318 (|HasCategory| |#4| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#4| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (QUOTE (-221))) (|HasCategory| |#4| (QUOTE (-1039)))) (|HasCategory| |#4| (QUOTE (-1082))) (|HasCategory| (-560) (QUOTE (-834))) (-12 (|HasCategory| |#4| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#4| (QUOTE (-1039)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#4| (QUOTE (-1039)))) (-12 (|HasCategory| |#4| (QUOTE (-221))) (|HasCategory| |#4| (QUOTE (-1039)))) (-2318 (-12 (|HasCategory| |#4| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#4| (QUOTE (-1039)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#4| (QUOTE (-1039)))) (-12 (|HasCategory| |#4| (QUOTE (-221))) (|HasCategory| |#4| (QUOTE (-1039)))) (|HasCategory| |#4| (QUOTE (-708)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#4| (QUOTE (-1082)))) (-2318 (-12 (|HasCategory| |#4| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#4| (LIST (QUOTE -1029) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#4| (LIST (QUOTE -1029) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#4| (QUOTE (-170)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#4| (QUOTE (-221)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#4| (QUOTE (-359)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#4| (QUOTE (-364)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#4| (QUOTE (-708)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#4| (QUOTE (-780)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#4| (QUOTE (-832)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#4| (QUOTE (-1039)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#4| (QUOTE (-1082))))) (-2318 (-12 (|HasCategory| |#4| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#4| (QUOTE (-1082)))) (|HasCategory| |#4| (QUOTE (-1039)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-1082)))) (-2318 (-12 (|HasCategory| |#4| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#4| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#4| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-170)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-221)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-359)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-364)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-708)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-780)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-832)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-1039)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-1082))))) (-2318 (|HasAttribute| |#4| (QUOTE -4502)) (-12 (|HasCategory| |#4| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#4| (QUOTE (-1039)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#4| (QUOTE (-1039)))) (-12 (|HasCategory| |#4| (QUOTE (-221))) (|HasCategory| |#4| (QUOTE (-1039))))) (|HasCategory| |#4| (QUOTE (-137))) (|HasCategory| |#4| (QUOTE (-25))) (-12 (|HasCategory| |#4| (LIST (QUOTE -298) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (-1082)))) (-2318 (-12 (|HasCategory| |#4| (LIST (QUOTE -298) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -622) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -298) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -887) (QUOTE (-1153))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -298) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (-170)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -298) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (-221)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -298) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (-359)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -298) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (-364)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -298) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (-708)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -298) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (-780)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -298) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (-832)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -298) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (-1039)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -298) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (-1082)))))) -(-239 |n| R S) +((-4516 -2198 (-2139 (|has| |#4| (-1047)) (|has| |#4| (-225))) (-2139 (|has| |#4| (-1047)) (|has| |#4| (-895 (-1161)))) (|has| |#4| (-6 -4516)) (-2139 (|has| |#4| (-1047)) (|has| |#4| (-630 (-568))))) (-4513 |has| |#4| (-1047)) (-4514 |has| |#4| (-1047)) ((-4521 "*") |has| |#4| (-172)) (-4519 . T)) +((|HasCategory| |#4| (QUOTE (-365))) (|HasCategory| |#4| (QUOTE (-1047))) (|HasCategory| |#4| (QUOTE (-788))) (|HasCategory| |#4| (QUOTE (-840))) (-2198 (|HasCategory| |#4| (QUOTE (-788))) (|HasCategory| |#4| (QUOTE (-840)))) (|HasCategory| |#4| (QUOTE (-716))) (|HasCategory| |#4| (QUOTE (-172))) (-2198 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-365))) (|HasCategory| |#4| (QUOTE (-1047)))) (-2198 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-365)))) (-2198 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-1047)))) (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#4| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#4| (QUOTE (-225))) (-2198 (|HasCategory| |#4| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#4| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-225))) (|HasCategory| |#4| (QUOTE (-1047)))) (|HasCategory| |#4| (QUOTE (-1090))) (|HasCategory| (-568) (QUOTE (-842))) (-12 (|HasCategory| |#4| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#4| (QUOTE (-1047)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#4| (QUOTE (-1047)))) (-12 (|HasCategory| |#4| (QUOTE (-225))) (|HasCategory| |#4| (QUOTE (-1047)))) (-2198 (-12 (|HasCategory| |#4| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#4| (QUOTE (-1047)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#4| (QUOTE (-1047)))) (-12 (|HasCategory| |#4| (QUOTE (-225))) (|HasCategory| |#4| (QUOTE (-1047)))) (|HasCategory| |#4| (QUOTE (-716)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#4| (QUOTE (-1090)))) (-2198 (-12 (|HasCategory| |#4| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#4| (LIST (QUOTE -1037) (QUOTE (-568))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#4| (LIST (QUOTE -1037) (QUOTE (-568))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#4| (QUOTE (-172)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#4| (QUOTE (-225)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#4| (QUOTE (-365)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#4| (QUOTE (-370)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#4| (QUOTE (-716)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#4| (QUOTE (-788)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#4| (QUOTE (-840)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#4| (QUOTE (-1047)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#4| (QUOTE (-1090))))) (-2198 (-12 (|HasCategory| |#4| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#4| (QUOTE (-1090)))) (|HasCategory| |#4| (QUOTE (-1047)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#4| (QUOTE (-1090)))) (-2198 (-12 (|HasCategory| |#4| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#4| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#4| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#4| (QUOTE (-172)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#4| (QUOTE (-225)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#4| (QUOTE (-365)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#4| (QUOTE (-370)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#4| (QUOTE (-716)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#4| (QUOTE (-788)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#4| (QUOTE (-840)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#4| (QUOTE (-1047)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#4| (QUOTE (-1090))))) (-2198 (|HasAttribute| |#4| (QUOTE -4516)) (-12 (|HasCategory| |#4| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#4| (QUOTE (-1047)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#4| (QUOTE (-1047)))) (-12 (|HasCategory| |#4| (QUOTE (-225))) (|HasCategory| |#4| (QUOTE (-1047))))) (|HasCategory| |#4| (QUOTE (-137))) (|HasCategory| |#4| (QUOTE (-25))) (-12 (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (-1090)))) (-2198 (-12 (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -630) (QUOTE (-568))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -895) (QUOTE (-1161))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (-172)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (-225)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (-365)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (-370)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (-716)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (-788)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (-840)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (-1047)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (-1090)))))) +(-244 |n| R S) ((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view."))) -((-4502 -2318 (-2256 (|has| |#3| (-1039)) (|has| |#3| (-221))) (-2256 (|has| |#3| (-1039)) (|has| |#3| (-887 (-1153)))) (|has| |#3| (-6 -4502)) (-2256 (|has| |#3| (-1039)) (|has| |#3| (-622 (-560))))) (-4499 |has| |#3| (-1039)) (-4500 |has| |#3| (-1039)) ((-4507 "*") |has| |#3| (-170)) (-4505 . T)) -((|HasCategory| |#3| (QUOTE (-359))) (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (QUOTE (-780))) (|HasCategory| |#3| (QUOTE (-832))) (-2318 (|HasCategory| |#3| (QUOTE (-780))) (|HasCategory| |#3| (QUOTE (-832)))) (|HasCategory| |#3| (QUOTE (-708))) (|HasCategory| |#3| (QUOTE (-170))) (-2318 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-359))) (|HasCategory| |#3| (QUOTE (-1039)))) (-2318 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-359)))) (-2318 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-1039)))) (|HasCategory| |#3| (QUOTE (-364))) (|HasCategory| |#3| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#3| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#3| (QUOTE (-221))) (-2318 (|HasCategory| |#3| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#3| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-221))) (|HasCategory| |#3| (QUOTE (-1039)))) (|HasCategory| |#3| (QUOTE (-1082))) (|HasCategory| (-560) (QUOTE (-834))) (-12 (|HasCategory| |#3| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-1039)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#3| (QUOTE (-1039)))) (-12 (|HasCategory| |#3| (QUOTE (-221))) (|HasCategory| |#3| (QUOTE (-1039)))) (-2318 (-12 (|HasCategory| |#3| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-1039)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#3| (QUOTE (-1039)))) (-12 (|HasCategory| |#3| (QUOTE (-221))) (|HasCategory| |#3| (QUOTE (-1039)))) (|HasCategory| |#3| (QUOTE (-708)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-1082)))) (-2318 (-12 (|HasCategory| |#3| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#3| (LIST (QUOTE -1029) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#3| (LIST (QUOTE -1029) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-170)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-221)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-359)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-364)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-708)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-780)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-832)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-1039)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-1082))))) (-2318 (-12 (|HasCategory| |#3| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-1082)))) (|HasCategory| |#3| (QUOTE (-1039)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1082)))) (-2318 (-12 (|HasCategory| |#3| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#3| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#3| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-170)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-221)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-359)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-364)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-708)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-780)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-832)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1039)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1082))))) (-2318 (|HasAttribute| |#3| (QUOTE -4502)) (-12 (|HasCategory| |#3| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-1039)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#3| (QUOTE (-1039)))) (-12 (|HasCategory| |#3| (QUOTE (-221))) (|HasCategory| |#3| (QUOTE (-1039))))) (|HasCategory| |#3| (QUOTE (-137))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (LIST (QUOTE -298) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-1082)))) (-2318 (-12 (|HasCategory| |#3| (LIST (QUOTE -298) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -622) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -298) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -887) (QUOTE (-1153))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -298) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-170)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -298) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-221)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -298) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-359)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -298) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-364)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -298) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-708)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -298) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-780)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -298) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-832)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -298) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-1039)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -298) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-1082)))))) -(-240 A R S V E) +((-4516 -2198 (-2139 (|has| |#3| (-1047)) (|has| |#3| (-225))) (-2139 (|has| |#3| (-1047)) (|has| |#3| (-895 (-1161)))) (|has| |#3| (-6 -4516)) (-2139 (|has| |#3| (-1047)) (|has| |#3| (-630 (-568))))) (-4513 |has| |#3| (-1047)) (-4514 |has| |#3| (-1047)) ((-4521 "*") |has| |#3| (-172)) (-4519 . T)) +((|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1047))) (|HasCategory| |#3| (QUOTE (-788))) (|HasCategory| |#3| (QUOTE (-840))) (-2198 (|HasCategory| |#3| (QUOTE (-788))) (|HasCategory| |#3| (QUOTE (-840)))) (|HasCategory| |#3| (QUOTE (-716))) (|HasCategory| |#3| (QUOTE (-172))) (-2198 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1047)))) (-2198 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365)))) (-2198 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-1047)))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#3| (QUOTE (-225))) (-2198 (|HasCategory| |#3| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-225))) (|HasCategory| |#3| (QUOTE (-1047)))) (|HasCategory| |#3| (QUOTE (-1090))) (|HasCategory| (-568) (QUOTE (-842))) (-12 (|HasCategory| |#3| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#3| (QUOTE (-1047)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#3| (QUOTE (-1047)))) (-12 (|HasCategory| |#3| (QUOTE (-225))) (|HasCategory| |#3| (QUOTE (-1047)))) (-2198 (-12 (|HasCategory| |#3| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#3| (QUOTE (-1047)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#3| (QUOTE (-1047)))) (-12 (|HasCategory| |#3| (QUOTE (-225))) (|HasCategory| |#3| (QUOTE (-1047)))) (|HasCategory| |#3| (QUOTE (-716)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#3| (QUOTE (-1090)))) (-2198 (-12 (|HasCategory| |#3| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#3| (LIST (QUOTE -1037) (QUOTE (-568))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#3| (LIST (QUOTE -1037) (QUOTE (-568))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#3| (QUOTE (-172)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#3| (QUOTE (-225)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#3| (QUOTE (-365)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#3| (QUOTE (-370)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#3| (QUOTE (-716)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#3| (QUOTE (-788)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#3| (QUOTE (-840)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#3| (QUOTE (-1047)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#3| (QUOTE (-1090))))) (-2198 (-12 (|HasCategory| |#3| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#3| (QUOTE (-1090)))) (|HasCategory| |#3| (QUOTE (-1047)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#3| (QUOTE (-1090)))) (-2198 (-12 (|HasCategory| |#3| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#3| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#3| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#3| (QUOTE (-172)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#3| (QUOTE (-225)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#3| (QUOTE (-365)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#3| (QUOTE (-370)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#3| (QUOTE (-716)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#3| (QUOTE (-788)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#3| (QUOTE (-840)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#3| (QUOTE (-1047)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#3| (QUOTE (-1090))))) (-2198 (|HasAttribute| |#3| (QUOTE -4516)) (-12 (|HasCategory| |#3| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#3| (QUOTE (-1047)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#3| (QUOTE (-1047)))) (-12 (|HasCategory| |#3| (QUOTE (-225))) (|HasCategory| |#3| (QUOTE (-1047))))) (|HasCategory| |#3| (QUOTE (-137))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-1090)))) (-2198 (-12 (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -630) (QUOTE (-568))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1161))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-172)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-225)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-365)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-370)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-716)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-788)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-840)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-1047)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-1090)))))) +(-245 A R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates.")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note that an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note that In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note that In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) NIL -((|HasCategory| |#2| (QUOTE (-221)))) -(-241 R S V E) +((|HasCategory| |#2| (QUOTE (-225)))) +(-246 R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates.")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note that an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note that In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note that In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) -(((-4507 "*") |has| |#1| (-170)) (-4498 |has| |#1| (-550)) (-4503 |has| |#1| (-6 -4503)) (-4500 . T) (-4499 . T) (-4502 . T)) +(((-4521 "*") |has| |#1| (-172)) (-4512 |has| |#1| (-558)) (-4517 |has| |#1| (-6 -4517)) (-4514 . T) (-4513 . T) (-4516 . T)) NIL -(-242 S) +(-247 S) ((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note that \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}."))) -((-4505 . T) (-4506 . T) (-2537 . T)) +((-4519 . T) (-4520 . T) (-3973 . T)) NIL -(-243) +(-248) ((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g),{}a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) NIL NIL -(-244 R |Ex|) +(-249 R |Ex|) ((|constructor| (NIL "TopLevelDrawFunctionsForAlgebraicCurves provides top level functions for drawing non-singular algebraic curves.")) (|draw| (((|TwoDimensionalViewport|) (|Equation| |#2|) (|Symbol|) (|Symbol|) (|List| (|DrawOption|))) "\\spad{draw(f(x,{}y) = g(x,{}y),{}x,{}y,{}l)} draws the graph of a polynomial equation. The list \\spad{l} of draw options must specify a region in the plane in which the curve is to sketched."))) NIL NIL -(-245) +(-250) ((|constructor| (NIL "\\axiomType{DrawComplex} provides some facilities for drawing complex functions.")) (|setClipValue| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{setClipValue(x)} sets to \\spad{x} the maximum value to plot when drawing complex functions. Returns \\spad{x}.")) (|setImagSteps| (((|Integer|) (|Integer|)) "\\spad{setImagSteps(i)} sets to \\spad{i} the number of steps to use in the imaginary direction when drawing complex functions. Returns \\spad{i}.")) (|setRealSteps| (((|Integer|) (|Integer|)) "\\spad{setRealSteps(i)} sets to \\spad{i} the number of steps to use in the real direction when drawing complex functions. Returns \\spad{i}.")) (|drawComplexVectorField| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{drawComplexVectorField(f,{}rRange,{}iRange)} draws a complex vector field using arrows on the \\spad{x--y} plane. These vector fields should be viewed from the top by pressing the \"XY\" translate button on the 3-\\spad{d} viewport control panel. Sample call: \\indented{3}{\\spad{f z == sin z}} \\indented{3}{\\spad{drawComplexVectorField(f,{} -2..2,{} -2..2)}} Parameter descriptions: \\indented{2}{\\spad{f} : the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of the imaginary values} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction.")) (|drawComplex| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Boolean|)) "\\spad{drawComplex(f,{}rRange,{}iRange,{}arrows?)} draws a complex function as a height field. It uses the complex norm as the height and the complex argument as the color. It will optionally draw arrows on the surface indicating the direction of the complex value. Sample call: \\indented{2}{\\spad{f z == exp(1/z)}} \\indented{2}{\\spad{drawComplex(f,{} 0.3..3,{} 0..2*\\%\\spad{pi},{} false)}} Parameter descriptions: \\indented{2}{\\spad{f:}\\space{2}the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of imaginary values} \\indented{2}{\\spad{arrows?} : a flag indicating whether to draw the phase arrows for \\spad{f}} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction."))) NIL NIL -(-246 R) +(-251 R) ((|constructor| (NIL "Hack for the draw interface. DrawNumericHack provides a \"coercion\" from something of the form \\spad{x = a..b} where \\spad{a} and \\spad{b} are formal expressions to a binding of the form \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}. This \"coercion\" fails if \\spad{a} and \\spad{b} contains symbolic variables,{} but is meant for expressions involving \\%\\spad{pi}. Note that this package is meant for internal use only.")) (|coerce| (((|SegmentBinding| (|Float|)) (|SegmentBinding| (|Expression| |#1|))) "\\spad{coerce(x = a..b)} returns \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}."))) NIL NIL -(-247 |Ex|) +(-252 |Ex|) ((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),{}x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),{}x = a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) NIL NIL -(-248) +(-253) ((|constructor| (NIL "TopLevelDrawFunctionsForPoints provides top level functions for drawing curves and surfaces described by sets of points.")) (|draw| (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,{}ly,{}lz,{}l)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,{}ly,{}lz)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the \\axiom{\\spad{lx} \\spad{x} \\spad{ly}}.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|))) (|List| (|DrawOption|))) "\\spad{draw(lp,{}l)} plots the curve constructed from the list of points \\spad{lp}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|)))) "\\spad{draw(lp)} plots the curve constructed from the list of points \\spad{lp}.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,{}ly,{}l)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,{}ly)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}."))) NIL NIL -(-249) +(-254) ((|constructor| (NIL "This package has no description")) (|units| (((|List| (|Float|)) (|List| (|DrawOption|)) (|List| (|Float|))) "\\spad{units(l,{}u)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{unit}. If the option does not exist the value,{} \\spad{u} is returned.")) (|coord| (((|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{coord}. If the option does not exist the value,{} \\spad{p} is returned.")) (|tubeRadius| (((|Float|) (|List| (|DrawOption|)) (|Float|)) "\\spad{tubeRadius(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubeRadius}. If the option does not exist the value,{} \\spad{n} is returned.")) (|tubePoints| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{tubePoints(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubePoints}. If the option does not exist the value,{} \\spad{n} is returned.")) (|space| (((|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{space(l)} takes a list of draw options,{} \\spad{l},{} and checks to see if it contains the option \\spad{space}. If the the option doesn\\spad{'t} exist,{} then an empty space is returned.")) (|var2Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var2Steps(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var2Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|var1Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var1Steps(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var1Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|ranges| (((|List| (|Segment| (|Float|))) (|List| (|DrawOption|)) (|List| (|Segment| (|Float|)))) "\\spad{ranges(l,{}r)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{ranges}. If the option does not exist the value,{} \\spad{r} is returned.")) (|curveColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{curveColorPalette(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{curveColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|pointColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{pointColorPalette(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{pointColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|toScale| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{toScale(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{toScale}. If the option does not exist the value,{} \\spad{b} is returned.")) (|style| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{style(l,{}s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{style}. If the option does not exist the value,{} \\spad{s} is returned.")) (|title| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{title(l,{}s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{title}. If the option does not exist the value,{} \\spad{s} is returned.")) (|viewpoint| (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(l,{}ls)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{viewpoint}. IF the option does not exist,{} the value \\spad{ls} is returned.")) (|clipBoolean| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{clipBoolean(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{clipBoolean}. If the option does not exist the value,{} \\spad{b} is returned.")) (|adaptive| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{adaptive(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{adaptive}. If the option does not exist the value,{} \\spad{b} is returned."))) NIL NIL -(-250 S) +(-255 S) ((|constructor| (NIL "This package has no description")) (|option| (((|Union| |#1| "failed") (|List| (|DrawOption|)) (|Symbol|)) "\\spad{option(l,{}s)} determines whether the indicated drawing option,{} \\spad{s},{} is contained in the list of drawing options,{} \\spad{l},{} which is defined by the draw command."))) NIL NIL -(-251) +(-256) ((|constructor| (NIL "DrawOption allows the user to specify defaults for the creation and rendering of plots.")) (|option?| (((|Boolean|) (|List| $) (|Symbol|)) "\\spad{option?()} is not to be used at the top level; option? internally returns \\spad{true} for drawing options which are indicated in a draw command,{} or \\spad{false} for those which are not.")) (|option| (((|Union| (|Any|) "failed") (|List| $) (|Symbol|)) "\\spad{option()} is not to be used at the top level; option determines internally which drawing options are indicated in a draw command.")) (|unit| (($ (|List| (|Float|))) "\\spad{unit(lf)} will mark off the units according to the indicated list \\spad{lf}. This option is expressed in the form \\spad{unit == [f1,{}f2]}.")) (|coord| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(p)} specifies a change of coordinates of point \\spad{p}. This option is expressed in the form \\spad{coord == p}.")) (|tubePoints| (($ (|PositiveInteger|)) "\\spad{tubePoints(n)} specifies the number of points,{} \\spad{n},{} defining the circle which creates the tube around a 3D curve,{} the default is 6. This option is expressed in the form \\spad{tubePoints == n}.")) (|var2Steps| (($ (|PositiveInteger|)) "\\spad{var2Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the second range variable. This option is expressed in the form \\spad{var2Steps == n}.")) (|var1Steps| (($ (|PositiveInteger|)) "\\spad{var1Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the first range variable. This option is expressed in the form \\spad{var1Steps == n}.")) (|space| (($ (|ThreeSpace| (|DoubleFloat|))) "\\spad{space specifies} the space into which we will draw. If none is given then a new space is created.")) (|ranges| (($ (|List| (|Segment| (|Float|)))) "\\spad{ranges(l)} provides a list of user-specified ranges \\spad{l}. This option is expressed in the form \\spad{ranges == l}.")) (|range| (($ (|List| (|Segment| (|Fraction| (|Integer|))))) "\\spad{range([i])} provides a user-specified range \\spad{i}. This option is expressed in the form \\spad{range == [i]}.") (($ (|List| (|Segment| (|Float|)))) "\\spad{range([l])} provides a user-specified range \\spad{l}. This option is expressed in the form \\spad{range == [l]}.")) (|tubeRadius| (($ (|Float|)) "\\spad{tubeRadius(r)} specifies a radius,{} \\spad{r},{} for a tube plot around a 3D curve; is expressed in the form \\spad{tubeRadius == 4}.")) (|colorFunction| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(x,{}y,{}z))} specifies the color for three dimensional plots as a function of \\spad{x},{} \\spad{y},{} and \\spad{z} coordinates. This option is expressed in the form \\spad{colorFunction == f(x,{}y,{}z)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(u,{}v))} specifies the color for three dimensional plots as a function based upon the two parametric variables. This option is expressed in the form \\spad{colorFunction == f(u,{}v)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(z))} specifies the color based upon the \\spad{z}-component of three dimensional plots. This option is expressed in the form \\spad{colorFunction == f(z)}.")) (|curveColor| (($ (|Palette|)) "\\spad{curveColor(p)} specifies a color index for 2D graph curves from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{curveColor ==p}.") (($ (|Float|)) "\\spad{curveColor(v)} specifies a color,{} \\spad{v},{} for 2D graph curves. This option is expressed in the form \\spad{curveColor == v}.")) (|pointColor| (($ (|Palette|)) "\\spad{pointColor(p)} specifies a color index for 2D graph points from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{pointColor == p}.") (($ (|Float|)) "\\spad{pointColor(v)} specifies a color,{} \\spad{v},{} for 2D graph points. This option is expressed in the form \\spad{pointColor == v}.")) (|coordinates| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coordinates(p)} specifies a change of coordinate systems of point \\spad{p}. This option is expressed in the form \\spad{coordinates == p}.")) (|toScale| (($ (|Boolean|)) "\\spad{toScale(b)} specifies whether or not a plot is to be drawn to scale; if \\spad{b} is \\spad{true} it is drawn to scale,{} if \\spad{b} is \\spad{false} it is not. This option is expressed in the form \\spad{toScale == b}.")) (|style| (($ (|String|)) "\\spad{style(s)} specifies the drawing style in which the graph will be plotted by the indicated string \\spad{s}. This option is expressed in the form \\spad{style == s}.")) (|title| (($ (|String|)) "\\spad{title(s)} specifies a title for a plot by the indicated string \\spad{s}. This option is expressed in the form \\spad{title == s}.")) (|viewpoint| (($ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(vp)} creates a viewpoint data structure corresponding to the list of values. The values are interpreted as [theta,{} phi,{} scale,{} scaleX,{} scaleY,{} scaleZ,{} deltaX,{} deltaY]. This option is expressed in the form \\spad{viewpoint == ls}.")) (|clip| (($ (|List| (|Segment| (|Float|)))) "\\spad{clip([l])} provides ranges for user-defined clipping as specified in the list \\spad{l}. This option is expressed in the form \\spad{clip == [l]}.") (($ (|Boolean|)) "\\spad{clip(b)} turns 2D clipping on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{clip == b}.")) (|adaptive| (($ (|Boolean|)) "\\spad{adaptive(b)} turns adaptive 2D plotting on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{adaptive == b}."))) NIL NIL -(-252 R S V) +(-257 R S V) ((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}."))) -(((-4507 "*") |has| |#1| (-170)) (-4498 |has| |#1| (-550)) (-4503 |has| |#1| (-6 -4503)) (-4500 . T) (-4499 . T) (-4502 . T)) -((|HasCategory| |#1| (QUOTE (-896))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-170))) (-2318 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -873) (QUOTE (-375)))) (|HasCategory| |#3| (LIST (QUOTE -873) (QUOTE (-375))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -873) (QUOTE (-560)))) (|HasCategory| |#3| (LIST (QUOTE -873) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-375))))) (|HasCategory| |#3| (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-375)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-560))))) (|HasCategory| |#3| (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| |#3| (LIST (QUOTE -601) (QUOTE (-533))))) (|HasCategory| |#1| (QUOTE (-834))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-221))) (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#1| (QUOTE (-359))) (-2318 (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560)))))) (|HasAttribute| |#1| (QUOTE -4503)) (|HasCategory| |#1| (QUOTE (-447))) (-2318 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-447))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-896)))) (-2318 (|HasCategory| |#1| (QUOTE (-447))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-896)))) (-2318 (|HasCategory| |#1| (QUOTE (-447))) (|HasCategory| |#1| (QUOTE (-896)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-896)))) (-2318 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-896)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-253 S) -((|tree| (($ (|List| |#1|)) "\\spad{tree(l)} creates a chain tree from the list \\spad{l}") (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ |#1| (|List| $)) "\\spad{tree(nd,{}ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) -((-4505 . T) (-4506 . T) (-2537 . T)) +(((-4521 "*") |has| |#1| (-172)) (-4512 |has| |#1| (-558)) (-4517 |has| |#1| (-6 -4517)) (-4514 . T) (-4513 . T) (-4516 . T)) +((|HasCategory| |#1| (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2198 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-381)))) (|HasCategory| |#3| (LIST (QUOTE -881) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-568)))) (|HasCategory| |#3| (LIST (QUOTE -881) (QUOTE (-568))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-381))))) (|HasCategory| |#3| (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-568))))) (|HasCategory| |#3| (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-568)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| |#3| (LIST (QUOTE -609) (QUOTE (-541))))) (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-150))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#1| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (QUOTE (-225))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#1| (QUOTE (-365))) (-2198 (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568)))))) (|HasAttribute| |#1| (QUOTE -4517)) (|HasCategory| |#1| (QUOTE (-453))) (-2198 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-904)))) (-2198 (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-904)))) (-2198 (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-904)))) (-12 (|HasCategory| $ (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-904)))) (-2198 (-12 (|HasCategory| $ (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-148))))) +(-258 S) +((|constructor| (NIL "This category is part of the PAFF package")) (|tree| (($ (|List| |#1|)) "\\spad{tree(l)} creates a chain tree from the list \\spad{l}") (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ |#1| (|List| $)) "\\spad{tree(nd,{}ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) +((-4519 . T) (-4520 . T) (-3973 . T)) NIL -(-254 S) +(-259 S) ((|constructor| (NIL "This category is part of the PAFF package")) (|fullOutput| (((|Boolean|)) "\\spad{fullOutput returns} the value of the flag set by fullOutput(\\spad{b}).") (((|Boolean|) (|Boolean|)) "\\spad{fullOutput(b)} sets a flag such that when \\spad{true},{} a coerce to OutputForm yields the full output of \\spad{tr},{} otherwise encode(\\spad{tr}) is output (see encode function). The default is \\spad{false}.")) (|fullOut| (((|OutputForm|) $) "\\spad{fullOut(tr)} yields a full output of \\spad{tr} (see function fullOutput).")) (|encode| (((|String|) $) "\\spad{encode(t)} returns a string indicating the \"shape\" of the tree"))) -((-4505 . T) (-4506 . T)) -((|HasCategory| |#1| (QUOTE (-1082))) (-12 (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1082))))) -(-255 K |symb| |PolyRing| E |ProjPt| PCS |Plc| DIVISOR |InfClsPoint| |DesTree| BLMET) +((-4519 . T) (-4520 . T)) +((|HasCategory| |#1| (QUOTE (-1090))) (-12 (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1090))))) +(-260 K |symb| |PolyRing| E |ProjPt| PCS |Plc| DIVISOR |InfClsPoint| |DesTree| BLMET) ((|constructor| (NIL "\\indented{1}{The following is all the categories,{} domains and package} used for the desingularisation be means of monoidal transformation (Blowing-up)")) (|genusTreeNeg| (((|Integer|) (|NonNegativeInteger|) (|List| |#10|)) "\\spad{genusTreeNeg(n,{}listOfTrees)} computes the \"genus\" of a curve that may be not absolutly irreducible,{} where \\spad{n} is the degree of a polynomial pol defining the curve and \\spad{listOfTrees} is all the desingularisation trees at all singular points on the curve defined by pol. A \"negative\" genus means that the curve is reducible \\spad{!!}.")) (|genusTree| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|List| |#10|)) "\\spad{genusTree(n,{}listOfTrees)} computes the genus of a curve,{} where \\spad{n} is the degree of a polynomial pol defining the curve and \\spad{listOfTrees} is all the desingularisation trees at all singular points on the curve defined by pol.")) (|genusNeg| (((|Integer|) |#3|) "\\spad{genusNeg(pol)} computes the \"genus\" of a curve that may be not absolutly irreducible. A \"negative\" genus means that the curve is reducible \\spad{!!}.")) (|genus| (((|NonNegativeInteger|) |#3|) "\\spad{genus(pol)} computes the genus of the curve defined by \\spad{pol}.")) (|initializeParamOfPlaces| (((|Void|) |#10| (|List| |#3|)) "initParLocLeaves(\\spad{tr},{}listOfFnc) initialize the local parametrization at places corresponding to the leaves of \\spad{tr} according to the given list of functions in listOfFnc.") (((|Void|) |#10|) "initParLocLeaves(\\spad{tr}) initialize the local parametrization at places corresponding to the leaves of \\spad{tr}.")) (|initParLocLeaves| (((|Void|) |#10|) "\\spad{initParLocLeaves(tr)} initialize the local parametrization at simple points corresponding to the leaves of \\spad{tr}.")) (|fullParamInit| (((|Void|) |#10|) "\\spad{fullParamInit(tr)} initialize the local parametrization at all places (leaves of \\spad{tr}),{} computes the local exceptional divisor at each infinytly close points in the tree. This function is equivalent to the following called: initParLocLeaves(\\spad{tr}) initializeParamOfPlaces(\\spad{tr}) blowUpWithExcpDiv(\\spad{tr})")) (|desingTree| (((|List| |#10|) |#3|) "\\spad{desingTree(pol)} returns all the desingularisation trees of all singular points on the curve defined by \\spad{pol}.")) (|desingTreeAtPoint| ((|#10| |#5| |#3|) "\\spad{desingTreeAtPoint(pt,{}pol)} computes the desingularisation tree at the point \\spad{pt} on the curve defined by \\spad{pol}. This function recursively compute the tree.")) (|adjunctionDivisor| ((|#8| |#10|) "\\spad{adjunctionDivisor(tr)} compute the local adjunction divisor of a desingularisation tree \\spad{tr} of a singular point.")) (|divisorAtDesingTree| ((|#8| |#3| |#10|) "\\spad{divisorAtDesingTree(f,{}tr)} computes the local divisor of \\spad{f} at a desingularisation tree \\spad{tr} of a singular point."))) NIL NIL -(-256 A S) +(-261 A S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note that in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL NIL -(-257 S) +(-262 S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note that in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#1| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#1| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL NIL -(-258) +(-263) ((|constructor| (NIL "\\axiomType{e04AgentsPackage} is a package of numerical agents to be used to investigate attributes of an input function so as to decide the \\axiomFun{measure} of an appropriate numerical optimization routine.")) (|optAttributes| (((|List| (|String|)) (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{optAttributes(o)} is a function for supplying a list of attributes of an optimization problem.")) (|expenseOfEvaluation| (((|Float|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{expenseOfEvaluation(o)} returns the intensity value of the cost of evaluating the input set of functions. This is in terms of the number of ``operational units\\spad{''}. It returns a value in the range [0,{}1].")) (|changeNameToObjf| (((|Result|) (|Symbol|) (|Result|)) "\\spad{changeNameToObjf(s,{}r)} changes the name of item \\axiom{\\spad{s}} in \\axiom{\\spad{r}} to objf.")) (|varList| (((|List| (|Symbol|)) (|Expression| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{varList(e,{}n)} returns a list of \\axiom{\\spad{n}} indexed variables with name as in \\axiom{\\spad{e}}.")) (|variables| (((|List| (|Symbol|)) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{variables(args)} returns the list of variables in \\axiom{\\spad{args}.\\spad{lfn}}")) (|quadratic?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{quadratic?(e)} tests if \\axiom{\\spad{e}} is a quadratic function.")) (|nonLinearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{nonLinearPart(l)} returns the list of non-linear functions of \\spad{l}.")) (|linearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linearPart(l)} returns the list of linear functions of \\axiom{\\spad{l}}.")) (|linearMatrix| (((|Matrix| (|DoubleFloat|)) (|List| (|Expression| (|DoubleFloat|))) (|NonNegativeInteger|)) "\\spad{linearMatrix(l,{}n)} returns a matrix of coefficients of the linear functions in \\axiom{\\spad{l}}. If \\spad{l} is empty,{} the matrix has at least one row.")) (|linear?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{linear?(e)} tests if \\axiom{\\spad{e}} is a linear function.") (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linear?(l)} returns \\spad{true} if all the bounds \\spad{l} are either linear or simple.")) (|simpleBounds?| (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{simpleBounds?(l)} returns \\spad{true} if the list of expressions \\spad{l} are simple.")) (|splitLinear| (((|Expression| (|DoubleFloat|)) (|Expression| (|DoubleFloat|))) "\\spad{splitLinear(f)} splits the linear part from an expression which it returns.")) (|sumOfSquares| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{sumOfSquares(f)} returns either an expression for which the square is the original function of \"failed\".")) (|sortConstraints| (((|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|))))) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{sortConstraints(args)} uses a simple bubblesort on the list of constraints using the degree of the expression on which to sort. Of course,{} it must match the bounds to the constraints.")) (|finiteBound| (((|List| (|DoubleFloat|)) (|List| (|OrderedCompletion| (|DoubleFloat|))) (|DoubleFloat|)) "\\spad{finiteBound(l,{}b)} repaces all instances of an infinite entry in \\axiom{\\spad{l}} by a finite entry \\axiom{\\spad{b}} or \\axiom{\\spad{-b}}."))) NIL NIL -(-259) +(-264) ((|constructor| (NIL "\\axiomType{e04dgfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04DGF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04DGF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-260) +(-265) ((|constructor| (NIL "\\axiomType{e04fdfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04FDF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04FDF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-261) +(-266) ((|constructor| (NIL "\\axiomType{e04gcfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04GCF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04GCF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-262) +(-267) ((|constructor| (NIL "\\axiomType{e04jafAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04JAF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04JAF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-263) +(-268) ((|constructor| (NIL "\\axiomType{e04mbfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04MBF,{} an optimization routine for Linear functions. The function \\axiomFun{measure} measures the usefulness of the routine E04MBF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-264) +(-269) ((|constructor| (NIL "\\axiomType{e04nafAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04NAF,{} an optimization routine for Quadratic functions. The function \\axiomFun{measure} measures the usefulness of the routine E04NAF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-265) +(-270) ((|constructor| (NIL "\\axiomType{e04ucfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04UCF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04UCF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-266) +(-271) ((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1."))) NIL NIL -(-267 R -1333) +(-272 R -1478) ((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,{}l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{\\spad{pi}()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}"))) NIL NIL -(-268 R -1333) +(-273 R -1478) ((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,{}a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f,{} k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,{}...,{}kn],{}f,{}x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,{}x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f,{} x)} returns \\spad{[g,{} [k1,{}...,{}kn],{} [h1,{}...,{}hn]]} such that \\spad{g = normalize(f,{} x)} and each \\spad{\\spad{ki}} was rewritten as \\spad{\\spad{hi}} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f,{} x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels."))) NIL NIL -(-269 |Coef| UTS ULS) +(-274 |Coef| UTS ULS) ((|constructor| (NIL "This package provides elementary functions on any Laurent series domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of Laurent series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of Laurent series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of Laurent series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of Laurent series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of Laurent series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of Laurent series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of Laurent series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of Laurent series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of Laurent series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of Laurent series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of Laurent series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of Laurent series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of Laurent series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of Laurent series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of Laurent series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of Laurent series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of Laurent series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of Laurent series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of Laurent series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of Laurent series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of Laurent series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of Laurent series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of Laurent series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of Laurent series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of Laurent series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of Laurent series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{s ** r} raises a Laurent series \\spad{s} to a rational power \\spad{r}"))) NIL -((|HasCategory| |#1| (QUOTE (-359)))) -(-270 |Coef| ULS UPXS EFULS) +((|HasCategory| |#1| (QUOTE (-365)))) +(-275 |Coef| ULS UPXS EFULS) ((|constructor| (NIL "This package provides elementary functions on any Laurent series domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of a Puiseux series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of a Puiseux series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of a Puiseux series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of a Puiseux series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of a Puiseux series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of a Puiseux series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of a Puiseux series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of a Puiseux series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of a Puiseux series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of a Puiseux series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of a Puiseux series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of a Puiseux series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of a Puiseux series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of a Puiseux series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of a Puiseux series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of a Puiseux series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of a Puiseux series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of a Puiseux series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of a Puiseux series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of a Puiseux series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of a Puiseux series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of a Puiseux series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{z ** r} raises a Puiseaux series \\spad{z} to a rational power \\spad{r}"))) NIL -((|HasCategory| |#1| (QUOTE (-359)))) -(-271 A S) +((|HasCategory| |#1| (QUOTE (-365)))) +(-276 A S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\indented{1}{delete!(\\spad{u},{}\\spad{i}) destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.} \\blankline \\spad{E} Data:=Record(age:Integer,{}gender:String) \\spad{E} a1:AssociationList(String,{}Data):=table() \\spad{E} \\spad{a1}.\"tim\":=[55,{}\"male\"]\\$Data \\spad{E} delete!(\\spad{a1},{}1)")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) NIL -((|HasCategory| |#2| (QUOTE (-834))) (|HasCategory| |#2| (QUOTE (-1082)))) -(-272 S) +((|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-1090)))) +(-277 S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\indented{1}{delete!(\\spad{u},{}\\spad{i}) destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.} \\blankline \\spad{E} Data:=Record(age:Integer,{}gender:String) \\spad{E} a1:AssociationList(String,{}Data):=table() \\spad{E} \\spad{a1}.\"tim\":=[55,{}\"male\"]\\$Data \\spad{E} delete!(\\spad{a1},{}1)")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) -((-4506 . T) (-2537 . T)) +((-4520 . T) (-3973 . T)) NIL -(-273 S) +(-278 S) ((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}."))) NIL NIL -(-274) +(-279) ((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}."))) NIL NIL -(-275 |Coef| UTS) +(-280 |Coef| UTS) ((|constructor| (NIL "The elliptic functions \\spad{sn},{} \\spad{sc} and \\spad{dn} are expanded as Taylor series.")) (|sncndn| (((|List| (|Stream| |#1|)) (|Stream| |#1|) |#1|) "\\spad{sncndn(s,{}c)} is used internally.")) (|dn| ((|#2| |#2| |#1|) "\\spad{dn(x,{}k)} expands the elliptic function \\spad{dn} as a Taylor \\indented{1}{series.}")) (|cn| ((|#2| |#2| |#1|) "\\spad{cn(x,{}k)} expands the elliptic function \\spad{cn} as a Taylor \\indented{1}{series.}")) (|sn| ((|#2| |#2| |#1|) "\\spad{sn(x,{}k)} expands the elliptic function \\spad{sn} as a Taylor \\indented{1}{series.}"))) NIL NIL -(-276 S |Index|) +(-281 S |Index|) ((|constructor| (NIL "An eltable over domains \\spad{D} and \\spad{I} is a structure which can be viewed as a function from \\spad{D} to \\spad{I}. Examples of eltable structures range from data structures,{} \\spadignore{e.g.} those of type \\spadtype{List},{} to algebraic structures like \\spadtype{Polynomial}.")) (|elt| ((|#2| $ |#1|) "\\spad{elt(u,{}i)} (also written: \\spad{u} . \\spad{i}) returns the element of \\spad{u} indexed by \\spad{i}. Error: if \\spad{i} is not an index of \\spad{u}."))) NIL NIL -(-277 S |Dom| |Im|) +(-282 S |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain Dom to an image domain Im.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL -((|HasAttribute| |#1| (QUOTE -4506))) -(-278 |Dom| |Im|) +((|HasAttribute| |#1| (QUOTE -4520))) +(-283 |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain Dom to an image domain Im.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL NIL -(-279 S R |Mod| -2512 -2492 |exactQuo|) +(-284 S R |Mod| -3627 -1347 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|elt| ((|#2| $ |#2|) "\\spad{elt(x,{}r)} or \\spad{x}.\\spad{r} is not documented")) (|inv| (($ $) "\\spad{inv(x)} is not documented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} is not documented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} is not documented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,{}m)} is not documented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} is not documented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} is not documented"))) -((-4498 . T) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) +((-4512 . T) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) NIL -(-280) +(-285) ((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline Axioms\\spad{\\br} \\tab{5}\\spad{ab=0 => a=0 or b=0} \\spad{--} known as noZeroDivisors\\spad{\\br} \\tab{5}\\spad{not(1=0)}")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero."))) -((-4498 . T) (-4499 . T) (-4500 . T) (-4502 . T)) +((-4512 . T) (-4513 . T) (-4514 . T) (-4516 . T)) NIL -(-281 R) +(-286 R) ((|constructor| (NIL "This is a package for the exact computation of eigenvalues and eigenvectors. This package can be made to work for matrices with coefficients which are rational functions over a ring where we can factor polynomials. Rational eigenvalues are always explicitly computed while the non-rational ones are expressed in terms of their minimal polynomial.")) (|eigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvectors(m)} returns the eigenvalues and eigenvectors for the matrix \\spad{m}. The rational eigenvalues and the correspondent eigenvectors are explicitely computed,{} while the non rational ones are given via their minimal polynomial and the corresponding eigenvectors are expressed in terms of a \"generic\" root of such a polynomial.")) (|generalizedEigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |geneigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvectors(m)} returns the generalized eigenvectors of the matrix \\spad{m}.")) (|generalizedEigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvector(eigen,{}m)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{eigen},{} as returned by the function eigenvectors.") (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generalizedEigenvector(alpha,{}m,{}k,{}g)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{alpha}. The integers \\spad{k} and \\spad{g} are respectively the algebraic and the geometric multiplicity of tye eigenvalue \\spad{alpha}. \\spad{alpha} can be either rational or not. In the seconda case apha is the minimal polynomial of the eigenvalue.")) (|eigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvector(eigval,{}m)} returns the eigenvectors belonging to the eigenvalue \\spad{eigval} for the matrix \\spad{m}.")) (|eigenvalues| (((|List| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvalues(m)} returns the eigenvalues of the matrix \\spad{m} which are expressible as rational functions over the rational numbers.")) (|characteristicPolynomial| (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{characteristicPolynomial(m)} returns the characteristicPolynomial of the matrix \\spad{m} using a new generated symbol symbol as the main variable.") (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}var)} returns the characteristicPolynomial of the matrix \\spad{m} using the symbol \\spad{var} as the main variable."))) NIL NIL -(-282 S R) +(-287 S R) ((|constructor| (NIL "This package provides operations for mapping the sides of equations.")) (|map| (((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)) "\\spad{map(f,{}eq)} returns an equation where \\spad{f} is applied to the sides of \\spad{eq}"))) NIL NIL -(-283 S) +(-288 S) ((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,{}eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations \\spad{e1} and \\spad{e2}.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn,{} [x1=v1,{} ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn,{} x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,{}b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation."))) -((-4502 -2318 (|has| |#1| (-1039)) (|has| |#1| (-471))) (-4499 |has| |#1| (-1039)) (-4500 |has| |#1| (-1039))) -((|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (QUOTE (-1039))) (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-1153)))) (-2318 (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#1| (QUOTE (-1039)))) (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (LIST (QUOTE -515) (QUOTE (-1153)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1082)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-291))) (-2318 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-471)))) (-2318 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (QUOTE (-1039)))) (|HasCategory| |#1| (QUOTE (-170))) (-2318 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-1039)))) (-2318 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-359)))) (|HasCategory| |#1| (QUOTE (-708))) (-2318 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (QUOTE (-708)))) (|HasCategory| |#1| (QUOTE (-1094))) (-2318 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (QUOTE (-708))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-21))) (-2318 (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-1039)))) (-2318 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-708)))) (|HasCategory| |#1| (QUOTE (-25))) (-2318 (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-1039)))) (-2318 (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (QUOTE (-708))) (|HasCategory| |#1| (QUOTE (-1039))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-1082))))) -(-284 |Key| |Entry|) +((-4516 -2198 (|has| |#1| (-1047)) (|has| |#1| (-478))) (-4513 |has| |#1| (-1047)) (-4514 |has| |#1| (-1047))) +((|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (QUOTE (-1047))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1161)))) (-2198 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#1| (QUOTE (-1047)))) (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#1| (LIST (QUOTE -523) (QUOTE (-1161)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-296))) (-2198 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-478)))) (-2198 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#1| (QUOTE (-1047)))) (|HasCategory| |#1| (QUOTE (-172))) (-2198 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1047)))) (-2198 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-716))) (-2198 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#1| (QUOTE (-716)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2198 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#1| (QUOTE (-716))) (|HasCategory| |#1| (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-21))) (-2198 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1047)))) (-2198 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-716)))) (|HasCategory| |#1| (QUOTE (-25))) (-2198 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1047)))) (-2198 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#1| (QUOTE (-716))) (|HasCategory| |#1| (QUOTE (-1047))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-1090))))) +(-289 |Key| |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure."))) -((-4505 . T) (-4506 . T)) -((|HasCategory| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (QUOTE (-1082))) (-12 (|HasCategory| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (LIST (QUOTE -298) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3655) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2371) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (QUOTE (-1082)))) (|HasCategory| |#1| (QUOTE (-834))) (|HasCategory| |#2| (QUOTE (-1082))) (-2318 (|HasCategory| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (QUOTE (-1082))) (|HasCategory| |#2| (QUOTE (-1082)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1082))))) -(-285) +((-4519 . T) (-4520 . T)) +((|HasCategory| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (QUOTE (-1090))) (-12 (|HasCategory| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (LIST (QUOTE -303) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3649) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4083) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-1090))) (-2198 (|HasCategory| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (QUOTE (-1090))) (|HasCategory| |#2| (QUOTE (-1090)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1090))))) +(-290) ((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function\\spad{\\br} \\tab{5}\\spad{f x == if x < 0 then error \"negative argument\" else x}\\spad{\\br} the call to error will actually be of the form\\spad{\\br} \\tab{5}\\spad{error(\"f\",{}\"negative argument\")}\\spad{\\br} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them):\\spad{\\br} \\spad{\\%l}\\tab{6}start a new line\\spad{\\br} \\spad{\\%b}\\tab{6}start printing in a bold font (where available)\\spad{\\br} \\spad{\\%d}\\tab{6}stop printing in a bold font (where available)\\spad{\\br} \\spad{\\%ceon}\\tab{3}start centering message lines\\spad{\\br} \\spad{\\%ceoff}\\tab{2}stop centering message lines\\spad{\\br} \\spad{\\%rjon}\\tab{3}start displaying lines \"ragged left\"\\spad{\\br} \\spad{\\%rjoff}\\tab{2}stop displaying lines \"ragged left\"\\spad{\\br} \\spad{\\%i}\\tab{6}indent following lines 3 additional spaces\\spad{\\br} \\spad{\\%u}\\tab{6}unindent following lines 3 additional spaces\\spad{\\br} \\spad{\\%xN}\\tab{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks) \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,{}lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,{}msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates."))) NIL NIL -(-286 -1333 S) +(-291 -1478 S) ((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f,{} p,{} k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}."))) NIL NIL -(-287 E -1333) +(-292 E -1478) ((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f,{} k)} returns \\spad{g = op(f(a1),{}...,{}f(an))} where \\spad{k = op(a1,{}...,{}an)}."))) NIL NIL -(-288 A B) +(-293 A B) ((|constructor| (NIL "\\spad{ExpertSystemContinuityPackage1} exports a function to check range inclusion")) (|in?| (((|Boolean|) (|DoubleFloat|)) "\\spad{in?(p)} tests whether point \\spad{p} is internal to the range [\\spad{A..B}]"))) NIL NIL -(-289) +(-294) ((|constructor| (NIL "ExpertSystemContinuityPackage is a package of functions for the use of domains belonging to the category \\axiomType{NumericalIntegration}.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|polynomialZeros| (((|List| (|DoubleFloat|)) (|Polynomial| (|Fraction| (|Integer|))) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{polynomialZeros(fn,{}var,{}range)} calculates the real zeros of the polynomial which are contained in the given interval. It returns a list of points (\\axiomType{Doublefloat}) for which the univariate polynomial \\spad{fn} is zero.")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(v,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{v} will most likely produce an error. This includes those points which evaluate to 0/0.") (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(e,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error. This includes those points which evaluate to 0/0.")) (|zerosOf| (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{zerosOf(e,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error.")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,{}var,{}range)} returns a list of possible problem points by looking at the zeros of the denominator of the function \\spad{f} if it can be retracted to \\axiomType{Polynomial(DoubleFloat)}.")) (|functionIsFracPolynomial?| (((|Boolean|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsFracPolynomial?(args)} tests whether the function can be retracted to \\axiomType{Fraction(Polynomial(DoubleFloat))}")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{u}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{u}}"))) NIL NIL -(-290 S) +(-295 S) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-1039)))) -(-291) +((|HasCategory| |#1| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-1047)))) +(-296) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL NIL -(-292 R1) +(-297 R1) ((|constructor| (NIL "\\axiom{\\spad{ExpertSystemToolsPackage1}} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|neglist| (((|List| |#1|) (|List| |#1|)) "\\spad{neglist(l)} returns only the negative elements of the list \\spad{l}"))) NIL NIL -(-293 R1 R2) +(-298 R1 R2) ((|constructor| (NIL "\\axiom{\\spad{ExpertSystemToolsPackage2}} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|map| (((|Matrix| |#2|) (|Mapping| |#2| |#1|) (|Matrix| |#1|)) "\\spad{map(f,{}m)} applies a mapping \\spad{f:R1} \\spad{->} \\spad{R2} onto a matrix \\spad{m} in \\spad{R1} returning a matrix in \\spad{R2}"))) NIL NIL -(-294) +(-299) ((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage} contains some useful functions for use by the computational agents of numerical solvers.")) (|mat| (((|Matrix| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{mat(a,{}n)} constructs a one-dimensional matrix of a.")) (|fi2df| (((|DoubleFloat|) (|Fraction| (|Integer|))) "\\spad{fi2df(f)} coerces a \\axiomType{Fraction Integer} to \\axiomType{DoubleFloat}")) (|df2ef| (((|Expression| (|Float|)) (|DoubleFloat|)) "\\spad{df2ef(a)} coerces a \\axiomType{DoubleFloat} to \\axiomType{Expression Float}")) (|pdf2df| (((|DoubleFloat|) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2df(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{DoubleFloat}. It is an error if \\axiom{\\spad{p}} is not retractable to DoubleFloat.")) (|pdf2ef| (((|Expression| (|Float|)) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2ef(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{Expression Float}")) (|iflist2Result| (((|Result|) (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))) "\\spad{iflist2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|att2Result| (((|Result|) (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) "\\spad{att2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|measure2Result| (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|)))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}") (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}")) (|outputMeasure| (((|String|) (|Float|)) "\\spad{outputMeasure(n)} rounds \\spad{n} to 3 decimal places and outputs it as a string")) (|concat| (((|Result|) (|List| (|Result|))) "\\spad{concat(l)} concatenates a list of aggregates of type \\axiomType{Result}") (((|Result|) (|Result|) (|Result|)) "\\spad{concat(a,{}b)} adds two aggregates of type \\axiomType{Result}.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\spad{u}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\spad{u}")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a \\axiomType{Stream DoubleFloat} to \\axiomType{String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List String}")) (|f2st| (((|String|) (|Float|)) "\\spad{f2st(n)} coerces a \\axiomType{Float} to \\axiomType{String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|in?| (((|Boolean|) (|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{in?(p,{}range)} tests whether point \\spad{p} is internal to the \\spad{range} \\spad{range}")) (|vedf2vef| (((|Vector| (|Expression| (|Float|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{vedf2vef(v)} maps \\axiomType{Vector Expression DoubleFloat} to \\axiomType{Vector Expression Float}")) (|edf2ef| (((|Expression| (|Float|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2ef(e)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Expression Float}")) (|ldf2vmf| (((|Vector| (|MachineFloat|)) (|List| (|DoubleFloat|))) "\\spad{ldf2vmf(l)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List MachineFloat}")) (|df2mf| (((|MachineFloat|) (|DoubleFloat|)) "\\spad{df2mf(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{MachineFloat}")) (|dflist| (((|List| (|DoubleFloat|)) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{dflist(l)} returns a list of \\axiomType{DoubleFloat} equivalents of list \\spad{l}")) (|dfRange| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{dfRange(r)} converts a range including \\inputbitmap{\\htbmdir{}/plusminus.bitmap} \\infty to \\axiomType{DoubleFloat} equavalents.")) (|edf2efi| (((|Expression| (|Fraction| (|Integer|))) (|Expression| (|DoubleFloat|))) "\\spad{edf2efi(e)} coerces \\axiomType{Expression DoubleFloat} into \\axiomType{Expression Fraction Integer}")) (|numberOfOperations| (((|Record| (|:| |additions| (|Integer|)) (|:| |multiplications| (|Integer|)) (|:| |exponentiations| (|Integer|)) (|:| |functionCalls| (|Integer|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{numberOfOperations(ode)} counts additions,{} multiplications,{} exponentiations and function calls in the input set of expressions.")) (|expenseOfEvaluation| (((|Float|) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{expenseOfEvaluation(o)} gives an approximation of the cost of evaluating a list of expressions in terms of the number of basic operations. < 0.3 inexpensive ; 0.5 neutral ; > 0.7 very expensive 400 `operation units' \\spad{->} 0.75 200 `operation units' \\spad{->} 0.5 83 `operation units' \\spad{->} 0.25 \\spad{**} = 4 units ,{} function calls = 10 units.")) (|isQuotient| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{isQuotient(expr)} returns the quotient part of the input expression or \\spad{\"failed\"} if the expression is not of that form.")) (|edf2df| (((|DoubleFloat|) (|Expression| (|DoubleFloat|))) "\\spad{edf2df(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{DoubleFloat} It is an error if \\spad{n} is not coercible to DoubleFloat")) (|edf2fi| (((|Fraction| (|Integer|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2fi(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Fraction Integer} It is an error if \\spad{n} is not coercible to Fraction Integer")) (|df2fi| (((|Fraction| (|Integer|)) (|DoubleFloat|)) "\\spad{df2fi(n)} is a function to convert a \\axiomType{DoubleFloat} to a \\axiomType{Fraction Integer}")) (|convert| (((|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{convert(l)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|socf2socdf| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{socf2socdf(a)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|ocf2ocdf| (((|OrderedCompletion| (|DoubleFloat|)) (|OrderedCompletion| (|Float|))) "\\spad{ocf2ocdf(a)} is a function to convert an \\axiomType{OrderedCompletion Float} to an \\axiomType{OrderedCompletion DoubleFloat}")) (|ef2edf| (((|Expression| (|DoubleFloat|)) (|Expression| (|Float|))) "\\spad{ef2edf(f)} is a function to convert an \\axiomType{Expression Float} to an \\axiomType{Expression DoubleFloat}")) (|f2df| (((|DoubleFloat|) (|Float|)) "\\spad{f2df(f)} is a function to convert a \\axiomType{Float} to a \\axiomType{DoubleFloat}"))) NIL NIL -(-295 S) +(-300 S) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes\\spad{\\br} \\tab{5}multiplicativeValuation\\tab{5}Size(a*b)=Size(a)*Size(\\spad{b})\\spad{\\br} \\tab{5}additiveValuation\\tab{11}Size(a*b)=Size(a)+Size(\\spad{b})")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,{}...,{}fn],{}z)} returns a list of coefficients \\spad{[a1,{} ...,{} an]} such that \\spad{ z / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,{}y,{}z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,{}y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,{}y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,{}y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,{}y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,{}y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) NIL NIL -(-296) +(-301) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes\\spad{\\br} \\tab{5}multiplicativeValuation\\tab{5}Size(a*b)=Size(a)*Size(\\spad{b})\\spad{\\br} \\tab{5}additiveValuation\\tab{11}Size(a*b)=Size(a)+Size(\\spad{b})")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,{}...,{}fn],{}z)} returns a list of coefficients \\spad{[a1,{} ...,{} an]} such that \\spad{ z / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,{}y,{}z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,{}y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,{}y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,{}y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,{}y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,{}y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) -((-4498 . T) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) +((-4512 . T) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) NIL -(-297 S R) +(-302 S R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-298 R) +(-303 R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-299 -1333) +(-304 -1478) ((|constructor| (NIL "This package is to be used in conjuction with the CycleIndicators package. It provides an evaluation function for SymmetricPolynomials.")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,{}s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}"))) NIL NIL -(-300) +(-305) ((|constructor| (NIL "A function which does not return directly to its caller should have Exit as its return type. \\blankline Note that It is convenient to have a formal \\spad{coerce} into each type from type Exit. This allows,{} for example,{} errors to be raised in one half of a type-balanced \\spad{if}."))) NIL NIL -(-301 R FE |var| |cen|) +(-306) +((|writeObj| (((|Void|) (|SubSpace| 3 (|DoubleFloat|)) (|String|)) "writes 3D SubSpace to a file in Wavefront (.OBJ) format"))) +NIL +NIL +(-307 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,{}f(var))}."))) -((-4497 . T) (-4503 . T) (-4498 . T) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) -((|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (QUOTE (-896))) (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1029) (QUOTE (-1153)))) (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (QUOTE (-1013))) (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (QUOTE (-807))) (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (QUOTE (-1128))) (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (LIST (QUOTE -873) (QUOTE (-560)))) (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (LIST (QUOTE -873) (QUOTE (-375)))) (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-375))))) (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-560))))) (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (QUOTE (-221))) (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (LIST (QUOTE -515) (QUOTE (-1153)) (LIST (QUOTE -1221) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (LIST (QUOTE -298) (LIST (QUOTE -1221) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (LIST (QUOTE -276) (LIST (QUOTE -1221) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1221) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (QUOTE (-296))) (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (QUOTE (-542))) (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (QUOTE (-834))) (-2318 (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (QUOTE (-807))) (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (QUOTE (-834)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (QUOTE (-896)))) (-2318 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (QUOTE (-896)))) (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (QUOTE (-146))))) -(-302 R S) +((-4511 . T) (-4517 . T) (-4512 . T) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) +((|HasCategory| (-1229 |#1| |#2| |#3| |#4|) (QUOTE (-904))) (|HasCategory| (-1229 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1037) (QUOTE (-1161)))) (|HasCategory| (-1229 |#1| |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1229 |#1| |#2| |#3| |#4|) (QUOTE (-150))) (|HasCategory| (-1229 |#1| |#2| |#3| |#4|) (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| (-1229 |#1| |#2| |#3| |#4|) (QUOTE (-1021))) (|HasCategory| (-1229 |#1| |#2| |#3| |#4|) (QUOTE (-815))) (|HasCategory| (-1229 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| (-1229 |#1| |#2| |#3| |#4|) (QUOTE (-1136))) (|HasCategory| (-1229 |#1| |#2| |#3| |#4|) (LIST (QUOTE -881) (QUOTE (-568)))) (|HasCategory| (-1229 |#1| |#2| |#3| |#4|) (LIST (QUOTE -881) (QUOTE (-381)))) (|HasCategory| (-1229 |#1| |#2| |#3| |#4|) (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-381))))) (|HasCategory| (-1229 |#1| |#2| |#3| |#4|) (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-568))))) (|HasCategory| (-1229 |#1| |#2| |#3| |#4|) (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| (-1229 |#1| |#2| |#3| |#4|) (QUOTE (-225))) (|HasCategory| (-1229 |#1| |#2| |#3| |#4|) (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| (-1229 |#1| |#2| |#3| |#4|) (LIST (QUOTE -523) (QUOTE (-1161)) (LIST (QUOTE -1229) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1229 |#1| |#2| |#3| |#4|) (LIST (QUOTE -303) (LIST (QUOTE -1229) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1229 |#1| |#2| |#3| |#4|) (LIST (QUOTE -281) (LIST (QUOTE -1229) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1229) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1229 |#1| |#2| |#3| |#4|) (QUOTE (-301))) (|HasCategory| (-1229 |#1| |#2| |#3| |#4|) (QUOTE (-550))) (|HasCategory| (-1229 |#1| |#2| |#3| |#4|) (QUOTE (-842))) (-2198 (|HasCategory| (-1229 |#1| |#2| |#3| |#4|) (QUOTE (-815))) (|HasCategory| (-1229 |#1| |#2| |#3| |#4|) (QUOTE (-842)))) (-12 (|HasCategory| $ (QUOTE (-148))) (|HasCategory| (-1229 |#1| |#2| |#3| |#4|) (QUOTE (-904)))) (-2198 (-12 (|HasCategory| $ (QUOTE (-148))) (|HasCategory| (-1229 |#1| |#2| |#3| |#4|) (QUOTE (-904)))) (|HasCategory| (-1229 |#1| |#2| |#3| |#4|) (QUOTE (-148))))) +(-308 R S) ((|constructor| (NIL "Lifting of maps to Expressions.")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f,{} e)} applies \\spad{f} to all the constants appearing in \\spad{e}."))) NIL NIL -(-303 R FE) +(-309 R FE) ((|constructor| (NIL "This package provides functions to convert functional expressions to power series.")) (|series| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{series(f,{}x = a,{}n)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a); terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{series(f,{}x = a)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a).") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{series(f,{}n)} returns a series expansion of the expression \\spad{f}. Note that \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{series(f)} returns a series expansion of the expression \\spad{f}. Note that \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{series(x)} returns \\spad{x} viewed as a series.")) (|puiseux| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{puiseux(f,{}x = a,{}n)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{puiseux(f,{}x = a)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{puiseux(f,{}n)} returns a Puiseux expansion of the expression \\spad{f}. Note that \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{puiseux(f)} returns a Puiseux expansion of the expression \\spad{f}. Note that \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{puiseux(x)} returns \\spad{x} viewed as a Puiseux series.")) (|laurent| (((|Any|) |#2| (|Equation| |#2|) (|Integer|)) "\\spad{laurent(f,{}x = a,{}n)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{laurent(f,{}x = a)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Integer|)) "\\spad{laurent(f,{}n)} returns a Laurent expansion of the expression \\spad{f}. Note that \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{laurent(f)} returns a Laurent expansion of the expression \\spad{f}. Note that \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{laurent(x)} returns \\spad{x} viewed as a Laurent series.")) (|taylor| (((|Any|) |#2| (|Equation| |#2|) (|NonNegativeInteger|)) "\\spad{taylor(f,{}x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{taylor(f,{}x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|NonNegativeInteger|)) "\\spad{taylor(f,{}n)} returns a Taylor expansion of the expression \\spad{f}. Note that \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{taylor(f)} returns a Taylor expansion of the expression \\spad{f}. Note that \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{taylor(x)} returns \\spad{x} viewed as a Taylor series."))) NIL NIL -(-304 R) +(-310 R) ((|constructor| (NIL "Top-level mathematical expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} is not documented")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} is not documented")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) is not documented")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations."))) -((-4502 -2318 (-2256 (|has| |#1| (-1039)) (|has| |#1| (-622 (-560)))) (-12 (|has| |#1| (-550)) (-2318 (-2256 (|has| |#1| (-1039)) (|has| |#1| (-622 (-560)))) (|has| |#1| (-1039)) (|has| |#1| (-471)))) (|has| |#1| (-1039)) (|has| |#1| (-471))) (-4500 |has| |#1| (-170)) (-4499 |has| |#1| (-170)) ((-4507 "*") |has| |#1| (-550)) (-4498 |has| |#1| (-550)) (-4503 |has| |#1| (-550)) (-4497 |has| |#1| (-550))) -((|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-1039))) (-2318 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-1039)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| |#1| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -873) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -873) (QUOTE (-375)))) (|HasCategory| |#1| (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-375))))) (|HasCategory| |#1| (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-550)))) (-2318 (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-1039)))) (-12 (|HasCategory| |#1| (QUOTE (-447))) (|HasCategory| |#1| (QUOTE (-550)))) (-2318 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-1039)))) (-2318 (|HasCategory| |#1| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-1039)))) (-2318 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (QUOTE (-1039)))) (|HasCategory| |#1| (QUOTE (-21))) (-2318 (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-1039)))) (-2318 (-12 (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-1039)))) (|HasCategory| |#1| (QUOTE (-21)))) (|HasCategory| |#1| (QUOTE (-25))) (-2318 (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-1039)))) (-2318 (-12 (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-1039)))) (|HasCategory| |#1| (QUOTE (-25)))) (|HasCategory| |#1| (QUOTE (-1094))) (-2318 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (QUOTE (-1094)))) (-2318 (-12 (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-1039)))) (|HasCategory| |#1| (QUOTE (-1094)))) (-2318 (-12 (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-1039)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (-2318 (|HasCategory| |#1| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-550))))) (-2318 (|HasCategory| |#1| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-550)))) (-2318 (-12 (|HasCategory| |#1| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-550))))) (|HasCategory| $ (QUOTE (-1039))) (|HasCategory| $ (LIST (QUOTE -1029) (QUOTE (-560))))) -(-305 R -1333) +((-4516 -2198 (-2139 (|has| |#1| (-1047)) (|has| |#1| (-630 (-568)))) (-12 (|has| |#1| (-558)) (-2198 (-2139 (|has| |#1| (-1047)) (|has| |#1| (-630 (-568)))) (|has| |#1| (-1047)) (|has| |#1| (-478)))) (|has| |#1| (-1047)) (|has| |#1| (-478))) (-4514 |has| |#1| (-172)) (-4513 |has| |#1| (-172)) ((-4521 "*") |has| |#1| (-558)) (-4512 |has| |#1| (-558)) (-4517 |has| |#1| (-558)) (-4511 |has| |#1| (-558))) +((|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-150))) (|HasCategory| |#1| (QUOTE (-1047))) (-2198 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-1047)))) (|HasCategory| |#1| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| |#1| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-568)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-568))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-558)))) (-2198 (|HasCategory| |#1| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-150))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-1047)))) (-12 (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-558)))) (-2198 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-1047)))) (-2198 (|HasCategory| |#1| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-1047)))) (-2198 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#1| (QUOTE (-1047)))) (|HasCategory| |#1| (QUOTE (-21))) (-2198 (|HasCategory| |#1| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-150))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-1047)))) (-2198 (-12 (|HasCategory| |#1| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-1047)))) (|HasCategory| |#1| (QUOTE (-21)))) (|HasCategory| |#1| (QUOTE (-25))) (-2198 (|HasCategory| |#1| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-150))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-1047)))) (-2198 (-12 (|HasCategory| |#1| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-1047)))) (|HasCategory| |#1| (QUOTE (-25)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2198 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#1| (QUOTE (-1102)))) (-2198 (-12 (|HasCategory| |#1| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-1047)))) (|HasCategory| |#1| (QUOTE (-1102)))) (-2198 (-12 (|HasCategory| |#1| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-1047)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1102)))) (|HasCategory| |#1| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (-2198 (|HasCategory| |#1| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-558))))) (-2198 (|HasCategory| |#1| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (QUOTE (-558)))) (-2198 (-12 (|HasCategory| |#1| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-558))))) (|HasCategory| $ (QUOTE (-1047))) (|HasCategory| $ (LIST (QUOTE -1037) (QUOTE (-568))))) +(-311 R -1478) ((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} [b0,{}...,{}bn])} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} [b0,{}...,{}b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} y a = b)} is equivalent to \\spad{seriesSolve(eq=0,{} y,{} x=a,{} y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{} y,{} x = a,{} b)} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{}y,{} x=a,{} b)} is equivalent to \\spad{seriesSolve(eq,{} y,{} x=a,{} y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "seriesSolve([\\spad{eq1},{}...,{}eqn],{} [\\spad{y1},{}...,{}\\spad{yn}],{} \\spad{x} = a,{}[\\spad{y1} a = \\spad{b1},{}...,{} \\spad{yn} a = \\spad{bn}]) is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{}[y1,{}...,{}yn],{}x = a,{}[y1 a = b1,{}...,{}yn a = bn])} returns a taylor series solution of \\spad{[eq1,{}...,{}eqn]} around \\spad{x = a} with initial conditions \\spad{\\spad{yi}(a) = \\spad{bi}}. Note that eqi must be of the form \\spad{\\spad{fi}(x,{} y1 x,{} y2 x,{}...,{} yn x) y1'(x) + \\spad{gi}(x,{} y1 x,{} y2 x,{}...,{} yn x) = h(x,{} y1 x,{} y2 x,{}...,{} yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{}[b0,{}...,{}b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x,{} y x,{} y'(x),{}...,{} y(n-1)(x)) y(n)(x) + g(x,{}y x,{}y'(x),{}...,{}y(n-1)(x)) = h(x,{}y x,{} y'(x),{}...,{} y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{} y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note that \\spad{eq} must be of the form \\spad{f(x,{} y x) y'(x) + g(x,{} y x) = h(x,{} y x)}."))) NIL NIL -(-306 R -1333 UTSF UTSSUPF) +(-312 R -1478 UTSF UTSSUPF) ((|constructor| (NIL "This package has no description"))) NIL NIL -(-307) +(-313) ((|constructor| (NIL "Package for constructing tubes around 3-dimensional parametric curves.")) (|tubePlot| (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|String|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n,{}s)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. The tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|) (|String|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n,{}s)} puts a tube of radius \\spad{r(t)} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n)} puts a tube of radius \\spad{r}(\\spad{t}) with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. The tube is considered to be open.")) (|constantToUnaryFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|DoubleFloat|)) "\\spad{constantToUnaryFunction(s)} is a local function which takes the value of \\spad{s},{} which may be a function of a constant,{} and returns a function which always returns the value \\spadtype{DoubleFloat} \\spad{s}."))) NIL NIL -(-308 FE |var| |cen|) +(-314 FE |var| |cen|) ((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms."))) -(((-4507 "*") |has| |#1| (-170)) (-4498 |has| |#1| (-550)) (-4503 |has| |#1| (-359)) (-4497 |has| |#1| (-359)) (-4499 . T) (-4500 . T) (-4502 . T)) -((|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-170))) (-2318 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -403) (QUOTE (-560))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -403) (QUOTE (-560))) (|devaluate| |#1|))))) (|HasCategory| (-403 (-560)) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-359))) (-2318 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-550)))) (-2318 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -403) (QUOTE (-560)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -403) (QUOTE (-560)))))) (|HasSignature| |#1| (LIST (QUOTE -2801) (LIST (|devaluate| |#1|) (QUOTE (-1153)))))) (-2318 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-951))) (|HasCategory| |#1| (QUOTE (-1173)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasSignature| |#1| (LIST (QUOTE -2376) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1153))))) (|HasSignature| |#1| (LIST (QUOTE -1654) (LIST (LIST (QUOTE -626) (QUOTE (-1153))) (|devaluate| |#1|))))))) -(-309 K) +(((-4521 "*") |has| |#1| (-172)) (-4512 |has| |#1| (-558)) (-4517 |has| |#1| (-365)) (-4511 |has| |#1| (-365)) (-4513 . T) (-4514 . T) (-4516 . T)) +((|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2198 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-150))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-568))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-568))) (|devaluate| |#1|))))) (|HasCategory| (-409 (-568)) (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-365))) (-2198 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-2198 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-568)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-568)))))) (|HasSignature| |#1| (LIST (QUOTE -2745) (LIST (|devaluate| |#1|) (QUOTE (-1161)))))) (-2198 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-568)))) (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1181)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasSignature| |#1| (LIST (QUOTE -3837) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1161))))) (|HasSignature| |#1| (LIST (QUOTE -2055) (LIST (LIST (QUOTE -634) (QUOTE (-1161))) (|devaluate| |#1|))))))) +(-315 K) ((|constructor| (NIL "Part of the Package for Algebraic Function Fields in one variable PAFF"))) NIL NIL -(-310 M) +(-316 M) ((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,{}b1),{}...,{}(am,{}bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f,{} n)} returns \\spad{(p,{} r,{} [r1,{}...,{}rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}."))) NIL NIL -(-311 K) +(-317 K) ((|constructor| (NIL "Part of the Package for Algebraic Function Fields in one variable PAFF"))) NIL NIL -(-312 E OV R P) +(-318 E OV R P) ((|constructor| (NIL "This package provides utilities used by the factorizers which operate on polynomials represented as univariate polynomials with multivariate coefficients.")) (|ran| ((|#3| (|Integer|)) "\\spad{ran(k)} computes a random integer between \\spad{-k} and \\spad{k} as a member of \\spad{R}.")) (|normalDeriv| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|Integer|)) "\\spad{normalDeriv(poly,{}i)} computes the \\spad{i}th derivative of \\spad{poly} divided by i!.")) (|raisePolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|)) "\\spad{raisePolynomial(rpoly)} converts \\spad{rpoly} from a univariate polynomial over \\spad{r} to be a univariate polynomial with polynomial coefficients.")) (|lowerPolynomial| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{lowerPolynomial(upoly)} converts \\spad{upoly} to be a univariate polynomial over \\spad{R}. An error if the coefficients contain variables.")) (|variables| (((|List| |#2|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{variables(upoly)} returns the list of variables for the coefficients of \\spad{upoly}.")) (|degree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|)) "\\spad{degree(upoly,{} lvar)} returns a list containing the maximum degree for each variable in lvar.")) (|completeEval| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|)) "\\spad{completeEval(upoly,{} lvar,{} lval)} evaluates the polynomial \\spad{upoly} with each variable in \\spad{lvar} replaced by the corresponding value in lval. Substitutions are done for all variables in \\spad{upoly} producing a univariate polynomial over \\spad{R}."))) NIL NIL -(-313 S) +(-319 S) ((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative."))) -((-4500 . T) (-4499 . T)) -((|HasCategory| |#1| (QUOTE (-834))) (|HasCategory| (-560) (QUOTE (-779)))) -(-314 S E) +((-4514 . T) (-4513 . T)) +((|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| (-568) (QUOTE (-787)))) +(-320 S E) ((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an,{} f1 b1 + ... + fm bm)} returns \\spad{reduce(+,{}[max(\\spad{ei},{} \\spad{fi}) \\spad{ci}])} where \\spad{ci} ranges in the intersection of \\spad{{a1,{}...,{}an}} and \\spad{{b1,{}...,{}bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f,{} e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s,{} e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x,{} n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\indented{1}{size(\\spad{x}) returns the number of terms in \\spad{x}.} \\indented{1}{mapGen(\\spad{f},{} \\spad{a1}\\spad{\\^}\\spad{e1} ... an\\spad{\\^}en) returns} \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}."))) NIL NIL -(-315 S) +(-321 S) ((|constructor| (NIL "The free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The operation is commutative."))) NIL -((|HasCategory| (-755) (QUOTE (-779)))) -(-316 E R1 A1 R2 A2) +((|HasCategory| (-763) (QUOTE (-787)))) +(-322 E R1 A1 R2 A2) ((|constructor| (NIL "This package provides a mapping function for \\spadtype{FiniteAbelianMonoidRing} The packages defined in this file provide fast fraction free rational interpolation algorithms. (see \\spad{FAMR2},{} FFFG,{} FFFGF,{} NEWTON)")) (|map| ((|#5| (|Mapping| |#4| |#2|) |#3|) "\\spad{map}(\\spad{f},{} a) applies the map \\spad{f} to each coefficient in a. It is assumed that \\spad{f} maps 0 to 0"))) NIL NIL -(-317 S R E) +(-323 S R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#2| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#2| |#3| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#3| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#2| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) NIL -((|HasCategory| |#2| (QUOTE (-447))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-170)))) -(-318 R E) +((|HasCategory| |#2| (QUOTE (-453))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-172)))) +(-324 R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) -(((-4507 "*") |has| |#1| (-170)) (-4498 |has| |#1| (-550)) (-4499 . T) (-4500 . T) (-4502 . T)) +(((-4521 "*") |has| |#1| (-172)) (-4512 |has| |#1| (-558)) (-4513 . T) (-4514 . T) (-4516 . T)) NIL -(-319 S) +(-325 S) ((|constructor| (NIL "A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a} \\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets."))) -((-4506 . T) (-4505 . T)) -((|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-834))) (-2318 (|HasCategory| |#1| (QUOTE (-834))) (|HasCategory| |#1| (QUOTE (-1082)))) (|HasCategory| (-560) (QUOTE (-834))) (-12 (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1082)))) (-2318 (-12 (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-834)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1082)))))) -(-320 S -1333) +((-4520 . T) (-4519 . T)) +((|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-842))) (-2198 (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-1090)))) (|HasCategory| (-568) (QUOTE (-842))) (-12 (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1090)))) (-2198 (-12 (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-842)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1090)))))) +(-326 S -1478) ((|constructor| (NIL "FiniteAlgebraicExtensionField \\spad{F} is the category of fields which are finite algebraic extensions of the field \\spad{F}. If \\spad{F} is finite then any finite algebraic extension of \\spad{F} is finite,{} too. Let \\spad{K} be a finite algebraic extension of the finite field \\spad{F}. The exponentiation of elements of \\spad{K} defines a \\spad{Z}-module structure on the multiplicative group of \\spad{K}. The additive group of \\spad{K} becomes a module over the ring of polynomials over \\spad{F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over \\spad{F},{} \\spadignore{i.e.} for elements a from \\spad{K},{} \\spad{c},{}\\spad{d} from \\spad{F} and \\spad{f},{}\\spad{g} univariate polynomials over \\spad{F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals \\spad{c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus \\spad{d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from \\spad{F}[\\spad{X}]: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is a**(q**k) where q=size()\\spad{\\$}\\spad{F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial \\spad{g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals a. If there is no such polynomial \\spad{g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial \\spad{g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals a.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial \\spad{g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over \\spad{F},{} \\spadignore{i.e.} for elements a from \\spad{\\$},{} \\spad{c},{}\\spad{d} form \\spad{F} and \\spad{f},{}\\spad{g} univariate polynomials over \\spad{F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals \\spad{c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus \\spad{d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from \\spad{F}[\\spad{X}]: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is a**(q**k),{} where q=size()\\spad{\\$}\\spad{F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note that \\spad{trace(a,{}d)=reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note that norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) NIL -((|HasCategory| |#2| (QUOTE (-364)))) -(-321 -1333) +((|HasCategory| |#2| (QUOTE (-370)))) +(-327 -1478) ((|constructor| (NIL "FiniteAlgebraicExtensionField \\spad{F} is the category of fields which are finite algebraic extensions of the field \\spad{F}. If \\spad{F} is finite then any finite algebraic extension of \\spad{F} is finite,{} too. Let \\spad{K} be a finite algebraic extension of the finite field \\spad{F}. The exponentiation of elements of \\spad{K} defines a \\spad{Z}-module structure on the multiplicative group of \\spad{K}. The additive group of \\spad{K} becomes a module over the ring of polynomials over \\spad{F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over \\spad{F},{} \\spadignore{i.e.} for elements a from \\spad{K},{} \\spad{c},{}\\spad{d} from \\spad{F} and \\spad{f},{}\\spad{g} univariate polynomials over \\spad{F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals \\spad{c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus \\spad{d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from \\spad{F}[\\spad{X}]: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is a**(q**k) where q=size()\\spad{\\$}\\spad{F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial \\spad{g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals a. If there is no such polynomial \\spad{g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial \\spad{g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals a.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial \\spad{g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over \\spad{F},{} \\spadignore{i.e.} for elements a from \\spad{\\$},{} \\spad{c},{}\\spad{d} form \\spad{F} and \\spad{f},{}\\spad{g} univariate polynomials over \\spad{F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals \\spad{c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus \\spad{d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from \\spad{F}[\\spad{X}]: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is a**(q**k),{} where q=size()\\spad{\\$}\\spad{F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note that \\spad{trace(a,{}d)=reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note that norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) -((-4497 . T) (-4503 . T) (-4498 . T) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) +((-4511 . T) (-4517 . T) (-4512 . T) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) NIL -(-322) +(-328) ((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,{}contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,{}e,{}f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,{}e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,{}c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,{}c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,{}n,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(f)} returns an object of type OutputForm."))) NIL NIL -(-323 E) +(-329 E) ((|constructor| (NIL "This domain creates kernels for use in Fourier series")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the argument of a given sin/cos expressions")) (|sin?| (((|Boolean|) $) "\\spad{sin?(x)} returns \\spad{true} if term is a sin,{} otherwise \\spad{false}")) (|cos| (($ |#1|) "\\spad{cos(x)} makes a cos kernel for use in Fourier series")) (|sin| (($ |#1|) "\\spad{sin(x)} makes a sin kernel for use in Fourier series"))) NIL NIL -(-324) +(-330) ((|constructor| (NIL "\\spadtype{FortranCodePackage1} provides some utilities for producing useful objects in FortranCode domain. The Package may be used with the FortranCode domain and its \\spad{printCode} or possibly via an outputAsFortran. (The package provides items of use in connection with ASPs in the AXIOM-NAG link and,{} where appropriate,{} naming accords with that in IRENA.) The easy-to-use functions use Fortran loop variables \\spad{I1},{} \\spad{I2},{} and it is users' responsibility to check that this is sensible. The advanced functions use SegmentBinding to allow users control over Fortran loop variable names.")) (|identitySquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{identitySquareMatrix(s,{}p)} \\undocumented{}")) (|zeroSquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroSquareMatrix(s,{}p)} \\undocumented{}")) (|zeroMatrix| (((|FortranCode|) (|Symbol|) (|SegmentBinding| (|Polynomial| (|Integer|))) (|SegmentBinding| (|Polynomial| (|Integer|)))) "\\spad{zeroMatrix(s,{}b,{}d)} in this version gives the user control over names of Fortran variables used in loops.") (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|)) (|Polynomial| (|Integer|))) "\\spad{zeroMatrix(s,{}p,{}q)} uses loop variables in the Fortran,{} \\spad{I1} and \\spad{I2}")) (|zeroVector| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroVector(s,{}p)} \\undocumented{}"))) NIL NIL -(-325 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) +(-331 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) ((|constructor| (NIL "Lift a map to finite divisors.")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}d)} \\undocumented{}"))) NIL NIL -(-326 S -1333 UP UPUP R) +(-332 S -1478 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-327 -1333 UP UPUP R) +(-333 -1478 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-328 -1333 UP UPUP R) +(-334 -1478 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over \\spad{K}[\\spad{x}]."))) NIL NIL -(-329 S R) +(-335 S R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{} ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -515) (QUOTE (-1153)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -276) (|devaluate| |#2|) (|devaluate| |#2|)))) -(-330 R) +((|HasCategory| |#2| (LIST (QUOTE -523) (QUOTE (-1161)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -281) (|devaluate| |#2|) (|devaluate| |#2|)))) +(-336 R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{} ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL NIL -(-331 |basicSymbols| |subscriptedSymbols| R) +(-337 |basicSymbols| |subscriptedSymbols| R) ((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{\\spad{pi}(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function \\spad{LOG10}")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} is not documented")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression checking that it contains no non-Fortran functions,{} and that it only contains the given basic symbols and subscripted symbols which correspond to scalar and array parameters respectively.") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression checking that it contains no non-Fortran functions,{} and that it only contains the given basic symbols and subscripted symbols which correspond to scalar and array parameters respectively.") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression checking that it contains no non-Fortran functions,{} and that it only contains the given basic symbols and subscripted symbols which correspond to scalar and array parameters respectively.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression checking that it contains no non-Fortran functions,{} and that it only contains the given basic symbols and subscripted symbols which correspond to scalar and array parameters respectively.") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression checking that it contains no non-Fortran functions,{} and that it only contains the given basic symbols and subscripted symbols which correspond to scalar and array parameters respectively.") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression checking that it contains no non-Fortran functions,{} and that it only contains the given basic symbols and subscripted symbols which correspond to scalar and array parameters respectively.") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression checking that it is one of the given basic symbols or subscripted symbols which correspond to scalar and array parameters respectively.") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression checking that it contains no non-Fortran functions,{} and that it only contains the given basic symbols and subscripted symbols which correspond to scalar and array parameters respectively.")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression checking that it contains no non-Fortran functions,{} and that it only contains the given basic symbols and subscripted symbols which correspond to scalar and array parameters respectively.") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression checking that it contains no non-Fortran functions,{} and that it only contains the given basic symbols and subscripted symbols which correspond to scalar and array parameters respectively.") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression checking that it contains no non-Fortran functions,{} and that it only contains the given basic symbols and subscripted symbols which correspond to scalar and array parameters respectively.") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression checking that it contains no non-Fortran functions,{} and that it only contains the given basic symbols and subscripted symbols which correspond to scalar and array parameters respectively.") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression checking that it contains no non-Fortran functions,{} and that it only contains the given basic symbols and subscripted symbols which correspond to scalar and array parameters respectively.") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression checking that it contains no non-Fortran functions,{} and that it only contains the given basic symbols and subscripted symbols which correspond to scalar and array parameters respectively.") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression checking that it is one of the given basic symbols or subscripted symbols which correspond to scalar and array parameters respectively.") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression checking that it contains no non-Fortran functions,{} and that it only contains the given basic symbols and subscripted symbols which correspond to scalar and array parameters respectively."))) -((-4499 . T) (-4500 . T) (-4502 . T)) -((|HasCategory| |#3| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#3| (LIST (QUOTE -1029) (QUOTE (-375)))) (|HasCategory| $ (QUOTE (-1039))) (|HasCategory| $ (LIST (QUOTE -1029) (QUOTE (-560))))) -(-332 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) +((-4513 . T) (-4514 . T) (-4516 . T)) +((|HasCategory| |#3| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#3| (LIST (QUOTE -1037) (QUOTE (-381)))) (|HasCategory| $ (QUOTE (-1047))) (|HasCategory| $ (LIST (QUOTE -1037) (QUOTE (-568))))) +(-338 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) ((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{} p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}."))) NIL NIL -(-333 S -1333 UP UPUP) +(-339 S -1478 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\indented{1}{rationalPoints() returns the list of all the affine} rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in \\spad{u1},{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.") (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\indented{1}{inverseIntegralMatrixAtInfinity() returns \\spad{M} such} \\indented{1}{that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))}} \\indented{1}{where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity} \\indented{1}{returned by \\spad{infIntBasis()}.} \\blankline \\spad{X} \\spad{P0} \\spad{:=} UnivariatePolynomial(\\spad{x},{} Integer) \\spad{X} \\spad{P1} \\spad{:=} UnivariatePolynomial(\\spad{y},{} Fraction \\spad{P0}) \\spad{X} \\spad{R} \\spad{:=} RadicalFunctionField(INT,{} \\spad{P0},{} \\spad{P1},{} 1 - \\spad{x**20},{} 20) \\spad{X} inverseIntegralMatrixAtInfinity()\\$\\spad{R}")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\indented{1}{integralMatrixAtInfinity() returns \\spad{M} such that} \\indented{1}{\\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))}} \\indented{1}{where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity} \\indented{1}{returned by \\spad{infIntBasis()}.} \\blankline \\spad{X} \\spad{P0} \\spad{:=} UnivariatePolynomial(\\spad{x},{} Integer) \\spad{X} \\spad{P1} \\spad{:=} UnivariatePolynomial(\\spad{y},{} Fraction \\spad{P0}) \\spad{X} \\spad{R} \\spad{:=} RadicalFunctionField(INT,{} \\spad{P0},{} \\spad{P1},{} 1 - \\spad{x**20},{} 20) \\spad{X} integralMatrixAtInfinity()\\$\\spad{R}")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\indented{1}{inverseIntegralMatrix() returns \\spad{M} such that} \\indented{1}{\\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))}} \\indented{1}{where \\spad{(w1,{}...,{}wn)} is the integral basis of} \\indented{1}{\\spadfunFrom{integralBasis}{FunctionFieldCategory}.} \\blankline \\spad{X} \\spad{P0} \\spad{:=} UnivariatePolynomial(\\spad{x},{} Integer) \\spad{X} \\spad{P1} \\spad{:=} UnivariatePolynomial(\\spad{y},{} Fraction \\spad{P0}) \\spad{X} \\spad{R} \\spad{:=} RadicalFunctionField(INT,{} \\spad{P0},{} \\spad{P1},{} 1 - \\spad{x**20},{} 20) \\spad{X} inverseIntegralMatrix()\\$\\spad{R}")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\indented{1}{integralMatrix() returns \\spad{M} such that} \\indented{1}{\\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{}} \\indented{1}{where \\spad{(w1,{}...,{}wn)} is the integral basis of} \\indented{1}{\\spadfunFrom{integralBasis}{FunctionFieldCategory}.} \\blankline \\spad{X} \\spad{P0} \\spad{:=} UnivariatePolynomial(\\spad{x},{} Integer) \\spad{X} \\spad{P1} \\spad{:=} UnivariatePolynomial(\\spad{y},{} Fraction \\spad{P0}) \\spad{X} \\spad{R} \\spad{:=} RadicalFunctionField(INT,{} \\spad{P0},{} \\spad{P1},{} 1 - \\spad{x**20},{} 20) \\spad{X} integralMatrix()\\$\\spad{R}")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}") (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\indented{1}{integralBasisAtInfinity() returns the local integral basis} \\indented{1}{at infinity} \\blankline \\spad{X} \\spad{P0} \\spad{:=} UnivariatePolynomial(\\spad{x},{} Integer) \\spad{X} \\spad{P1} \\spad{:=} UnivariatePolynomial(\\spad{y},{} Fraction \\spad{P0}) \\spad{X} \\spad{R} \\spad{:=} RadicalFunctionField(INT,{} \\spad{P0},{} \\spad{P1},{} 1 - \\spad{x**20},{} 20) \\spad{X} integralBasisAtInfinity()\\$\\spad{R}")) (|integralBasis| (((|Vector| $)) "\\indented{1}{integralBasis() returns the integral basis for the curve.} \\blankline \\spad{X} \\spad{P0} \\spad{:=} UnivariatePolynomial(\\spad{x},{} Integer) \\spad{X} \\spad{P1} \\spad{:=} UnivariatePolynomial(\\spad{y},{} Fraction \\spad{P0}) \\spad{X} \\spad{R} \\spad{:=} RadicalFunctionField(INT,{} \\spad{P0},{} \\spad{P1},{} 1 - \\spad{x**20},{} 20) \\spad{X} integralBasis()\\$\\spad{R}")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\indented{1}{branchPointAtInfinity?() tests if there is a branch point} \\indented{1}{at infinity.} \\blankline \\spad{X} \\spad{P0} \\spad{:=} UnivariatePolynomial(\\spad{x},{} Integer) \\spad{X} \\spad{P1} \\spad{:=} UnivariatePolynomial(\\spad{y},{} Fraction \\spad{P0}) \\spad{X} \\spad{R} \\spad{:=} RadicalFunctionField(INT,{} \\spad{P0},{} \\spad{P1},{} 1 - \\spad{x**20},{} 20) \\spad{X} branchPointAtInfinity?()\\$\\spad{R} \\spad{X} \\spad{R2} \\spad{:=} RadicalFunctionField(INT,{} \\spad{P0},{} \\spad{P1},{} 2 * \\spad{x**2},{} 4) \\spad{X} branchPointAtInfinity?()\\$\\spad{R}")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\indented{1}{rationalPoint?(a,{} \\spad{b}) tests if \\spad{(x=a,{}y=b)} is on the curve.} \\blankline \\spad{X} \\spad{P0} \\spad{:=} UnivariatePolynomial(\\spad{x},{} Integer) \\spad{X} \\spad{P1} \\spad{:=} UnivariatePolynomial(\\spad{y},{} Fraction \\spad{P0}) \\spad{X} \\spad{R} \\spad{:=} RadicalFunctionField(INT,{} \\spad{P0},{} \\spad{P1},{} 1 - \\spad{x**20},{} 20) \\spad{X} rationalPoint?(0,{}0)\\$\\spad{R} \\spad{X} \\spad{R2} \\spad{:=} RadicalFunctionField(INT,{} \\spad{P0},{} \\spad{P1},{} 2 * \\spad{x**2},{} 4) \\spad{X} rationalPoint?(0,{}0)\\$\\spad{R2}")) (|absolutelyIrreducible?| (((|Boolean|)) "\\indented{1}{absolutelyIrreducible?() tests if the curve absolutely irreducible?} \\blankline \\spad{X} \\spad{P0} \\spad{:=} UnivariatePolynomial(\\spad{x},{} Integer) \\spad{X} \\spad{P1} \\spad{:=} UnivariatePolynomial(\\spad{y},{} Fraction \\spad{P0}) \\spad{X} \\spad{R2} \\spad{:=} RadicalFunctionField(INT,{} \\spad{P0},{} \\spad{P1},{} 2 * \\spad{x**2},{} 4) \\spad{X} absolutelyIrreducible?()\\$\\spad{R2}")) (|genus| (((|NonNegativeInteger|)) "\\indented{1}{genus() returns the genus of one absolutely irreducible component} \\blankline \\spad{X} \\spad{P0} \\spad{:=} UnivariatePolynomial(\\spad{x},{} Integer) \\spad{X} \\spad{P1} \\spad{:=} UnivariatePolynomial(\\spad{y},{} Fraction \\spad{P0}) \\spad{X} \\spad{R} \\spad{:=} RadicalFunctionField(INT,{} \\spad{P0},{} \\spad{P1},{} 1 - \\spad{x**20},{} 20) \\spad{X} genus()\\$\\spad{R}")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\indented{1}{numberOfComponents() returns the number of absolutely irreducible} \\indented{1}{components.} \\blankline \\spad{X} \\spad{P0} \\spad{:=} UnivariatePolynomial(\\spad{x},{} Integer) \\spad{X} \\spad{P1} \\spad{:=} UnivariatePolynomial(\\spad{y},{} Fraction \\spad{P0}) \\spad{X} \\spad{R} \\spad{:=} RadicalFunctionField(INT,{} \\spad{P0},{} \\spad{P1},{} 1 - \\spad{x**20},{} 20) \\spad{X} numberOfComponents()\\$\\spad{R}"))) NIL -((|HasCategory| |#2| (QUOTE (-364))) (|HasCategory| |#2| (QUOTE (-359)))) -(-334 -1333 UP UPUP) +((|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-365)))) +(-340 -1478 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\indented{1}{rationalPoints() returns the list of all the affine} rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in \\spad{u1},{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.") (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\indented{1}{inverseIntegralMatrixAtInfinity() returns \\spad{M} such} \\indented{1}{that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))}} \\indented{1}{where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity} \\indented{1}{returned by \\spad{infIntBasis()}.} \\blankline \\spad{X} \\spad{P0} \\spad{:=} UnivariatePolynomial(\\spad{x},{} Integer) \\spad{X} \\spad{P1} \\spad{:=} UnivariatePolynomial(\\spad{y},{} Fraction \\spad{P0}) \\spad{X} \\spad{R} \\spad{:=} RadicalFunctionField(INT,{} \\spad{P0},{} \\spad{P1},{} 1 - \\spad{x**20},{} 20) \\spad{X} inverseIntegralMatrixAtInfinity()\\$\\spad{R}")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\indented{1}{integralMatrixAtInfinity() returns \\spad{M} such that} \\indented{1}{\\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))}} \\indented{1}{where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity} \\indented{1}{returned by \\spad{infIntBasis()}.} \\blankline \\spad{X} \\spad{P0} \\spad{:=} UnivariatePolynomial(\\spad{x},{} Integer) \\spad{X} \\spad{P1} \\spad{:=} UnivariatePolynomial(\\spad{y},{} Fraction \\spad{P0}) \\spad{X} \\spad{R} \\spad{:=} RadicalFunctionField(INT,{} \\spad{P0},{} \\spad{P1},{} 1 - \\spad{x**20},{} 20) \\spad{X} integralMatrixAtInfinity()\\$\\spad{R}")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\indented{1}{inverseIntegralMatrix() returns \\spad{M} such that} \\indented{1}{\\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))}} \\indented{1}{where \\spad{(w1,{}...,{}wn)} is the integral basis of} \\indented{1}{\\spadfunFrom{integralBasis}{FunctionFieldCategory}.} \\blankline \\spad{X} \\spad{P0} \\spad{:=} UnivariatePolynomial(\\spad{x},{} Integer) \\spad{X} \\spad{P1} \\spad{:=} UnivariatePolynomial(\\spad{y},{} Fraction \\spad{P0}) \\spad{X} \\spad{R} \\spad{:=} RadicalFunctionField(INT,{} \\spad{P0},{} \\spad{P1},{} 1 - \\spad{x**20},{} 20) \\spad{X} inverseIntegralMatrix()\\$\\spad{R}")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\indented{1}{integralMatrix() returns \\spad{M} such that} \\indented{1}{\\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{}} \\indented{1}{where \\spad{(w1,{}...,{}wn)} is the integral basis of} \\indented{1}{\\spadfunFrom{integralBasis}{FunctionFieldCategory}.} \\blankline \\spad{X} \\spad{P0} \\spad{:=} UnivariatePolynomial(\\spad{x},{} Integer) \\spad{X} \\spad{P1} \\spad{:=} UnivariatePolynomial(\\spad{y},{} Fraction \\spad{P0}) \\spad{X} \\spad{R} \\spad{:=} RadicalFunctionField(INT,{} \\spad{P0},{} \\spad{P1},{} 1 - \\spad{x**20},{} 20) \\spad{X} integralMatrix()\\$\\spad{R}")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}") (((|Boolean|) $ |#1|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\indented{1}{integralBasisAtInfinity() returns the local integral basis} \\indented{1}{at infinity} \\blankline \\spad{X} \\spad{P0} \\spad{:=} UnivariatePolynomial(\\spad{x},{} Integer) \\spad{X} \\spad{P1} \\spad{:=} UnivariatePolynomial(\\spad{y},{} Fraction \\spad{P0}) \\spad{X} \\spad{R} \\spad{:=} RadicalFunctionField(INT,{} \\spad{P0},{} \\spad{P1},{} 1 - \\spad{x**20},{} 20) \\spad{X} integralBasisAtInfinity()\\$\\spad{R}")) (|integralBasis| (((|Vector| $)) "\\indented{1}{integralBasis() returns the integral basis for the curve.} \\blankline \\spad{X} \\spad{P0} \\spad{:=} UnivariatePolynomial(\\spad{x},{} Integer) \\spad{X} \\spad{P1} \\spad{:=} UnivariatePolynomial(\\spad{y},{} Fraction \\spad{P0}) \\spad{X} \\spad{R} \\spad{:=} RadicalFunctionField(INT,{} \\spad{P0},{} \\spad{P1},{} 1 - \\spad{x**20},{} 20) \\spad{X} integralBasis()\\$\\spad{R}")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\indented{1}{branchPointAtInfinity?() tests if there is a branch point} \\indented{1}{at infinity.} \\blankline \\spad{X} \\spad{P0} \\spad{:=} UnivariatePolynomial(\\spad{x},{} Integer) \\spad{X} \\spad{P1} \\spad{:=} UnivariatePolynomial(\\spad{y},{} Fraction \\spad{P0}) \\spad{X} \\spad{R} \\spad{:=} RadicalFunctionField(INT,{} \\spad{P0},{} \\spad{P1},{} 1 - \\spad{x**20},{} 20) \\spad{X} branchPointAtInfinity?()\\$\\spad{R} \\spad{X} \\spad{R2} \\spad{:=} RadicalFunctionField(INT,{} \\spad{P0},{} \\spad{P1},{} 2 * \\spad{x**2},{} 4) \\spad{X} branchPointAtInfinity?()\\$\\spad{R}")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\indented{1}{rationalPoint?(a,{} \\spad{b}) tests if \\spad{(x=a,{}y=b)} is on the curve.} \\blankline \\spad{X} \\spad{P0} \\spad{:=} UnivariatePolynomial(\\spad{x},{} Integer) \\spad{X} \\spad{P1} \\spad{:=} UnivariatePolynomial(\\spad{y},{} Fraction \\spad{P0}) \\spad{X} \\spad{R} \\spad{:=} RadicalFunctionField(INT,{} \\spad{P0},{} \\spad{P1},{} 1 - \\spad{x**20},{} 20) \\spad{X} rationalPoint?(0,{}0)\\$\\spad{R} \\spad{X} \\spad{R2} \\spad{:=} RadicalFunctionField(INT,{} \\spad{P0},{} \\spad{P1},{} 2 * \\spad{x**2},{} 4) \\spad{X} rationalPoint?(0,{}0)\\$\\spad{R2}")) (|absolutelyIrreducible?| (((|Boolean|)) "\\indented{1}{absolutelyIrreducible?() tests if the curve absolutely irreducible?} \\blankline \\spad{X} \\spad{P0} \\spad{:=} UnivariatePolynomial(\\spad{x},{} Integer) \\spad{X} \\spad{P1} \\spad{:=} UnivariatePolynomial(\\spad{y},{} Fraction \\spad{P0}) \\spad{X} \\spad{R2} \\spad{:=} RadicalFunctionField(INT,{} \\spad{P0},{} \\spad{P1},{} 2 * \\spad{x**2},{} 4) \\spad{X} absolutelyIrreducible?()\\$\\spad{R2}")) (|genus| (((|NonNegativeInteger|)) "\\indented{1}{genus() returns the genus of one absolutely irreducible component} \\blankline \\spad{X} \\spad{P0} \\spad{:=} UnivariatePolynomial(\\spad{x},{} Integer) \\spad{X} \\spad{P1} \\spad{:=} UnivariatePolynomial(\\spad{y},{} Fraction \\spad{P0}) \\spad{X} \\spad{R} \\spad{:=} RadicalFunctionField(INT,{} \\spad{P0},{} \\spad{P1},{} 1 - \\spad{x**20},{} 20) \\spad{X} genus()\\$\\spad{R}")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\indented{1}{numberOfComponents() returns the number of absolutely irreducible} \\indented{1}{components.} \\blankline \\spad{X} \\spad{P0} \\spad{:=} UnivariatePolynomial(\\spad{x},{} Integer) \\spad{X} \\spad{P1} \\spad{:=} UnivariatePolynomial(\\spad{y},{} Fraction \\spad{P0}) \\spad{X} \\spad{R} \\spad{:=} RadicalFunctionField(INT,{} \\spad{P0},{} \\spad{P1},{} 1 - \\spad{x**20},{} 20) \\spad{X} numberOfComponents()\\$\\spad{R}"))) -((-4498 |has| (-403 |#2|) (-359)) (-4503 |has| (-403 |#2|) (-359)) (-4497 |has| (-403 |#2|) (-359)) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) +((-4512 |has| (-409 |#2|) (-365)) (-4517 |has| (-409 |#2|) (-365)) (-4511 |has| (-409 |#2|) (-365)) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) NIL -(-335 |p| |extdeg|) +(-341 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by createPrimitivePoly from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4497 . T) (-4503 . T) (-4498 . T) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) -((|HasCategory| (-897 |#1|) (QUOTE (-148))) (|HasCategory| (-897 |#1|) (QUOTE (-364))) (|HasCategory| (-897 |#1|) (QUOTE (-146))) (-2318 (|HasCategory| (-897 |#1|) (QUOTE (-146))) (|HasCategory| (-897 |#1|) (QUOTE (-364))))) -(-336 GF |defpol|) +((-4511 . T) (-4517 . T) (-4512 . T) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) +((|HasCategory| (-905 |#1|) (QUOTE (-150))) (|HasCategory| (-905 |#1|) (QUOTE (-370))) (|HasCategory| (-905 |#1|) (QUOTE (-148))) (-2198 (|HasCategory| (-905 |#1|) (QUOTE (-148))) (|HasCategory| (-905 |#1|) (QUOTE (-370))))) +(-342 GF |defpol|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field \\spad{GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial defpol,{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly."))) -((-4497 . T) (-4503 . T) (-4498 . T) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) -((|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-364))) (|HasCategory| |#1| (QUOTE (-146))) (-2318 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-364))))) -(-337 GF |extdeg|) +((-4511 . T) (-4517 . T) (-4512 . T) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) +((|HasCategory| |#1| (QUOTE (-150))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-148))) (-2198 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-370))))) +(-343 GF |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field \\spad{GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by createPrimitivePoly from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4497 . T) (-4503 . T) (-4498 . T) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) -((|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-364))) (|HasCategory| |#1| (QUOTE (-146))) (-2318 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-364))))) -(-338 K |PolK|) +((-4511 . T) (-4517 . T) (-4512 . T) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) +((|HasCategory| |#1| (QUOTE (-150))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-148))) (-2198 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-370))))) +(-344 K |PolK|) ((|constructor| (NIL "Part of the package for Algebraic Function Fields in one variable (\\spad{PAFF}) It has been modified (very slitely) so that each time the \"factor\" function is used,{} the variable related to the size of the field over which the polynomial is factorized is reset. This is done in order to be used with a \"dynamic extension field\" which size is not fixed but set before calling the \"factor\" function and which is parse by side effect to this package via the function \"size\". See the local function \"initialize\" of this package."))) NIL NIL -(-339 -2500 V VF) +(-345 -3190 V VF) ((|constructor| (NIL "This package lifts the interpolation functions from \\spadtype{FractionFreeFastGaussian} to fractions. The packages defined in this file provide fast fraction free rational interpolation algorithms. (see \\spad{FAMR2},{} FFFG,{} FFFGF,{} NEWTON)")) (|generalInterpolation| (((|Stream| (|Matrix| (|SparseUnivariatePolynomial| |#1|))) (|List| |#1|) (|Mapping| |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#2|) (|Vector| |#3|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generalInterpolation(l,{} CA,{} f,{} sumEta,{} maxEta)} applies generalInterpolation(\\spad{l},{} \\spad{CA},{} \\spad{f},{} eta) for all possible eta with maximal entry maxEta and sum of entries \\spad{sumEta}") (((|Matrix| (|SparseUnivariatePolynomial| |#1|)) (|List| |#1|) (|Mapping| |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#2|) (|Vector| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{generalInterpolation(l,{} CA,{} f,{} eta)} performs Hermite-Pade approximation using the given action \\spad{CA} of polynomials on the elements of \\spad{f}. The result is guaranteed to be correct up to order |eta|-1. Given that eta is a \"normal\" point,{} the degrees on the diagonal are given by eta. The degrees of column \\spad{i} are in this case eta + \\spad{e}.\\spad{i} - [1,{}1,{}...,{}1],{} where the degree of zero is \\spad{-1}."))) NIL NIL -(-340 -2500 V) +(-346 -3190 V) ((|constructor| (NIL "This package implements the interpolation algorithm proposed in Beckermann,{} Bernhard and Labahn,{} George,{} Fraction-free computation of matrix rational interpolants and matrix GCDs,{} SIAM Journal on Matrix Analysis and Applications 22. The packages defined in this file provide fast fraction free rational interpolation algorithms. (see \\spad{FAMR2},{} FFFG,{} FFFGF,{} NEWTON)")) (|qShiftC| (((|List| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{qShiftC} gives the coefficients \\spad{c_}{\\spad{k},{}\\spad{k}} in the expansion \\spad{z} \\spad{g}(\\spad{x}) = sum_{\\spad{i=0}}\\spad{^k} \\spad{c_}{\\spad{k},{}\\spad{i}} \\spad{g}(\\spad{x}),{} where \\spad{z} acts on \\spad{g}(\\spad{x}) by shifting. In fact,{} the result is [1,{}\\spad{q},{}\\spad{q^2},{}...]")) (|qShiftAction| ((|#1| |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#2|) "\\spad{qShiftAction(q,{} k,{} l,{} g)} gives the coefficient of \\spad{x^k} in \\spad{z^l} \\spad{g}(\\spad{x}),{} where \\spad{z*}(a+b*x+c*x^2+d*x^3+...) = (a+q*b*x+q^2*c*x^2+q^3*d*x^3+...). In terms of sequences,{} z*u(\\spad{n})=q^n*u(\\spad{n}).")) (|DiffC| (((|List| |#1|) (|NonNegativeInteger|)) "\\spad{DiffC} gives the coefficients \\spad{c_}{\\spad{k},{}\\spad{k}} in the expansion \\spad{z} \\spad{g}(\\spad{x}) = sum_{\\spad{i=0}}\\spad{^k} \\spad{c_}{\\spad{k},{}\\spad{i}} \\spad{g}(\\spad{x}),{} where \\spad{z} acts on \\spad{g}(\\spad{x}) by shifting. In fact,{} the result is [0,{}0,{}0,{}...]")) (|DiffAction| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#2|) "\\spad{DiffAction(k,{} l,{} g)} gives the coefficient of \\spad{x^k} in \\spad{z^l} \\spad{g}(\\spad{x}),{} where \\spad{z*}(a+b*x+c*x^2+d*x^3+...) = (a*x+b*x^2+c*x^3+...),{} \\spadignore{i.e.} multiplication with \\spad{x}.")) (|ShiftC| (((|List| |#1|) (|NonNegativeInteger|)) "\\spad{ShiftC} gives the coefficients \\spad{c_}{\\spad{k},{}\\spad{k}} in the expansion \\spad{z} \\spad{g}(\\spad{x}) = sum_{\\spad{i=0}}\\spad{^k} \\spad{c_}{\\spad{k},{}\\spad{i}} \\spad{g}(\\spad{x}),{} where \\spad{z} acts on \\spad{g}(\\spad{x}) by shifting. In fact,{} the result is [0,{}1,{}2,{}...]")) (|ShiftAction| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#2|) "\\spad{ShiftAction(k,{} l,{} g)} gives the coefficient of \\spad{x^k} in \\spad{z^l} \\spad{g}(\\spad{x}),{} where \\spad{z*(a+b*x+c*x^2+d*x^3+...) = (b*x+2*c*x^2+3*d*x^3+...)}. In terms of sequences,{} z*u(\\spad{n})=n*u(\\spad{n}).")) (|generalCoefficient| ((|#1| (|Mapping| |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#2|) (|Vector| |#2|) (|NonNegativeInteger|) (|Vector| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalCoefficient(action,{} f,{} k,{} p)} gives the coefficient of \\spad{x^k} in \\spad{p}(\\spad{z})\\dot \\spad{f}(\\spad{x}),{} where the \\spad{action} of \\spad{z^l} on a polynomial in \\spad{x} is given by \\spad{action},{} \\spadignore{i.e.} \\spad{action}(\\spad{k},{} \\spad{l},{} \\spad{f}) should return the coefficient of \\spad{x^k} in \\spad{z^l} \\spad{f}(\\spad{x}).")) (|generalInterpolation| (((|Stream| (|Matrix| (|SparseUnivariatePolynomial| |#1|))) (|List| |#1|) (|Mapping| |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#2|) (|Vector| |#2|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generalInterpolation(C,{} CA,{} f,{} sumEta,{} maxEta)} applies \\spad{generalInterpolation(C,{} CA,{} f,{} eta)} for all possible \\spad{eta} with maximal entry \\spad{maxEta} and sum of entries at most \\spad{sumEta}. \\blankline The first argument \\spad{C} is the list of coefficients \\spad{c_}{\\spad{k},{}\\spad{k}} in the expansion \\spad{z} \\spad{g}(\\spad{x}) = sum_{\\spad{i=0}}\\spad{^k} \\spad{c_}{\\spad{k},{}\\spad{i}} \\spad{g}(\\spad{x}). \\blankline The second argument,{} \\spad{CA}(\\spad{k},{} \\spad{l},{} \\spad{f}),{} should return the coefficient of \\spad{x^k} in \\spad{z^l} \\spad{f}(\\spad{x}).") (((|Matrix| (|SparseUnivariatePolynomial| |#1|)) (|List| |#1|) (|Mapping| |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#2|) (|Vector| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{generalInterpolation(C,{} CA,{} f,{} eta)} performs Hermite-Pade approximation using the given action \\spad{CA} of polynomials on the elements of \\spad{f}. The result is guaranteed to be correct up to order |eta|-1. Given that eta is a \"normal\" point,{} the degrees on the diagonal are given by eta. The degrees of column \\spad{i} are in this case eta + \\spad{e}.\\spad{i} - [1,{}1,{}...,{}1],{} where the degree of zero is \\spad{-1}. \\blankline The first argument \\spad{C} is the list of coefficients \\spad{c_}{\\spad{k},{}\\spad{k}} in the expansion \\spad{z} \\spad{g}(\\spad{x}) = sum_{\\spad{i=0}}\\spad{^k} \\spad{c_}{\\spad{k},{}\\spad{i}} \\spad{g}(\\spad{x}). \\blankline The second argument,{} \\spad{CA}(\\spad{k},{} \\spad{l},{} \\spad{f}),{} should return the coefficient of \\spad{x^k} in \\spad{z^l} \\spad{f}(\\spad{x}).")) (|interpolate| (((|Fraction| (|SparseUnivariatePolynomial| |#1|)) (|List| (|Fraction| |#1|)) (|List| (|Fraction| |#1|)) (|NonNegativeInteger|)) "\\spad{interpolate(xlist,{} ylist,{} deg} returns the rational function with numerator degree \\spad{deg} that interpolates the given points using fraction free arithmetic.") (((|Fraction| (|SparseUnivariatePolynomial| |#1|)) (|List| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{interpolate(xlist,{} ylist,{} deg} returns the rational function with numerator degree at most \\spad{deg} and denominator degree at most \\spad{\\#xlist-deg-1} that interpolates the given points using fraction free arithmetic. Note that rational interpolation does not guarantee that all given points are interpolated correctly: unattainable points may make this impossible.")) (|fffg| (((|Matrix| (|SparseUnivariatePolynomial| |#1|)) (|List| |#1|) (|Mapping| |#1| (|NonNegativeInteger|) (|Vector| (|SparseUnivariatePolynomial| |#1|))) (|List| (|NonNegativeInteger|))) "\\spad{fffg} is the general algorithm as proposed by Beckermann and Labahn. \\blankline The first argument is the list of \\spad{c_}{\\spad{i},{}\\spad{i}}. These are the only values of \\spad{C} explicitely needed in \\spad{fffg}. \\blankline The second argument \\spad{c},{} computes \\spad{c_k}(\\spad{M}),{} \\spadignore{i.e.} \\spad{c_k}(.) is the dual basis of the vector space \\spad{V},{} but also knows about the special multiplication rule as descibed in Equation (2). Note that the information about \\spad{f} is therefore encoded in \\spad{c}. \\blankline The third argument is the vector of degree bounds \\spad{n},{} as introduced in Definition 2.1. In particular,{} the sum of the entries is the order of the Mahler system computed."))) NIL NIL -(-341 GF) +(-347 GF) ((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field \\spad{GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree \\spad{n} over \\spad{GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree \\spad{n} over \\spad{GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree \\spad{n} over \\spad{GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table \\spad{m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table \\spad{m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by \\spad{f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial \\spad{f}(\\spad{x}),{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by x**Z(\\spad{i}) = 1+x**i is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}."))) NIL NIL -(-342 F1 GF F2) +(-348 F1 GF F2) ((|constructor| (NIL "FiniteFieldHomomorphisms(\\spad{F1},{}\\spad{GF},{}\\spad{F2}) exports coercion functions of elements between the fields \\spad{F1} and \\spad{F2},{} which both must be finite simple algebraic extensions of the finite ground field \\spad{GF}.")) (|coerce| ((|#1| |#3|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from \\spad{F2} in \\spad{F1},{} where coerce is a field homomorphism between the fields extensions \\spad{F2} and \\spad{F1} both over ground field \\spad{GF} (the second argument to the package). Error: if the extension degree of \\spad{F2} doesn\\spad{'t} divide the extension degree of \\spad{F1}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse.") ((|#3| |#1|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from \\spad{F1} in \\spad{F2}. Thus coerce is a field homomorphism between the fields extensions \\spad{F1} and \\spad{F2} both over ground field \\spad{GF} (the second argument to the package). Error: if the extension degree of \\spad{F1} doesn\\spad{'t} divide the extension degree of \\spad{F2}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse."))) NIL NIL -(-343 S) +(-349 S) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note that see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of a. Note that such a root is alway defined in finite fields."))) NIL NIL -(-344) +(-350) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note that see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of a. Note that such a root is alway defined in finite fields."))) -((-4497 . T) (-4503 . T) (-4498 . T) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) +((-4511 . T) (-4517 . T) (-4512 . T) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) NIL -(-345 R UP -1333) +(-351 R UP -1478) ((|constructor| (NIL "Integral bases for function fields of dimension one In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL -(-346 |p| |extdeg|) +(-352 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by createNormalPoly")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4497 . T) (-4503 . T) (-4498 . T) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) -((|HasCategory| (-897 |#1|) (QUOTE (-148))) (|HasCategory| (-897 |#1|) (QUOTE (-364))) (|HasCategory| (-897 |#1|) (QUOTE (-146))) (-2318 (|HasCategory| (-897 |#1|) (QUOTE (-146))) (|HasCategory| (-897 |#1|) (QUOTE (-364))))) -(-347 GF |uni|) +((-4511 . T) (-4517 . T) (-4512 . T) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) +((|HasCategory| (-905 |#1|) (QUOTE (-150))) (|HasCategory| (-905 |#1|) (QUOTE (-370))) (|HasCategory| (-905 |#1|) (QUOTE (-148))) (-2198 (|HasCategory| (-905 |#1|) (QUOTE (-148))) (|HasCategory| (-905 |#1|) (QUOTE (-370))))) +(-353 GF |uni|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field \\spad{GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of \\spad{GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over \\spad{GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4497 . T) (-4503 . T) (-4498 . T) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) -((|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-364))) (|HasCategory| |#1| (QUOTE (-146))) (-2318 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-364))))) -(-348 GF |extdeg|) +((-4511 . T) (-4517 . T) (-4512 . T) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) +((|HasCategory| |#1| (QUOTE (-150))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-148))) (-2198 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-370))))) +(-354 GF |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field \\spad{GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by createNormalPoly from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4497 . T) (-4503 . T) (-4498 . T) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) -((|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-364))) (|HasCategory| |#1| (QUOTE (-146))) (-2318 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-364))))) -(-349 |p| |n|) +((-4511 . T) (-4517 . T) (-4512 . T) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) +((|HasCategory| |#1| (QUOTE (-150))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-148))) (-2198 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-370))))) +(-355 |p| |n|) ((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}."))) -((-4497 . T) (-4503 . T) (-4498 . T) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) -((|HasCategory| (-897 |#1|) (QUOTE (-148))) (|HasCategory| (-897 |#1|) (QUOTE (-364))) (|HasCategory| (-897 |#1|) (QUOTE (-146))) (-2318 (|HasCategory| (-897 |#1|) (QUOTE (-146))) (|HasCategory| (-897 |#1|) (QUOTE (-364))))) -(-350 GF |defpol|) +((-4511 . T) (-4517 . T) (-4512 . T) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) +((|HasCategory| (-905 |#1|) (QUOTE (-150))) (|HasCategory| (-905 |#1|) (QUOTE (-370))) (|HasCategory| (-905 |#1|) (QUOTE (-148))) (-2198 (|HasCategory| (-905 |#1|) (QUOTE (-148))) (|HasCategory| (-905 |#1|) (QUOTE (-370))))) +(-356 GF |defpol|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field \\spad{GF} generated by the extension polynomial defpol which MUST be irreducible."))) -((-4497 . T) (-4503 . T) (-4498 . T) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) -((|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-364))) (|HasCategory| |#1| (QUOTE (-146))) (-2318 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-364))))) -(-351 -1333 GF) +((-4511 . T) (-4517 . T) (-4512 . T) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) +((|HasCategory| |#1| (QUOTE (-150))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-148))) (-2198 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-370))))) +(-357 -1478 GF) ((|constructor| (NIL "\\spad{FiniteFieldPolynomialPackage2}(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field \\spad{GF} and an algebraic extension \\spad{F} of \\spad{GF},{} \\spadignore{e.g.} a zero of a polynomial over \\spad{GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of \\spad{F} over \\spad{GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over \\spad{F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-352 GF) +(-358 GF) ((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,{}x**q,{}x**(q**2),{}...,{}x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field \\spad{GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of \\spad{GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,{}n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field \\spad{GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field \\spad{GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field \\spad{GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note that the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the lookup of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the lookup of the coefficient of the term of degree \\spad{n}-1 of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of \\spad{GF} given by lookup. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field \\spad{GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note that the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the lookup of the constant term of \\spad{f} is less than this number for \\spad{g} or if lookup of the coefficient of the term of degree \\spad{n}-1 of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of \\spad{GF} given by lookup. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field \\spad{GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note that the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the lookup of the coefficient of the term of degree \\spad{n}-1 of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of \\spad{GF} given by lookup.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field \\spad{GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note that the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the lookup of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of \\spad{GF} given by lookup.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field \\spad{GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note that the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of \\spad{GF} given by lookup.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field \\spad{GF}. polynomial of degree \\spad{n} over the field \\spad{GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field \\spad{GF}. Note that this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field \\spad{GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field \\spad{GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field \\spad{GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field \\spad{GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field \\spad{GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field \\spad{GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive."))) NIL NIL -(-353 -1333 FP FPP) +(-359 -1478 FP FPP) ((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL -(-354 K |PolK|) +(-360 K |PolK|) ((|constructor| (NIL "Part of the package for Algebraic Function Fields in one variable (\\spad{PAFF})"))) NIL NIL -(-355 GF |n|) +(-361 GF |n|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field \\spad{GF} of degree \\spad{n} generated by the extension polynomial constructed by createIrreduciblePoly from \\spadtype{FiniteFieldPolynomialPackage}."))) -((-4497 . T) (-4503 . T) (-4498 . T) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) -((|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-364))) (|HasCategory| |#1| (QUOTE (-146))) (-2318 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-364))))) -(-356 R |ls|) +((-4511 . T) (-4517 . T) (-4512 . T) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) +((|HasCategory| |#1| (QUOTE (-150))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-148))) (-2198 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-370))))) +(-362 R |ls|) ((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the FGLM algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the FGLM strategy is used,{} otherwise the Sugar strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the FGLM strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}."))) NIL NIL -(-357 S) +(-363 S) ((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) -((-4502 . T)) +((-4516 . T)) NIL -(-358 S) +(-364 S) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline Axioms\\spad{\\br} \\tab{5}\\spad{a*(b/a) = b}\\spad{\\br} \\tab{5}\\spad{inv(a) = 1/a}")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) NIL NIL -(-359) +(-365) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline Axioms\\spad{\\br} \\tab{5}\\spad{a*(b/a) = b}\\spad{\\br} \\tab{5}\\spad{inv(a) = 1/a}")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) -((-4497 . T) (-4503 . T) (-4498 . T) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) +((-4511 . T) (-4517 . T) (-4512 . T) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) NIL -(-360 |Name| S) +(-366 |Name| S) ((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|flush| (((|Void|) $) "\\spad{flush(f)} makes sure that buffered data is written out")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,{}s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,{}mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,{}\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,{}mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input."))) NIL NIL -(-361 S) +(-367 S) ((|constructor| (NIL "This domain provides a basic model of files to save arbitrary values. The operations provide sequential access to the contents.")) (|readIfCan!| (((|Union| |#1| "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result."))) NIL NIL -(-362 S R) +(-368 S R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note that the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note that the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#2|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note that we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note that we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note that we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note that we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note that this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#2| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note that this is the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#2| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note that this is the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#2| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#2| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#2| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#2| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) NIL -((|HasCategory| |#2| (QUOTE (-550)))) -(-363 R) +((|HasCategory| |#2| (QUOTE (-558)))) +(-369 R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note that the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note that the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note that we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note that we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note that we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note that we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note that this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note that this is the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note that this is the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) -((-4502 |has| |#1| (-550)) (-4500 . T) (-4499 . T)) +((-4516 |has| |#1| (-558)) (-4514 . T) (-4513 . T)) NIL -(-364) +(-370) ((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set."))) NIL NIL -(-365 S R UP) +(-371 S R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#3| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#3| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{traceMatrix([v1,{}..,{}vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#2| (|Vector| $)) "\\spad{discriminant([v1,{}..,{}vn])} returns \\spad{determinant(traceMatrix([v1,{}..,{}vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,{}..,{}an],{}[v1,{}..,{}vn])} returns \\spad{a1*v1+...+an*vn}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm],{} basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,{}basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#2| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#2| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{regularRepresentation(a,{}basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) NIL -((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-359)))) -(-366 R UP) +((|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-150))) (|HasCategory| |#2| (QUOTE (-365)))) +(-372 R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,{}..,{}vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,{}..,{}vn])} returns \\spad{determinant(traceMatrix([v1,{}..,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}..,{}an],{}[v1,{}..,{}vn])} returns \\spad{a1*v1+...+an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm],{} basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,{}basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) -((-4499 . T) (-4500 . T) (-4502 . T)) +((-4513 . T) (-4514 . T) (-4516 . T)) NIL -(-367 S A R B) +(-373 S A R B) ((|constructor| (NIL "\\spad{FiniteLinearAggregateFunctions2} provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note that third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain."))) NIL NIL -(-368 A S) +(-374 A S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note that \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note that \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4506)) (|HasCategory| |#2| (QUOTE (-834))) (|HasCategory| |#2| (QUOTE (-1082)))) -(-369 S) +((|HasAttribute| |#1| (QUOTE -4520)) (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-1090)))) +(-375 S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note that \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note that \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) -((-4505 . T) (-2537 . T)) +((-4519 . T) (-3973 . T)) NIL -(-370 |VarSet| R) +(-376 |VarSet| R) ((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}.")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4500 . T) (-4499 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4514 . T) (-4513 . T)) NIL -(-371 S V) +(-377 S V) ((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates. Sort package (in-place) for shallowlyMutable Finite Linear Aggregates")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm."))) NIL NIL -(-372 S R) +(-378 S R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-560))))) -(-373 R) +((|HasCategory| |#2| (LIST (QUOTE -630) (QUOTE (-568))))) +(-379 R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) -((-4502 . T)) +((-4516 . T)) NIL -(-374 |Par|) +(-380 |Par|) ((|constructor| (NIL "This is a package for the approximation of complex solutions for systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf,{} lv,{} eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf,{} eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,{}eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,{}eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}."))) NIL NIL -(-375) +(-381) ((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,{}exponent,{}base)} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * base ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-bits)}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The base of the representation is binary,{} hence a \\spad{Record(m:mantissa,{}e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary base,{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the base to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal base when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision\\spad{\\br} \\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{\\spad{pi}},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )} \\spad{\\br} \\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}: \\spad{O(sqrt(n) n**2)}\\spad{\\br} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|convert| (($ (|DoubleFloat|)) "\\spad{convert(x)} converts a \\spadtype{DoubleFloat} \\spad{x} to a \\spadtype{Float}.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,{}n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,{}y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\^= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-4488 . T) (-4496 . T) (-2550 . T) (-4497 . T) (-4503 . T) (-4498 . T) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) +((-4502 . T) (-4510 . T) (-3996 . T) (-4511 . T) (-4517 . T) (-4512 . T) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) NIL -(-376 |Par|) +(-382 |Par|) ((|constructor| (NIL "This is a package for the approximation of real solutions for systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf,{} eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,{}lv,{}eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,{}eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,{}eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,{}eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,{}eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}."))) NIL NIL -(-377 R S) +(-383 R S) ((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: XDistributedPolynomial,{} XRecursivePolynomial.")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}"))) -((-4500 . T) (-4499 . T)) -((|HasCategory| |#1| (QUOTE (-170)))) -(-378 R |Basis|) +((-4514 . T) (-4513 . T)) +((|HasCategory| |#1| (QUOTE (-172)))) +(-384 R |Basis|) ((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor.")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{listOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{listOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{listOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}")) (|listOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{listOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis,{} c: R)} such that \\spad{x} equals \\spad{reduce(+,{} map(x +-> monom(x.k,{} x.c),{} lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,{}r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,{}b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}."))) -((-4500 . T) (-4499 . T)) +((-4514 . T) (-4513 . T)) NIL -(-379) +(-385) ((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) -((-2537 . T)) +((-3973 . T)) NIL -(-380) +(-386) ((|constructor| (NIL "\\axiomType{FortranMatrixFunctionCategory} provides support for producing Functions and Subroutines representing matrices of expressions.")) (|retractIfCan| (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) -((-2537 . T)) +((-3973 . T)) NIL -(-381 R S) +(-387 R S) ((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored."))) -((-4500 . T) (-4499 . T)) -((|HasCategory| |#1| (QUOTE (-170)))) -(-382 S) +((-4514 . T) (-4513 . T)) +((|HasCategory| |#1| (QUOTE (-172)))) +(-388 S) ((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x,{} y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l,{} r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) NIL -((|HasCategory| |#1| (QUOTE (-834)))) -(-383) +((|HasCategory| |#1| (QUOTE (-842)))) +(-389) ((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link."))) -((-4498 . T) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) +((-4512 . T) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) NIL -(-384) +(-390) ((|constructor| (NIL "This domain provides an interface to names in the file system."))) NIL NIL -(-385) +(-391) ((|constructor| (NIL "This category provides an interface to names in the file system.")) (|new| (($ (|String|) (|String|) (|String|)) "\\spad{new(d,{}pref,{}e)} constructs the name of a new writable file with \\spad{d} as its directory,{} \\spad{pref} as a prefix of its name and \\spad{e} as its extension. When \\spad{d} or \\spad{t} is the empty string,{} a default is used. An error occurs if a new file cannot be written in the given directory.")) (|writable?| (((|Boolean|) $) "\\spad{writable?(f)} tests if the named file be opened for writing. The named file need not already exist.")) (|readable?| (((|Boolean|) $) "\\spad{readable?(f)} tests if the named file exist and can it be opened for reading.")) (|exists?| (((|Boolean|) $) "\\spad{exists?(f)} tests if the file exists in the file system.")) (|extension| (((|String|) $) "\\spad{extension(f)} returns the type part of the file name.")) (|name| (((|String|) $) "\\spad{name(f)} returns the name part of the file name.")) (|directory| (((|String|) $) "\\spad{directory(f)} returns the directory part of the file name.")) (|filename| (($ (|String|) (|String|) (|String|)) "\\spad{filename(d,{}n,{}e)} creates a file name with \\spad{d} as its directory,{} \\spad{n} as its name and \\spad{e} as its extension. This is a portable way to create file names. When \\spad{d} or \\spad{t} is the empty string,{} a default is used.")) (|coerce| (((|String|) $) "\\spad{coerce(fn)} produces a string for a file name according to operating system-dependent conventions.") (($ (|String|)) "\\spad{coerce(s)} converts a string to a file name according to operating system-dependent conventions."))) NIL NIL -(-386 |n| |class| R) +(-392 |n| |class| R) ((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} is not documented")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} is not documented")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra"))) -((-4500 . T) (-4499 . T)) +((-4514 . T) (-4513 . T)) NIL -(-387) +(-393) ((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack"))) NIL NIL -(-388 -1333 UP UPUP R) +(-394 -1478 UP UPUP R) ((|constructor| (NIL "Finds the order of a divisor over a finite field")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented"))) NIL NIL -(-389 S) +(-395 S) ((|constructor| (NIL "\\spadtype{ScriptFormulaFormat1} provides a utility coercion for changing to SCRIPT formula format anything that has a coercion to the standard output format.")) (|coerce| (((|ScriptFormulaFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from an expression \\spad{s} of domain \\spad{S} to SCRIPT formula format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to SCRIPT formula format."))) NIL NIL -(-390) +(-396) ((|constructor| (NIL "\\spadtype{ScriptFormulaFormat} provides a coercion from \\spadtype{OutputForm} to IBM SCRIPT/VS Mathematical Formula Format. The basic SCRIPT formula format object consists of three parts: a prologue,{} a formula part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{formula} and \\spadfun{epilogue} extract these parts,{} respectively. The central parts of the expression go into the formula part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \":df.\" and \":edf.\" so that the formula section will be printed in display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a formatted object \\spad{t} to \\spad{strings}.")) (|setFormula!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setFormula!(t,{}strings)} sets the formula section of a formatted object \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a formatted object \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a formatted object \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setFormula!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|formula| (((|List| (|String|)) $) "\\spad{formula(t)} extracts the formula section of a formatted object \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a formatted object \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to SCRIPT formula format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")) (|coerce| (($ (|OutputForm|)) "\\spad{coerce(o)} changes \\spad{o} in the standard output format to SCRIPT formula format."))) NIL NIL -(-391) +(-397) ((|constructor| (NIL "\\axiomType{FortranProgramCategory} provides various models of FORTRAN subprograms. These can be transformed into actual FORTRAN code.")) (|outputAsFortran| (((|Void|) $) "\\axiom{outputAsFortran(\\spad{u})} translates \\axiom{\\spad{u}} into a legal FORTRAN subprogram."))) -((-2537 . T)) +((-3973 . T)) NIL -(-392) +(-398) ((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) -((-2537 . T)) +((-3973 . T)) NIL -(-393) +(-399) ((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}t,{}lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,{}l,{}ll,{}lv,{}t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}ll,{}lv)} \\undocumented{}"))) NIL NIL -(-394 -1337 |returnType| |arguments| |symbols|) +(-400 -3391 |returnType| |arguments| |symbols|) ((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} is not documented") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} is not documented") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} is not documented") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} is not documented") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} is not documented") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} is not documented") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} is not documented") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} is not documented") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} is not documented") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} is not documented") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} is not documented") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} is not documented") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} is not documented") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} is not documented") (($ (|FortranCode|)) "\\spad{coerce(fc)} is not documented"))) NIL NIL -(-395 -1333 UP) +(-401 -1478 UP) ((|constructor| (NIL "Full partial fraction expansion of rational functions")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f}.")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p,{} [[j,{} Dj,{} Hj]...]]} such that \\spad{f = p(x) + sum_{[j,{}Dj,{}Hj] in l} sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}"))) NIL NIL -(-396 R) +(-402 R) ((|constructor| (NIL "A set \\spad{S} is PatternMatchable over \\spad{R} if \\spad{S} can lift the pattern-matching functions of \\spad{S} over the integers and float to itself (necessary for matching in towers)."))) -((-2537 . T)) +((-3973 . T)) NIL -(-397 S) +(-403 S) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a**p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) NIL NIL -(-398) +(-404) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a**p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) -((-4497 . T) (-4503 . T) (-4498 . T) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) +((-4511 . T) (-4517 . T) (-4512 . T) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) NIL -(-399 S) +(-405 S) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline 1: base of the exponent where the actual implemenations are usually binary or decimal)\\spad{\\br} 2: precision of the mantissa (arbitrary or fixed)\\spad{\\br} 3: rounding error for operations \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\indented{1}{base() returns the base of the} \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note that \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) NIL -((|HasAttribute| |#1| (QUOTE -4488)) (|HasAttribute| |#1| (QUOTE -4496))) -(-400) +((|HasAttribute| |#1| (QUOTE -4502)) (|HasAttribute| |#1| (QUOTE -4510))) +(-406) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline 1: base of the exponent where the actual implemenations are usually binary or decimal)\\spad{\\br} 2: precision of the mantissa (arbitrary or fixed)\\spad{\\br} 3: rounding error for operations \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\indented{1}{base() returns the base of the} \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note that \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) -((-2550 . T) (-4497 . T) (-4503 . T) (-4498 . T) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) +((-3996 . T) (-4511 . T) (-4517 . T) (-4512 . T) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) NIL -(-401 R S) +(-407 R S) ((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,{}u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type."))) NIL NIL -(-402 A B) +(-408 A B) ((|constructor| (NIL "This package extends a map between integral domains to a map between Fractions over those domains by applying the map to the numerators and denominators.")) (|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of the fraction \\spad{frac}."))) NIL NIL -(-403 S) +(-409 S) ((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical."))) -((-4492 -12 (|has| |#1| (-6 -4503)) (|has| |#1| (-447)) (|has| |#1| (-6 -4492))) (-4497 . T) (-4503 . T) (-4498 . T) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) -((|HasCategory| |#1| (QUOTE (-896))) (|HasCategory| |#1| (LIST (QUOTE -1029) (QUOTE (-1153)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-1128))) (|HasCategory| |#1| (LIST (QUOTE -873) (QUOTE (-375)))) (|HasCategory| |#1| (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-375))))) (|HasCategory| |#1| (QUOTE (-221))) (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#1| (LIST (QUOTE -515) (QUOTE (-1153)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -276) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-296))) (|HasCategory| |#1| (QUOTE (-542))) (-12 (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-815)))) (-12 (|HasAttribute| |#1| (QUOTE -4503)) (|HasAttribute| |#1| (QUOTE -4492)) (|HasCategory| |#1| (QUOTE (-447)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-533)))) (-2318 (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-533)))) (-12 (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-815))))) (|HasCategory| |#1| (QUOTE (-834))) (-2318 (|HasCategory| |#1| (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-834)))) (|HasCategory| |#1| (LIST (QUOTE -1029) (QUOTE (-560)))) (-2318 (|HasCategory| |#1| (LIST (QUOTE -1029) (QUOTE (-560)))) (-12 (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-815))))) (|HasCategory| |#1| (LIST (QUOTE -873) (QUOTE (-560)))) (-2318 (|HasCategory| |#1| (LIST (QUOTE -873) (QUOTE (-560)))) (-12 (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-815))))) (|HasCategory| |#1| (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-560))))) (-2318 (|HasCategory| |#1| (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-815))))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-560)))) (-2318 (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-560)))) (-12 (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-815))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-896)))) (-2318 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-896)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-404 S R UP) +((-4506 -12 (|has| |#1| (-6 -4517)) (|has| |#1| (-453)) (|has| |#1| (-6 -4506))) (-4511 . T) (-4517 . T) (-4512 . T) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) +((|HasCategory| |#1| (QUOTE (-904))) (|HasCategory| |#1| (LIST (QUOTE -1037) (QUOTE (-1161)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-150))) (|HasCategory| |#1| (QUOTE (-1021))) (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#1| (QUOTE (-1136))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-225))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#1| (LIST (QUOTE -523) (QUOTE (-1161)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -281) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-550))) (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-823)))) (-12 (|HasAttribute| |#1| (QUOTE -4517)) (|HasAttribute| |#1| (QUOTE -4506)) (|HasCategory| |#1| (QUOTE (-453)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-541)))) (-2198 (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-541)))) (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-823))))) (|HasCategory| |#1| (QUOTE (-842))) (-2198 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#1| (QUOTE (-842)))) (|HasCategory| |#1| (LIST (QUOTE -1037) (QUOTE (-568)))) (-2198 (|HasCategory| |#1| (LIST (QUOTE -1037) (QUOTE (-568)))) (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-823))))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-568)))) (-2198 (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-568)))) (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-823))))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-568))))) (-2198 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-568))))) (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-823))))) (|HasCategory| |#1| (LIST (QUOTE -630) (QUOTE (-568)))) (-2198 (|HasCategory| |#1| (LIST (QUOTE -630) (QUOTE (-568)))) (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-823))))) (-12 (|HasCategory| $ (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-904)))) (-2198 (-12 (|HasCategory| $ (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-148))))) +(-410 S R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL NIL -(-405 R UP) +(-411 R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4499 . T) (-4500 . T) (-4502 . T)) +((-4513 . T) (-4514 . T) (-4516 . T)) NIL -(-406 A S) +(-412 A S) ((|constructor| (NIL "A is fully retractable to \\spad{B} means that A is retractable to \\spad{B} and if \\spad{B} is retractable to the integers or rational numbers then so is A. In particular,{} what we are asserting is that there are no integers (rationals) in A which don\\spad{'t} retract into \\spad{B}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-560))))) -(-407 S) +((|HasCategory| |#2| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-568))))) +(-413 S) ((|constructor| (NIL "A is fully retractable to \\spad{B} means that A is retractable to \\spad{B} and if \\spad{B} is retractable to the integers or rational numbers then so is A. In particular,{} what we are asserting is that there are no integers (rationals) in A which don\\spad{'t} retract into \\spad{B}."))) NIL NIL -(-408 R1 F1 U1 A1 R2 F2 U2 A2) +(-414 R1 F1 U1 A1 R2 F2 U2 A2) ((|constructor| (NIL "Lifting of morphisms to fractional ideals.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}i)} \\undocumented{}"))) NIL NIL -(-409 R -1333 UP A) +(-415 R -1478 UP A) ((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,{}x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,{}...,{}fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} returns the vector \\spad{[f1,{}...,{}fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,{}...,{}fn])} returns the ideal \\spad{(f1,{}...,{}fn)}."))) -((-4502 . T)) +((-4516 . T)) NIL -(-410 R -1333 UP A |ibasis|) +(-416 R -1478 UP A |ibasis|) ((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,{}...,{}fn])} = the module generated by \\spad{(f1,{}...,{}fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}."))) NIL -((|HasCategory| |#4| (LIST (QUOTE -1029) (|devaluate| |#2|)))) -(-411 AR R AS S) +((|HasCategory| |#4| (LIST (QUOTE -1037) (|devaluate| |#2|)))) +(-417 AR R AS S) ((|constructor| (NIL "\\spad{FramedNonAssociativeAlgebraFunctions2} implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}."))) NIL NIL -(-412 S R) +(-418 S R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#2|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#2|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#2|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#2|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note that the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#2|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note that the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#2| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL -((|HasCategory| |#2| (QUOTE (-359)))) -(-413 R) +((|HasCategory| |#2| (QUOTE (-365)))) +(-419 R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note that the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note that the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#1| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4502 |has| |#1| (-550)) (-4500 . T) (-4499 . T)) +((-4516 |has| |#1| (-558)) (-4514 . T) (-4513 . T)) NIL -(-414 R) +(-420 R) ((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\indented{1}{map(\\spad{fn},{}\\spad{u}) maps the function \\userfun{\\spad{fn}} across the factors of} \\indented{1}{\\spadvar{\\spad{u}} and creates a new factored object. Note: this clears} \\indented{1}{the information flags (sets them to \"nil\") because the effect of} \\indented{1}{\\userfun{\\spad{fn}} is clearly not known in general.} \\blankline \\spad{X} \\spad{m}(a:Factored Polynomial Integer):Factored Polynomial Integer \\spad{==} \\spad{a^2} \\spad{X} \\spad{f:=x*y^3}-3*x^2*y^2+3*x^3*y-\\spad{x^4} \\spad{X} map(\\spad{m},{}\\spad{f}) \\spad{X} g:=makeFR(\\spad{z},{}factorList \\spad{f}) \\spad{X} map(\\spad{m},{}\\spad{g})")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\indented{1}{unit(\\spad{u}) extracts the unit part of the factorization.} \\blankline \\spad{X} \\spad{f:=x*y^3}-3*x^2*y^2+3*x^3*y-\\spad{x^4} \\spad{X} unit \\spad{f} \\spad{X} g:=makeFR(\\spad{z},{}factorList \\spad{f}) \\spad{X} unit \\spad{g}")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,{}exponent,{}flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\indented{1}{sqfrFactor(base,{}exponent) creates a factored object with} \\indented{1}{a single factor whose base is asserted to be square-free} \\indented{1}{(flag = \"sqfr\").} \\blankline \\spad{X} a:=sqfrFactor(3,{}5) \\spad{X} nthFlag(a,{}1)")) (|primeFactor| (($ |#1| (|Integer|)) "\\indented{1}{primeFactor(base,{}exponent) creates a factored object with} \\indented{1}{a single factor whose base is asserted to be prime} \\indented{1}{(flag = \"prime\").} \\blankline \\spad{X} a:=primeFactor(3,{}4) \\spad{X} nthFlag(a,{}1)")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\indented{1}{numberOfFactors(\\spad{u}) returns the number of factors in \\spadvar{\\spad{u}}.} \\blankline \\spad{X} a:=factor 9720000 \\spad{X} numberOfFactors a")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\indented{1}{nthFlag(\\spad{u},{}\\spad{n}) returns the information flag of the \\spad{n}th factor of} \\indented{1}{\\spadvar{\\spad{u}}.\\space{2}If \\spadvar{\\spad{n}} is not a valid index for a factor} \\indented{1}{(for example,{} less than 1 or too big),{} \"nil\" is returned.} \\blankline \\spad{X} a:=factor 9720000 \\spad{X} nthFlag(a,{}2)")) (|nthFactor| ((|#1| $ (|Integer|)) "\\indented{1}{nthFactor(\\spad{u},{}\\spad{n}) returns the base of the \\spad{n}th factor of} \\indented{1}{\\spadvar{\\spad{u}}.\\space{2}If \\spadvar{\\spad{n}} is not a valid index for a factor} \\indented{1}{(for example,{} less than 1 or too big),{} 1 is returned.\\space{2}If} \\indented{1}{\\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.} \\blankline \\spad{X} a:=factor 9720000 \\spad{X} nthFactor(a,{}2)")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\indented{1}{nthExponent(\\spad{u},{}\\spad{n}) returns the exponent of the \\spad{n}th factor of} \\indented{1}{\\spadvar{\\spad{u}}.\\space{2}If \\spadvar{\\spad{n}} is not a valid index for a factor} \\indented{1}{(for example,{} less than 1 or too big),{} 0 is returned.} \\blankline \\spad{X} a:=factor 9720000 \\spad{X} nthExponent(a,{}2)")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\indented{1}{irreducibleFactor(base,{}exponent) creates a factored object with} \\indented{1}{a single factor whose base is asserted to be irreducible} \\indented{1}{(flag = \"irred\").} \\blankline \\spad{X} a:=irreducibleFactor(3,{}1) \\spad{X} nthFlag(a,{}1)")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\indented{1}{factors(\\spad{u}) returns a list of the factors in a form suitable} \\indented{1}{for iteration. That is,{} it returns a list where each element} \\indented{1}{is a record containing a base and exponent.\\space{2}The original} \\indented{1}{object is the product of all the factors and the unit (which} \\indented{1}{can be extracted by \\axiom{unit(\\spad{u})}).} \\blankline \\spad{X} \\spad{f:=x*y^3}-3*x^2*y^2+3*x^3*y-\\spad{x^4} \\spad{X} factors \\spad{f} \\spad{X} g:=makeFR(\\spad{z},{}factorList \\spad{f}) \\spad{X} factors \\spad{g}")) (|nilFactor| (($ |#1| (|Integer|)) "\\indented{1}{nilFactor(base,{}exponent) creates a factored object with} \\indented{1}{a single factor with no information about the kind of} \\indented{1}{base (flag = \"nil\").} \\blankline \\spad{X} nilFactor(24,{}2) \\spad{X} nilFactor(\\spad{x}-\\spad{y},{}3)")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\indented{1}{factorList(\\spad{u}) returns the list of factors with flags (for} \\indented{1}{use by factoring code).} \\blankline \\spad{X} f:=nilFactor(\\spad{x}-\\spad{y},{}3) \\spad{X} factorList \\spad{f}")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\indented{1}{makeFR(unit,{}listOfFactors) creates a factored object (for} \\indented{1}{use by factoring code).} \\blankline \\spad{X} f:=nilFactor(\\spad{x}-\\spad{y},{}3) \\spad{X} g:=factorList \\spad{f} \\spad{X} makeFR(\\spad{z},{}\\spad{g})")) (|exponent| (((|Integer|) $) "\\indented{1}{exponent(\\spad{u}) returns the exponent of the first factor of} \\indented{1}{\\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.} \\blankline \\spad{X} f:=nilFactor(\\spad{y}-\\spad{x},{}3) \\spad{X} exponent(\\spad{f})")) (|expand| ((|#1| $) "\\indented{1}{expand(\\spad{f}) multiplies the unit and factors together,{} yielding an} \\indented{1}{\"unfactored\" object. Note: this is purposely not called} \\indented{1}{\\spadfun{coerce} which would cause the interpreter to do this} \\indented{1}{automatically.} \\blankline \\spad{X} f:=nilFactor(\\spad{y}-\\spad{x},{}3) \\spad{X} expand(\\spad{f})"))) -((-4498 . T) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) -((|HasCategory| |#1| (LIST (QUOTE -515) (QUOTE (-1153)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -298) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -276) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-1191))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -515) (QUOTE (-1153)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -276) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-221))) (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-447))) (-2318 (|HasCategory| |#1| (QUOTE (-447))) (|HasCategory| |#1| (QUOTE (-1191))))) -(-415 R) +((-4512 . T) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) +((|HasCategory| |#1| (LIST (QUOTE -523) (QUOTE (-1161)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -303) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -281) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (QUOTE (-1021))) (|HasCategory| |#1| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#1| (LIST (QUOTE -523) (QUOTE (-1161)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -281) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-225))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-453))) (-2198 (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-1199))))) +(-421 R) ((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,{}v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,{}fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,{}2)} then \\spad{refine(u,{}factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,{}2) * primeFactor(5,{}2)}."))) NIL NIL -(-416 R FE |x| |cen|) +(-422 R FE |x| |cen|) ((|constructor| (NIL "This package converts expressions in some function space to exponential expansions.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) "\\spad{exprToXXP(fcn,{}posCheck?)} converts the expression \\spad{fcn} to an exponential expansion. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed."))) NIL NIL -(-417 R A S B) +(-423 R A S B) ((|constructor| (NIL "Lifting of maps to function spaces This package allows a mapping \\spad{R} \\spad{->} \\spad{S} to be lifted to a mapping from a function space over \\spad{R} to a function space over \\spad{S}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} a)} applies \\spad{f} to all the constants in \\spad{R} appearing in \\spad{a}."))) NIL NIL -(-418 R FE |Expon| UPS TRAN |x|) +(-424 R FE |Expon| UPS TRAN |x|) ((|constructor| (NIL "This package converts expressions in some function space to power series in a variable \\spad{x} with coefficients in that function space. The function \\spadfun{exprToUPS} converts expressions to power series whose coefficients do not contain the variable \\spad{x}. The function \\spadfun{exprToGenUPS} converts functional expressions to power series whose coefficients may involve functions of \\spad{log(x)}.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToGenUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToGenUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a generalized power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} we return a record containing the name of the function that caused the problem and a brief description of the problem. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|exprToUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} a record containing the name of the function that caused the problem and a brief description of the problem is returned. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|integrate| (($ $) "\\spad{integrate(x)} returns the integral of \\spad{x} since we need to be able to integrate a power series")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x} since we need to be able to differentiate a power series")) (|coerce| (($ |#3|) "\\spad{coerce(e)} converts an 'exponent' \\spad{e} to an 'expression'"))) NIL NIL -(-419 S A R B) +(-425 S A R B) ((|constructor| (NIL "\\spad{FiniteSetAggregateFunctions2} provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad {[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does a \\spad{3+(2+(1+0))}. Note that third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain."))) NIL NIL -(-420 A S) +(-426 A S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#2| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#2| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note that \\axiom{cardinality(\\spad{u}) = \\#u}."))) NIL -((|HasCategory| |#2| (QUOTE (-834))) (|HasCategory| |#2| (QUOTE (-364)))) -(-421 S) +((|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-370)))) +(-427 S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note that \\axiom{cardinality(\\spad{u}) = \\#u}."))) -((-4505 . T) (-4495 . T) (-4506 . T) (-2537 . T)) +((-4519 . T) (-4509 . T) (-4520 . T) (-3973 . T)) NIL -(-422 R -1333) +(-428 R -1478) ((|constructor| (NIL "Top-level complex function integration \\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable."))) NIL NIL -(-423 R E) +(-429 R E) ((|constructor| (NIL "This domain converts terms into Fourier series")) (|makeCos| (($ |#2| |#1|) "\\indented{1}{makeCos(\\spad{e},{}\\spad{r}) makes a sin expression with given} argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,{}r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series"))) -((-4492 -12 (|has| |#1| (-6 -4492)) (|has| |#2| (-6 -4492))) (-4499 . T) (-4500 . T) (-4502 . T)) -((-12 (|HasAttribute| |#1| (QUOTE -4492)) (|HasAttribute| |#2| (QUOTE -4492)))) -(-424 R -1333) +((-4506 -12 (|has| |#1| (-6 -4506)) (|has| |#2| (-6 -4506))) (-4513 . T) (-4514 . T) (-4516 . T)) +((-12 (|HasAttribute| |#1| (QUOTE -4506)) (|HasAttribute| |#2| (QUOTE -4506)))) +(-430 R -1478) ((|constructor| (NIL "Top-level real function integration \\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable."))) NIL NIL -(-425 S R) +(-431 S R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-471))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-533))))) -(-426 R) +((|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-150))) (|HasCategory| |#2| (QUOTE (-1047))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-478))) (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-541))))) +(-432 R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) -((-4502 -2318 (|has| |#1| (-1039)) (|has| |#1| (-471))) (-4500 |has| |#1| (-170)) (-4499 |has| |#1| (-170)) ((-4507 "*") |has| |#1| (-550)) (-4498 |has| |#1| (-550)) (-4503 |has| |#1| (-550)) (-4497 |has| |#1| (-550)) (-2537 . T)) +((-4516 -2198 (|has| |#1| (-1047)) (|has| |#1| (-478))) (-4514 |has| |#1| (-172)) (-4513 |has| |#1| (-172)) ((-4521 "*") |has| |#1| (-558)) (-4512 |has| |#1| (-558)) (-4517 |has| |#1| (-558)) (-4511 |has| |#1| (-558)) (-3973 . T)) NIL -(-427 R -1333) +(-433 R -1478) ((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiAiryBi| ((|#2| |#2|) "\\spad{iiAiryBi(x)} should be local but conditional.")) (|iiAiryAi| ((|#2| |#2|) "\\spad{iiAiryAi(x)} should be local but conditional.")) (|iiBesselK| ((|#2| (|List| |#2|)) "\\spad{iiBesselK(x)} should be local but conditional.")) (|iiBesselI| ((|#2| (|List| |#2|)) "\\spad{iiBesselI(x)} should be local but conditional.")) (|iiBesselY| ((|#2| (|List| |#2|)) "\\spad{iiBesselY(x)} should be local but conditional.")) (|iiBesselJ| ((|#2| (|List| |#2|)) "\\spad{iiBesselJ(x)} should be local but conditional.")) (|iipolygamma| ((|#2| (|List| |#2|)) "\\spad{iipolygamma(x)} should be local but conditional.")) (|iidigamma| ((|#2| |#2|) "\\spad{iidigamma(x)} should be local but conditional.")) (|iiBeta| ((|#2| (|List| |#2|)) "iiGamma(\\spad{x}) should be local but conditional.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,{}y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,{}y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,{}y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,{}y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,{}y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,{}y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,{}x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator."))) NIL NIL -(-428 R -1333) +(-434 R -1478) ((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1,{} a2)} returns \\spad{[a,{} q1,{} q2,{} q]} such that \\spad{k(a1,{} a2) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for \\spad{a2} may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve \\spad{a2}; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,{}...,{}an])} returns \\spad{[a,{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}."))) NIL ((|HasCategory| |#2| (QUOTE (-27)))) -(-429 R -1333) +(-435 R -1478) ((|constructor| (NIL "Reduction from a function space to the rational numbers This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,{}k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented"))) NIL NIL -(-430) +(-436) ((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\""))) NIL NIL -(-431 R -1333 UP) +(-437 R -1478 UP) ((|constructor| (NIL "This package is used internally by IR2F")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-53))))) -(-432) +((|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-53))))) +(-438) ((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,{}fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}."))) NIL NIL -(-433) +(-439) ((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type") (((|OutputForm|) $) "\\spad{coerce(x)} provides a printable form for \\spad{x}"))) NIL NIL -(-434 |f|) +(-440 |f|) ((|constructor| (NIL "This domain implements named functions")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-435) +(-441) ((|constructor| (NIL "\\axiomType{FortranVectorCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Vector} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Vector| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) -((-2537 . T)) +((-3973 . T)) NIL -(-436) +(-442) ((|constructor| (NIL "\\axiomType{FortranVectorFunctionCategory} is the catagory of arguments to NAG Library routines which return the values of vectors of functions.")) (|retractIfCan| (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) -((-2537 . T)) +((-3973 . T)) NIL -(-437 UP) +(-443 UP) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,{}sqf,{}pd,{}r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,{}sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r,{}sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,{}p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by completeHensel. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by ddFact for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by ddFact for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object."))) NIL NIL -(-438 R UP -1333) +(-444 R UP -1478) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,{}p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,{}n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}."))) NIL NIL -(-439 R UP) +(-445 R UP) ((|constructor| (NIL "\\spadtype{GaloisGroupPolynomialUtilities} provides useful functions for univariate polynomials which should be added to \\spadtype{UnivariatePolynomialCategory} or to \\spadtype{Factored}")) (|factorsOfDegree| (((|List| |#2|) (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorsOfDegree(d,{}f)} returns the factors of degree \\spad{d} of the factored polynomial \\spad{f}.")) (|factorOfDegree| ((|#2| (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorOfDegree(d,{}f)} returns a factor of degree \\spad{d} of the factored polynomial \\spad{f}. Such a factor shall exist.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|Factored| |#2|)) "\\spad{degreePartition(f)} returns the degree partition (\\spadignore{i.e.} the multiset of the degrees of the irreducible factors) of the polynomial \\spad{f}.")) (|shiftRoots| ((|#2| |#2| |#1|) "\\spad{shiftRoots(p,{}c)} returns the polynomial which has for roots \\spad{c} added to the roots of \\spad{p}.")) (|scaleRoots| ((|#2| |#2| |#1|) "\\spad{scaleRoots(p,{}c)} returns the polynomial which has \\spad{c} times the roots of \\spad{p}.")) (|reverse| ((|#2| |#2|) "\\spad{reverse(p)} returns the reverse polynomial of \\spad{p}.")) (|unvectorise| ((|#2| (|Vector| |#1|)) "\\spad{unvectorise(v)} returns the polynomial which has for coefficients the entries of \\spad{v} in the increasing order.")) (|monic?| (((|Boolean|) |#2|) "\\spad{monic?(p)} tests if \\spad{p} is monic (\\spadignore{i.e.} leading coefficient equal to 1)."))) NIL NIL -(-440 R) +(-446 R) ((|constructor| (NIL "\\spadtype{GaloisGroupUtilities} provides several useful functions.")) (|safetyMargin| (((|NonNegativeInteger|)) "\\spad{safetyMargin()} returns the number of low weight digits we do not trust in the floating point representation (used by \\spadfun{safeCeiling}).") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{safetyMargin(n)} sets to \\spad{n} the number of low weight digits we do not trust in the floating point representation and returns the previous value (for use by \\spadfun{safeCeiling}).")) (|safeFloor| (((|Integer|) |#1|) "\\spad{safeFloor(x)} returns the integer which is lower or equal to the largest integer which has the same floating point number representation.")) (|safeCeiling| (((|Integer|) |#1|) "\\spad{safeCeiling(x)} returns the integer which is greater than any integer with the same floating point number representation.")) (|fillPascalTriangle| (((|Void|)) "\\spad{fillPascalTriangle()} fills the stored table.")) (|sizePascalTriangle| (((|NonNegativeInteger|)) "\\spad{sizePascalTriangle()} returns the number of entries currently stored in the table.")) (|rangePascalTriangle| (((|NonNegativeInteger|)) "\\spad{rangePascalTriangle()} returns the maximal number of lines stored.") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rangePascalTriangle(n)} sets the maximal number of lines which are stored and returns the previous value.")) (|pascalTriangle| ((|#1| (|NonNegativeInteger|) (|Integer|)) "\\spad{pascalTriangle(n,{}r)} returns the binomial coefficient \\spad{C(n,{}r)=n!/(r! (n-r)!)} and stores it in a table to prevent recomputation."))) NIL -((|HasCategory| |#1| (QUOTE (-400)))) -(-441) +((|HasCategory| |#1| (QUOTE (-406)))) +(-447) ((|constructor| (NIL "Package for the factorization of complex or gaussian integers.")) (|prime?| (((|Boolean|) (|Complex| (|Integer|))) "\\spad{prime?(\\spad{zi})} tests if the complex integer \\spad{zi} is prime.")) (|sumSquares| (((|List| (|Integer|)) (|Integer|)) "\\spad{sumSquares(p)} construct \\spad{a} and \\spad{b} such that \\spad{a**2+b**2} is equal to the integer prime \\spad{p},{} and otherwise returns an error. It will succeed if the prime number \\spad{p} is 2 or congruent to 1 mod 4.")) (|factor| (((|Factored| (|Complex| (|Integer|))) (|Complex| (|Integer|))) "\\spad{factor(\\spad{zi})} produces the complete factorization of the complex integer \\spad{zi}."))) NIL NIL -(-442 |Dom| |Expon| |VarSet| |Dpol|) +(-448 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{EuclideanGroebnerBasisPackage} computes groebner bases for polynomial ideals over euclidean domains. The basic computation provides a distinguished set of generators for these ideals. This basis allows an easy test for membership: the operation \\spadfun{euclideanNormalForm} returns zero on ideal members. The string \"info\" and \"redcrit\" can be given as additional args to provide incremental information during the computation. If \"info\" is given,{} a computational summary is given for each \\spad{s}-polynomial. If \"redcrit\" is given,{} the reduced critical pairs are printed. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|euclideanGroebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\indented{1}{euclideanGroebner(\\spad{lp},{} \"info\",{} \"redcrit\") computes a groebner basis} \\indented{1}{for a polynomial ideal generated by the list of polynomials \\spad{lp}.} \\indented{1}{If the second argument is \"info\",{}} \\indented{1}{a summary is given of the critical pairs.} \\indented{1}{If the third argument is \"redcrit\",{} critical pairs are printed.} \\blankline \\spad{X} a1:DMP([\\spad{y},{}\\spad{x}],{}INT)\\spad{:=} (9*x**2 + 5*x - 3)+ \\spad{y*}(3*x**2 + 2*x + 1) \\spad{X} a2:DMP([\\spad{y},{}\\spad{x}],{}INT)\\spad{:=} (6*x**3 - 2*x**2 - 3*x \\spad{+3}) + \\spad{y*}(2*x**3 - \\spad{x} - 1) \\spad{X} a3:DMP([\\spad{y},{}\\spad{x}],{}INT)\\spad{:=} (3*x**3 + 2*x**2) + \\spad{y*}(\\spad{x**3} + \\spad{x**2}) \\spad{X} an:=[\\spad{a1},{}\\spad{a2},{}\\spad{a3}] \\spad{X} euclideanGroebner(an,{}\"info\",{}\"redcrit\")") (((|List| |#4|) (|List| |#4|) (|String|)) "\\indented{1}{euclideanGroebner(\\spad{lp},{} infoflag) computes a groebner basis} \\indented{1}{for a polynomial ideal over a euclidean domain} \\indented{1}{generated by the list of polynomials \\spad{lp}.} \\indented{1}{During computation,{} additional information is printed out} \\indented{1}{if infoflag is given as} \\indented{1}{either \"info\" (for summary information) or} \\indented{1}{\"redcrit\" (for reduced critical pairs)} \\blankline \\spad{X} a1:DMP([\\spad{y},{}\\spad{x}],{}INT)\\spad{:=} (9*x**2 + 5*x - 3)+ \\spad{y*}(3*x**2 + 2*x + 1) \\spad{X} a2:DMP([\\spad{y},{}\\spad{x}],{}INT)\\spad{:=} (6*x**3 - 2*x**2 - 3*x \\spad{+3}) + \\spad{y*}(2*x**3 - \\spad{x} - 1) \\spad{X} a3:DMP([\\spad{y},{}\\spad{x}],{}INT)\\spad{:=} (3*x**3 + 2*x**2) + \\spad{y*}(\\spad{x**3} + \\spad{x**2}) \\spad{X} an:=[\\spad{a1},{}\\spad{a2},{}\\spad{a3}] \\spad{X} euclideanGroebner(an,{}\"redcrit\") \\spad{X} euclideanGroebner(an,{}\"info\")") (((|List| |#4|) (|List| |#4|)) "\\indented{1}{euclideanGroebner(\\spad{lp}) computes a groebner basis for a polynomial} \\indented{1}{ideal over a euclidean domain generated by the list of polys \\spad{lp}.} \\blankline \\spad{X} a1:DMP([\\spad{y},{}\\spad{x}],{}INT)\\spad{:=} (9*x**2 + 5*x - 3)+ \\spad{y*}(3*x**2 + 2*x + 1) \\spad{X} a2:DMP([\\spad{y},{}\\spad{x}],{}INT)\\spad{:=} (6*x**3 - 2*x**2 - 3*x \\spad{+3}) + \\spad{y*}(2*x**3 - \\spad{x} - 1) \\spad{X} a3:DMP([\\spad{y},{}\\spad{x}],{}INT)\\spad{:=} (3*x**3 + 2*x**2) + \\spad{y*}(\\spad{x**3} + \\spad{x**2}) \\spad{X} an:=[\\spad{a1},{}\\spad{a2},{}\\spad{a3}] \\spad{X} euclideanGroebner(an)")) (|euclideanNormalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{euclideanNormalForm(poly,{}gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class."))) NIL NIL -(-443 |Dom| |Expon| |VarSet| |Dpol|) +(-449 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{GroebnerFactorizationPackage} provides the function groebnerFactor\" which uses the factorization routines of \\Language{} to factor each polynomial under consideration while doing the groebner basis algorithm. Then it writes the ideal as an intersection of ideals determined by the irreducible factors. Note that the whole ring may occur as well as other redundancies. We also use the fact,{} that from the second factor on we can assume that the preceding factors are not equal to 0 and we divide all polynomials under considerations by the elements of this list of \"nonZeroRestrictions\". The result is a list of groebner bases,{} whose union of solutions of the corresponding systems of equations is the solution of the system of equation corresponding to the input list. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|groebnerFactorize| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys,{} info)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by \\spad{listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new createGroebnerBasis is started doing the usual updates with the factor in place of \\spad{p}. If info is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\indented{1}{groebnerFactorize(listOfPolys) returns} \\indented{1}{a list of groebner bases. The union of their solutions} \\indented{1}{is the solution of the system of equations given by listOfPolys.} \\indented{1}{At each stage the polynomial \\spad{p} under consideration (either from} \\indented{1}{the given basis or obtained from a reduction of the next \\spad{S}-polynomial)} \\indented{1}{is factorized. For each irreducible factors of \\spad{p},{} a} \\indented{1}{new createGroebnerBasis is started} \\indented{1}{doing the usual updates with the factor} \\indented{1}{in place of \\spad{p}.} \\blankline \\spad{X} mfzn : SQMATRIX(6,{}\\spad{DMP}([\\spad{x},{}\\spad{y},{}\\spad{z}],{}Fraction INT)) \\spad{:=} \\spad{++X} [ [0,{}1,{}1,{}1,{}1,{}1],{} [1,{}0,{}1,{}8/3,{}\\spad{x},{}8/3],{} [1,{}1,{}0,{}1,{}8/3,{}\\spad{y}],{} \\spad{++X} [1,{}8/3,{}1,{}0,{}1,{}8/3],{} [1,{}\\spad{x},{}8/3,{}1,{}0,{}1],{} [1,{}8/3,{}\\spad{y},{}8/3,{}1,{}0] ] \\spad{X} eq \\spad{:=} determinant mfzn \\spad{X} groebnerFactorize \\spad{++X} [eq,{}eval(eq,{} [\\spad{x},{}\\spad{y},{}\\spad{z}],{}[\\spad{y},{}\\spad{z},{}\\spad{x}]),{} eval(eq,{}[\\spad{x},{}\\spad{y},{}\\spad{z}],{}[\\spad{z},{}\\spad{x},{}\\spad{y}])]") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys,{} nonZeroRestrictions,{} info)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by \\spad{listOfPolys} under the restriction that the polynomials of \\spad{nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p} a new createGroebnerBasis is started doing the usual updates with the factor in place of \\spad{p}. If argument info is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys,{} nonZeroRestrictions)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by \\spad{listOfPolys} under the restriction that the polynomials of nonZeroRestrictions don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new createGroebnerBasis is started doing the usual updates with the factor in place of \\spad{p}.")) (|factorGroebnerBasis| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{factorGroebnerBasis(basis,{}info)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}. If argument \\spad{info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{factorGroebnerBasis(basis)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}."))) NIL NIL -(-444 |Dom| |Expon| |VarSet| |Dpol|) +(-450 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "This package provides low level tools for Groebner basis computations")) (|virtualDegree| (((|NonNegativeInteger|) |#4|) "\\spad{virtualDegree }\\undocumented")) (|makeCrit| (((|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)) |#4| (|NonNegativeInteger|)) "\\spad{makeCrit }\\undocumented")) (|critpOrder| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critpOrder }\\undocumented")) (|prinb| (((|Void|) (|Integer|)) "\\spad{prinb }\\undocumented")) (|prinpolINFO| (((|Void|) (|List| |#4|)) "\\spad{prinpolINFO }\\undocumented")) (|fprindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{fprindINFO }\\undocumented")) (|prindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|)) "\\spad{prindINFO }\\undocumented")) (|prinshINFO| (((|Void|) |#4|) "\\spad{prinshINFO }\\undocumented")) (|lepol| (((|Integer|) |#4|) "\\spad{lepol }\\undocumented")) (|minGbasis| (((|List| |#4|) (|List| |#4|)) "\\spad{minGbasis }\\undocumented")) (|updatD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{updatD }\\undocumented")) (|sPol| ((|#4| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{sPol }\\undocumented")) (|updatF| (((|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|))) |#4| (|NonNegativeInteger|) (|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)))) "\\spad{updatF }\\undocumented")) (|hMonic| ((|#4| |#4|) "\\spad{hMonic }\\undocumented")) (|redPo| (((|Record| (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (|List| |#4|)) "\\spad{redPo }\\undocumented")) (|critMonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMonD1 }\\undocumented")) (|critMTonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMTonD1 }\\undocumented")) (|critBonD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critBonD }\\undocumented")) (|critB| (((|Boolean|) |#2| |#2| |#2| |#2|) "\\spad{critB }\\undocumented")) (|critM| (((|Boolean|) |#2| |#2|) "\\spad{critM }\\undocumented")) (|critT| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critT }\\undocumented")) (|gbasis| (((|List| |#4|) (|List| |#4|) (|Integer|) (|Integer|)) "\\spad{gbasis }\\undocumented")) (|redPol| ((|#4| |#4| (|List| |#4|)) "\\spad{redPol }\\undocumented")) (|credPol| ((|#4| |#4| (|List| |#4|)) "\\spad{credPol }\\undocumented"))) NIL NIL -(-445 |Dom| |Expon| |VarSet| |Dpol|) +(-451 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{GroebnerPackage} computes groebner bases for polynomial ideals. The basic computation provides a distinguished set of generators for polynomial ideals over fields. This basis allows an easy test for membership: the operation \\spadfun{normalForm} returns zero on ideal members. When the provided coefficient domain,{} Dom,{} is not a field,{} the result is equivalent to considering the extended ideal with \\spadtype{Fraction(Dom)} as coefficients,{} but considerably more efficient since all calculations are performed in Dom. Additional argument \"info\" and \"redcrit\" can be given to provide incremental information during computation. Argument \"info\" produces a computational summary for each \\spad{s}-polynomial. Argument \"redcrit\" prints out the reduced critical pairs. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|normalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{normalForm(poly,{}gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")) (|groebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\indented{1}{groebner(\\spad{lp},{} \"info\",{} \"redcrit\") computes a groebner basis} \\indented{1}{for a polynomial ideal generated by the list of polynomials \\spad{lp},{}} \\indented{1}{displaying both a summary of the critical pairs considered (\"info\")} \\indented{1}{and the result of reducing each critical pair (\"redcrit\").} \\indented{1}{If the second or third arguments have any other string value,{}} \\indented{1}{the indicated information is suppressed.} \\blankline \\spad{X} s1:DMP([\\spad{w},{}\\spad{p},{}\\spad{z},{}\\spad{t},{}\\spad{s},{}\\spad{b}],{}FRAC(INT))\\spad{:=} 45*p + 35*s - 165*b - 36 \\spad{X} s2:DMP([\\spad{w},{}\\spad{p},{}\\spad{z},{}\\spad{t},{}\\spad{s},{}\\spad{b}],{}FRAC(INT))\\spad{:=} 35*p + 40*z + 25*t - 27*s \\spad{X} s3:DMP([\\spad{w},{}\\spad{p},{}\\spad{z},{}\\spad{t},{}\\spad{s},{}\\spad{b}],{}FRAC(INT))\\spad{:=} 15*w + 25*p*s + 30*z - 18*t - 165*b**2 \\spad{X} s4:DMP([\\spad{w},{}\\spad{p},{}\\spad{z},{}\\spad{t},{}\\spad{s},{}\\spad{b}],{}FRAC(INT))\\spad{:=} -9*w + 15*p*t + 20*z*s \\spad{X} s5:DMP([\\spad{w},{}\\spad{p},{}\\spad{z},{}\\spad{t},{}\\spad{s},{}\\spad{b}],{}FRAC(INT))\\spad{:=} \\spad{w*p} + 2*z*t - 11*b**3 \\spad{X} s6:DMP([\\spad{w},{}\\spad{p},{}\\spad{z},{}\\spad{t},{}\\spad{s},{}\\spad{b}],{}FRAC(INT))\\spad{:=} 99*w - 11*b*s + 3*b**2 \\spad{X} s7:DMP([\\spad{w},{}\\spad{p},{}\\spad{z},{}\\spad{t},{}\\spad{s},{}\\spad{b}],{}FRAC(INT))\\spad{:=} \\spad{b**2} + 33/50*b + 2673/10000 \\spad{X} sn7:=[\\spad{s1},{}\\spad{s2},{}\\spad{s3},{}\\spad{s4},{}\\spad{s5},{}\\spad{s6},{}\\spad{s7}] \\spad{X} groebner(\\spad{sn7},{}\"info\",{}\"redcrit\")") (((|List| |#4|) (|List| |#4|) (|String|)) "\\indented{1}{groebner(\\spad{lp},{} infoflag) computes a groebner basis} \\indented{1}{for a polynomial ideal} \\indented{1}{generated by the list of polynomials \\spad{lp}.} \\indented{1}{Argument infoflag is used to get information on the computation.} \\indented{1}{If infoflag is \"info\",{} then summary information} \\indented{1}{is displayed for each \\spad{s}-polynomial generated.} \\indented{1}{If infoflag is \"redcrit\",{} the reduced critical pairs are displayed.} \\indented{1}{If infoflag is any other string,{}} \\indented{1}{no information is printed during computation.} \\blankline \\spad{X} s1:DMP([\\spad{w},{}\\spad{p},{}\\spad{z},{}\\spad{t},{}\\spad{s},{}\\spad{b}],{}FRAC(INT))\\spad{:=} 45*p + 35*s - 165*b - 36 \\spad{X} s2:DMP([\\spad{w},{}\\spad{p},{}\\spad{z},{}\\spad{t},{}\\spad{s},{}\\spad{b}],{}FRAC(INT))\\spad{:=} 35*p + 40*z + 25*t - 27*s \\spad{X} s3:DMP([\\spad{w},{}\\spad{p},{}\\spad{z},{}\\spad{t},{}\\spad{s},{}\\spad{b}],{}FRAC(INT))\\spad{:=} 15*w + 25*p*s + 30*z - 18*t - 165*b**2 \\spad{X} s4:DMP([\\spad{w},{}\\spad{p},{}\\spad{z},{}\\spad{t},{}\\spad{s},{}\\spad{b}],{}FRAC(INT))\\spad{:=} -9*w + 15*p*t + 20*z*s \\spad{X} s5:DMP([\\spad{w},{}\\spad{p},{}\\spad{z},{}\\spad{t},{}\\spad{s},{}\\spad{b}],{}FRAC(INT))\\spad{:=} \\spad{w*p} + 2*z*t - 11*b**3 \\spad{X} s6:DMP([\\spad{w},{}\\spad{p},{}\\spad{z},{}\\spad{t},{}\\spad{s},{}\\spad{b}],{}FRAC(INT))\\spad{:=} 99*w - 11*b*s + 3*b**2 \\spad{X} s7:DMP([\\spad{w},{}\\spad{p},{}\\spad{z},{}\\spad{t},{}\\spad{s},{}\\spad{b}],{}FRAC(INT))\\spad{:=} \\spad{b**2} + 33/50*b + 2673/10000 \\spad{X} sn7:=[\\spad{s1},{}\\spad{s2},{}\\spad{s3},{}\\spad{s4},{}\\spad{s5},{}\\spad{s6},{}\\spad{s7}] \\spad{X} groebner(\\spad{sn7},{}\"info\") \\spad{X} groebner(\\spad{sn7},{}\"redcrit\")") (((|List| |#4|) (|List| |#4|)) "\\indented{1}{groebner(\\spad{lp}) computes a groebner basis for a polynomial ideal} \\indented{1}{generated by the list of polynomials \\spad{lp}.} \\blankline \\spad{X} s1:DMP([\\spad{w},{}\\spad{p},{}\\spad{z},{}\\spad{t},{}\\spad{s},{}\\spad{b}],{}FRAC(INT))\\spad{:=} 45*p + 35*s - 165*b - 36 \\spad{X} s2:DMP([\\spad{w},{}\\spad{p},{}\\spad{z},{}\\spad{t},{}\\spad{s},{}\\spad{b}],{}FRAC(INT))\\spad{:=} 35*p + 40*z + 25*t - 27*s \\spad{X} s3:DMP([\\spad{w},{}\\spad{p},{}\\spad{z},{}\\spad{t},{}\\spad{s},{}\\spad{b}],{}FRAC(INT))\\spad{:=} 15*w + 25*p*s + 30*z - 18*t - 165*b**2 \\spad{X} s4:DMP([\\spad{w},{}\\spad{p},{}\\spad{z},{}\\spad{t},{}\\spad{s},{}\\spad{b}],{}FRAC(INT))\\spad{:=} -9*w + 15*p*t + 20*z*s \\spad{X} s5:DMP([\\spad{w},{}\\spad{p},{}\\spad{z},{}\\spad{t},{}\\spad{s},{}\\spad{b}],{}FRAC(INT))\\spad{:=} \\spad{w*p} + 2*z*t - 11*b**3 \\spad{X} s6:DMP([\\spad{w},{}\\spad{p},{}\\spad{z},{}\\spad{t},{}\\spad{s},{}\\spad{b}],{}FRAC(INT))\\spad{:=} 99*w - 11*b*s + 3*b**2 \\spad{X} s7:DMP([\\spad{w},{}\\spad{p},{}\\spad{z},{}\\spad{t},{}\\spad{s},{}\\spad{b}],{}FRAC(INT))\\spad{:=} \\spad{b**2} + 33/50*b + 2673/10000 \\spad{X} sn7:=[\\spad{s1},{}\\spad{s2},{}\\spad{s3},{}\\spad{s4},{}\\spad{s5},{}\\spad{s6},{}\\spad{s7}] \\spad{X} groebner(\\spad{sn7})"))) NIL -((|HasCategory| |#1| (QUOTE (-359)))) -(-446 S) +((|HasCategory| |#1| (QUOTE (-365)))) +(-452 S) ((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the greatest common divisor (\\spad{gcd}) of univariate polynomials over the domain")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,{}y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,{}y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) NIL NIL -(-447) +(-453) ((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the greatest common divisor (\\spad{gcd}) of univariate polynomials over the domain")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,{}y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,{}y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) -((-4498 . T) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) +((-4512 . T) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) NIL -(-448 R |n| |ls| |gamma|) +(-454 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,{}b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,{}b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,{}ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,{}v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed"))) -((-4502 |has| (-403 (-945 |#1|)) (-550)) (-4500 . T) (-4499 . T)) -((|HasCategory| (-403 (-945 |#1|)) (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| (-403 (-945 |#1|)) (QUOTE (-550)))) -(-449 |vl| R E) +((-4516 |has| (-409 (-953 |#1|)) (-558)) (-4514 . T) (-4513 . T)) +((|HasCategory| (-409 (-953 |#1|)) (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| (-409 (-953 |#1|)) (QUOTE (-558)))) +(-455 |vl| R E) ((|constructor| (NIL "This type supports distributed multivariate polynomials whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4507 "*") |has| |#2| (-170)) (-4498 |has| |#2| (-550)) (-4503 |has| |#2| (-6 -4503)) (-4500 . T) (-4499 . T) (-4502 . T)) -((|HasCategory| |#2| (QUOTE (-896))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-170))) (-2318 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-550)))) (-12 (|HasCategory| (-844 |#1|) (LIST (QUOTE -873) (QUOTE (-375)))) (|HasCategory| |#2| (LIST (QUOTE -873) (QUOTE (-375))))) (-12 (|HasCategory| (-844 |#1|) (LIST (QUOTE -873) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -873) (QUOTE (-560))))) (-12 (|HasCategory| (-844 |#1|) (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-375))))) (|HasCategory| |#2| (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-375)))))) (-12 (|HasCategory| (-844 |#1|) (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-560)))))) (-12 (|HasCategory| (-844 |#1|) (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-533))))) (|HasCategory| |#2| (QUOTE (-834))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-359))) (-2318 (|HasCategory| |#2| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560)))))) (|HasAttribute| |#2| (QUOTE -4503)) (|HasCategory| |#2| (QUOTE (-447))) (-2318 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-447))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-896)))) (-2318 (|HasCategory| |#2| (QUOTE (-447))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-896)))) (-2318 (|HasCategory| |#2| (QUOTE (-447))) (|HasCategory| |#2| (QUOTE (-896)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-896)))) (-2318 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-896)))) (|HasCategory| |#2| (QUOTE (-146))))) -(-450 R BP) +(((-4521 "*") |has| |#2| (-172)) (-4512 |has| |#2| (-558)) (-4517 |has| |#2| (-6 -4517)) (-4514 . T) (-4513 . T) (-4516 . T)) +((|HasCategory| |#2| (QUOTE (-904))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-172))) (-2198 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-558)))) (-12 (|HasCategory| (-852 |#1|) (LIST (QUOTE -881) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-381))))) (-12 (|HasCategory| (-852 |#1|) (LIST (QUOTE -881) (QUOTE (-568)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-568))))) (-12 (|HasCategory| (-852 |#1|) (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-381)))))) (-12 (|HasCategory| (-852 |#1|) (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-568))))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-568)))))) (-12 (|HasCategory| (-852 |#1|) (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-541))))) (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#2| (QUOTE (-150))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#2| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#2| (QUOTE (-365))) (-2198 (|HasCategory| |#2| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#2| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568)))))) (|HasAttribute| |#2| (QUOTE -4517)) (|HasCategory| |#2| (QUOTE (-453))) (-2198 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-453))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-904)))) (-2198 (|HasCategory| |#2| (QUOTE (-453))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-904)))) (-2198 (|HasCategory| |#2| (QUOTE (-453))) (|HasCategory| |#2| (QUOTE (-904)))) (-12 (|HasCategory| $ (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-904)))) (-2198 (-12 (|HasCategory| $ (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-904)))) (|HasCategory| |#2| (QUOTE (-148))))) +(-456) +((|constructor| (NIL "This package provides support for gnuplot. These routines generate output files contain gnuplot scripts that may be processed directly by gnuplot. This is especially convenient in the axiom-wiki environment where gnuplot is called from LaTeX via gnuplottex.")) (|gnuDraw| (((|Void|) (|Expression| (|Float|)) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|String|)) "\\indented{1}{\\spad{gnuDraw} provides 3d surface plotting,{} default options} \\blankline \\spad{X} gnuDraw(sin(\\spad{x})*cos(\\spad{y}),{}\\spad{x=}-6..4,{}\\spad{y=}-4..6,{}\"out3d.dat\") \\spad{X} )\\spad{sys} gnuplot -persist out3d.dat") (((|Void|) (|Expression| (|Float|)) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|String|) (|List| (|DrawOption|))) "\\indented{1}{\\spad{gnuDraw} provides 3d surface plotting with options} \\blankline \\spad{X} gnuDraw(sin(\\spad{x})*cos(\\spad{y}),{}\\spad{x=}-6..4,{}\\spad{y=}-4..6,{}\"out3d.dat\",{}title==\"out3d\") \\spad{X} )\\spad{sys} gnuplot -persist out3d.dat") (((|Void|) (|Expression| (|Float|)) (|SegmentBinding| (|Float|)) (|String|)) "\\indented{1}{\\spad{gnuDraw} provides 2d plotting,{} default options} \\blankline \\spad{X} gnuDraw(\\spad{D}(cos(exp(\\spad{z}))/exp(\\spad{z^2}),{}\\spad{z}),{}\\spad{z=}-5..5,{}\"out2d.dat\") \\spad{X} )\\spad{sys} gnuplot -persist out2d.dat") (((|Void|) (|Expression| (|Float|)) (|SegmentBinding| (|Float|)) (|String|) (|List| (|DrawOption|))) "\\indented{1}{\\spad{gnuDraw} provides 2d plotting with options} \\blankline \\spad{X} gnuDraw(\\spad{D}(cos(exp(\\spad{z}))/exp(\\spad{z^2}),{}\\spad{z}),{}\\spad{z=}-5..5,{}\"out2d.dat\",{}title==\"out2d\") \\spad{X} )\\spad{sys} gnuplot -persist out2d.dat"))) +NIL +NIL +(-457 R BP) ((|constructor| (NIL "The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,{}lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,{}table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,{}prime,{}lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,{}lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,{}prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note that this function is exported only because it\\spad{'s} conditional."))) NIL NIL -(-451 OV E S R P) +(-458 OV E S R P) ((|constructor| (NIL "This is the top level package for doing multivariate factorization over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| |#5|) |#5|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-452 E OV R P) +(-459 E OV R P) ((|constructor| (NIL "This package provides operations for \\spad{GCD} computations on polynomials")) (|randomR| ((|#3|) "\\spad{randomR()} should be local but conditional")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{GCD} of \\spad{p} and \\spad{q}"))) NIL NIL -(-453 R) +(-460 R) ((|constructor| (NIL "This package provides operations for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" the finite \"berlekamp's\" factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{factor(p)} returns the factorisation of \\spad{p}"))) NIL NIL -(-454 R FE) +(-461 R FE) ((|constructor| (NIL "\\spadtype{GenerateUnivariatePowerSeries} provides functions that create power series from explicit formulas for their \\spad{n}th coefficient.")) (|series| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(a(n),{}n,{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{series(a(n),{}n,{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(n +-> a(n),{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(a(n),{}n,{}x=a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{series(a(n),{}n,{}x=a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(n +-> a(n),{}x = a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{series(a(n),{}n,{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{series(n +-> a(n),{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}.")) (|puiseux| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(a(n),{}n,{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{puiseux(a(n),{}n,{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(n +-> a(n),{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{puiseux(n +-> a(n),{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.")) (|laurent| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(a(n),{}n,{}x=a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{laurent(a(n),{}n,{}x=a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(n +-> a(n),{}x = a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{laurent(n +-> a(n),{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.")) (|taylor| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(a(n),{}n,{}x = a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n)*(x-a)**n)}; \\spad{taylor(a(n),{}n,{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..,{}a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(n +-> a(n),{}x = a,{}n0..)} returns \\spad{sum(n=n0..,{}a(n)*(x-a)**n)}; \\spad{taylor(n +-> a(n),{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..,{}a(n)*(x-a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{taylor(a(n),{}n,{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{taylor(n +-> a(n),{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}."))) NIL NIL -(-455 RP TP) +(-462 RP TP) ((|constructor| (NIL "General Hensel Lifting Used for Factorization of bivariate polynomials over a finite field.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(u,{}pol)} computes the symmetric reduction of \\spad{u} mod \\spad{pol}")) (|completeHensel| (((|List| |#2|) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{completeHensel(pol,{}lfact,{}prime,{}bound)} lifts \\spad{lfact},{} the factorization mod \\spad{prime} of \\spad{pol},{} to the factorization mod prime**k>bound. Factors are recombined on the way.")) (|HenselLift| (((|Record| (|:| |plist| (|List| |#2|)) (|:| |modulo| |#1|)) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{HenselLift(pol,{}lfacts,{}prime,{}bound)} lifts \\spad{lfacts},{} that are the factors of \\spad{pol} mod \\spad{prime},{} to factors of \\spad{pol} mod prime**k > \\spad{bound}. No recombining is done ."))) NIL NIL -(-456 |vl| R IS E |ff| P) +(-463 |vl| R IS E |ff| P) ((|constructor| (NIL "This package is undocumented")) (* (($ |#6| $) "\\spad{p*x} is not documented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,{}e,{}x)} is not documented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,{}i,{}e)} is not documented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} is not documented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,{}x)} is not documented")) (|reductum| (($ $) "\\spad{reductum(x)} is not documented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} is not documented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} is not documented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} is not documented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} is not documented"))) -((-4500 . T) (-4499 . T)) +((-4514 . T) (-4513 . T)) NIL -(-457) +(-464) ((|constructor| (NIL "\\spad{GuessOptionFunctions0} provides operations that extract the values of options for \\spadtype{Guess}.")) (|debug| (((|Boolean|) (|List| (|GuessOption|))) "\\spad{debug returns} whether we want additional output on the progress,{} default being \\spad{false}")) (|displayAsGF| (((|Boolean|) (|List| (|GuessOption|))) "\\spad{displayAsGF specifies} whether the result is a generating function or a recurrence. This option should not be set by the user,{} but rather by the \\spad{HP}-specification,{} therefore,{} there is no default.")) (|indexName| (((|Symbol|) (|List| (|GuessOption|))) "\\spad{indexName returns} the name of the index variable used for the formulas,{} default being \\spad{n}")) (|variableName| (((|Symbol|) (|List| (|GuessOption|))) "\\spad{variableName returns} the name of the variable used in by the algebraic differential equation,{} default being \\spad{x}")) (|functionName| (((|Symbol|) (|List| (|GuessOption|))) "\\spad{functionName returns} the name of the function given by the algebraic differential equation,{} default being \\spad{f}")) (|homogeneous| (((|Boolean|) (|List| (|GuessOption|))) "\\spad{homogeneous returns} whether we allow only homogeneous algebraic differential equations,{} default being \\spad{false}")) (|one| (((|Boolean|) (|List| (|GuessOption|))) "\\spad{one returns} whether we need only one solution,{} default being \\spad{true}.")) (|safety| (((|NonNegativeInteger|) (|List| (|GuessOption|))) "\\spad{safety returns} the specified safety or 1 as default.")) (|allDegrees| (((|Boolean|) (|List| (|GuessOption|))) "\\spad{allDegrees returns} whether all possibilities of the degree vector should be tried,{} the default being \\spad{false}.")) (|maxDegree| (((|Integer|) (|List| (|GuessOption|))) "\\spad{maxDegree returns} the specified maxDegree or \\spad{-1} as default.")) (|maxShift| (((|Integer|) (|List| (|GuessOption|))) "\\spad{maxShift returns} the specified maxShift or \\spad{-1} as default.")) (|maxDerivative| (((|Integer|) (|List| (|GuessOption|))) "\\spad{maxDerivative returns} the specified maxDerivative or \\spad{-1} as default.")) (|maxPower| (((|Integer|) (|List| (|GuessOption|))) "\\spad{maxPower returns} the specified maxPower or \\spad{-1} as default.")) (|maxLevel| (((|Integer|) (|List| (|GuessOption|))) "\\spad{maxLevel returns} the specified maxLevel or \\spad{-1} as default."))) NIL NIL -(-458) +(-465) ((|constructor| (NIL "GuessOption is a domain whose elements are various options used by \\spadtype{Guess}.")) (|checkOptions| (((|Void|) (|List| $)) "\\spad{checkOptions checks} whether an option is given twice")) (|option?| (((|Boolean|) (|List| $) (|Symbol|)) "\\spad{option?()} is not to be used at the top level; option? internally returns \\spad{true} for drawing options which are indicated in a draw command,{} or \\spad{false} for those which are not.")) (|option| (((|Union| (|Any|) "failed") (|List| $) (|Symbol|)) "\\spad{option()} is not to be used at the top level; option determines internally which drawing options are indicated in a draw command.")) (|displayAsGF| (($ (|Boolean|)) "\\spad{displayAsGF(d)} specifies whether the result is a generating function or a recurrence. This option should not be set by the user,{} but rather by the \\spad{HP}-specification.")) (|indexName| (($ (|Symbol|)) "\\spad{indexName(d)} specifies the index variable used for the formulas. This option is expressed in the form \\spad{indexName == d}.")) (|variableName| (($ (|Symbol|)) "\\spad{variableName(d)} specifies the variable used in by the algebraic differential equation. This option is expressed in the form \\spad{variableName == d}.")) (|functionName| (($ (|Symbol|)) "\\spad{functionName(d)} specifies the name of the function given by the algebraic differential equation or recurrence. This option is expressed in the form \\spad{functionName == d}.")) (|debug| (($ (|Boolean|)) "\\spad{debug(d)} specifies whether we want additional output on the progress. This option is expressed in the form \\spad{debug == d}.")) (|one| (($ (|Boolean|)) "\\spad{one(d)} specifies whether we are happy with one solution. This option is expressed in the form \\spad{one == d}.")) (|safety| (($ (|NonNegativeInteger|)) "\\spad{safety(d)} specifies the number of values reserved for testing any solutions found. This option is expressed in the form \\spad{safety == d}.")) (|allDegrees| (($ (|Boolean|)) "\\spad{allDegrees(d)} specifies whether all possibilities of the degree vector - taking into account maxDegree - should be tried. This is mainly interesting for rational interpolation. This option is expressed in the form \\spad{allDegrees == d}.")) (|maxDegree| (($ (|Integer|)) "\\spad{maxDegree(d)} specifies the maximum degree of the coefficient polynomials in an algebraic differential equation or a recursion with polynomial coefficients. For rational functions with an exponential term,{} \\spad{maxDegree} bounds the degree of the denominator polynomial. maxDegree(\\spad{-1}) specifies that the maximum degree can be arbitrary. This option is expressed in the form \\spad{maxDegree == d}.")) (|maxLevel| (($ (|Integer|)) "\\spad{maxLevel(d)} specifies the maximum number of recursion levels operators guessProduct and guessSum will be applied. maxLevel(\\spad{-1}) specifies that all levels are tried. This option is expressed in the form \\spad{maxLevel == d}.")) (|homogeneous| (($ (|Boolean|)) "\\spad{homogeneous(d)} specifies whether we allow only homogeneous algebraic differential equations. This option is expressed in the form \\spad{homogeneous == d}.")) (|maxPower| (($ (|Integer|)) "\\spad{maxPower(d)} specifies the maximum degree in an algebraic differential equation. For example,{} the degree of (\\spad{f}\\spad{''})\\spad{^3} \\spad{f'} is 4. maxPower(\\spad{-1}) specifies that the maximum exponent can be arbitrary. This option is expressed in the form \\spad{maxPower == d}.")) (|maxShift| (($ (|Integer|)) "\\spad{maxShift(d)} specifies the maximum shift in a recurrence equation. maxShift(\\spad{-1}) specifies that the maximum shift can be arbitrary. This option is expressed in the form \\spad{maxShift == d}.")) (|maxDerivative| (($ (|Integer|)) "\\spad{maxDerivative(d)} specifies the maximum derivative in an algebraic differential equation. maxDerivative(\\spad{-1}) specifies that the maximum derivative can be arbitrary. This option is expressed in the form \\spad{maxDerivative == d}."))) NIL NIL -(-459 E V R P Q) +(-466 E V R P Q) ((|constructor| (NIL "Gosper\\spad{'s} summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b,{} n,{} new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note that \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}."))) NIL NIL -(-460 K |symb| |PolyRing| E |ProjPt| PCS |Plc| DIVISOR |InfClsPoint| |DesTree| BLMET) +(-467 K |symb| |PolyRing| E |ProjPt| PCS |Plc| DIVISOR |InfClsPoint| |DesTree| BLMET) ((|constructor| (NIL "A package that implements the Brill-Noether algorithm. Part of the PAFF package.")) (|ZetaFunction| (((|UnivariateTaylorSeriesCZero| (|Integer|) |t|) (|PositiveInteger|)) "Returns the Zeta function of the curve in constant field extension. Calculated by using the \\spad{L}-Polynomial") (((|UnivariateTaylorSeriesCZero| (|Integer|) |t|)) "Returns the Zeta function of the curve. Calculated by using the \\spad{L}-Polynomial")) (|numberPlacesDegExtDeg| (((|Integer|) (|PositiveInteger|) (|PositiveInteger|)) "numberRatPlacesExtDegExtDeg(\\spad{d},{} \\spad{n}) returns the number of places of degree \\spad{d} in the constant field extension of degree \\spad{n}")) (|numberRatPlacesExtDeg| (((|Integer|) (|PositiveInteger|)) "\\spad{numberRatPlacesExtDeg(n)} returns the number of rational places in the constant field extenstion of degree \\spad{n}")) (|numberOfPlacesOfDegree| (((|Integer|) (|PositiveInteger|)) "returns the number of places of the given degree")) (|placesOfDegree| (((|List| |#7|) (|PositiveInteger|)) "\\spad{placesOfDegree(d)} returns all places of degree \\spad{d} of the curve.")) (|classNumber| (((|Integer|)) "Returns the class number of the curve.")) (|LPolynomial| (((|SparseUnivariatePolynomial| (|Integer|)) (|PositiveInteger|)) "\\spad{LPolynomial(d)} returns the \\spad{L}-Polynomial of the curve in constant field extension of degree \\spad{d}.") (((|SparseUnivariatePolynomial| (|Integer|))) "Returns the \\spad{L}-Polynomial of the curve.")) (|rationalPlaces| (((|List| |#7|)) "\\spad{rationalPlaces returns} all the rational places of the curve defined by the polynomial given to the package.")) (|pointDominateBy| ((|#5| |#7|) "\\spad{pointDominateBy(pl)} returns the projective point dominated by the place \\spad{pl}.")) (|adjunctionDivisor| ((|#8|) "\\spad{adjunctionDivisor computes} the adjunction divisor of the plane curve given by the polynomial \\spad{crv}.")) (|intersectionDivisor| ((|#8| |#3|) "\\spad{intersectionDivisor(pol)} compute the intersection divisor (the Cartier divisor) of the form \\spad{pol} with the curve. If some intersection points lie in an extension of the ground field,{} an error message is issued specifying the extension degree needed to find all the intersection points. (If \\spad{pol} is not homogeneous an error message is issued).")) (|evalIfCan| (((|Union| |#1| "failed") (|Fraction| |#3|) |#7|) "\\spad{evalIfCan(u,{}pl)} evaluate the function \\spad{u} at the place \\spad{pl} (returns \"failed\" if it is a pole).") (((|Union| |#1| "failed") |#3| |#3| |#7|) "\\spad{evalIfCan(f,{}g,{}pl)} evaluate the function \\spad{f/g} at the place \\spad{pl} (returns \"failed\" if it is a pole).") (((|Union| |#1| "failed") |#3| |#7|) "\\spad{evalIfCan(f,{}pl)} evaluate \\spad{f} at the place \\spad{pl} (returns \"failed\" if it is a pole).")) (|eval| ((|#1| (|Fraction| |#3|) |#7|) "\\spad{eval(u,{}pl)} evaluate the function \\spad{u} at the place \\spad{pl}.") ((|#1| |#3| |#3| |#7|) "\\spad{eval(f,{}g,{}pl)} evaluate the function \\spad{f/g} at the place \\spad{pl}.") ((|#1| |#3| |#7|) "\\spad{eval(f,{}pl)} evaluate \\spad{f} at the place \\spad{pl}.")) (|interpolateForms| (((|List| |#3|) |#8| (|NonNegativeInteger|)) "\\spad{interpolateForms(d,{}n)} returns a basis of the interpolate forms of degree \\spad{n} of the divisor \\spad{d}.")) (|lBasis| (((|Record| (|:| |num| (|List| |#3|)) (|:| |den| |#3|)) |#8|) "\\spad{lBasis computes} a basis associated to the specified divisor")) (|parametrize| ((|#6| |#3| |#7|) "\\spad{parametrize(f,{}pl)} returns a local parametrization of \\spad{f} at the place \\spad{pl}.")) (|singularPoints| (((|List| |#5|)) "rationalPoints() returns the singular points of the curve defined by the polynomial given to the package. If the singular points lie in an extension of the specified ground field an error message is issued specifying the extension degree needed to find all singular points.")) (|setSingularPoints| (((|List| |#5|) (|List| |#5|)) "\\spad{setSingularPoints(lpt)} sets the singular points to be used. Beware: no attempt is made to check if the points are singular or not,{} nor if all of the singular points are presents. Hence,{} results of some computation maybe \\spad{false}. It is intend to be use when one want to compute the singular points are computed by other means than to use the function singularPoints.")) (|desingTreeWoFullParam| (((|List| |#10|)) "\\spad{desingTreeWoFullParam returns} the desingularisation trees at all singular points of the curve defined by the polynomial given to the package. The local parametrizations are not computed.")) (|desingTree| (((|List| |#10|)) "\\spad{desingTree returns} the desingularisation trees at all singular points of the curve defined by the polynomial given to the package.")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus returns} the genus of the curve defined by the polynomial given to the package.")) (|theCurve| ((|#3|) "\\spad{theCurve returns} the specified polynomial for the package.")) (|printInfo| (((|Void|) (|List| (|Boolean|))) "\\spad{printInfo(lbool)} prints some information comming from various package and domain used by this package."))) NIL -((|HasCategory| |#1| (QUOTE (-364)))) -(-461 R E |VarSet| P) +((|HasCategory| |#1| (QUOTE (-370)))) +(-468 R E |VarSet| P) ((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}."))) -((-4506 . T) (-4505 . T)) -((|HasCategory| |#4| (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| |#4| (QUOTE (-1082))) (-12 (|HasCategory| |#4| (LIST (QUOTE -298) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (-1082)))) (|HasCategory| |#1| (QUOTE (-550)))) -(-462 S R E) +((-4520 . T) (-4519 . T)) +((|HasCategory| |#4| (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| |#4| (QUOTE (-1090))) (-12 (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-558)))) +(-469 S R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the product. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,{}b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,{}b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,{}b) = product(a1,{}b) + product(a2,{}b)}} \\indented{2}{\\spad{product(a,{}b1+b2) = product(a,{}b1) + product(a,{}b2)}} \\indented{2}{\\spad{product(r*a,{}b) = product(a,{}r*b) = r*product(a,{}b)}} \\indented{2}{\\spad{product(a,{}product(b,{}c)) = product(product(a,{}b),{}c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}."))) NIL NIL -(-463 R E) +(-470 R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the product. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,{}b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,{}b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,{}b) = product(a1,{}b) + product(a2,{}b)}} \\indented{2}{\\spad{product(a,{}b1+b2) = product(a,{}b1) + product(a,{}b2)}} \\indented{2}{\\spad{product(r*a,{}b) = product(a,{}r*b) = r*product(a,{}b)}} \\indented{2}{\\spad{product(a,{}product(b,{}c)) = product(product(a,{}b),{}c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}."))) NIL NIL -(-464) +(-471) ((|constructor| (NIL "GrayCode provides a function for efficiently running through all subsets of a finite set,{} only changing one element by another one.")) (|firstSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{firstSubsetGray(n)} creates the first vector \\spad{ww} to start a loop using nextSubsetGray(\\spad{ww},{}\\spad{n})")) (|nextSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{nextSubsetGray(ww,{}n)} returns a vector \\spad{vv} whose components have the following meanings:\\spad{\\br} \\spad{vv}.1: a vector of length \\spad{n} whose entries are 0 or 1. This can be interpreted as a code for a subset of the set 1,{}...,{}\\spad{n}; \\spad{vv}.1 differs from \\spad{ww}.1 by exactly one entry;\\spad{\\br} \\spad{vv}.2.1 is the number of the entry of \\spad{vv}.1 which will be changed next time;\\spad{\\br} \\spad{vv}.2.1 = \\spad{n+1} means that \\spad{vv}.1 is the last subset; trying to compute nextSubsetGray(\\spad{vv}) if \\spad{vv}.2.1 = \\spad{n+1} will produce an error!\\spad{\\br} \\blankline The other components of \\spad{vv}.2 are needed to compute nextSubsetGray efficiently. Note that this is an implementation of [Williamson,{} Topic II,{} 3.54,{} \\spad{p}. 112] for the special case \\spad{r1} = \\spad{r2} = ... = \\spad{rn} = 2; Note that nextSubsetGray produces a side-effect,{} \\spadignore{i.e.} nextSubsetGray(\\spad{vv}) and \\spad{vv} \\spad{:=} nextSubsetGray(\\spad{vv}) will have the same effect."))) NIL NIL -(-465) +(-472) ((|constructor| (NIL "TwoDimensionalPlotSettings sets global flags and constants for 2-dimensional plotting.")) (|screenResolution| (((|Integer|) (|Integer|)) "\\spad{screenResolution(n)} sets the screen resolution to \\spad{n}.") (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution \\spad{n}.")) (|minPoints| (((|Integer|) (|Integer|)) "\\spad{minPoints()} sets the minimum number of points in a plot.") (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot.")) (|maxPoints| (((|Integer|) (|Integer|)) "\\spad{maxPoints()} sets the maximum number of points in a plot.") (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot.")) (|adaptive| (((|Boolean|) (|Boolean|)) "\\spad{adaptive(true)} turns adaptive plotting on; \\spad{adaptive(false)} turns adaptive plotting off.") (((|Boolean|)) "\\spad{adaptive()} determines whether plotting will be done adaptively.")) (|drawToScale| (((|Boolean|) (|Boolean|)) "\\spad{drawToScale(true)} causes plots to be drawn to scale. \\spad{drawToScale(false)} causes plots to be drawn so that they fill up the viewport window. The default setting is \\spad{false}.") (((|Boolean|)) "\\spad{drawToScale()} determines whether or not plots are to be drawn to scale.")) (|clipPointsDefault| (((|Boolean|) (|Boolean|)) "\\spad{clipPointsDefault(true)} turns on automatic clipping; \\spad{clipPointsDefault(false)} turns off automatic clipping. The default setting is \\spad{true}.") (((|Boolean|)) "\\spad{clipPointsDefault()} determines whether or not automatic clipping is to be done."))) NIL NIL -(-466) +(-473) ((|constructor| (NIL "TwoDimensionalGraph creates virtual two dimensional graphs (to be displayed on TwoDimensionalViewports).")) (|putColorInfo| (((|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|))) "\\spad{putColorInfo(llp,{}lpal)} takes a list of list of points,{} \\spad{llp},{} and returns the points with their hue and shade components set according to the list of palette colors,{} \\spad{lpal}.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(\\spad{gi})} returns the indicated graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage} as output of the domain \\spadtype{OutputForm}.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{coerce(llp)} component(\\spad{gi},{}\\spad{pt}) creates and returns a graph of the domain \\spadtype{GraphImage} which is composed of the list of list of points given by \\spad{llp},{} and whose point colors,{} line colors and point sizes are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.")) (|point| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|)) "\\spad{point(\\spad{gi},{}pt,{}pal)} modifies the graph \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to be the palette color \\spad{pal},{} and whose line color and point size are determined by the default functions \\spadfun{lineColorDefault} and \\spadfun{pointSizeDefault}.")) (|appendPoint| (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{appendPoint(\\spad{gi},{}pt)} appends the point \\spad{pt} to the end of the list of points component for the graph,{} \\spad{\\spad{gi}},{} which is of the domain \\spadtype{GraphImage}.")) (|component| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(\\spad{gi},{}pt,{}pal1,{}pal2,{}ps)} modifies the graph \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to the palette color \\spad{pal1},{} line color is set to the palette color \\spad{pal2},{} and point size is set to the positive integer \\spad{ps}.") (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{component(\\spad{gi},{}pt)} modifies the graph \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color,{} line color and point size are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}.") (((|Void|) $ (|List| (|Point| (|DoubleFloat|))) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(\\spad{gi},{}lp,{}pal1,{}pal2,{}p)} sets the components of the graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} to the values given. The point list for \\spad{\\spad{gi}} is set to the list \\spad{lp},{} the color of the points in \\spad{lp} is set to the palette color \\spad{pal1},{} the color of the lines which connect the points \\spad{lp} is set to the palette color \\spad{pal2},{} and the size of the points in \\spad{lp} is given by the integer \\spad{p}.")) (|units| (((|List| (|Float|)) $ (|List| (|Float|))) "\\spad{units(\\spad{gi},{}lu)} modifies the list of unit increments for the \\spad{x} and \\spad{y} axes of the given graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} to be that of the list of unit increments,{} \\spad{lu},{} and returns the new list of units for \\spad{\\spad{gi}}.") (((|List| (|Float|)) $) "\\spad{units(\\spad{gi})} returns the list of unit increments for the \\spad{x} and \\spad{y} axes of the indicated graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|ranges| (((|List| (|Segment| (|Float|))) $ (|List| (|Segment| (|Float|)))) "\\spad{ranges(\\spad{gi},{}lr)} modifies the list of ranges for the given graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} to be that of the list of range segments,{} \\spad{lr},{} and returns the new range list for \\spad{\\spad{gi}}.") (((|List| (|Segment| (|Float|))) $) "\\spad{ranges(\\spad{gi})} returns the list of ranges of the point components from the indicated graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|key| (((|Integer|) $) "\\spad{key(\\spad{gi})} returns the process ID of the given graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|pointLists| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{pointLists(\\spad{gi})} returns the list of lists of points which compose the given graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|makeGraphImage| (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|)) (|List| (|DrawOption|))) "\\spad{makeGraphImage(llp,{}lpal1,{}lpal2,{}lp,{}lopt)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points,{} and \\spad{lopt} is the list of draw command options. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|))) "\\spad{makeGraphImage(llp,{}lpal1,{}lpal2,{}lp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{makeGraphImage(llp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} with default point size and default point and line colours. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ $) "\\spad{makeGraphImage(\\spad{gi})} takes the given graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} and sends it\\spad{'s} data to the viewport manager where it waits to be included in a two-dimensional viewport window. \\spad{\\spad{gi}} cannot be an empty graph,{} and it\\spad{'s} elements must have been created using the \\spadfun{point} or \\spadfun{component} functions,{} not by a previous \\spadfun{makeGraphImage}.")) (|graphImage| (($) "\\spad{graphImage()} returns an empty graph with 0 point lists of the domain \\spadtype{GraphImage}. A graph image contains the graph data component of a two dimensional viewport."))) NIL NIL -(-467 S R E) +(-474 S R E) ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with degree \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#2|) "\\spad{g*r} is right module multiplication.") (($ |#2| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#3| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-468 R E) +(-475 R E) ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with degree \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-469 |lv| -1333 R) +(-476 |lv| -1478 R) ((|constructor| (NIL "Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,{}lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,{}lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,{}lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}."))) NIL NIL -(-470 S) +(-477 S) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline Axioms\\spad{\\br} \\tab{5}\\spad{leftInverse(\"*\":(\\%,{}\\%)->\\%,{}inv)}\\tab{5}\\spad{ inv(x)*x = 1 }\\spad{\\br} \\tab{5}\\spad{rightInverse(\"*\":(\\%,{}\\%)->\\%,{}inv)}\\tab{4}\\spad{ x*inv(x) = 1 }")) (|commutator| (($ $ $) "\\spad{commutator(p,{}q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,{}q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (^ (($ $ (|Integer|)) "\\spad{x^n} returns \\spad{x} raised to the integer power \\spad{n}.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) NIL NIL -(-471) +(-478) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline Axioms\\spad{\\br} \\tab{5}\\spad{leftInverse(\"*\":(\\%,{}\\%)->\\%,{}inv)}\\tab{5}\\spad{ inv(x)*x = 1 }\\spad{\\br} \\tab{5}\\spad{rightInverse(\"*\":(\\%,{}\\%)->\\%,{}inv)}\\tab{4}\\spad{ x*inv(x) = 1 }")) (|commutator| (($ $ $) "\\spad{commutator(p,{}q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,{}q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (^ (($ $ (|Integer|)) "\\spad{x^n} returns \\spad{x} raised to the integer power \\spad{n}.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) -((-4502 . T)) +((-4516 . T)) NIL -(-472 |Coef| |var| |cen|) +(-479 |Coef| |var| |cen|) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4507 "*") |has| |#1| (-170)) (-4498 |has| |#1| (-550)) (-4503 |has| |#1| (-359)) (-4497 |has| |#1| (-359)) (-4499 . T) (-4500 . T) (-4502 . T)) -((|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-170))) (-2318 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -403) (QUOTE (-560))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -403) (QUOTE (-560))) (|devaluate| |#1|))))) (|HasCategory| (-403 (-560)) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-359))) (-2318 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-550)))) (-2318 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -403) (QUOTE (-560)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -403) (QUOTE (-560)))))) (|HasSignature| |#1| (LIST (QUOTE -2801) (LIST (|devaluate| |#1|) (QUOTE (-1153)))))) (-2318 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-951))) (|HasCategory| |#1| (QUOTE (-1173)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasSignature| |#1| (LIST (QUOTE -2376) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1153))))) (|HasSignature| |#1| (LIST (QUOTE -1654) (LIST (LIST (QUOTE -626) (QUOTE (-1153))) (|devaluate| |#1|))))))) -(-473 |Key| |Entry| |Tbl| |dent|) +(((-4521 "*") |has| |#1| (-172)) (-4512 |has| |#1| (-558)) (-4517 |has| |#1| (-365)) (-4511 |has| |#1| (-365)) (-4513 . T) (-4514 . T) (-4516 . T)) +((|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2198 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-150))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-568))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-568))) (|devaluate| |#1|))))) (|HasCategory| (-409 (-568)) (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-365))) (-2198 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-2198 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-568)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-568)))))) (|HasSignature| |#1| (LIST (QUOTE -2745) (LIST (|devaluate| |#1|) (QUOTE (-1161)))))) (-2198 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-568)))) (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1181)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasSignature| |#1| (LIST (QUOTE -3837) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1161))))) (|HasSignature| |#1| (LIST (QUOTE -2055) (LIST (LIST (QUOTE -634) (QUOTE (-1161))) (|devaluate| |#1|))))))) +(-480 |Key| |Entry| |Tbl| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4506 . T)) -((|HasCategory| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-834))) (|HasCategory| |#2| (QUOTE (-1082))) (-12 (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1082)))) (|HasCategory| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (QUOTE (-1082))) (-12 (|HasCategory| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (LIST (QUOTE -298) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3655) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2371) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (QUOTE (-1082)))) (-2318 (|HasCategory| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (QUOTE (-1082))) (|HasCategory| |#2| (QUOTE (-1082))))) -(-474 R E V P) +((-4520 . T)) +((|HasCategory| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-1090))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1090)))) (|HasCategory| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (QUOTE (-1090))) (-12 (|HasCategory| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (LIST (QUOTE -303) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3649) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4083) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (QUOTE (-1090)))) (-2198 (|HasCategory| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (QUOTE (-1090))) (|HasCategory| |#2| (QUOTE (-1090))))) +(-481 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order."))) -((-4506 . T) (-4505 . T)) -((|HasCategory| |#4| (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| |#4| (QUOTE (-1082))) (-12 (|HasCategory| |#4| (LIST (QUOTE -298) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (-1082)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#3| (QUOTE (-364)))) -(-475) +((-4520 . T) (-4519 . T)) +((|HasCategory| |#4| (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| |#4| (QUOTE (-1090))) (-12 (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#3| (QUOTE (-370)))) +(-482) ((|constructor| (NIL "This package exports guessing of sequences of rational functions"))) NIL -((|HasCategory| (-53) (LIST (QUOTE -1029) (QUOTE (-1153))))) -(-476 -1333) +((|HasCategory| (-53) (LIST (QUOTE -1037) (QUOTE (-1161))))) +(-483 -1478) ((|constructor| (NIL "This package exports guessing of sequences of numbers in a finite field"))) NIL NIL -(-477 -1333) +(-484 -1478) ((|constructor| (NIL "This package exports guessing of sequences of numbers in a finite field"))) NIL -((|HasCategory| |#1| (LIST (QUOTE -1029) (QUOTE (-1153))))) -(-478) +((|HasCategory| |#1| (LIST (QUOTE -1037) (QUOTE (-1161))))) +(-485) ((|constructor| (NIL "This package exports guessing of sequences of rational numbers"))) NIL -((-12 (|HasCategory| (-403 (-560)) (LIST (QUOTE -1029) (QUOTE (-1153)))) (|HasCategory| (-560) (LIST (QUOTE -1029) (QUOTE (-1153)))))) -(-479 -1333 S EXPRR R -3001 -2801) +((-12 (|HasCategory| (-409 (-568)) (LIST (QUOTE -1037) (QUOTE (-1161)))) (|HasCategory| (-568) (LIST (QUOTE -1037) (QUOTE (-1161)))))) +(-486 -1478 S EXPRR R -2854 -2745) ((|constructor| (NIL "This package implements guessing of sequences. Packages for the most common cases are provided as \\spadtype{GuessInteger},{} \\spadtype{GuessPolynomial},{} etc.")) (|shiftHP| (((|Mapping| (|Record| (|:| |guessStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| |#1|)) (|UnivariateFormalPowerSeries| |#1|))) (|:| |degreeStream| (|Stream| (|NonNegativeInteger|))) (|:| |testStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| |#1|))) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| |#1|)))) (|:| |exprStream| (|Mapping| (|Stream| |#3|) |#3| (|Symbol|))) (|:| A (|Mapping| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|) (|SparseUnivariatePolynomial| |#2|))) (|:| AF (|Mapping| (|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| |#1|)))) (|:| AX (|Mapping| |#3| (|NonNegativeInteger|) (|Symbol|) |#3|)) (|:| C (|Mapping| (|List| |#2|) (|NonNegativeInteger|)))) (|List| (|GuessOption|))) (|Symbol|)) "\\spad{shiftHP options} returns a specification for Hermite-Pade approximation with the \\$\\spad{q}\\$-shift operator") (((|Record| (|:| |guessStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| |#1|)) (|UnivariateFormalPowerSeries| |#1|))) (|:| |degreeStream| (|Stream| (|NonNegativeInteger|))) (|:| |testStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| |#1|))) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| |#1|)))) (|:| |exprStream| (|Mapping| (|Stream| |#3|) |#3| (|Symbol|))) (|:| A (|Mapping| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|) (|SparseUnivariatePolynomial| |#2|))) (|:| AF (|Mapping| (|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| |#1|)))) (|:| AX (|Mapping| |#3| (|NonNegativeInteger|) (|Symbol|) |#3|)) (|:| C (|Mapping| (|List| |#2|) (|NonNegativeInteger|)))) (|List| (|GuessOption|))) "\\spad{shiftHP options} returns a specification for Hermite-Pade approximation with the shift operator")) (|diffHP| (((|Mapping| (|Record| (|:| |guessStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| |#1|)) (|UnivariateFormalPowerSeries| |#1|))) (|:| |degreeStream| (|Stream| (|NonNegativeInteger|))) (|:| |testStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| |#1|))) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| |#1|)))) (|:| |exprStream| (|Mapping| (|Stream| |#3|) |#3| (|Symbol|))) (|:| A (|Mapping| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|) (|SparseUnivariatePolynomial| |#2|))) (|:| AF (|Mapping| (|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| |#1|)))) (|:| AX (|Mapping| |#3| (|NonNegativeInteger|) (|Symbol|) |#3|)) (|:| C (|Mapping| (|List| |#2|) (|NonNegativeInteger|)))) (|List| (|GuessOption|))) (|Symbol|)) "\\spad{diffHP options} returns a specification for Hermite-Pade approximation with the \\$\\spad{q}\\$-dilation operator") (((|Record| (|:| |guessStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| |#1|)) (|UnivariateFormalPowerSeries| |#1|))) (|:| |degreeStream| (|Stream| (|NonNegativeInteger|))) (|:| |testStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| |#1|))) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| |#1|)))) (|:| |exprStream| (|Mapping| (|Stream| |#3|) |#3| (|Symbol|))) (|:| A (|Mapping| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|) (|SparseUnivariatePolynomial| |#2|))) (|:| AF (|Mapping| (|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| |#1|)))) (|:| AX (|Mapping| |#3| (|NonNegativeInteger|) (|Symbol|) |#3|)) (|:| C (|Mapping| (|List| |#2|) (|NonNegativeInteger|)))) (|List| (|GuessOption|))) "\\spad{diffHP options} returns a specification for Hermite-Pade approximation with the differential operator")) (|guessRat| (((|Mapping| (|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|) (|List| (|GuessOption|))) (|Symbol|)) "\\spad{guessRat q} returns a guesser that tries to find a \\spad{q}-rational function whose first values are given by \\spad{l},{} using the given options. It is equivalent to \\spadfun{guessRec} with \\spad{(l,{} maxShift == 0,{} maxPower == 1,{} allDegrees == true)}.") (((|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|)) "\\spad{guessRat l} tries to find a rational function whose first values are given by \\spad{l},{} using the default options described in \\spadtype{GuessOptionFunctions0}. It is equivalent to \\spadfun{guessRec}\\spad{(l,{} maxShift == 0,{} maxPower == 1,{} allDegrees == true)}.") (((|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|) (|List| (|GuessOption|))) "\\spad{guessRat(l,{} options)} tries to find a rational function whose first values are given by \\spad{l},{} using the given options. It is equivalent to \\spadfun{guessRec}\\spad{(l,{} maxShift == 0,{} maxPower == 1,{} allDegrees == true)}.")) (|guessPRec| (((|Mapping| (|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|) (|List| (|GuessOption|))) (|Symbol|)) "\\spad{guessPRec q} returns a guesser that tries to find a linear \\spad{q}-recurrence with polynomial coefficients whose first values are given by \\spad{l},{} using the given options. It is equivalent to \\spadfun{guessRec}\\spad{(q)} with \\spad{maxPower == 1}.") (((|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|)) "\\spad{guessPRec l} tries to find a linear recurrence with polynomial coefficients whose first values are given by \\spad{l},{} using the default options described in \\spadtype{GuessOptionFunctions0}. It is equivalent to \\spadfun{guessRec}\\spad{(l,{} maxPower == 1)}.") (((|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|) (|List| (|GuessOption|))) "\\spad{guessPRec(l,{} options)} tries to find a linear recurrence with polynomial coefficients whose first values are given by \\spad{l},{} using the given options. It is equivalent to \\spadfun{guessRec}\\spad{(l,{} options)} with \\spad{maxPower == 1}.")) (|guessRec| (((|Mapping| (|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|) (|List| (|GuessOption|))) (|Symbol|)) "\\spad{guessRec q} returns a guesser that finds an ordinary \\spad{q}-difference equation whose first values are given by \\spad{l},{} using the given options.") (((|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|) (|List| (|GuessOption|))) "\\spad{guessRec(l,{} options)} tries to find an ordinary difference equation whose first values are given by \\spad{l},{} using the given options.") (((|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|)) "\\spad{guessRec l} tries to find an ordinary difference equation whose first values are given by \\spad{l},{} using the default options described in \\spadtype{GuessOptionFunctions0}.")) (|guessPade| (((|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|)) "\\spad{guessPade(l,{} options)} tries to find a rational function whose first Taylor coefficients are given by \\spad{l},{} using the default options described in \\spadtype{GuessOptionFunctions0}. It is equivalent to \\spadfun{guessADE}\\spad{(l,{} options)} with \\spad{maxDerivative == 0,{} maxPower == 1,{} allDegrees == true}.") (((|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|) (|List| (|GuessOption|))) "\\spad{guessPade(l,{} options)} tries to find a rational function whose first Taylor coefficients are given by \\spad{l},{} using the given options. It is equivalent to \\spadfun{guessADE}\\spad{(l,{} maxDerivative == 0,{} maxPower == 1,{} allDegrees == true)}.")) (|guessHolo| (((|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|) (|List| (|GuessOption|))) "\\spad{guessHolo(l,{} options)} tries to find an ordinary linear differential equation for a generating function whose first Taylor coefficients are given by \\spad{l},{} using the given options. It is equivalent to \\spadfun{guessADE}\\spad{(l,{} options)} with \\spad{maxPower == 1}.") (((|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|)) "\\spad{guessHolo l} tries to find an ordinary linear differential equation for a generating function whose first Taylor coefficients are given by \\spad{l},{} using the default options described in \\spadtype{GuessOptionFunctions0}. It is equivalent to \\spadfun{guessADE}\\spad{(l,{} maxPower == 1)}.")) (|guessAlg| (((|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|) (|List| (|GuessOption|))) "\\spad{guessAlg(l,{} options)} tries to find an algebraic equation for a generating function whose first Taylor coefficients are given by \\spad{l},{} using the given options. It is equivalent to \\spadfun{guessADE}(\\spad{l},{} options) with \\spad{maxDerivative == 0}.") (((|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|)) "\\spad{guessAlg l} tries to find an algebraic equation for a generating function whose first Taylor coefficients are given by \\spad{l},{} using the default options described in \\spadtype{GuessOptionFunctions0}. It is equivalent to \\spadfun{guessADE}(\\spad{l},{} maxDerivative \\spad{==} 0).")) (|guessADE| (((|Mapping| (|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|) (|List| (|GuessOption|))) (|Symbol|)) "\\spad{guessADE q} returns a guesser that tries to find an algebraic differential equation for a generating function whose first Taylor coefficients are given by \\spad{l},{} using the given options.") (((|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|) (|List| (|GuessOption|))) "\\spad{guessADE(l,{} options)} tries to find an algebraic differential equation for a generating function whose first Taylor coefficients are given by \\spad{l},{} using the given options.") (((|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|)) "\\spad{guessADE l} tries to find an algebraic differential equation for a generating function whose first Taylor coefficients are given by \\spad{l},{} using the default options described in \\spadtype{GuessOptionFunctions0}.")) (|guessHP| (((|Mapping| (|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|) (|List| (|GuessOption|))) (|Mapping| (|Record| (|:| |guessStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| |#1|)) (|UnivariateFormalPowerSeries| |#1|))) (|:| |degreeStream| (|Stream| (|NonNegativeInteger|))) (|:| |testStream| (|Mapping| (|Stream| (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| |#1|))) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| |#1|)))) (|:| |exprStream| (|Mapping| (|Stream| |#3|) |#3| (|Symbol|))) (|:| A (|Mapping| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|) (|SparseUnivariatePolynomial| |#2|))) (|:| AF (|Mapping| (|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateFormalPowerSeries| (|SparseUnivariatePolynomial| |#1|)))) (|:| AX (|Mapping| |#3| (|NonNegativeInteger|) (|Symbol|) |#3|)) (|:| C (|Mapping| (|List| |#2|) (|NonNegativeInteger|)))) (|List| (|GuessOption|)))) "\\spad{guessHP f} constructs an operation that applies Hermite-Pade approximation to the series generated by the given function \\spad{f}.")) (|guessBinRat| (((|Mapping| (|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|) (|List| (|GuessOption|))) (|Symbol|)) "\\spad{guessBinRat q} returns a guesser that tries to find a function of the form \\spad{n+}->qbinomial(a+b \\spad{n},{} \\spad{n}) \\spad{r}(\\spad{n}),{} where \\spad{r}(\\spad{q^n}) is a \\spad{q}-rational function,{} that fits \\spad{l}.") (((|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|) (|List| (|GuessOption|))) "\\spad{guessBinRat(l,{} options)} tries to find a function of the form \\spad{n+}->binomial(a+b \\spad{n},{} \\spad{n}) \\spad{r}(\\spad{n}),{} where \\spad{r}(\\spad{n}) is a rational function,{} that fits \\spad{l}.") (((|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|)) "\\spad{guessBinRat(l,{} options)} tries to find a function of the form \\spad{n+}->binomial(a+b \\spad{n},{} \\spad{n}) \\spad{r}(\\spad{n}),{} where \\spad{r}(\\spad{n}) is a rational function,{} that fits \\spad{l}.")) (|guessExpRat| (((|Mapping| (|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|) (|List| (|GuessOption|))) (|Symbol|)) "\\spad{guessExpRat q} returns a guesser that tries to find a function of the form \\spad{n+}->(a+b \\spad{q^n})\\spad{^n} \\spad{r}(\\spad{q^n}),{} where \\spad{r}(\\spad{q^n}) is a \\spad{q}-rational function,{} that fits \\spad{l}.") (((|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|) (|List| (|GuessOption|))) "\\spad{guessExpRat(l,{} options)} tries to find a function of the form \\spad{n+}->(a+b \\spad{n})\\spad{^n} \\spad{r}(\\spad{n}),{} where \\spad{r}(\\spad{n}) is a rational function,{} that fits \\spad{l}.") (((|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|)) "\\spad{guessExpRat l} tries to find a function of the form \\spad{n+}->(a+b \\spad{n})\\spad{^n} \\spad{r}(\\spad{n}),{} where \\spad{r}(\\spad{n}) is a rational function,{} that fits \\spad{l}.")) (|guess| (((|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|) (|List| (|Mapping| (|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|) (|List| (|GuessOption|)))) (|List| (|Symbol|)) (|List| (|GuessOption|))) "\\spad{guess(l,{} guessers,{} ops)} applies recursively the given \\spad{guessers} to the successive differences if ops contains the symbol \\spad{guessSum} and quotients if ops contains the symbol \\spad{guessProduct} to the list. The given options are used.") (((|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|) (|List| (|Mapping| (|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|) (|List| (|GuessOption|)))) (|List| (|Symbol|))) "\\spad{guess(l,{} guessers,{} ops)} applies recursively the given \\spad{guessers} to the successive differences if ops contains the symbol guessSum and quotients if ops contains the symbol guessProduct to the list. Default options as described in \\spadtype{GuessOptionFunctions0} are used.") (((|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|) (|List| (|GuessOption|))) "\\spad{guess(l,{} options)} applies recursively \\spadfun{guessRec} and \\spadfun{guessADE} to the successive differences and quotients of the list. The given options are used.") (((|List| (|Record| (|:| |function| |#3|) (|:| |order| (|NonNegativeInteger|)))) (|List| |#1|)) "\\spad{guess l} applies recursively \\spadfun{guessRec} and \\spadfun{guessADE} to the successive differences and quotients of the list. Default options as described in \\spadtype{GuessOptionFunctions0} are used."))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -1029) (QUOTE (-1153)))) (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-1153)))))) -(-480) +((-12 (|HasCategory| |#1| (LIST (QUOTE -1037) (QUOTE (-1161)))) (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-1161)))))) +(-487) ((|constructor| (NIL "This package exports guessing of sequences of rational functions"))) NIL -((-12 (|HasCategory| (-403 (-945 (-560))) (LIST (QUOTE -1029) (QUOTE (-1153)))) (|HasCategory| (-945 (-560)) (LIST (QUOTE -1029) (QUOTE (-1153)))))) -(-481 |q|) +((-12 (|HasCategory| (-409 (-953 (-568))) (LIST (QUOTE -1037) (QUOTE (-1161)))) (|HasCategory| (-953 (-568)) (LIST (QUOTE -1037) (QUOTE (-1161)))))) +(-488 |q|) ((|constructor| (NIL "This package exports guessing of sequences of univariate rational functions")) (|shiftHP| (((|Mapping| HPSPEC (|List| (|GuessOption|))) (|Symbol|)) "\\spad{shiftHP options} returns a specification for Hermite-Pade approximation with the \\$\\spad{q}\\$-shift operator") ((HPSPEC (|List| (|GuessOption|))) "\\spad{shiftHP options} returns a specification for Hermite-Pade approximation with the shift operator")) (|diffHP| (((|Mapping| HPSPEC (|List| (|GuessOption|))) (|Symbol|)) "\\spad{diffHP options} returns a specification for Hermite-Pade approximation with the \\$\\spad{q}\\$-dilation operator") ((HPSPEC (|List| (|GuessOption|))) "\\spad{diffHP options} returns a specification for Hermite-Pade approximation with the differential operator")) (|guessRat| (((|Mapping| (|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|)))) (|List| (|GuessOption|))) (|Symbol|)) "\\spad{guessRat q} returns a guesser that tries to find a \\spad{q}-rational function whose first values are given by \\spad{l},{} using the given options. It is equivalent to \\spadfun{guessRec} with \\spad{(l,{} maxShift == 0,{} maxPower == 1,{} allDegrees == true)}.") (((|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|))))) "\\spad{guessRat l} tries to find a rational function whose first values are given by \\spad{l},{} using the default options described in \\spadtype{GuessOptionFunctions0}. It is equivalent to \\spadfun{guessRec}\\spad{(l,{} maxShift == 0,{} maxPower == 1,{} allDegrees == true)}.") (((|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|)))) (|List| (|GuessOption|))) "\\spad{guessRat(l,{} options)} tries to find a rational function whose first values are given by \\spad{l},{} using the given options. It is equivalent to \\spadfun{guessRec}\\spad{(l,{} maxShift == 0,{} maxPower == 1,{} allDegrees == true)}.")) (|guessPRec| (((|Mapping| (|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|)))) (|List| (|GuessOption|))) (|Symbol|)) "\\spad{guessPRec q} returns a guesser that tries to find a linear \\spad{q}-recurrence with polynomial coefficients whose first values are given by \\spad{l},{} using the given options. It is equivalent to \\spadfun{guessRec}\\spad{(q)} with \\spad{maxPower == 1}.") (((|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|))))) "\\spad{guessPRec l} tries to find a linear recurrence with polynomial coefficients whose first values are given by \\spad{l},{} using the default options described in \\spadtype{GuessOptionFunctions0}. It is equivalent to \\spadfun{guessRec}\\spad{(l,{} maxPower == 1)}.") (((|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|)))) (|List| (|GuessOption|))) "\\spad{guessPRec(l,{} options)} tries to find a linear recurrence with polynomial coefficients whose first values are given by \\spad{l},{} using the given options. It is equivalent to \\spadfun{guessRec}\\spad{(l,{} options)} with \\spad{maxPower == 1}.")) (|guessRec| (((|Mapping| (|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|)))) (|List| (|GuessOption|))) (|Symbol|)) "\\spad{guessRec q} returns a guesser that finds an ordinary \\spad{q}-difference equation whose first values are given by \\spad{l},{} using the given options.") (((|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|)))) (|List| (|GuessOption|))) "\\spad{guessRec(l,{} options)} tries to find an ordinary difference equation whose first values are given by \\spad{l},{} using the given options.") (((|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|))))) "\\spad{guessRec l} tries to find an ordinary difference equation whose first values are given by \\spad{l},{} using the default options described in \\spadtype{GuessOptionFunctions0}.")) (|guessPade| (((|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|))))) "\\spad{guessPade(l,{} options)} tries to find a rational function whose first Taylor coefficients are given by \\spad{l},{} using the default options described in \\spadtype{GuessOptionFunctions0}. It is equivalent to \\spadfun{guessADE}\\spad{(l,{} options)} with \\spad{maxDerivative == 0,{} maxPower == 1,{} allDegrees == true}.") (((|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|)))) (|List| (|GuessOption|))) "\\spad{guessPade(l,{} options)} tries to find a rational function whose first Taylor coefficients are given by \\spad{l},{} using the given options. It is equivalent to \\spadfun{guessADE}\\spad{(l,{} maxDerivative == 0,{} maxPower == 1,{} allDegrees == true)}.")) (|guessHolo| (((|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|)))) (|List| (|GuessOption|))) "\\spad{guessHolo(l,{} options)} tries to find an ordinary linear differential equation for a generating function whose first Taylor coefficients are given by \\spad{l},{} using the given options. It is equivalent to \\spadfun{guessADE}\\spad{(l,{} options)} with \\spad{maxPower == 1}.") (((|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|))))) "\\spad{guessHolo l} tries to find an ordinary linear differential equation for a generating function whose first Taylor coefficients are given by \\spad{l},{} using the default options described in \\spadtype{GuessOptionFunctions0}. It is equivalent to \\spadfun{guessADE}\\spad{(l,{} maxPower == 1)}.")) (|guessAlg| (((|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|)))) (|List| (|GuessOption|))) "\\spad{guessAlg(l,{} options)} tries to find an algebraic equation for a generating function whose first Taylor coefficients are given by \\spad{l},{} using the given options. It is equivalent to \\spadfun{guessADE}(\\spad{l},{} options) with \\spad{maxDerivative == 0}.") (((|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|))))) "\\spad{guessAlg l} tries to find an algebraic equation for a generating function whose first Taylor coefficients are given by \\spad{l},{} using the default options described in \\spadtype{GuessOptionFunctions0}. It is equivalent to \\spadfun{guessADE}(\\spad{l},{} maxDerivative \\spad{==} 0).")) (|guessADE| (((|Mapping| (|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|)))) (|List| (|GuessOption|))) (|Symbol|)) "\\spad{guessADE q} returns a guesser that tries to find an algebraic differential equation for a generating function whose first Taylor coefficients are given by \\spad{l},{} using the given options.") (((|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|)))) (|List| (|GuessOption|))) "\\spad{guessADE(l,{} options)} tries to find an algebraic differential equation for a generating function whose first Taylor coefficients are given by \\spad{l},{} using the given options.") (((|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|))))) "\\spad{guessADE l} tries to find an algebraic differential equation for a generating function whose first Taylor coefficients are given by \\spad{l},{} using the default options described in \\spadtype{GuessOptionFunctions0}.")) (|guessHP| (((|Mapping| (|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|)))) (|List| (|GuessOption|))) (|Mapping| HPSPEC (|List| (|GuessOption|)))) "\\spad{guessHP f} constructs an operation that applies Hermite-Pade approximation to the series generated by the given function \\spad{f}.")) (|guessBinRat| (((|Mapping| (|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|)))) (|List| (|GuessOption|))) (|Symbol|)) "\\spad{guessBinRat q} returns a guesser that tries to find a function of the form \\spad{n+}->qbinomial(a+b \\spad{n},{} \\spad{n}) \\spad{r}(\\spad{n}),{} where \\spad{r}(\\spad{q^n}) is a \\spad{q}-rational function,{} that fits \\spad{l}.") (((|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|)))) (|List| (|GuessOption|))) "\\spad{guessBinRat(l,{} options)} tries to find a function of the form \\spad{n+}->binomial(a+b \\spad{n},{} \\spad{n}) \\spad{r}(\\spad{n}),{} where \\spad{r}(\\spad{n}) is a rational function,{} that fits \\spad{l}.") (((|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|))))) "\\spad{guessBinRat(l,{} options)} tries to find a function of the form \\spad{n+}->binomial(a+b \\spad{n},{} \\spad{n}) \\spad{r}(\\spad{n}),{} where \\spad{r}(\\spad{n}) is a rational function,{} that fits \\spad{l}.")) (|guessExpRat| (((|Mapping| (|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|)))) (|List| (|GuessOption|))) (|Symbol|)) "\\spad{guessExpRat q} returns a guesser that tries to find a function of the form \\spad{n+}->(a+b \\spad{q^n})\\spad{^n} \\spad{r}(\\spad{q^n}),{} where \\spad{r}(\\spad{q^n}) is a \\spad{q}-rational function,{} that fits \\spad{l}.") (((|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|)))) (|List| (|GuessOption|))) "\\spad{guessExpRat(l,{} options)} tries to find a function of the form \\spad{n+}->(a+b \\spad{n})\\spad{^n} \\spad{r}(\\spad{n}),{} where \\spad{r}(\\spad{n}) is a rational function,{} that fits \\spad{l}.") (((|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|))))) "\\spad{guessExpRat l} tries to find a function of the form \\spad{n+}->(a+b \\spad{n})\\spad{^n} \\spad{r}(\\spad{n}),{} where \\spad{r}(\\spad{n}) is a rational function,{} that fits \\spad{l}.")) (|guess| (((|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|)))) (|List| (|Mapping| (|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|)))) (|List| (|GuessOption|)))) (|List| (|Symbol|)) (|List| (|GuessOption|))) "\\spad{guess(l,{} guessers,{} ops)} applies recursively the given \\spad{guessers} to the successive differences if ops contains the symbol \\spad{guessSum} and quotients if ops contains the symbol \\spad{guessProduct} to the list. The given options are used.") (((|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|)))) (|List| (|Mapping| (|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|)))) (|List| (|GuessOption|)))) (|List| (|Symbol|))) "\\spad{guess(l,{} guessers,{} ops)} applies recursively the given \\spad{guessers} to the successive differences if ops contains the symbol guessSum and quotients if ops contains the symbol guessProduct to the list. Default options as described in \\spadtype{GuessOptionFunctions0} are used.") (((|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|)))) (|List| (|GuessOption|))) "\\spad{guess(l,{} options)} applies recursively \\spadfun{guessRec} and \\spadfun{guessADE} to the successive differences and quotients of the list. The given options are used.") (((|List| (|Record| (|:| |function| (|MyExpression| |#1| (|Integer|))) (|:| |order| (|NonNegativeInteger|)))) (|List| (|Fraction| (|MyUnivariatePolynomial| |#1| (|Integer|))))) "\\spad{guess l} applies recursively \\spadfun{guessRec} and \\spadfun{guessADE} to the successive differences and quotients of the list. Default options as described in \\spadtype{GuessOptionFunctions0} are used."))) NIL NIL -(-482) +(-489) ((|constructor| (NIL "Symbolic fractions in \\%\\spad{pi} with integer coefficients; The point for using \\spad{Pi} as the default domain for those fractions is that \\spad{Pi} is coercible to the float types,{} and not Expression.")) (|pi| (($) "\\spad{\\spad{pi}()} returns the symbolic \\%\\spad{pi}."))) -((-4497 . T) (-4503 . T) (-4498 . T) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) +((-4511 . T) (-4517 . T) (-4512 . T) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) NIL -(-483 |Key| |Entry| |hashfn|) +(-490 |Key| |Entry| |hashfn|) ((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained."))) -((-4505 . T) (-4506 . T)) -((|HasCategory| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (QUOTE (-1082))) (-12 (|HasCategory| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (LIST (QUOTE -298) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3655) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2371) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (QUOTE (-1082)))) (|HasCategory| |#1| (QUOTE (-834))) (|HasCategory| |#2| (QUOTE (-1082))) (-2318 (|HasCategory| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (QUOTE (-1082))) (|HasCategory| |#2| (QUOTE (-1082)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1082))))) -(-484) +((-4519 . T) (-4520 . T)) +((|HasCategory| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (QUOTE (-1090))) (-12 (|HasCategory| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (LIST (QUOTE -303) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3649) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4083) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-1090))) (-2198 (|HasCategory| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (QUOTE (-1090))) (|HasCategory| |#2| (QUOTE (-1090)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1090))))) +(-491) ((|constructor| (NIL "Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens,{} maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens,{} leftCandidate,{} rightCandidate,{} left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,{}wt,{}rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,{}n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2"))) NIL NIL -(-485 |vl| R) +(-492 |vl| R) ((|constructor| (NIL "This type supports distributed multivariate polynomials whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4507 "*") |has| |#2| (-170)) (-4498 |has| |#2| (-550)) (-4503 |has| |#2| (-6 -4503)) (-4500 . T) (-4499 . T) (-4502 . T)) -((|HasCategory| |#2| (QUOTE (-896))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-170))) (-2318 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-550)))) (-12 (|HasCategory| (-844 |#1|) (LIST (QUOTE -873) (QUOTE (-375)))) (|HasCategory| |#2| (LIST (QUOTE -873) (QUOTE (-375))))) (-12 (|HasCategory| (-844 |#1|) (LIST (QUOTE -873) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -873) (QUOTE (-560))))) (-12 (|HasCategory| (-844 |#1|) (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-375))))) (|HasCategory| |#2| (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-375)))))) (-12 (|HasCategory| (-844 |#1|) (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-560)))))) (-12 (|HasCategory| (-844 |#1|) (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-533))))) (|HasCategory| |#2| (QUOTE (-834))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-359))) (-2318 (|HasCategory| |#2| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560)))))) (|HasAttribute| |#2| (QUOTE -4503)) (|HasCategory| |#2| (QUOTE (-447))) (-2318 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-447))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-896)))) (-2318 (|HasCategory| |#2| (QUOTE (-447))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-896)))) (-2318 (|HasCategory| |#2| (QUOTE (-447))) (|HasCategory| |#2| (QUOTE (-896)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-896)))) (-2318 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-896)))) (|HasCategory| |#2| (QUOTE (-146))))) -(-486 -2050 S) +(((-4521 "*") |has| |#2| (-172)) (-4512 |has| |#2| (-558)) (-4517 |has| |#2| (-6 -4517)) (-4514 . T) (-4513 . T) (-4516 . T)) +((|HasCategory| |#2| (QUOTE (-904))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-172))) (-2198 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-558)))) (-12 (|HasCategory| (-852 |#1|) (LIST (QUOTE -881) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-381))))) (-12 (|HasCategory| (-852 |#1|) (LIST (QUOTE -881) (QUOTE (-568)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-568))))) (-12 (|HasCategory| (-852 |#1|) (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-381)))))) (-12 (|HasCategory| (-852 |#1|) (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-568))))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-568)))))) (-12 (|HasCategory| (-852 |#1|) (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-541))))) (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#2| (QUOTE (-150))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#2| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#2| (QUOTE (-365))) (-2198 (|HasCategory| |#2| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#2| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568)))))) (|HasAttribute| |#2| (QUOTE -4517)) (|HasCategory| |#2| (QUOTE (-453))) (-2198 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-453))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-904)))) (-2198 (|HasCategory| |#2| (QUOTE (-453))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-904)))) (-2198 (|HasCategory| |#2| (QUOTE (-453))) (|HasCategory| |#2| (QUOTE (-904)))) (-12 (|HasCategory| $ (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-904)))) (-2198 (-12 (|HasCategory| $ (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-904)))) (|HasCategory| |#2| (QUOTE (-148))))) +(-493 -2570 S) ((|constructor| (NIL "This type represents the finite direct or cartesian product of an underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4499 |has| |#2| (-1039)) (-4500 |has| |#2| (-1039)) (-4502 |has| |#2| (-6 -4502)) ((-4507 "*") |has| |#2| (-170)) (-4505 . T)) -((|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (QUOTE (-359))) (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (QUOTE (-780))) (|HasCategory| |#2| (QUOTE (-832))) (-2318 (|HasCategory| |#2| (QUOTE (-780))) (|HasCategory| |#2| (QUOTE (-832)))) (|HasCategory| |#2| (QUOTE (-708))) (|HasCategory| |#2| (QUOTE (-170))) (-2318 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-359))) (|HasCategory| |#2| (QUOTE (-1039)))) (-2318 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-359)))) (-2318 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-1039)))) (|HasCategory| |#2| (QUOTE (-364))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#2| (QUOTE (-221))) (-2318 (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-221))) (|HasCategory| |#2| (QUOTE (-359))) (|HasCategory| |#2| (QUOTE (-1039)))) (-2318 (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-221))) (|HasCategory| |#2| (QUOTE (-1039)))) (|HasCategory| (-560) (QUOTE (-834))) (-12 (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1039)))) (-12 (|HasCategory| |#2| (QUOTE (-221))) (|HasCategory| |#2| (QUOTE (-1039)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#2| (QUOTE (-1039)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1082)))) (-2318 (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1082)))) (|HasCategory| |#2| (QUOTE (-1039)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1082)))) (|HasAttribute| |#2| (QUOTE -4502)) (|HasCategory| |#2| (QUOTE (-137))) (-2318 (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#2| (QUOTE (-137))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-221))) (|HasCategory| |#2| (QUOTE (-359))) (|HasCategory| |#2| (QUOTE (-1039)))) (|HasCategory| |#2| (QUOTE (-25))) (-2318 (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-137))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-221))) (|HasCategory| |#2| (QUOTE (-359))) (|HasCategory| |#2| (QUOTE (-364))) (|HasCategory| |#2| (QUOTE (-708))) (|HasCategory| |#2| (QUOTE (-780))) (|HasCategory| |#2| (QUOTE (-832))) (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (QUOTE (-1082)))) (-2318 (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-137))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-221))) (|HasCategory| |#2| (QUOTE (-359))) (|HasCategory| |#2| (QUOTE (-1039)))) (-2318 (-12 (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#2| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-137)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-170)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-221)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-359)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-364)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-708)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-780)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-832)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1039)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1082))))) (-2318 (-12 (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-137)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-170)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-221)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-359)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-364)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-708)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-780)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-832)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1039)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1082))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1082)))) (-2318 (-12 (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-1153))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-137)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-170)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-221)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-359)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-364)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-708)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-780)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-832)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1039)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1082)))))) -(-487 S) +((-4513 |has| |#2| (-1047)) (-4514 |has| |#2| (-1047)) (-4516 |has| |#2| (-6 -4516)) ((-4521 "*") |has| |#2| (-172)) (-4519 . T)) +((|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1047))) (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (QUOTE (-840))) (-2198 (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (QUOTE (-840)))) (|HasCategory| |#2| (QUOTE (-716))) (|HasCategory| |#2| (QUOTE (-172))) (-2198 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1047)))) (-2198 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365)))) (-2198 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1047)))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#2| (QUOTE (-225))) (-2198 (|HasCategory| |#2| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1047)))) (-2198 (|HasCategory| |#2| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (QUOTE (-1047)))) (|HasCategory| (-568) (QUOTE (-842))) (-12 (|HasCategory| |#2| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#2| (QUOTE (-1047)))) (-12 (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (QUOTE (-1047)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#2| (QUOTE (-1047)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#2| (QUOTE (-1090)))) (-2198 (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#2| (QUOTE (-1090)))) (|HasCategory| |#2| (QUOTE (-1047)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#2| (QUOTE (-1090)))) (|HasAttribute| |#2| (QUOTE -4516)) (|HasCategory| |#2| (QUOTE (-137))) (-2198 (|HasCategory| |#2| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#2| (QUOTE (-137))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1047)))) (|HasCategory| |#2| (QUOTE (-25))) (-2198 (|HasCategory| |#2| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-137))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-716))) (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (QUOTE (-840))) (|HasCategory| |#2| (QUOTE (-1047))) (|HasCategory| |#2| (QUOTE (-1090)))) (-2198 (|HasCategory| |#2| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-137))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1047)))) (-2198 (-12 (|HasCategory| |#2| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#2| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#2| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#2| (QUOTE (-137)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#2| (QUOTE (-225)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#2| (QUOTE (-365)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#2| (QUOTE (-370)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#2| (QUOTE (-716)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#2| (QUOTE (-788)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#2| (QUOTE (-840)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#2| (QUOTE (-1047)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#2| (QUOTE (-1090))))) (-2198 (-12 (|HasCategory| |#2| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-568))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-568))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#2| (QUOTE (-137)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#2| (QUOTE (-225)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#2| (QUOTE (-365)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#2| (QUOTE (-370)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#2| (QUOTE (-716)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#2| (QUOTE (-788)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#2| (QUOTE (-840)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#2| (QUOTE (-1047)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#2| (QUOTE (-1090))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1090)))) (-2198 (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -630) (QUOTE (-568))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1161))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-137)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-225)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-365)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-370)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-716)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-788)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-840)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1047)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1090)))))) +(-494 S) ((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|member?| (((|Boolean|) |#1| $) "\\blankline \\spad{X} a:Heap INT:= heap [1,{}2,{}3,{}4,{}5] \\spad{X} member?(3,{}a)")) (|members| (((|List| |#1|) $) "\\blankline \\spad{X} a:Heap INT:= heap [1,{}2,{}3,{}4,{}5] \\spad{X} members a")) (|parts| (((|List| |#1|) $) "\\blankline \\spad{X} a:Heap INT:= heap [1,{}2,{}3,{}4,{}5] \\spad{X} parts a")) (|#| (((|NonNegativeInteger|) $) "\\blankline \\spad{X} a:Heap INT:= heap [1,{}2,{}3,{}4,{}5] \\spad{X} \\#a")) (|count| (((|NonNegativeInteger|) |#1| $) "\\blankline \\spad{X} a:Heap INT:= heap [1,{}2,{}3,{}4,{}5] \\spad{X} count(4,{}a)") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\blankline \\spad{X} a:Heap INT:= heap [1,{}2,{}3,{}4,{}5] \\spad{X} count(\\spad{x+}->(\\spad{x>2}),{}a)")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\blankline \\spad{X} a:Heap INT:= heap [1,{}2,{}3,{}4,{}5] \\spad{X} any?(\\spad{x+}->(\\spad{x=4}),{}a)")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\blankline \\spad{X} a:Heap INT:= heap [1,{}2,{}3,{}4,{}5] \\spad{X} every?(\\spad{x+}->(\\spad{x=4}),{}a)")) (~= (((|Boolean|) $ $) "\\blankline \\spad{X} a:Heap INT:= heap [1,{}2,{}3,{}4,{}5] \\spad{X} b:=copy a \\spad{X} (a~=b)")) (= (((|Boolean|) $ $) "\\blankline \\spad{X} a:Heap INT:= heap [1,{}2,{}3,{}4,{}5] \\spad{X} b:Heap INT:= heap [1,{}2,{}3,{}4,{}5] \\spad{X} (a=b)@Boolean")) (|coerce| (((|OutputForm|) $) "\\blankline \\spad{X} a:Heap INT:= heap [1,{}2,{}3,{}4,{}5] \\spad{X} coerce a")) (|hash| (((|SingleInteger|) $) "\\blankline \\spad{X} a:Heap INT:= heap [1,{}2,{}3,{}4,{}5] \\spad{X} hash a")) (|latex| (((|String|) $) "\\blankline \\spad{X} a:Heap INT:= heap [1,{}2,{}3,{}4,{}5] \\spad{X} latex a")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\blankline \\spad{X} a:Heap INT:= heap [1,{}2,{}3,{}4,{}5] \\spad{X} map!(\\spad{x+}-\\spad{>x+10},{}a) \\spad{X} a")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\blankline \\spad{X} a:Heap INT:= heap [1,{}2,{}3,{}4,{}5] \\spad{X} size?(a,{}5)")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\blankline \\spad{X} a:Heap INT:= heap [1,{}2,{}3,{}4,{}5] \\spad{X} more?(a,{}9)")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\blankline \\spad{X} a:Heap INT:= heap [1,{}2,{}3,{}4,{}5] \\spad{X} less?(a,{}9)")) (|sample| (($) "\\blankline \\spad{X} sample()\\$Heap(INT)")) (|merge!| (($ $ $) "\\blankline \\spad{X} a:Heap INT:= heap [1,{}2,{}3,{}4,{}5] \\spad{X} b:Heap INT:= heap [6,{}7,{}8,{}9,{}10] \\spad{X} merge!(a,{}\\spad{b}) \\spad{X} a \\spad{X} \\spad{b}")) (|merge| (($ $ $) "\\blankline \\spad{X} a:Heap INT:= heap [1,{}2,{}3,{}4,{}5] \\spad{X} b:Heap INT:= heap [6,{}7,{}8,{}9,{}10] \\spad{X} merge(a,{}\\spad{b})")) (|max| ((|#1| $) "\\blankline \\spad{X} a:Heap INT:= heap [1,{}2,{}3,{}4,{}5] \\spad{X} max a")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\blankline \\spad{X} a:Heap INT:= heap [1,{}2,{}3,{}4,{}5] \\spad{X} map(\\spad{x+}-\\spad{>x+10},{}a) \\spad{X} a")) (|inspect| ((|#1| $) "\\blankline \\spad{X} a:Heap INT:= heap [1,{}2,{}3,{}4,{}5] \\spad{X} inspect a")) (|insert!| (($ |#1| $) "\\blankline \\spad{X} a:Heap INT:= heap [1,{}2,{}3,{}4,{}5] \\spad{X} insert!(8,{}a) \\spad{X} a")) (|extract!| ((|#1| $) "\\blankline \\spad{X} a:Heap INT:= heap [1,{}2,{}3,{}4,{}5] \\spad{X} extract! a \\spad{X} a")) (|eq?| (((|Boolean|) $ $) "\\blankline \\spad{X} a:Heap INT:= heap [1,{}2,{}3,{}4,{}5] \\spad{X} b:=copy a \\spad{X} eq?(a,{}\\spad{b})")) (|empty| (($) "\\blankline \\spad{X} b:=empty()\\$(Heap INT)")) (|empty?| (((|Boolean|) $) "\\blankline \\spad{X} a:Heap INT:= heap [1,{}2,{}3,{}4,{}5] \\spad{X} empty? a")) (|copy| (($ $) "\\blankline \\spad{X} a:Heap INT:= heap [1,{}2,{}3,{}4,{}5] \\spad{X} copy a")) (|bag| (($ (|List| |#1|)) "\\blankline \\spad{X} bag([1,{}2,{}3,{}4,{}5])\\$Heap(INT)")) (|heap| (($ (|List| |#1|)) "\\indented{1}{heap(\\spad{ls}) creates a heap of elements consisting of the} \\indented{1}{elements of \\spad{ls}.} \\blankline \\spad{E} i:Heap INT \\spad{:=} heap [1,{}6,{}3,{}7,{}5,{}2,{}4]"))) -((-4505 . T) (-4506 . T)) -((|HasCategory| |#1| (QUOTE (-1082))) (-12 (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1082))))) -(-488 -1333 UP UPUP R) +((-4519 . T) (-4520 . T)) +((|HasCategory| |#1| (QUOTE (-1090))) (-12 (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1090))))) +(-495 -1478 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree."))) NIL NIL -(-489 BP) +(-496 BP) ((|constructor| (NIL "This package provides the functions for the heuristic integer \\spad{gcd}. Geddes\\spad{'s} algorithm,{}for univariate polynomials with integer coefficients")) (|lintgcd| (((|Integer|) (|List| (|Integer|))) "\\spad{lintgcd([a1,{}..,{}ak])} = \\spad{gcd} of a list of integers")) (|content| (((|List| (|Integer|)) (|List| |#1|)) "\\spad{content([f1,{}..,{}fk])} = content of a list of univariate polynonials")) (|gcdcofactprim| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofactprim([f1,{}..fk])} = \\spad{gcd} and cofactors of \\spad{k} primitive polynomials.")) (|gcdcofact| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofact([f1,{}..fk])} = \\spad{gcd} and cofactors of \\spad{k} univariate polynomials.")) (|gcdprim| ((|#1| (|List| |#1|)) "\\spad{gcdprim([f1,{}..,{}fk])} = \\spad{gcd} of \\spad{k} PRIMITIVE univariate polynomials")) (|gcd| ((|#1| (|List| |#1|)) "\\indented{1}{\\spad{gcd}([\\spad{f1},{}..,{}\\spad{fk}]) = \\spad{gcd} of the polynomials \\spad{fi}.} \\blankline \\spad{X} \\spad{gcd}([671*671*x^2-1,{}671*671*x^2+2*671*x+1]) \\spad{X} \\spad{gcd}([7*x^2+1,{}(7*x^2+1)\\spad{^2}])"))) NIL NIL -(-490) +(-497) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion.")) (|coerce| (((|RadixExpansion| 16) $) "\\spad{coerce(h)} converts a hexadecimal expansion to a radix expansion with base 16.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(h)} converts a hexadecimal expansion to a rational number."))) -((-4497 . T) (-4503 . T) (-4498 . T) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) -((|HasCategory| (-560) (QUOTE (-896))) (|HasCategory| (-560) (LIST (QUOTE -1029) (QUOTE (-1153)))) (|HasCategory| (-560) (QUOTE (-146))) (|HasCategory| (-560) (QUOTE (-148))) (|HasCategory| (-560) (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| (-560) (QUOTE (-1013))) (|HasCategory| (-560) (QUOTE (-807))) (|HasCategory| (-560) (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-1128))) (|HasCategory| (-560) (LIST (QUOTE -873) (QUOTE (-560)))) (|HasCategory| (-560) (LIST (QUOTE -873) (QUOTE (-375)))) (|HasCategory| (-560) (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-375))))) (|HasCategory| (-560) (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-560))))) (|HasCategory| (-560) (QUOTE (-221))) (|HasCategory| (-560) (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| (-560) (LIST (QUOTE -515) (QUOTE (-1153)) (QUOTE (-560)))) (|HasCategory| (-560) (LIST (QUOTE -298) (QUOTE (-560)))) (|HasCategory| (-560) (LIST (QUOTE -276) (QUOTE (-560)) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-296))) (|HasCategory| (-560) (QUOTE (-542))) (|HasCategory| (-560) (QUOTE (-834))) (-2318 (|HasCategory| (-560) (QUOTE (-807))) (|HasCategory| (-560) (QUOTE (-834)))) (|HasCategory| (-560) (LIST (QUOTE -622) (QUOTE (-560)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-560) (QUOTE (-896)))) (-2318 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-560) (QUOTE (-896)))) (|HasCategory| (-560) (QUOTE (-146))))) -(-491 A S) +((-4511 . T) (-4517 . T) (-4512 . T) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) +((|HasCategory| (-568) (QUOTE (-904))) (|HasCategory| (-568) (LIST (QUOTE -1037) (QUOTE (-1161)))) (|HasCategory| (-568) (QUOTE (-148))) (|HasCategory| (-568) (QUOTE (-150))) (|HasCategory| (-568) (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| (-568) (QUOTE (-1021))) (|HasCategory| (-568) (QUOTE (-815))) (|HasCategory| (-568) (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| (-568) (QUOTE (-1136))) (|HasCategory| (-568) (LIST (QUOTE -881) (QUOTE (-568)))) (|HasCategory| (-568) (LIST (QUOTE -881) (QUOTE (-381)))) (|HasCategory| (-568) (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-381))))) (|HasCategory| (-568) (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-568))))) (|HasCategory| (-568) (QUOTE (-225))) (|HasCategory| (-568) (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| (-568) (LIST (QUOTE -523) (QUOTE (-1161)) (QUOTE (-568)))) (|HasCategory| (-568) (LIST (QUOTE -303) (QUOTE (-568)))) (|HasCategory| (-568) (LIST (QUOTE -281) (QUOTE (-568)) (QUOTE (-568)))) (|HasCategory| (-568) (QUOTE (-301))) (|HasCategory| (-568) (QUOTE (-550))) (|HasCategory| (-568) (QUOTE (-842))) (-2198 (|HasCategory| (-568) (QUOTE (-815))) (|HasCategory| (-568) (QUOTE (-842)))) (|HasCategory| (-568) (LIST (QUOTE -630) (QUOTE (-568)))) (-12 (|HasCategory| $ (QUOTE (-148))) (|HasCategory| (-568) (QUOTE (-904)))) (-2198 (-12 (|HasCategory| $ (QUOTE (-148))) (|HasCategory| (-568) (QUOTE (-904)))) (|HasCategory| (-568) (QUOTE (-148))))) +(-498 A S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note that for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note that for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4505)) (|HasAttribute| |#1| (QUOTE -4506)) (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1082)))) -(-492 S) +((|HasAttribute| |#1| (QUOTE -4519)) (|HasAttribute| |#1| (QUOTE -4520)) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1090)))) +(-499 S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note that for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note that for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) -((-2537 . T)) +((-3973 . T)) +NIL +(-500) +((|constructor| (NIL "HtmlFormat provides a coercion from OutputForm to html.")) (|display| (((|Void|) (|String|)) "\\indented{1}{display(\\spad{o}) prints the string returned by coerce.} \\blankline \\spad{X} display(coerce(sqrt(3+x)::OutputForm)\\$HTMLFORM)\\$HTMLFORM")) (|exprex| (((|String|) (|OutputForm|)) "\\indented{1}{exprex(\\spad{o}) coverts \\spadtype{OutputForm} to \\spadtype{String}} \\blankline \\spad{X} exprex(sqrt(3+x)::OutputForm)\\$HTMLFORM")) (|coerceL| (((|String|) (|OutputForm|)) "\\indented{1}{coerceL(\\spad{o}) changes \\spad{o} in the standard output format to html} \\indented{1}{format and displays result as one long string.} \\blankline \\spad{X} coerceL(sqrt(3+x)::OutputForm)\\$HTMLFORM")) (|coerceS| (((|String|) (|OutputForm|)) "\\indented{1}{coerceS(\\spad{o}) changes \\spad{o} in the standard output format to html} \\indented{1}{format and displays formatted result.} \\blankline \\spad{X} coerceS(sqrt(3+x)::OutputForm)\\$HTMLFORM")) (|coerce| (((|String|) (|OutputForm|)) "\\indented{1}{coerce(\\spad{o}) changes \\spad{o} in the standard output format to html format.} \\blankline \\spad{X} coerce(sqrt(3+x)::OutputForm)\\$HTMLFORM"))) +NIL NIL -(-493 S) +(-501 S) ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-494) +(-502) ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-495 -1333 UP |AlExt| |AlPol|) +(-503 -1478 UP |AlExt| |AlPol|) ((|constructor| (NIL "Factorisation in a simple algebraic extension Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p,{} f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP."))) NIL NIL -(-496) +(-504) ((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,{}y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4497 . T) (-4503 . T) (-4498 . T) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) -((|HasCategory| $ (QUOTE (-1039))) (|HasCategory| $ (LIST (QUOTE -1029) (QUOTE (-560))))) -(-497 S |mn|) +((-4511 . T) (-4517 . T) (-4512 . T) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) +((|HasCategory| $ (QUOTE (-1047))) (|HasCategory| $ (LIST (QUOTE -1037) (QUOTE (-568))))) +(-505 S |mn|) ((|constructor| (NIL "This is the basic one dimensional array data type."))) -((-4506 . T) (-4505 . T)) -((|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-834))) (-2318 (|HasCategory| |#1| (QUOTE (-834))) (|HasCategory| |#1| (QUOTE (-1082)))) (|HasCategory| (-560) (QUOTE (-834))) (-12 (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1082)))) (-2318 (-12 (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-834)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1082)))))) -(-498 R |mnRow| |mnCol|) +((-4520 . T) (-4519 . T)) +((|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-842))) (-2198 (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-1090)))) (|HasCategory| (-568) (QUOTE (-842))) (-12 (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1090)))) (-2198 (-12 (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-842)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1090)))))) +(-506 R |mnRow| |mnCol|) ((|constructor| (NIL "This domain implements two dimensional arrays"))) -((-4505 . T) (-4506 . T)) -((|HasCategory| |#1| (QUOTE (-1082))) (-12 (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1082))))) -(-499 K R UP) +((-4519 . T) (-4520 . T)) +((|HasCategory| |#1| (QUOTE (-1090))) (-12 (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1090))))) +(-507 K R UP) ((|constructor| (NIL "This package has no description")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,{}lr,{}n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,{}q,{}n)} returns the list \\spad{[bas,{}bas^Frob,{}bas^(Frob^2),{}...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,{}n,{}m,{}j)} \\undocumented"))) NIL NIL -(-500 R UP -1333) +(-508 R UP -1478) ((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,{}m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{\\spad{mi}} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn} and \\spad{\\spad{mi}} is a record \\spad{[basis,{}basisDen,{}basisInv]}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then a basis \\spad{v1,{}...,{}vn} for \\spad{\\spad{mi}} is given by \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1,{} m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,{}m2,{}d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,{}m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,{}n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,{}matrixOut,{}prime,{}n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,{}sing,{}n)} is \\spad{gcd(sing,{}g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL -(-501 |mn|) +(-509 |mn|) ((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical And of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical Or of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical Not of \\spad{n}."))) -((-4506 . T) (-4505 . T)) -((|HasCategory| (-121) (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| (-121) (QUOTE (-834))) (|HasCategory| (-560) (QUOTE (-834))) (|HasCategory| (-121) (QUOTE (-1082))) (-12 (|HasCategory| (-121) (LIST (QUOTE -298) (QUOTE (-121)))) (|HasCategory| (-121) (QUOTE (-1082))))) -(-502 K R UP L) +((-4520 . T) (-4519 . T)) +((|HasCategory| (-121) (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| (-121) (QUOTE (-842))) (|HasCategory| (-568) (QUOTE (-842))) (|HasCategory| (-121) (QUOTE (-1090))) (-12 (|HasCategory| (-121) (LIST (QUOTE -303) (QUOTE (-121)))) (|HasCategory| (-121) (QUOTE (-1090))))) +(-510 K R UP L) ((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for mapping functions on the coefficients of univariate and bivariate polynomials.")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,{}p(x,{}y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,{}y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,{}mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}."))) NIL NIL -(-503) +(-511) ((|constructor| (NIL "This domain implements a container of information about the AXIOM library")) (|coerce| (($ (|String|)) "\\spad{coerce(s)} converts \\axiom{\\spad{s}} into an \\axiom{IndexCard}. Warning: if \\axiom{\\spad{s}} is not of the right format then an error will occur")) (|fullDisplay| (((|Void|) $) "\\spad{fullDisplay(ic)} prints all of the information contained in \\axiom{\\spad{ic}}.")) (|display| (((|Void|) $) "\\spad{display(ic)} prints a summary of information contained in \\axiom{\\spad{ic}}.")) (|elt| (((|String|) $ (|Symbol|)) "\\spad{elt(ic,{}s)} selects a particular field from \\axiom{\\spad{ic}}. Valid fields are \\axiom{name,{} nargs,{} exposed,{} type,{} abbreviation,{} kind,{} origin,{} params,{} condition,{} doc}."))) NIL NIL -(-504 R Q A B) +(-512 R Q A B) ((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL NIL -(-505 K |symb| BLMET) +(-513 K |symb| BLMET) ((|constructor| (NIL "This domain is part of the PAFF package")) (|fullOutput| (((|Boolean|)) "\\spad{fullOutput returns} the value of the flag set by fullOutput(\\spad{b}).") (((|Boolean|) (|Boolean|)) "\\spad{fullOutput(b)} sets a flag such that when \\spad{true},{} a coerce to OutputForm yields the full output of \\spad{tr},{} otherwise encode(\\spad{tr}) is output (see encode function). The default is \\spad{false}.")) (|fullOut| (((|OutputForm|) $) "\\spad{fullOut(tr)} yields a full output of \\spad{tr} (see function fullOutput)."))) NIL NIL -(-506 -1333 |Expon| |VarSet| |DPoly|) +(-514 -1478 |Expon| |VarSet| |DPoly|) ((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,{}f,{}lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,{}f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,{}lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by generalPosition from PolynomialIdeals and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,{}listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,{}listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,{}f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,{}J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,{}J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,{}lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,{}I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,{}J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,{}I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -601) (QUOTE (-1153))))) -(-507 |vl| |nv|) +((|HasCategory| |#3| (LIST (QUOTE -609) (QUOTE (-1161))))) +(-515 |vl| |nv|) ((|constructor| (NIL "This package provides functions for the primary decomposition of polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,{}lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime."))) NIL NIL -(-508 A S) +(-516 A S) ((|constructor| (NIL "Indexed direct products of abelian groups over an abelian group \\spad{A} of generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL NIL -(-509 A S) +(-517 A S) ((|constructor| (NIL "Indexed direct products of abelian monoids over an abelian monoid \\spad{A} of generators indexed by the ordered set \\spad{S}. All items have finite support. Only non-zero terms are stored."))) NIL NIL -(-510 A S) +(-518 A S) ((|constructor| (NIL "This category represents the direct product of some set with respect to an ordered indexing set.")) (|reductum| (($ $) "\\spad{reductum(z)} returns a new element created by removing the leading coefficient/support pair from the element \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingSupport| ((|#2| $) "\\spad{leadingSupport(z)} returns the index of leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(z)} returns the coefficient of the leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(a,{}s)} constructs a direct product element with the \\spad{s} component set to \\spad{a}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}z)} returns the new element created by applying the function \\spad{f} to each component of the direct product element \\spad{z}."))) NIL NIL -(-511 A S) +(-519 A S) ((|constructor| (NIL "Indexed direct products of ordered abelian monoids \\spad{A} of generators indexed by the ordered set \\spad{S}. The inherited order is lexicographical. All items have finite support: only non-zero terms are stored."))) NIL NIL -(-512 A S) +(-520 A S) ((|constructor| (NIL "Indexed direct products of ordered abelian monoid sups \\spad{A},{} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL NIL -(-513 A S) +(-521 A S) ((|constructor| (NIL "Indexed direct products of objects over a set \\spad{A} of generators indexed by an ordered set \\spad{S}. All items have finite support."))) NIL NIL -(-514 S A B) +(-522 S A B) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#2|) (|List| |#3|)) "\\spad{eval(f,{} [x1,{}...,{}xn],{} [v1,{}...,{}vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#2| |#3|) "\\spad{eval(f,{} x,{} v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-515 A B) +(-523 A B) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#1|) (|List| |#2|)) "\\spad{eval(f,{} [x1,{}...,{}xn],{} [v1,{}...,{}vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#1| |#2|) "\\spad{eval(f,{} x,{} v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-516 S E |un|) +(-524 S E |un|) ((|constructor| (NIL "Internal implementation of a free abelian monoid on any set of generators"))) NIL -((|HasCategory| |#2| (QUOTE (-779)))) -(-517 S |mn|) +((|HasCategory| |#2| (QUOTE (-787)))) +(-525 S |mn|) ((|constructor| (NIL "A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations\\spad{\\br} \\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}\\spad{\\br} \\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}\\spad{\\br} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\indented{1}{shrinkable(\\spad{b}) sets the shrinkable attribute of flexible arrays to \\spad{b}} \\indented{1}{and returns the previous value} \\blankline \\spad{X} T1:=IndexedFlexibleArray(Integer,{}20) \\spad{X} shrinkable(\\spad{false})\\$\\spad{T1}")) (|physicalLength!| (($ $ (|Integer|)) "\\indented{1}{physicalLength!(\\spad{x},{}\\spad{n}) changes the physical length of \\spad{x} to be \\spad{n} and} \\indented{1}{returns the new array.} \\blankline \\spad{X} T1:=IndexedFlexibleArray(Integer,{}20) \\spad{X} t2:=flexibleArray([\\spad{i} for \\spad{i} in 1..10])\\$\\spad{T1} \\spad{X} physicalLength!(\\spad{t2},{}15)")) (|physicalLength| (((|NonNegativeInteger|) $) "\\indented{1}{physicalLength(\\spad{x}) returns the number of elements \\spad{x} can} \\indented{1}{accomodate before growing} \\blankline \\spad{X} T1:=IndexedFlexibleArray(Integer,{}20) \\spad{X} t2:=flexibleArray([\\spad{i} for \\spad{i} in 1..10])\\$\\spad{T1} \\spad{X} physicalLength \\spad{t2}")) (|flexibleArray| (($ (|List| |#1|)) "\\indented{1}{flexibleArray(\\spad{l}) creates a flexible array from the list of elements \\spad{l}} \\blankline \\spad{X} T1:=IndexedFlexibleArray(Integer,{}20) \\spad{X} flexibleArray([\\spad{i} for \\spad{i} in 1..10])\\$\\spad{T1}"))) -((-4506 . T) (-4505 . T)) -((|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-834))) (-2318 (|HasCategory| |#1| (QUOTE (-834))) (|HasCategory| |#1| (QUOTE (-1082)))) (|HasCategory| (-560) (QUOTE (-834))) (-12 (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1082)))) (-2318 (-12 (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-834)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1082)))))) -(-518 |p| |n|) +((-4520 . T) (-4519 . T)) +((|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-842))) (-2198 (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-1090)))) (|HasCategory| (-568) (QUOTE (-842))) (-12 (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1090)))) (-2198 (-12 (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-842)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1090)))))) +(-526 |p| |n|) ((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}."))) -((-4497 . T) (-4503 . T) (-4498 . T) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) -((|HasCategory| (-573 |#1|) (QUOTE (-148))) (|HasCategory| (-573 |#1|) (QUOTE (-364))) (|HasCategory| (-573 |#1|) (QUOTE (-146))) (-2318 (|HasCategory| (-573 |#1|) (QUOTE (-146))) (|HasCategory| (-573 |#1|) (QUOTE (-364))))) -(-519 R |mnRow| |mnCol| |Row| |Col|) +((-4511 . T) (-4517 . T) (-4512 . T) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) +((|HasCategory| (-581 |#1|) (QUOTE (-150))) (|HasCategory| (-581 |#1|) (QUOTE (-370))) (|HasCategory| (-581 |#1|) (QUOTE (-148))) (-2198 (|HasCategory| (-581 |#1|) (QUOTE (-148))) (|HasCategory| (-581 |#1|) (QUOTE (-370))))) +(-527 R |mnRow| |mnCol| |Row| |Col|) ((|constructor| (NIL "There is no description for this domain"))) -((-4505 . T) (-4506 . T)) -((|HasCategory| |#1| (QUOTE (-1082))) (-12 (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1082))))) -(-520 S |mn|) +((-4519 . T) (-4520 . T)) +((|HasCategory| |#1| (QUOTE (-1090))) (-12 (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1090))))) +(-528 S |mn|) ((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,{}mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists."))) -((-4506 . T) (-4505 . T)) -((|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-834))) (-2318 (|HasCategory| |#1| (QUOTE (-834))) (|HasCategory| |#1| (QUOTE (-1082)))) (|HasCategory| (-560) (QUOTE (-834))) (-12 (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1082)))) (-2318 (-12 (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-834)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1082)))))) -(-521 R |Row| |Col| M) +((-4520 . T) (-4519 . T)) +((|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-842))) (-2198 (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-1090)))) (|HasCategory| (-568) (QUOTE (-842))) (-12 (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1090)))) (-2198 (-12 (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-842)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1090)))))) +(-529 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}."))) NIL -((|HasAttribute| |#3| (QUOTE -4506))) -(-522 R |Row| |Col| M QF |Row2| |Col2| M2) +((|HasAttribute| |#3| (QUOTE -4520))) +(-530 R |Row| |Col| M QF |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note that the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field."))) NIL -((|HasAttribute| |#7| (QUOTE -4506))) -(-523 R |mnRow| |mnCol|) +((|HasAttribute| |#7| (QUOTE -4520))) +(-531 R |mnRow| |mnCol|) ((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa."))) -((-4505 . T) (-4506 . T)) -((|HasCategory| |#1| (QUOTE (-1082))) (-12 (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1082)))) (|HasCategory| |#1| (QUOTE (-296))) (|HasCategory| |#1| (QUOTE (-550))) (|HasAttribute| |#1| (QUOTE (-4507 "*"))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-359)))) -(-524 GF) +((-4519 . T) (-4520 . T)) +((|HasCategory| |#1| (QUOTE (-1090))) (-12 (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-558))) (|HasAttribute| |#1| (QUOTE (-4521 "*"))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365)))) +(-532 GF) ((|constructor| (NIL "InnerNormalBasisFieldFunctions(\\spad{GF}) (unexposed): This package has functions used by every normal basis finite field extension domain.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{minimalPolynomial(x)} \\undocumented{} See \\axiomFunFrom{minimalPolynomial}{FiniteAlgebraicExtensionField}")) (|normalElement| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{normalElement(n)} \\undocumented{} See \\axiomFunFrom{normalElement}{FiniteAlgebraicExtensionField}")) (|basis| (((|Vector| (|Vector| |#1|)) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{} See \\axiomFunFrom{basis}{FiniteAlgebraicExtensionField}")) (|normal?| (((|Boolean|) (|Vector| |#1|)) "\\spad{normal?(x)} \\undocumented{} See \\axiomFunFrom{normal?}{FiniteAlgebraicExtensionField}")) (|lookup| (((|PositiveInteger|) (|Vector| |#1|)) "\\spad{lookup(x)} \\undocumented{} See \\axiomFunFrom{lookup}{Finite}")) (|inv| (((|Vector| |#1|) (|Vector| |#1|)) "\\spad{inv x} \\undocumented{} See \\axiomFunFrom{inv}{DivisionRing}")) (|trace| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{trace(x,{}n)} \\undocumented{} See \\axiomFunFrom{trace}{FiniteAlgebraicExtensionField}")) (|norm| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{norm(x,{}n)} \\undocumented{} See \\axiomFunFrom{norm}{FiniteAlgebraicExtensionField}")) (/ (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x/y} \\undocumented{} See \\axiomFunFrom{/}{Field}")) (* (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x*y} \\undocumented{} See \\axiomFunFrom{*}{SemiGroup}")) (** (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{x**n} \\undocumented{} See \\axiomFunFrom{\\spad{**}}{DivisionRing}")) (|qPot| (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{qPot(v,{}e)} computes \\spad{v**(q**e)},{} interpreting \\spad{v} as an element of normal basis field,{} \\spad{q} the size of the ground field. This is done by a cyclic \\spad{e}-shift of the vector \\spad{v}.")) (|expPot| (((|Vector| |#1|) (|Vector| |#1|) (|SingleInteger|) (|SingleInteger|)) "\\spad{expPot(v,{}e,{}d)} returns the sum from \\spad{i = 0} to \\spad{e - 1} of \\spad{v**(q**i*d)},{} interpreting \\spad{v} as an element of a normal basis field and where \\spad{q} is the size of the ground field. Note that for a description of the algorithm,{} see \\spad{T}.Itoh and \\spad{S}.Tsujii,{} \"A fast algorithm for computing multiplicative inverses in \\spad{GF}(2^m) using normal bases\",{} Information and Computation 78,{} \\spad{pp}.171-177,{} 1988.")) (|repSq| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|)) "\\spad{repSq(v,{}e)} computes \\spad{v**e} by repeated squaring,{} interpreting \\spad{v} as an element of a normal basis field.")) (|dAndcExp| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|) (|SingleInteger|)) "\\spad{dAndcExp(v,{}n,{}k)} computes \\spad{v**e} interpreting \\spad{v} as an element of normal basis field. A divide and conquer algorithm similar to the one from \\spad{D}.\\spad{R}.Stinson,{} \"Some observations on parallel Algorithms for fast exponentiation in \\spad{GF}(2^n)\",{} Siam \\spad{J}. Computation,{} Vol.19,{} No.4,{} \\spad{pp}.711-717,{} August 1990 is used. Argument \\spad{k} is a parameter of this algorithm.")) (|xn| (((|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|)) "\\spad{xn(n)} returns the polynomial \\spad{x**n-1}.")) (|pol| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{pol(v)} turns the vector \\spad{[v0,{}...,{}vn]} into the polynomial \\spad{v0+v1*x+ ... + vn*x**n}.")) (|index| (((|Vector| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{index(n,{}m)} is a index function for vectors of length \\spad{n} over the ground field.")) (|random| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{random(n)} creates a vector over the ground field with random entries.")) (|setFieldInfo| (((|Void|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) |#1|) "\\spad{setFieldInfo(m,{}p)} initializes the field arithmetic,{} where \\spad{m} is the multiplication table and \\spad{p} is the respective normal element of the ground field \\spad{GF}."))) NIL NIL -(-525 R) +(-533 R) ((|constructor| (NIL "This package provides operations to create incrementing functions.")) (|incrementBy| (((|Mapping| |#1| |#1|) |#1|) "\\spad{incrementBy(n)} produces a function which adds \\spad{n} to whatever argument it is given. For example,{} if {\\spad{f} \\spad{:=} increment(\\spad{n})} then \\spad{f x} is \\spad{x+n}.")) (|increment| (((|Mapping| |#1| |#1|)) "\\spad{increment()} produces a function which adds \\spad{1} to whatever argument it is given. For example,{} if {\\spad{f} \\spad{:=} increment()} then \\spad{f x} is \\spad{x+1}."))) NIL NIL -(-526 |Varset|) +(-534 |Varset|) ((|constructor| (NIL "converts entire exponents to OutputForm"))) NIL NIL -(-527 K -1333 |Par|) +(-535 K -1478 |Par|) ((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,{}eps,{}factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol,{} eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}"))) NIL NIL -(-528 K |symb| |PolyRing| E |ProjPt| PCS |Plc| DIVISOR BLMET) +(-536 K |symb| |PolyRing| E |ProjPt| PCS |Plc| DIVISOR BLMET) ((|constructor| (NIL "This category is part of the PAFF package")) (|excpDivV| ((|#8| $) "\\spad{excpDivV returns} the exceptional divisor of the infinitly close point.")) (|chartV| ((|#9| $) "chartV is the chart of the infinitly close point. The first integer correspond to variable defining the exceptional line,{} the last one the affine neighboorhood and the second one is the remaining integer. For example [1,{}2,{}3] means that \\spad{Z=1},{} \\spad{X=X} and Y=XY. [2,{}3,{}1] means that \\spad{X=1},{} \\spad{Y=Y} and Z=YZ.")) (|multV| (((|NonNegativeInteger|) $) "\\spad{multV returns} the multiplicity of the infinitly close point.")) (|localPointV| (((|AffinePlane| |#1|) $) "\\spad{localPointV returns} the coordinates of the local infinitly close point")) (|curveV| (((|DistributedMultivariatePolynomial| (|construct| (QUOTE X) (QUOTE Y)) |#1|) $) "\\spad{curveV(p)} returns the defining polynomial of the strict transform on which lies the corresponding infinitly close point.")) (|pointV| ((|#5| $) "\\spad{pointV returns} the infinitly close point.")) (|create| (($ |#5| (|DistributedMultivariatePolynomial| (|construct| (QUOTE X) (QUOTE Y)) |#1|) (|AffinePlane| |#1|) (|NonNegativeInteger|) |#9| (|NonNegativeInteger|) |#8| |#1| (|Symbol|)) "\\spad{create an} infinitly close point"))) NIL NIL -(-529 K |symb| BLMET) +(-537 K |symb| BLMET) ((|constructor| (NIL "This domain is part of the PAFF package")) (|fullOutput| (((|Boolean|)) "\\spad{fullOutput returns} the value of the flag set by fullOutput(\\spad{b}).") (((|Boolean|) (|Boolean|)) "\\spad{fullOutput(b)} sets a flag such that when \\spad{true},{} a coerce to OutputForm \\indented{1}{yields the full output of \\spad{tr},{} otherwise encode(\\spad{tr}) is output} (see encode function). The default is \\spad{false}.")) (|fullOut| (((|OutputForm|) $) "\\spad{fullOut(tr)} yields a full output of \\spad{tr} (see function fullOutput)."))) NIL NIL -(-530 K |symb| |PolyRing| E |ProjPt| PCS |Plc| DIVISOR BLMET) +(-538 K |symb| |PolyRing| E |ProjPt| PCS |Plc| DIVISOR BLMET) ((|constructor| (NIL "This domain is part of the PAFF package")) (|fullOutput| (((|Boolean|)) "\\spad{fullOutput returns} the value of the flag set by fullOutput(\\spad{b}).") (((|Boolean|) (|Boolean|)) "\\spad{fullOutput(b)} sets a flag such that when \\spad{true},{} a coerce to OutputForm yields the full output of \\spad{tr},{} otherwise encode(\\spad{tr}) is output (see encode function). The default is \\spad{false}.")) (|fullOut| (((|OutputForm|) $) "\\spad{fullOut(tr)} yields a full output of \\spad{tr} (see function fullOutput)."))) NIL NIL -(-531) +(-539) ((|constructor| (NIL "Top-level infinity Default infinity signatures for the interpreter.")) (|minusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{minusInfinity()} returns minusInfinity.")) (|plusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{plusInfinity()} returns plusIinfinity.")) (|infinity| (((|OnePointCompletion| (|Integer|))) "\\spad{infinity()} returns infinity."))) NIL NIL -(-532 R) +(-540 R) ((|constructor| (NIL "Tools for manipulating input forms.")) (|interpret| ((|#1| (|InputForm|)) "\\spad{interpret(f)} passes \\spad{f} to the interpreter,{} and transforms the result into an object of type \\spad{R}.")) (|packageCall| (((|InputForm|) (|Symbol|)) "\\spad{packageCall(f)} returns the input form corresponding to \\spad{f}\\$\\spad{R}."))) NIL NIL -(-533) +(-541) ((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f,{} [t1,{}...,{}tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,{}...,{}tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}\\spad{'s} are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|parse| (($ (|String|)) "parse is the inverse of unparse. It parses a string to InputForm.")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) ((|One|) (($) "\\spad{1} returns the input form corresponding to 1.")) ((|Zero|) (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code,{} [x1,{}...,{}xn])} returns the input form corresponding to \\spad{(x1,{}...,{}xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code,{} [x1,{}...,{}xn],{} f)} returns the input form corresponding to \\spad{f(x1,{}...,{}xn) == code}.")) (|binary| (($ $ (|List| $)) "\\indented{1}{\\spad{binary(op,{} [a1,{}...,{}an])} returns the input form} \\indented{1}{corresponding to\\space{2}\\spad{a1 op a2 op ... op an}.} \\blankline \\spad{X} a:=[1,{}2,{}3]::List(InputForm) \\spad{X} binary(_+::InputForm,{}a)")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter."))) NIL NIL -(-534 |Coef| UTS) +(-542 |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-535 K -1333 |Par|) +(-543 K -1478 |Par|) ((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,{}lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,{}lden,{}lvar,{}eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,{}eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,{}eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}."))) NIL NIL -(-536 R BP |pMod| |nextMod|) +(-544 R BP |pMod| |nextMod|) ((|constructor| (NIL "This file contains the functions for modular \\spad{gcd} algorithm for univariate polynomials with coefficients in a non-trivial euclidean domain (\\spadignore{i.e.} not a field). The package parametrised by the coefficient domain,{} the polynomial domain,{} a prime,{} and a function for choosing the next prime")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(f,{}p)} reduces the coefficients of the polynomial \\spad{f} modulo the prime \\spad{p}.")) (|modularGcd| ((|#2| (|List| |#2|)) "\\spad{modularGcd(listf)} computes the \\spad{gcd} of the list of polynomials \\spad{listf} by modular methods.")) (|modularGcdPrimitive| ((|#2| (|List| |#2|)) "\\spad{modularGcdPrimitive(f1,{}f2)} computes the \\spad{gcd} of the two polynomials \\spad{f1} and \\spad{f2} by modular methods."))) NIL NIL -(-537 OV E R P) +(-545 OV E R P) ((|constructor| (NIL "This is an inner package for factoring multivariate polynomials over various coefficient domains in characteristic 0. The univariate factor operation is passed as a parameter. Multivariate hensel lifting is used to lift the univariate factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,{}ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}. \\spad{p} is represented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,{}ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}."))) NIL NIL -(-538 K UP |Coef| UTS) +(-546 K UP |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an arbitrary finite field.")) (|generalInfiniteProduct| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#4| |#4|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#4| |#4|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#4| |#4|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-539 |Coef| UTS) +(-547 |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over a field of prime order.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-540 R UP) +(-548 R UP) ((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) "failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}r,{}f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}r,{}i,{}f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}i,{}f)} \\undocumented"))) NIL NIL -(-541 S) +(-549 S) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,{}b)},{} \\spad{0<=a1},{} \\spad{(a,{}b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,{}b,{}p)},{} \\spad{0<=a,{}b

1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,{}b,{}p)},{} \\spad{0<=a,{}b

1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,{}b,{}p)},{} \\spad{0<=a,{}b

1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,{}b,{}p)},{} \\spad{0<=a,{}b

1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|hash| (($ $) "\\spad{hash(n)} returns the hash code of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,{}i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) NIL NIL -(-542) +(-550) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,{}b)},{} \\spad{0<=a1},{} \\spad{(a,{}b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,{}b,{}p)},{} \\spad{0<=a,{}b

1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,{}b,{}p)},{} \\spad{0<=a,{}b

1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,{}b,{}p)},{} \\spad{0<=a,{}b

1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,{}b,{}p)},{} \\spad{0<=a,{}b

1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|hash| (($ $) "\\spad{hash(n)} returns the hash code of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,{}i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) -((-4503 . T) (-4504 . T) (-4498 . T) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) +((-4517 . T) (-4518 . T) (-4512 . T) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) NIL -(-543 |Key| |Entry| |addDom|) +(-551 |Key| |Entry| |addDom|) ((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}."))) -((-4505 . T) (-4506 . T)) -((|HasCategory| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (QUOTE (-1082))) (-12 (|HasCategory| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (LIST (QUOTE -298) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3655) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2371) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (QUOTE (-1082)))) (|HasCategory| |#1| (QUOTE (-834))) (|HasCategory| |#2| (QUOTE (-1082))) (-2318 (|HasCategory| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (QUOTE (-1082))) (|HasCategory| |#2| (QUOTE (-1082)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1082))))) -(-544 R -1333) +((-4519 . T) (-4520 . T)) +((|HasCategory| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (QUOTE (-1090))) (-12 (|HasCategory| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (LIST (QUOTE -303) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3649) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4083) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-1090))) (-2198 (|HasCategory| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (QUOTE (-1090))) (|HasCategory| |#2| (QUOTE (-1090)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1090))))) +(-552 R -1478) ((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f,{} x,{} y,{} d)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}."))) NIL NIL -(-545 R0 -1333 UP UPUP R) +(-553 R0 -1478 UP UPUP R) ((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f,{} d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}."))) NIL NIL -(-546) +(-554) ((|constructor| (NIL "This package provides functions to lookup bits in integers")) (|bitTruth| (((|Boolean|) (|Integer|) (|Integer|)) "\\spad{bitTruth(n,{}m)} returns \\spad{true} if coefficient of 2**m in abs(\\spad{n}) is 1")) (|bitCoef| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{bitCoef(n,{}m)} returns the coefficient of 2**m in abs(\\spad{n})")) (|bitLength| (((|Integer|) (|Integer|)) "\\spad{bitLength(n)} returns the number of bits to represent abs(\\spad{n})"))) NIL NIL -(-547 R) +(-555 R) ((|constructor| (NIL "This category implements of interval arithmetic and transcendental functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,{}f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,{}sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,{}sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise."))) -((-2550 . T) (-4498 . T) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) +((-3996 . T) (-4512 . T) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) NIL -(-548 K |symb| |PolyRing| E |ProjPt| PCS |Plc| DIVISOR |InfClsPoint| |DesTree| BLMET) +(-556 K |symb| |PolyRing| E |ProjPt| PCS |Plc| DIVISOR |InfClsPoint| |DesTree| BLMET) ((|constructor| (NIL "The following is part of the PAFF package")) (|placesOfDegree| (((|Void|) (|PositiveInteger|) |#3| (|List| |#5|)) "\\spad{placesOfDegree(d,{} f,{} pts)} compute the places of degree dividing \\spad{d} of the curve \\spad{f}. \\spad{pts} should be the singular points of the curve \\spad{f}. For \\spad{d} > 1 this only works if \\spad{K} has \\axiomType{PseudoAlgebraicClosureOfFiniteFieldCategory}.")) (|intersectionDivisor| ((|#8| |#3| |#3| (|List| |#10|) (|List| |#5|)) "\\spad{intersectionDivisor(f,{}pol,{}listOfTree)} returns the intersection divisor of \\spad{f} with a curve defined by \\spad{pol}. \\spad{listOfTree} must contain all the desingularisation trees of all singular points on the curve \\indented{1}{defined by \\spad{pol}.}"))) NIL NIL -(-549 S) +(-557 S) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes\\spad{\\br} canonicalUnitNormal\\tab{5}the canonical field is the same for all associates\\spad{\\br} canonicalsClosed\\tab{5}the product of two canonicals is itself canonical")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) NIL NIL -(-550) +(-558) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes\\spad{\\br} canonicalUnitNormal\\tab{5}the canonical field is the same for all associates\\spad{\\br} canonicalsClosed\\tab{5}the product of two canonicals is itself canonical")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) -((-4498 . T) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) +((-4512 . T) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) NIL -(-551 R -1333) +(-559 R -1478) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elementary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,{}x,{}k,{}[k1,{}...,{}kn])} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f,{} x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f,{} x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,{}x,{}[g1,{}...,{}gn])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} and \\spad{d(h+sum(\\spad{ci} log(\\spad{gi})))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f,{} x,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise."))) NIL NIL -(-552 K |symb| E OV R) +(-560 K |symb| E OV R) ((|constructor| (NIL "Part of the Package for Algebraic Function Fields in one variable PAFF"))) NIL NIL -(-553 I) +(-561 I) ((|constructor| (NIL "This Package contains basic methods for integer factorization. The factor operation employs trial division up to 10,{}000. It then tests to see if \\spad{n} is a perfect power before using Pollards rho method. Because Pollards method may fail,{} the result of factor may contain composite factors. We should also employ Lenstra\\spad{'s} eliptic curve method.")) (|PollardSmallFactor| (((|Union| |#1| "failed") |#1|) "\\spad{PollardSmallFactor(n)} returns a factor of \\spad{n} or \"failed\" if no one is found")) (|BasicMethod| (((|Factored| |#1|) |#1|) "\\spad{BasicMethod(n)} returns the factorization of integer \\spad{n} by trial division")) (|squareFree| (((|Factored| |#1|) |#1|) "\\spad{squareFree(n)} returns the square free factorization of integer \\spad{n}")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(n)} returns the full factorization of integer \\spad{n}"))) NIL NIL -(-554 K |symb| |PolyRing| E |ProjPt| PCS |Plc| DIVISOR) +(-562 K |symb| |PolyRing| E |ProjPt| PCS |Plc| DIVISOR) ((|constructor| (NIL "The following is part of the PAFF package")) (|interpolateForms| (((|List| |#3|) |#8| (|NonNegativeInteger|) |#3| (|List| |#3|)) "\\spad{interpolateForms(D,{}n,{}pol,{}base)} compute the basis of the sub-vector space \\spad{W} of \\spad{V} = ,{} such that for all \\spad{G} in \\spad{W},{} the divisor (\\spad{G}) \\spad{>=} \\spad{D}. All the elements in \\spad{base} must be homogeneous polynomial of degree \\spad{n}. Typicaly,{} \\spad{base} is the set of all monomial of degree \\spad{n:} in that case,{} interpolateForms(\\spad{D},{}\\spad{n},{}\\spad{pol},{}\\spad{base}) returns the basis of the vector space of all forms of degree \\spad{d} that interpolated \\spad{D}. The argument \\spad{pol} must be the same polynomial that defined the curve form which the divisor \\spad{D} is defined."))) NIL NIL -(-555) +(-563) ((|constructor| (NIL "There is no description for this domain")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} is not documented")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} is not documented")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} is not documented")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions."))) NIL NIL -(-556 R -1333 L) +(-564 R -1478 L) ((|constructor| (NIL "Rationalization of several types of genus 0 integrands; This internal package rationalises integrands on curves of the form:\\spad{\\br} \\tab{5}\\spad{y\\^2 = a x\\^2 + b x + c}\\spad{\\br} \\tab{5}\\spad{y\\^2 = (a x + b) / (c x + d)}\\spad{\\br} \\tab{5}\\spad{f(x,{} y) = 0} where \\spad{f} has degree 1 in \\spad{x}\\spad{\\br} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,{}g,{}x,{}y,{}z,{}t,{}c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op,{} g,{} x,{} y,{} d,{} p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,{}k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,{}k,{}f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,{}k,{}k,{}p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} t,{} c)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} d,{} p)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} z,{} t,{} c)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} d,{} p)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f,{} x,{} y,{} g,{} z,{} t,{} c)} returns functions \\spad{[h,{} d]} such that \\spad{dh/dx = f(x,{}y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f,{} x,{} y,{} g,{} d,{} p)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f,{} x,{} y,{} z,{} t,{} c)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f,{} x,{} y,{} d,{} p)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -638) (|devaluate| |#2|)))) -(-557) +((|HasCategory| |#3| (LIST (QUOTE -646) (|devaluate| |#2|)))) +(-565) ((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,{}k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,{}p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note that because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,{}p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,{}b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note that by convention,{} 0 is returned if \\spad{gcd(a,{}b) ^= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,{}k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,{}1/2)},{} where \\spad{E(n,{}x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,{}m1,{}x2,{}m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note that \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,{}0)},{} where \\spad{B(n,{}x)} is the \\spad{n}th Bernoulli polynomial."))) NIL NIL -(-558 -1333 UP UPUP R) +(-566 -1478 UP UPUP R) ((|constructor| (NIL "Algebraic Hermite reduction.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} ')} returns \\spad{[g,{}h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles."))) NIL NIL -(-559 -1333 UP) +(-567 -1478 UP) ((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} D)} returns \\spad{[g,{} h,{} s,{} p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}."))) NIL NIL -(-560) +(-568) ((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}."))) -((-4487 . T) (-4493 . T) (-4497 . T) (-4492 . T) (-4503 . T) (-4504 . T) (-4498 . T) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) +((-4501 . T) (-4507 . T) (-4511 . T) (-4506 . T) (-4517 . T) (-4518 . T) (-4512 . T) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) NIL -(-561) +(-569) ((|constructor| (NIL "\\axiomType{AnnaNumericalIntegrationPackage} is a \\axiom{package} of functions for the \\axiom{category} \\axiomType{NumericalIntegrationCategory} with \\axiom{measure},{} and \\axiom{integrate}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp,{} x = a..b,{} numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp,{} x = a..b,{} \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel,{} routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp,{} a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsabs,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} a..b,{} epsrel,{} routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}."))) NIL NIL -(-562 R -1333 L) +(-570 R -1478 L) ((|constructor| (NIL "Integration of pure algebraic functions; This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op,{} g,{} kx,{} y,{} x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp,{} f,{} g,{} x,{} y,{} foo)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a,{} b,{} x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f,{} x,{} y,{} [u1,{}...,{}un])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f,{} x,{} y,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f,{} x,{} y)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -638) (|devaluate| |#2|)))) -(-563 R -1333) +((|HasCategory| |#3| (LIST (QUOTE -646) (|devaluate| |#2|)))) +(-571 R -1478) ((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f,{} x)} returns \\spad{[c,{} g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}."))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -873) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1116)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -873) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-612))))) -(-564 -1333 UP) +((-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-568))))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-568)))) (|HasCategory| |#2| (QUOTE (-1124)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-568))))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-568)))) (|HasCategory| |#2| (QUOTE (-620))))) +(-572 -1478 UP) ((|constructor| (NIL "Rational function integration This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(\\spad{ci} log(\\spad{gi})))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}."))) NIL NIL -(-565 S) +(-573 S) ((|constructor| (NIL "Provides integer testing and retraction functions.")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer."))) NIL NIL -(-566 -1333) +(-574 -1478) ((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f,{} x,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f,{} x,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{} [[\\spad{ci},{}\\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(\\spad{ci} log(\\spad{gi})))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f,{} x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns \\spad{g} such that \\spad{dg/dx = f}."))) NIL NIL -(-567 R) +(-575 R) ((|constructor| (NIL "This domain is an implementation of interval arithmetic and transcendental functions over intervals."))) -((-2550 . T) (-4498 . T) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) +((-3996 . T) (-4512 . T) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) NIL -(-568) +(-576) ((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL -(-569 R -1333) +(-577 R -1478) ((|constructor| (NIL "Tools for the integrator")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f,{} x,{} int,{} pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f,{} x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f,{} x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,{}...,{}fn],{}x)} returns the set-theoretic union of \\spad{(varselect(f1,{}x),{}...,{}varselect(fn,{}x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1,{} l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k,{} [k1,{}...,{}kn],{} x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,{}...,{}kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,{}...,{}kn],{} x)} returns the \\spad{ki} which involve \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -873) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-447))) (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-1153)))) (|HasCategory| |#2| (QUOTE (-274))) (|HasCategory| |#2| (QUOTE (-612)))) (-12 (|HasCategory| |#1| (QUOTE (-447))) (|HasCategory| |#2| (QUOTE (-274)))) (|HasCategory| |#1| (QUOTE (-550)))) -(-570 -1333 UP) +((-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-568))))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-1161)))) (|HasCategory| |#2| (QUOTE (-279))) (|HasCategory| |#2| (QUOTE (-620)))) (-12 (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#2| (QUOTE (-279)))) (|HasCategory| |#1| (QUOTE (-558)))) +(-578 -1478 UP) ((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p,{} ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f,{} ')} returns \\spad{[ir,{} s,{} p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p,{} foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p,{} ',{} t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f,{} ',{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[\\spad{ci} * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f,{} ',{} g)} returns \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}."))) NIL NIL -(-571 R -1333) +(-579 R -1478) ((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f,{} s,{} t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form. Handles only rational \\spad{f(s)}."))) NIL NIL -(-572 |p| |unBalanced?|) +(-580 |p| |unBalanced?|) ((|constructor| (NIL "This domain implements \\spad{Zp},{} the \\spad{p}-adic completion of the integers. This is an internal domain."))) -((-4498 . T) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) +((-4512 . T) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) NIL -(-573 |p|) +(-581 |p|) ((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements."))) -((-4497 . T) (-4503 . T) (-4498 . T) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) -((|HasCategory| $ (QUOTE (-148))) (|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-364)))) -(-574) +((-4511 . T) (-4517 . T) (-4512 . T) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) +((|HasCategory| $ (QUOTE (-150))) (|HasCategory| $ (QUOTE (-148))) (|HasCategory| $ (QUOTE (-370)))) +(-582) ((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor."))) NIL NIL -(-575 R -1333) +(-583 R -1478) ((|constructor| (NIL "Conversion of integration results to top-level expressions This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) NIL NIL -(-576 E -1333) +(-584 E -1478) ((|constructor| (NIL "Internally used by the integration packages")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,{}ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,{}ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,{}ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,{}ire)} \\undocumented"))) NIL NIL -(-577 -1333) +(-585 -1478) ((|constructor| (NIL "The result of a transcendental integration. If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,{}x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,{}D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,{}l,{}ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}."))) -((-4500 . T) (-4499 . T)) -((|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#1| (LIST (QUOTE -1029) (QUOTE (-1153))))) -(-578 I) +((-4514 . T) (-4513 . T)) +((|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#1| (LIST (QUOTE -1037) (QUOTE (-1161))))) +(-586 I) ((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\spad{n}th roots of integers efficiently.")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,{}r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,{}r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,{}r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,{}r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise"))) NIL NIL -(-579 GF) +(-587 GF) ((|constructor| (NIL "This package exports the function generateIrredPoly that computes a monic irreducible polynomial of degree \\spad{n} over a finite field.")) (|generateIrredPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{generateIrredPoly(n)} generates an irreducible univariate polynomial of the given degree \\spad{n} over the finite field."))) NIL NIL -(-580 R) +(-588 R) ((|constructor| (NIL "Conversion of integration results to top-level expressions. This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexIntegrate| (((|Expression| |#1|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|integrate| (((|Union| (|Expression| |#1|) (|List| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable..")) (|complexExpand| (((|Expression| |#1|) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| (|Expression| |#1|)) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) NIL -((|HasCategory| |#1| (QUOTE (-148)))) -(-581) +((|HasCategory| |#1| (QUOTE (-150)))) +(-589) ((|constructor| (NIL "IrrRepSymNatPackage contains functions for computing the ordinary irreducible representations of symmetric groups on \\spad{n} letters {1,{}2,{}...,{}\\spad{n}} in Young\\spad{'s} natural form and their dimensions. These representations can be labelled by number partitions of \\spad{n},{} \\spadignore{i.e.} a weakly decreasing sequence of integers summing up to \\spad{n},{} \\spadignore{e.g.} [3,{}3,{}3,{}1] labels an irreducible representation for \\spad{n} equals 10. Note that whenever a \\spadtype{List Integer} appears in a signature,{} a partition required.")) (|irreducibleRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|)) (|List| (|Permutation| (|Integer|)))) "\\spad{irreducibleRepresentation(lambda,{}listOfPerm)} is the list of the irreducible representations corresponding to \\spad{lambda} in Young\\spad{'s} natural form for the list of permutations given by \\spad{listOfPerm}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{irreducibleRepresentation(lambda)} is the list of the two irreducible representations corresponding to the partition \\spad{lambda} in Young\\spad{'s} natural form for the following two generators of the symmetric group,{} whose elements permute {1,{}2,{}...,{}\\spad{n}},{} namely (1 2) (2-cycle) and (1 2 ... \\spad{n}) (\\spad{n}-cycle).") (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|Permutation| (|Integer|))) "\\spad{irreducibleRepresentation(lambda,{}\\spad{pi})} is the irreducible representation corresponding to partition \\spad{lambda} in Young\\spad{'s} natural form of the permutation \\spad{pi} in the symmetric group,{} whose elements permute {1,{}2,{}...,{}\\spad{n}}.")) (|dimensionOfIrreducibleRepresentation| (((|NonNegativeInteger|) (|List| (|Integer|))) "\\spad{dimensionOfIrreducibleRepresentation(lambda)} is the dimension of the ordinary irreducible representation of the symmetric group corresponding to \\spad{lambda}. Note that the Robinson-Thrall hook formula is implemented."))) NIL NIL -(-582 R E V P TS) +(-590 R E V P TS) ((|constructor| (NIL "An internal package for computing the rational univariate representation of a zero-dimensional algebraic variety given by a square-free triangular set. The main operation is rur")) (|checkRur| (((|Boolean|) |#5| (|List| |#5|)) "\\spad{checkRur(ts,{}lus)} returns \\spad{true} if \\spad{lus} is a rational univariate representation of \\spad{ts}.")) (|rur| (((|List| |#5|) |#5| (|Boolean|)) "\\spad{rur(ts,{}univ?)} returns a rational univariate representation of \\spad{ts}. This assumes that the lowest polynomial in \\spad{ts} is a variable \\spad{v} which does not occur in the other polynomials of \\spad{ts}. This variable will be used to define the simple algebraic extension over which these other polynomials will be rewritten as univariate polynomials with degree one. If \\spad{univ?} is \\spad{true} then these polynomials will have a constant initial."))) NIL NIL -(-583 |mn|) +(-591 |mn|) ((|constructor| (NIL "This domain implements low-level strings")) (|hash| (((|Integer|) $) "\\spad{hash(x)} provides a hashing function for strings"))) -((-4506 . T) (-4505 . T)) -((|HasCategory| (-145) (QUOTE (-1082))) (|HasCategory| (-145) (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| (-145) (QUOTE (-834))) (-2318 (|HasCategory| (-145) (QUOTE (-834))) (|HasCategory| (-145) (QUOTE (-1082)))) (|HasCategory| (-560) (QUOTE (-834))) (-12 (|HasCategory| (-145) (LIST (QUOTE -298) (QUOTE (-145)))) (|HasCategory| (-145) (QUOTE (-1082)))) (-2318 (-12 (|HasCategory| (-145) (LIST (QUOTE -298) (QUOTE (-145)))) (|HasCategory| (-145) (QUOTE (-834)))) (-12 (|HasCategory| (-145) (LIST (QUOTE -298) (QUOTE (-145)))) (|HasCategory| (-145) (QUOTE (-1082)))))) -(-584 E V R P) +((-4520 . T) (-4519 . T)) +((|HasCategory| (-147) (QUOTE (-1090))) (|HasCategory| (-147) (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| (-147) (QUOTE (-842))) (-2198 (|HasCategory| (-147) (QUOTE (-842))) (|HasCategory| (-147) (QUOTE (-1090)))) (|HasCategory| (-568) (QUOTE (-842))) (-12 (|HasCategory| (-147) (LIST (QUOTE -303) (QUOTE (-147)))) (|HasCategory| (-147) (QUOTE (-1090)))) (-2198 (-12 (|HasCategory| (-147) (LIST (QUOTE -303) (QUOTE (-147)))) (|HasCategory| (-147) (QUOTE (-842)))) (-12 (|HasCategory| (-147) (LIST (QUOTE -303) (QUOTE (-147)))) (|HasCategory| (-147) (QUOTE (-1090)))))) +(-592 E V R P) ((|constructor| (NIL "Tools for the summation packages of polynomials")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n),{} n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n),{} n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}."))) NIL NIL -(-585 |Coef|) +(-593 |Coef|) ((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain used for creating sparse Taylor and Laurent series.")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,{}r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,{}r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,{}refer,{}var,{}cen,{}r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,{}g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,{}g,{}taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,{}f)} returns the series \\spad{sum(fn(n) * an * x^n,{}n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,{}n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,{}str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) -(((-4507 "*") |has| |#1| (-170)) (-4498 |has| |#1| (-550)) (-4499 . T) (-4500 . T) (-4502 . T)) -((|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-170))) (-2318 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|))))) (|HasCategory| (-560) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-359))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-560))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-560))))) (|HasSignature| |#1| (LIST (QUOTE -2801) (LIST (|devaluate| |#1|) (QUOTE (-1153))))))) -(-586 |Coef|) +(((-4521 "*") |has| |#1| (-172)) (-4512 |has| |#1| (-558)) (-4513 . T) (-4514 . T) (-4516 . T)) +((|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2198 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-150))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-568)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-568)) (|devaluate| |#1|))))) (|HasCategory| (-568) (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-365))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-568))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-568))))) (|HasSignature| |#1| (LIST (QUOTE -2745) (LIST (|devaluate| |#1|) (QUOTE (-1161))))))) +(-594 |Coef|) ((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.") (($ $ |#1|) "\\spad{x*c} returns the product of \\spad{c} and the series \\spad{x}.") (($ |#1| $) "\\spad{c*x} returns the product of \\spad{c} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,{}n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}"))) -((-4500 |has| |#1| (-550)) (-4499 |has| |#1| (-550)) ((-4507 "*") |has| |#1| (-550)) (-4498 |has| |#1| (-550)) (-4502 . T)) -((|HasCategory| |#1| (QUOTE (-550)))) -(-587 A B) +((-4514 |has| |#1| (-558)) (-4513 |has| |#1| (-558)) ((-4521 "*") |has| |#1| (-558)) (-4512 |has| |#1| (-558)) (-4516 . T)) +((|HasCategory| |#1| (QUOTE (-558)))) +(-595 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[f(x0),{}f(x1),{}f(x2),{}..]}."))) NIL NIL -(-588 A B C) +(-596 A B C) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented"))) NIL NIL -(-589 R -1333 FG) +(-597 R -1478 FG) ((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f,{} [k1,{}...,{}kn],{} [x1,{}...,{}xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{\\spad{xi}'s} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{\\spad{ki}'s},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain."))) NIL NIL -(-590 S) +(-598 S) ((|constructor| (NIL "This package implements 'infinite tuples' for the interpreter. The representation is a stream.")) (|construct| (((|Stream| |#1|) $) "\\spad{construct(t)} converts an infinite tuple to a stream.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}s)} returns \\spad{[s,{}f(s),{}f(f(s)),{}...]}.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}t)} returns \\spad{[x for x in t | p(x)]}.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}t)} returns \\spad{[x for x in t while not p(x)]}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}t)} returns \\spad{[x for x in t while p(x)]}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}t)} replaces the tuple \\spad{t} by \\spad{[f(x) for x in t]}."))) NIL NIL -(-591 R |mn|) +(-599 R |mn|) ((|constructor| (NIL "This type represents vector like objects with varying lengths and a user-specified initial index."))) -((-4506 . T) (-4505 . T)) -((|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-834))) (-2318 (|HasCategory| |#1| (QUOTE (-834))) (|HasCategory| |#1| (QUOTE (-1082)))) (|HasCategory| (-560) (QUOTE (-834))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-708))) (|HasCategory| |#1| (QUOTE (-1039))) (-12 (|HasCategory| |#1| (QUOTE (-994))) (|HasCategory| |#1| (QUOTE (-1039)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1082)))) (-2318 (-12 (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-834)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1082)))))) -(-592 S |Index| |Entry|) +((-4520 . T) (-4519 . T)) +((|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-842))) (-2198 (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-1090)))) (|HasCategory| (-568) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-716))) (|HasCategory| |#1| (QUOTE (-1047))) (-12 (|HasCategory| |#1| (QUOTE (-1002))) (|HasCategory| |#1| (QUOTE (-1047)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1090)))) (-2198 (-12 (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-842)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1090)))))) +(-600 S |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note that for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note that in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note that in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order. to become indices:")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL -((|HasAttribute| |#1| (QUOTE -4506)) (|HasCategory| |#2| (QUOTE (-834))) (|HasAttribute| |#1| (QUOTE -4505)) (|HasCategory| |#3| (QUOTE (-1082)))) -(-593 |Index| |Entry|) +((|HasAttribute| |#1| (QUOTE -4520)) (|HasCategory| |#2| (QUOTE (-842))) (|HasAttribute| |#1| (QUOTE -4519)) (|HasCategory| |#3| (QUOTE (-1090)))) +(-601 |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note that for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note that in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note that in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order. to become indices:")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) -((-2537 . T)) +((-3973 . T)) NIL -(-594 R A) +(-602 R A) ((|constructor| (NIL "AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2} (anticommutator). The usual notation \\spad{{a,{}b}_+} cannot be used due to restrictions in the current language. This domain only gives a Jordan algebra if the Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spadfun{jordanAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A)."))) -((-4502 -2318 (-2256 (|has| |#2| (-363 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-550)))) (-4500 . T) (-4499 . T)) -((|HasCategory| |#2| (LIST (QUOTE -413) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#2| (LIST (QUOTE -413) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -363) (|devaluate| |#1|))) (-2318 (|HasCategory| |#2| (LIST (QUOTE -363) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -413) (|devaluate| |#1|)))) (-2318 (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#2| (LIST (QUOTE -363) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#2| (LIST (QUOTE -413) (|devaluate| |#1|)))))) -(-595 |Entry|) +((-4516 -2198 (-2139 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))) (-4514 . T) (-4513 . T)) +((|HasCategory| |#2| (LIST (QUOTE -419) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -419) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|))) (-2198 (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -419) (|devaluate| |#1|)))) (-2198 (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#2| (LIST (QUOTE -419) (|devaluate| |#1|)))))) +(-603 |Entry|) ((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object. The KeyedAccessFile format is a directory containing a single file called ``index.kaf\\spad{''}. This file is a random access file. The first thing in the file is an integer which is the byte offset of an association list (the dictionary) at the end of the file. The association list is of the form ((key . byteoffset) (key . byteoffset)...) where the byte offset is the number of bytes from the beginning of the file. This offset contains an \\spad{s}-expression for the value of the key.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space."))) -((-4505 . T) (-4506 . T)) -((|HasCategory| (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-1082))) (-12 (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1082)))) (|HasCategory| (-1135) (QUOTE (-834))) (|HasCategory| (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (QUOTE (-1082))) (-12 (|HasCategory| (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (LIST (QUOTE -298) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3655) (QUOTE (-1135))) (LIST (QUOTE |:|) (QUOTE -2371) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (QUOTE (-1082))))) -(-596 S |Key| |Entry|) +((-4519 . T) (-4520 . T)) +((|HasCategory| (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-1090))) (-12 (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1090)))) (|HasCategory| (-1143) (QUOTE (-842))) (|HasCategory| (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (QUOTE (-1090))) (-12 (|HasCategory| (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (LIST (QUOTE -303) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3649) (QUOTE (-1143))) (LIST (QUOTE |:|) (QUOTE -4083) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (QUOTE (-1090))))) +(-604 S |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}."))) NIL NIL -(-597 |Key| |Entry|) +(-605 |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}."))) -((-4506 . T) (-2537 . T)) +((-4520 . T) (-3973 . T)) NIL -(-598 R S) +(-606 R S) ((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented"))) NIL NIL -(-599 S) +(-607 S) ((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,{}...,{}an),{} s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,{}...,{}an),{} f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op,{} [a1,{}...,{}an],{} m)} returns the kernel \\spad{op(a1,{}...,{}an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,{}...,{}an))} returns \\spad{[a1,{}...,{}an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,{}...,{}an))} returns the operator op.")) (|name| (((|Symbol|) $) "\\spad{name(op(a1,{}...,{}an))} returns the name of op."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| |#1| (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-375))))) (|HasCategory| |#1| (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-560)))))) -(-600 S) +((|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-568)))))) +(-608 S) ((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-601 S) +(-609 S) ((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-602 -1333 UP) +(-610 -1478 UP) ((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2,{}ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions."))) NIL NIL -(-603 S R) +(-611 S R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#2|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) NIL NIL -(-604 R) +(-612 R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) -((-4502 . T)) +((-4516 . T)) NIL -(-605 A R S) +(-613 A R S) ((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4499 . T) (-4500 . T) (-4502 . T)) -((|HasCategory| |#1| (QUOTE (-832)))) -(-606 R -1333) +((-4513 . T) (-4514 . T) (-4516 . T)) +((|HasCategory| |#1| (QUOTE (-840)))) +(-614 R -1478) ((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f,{} t,{} s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t),{} t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f,{} t,{} s)} if it cannot compute the transform."))) NIL NIL -(-607 R UP) +(-615 R UP) ((|constructor| (NIL "Univariate polynomials with negative and positive exponents.")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} is not documented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,{}n)} is not documented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,{}n)} is not documented")) (|trailingCoefficient| ((|#1| $) "trailingCoefficient is not documented")) (|leadingCoefficient| ((|#1| $) "leadingCoefficient is not documented")) (|reductum| (($ $) "\\spad{reductum(x)} is not documented")) (|order| (((|Integer|) $) "\\spad{order(x)} is not documented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} is not documented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} is not documented"))) -((-4500 . T) (-4499 . T) ((-4507 "*") . T) (-4498 . T) (-4502 . T)) -((|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#2| (QUOTE (-221))) (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1029) (QUOTE (-560))))) -(-608 R E V P TS ST) +((-4514 . T) (-4513 . T) ((-4521 "*") . T) (-4512 . T) (-4516 . T)) +((|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-150))) (|HasCategory| |#1| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (LIST (QUOTE -1037) (QUOTE (-568))))) +(-616 R E V P TS ST) ((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as zeroSetSplit(\\spad{lp},{}clos?) from RegularTriangularSetCategory.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional."))) NIL NIL -(-609 OV E Z P) +(-617 OV E Z P) ((|constructor| (NIL "Package for leading coefficient determination in the lifting step. Package working for every \\spad{R} euclidean with property \\spad{\"F\"}.")) (|distFact| (((|Union| (|Record| (|:| |polfac| (|List| |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (|List| (|SparseUnivariatePolynomial| |#3|)))) "failed") |#3| (|List| (|SparseUnivariatePolynomial| |#3|)) (|Record| (|:| |contp| |#3|) (|:| |factors| (|List| (|Record| (|:| |irr| |#4|) (|:| |pow| (|Integer|)))))) (|List| |#3|) (|List| |#1|) (|List| |#3|)) "\\spad{distFact(contm,{}unilist,{}plead,{}vl,{}lvar,{}lval)},{} where \\spad{contm} is the content of the evaluated polynomial,{} \\spad{unilist} is the list of factors of the evaluated polynomial,{} \\spad{plead} is the complete factorization of the leading coefficient,{} \\spad{vl} is the list of factors of the leading coefficient evaluated,{} \\spad{lvar} is the list of variables,{} \\spad{lval} is the list of values,{} returns a record giving the list of leading coefficients to impose on the univariate factors,{}")) (|polCase| (((|Boolean|) |#3| (|NonNegativeInteger|) (|List| |#3|)) "\\spad{polCase(contprod,{} numFacts,{} evallcs)},{} where \\spad{contprod} is the product of the content of the leading coefficient of the polynomial to be factored with the content of the evaluated polynomial,{} \\spad{numFacts} is the number of factors of the leadingCoefficient,{} and evallcs is the list of the evaluated factors of the leadingCoefficient,{} returns \\spad{true} if the factors of the leading Coefficient can be distributed with this valuation."))) NIL NIL -(-610 |VarSet| R |Order|) +(-618 |VarSet| R |Order|) ((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind.")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(\\spad{lv})} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|listOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{listOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}."))) -((-4502 . T)) +((-4516 . T)) NIL -(-611 R |ls|) +(-619 R |ls|) ((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are lexTriangular and squareFreeLexTriangular. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the lexTriangular method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the squareFreeLexTriangular operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets.")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}}. If \\axiom{\\spad{lp}} generates a zero-dimensional ideal then the FGLM strategy is used,{} otherwise the Sugar strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}} by using the FGLM strategy,{} if \\axiom{zeroDimensional?(\\spad{lp})} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(\\spad{lp})} returns \\spad{true} iff \\axiom{\\spad{lp}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{\\spad{lp}}."))) NIL NIL -(-612) +(-620) ((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%\\spad{pi})} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{\\spad{li}(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{\\spad{Ci}(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{\\spad{Si}(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{\\spad{Ei}(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}."))) NIL NIL -(-613 R -1333) +(-621 R -1478) ((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,{}x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,{}x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{\\spad{li}(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{\\spad{Ci}(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{\\spad{Si}(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{\\spad{Ei}(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian"))) NIL NIL -(-614 |lv| -1333) +(-622 |lv| -1478) ((|constructor| (NIL "Given a Groebner basis \\spad{B} with respect to the total degree ordering for a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented"))) NIL NIL -(-615) +(-623) ((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|close!| (($ $) "\\spad{close!(f)} returns the library \\spad{f} closed to input and output.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|elt| (((|Any|) $ (|Symbol|)) "\\spad{elt(lib,{}k)} or \\spad{lib}.\\spad{k} extracts the value corresponding to the key \\spad{k} from the library \\spad{lib}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file."))) -((-4506 . T)) -((|HasCategory| (-2 (|:| -3655 (-1135)) (|:| -2371 (-57))) (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| (-1135) (QUOTE (-834))) (|HasCategory| (-57) (QUOTE (-1082))) (-12 (|HasCategory| (-57) (LIST (QUOTE -298) (QUOTE (-57)))) (|HasCategory| (-57) (QUOTE (-1082)))) (|HasCategory| (-2 (|:| -3655 (-1135)) (|:| -2371 (-57))) (QUOTE (-1082))) (-12 (|HasCategory| (-2 (|:| -3655 (-1135)) (|:| -2371 (-57))) (LIST (QUOTE -298) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3655) (QUOTE (-1135))) (LIST (QUOTE |:|) (QUOTE -2371) (QUOTE (-57)))))) (|HasCategory| (-2 (|:| -3655 (-1135)) (|:| -2371 (-57))) (QUOTE (-1082)))) (-2318 (|HasCategory| (-57) (QUOTE (-1082))) (|HasCategory| (-2 (|:| -3655 (-1135)) (|:| -2371 (-57))) (QUOTE (-1082))))) -(-616 S R) +((-4520 . T)) +((|HasCategory| (-2 (|:| -3649 (-1143)) (|:| -4083 (-57))) (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| (-1143) (QUOTE (-842))) (|HasCategory| (-57) (QUOTE (-1090))) (-12 (|HasCategory| (-57) (LIST (QUOTE -303) (QUOTE (-57)))) (|HasCategory| (-57) (QUOTE (-1090)))) (|HasCategory| (-2 (|:| -3649 (-1143)) (|:| -4083 (-57))) (QUOTE (-1090))) (-12 (|HasCategory| (-2 (|:| -3649 (-1143)) (|:| -4083 (-57))) (LIST (QUOTE -303) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3649) (QUOTE (-1143))) (LIST (QUOTE |:|) (QUOTE -4083) (QUOTE (-57)))))) (|HasCategory| (-2 (|:| -3649 (-1143)) (|:| -4083 (-57))) (QUOTE (-1090)))) (-2198 (|HasCategory| (-57) (QUOTE (-1090))) (|HasCategory| (-2 (|:| -3649 (-1143)) (|:| -4083 (-57))) (QUOTE (-1090))))) +(-624 S R) ((|constructor| (NIL "The category of Lie Algebras. It is used by the domains of non-commutative algebra,{} LiePolynomial and XPBWPolynomial.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) NIL -((|HasCategory| |#2| (QUOTE (-359)))) -(-617 R) +((|HasCategory| |#2| (QUOTE (-365)))) +(-625 R) ((|constructor| (NIL "The category of Lie Algebras. It is used by the domains of non-commutative algebra,{} LiePolynomial and XPBWPolynomial.")) (/ (($ $ |#1|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4500 . T) (-4499 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4514 . T) (-4513 . T)) NIL -(-618 R A) +(-626 R A) ((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,{}b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A)."))) -((-4502 -2318 (-2256 (|has| |#2| (-363 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-550)))) (-4500 . T) (-4499 . T)) -((|HasCategory| |#2| (LIST (QUOTE -413) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#2| (LIST (QUOTE -413) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -363) (|devaluate| |#1|))) (-2318 (|HasCategory| |#2| (LIST (QUOTE -363) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -413) (|devaluate| |#1|)))) (-2318 (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#2| (LIST (QUOTE -363) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#2| (LIST (QUOTE -413) (|devaluate| |#1|)))))) -(-619 R FE) +((-4516 -2198 (-2139 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))) (-4514 . T) (-4513 . T)) +((|HasCategory| |#2| (LIST (QUOTE -419) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -419) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|))) (-2198 (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -419) (|devaluate| |#1|)))) (-2198 (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#2| (LIST (QUOTE -419) (|devaluate| |#1|)))))) +(-627 R FE) ((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit \\spad{lim(x -> a,{}f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),{}x=a,{}\"left\")} computes the left hand real limit \\spad{lim(x -> a-,{}f(x))}; \\spad{limit(f(x),{}x=a,{}\"right\")} computes the right hand real limit \\spad{lim(x -> a+,{}f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),{}x = a)} computes the real limit \\spad{lim(x -> a,{}f(x))}."))) NIL NIL -(-620 R) +(-628 R) ((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),{}x,{}a,{}\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}."))) NIL NIL -(-621 S R) +(-629 S R) ((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise."))) NIL -((|HasCategory| |#1| (QUOTE (-359))) (-3186 (|HasCategory| |#1| (QUOTE (-359))))) -(-622 R) +((|HasCategory| |#1| (QUOTE (-365))) (-3044 (|HasCategory| |#1| (QUOTE (-365))))) +(-630 R) ((|constructor| (NIL "An extension ring with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A,{} v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}."))) -((-4502 . T)) +((-4516 . T)) NIL -(-623 A B) +(-631 A B) ((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} a,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la,{} lb,{} a,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la,{} lb,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la,{} lb,{} a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la,{} lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note that when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}."))) NIL NIL -(-624 A B) +(-632 A B) ((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,{}u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,{}[1,{}2,{}3]) = [1,{}4,{}9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,{}[1,{}2,{}3],{}0) = fn(3,{}fn(2,{}fn(1,{}0)))} and \\spad{reduce(*,{}[2,{}3],{}1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,{}[1,{}2],{}0) = [fn(2,{}fn(1,{}0)),{}fn(1,{}0)]} and \\spad{scan(*,{}[2,{}3],{}1) = [2 * 1,{} 3 * (2 * 1)]}."))) NIL NIL -(-625 A B C) +(-633 A B C) ((|constructor| (NIL "\\spadtype{ListFunctions3} implements utility functions that operate on three kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) "\\spad{map(fn,{}list1,{} u2)} applies the binary function \\spad{fn} to corresponding elements of lists \\spad{u1} and \\spad{u2} and returns a list of the results (in the same order). Thus \\spad{map(/,{}[1,{}2,{}3],{}[4,{}5,{}6]) = [1/4,{}2/4,{}1/2]}. The computation terminates when the end of either list is reached. That is,{} the length of the result list is equal to the minimum of the lengths of \\spad{u1} and \\spad{u2}."))) NIL NIL -(-626 S) +(-634 S) ((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,{}u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,{}u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,{}u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,{}u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,{}u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil()} returns the empty list."))) -((-4506 . T) (-4505 . T)) -((|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-834))) (-2318 (|HasCategory| |#1| (QUOTE (-834))) (|HasCategory| |#1| (QUOTE (-1082)))) (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| (-560) (QUOTE (-834))) (-12 (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1082)))) (-2318 (-12 (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-834)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1082)))))) -(-627 K PCS) +((-4520 . T) (-4519 . T)) +((|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-842))) (-2198 (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| (-568) (QUOTE (-842))) (-12 (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1090)))) (-2198 (-12 (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-842)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1090)))))) +(-635 K PCS) ((|constructor| (NIL "Part of the PAFF package")) (|finiteSeries2LinSys| (((|Matrix| |#1|) (|List| |#2|) (|Integer|)) "\\spad{finiteSeries2LinSys(ls,{}n)} returns a matrix which right kernel is the solution of the linear combinations of the series in \\spad{ls} which has order greater or equal to \\spad{n}. NOTE: All the series in \\spad{ls} must be finite and must have order at least 0: so one must first call on each of them the function filterUpTo(\\spad{s},{}\\spad{n}) and apply an appropriate shift (mult by a power of \\spad{t})."))) NIL NIL -(-628 S) +(-636 S) ((|constructor| (NIL "The \\spadtype{ListMultiDictionary} domain implements a dictionary with duplicates allowed. The representation is a list with duplicates represented explicitly. Hence most operations will be relatively inefficient when the number of entries in the dictionary becomes large. If the objects in the dictionary belong to an ordered set,{} the entries are maintained in ascending order.")) (|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,{}y,{}d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries."))) -((-4505 . T) (-4506 . T)) -((|HasCategory| |#1| (QUOTE (-1082))) (-12 (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1082)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-533))))) -(-629 R) +((-4519 . T) (-4520 . T)) +((|HasCategory| |#1| (QUOTE (-1090))) (-12 (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1090)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-541))))) +(-637 R) ((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline Axioms\\spad{\\br} \\tab{5}\\spad{ (a*b)*x = a*(b*x) }\\spad{\\br} \\tab{5}\\spad{ (a+b)*x = (a*x)+(b*x) }\\spad{\\br} \\tab{5}\\spad{ a*(x+y) = (a*x)+(a*y) }")) (* (($ |#1| $) "\\spad{r*x} returns the left multiplication of the module element \\spad{x} by the ring element \\spad{r}."))) NIL NIL -(-630 S E |un|) +(-638 S E |un|) ((|constructor| (NIL "This internal package represents monoid (abelian or not,{} with or without inverses) as lists and provides some common operations to the various flavors of monoids.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|commutativeEquality| (((|Boolean|) $ $) "\\spad{commutativeEquality(x,{}y)} returns \\spad{true} if \\spad{x} and \\spad{y} are equal assuming commutativity")) (|plus| (($ $ $) "\\spad{plus(x,{} y)} returns \\spad{x + y} where \\spad{+} is the monoid operation,{} which is assumed commutative.") (($ |#1| |#2| $) "\\spad{plus(s,{} e,{} x)} returns \\spad{e * s + x} where \\spad{+} is the monoid operation,{} which is assumed commutative.")) (|leftMult| (($ |#1| $) "\\spad{leftMult(s,{} a)} returns \\spad{s * a} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|rightMult| (($ $ |#1|) "\\spad{rightMult(a,{} s)} returns \\spad{a * s} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|makeUnit| (($) "\\spad{makeUnit()} returns the unit element of the monomial.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(l)} returns the number of monomials forming \\spad{l}.")) (|reverse!| (($ $) "\\spad{reverse!(l)} reverses the list of monomials forming \\spad{l},{} destroying the element \\spad{l}.")) (|reverse| (($ $) "\\spad{reverse(l)} reverses the list of monomials forming \\spad{l}. This has some effect if the monoid is non-abelian,{} \\spadignore{i.e.} \\spad{reverse(a1\\^e1 ... an\\^en) = an\\^en ... a1\\^e1} which is different.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(l,{} n)} returns the factor of the n^th monomial of \\spad{l}.")) (|nthExpon| ((|#2| $ (|Integer|)) "\\spad{nthExpon(l,{} n)} returns the exponent of the n^th monomial of \\spad{l}.")) (|makeMulti| (($ (|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|)))) "\\spad{makeMulti(l)} returns the element whose list of monomials is \\spad{l}.")) (|makeTerm| (($ |#1| |#2|) "\\spad{makeTerm(s,{} e)} returns the monomial \\spad{s} exponentiated by \\spad{e} (\\spadignore{e.g.} s^e or \\spad{e} * \\spad{s}).")) (|listOfMonoms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{listOfMonoms(l)} returns the list of the monomials forming \\spad{l}.")) (|outputForm| (((|OutputForm|) $ (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Integer|)) "\\spad{outputForm(l,{} fop,{} fexp,{} unit)} converts the monoid element represented by \\spad{l} to an \\spadtype{OutputForm}. Argument unit is the output form for the \\spadignore{unit} of the monoid (\\spadignore{e.g.} 0 or 1),{} \\spad{fop(a,{} b)} is the output form for the monoid operation applied to \\spad{a} and \\spad{b} (\\spadignore{e.g.} \\spad{a + b},{} \\spad{a * b},{} \\spad{ab}),{} and \\spad{fexp(a,{} n)} is the output form for the exponentiation operation applied to \\spad{a} and \\spad{n} (\\spadignore{e.g.} \\spad{n a},{} \\spad{n * a},{} \\spad{a ** n},{} \\spad{a\\^n})."))) NIL NIL -(-631 A S) +(-639 A S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note that \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note that \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note that \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note that \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note that for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note that in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note that for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note that \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note that if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note that for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note that for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL -((|HasAttribute| |#1| (QUOTE -4506))) -(-632 S) +((|HasAttribute| |#1| (QUOTE -4520))) +(-640 S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note that \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note that \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note that \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note that \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note that for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note that in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note that for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note that \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note that if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note that for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note that for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) -((-2537 . T)) +((-3973 . T)) NIL -(-633 K) +(-641 K) ((|printInfo| (((|Boolean|)) "returns the value of the \\spad{printInfo} flag.") (((|Boolean|) (|Boolean|)) "\\spad{printInfo(b)} set a flag such that when \\spad{true} (\\spad{b} \\spad{<-} \\spad{true}) prints some information during some critical computation.")) (|coefOfFirstNonZeroTerm| ((|#1| $) "\\spad{coefOfFirstNonZeroTerm(s)} returns the first non zero coefficient of the series.")) (|filterUpTo| (($ $ (|Integer|)) "\\spad{filterUpTo(s,{}n)} returns the series consisting of the terms of \\spad{s} having degree strictly less than \\spad{n}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(s,{}n)} returns t**n * \\spad{s}")) (|series| (($ (|Integer|) |#1| $) "\\spad{series(e,{}c,{}s)} create the series c*t**e + \\spad{s}.")) (|removeZeroes| (($ $) "\\spad{removeZeroes(s)} removes the zero terms in \\spad{s}.") (($ (|Integer|) $) "\\spad{removeZeroes(n,{}s)} removes the zero terms in the first \\spad{n} terms of \\spad{s}.")) (|monomial2series| (($ (|List| $) (|List| (|NonNegativeInteger|)) (|Integer|)) "\\spad{monomial2series(ls,{}le,{}n)} returns t**n * reduce(\\spad{\"*\"},{}[\\spad{s} \\spad{**} \\spad{e} for \\spad{s} in \\spad{ls} for \\spad{e} in \\spad{le}])")) (|delay| (($ (|Mapping| $)) "\\spad{delay delayed} the computation of the next term of the series given by the input function.")) (|posExpnPart| (($ $) "\\spad{posExpnPart(s)} returns the series \\spad{s} less the terms with negative exponant.")) (|order| (((|Integer|) $) "\\spad{order(s)} returns the order of \\spad{s}."))) -(((-4507 "*") . T) (-4498 . T) (-4497 . T) (-4503 . T) (-4499 . T) (-4500 . T) (-4502 . T)) +(((-4521 "*") . T) (-4512 . T) (-4511 . T) (-4517 . T) (-4513 . T) (-4514 . T) (-4516 . T)) NIL -(-634 R -1333 L) +(-642 R -1478 L) ((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op,{} g,{} x,{} a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{op y = g,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op,{} g,{} x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable."))) NIL NIL -(-635 A) +(-643 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition:\\spad{\\br} \\spad{(L1 * L2).(f) = L1 L2 f}"))) -((-4499 . T) (-4500 . T) (-4502 . T)) -((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-447))) (|HasCategory| |#1| (QUOTE (-359)))) -(-636 A M) +((-4513 . T) (-4514 . T) (-4516 . T)) +((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-365)))) +(-644 A M) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition:\\spad{\\br} \\spad{(L1 * L2).(f) = L1 L2 f}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}"))) -((-4499 . T) (-4500 . T) (-4502 . T)) -((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-447))) (|HasCategory| |#1| (QUOTE (-359)))) -(-637 S A) +((-4513 . T) (-4514 . T) (-4516 . T)) +((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-365)))) +(-645 S A) ((|constructor| (NIL "LinearOrdinaryDifferentialOperatorCategory is the category of differential operators with coefficients in a ring A with a given derivation. \\blankline Multiplication of operators corresponds to functional composition:\\spad{\\br} (\\spad{L1} * \\spad{L2}).(\\spad{f}) = \\spad{L1} \\spad{L2} \\spad{f}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) NIL -((|HasCategory| |#2| (QUOTE (-359)))) -(-638 A) +((|HasCategory| |#2| (QUOTE (-365)))) +(-646 A) ((|constructor| (NIL "LinearOrdinaryDifferentialOperatorCategory is the category of differential operators with coefficients in a ring A with a given derivation. \\blankline Multiplication of operators corresponds to functional composition:\\spad{\\br} (\\spad{L1} * \\spad{L2}).(\\spad{f}) = \\spad{L1} \\spad{L2} \\spad{f}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) -((-4499 . T) (-4500 . T) (-4502 . T)) +((-4513 . T) (-4514 . T) (-4516 . T)) NIL -(-639 -1333 UP) +(-647 -1478 UP) ((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a,{} zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-640 A -2533) +(-648 A -2060) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition:\\spad{\\br} \\spad{(L1 * L2).(f) = L1 L2 f}"))) -((-4499 . T) (-4500 . T) (-4502 . T)) -((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-447))) (|HasCategory| |#1| (QUOTE (-359)))) -(-641 A L) +((-4513 . T) (-4514 . T) (-4516 . T)) +((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-365)))) +(-649 A L) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,{}n,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use."))) NIL NIL -(-642 S) +(-650 S) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-643) +(-651) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-644 M R S) +(-652 M R S) ((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4500 . T) (-4499 . T)) -((|HasCategory| |#1| (QUOTE (-778)))) -(-645 K) +((-4514 . T) (-4513 . T)) +((|HasCategory| |#1| (QUOTE (-786)))) +(-653 K) ((|constructor| (NIL "A package that exports several linear algebra operations over lines of matrices. Part of the PAFF package.")) (|reduceRowOnList| (((|List| (|List| |#1|)) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{reduceRowOnList(v,{}lvec)} applies a row reduction on each of the element of \\spad{lv} using \\spad{v} according to a pivot in \\spad{v} which is set to be the first non nul element in \\spad{v}.")) (|reduceLineOverLine| (((|List| |#1|) (|List| |#1|) (|List| |#1|) |#1|) "\\spad{reduceLineOverLine(v1,{}v2,{}a)} returns \\spad{v1}-\\spad{a*v1} where \\indented{1}{\\spad{v1} and \\spad{v2} are considered as vector space.}")) (|quotVecSpaceBasis| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{quotVecSpaceBasis(b1,{}b2)} returns a basis of \\spad{V1/V2} where \\spad{V1} and \\spad{V2} are vector space with basis \\spad{b1} and \\spad{b2} resp. and \\spad{V2} is suppose to be include in \\spad{V1}; Note that if it is not the case then it returs the basis of V1/W where \\spad{W} = intersection of \\spad{V1} and \\spad{V2}")) (|reduceRow| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "reduceRow: if the input is considered as a matrix,{} the output would be the row reduction matrix. It\\spad{'s} almost the rowEchelon form except that no permution of lines is performed."))) NIL NIL -(-646 K |symb| |PolyRing| E |ProjPt| PCS |Plc|) +(-654 K |symb| |PolyRing| E |ProjPt| PCS |Plc|) ((|constructor| (NIL "The following is part of the PAFF package")) (|localize| (((|Record| (|:| |fnc| |#3|) (|:| |crv| |#3|) (|:| |chart| (|List| (|Integer|)))) |#3| |#5| |#3| (|Integer|)) "\\spad{localize(f,{}pt,{}crv,{}n)} returns a record containing the polynomials \\spad{f} and \\spad{crv} translate to the origin with respect to \\spad{pt}. The last element of the records,{} consisting of three integers contains information about the local parameter that will be used (either \\spad{x} or \\spad{y}): the first integer correspond to the variable that will be used as a local parameter.")) (|pointDominateBy| ((|#5| |#7|) "\\spad{pointDominateBy(pl)} returns the projective point dominated by the place \\spad{pl}.")) (|localParamOfSimplePt| (((|List| |#6|) |#5| |#3| (|Integer|)) "\\spad{localParamOfSimplePt(pt,{}pol,{}n)} computes the local parametrization of the simple point \\spad{pt} on the curve defined by \\spad{pol}. This local parametrization is done according to the standard open affine plane set by \\spad{n}")) (|pointToPlace| ((|#7| |#5| |#3|) "\\spad{pointToPlace(pt,{}pol)} takes for input a simple point \\spad{pt} on the curve defined by \\spad{pol} and set the local parametrization of the point.")) (|printInfo| (((|Boolean|)) "returns the value of the \\spad{printInfo} flag.") (((|Boolean|) (|Boolean|)) "\\spad{printInfo(b)} set a flag such that when \\spad{true} (\\spad{b} \\spad{<-} \\spad{true}) prints some information during some critical computation."))) NIL NIL -(-647 R) +(-655 R) ((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such exists."))) NIL NIL -(-648 |VarSet| R) +(-656 |VarSet| R) ((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4500 . T) (-4499 . T)) -((|HasCategory| |#2| (QUOTE (-359))) (|HasCategory| |#2| (QUOTE (-170)))) -(-649 A S) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4514 . T) (-4513 . T)) +((|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-172)))) +(-657 A S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) NIL NIL -(-650 S) +(-658 S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) -((-4506 . T) (-4505 . T) (-2537 . T)) +((-4520 . T) (-4519 . T) (-3973 . T)) NIL -(-651 -1333) +(-659 -1478) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-652 -1333 |Row| |Col| M) +(-660 -1478 |Row| |Col| M) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-653 R E OV P) +(-661 R E OV P) ((|constructor| (NIL "This package finds the solutions of linear systems presented as a list of polynomials.")) (|linSolve| (((|Record| (|:| |particular| (|Union| (|Vector| (|Fraction| |#4|)) "failed")) (|:| |basis| (|List| (|Vector| (|Fraction| |#4|))))) (|List| |#4|) (|List| |#3|)) "\\spad{linSolve(lp,{}lvar)} finds the solutions of the linear system of polynomials \\spad{lp} = 0 with respect to the list of symbols \\spad{lvar}."))) NIL NIL -(-654 |n| R) +(-662 |n| R) ((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by\\spad{\\br} \\spad{a*b := (a *\\$SQMATRIX(n,{}R) b - b *\\$SQMATRIX(n,{}R) a)},{}\\spad{\\br} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication."))) -((-4502 . T) (-4505 . T) (-4499 . T) (-4500 . T)) -((|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#2| (QUOTE (-221))) (|HasAttribute| |#2| (QUOTE (-4507 "*"))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-296))) (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (QUOTE (-359))) (|HasCategory| |#2| (QUOTE (-550))) (-2318 (|HasAttribute| |#2| (QUOTE (-4507 "*"))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#2| (QUOTE (-221)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1082)))) (-2318 (-12 (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-1153))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-221)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1082))))) (|HasCategory| |#2| (QUOTE (-170)))) -(-655 |VarSet|) +((-4516 . T) (-4519 . T) (-4513 . T) (-4514 . T)) +((|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#2| (QUOTE (-225))) (|HasAttribute| |#2| (QUOTE (-4521 "*"))) (|HasCategory| |#2| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#2| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#2| (QUOTE (-301))) (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-558))) (-2198 (|HasAttribute| |#2| (QUOTE (-4521 "*"))) (|HasCategory| |#2| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#2| (QUOTE (-225)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1090)))) (-2198 (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -630) (QUOTE (-568))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1161))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-225)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1090))))) (|HasCategory| |#2| (QUOTE (-172)))) +(-663 |VarSet|) ((|constructor| (NIL "Lyndon words over arbitrary (ordered) symbols: see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). A Lyndon word is a word which is smaller than any of its right factors \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering. If \\axiom{a} and \\axiom{\\spad{b}} are two Lyndon words such that \\axiom{a < \\spad{b}} holds \\spad{w}.\\spad{r}.\\spad{t} lexicographical ordering then \\axiom{a*b} is a Lyndon word. Parenthesized Lyndon words can be generated from symbols by using the following rule:\\spad{\\br} \\axiom{[[a,{}\\spad{b}],{}\\spad{c}]} is a Lyndon word iff \\axiom{a*b < \\spad{c} \\spad{<=} \\spad{b}} holds.\\spad{\\br} Lyndon words are internally represented by binary trees using the \\spadtype{Magma} domain constructor. Two ordering are provided: lexicographic and length-lexicographic.")) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList(\\spad{vl},{} \\spad{n})} returns the list of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) "\\axiom{\\spad{LyndonWordsList1}(\\spad{vl},{} \\spad{n})} returns an array of lists of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndonIfCan(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word.")) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word,{} error if \\axiom{\\spad{w}} is not a Lyndon word.")) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon?(\\spad{w})} test if \\axiom{\\spad{w}} is a Lyndon word.")) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) "\\axiom{factor(\\spad{x})} returns the decreasing factorization into Lyndon words.")) (|coerce| (((|Magma| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{Magma}(VarSet) corresponding to \\axiom{\\spad{x}}.") (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if retractable?(\\spad{x}) is \\spad{true}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if retractable?(\\spad{x}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry."))) NIL NIL -(-656 A S) +(-664 A S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\indented{1}{complete(st) causes all entries of 'st' to be computed.} \\indented{1}{this function should only be called on streams which are} \\indented{1}{known to be finite.} \\blankline \\spad{X} \\spad{m:=}[\\spad{i} for \\spad{i} in 1..] \\spad{X} n:=filterUntil(i+-\\spad{>i>100},{}\\spad{m}) \\spad{X} numberOfComputedEntries \\spad{n} \\spad{X} complete \\spad{n} \\spad{X} numberOfComputedEntries \\spad{n}")) (|extend| (($ $ (|Integer|)) "\\indented{1}{extend(st,{}\\spad{n}) causes entries to be computed,{} if necessary,{}} \\indented{1}{so that 'st' will have at least \\spad{'n'} explicit entries or so} \\indented{1}{that all entries of 'st' will be computed if 'st' is finite} \\indented{1}{with length \\spad{<=} \\spad{n}.} \\blankline \\spad{X} \\spad{m:=}[\\spad{i} for \\spad{i} in 0..] \\spad{X} numberOfComputedEntries \\spad{m} \\spad{X} extend(\\spad{m},{}20) \\spad{X} numberOfComputedEntries \\spad{m}")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\indented{1}{numberOfComputedEntries(st) returns the number of explicitly} \\indented{1}{computed entries of stream st which exist immediately prior to the} \\indented{1}{time this function is called.} \\blankline \\spad{X} \\spad{m:=}[\\spad{i} for \\spad{i} in 0..] \\spad{X} numberOfComputedEntries \\spad{m}")) (|rst| (($ $) "\\indented{1}{\\spad{rst}(\\spad{s}) returns a pointer to the next node of stream \\spad{s}.} \\indented{1}{Caution: this function should only be called after a \\spad{empty?}} \\indented{1}{test has been made since there no error check.} \\blankline \\spad{X} \\spad{m:=}[\\spad{i} for \\spad{i} in 0..] \\spad{X} \\spad{rst} \\spad{m}")) (|frst| ((|#2| $) "\\indented{1}{frst(\\spad{s}) returns the first element of stream \\spad{s}.} \\indented{1}{Caution: this function should only be called after a \\spad{empty?}} \\indented{1}{test has been made since there no error check.} \\blankline \\spad{X} \\spad{m:=}[\\spad{i} for \\spad{i} in 0..] \\spad{X} frst \\spad{m}")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note that a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\indented{1}{lazy?(\\spad{s}) returns \\spad{true} if the first node of the stream \\spad{s}} \\indented{1}{is a lazy evaluation mechanism which could produce an} \\indented{1}{additional entry to \\spad{s}.} \\blankline \\spad{X} \\spad{m:=}[\\spad{i} for \\spad{i} in 0..] \\spad{X} lazy? \\spad{m}")) (|explicitlyEmpty?| (((|Boolean|) $) "\\indented{1}{explicitlyEmpty?(\\spad{s}) returns \\spad{true} if the stream is an} \\indented{1}{(explicitly) empty stream.} \\indented{1}{Note that this is a null test which will not cause lazy evaluation.} \\blankline \\spad{X} \\spad{m:=}[\\spad{i} for \\spad{i} in 0..] \\spad{X} explicitlyEmpty? \\spad{m}")) (|explicitEntries?| (((|Boolean|) $) "\\indented{1}{explicitEntries?(\\spad{s}) returns \\spad{true} if the stream \\spad{s} has} \\indented{1}{explicitly computed entries,{} and \\spad{false} otherwise.} \\blankline \\spad{X} \\spad{m:=}[\\spad{i} for \\spad{i} in 0..] \\spad{X} explicitEntries? \\spad{m}")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\indented{1}{select(\\spad{f},{}st) returns a stream consisting of those elements of stream} \\indented{1}{st satisfying the predicate \\spad{f}.} \\indented{1}{Note that \\spad{select(f,{}st) = [x for x in st | f(x)]}.} \\blankline \\spad{X} \\spad{m:=}[\\spad{i} for \\spad{i} in 0..] \\spad{X} select(\\spad{x+}->prime? \\spad{x},{}\\spad{m})")) (|remove| (($ (|Mapping| (|Boolean|) |#2|) $) "\\indented{1}{remove(\\spad{f},{}st) returns a stream consisting of those elements of stream} \\indented{1}{st which do not satisfy the predicate \\spad{f}.} \\indented{1}{Note that \\spad{remove(f,{}st) = [x for x in st | not f(x)]}.} \\blankline \\spad{X} \\spad{m:=}[\\spad{i} for \\spad{i} in 1..] \\spad{X} \\spad{f}(i:PositiveInteger):Boolean \\spad{==} even? \\spad{i} \\spad{X} remove(\\spad{f},{}\\spad{m})"))) NIL NIL -(-657 S) +(-665 S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\indented{1}{complete(st) causes all entries of 'st' to be computed.} \\indented{1}{this function should only be called on streams which are} \\indented{1}{known to be finite.} \\blankline \\spad{X} \\spad{m:=}[\\spad{i} for \\spad{i} in 1..] \\spad{X} n:=filterUntil(i+-\\spad{>i>100},{}\\spad{m}) \\spad{X} numberOfComputedEntries \\spad{n} \\spad{X} complete \\spad{n} \\spad{X} numberOfComputedEntries \\spad{n}")) (|extend| (($ $ (|Integer|)) "\\indented{1}{extend(st,{}\\spad{n}) causes entries to be computed,{} if necessary,{}} \\indented{1}{so that 'st' will have at least \\spad{'n'} explicit entries or so} \\indented{1}{that all entries of 'st' will be computed if 'st' is finite} \\indented{1}{with length \\spad{<=} \\spad{n}.} \\blankline \\spad{X} \\spad{m:=}[\\spad{i} for \\spad{i} in 0..] \\spad{X} numberOfComputedEntries \\spad{m} \\spad{X} extend(\\spad{m},{}20) \\spad{X} numberOfComputedEntries \\spad{m}")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\indented{1}{numberOfComputedEntries(st) returns the number of explicitly} \\indented{1}{computed entries of stream st which exist immediately prior to the} \\indented{1}{time this function is called.} \\blankline \\spad{X} \\spad{m:=}[\\spad{i} for \\spad{i} in 0..] \\spad{X} numberOfComputedEntries \\spad{m}")) (|rst| (($ $) "\\indented{1}{\\spad{rst}(\\spad{s}) returns a pointer to the next node of stream \\spad{s}.} \\indented{1}{Caution: this function should only be called after a \\spad{empty?}} \\indented{1}{test has been made since there no error check.} \\blankline \\spad{X} \\spad{m:=}[\\spad{i} for \\spad{i} in 0..] \\spad{X} \\spad{rst} \\spad{m}")) (|frst| ((|#1| $) "\\indented{1}{frst(\\spad{s}) returns the first element of stream \\spad{s}.} \\indented{1}{Caution: this function should only be called after a \\spad{empty?}} \\indented{1}{test has been made since there no error check.} \\blankline \\spad{X} \\spad{m:=}[\\spad{i} for \\spad{i} in 0..] \\spad{X} frst \\spad{m}")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note that a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\indented{1}{lazy?(\\spad{s}) returns \\spad{true} if the first node of the stream \\spad{s}} \\indented{1}{is a lazy evaluation mechanism which could produce an} \\indented{1}{additional entry to \\spad{s}.} \\blankline \\spad{X} \\spad{m:=}[\\spad{i} for \\spad{i} in 0..] \\spad{X} lazy? \\spad{m}")) (|explicitlyEmpty?| (((|Boolean|) $) "\\indented{1}{explicitlyEmpty?(\\spad{s}) returns \\spad{true} if the stream is an} \\indented{1}{(explicitly) empty stream.} \\indented{1}{Note that this is a null test which will not cause lazy evaluation.} \\blankline \\spad{X} \\spad{m:=}[\\spad{i} for \\spad{i} in 0..] \\spad{X} explicitlyEmpty? \\spad{m}")) (|explicitEntries?| (((|Boolean|) $) "\\indented{1}{explicitEntries?(\\spad{s}) returns \\spad{true} if the stream \\spad{s} has} \\indented{1}{explicitly computed entries,{} and \\spad{false} otherwise.} \\blankline \\spad{X} \\spad{m:=}[\\spad{i} for \\spad{i} in 0..] \\spad{X} explicitEntries? \\spad{m}")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\indented{1}{select(\\spad{f},{}st) returns a stream consisting of those elements of stream} \\indented{1}{st satisfying the predicate \\spad{f}.} \\indented{1}{Note that \\spad{select(f,{}st) = [x for x in st | f(x)]}.} \\blankline \\spad{X} \\spad{m:=}[\\spad{i} for \\spad{i} in 0..] \\spad{X} select(\\spad{x+}->prime? \\spad{x},{}\\spad{m})")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\indented{1}{remove(\\spad{f},{}st) returns a stream consisting of those elements of stream} \\indented{1}{st which do not satisfy the predicate \\spad{f}.} \\indented{1}{Note that \\spad{remove(f,{}st) = [x for x in st | not f(x)]}.} \\blankline \\spad{X} \\spad{m:=}[\\spad{i} for \\spad{i} in 1..] \\spad{X} \\spad{f}(i:PositiveInteger):Boolean \\spad{==} even? \\spad{i} \\spad{X} remove(\\spad{f},{}\\spad{m})"))) -((-2537 . T)) +((-3973 . T)) NIL -(-658 R) +(-666 R) ((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,{}x,{}y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,{}i,{}j,{}k,{}s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,{}i,{}j,{}k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,{}y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,{}j,{}k)} create a matrix with all zero terms"))) NIL -((|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (QUOTE (-1039))) (-12 (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1082)))) (-2318 (-12 (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1039)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1082)))))) -(-659 |VarSet|) +((|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (QUOTE (-1047))) (-12 (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1090)))) (-2198 (-12 (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1047)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1090)))))) +(-667 |VarSet|) ((|constructor| (NIL "This type is the basic representation of parenthesized words (binary trees over arbitrary symbols) useful in \\spadtype{LiePolynomial}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if retractable?(\\spad{x}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")) (|rest| (($ $) "\\axiom{rest(\\spad{x})} return \\axiom{\\spad{x}} without the first entry or error if retractable?(\\spad{x}) is \\spad{true}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns the reversed word of \\axiom{\\spad{x}}. That is \\axiom{\\spad{x}} itself if retractable?(\\spad{x}) is \\spad{true} and \\axiom{mirror(\\spad{z}) * mirror(\\spad{y})} if \\axiom{\\spad{x}} is \\axiom{\\spad{y*z}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}. \\spad{N}.\\spad{B}. This operation does not take into account the tree structure of its arguments. Thus this is not a total ordering.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if retractable?(\\spad{x}) is \\spad{true}.")) (|first| ((|#1| $) "\\axiom{first(\\spad{x})} returns the first entry of the tree \\axiom{\\spad{x}}.")) (|coerce| (((|OrderedFreeMonoid| |#1|) $) "\\indented{1}{\\axiom{coerce(\\spad{x})} returns the element of} \\axiomType{OrderedFreeMonoid}(VarSet) \\indented{1}{corresponding to \\axiom{\\spad{x}} by removing parentheses.}")) (* (($ $ $) "\\axiom{x*y} returns the tree \\axiom{[\\spad{x},{}\\spad{y}]}."))) NIL NIL -(-660 A) +(-668 A) ((|constructor| (NIL "Various Currying operations.")) (|recur| ((|#1| (|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|NonNegativeInteger|) |#1|) "\\spad{recur(n,{}g,{}x)} is \\spad{g(n,{}g(n-1,{}..g(1,{}x)..))}.")) (|iter| ((|#1| (|Mapping| |#1| |#1|) (|NonNegativeInteger|) |#1|) "\\spad{iter(f,{}n,{}x)} applies \\spad{f n} times to \\spad{x}."))) NIL NIL -(-661 A C) +(-669 A C) ((|constructor| (NIL "Various Currying operations.")) (|arg2| ((|#2| |#1| |#2|) "\\spad{arg2(a,{}c)} selects its second argument.")) (|arg1| ((|#1| |#1| |#2|) "\\spad{arg1(a,{}c)} selects its first argument."))) NIL NIL -(-662 A B C) +(-670 A B C) ((|constructor| (NIL "Various Currying operations.")) (|comp| ((|#3| (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{comp(f,{}g,{}x)} is \\spad{f(g x)}."))) NIL NIL -(-663 A) +(-671 A) ((|constructor| (NIL "Various Currying operations.")) (|recur| (((|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|Mapping| |#1| (|NonNegativeInteger|) |#1|)) "\\spad{recur(g)} is the function \\spad{h} such that \\indented{1}{\\spad{h(n,{}x)= g(n,{}g(n-1,{}..g(1,{}x)..))}.}")) (** (((|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{f**n} is the function which is the \\spad{n}-fold application \\indented{1}{of \\spad{f}.}")) (|id| ((|#1| |#1|) "\\spad{id x} is \\spad{x}.")) (|fixedPoint| (((|List| |#1|) (|Mapping| (|List| |#1|) (|List| |#1|)) (|Integer|)) "\\spad{fixedPoint(f,{}n)} is the fixed point of function \\indented{1}{\\spad{f} which is assumed to transform a list of length} \\indented{1}{\\spad{n}.}") ((|#1| (|Mapping| |#1| |#1|)) "\\spad{fixedPoint f} is the fixed point of function \\spad{f}. \\indented{1}{\\spadignore{i.e.} such that \\spad{fixedPoint f = f(fixedPoint f)}.}")) (|coerce| (((|Mapping| |#1|) |#1|) "\\spad{coerce A} changes its argument into a \\indented{1}{nullary function.}")) (|nullary| (((|Mapping| |#1|) |#1|) "\\spad{nullary A} changes its argument into a \\indented{1}{nullary function.}"))) NIL NIL -(-664 A C) +(-672 A C) ((|constructor| (NIL "Various Currying operations.")) (|diag| (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1| |#1|)) "\\spad{diag(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a = f(a,{}a)}.}")) (|constant| (((|Mapping| |#2| |#1|) (|Mapping| |#2|)) "\\spad{vu(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a= f ()}.}")) (|curry| (((|Mapping| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{cu(f,{}a)} is the function \\spad{g} \\indented{1}{such that \\spad{g ()= f a}.}")) (|const| (((|Mapping| |#2| |#1|) |#2|) "\\spad{const c} is a function which produces \\spad{c} when \\indented{1}{applied to its argument.}"))) NIL NIL -(-665 A B C) +(-673 A B C) ((|constructor| (NIL "Various Currying operations.")) (* (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)) "\\spad{f*g} is the function \\spad{h} \\indented{1}{such that \\spad{h x= f(g x)}.}")) (|twist| (((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|)) "\\spad{twist(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f(b,{}a)}.}")) (|constantLeft| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|)) "\\spad{constantLeft(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f b}.}")) (|constantRight| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|)) "\\spad{constantRight(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f a}.}")) (|curryLeft| (((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|) "\\spad{curryLeft(f,{}a)} is the function \\spad{g} \\indented{1}{such that \\spad{g b = f(a,{}b)}.}")) (|curryRight| (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|) "\\spad{curryRight(f,{}b)} is the function \\spad{g} such that \\indented{1}{\\spad{g a = f(a,{}b)}.}"))) NIL NIL -(-666 A B) +(-674 A B) ((|constructor| (NIL "Functional Composition. Given functions \\spad{f} and \\spad{g},{} returns the applicable closure")) (/ (((|Mapping| (|Expression| (|Integer|)) |#1|) (|Mapping| (|Expression| (|Integer|)) |#1|) (|Mapping| (|Expression| (|Integer|)) |#1|)) "\\indented{1}\\spad{(+) does functional addition} \\blankline \\spad{X} \\spad{p:=}(x:EXPR(INT)):EXPR(INT)+->3*x \\spad{X} \\spad{q:=}(x:EXPR(INT)):EXPR(INT)+-\\spad{>2*x+3} \\spad{X} (\\spad{p/q})(4) \\spad{X} (\\spad{p/q})(\\spad{x})")) (* (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1|) (|Mapping| |#2| |#1|)) "\\indented{1}\\spad{(+) does functional addition} \\blankline \\spad{X} \\spad{f:=}(x:INT):INT +-> 3*x \\spad{X} \\spad{g:=}(x:INT):INT +-> 2*x+3 \\spad{X} (\\spad{f*g})(4)")) (- (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1|) (|Mapping| |#2| |#1|)) "\\indented{1}\\spad{(+) does functional addition} \\blankline \\spad{X} \\spad{f:=}(x:INT):INT +-> 3*x \\spad{X} \\spad{g:=}(x:INT):INT +-> 2*x+3 \\spad{X} (\\spad{f}-\\spad{g})(4)")) (+ (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1|) (|Mapping| |#2| |#1|)) "\\indented{1}\\spad{(+) does functional addition} \\blankline \\spad{X} \\spad{f:=}(x:INT):INT +-> 3*x \\spad{X} \\spad{g:=}(x:INT):INT +-> 2*x+3 \\spad{X} (\\spad{f+g})(4)"))) NIL NIL -(-667 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +(-675 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-668 S R |Row| |Col|) +(-676 S R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\indented{1}{\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}.} \\indented{1}{If the matrix is not invertible,{} \"failed\" is returned.} \\indented{1}{Error: if the matrix is not square.} \\blankline \\spad{X} inverse matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5]")) (|pfaffian| ((|#2| $) "\\indented{1}{\\spad{pfaffian(m)} returns the Pfaffian of the matrix \\spad{m}.} \\indented{1}{Error if the matrix is not antisymmetric} \\blankline \\spad{X} pfaffian [[0,{}1,{}0,{}0],{}[\\spad{-1},{}0,{}0,{}0],{}[0,{}0,{}0,{}1],{}[0,{}0,{}\\spad{-1},{}0]]")) (|minordet| ((|#2| $) "\\indented{1}{\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using} \\indented{1}{minors. Error: if the matrix is not square.} \\blankline \\spad{X} minordet matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5]")) (|determinant| ((|#2| $) "\\indented{1}{\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.} \\indented{1}{Error: if the matrix is not square.} \\blankline \\spad{X} determinant matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5]")) (|nullSpace| (((|List| |#4|) $) "\\indented{1}{\\spad{nullSpace(m)} returns a basis for the null space of} \\indented{1}{the matrix \\spad{m}.} \\blankline \\spad{X} nullSpace matrix [[1,{}2,{}3],{}[4,{}5,{}6],{}[7,{}8,{}9]]")) (|nullity| (((|NonNegativeInteger|) $) "\\indented{1}{\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is} \\indented{1}{the dimension of the null space of the matrix \\spad{m}.} \\blankline \\spad{X} nullity matrix [[1,{}2,{}3],{}[4,{}5,{}6],{}[7,{}8,{}9]]")) (|rank| (((|NonNegativeInteger|) $) "\\indented{1}{\\spad{rank(m)} returns the rank of the matrix \\spad{m}.} \\blankline \\spad{X} rank matrix [[1,{}2,{}3],{}[4,{}5,{}6],{}[7,{}8,{}9]]")) (|columnSpace| (((|List| |#4|) $) "\\indented{1}{\\spad{columnSpace(m)} returns a sublist of columns of the matrix \\spad{m}} \\indented{1}{forming a basis of its column space} \\blankline \\spad{X} columnSpace matrix [[1,{}2,{}3],{}[4,{}5,{}6],{}[7,{}8,{}9],{}[1,{}1,{}1]]")) (|rowEchelon| (($ $) "\\indented{1}{\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.} \\blankline \\spad{X} rowEchelon matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5]")) (/ (($ $ |#2|) "\\indented{1}{\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.} \\blankline \\spad{X} m:=matrix [[2**i for \\spad{i} in 2..4] for \\spad{j} in 1..5] \\spad{X} \\spad{m/4}")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\indented{1}{\\spad{exquo(m,{}r)} computes the exact quotient of the elements} \\indented{1}{of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.} \\blankline \\spad{X} m:=matrix [[2**i for \\spad{i} in 2..4] for \\spad{j} in 1..5] \\spad{X} exquo(\\spad{m},{}2)")) (** (($ $ (|Integer|)) "\\indented{1}{\\spad{m**n} computes an integral power of the matrix \\spad{m}.} \\indented{1}{Error: if matrix is not square or if the matrix} \\indented{1}{is square but not invertible.} \\blankline \\spad{X} (matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5]) \\spad{**} 2") (($ $ (|NonNegativeInteger|)) "\\indented{1}{\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}.} \\indented{1}{Error: if the matrix is not square.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} \\spad{m**3}")) (* ((|#3| |#3| $) "\\indented{1}{\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}.} \\indented{1}{Error: if the dimensions are incompatible.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} r:=transpose([1,{}2,{}3,{}4,{}5])@Matrix(INT) \\spad{X} \\spad{r*m}") ((|#4| $ |#4|) "\\indented{1}{\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}.} \\indented{1}{Error: if the dimensions are incompatible.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} c:=coerce([1,{}2,{}3,{}4,{}5])@Matrix(INT) \\spad{X} \\spad{m*c}") (($ (|Integer|) $) "\\indented{1}{\\spad{n * x} is an integer multiple.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} 3*m") (($ $ |#2|) "\\indented{1}{\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the} \\indented{1}{matrix \\spad{x}.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} \\spad{m*1/3}") (($ |#2| $) "\\indented{1}{\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the} \\indented{1}{matrix \\spad{x}.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} 1/3*m") (($ $ $) "\\indented{1}{\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}.} \\indented{1}{Error: if the dimensions are incompatible.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} \\spad{m*m}")) (- (($ $) "\\indented{1}{\\spad{-x} returns the negative of the matrix \\spad{x}.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} \\spad{-m}") (($ $ $) "\\indented{1}{\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}.} \\indented{1}{Error: if the dimensions are incompatible.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} \\spad{m}-\\spad{m}")) (+ (($ $ $) "\\indented{1}{\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}.} \\indented{1}{Error: if the dimensions are incompatible.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} \\spad{m+m}")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\indented{1}{\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the} \\indented{1}{matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for} \\indented{1}{\\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} setsubMatrix!(\\spad{m},{}2,{}2,{}matrix [[3,{}3],{}[3,{}3]])")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\indented{1}{\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix} \\indented{1}{\\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2}} \\indented{1}{and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} subMatrix(\\spad{m},{}1,{}3,{}2,{}4)")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\indented{1}{\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th} \\indented{1}{columns of \\spad{m}. This destructively alters the matrix.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} swapColumns!(\\spad{m},{}2,{}4)")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\indented{1}{\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th} \\indented{1}{rows of \\spad{m}. This destructively alters the matrix.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} swapRows!(\\spad{m},{}2,{}4)")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\indented{1}{\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}.} \\indented{1}{If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i]}} \\indented{1}{and \\spad{colList = [j<1>,{}j<2>,{}...,{}j]},{} then \\spad{x(i,{}j)}} \\indented{1}{is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} setelt(\\spad{m},{}3,{}3,{}10)")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\indented{1}{\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting} \\indented{1}{of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}} \\indented{1}{If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i]} and \\spad{colList =} \\indented{1}{[j<1>,{}j<2>,{}...,{}j]},{} then the \\spad{(k,{}l)}th entry of} \\indented{1}{\\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i,{}j)}.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} elt(\\spad{m},{}3,{}3)")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\indented{1}{\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list} \\indented{1}{of lists.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} listOfLists \\spad{m}")) (|vertConcat| (($ $ $) "\\indented{1}{\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an} \\indented{1}{equal number of columns. The entries of \\spad{y} appear below} \\indented{1}{of the entries of \\spad{x}.\\space{2}Error: if the matrices} \\indented{1}{do not have the same number of columns.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} vertConcat(\\spad{m},{}\\spad{m})")) (|horizConcat| (($ $ $) "\\indented{1}{\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with} \\indented{1}{an equal number of rows. The entries of \\spad{y} appear to the right} \\indented{1}{of the entries of \\spad{x}.\\space{2}Error: if the matrices} \\indented{1}{do not have the same number of rows.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} horizConcat(\\spad{m},{}\\spad{m})")) (|squareTop| (($ $) "\\indented{1}{\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first} \\indented{1}{\\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if} \\indented{1}{\\spad{m < n}.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..2] for \\spad{j} in 1..5] \\spad{X} squareTop \\spad{m}")) (|transpose| (($ $) "\\indented{1}{\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} transpose \\spad{m}") (($ |#3|) "\\indented{1}{\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.} \\blankline \\spad{X} transpose([1,{}2,{}3])@Matrix(INT)")) (|coerce| (($ |#4|) "\\indented{1}{\\spad{coerce(col)} converts the column col to a column matrix.} \\blankline \\spad{X} coerce([1,{}2,{}3])@Matrix(INT)")) (|diagonalMatrix| (($ (|List| $)) "\\indented{1}{\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix} \\indented{1}{\\spad{M} with block matrices \\spad{m1},{}...,{}\\spad{mk} down the diagonal,{}} \\indented{1}{with 0 block matrices elsewhere.} \\indented{1}{More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{}} \\indented{1}{then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix\\space{2}with entries} \\indented{1}{\\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if} \\indented{1}{\\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and} \\indented{1}{\\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{}} \\indented{1}{\\spad{m.i.j} = 0\\space{2}otherwise.} \\blankline \\spad{X} diagonalMatrix [matrix [[1,{}2],{}[3,{}4]],{} matrix [[4,{}5],{}[6,{}7]]]") (($ (|List| |#2|)) "\\indented{1}{\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements} \\indented{1}{of \\spad{l} on the diagonal.} \\blankline \\spad{X} diagonalMatrix [1,{}2,{}3]")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\indented{1}{\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the} \\indented{1}{diagonal and zeroes elsewhere.} \\blankline \\spad{X} z:Matrix(INT):=scalarMatrix(3,{}5)")) (|matrix| (($ (|List| (|List| |#2|))) "\\indented{1}{\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the} \\indented{1}{list of lists is viewed as a list of the rows of the matrix.} \\blankline \\spad{X} matrix [[1,{}2,{}3],{}[4,{}5,{}6],{}[7,{}8,{}9],{}[1,{}1,{}1]]")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\indented{1}{\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.} \\blankline \\spad{X} z:Matrix(INT):=zero(3,{}3)")) (|antisymmetric?| (((|Boolean|) $) "\\indented{1}{\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and} \\indented{1}{antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j})} \\indented{1}{and \\spad{false} otherwise.} \\blankline \\spad{X} antisymmetric? matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5]")) (|symmetric?| (((|Boolean|) $) "\\indented{1}{\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and} \\indented{1}{symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false}} \\indented{1}{otherwise.} \\blankline \\spad{X} symmetric? matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5]")) (|diagonal?| (((|Boolean|) $) "\\indented{1}{\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and} \\indented{1}{diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and} \\indented{1}{\\spad{false} otherwise.} \\blankline \\spad{X} diagonal? matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5]")) (|square?| (((|Boolean|) $) "\\indented{1}{\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix} \\indented{1}{(if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.} \\blankline \\spad{X} square matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5]")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) NIL -((|HasCategory| |#2| (QUOTE (-170))) (|HasAttribute| |#2| (QUOTE (-4507 "*"))) (|HasCategory| |#2| (QUOTE (-296))) (|HasCategory| |#2| (QUOTE (-359))) (|HasCategory| |#2| (QUOTE (-550)))) -(-669 R |Row| |Col|) +((|HasCategory| |#2| (QUOTE (-172))) (|HasAttribute| |#2| (QUOTE (-4521 "*"))) (|HasCategory| |#2| (QUOTE (-301))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-558)))) +(-677 R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\indented{1}{\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}.} \\indented{1}{If the matrix is not invertible,{} \"failed\" is returned.} \\indented{1}{Error: if the matrix is not square.} \\blankline \\spad{X} inverse matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5]")) (|pfaffian| ((|#1| $) "\\indented{1}{\\spad{pfaffian(m)} returns the Pfaffian of the matrix \\spad{m}.} \\indented{1}{Error if the matrix is not antisymmetric} \\blankline \\spad{X} pfaffian [[0,{}1,{}0,{}0],{}[\\spad{-1},{}0,{}0,{}0],{}[0,{}0,{}0,{}1],{}[0,{}0,{}\\spad{-1},{}0]]")) (|minordet| ((|#1| $) "\\indented{1}{\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using} \\indented{1}{minors. Error: if the matrix is not square.} \\blankline \\spad{X} minordet matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5]")) (|determinant| ((|#1| $) "\\indented{1}{\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.} \\indented{1}{Error: if the matrix is not square.} \\blankline \\spad{X} determinant matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5]")) (|nullSpace| (((|List| |#3|) $) "\\indented{1}{\\spad{nullSpace(m)} returns a basis for the null space of} \\indented{1}{the matrix \\spad{m}.} \\blankline \\spad{X} nullSpace matrix [[1,{}2,{}3],{}[4,{}5,{}6],{}[7,{}8,{}9]]")) (|nullity| (((|NonNegativeInteger|) $) "\\indented{1}{\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is} \\indented{1}{the dimension of the null space of the matrix \\spad{m}.} \\blankline \\spad{X} nullity matrix [[1,{}2,{}3],{}[4,{}5,{}6],{}[7,{}8,{}9]]")) (|rank| (((|NonNegativeInteger|) $) "\\indented{1}{\\spad{rank(m)} returns the rank of the matrix \\spad{m}.} \\blankline \\spad{X} rank matrix [[1,{}2,{}3],{}[4,{}5,{}6],{}[7,{}8,{}9]]")) (|columnSpace| (((|List| |#3|) $) "\\indented{1}{\\spad{columnSpace(m)} returns a sublist of columns of the matrix \\spad{m}} \\indented{1}{forming a basis of its column space} \\blankline \\spad{X} columnSpace matrix [[1,{}2,{}3],{}[4,{}5,{}6],{}[7,{}8,{}9],{}[1,{}1,{}1]]")) (|rowEchelon| (($ $) "\\indented{1}{\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.} \\blankline \\spad{X} rowEchelon matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5]")) (/ (($ $ |#1|) "\\indented{1}{\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.} \\blankline \\spad{X} m:=matrix [[2**i for \\spad{i} in 2..4] for \\spad{j} in 1..5] \\spad{X} \\spad{m/4}")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\indented{1}{\\spad{exquo(m,{}r)} computes the exact quotient of the elements} \\indented{1}{of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.} \\blankline \\spad{X} m:=matrix [[2**i for \\spad{i} in 2..4] for \\spad{j} in 1..5] \\spad{X} exquo(\\spad{m},{}2)")) (** (($ $ (|Integer|)) "\\indented{1}{\\spad{m**n} computes an integral power of the matrix \\spad{m}.} \\indented{1}{Error: if matrix is not square or if the matrix} \\indented{1}{is square but not invertible.} \\blankline \\spad{X} (matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5]) \\spad{**} 2") (($ $ (|NonNegativeInteger|)) "\\indented{1}{\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}.} \\indented{1}{Error: if the matrix is not square.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} \\spad{m**3}")) (* ((|#2| |#2| $) "\\indented{1}{\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}.} \\indented{1}{Error: if the dimensions are incompatible.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} r:=transpose([1,{}2,{}3,{}4,{}5])@Matrix(INT) \\spad{X} \\spad{r*m}") ((|#3| $ |#3|) "\\indented{1}{\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}.} \\indented{1}{Error: if the dimensions are incompatible.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} c:=coerce([1,{}2,{}3,{}4,{}5])@Matrix(INT) \\spad{X} \\spad{m*c}") (($ (|Integer|) $) "\\indented{1}{\\spad{n * x} is an integer multiple.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} 3*m") (($ $ |#1|) "\\indented{1}{\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the} \\indented{1}{matrix \\spad{x}.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} \\spad{m*1/3}") (($ |#1| $) "\\indented{1}{\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the} \\indented{1}{matrix \\spad{x}.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} 1/3*m") (($ $ $) "\\indented{1}{\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}.} \\indented{1}{Error: if the dimensions are incompatible.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} \\spad{m*m}")) (- (($ $) "\\indented{1}{\\spad{-x} returns the negative of the matrix \\spad{x}.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} \\spad{-m}") (($ $ $) "\\indented{1}{\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}.} \\indented{1}{Error: if the dimensions are incompatible.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} \\spad{m}-\\spad{m}")) (+ (($ $ $) "\\indented{1}{\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}.} \\indented{1}{Error: if the dimensions are incompatible.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} \\spad{m+m}")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\indented{1}{\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the} \\indented{1}{matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for} \\indented{1}{\\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} setsubMatrix!(\\spad{m},{}2,{}2,{}matrix [[3,{}3],{}[3,{}3]])")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\indented{1}{\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix} \\indented{1}{\\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2}} \\indented{1}{and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} subMatrix(\\spad{m},{}1,{}3,{}2,{}4)")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\indented{1}{\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th} \\indented{1}{columns of \\spad{m}. This destructively alters the matrix.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} swapColumns!(\\spad{m},{}2,{}4)")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\indented{1}{\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th} \\indented{1}{rows of \\spad{m}. This destructively alters the matrix.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} swapRows!(\\spad{m},{}2,{}4)")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\indented{1}{\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}.} \\indented{1}{If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i]}} \\indented{1}{and \\spad{colList = [j<1>,{}j<2>,{}...,{}j]},{} then \\spad{x(i,{}j)}} \\indented{1}{is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} setelt(\\spad{m},{}3,{}3,{}10)")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\indented{1}{\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting} \\indented{1}{of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}} \\indented{1}{If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i]} and \\spad{colList =} \\indented{1}{[j<1>,{}j<2>,{}...,{}j]},{} then the \\spad{(k,{}l)}th entry of} \\indented{1}{\\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i,{}j)}.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} elt(\\spad{m},{}3,{}3)")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\indented{1}{\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list} \\indented{1}{of lists.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} listOfLists \\spad{m}")) (|vertConcat| (($ $ $) "\\indented{1}{\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an} \\indented{1}{equal number of columns. The entries of \\spad{y} appear below} \\indented{1}{of the entries of \\spad{x}.\\space{2}Error: if the matrices} \\indented{1}{do not have the same number of columns.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} vertConcat(\\spad{m},{}\\spad{m})")) (|horizConcat| (($ $ $) "\\indented{1}{\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with} \\indented{1}{an equal number of rows. The entries of \\spad{y} appear to the right} \\indented{1}{of the entries of \\spad{x}.\\space{2}Error: if the matrices} \\indented{1}{do not have the same number of rows.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} horizConcat(\\spad{m},{}\\spad{m})")) (|squareTop| (($ $) "\\indented{1}{\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first} \\indented{1}{\\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if} \\indented{1}{\\spad{m < n}.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..2] for \\spad{j} in 1..5] \\spad{X} squareTop \\spad{m}")) (|transpose| (($ $) "\\indented{1}{\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.} \\blankline \\spad{X} m:=matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5] \\spad{X} transpose \\spad{m}") (($ |#2|) "\\indented{1}{\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.} \\blankline \\spad{X} transpose([1,{}2,{}3])@Matrix(INT)")) (|coerce| (($ |#3|) "\\indented{1}{\\spad{coerce(col)} converts the column col to a column matrix.} \\blankline \\spad{X} coerce([1,{}2,{}3])@Matrix(INT)")) (|diagonalMatrix| (($ (|List| $)) "\\indented{1}{\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix} \\indented{1}{\\spad{M} with block matrices \\spad{m1},{}...,{}\\spad{mk} down the diagonal,{}} \\indented{1}{with 0 block matrices elsewhere.} \\indented{1}{More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{}} \\indented{1}{then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix\\space{2}with entries} \\indented{1}{\\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if} \\indented{1}{\\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and} \\indented{1}{\\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{}} \\indented{1}{\\spad{m.i.j} = 0\\space{2}otherwise.} \\blankline \\spad{X} diagonalMatrix [matrix [[1,{}2],{}[3,{}4]],{} matrix [[4,{}5],{}[6,{}7]]]") (($ (|List| |#1|)) "\\indented{1}{\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements} \\indented{1}{of \\spad{l} on the diagonal.} \\blankline \\spad{X} diagonalMatrix [1,{}2,{}3]")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\indented{1}{\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the} \\indented{1}{diagonal and zeroes elsewhere.} \\blankline \\spad{X} z:Matrix(INT):=scalarMatrix(3,{}5)")) (|matrix| (($ (|List| (|List| |#1|))) "\\indented{1}{\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the} \\indented{1}{list of lists is viewed as a list of the rows of the matrix.} \\blankline \\spad{X} matrix [[1,{}2,{}3],{}[4,{}5,{}6],{}[7,{}8,{}9],{}[1,{}1,{}1]]")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\indented{1}{\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.} \\blankline \\spad{X} z:Matrix(INT):=zero(3,{}3)")) (|antisymmetric?| (((|Boolean|) $) "\\indented{1}{\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and} \\indented{1}{antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j})} \\indented{1}{and \\spad{false} otherwise.} \\blankline \\spad{X} antisymmetric? matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5]")) (|symmetric?| (((|Boolean|) $) "\\indented{1}{\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and} \\indented{1}{symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false}} \\indented{1}{otherwise.} \\blankline \\spad{X} symmetric? matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5]")) (|diagonal?| (((|Boolean|) $) "\\indented{1}{\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and} \\indented{1}{diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and} \\indented{1}{\\spad{false} otherwise.} \\blankline \\spad{X} diagonal? matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5]")) (|square?| (((|Boolean|) $) "\\indented{1}{\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix} \\indented{1}{(if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.} \\blankline \\spad{X} square matrix [[j**i for \\spad{i} in 0..4] for \\spad{j} in 1..5]")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) -((-4505 . T) (-4506 . T) (-2537 . T)) +((-4519 . T) (-4520 . T) (-3973 . T)) NIL -(-670 R |Row| |Col| M) +(-678 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,{}a,{}i,{}j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{^=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,{}a,{}i,{}j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{^=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,{}i,{}j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square."))) NIL -((|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-296))) (|HasCategory| |#1| (QUOTE (-550)))) -(-671 R) +((|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-558)))) +(-679 R) ((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) -((-4505 . T) (-4506 . T)) -((|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-296))) (|HasCategory| |#1| (QUOTE (-550))) (|HasAttribute| |#1| (QUOTE (-4507 "*"))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-359))) (-12 (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1082)))) (-2318 (-12 (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1082)))))) -(-672 R) +((-4519 . T) (-4520 . T)) +((|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-558))) (|HasAttribute| |#1| (QUOTE (-4521 "*"))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1090)))) (-2198 (-12 (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1090)))))) +(-680 R) ((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,{}b,{}c,{}m,{}n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,{}a,{}b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,{}a,{}r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,{}r,{}a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,{}a,{}b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,{}a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,{}a,{}b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,{}a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions."))) NIL NIL -(-673 S -1333 FLAF FLAS) +(-681 S -1478 FLAF FLAS) ((|constructor| (NIL "\\spadtype{MultiVariableCalculusFunctions} Package provides several functions for multivariable calculus. These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,{}xlist,{}kl,{}ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} \\spad{kl+ku+1} being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions \\spad{kl+ku+1} by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row \\spad{ku+1},{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,{}xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,{}xlist,{}k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,{}xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,{}xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,{}xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,{}xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}."))) NIL NIL -(-674 R Q) +(-682 R Q) ((|constructor| (NIL "MatrixCommonDenominator provides functions to compute the common denominator of a matrix of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| (|Matrix| |#1|)) (|:| |den| |#1|)) (|Matrix| |#2|)) "\\spad{splitDenominator(q)} returns \\spad{[p,{} d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|clearDenominator| (((|Matrix| |#1|) (|Matrix| |#2|)) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|commonDenominator| ((|#1| (|Matrix| |#2|)) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the elements of \\spad{q}."))) NIL NIL -(-675) +(-683) ((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex"))) -((-4498 . T) (-4503 |has| (-680) (-359)) (-4497 |has| (-680) (-359)) (-2556 . T) (-4504 |has| (-680) (-6 -4504)) (-4501 |has| (-680) (-6 -4501)) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) -((|HasCategory| (-680) (QUOTE (-148))) (|HasCategory| (-680) (QUOTE (-146))) (|HasCategory| (-680) (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| (-680) (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| (-680) (QUOTE (-364))) (|HasCategory| (-680) (QUOTE (-359))) (|HasCategory| (-680) (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| (-680) (QUOTE (-221))) (|HasCategory| (-680) (QUOTE (-344))) (-2318 (|HasCategory| (-680) (QUOTE (-359))) (|HasCategory| (-680) (QUOTE (-344)))) (|HasCategory| (-680) (LIST (QUOTE -276) (QUOTE (-680)) (QUOTE (-680)))) (|HasCategory| (-680) (LIST (QUOTE -298) (QUOTE (-680)))) (|HasCategory| (-680) (LIST (QUOTE -515) (QUOTE (-1153)) (QUOTE (-680)))) (|HasCategory| (-680) (LIST (QUOTE -873) (QUOTE (-375)))) (|HasCategory| (-680) (LIST (QUOTE -873) (QUOTE (-560)))) (|HasCategory| (-680) (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-560))))) (|HasCategory| (-680) (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-375))))) (|HasCategory| (-680) (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| (-680) (QUOTE (-1013))) (|HasCategory| (-680) (QUOTE (-1173))) (-12 (|HasCategory| (-680) (QUOTE (-994))) (|HasCategory| (-680) (QUOTE (-1173)))) (|HasCategory| (-680) (QUOTE (-542))) (|HasCategory| (-680) (QUOTE (-1048))) (-12 (|HasCategory| (-680) (QUOTE (-1048))) (|HasCategory| (-680) (QUOTE (-1173)))) (-2318 (|HasCategory| (-680) (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| (-680) (QUOTE (-359)))) (|HasCategory| (-680) (QUOTE (-296))) (-2318 (|HasCategory| (-680) (QUOTE (-296))) (|HasCategory| (-680) (QUOTE (-359))) (|HasCategory| (-680) (QUOTE (-344)))) (|HasCategory| (-680) (QUOTE (-896))) (-12 (|HasCategory| (-680) (QUOTE (-221))) (|HasCategory| (-680) (QUOTE (-359)))) (-12 (|HasCategory| (-680) (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| (-680) (QUOTE (-359)))) (|HasCategory| (-680) (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| (-680) (QUOTE (-834))) (|HasCategory| (-680) (QUOTE (-550))) (|HasAttribute| (-680) (QUOTE -4504)) (|HasAttribute| (-680) (QUOTE -4501)) (-12 (|HasCategory| (-680) (QUOTE (-296))) (|HasCategory| (-680) (QUOTE (-896)))) (-2318 (-12 (|HasCategory| (-680) (QUOTE (-296))) (|HasCategory| (-680) (QUOTE (-896)))) (|HasCategory| (-680) (QUOTE (-359))) (-12 (|HasCategory| (-680) (QUOTE (-344))) (|HasCategory| (-680) (QUOTE (-896))))) (-2318 (-12 (|HasCategory| (-680) (QUOTE (-296))) (|HasCategory| (-680) (QUOTE (-896)))) (-12 (|HasCategory| (-680) (QUOTE (-359))) (|HasCategory| (-680) (QUOTE (-896)))) (-12 (|HasCategory| (-680) (QUOTE (-344))) (|HasCategory| (-680) (QUOTE (-896))))) (-2318 (-12 (|HasCategory| (-680) (QUOTE (-296))) (|HasCategory| (-680) (QUOTE (-896)))) (|HasCategory| (-680) (QUOTE (-359)))) (-2318 (-12 (|HasCategory| (-680) (QUOTE (-296))) (|HasCategory| (-680) (QUOTE (-896)))) (|HasCategory| (-680) (QUOTE (-550)))) (-2318 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-680) (QUOTE (-296))) (|HasCategory| (-680) (QUOTE (-896)))) (|HasCategory| (-680) (QUOTE (-146)))) (-2318 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-680) (QUOTE (-296))) (|HasCategory| (-680) (QUOTE (-896)))) (|HasCategory| (-680) (QUOTE (-344))))) -(-676 S) +((-4512 . T) (-4517 |has| (-688) (-365)) (-4511 |has| (-688) (-365)) (-4003 . T) (-4518 |has| (-688) (-6 -4518)) (-4515 |has| (-688) (-6 -4515)) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) +((|HasCategory| (-688) (QUOTE (-150))) (|HasCategory| (-688) (QUOTE (-148))) (|HasCategory| (-688) (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| (-688) (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| (-688) (QUOTE (-370))) (|HasCategory| (-688) (QUOTE (-365))) (|HasCategory| (-688) (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| (-688) (QUOTE (-225))) (|HasCategory| (-688) (QUOTE (-350))) (-2198 (|HasCategory| (-688) (QUOTE (-365))) (|HasCategory| (-688) (QUOTE (-350)))) (|HasCategory| (-688) (LIST (QUOTE -281) (QUOTE (-688)) (QUOTE (-688)))) (|HasCategory| (-688) (LIST (QUOTE -303) (QUOTE (-688)))) (|HasCategory| (-688) (LIST (QUOTE -523) (QUOTE (-1161)) (QUOTE (-688)))) (|HasCategory| (-688) (LIST (QUOTE -881) (QUOTE (-381)))) (|HasCategory| (-688) (LIST (QUOTE -881) (QUOTE (-568)))) (|HasCategory| (-688) (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-568))))) (|HasCategory| (-688) (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-381))))) (|HasCategory| (-688) (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| (-688) (QUOTE (-1021))) (|HasCategory| (-688) (QUOTE (-1181))) (-12 (|HasCategory| (-688) (QUOTE (-1002))) (|HasCategory| (-688) (QUOTE (-1181)))) (|HasCategory| (-688) (QUOTE (-550))) (|HasCategory| (-688) (QUOTE (-1056))) (-12 (|HasCategory| (-688) (QUOTE (-1056))) (|HasCategory| (-688) (QUOTE (-1181)))) (-2198 (|HasCategory| (-688) (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| (-688) (QUOTE (-365)))) (|HasCategory| (-688) (QUOTE (-301))) (-2198 (|HasCategory| (-688) (QUOTE (-301))) (|HasCategory| (-688) (QUOTE (-365))) (|HasCategory| (-688) (QUOTE (-350)))) (|HasCategory| (-688) (QUOTE (-904))) (-12 (|HasCategory| (-688) (QUOTE (-225))) (|HasCategory| (-688) (QUOTE (-365)))) (-12 (|HasCategory| (-688) (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| (-688) (QUOTE (-365)))) (|HasCategory| (-688) (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| (-688) (QUOTE (-842))) (|HasCategory| (-688) (QUOTE (-558))) (|HasAttribute| (-688) (QUOTE -4518)) (|HasAttribute| (-688) (QUOTE -4515)) (-12 (|HasCategory| (-688) (QUOTE (-301))) (|HasCategory| (-688) (QUOTE (-904)))) (-2198 (-12 (|HasCategory| (-688) (QUOTE (-301))) (|HasCategory| (-688) (QUOTE (-904)))) (|HasCategory| (-688) (QUOTE (-365))) (-12 (|HasCategory| (-688) (QUOTE (-350))) (|HasCategory| (-688) (QUOTE (-904))))) (-2198 (-12 (|HasCategory| (-688) (QUOTE (-301))) (|HasCategory| (-688) (QUOTE (-904)))) (-12 (|HasCategory| (-688) (QUOTE (-365))) (|HasCategory| (-688) (QUOTE (-904)))) (-12 (|HasCategory| (-688) (QUOTE (-350))) (|HasCategory| (-688) (QUOTE (-904))))) (-2198 (-12 (|HasCategory| (-688) (QUOTE (-301))) (|HasCategory| (-688) (QUOTE (-904)))) (|HasCategory| (-688) (QUOTE (-365)))) (-2198 (-12 (|HasCategory| (-688) (QUOTE (-301))) (|HasCategory| (-688) (QUOTE (-904)))) (|HasCategory| (-688) (QUOTE (-558)))) (-2198 (-12 (|HasCategory| $ (QUOTE (-148))) (|HasCategory| (-688) (QUOTE (-301))) (|HasCategory| (-688) (QUOTE (-904)))) (|HasCategory| (-688) (QUOTE (-148)))) (-2198 (-12 (|HasCategory| $ (QUOTE (-148))) (|HasCategory| (-688) (QUOTE (-301))) (|HasCategory| (-688) (QUOTE (-904)))) (|HasCategory| (-688) (QUOTE (-350))))) +(-684 S) ((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,{}d,{}n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}."))) -((-4506 . T) (-2537 . T)) +((-4520 . T) (-3973 . T)) NIL -(-677 U) +(-685 U) ((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,{}n,{}g,{}p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl,{} p)} refines the distinct degree factorization produced by ddFact to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,{}p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,{}p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,{}p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,{}f2,{}p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}."))) NIL NIL -(-678) +(-686) ((|constructor| (NIL "This package has no description")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,{}b,{}c,{}d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,{}t,{}u,{}f,{}s1,{}l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,{}g,{}s1,{}s2,{}l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,{}f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}g,{}h,{}j,{}s1,{}s2,{}l)} \\undocumented"))) NIL NIL -(-679 OV E -1333 PG) +(-687 OV E -1478 PG) ((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field."))) NIL NIL -(-680) +(-688) ((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,{}man,{}base)} is not documented")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}"))) -((-2550 . T) (-4497 . T) (-4503 . T) (-4498 . T) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) +((-3996 . T) (-4511 . T) (-4517 . T) (-4512 . T) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) NIL -(-681 R) +(-689 R) ((|constructor| (NIL "Modular hermitian row reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m,{} d,{} p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,{}p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m,{} d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus."))) NIL NIL -(-682) +(-690) ((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}"))) -((-4504 . T) (-4503 . T) (-4498 . T) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) +((-4518 . T) (-4517 . T) (-4512 . T) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) NIL -(-683 S D1 D2 I) +(-691 S D1 D2 I) ((|constructor| (NIL "Tools and transforms for making compiled functions from top-level expressions")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,{}x,{}y)} returns a function \\spad{f: (D1,{} D2) -> I} defined by \\spad{f(x,{} y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1,{} D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function"))) NIL NIL -(-684 S) +(-692 S) ((|constructor| (NIL "MakeCachableSet(\\spad{S}) returns a cachable set which is equal to \\spad{S} as a set.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} returns \\spad{s} viewed as an element of \\%."))) NIL NIL -(-685 S) +(-693 S) ((|constructor| (NIL "Tools for making compiled functions from top-level expressions MakeFloatCompiledFunction transforms top-level objects into compiled Lisp functions whose arguments are Lisp floats. This by-passes the \\Language{} compiler and interpreter,{} thereby gaining several orders of magnitude.")) (|makeFloatFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|) (|Symbol|)) "\\spad{makeFloatFunction(expr,{} x,{} y)} returns a Lisp function \\spad{f: (\\axiomType{DoubleFloat},{} \\axiomType{DoubleFloat}) -> \\axiomType{DoubleFloat}} defined by \\spad{f(x,{} y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(\\axiomType{DoubleFloat},{} \\axiomType{DoubleFloat})}.") (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|)) "\\spad{makeFloatFunction(expr,{} x)} returns a Lisp function \\spad{f: \\axiomType{DoubleFloat} -> \\axiomType{DoubleFloat}} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\axiomType{DoubleFloat}."))) NIL NIL -(-686 S) +(-694 S) ((|constructor| (NIL "Tools for making interpreter functions from top-level expressions Transforms top-level objects into interpreter functions.")) (|function| (((|Symbol|) |#1| (|Symbol|) (|List| (|Symbol|))) "\\spad{function(e,{} foo,{} [x1,{}...,{}xn])} creates a function \\spad{foo(x1,{}...,{}xn) == e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|) (|Symbol|)) "\\spad{function(e,{} foo,{} x,{} y)} creates a function \\spad{foo(x,{} y) = e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|)) "\\spad{function(e,{} foo,{} x)} creates a function \\spad{foo(x) == e}.") (((|Symbol|) |#1| (|Symbol|)) "\\spad{function(e,{} foo)} creates a function \\spad{foo() == e}."))) NIL NIL -(-687 S T$) +(-695 S T$) ((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,{}b)} creates a record object with type Record(part1:S,{} part2:R),{} where \\spad{part1} is \\spad{a} and \\spad{part2} is \\spad{b}."))) NIL NIL -(-688 S -2500 I) +(-696 S -3190 I) ((|constructor| (NIL "Tools for making compiled functions from top-level expressions Transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr,{} x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function"))) NIL NIL -(-689 E OV R P) +(-697 E OV R P) ((|constructor| (NIL "This package provides the functions for the multivariate \"lifting\",{} using an algorithm of Paul Wang. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|lifting1| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|List| |#4|) (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#4|)))) (|List| (|NonNegativeInteger|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{lifting1(u,{}lv,{}lu,{}lr,{}lp,{}lt,{}ln,{}t,{}r)} \\undocumented")) (|lifting| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#3|)) (|List| |#3|) (|List| |#4|) (|List| (|NonNegativeInteger|)) |#3|) "\\spad{lifting(u,{}lv,{}lu,{}lr,{}lp,{}ln,{}r)} \\undocumented")) (|corrPoly| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|) (|List| (|NonNegativeInteger|)) (|List| (|SparseUnivariatePolynomial| |#4|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{corrPoly(u,{}lv,{}lr,{}ln,{}lu,{}t,{}r)} \\undocumented"))) NIL NIL -(-690 R) +(-698 R) ((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,{}1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\spad{sum(a(i)*G**i,{} i = 0..n)} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\^= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\^= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) -((-4499 . T) (-4500 . T) (-4502 . T)) +((-4513 . T) (-4514 . T) (-4516 . T)) NIL -(-691 R1 UP1 UPUP1 R2 UP2 UPUP2) +(-699 R1 UP1 UPUP1 R2 UP2 UPUP2) ((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f,{} p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}."))) NIL NIL -(-692) +(-700) ((|constructor| (NIL "This package is based on the TeXFormat domain by Robert \\spad{S}. Sutor \\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format."))) NIL NIL -(-693 R |Mod| -2512 -2492 |exactQuo|) +(-701 R |Mod| -3627 -1347 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} is not documented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} is not documented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} is not documented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} is not documented"))) -((-4497 . T) (-4503 . T) (-4498 . T) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) +((-4511 . T) (-4517 . T) (-4512 . T) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) NIL -(-694 R |Rep|) +(-702 R |Rep|) ((|constructor| (NIL "This package has not been documented")) (|frobenius| (($ $) "\\spad{frobenius(x)} is not documented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} is not documented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} is not documented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} is not documented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} is not documented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} is not documented")) (|coerce| (($ |#2|) "\\spad{coerce(x)} is not documented")) (|lift| ((|#2| $) "\\spad{lift(x)} is not documented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} is not documented")) (|modulus| ((|#2|) "\\spad{modulus()} is not documented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} is not documented"))) -(((-4507 "*") |has| |#1| (-170)) (-4498 |has| |#1| (-550)) (-4501 |has| |#1| (-359)) (-4503 |has| |#1| (-6 -4503)) (-4500 . T) (-4499 . T) (-4502 . T)) -((|HasCategory| |#1| (QUOTE (-896))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-170))) (-2318 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| (-1067) (LIST (QUOTE -873) (QUOTE (-375)))) (|HasCategory| |#1| (LIST (QUOTE -873) (QUOTE (-375))))) (-12 (|HasCategory| (-1067) (LIST (QUOTE -873) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -873) (QUOTE (-560))))) (-12 (|HasCategory| (-1067) (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-375))))) (|HasCategory| |#1| (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-375)))))) (-12 (|HasCategory| (-1067) (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-560)))))) (-12 (|HasCategory| (-1067) (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-533))))) (|HasCategory| |#1| (QUOTE (-834))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-1128))) (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#1| (QUOTE (-364))) (|HasCategory| |#1| (QUOTE (-344))) (-2318 (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560)))))) (|HasCategory| |#1| (QUOTE (-221))) (|HasAttribute| |#1| (QUOTE -4503)) (|HasCategory| |#1| (QUOTE (-447))) (-2318 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-447))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-896)))) (-2318 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-447))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-896)))) (-2318 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-447))) (|HasCategory| |#1| (QUOTE (-896)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-896)))) (-2318 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-896)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-695 IS E |ff|) +(((-4521 "*") |has| |#1| (-172)) (-4512 |has| |#1| (-558)) (-4515 |has| |#1| (-365)) (-4517 |has| |#1| (-6 -4517)) (-4514 . T) (-4513 . T) (-4516 . T)) +((|HasCategory| |#1| (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2198 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -881) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-381))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -881) (QUOTE (-568)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-568))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-381)))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-568))))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-568)))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-541))))) (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-150))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#1| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1136))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-350))) (-2198 (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568)))))) (|HasCategory| |#1| (QUOTE (-225))) (|HasAttribute| |#1| (QUOTE -4517)) (|HasCategory| |#1| (QUOTE (-453))) (-2198 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-904)))) (-2198 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-904)))) (-2198 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-904)))) (-12 (|HasCategory| $ (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-904)))) (-2198 (-12 (|HasCategory| $ (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-148))))) +(-703 IS E |ff|) ((|constructor| (NIL "This package has no documentation")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,{}e)} is not documented")) (|coerce| (((|Record| (|:| |index| |#1|) (|:| |exponent| |#2|)) $) "\\spad{coerce(x)} is not documented") (($ (|Record| (|:| |index| |#1|) (|:| |exponent| |#2|))) "\\spad{coerce(x)} is not documented")) (|index| ((|#1| $) "\\spad{index(x)} is not documented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} is not documented"))) NIL NIL -(-696 R M) +(-704 R M) ((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} is not documented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} is not documented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,{}f)} is not documented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f,{} u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1,{} op2)} sets the adjoint of \\spad{op1} to be \\spad{op2}. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}."))) -((-4500 |has| |#1| (-170)) (-4499 |has| |#1| (-170)) (-4502 . T)) -((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148)))) -(-697 R |Mod| -2512 -2492 |exactQuo|) +((-4514 |has| |#1| (-172)) (-4513 |has| |#1| (-172)) (-4516 . T)) +((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-150)))) +(-705 R |Mod| -3627 -1347 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} is not documented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} is not documented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} is not documented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} is not documented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} is not documented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} is not documented"))) -((-4502 . T)) +((-4516 . T)) NIL -(-698 S R) +(-706 S R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline Axioms\\spad{\\br} \\tab{5}\\spad{1*x = x}\\spad{\\br} \\tab{5}\\spad{(a*b)*x = a*(b*x)}\\spad{\\br} \\tab{5}\\spad{(a+b)*x = (a*x)+(b*x)}\\spad{\\br} \\tab{5}\\spad{a*(x+y) = (a*x)+(a*y)}"))) NIL NIL -(-699 R) +(-707 R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline Axioms\\spad{\\br} \\tab{5}\\spad{1*x = x}\\spad{\\br} \\tab{5}\\spad{(a*b)*x = a*(b*x)}\\spad{\\br} \\tab{5}\\spad{(a+b)*x = (a*x)+(b*x)}\\spad{\\br} \\tab{5}\\spad{a*(x+y) = (a*x)+(a*y)}"))) -((-4500 . T) (-4499 . T)) +((-4514 . T) (-4513 . T)) NIL -(-700 -1333) +(-708 -1478) ((|constructor| (NIL "MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius) transformations over \\spad{F}. This a domain of 2-by-2 matrices acting on \\spad{P1}(\\spad{F}).")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see moebius from MoebiusTransform).") ((|#1| $ |#1|) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see moebius from MoebiusTransform).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,{}1],{}[1,{}0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,{}h)} returns \\spad{scale(h) * m} (see shift from MoebiusTransform).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,{}0],{}[0,{}1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,{}h)} returns \\spad{shift(h) * m} (see shift from MoebiusTransform).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,{}k],{}[0,{}1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,{}b,{}c,{}d)} returns \\spad{matrix [[a,{}b],{}[c,{}d]]}."))) -((-4502 . T)) +((-4516 . T)) NIL -(-701 S) +(-709 S) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-702) +(-710) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-703 S) +(-711 S) ((|constructor| (NIL "MonadWithUnit is the class of multiplicative monads with unit,{} \\spadignore{i.e.} sets with a binary operation and a unit element. \\blankline Axioms\\spad{\\br} \\tab{5}leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1) \\spadignore{e.g.} 1*x=x\\spad{\\br} \\tab{5}rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1) \\spad{e}.\\spad{g} x*1=x \\blankline Common Additional Axioms\\spad{\\br} \\tab{5}unitsKnown - if \"recip\" says \"failed\",{} it PROVES input wasn\\spad{'t} a unit")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-704) +(-712) ((|constructor| (NIL "MonadWithUnit is the class of multiplicative monads with unit,{} \\spadignore{i.e.} sets with a binary operation and a unit element. \\blankline Axioms\\spad{\\br} \\tab{5}leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1) \\spadignore{e.g.} 1*x=x\\spad{\\br} \\tab{5}rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1) \\spad{e}.\\spad{g} x*1=x \\blankline Common Additional Axioms\\spad{\\br} \\tab{5}unitsKnown - if \"recip\" says \"failed\",{} it PROVES input wasn\\spad{'t} a unit")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-705 S R UP) +(-713 S R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#2|) (|Vector| $) (|Mapping| |#2| |#2|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#3| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#3|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#3|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#3|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#3|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) NIL -((|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-359))) (|HasCategory| |#2| (QUOTE (-364)))) -(-706 R UP) +((|HasCategory| |#2| (QUOTE (-350))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-370)))) +(-714 R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) -((-4498 |has| |#1| (-359)) (-4503 |has| |#1| (-359)) (-4497 |has| |#1| (-359)) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) +((-4512 |has| |#1| (-365)) (-4517 |has| |#1| (-365)) (-4511 |has| |#1| (-365)) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) NIL -(-707 S) +(-715 S) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline Axioms\\spad{\\br} \\tab{5}\\spad{leftIdentity(\"*\":(\\%,{}\\%)->\\%,{}1)}\\tab{5}\\spad{1*x=x}\\spad{\\br} \\tab{5}\\spad{rightIdentity(\"*\":(\\%,{}\\%)->\\%,{}1)}\\tab{4}\\spad{x*1=x} \\blankline Conditional attributes\\spad{\\br} \\tab{5}unitsKnown - \\spadfun{recip} only returns \"failed\" on non-units")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (^ (($ $ (|NonNegativeInteger|)) "\\spad{x^n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-708) +(-716) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline Axioms\\spad{\\br} \\tab{5}\\spad{leftIdentity(\"*\":(\\%,{}\\%)->\\%,{}1)}\\tab{5}\\spad{1*x=x}\\spad{\\br} \\tab{5}\\spad{rightIdentity(\"*\":(\\%,{}\\%)->\\%,{}1)}\\tab{4}\\spad{x*1=x} \\blankline Conditional attributes\\spad{\\br} \\tab{5}unitsKnown - \\spadfun{recip} only returns \"failed\" on non-units")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (^ (($ $ (|NonNegativeInteger|)) "\\spad{x^n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-709 -1333 UP) +(-717 -1478 UP) ((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f,{} D)} returns \\spad{[p,{}n,{}s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f,{} D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p,{} D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m,{} s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p,{} D)} returns \\spad{[n,{}s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use."))) NIL NIL -(-710 |VarSet| -3306 E2 R S PR PS) +(-718 |VarSet| -1993 E2 R S PR PS) ((|constructor| (NIL "Utilities for MPolyCat")) (|reshape| ((|#7| (|List| |#5|) |#6|) "\\spad{reshape(l,{}p)} \\undocumented")) (|map| ((|#7| (|Mapping| |#5| |#4|) |#6|) "\\spad{map(f,{}p)} \\undocumented"))) NIL NIL -(-711 |Vars1| |Vars2| -3306 E2 R PR1 PR2) +(-719 |Vars1| |Vars2| -1993 E2 R PR1 PR2) ((|constructor| (NIL "This package has no description")) (|map| ((|#7| (|Mapping| |#2| |#1|) |#6|) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-712 E OV R PPR) +(-720 E OV R PPR) ((|constructor| (NIL "This package exports a factor operation for multivariate polynomials with coefficients which are polynomials over some ring \\spad{R} over which we can factor. It is used internally by packages such as the solve package which need to work with polynomials in a specific set of variables with coefficients which are polynomials in all the other variables.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors a polynomial with polynomial coefficients.")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-713 |vl| R) +(-721 |vl| R) ((|constructor| (NIL "This type is the basic representation of sparse recursive multivariate polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute."))) -(((-4507 "*") |has| |#2| (-170)) (-4498 |has| |#2| (-550)) (-4503 |has| |#2| (-6 -4503)) (-4500 . T) (-4499 . T) (-4502 . T)) -((|HasCategory| |#2| (QUOTE (-896))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-170))) (-2318 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-550)))) (-12 (|HasCategory| (-844 |#1|) (LIST (QUOTE -873) (QUOTE (-375)))) (|HasCategory| |#2| (LIST (QUOTE -873) (QUOTE (-375))))) (-12 (|HasCategory| (-844 |#1|) (LIST (QUOTE -873) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -873) (QUOTE (-560))))) (-12 (|HasCategory| (-844 |#1|) (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-375))))) (|HasCategory| |#2| (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-375)))))) (-12 (|HasCategory| (-844 |#1|) (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-560)))))) (-12 (|HasCategory| (-844 |#1|) (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-533))))) (|HasCategory| |#2| (QUOTE (-834))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-359))) (-2318 (|HasCategory| |#2| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560)))))) (|HasAttribute| |#2| (QUOTE -4503)) (|HasCategory| |#2| (QUOTE (-447))) (-2318 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-447))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-896)))) (-2318 (|HasCategory| |#2| (QUOTE (-447))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-896)))) (-2318 (|HasCategory| |#2| (QUOTE (-447))) (|HasCategory| |#2| (QUOTE (-896)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-896)))) (-2318 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-896)))) (|HasCategory| |#2| (QUOTE (-146))))) -(-714 E OV R PRF) +(((-4521 "*") |has| |#2| (-172)) (-4512 |has| |#2| (-558)) (-4517 |has| |#2| (-6 -4517)) (-4514 . T) (-4513 . T) (-4516 . T)) +((|HasCategory| |#2| (QUOTE (-904))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-172))) (-2198 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-558)))) (-12 (|HasCategory| (-852 |#1|) (LIST (QUOTE -881) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-381))))) (-12 (|HasCategory| (-852 |#1|) (LIST (QUOTE -881) (QUOTE (-568)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-568))))) (-12 (|HasCategory| (-852 |#1|) (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-381)))))) (-12 (|HasCategory| (-852 |#1|) (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-568))))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-568)))))) (-12 (|HasCategory| (-852 |#1|) (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-541))))) (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#2| (QUOTE (-150))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#2| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#2| (QUOTE (-365))) (-2198 (|HasCategory| |#2| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#2| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568)))))) (|HasAttribute| |#2| (QUOTE -4517)) (|HasCategory| |#2| (QUOTE (-453))) (-2198 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-453))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-904)))) (-2198 (|HasCategory| |#2| (QUOTE (-453))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-904)))) (-2198 (|HasCategory| |#2| (QUOTE (-453))) (|HasCategory| |#2| (QUOTE (-904)))) (-12 (|HasCategory| $ (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-904)))) (-2198 (-12 (|HasCategory| $ (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-904)))) (|HasCategory| |#2| (QUOTE (-148))))) +(-722 E OV R PRF) ((|constructor| (NIL "This package exports a factor operation for multivariate polynomials with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,{}var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,{}var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,{}var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-715 E OV R P) +(-723 E OV R P) ((|constructor| (NIL "MRationalFactorize contains the factor function for multivariate polynomials over the quotient field of a ring \\spad{R} such that the package MultivariateFactorize can factor multivariate polynomials over \\spad{R}.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} with coefficients which are fractions of elements of \\spad{R}."))) NIL NIL -(-716 R S M) +(-724 R S M) ((|constructor| (NIL "\\spad{MonoidRingFunctions2} implements functions between two monoid rings defined with the same monoid over different rings.")) (|map| (((|MonoidRing| |#2| |#3|) (|Mapping| |#2| |#1|) (|MonoidRing| |#1| |#3|)) "\\spad{map(f,{}u)} maps \\spad{f} onto the coefficients \\spad{f} the element \\spad{u} of the monoid ring to create an element of a monoid ring with the same monoid \\spad{b}."))) NIL NIL -(-717 R M) +(-725 R M) ((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over \\spad{f}(a)\\spad{g}(\\spad{b}) such that ab = \\spad{c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,{}m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}m)} creates a scalar multiple of the basis element \\spad{m}."))) -((-4500 |has| |#1| (-170)) (-4499 |has| |#1| (-170)) (-4502 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-364))) (|HasCategory| |#2| (QUOTE (-364)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-834)))) -(-718 S) +((-4514 |has| |#1| (-172)) (-4513 |has| |#1| (-172)) (-4516 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-150))) (|HasCategory| |#2| (QUOTE (-842)))) +(-726 S) ((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements."))) -((-4495 . T) (-4506 . T) (-2537 . T)) +((-4509 . T) (-4520 . T) (-3973 . T)) NIL -(-719 S) +(-727 S) ((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,{}ms,{}number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,{}ms,{}number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,{}ms,{}number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,{}ms,{}number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} without their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}."))) -((-4505 . T) (-4495 . T) (-4506 . T)) -((|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-1082))) (-12 (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1082))))) -(-720) +((-4519 . T) (-4509 . T) (-4520 . T)) +((|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-1090))) (-12 (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1090))))) +(-728) ((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} the \"what\" commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned."))) NIL NIL -(-721 S) +(-729 S) ((|constructor| (NIL "This package exports tools for merging lists")) (|mergeDifference| (((|List| |#1|) (|List| |#1|) (|List| |#1|)) "\\spad{mergeDifference(l1,{}l2)} returns a list of elements in \\spad{l1} not present in \\spad{l2}. Assumes lists are ordered and all \\spad{x} in \\spad{l2} are also in \\spad{l1}."))) NIL NIL -(-722 |Coef| |Var|) +(-730 |Coef| |Var|) ((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,{}x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,{}x,{}n)} returns \\spad{min(n,{}order(f,{}x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,{}x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,{}x,{}n)} returns the coefficient of \\spad{x^n} in \\spad{f}."))) -(((-4507 "*") |has| |#1| (-170)) (-4498 |has| |#1| (-550)) (-4500 . T) (-4499 . T) (-4502 . T)) +(((-4521 "*") |has| |#1| (-172)) (-4512 |has| |#1| (-558)) (-4514 . T) (-4513 . T) (-4516 . T)) NIL -(-723 OV E R P) +(-731 OV E R P) ((|constructor| (NIL "This is the top level package for doing multivariate factorization over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain"))) NIL NIL -(-724 E OV R P) +(-732 E OV R P) ((|constructor| (NIL "This package provides the functions for the computation of the square free decomposition of a multivariate polynomial. It uses the package GenExEuclid for the resolution of the equation \\spad{Af + Bg = h} and its generalization to \\spad{n} polynomials over an integral domain and the package \\spad{MultivariateLifting} for the \"multivariate\" lifting.")) (|normDeriv2| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{normDeriv2 should} be local")) (|myDegree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|NonNegativeInteger|)) "\\spad{myDegree should} be local")) (|lift| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) |#4| (|List| |#2|) (|List| (|NonNegativeInteger|)) (|List| |#3|)) "\\spad{lift should} be local")) (|check| (((|Boolean|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|)))) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{check should} be local")) (|coefChoose| ((|#4| (|Integer|) (|Factored| |#4|)) "\\spad{coefChoose should} be local")) (|intChoose| (((|Record| (|:| |upol| (|SparseUnivariatePolynomial| |#3|)) (|:| |Lval| (|List| |#3|)) (|:| |Lfact| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) (|:| |ctpol| |#3|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{intChoose should} be local")) (|nsqfree| (((|Record| (|:| |unitPart| |#4|) (|:| |suPart| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#4|)) (|:| |exponent| (|Integer|)))))) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{nsqfree should} be local")) (|consnewpol| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#4|)) (|:| |polval| (|SparseUnivariatePolynomial| |#3|))) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{consnewpol should} be local")) (|univcase| (((|Factored| |#4|) |#4| |#2|) "\\spad{univcase should} be local")) (|compdegd| (((|Integer|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{compdegd should} be local")) (|squareFreePrim| (((|Factored| |#4|) |#4|) "\\spad{squareFreePrim(p)} compute the square free decomposition of a primitive multivariate polynomial \\spad{p}.")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p} presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p}."))) NIL NIL -(-725 |q| R) +(-733 |q| R) ((|constructor| (NIL "This domain has no description"))) -((-4503 |has| |#2| (-550)) (-4497 |has| |#2| (-550)) (-4502 -2318 (|has| |#2| (-471)) (|has| |#2| (-1039))) (-4500 |has| |#2| (-170)) (-4499 |has| |#2| (-170)) ((-4507 "*") |has| |#2| (-550)) (-4498 |has| |#2| (-550))) -((|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-471))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| |#2| (LIST (QUOTE -873) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -873) (QUOTE (-375)))) (|HasCategory| |#2| (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-375))))) (|HasCategory| |#2| (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-560))))) (-2318 (|HasCategory| |#2| (QUOTE (-471))) (|HasCategory| |#2| (QUOTE (-550)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1039)))) (-2318 (|HasCategory| |#2| (QUOTE (-471))) (|HasCategory| |#2| (QUOTE (-1039)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (-2318 (|HasCategory| |#2| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-560)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-550)))) (-2318 (|HasCategory| |#2| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-550))))) (|HasCategory| $ (QUOTE (-1039))) (|HasCategory| $ (LIST (QUOTE -1029) (QUOTE (-560))))) -(-726 |x| R) +((-4517 |has| |#2| (-558)) (-4511 |has| |#2| (-558)) (-4516 -2198 (|has| |#2| (-478)) (|has| |#2| (-1047))) (-4514 |has| |#2| (-172)) (-4513 |has| |#2| (-172)) ((-4521 "*") |has| |#2| (-558)) (-4512 |has| |#2| (-558))) +((|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-150))) (|HasCategory| |#2| (QUOTE (-1047))) (|HasCategory| |#2| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#2| (QUOTE (-478))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-568)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-568))))) (-2198 (|HasCategory| |#2| (QUOTE (-478))) (|HasCategory| |#2| (QUOTE (-558)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#2| (QUOTE (-1047)))) (-2198 (|HasCategory| |#2| (QUOTE (-478))) (|HasCategory| |#2| (QUOTE (-1047)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (-2198 (|HasCategory| |#2| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#2| (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-568)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#2| (QUOTE (-558)))) (-2198 (|HasCategory| |#2| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#2| (QUOTE (-558))))) (|HasCategory| $ (QUOTE (-1047))) (|HasCategory| $ (LIST (QUOTE -1037) (QUOTE (-568))))) +(-734 |x| R) ((|constructor| (NIL "This domain has no description")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{x} : \\spad{p1} - \\spad{r} * x**e * \\spad{p2}")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} converts the variable \\spad{x} to a univariate polynomial."))) -(((-4507 "*") |has| |#2| (-170)) (-4498 |has| |#2| (-550)) (-4501 |has| |#2| (-359)) (-4503 |has| |#2| (-6 -4503)) (-4500 . T) (-4499 . T) (-4502 . T)) -((|HasCategory| |#2| (QUOTE (-896))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-170))) (-2318 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-550)))) (-12 (|HasCategory| (-1067) (LIST (QUOTE -873) (QUOTE (-375)))) (|HasCategory| |#2| (LIST (QUOTE -873) (QUOTE (-375))))) (-12 (|HasCategory| (-1067) (LIST (QUOTE -873) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -873) (QUOTE (-560))))) (-12 (|HasCategory| (-1067) (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-375))))) (|HasCategory| |#2| (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-375)))))) (-12 (|HasCategory| (-1067) (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-560)))))) (-12 (|HasCategory| (-1067) (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-533))))) (|HasCategory| |#2| (QUOTE (-834))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-359))) (|HasCategory| |#2| (QUOTE (-1128))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-1153)))) (-2318 (|HasCategory| |#2| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560)))))) (|HasCategory| |#2| (QUOTE (-221))) (|HasAttribute| |#2| (QUOTE -4503)) (|HasCategory| |#2| (QUOTE (-447))) (-2318 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-359))) (|HasCategory| |#2| (QUOTE (-447))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-896)))) (-2318 (|HasCategory| |#2| (QUOTE (-359))) (|HasCategory| |#2| (QUOTE (-447))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-896)))) (-2318 (|HasCategory| |#2| (QUOTE (-359))) (|HasCategory| |#2| (QUOTE (-447))) (|HasCategory| |#2| (QUOTE (-896)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-896)))) (-2318 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-896)))) (|HasCategory| |#2| (QUOTE (-146))))) -(-727 S R) +(((-4521 "*") |has| |#2| (-172)) (-4512 |has| |#2| (-558)) (-4515 |has| |#2| (-365)) (-4517 |has| |#2| (-6 -4517)) (-4514 . T) (-4513 . T) (-4516 . T)) +((|HasCategory| |#2| (QUOTE (-904))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-172))) (-2198 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-558)))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -881) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-381))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -881) (QUOTE (-568)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-568))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-381)))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-568))))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-568)))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-541))))) (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#2| (QUOTE (-150))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#2| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1136))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1161)))) (-2198 (|HasCategory| |#2| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#2| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568)))))) (|HasCategory| |#2| (QUOTE (-225))) (|HasAttribute| |#2| (QUOTE -4517)) (|HasCategory| |#2| (QUOTE (-453))) (-2198 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-453))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-904)))) (-2198 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-453))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-904)))) (-2198 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-453))) (|HasCategory| |#2| (QUOTE (-904)))) (-12 (|HasCategory| $ (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-904)))) (-2198 (-12 (|HasCategory| $ (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-904)))) (|HasCategory| |#2| (QUOTE (-148))))) +(-735 S R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs).\\spad{\\br} \\blankline Axioms\\spad{\\br} \\tab{5}\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,{}n)} is recursively defined to be \\spad{plenaryPower(a,{}n-1)*plenaryPower(a,{}n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) NIL NIL -(-728 R) +(-736 R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs).\\spad{\\br} \\blankline Axioms\\spad{\\br} \\tab{5}\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,{}n)} is recursively defined to be \\spad{plenaryPower(a,{}n-1)*plenaryPower(a,{}n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) -((-4500 . T) (-4499 . T)) +((-4514 . T) (-4513 . T)) NIL -(-729) +(-737) ((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,{}n,{}scale,{}ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,{}n,{}scale,{}ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}."))) NIL NIL -(-730) +(-738) ((|constructor| (NIL "This package uses the NAG Library to calculate real zeros of continuous real functions of one or more variables. (Complex equations must be expressed in terms of the equivalent larger system of real equations.)")) (|c05pbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp35| FCN)))) "\\spad{c05pbf(n,{}ldfjac,{}lwa,{}x,{}xtol,{}ifail,{}fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. The user must provide the Jacobian. See \\downlink{Manual Page}{manpageXXc05pbf}.")) (|c05nbf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp6| FCN)))) "\\spad{c05nbf(n,{}lwa,{}x,{}xtol,{}ifail,{}fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. See \\downlink{Manual Page}{manpageXXc05nbf}.")) (|c05adf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{c05adf(a,{}b,{}eps,{}eta,{}ifail,{}f)} locates a zero of a continuous function in a given interval by a combination of the methods of linear interpolation,{} extrapolation and bisection. See \\downlink{Manual Page}{manpageXXc05adf}."))) NIL NIL -(-731) +(-739) ((|constructor| (NIL "This package uses the NAG Library to calculate the discrete Fourier transform of a sequence of real or complex data values,{} and applies it to calculate convolutions and correlations.")) (|c06gsf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gsf(m,{}n,{}x,{}ifail)} takes \\spad{m} Hermitian sequences,{} each containing \\spad{n} data values,{} and forms the real and imaginary parts of the \\spad{m} corresponding complex sequences. See \\downlink{Manual Page}{manpageXXc06gsf}.")) (|c06gqf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gqf(m,{}n,{}x,{}ifail)} forms the complex conjugates,{} each containing \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gqf}.")) (|c06gcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gcf(n,{}y,{}ifail)} forms the complex conjugate of a sequence of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gcf}.")) (|c06gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gbf(n,{}x,{}ifail)} forms the complex conjugate of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gbf}.")) (|c06fuf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fuf(m,{}n,{}init,{}x,{}y,{}trigm,{}trign,{}ifail)} computes the two-dimensional discrete Fourier transform of a bivariate sequence of complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fuf}.")) (|c06frf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06frf(m,{}n,{}init,{}x,{}y,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06frf}.")) (|c06fqf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fqf(m,{}n,{}init,{}x,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} Hermitian sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fqf}.")) (|c06fpf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fpf(m,{}n,{}init,{}x,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} real data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fpf}.")) (|c06ekf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ekf(job,{}n,{}x,{}y,{}ifail)} calculates the circular convolution of two real vectors of period \\spad{n}. No extra workspace is required. See \\downlink{Manual Page}{manpageXXc06ekf}.")) (|c06ecf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ecf(n,{}x,{}y,{}ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ecf}.")) (|c06ebf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ebf(n,{}x,{}ifail)} calculates the discrete Fourier transform of a Hermitian sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ebf}.")) (|c06eaf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06eaf(n,{}x,{}ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} real data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06eaf}."))) NIL NIL -(-732) +(-740) ((|constructor| (NIL "This package uses the NAG Library to calculate the numerical value of definite integrals in one or more dimensions and to evaluate weights and abscissae of integration rules.")) (|d01gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01gbf(ndim,{}a,{}b,{}maxcls,{}eps,{}lenwrk,{}mincls,{}wrkstr,{}ifail,{}functn)} returns an approximation to the integral of a function over a hyper-rectangular region,{} using a Monte Carlo method. An approximate relative error estimate is also returned. This routine is suitable for low accuracy work. See \\downlink{Manual Page}{manpageXXd01gbf}.")) (|d01gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|)) "\\spad{d01gaf(x,{}y,{}n,{}ifail)} integrates a function which is specified numerically at four or more points,{} over the whole of its specified range,{} using third-order finite-difference formulae with error estimates,{} according to a method due to Gill and Miller. See \\downlink{Manual Page}{manpageXXd01gaf}.")) (|d01fcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01fcf(ndim,{}a,{}b,{}maxpts,{}eps,{}lenwrk,{}minpts,{}ifail,{}functn)} attempts to evaluate a multi-dimensional integral (up to 15 dimensions),{} with constant and finite limits,{} to a specified relative accuracy,{} using an adaptive subdivision strategy. See \\downlink{Manual Page}{manpageXXd01fcf}.")) (|d01bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{d01bbf(a,{}b,{}itype,{}n,{}gtype,{}ifail)} returns the weight appropriate to a Gaussian quadrature. The formulae provided are Gauss-Legendre,{} Gauss-Rational,{} Gauss- Laguerre and Gauss-Hermite. See \\downlink{Manual Page}{manpageXXd01bbf}.")) (|d01asf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01asf(a,{}omega,{}key,{}epsabs,{}limlst,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}infty): See \\downlink{Manual Page}{manpageXXd01asf}.")) (|d01aqf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01aqf(a,{}b,{}c,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the Hilbert transform of a function \\spad{g}(\\spad{x}) over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01aqf}.")) (|d01apf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01apf(a,{}b,{}alfa,{}beta,{}key,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} is an adaptive integrator which calculates an approximation to the integral of a function \\spad{g}(\\spad{x})\\spad{w}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01apf}.")) (|d01anf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01anf(a,{}b,{}omega,{}key,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01anf}.")) (|d01amf| (((|Result|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01amf(bound,{}inf,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over an infinite or semi-infinite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01amf}.")) (|d01alf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01alf(a,{}b,{}npts,{}points,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is a general purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01alf}.")) (|d01akf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01akf(a,{}b,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is an adaptive integrator,{} especially suited to oscillating,{} non-singular integrands,{} which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01akf}.")) (|d01ajf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01ajf(a,{}b,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is a general-purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01ajf}."))) NIL NIL -(-733) +(-741) ((|constructor| (NIL "This package uses the NAG Library to calculate the numerical solution of ordinary differential equations. There are two main types of problem,{} those in which all boundary conditions are specified at one point (initial-value problems),{} and those in which the boundary conditions are distributed between two or more points (boundary- value problems and eigenvalue problems). Routines are available for initial-value problems,{} two-point boundary-value problems and Sturm-Liouville eigenvalue problems.")) (|d02raf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp41| FCN JACOBF JACEPS))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp42| G JACOBG JACGEP)))) "d02raf(\\spad{n},{}\\spad{mnp},{}numbeg,{}nummix,{}tol,{}init,{}iy,{}ijac,{}lwork,{} \\indented{7}{liwork,{}\\spad{np},{}\\spad{x},{}\\spad{y},{}deleps,{}ifail,{}\\spad{fcn},{}\\spad{g})} solves the two-point boundary-value problem with general boundary conditions for a system of ordinary differential equations,{} using a deferred correction technique and Newton iteration. See \\downlink{Manual Page}{manpageXXd02raf}.")) (|d02kef| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL))) (|FileName|) (|FileName|)) "d02kef(xpoint,{}\\spad{m},{}\\spad{k},{}tol,{}maxfun,{}match,{}elam,{}delam,{} \\indented{7}{hmax,{}maxit,{}ifail,{}coeffn,{}bdyval,{}monit,{}report)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. Files \\spad{monit} and \\spad{report} will be used to define the subroutines for the MONIT and REPORT arguments. See \\downlink{Manual Page}{manpageXXd02gbf}.") (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL)))) "d02kef(xpoint,{}\\spad{m},{}\\spad{k},{}tol,{}maxfun,{}match,{}elam,{}delam,{} \\indented{7}{hmax,{}maxit,{}ifail,{}coeffn,{}bdyval)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. ASP domains \\spad{Asp12} and \\spad{Asp33} are used to supply default subroutines for the MONIT and REPORT arguments via their \\axiomOp{outputAsFortran} operation.")) (|d02gbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp77| FCNF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp78| FCNG)))) "\\spad{d02gbf(a,{}b,{}n,{}tol,{}mnp,{}lw,{}liw,{}c,{}d,{}gam,{}x,{}np,{}ifail,{}fcnf,{}fcng)} solves a general linear two-point boundary value problem for a system of ordinary differential equations using a deferred correction technique. See \\downlink{Manual Page}{manpageXXd02gbf}.")) (|d02gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02gaf(u,{}v,{}n,{}a,{}b,{}tol,{}mnp,{}lw,{}liw,{}x,{}np,{}ifail,{}fcn)} solves the two-point boundary-value problem with assigned boundary values for a system of ordinary differential equations,{} using a deferred correction technique and a Newton iteration. See \\downlink{Manual Page}{manpageXXd02gaf}.")) (|d02ejf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp31| PEDERV))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02ejf(xend,{}m,{}n,{}relabs,{}iw,{}x,{}y,{}tol,{}ifail,{}g,{}fcn,{}pederv,{}output)} integrates a stiff system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a variable-order,{} variable-step method implementing the Backward Differentiation Formulae (\\spad{BDF}),{} until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02ejf}.")) (|d02cjf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|String|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02cjf(xend,{}m,{}n,{}tol,{}relabs,{}x,{}y,{}ifail,{}g,{}fcn,{}output)} integrates a system of first-order ordinary differential equations over a range with suitable initial conditions,{} using a variable-order,{} variable-step Adams method until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02cjf}.")) (|d02bhf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02bhf(xend,{}n,{}irelab,{}hmax,{}x,{}y,{}tol,{}ifail,{}g,{}fcn)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} until a user-specified function of the solution is zero. See \\downlink{Manual Page}{manpageXXd02bhf}.")) (|d02bbf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02bbf(xend,{}m,{}n,{}irelab,{}x,{}y,{}tol,{}ifail,{}fcn,{}output)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} and returns the solution at points specified by the user. See \\downlink{Manual Page}{manpageXXd02bbf}."))) NIL NIL -(-734) +(-742) ((|constructor| (NIL "This package uses the NAG Library to solve partial differential equations.")) (|d03faf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|ThreeDimensionalMatrix| (|DoubleFloat|)) (|Integer|)) "d03faf(\\spad{xs},{}\\spad{xf},{}\\spad{l},{}lbdcnd,{}bdxs,{}bdxf,{}\\spad{ys},{}\\spad{yf},{}\\spad{m},{}mbdcnd,{}bdys,{}bdyf,{}\\spad{zs},{} \\indented{7}{\\spad{zf},{}\\spad{n},{}nbdcnd,{}bdzs,{}bdzf,{}lambda,{}ldimf,{}mdimf,{}lwrk,{}\\spad{f},{}ifail)} solves the Helmholtz equation in Cartesian co-ordinates in three dimensions using the standard seven-point finite difference approximation. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXd03faf}.")) (|d03eef| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp73| PDEF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp74| BNDY)))) "\\spad{d03eef(xmin,{}xmax,{}ymin,{}ymax,{}ngx,{}ngy,{}lda,{}scheme,{}ifail,{}pdef,{}bndy)} discretizes a second order elliptic partial differential equation (PDE) on a rectangular region. See \\downlink{Manual Page}{manpageXXd03eef}.")) (|d03edf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03edf(ngx,{}ngy,{}lda,{}maxit,{}acc,{}iout,{}a,{}rhs,{}ub,{}ifail)} solves seven-diagonal systems of linear equations which arise from the discretization of an elliptic partial differential equation on a rectangular region. This routine uses a multigrid technique. See \\downlink{Manual Page}{manpageXXd03edf}."))) NIL NIL -(-735) +(-743) ((|constructor| (NIL "This package uses the NAG Library to calculate the interpolation of a function of one or two variables. When provided with the value of the function (and possibly one or more of its lowest-order derivatives) at each of a number of values of the variable(\\spad{s}),{} the routines provide either an interpolating function or an interpolated value. For some of the interpolating functions,{} there are supporting routines to evaluate,{} differentiate or integrate them.")) (|e01sff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sff(m,{}x,{}y,{}f,{}rnw,{}fnodes,{}px,{}py,{}ifail)} evaluates at a given point the two-dimensional interpolating function computed by E01SEF. See \\downlink{Manual Page}{manpageXXe01sff}.")) (|e01sef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sef(m,{}x,{}y,{}f,{}nw,{}nq,{}rnw,{}rnq,{}ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using a modified Shepard method. See \\downlink{Manual Page}{manpageXXe01sef}.")) (|e01sbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sbf(m,{}x,{}y,{}f,{}triang,{}grads,{}px,{}py,{}ifail)} evaluates at a given point the two-dimensional interpolant function computed by E01SAF. See \\downlink{Manual Page}{manpageXXe01sbf}.")) (|e01saf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01saf(m,{}x,{}y,{}f,{}ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using the method of Renka and Cline. See \\downlink{Manual Page}{manpageXXe01saf}.")) (|e01daf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01daf(mx,{}my,{}x,{}y,{}f,{}ifail)} computes a bicubic spline interpolating surface through a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. See \\downlink{Manual Page}{manpageXXe01daf}.")) (|e01bhf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01bhf(n,{}x,{}f,{}d,{}a,{}b,{}ifail)} evaluates the definite integral of a piecewise cubic Hermite interpolant over the interval [a,{}\\spad{b}]. See \\downlink{Manual Page}{manpageXXe01bhf}.")) (|e01bgf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bgf(n,{}x,{}f,{}d,{}m,{}px,{}ifail)} evaluates a piecewise cubic Hermite interpolant and its first derivative at a set of points. See \\downlink{Manual Page}{manpageXXe01bgf}.")) (|e01bff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bff(n,{}x,{}f,{}d,{}m,{}px,{}ifail)} evaluates a piecewise cubic Hermite interpolant at a set of points. See \\downlink{Manual Page}{manpageXXe01bff}.")) (|e01bef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bef(n,{}x,{}f,{}ifail)} computes a monotonicity-preserving piecewise cubic Hermite interpolant to a set of data points. See \\downlink{Manual Page}{manpageXXe01bef}.")) (|e01baf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e01baf(m,{}x,{}y,{}lck,{}lwrk,{}ifail)} determines a cubic spline to a given set of data. See \\downlink{Manual Page}{manpageXXe01baf}."))) NIL NIL -(-736) +(-744) ((|constructor| (NIL "This package uses the NAG Library to find a function which approximates a set of data points. Typically the data contain random errors,{} as of experimental measurement,{} which need to be smoothed out. To seek an approximation to the data,{} it is first necessary to specify for the approximating function a mathematical form (a polynomial,{} for example) which contains a number of unspecified coefficients: the appropriate fitting routine then derives for the coefficients the values which provide the best fit of that particular form. The package deals mainly with curve and surface fitting (\\spadignore{i.e.} fitting with functions of one and of two variables) when a polynomial or a cubic spline is used as the fitting function,{} since these cover the most common needs. However,{} fitting with other functions and/or more variables can be undertaken by means of general linear or nonlinear routines (some of which are contained in other packages) depending on whether the coefficients in the function occur linearly or nonlinearly. Cases where a graph rather than a set of data points is given can be treated simply by first reading a suitable set of points from the graph. The package also contains routines for evaluating,{} differentiating and integrating polynomial and spline curves and surfaces,{} once the numerical values of their coefficients have been determined.")) (|e02zaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02zaf(px,{}py,{}lamda,{}mu,{}m,{}x,{}y,{}npoint,{}nadres,{}ifail)} sorts two-dimensional data into rectangular panels. See \\downlink{Manual Page}{manpageXXe02zaf}.")) (|e02gaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02gaf(m,{}la,{}nplus2,{}toler,{}a,{}b,{}ifail)} calculates an \\spad{l} solution to an over-determined system of linear equations. See \\downlink{Manual Page}{manpageXXe02gaf}.")) (|e02dff| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02dff(mx,{}my,{}px,{}py,{}x,{}y,{}lamda,{}mu,{}c,{}lwrk,{}liwrk,{}ifail)} calculates values of a bicubic spline representation. The spline is evaluated at all points on a rectangular grid. See \\downlink{Manual Page}{manpageXXe02dff}.")) (|e02def| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02def(m,{}px,{}py,{}x,{}y,{}lamda,{}mu,{}c,{}ifail)} calculates values of a bicubic spline representation. See \\downlink{Manual Page}{manpageXXe02def}.")) (|e02ddf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02ddf(start,{}m,{}x,{}y,{}f,{}w,{}s,{}nxest,{}nyest,{}lwrk,{}liwrk,{}nx,{} ++ lamda,{}ny,{}mu,{}wrk,{}ifail)} computes a bicubic spline approximation to a set of scattered data are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02ddf}.")) (|e02dcf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{e02dcf(start,{}mx,{}x,{}my,{}y,{}f,{}s,{}nxest,{}nyest,{}lwrk,{}liwrk,{}nx,{} ++ lamda,{}ny,{}mu,{}wrk,{}iwrk,{}ifail)} computes a bicubic spline approximation to a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. The knots of the spline are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02dcf}.")) (|e02daf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02daf(m,{}px,{}py,{}x,{}y,{}f,{}w,{}mu,{}point,{}npoint,{}nc,{}nws,{}eps,{}lamda,{}ifail)} forms a minimal,{} weighted least-squares bicubic spline surface fit with prescribed knots to a given set of data points. See \\downlink{Manual Page}{manpageXXe02daf}.")) (|e02bef| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|))) "\\spad{e02bef(start,{}m,{}x,{}y,{}w,{}s,{}nest,{}lwrk,{}n,{}lamda,{}ifail,{}wrk,{}iwrk)} computes a cubic spline approximation to an arbitrary set of data points. The knot are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02bef}.")) (|e02bdf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02bdf(ncap7,{}lamda,{}c,{}ifail)} computes the definite integral from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bdf}.")) (|e02bcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|)) "\\spad{e02bcf(ncap7,{}lamda,{}c,{}x,{}left,{}ifail)} evaluates a cubic spline and its first three derivatives from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bcf}.")) (|e02bbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02bbf(ncap7,{}lamda,{}c,{}x,{}ifail)} evaluates a cubic spline representation. See \\downlink{Manual Page}{manpageXXe02bbf}.")) (|e02baf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02baf(m,{}ncap7,{}x,{}y,{}w,{}lamda,{}ifail)} computes a weighted least-squares approximation to an arbitrary set of data points by a cubic splines prescribed by the user. Cubic spline can also be carried out. See \\downlink{Manual Page}{manpageXXe02baf}.")) (|e02akf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|)) "\\spad{e02akf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}x,{}ifail)} evaluates a polynomial from its Chebyshev-series representation,{} allowing an arbitrary index increment for accessing the array of coefficients. See \\downlink{Manual Page}{manpageXXe02akf}.")) (|e02ajf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ajf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}qatm1,{}iaint1,{}laint,{}ifail)} determines the coefficients in the Chebyshev-series representation of the indefinite integral of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ajf}.")) (|e02ahf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ahf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}iadif1,{}ladif,{}ifail)} determines the coefficients in the Chebyshev-series representation of the derivative of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ahf}.")) (|e02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02agf(m,{}kplus1,{}nrows,{}xmin,{}xmax,{}x,{}y,{}w,{}mf,{}xf,{}yf,{}lyf,{}ip,{}lwrk,{}liwrk,{}ifail)} computes constrained weighted least-squares polynomial approximations in Chebyshev-series form to an arbitrary set of data points. The values of the approximations and any number of their derivatives can be specified at selected points. See \\downlink{Manual Page}{manpageXXe02agf}.")) (|e02aef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02aef(nplus1,{}a,{}xcap,{}ifail)} evaluates a polynomial from its Chebyshev-series representation. See \\downlink{Manual Page}{manpageXXe02aef}.")) (|e02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02adf(m,{}kplus1,{}nrows,{}x,{}y,{}w,{}ifail)} computes weighted least-squares polynomial approximations to an arbitrary set of data points. See \\downlink{Manual Page}{manpageXXe02adf}."))) NIL NIL -(-737) +(-745) ((|constructor| (NIL "This package uses the NAG Library to perform optimization. An optimization problem involves minimizing a function (called the objective function) of several variables,{} possibly subject to restrictions on the values of the variables defined by a set of constraint functions. The routines in the NAG Foundation Library are concerned with function minimization only,{} since the problem of maximizing a given function can be transformed into a minimization problem simply by multiplying the function by \\spad{-1}.")) (|e04ycf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04ycf(job,{}m,{}n,{}fsumsq,{}s,{}lv,{}v,{}ifail)} returns estimates of elements of the variance matrix of the estimated regression coefficients for a nonlinear least squares problem. The estimates are derived from the Jacobian of the function \\spad{f}(\\spad{x}) at the solution. See \\downlink{Manual Page}{manpageXXe04ycf}.")) (|e04ucf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Boolean|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp55| CONFUN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "e04ucf(\\spad{n},{}nclin,{}ncnln,{}nrowa,{}nrowj,{}nrowr,{}a,{}\\spad{bl},{}bu,{}liwork,{}lwork,{}sta,{} \\indented{7}{cra,{}der,{}fea,{}fun,{}hes,{}infb,{}infs,{}linf,{}lint,{}list,{}maji,{}majp,{}mini,{}} \\indented{7}{minp,{}mon,{}nonf,{}opt,{}ste,{}stao,{}stac,{}stoo,{}stoc,{}ve,{}istate,{}cjac,{}} \\indented{7}{clamda,{}\\spad{r},{}\\spad{x},{}ifail,{}confun,{}objfun)} is designed to minimize an arbitrary smooth function subject to constraints on the variables,{} linear constraints. (E04UCF may be used for unconstrained,{} bound-constrained and linearly constrained optimization.) The user must provide subroutines that define the objective and constraint functions and as many of their first partial derivatives as possible. Unspecified derivatives are approximated by finite differences. All matrices are treated as dense,{} and hence E04UCF is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04ucf}.")) (|e04naf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Boolean|) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp20| QPHESS)))) "e04naf(itmax,{}msglvl,{}\\spad{n},{}nclin,{}nctotl,{}nrowa,{}nrowh,{}ncolh,{}bigbnd,{}a,{}\\spad{bl},{} bu,{}cvec,{}featol,{}hess,{}cold,{}\\spad{lpp},{}orthog,{}liwork,{}lwork,{}\\spad{x},{}istate,{}ifail,{}qphess) is a comprehensive programming (\\spad{QP}) or linear programming (\\spad{LP}) problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04naf}.")) (|e04mbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "e04mbf(itmax,{}msglvl,{}\\spad{n},{}nclin,{}nctotl,{}nrowa,{}a,{}\\spad{bl},{}bu,{} \\indented{7}{cvec,{}linobj,{}liwork,{}lwork,{}\\spad{x},{}ifail)} is an easy-to-use routine for solving linear programming problems,{} or for finding a feasible point for such problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04mbf}.")) (|e04jaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp24| FUNCT1)))) "\\spad{e04jaf(n,{}ibound,{}liw,{}lw,{}bl,{}bu,{}x,{}ifail,{}funct1)} is an easy-to-use quasi-Newton algorithm for finding a minimum of a function \\spad{F}(\\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ),{} subject to fixed upper and \\indented{25}{1\\space{2}2\\space{6}\\spad{n}} lower bounds of the independent variables \\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ,{} using \\indented{43}{1\\space{2}2\\space{6}\\spad{n}} function values only. See \\downlink{Manual Page}{manpageXXe04jaf}.")) (|e04gcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp19| LSFUN2)))) "\\spad{e04gcf(m,{}n,{}liw,{}lw,{}x,{}ifail,{}lsfun2)} is an easy-to-use quasi-Newton algorithm for finding an unconstrained minimum of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). First derivatives are required. See \\downlink{Manual Page}{manpageXXe04gcf}.")) (|e04fdf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp50| LSFUN1)))) "\\spad{e04fdf(m,{}n,{}liw,{}lw,{}x,{}ifail,{}lsfun1)} is an easy-to-use algorithm for finding an unconstrained minimum of a sum of squares of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). No derivatives are required. See \\downlink{Manual Page}{manpageXXe04fdf}.")) (|e04dgf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04dgf(n,{}es,{}fu,{}it,{}lin,{}list,{}ma,{}op,{}pr,{}sta,{}sto,{}ve,{}x,{}ifail,{}objfun)} minimizes an unconstrained nonlinear function of several variables using a pre-conditioned,{} limited memory quasi-Newton conjugate gradient method. First derivatives are required. The routine is intended for use on large scale problems. See \\downlink{Manual Page}{manpageXXe04dgf}."))) NIL NIL -(-738) +(-746) ((|constructor| (NIL "This package uses the NAG Library to provide facilities for matrix factorizations and associated transformations.")) (|f01ref| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01ref(wheret,{}m,{}n,{}ncolq,{}lda,{}theta,{}a,{}ifail)} returns the first \\spad{ncolq} columns of the complex \\spad{m} by \\spad{m} unitary matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01ref}.")) (|f01rdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rdf(trans,{}wheret,{}m,{}n,{}a,{}lda,{}theta,{}ncolb,{}ldb,{}b,{}ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01rdf}.")) (|f01rcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rcf(m,{}n,{}lda,{}a,{}ifail)} finds the \\spad{QR} factorization of the complex \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01rcf}.")) (|f01qef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qef(wheret,{}m,{}n,{}ncolq,{}lda,{}zeta,{}a,{}ifail)} returns the first \\spad{ncolq} columns of the real \\spad{m} by \\spad{m} orthogonal matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01qef}.")) (|f01qdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qdf(trans,{}wheret,{}m,{}n,{}a,{}lda,{}zeta,{}ncolb,{}ldb,{}b,{}ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01qdf}.")) (|f01qcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qcf(m,{}n,{}lda,{}a,{}ifail)} finds the \\spad{QR} factorization of the real \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01qcf}.")) (|f01mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01mcf(n,{}avals,{}lal,{}nrow,{}ifail)} computes the Cholesky factorization of a real symmetric positive-definite variable-bandwidth matrix. See \\downlink{Manual Page}{manpageXXf01mcf}.")) (|f01maf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{f01maf(n,{}nz,{}licn,{}lirn,{}abort,{}avals,{}irn,{}icn,{}droptl,{}densw,{}ifail)} computes an incomplete Cholesky factorization of a real sparse symmetric positive-definite matrix A. See \\downlink{Manual Page}{manpageXXf01maf}.")) (|f01bsf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Boolean|) (|DoubleFloat|) (|Boolean|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "f01bsf(\\spad{n},{}\\spad{nz},{}licn,{}ivect,{}jvect,{}icn,{}ikeep,{}grow,{} \\indented{7}{eta,{}abort,{}idisp,{}avals,{}ifail)} factorizes a real sparse matrix using the pivotal sequence previously obtained by F01BRF when a matrix of the same sparsity pattern was factorized. See \\downlink{Manual Page}{manpageXXf01bsf}.")) (|f01brf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Boolean|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01brf(n,{}nz,{}licn,{}lirn,{}pivot,{}lblock,{}grow,{}abort,{}a,{}irn,{}icn,{}ifail)} factorizes a real sparse matrix. The routine either forms the LU factorization of a permutation of the entire matrix,{} or,{} optionally,{} first permutes the matrix to block lower triangular form and then only factorizes the diagonal blocks. See \\downlink{Manual Page}{manpageXXf01brf}."))) NIL NIL -(-739) +(-747) ((|constructor| (NIL "This package uses the NAG Library to compute\\spad{\\br} \\tab{5}eigenvalues and eigenvectors of a matrix\\spad{\\br} \\tab{5} eigenvalues and eigenvectors of generalized matrix eigenvalue problems\\spad{\\br} \\tab{5}singular values and singular vectors of a matrix.")) (|f02xef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f02xef(m,{}n,{}lda,{}ncolb,{}ldb,{}wantq,{}ldq,{}wantp,{}ldph,{}a,{}b,{}ifail)} returns all,{} or part,{} of the singular value decomposition of a general complex matrix. See \\downlink{Manual Page}{manpageXXf02xef}.")) (|f02wef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02wef(m,{}n,{}lda,{}ncolb,{}ldb,{}wantq,{}ldq,{}wantp,{}ldpt,{}a,{}b,{}ifail)} returns all,{} or part,{} of the singular value decomposition of a general real matrix. See \\downlink{Manual Page}{manpageXXf02wef}.")) (|f02fjf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE))) (|FileName|)) "f02fjf(\\spad{n},{}\\spad{k},{}tol,{}novecs,{}\\spad{nrx},{}lwork,{}lrwork,{} \\indented{7}{liwork,{}\\spad{m},{}noits,{}\\spad{x},{}ifail,{}dot,{}image,{}monit)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.") (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE)))) "f02fjf(\\spad{n},{}\\spad{k},{}tol,{}novecs,{}\\spad{nrx},{}lwork,{}lrwork,{} \\indented{7}{liwork,{}\\spad{m},{}noits,{}\\spad{x},{}ifail,{}dot,{}image)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.")) (|f02bjf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bjf(n,{}ia,{}ib,{}eps1,{}matv,{}iv,{}a,{}b,{}ifail)} calculates all the eigenvalues and,{} if required,{} all the eigenvectors of the generalized eigenproblem Ax=(lambda)\\spad{Bx} where A and \\spad{B} are real,{} square matrices,{} using the \\spad{QZ} algorithm. See \\downlink{Manual Page}{manpageXXf02bjf}.")) (|f02bbf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bbf(ia,{}n,{}alb,{}ub,{}m,{}iv,{}a,{}ifail)} calculates selected eigenvalues of a real symmetric matrix by reduction to tridiagonal form,{} bisection and inverse iteration,{} where the selected eigenvalues lie within a given interval. See \\downlink{Manual Page}{manpageXXf02bbf}.")) (|f02axf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02axf(ar,{}iar,{}\\spad{ai},{}iai,{}n,{}ivr,{}ivi,{}ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02axf}.")) (|f02awf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02awf(iar,{}iai,{}n,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02awf}.")) (|f02akf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02akf(iar,{}iai,{}n,{}ivr,{}ivi,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalues of a complex matrix. See \\downlink{Manual Page}{manpageXXf02akf}.")) (|f02ajf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02ajf(iar,{}iai,{}n,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02ajf}.")) (|f02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02agf(ia,{}n,{}ivr,{}ivi,{}a,{}ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02agf}.")) (|f02aff| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aff(ia,{}n,{}a,{}ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02aff}.")) (|f02aef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aef(ia,{}ib,{}n,{}iv,{}a,{}b,{}ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf02aef}.")) (|f02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02adf(ia,{}ib,{}n,{}a,{}b,{}ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive- definite matrix. See \\downlink{Manual Page}{manpageXXf02adf}.")) (|f02abf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02abf(a,{}ia,{}n,{}iv,{}ifail)} calculates all the eigenvalues of a real symmetric matrix. See \\downlink{Manual Page}{manpageXXf02abf}.")) (|f02aaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aaf(ia,{}n,{}a,{}ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02aaf}."))) NIL NIL -(-740) +(-748) ((|constructor| (NIL "This package uses the NAG Library to solve the matrix equation \\spad{\\br} \\tab{5}\\axiom{AX=B},{} where \\axiom{\\spad{B}}\\spad{\\br} may be a single vector or a matrix of multiple right-hand sides. The matrix \\axiom{A} may be real,{} complex,{} symmetric,{} Hermitian positive- definite,{} or sparse. It may also be rectangular,{} in which case a least-squares solution is obtained.")) (|f04qaf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp30| APROD)))) "f04qaf(\\spad{m},{}\\spad{n},{}damp,{}atol,{}btol,{}conlim,{}itnlim,{}msglvl,{} \\indented{7}{lrwork,{}liwork,{}\\spad{b},{}ifail,{}aprod)} solves sparse unsymmetric equations,{} sparse linear least- squares problems and sparse damped linear least-squares problems,{} using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04qaf}.")) (|f04mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04mcf(n,{}al,{}lal,{}d,{}nrow,{}ir,{}b,{}nrb,{}iselct,{}nrx,{}ifail)} computes the approximate solution of a system of real linear equations with multiple right-hand sides,{} AX=B,{} where A is a symmetric positive-definite variable-bandwidth matrix,{} which has previously been factorized by F01MCF. Related systems may also be solved. See \\downlink{Manual Page}{manpageXXf04mcf}.")) (|f04mbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| APROD))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp34| MSOLVE)))) "\\spad{f04mbf(n,{}b,{}precon,{}shift,{}itnlim,{}msglvl,{}lrwork,{} ++ liwork,{}rtol,{}ifail,{}aprod,{}msolve)} solves a system of real sparse symmetric linear equations using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04mbf}.")) (|f04maf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "f04maf(\\spad{n},{}\\spad{nz},{}avals,{}licn,{}irn,{}lirn,{}icn,{}wkeep,{}ikeep,{} \\indented{7}{inform,{}\\spad{b},{}acc,{}noits,{}ifail)} \\spad{e} a sparse symmetric positive-definite system of linear equations,{} Ax=b,{} using a pre-conditioned conjugate gradient method,{} where A has been factorized by F01MAF. See \\downlink{Manual Page}{manpageXXf04maf}.")) (|f04jgf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04jgf(m,{}n,{}nra,{}tol,{}lwork,{}a,{}b,{}ifail)} finds the solution of a linear least-squares problem,{} Ax=b ,{} where A is a real \\spad{m} by \\spad{n} (m>=n) matrix and \\spad{b} is an \\spad{m} element vector. If the matrix of observations is not of full rank,{} then the minimal least-squares solution is returned. See \\downlink{Manual Page}{manpageXXf04jgf}.")) (|f04faf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04faf(job,{}n,{}d,{}e,{}b,{}ifail)} calculates the approximate solution of a set of real symmetric positive-definite tridiagonal linear equations. See \\downlink{Manual Page}{manpageXXf04faf}.")) (|f04axf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|))) "\\spad{f04axf(n,{}a,{}licn,{}icn,{}ikeep,{}mtype,{}idisp,{}rhs)} calculates the approximate solution of a set of real sparse linear equations with a single right-hand side,{} Ax=b or \\indented{1}{\\spad{T}} A \\spad{x=b},{} where A has been factorized by F01BRF or F01BSF. See \\downlink{Manual Page}{manpageXXf04axf}.")) (|f04atf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04atf(a,{}ia,{}b,{}n,{}iaa,{}ifail)} calculates the accurate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting,{} and iterative refinement. See \\downlink{Manual Page}{manpageXXf04atf}.")) (|f04asf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04asf(ia,{}b,{}n,{}a,{}ifail)} calculates the accurate solution of a set of real symmetric positive-definite linear equations with a single right- hand side,{} Ax=b,{} using a Cholesky factorization and iterative refinement. See \\downlink{Manual Page}{manpageXXf04asf}.")) (|f04arf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04arf(ia,{}b,{}n,{}a,{}ifail)} calculates the approximate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04arf}.")) (|f04adf| (((|Result|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f04adf(ia,{}b,{}ib,{}n,{}m,{}ic,{}a,{}ifail)} calculates the approximate solution of a set of complex linear equations with multiple right-hand sides,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04adf}."))) NIL NIL -(-741) +(-749) ((|constructor| (NIL "This package uses the NAG Library to compute matrix factorizations,{} and to solve systems of linear equations following the matrix factorizations.")) (|f07fef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fef(uplo,{}n,{}nrhs,{}a,{}lda,{}ldb,{}b)} (DPOTRS) solves a real symmetric positive-definite system of linear equations with multiple right-hand sides,{} AX=B,{} where A has been factorized by F07FDF (DPOTRF). See \\downlink{Manual Page}{manpageXXf07fef}.")) (|f07fdf| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fdf(uplo,{}n,{}lda,{}a)} (DPOTRF) computes the Cholesky factorization of a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf07fdf}.")) (|f07aef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07aef(trans,{}n,{}nrhs,{}a,{}lda,{}ipiv,{}ldb,{}b)} (DGETRS) solves a real system of linear equations with \\indented{36}{\\spad{T}} multiple right-hand sides,{} AX=B or A \\spad{X=B},{} where A has been factorized by F07ADF (DGETRF). See \\downlink{Manual Page}{manpageXXf07aef}.")) (|f07adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07adf(m,{}n,{}lda,{}a)} (DGETRF) computes the LU factorization of a real \\spad{m} by \\spad{n} matrix. See \\downlink{Manual Page}{manpageXXf07adf}."))) NIL NIL -(-742) +(-750) ((|constructor| (NIL "This package uses the NAG Library to compute some commonly occurring physical and mathematical functions.")) (|s21bdf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bdf(x,{}y,{}z,{}r,{}ifail)} returns a value of the symmetrised elliptic integral of the third kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bdf}.")) (|s21bcf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bcf(x,{}y,{}z,{}ifail)} returns a value of the symmetrised elliptic integral of the second kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bcf}.")) (|s21bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bbf(x,{}y,{}z,{}ifail)} returns a value of the symmetrised elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bbf}.")) (|s21baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21baf(x,{}y,{}ifail)} returns a value of an elementary integral,{} which occurs as a degenerate case of an elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21baf}.")) (|s20adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20adf(x,{}ifail)} returns a value for the Fresnel Integral \\spad{C}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20adf}.")) (|s20acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20acf(x,{}ifail)} returns a value for the Fresnel Integral \\spad{S}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20acf}.")) (|s19adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19adf(x,{}ifail)} returns a value for the Kelvin function kei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19adf}.")) (|s19acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19acf(x,{}ifail)} returns a value for the Kelvin function ker(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs19acf}.")) (|s19abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19abf(x,{}ifail)} returns a value for the Kelvin function bei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19abf}.")) (|s19aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19aaf(x,{}ifail)} returns a value for the Kelvin function ber(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19aaf}.")) (|s18def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18def(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{I}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18def}.")) (|s18dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18dcf(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{K}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18dcf}.")) (|s18aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aff(x,{}ifail)} returns a value for the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18aff}.")) (|s18aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aef(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18aef}.")) (|s18adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18adf(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18adf}.")) (|s18acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18acf(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18acf}.")) (|s17dlf| (((|Result|) (|Integer|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dlf(m,{}fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Hankel functions \\indented{2}{(1)\\space{11}(2)} \\indented{1}{\\spad{H}\\space{6}(\\spad{z}) or \\spad{H}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}\\space{8}(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dlf}.")) (|s17dhf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dhf(deriv,{}z,{}scale,{}ifail)} returns the value of the Airy function \\spad{Bi}(\\spad{z}) or its derivative Bi'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dhf}.")) (|s17dgf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dgf(deriv,{}z,{}scale,{}ifail)} returns the value of the Airy function \\spad{Ai}(\\spad{z}) or its derivative Ai'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dgf}.")) (|s17def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17def(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{J}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17def}.")) (|s17dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dcf(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{Y}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dcf}.")) (|s17akf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17akf(x,{}ifail)} returns a value for the derivative of the Airy function \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17akf}.")) (|s17ajf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ajf(x,{}ifail)} returns a value of the derivative of the Airy function \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ajf}.")) (|s17ahf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ahf(x,{}ifail)} returns a value of the Airy function,{} \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ahf}.")) (|s17agf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17agf(x,{}ifail)} returns a value for the Airy function,{} \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17agf}.")) (|s17aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aff(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17aff}.")) (|s17aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aef(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17aef}.")) (|s17adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17adf(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17adf}.")) (|s17acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17acf(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17acf}.")) (|s15aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15aef(x,{}ifail)} returns the value of the error function erf(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15aef}.")) (|s15adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15adf(x,{}ifail)} returns the value of the complementary error function,{} erfc(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15adf}.")) (|s14baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s14baf(a,{}x,{}tol,{}ifail)} computes values for the incomplete gamma functions \\spad{P}(a,{}\\spad{x}) and \\spad{Q}(a,{}\\spad{x}). See \\downlink{Manual Page}{manpageXXs14baf}.")) (|s14abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14abf(x,{}ifail)} returns a value for the log,{} \\spad{ln}(Gamma(\\spad{x})),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14abf}.")) (|s14aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14aaf(x,{}ifail)} returns the value of the Gamma function (Gamma)(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14aaf}.")) (|s13adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13adf(x,{}ifail)} returns the value of the sine integral See \\downlink{Manual Page}{manpageXXs13adf}.")) (|s13acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13acf(x,{}ifail)} returns the value of the cosine integral See \\downlink{Manual Page}{manpageXXs13acf}.")) (|s13aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13aaf(x,{}ifail)} returns the value of the exponential integral \\indented{1}{\\spad{E} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs13aaf}.")) (|s01eaf| (((|Result|) (|Complex| (|DoubleFloat|)) (|Integer|)) "\\spad{s01eaf(z,{}ifail)} S01EAF evaluates the exponential function exp(\\spad{z}) ,{} for complex \\spad{z}. See \\downlink{Manual Page}{manpageXXs01eaf}."))) NIL NIL -(-743) +(-751) ((|constructor| (NIL "Support functions for the NAG Library Link functions")) (|restorePrecision| (((|Void|)) "\\spad{restorePrecision()} \\undocumented{}")) (|checkPrecision| (((|Boolean|)) "\\spad{checkPrecision()} \\undocumented{}")) (|dimensionsOf| (((|SExpression|) (|Symbol|) (|Matrix| (|Integer|))) "\\spad{dimensionsOf(s,{}m)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|Matrix| (|DoubleFloat|))) "\\spad{dimensionsOf(s,{}m)} \\undocumented{}")) (|aspFilename| (((|String|) (|String|)) "\\spad{aspFilename(\"f\")} returns a String consisting of \\spad{\"f\"} suffixed with \\indented{1}{an extension identifying the current AXIOM session.}")) (|fortranLinkerArgs| (((|String|)) "\\spad{fortranLinkerArgs()} returns the current linker arguments")) (|fortranCompilerName| (((|String|)) "\\spad{fortranCompilerName()} returns the name of the currently selected \\indented{1}{Fortran compiler}"))) NIL NIL -(-744 S) +(-752 S) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit.\\spad{\\br} Axioms\\spad{\\br} \\tab{5}\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}\\spad{\\br} \\tab{5}(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}\\spad{\\br} \\blankline Common Additional Axioms\\spad{\\br} \\tab{5}noZeroDivisors\\tab{5} ab = 0 \\spad{=>} \\spad{a=0} or \\spad{b=0}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,{}b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,{}b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,{}b,{}c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-745) +(-753) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit.\\spad{\\br} Axioms\\spad{\\br} \\tab{5}\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}\\spad{\\br} \\tab{5}(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}\\spad{\\br} \\blankline Common Additional Axioms\\spad{\\br} \\tab{5}noZeroDivisors\\tab{5} ab = 0 \\spad{=>} \\spad{a=0} or \\spad{b=0}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,{}b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,{}b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,{}b,{}c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-746 S) +(-754 S) ((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-747) +(-755) ((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-748 |Par|) +(-756 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,{}eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable."))) NIL NIL -(-749 -1333) +(-757 -1478) ((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions for converting floating point numbers to continued fractions.")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction."))) NIL NIL -(-750 P -1333) +(-758 P -1478) ((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.\\spad{\\br} \\tab{5}[\\spad{q},{}\\spad{r}] = leftDivide(a,{}\\spad{b}) means a=b*q+r")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}."))) NIL NIL -(-751 -1333) +(-759 -1478) ((|constructor| (NIL "This package exports Newton interpolation for the special case where the result is known to be in the original integral domain The packages defined in this file provide fast fraction free rational interpolation algorithms. (see \\spad{FAMR2},{} FFFG,{} FFFGF,{} NEWTON)")) (|newton| (((|SparseUnivariatePolynomial| |#1|) (|List| |#1|)) "\\spad{newton}(\\spad{l}) returns the interpolating polynomial for the values \\spad{l},{} where the \\spad{x}-coordinates are assumed to be [1,{}2,{}3,{}...,{}\\spad{n}] and the coefficients of the interpolating polynomial are known to be in the domain \\spad{F}. \\spad{I}.\\spad{e}.,{} it is a very streamlined version for a special case of interpolation."))) NIL NIL -(-752 UP -1333) +(-760 UP -1478) ((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}."))) NIL NIL -(-753) +(-761) ((|constructor| (NIL "\\axiomType{NumericalIntegrationProblem} is a \\axiom{domain} for the representation of Numerical Integration problems for use by ANNA. \\blankline The representation is a Union of two record types - one for integration of a function of one variable: \\blankline \\axiomType{Record}(var:\\axiomType{Symbol},{}\\spad{\\br} \\spad{fn:}\\axiomType{Expression DoubleFloat},{}\\spad{\\br} range:\\axiomType{Segment OrderedCompletion DoubleFloat},{}\\spad{\\br} abserr:\\axiomType{DoubleFloat},{}\\spad{\\br} relerr:\\axiomType{DoubleFloat},{}) \\blankline and one for multivariate integration: \\blankline \\axiomType{Record}(\\spad{fn:}\\axiomType{Expression DoubleFloat},{}\\spad{\\br} range:\\axiomType{List Segment OrderedCompletion DoubleFloat},{}\\spad{\\br} abserr:\\axiomType{DoubleFloat},{}\\spad{\\br} relerr:\\axiomType{DoubleFloat},{}). \\blankline")) (|retract| (((|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) $) "\\spad{retract(x)} is not documented")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} is not documented") (($ (|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))))) "\\spad{coerce(x)} is not documented") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} is not documented") (($ (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} is not documented"))) NIL NIL -(-754 R) +(-762 R) ((|constructor| (NIL "NonLinearSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving. The solutions are given in the algebraic closure of \\spad{R} whenever possible.")) (|solve| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solve(lp)} finds the solution in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solve(lp,{}lv)} finds the solutions in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")) (|solveInField| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solveInField(lp)} finds the solution of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solveInField(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-755) +(-763) ((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non-negative integers.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative,{} that is,{} \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,{}b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder."))) -(((-4507 "*") . T)) +(((-4521 "*") . T)) NIL -(-756 R -1333) +(-764 R -1478) ((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,{}y),{} N(x,{}y),{} y,{} x)} returns \\spad{F(x,{}y)} such that \\spad{F(x,{}y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,{}y) dx + N(x,{}y) dy = 0},{} or \"failed\" if no first-integral can be found."))) NIL NIL -(-757 S) +(-765 S) ((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}."))) NIL NIL -(-758) +(-766) ((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code)."))) NIL NIL -(-759 R |PolR| E |PolE|) +(-767 R |PolR| E |PolE|) ((|constructor| (NIL "This package implements the norm of a polynomial with coefficients in a monogenic algebra (using resultants)")) (|norm| ((|#2| |#4|) "\\spad{norm q} returns the norm of \\spad{q},{} \\spadignore{i.e.} the product of all the conjugates of \\spad{q}."))) NIL NIL -(-760 R E V P TS) +(-768 R E V P TS) ((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}."))) NIL NIL -(-761 -1333 |ExtF| |SUEx| |ExtP| |n|) +(-769 -1478 |ExtF| |SUEx| |ExtP| |n|) ((|constructor| (NIL "This package has no description")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented"))) NIL NIL -(-762 -1333) +(-770 -1478) ((|constructor| (NIL "This is an implmenentation of the Nottingham Group"))) -((-4502 . T)) +((-4516 . T)) NIL -(-763 BP E OV R P) +(-771 BP E OV R P) ((|constructor| (NIL "Package for the determination of the coefficients in the lifting process. Used by \\spadtype{MultivariateLifting}. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|listexp| (((|List| (|NonNegativeInteger|)) |#1|) "\\spad{listexp }\\undocumented")) (|npcoef| (((|Record| (|:| |deter| (|List| (|SparseUnivariatePolynomial| |#5|))) (|:| |dterm| (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (|List| |#1|)) (|:| |nlead| (|List| |#5|))) (|SparseUnivariatePolynomial| |#5|) (|List| |#1|) (|List| |#5|)) "\\spad{npcoef }\\undocumented"))) NIL NIL -(-764 K |PolyRing| E -2050) +(-772 K |PolyRing| E -2570) ((|constructor| (NIL "The following is part of the PAFF package"))) NIL NIL -(-765 |Par|) +(-773 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the Rational Numbers. The results are expressed as floating numbers or as rational numbers depending on the type of the parameter Par.")) (|realEigenvectors| (((|List| (|Record| (|:| |outval| |#1|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#1|))))) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvectors(m,{}eps)} returns a list of records each one containing a real eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} as floats or rational numbers depending on the type of \\spad{eps} .")) (|realEigenvalues| (((|List| |#1|) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as floats or rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with variable \\spad{x}. Fraction \\spad{P} \\spad{RN}.") (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|)))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with a new symbol as variable."))) NIL NIL -(-766 K) +(-774 K) ((|constructor| (NIL "This domain is part of the PAFF package"))) -(((-4507 "*") . T) (-4498 . T) (-4497 . T) (-4503 . T) (-4499 . T) (-4500 . T) (-4502 . T)) -((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| (-560) (QUOTE (-1094))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| |k| (-560)) (|:| |c| |#1|)) (LIST (QUOTE -601) (QUOTE (-533)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-560))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-560))))) (|HasSignature| |#1| (LIST (QUOTE -2801) (LIST (|devaluate| |#1|) (QUOTE (-1153)))))) (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| (-560) (QUOTE (-834))) (|HasCategory| (-2 (|:| |k| (-560)) (|:| |c| |#1|)) (QUOTE (-1082))) (-12 (|HasCategory| (-2 (|:| |k| (-560)) (|:| |c| |#1|)) (LIST (QUOTE -298) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE |k|) (QUOTE (-560))) (LIST (QUOTE |:|) (QUOTE |c|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| |k| (-560)) (|:| |c| |#1|)) (QUOTE (-1082)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560)))))) -(-767 R |VarSet|) +(((-4521 "*") . T) (-4512 . T) (-4511 . T) (-4517 . T) (-4513 . T) (-4514 . T) (-4516 . T)) +((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-150))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| (-568) (QUOTE (-1102))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-568)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-568)) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| |k| (-568)) (|:| |c| |#1|)) (LIST (QUOTE -609) (QUOTE (-541)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-568))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-568))))) (|HasSignature| |#1| (LIST (QUOTE -2745) (LIST (|devaluate| |#1|) (QUOTE (-1161)))))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-568) (QUOTE (-842))) (|HasCategory| (-2 (|:| |k| (-568)) (|:| |c| |#1|)) (QUOTE (-1090))) (-12 (|HasCategory| (-2 (|:| |k| (-568)) (|:| |c| |#1|)) (LIST (QUOTE -303) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE |k|) (QUOTE (-568))) (LIST (QUOTE |:|) (QUOTE |c|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| |k| (-568)) (|:| |c| |#1|)) (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568)))))) +(-775 R |VarSet|) ((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor."))) -(((-4507 "*") |has| |#1| (-170)) (-4498 |has| |#1| (-550)) (-4503 |has| |#1| (-6 -4503)) (-4500 . T) (-4499 . T) (-4502 . T)) -((|HasCategory| |#1| (QUOTE (-896))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-170))) (-2318 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -873) (QUOTE (-375)))) (|HasCategory| |#2| (LIST (QUOTE -873) (QUOTE (-375))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -873) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -873) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-375))))) (|HasCategory| |#2| (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-375)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-533))))) (|HasCategory| |#1| (QUOTE (-834))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-1153)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-1153))))) (|HasCategory| |#1| (QUOTE (-359))) (-12 (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-1153))))) (-2318 (-12 (|HasCategory| |#1| (LIST (QUOTE -43) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-1153)))) (-3186 (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-1153)))))) (-2318 (-12 (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-1153)))) (-3186 (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560)))))) (-3186 (|HasCategory| |#1| (LIST (QUOTE -43) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -43) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-1153)))) (-3186 (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560)))))) (-3186 (|HasCategory| |#1| (QUOTE (-542))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-1153)))) (-3186 (|HasCategory| |#1| (LIST (QUOTE -985) (QUOTE (-560))))))) (-2318 (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560)))))) (|HasAttribute| |#1| (QUOTE -4503)) (|HasCategory| |#1| (QUOTE (-447))) (-2318 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-447))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-896)))) (-2318 (|HasCategory| |#1| (QUOTE (-447))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-896)))) (-2318 (|HasCategory| |#1| (QUOTE (-447))) (|HasCategory| |#1| (QUOTE (-896)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-896)))) (-2318 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-896)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-768 R S) +(((-4521 "*") |has| |#1| (-172)) (-4512 |has| |#1| (-558)) (-4517 |has| |#1| (-6 -4517)) (-4514 . T) (-4513 . T) (-4516 . T)) +((|HasCategory| |#1| (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2198 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-568)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-568))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-568))))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-568)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-541))))) (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-150))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#1| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-1161)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-1161))))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-1161))))) (-2198 (-12 (|HasCategory| |#1| (LIST (QUOTE -43) (QUOTE (-568)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-1161)))) (-3044 (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-1161)))))) (-2198 (-12 (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-1161)))) (-3044 (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568)))))) (-3044 (|HasCategory| |#1| (LIST (QUOTE -43) (QUOTE (-568)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -43) (QUOTE (-568)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-1161)))) (-3044 (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568)))))) (-3044 (|HasCategory| |#1| (QUOTE (-550))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-1161)))) (-3044 (|HasCategory| |#1| (LIST (QUOTE -993) (QUOTE (-568))))))) (-2198 (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568)))))) (|HasAttribute| |#1| (QUOTE -4517)) (|HasCategory| |#1| (QUOTE (-453))) (-2198 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-904)))) (-2198 (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-904)))) (-2198 (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-904)))) (-12 (|HasCategory| $ (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-904)))) (-2198 (-12 (|HasCategory| $ (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-148))))) +(-776 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-769 R) +(-777 R) ((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedResultant2}(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedResultant1}(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd2}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd1}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the fmecg from NewSparseUnivariatePolynomial operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * x**e * \\spad{p2}} where \\axiom{\\spad{x}} is \\axiom{monomial(1,{}1)}"))) -(((-4507 "*") |has| |#1| (-170)) (-4498 |has| |#1| (-550)) (-4501 |has| |#1| (-359)) (-4503 |has| |#1| (-6 -4503)) (-4500 . T) (-4499 . T) (-4502 . T)) -((|HasCategory| |#1| (QUOTE (-896))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-170))) (-2318 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| (-1067) (LIST (QUOTE -873) (QUOTE (-375)))) (|HasCategory| |#1| (LIST (QUOTE -873) (QUOTE (-375))))) (-12 (|HasCategory| (-1067) (LIST (QUOTE -873) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -873) (QUOTE (-560))))) (-12 (|HasCategory| (-1067) (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-375))))) (|HasCategory| |#1| (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-375)))))) (-12 (|HasCategory| (-1067) (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-560)))))) (-12 (|HasCategory| (-1067) (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-533))))) (|HasCategory| |#1| (QUOTE (-834))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-1128))) (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-1153)))) (-2318 (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560)))))) (|HasCategory| |#1| (QUOTE (-221))) (|HasAttribute| |#1| (QUOTE -4503)) (|HasCategory| |#1| (QUOTE (-447))) (-2318 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-447))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-896)))) (-2318 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-447))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-896)))) (-2318 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-447))) (|HasCategory| |#1| (QUOTE (-896)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-896)))) (-2318 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-896)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-770 R) +(((-4521 "*") |has| |#1| (-172)) (-4512 |has| |#1| (-558)) (-4515 |has| |#1| (-365)) (-4517 |has| |#1| (-6 -4517)) (-4514 . T) (-4513 . T) (-4516 . T)) +((|HasCategory| |#1| (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2198 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -881) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-381))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -881) (QUOTE (-568)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-568))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-381)))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-568))))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-568)))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-541))))) (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-150))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#1| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1136))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1161)))) (-2198 (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568)))))) (|HasCategory| |#1| (QUOTE (-225))) (|HasAttribute| |#1| (QUOTE -4517)) (|HasCategory| |#1| (QUOTE (-453))) (-2198 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-904)))) (-2198 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-904)))) (-2198 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-904)))) (-12 (|HasCategory| $ (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-904)))) (-2198 (-12 (|HasCategory| $ (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-148))))) +(-778 R) ((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,{}r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,{}r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,{}r)} \\undocumented"))) NIL -((|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560)))))) -(-771 R E V P) +((|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568)))))) +(-779 R E V P) ((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,{}v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,{}v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,{}mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets."))) -((-4506 . T) (-4505 . T) (-2537 . T)) +((-4520 . T) (-4519 . T) (-3973 . T)) NIL -(-772 S) +(-780 S) ((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}."))) NIL -((|HasCategory| |#1| (QUOTE (-550))) (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-834)))) (|HasCategory| |#1| (QUOTE (-1039))) (|HasCategory| |#1| (QUOTE (-170)))) -(-773) +((|HasCategory| |#1| (QUOTE (-558))) (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-842)))) (|HasCategory| |#1| (QUOTE (-1047))) (|HasCategory| |#1| (QUOTE (-172)))) +(-781) ((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}."))) NIL NIL -(-774) +(-782) ((|constructor| (NIL "\\axiomType{NumericalIntegrationCategory} is the \\axiom{category} for describing the set of Numerical Integration \\axiom{domains} with \\axiomFun{measure} and \\axiomFun{numericalIntegration}.")) (|numericalIntegration| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,{}hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,{}hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-775) +(-783) ((|constructor| (NIL "This package is a suite of functions for the numerical integration of an ordinary differential equation of \\spad{n} variables:\\spad{\\br} \\tab{5}dy/dx = \\spad{f}(\\spad{y},{}\\spad{x})\\tab{5}\\spad{y} is an \\spad{n}-vector\\spad{\\br} All the routines are based on a 4-th order Runge-Kutta kernel. These routines generally have as arguments:\\spad{\\br} \\spad{n},{} the number of dependent variables;\\spad{\\br} \\spad{x1},{} the initial point;\\spad{\\br} \\spad{h},{} the step size;\\spad{\\br} \\spad{y},{} a vector of initial conditions of length \\spad{n}\\spad{\\br} which upon exit contains the solution at \\spad{x1 + h};\\spad{\\br} \\blankline \\spad{derivs},{} a function which computes the right hand side of the ordinary differential equation: \\spad{derivs(dydx,{}y,{}x)} computes \\spad{dydx},{} a vector which contains the derivative information. \\blankline In order of increasing complexity:\\spad{\\br} \\tab{5}\\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} advances the solution vector to\\spad{\\br} \\tab{5}\\spad{x1 + h} and return the values in \\spad{y}.\\spad{\\br} \\blankline \\tab{5}\\spad{rk4(y,{}n,{}x1,{}h,{}derivs,{}t1,{}t2,{}t3,{}t4)} is the same as\\spad{\\br} \\tab{5}\\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} except that you must provide 4 scratch\\spad{\\br} \\tab{5}arrays \\spad{t1}-\\spad{t4} of size \\spad{n}.\\spad{\\br} \\blankline \\tab{5}Starting with \\spad{y} at \\spad{x1},{} \\spad{rk4f(y,{}n,{}x1,{}x2,{}ns,{}derivs)}\\spad{\\br} \\tab{5}uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta\\spad{\\br} \\tab{5}integrator to advance the solution vector to \\spad{x2} and return\\spad{\\br} \\tab{5}the values in \\spad{y}. Argument \\spad{x2},{} is the final point,{} and\\spad{\\br} \\tab{5}\\spad{ns},{} the number of steps to take. \\blankline \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} takes a 5-th order Runge-Kutta step with monitoring of local truncation to ensure accuracy and adjust stepsize. The function takes two half steps and one full step and scales the difference in solutions at the final point. If the error is within \\spad{eps},{} the step is taken and the result is returned. If the error is not within \\spad{eps},{} the stepsize if decreased and the procedure is tried again until the desired accuracy is reached. Upon input,{} an trial step size must be given and upon return,{} an estimate of the next step size to use is returned as well as the step size which produced the desired accuracy. The scaled error is computed as\\spad{\\br} \\tab{5}\\spad{error = MAX(ABS((y2steps(i) - y1step(i))/yscal(i)))}\\spad{\\br} and this is compared against \\spad{eps}. If this is greater than \\spad{eps},{} the step size is reduced accordingly to\\spad{\\br} \\tab{5}\\spad{hnew = 0.9 * hdid * (error/eps)**(-1/4)}\\spad{\\br} If the error criterion is satisfied,{} then we check if the step size was too fine and return a more efficient one. If \\spad{error > \\spad{eps} * (6.0E-04)} then the next step size should be\\spad{\\br} \\tab{5}\\spad{hnext = 0.9 * hdid * (error/\\spad{eps})\\spad{**}(\\spad{-1/5})}\\spad{\\br} Otherwise \\spad{hnext = 4.0 * hdid} is returned. A more detailed discussion of this and related topics can be found in the book \"Numerical Recipies\" by \\spad{W}.Press,{} \\spad{B}.\\spad{P}. Flannery,{} \\spad{S}.A. Teukolsky,{} \\spad{W}.\\spad{T}. Vetterling published by Cambridge University Press. \\blankline Argument \\spad{step} is a record of 3 floating point numbers \\spad{(try ,{} did ,{} next)},{} \\spad{eps} is the required accuracy,{} \\spad{yscal} is the scaling vector for the difference in solutions. On input,{} \\spad{step.try} should be the guess at a step size to achieve the accuracy. On output,{} \\spad{step.did} contains the step size which achieved the accuracy and \\spad{step.next} is the next step size to use. \\blankline \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs,{}t1,{}t2,{}t3,{}t4,{}t5,{}t6,{}t7)} is the same as \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} except that the user must provide the 7 scratch arrays \\spad{t1-t7} of size \\spad{n}. \\blankline \\spad{rk4a(y,{}n,{}x1,{}x2,{}eps,{}h,{}ns,{}derivs)} is a driver program which uses \\spad{rk4qc} to integrate \\spad{n} ordinary differential equations starting at \\spad{x1} to \\spad{x2},{} keeping the local truncation error to within \\spad{eps} by changing the local step size. The scaling vector is defined as\\spad{\\br} \\tab{5}\\spad{yscal(i) = abs(y(i)) + abs(h*dydx(i)) + tiny}\\spad{\\br} where \\spad{y(i)} is the solution at location \\spad{x},{} \\spad{dydx} is the ordinary differential equation\\spad{'s} right hand side,{} \\spad{h} is the current step size and \\spad{tiny} is 10 times the smallest positive number representable. \\blankline The user must supply an estimate for a trial step size and the maximum number of calls to \\spad{rk4qc} to use. Argument \\spad{x2} is the final point,{} \\spad{eps} is local truncation,{} \\spad{ns} is the maximum number of call to \\spad{rk4qc} to use.")) (|rk4f| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4f(y,{}n,{}x1,{}x2,{}ns,{}derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation dy/dx = \\spad{f}(\\spad{y},{}\\spad{x}) of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Starting with \\spad{y} at \\spad{x1},{} this function uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4qc| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs,{}t1,{}t2,{}t3,{}t4,{}t5,{}t6,{}t7)} is a subfunction for the numerical integration of an ordinary differential equation dy/dx = \\spad{f}(\\spad{y},{}\\spad{x}) of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} is a subfunction for the numerical integration of an ordinary differential equation dy/dx = \\spad{f}(\\spad{y},{}\\spad{x}) of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4a| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4a(y,{}n,{}x1,{}x2,{}eps,{}h,{}ns,{}derivs)} is a driver function for the numerical integration of an ordinary differential equation dy/dx = \\spad{f}(\\spad{y},{}\\spad{x}) of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4(y,{}n,{}x1,{}h,{}derivs,{}t1,{}t2,{}t3,{}t4)} is the same as \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation dy/dx = \\spad{f}(\\spad{y},{}\\spad{x}) of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Argument \\spad{y} is a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h},{} \\spad{n} is the number of dependent variables,{} \\spad{x1} is the initial point,{} \\spad{h} is the step size,{} and \\spad{derivs} is a function which computes the right hand side of the ordinary differential equation. For details,{} see \\spadtype{NumericalOrdinaryDifferentialEquations}."))) NIL NIL -(-776) +(-784) ((|constructor| (NIL "This suite of routines performs numerical quadrature using algorithms derived from the basic trapezoidal rule. Because the error term of this rule contains only even powers of the step size (for open and closed versions),{} fast convergence can be obtained if the integrand is sufficiently smooth. \\blankline Each routine returns a Record of type TrapAns,{} which contains value Float: estimate of the integral error Float: estimate of the error in the computation totalpts Integer: total number of function evaluations success Boolean: if the integral was computed within the user specified error criterion To produce this estimate,{} each routine generates an internal sequence of sub-estimates,{} denoted by \\spad{S}(\\spad{i}),{} depending on the routine,{} to which the various convergence criteria are applied. The user must supply a relative accuracy,{} \\spad{eps_r},{} and an absolute accuracy,{} \\spad{eps_a}. Convergence is obtained when either\\spad{\\br} \\tab{5}\\spad{ABS(S(i) - S(i-1)) < eps_r * ABS(S(i-1))}\\spad{\\br} \\tab{5}or \\spad{ABS(S(i) - S(i-1)) < eps_a} are \\spad{true} statements. \\blankline The routines come in three families and three flavors: closed: romberg,{} simpson,{} trapezoidal open: rombergo,{} simpsono,{} trapezoidalo adaptive closed: aromberg,{} asimpson,{} atrapezoidal \\blankline The \\spad{S}(\\spad{i}) for the trapezoidal family is the value of the integral using an equally spaced absicca trapezoidal rule for that level of refinement. \\blankline The \\spad{S}(\\spad{i}) for the simpson family is the value of the integral using an equally spaced absicca simpson rule for that level of refinement. \\blankline The \\spad{S}(\\spad{i}) for the romberg family is the estimate of the integral using an equally spaced absicca romberg method. For the \\spad{i}-th level,{} this is an appropriate combination of all the previous trapezodial estimates so that the error term starts with the 2*(\\spad{i+1}) power only. \\blankline The three families come in a closed version,{} where the formulas include the endpoints,{} an open version where the formulas do not include the endpoints and an adaptive version,{} where the user is required to input the number of subintervals over which the appropriate closed family integrator will apply with the usual convergence parmeters for each subinterval. This is useful where a large number of points are needed only in a small fraction of the entire domain. \\blankline Each routine takes as arguments:\\spad{\\br} \\spad{f} integrand\\spad{\\br} a starting point\\spad{\\br} \\spad{b} ending point\\spad{\\br} eps_r relative error\\spad{\\br} eps_a absolute error\\spad{\\br} nmin refinement level when to start checking for convergence (> 1)\\spad{\\br} nmax maximum level of refinement\\spad{\\br} \\blankline The adaptive routines take as an additional parameter,{} nint,{} the number of independent intervals to apply a closed family integrator of the same name. \\blankline")) (|trapezoidalo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidalo(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the trapezoidal method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpsono| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpsono(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|rombergo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{rombergo(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the romberg method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|trapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidal(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the trapezoidal method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpson(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|romberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{romberg(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the romberg method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|atrapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{atrapezoidal(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive trapezoidal method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|asimpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{asimpson(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive simpson method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|aromberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{aromberg(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive romberg method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details."))) NIL NIL -(-777 |Curve|) +(-785 |Curve|) ((|constructor| (NIL "Package for constructing tubes around 3-dimensional parametric curves.")) (|tube| (((|TubePlot| |#1|) |#1| (|DoubleFloat|) (|Integer|)) "\\spad{tube(c,{}r,{}n)} creates a tube of radius \\spad{r} around the curve \\spad{c}."))) NIL NIL -(-778) +(-786) ((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering."))) NIL NIL -(-779) +(-787) ((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering."))) NIL NIL -(-780) +(-788) ((|constructor| (NIL "This domain is an OrderedAbelianMonoid with a \\spadfun{sup} operation added. The purpose of the \\spadfun{sup} operator in this domain is to act as a supremum with respect to the partial order imposed by \\spadop{-},{} rather than with respect to the total \\spad{>} order (since that is \"max\"). \\blankline Axioms\\spad{\\br} \\tab{5}\\spad{sup(a,{}b)-a \\~~= \"failed\"}\\spad{\\br} \\tab{5}\\spad{sup(a,{}b)-b \\~~= \"failed\"}\\spad{\\br} \\tab{5}\\spad{x-a \\~~= \"failed\" and x-b \\~~= \"failed\" => x >= sup(a,{}b)}\\spad{\\br}")) (|sup| (($ $ $) "\\spad{sup(x,{}y)} returns the least element from which both \\spad{x} and \\spad{y} can be subtracted."))) NIL NIL -(-781) +(-789) ((|constructor| (NIL "Ordered sets which are also abelian semigroups,{} such that the addition preserves the ordering.\\spad{\\br} \\blankline Axiom\\spad{\\br} \\tab{5} \\spad{x} < \\spad{y} \\spad{=>} \\spad{x+z} < \\spad{y+z}"))) NIL NIL -(-782) +(-790) ((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering."))) NIL NIL -(-783 S R) +(-791 S R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) NIL -((|HasCategory| |#2| (QUOTE (-359))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-1048))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| |#2| (QUOTE (-834))) (|HasCategory| |#2| (QUOTE (-364)))) -(-784 R) +((|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-1056))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-150))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-370)))) +(-792 R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) -((-4499 . T) (-4500 . T) (-4502 . T)) +((-4513 . T) (-4514 . T) (-4516 . T)) NIL -(-785 -2318 R OS S) +(-793 -2198 R OS S) ((|constructor| (NIL "\\spad{OctonionCategoryFunctions2} implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}."))) NIL NIL -(-786 R) +(-794 R) ((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is octon which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,{}qE)} constructs an octonion from two quaternions using the relation \\spad{O} = \\spad{Q} + QE."))) -((-4499 . T) (-4500 . T) (-4502 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-834))) (|HasCategory| |#1| (QUOTE (-364))) (|HasCategory| |#1| (LIST (QUOTE -515) (QUOTE (-1153)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -276) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1048))) (|HasCategory| |#1| (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| (-991 |#1|) (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| (-991 |#1|) (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (-2318 (|HasCategory| (-991 |#1|) (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560)))))) (|HasCategory| |#1| (LIST (QUOTE -1029) (QUOTE (-560)))) (-2318 (|HasCategory| (-991 |#1|) (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -1029) (QUOTE (-560)))))) -(-787) +((-4513 . T) (-4514 . T) (-4516 . T)) +((|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-150))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (LIST (QUOTE -523) (QUOTE (-1161)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -281) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1056))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-999 |#1|) (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| (-999 |#1|) (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#1| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (-2198 (|HasCategory| (-999 |#1|) (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568)))))) (|HasCategory| |#1| (LIST (QUOTE -1037) (QUOTE (-568)))) (-2198 (|HasCategory| (-999 |#1|) (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#1| (LIST (QUOTE -1037) (QUOTE (-568)))))) +(-795) ((|constructor| (NIL "\\axiomType{OrdinaryDifferentialEquationsSolverCategory} is the \\axiom{category} for describing the set of ODE solver \\axiom{domains} with \\axiomFun{measure} and \\axiomFun{ODEsolve}.")) (|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-788 R -1333 L) +(-796 R -1478 L) ((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op,{} g,{} x)} returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{\\spad{yi}}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}."))) NIL NIL -(-789 R -1333) +(-797 R -1478) ((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m,{} x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m,{} v,{} x)} returns \\spad{[v_p,{} [v_1,{}...,{}v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable."))) NIL NIL -(-790) +(-798) ((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions."))) NIL NIL -(-791 R -1333) +(-799 R -1478) ((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f,{} x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f,{} x)} returns the integral of \\spad{f} with respect to \\spad{x}."))) NIL NIL -(-792) +(-800) ((|constructor| (NIL "\\axiomType{AnnaOrdinaryDifferentialEquationPackage} is a \\axiom{package} of functions for the \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} with \\axiom{measure},{} and \\axiom{solve}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}epsabs,{}epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{y}[1]'..\\spad{y}[\\spad{n}]' defined in terms of \\spad{x},{}\\spad{y}[1]..\\spad{y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{y}[1]..\\spad{y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{y}[1]..\\spad{y}[\\spad{n}] will be output for the values of \\spad{x} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{x},{}\\spad{y}[1],{}..,{}\\spad{y}[\\spad{n}]) evaluates to zero before \\spad{x} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{y}[1]'..\\spad{y}[\\spad{n}]' defined in terms of \\spad{x},{}\\spad{y}[1]..\\spad{y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{y}[1]..\\spad{y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{y}[1]..\\spad{y}[\\spad{n}] will be output for the values of \\spad{x} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{x},{}\\spad{y}[1],{}..,{}\\spad{y}[\\spad{n}]) evaluates to zero before \\spad{x} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{y}[1]'..\\spad{y}[\\spad{n}]' defined in terms of \\spad{x},{}\\spad{y}[1]..\\spad{y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{y}[1]..\\spad{y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{y}[1]..\\spad{y}[\\spad{n}] will be output for the values of \\spad{x} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{y}[1]'..\\spad{y}[\\spad{n}]' defined in terms of \\spad{x},{}\\spad{y}[1]..\\spad{y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{y}[1]..\\spad{y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{x},{}\\spad{y}[1],{}..,{}\\spad{y}[\\spad{n}]) evaluates to zero before \\spad{x} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{y}[1]'..\\spad{y}[\\spad{n}]' defined in terms of \\spad{x},{}\\spad{y}[1]..\\spad{y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{y}[1]..\\spad{y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{y}[1]'..\\spad{y}[\\spad{n}]' defined in terms of \\spad{x},{}\\spad{y}[1]..\\spad{y}[\\spad{n}],{} together with a starting value for \\spad{x} and \\spad{y}[1]..\\spad{y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{x}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,{}R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{y}[1]'..\\spad{y}[\\spad{n}]' defined in terms of \\spad{x},{}\\spad{y}[1]..\\spad{y}[\\spad{n}],{} together with starting values for \\spad{x} and \\spad{y}[1]..\\spad{y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{x},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{y}[1]'..\\spad{y}[\\spad{n}]' defined in terms of \\spad{x},{}\\spad{y}[1]..\\spad{y}[\\spad{n}],{} together with starting values for \\spad{x} and \\spad{y}[1]..\\spad{y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{x},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine."))) NIL NIL -(-793 -1333 UP UPUP R) +(-801 -1478 UP UPUP R) ((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation."))) NIL NIL -(-794 -1333 UP L LQ) +(-802 -1478 UP L LQ) ((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear ordinary differential equations,{} in the transcendental case. The derivation to use is given by the parameter \\spad{L}.")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op,{} [g1,{}...,{}gm])} returns \\spad{op0,{} [h1,{}...,{}hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op,{} [g1,{}...,{}gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op,{} g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution."))) NIL NIL -(-795) +(-803) ((|constructor| (NIL "\\axiomType{NumericalODEProblem} is a \\axiom{domain} for the representation of Numerical ODE problems for use by ANNA. \\blankline The representation is of type: \\blankline \\axiomType{Record}(xinit:\\axiomType{DoubleFloat},{}\\spad{\\br} xend:\\axiomType{DoubleFloat},{}\\spad{\\br} \\spad{fn:}\\axiomType{Vector Expression DoubleFloat},{}\\spad{\\br} yinit:\\axiomType{List DoubleFloat},{}intvals:\\axiomType{List DoubleFloat},{}\\spad{\\br} \\spad{g:}\\axiomType{Expression DoubleFloat},{}abserr:\\axiomType{DoubleFloat},{}\\spad{\\br} relerr:\\axiomType{DoubleFloat}) \\blankline")) (|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} is not documented")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} is not documented") (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} is not documented"))) NIL NIL -(-796 -1333 UP L LQ) +(-804 -1478 UP L LQ) ((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} zeros,{} ezfactor)} returns \\spad{[[f1,{} L1],{} [f2,{} L2],{} ... ,{} [fk,{} Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z=0}. \\spad{zeros(C(x),{}H(x,{}y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,{}P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{} Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op,{} ric)} returns \\spad{[[a1,{} L1],{} [a2,{} L2],{} ... ,{} [ak,{} Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1,{} p1],{} [m2,{} p2],{} ... ,{} [mk,{} pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}."))) NIL NIL -(-797 -1333 UP) +(-805 -1478 UP) ((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear ordinary differential equations,{} in the rational case.")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation."))) NIL NIL -(-798 -1333 L UP A LO) +(-806 -1478 L UP A LO) ((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op,{} g)} returns \\spad{[m,{} v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,{}...,{}z_m) . (b_1,{}...,{}b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}."))) NIL NIL -(-799 -1333 UP) +(-807 -1478 UP) ((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{}L1],{} [p2,{}L2],{} ... ,{} [pk,{}Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{\\spad{Li} z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} ezfactor)} returns \\spad{[[f1,{}L1],{} [f2,{}L2],{}...,{} [fk,{}Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-800 -1333 LO) +(-808 -1478 LO) ((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m,{} v)} returns \\spad{[m_0,{} v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,{}v)} returns \\spad{A,{}[[C_1,{}g_1,{}L_1,{}h_1],{}...,{}[C_k,{}g_k,{}L_k,{}h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}."))) NIL NIL -(-801 -1333 LODO) +(-809 -1478 LODO) ((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op,{} g,{} [f1,{}...,{}fm],{} I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if no particular solution is found. Note that the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op,{} g,{} [f1,{}...,{}fm])} returns \\spad{[u1,{}...,{}um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,{}...,{}fn],{} q,{} D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,{}...,{}fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}."))) NIL NIL -(-802 -2050 S |f|) +(-810 -2570 S |f|) ((|constructor| (NIL "This type represents the finite direct or cartesian product of an underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4499 |has| |#2| (-1039)) (-4500 |has| |#2| (-1039)) (-4502 |has| |#2| (-6 -4502)) ((-4507 "*") |has| |#2| (-170)) (-4505 . T)) -((|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (QUOTE (-359))) (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (QUOTE (-780))) (|HasCategory| |#2| (QUOTE (-832))) (-2318 (|HasCategory| |#2| (QUOTE (-780))) (|HasCategory| |#2| (QUOTE (-832)))) (|HasCategory| |#2| (QUOTE (-708))) (|HasCategory| |#2| (QUOTE (-170))) (-2318 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-359))) (|HasCategory| |#2| (QUOTE (-1039)))) (-2318 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-359)))) (-2318 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-1039)))) (|HasCategory| |#2| (QUOTE (-364))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#2| (QUOTE (-221))) (-2318 (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-221))) (|HasCategory| |#2| (QUOTE (-359))) (|HasCategory| |#2| (QUOTE (-1039)))) (-2318 (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-221))) (|HasCategory| |#2| (QUOTE (-1039)))) (|HasCategory| (-560) (QUOTE (-834))) (-12 (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1039)))) (-12 (|HasCategory| |#2| (QUOTE (-221))) (|HasCategory| |#2| (QUOTE (-1039)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#2| (QUOTE (-1039)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1082)))) (-2318 (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1082)))) (|HasCategory| |#2| (QUOTE (-1039)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1082)))) (|HasAttribute| |#2| (QUOTE -4502)) (|HasCategory| |#2| (QUOTE (-137))) (-2318 (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#2| (QUOTE (-137))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-221))) (|HasCategory| |#2| (QUOTE (-359))) (|HasCategory| |#2| (QUOTE (-1039)))) (|HasCategory| |#2| (QUOTE (-25))) (-2318 (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-137))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-221))) (|HasCategory| |#2| (QUOTE (-359))) (|HasCategory| |#2| (QUOTE (-364))) (|HasCategory| |#2| (QUOTE (-708))) (|HasCategory| |#2| (QUOTE (-780))) (|HasCategory| |#2| (QUOTE (-832))) (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (QUOTE (-1082)))) (-2318 (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-137))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-221))) (|HasCategory| |#2| (QUOTE (-359))) (|HasCategory| |#2| (QUOTE (-1039)))) (-2318 (-12 (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#2| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-137)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-170)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-221)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-359)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-364)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-708)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-780)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-832)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1039)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1082))))) (-2318 (-12 (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-137)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-170)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-221)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-359)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-364)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-708)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-780)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-832)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1039)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1082))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1082)))) (-2318 (-12 (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-1153))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-137)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-170)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-221)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-359)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-364)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-708)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-780)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-832)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1039)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1082)))))) -(-803 R) +((-4513 |has| |#2| (-1047)) (-4514 |has| |#2| (-1047)) (-4516 |has| |#2| (-6 -4516)) ((-4521 "*") |has| |#2| (-172)) (-4519 . T)) +((|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1047))) (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (QUOTE (-840))) (-2198 (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (QUOTE (-840)))) (|HasCategory| |#2| (QUOTE (-716))) (|HasCategory| |#2| (QUOTE (-172))) (-2198 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1047)))) (-2198 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365)))) (-2198 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1047)))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#2| (QUOTE (-225))) (-2198 (|HasCategory| |#2| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1047)))) (-2198 (|HasCategory| |#2| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (QUOTE (-1047)))) (|HasCategory| (-568) (QUOTE (-842))) (-12 (|HasCategory| |#2| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#2| (QUOTE (-1047)))) (-12 (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (QUOTE (-1047)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#2| (QUOTE (-1047)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#2| (QUOTE (-1090)))) (-2198 (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#2| (QUOTE (-1090)))) (|HasCategory| |#2| (QUOTE (-1047)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#2| (QUOTE (-1090)))) (|HasAttribute| |#2| (QUOTE -4516)) (|HasCategory| |#2| (QUOTE (-137))) (-2198 (|HasCategory| |#2| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#2| (QUOTE (-137))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1047)))) (|HasCategory| |#2| (QUOTE (-25))) (-2198 (|HasCategory| |#2| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-137))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-716))) (|HasCategory| |#2| (QUOTE (-788))) (|HasCategory| |#2| (QUOTE (-840))) (|HasCategory| |#2| (QUOTE (-1047))) (|HasCategory| |#2| (QUOTE (-1090)))) (-2198 (|HasCategory| |#2| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-137))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1047)))) (-2198 (-12 (|HasCategory| |#2| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#2| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#2| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#2| (QUOTE (-137)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#2| (QUOTE (-225)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#2| (QUOTE (-365)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#2| (QUOTE (-370)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#2| (QUOTE (-716)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#2| (QUOTE (-788)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#2| (QUOTE (-840)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#2| (QUOTE (-1047)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#2| (QUOTE (-1090))))) (-2198 (-12 (|HasCategory| |#2| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-568))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-568))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#2| (QUOTE (-137)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#2| (QUOTE (-225)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#2| (QUOTE (-365)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#2| (QUOTE (-370)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#2| (QUOTE (-716)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#2| (QUOTE (-788)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#2| (QUOTE (-840)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#2| (QUOTE (-1047)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#2| (QUOTE (-1090))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1090)))) (-2198 (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -630) (QUOTE (-568))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1161))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-137)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-225)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-365)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-370)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-716)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-788)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-840)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1047)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1090)))))) +(-811 R) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}."))) -(((-4507 "*") |has| |#1| (-170)) (-4498 |has| |#1| (-550)) (-4503 |has| |#1| (-6 -4503)) (-4500 . T) (-4499 . T) (-4502 . T)) -((|HasCategory| |#1| (QUOTE (-896))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-170))) (-2318 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| (-805 (-1153)) (LIST (QUOTE -873) (QUOTE (-375)))) (|HasCategory| |#1| (LIST (QUOTE -873) (QUOTE (-375))))) (-12 (|HasCategory| (-805 (-1153)) (LIST (QUOTE -873) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -873) (QUOTE (-560))))) (-12 (|HasCategory| (-805 (-1153)) (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-375))))) (|HasCategory| |#1| (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-375)))))) (-12 (|HasCategory| (-805 (-1153)) (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-560)))))) (-12 (|HasCategory| (-805 (-1153)) (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-533))))) (|HasCategory| |#1| (QUOTE (-834))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-221))) (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#1| (QUOTE (-359))) (-2318 (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560)))))) (|HasAttribute| |#1| (QUOTE -4503)) (|HasCategory| |#1| (QUOTE (-447))) (-2318 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-447))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-896)))) (-2318 (|HasCategory| |#1| (QUOTE (-447))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-896)))) (-2318 (|HasCategory| |#1| (QUOTE (-447))) (|HasCategory| |#1| (QUOTE (-896)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-896)))) (-2318 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-896)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-804 |Kernels| R |var|) +(((-4521 "*") |has| |#1| (-172)) (-4512 |has| |#1| (-558)) (-4517 |has| |#1| (-6 -4517)) (-4514 . T) (-4513 . T) (-4516 . T)) +((|HasCategory| |#1| (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2198 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| (-813 (-1161)) (LIST (QUOTE -881) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-381))))) (-12 (|HasCategory| (-813 (-1161)) (LIST (QUOTE -881) (QUOTE (-568)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-568))))) (-12 (|HasCategory| (-813 (-1161)) (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-381)))))) (-12 (|HasCategory| (-813 (-1161)) (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-568))))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-568)))))) (-12 (|HasCategory| (-813 (-1161)) (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-541))))) (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-150))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#1| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (QUOTE (-225))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#1| (QUOTE (-365))) (-2198 (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568)))))) (|HasAttribute| |#1| (QUOTE -4517)) (|HasCategory| |#1| (QUOTE (-453))) (-2198 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-904)))) (-2198 (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-904)))) (-2198 (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-904)))) (-12 (|HasCategory| $ (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-904)))) (-2198 (-12 (|HasCategory| $ (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-148))))) +(-812 |Kernels| R |var|) ((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable.")) (|coerce| ((|#2| $) "\\spad{coerce(p)} views \\spad{p} as a valie in the partial differential ring.") (($ |#2|) "\\spad{coerce(r)} views \\spad{r} as a value in the ordinary differential ring."))) -(((-4507 "*") |has| |#2| (-359)) (-4498 |has| |#2| (-359)) (-4503 |has| |#2| (-359)) (-4497 |has| |#2| (-359)) (-4502 . T) (-4500 . T) (-4499 . T)) -((|HasCategory| |#2| (QUOTE (-359)))) -(-805 S) +(((-4521 "*") |has| |#2| (-365)) (-4512 |has| |#2| (-365)) (-4517 |has| |#2| (-365)) (-4511 |has| |#2| (-365)) (-4516 . T) (-4514 . T) (-4513 . T)) +((|HasCategory| |#2| (QUOTE (-365)))) +(-813 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u}))."))) NIL NIL -(-806 S) +(-814 S) ((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The multiplication is not commutative. For two elements \\spad{x} and \\spad{y} the relation \\spad{x < y} holds if either \\spad{length(x) < length(y)} holds or if these lengths are equal and if \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\spad{S}. This domain inherits implementation from \\spadtype{FreeMonoid}.")) (|varList| (((|List| |#1|) $) "\\indented{1}{\\spad{varList(x)} returns the list of variables of \\spad{x}.} \\blankline \\spad{X} m1:=(x*y*y*z)\\$OFMONOID(Symbol) \\spad{X} varList \\spad{m1}")) (|length| (((|NonNegativeInteger|) $) "\\indented{1}{\\spad{length(x)} returns the length of \\spad{x}.} \\blankline \\spad{X} m1:=(x*y*y*z)\\$OFMONOID(Symbol) \\spad{X} length \\spad{m1}")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\indented{1}{\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns} \\indented{1}{\\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.} \\blankline \\spad{X} m1:=(x*y*y*z)\\$OFMONOID(Symbol) \\spad{X} factors \\spad{m1}")) (|nthFactor| ((|#1| $ (|Integer|)) "\\indented{1}{\\spad{nthFactor(x,{} n)} returns the factor of the \\spad{n-th}} \\indented{1}{monomial of \\spad{x}.} \\blankline \\spad{X} m1:=(x*y*y*z)\\$OFMONOID(Symbol) \\spad{X} nthFactor(\\spad{m1},{}2)")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\indented{1}{\\spad{nthExpon(x,{} n)} returns the exponent of the} \\indented{1}{\\spad{n-th} monomial of \\spad{x}.} \\blankline \\spad{X} m1:=(x*y*y*z)\\$OFMONOID(Symbol) \\spad{X} nthExpon(\\spad{m1},{}2)")) (|size| (((|NonNegativeInteger|) $) "\\indented{1}{\\spad{size(x)} returns the number of monomials in \\spad{x}.} \\blankline \\spad{X} m1:=(x*y*y*z)\\$OFMONOID(Symbol) \\spad{X} size(\\spad{m1},{}2)")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\indented{1}{\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that} \\indented{1}{\\spad{x = l * m} and \\spad{y = m * r} hold and such that} \\indented{1}{\\spad{l} and \\spad{r} have no overlap,{}} \\indented{1}{that is \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.} \\blankline \\spad{X} m1:=(x*y*y*z)\\$OFMONOID(Symbol) \\spad{X} m2:=(x*y)\\$OFMONOID(Symbol) \\spad{X} overlap(\\spad{m1},{}\\spad{m2})")) (|divide| (((|Union| (|Record| (|:| |lm| (|Union| $ "failed")) (|:| |rm| (|Union| $ "failed"))) "failed") $ $) "\\indented{1}{\\spad{divide(x,{}y)} returns the left and right exact quotients of} \\indented{1}{\\spad{x} by \\spad{y},{} that is \\spad{[l,{}r]} such that \\spad{x = l*y*r}.} \\indented{1}{\"failed\" is returned iff \\spad{x} is not of the form \\spad{l * y * r}.} \\blankline \\spad{X} m1:=(x*y*y*z)\\$OFMONOID(Symbol) \\spad{X} m2:=(x*y)\\$OFMONOID(Symbol) \\spad{X} divide(\\spad{m1},{}\\spad{m2})")) (|rquo| (((|Union| $ "failed") $ |#1|) "\\indented{1}{\\spad{rquo(x,{} s)} returns the exact right quotient} \\indented{1}{of \\spad{x} by \\spad{s}.} \\blankline \\spad{X} m1:=(x*y)\\$OFMONOID(Symbol) \\spad{X} div(\\spad{m1},{}\\spad{y})") (((|Union| $ "failed") $ $) "\\indented{1}{\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x}} \\indented{1}{by \\spad{y} that is \\spad{q} such that \\spad{x = q * y},{}} \\indented{1}{\"failed\" if \\spad{x} is not of the form \\spad{q * y}.} \\blankline \\spad{X} m1:=(\\spad{q*y^3})\\$OFMONOID(Symbol) \\spad{X} m2:=(\\spad{y^2})\\$OFMONOID(Symbol) \\spad{X} lquo(\\spad{m1},{}\\spad{m2})")) (|lquo| (((|Union| $ "failed") $ |#1|) "\\indented{1}{\\spad{lquo(x,{} s)} returns the exact left quotient of \\spad{x}} \\indented{1}{by \\spad{s}.} \\blankline \\spad{X} m1:=(x*y*y*z)\\$OFMONOID(Symbol) \\spad{X} lquo(\\spad{m1},{}\\spad{x})") (((|Union| $ "failed") $ $) "\\indented{1}{\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x}} \\indented{2}{by \\spad{y} that is \\spad{q} such that \\spad{x = y * q},{}} \\indented{1}{\"failed\" if \\spad{x} is not of the form \\spad{y * q}.} \\blankline \\spad{X} m1:=(x*y*y*z)\\$OFMONOID(Symbol) \\spad{X} m2:=(x*y)\\$OFMONOID(Symbol) \\spad{X} lquo(\\spad{m1},{}\\spad{m2})")) (|hcrf| (($ $ $) "\\indented{1}{\\spad{hcrf(x,{} y)} returns the highest common right} \\indented{1}{factor of \\spad{x} and \\spad{y},{}} \\indented{1}{that is the largest \\spad{d} such that \\spad{x = a d}} \\indented{1}{and \\spad{y = b d}.} \\blankline \\spad{X} m1:=(x*y*z)\\$OFMONOID(Symbol) \\spad{X} m2:=(\\spad{y*z})\\$OFMONOID(Symbol) \\spad{X} hcrf(\\spad{m1},{}\\spad{m2})")) (|hclf| (($ $ $) "\\indented{1}{\\spad{hclf(x,{} y)} returns the highest common left factor} \\indented{1}{of \\spad{x} and \\spad{y},{}} \\indented{1}{that is the largest \\spad{d} such that \\spad{x = d a}} \\indented{1}{and \\spad{y = d b}.} \\blankline \\spad{X} m1:=(x*y*z)\\$OFMONOID(Symbol) \\spad{X} m2:=(x*y)\\$OFMONOID(Symbol) \\spad{X} hclf(\\spad{m1},{}\\spad{m2})")) (|lexico| (((|Boolean|) $ $) "\\indented{1}{\\spad{lexico(x,{}y)} returns \\spad{true}} \\indented{1}{iff \\spad{x} is smaller than \\spad{y}} \\indented{1}{\\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering induced by \\spad{S}.} \\blankline \\spad{X} m1:=(x*y*y*z)\\$OFMONOID(Symbol) \\spad{X} m2:=(x*y)\\$OFMONOID(Symbol) \\spad{X} lexico(\\spad{m1},{}\\spad{m2}) \\spad{X} lexico(\\spad{m2},{}\\spad{m1})")) (|mirror| (($ $) "\\indented{1}{\\spad{mirror(x)} returns the reversed word of \\spad{x}.} \\blankline \\spad{X} m1:=(x*y*y*z)\\$OFMONOID(Symbol) \\spad{X} mirror \\spad{m1}")) (|rest| (($ $) "\\indented{1}{\\spad{rest(x)} returns \\spad{x} except the first letter.} \\blankline \\spad{X} m1:=(x*y*y*z)\\$OFMONOID(Symbol) \\spad{X} rest \\spad{m1}")) (|first| ((|#1| $) "\\indented{1}{\\spad{first(x)} returns the first letter of \\spad{x}.} \\blankline \\spad{X} m1:=(x*y*y*z)\\$OFMONOID(Symbol) \\spad{X} first \\spad{m1}")) (** (($ |#1| (|NonNegativeInteger|)) "\\indented{1}{\\spad{s**n} returns the product of \\spad{s} by itself \\spad{n} times.} \\blankline \\spad{X} m1:=(\\spad{y**3})\\$OFMONOID(Symbol)")) (* (($ $ |#1|) "\\indented{1}{\\spad{x*s} returns the product of \\spad{x} by \\spad{s} on the right.} \\blankline \\spad{X} m1:=(\\spad{y**3})\\$OFMONOID(Symbol) \\spad{X} m1*x") (($ |#1| $) "\\indented{1}{\\spad{s*x} returns the product of \\spad{x} by \\spad{s} on the left.} \\blankline \\spad{X} m1:=(x*y*y*z)\\$OFMONOID(Symbol) \\spad{X} \\spad{x*m1}"))) NIL NIL -(-807) +(-815) ((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible"))) -((-4498 . T) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) +((-4512 . T) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) NIL -(-808) +(-816) ((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}"))) NIL NIL -(-809) +(-817) ((|constructor| (NIL "\\spadtype{OpenMathDevice} provides support for reading and writing openMath objects to files,{} strings etc. It also provides access to low-level operations from within the interpreter.")) (|OMgetType| (((|Symbol|) $) "\\spad{OMgetType(dev)} returns the type of the next object on \\axiom{\\spad{dev}}.")) (|OMgetSymbol| (((|Record| (|:| |cd| (|String|)) (|:| |name| (|String|))) $) "\\spad{OMgetSymbol(dev)} reads a symbol from \\axiom{\\spad{dev}}.")) (|OMgetString| (((|String|) $) "\\spad{OMgetString(dev)} reads a string from \\axiom{\\spad{dev}}.")) (|OMgetVariable| (((|Symbol|) $) "\\spad{OMgetVariable(dev)} reads a variable from \\axiom{\\spad{dev}}.")) (|OMgetFloat| (((|DoubleFloat|) $) "\\spad{OMgetFloat(dev)} reads a float from \\axiom{\\spad{dev}}.")) (|OMgetInteger| (((|Integer|) $) "\\spad{OMgetInteger(dev)} reads an integer from \\axiom{\\spad{dev}}.")) (|OMgetEndObject| (((|Void|) $) "\\spad{OMgetEndObject(dev)} reads an end object token from \\axiom{\\spad{dev}}.")) (|OMgetEndError| (((|Void|) $) "\\spad{OMgetEndError(dev)} reads an end error token from \\axiom{\\spad{dev}}.")) (|OMgetEndBVar| (((|Void|) $) "\\spad{OMgetEndBVar(dev)} reads an end bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetEndBind| (((|Void|) $) "\\spad{OMgetEndBind(dev)} reads an end binder token from \\axiom{\\spad{dev}}.")) (|OMgetEndAttr| (((|Void|) $) "\\spad{OMgetEndAttr(dev)} reads an end attribute token from \\axiom{\\spad{dev}}.")) (|OMgetEndAtp| (((|Void|) $) "\\spad{OMgetEndAtp(dev)} reads an end attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetEndApp| (((|Void|) $) "\\spad{OMgetEndApp(dev)} reads an end application token from \\axiom{\\spad{dev}}.")) (|OMgetObject| (((|Void|) $) "\\spad{OMgetObject(dev)} reads a begin object token from \\axiom{\\spad{dev}}.")) (|OMgetError| (((|Void|) $) "\\spad{OMgetError(dev)} reads a begin error token from \\axiom{\\spad{dev}}.")) (|OMgetBVar| (((|Void|) $) "\\spad{OMgetBVar(dev)} reads a begin bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetBind| (((|Void|) $) "\\spad{OMgetBind(dev)} reads a begin binder token from \\axiom{\\spad{dev}}.")) (|OMgetAttr| (((|Void|) $) "\\spad{OMgetAttr(dev)} reads a begin attribute token from \\axiom{\\spad{dev}}.")) (|OMgetAtp| (((|Void|) $) "\\spad{OMgetAtp(dev)} reads a begin attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetApp| (((|Void|) $) "\\spad{OMgetApp(dev)} reads a begin application token from \\axiom{\\spad{dev}}.")) (|OMputSymbol| (((|Void|) $ (|String|) (|String|)) "\\spad{OMputSymbol(dev,{}cd,{}s)} writes the symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}} to \\axiom{\\spad{dev}}.")) (|OMputString| (((|Void|) $ (|String|)) "\\spad{OMputString(dev,{}i)} writes the string \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputVariable| (((|Void|) $ (|Symbol|)) "\\spad{OMputVariable(dev,{}i)} writes the variable \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputFloat| (((|Void|) $ (|DoubleFloat|)) "\\spad{OMputFloat(dev,{}i)} writes the float \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputInteger| (((|Void|) $ (|Integer|)) "\\spad{OMputInteger(dev,{}i)} writes the integer \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputEndObject| (((|Void|) $) "\\spad{OMputEndObject(dev)} writes an end object token to \\axiom{\\spad{dev}}.")) (|OMputEndError| (((|Void|) $) "\\spad{OMputEndError(dev)} writes an end error token to \\axiom{\\spad{dev}}.")) (|OMputEndBVar| (((|Void|) $) "\\spad{OMputEndBVar(dev)} writes an end bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputEndBind| (((|Void|) $) "\\spad{OMputEndBind(dev)} writes an end binder token to \\axiom{\\spad{dev}}.")) (|OMputEndAttr| (((|Void|) $) "\\spad{OMputEndAttr(dev)} writes an end attribute token to \\axiom{\\spad{dev}}.")) (|OMputEndAtp| (((|Void|) $) "\\spad{OMputEndAtp(dev)} writes an end attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputEndApp| (((|Void|) $) "\\spad{OMputEndApp(dev)} writes an end application token to \\axiom{\\spad{dev}}.")) (|OMputObject| (((|Void|) $) "\\spad{OMputObject(dev)} writes a begin object token to \\axiom{\\spad{dev}}.")) (|OMputError| (((|Void|) $) "\\spad{OMputError(dev)} writes a begin error token to \\axiom{\\spad{dev}}.")) (|OMputBVar| (((|Void|) $) "\\spad{OMputBVar(dev)} writes a begin bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputBind| (((|Void|) $) "\\spad{OMputBind(dev)} writes a begin binder token to \\axiom{\\spad{dev}}.")) (|OMputAttr| (((|Void|) $) "\\spad{OMputAttr(dev)} writes a begin attribute token to \\axiom{\\spad{dev}}.")) (|OMputAtp| (((|Void|) $) "\\spad{OMputAtp(dev)} writes a begin attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputApp| (((|Void|) $) "\\spad{OMputApp(dev)} writes a begin application token to \\axiom{\\spad{dev}}.")) (|OMsetEncoding| (((|Void|) $ (|OpenMathEncoding|)) "\\spad{OMsetEncoding(dev,{}enc)} sets the encoding used for reading or writing OpenMath objects to or from \\axiom{\\spad{dev}} to \\axiom{\\spad{enc}}.")) (|OMclose| (((|Void|) $) "\\spad{OMclose(dev)} closes \\axiom{\\spad{dev}},{} flushing output if necessary.")) (|OMopenString| (($ (|String|) (|OpenMathEncoding|)) "\\spad{OMopenString(s,{}mode)} opens the string \\axiom{\\spad{s}} for reading or writing OpenMath objects in encoding \\axiom{enc}.")) (|OMopenFile| (($ (|String|) (|String|) (|OpenMathEncoding|)) "\\spad{OMopenFile(f,{}mode,{}enc)} opens file \\axiom{\\spad{f}} for reading or writing OpenMath objects (depending on \\axiom{\\spad{mode}} which can be \\spad{\"r\"},{} \\spad{\"w\"} or \"a\" for read,{} write and append respectively),{} in the encoding \\axiom{\\spad{enc}}."))) NIL NIL -(-810) +(-818) ((|constructor| (NIL "\\spadtype{OpenMathEncoding} is the set of valid OpenMath encodings.")) (|OMencodingBinary| (($) "\\spad{OMencodingBinary()} is the constant for the OpenMath binary encoding.")) (|OMencodingSGML| (($) "\\spad{OMencodingSGML()} is the constant for the deprecated OpenMath SGML encoding.")) (|OMencodingXML| (($) "\\spad{OMencodingXML()} is the constant for the OpenMath \\spad{XML} encoding.")) (|OMencodingUnknown| (($) "\\spad{OMencodingUnknown()} is the constant for unknown encoding types. If this is used on an input device,{} the encoding will be autodetected. It is invalid to use it on an output device."))) NIL NIL -(-811) +(-819) ((|constructor| (NIL "\\spadtype{OpenMathErrorKind} represents different kinds of OpenMath errors: specifically parse errors,{} unknown \\spad{CD} or symbol errors,{} and read errors.")) (|OMReadError?| (((|Boolean|) $) "\\spad{OMReadError?(u)} tests whether \\spad{u} is an OpenMath read error.")) (|OMUnknownSymbol?| (((|Boolean|) $) "\\spad{OMUnknownSymbol?(u)} tests whether \\spad{u} is an OpenMath unknown symbol error.")) (|OMUnknownCD?| (((|Boolean|) $) "\\spad{OMUnknownCD?(u)} tests whether \\spad{u} is an OpenMath unknown \\spad{CD} error.")) (|OMParseError?| (((|Boolean|) $) "\\spad{OMParseError?(u)} tests whether \\spad{u} is an OpenMath parsing error.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(u)} creates an OpenMath error object of an appropriate type if \\axiom{\\spad{u}} is one of \\axiom{OMParseError},{} \\axiom{OMReadError},{} \\axiom{OMUnknownCD} or \\axiom{OMUnknownSymbol},{} otherwise it raises a runtime error."))) NIL NIL -(-812) +(-820) ((|constructor| (NIL "\\spadtype{OpenMathError} is the domain of OpenMath errors.")) (|omError| (($ (|OpenMathErrorKind|) (|List| (|Symbol|))) "\\spad{omError(k,{}l)} creates an instance of OpenMathError.")) (|errorInfo| (((|List| (|Symbol|)) $) "\\spad{errorInfo(u)} returns information about the error \\spad{u}.")) (|errorKind| (((|OpenMathErrorKind|) $) "\\spad{errorKind(u)} returns the type of error which \\spad{u} represents."))) NIL NIL -(-813 R) +(-821 R) ((|constructor| (NIL "\\spadtype{ExpressionToOpenMath} provides support for converting objects of type \\spadtype{Expression} into OpenMath."))) NIL NIL -(-814 P R) +(-822 P R) ((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}."))) -((-4499 . T) (-4500 . T) (-4502 . T)) -((|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-221)))) -(-815) +((-4513 . T) (-4514 . T) (-4516 . T)) +((|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-225)))) +(-823) ((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev,{} u,{} true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev,{} u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u,{} true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object."))) NIL NIL -(-816) +(-824) ((|constructor| (NIL "\\spadtype{OpenMathPackage} provides some simple utilities to make reading OpenMath objects easier.")) (|OMunhandledSymbol| (((|Exit|) (|String|) (|String|)) "\\spad{OMunhandledSymbol(s,{}cd)} raises an error if AXIOM reads a symbol which it is unable to handle. Note that this is different from an unexpected symbol.")) (|OMsupportsSymbol?| (((|Boolean|) (|String|) (|String|)) "\\spad{OMsupportsSymbol?(s,{}cd)} returns \\spad{true} if AXIOM supports symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMsupportsCD?| (((|Boolean|) (|String|)) "\\spad{OMsupportsCD?(cd)} returns \\spad{true} if AXIOM supports \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMlistSymbols| (((|List| (|String|)) (|String|)) "\\spad{OMlistSymbols(cd)} lists all the symbols in \\axiom{\\spad{cd}}.")) (|OMlistCDs| (((|List| (|String|))) "\\spad{OMlistCDs()} lists all the \\spad{CDs} supported by AXIOM.")) (|OMreadStr| (((|Any|) (|String|)) "\\spad{OMreadStr(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMreadFile| (((|Any|) (|String|)) "\\spad{OMreadFile(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMread| (((|Any|) (|OpenMathDevice|)) "\\spad{OMread(dev)} reads an OpenMath object from \\axiom{\\spad{dev}} and passes it to AXIOM."))) NIL NIL -(-817 S) +(-825 S) ((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}."))) -((-4505 . T) (-4495 . T) (-4506 . T) (-2537 . T)) +((-4519 . T) (-4509 . T) (-4520 . T) (-3973 . T)) NIL -(-818) +(-826) ((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,{}timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,{}u)} attempts to output \\axiom{\\spad{u}} on \\axiom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object."))) NIL NIL -(-819 R S) +(-827 R S) ((|constructor| (NIL "Lifting of maps to one-point completions.")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f,{} r,{} i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f,{} r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity."))) NIL NIL -(-820 R) +(-828 R) ((|constructor| (NIL "Completion with infinity. Adjunction of a complex infinity to a set.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity."))) -((-4502 |has| |#1| (-832))) -((|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-542))) (-2318 (|HasCategory| |#1| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-832)))) (|HasCategory| |#1| (QUOTE (-21))) (-2318 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-832))))) -(-821 R) +((-4516 |has| |#1| (-840))) +((|HasCategory| |#1| (QUOTE (-840))) (|HasCategory| |#1| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-550))) (-2198 (|HasCategory| |#1| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-21))) (-2198 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-840))))) +(-829 R) ((|constructor| (NIL "Algebra of ADDITIVE operators over a ring."))) -((-4500 |has| |#1| (-170)) (-4499 |has| |#1| (-170)) (-4502 . T)) -((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148)))) -(-822) +((-4514 |has| |#1| (-172)) (-4513 |has| |#1| (-172)) (-4516 . T)) +((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-150)))) +(-830) ((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \\spad{\"k\"} (constructors),{} \\spad{\"d\"} (domains),{} \\spad{\"c\"} (categories) or \\spad{\"p\"} (packages)."))) NIL NIL -(-823) +(-831) ((|constructor| (NIL "\\axiomType{NumericalOptimizationCategory} is the \\axiom{category} for describing the set of Numerical Optimization \\axiom{domains} with \\axiomFun{measure} and \\axiomFun{optimize}.")) (|numericalOptimization| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-824) +(-832) ((|constructor| (NIL "\\axiomType{AnnaNumericalOptimizationPackage} is a \\axiom{package} of functions for the \\axiomType{NumericalOptimizationCategory} with \\axiom{measure} and \\axiom{optimize}.")) (|goodnessOfFit| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{goodnessOfFit(lf,{}start)} is a top level ANNA function to check to goodness of fit of a least squares model \\spadignore{i.e.} the minimization of a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation. goodnessOfFit(\\spad{lf},{}\\spad{start}) is a top level function to iterate over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then checks the goodness of fit of the least squares model.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{goodnessOfFit(prob)} is a top level ANNA function to check to goodness of fit of a least squares model as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation.")) (|optimize| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{optimize(lf,{}start)} is a top level ANNA function to minimize a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints \\spadignore{i.e.} a least-squares problem. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|))) "\\spad{optimize(f,{}start)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,{}start,{}lower,{}upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with simple constraints. The bounds on the variables are defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|Expression| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,{}start,{}lower,{}cons,{}upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with the given constraints. \\blankline These constraints may be simple constraints on the variables in which case \\axiom{\\spad{cons}} would be an empty list and the bounds on those variables defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}},{} or a mixture of simple,{} linear and non-linear constraints,{} where \\axiom{\\spad{cons}} contains the linear and non-linear constraints and the bounds on these are added to \\axiom{\\spad{upper}} and \\axiom{\\spad{lower}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{optimize(prob)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{optimize(prob,{}routines)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} listed in \\axiom{\\spad{routines}} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information."))) NIL NIL -(-825) +(-833) ((|constructor| (NIL "\\axiomType{NumericalOptimizationProblem} is a \\axiom{domain} for the representation of Numerical Optimization problems for use by ANNA. \\blankline The representation is a Union of two record types - one for otimization of a single function of one or more variables: \\blankline \\axiomType{Record}(\\spad{\\br} \\spad{fn:}\\axiomType{Expression DoubleFloat},{}\\spad{\\br} init:\\axiomType{List DoubleFloat},{}\\spad{\\br} \\spad{lb:}\\axiomType{List OrderedCompletion DoubleFloat},{}\\spad{\\br} \\spad{cf:}\\axiomType{List Expression DoubleFloat},{}\\spad{\\br} ub:\\axiomType{List OrderedCompletion DoubleFloat}) \\blankline and one for least-squares problems \\spadignore{i.e.} optimization of a set of observations of a data set: \\blankline \\axiomType{Record}(lfn:\\axiomType{List Expression DoubleFloat},{}\\spad{\\br} init:\\axiomType{List DoubleFloat}).")) (|retract| (((|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|)))))) $) "\\spad{retract(x)} is not documented")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} is not documented") (($ (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{coerce(x)} is not documented") (($ (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{coerce(x)} is not documented") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{coerce(x)} is not documented"))) NIL NIL -(-826 R S) +(-834 R S) ((|constructor| (NIL "Lifting of maps to ordered completions.")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f,{} r,{} p,{} m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f,{} r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity."))) NIL NIL -(-827 R) +(-835 R) ((|constructor| (NIL "Completion with + and - infinity. Adjunction of two real infinites quantities to a set.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity."))) -((-4502 |has| |#1| (-832))) -((|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-542))) (-2318 (|HasCategory| |#1| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-832)))) (|HasCategory| |#1| (QUOTE (-21))) (-2318 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-832))))) -(-828) +((-4516 |has| |#1| (-840))) +((|HasCategory| |#1| (QUOTE (-840))) (|HasCategory| |#1| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-550))) (-2198 (|HasCategory| |#1| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-21))) (-2198 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-840))))) +(-836) ((|constructor| (NIL "Ordered finite sets."))) NIL NIL -(-829 -2050 S) +(-837 -2570 S) ((|constructor| (NIL "This package provides ordering functions on vectors which are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering."))) NIL NIL -(-830) +(-838) ((|constructor| (NIL "Ordered sets which are also monoids,{} such that multiplication preserves the ordering. \\blankline Axioms\\spad{\\br} \\tab{5}\\spad{x < y => x*z < y*z}\\spad{\\br} \\tab{5}\\spad{x < y => z*x < z*y}"))) NIL NIL -(-831 S) +(-839 S) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline Axiom\\spad{\\br} \\tab{5}\\spad{0 ab< ac}")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0."))) NIL NIL -(-832) +(-840) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline Axiom\\spad{\\br} \\tab{5}\\spad{0 ab< ac}")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0."))) -((-4502 . T)) +((-4516 . T)) NIL -(-833 S) +(-841 S) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,{}b)} exactly one of the following relations holds \\spad{a a= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set."))) NIL NIL -(-834) +(-842) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,{}b)} exactly one of the following relations holds \\spad{a a= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set."))) NIL NIL -(-835 S R) +(-843 S R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and NonCommutativeOperatorDivision")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ^= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) NIL -((|HasCategory| |#2| (QUOTE (-359))) (|HasCategory| |#2| (QUOTE (-447))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-170)))) -(-836 R) +((|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-453))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-172)))) +(-844 R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and NonCommutativeOperatorDivision")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ^= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) -((-4499 . T) (-4500 . T) (-4502 . T)) +((-4513 . T) (-4514 . T) (-4516 . T)) NIL -(-837 R C) +(-845 R C) ((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and divisions of univariate skew polynomials.")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p,{} c,{} m,{} sigma,{} delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p,{} q,{} sigma,{} delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use."))) NIL -((|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-550)))) -(-838 R |sigma| -4349) +((|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) +(-846 R |sigma| -1325) ((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{} x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable."))) -((-4499 . T) (-4500 . T) (-4502 . T)) -((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-447))) (|HasCategory| |#1| (QUOTE (-359)))) -(-839 |x| R |sigma| -4349) +((-4513 . T) (-4514 . T) (-4516 . T)) +((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-365)))) +(-847 |x| R |sigma| -1325) ((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} returns \\spad{x} as a skew-polynomial."))) -((-4499 . T) (-4500 . T) (-4502 . T)) -((|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-447))) (|HasCategory| |#2| (QUOTE (-359)))) -(-840 R) +((-4513 . T) (-4514 . T) (-4516 . T)) +((|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-453))) (|HasCategory| |#2| (QUOTE (-365)))) +(-848 R) ((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,{}x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n,{} n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,{}n,{}x)} is the associated Laguerre polynomial,{} \\spad{L[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,{}x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!,{} n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,{}x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560)))))) -(-841) +((|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568)))))) +(-849) ((|constructor| (NIL "A domain used in order to take the free \\spad{R}-module on the Integers \\spad{I}. This is actually the forgetful functor from OrderedRings to OrderedSets applied to \\spad{I}")) (|value| (((|Integer|) $) "\\spad{value(x)} returns the integer associated with \\spad{x}")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} returns the element corresponding to \\spad{i}"))) NIL NIL -(-842) +(-850) ((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,{}y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,{}g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (^= (($ $ $) "\\spad{f ^= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,{}f)} creates the form \\spad{f} with \\spad{\"x} overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,{}n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,{}n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,{}[sub1,{}super1,{}sub2,{}super2,{}...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f,{} [sub,{} super,{} presuper,{} presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,{}n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,{}n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,{}n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,{}n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,{}m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{}n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \\spad{\"f} super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,{}g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,{}g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,{}g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,{}g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,{}n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,{}g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,{}f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,{}l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op,{} a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op,{} a,{} b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,{}l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,{}l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,{}g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,{}g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,{}n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,{}n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,{}n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,{}m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}."))) NIL NIL -(-843) +(-851) ((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,{}x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}."))) NIL NIL -(-844 |VariableList|) +(-852 |VariableList|) ((|constructor| (NIL "This domain implements ordered variables")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} returns a member of the variable set or failed"))) NIL NIL -(-845 R |vl| |wl| |wtlevel|) +(-853 R |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(p)} coerces a Polynomial(\\spad{R}) into Weighted form,{} applying weights and ignoring terms") (((|Polynomial| |#1|) $) "\\spad{coerce(p)} converts back into a Polynomial(\\spad{R}),{} ignoring weights"))) -((-4500 |has| |#1| (-170)) (-4499 |has| |#1| (-170)) (-4502 . T)) -((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-359)))) -(-846) +((-4514 |has| |#1| (-172)) (-4513 |has| |#1| (-172)) (-4516 . T)) +((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365)))) +(-854) ((|constructor| (NIL "This category exports the function for the domain PseudoAlgebraicClosureOfAlgExtOfRationalNumber which implement dynamic extension using the simple notion of tower extensions. A tower extension \\spad{T} of the ground field \\spad{K} is any sequence of field extension (\\spad{T} : \\spad{K_0},{} \\spad{K_1},{} ...,{} K_i...,{}\\spad{K_n}) where \\spad{K_0} = \\spad{K} and for \\spad{i} \\spad{=1},{}2,{}...,{}\\spad{n},{} K_i is an extension of \\spad{K_}{\\spad{i}-1} of degree > 1 and defined by an irreducible polynomial \\spad{p}(\\spad{Z}) in \\spad{K_}{\\spad{i}-1}. Two towers (T_1: \\spad{K_01},{} \\spad{K_11},{}...,{}\\spad{K_i1},{}...,{}\\spad{K_n1}) and (T_2: \\spad{K_02},{} \\spad{K_12},{}...,{}\\spad{K_i2},{}...,{}\\spad{K_n2}) are said to be related if \\spad{T_1} \\spad{<=} \\spad{T_2} (or \\spad{T_1} \\spad{>=} \\spad{T_2}),{} that is if \\spad{K_i1} = \\spad{K_i2} for \\spad{i=1},{}2,{}...,{}\\spad{n1} (or \\spad{i=1},{}2,{}...,{}\\spad{n2}). Any algebraic operations defined for several elements are only defined if all of the concerned elements are comming from a set of related tour extensions."))) -((-4497 . T) (-4503 . T) (-4498 . T) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) +((-4511 . T) (-4517 . T) (-4512 . T) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) NIL -(-847 |downLevel|) +(-855 |downLevel|) ((|constructor| (NIL "This domain implement dynamic extension over the PseudoAlgebraicClosureOfRationalNumber. A tower extension \\spad{T} of the ground field \\spad{K} is any sequence of field extension (\\spad{T} : \\spad{K_0},{} \\spad{K_1},{} ...,{} K_i...,{}\\spad{K_n}) where \\spad{K_0} = \\spad{K} and for \\spad{i} \\spad{=1},{}2,{}...,{}\\spad{n},{} K_i is an extension of \\spad{K_}{\\spad{i}-1} of degree > 1 and defined by an irreducible polynomial \\spad{p}(\\spad{Z}) in \\spad{K_}{\\spad{i}-1}. Two towers (T_1: \\spad{K_01},{} \\spad{K_11},{}...,{}\\spad{K_i1},{}...,{}\\spad{K_n1}) and (T_2: \\spad{K_02},{} \\spad{K_12},{}...,{}\\spad{K_i2},{}...,{}\\spad{K_n2}) are said to be related if \\spad{T_1} \\spad{<=} \\spad{T_2} (or \\spad{T_1} \\spad{>=} \\spad{T_2}),{} that is if \\spad{K_i1} = \\spad{K_i2} for \\spad{i=1},{}2,{}...,{}\\spad{n1} (or \\spad{i=1},{}2,{}...,{}\\spad{n2}). Any algebraic operations defined for several elements are only defined if all of the concerned elements are comming from a set of related tour extensions."))) -((-4497 . T) (-4503 . T) (-4498 . T) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) -((|HasCategory| (-852) (QUOTE (-148))) (|HasCategory| (-852) (QUOTE (-146))) (|HasCategory| (-852) (QUOTE (-364))) (|HasCategory| (-403 (-560)) (QUOTE (-148))) (|HasCategory| (-403 (-560)) (QUOTE (-146))) (|HasCategory| (-403 (-560)) (QUOTE (-364))) (-2318 (|HasCategory| (-403 (-560)) (QUOTE (-146))) (|HasCategory| (-403 (-560)) (QUOTE (-364))) (|HasCategory| (-852) (QUOTE (-146))) (|HasCategory| (-852) (QUOTE (-364)))) (-2318 (|HasCategory| (-403 (-560)) (QUOTE (-364))) (|HasCategory| (-852) (QUOTE (-364))))) -(-848) +((-4511 . T) (-4517 . T) (-4512 . T) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) +((|HasCategory| (-860) (QUOTE (-150))) (|HasCategory| (-860) (QUOTE (-148))) (|HasCategory| (-860) (QUOTE (-370))) (|HasCategory| (-409 (-568)) (QUOTE (-150))) (|HasCategory| (-409 (-568)) (QUOTE (-148))) (|HasCategory| (-409 (-568)) (QUOTE (-370))) (-2198 (|HasCategory| (-409 (-568)) (QUOTE (-148))) (|HasCategory| (-409 (-568)) (QUOTE (-370))) (|HasCategory| (-860) (QUOTE (-148))) (|HasCategory| (-860) (QUOTE (-370)))) (-2198 (|HasCategory| (-409 (-568)) (QUOTE (-370))) (|HasCategory| (-860) (QUOTE (-370))))) +(-856) ((|constructor| (NIL "This category exports the function for the domain PseudoAlgebraicClosureOfFiniteField which implement dynamic extension using the simple notion of tower extensions. A tower extension \\spad{T} of the ground field \\spad{K} is any sequence of field extension (\\spad{T} : \\spad{K_0},{} \\spad{K_1},{} ...,{} K_i...,{}\\spad{K_n}) where \\spad{K_0} = \\spad{K} and for \\spad{i} \\spad{=1},{}2,{}...,{}\\spad{n},{} K_i is an extension of \\spad{K_}{\\spad{i}-1} of degree > 1 and defined by an irreducible polynomial \\spad{p}(\\spad{Z}) in \\spad{K_}{\\spad{i}-1}. Two towers (T_1: \\spad{K_01},{} \\spad{K_11},{}...,{}\\spad{K_i1},{}...,{}\\spad{K_n1}) and (T_2: \\spad{K_02},{} \\spad{K_12},{}...,{}\\spad{K_i2},{}...,{}\\spad{K_n2}) are said to be related if \\spad{T_1} \\spad{<=} \\spad{T_2} (or \\spad{T_1} \\spad{>=} \\spad{T_2}),{} that is if \\spad{K_i1} = \\spad{K_i2} for \\spad{i=1},{}2,{}...,{}\\spad{n1} (or \\spad{i=1},{}2,{}...,{}\\spad{n2}). Any algebraic operations defined for several elements are only defined if all of the concerned elements are comming from a set of related tour extensions."))) -((-4497 . T) (-4503 . T) (-4498 . T) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) +((-4511 . T) (-4517 . T) (-4512 . T) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) NIL -(-849 K) +(-857 K) ((|constructor| (NIL "This domain implement dynamic extension using the simple notion of tower extensions. A tower extension \\spad{T} of the ground field \\spad{K} is any sequence of field extension (\\spad{T} : \\spad{K_0},{} \\spad{K_1},{} ...,{} K_i...,{}\\spad{K_n}) where \\spad{K_0} = \\spad{K} and for \\spad{i} \\spad{=1},{}2,{}...,{}\\spad{n},{} K_i is an extension of \\spad{K_}{\\spad{i}-1} of degree > 1 and defined by an irreducible polynomial \\spad{p}(\\spad{Z}) in \\spad{K_}{\\spad{i}-1}. Two towers (T_1: \\spad{K_01},{} \\spad{K_11},{}...,{}\\spad{K_i1},{}...,{}\\spad{K_n1}) and (T_2: \\spad{K_02},{} \\spad{K_12},{}...,{}\\spad{K_i2},{}...,{}\\spad{K_n2}) are said to be related if \\spad{T_1} \\spad{<=} \\spad{T_2} (or \\spad{T_1} \\spad{>=} \\spad{T_2}),{} that is if \\spad{K_i1} = \\spad{K_i2} for \\spad{i=1},{}2,{}...,{}\\spad{n1} (or \\spad{i=1},{}2,{}...,{}\\spad{n2}). Any algebraic operations defined for several elements are only defined if all of the concerned elements are comming from a set of related tour extensions."))) -((-4497 . T) (-4503 . T) (-4498 . T) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) -((|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-364)))) -(-850) +((-4511 . T) (-4517 . T) (-4512 . T) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) +((|HasCategory| |#1| (QUOTE (-150))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-370)))) +(-858) ((|constructor| (NIL "This category exports the function for domains which implement dynamic extension using the simple notion of tower extensions. \\spad{++} A tower extension \\spad{T} of the ground field \\spad{K} is any sequence of field extension (\\spad{T} : \\spad{K_0},{} \\spad{K_1},{} ...,{} K_i...,{}\\spad{K_n}) where \\spad{K_0} = \\spad{K} and for \\spad{i} \\spad{=1},{}2,{}...,{}\\spad{n},{} K_i is an extension of \\spad{K_}{\\spad{i}-1} of degree > 1 and defined by an irreducible polynomial \\spad{p}(\\spad{Z}) in \\spad{K_}{\\spad{i}-1}. Two towers (T_1: \\spad{K_01},{} \\spad{K_11},{}...,{}\\spad{K_i1},{}...,{}\\spad{K_n1}) and (T_2: \\spad{K_02},{} \\spad{K_12},{}...,{}\\spad{K_i2},{}...,{}\\spad{K_n2}) are said to be related if \\spad{T_1} \\spad{<=} \\spad{T_2} (or \\spad{T_1} \\spad{>=} \\spad{T_2}),{} that is if \\spad{K_i1} = \\spad{K_i2} for \\spad{i=1},{}2,{}...,{}\\spad{n1} (or \\spad{i=1},{}2,{}...,{}\\spad{n2}). Any algebraic operations defined for several elements are only defined if all of the concerned elements are comming from a set of related tour extensions.")) (|previousTower| (($ $) "\\spad{previousTower(a)} returns the previous tower extension over which the element a is defined.")) (|extDegree| (((|PositiveInteger|) $) "\\spad{extDegree(a)} returns the extension degree of the extension tower over which the element is defined.")) (|maxTower| (($ (|List| $)) "\\spad{maxTower(l)} returns the tower in the list having the maximal extension degree over the ground field. It has no meaning if the towers are not related.")) (|distinguishedRootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) $) "\\spad{distinguishedRootsOf(p,{}a)} returns a (distinguised) root for each irreducible factor of the polynomial \\spad{p} (factored over the field defined by the element a)."))) -((-4497 . T) (-4503 . T) (-4498 . T) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) +((-4511 . T) (-4517 . T) (-4512 . T) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) NIL -(-851) +(-859) ((|constructor| (NIL "This category exports the function for the domain PseudoAlgebraicClosureOfRationalNumber which implement dynamic extension using the simple notion of tower extensions. A tower extension \\spad{T} of the ground field \\spad{K} is any sequence of field extension (\\spad{T} : \\spad{K_0},{} \\spad{K_1},{} ...,{} K_i...,{}\\spad{K_n}) where \\spad{K_0} = \\spad{K} and for \\spad{i} \\spad{=1},{}2,{}...,{}\\spad{n},{} K_i is an extension of \\spad{K_}{\\spad{i}-1} of degree > 1 and defined by an irreducible polynomial \\spad{p}(\\spad{Z}) in \\spad{K_}{\\spad{i}-1}. Two towers (T_1: \\spad{K_01},{} \\spad{K_11},{}...,{}\\spad{K_i1},{}...,{}\\spad{K_n1}) and (T_2: \\spad{K_02},{} \\spad{K_12},{}...,{}\\spad{K_i2},{}...,{}\\spad{K_n2}) are said to be related if \\spad{T_1} \\spad{<=} \\spad{T_2} (or \\spad{T_1} \\spad{>=} \\spad{T_2}),{} that is if \\spad{K_i1} = \\spad{K_i2} for \\spad{i=1},{}2,{}...,{}\\spad{n1} (or \\spad{i=1},{}2,{}...,{}\\spad{n2}). Any algebraic operations defined for several elements are only defined if all of the concerned elements are comming from a set of related tour extensions."))) -((-4497 . T) (-4503 . T) (-4498 . T) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) +((-4511 . T) (-4517 . T) (-4512 . T) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) NIL -(-852) +(-860) ((|constructor| (NIL "This domain implements dynamic extension using the simple notion of tower extensions. A tower extension \\spad{T} of the ground field \\spad{K} is any sequence of field extension (\\spad{T} : \\spad{K_0},{} \\spad{K_1},{} ...,{} K_i...,{}\\spad{K_n}) where \\spad{K_0} = \\spad{K} and for \\spad{i} \\spad{=1},{}2,{}...,{}\\spad{n},{} K_i is an extension of \\spad{K_}{\\spad{i}-1} of degree > 1 and defined by an irreducible polynomial \\spad{p}(\\spad{Z}) in \\spad{K_}{\\spad{i}-1}. Two towers (T_1: \\spad{K_01},{} \\spad{K_11},{}...,{}\\spad{K_i1},{}...,{}\\spad{K_n1}) and (T_2: \\spad{K_02},{} \\spad{K_12},{}...,{}\\spad{K_i2},{}...,{}\\spad{K_n2}) are said to be related if \\spad{T_1} \\spad{<=} \\spad{T_2} (or \\spad{T_1} \\spad{>=} \\spad{T_2}),{} that is if \\spad{K_i1} = \\spad{K_i2} for \\spad{i=1},{}2,{}...,{}\\spad{n1} (or \\spad{i=1},{}2,{}...,{}\\spad{n2}). Any algebraic operations defined for several elements are only defined if all of the concerned elements are comming from a set of related tour extensions."))) -((-4497 . T) (-4503 . T) (-4498 . T) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) -((|HasCategory| (-403 (-560)) (QUOTE (-148))) (|HasCategory| (-403 (-560)) (QUOTE (-146))) (|HasCategory| (-403 (-560)) (QUOTE (-364))) (-2318 (|HasCategory| (-403 (-560)) (QUOTE (-146))) (|HasCategory| (-403 (-560)) (QUOTE (-364))))) -(-853 R PS UP) +((-4511 . T) (-4517 . T) (-4512 . T) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) +((|HasCategory| (-409 (-568)) (QUOTE (-150))) (|HasCategory| (-409 (-568)) (QUOTE (-148))) (|HasCategory| (-409 (-568)) (QUOTE (-370))) (-2198 (|HasCategory| (-409 (-568)) (QUOTE (-148))) (|HasCategory| (-409 (-568)) (QUOTE (-370))))) +(-861 R PS UP) ((|constructor| (NIL "This package computes reliable Pad&ea. approximants using a generalized Viskovatov continued fraction algorithm.")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,{}dd,{}ns,{}ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-854 R |x| |pt|) +(-862 R |x| |pt|) ((|constructor| (NIL "This package computes reliable Pad&ea. approximants using a generalized Viskovatov continued fraction algorithm.")) (|pade| (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,{}dd,{}s)} computes the quotient of polynomials (if it exists) with numerator degree at most \\spad{nd} and denominator degree at most \\spad{dd} which matches the series \\spad{s} to order \\spad{nd + dd}.") (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-855 |p|) +(-863 |p|) ((|constructor| (NIL "This is the category of stream-based representations of the \\spad{p}-adic integers.")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,{}a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,{}a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}."))) -((-4498 . T) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) +((-4512 . T) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) NIL -(-856 |p|) +(-864 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4498 . T) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) +((-4512 . T) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) NIL -(-857 |p|) +(-865 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4497 . T) (-4503 . T) (-4498 . T) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) -((|HasCategory| (-856 |#1|) (QUOTE (-896))) (|HasCategory| (-856 |#1|) (LIST (QUOTE -1029) (QUOTE (-1153)))) (|HasCategory| (-856 |#1|) (QUOTE (-146))) (|HasCategory| (-856 |#1|) (QUOTE (-148))) (|HasCategory| (-856 |#1|) (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| (-856 |#1|) (QUOTE (-1013))) (|HasCategory| (-856 |#1|) (QUOTE (-807))) (|HasCategory| (-856 |#1|) (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| (-856 |#1|) (QUOTE (-1128))) (|HasCategory| (-856 |#1|) (LIST (QUOTE -873) (QUOTE (-560)))) (|HasCategory| (-856 |#1|) (LIST (QUOTE -873) (QUOTE (-375)))) (|HasCategory| (-856 |#1|) (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-375))))) (|HasCategory| (-856 |#1|) (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-560))))) (|HasCategory| (-856 |#1|) (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| (-856 |#1|) (QUOTE (-221))) (|HasCategory| (-856 |#1|) (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| (-856 |#1|) (LIST (QUOTE -515) (QUOTE (-1153)) (LIST (QUOTE -856) (|devaluate| |#1|)))) (|HasCategory| (-856 |#1|) (LIST (QUOTE -298) (LIST (QUOTE -856) (|devaluate| |#1|)))) (|HasCategory| (-856 |#1|) (LIST (QUOTE -276) (LIST (QUOTE -856) (|devaluate| |#1|)) (LIST (QUOTE -856) (|devaluate| |#1|)))) (|HasCategory| (-856 |#1|) (QUOTE (-296))) (|HasCategory| (-856 |#1|) (QUOTE (-542))) (|HasCategory| (-856 |#1|) (QUOTE (-834))) (-2318 (|HasCategory| (-856 |#1|) (QUOTE (-807))) (|HasCategory| (-856 |#1|) (QUOTE (-834)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-856 |#1|) (QUOTE (-896)))) (-2318 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-856 |#1|) (QUOTE (-896)))) (|HasCategory| (-856 |#1|) (QUOTE (-146))))) -(-858 |p| PADIC) +((-4511 . T) (-4517 . T) (-4512 . T) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) +((|HasCategory| (-864 |#1|) (QUOTE (-904))) (|HasCategory| (-864 |#1|) (LIST (QUOTE -1037) (QUOTE (-1161)))) (|HasCategory| (-864 |#1|) (QUOTE (-148))) (|HasCategory| (-864 |#1|) (QUOTE (-150))) (|HasCategory| (-864 |#1|) (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| (-864 |#1|) (QUOTE (-1021))) (|HasCategory| (-864 |#1|) (QUOTE (-815))) (|HasCategory| (-864 |#1|) (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| (-864 |#1|) (QUOTE (-1136))) (|HasCategory| (-864 |#1|) (LIST (QUOTE -881) (QUOTE (-568)))) (|HasCategory| (-864 |#1|) (LIST (QUOTE -881) (QUOTE (-381)))) (|HasCategory| (-864 |#1|) (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-381))))) (|HasCategory| (-864 |#1|) (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-568))))) (|HasCategory| (-864 |#1|) (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| (-864 |#1|) (QUOTE (-225))) (|HasCategory| (-864 |#1|) (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| (-864 |#1|) (LIST (QUOTE -523) (QUOTE (-1161)) (LIST (QUOTE -864) (|devaluate| |#1|)))) (|HasCategory| (-864 |#1|) (LIST (QUOTE -303) (LIST (QUOTE -864) (|devaluate| |#1|)))) (|HasCategory| (-864 |#1|) (LIST (QUOTE -281) (LIST (QUOTE -864) (|devaluate| |#1|)) (LIST (QUOTE -864) (|devaluate| |#1|)))) (|HasCategory| (-864 |#1|) (QUOTE (-301))) (|HasCategory| (-864 |#1|) (QUOTE (-550))) (|HasCategory| (-864 |#1|) (QUOTE (-842))) (-2198 (|HasCategory| (-864 |#1|) (QUOTE (-815))) (|HasCategory| (-864 |#1|) (QUOTE (-842)))) (-12 (|HasCategory| $ (QUOTE (-148))) (|HasCategory| (-864 |#1|) (QUOTE (-904)))) (-2198 (-12 (|HasCategory| $ (QUOTE (-148))) (|HasCategory| (-864 |#1|) (QUOTE (-904)))) (|HasCategory| (-864 |#1|) (QUOTE (-148))))) +(-866 |p| PADIC) ((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}."))) -((-4497 . T) (-4503 . T) (-4498 . T) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) -((|HasCategory| |#2| (QUOTE (-896))) (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-1153)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-807))) (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1128))) (|HasCategory| |#2| (LIST (QUOTE -873) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -873) (QUOTE (-375)))) (|HasCategory| |#2| (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-375))))) (|HasCategory| |#2| (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-221))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#2| (LIST (QUOTE -515) (QUOTE (-1153)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -276) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-296))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-834))) (-2318 (|HasCategory| |#2| (QUOTE (-807))) (|HasCategory| |#2| (QUOTE (-834)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-896)))) (-2318 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-896)))) (|HasCategory| |#2| (QUOTE (-146))))) -(-859 K |symb| BLMET) +((-4511 . T) (-4517 . T) (-4512 . T) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) +((|HasCategory| |#2| (QUOTE (-904))) (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-1161)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-150))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| |#2| (QUOTE (-1021))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#2| (QUOTE (-1136))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-568)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-568))))) (|HasCategory| |#2| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#2| (QUOTE (-225))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#2| (LIST (QUOTE -523) (QUOTE (-1161)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -281) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-301))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-842))) (-2198 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-842)))) (-12 (|HasCategory| $ (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-904)))) (-2198 (-12 (|HasCategory| $ (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-904)))) (|HasCategory| |#2| (QUOTE (-148))))) +(-867 K |symb| BLMET) ((|constructor| (NIL "A package that implements the Brill-Noether algorithm. Part of the PAFF package")) (|ZetaFunction| (((|UnivariateTaylorSeriesCZero| (|Integer|) |t|) (|PositiveInteger|)) "Returns the Zeta function of the curve in constant field extension. Calculated by using the \\spad{L}-Polynomial") (((|UnivariateTaylorSeriesCZero| (|Integer|) |t|)) "Returns the Zeta function of the curve. Calculated by using the \\spad{L}-Polynomial")) (|numberPlacesDegExtDeg| (((|Integer|) (|PositiveInteger|) (|PositiveInteger|)) "numberRatPlacesExtDegExtDeg(\\spad{d},{} \\spad{n}) returns the number of places of degree \\spad{d} in the constant field extension of degree \\spad{n}")) (|numberRatPlacesExtDeg| (((|Integer|) (|PositiveInteger|)) "\\spad{numberRatPlacesExtDeg(n)} returns the number of rational places in the constant field extenstion of degree \\spad{n}")) (|numberOfPlacesOfDegree| (((|Integer|) (|PositiveInteger|)) "returns the number of places of the given degree")) (|placesOfDegree| (((|List| (|PlacesOverPseudoAlgebraicClosureOfFiniteField| |#1|)) (|PositiveInteger|)) "\\spad{placesOfDegree(d)} returns all places of degree \\spad{d} of the curve.")) (|classNumber| (((|Integer|)) "Returns the class number of the curve.")) (|LPolynomial| (((|SparseUnivariatePolynomial| (|Integer|)) (|PositiveInteger|)) "\\spad{LPolynomial(d)} returns the \\spad{L}-Polynomial of the curve in constant field extension of degree \\spad{d}.") (((|SparseUnivariatePolynomial| (|Integer|))) "Returns the \\spad{L}-Polynomial of the curve.")) (|adjunctionDivisor| (((|Divisor| (|PlacesOverPseudoAlgebraicClosureOfFiniteField| |#1|))) "\\spad{adjunctionDivisor computes} the adjunction divisor of the plane curve given by the polynomial defined by setCurve.")) (|intersectionDivisor| (((|Divisor| (|PlacesOverPseudoAlgebraicClosureOfFiniteField| |#1|)) (|DistributedMultivariatePolynomial| |#2| |#1|)) "\\spad{intersectionDivisor(pol)} compute the intersection divisor of the form \\spad{pol} with the curve. (If \\spad{pol} is not homogeneous an error message is issued).")) (|evalIfCan| (((|Union| |#1| "failed") (|Fraction| (|DistributedMultivariatePolynomial| |#2| |#1|)) (|PlacesOverPseudoAlgebraicClosureOfFiniteField| |#1|)) "\\spad{evalIfCan(u,{}pl)} evaluate the function \\spad{u} at the place \\spad{pl} (returns \"failed\" if it is a pole).") (((|Union| |#1| "failed") (|DistributedMultivariatePolynomial| |#2| |#1|) (|DistributedMultivariatePolynomial| |#2| |#1|) (|PlacesOverPseudoAlgebraicClosureOfFiniteField| |#1|)) "\\spad{evalIfCan(f,{}g,{}pl)} evaluate the function \\spad{f/g} at the place \\spad{pl} (returns \"failed\" if it is a pole).") (((|Union| |#1| "failed") (|DistributedMultivariatePolynomial| |#2| |#1|) (|PlacesOverPseudoAlgebraicClosureOfFiniteField| |#1|)) "\\spad{evalIfCan(f,{}pl)} evaluate \\spad{f} at the place \\spad{pl} (returns \"failed\" if it is a pole).")) (|eval| ((|#1| (|Fraction| (|DistributedMultivariatePolynomial| |#2| |#1|)) (|PlacesOverPseudoAlgebraicClosureOfFiniteField| |#1|)) "\\spad{eval(u,{}pl)} evaluate the function \\spad{u} at the place \\spad{pl}.") ((|#1| (|DistributedMultivariatePolynomial| |#2| |#1|) (|DistributedMultivariatePolynomial| |#2| |#1|) (|PlacesOverPseudoAlgebraicClosureOfFiniteField| |#1|)) "\\spad{eval(f,{}g,{}pl)} evaluate the function \\spad{f/g} at the place \\spad{pl}.") ((|#1| (|DistributedMultivariatePolynomial| |#2| |#1|) (|PlacesOverPseudoAlgebraicClosureOfFiniteField| |#1|)) "\\spad{eval(f,{}pl)} evaluate \\spad{f} at the place \\spad{pl}.")) (|interpolateForms| (((|List| (|DistributedMultivariatePolynomial| |#2| |#1|)) (|Divisor| (|PlacesOverPseudoAlgebraicClosureOfFiniteField| |#1|)) (|NonNegativeInteger|)) "\\spad{interpolateForms(d,{}n)} returns a basis of the interpolate forms of degree \\spad{n} of the divisor \\spad{d}.")) (|lBasis| (((|Record| (|:| |num| (|List| (|DistributedMultivariatePolynomial| |#2| |#1|))) (|:| |den| (|DistributedMultivariatePolynomial| |#2| |#1|))) (|Divisor| (|PlacesOverPseudoAlgebraicClosureOfFiniteField| |#1|))) "\\spad{lBasis computes} a basis associated to the specified divisor")) (|parametrize| (((|NeitherSparseOrDensePowerSeries| (|PseudoAlgebraicClosureOfFiniteField| |#1|)) (|DistributedMultivariatePolynomial| |#2| |#1|) (|PlacesOverPseudoAlgebraicClosureOfFiniteField| |#1|)) "\\spad{parametrize(f,{}pl)} returns a local parametrization of \\spad{f} at the place \\spad{pl}.")) (|singularPoints| (((|List| (|ProjectivePlaneOverPseudoAlgebraicClosureOfFiniteField| |#1|))) "rationalPoints() returns the singular points of the curve defined by the polynomial given to the package. If the singular points lie in an extension of the specified ground field an error message is issued specifying the extension degree needed to find all singular points.")) (|desingTree| (((|List| (|DesingTree| (|InfinitlyClosePointOverPseudoAlgebraicClosureOfFiniteField| |#1| |#2| |#3|)))) "\\spad{desingTree returns} the desingularisation trees at all singular points of the curve defined by the polynomial given to the package.")) (|desingTreeWoFullParam| (((|List| (|DesingTree| (|InfinitlyClosePointOverPseudoAlgebraicClosureOfFiniteField| |#1| |#2| |#3|)))) "\\spad{desingTreeWoFullParam returns} the desingularisation trees at all singular points of the curve defined by the polynomial given to the package. The local parametrizations are not computed.")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus returns} the genus of the curve defined by the polynomial given to the package.")) (|theCurve| (((|DistributedMultivariatePolynomial| |#2| |#1|)) "\\spad{theCurve returns} the specified polynomial for the package.")) (|rationalPlaces| (((|List| (|PlacesOverPseudoAlgebraicClosureOfFiniteField| |#1|))) "\\spad{rationalPlaces returns} all the rational places of the curve defined by the polynomial given to the package.")) (|pointDominateBy| (((|ProjectivePlaneOverPseudoAlgebraicClosureOfFiniteField| |#1|) (|PlacesOverPseudoAlgebraicClosureOfFiniteField| |#1|)) "\\spad{pointDominateBy(pl)} returns the projective point dominated by the place \\spad{pl}."))) NIL -((|HasCategory| (-849 |#1|) (QUOTE (-364)))) -(-860 K |symb| BLMET) +((|HasCategory| (-857 |#1|) (QUOTE (-370)))) +(-868 K |symb| BLMET) ((|constructor| (NIL "A package that implements the Brill-Noether algorithm. Part of the PAFF package")) (|ZetaFunction| (((|UnivariateTaylorSeriesCZero| (|Integer|) |t|) (|PositiveInteger|)) "Returns the Zeta function of the curve in constant field extension. Calculated by using the \\spad{L}-Polynomial") (((|UnivariateTaylorSeriesCZero| (|Integer|) |t|)) "Returns the Zeta function of the curve. Calculated by using the \\spad{L}-Polynomial")) (|numberPlacesDegExtDeg| (((|Integer|) (|PositiveInteger|) (|PositiveInteger|)) "numberRatPlacesExtDegExtDeg(\\spad{d},{} \\spad{n}) returns the number of places of degree \\spad{d} in the constant field extension of degree \\spad{n}")) (|numberRatPlacesExtDeg| (((|Integer|) (|PositiveInteger|)) "\\spad{numberRatPlacesExtDeg(n)} returns the number of rational places in the constant field extenstion of degree \\spad{n}")) (|numberOfPlacesOfDegree| (((|Integer|) (|PositiveInteger|)) "returns the number of places of the given degree")) (|placesOfDegree| (((|List| (|Places| |#1|)) (|PositiveInteger|)) "\\spad{placesOfDegree(d)} returns all places of degree \\spad{d} of the curve.")) (|classNumber| (((|Integer|)) "Returns the class number of the curve.")) (|LPolynomial| (((|SparseUnivariatePolynomial| (|Integer|)) (|PositiveInteger|)) "\\spad{LPolynomial(d)} returns the \\spad{L}-Polynomial of the curve in constant field extension of degree \\spad{d}.") (((|SparseUnivariatePolynomial| (|Integer|))) "Returns the \\spad{L}-Polynomial of the curve.")) (|adjunctionDivisor| (((|Divisor| (|Places| |#1|))) "\\spad{adjunctionDivisor computes} the adjunction divisor of the plane curve given by the polynomial set with the function setCurve.")) (|intersectionDivisor| (((|Divisor| (|Places| |#1|)) (|DistributedMultivariatePolynomial| |#2| |#1|)) "\\spad{intersectionDivisor(pol)} compute the intersection divisor (the Cartier divisor) of the form \\spad{pol} with the curve. If some intersection points lie in an extension of the ground field,{} an error message is issued specifying the extension degree needed to find all the intersection points. (If \\spad{pol} is not homogeneous an error message is issued).")) (|evalIfCan| (((|Union| |#1| "failed") (|Fraction| (|DistributedMultivariatePolynomial| |#2| |#1|)) (|Places| |#1|)) "\\spad{evalIfCan(u,{}pl)} evaluate the function \\spad{u} at the place \\spad{pl} (returns \"failed\" if it is a pole).") (((|Union| |#1| "failed") (|DistributedMultivariatePolynomial| |#2| |#1|) (|DistributedMultivariatePolynomial| |#2| |#1|) (|Places| |#1|)) "\\spad{evalIfCan(f,{}g,{}pl)} evaluate the function \\spad{f/g} at the place \\spad{pl} (returns \"failed\" if it is a pole).") (((|Union| |#1| "failed") (|DistributedMultivariatePolynomial| |#2| |#1|) (|Places| |#1|)) "\\spad{evalIfCan(f,{}pl)} evaluate \\spad{f} at the place \\spad{pl} (returns \"failed\" if it is a pole).")) (|eval| ((|#1| (|Fraction| (|DistributedMultivariatePolynomial| |#2| |#1|)) (|Places| |#1|)) "\\spad{eval(u,{}pl)} evaluate the function \\spad{u} at the place \\spad{pl}.") ((|#1| (|DistributedMultivariatePolynomial| |#2| |#1|) (|DistributedMultivariatePolynomial| |#2| |#1|) (|Places| |#1|)) "\\spad{eval(f,{}g,{}pl)} evaluate the function \\spad{f/g} at the place \\spad{pl}.") ((|#1| (|DistributedMultivariatePolynomial| |#2| |#1|) (|Places| |#1|)) "\\spad{eval(f,{}pl)} evaluate \\spad{f} at the place \\spad{pl}.")) (|interpolateForms| (((|List| (|DistributedMultivariatePolynomial| |#2| |#1|)) (|Divisor| (|Places| |#1|)) (|NonNegativeInteger|)) "\\spad{interpolateForms(d,{}n)} returns a basis of the interpolate forms of degree \\spad{n} of the divisor \\spad{d}.")) (|lBasis| (((|Record| (|:| |num| (|List| (|DistributedMultivariatePolynomial| |#2| |#1|))) (|:| |den| (|DistributedMultivariatePolynomial| |#2| |#1|))) (|Divisor| (|Places| |#1|))) "\\spad{lBasis computes} a basis associated to the specified divisor")) (|parametrize| (((|NeitherSparseOrDensePowerSeries| |#1|) (|DistributedMultivariatePolynomial| |#2| |#1|) (|Places| |#1|)) "\\spad{parametrize(f,{}pl)} returns a local parametrization of \\spad{f} at the place \\spad{pl}.")) (|singularPoints| (((|List| (|ProjectivePlane| |#1|))) "rationalPoints() returns the singular points of the curve defined by the polynomial given to the package. If the singular points lie in an extension of the specified ground field an error message is issued specifying the extension degree needed to find all singular points.")) (|desingTree| (((|List| (|DesingTree| (|InfClsPt| |#1| |#2| |#3|)))) "\\spad{desingTree returns} the desingularisation trees at all singular points of the curve defined by the polynomial given to the package.")) (|desingTreeWoFullParam| (((|List| (|DesingTree| (|InfClsPt| |#1| |#2| |#3|)))) "\\spad{desingTreeWoFullParam returns} the desingularisation trees at all singular points of the curve defined by the polynomial given to the package. The local parametrizations are not computed.")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus returns} the genus of the curve defined by the polynomial given to the package.")) (|theCurve| (((|DistributedMultivariatePolynomial| |#2| |#1|)) "\\spad{theCurve returns} the specified polynomial for the package.")) (|rationalPlaces| (((|List| (|Places| |#1|))) "\\spad{rationalPlaces returns} all the rational places of the curve defined by the polynomial given to the package.")) (|pointDominateBy| (((|ProjectivePlane| |#1|) (|Places| |#1|)) "\\spad{pointDominateBy(pl)} returns the projective point dominated by the place \\spad{pl}."))) NIL -((|HasCategory| |#1| (QUOTE (-364)))) -(-861) +((|HasCategory| |#1| (QUOTE (-370)))) +(-869) ((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value."))) NIL NIL -(-862) +(-870) ((|constructor| (NIL "This package provides a coerce from polynomials over algebraic numbers to \\spadtype{Expression AlgebraicNumber}.")) (|coerce| (((|Expression| (|Integer|)) (|Fraction| (|Polynomial| (|AlgebraicNumber|)))) "\\spad{coerce(rf)} converts \\spad{rf},{} a fraction of polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.") (((|Expression| (|Integer|)) (|Polynomial| (|AlgebraicNumber|))) "\\spad{coerce(p)} converts the polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}."))) NIL NIL -(-863 K |symb| |PolyRing| E |ProjPt| PCS |Plc|) +(-871 K |symb| |PolyRing| E |ProjPt| PCS |Plc|) ((|constructor| (NIL "The following is part of the PAFF package")) (|parametrize| ((|#6| |#3| |#7| (|Integer|)) "\\spad{parametrize(f,{}pl,{}n)} returns t**n * parametrize(\\spad{f},{}\\spad{p}).") ((|#6| |#3| |#3| |#7|) "\\spad{parametrize(f,{}g,{}pl)} returns the local parametrization of the rational function \\spad{f/g} at the place \\spad{pl}. Note that local parametrization of the place must have first been compute and set. For simple point on a curve,{} this done with \\spad{pointToPlace}. The local parametrization places corresponding to a leaf in a desingularization tree are compute at the moment of their \"creation\". (See package \\spad{DesingTreePackage}.") ((|#6| |#3| |#7|) "\\spad{parametrize(f,{}pl)} returns the local parametrization of the polynomial function \\spad{f} at the place \\spad{pl}. Note that local parametrization of the place must have first been compute and set. For simple point on a curve,{} this done with \\spad{pointToPlace}. The local parametrization places corresponding to a leaf in a desingularization tree are compute at the moment of their \"creation\". (See package \\spad{DesingTreePackage}."))) NIL NIL -(-864 CF1 CF2) +(-872 CF1 CF2) ((|constructor| (NIL "This package has no description")) (|map| (((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-865 |ComponentFunction|) +(-873 |ComponentFunction|) ((|constructor| (NIL "ParametricPlaneCurve is used for plotting parametric plane curves in the affine plane.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,{}i)} returns a coordinate function for \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component \\spad{i} of the plane curve is.")) (|curve| (($ |#1| |#1|) "\\spad{curve(c1,{}c2)} creates a plane curve from 2 component functions \\spad{c1} and \\spad{c2}."))) NIL NIL -(-866 CF1 CF2) +(-874 CF1 CF2) ((|constructor| (NIL "This package has no description")) (|map| (((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-867 |ComponentFunction|) +(-875 |ComponentFunction|) ((|constructor| (NIL "ParametricSpaceCurve is used for plotting parametric space curves in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,{}i)} returns a coordinate function of \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the space curve is.")) (|curve| (($ |#1| |#1| |#1|) "\\spad{curve(c1,{}c2,{}c3)} creates a space curve from 3 component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-868 CF1 CF2) +(-876 CF1 CF2) ((|constructor| (NIL "This package has no description")) (|map| (((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-869 |ComponentFunction|) +(-877 |ComponentFunction|) ((|constructor| (NIL "ParametricSurface is used for plotting parametric surfaces in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(s,{}i)} returns a coordinate function of \\spad{s} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the surface is.")) (|surface| (($ |#1| |#1| |#1|) "\\spad{surface(c1,{}c2,{}c3)} creates a surface from 3 parametric component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-870) +(-878) ((|constructor| (NIL "PartitionsAndPermutations contains functions for generating streams of integer partitions,{} and streams of sequences of integers composed from a multi-set.")) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{permutations(n)} is the stream of permutations \\indented{1}{formed from \\spad{1,{}2,{}3,{}...,{}n}.}")) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{sequences([l0,{}l1,{}l2,{}..,{}ln])} is the set of \\indented{1}{all sequences formed from} \\spad{l0} 0\\spad{'s},{}\\spad{l1} 1\\spad{'s},{}\\spad{l2} 2\\spad{'s},{}...,{}\\spad{ln} \\spad{n}\\spad{'s}.") (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{sequences(l1,{}l2)} is the stream of all sequences that \\indented{1}{can be composed from the multiset defined from} \\indented{1}{two lists of integers \\spad{l1} and \\spad{l2}.} \\indented{1}{For example,{}the pair \\spad{([1,{}2,{}4],{}[2,{}3,{}5])} represents} \\indented{1}{multi-set with 1 \\spad{2},{} 2 \\spad{3}\\spad{'s},{} and 4 \\spad{5}\\spad{'s}.}")) (|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) "\\spad{shufflein(l,{}st)} maps shuffle(\\spad{l},{}\\spad{u}) on to all \\indented{1}{members \\spad{u} of \\spad{st},{} concatenating the results.}")) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{shuffle(l1,{}l2)} forms the stream of all shuffles of \\spad{l1} \\indented{1}{and \\spad{l2},{} \\spadignore{i.e.} all sequences that can be formed from} \\indented{1}{merging \\spad{l1} and \\spad{l2}.}")) (|conjugates| (((|Stream| (|List| (|Integer|))) (|Stream| (|List| (|Integer|)))) "\\spad{conjugates(lp)} is the stream of conjugates of a stream \\indented{1}{of partitions \\spad{lp}.}")) (|conjugate| (((|List| (|Integer|)) (|List| (|Integer|))) "\\spad{conjugate(pt)} is the conjugate of the partition \\spad{pt}.")) (|partitions| (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{partitions(p,{}l)} is the stream of all \\indented{1}{partitions whose number of} \\indented{1}{parts and largest part are no greater than \\spad{p} and \\spad{l}.}") (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{partitions(n)} is the stream of all partitions of \\spad{n}.") (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|) (|Integer|)) "\\spad{partitions(p,{}l,{}n)} is the stream of partitions \\indented{1}{of \\spad{n} whose number of parts is no greater than \\spad{p}} \\indented{1}{and whose largest part is no greater than \\spad{l}.}"))) NIL NIL -(-871 R) +(-879 R) ((|constructor| (NIL "An object \\spad{S} is Patternable over an object \\spad{R} if \\spad{S} can lift the conversions from \\spad{R} into \\spadtype{Pattern(Integer)} and \\spadtype{Pattern(Float)} to itself."))) NIL NIL -(-872 R S L) +(-880 R S L) ((|constructor| (NIL "A PatternMatchListResult is an object internally returned by the pattern matcher when matching on lists. It is either a failed match,{} or a pair of PatternMatchResult,{} one for atoms (elements of the list),{} and one for lists.")) (|lists| (((|PatternMatchResult| |#1| |#3|) $) "\\spad{lists(r)} returns the list of matches that match lists.")) (|atoms| (((|PatternMatchResult| |#1| |#2|) $) "\\spad{atoms(r)} returns the list of matches that match atoms (elements of the lists).")) (|makeResult| (($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|)) "\\spad{makeResult(r1,{}r2)} makes the combined result [\\spad{r1},{}\\spad{r2}].")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-873 S) +(-881 S) ((|constructor| (NIL "A set \\spad{R} is PatternMatchable over \\spad{S} if elements of \\spad{R} can be matched to patterns over \\spad{S}.")) (|patternMatch| (((|PatternMatchResult| |#1| $) $ (|Pattern| |#1|) (|PatternMatchResult| |#1| $)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}. res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion). Initially,{} res is just the result of \\spadfun{new} which is an empty list of matches."))) NIL NIL -(-874 |Base| |Subject| |Pat|) +(-882 |Base| |Subject| |Pat|) ((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,{}...,{}en],{} pat)} matches the pattern pat on the list of expressions \\spad{[e1,{}...,{}en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,{}...,{}en],{} pat)} tests if the list of expressions \\spad{[e1,{}...,{}en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr,{} pat)} tests if the expression \\spad{expr} matches the pattern pat."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-1153)))) (-12 (-3186 (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-1153))))) (-3186 (|HasCategory| |#2| (QUOTE (-1039))))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (-3186 (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-1153))))))) -(-875 R A B) +((|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-1161)))) (-12 (-3044 (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-1161))))) (-3044 (|HasCategory| |#2| (QUOTE (-1047))))) (-12 (|HasCategory| |#2| (QUOTE (-1047))) (-3044 (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-1161))))))) +(-883 R A B) ((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f,{} [(v1,{}a1),{}...,{}(vn,{}an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(\\spad{a1})),{}...,{}(\\spad{vn},{}\\spad{f}(an))]."))) NIL NIL -(-876 R S) +(-884 R S) ((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r,{} p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,{}e1],{}...,{}[vn,{}en])} returns the match result containing the matches (\\spad{v1},{}\\spad{e1}),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var,{} expr,{} r,{} val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var,{} r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a,{} b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-877 R -2500) +(-885 R -3190) ((|constructor| (NIL "Utilities for handling patterns")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,{}...,{}vn],{} p)} returns \\spad{f(v1,{}...,{}vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v,{} p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p,{} [a1,{}...,{}an],{} f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p,{} [f1,{}...,{}fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p,{} f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned."))) NIL NIL -(-878 R S) +(-886 R S) ((|constructor| (NIL "Lifts maps to patterns")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f,{} p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}."))) NIL NIL -(-879 R) +(-887 R) ((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a,{} b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,{}...,{}an],{} f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,{}...,{}an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x,{} [a1,{}...,{}an],{} f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x,{} c?,{} o?,{} m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p,{} [p1,{}...,{}pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p,{} [p1,{}...,{}pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,{}...,{}pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the pattern \\spad{[a1,{}...,{}an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{} [a1,{}...,{}an])} returns \\spad{op(a1,{}...,{}an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a,{} b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = [a1,{}...,{}an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a,{} b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q,{} n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op,{} [a1,{}...,{}an]]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p,{} op)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0"))) NIL NIL -(-880 |VarSet|) +(-888 |VarSet|) ((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2,{} .... ln}.")) (|listOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{listOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1,{} l2,{} .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) ((|One|) (($) "\\spad{1} returns the empty list."))) NIL NIL -(-881 UP R) +(-889 UP R) ((|constructor| (NIL "Polynomial composition and decomposition functions\\spad{\\br} If \\spad{f} = \\spad{g} \\spad{o} \\spad{h} then g=leftFactor(\\spad{f},{}\\spad{h}) and h=rightFactor(\\spad{f},{}\\spad{g})")) (|compose| ((|#1| |#1| |#1|) "\\spad{compose(p,{}q)} \\undocumented"))) NIL NIL -(-882) +(-890) ((|constructor| (NIL "\\axiomType{PartialDifferentialEquationsSolverCategory} is the \\axiom{category} for describing the set of PDE solver \\axiom{domains} with \\axiomFun{measure} and \\axiomFun{PDEsolve}.")) (|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-883 UP -1333) +(-891 UP -1478) ((|constructor| (NIL "Polynomial composition and decomposition functions\\spad{\\br} If \\spad{f} = \\spad{g} \\spad{o} \\spad{h} then g=leftFactor(\\spad{f},{}\\spad{h}) and h=rightFactor(\\spad{f},{}\\spad{g})")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,{}n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,{}q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,{}m,{}n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented"))) NIL NIL -(-884) +(-892) ((|constructor| (NIL "AnnaPartialDifferentialEquationPackage is an uncompleted package for the interface to NAG PDE routines. It has been realised that a new approach to solving PDEs will need to be created.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|)) "\\spad{solve(xmin,{}ymin,{}xmax,{}ymax,{}ngx,{}ngy,{}pde,{}bounds,{}st)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}) and the boundary values (\\axiom{\\spad{bounds}}). A default value for tolerance is used. There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|) (|DoubleFloat|)) "\\spad{solve(xmin,{}ymin,{}xmax,{}ymax,{}ngx,{}ngy,{}pde,{}bounds,{}st,{}tol)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}),{} the boundary values (\\axiom{\\spad{bounds}}) and a tolerance requirement (\\axiom{\\spad{tol}}). There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{solve(PDEProblem,{}routines)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the \\spad{routines} contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|)) "\\spad{solve(PDEProblem)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}"))) NIL NIL -(-885) +(-893) ((|constructor| (NIL "\\axiomType{NumericalPDEProblem} is a \\axiom{domain} for the representation of Numerical PDE problems for use by ANNA. \\blankline The representation is of type: \\blankline \\axiomType{Record}(pde:\\axiomType{List Expression DoubleFloat},{} \\spad{\\br} constraints:\\axiomType{List PDEC},{} \\spad{\\br} \\spad{f:}\\axiomType{List List Expression DoubleFloat},{}\\spad{\\br} \\spad{st:}\\axiomType{String},{}\\spad{\\br} tol:\\axiomType{DoubleFloat}) \\blankline where \\axiomType{PDEC} is of type: \\blankline \\axiomType{Record}(start:\\axiomType{DoubleFloat},{} \\spad{\\br} finish:\\axiomType{DoubleFloat},{}\\spad{\\br} grid:\\axiomType{NonNegativeInteger},{}\\spad{\\br} boundaryType:\\axiomType{Integer},{}\\spad{\\br} dStart:\\axiomType{Matrix DoubleFloat},{} \\spad{\\br} dFinish:\\axiomType{Matrix DoubleFloat})")) (|retract| (((|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|))) $) "\\spad{retract(x)} is not documented")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} is not documented") (($ (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{coerce(x)} is not documented"))) NIL NIL -(-886 A S) +(-894 A S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline Axioms\\spad{\\br} \\tab{5}\\spad{differentiate(x+y,{}e)=differentiate(x,{}e)+differentiate(y,{}e)}\\spad{\\br} \\tab{5}\\spad{differentiate(x*y,{}e)=x*differentiate(y,{}e)+differentiate(x,{}e)*y}")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#2|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#2|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) NIL NIL -(-887 S) +(-895 S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline Axioms\\spad{\\br} \\tab{5}\\spad{differentiate(x+y,{}e)=differentiate(x,{}e)+differentiate(y,{}e)}\\spad{\\br} \\tab{5}\\spad{differentiate(x*y,{}e)=x*differentiate(y,{}e)+differentiate(x,{}e)*y}")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) -((-4502 . T)) +((-4516 . T)) NIL -(-888 S) +(-896 S) ((|constructor| (NIL "This domain has no description")) (|coerce| (((|Tree| |#1|) $) "\\indented{1}{coerce(\\spad{x}) is not documented} \\blankline \\spad{X} t1:=ptree([1,{}2,{}3]) \\spad{X} t2:=ptree(\\spad{t1},{}ptree([1,{}2,{}3])) \\spad{X} t2::Tree List PositiveInteger")) (|ptree| (($ $ $) "\\indented{1}{ptree(\\spad{x},{}\\spad{y}) is not documented} \\blankline \\spad{X} t1:=ptree([1,{}2,{}3]) \\spad{X} ptree(\\spad{t1},{}ptree([1,{}2,{}3]))") (($ |#1|) "\\indented{1}{ptree(\\spad{s}) is a leaf? pendant tree} \\blankline \\spad{X} t1:=ptree([1,{}2,{}3])"))) NIL -((|HasCategory| |#1| (QUOTE (-1082))) (-12 (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1082))))) -(-889 |n| R) +((|HasCategory| |#1| (QUOTE (-1090))) (-12 (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1090))))) +(-897 |n| R) ((|constructor| (NIL "Permanent implements the functions permanent,{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The permanent is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the determinant. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note that permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\spad{\\br} if 2 has an inverse in \\spad{R} we can use the algorithm of [Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{} some modifications are necessary:\\spad{\\br} if \\spad{n} > 6 and \\spad{R} is an integral domain with characteristic different from 2 (the algorithm works if and only 2 is not a zero-divisor of \\spad{R} and characteristic()\\$\\spad{R} \\spad{^=} 2,{} but how to check that for any given \\spad{R} ?),{} the local function \\spad{permanent2} is called;\\spad{\\br} else,{} the local function \\spad{permanent3} is called (works for all commutative rings \\spad{R})."))) NIL NIL -(-890 S) +(-898 S) ((|constructor| (NIL "PermutationCategory provides a categorial environment for subgroups of bijections of a set (\\spadignore{i.e.} permutations)")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note that this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p,{} el)} returns the orbit of el under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to el.")) (|elt| ((|#1| $ |#1|) "\\spad{elt(p,{} el)} returns the image of el under the permutation \\spad{p}.")) (|eval| ((|#1| $ |#1|) "\\spad{eval(p,{} el)} returns the image of el under the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles \\spad{lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps \\spad{ls}.\\spad{i} to \\spad{ls}.\\spad{i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle \\spad{ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps \\spad{ls}.\\spad{i} to \\spad{ls}.\\spad{i+1},{} indices modulo the length of the list. Error: if repetitions occur."))) -((-4502 . T)) +((-4516 . T)) NIL -(-891 S) +(-899 S) ((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,{}m,{}n)} initializes the group \\spad{gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group \\spad{gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: initializeGroupForWordProblem(\\spad{gp},{}0,{}1). Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if \\spad{gp1} is a subgroup of \\spad{gp2}. Note: because of a bug in the parser you have to call this function explicitly by \\spad{gp1} \\spad{<=}\\$(PERMGRP \\spad{S}) \\spad{gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if \\spad{gp1} is a proper subgroup of \\spad{gp2}.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(gp)} returns the points moved by the group \\spad{gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the original generators of the group \\spad{gp},{} represented by the indices of the list,{} given by generators.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the strong generators of the group \\spad{gp},{} represented by the indices of the list,{} given by strongGenerators.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,{}gp)} answers the question,{} whether the permutation \\spad{pp} is in the group \\spad{gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group \\spad{gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,{}ls)} returns the orbit of the ordered list \\spad{ls} under the group \\spad{gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,{}els)} returns the orbit of the unordered set \\spad{els} under the group \\spad{gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,{}el)} returns the orbit of the element \\spad{el} under the group \\spad{gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to \\spad{el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations \\spad{ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group \\spad{gp} in the original generators of \\spad{gp},{} represented by their indices in the list,{} given by generators.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group \\spad{gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group \\spad{gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group \\spad{gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group \\spad{gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group \\spad{gp}. Note: random(\\spad{gp})=random(\\spad{gp},{}20).") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,{}i)} returns a random product of maximal \\spad{i} generators of the group \\spad{gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,{}i)} returns the \\spad{i}-th generator of the group \\spad{gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group \\spad{gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations \\spad{ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group \\spad{gp}."))) NIL NIL -(-892 S) +(-900 S) ((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections on a set \\spad{S},{} which move only a finite number of points. A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular multiplication is defined as composition of maps:\\spad{\\br} \\spad{pi1} * \\spad{pi2} = \\spad{pi1} \\spad{o} \\spad{pi2}.\\spad{\\br} The internal representation of permuatations are two lists of equal length representing preimages and images.")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list \\spad{ls} to a permutation whose image is given by \\spad{ls} and the preimage is fixed to be [1,{}...,{}\\spad{n}]. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\indented{1}{fixedPoints(\\spad{p}) returns the points fixed by the permutation \\spad{p}.} \\spad{X} \\spad{p} \\spad{:=} coercePreimagesImages([[0,{}1,{}2,{}3],{}[3,{}0,{}2,{}1]])\\$PERM ZMOD 4 \\spad{X} fixedPoints \\spad{p}")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations \\spad{lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} sign(\\spad{p}) is \\spad{-1}.")) (|even?| (((|Boolean|) $) "\\indented{1}{even?(\\spad{p}) returns \\spad{true} if and only if \\spad{p} is an even permutation,{}} \\indented{1}{\\spadignore{i.e.} sign(\\spad{p}) is 1.} \\blankline \\spad{X} \\spad{p} \\spad{:=} coercePreimagesImages([[1,{}2,{}3],{}[1,{}2,{}3]]) \\spad{X} even? \\spad{p}")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\indented{1}{movedPoints(\\spad{p}) returns the set of points moved by the permutation \\spad{p}.} \\blankline \\spad{X} \\spad{p} \\spad{:=} coercePreimagesImages([[1,{}2,{}3],{}[1,{}2,{}3]]) \\spad{X} movedPoints \\spad{p}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs \\spad{lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle \\spad{ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps \\spad{ls}.\\spad{i} to \\spad{ls}.\\spad{i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles \\spad{lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps \\spad{ls}.\\spad{i} to \\spad{ls}.\\spad{i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\indented{1}{coercePreimagesImages(\\spad{lls}) coerces the representation \\spad{lls}} \\indented{1}{of a permutation as a list of preimages and images to a permutation.} \\indented{1}{We assume that both preimage and image do not contain repetitions.} \\blankline \\spad{X} \\spad{p} \\spad{:=} coercePreimagesImages([[1,{}2,{}3],{}[1,{}2,{}3]]) \\spad{X} \\spad{q} \\spad{:=} coercePreimagesImages([[0,{}1,{}2,{}3],{}[3,{}0,{}2,{}1]])\\$PERM ZMOD 4")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation rep of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps (rep.preimage).\\spad{k} to (rep.image).\\spad{k} for all indices \\spad{k}. Elements of \\spad{S} not in (rep.preimage).\\spad{k} are fixed points,{} and these are the only fixed points of the permutation."))) -((-4502 . T)) -((|HasCategory| |#1| (QUOTE (-364))) (|HasCategory| |#1| (QUOTE (-834))) (-2318 (|HasCategory| |#1| (QUOTE (-364))) (|HasCategory| |#1| (QUOTE (-834))))) -(-893 R E |VarSet| S) +((-4516 . T)) +((|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-842))) (-2198 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-842))))) +(-901 R E |VarSet| S) ((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,{}p,{}v)} implements the bivariate case of solveLinearPolynomialEquationByRecursion its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-894 R S) +(-902 R S) ((|constructor| (NIL "PolynomialFactorizationByRecursionUnivariate \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-895 S) +(-903 S) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) NIL -((|HasCategory| |#1| (QUOTE (-146)))) -(-896) +((|HasCategory| |#1| (QUOTE (-148)))) +(-904) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) -((-4498 . T) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) +((-4512 . T) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) NIL -(-897 |p|) +(-905 |p|) ((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number."))) -((-4497 . T) (-4503 . T) (-4498 . T) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) -((|HasCategory| $ (QUOTE (-148))) (|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-364)))) -(-898 R0 -1333 UP UPUP R) +((-4511 . T) (-4517 . T) (-4512 . T) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) +((|HasCategory| $ (QUOTE (-150))) (|HasCategory| $ (QUOTE (-148))) (|HasCategory| $ (QUOTE (-370)))) +(-906 R0 -1478 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-899 UP UPUP R) +(-907 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#3|)) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsionIfCan(f)} \\undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-900 R |PolyRing| E -2050) +(-908 R |PolyRing| E -2570) ((|constructor| (NIL "The following is part of the PAFF package")) (|degreeOfMinimalForm| (((|NonNegativeInteger|) |#2|) "\\spad{degreeOfMinimalForm does} what it says")) (|listAllMono| (((|List| |#2|) (|NonNegativeInteger|)) "\\spad{listAllMono(l)} returns all the monomials of degree \\spad{l}")) (|listAllMonoExp| (((|List| |#3|) (|Integer|)) "\\spad{listAllMonoExp(l)} returns all the exponents of degree \\spad{l}")) (|homogenize| ((|#2| |#2| (|Integer|)) "\\spad{homogenize(pol,{}n)} returns the homogenized polynomial of \\spad{pol} with respect to the \\spad{n}-th variable.")) (|constant| ((|#1| |#2|) "\\spad{constant(pol)} returns the constant term of the polynomial.")) (|degOneCoef| ((|#1| |#2| (|PositiveInteger|)) "\\spad{degOneCoef(pol,{}n)} returns the coefficient in front of the monomial specified by the positive integer.")) (|translate| ((|#2| |#2| (|List| |#1|)) "\\spad{translate(pol,{}[a,{}b,{}c])} apply to \\spad{pol} the linear change of coordinates,{} \\spad{x}->x+a,{} \\spad{y}->y+b,{} \\spad{z}->z+c") ((|#2| |#2| (|List| |#1|) (|Integer|)) "\\spad{translate(pol,{}[a,{}b,{}c],{}3)} apply to \\spad{pol} the linear change of coordinates,{} \\spad{x}->x+a,{} \\spad{y}->y+b,{} \\spad{z}-\\spad{>1}.")) (|replaceVarByOne| ((|#2| |#2| (|Integer|)) "\\spad{replaceVarByOne(pol,{}a)} evaluate to one the variable in \\spad{pol} specified by the integer a.")) (|replaceVarByZero| ((|#2| |#2| (|Integer|)) "\\spad{replaceVarByZero(pol,{}a)} evaluate to zero the variable in \\spad{pol} specified by the integer a.")) (|firstExponent| ((|#3| |#2|) "\\spad{firstExponent(pol)} returns the exponent of the first term in the representation of \\spad{pol}. Not to be confused with the leadingExponent \\indented{1}{which is the highest exponent according to the order} over the monomial.")) (|minimalForm| ((|#2| |#2|) "\\spad{minimalForm(pol)} returns the minimal forms of the polynomial \\spad{pol}."))) NIL NIL -(-901 UP UPUP) +(-909 UP UPUP) ((|constructor| (NIL "Utilities for PFOQ and PFO")) (|polyred| ((|#2| |#2|) "\\spad{polyred(u)} \\undocumented")) (|doubleDisc| (((|Integer|) |#2|) "\\spad{doubleDisc(u)} \\undocumented")) (|mix| (((|Integer|) (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))))) "\\spad{mix(l)} \\undocumented")) (|badNum| (((|Integer|) |#2|) "\\spad{badNum(u)} \\undocumented") (((|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))) |#1|) "\\spad{badNum(p)} \\undocumented")) (|getGoodPrime| (((|PositiveInteger|) (|Integer|)) "\\spad{getGoodPrime n} returns the smallest prime not dividing \\spad{n}"))) NIL NIL -(-902 R) +(-910 R) ((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact\\spad{''} form has only one fractional term per prime in the denominator,{} while the \\spad{``p}-adic\\spad{''} form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function padicFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function partialFraction takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\indented{1}{wholePart(\\spad{p}) extracts the whole part of the partial fraction} \\indented{1}{\\spad{p}.} \\blankline \\spad{X} a:=(74/13)::PFR(INT) \\spad{X} wholePart(a)")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\indented{1}{partialFraction(numer,{}denom) is the main function for} \\indented{1}{constructing partial fractions. The second argument is the} \\indented{1}{denominator and should be factored.} \\blankline \\spad{X} partialFraction(1,{}factorial 10)")) (|padicFraction| (($ $) "\\indented{1}{padicFraction(\\spad{q}) expands the fraction \\spad{p}-adically in the primes} \\indented{1}{\\spad{p} in the denominator of \\spad{q}. For example,{}} \\indented{1}{\\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}.} \\indented{1}{Use compactFraction from PartialFraction to} \\indented{1}{return to compact form.} \\blankline \\spad{X} a:=partialFraction(1,{}factorial 10) \\spad{X} padicFraction(a)")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,{}x)} is a utility function that expands the second argument \\spad{x} \\spad{``p}-adically\\spad{''} in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\indented{1}{numberOfFractionalTerms(\\spad{p}) computes the number of fractional} \\indented{1}{terms in \\spad{p}. This returns 0 if there is no fractional} \\indented{1}{part.} \\blankline \\spad{X} a:=partialFraction(1,{}factorial 10) \\spad{X} b:=padicFraction(a) \\spad{X} numberOfFractionalTerms(\\spad{b})")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\indented{1}{nthFractionalTerm(\\spad{p},{}\\spad{n}) extracts the \\spad{n}th fractional term from} \\indented{1}{the partial fraction \\spad{p}.\\space{2}This returns 0 if the index} \\indented{1}{\\spad{n} is out of range.} \\blankline \\spad{X} a:=partialFraction(1,{}factorial 10) \\spad{X} b:=padicFraction(a) \\spad{X} nthFractionalTerm(\\spad{b},{}3)")) (|firstNumer| ((|#1| $) "\\indented{1}{firstNumer(\\spad{p}) extracts the numerator of the first fractional} \\indented{1}{term. This returns 0 if there is no fractional part (use} \\indented{1}{wholePart from PartialFraction to get the whole part).} \\blankline \\spad{X} a:=partialFraction(1,{}factorial 10) \\spad{X} firstNumer(a)")) (|firstDenom| (((|Factored| |#1|) $) "\\indented{1}{firstDenom(\\spad{p}) extracts the denominator of the first fractional} \\indented{1}{term. This returns 1 if there is no fractional part (use} \\indented{1}{wholePart from PartialFraction to get the whole part).} \\blankline \\spad{X} a:=partialFraction(1,{}factorial 10) \\spad{X} firstDenom(a)")) (|compactFraction| (($ $) "\\indented{1}{compactFraction(\\spad{p}) normalizes the partial fraction \\spad{p}} \\indented{1}{to the compact representation. In this form,{} the partial} \\indented{1}{fraction has only one fractional term per prime in the} \\indented{1}{denominator.} \\blankline \\spad{X} a:=partialFraction(1,{}factorial 10) \\spad{X} b:=padicFraction(a) \\spad{X} compactFraction(\\spad{b})")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\indented{1}{coerce(\\spad{f}) takes a fraction with numerator and denominator in} \\indented{1}{factored form and creates a partial fraction.\\space{2}It is} \\indented{1}{necessary for the parts to be factored because it is not} \\indented{1}{known in general how to factor elements of \\spad{R} and} \\indented{1}{this is needed to decompose into partial fractions.} \\blankline \\spad{X} (13/74)::PFR(INT)") (((|Fraction| |#1|) $) "\\indented{1}{coerce(\\spad{p}) sums up the components of the partial fraction and} \\indented{1}{returns a single fraction.} \\blankline \\spad{X} a:=(13/74)::PFR(INT) \\spad{X} a::FRAC(INT)"))) -((-4497 . T) (-4503 . T) (-4498 . T) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) +((-4511 . T) (-4517 . T) (-4512 . T) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) NIL -(-903 R) +(-911 R) ((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num,{} facdenom,{} var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\indented{1}{partialFraction(\\spad{rf},{} var) returns the partial fraction decomposition} \\indented{1}{of the rational function \\spad{rf} with respect to the variable var.} \\blankline \\spad{X} a:=x+1/(\\spad{y+1}) \\spad{X} partialFraction(a,{}\\spad{y})\\$PFRPAC(INT)"))) NIL NIL -(-904 E OV R P) +(-912 E OV R P) ((|constructor| (NIL "This package computes multivariate polynomial \\spad{gcd}\\spad{'s} using a hensel lifting strategy. The contraint on the coefficient domain is imposed by the lifting strategy. It is assumed that the coefficient domain has the property that almost all specializations preserve the degree of the \\spad{gcd}.")) (|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive lp} computes the \\spad{gcd} of the list of primitive polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,{}q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,{}q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,{}q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") ((|#4| |#4| |#4|) "\\spad{gcd(p,{}q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}."))) NIL NIL -(-905) +(-913) ((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition \\spad{lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,{}...,{}nk])} constructs the direct product of the symmetric groups \\spad{Sn1},{}...,{}\\spad{Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=} 8. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer ij where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(\\spad{li})} constructs the janko group acting on the 100 integers given in the list \\spad{li}. Note that duplicates in the list will be removed. Error: if \\spad{li} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(\\spad{li})} constructs the mathieu group acting on the 24 integers given in the list \\spad{li}. Note that duplicates in the list will be removed. Error: if \\spad{li} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(\\spad{li})} constructs the mathieu group acting on the 23 integers given in the list \\spad{li}. Note that duplicates in the list will be removed. Error: if \\spad{li} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(\\spad{li})} constructs the mathieu group acting on the 22 integers given in the list \\spad{li}. Note that duplicates in the list will be removed. Error: if \\spad{li} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(\\spad{li})} constructs the mathieu group acting on the 12 integers given in the list \\spad{li}. Note that duplicates in the list will be removed Error: if \\spad{li} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(\\spad{li})} constructs the mathieu group acting on the 11 integers given in the list \\spad{li}. Note that duplicates in the list will be removed. error,{} if \\spad{li} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,{}...,{}ik])} constructs the dihedral group of order 2k acting on the integers out of \\spad{i1},{}...,{}ik. Note that duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,{}...,{}ik])} constructs the cyclic group of order \\spad{k} acting on the integers \\spad{i1},{}...,{}ik. Note that duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,{}...,{}nk])} constructs the abelian group that is the direct product of cyclic groups with order \\spad{ni}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(\\spad{li})} constructs the alternating group acting on the integers in the list \\spad{li},{} generators are in general the \\spad{n}-2-cycle (\\spad{li}.3,{}...,{}\\spad{li}.\\spad{n}) and the 3-cycle (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3),{} if \\spad{n} is odd and product of the 2-cycle (\\spad{li}.1,{}\\spad{li}.2) with \\spad{n}-2-cycle (\\spad{li}.3,{}...,{}\\spad{li}.\\spad{n}) and the 3-cycle (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3),{} if \\spad{n} is even. Note that duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group An acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the \\spad{n}-2-cycle (3,{}...,{}\\spad{n}) and the 3-cycle (1,{}2,{}3) if \\spad{n} is odd and the product of the 2-cycle (1,{}2) with \\spad{n}-2-cycle (3,{}...,{}\\spad{n}) and the 3-cycle (1,{}2,{}3) if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(\\spad{li})} constructs the symmetric group acting on the integers in the list \\spad{li},{} generators are the cycle given by \\spad{li} and the 2-cycle (\\spad{li}.1,{}\\spad{li}.2). Note that duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group \\spad{Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the \\spad{n}-cycle (1,{}...,{}\\spad{n}) and the 2-cycle (1,{}2)."))) NIL NIL -(-906 -1333) +(-914 -1478) ((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} This package is an interface package to the groebner basis package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}."))) NIL NIL -(-907 R) +(-915 R) ((|constructor| (NIL "Provides a coercion from the symbolic fractions in \\%\\spad{pi} with integer coefficients to any Expression type.")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R})."))) NIL NIL -(-908) +(-916) ((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,{}...,{}fn],{}h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,{}...,{}fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,{}...,{}fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}"))) -((-4498 . T) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) +((-4512 . T) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) NIL -(-909) +(-917) ((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for positive integers.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}."))) -(((-4507 "*") . T)) +(((-4521 "*") . T)) NIL -(-910 -1333 P) +(-918 -1478 P) ((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,{}l2)} \\undocumented"))) NIL NIL -(-911 |xx| -1333) +(-919 |xx| -1478) ((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,{}lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,{}lf,{}lg)} \\undocumented"))) NIL NIL -(-912 K PCS) +(-920 K PCS) ((|constructor| (NIL "This is part of the PAFF package,{} related to projective space.")) (|elt| ((|#1| $ (|Integer|)) "\\spad{elt returns} the value of a specified coordinates if the places correspnd to a simple point")) (|setFoundPlacesToEmpty| (((|List| $)) "\\spad{setFoundPlacesToEmpty()} does what it says. (this should not be used)\\spad{!!!}")) (|foundPlaces| (((|List| $)) "\\spad{foundPlaces()} returns the list of all \"created\" places up to now.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(pl)} test if the place \\spad{pl} correspond to a leaf of a desingularisation tree.")) (|setDegree!| (((|Void|) $ (|PositiveInteger|)) "\\spad{setDegree!(pl,{}ls)} set the degree.")) (|setParam!| (((|Void|) $ (|List| |#2|)) "\\spad{setParam!(pl,{}ls)} set the local parametrization of \\spad{pl} to \\spad{ls}.")) (|localParam| (((|List| |#2|) $) "\\spad{localParam(pl)} returns the local parametrization associated to the place \\spad{pl}."))) NIL NIL -(-913 K) +(-921 K) ((|constructor| (NIL "The following is part of the PAFF package"))) NIL NIL -(-914 K) +(-922 K) ((|constructor| (NIL "The following is part of the PAFF package"))) NIL NIL -(-915 K PCS) +(-923 K PCS) ((|constructor| (NIL "The following is part of the PAFF package"))) NIL NIL -(-916 R |Var| |Expon| GR) +(-924 R |Var| |Expon| GR) ((|constructor| (NIL "This package completely solves a parametric linear system of equations by decomposing the set of all parametric values for which the linear system is consistent into a union of quasi-algebraic sets (which need not be irredundant,{} but most of the time is). Each quasi-algebraic set is described by a list of polynomials that vanish on the set,{} and a list of polynomials that vanish at no point of the set. For each quasi-algebraic set,{} the solution of the linear system is given,{} as a particular solution and a basis of the homogeneous system. \\blankline The parametric linear system should be given in matrix form,{} with a coefficient matrix and a right hand side vector. The entries of the coefficient matrix and right hand side vector should be polynomials in the parametric variables,{} over a Euclidean domain of characteristic zero. \\blankline If the system is homogeneous,{} the right hand side need not be given. The right hand side can also be replaced by an indeterminate vector,{} in which case,{} the conditions required for consistency will also be given. \\blankline The package has other facilities for saving results to external files,{} as well as solving the system for a specified minimum rank. Altogether there are 12 mode maps for psolve,{} as explained below.")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,{}c,{} w,{} p,{} r,{} rm,{} m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,{}g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,{}k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,{}sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,{}k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,{}g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,{}r)} computes a list of subdeterminants of each rank \\spad{>=} \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g,{} l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} \\spad{^=} 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c,{} w,{} r,{} s,{} m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,{}s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}k,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}"))) NIL NIL -(-917 S) +(-925 S) ((|constructor| (NIL "\\spad{PlotFunctions1} provides facilities for plotting curves where functions \\spad{SF} \\spad{->} \\spad{SF} are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,{}theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}theta,{}seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}t,{}seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,{}x,{}seg)} plots the graph of \\spad{y = f(x)} on a interval"))) NIL NIL -(-918) +(-926) ((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} is not documented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} is not documented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s,{}t)} is not documented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} is not documented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,{}f2,{}f3,{}f4,{}x,{}y,{}z,{}w)} is not documented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}x,{}y,{}z,{}w)} is not documented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}."))) NIL NIL -(-919) +(-927) ((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} is not documented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s)} is not documented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r)} is not documented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,{}2*\\%\\spad{pi}]}; this is the same as the parametric curve \\spad{x = f(t)*cos(t)},{} \\spad{y = f(t)*sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,{}b]}; this is the same as the parametric curve \\spad{x = f(t)*cos(t)},{} \\spad{y = f(t)*sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} is not documented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b,{}c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b,{}c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\indented{1}{plot(\\spad{f},{}a..\\spad{b}) plots the function \\spad{f(x)}} \\indented{1}{on the interval \\spad{[a,{}b]}.} \\blankline \\spad{X} fp:=(t:DFLOAT):DFLOAT +-> sin(\\spad{t}) \\spad{X} plot(\\spad{fp},{}\\spad{-1}.0..1.0)\\$PLOT"))) NIL NIL -(-920) +(-928) ((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented"))) NIL NIL -(-921 K |PolyRing| E -2050 |ProjPt|) +(-929 K |PolyRing| E -2570 |ProjPt|) ((|constructor| (NIL "The following is part of the PAFF package")) (|multiplicity| (((|NonNegativeInteger|) |#2| |#5| (|Integer|)) "\\spad{multiplicity returns} the multiplicity of the polynomial at given point.") (((|NonNegativeInteger|) |#2| |#5|) "\\spad{multiplicity returns} the multiplicity of the polynomial at given point.")) (|minimalForm| ((|#2| |#2| |#5| (|Integer|)) "\\spad{minimalForm returns} the minimal form after translation to the origin.") ((|#2| |#2| |#5|) "\\spad{minimalForm returns} the minimal form after translation to the origin.")) (|translateToOrigin| ((|#2| |#2| |#5|) "\\spad{translateToOrigin translate} the polynomial from the given point to the origin") ((|#2| |#2| |#5| (|Integer|)) "\\spad{translateToOrigin translate} the polynomial from the given point to the origin")) (|eval| ((|#1| |#2| |#5|) "\\spad{eval returns} the value at given point.")) (|pointInIdeal?| (((|Boolean|) (|List| |#2|) |#5|) "\\spad{pointInIdeal? test} if the given point is in the algebraic set defined by the given list of polynomials."))) NIL NIL -(-922 R -1333) +(-930 R -1478) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching.")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol."))) NIL NIL -(-923) +(-931) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching.")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}."))) NIL NIL -(-924 S A B) +(-932 S A B) ((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note that this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B)."))) NIL NIL -(-925 S R -1333) +(-933 S R -1478) ((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-926 I) +(-934 I) ((|constructor| (NIL "This package provides pattern matching functions on integers.")) (|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) "\\spad{patternMatch(n,{} pat,{} res)} matches the pattern \\spad{pat} to the integer \\spad{n}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-927 S E) +(-935 S E) ((|constructor| (NIL "This package provides pattern matching functions on kernels.")) (|patternMatch| (((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)) "\\spad{patternMatch(f(e1,{}...,{}en),{} pat,{} res)} matches the pattern \\spad{pat} to \\spad{f(e1,{}...,{}en)}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-928 S R L) +(-936 S R L) ((|constructor| (NIL "This package provides pattern matching functions on lists.")) (|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) "\\spad{patternMatch(l,{} pat,{} res)} matches the pattern \\spad{pat} to the list \\spad{l}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-929 S E V R P) +(-937 S E V R P) ((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p,{} pat,{} res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p,{} pat,{} res,{} vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -873) (|devaluate| |#1|)))) -(-930 R -1333 -2500) +((|HasCategory| |#3| (LIST (QUOTE -881) (|devaluate| |#1|)))) +(-938 R -1478 -3190) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching.")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol."))) NIL NIL -(-931 -2500) +(-939 -3190) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching.")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}."))) NIL NIL -(-932 S R Q) +(-940 S R Q) ((|constructor| (NIL "This package provides pattern matching functions on quotients.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(a/b,{} pat,{} res)} matches the pattern \\spad{pat} to the quotient \\spad{a/b}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-933 S) +(-941 S) ((|constructor| (NIL "This package provides pattern matching functions on symbols.")) (|patternMatch| (((|PatternMatchResult| |#1| (|Symbol|)) (|Symbol|) (|Pattern| |#1|) (|PatternMatchResult| |#1| (|Symbol|))) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion)."))) NIL NIL -(-934 S R P) +(-942 S R P) ((|constructor| (NIL "This package provides tools for the pattern matcher.")) (|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatchTimes(lsubj,{} lpat,{} res,{} match)} matches the product of patterns \\spad{reduce(*,{}lpat)} to the product of subjects \\spad{reduce(*,{}lsubj)}; \\spad{r} contains the previous matches and match is a pattern-matching function on \\spad{P}.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatch(lsubj,{} lpat,{} op,{} res,{} match)} matches the list of patterns \\spad{lpat} to the list of subjects \\spad{lsubj},{} allowing for commutativity; \\spad{op} is the operator such that \\spad{op}(\\spad{lpat}) should match \\spad{op}(\\spad{lsubj}) at the end,{} \\spad{r} contains the previous matches,{} and match is a pattern-matching function on \\spad{P}."))) NIL NIL -(-935) +(-943) ((|constructor| (NIL "This package provides various polynomial number theoretic functions over the integers.")) (|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note that Legendre polynomials,{} denoted \\spad{P[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n,{} n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note that Laguerre polynomials,{} denoted \\spad{L[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!,{} n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note that Hermite polynomials,{} denoted \\spad{H[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k}. Note that fixed divisor of \\spad{a} is \\spad{reduce(gcd,{}[a(x=k) for k in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note that Euler polynomials denoted \\spad{E(n,{}x)} computed by solving the differential equation \\spad{differentiate(E(n,{}x),{}x) = n E(n-1,{}x)} where \\spad{E(0,{}x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,{}1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note that \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note that Chebyshev polynomials of the second kind,{} denoted \\spad{U[n](x)},{} computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n,{} n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note that Chebyshev polynomials of the first kind,{} denoted \\spad{T[n](x)},{} computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n,{} n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Bernoulli polynomials denoted \\spad{B(n,{}x)} computed by solving the differential equation \\spad{differentiate(B(n,{}x),{}x) = n B(n-1,{}x)} where \\spad{B(0,{}x) = 1} and initial condition comes from \\spad{B(n) = B(n,{}0)}."))) NIL NIL -(-936 R) +(-944 R) ((|constructor| (NIL "This domain implements points in coordinate space"))) -((-4506 . T) (-4505 . T)) -((|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-834))) (-2318 (|HasCategory| |#1| (QUOTE (-834))) (|HasCategory| |#1| (QUOTE (-1082)))) (|HasCategory| (-560) (QUOTE (-834))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-708))) (|HasCategory| |#1| (QUOTE (-1039))) (-12 (|HasCategory| |#1| (QUOTE (-994))) (|HasCategory| |#1| (QUOTE (-1039)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1082)))) (-2318 (-12 (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-834)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1082)))))) -(-937 |lv| R) +((-4520 . T) (-4519 . T)) +((|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-842))) (-2198 (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-1090)))) (|HasCategory| (-568) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-716))) (|HasCategory| |#1| (QUOTE (-1047))) (-12 (|HasCategory| |#1| (QUOTE (-1002))) (|HasCategory| |#1| (QUOTE (-1047)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1090)))) (-2198 (-12 (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-842)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1090)))))) +(-945 |lv| R) ((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}."))) NIL NIL -(-938 |TheField| |ThePols|) +(-946 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}\\spad{sn})} is the number of sign variations in the list of non null numbers [s1::l]\\spad{@sn},{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}\\spad{p'})}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term"))) NIL -((|HasCategory| |#1| (QUOTE (-832)))) -(-939 R S) +((|HasCategory| |#1| (QUOTE (-840)))) +(-947 R S) ((|constructor| (NIL "This package takes a mapping between coefficient rings,{} and lifts it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f,{} p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}."))) NIL NIL -(-940 |x| R) +(-948 |x| R) ((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p,{} x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,{}Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}."))) NIL NIL -(-941 S R E |VarSet|) +(-949 S R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note that \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) NIL -((|HasCategory| |#2| (QUOTE (-896))) (|HasAttribute| |#2| (QUOTE -4503)) (|HasCategory| |#2| (QUOTE (-447))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#4| (LIST (QUOTE -873) (QUOTE (-375)))) (|HasCategory| |#2| (LIST (QUOTE -873) (QUOTE (-375)))) (|HasCategory| |#4| (LIST (QUOTE -873) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -873) (QUOTE (-560)))) (|HasCategory| |#4| (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-375))))) (|HasCategory| |#2| (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-375))))) (|HasCategory| |#4| (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-560))))) (|HasCategory| |#4| (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| |#2| (QUOTE (-834)))) -(-942 R E |VarSet|) +((|HasCategory| |#2| (QUOTE (-904))) (|HasAttribute| |#2| (QUOTE -4517)) (|HasCategory| |#2| (QUOTE (-453))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -881) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-381)))) (|HasCategory| |#4| (LIST (QUOTE -881) (QUOTE (-568)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-568)))) (|HasCategory| |#4| (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-381))))) (|HasCategory| |#4| (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-568))))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-568))))) (|HasCategory| |#4| (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| |#2| (QUOTE (-842)))) +(-950 R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note that \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) -(((-4507 "*") |has| |#1| (-170)) (-4498 |has| |#1| (-550)) (-4503 |has| |#1| (-6 -4503)) (-4500 . T) (-4499 . T) (-4502 . T)) +(((-4521 "*") |has| |#1| (-172)) (-4512 |has| |#1| (-558)) (-4517 |has| |#1| (-6 -4517)) (-4514 . T) (-4513 . T) (-4516 . T)) NIL -(-943 E V R P -1333) +(-951 E V R P -1478) ((|constructor| (NIL "Manipulations on polynomial quotients This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f,{} x,{} p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-944 E |Vars| R P S) +(-952 E |Vars| R P S) ((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap,{} coefmap,{} p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}"))) NIL NIL -(-945 R) +(-953 R) ((|constructor| (NIL "This type is the basic representation of sparse recursive multivariate polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,{}x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}."))) -(((-4507 "*") |has| |#1| (-170)) (-4498 |has| |#1| (-550)) (-4503 |has| |#1| (-6 -4503)) (-4500 . T) (-4499 . T) (-4502 . T)) -((|HasCategory| |#1| (QUOTE (-896))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-170))) (-2318 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| (-1153) (LIST (QUOTE -873) (QUOTE (-375)))) (|HasCategory| |#1| (LIST (QUOTE -873) (QUOTE (-375))))) (-12 (|HasCategory| (-1153) (LIST (QUOTE -873) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -873) (QUOTE (-560))))) (-12 (|HasCategory| (-1153) (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-375))))) (|HasCategory| |#1| (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-375)))))) (-12 (|HasCategory| (-1153) (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-560)))))) (-12 (|HasCategory| (-1153) (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-533))))) (|HasCategory| |#1| (QUOTE (-834))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-359))) (-2318 (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560)))))) (|HasAttribute| |#1| (QUOTE -4503)) (|HasCategory| |#1| (QUOTE (-447))) (-2318 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-447))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-896)))) (-2318 (|HasCategory| |#1| (QUOTE (-447))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-896)))) (-2318 (|HasCategory| |#1| (QUOTE (-447))) (|HasCategory| |#1| (QUOTE (-896)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-896)))) (-2318 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-896)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-946 E V R P -1333) +(((-4521 "*") |has| |#1| (-172)) (-4512 |has| |#1| (-558)) (-4517 |has| |#1| (-6 -4517)) (-4514 . T) (-4513 . T) (-4516 . T)) +((|HasCategory| |#1| (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2198 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| (-1161) (LIST (QUOTE -881) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-381))))) (-12 (|HasCategory| (-1161) (LIST (QUOTE -881) (QUOTE (-568)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-568))))) (-12 (|HasCategory| (-1161) (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-381)))))) (-12 (|HasCategory| (-1161) (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-568))))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-568)))))) (-12 (|HasCategory| (-1161) (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-541))))) (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-150))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#1| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (QUOTE (-365))) (-2198 (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568)))))) (|HasAttribute| |#1| (QUOTE -4517)) (|HasCategory| |#1| (QUOTE (-453))) (-2198 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-904)))) (-2198 (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-904)))) (-2198 (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-904)))) (-12 (|HasCategory| $ (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-904)))) (-2198 (-12 (|HasCategory| $ (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-148))))) +(-954 E V R P -1478) ((|constructor| (NIL "Computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,{}n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|coerce| (($ |#4|) "\\spad{coerce(p)} \\undocumented")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented"))) NIL -((|HasCategory| |#3| (QUOTE (-447)))) -(-947) +((|HasCategory| |#3| (QUOTE (-453)))) +(-955) ((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-948 R L) +(-956 R L) ((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op,{} m)} returns the matrix A such that \\spad{A w = (W',{}W'',{}...,{}W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L),{} m}."))) NIL NIL -(-949 A B) +(-957 A B) ((|constructor| (NIL "This package provides tools for operating on primitive arrays with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\indented{1}{map(\\spad{f},{}a) applies function \\spad{f} to each member of primitive array} \\indented{1}{\\spad{a} resulting in a new primitive array over a} \\indented{1}{possibly different underlying domain.} \\blankline \\spad{X} \\spad{T1:=PrimitiveArrayFunctions2}(Integer,{}Integer) \\spad{X} map(\\spad{x+}-\\spad{>x+2},{}[\\spad{i} for \\spad{i} in 1..10])\\$\\spad{T1}")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\indented{1}{reduce(\\spad{f},{}a,{}\\spad{r}) applies function \\spad{f} to each} \\indented{1}{successive element of the} \\indented{1}{primitive array \\spad{a} and an accumulant initialized to \\spad{r}.} \\indented{1}{For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)}} \\indented{1}{does \\spad{3+(2+(1+0))}. Note that third argument \\spad{r}} \\indented{1}{may be regarded as the identity element for the function \\spad{f}.} \\blankline \\spad{X} \\spad{T1:=PrimitiveArrayFunctions2}(Integer,{}Integer) \\spad{X} adder(a:Integer,{}b:Integer):Integer \\spad{==} a+b \\spad{X} reduce(adder,{}[\\spad{i} for \\spad{i} in 1..10],{}0)\\$\\spad{T1}")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\indented{1}{scan(\\spad{f},{}a,{}\\spad{r}) successively applies} \\indented{1}{\\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays} \\indented{1}{\\spad{x} of primitive array \\spad{a}.} \\indented{1}{More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then} \\indented{1}{\\spad{scan(f,{}a,{}r)} returns} \\indented{1}{\\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.} \\blankline \\spad{X} \\spad{T1:=PrimitiveArrayFunctions2}(Integer,{}Integer) \\spad{X} adder(a:Integer,{}b:Integer):Integer \\spad{==} a+b \\spad{X} scan(adder,{}[\\spad{i} for \\spad{i} in 1..10],{}0)\\$\\spad{T1}"))) NIL NIL -(-950 S) +(-958 S) ((|constructor| (NIL "This provides a fast array type with no bound checking on elt\\spad{'s}. Minimum index is 0 in this type,{} cannot be changed"))) -((-4506 . T) (-4505 . T)) -((|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-834))) (-2318 (|HasCategory| |#1| (QUOTE (-834))) (|HasCategory| |#1| (QUOTE (-1082)))) (|HasCategory| (-560) (QUOTE (-834))) (-12 (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1082)))) (-2318 (-12 (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-834)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1082)))))) -(-951) +((-4520 . T) (-4519 . T)) +((|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-842))) (-2198 (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-1090)))) (|HasCategory| (-568) (QUOTE (-842))) (-12 (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1090)))) (-2198 (-12 (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-842)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1090)))))) +(-959) ((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f,{} x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f,{} x)} returns the formal integral of \\spad{f} \\spad{dx}."))) NIL NIL -(-952 -1333) +(-960 -1478) ((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an],{} a)} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an])} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1,{} a1,{} p2,{} a2)} returns \\spad{[c1,{} c2,{} q]} such that \\spad{k(a1,{} a2) = k(a)} where \\spad{a = c1 a1 + c2 a2,{} and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve \\spad{a2}. This operation uses \\spadfun{resultant}."))) NIL NIL -(-953 I) +(-961 I) ((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin\\spad{'s} probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,{}b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin\\spad{'s} probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for \\spad{n<10**20}. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime"))) NIL NIL -(-954) +(-962) ((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter."))) NIL NIL -(-955 K |symb| |PolyRing| E |ProjPt|) +(-963 K |symb| |PolyRing| E |ProjPt|) ((|constructor| (NIL "The following is part of the PAFF package")) (|rationalPoints| (((|List| |#5|) |#3| (|PositiveInteger|)) "\\axiom{rationalPoints(\\spad{f},{}\\spad{d})} returns all points on the curve \\axiom{\\spad{f}} in the extension of the ground field of degree \\axiom{\\spad{d}}. For \\axiom{\\spad{d} > 1} this only works if \\axiom{\\spad{K}} is a \\axiomType{LocallyAlgebraicallyClosedField}")) (|algebraicSet| (((|List| |#5|) (|List| |#3|)) "\\spad{algebraicSet returns} the algebraic set if finite (dimension 0).")) (|singularPoints| (((|List| |#5|) |#3|) "\\spad{singularPoints retourne} les points singulier")) (|singularPointsWithRestriction| (((|List| |#5|) |#3| (|List| |#3|)) "return the singular points that anhilate"))) NIL NIL -(-956 R E) +(-964 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{x} : \\spad{p1} - \\spad{r} * x**e * \\spad{p2}"))) -(((-4507 "*") |has| |#1| (-170)) (-4498 |has| |#1| (-550)) (-4503 |has| |#1| (-6 -4503)) (-4499 . T) (-4500 . T) (-4502 . T)) -((|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-170))) (-2318 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-447))) (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-137)))) (-2318 (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560)))))) (|HasAttribute| |#1| (QUOTE -4503))) -(-957 A B) +(((-4521 "*") |has| |#1| (-172)) (-4512 |has| |#1| (-558)) (-4517 |has| |#1| (-6 -4517)) (-4513 . T) (-4514 . T) (-4516 . T)) +((|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2198 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-150))) (|HasCategory| |#1| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-453))) (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-137)))) (-2198 (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568)))))) (|HasAttribute| |#1| (QUOTE -4517))) +(-965 A B) ((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} is not documented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} is not documented")) (|makeprod| (($ |#1| |#2|) "\\indented{1}{makeprod(a,{}\\spad{b}) computes the product of two functions} \\blankline \\spad{X} \\spad{f:=}(x:INT):INT +-> 3*x \\spad{X} \\spad{g:=}(x:INT):INT +-> \\spad{x^3} \\spad{X} \\spad{h}(x:INT):Product(INT,{}INT) \\spad{==} makeprod(\\spad{f} \\spad{x},{} \\spad{g} \\spad{x}) \\spad{X} \\spad{h}(3)"))) -((-4502 -12 (|has| |#2| (-471)) (|has| |#1| (-471)))) -((-12 (|HasCategory| |#1| (QUOTE (-780))) (|HasCategory| |#2| (QUOTE (-780)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#2| (QUOTE (-471)))) (-12 (|HasCategory| |#1| (QUOTE (-364))) (|HasCategory| |#2| (QUOTE (-364)))) (-12 (|HasCategory| |#1| (QUOTE (-708))) (|HasCategory| |#2| (QUOTE (-708)))) (-2318 (-12 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#2| (QUOTE (-471)))) (-12 (|HasCategory| |#1| (QUOTE (-708))) (|HasCategory| |#2| (QUOTE (-708))))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-137))) (|HasCategory| |#2| (QUOTE (-137)))) (-2318 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-137))) (|HasCategory| |#2| (QUOTE (-137)))) (-12 (|HasCategory| |#1| (QUOTE (-780))) (|HasCategory| |#2| (QUOTE (-780))))) (-2318 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-137))) (|HasCategory| |#2| (QUOTE (-137)))) (-12 (|HasCategory| |#1| (QUOTE (-780))) (|HasCategory| |#2| (QUOTE (-780))))) (-2318 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-137))) (|HasCategory| |#2| (QUOTE (-137)))) (-12 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#2| (QUOTE (-471)))) (-12 (|HasCategory| |#1| (QUOTE (-708))) (|HasCategory| |#2| (QUOTE (-708)))) (-12 (|HasCategory| |#1| (QUOTE (-780))) (|HasCategory| |#2| (QUOTE (-780))))) (-12 (|HasCategory| |#1| (QUOTE (-834))) (|HasCategory| |#2| (QUOTE (-834)))) (-2318 (-12 (|HasCategory| |#1| (QUOTE (-780))) (|HasCategory| |#2| (QUOTE (-780)))) (-12 (|HasCategory| |#1| (QUOTE (-834))) (|HasCategory| |#2| (QUOTE (-834)))))) -(-958 K) +((-4516 -12 (|has| |#2| (-478)) (|has| |#1| (-478)))) +((-12 (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| |#2| (QUOTE (-788)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#2| (QUOTE (-478)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-370)))) (-12 (|HasCategory| |#1| (QUOTE (-716))) (|HasCategory| |#2| (QUOTE (-716)))) (-2198 (-12 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#2| (QUOTE (-478)))) (-12 (|HasCategory| |#1| (QUOTE (-716))) (|HasCategory| |#2| (QUOTE (-716))))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-137))) (|HasCategory| |#2| (QUOTE (-137)))) (-2198 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-137))) (|HasCategory| |#2| (QUOTE (-137)))) (-12 (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| |#2| (QUOTE (-788))))) (-2198 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-137))) (|HasCategory| |#2| (QUOTE (-137)))) (-12 (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| |#2| (QUOTE (-788))))) (-2198 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-137))) (|HasCategory| |#2| (QUOTE (-137)))) (-12 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#2| (QUOTE (-478)))) (-12 (|HasCategory| |#1| (QUOTE (-716))) (|HasCategory| |#2| (QUOTE (-716)))) (-12 (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| |#2| (QUOTE (-788))))) (-12 (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-842)))) (-2198 (-12 (|HasCategory| |#1| (QUOTE (-788))) (|HasCategory| |#2| (QUOTE (-788)))) (-12 (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-842)))))) +(-966 K) ((|constructor| (NIL "This is part of the PAFF package,{} related to projective space."))) NIL NIL -(-959 K) +(-967 K) ((|constructor| (NIL "This is part of the PAFF package,{} related to projective space."))) NIL NIL -(-960 -2050 K) +(-968 -2570 K) ((|constructor| (NIL "This is part of the PAFF package,{} related to projective space."))) NIL NIL -(-961 S) +(-969 S) ((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,{}q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,{}q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}."))) -((-4505 . T) (-4506 . T) (-2537 . T)) +((-4519 . T) (-4520 . T) (-3973 . T)) NIL -(-962 R |polR|) +(-970 R |polR|) ((|constructor| (NIL "This package contains some functions: discriminant,{} resultant,{} subResultantGcd,{} chainSubResultants,{} degreeSubResultant,{} lastSubResultant,{} resultantEuclidean,{} subResultantGcdEuclidean,{} \\spad{semiSubResultantGcdEuclidean1},{} \\spad{semiSubResultantGcdEuclidean2}\\spad{\\br} These procedures come from improvements of the subresultants algorithm.")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{\\spad{nextsousResultant2}(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{\\spad{Lazard2}(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + \\spad{coef2} * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning. \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{\\spad{coef1} * \\spad{P} + \\spad{coef2} * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{\\spad{semiSubResultantGcdEuclidean1}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{\\spad{semiSubResultantGcdEuclidean2}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning. \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning. \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning. \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning. \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{\\spad{semiResultantEuclidean1}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{\\spad{coef1}.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{\\spad{semiResultantEuclidean2}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning. \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}"))) NIL -((|HasCategory| |#1| (QUOTE (-447)))) -(-963 K) +((|HasCategory| |#1| (QUOTE (-453)))) +(-971 K) ((|constructor| (NIL "This is part of the PAFF package,{} related to projective space.")) (|pointValue| (((|List| |#1|) $) "\\spad{pointValue returns} the coordinates of the point or of the point of origin that represent an infinitly close point")) (|setelt| ((|#1| $ (|Integer|) |#1|) "\\spad{setelt sets} the value of a specified coordinates")) (|elt| ((|#1| $ (|Integer|)) "\\spad{elt returns} the value of a specified coordinates")) (|list| (((|List| |#1|) $) "\\spad{list returns} the list of the coordinates")) (|lastNonNull| (((|Integer|) $) "\\spad{lastNonNull returns} the integer corresponding to the last non null coordinates.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(p)} test if the point is rational according to the characteristic of the ground field.") (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{rational?(p,{}n)} test if the point is rational according to \\spad{n}.")) (|removeConjugate| (((|List| $) (|List| $)) "\\spad{removeConjugate(lp)} returns removeConjugate(\\spad{lp},{}\\spad{n}) where \\spad{n} is the characteristic of the ground field.") (((|List| $) (|List| $) (|NonNegativeInteger|)) "\\spad{removeConjugate(lp,{}n)} returns a list of points such that no points in the list is the conjugate (according to \\spad{n}) of another point.")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns conjugate(\\spad{p},{}\\spad{n}) where \\spad{n} is the characteristic of the ground field.") (($ $ (|NonNegativeInteger|)) "\\spad{conjugate(p,{}n)} returns p**n,{} that is all the coordinates of \\spad{p} to the power of \\spad{n}")) (|orbit| (((|List| $) $ (|NonNegativeInteger|)) "\\spad{orbit(p,{}n)} returns the orbit of the point \\spad{p} according to \\spad{n},{} that is orbit(\\spad{p},{}\\spad{n}) = \\spad{\\{} \\spad{p},{} p**n,{} \\spad{p**}(\\spad{n**2}),{} \\spad{p**}(\\spad{n**3}),{} ..... \\spad{\\}}") (((|List| $) $) "\\spad{orbit(p)} returns the orbit of the point \\spad{p} according to the characteristic of \\spad{K},{} that is,{} for \\spad{q=} char \\spad{K},{} orbit(\\spad{p}) = \\spad{\\{} \\spad{p},{} p**q,{} \\spad{p**}(\\spad{q**2}),{} \\spad{p**}(\\spad{q**3}),{} ..... \\spad{\\}}")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce a} list of \\spad{K} to a projective point.") (((|List| |#1|) $) "\\spad{coerce a} a projective point list of \\spad{K}")) (|projectivePoint| (($ (|List| |#1|)) "\\spad{projectivePoint creates} a projective point from a list")) (|homogenize| (($ $) "\\spad{homogenize(pt)} the point according to the coordinate which is the last non null.") (($ $ (|Integer|)) "\\spad{homogenize the} point according to the coordinate specified by the integer"))) NIL NIL -(-964) +(-972) ((|constructor| (NIL "Domain for partitions of positive integers Partition is an OrderedCancellationAbelianMonoid which is used as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus,{} \\spad{(5 2 2 1)} will represent \\spad{s5 * s2**2 * s1}.")) (|coerce| (((|List| (|Integer|)) $) "\\spad{coerce(p)} coerces a partition into a list of integers")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns the conjugate partition of a partition \\spad{p}")) (|pdct| (((|Integer|) $) "\\spad{pdct(a1**n1 a2**n2 ...)} returns \\spad{n1! * a1**n1 * n2! * a2**n2 * ...}. This function is used in the package \\spadtype{CycleIndicators}.")) (|powers| (((|List| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{powers(\\spad{li})} returns a list of 2-element lists. For each 2-element list,{} the first element is an entry of \\spad{li} and the second element is the multiplicity with which the first element occurs in \\spad{li}. There is a 2-element list for each value occurring in \\spad{l}.")) (|partition| (($ (|List| (|Integer|))) "\\spad{partition(\\spad{li})} converts a list of integers \\spad{li} to a partition"))) NIL NIL -(-965 S |Coef| |Expon| |Var|) +(-973 S |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note that this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#4|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#3| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#4|) (|List| |#3|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#4| |#3|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}."))) NIL NIL -(-966 |Coef| |Expon| |Var|) +(-974 |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note that this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}."))) -(((-4507 "*") |has| |#1| (-170)) (-4498 |has| |#1| (-550)) (-4499 . T) (-4500 . T) (-4502 . T)) +(((-4521 "*") |has| |#1| (-172)) (-4512 |has| |#1| (-558)) (-4513 . T) (-4514 . T) (-4516 . T)) NIL -(-967) +(-975) ((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-968 S R E |VarSet| P) +(-976 S R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains \\indented{1}{some non null element lying in the base ring \\axiom{\\spad{R}}.}")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) NIL -((|HasCategory| |#2| (QUOTE (-550)))) -(-969 R E |VarSet| P) +((|HasCategory| |#2| (QUOTE (-558)))) +(-977 R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains \\indented{1}{some non null element lying in the base ring \\axiom{\\spad{R}}.}")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) -((-4505 . T) (-2537 . T)) +((-4519 . T) (-3973 . T)) NIL -(-970 R E V P) +(-978 R E V P) ((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...\\spad{*pn=0}} means \\axiom{f1*f2*...\\spad{*fm=0}},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...\\spad{*pn=0}} means \\axiom{f1*f2*...\\spad{*fm=0}},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-296)))) (|HasCategory| |#1| (QUOTE (-447)))) -(-971 K) +((-12 (|HasCategory| |#1| (QUOTE (-150))) (|HasCategory| |#1| (QUOTE (-301)))) (|HasCategory| |#1| (QUOTE (-453)))) +(-979 K) ((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m,{} v)} returns \\spad{[[C_1,{} g_1],{}...,{}[C_k,{} g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,{}...,{}C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M,{} A,{} sig,{} der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M,{} sig,{} der)} returns \\spad{[R,{} A,{} A^{-1}]} such that the pseudo-linear operator whose matrix in the basis \\spad{y} is \\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}. \\spad{der} is a \\spad{sig}-derivation."))) NIL NIL -(-972 |VarSet| E RC P) +(-980 |VarSet| E RC P) ((|constructor| (NIL "This package computes square-free decomposition of multivariate polynomials over a coefficient ring which is an arbitrary \\spad{gcd} domain. The requirement on the coefficient domain guarantees that the \\spadfun{content} can be removed so that factors will be primitive as well as square-free. Over an infinite ring of finite characteristic,{}it may not be possible to guarantee that the factors are square-free.")) (|squareFree| (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} returns the square-free factorization of the polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime."))) NIL NIL -(-973 R) +(-981 R) ((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,{}l,{}r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|convert| (($ (|List| |#1|)) "\\spad{convert(l)} takes a list of elements,{} \\spad{l},{} from the domain Ring and returns the form of point category.")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}."))) -((-4506 . T) (-4505 . T) (-2537 . T)) +((-4520 . T) (-4519 . T) (-3973 . T)) NIL -(-974 R1 R2) +(-982 R1 R2) ((|constructor| (NIL "This package has no description")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,{}p)} \\undocumented"))) NIL NIL -(-975 R) +(-983 R) ((|constructor| (NIL "This package has no description")) (|shade| ((|#1| (|Point| |#1|)) "\\spad{shade(pt)} returns the fourth element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} shade to express a fourth dimension.")) (|hue| ((|#1| (|Point| |#1|)) "\\spad{hue(pt)} returns the third element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} hue to express a third dimension.")) (|color| ((|#1| (|Point| |#1|)) "\\spad{color(pt)} returns the fourth element of the point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} color to express a fourth dimension.")) (|phiCoord| ((|#1| (|Point| |#1|)) "\\spad{phiCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical coordinate system.")) (|thetaCoord| ((|#1| (|Point| |#1|)) "\\spad{thetaCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|rCoord| ((|#1| (|Point| |#1|)) "\\spad{rCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|zCoord| ((|#1| (|Point| |#1|)) "\\spad{zCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian or a cylindrical coordinate system.")) (|yCoord| ((|#1| (|Point| |#1|)) "\\spad{yCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")) (|xCoord| ((|#1| (|Point| |#1|)) "\\spad{xCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system."))) NIL NIL -(-976 K) +(-984 K) ((|constructor| (NIL "This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns \\spad{csc}(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,{}n)} returns the \\spad{n}th root of \\spad{z} if possible,{} and \"failed\" otherwise."))) NIL NIL -(-977 R E OV PPR) +(-985 R E OV PPR) ((|constructor| (NIL "This package has no description")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,{}p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,{}v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,{}v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-978 K R UP -1333) +(-986 K R UP -1478) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,{}y]/(f(x,{}y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,{}y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}."))) NIL NIL -(-979 |vl| |nv|) +(-987 |vl| |nv|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals"))) NIL NIL -(-980 R |Var| |Expon| |Dpoly|) +(-988 R |Var| |Expon| |Dpoly|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) "failed")) "\\spad{setStatus(s,{}t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) "failed") $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,{}q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{^=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-296))))) -(-981 R E V P TS) +((-12 (|HasCategory| |#1| (QUOTE (-150))) (|HasCategory| |#1| (QUOTE (-301))))) +(-989 R E V P TS) ((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets.")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(\\spad{lpwt1},{}\\spad{lpwt2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff internalSubQuasiComponent? returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. infRittWu? from RecursivePolynomialCategory.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} supDimElseRittWu?")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-982) +(-990) ((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,{}\"a\")} creates a new equation."))) NIL NIL -(-983 A B R S) +(-991 A B R S) ((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}."))) NIL NIL -(-984 A S) +(-992 A S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) NIL -((|HasCategory| |#2| (QUOTE (-896))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-296))) (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-1153)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-807))) (|HasCategory| |#2| (QUOTE (-834))) (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1128)))) -(-985 S) +((|HasCategory| |#2| (QUOTE (-904))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-301))) (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-1161)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-150))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| |#2| (QUOTE (-1021))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#2| (QUOTE (-1136)))) +(-993 S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) -((-2537 . T) (-4497 . T) (-4503 . T) (-4498 . T) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) +((-3973 . T) (-4511 . T) (-4517 . T) (-4512 . T) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) NIL -(-986 |n| K) +(-994 |n| K) ((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|elt| ((|#2| $ (|DirectProduct| |#1| |#2|)) "\\spad{elt(qf,{}v)} evaluates the quadratic form \\spad{qf} on the vector \\spad{v},{} producing a scalar.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}."))) NIL NIL -(-987 S) +(-995 S) ((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note that \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note that rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,{}q)} inserts \\spad{x} into the queue \\spad{q} at the back end."))) -((-4505 . T) (-4506 . T) (-2537 . T)) +((-4519 . T) (-4520 . T) (-3973 . T)) NIL -(-988 S R) +(-996 S R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note that if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) NIL -((|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (QUOTE (-1048))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| |#2| (QUOTE (-359))) (|HasCategory| |#2| (QUOTE (-834))) (|HasCategory| |#2| (QUOTE (-280)))) -(-989 R) +((|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-1056))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-150))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-285)))) +(-997 R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note that if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) -((-4498 |has| |#1| (-280)) (-4499 . T) (-4500 . T) (-4502 . T)) +((-4512 |has| |#1| (-285)) (-4513 . T) (-4514 . T) (-4516 . T)) NIL -(-990 QR R QS S) +(-998 QR R QS S) ((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\indented{1}{map(\\spad{f},{}\\spad{u}) maps \\spad{f} onto the component parts of the quaternion \\spad{u}.} \\indented{1}{to convert an expression in Quaterion(\\spad{R}) to Quaternion(\\spad{S})} \\blankline \\spad{X} \\spad{f}(a:FRAC(INT)):COMPLEX(FRAC(INT)) \\spad{==} a::COMPLEX(FRAC(INT)) \\spad{X} q:=quatern(2/11,{}\\spad{-8},{}3/4,{}1) \\spad{X} map(\\spad{f},{}\\spad{q})"))) NIL NIL -(-991 R) +(-999 R) ((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a commutative ring. The main constructor function is \\spadfun{quatern} which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part and the \\spad{k} imaginary part."))) -((-4498 |has| |#1| (-280)) (-4499 . T) (-4500 . T) (-4502 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-280))) (-2318 (|HasCategory| |#1| (QUOTE (-280))) (|HasCategory| |#1| (QUOTE (-359)))) (|HasCategory| |#1| (QUOTE (-834))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -515) (QUOTE (-1153)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -276) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-221))) (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#1| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-1048))) (|HasCategory| |#1| (QUOTE (-542))) (-2318 (|HasCategory| |#1| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-359))))) -(-992 S) +((-4512 |has| |#1| (-285)) (-4513 . T) (-4514 . T) (-4516 . T)) +((|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-150))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-285))) (-2198 (|HasCategory| |#1| (QUOTE (-285))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#1| (LIST (QUOTE -523) (QUOTE (-1161)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -281) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-225))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#1| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-1056))) (|HasCategory| |#1| (QUOTE (-550))) (-2198 (|HasCategory| |#1| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (QUOTE (-365))))) +(-1000 S) ((|constructor| (NIL "Linked List implementation of a Queue")) (|member?| (((|Boolean|) |#1| $) "\\blankline \\spad{X} a:Queue INT:= queue [1,{}2,{}3,{}4,{}5] \\spad{X} member?(3,{}a)")) (|members| (((|List| |#1|) $) "\\blankline \\spad{X} a:Queue INT:= queue [1,{}2,{}3,{}4,{}5] \\spad{X} members a")) (|parts| (((|List| |#1|) $) "\\blankline \\spad{X} a:Queue INT:= queue [1,{}2,{}3,{}4,{}5] \\spad{X} parts a")) (|#| (((|NonNegativeInteger|) $) "\\blankline \\spad{X} a:Queue INT:= queue [1,{}2,{}3,{}4,{}5] \\spad{X} \\#a")) (|count| (((|NonNegativeInteger|) |#1| $) "\\blankline \\spad{X} a:Queue INT:= queue [1,{}2,{}3,{}4,{}5] \\spad{X} count(4,{}a)") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\blankline \\spad{X} a:Queue INT:= queue [1,{}2,{}3,{}4,{}5] \\spad{X} count(\\spad{x+}->(\\spad{x>2}),{}a)")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\blankline \\spad{X} a:Queue INT:= queue [1,{}2,{}3,{}4,{}5] \\spad{X} any?(\\spad{x+}->(\\spad{x=4}),{}a)")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\blankline \\spad{X} a:Queue INT:= queue [1,{}2,{}3,{}4,{}5] \\spad{X} every?(\\spad{x+}->(\\spad{x=4}),{}a)")) (~= (((|Boolean|) $ $) "\\blankline \\spad{X} a:Queue INT:= queue [1,{}2,{}3,{}4,{}5] \\spad{X} b:=copy a \\spad{X} (a~=b)")) (= (((|Boolean|) $ $) "\\blankline \\spad{X} a:Queue INT:= queue [1,{}2,{}3,{}4,{}5] \\spad{X} b:Queue INT:= queue [1,{}2,{}3,{}4,{}5] \\spad{X} (a=b)@Boolean")) (|coerce| (((|OutputForm|) $) "\\blankline \\spad{X} a:Queue INT:= queue [1,{}2,{}3,{}4,{}5] \\spad{X} coerce a")) (|hash| (((|SingleInteger|) $) "\\blankline \\spad{X} a:Queue INT:= queue [1,{}2,{}3,{}4,{}5] \\spad{X} hash a")) (|latex| (((|String|) $) "\\blankline \\spad{X} a:Queue INT:= queue [1,{}2,{}3,{}4,{}5] \\spad{X} latex a")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\blankline \\spad{X} a:Queue INT:= queue [1,{}2,{}3,{}4,{}5] \\spad{X} map!(\\spad{x+}-\\spad{>x+10},{}a) \\spad{X} a")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\blankline \\spad{X} a:Queue INT:= queue [1,{}2,{}3,{}4,{}5] \\spad{X} map(\\spad{x+}-\\spad{>x+10},{}a) \\spad{X} a")) (|eq?| (((|Boolean|) $ $) "\\blankline \\spad{X} a:Queue INT:= queue [1,{}2,{}3,{}4,{}5] \\spad{X} b:=copy a \\spad{X} eq?(a,{}\\spad{b})")) (|copy| (($ $) "\\blankline \\spad{X} a:Queue INT:= queue [1,{}2,{}3,{}4,{}5] \\spad{X} copy a")) (|sample| (($) "\\blankline \\spad{X} sample()\\$Queue(INT)")) (|empty| (($) "\\blankline \\spad{X} b:=empty()\\$(Queue INT)")) (|empty?| (((|Boolean|) $) "\\blankline \\spad{X} a:Queue INT:= queue [1,{}2,{}3,{}4,{}5] \\spad{X} empty? a")) (|bag| (($ (|List| |#1|)) "\\blankline \\spad{X} bag([1,{}2,{}3,{}4,{}5])\\$Queue(INT)")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\blankline \\spad{X} a:Queue INT:= queue [1,{}2,{}3,{}4,{}5] \\spad{X} size?(a,{}5)")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\blankline \\spad{X} a:Queue INT:= queue [1,{}2,{}3,{}4,{}5] \\spad{X} more?(a,{}9)")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\blankline \\spad{X} a:Queue INT:= queue [1,{}2,{}3,{}4,{}5] \\spad{X} less?(a,{}9)")) (|length| (((|NonNegativeInteger|) $) "\\blankline \\spad{X} a:Queue INT:= queue [1,{}2,{}3,{}4,{}5] \\spad{X} length a")) (|rotate!| (($ $) "\\blankline \\spad{X} a:Queue INT:= queue [1,{}2,{}3,{}4,{}5] \\spad{X} rotate! a")) (|back| ((|#1| $) "\\blankline \\spad{X} a:Queue INT:= queue [1,{}2,{}3,{}4,{}5] \\spad{X} back a")) (|front| ((|#1| $) "\\blankline \\spad{X} a:Queue INT:= queue [1,{}2,{}3,{}4,{}5] \\spad{X} front a")) (|inspect| ((|#1| $) "\\blankline \\spad{X} a:Queue INT:= queue [1,{}2,{}3,{}4,{}5] \\spad{X} inspect a")) (|insert!| (($ |#1| $) "\\blankline \\spad{X} a:Queue INT:= queue [1,{}2,{}3,{}4,{}5] \\spad{X} insert! (8,{}a) \\spad{X} a")) (|enqueue!| ((|#1| |#1| $) "\\blankline \\spad{X} a:Queue INT:= queue [1,{}2,{}3,{}4,{}5] \\spad{X} enqueue! (9,{}a) \\spad{X} a")) (|extract!| ((|#1| $) "\\blankline \\spad{X} a:Queue INT:= queue [1,{}2,{}3,{}4,{}5] \\spad{X} extract! a \\spad{X} a")) (|dequeue!| ((|#1| $) "\\blankline \\spad{X} a:Queue INT:= queue [1,{}2,{}3,{}4,{}5] \\spad{X} dequeue! a \\spad{X} a")) (|queue| (($ (|List| |#1|)) "\\indented{1}{queue([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) creates a queue with first (top)} \\indented{1}{element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}.} \\blankline \\spad{E} e:Queue INT:= queue [1,{}2,{}3,{}4,{}5]"))) -((-4505 . T) (-4506 . T)) -((|HasCategory| |#1| (QUOTE (-1082))) (-12 (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1082))))) -(-993 S) +((-4519 . T) (-4520 . T)) +((|HasCategory| |#1| (QUOTE (-1090))) (-12 (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1090))))) +(-1001 S) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-994) +(-1002) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-995 -1333 UP UPUP |radicnd| |n|) +(-1003 -1478 UP UPUP |radicnd| |n|) ((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x})."))) -((-4498 |has| (-403 |#2|) (-359)) (-4503 |has| (-403 |#2|) (-359)) (-4497 |has| (-403 |#2|) (-359)) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) -((|HasCategory| (-403 |#2|) (QUOTE (-146))) (|HasCategory| (-403 |#2|) (QUOTE (-148))) (|HasCategory| (-403 |#2|) (QUOTE (-344))) (|HasCategory| (-403 |#2|) (QUOTE (-359))) (-2318 (|HasCategory| (-403 |#2|) (QUOTE (-359))) (|HasCategory| (-403 |#2|) (QUOTE (-344)))) (|HasCategory| (-403 |#2|) (QUOTE (-364))) (|HasCategory| (-403 |#2|) (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| (-403 |#2|) (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| (-403 |#2|) (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-364))) (-2318 (|HasCategory| (-403 |#2|) (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| (-403 |#2|) (QUOTE (-359)))) (-12 (|HasCategory| (-403 |#2|) (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| (-403 |#2|) (QUOTE (-359)))) (-2318 (-12 (|HasCategory| (-403 |#2|) (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| (-403 |#2|) (QUOTE (-359)))) (-12 (|HasCategory| (-403 |#2|) (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| (-403 |#2|) (QUOTE (-344))))) (-12 (|HasCategory| (-403 |#2|) (QUOTE (-221))) (|HasCategory| (-403 |#2|) (QUOTE (-359)))) (-2318 (-12 (|HasCategory| (-403 |#2|) (QUOTE (-221))) (|HasCategory| (-403 |#2|) (QUOTE (-359)))) (|HasCategory| (-403 |#2|) (QUOTE (-344))))) -(-996 |bb|) +((-4512 |has| (-409 |#2|) (-365)) (-4517 |has| (-409 |#2|) (-365)) (-4511 |has| (-409 |#2|) (-365)) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) +((|HasCategory| (-409 |#2|) (QUOTE (-148))) (|HasCategory| (-409 |#2|) (QUOTE (-150))) (|HasCategory| (-409 |#2|) (QUOTE (-350))) (|HasCategory| (-409 |#2|) (QUOTE (-365))) (-2198 (|HasCategory| (-409 |#2|) (QUOTE (-365))) (|HasCategory| (-409 |#2|) (QUOTE (-350)))) (|HasCategory| (-409 |#2|) (QUOTE (-370))) (|HasCategory| (-409 |#2|) (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| (-409 |#2|) (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| (-409 |#2|) (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-370))) (-2198 (|HasCategory| (-409 |#2|) (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))) (-12 (|HasCategory| (-409 |#2|) (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))) (-2198 (-12 (|HasCategory| (-409 |#2|) (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))) (-12 (|HasCategory| (-409 |#2|) (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| (-409 |#2|) (QUOTE (-350))))) (-12 (|HasCategory| (-409 |#2|) (QUOTE (-225))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))) (-2198 (-12 (|HasCategory| (-409 |#2|) (QUOTE (-225))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))) (|HasCategory| (-409 |#2|) (QUOTE (-350))))) +(-1004 |bb|) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,{}cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. \\spadignore{e.g.} \\spad{fractRadix([1],{}[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,{}3,{}4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,{}1,{}4,{}2,{}8,{}5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,{}0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion.")) (|coerce| (((|Fraction| (|Integer|)) $) "\\spad{coerce(rx)} converts a radix expansion to a rational number."))) -((-4497 . T) (-4503 . T) (-4498 . T) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) -((|HasCategory| (-560) (QUOTE (-896))) (|HasCategory| (-560) (LIST (QUOTE -1029) (QUOTE (-1153)))) (|HasCategory| (-560) (QUOTE (-146))) (|HasCategory| (-560) (QUOTE (-148))) (|HasCategory| (-560) (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| (-560) (QUOTE (-1013))) (|HasCategory| (-560) (QUOTE (-807))) (|HasCategory| (-560) (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-1128))) (|HasCategory| (-560) (LIST (QUOTE -873) (QUOTE (-560)))) (|HasCategory| (-560) (LIST (QUOTE -873) (QUOTE (-375)))) (|HasCategory| (-560) (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-375))))) (|HasCategory| (-560) (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-560))))) (|HasCategory| (-560) (QUOTE (-221))) (|HasCategory| (-560) (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| (-560) (LIST (QUOTE -515) (QUOTE (-1153)) (QUOTE (-560)))) (|HasCategory| (-560) (LIST (QUOTE -298) (QUOTE (-560)))) (|HasCategory| (-560) (LIST (QUOTE -276) (QUOTE (-560)) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-296))) (|HasCategory| (-560) (QUOTE (-542))) (|HasCategory| (-560) (QUOTE (-834))) (-2318 (|HasCategory| (-560) (QUOTE (-807))) (|HasCategory| (-560) (QUOTE (-834)))) (|HasCategory| (-560) (LIST (QUOTE -622) (QUOTE (-560)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-560) (QUOTE (-896)))) (-2318 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-560) (QUOTE (-896)))) (|HasCategory| (-560) (QUOTE (-146))))) -(-997) +((-4511 . T) (-4517 . T) (-4512 . T) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) +((|HasCategory| (-568) (QUOTE (-904))) (|HasCategory| (-568) (LIST (QUOTE -1037) (QUOTE (-1161)))) (|HasCategory| (-568) (QUOTE (-148))) (|HasCategory| (-568) (QUOTE (-150))) (|HasCategory| (-568) (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| (-568) (QUOTE (-1021))) (|HasCategory| (-568) (QUOTE (-815))) (|HasCategory| (-568) (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| (-568) (QUOTE (-1136))) (|HasCategory| (-568) (LIST (QUOTE -881) (QUOTE (-568)))) (|HasCategory| (-568) (LIST (QUOTE -881) (QUOTE (-381)))) (|HasCategory| (-568) (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-381))))) (|HasCategory| (-568) (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-568))))) (|HasCategory| (-568) (QUOTE (-225))) (|HasCategory| (-568) (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| (-568) (LIST (QUOTE -523) (QUOTE (-1161)) (QUOTE (-568)))) (|HasCategory| (-568) (LIST (QUOTE -303) (QUOTE (-568)))) (|HasCategory| (-568) (LIST (QUOTE -281) (QUOTE (-568)) (QUOTE (-568)))) (|HasCategory| (-568) (QUOTE (-301))) (|HasCategory| (-568) (QUOTE (-550))) (|HasCategory| (-568) (QUOTE (-842))) (-2198 (|HasCategory| (-568) (QUOTE (-815))) (|HasCategory| (-568) (QUOTE (-842)))) (|HasCategory| (-568) (LIST (QUOTE -630) (QUOTE (-568)))) (-12 (|HasCategory| $ (QUOTE (-148))) (|HasCategory| (-568) (QUOTE (-904)))) (-2198 (-12 (|HasCategory| $ (QUOTE (-148))) (|HasCategory| (-568) (QUOTE (-904)))) (|HasCategory| (-568) (QUOTE (-148))))) +(-1005) ((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,{}b)} converts \\spad{x} to a radix expansion in base \\spad{b}."))) NIL NIL -(-998) +(-1006) ((|constructor| (NIL "Random number generators. All random numbers used in the system should originate from the same generator. This package is intended to be the source.")) (|seed| (((|Integer|)) "\\spad{seed()} returns the current seed value.")) (|reseed| (((|Void|) (|Integer|)) "\\spad{reseed(n)} restarts the random number generator at \\spad{n}.")) (|size| (((|Integer|)) "\\spad{size()} is the base of the random number generator")) (|randnum| (((|Integer|) (|Integer|)) "\\spad{randnum(n)} is a random number between 0 and \\spad{n}.") (((|Integer|)) "\\spad{randnum()} is a random number between 0 and size()."))) NIL NIL -(-999 RP) +(-1007 RP) ((|constructor| (NIL "Factorization of extended polynomials with rational coefficients. This package implements factorization of extended polynomials whose coefficients are rational numbers. It does this by taking the \\spad{lcm} of the coefficients of the polynomial and creating a polynomial with integer coefficients. The algorithm in \\spadtype{GaloisGroupFactorizer} is then used to factor the integer polynomial. The result is normalized with respect to the original \\spad{lcm} of the denominators.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} factors an extended squareFree polynomial \\spad{p} over the rational numbers.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} factors an extended polynomial \\spad{p} over the rational numbers."))) NIL NIL -(-1000 S) +(-1008 S) ((|constructor| (NIL "Rational number testing and retraction functions.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") |#1|) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} \"failed\" if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) |#1|) "\\spad{rational?(x)} returns \\spad{true} if \\spad{x} is a rational number,{} \\spad{false} otherwise.")) (|rational| (((|Fraction| (|Integer|)) |#1|) "\\spad{rational(x)} returns \\spad{x} as a rational number; error if \\spad{x} is not a rational number."))) NIL NIL -(-1001 A S) +(-1009 A S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a node consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL -((|HasAttribute| |#1| (QUOTE -4506)) (|HasCategory| |#2| (QUOTE (-1082)))) -(-1002 S) +((|HasAttribute| |#1| (QUOTE -4520)) (|HasCategory| |#2| (QUOTE (-1090)))) +(-1010 S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a node consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) -((-2537 . T)) +((-3973 . T)) NIL -(-1003 S) +(-1011 S) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|NonNegativeInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) NIL NIL -(-1004) +(-1012) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|NonNegativeInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) -((-4498 . T) (-4503 . T) (-4497 . T) (-4500 . T) (-4499 . T) ((-4507 "*") . T) (-4502 . T)) +((-4512 . T) (-4517 . T) (-4511 . T) (-4514 . T) (-4513 . T) ((-4521 "*") . T) (-4516 . T)) NIL -(-1005 R -1333) +(-1013 R -1478) ((|constructor| (NIL "Risch differential equation,{} elementary case.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n,{} f,{} g,{} x,{} lim,{} ext)} returns \\spad{[y,{} h,{} b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function."))) NIL NIL -(-1006 R -1333) +(-1014 R -1478) ((|constructor| (NIL "Risch differential equation,{} elementary case.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n,{} f,{} g_1,{} g_2,{} x,{}lim,{}ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,{}dy2/dx) + ((0,{} - n df/dx),{}(n df/dx,{}0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function."))) NIL NIL -(-1007 -1333 UP) +(-1015 -1478 UP) ((|constructor| (NIL "Risch differential equation,{} transcendental case.")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a,{} B,{} C,{} n,{} D)} returns either: 1. \\spad{[Q,{} b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1,{} C1,{} m,{} \\alpha,{} \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f,{} g)} returns a \\spad{[y,{} b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,{}g,{}D)} returns \\spad{[A,{} B,{} C,{} T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use."))) NIL NIL -(-1008 -1333 UP) +(-1016 -1478 UP) ((|constructor| (NIL "Risch differential equation system,{} transcendental case.")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f,{} g1,{} g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,{}g1,{}g2,{}D)} returns \\spad{[A,{} B,{} H,{} C1,{} C2,{} T]} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} has a solution if and only if \\spad{y1 = Q1 / T,{} y2 = Q2 / T},{} where \\spad{B,{}C1,{}C2,{}Q1,{}Q2} have no normal poles and satisfy A \\spad{(Q1',{} Q2') + ((H,{} -B),{} (B,{} H)) (Q1,{}Q2) = (C1,{}C2)} \\spad{D} is the derivation to use."))) NIL NIL -(-1009 S) +(-1017 S) ((|constructor| (NIL "This package exports random distributions")) (|rdHack1| (((|Mapping| |#1|) (|Vector| |#1|) (|Vector| (|Integer|)) (|Integer|)) "\\spad{rdHack1(v,{}u,{}n)} \\undocumented")) (|weighted| (((|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| (|Integer|))))) "\\spad{weighted(l)} \\undocumented")) (|uniform| (((|Mapping| |#1|) (|Set| |#1|)) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-1010 F1 UP UPUP R F2) +(-1018 F1 UP UPUP R F2) ((|constructor| (NIL "Finds the order of a divisor over a finite field")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)) "\\spad{order(f,{}u,{}g)} \\undocumented"))) NIL NIL -(-1011 |Pol|) +(-1019 |Pol|) ((|constructor| (NIL "This package provides functions for finding the real zeros of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-1012 |Pol|) +(-1020 |Pol|) ((|constructor| (NIL "This package provides functions for finding the real zeros of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-1013) +(-1021) ((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats."))) NIL NIL -(-1014) +(-1022) ((|constructor| (NIL "This package provides numerical solutions of systems of polynomial equations for use in ACPLOT")) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) "\\indented{1}{realSolve(\\spad{lp},{}\\spad{lv},{}eps) = compute the list of the real} \\indented{1}{solutions of the list \\spad{lp} of polynomials with integer} \\indented{1}{coefficients with respect to the variables in \\spad{lv},{}} \\indented{1}{with precision eps.} \\blankline \\spad{X} \\spad{p1} \\spad{:=} x**2*y*z + \\spad{y*z} \\spad{X} \\spad{p2} \\spad{:=} x**2*y**2*z + \\spad{x} + \\spad{z} \\spad{X} \\spad{p3} \\spad{:=} \\spad{x**2*y**2*z**2} + \\spad{z} + 1 \\spad{X} \\spad{lp} \\spad{:=} [\\spad{p1},{} \\spad{p2},{} \\spad{p3}] \\spad{X} realSolve(\\spad{lp},{}[\\spad{x},{}\\spad{y},{}\\spad{z}],{}0.01)")) (|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) "\\indented{1}{solve(\\spad{p},{}eps) finds the real zeroes of a univariate} \\indented{1}{integer polynomial \\spad{p} with precision eps.} \\blankline \\spad{X} \\spad{p} \\spad{:=} 4*x^3 - 3*x^2 + 2*x - 4 \\spad{X} solve(\\spad{p},{}0.01)\\$REALSOLV") (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) "\\indented{1}{solve(\\spad{p},{}eps) finds the real zeroes of a} \\indented{1}{univariate rational polynomial \\spad{p} with precision eps.} \\blankline \\spad{X} \\spad{p} \\spad{:=} 4*x^3 - 3*x^2 + 2*x - 4 \\spad{X} solve(p::POLY(FRAC(INT)),{}0.01)\\$REALSOLV"))) NIL NIL -(-1015 |TheField|) +(-1023 |TheField|) ((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number"))) -((-4498 . T) (-4503 . T) (-4497 . T) (-4500 . T) (-4499 . T) ((-4507 "*") . T) (-4502 . T)) -((|HasCategory| |#1| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| (-403 (-560)) (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| (-403 (-560)) (LIST (QUOTE -1029) (QUOTE (-560)))) (-2318 (|HasCategory| (-403 (-560)) (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -1029) (QUOTE (-560)))))) -(-1016 R -1333) +((-4512 . T) (-4517 . T) (-4511 . T) (-4514 . T) (-4513 . T) ((-4521 "*") . T) (-4516 . T)) +((|HasCategory| |#1| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| (-409 (-568)) (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| (-409 (-568)) (LIST (QUOTE -1037) (QUOTE (-568)))) (-2198 (|HasCategory| (-409 (-568)) (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#1| (LIST (QUOTE -1037) (QUOTE (-568)))))) +(-1024 R -1478) ((|constructor| (NIL "This package provides an operator for the \\spad{n}-th term of a recurrence and an operator for the coefficient of \\spad{x^n} in a function specified by a functional equation.")) (|getOp| (((|BasicOperator|) |#2|) "\\spad{getOp f},{} if \\spad{f} represents the coefficient of a recurrence or ADE,{} returns the operator representing the solution")) (|getEq| ((|#2| |#2|) "\\spad{getEq f} returns the defining equation,{} if \\spad{f} represents the coefficient of an ADE or a recurrence.")) (|evalADE| ((|#2| (|BasicOperator|) (|Symbol|) |#2| |#2| |#2| (|List| |#2|)) "\\spad{evalADE(f,{} dummy,{} x,{} n,{} eq,{} values)} creates an expression that stands for the coefficient of \\spad{x^n} in the Taylor expansion of \\spad{f}(\\spad{x}),{} where \\spad{f}(\\spad{x}) is given by the functional equation \\spad{eq}. However,{} for technical reasons the variable \\spad{x} has to be replaced by a \\spad{dummy} variable \\spad{dummy} in \\spad{eq}. The argument values specifies the first few Taylor coefficients.")) (|evalRec| ((|#2| (|BasicOperator|) (|Symbol|) |#2| |#2| |#2| (|List| |#2|)) "\\spad{evalRec(u,{} dummy,{} n,{} n0,{} eq,{} values)} creates an expression that stands for \\spad{u}(\\spad{n0}),{} where \\spad{u}(\\spad{n}) is given by the equation \\spad{eq}. However,{} for technical reasons the variable \\spad{n} has to be replaced by a \\spad{dummy} variable \\spad{dummy} in \\spad{eq}. The argument values specifies the initial values of the recurrence \\spad{u}(0),{} \\spad{u}(1),{}... For the moment we don\\spad{'t} allow recursions that contain \\spad{u} inside of another operator."))) NIL -((|HasCategory| |#1| (QUOTE (-1039)))) -(-1017 -1333 L) +((|HasCategory| |#1| (QUOTE (-1047)))) +(-1025 -1478 L) ((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op,{} [f1,{}...,{}fk])} returns \\spad{[op1,{}[g1,{}...,{}gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{\\spad{fi}} must satisfy \\spad{op \\spad{fi} = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op,{} s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}."))) NIL NIL -(-1018 S) +(-1026 S) ((|constructor| (NIL "\\spadtype{Reference} is for making a changeable instance of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(n,{}m)} same as \\spad{setelt(n,{}m)}.")) (|deref| ((|#1| $) "\\spad{deref(n)} is equivalent to \\spad{elt(n)}.")) (|setelt| ((|#1| $ |#1|) "\\spad{setelt(n,{}m)} changes the value of the object \\spad{n} to \\spad{m}.")) (|elt| ((|#1| $) "\\spad{elt(n)} returns the object \\spad{n}.")) (|ref| (($ |#1|) "\\spad{ref(n)} creates a pointer (reference) to the object \\spad{n}."))) NIL -((|HasCategory| |#1| (QUOTE (-1082)))) -(-1019 R E V P) +((|HasCategory| |#1| (QUOTE (-1090)))) +(-1027 R E V P) ((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation zeroSetSplit is an implementation of a new algorithm for solving polynomial systems by means of regular chains.")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as zeroSetSplit from RegularTriangularSetCategory. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4506 . T) (-4505 . T)) -((|HasCategory| |#4| (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| |#4| (QUOTE (-1082))) (-12 (|HasCategory| |#4| (LIST (QUOTE -298) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (-1082)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#3| (QUOTE (-364)))) -(-1020 R) +((-4520 . T) (-4519 . T)) +((|HasCategory| |#4| (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| |#4| (QUOTE (-1090))) (-12 (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#3| (QUOTE (-370)))) +(-1028 R) ((|constructor| (NIL "\\spad{RepresentationPackage1} provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note that instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,{}4,{}3,{}2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices [(deltai,{}\\spad{pi1}(\\spad{i})),{}...,{}(deltai,{}pik(\\spad{i}))] if the permutations \\spad{pi1},{}...,{}pik are in list notation and are permuting {1,{}2,{}...,{}\\spad{n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices [(deltai,{}\\spad{pi1}(\\spad{i})),{}...,{}(deltai,{}pik(\\spad{i}))] (Kronecker delta) for the permutations \\spad{pi1},{}...,{}pik of {1,{}2,{}...,{}\\spad{n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix (deltai,{}\\spad{pi}(\\spad{i})) (Kronecker delta) if the permutation \\spad{pi} is in list notation and permutes {1,{}2,{}...,{}\\spad{n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix (deltai,{}\\spad{pi}(\\spad{i})) (Kronecker delta) for a permutation \\spad{pi} of {1,{}2,{}...,{}\\spad{n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...ak])} calculates the list of Kronecker products of each matrix \\spad{ai} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note that if the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix a with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...,{}ak],{}[b1,{}...,{}bk])} calculates the list of Kronecker products of the matrices \\spad{ai} and \\spad{bi} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note that if each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,{}b)} calculates the Kronecker product of the matrices a and \\spad{b}. Note that if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list \\spad{la} the irreducible,{} polynomial representation of the general linear group \\spad{GLm} which corresponds to the partition (\\spad{n},{}0,{}...,{}0) of \\spad{n}. Error: if the matrices in \\spad{la} are not square matrices. Note that this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group \\spad{Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,{}n)} applies to the \\spad{m}-by-\\spad{m} square matrix a the irreducible,{} polynomial representation of the general linear group \\spad{GLm} which corresponds to the partition (\\spad{n},{}0,{}...,{}0) of \\spad{n}. Error: if a is not a square matrix. Note that this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group \\spad{Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate \\spad{x}[\\spad{i},{}\\spad{j}] (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list \\spad{la} the irreducible,{} polynomial representation of the general linear group \\spad{GLm} which corresponds to the partition (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0) of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note that this corresponds to the symmetrization of the representation with the sign representation of the symmetric group \\spad{Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,{}n)} applies to the square matrix a the irreducible,{} polynomial representation of the general linear group \\spad{GLm},{} where \\spad{m} is the number of rows of a,{} which corresponds to the partition (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0) of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note that this corresponds to the symmetrization of the representation with the sign representation of the symmetric group \\spad{Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product."))) NIL -((|HasAttribute| |#1| (QUOTE (-4507 "*")))) -(-1021 R) +((|HasAttribute| |#1| (QUOTE (-4521 "*")))) +(-1029 R) ((|constructor| (NIL "\\spad{RepresentationPackage2} provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note that most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,{}n)} gives a canonical representative of the \\spad{n}-th one-dimensional subspace of the vector space generated by the elements of \\spad{basis},{} all from R**n. The coefficients of the representative are of shape (0,{}...,{}0,{}1,{}*,{}...,{}*),{} * in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are (q**n-1)/(\\spad{q}-1) of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that \\spad{+/}[q**i for \\spad{i} in 0..\\spad{i}-1] \\spad{<=} \\spad{n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG,{} numberOfTries)} calls meatAxe(\\spad{aG},{}\\spad{true},{}numberOfTries,{}7). Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG,{} randomElements)} calls meatAxe(\\spad{aG},{}\\spad{false},{}6,{}7),{} only using Parker\\spad{'s} fingerprints,{} if randomElemnts is \\spad{false}. If it is \\spad{true},{} it calls meatAxe(\\spad{aG},{}\\spad{true},{}25,{}7),{} only using random elements. Note that the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls meatAxe(\\spad{aG},{}\\spad{false},{}25,{}7) returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. \\spad{V} \\spad{R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,{}randomElements,{}numberOfTries,{} maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. \\spad{V} \\spad{R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most \\spad{numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most maxTests elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If \\spad{randomElements} is \\spad{false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,{}submodule)} uses a proper \\spad{submodule} of R**n to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG,{} vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. \\spad{V} \\spad{R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by vector is a proper submodule of \\spad{V} \\spad{R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note that a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls isAbsolutelyIrreducible?(\\spad{aG},{}25). Note that the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG,{} numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of meatAxe would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}numberOfTries)} calls areEquivalent?(\\spad{aG0},{}\\spad{aG1},{}\\spad{true},{}25). Note that the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,{}aG1)} calls areEquivalent?(\\spad{aG0},{}\\spad{aG1},{}\\spad{true},{}25). Note that the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}randomelements,{}numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries \\spad{numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use standardBasisOfCyclicSubmodule to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from aGi. The way to choose the singular matrices is as in meatAxe. If the two representations are equivalent,{} this routine returns the transformation matrix \\spad{TM} with \\spad{aG0}.\\spad{i} * \\spad{TM} = \\spad{TM} * \\spad{aG1}.\\spad{i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note that the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,{}v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. \\spad{V} \\spad{R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of Av achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note that in contrast to cyclicSubmodule,{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,{}v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. \\spad{V} \\spad{R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of Av as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note that in contrast to the description in \"The Meat-Axe\" and to standardBasisOfCyclicSubmodule the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,{}x)} creates a random element of the group algebra generated by \\spad{aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis \\spad{lv} assumed to be in echelon form of a subspace of R**n (\\spad{n} the length of all the vectors in \\spad{lv} with unit vectors to a basis of R**n. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note that the rows of the result correspond to the vectors of the basis."))) NIL -((|HasCategory| |#1| (QUOTE (-359))) (-12 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-364)))) (|HasCategory| |#1| (QUOTE (-296)))) -(-1022 S) +((|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-301)))) +(-1030 S) ((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i,{} r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}"))) NIL NIL -(-1023) +(-1031) ((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,{}m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals."))) NIL NIL -(-1024 S) +(-1032 S) ((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r,{} i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}"))) NIL NIL -(-1025 S) +(-1033 S) ((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used."))) NIL NIL -(-1026 -1333 |Expon| |VarSet| |FPol| |LFPol|) +(-1034 -1478 |Expon| |VarSet| |FPol| |LFPol|) ((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring"))) -(((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) +(((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) NIL -(-1027) +(-1035) ((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}"))) -((-4505 . T) (-4506 . T)) -((|HasCategory| (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (QUOTE (-1082))) (-12 (|HasCategory| (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (LIST (QUOTE -298) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3655) (QUOTE (-1153))) (LIST (QUOTE |:|) (QUOTE -2371) (QUOTE (-57)))))) (|HasCategory| (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (QUOTE (-1082)))) (|HasCategory| (-1153) (QUOTE (-834))) (|HasCategory| (-57) (QUOTE (-1082))) (-2318 (|HasCategory| (-57) (QUOTE (-1082))) (|HasCategory| (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (QUOTE (-1082)))) (-12 (|HasCategory| (-57) (LIST (QUOTE -298) (QUOTE (-57)))) (|HasCategory| (-57) (QUOTE (-1082))))) -(-1028 A S) +((-4519 . T) (-4520 . T)) +((|HasCategory| (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (QUOTE (-1090))) (-12 (|HasCategory| (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (LIST (QUOTE -303) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3649) (QUOTE (-1161))) (LIST (QUOTE |:|) (QUOTE -4083) (QUOTE (-57)))))) (|HasCategory| (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (QUOTE (-1090)))) (|HasCategory| (-1161) (QUOTE (-842))) (|HasCategory| (-57) (QUOTE (-1090))) (-2198 (|HasCategory| (-57) (QUOTE (-1090))) (|HasCategory| (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (QUOTE (-1090)))) (-12 (|HasCategory| (-57) (LIST (QUOTE -303) (QUOTE (-57)))) (|HasCategory| (-57) (QUOTE (-1090))))) +(-1036 A S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} transforms a into an element of \\%."))) NIL NIL -(-1029 S) +(-1037 S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#1| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")) (|coerce| (($ |#1|) "\\spad{coerce(a)} transforms a into an element of \\%."))) NIL NIL -(-1030 Q R) +(-1038 Q R) ((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible."))) NIL NIL -(-1031) +(-1039) ((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,{}m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,{}m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,{}g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,{}g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented"))) NIL NIL -(-1032 UP) +(-1040 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1033 R) +(-1041 R) ((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}."))) NIL NIL -(-1034 R) +(-1042 R) ((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f,{} [v1 = g1,{}...,{}vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} [v1,{}...,{}vn],{} [g1,{}...,{}gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f,{} v,{} g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-1035 K) +(-1043 K) ((|constructor| (NIL "This pacackage finds all the roots of a polynomial. If the constant field is not large enough then it returns the list of found zeros and the degree of the extension need to find the other roots missing. If the return degree is 1 then all the roots have been found. If 0 is return for the extension degree then there are an infinite number of zeros,{} that is you ask for the zeroes of 0. In the case of infinite field a list of all found zeros is kept and for each other call of a function that finds zeroes,{} a check is made on that list; this is to keep a kind of \"canonical\" representation of the elements.")) (|setFoundZeroes| (((|List| |#1|) (|List| |#1|)) "\\spad{setFoundZeroes sets} the list of foundZeroes to the given one.")) (|foundZeroes| (((|List| |#1|)) "\\spad{foundZeroes returns} the list of already found zeros by the functions distinguishedRootsOf and distinguishedCommonRootsOf.")) (|distinguishedCommonRootsOf| (((|Record| (|:| |zeros| (|List| |#1|)) (|:| |extDegree| (|Integer|))) (|List| (|SparseUnivariatePolynomial| |#1|)) |#1|) "\\spad{distinguishedCommonRootsOf returns} the common zeros of a list of polynomial. It returns a record as in distinguishedRootsOf. If 0 is returned as extension degree then there are an infinite number of common zeros (in this case,{} the polynomial 0 was given in the list of input polynomials).")) (|distinguishedRootsOf| (((|Record| (|:| |zeros| (|List| |#1|)) (|:| |extDegree| (|Integer|))) (|SparseUnivariatePolynomial| |#1|) |#1|) "\\spad{distinguishedRootsOf returns} a record consisting of a list of zeros of the input polynomial followed by the smallest extension degree needed to find all the zeros. If \\spad{K} has \\spad{PseudoAlgebraicClosureOfFiniteFieldCategory} or \\spad{PseudoAlgebraicClosureOfRationalNumberCategory} then a root is created for each irreducible factor,{} and only these roots are returns and not their conjugate."))) NIL NIL -(-1036 R |ls|) +(-1044 R |ls|) ((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?,{}info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See zeroSetSplit from RegularTriangularSet."))) -((-4506 . T) (-4505 . T)) -((|HasCategory| (-767 |#1| (-844 |#2|)) (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| (-767 |#1| (-844 |#2|)) (QUOTE (-1082))) (-12 (|HasCategory| (-767 |#1| (-844 |#2|)) (LIST (QUOTE -298) (LIST (QUOTE -767) (|devaluate| |#1|) (LIST (QUOTE -844) (|devaluate| |#2|))))) (|HasCategory| (-767 |#1| (-844 |#2|)) (QUOTE (-1082)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| (-844 |#2|) (QUOTE (-364)))) -(-1037) +((-4520 . T) (-4519 . T)) +((|HasCategory| (-775 |#1| (-852 |#2|)) (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| (-775 |#1| (-852 |#2|)) (QUOTE (-1090))) (-12 (|HasCategory| (-775 |#1| (-852 |#2|)) (LIST (QUOTE -303) (LIST (QUOTE -775) (|devaluate| |#1|) (LIST (QUOTE -852) (|devaluate| |#2|))))) (|HasCategory| (-775 |#1| (-852 |#2|)) (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| (-852 |#2|) (QUOTE (-370)))) +(-1045) ((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,{}j,{}k,{}l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,{}f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} as \\indented{4}{\\spad{l} + \\spad{u0} + \\spad{w*u1} + \\spad{w**2*u2} +...+ \\spad{w**}(\\spad{n}-1)*u-1 + w**n*m} where \\indented{4}{\\spad{s} = a..\\spad{b}} \\indented{4}{\\spad{l} = min(a,{}\\spad{b})} \\indented{4}{\\spad{m} = abs(\\spad{b}-a) + 1} \\indented{4}{w**n < \\spad{m} < \\spad{w**}(\\spad{n+1})} \\indented{4}{\\spad{u0},{}...,{}un-1\\space{2}are uniform on\\space{2}0..\\spad{w}-1} \\indented{4}{\\spad{m}\\space{12}is\\space{2}uniform on\\space{2}0..(\\spad{m} quo w**n)\\spad{-1}}"))) NIL NIL -(-1038 S) +(-1046 S) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note that \\spad{recip(0) = \"failed\"}.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} converts the integer \\spad{i} to a member of the given domain.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) NIL NIL -(-1039) +(-1047) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note that \\spad{recip(0) = \"failed\"}.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} converts the integer \\spad{i} to a member of the given domain.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) -((-4502 . T)) +((-4516 . T)) NIL -(-1040 |xx| -1333) +(-1048 |xx| -1478) ((|constructor| (NIL "This package exports rational interpolation algorithms"))) NIL NIL -(-1041 S |m| |n| R |Row| |Col|) +(-1049 S |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note that there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) NIL -((|HasCategory| |#4| (QUOTE (-296))) (|HasCategory| |#4| (QUOTE (-359))) (|HasCategory| |#4| (QUOTE (-550))) (|HasCategory| |#4| (QUOTE (-170)))) -(-1042 |m| |n| R |Row| |Col|) +((|HasCategory| |#4| (QUOTE (-301))) (|HasCategory| |#4| (QUOTE (-365))) (|HasCategory| |#4| (QUOTE (-558))) (|HasCategory| |#4| (QUOTE (-172)))) +(-1050 |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note that there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) -((-4505 . T) (-2537 . T) (-4500 . T) (-4499 . T)) +((-4519 . T) (-3973 . T) (-4514 . T) (-4513 . T)) NIL -(-1043 |m| |n| R) +(-1051 |m| |n| R) ((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|coerce| (((|Matrix| |#3|) $) "\\spad{coerce(m)} converts a matrix of type \\spadtype{RectangularMatrix} to a matrix of type \\spad{Matrix}.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}."))) -((-4505 . T) (-4500 . T) (-4499 . T)) -((|HasCategory| |#3| (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| |#3| (QUOTE (-359))) (|HasCategory| |#3| (QUOTE (-1082))) (|HasCategory| |#3| (QUOTE (-296))) (|HasCategory| |#3| (QUOTE (-550))) (|HasCategory| |#3| (QUOTE (-170))) (-2318 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-359)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -298) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-1082)))) (-2318 (-12 (|HasCategory| |#3| (LIST (QUOTE -298) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-170)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -298) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-359)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -298) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-1082)))))) -(-1044 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +((-4519 . T) (-4514 . T) (-4513 . T)) +((|HasCategory| |#3| (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1090))) (|HasCategory| |#3| (QUOTE (-301))) (|HasCategory| |#3| (QUOTE (-558))) (|HasCategory| |#3| (QUOTE (-172))) (-2198 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-1090)))) (-2198 (-12 (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-172)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-365)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-1090)))))) +(-1052 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-1045 R) +(-1053 R) ((|constructor| (NIL "The category of right modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports right multiplication by elements of the \\spad{rng}. \\blankline Axioms\\spad{\\br} \\tab{5}\\spad{ x*(a*b) = (x*a)*b }\\spad{\\br} \\tab{5}\\spad{ x*(a+b) = (x*a)+(x*b) }\\spad{\\br} \\tab{5}\\spad{ (x+y)*x = (x*a)+(y*a) }")) (* (($ $ |#1|) "\\spad{x*r} returns the right multiplication of the module element \\spad{x} by the ring element \\spad{r}."))) NIL NIL -(-1046) +(-1054) ((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline Axioms\\spad{\\br} \\tab{5}\\spad{ x*(y+z) = x*y + x*z}\\spad{\\br} \\tab{5}\\spad{ (x+y)*z = x*z + y*z } \\blankline Conditional attributes\\spad{\\br} \\tab{5}noZeroDivisors\\tab{5}\\spad{ ab = 0 => a=0 or b=0}"))) NIL NIL -(-1047 S) +(-1055 S) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) NIL NIL -(-1048) +(-1056) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) -((-4497 . T) (-4503 . T) (-4498 . T) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) +((-4511 . T) (-4517 . T) (-4512 . T) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) NIL -(-1049 |TheField| |ThePolDom|) +(-1057 |TheField| |ThePolDom|) ((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval"))) NIL NIL -(-1050) +(-1058) ((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting integers to roman numerals.")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|convert| (($ (|Symbol|)) "\\spad{convert(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-4493 . T) (-4497 . T) (-4492 . T) (-4503 . T) (-4504 . T) (-4498 . T) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) +((-4507 . T) (-4511 . T) (-4506 . T) (-4517 . T) (-4518 . T) (-4512 . T) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) NIL -(-1051) +(-1059) ((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,{}routineName,{}ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,{}s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,{}s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,{}s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,{}s,{}newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,{}s,{}newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,{}y)} merges two tables \\spad{x} and \\spad{y}"))) -((-4505 . T) (-4506 . T)) -((|HasCategory| (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (QUOTE (-1082))) (-12 (|HasCategory| (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (LIST (QUOTE -298) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3655) (QUOTE (-1153))) (LIST (QUOTE |:|) (QUOTE -2371) (QUOTE (-57)))))) (|HasCategory| (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (QUOTE (-1082)))) (|HasCategory| (-1153) (QUOTE (-834))) (|HasCategory| (-57) (QUOTE (-1082))) (-2318 (|HasCategory| (-57) (QUOTE (-1082))) (|HasCategory| (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (QUOTE (-1082)))) (-12 (|HasCategory| (-57) (LIST (QUOTE -298) (QUOTE (-57)))) (|HasCategory| (-57) (QUOTE (-1082))))) -(-1052 S R E V) +((-4519 . T) (-4520 . T)) +((|HasCategory| (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (QUOTE (-1090))) (-12 (|HasCategory| (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (LIST (QUOTE -303) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3649) (QUOTE (-1161))) (LIST (QUOTE |:|) (QUOTE -4083) (QUOTE (-57)))))) (|HasCategory| (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (QUOTE (-1090)))) (|HasCategory| (-1161) (QUOTE (-842))) (|HasCategory| (-57) (QUOTE (-1090))) (-2198 (|HasCategory| (-57) (QUOTE (-1090))) (|HasCategory| (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (QUOTE (-1090)))) (-12 (|HasCategory| (-57) (LIST (QUOTE -303) (QUOTE (-57)))) (|HasCategory| (-57) (QUOTE (-1090))))) +(-1060 S R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{\\spad{nextsubResultant2}(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\spad{next_sousResultant2} from PseudoRemainderSequence from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{\\spad{LazardQuotient2}(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd2}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd1}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial \\indented{1}{in its main variable.}")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) NIL -((|HasCategory| |#2| (QUOTE (-447))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-542))) (|HasCategory| |#2| (LIST (QUOTE -43) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -985) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#4| (LIST (QUOTE -601) (QUOTE (-1153))))) -(-1053 R E V) +((|HasCategory| |#2| (QUOTE (-453))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (LIST (QUOTE -43) (QUOTE (-568)))) (|HasCategory| |#2| (LIST (QUOTE -993) (QUOTE (-568)))) (|HasCategory| |#2| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#4| (LIST (QUOTE -609) (QUOTE (-1161))))) +(-1061 R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{\\spad{nextsubResultant2}(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\spad{next_sousResultant2} from PseudoRemainderSequence from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{\\spad{LazardQuotient2}(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd2}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd1}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial \\indented{1}{in its main variable.}")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) -(((-4507 "*") |has| |#1| (-170)) (-4498 |has| |#1| (-550)) (-4503 |has| |#1| (-6 -4503)) (-4500 . T) (-4499 . T) (-4502 . T)) +(((-4521 "*") |has| |#1| (-172)) (-4512 |has| |#1| (-558)) (-4517 |has| |#1| (-6 -4517)) (-4514 . T) (-4513 . T) (-4516 . T)) NIL -(-1054 S |TheField| |ThePols|) +(-1062 S |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-1055 |TheField| |ThePols|) +(-1063 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#2|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#2| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#2| "failed") |#2| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#2| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#2| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#2| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#2| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-1056 R E V P TS) +(-1064 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}) and \\axiomType{RSETGCD}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}). The same way it does not care about the way univariate polynomial \\spad{gcd} (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these \\spad{gcd} need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiom{\\spad{TS}}. Thus,{} the operations of this package are not documented."))) NIL NIL -(-1057 S R E V P) +(-1065 S R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the RegularTriangularSet constructor for more explanations about decompositions by means of regular triangular sets.")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#5| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same main variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is select from TriangularSetCategory(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is collectUnder from TriangularSetCategory(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) NIL NIL -(-1058 R E V P) +(-1066 R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the RegularTriangularSet constructor for more explanations about decompositions by means of regular triangular sets.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#4| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same main variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is select from TriangularSetCategory(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is collectUnder from TriangularSetCategory(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) -((-4506 . T) (-4505 . T) (-2537 . T)) +((-4520 . T) (-4519 . T) (-3973 . T)) NIL -(-1059 R E V P TS) +(-1067 R E V P TS) ((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as squareFreePart from RegularTriangularSetCategory.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as invertibleSet from RegularTriangularSetCategory.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as invertible? from RegularTriangularSetCategory.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as invertible? from RegularTriangularSetCategory.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as lastSubResultant from RegularTriangularSetCategory.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1060 |f|) +(-1068 |f|) ((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-1061 |Base| R -1333) +(-1069 |Base| R -1478) ((|constructor| (NIL "Rules for the pattern matcher")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r,{} [a1,{}...,{}an],{} f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,{}...,{}an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f,{} g,{} [f1,{}...,{}fn])} creates the rewrite rule \\spad{f == eval(eval(g,{} g is f),{} [f1,{}...,{}fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f,{} g)} creates the rewrite rule: \\spad{f == eval(g,{} g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}."))) NIL NIL -(-1062 |Base| R -1333) +(-1070 |Base| R -1478) ((|constructor| (NIL "Sets of rules for the pattern matcher. A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,{}...,{}rn])} creates the rule set \\spad{{r1,{}...,{}rn}}."))) NIL NIL -(-1063 R |ls|) +(-1071 R |ls|) ((|constructor| (NIL "A package for computing the rational univariate representation of a zero-dimensional algebraic variety given by a regular triangular set. This package is essentially an interface for the \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,{}univ?,{}check?)} returns the same as \\spad{rur(lp,{}true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,{}true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,{}univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,{}univ?)} returns a list of items \\spad{[u,{}lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,{}lc]} in \\spad{rur(lp,{}univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor."))) NIL NIL -(-1064 UP SAE UPA) +(-1072 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1065 R UP M) +(-1073 R UP M) ((|constructor| (NIL "Algebraic extension of a ring by a single polynomial. Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself."))) -((-4498 |has| |#1| (-359)) (-4503 |has| |#1| (-359)) (-4497 |has| |#1| (-359)) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-359))) (-2318 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-364))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1029) (QUOTE (-560)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#1| (QUOTE (-359)))) (-2318 (-12 (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#1| (QUOTE (-344))))) (-2318 (|HasCategory| |#1| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| |#1| (QUOTE (-221))) (|HasCategory| |#1| (QUOTE (-359)))) (-2318 (-12 (|HasCategory| |#1| (QUOTE (-221))) (|HasCategory| |#1| (QUOTE (-359)))) (|HasCategory| |#1| (QUOTE (-344))))) -(-1066 UP SAE UPA) +((-4512 |has| |#1| (-365)) (-4517 |has| |#1| (-365)) (-4511 |has| |#1| (-365)) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) +((|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-150))) (|HasCategory| |#1| (QUOTE (-350))) (|HasCategory| |#1| (QUOTE (-365))) (-2198 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-350)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#1| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (LIST (QUOTE -1037) (QUOTE (-568)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#1| (QUOTE (-365)))) (-2198 (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#1| (QUOTE (-350))))) (-2198 (|HasCategory| |#1| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| |#1| (QUOTE (-225))) (|HasCategory| |#1| (QUOTE (-365)))) (-2198 (-12 (|HasCategory| |#1| (QUOTE (-225))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-350))))) +(-1074 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1067) +(-1075) ((|constructor| (NIL "This trivial domain lets us build Univariate Polynomials in an anonymous variable"))) NIL NIL -(-1068 S) +(-1076 S) ((|constructor| (NIL "A sorted cache of a cachable set \\spad{S} is a dynamic structure that keeps the elements of \\spad{S} sorted and assigns an integer to each element of \\spad{S} once it is in the cache. This way,{} equality and ordering on \\spad{S} are tested directly on the integers associated with the elements of \\spad{S},{} once they have been entered in the cache.")) (|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) "\\spad{enterInCache(x,{} f)} enters \\spad{x} in the cache,{} calling \\spad{f(x,{} y)} to determine whether \\spad{x < y (f(x,{}y) < 0),{} x = y (f(x,{}y) = 0)},{} or \\spad{x > y (f(x,{}y) > 0)}. It returns \\spad{x} with an integer associated with it.") ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) "\\spad{enterInCache(x,{} f)} enters \\spad{x} in the cache,{} calling \\spad{f(y)} to determine whether \\spad{x} is equal to \\spad{y}. It returns \\spad{x} with an integer associated with it.")) (|cache| (((|List| |#1|)) "\\spad{cache()} returns the current cache as a list.")) (|clearCache| (((|Void|)) "\\spad{clearCache()} empties the cache."))) NIL NIL -(-1069 R) +(-1077 R) ((|constructor| (NIL "StructuralConstantsPackage provides functions creating structural constants from a multiplication tables or a basis of a matrix algebra and other useful functions in this context.")) (|coordinates| (((|Vector| |#1|) (|Matrix| |#1|) (|List| (|Matrix| |#1|))) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{structuralConstants(basis)} takes the \\spad{basis} of a matrix algebra,{} \\spadignore{e.g.} the result of \\spadfun{basisOfCentroid} and calculates the structural constants. Note,{} that the it is not checked,{} whether \\spad{basis} really is a \\spad{basis} of a matrix algebra.") (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|List| (|Symbol|)) (|Matrix| (|Polynomial| |#1|))) "\\spad{structuralConstants(ls,{}mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}") (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{structuralConstants(ls,{}mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}"))) NIL NIL -(-1070 R) +(-1078 R) ((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential."))) -(((-4507 "*") |has| |#1| (-170)) (-4498 |has| |#1| (-550)) (-4503 |has| |#1| (-6 -4503)) (-4500 . T) (-4499 . T) (-4502 . T)) -((|HasCategory| |#1| (QUOTE (-896))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-170))) (-2318 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| (-1071 (-1153)) (LIST (QUOTE -873) (QUOTE (-375)))) (|HasCategory| |#1| (LIST (QUOTE -873) (QUOTE (-375))))) (-12 (|HasCategory| (-1071 (-1153)) (LIST (QUOTE -873) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -873) (QUOTE (-560))))) (-12 (|HasCategory| (-1071 (-1153)) (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-375))))) (|HasCategory| |#1| (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-375)))))) (-12 (|HasCategory| (-1071 (-1153)) (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-560)))))) (-12 (|HasCategory| (-1071 (-1153)) (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-533))))) (|HasCategory| |#1| (QUOTE (-834))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-221))) (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#1| (QUOTE (-359))) (-2318 (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560)))))) (|HasAttribute| |#1| (QUOTE -4503)) (|HasCategory| |#1| (QUOTE (-447))) (-2318 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-447))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-896)))) (-2318 (|HasCategory| |#1| (QUOTE (-447))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-896)))) (-2318 (|HasCategory| |#1| (QUOTE (-447))) (|HasCategory| |#1| (QUOTE (-896)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-896)))) (-2318 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-896)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-1071 S) +(((-4521 "*") |has| |#1| (-172)) (-4512 |has| |#1| (-558)) (-4517 |has| |#1| (-6 -4517)) (-4514 . T) (-4513 . T) (-4516 . T)) +((|HasCategory| |#1| (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2198 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| (-1079 (-1161)) (LIST (QUOTE -881) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-381))))) (-12 (|HasCategory| (-1079 (-1161)) (LIST (QUOTE -881) (QUOTE (-568)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-568))))) (-12 (|HasCategory| (-1079 (-1161)) (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-381)))))) (-12 (|HasCategory| (-1079 (-1161)) (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-568))))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-568)))))) (-12 (|HasCategory| (-1079 (-1161)) (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-541))))) (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-150))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#1| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (QUOTE (-225))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#1| (QUOTE (-365))) (-2198 (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568)))))) (|HasAttribute| |#1| (QUOTE -4517)) (|HasCategory| |#1| (QUOTE (-453))) (-2198 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-904)))) (-2198 (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-904)))) (-2198 (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-904)))) (-12 (|HasCategory| $ (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-904)))) (-2198 (-12 (|HasCategory| $ (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-148))))) +(-1079 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u}))."))) NIL NIL -(-1072 R S) +(-1080 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l),{} f(l+k),{}...,{} f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}l..h)} returns a new segment \\spad{f(l)..f(h)}."))) NIL -((|HasCategory| |#1| (QUOTE (-832)))) -(-1073 R S) +((|HasCategory| |#1| (QUOTE (-840)))) +(-1081 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,{}v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}."))) NIL NIL -(-1074 S) +(-1082 S) ((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions.")) (|segment| (((|Segment| |#1|) $) "\\spad{segment(segb)} returns the segment from the right hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{segment(segb)} returns \\spad{a..b}.")) (|variable| (((|Symbol|) $) "\\spad{variable(segb)} returns the variable from the left hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{variable(segb)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) (|Segment| |#1|)) "\\spad{equation(v,{}a..b)} creates a segment binding value with variable \\spad{v} and segment \\spad{a..b}. Note that the interpreter parses \\spad{v=a..b} to this form."))) NIL -((|HasCategory| |#1| (QUOTE (-1082)))) -(-1075 S) +((|HasCategory| |#1| (QUOTE (-1090)))) +(-1083 S) ((|constructor| (NIL "This category provides operations on ranges,{} or segments as they are called.")) (|convert| (($ |#1|) "\\spad{convert(i)} creates the segment \\spad{i..i}.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,{}j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note that \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note that \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note that \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{\\spad{hi}(s)} returns the second endpoint of \\spad{s}. Note that \\spad{\\spad{hi}(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note that \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints."))) -((-2537 . T)) +((-3973 . T)) NIL -(-1076 S) +(-1084 S) ((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}."))) NIL -((|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-1082)))) -(-1077 S L) +((|HasCategory| |#1| (QUOTE (-840))) (|HasCategory| |#1| (QUOTE (-1090)))) +(-1085 S L) ((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l),{} f(l+k),{} ...,{} f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l,{} l+k,{} ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,{}3,{}5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l,{} l+k,{} ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4,{} 7..9] = [1,{}2,{}3,{}4,{}7,{}8,{}9]}."))) -((-2537 . T)) +((-3973 . T)) NIL -(-1078 A S) +(-1086 A S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note that equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note that \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = \\indented{1}{union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}}")) (|difference| (($ $ |#2|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note that \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note that equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note that equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (< (((|Boolean|) $ $) "\\spad{s < t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) NIL NIL -(-1079 S) +(-1087 S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note that equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note that \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = \\indented{1}{union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}}")) (|difference| (($ $ |#1|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note that \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note that equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note that equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (< (((|Boolean|) $ $) "\\spad{s < t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) -((-4495 . T) (-2537 . T)) +((-4509 . T) (-3973 . T)) NIL -(-1080) +(-1088) ((|constructor| (NIL "This is part of the PAFF package,{} related to projective space."))) NIL NIL -(-1081 S) +(-1089 S) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes\\spad{\\br} \\tab{5}canonical\\tab{5}data structure equality is the same as \\spadop{=}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1082) +(-1090) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes\\spad{\\br} \\tab{5}canonical\\tab{5}data structure equality is the same as \\spadop{=}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1083 |m| |n|) +(-1091 |m| |n|) ((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,{}k,{}p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p,{} s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,{}...,{}a_m])} returns the set {\\spad{a_1},{}...,{}a_m}. Error if {\\spad{a_1},{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ "failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,{}k,{}p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ "failed") $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,{}k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more."))) NIL NIL -(-1084 S) +(-1092 S) ((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,{}b,{}c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of\\spad{\\br} \\tab{5}\\spad{s = t} is \\spad{O(min(n,{}m))}\\spad{\\br} \\tab{5}\\spad{s < t} is \\spad{O(max(n,{}m))}\\spad{\\br} \\tab{5}\\spad{union(s,{}t)},{} \\spad{intersect(s,{}t)},{} \\spad{minus(s,{}t)},{}\\spad{\\br} \\tab{10 \\spad{symmetricDifference(s,{}t)} is \\spad{O(max(n,{}m))}\\spad{\\br} \\tab{5}\\spad{member(x,{}t)} is \\spad{O(n log n)}\\spad{\\br} \\tab{5}\\spad{insert(x,{}t)} and \\spad{remove(x,{}t)} is \\spad{O(n)}"))) -((-4505 . T) (-4495 . T) (-4506 . T)) -((|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-364))) (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (QUOTE (-834))) (-12 (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1082)))) (-2318 (-12 (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-364)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1082)))))) -(-1085 |Str| |Sym| |Int| |Flt| |Expr|) +((-4519 . T) (-4509 . T) (-4520 . T)) +((|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (QUOTE (-842))) (-12 (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1090)))) (-2198 (-12 (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1090)))))) +(-1093 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,{}...,{}an),{} [i1,{}...,{}im])} returns \\spad{(a_i1,{}...,{}a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,{}...,{}an),{} i)} returns \\spad{\\spad{ai}}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,{}...,{}an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,{}...,{}an))} returns \\spad{(a2,{}...,{}an)}.")) (|car| (($ $) "\\spad{car((a1,{}...,{}an))} returns \\spad{a1}.")) (|convert| (($ |#5|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#4|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#3|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#2|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#1|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns an \\spad{S}-expression \\spad{(a1,{}...,{}an)}.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,{}...,{}an))} returns the list [\\spad{a1},{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s,{} t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp."))) NIL NIL -(-1086) +(-1094) ((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values."))) NIL NIL -(-1087 |Str| |Sym| |Int| |Flt| |Expr|) +(-1095 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This domain allows the manipulation of Lisp values over arbitrary atomic types."))) NIL NIL -(-1088 R FS) +(-1096 R FS) ((|constructor| (NIL "\\axiomType{SimpleFortranProgram(\\spad{f},{}type)} provides a simple model of some FORTRAN subprograms,{} making it possible to coerce objects of various domains into a FORTRAN subprogram called \\axiom{\\spad{f}}. These can then be translated into legal FORTRAN code.")) (|fortran| (($ (|Symbol|) (|FortranScalarType|) |#2|) "\\spad{fortran(fname,{}ftype,{}body)} builds an object of type \\axiomType{FortranProgramCategory}. The three arguments specify the name,{} the type and the \\spad{body} of the program."))) NIL NIL -(-1089 R E V P TS) +(-1097 R E V P TS) ((|constructor| (NIL "A internal package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets.")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(\\spad{lpwt1},{}\\spad{lpwt2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff internalSubQuasiComponent?(\\spad{ts},{}us) from QuasiComponentPackage returns \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. infRittWu? from RecursivePolynomialCategory.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} supDimElseRittWu from QuasiComponentPackage.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1090 R E V P TS) +(-1098 R E V P TS) ((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}."))) NIL NIL -(-1091 R E V P) +(-1099 R E V P) ((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and differentiate(\\spad{p},{}mvar(\\spad{p})) \\spad{w}.\\spad{r}.\\spad{t}. collectUnder(\\spad{ts},{}mvar(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions."))) -((-4506 . T) (-4505 . T) (-2537 . T)) +((-4520 . T) (-4519 . T) (-3973 . T)) NIL -(-1092) +(-1100) ((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,{}m,{}k)} computes the \\spad{k}-th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using subSet: [3,{}0,{}0] < [0,{}3,{}0] < [0,{}0,{}3] < [2,{}1,{}0] < [2,{}0,{}1] < [0,{}2,{}1] < [1,{}2,{}0] < [1,{}0,{}2] < [0,{}1,{}2] < [1,{}1,{}1]. Note that counting of subtrees is done by numberOfImproperPartitionsInternal.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,{}m,{}k)} computes the \\spad{k}-th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: [0,{}0,{}3] < [0,{}1,{}2] < [0,{}2,{}1] < [0,{}3,{}0] < [1,{}0,{}2] < [1,{}1,{}1] < [1,{}2,{}0] < [2,{}0,{}1] < [2,{}1,{}0] < [3,{}0,{}0]. Error: if \\spad{k} is negative or too big. Note that counting of subtrees is done by numberOfImproperPartitions")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,{}m,{}k)} calculates the \\spad{k}-th \\spad{m}-subset of the set 0,{}1,{}...,{}(\\spad{n}-1) in the lexicographic order considered as a decreasing map from 0,{}...,{}(\\spad{m}-1) into 0,{}...,{}(\\spad{n}-1). See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not (0 \\spad{<=} \\spad{m} \\spad{<=} \\spad{n} and 0 < = \\spad{k} < (\\spad{n} choose \\spad{m})).")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,{}m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: numberOfImproperPartitions (3,{}3) is 10,{} since [0,{}0,{}3],{} [0,{}1,{}2],{} [0,{}2,{}1],{} [0,{}3,{}0],{} [1,{}0,{}2],{} [1,{}1,{}1],{} [1,{}2,{}0],{} [2,{}0,{}1],{} [2,{}1,{}0],{} [3,{}0,{}0] are the possibilities. Note that this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of \\spad{number} which follows \\spad{part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of \\spad{gamma}. the first partition is achieved by part=[]. Also,{} [] indicates that \\spad{part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of \\spad{number} which follows \\spad{part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of \\spad{gamma}. The first partition is achieved by part=[]. Also,{} [] indicates that \\spad{part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,{}lattP,{}constructNotFirst)} generates the lattice permutation according to the proper partition \\spad{lambda} succeeding the lattice permutation \\spad{lattP} in lexicographical order as long as \\spad{constructNotFirst} is \\spad{true}. If \\spad{constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result nil indicates that \\spad{lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,{}beta,{}C)} generates the next Coleman matrix of column sums \\spad{alpha} and row sums \\spad{beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by C=new(1,{}1,{}0). Also,{} new(1,{}1,{}0) indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,{}gitter)} computes for a given lattice permutation \\spad{gitter} and for an improper partition \\spad{lambda} the corresponding standard tableau of shape \\spad{lambda}. Notes: see listYoungTableaus. The entries are from 0,{}...,{}\\spad{n}-1.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{listYoungTableaus(lambda)} where \\spad{lambda} is a proper partition generates the list of all standard tableaus of shape \\spad{lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of \\spad{lambda}. Notes: the functions nextLatticePermutation and makeYoungTableau are used. The entries are from 0,{}...,{}\\spad{n}-1.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,{}beta,{}C)}: there is a bijection from the set of matrices having nonnegative entries and row sums \\spad{alpha},{} column sums \\spad{beta} to the set of Salpha - Sbeta double cosets of the symmetric group \\spad{Sn}. (Salpha is the Young subgroup corresponding to the improper partition \\spad{alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest \\spad{pi} in the corresponding double coset. Note that the resulting permutation \\spad{pi} of {1,{}2,{}...,{}\\spad{n}} is given in list form. Notes: the inverse of this map is coleman. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,{}beta,{}\\spad{pi})}: there is a bijection from the set of matrices having nonnegative entries and row sums \\spad{alpha},{} column sums \\spad{beta} to the set of Salpha - Sbeta double cosets of the symmetric group \\spad{Sn}. (Salpha is the Young subgroup corresponding to the improper partition \\spad{alpha}). For a representing element \\spad{pi} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to \\spad{alpha},{} \\spad{beta},{} \\spad{pi}. Note that The permutation \\spad{pi} of {1,{}2,{}...,{}\\spad{n}} has to be given in list form. Note that the inverse of this map is inverseColeman (if \\spad{pi} is the lexicographical smallest permutation in the coset). For details see James/Kerber."))) NIL NIL -(-1093 S) +(-1101 S) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline Axioms\\spad{\\br} \\tab{5}\\spad{associative(\"*\":(\\%,{}\\%)->\\%)}\\tab{5}\\spad{ (x*y)*z = x*(y*z)} \\blankline Conditional attributes\\spad{\\br} \\tab{5}\\spad{commutative(\"*\":(\\%,{}\\%)->\\%)}\\tab{5}\\spad{ x*y = y*x }")) (^ (($ $ (|PositiveInteger|)) "\\spad{x^n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1094) +(-1102) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline Axioms\\spad{\\br} \\tab{5}\\spad{associative(\"*\":(\\%,{}\\%)->\\%)}\\tab{5}\\spad{ (x*y)*z = x*(y*z)} \\blankline Conditional attributes\\spad{\\br} \\tab{5}\\spad{commutative(\"*\":(\\%,{}\\%)->\\%)}\\tab{5}\\spad{ x*y = y*x }")) (^ (($ $ (|PositiveInteger|)) "\\spad{x^n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1095 |dimtot| |dim1| S) +(-1103 |dimtot| |dim1| S) ((|constructor| (NIL "This type represents the finite direct or cartesian product of an underlying ordered component type. The vectors are ordered as if they were split into two blocks. The \\spad{dim1} parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4499 |has| |#3| (-1039)) (-4500 |has| |#3| (-1039)) (-4502 |has| |#3| (-6 -4502)) ((-4507 "*") |has| |#3| (-170)) (-4505 . T)) -((|HasCategory| |#3| (QUOTE (-1082))) (|HasCategory| |#3| (QUOTE (-359))) (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (QUOTE (-780))) (|HasCategory| |#3| (QUOTE (-832))) (-2318 (|HasCategory| |#3| (QUOTE (-780))) (|HasCategory| |#3| (QUOTE (-832)))) (|HasCategory| |#3| (QUOTE (-708))) (|HasCategory| |#3| (QUOTE (-170))) (-2318 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-359))) (|HasCategory| |#3| (QUOTE (-1039)))) (-2318 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-359)))) (-2318 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-1039)))) (|HasCategory| |#3| (QUOTE (-364))) (|HasCategory| |#3| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#3| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#3| (QUOTE (-221))) (-2318 (|HasCategory| |#3| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#3| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-221))) (|HasCategory| |#3| (QUOTE (-359))) (|HasCategory| |#3| (QUOTE (-1039)))) (-2318 (|HasCategory| |#3| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#3| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-221))) (|HasCategory| |#3| (QUOTE (-1039)))) (|HasCategory| (-560) (QUOTE (-834))) (-12 (|HasCategory| |#3| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-1039)))) (-12 (|HasCategory| |#3| (QUOTE (-221))) (|HasCategory| |#3| (QUOTE (-1039)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#3| (QUOTE (-1039)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-1082)))) (-2318 (-12 (|HasCategory| |#3| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-1082)))) (|HasCategory| |#3| (QUOTE (-1039)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1082)))) (|HasAttribute| |#3| (QUOTE -4502)) (|HasCategory| |#3| (QUOTE (-137))) (-2318 (|HasCategory| |#3| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#3| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#3| (QUOTE (-137))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-221))) (|HasCategory| |#3| (QUOTE (-359))) (|HasCategory| |#3| (QUOTE (-1039)))) (|HasCategory| |#3| (QUOTE (-25))) (-2318 (|HasCategory| |#3| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#3| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-137))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-221))) (|HasCategory| |#3| (QUOTE (-359))) (|HasCategory| |#3| (QUOTE (-364))) (|HasCategory| |#3| (QUOTE (-708))) (|HasCategory| |#3| (QUOTE (-780))) (|HasCategory| |#3| (QUOTE (-832))) (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (QUOTE (-1082)))) (-2318 (|HasCategory| |#3| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#3| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-137))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-221))) (|HasCategory| |#3| (QUOTE (-359))) (|HasCategory| |#3| (QUOTE (-1039)))) (-2318 (-12 (|HasCategory| |#3| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#3| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#3| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-137)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-170)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-221)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-359)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-364)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-708)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-780)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-832)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1039)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1082))))) (-2318 (-12 (|HasCategory| |#3| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#3| (LIST (QUOTE -1029) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#3| (LIST (QUOTE -1029) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-137)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-170)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-221)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-359)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-364)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-708)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-780)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-832)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-1039)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-1082))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -298) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-1082)))) (-2318 (-12 (|HasCategory| |#3| (LIST (QUOTE -298) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -622) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -298) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -887) (QUOTE (-1153))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -298) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -298) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-137)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -298) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-170)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -298) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-221)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -298) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-359)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -298) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-364)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -298) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-708)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -298) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-780)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -298) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-832)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -298) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-1039)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -298) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-1082)))))) -(-1096 R |x|) +((-4513 |has| |#3| (-1047)) (-4514 |has| |#3| (-1047)) (-4516 |has| |#3| (-6 -4516)) ((-4521 "*") |has| |#3| (-172)) (-4519 . T)) +((|HasCategory| |#3| (QUOTE (-1090))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1047))) (|HasCategory| |#3| (QUOTE (-788))) (|HasCategory| |#3| (QUOTE (-840))) (-2198 (|HasCategory| |#3| (QUOTE (-788))) (|HasCategory| |#3| (QUOTE (-840)))) (|HasCategory| |#3| (QUOTE (-716))) (|HasCategory| |#3| (QUOTE (-172))) (-2198 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1047)))) (-2198 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365)))) (-2198 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-1047)))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#3| (QUOTE (-225))) (-2198 (|HasCategory| |#3| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-225))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1047)))) (-2198 (|HasCategory| |#3| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-225))) (|HasCategory| |#3| (QUOTE (-1047)))) (|HasCategory| (-568) (QUOTE (-842))) (-12 (|HasCategory| |#3| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#3| (QUOTE (-1047)))) (-12 (|HasCategory| |#3| (QUOTE (-225))) (|HasCategory| |#3| (QUOTE (-1047)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#3| (QUOTE (-1047)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#3| (QUOTE (-1090)))) (-2198 (-12 (|HasCategory| |#3| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#3| (QUOTE (-1090)))) (|HasCategory| |#3| (QUOTE (-1047)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#3| (QUOTE (-1090)))) (|HasAttribute| |#3| (QUOTE -4516)) (|HasCategory| |#3| (QUOTE (-137))) (-2198 (|HasCategory| |#3| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#3| (QUOTE (-137))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-225))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1047)))) (|HasCategory| |#3| (QUOTE (-25))) (-2198 (|HasCategory| |#3| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-137))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-225))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (QUOTE (-716))) (|HasCategory| |#3| (QUOTE (-788))) (|HasCategory| |#3| (QUOTE (-840))) (|HasCategory| |#3| (QUOTE (-1047))) (|HasCategory| |#3| (QUOTE (-1090)))) (-2198 (|HasCategory| |#3| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-137))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-225))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1047)))) (-2198 (-12 (|HasCategory| |#3| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#3| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#3| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#3| (QUOTE (-137)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#3| (QUOTE (-172)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#3| (QUOTE (-225)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#3| (QUOTE (-365)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#3| (QUOTE (-370)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#3| (QUOTE (-716)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#3| (QUOTE (-788)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#3| (QUOTE (-840)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#3| (QUOTE (-1047)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#3| (QUOTE (-1090))))) (-2198 (-12 (|HasCategory| |#3| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#3| (LIST (QUOTE -1037) (QUOTE (-568))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#3| (LIST (QUOTE -1037) (QUOTE (-568))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#3| (QUOTE (-137)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#3| (QUOTE (-172)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#3| (QUOTE (-225)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#3| (QUOTE (-365)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#3| (QUOTE (-370)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#3| (QUOTE (-716)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#3| (QUOTE (-788)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#3| (QUOTE (-840)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#3| (QUOTE (-1047)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#3| (QUOTE (-1090))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-1090)))) (-2198 (-12 (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -630) (QUOTE (-568))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-1161))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-137)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-172)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-225)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-365)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-370)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-716)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-788)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-840)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-1047)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-1090)))))) +(-1104 R |x|) ((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with \\spad{p2>0} and \\spad{c_}{-} is the number of real roots of \\spad{p1} with \\spad{p2<0}. If \\spad{p2=1} what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with \\spad{p2>0} and \\spad{c_}{-} is the number of real roots of \\spad{p1} with \\spad{p2<0}. If \\spad{p2=1} what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,{}p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,{}p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,{}p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}"))) NIL -((|HasCategory| |#1| (QUOTE (-447)))) -(-1097 R -1333) +((|HasCategory| |#1| (QUOTE (-453)))) +(-1105 R -1478) ((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1098 R) +(-1106 R) ((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1099) +(-1107) ((|constructor| (NIL "Package to allow simplify to be called on AlgebraicNumbers by converting to EXPR(INT)")) (|simplify| (((|Expression| (|Integer|)) (|AlgebraicNumber|)) "\\spad{simplify(an)} applies simplifications to \\spad{an}"))) NIL NIL -(-1100) +(-1108) ((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical or of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical and of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical not of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,{}m)} returns the bit-by-bit logical xor of the single integers \\spad{n} and \\spad{m}.")) (|\\/| (($ $ $) "\\spad{n} \\spad{\\/} \\spad{m} returns the bit-by-bit logical or of the single integers \\spad{n} and \\spad{m}.")) (|/\\| (($ $ $) "\\spad{n} \\spad{/\\} \\spad{m} returns the bit-by-bit logical and of the single integers \\spad{n} and \\spad{m}.")) (~ (($ $) "\\spad{~ n} returns the bit-by-bit logical not of the single integer \\spad{n}.")) (|not| (($ $) "\\spad{not(n)} returns the bit-by-bit logical not of the single integer \\spad{n}.")) (|min| (($) "\\spad{min()} returns the smallest single integer.")) (|max| (($) "\\spad{max()} returns the largest single integer.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality."))) -((-4493 . T) (-4497 . T) (-4492 . T) (-4503 . T) (-4504 . T) (-4498 . T) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) +((-4507 . T) (-4511 . T) (-4506 . T) (-4517 . T) (-4518 . T) (-4512 . T) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) NIL -(-1101 S) +(-1109 S) ((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\indented{1}{depth(\\spad{s}) returns the number of elements of stack \\spad{s}.} \\indented{1}{Note that \\axiom{depth(\\spad{s}) = \\spad{#s}}.} \\blankline \\spad{X} a:Stack INT:= stack [1,{}2,{}3,{}4,{}5] \\spad{X} depth a")) (|top| ((|#1| $) "\\indented{1}{top(\\spad{s}) returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged.} \\indented{1}{Note that Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.} \\blankline \\spad{X} a:Stack INT:= stack [1,{}2,{}3,{}4,{}5] \\spad{X} top a")) (|pop!| ((|#1| $) "\\indented{1}{pop!(\\spad{s}) returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}.} \\indented{1}{Note that Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}.} \\indented{1}{Error: if \\spad{s} is empty.} \\blankline \\spad{X} a:Stack INT:= stack [1,{}2,{}3,{}4,{}5] \\spad{X} pop! a \\spad{X} a")) (|push!| ((|#1| |#1| $) "\\indented{1}{push!(\\spad{x},{}\\spad{s}) pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s}} \\indented{1}{so as to have a new first (top) element \\spad{x}.} \\indented{1}{Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}.} \\blankline \\spad{X} a:Stack INT:= stack [1,{}2,{}3,{}4,{}5] \\spad{X} push! a \\spad{X} a"))) -((-4505 . T) (-4506 . T) (-2537 . T)) +((-4519 . T) (-4520 . T) (-3973 . T)) NIL -(-1102 S |ndim| R |Row| |Col|) +(-1110 S |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) NIL -((|HasCategory| |#3| (QUOTE (-359))) (|HasAttribute| |#3| (QUOTE (-4507 "*"))) (|HasCategory| |#3| (QUOTE (-170)))) -(-1103 |ndim| R |Row| |Col|) +((|HasCategory| |#3| (QUOTE (-365))) (|HasAttribute| |#3| (QUOTE (-4521 "*"))) (|HasCategory| |#3| (QUOTE (-172)))) +(-1111 |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) -((-2537 . T) (-4505 . T) (-4499 . T) (-4500 . T) (-4502 . T)) +((-3973 . T) (-4519 . T) (-4513 . T) (-4514 . T) (-4516 . T)) NIL -(-1104 R |Row| |Col| M) +(-1112 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,{}B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}."))) NIL NIL -(-1105 R |VarSet|) +(-1113 R |VarSet|) ((|constructor| (NIL "This type is the basic representation of sparse recursive multivariate polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute."))) -(((-4507 "*") |has| |#1| (-170)) (-4498 |has| |#1| (-550)) (-4503 |has| |#1| (-6 -4503)) (-4500 . T) (-4499 . T) (-4502 . T)) -((|HasCategory| |#1| (QUOTE (-896))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-170))) (-2318 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -873) (QUOTE (-375)))) (|HasCategory| |#2| (LIST (QUOTE -873) (QUOTE (-375))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -873) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -873) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-375))))) (|HasCategory| |#2| (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-375)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-533))))) (|HasCategory| |#1| (QUOTE (-834))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-359))) (-2318 (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560)))))) (|HasAttribute| |#1| (QUOTE -4503)) (|HasCategory| |#1| (QUOTE (-447))) (-2318 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-447))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-896)))) (-2318 (|HasCategory| |#1| (QUOTE (-447))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-896)))) (-2318 (|HasCategory| |#1| (QUOTE (-447))) (|HasCategory| |#1| (QUOTE (-896)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-896)))) (-2318 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-896)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-1106 |Coef| |Var| SMP) +(((-4521 "*") |has| |#1| (-172)) (-4512 |has| |#1| (-558)) (-4517 |has| |#1| (-6 -4517)) (-4514 . T) (-4513 . T) (-4516 . T)) +((|HasCategory| |#1| (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2198 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-568)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-568))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-568))))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-568)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-541))))) (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-150))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#1| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (QUOTE (-365))) (-2198 (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568)))))) (|HasAttribute| |#1| (QUOTE -4517)) (|HasCategory| |#1| (QUOTE (-453))) (-2198 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-904)))) (-2198 (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-904)))) (-2198 (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-904)))) (-12 (|HasCategory| $ (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-904)))) (-2198 (-12 (|HasCategory| $ (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-148))))) +(-1114 |Coef| |Var| SMP) ((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,{}b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\indented{1}{\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}.} \\blankline \\spad{X} xts:=x::TaylorSeries Fraction Integer \\spad{X} t1:=sin(\\spad{xts}) \\spad{X} coefficient(\\spad{t1},{}3)"))) -(((-4507 "*") |has| |#1| (-170)) (-4498 |has| |#1| (-550)) (-4500 . T) (-4499 . T) (-4502 . T)) -((|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-550))) (-2318 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-359)))) -(-1107 R E V P) +(((-4521 "*") |has| |#1| (-172)) (-4512 |has| |#1| (-558)) (-4514 . T) (-4513 . T) (-4516 . T)) +((|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-150))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-558))) (-2198 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-365)))) +(-1115 R E V P) ((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets."))) -((-4506 . T) (-4505 . T) (-2537 . T)) +((-4520 . T) (-4519 . T) (-3973 . T)) NIL -(-1108 UP -1333) +(-1116 UP -1478) ((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,{}g,{}h,{}i,{}k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,{}g,{}h,{}j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,{}g,{}h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,{}g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,{}g,{}h,{}i,{}j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,{}g,{}h,{}i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,{}g,{}h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,{}g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,{}f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented"))) NIL NIL -(-1109 R) +(-1117 R) ((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R}.")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\indented{1}{contractSolve(\\spad{rf},{}\\spad{x}) finds the solutions expressed in terms of} \\indented{1}{radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{}} \\indented{1}{where \\spad{rf} is a rational function. The result contains\\space{2}new} \\indented{1}{symbols for common subexpressions in order to reduce the} \\indented{1}{size of the output.} \\blankline \\spad{X} b:Fraction(Polynomial(Integer))\\spad{:=}(3*x^3+7)/(5*x^2-13) \\spad{X} contractSolve(\\spad{b},{}\\spad{x})") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\indented{1}{contractSolve(eq,{}\\spad{x}) finds the solutions expressed in terms of} \\indented{1}{radicals of the equation of rational functions eq} \\indented{1}{with respect to the symbol \\spad{x}.\\space{2}The result contains new} \\indented{1}{symbols for common subexpressions in order to reduce the} \\indented{1}{size of the output.} \\blankline \\spad{X} b:Fraction(Polynomial(Integer))\\spad{:=}(3*x^3+7)/(5*x^2-13) \\spad{X} contractSolve(\\spad{b=0},{}\\spad{x})")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\indented{1}{radicalRoots(\\spad{lrf},{}lvar) finds the roots expressed in terms of} \\indented{1}{radicals of the list of rational functions \\spad{lrf}} \\indented{1}{with respect to the list of symbols lvar.} \\blankline \\spad{X} b:Fraction(Polynomial(Integer))\\spad{:=}(3*x^3+7)/(5*x^2-13) \\spad{X} c:Fraction(Polynomial(Integer))\\spad{:=}(\\spad{y^2+4})/(\\spad{y+1}) \\spad{X} radicalRoots([\\spad{b},{}\\spad{c}],{}[\\spad{x},{}\\spad{y}])") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\indented{1}{radicalRoots(\\spad{rf},{}\\spad{x}) finds the roots expressed in terms of radicals} \\indented{1}{of the rational function \\spad{rf} with respect to the symbol \\spad{x}.} \\blankline \\spad{X} b:Fraction(Polynomial(Integer))\\spad{:=}(3*x^3+7)/(5*x^2-13) \\spad{X} radicalRoots(\\spad{b},{}\\spad{x})")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\indented{1}{radicalSolve(leq) finds the solutions expressed in terms of} \\indented{1}{radicals of the system of equations of rational functions leq} \\indented{1}{with respect to the unique symbol \\spad{x} appearing in leq.} \\blankline \\spad{X} b:Fraction(Polynomial(Integer))\\spad{:=}(3*x^3+7)/(5*x^2-13) \\spad{X} c:Fraction(Polynomial(Integer))\\spad{:=}(\\spad{y^2+4})/(\\spad{y+1}) \\spad{X} radicalSolve([\\spad{b=0},{}\\spad{c=0}])") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\indented{1}{radicalSolve(leq,{}lvar) finds the solutions expressed in terms of} \\indented{1}{radicals of the system of equations of rational functions leq} \\indented{1}{with respect to the list of symbols lvar.} \\blankline \\spad{X} b:Fraction(Polynomial(Integer))\\spad{:=}(3*x^3+7)/(5*x^2-13) \\spad{X} c:Fraction(Polynomial(Integer))\\spad{:=}(\\spad{y^2+4})/(\\spad{y+1}) \\spad{X} radicalSolve([\\spad{b=0},{}\\spad{c=0}],{}[\\spad{x},{}\\spad{y}])") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\indented{1}{radicalSolve(\\spad{lrf}) finds the solutions expressed in terms of} \\indented{1}{radicals of the system of equations \\spad{lrf} = 0,{} where \\spad{lrf} is a} \\indented{1}{system of univariate rational functions.} \\blankline \\spad{X} b:Fraction(Polynomial(Integer))\\spad{:=}(3*x^3+7)/(5*x^2-13) \\spad{X} c:Fraction(Polynomial(Integer))\\spad{:=}(\\spad{y^2+4})/(\\spad{y+1}) \\spad{X} radicalSolve([\\spad{b},{}\\spad{c}])") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\indented{1}{radicalSolve(\\spad{lrf},{}lvar) finds the solutions expressed in terms of} \\indented{1}{radicals of the system of equations \\spad{lrf} = 0 with} \\indented{1}{respect to the list of symbols lvar,{}} \\indented{1}{where \\spad{lrf} is a list of rational functions.} \\blankline \\spad{X} b:Fraction(Polynomial(Integer))\\spad{:=}(3*x^3+7)/(5*x^2-13) \\spad{X} c:Fraction(Polynomial(Integer))\\spad{:=}(\\spad{y^2+4})/(\\spad{y+1}) \\spad{X} radicalSolve([\\spad{b},{}\\spad{c}],{}[\\spad{x},{}\\spad{y}])") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\indented{1}{radicalSolve(eq) finds the solutions expressed in terms of} \\indented{1}{radicals of the equation of rational functions eq} \\indented{1}{with respect to the unique symbol \\spad{x} appearing in eq.} \\blankline \\spad{X} b:Fraction(Polynomial(Integer))\\spad{:=}(3*x^3+7)/(5*x^2-13) \\spad{X} radicalSolve(\\spad{b=0})") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\indented{1}{radicalSolve(eq,{}\\spad{x}) finds the solutions expressed in terms of} \\indented{1}{radicals of the equation of rational functions eq} \\indented{1}{with respect to the symbol \\spad{x}.} \\blankline \\spad{X} b:Fraction(Polynomial(Integer))\\spad{:=}(3*x^3+7)/(5*x^2-13) \\spad{X} radicalSolve(\\spad{b=0},{}\\spad{x})") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\indented{1}{radicalSolve(\\spad{rf}) finds the solutions expressed in terms of} \\indented{1}{radicals of the equation \\spad{rf} = 0,{} where \\spad{rf} is a} \\indented{1}{univariate rational function.} \\blankline \\spad{X} b:Fraction(Polynomial(Integer))\\spad{:=}(3*x^3+7)/(5*x^2-13) \\spad{X} radicalSolve(\\spad{b})") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\indented{1}{radicalSolve(\\spad{rf},{}\\spad{x}) finds the solutions expressed in terms of} \\indented{1}{radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{}} \\indented{1}{where \\spad{rf} is a rational function.} \\blankline \\spad{X} b:Fraction(Polynomial(Integer))\\spad{:=}(3*x^3+7)/(5*x^2-13) \\spad{X} radicalSolve(\\spad{b},{}\\spad{x})"))) NIL NIL -(-1110 R) +(-1118 R) ((|constructor| (NIL "This package finds the function \\spad{func3} where \\spad{func1} and \\spad{func2} are given and \\spad{func1} = \\spad{func3}(\\spad{func2}) . If there is no solution then function \\spad{func1} will be returned. An example would be \\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and \\spad{func2:=2*X ::EXPR INT} convert them via univariate to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X} of type FRAC SUP EXPR INT")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect,{} var,{} n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1,{} func2,{} newvar)} returns a function \\spad{func3} where \\spad{func1} = \\spad{func3}(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned."))) NIL NIL -(-1111 R) +(-1119 R) ((|constructor| (NIL "This package tries to find solutions of equations of type Expression(\\spad{R}). This means expressions involving transcendental,{} exponential,{} logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules,{} it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\spad{-2 tan(x/2)**4 -2 tan(x/2)**3 -4 tan(x/2)**2 +2 tan(x/2) -2} by using the function normalize and then to \\spad{-2 tan(x)**2 + tan(x) -2} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\spad{sqrt(sin(x))+1} .")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs,{} lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\indented{1}{solve(expr,{}\\spad{x}) finds the solutions of the equation expr = 0} \\indented{1}{with respect to the symbol \\spad{x} where expr is a function} \\indented{1}{of type Expression(\\spad{R}).} \\blankline \\spad{X} solve(1/2*v*v*cos(theta+phi)*cos(theta+phi)+g*l*cos(phi)=g*l,{}phi) \\spad{X} definingPolynomial \\%\\spad{phi0} \\spad{X} definingPolynomial \\%\\spad{phi1}") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,{}x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in eq."))) NIL NIL -(-1112 S A) +(-1120 S A) ((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,{}f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,{}f)} \\undocumented"))) NIL -((|HasCategory| |#1| (QUOTE (-834)))) -(-1113 R) +((|HasCategory| |#1| (QUOTE (-842)))) +(-1121 R) ((|constructor| (NIL "The domain ThreeSpace is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them."))) NIL NIL -(-1114 R) +(-1122 R) ((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],{}[p1],{}...,{}[pn]],{} close1,{} close2)} creates a surface defined over a list of curves,{} \\spad{p0} through \\spad{pn},{} which are lists of points; the booleans \\spad{close1} and \\spad{close2} indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); \\spad{close2} set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],{}[p1],{}...,{}[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through \\spad{pn},{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "mesh(\\spad{s},{}[ [[\\spad{r10}]...,{}[\\spad{r1m}]],{}[[\\spad{r20}]...,{}[\\spad{r2m}]],{}...,{}[[\\spad{rn0}]...,{}[\\spad{rnm}]] ],{} \\indented{5}{\\spad{close1},{} \\spad{close2})} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and \\spad{close2} indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if \\spad{close2} is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,{}[[p0],{}[p1],{}...,{}[pn]],{} close1,{} close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and \\spad{close2} indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument \\spad{close2} equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "mesh(\\spad{s},{}[ [[\\spad{r10}]...,{}[\\spad{r1m}]],{}[[\\spad{r20}]...,{}[\\spad{r2m}]],{}...,{}[[\\spad{rn0}]...,{}[\\spad{rnm}]] ],{} \\indented{7}{[props],{} prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,{}[[p0],{}[p1],{}...,{}[pn]],{}[props],{}prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,{}p1,{}...,{}pn])} creates a polygon defined by a list of points,{} \\spad{p0} through \\spad{pn},{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,{}[[r0],{}[r1],{}...,{}[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,{}R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,{}[p0,{}p1,{}...,{}pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,{}R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,{}[[lr0],{}[lr1],{}...,{}[lrn],{}[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,{}R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,{}[p0,{}p1,{}...,{}pn,{}p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,{}p1,{}p2,{}...,{}pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,{}[[p0],{}[p1],{}...,{}[pn]])} adds a space curve which is a list of points \\spad{p0} through \\spad{pn} defined by lists of elements from the domain \\spad{PointDomain(m,{}R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,{}[p0,{}p1,{}...,{}pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,{}i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,{}[x,{}y,{}z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,{}p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,{}i,{}p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,{}[p0,{}p1,{}...,{}pn])} adds a list of points from \\spad{p0} through \\spad{pn} to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,{}s2,{}...,{}sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,{}s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,{}s2,{}...,{}sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1115) +(-1123) ((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and Script Formula Formatter output from programs.")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,{}o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}."))) NIL NIL -(-1116) +(-1124) ((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,{}z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,{}z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,{}z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,{}z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,{}x)} is the \\spad{k-th} derivative of \\spad{digamma(x)},{} (often written \\spad{psi(k,{}x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,{}x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}."))) NIL NIL -(-1117 V C) +(-1125 V C) ((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}\\spad{o2})} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{\\spad{o2}(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}\\spad{o1},{}\\spad{o2})} returns \\spad{true} iff \\axiom{\\spad{o1}(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{\\spad{o2}(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}\\spad{lt})} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in \\spad{lt}]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(\\spad{lvt})} returns the same as \\axiom{[construct(\\spad{vt}.val,{}\\spad{vt}.tower) for \\spad{vt} in \\spad{lvt}]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(\\spad{vt})} returns the same as \\axiom{construct(\\spad{vt}.val,{}\\spad{vt}.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}"))) NIL NIL -(-1118 V C) +(-1126 V C) ((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned."))) -((-4505 . T) (-4506 . T)) -((|HasCategory| (-1117 |#1| |#2|) (QUOTE (-1082))) (-12 (|HasCategory| (-1117 |#1| |#2|) (LIST (QUOTE -298) (LIST (QUOTE -1117) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1117 |#1| |#2|) (QUOTE (-1082))))) -(-1119 |ndim| R) +((-4519 . T) (-4520 . T)) +((|HasCategory| (-1125 |#1| |#2|) (QUOTE (-1090))) (-12 (|HasCategory| (-1125 |#1| |#2|) (LIST (QUOTE -303) (LIST (QUOTE -1125) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1125 |#1| |#2|) (QUOTE (-1090))))) +(-1127 |ndim| R) ((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|coerce| (((|Matrix| |#2|) $) "\\spad{coerce(m)} converts a matrix of type \\spadtype{SquareMatrix} to a matrix of type \\spadtype{Matrix}.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}."))) -((-4502 . T) (-4494 |has| |#2| (-6 (-4507 "*"))) (-4505 . T) (-4499 . T) (-4500 . T)) -((|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#2| (QUOTE (-221))) (|HasAttribute| |#2| (QUOTE (-4507 "*"))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| |#2| (QUOTE (-296))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (QUOTE (-359))) (-2318 (|HasAttribute| |#2| (QUOTE (-4507 "*"))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#2| (QUOTE (-221)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1082)))) (-2318 (-12 (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-1153))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-221)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1082))))) (|HasCategory| |#2| (QUOTE (-170)))) -(-1120 S) +((-4516 . T) (-4508 |has| |#2| (-6 (-4521 "*"))) (-4519 . T) (-4513 . T) (-4514 . T)) +((|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#2| (QUOTE (-225))) (|HasAttribute| |#2| (QUOTE (-4521 "*"))) (|HasCategory| |#2| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#2| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| |#2| (QUOTE (-301))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (QUOTE (-365))) (-2198 (|HasAttribute| |#2| (QUOTE (-4521 "*"))) (|HasCategory| |#2| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#2| (QUOTE (-225)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1090)))) (-2198 (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -630) (QUOTE (-568))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1161))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-225)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1090))))) (|HasCategory| |#2| (QUOTE (-172)))) +(-1128 S) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note that \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note that \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} \\indented{1}{reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])}} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note that \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} \\indented{2}{reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.}")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) NIL NIL -(-1121) +(-1129) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note that \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note that \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} \\indented{1}{reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])}} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note that \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} \\indented{2}{reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.}")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) -((-4506 . T) (-4505 . T) (-2537 . T)) +((-4520 . T) (-4519 . T) (-3973 . T)) NIL -(-1122 R E V P TS) +(-1130 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,{}E,{}V,{}P,{}TS)} and \\spad{RSETGCD(R,{}E,{}V,{}P,{}TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented."))) NIL NIL -(-1123 R E V P) +(-1131 R E V P) ((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation zeroSetSplit is an implementation of a new algorithm for solving polynomial systems by means of regular chains.")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as zeroSetSplit from RegularTriangularSetCategory from \\spadtype{RegularTriangularSetCategory} Moreover,{} if clos? then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4506 . T) (-4505 . T)) -((|HasCategory| |#4| (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| |#4| (QUOTE (-1082))) (-12 (|HasCategory| |#4| (LIST (QUOTE -298) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (-1082)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#3| (QUOTE (-364)))) -(-1124 S) +((-4520 . T) (-4519 . T)) +((|HasCategory| |#4| (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| |#4| (QUOTE (-1090))) (-12 (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#3| (QUOTE (-370)))) +(-1132 S) ((|constructor| (NIL "Linked List implementation of a Stack")) (|member?| (((|Boolean|) |#1| $) "\\blankline \\spad{X} a:Stack INT:= stack [1,{}2,{}3,{}4,{}5] \\spad{X} member?(3,{}a)")) (|members| (((|List| |#1|) $) "\\blankline \\spad{X} a:Stack INT:= stack [1,{}2,{}3,{}4,{}5] \\spad{X} members a")) (|parts| (((|List| |#1|) $) "\\blankline \\spad{X} a:Stack INT:= stack [1,{}2,{}3,{}4,{}5] \\spad{X} parts a")) (|#| (((|NonNegativeInteger|) $) "\\blankline \\spad{X} a:Stack INT:= stack [1,{}2,{}3,{}4,{}5] \\spad{X} \\#a")) (|count| (((|NonNegativeInteger|) |#1| $) "\\blankline \\spad{X} a:Stack INT:= stack [1,{}2,{}3,{}4,{}5] \\spad{X} count(4,{}a)") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\blankline \\spad{X} a:Stack INT:= stack [1,{}2,{}3,{}4,{}5] \\spad{X} count(\\spad{x+}->(\\spad{x>2}),{}a)")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\blankline \\spad{X} a:Stack INT:= stack [1,{}2,{}3,{}4,{}5] \\spad{X} any?(\\spad{x+}->(\\spad{x=4}),{}a)")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\blankline \\spad{X} a:Stack INT:= stack [1,{}2,{}3,{}4,{}5] \\spad{X} every?(\\spad{x+}->(\\spad{x=4}),{}a)")) (~= (((|Boolean|) $ $) "\\blankline \\spad{X} a:Stack INT:= stack [1,{}2,{}3,{}4,{}5] \\spad{X} b:=copy a \\spad{X} (a~=b)")) (= (((|Boolean|) $ $) "\\blankline \\spad{X} a:Stack INT:= stack [1,{}2,{}3,{}4,{}5] \\spad{X} b:Stack INT:= stack [1,{}2,{}3,{}4,{}5] \\spad{X} (a=b)@Boolean")) (|coerce| (((|OutputForm|) $) "\\blankline \\spad{X} a:Stack INT:= stack [1,{}2,{}3,{}4,{}5] \\spad{X} coerce a")) (|hash| (((|SingleInteger|) $) "\\blankline \\spad{X} a:Stack INT:= stack [1,{}2,{}3,{}4,{}5] \\spad{X} hash a")) (|latex| (((|String|) $) "\\blankline \\spad{X} a:Stack INT:= stack [1,{}2,{}3,{}4,{}5] \\spad{X} latex a")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\blankline \\spad{X} a:Stack INT:= stack [1,{}2,{}3,{}4,{}5] \\spad{X} map!(\\spad{x+}-\\spad{>x+10},{}a) \\spad{X} a")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\blankline \\spad{X} a:Stack INT:= stack [1,{}2,{}3,{}4,{}5] \\spad{X} map(\\spad{x+}-\\spad{>x+10},{}a) \\spad{X} a")) (|eq?| (((|Boolean|) $ $) "\\blankline \\spad{X} a:Stack INT:= stack [1,{}2,{}3,{}4,{}5] \\spad{X} b:=copy a \\spad{X} eq?(a,{}\\spad{b})")) (|copy| (($ $) "\\blankline \\spad{X} a:Stack INT:= stack [1,{}2,{}3,{}4,{}5] \\spad{X} copy a")) (|sample| (($) "\\blankline \\spad{X} sample()\\$Stack(INT)")) (|empty| (($) "\\blankline \\spad{X} b:=empty()\\$(Stack INT)")) (|empty?| (((|Boolean|) $) "\\blankline \\spad{X} a:Stack INT:= stack [1,{}2,{}3,{}4,{}5] \\spad{X} empty? a")) (|bag| (($ (|List| |#1|)) "\\blankline \\spad{X} bag([1,{}2,{}3,{}4,{}5])\\$Stack(INT)")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\blankline \\spad{X} a:Stack INT:= stack [1,{}2,{}3,{}4,{}5] \\spad{X} size?(a,{}5)")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\blankline \\spad{X} a:Stack INT:= stack [1,{}2,{}3,{}4,{}5] \\spad{X} more?(a,{}9)")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\blankline \\spad{X} a:Stack INT:= stack [1,{}2,{}3,{}4,{}5] \\spad{X} less?(a,{}9)")) (|depth| (((|NonNegativeInteger|) $) "\\blankline \\spad{X} a:Stack INT:= stack [1,{}2,{}3,{}4,{}5] \\spad{X} depth a")) (|top| ((|#1| $) "\\blankline \\spad{X} a:Stack INT:= stack [1,{}2,{}3,{}4,{}5] \\spad{X} top a")) (|inspect| ((|#1| $) "\\blankline \\spad{X} a:Stack INT:= stack [1,{}2,{}3,{}4,{}5] \\spad{X} inspect a")) (|insert!| (($ |#1| $) "\\blankline \\spad{X} a:Stack INT:= stack [1,{}2,{}3,{}4,{}5] \\spad{X} insert!(8,{}a) \\spad{X} a")) (|push!| ((|#1| |#1| $) "\\blankline \\spad{X} a:Stack INT:= stack [1,{}2,{}3,{}4,{}5] \\spad{X} push!(9,{}a) \\spad{X} a")) (|extract!| ((|#1| $) "\\blankline \\spad{X} a:Stack INT:= stack [1,{}2,{}3,{}4,{}5] \\spad{X} extract! a \\spad{X} a")) (|pop!| ((|#1| $) "\\blankline \\spad{X} a:Stack INT:= stack [1,{}2,{}3,{}4,{}5] \\spad{X} pop! a \\spad{X} a")) (|stack| (($ (|List| |#1|)) "\\indented{1}{stack([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) creates a stack with first (top)} \\indented{1}{element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.} \\blankline \\spad{X} a:Stack INT:= stack [1,{}2,{}3,{}4,{}5]"))) -((-4505 . T) (-4506 . T)) -((|HasCategory| |#1| (QUOTE (-1082))) (-12 (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1082))))) -(-1125 A S) +((-4519 . T) (-4520 . T)) +((|HasCategory| |#1| (QUOTE (-1090))) (-12 (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1090))))) +(-1133 A S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note that for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note that for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1126 S) +(-1134 S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note that for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note that for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) -((-2537 . T)) +((-3973 . T)) NIL -(-1127 |Key| |Ent| |dent|) +(-1135 |Key| |Ent| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4506 . T)) -((|HasCategory| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-834))) (|HasCategory| |#2| (QUOTE (-1082))) (-12 (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1082)))) (|HasCategory| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (QUOTE (-1082))) (-12 (|HasCategory| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (LIST (QUOTE -298) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3655) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2371) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (QUOTE (-1082)))) (-2318 (|HasCategory| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (QUOTE (-1082))) (|HasCategory| |#2| (QUOTE (-1082))))) -(-1128) +((-4520 . T)) +((|HasCategory| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-1090))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1090)))) (|HasCategory| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (QUOTE (-1090))) (-12 (|HasCategory| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (LIST (QUOTE -303) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3649) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4083) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (QUOTE (-1090)))) (-2198 (|HasCategory| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (QUOTE (-1090))) (|HasCategory| |#2| (QUOTE (-1090))))) +(-1136) ((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes\\spad{\\br} \\tab{5}infinite\\tab{5}repeated nextItem\\spad{'s} are never \"failed\".")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping."))) NIL NIL -(-1129 |Coef|) +(-1137 |Coef|) ((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-1130 S) +(-1138 S) ((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\indented{1}{concat(\\spad{u}) returns the left-to-right concatentation of the} \\indented{1}{streams in \\spad{u}. Note that \\spad{concat(u) = reduce(concat,{}u)}.} \\blankline \\spad{X} \\spad{m:=}[\\spad{i} for \\spad{i} in 10..] \\spad{X} \\spad{n:=}[\\spad{j} for \\spad{j} in 1.. | prime? \\spad{j}] \\spad{X} \\spad{p:=}[\\spad{m},{}\\spad{n}]::Stream(Stream(PositiveInteger)) \\spad{X} concat(\\spad{p})"))) NIL NIL -(-1131 A B) +(-1139 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\indented{1}{reduce(\\spad{b},{}\\spad{f},{}\\spad{u}),{} where \\spad{u} is a finite stream \\spad{[x0,{}x1,{}...,{}xn]},{}} \\indented{1}{returns the value \\spad{r(n)} computed as follows:} \\indented{1}{\\spad{r0 = f(x0,{}b),{}} \\indented{1}{\\spad{r1} = \\spad{f}(\\spad{x1},{}\\spad{r0}),{}...,{}} \\indented{1}{\\spad{r}(\\spad{n}) = \\spad{f}(\\spad{xn},{}\\spad{r}(\\spad{n}-1))}.} \\blankline \\spad{X} \\spad{m:=}[\\spad{i} for \\spad{i} in 1..300]::Stream(Integer) \\spad{X} \\spad{f}(i:Integer,{}j:Integer):Integer==i+j \\spad{X} reduce(1,{}\\spad{f},{}\\spad{m})")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\indented{1}{scan(\\spad{b},{}\\spad{h},{}[\\spad{x0},{}\\spad{x1},{}\\spad{x2},{}...]) returns \\spad{[y0,{}y1,{}y2,{}...]},{} where} \\indented{1}{\\spad{y0 = h(x0,{}b)},{}} \\indented{1}{\\spad{y1 = h(x1,{}y0)},{}\\spad{...}} \\indented{1}{\\spad{yn = h(xn,{}y(n-1))}.} \\blankline \\spad{X} \\spad{m:=}[\\spad{i} for \\spad{i} in 1..]::Stream(Integer) \\spad{X} \\spad{f}(i:Integer,{}j:Integer):Integer==i+j \\spad{X} scan(1,{}\\spad{f},{}\\spad{m})")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\indented{1}{map(\\spad{f},{}\\spad{s}) returns a stream whose elements are the function \\spad{f} applied} \\indented{1}{to the corresponding elements of \\spad{s}.} \\indented{1}{Note that \\spad{map(f,{}[x0,{}x1,{}x2,{}...]) = [f(x0),{}f(x1),{}f(x2),{}..]}.} \\blankline \\spad{X} \\spad{m:=}[\\spad{i} for \\spad{i} in 1..] \\spad{X} \\spad{f}(i:PositiveInteger)\\spad{:PositiveInteger==i**2} \\spad{X} map(\\spad{f},{}\\spad{m})"))) NIL NIL -(-1132 A B C) +(-1140 A B C) ((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\indented{1}{map(\\spad{f},{}\\spad{st1},{}\\spad{st2}) returns the stream whose elements are the} \\indented{1}{function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}.} \\indented{1}{\\spad{map(f,{}[x0,{}x1,{}x2,{}..],{}[y0,{}y1,{}y2,{}..]) = [f(x0,{}y0),{}f(x1,{}y1),{}..]}.} \\blankline \\spad{S} \\spad{X} \\spad{m:=}[\\spad{i} for \\spad{i} in 1..]::Stream(Integer) \\spad{X} \\spad{n:=}[\\spad{i} for \\spad{i} in 1..]::Stream(Integer) \\spad{X} \\spad{f}(i:Integer,{}j:Integer):Integer \\spad{==} i+j \\spad{X} map(\\spad{f},{}\\spad{m},{}\\spad{n})"))) NIL NIL -(-1133 S) +(-1141 S) ((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\indented{1}{filterUntil(\\spad{p},{}\\spad{s}) returns \\spad{[x0,{}x1,{}...,{}x(n)]} where} \\indented{1}{\\spad{s = [x0,{}x1,{}x2,{}..]} and} \\indented{1}{\\spad{n} is the smallest index such that \\spad{p(xn) = true}.} \\blankline \\spad{X} \\spad{m:=}[\\spad{i} for \\spad{i} in 1..] \\spad{X} \\spad{f}(x:PositiveInteger):Boolean \\spad{==} \\spad{x} < 5 \\spad{X} filterUntil(\\spad{f},{}\\spad{m})")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\indented{1}{filterWhile(\\spad{p},{}\\spad{s}) returns \\spad{[x0,{}x1,{}...,{}x(n-1)]} where} \\indented{1}{\\spad{s = [x0,{}x1,{}x2,{}..]} and} \\indented{1}{\\spad{n} is the smallest index such that \\spad{p(xn) = false}.} \\blankline \\spad{X} \\spad{m:=}[\\spad{i} for \\spad{i} in 1..] \\spad{X} \\spad{f}(x:PositiveInteger):Boolean \\spad{==} \\spad{x} < 5 \\spad{X} filterWhile(\\spad{f},{}\\spad{m})")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\indented{1}{generate(\\spad{f},{}\\spad{x}) creates an infinite stream whose first element is} \\indented{1}{\\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous} \\indented{1}{element. Note: \\spad{generate(f,{}x) = [x,{}f(x),{}f(f(x)),{}...]}.} \\blankline \\spad{X} \\spad{f}(x:Integer):Integer \\spad{==} \\spad{x+10} \\spad{X} generate(\\spad{f},{}10)") (($ (|Mapping| |#1|)) "\\indented{1}{generate(\\spad{f}) creates an infinite stream all of whose elements are} \\indented{1}{equal to \\spad{f()}.} \\indented{1}{Note: \\spad{generate(f) = [f(),{}f(),{}f(),{}...]}.} \\blankline \\spad{X} \\spad{f}():Integer \\spad{==} 1 \\spad{X} generate(\\spad{f})")) (|setrest!| (($ $ (|Integer|) $) "\\indented{1}{setrest!(\\spad{x},{}\\spad{n},{}\\spad{y}) sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand} \\indented{1}{cycles if necessary.} \\blankline \\spad{X} \\spad{p:=}[\\spad{i} for \\spad{i} in 1..] \\spad{X} \\spad{q:=}[\\spad{i} for \\spad{i} in 9..] \\spad{X} setrest!(\\spad{p},{}4,{}\\spad{q}) \\spad{X} \\spad{p}")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\indented{1}{showAllElements(\\spad{s}) creates an output form which displays all} \\indented{1}{computed elements.} \\blankline \\spad{X} \\spad{m:=}[1,{}2,{}3,{}4,{}5,{}6,{}7,{}8,{}9,{}10,{}11,{}12] \\spad{X} n:=m::Stream(PositiveInteger) \\spad{X} showAllElements \\spad{n}")) (|output| (((|Void|) (|Integer|) $) "\\indented{1}{output(\\spad{n},{}st) computes and displays the first \\spad{n} entries} \\indented{1}{of st.} \\blankline \\spad{X} \\spad{m:=}[1,{}2,{}3] \\spad{X} n:=repeating(\\spad{m}) \\spad{X} output(5,{}\\spad{n})")) (|cons| (($ |#1| $) "\\indented{1}{cons(a,{}\\spad{s}) returns a stream whose \\spad{first} is \\spad{a}} \\indented{1}{and whose \\spad{rest} is \\spad{s}.} \\indented{1}{Note: \\spad{cons(a,{}s) = concat(a,{}s)}.} \\blankline \\spad{X} \\spad{m:=}[1,{}2,{}3] \\spad{X} n:=repeating(\\spad{m}) \\spad{X} cons(4,{}\\spad{n})")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\indented{1}{findCycle(\\spad{n},{}st) determines if st is periodic within \\spad{n}.} \\blankline \\spad{X} \\spad{m:=}[1,{}2,{}3] \\spad{X} n:=repeating(\\spad{m}) \\spad{X} findCycle(3,{}\\spad{n}) \\spad{X} findCycle(2,{}\\spad{n})")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\indented{1}{repeating?(\\spad{l},{}\\spad{s}) returns \\spad{true} if a stream \\spad{s} is periodic} \\indented{1}{with period \\spad{l},{} and \\spad{false} otherwise.} \\blankline \\spad{X} \\spad{m:=}[1,{}2,{}3] \\spad{X} n:=repeating(\\spad{m}) \\spad{X} repeating?(\\spad{m},{}\\spad{n})")) (|repeating| (($ (|List| |#1|)) "\\indented{1}{repeating(\\spad{l}) is a repeating stream whose period is the list \\spad{l}.} \\blankline \\spad{X} m:=repeating([\\spad{-1},{}0,{}1,{}2,{}3])")) (|coerce| (($ (|List| |#1|)) "\\indented{1}{coerce(\\spad{l}) converts a list \\spad{l} to a stream.} \\blankline \\spad{X} \\spad{m:=}[1,{}2,{}3,{}4,{}5,{}6,{}7,{}8,{}9,{}10,{}11,{}12] \\spad{X} coerce(\\spad{m})@Stream(Integer) \\spad{X} m::Stream(Integer)")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries."))) -((-4506 . T)) -((|HasCategory| |#1| (QUOTE (-1082))) (-12 (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1082)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| (-560) (QUOTE (-834)))) -(-1134) +((-4520 . T)) +((|HasCategory| |#1| (QUOTE (-1090))) (-12 (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1090)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| (-568) (QUOTE (-842)))) +(-1142) ((|constructor| (NIL "A category for string-like objects")) (|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string"))) -((-4506 . T) (-4505 . T) (-2537 . T)) +((-4520 . T) (-4519 . T) (-3973 . T)) NIL -(-1135) +(-1143) ((|constructor| (NIL "This is the domain of character strings. Strings are 1 based."))) -((-4506 . T) (-4505 . T)) -((|HasCategory| (-145) (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| (-145) (QUOTE (-834))) (|HasCategory| (-560) (QUOTE (-834))) (|HasCategory| (-145) (QUOTE (-1082))) (-12 (|HasCategory| (-145) (LIST (QUOTE -298) (QUOTE (-145)))) (|HasCategory| (-145) (QUOTE (-1082)))) (-2318 (-12 (|HasCategory| (-145) (LIST (QUOTE -298) (QUOTE (-145)))) (|HasCategory| (-145) (QUOTE (-834)))) (-12 (|HasCategory| (-145) (LIST (QUOTE -298) (QUOTE (-145)))) (|HasCategory| (-145) (QUOTE (-1082)))))) -(-1136 |Entry|) +((-4520 . T) (-4519 . T)) +((|HasCategory| (-147) (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| (-147) (QUOTE (-842))) (|HasCategory| (-568) (QUOTE (-842))) (|HasCategory| (-147) (QUOTE (-1090))) (-12 (|HasCategory| (-147) (LIST (QUOTE -303) (QUOTE (-147)))) (|HasCategory| (-147) (QUOTE (-1090)))) (-2198 (-12 (|HasCategory| (-147) (LIST (QUOTE -303) (QUOTE (-147)))) (|HasCategory| (-147) (QUOTE (-842)))) (-12 (|HasCategory| (-147) (LIST (QUOTE -303) (QUOTE (-147)))) (|HasCategory| (-147) (QUOTE (-1090)))))) +(-1144 |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used."))) -((-4505 . T) (-4506 . T)) -((|HasCategory| (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (QUOTE (-1082))) (-12 (|HasCategory| (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (LIST (QUOTE -298) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3655) (QUOTE (-1135))) (LIST (QUOTE |:|) (QUOTE -2371) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (QUOTE (-1082)))) (|HasCategory| (-1135) (QUOTE (-834))) (|HasCategory| |#1| (QUOTE (-1082))) (-2318 (|HasCategory| (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (QUOTE (-1082))) (|HasCategory| |#1| (QUOTE (-1082)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1082))))) -(-1137 A) +((-4519 . T) (-4520 . T)) +((|HasCategory| (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (QUOTE (-1090))) (-12 (|HasCategory| (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (LIST (QUOTE -303) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3649) (QUOTE (-1143))) (LIST (QUOTE |:|) (QUOTE -4083) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (QUOTE (-1090)))) (|HasCategory| (-1143) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-1090))) (-2198 (|HasCategory| (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (QUOTE (-1090))) (|HasCategory| |#1| (QUOTE (-1090)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1090))))) +(-1145 A) ((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,{}f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,{}r,{}g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0/b0,{}a1/b1,{}..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,{}f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,{}0>,{}b<0,{}1>,{}...],{}[b<1,{}0>,{}b<1,{}1>,{}.],{}...]}. the differential equation has the form \\spad{y'=sum(i=0 to infinity,{}j=0 to infinity,{}b*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,{}f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,{}a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,{}[a0,{}a1,{}a2,{}...]) = [a,{}a0,{}a1/2,{}a2/3,{}...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,{}b,{}st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,{}b,{}st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),{}n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),{}n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),{}n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,{}0>,{}a<0,{}1>,{}..],{}[a<1,{}0>,{}a<1,{}1>,{}..],{}[a<2,{}0>,{}a<2,{}1>,{}..],{}..]} and \\spad{addiag(x) = [b<0,{}b<1>,{}...],{} then b = sum(i+j=k,{}a)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient 1.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,{}b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,{}r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,{}[a0,{}a1,{}a2,{}..])} returns \\spad{[f(0)*a0,{}f(1)*a1,{}f(2)*a2,{}..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,{}a1,{}a2,{}...])} returns \\spad{[a1,{}2 a2,{}3 a3,{}...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0*b0,{}a1*b1,{}..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,{}n+2,{}n+4,{}...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,{}n+1,{}n+2,{}...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,{}coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,{}b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,{}a1,{}...] * r = [a0 * r,{}a1 * r,{}...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,{}a1,{}...] = [r * a0,{}r * a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,{}a1,{}...] * [b0,{}b1,{}...] = [c0,{}c1,{}...]} where \\spad{ck = sum(i + j = k,{}\\spad{ai} * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,{}a1,{}...] = [- a0,{}- a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] - [b0,{}b1,{}..] = [a0 - b0,{}a1 - b1,{}..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] + [b0,{}b1,{}..] = [a0 + b0,{}a1 + b1,{}..]}"))) NIL -((|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560)))))) -(-1138 |Coef|) +((|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568)))))) +(-1146 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1139 |Coef|) +(-1147 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1140 R UP) +(-1148 R UP) ((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one.")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p,{} q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p,{} q)} returns \\spad{[p0,{}...,{}pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p,{} q)}."))) NIL -((|HasCategory| |#1| (QUOTE (-296)))) -(-1141 |n| R) +((|HasCategory| |#1| (QUOTE (-301)))) +(-1149 |n| R) ((|constructor| (NIL "This domain is not documented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,{}\\spad{li})} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,{}\\spad{li},{}p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,{}\\spad{li},{}b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,{}ind,{}p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,{}\\spad{li},{}i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,{}\\spad{li},{}p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,{}s2,{}\\spad{li},{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,{}p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,{}\\spad{li},{}i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,{}\\spad{li},{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,{}s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} is not documented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} is not documented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} is not documented")) (|children| (((|List| $) $) "\\spad{children(x)} is not documented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,{}n)} is not documented")) (|birth| (($ $) "\\spad{birth(x)} is not documented")) (|subspace| (($) "\\spad{subspace()} is not documented")) (|new| (($) "\\spad{new()} is not documented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} is not documented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} is not documented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} is not documented"))) NIL NIL -(-1142 S1 S2) +(-1150 S1 S2) ((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} makes a form \\spad{s:t}"))) NIL NIL -(-1143 |Coef| |var| |cen|) +(-1151 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Laurent series in one variable \\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spad{SparseUnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent series in \\spad{(x - 3)} with integer coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4507 "*") -2318 (-2256 (|has| |#1| (-359)) (|has| (-1151 |#1| |#2| |#3|) (-807))) (|has| |#1| (-170)) (-2256 (|has| |#1| (-359)) (|has| (-1151 |#1| |#2| |#3|) (-896)))) (-4498 -2318 (-2256 (|has| |#1| (-359)) (|has| (-1151 |#1| |#2| |#3|) (-807))) (|has| |#1| (-550)) (-2256 (|has| |#1| (-359)) (|has| (-1151 |#1| |#2| |#3|) (-896)))) (-4503 |has| |#1| (-359)) (-4497 |has| |#1| (-359)) (-4499 . T) (-4500 . T) (-4502 . T)) -((|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-170))) (-2318 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| (-560) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-359))) (-2318 (-12 (|HasCategory| (-1151 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-359)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2318 (-12 (|HasCategory| (-1151 |#1| |#2| |#3|) (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|)))))) (-2318 (-12 (|HasCategory| (-1151 |#1| |#2| |#3|) (QUOTE (-221))) (|HasCategory| |#1| (QUOTE (-359)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|))))) (-2318 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| (-1151 |#1| |#2| |#3|) (LIST (QUOTE -1029) (QUOTE (-1153)))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| (-1151 |#1| |#2| |#3|) (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| (-1151 |#1| |#2| |#3|) (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-359)))) (-2318 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| (-1151 |#1| |#2| |#3|) (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| (-1151 |#1| |#2| |#3|) (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| (-1151 |#1| |#2| |#3|) (QUOTE (-1128))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| (-1151 |#1| |#2| |#3|) (LIST (QUOTE -276) (LIST (QUOTE -1151) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1151) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| (-1151 |#1| |#2| |#3|) (LIST (QUOTE -298) (LIST (QUOTE -1151) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| (-1151 |#1| |#2| |#3|) (LIST (QUOTE -515) (QUOTE (-1153)) (LIST (QUOTE -1151) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| (-1151 |#1| |#2| |#3|) (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| (-1151 |#1| |#2| |#3|) (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| (-1151 |#1| |#2| |#3|) (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-375))))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| (-1151 |#1| |#2| |#3|) (LIST (QUOTE -873) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| (-1151 |#1| |#2| |#3|) (LIST (QUOTE -873) (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-359)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-560))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-560))))) (|HasSignature| |#1| (LIST (QUOTE -2801) (LIST (|devaluate| |#1|) (QUOTE (-1153)))))) (-12 (|HasCategory| (-1151 |#1| |#2| |#3|) (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| (-1151 |#1| |#2| |#3|) (QUOTE (-296))) (|HasCategory| |#1| (QUOTE (-359)))) (|HasCategory| (-1151 |#1| |#2| |#3|) (QUOTE (-896))) (-12 (|HasCategory| (-1151 |#1| |#2| |#3|) (QUOTE (-896))) (|HasCategory| |#1| (QUOTE (-359)))) (|HasCategory| (-1151 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2318 (-12 (|HasCategory| (-1151 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-359)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2318 (-12 (|HasCategory| (-1151 |#1| |#2| |#3|) (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| (-1151 |#1| |#2| |#3|) (QUOTE (-896))) (|HasCategory| |#1| (QUOTE (-359)))) (|HasCategory| |#1| (QUOTE (-550)))) (-2318 (-12 (|HasCategory| (-1151 |#1| |#2| |#3|) (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| (-1151 |#1| |#2| |#3|) (QUOTE (-896))) (|HasCategory| |#1| (QUOTE (-359)))) (|HasCategory| |#1| (QUOTE (-170)))) (-12 (|HasCategory| (-1151 |#1| |#2| |#3|) (QUOTE (-834))) (|HasCategory| |#1| (QUOTE (-359)))) (-2318 (-12 (|HasCategory| (-1151 |#1| |#2| |#3|) (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| (-1151 |#1| |#2| |#3|) (QUOTE (-834))) (|HasCategory| |#1| (QUOTE (-359))))) (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (-2318 (-12 (|HasCategory| (-1151 |#1| |#2| |#3|) (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-375))))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| (-1151 |#1| |#2| |#3|) (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| (-1151 |#1| |#2| |#3|) (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| (-1151 |#1| |#2| |#3|) (LIST (QUOTE -276) (LIST (QUOTE -1151) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1151) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| (-1151 |#1| |#2| |#3|) (LIST (QUOTE -298) (LIST (QUOTE -1151) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| (-1151 |#1| |#2| |#3|) (LIST (QUOTE -515) (QUOTE (-1153)) (LIST (QUOTE -1151) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| (-1151 |#1| |#2| |#3|) (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| (-1151 |#1| |#2| |#3|) (LIST (QUOTE -873) (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| (-1151 |#1| |#2| |#3|) (LIST (QUOTE -873) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| (-1151 |#1| |#2| |#3|) (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| (-1151 |#1| |#2| |#3|) (LIST (QUOTE -1029) (QUOTE (-1153)))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| (-1151 |#1| |#2| |#3|) (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| (-1151 |#1| |#2| |#3|) (QUOTE (-834))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| (-1151 |#1| |#2| |#3|) (QUOTE (-896))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| (-1151 |#1| |#2| |#3|) (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| (-1151 |#1| |#2| |#3|) (QUOTE (-1128))) (|HasCategory| |#1| (QUOTE (-359)))) (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560)))))) (-2318 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-951))) (|HasCategory| |#1| (QUOTE (-1173)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasSignature| |#1| (LIST (QUOTE -2376) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1153))))) (|HasSignature| |#1| (LIST (QUOTE -1654) (LIST (LIST (QUOTE -626) (QUOTE (-1153))) (|devaluate| |#1|)))))) (-2318 (-12 (|HasCategory| (-1151 |#1| |#2| |#3|) (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-359)))) (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560)))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1151 |#1| |#2| |#3|) (QUOTE (-896))) (|HasCategory| |#1| (QUOTE (-359)))) (-2318 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1151 |#1| |#2| |#3|) (QUOTE (-896))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| (-1151 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-359)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-1144 R -1333) +(((-4521 "*") -2198 (-2139 (|has| |#1| (-365)) (|has| (-1159 |#1| |#2| |#3|) (-815))) (|has| |#1| (-172)) (-2139 (|has| |#1| (-365)) (|has| (-1159 |#1| |#2| |#3|) (-904)))) (-4512 -2198 (-2139 (|has| |#1| (-365)) (|has| (-1159 |#1| |#2| |#3|) (-815))) (|has| |#1| (-558)) (-2139 (|has| |#1| (-365)) (|has| (-1159 |#1| |#2| |#3|) (-904)))) (-4517 |has| |#1| (-365)) (-4511 |has| |#1| (-365)) (-4513 . T) (-4514 . T) (-4516 . T)) +((|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2198 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| (-568) (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-365))) (-2198 (-12 (|HasCategory| (-1159 |#1| |#2| |#3|) (QUOTE (-150))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-150)))) (-2198 (-12 (|HasCategory| (-1159 |#1| |#2| |#3|) (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-568)) (|devaluate| |#1|)))))) (-2198 (-12 (|HasCategory| (-1159 |#1| |#2| |#3|) (QUOTE (-225))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-568)) (|devaluate| |#1|))))) (-2198 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| (-1159 |#1| |#2| |#3|) (LIST (QUOTE -1037) (QUOTE (-1161)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1159 |#1| |#2| |#3|) (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1159 |#1| |#2| |#3|) (QUOTE (-1021))) (|HasCategory| |#1| (QUOTE (-365)))) (-2198 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| (-1159 |#1| |#2| |#3|) (QUOTE (-815))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1159 |#1| |#2| |#3|) (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1159 |#1| |#2| |#3|) (QUOTE (-1136))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1159 |#1| |#2| |#3|) (LIST (QUOTE -281) (LIST (QUOTE -1159) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1159) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1159 |#1| |#2| |#3|) (LIST (QUOTE -303) (LIST (QUOTE -1159) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1159 |#1| |#2| |#3|) (LIST (QUOTE -523) (QUOTE (-1161)) (LIST (QUOTE -1159) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1159 |#1| |#2| |#3|) (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1159 |#1| |#2| |#3|) (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-568))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1159 |#1| |#2| |#3|) (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1159 |#1| |#2| |#3|) (LIST (QUOTE -881) (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1159 |#1| |#2| |#3|) (LIST (QUOTE -881) (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-568))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-568))))) (|HasSignature| |#1| (LIST (QUOTE -2745) (LIST (|devaluate| |#1|) (QUOTE (-1161)))))) (-12 (|HasCategory| (-1159 |#1| |#2| |#3|) (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1159 |#1| |#2| |#3|) (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| (-1159 |#1| |#2| |#3|) (QUOTE (-904))) (-12 (|HasCategory| (-1159 |#1| |#2| |#3|) (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| (-1159 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-148))) (-2198 (-12 (|HasCategory| (-1159 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2198 (-12 (|HasCategory| (-1159 |#1| |#2| |#3|) (QUOTE (-815))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1159 |#1| |#2| |#3|) (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-558)))) (-2198 (-12 (|HasCategory| (-1159 |#1| |#2| |#3|) (QUOTE (-815))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1159 |#1| |#2| |#3|) (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-172)))) (-12 (|HasCategory| (-1159 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-365)))) (-2198 (-12 (|HasCategory| (-1159 |#1| |#2| |#3|) (QUOTE (-815))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1159 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-365))))) (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (-2198 (-12 (|HasCategory| (-1159 |#1| |#2| |#3|) (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1159 |#1| |#2| |#3|) (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-568))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1159 |#1| |#2| |#3|) (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1159 |#1| |#2| |#3|) (LIST (QUOTE -281) (LIST (QUOTE -1159) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1159) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1159 |#1| |#2| |#3|) (LIST (QUOTE -303) (LIST (QUOTE -1159) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1159 |#1| |#2| |#3|) (LIST (QUOTE -523) (QUOTE (-1161)) (LIST (QUOTE -1159) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1159 |#1| |#2| |#3|) (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1159 |#1| |#2| |#3|) (LIST (QUOTE -881) (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1159 |#1| |#2| |#3|) (LIST (QUOTE -881) (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1159 |#1| |#2| |#3|) (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1159 |#1| |#2| |#3|) (LIST (QUOTE -1037) (QUOTE (-1161)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1159 |#1| |#2| |#3|) (QUOTE (-815))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1159 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1159 |#1| |#2| |#3|) (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1159 |#1| |#2| |#3|) (QUOTE (-1021))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1159 |#1| |#2| |#3|) (QUOTE (-1136))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568)))))) (-2198 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-568)))) (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1181)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasSignature| |#1| (LIST (QUOTE -3837) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1161))))) (|HasSignature| |#1| (LIST (QUOTE -2055) (LIST (LIST (QUOTE -634) (QUOTE (-1161))) (|devaluate| |#1|)))))) (-2198 (-12 (|HasCategory| (-1159 |#1| |#2| |#3|) (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568)))))) (-12 (|HasCategory| $ (QUOTE (-148))) (|HasCategory| (-1159 |#1| |#2| |#3|) (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-365)))) (-2198 (-12 (|HasCategory| $ (QUOTE (-148))) (|HasCategory| (-1159 |#1| |#2| |#3|) (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1159 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-148))))) +(-1152 R -1478) ((|constructor| (NIL "Computes sums of top-level expressions")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f}(a) + \\spad{f}(\\spad{a+1}) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n),{} n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n})."))) NIL NIL -(-1145 R) +(-1153 R) ((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\indented{1}{sum(\\spad{f}(\\spad{n}),{} \\spad{n} = a..\\spad{b}) returns \\spad{f(a) + f(a+1) + ... f(b)}.} \\blankline \\spad{X} sum(i::Fraction(Polynomial(Integer)),{}\\spad{i=1}..\\spad{n})") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\indented{1}{sum(\\spad{f}(\\spad{n}),{} \\spad{n} = a..\\spad{b}) returns \\spad{f(a) + f(a+1) + ... f(b)}.} \\blankline \\spad{X} sum(\\spad{i},{}\\spad{i=1}..\\spad{n})") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\indented{1}{sum(a(\\spad{n}),{} \\spad{n}) returns \\spad{A} which} \\indented{1}{is the indefinite sum of \\spad{a} with respect to} \\indented{1}{upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.} \\blankline \\spad{X} sum(i::Fraction(Polynomial(Integer)),{}i::Symbol)") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\indented{1}{sum(a(\\spad{n}),{} \\spad{n}) returns \\spad{A} which} \\indented{1}{is the indefinite sum of \\spad{a} with respect to} \\indented{1}{upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.} \\blankline \\spad{X} sum(i::Polynomial(Integer),{}variable(\\spad{i=1}..\\spad{n}))"))) NIL NIL -(-1146 R S) +(-1154 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1147 R) +(-1155 R) ((|constructor| (NIL "This domain has no description"))) -(((-4507 "*") |has| |#1| (-170)) (-4498 |has| |#1| (-550)) (-4501 |has| |#1| (-359)) (-4503 |has| |#1| (-6 -4503)) (-4500 . T) (-4499 . T) (-4502 . T)) -((|HasCategory| |#1| (QUOTE (-896))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-170))) (-2318 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| (-1067) (LIST (QUOTE -873) (QUOTE (-375)))) (|HasCategory| |#1| (LIST (QUOTE -873) (QUOTE (-375))))) (-12 (|HasCategory| (-1067) (LIST (QUOTE -873) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -873) (QUOTE (-560))))) (-12 (|HasCategory| (-1067) (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-375))))) (|HasCategory| |#1| (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-375)))))) (-12 (|HasCategory| (-1067) (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-560)))))) (-12 (|HasCategory| (-1067) (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-533))))) (|HasCategory| |#1| (QUOTE (-834))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-1128))) (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#1| (QUOTE (-1173))) (-2318 (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560)))))) (|HasCategory| |#1| (QUOTE (-221))) (|HasAttribute| |#1| (QUOTE -4503)) (|HasCategory| |#1| (QUOTE (-447))) (-2318 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-447))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-896)))) (-2318 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-447))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-896)))) (-2318 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-447))) (|HasCategory| |#1| (QUOTE (-896)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-896)))) (-2318 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-896)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-1148 E OV R P) +(((-4521 "*") |has| |#1| (-172)) (-4512 |has| |#1| (-558)) (-4515 |has| |#1| (-365)) (-4517 |has| |#1| (-6 -4517)) (-4514 . T) (-4513 . T) (-4516 . T)) +((|HasCategory| |#1| (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2198 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -881) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-381))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -881) (QUOTE (-568)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-568))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-381)))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-568))))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-568)))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-541))))) (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-150))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#1| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1136))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#1| (QUOTE (-1181))) (-2198 (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568)))))) (|HasCategory| |#1| (QUOTE (-225))) (|HasAttribute| |#1| (QUOTE -4517)) (|HasCategory| |#1| (QUOTE (-453))) (-2198 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-904)))) (-2198 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-904)))) (-2198 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-904)))) (-12 (|HasCategory| $ (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-904)))) (-2198 (-12 (|HasCategory| $ (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-148))))) +(-1156 E OV R P) ((|constructor| (NIL "SupFractionFactorize contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}."))) NIL NIL -(-1149 R) +(-1157 R) ((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented. Note that if the coefficient ring is a field,{} this domain forms a euclidean domain.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{x} : \\spad{p1} - \\spad{r} * x**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{}var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable."))) -(((-4507 "*") |has| |#1| (-170)) (-4498 |has| |#1| (-550)) (-4501 |has| |#1| (-359)) (-4503 |has| |#1| (-6 -4503)) (-4500 . T) (-4499 . T) (-4502 . T)) -((|HasCategory| |#1| (QUOTE (-896))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-170))) (-2318 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| (-1067) (LIST (QUOTE -873) (QUOTE (-375)))) (|HasCategory| |#1| (LIST (QUOTE -873) (QUOTE (-375))))) (-12 (|HasCategory| (-1067) (LIST (QUOTE -873) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -873) (QUOTE (-560))))) (-12 (|HasCategory| (-1067) (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-375))))) (|HasCategory| |#1| (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-375)))))) (-12 (|HasCategory| (-1067) (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-560)))))) (-12 (|HasCategory| (-1067) (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-533))))) (|HasCategory| |#1| (QUOTE (-834))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-1128))) (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-1153)))) (-2318 (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560)))))) (|HasCategory| |#1| (QUOTE (-221))) (|HasAttribute| |#1| (QUOTE -4503)) (|HasCategory| |#1| (QUOTE (-447))) (-2318 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-447))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-896)))) (-2318 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-447))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-896)))) (-2318 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-447))) (|HasCategory| |#1| (QUOTE (-896)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-896)))) (-2318 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-896)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-1150 |Coef| |var| |cen|) +(((-4521 "*") |has| |#1| (-172)) (-4512 |has| |#1| (-558)) (-4515 |has| |#1| (-365)) (-4517 |has| |#1| (-6 -4517)) (-4514 . T) (-4513 . T) (-4516 . T)) +((|HasCategory| |#1| (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2198 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -881) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-381))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -881) (QUOTE (-568)))) (|HasCategory| |#1| (LIST (QUOTE -881) (QUOTE (-568))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-381)))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-568))))) (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-568)))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-541))))) (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-150))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#1| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1136))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1161)))) (-2198 (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568)))))) (|HasCategory| |#1| (QUOTE (-225))) (|HasAttribute| |#1| (QUOTE -4517)) (|HasCategory| |#1| (QUOTE (-453))) (-2198 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-904)))) (-2198 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-904)))) (-2198 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-904)))) (-12 (|HasCategory| $ (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-904)))) (-2198 (-12 (|HasCategory| $ (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-148))))) +(-1158 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Puiseux series in one variable \\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spad{SparseUnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4507 "*") |has| |#1| (-170)) (-4498 |has| |#1| (-550)) (-4503 |has| |#1| (-359)) (-4497 |has| |#1| (-359)) (-4499 . T) (-4500 . T) (-4502 . T)) -((|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-170))) (-2318 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -403) (QUOTE (-560))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -403) (QUOTE (-560))) (|devaluate| |#1|))))) (|HasCategory| (-403 (-560)) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-359))) (-2318 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-550)))) (-2318 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -403) (QUOTE (-560)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -403) (QUOTE (-560)))))) (|HasSignature| |#1| (LIST (QUOTE -2801) (LIST (|devaluate| |#1|) (QUOTE (-1153)))))) (-2318 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-951))) (|HasCategory| |#1| (QUOTE (-1173)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasSignature| |#1| (LIST (QUOTE -2376) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1153))))) (|HasSignature| |#1| (LIST (QUOTE -1654) (LIST (LIST (QUOTE -626) (QUOTE (-1153))) (|devaluate| |#1|))))))) -(-1151 |Coef| |var| |cen|) +(((-4521 "*") |has| |#1| (-172)) (-4512 |has| |#1| (-558)) (-4517 |has| |#1| (-365)) (-4511 |has| |#1| (-365)) (-4513 . T) (-4514 . T) (-4516 . T)) +((|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2198 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-150))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-568))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-568))) (|devaluate| |#1|))))) (|HasCategory| (-409 (-568)) (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-365))) (-2198 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-2198 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-568)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-568)))))) (|HasSignature| |#1| (LIST (QUOTE -2745) (LIST (|devaluate| |#1|) (QUOTE (-1161)))))) (-2198 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-568)))) (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1181)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasSignature| |#1| (LIST (QUOTE -3837) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1161))))) (|HasSignature| |#1| (LIST (QUOTE -2055) (LIST (LIST (QUOTE -634) (QUOTE (-1161))) (|devaluate| |#1|))))))) +(-1159 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Taylor series in one variable \\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4507 "*") |has| |#1| (-170)) (-4498 |has| |#1| (-550)) (-4499 . T) (-4500 . T) (-4502 . T)) -((|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-170))) (-2318 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-755)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-755)) (|devaluate| |#1|))))) (|HasCategory| (-755) (QUOTE (-1094))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-755))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-755))))) (|HasSignature| |#1| (LIST (QUOTE -2801) (LIST (|devaluate| |#1|) (QUOTE (-1153)))))) (|HasCategory| |#1| (QUOTE (-359))) (-2318 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-951))) (|HasCategory| |#1| (QUOTE (-1173)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasSignature| |#1| (LIST (QUOTE -2376) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1153))))) (|HasSignature| |#1| (LIST (QUOTE -1654) (LIST (LIST (QUOTE -626) (QUOTE (-1153))) (|devaluate| |#1|))))))) -(-1152) +(((-4521 "*") |has| |#1| (-172)) (-4512 |has| |#1| (-558)) (-4513 . T) (-4514 . T) (-4516 . T)) +((|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2198 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-150))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-763)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-763)) (|devaluate| |#1|))))) (|HasCategory| (-763) (QUOTE (-1102))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-763))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-763))))) (|HasSignature| |#1| (LIST (QUOTE -2745) (LIST (|devaluate| |#1|) (QUOTE (-1161)))))) (|HasCategory| |#1| (QUOTE (-365))) (-2198 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-568)))) (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1181)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasSignature| |#1| (LIST (QUOTE -3837) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1161))))) (|HasSignature| |#1| (LIST (QUOTE -2055) (LIST (LIST (QUOTE -634) (QUOTE (-1161))) (|devaluate| |#1|))))))) +(-1160) ((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table."))) NIL NIL -(-1166) +(-1174) ((|constructor| (NIL "This package provides functions for template manipulation")) (|stripCommentsAndBlanks| (((|String|) (|String|)) "\\spad{stripCommentsAndBlanks(s)} treats \\spad{s} as a piece of AXIOM input,{} and removes comments,{} and leading and trailing blanks.")) (|interpretString| (((|Any|) (|String|)) "\\spad{interpretString(s)} treats a string as a piece of AXIOM input,{} by parsing and interpreting it."))) NIL NIL -(-1167 S) +(-1175 S) ((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format."))) NIL NIL -(-1168) +(-1176) ((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,{}strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,{}step,{}type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")) (|coerce| (($ (|OutputForm|)) "\\spad{coerce(o)} changes \\spad{o} in the standard output format to TeX format."))) NIL NIL -(-1169) +(-1177) ((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,{}\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,{}s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned."))) NIL NIL -(-1170 R) +(-1178 R) ((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented"))) NIL NIL -(-1171) +(-1179) ((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1172 S) +(-1180 S) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{\\spad{pi}()} returns the constant \\spad{pi}."))) NIL NIL -(-1173) +(-1181) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{\\spad{pi}()} returns the constant \\spad{pi}."))) NIL NIL -(-1174 S) +(-1182 S) ((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a node consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\indented{1}{cyclicParents(\\spad{t}) returns a list of cycles that are parents of \\spad{t}.} \\blankline \\spad{X} t1:=tree [1,{}2,{}3,{}4] \\spad{X} cyclicParents \\spad{t1}")) (|cyclicEqual?| (((|Boolean|) $ $) "\\indented{1}{cyclicEqual?(\\spad{t1},{} \\spad{t2}) tests of two cyclic trees have} \\indented{1}{the same structure.} \\blankline \\spad{X} t1:=tree [1,{}2,{}3,{}4] \\spad{X} t2:=tree [1,{}2,{}3,{}4] \\spad{X} cyclicEqual?(\\spad{t1},{}\\spad{t2})")) (|cyclicEntries| (((|List| $) $) "\\indented{1}{cyclicEntries(\\spad{t}) returns a list of top-level cycles in tree \\spad{t}.} \\blankline \\spad{X} t1:=tree [1,{}2,{}3,{}4] \\spad{X} cyclicEntries \\spad{t1}")) (|cyclicCopy| (($ $) "\\indented{1}{cyclicCopy(\\spad{l}) makes a copy of a (possibly) cyclic tree \\spad{l}.} \\blankline \\spad{X} t1:=tree [1,{}2,{}3,{}4] \\spad{X} cyclicCopy \\spad{t1}")) (|cyclic?| (((|Boolean|) $) "\\indented{1}{cyclic?(\\spad{t}) tests if \\spad{t} is a cyclic tree.} \\blankline \\spad{X} t1:=tree [1,{}2,{}3,{}4] \\spad{X} cyclic? \\spad{t1}")) (|tree| (($ |#1|) "\\indented{1}{tree(\\spad{nd}) creates a tree with value \\spad{nd},{} and no children} \\blankline \\spad{X} tree 6") (($ (|List| |#1|)) "\\indented{1}{tree(\\spad{ls}) creates a tree from a list of elements of \\spad{s}.} \\blankline \\spad{X} tree [1,{}2,{}3,{}4]") (($ |#1| (|List| $)) "\\indented{1}{tree(\\spad{nd},{}\\spad{ls}) creates a tree with value \\spad{nd},{} and children \\spad{ls}.} \\blankline \\spad{X} t1:=tree [1,{}2,{}3,{}4] \\spad{X} tree(5,{}[\\spad{t1}])"))) -((-4506 . T) (-4505 . T)) -((|HasCategory| |#1| (QUOTE (-1082))) (-12 (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1082))))) -(-1175 S) +((-4520 . T) (-4519 . T)) +((|HasCategory| |#1| (QUOTE (-1090))) (-12 (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1090))))) +(-1183 S) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1176) +(-1184) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1177 R -1333) +(-1185 R -1478) ((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL -(-1178 R |Row| |Col| M) +(-1186 R |Row| |Col| M) ((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}."))) NIL NIL -(-1179 R -1333) +(-1187 R -1478) ((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}"))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -601) (LIST (QUOTE -879) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -873) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -601) (LIST (QUOTE -879) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -873) (|devaluate| |#1|))))) -(-1180 S R E V P) +((-12 (|HasCategory| |#1| (LIST (QUOTE -609) (LIST (QUOTE -887) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -881) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -887) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -881) (|devaluate| |#1|))))) +(-1188 S R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}.")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#5|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category. If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}}. \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}.in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in \\axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) NIL -((|HasCategory| |#4| (QUOTE (-364)))) -(-1181 R E V P) +((|HasCategory| |#4| (QUOTE (-370)))) +(-1189 R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}.")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category. If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}}. \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}.in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in \\axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) -((-4506 . T) (-4505 . T) (-2537 . T)) +((-4520 . T) (-4519 . T) (-3973 . T)) NIL -(-1182 |Coef|) +(-1190 |Coef|) ((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}."))) -(((-4507 "*") |has| |#1| (-170)) (-4498 |has| |#1| (-550)) (-4500 . T) (-4499 . T) (-4502 . T)) -((|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-550))) (-2318 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-359)))) -(-1183 |Curve|) +(((-4521 "*") |has| |#1| (-172)) (-4512 |has| |#1| (-558)) (-4514 . T) (-4513 . T) (-4516 . T)) +((|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-150))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-558))) (-2198 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-365)))) +(-1191 |Curve|) ((|constructor| (NIL "Package for constructing tubes around 3-dimensional parametric curves. Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,{}ll,{}b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,{}b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}."))) NIL NIL -(-1184) +(-1192) ((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,{}n,{}b,{}r,{}lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form \\spad{[[cos(n-1) a,{}sin(n-1) a],{}...,{}[cos 2 a,{}sin 2 a],{}[cos a,{}sin a]]} where \\spad{a = 2 pi/n}. Note that \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note that \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,{}q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,{}x2,{}x3,{}c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point."))) NIL NIL -(-1185 S) +(-1193 S) ((|constructor| (NIL "This domain is used to interface with the interpreter\\spad{'s} notion of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\indented{1}{length(\\spad{x}) returns the number of elements in tuple \\spad{x}} \\blankline \\spad{X} t1:PrimitiveArray(Integer)\\spad{:=} [\\spad{i} for \\spad{i} in 1..10] \\spad{X} t2:=coerce(\\spad{t1})\\$Tuple(Integer) \\spad{X} length(\\spad{t2})")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\indented{1}{select(\\spad{x},{}\\spad{n}) returns the \\spad{n}-th element of tuple \\spad{x}.} \\indented{1}{tuples are 0-based} \\blankline \\spad{X} t1:PrimitiveArray(Integer)\\spad{:=} [\\spad{i} for \\spad{i} in 1..10] \\spad{X} t2:=coerce(\\spad{t1})\\$Tuple(Integer) \\spad{X} select(\\spad{t2},{}3)")) (|coerce| (($ (|PrimitiveArray| |#1|)) "\\indented{1}{coerce(a) makes a tuple from primitive array a} \\blankline \\spad{X} t1:PrimitiveArray(Integer)\\spad{:=} [\\spad{i} for \\spad{i} in 1..10] \\spad{X} t2:=coerce(\\spad{t1})\\$Tuple(Integer)"))) NIL -((|HasCategory| |#1| (QUOTE (-1082)))) -(-1186 -1333) +((|HasCategory| |#1| (QUOTE (-1090)))) +(-1194 -1478) ((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,{}n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}."))) NIL NIL -(-1187) +(-1195) ((|constructor| (NIL "The fundamental Type."))) -((-2537 . T)) +((-3973 . T)) NIL -(-1188 S) +(-1196 S) ((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a,{} b)} compares a and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if a and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by setOrder is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l,{} fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by \\spad{fn}.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a,{} b,{} fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a,{} b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,{}...,{}bm],{}[a1,{}...,{}an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < \\spad{ai}}\\space{2}for \\spad{c} not among the \\spad{ai}\\spad{'s} and \\spad{bj}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,{}d)} if neither is among the \\spad{ai}\\spad{'s},{}\\spad{bj}\\spad{'s}.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < \\spad{ai}\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b,{} c)} if neither is among the \\spad{ai}\\spad{'s}.}"))) NIL -((|HasCategory| |#1| (QUOTE (-834)))) -(-1189) +((|HasCategory| |#1| (QUOTE (-842)))) +(-1197) ((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,{}...,{}an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}."))) NIL NIL -(-1190 S) +(-1198 S) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) NIL NIL -(-1191) +(-1199) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) -((-4498 . T) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) +((-4512 . T) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) NIL -(-1192 |Coef|) +(-1200 |Coef|) ((|constructor| (NIL "This package has no description"))) NIL NIL -(-1193 |Coef|) +(-1201 |Coef|) ((|constructor| (NIL "This domain has no description"))) -(((-4507 "*") |has| |#1| (-170)) (-4498 |has| |#1| (-550)) (-4499 . T) (-4500 . T) (-4502 . T)) -((|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-170))) (-2318 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-755)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-755)) (|devaluate| |#1|))))) (|HasCategory| (-755) (QUOTE (-1094))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-755))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-755))))) (|HasSignature| |#1| (LIST (QUOTE -2801) (LIST (|devaluate| |#1|) (QUOTE (-1153)))))) (|HasCategory| |#1| (QUOTE (-359))) (-2318 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-951))) (|HasCategory| |#1| (QUOTE (-1173)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasSignature| |#1| (LIST (QUOTE -2376) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1153))))) (|HasSignature| |#1| (LIST (QUOTE -1654) (LIST (LIST (QUOTE -626) (QUOTE (-1153))) (|devaluate| |#1|))))))) -(-1194 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(((-4521 "*") |has| |#1| (-172)) (-4512 |has| |#1| (-558)) (-4513 . T) (-4514 . T) (-4516 . T)) +((|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2198 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-150))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-763)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-763)) (|devaluate| |#1|))))) (|HasCategory| (-763) (QUOTE (-1102))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-763))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-763))))) (|HasSignature| |#1| (LIST (QUOTE -2745) (LIST (|devaluate| |#1|) (QUOTE (-1161)))))) (|HasCategory| |#1| (QUOTE (-365))) (-2198 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-568)))) (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1181)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasSignature| |#1| (LIST (QUOTE -3837) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1161))))) (|HasSignature| |#1| (LIST (QUOTE -2055) (LIST (LIST (QUOTE -634) (QUOTE (-1161))) (|devaluate| |#1|))))))) +(-1202 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Laurent series This package allows one to apply a function to the coefficients of a univariate Laurent series.")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}."))) NIL NIL -(-1195 |Coef|) +(-1203 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,{}k1,{}k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,{}k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = n0..infinity,{}a[n] * x**n)) = sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4507 "*") |has| |#1| (-170)) (-4498 |has| |#1| (-550)) (-4503 |has| |#1| (-359)) (-4497 |has| |#1| (-359)) (-4499 . T) (-4500 . T) (-4502 . T)) +(((-4521 "*") |has| |#1| (-172)) (-4512 |has| |#1| (-558)) (-4517 |has| |#1| (-365)) (-4511 |has| |#1| (-365)) (-4513 . T) (-4514 . T) (-4516 . T)) NIL -(-1196 S |Coef| UTS) +(-1204 S |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|coerce| (($ |#3|) "\\spad{coerce(f(x))} converts the Taylor series \\spad{f(x)} to a Laurent series.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note that \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}."))) NIL -((|HasCategory| |#2| (QUOTE (-359)))) -(-1197 |Coef| UTS) +((|HasCategory| |#2| (QUOTE (-365)))) +(-1205 |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|coerce| (($ |#2|) "\\spad{coerce(f(x))} converts the Taylor series \\spad{f(x)} to a Laurent series.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note that \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}."))) -(((-4507 "*") |has| |#1| (-170)) (-4498 |has| |#1| (-550)) (-4503 |has| |#1| (-359)) (-4497 |has| |#1| (-359)) (-2537 |has| |#1| (-359)) (-4499 . T) (-4500 . T) (-4502 . T)) +(((-4521 "*") |has| |#1| (-172)) (-4512 |has| |#1| (-558)) (-4517 |has| |#1| (-365)) (-4511 |has| |#1| (-365)) (-3973 |has| |#1| (-365)) (-4513 . T) (-4514 . T) (-4516 . T)) NIL -(-1198 |Coef| UTS) +(-1206 |Coef| UTS) ((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}."))) -(((-4507 "*") |has| |#1| (-170)) (-4498 |has| |#1| (-550)) (-4503 |has| |#1| (-359)) (-4497 |has| |#1| (-359)) (-4499 . T) (-4500 . T) (-4502 . T)) -((|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-170))) (-2318 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| (-560) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-359))) (-2318 (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#2| (QUOTE (-148))))) (-2318 (-12 (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-1153)))))) (-2318 (-12 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#2| (QUOTE (-221)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|))))) (-2318 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-1153))))) (-12 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-533))))) (-12 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#2| (QUOTE (-1013)))) (-2318 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#2| (QUOTE (-807)))) (-12 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#2| (QUOTE (-1128)))) (-12 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#2| (LIST (QUOTE -276) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#2| (LIST (QUOTE -515) (QUOTE (-1153)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#2| (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#2| (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-375)))))) (-12 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#2| (LIST (QUOTE -873) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#2| (LIST (QUOTE -873) (QUOTE (-375))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-560))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-560))))) (|HasSignature| |#1| (LIST (QUOTE -2801) (LIST (|devaluate| |#1|) (QUOTE (-1153)))))) (-12 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#2| (QUOTE (-834)))) (-2318 (-12 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#2| (QUOTE (-807)))) (-12 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#2| (QUOTE (-834))))) (|HasCategory| |#2| (QUOTE (-896))) (-12 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#2| (QUOTE (-896)))) (-12 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#2| (QUOTE (-542)))) (-12 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#2| (QUOTE (-296)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-146))) (-2318 (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#2| (QUOTE (-146))))) (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (-2318 (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-533))))) (-12 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#2| (LIST (QUOTE -276) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#2| (LIST (QUOTE -515) (QUOTE (-1153)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-1153))))) (-12 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#2| (QUOTE (-807)))) (-12 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#2| (QUOTE (-834)))) (-12 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#2| (QUOTE (-896)))) (-12 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#2| (QUOTE (-1128))))) (-2318 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-951))) (|HasCategory| |#1| (QUOTE (-1173)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasSignature| |#1| (LIST (QUOTE -2376) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1153))))) (|HasSignature| |#1| (LIST (QUOTE -1654) (LIST (LIST (QUOTE -626) (QUOTE (-1153))) (|devaluate| |#1|)))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#2| (QUOTE (-896)))) (-2318 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#2| (QUOTE (-896)))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#2| (QUOTE (-146)))))) -(-1199 |Coef| |var| |cen|) +(((-4521 "*") |has| |#1| (-172)) (-4512 |has| |#1| (-558)) (-4517 |has| |#1| (-365)) (-4511 |has| |#1| (-365)) (-4513 . T) (-4514 . T) (-4516 . T)) +((|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2198 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| (-568) (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-365))) (-2198 (|HasCategory| |#1| (QUOTE (-150))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-150))))) (-2198 (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-568)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1161)))))) (-2198 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-225)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-568)) (|devaluate| |#1|))))) (-2198 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-1161))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-541))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1021)))) (-2198 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-568))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1136)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -281) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -523) (QUOTE (-1161)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -630) (QUOTE (-568))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-568)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-568))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-381))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-568))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-568))))) (|HasSignature| |#1| (LIST (QUOTE -2745) (LIST (|devaluate| |#1|) (QUOTE (-1161)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-842)))) (-2198 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-842))))) (|HasCategory| |#2| (QUOTE (-904))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-904)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-550)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-301)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-148))) (-2198 (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-148))))) (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (-2198 (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-541))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -281) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -523) (QUOTE (-1161)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-568))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-1161))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-842)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-904)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1021)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1136))))) (-2198 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-568)))) (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1181)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasSignature| |#1| (LIST (QUOTE -3837) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1161))))) (|HasSignature| |#1| (LIST (QUOTE -2055) (LIST (LIST (QUOTE -634) (QUOTE (-1161))) (|devaluate| |#1|)))))) (-12 (|HasCategory| $ (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-904)))) (-2198 (-12 (|HasCategory| $ (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-904)))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-148)))))) +(-1207 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Laurent series in one variable \\spadtype{UnivariateLaurentSeries} is a domain representing Laurent series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spad{UnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent series in \\spad{(x - 3)} with integer coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4507 "*") -2318 (-2256 (|has| |#1| (-359)) (|has| (-1227 |#1| |#2| |#3|) (-807))) (|has| |#1| (-170)) (-2256 (|has| |#1| (-359)) (|has| (-1227 |#1| |#2| |#3|) (-896)))) (-4498 -2318 (-2256 (|has| |#1| (-359)) (|has| (-1227 |#1| |#2| |#3|) (-807))) (|has| |#1| (-550)) (-2256 (|has| |#1| (-359)) (|has| (-1227 |#1| |#2| |#3|) (-896)))) (-4503 |has| |#1| (-359)) (-4497 |has| |#1| (-359)) (-4499 . T) (-4500 . T) (-4502 . T)) -((|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-170))) (-2318 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| (-560) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-359))) (-2318 (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-359)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2318 (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|)))))) (-2318 (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-221))) (|HasCategory| |#1| (QUOTE (-359)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|))))) (-2318 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -1029) (QUOTE (-1153)))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-359)))) (-2318 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-1128))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -276) (LIST (QUOTE -1227) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1227) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -298) (LIST (QUOTE -1227) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -515) (QUOTE (-1153)) (LIST (QUOTE -1227) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-375))))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -873) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -873) (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-359)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-560))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-560))))) (|HasSignature| |#1| (LIST (QUOTE -2801) (LIST (|devaluate| |#1|) (QUOTE (-1153)))))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-542))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-296))) (|HasCategory| |#1| (QUOTE (-359)))) (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-896))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-896))) (|HasCategory| |#1| (QUOTE (-359)))) (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2318 (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-359)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2318 (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-896))) (|HasCategory| |#1| (QUOTE (-359)))) (|HasCategory| |#1| (QUOTE (-550)))) (-2318 (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-896))) (|HasCategory| |#1| (QUOTE (-359)))) (|HasCategory| |#1| (QUOTE (-170)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-834))) (|HasCategory| |#1| (QUOTE (-359)))) (-2318 (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-834))) (|HasCategory| |#1| (QUOTE (-359))))) (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (-2318 (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-375))))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -276) (LIST (QUOTE -1227) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1227) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -298) (LIST (QUOTE -1227) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -515) (QUOTE (-1153)) (LIST (QUOTE -1227) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -873) (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -873) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -1029) (QUOTE (-1153)))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-807))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-834))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-896))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-1128))) (|HasCategory| |#1| (QUOTE (-359)))) (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560)))))) (-2318 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-951))) (|HasCategory| |#1| (QUOTE (-1173)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasSignature| |#1| (LIST (QUOTE -2376) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1153))))) (|HasSignature| |#1| (LIST (QUOTE -1654) (LIST (LIST (QUOTE -626) (QUOTE (-1153))) (|devaluate| |#1|)))))) (-2318 (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-359)))) (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560)))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-896))) (|HasCategory| |#1| (QUOTE (-359)))) (-2318 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-896))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-359)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-1200 ZP) +(((-4521 "*") -2198 (-2139 (|has| |#1| (-365)) (|has| (-1235 |#1| |#2| |#3|) (-815))) (|has| |#1| (-172)) (-2139 (|has| |#1| (-365)) (|has| (-1235 |#1| |#2| |#3|) (-904)))) (-4512 -2198 (-2139 (|has| |#1| (-365)) (|has| (-1235 |#1| |#2| |#3|) (-815))) (|has| |#1| (-558)) (-2139 (|has| |#1| (-365)) (|has| (-1235 |#1| |#2| |#3|) (-904)))) (-4517 |has| |#1| (-365)) (-4511 |has| |#1| (-365)) (-4513 . T) (-4514 . T) (-4516 . T)) +((|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2198 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| (-568) (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-365))) (-2198 (-12 (|HasCategory| (-1235 |#1| |#2| |#3|) (QUOTE (-150))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-150)))) (-2198 (-12 (|HasCategory| (-1235 |#1| |#2| |#3|) (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-568)) (|devaluate| |#1|)))))) (-2198 (-12 (|HasCategory| (-1235 |#1| |#2| |#3|) (QUOTE (-225))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-568)) (|devaluate| |#1|))))) (-2198 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| (-1235 |#1| |#2| |#3|) (LIST (QUOTE -1037) (QUOTE (-1161)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1235 |#1| |#2| |#3|) (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1235 |#1| |#2| |#3|) (QUOTE (-1021))) (|HasCategory| |#1| (QUOTE (-365)))) (-2198 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| (-1235 |#1| |#2| |#3|) (QUOTE (-815))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1235 |#1| |#2| |#3|) (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1235 |#1| |#2| |#3|) (QUOTE (-1136))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1235 |#1| |#2| |#3|) (LIST (QUOTE -281) (LIST (QUOTE -1235) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1235) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1235 |#1| |#2| |#3|) (LIST (QUOTE -303) (LIST (QUOTE -1235) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1235 |#1| |#2| |#3|) (LIST (QUOTE -523) (QUOTE (-1161)) (LIST (QUOTE -1235) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1235 |#1| |#2| |#3|) (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1235 |#1| |#2| |#3|) (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-568))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1235 |#1| |#2| |#3|) (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1235 |#1| |#2| |#3|) (LIST (QUOTE -881) (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1235 |#1| |#2| |#3|) (LIST (QUOTE -881) (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-568))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-568))))) (|HasSignature| |#1| (LIST (QUOTE -2745) (LIST (|devaluate| |#1|) (QUOTE (-1161)))))) (-12 (|HasCategory| (-1235 |#1| |#2| |#3|) (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1235 |#1| |#2| |#3|) (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| (-1235 |#1| |#2| |#3|) (QUOTE (-904))) (-12 (|HasCategory| (-1235 |#1| |#2| |#3|) (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| (-1235 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-148))) (-2198 (-12 (|HasCategory| (-1235 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2198 (-12 (|HasCategory| (-1235 |#1| |#2| |#3|) (QUOTE (-815))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1235 |#1| |#2| |#3|) (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-558)))) (-2198 (-12 (|HasCategory| (-1235 |#1| |#2| |#3|) (QUOTE (-815))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1235 |#1| |#2| |#3|) (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-172)))) (-12 (|HasCategory| (-1235 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-365)))) (-2198 (-12 (|HasCategory| (-1235 |#1| |#2| |#3|) (QUOTE (-815))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1235 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-365))))) (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (-2198 (-12 (|HasCategory| (-1235 |#1| |#2| |#3|) (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1235 |#1| |#2| |#3|) (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-568))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1235 |#1| |#2| |#3|) (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1235 |#1| |#2| |#3|) (LIST (QUOTE -281) (LIST (QUOTE -1235) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1235) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1235 |#1| |#2| |#3|) (LIST (QUOTE -303) (LIST (QUOTE -1235) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1235 |#1| |#2| |#3|) (LIST (QUOTE -523) (QUOTE (-1161)) (LIST (QUOTE -1235) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1235 |#1| |#2| |#3|) (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1235 |#1| |#2| |#3|) (LIST (QUOTE -881) (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1235 |#1| |#2| |#3|) (LIST (QUOTE -881) (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1235 |#1| |#2| |#3|) (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1235 |#1| |#2| |#3|) (LIST (QUOTE -1037) (QUOTE (-1161)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1235 |#1| |#2| |#3|) (QUOTE (-815))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1235 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1235 |#1| |#2| |#3|) (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1235 |#1| |#2| |#3|) (QUOTE (-1021))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1235 |#1| |#2| |#3|) (QUOTE (-1136))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568)))))) (-2198 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-568)))) (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1181)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasSignature| |#1| (LIST (QUOTE -3837) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1161))))) (|HasSignature| |#1| (LIST (QUOTE -2055) (LIST (LIST (QUOTE -634) (QUOTE (-1161))) (|devaluate| |#1|)))))) (-2198 (-12 (|HasCategory| (-1235 |#1| |#2| |#3|) (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568)))))) (-12 (|HasCategory| $ (QUOTE (-148))) (|HasCategory| (-1235 |#1| |#2| |#3|) (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-365)))) (-2198 (-12 (|HasCategory| $ (QUOTE (-148))) (|HasCategory| (-1235 |#1| |#2| |#3|) (QUOTE (-904))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1235 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-148))))) +(-1208 ZP) ((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,{}flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}"))) NIL NIL -(-1201 R S) +(-1209 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}."))) NIL -((|HasCategory| |#1| (QUOTE (-832)))) -(-1202 S) +((|HasCategory| |#1| (QUOTE (-840)))) +(-1210 S) ((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound."))) NIL -((|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-1082)))) -(-1203 |x| R |y| S) +((|HasCategory| |#1| (QUOTE (-840))) (|HasCategory| |#1| (QUOTE (-1090)))) +(-1211 |x| R |y| S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1204 R Q UP) +(-1212 R Q UP) ((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a \\spad{gcd} domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p,{} d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}."))) NIL NIL -(-1205 R UP) +(-1213 R UP) ((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} \\spad{fn} ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} \\spad{fn}).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,{}h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,{}d,{}c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,{}d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate."))) NIL NIL -(-1206 R UP) +(-1214 R UP) ((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,{}g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded."))) NIL NIL -(-1207 R U) +(-1215 R U) ((|constructor| (NIL "This package implements Karatsuba\\spad{'s} trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,{}b,{}l,{}k)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,{}b)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,{}b)} returns \\spad{a*b} without using Karatsuba\\spad{'s} trick at all."))) NIL NIL -(-1208 |x| R) +(-1216 |x| R) ((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented. Note that if the coefficient ring is a field,{} then this domain forms a euclidean domain.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{x} : \\spad{p1} - \\spad{r} * x**e * \\spad{p2}")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} converts the variable \\spad{x} to a univariate polynomial."))) -(((-4507 "*") |has| |#2| (-170)) (-4498 |has| |#2| (-550)) (-4501 |has| |#2| (-359)) (-4503 |has| |#2| (-6 -4503)) (-4500 . T) (-4499 . T) (-4502 . T)) -((|HasCategory| |#2| (QUOTE (-896))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-170))) (-2318 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-550)))) (-12 (|HasCategory| (-1067) (LIST (QUOTE -873) (QUOTE (-375)))) (|HasCategory| |#2| (LIST (QUOTE -873) (QUOTE (-375))))) (-12 (|HasCategory| (-1067) (LIST (QUOTE -873) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -873) (QUOTE (-560))))) (-12 (|HasCategory| (-1067) (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-375))))) (|HasCategory| |#2| (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-375)))))) (-12 (|HasCategory| (-1067) (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -601) (LIST (QUOTE -879) (QUOTE (-560)))))) (-12 (|HasCategory| (-1067) (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| |#2| (LIST (QUOTE -601) (QUOTE (-533))))) (|HasCategory| |#2| (QUOTE (-834))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-359))) (|HasCategory| |#2| (QUOTE (-1128))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-1153)))) (-2318 (|HasCategory| |#2| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560)))))) (|HasCategory| |#2| (QUOTE (-221))) (|HasAttribute| |#2| (QUOTE -4503)) (|HasCategory| |#2| (QUOTE (-447))) (-2318 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-359))) (|HasCategory| |#2| (QUOTE (-447))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-896)))) (-2318 (|HasCategory| |#2| (QUOTE (-359))) (|HasCategory| |#2| (QUOTE (-447))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-896)))) (-2318 (|HasCategory| |#2| (QUOTE (-359))) (|HasCategory| |#2| (QUOTE (-447))) (|HasCategory| |#2| (QUOTE (-896)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-896)))) (-2318 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-896)))) (|HasCategory| |#2| (QUOTE (-146))))) -(-1209 R PR S PS) +(((-4521 "*") |has| |#2| (-172)) (-4512 |has| |#2| (-558)) (-4515 |has| |#2| (-365)) (-4517 |has| |#2| (-6 -4517)) (-4514 . T) (-4513 . T) (-4516 . T)) +((|HasCategory| |#2| (QUOTE (-904))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-172))) (-2198 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-558)))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -881) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-381))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -881) (QUOTE (-568)))) (|HasCategory| |#2| (LIST (QUOTE -881) (QUOTE (-568))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-381)))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-568))))) (|HasCategory| |#2| (LIST (QUOTE -609) (LIST (QUOTE -887) (QUOTE (-568)))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| |#2| (LIST (QUOTE -609) (QUOTE (-541))))) (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (LIST (QUOTE -630) (QUOTE (-568)))) (|HasCategory| |#2| (QUOTE (-150))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#2| (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| |#2| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1136))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1161)))) (-2198 (|HasCategory| |#2| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#2| (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568)))))) (|HasCategory| |#2| (QUOTE (-225))) (|HasAttribute| |#2| (QUOTE -4517)) (|HasCategory| |#2| (QUOTE (-453))) (-2198 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-453))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-904)))) (-2198 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-453))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-904)))) (-2198 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-453))) (|HasCategory| |#2| (QUOTE (-904)))) (-12 (|HasCategory| $ (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-904)))) (-2198 (-12 (|HasCategory| $ (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-904)))) (|HasCategory| |#2| (QUOTE (-148))))) +(-1217 R PR S PS) ((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note that since the map is not applied to zero elements,{} it may map zero to zero."))) NIL NIL -(-1210 S R) +(-1218 S R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note that converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-359))) (|HasCategory| |#2| (QUOTE (-447))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-1128)))) -(-1211 R) +((|HasCategory| |#2| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-453))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1136)))) +(-1219 R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note that converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) -(((-4507 "*") |has| |#1| (-170)) (-4498 |has| |#1| (-550)) (-4501 |has| |#1| (-359)) (-4503 |has| |#1| (-6 -4503)) (-4500 . T) (-4499 . T) (-4502 . T)) +(((-4521 "*") |has| |#1| (-172)) (-4512 |has| |#1| (-558)) (-4515 |has| |#1| (-365)) (-4517 |has| |#1| (-6 -4517)) (-4514 . T) (-4513 . T) (-4516 . T)) NIL -(-1212 S |Coef| |Expon|) +(-1220 S |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note that this category exports a substitution function if it is possible to multiply exponents. Also note that this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#2| $ |#3|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1094))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -2801) (LIST (|devaluate| |#2|) (QUOTE (-1153)))))) -(-1213 |Coef| |Expon|) +((|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1102))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -2745) (LIST (|devaluate| |#2|) (QUOTE (-1161)))))) +(-1221 |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note that this category exports a substitution function if it is possible to multiply exponents. Also note that this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#1| $ |#2|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) -(((-4507 "*") |has| |#1| (-170)) (-4498 |has| |#1| (-550)) (-4499 . T) (-4500 . T) (-4502 . T)) +(((-4521 "*") |has| |#1| (-172)) (-4512 |has| |#1| (-558)) (-4513 . T) (-4514 . T) (-4516 . T)) NIL -(-1214 RC P) +(-1222 RC P) ((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,{}q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}."))) NIL NIL -(-1215 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(-1223 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}."))) NIL NIL -(-1216 |Coef|) +(-1224 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,{}r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,{}st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms."))) -(((-4507 "*") |has| |#1| (-170)) (-4498 |has| |#1| (-550)) (-4503 |has| |#1| (-359)) (-4497 |has| |#1| (-359)) (-4499 . T) (-4500 . T) (-4502 . T)) +(((-4521 "*") |has| |#1| (-172)) (-4512 |has| |#1| (-558)) (-4517 |has| |#1| (-365)) (-4511 |has| |#1| (-365)) (-4513 . T) (-4514 . T) (-4516 . T)) NIL -(-1217 S |Coef| ULS) +(-1225 S |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|coerce| (($ |#3|) "\\spad{coerce(f(x))} converts the Laurent series \\spad{f(x)} to a Puiseux series.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}."))) NIL NIL -(-1218 |Coef| ULS) +(-1226 |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|coerce| (($ |#2|) "\\spad{coerce(f(x))} converts the Laurent series \\spad{f(x)} to a Puiseux series.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}."))) -(((-4507 "*") |has| |#1| (-170)) (-4498 |has| |#1| (-550)) (-4503 |has| |#1| (-359)) (-4497 |has| |#1| (-359)) (-4499 . T) (-4500 . T) (-4502 . T)) +(((-4521 "*") |has| |#1| (-172)) (-4512 |has| |#1| (-558)) (-4517 |has| |#1| (-365)) (-4511 |has| |#1| (-365)) (-4513 . T) (-4514 . T) (-4516 . T)) NIL -(-1219 |Coef| ULS) +(-1227 |Coef| ULS) ((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}."))) -(((-4507 "*") |has| |#1| (-170)) (-4498 |has| |#1| (-550)) (-4503 |has| |#1| (-359)) (-4497 |has| |#1| (-359)) (-4499 . T) (-4500 . T) (-4502 . T)) -((|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-170))) (-2318 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -403) (QUOTE (-560))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -403) (QUOTE (-560))) (|devaluate| |#1|))))) (|HasCategory| (-403 (-560)) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-359))) (-2318 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-550)))) (-2318 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -403) (QUOTE (-560)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -403) (QUOTE (-560)))))) (|HasSignature| |#1| (LIST (QUOTE -2801) (LIST (|devaluate| |#1|) (QUOTE (-1153)))))) (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (-2318 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-951))) (|HasCategory| |#1| (QUOTE (-1173)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasSignature| |#1| (LIST (QUOTE -2376) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1153))))) (|HasSignature| |#1| (LIST (QUOTE -1654) (LIST (LIST (QUOTE -626) (QUOTE (-1153))) (|devaluate| |#1|))))))) -(-1220 |Coef| |var| |cen|) +(((-4521 "*") |has| |#1| (-172)) (-4512 |has| |#1| (-558)) (-4517 |has| |#1| (-365)) (-4511 |has| |#1| (-365)) (-4513 . T) (-4514 . T) (-4516 . T)) +((|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2198 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-150))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-568))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-568))) (|devaluate| |#1|))))) (|HasCategory| (-409 (-568)) (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-365))) (-2198 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-2198 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-568)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-568)))))) (|HasSignature| |#1| (LIST (QUOTE -2745) (LIST (|devaluate| |#1|) (QUOTE (-1161)))))) (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (-2198 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-568)))) (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1181)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasSignature| |#1| (LIST (QUOTE -3837) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1161))))) (|HasSignature| |#1| (LIST (QUOTE -2055) (LIST (LIST (QUOTE -634) (QUOTE (-1161))) (|devaluate| |#1|))))))) +(-1228 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Puiseux series in one variable \\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spad{UnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4507 "*") |has| |#1| (-170)) (-4498 |has| |#1| (-550)) (-4503 |has| |#1| (-359)) (-4497 |has| |#1| (-359)) (-4499 . T) (-4500 . T) (-4502 . T)) -((|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-170))) (-2318 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -403) (QUOTE (-560))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -403) (QUOTE (-560))) (|devaluate| |#1|))))) (|HasCategory| (-403 (-560)) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-359))) (-2318 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-550)))) (-2318 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -403) (QUOTE (-560)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -403) (QUOTE (-560)))))) (|HasSignature| |#1| (LIST (QUOTE -2801) (LIST (|devaluate| |#1|) (QUOTE (-1153)))))) (-2318 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-951))) (|HasCategory| |#1| (QUOTE (-1173)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasSignature| |#1| (LIST (QUOTE -2376) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1153))))) (|HasSignature| |#1| (LIST (QUOTE -1654) (LIST (LIST (QUOTE -626) (QUOTE (-1153))) (|devaluate| |#1|))))))) -(-1221 R FE |var| |cen|) +(((-4521 "*") |has| |#1| (-172)) (-4512 |has| |#1| (-558)) (-4517 |has| |#1| (-365)) (-4511 |has| |#1| (-365)) (-4513 . T) (-4514 . T) (-4516 . T)) +((|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2198 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-150))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-568))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-568))) (|devaluate| |#1|))))) (|HasCategory| (-409 (-568)) (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-365))) (-2198 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-2198 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-568)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-568)))))) (|HasSignature| |#1| (LIST (QUOTE -2745) (LIST (|devaluate| |#1|) (QUOTE (-1161)))))) (-2198 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-568)))) (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1181)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasSignature| |#1| (LIST (QUOTE -3837) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1161))))) (|HasSignature| |#1| (LIST (QUOTE -2055) (LIST (LIST (QUOTE -634) (QUOTE (-1161))) (|devaluate| |#1|))))))) +(-1229 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,{}f(var))}."))) -(((-4507 "*") |has| (-1220 |#2| |#3| |#4|) (-170)) (-4498 |has| (-1220 |#2| |#3| |#4|) (-550)) (-4499 . T) (-4500 . T) (-4502 . T)) -((|HasCategory| (-1220 |#2| |#3| |#4|) (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| (-1220 |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1220 |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1220 |#2| |#3| |#4|) (QUOTE (-170))) (|HasCategory| (-1220 |#2| |#3| |#4|) (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| (-1220 |#2| |#3| |#4|) (LIST (QUOTE -1029) (QUOTE (-560)))) (|HasCategory| (-1220 |#2| |#3| |#4|) (QUOTE (-359))) (|HasCategory| (-1220 |#2| |#3| |#4|) (QUOTE (-447))) (-2318 (|HasCategory| (-1220 |#2| |#3| |#4|) (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| (-1220 |#2| |#3| |#4|) (LIST (QUOTE -1029) (LIST (QUOTE -403) (QUOTE (-560)))))) (|HasCategory| (-1220 |#2| |#3| |#4|) (QUOTE (-550)))) -(-1222 A S) +(((-4521 "*") |has| (-1228 |#2| |#3| |#4|) (-172)) (-4512 |has| (-1228 |#2| |#3| |#4|) (-558)) (-4513 . T) (-4514 . T) (-4516 . T)) +((|HasCategory| (-1228 |#2| |#3| |#4|) (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| (-1228 |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1228 |#2| |#3| |#4|) (QUOTE (-150))) (|HasCategory| (-1228 |#2| |#3| |#4|) (QUOTE (-172))) (|HasCategory| (-1228 |#2| |#3| |#4|) (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| (-1228 |#2| |#3| |#4|) (LIST (QUOTE -1037) (QUOTE (-568)))) (|HasCategory| (-1228 |#2| |#3| |#4|) (QUOTE (-365))) (|HasCategory| (-1228 |#2| |#3| |#4|) (QUOTE (-453))) (-2198 (|HasCategory| (-1228 |#2| |#3| |#4|) (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| (-1228 |#2| |#3| |#4|) (LIST (QUOTE -1037) (LIST (QUOTE -409) (QUOTE (-568)))))) (|HasCategory| (-1228 |#2| |#3| |#4|) (QUOTE (-558)))) +(-1230 A S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note that afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note that \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note that \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note that \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note that \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note that if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note that \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note that for lists,{} \\axiom{last(\\spad{u})=u . (maxIndex \\spad{u})=u . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note that \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note that if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note that \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL -((|HasAttribute| |#1| (QUOTE -4506))) -(-1223 S) +((|HasAttribute| |#1| (QUOTE -4520))) +(-1231 S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note that afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note that \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note that \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note that \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note that \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note that if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note that \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note that for lists,{} \\axiom{last(\\spad{u})=u . (maxIndex \\spad{u})=u . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note that \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note that if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note that \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) -((-2537 . T)) +((-3973 . T)) NIL -(-1224 |Coef1| |Coef2| UTS1 UTS2) +(-1232 |Coef1| |Coef2| UTS1 UTS2) ((|constructor| (NIL "Mapping package for univariate Taylor series. This package allows one to apply a function to the coefficients of a univariate Taylor series.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}"))) NIL NIL -(-1225 S |Coef|) +(-1233 S |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-951))) (|HasCategory| |#2| (QUOTE (-1173))) (|HasSignature| |#2| (LIST (QUOTE -1654) (LIST (LIST (QUOTE -626) (QUOTE (-1153))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -2376) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1153))))) (|HasCategory| |#2| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-359)))) -(-1226 |Coef|) +((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-568)))) (|HasCategory| |#2| (QUOTE (-959))) (|HasCategory| |#2| (QUOTE (-1181))) (|HasSignature| |#2| (LIST (QUOTE -2055) (LIST (LIST (QUOTE -634) (QUOTE (-1161))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -3837) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1161))))) (|HasCategory| |#2| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#2| (QUOTE (-365)))) +(-1234 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4507 "*") |has| |#1| (-170)) (-4498 |has| |#1| (-550)) (-4499 . T) (-4500 . T) (-4502 . T)) +(((-4521 "*") |has| |#1| (-172)) (-4512 |has| |#1| (-558)) (-4513 . T) (-4514 . T) (-4516 . T)) NIL -(-1227 |Coef| |var| |cen|) +(-1235 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,{}b,{}f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,{}b,{}f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,{}f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4507 "*") |has| |#1| (-170)) (-4498 |has| |#1| (-550)) (-4499 . T) (-4500 . T) (-4502 . T)) -((|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-170))) (-2318 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-755)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-755)) (|devaluate| |#1|))))) (|HasCategory| (-755) (QUOTE (-1094))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-755))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-755))))) (|HasSignature| |#1| (LIST (QUOTE -2801) (LIST (|devaluate| |#1|) (QUOTE (-1153)))))) (|HasCategory| |#1| (QUOTE (-359))) (-2318 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-951))) (|HasCategory| |#1| (QUOTE (-1173)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasSignature| |#1| (LIST (QUOTE -2376) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1153))))) (|HasSignature| |#1| (LIST (QUOTE -1654) (LIST (LIST (QUOTE -626) (QUOTE (-1153))) (|devaluate| |#1|))))))) -(-1228 |Coef| UTS) +(((-4521 "*") |has| |#1| (-172)) (-4512 |has| |#1| (-558)) (-4513 . T) (-4514 . T) (-4516 . T)) +((|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2198 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-150))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-763)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-763)) (|devaluate| |#1|))))) (|HasCategory| (-763) (QUOTE (-1102))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-763))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-763))))) (|HasSignature| |#1| (LIST (QUOTE -2745) (LIST (|devaluate| |#1|) (QUOTE (-1161)))))) (|HasCategory| |#1| (QUOTE (-365))) (-2198 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-568)))) (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1181)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasSignature| |#1| (LIST (QUOTE -3837) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1161))))) (|HasSignature| |#1| (LIST (QUOTE -2055) (LIST (LIST (QUOTE -634) (QUOTE (-1161))) (|devaluate| |#1|))))))) +(-1236 |Coef| UTS) ((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}. This package provides Taylor series solutions to regular linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,{}f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,{}y[1],{}y[2],{}...,{}y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,{}cl)} is the solution to \\spad{y=f(y,{}y',{}..,{}y)} such that \\spad{y(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,{}c0,{}c1)} is the solution to \\spad{y'' = f(y,{}y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,{}c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,{}g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user."))) NIL NIL -(-1229 -1333 UP L UTS) +(-1237 -1478 UP L UTS) ((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series ODE solver when presented with linear ODEs.")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s,{} n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series."))) NIL -((|HasCategory| |#1| (QUOTE (-550)))) -(-1230 -1333 UTSF UTSSUPF) +((|HasCategory| |#1| (QUOTE (-558)))) +(-1238 -1478 UTSF UTSSUPF) ((|constructor| (NIL "This package has no description"))) NIL NIL -(-1231 |Coef| |var|) +(-1239 |Coef| |var|) ((|constructor| (NIL "Part of the Package for Algebraic Function Fields in one variable PAFF")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,{}b,{}f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,{}b,{}f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n)))=exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,{}f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4507 "*") |has| |#1| (-170)) (-4498 |has| |#1| (-550)) (-4499 . T) (-4500 . T) (-4502 . T)) -((|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-170))) (-2318 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-755)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-1153)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-755)) (|devaluate| |#1|))))) (|HasCategory| (-755) (QUOTE (-1094))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-755))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-755))))) (|HasSignature| |#1| (LIST (QUOTE -2801) (LIST (|devaluate| |#1|) (QUOTE (-1153)))))) (|HasCategory| |#1| (QUOTE (-359))) (-2318 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-951))) (|HasCategory| |#1| (QUOTE (-1173)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasSignature| |#1| (LIST (QUOTE -2376) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1153))))) (|HasSignature| |#1| (LIST (QUOTE -1654) (LIST (LIST (QUOTE -626) (QUOTE (-1153))) (|devaluate| |#1|))))))) -(-1232 |sym|) +(((-4521 "*") |has| |#1| (-172)) (-4512 |has| |#1| (-558)) (-4513 . T) (-4514 . T) (-4516 . T)) +((|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2198 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-150))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-763)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-1161)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-763)) (|devaluate| |#1|))))) (|HasCategory| (-763) (QUOTE (-1102))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-763))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-763))))) (|HasSignature| |#1| (LIST (QUOTE -2745) (LIST (|devaluate| |#1|) (QUOTE (-1161)))))) (|HasCategory| |#1| (QUOTE (-365))) (-2198 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-568)))) (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1181)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -43) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasSignature| |#1| (LIST (QUOTE -3837) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1161))))) (|HasSignature| |#1| (LIST (QUOTE -2055) (LIST (LIST (QUOTE -634) (QUOTE (-1161))) (|devaluate| |#1|))))))) +(-1240 |sym|) ((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol"))) NIL NIL -(-1233 S R) +(-1241 S R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) NIL -((|HasCategory| |#2| (QUOTE (-994))) (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (QUOTE (-708))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) -(-1234 R) +((|HasCategory| |#2| (QUOTE (-1002))) (|HasCategory| |#2| (QUOTE (-1047))) (|HasCategory| |#2| (QUOTE (-716))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) +(-1242 R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) -((-4506 . T) (-4505 . T) (-2537 . T)) +((-4520 . T) (-4519 . T) (-3973 . T)) NIL -(-1235 A B) +(-1243 A B) ((|constructor| (NIL "This package provides operations which all take as arguments vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-1236 R) +(-1244 R) ((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector."))) -((-4506 . T) (-4505 . T)) -((|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| |#1| (QUOTE (-834))) (-2318 (|HasCategory| |#1| (QUOTE (-834))) (|HasCategory| |#1| (QUOTE (-1082)))) (|HasCategory| (-560) (QUOTE (-834))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-708))) (|HasCategory| |#1| (QUOTE (-1039))) (-12 (|HasCategory| |#1| (QUOTE (-994))) (|HasCategory| |#1| (QUOTE (-1039)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1082)))) (-2318 (-12 (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-834)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1082)))))) -(-1237) +((-4520 . T) (-4519 . T)) +((|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-842))) (-2198 (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-1090)))) (|HasCategory| (-568) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-716))) (|HasCategory| |#1| (QUOTE (-1047))) (-12 (|HasCategory| |#1| (QUOTE (-1002))) (|HasCategory| |#1| (QUOTE (-1047)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1090)))) (-2198 (-12 (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-842)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1090)))))) +(-1245) ((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,{}gr,{}n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,{}n,{}s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,{}n,{}dx,{}dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,{}n,{}sx,{}sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,{}n,{}s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,{}n,{}s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,{}n,{}s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,{}n,{}c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,{}n,{}s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,{}n,{}c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,{}n,{}s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,{}n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,{}\\spad{gi},{}n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{\\spad{gi}} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{\\spad{gi}} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,{}num,{}sX,{}sY,{}dX,{}dY,{}pts,{}lns,{}box,{}axes,{}axesC,{}un,{}unC,{}cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(\\spad{gi},{}lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc."))) NIL NIL -(-1238) +(-1246) ((|constructor| (NIL "ThreeDimensionalViewport creates viewports to display graphs")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,{}c1,{}c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,{}i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,{}x,{}y,{}z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,{}s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,{}s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,{}s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,{}h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,{}d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,{}s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,{}dx,{}dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,{}sx,{}sy,{}sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,{}s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,{}s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,{}s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,{}s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,{}s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}rotx,{}roty,{}rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,{}viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{x},{}\\spad{y} and \\spad{z} scales,{} and the \\spad{x} and \\spad{y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,{}ind,{}pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,{}sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,{}lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,{}s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians."))) NIL NIL -(-1239) +(-1247) ((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewalone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewalone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,{}h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,{}y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport."))) NIL NIL -(-1240) +(-1248) ((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(\\spad{gi})} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}."))) NIL NIL -(-1241) +(-1249) ((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} coerces void object to outputForm.")) (|void| (($) "\\spad{void()} produces a void object."))) NIL NIL -(-1242 A S) +(-1250 A S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) NIL NIL -(-1243 S) +(-1251 S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) -((-4500 . T) (-4499 . T)) +((-4514 . T) (-4513 . T)) NIL -(-1244 R) +(-1252 R) ((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]\\spad{*v**2} + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,{}s,{}st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,{}ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,{}s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally."))) NIL NIL -(-1245 K R UP -1333) +(-1253 K R UP -1478) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}."))) NIL NIL -(-1246 R |VarSet| E P |vl| |wl| |wtlevel|) +(-1254 R |VarSet| E P |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")) (|coerce| (($ |#4|) "\\spad{coerce(p)} coerces \\spad{p} into Weighted form,{} applying weights and ignoring terms") ((|#4| $) "convert back into a \\spad{\"P\"},{} ignoring weights"))) -((-4500 |has| |#1| (-170)) (-4499 |has| |#1| (-170)) (-4502 . T)) -((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-359)))) -(-1247 R E V P) +((-4514 |has| |#1| (-172)) (-4513 |has| |#1| (-172)) (-4516 . T)) +((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365)))) +(-1255 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The construct operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}."))) -((-4506 . T) (-4505 . T)) -((|HasCategory| |#4| (LIST (QUOTE -601) (QUOTE (-533)))) (|HasCategory| |#4| (QUOTE (-1082))) (-12 (|HasCategory| |#4| (LIST (QUOTE -298) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (-1082)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#3| (QUOTE (-364)))) -(-1248 R) +((-4520 . T) (-4519 . T)) +((|HasCategory| |#4| (LIST (QUOTE -609) (QUOTE (-541)))) (|HasCategory| |#4| (QUOTE (-1090))) (-12 (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#3| (QUOTE (-370)))) +(-1256 R) ((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as XPolynomialRing and XFreeAlgebra")) (|coerce| (($ |#1|) "\\spad{coerce(r)} equals \\spad{r*1}."))) -((-4499 . T) (-4500 . T) (-4502 . T)) +((-4513 . T) (-4514 . T) (-4516 . T)) NIL -(-1249 |vl| R) +(-1257 |vl| R) ((|constructor| (NIL "This type supports distributed multivariate polynomials whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute."))) -((-4502 . T) (-4498 |has| |#2| (-6 -4498)) (-4500 . T) (-4499 . T)) -((|HasCategory| |#2| (QUOTE (-170))) (|HasAttribute| |#2| (QUOTE -4498))) -(-1250 R |VarSet| XPOLY) +((-4516 . T) (-4512 |has| |#2| (-6 -4512)) (-4514 . T) (-4513 . T)) +((|HasCategory| |#2| (QUOTE (-172))) (|HasAttribute| |#2| (QUOTE -4512))) +(-1258 R |VarSet| XPOLY) ((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables.")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}."))) NIL NIL -(-1251 |vl| R) +(-1259 |vl| R) ((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,{}n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,{}y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,{}r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,{}y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,{}w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,{}v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,{}y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,{}w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,{}v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,{}y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,{}w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}."))) -((-4498 |has| |#2| (-6 -4498)) (-4500 . T) (-4499 . T) (-4502 . T)) +((-4512 |has| |#2| (-6 -4512)) (-4514 . T) (-4513 . T) (-4516 . T)) NIL -(-1252 S -1333) +(-1260 S -1478) ((|constructor| (NIL "ExtensionField \\spad{F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) NIL -((|HasCategory| |#2| (QUOTE (-364))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148)))) -(-1253 -1333) +((|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-150)))) +(-1261 -1478) ((|constructor| (NIL "ExtensionField \\spad{F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) -((-4497 . T) (-4503 . T) (-4498 . T) ((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) +((-4511 . T) (-4517 . T) (-4512 . T) ((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) NIL -(-1254 |VarSet| R) +(-1262 |VarSet| R) ((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations.")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}."))) -((-4498 |has| |#2| (-6 -4498)) (-4500 . T) (-4499 . T) (-4502 . T)) -((|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -699) (LIST (QUOTE -403) (QUOTE (-560))))) (|HasAttribute| |#2| (QUOTE -4498))) -(-1255 |vl| R) +((-4512 |has| |#2| (-6 -4512)) (-4514 . T) (-4513 . T) (-4516 . T)) +((|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -707) (LIST (QUOTE -409) (QUOTE (-568))))) (|HasAttribute| |#2| (QUOTE -4512))) +(-1263 |vl| R) ((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,{}n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}."))) -((-4498 |has| |#2| (-6 -4498)) (-4500 . T) (-4499 . T) (-4502 . T)) +((-4512 |has| |#2| (-6 -4512)) (-4514 . T) (-4513 . T) (-4516 . T)) NIL -(-1256 R) +(-1264 R) ((|constructor| (NIL "This type supports multivariate polynomials whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute."))) -((-4498 |has| |#1| (-6 -4498)) (-4500 . T) (-4499 . T) (-4502 . T)) -((|HasCategory| |#1| (QUOTE (-170))) (|HasAttribute| |#1| (QUOTE -4498))) -(-1257 R E) +((-4512 |has| |#1| (-6 -4512)) (-4514 . T) (-4513 . T) (-4516 . T)) +((|HasCategory| |#1| (QUOTE (-172))) (|HasAttribute| |#1| (QUOTE -4512))) +(-1265 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,{}e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|coerce| (($ |#2|) "\\spad{coerce(e)} returns \\spad{1*e}")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}."))) -((-4502 . T) (-4503 |has| |#1| (-6 -4503)) (-4498 |has| |#1| (-6 -4498)) (-4500 . T) (-4499 . T)) -((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-359))) (|HasAttribute| |#1| (QUOTE -4502)) (|HasAttribute| |#1| (QUOTE -4503)) (|HasAttribute| |#1| (QUOTE -4498))) -(-1258 |VarSet| R) +((-4516 . T) (-4517 |has| |#1| (-6 -4517)) (-4512 |has| |#1| (-6 -4512)) (-4514 . T) (-4513 . T)) +((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4516)) (|HasAttribute| |#1| (QUOTE -4517)) (|HasAttribute| |#1| (QUOTE -4512))) +(-1266 |VarSet| R) ((|constructor| (NIL "This type supports multivariate polynomials whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form."))) -((-4498 |has| |#2| (-6 -4498)) (-4500 . T) (-4499 . T) (-4502 . T)) -((|HasCategory| |#2| (QUOTE (-170))) (|HasAttribute| |#2| (QUOTE -4498))) -(-1259 A) +((-4512 |has| |#2| (-6 -4512)) (-4514 . T) (-4513 . T) (-4516 . T)) +((|HasCategory| |#2| (QUOTE (-172))) (|HasAttribute| |#2| (QUOTE -4512))) +(-1267 A) ((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,{}n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}."))) NIL NIL -(-1260 R |ls| |ls2|) +(-1268 R |ls| |ls2|) ((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,{}s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING. The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations univariateSolve,{} realSolve and positiveSolve admit an optional argument.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}.") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING. \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,{}false,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,{}info?,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,{}info?,{}lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see zeroSetSplit from LexTriangularPackage(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the zeroSetSplit from \\spadtype{RegularChain}. WARNING. For each set of coordinates given by \\spad{positiveSolve(lp,{}info?,{}lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,{}false,{}false,{}false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,{}info?)} returns the same as \\spad{realSolve(ts,{}info?,{}false,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,{}info?,{}check?)} returns the same as \\spad{realSolve(ts,{}info?,{}check?,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,{}info?,{}check?,{}lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see zeroSetSplit from LexTriangularPackage(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the zeroSetSplit from \\spadtype{RegularChain}. WARNING. For each set of coordinates given by \\spad{realSolve(ts,{}info?,{}check?,{}lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING. For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,{}false,{}false,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?)} returns the same as \\spad{univariateSolve(lp,{}info?,{}false,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?,{}check?)} returns the same as \\spad{univariateSolve(lp,{}info?,{}check?,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?,{}check?,{}lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See rur from RationalUnivariateRepresentationPackage(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see zeroSetSplit from LexTriangularPackage(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the zeroSetSplit from RegularChain") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See rur from RationalUnivariateRepresentationPackage(\\spad{lp},{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,{}false,{}false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,{}info?)} returns the same as \\spad{triangSolve(lp,{}false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,{}info?,{}lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See zeroSetSplit from RegularTriangularSetCategory(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see zeroSetSplit from LexTriangularPackage(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the zeroSetSplit from RegularChain"))) NIL NIL -(-1261 R) +(-1269 R) ((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}\\spad{'s} exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over the integers,{} \\spad{false} otherwise."))) NIL NIL -(-1262 |p|) +(-1270 |p|) ((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}."))) -(((-4507 "*") . T) (-4499 . T) (-4500 . T) (-4502 . T)) +(((-4521 "*") . T) (-4513 . T) (-4514 . T) (-4516 . T)) NIL NIL NIL @@ -5000,4 +5032,4 @@ NIL NIL NIL NIL -((-1267 NIL 2456407 2456412 2456417 2456422) (-3 NIL 2456387 2456392 2456397 2456402) (-2 NIL 2456367 2456372 2456377 2456382) (-1 NIL 2456347 2456352 2456357 2456362) (0 NIL 2456327 2456332 2456337 2456342) (-1262 "bookvol10.3.pamphlet" 2456136 2456149 2456265 2456322) (-1261 "bookvol10.4.pamphlet" 2455180 2455191 2456126 2456131) (-1260 "bookvol10.4.pamphlet" 2445420 2445442 2455170 2455175) (-1259 "bookvol10.4.pamphlet" 2444913 2444924 2445410 2445415) (-1258 "bookvol10.3.pamphlet" 2444148 2444168 2444769 2444838) (-1257 "bookvol10.3.pamphlet" 2441877 2441890 2443866 2443965) (-1256 "bookvol10.3.pamphlet" 2441447 2441458 2441733 2441802) (-1255 "bookvol10.2.pamphlet" 2440764 2440780 2441373 2441442) (-1254 "bookvol10.3.pamphlet" 2439261 2439281 2440544 2440613) (-1253 "bookvol10.2.pamphlet" 2437721 2437736 2439163 2439256) (-1252 NIL 2436161 2436178 2437605 2437610) (-1251 "bookvol10.2.pamphlet" 2433186 2433202 2436087 2436156) (-1250 "bookvol10.4.pamphlet" 2432497 2432523 2433176 2433181) (-1249 "bookvol10.3.pamphlet" 2432126 2432142 2432353 2432422) (-1248 "bookvol10.2.pamphlet" 2431825 2431836 2432082 2432121) (-1247 "bookvol10.3.pamphlet" 2428099 2428116 2431527 2431554) (-1246 "bookvol10.3.pamphlet" 2427113 2427157 2427957 2428024) (-1245 "bookvol10.4.pamphlet" 2424676 2424698 2427103 2427108) (-1244 "bookvol10.4.pamphlet" 2422882 2422893 2424666 2424671) (-1243 "bookvol10.2.pamphlet" 2422555 2422566 2422850 2422877) (-1242 NIL 2422248 2422261 2422545 2422550) (-1241 "bookvol10.3.pamphlet" 2421838 2421847 2422238 2422243) (-1240 "bookvol10.4.pamphlet" 2419460 2419469 2421828 2421833) (-1239 "bookvol10.4.pamphlet" 2414657 2414666 2419450 2419455) (-1238 "bookvol10.3.pamphlet" 2398411 2398420 2414647 2414652) (-1237 "bookvol10.3.pamphlet" 2386148 2386157 2398401 2398406) (-1236 "bookvol10.3.pamphlet" 2385046 2385057 2385297 2385324) (-1235 "bookvol10.4.pamphlet" 2383688 2383701 2385036 2385041) (-1234 "bookvol10.2.pamphlet" 2381576 2381587 2383644 2383683) (-1233 NIL 2379284 2379297 2381354 2381359) (-1232 "bookvol10.3.pamphlet" 2379064 2379079 2379274 2379279) (-1231 "bookvol10.3.pamphlet" 2374248 2374270 2377531 2377628) (-1230 "bookvol10.4.pamphlet" 2374151 2374179 2374238 2374243) (-1229 "bookvol10.4.pamphlet" 2373459 2373483 2374107 2374112) (-1228 "bookvol10.4.pamphlet" 2371611 2371631 2373449 2373454) (-1227 "bookvol10.3.pamphlet" 2366400 2366428 2370078 2370175) (-1226 "bookvol10.2.pamphlet" 2363851 2363867 2366298 2366395) (-1225 NIL 2360946 2360964 2363395 2363400) (-1224 "bookvol10.4.pamphlet" 2360569 2360604 2360936 2360941) (-1223 "bookvol10.2.pamphlet" 2355167 2355178 2360549 2360564) (-1222 NIL 2349739 2349752 2355123 2355128) (-1221 "bookvol10.3.pamphlet" 2347382 2347408 2348820 2348953) (-1220 "bookvol10.3.pamphlet" 2344517 2344545 2345514 2345663) (-1219 "bookvol10.3.pamphlet" 2342274 2342294 2342649 2342798) (-1218 "bookvol10.2.pamphlet" 2340732 2340752 2342120 2342269) (-1217 NIL 2339332 2339354 2340722 2340727) (-1216 "bookvol10.2.pamphlet" 2337913 2337929 2339178 2339327) (-1215 "bookvol10.4.pamphlet" 2337454 2337507 2337903 2337908) (-1214 "bookvol10.4.pamphlet" 2335866 2335880 2337444 2337449) (-1213 "bookvol10.2.pamphlet" 2333446 2333470 2335764 2335861) (-1212 NIL 2330732 2330758 2333052 2333057) (-1211 "bookvol10.2.pamphlet" 2325706 2325717 2330574 2330727) (-1210 NIL 2320572 2320585 2325442 2325447) (-1209 "bookvol10.4.pamphlet" 2320037 2320056 2320562 2320567) (-1208 "bookvol10.3.pamphlet" 2316988 2317003 2317587 2317740) (-1207 "bookvol10.4.pamphlet" 2315878 2315891 2316978 2316983) (-1206 "bookvol10.4.pamphlet" 2315441 2315455 2315868 2315873) (-1205 "bookvol10.4.pamphlet" 2313678 2313692 2315431 2315436) (-1204 "bookvol10.4.pamphlet" 2312885 2312901 2313668 2313673) (-1203 "bookvol10.4.pamphlet" 2312247 2312268 2312875 2312880) (-1202 "bookvol10.3.pamphlet" 2311600 2311611 2312166 2312171) (-1201 "bookvol10.4.pamphlet" 2311093 2311106 2311556 2311561) (-1200 "bookvol10.4.pamphlet" 2310194 2310206 2311083 2311088) (-1199 "bookvol10.3.pamphlet" 2300854 2300882 2301839 2302268) (-1198 "bookvol10.3.pamphlet" 2294891 2294911 2295263 2295412) (-1197 "bookvol10.2.pamphlet" 2292484 2292504 2294711 2294886) (-1196 NIL 2290211 2290233 2292440 2292445) (-1195 "bookvol10.2.pamphlet" 2288427 2288443 2290057 2290206) (-1194 "bookvol10.4.pamphlet" 2287969 2288022 2288417 2288422) (-1193 "bookvol10.3.pamphlet" 2286362 2286378 2286436 2286533) (-1192 "bookvol10.4.pamphlet" 2286277 2286293 2286352 2286357) (-1191 "bookvol10.2.pamphlet" 2285342 2285351 2286203 2286272) (-1190 NIL 2284469 2284480 2285332 2285337) (-1189 "bookvol10.4.pamphlet" 2283316 2283325 2284459 2284464) (-1188 "bookvol10.4.pamphlet" 2280802 2280813 2283272 2283277) (-1187 "bookvol10.2.pamphlet" 2280724 2280733 2280782 2280797) (-1186 "bookvol10.4.pamphlet" 2279374 2279389 2280714 2280719) (-1185 "bookvol10.3.pamphlet" 2278277 2278288 2279329 2279334) (-1184 "bookvol10.4.pamphlet" 2275111 2275120 2278267 2278272) (-1183 "bookvol10.3.pamphlet" 2273767 2273784 2275101 2275106) (-1182 "bookvol10.3.pamphlet" 2272356 2272372 2273332 2273429) (-1181 "bookvol10.2.pamphlet" 2259666 2259683 2272312 2272351) (-1180 NIL 2246974 2246993 2259622 2259627) (-1179 "bookvol10.4.pamphlet" 2241340 2241357 2246680 2246685) (-1178 "bookvol10.4.pamphlet" 2240299 2240324 2241330 2241335) (-1177 "bookvol10.4.pamphlet" 2238816 2238833 2240289 2240294) (-1176 "bookvol10.2.pamphlet" 2238328 2238337 2238806 2238811) (-1175 NIL 2237838 2237849 2238318 2238323) (-1174 "bookvol10.3.pamphlet" 2235887 2235898 2237668 2237695) (-1173 "bookvol10.2.pamphlet" 2235718 2235727 2235877 2235882) (-1172 NIL 2235547 2235558 2235708 2235713) (-1171 "bookvol10.4.pamphlet" 2235221 2235230 2235537 2235542) (-1170 "bookvol10.4.pamphlet" 2234884 2234895 2235211 2235216) (-1169 "bookvol10.3.pamphlet" 2233441 2233450 2234874 2234879) (-1168 "bookvol10.3.pamphlet" 2230458 2230467 2233431 2233436) (-1167 "bookvol10.4.pamphlet" 2230014 2230025 2230448 2230453) (-1166 "bookvol10.4.pamphlet" 2229569 2229578 2230004 2230009) (-1165 "bookvol10.4.pamphlet" 2227662 2227685 2229559 2229564) (-1164 "bookvol10.2.pamphlet" 2226509 2226532 2227630 2227657) (-1163 NIL 2225376 2225401 2226499 2226504) (-1162 "bookvol10.4.pamphlet" 2224752 2224763 2225366 2225371) (-1161 "bookvol10.3.pamphlet" 2223725 2223748 2223995 2224022) (-1160 "bookvol10.3.pamphlet" 2223221 2223232 2223715 2223720) (-1159 "bookvol10.4.pamphlet" 2220073 2220084 2223211 2223216) (-1158 "bookvol10.4.pamphlet" 2216666 2216677 2220063 2220068) (-1157 "bookvol10.3.pamphlet" 2214719 2214728 2216656 2216661) (-1156 "bookvol10.3.pamphlet" 2210704 2210713 2214709 2214714) (-1155 "bookvol10.3.pamphlet" 2209711 2209722 2209793 2209920) (-1154 "bookvol10.4.pamphlet" 2209186 2209197 2209701 2209706) (-1153 "bookvol10.3.pamphlet" 2206514 2206523 2209176 2209181) (-1152 "bookvol10.3.pamphlet" 2203270 2203279 2206504 2206509) (-1151 "bookvol10.3.pamphlet" 2200277 2200305 2201737 2201834) (-1150 "bookvol10.3.pamphlet" 2197399 2197427 2198409 2198558) (-1149 "bookvol10.3.pamphlet" 2194082 2194093 2194949 2195102) (-1148 "bookvol10.4.pamphlet" 2193202 2193220 2194072 2194077) (-1147 "bookvol10.3.pamphlet" 2190646 2190657 2190715 2190868) (-1146 "bookvol10.4.pamphlet" 2190036 2190049 2190636 2190641) (-1145 "bookvol10.4.pamphlet" 2188514 2188525 2190026 2190031) (-1144 "bookvol10.4.pamphlet" 2188140 2188157 2188504 2188509) (-1143 "bookvol10.3.pamphlet" 2178787 2178815 2179785 2180214) (-1142 "bookvol10.3.pamphlet" 2178467 2178482 2178777 2178782) (-1141 "bookvol10.3.pamphlet" 2170438 2170453 2178457 2178462) (-1140 "bookvol10.4.pamphlet" 2169610 2169624 2170394 2170399) (-1139 "bookvol10.4.pamphlet" 2165709 2165725 2169600 2169605) (-1138 "bookvol10.4.pamphlet" 2162177 2162193 2165699 2165704) (-1137 "bookvol10.4.pamphlet" 2154577 2154588 2162058 2162063) (-1136 "bookvol10.3.pamphlet" 2153656 2153673 2153805 2153832) (-1135 "bookvol10.3.pamphlet" 2153039 2153048 2153137 2153164) (-1134 "bookvol10.2.pamphlet" 2152815 2152824 2152995 2153034) (-1133 "bookvol10.3.pamphlet" 2147763 2147774 2152563 2152578) (-1132 "bookvol10.4.pamphlet" 2146974 2146989 2147753 2147758) (-1131 "bookvol10.4.pamphlet" 2145183 2145196 2146964 2146969) (-1130 "bookvol10.4.pamphlet" 2144607 2144618 2145173 2145178) (-1129 "bookvol10.4.pamphlet" 2143513 2143529 2144597 2144602) (-1128 "bookvol10.2.pamphlet" 2142719 2142728 2143503 2143508) (-1127 "bookvol10.3.pamphlet" 2141807 2141835 2141974 2141989) (-1126 "bookvol10.2.pamphlet" 2140864 2140875 2141787 2141802) (-1125 NIL 2139929 2139942 2140854 2140859) (-1124 "bookvol10.3.pamphlet" 2135554 2135565 2139759 2139786) (-1123 "bookvol10.3.pamphlet" 2133597 2133614 2135256 2135283) (-1122 "bookvol10.4.pamphlet" 2132324 2132344 2133587 2133592) (-1121 "bookvol10.2.pamphlet" 2127367 2127376 2132280 2132319) (-1120 NIL 2122442 2122453 2127357 2127362) (-1119 "bookvol10.3.pamphlet" 2120122 2120140 2121030 2121117) (-1118 "bookvol10.3.pamphlet" 2114989 2115002 2119873 2119900) (-1117 "bookvol10.3.pamphlet" 2111529 2111542 2114979 2114984) (-1116 "bookvol10.2.pamphlet" 2110306 2110315 2111519 2111524) (-1115 "bookvol10.4.pamphlet" 2108871 2108880 2110296 2110301) (-1114 "bookvol10.2.pamphlet" 2092698 2092709 2108861 2108866) (-1113 "bookvol10.3.pamphlet" 2092474 2092485 2092688 2092693) (-1112 "bookvol10.4.pamphlet" 2092019 2092032 2092430 2092435) (-1111 "bookvol10.4.pamphlet" 2089612 2089623 2092009 2092014) (-1110 "bookvol10.4.pamphlet" 2088177 2088188 2089602 2089607) (-1109 "bookvol10.4.pamphlet" 2081604 2081615 2088167 2088172) (-1108 "bookvol10.4.pamphlet" 2080024 2080042 2081594 2081599) (-1107 "bookvol10.2.pamphlet" 2079791 2079808 2079980 2080019) (-1106 "bookvol10.3.pamphlet" 2077907 2077933 2079356 2079453) (-1105 "bookvol10.3.pamphlet" 2075361 2075381 2075736 2075863) (-1104 "bookvol10.4.pamphlet" 2074204 2074229 2075351 2075356) (-1103 "bookvol10.2.pamphlet" 2072302 2072332 2074136 2074199) (-1102 NIL 2070344 2070376 2072180 2072185) (-1101 "bookvol10.2.pamphlet" 2068782 2068793 2070300 2070339) (-1100 "bookvol10.3.pamphlet" 2067147 2067156 2068648 2068777) (-1099 "bookvol10.4.pamphlet" 2066890 2066899 2067137 2067142) (-1098 "bookvol10.4.pamphlet" 2065998 2066009 2066880 2066885) (-1097 "bookvol10.4.pamphlet" 2065267 2065284 2065988 2065993) (-1096 "bookvol10.4.pamphlet" 2063137 2063152 2065223 2065228) (-1095 "bookvol10.3.pamphlet" 2054850 2054877 2055352 2055483) (-1094 "bookvol10.2.pamphlet" 2054085 2054094 2054840 2054845) (-1093 NIL 2053318 2053329 2054075 2054080) (-1092 "bookvol10.4.pamphlet" 2046344 2046353 2053308 2053313) (-1091 "bookvol10.2.pamphlet" 2045823 2045840 2046300 2046339) (-1090 "bookvol10.4.pamphlet" 2045522 2045542 2045813 2045818) (-1089 "bookvol10.4.pamphlet" 2040847 2040867 2045512 2045517) (-1088 "bookvol10.3.pamphlet" 2040282 2040296 2040837 2040842) (-1087 "bookvol10.3.pamphlet" 2040125 2040165 2040272 2040277) (-1086 "bookvol10.3.pamphlet" 2040017 2040026 2040115 2040120) (-1085 "bookvol10.2.pamphlet" 2037106 2037146 2040007 2040012) (-1084 "bookvol10.3.pamphlet" 2035416 2035427 2036583 2036622) (-1083 "bookvol10.3.pamphlet" 2033834 2033851 2035406 2035411) (-1082 "bookvol10.2.pamphlet" 2033316 2033325 2033824 2033829) (-1081 NIL 2032796 2032807 2033306 2033311) (-1080 "bookvol10.2.pamphlet" 2032685 2032694 2032786 2032791) (-1079 "bookvol10.2.pamphlet" 2029173 2029184 2032653 2032680) (-1078 NIL 2025681 2025694 2029163 2029168) (-1077 "bookvol10.2.pamphlet" 2024793 2024806 2025661 2025676) (-1076 "bookvol10.3.pamphlet" 2024606 2024617 2024712 2024717) (-1075 "bookvol10.2.pamphlet" 2023412 2023423 2024586 2024601) (-1074 "bookvol10.3.pamphlet" 2022484 2022495 2023367 2023372) (-1073 "bookvol10.4.pamphlet" 2022180 2022193 2022474 2022479) (-1072 "bookvol10.4.pamphlet" 2021605 2021618 2022136 2022141) (-1071 "bookvol10.3.pamphlet" 2020881 2020892 2021595 2021600) (-1070 "bookvol10.3.pamphlet" 2018283 2018294 2018562 2018689) (-1069 "bookvol10.4.pamphlet" 2016362 2016373 2018273 2018278) (-1068 "bookvol10.4.pamphlet" 2015243 2015254 2016352 2016357) (-1067 "bookvol10.3.pamphlet" 2015115 2015124 2015233 2015238) (-1066 "bookvol10.4.pamphlet" 2014828 2014848 2015105 2015110) (-1065 "bookvol10.3.pamphlet" 2012949 2012965 2013614 2013749) (-1064 "bookvol10.4.pamphlet" 2012650 2012670 2012939 2012944) (-1063 "bookvol10.4.pamphlet" 2010336 2010352 2012640 2012645) (-1062 "bookvol10.3.pamphlet" 2009738 2009762 2010326 2010331) (-1061 "bookvol10.3.pamphlet" 2008082 2008106 2009728 2009733) (-1060 "bookvol10.3.pamphlet" 2007934 2007947 2008072 2008077) (-1059 "bookvol10.4.pamphlet" 2005002 2005022 2007924 2007929) (-1058 "bookvol10.2.pamphlet" 1995462 1995479 2004958 2004997) (-1057 NIL 1985954 1985973 1995452 1995457) (-1056 "bookvol10.4.pamphlet" 1984588 1984608 1985944 1985949) (-1055 "bookvol10.2.pamphlet" 1982972 1983002 1984578 1984583) (-1054 NIL 1981354 1981386 1982962 1982967) (-1053 "bookvol10.2.pamphlet" 1960670 1960685 1981222 1981349) (-1052 NIL 1939700 1939717 1960254 1960259) (-1051 "bookvol10.3.pamphlet" 1936145 1936154 1938929 1938956) (-1050 "bookvol10.3.pamphlet" 1935392 1935401 1936011 1936140) (-1049 NIL 1934472 1934504 1935382 1935387) (-1048 "bookvol10.2.pamphlet" 1933375 1933384 1934374 1934467) (-1047 NIL 1932364 1932375 1933365 1933370) (-1046 "bookvol10.2.pamphlet" 1931886 1931895 1932354 1932359) (-1045 "bookvol10.2.pamphlet" 1931363 1931374 1931876 1931881) (-1044 "bookvol10.4.pamphlet" 1930771 1930828 1931353 1931358) (-1043 "bookvol10.3.pamphlet" 1929506 1929525 1929994 1930033) (-1042 "bookvol10.2.pamphlet" 1925023 1925054 1929450 1929501) (-1041 NIL 1920442 1920475 1924871 1924876) (-1040 "bookvol10.4.pamphlet" 1920330 1920350 1920432 1920437) (-1039 "bookvol10.2.pamphlet" 1919683 1919692 1920310 1920325) (-1038 NIL 1919044 1919055 1919673 1919678) (-1037 "bookvol10.4.pamphlet" 1917938 1917947 1919034 1919039) (-1036 "bookvol10.3.pamphlet" 1916603 1916619 1917498 1917525) (-1035 "bookvol10.4.pamphlet" 1914645 1914656 1916593 1916598) (-1034 "bookvol10.4.pamphlet" 1912259 1912270 1914635 1914640) (-1033 "bookvol10.4.pamphlet" 1911721 1911732 1912249 1912254) (-1032 "bookvol10.4.pamphlet" 1911456 1911468 1911711 1911716) (-1031 "bookvol10.4.pamphlet" 1910444 1910453 1911446 1911451) (-1030 "bookvol10.4.pamphlet" 1909861 1909874 1910434 1910439) (-1029 "bookvol10.2.pamphlet" 1909210 1909221 1909851 1909856) (-1028 NIL 1908557 1908570 1909200 1909205) (-1027 "bookvol10.3.pamphlet" 1907199 1907208 1907786 1907813) (-1026 "bookvol10.3.pamphlet" 1906546 1906593 1907137 1907194) (-1025 "bookvol10.4.pamphlet" 1905870 1905881 1906536 1906541) (-1024 "bookvol10.4.pamphlet" 1905599 1905610 1905860 1905865) (-1023 "bookvol10.4.pamphlet" 1903151 1903160 1905589 1905594) (-1022 "bookvol10.4.pamphlet" 1902856 1902867 1903141 1903146) (-1021 "bookvol10.4.pamphlet" 1892298 1892309 1902698 1902703) (-1020 "bookvol10.4.pamphlet" 1886274 1886285 1892248 1892253) (-1019 "bookvol10.3.pamphlet" 1884365 1884382 1885976 1886003) (-1018 "bookvol10.3.pamphlet" 1883709 1883720 1884320 1884325) (-1017 "bookvol10.4.pamphlet" 1882885 1882902 1883699 1883704) (-1016 "bookvol10.4.pamphlet" 1881182 1881199 1882840 1882845) (-1015 "bookvol10.3.pamphlet" 1879965 1879985 1880669 1880762) (-1014 "bookvol10.4.pamphlet" 1878420 1878429 1879955 1879960) (-1013 "bookvol10.2.pamphlet" 1878292 1878301 1878410 1878415) (-1012 "bookvol10.4.pamphlet" 1875589 1875604 1878282 1878287) (-1011 "bookvol10.4.pamphlet" 1872432 1872447 1875579 1875584) (-1010 "bookvol10.4.pamphlet" 1872177 1872202 1872422 1872427) (-1009 "bookvol10.4.pamphlet" 1871740 1871751 1872167 1872172) (-1008 "bookvol10.4.pamphlet" 1870640 1870658 1871730 1871735) (-1007 "bookvol10.4.pamphlet" 1868845 1868863 1870630 1870635) (-1006 "bookvol10.4.pamphlet" 1868070 1868087 1868835 1868840) (-1005 "bookvol10.4.pamphlet" 1867220 1867237 1868060 1868065) (-1004 "bookvol10.2.pamphlet" 1864403 1864412 1867122 1867215) (-1003 NIL 1861672 1861683 1864393 1864398) (-1002 "bookvol10.2.pamphlet" 1859581 1859592 1861652 1861667) (-1001 NIL 1857427 1857440 1859500 1859505) (-1000 "bookvol10.4.pamphlet" 1856844 1856855 1857417 1857422) (-999 "bookvol10.4.pamphlet" 1856029 1856040 1856834 1856839) (-998 "bookvol10.4.pamphlet" 1855387 1855395 1856019 1856024) (-997 "bookvol10.4.pamphlet" 1855142 1855150 1855377 1855382) (-996 "bookvol10.3.pamphlet" 1851928 1851941 1853609 1853702) (-995 "bookvol10.3.pamphlet" 1850342 1850378 1850460 1850616) (-994 "bookvol10.2.pamphlet" 1849936 1849944 1850332 1850337) (-993 NIL 1849528 1849538 1849926 1849931) (-992 "bookvol10.3.pamphlet" 1844918 1844928 1849358 1849385) (-991 "bookvol10.3.pamphlet" 1843545 1843555 1843842 1843907) (-990 "bookvol10.4.pamphlet" 1842868 1842886 1843535 1843540) (-989 "bookvol10.2.pamphlet" 1841029 1841039 1842798 1842863) (-988 NIL 1838941 1838953 1840712 1840717) (-987 "bookvol10.2.pamphlet" 1837747 1837757 1838897 1838936) (-986 "bookvol10.3.pamphlet" 1837210 1837224 1837737 1837742) (-985 "bookvol10.2.pamphlet" 1835901 1835911 1837100 1837205) (-984 NIL 1834195 1834207 1835396 1835401) (-983 "bookvol10.4.pamphlet" 1833886 1833902 1834185 1834190) (-982 "bookvol10.3.pamphlet" 1833443 1833451 1833876 1833881) (-981 "bookvol10.4.pamphlet" 1828845 1828864 1833433 1833438) (-980 "bookvol10.3.pamphlet" 1824920 1824952 1828759 1828764) (-979 "bookvol10.4.pamphlet" 1822916 1822934 1824910 1824915) (-978 "bookvol10.4.pamphlet" 1820226 1820247 1822906 1822911) (-977 "bookvol10.4.pamphlet" 1819553 1819572 1820216 1820221) (-976 "bookvol10.2.pamphlet" 1815679 1815689 1819543 1819548) (-975 "bookvol10.4.pamphlet" 1812763 1812773 1815669 1815674) (-974 "bookvol10.4.pamphlet" 1812580 1812594 1812753 1812758) (-973 "bookvol10.2.pamphlet" 1811662 1811672 1812536 1812575) (-972 "bookvol10.4.pamphlet" 1810969 1810993 1811652 1811657) (-971 "bookvol10.4.pamphlet" 1809827 1809837 1810959 1810964) (-970 "bookvol10.4.pamphlet" 1795228 1795244 1809705 1809710) (-969 "bookvol10.2.pamphlet" 1789121 1789144 1795196 1795223) (-968 NIL 1783000 1783025 1789077 1789082) (-967 "bookvol10.2.pamphlet" 1781983 1781991 1782990 1782995) (-966 "bookvol10.2.pamphlet" 1780746 1780775 1781881 1781978) (-965 NIL 1779599 1779630 1780736 1780741) (-964 "bookvol10.3.pamphlet" 1778414 1778422 1779589 1779594) (-963 "bookvol10.2.pamphlet" 1775747 1775757 1778404 1778409) (-962 "bookvol10.4.pamphlet" 1765892 1765909 1775703 1775708) (-961 "bookvol10.2.pamphlet" 1765311 1765321 1765848 1765887) (-960 "bookvol10.3.pamphlet" 1765193 1765209 1765301 1765306) (-959 "bookvol10.3.pamphlet" 1765081 1765091 1765183 1765188) (-958 "bookvol10.3.pamphlet" 1764969 1764979 1765071 1765076) (-957 "bookvol10.3.pamphlet" 1762370 1762382 1762935 1762990) (-956 "bookvol10.3.pamphlet" 1760756 1760768 1761461 1761588) (-955 "bookvol10.4.pamphlet" 1759960 1759999 1760746 1760751) (-954 "bookvol10.4.pamphlet" 1759712 1759720 1759950 1759955) (-953 "bookvol10.4.pamphlet" 1757955 1757965 1759702 1759707) (-952 "bookvol10.4.pamphlet" 1755928 1755942 1757945 1757950) (-951 "bookvol10.2.pamphlet" 1755551 1755559 1755918 1755923) (-950 "bookvol10.3.pamphlet" 1754794 1754804 1754957 1754984) (-949 "bookvol10.4.pamphlet" 1752686 1752698 1754784 1754789) (-948 "bookvol10.4.pamphlet" 1752058 1752070 1752676 1752681) (-947 "bookvol10.2.pamphlet" 1751195 1751203 1752048 1752053) (-946 "bookvol10.4.pamphlet" 1749967 1749989 1751151 1751156) (-945 "bookvol10.3.pamphlet" 1747279 1747289 1747781 1747908) (-944 "bookvol10.4.pamphlet" 1746540 1746563 1747269 1747274) (-943 "bookvol10.4.pamphlet" 1744604 1744626 1746530 1746535) (-942 "bookvol10.2.pamphlet" 1738006 1738027 1744472 1744599) (-941 NIL 1730710 1730733 1737178 1737183) (-940 "bookvol10.4.pamphlet" 1730158 1730172 1730700 1730705) (-939 "bookvol10.4.pamphlet" 1729768 1729780 1730148 1730153) (-938 "bookvol10.4.pamphlet" 1728709 1728738 1729724 1729729) (-937 "bookvol10.4.pamphlet" 1727457 1727472 1728699 1728704) (-936 "bookvol10.3.pamphlet" 1726519 1726529 1726606 1726633) (-935 "bookvol10.4.pamphlet" 1723159 1723167 1726509 1726514) (-934 "bookvol10.4.pamphlet" 1721916 1721930 1723149 1723154) (-933 "bookvol10.4.pamphlet" 1721461 1721471 1721906 1721911) (-932 "bookvol10.4.pamphlet" 1721048 1721062 1721451 1721456) (-931 "bookvol10.4.pamphlet" 1720574 1720588 1721038 1721043) (-930 "bookvol10.4.pamphlet" 1720075 1720097 1720564 1720569) (-929 "bookvol10.4.pamphlet" 1719145 1719163 1720007 1720012) (-928 "bookvol10.4.pamphlet" 1718726 1718740 1719135 1719140) (-927 "bookvol10.4.pamphlet" 1718293 1718305 1718716 1718721) (-926 "bookvol10.4.pamphlet" 1717869 1717879 1718283 1718288) (-925 "bookvol10.4.pamphlet" 1717442 1717460 1717859 1717864) (-924 "bookvol10.4.pamphlet" 1716724 1716738 1717432 1717437) (-923 "bookvol10.4.pamphlet" 1715793 1715801 1716714 1716719) (-922 "bookvol10.4.pamphlet" 1714819 1714835 1715783 1715788) (-921 "bookvol10.4.pamphlet" 1713717 1713755 1714809 1714814) (-920 "bookvol10.4.pamphlet" 1713497 1713505 1713707 1713712) (-919 "bookvol10.3.pamphlet" 1708169 1708177 1713487 1713492) (-918 "bookvol10.3.pamphlet" 1704571 1704579 1708159 1708164) (-917 "bookvol10.4.pamphlet" 1703704 1703714 1704561 1704566) (-916 "bookvol10.4.pamphlet" 1689661 1689688 1703694 1703699) (-915 "bookvol10.3.pamphlet" 1689568 1689582 1689651 1689656) (-914 "bookvol10.3.pamphlet" 1689479 1689489 1689558 1689563) (-913 "bookvol10.3.pamphlet" 1689390 1689400 1689469 1689474) (-912 "bookvol10.2.pamphlet" 1688418 1688432 1689380 1689385) (-911 "bookvol10.4.pamphlet" 1688034 1688053 1688408 1688413) (-910 "bookvol10.4.pamphlet" 1687816 1687832 1688024 1688029) (-909 "bookvol10.3.pamphlet" 1687438 1687446 1687790 1687811) (-908 "bookvol10.2.pamphlet" 1686394 1686402 1687364 1687433) (-907 "bookvol10.4.pamphlet" 1686123 1686133 1686384 1686389) (-906 "bookvol10.4.pamphlet" 1684735 1684749 1686113 1686118) (-905 "bookvol10.4.pamphlet" 1676101 1676109 1684725 1684730) (-904 "bookvol10.4.pamphlet" 1674651 1674668 1676091 1676096) (-903 "bookvol10.4.pamphlet" 1673666 1673676 1674641 1674646) (-902 "bookvol10.3.pamphlet" 1669034 1669044 1673568 1673661) (-901 "bookvol10.4.pamphlet" 1668389 1668405 1669024 1669029) (-900 "bookvol10.4.pamphlet" 1666424 1666453 1668379 1668384) (-899 "bookvol10.4.pamphlet" 1665794 1665812 1666414 1666419) (-898 "bookvol10.4.pamphlet" 1665213 1665240 1665784 1665789) (-897 "bookvol10.3.pamphlet" 1664880 1664892 1665018 1665111) (-896 "bookvol10.2.pamphlet" 1662546 1662554 1664806 1664875) (-895 NIL 1660240 1660250 1662502 1662507) (-894 "bookvol10.4.pamphlet" 1658125 1658137 1660230 1660235) (-893 "bookvol10.4.pamphlet" 1655725 1655748 1658115 1658120) (-892 "bookvol10.3.pamphlet" 1650711 1650721 1655555 1655570) (-891 "bookvol10.3.pamphlet" 1645401 1645411 1650701 1650706) (-890 "bookvol10.2.pamphlet" 1643954 1643964 1645381 1645396) (-889 "bookvol10.4.pamphlet" 1642617 1642631 1643944 1643949) (-888 "bookvol10.3.pamphlet" 1641887 1641897 1642469 1642474) (-887 "bookvol10.2.pamphlet" 1640181 1640191 1641867 1641882) (-886 NIL 1638483 1638495 1640171 1640176) (-885 "bookvol10.3.pamphlet" 1636588 1636596 1638473 1638478) (-884 "bookvol10.4.pamphlet" 1630380 1630388 1636578 1636583) (-883 "bookvol10.4.pamphlet" 1629680 1629697 1630370 1630375) (-882 "bookvol10.2.pamphlet" 1627824 1627832 1629670 1629675) (-881 "bookvol10.4.pamphlet" 1627513 1627526 1627814 1627819) (-880 "bookvol10.3.pamphlet" 1626155 1626172 1627503 1627508) (-879 "bookvol10.3.pamphlet" 1620586 1620596 1626145 1626150) (-878 "bookvol10.4.pamphlet" 1620323 1620335 1620576 1620581) (-877 "bookvol10.4.pamphlet" 1618613 1618629 1620313 1620318) (-876 "bookvol10.3.pamphlet" 1616152 1616164 1618603 1618608) (-875 "bookvol10.4.pamphlet" 1615806 1615820 1616142 1616147) (-874 "bookvol10.4.pamphlet" 1613963 1613994 1615514 1615519) (-873 "bookvol10.2.pamphlet" 1613388 1613398 1613953 1613958) (-872 "bookvol10.3.pamphlet" 1612472 1612486 1613378 1613383) (-871 "bookvol10.2.pamphlet" 1612236 1612246 1612462 1612467) (-870 "bookvol10.4.pamphlet" 1609598 1609606 1612226 1612231) (-869 "bookvol10.3.pamphlet" 1609026 1609054 1609588 1609593) (-868 "bookvol10.4.pamphlet" 1608817 1608833 1609016 1609021) (-867 "bookvol10.3.pamphlet" 1608245 1608273 1608807 1608812) (-866 "bookvol10.4.pamphlet" 1608030 1608046 1608235 1608240) (-865 "bookvol10.3.pamphlet" 1607488 1607516 1608020 1608025) (-864 "bookvol10.4.pamphlet" 1607273 1607289 1607478 1607483) (-863 "bookvol10.4.pamphlet" 1606064 1606113 1607263 1607268) (-862 "bookvol10.4.pamphlet" 1605476 1605484 1606054 1606059) (-861 "bookvol10.3.pamphlet" 1604446 1604454 1605466 1605471) (-860 "bookvol10.4.pamphlet" 1598829 1598852 1604402 1604407) (-859 "bookvol10.4.pamphlet" 1592648 1592671 1598778 1598783) (-858 "bookvol10.3.pamphlet" 1589978 1589996 1591153 1591246) (-857 "bookvol10.3.pamphlet" 1587993 1588005 1588214 1588307) (-856 "bookvol10.3.pamphlet" 1587688 1587700 1587919 1587988) (-855 "bookvol10.2.pamphlet" 1586244 1586256 1587614 1587683) (-854 "bookvol10.4.pamphlet" 1585173 1585192 1586234 1586239) (-853 "bookvol10.4.pamphlet" 1584154 1584170 1585163 1585168) (-852 "bookvol10.3.pamphlet" 1582755 1582763 1583825 1583918) (-851 "bookvol10.2.pamphlet" 1581505 1581513 1582657 1582750) (-850 "bookvol10.2.pamphlet" 1579568 1579576 1581407 1581500) (-849 "bookvol10.3.pamphlet" 1578293 1578303 1579364 1579457) (-848 "bookvol10.2.pamphlet" 1577046 1577054 1578195 1578288) (-847 "bookvol10.3.pamphlet" 1575351 1575371 1576436 1576529) (-846 "bookvol10.2.pamphlet" 1574093 1574101 1575253 1575346) (-845 "bookvol10.3.pamphlet" 1573077 1573107 1573951 1574018) (-844 "bookvol10.3.pamphlet" 1572858 1572881 1573067 1573072) (-843 "bookvol10.4.pamphlet" 1571942 1571950 1572848 1572853) (-842 "bookvol10.3.pamphlet" 1561356 1561364 1571932 1571937) (-841 "bookvol10.3.pamphlet" 1560945 1560953 1561346 1561351) (-840 "bookvol10.4.pamphlet" 1559406 1559416 1560862 1560867) (-839 "bookvol10.3.pamphlet" 1558764 1558792 1559086 1559125) (-838 "bookvol10.3.pamphlet" 1558063 1558087 1558444 1558483) (-837 "bookvol10.4.pamphlet" 1555897 1555909 1557983 1557988) (-836 "bookvol10.2.pamphlet" 1550043 1550053 1555853 1555892) (-835 NIL 1544079 1544091 1549891 1549896) (-834 "bookvol10.2.pamphlet" 1543245 1543253 1544069 1544074) (-833 NIL 1542409 1542419 1543235 1543240) (-832 "bookvol10.2.pamphlet" 1541743 1541751 1542389 1542404) (-831 NIL 1541085 1541095 1541733 1541738) (-830 "bookvol10.2.pamphlet" 1540839 1540847 1541075 1541080) (-829 "bookvol10.4.pamphlet" 1539980 1539996 1540829 1540834) (-828 "bookvol10.2.pamphlet" 1539914 1539922 1539970 1539975) (-827 "bookvol10.3.pamphlet" 1538400 1538410 1539461 1539490) (-826 "bookvol10.4.pamphlet" 1537740 1537752 1538390 1538395) (-825 "bookvol10.3.pamphlet" 1535424 1535432 1537730 1537735) (-824 "bookvol10.4.pamphlet" 1527608 1527616 1535414 1535419) (-823 "bookvol10.2.pamphlet" 1525074 1525082 1527598 1527603) (-822 "bookvol10.4.pamphlet" 1524623 1524631 1525064 1525069) (-821 "bookvol10.3.pamphlet" 1524365 1524375 1524445 1524512) (-820 "bookvol10.3.pamphlet" 1523139 1523149 1523912 1523941) (-819 "bookvol10.4.pamphlet" 1522612 1522624 1523129 1523134) (-818 "bookvol10.4.pamphlet" 1521614 1521622 1522602 1522607) (-817 "bookvol10.2.pamphlet" 1521390 1521400 1521558 1521609) (-816 "bookvol10.4.pamphlet" 1520002 1520010 1521380 1521385) (-815 "bookvol10.2.pamphlet" 1518967 1518975 1519992 1519997) (-814 "bookvol10.3.pamphlet" 1518392 1518404 1518853 1518892) (-813 "bookvol10.4.pamphlet" 1518226 1518236 1518382 1518387) (-812 "bookvol10.3.pamphlet" 1517769 1517777 1518216 1518221) (-811 "bookvol10.3.pamphlet" 1516803 1516811 1517759 1517764) (-810 "bookvol10.3.pamphlet" 1516147 1516155 1516793 1516798) (-809 "bookvol10.3.pamphlet" 1510436 1510444 1516137 1516142) (-808 "bookvol10.3.pamphlet" 1509845 1509853 1510426 1510431) (-807 "bookvol10.2.pamphlet" 1509620 1509628 1509771 1509840) (-806 "bookvol10.3.pamphlet" 1502991 1503001 1509610 1509615) (-805 "bookvol10.3.pamphlet" 1502252 1502262 1502981 1502986) (-804 "bookvol10.3.pamphlet" 1501700 1501726 1502064 1502213) (-803 "bookvol10.3.pamphlet" 1499058 1499068 1499386 1499513) (-802 "bookvol10.3.pamphlet" 1490915 1490935 1491273 1491404) (-801 "bookvol10.4.pamphlet" 1489494 1489513 1490905 1490910) (-800 "bookvol10.4.pamphlet" 1487144 1487161 1489484 1489489) (-799 "bookvol10.4.pamphlet" 1483087 1483104 1487101 1487106) (-798 "bookvol10.4.pamphlet" 1482474 1482498 1483077 1483082) (-797 "bookvol10.4.pamphlet" 1480040 1480057 1482464 1482469) (-796 "bookvol10.4.pamphlet" 1476931 1476953 1480030 1480035) (-795 "bookvol10.3.pamphlet" 1475517 1475525 1476921 1476926) (-794 "bookvol10.4.pamphlet" 1472821 1472843 1475507 1475512) (-793 "bookvol10.4.pamphlet" 1472197 1472221 1472811 1472816) (-792 "bookvol10.4.pamphlet" 1458559 1458567 1472187 1472192) (-791 "bookvol10.4.pamphlet" 1457990 1458006 1458549 1458554) (-790 "bookvol10.3.pamphlet" 1455385 1455393 1457980 1457985) (-789 "bookvol10.4.pamphlet" 1450752 1450768 1455375 1455380) (-788 "bookvol10.4.pamphlet" 1450271 1450289 1450742 1450747) (-787 "bookvol10.2.pamphlet" 1448656 1448664 1450261 1450266) (-786 "bookvol10.3.pamphlet" 1446792 1446802 1447510 1447549) (-785 "bookvol10.4.pamphlet" 1446428 1446449 1446782 1446787) (-784 "bookvol10.2.pamphlet" 1444202 1444212 1446384 1446423) (-783 NIL 1441701 1441713 1443885 1443890) (-782 "bookvol10.2.pamphlet" 1441549 1441557 1441691 1441696) (-781 "bookvol10.2.pamphlet" 1441297 1441305 1441539 1441544) (-780 "bookvol10.2.pamphlet" 1440589 1440597 1441287 1441292) (-779 "bookvol10.2.pamphlet" 1440450 1440458 1440579 1440584) (-778 "bookvol10.2.pamphlet" 1440312 1440320 1440440 1440445) (-777 "bookvol10.4.pamphlet" 1440035 1440051 1440302 1440307) (-776 "bookvol10.4.pamphlet" 1428352 1428360 1440025 1440030) (-775 "bookvol10.4.pamphlet" 1419111 1419119 1428342 1428347) (-774 "bookvol10.2.pamphlet" 1416450 1416458 1419101 1419106) (-773 "bookvol10.4.pamphlet" 1415290 1415298 1416440 1416445) (-772 "bookvol10.4.pamphlet" 1407362 1407372 1415095 1415100) (-771 "bookvol10.2.pamphlet" 1406659 1406675 1407318 1407357) (-770 "bookvol10.4.pamphlet" 1406204 1406214 1406576 1406581) (-769 "bookvol10.3.pamphlet" 1399193 1399203 1403754 1403907) (-768 "bookvol10.4.pamphlet" 1398585 1398597 1399183 1399188) (-767 "bookvol10.3.pamphlet" 1394780 1394799 1395088 1395215) (-766 "bookvol10.3.pamphlet" 1393304 1393314 1393381 1393474) (-765 "bookvol10.4.pamphlet" 1391676 1391690 1393294 1393299) (-764 "bookvol10.4.pamphlet" 1391568 1391597 1391666 1391671) (-763 "bookvol10.4.pamphlet" 1390814 1390834 1391558 1391563) (-762 "bookvol10.3.pamphlet" 1390702 1390716 1390794 1390809) (-761 "bookvol10.4.pamphlet" 1390296 1390335 1390692 1390697) (-760 "bookvol10.4.pamphlet" 1388830 1388849 1390286 1390291) (-759 "bookvol10.4.pamphlet" 1388518 1388544 1388820 1388825) (-758 "bookvol10.3.pamphlet" 1388259 1388267 1388508 1388513) (-757 "bookvol10.4.pamphlet" 1387935 1387945 1388249 1388254) (-756 "bookvol10.4.pamphlet" 1387404 1387420 1387925 1387930) (-755 "bookvol10.3.pamphlet" 1386294 1386302 1387378 1387399) (-754 "bookvol10.4.pamphlet" 1384916 1384926 1386284 1386289) (-753 "bookvol10.3.pamphlet" 1382514 1382522 1384906 1384911) (-752 "bookvol10.4.pamphlet" 1379974 1379991 1382504 1382509) (-751 "bookvol10.4.pamphlet" 1379227 1379241 1379964 1379969) (-750 "bookvol10.4.pamphlet" 1377339 1377355 1379217 1379222) (-749 "bookvol10.4.pamphlet" 1376996 1377010 1377329 1377334) (-748 "bookvol10.4.pamphlet" 1375156 1375170 1376986 1376991) (-747 "bookvol10.2.pamphlet" 1374752 1374760 1375146 1375151) (-746 NIL 1374346 1374356 1374742 1374747) (-745 "bookvol10.2.pamphlet" 1373632 1373640 1374336 1374341) (-744 NIL 1372916 1372926 1373622 1373627) (-743 "bookvol10.4.pamphlet" 1371989 1371997 1372906 1372911) (-742 "bookvol10.4.pamphlet" 1361555 1361563 1371979 1371984) (-741 "bookvol10.4.pamphlet" 1359991 1359999 1361545 1361550) (-740 "bookvol10.4.pamphlet" 1354165 1354173 1359981 1359986) (-739 "bookvol10.4.pamphlet" 1347909 1347917 1354155 1354160) (-738 "bookvol10.4.pamphlet" 1343531 1343539 1347899 1347904) (-737 "bookvol10.4.pamphlet" 1336905 1336913 1343521 1343526) (-736 "bookvol10.4.pamphlet" 1327300 1327308 1336895 1336900) (-735 "bookvol10.4.pamphlet" 1323227 1323235 1327290 1327295) (-734 "bookvol10.4.pamphlet" 1321102 1321110 1323217 1323222) (-733 "bookvol10.4.pamphlet" 1313548 1313556 1321092 1321097) (-732 "bookvol10.4.pamphlet" 1307704 1307712 1313538 1313543) (-731 "bookvol10.4.pamphlet" 1303534 1303542 1307694 1307699) (-730 "bookvol10.4.pamphlet" 1302046 1302054 1303524 1303529) (-729 "bookvol10.4.pamphlet" 1301344 1301352 1302036 1302041) (-728 "bookvol10.2.pamphlet" 1300850 1300860 1301312 1301339) (-727 NIL 1300376 1300388 1300840 1300845) (-726 "bookvol10.3.pamphlet" 1297597 1297611 1297926 1298079) (-725 "bookvol10.3.pamphlet" 1295716 1295730 1295788 1296008) (-724 "bookvol10.4.pamphlet" 1292700 1292717 1295706 1295711) (-723 "bookvol10.4.pamphlet" 1292098 1292115 1292690 1292695) (-722 "bookvol10.2.pamphlet" 1290132 1290153 1291996 1292093) (-721 "bookvol10.4.pamphlet" 1289789 1289799 1290122 1290127) (-720 "bookvol10.4.pamphlet" 1289229 1289237 1289779 1289784) (-719 "bookvol10.3.pamphlet" 1287234 1287244 1288991 1289030) (-718 "bookvol10.2.pamphlet" 1287067 1287077 1287190 1287229) (-717 "bookvol10.3.pamphlet" 1284020 1284032 1286775 1286842) (-716 "bookvol10.4.pamphlet" 1283580 1283594 1284010 1284015) (-715 "bookvol10.4.pamphlet" 1283141 1283158 1283570 1283575) (-714 "bookvol10.4.pamphlet" 1281186 1281205 1283131 1283136) (-713 "bookvol10.3.pamphlet" 1278636 1278651 1278980 1279107) (-712 "bookvol10.4.pamphlet" 1277915 1277934 1278626 1278631) (-711 "bookvol10.4.pamphlet" 1277723 1277766 1277905 1277910) (-710 "bookvol10.4.pamphlet" 1277467 1277503 1277713 1277718) (-709 "bookvol10.4.pamphlet" 1275802 1275819 1277457 1277462) (-708 "bookvol10.2.pamphlet" 1274666 1274674 1275792 1275797) (-707 NIL 1273528 1273538 1274656 1274661) (-706 "bookvol10.2.pamphlet" 1272274 1272287 1273388 1273523) (-705 NIL 1271042 1271057 1272158 1272163) (-704 "bookvol10.2.pamphlet" 1269048 1269056 1271032 1271037) (-703 NIL 1267052 1267062 1269038 1269043) (-702 "bookvol10.2.pamphlet" 1266196 1266204 1267042 1267047) (-701 NIL 1265338 1265348 1266186 1266191) (-700 "bookvol10.3.pamphlet" 1264017 1264031 1265318 1265333) (-699 "bookvol10.2.pamphlet" 1263698 1263708 1263985 1264012) (-698 NIL 1263399 1263411 1263688 1263693) (-697 "bookvol10.3.pamphlet" 1262712 1262751 1263379 1263394) (-696 "bookvol10.3.pamphlet" 1261354 1261366 1262534 1262601) (-695 "bookvol10.3.pamphlet" 1260865 1260883 1261344 1261349) (-694 "bookvol10.3.pamphlet" 1257525 1257541 1258343 1258496) (-693 "bookvol10.3.pamphlet" 1256886 1256925 1257427 1257520) (-692 "bookvol10.3.pamphlet" 1255673 1255681 1256876 1256881) (-691 "bookvol10.4.pamphlet" 1255413 1255447 1255663 1255668) (-690 "bookvol10.2.pamphlet" 1253855 1253865 1255369 1255408) (-689 "bookvol10.4.pamphlet" 1252427 1252444 1253845 1253850) (-688 "bookvol10.4.pamphlet" 1251897 1251915 1252417 1252422) (-687 "bookvol10.4.pamphlet" 1251483 1251496 1251887 1251892) (-686 "bookvol10.4.pamphlet" 1250798 1250808 1251473 1251478) (-685 "bookvol10.4.pamphlet" 1249691 1249701 1250788 1250793) (-684 "bookvol10.3.pamphlet" 1249467 1249477 1249681 1249686) (-683 "bookvol10.4.pamphlet" 1248928 1248946 1249457 1249462) (-682 "bookvol10.3.pamphlet" 1248367 1248375 1248830 1248923) (-681 "bookvol10.4.pamphlet" 1247006 1247016 1248357 1248362) (-680 "bookvol10.3.pamphlet" 1245450 1245458 1246896 1247001) (-679 "bookvol10.4.pamphlet" 1244850 1244872 1245440 1245445) (-678 "bookvol10.4.pamphlet" 1242712 1242720 1244840 1244845) (-677 "bookvol10.4.pamphlet" 1240953 1240963 1242702 1242707) (-676 "bookvol10.2.pamphlet" 1240228 1240238 1240921 1240948) (-675 "bookvol10.3.pamphlet" 1236202 1236210 1236816 1237017) (-674 "bookvol10.4.pamphlet" 1235410 1235422 1236192 1236197) (-673 "bookvol10.4.pamphlet" 1232518 1232544 1235400 1235405) (-672 "bookvol10.4.pamphlet" 1229794 1229804 1232508 1232513) (-671 "bookvol10.3.pamphlet" 1228685 1228695 1229169 1229196) (-670 "bookvol10.4.pamphlet" 1226011 1226035 1228569 1228574) (-669 "bookvol10.2.pamphlet" 1211222 1211244 1225967 1226006) (-668 NIL 1196281 1196305 1211028 1211033) (-667 "bookvol10.4.pamphlet" 1195549 1195597 1196271 1196276) (-666 "bookvol10.4.pamphlet" 1194269 1194281 1195539 1195544) (-665 "bookvol10.4.pamphlet" 1193168 1193182 1194259 1194264) (-664 "bookvol10.4.pamphlet" 1192502 1192514 1193158 1193163) (-663 "bookvol10.4.pamphlet" 1191320 1191330 1192492 1192497) (-662 "bookvol10.4.pamphlet" 1191128 1191142 1191310 1191315) (-661 "bookvol10.4.pamphlet" 1190893 1190905 1191118 1191123) (-660 "bookvol10.4.pamphlet" 1190523 1190533 1190883 1190888) (-659 "bookvol10.3.pamphlet" 1188467 1188484 1190513 1190518) (-658 "bookvol10.3.pamphlet" 1186386 1186396 1188068 1188073) (-657 "bookvol10.2.pamphlet" 1181842 1181852 1186366 1186381) (-656 NIL 1177306 1177318 1181832 1181837) (-655 "bookvol10.3.pamphlet" 1174112 1174129 1177296 1177301) (-654 "bookvol10.3.pamphlet" 1172370 1172384 1172792 1172843) (-653 "bookvol10.4.pamphlet" 1171903 1171920 1172360 1172365) (-652 "bookvol10.4.pamphlet" 1170743 1170771 1171893 1171898) (-651 "bookvol10.4.pamphlet" 1168547 1168561 1170733 1170738) (-650 "bookvol10.2.pamphlet" 1168204 1168214 1168503 1168542) (-649 NIL 1167893 1167905 1168194 1168199) (-648 "bookvol10.3.pamphlet" 1166907 1166926 1167749 1167818) (-647 "bookvol10.4.pamphlet" 1166164 1166174 1166897 1166902) (-646 "bookvol10.4.pamphlet" 1164609 1164658 1166154 1166159) (-645 "bookvol10.4.pamphlet" 1163248 1163258 1164599 1164604) (-644 "bookvol10.3.pamphlet" 1162649 1162663 1163182 1163209) (-643 "bookvol10.2.pamphlet" 1162251 1162259 1162639 1162644) (-642 NIL 1161851 1161861 1162241 1162246) (-641 "bookvol10.4.pamphlet" 1160769 1160781 1161841 1161846) (-640 "bookvol10.3.pamphlet" 1160156 1160172 1160449 1160488) (-639 "bookvol10.4.pamphlet" 1159200 1159217 1160113 1160118) (-638 "bookvol10.2.pamphlet" 1157817 1157827 1159156 1159195) (-637 NIL 1156432 1156444 1157773 1157778) (-636 "bookvol10.3.pamphlet" 1155708 1155720 1156112 1156151) (-635 "bookvol10.3.pamphlet" 1155111 1155121 1155388 1155427) (-634 "bookvol10.4.pamphlet" 1153883 1153901 1155101 1155106) (-633 "bookvol10.2.pamphlet" 1152258 1152268 1153785 1153878) (-632 "bookvol10.2.pamphlet" 1148006 1148016 1152238 1152253) (-631 NIL 1143728 1143740 1147962 1147967) (-630 "bookvol10.3.pamphlet" 1140464 1140481 1143718 1143723) (-629 "bookvol10.2.pamphlet" 1139947 1139957 1140454 1140459) (-628 "bookvol10.3.pamphlet" 1139047 1139057 1139721 1139748) (-627 "bookvol10.4.pamphlet" 1138478 1138492 1139037 1139042) (-626 "bookvol10.3.pamphlet" 1136419 1136429 1137848 1137875) (-625 "bookvol10.4.pamphlet" 1135710 1135724 1136409 1136414) (-624 "bookvol10.4.pamphlet" 1134350 1134362 1135700 1135705) (-623 "bookvol10.4.pamphlet" 1131223 1131235 1134340 1134345) (-622 "bookvol10.2.pamphlet" 1130655 1130665 1131203 1131218) (-621 "bookvol10.4.pamphlet" 1129432 1129444 1130567 1130572) (-620 "bookvol10.4.pamphlet" 1127346 1127356 1129422 1129427) (-619 "bookvol10.4.pamphlet" 1126229 1126242 1127336 1127341) (-618 "bookvol10.3.pamphlet" 1124243 1124255 1125519 1125664) (-617 "bookvol10.2.pamphlet" 1123768 1123778 1124169 1124238) (-616 NIL 1123321 1123333 1123724 1123729) (-615 "bookvol10.3.pamphlet" 1121854 1121862 1122562 1122577) (-614 "bookvol10.4.pamphlet" 1119222 1119241 1121844 1121849) (-613 "bookvol10.4.pamphlet" 1118141 1118157 1119212 1119217) (-612 "bookvol10.2.pamphlet" 1117160 1117168 1118131 1118136) (-611 "bookvol10.4.pamphlet" 1112812 1112827 1117150 1117155) (-610 "bookvol10.3.pamphlet" 1110875 1110902 1112792 1112807) (-609 "bookvol10.4.pamphlet" 1109259 1109276 1110865 1110870) (-608 "bookvol10.4.pamphlet" 1108317 1108339 1109249 1109254) (-607 "bookvol10.3.pamphlet" 1107089 1107102 1107910 1107979) (-606 "bookvol10.4.pamphlet" 1106662 1106678 1107079 1107084) (-605 "bookvol10.3.pamphlet" 1106102 1106116 1106584 1106623) (-604 "bookvol10.2.pamphlet" 1105878 1105888 1106082 1106097) (-603 NIL 1105662 1105674 1105868 1105873) (-602 "bookvol10.4.pamphlet" 1104375 1104392 1105652 1105657) (-601 "bookvol10.2.pamphlet" 1104097 1104107 1104365 1104370) (-600 "bookvol10.2.pamphlet" 1103834 1103844 1104087 1104092) (-599 "bookvol10.3.pamphlet" 1102369 1102379 1103618 1103623) (-598 "bookvol10.4.pamphlet" 1102072 1102084 1102359 1102364) (-597 "bookvol10.2.pamphlet" 1101163 1101185 1102040 1102067) (-596 NIL 1100274 1100298 1101153 1101158) (-595 "bookvol10.3.pamphlet" 1098896 1098912 1099621 1099648) (-594 "bookvol10.3.pamphlet" 1096873 1096885 1098186 1098331) (-593 "bookvol10.2.pamphlet" 1094955 1094979 1096853 1096868) (-592 NIL 1092902 1092928 1094802 1094807) (-591 "bookvol10.3.pamphlet" 1091911 1091926 1092051 1092078) (-590 "bookvol10.3.pamphlet" 1091071 1091081 1091901 1091906) (-589 "bookvol10.4.pamphlet" 1089882 1089901 1091061 1091066) (-588 "bookvol10.4.pamphlet" 1089376 1089390 1089872 1089877) (-587 "bookvol10.4.pamphlet" 1089106 1089118 1089366 1089371) (-586 "bookvol10.3.pamphlet" 1086898 1086913 1088942 1089067) (-585 "bookvol10.3.pamphlet" 1079324 1079339 1085872 1085969) (-584 "bookvol10.4.pamphlet" 1078807 1078823 1079314 1079319) (-583 "bookvol10.3.pamphlet" 1078037 1078050 1078203 1078230) (-582 "bookvol10.4.pamphlet" 1077117 1077136 1078027 1078032) (-581 "bookvol10.4.pamphlet" 1075081 1075089 1077107 1077112) (-580 "bookvol10.4.pamphlet" 1073604 1073614 1075037 1075042) (-579 "bookvol10.4.pamphlet" 1073205 1073216 1073594 1073599) (-578 "bookvol10.4.pamphlet" 1071551 1071561 1073195 1073200) (-577 "bookvol10.3.pamphlet" 1069296 1069310 1071406 1071433) (-576 "bookvol10.4.pamphlet" 1068432 1068448 1069286 1069291) (-575 "bookvol10.4.pamphlet" 1067573 1067589 1068422 1068427) (-574 "bookvol10.4.pamphlet" 1067333 1067341 1067563 1067568) (-573 "bookvol10.3.pamphlet" 1067026 1067038 1067138 1067231) (-572 "bookvol10.3.pamphlet" 1066787 1066813 1066952 1067021) (-571 "bookvol10.4.pamphlet" 1066396 1066412 1066777 1066782) (-570 "bookvol10.4.pamphlet" 1059642 1059659 1066386 1066391) (-569 "bookvol10.4.pamphlet" 1057501 1057517 1059216 1059221) (-568 "bookvol10.4.pamphlet" 1056807 1056815 1057491 1057496) (-567 "bookvol10.3.pamphlet" 1056583 1056593 1056721 1056802) (-566 "bookvol10.4.pamphlet" 1054947 1054961 1056573 1056578) (-565 "bookvol10.4.pamphlet" 1054436 1054446 1054937 1054942) (-564 "bookvol10.4.pamphlet" 1053081 1053098 1054426 1054431) (-563 "bookvol10.4.pamphlet" 1051444 1051460 1052724 1052729) (-562 "bookvol10.4.pamphlet" 1049171 1049189 1051376 1051381) (-561 "bookvol10.4.pamphlet" 1039278 1039286 1049161 1049166) (-560 "bookvol10.3.pamphlet" 1038639 1038647 1039132 1039273) (-559 "bookvol10.4.pamphlet" 1037905 1037922 1038629 1038634) (-558 "bookvol10.4.pamphlet" 1037570 1037594 1037895 1037900) (-557 "bookvol10.4.pamphlet" 1033971 1033979 1037560 1037565) (-556 "bookvol10.4.pamphlet" 1027351 1027369 1033903 1033908) (-555 "bookvol10.3.pamphlet" 1021349 1021357 1027341 1027346) (-554 "bookvol10.4.pamphlet" 1020449 1020506 1021339 1021344) (-553 "bookvol10.4.pamphlet" 1019523 1019533 1020439 1020444) (-552 "bookvol10.4.pamphlet" 1019391 1019415 1019513 1019518) (-551 "bookvol10.4.pamphlet" 1017705 1017721 1019381 1019386) (-550 "bookvol10.2.pamphlet" 1016329 1016337 1017631 1017700) (-549 NIL 1015015 1015025 1016319 1016324) (-548 "bookvol10.4.pamphlet" 1014145 1014232 1015005 1015010) (-547 "bookvol10.2.pamphlet" 1012608 1012618 1014059 1014140) (-546 "bookvol10.4.pamphlet" 1012111 1012119 1012598 1012603) (-545 "bookvol10.4.pamphlet" 1011293 1011320 1012101 1012106) (-544 "bookvol10.4.pamphlet" 1010785 1010801 1011283 1011288) (-543 "bookvol10.3.pamphlet" 1009865 1009896 1010028 1010055) (-542 "bookvol10.2.pamphlet" 1007261 1007269 1009767 1009860) (-541 NIL 1004743 1004753 1007251 1007256) (-540 "bookvol10.4.pamphlet" 1004177 1004190 1004733 1004738) (-539 "bookvol10.4.pamphlet" 1003243 1003262 1004167 1004172) (-538 "bookvol10.4.pamphlet" 1002301 1002325 1003233 1003238) (-537 "bookvol10.4.pamphlet" 1001287 1001304 1002291 1002296) (-536 "bookvol10.4.pamphlet" 1000434 1000464 1001277 1001282) (-535 "bookvol10.4.pamphlet" 998719 998741 1000424 1000429) (-534 "bookvol10.4.pamphlet" 997769 997788 998709 998714) (-533 "bookvol10.3.pamphlet" 994813 994821 997759 997764) (-532 "bookvol10.4.pamphlet" 994438 994448 994803 994808) (-531 "bookvol10.4.pamphlet" 994026 994034 994428 994433) (-530 "bookvol10.3.pamphlet" 993407 993470 994016 994021) (-529 "bookvol10.3.pamphlet" 992813 992836 993397 993402) (-528 "bookvol10.2.pamphlet" 991436 991499 992803 992808) (-527 "bookvol10.4.pamphlet" 989968 989990 991426 991431) (-526 "bookvol10.3.pamphlet" 989874 989891 989958 989963) (-525 "bookvol10.4.pamphlet" 989295 989305 989864 989869) (-524 "bookvol10.4.pamphlet" 985061 985072 989285 989290) (-523 "bookvol10.3.pamphlet" 984193 984219 984705 984732) (-522 "bookvol10.4.pamphlet" 983283 983327 984149 984154) (-521 "bookvol10.4.pamphlet" 981888 981912 983239 983244) (-520 "bookvol10.3.pamphlet" 980767 980782 981294 981321) (-519 "bookvol10.3.pamphlet" 980492 980530 980597 980624) (-518 "bookvol10.3.pamphlet" 979902 979918 980173 980266) (-517 "bookvol10.3.pamphlet" 976973 976988 979308 979335) (-516 "bookvol10.3.pamphlet" 976811 976828 976929 976934) (-515 "bookvol10.2.pamphlet" 976200 976212 976801 976806) (-514 NIL 975587 975601 976190 976195) (-513 "bookvol10.3.pamphlet" 975400 975412 975577 975582) (-512 "bookvol10.3.pamphlet" 975171 975183 975390 975395) (-511 "bookvol10.3.pamphlet" 974906 974918 975161 975166) (-510 "bookvol10.2.pamphlet" 973840 973852 974896 974901) (-509 "bookvol10.3.pamphlet" 973600 973612 973830 973835) (-508 "bookvol10.3.pamphlet" 973362 973374 973590 973595) (-507 "bookvol10.4.pamphlet" 970614 970632 973352 973357) (-506 "bookvol10.3.pamphlet" 965548 965587 970549 970554) (-505 "bookvol10.3.pamphlet" 964969 964992 965538 965543) (-504 "bookvol10.4.pamphlet" 964120 964136 964959 964964) (-503 "bookvol10.3.pamphlet" 963343 963351 964110 964115) (-502 "bookvol10.4.pamphlet" 961966 961983 963333 963338) (-501 "bookvol10.3.pamphlet" 961244 961257 961660 961687) (-500 "bookvol10.4.pamphlet" 958119 958138 961234 961239) (-499 "bookvol10.4.pamphlet" 957007 957022 958109 958114) (-498 "bookvol10.3.pamphlet" 956738 956764 956837 956864) (-497 "bookvol10.3.pamphlet" 956051 956066 956144 956171) (-496 "bookvol10.3.pamphlet" 954264 954272 955867 955960) (-495 "bookvol10.4.pamphlet" 953819 953852 954254 954259) (-494 "bookvol10.2.pamphlet" 953243 953251 953809 953814) (-493 NIL 952665 952675 953233 953238) (-492 "bookvol10.2.pamphlet" 949915 949925 952645 952660) (-491 NIL 947006 947018 949738 949743) (-490 "bookvol10.3.pamphlet" 944875 944883 945473 945566) (-489 "bookvol10.4.pamphlet" 943729 943740 944865 944870) (-488 "bookvol10.3.pamphlet" 943319 943343 943719 943724) (-487 "bookvol10.3.pamphlet" 939042 939052 943149 943176) (-486 "bookvol10.3.pamphlet" 930895 930911 931257 931388) (-485 "bookvol10.3.pamphlet" 928086 928101 928689 928816) (-484 "bookvol10.4.pamphlet" 926626 926634 928076 928081) (-483 "bookvol10.3.pamphlet" 925658 925689 925869 925896) (-482 "bookvol10.3.pamphlet" 925243 925251 925560 925653) (-481 "bookvol10.4.pamphlet" 911120 911132 925233 925238) (-480 "bookvol10.4.pamphlet" 910865 910873 910965 910970) (-479 "bookvol10.4.pamphlet" 894938 894974 910735 910740) (-478 "bookvol10.4.pamphlet" 894699 894707 894797 894802) (-477 "bookvol10.4.pamphlet" 894520 894534 894633 894638) (-476 "bookvol10.4.pamphlet" 894397 894411 894510 894515) (-475 "bookvol10.4.pamphlet" 894230 894238 894330 894335) (-474 "bookvol10.3.pamphlet" 893422 893438 893932 893959) (-473 "bookvol10.3.pamphlet" 892503 892538 892677 892692) (-472 "bookvol10.3.pamphlet" 889670 889697 890635 890784) (-471 "bookvol10.2.pamphlet" 888636 888644 889650 889665) (-470 NIL 887610 887620 888626 888631) (-469 "bookvol10.4.pamphlet" 886193 886214 887600 887605) (-468 "bookvol10.2.pamphlet" 884771 884783 886183 886188) (-467 NIL 883347 883361 884761 884766) (-466 "bookvol10.3.pamphlet" 875952 875960 883337 883342) (-465 "bookvol10.4.pamphlet" 874331 874339 875942 875947) (-464 "bookvol10.4.pamphlet" 872774 872782 874321 874326) (-463 "bookvol10.2.pamphlet" 871828 871840 872764 872769) (-462 NIL 870880 870894 871818 871823) (-461 "bookvol10.3.pamphlet" 870390 870413 870618 870645) (-460 "bookvol10.4.pamphlet" 865080 865167 870346 870351) (-459 "bookvol10.4.pamphlet" 864341 864359 865070 865075) (-458 "bookvol10.3.pamphlet" 860289 860297 864331 864336) (-457 "bookvol10.4.pamphlet" 857872 857880 860279 860284) (-456 "bookvol10.3.pamphlet" 856979 857006 857840 857867) (-455 "bookvol10.4.pamphlet" 856089 856103 856969 856974) (-454 "bookvol10.4.pamphlet" 852190 852203 856079 856084) (-453 "bookvol10.4.pamphlet" 851794 851804 852180 852185) (-452 "bookvol10.4.pamphlet" 851378 851395 851784 851789) (-451 "bookvol10.4.pamphlet" 850845 850864 851368 851373) (-450 "bookvol10.4.pamphlet" 848835 848848 850835 850840) (-449 "bookvol10.3.pamphlet" 845868 845885 846629 846756) (-448 "bookvol10.3.pamphlet" 839763 839790 845662 845729) (-447 "bookvol10.2.pamphlet" 838691 838699 839689 839758) (-446 NIL 837681 837691 838681 838686) (-445 "bookvol10.4.pamphlet" 831462 831500 837637 837642) (-444 "bookvol10.4.pamphlet" 827560 827598 831452 831457) (-443 "bookvol10.4.pamphlet" 822626 822664 827550 827555) (-442 "bookvol10.4.pamphlet" 818881 818919 822616 822621) (-441 "bookvol10.4.pamphlet" 818178 818186 818871 818876) (-440 "bookvol10.4.pamphlet" 816500 816510 818134 818139) (-439 "bookvol10.4.pamphlet" 814959 814972 816490 816495) (-438 "bookvol10.4.pamphlet" 813124 813143 814949 814954) (-437 "bookvol10.4.pamphlet" 803390 803401 813114 813119) (-436 "bookvol10.2.pamphlet" 800403 800411 803370 803385) (-435 "bookvol10.2.pamphlet" 799445 799453 800383 800398) (-434 "bookvol10.3.pamphlet" 799294 799306 799435 799440) (-433 NIL 797506 797514 799284 799289) (-432 "bookvol10.3.pamphlet" 796669 796677 797496 797501) (-431 "bookvol10.4.pamphlet" 795711 795730 796605 796610) (-430 "bookvol10.3.pamphlet" 793797 793805 795701 795706) (-429 "bookvol10.4.pamphlet" 793219 793235 793787 793792) (-428 "bookvol10.4.pamphlet" 792027 792043 793176 793181) (-427 "bookvol10.4.pamphlet" 789299 789315 792017 792022) (-426 "bookvol10.2.pamphlet" 783333 783343 789062 789294) (-425 NIL 777157 777169 782888 782893) (-424 "bookvol10.4.pamphlet" 776779 776795 777147 777152) (-423 "bookvol10.3.pamphlet" 776087 776099 776599 776698) (-422 "bookvol10.4.pamphlet" 775361 775377 776077 776082) (-421 "bookvol10.2.pamphlet" 774462 774472 775305 775356) (-420 NIL 773537 773549 774382 774387) (-419 "bookvol10.4.pamphlet" 772224 772240 773527 773532) (-418 "bookvol10.4.pamphlet" 766613 766647 772214 772219) (-417 "bookvol10.4.pamphlet" 766223 766239 766603 766608) (-416 "bookvol10.4.pamphlet" 765346 765369 766213 766218) (-415 "bookvol10.4.pamphlet" 764288 764298 765336 765341) (-414 "bookvol10.3.pamphlet" 755712 755722 763312 763381) (-413 "bookvol10.2.pamphlet" 750791 750801 755654 755707) (-412 NIL 745882 745894 750747 750752) (-411 "bookvol10.4.pamphlet" 745328 745346 745872 745877) (-410 "bookvol10.3.pamphlet" 744722 744752 745259 745264) (-409 "bookvol10.3.pamphlet" 743917 743938 744702 744717) (-408 "bookvol10.4.pamphlet" 743653 743685 743907 743912) (-407 "bookvol10.2.pamphlet" 743317 743327 743643 743648) (-406 NIL 742847 742859 743175 743180) (-405 "bookvol10.2.pamphlet" 741175 741188 742803 742842) (-404 NIL 739535 739550 741165 741170) (-403 "bookvol10.3.pamphlet" 736634 736644 737037 737210) (-402 "bookvol10.4.pamphlet" 736237 736249 736624 736629) (-401 "bookvol10.4.pamphlet" 735571 735583 736227 736232) (-400 "bookvol10.2.pamphlet" 732541 732549 735461 735566) (-399 NIL 729539 729549 732461 732466) (-398 "bookvol10.2.pamphlet" 728583 728591 729441 729534) (-397 NIL 727713 727723 728573 728578) (-396 "bookvol10.2.pamphlet" 727465 727475 727693 727708) (-395 "bookvol10.3.pamphlet" 726241 726258 727455 727460) (-394 NIL 724726 724775 726231 726236) (-393 "bookvol10.4.pamphlet" 723655 723663 724716 724721) (-392 "bookvol10.2.pamphlet" 720815 720823 723635 723650) (-391 "bookvol10.2.pamphlet" 720489 720497 720795 720810) (-390 "bookvol10.3.pamphlet" 717827 717835 720479 720484) (-389 "bookvol10.4.pamphlet" 717306 717316 717817 717822) (-388 "bookvol10.4.pamphlet" 717087 717111 717296 717301) (-387 "bookvol10.4.pamphlet" 716288 716296 717077 717082) (-386 "bookvol10.3.pamphlet" 715710 715732 716256 716283) (-385 "bookvol10.2.pamphlet" 714038 714046 715700 715705) (-384 "bookvol10.3.pamphlet" 713930 713938 714028 714033) (-383 "bookvol10.2.pamphlet" 713728 713736 713856 713925) (-382 "bookvol10.3.pamphlet" 710783 710793 713684 713689) (-381 "bookvol10.3.pamphlet" 710478 710490 710717 710744) (-380 "bookvol10.2.pamphlet" 707498 707506 710458 710473) (-379 "bookvol10.2.pamphlet" 706540 706548 707478 707493) (-378 "bookvol10.2.pamphlet" 704244 704262 706508 706535) (-377 "bookvol10.3.pamphlet" 703704 703716 704178 704205) (-376 "bookvol10.4.pamphlet" 701440 701454 703694 703699) (-375 "bookvol10.3.pamphlet" 694861 694869 701306 701435) (-374 "bookvol10.4.pamphlet" 692293 692307 694851 694856) (-373 "bookvol10.2.pamphlet" 692005 692015 692273 692288) (-372 NIL 691671 691683 691941 691946) (-371 "bookvol10.4.pamphlet" 690921 690933 691661 691666) (-370 "bookvol10.2.pamphlet" 688626 688645 690847 690916) (-369 "bookvol10.2.pamphlet" 685624 685634 688594 688621) (-368 NIL 682535 682547 685507 685512) (-367 "bookvol10.4.pamphlet" 681204 681220 682525 682530) (-366 "bookvol10.2.pamphlet" 679237 679250 681160 681199) (-365 NIL 677196 677211 679121 679126) (-364 "bookvol10.2.pamphlet" 676348 676356 677186 677191) (-363 "bookvol10.2.pamphlet" 665277 665287 676290 676343) (-362 NIL 654218 654230 665233 665238) (-361 "bookvol10.3.pamphlet" 653801 653811 654208 654213) (-360 "bookvol10.2.pamphlet" 652230 652247 653791 653796) (-359 "bookvol10.2.pamphlet" 651548 651556 652132 652225) (-358 NIL 650952 650962 651538 651543) (-357 "bookvol10.3.pamphlet" 649561 649571 650932 650947) (-356 "bookvol10.4.pamphlet" 648376 648391 649551 649556) (-355 "bookvol10.3.pamphlet" 647795 647810 648092 648185) (-354 "bookvol10.4.pamphlet" 647660 647677 647785 647790) (-353 "bookvol10.4.pamphlet" 647149 647170 647650 647655) (-352 "bookvol10.4.pamphlet" 638428 638439 647139 647144) (-351 "bookvol10.4.pamphlet" 637474 637491 638418 638423) (-350 "bookvol10.3.pamphlet" 636960 636980 637190 637283) (-349 "bookvol10.3.pamphlet" 636408 636424 636641 636734) (-348 "bookvol10.3.pamphlet" 634926 634946 636124 636217) (-347 "bookvol10.3.pamphlet" 633436 633453 634642 634735) (-346 "bookvol10.3.pamphlet" 631947 631968 633117 633210) (-345 "bookvol10.4.pamphlet" 629309 629328 631937 631942) (-344 "bookvol10.2.pamphlet" 626883 626891 629211 629304) (-343 NIL 624543 624553 626873 626878) (-342 "bookvol10.4.pamphlet" 623288 623305 624533 624538) (-341 "bookvol10.4.pamphlet" 620703 620714 623278 623283) (-340 "bookvol10.4.pamphlet" 613911 613927 620693 620698) (-339 "bookvol10.4.pamphlet" 612526 612545 613901 613906) (-338 "bookvol10.4.pamphlet" 611935 611952 612516 612521) (-337 "bookvol10.3.pamphlet" 610788 610808 611651 611744) (-336 "bookvol10.3.pamphlet" 609683 609703 610504 610597) (-335 "bookvol10.3.pamphlet" 608482 608503 609364 609457) (-334 "bookvol10.2.pamphlet" 597113 597135 608321 608477) (-333 NIL 585823 585847 597033 597038) (-332 "bookvol10.4.pamphlet" 585568 585608 585813 585818) (-331 "bookvol10.3.pamphlet" 578198 578244 585324 585363) (-330 "bookvol10.2.pamphlet" 577904 577914 578188 578193) (-329 NIL 577395 577407 577681 577686) (-328 "bookvol10.3.pamphlet" 576828 576852 577385 577390) (-327 "bookvol10.2.pamphlet" 574870 574894 576818 576823) (-326 NIL 572910 572936 574860 574865) (-325 "bookvol10.4.pamphlet" 572654 572694 572900 572905) (-324 "bookvol10.4.pamphlet" 571175 571183 572644 572649) (-323 "bookvol10.3.pamphlet" 570704 570714 571165 571170) (-322 NIL 560529 560537 570694 570699) (-321 "bookvol10.2.pamphlet" 553402 553416 560431 560524) (-320 NIL 546327 546343 553358 553363) (-319 "bookvol10.3.pamphlet" 544741 544751 545733 545760) (-318 "bookvol10.2.pamphlet" 542861 542873 544639 544736) (-317 NIL 540965 540979 542745 542750) (-316 "bookvol10.4.pamphlet" 540515 540537 540955 540960) (-315 "bookvol10.3.pamphlet" 540165 540175 540469 540474) (-314 "bookvol10.2.pamphlet" 538356 538368 540155 540160) (-313 "bookvol10.3.pamphlet" 537962 537972 538252 538279) (-312 "bookvol10.4.pamphlet" 536158 536175 537952 537957) (-311 "bookvol10.4.pamphlet" 536040 536050 536148 536153) (-310 "bookvol10.4.pamphlet" 535216 535226 536030 536035) (-309 "bookvol10.4.pamphlet" 535098 535108 535206 535211) (-308 "bookvol10.3.pamphlet" 531931 531954 533230 533379) (-307 "bookvol10.4.pamphlet" 529295 529303 531921 531926) (-306 "bookvol10.4.pamphlet" 529197 529226 529285 529290) (-305 "bookvol10.4.pamphlet" 526005 526021 529187 529192) (-304 "bookvol10.3.pamphlet" 521254 521264 521994 522401) (-303 "bookvol10.4.pamphlet" 517314 517327 521244 521249) (-302 "bookvol10.4.pamphlet" 517074 517086 517304 517309) (-301 "bookvol10.3.pamphlet" 514012 514037 514646 514739) (-300 "bookvol10.3.pamphlet" 513679 513687 514002 514007) (-299 "bookvol10.4.pamphlet" 513169 513183 513669 513674) (-298 "bookvol10.2.pamphlet" 512733 512743 513159 513164) (-297 NIL 512295 512307 512723 512728) (-296 "bookvol10.2.pamphlet" 509829 509837 512221 512290) (-295 NIL 507425 507435 509819 509824) (-294 "bookvol10.4.pamphlet" 499265 499273 507415 507420) (-293 "bookvol10.4.pamphlet" 498850 498864 499255 499260) (-292 "bookvol10.4.pamphlet" 498527 498538 498840 498845) (-291 "bookvol10.2.pamphlet" 491074 491082 498517 498522) (-290 NIL 483527 483537 490972 490977) (-289 "bookvol10.4.pamphlet" 480300 480308 483517 483522) (-288 "bookvol10.4.pamphlet" 480041 480053 480290 480295) (-287 "bookvol10.4.pamphlet" 479536 479552 480031 480036) (-286 "bookvol10.4.pamphlet" 479102 479118 479526 479531) (-285 "bookvol10.4.pamphlet" 476476 476484 479092 479097) (-284 "bookvol10.3.pamphlet" 475510 475532 475719 475746) (-283 "bookvol10.3.pamphlet" 470368 470378 473183 473295) (-282 "bookvol10.4.pamphlet" 470084 470096 470358 470363) (-281 "bookvol10.4.pamphlet" 466398 466408 470074 470079) (-280 "bookvol10.2.pamphlet" 465940 465948 466342 466393) (-279 "bookvol10.3.pamphlet" 465120 465161 465866 465935) (-278 "bookvol10.2.pamphlet" 463374 463393 465110 465115) (-277 NIL 461592 461613 463330 463335) (-276 "bookvol10.2.pamphlet" 461056 461074 461582 461587) (-275 "bookvol10.4.pamphlet" 460435 460454 461046 461051) (-274 "bookvol10.2.pamphlet" 460124 460132 460425 460430) (-273 NIL 459811 459821 460114 460119) (-272 "bookvol10.2.pamphlet" 457515 457525 459779 459806) (-271 NIL 455168 455180 457434 457439) (-270 "bookvol10.4.pamphlet" 451959 451989 455124 455129) (-269 "bookvol10.4.pamphlet" 448810 448833 451915 451920) (-268 "bookvol10.4.pamphlet" 446765 446781 448800 448805) (-267 "bookvol10.4.pamphlet" 441531 441547 446755 446760) (-266 "bookvol10.3.pamphlet" 439807 439815 441521 441526) (-265 "bookvol10.3.pamphlet" 439343 439351 439797 439802) (-264 "bookvol10.3.pamphlet" 438920 438928 439333 439338) (-263 "bookvol10.3.pamphlet" 438500 438508 438910 438915) (-262 "bookvol10.3.pamphlet" 438036 438044 438490 438495) (-261 "bookvol10.3.pamphlet" 437572 437580 438026 438031) (-260 "bookvol10.3.pamphlet" 437108 437116 437562 437567) (-259 "bookvol10.3.pamphlet" 436644 436652 437098 437103) (-258 "bookvol10.4.pamphlet" 432260 432268 436634 436639) (-257 "bookvol10.2.pamphlet" 428941 428951 432250 432255) (-256 NIL 425620 425632 428931 428936) (-255 "bookvol10.4.pamphlet" 422600 422687 425610 425615) (-254 "bookvol10.3.pamphlet" 421770 421780 422430 422457) (-253 "bookvol10.2.pamphlet" 421424 421434 421726 421765) (-252 "bookvol10.3.pamphlet" 418867 418881 419160 419287) (-251 "bookvol10.3.pamphlet" 412812 412820 418857 418862) (-250 "bookvol10.4.pamphlet" 412473 412483 412802 412807) (-249 "bookvol10.4.pamphlet" 407298 407306 412463 412468) (-248 "bookvol10.4.pamphlet" 405453 405461 407288 407293) (-247 "bookvol10.4.pamphlet" 398053 398066 405443 405448) (-246 "bookvol10.4.pamphlet" 397306 397316 398043 398048) (-245 "bookvol10.4.pamphlet" 394661 394669 397296 397301) (-244 "bookvol10.4.pamphlet" 394198 394213 394651 394656) (-243 "bookvol10.4.pamphlet" 383370 383378 394188 394193) (-242 "bookvol10.2.pamphlet" 381522 381532 383326 383365) (-241 "bookvol10.2.pamphlet" 376863 376879 381390 381517) (-240 NIL 372290 372308 376819 376824) (-239 "bookvol10.3.pamphlet" 365649 365665 365787 366088) (-238 "bookvol10.3.pamphlet" 359021 359039 359146 359447) (-237 "bookvol10.3.pamphlet" 356258 356273 356815 356942) (-236 "bookvol10.4.pamphlet" 355602 355612 356248 356253) (-235 "bookvol10.3.pamphlet" 354237 354247 355008 355035) (-234 "bookvol10.2.pamphlet" 352630 352640 354217 354232) (-233 "bookvol10.2.pamphlet" 352077 352085 352574 352625) (-232 NIL 351568 351578 352067 352072) (-231 "bookvol10.3.pamphlet" 351421 351431 351500 351527) (-230 "bookvol10.2.pamphlet" 350180 350190 351389 351416) (-229 "bookvol10.4.pamphlet" 348360 348368 350170 350175) (-228 "bookvol10.3.pamphlet" 339950 339966 340575 340706) (-227 "bookvol10.4.pamphlet" 338773 338791 339940 339945) (-226 "bookvol10.2.pamphlet" 337935 337951 338625 338768) (-225 NIL 336838 336856 337530 337535) (-224 "bookvol10.4.pamphlet" 335641 335649 336828 336833) (-223 "bookvol10.2.pamphlet" 334613 334623 335609 335636) (-222 NIL 333571 333583 334569 334574) (-221 "bookvol10.2.pamphlet" 332684 332692 333551 333566) (-220 NIL 331805 331815 332674 332679) (-219 "bookvol10.2.pamphlet" 330964 330974 331785 331800) (-218 NIL 330040 330052 330863 330868) (-217 "bookvol10.2.pamphlet" 329658 329668 330008 330035) (-216 NIL 329296 329308 329648 329653) (-215 "bookvol10.3.pamphlet" 327504 327514 328940 328967) (-214 "bookvol10.4.pamphlet" 318746 318754 327494 327499) (-213 "bookvol10.3.pamphlet" 315023 315031 318636 318741) (-212 "bookvol10.4.pamphlet" 313232 313248 315013 315018) (-211 "bookvol10.3.pamphlet" 311142 311174 313212 313227) (-210 "bookvol10.3.pamphlet" 304816 304826 310972 310999) (-209 "bookvol10.4.pamphlet" 304429 304443 304806 304811) (-208 "bookvol10.4.pamphlet" 301910 301920 304419 304424) (-207 "bookvol10.4.pamphlet" 300406 300422 301900 301905) (-206 "bookvol10.3.pamphlet" 298287 298295 298873 298966) (-205 "bookvol10.4.pamphlet" 296138 296155 298277 298282) (-204 "bookvol10.4.pamphlet" 295736 295760 296128 296133) (-203 "bookvol10.3.pamphlet" 294323 294333 295726 295731) (-202 "bookvol10.3.pamphlet" 294151 294159 294313 294318) (-201 "bookvol10.3.pamphlet" 293971 293979 294141 294146) (-200 "bookvol10.4.pamphlet" 292910 292918 293961 293966) (-199 "bookvol10.3.pamphlet" 292372 292380 292900 292905) (-198 "bookvol10.3.pamphlet" 291850 291858 292362 292367) (-197 "bookvol10.3.pamphlet" 291340 291348 291840 291845) (-196 "bookvol10.3.pamphlet" 290830 290838 291330 291335) (-195 "bookvol10.4.pamphlet" 285672 285680 290820 290825) (-194 "bookvol10.4.pamphlet" 283991 283999 285662 285667) (-193 "bookvol10.3.pamphlet" 283968 283976 283981 283986) (-192 "bookvol10.3.pamphlet" 283490 283498 283958 283963) (-191 "bookvol10.3.pamphlet" 283012 283020 283480 283485) (-190 "bookvol10.3.pamphlet" 282480 282488 283002 283007) (-189 "bookvol10.3.pamphlet" 281965 281973 282470 282475) (-188 "bookvol10.3.pamphlet" 281389 281397 281955 281960) (-187 "bookvol10.3.pamphlet" 280883 280891 281379 281384) (-186 "bookvol10.3.pamphlet" 280393 280401 280873 280878) (-185 "bookvol10.3.pamphlet" 279933 279941 280383 280388) (-184 "bookvol10.3.pamphlet" 279459 279467 279923 279928) (-183 "bookvol10.3.pamphlet" 278982 278990 279449 279454) (-182 "bookvol10.4.pamphlet" 275041 275049 278972 278977) (-181 "bookvol10.4.pamphlet" 274545 274553 275031 275036) (-180 "bookvol10.4.pamphlet" 271362 271370 274535 274540) (-179 "bookvol10.4.pamphlet" 270777 270787 271352 271357) (-178 "bookvol10.4.pamphlet" 269267 269283 270767 270772) (-177 "bookvol10.4.pamphlet" 267936 267949 269257 269262) (-176 "bookvol10.4.pamphlet" 261763 261776 267926 267931) (-175 "bookvol10.4.pamphlet" 260802 260812 261753 261758) (-174 "bookvol10.4.pamphlet" 260302 260317 260727 260732) (-173 "bookvol10.4.pamphlet" 260007 260026 260292 260297) (-172 "bookvol10.4.pamphlet" 254900 254910 259997 260002) (-171 "bookvol10.3.pamphlet" 250635 250645 254802 254895) (-170 "bookvol10.2.pamphlet" 250310 250318 250573 250630) (-169 "bookvol10.3.pamphlet" 249806 249814 250300 250305) (-168 "bookvol10.4.pamphlet" 249573 249588 249796 249801) (-167 "bookvol10.3.pamphlet" 243598 243608 243841 244102) (-166 "bookvol10.4.pamphlet" 243311 243323 243588 243593) (-165 "bookvol10.4.pamphlet" 243107 243121 243301 243306) (-164 "bookvol10.2.pamphlet" 241163 241173 242829 243102) (-163 NIL 238924 238936 240592 240597) (-162 "bookvol10.4.pamphlet" 238670 238688 238914 238919) (-161 "bookvol10.4.pamphlet" 238203 238211 238660 238665) (-160 "bookvol10.3.pamphlet" 238010 238018 238193 238198) (-159 "bookvol10.2.pamphlet" 236915 236923 238000 238005) (-158 "bookvol10.4.pamphlet" 235413 235423 236905 236910) (-157 "bookvol10.4.pamphlet" 232673 232689 235403 235408) (-156 "bookvol10.3.pamphlet" 231510 231518 232663 232668) (-155 "bookvol10.4.pamphlet" 230842 230859 231500 231505) (-154 "bookvol10.4.pamphlet" 226906 226914 230832 230837) (-153 "bookvol10.3.pamphlet" 225559 225575 226862 226901) (-152 "bookvol10.2.pamphlet" 221830 221840 225539 225554) (-151 NIL 217982 217994 221693 221698) (-150 "bookvol10.4.pamphlet" 217307 217320 217972 217977) (-149 "bookvol10.4.pamphlet" 215385 215407 217297 217302) (-148 "bookvol10.2.pamphlet" 215300 215308 215365 215380) (-147 "bookvol10.4.pamphlet" 214808 214818 215290 215295) (-146 "bookvol10.2.pamphlet" 214561 214569 214788 214803) (-145 "bookvol10.3.pamphlet" 210061 210069 214551 214556) (-144 "bookvol10.2.pamphlet" 209242 209250 210051 210056) (-143 "bookvol10.4.pamphlet" 208400 208414 209232 209237) (-142 "bookvol10.3.pamphlet" 206763 206771 207869 207908) (-141 "bookvol10.3.pamphlet" 196420 196444 206753 206758) (-140 "bookvol10.4.pamphlet" 195806 195833 196410 196415) (-139 "bookvol10.3.pamphlet" 192142 192150 195780 195801) (-138 "bookvol10.2.pamphlet" 191764 191772 192132 192137) (-137 "bookvol10.2.pamphlet" 191275 191283 191754 191759) (-136 "bookvol10.3.pamphlet" 190293 190303 191105 191132) (-135 "bookvol10.3.pamphlet" 189487 189497 190123 190150) (-134 "bookvol10.2.pamphlet" 188851 188861 189443 189482) (-133 NIL 188247 188259 188841 188846) (-132 "bookvol10.2.pamphlet" 187312 187320 188203 188242) (-131 NIL 186409 186419 187302 187307) (-130 "bookvol10.3.pamphlet" 184929 184939 186239 186266) (-129 "bookvol10.4.pamphlet" 183692 183703 184919 184924) (-128 "bookvol10.2.pamphlet" 182606 182616 183672 183687) (-127 NIL 181494 181506 182562 182567) (-126 "bookvol10.3.pamphlet" 179475 179487 179730 179823) (-125 "bookvol10.3.pamphlet" 179139 179151 179401 179470) (-124 "bookvol10.4.pamphlet" 178795 178812 179129 179134) (-123 "bookvol10.3.pamphlet" 174187 174195 178785 178790) (-122 "bookvol10.4.pamphlet" 171565 171575 174143 174148) (-121 "bookvol10.3.pamphlet" 170459 170467 171555 171560) (-120 "bookvol10.2.pamphlet" 170117 170129 170427 170454) (-119 "bookvol10.4.pamphlet" 168323 168359 170107 170112) (-118 "bookvol10.3.pamphlet" 168213 168221 168288 168318) (-117 "bookvol10.2.pamphlet" 168190 168198 168203 168208) (-116 "bookvol10.3.pamphlet" 168082 168090 168157 168185) (-115 "bookvol10.5.pamphlet" 165464 165472 168072 168077) (-114 "bookvol10.3.pamphlet" 164941 164949 165158 165185) (-113 "bookvol10.3.pamphlet" 164284 164292 164931 164936) (-112 "bookvol10.3.pamphlet" 162124 162132 162751 162844) (-111 "bookvol10.2.pamphlet" 161309 161319 162092 162119) (-110 NIL 160514 160526 161299 161304) (-109 "bookvol10.3.pamphlet" 159935 159943 160494 160509) (-108 "bookvol10.4.pamphlet" 159069 159096 159885 159890) (-107 "bookvol10.4.pamphlet" 156390 156400 159059 159064) (-106 "bookvol10.3.pamphlet" 151452 151462 156220 156247) (-105 "bookvol10.2.pamphlet" 151124 151132 151442 151447) (-104 NIL 150794 150804 151114 151119) (-103 "bookvol10.4.pamphlet" 150233 150246 150784 150789) (-102 "bookvol10.4.pamphlet" 150093 150101 150223 150228) (-101 "bookvol10.3.pamphlet" 149539 149549 150073 150088) (-100 "bookvol10.2.pamphlet" 146136 146144 149279 149534) (-99 "bookvol10.3.pamphlet" 142171 142178 146116 146131) (-98 "bookvol10.2.pamphlet" 141641 141648 142161 142166) (-97 NIL 141109 141118 141631 141636) (-96 "bookvol10.3.pamphlet" 136401 136410 140939 140966) (-95 "bookvol10.4.pamphlet" 135201 135212 136357 136362) (-94 "bookvol10.3.pamphlet" 134272 134285 135191 135196) (-93 "bookvol10.3.pamphlet" 132761 132774 134262 134267) (-92 "bookvol10.3.pamphlet" 131881 131894 132751 132756) (-91 "bookvol10.3.pamphlet" 130849 130862 131871 131876) (-90 "bookvol10.3.pamphlet" 130224 130237 130839 130844) (-89 "bookvol10.3.pamphlet" 129429 129442 130214 130219) (-88 "bookvol10.3.pamphlet" 128082 128095 129419 129424) (-87 "bookvol10.3.pamphlet" 127173 127186 128072 128077) (-86 "bookvol10.3.pamphlet" 125295 125308 127163 127168) (-85 "bookvol10.3.pamphlet" 123012 123025 125285 125290) (-84 "bookvol10.3.pamphlet" 119204 119217 123002 123007) (-83 "bookvol10.3.pamphlet" 118345 118358 119194 119199) (-82 "bookvol10.3.pamphlet" 116982 116995 118335 118340) (-81 "bookvol10.3.pamphlet" 114334 114373 116972 116977) (-80 "bookvol10.3.pamphlet" 112008 112047 114324 114329) (-79 "bookvol10.3.pamphlet" 110645 110658 111998 112003) (-78 "bookvol10.3.pamphlet" 109384 109397 110635 110640) (-77 "bookvol10.3.pamphlet" 108898 108911 109374 109379) (-76 "bookvol10.3.pamphlet" 107694 107707 108888 108893) (-75 "bookvol10.3.pamphlet" 105698 105711 107684 107689) (-74 "bookvol10.3.pamphlet" 105008 105021 105688 105693) (-73 "bookvol10.3.pamphlet" 92049 92062 104998 105003) (-72 "bookvol10.3.pamphlet" 90155 90168 92039 92044) (-71 "bookvol10.3.pamphlet" 88878 88891 90145 90150) (-70 "bookvol10.3.pamphlet" 87729 87742 88868 88873) (-69 "bookvol10.3.pamphlet" 87043 87056 87719 87724) (-68 "bookvol10.3.pamphlet" 77536 77549 87033 87038) (-67 "bookvol10.3.pamphlet" 76838 76851 77526 77531) (-66 "bookvol10.3.pamphlet" 75953 75966 76828 76833) (-65 "bookvol10.3.pamphlet" 75551 75560 75783 75810) (-64 "bookvol10.3.pamphlet" 74439 74448 74957 74984) (-63 "bookvol10.4.pamphlet" 72262 72273 74429 74434) (-62 "bookvol10.2.pamphlet" 64788 64809 72218 72257) (-61 NIL 57346 57369 64778 64783) (-60 "bookvol10.4.pamphlet" 56590 56612 57336 57341) (-59 "bookvol10.4.pamphlet" 56205 56218 56580 56585) (-58 "bookvol10.4.pamphlet" 55592 55599 56195 56200) (-57 "bookvol10.3.pamphlet" 53934 53941 55582 55587) (-56 "bookvol10.4.pamphlet" 53005 53014 53924 53929) (-55 "bookvol10.3.pamphlet" 51444 51460 52985 53000) (-54 "bookvol10.3.pamphlet" 51357 51364 51434 51439) (-53 "bookvol10.3.pamphlet" 49658 49665 51173 51266) (-52 "bookvol10.2.pamphlet" 47837 47848 49556 49653) (-51 NIL 45853 45866 47574 47579) (-50 "bookvol10.3.pamphlet" 43897 43918 44247 44274) (-49 "bookvol10.3.pamphlet" 43020 43046 43769 43822) (-48 "bookvol10.4.pamphlet" 38807 38818 42976 42981) (-47 "bookvol10.4.pamphlet" 37996 38010 38797 38802) (-46 "bookvol10.4.pamphlet" 35416 35431 37793 37798) (-45 "bookvol10.3.pamphlet" 33730 33757 33948 34104) (-44 "bookvol10.4.pamphlet" 32843 32853 33720 33725) (-43 "bookvol10.2.pamphlet" 32295 32304 32799 32838) (-42 NIL 31779 31790 32285 32290) (-41 "bookvol10.2.pamphlet" 31277 31298 31735 31774) (-40 "bookvol10.2.pamphlet" 30658 30665 31267 31272) (-39 "bookvol10.2.pamphlet" 28939 28946 30638 30653) (-38 NIL 27194 27203 28895 28900) (-37 "bookvol10.2.pamphlet" 24922 24931 27184 27189) (-36 "bookvol10.4.pamphlet" 23347 23362 24857 24862) (-35 "bookvol10.3.pamphlet" 23190 23205 23337 23342) (-34 "bookvol10.3.pamphlet" 23039 23048 23180 23185) (-33 "bookvol10.3.pamphlet" 22888 22897 23029 23034) (-32 "bookvol10.4.pamphlet" 22771 22809 22878 22883) (-31 "bookvol10.4.pamphlet" 22304 22342 22761 22766) (-30 "bookvol10.3.pamphlet" 20372 20379 22294 22299) (-29 "bookvol10.2.pamphlet" 18103 18112 20262 20367) (-28 NIL 15932 15943 18093 18098) (-27 "bookvol10.2.pamphlet" 10604 10611 15834 15927) (-26 NIL 5362 5371 10594 10599) (-25 "bookvol10.2.pamphlet" 4706 4713 5352 5357) (-24 NIL 4048 4057 4696 4701) (-23 "bookvol10.2.pamphlet" 3399 3406 4038 4043) (-22 NIL 2748 2757 3389 3394) (-21 "bookvol10.2.pamphlet" 2236 2243 2738 2743) (-20 NIL 1722 1731 2226 2231) (-19 "bookvol10.2.pamphlet" 860 869 1678 1717) (-18 NIL 30 41 850 855)) \ No newline at end of file +((-1275 NIL 2465018 2465023 2465028 2465033) (-3 NIL 2464998 2465003 2465008 2465013) (-2 NIL 2464978 2464983 2464988 2464993) (-1 NIL 2464958 2464963 2464968 2464973) (0 NIL 2464938 2464943 2464948 2464953) (-1270 "bookvol10.3.pamphlet" 2464747 2464760 2464876 2464933) (-1269 "bookvol10.4.pamphlet" 2463791 2463802 2464737 2464742) (-1268 "bookvol10.4.pamphlet" 2454031 2454053 2463781 2463786) (-1267 "bookvol10.4.pamphlet" 2453524 2453535 2454021 2454026) (-1266 "bookvol10.3.pamphlet" 2452759 2452779 2453380 2453449) (-1265 "bookvol10.3.pamphlet" 2450488 2450501 2452477 2452576) (-1264 "bookvol10.3.pamphlet" 2450058 2450069 2450344 2450413) (-1263 "bookvol10.2.pamphlet" 2449375 2449391 2449984 2450053) (-1262 "bookvol10.3.pamphlet" 2447872 2447892 2449155 2449224) (-1261 "bookvol10.2.pamphlet" 2446332 2446347 2447774 2447867) (-1260 NIL 2444772 2444789 2446216 2446221) (-1259 "bookvol10.2.pamphlet" 2441797 2441813 2444698 2444767) (-1258 "bookvol10.4.pamphlet" 2441108 2441134 2441787 2441792) (-1257 "bookvol10.3.pamphlet" 2440737 2440753 2440964 2441033) (-1256 "bookvol10.2.pamphlet" 2440436 2440447 2440693 2440732) (-1255 "bookvol10.3.pamphlet" 2436710 2436727 2440138 2440165) (-1254 "bookvol10.3.pamphlet" 2435724 2435768 2436568 2436635) (-1253 "bookvol10.4.pamphlet" 2433287 2433309 2435714 2435719) (-1252 "bookvol10.4.pamphlet" 2431493 2431504 2433277 2433282) (-1251 "bookvol10.2.pamphlet" 2431166 2431177 2431461 2431488) (-1250 NIL 2430859 2430872 2431156 2431161) (-1249 "bookvol10.3.pamphlet" 2430449 2430458 2430849 2430854) (-1248 "bookvol10.4.pamphlet" 2428071 2428080 2430439 2430444) (-1247 "bookvol10.4.pamphlet" 2423268 2423277 2428061 2428066) (-1246 "bookvol10.3.pamphlet" 2407022 2407031 2423258 2423263) (-1245 "bookvol10.3.pamphlet" 2394759 2394768 2407012 2407017) (-1244 "bookvol10.3.pamphlet" 2393656 2393667 2393907 2393934) (-1243 "bookvol10.4.pamphlet" 2392298 2392311 2393646 2393651) (-1242 "bookvol10.2.pamphlet" 2390186 2390197 2392254 2392293) (-1241 NIL 2387893 2387906 2389963 2389968) (-1240 "bookvol10.3.pamphlet" 2387673 2387688 2387883 2387888) (-1239 "bookvol10.3.pamphlet" 2382857 2382879 2386140 2386237) (-1238 "bookvol10.4.pamphlet" 2382760 2382788 2382847 2382852) (-1237 "bookvol10.4.pamphlet" 2382068 2382092 2382716 2382721) (-1236 "bookvol10.4.pamphlet" 2380220 2380240 2382058 2382063) (-1235 "bookvol10.3.pamphlet" 2375009 2375037 2378687 2378784) (-1234 "bookvol10.2.pamphlet" 2372460 2372476 2374907 2375004) (-1233 NIL 2369555 2369573 2372004 2372009) (-1232 "bookvol10.4.pamphlet" 2369178 2369213 2369545 2369550) (-1231 "bookvol10.2.pamphlet" 2363776 2363787 2369158 2369173) (-1230 NIL 2358348 2358361 2363732 2363737) (-1229 "bookvol10.3.pamphlet" 2355991 2356017 2357429 2357562) (-1228 "bookvol10.3.pamphlet" 2353126 2353154 2354123 2354272) (-1227 "bookvol10.3.pamphlet" 2350883 2350903 2351258 2351407) (-1226 "bookvol10.2.pamphlet" 2349341 2349361 2350729 2350878) (-1225 NIL 2347941 2347963 2349331 2349336) (-1224 "bookvol10.2.pamphlet" 2346522 2346538 2347787 2347936) (-1223 "bookvol10.4.pamphlet" 2346063 2346116 2346512 2346517) (-1222 "bookvol10.4.pamphlet" 2344475 2344489 2346053 2346058) (-1221 "bookvol10.2.pamphlet" 2342055 2342079 2344373 2344470) (-1220 NIL 2339341 2339367 2341661 2341666) (-1219 "bookvol10.2.pamphlet" 2334315 2334326 2339183 2339336) (-1218 NIL 2329181 2329194 2334051 2334056) (-1217 "bookvol10.4.pamphlet" 2328646 2328665 2329171 2329176) (-1216 "bookvol10.3.pamphlet" 2325597 2325612 2326196 2326349) (-1215 "bookvol10.4.pamphlet" 2324487 2324500 2325587 2325592) (-1214 "bookvol10.4.pamphlet" 2324050 2324064 2324477 2324482) (-1213 "bookvol10.4.pamphlet" 2322287 2322301 2324040 2324045) (-1212 "bookvol10.4.pamphlet" 2321494 2321510 2322277 2322282) (-1211 "bookvol10.4.pamphlet" 2320856 2320877 2321484 2321489) (-1210 "bookvol10.3.pamphlet" 2320209 2320220 2320775 2320780) (-1209 "bookvol10.4.pamphlet" 2319702 2319715 2320165 2320170) (-1208 "bookvol10.4.pamphlet" 2318803 2318815 2319692 2319697) (-1207 "bookvol10.3.pamphlet" 2309463 2309491 2310448 2310877) (-1206 "bookvol10.3.pamphlet" 2303500 2303520 2303872 2304021) (-1205 "bookvol10.2.pamphlet" 2301093 2301113 2303320 2303495) (-1204 NIL 2298820 2298842 2301049 2301054) (-1203 "bookvol10.2.pamphlet" 2297036 2297052 2298666 2298815) (-1202 "bookvol10.4.pamphlet" 2296578 2296631 2297026 2297031) (-1201 "bookvol10.3.pamphlet" 2294971 2294987 2295045 2295142) (-1200 "bookvol10.4.pamphlet" 2294886 2294902 2294961 2294966) (-1199 "bookvol10.2.pamphlet" 2293951 2293960 2294812 2294881) (-1198 NIL 2293078 2293089 2293941 2293946) (-1197 "bookvol10.4.pamphlet" 2291925 2291934 2293068 2293073) (-1196 "bookvol10.4.pamphlet" 2289411 2289422 2291881 2291886) (-1195 "bookvol10.2.pamphlet" 2289333 2289342 2289391 2289406) (-1194 "bookvol10.4.pamphlet" 2287983 2287998 2289323 2289328) (-1193 "bookvol10.3.pamphlet" 2286886 2286897 2287938 2287943) (-1192 "bookvol10.4.pamphlet" 2283720 2283729 2286876 2286881) (-1191 "bookvol10.3.pamphlet" 2282376 2282393 2283710 2283715) (-1190 "bookvol10.3.pamphlet" 2280965 2280981 2281941 2282038) (-1189 "bookvol10.2.pamphlet" 2268275 2268292 2280921 2280960) (-1188 NIL 2255583 2255602 2268231 2268236) (-1187 "bookvol10.4.pamphlet" 2249949 2249966 2255289 2255294) (-1186 "bookvol10.4.pamphlet" 2248908 2248933 2249939 2249944) (-1185 "bookvol10.4.pamphlet" 2247425 2247442 2248898 2248903) (-1184 "bookvol10.2.pamphlet" 2246937 2246946 2247415 2247420) (-1183 NIL 2246447 2246458 2246927 2246932) (-1182 "bookvol10.3.pamphlet" 2244496 2244507 2246277 2246304) (-1181 "bookvol10.2.pamphlet" 2244327 2244336 2244486 2244491) (-1180 NIL 2244156 2244167 2244317 2244322) (-1179 "bookvol10.4.pamphlet" 2243830 2243839 2244146 2244151) (-1178 "bookvol10.4.pamphlet" 2243493 2243504 2243820 2243825) (-1177 "bookvol10.3.pamphlet" 2242050 2242059 2243483 2243488) (-1176 "bookvol10.3.pamphlet" 2239067 2239076 2242040 2242045) (-1175 "bookvol10.4.pamphlet" 2238623 2238634 2239057 2239062) (-1174 "bookvol10.4.pamphlet" 2238178 2238187 2238613 2238618) (-1173 "bookvol10.4.pamphlet" 2236271 2236294 2238168 2238173) (-1172 "bookvol10.2.pamphlet" 2235118 2235141 2236239 2236266) (-1171 NIL 2233985 2234010 2235108 2235113) (-1170 "bookvol10.4.pamphlet" 2233361 2233372 2233975 2233980) (-1169 "bookvol10.3.pamphlet" 2232334 2232357 2232604 2232631) (-1168 "bookvol10.3.pamphlet" 2231830 2231841 2232324 2232329) (-1167 "bookvol10.4.pamphlet" 2228682 2228693 2231820 2231825) (-1166 "bookvol10.4.pamphlet" 2225275 2225286 2228672 2228677) (-1165 "bookvol10.3.pamphlet" 2223328 2223337 2225265 2225270) (-1164 "bookvol10.3.pamphlet" 2219313 2219322 2223318 2223323) (-1163 "bookvol10.3.pamphlet" 2218320 2218331 2218402 2218529) (-1162 "bookvol10.4.pamphlet" 2217795 2217806 2218310 2218315) (-1161 "bookvol10.3.pamphlet" 2215123 2215132 2217785 2217790) (-1160 "bookvol10.3.pamphlet" 2211879 2211888 2215113 2215118) (-1159 "bookvol10.3.pamphlet" 2208886 2208914 2210346 2210443) (-1158 "bookvol10.3.pamphlet" 2206008 2206036 2207018 2207167) (-1157 "bookvol10.3.pamphlet" 2202691 2202702 2203558 2203711) (-1156 "bookvol10.4.pamphlet" 2201811 2201829 2202681 2202686) (-1155 "bookvol10.3.pamphlet" 2199255 2199266 2199324 2199477) (-1154 "bookvol10.4.pamphlet" 2198645 2198658 2199245 2199250) (-1153 "bookvol10.4.pamphlet" 2197123 2197134 2198635 2198640) (-1152 "bookvol10.4.pamphlet" 2196749 2196766 2197113 2197118) (-1151 "bookvol10.3.pamphlet" 2187396 2187424 2188394 2188823) (-1150 "bookvol10.3.pamphlet" 2187076 2187091 2187386 2187391) (-1149 "bookvol10.3.pamphlet" 2179047 2179062 2187066 2187071) (-1148 "bookvol10.4.pamphlet" 2178219 2178233 2179003 2179008) (-1147 "bookvol10.4.pamphlet" 2174318 2174334 2178209 2178214) (-1146 "bookvol10.4.pamphlet" 2170786 2170802 2174308 2174313) (-1145 "bookvol10.4.pamphlet" 2163186 2163197 2170667 2170672) (-1144 "bookvol10.3.pamphlet" 2162265 2162282 2162414 2162441) (-1143 "bookvol10.3.pamphlet" 2161648 2161657 2161746 2161773) (-1142 "bookvol10.2.pamphlet" 2161424 2161433 2161604 2161643) (-1141 "bookvol10.3.pamphlet" 2156372 2156383 2161172 2161187) (-1140 "bookvol10.4.pamphlet" 2155583 2155598 2156362 2156367) (-1139 "bookvol10.4.pamphlet" 2153792 2153805 2155573 2155578) (-1138 "bookvol10.4.pamphlet" 2153216 2153227 2153782 2153787) (-1137 "bookvol10.4.pamphlet" 2152122 2152138 2153206 2153211) (-1136 "bookvol10.2.pamphlet" 2151328 2151337 2152112 2152117) (-1135 "bookvol10.3.pamphlet" 2150416 2150444 2150583 2150598) (-1134 "bookvol10.2.pamphlet" 2149473 2149484 2150396 2150411) (-1133 NIL 2148538 2148551 2149463 2149468) (-1132 "bookvol10.3.pamphlet" 2144163 2144174 2148368 2148395) (-1131 "bookvol10.3.pamphlet" 2142206 2142223 2143865 2143892) (-1130 "bookvol10.4.pamphlet" 2140933 2140953 2142196 2142201) (-1129 "bookvol10.2.pamphlet" 2135976 2135985 2140889 2140928) (-1128 NIL 2131051 2131062 2135966 2135971) (-1127 "bookvol10.3.pamphlet" 2128731 2128749 2129639 2129726) (-1126 "bookvol10.3.pamphlet" 2123598 2123611 2128482 2128509) (-1125 "bookvol10.3.pamphlet" 2120138 2120151 2123588 2123593) (-1124 "bookvol10.2.pamphlet" 2118915 2118924 2120128 2120133) (-1123 "bookvol10.4.pamphlet" 2117480 2117489 2118905 2118910) (-1122 "bookvol10.2.pamphlet" 2101307 2101318 2117470 2117475) (-1121 "bookvol10.3.pamphlet" 2101083 2101094 2101297 2101302) (-1120 "bookvol10.4.pamphlet" 2100628 2100641 2101039 2101044) (-1119 "bookvol10.4.pamphlet" 2098221 2098232 2100618 2100623) (-1118 "bookvol10.4.pamphlet" 2096786 2096797 2098211 2098216) (-1117 "bookvol10.4.pamphlet" 2090213 2090224 2096776 2096781) (-1116 "bookvol10.4.pamphlet" 2088633 2088651 2090203 2090208) (-1115 "bookvol10.2.pamphlet" 2088400 2088417 2088589 2088628) (-1114 "bookvol10.3.pamphlet" 2086516 2086542 2087965 2088062) (-1113 "bookvol10.3.pamphlet" 2083970 2083990 2084345 2084472) (-1112 "bookvol10.4.pamphlet" 2082813 2082838 2083960 2083965) (-1111 "bookvol10.2.pamphlet" 2080911 2080941 2082745 2082808) (-1110 NIL 2078953 2078985 2080789 2080794) (-1109 "bookvol10.2.pamphlet" 2077391 2077402 2078909 2078948) (-1108 "bookvol10.3.pamphlet" 2075756 2075765 2077257 2077386) (-1107 "bookvol10.4.pamphlet" 2075499 2075508 2075746 2075751) (-1106 "bookvol10.4.pamphlet" 2074607 2074618 2075489 2075494) (-1105 "bookvol10.4.pamphlet" 2073876 2073893 2074597 2074602) (-1104 "bookvol10.4.pamphlet" 2071746 2071761 2073832 2073837) (-1103 "bookvol10.3.pamphlet" 2063459 2063486 2063961 2064092) (-1102 "bookvol10.2.pamphlet" 2062694 2062703 2063449 2063454) (-1101 NIL 2061927 2061938 2062684 2062689) (-1100 "bookvol10.4.pamphlet" 2054953 2054962 2061917 2061922) (-1099 "bookvol10.2.pamphlet" 2054432 2054449 2054909 2054948) (-1098 "bookvol10.4.pamphlet" 2054131 2054151 2054422 2054427) (-1097 "bookvol10.4.pamphlet" 2049456 2049476 2054121 2054126) (-1096 "bookvol10.3.pamphlet" 2048891 2048905 2049446 2049451) (-1095 "bookvol10.3.pamphlet" 2048734 2048774 2048881 2048886) (-1094 "bookvol10.3.pamphlet" 2048626 2048635 2048724 2048729) (-1093 "bookvol10.2.pamphlet" 2045715 2045755 2048616 2048621) (-1092 "bookvol10.3.pamphlet" 2044025 2044036 2045192 2045231) (-1091 "bookvol10.3.pamphlet" 2042443 2042460 2044015 2044020) (-1090 "bookvol10.2.pamphlet" 2041925 2041934 2042433 2042438) (-1089 NIL 2041405 2041416 2041915 2041920) (-1088 "bookvol10.2.pamphlet" 2041294 2041303 2041395 2041400) (-1087 "bookvol10.2.pamphlet" 2037782 2037793 2041262 2041289) (-1086 NIL 2034290 2034303 2037772 2037777) (-1085 "bookvol10.2.pamphlet" 2033402 2033415 2034270 2034285) (-1084 "bookvol10.3.pamphlet" 2033215 2033226 2033321 2033326) (-1083 "bookvol10.2.pamphlet" 2032021 2032032 2033195 2033210) (-1082 "bookvol10.3.pamphlet" 2031093 2031104 2031976 2031981) (-1081 "bookvol10.4.pamphlet" 2030789 2030802 2031083 2031088) (-1080 "bookvol10.4.pamphlet" 2030214 2030227 2030745 2030750) (-1079 "bookvol10.3.pamphlet" 2029490 2029501 2030204 2030209) (-1078 "bookvol10.3.pamphlet" 2026892 2026903 2027171 2027298) (-1077 "bookvol10.4.pamphlet" 2024971 2024982 2026882 2026887) (-1076 "bookvol10.4.pamphlet" 2023852 2023863 2024961 2024966) (-1075 "bookvol10.3.pamphlet" 2023724 2023733 2023842 2023847) (-1074 "bookvol10.4.pamphlet" 2023437 2023457 2023714 2023719) (-1073 "bookvol10.3.pamphlet" 2021558 2021574 2022223 2022358) (-1072 "bookvol10.4.pamphlet" 2021259 2021279 2021548 2021553) (-1071 "bookvol10.4.pamphlet" 2018945 2018961 2021249 2021254) (-1070 "bookvol10.3.pamphlet" 2018347 2018371 2018935 2018940) (-1069 "bookvol10.3.pamphlet" 2016691 2016715 2018337 2018342) (-1068 "bookvol10.3.pamphlet" 2016543 2016556 2016681 2016686) (-1067 "bookvol10.4.pamphlet" 2013611 2013631 2016533 2016538) (-1066 "bookvol10.2.pamphlet" 2004071 2004088 2013567 2013606) (-1065 NIL 1994563 1994582 2004061 2004066) (-1064 "bookvol10.4.pamphlet" 1993197 1993217 1994553 1994558) (-1063 "bookvol10.2.pamphlet" 1991581 1991611 1993187 1993192) (-1062 NIL 1989963 1989995 1991571 1991576) (-1061 "bookvol10.2.pamphlet" 1969279 1969294 1989831 1989958) (-1060 NIL 1948309 1948326 1968863 1968868) (-1059 "bookvol10.3.pamphlet" 1944754 1944763 1947538 1947565) (-1058 "bookvol10.3.pamphlet" 1944001 1944010 1944620 1944749) (-1057 NIL 1943081 1943113 1943991 1943996) (-1056 "bookvol10.2.pamphlet" 1941984 1941993 1942983 1943076) (-1055 NIL 1940973 1940984 1941974 1941979) (-1054 "bookvol10.2.pamphlet" 1940495 1940504 1940963 1940968) (-1053 "bookvol10.2.pamphlet" 1939972 1939983 1940485 1940490) (-1052 "bookvol10.4.pamphlet" 1939380 1939437 1939962 1939967) (-1051 "bookvol10.3.pamphlet" 1938115 1938134 1938603 1938642) (-1050 "bookvol10.2.pamphlet" 1933632 1933663 1938059 1938110) (-1049 NIL 1929051 1929084 1933480 1933485) (-1048 "bookvol10.4.pamphlet" 1928939 1928959 1929041 1929046) (-1047 "bookvol10.2.pamphlet" 1928292 1928301 1928919 1928934) (-1046 NIL 1927653 1927664 1928282 1928287) (-1045 "bookvol10.4.pamphlet" 1926547 1926556 1927643 1927648) (-1044 "bookvol10.3.pamphlet" 1925212 1925228 1926107 1926134) (-1043 "bookvol10.4.pamphlet" 1923254 1923265 1925202 1925207) (-1042 "bookvol10.4.pamphlet" 1920868 1920879 1923244 1923249) (-1041 "bookvol10.4.pamphlet" 1920330 1920341 1920858 1920863) (-1040 "bookvol10.4.pamphlet" 1920065 1920077 1920320 1920325) (-1039 "bookvol10.4.pamphlet" 1919053 1919062 1920055 1920060) (-1038 "bookvol10.4.pamphlet" 1918470 1918483 1919043 1919048) (-1037 "bookvol10.2.pamphlet" 1917819 1917830 1918460 1918465) (-1036 NIL 1917166 1917179 1917809 1917814) (-1035 "bookvol10.3.pamphlet" 1915808 1915817 1916395 1916422) (-1034 "bookvol10.3.pamphlet" 1915155 1915202 1915746 1915803) (-1033 "bookvol10.4.pamphlet" 1914479 1914490 1915145 1915150) (-1032 "bookvol10.4.pamphlet" 1914208 1914219 1914469 1914474) (-1031 "bookvol10.4.pamphlet" 1911760 1911769 1914198 1914203) (-1030 "bookvol10.4.pamphlet" 1911465 1911476 1911750 1911755) (-1029 "bookvol10.4.pamphlet" 1900907 1900918 1911307 1911312) (-1028 "bookvol10.4.pamphlet" 1894883 1894894 1900857 1900862) (-1027 "bookvol10.3.pamphlet" 1892974 1892991 1894585 1894612) (-1026 "bookvol10.3.pamphlet" 1892318 1892329 1892929 1892934) (-1025 "bookvol10.4.pamphlet" 1891494 1891511 1892308 1892313) (-1024 "bookvol10.4.pamphlet" 1889791 1889808 1891449 1891454) (-1023 "bookvol10.3.pamphlet" 1888574 1888594 1889278 1889371) (-1022 "bookvol10.4.pamphlet" 1887029 1887038 1888564 1888569) (-1021 "bookvol10.2.pamphlet" 1886901 1886910 1887019 1887024) (-1020 "bookvol10.4.pamphlet" 1884198 1884213 1886891 1886896) (-1019 "bookvol10.4.pamphlet" 1881041 1881056 1884188 1884193) (-1018 "bookvol10.4.pamphlet" 1880786 1880811 1881031 1881036) (-1017 "bookvol10.4.pamphlet" 1880349 1880360 1880776 1880781) (-1016 "bookvol10.4.pamphlet" 1879249 1879267 1880339 1880344) (-1015 "bookvol10.4.pamphlet" 1877454 1877472 1879239 1879244) (-1014 "bookvol10.4.pamphlet" 1876679 1876696 1877444 1877449) (-1013 "bookvol10.4.pamphlet" 1875829 1875846 1876669 1876674) (-1012 "bookvol10.2.pamphlet" 1873012 1873021 1875731 1875824) (-1011 NIL 1870281 1870292 1873002 1873007) (-1010 "bookvol10.2.pamphlet" 1868190 1868201 1870261 1870276) (-1009 NIL 1866036 1866049 1868109 1868114) (-1008 "bookvol10.4.pamphlet" 1865453 1865464 1866026 1866031) (-1007 "bookvol10.4.pamphlet" 1864637 1864649 1865443 1865448) (-1006 "bookvol10.4.pamphlet" 1863994 1864003 1864627 1864632) (-1005 "bookvol10.4.pamphlet" 1863748 1863757 1863984 1863989) (-1004 "bookvol10.3.pamphlet" 1860533 1860547 1862215 1862308) (-1003 "bookvol10.3.pamphlet" 1858946 1858983 1859065 1859221) (-1002 "bookvol10.2.pamphlet" 1858539 1858548 1858936 1858941) (-1001 NIL 1858130 1858141 1858529 1858534) (-1000 "bookvol10.3.pamphlet" 1853519 1853530 1857960 1857987) (-999 "bookvol10.3.pamphlet" 1852146 1852156 1852443 1852508) (-998 "bookvol10.4.pamphlet" 1851469 1851487 1852136 1852141) (-997 "bookvol10.2.pamphlet" 1849630 1849640 1851399 1851464) (-996 NIL 1847542 1847554 1849313 1849318) (-995 "bookvol10.2.pamphlet" 1846348 1846358 1847498 1847537) (-994 "bookvol10.3.pamphlet" 1845811 1845825 1846338 1846343) (-993 "bookvol10.2.pamphlet" 1844502 1844512 1845701 1845806) (-992 NIL 1842796 1842808 1843997 1844002) (-991 "bookvol10.4.pamphlet" 1842487 1842503 1842786 1842791) (-990 "bookvol10.3.pamphlet" 1842044 1842052 1842477 1842482) (-989 "bookvol10.4.pamphlet" 1837446 1837465 1842034 1842039) (-988 "bookvol10.3.pamphlet" 1833521 1833553 1837360 1837365) (-987 "bookvol10.4.pamphlet" 1831517 1831535 1833511 1833516) (-986 "bookvol10.4.pamphlet" 1828827 1828848 1831507 1831512) (-985 "bookvol10.4.pamphlet" 1828154 1828173 1828817 1828822) (-984 "bookvol10.2.pamphlet" 1824280 1824290 1828144 1828149) (-983 "bookvol10.4.pamphlet" 1821364 1821374 1824270 1824275) (-982 "bookvol10.4.pamphlet" 1821181 1821195 1821354 1821359) (-981 "bookvol10.2.pamphlet" 1820263 1820273 1821137 1821176) (-980 "bookvol10.4.pamphlet" 1819570 1819594 1820253 1820258) (-979 "bookvol10.4.pamphlet" 1818428 1818438 1819560 1819565) (-978 "bookvol10.4.pamphlet" 1803829 1803845 1818306 1818311) (-977 "bookvol10.2.pamphlet" 1797722 1797745 1803797 1803824) (-976 NIL 1791601 1791626 1797678 1797683) (-975 "bookvol10.2.pamphlet" 1790584 1790592 1791591 1791596) (-974 "bookvol10.2.pamphlet" 1789347 1789376 1790482 1790579) (-973 NIL 1788200 1788231 1789337 1789342) (-972 "bookvol10.3.pamphlet" 1787015 1787023 1788190 1788195) (-971 "bookvol10.2.pamphlet" 1784348 1784358 1787005 1787010) (-970 "bookvol10.4.pamphlet" 1774493 1774510 1784304 1784309) (-969 "bookvol10.2.pamphlet" 1773912 1773922 1774449 1774488) (-968 "bookvol10.3.pamphlet" 1773794 1773810 1773902 1773907) (-967 "bookvol10.3.pamphlet" 1773682 1773692 1773784 1773789) (-966 "bookvol10.3.pamphlet" 1773570 1773580 1773672 1773677) (-965 "bookvol10.3.pamphlet" 1770971 1770983 1771536 1771591) (-964 "bookvol10.3.pamphlet" 1769357 1769369 1770062 1770189) (-963 "bookvol10.4.pamphlet" 1768561 1768600 1769347 1769352) (-962 "bookvol10.4.pamphlet" 1768313 1768321 1768551 1768556) (-961 "bookvol10.4.pamphlet" 1766556 1766566 1768303 1768308) (-960 "bookvol10.4.pamphlet" 1764529 1764543 1766546 1766551) (-959 "bookvol10.2.pamphlet" 1764152 1764160 1764519 1764524) (-958 "bookvol10.3.pamphlet" 1763395 1763405 1763558 1763585) (-957 "bookvol10.4.pamphlet" 1761287 1761299 1763385 1763390) (-956 "bookvol10.4.pamphlet" 1760659 1760671 1761277 1761282) (-955 "bookvol10.2.pamphlet" 1759796 1759804 1760649 1760654) (-954 "bookvol10.4.pamphlet" 1758568 1758590 1759752 1759757) (-953 "bookvol10.3.pamphlet" 1755880 1755890 1756382 1756509) (-952 "bookvol10.4.pamphlet" 1755141 1755164 1755870 1755875) (-951 "bookvol10.4.pamphlet" 1753205 1753227 1755131 1755136) (-950 "bookvol10.2.pamphlet" 1746607 1746628 1753073 1753200) (-949 NIL 1739311 1739334 1745779 1745784) (-948 "bookvol10.4.pamphlet" 1738759 1738773 1739301 1739306) (-947 "bookvol10.4.pamphlet" 1738369 1738381 1738749 1738754) (-946 "bookvol10.4.pamphlet" 1737310 1737339 1738325 1738330) (-945 "bookvol10.4.pamphlet" 1736058 1736073 1737300 1737305) (-944 "bookvol10.3.pamphlet" 1735119 1735129 1735206 1735233) (-943 "bookvol10.4.pamphlet" 1731759 1731767 1735109 1735114) (-942 "bookvol10.4.pamphlet" 1730516 1730530 1731749 1731754) (-941 "bookvol10.4.pamphlet" 1730061 1730071 1730506 1730511) (-940 "bookvol10.4.pamphlet" 1729648 1729662 1730051 1730056) (-939 "bookvol10.4.pamphlet" 1729174 1729188 1729638 1729643) (-938 "bookvol10.4.pamphlet" 1728675 1728697 1729164 1729169) (-937 "bookvol10.4.pamphlet" 1727745 1727763 1728607 1728612) (-936 "bookvol10.4.pamphlet" 1727326 1727340 1727735 1727740) (-935 "bookvol10.4.pamphlet" 1726893 1726905 1727316 1727321) (-934 "bookvol10.4.pamphlet" 1726469 1726479 1726883 1726888) (-933 "bookvol10.4.pamphlet" 1726042 1726060 1726459 1726464) (-932 "bookvol10.4.pamphlet" 1725324 1725338 1726032 1726037) (-931 "bookvol10.4.pamphlet" 1724393 1724401 1725314 1725319) (-930 "bookvol10.4.pamphlet" 1723419 1723435 1724383 1724388) (-929 "bookvol10.4.pamphlet" 1722317 1722355 1723409 1723414) (-928 "bookvol10.4.pamphlet" 1722097 1722105 1722307 1722312) (-927 "bookvol10.3.pamphlet" 1716769 1716777 1722087 1722092) (-926 "bookvol10.3.pamphlet" 1713171 1713179 1716759 1716764) (-925 "bookvol10.4.pamphlet" 1712304 1712314 1713161 1713166) (-924 "bookvol10.4.pamphlet" 1698261 1698288 1712294 1712299) (-923 "bookvol10.3.pamphlet" 1698168 1698182 1698251 1698256) (-922 "bookvol10.3.pamphlet" 1698079 1698089 1698158 1698163) (-921 "bookvol10.3.pamphlet" 1697990 1698000 1698069 1698074) (-920 "bookvol10.2.pamphlet" 1697018 1697032 1697980 1697985) (-919 "bookvol10.4.pamphlet" 1696634 1696653 1697008 1697013) (-918 "bookvol10.4.pamphlet" 1696416 1696432 1696624 1696629) (-917 "bookvol10.3.pamphlet" 1696038 1696046 1696390 1696411) (-916 "bookvol10.2.pamphlet" 1694994 1695002 1695964 1696033) (-915 "bookvol10.4.pamphlet" 1694723 1694733 1694984 1694989) (-914 "bookvol10.4.pamphlet" 1693335 1693349 1694713 1694718) (-913 "bookvol10.4.pamphlet" 1684701 1684709 1693325 1693330) (-912 "bookvol10.4.pamphlet" 1683251 1683268 1684691 1684696) (-911 "bookvol10.4.pamphlet" 1682266 1682276 1683241 1683246) (-910 "bookvol10.3.pamphlet" 1677634 1677644 1682168 1682261) (-909 "bookvol10.4.pamphlet" 1676989 1677005 1677624 1677629) (-908 "bookvol10.4.pamphlet" 1675024 1675053 1676979 1676984) (-907 "bookvol10.4.pamphlet" 1674394 1674412 1675014 1675019) (-906 "bookvol10.4.pamphlet" 1673813 1673840 1674384 1674389) (-905 "bookvol10.3.pamphlet" 1673480 1673492 1673618 1673711) (-904 "bookvol10.2.pamphlet" 1671146 1671154 1673406 1673475) (-903 NIL 1668840 1668850 1671102 1671107) (-902 "bookvol10.4.pamphlet" 1666725 1666737 1668830 1668835) (-901 "bookvol10.4.pamphlet" 1664325 1664348 1666715 1666720) (-900 "bookvol10.3.pamphlet" 1659311 1659321 1664155 1664170) (-899 "bookvol10.3.pamphlet" 1654001 1654011 1659301 1659306) (-898 "bookvol10.2.pamphlet" 1652554 1652564 1653981 1653996) (-897 "bookvol10.4.pamphlet" 1651217 1651231 1652544 1652549) (-896 "bookvol10.3.pamphlet" 1650487 1650497 1651069 1651074) (-895 "bookvol10.2.pamphlet" 1648781 1648791 1650467 1650482) (-894 NIL 1647083 1647095 1648771 1648776) (-893 "bookvol10.3.pamphlet" 1645188 1645196 1647073 1647078) (-892 "bookvol10.4.pamphlet" 1638980 1638988 1645178 1645183) (-891 "bookvol10.4.pamphlet" 1638280 1638297 1638970 1638975) (-890 "bookvol10.2.pamphlet" 1636424 1636432 1638270 1638275) (-889 "bookvol10.4.pamphlet" 1636113 1636126 1636414 1636419) (-888 "bookvol10.3.pamphlet" 1634755 1634772 1636103 1636108) (-887 "bookvol10.3.pamphlet" 1629186 1629196 1634745 1634750) (-886 "bookvol10.4.pamphlet" 1628923 1628935 1629176 1629181) (-885 "bookvol10.4.pamphlet" 1627213 1627229 1628913 1628918) (-884 "bookvol10.3.pamphlet" 1624752 1624764 1627203 1627208) (-883 "bookvol10.4.pamphlet" 1624406 1624420 1624742 1624747) (-882 "bookvol10.4.pamphlet" 1622563 1622594 1624114 1624119) (-881 "bookvol10.2.pamphlet" 1621988 1621998 1622553 1622558) (-880 "bookvol10.3.pamphlet" 1621072 1621086 1621978 1621983) (-879 "bookvol10.2.pamphlet" 1620836 1620846 1621062 1621067) (-878 "bookvol10.4.pamphlet" 1618198 1618206 1620826 1620831) (-877 "bookvol10.3.pamphlet" 1617626 1617654 1618188 1618193) (-876 "bookvol10.4.pamphlet" 1617417 1617433 1617616 1617621) (-875 "bookvol10.3.pamphlet" 1616845 1616873 1617407 1617412) (-874 "bookvol10.4.pamphlet" 1616630 1616646 1616835 1616840) (-873 "bookvol10.3.pamphlet" 1616088 1616116 1616620 1616625) (-872 "bookvol10.4.pamphlet" 1615873 1615889 1616078 1616083) (-871 "bookvol10.4.pamphlet" 1614664 1614713 1615863 1615868) (-870 "bookvol10.4.pamphlet" 1614076 1614084 1614654 1614659) (-869 "bookvol10.3.pamphlet" 1613046 1613054 1614066 1614071) (-868 "bookvol10.4.pamphlet" 1607429 1607452 1613002 1613007) (-867 "bookvol10.4.pamphlet" 1601248 1601271 1607378 1607383) (-866 "bookvol10.3.pamphlet" 1598578 1598596 1599753 1599846) (-865 "bookvol10.3.pamphlet" 1596593 1596605 1596814 1596907) (-864 "bookvol10.3.pamphlet" 1596288 1596300 1596519 1596588) (-863 "bookvol10.2.pamphlet" 1594844 1594856 1596214 1596283) (-862 "bookvol10.4.pamphlet" 1593773 1593792 1594834 1594839) (-861 "bookvol10.4.pamphlet" 1592754 1592770 1593763 1593768) (-860 "bookvol10.3.pamphlet" 1591355 1591363 1592425 1592518) (-859 "bookvol10.2.pamphlet" 1590105 1590113 1591257 1591350) (-858 "bookvol10.2.pamphlet" 1588168 1588176 1590007 1590100) (-857 "bookvol10.3.pamphlet" 1586893 1586903 1587964 1588057) (-856 "bookvol10.2.pamphlet" 1585646 1585654 1586795 1586888) (-855 "bookvol10.3.pamphlet" 1583951 1583971 1585036 1585129) (-854 "bookvol10.2.pamphlet" 1582693 1582701 1583853 1583946) (-853 "bookvol10.3.pamphlet" 1581677 1581707 1582551 1582618) (-852 "bookvol10.3.pamphlet" 1581458 1581481 1581667 1581672) (-851 "bookvol10.4.pamphlet" 1580542 1580550 1581448 1581453) (-850 "bookvol10.3.pamphlet" 1569956 1569964 1580532 1580537) (-849 "bookvol10.3.pamphlet" 1569545 1569553 1569946 1569951) (-848 "bookvol10.4.pamphlet" 1568006 1568016 1569462 1569467) (-847 "bookvol10.3.pamphlet" 1567364 1567392 1567686 1567725) (-846 "bookvol10.3.pamphlet" 1566663 1566687 1567044 1567083) (-845 "bookvol10.4.pamphlet" 1564497 1564509 1566583 1566588) (-844 "bookvol10.2.pamphlet" 1558643 1558653 1564453 1564492) (-843 NIL 1552679 1552691 1558491 1558496) (-842 "bookvol10.2.pamphlet" 1551845 1551853 1552669 1552674) (-841 NIL 1551009 1551019 1551835 1551840) (-840 "bookvol10.2.pamphlet" 1550343 1550351 1550989 1551004) (-839 NIL 1549685 1549695 1550333 1550338) (-838 "bookvol10.2.pamphlet" 1549439 1549447 1549675 1549680) (-837 "bookvol10.4.pamphlet" 1548580 1548596 1549429 1549434) (-836 "bookvol10.2.pamphlet" 1548514 1548522 1548570 1548575) (-835 "bookvol10.3.pamphlet" 1547000 1547010 1548061 1548090) (-834 "bookvol10.4.pamphlet" 1546340 1546352 1546990 1546995) (-833 "bookvol10.3.pamphlet" 1544024 1544032 1546330 1546335) (-832 "bookvol10.4.pamphlet" 1536208 1536216 1544014 1544019) (-831 "bookvol10.2.pamphlet" 1533674 1533682 1536198 1536203) (-830 "bookvol10.4.pamphlet" 1533223 1533231 1533664 1533669) (-829 "bookvol10.3.pamphlet" 1532965 1532975 1533045 1533112) (-828 "bookvol10.3.pamphlet" 1531739 1531749 1532512 1532541) (-827 "bookvol10.4.pamphlet" 1531212 1531224 1531729 1531734) (-826 "bookvol10.4.pamphlet" 1530214 1530222 1531202 1531207) (-825 "bookvol10.2.pamphlet" 1529990 1530000 1530158 1530209) (-824 "bookvol10.4.pamphlet" 1528602 1528610 1529980 1529985) (-823 "bookvol10.2.pamphlet" 1527567 1527575 1528592 1528597) (-822 "bookvol10.3.pamphlet" 1526992 1527004 1527453 1527492) (-821 "bookvol10.4.pamphlet" 1526826 1526836 1526982 1526987) (-820 "bookvol10.3.pamphlet" 1526369 1526377 1526816 1526821) (-819 "bookvol10.3.pamphlet" 1525403 1525411 1526359 1526364) (-818 "bookvol10.3.pamphlet" 1524747 1524755 1525393 1525398) (-817 "bookvol10.3.pamphlet" 1519036 1519044 1524737 1524742) (-816 "bookvol10.3.pamphlet" 1518445 1518453 1519026 1519031) (-815 "bookvol10.2.pamphlet" 1518220 1518228 1518371 1518440) (-814 "bookvol10.3.pamphlet" 1511591 1511601 1518210 1518215) (-813 "bookvol10.3.pamphlet" 1510852 1510862 1511581 1511586) (-812 "bookvol10.3.pamphlet" 1510300 1510326 1510664 1510813) (-811 "bookvol10.3.pamphlet" 1507658 1507668 1507986 1508113) (-810 "bookvol10.3.pamphlet" 1499515 1499535 1499873 1500004) (-809 "bookvol10.4.pamphlet" 1498094 1498113 1499505 1499510) (-808 "bookvol10.4.pamphlet" 1495744 1495761 1498084 1498089) (-807 "bookvol10.4.pamphlet" 1491687 1491704 1495701 1495706) (-806 "bookvol10.4.pamphlet" 1491074 1491098 1491677 1491682) (-805 "bookvol10.4.pamphlet" 1488640 1488657 1491064 1491069) (-804 "bookvol10.4.pamphlet" 1485531 1485553 1488630 1488635) (-803 "bookvol10.3.pamphlet" 1484117 1484125 1485521 1485526) (-802 "bookvol10.4.pamphlet" 1481421 1481443 1484107 1484112) (-801 "bookvol10.4.pamphlet" 1480797 1480821 1481411 1481416) (-800 "bookvol10.4.pamphlet" 1467159 1467167 1480787 1480792) (-799 "bookvol10.4.pamphlet" 1466590 1466606 1467149 1467154) (-798 "bookvol10.3.pamphlet" 1463985 1463993 1466580 1466585) (-797 "bookvol10.4.pamphlet" 1459352 1459368 1463975 1463980) (-796 "bookvol10.4.pamphlet" 1458871 1458889 1459342 1459347) (-795 "bookvol10.2.pamphlet" 1457256 1457264 1458861 1458866) (-794 "bookvol10.3.pamphlet" 1455392 1455402 1456110 1456149) (-793 "bookvol10.4.pamphlet" 1455028 1455049 1455382 1455387) (-792 "bookvol10.2.pamphlet" 1452802 1452812 1454984 1455023) (-791 NIL 1450301 1450313 1452485 1452490) (-790 "bookvol10.2.pamphlet" 1450149 1450157 1450291 1450296) (-789 "bookvol10.2.pamphlet" 1449897 1449905 1450139 1450144) (-788 "bookvol10.2.pamphlet" 1449189 1449197 1449887 1449892) (-787 "bookvol10.2.pamphlet" 1449050 1449058 1449179 1449184) (-786 "bookvol10.2.pamphlet" 1448912 1448920 1449040 1449045) (-785 "bookvol10.4.pamphlet" 1448635 1448651 1448902 1448907) (-784 "bookvol10.4.pamphlet" 1436952 1436960 1448625 1448630) (-783 "bookvol10.4.pamphlet" 1427711 1427719 1436942 1436947) (-782 "bookvol10.2.pamphlet" 1425050 1425058 1427701 1427706) (-781 "bookvol10.4.pamphlet" 1423890 1423898 1425040 1425045) (-780 "bookvol10.4.pamphlet" 1415962 1415972 1423695 1423700) (-779 "bookvol10.2.pamphlet" 1415259 1415275 1415918 1415957) (-778 "bookvol10.4.pamphlet" 1414804 1414814 1415176 1415181) (-777 "bookvol10.3.pamphlet" 1407793 1407803 1412354 1412507) (-776 "bookvol10.4.pamphlet" 1407185 1407197 1407783 1407788) (-775 "bookvol10.3.pamphlet" 1403380 1403399 1403688 1403815) (-774 "bookvol10.3.pamphlet" 1401904 1401914 1401981 1402074) (-773 "bookvol10.4.pamphlet" 1400276 1400290 1401894 1401899) (-772 "bookvol10.4.pamphlet" 1400168 1400197 1400266 1400271) (-771 "bookvol10.4.pamphlet" 1399414 1399434 1400158 1400163) (-770 "bookvol10.3.pamphlet" 1399302 1399316 1399394 1399409) (-769 "bookvol10.4.pamphlet" 1398896 1398935 1399292 1399297) (-768 "bookvol10.4.pamphlet" 1397430 1397449 1398886 1398891) (-767 "bookvol10.4.pamphlet" 1397118 1397144 1397420 1397425) (-766 "bookvol10.3.pamphlet" 1396859 1396867 1397108 1397113) (-765 "bookvol10.4.pamphlet" 1396535 1396545 1396849 1396854) (-764 "bookvol10.4.pamphlet" 1396004 1396020 1396525 1396530) (-763 "bookvol10.3.pamphlet" 1394894 1394902 1395978 1395999) (-762 "bookvol10.4.pamphlet" 1393516 1393526 1394884 1394889) (-761 "bookvol10.3.pamphlet" 1391114 1391122 1393506 1393511) (-760 "bookvol10.4.pamphlet" 1388574 1388591 1391104 1391109) (-759 "bookvol10.4.pamphlet" 1387827 1387841 1388564 1388569) (-758 "bookvol10.4.pamphlet" 1385939 1385955 1387817 1387822) (-757 "bookvol10.4.pamphlet" 1385596 1385610 1385929 1385934) (-756 "bookvol10.4.pamphlet" 1383756 1383770 1385586 1385591) (-755 "bookvol10.2.pamphlet" 1383352 1383360 1383746 1383751) (-754 NIL 1382946 1382956 1383342 1383347) (-753 "bookvol10.2.pamphlet" 1382232 1382240 1382936 1382941) (-752 NIL 1381516 1381526 1382222 1382227) (-751 "bookvol10.4.pamphlet" 1380589 1380597 1381506 1381511) (-750 "bookvol10.4.pamphlet" 1370155 1370163 1380579 1380584) (-749 "bookvol10.4.pamphlet" 1368591 1368599 1370145 1370150) (-748 "bookvol10.4.pamphlet" 1362765 1362773 1368581 1368586) (-747 "bookvol10.4.pamphlet" 1356509 1356517 1362755 1362760) (-746 "bookvol10.4.pamphlet" 1352131 1352139 1356499 1356504) (-745 "bookvol10.4.pamphlet" 1345505 1345513 1352121 1352126) (-744 "bookvol10.4.pamphlet" 1335900 1335908 1345495 1345500) (-743 "bookvol10.4.pamphlet" 1331827 1331835 1335890 1335895) (-742 "bookvol10.4.pamphlet" 1329702 1329710 1331817 1331822) (-741 "bookvol10.4.pamphlet" 1322148 1322156 1329692 1329697) (-740 "bookvol10.4.pamphlet" 1316304 1316312 1322138 1322143) (-739 "bookvol10.4.pamphlet" 1312134 1312142 1316294 1316299) (-738 "bookvol10.4.pamphlet" 1310646 1310654 1312124 1312129) (-737 "bookvol10.4.pamphlet" 1309944 1309952 1310636 1310641) (-736 "bookvol10.2.pamphlet" 1309450 1309460 1309912 1309939) (-735 NIL 1308976 1308988 1309440 1309445) (-734 "bookvol10.3.pamphlet" 1306197 1306211 1306526 1306679) (-733 "bookvol10.3.pamphlet" 1304316 1304330 1304388 1304608) (-732 "bookvol10.4.pamphlet" 1301300 1301317 1304306 1304311) (-731 "bookvol10.4.pamphlet" 1300698 1300715 1301290 1301295) (-730 "bookvol10.2.pamphlet" 1298732 1298753 1300596 1300693) (-729 "bookvol10.4.pamphlet" 1298389 1298399 1298722 1298727) (-728 "bookvol10.4.pamphlet" 1297829 1297837 1298379 1298384) (-727 "bookvol10.3.pamphlet" 1295834 1295844 1297591 1297630) (-726 "bookvol10.2.pamphlet" 1295667 1295677 1295790 1295829) (-725 "bookvol10.3.pamphlet" 1292620 1292632 1295375 1295442) (-724 "bookvol10.4.pamphlet" 1292180 1292194 1292610 1292615) (-723 "bookvol10.4.pamphlet" 1291741 1291758 1292170 1292175) (-722 "bookvol10.4.pamphlet" 1289786 1289805 1291731 1291736) (-721 "bookvol10.3.pamphlet" 1287236 1287251 1287580 1287707) (-720 "bookvol10.4.pamphlet" 1286515 1286534 1287226 1287231) (-719 "bookvol10.4.pamphlet" 1286323 1286366 1286505 1286510) (-718 "bookvol10.4.pamphlet" 1286067 1286103 1286313 1286318) (-717 "bookvol10.4.pamphlet" 1284402 1284419 1286057 1286062) (-716 "bookvol10.2.pamphlet" 1283266 1283274 1284392 1284397) (-715 NIL 1282128 1282138 1283256 1283261) (-714 "bookvol10.2.pamphlet" 1280874 1280887 1281988 1282123) (-713 NIL 1279642 1279657 1280758 1280763) (-712 "bookvol10.2.pamphlet" 1277648 1277656 1279632 1279637) (-711 NIL 1275652 1275662 1277638 1277643) (-710 "bookvol10.2.pamphlet" 1274796 1274804 1275642 1275647) (-709 NIL 1273938 1273948 1274786 1274791) (-708 "bookvol10.3.pamphlet" 1272617 1272631 1273918 1273933) (-707 "bookvol10.2.pamphlet" 1272298 1272308 1272585 1272612) (-706 NIL 1271999 1272011 1272288 1272293) (-705 "bookvol10.3.pamphlet" 1271312 1271351 1271979 1271994) (-704 "bookvol10.3.pamphlet" 1269954 1269966 1271134 1271201) (-703 "bookvol10.3.pamphlet" 1269465 1269483 1269944 1269949) (-702 "bookvol10.3.pamphlet" 1266125 1266141 1266943 1267096) (-701 "bookvol10.3.pamphlet" 1265486 1265525 1266027 1266120) (-700 "bookvol10.3.pamphlet" 1264273 1264281 1265476 1265481) (-699 "bookvol10.4.pamphlet" 1264013 1264047 1264263 1264268) (-698 "bookvol10.2.pamphlet" 1262455 1262465 1263969 1264008) (-697 "bookvol10.4.pamphlet" 1261027 1261044 1262445 1262450) (-696 "bookvol10.4.pamphlet" 1260497 1260515 1261017 1261022) (-695 "bookvol10.4.pamphlet" 1260083 1260096 1260487 1260492) (-694 "bookvol10.4.pamphlet" 1259398 1259408 1260073 1260078) (-693 "bookvol10.4.pamphlet" 1258291 1258301 1259388 1259393) (-692 "bookvol10.3.pamphlet" 1258067 1258077 1258281 1258286) (-691 "bookvol10.4.pamphlet" 1257528 1257546 1258057 1258062) (-690 "bookvol10.3.pamphlet" 1256967 1256975 1257430 1257523) (-689 "bookvol10.4.pamphlet" 1255606 1255616 1256957 1256962) (-688 "bookvol10.3.pamphlet" 1254050 1254058 1255496 1255601) (-687 "bookvol10.4.pamphlet" 1253450 1253472 1254040 1254045) (-686 "bookvol10.4.pamphlet" 1251312 1251320 1253440 1253445) (-685 "bookvol10.4.pamphlet" 1249553 1249563 1251302 1251307) (-684 "bookvol10.2.pamphlet" 1248828 1248838 1249521 1249548) (-683 "bookvol10.3.pamphlet" 1244801 1244809 1245415 1245616) (-682 "bookvol10.4.pamphlet" 1244009 1244021 1244791 1244796) (-681 "bookvol10.4.pamphlet" 1241117 1241143 1243999 1244004) (-680 "bookvol10.4.pamphlet" 1238393 1238403 1241107 1241112) (-679 "bookvol10.3.pamphlet" 1237284 1237294 1237768 1237795) (-678 "bookvol10.4.pamphlet" 1234610 1234634 1237168 1237173) (-677 "bookvol10.2.pamphlet" 1219821 1219843 1234566 1234605) (-676 NIL 1204880 1204904 1219627 1219632) (-675 "bookvol10.4.pamphlet" 1204148 1204196 1204870 1204875) (-674 "bookvol10.4.pamphlet" 1202868 1202880 1204138 1204143) (-673 "bookvol10.4.pamphlet" 1201767 1201781 1202858 1202863) (-672 "bookvol10.4.pamphlet" 1201101 1201113 1201757 1201762) (-671 "bookvol10.4.pamphlet" 1199919 1199929 1201091 1201096) (-670 "bookvol10.4.pamphlet" 1199727 1199741 1199909 1199914) (-669 "bookvol10.4.pamphlet" 1199492 1199504 1199717 1199722) (-668 "bookvol10.4.pamphlet" 1199122 1199132 1199482 1199487) (-667 "bookvol10.3.pamphlet" 1197066 1197083 1199112 1199117) (-666 "bookvol10.3.pamphlet" 1194985 1194995 1196667 1196672) (-665 "bookvol10.2.pamphlet" 1190441 1190451 1194965 1194980) (-664 NIL 1185905 1185917 1190431 1190436) (-663 "bookvol10.3.pamphlet" 1182711 1182728 1185895 1185900) (-662 "bookvol10.3.pamphlet" 1180969 1180983 1181391 1181442) (-661 "bookvol10.4.pamphlet" 1180502 1180519 1180959 1180964) (-660 "bookvol10.4.pamphlet" 1179342 1179370 1180492 1180497) (-659 "bookvol10.4.pamphlet" 1177146 1177160 1179332 1179337) (-658 "bookvol10.2.pamphlet" 1176803 1176813 1177102 1177141) (-657 NIL 1176492 1176504 1176793 1176798) (-656 "bookvol10.3.pamphlet" 1175506 1175525 1176348 1176417) (-655 "bookvol10.4.pamphlet" 1174763 1174773 1175496 1175501) (-654 "bookvol10.4.pamphlet" 1173208 1173257 1174753 1174758) (-653 "bookvol10.4.pamphlet" 1171847 1171857 1173198 1173203) (-652 "bookvol10.3.pamphlet" 1171248 1171262 1171781 1171808) (-651 "bookvol10.2.pamphlet" 1170850 1170858 1171238 1171243) (-650 NIL 1170450 1170460 1170840 1170845) (-649 "bookvol10.4.pamphlet" 1169368 1169380 1170440 1170445) (-648 "bookvol10.3.pamphlet" 1168755 1168771 1169048 1169087) (-647 "bookvol10.4.pamphlet" 1167799 1167816 1168712 1168717) (-646 "bookvol10.2.pamphlet" 1166416 1166426 1167755 1167794) (-645 NIL 1165031 1165043 1166372 1166377) (-644 "bookvol10.3.pamphlet" 1164307 1164319 1164711 1164750) (-643 "bookvol10.3.pamphlet" 1163710 1163720 1163987 1164026) (-642 "bookvol10.4.pamphlet" 1162482 1162500 1163700 1163705) (-641 "bookvol10.2.pamphlet" 1160857 1160867 1162384 1162477) (-640 "bookvol10.2.pamphlet" 1156605 1156615 1160837 1160852) (-639 NIL 1152327 1152339 1156561 1156566) (-638 "bookvol10.3.pamphlet" 1149063 1149080 1152317 1152322) (-637 "bookvol10.2.pamphlet" 1148546 1148556 1149053 1149058) (-636 "bookvol10.3.pamphlet" 1147646 1147656 1148320 1148347) (-635 "bookvol10.4.pamphlet" 1147077 1147091 1147636 1147641) (-634 "bookvol10.3.pamphlet" 1145018 1145028 1146447 1146474) (-633 "bookvol10.4.pamphlet" 1144309 1144323 1145008 1145013) (-632 "bookvol10.4.pamphlet" 1142949 1142961 1144299 1144304) (-631 "bookvol10.4.pamphlet" 1139822 1139834 1142939 1142944) (-630 "bookvol10.2.pamphlet" 1139254 1139264 1139802 1139817) (-629 "bookvol10.4.pamphlet" 1138031 1138043 1139166 1139171) (-628 "bookvol10.4.pamphlet" 1135945 1135955 1138021 1138026) (-627 "bookvol10.4.pamphlet" 1134828 1134841 1135935 1135940) (-626 "bookvol10.3.pamphlet" 1132842 1132854 1134118 1134263) (-625 "bookvol10.2.pamphlet" 1132367 1132377 1132768 1132837) (-624 NIL 1131920 1131932 1132323 1132328) (-623 "bookvol10.3.pamphlet" 1130453 1130461 1131161 1131176) (-622 "bookvol10.4.pamphlet" 1127821 1127840 1130443 1130448) (-621 "bookvol10.4.pamphlet" 1126740 1126756 1127811 1127816) (-620 "bookvol10.2.pamphlet" 1125759 1125767 1126730 1126735) (-619 "bookvol10.4.pamphlet" 1121411 1121426 1125749 1125754) (-618 "bookvol10.3.pamphlet" 1119474 1119501 1121391 1121406) (-617 "bookvol10.4.pamphlet" 1117858 1117875 1119464 1119469) (-616 "bookvol10.4.pamphlet" 1116916 1116938 1117848 1117853) (-615 "bookvol10.3.pamphlet" 1115688 1115701 1116509 1116578) (-614 "bookvol10.4.pamphlet" 1115261 1115277 1115678 1115683) (-613 "bookvol10.3.pamphlet" 1114701 1114715 1115183 1115222) (-612 "bookvol10.2.pamphlet" 1114477 1114487 1114681 1114696) (-611 NIL 1114261 1114273 1114467 1114472) (-610 "bookvol10.4.pamphlet" 1112974 1112991 1114251 1114256) (-609 "bookvol10.2.pamphlet" 1112696 1112706 1112964 1112969) (-608 "bookvol10.2.pamphlet" 1112433 1112443 1112686 1112691) (-607 "bookvol10.3.pamphlet" 1110968 1110978 1112217 1112222) (-606 "bookvol10.4.pamphlet" 1110671 1110683 1110958 1110963) (-605 "bookvol10.2.pamphlet" 1109762 1109784 1110639 1110666) (-604 NIL 1108873 1108897 1109752 1109757) (-603 "bookvol10.3.pamphlet" 1107495 1107511 1108220 1108247) (-602 "bookvol10.3.pamphlet" 1105472 1105484 1106785 1106930) (-601 "bookvol10.2.pamphlet" 1103554 1103578 1105452 1105467) (-600 NIL 1101501 1101527 1103401 1103406) (-599 "bookvol10.3.pamphlet" 1100509 1100524 1100649 1100676) (-598 "bookvol10.3.pamphlet" 1099669 1099679 1100499 1100504) (-597 "bookvol10.4.pamphlet" 1098480 1098499 1099659 1099664) (-596 "bookvol10.4.pamphlet" 1097974 1097988 1098470 1098475) (-595 "bookvol10.4.pamphlet" 1097704 1097716 1097964 1097969) (-594 "bookvol10.3.pamphlet" 1095496 1095511 1097540 1097665) (-593 "bookvol10.3.pamphlet" 1087922 1087937 1094470 1094567) (-592 "bookvol10.4.pamphlet" 1087405 1087421 1087912 1087917) (-591 "bookvol10.3.pamphlet" 1086635 1086648 1086801 1086828) (-590 "bookvol10.4.pamphlet" 1085715 1085734 1086625 1086630) (-589 "bookvol10.4.pamphlet" 1083679 1083687 1085705 1085710) (-588 "bookvol10.4.pamphlet" 1082202 1082212 1083635 1083640) (-587 "bookvol10.4.pamphlet" 1081803 1081814 1082192 1082197) (-586 "bookvol10.4.pamphlet" 1080149 1080159 1081793 1081798) (-585 "bookvol10.3.pamphlet" 1077894 1077908 1080004 1080031) (-584 "bookvol10.4.pamphlet" 1077030 1077046 1077884 1077889) (-583 "bookvol10.4.pamphlet" 1076171 1076187 1077020 1077025) (-582 "bookvol10.4.pamphlet" 1075931 1075939 1076161 1076166) (-581 "bookvol10.3.pamphlet" 1075624 1075636 1075736 1075829) (-580 "bookvol10.3.pamphlet" 1075385 1075411 1075550 1075619) (-579 "bookvol10.4.pamphlet" 1074994 1075010 1075375 1075380) (-578 "bookvol10.4.pamphlet" 1068240 1068257 1074984 1074989) (-577 "bookvol10.4.pamphlet" 1066099 1066115 1067814 1067819) (-576 "bookvol10.4.pamphlet" 1065405 1065413 1066089 1066094) (-575 "bookvol10.3.pamphlet" 1065181 1065191 1065319 1065400) (-574 "bookvol10.4.pamphlet" 1063545 1063559 1065171 1065176) (-573 "bookvol10.4.pamphlet" 1063034 1063044 1063535 1063540) (-572 "bookvol10.4.pamphlet" 1061679 1061696 1063024 1063029) (-571 "bookvol10.4.pamphlet" 1060042 1060058 1061322 1061327) (-570 "bookvol10.4.pamphlet" 1057769 1057787 1059974 1059979) (-569 "bookvol10.4.pamphlet" 1047876 1047884 1057759 1057764) (-568 "bookvol10.3.pamphlet" 1047237 1047245 1047730 1047871) (-567 "bookvol10.4.pamphlet" 1046503 1046520 1047227 1047232) (-566 "bookvol10.4.pamphlet" 1046168 1046192 1046493 1046498) (-565 "bookvol10.4.pamphlet" 1042569 1042577 1046158 1046163) (-564 "bookvol10.4.pamphlet" 1035949 1035967 1042501 1042506) (-563 "bookvol10.3.pamphlet" 1029947 1029955 1035939 1035944) (-562 "bookvol10.4.pamphlet" 1029047 1029104 1029937 1029942) (-561 "bookvol10.4.pamphlet" 1028121 1028131 1029037 1029042) (-560 "bookvol10.4.pamphlet" 1027989 1028013 1028111 1028116) (-559 "bookvol10.4.pamphlet" 1026303 1026319 1027979 1027984) (-558 "bookvol10.2.pamphlet" 1024927 1024935 1026229 1026298) (-557 NIL 1023613 1023623 1024917 1024922) (-556 "bookvol10.4.pamphlet" 1022743 1022830 1023603 1023608) (-555 "bookvol10.2.pamphlet" 1021206 1021216 1022657 1022738) (-554 "bookvol10.4.pamphlet" 1020709 1020717 1021196 1021201) (-553 "bookvol10.4.pamphlet" 1019891 1019918 1020699 1020704) (-552 "bookvol10.4.pamphlet" 1019383 1019399 1019881 1019886) (-551 "bookvol10.3.pamphlet" 1018463 1018494 1018626 1018653) (-550 "bookvol10.2.pamphlet" 1015859 1015867 1018365 1018458) (-549 NIL 1013341 1013351 1015849 1015854) (-548 "bookvol10.4.pamphlet" 1012775 1012788 1013331 1013336) (-547 "bookvol10.4.pamphlet" 1011841 1011860 1012765 1012770) (-546 "bookvol10.4.pamphlet" 1010899 1010923 1011831 1011836) (-545 "bookvol10.4.pamphlet" 1009885 1009902 1010889 1010894) (-544 "bookvol10.4.pamphlet" 1009032 1009062 1009875 1009880) (-543 "bookvol10.4.pamphlet" 1007317 1007339 1009022 1009027) (-542 "bookvol10.4.pamphlet" 1006367 1006386 1007307 1007312) (-541 "bookvol10.3.pamphlet" 1003411 1003419 1006357 1006362) (-540 "bookvol10.4.pamphlet" 1003036 1003046 1003401 1003406) (-539 "bookvol10.4.pamphlet" 1002624 1002632 1003026 1003031) (-538 "bookvol10.3.pamphlet" 1002005 1002068 1002614 1002619) (-537 "bookvol10.3.pamphlet" 1001411 1001434 1001995 1002000) (-536 "bookvol10.2.pamphlet" 1000034 1000097 1001401 1001406) (-535 "bookvol10.4.pamphlet" 998566 998588 1000024 1000029) (-534 "bookvol10.3.pamphlet" 998472 998489 998556 998561) (-533 "bookvol10.4.pamphlet" 997893 997903 998462 998467) (-532 "bookvol10.4.pamphlet" 993659 993670 997883 997888) (-531 "bookvol10.3.pamphlet" 992791 992817 993303 993330) (-530 "bookvol10.4.pamphlet" 991881 991925 992747 992752) (-529 "bookvol10.4.pamphlet" 990486 990510 991837 991842) (-528 "bookvol10.3.pamphlet" 989365 989380 989892 989919) (-527 "bookvol10.3.pamphlet" 989090 989128 989195 989222) (-526 "bookvol10.3.pamphlet" 988500 988516 988771 988864) (-525 "bookvol10.3.pamphlet" 985571 985586 987906 987933) (-524 "bookvol10.3.pamphlet" 985409 985426 985527 985532) (-523 "bookvol10.2.pamphlet" 984798 984810 985399 985404) (-522 NIL 984185 984199 984788 984793) (-521 "bookvol10.3.pamphlet" 983998 984010 984175 984180) (-520 "bookvol10.3.pamphlet" 983769 983781 983988 983993) (-519 "bookvol10.3.pamphlet" 983504 983516 983759 983764) (-518 "bookvol10.2.pamphlet" 982438 982450 983494 983499) (-517 "bookvol10.3.pamphlet" 982198 982210 982428 982433) (-516 "bookvol10.3.pamphlet" 981960 981972 982188 982193) (-515 "bookvol10.4.pamphlet" 979212 979230 981950 981955) (-514 "bookvol10.3.pamphlet" 974146 974185 979147 979152) (-513 "bookvol10.3.pamphlet" 973567 973590 974136 974141) (-512 "bookvol10.4.pamphlet" 972718 972734 973557 973562) (-511 "bookvol10.3.pamphlet" 971941 971949 972708 972713) (-510 "bookvol10.4.pamphlet" 970564 970581 971931 971936) (-509 "bookvol10.3.pamphlet" 969842 969855 970258 970285) (-508 "bookvol10.4.pamphlet" 966717 966736 969832 969837) (-507 "bookvol10.4.pamphlet" 965605 965620 966707 966712) (-506 "bookvol10.3.pamphlet" 965336 965362 965435 965462) (-505 "bookvol10.3.pamphlet" 964649 964664 964742 964769) (-504 "bookvol10.3.pamphlet" 962862 962870 964465 964558) (-503 "bookvol10.4.pamphlet" 962417 962450 962852 962857) (-502 "bookvol10.2.pamphlet" 961841 961849 962407 962412) (-501 NIL 961263 961273 961831 961836) (-500 "bookvol10.3.pamphlet" 960063 960071 961253 961258) (-499 "bookvol10.2.pamphlet" 957313 957323 960043 960058) (-498 NIL 954404 954416 957136 957141) (-497 "bookvol10.3.pamphlet" 952273 952281 952871 952964) (-496 "bookvol10.4.pamphlet" 951127 951138 952263 952268) (-495 "bookvol10.3.pamphlet" 950717 950741 951117 951122) (-494 "bookvol10.3.pamphlet" 946440 946450 950547 950574) (-493 "bookvol10.3.pamphlet" 938293 938309 938655 938786) (-492 "bookvol10.3.pamphlet" 935484 935499 936087 936214) (-491 "bookvol10.4.pamphlet" 934024 934032 935474 935479) (-490 "bookvol10.3.pamphlet" 933056 933087 933267 933294) (-489 "bookvol10.3.pamphlet" 932641 932649 932958 933051) (-488 "bookvol10.4.pamphlet" 918518 918530 932631 932636) (-487 "bookvol10.4.pamphlet" 918263 918271 918363 918368) (-486 "bookvol10.4.pamphlet" 902336 902372 918133 918138) (-485 "bookvol10.4.pamphlet" 902097 902105 902195 902200) (-484 "bookvol10.4.pamphlet" 901918 901932 902031 902036) (-483 "bookvol10.4.pamphlet" 901795 901809 901908 901913) (-482 "bookvol10.4.pamphlet" 901628 901636 901728 901733) (-481 "bookvol10.3.pamphlet" 900820 900836 901330 901357) (-480 "bookvol10.3.pamphlet" 899901 899936 900075 900090) (-479 "bookvol10.3.pamphlet" 897068 897095 898033 898182) (-478 "bookvol10.2.pamphlet" 896034 896042 897048 897063) (-477 NIL 895008 895018 896024 896029) (-476 "bookvol10.4.pamphlet" 893591 893612 894998 895003) (-475 "bookvol10.2.pamphlet" 892169 892181 893581 893586) (-474 NIL 890745 890759 892159 892164) (-473 "bookvol10.3.pamphlet" 883350 883358 890735 890740) (-472 "bookvol10.4.pamphlet" 881729 881737 883340 883345) (-471 "bookvol10.4.pamphlet" 880172 880180 881719 881724) (-470 "bookvol10.2.pamphlet" 879226 879238 880162 880167) (-469 NIL 878278 878292 879216 879221) (-468 "bookvol10.3.pamphlet" 877788 877811 878016 878043) (-467 "bookvol10.4.pamphlet" 872478 872565 877744 877749) (-466 "bookvol10.4.pamphlet" 871739 871757 872468 872473) (-465 "bookvol10.3.pamphlet" 867687 867695 871729 871734) (-464 "bookvol10.4.pamphlet" 865270 865278 867677 867682) (-463 "bookvol10.3.pamphlet" 864377 864404 865238 865265) (-462 "bookvol10.4.pamphlet" 863487 863501 864367 864372) (-461 "bookvol10.4.pamphlet" 859588 859601 863477 863482) (-460 "bookvol10.4.pamphlet" 859192 859202 859578 859583) (-459 "bookvol10.4.pamphlet" 858776 858793 859182 859187) (-458 "bookvol10.4.pamphlet" 858243 858262 858766 858771) (-457 "bookvol10.4.pamphlet" 856233 856246 858233 858238) (-456 "bookvol10.4.pamphlet" 854490 854498 856223 856228) (-455 "bookvol10.3.pamphlet" 851523 851540 852284 852411) (-454 "bookvol10.3.pamphlet" 845418 845445 851317 851384) (-453 "bookvol10.2.pamphlet" 844346 844354 845344 845413) (-452 NIL 843336 843346 844336 844341) (-451 "bookvol10.4.pamphlet" 837117 837155 843292 843297) (-450 "bookvol10.4.pamphlet" 833215 833253 837107 837112) (-449 "bookvol10.4.pamphlet" 828281 828319 833205 833210) (-448 "bookvol10.4.pamphlet" 824536 824574 828271 828276) (-447 "bookvol10.4.pamphlet" 823833 823841 824526 824531) (-446 "bookvol10.4.pamphlet" 822155 822165 823789 823794) (-445 "bookvol10.4.pamphlet" 820614 820627 822145 822150) (-444 "bookvol10.4.pamphlet" 818779 818798 820604 820609) (-443 "bookvol10.4.pamphlet" 809045 809056 818769 818774) (-442 "bookvol10.2.pamphlet" 806058 806066 809025 809040) (-441 "bookvol10.2.pamphlet" 805100 805108 806038 806053) (-440 "bookvol10.3.pamphlet" 804949 804961 805090 805095) (-439 NIL 803161 803169 804939 804944) (-438 "bookvol10.3.pamphlet" 802324 802332 803151 803156) (-437 "bookvol10.4.pamphlet" 801366 801385 802260 802265) (-436 "bookvol10.3.pamphlet" 799452 799460 801356 801361) (-435 "bookvol10.4.pamphlet" 798874 798890 799442 799447) (-434 "bookvol10.4.pamphlet" 797682 797698 798831 798836) (-433 "bookvol10.4.pamphlet" 794954 794970 797672 797677) (-432 "bookvol10.2.pamphlet" 788988 788998 794717 794949) (-431 NIL 782812 782824 788543 788548) (-430 "bookvol10.4.pamphlet" 782434 782450 782802 782807) (-429 "bookvol10.3.pamphlet" 781742 781754 782254 782353) (-428 "bookvol10.4.pamphlet" 781016 781032 781732 781737) (-427 "bookvol10.2.pamphlet" 780117 780127 780960 781011) (-426 NIL 779192 779204 780037 780042) (-425 "bookvol10.4.pamphlet" 777879 777895 779182 779187) (-424 "bookvol10.4.pamphlet" 772268 772302 777869 777874) (-423 "bookvol10.4.pamphlet" 771878 771894 772258 772263) (-422 "bookvol10.4.pamphlet" 771001 771024 771868 771873) (-421 "bookvol10.4.pamphlet" 769943 769953 770991 770996) (-420 "bookvol10.3.pamphlet" 761367 761377 768967 769036) (-419 "bookvol10.2.pamphlet" 756446 756456 761309 761362) (-418 NIL 751537 751549 756402 756407) (-417 "bookvol10.4.pamphlet" 750983 751001 751527 751532) (-416 "bookvol10.3.pamphlet" 750377 750407 750914 750919) (-415 "bookvol10.3.pamphlet" 749572 749593 750357 750372) (-414 "bookvol10.4.pamphlet" 749308 749340 749562 749567) (-413 "bookvol10.2.pamphlet" 748972 748982 749298 749303) (-412 NIL 748502 748514 748830 748835) (-411 "bookvol10.2.pamphlet" 746830 746843 748458 748497) (-410 NIL 745190 745205 746820 746825) (-409 "bookvol10.3.pamphlet" 742289 742299 742692 742865) (-408 "bookvol10.4.pamphlet" 741892 741904 742279 742284) (-407 "bookvol10.4.pamphlet" 741226 741238 741882 741887) (-406 "bookvol10.2.pamphlet" 738196 738204 741116 741221) (-405 NIL 735194 735204 738116 738121) (-404 "bookvol10.2.pamphlet" 734238 734246 735096 735189) (-403 NIL 733368 733378 734228 734233) (-402 "bookvol10.2.pamphlet" 733120 733130 733348 733363) (-401 "bookvol10.3.pamphlet" 731896 731913 733110 733115) (-400 NIL 730381 730430 731886 731891) (-399 "bookvol10.4.pamphlet" 729310 729318 730371 730376) (-398 "bookvol10.2.pamphlet" 726470 726478 729290 729305) (-397 "bookvol10.2.pamphlet" 726144 726152 726450 726465) (-396 "bookvol10.3.pamphlet" 723482 723490 726134 726139) (-395 "bookvol10.4.pamphlet" 722961 722971 723472 723477) (-394 "bookvol10.4.pamphlet" 722742 722766 722951 722956) (-393 "bookvol10.4.pamphlet" 721943 721951 722732 722737) (-392 "bookvol10.3.pamphlet" 721365 721387 721911 721938) (-391 "bookvol10.2.pamphlet" 719693 719701 721355 721360) (-390 "bookvol10.3.pamphlet" 719585 719593 719683 719688) (-389 "bookvol10.2.pamphlet" 719383 719391 719511 719580) (-388 "bookvol10.3.pamphlet" 716438 716448 719339 719344) (-387 "bookvol10.3.pamphlet" 716133 716145 716372 716399) (-386 "bookvol10.2.pamphlet" 713153 713161 716113 716128) (-385 "bookvol10.2.pamphlet" 712195 712203 713133 713148) (-384 "bookvol10.2.pamphlet" 709899 709917 712163 712190) (-383 "bookvol10.3.pamphlet" 709359 709371 709833 709860) (-382 "bookvol10.4.pamphlet" 707095 707109 709349 709354) (-381 "bookvol10.3.pamphlet" 700516 700524 706961 707090) (-380 "bookvol10.4.pamphlet" 697948 697962 700506 700511) (-379 "bookvol10.2.pamphlet" 697660 697670 697928 697943) (-378 NIL 697326 697338 697596 697601) (-377 "bookvol10.4.pamphlet" 696576 696588 697316 697321) (-376 "bookvol10.2.pamphlet" 694281 694300 696502 696571) (-375 "bookvol10.2.pamphlet" 691279 691289 694249 694276) (-374 NIL 688190 688202 691162 691167) (-373 "bookvol10.4.pamphlet" 686859 686875 688180 688185) (-372 "bookvol10.2.pamphlet" 684892 684905 686815 686854) (-371 NIL 682851 682866 684776 684781) (-370 "bookvol10.2.pamphlet" 682003 682011 682841 682846) (-369 "bookvol10.2.pamphlet" 670932 670942 681945 681998) (-368 NIL 659873 659885 670888 670893) (-367 "bookvol10.3.pamphlet" 659456 659466 659863 659868) (-366 "bookvol10.2.pamphlet" 657885 657902 659446 659451) (-365 "bookvol10.2.pamphlet" 657203 657211 657787 657880) (-364 NIL 656607 656617 657193 657198) (-363 "bookvol10.3.pamphlet" 655216 655226 656587 656602) (-362 "bookvol10.4.pamphlet" 654031 654046 655206 655211) (-361 "bookvol10.3.pamphlet" 653450 653465 653747 653840) (-360 "bookvol10.4.pamphlet" 653315 653332 653440 653445) (-359 "bookvol10.4.pamphlet" 652804 652825 653305 653310) (-358 "bookvol10.4.pamphlet" 644083 644094 652794 652799) (-357 "bookvol10.4.pamphlet" 643129 643146 644073 644078) (-356 "bookvol10.3.pamphlet" 642615 642635 642845 642938) (-355 "bookvol10.3.pamphlet" 642063 642079 642296 642389) (-354 "bookvol10.3.pamphlet" 640581 640601 641779 641872) (-353 "bookvol10.3.pamphlet" 639091 639108 640297 640390) (-352 "bookvol10.3.pamphlet" 637602 637623 638772 638865) (-351 "bookvol10.4.pamphlet" 634964 634983 637592 637597) (-350 "bookvol10.2.pamphlet" 632538 632546 634866 634959) (-349 NIL 630198 630208 632528 632533) (-348 "bookvol10.4.pamphlet" 628943 628960 630188 630193) (-347 "bookvol10.4.pamphlet" 626358 626369 628933 628938) (-346 "bookvol10.4.pamphlet" 619566 619582 626348 626353) (-345 "bookvol10.4.pamphlet" 618181 618200 619556 619561) (-344 "bookvol10.4.pamphlet" 617590 617607 618171 618176) (-343 "bookvol10.3.pamphlet" 616443 616463 617306 617399) (-342 "bookvol10.3.pamphlet" 615338 615358 616159 616252) (-341 "bookvol10.3.pamphlet" 614137 614158 615019 615112) (-340 "bookvol10.2.pamphlet" 602768 602790 613976 614132) (-339 NIL 591478 591502 602688 602693) (-338 "bookvol10.4.pamphlet" 591223 591263 591468 591473) (-337 "bookvol10.3.pamphlet" 583853 583899 590979 591018) (-336 "bookvol10.2.pamphlet" 583559 583569 583843 583848) (-335 NIL 583050 583062 583336 583341) (-334 "bookvol10.3.pamphlet" 582483 582507 583040 583045) (-333 "bookvol10.2.pamphlet" 580525 580549 582473 582478) (-332 NIL 578565 578591 580515 580520) (-331 "bookvol10.4.pamphlet" 578309 578349 578555 578560) (-330 "bookvol10.4.pamphlet" 576830 576838 578299 578304) (-329 "bookvol10.3.pamphlet" 576359 576369 576820 576825) (-328 NIL 566184 566192 576349 576354) (-327 "bookvol10.2.pamphlet" 559057 559071 566086 566179) (-326 NIL 551982 551998 559013 559018) (-325 "bookvol10.3.pamphlet" 550396 550406 551388 551415) (-324 "bookvol10.2.pamphlet" 548516 548528 550294 550391) (-323 NIL 546620 546634 548400 548405) (-322 "bookvol10.4.pamphlet" 546170 546192 546610 546615) (-321 "bookvol10.3.pamphlet" 545820 545830 546124 546129) (-320 "bookvol10.2.pamphlet" 544011 544023 545810 545815) (-319 "bookvol10.3.pamphlet" 543617 543627 543907 543934) (-318 "bookvol10.4.pamphlet" 541813 541830 543607 543612) (-317 "bookvol10.4.pamphlet" 541695 541705 541803 541808) (-316 "bookvol10.4.pamphlet" 540871 540881 541685 541690) (-315 "bookvol10.4.pamphlet" 540753 540763 540861 540866) (-314 "bookvol10.3.pamphlet" 537586 537609 538885 539034) (-313 "bookvol10.4.pamphlet" 534950 534958 537576 537581) (-312 "bookvol10.4.pamphlet" 534852 534881 534940 534945) (-311 "bookvol10.4.pamphlet" 531660 531676 534842 534847) (-310 "bookvol10.3.pamphlet" 526909 526919 527649 528056) (-309 "bookvol10.4.pamphlet" 522969 522982 526899 526904) (-308 "bookvol10.4.pamphlet" 522729 522741 522959 522964) (-307 "bookvol10.3.pamphlet" 519667 519692 520301 520394) (-306 "bookvol10.4.pamphlet" 519520 519528 519657 519662) (-305 "bookvol10.3.pamphlet" 519187 519195 519510 519515) (-304 "bookvol10.4.pamphlet" 518677 518691 519177 519182) (-303 "bookvol10.2.pamphlet" 518241 518251 518667 518672) (-302 NIL 517803 517815 518231 518236) (-301 "bookvol10.2.pamphlet" 515337 515345 517729 517798) (-300 NIL 512933 512943 515327 515332) (-299 "bookvol10.4.pamphlet" 504773 504781 512923 512928) (-298 "bookvol10.4.pamphlet" 504358 504372 504763 504768) (-297 "bookvol10.4.pamphlet" 504035 504046 504348 504353) (-296 "bookvol10.2.pamphlet" 496582 496590 504025 504030) (-295 NIL 489035 489045 496480 496485) (-294 "bookvol10.4.pamphlet" 485808 485816 489025 489030) (-293 "bookvol10.4.pamphlet" 485549 485561 485798 485803) (-292 "bookvol10.4.pamphlet" 485044 485060 485539 485544) (-291 "bookvol10.4.pamphlet" 484610 484626 485034 485039) (-290 "bookvol10.4.pamphlet" 481984 481992 484600 484605) (-289 "bookvol10.3.pamphlet" 481018 481040 481227 481254) (-288 "bookvol10.3.pamphlet" 475876 475886 478691 478803) (-287 "bookvol10.4.pamphlet" 475592 475604 475866 475871) (-286 "bookvol10.4.pamphlet" 471906 471916 475582 475587) (-285 "bookvol10.2.pamphlet" 471448 471456 471850 471901) (-284 "bookvol10.3.pamphlet" 470628 470669 471374 471443) (-283 "bookvol10.2.pamphlet" 468882 468901 470618 470623) (-282 NIL 467100 467121 468838 468843) (-281 "bookvol10.2.pamphlet" 466564 466582 467090 467095) (-280 "bookvol10.4.pamphlet" 465943 465962 466554 466559) (-279 "bookvol10.2.pamphlet" 465632 465640 465933 465938) (-278 NIL 465319 465329 465622 465627) (-277 "bookvol10.2.pamphlet" 463023 463033 465287 465314) (-276 NIL 460676 460688 462942 462947) (-275 "bookvol10.4.pamphlet" 457467 457497 460632 460637) (-274 "bookvol10.4.pamphlet" 454318 454341 457423 457428) (-273 "bookvol10.4.pamphlet" 452273 452289 454308 454313) (-272 "bookvol10.4.pamphlet" 447039 447055 452263 452268) (-271 "bookvol10.3.pamphlet" 445315 445323 447029 447034) (-270 "bookvol10.3.pamphlet" 444851 444859 445305 445310) (-269 "bookvol10.3.pamphlet" 444428 444436 444841 444846) (-268 "bookvol10.3.pamphlet" 444008 444016 444418 444423) (-267 "bookvol10.3.pamphlet" 443544 443552 443998 444003) (-266 "bookvol10.3.pamphlet" 443080 443088 443534 443539) (-265 "bookvol10.3.pamphlet" 442616 442624 443070 443075) (-264 "bookvol10.3.pamphlet" 442152 442160 442606 442611) (-263 "bookvol10.4.pamphlet" 437768 437776 442142 442147) (-262 "bookvol10.2.pamphlet" 434449 434459 437758 437763) (-261 NIL 431128 431140 434439 434444) (-260 "bookvol10.4.pamphlet" 428108 428195 431118 431123) (-259 "bookvol10.3.pamphlet" 427278 427288 427938 427965) (-258 "bookvol10.2.pamphlet" 426866 426876 427234 427273) (-257 "bookvol10.3.pamphlet" 424309 424323 424602 424729) (-256 "bookvol10.3.pamphlet" 418254 418262 424299 424304) (-255 "bookvol10.4.pamphlet" 417915 417925 418244 418249) (-254 "bookvol10.4.pamphlet" 412740 412748 417905 417910) (-253 "bookvol10.4.pamphlet" 410895 410903 412730 412735) (-252 "bookvol10.4.pamphlet" 403495 403508 410885 410890) (-251 "bookvol10.4.pamphlet" 402748 402758 403485 403490) (-250 "bookvol10.4.pamphlet" 400103 400111 402738 402743) (-249 "bookvol10.4.pamphlet" 399640 399655 400093 400098) (-248 "bookvol10.4.pamphlet" 388812 388820 399630 399635) (-247 "bookvol10.2.pamphlet" 386964 386974 388768 388807) (-246 "bookvol10.2.pamphlet" 382305 382321 386832 386959) (-245 NIL 377732 377750 382261 382266) (-244 "bookvol10.3.pamphlet" 371091 371107 371229 371530) (-243 "bookvol10.3.pamphlet" 364463 364481 364588 364889) (-242 "bookvol10.3.pamphlet" 361700 361715 362257 362384) (-241 "bookvol10.4.pamphlet" 361044 361054 361690 361695) (-240 "bookvol10.3.pamphlet" 359679 359689 360450 360477) (-239 "bookvol10.2.pamphlet" 358072 358082 359659 359674) (-238 "bookvol10.2.pamphlet" 357519 357527 358016 358067) (-237 NIL 357010 357020 357509 357514) (-236 "bookvol10.3.pamphlet" 356863 356873 356942 356969) (-235 "bookvol10.2.pamphlet" 355622 355632 356831 356858) (-234 "bookvol10.4.pamphlet" 353802 353810 355612 355617) (-233 "bookvol10.3.pamphlet" 353094 353109 353638 353763) (-232 "bookvol10.3.pamphlet" 344684 344700 345309 345440) (-231 "bookvol10.4.pamphlet" 343507 343525 344674 344679) (-230 "bookvol10.2.pamphlet" 342669 342685 343359 343502) (-229 NIL 341572 341590 342264 342269) (-228 "bookvol10.4.pamphlet" 340375 340383 341562 341567) (-227 "bookvol10.2.pamphlet" 339347 339357 340343 340370) (-226 NIL 338305 338317 339303 339308) (-225 "bookvol10.2.pamphlet" 337418 337426 338285 338300) (-224 NIL 336539 336549 337408 337413) (-223 "bookvol10.2.pamphlet" 335698 335708 336519 336534) (-222 NIL 334774 334786 335597 335602) (-221 "bookvol10.2.pamphlet" 334392 334402 334742 334769) (-220 NIL 334030 334042 334382 334387) (-219 "bookvol10.3.pamphlet" 332238 332248 333674 333701) (-218 "bookvol10.3.pamphlet" 330966 330974 331362 331389) (-217 "bookvol10.4.pamphlet" 322208 322216 330956 330961) (-216 "bookvol10.3.pamphlet" 321411 321419 321840 321867) (-215 "bookvol10.3.pamphlet" 317688 317696 321301 321406) (-214 "bookvol10.4.pamphlet" 315897 315913 317678 317683) (-213 "bookvol10.3.pamphlet" 313807 313839 315877 315892) (-212 "bookvol10.3.pamphlet" 307481 307491 313637 313664) (-211 "bookvol10.4.pamphlet" 307094 307108 307471 307476) (-210 "bookvol10.4.pamphlet" 304575 304585 307084 307089) (-209 "bookvol10.4.pamphlet" 303071 303087 304565 304570) (-208 "bookvol10.3.pamphlet" 300952 300960 301538 301631) (-207 "bookvol10.4.pamphlet" 298803 298820 300942 300947) (-206 "bookvol10.4.pamphlet" 298401 298425 298793 298798) (-205 "bookvol10.3.pamphlet" 296988 296998 298391 298396) (-204 "bookvol10.3.pamphlet" 296816 296824 296978 296983) (-203 "bookvol10.3.pamphlet" 296636 296644 296806 296811) (-202 "bookvol10.4.pamphlet" 295575 295583 296626 296631) (-201 "bookvol10.3.pamphlet" 295037 295045 295565 295570) (-200 "bookvol10.3.pamphlet" 294515 294523 295027 295032) (-199 "bookvol10.3.pamphlet" 294005 294013 294505 294510) (-198 "bookvol10.3.pamphlet" 293495 293503 293995 294000) (-197 "bookvol10.4.pamphlet" 288337 288345 293485 293490) (-196 "bookvol10.4.pamphlet" 286656 286664 288327 288332) (-195 "bookvol10.3.pamphlet" 286633 286641 286646 286651) (-194 "bookvol10.3.pamphlet" 286155 286163 286623 286628) (-193 "bookvol10.3.pamphlet" 285677 285685 286145 286150) (-192 "bookvol10.3.pamphlet" 285145 285153 285667 285672) (-191 "bookvol10.3.pamphlet" 284630 284638 285135 285140) (-190 "bookvol10.3.pamphlet" 284054 284062 284620 284625) (-189 "bookvol10.3.pamphlet" 283548 283556 284044 284049) (-188 "bookvol10.3.pamphlet" 283058 283066 283538 283543) (-187 "bookvol10.3.pamphlet" 282598 282606 283048 283053) (-186 "bookvol10.3.pamphlet" 282124 282132 282588 282593) (-185 "bookvol10.3.pamphlet" 281647 281655 282114 282119) (-184 "bookvol10.4.pamphlet" 277706 277714 281637 281642) (-183 "bookvol10.4.pamphlet" 277210 277218 277696 277701) (-182 "bookvol10.4.pamphlet" 274027 274035 277200 277205) (-181 "bookvol10.4.pamphlet" 273442 273452 274017 274022) (-180 "bookvol10.4.pamphlet" 271932 271948 273432 273437) (-179 "bookvol10.4.pamphlet" 270601 270614 271922 271927) (-178 "bookvol10.4.pamphlet" 264428 264441 270591 270596) (-177 "bookvol10.4.pamphlet" 263467 263477 264418 264423) (-176 "bookvol10.4.pamphlet" 262967 262982 263392 263397) (-175 "bookvol10.4.pamphlet" 262672 262691 262957 262962) (-174 "bookvol10.4.pamphlet" 257565 257575 262662 262667) (-173 "bookvol10.3.pamphlet" 253300 253310 257467 257560) (-172 "bookvol10.2.pamphlet" 252975 252983 253238 253295) (-171 "bookvol10.3.pamphlet" 252471 252479 252965 252970) (-170 "bookvol10.4.pamphlet" 252238 252253 252461 252466) (-169 "bookvol10.3.pamphlet" 246262 246272 246505 246766) (-168 "bookvol10.4.pamphlet" 245975 245987 246252 246257) (-167 "bookvol10.4.pamphlet" 245771 245785 245965 245970) (-166 "bookvol10.2.pamphlet" 243827 243837 245493 245766) (-165 NIL 241587 241599 243255 243260) (-164 "bookvol10.4.pamphlet" 241333 241351 241577 241582) (-163 "bookvol10.4.pamphlet" 240866 240874 241323 241328) (-162 "bookvol10.3.pamphlet" 240673 240681 240856 240861) (-161 "bookvol10.2.pamphlet" 239578 239586 240663 240668) (-160 "bookvol10.4.pamphlet" 238076 238086 239568 239573) (-159 "bookvol10.4.pamphlet" 235336 235352 238066 238071) (-158 "bookvol10.3.pamphlet" 234173 234181 235326 235331) (-157 "bookvol10.4.pamphlet" 233505 233522 234163 234168) (-156 "bookvol10.4.pamphlet" 229569 229577 233495 233500) (-155 "bookvol10.3.pamphlet" 228222 228238 229525 229564) (-154 "bookvol10.2.pamphlet" 224493 224503 228202 228217) (-153 NIL 220645 220657 224356 224361) (-152 "bookvol10.4.pamphlet" 219970 219983 220635 220640) (-151 "bookvol10.4.pamphlet" 218048 218070 219960 219965) (-150 "bookvol10.2.pamphlet" 217963 217971 218028 218043) (-149 "bookvol10.4.pamphlet" 217471 217481 217953 217958) (-148 "bookvol10.2.pamphlet" 217224 217232 217451 217466) (-147 "bookvol10.3.pamphlet" 212724 212732 217214 217219) (-146 "bookvol10.2.pamphlet" 211905 211913 212714 212719) (-145 "bookvol10.3.pamphlet" 210142 210150 210843 210870) (-144 "bookvol10.3.pamphlet" 209260 209268 209698 209725) (-143 "bookvol10.4.pamphlet" 208418 208432 209250 209255) (-142 "bookvol10.3.pamphlet" 206781 206789 207887 207926) (-141 "bookvol10.3.pamphlet" 196438 196462 206771 206776) (-140 "bookvol10.4.pamphlet" 195824 195851 196428 196433) (-139 "bookvol10.3.pamphlet" 192160 192168 195798 195819) (-138 "bookvol10.2.pamphlet" 191782 191790 192150 192155) (-137 "bookvol10.2.pamphlet" 191293 191301 191772 191777) (-136 "bookvol10.3.pamphlet" 190311 190321 191123 191150) (-135 "bookvol10.3.pamphlet" 189505 189515 190141 190168) (-134 "bookvol10.2.pamphlet" 188869 188879 189461 189500) (-133 NIL 188265 188277 188859 188864) (-132 "bookvol10.2.pamphlet" 187330 187338 188221 188260) (-131 NIL 186427 186437 187320 187325) (-130 "bookvol10.3.pamphlet" 184947 184957 186257 186284) (-129 "bookvol10.4.pamphlet" 183710 183721 184937 184942) (-128 "bookvol10.2.pamphlet" 182624 182634 183690 183705) (-127 NIL 181512 181524 182580 182585) (-126 "bookvol10.3.pamphlet" 179493 179505 179748 179841) (-125 "bookvol10.3.pamphlet" 179157 179169 179419 179488) (-124 "bookvol10.4.pamphlet" 178813 178830 179147 179152) (-123 "bookvol10.3.pamphlet" 174205 174213 178803 178808) (-122 "bookvol10.4.pamphlet" 171583 171593 174161 174166) (-121 "bookvol10.3.pamphlet" 170477 170485 171573 171578) (-120 "bookvol10.2.pamphlet" 170135 170147 170445 170472) (-119 "bookvol10.4.pamphlet" 168341 168377 170125 170130) (-118 "bookvol10.3.pamphlet" 168231 168239 168306 168336) (-117 "bookvol10.2.pamphlet" 168208 168216 168221 168226) (-116 "bookvol10.3.pamphlet" 168100 168108 168175 168203) (-115 "bookvol10.5.pamphlet" 165464 165472 168090 168095) (-114 "bookvol10.3.pamphlet" 164941 164949 165158 165185) (-113 "bookvol10.3.pamphlet" 164284 164292 164931 164936) (-112 "bookvol10.3.pamphlet" 162124 162132 162751 162844) (-111 "bookvol10.2.pamphlet" 161309 161319 162092 162119) (-110 NIL 160514 160526 161299 161304) (-109 "bookvol10.3.pamphlet" 159935 159943 160494 160509) (-108 "bookvol10.4.pamphlet" 159069 159096 159885 159890) (-107 "bookvol10.4.pamphlet" 156390 156400 159059 159064) (-106 "bookvol10.3.pamphlet" 151452 151462 156220 156247) (-105 "bookvol10.2.pamphlet" 151124 151132 151442 151447) (-104 NIL 150794 150804 151114 151119) (-103 "bookvol10.4.pamphlet" 150233 150246 150784 150789) (-102 "bookvol10.4.pamphlet" 150093 150101 150223 150228) (-101 "bookvol10.3.pamphlet" 149539 149549 150073 150088) (-100 "bookvol10.2.pamphlet" 146136 146144 149279 149534) (-99 "bookvol10.3.pamphlet" 142171 142178 146116 146131) (-98 "bookvol10.2.pamphlet" 141641 141648 142161 142166) (-97 NIL 141109 141118 141631 141636) (-96 "bookvol10.3.pamphlet" 136401 136410 140939 140966) (-95 "bookvol10.4.pamphlet" 135201 135212 136357 136362) (-94 "bookvol10.3.pamphlet" 134272 134285 135191 135196) (-93 "bookvol10.3.pamphlet" 132761 132774 134262 134267) (-92 "bookvol10.3.pamphlet" 131881 131894 132751 132756) (-91 "bookvol10.3.pamphlet" 130849 130862 131871 131876) (-90 "bookvol10.3.pamphlet" 130224 130237 130839 130844) (-89 "bookvol10.3.pamphlet" 129429 129442 130214 130219) (-88 "bookvol10.3.pamphlet" 128082 128095 129419 129424) (-87 "bookvol10.3.pamphlet" 127173 127186 128072 128077) (-86 "bookvol10.3.pamphlet" 125295 125308 127163 127168) (-85 "bookvol10.3.pamphlet" 123012 123025 125285 125290) (-84 "bookvol10.3.pamphlet" 119204 119217 123002 123007) (-83 "bookvol10.3.pamphlet" 118345 118358 119194 119199) (-82 "bookvol10.3.pamphlet" 116982 116995 118335 118340) (-81 "bookvol10.3.pamphlet" 114334 114373 116972 116977) (-80 "bookvol10.3.pamphlet" 112008 112047 114324 114329) (-79 "bookvol10.3.pamphlet" 110645 110658 111998 112003) (-78 "bookvol10.3.pamphlet" 109384 109397 110635 110640) (-77 "bookvol10.3.pamphlet" 108898 108911 109374 109379) (-76 "bookvol10.3.pamphlet" 107694 107707 108888 108893) (-75 "bookvol10.3.pamphlet" 105698 105711 107684 107689) (-74 "bookvol10.3.pamphlet" 105008 105021 105688 105693) (-73 "bookvol10.3.pamphlet" 92049 92062 104998 105003) (-72 "bookvol10.3.pamphlet" 90155 90168 92039 92044) (-71 "bookvol10.3.pamphlet" 88878 88891 90145 90150) (-70 "bookvol10.3.pamphlet" 87729 87742 88868 88873) (-69 "bookvol10.3.pamphlet" 87043 87056 87719 87724) (-68 "bookvol10.3.pamphlet" 77536 77549 87033 87038) (-67 "bookvol10.3.pamphlet" 76838 76851 77526 77531) (-66 "bookvol10.3.pamphlet" 75953 75966 76828 76833) (-65 "bookvol10.3.pamphlet" 75551 75560 75783 75810) (-64 "bookvol10.3.pamphlet" 74439 74448 74957 74984) (-63 "bookvol10.4.pamphlet" 72262 72273 74429 74434) (-62 "bookvol10.2.pamphlet" 64788 64809 72218 72257) (-61 NIL 57346 57369 64778 64783) (-60 "bookvol10.4.pamphlet" 56590 56612 57336 57341) (-59 "bookvol10.4.pamphlet" 56205 56218 56580 56585) (-58 "bookvol10.4.pamphlet" 55592 55599 56195 56200) (-57 "bookvol10.3.pamphlet" 53934 53941 55582 55587) (-56 "bookvol10.4.pamphlet" 53005 53014 53924 53929) (-55 "bookvol10.3.pamphlet" 51444 51460 52985 53000) (-54 "bookvol10.3.pamphlet" 51357 51364 51434 51439) (-53 "bookvol10.3.pamphlet" 49658 49665 51173 51266) (-52 "bookvol10.2.pamphlet" 47837 47848 49556 49653) (-51 NIL 45853 45866 47574 47579) (-50 "bookvol10.3.pamphlet" 43897 43918 44247 44274) (-49 "bookvol10.3.pamphlet" 43020 43046 43769 43822) (-48 "bookvol10.4.pamphlet" 38807 38818 42976 42981) (-47 "bookvol10.4.pamphlet" 37996 38010 38797 38802) (-46 "bookvol10.4.pamphlet" 35416 35431 37793 37798) (-45 "bookvol10.3.pamphlet" 33730 33757 33948 34104) (-44 "bookvol10.4.pamphlet" 32843 32853 33720 33725) (-43 "bookvol10.2.pamphlet" 32295 32304 32799 32838) (-42 NIL 31779 31790 32285 32290) (-41 "bookvol10.2.pamphlet" 31277 31298 31735 31774) (-40 "bookvol10.2.pamphlet" 30658 30665 31267 31272) (-39 "bookvol10.2.pamphlet" 28939 28946 30638 30653) (-38 NIL 27194 27203 28895 28900) (-37 "bookvol10.2.pamphlet" 24922 24931 27184 27189) (-36 "bookvol10.4.pamphlet" 23347 23362 24857 24862) (-35 "bookvol10.3.pamphlet" 23190 23205 23337 23342) (-34 "bookvol10.3.pamphlet" 23039 23048 23180 23185) (-33 "bookvol10.3.pamphlet" 22888 22897 23029 23034) (-32 "bookvol10.4.pamphlet" 22771 22809 22878 22883) (-31 "bookvol10.4.pamphlet" 22304 22342 22761 22766) (-30 "bookvol10.3.pamphlet" 20372 20379 22294 22299) (-29 "bookvol10.2.pamphlet" 18103 18112 20262 20367) (-28 NIL 15932 15943 18093 18098) (-27 "bookvol10.2.pamphlet" 10604 10611 15834 15927) (-26 NIL 5362 5371 10594 10599) (-25 "bookvol10.2.pamphlet" 4706 4713 5352 5357) (-24 NIL 4048 4057 4696 4701) (-23 "bookvol10.2.pamphlet" 3399 3406 4038 4043) (-22 NIL 2748 2757 3389 3394) (-21 "bookvol10.2.pamphlet" 2236 2243 2738 2743) (-20 NIL 1722 1731 2226 2231) (-19 "bookvol10.2.pamphlet" 860 869 1678 1717) (-18 NIL 30 41 850 855)) \ No newline at end of file diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase index aba7d33..9a32aac 100644 --- a/src/share/algebra/category.daase +++ b/src/share/algebra/category.daase @@ -1,3445 +1,3487 @@ -(154637 . 3483827113) -(((|#2| |#2|) -12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082))) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) |has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))))) +(155805 . 3487447485) +(((|#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090))) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) |has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))))) (((|#2| |#2|) . T)) -((((-560)) . T)) -((($ $) -2318 (|has| |#2| (-170)) (|has| |#2| (-359)) (|has| |#2| (-447)) (|has| |#2| (-550)) (|has| |#2| (-896))) ((|#2| |#2|) . T) (((-403 (-560)) (-403 (-560))) |has| |#2| (-43 (-403 (-560))))) +((((-568)) . T)) +((($ $) -2198 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-453)) (|has| |#2| (-558)) (|has| |#2| (-904))) ((|#2| |#2|) . T) (((-409 (-568)) (-409 (-568))) |has| |#2| (-43 (-409 (-568))))) ((($) . T)) (((|#1|) . T)) -((($) . T) ((|#1|) . T) (((-403 (-560))) |has| |#1| (-43 (-403 (-560))))) +((($) . T) ((|#1|) . T) (((-409 (-568))) |has| |#1| (-43 (-409 (-568))))) (((|#2|) . T)) -((($) -2318 (|has| |#2| (-170)) (|has| |#2| (-359)) (|has| |#2| (-447)) (|has| |#2| (-550)) (|has| |#2| (-896))) ((|#2|) . T) (((-403 (-560))) |has| |#2| (-43 (-403 (-560))))) -(|has| |#1| (-896)) -((((-842)) . T)) -((((-842)) . T)) -((((-842)) . T)) +((($) -2198 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-453)) (|has| |#2| (-558)) (|has| |#2| (-904))) ((|#2|) . T) (((-409 (-568))) |has| |#2| (-43 (-409 (-568))))) +(|has| |#1| (-904)) +((((-850)) . T)) +((((-850)) . T)) +((((-850)) . T)) +((((-568) (-169 (-215))) . T)) +((((-568) (-215)) . T)) +((($) . T) (((-409 (-568))) . T)) ((($) . T)) -((($) . T) (((-403 (-560))) . T)) ((($) . T)) ((($) . T)) (((|#2| |#2|) . T)) -((((-145)) . T)) -((((-533)) . T) (((-1135)) . T) (((-213)) . T) (((-375)) . T) (((-879 (-375))) . T)) -(((|#1|) . T)) -((((-213)) . T) (((-842)) . T)) -(((|#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) -(((|#1|) . T)) -(-2318 (|has| |#1| (-21)) (|has| |#1| (-832))) -((($ $) . T) (((-403 (-560)) (-403 (-560))) -2318 (|has| |#1| (-359)) (|has| |#1| (-344))) ((|#1| |#1|) . T)) -(-2318 (|has| |#1| (-807)) (|has| |#1| (-834))) -((((-403 (-560))) |has| |#1| (-1029 (-403 (-560)))) (((-560)) |has| |#1| (-1029 (-560))) ((|#1|) . T)) -((((-842)) . T)) -((((-842)) . T)) -(-2318 (|has| |#1| (-359)) (|has| |#1| (-550))) -(|has| |#1| (-832)) -(((|#1| |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) +((((-147)) . T)) +((((-541)) . T) (((-1143)) . T) (((-215)) . T) (((-381)) . T) (((-887 (-381))) . T)) +(((|#1|) . T)) +((((-215)) . T) (((-850)) . T)) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) +(((|#1|) . T)) +(-2198 (|has| |#1| (-21)) (|has| |#1| (-840))) +((($ $) . T) (((-409 (-568)) (-409 (-568))) -2198 (|has| |#1| (-365)) (|has| |#1| (-350))) ((|#1| |#1|) . T)) +(-2198 (|has| |#1| (-815)) (|has| |#1| (-842))) +((((-409 (-568))) |has| |#1| (-1037 (-409 (-568)))) (((-568)) |has| |#1| (-1037 (-568))) ((|#1|) . T)) +((((-850)) . T)) +((((-850)) . T)) +(-2198 (|has| |#1| (-365)) (|has| |#1| (-558))) +(|has| |#1| (-840)) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (((|#1| |#2| |#3|) . T)) (((|#4|) . T)) -((($) . T) (((-403 (-560))) -2318 (|has| |#1| (-359)) (|has| |#1| (-344))) ((|#1|) . T)) -(((|#1| (-755) (-1067)) . T)) -((((-842)) . T)) -((((-842)) |has| |#1| (-1082))) +((($) . T) (((-409 (-568))) -2198 (|has| |#1| (-365)) (|has| |#1| (-350))) ((|#1|) . T)) +(((|#1| (-763) (-1075)) . T)) +((((-850)) . T)) +((((-850)) |has| |#1| (-1090))) (((|#1|) . T) ((|#2|) . T)) -(((|#1|) . T) (((-560)) |has| |#1| (-1029 (-560))) (((-403 (-560))) |has| |#1| (-1029 (-403 (-560))))) -(-2318 (|has| |#2| (-170)) (|has| |#2| (-447)) (|has| |#2| (-550)) (|has| |#2| (-896))) -(-2318 (|has| |#1| (-170)) (|has| |#1| (-447)) (|has| |#1| (-550)) (|has| |#1| (-896))) -(((|#2| (-486 (-2271 |#1|) (-755))) . T)) -(((|#1| (-526 (-1153))) . T)) -((((-856 |#1|) (-856 |#1|)) . T) (((-403 (-560)) (-403 (-560))) . T) (($ $) . T)) -((((-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) . T)) -(|has| |#1| (-1173)) -(|has| |#4| (-364)) -(|has| |#3| (-364)) -(((|#1|) . T)) -((((-856 |#1|)) . T) (((-403 (-560))) . T) (($) . T)) +(((|#1|) . T) (((-568)) |has| |#1| (-1037 (-568))) (((-409 (-568))) |has| |#1| (-1037 (-409 (-568))))) +(-2198 (|has| |#2| (-172)) (|has| |#2| (-453)) (|has| |#2| (-558)) (|has| |#2| (-904))) +(-2198 (|has| |#1| (-172)) (|has| |#1| (-453)) (|has| |#1| (-558)) (|has| |#1| (-904))) +(((|#2| (-493 (-1697 |#1|) (-763))) . T)) +(((|#1| (-534 (-1161))) . T)) +((((-864 |#1|) (-864 |#1|)) . T) (((-409 (-568)) (-409 (-568))) . T) (($ $) . T)) +((((-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) . T)) +(|has| |#1| (-1181)) +(|has| |#4| (-370)) +(|has| |#3| (-370)) +(((|#1|) . T)) +((((-864 |#1|)) . T) (((-409 (-568))) . T) (($) . T)) (((|#1| |#2|) . T)) ((($) . T)) -(|has| |#1| (-146)) (|has| |#1| (-148)) -(|has| |#1| (-550)) -(-2318 (|has| |#1| (-359)) (|has| |#1| (-550))) -(-2318 (|has| |#1| (-359)) (|has| |#1| (-550))) -((($) . T)) -((((-842)) -2318 (|has| |#1| (-834)) (|has| |#1| (-1082)))) -((((-533)) |has| |#1| (-601 (-533)))) -((($) . T) (((-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((|#1|) . T)) -((($) . T)) -(((|#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) -(((|#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) -((((-842)) . T)) -((((-842)) . T)) -((((-2 (|:| |k| (-560)) (|:| |c| |#1|)) (-2 (|:| |k| (-560)) (|:| |c| |#1|))) |has| (-2 (|:| |k| (-560)) (|:| |c| |#1|)) (-298 (-2 (|:| |k| (-560)) (|:| |c| |#1|))))) -((((-403 (-560))) . T) (($) . T)) -((((-842)) . T)) -((((-842)) . T)) -((((-842)) . T)) -(((|#1|) . T)) -(((|#1|) . T) (((-403 (-560))) |has| |#1| (-43 (-403 (-560)))) (($) . T)) -((((-403 (-560))) -2318 (|has| |#1| (-43 (-403 (-560)))) (|has| |#1| (-359))) (((-1227 |#1| |#2| |#3|)) |has| |#1| (-359)) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-403 (-560))) -2318 (|has| |#1| (-43 (-403 (-560)))) (|has| |#1| (-359))) (($) . T)) -(((|#1|) . T) (((-403 (-560))) |has| |#1| (-43 (-403 (-560)))) (($) . T)) +(|has| |#1| (-150)) +(|has| |#1| (-558)) +(-2198 (|has| |#1| (-365)) (|has| |#1| (-558))) +(-2198 (|has| |#1| (-365)) (|has| |#1| (-558))) +((($) . T)) +((((-850)) -2198 (|has| |#1| (-842)) (|has| |#1| (-1090)))) +((((-541)) |has| |#1| (-609 (-541)))) +((($) . T) (((-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((|#1|) . T)) +((((-169 (-215)) (-145) (-145)) . T)) +((((-215) (-218) (-218)) . T)) +((($) . T)) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) +((((-169 (-215))) . T)) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) +((((-215)) . T)) +((((-850)) . T)) +((((-850)) . T)) +((((-2 (|:| |k| (-568)) (|:| |c| |#1|)) (-2 (|:| |k| (-568)) (|:| |c| |#1|))) |has| (-2 (|:| |k| (-568)) (|:| |c| |#1|)) (-303 (-2 (|:| |k| (-568)) (|:| |c| |#1|))))) +(((|#1|) . T)) +((((-409 (-568))) . T) (($) . T)) +((((-850)) . T)) +((((-850)) . T)) +((((-850)) . T)) (((|#1| |#2|) . T)) -((((-842)) . T)) -(((|#1|) . T)) -(-2318 (|has| |#1| (-834)) (|has| |#1| (-1082))) -((((-403 (-560)) (-403 (-560))) |has| |#2| (-43 (-403 (-560)))) ((|#2| |#2|) . T) (($ $) -2318 (|has| |#2| (-170)) (|has| |#2| (-447)) (|has| |#2| (-550)) (|has| |#2| (-896)))) -(((|#1|) . T)) -((((-403 (-560))) |has| |#2| (-43 (-403 (-560)))) ((|#2|) |has| |#2| (-170)) (($) -2318 (|has| |#2| (-447)) (|has| |#2| (-550)) (|has| |#2| (-896)))) -((($) -2318 (|has| |#1| (-447)) (|has| |#1| (-550)) (|has| |#1| (-896))) ((|#1|) |has| |#1| (-170)) (((-403 (-560))) |has| |#1| (-43 (-403 (-560))))) -(((|#1|) . T) (((-403 (-560))) . T) (($) . T)) -(((|#1|) . T) (((-403 (-560))) . T) (($) . T)) -(((|#1|) . T) (((-403 (-560))) . T) (($) . T)) -((((-403 (-560)) (-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((|#1| |#1|) . T) (($ $) -2318 (|has| |#1| (-170)) (|has| |#1| (-447)) (|has| |#1| (-550)) (|has| |#1| (-896)))) +((((-850)) . T)) +(((|#1|) . T) (((-409 (-568))) |has| |#1| (-43 (-409 (-568)))) (($) . T)) +(((|#1|) . T)) +((((-409 (-568))) -2198 (|has| |#1| (-43 (-409 (-568)))) (|has| |#1| (-365))) (((-1235 |#1| |#2| |#3|)) |has| |#1| (-365)) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-409 (-568))) -2198 (|has| |#1| (-43 (-409 (-568)))) (|has| |#1| (-365))) (($) . T)) +((((-409 (-568)) (-409 (-568))) |has| |#2| (-43 (-409 (-568)))) ((|#2| |#2|) . T) (($ $) -2198 (|has| |#2| (-172)) (|has| |#2| (-453)) (|has| |#2| (-558)) (|has| |#2| (-904)))) +(((|#1|) . T) (((-409 (-568))) |has| |#1| (-43 (-409 (-568)))) (($) . T)) +(((|#1|) . T)) +(-2198 (|has| |#1| (-842)) (|has| |#1| (-1090))) +((((-409 (-568))) |has| |#2| (-43 (-409 (-568)))) ((|#2|) |has| |#2| (-172)) (($) -2198 (|has| |#2| (-453)) (|has| |#2| (-558)) (|has| |#2| (-904)))) +((($) -2198 (|has| |#1| (-453)) (|has| |#1| (-558)) (|has| |#1| (-904))) ((|#1|) |has| |#1| (-172)) (((-409 (-568))) |has| |#1| (-43 (-409 (-568))))) +(((|#1|) . T) (((-409 (-568))) . T) (($) . T)) +(((|#1|) . T) (((-409 (-568))) . T) (($) . T)) +(((|#1|) . T) (((-409 (-568))) . T) (($) . T)) +((((-409 (-568)) (-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((|#1| |#1|) . T) (($ $) -2198 (|has| |#1| (-172)) (|has| |#1| (-453)) (|has| |#1| (-558)) (|has| |#1| (-904)))) ((($ $) . T)) (((|#2|) . T)) -((((-403 (-560))) |has| |#2| (-43 (-403 (-560)))) ((|#2|) . T) (($) -2318 (|has| |#2| (-170)) (|has| |#2| (-447)) (|has| |#2| (-550)) (|has| |#2| (-896)))) -((((-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((|#1|) . T) (($) -2318 (|has| |#1| (-170)) (|has| |#1| (-447)) (|has| |#1| (-550)) (|has| |#1| (-896)))) +((((-409 (-568))) |has| |#2| (-43 (-409 (-568)))) ((|#2|) . T) (($) -2198 (|has| |#2| (-172)) (|has| |#2| (-453)) (|has| |#2| (-558)) (|has| |#2| (-904)))) +((((-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((|#1|) . T) (($) -2198 (|has| |#1| (-172)) (|has| |#1| (-453)) (|has| |#1| (-558)) (|has| |#1| (-904)))) ((($) . T)) -(|has| |#1| (-364)) +(|has| |#1| (-370)) (((|#1|) . T)) -((((-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) -((((-842)) . T)) -((((-842)) . T)) +((((-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) +((((-850)) . T)) +((((-850)) . T)) (((|#1| |#2|) . T)) -(-2318 (|has| |#1| (-21)) (|has| |#1| (-170)) (|has| |#1| (-359)) (|has| |#1| (-887 (-1153))) (|has| |#1| (-1039))) -(-2318 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-170)) (|has| |#1| (-359)) (|has| |#1| (-887 (-1153))) (|has| |#1| (-1039))) +(-2198 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-895 (-1161))) (|has| |#1| (-1047))) +(-2198 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-895 (-1161))) (|has| |#1| (-1047))) (((|#1| |#1|) . T)) -(|has| |#1| (-550)) -(((|#2| |#2|) -12 (|has| |#1| (-359)) (|has| |#2| (-298 |#2|))) (((-1153) |#2|) -12 (|has| |#1| (-359)) (|has| |#2| (-515 (-1153) |#2|)))) -((((-403 |#2|)) . T) (((-403 (-560))) . T) (($) . T)) -(-2318 (|has| |#1| (-21)) (|has| |#1| (-832))) -((($ $) . T) (((-403 (-560)) (-403 (-560))) . T)) -(-2318 (|has| |#1| (-170)) (|has| |#1| (-359)) (|has| |#1| (-550))) -(-2318 (|has| |#1| (-834)) (|has| |#1| (-1082))) -(|has| |#1| (-1082)) -(-2318 (|has| |#1| (-834)) (|has| |#1| (-1082))) -(|has| |#1| (-1082)) -(-2318 (|has| |#1| (-834)) (|has| |#1| (-1082))) -(|has| |#1| (-832)) -((($) . T) (((-403 (-560))) . T)) -(((|#1|) . T)) -(-2318 (|has| |#1| (-359)) (|has| |#1| (-344))) -(-2318 (|has| |#4| (-780)) (|has| |#4| (-832))) -(-2318 (|has| |#4| (-780)) (|has| |#4| (-832))) -(-2318 (|has| |#3| (-780)) (|has| |#3| (-832))) -(-2318 (|has| |#3| (-780)) (|has| |#3| (-832))) +(|has| |#1| (-558)) +(((|#2| |#2|) -12 (|has| |#1| (-365)) (|has| |#2| (-303 |#2|))) (((-1161) |#2|) -12 (|has| |#1| (-365)) (|has| |#2| (-523 (-1161) |#2|)))) +((((-409 |#2|)) . T) (((-409 (-568))) . T) (($) . T)) +(-2198 (|has| |#1| (-21)) (|has| |#1| (-840))) +((($ $) . T) (((-409 (-568)) (-409 (-568))) . T)) +(-2198 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) +(-2198 (|has| |#1| (-842)) (|has| |#1| (-1090))) +(|has| |#1| (-1090)) +(-2198 (|has| |#1| (-842)) (|has| |#1| (-1090))) +(|has| |#1| (-1090)) +(-2198 (|has| |#1| (-842)) (|has| |#1| (-1090))) +(|has| |#1| (-840)) +((($) . T) (((-409 (-568))) . T)) +(((|#1|) . T)) +(-2198 (|has| |#1| (-365)) (|has| |#1| (-350))) +(-2198 (|has| |#4| (-788)) (|has| |#4| (-840))) +(-2198 (|has| |#4| (-788)) (|has| |#4| (-840))) +(-2198 (|has| |#3| (-788)) (|has| |#3| (-840))) +(-2198 (|has| |#3| (-788)) (|has| |#3| (-840))) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -(|has| |#2| (-359)) -(|has| |#1| (-1082)) -(|has| |#1| (-1082)) -(((|#1| (-1153) (-1071 (-1153)) (-526 (-1071 (-1153)))) . T)) -((((-560) |#1|) . T)) -((((-560)) . T)) -((((-560)) . T)) -((((-897 |#1|)) . T)) -(((|#1| (-526 |#2|)) . T)) -((((-560)) . T)) -((((-560)) . T)) -(((|#1|) . T)) -(-2318 (|has| |#2| (-170)) (|has| |#2| (-832)) (|has| |#2| (-1039)) SEQ) -(((|#1| (-755)) . T)) -(|has| |#2| (-780)) -(-2318 (|has| |#2| (-780)) (|has| |#2| (-832))) -(|has| |#2| (-832)) +(|has| |#2| (-365)) +(|has| |#1| (-1090)) +(|has| |#1| (-1090)) +(((|#1| (-1161) (-1079 (-1161)) (-534 (-1079 (-1161)))) . T)) +((((-568) |#1|) . T)) +((((-568)) . T)) +((((-568)) . T)) +((((-905 |#1|)) . T)) +(((|#1| (-534 |#2|)) . T)) +((((-568)) . T)) +((((-568)) . T)) +(((|#1|) . T)) +(-2198 (|has| |#2| (-172)) (|has| |#2| (-840)) (|has| |#2| (-1047)) SEQ) +(((|#1| (-763)) . T)) +(|has| |#2| (-788)) +(-2198 (|has| |#2| (-788)) (|has| |#2| (-840))) +(|has| |#2| (-840)) (((|#1|) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) -((((-1135) |#1|) . T)) -((((-842)) |has| |#1| (-1082))) +((((-1143) |#1|) . T)) +((((-850)) |has| |#1| (-1090))) (((|#1|) . T)) -(((|#3| (-755)) . T)) +(((|#3| (-763)) . T)) +(|has| |#1| (-150)) (|has| |#1| (-148)) -(|has| |#1| (-146)) -(-2318 (|has| |#1| (-170)) (|has| |#1| (-359)) (|has| |#1| (-550))) -(-2318 (|has| |#1| (-170)) (|has| |#1| (-359)) (|has| |#1| (-550))) -(|has| |#1| (-1082)) -((((-403 (-560))) . T) (((-560)) . T)) -((((-1153) |#2|) |has| |#2| (-515 (-1153) |#2|)) ((|#2| |#2|) |has| |#2| (-298 |#2|))) -((((-403 (-560))) . T) (((-560)) . T)) +(-2198 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) +(-2198 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) +(|has| |#1| (-1090)) +((((-409 (-568))) . T) (((-568)) . T)) +((((-1161) |#2|) |has| |#2| (-523 (-1161) |#2|)) ((|#2| |#2|) |has| |#2| (-303 |#2|))) +((((-409 (-568))) . T) (((-568)) . T)) (((|#1|) . T) (($) . T)) -((((-560)) . T)) -((((-560)) . T)) -((($) -2318 (|has| |#1| (-359)) (|has| |#1| (-550))) (((-403 (-560))) -2318 (|has| |#1| (-43 (-403 (-560)))) (|has| |#1| (-359))) ((|#1|) |has| |#1| (-170))) -((((-560)) . T)) -((((-560)) . T)) -((((-680) (-1149 (-680))) . T)) -((((-403 (-560))) . T) (($) . T)) -((($) . T) (((-403 (-560))) . T) ((|#1|) |has| |#1| (-170))) -(((|#1|) . T) (($) . T) (((-403 (-560))) . T)) -(((|#1|) . T)) -(|has| |#2| (-359)) -(((|#1|) . T) (((-403 (-560))) . T) (($) . T)) -((((-560) |#1|) . T)) -((($) . T) (((-560)) . T) (((-403 (-560))) . T)) +((((-568)) . T)) +((((-568)) . T)) +((($) -2198 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-568))) -2198 (|has| |#1| (-43 (-409 (-568)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172))) +((((-568)) . T)) +((((-568)) . T)) +((((-688) (-1157 (-688))) . T)) +((((-409 (-568))) . T) (($) . T)) +((($) . T) (((-409 (-568))) . T) ((|#1|) |has| |#1| (-172))) +(((|#1|) . T) (($) . T) (((-409 (-568))) . T)) +(((|#1|) . T)) +(|has| |#2| (-365)) +(((|#1|) . T) (((-409 (-568))) . T) (($) . T)) +((((-568) |#1|) . T)) +((($) . T) (((-568)) . T) (((-409 (-568))) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-842)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) -((((-1135) |#1|) . T)) +((((-850)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) +((((-1143) |#1|) . T)) (((|#3| |#3|) . T)) -((((-842)) . T)) -((((-842)) . T)) +((((-850)) . T)) +((((-850)) . T)) (((|#1| |#1|) . T)) -((((-403 (-560)) (-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((|#1| |#1|) . T) (($ $) -2318 (|has| |#1| (-170)) (|has| |#1| (-447)) (|has| |#1| (-550)) (|has| |#1| (-896)))) -((($ $) -2318 (|has| |#1| (-170)) (|has| |#1| (-359)) (|has| |#1| (-447)) (|has| |#1| (-550)) (|has| |#1| (-896))) ((|#1| |#1|) . T) (((-403 (-560)) (-403 (-560))) |has| |#1| (-43 (-403 (-560))))) -(((|#1|) . T)) -((((-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((|#1|) . T) (($) -2318 (|has| |#1| (-170)) (|has| |#1| (-447)) (|has| |#1| (-550)) (|has| |#1| (-896)))) -((($) -2318 (|has| |#1| (-170)) (|has| |#1| (-359)) (|has| |#1| (-447)) (|has| |#1| (-550)) (|has| |#1| (-896))) ((|#1|) . T) (((-403 (-560))) |has| |#1| (-43 (-403 (-560))))) -((($) -2318 (|has| |#2| (-170)) (|has| |#2| (-832)) (|has| |#2| (-1039))) ((|#2|) -2318 (|has| |#2| (-170)) (|has| |#2| (-359)) (|has| |#2| (-1039)))) -((((-842)) . T)) -((((-842)) . T)) -((((-842)) . T)) -((((-842)) . T)) -((((-842)) . T)) -((((-560) |#1|) . T)) -((((-842)) . T)) -((((-167 (-213))) |has| |#1| (-1013)) (((-167 (-375))) |has| |#1| (-1013)) (((-533)) |has| |#1| (-601 (-533))) (((-1149 |#1|)) . T) (((-879 (-560))) |has| |#1| (-601 (-879 (-560)))) (((-879 (-375))) |has| |#1| (-601 (-879 (-375))))) -(((|#1| |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) -(((|#1|) . T)) -(-2318 (|has| |#1| (-21)) (|has| |#1| (-832))) -(-2318 (|has| |#1| (-21)) (|has| |#1| (-832))) -((((-403 (-560))) -2318 (|has| |#1| (-43 (-403 (-560)))) (|has| |#1| (-359))) (($) -2318 (|has| |#1| (-359)) (|has| |#1| (-550))) ((|#2|) |has| |#1| (-359)) ((|#1|) |has| |#1| (-170))) -(|has| |#2| (-550)) -(|has| |#1| (-359)) -(((|#1|) |has| |#1| (-170)) (((-403 (-560))) -2318 (|has| |#1| (-43 (-403 (-560)))) (|has| |#1| (-359))) (($) -2318 (|has| |#1| (-359)) (|has| |#1| (-550)))) -((((-849 |#1|) (-766 (-849 |#1|))) . T)) -(-12 (|has| |#4| (-221)) (|has| |#4| (-1039))) -(-12 (|has| |#3| (-221)) (|has| |#3| (-1039))) -(-2318 (|has| |#4| (-170)) (|has| |#4| (-832)) (|has| |#4| (-1039))) -(-2318 (|has| |#3| (-170)) (|has| |#3| (-832)) (|has| |#3| (-1039))) -((((-842)) . T)) -(((|#1|) . T)) -((((-1153)) |has| |#2| (-887 (-1153))) (((-1067)) . T)) -((((-403 (-560))) |has| |#1| (-1029 (-403 (-560)))) (((-560)) |has| |#1| (-1029 (-560))) ((|#1|) . T)) -(((|#1|) . T) (((-560)) |has| |#1| (-622 (-560)))) -(((|#2|) . T) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) . T)) -(((|#1|) . T) (((-2 (|:| -3655 (-1135)) (|:| -2371 |#1|))) . T)) -(|has| |#1| (-550)) -(|has| |#1| (-550)) -(((|#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) -(-2318 (|has| |#1| (-834)) (|has| |#1| (-1082))) -(((|#1|) . T)) -(|has| |#1| (-550)) -(|has| |#1| (-550)) -(|has| |#1| (-550)) -((((-680)) . T)) -(((|#1|) . T)) -(((|#2|) . T)) -(-12 (|has| |#1| (-994)) (|has| |#1| (-1173))) -(((|#2|) . T) (($) . T) (((-403 (-560))) . T)) -((($) . T) (((-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((|#1|) . T)) -((((-403 (-560))) -2318 (|has| |#1| (-43 (-403 (-560)))) (|has| |#1| (-359))) (((-1151 |#1| |#2| |#3|)) |has| |#1| (-359)) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-403 (-560))) -2318 (|has| |#1| (-43 (-403 (-560)))) (|has| |#1| (-359))) (($) . T)) -(((|#1|) . T) (((-403 (-560))) |has| |#1| (-43 (-403 (-560)))) (($) . T)) -(((|#3| |#3|) -2318 (|has| |#3| (-170)) (|has| |#3| (-359)) (|has| |#3| (-1039))) (($ $) |has| |#3| (-170))) -(((|#4| |#4|) -2318 (|has| |#4| (-170)) (|has| |#4| (-359)) (|has| |#4| (-1039))) (($ $) |has| |#4| (-170))) -(((|#1|) . T)) -(((|#2|) . T)) -((((-533)) |has| |#2| (-601 (-533))) (((-879 (-375))) |has| |#2| (-601 (-879 (-375)))) (((-879 (-560))) |has| |#2| (-601 (-879 (-560))))) -((((-842)) . T)) +((((-409 (-568)) (-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((|#1| |#1|) . T) (($ $) -2198 (|has| |#1| (-172)) (|has| |#1| (-453)) (|has| |#1| (-558)) (|has| |#1| (-904)))) +((($ $) -2198 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-453)) (|has| |#1| (-558)) (|has| |#1| (-904))) ((|#1| |#1|) . T) (((-409 (-568)) (-409 (-568))) |has| |#1| (-43 (-409 (-568))))) +(((|#1|) . T)) +((((-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((|#1|) . T) (($) -2198 (|has| |#1| (-172)) (|has| |#1| (-453)) (|has| |#1| (-558)) (|has| |#1| (-904)))) +((($) -2198 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-453)) (|has| |#1| (-558)) (|has| |#1| (-904))) ((|#1|) . T) (((-409 (-568))) |has| |#1| (-43 (-409 (-568))))) +((($) -2198 (|has| |#2| (-172)) (|has| |#2| (-840)) (|has| |#2| (-1047))) ((|#2|) -2198 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1047)))) +((((-850)) . T)) +((((-850)) . T)) +((((-850)) . T)) +((((-850)) . T)) +((((-850)) . T)) +((((-568) |#1|) . T)) +((((-169 (-215))) |has| |#1| (-1021)) (((-169 (-381))) |has| |#1| (-1021)) (((-541)) |has| |#1| (-609 (-541))) (((-1157 |#1|)) . T) (((-887 (-568))) |has| |#1| (-609 (-887 (-568)))) (((-887 (-381))) |has| |#1| (-609 (-887 (-381))))) +((((-850)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) +(((|#1|) . T)) +(-2198 (|has| |#1| (-21)) (|has| |#1| (-840))) +(-2198 (|has| |#1| (-21)) (|has| |#1| (-840))) +((((-409 (-568))) -2198 (|has| |#1| (-43 (-409 (-568)))) (|has| |#1| (-365))) (($) -2198 (|has| |#1| (-365)) (|has| |#1| (-558))) ((|#2|) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) +(|has| |#2| (-558)) +(|has| |#1| (-365)) +(((|#1|) |has| |#1| (-172)) (((-409 (-568))) -2198 (|has| |#1| (-43 (-409 (-568)))) (|has| |#1| (-365))) (($) -2198 (|has| |#1| (-365)) (|has| |#1| (-558)))) +((((-857 |#1|) (-774 (-857 |#1|))) . T)) +(((|#1| |#1|) |has| |#1| (-172)) (($ $) |has| |#1| (-172))) +(-12 (|has| |#4| (-225)) (|has| |#4| (-1047))) +(-12 (|has| |#3| (-225)) (|has| |#3| (-1047))) +(((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-172))) +(-2198 (|has| |#4| (-172)) (|has| |#4| (-840)) (|has| |#4| (-1047))) +(-2198 (|has| |#3| (-172)) (|has| |#3| (-840)) (|has| |#3| (-1047))) +((((-850)) . T)) +(((|#1|) . T)) +((((-1161)) |has| |#2| (-895 (-1161))) (((-1075)) . T)) +((((-409 (-568))) |has| |#1| (-1037 (-409 (-568)))) (((-568)) |has| |#1| (-1037 (-568))) ((|#1|) . T)) +(((|#1|) . T) (((-568)) |has| |#1| (-630 (-568)))) +(((|#2|) . T) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) . T)) +(((|#1|) . T) (((-2 (|:| -3649 (-1143)) (|:| -4083 |#1|))) . T)) +(|has| |#1| (-558)) +(|has| |#1| (-558)) +(((|#1|) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) +(-2198 (|has| |#1| (-842)) (|has| |#1| (-1090))) +(((|#1|) . T)) +(|has| |#1| (-558)) +(|has| |#1| (-558)) +(|has| |#1| (-558)) +((((-688)) . T)) +(((|#1|) . T)) +(((|#2|) . T)) +(-12 (|has| |#1| (-1002)) (|has| |#1| (-1181))) +(((|#2|) . T) (($) . T) (((-409 (-568))) . T)) +((($) . T) (((-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((|#1|) . T)) +((((-409 (-568))) -2198 (|has| |#1| (-43 (-409 (-568)))) (|has| |#1| (-365))) (((-1159 |#1| |#2| |#3|)) |has| |#1| (-365)) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-409 (-568))) -2198 (|has| |#1| (-43 (-409 (-568)))) (|has| |#1| (-365))) (($) . T)) +(((|#1|) . T) (((-409 (-568))) |has| |#1| (-43 (-409 (-568)))) (($) . T)) +(((|#4| |#4|) -2198 (|has| |#4| (-172)) (|has| |#4| (-365)) (|has| |#4| (-1047))) (($ $) |has| |#4| (-172))) +(((|#3| |#3|) -2198 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1047))) (($ $) |has| |#3| (-172))) +(((|#2|) . T)) +(((|#1|) . T)) +((((-541)) |has| |#2| (-609 (-541))) (((-887 (-381))) |has| |#2| (-609 (-887 (-381)))) (((-887 (-568))) |has| |#2| (-609 (-887 (-568))))) +((((-850)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-842)) . T)) -((((-533)) |has| |#1| (-601 (-533))) (((-879 (-375))) |has| |#1| (-601 (-879 (-375)))) (((-879 (-560))) |has| |#1| (-601 (-879 (-560))))) -((((-842)) . T)) -(((|#4|) -2318 (|has| |#4| (-170)) (|has| |#4| (-359)) (|has| |#4| (-1039))) (($) |has| |#4| (-170))) -(((|#3|) -2318 (|has| |#3| (-170)) (|has| |#3| (-359)) (|has| |#3| (-1039))) (($) |has| |#3| (-170))) -((((-842)) . T)) -((((-533)) . T) (((-560)) . T) (((-879 (-560))) . T) (((-375)) . T) (((-213)) . T)) -((((-1067)) . T) ((|#2|) . T) (((-560)) |has| |#2| (-1029 (-560))) (((-403 (-560))) |has| |#2| (-1029 (-403 (-560))))) -(((|#1|) . T) (((-560)) |has| |#1| (-1029 (-560))) (((-403 (-560))) |has| |#1| (-1029 (-403 (-560))))) -((($) . T) (((-403 (-560))) |has| |#2| (-43 (-403 (-560)))) ((|#2|) . T)) -((((-403 $) (-403 $)) |has| |#2| (-550)) (($ $) . T) ((|#2| |#2|) . T)) -((((-2 (|:| -3655 (-1135)) (|:| -2371 (-57)))) . T)) -(((|#1|) . T)) -(|has| |#2| (-896)) -((((-1135) (-57)) . T)) -((((-560)) |has| (-403 |#2|) (-622 (-560))) (((-403 |#2|)) . T)) -((((-533)) . T) (((-213)) . T) (((-375)) . T) (((-879 (-375))) . T)) -((((-842)) . T)) -(-2318 (|has| |#1| (-21)) (|has| |#1| (-170)) (|has| |#1| (-359)) (|has| |#1| (-887 (-1153))) (|has| |#1| (-1039))) -(((|#1|) |has| |#1| (-170))) -(|has| |#1| (-43 (-403 (-560)))) -(|has| |#1| (-43 (-403 (-560)))) -(((|#1| $) |has| |#1| (-276 |#1| |#1|))) -((((-842)) . T)) -((((-842)) . T)) -((((-403 (-560))) . T) (($) . T)) -((((-403 (-560))) . T) (($) . T)) -((((-842)) . T)) -(|has| |#1| (-834)) -(|has| |#1| (-43 (-403 (-560)))) -(|has| |#1| (-43 (-403 (-560)))) -(|has| |#1| (-1082)) -(((|#1|) . T)) -((((-842)) -2318 (|has| |#1| (-834)) (|has| |#1| (-1082)))) -((((-533)) |has| |#1| (-601 (-533)))) -((((-403 (-560))) |has| |#2| (-43 (-403 (-560)))) ((|#2|) |has| |#2| (-170)) (($) -2318 (|has| |#2| (-447)) (|has| |#2| (-550)) (|has| |#2| (-896)))) -(((|#2| (-755)) . T)) -((($) -2318 (|has| |#1| (-447)) (|has| |#1| (-550)) (|has| |#1| (-896))) ((|#1|) |has| |#1| (-170)) (((-403 (-560))) |has| |#1| (-43 (-403 (-560))))) -((($) -2318 (|has| |#1| (-359)) (|has| |#1| (-447)) (|has| |#1| (-550)) (|has| |#1| (-896))) ((|#1|) |has| |#1| (-170)) (((-403 (-560))) |has| |#1| (-43 (-403 (-560))))) -(|has| |#1| (-221)) -((($) -2318 (|has| |#1| (-447)) (|has| |#1| (-550)) (|has| |#1| (-896))) ((|#1|) |has| |#1| (-170)) (((-403 (-560))) |has| |#1| (-43 (-403 (-560))))) -(((|#1| (-526 (-805 (-1153)))) . T)) -(((|#1| (-964)) . T)) -((((-856 |#1|) $) |has| (-856 |#1|) (-276 (-856 |#1|) (-856 |#1|)))) -((((-560) |#4|) . T)) -((((-560) |#3|) . T)) +((((-850)) . T)) +((((-541)) |has| |#1| (-609 (-541))) (((-887 (-381))) |has| |#1| (-609 (-887 (-381)))) (((-887 (-568))) |has| |#1| (-609 (-887 (-568))))) +((((-850)) . T)) +(((|#4|) -2198 (|has| |#4| (-172)) (|has| |#4| (-365)) (|has| |#4| (-1047))) (($) |has| |#4| (-172))) +(((|#3|) -2198 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1047))) (($) |has| |#3| (-172))) +((((-850)) . T)) +((((-541)) . T) (((-568)) . T) (((-887 (-568))) . T) (((-381)) . T) (((-215)) . T)) +((((-1075)) . T) ((|#2|) . T) (((-568)) |has| |#2| (-1037 (-568))) (((-409 (-568))) |has| |#2| (-1037 (-409 (-568))))) +(((|#1|) . T) (((-568)) |has| |#1| (-1037 (-568))) (((-409 (-568))) |has| |#1| (-1037 (-409 (-568))))) +((($) . T) (((-409 (-568))) |has| |#2| (-43 (-409 (-568)))) ((|#2|) . T)) +((((-409 $) (-409 $)) |has| |#2| (-558)) (($ $) . T) ((|#2| |#2|) . T)) +((((-2 (|:| -3649 (-1143)) (|:| -4083 (-57)))) . T)) +(((|#1|) . T)) +(|has| |#2| (-904)) +((((-1143) (-57)) . T)) +((((-568)) |has| (-409 |#2|) (-630 (-568))) (((-409 |#2|)) . T)) +((((-541)) . T) (((-215)) . T) (((-381)) . T) (((-887 (-381))) . T)) +((((-850)) . T)) +(-2198 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-895 (-1161))) (|has| |#1| (-1047))) +(((|#1|) |has| |#1| (-172))) +(|has| |#1| (-43 (-409 (-568)))) +(|has| |#1| (-43 (-409 (-568)))) +(((|#1| $) |has| |#1| (-281 |#1| |#1|))) +((((-850)) . T)) +((((-850)) . T)) +((((-409 (-568))) . T) (($) . T)) +((((-409 (-568))) . T) (($) . T)) +((((-850)) . T)) +(|has| |#1| (-842)) +(|has| |#1| (-43 (-409 (-568)))) +(|has| |#1| (-43 (-409 (-568)))) +(|has| |#1| (-1090)) +(((|#1|) . T)) +((((-850)) -2198 (|has| |#1| (-842)) (|has| |#1| (-1090)))) +((((-541)) |has| |#1| (-609 (-541)))) +((((-409 (-568))) |has| |#2| (-43 (-409 (-568)))) ((|#2|) |has| |#2| (-172)) (($) -2198 (|has| |#2| (-453)) (|has| |#2| (-558)) (|has| |#2| (-904)))) +(((|#2| (-763)) . T)) +((($) -2198 (|has| |#1| (-453)) (|has| |#1| (-558)) (|has| |#1| (-904))) ((|#1|) |has| |#1| (-172)) (((-409 (-568))) |has| |#1| (-43 (-409 (-568))))) +((($) -2198 (|has| |#1| (-365)) (|has| |#1| (-453)) (|has| |#1| (-558)) (|has| |#1| (-904))) ((|#1|) |has| |#1| (-172)) (((-409 (-568))) |has| |#1| (-43 (-409 (-568))))) +(|has| |#1| (-225)) +((($) -2198 (|has| |#1| (-453)) (|has| |#1| (-558)) (|has| |#1| (-904))) ((|#1|) |has| |#1| (-172)) (((-409 (-568))) |has| |#1| (-43 (-409 (-568))))) +(((|#1| (-534 (-813 (-1161)))) . T)) +(((|#1| (-972)) . T)) +((((-864 |#1|) $) |has| (-864 |#1|) (-281 (-864 |#1|) (-864 |#1|)))) +((((-568) |#4|) . T)) +((((-568) |#3|) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) -(|has| |#1| (-1128)) -(((|#1| (-755) (-1067)) . T)) -((((-2 (|:| -3655 (-1135)) (|:| -2371 |#1|))) . T)) -(|has| (-1221 |#1| |#2| |#3| |#4|) (-146)) -(|has| (-1221 |#1| |#2| |#3| |#4|) (-148)) -(|has| |#1| (-146)) +(|has| |#1| (-1136)) +(((|#1| (-763) (-1075)) . T)) +((((-2 (|:| -3649 (-1143)) (|:| -4083 |#1|))) . T)) +(|has| (-1229 |#1| |#2| |#3| |#4|) (-148)) +(|has| (-1229 |#1| |#2| |#3| |#4|) (-150)) (|has| |#1| (-148)) -(((|#1|) |has| |#1| (-170))) -((((-1153)) -12 (|has| |#2| (-887 (-1153))) (|has| |#2| (-1039)))) -(((|#2|) . T)) -(|has| |#1| (-1082)) -((((-1135) |#1|) . T)) -(((|#1|) . T)) -(((|#2|) . T) (((-560)) |has| |#2| (-622 (-560)))) -(|has| |#2| (-364)) -(((|#1| |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) +(|has| |#1| (-150)) +(((|#1|) |has| |#1| (-172))) +((((-169 (-215))) . T)) +((((-215)) . T)) +((((-1161)) -12 (|has| |#2| (-895 (-1161))) (|has| |#2| (-1047)))) +(|has| |#1| (-1090)) +((((-1143) |#1|) . T)) +(((|#1|) . T)) +(((|#2|) . T)) +(((|#2|) . T) (((-568)) |has| |#2| (-630 (-568)))) +(|has| |#2| (-370)) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) ((($) . T) ((|#1|) . T)) -(((|#2|) |has| |#2| (-1039))) -((((-842)) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082))) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) |has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))))) +(((|#2|) |has| |#2| (-1047))) +((((-850)) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090))) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) |has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))))) (((|#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))) (((-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|))) |has| (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (-298 (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|))))) -((((-560) |#1|) . T)) -((((-842)) . T)) -((((-533)) -12 (|has| |#1| (-601 (-533))) (|has| |#2| (-601 (-533)))) (((-879 (-375))) -12 (|has| |#1| (-601 (-879 (-375)))) (|has| |#2| (-601 (-879 (-375))))) (((-879 (-560))) -12 (|has| |#1| (-601 (-879 (-560)))) (|has| |#2| (-601 (-879 (-560)))))) -((((-842)) . T)) -((((-842)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))) (((-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|))) |has| (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (-303 (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|))))) +((((-568) |#1|) . T)) +((((-850)) . T)) +((((-541)) -12 (|has| |#1| (-609 (-541))) (|has| |#2| (-609 (-541)))) (((-887 (-381))) -12 (|has| |#1| (-609 (-887 (-381)))) (|has| |#2| (-609 (-887 (-381))))) (((-887 (-568))) -12 (|has| |#1| (-609 (-887 (-568)))) (|has| |#2| (-609 (-887 (-568)))))) +((((-850)) . T)) +((((-850)) . T)) ((($) . T)) -((($ $) -2318 (|has| |#1| (-170)) (|has| |#1| (-447)) (|has| |#1| (-550)) (|has| |#1| (-896))) ((|#1| |#1|) . T) (((-403 (-560)) (-403 (-560))) |has| |#1| (-43 (-403 (-560))))) +((($ $) -2198 (|has| |#1| (-172)) (|has| |#1| (-453)) (|has| |#1| (-558)) (|has| |#1| (-904))) ((|#1| |#1|) . T) (((-409 (-568)) (-409 (-568))) |has| |#1| (-43 (-409 (-568))))) ((($) . T)) ((($) . T)) ((($) . T)) -((($) -2318 (|has| |#1| (-170)) (|has| |#1| (-447)) (|has| |#1| (-550)) (|has| |#1| (-896))) ((|#1|) . T) (((-403 (-560))) |has| |#1| (-43 (-403 (-560))))) -((((-842)) . T)) -((((-842)) . T)) -(|has| (-1220 |#2| |#3| |#4|) (-148)) -(|has| (-1220 |#2| |#3| |#4|) (-146)) -(((|#2|) |has| |#2| (-1082)) (((-560)) -12 (|has| |#2| (-1029 (-560))) (|has| |#2| (-1082))) (((-403 (-560))) -12 (|has| |#2| (-1029 (-403 (-560)))) (|has| |#2| (-1082)))) +((($) -2198 (|has| |#1| (-172)) (|has| |#1| (-453)) (|has| |#1| (-558)) (|has| |#1| (-904))) ((|#1|) . T) (((-409 (-568))) |has| |#1| (-43 (-409 (-568))))) +((((-850)) . T)) +((((-850)) . T)) +(|has| (-1228 |#2| |#3| |#4|) (-150)) +(|has| (-1228 |#2| |#3| |#4|) (-148)) +(((|#2|) |has| |#2| (-1090)) (((-568)) -12 (|has| |#2| (-1037 (-568))) (|has| |#2| (-1090))) (((-409 (-568))) -12 (|has| |#2| (-1037 (-409 (-568)))) (|has| |#2| (-1090)))) (((|#1|) . T)) -(|has| |#1| (-1082)) -((((-842)) . T)) +(|has| |#1| (-1090)) +((((-850)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-2318 (|has| |#1| (-21)) (|has| |#1| (-170)) (|has| |#1| (-359)) (|has| |#1| (-887 (-1153))) (|has| |#1| (-1039))) +(-2198 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-895 (-1161))) (|has| |#1| (-1047))) (((|#1|) . T)) -((((-560) |#1|) . T)) -(((|#2|) |has| |#2| (-170))) -(((|#1|) |has| |#1| (-170))) +((((-568) |#1|) . T)) +(((|#2|) |has| |#2| (-172))) +(((|#1|) |has| |#1| (-172))) (((|#1|) . T)) -(-2318 (|has| |#1| (-21)) (|has| |#1| (-832))) -((((-842)) |has| |#1| (-1082))) -(-2318 (|has| |#1| (-471)) (|has| |#1| (-708)) (|has| |#1| (-887 (-1153))) (|has| |#1| (-1039)) (|has| |#1| (-1094))) -(-2318 (|has| |#1| (-359)) (|has| |#1| (-344))) +(-2198 (|has| |#1| (-21)) (|has| |#1| (-840))) +((((-850)) |has| |#1| (-1090))) +(-2198 (|has| |#1| (-478)) (|has| |#1| (-716)) (|has| |#1| (-895 (-1161))) (|has| |#1| (-1047)) (|has| |#1| (-1102))) +(-2198 (|has| |#1| (-365)) (|has| |#1| (-350))) +(|has| |#1| (-150)) (|has| |#1| (-148)) -(|has| |#1| (-146)) -((((-897 |#1|)) . T)) -((((-403 |#2|) |#3|) . T)) -(|has| |#1| (-15 * (|#1| (-560) |#1|))) -((((-403 (-560))) . T) (($) . T)) -(|has| |#1| (-834)) +((((-905 |#1|)) . T)) +((((-409 |#2|) |#3|) . T)) +(|has| |#1| (-15 * (|#1| (-568) |#1|))) +((((-409 (-568))) . T) (($) . T)) +(|has| |#1| (-842)) (((|#1|) . T) (($) . T)) -((((-403 (-560))) . T) (($) . T)) +((((-409 (-568))) . T) (($) . T)) (((|#1|) . T)) -((((-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-550))) -(|has| |#1| (-15 * (|#1| (-755) |#1|))) -(|has| |#1| (-359)) -(-2318 (-12 (|has| (-1227 |#1| |#2| |#3|) (-221)) (|has| |#1| (-359))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) -(|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))) -(|has| |#1| (-359)) -((((-560)) . T)) -(|has| |#1| (-15 * (|#1| (-755) |#1|))) -((((-1119 |#2| (-403 (-945 |#1|)))) . T) (((-403 (-945 |#1|))) . T)) +((((-850)) . T)) +((((-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-558))) +(|has| |#1| (-15 * (|#1| (-763) |#1|))) +(|has| |#1| (-365)) +(-2198 (-12 (|has| (-1235 |#1| |#2| |#3|) (-225)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-568) |#1|)))) +(|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))) +((((-568)) . T)) +(|has| |#1| (-365)) +(|has| |#1| (-15 * (|#1| (-763) |#1|))) +((((-1127 |#2| (-409 (-953 |#1|)))) . T) (((-409 (-953 |#1|))) . T)) ((($) . T)) -(((|#1|) |has| |#1| (-170)) (($) . T)) -(((|#1|) . T) (((-403 (-560))) |has| |#1| (-43 (-403 (-560)))) (($) . T)) +(((|#1|) |has| |#1| (-172)) (($) . T)) +(((|#1|) . T) (((-409 (-568))) |has| |#1| (-43 (-409 (-568)))) (($) . T)) (((|#1|) . T)) -((((-560) |#1|) . T)) +((((-568) |#1|) . T)) (((|#2|) . T)) -(-2318 (|has| |#2| (-359)) (|has| |#2| (-447)) (|has| |#2| (-550)) (|has| |#2| (-896))) -((((-2 (|:| |k| (-560)) (|:| |c| |#1|))) . T)) -(-2318 (|has| |#2| (-780)) (|has| |#2| (-832))) -(-2318 (|has| |#2| (-780)) (|has| |#2| (-832))) +(-2198 (|has| |#2| (-365)) (|has| |#2| (-453)) (|has| |#2| (-558)) (|has| |#2| (-904))) +((((-2 (|:| |k| (-568)) (|:| |c| |#1|))) . T)) +(-2198 (|has| |#2| (-788)) (|has| |#2| (-840))) +(-2198 (|has| |#2| (-788)) (|has| |#2| (-840))) (((|#1|) . T)) -(|has| |#2| (-146)) (|has| |#2| (-148)) -((((-1153)) -12 (|has| |#3| (-887 (-1153))) (|has| |#3| (-1039)))) -(((|#1| |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) -((((-842)) . T)) -(-12 (|has| |#1| (-359)) (|has| |#2| (-807))) -(-2318 (|has| |#1| (-296)) (|has| |#1| (-359)) (|has| |#1| (-344)) (|has| |#1| (-550))) -((((-403 (-560)) (-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((|#1| |#1|) . T) (($ $) -2318 (|has| |#1| (-170)) (|has| |#1| (-550)))) -((($ $) |has| |#1| (-550))) -((((-680) (-1149 (-680))) . T)) -((((-842)) . T)) -((((-842)) . T) (((-1236 |#4|)) . T)) -((((-842)) . T) (((-1236 |#3|)) . T)) -((((-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((|#1|) . T) (($) -2318 (|has| |#1| (-170)) (|has| |#1| (-550)))) -((($) |has| |#1| (-550))) -((((-842)) . T)) -((($) . T)) -((($ $) -2318 (|has| |#1| (-170)) (|has| |#1| (-550))) ((|#1| |#1|) . T) (((-403 (-560)) (-403 (-560))) |has| |#1| (-43 (-403 (-560))))) -((($ $) -2318 (|has| |#1| (-170)) (|has| |#1| (-359)) (|has| |#1| (-550))) (((-403 (-560)) (-403 (-560))) -2318 (|has| |#1| (-43 (-403 (-560)))) (|has| |#1| (-359))) (((-1227 |#1| |#2| |#3|) (-1227 |#1| |#2| |#3|)) |has| |#1| (-359)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -2318 (|has| |#1| (-170)) (|has| |#1| (-359)) (|has| |#1| (-550))) (((-403 (-560)) (-403 (-560))) -2318 (|has| |#1| (-43 (-403 (-560)))) (|has| |#1| (-359)))) -((($ $) -2318 (|has| |#1| (-170)) (|has| |#1| (-550))) ((|#1| |#1|) . T) (((-403 (-560)) (-403 (-560))) |has| |#1| (-43 (-403 (-560))))) -((($) -2318 (|has| |#1| (-170)) (|has| |#1| (-550))) ((|#1|) . T) (((-403 (-560))) |has| |#1| (-43 (-403 (-560))))) -((($) -2318 (|has| |#1| (-170)) (|has| |#1| (-359)) (|has| |#1| (-550))) (((-403 (-560))) -2318 (|has| |#1| (-43 (-403 (-560)))) (|has| |#1| (-359))) (((-1227 |#1| |#2| |#3|)) |has| |#1| (-359)) ((|#1|) . T)) -(((|#3|) |has| |#3| (-1039))) -(((|#1|) . T) (($) -2318 (|has| |#1| (-170)) (|has| |#1| (-359)) (|has| |#1| (-550))) (((-403 (-560))) -2318 (|has| |#1| (-43 (-403 (-560)))) (|has| |#1| (-359)))) -((($) -2318 (|has| |#1| (-170)) (|has| |#1| (-550))) ((|#1|) . T) (((-403 (-560))) |has| |#1| (-43 (-403 (-560))))) -(|has| |#1| (-1082)) -(((|#2| (-806 |#1|)) . T)) -(((|#1|) . T)) -(|has| |#1| (-359)) -((((-403 $) (-403 $)) |has| |#1| (-550)) (($ $) . T) ((|#1| |#1|) . T)) -((((-1067) |#2|) . T) (((-1067) $) . T) (($ $) . T)) -((((-897 |#1|)) . T)) -((((-145)) . T)) -((((-145)) . T)) -(((|#3|) |has| |#3| (-1082)) (((-560)) -12 (|has| |#3| (-1029 (-560))) (|has| |#3| (-1082))) (((-403 (-560))) -12 (|has| |#3| (-1029 (-403 (-560)))) (|has| |#3| (-1082)))) -((((-842)) . T)) -(-2318 (|has| |#1| (-359)) (|has| |#1| (-447)) (|has| |#1| (-896))) -((((-403 (-560))) . T) (($) . T)) -((((-403 (-560))) . T) (($) . T)) -((((-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) . T)) -(((|#1|) . T)) -((((-842)) -2318 (|has| |#1| (-834)) (|has| |#1| (-1082)))) -((((-533)) |has| |#1| (-601 (-533)))) -((((-2 (|:| -3655 (-1153)) (|:| -2371 (-57)))) . T)) -(|has| |#1| (-359)) -(-2318 (|has| |#1| (-21)) (|has| |#1| (-832))) -((((-1153) |#1|) |has| |#1| (-515 (-1153) |#1|)) ((|#1| |#1|) |has| |#1| (-298 |#1|))) -(|has| |#2| (-807)) -(|has| |#1| (-43 (-403 (-560)))) -(|has| |#1| (-832)) -(-2318 (|has| |#1| (-834)) (|has| |#1| (-1082))) -((((-842)) . T)) -((((-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) . T)) -((((-533)) |has| |#1| (-601 (-533)))) +(|has| |#2| (-150)) +((((-1161)) -12 (|has| |#3| (-895 (-1161))) (|has| |#3| (-1047)))) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) +((((-850)) . T)) +(-12 (|has| |#1| (-365)) (|has| |#2| (-815))) +(-2198 (|has| |#1| (-301)) (|has| |#1| (-365)) (|has| |#1| (-350)) (|has| |#1| (-558))) +((((-409 (-568)) (-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((|#1| |#1|) . T) (($ $) -2198 (|has| |#1| (-172)) (|has| |#1| (-558)))) +((($ $) |has| |#1| (-558))) +((((-688) (-1157 (-688))) . T)) +((((-850)) . T)) +((((-850)) . T) (((-1244 |#4|)) . T)) +((((-850)) . T) (((-1244 |#3|)) . T)) +((((-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((|#1|) . T) (($) -2198 (|has| |#1| (-172)) (|has| |#1| (-558)))) +((($) |has| |#1| (-558))) +((((-850)) . T)) +((($) . T)) +((($ $) -2198 (|has| |#1| (-172)) (|has| |#1| (-558))) ((|#1| |#1|) . T) (((-409 (-568)) (-409 (-568))) |has| |#1| (-43 (-409 (-568))))) +((($ $) -2198 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-568)) (-409 (-568))) -2198 (|has| |#1| (-43 (-409 (-568)))) (|has| |#1| (-365))) (((-1235 |#1| |#2| |#3|) (-1235 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -2198 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-568)) (-409 (-568))) -2198 (|has| |#1| (-43 (-409 (-568)))) (|has| |#1| (-365)))) +((($ $) -2198 (|has| |#1| (-172)) (|has| |#1| (-558))) ((|#1| |#1|) . T) (((-409 (-568)) (-409 (-568))) |has| |#1| (-43 (-409 (-568))))) +((($) -2198 (|has| |#1| (-172)) (|has| |#1| (-558))) ((|#1|) . T) (((-409 (-568))) |has| |#1| (-43 (-409 (-568))))) +((($) -2198 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-568))) -2198 (|has| |#1| (-43 (-409 (-568)))) (|has| |#1| (-365))) (((-1235 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) . T)) +(((|#3|) |has| |#3| (-1047))) +(((|#1|) . T) (($) -2198 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-568))) -2198 (|has| |#1| (-43 (-409 (-568)))) (|has| |#1| (-365)))) +((($) -2198 (|has| |#1| (-172)) (|has| |#1| (-558))) ((|#1|) . T) (((-409 (-568))) |has| |#1| (-43 (-409 (-568))))) +(|has| |#1| (-1090)) +(((|#2| (-814 |#1|)) . T)) +(((|#1|) . T)) +(|has| |#1| (-365)) +((((-409 $) (-409 $)) |has| |#1| (-558)) (($ $) . T) ((|#1| |#1|) . T)) +((((-1075) |#2|) . T) (((-1075) $) . T) (($ $) . T)) +((((-905 |#1|)) . T)) +((((-147)) . T)) +((((-147)) . T)) +(((|#3|) |has| |#3| (-1090)) (((-568)) -12 (|has| |#3| (-1037 (-568))) (|has| |#3| (-1090))) (((-409 (-568))) -12 (|has| |#3| (-1037 (-409 (-568)))) (|has| |#3| (-1090)))) +((((-850)) . T)) +(-2198 (|has| |#1| (-365)) (|has| |#1| (-453)) (|has| |#1| (-904))) +((((-409 (-568))) . T) (($) . T)) +((((-409 (-568))) . T) (($) . T)) +((((-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) . T)) +(((|#1|) . T)) +((((-850)) -2198 (|has| |#1| (-842)) (|has| |#1| (-1090)))) +((((-541)) |has| |#1| (-609 (-541)))) +((((-2 (|:| -3649 (-1161)) (|:| -4083 (-57)))) . T)) +(|has| |#1| (-365)) +(-2198 (|has| |#1| (-21)) (|has| |#1| (-840))) +((((-1161) |#1|) |has| |#1| (-523 (-1161) |#1|)) ((|#1| |#1|) |has| |#1| (-303 |#1|))) +(|has| |#2| (-815)) +(|has| |#1| (-43 (-409 (-568)))) +(|has| |#1| (-840)) +(-2198 (|has| |#1| (-842)) (|has| |#1| (-1090))) +((((-850)) . T)) +((((-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) . T)) +((((-541)) |has| |#1| (-609 (-541)))) (((|#1| |#2|) . T)) -((((-1153)) -12 (|has| |#1| (-359)) (|has| |#1| (-887 (-1153))))) -((((-1135) |#1|) . T)) -(((|#1| |#2| |#3| (-526 |#3|)) . T)) -((((-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) . T)) -(|has| |#1| (-364)) -(|has| |#1| (-364)) -(|has| |#1| (-364)) -((((-842)) . T)) -(((|#1|) . T)) -(-2318 (|has| |#2| (-447)) (|has| |#2| (-550)) (|has| |#2| (-896))) +((((-1161)) -12 (|has| |#1| (-365)) (|has| |#1| (-895 (-1161))))) +((((-1143) |#1|) . T)) +(((|#1| |#2| |#3| (-534 |#3|)) . T)) +((((-917) |#1|) . T)) +((((-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) . T)) +(|has| |#1| (-370)) +(|has| |#1| (-370)) +(|has| |#1| (-370)) +((((-850)) . T)) +(((|#1|) . T)) +(-2198 (|has| |#2| (-453)) (|has| |#2| (-558)) (|has| |#2| (-904))) (((|#1| |#2|) . T)) -(|has| |#1| (-364)) -(-2318 (|has| |#1| (-447)) (|has| |#1| (-550)) (|has| |#1| (-896))) -((((-560)) . T)) -((((-560)) . T)) -(-2318 (|has| |#2| (-170)) (|has| |#2| (-359)) (|has| |#2| (-447)) (|has| |#2| (-550)) (|has| |#2| (-896))) -((((-842)) . T)) -(((|#2|) . T)) -((((-842)) . T)) -(-12 (|has| |#2| (-221)) (|has| |#2| (-1039))) -((((-1153) (-856 |#1|)) |has| (-856 |#1|) (-515 (-1153) (-856 |#1|))) (((-856 |#1|) (-856 |#1|)) |has| (-856 |#1|) (-298 (-856 |#1|)))) -(((|#1|) . T)) -((((-560) |#4|) . T)) -((((-560) |#3|) . T)) -(((|#1|) . T) (((-560)) |has| |#1| (-622 (-560)))) -(-2318 (|has| |#2| (-170)) (|has| |#2| (-832)) (|has| |#2| (-1039))) -((((-1221 |#1| |#2| |#3| |#4|)) . T)) -((((-403 (-560))) . T) (((-560)) . T)) -((((-842)) |has| |#1| (-1082))) +(|has| |#1| (-370)) +(-2198 (|has| |#1| (-453)) (|has| |#1| (-558)) (|has| |#1| (-904))) +((((-568)) . T)) +((((-568)) . T)) +(-2198 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-453)) (|has| |#2| (-558)) (|has| |#2| (-904))) +((((-850)) . T)) +(((|#2|) . T)) +((((-850)) . T)) +(-12 (|has| |#2| (-225)) (|has| |#2| (-1047))) +((((-1161) (-864 |#1|)) |has| (-864 |#1|) (-523 (-1161) (-864 |#1|))) (((-864 |#1|) (-864 |#1|)) |has| (-864 |#1|) (-303 (-864 |#1|)))) +(((|#1|) . T)) +((((-568) |#4|) . T)) +((((-568) |#3|) . T)) +(((|#1|) . T) (((-568)) |has| |#1| (-630 (-568)))) +(-2198 (|has| |#2| (-172)) (|has| |#2| (-840)) (|has| |#2| (-1047))) +((((-1229 |#1| |#2| |#3| |#4|)) . T)) +((((-409 (-568))) . T) (((-568)) . T)) +((((-850)) |has| |#1| (-1090))) (((|#1| |#1|) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) -(((|#1|) . T)) -(((|#1|) . T)) -((($) . T) (((-560)) . T) (((-403 (-560))) . T)) -((((-560)) . T)) -((((-560)) . T)) -((($) . T) (((-560)) . T) (((-403 (-560))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-403 (-560)) (-403 (-560))) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-560) (-560)) . T) (((-403 (-560)) (-403 (-560))) . T) (($ $) . T)) -(((|#1|) . T) (((-560)) |has| |#1| (-1029 (-560))) (((-403 (-560))) |has| |#1| (-1029 (-403 (-560))))) -(((|#1|) . T) (($) . T) (((-403 (-560))) . T)) -(((|#1|) |has| |#1| (-550))) -((((-560) |#4|) . T)) -((((-560) |#3|) . T)) -((((-842)) . T)) -((((-560)) . T) (((-403 (-560))) . T) (($) . T)) -((((-842)) . T)) -((((-560) |#1|) . T)) -(((|#1|) . T)) -((($ $) . T) (((-844 |#1|) $) . T) (((-844 |#1|) |#2|) . T)) -((($) . T)) -((($ $) . T) (((-1153) $) . T) (((-1153) |#1|) . T)) -(((|#2|) |has| |#2| (-170))) -((($) -2318 (|has| |#2| (-359)) (|has| |#2| (-447)) (|has| |#2| (-550)) (|has| |#2| (-896))) ((|#2|) |has| |#2| (-170)) (((-403 (-560))) |has| |#2| (-43 (-403 (-560))))) -(((|#2| |#2|) -2318 (|has| |#2| (-170)) (|has| |#2| (-359)) (|has| |#2| (-1039))) (($ $) |has| |#2| (-170))) -((((-145)) . T)) -(((|#1|) . T)) -(-12 (|has| |#1| (-364)) (|has| |#2| (-364))) -((((-842)) . T)) -(((|#2|) -2318 (|has| |#2| (-170)) (|has| |#2| (-359)) (|has| |#2| (-1039))) (($) |has| |#2| (-170))) -(((|#1|) . T)) -((((-842)) . T)) -(|has| |#1| (-1082)) -(|has| $ (-148)) -((((-849 |#1|) |#2| (-237 |#2| (-849 |#1|)) (-228 (-2271 |#2|) (-755)) (-959 |#1|) (-766 (-849 |#1|)) (-914 |#1|) (-231 (-914 |#1|)) |#3|) . T)) -((((-560) |#1|) . T)) -((($) -2318 (|has| |#1| (-296)) (|has| |#1| (-359)) (|has| |#1| (-344)) (|has| |#1| (-550))) (((-403 (-560))) -2318 (|has| |#1| (-359)) (|has| |#1| (-344))) ((|#1|) . T)) -((((-1153)) -12 (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))) (|has| |#1| (-887 (-1153))))) -(|has| |#1| (-359)) -(-2318 (-12 (|has| (-1151 |#1| |#2| |#3|) (-221)) (|has| |#1| (-359))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) -(|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))) -(|has| |#1| (-359)) -(|has| |#1| (-15 * (|#1| (-755) |#1|))) -(((|#1|) . T)) -(-2318 (|has| |#1| (-834)) (|has| |#1| (-1082))) -((((-842)) . T)) -(((|#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) -(-2318 (|has| |#2| (-170)) (|has| |#2| (-447)) (|has| |#2| (-550)) (|has| |#2| (-896))) -(((|#2| (-526 (-844 |#1|))) . T)) -((((-842)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) -(((|#1|) . T)) -(-2318 (|has| |#1| (-170)) (|has| |#1| (-447)) (|has| |#1| (-550)) (|has| |#1| (-896))) -(-2318 (|has| |#1| (-447)) (|has| |#1| (-550)) (|has| |#1| (-896))) -(-2318 (|has| |#1| (-359)) (|has| |#1| (-447)) (|has| |#1| (-550)) (|has| |#1| (-896))) -((((-573 |#1|)) . T)) -((($) . T)) -(|has| |#1| (-1173)) -(|has| |#1| (-1173)) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) +(((|#1|) . T)) +(((|#1|) . T)) +((($) . T) (((-568)) . T) (((-409 (-568))) . T)) +((((-568)) . T)) +((((-568)) . T)) +((($) . T) (((-568)) . T) (((-409 (-568))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-409 (-568)) (-409 (-568))) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-568) (-568)) . T) (((-409 (-568)) (-409 (-568))) . T) (($ $) . T)) +(((|#1|) . T) (((-568)) |has| |#1| (-1037 (-568))) (((-409 (-568))) |has| |#1| (-1037 (-409 (-568))))) +(((|#1|) . T) (($) . T) (((-409 (-568))) . T)) +(((|#1|) |has| |#1| (-558))) +((((-568) |#4|) . T)) +((((-568) |#3|) . T)) +((((-850)) . T)) +((((-568)) . T) (((-409 (-568))) . T) (($) . T)) +((((-850)) . T)) +((((-568) |#1|) . T)) +(((|#1|) . T)) +((($ $) . T) (((-852 |#1|) $) . T) (((-852 |#1|) |#2|) . T)) +((($) . T)) +((($ $) . T) (((-1161) $) . T) (((-1161) |#1|) . T)) +(((|#2|) |has| |#2| (-172))) +((($) -2198 (|has| |#2| (-365)) (|has| |#2| (-453)) (|has| |#2| (-558)) (|has| |#2| (-904))) ((|#2|) |has| |#2| (-172)) (((-409 (-568))) |has| |#2| (-43 (-409 (-568))))) +(((|#2| |#2|) -2198 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1047))) (($ $) |has| |#2| (-172))) +((((-147)) . T)) +(((|#1|) . T)) +(-12 (|has| |#1| (-370)) (|has| |#2| (-370))) +((((-850)) . T)) +(((|#2|) -2198 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1047))) (($) |has| |#2| (-172))) +(((|#1|) . T)) +((((-850)) . T)) +(|has| |#1| (-1090)) +(|has| $ (-150)) +((((-857 |#1|) |#2| (-242 |#2| (-857 |#1|)) (-232 (-1697 |#2|) (-763)) (-967 |#1|) (-774 (-857 |#1|)) (-922 |#1|) (-236 (-922 |#1|)) |#3|) . T)) +((((-568) |#1|) . T)) +((($) -2198 (|has| |#1| (-301)) (|has| |#1| (-365)) (|has| |#1| (-350)) (|has| |#1| (-558))) (((-409 (-568))) -2198 (|has| |#1| (-365)) (|has| |#1| (-350))) ((|#1|) . T)) +((((-1161)) -12 (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))) (|has| |#1| (-895 (-1161))))) +(|has| |#1| (-365)) +(-2198 (-12 (|has| (-1159 |#1| |#2| |#3|) (-225)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-568) |#1|)))) +(|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))) +(|has| |#1| (-365)) +(|has| |#1| (-15 * (|#1| (-763) |#1|))) +(((|#1|) . T)) +(-2198 (|has| |#1| (-842)) (|has| |#1| (-1090))) +((((-850)) . T)) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) +(-2198 (|has| |#2| (-172)) (|has| |#2| (-453)) (|has| |#2| (-558)) (|has| |#2| (-904))) +(((|#2| (-534 (-852 |#1|))) . T)) +((((-850)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) +(((|#1|) . T)) +(-2198 (|has| |#1| (-172)) (|has| |#1| (-453)) (|has| |#1| (-558)) (|has| |#1| (-904))) +(-2198 (|has| |#1| (-453)) (|has| |#1| (-558)) (|has| |#1| (-904))) +(-2198 (|has| |#1| (-365)) (|has| |#1| (-453)) (|has| |#1| (-558)) (|has| |#1| (-904))) +((((-581 |#1|)) . T)) +((($) . T)) +(|has| |#1| (-1181)) +(|has| |#1| (-1181)) (((|#1|) . T) (($) . T)) -((((-560)) |has| |#1| (-622 (-560))) ((|#1|) . T)) +((((-568)) |has| |#1| (-630 (-568))) ((|#1|) . T)) (((|#4|) . T)) (((|#3|) . T)) -((((-856 |#1|)) . T) (($) . T) (((-403 (-560))) . T)) -(|has| |#1| (-1173)) -(|has| |#1| (-1173)) -((((-1153)) -12 (|has| |#2| (-887 (-1153))) (|has| |#2| (-1039)))) -(((|#1|) . T)) -((((-842)) . T)) -((((-842)) . T)) -((((-560) |#2|) . T)) -((((-842)) . T)) -((((-842)) . T)) -((((-842)) . T)) -((((-842)) . T)) +((((-864 |#1|)) . T) (($) . T) (((-409 (-568))) . T)) +(|has| |#1| (-1181)) +(|has| |#1| (-1181)) +((((-1161)) -12 (|has| |#2| (-895 (-1161))) (|has| |#2| (-1047)))) +(((|#1|) . T)) +((((-850)) . T)) +((((-850)) . T)) +((((-568) |#2|) . T)) +((((-850)) . T)) +((((-850)) . T)) +((((-850)) . T)) +((((-850)) . T)) (((|#1| |#2| |#3| |#4| |#5|) . T)) -((((-403 (-560)) (-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((|#1| |#1|) . T) (($ $) -2318 (|has| |#1| (-170)) (|has| |#1| (-550)))) -((($ $) -2318 (|has| |#1| (-170)) (|has| |#1| (-359)) (|has| |#1| (-550))) (((-403 (-560)) (-403 (-560))) -2318 (|has| |#1| (-43 (-403 (-560)))) (|has| |#1| (-359))) (((-1151 |#1| |#2| |#3|) (-1151 |#1| |#2| |#3|)) |has| |#1| (-359)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -2318 (|has| |#1| (-170)) (|has| |#1| (-359)) (|has| |#1| (-550))) (((-403 (-560)) (-403 (-560))) -2318 (|has| |#1| (-43 (-403 (-560)))) (|has| |#1| (-359)))) -((($ $) -2318 (|has| |#1| (-170)) (|has| |#1| (-550))) ((|#1| |#1|) . T) (((-403 (-560)) (-403 (-560))) |has| |#1| (-43 (-403 (-560))))) -(((|#2|) |has| |#2| (-1039))) -(|has| |#1| (-1082)) -((((-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((|#1|) . T) (($) -2318 (|has| |#1| (-170)) (|has| |#1| (-550)))) -((($) -2318 (|has| |#1| (-170)) (|has| |#1| (-359)) (|has| |#1| (-550))) (((-403 (-560))) -2318 (|has| |#1| (-43 (-403 (-560)))) (|has| |#1| (-359))) (((-1151 |#1| |#2| |#3|)) |has| |#1| (-359)) ((|#1|) . T)) -(((|#1|) . T) (($) -2318 (|has| |#1| (-170)) (|has| |#1| (-359)) (|has| |#1| (-550))) (((-403 (-560))) -2318 (|has| |#1| (-43 (-403 (-560)))) (|has| |#1| (-359)))) -((($) -2318 (|has| |#1| (-170)) (|has| |#1| (-550))) ((|#1|) . T) (((-403 (-560))) |has| |#1| (-43 (-403 (-560))))) -(((|#1|) |has| |#1| (-170)) (($) . T)) -(((|#1|) . T)) -((((-403 (-560)) (-403 (-560))) |has| |#2| (-43 (-403 (-560)))) ((|#2| |#2|) . T) (($ $) -2318 (|has| |#2| (-170)) (|has| |#2| (-447)) (|has| |#2| (-550)) (|has| |#2| (-896)))) -((((-842)) . T)) -((((-403 (-560))) |has| |#2| (-43 (-403 (-560)))) ((|#2|) |has| |#2| (-170)) (($) -2318 (|has| |#2| (-447)) (|has| |#2| (-550)) (|has| |#2| (-896)))) -((($) . T) ((|#2|) . T) (((-403 (-560))) |has| |#2| (-43 (-403 (-560))))) +((((-409 (-568)) (-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((|#1| |#1|) . T) (($ $) -2198 (|has| |#1| (-172)) (|has| |#1| (-558)))) +((($ $) -2198 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-568)) (-409 (-568))) -2198 (|has| |#1| (-43 (-409 (-568)))) (|has| |#1| (-365))) (((-1159 |#1| |#2| |#3|) (-1159 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -2198 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-568)) (-409 (-568))) -2198 (|has| |#1| (-43 (-409 (-568)))) (|has| |#1| (-365)))) +((($ $) -2198 (|has| |#1| (-172)) (|has| |#1| (-558))) ((|#1| |#1|) . T) (((-409 (-568)) (-409 (-568))) |has| |#1| (-43 (-409 (-568))))) +(((|#2|) |has| |#2| (-1047))) +(|has| |#1| (-1090)) +((((-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((|#1|) . T) (($) -2198 (|has| |#1| (-172)) (|has| |#1| (-558)))) +(|has| |#1| (-172)) +((($) -2198 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-568))) -2198 (|has| |#1| (-43 (-409 (-568)))) (|has| |#1| (-365))) (((-1159 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) . T)) +(((|#1|) . T) (($) -2198 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-568))) -2198 (|has| |#1| (-43 (-409 (-568)))) (|has| |#1| (-365)))) +((($) -2198 (|has| |#1| (-172)) (|has| |#1| (-558))) ((|#1|) . T) (((-409 (-568))) |has| |#1| (-43 (-409 (-568))))) +(((|#1|) |has| |#1| (-172)) (($) . T)) +(((|#1|) . T)) +((((-409 (-568)) (-409 (-568))) |has| |#2| (-43 (-409 (-568)))) ((|#2| |#2|) . T) (($ $) -2198 (|has| |#2| (-172)) (|has| |#2| (-453)) (|has| |#2| (-558)) (|has| |#2| (-904)))) +((((-850)) . T)) +((((-409 (-568))) |has| |#2| (-43 (-409 (-568)))) ((|#2|) |has| |#2| (-172)) (($) -2198 (|has| |#2| (-453)) (|has| |#2| (-558)) (|has| |#2| (-904)))) +((($) . T) ((|#2|) . T) (((-409 (-568))) |has| |#2| (-43 (-409 (-568))))) ((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T)) -((((-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((|#1|) |has| |#1| (-170)) (($) -2318 (|has| |#1| (-447)) (|has| |#1| (-550)) (|has| |#1| (-896)))) -((((-1067) |#1|) . T) (((-1067) $) . T) (($ $) . T)) -((((-403 (-560))) |has| |#2| (-43 (-403 (-560)))) ((|#2|) . T) (($) -2318 (|has| |#2| (-170)) (|has| |#2| (-447)) (|has| |#2| (-550)) (|has| |#2| (-896)))) -((($) . T)) -(((|#1|) . T) (((-403 (-560))) |has| |#1| (-43 (-403 (-560)))) (($) . T)) -(-2318 (|has| |#1| (-834)) (|has| |#1| (-1082))) -(((|#2|) |has| |#1| (-359))) -(((|#1|) . T)) -(|has| |#2| (-896)) -(((|#2|) |has| |#2| (-1082)) (((-560)) -12 (|has| |#2| (-1029 (-560))) (|has| |#2| (-1082))) (((-403 (-560))) -12 (|has| |#2| (-1029 (-403 (-560)))) (|has| |#2| (-1082)))) -((((-560) |#1|) . T)) -(((|#1| (-403 (-560))) . T)) -((((-403 |#2|) |#3|) . T)) -((((-403 (-560))) . T) (($) . T)) -((((-403 (-560))) . T) (($) . T)) -(|has| |#1| (-43 (-403 (-560)))) -(|has| |#1| (-43 (-403 (-560)))) -(|has| |#1| (-43 (-403 (-560)))) -(|has| |#1| (-43 (-403 (-560)))) -(|has| |#1| (-146)) +((((-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((|#1|) |has| |#1| (-172)) (($) -2198 (|has| |#1| (-453)) (|has| |#1| (-558)) (|has| |#1| (-904)))) +((((-1075) |#1|) . T) (((-1075) $) . T) (($ $) . T)) +((((-409 (-568))) |has| |#2| (-43 (-409 (-568)))) ((|#2|) . T) (($) -2198 (|has| |#2| (-172)) (|has| |#2| (-453)) (|has| |#2| (-558)) (|has| |#2| (-904)))) +((($) . T)) +(((|#1|) . T) (((-409 (-568))) |has| |#1| (-43 (-409 (-568)))) (($) . T)) +(-2198 (|has| |#1| (-842)) (|has| |#1| (-1090))) +(((|#2|) |has| |#1| (-365))) +(((|#1|) . T)) +(|has| |#2| (-904)) +(((|#2|) |has| |#2| (-1090)) (((-568)) -12 (|has| |#2| (-1037 (-568))) (|has| |#2| (-1090))) (((-409 (-568))) -12 (|has| |#2| (-1037 (-409 (-568)))) (|has| |#2| (-1090)))) +((((-568) |#1|) . T)) +(((|#1| (-409 (-568))) . T)) +((((-409 |#2|) |#3|) . T)) +((((-409 (-568))) . T) (($) . T)) +((((-409 (-568))) . T) (($) . T)) +(|has| |#1| (-43 (-409 (-568)))) +(|has| |#1| (-43 (-409 (-568)))) +(|has| |#1| (-43 (-409 (-568)))) +(|has| |#1| (-43 (-409 (-568)))) (|has| |#1| (-148)) -((((-403 (-560))) |has| |#2| (-43 (-403 (-560)))) ((|#2|) |has| |#2| (-170)) (($) -2318 (|has| |#2| (-447)) (|has| |#2| (-550)) (|has| |#2| (-896)))) -((($) -2318 (|has| |#1| (-447)) (|has| |#1| (-550)) (|has| |#1| (-896))) ((|#1|) |has| |#1| (-170)) (((-403 (-560))) |has| |#1| (-43 (-403 (-560))))) -((((-403 (-560))) . T) (($) . T)) -((((-403 (-560))) . T) (($) . T)) -((((-403 (-560))) . T) (($) . T)) -(((|#2| |#3| (-844 |#1|)) . T)) -((((-1153)) |has| |#2| (-887 (-1153)))) -(((|#1|) . T)) -(((|#1| (-526 |#2|) |#2|) . T)) -(((|#1| (-755) (-1067)) . T)) -((((-403 (-560))) |has| |#2| (-359)) (($) . T)) -(((|#1| (-526 (-1071 (-1153))) (-1071 (-1153))) . T)) -(-2318 (|has| |#1| (-170)) (|has| |#1| (-447)) (|has| |#1| (-550)) (|has| |#1| (-896))) -(-2318 (|has| |#1| (-170)) (|has| |#1| (-359)) (|has| |#1| (-447)) (|has| |#1| (-550)) (|has| |#1| (-896))) -(((|#1|) . T)) -(-2318 (|has| |#2| (-170)) (|has| |#2| (-832)) (|has| |#2| (-1039)) SEQ) -(|has| |#2| (-780)) -(-2318 (|has| |#2| (-780)) (|has| |#2| (-832))) -(|has| |#1| (-364)) -(|has| |#1| (-364)) -(|has| |#1| (-364)) -(|has| |#2| (-832)) +(|has| |#1| (-150)) +((((-409 (-568))) |has| |#2| (-43 (-409 (-568)))) ((|#2|) |has| |#2| (-172)) (($) -2198 (|has| |#2| (-453)) (|has| |#2| (-558)) (|has| |#2| (-904)))) +((($) -2198 (|has| |#1| (-453)) (|has| |#1| (-558)) (|has| |#1| (-904))) ((|#1|) |has| |#1| (-172)) (((-409 (-568))) |has| |#1| (-43 (-409 (-568))))) +((((-409 (-568))) . T) (($) . T)) +((((-409 (-568))) . T) (($) . T)) +((((-409 (-568))) . T) (($) . T)) +(((|#2| |#3| (-852 |#1|)) . T)) +((((-1161)) |has| |#2| (-895 (-1161)))) +(((|#1|) . T)) +(((|#1| (-534 |#2|) |#2|) . T)) +(((|#1| (-763) (-1075)) . T)) +((((-409 (-568))) |has| |#2| (-365)) (($) . T)) +(((|#1| (-534 (-1079 (-1161))) (-1079 (-1161))) . T)) +(-2198 (|has| |#1| (-172)) (|has| |#1| (-453)) (|has| |#1| (-558)) (|has| |#1| (-904))) +(-2198 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-453)) (|has| |#1| (-558)) (|has| |#1| (-904))) +(((|#1|) . T)) +(-2198 (|has| |#2| (-172)) (|has| |#2| (-840)) (|has| |#2| (-1047)) SEQ) +(|has| |#2| (-788)) +(-2198 (|has| |#2| (-788)) (|has| |#2| (-840))) +(|has| |#1| (-370)) +(|has| |#1| (-370)) +(|has| |#1| (-370)) +(|has| |#2| (-840)) +(|has| |#1| (-150)) (|has| |#1| (-148)) -(|has| |#1| (-146)) -((((-880 |#1|)) . T) (((-806 |#1|)) . T)) -((((-806 (-1153))) . T)) -(((|#1|) . T)) -(((|#2|) . T)) -(((|#2|) . T)) -((((-842)) . T)) -((((-842)) . T)) -((((-626 (-560))) . T)) -((((-842)) . T)) -((((-842)) . T)) -((((-533)) . T) (((-879 (-560))) . T) (((-375)) . T) (((-213)) . T)) -(|has| |#1| (-221)) -(((|#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) -(((|#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) -(((|#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) -(((|#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) +((((-888 |#1|)) . T) (((-814 |#1|)) . T)) +((((-814 (-1161))) . T)) +(((|#1|) . T)) +(((|#2|) . T)) +(((|#2|) . T)) +((((-850)) . T)) +((((-850)) . T)) +((((-634 (-568))) . T)) +((((-850)) . T)) +((((-850)) . T)) +((((-541)) . T) (((-887 (-568))) . T) (((-381)) . T) (((-215)) . T)) +(|has| |#1| (-225)) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) ((($ $) . T)) (((|#1| |#1|) . T)) -(((|#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) ((($ $) . T)) -((((-1227 |#1| |#2| |#3|) $) -12 (|has| (-1227 |#1| |#2| |#3|) (-276 (-1227 |#1| |#2| |#3|) (-1227 |#1| |#2| |#3|))) (|has| |#1| (-359))) (($ $) . T)) +((((-1235 |#1| |#2| |#3|) $) -12 (|has| (-1235 |#1| |#2| |#3|) (-281 (-1235 |#1| |#2| |#3|) (-1235 |#1| |#2| |#3|))) (|has| |#1| (-365))) (($ $) . T)) ((($ $) . T)) ((($ $) . T)) (((|#1|) . T)) -((((-1117 |#1| |#2|)) |has| (-1117 |#1| |#2|) (-298 (-1117 |#1| |#2|)))) -(((|#4| |#4|) -12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082)))) -(((|#2|) . T) (((-560)) |has| |#2| (-1029 (-560))) (((-403 (-560))) |has| |#2| (-1029 (-403 (-560))))) -(((|#3| |#3|) -12 (|has| |#3| (-298 |#3|)) (|has| |#3| (-1082)))) -(((|#2|) -12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082))) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) |has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))))) +(|has| |#1| (-172)) +((((-1125 |#1| |#2|)) |has| (-1125 |#1| |#2|) (-303 (-1125 |#1| |#2|)))) +(((|#4| |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090)))) +(((|#2|) . T) (((-568)) |has| |#2| (-1037 (-568))) (((-409 (-568))) |has| |#2| (-1037 (-409 (-568))))) +(((|#3| |#3|) -12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1090)))) +(((|#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090))) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) |has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))))) (((|#1|) . T)) (((|#1| |#2|) . T)) ((($) . T)) ((($) . T)) (((|#2|) . T)) (((|#3|) . T)) -(-2318 (|has| |#1| (-834)) (|has| |#1| (-1082))) -(((|#2|) -12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082))) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) |has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))))) -(((|#2|) . T)) -((((-842)) -2318 (|has| |#2| (-25)) (|has| |#2| (-137)) (|has| |#2| (-170)) (|has| |#2| (-359)) (|has| |#2| (-364)) (|has| |#2| (-708)) (|has| |#2| (-780)) (|has| |#2| (-832)) (|has| |#2| (-1039)) (|has| |#2| (-1082))) (((-1236 |#2|)) . T)) -(((|#1|) |has| |#1| (-170))) -((((-560)) . T)) -((((-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((|#1|) |has| |#1| (-170)) (($) -2318 (|has| |#1| (-447)) (|has| |#1| (-550)) (|has| |#1| (-896)))) -((($) -2318 (|has| |#1| (-359)) (|has| |#1| (-447)) (|has| |#1| (-550)) (|has| |#1| (-896))) ((|#1|) |has| |#1| (-170)) (((-403 (-560))) |has| |#1| (-43 (-403 (-560))))) -((((-560) (-145)) . T)) -((($) -2318 (|has| |#2| (-170)) (|has| |#2| (-832)) (|has| |#2| (-1039))) ((|#2|) -2318 (|has| |#2| (-170)) (|has| |#2| (-359)) (|has| |#2| (-1039)))) -(-2318 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-170)) (|has| |#1| (-550)) (|has| |#1| (-1039))) -(((|#1|) . T)) -(-2318 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-170)) (|has| |#1| (-550)) (|has| |#1| (-1039))) -(((|#2|) |has| |#1| (-359))) -(((|#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) +(-2198 (|has| |#1| (-842)) (|has| |#1| (-1090))) +(((|#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090))) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) |has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))))) +(((|#2|) . T)) +((((-850)) -2198 (|has| |#2| (-25)) (|has| |#2| (-137)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-716)) (|has| |#2| (-788)) (|has| |#2| (-840)) (|has| |#2| (-1047)) (|has| |#2| (-1090))) (((-1244 |#2|)) . T)) +(((|#1|) |has| |#1| (-172))) +((((-568)) . T)) +((((-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((|#1|) |has| |#1| (-172)) (($) -2198 (|has| |#1| (-453)) (|has| |#1| (-558)) (|has| |#1| (-904)))) +((($) -2198 (|has| |#1| (-365)) (|has| |#1| (-453)) (|has| |#1| (-558)) (|has| |#1| (-904))) ((|#1|) |has| |#1| (-172)) (((-409 (-568))) |has| |#1| (-43 (-409 (-568))))) +((((-568) (-147)) . T)) +((($) -2198 (|has| |#2| (-172)) (|has| |#2| (-840)) (|has| |#2| (-1047))) ((|#2|) -2198 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1047)))) +(-2198 (|has| |#1| (-21)) (|has| |#1| (-148)) (|has| |#1| (-150)) (|has| |#1| (-172)) (|has| |#1| (-558)) (|has| |#1| (-1047))) +(((|#1|) . T)) +(-2198 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-148)) (|has| |#1| (-150)) (|has| |#1| (-172)) (|has| |#1| (-558)) (|has| |#1| (-1047))) +(((|#2|) |has| |#1| (-365))) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (((|#1| |#1|) . T) (($ $) . T)) -((($) -2318 (|has| |#1| (-359)) (|has| |#1| (-550))) (((-403 (-560))) -2318 (|has| |#1| (-43 (-403 (-560)))) (|has| |#1| (-359))) ((|#1|) |has| |#1| (-170))) -(((|#1| |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) -((($) . T) (((-403 (-560))) . T) ((|#1|) |has| |#1| (-170))) -((($) . T) (((-403 (-560))) . T)) -(((|#1| (-526 (-1153)) (-1153)) . T)) +((($) -2198 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-568))) -2198 (|has| |#1| (-43 (-409 (-568)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172))) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) +((($) . T) (((-409 (-568))) . T) ((|#1|) |has| |#1| (-172))) +((($) . T) (((-409 (-568))) . T)) +(((|#1| (-534 (-1161)) (-1161)) . T)) (((|#1|) . T) (($) . T)) -(|has| |#4| (-170)) -(|has| |#3| (-170)) -((((-403 (-945 |#1|)) (-403 (-945 |#1|))) . T)) -(-2318 (|has| |#1| (-834)) (|has| |#1| (-1082))) -(|has| |#1| (-1082)) -(-2318 (|has| |#1| (-834)) (|has| |#1| (-1082))) -(|has| |#1| (-1082)) -((((-842)) -2318 (|has| |#1| (-834)) (|has| |#1| (-1082)))) -((((-533)) |has| |#1| (-601 (-533)))) -(-2318 (|has| |#1| (-834)) (|has| |#1| (-1082))) -(((|#1| |#1|) |has| |#1| (-170))) -((($ $) -2318 (|has| |#1| (-170)) (|has| |#1| (-550))) ((|#1| |#1|) . T) (((-403 (-560)) (-403 (-560))) |has| |#1| (-43 (-403 (-560))))) -((((-852)) . T) (((-403 (-560))) . T)) -((((-403 (-560))) . T)) -((((-403 (-945 |#1|))) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) -(((|#1|) . T)) -(((|#1|) |has| |#1| (-170))) -((($) -2318 (|has| |#1| (-170)) (|has| |#1| (-550))) ((|#1|) . T) (((-403 (-560))) |has| |#1| (-43 (-403 (-560))))) -(-2318 (|has| |#1| (-447)) (|has| |#1| (-550)) (|has| |#1| (-896))) -((((-842)) . T)) -((((-1221 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) |has| |#1| (-1039)) (((-560)) -12 (|has| |#1| (-622 (-560))) (|has| |#1| (-1039)))) +(|has| |#4| (-172)) +(|has| |#3| (-172)) +((((-409 (-953 |#1|)) (-409 (-953 |#1|))) . T)) +(-2198 (|has| |#1| (-842)) (|has| |#1| (-1090))) +(|has| |#1| (-1090)) +(-2198 (|has| |#1| (-842)) (|has| |#1| (-1090))) +(|has| |#1| (-1090)) +((((-850)) -2198 (|has| |#1| (-842)) (|has| |#1| (-1090)))) +((((-541)) |has| |#1| (-609 (-541)))) +(-2198 (|has| |#1| (-842)) (|has| |#1| (-1090))) +(((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-172))) +(((|#1| |#1|) |has| |#1| (-172))) +((((-860)) . T) (((-409 (-568))) . T)) +((((-409 (-568))) . T)) +((($ $) -2198 (|has| |#1| (-172)) (|has| |#1| (-558))) ((|#1| |#1|) . T) (((-409 (-568)) (-409 (-568))) |has| |#1| (-43 (-409 (-568))))) +((((-409 (-953 |#1|))) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) +(((|#1|) . T)) +(((|#1|) |has| |#1| (-172))) +((($) -2198 (|has| |#1| (-172)) (|has| |#1| (-558))) ((|#1|) . T) (((-409 (-568))) |has| |#1| (-43 (-409 (-568))))) +(-2198 (|has| |#1| (-453)) (|has| |#1| (-558)) (|has| |#1| (-904))) +((((-850)) . T)) +((((-1229 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) |has| |#1| (-1047)) (((-568)) -12 (|has| |#1| (-630 (-568))) (|has| |#1| (-1047)))) (((|#1| |#2|) . T)) -(-2318 (|has| |#3| (-170)) (|has| |#3| (-832)) (|has| |#3| (-1039)) SEQ) -(|has| |#3| (-780)) -(-2318 (|has| |#3| (-780)) (|has| |#3| (-832))) -(|has| |#3| (-832)) -((((-403 (-560))) -2318 (|has| |#1| (-43 (-403 (-560)))) (|has| |#1| (-359))) (($) -2318 (|has| |#1| (-359)) (|has| |#1| (-550))) ((|#2|) |has| |#1| (-359)) ((|#1|) |has| |#1| (-170))) -(((|#1|) |has| |#1| (-170)) (((-403 (-560))) -2318 (|has| |#1| (-43 (-403 (-560)))) (|has| |#1| (-359))) (($) -2318 (|has| |#1| (-359)) (|has| |#1| (-550)))) -(((|#2|) . T)) -((((-842)) . T)) -((((-842)) . T)) -((((-842)) . T)) -((((-842)) . T)) -(((|#1| (-1133 |#1|)) |has| |#1| (-832))) -((((-560) |#2|) . T)) -(|has| |#1| (-1082)) -(((|#1|) . T)) -((((-2 (|:| |k| (-560)) (|:| |c| |#1|))) |has| (-2 (|:| |k| (-560)) (|:| |c| |#1|)) (-298 (-2 (|:| |k| (-560)) (|:| |c| |#1|))))) -(-12 (|has| |#1| (-359)) (|has| |#2| (-1128))) -(((|#1| |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) -(|has| |#1| (-1082)) -(((|#2|) . T)) -((((-533)) |has| |#2| (-601 (-533))) (((-879 (-375))) |has| |#2| (-601 (-879 (-375)))) (((-879 (-560))) |has| |#2| (-601 (-879 (-560))))) -(((|#4|) -2318 (|has| |#4| (-170)) (|has| |#4| (-359)))) -(((|#3|) -2318 (|has| |#3| (-170)) (|has| |#3| (-359)))) -((((-842)) . T)) -(((|#1|) . T)) -(-2318 (|has| |#2| (-447)) (|has| |#2| (-896))) -(-2318 (|has| |#1| (-447)) (|has| |#1| (-896))) -(-2318 (|has| |#1| (-359)) (|has| |#1| (-447)) (|has| |#1| (-896))) -((($ $) . T) (((-1153) $) |has| |#1| (-221)) (((-1153) |#1|) |has| |#1| (-221)) (((-805 (-1153)) |#1|) . T) (((-805 (-1153)) $) . T)) -(-2318 (|has| |#1| (-447)) (|has| |#1| (-896))) -((((-560) |#2|) . T)) -((((-842)) . T)) -((((-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) . T)) -((((-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) . T)) -((((-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) . T)) -(((|#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) -((($) -2318 (|has| |#3| (-170)) (|has| |#3| (-832)) (|has| |#3| (-1039))) ((|#3|) -2318 (|has| |#3| (-170)) (|has| |#3| (-359)) (|has| |#3| (-1039)))) -((((-560) |#1|) . T)) -(|has| (-403 |#2|) (-148)) -(|has| (-403 |#2|) (-146)) -(((|#2|) -12 (|has| |#1| (-359)) (|has| |#2| (-298 |#2|)))) -(|has| |#1| (-43 (-403 (-560)))) -(((|#1|) . T)) -(((|#2|) . T) (($) . T) (((-403 (-560))) . T)) -((((-842)) . T)) -(|has| |#1| (-550)) -(|has| |#1| (-550)) -(|has| |#1| (-43 (-403 (-560)))) -(|has| |#1| (-43 (-403 (-560)))) -((((-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) . T)) -((((-842)) . T)) -((((-2 (|:| -3655 (-1135)) (|:| -2371 |#1|))) . T)) -(|has| |#1| (-43 (-403 (-560)))) -((((-384) (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|))) . T)) -(|has| |#1| (-43 (-403 (-560)))) -(|has| |#2| (-1128)) -(|has| |#1| (-550)) -(-2318 (|has| |#1| (-359)) (|has| |#1| (-550))) -(((|#1|) . T)) -((((-384) (-1135)) . T)) -(-2318 (|has| |#1| (-359)) (|has| |#1| (-550))) -(|has| |#1| (-550)) +(-2198 (|has| |#3| (-172)) (|has| |#3| (-840)) (|has| |#3| (-1047)) SEQ) +(|has| |#3| (-788)) +(-2198 (|has| |#3| (-788)) (|has| |#3| (-840))) +(|has| |#3| (-840)) +((((-409 (-568))) -2198 (|has| |#1| (-43 (-409 (-568)))) (|has| |#1| (-365))) (($) -2198 (|has| |#1| (-365)) (|has| |#1| (-558))) ((|#2|) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) +(((|#1|) |has| |#1| (-172)) (((-409 (-568))) -2198 (|has| |#1| (-43 (-409 (-568)))) (|has| |#1| (-365))) (($) -2198 (|has| |#1| (-365)) (|has| |#1| (-558)))) +(((|#2|) . T)) +((((-850)) . T)) +((((-850)) . T)) +((((-850)) . T)) +((((-850)) . T)) +(((|#1| (-1141 |#1|)) |has| |#1| (-840))) +((((-568) |#2|) . T)) +(|has| |#1| (-1090)) +(((|#1|) . T)) +((((-2 (|:| |k| (-568)) (|:| |c| |#1|))) |has| (-2 (|:| |k| (-568)) (|:| |c| |#1|)) (-303 (-2 (|:| |k| (-568)) (|:| |c| |#1|))))) +(-12 (|has| |#1| (-365)) (|has| |#2| (-1136))) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) +(|has| |#1| (-1090)) +(((|#2|) . T)) +((((-541)) |has| |#2| (-609 (-541))) (((-887 (-381))) |has| |#2| (-609 (-887 (-381)))) (((-887 (-568))) |has| |#2| (-609 (-887 (-568))))) +(((|#4|) -2198 (|has| |#4| (-172)) (|has| |#4| (-365)))) +(((|#3|) -2198 (|has| |#3| (-172)) (|has| |#3| (-365)))) +((((-850)) . T)) +(((|#1|) . T)) +(-2198 (|has| |#2| (-453)) (|has| |#2| (-904))) +(-2198 (|has| |#1| (-453)) (|has| |#1| (-904))) +(-2198 (|has| |#1| (-365)) (|has| |#1| (-453)) (|has| |#1| (-904))) +((($ $) . T) (((-1161) $) |has| |#1| (-225)) (((-1161) |#1|) |has| |#1| (-225)) (((-813 (-1161)) |#1|) . T) (((-813 (-1161)) $) . T)) +(-2198 (|has| |#1| (-453)) (|has| |#1| (-904))) +((((-568) |#2|) . T)) +((((-850)) . T)) +((((-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) . T)) +((((-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) . T)) +((((-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) . T)) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) +((($) -2198 (|has| |#3| (-172)) (|has| |#3| (-840)) (|has| |#3| (-1047))) ((|#3|) -2198 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1047)))) +((((-568) |#1|) . T)) +(|has| (-409 |#2|) (-150)) +(|has| (-409 |#2|) (-148)) +(((|#2|) -12 (|has| |#1| (-365)) (|has| |#2| (-303 |#2|)))) +(|has| |#1| (-43 (-409 (-568)))) +(((|#1|) . T)) +(((|#2|) . T) (($) . T) (((-409 (-568))) . T)) +((((-850)) . T)) +(|has| |#1| (-558)) +(|has| |#1| (-558)) +(|has| |#1| (-43 (-409 (-568)))) +(|has| |#1| (-43 (-409 (-568)))) +((((-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) . T)) +((((-850)) . T)) +((((-2 (|:| -3649 (-1143)) (|:| -4083 |#1|))) . T)) +(|has| |#1| (-43 (-409 (-568)))) +((((-390) (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|))) . T)) +(|has| |#1| (-43 (-409 (-568)))) +(|has| |#2| (-1136)) +(|has| |#1| (-558)) +(-2198 (|has| |#1| (-365)) (|has| |#1| (-558))) +(((|#1|) . T)) +((((-390) (-1143)) . T)) +(-2198 (|has| |#1| (-365)) (|has| |#1| (-558))) +(|has| |#1| (-558)) ((((-125 |#1|)) . T)) -((((-560) |#1|) . T)) -(-2318 (|has| |#1| (-170)) (|has| |#1| (-447)) (|has| |#1| (-550)) (|has| |#1| (-896))) -(((|#2|) . T)) -(((|#2|) |has| |#2| (-1039)) (((-560)) -12 (|has| |#2| (-622 (-560))) (|has| |#2| (-1039)))) -((((-842)) . T)) -((((-806 |#1|)) . T)) -(((|#2|) |has| |#2| (-170))) -((((-1153) (-57)) . T)) -(((|#1|) . T)) -(|has| |#1| (-43 (-403 (-560)))) -(|has| |#1| (-43 (-403 (-560)))) -(|has| |#1| (-550)) -(((|#1|) |has| |#1| (-170))) -((((-842)) . T)) -((((-533)) |has| |#1| (-601 (-533)))) -(-2318 (|has| |#1| (-834)) (|has| |#1| (-1082))) -(((|#2|) |has| |#2| (-298 |#2|))) -((((-560) (-560)) . T) (((-403 (-560)) (-403 (-560))) . T) (($ $) . T)) -(((|#1|) . T)) -(((|#1| (-1149 |#1|)) . T)) -(|has| $ (-148)) -(((|#2|) . T)) -((((-560) (-560)) . T) (((-403 (-560)) (-403 (-560))) . T) (($ $) . T)) -((($) . T) (((-560)) . T) (((-403 (-560))) . T)) -(|has| |#2| (-364)) -(-2318 (|has| |#1| (-834)) (|has| |#1| (-1082))) -(((|#1|) . T) (((-403 (-560))) . T) (($) . T)) -(((|#1|) . T) (((-403 (-560))) . T) (($) . T)) -(((|#1|) . T) (((-403 (-560))) . T) (($) . T)) -((((-560)) . T) (((-403 (-560))) . T) (($) . T)) +((((-568) |#1|) . T)) +(-2198 (|has| |#1| (-172)) (|has| |#1| (-453)) (|has| |#1| (-558)) (|has| |#1| (-904))) +(((|#2|) . T)) +((((-850)) . T)) +(((|#2|) |has| |#2| (-1047)) (((-568)) -12 (|has| |#2| (-630 (-568))) (|has| |#2| (-1047)))) +((((-814 |#1|)) . T)) +(((|#2|) |has| |#2| (-172))) +((((-1161) (-57)) . T)) +(((|#1|) . T)) +(|has| |#1| (-43 (-409 (-568)))) +(|has| |#1| (-43 (-409 (-568)))) +(|has| |#1| (-558)) +(((|#1|) |has| |#1| (-172))) +((((-850)) . T)) +((((-541)) |has| |#1| (-609 (-541)))) +(-2198 (|has| |#1| (-842)) (|has| |#1| (-1090))) +(((|#2|) |has| |#2| (-303 |#2|))) +((((-568) (-568)) . T) (((-409 (-568)) (-409 (-568))) . T) (($ $) . T)) +(((|#1|) . T)) +(((|#1| (-1157 |#1|)) . T)) +(|has| $ (-150)) +(((|#2|) . T)) +((((-568) (-568)) . T) (((-409 (-568)) (-409 (-568))) . T) (($ $) . T)) +((($) . T) (((-568)) . T) (((-409 (-568))) . T)) +(|has| |#2| (-370)) +(-2198 (|has| |#1| (-842)) (|has| |#1| (-1090))) +(((|#1|) . T) (((-409 (-568))) . T) (($) . T)) +(((|#1|) . T) (((-409 (-568))) . T) (($) . T)) +(((|#1|) . T) (((-409 (-568))) . T) (($) . T)) +((((-568)) . T) (((-409 (-568))) . T) (($) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-560)) . T) (((-403 (-560))) . T) (($) . T)) -((((-1151 |#1| |#2| |#3|) $) -12 (|has| (-1151 |#1| |#2| |#3|) (-276 (-1151 |#1| |#2| |#3|) (-1151 |#1| |#2| |#3|))) (|has| |#1| (-359))) (($ $) . T)) -((((-842)) . T)) -((((-842)) . T)) -((($) . T) (((-403 (-560))) -2318 (|has| |#1| (-359)) (|has| |#1| (-344))) ((|#1|) . T)) -((((-533)) |has| |#1| (-601 (-533)))) -((((-842)) |has| |#1| (-1082))) +((((-568)) . T) (((-409 (-568))) . T) (($) . T)) +((((-1159 |#1| |#2| |#3|) $) -12 (|has| (-1159 |#1| |#2| |#3|) (-281 (-1159 |#1| |#2| |#3|) (-1159 |#1| |#2| |#3|))) (|has| |#1| (-365))) (($ $) . T)) +((((-850)) . T)) +((((-850)) . T)) +((($) . T) (((-409 (-568))) -2198 (|has| |#1| (-365)) (|has| |#1| (-350))) ((|#1|) . T)) +((((-541)) |has| |#1| (-609 (-541)))) +((((-850)) |has| |#1| (-1090))) ((($ $) . T)) ((($ $) . T)) -((((-842)) . T)) -(((|#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) -((((-1227 |#1| |#2| |#3|) (-1227 |#1| |#2| |#3|)) -12 (|has| (-1227 |#1| |#2| |#3|) (-298 (-1227 |#1| |#2| |#3|))) (|has| |#1| (-359))) (((-1153) (-1227 |#1| |#2| |#3|)) -12 (|has| (-1227 |#1| |#2| |#3|) (-515 (-1153) (-1227 |#1| |#2| |#3|))) (|has| |#1| (-359)))) +((((-850)) . T)) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) +((((-1235 |#1| |#2| |#3|) (-1235 |#1| |#2| |#3|)) -12 (|has| (-1235 |#1| |#2| |#3|) (-303 (-1235 |#1| |#2| |#3|))) (|has| |#1| (-365))) (((-1161) (-1235 |#1| |#2| |#3|)) -12 (|has| (-1235 |#1| |#2| |#3|) (-523 (-1161) (-1235 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((($) -2318 (|has| |#1| (-447)) (|has| |#1| (-550)) (|has| |#1| (-896))) ((|#1|) |has| |#1| (-170)) (((-403 (-560))) |has| |#1| (-43 (-403 (-560))))) -((((-403 (-560))) . T) (((-560)) . T)) -((((-560) (-145)) . T)) -((((-145)) . T)) +((($) -2198 (|has| |#1| (-453)) (|has| |#1| (-558)) (|has| |#1| (-904))) ((|#1|) |has| |#1| (-172)) (((-409 (-568))) |has| |#1| (-43 (-409 (-568))))) +((((-409 (-568))) . T) (((-568)) . T)) +((((-568) (-147)) . T)) +((((-147)) . T)) (((|#1|) . T)) -(|has| |#1| (-834)) -(-2318 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-170)) (|has| |#1| (-550)) (|has| |#1| (-1039))) +(|has| |#1| (-842)) +(-2198 (|has| |#1| (-21)) (|has| |#1| (-148)) (|has| |#1| (-150)) (|has| |#1| (-172)) (|has| |#1| (-558)) (|has| |#1| (-1047))) ((((-121)) . T)) -(((|#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) ((((-121)) . T)) (((|#1|) . T)) -((((-533)) |has| |#1| (-601 (-533))) (((-213)) |has| |#1| (-1013)) (((-375)) |has| |#1| (-1013))) -((((-842)) . T)) -(|has| |#1| (-807)) -(-2318 (|has| |#1| (-359)) (|has| |#1| (-447)) (|has| |#1| (-550)) (|has| |#1| (-896))) -(|has| |#1| (-834)) -(-2318 (|has| |#1| (-170)) (|has| |#1| (-550))) -(|has| |#1| (-550)) -(|has| |#1| (-43 (-403 (-560)))) -(|has| |#1| (-896)) -(((|#1|) . T)) -(|has| |#1| (-1082)) -((((-842)) . T)) -(-2318 (|has| |#1| (-170)) (|has| |#1| (-550))) -(-2318 (|has| |#1| (-170)) (|has| |#1| (-359)) (|has| |#1| (-550))) -(-2318 (|has| |#1| (-170)) (|has| |#1| (-359)) (|has| |#1| (-550))) -((((-842)) . T)) -((((-842)) . T)) -((((-842)) . T)) -(-2318 (|has| |#1| (-170)) (|has| |#1| (-550))) -(((|#1| (-1236 |#1|) (-1236 |#1|)) . T)) -((((-560) (-145)) . T)) -((($) . T)) -(-2318 (|has| |#4| (-170)) (|has| |#4| (-832)) (|has| |#4| (-1039))) -(-2318 (|has| |#3| (-170)) (|has| |#3| (-832)) (|has| |#3| (-1039))) -(((|#2| (-755)) . T)) -((((-842)) . T)) -(|has| |#1| (-1082)) -(((|#1| (-964)) . T)) +((((-541)) |has| |#1| (-609 (-541))) (((-215)) |has| |#1| (-1021)) (((-381)) |has| |#1| (-1021))) +((((-850)) . T)) +(|has| |#1| (-815)) +(-2198 (|has| |#1| (-365)) (|has| |#1| (-453)) (|has| |#1| (-558)) (|has| |#1| (-904))) +(|has| |#1| (-842)) +(-2198 (|has| |#1| (-172)) (|has| |#1| (-558))) +(|has| |#1| (-558)) +(|has| |#1| (-43 (-409 (-568)))) +(|has| |#1| (-904)) +(((|#1|) . T)) +(|has| |#1| (-1090)) +((((-850)) . T)) +(-2198 (|has| |#1| (-172)) (|has| |#1| (-558))) +(-2198 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) +(-2198 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) +((((-850)) . T)) +((((-850)) . T)) +((((-850)) . T)) +(-2198 (|has| |#1| (-172)) (|has| |#1| (-558))) +(((|#1| (-1244 |#1|) (-1244 |#1|)) . T)) +((((-568) (-147)) . T)) +((($) . T)) +(-2198 (|has| |#4| (-172)) (|has| |#4| (-840)) (|has| |#4| (-1047))) +(-2198 (|has| |#3| (-172)) (|has| |#3| (-840)) (|has| |#3| (-1047))) +(((|#2| (-763)) . T)) +((((-850)) . T)) +(|has| |#1| (-1090)) +(((|#1| (-972)) . T)) (((|#1| |#1|) . T)) -(|has| (-403 (-560)) (-146)) -(-2318 (|has| |#2| (-780)) (|has| |#2| (-832))) -(-2318 (|has| |#2| (-780)) (|has| |#2| (-832))) -(|has| (-403 (-560)) (-146)) -(((|#1| (-560)) . T)) +(|has| (-409 (-568)) (-148)) +(-2198 (|has| |#2| (-788)) (|has| |#2| (-840))) +(-2198 (|has| |#2| (-788)) (|has| |#2| (-840))) +(|has| (-409 (-568)) (-148)) +(((|#1| (-568)) . T)) ((($) . T)) -(-2318 (|has| |#2| (-170)) (|has| |#2| (-832)) (|has| |#2| (-1039)) SEQ) -(-12 (|has| |#1| (-471)) (|has| |#2| (-471))) +(-2198 (|has| |#2| (-172)) (|has| |#2| (-840)) (|has| |#2| (-1047)) SEQ) +(-12 (|has| |#1| (-478)) (|has| |#2| (-478))) (((|#1|) . T)) -(|has| |#2| (-780)) -(-2318 (|has| |#2| (-780)) (|has| |#2| (-832))) +(|has| |#2| (-788)) +(-2198 (|has| |#2| (-788)) (|has| |#2| (-840))) (((|#1| |#2|) . T)) -(((|#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) -(|has| |#2| (-832)) -(-12 (|has| |#1| (-780)) (|has| |#2| (-780))) -(-12 (|has| |#1| (-780)) (|has| |#2| (-780))) -(-2318 (-12 (|has| |#1| (-471)) (|has| |#2| (-471))) (-12 (|has| |#1| (-708)) (|has| |#2| (-708)))) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) +(|has| |#2| (-840)) +(-12 (|has| |#1| (-788)) (|has| |#2| (-788))) +(-12 (|has| |#1| (-788)) (|has| |#2| (-788))) +(-2198 (-12 (|has| |#1| (-478)) (|has| |#2| (-478))) (-12 (|has| |#1| (-716)) (|has| |#2| (-716)))) (((|#1| |#2|) . T)) -(((|#2|) |has| |#2| (-170))) -(((|#1|) |has| |#1| (-170))) -((((-842)) . T)) -(|has| |#1| (-344)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-403 (-560))) . T) (($) . T)) -((($) . T) (((-403 (-560))) -2318 (|has| |#1| (-43 (-403 (-560)))) (|has| |#1| (-359))) ((|#1|) . T)) -(|has| |#1| (-815)) -((((-403 (-560))) |has| |#1| (-1029 (-403 (-560)))) (((-560)) |has| |#1| (-1029 (-560))) ((|#1|) . T)) -(|has| |#1| (-1082)) -(((|#1| $) |has| |#1| (-276 |#1| |#1|))) -((((-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-550))) -((($) |has| |#1| (-550))) -(((|#4|) |has| |#4| (-1082))) -(((|#3|) |has| |#3| (-1082))) -(|has| |#3| (-364)) -(((|#1|) . T) (((-842)) . T)) -((($) |has| |#1| (-550)) ((|#1|) |has| |#1| (-170)) (((-403 (-560))) |has| |#1| (-43 (-403 (-560))))) -((((-403 (-560))) -2318 (|has| |#1| (-43 (-403 (-560)))) (|has| |#1| (-359))) (($) -2318 (|has| |#1| (-359)) (|has| |#1| (-550))) (((-1227 |#1| |#2| |#3|)) |has| |#1| (-359)) ((|#1|) |has| |#1| (-170))) -((((-842)) . T)) -(((|#1|) |has| |#1| (-170)) (((-403 (-560))) -2318 (|has| |#1| (-43 (-403 (-560)))) (|has| |#1| (-359))) (($) -2318 (|has| |#1| (-359)) (|has| |#1| (-550)))) -((($) |has| |#1| (-550)) ((|#1|) |has| |#1| (-170)) (((-403 (-560))) |has| |#1| (-43 (-403 (-560))))) -(((|#2|) . T)) -(((|#1| |#1|) |has| |#1| (-170))) +(((|#2|) |has| |#2| (-172))) +(((|#1|) |has| |#1| (-172))) +((((-850)) . T)) +(|has| |#1| (-350)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-409 (-568))) . T) (($) . T)) +((($) . T) (((-409 (-568))) -2198 (|has| |#1| (-43 (-409 (-568)))) (|has| |#1| (-365))) ((|#1|) . T)) +(|has| |#1| (-823)) +((((-409 (-568))) |has| |#1| (-1037 (-409 (-568)))) (((-568)) |has| |#1| (-1037 (-568))) ((|#1|) . T)) +(|has| |#1| (-1090)) +(((|#1| $) |has| |#1| (-281 |#1| |#1|))) +((((-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-558))) +((($) |has| |#1| (-558))) +(((|#4|) |has| |#4| (-1090))) +(((|#3|) |has| |#3| (-1090))) +(|has| |#3| (-370)) +(((|#1|) . T) (((-850)) . T)) +((($) |has| |#1| (-558)) ((|#1|) |has| |#1| (-172)) (((-409 (-568))) |has| |#1| (-43 (-409 (-568))))) +((((-409 (-568))) -2198 (|has| |#1| (-43 (-409 (-568)))) (|has| |#1| (-365))) (($) -2198 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-1235 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) +((((-850)) . T)) +(((|#1|) |has| |#1| (-172)) (((-409 (-568))) -2198 (|has| |#1| (-43 (-409 (-568)))) (|has| |#1| (-365))) (($) -2198 (|has| |#1| (-365)) (|has| |#1| (-558)))) +((($) |has| |#1| (-558)) ((|#1|) |has| |#1| (-172)) (((-409 (-568))) |has| |#1| (-43 (-409 (-568))))) +(((|#2|) . T)) +(((|#1| |#1|) |has| |#1| (-172))) (((|#1| |#2|) . T)) -(|has| |#2| (-359)) -(((|#1|) . T)) -(((|#1|) |has| |#1| (-170))) -((((-403 (-560))) . T) (((-560)) . T)) -((($ $) -2318 (|has| |#2| (-170)) (|has| |#2| (-359)) (|has| |#2| (-447)) (|has| |#2| (-550)) (|has| |#2| (-896))) ((|#2| |#2|) . T) (((-403 (-560)) (-403 (-560))) |has| |#2| (-43 (-403 (-560))))) -((($ $) -2318 (|has| |#1| (-170)) (|has| |#1| (-550))) ((|#1| |#1|) . T) (((-403 (-560)) (-403 (-560))) |has| |#1| (-43 (-403 (-560))))) -((($) -2318 (|has| |#2| (-170)) (|has| |#2| (-359)) (|has| |#2| (-447)) (|has| |#2| (-550)) (|has| |#2| (-896))) ((|#2|) . T) (((-403 (-560))) |has| |#2| (-43 (-403 (-560))))) -((($) -2318 (|has| |#1| (-170)) (|has| |#1| (-550))) ((|#1|) . T) (((-403 (-560))) |has| |#1| (-43 (-403 (-560))))) -(((|#2| |#2|) -12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082)))) -((((-145)) . T)) -(((|#1|) . T)) -((((-145)) . T)) -((($) -2318 (|has| |#2| (-170)) (|has| |#2| (-832)) (|has| |#2| (-1039))) ((|#2|) -2318 (|has| |#2| (-170)) (|has| |#2| (-359)) (|has| |#2| (-1039)))) -((((-145)) . T)) +(|has| |#2| (-365)) +(((|#1|) . T)) +(((|#1|) |has| |#1| (-172))) +((((-409 (-568))) . T) (((-568)) . T)) +((($ $) -2198 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-453)) (|has| |#2| (-558)) (|has| |#2| (-904))) ((|#2| |#2|) . T) (((-409 (-568)) (-409 (-568))) |has| |#2| (-43 (-409 (-568))))) +((($ $) -2198 (|has| |#1| (-172)) (|has| |#1| (-558))) ((|#1| |#1|) . T) (((-409 (-568)) (-409 (-568))) |has| |#1| (-43 (-409 (-568))))) +((($) -2198 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-453)) (|has| |#2| (-558)) (|has| |#2| (-904))) ((|#2|) . T) (((-409 (-568))) |has| |#2| (-43 (-409 (-568))))) +((($) -2198 (|has| |#1| (-172)) (|has| |#1| (-558))) ((|#1|) . T) (((-409 (-568))) |has| |#1| (-43 (-409 (-568))))) +(((|#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090)))) +((((-147)) . T)) +(((|#1|) . T)) +((((-147)) . T)) +((($) -2198 (|has| |#2| (-172)) (|has| |#2| (-840)) (|has| |#2| (-1047))) ((|#2|) -2198 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1047)))) +((((-147)) . T)) (((|#1| |#2| |#3|) . T)) -(-2318 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-170)) (|has| |#1| (-550)) (|has| |#1| (-1039))) -(|has| $ (-148)) -(|has| $ (-148)) -(|has| |#1| (-1082)) -((((-842)) . T)) -(|has| |#1| (-43 (-403 (-560)))) -(|has| |#1| (-43 (-403 (-560)))) -(-2318 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-170)) (|has| |#1| (-471)) (|has| |#1| (-550)) (|has| |#1| (-1039)) (|has| |#1| (-1094))) -((($ $) |has| |#1| (-276 $ $)) ((|#1| $) |has| |#1| (-276 |#1| |#1|))) -(((|#1| (-403 (-560))) . T)) -(((|#1|) . T)) -(((|#1| (-560)) . T)) -((((-1153)) . T)) -(|has| |#1| (-550)) -(-2318 (|has| |#1| (-359)) (|has| |#1| (-550))) -(-2318 (|has| |#1| (-359)) (|has| |#1| (-550))) -(|has| |#1| (-550)) -(|has| |#1| (-43 (-403 (-560)))) -(|has| |#1| (-43 (-403 (-560)))) -((((-842)) . T)) -(|has| |#2| (-146)) +(-2198 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-148)) (|has| |#1| (-150)) (|has| |#1| (-172)) (|has| |#1| (-558)) (|has| |#1| (-1047))) +(|has| $ (-150)) +(|has| $ (-150)) +(|has| |#1| (-1090)) +((((-850)) . T)) +(|has| |#1| (-43 (-409 (-568)))) +(|has| |#1| (-43 (-409 (-568)))) +(-2198 (|has| |#1| (-148)) (|has| |#1| (-150)) (|has| |#1| (-172)) (|has| |#1| (-478)) (|has| |#1| (-558)) (|has| |#1| (-1047)) (|has| |#1| (-1102))) +((($ $) |has| |#1| (-281 $ $)) ((|#1| $) |has| |#1| (-281 |#1| |#1|))) +(((|#1| (-409 (-568))) . T)) +(((|#1|) . T)) +(((|#1| (-568)) . T)) +((((-1161)) . T)) +(|has| |#1| (-558)) +(-2198 (|has| |#1| (-365)) (|has| |#1| (-558))) +(-2198 (|has| |#1| (-365)) (|has| |#1| (-558))) +(|has| |#1| (-558)) +(|has| |#1| (-43 (-409 (-568)))) +(|has| |#1| (-43 (-409 (-568)))) +((((-850)) . T)) (|has| |#2| (-148)) +(|has| |#2| (-150)) (((|#2|) . T) (($) . T)) +(|has| |#1| (-150)) (|has| |#1| (-148)) -(|has| |#1| (-146)) -(|has| |#4| (-832)) -(((|#2| (-228 (-2271 |#1|) (-755)) (-844 |#1|)) . T)) -(|has| |#3| (-832)) -(((|#1| (-526 |#3|) |#3|) . T)) +(|has| |#4| (-840)) +(((|#2| (-232 (-1697 |#1|) (-763)) (-852 |#1|)) . T)) +(|has| |#3| (-840)) +(((|#1| (-534 |#3|) |#3|) . T)) +(|has| |#1| (-150)) (|has| |#1| (-148)) -(|has| |#1| (-146)) -((((-403 (-560)) (-403 (-560))) |has| |#2| (-359)) (($ $) . T)) -((((-856 |#1|)) . T)) +((((-409 (-568)) (-409 (-568))) |has| |#2| (-365)) (($ $) . T)) +((((-864 |#1|)) . T)) +(|has| |#1| (-150)) +(|has| |#1| (-370)) +(|has| |#1| (-370)) +(|has| |#1| (-370)) (|has| |#1| (-148)) -(|has| |#1| (-364)) -(|has| |#1| (-364)) -(|has| |#1| (-364)) -(|has| |#1| (-146)) -((((-403 (-560))) |has| |#2| (-359)) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) -(-2318 (|has| |#2| (-447)) (|has| |#2| (-550)) (|has| |#2| (-896))) -(-2318 (|has| |#1| (-344)) (|has| |#1| (-364))) -((((-1119 |#2| |#1|)) . T) ((|#1|) . T)) -(((|#1|) . T)) -(|has| |#2| (-170)) +((((-409 (-568))) |has| |#2| (-365)) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) +(-2198 (|has| |#2| (-453)) (|has| |#2| (-558)) (|has| |#2| (-904))) +(-2198 (|has| |#1| (-350)) (|has| |#1| (-370))) +((((-1127 |#2| |#1|)) . T) ((|#1|) . T)) +(((|#1|) . T)) +(|has| |#2| (-172)) (((|#1| |#2|) . T)) -(-12 (|has| |#2| (-221)) (|has| |#2| (-1039))) -(((|#2|) . T) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) . T)) -(-2318 (|has| |#3| (-780)) (|has| |#3| (-832))) -(-2318 (|has| |#3| (-780)) (|has| |#3| (-832))) -((((-842)) . T)) +(-12 (|has| |#2| (-225)) (|has| |#2| (-1047))) +(((|#2|) . T) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) . T)) +(-2198 (|has| |#3| (-788)) (|has| |#3| (-840))) +(-2198 (|has| |#3| (-788)) (|has| |#3| (-840))) +((((-850)) . T)) (((|#1|) . T)) (((|#2|) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-680)) . T)) -(-2318 (|has| |#2| (-170)) (|has| |#2| (-832)) (|has| |#2| (-1039))) -(|has| |#1| (-550)) +((((-688)) . T)) +(-2198 (|has| |#2| (-172)) (|has| |#2| (-840)) (|has| |#2| (-1047))) +(|has| |#1| (-558)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-1153) (-57)) . T)) -((((-842)) . T)) -((((-533)) . T) (((-879 (-560))) . T) (((-375)) . T) (((-213)) . T)) +((((-1161) (-57)) . T)) +((((-850)) . T)) +((((-541)) . T) (((-887 (-568))) . T) (((-381)) . T) (((-215)) . T)) (((|#1|) . T)) -((((-842)) . T)) -((((-533)) . T) (((-879 (-560))) . T) (((-375)) . T) (((-213)) . T)) -(((|#1| (-560)) . T)) -((((-842)) . T)) -((((-842)) . T)) +((((-850)) . T)) +((((-541)) . T) (((-887 (-568))) . T) (((-381)) . T) (((-215)) . T)) +(((|#1| (-568)) . T)) +((((-850)) . T)) +((((-850)) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(((|#1| (-403 (-560))) . T)) -(((|#3|) . T) (((-599 $)) . T)) +(((|#1| (-409 (-568))) . T)) +(((|#3|) . T) (((-607 $)) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) . T)) +((((-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) -((((-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) . T)) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) +((((-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) . T)) ((($ $) . T) ((|#2| $) . T)) -(((|#1|) . T) (((-403 (-560))) . T) (($) . T)) -((((-1151 |#1| |#2| |#3|) (-1151 |#1| |#2| |#3|)) -12 (|has| (-1151 |#1| |#2| |#3|) (-298 (-1151 |#1| |#2| |#3|))) (|has| |#1| (-359))) (((-1153) (-1151 |#1| |#2| |#3|)) -12 (|has| (-1151 |#1| |#2| |#3|) (-515 (-1153) (-1151 |#1| |#2| |#3|))) (|has| |#1| (-359)))) -((((-560)) . T) (($) . T) (((-403 (-560))) . T)) -((((-842)) . T)) -((((-842)) . T)) +(((|#1|) . T) (((-409 (-568))) . T) (($) . T)) +((((-1159 |#1| |#2| |#3|) (-1159 |#1| |#2| |#3|)) -12 (|has| (-1159 |#1| |#2| |#3|) (-303 (-1159 |#1| |#2| |#3|))) (|has| |#1| (-365))) (((-1161) (-1159 |#1| |#2| |#3|)) -12 (|has| (-1159 |#1| |#2| |#3|) (-523 (-1161) (-1159 |#1| |#2| |#3|))) (|has| |#1| (-365)))) +((((-568)) . T) (($) . T) (((-409 (-568))) . T)) +((((-850)) . T)) +((((-850)) . T)) (((|#1| |#1|) . T)) -(((|#2|) -12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082))) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) |has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))))) -(((|#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))) (((-2 (|:| -3655 (-1135)) (|:| -2371 |#1|))) |has| (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (-298 (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|))))) -((((-842)) . T)) +(((|#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090))) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) |has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))))) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))) (((-2 (|:| -3649 (-1143)) (|:| -4083 |#1|))) |has| (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (-303 (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|))))) +((((-850)) . T)) (((|#1|) . T)) (((|#3| |#3|) . T)) (((|#1|) . T)) ((($) . T) ((|#2|) . T)) -((((-1153) (-57)) . T)) +((((-1161) (-57)) . T)) (((|#3|) . T)) -((($ $) . T) (((-844 |#1|) $) . T) (((-844 |#1|) |#2|) . T)) -(|has| |#1| (-815)) -(|has| |#1| (-1082)) -(((|#2| |#2|) -2318 (|has| |#2| (-170)) (|has| |#2| (-359)) (|has| |#2| (-1039))) (($ $) |has| |#2| (-170))) -(((|#2|) -2318 (|has| |#2| (-170)) (|has| |#2| (-359)))) -((((-560) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) . T) ((|#1| |#2|) . T)) -(((|#2|) -2318 (|has| |#2| (-170)) (|has| |#2| (-359)) (|has| |#2| (-1039))) (($) |has| |#2| (-170))) -((((-755)) . T)) -((((-560)) . T)) -(|has| |#1| (-550)) -((((-842)) . T)) -(((|#1| (-403 (-560)) (-1067)) . T)) -(|has| |#1| (-146)) -(((|#1|) . T)) -(|has| |#1| (-550)) -((((-560)) . T)) -((((-125 |#1|)) . T)) -(((|#1| (-560) (-1067)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(-2318 (|has| |#1| (-170)) (|has| |#1| (-550))) -(-2318 (|has| |#1| (-170)) (|has| |#1| (-359)) (|has| |#1| (-550))) -(-2318 (|has| |#1| (-170)) (|has| |#1| (-359)) (|has| |#1| (-550))) -(-2318 (|has| |#1| (-170)) (|has| |#1| (-550))) +((($ $) . T) (((-852 |#1|) $) . T) (((-852 |#1|) |#2|) . T)) +(|has| |#1| (-823)) +(|has| |#1| (-1090)) +(((|#2| |#2|) -2198 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1047))) (($ $) |has| |#2| (-172))) +(((|#2|) -2198 (|has| |#2| (-172)) (|has| |#2| (-365)))) +((((-568) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) . T) ((|#1| |#2|) . T)) +(((|#2|) -2198 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1047))) (($) |has| |#2| (-172))) +((((-763)) . T)) +((((-568)) . T)) +(|has| |#1| (-558)) +((((-850)) . T)) +(((|#1| (-409 (-568)) (-1075)) . T)) (|has| |#1| (-148)) -((((-879 (-560))) . T) (((-879 (-375))) . T) (((-533)) . T) (((-1153)) . T)) -((((-842)) . T)) -(-2318 (|has| |#1| (-834)) (|has| |#1| (-1082))) -((($) . T)) -((((-842)) . T)) -(-2318 (|has| |#2| (-170)) (|has| |#2| (-447)) (|has| |#2| (-550)) (|has| |#2| (-896))) -((((-560)) |has| |#1| (-622 (-560))) ((|#1|) . T)) -(((|#2|) |has| |#2| (-170))) -((($) -2318 (|has| |#2| (-359)) (|has| |#2| (-447)) (|has| |#2| (-550)) (|has| |#2| (-896))) ((|#2|) |has| |#2| (-170)) (((-403 (-560))) |has| |#2| (-43 (-403 (-560))))) -((((-856 |#1|)) . T)) -(-2318 (|has| |#2| (-25)) (|has| |#2| (-137)) (|has| |#2| (-170)) (|has| |#2| (-359)) (|has| |#2| (-364)) (|has| |#2| (-708)) (|has| |#2| (-780)) (|has| |#2| (-832)) (|has| |#2| (-1039)) (|has| |#2| (-1082))) -((((-842)) . T)) -(-12 (|has| |#3| (-221)) (|has| |#3| (-1039))) -(|has| |#2| (-1128)) -((((-57)) . T) (((-2 (|:| -3655 (-1153)) (|:| -2371 (-57)))) . T)) -((((-2 (|:| |k| (-560)) (|:| |c| |#1|))) . T)) -(|has| |#2| (-550)) +(((|#1|) . T)) +(|has| |#1| (-558)) +((((-568)) . T)) +((((-125 |#1|)) . T)) +(((|#1| (-568) (-1075)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(-2198 (|has| |#1| (-172)) (|has| |#1| (-558))) +(-2198 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) +(-2198 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) +(-2198 (|has| |#1| (-172)) (|has| |#1| (-558))) +(|has| |#1| (-150)) +((((-887 (-568))) . T) (((-887 (-381))) . T) (((-541)) . T) (((-1161)) . T)) +((((-850)) . T)) +(-2198 (|has| |#1| (-842)) (|has| |#1| (-1090))) +((($) . T)) +((((-850)) . T)) +(-2198 (|has| |#2| (-172)) (|has| |#2| (-453)) (|has| |#2| (-558)) (|has| |#2| (-904))) +((((-568)) |has| |#1| (-630 (-568))) ((|#1|) . T)) +(((|#2|) |has| |#2| (-172))) +((($) -2198 (|has| |#2| (-365)) (|has| |#2| (-453)) (|has| |#2| (-558)) (|has| |#2| (-904))) ((|#2|) |has| |#2| (-172)) (((-409 (-568))) |has| |#2| (-43 (-409 (-568))))) +((((-864 |#1|)) . T)) +(-2198 (|has| |#2| (-25)) (|has| |#2| (-137)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-716)) (|has| |#2| (-788)) (|has| |#2| (-840)) (|has| |#2| (-1047)) (|has| |#2| (-1090))) +((((-850)) . T)) +(-12 (|has| |#3| (-225)) (|has| |#3| (-1047))) +(|has| |#2| (-1136)) +((((-57)) . T) (((-2 (|:| -3649 (-1161)) (|:| -4083 (-57)))) . T)) +((((-2 (|:| |k| (-568)) (|:| |c| |#1|))) . T)) +(|has| |#2| (-558)) (((|#1| |#2|) . T)) -(-2318 (|has| |#3| (-170)) (|has| |#3| (-832)) (|has| |#3| (-1039))) -(((|#1| (-560) (-1067)) . T)) -(((|#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) -(((|#1| (-403 (-560)) (-1067)) . T)) -((($) -2318 (|has| |#1| (-296)) (|has| |#1| (-359)) (|has| |#1| (-344)) (|has| |#1| (-550))) (((-403 (-560))) -2318 (|has| |#1| (-359)) (|has| |#1| (-344))) ((|#1|) . T)) -((((-560) |#2|) . T)) +(-2198 (|has| |#3| (-172)) (|has| |#3| (-840)) (|has| |#3| (-1047))) +(((|#1| (-568) (-1075)) . T)) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) +(((|#1| (-409 (-568)) (-1075)) . T)) +((($) -2198 (|has| |#1| (-301)) (|has| |#1| (-365)) (|has| |#1| (-350)) (|has| |#1| (-558))) (((-409 (-568))) -2198 (|has| |#1| (-365)) (|has| |#1| (-350))) ((|#1|) . T)) +((((-568) |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -(|has| |#2| (-364)) -(-12 (|has| |#1| (-364)) (|has| |#2| (-364))) -((((-842)) . T)) -((((-1153) |#1|) |has| |#1| (-515 (-1153) |#1|)) ((|#1| |#1|) |has| |#1| (-298 |#1|))) -(-2318 (|has| |#1| (-146)) (|has| |#1| (-364))) -(-2318 (|has| |#1| (-146)) (|has| |#1| (-364))) -(-2318 (|has| |#1| (-146)) (|has| |#1| (-364))) -(((|#1|) . T)) -((((-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-550))) -((((-403 (-560))) -2318 (|has| |#1| (-43 (-403 (-560)))) (|has| |#1| (-359))) (($) -2318 (|has| |#1| (-359)) (|has| |#1| (-550))) (((-1151 |#1| |#2| |#3|)) |has| |#1| (-359)) ((|#1|) |has| |#1| (-170))) -(((|#1|) |has| |#1| (-170)) (((-403 (-560))) -2318 (|has| |#1| (-43 (-403 (-560)))) (|has| |#1| (-359))) (($) -2318 (|has| |#1| (-359)) (|has| |#1| (-550)))) -((($) |has| |#1| (-550)) ((|#1|) |has| |#1| (-170)) (((-403 (-560))) |has| |#1| (-43 (-403 (-560))))) -(|has| |#1| (-550)) -(|has| |#1| (-344)) -(((|#1|) . T)) -((((-842)) . T)) -((((-842)) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082))) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) |has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))))) -(|has| |#1| (-550)) -(((|#1| |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) -((((-842)) . T)) +(|has| |#2| (-370)) +(-12 (|has| |#1| (-370)) (|has| |#2| (-370))) +((((-850)) . T)) +((((-1161) |#1|) |has| |#1| (-523 (-1161) |#1|)) ((|#1| |#1|) |has| |#1| (-303 |#1|))) +(-2198 (|has| |#1| (-148)) (|has| |#1| (-370))) +(-2198 (|has| |#1| (-148)) (|has| |#1| (-370))) +(-2198 (|has| |#1| (-148)) (|has| |#1| (-370))) +(((|#1|) . T)) +((((-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-558))) +((((-409 (-568))) -2198 (|has| |#1| (-43 (-409 (-568)))) (|has| |#1| (-365))) (($) -2198 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-1159 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) +(((|#1|) |has| |#1| (-172)) (((-409 (-568))) -2198 (|has| |#1| (-43 (-409 (-568)))) (|has| |#1| (-365))) (($) -2198 (|has| |#1| (-365)) (|has| |#1| (-558)))) +((($) |has| |#1| (-558)) ((|#1|) |has| |#1| (-172)) (((-409 (-568))) |has| |#1| (-43 (-409 (-568))))) +(|has| |#1| (-558)) +(|has| |#1| (-350)) +(((|#1|) . T)) +((((-850)) . T)) +((((-850)) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090))) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) |has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))))) +(|has| |#1| (-558)) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) +((((-850)) . T)) (((|#1| |#2|) . T)) -(-2318 (|has| |#2| (-447)) (|has| |#2| (-896))) -(-2318 (|has| |#1| (-834)) (|has| |#1| (-1082))) -(-2318 (|has| |#1| (-447)) (|has| |#1| (-896))) -((((-403 (-560))) . T) (((-560)) . T)) -((((-560)) . T)) -((((-403 (-560))) |has| |#2| (-43 (-403 (-560)))) ((|#2|) |has| |#2| (-170)) (($) -2318 (|has| |#2| (-447)) (|has| |#2| (-550)) (|has| |#2| (-896)))) -((($) . T)) -((((-842)) . T)) -(((|#1|) . T)) -((((-856 |#1|)) . T) (($) . T) (((-403 (-560))) . T)) -((((-842)) . T)) -(|has| (-403 (-560)) (-146)) -(|has| (-403 (-560)) (-146)) -(((|#3| |#3|) -2318 (|has| |#3| (-170)) (|has| |#3| (-359)) (|has| |#3| (-1039))) (($ $) |has| |#3| (-170))) -(|has| |#1| (-1013)) -((((-842)) . T)) -(((|#3|) -2318 (|has| |#3| (-170)) (|has| |#3| (-359)) (|has| |#3| (-1039))) (($) |has| |#3| (-170))) -((((-560) (-121)) . T)) -(((|#1|) |has| |#1| (-298 |#1|))) -(|has| |#1| (-364)) -(|has| |#1| (-364)) -(|has| |#1| (-364)) -((((-1153) $) |has| |#1| (-515 (-1153) $)) (($ $) |has| |#1| (-298 $)) ((|#1| |#1|) |has| |#1| (-298 |#1|)) (((-1153) |#1|) |has| |#1| (-515 (-1153) |#1|))) -(|has| |#2| (-550)) -((((-1153)) |has| |#1| (-887 (-1153)))) -(-2318 (-12 (|has| |#1| (-221)) (|has| |#1| (-359))) (|has| |#1| (-344))) -((((-384) (-1100)) . T)) +(-2198 (|has| |#2| (-453)) (|has| |#2| (-904))) +(-2198 (|has| |#1| (-842)) (|has| |#1| (-1090))) +(-2198 (|has| |#1| (-453)) (|has| |#1| (-904))) +((((-409 (-568))) . T) (((-568)) . T)) +((((-568)) . T)) +((((-409 (-568))) |has| |#2| (-43 (-409 (-568)))) ((|#2|) |has| |#2| (-172)) (($) -2198 (|has| |#2| (-453)) (|has| |#2| (-558)) (|has| |#2| (-904)))) +((($) . T)) +((((-850)) . T)) +(((|#1|) . T)) +((((-864 |#1|)) . T) (($) . T) (((-409 (-568))) . T)) +((((-850)) . T)) +(|has| (-409 (-568)) (-148)) +(|has| (-409 (-568)) (-148)) +(((|#3| |#3|) -2198 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1047))) (($ $) |has| |#3| (-172))) +(|has| |#1| (-1021)) +((((-850)) . T)) +(((|#3|) -2198 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1047))) (($) |has| |#3| (-172))) +((((-568) (-121)) . T)) +(((|#1|) |has| |#1| (-303 |#1|))) +(|has| |#1| (-370)) +(|has| |#1| (-370)) +(|has| |#1| (-370)) +((((-1161) $) |has| |#1| (-523 (-1161) $)) (($ $) |has| |#1| (-303 $)) ((|#1| |#1|) |has| |#1| (-303 |#1|)) (((-1161) |#1|) |has| |#1| (-523 (-1161) |#1|))) +(|has| |#2| (-558)) +((((-1161)) |has| |#1| (-895 (-1161)))) +(-2198 (-12 (|has| |#1| (-225)) (|has| |#1| (-365))) (|has| |#1| (-350))) +((((-390) (-1108)) . T)) (((|#1| |#4|) . T)) (((|#1| |#3|) . T)) -((((-384) |#1|) . T)) -(-2318 (|has| |#1| (-359)) (|has| |#1| (-344))) -(|has| |#1| (-1082)) -((((-842)) . T)) -((((-842)) . T)) -((((-897 |#1|)) . T)) -((((-403 (-560))) |has| |#2| (-43 (-403 (-560)))) ((|#2|) |has| |#2| (-170)) (($) -2318 (|has| |#2| (-447)) (|has| |#2| (-550)) (|has| |#2| (-896)))) -((((-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((|#1|) |has| |#1| (-170)) (($) -2318 (|has| |#1| (-447)) (|has| |#1| (-550)) (|has| |#1| (-896)))) +((((-390) |#1|) . T)) +(-2198 (|has| |#1| (-365)) (|has| |#1| (-350))) +(|has| |#1| (-1090)) +((((-850)) . T)) +((((-850)) . T)) +((((-905 |#1|)) . T)) +((((-409 (-568))) |has| |#2| (-43 (-409 (-568)))) ((|#2|) |has| |#2| (-172)) (($) -2198 (|has| |#2| (-453)) (|has| |#2| (-558)) (|has| |#2| (-904)))) +((((-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((|#1|) |has| |#1| (-172)) (($) -2198 (|has| |#1| (-453)) (|has| |#1| (-558)) (|has| |#1| (-904)))) (((|#1| |#2|) . T)) ((($) . T)) (((|#1| |#1|) . T)) -((((-856 |#1|)) |has| (-856 |#1|) (-298 (-856 |#1|)))) -(|has| |#1| (-1173)) +((((-864 |#1|)) |has| (-864 |#1|) (-303 (-864 |#1|)))) +(|has| |#1| (-1181)) (((|#1| |#2|) . T)) -(-2318 (|has| |#2| (-780)) (|has| |#2| (-832))) -(-2318 (|has| |#2| (-780)) (|has| |#2| (-832))) -(-12 (|has| |#1| (-780)) (|has| |#2| (-780))) +(-2198 (|has| |#2| (-788)) (|has| |#2| (-840))) +(-2198 (|has| |#2| (-788)) (|has| |#2| (-840))) +(-12 (|has| |#1| (-788)) (|has| |#2| (-788))) (((|#1|) . T)) -(-12 (|has| |#1| (-780)) (|has| |#2| (-780))) -(-2318 (|has| |#2| (-170)) (|has| |#2| (-832)) (|has| |#2| (-1039))) +(-12 (|has| |#1| (-788)) (|has| |#2| (-788))) +(-2198 (|has| |#2| (-172)) (|has| |#2| (-840)) (|has| |#2| (-1047))) (((|#2|) . T) (($) . T)) -(((|#2|) . T) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) . T)) -(|has| |#1| (-1173)) -((((-560) (-560)) . T) (((-403 (-560)) (-403 (-560))) . T) (($ $) . T)) -((((-403 (-560))) . T) (($) . T)) -(((|#4|) |has| |#4| (-1039))) -(((|#3|) |has| |#3| (-1039))) -(((|#1| |#1|) . T) (($ $) . T) (((-403 (-560)) (-403 (-560))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-403 (-560)) (-403 (-560))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-403 (-560)) (-403 (-560))) . T)) -(|has| |#1| (-359)) -((((-560)) . T) (((-403 (-560))) . T) (($) . T)) -((((-842)) |has| |#1| (-1082))) -(((|#1|) . T) (($) . T) (((-403 (-560))) . T)) -((((-842)) . T)) -((((-842)) . T)) -(((|#1|) . T) (($) . T) (((-403 (-560))) . T)) -(((|#1|) . T) (($) . T) (((-403 (-560))) . T)) -(((|#1|) . T)) -((($ $) . T) (((-403 (-560)) (-403 (-560))) -2318 (|has| |#1| (-359)) (|has| |#1| (-344))) ((|#1| |#1|) . T)) -((((-842)) . T)) -(((|#1|) . T)) -((((-533)) |has| |#3| (-601 (-533)))) -((((-671 |#3|)) . T) (((-842)) . T)) +(((|#2|) . T) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) . T)) +(|has| |#1| (-1181)) +((((-568) (-568)) . T) (((-409 (-568)) (-409 (-568))) . T) (($ $) . T)) +((((-409 (-568))) . T) (($) . T)) +(((|#4|) |has| |#4| (-1047))) +(((|#3|) |has| |#3| (-1047))) +(((|#1| |#1|) . T) (($ $) . T) (((-409 (-568)) (-409 (-568))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-409 (-568)) (-409 (-568))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-409 (-568)) (-409 (-568))) . T)) +(|has| |#1| (-365)) +((((-568)) . T) (((-409 (-568))) . T) (($) . T)) +((((-850)) |has| |#1| (-1090))) +(((|#1|) . T) (($) . T) (((-409 (-568))) . T)) +((((-850)) . T)) +((((-850)) . T)) +(((|#1|) . T) (($) . T) (((-409 (-568))) . T)) +(((|#1|) . T) (($) . T) (((-409 (-568))) . T)) +(((|#1|) . T)) +((($ $) . T) (((-409 (-568)) (-409 (-568))) -2198 (|has| |#1| (-365)) (|has| |#1| (-350))) ((|#1| |#1|) . T)) +((((-850)) . T)) +(((|#1|) . T)) +((((-541)) |has| |#3| (-609 (-541)))) +((((-679 |#3|)) . T) (((-850)) . T)) (((|#1| |#2|) . T)) -(|has| |#1| (-832)) -(|has| |#1| (-832)) -((($) . T) (((-403 (-560))) -2318 (|has| |#1| (-359)) (|has| |#1| (-344))) ((|#1|) . T)) -((((-560) |#3|) . T)) -(-2318 (|has| |#1| (-170)) (|has| |#1| (-550))) -((((-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (-2 (|:| -3655 (-1153)) (|:| -2371 (-57)))) |has| (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (-298 (-2 (|:| -3655 (-1153)) (|:| -2371 (-57)))))) -((($) . T)) -((((-403 $) (-403 $)) |has| |#2| (-550)) (($ $) . T) ((|#2| |#2|) . T)) -(|has| |#2| (-834)) -((($) . T)) -(((|#2|) |has| |#2| (-1082))) -((((-842)) -2318 (|has| |#2| (-25)) (|has| |#2| (-137)) (|has| |#2| (-170)) (|has| |#2| (-359)) (|has| |#2| (-364)) (|has| |#2| (-708)) (|has| |#2| (-780)) (|has| |#2| (-832)) (|has| |#2| (-1039)) (|has| |#2| (-1082))) (((-1236 |#2|)) . T)) -(|has| |#1| (-834)) -(|has| |#1| (-834)) -((((-1135) (-57)) . T)) -(|has| |#1| (-834)) -((((-842)) . T)) -((((-560)) |has| (-403 |#2|) (-622 (-560))) (((-403 |#2|)) . T)) -((((-560) (-145)) . T)) -((((-560) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) . T) ((|#1| |#2|) . T)) -((((-403 (-560))) . T) (($) . T)) -(((|#1|) . T)) -((((-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) . T)) -((((-842)) . T)) -((((-897 |#1|)) . T)) -(|has| |#1| (-359)) -(|has| |#1| (-359)) -(|has| |#1| (-359)) -(|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))) -(|has| |#1| (-832)) -(|has| |#1| (-359)) -(|has| |#1| (-832)) +(|has| |#1| (-840)) +(|has| |#1| (-840)) +((($) . T) (((-409 (-568))) -2198 (|has| |#1| (-365)) (|has| |#1| (-350))) ((|#1|) . T)) +((((-568) |#3|) . T)) +(-2198 (|has| |#1| (-172)) (|has| |#1| (-558))) +((((-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (-2 (|:| -3649 (-1161)) (|:| -4083 (-57)))) |has| (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (-303 (-2 (|:| -3649 (-1161)) (|:| -4083 (-57)))))) +((($) . T)) +((((-409 $) (-409 $)) |has| |#2| (-558)) (($ $) . T) ((|#2| |#2|) . T)) +((((-169 (-215))) . T)) +((((-215)) . T)) +(((|#2|) |has| |#2| (-1090))) +((((-850)) -2198 (|has| |#2| (-25)) (|has| |#2| (-137)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-716)) (|has| |#2| (-788)) (|has| |#2| (-840)) (|has| |#2| (-1047)) (|has| |#2| (-1090))) (((-1244 |#2|)) . T)) +(|has| |#2| (-842)) +(|has| |#1| (-842)) +(|has| |#1| (-842)) +((($) . T)) +((((-1143) (-57)) . T)) +(|has| |#1| (-842)) +((((-850)) . T)) +((((-568)) |has| (-409 |#2|) (-630 (-568))) (((-409 |#2|)) . T)) +((((-568) (-147)) . T)) +((((-568) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) . T) ((|#1| |#2|) . T)) +((((-409 (-568))) . T) (($) . T)) +(((|#1|) . T)) +((((-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) . T)) +((((-850)) . T)) +((((-905 |#1|)) . T)) +(|has| |#1| (-365)) +(|has| |#1| (-365)) +(|has| |#1| (-365)) +(|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))) +(|has| |#1| (-840)) +(|has| |#1| (-365)) +(|has| |#1| (-840)) (((|#1|) . T) (($) . T)) -(|has| |#1| (-832)) -((((-1153)) |has| |#1| (-887 (-1153)))) -((((-849 |#1|)) . T)) -(((|#1| (-1153)) . T)) -(((|#1| (-1236 |#1|) (-1236 |#1|)) . T)) +(|has| |#1| (-840)) +((((-1161)) |has| |#1| (-895 (-1161)))) +((((-857 |#1|)) . T)) +(((|#1| (-1161)) . T)) +(((|#1| (-1244 |#1|) (-1244 |#1|)) . T)) (((|#1| |#2|) . T)) ((($ $) . T)) -(|has| |#1| (-1082)) -(((|#1| (-1153) (-805 (-1153)) (-526 (-805 (-1153)))) . T)) -((((-403 (-945 |#1|))) . T)) -((((-533)) . T)) -((((-842)) . T)) +(|has| |#1| (-1090)) +(((|#1| (-1161) (-813 (-1161)) (-534 (-813 (-1161)))) . T)) +((((-409 (-953 |#1|))) . T)) +((((-541)) . T)) +((((-850)) . T)) ((($) . T)) (((|#2|) . T) (($) . T)) -(((|#1|) |has| |#1| (-170))) -((((-560) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) . T) ((|#1| |#2|) . T)) +(((|#1|) |has| |#1| (-172))) +((((-568) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) . T) ((|#1| |#2|) . T)) (((|#1|) . T)) -((($) |has| |#1| (-550)) ((|#1|) |has| |#1| (-170)) (((-403 (-560))) |has| |#1| (-43 (-403 (-560))))) -(((|#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) +((($) |has| |#1| (-558)) ((|#1|) |has| |#1| (-172)) (((-409 (-568))) |has| |#1| (-43 (-409 (-568))))) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (((|#3|) . T)) -(((|#1|) |has| |#1| (-170))) -((((-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((|#1|) |has| |#1| (-170)) (($) -2318 (|has| |#1| (-447)) (|has| |#1| (-550)) (|has| |#1| (-896)))) -((($) -2318 (|has| |#1| (-359)) (|has| |#1| (-447)) (|has| |#1| (-550)) (|has| |#1| (-896))) ((|#1|) |has| |#1| (-170)) (((-403 (-560))) |has| |#1| (-43 (-403 (-560))))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-533)) |has| |#1| (-601 (-533))) (((-879 (-375))) |has| |#1| (-601 (-879 (-375)))) (((-879 (-560))) |has| |#1| (-601 (-879 (-560))))) -((((-842)) . T)) -(((|#2|) . T) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) . T)) -(|has| |#2| (-832)) -(-12 (|has| |#2| (-221)) (|has| |#2| (-1039))) -(|has| |#1| (-550)) -(|has| |#1| (-1128)) -((((-1135) |#1|) . T)) -(-2318 (|has| |#2| (-170)) (|has| |#2| (-832)) (|has| |#2| (-1039))) -((((-403 (-560)) (-403 (-560))) -2318 (|has| |#1| (-43 (-403 (-560)))) (|has| |#1| (-359))) (($ $) -2318 (|has| |#1| (-170)) (|has| |#1| (-359)) (|has| |#1| (-550))) ((|#1| |#1|) . T)) -((((-403 (-560))) |has| |#1| (-1029 (-560))) (((-560)) |has| |#1| (-1029 (-560))) (((-1153)) |has| |#1| (-1029 (-1153))) ((|#1|) . T)) -((((-560) |#2|) . T)) -((((-403 (-560))) |has| |#1| (-1029 (-403 (-560)))) (((-560)) |has| |#1| (-1029 (-560))) ((|#1|) . T)) -((((-560)) |has| |#1| (-873 (-560))) (((-375)) |has| |#1| (-873 (-375)))) -((((-403 (-560))) -2318 (|has| |#1| (-43 (-403 (-560)))) (|has| |#1| (-359))) (($) -2318 (|has| |#1| (-170)) (|has| |#1| (-359)) (|has| |#1| (-550))) ((|#1|) . T)) -(((|#1|) . T)) -((((-626 |#4|)) . T) (((-842)) . T)) -((((-533)) |has| |#4| (-601 (-533)))) -((((-533)) |has| |#4| (-601 (-533)))) -((((-842)) . T) (((-626 |#4|)) . T)) -((($) |has| |#1| (-832))) -(((|#1|) . T)) -((((-626 |#4|)) . T) (((-842)) . T)) -((((-533)) |has| |#4| (-601 (-533)))) -(((|#1|) . T)) -(((|#2|) . T)) -((((-1153)) |has| (-403 |#2|) (-887 (-1153)))) -(((|#2| |#2|) -12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082))) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) |has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))))) -((($) . T)) -((($) . T)) -(((|#2|) . T)) -((((-842)) -2318 (|has| |#3| (-25)) (|has| |#3| (-137)) (|has| |#3| (-170)) (|has| |#3| (-359)) (|has| |#3| (-364)) (|has| |#3| (-708)) (|has| |#3| (-780)) (|has| |#3| (-832)) (|has| |#3| (-1039)) (|has| |#3| (-1082))) (((-1236 |#3|)) . T)) -((((-560) |#2|) . T)) -(-2318 (|has| |#1| (-834)) (|has| |#1| (-1082))) -(((|#2| |#2|) -2318 (|has| |#2| (-170)) (|has| |#2| (-359)) (|has| |#2| (-1039))) (($ $) |has| |#2| (-170))) -((((-842)) . T)) -((((-842)) . T)) -((((-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) . T) ((|#2|) . T)) -((((-842)) . T)) -((((-842)) . T)) -((((-1135) (-1153) (-560) (-213) (-842)) . T)) -((((-842)) . T)) -((((-842)) . T)) -((((-842)) . T)) -((((-842)) . T)) -((((-842)) . T)) -((((-842)) . T)) -((((-842)) . T)) -((((-842)) . T)) -((((-842)) . T)) -((((-842)) . T)) -((((-842)) . T)) -(|has| |#1| (-43 (-403 (-560)))) -(|has| |#1| (-43 (-403 (-560)))) -((((-842)) . T)) -((((-560) (-121)) . T)) -(((|#1|) . T)) -((((-842)) . T)) +(((|#1|) |has| |#1| (-172))) +((((-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((|#1|) |has| |#1| (-172)) (($) -2198 (|has| |#1| (-453)) (|has| |#1| (-558)) (|has| |#1| (-904)))) +((($) -2198 (|has| |#1| (-365)) (|has| |#1| (-453)) (|has| |#1| (-558)) (|has| |#1| (-904))) ((|#1|) |has| |#1| (-172)) (((-409 (-568))) |has| |#1| (-43 (-409 (-568))))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-541)) |has| |#1| (-609 (-541))) (((-887 (-381))) |has| |#1| (-609 (-887 (-381)))) (((-887 (-568))) |has| |#1| (-609 (-887 (-568))))) +((((-850)) . T)) +(((|#2|) . T) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) . T)) +(|has| |#2| (-840)) +(-12 (|has| |#2| (-225)) (|has| |#2| (-1047))) +(|has| |#1| (-558)) +(|has| |#1| (-1136)) +((((-1143) |#1|) . T)) +(-2198 (|has| |#2| (-172)) (|has| |#2| (-840)) (|has| |#2| (-1047))) +((((-409 (-568)) (-409 (-568))) -2198 (|has| |#1| (-43 (-409 (-568)))) (|has| |#1| (-365))) (($ $) -2198 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) ((|#1| |#1|) . T)) +((((-409 (-568))) |has| |#1| (-1037 (-568))) (((-568)) |has| |#1| (-1037 (-568))) (((-1161)) |has| |#1| (-1037 (-1161))) ((|#1|) . T)) +((((-568) |#2|) . T)) +((((-409 (-568))) |has| |#1| (-1037 (-409 (-568)))) (((-568)) |has| |#1| (-1037 (-568))) ((|#1|) . T)) +((((-568)) |has| |#1| (-881 (-568))) (((-381)) |has| |#1| (-881 (-381)))) +((((-409 (-568))) -2198 (|has| |#1| (-43 (-409 (-568)))) (|has| |#1| (-365))) (($) -2198 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) ((|#1|) . T)) +(((|#1|) . T)) +((((-634 |#4|)) . T) (((-850)) . T)) +((((-541)) |has| |#4| (-609 (-541)))) +((((-541)) |has| |#4| (-609 (-541)))) +((((-850)) . T) (((-634 |#4|)) . T)) +((($) |has| |#1| (-840))) +(((|#1|) . T)) +(((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-172))) +((((-634 |#4|)) . T) (((-850)) . T)) +((((-541)) |has| |#4| (-609 (-541)))) +(((|#1|) . T)) +(((|#2|) . T)) +((((-1161)) |has| (-409 |#2|) (-895 (-1161)))) +(((|#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090))) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) |has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))))) +((($) . T)) +((($) . T)) +(((|#2|) . T)) +((((-850)) -2198 (|has| |#3| (-25)) (|has| |#3| (-137)) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-370)) (|has| |#3| (-716)) (|has| |#3| (-788)) (|has| |#3| (-840)) (|has| |#3| (-1047)) (|has| |#3| (-1090))) (((-1244 |#3|)) . T)) +((((-568) |#2|) . T)) +(-2198 (|has| |#1| (-842)) (|has| |#1| (-1090))) +(((|#2| |#2|) -2198 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1047))) (($ $) |has| |#2| (-172))) +((((-850)) . T)) +((((-850)) . T)) +((((-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) . T) ((|#2|) . T)) +((((-850)) . T)) +((((-850)) . T)) +((((-1143) (-1161) (-568) (-215) (-850)) . T)) +((((-850)) . T)) +((((-850)) . T)) +((((-850)) . T)) +((((-850)) . T)) +((((-850)) . T)) +((((-850)) . T)) +((((-850)) . T)) +((((-850)) . T)) +((((-850)) . T)) +((((-850)) . T)) +((((-850)) . T)) +(|has| |#1| (-43 (-409 (-568)))) +(|has| |#1| (-43 (-409 (-568)))) +((((-850)) . T)) +((((-568) (-121)) . T)) +(((|#1|) . T)) +((((-850)) . T)) ((((-121)) . T)) ((((-121)) . T)) -((((-842)) . T)) -((((-842)) . T)) +((((-850)) . T)) +((((-850)) . T)) ((((-121)) . T)) -((((-842)) . T)) -((((-842)) . T)) -((((-842)) . T)) -((((-842)) . T)) -((((-842)) . T)) -(|has| |#1| (-43 (-403 (-560)))) -(|has| |#1| (-43 (-403 (-560)))) -((((-842)) . T)) -((((-533)) |has| |#1| (-601 (-533)))) -((((-842)) |has| |#1| (-1082))) -(((|#2|) -2318 (|has| |#2| (-170)) (|has| |#2| (-359)) (|has| |#2| (-1039))) (($) |has| |#2| (-170))) -(|has| $ (-148)) -((((-403 |#2|)) . T)) -((((-403 (-560))) |has| (-403 |#2|) (-1029 (-403 (-560)))) (((-560)) |has| (-403 |#2|) (-1029 (-560))) (((-403 |#2|)) . T)) +((((-850)) . T)) +((((-850)) . T)) +((((-850)) . T)) +((((-850)) . T)) +((((-850)) . T)) +(|has| |#1| (-43 (-409 (-568)))) +(|has| |#1| (-43 (-409 (-568)))) +((((-850)) . T)) +((((-541)) |has| |#1| (-609 (-541)))) +((((-850)) |has| |#1| (-1090))) +(((|#2|) -2198 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1047))) (($) |has| |#2| (-172))) +(|has| $ (-150)) +((((-409 |#2|)) . T)) +((((-409 (-568))) |has| (-409 |#2|) (-1037 (-409 (-568)))) (((-568)) |has| (-409 |#2|) (-1037 (-568))) (((-409 |#2|)) . T)) (((|#2| |#2|) . T)) -(((|#4|) |has| |#4| (-170))) -(|has| |#2| (-146)) +(((|#4|) |has| |#4| (-172))) (|has| |#2| (-148)) -(((|#3|) |has| |#3| (-170))) -(|has| |#1| (-148)) -(|has| |#1| (-146)) -(-2318 (|has| |#1| (-146)) (|has| |#1| (-364))) -(|has| |#1| (-148)) -(-2318 (|has| |#1| (-146)) (|has| |#1| (-364))) +(|has| |#2| (-150)) +(((|#3|) |has| |#3| (-172))) +(|has| |#1| (-150)) (|has| |#1| (-148)) -(-2318 (|has| |#1| (-146)) (|has| |#1| (-364))) -(|has| |#1| (-148)) -(((|#1|) . T)) -(((|#2|) . T)) -(|has| |#2| (-221)) -((((-1153) (-57)) . T)) -((((-842)) . T)) -(-2318 (|has| |#2| (-359)) (|has| |#2| (-447)) (|has| |#2| (-550)) (|has| |#2| (-896))) +(-2198 (|has| |#1| (-148)) (|has| |#1| (-370))) +(|has| |#1| (-150)) +(-2198 (|has| |#1| (-148)) (|has| |#1| (-370))) +(|has| |#1| (-150)) +(-2198 (|has| |#1| (-148)) (|has| |#1| (-370))) +(|has| |#1| (-150)) +(((|#1|) . T)) +(((|#2|) . T)) +(|has| |#2| (-225)) +((((-1161) (-57)) . T)) +((((-850)) . T)) +(-2198 (|has| |#2| (-365)) (|has| |#2| (-453)) (|has| |#2| (-558)) (|has| |#2| (-904))) (((|#1| |#1|) . T)) -((((-1153)) |has| |#2| (-887 (-1153)))) -((((-560) (-121)) . T)) -(|has| |#1| (-550)) +((((-1161)) |has| |#2| (-895 (-1161)))) +((((-568) (-121)) . T)) +(|has| |#1| (-558)) (((|#2|) . T)) (((|#2|) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-43 (-403 (-560)))) -(|has| |#1| (-43 (-403 (-560)))) +(|has| |#1| (-43 (-409 (-568)))) +(|has| |#1| (-43 (-409 (-568)))) (((|#3|) . T)) -(|has| |#1| (-43 (-403 (-560)))) -(|has| |#1| (-43 (-403 (-560)))) -(((|#1|) . T)) -((((-842)) . T)) -((((-533)) . T) (((-879 (-560))) . T) (((-375)) . T) (((-213)) . T)) -((((-842)) . T)) -((((-842)) . T)) -((((-842)) . T)) -((((-991 |#1|)) . T) ((|#1|) . T)) -((((-842)) . T)) -((((-842)) . T)) -((((-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) . T)) -((((-403 (-560))) . T) (((-403 |#1|)) . T) ((|#1|) . T) (($) . T)) -(((|#1| (-1149 |#1|)) . T)) -((((-560)) . T) (($) . T) (((-403 (-560))) . T)) +(|has| |#1| (-43 (-409 (-568)))) +(|has| |#1| (-43 (-409 (-568)))) +(((|#1|) . T)) +((((-850)) . T)) +((((-541)) . T) (((-887 (-568))) . T) (((-381)) . T) (((-215)) . T)) +((((-850)) . T)) +((((-850)) . T)) +((((-850)) . T)) +((((-999 |#1|)) . T) ((|#1|) . T)) +((((-850)) . T)) +((((-850)) . T)) +((((-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) . T)) +((((-409 (-568))) . T) (((-409 |#1|)) . T) ((|#1|) . T) (($) . T)) +(((|#1| (-1157 |#1|)) . T)) +((((-568)) . T) (($) . T) (((-409 (-568))) . T)) (((|#3|) . T) (($) . T)) -(|has| |#1| (-834)) +(|has| |#1| (-842)) (((|#2|) . T)) -((((-560)) . T) (($) . T) (((-403 (-560))) . T)) -((((-2 (|:| -3655 (-1135)) (|:| -2371 |#1|))) . T)) -((((-560) |#2|) . T)) -((((-842)) |has| |#1| (-1082))) +((((-568)) . T) (($) . T) (((-409 (-568))) . T)) +((((-2 (|:| -3649 (-1143)) (|:| -4083 |#1|))) . T)) +((((-568) |#2|) . T)) +((((-850)) |has| |#1| (-1090))) (((|#2|) . T)) -((((-560) |#3|) . T)) +((((-568) |#3|) . T)) (((|#2|) . T)) -(|has| |#1| (-43 (-403 (-560)))) -(|has| |#1| (-43 (-403 (-560)))) -((((-1227 |#1| |#2| |#3|)) |has| |#1| (-359))) -(|has| |#1| (-43 (-403 (-560)))) -((((-842)) . T)) -(|has| |#1| (-1082)) -(((|#4|) -12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082)))) -(((|#3|) -12 (|has| |#3| (-298 |#3|)) (|has| |#3| (-1082)))) -(|has| |#1| (-43 (-403 (-560)))) +(|has| |#1| (-43 (-409 (-568)))) +(|has| |#1| (-43 (-409 (-568)))) +((((-1235 |#1| |#2| |#3|)) |has| |#1| (-365))) +(|has| |#1| (-43 (-409 (-568)))) +((((-850)) . T)) +(|has| |#1| (-1090)) +(((|#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090)))) +(((|#3|) -12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1090)))) +(|has| |#1| (-43 (-409 (-568)))) (((|#2|) . T)) (((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082))) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) |has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))))) +(((|#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090))) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) |has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))))) (((|#2| |#2|) . T)) (((|#2|) . T)) -(|has| |#2| (-359)) -(((|#2|) . T) (((-560)) |has| |#2| (-1029 (-560))) (((-403 (-560))) |has| |#2| (-1029 (-403 (-560))))) -(((|#2|) . T)) -((((-1067) |#2|) . T) (((-1067) $) . T) (($ $) . T)) -((((-1135) (-57)) . T)) -(((|#2|) |has| |#2| (-170))) -((((-560) |#3|) . T)) -((((-560) (-145)) . T)) -(-2318 (|has| |#1| (-359)) (|has| |#1| (-447)) (|has| |#1| (-550)) (|has| |#1| (-896))) -((((-145)) . T)) -((((-842)) . T)) -(|has| |#1| (-896)) +(|has| |#2| (-365)) +(((|#2|) . T) (((-568)) |has| |#2| (-1037 (-568))) (((-409 (-568))) |has| |#2| (-1037 (-409 (-568))))) +(((|#2|) . T)) +((((-1075) |#2|) . T) (((-1075) $) . T) (($ $) . T)) +((((-1143) (-57)) . T)) +(((|#2|) |has| |#2| (-172))) +((((-568) |#3|) . T)) +((((-568) (-147)) . T)) +(-2198 (|has| |#1| (-365)) (|has| |#1| (-453)) (|has| |#1| (-558)) (|has| |#1| (-904))) +((((-147)) . T)) +((((-850)) . T)) +(|has| |#1| (-904)) ((((-121)) . T)) -(|has| |#1| (-148)) +(|has| |#1| (-150)) (((|#1|) . T)) -(|has| |#1| (-146)) -((($) . T)) (|has| |#1| (-148)) -(|has| |#1| (-146)) -(|has| |#1| (-550)) +((($) . T)) +(|has| |#1| (-150)) (|has| |#1| (-148)) +(|has| |#1| (-558)) +(|has| |#1| (-150)) ((($) . T)) -(((|#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (((|#1|) . T)) -(((|#2|) . T) (((-560)) |has| |#2| (-622 (-560)))) -(((|#1| (-766 |#1|)) . T)) -((((-842)) . T)) -((((-560)) |has| |#1| (-622 (-560))) ((|#1|) . T)) -((((-560)) |has| |#1| (-622 (-560))) ((|#1|) . T)) -((((-560)) |has| |#1| (-622 (-560))) ((|#1|) . T)) -((((-1135) (-57)) . T)) +(((|#2|) . T) (((-568)) |has| |#2| (-630 (-568)))) +(((|#1| (-774 |#1|)) . T)) +((((-850)) . T)) +((((-568)) |has| |#1| (-630 (-568))) ((|#1|) . T)) +((((-568)) |has| |#1| (-630 (-568))) ((|#1|) . T)) +((((-568)) |has| |#1| (-630 (-568))) ((|#1|) . T)) +((((-1143) (-57)) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (((|#1| |#2|) . T)) -((((-560) (-145)) . T)) -((((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) |has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082)))) -(-2318 (|has| |#2| (-170)) (|has| |#2| (-359)) (|has| |#2| (-447)) (|has| |#2| (-550)) (|has| |#2| (-896))) -((($) -2318 (|has| |#1| (-447)) (|has| |#1| (-550)) (|has| |#1| (-896))) ((|#1|) |has| |#1| (-170)) (((-403 (-560))) |has| |#1| (-43 (-403 (-560))))) -(|has| |#1| (-834)) -(((|#2| (-755) (-1067)) . T)) +((((-568) (-147)) . T)) +((((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) |has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090)))) +(-2198 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-453)) (|has| |#2| (-558)) (|has| |#2| (-904))) +((($) -2198 (|has| |#1| (-453)) (|has| |#1| (-558)) (|has| |#1| (-904))) ((|#1|) |has| |#1| (-172)) (((-409 (-568))) |has| |#1| (-43 (-409 (-568))))) +(|has| |#1| (-842)) +(((|#2| (-763) (-1075)) . T)) (((|#1| |#2|) . T)) -(-2318 (|has| |#1| (-170)) (|has| |#1| (-550))) -(|has| |#1| (-778)) -(((|#1|) |has| |#1| (-170))) +(-2198 (|has| |#1| (-172)) (|has| |#1| (-558))) +(|has| |#1| (-786)) +(((|#1|) |has| |#1| (-172))) (((|#4|) . T)) (((|#4|) . T)) (((|#1| |#2|) . T)) -(-2318 (|has| |#1| (-148)) (-12 (|has| |#1| (-359)) (|has| |#2| (-148)))) -(-2318 (|has| |#1| (-146)) (-12 (|has| |#1| (-359)) (|has| |#2| (-146)))) +(-2198 (|has| |#1| (-150)) (-12 (|has| |#1| (-365)) (|has| |#2| (-150)))) +(-2198 (|has| |#1| (-148)) (-12 (|has| |#1| (-365)) (|has| |#2| (-148)))) (((|#4|) . T)) -(|has| |#1| (-146)) -((((-1135) |#1|) . T)) (|has| |#1| (-148)) +((((-1143) |#1|) . T)) +(|has| |#1| (-150)) (((|#1|) . T)) -((((-560)) . T)) -((((-842)) . T)) +((((-568)) . T)) +((((-850)) . T)) (((|#1| |#2|) . T)) -((((-842)) . T)) -(((|#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) +((((-850)) . T)) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (((|#3|) . T)) -((((-1227 |#1| |#2| |#3|)) |has| |#1| (-359))) -(-2318 (|has| |#1| (-834)) (|has| |#1| (-1082))) -(((|#1|) . T)) -((((-842)) |has| |#1| (-1082))) -((((-842)) |has| |#1| (-1082)) (((-950 |#1|)) . T)) -(|has| |#1| (-832)) -(|has| |#1| (-832)) -(((|#1| |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) -(|has| |#2| (-359)) -(((|#1|) |has| |#1| (-170))) -(((|#2|) |has| |#2| (-1039))) -((((-1135) |#1|) . T)) -(((|#3| |#3|) -12 (|has| |#3| (-298 |#3|)) (|has| |#3| (-1082)))) -(((|#2| (-880 |#1|)) . T)) -((($) . T)) -((($) -2318 (|has| |#2| (-359)) (|has| |#2| (-447)) (|has| |#2| (-550)) (|has| |#2| (-896))) ((|#2|) |has| |#2| (-170)) (((-403 (-560))) |has| |#2| (-43 (-403 (-560))))) -((((-384) (-1135)) . T)) -((($) |has| |#1| (-550)) ((|#1|) |has| |#1| (-170)) (((-403 (-560))) |has| |#1| (-43 (-403 (-560))))) -((((-842)) -2318 (|has| |#2| (-25)) (|has| |#2| (-137)) (|has| |#2| (-170)) (|has| |#2| (-359)) (|has| |#2| (-364)) (|has| |#2| (-708)) (|has| |#2| (-780)) (|has| |#2| (-832)) (|has| |#2| (-1039)) (|has| |#2| (-1082))) (((-1236 |#2|)) . T)) -((((-57)) . T) (((-2 (|:| -3655 (-1135)) (|:| -2371 (-57)))) . T)) -(((|#1|) . T)) -((((-842)) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082)))) -((((-145)) . T)) -(|has| |#2| (-146)) +((((-1235 |#1| |#2| |#3|)) |has| |#1| (-365))) +(-2198 (|has| |#1| (-842)) (|has| |#1| (-1090))) +(((|#1|) . T)) +((((-850)) |has| |#1| (-1090))) +((((-850)) |has| |#1| (-1090)) (((-958 |#1|)) . T)) +(|has| |#1| (-840)) +(|has| |#1| (-840)) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) +(|has| |#2| (-365)) +(((|#1|) |has| |#1| (-172))) +(((|#2|) |has| |#2| (-1047))) +((((-1143) |#1|) . T)) +(((|#3| |#3|) -12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1090)))) +(((|#2| (-888 |#1|)) . T)) +((($) . T)) +((($) -2198 (|has| |#2| (-365)) (|has| |#2| (-453)) (|has| |#2| (-558)) (|has| |#2| (-904))) ((|#2|) |has| |#2| (-172)) (((-409 (-568))) |has| |#2| (-43 (-409 (-568))))) +((((-390) (-1143)) . T)) +((($) |has| |#1| (-558)) ((|#1|) |has| |#1| (-172)) (((-409 (-568))) |has| |#1| (-43 (-409 (-568))))) +((((-850)) -2198 (|has| |#2| (-25)) (|has| |#2| (-137)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-716)) (|has| |#2| (-788)) (|has| |#2| (-840)) (|has| |#2| (-1047)) (|has| |#2| (-1090))) (((-1244 |#2|)) . T)) +((((-57)) . T) (((-2 (|:| -3649 (-1143)) (|:| -4083 (-57)))) . T)) +(((|#1|) . T)) +((((-850)) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090)))) +((((-147)) . T)) (|has| |#2| (-148)) -(|has| |#1| (-471)) -(-2318 (|has| |#1| (-471)) (|has| |#1| (-708)) (|has| |#1| (-887 (-1153))) (|has| |#1| (-1039))) -(|has| |#1| (-359)) -((((-842)) . T)) -(|has| |#1| (-43 (-403 (-560)))) -((((-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-550))) -((($) |has| |#1| (-550))) -(|has| |#2| (-550)) -(|has| |#1| (-832)) -(|has| |#1| (-832)) -((((-842)) . T)) -((($) |has| |#1| (-550)) ((|#1|) |has| |#1| (-170)) (((-403 (-560))) |has| |#1| (-43 (-403 (-560))))) -((((-403 (-560))) -2318 (|has| |#1| (-43 (-403 (-560)))) (|has| |#1| (-359))) (($) -2318 (|has| |#1| (-359)) (|has| |#1| (-550))) (((-1227 |#1| |#2| |#3|)) |has| |#1| (-359)) ((|#1|) |has| |#1| (-170))) -(((|#1|) |has| |#1| (-170)) (((-403 (-560))) -2318 (|has| |#1| (-43 (-403 (-560)))) (|has| |#1| (-359))) (($) -2318 (|has| |#1| (-359)) (|has| |#1| (-550)))) -((($) |has| |#1| (-550)) ((|#1|) |has| |#1| (-170)) (((-403 (-560))) |has| |#1| (-43 (-403 (-560))))) +(|has| |#2| (-150)) +(|has| |#1| (-478)) +(-2198 (|has| |#1| (-478)) (|has| |#1| (-716)) (|has| |#1| (-895 (-1161))) (|has| |#1| (-1047))) +(|has| |#1| (-365)) +((((-850)) . T)) +(|has| |#1| (-43 (-409 (-568)))) +((((-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-558))) +((($) |has| |#1| (-558))) +(|has| |#2| (-558)) +(|has| |#1| (-840)) +(|has| |#1| (-840)) +((((-850)) . T)) +((($) |has| |#1| (-558)) ((|#1|) |has| |#1| (-172)) (((-409 (-568))) |has| |#1| (-43 (-409 (-568))))) +((((-409 (-568))) -2198 (|has| |#1| (-43 (-409 (-568)))) (|has| |#1| (-365))) (($) -2198 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-1235 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) +(((|#1|) |has| |#1| (-172)) (((-409 (-568))) -2198 (|has| |#1| (-43 (-409 (-568)))) (|has| |#1| (-365))) (($) -2198 (|has| |#1| (-365)) (|has| |#1| (-558)))) +((($) |has| |#1| (-558)) ((|#1|) |has| |#1| (-172)) (((-409 (-568))) |has| |#1| (-43 (-409 (-568))))) (((|#1| |#2|) . T)) -((((-1153)) |has| |#1| (-887 (-1153)))) -((((-897 |#1|)) . T) (((-403 (-560))) . T) (($) . T)) -((((-842)) . T)) -((((-842)) . T)) -(|has| |#1| (-1082)) -(((|#2| (-486 (-2271 |#1|) (-755)) (-844 |#1|)) . T)) -((((-403 (-560))) |has| |#2| (-359)) (($) |has| |#2| (-359))) -(((|#1| (-526 (-1153)) (-1153)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-842)) . T)) -((((-842)) . T)) +((((-1161)) |has| |#1| (-895 (-1161)))) +((((-905 |#1|)) . T) (((-409 (-568))) . T) (($) . T)) +((((-850)) . T)) +((((-850)) . T)) +(|has| |#1| (-1090)) +(((|#2| (-493 (-1697 |#1|) (-763)) (-852 |#1|)) . T)) +((((-409 (-568))) |has| |#2| (-365)) (($) |has| |#2| (-365))) +(((|#1| (-534 (-1161)) (-1161)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-850)) . T)) +((((-850)) . T)) (((|#3|) . T)) (((|#3|) . T)) -(((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -(|has| |#2| (-170)) -(((|#2| |#2|) . T)) +(|has| |#2| (-172)) +(((|#1|) . T)) (((|#1| |#2| |#3| |#4|) . T)) +(((|#2| |#2|) . T)) (((|#1|) . T)) -(|has| |#1| (-146)) (|has| |#1| (-148)) +(|has| |#1| (-150)) (((|#1|) . T)) (((|#2|) . T)) -(((|#1|) . T) (((-2 (|:| -3655 (-1135)) (|:| -2371 |#1|))) . T)) -((((-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) . T)) +(((|#1|) . T) (((-2 (|:| -3649 (-1143)) (|:| -4083 |#1|))) . T)) +((((-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) . T)) (((|#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9|) . T)) -((((-2 (|:| -3655 (-1153)) (|:| -2371 (-57)))) . T)) -((((-1151 |#1| |#2| |#3|)) |has| |#1| (-359))) -((((-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) . T)) -((((-1153) (-57)) . T)) +((((-2 (|:| -3649 (-1161)) (|:| -4083 (-57)))) . T)) +((((-1159 |#1| |#2| |#3|)) |has| |#1| (-365))) +((((-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) . T)) +((((-1161) (-57)) . T)) ((($ $) . T)) -(((|#1| (-560)) . T)) -((((-897 |#1|)) . T)) -(((|#1|) -2318 (|has| |#1| (-170)) (|has| |#1| (-359)) (|has| |#1| (-1039))) (($) -2318 (|has| |#1| (-887 (-1153))) (|has| |#1| (-1039)))) -(((|#1|) . T) (((-560)) |has| |#1| (-1029 (-560))) (((-403 (-560))) |has| |#1| (-1029 (-403 (-560))))) -(|has| |#1| (-834)) -(|has| |#1| (-834)) -((((-560) |#2|) . T)) -((((-560)) . T)) -((((-1227 |#1| |#2| |#3|)) -12 (|has| (-1227 |#1| |#2| |#3|) (-298 (-1227 |#1| |#2| |#3|))) (|has| |#1| (-359)))) -(|has| |#1| (-834)) -((((-671 |#2|)) . T) (((-842)) . T)) +(((|#1| (-568)) . T)) +((((-905 |#1|)) . T)) +(((|#1|) -2198 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-1047))) (($) -2198 (|has| |#1| (-895 (-1161))) (|has| |#1| (-1047)))) +(((|#1|) . T) (((-568)) |has| |#1| (-1037 (-568))) (((-409 (-568))) |has| |#1| (-1037 (-409 (-568))))) +(|has| |#1| (-842)) +(|has| |#1| (-842)) +((((-568) |#2|) . T)) +((((-568)) . T)) +((((-1235 |#1| |#2| |#3|)) -12 (|has| (-1235 |#1| |#2| |#3|) (-303 (-1235 |#1| |#2| |#3|))) (|has| |#1| (-365)))) +(|has| |#1| (-842)) +((((-679 |#2|)) . T) (((-850)) . T)) (((|#1| |#2|) . T)) -((((-403 (-945 |#1|))) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082)))) -(((|#4| |#4|) -12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082)))) -(((|#1|) |has| |#1| (-170))) -(((|#4| |#4|) -12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082)))) -(((|#3|) -2318 (|has| |#3| (-170)) (|has| |#3| (-359)))) -(|has| |#2| (-834)) -(|has| |#1| (-834)) -(-2318 (|has| |#2| (-359)) (|has| |#2| (-447)) (|has| |#2| (-896))) -(((|#1|) . T)) -((($ $) . T) (((-403 (-560)) (-403 (-560))) . T)) -((((-560) |#2|) . T)) -(((|#2|) -2318 (|has| |#2| (-170)) (|has| |#2| (-359)))) -(|has| |#1| (-344)) -(((|#3| |#3|) -12 (|has| |#3| (-298 |#3|)) (|has| |#3| (-1082)))) -((($) . T) (((-403 (-560))) . T)) -((((-560) (-121)) . T)) -(|has| |#1| (-807)) -(|has| |#1| (-807)) -(((|#1|) . T)) -(-2318 (|has| |#1| (-296)) (|has| |#1| (-359)) (|has| |#1| (-344))) -(|has| |#1| (-832)) -(|has| |#1| (-832)) -(|has| |#1| (-832)) -(((|#1|) . T) (((-403 (-560))) . T) (($) . T)) -(|has| |#1| (-43 (-403 (-560)))) -((((-560)) . T) (($) . T) (((-403 (-560))) . T)) -(|has| |#1| (-43 (-403 (-560)))) -(|has| |#1| (-43 (-403 (-560)))) -(-2318 (|has| |#1| (-359)) (|has| |#1| (-344))) -(|has| |#1| (-43 (-403 (-560)))) -(|has| |#1| (-43 (-403 (-560)))) -((((-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) . T)) -((((-1153)) |has| |#1| (-887 (-1153))) (((-1067)) . T)) -(((|#1|) . T)) -(|has| |#1| (-832)) -((((-2 (|:| -3655 (-1135)) (|:| -2371 (-57))) (-2 (|:| -3655 (-1135)) (|:| -2371 (-57)))) |has| (-2 (|:| -3655 (-1135)) (|:| -2371 (-57))) (-298 (-2 (|:| -3655 (-1135)) (|:| -2371 (-57)))))) -(((|#1| |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) -(|has| |#1| (-1082)) +((((-409 (-953 |#1|))) . T)) +(((|#4| |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090)))) +(((|#4| |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090)))) +(((|#1|) |has| |#1| (-172))) +(((|#4| |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090)))) +(((|#3|) -2198 (|has| |#3| (-172)) (|has| |#3| (-365)))) +(|has| |#2| (-842)) +(|has| |#1| (-842)) +(-2198 (|has| |#2| (-365)) (|has| |#2| (-453)) (|has| |#2| (-904))) +(((|#1|) . T)) +((($ $) . T) (((-409 (-568)) (-409 (-568))) . T)) +((((-568) |#2|) . T)) +(((|#2|) -2198 (|has| |#2| (-172)) (|has| |#2| (-365)))) +(|has| |#1| (-350)) +(((|#3| |#3|) -12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1090)))) +((($) . T) (((-409 (-568))) . T)) +((((-568) (-121)) . T)) +(|has| |#1| (-815)) +(|has| |#1| (-815)) +(((|#1|) . T)) +(-2198 (|has| |#1| (-301)) (|has| |#1| (-365)) (|has| |#1| (-350))) +(|has| |#1| (-840)) +(|has| |#1| (-840)) +(|has| |#1| (-840)) +(((|#1|) . T) (((-409 (-568))) . T) (($) . T)) +(|has| |#1| (-43 (-409 (-568)))) +((((-568)) . T) (($) . T) (((-409 (-568))) . T)) +(|has| |#1| (-43 (-409 (-568)))) +(|has| |#1| (-43 (-409 (-568)))) +(-2198 (|has| |#1| (-365)) (|has| |#1| (-350))) +(|has| |#1| (-43 (-409 (-568)))) +(|has| |#1| (-43 (-409 (-568)))) +((((-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) . T)) +((((-1161)) |has| |#1| (-895 (-1161))) (((-1075)) . T)) +(((|#1|) . T)) +(|has| |#1| (-840)) +((((-2 (|:| -3649 (-1143)) (|:| -4083 (-57))) (-2 (|:| -3649 (-1143)) (|:| -4083 (-57)))) |has| (-2 (|:| -3649 (-1143)) (|:| -4083 (-57))) (-303 (-2 (|:| -3649 (-1143)) (|:| -4083 (-57)))))) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) +(|has| |#1| (-1090)) (((|#1|) . T)) (((|#2| |#2|) . T)) (((|#1|) . T)) -(((|#1| |#2| |#3| (-228 |#2| |#3|) (-228 |#1| |#3|)) . T)) +(((|#1| |#2| |#3| (-232 |#2| |#3|) (-232 |#1| |#3|)) . T)) (((|#1|) . T)) (((|#3| |#3|) . T)) (((|#2|) . T)) (((|#1|) . T)) -(((|#1| (-526 |#2|) |#2|) . T)) -((((-842)) . T)) -(((|#1| (-755) (-1067)) . T)) +(((|#1| (-534 |#2|) |#2|) . T)) +((((-850)) . T)) +(((|#1| (-763) (-1075)) . T)) (((|#3|) . T)) (((|#1|) . T)) -((((-145)) . T)) -(((|#2|) |has| |#2| (-170))) -(-2318 (|has| |#2| (-25)) (|has| |#2| (-137)) (|has| |#2| (-170)) (|has| |#2| (-359)) (|has| |#2| (-364)) (|has| |#2| (-708)) (|has| |#2| (-780)) (|has| |#2| (-832)) (|has| |#2| (-1039)) (|has| |#2| (-1082))) +((((-147)) . T)) +(((|#2|) |has| |#2| (-172))) +(-2198 (|has| |#2| (-25)) (|has| |#2| (-137)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-716)) (|has| |#2| (-788)) (|has| |#2| (-840)) (|has| |#2| (-1047)) (|has| |#2| (-1090))) (((|#1|) . T)) -(|has| |#1| (-146)) (|has| |#1| (-148)) -(|has| |#3| (-170)) -(((|#4|) |has| |#4| (-359))) -(((|#3|) |has| |#3| (-359))) +(|has| |#1| (-150)) +(|has| |#3| (-172)) +(((|#4|) |has| |#4| (-365))) +(((|#3|) |has| |#3| (-365))) (((|#1|) . T)) -(((|#2|) |has| |#1| (-359))) +(((|#2|) |has| |#1| (-365))) (((|#2|) . T)) -(((|#1| (-1149 |#1|)) . T)) -((((-1067)) . T) ((|#1|) . T) (((-560)) |has| |#1| (-1029 (-560))) (((-403 (-560))) |has| |#1| (-1029 (-403 (-560))))) -((($) . T) ((|#1|) . T) (((-403 (-560))) . T)) +(((|#1| (-1157 |#1|)) . T)) +((((-1075)) . T) ((|#1|) . T) (((-568)) |has| |#1| (-1037 (-568))) (((-409 (-568))) |has| |#1| (-1037 (-409 (-568))))) +((($) . T) ((|#1|) . T) (((-409 (-568))) . T)) (((|#2|) . T)) -((((-1151 |#1| |#2| |#3|)) |has| |#1| (-359))) -((($) |has| |#1| (-832))) -(|has| |#1| (-896)) -((((-842)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) +((((-1159 |#1| |#2| |#3|)) |has| |#1| (-365))) +((($) |has| |#1| (-840))) +(|has| |#1| (-904)) +((((-850)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (((|#2|) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))) (((-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|))) |has| (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (-298 (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|))))) -(-2318 (|has| |#2| (-447)) (|has| |#2| (-896))) -(-2318 (|has| |#1| (-447)) (|has| |#1| (-896))) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))) (((-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|))) |has| (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (-303 (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|))))) +(-2198 (|has| |#2| (-453)) (|has| |#2| (-904))) +(-2198 (|has| |#1| (-453)) (|has| |#1| (-904))) (((|#1|) . T) (($) . T)) -(((|#2|) -12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082)))) +(((|#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090)))) (((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#3|) -2318 (|has| |#3| (-170)) (|has| |#3| (-359)))) -(|has| |#1| (-834)) -(|has| |#1| (-550)) -((((-573 |#1|)) . T)) +(((|#3|) -2198 (|has| |#3| (-172)) (|has| |#3| (-365)))) +(|has| |#1| (-842)) +(|has| |#1| (-558)) +((((-581 |#1|)) . T)) ((($) . T)) (((|#2|) . T)) -(-2318 (-12 (|has| |#1| (-359)) (|has| |#2| (-807))) (-12 (|has| |#1| (-359)) (|has| |#2| (-834)))) -(-2318 (|has| |#1| (-359)) (|has| |#1| (-550))) -((((-897 |#1|)) . T)) -(((|#1| (-497 |#1| |#3|) (-497 |#1| |#2|)) . T)) +(-2198 (-12 (|has| |#1| (-365)) (|has| |#2| (-815))) (-12 (|has| |#1| (-365)) (|has| |#2| (-842)))) +(-2198 (|has| |#1| (-365)) (|has| |#1| (-558))) +((((-905 |#1|)) . T)) +(((|#1| (-505 |#1| |#3|) (-505 |#1| |#2|)) . T)) (((|#1| |#4| |#5|) . T)) -(((|#1| (-755)) . T)) -((((-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-550))) -((((-403 (-560))) -2318 (|has| |#1| (-43 (-403 (-560)))) (|has| |#1| (-359))) (($) -2318 (|has| |#1| (-359)) (|has| |#1| (-550))) (((-1151 |#1| |#2| |#3|)) |has| |#1| (-359)) ((|#1|) |has| |#1| (-170))) -(((|#1|) |has| |#1| (-170)) (((-403 (-560))) -2318 (|has| |#1| (-43 (-403 (-560)))) (|has| |#1| (-359))) (($) -2318 (|has| |#1| (-359)) (|has| |#1| (-550)))) -((($) |has| |#1| (-550)) ((|#1|) |has| |#1| (-170)) (((-403 (-560))) |has| |#1| (-43 (-403 (-560))))) -((((-2 (|:| -3655 (-1153)) (|:| -2371 (-57)))) . T)) -((((-403 |#2|)) . T) (((-403 (-560))) . T) (($) . T)) -((((-655 |#1|)) . T)) +(((|#1| (-763)) . T)) +((((-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-558))) +((((-409 (-568))) -2198 (|has| |#1| (-43 (-409 (-568)))) (|has| |#1| (-365))) (($) -2198 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-1159 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) +(((|#1|) |has| |#1| (-172)) (((-409 (-568))) -2198 (|has| |#1| (-43 (-409 (-568)))) (|has| |#1| (-365))) (($) -2198 (|has| |#1| (-365)) (|has| |#1| (-558)))) +((($) |has| |#1| (-558)) ((|#1|) |has| |#1| (-172)) (((-409 (-568))) |has| |#1| (-43 (-409 (-568))))) +((((-2 (|:| -3649 (-1161)) (|:| -4083 (-57)))) . T)) +((((-409 |#2|)) . T) (((-409 (-568))) . T) (($) . T)) +((((-663 |#1|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-533)) . T)) -((((-842)) . T)) -(((|#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) -((((-842)) . T)) -((((-403 (-560))) |has| |#2| (-43 (-403 (-560)))) ((|#2|) |has| |#2| (-170)) (($) -2318 (|has| |#2| (-447)) (|has| |#2| (-550)) (|has| |#2| (-896)))) -((((-842)) . T)) -((((-842)) . T)) -((((-842)) . T)) -(((|#2|) . T)) -(-2318 (|has| |#3| (-25)) (|has| |#3| (-137)) (|has| |#3| (-170)) (|has| |#3| (-359)) (|has| |#3| (-364)) (|has| |#3| (-708)) (|has| |#3| (-780)) (|has| |#3| (-832)) (|has| |#3| (-1039)) (|has| |#3| (-1082))) -(-2318 (|has| |#2| (-170)) (|has| |#2| (-832)) (|has| |#2| (-1039))) -((((-403 (-560))) |has| |#1| (-1029 (-403 (-560)))) (((-560)) |has| |#1| (-1029 (-560))) ((|#1|) . T)) -(|has| |#1| (-1173)) -(|has| |#1| (-1173)) -(-2318 (|has| |#2| (-25)) (|has| |#2| (-137)) (|has| |#2| (-170)) (|has| |#2| (-359)) (|has| |#2| (-364)) (|has| |#2| (-708)) (|has| |#2| (-780)) (|has| |#2| (-832)) (|has| |#2| (-1039)) (|has| |#2| (-1082))) -(|has| |#1| (-1173)) -(|has| |#1| (-1173)) +((((-541)) . T)) +((((-850)) . T)) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) +((((-850)) . T)) +((((-409 (-568))) |has| |#2| (-43 (-409 (-568)))) ((|#2|) |has| |#2| (-172)) (($) -2198 (|has| |#2| (-453)) (|has| |#2| (-558)) (|has| |#2| (-904)))) +((((-850)) . T)) +((((-850)) . T)) +((((-850)) . T)) +(((|#2|) . T)) +(-2198 (|has| |#3| (-25)) (|has| |#3| (-137)) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-370)) (|has| |#3| (-716)) (|has| |#3| (-788)) (|has| |#3| (-840)) (|has| |#3| (-1047)) (|has| |#3| (-1090))) +(-2198 (|has| |#2| (-172)) (|has| |#2| (-840)) (|has| |#2| (-1047))) +((((-409 (-568))) |has| |#1| (-1037 (-409 (-568)))) (((-568)) |has| |#1| (-1037 (-568))) ((|#1|) . T)) +(|has| |#1| (-1181)) +(|has| |#1| (-1181)) +(-2198 (|has| |#2| (-25)) (|has| |#2| (-137)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-716)) (|has| |#2| (-788)) (|has| |#2| (-840)) (|has| |#2| (-1047)) (|has| |#2| (-1090))) +(|has| |#1| (-1181)) +(|has| |#1| (-1181)) (((|#3| |#3|) . T)) -(((|#1|) . T) (((-403 (-560))) . T) (($) . T)) -((($ $) . T) (((-403 (-560)) (-403 (-560))) . T) (((-403 |#1|) (-403 |#1|)) . T) ((|#1| |#1|) . T)) -((((-560)) . T) (($) . T) (((-403 (-560))) . T)) +((((-568)) . T) (($) . T) (((-409 (-568))) . T)) +((($) . T) (((-409 (-568))) . T) (((-409 |#1|)) . T) ((|#1|) . T)) +((($ $) . T) (((-409 (-568)) (-409 (-568))) . T) (((-409 |#1|) (-409 |#1|)) . T) ((|#1| |#1|) . T)) (((|#3|) . T)) -((($) . T) (((-403 (-560))) . T) (((-403 |#1|)) . T) ((|#1|) . T)) -(((|#1|) . T) (((-403 (-560))) . T) (($) . T)) -(((|#1|) . T) (((-403 (-560))) . T) (($) . T)) -((((-1135) (-57)) . T)) -(|has| |#1| (-1082)) -(-2318 (|has| |#2| (-807)) (|has| |#2| (-834))) -(((|#1|) . T)) -(((|#1|) |has| |#1| (-170)) (($) . T)) -((($) -2318 (|has| |#1| (-359)) (|has| |#1| (-344))) (((-403 (-560))) -2318 (|has| |#1| (-359)) (|has| |#1| (-344))) ((|#1|) . T)) -((($) . T)) -((((-1151 |#1| |#2| |#3|)) -12 (|has| (-1151 |#1| |#2| |#3|) (-298 (-1151 |#1| |#2| |#3|))) (|has| |#1| (-359)))) -((((-842)) . T)) -(-2318 (|has| |#2| (-447)) (|has| |#2| (-550)) (|has| |#2| (-896))) -((($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) -(-2318 (|has| |#1| (-447)) (|has| |#1| (-550)) (|has| |#1| (-896))) -((((-842)) . T)) -(-2318 (|has| |#1| (-359)) (|has| |#1| (-447)) (|has| |#1| (-550)) (|has| |#1| (-896))) -(-2318 (|has| |#1| (-447)) (|has| |#1| (-896))) -(|has| |#2| (-896)) -(|has| |#1| (-359)) -(((|#2|) |has| |#2| (-1082))) -(-2318 (|has| |#1| (-447)) (|has| |#1| (-550)) (|has| |#1| (-896))) +(((|#1|) . T) (((-409 (-568))) . T) (($) . T)) +(((|#1|) . T) (((-409 (-568))) . T) (($) . T)) +(((|#1|) . T) (((-409 (-568))) . T) (($) . T)) +((((-1143) (-57)) . T)) +(|has| |#1| (-1090)) +(-2198 (|has| |#2| (-815)) (|has| |#2| (-842))) +(((|#1|) . T)) +(((|#1|) |has| |#1| (-172)) (($) . T)) +((($) -2198 (|has| |#1| (-365)) (|has| |#1| (-350))) (((-409 (-568))) -2198 (|has| |#1| (-365)) (|has| |#1| (-350))) ((|#1|) . T)) +((($) . T)) +((((-1159 |#1| |#2| |#3|)) -12 (|has| (-1159 |#1| |#2| |#3|) (-303 (-1159 |#1| |#2| |#3|))) (|has| |#1| (-365)))) +((((-850)) . T)) +(-2198 (|has| |#2| (-453)) (|has| |#2| (-558)) (|has| |#2| (-904))) +((($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) +(-2198 (|has| |#1| (-453)) (|has| |#1| (-558)) (|has| |#1| (-904))) +((((-850)) . T)) +(-2198 (|has| |#1| (-365)) (|has| |#1| (-453)) (|has| |#1| (-558)) (|has| |#1| (-904))) +(-2198 (|has| |#1| (-453)) (|has| |#1| (-904))) +(|has| |#2| (-904)) +(|has| |#1| (-365)) +(((|#2|) |has| |#2| (-1090))) +(-2198 (|has| |#1| (-453)) (|has| |#1| (-558)) (|has| |#1| (-904))) ((($) . T) ((|#2|) . T)) -(-2318 (|has| |#1| (-359)) (|has| |#1| (-447)) (|has| |#1| (-896))) -((((-533)) . T) (((-403 (-1149 (-560)))) . T) (((-213)) . T) (((-375)) . T)) -((((-375)) . T) (((-213)) . T) (((-842)) . T)) -(|has| |#1| (-896)) -(|has| |#1| (-896)) -(|has| |#1| (-896)) -(-2318 (|has| |#1| (-834)) (|has| |#1| (-1082))) -(((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082)))) -(|has| |#1| (-359)) +(-2198 (|has| |#1| (-365)) (|has| |#1| (-453)) (|has| |#1| (-904))) +((((-541)) . T) (((-409 (-1157 (-568)))) . T) (((-215)) . T) (((-381)) . T)) +((((-381)) . T) (((-215)) . T) (((-850)) . T)) +(|has| |#1| (-904)) +(|has| |#1| (-904)) +(|has| |#1| (-904)) +(-2198 (|has| |#1| (-842)) (|has| |#1| (-1090))) +(((|#1|) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090)))) +(|has| (-169 (-215)) (-842)) ((($ $) . T)) -((((-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) . T)) +((((-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) . T)) +(|has| |#1| (-365)) ((($ $) . T)) -((((-560) (-121)) . T)) +((((-568) (-121)) . T)) ((($) . T)) -(|has| |#2| (-550)) +(|has| |#2| (-558)) (((|#1|) . T)) ((((-121)) . T)) -(-2318 (|has| |#1| (-170)) (|has| |#1| (-359)) (|has| |#1| (-550))) -((((-560)) . T)) -(((|#1| (-560)) . T)) +(-2198 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) +((((-568)) . T)) +(((|#1| (-568)) . T)) ((($) . T)) -(((|#2|) . T) (((-560)) |has| |#2| (-622 (-560)))) -((((-560)) |has| |#1| (-622 (-560))) ((|#1|) . T)) +(((|#2|) . T) (((-568)) |has| |#2| (-630 (-568)))) +((((-568)) |has| |#1| (-630 (-568))) ((|#1|) . T)) (((|#1|) . T)) -((((-560)) . T)) +((((-568)) . T)) (((|#1| |#2|) . T)) -((((-1153)) |has| |#1| (-1039))) -(|has| |#1| (-43 (-403 (-560)))) -(|has| |#1| (-43 (-403 (-560)))) -(|has| |#1| (-43 (-403 (-560)))) -(|has| |#1| (-43 (-403 (-560)))) -((((-842)) . T)) -(((|#1| (-755)) . T)) +((((-1161)) |has| |#1| (-1047))) +(|has| |#1| (-43 (-409 (-568)))) +(|has| |#1| (-43 (-409 (-568)))) +(|has| |#1| (-43 (-409 (-568)))) +(|has| |#1| (-43 (-409 (-568)))) +((((-850)) . T)) +(((|#1| (-763)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#1| (-560)) . T)) -(((|#1| (-1227 |#1| |#2| |#3|)) . T)) +(((|#1| (-568)) . T)) +(((|#1| (-1235 |#1| |#2| |#3|)) . T)) (((|#1|) . T)) -(((|#1| (-403 (-560))) . T)) -((((-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) . T)) -((((-842)) . T)) -(((|#1| (-1199 |#1| |#2| |#3|)) . T)) -(|has| |#1| (-1082)) -(((|#1| (-755)) . T)) +(((|#1| (-409 (-568))) . T)) +((((-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) . T)) +((((-850)) . T)) +(((|#1| (-1207 |#1| |#2| |#3|)) . T)) +(|has| |#1| (-1090)) +(((|#1| (-763)) . T)) (((|#1|) . T)) -((((-1135) |#1|) . T)) +((((-1143) |#1|) . T)) ((($) . T)) +(|has| |#2| (-150)) (|has| |#2| (-148)) -(|has| |#2| (-146)) -(((|#1| (-526 (-805 (-1153))) (-805 (-1153))) . T)) -((((-1221 |#1| |#2| |#3| |#4|)) . T)) -((((-1221 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) |has| |#1| (-1039))) -((((-560) (-121)) . T)) -((((-842)) |has| |#1| (-1082))) -(|has| |#2| (-170)) -((((-560)) . T)) -(|has| |#2| (-832)) -(((|#1|) . T)) -((((-560)) . T)) -((((-842)) . T)) -(-2318 (|has| |#1| (-146)) (|has| |#1| (-344))) -(|has| |#1| (-148)) -((((-842)) . T)) +(((|#1| (-534 (-813 (-1161))) (-813 (-1161))) . T)) +((((-1229 |#1| |#2| |#3| |#4|)) . T)) +((((-1229 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) |has| |#1| (-1047))) +((((-568) (-121)) . T)) +((((-850)) |has| |#1| (-1090))) +(|has| |#2| (-172)) +((((-568)) . T)) +(|has| |#2| (-840)) +(((|#1|) . T)) +((((-568)) . T)) +((((-850)) . T)) +(-2198 (|has| |#1| (-148)) (|has| |#1| (-350))) +(|has| |#1| (-150)) +((((-850)) . T)) (((|#3|) . T)) -(-2318 (|has| |#3| (-170)) (|has| |#3| (-832)) (|has| |#3| (-1039))) -((((-842)) . T)) -((((-1220 |#2| |#3| |#4|)) . T) (((-1221 |#1| |#2| |#3| |#4|)) . T)) -((((-842)) . T)) -((((-53)) -12 (|has| |#1| (-550)) (|has| |#1| (-1029 (-560)))) (((-599 $)) . T) ((|#1|) . T) (((-560)) |has| |#1| (-1029 (-560))) (((-403 (-560))) -2318 (-12 (|has| |#1| (-550)) (|has| |#1| (-1029 (-560)))) (|has| |#1| (-1029 (-403 (-560))))) (((-403 (-945 |#1|))) |has| |#1| (-550)) (((-945 |#1|)) |has| |#1| (-1039)) (((-1153)) . T)) +(-2198 (|has| |#3| (-172)) (|has| |#3| (-840)) (|has| |#3| (-1047))) +((((-850)) . T)) +((((-1228 |#2| |#3| |#4|)) . T) (((-1229 |#1| |#2| |#3| |#4|)) . T)) +((((-850)) . T)) +((((-53)) -12 (|has| |#1| (-558)) (|has| |#1| (-1037 (-568)))) (((-607 $)) . T) ((|#1|) . T) (((-568)) |has| |#1| (-1037 (-568))) (((-409 (-568))) -2198 (-12 (|has| |#1| (-558)) (|has| |#1| (-1037 (-568)))) (|has| |#1| (-1037 (-409 (-568))))) (((-409 (-953 |#1|))) |has| |#1| (-558)) (((-953 |#1|)) |has| |#1| (-1047)) (((-1161)) . T)) (((|#1|) . T) (($) . T)) -(((|#1| (-755)) . T)) -((($) -2318 (|has| |#1| (-359)) (|has| |#1| (-550))) (((-403 (-560))) -2318 (|has| |#1| (-43 (-403 (-560)))) (|has| |#1| (-359))) ((|#1|) |has| |#1| (-170))) -(((|#1|) |has| |#1| (-298 |#1|))) -((((-1221 |#1| |#2| |#3| |#4|)) . T)) -((((-560)) |has| |#1| (-873 (-560))) (((-375)) |has| |#1| (-873 (-375)))) -(((|#1|) . T)) -(|has| |#1| (-550)) -(((|#1|) . T)) -((((-842)) . T)) -(((|#2|) -12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082))) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) |has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))))) -(((|#1|) |has| |#1| (-170))) -((($) |has| |#1| (-550)) ((|#1|) |has| |#1| (-170)) (((-403 (-560))) |has| |#1| (-43 (-403 (-560))))) -(((|#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) -(((|#2| |#2|) -12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082)))) -((((-1153)) -12 (|has| |#1| (-15 * (|#1| (-755) |#1|))) (|has| |#1| (-887 (-1153))))) -(((|#1|) . T)) -(((|#3|) |has| |#3| (-1082))) -(((|#2|) -2318 (|has| |#2| (-170)) (|has| |#2| (-359)))) -((((-1220 |#2| |#3| |#4|)) . T)) +(((|#1| (-763)) . T)) +((($) -2198 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-568))) -2198 (|has| |#1| (-43 (-409 (-568)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172))) +(((|#1|) |has| |#1| (-303 |#1|))) +((((-1229 |#1| |#2| |#3| |#4|)) . T)) +((((-568)) |has| |#1| (-881 (-568))) (((-381)) |has| |#1| (-881 (-381)))) +(((|#1|) . T)) +(|has| |#1| (-558)) +(((|#1|) . T)) +((((-850)) . T)) +(((|#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090))) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) |has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))))) +(((|#1|) |has| |#1| (-172))) +((($) |has| |#1| (-558)) ((|#1|) |has| |#1| (-172)) (((-409 (-568))) |has| |#1| (-43 (-409 (-568))))) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) +(((|#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090)))) +((((-1161)) -12 (|has| |#1| (-15 * (|#1| (-763) |#1|))) (|has| |#1| (-895 (-1161))))) +(((|#1|) . T)) +(((|#3|) |has| |#3| (-1090))) +(((|#2|) -2198 (|has| |#2| (-172)) (|has| |#2| (-365)))) +((((-1228 |#2| |#3| |#4|)) . T)) ((((-121)) . T)) -(|has| |#1| (-807)) -(|has| |#1| (-807)) -(((|#1| (-560) (-1067)) . T)) -((($) |has| |#1| (-298 $)) ((|#1|) |has| |#1| (-298 |#1|))) -(|has| |#1| (-832)) -(|has| |#1| (-832)) -(((|#1| (-755) (-1067)) . T)) -(-2318 (|has| |#1| (-887 (-1153))) (|has| |#1| (-1039))) -((((-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) . T)) -((((-1153)) . T)) -(((|#1| (-560) (-1067)) . T)) -(((|#1| (-403 (-560)) (-1067)) . T)) -(((|#1| (-755) (-1067)) . T)) -(|has| |#1| (-834)) -((((-897 |#1|) (-897 |#1|)) . T) (($ $) . T) (((-403 (-560)) (-403 (-560))) . T)) -(|has| |#2| (-146)) +(|has| |#1| (-815)) +(|has| |#1| (-815)) +(((|#1| (-568) (-1075)) . T)) +((($) |has| |#1| (-303 $)) ((|#1|) |has| |#1| (-303 |#1|))) +(|has| |#1| (-840)) +(|has| |#1| (-840)) +(((|#1| (-763) (-1075)) . T)) +(-2198 (|has| |#1| (-895 (-1161))) (|has| |#1| (-1047))) +((((-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) . T)) +((((-1161)) . T)) +(((|#1| (-568) (-1075)) . T)) +(((|#1| (-409 (-568)) (-1075)) . T)) +(((|#1| (-763) (-1075)) . T)) +(|has| |#1| (-842)) +((((-905 |#1|) (-905 |#1|)) . T) (($ $) . T) (((-409 (-568)) (-409 (-568))) . T)) (|has| |#2| (-148)) +(|has| |#2| (-150)) (((|#2|) . T)) -(|has| |#1| (-146)) (|has| |#1| (-148)) -(|has| |#1| (-1082)) -((((-897 |#1|)) . T) (($) . T) (((-403 (-560))) . T)) -(|has| |#1| (-1082)) -((((-842)) . T)) -(((|#1|) . T)) -(|has| |#1| (-1082)) -((((-560)) -12 (|has| |#1| (-359)) (|has| |#2| (-622 (-560)))) ((|#2|) |has| |#1| (-359))) -(((|#2|) |has| |#2| (-1039))) -(-2318 (|has| |#2| (-25)) (|has| |#2| (-137)) (|has| |#2| (-170)) (|has| |#2| (-359)) (|has| |#2| (-364)) (|has| |#2| (-708)) (|has| |#2| (-780)) (|has| |#2| (-832)) (|has| |#2| (-1039)) (|has| |#2| (-1082))) -(((|#2|) |has| |#2| (-170))) -(((|#1|) |has| |#1| (-170))) -((((-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) . T)) -((((-2 (|:| -3655 (-1135)) (|:| -2371 |#1|))) . T)) -((((-842)) . T)) -(|has| |#3| (-832)) -((((-842)) . T)) -((((-1220 |#2| |#3| |#4|) (-308 |#2| |#3| |#4|)) . T)) -((((-842)) . T)) -(((|#1| |#1|) -2318 (|has| |#1| (-170)) (|has| |#1| (-359)) (|has| |#1| (-1039)))) -(((|#1|) . T)) -((((-560)) . T)) -((((-560)) . T)) -((((-726 |#1| |#2|)) . T) (((-599 $)) . T) ((|#2|) . T) (((-560)) . T) (((-403 (-560))) -2318 (-12 (|has| |#2| (-550)) (|has| |#2| (-1029 (-560)))) (|has| |#2| (-1029 (-403 (-560))))) (((-403 (-945 |#2|))) |has| |#2| (-550)) (((-945 |#2|)) |has| |#2| (-1039)) (((-1153)) . T)) -(((|#1|) -2318 (|has| |#1| (-170)) (|has| |#1| (-359)) (|has| |#1| (-1039)))) -(((|#2|) |has| |#2| (-359))) -((((-560)) |has| |#2| (-873 (-560))) (((-375)) |has| |#2| (-873 (-375)))) -(((|#2|) . T)) -(|has| |#1| (-834)) -((($) . T) ((|#1|) . T) (((-403 (-560))) |has| |#1| (-359))) -(((|#2|) . T)) -((((-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) . T)) -(((|#1| (-755)) . T)) -(((|#2|) . T)) -((((-2 (|:| -3655 (-1153)) (|:| -2371 (-57)))) |has| (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (-298 (-2 (|:| -3655 (-1153)) (|:| -2371 (-57)))))) -(-2318 (|has| |#1| (-447)) (|has| |#1| (-896))) -(((|#2|) . T) (((-560)) |has| |#2| (-622 (-560)))) -((((-842)) . T)) -((((-842)) . T)) -((((-533)) . T) (((-560)) . T) (((-879 (-560))) . T) (((-375)) . T) (((-213)) . T)) -((((-842)) . T)) -(|has| |#1| (-43 (-403 (-560)))) -((((-560)) . T) (($) . T) (((-403 (-560))) . T)) -((((-560)) . T) (($) . T) (((-403 (-560))) . T)) -(|has| |#1| (-221)) -(((|#1|) . T)) -(((|#1| (-560)) . T)) -(|has| |#1| (-832)) -(((|#1| (-1151 |#1| |#2| |#3|)) . T)) +(|has| |#1| (-150)) +(|has| |#1| (-1090)) +((((-905 |#1|)) . T) (($) . T) (((-409 (-568))) . T)) +(|has| |#1| (-1090)) +((((-850)) . T)) +(((|#1|) . T)) +(|has| |#1| (-1090)) +((((-568)) -12 (|has| |#1| (-365)) (|has| |#2| (-630 (-568)))) ((|#2|) |has| |#1| (-365))) +(((|#2|) |has| |#2| (-1047))) +(-2198 (|has| |#2| (-25)) (|has| |#2| (-137)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-716)) (|has| |#2| (-788)) (|has| |#2| (-840)) (|has| |#2| (-1047)) (|has| |#2| (-1090))) +(((|#2|) |has| |#2| (-172))) +(((|#1|) |has| |#1| (-172))) +((((-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) . T)) +((((-2 (|:| -3649 (-1143)) (|:| -4083 |#1|))) . T)) +((((-850)) . T)) +(|has| |#3| (-840)) +((((-850)) . T)) +((((-1228 |#2| |#3| |#4|) (-314 |#2| |#3| |#4|)) . T)) +((((-850)) . T)) +(((|#1| |#1|) -2198 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-1047)))) +(((|#1|) . T)) +((((-568)) . T)) +((((-850)) . T)) +((((-568)) . T)) +((((-734 |#1| |#2|)) . T) (((-607 $)) . T) ((|#2|) . T) (((-568)) . T) (((-409 (-568))) -2198 (-12 (|has| |#2| (-558)) (|has| |#2| (-1037 (-568)))) (|has| |#2| (-1037 (-409 (-568))))) (((-409 (-953 |#2|))) |has| |#2| (-558)) (((-953 |#2|)) |has| |#2| (-1047)) (((-1161)) . T)) +(((|#1|) -2198 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-1047)))) +(((|#2|) |has| |#2| (-365))) +((((-568)) |has| |#2| (-881 (-568))) (((-381)) |has| |#2| (-881 (-381)))) +(((|#2|) . T)) +(|has| |#1| (-842)) +((($) . T) ((|#1|) . T) (((-409 (-568))) |has| |#1| (-365))) +(((|#2|) . T)) +((((-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) . T)) +(((|#1| (-763)) . T)) +(((|#2|) . T)) +((((-2 (|:| -3649 (-1161)) (|:| -4083 (-57)))) |has| (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (-303 (-2 (|:| -3649 (-1161)) (|:| -4083 (-57)))))) +(-2198 (|has| |#1| (-453)) (|has| |#1| (-904))) +(((|#2|) . T) (((-568)) |has| |#2| (-630 (-568)))) +((((-850)) . T)) +((((-850)) . T)) +((((-541)) . T) (((-568)) . T) (((-887 (-568))) . T) (((-381)) . T) (((-215)) . T)) +((((-850)) . T)) +(|has| |#1| (-43 (-409 (-568)))) +((((-568)) . T) (($) . T) (((-409 (-568))) . T)) +((((-568)) . T) (($) . T) (((-409 (-568))) . T)) +(|has| |#1| (-225)) +(((|#1|) . T)) +(((|#1| (-568)) . T)) +(|has| |#1| (-840)) +(((|#1| (-1159 |#1| |#2| |#3|)) . T)) (((|#1| |#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#1| (-403 (-560))) . T)) -(((|#1| (-1143 |#1| |#2| |#3|)) . T)) -(((|#1| (-755)) . T)) +(((|#1| (-409 (-568))) . T)) +(((|#1| (-1151 |#1| |#2| |#3|)) . T)) +(((|#1| (-763)) . T)) (((|#1|) . T)) -(((|#1| |#1| |#2| (-228 |#1| |#2|) (-228 |#1| |#2|)) . T)) +(((|#1| |#1| |#2| (-232 |#1| |#2|) (-232 |#1| |#2|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-146)) (|has| |#1| (-148)) +(|has| |#1| (-150)) +(|has| |#1| (-150)) (|has| |#1| (-148)) -(|has| |#1| (-146)) (((|#1| |#2|) . T)) -((((-145)) . T)) -(|has| |#1| (-43 (-403 (-560)))) -(|has| |#1| (-43 (-403 (-560)))) -(((|#1|) . T)) -(-2318 (|has| |#2| (-170)) (|has| |#2| (-832)) (|has| |#2| (-1039))) -(((|#1| |#1|) . T) (((-403 (-560)) (-403 (-560))) . T) (($ $) . T)) -((((-842)) . T)) -(((|#1|) . T) (((-403 (-560))) . T) (($) . T)) -((($) . T) ((|#1|) . T) (((-403 (-560))) |has| |#1| (-43 (-403 (-560))))) -((((-842)) |has| |#1| (-1082))) -(|has| |#1| (-359)) -(|has| |#1| (-359)) -(|has| (-403 |#2|) (-221)) -(|has| |#1| (-896)) -(((|#2|) |has| |#2| (-1039))) -(((|#2|) -12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082))) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) |has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))))) -(|has| |#1| (-359)) -(((|#1|) |has| |#1| (-170))) +((((-147)) . T)) +(|has| |#1| (-43 (-409 (-568)))) +(|has| |#1| (-43 (-409 (-568)))) +(((|#1|) . T)) +(-2198 (|has| |#2| (-172)) (|has| |#2| (-840)) (|has| |#2| (-1047))) +(((|#1| |#1|) . T) (((-409 (-568)) (-409 (-568))) . T) (($ $) . T)) +((((-850)) . T)) +(((|#1|) . T) (((-409 (-568))) . T) (($) . T)) +((($) . T) ((|#1|) . T) (((-409 (-568))) |has| |#1| (-43 (-409 (-568))))) +((((-850)) |has| |#1| (-1090))) +(|has| |#1| (-365)) +(|has| |#1| (-365)) +(|has| (-409 |#2|) (-225)) +(|has| |#1| (-904)) +(((|#2|) |has| |#2| (-1047))) +(((|#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090))) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) |has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))))) +(|has| |#1| (-365)) +(((|#1|) |has| |#1| (-172))) (((|#1| |#1|) . T)) -((((-856 |#1|)) . T)) -((((-842)) . T)) +((((-864 |#1|)) . T)) +((((-850)) . T)) (((|#1|) . T)) -(((|#2|) |has| |#2| (-1082))) -(|has| |#2| (-834)) +(((|#2|) |has| |#2| (-1090))) +(|has| |#2| (-842)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-359)) -((((-403 (-560))) . T) (((-560)) . T) (((-599 $)) . T)) +(|has| |#1| (-365)) +((((-409 (-568))) . T) (((-568)) . T) (((-607 $)) . T)) (((|#1|) . T)) -((((-842)) . T)) +((((-850)) . T)) ((($) . T)) -(|has| |#1| (-834)) -((((-842)) . T)) -(((|#1| (-526 |#2|) |#2|) . T)) -(((|#1| (-560) (-1067)) . T)) -((((-897 |#1|)) . T)) -((((-842)) . T)) +(|has| |#1| (-842)) +((((-850)) . T)) +(((|#1| (-534 |#2|) |#2|) . T)) +(((|#1| (-568) (-1075)) . T)) +((((-905 |#1|)) . T)) +((((-850)) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(((|#1| (-403 (-560)) (-1067)) . T)) -(((|#1| (-755) (-1067)) . T)) -((((-403 |#2|) (-403 |#2|)) . T) (((-403 (-560)) (-403 (-560))) . T) (($ $) . T)) -(((|#1|) . T) (((-560)) -2318 (|has| (-403 (-560)) (-1029 (-560))) (|has| |#1| (-1029 (-560)))) (((-403 (-560))) . T)) -(((|#1| (-591 |#1| |#3|) (-591 |#1| |#2|)) . T)) -(((|#1|) |has| |#1| (-170))) +(((|#1| (-409 (-568)) (-1075)) . T)) +(((|#1| (-763) (-1075)) . T)) +((((-409 |#2|) (-409 |#2|)) . T) (((-409 (-568)) (-409 (-568))) . T) (($ $) . T)) +(((|#1|) . T) (((-568)) -2198 (|has| (-409 (-568)) (-1037 (-568))) (|has| |#1| (-1037 (-568)))) (((-409 (-568))) . T)) +(((|#1| (-599 |#1| |#3|) (-599 |#1| |#2|)) . T)) +(((|#1|) |has| |#1| (-172))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-403 |#2|)) . T) (((-403 (-560))) . T) (($) . T)) -(|has| |#2| (-221)) -(((|#2| (-526 (-844 |#1|)) (-844 |#1|)) . T)) -((($) -2318 (|has| |#2| (-359)) (|has| |#2| (-447)) (|has| |#2| (-550)) (|has| |#2| (-896))) ((|#2|) |has| |#2| (-170)) (((-403 (-560))) |has| |#2| (-43 (-403 (-560))))) -((((-842)) . T)) -((($) |has| |#1| (-550)) ((|#1|) |has| |#1| (-170)) (((-403 (-560))) |has| |#1| (-43 (-403 (-560))))) -((((-842)) . T)) +((((-409 |#2|)) . T) (((-409 (-568))) . T) (($) . T)) +(|has| |#2| (-225)) +(((|#2| (-534 (-852 |#1|)) (-852 |#1|)) . T)) +((($) -2198 (|has| |#2| (-365)) (|has| |#2| (-453)) (|has| |#2| (-558)) (|has| |#2| (-904))) ((|#2|) |has| |#2| (-172)) (((-409 (-568))) |has| |#2| (-43 (-409 (-568))))) +((((-850)) . T)) +((($) |has| |#1| (-558)) ((|#1|) |has| |#1| (-172)) (((-409 (-568))) |has| |#1| (-43 (-409 (-568))))) +((((-850)) . T)) (((|#1| |#3|) . T)) -((((-842)) . T)) -(|has| |#2| (-1128)) -(((|#1|) |has| |#1| (-170))) -((((-680)) . T)) -((((-680)) . T)) -(((|#2|) |has| |#2| (-170))) -(|has| |#2| (-832)) -((((-121)) |has| |#1| (-1082)) (((-842)) -2318 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-170)) (|has| |#1| (-359)) (|has| |#1| (-471)) (|has| |#1| (-708)) (|has| |#1| (-887 (-1153))) (|has| |#1| (-1039)) (|has| |#1| (-1094)) (|has| |#1| (-1082)))) +((((-850)) . T)) +(|has| |#2| (-1136)) +(((|#1|) |has| |#1| (-172))) +((((-688)) . T)) +((((-688)) . T)) +(((|#2|) |has| |#2| (-172))) +(|has| |#2| (-840)) +((((-121)) |has| |#1| (-1090)) (((-850)) -2198 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-478)) (|has| |#1| (-716)) (|has| |#1| (-895 (-1161))) (|has| |#1| (-1047)) (|has| |#1| (-1102)) (|has| |#1| (-1090)))) (((|#1|) . T) (($) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -3655 (-1135)) (|:| -2371 (-57)))) . T)) -((((-842)) . T)) -((((-560) |#1|) . T)) -((((-680)) . T) (((-403 (-560))) . T) (((-560)) . T)) -(((|#2|) . T)) -(((|#1| |#1|) |has| |#1| (-170))) -(((|#2|) -12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082))) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) |has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))))) -((((-375)) . T)) -((((-680)) . T)) -((((-403 (-560))) |has| |#2| (-359)) (($) |has| |#2| (-359))) -(((|#1|) |has| |#1| (-170))) -((((-403 (-945 |#1|))) . T)) +((((-2 (|:| -3649 (-1143)) (|:| -4083 (-57)))) . T)) +((((-850)) . T)) +((((-850)) . T)) +((((-850)) . T)) +((((-568) |#1|) . T)) +((((-688)) . T) (((-409 (-568))) . T) (((-568)) . T)) +(((|#2|) . T)) +(((|#1| |#1|) |has| |#1| (-172))) +(((|#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090))) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) |has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))))) +((((-381)) . T)) +((((-688)) . T)) +((((-409 (-568))) |has| |#2| (-365)) (($) |has| |#2| (-365))) +(((|#1|) |has| |#1| (-172))) +((((-409 (-953 |#1|))) . T)) (((|#2| |#2|) . T)) -(-2318 (|has| |#2| (-447)) (|has| |#2| (-550)) (|has| |#2| (-896))) -(-2318 (|has| |#1| (-447)) (|has| |#1| (-550)) (|has| |#1| (-896))) -((($) . T)) -(((|#2|) . T)) -(|has| |#2| (-834)) -(((|#3|) |has| |#3| (-1039))) -(|has| |#2| (-896)) -(|has| |#1| (-896)) -(|has| |#1| (-359)) -(|has| |#1| (-834)) -((((-1153)) |has| |#2| (-887 (-1153)))) -((((-842)) . T)) -((((-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) . T)) -((((-403 (-560))) . T) (($) . T)) -(|has| |#1| (-471)) -(|has| |#1| (-364)) -(|has| |#1| (-364)) -(|has| |#1| (-364)) -(|has| |#1| (-359)) -((((-842)) . T)) -(-2318 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-170)) (|has| |#1| (-471)) (|has| |#1| (-550)) (|has| |#1| (-1039)) (|has| |#1| (-1094))) +(-2198 (|has| |#2| (-453)) (|has| |#2| (-558)) (|has| |#2| (-904))) +(-2198 (|has| |#1| (-453)) (|has| |#1| (-558)) (|has| |#1| (-904))) +((($) . T)) +(((|#2|) . T)) +(|has| |#2| (-842)) +(((|#3|) |has| |#3| (-1047))) +(|has| |#2| (-904)) +(|has| |#1| (-904)) +(|has| |#1| (-365)) +(|has| |#1| (-842)) +((((-1161)) |has| |#2| (-895 (-1161)))) +((((-850)) . T)) +((((-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) . T)) +((((-409 (-568))) . T) (($) . T)) +(|has| |#1| (-478)) +(|has| |#1| (-370)) +(|has| |#1| (-370)) +(|has| |#1| (-370)) +(|has| |#1| (-365)) +((((-850)) . T)) +(-2198 (|has| |#1| (-148)) (|has| |#1| (-150)) (|has| |#1| (-172)) (|has| |#1| (-478)) (|has| |#1| (-558)) (|has| |#1| (-1047)) (|has| |#1| (-1102))) ((((-125 |#1|)) . T)) ((((-125 |#1|)) . T)) -((((-145)) . T)) -(|has| |#1| (-344)) -((((-1153)) |has| |#1| (-887 (-1153))) (((-1067)) . T)) -((($) . T)) -(|has| |#1| (-43 (-403 (-560)))) -(|has| |#1| (-43 (-403 (-560)))) -(((|#2|) . T) (((-842)) . T)) -(((|#2|) . T) (((-842)) . T)) -(|has| |#1| (-43 (-403 (-560)))) -(|has| |#1| (-43 (-403 (-560)))) -(|has| |#1| (-43 (-403 (-560)))) -(|has| |#1| (-43 (-403 (-560)))) -(|has| |#1| (-43 (-403 (-560)))) -(|has| |#1| (-43 (-403 (-560)))) -(|has| |#1| (-43 (-403 (-560)))) -(|has| |#1| (-43 (-403 (-560)))) -(|has| |#1| (-43 (-403 (-560)))) -(|has| |#1| (-43 (-403 (-560)))) -(|has| |#1| (-43 (-403 (-560)))) -(|has| |#1| (-43 (-403 (-560)))) -(|has| |#1| (-834)) -(|has| |#1| (-43 (-403 (-560)))) -((((-2 (|:| -3655 (-1135)) (|:| -2371 |#1|))) . T)) -(|has| |#1| (-43 (-403 (-560)))) +((((-147)) . T)) +(|has| |#1| (-350)) +((((-1161)) |has| |#1| (-895 (-1161))) (((-1075)) . T)) +((($) . T)) +(|has| |#1| (-43 (-409 (-568)))) +(|has| |#1| (-43 (-409 (-568)))) +(((|#2|) . T) (((-850)) . T)) +(((|#2|) . T) (((-850)) . T)) +(|has| |#1| (-43 (-409 (-568)))) +(|has| |#1| (-43 (-409 (-568)))) +(|has| |#1| (-43 (-409 (-568)))) +(|has| |#1| (-43 (-409 (-568)))) +(|has| |#1| (-43 (-409 (-568)))) +(|has| |#1| (-43 (-409 (-568)))) +(|has| |#1| (-43 (-409 (-568)))) +((((-169 (-215)) (-145) (-145)) . T)) +((((-215) (-218) (-218)) . T)) +(|has| |#1| (-43 (-409 (-568)))) +(|has| |#1| (-43 (-409 (-568)))) +(|has| |#1| (-43 (-409 (-568)))) +(|has| |#1| (-842)) +(|has| |#1| (-43 (-409 (-568)))) +((((-2 (|:| -3649 (-1143)) (|:| -4083 |#1|))) . T)) +(|has| |#1| (-43 (-409 (-568)))) +(|has| |#1| (-43 (-409 (-568)))) +(|has| |#1| (-43 (-409 (-568)))) (((|#1| |#2|) . T)) +(|has| |#1| (-150)) (|has| |#1| (-148)) -(|has| |#1| (-146)) -((((-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) |has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) ((|#2|) -12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082)))) +((((-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) |has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) ((|#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090)))) (((|#2|) . T)) (((|#1|) . T)) (((|#3|) . T)) ((((-125 |#1|)) . T)) -(|has| |#1| (-364)) -(|has| |#1| (-834)) -(((|#2|) . T) (((-403 (-560))) |has| |#1| (-1029 (-403 (-560)))) (((-560)) |has| |#1| (-1029 (-560))) ((|#1|) . T)) +(|has| |#1| (-370)) +(|has| |#1| (-842)) +(((|#2|) . T) (((-409 (-568))) |has| |#1| (-1037 (-409 (-568)))) (((-568)) |has| |#1| (-1037 (-568))) ((|#1|) . T)) ((((-125 |#1|)) . T)) -(((|#2|) |has| |#2| (-170))) -(((|#1|) . T)) -((((-560)) . T)) -(|has| |#1| (-359)) -(|has| |#1| (-359)) -((((-842)) . T)) -((((-1067)) . T) ((|#1|) . T) (((-560)) |has| |#1| (-1029 (-560))) (((-403 (-560))) |has| |#1| (-1029 (-403 (-560))))) -((((-842)) . T)) -((((-842)) . T)) -((((-533)) |has| |#1| (-601 (-533))) (((-879 (-560))) |has| |#1| (-601 (-879 (-560)))) (((-879 (-375))) |has| |#1| (-601 (-879 (-375)))) (((-375)) |has| |#1| (-1013)) (((-213)) |has| |#1| (-1013))) -(((|#1|) |has| |#1| (-359))) -((((-842)) . T)) -((((-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) . T)) -((($ $) . T) (((-599 $) $) . T)) -(-2318 (|has| |#1| (-359)) (|has| |#1| (-550))) -((($) . T) (((-1221 |#1| |#2| |#3| |#4|)) . T) (((-403 (-560))) . T)) -((($) -2318 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-170)) (|has| |#1| (-550)) (|has| |#1| (-1039))) ((|#1|) |has| |#1| (-170)) (((-403 (-560))) |has| |#1| (-550))) -(|has| |#1| (-359)) -(|has| |#1| (-359)) -(|has| |#1| (-359)) -((((-375)) . T) (((-560)) . T) (((-403 (-560))) . T)) -((((-626 (-767 |#1| (-844 |#2|)))) . T) (((-842)) . T)) -((((-533)) |has| (-767 |#1| (-844 |#2|)) (-601 (-533)))) -(((|#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) -((((-375)) . T)) -(((|#3|) -12 (|has| |#3| (-298 |#3|)) (|has| |#3| (-1082)))) -((((-842)) . T)) -(-2318 (|has| |#2| (-447)) (|has| |#2| (-896))) -(((|#1|) . T)) -(|has| |#1| (-834)) -(|has| |#1| (-834)) -((((-842)) |has| |#1| (-1082))) -((((-533)) |has| |#1| (-601 (-533)))) -(((|#2|) -12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082)))) -(|has| |#1| (-1082)) -((((-842)) . T)) -(((|#1| (-755)) . T)) -((((-403 (-560))) . T) (((-560)) . T) (((-599 $)) . T)) -(|has| |#1| (-146)) +(((|#2|) |has| |#2| (-172))) +(((|#1|) . T)) +((((-568)) . T)) +(|has| |#1| (-365)) +(|has| |#1| (-365)) +((((-850)) . T)) +((((-1075)) . T) ((|#1|) . T) (((-568)) |has| |#1| (-1037 (-568))) (((-409 (-568))) |has| |#1| (-1037 (-409 (-568))))) +((((-850)) . T)) +((((-850)) . T)) +((((-541)) |has| |#1| (-609 (-541))) (((-887 (-568))) |has| |#1| (-609 (-887 (-568)))) (((-887 (-381))) |has| |#1| (-609 (-887 (-381)))) (((-381)) |has| |#1| (-1021)) (((-215)) |has| |#1| (-1021))) +(((|#1|) |has| |#1| (-365))) +((((-850)) . T)) +((((-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) . T)) +((($ $) . T) (((-607 $) $) . T)) +(-2198 (|has| |#1| (-365)) (|has| |#1| (-558))) +((($) . T) (((-1229 |#1| |#2| |#3| |#4|)) . T) (((-409 (-568))) . T)) +((($) -2198 (|has| |#1| (-148)) (|has| |#1| (-150)) (|has| |#1| (-172)) (|has| |#1| (-558)) (|has| |#1| (-1047))) ((|#1|) |has| |#1| (-172)) (((-409 (-568))) |has| |#1| (-558))) +(|has| |#1| (-365)) +(|has| |#1| (-365)) +(|has| |#1| (-365)) +((((-381)) . T) (((-568)) . T) (((-409 (-568))) . T)) +((((-634 (-775 |#1| (-852 |#2|)))) . T) (((-850)) . T)) +((((-541)) |has| (-775 |#1| (-852 |#2|)) (-609 (-541)))) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) +((((-381)) . T)) +(((|#3|) -12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1090)))) +((((-850)) . T)) +(-2198 (|has| |#2| (-453)) (|has| |#2| (-904))) +(((|#1|) . T)) +(|has| |#1| (-842)) +(|has| |#1| (-842)) +((((-850)) |has| |#1| (-1090))) +((((-541)) |has| |#1| (-609 (-541)))) +(((|#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090)))) +(|has| |#1| (-1090)) +((((-850)) . T)) +(((|#1| (-763)) . T)) +((((-409 (-568))) . T) (((-568)) . T) (((-607 $)) . T)) (|has| |#1| (-148)) -((((-560)) . T)) -(-2318 (|has| |#1| (-359)) (|has| |#1| (-550))) -(-2318 (|has| |#1| (-359)) (|has| |#1| (-550))) -((((-1220 |#2| |#3| |#4|)) . T) (((-403 (-560))) |has| (-1220 |#2| |#3| |#4|) (-43 (-403 (-560)))) (($) . T)) -(|has| |#2| (-471)) -((((-560)) . T)) +(|has| |#1| (-150)) +((((-568)) . T)) +(-2198 (|has| |#1| (-365)) (|has| |#1| (-558))) +(-2198 (|has| |#1| (-365)) (|has| |#1| (-558))) +((((-1228 |#2| |#3| |#4|)) . T) (((-409 (-568))) |has| (-1228 |#2| |#3| |#4|) (-43 (-409 (-568)))) (($) . T)) +((((-568)) . T)) +(|has| |#2| (-478)) +(|has| |#1| (-150)) (|has| |#1| (-148)) -(|has| |#1| (-146)) -(|has| |#1| (-359)) -(-2318 (-12 (|has| (-1227 |#1| |#2| |#3|) (-148)) (|has| |#1| (-359))) (|has| |#1| (-148))) -(-2318 (-12 (|has| (-1227 |#1| |#2| |#3|) (-146)) (|has| |#1| (-359))) (|has| |#1| (-146))) -(|has| |#1| (-359)) -(|has| |#1| (-146)) -(|has| |#1| (-221)) -(|has| |#1| (-359)) -(((|#3|) . T)) -((((-842)) . T)) -((((-842)) . T)) +(|has| |#1| (-365)) +(-2198 (-12 (|has| (-1235 |#1| |#2| |#3|) (-150)) (|has| |#1| (-365))) (|has| |#1| (-150))) +(-2198 (-12 (|has| (-1235 |#1| |#2| |#3|) (-148)) (|has| |#1| (-365))) (|has| |#1| (-148))) +(|has| |#1| (-365)) (|has| |#1| (-148)) -((((-560)) |has| |#2| (-622 (-560))) ((|#2|) . T)) +(|has| |#1| (-225)) +(|has| |#1| (-365)) +(((|#3|) . T)) +((((-850)) . T)) +((((-850)) . T)) +(|has| |#1| (-150)) +((((-568)) |has| |#2| (-630 (-568))) ((|#2|) . T)) +(|has| |#1| (-150)) (|has| |#1| (-148)) -(|has| |#1| (-146)) -(((|#1|) . T) (((-403 (-560))) |has| |#1| (-43 (-403 (-560)))) (($) . T)) +(((|#1|) . T) (((-409 (-568))) |has| |#1| (-43 (-409 (-568)))) (($) . T)) (((|#2|) . T)) -(|has| |#1| (-1082)) +(|has| |#1| (-1090)) (((|#1| |#2|) . T)) -(((|#1|) . T) (((-560)) |has| |#1| (-622 (-560)))) -(((|#3|) |has| |#3| (-170))) -(-2318 (|has| |#2| (-25)) (|has| |#2| (-137)) (|has| |#2| (-170)) (|has| |#2| (-359)) (|has| |#2| (-364)) (|has| |#2| (-708)) (|has| |#2| (-780)) (|has| |#2| (-832)) (|has| |#2| (-1039)) (|has| |#2| (-1082))) -((((-560)) . T)) -(((|#1| $) |has| |#1| (-276 |#1| |#1|))) -((((-403 (-560))) . T) (($) . T) (((-403 |#1|)) . T) ((|#1|) . T)) -((((-842)) . T)) +((((-169 (-215))) . T)) +((((-215)) . T)) +(((|#1|) . T) (((-568)) |has| |#1| (-630 (-568)))) +(((|#3|) |has| |#3| (-172))) +(-2198 (|has| |#2| (-25)) (|has| |#2| (-137)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-716)) (|has| |#2| (-788)) (|has| |#2| (-840)) (|has| |#2| (-1047)) (|has| |#2| (-1090))) +((((-568)) . T)) +(((|#1| $) |has| |#1| (-281 |#1| |#1|))) +((((-409 (-568))) . T) (($) . T) (((-409 |#1|)) . T) ((|#1|) . T)) +((((-850)) . T)) (((|#3|) . T)) -(((|#1| |#1|) . T) (($ $) -2318 (|has| |#1| (-280)) (|has| |#1| (-359))) (((-403 (-560)) (-403 (-560))) |has| |#1| (-359))) -((((-2 (|:| -3655 (-1153)) (|:| -2371 (-57)))) . T)) -((($) . T)) -((($) . T) ((|#2|) |has| |#2| (-170)) (((-403 (-560))) |has| |#2| (-550))) -((((-560) |#1|) . T)) -((((-1153)) |has| (-403 |#2|) (-887 (-1153)))) -(((|#1|) . T) (($) -2318 (|has| |#1| (-280)) (|has| |#1| (-359))) (((-403 (-560))) |has| |#1| (-359))) -((((-533)) |has| |#2| (-601 (-533)))) -((((-671 |#2|)) . T) (((-842)) . T)) -(((|#1|) . T)) -(((|#4|) -12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082)))) -(((|#4|) -12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082)))) -((((-856 |#1|)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) -(-2318 (|has| |#4| (-780)) (|has| |#4| (-832))) -(-2318 (|has| |#3| (-780)) (|has| |#3| (-832))) -((((-842)) . T)) -((((-842)) . T)) -(((|#4|) -12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082)))) -(((|#2|) |has| |#2| (-1039))) -(((|#1|) . T)) -((((-403 |#2|)) . T)) -(((|#1|) . T)) -(((|#3|) -12 (|has| |#3| (-298 |#3|)) (|has| |#3| (-1082)))) -((((-560) |#1|) . T)) -(((|#1|) . T)) -((($) . T)) -((((-560)) . T) (($) . T) (((-403 (-560))) . T)) -((((-403 (-560))) . T) (($) . T)) -((((-403 (-560))) . T) (($) . T)) -((((-403 (-560))) . T) (($) . T)) -(-2318 (|has| |#1| (-447)) (|has| |#1| (-1191))) -((($) . T)) -((((-403 (-560))) |has| (-403 |#2|) (-1029 (-403 (-560)))) (((-560)) |has| (-403 |#2|) (-1029 (-560))) (((-403 |#2|)) . T)) -(((|#2|) . T) (((-560)) |has| |#2| (-622 (-560)))) -(((|#1| (-755)) . T)) -(|has| |#1| (-834)) -(((|#1|) . T) (((-560)) |has| |#1| (-622 (-560)))) -((($) -2318 (|has| |#1| (-359)) (|has| |#1| (-344))) (((-403 (-560))) -2318 (|has| |#1| (-359)) (|has| |#1| (-344))) ((|#1|) . T)) -((((-560)) . T)) -(|has| |#1| (-43 (-403 (-560)))) -((((-2 (|:| -3655 (-1135)) (|:| -2371 (-57)))) |has| (-2 (|:| -3655 (-1135)) (|:| -2371 (-57))) (-298 (-2 (|:| -3655 (-1135)) (|:| -2371 (-57)))))) -(((|#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) -(|has| |#1| (-832)) -(|has| |#1| (-43 (-403 (-560)))) -(|has| |#1| (-43 (-403 (-560)))) -(|has| |#1| (-43 (-403 (-560)))) -(|has| |#1| (-43 (-403 (-560)))) -(|has| |#1| (-364)) -(|has| |#1| (-364)) -(|has| |#1| (-364)) -(|has| |#1| (-43 (-403 (-560)))) -(|has| |#1| (-43 (-403 (-560)))) -(|has| |#1| (-43 (-403 (-560)))) -(|has| |#1| (-43 (-403 (-560)))) -(|has| |#1| (-43 (-403 (-560)))) -(|has| |#1| (-43 (-403 (-560)))) -(|has| |#1| (-43 (-403 (-560)))) -(|has| |#1| (-344)) -(|has| |#1| (-43 (-403 (-560)))) -(|has| |#1| (-43 (-403 (-560)))) -(|has| |#1| (-43 (-403 (-560)))) -(|has| |#1| (-43 (-403 (-560)))) +(((|#1| |#1|) . T) (($ $) -2198 (|has| |#1| (-285)) (|has| |#1| (-365))) (((-409 (-568)) (-409 (-568))) |has| |#1| (-365))) +((((-2 (|:| -3649 (-1161)) (|:| -4083 (-57)))) . T)) +((($) . T)) +((($) . T) ((|#2|) |has| |#2| (-172)) (((-409 (-568))) |has| |#2| (-558))) +((((-568) |#1|) . T)) +((((-1161)) |has| (-409 |#2|) (-895 (-1161)))) +(((|#1|) . T) (($) -2198 (|has| |#1| (-285)) (|has| |#1| (-365))) (((-409 (-568))) |has| |#1| (-365))) +((((-541)) |has| |#2| (-609 (-541)))) +((((-679 |#2|)) . T) (((-850)) . T)) +(((|#1|) . T)) +(((|#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090)))) +(((|#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090)))) +((((-864 |#1|)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) +(-2198 (|has| |#4| (-788)) (|has| |#4| (-840))) +(-2198 (|has| |#3| (-788)) (|has| |#3| (-840))) +((((-850)) . T)) +((((-850)) . T)) +(((|#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090)))) +(((|#2|) |has| |#2| (-1047))) +(((|#1|) . T)) +((((-409 |#2|)) . T)) +(((|#1|) . T)) +(((|#3|) -12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1090)))) +((((-568) |#1|) . T)) +(((|#1|) . T)) +((($) . T)) +((((-568)) . T) (($) . T) (((-409 (-568))) . T)) +((((-409 (-568))) . T) (($) . T)) +((((-409 (-568))) . T) (($) . T)) +((((-409 (-568))) . T) (($) . T)) +(-2198 (|has| |#1| (-453)) (|has| |#1| (-1199))) +((($) . T)) +((((-409 (-568))) |has| (-409 |#2|) (-1037 (-409 (-568)))) (((-568)) |has| (-409 |#2|) (-1037 (-568))) (((-409 |#2|)) . T)) +(((|#2|) . T) (((-568)) |has| |#2| (-630 (-568)))) +(((|#1| (-763)) . T)) +(|has| |#1| (-842)) +(((|#1|) . T) (((-568)) |has| |#1| (-630 (-568)))) +((((-568)) . T)) +((($) -2198 (|has| |#1| (-365)) (|has| |#1| (-350))) (((-409 (-568))) -2198 (|has| |#1| (-365)) (|has| |#1| (-350))) ((|#1|) . T)) +((((-2 (|:| -3649 (-1143)) (|:| -4083 (-57)))) |has| (-2 (|:| -3649 (-1143)) (|:| -4083 (-57))) (-303 (-2 (|:| -3649 (-1143)) (|:| -4083 (-57)))))) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) +(|has| |#1| (-840)) +(|has| |#1| (-43 (-409 (-568)))) +(|has| |#1| (-43 (-409 (-568)))) +(|has| |#1| (-43 (-409 (-568)))) +(|has| |#1| (-43 (-409 (-568)))) +(|has| |#1| (-370)) +(|has| |#1| (-370)) +(|has| |#1| (-370)) +(|has| |#1| (-43 (-409 (-568)))) +(|has| |#1| (-43 (-409 (-568)))) +(|has| |#1| (-43 (-409 (-568)))) +(|has| |#1| (-43 (-409 (-568)))) +(|has| |#1| (-43 (-409 (-568)))) +(|has| |#1| (-43 (-409 (-568)))) +(|has| |#1| (-43 (-409 (-568)))) +(|has| |#1| (-350)) +(|has| |#1| (-43 (-409 (-568)))) +(|has| |#1| (-43 (-409 (-568)))) +(|has| |#1| (-43 (-409 (-568)))) +(|has| |#1| (-43 (-409 (-568)))) +(|has| |#1| (-43 (-409 (-568)))) (((|#2|) . T)) (((|#1| |#2|) . T)) -((((-145)) . T)) -((((-767 |#1| (-844 |#2|))) . T)) -((((-842)) |has| |#1| (-1082))) -(|has| |#1| (-1173)) +((((-147)) . T)) +((((-775 |#1| (-852 |#2|))) . T)) +((((-850)) |has| |#1| (-1090))) +(|has| |#1| (-1181)) (((|#1|) . T)) -(-2318 (|has| |#3| (-25)) (|has| |#3| (-137)) (|has| |#3| (-170)) (|has| |#3| (-359)) (|has| |#3| (-364)) (|has| |#3| (-708)) (|has| |#3| (-780)) (|has| |#3| (-832)) (|has| |#3| (-1039)) (|has| |#3| (-1082))) -((((-1153) |#1|) |has| |#1| (-515 (-1153) |#1|))) +(-2198 (|has| |#3| (-25)) (|has| |#3| (-137)) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-370)) (|has| |#3| (-716)) (|has| |#3| (-788)) (|has| |#3| (-840)) (|has| |#3| (-1047)) (|has| |#3| (-1090))) +((((-1161) |#1|) |has| |#1| (-523 (-1161) |#1|))) (((|#2|) . T)) -((($ $) -2318 (|has| |#1| (-170)) (|has| |#1| (-359)) (|has| |#1| (-447)) (|has| |#1| (-550)) (|has| |#1| (-896))) ((|#1| |#1|) . T) (((-403 (-560)) (-403 (-560))) |has| |#1| (-43 (-403 (-560))))) -((($) -2318 (|has| |#1| (-170)) (|has| |#1| (-359)) (|has| |#1| (-447)) (|has| |#1| (-550)) (|has| |#1| (-896))) ((|#1|) . T) (((-403 (-560))) |has| |#1| (-43 (-403 (-560))))) -((((-897 |#1|)) . T)) +((($ $) -2198 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-453)) (|has| |#1| (-558)) (|has| |#1| (-904))) ((|#1| |#1|) . T) (((-409 (-568)) (-409 (-568))) |has| |#1| (-43 (-409 (-568))))) +((($) -2198 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-453)) (|has| |#1| (-558)) (|has| |#1| (-904))) ((|#1|) . T) (((-409 (-568))) |has| |#1| (-43 (-409 (-568))))) +((((-905 |#1|)) . T)) ((($) . T)) -((((-403 (-945 |#1|))) . T)) -(((|#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) -((((-533)) |has| |#4| (-601 (-533)))) -((((-842)) . T) (((-626 |#4|)) . T)) -((((-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) . T)) +((((-409 (-953 |#1|))) . T)) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) +((((-541)) |has| |#4| (-609 (-541)))) +((((-850)) . T) (((-634 |#4|)) . T)) +(|has| |#1| (-840)) +((((-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) . T)) +(|has| |#1| (-1090)) (((|#1|) . T)) -(|has| |#1| (-832)) -(((|#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))) (((-2 (|:| -3655 (-1135)) (|:| -2371 |#1|))) |has| (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (-298 (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|))))) -(|has| |#1| (-1082)) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))) (((-2 (|:| -3649 (-1143)) (|:| -4083 |#1|))) |has| (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (-303 (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|))))) (((|#2|) . T)) -(|has| |#1| (-359)) -(|has| |#1| (-834)) +(|has| |#1| (-365)) +(|has| |#1| (-842)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((($) . T) (((-403 (-560))) . T)) -((($) -2318 (|has| |#1| (-359)) (|has| |#1| (-550))) (((-403 (-560))) -2318 (|has| |#1| (-43 (-403 (-560)))) (|has| |#1| (-359))) ((|#1|) |has| |#1| (-170))) -(|has| |#1| (-146)) +((($) . T) (((-409 (-568))) . T)) +((($) -2198 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-568))) -2198 (|has| |#1| (-43 (-409 (-568)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172))) (|has| |#1| (-148)) -(-2318 (-12 (|has| (-1151 |#1| |#2| |#3|) (-148)) (|has| |#1| (-359))) (|has| |#1| (-148))) -(-2318 (-12 (|has| (-1151 |#1| |#2| |#3|) (-146)) (|has| |#1| (-359))) (|has| |#1| (-146))) -(|has| |#1| (-146)) +(|has| |#1| (-150)) +(-2198 (-12 (|has| (-1159 |#1| |#2| |#3|) (-150)) (|has| |#1| (-365))) (|has| |#1| (-150))) +(-2198 (-12 (|has| (-1159 |#1| |#2| |#3|) (-148)) (|has| |#1| (-365))) (|has| |#1| (-148))) (|has| |#1| (-148)) +(|has| |#1| (-150)) +(|has| |#1| (-150)) (|has| |#1| (-148)) -(|has| |#1| (-146)) -((((-842)) |has| |#1| (-1082))) -((((-1227 |#1| |#2| |#3|)) |has| |#1| (-359))) -(|has| |#1| (-832)) +((((-850)) |has| |#1| (-1090))) +((((-1235 |#1| |#2| |#3|)) |has| |#1| (-365))) +(|has| |#1| (-840)) (((|#1| |#2|) . T)) -(((|#1|) . T) (((-560)) |has| |#1| (-622 (-560)))) -((((-560)) |has| |#1| (-622 (-560))) ((|#1|) . T)) -((((-897 |#1|)) . T) (((-403 (-560))) . T) (($) . T)) -(|has| |#1| (-1082)) -(((|#1|) . T) (($) . T) (((-403 (-560))) . T) (((-560)) . T)) -(|has| |#2| (-146)) +(((|#1|) . T) (((-568)) |has| |#1| (-630 (-568)))) +((((-568)) |has| |#1| (-630 (-568))) ((|#1|) . T)) +((((-905 |#1|)) . T) (((-409 (-568))) . T) (($) . T)) +(|has| |#1| (-1090)) +(((|#1|) . T) (($) . T) (((-409 (-568))) . T) (((-568)) . T)) (|has| |#2| (-148)) -((((-897 |#1|)) . T) (((-403 (-560))) . T) (($) . T)) -(((|#2| (-755) (-1067)) . T)) -(|has| |#1| (-1082)) -(((|#2|) |has| |#2| (-170))) +(|has| |#2| (-150)) +((((-905 |#1|)) . T) (((-409 (-568))) . T) (($) . T)) +(((|#2| (-763) (-1075)) . T)) +(|has| |#1| (-1090)) +(((|#2|) |has| |#2| (-172))) (((|#2|) . T)) (((|#1| |#1|) . T)) -(((|#3|) |has| |#3| (-359))) -((((-403 |#2|)) . T)) -((((-842)) . T)) -((((-842)) . T)) -(((|#1|) . T)) -((((-842)) . T)) -((((-842)) . T)) -((((-533)) |has| |#1| (-601 (-533)))) -((((-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) . T)) -((((-1153) |#1|) |has| |#1| (-515 (-1153) |#1|)) ((|#1| |#1|) |has| |#1| (-298 |#1|))) -(((|#1|) -2318 (|has| |#1| (-170)) (|has| |#1| (-359)))) -((((-304 |#1|)) . T)) -(((|#2|) |has| |#2| (-359))) -(((|#2|) . T)) -((((-403 (-560))) . T) (((-680)) . T) (($) . T)) -(((|#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) -((((-767 |#1| (-844 |#2|)) (-767 |#1| (-844 |#2|))) |has| (-767 |#1| (-844 |#2|)) (-298 (-767 |#1| (-844 |#2|))))) -((((-844 |#1|)) . T)) -(((|#2|) |has| |#2| (-170))) -(((|#1|) |has| |#1| (-170))) -(((|#2|) . T)) -((((-1153)) |has| |#1| (-887 (-1153))) (((-1067)) . T)) -((((-1153)) |has| |#1| (-887 (-1153))) (((-1071 (-1153))) . T)) -(((|#2|) -12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082)))) -(((|#1| |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) -(|has| |#1| (-43 (-403 (-560)))) -(((|#3|) |has| |#3| (-1039)) (((-560)) -12 (|has| |#3| (-622 (-560))) (|has| |#3| (-1039)))) -(((|#4|) |has| |#4| (-1039)) (((-560)) -12 (|has| |#4| (-622 (-560))) (|has| |#4| (-1039)))) -(|has| |#1| (-146)) +(((|#3|) |has| |#3| (-365))) +((((-409 |#2|)) . T)) +((((-850)) . T)) +((((-850)) . T)) +(((|#1|) . T)) +((((-850)) . T)) +((((-850)) . T)) +((((-541)) |has| |#1| (-609 (-541)))) +((((-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) . T)) +((((-1161) |#1|) |has| |#1| (-523 (-1161) |#1|)) ((|#1| |#1|) |has| |#1| (-303 |#1|))) +(((|#1|) -2198 (|has| |#1| (-172)) (|has| |#1| (-365)))) +((((-310 |#1|)) . T)) +(((|#2|) |has| |#2| (-365))) +(((|#2|) . T)) +((((-409 (-568))) . T) (((-688)) . T) (($) . T)) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) +((((-775 |#1| (-852 |#2|)) (-775 |#1| (-852 |#2|))) |has| (-775 |#1| (-852 |#2|)) (-303 (-775 |#1| (-852 |#2|))))) +((((-852 |#1|)) . T)) +(((|#2|) |has| |#2| (-172))) +(((|#1|) |has| |#1| (-172))) +(((|#2|) . T)) +((((-1161)) |has| |#1| (-895 (-1161))) (((-1075)) . T)) +((((-1161)) |has| |#1| (-895 (-1161))) (((-1079 (-1161))) . T)) +(((|#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090)))) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) +(|has| |#1| (-43 (-409 (-568)))) +(((|#4|) |has| |#4| (-1047)) (((-568)) -12 (|has| |#4| (-630 (-568))) (|has| |#4| (-1047)))) +(((|#3|) |has| |#3| (-1047)) (((-568)) -12 (|has| |#3| (-630 (-568))) (|has| |#3| (-1047)))) (|has| |#1| (-148)) +(|has| |#1| (-150)) ((($ $) . T)) -(-2318 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-170)) (|has| |#1| (-359)) (|has| |#1| (-471)) (|has| |#1| (-708)) (|has| |#1| (-887 (-1153))) (|has| |#1| (-1039)) (|has| |#1| (-1094)) (|has| |#1| (-1082))) -(|has| |#1| (-550)) +(-2198 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-478)) (|has| |#1| (-716)) (|has| |#1| (-895 (-1161))) (|has| |#1| (-1047)) (|has| |#1| (-1102)) (|has| |#1| (-1090))) +(|has| |#1| (-558)) (((|#2|) . T)) -((((-560)) . T)) -((((-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) . T)) +((((-568)) . T)) +((((-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) . T)) (((|#1|) . T)) -(-2318 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-170)) (|has| |#1| (-550)) (|has| |#1| (-1039))) -((((-573 |#1|)) . T)) +(-2198 (|has| |#1| (-148)) (|has| |#1| (-150)) (|has| |#1| (-172)) (|has| |#1| (-558)) (|has| |#1| (-1047))) +((((-581 |#1|)) . T)) ((($) . T)) (((|#1| (-64 |#1|) (-64 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) ((($) . T)) (((|#1|) . T)) -((((-842)) . T)) -(((|#2|) |has| |#2| (-6 (-4507 "*")))) +((((-850)) . T)) +(((|#2|) |has| |#2| (-6 (-4521 "*")))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-403 (-560))) |has| |#2| (-1029 (-403 (-560)))) (((-560)) |has| |#2| (-1029 (-560))) ((|#2|) . T) (((-844 |#1|)) . T)) -((($) . T) (((-125 |#1|)) . T) (((-403 (-560))) . T)) -((((-1105 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-560)) |has| |#1| (-1029 (-560))) (((-403 (-560))) |has| |#1| (-1029 (-403 (-560))))) -((((-1149 |#1|)) . T) (((-1067)) . T) ((|#1|) . T) (((-560)) |has| |#1| (-1029 (-560))) (((-403 (-560))) |has| |#1| (-1029 (-403 (-560))))) -((((-1105 |#1| (-1153))) . T) (((-1071 (-1153))) . T) ((|#1|) . T) (((-560)) |has| |#1| (-1029 (-560))) (((-403 (-560))) |has| |#1| (-1029 (-403 (-560)))) (((-1153)) . T)) -(|has| |#1| (-1082)) +((((-409 (-568))) |has| |#2| (-1037 (-409 (-568)))) (((-568)) |has| |#2| (-1037 (-568))) ((|#2|) . T) (((-852 |#1|)) . T)) +((($) . T) (((-125 |#1|)) . T) (((-409 (-568))) . T)) +((((-1113 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-568)) |has| |#1| (-1037 (-568))) (((-409 (-568))) |has| |#1| (-1037 (-409 (-568))))) +((((-1157 |#1|)) . T) (((-1075)) . T) ((|#1|) . T) (((-568)) |has| |#1| (-1037 (-568))) (((-409 (-568))) |has| |#1| (-1037 (-409 (-568))))) +((((-1113 |#1| (-1161))) . T) (((-1079 (-1161))) . T) ((|#1|) . T) (((-568)) |has| |#1| (-1037 (-568))) (((-409 (-568))) |has| |#1| (-1037 (-409 (-568)))) (((-1161)) . T)) +(|has| |#1| (-1090)) ((($) . T)) -(|has| |#1| (-1082)) -((((-560)) -12 (|has| |#1| (-873 (-560))) (|has| |#2| (-873 (-560)))) (((-375)) -12 (|has| |#1| (-873 (-375))) (|has| |#2| (-873 (-375))))) +(|has| |#1| (-1090)) +((((-568)) -12 (|has| |#1| (-881 (-568))) (|has| |#2| (-881 (-568)))) (((-381)) -12 (|has| |#1| (-881 (-381))) (|has| |#2| (-881 (-381))))) (((|#1| |#2|) . T)) -((((-1153) |#1|) . T)) +((((-1161) |#1|) . T)) (((|#4|) . T)) (((|#1|) . T)) -(-2318 (|has| |#1| (-359)) (|has| |#1| (-344))) -((((-403 (-560))) |has| |#1| (-1029 (-403 (-560)))) (((-560)) |has| |#1| (-1029 (-560))) ((|#1|) . T)) -((((-1153) (-57)) . T)) -((((-842)) . T)) -(-2318 (|has| |#2| (-25)) (|has| |#2| (-137)) (|has| |#2| (-170)) (|has| |#2| (-359)) (|has| |#2| (-364)) (|has| |#2| (-708)) (|has| |#2| (-780)) (|has| |#2| (-832)) (|has| |#2| (-1039)) (|has| |#2| (-1082))) -((($) . T) ((|#1|) . T) (((-403 (-560))) |has| |#1| (-43 (-403 (-560))))) -((((-1220 |#2| |#3| |#4|) (-308 |#2| |#3| |#4|)) . T)) -((((-1221 |#1| |#2| |#3| |#4|) (-1221 |#1| |#2| |#3| |#4|)) . T) (((-403 (-560)) (-403 (-560))) . T) (($ $) . T)) -(((|#1| |#1|) |has| |#1| (-170)) (((-403 (-560)) (-403 (-560))) |has| |#1| (-550)) (($ $) |has| |#1| (-550))) -(((|#1|) . T) (($) . T) (((-403 (-560))) . T)) -(|has| |#1| (-896)) -(((|#1| $) |has| |#1| (-276 |#1| |#1|))) -((((-1221 |#1| |#2| |#3| |#4|)) . T) (((-403 (-560))) . T) (($) . T)) -(((|#1|) |has| |#1| (-170)) (((-403 (-560))) |has| |#1| (-550)) (($) |has| |#1| (-550))) -(|has| |#1| (-359)) -(|has| |#1| (-146)) +(-2198 (|has| |#1| (-365)) (|has| |#1| (-350))) +((((-409 (-568))) |has| |#1| (-1037 (-409 (-568)))) (((-568)) |has| |#1| (-1037 (-568))) ((|#1|) . T)) +((((-1161) (-57)) . T)) +((((-850)) . T)) +(-2198 (|has| |#2| (-25)) (|has| |#2| (-137)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-716)) (|has| |#2| (-788)) (|has| |#2| (-840)) (|has| |#2| (-1047)) (|has| |#2| (-1090))) +((($) . T) ((|#1|) . T) (((-409 (-568))) |has| |#1| (-43 (-409 (-568))))) +((((-1228 |#2| |#3| |#4|) (-314 |#2| |#3| |#4|)) . T)) +((((-1229 |#1| |#2| |#3| |#4|) (-1229 |#1| |#2| |#3| |#4|)) . T) (((-409 (-568)) (-409 (-568))) . T) (($ $) . T)) +(((|#1| |#1|) |has| |#1| (-172)) (((-409 (-568)) (-409 (-568))) |has| |#1| (-558)) (($ $) |has| |#1| (-558))) +(((|#1|) . T) (($) . T) (((-409 (-568))) . T)) +(|has| |#1| (-904)) +(((|#1| $) |has| |#1| (-281 |#1| |#1|))) +((((-1229 |#1| |#2| |#3| |#4|)) . T) (((-409 (-568))) . T) (($) . T)) +(((|#1|) |has| |#1| (-172)) (((-409 (-568))) |has| |#1| (-558)) (($) |has| |#1| (-558))) +(|has| |#1| (-365)) (|has| |#1| (-148)) +(|has| |#1| (-150)) +(|has| |#1| (-150)) (|has| |#1| (-148)) -(|has| |#1| (-146)) -((((-403 (-560))) . T) (($) . T)) -(((|#3|) |has| |#3| (-359))) -(|has| |#1| (-15 * (|#1| (-755) |#1|))) -(((|#2|) -12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082)))) -((((-1153)) . T)) -(((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082)))) -(-2318 (|has| |#2| (-359)) (|has| |#2| (-447)) (|has| |#2| (-896))) +((((-409 (-568))) . T) (($) . T)) +(((|#3|) |has| |#3| (-365))) +(|has| |#1| (-15 * (|#1| (-763) |#1|))) +(((|#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090)))) +((((-1161)) . T)) +(((|#1|) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090)))) +(-2198 (|has| |#2| (-365)) (|has| |#2| (-453)) (|has| |#2| (-904))) (((|#2| |#3|) . T)) -(-2318 (|has| |#2| (-359)) (|has| |#2| (-447)) (|has| |#2| (-550)) (|has| |#2| (-896))) -(((|#1| (-526 |#2|)) . T)) -(((|#1| (-755)) . T)) -(((|#1| (-526 (-1071 (-1153)))) . T)) -(((|#1|) |has| |#1| (-170))) -(((|#1|) . T)) -(|has| |#2| (-896)) -(-2318 (|has| |#2| (-780)) (|has| |#2| (-832))) -((((-842)) . T)) -((($ $) . T) (((-1220 |#2| |#3| |#4|) (-1220 |#2| |#3| |#4|)) . T) (((-403 (-560)) (-403 (-560))) |has| (-1220 |#2| |#3| |#4|) (-43 (-403 (-560))))) -((((-897 |#1|)) . T)) -(-12 (|has| |#1| (-359)) (|has| |#2| (-807))) -((($) . T) (((-403 (-560))) . T)) -((($) . T)) -((($) . T)) -(|has| |#1| (-359)) -(-2318 (|has| |#1| (-296)) (|has| |#1| (-359)) (|has| |#1| (-344)) (|has| |#1| (-550))) -(|has| |#1| (-359)) -((($) . T) (((-1220 |#2| |#3| |#4|)) . T) (((-403 (-560))) |has| (-1220 |#2| |#3| |#4|) (-43 (-403 (-560))))) +(-2198 (|has| |#2| (-365)) (|has| |#2| (-453)) (|has| |#2| (-558)) (|has| |#2| (-904))) +(((|#1| (-534 |#2|)) . T)) +(((|#1| (-763)) . T)) +(((|#1| (-534 (-1079 (-1161)))) . T)) +(((|#1|) |has| |#1| (-172))) +(((|#1|) . T)) +(|has| |#2| (-904)) +(-2198 (|has| |#2| (-788)) (|has| |#2| (-840))) +((((-850)) . T)) +((($ $) . T) (((-1228 |#2| |#3| |#4|) (-1228 |#2| |#3| |#4|)) . T) (((-409 (-568)) (-409 (-568))) |has| (-1228 |#2| |#3| |#4|) (-43 (-409 (-568))))) +((((-905 |#1|)) . T)) +(-12 (|has| |#1| (-365)) (|has| |#2| (-815))) +((($) . T) (((-409 (-568))) . T)) +((($) . T)) +((($) . T)) +(|has| |#1| (-365)) +(-2198 (|has| |#1| (-301)) (|has| |#1| (-365)) (|has| |#1| (-350)) (|has| |#1| (-558))) +(|has| |#1| (-365)) +((($) . T) (((-1228 |#2| |#3| |#4|)) . T) (((-409 (-568))) |has| (-1228 |#2| |#3| |#4|) (-43 (-409 (-568))))) (((|#1| |#2|) . T)) -(|has| |#2| (-550)) -((((-1151 |#1| |#2| |#3|)) |has| |#1| (-359))) -(-2318 (-12 (|has| |#1| (-296)) (|has| |#1| (-896))) (|has| |#1| (-359)) (|has| |#1| (-344))) -(-2318 (|has| |#1| (-887 (-1153))) (|has| |#1| (-1039))) -((((-560)) |has| |#1| (-622 (-560))) ((|#1|) . T)) +(|has| |#2| (-558)) +((((-1159 |#1| |#2| |#3|)) |has| |#1| (-365))) +(-2198 (-12 (|has| |#1| (-301)) (|has| |#1| (-904))) (|has| |#1| (-365)) (|has| |#1| (-350))) +(-2198 (|has| |#1| (-895 (-1161))) (|has| |#1| (-1047))) +((((-568)) |has| |#1| (-630 (-568))) ((|#1|) . T)) (((|#1| |#2|) . T)) -((((-842)) . T)) -((((-842)) . T)) +((((-850)) . T)) +((((-850)) . T)) ((((-121)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((($ $) -2318 (|has| |#1| (-170)) (|has| |#1| (-550))) ((|#1| |#1|) . T) (((-403 (-560)) (-403 (-560))) |has| |#1| (-43 (-403 (-560))))) -((((-403 |#2|)) . T) (((-403 (-560))) . T) (($) . T)) +((($ $) -2198 (|has| |#1| (-172)) (|has| |#1| (-558))) ((|#1| |#1|) . T) (((-409 (-568)) (-409 (-568))) |has| |#1| (-43 (-409 (-568))))) +((((-409 |#2|)) . T) (((-409 (-568))) . T) (($) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(((|#1| (-526 (-844 |#2|)) (-844 |#2|) (-767 |#1| (-844 |#2|))) . T)) -(|has| |#2| (-359)) -((($) -2318 (|has| |#1| (-170)) (|has| |#1| (-550))) ((|#1|) . T) (((-403 (-560))) |has| |#1| (-43 (-403 (-560))))) -(|has| |#1| (-834)) +(((|#1| (-534 (-852 |#2|)) (-852 |#2|) (-775 |#1| (-852 |#2|))) . T)) +(|has| |#2| (-365)) +((($) -2198 (|has| |#1| (-172)) (|has| |#1| (-558))) ((|#1|) . T) (((-409 (-568))) |has| |#1| (-43 (-409 (-568))))) +(|has| |#1| (-842)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-842)) . T)) -(|has| |#1| (-1082)) +((((-850)) . T)) +(|has| |#1| (-1090)) (((|#4|) . T)) (((|#4|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) -((((-403 $) (-403 $)) |has| |#1| (-550)) (($ $) . T) ((|#1| |#1|) . T)) -(((|#2| |#2|) |has| |#2| (-170)) (((-403 (-560)) (-403 (-560))) |has| |#2| (-550)) (($ $) . T)) -(|has| |#2| (-807)) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) +((((-409 $) (-409 $)) |has| |#1| (-558)) (($ $) . T) ((|#1| |#1|) . T)) +(((|#2| |#2|) |has| |#2| (-172)) (((-409 (-568)) (-409 (-568))) |has| |#2| (-558)) (($ $) . T)) +(|has| |#2| (-815)) (((|#4|) . T)) ((($) . T)) -(((|#2|) |has| |#2| (-170)) (((-403 (-560))) |has| |#2| (-550)) (($) . T)) -((((-842)) . T)) -(((|#1| (-526 (-1153))) . T)) +(((|#2|) |has| |#2| (-172)) (((-409 (-568))) |has| |#2| (-558)) (($) . T)) +((((-850)) . T)) +(((|#1| (-534 (-1161))) . T)) ((($ $) . T)) ((($) . T)) -(((|#1|) |has| |#1| (-170))) -((((-842)) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082)))) -(((|#2|) -2318 (|has| |#2| (-6 (-4507 "*"))) (|has| |#2| (-170)))) -(-2318 (|has| |#2| (-447)) (|has| |#2| (-550)) (|has| |#2| (-896))) -(-2318 (|has| |#1| (-447)) (|has| |#1| (-550)) (|has| |#1| (-896))) -(|has| |#2| (-834)) -(|has| |#2| (-896)) -(|has| |#1| (-896)) -(((|#2|) |has| |#2| (-170))) -((((-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) . T)) -((((-1227 |#1| |#2| |#3|)) |has| |#1| (-359))) -((((-842)) . T)) -((((-842)) . T)) -((((-533)) . T) (((-560)) . T) (((-879 (-560))) . T) (((-375)) . T) (((-213)) . T)) +(((|#1|) |has| |#1| (-172))) +((((-850)) . T)) +(((|#4| |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090)))) +(((|#2|) -2198 (|has| |#2| (-6 (-4521 "*"))) (|has| |#2| (-172)))) +(-2198 (|has| |#2| (-453)) (|has| |#2| (-558)) (|has| |#2| (-904))) +(-2198 (|has| |#1| (-453)) (|has| |#1| (-558)) (|has| |#1| (-904))) +(|has| |#2| (-842)) +(|has| |#2| (-904)) +(|has| |#1| (-904)) +(((|#2|) |has| |#2| (-172))) +((((-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) . T)) +((((-1235 |#1| |#2| |#3|)) |has| |#1| (-365))) +((((-850)) . T)) +((((-850)) . T)) +((((-541)) . T) (((-568)) . T) (((-887 (-568))) . T) (((-381)) . T) (((-215)) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) . T)) -((((-2 (|:| -3655 (-1135)) (|:| -2371 (-57)))) . T)) +((((-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) . T)) +((((-2 (|:| -3649 (-1143)) (|:| -4083 (-57)))) . T)) (((|#1|) . T)) -((((-852)) . T) (((-560)) . T) (((-403 (-560))) . T)) -((((-403 (-560))) . T) (((-560)) . T)) -((((-842)) . T)) -((((-842)) . T)) +((((-860)) . T) (((-568)) . T) (((-409 (-568))) . T)) +((((-409 (-568))) . T) (((-568)) . T)) +((((-850)) . T)) +((((-850)) . T)) (((|#1| |#2|) . T)) -(((|#1| (-403 (-560))) . T)) +(((|#1| (-409 (-568))) . T)) (((|#1|) . T)) -(-2318 (|has| |#1| (-280)) (|has| |#1| (-359))) -((((-145)) . T)) -((((-403 |#2|)) . T) (((-403 (-560))) . T) (($) . T)) -(|has| |#1| (-832)) -((((-842)) . T)) -((((-842)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) -(((|#1| |#1| |#2| (-228 |#1| |#2|) (-228 |#1| |#2|)) . T)) +(-2198 (|has| |#1| (-285)) (|has| |#1| (-365))) +((((-147)) . T)) +((((-409 |#2|)) . T) (((-409 (-568))) . T) (($) . T)) +(|has| |#1| (-840)) +((((-850)) . T)) +((((-850)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) +(((|#1| |#1| |#2| (-232 |#1| |#2|) (-232 |#1| |#2|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-842)) . T)) +((((-850)) . T)) (((|#1| |#2|) . T)) -((((-403 (-560))) . T) (($) . T)) -((((-842)) . T)) -((((-842)) . T)) -((((-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) . T)) +((((-409 (-568))) . T) (($) . T)) +((((-850)) . T)) +((((-850)) . T)) +((((-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) . T)) (((|#2| |#2|) . T) ((|#1| |#1|) . T)) -((((-842)) . T)) -((((-842)) . T)) -((((-533)) |has| |#1| (-601 (-533))) (((-879 (-560))) |has| |#1| (-601 (-879 (-560)))) (((-879 (-375))) |has| |#1| (-601 (-879 (-375))))) -((((-1153) (-57)) . T)) -(((|#2|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-842)) . T)) -((((-626 (-145))) . T) (((-1135)) . T)) -((((-2 (|:| -3655 (-1135)) (|:| -2371 |#1|))) . T)) -((((-1153) |#1|) |has| |#1| (-515 (-1153) |#1|)) ((|#1| |#1|) |has| |#1| (-298 |#1|))) -(|has| |#1| (-834)) -((((-842)) . T)) -((((-533)) |has| |#1| (-601 (-533)))) -((((-842)) . T)) -(((|#2|) |has| |#2| (-359))) -((((-842)) . T)) -((((-533)) |has| |#4| (-601 (-533)))) -((((-842)) . T) (((-626 |#4|)) . T)) -(((|#2|) . T)) -((((-897 |#1|)) . T) (((-403 (-560))) . T) (($) . T)) -(-2318 (|has| |#4| (-170)) (|has| |#4| (-708)) (|has| |#4| (-832)) (|has| |#4| (-1039))) -(-2318 (|has| |#3| (-170)) (|has| |#3| (-708)) (|has| |#3| (-832)) (|has| |#3| (-1039))) -((((-1153) (-57)) . T)) -(-2318 (|has| |#1| (-447)) (|has| |#1| (-550)) (|has| |#1| (-896))) -(-2318 (|has| |#1| (-359)) (|has| |#1| (-447)) (|has| |#1| (-550)) (|has| |#1| (-896))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(-2318 (|has| |#2| (-25)) (|has| |#2| (-137)) (|has| |#2| (-170)) (|has| |#2| (-359)) (|has| |#2| (-780)) (|has| |#2| (-832)) (|has| |#2| (-1039))) -(-2318 (|has| |#2| (-170)) (|has| |#2| (-359)) (|has| |#2| (-832)) (|has| |#2| (-1039))) -(|has| |#1| (-896)) -(|has| |#1| (-896)) -((((-2 (|:| |k| (-560)) (|:| |c| |#1|))) . T)) -(((|#2|) . T)) -(((|#1|) . T)) -((((-842)) . T)) -((((-560)) . T)) -((((-403 (-560)) (-403 (-560))) . T) (($ $) . T)) -((((-403 (-560))) . T) (($) . T)) -(((|#1| (-403 (-560)) (-1067)) . T)) -(|has| |#1| (-1082)) -(|has| |#1| (-550)) -(|has| |#1| (-43 (-403 (-560)))) -(|has| |#1| (-43 (-403 (-560)))) -(|has| |#1| (-43 (-403 (-560)))) -(|has| |#1| (-43 (-403 (-560)))) -(-2318 (|has| |#1| (-359)) (|has| |#1| (-447)) (|has| |#1| (-550)) (|has| |#1| (-896))) -(|has| |#1| (-807)) -((((-842)) |has| |#1| (-1082))) -((((-897 |#1|) (-897 |#1|)) . T) (($ $) . T) (((-403 (-560)) (-403 (-560))) . T)) -((((-403 |#2|)) . T)) -((((-842)) . T)) -(|has| |#1| (-832)) -((((-842)) |has| |#1| (-1082))) -(((|#1| |#1|) . T) (((-403 (-560)) (-403 (-560))) . T) (((-560) (-560)) . T) (($ $) . T)) -((((-897 |#1|)) . T) (($) . T) (((-403 (-560))) . T)) -(((|#2|) |has| |#2| (-1039)) (((-560)) -12 (|has| |#2| (-622 (-560))) (|has| |#2| (-1039)))) +((((-850)) . T)) +((((-850)) . T)) +((((-541)) |has| |#1| (-609 (-541))) (((-887 (-568))) |has| |#1| (-609 (-887 (-568)))) (((-887 (-381))) |has| |#1| (-609 (-887 (-381))))) +((((-1161) (-57)) . T)) +(((|#2|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-850)) . T)) +((((-634 (-147))) . T) (((-1143)) . T)) +((((-2 (|:| -3649 (-1143)) (|:| -4083 |#1|))) . T)) +((((-1161) |#1|) |has| |#1| (-523 (-1161) |#1|)) ((|#1| |#1|) |has| |#1| (-303 |#1|))) +(|has| |#1| (-842)) +((((-850)) . T)) +((((-541)) |has| |#1| (-609 (-541)))) +((((-850)) . T)) +(((|#2|) |has| |#2| (-365))) +((((-850)) . T)) +((((-541)) |has| |#4| (-609 (-541)))) +((((-850)) . T) (((-634 |#4|)) . T)) +(((|#2|) . T)) +((((-905 |#1|)) . T) (((-409 (-568))) . T) (($) . T)) +(-2198 (|has| |#4| (-172)) (|has| |#4| (-716)) (|has| |#4| (-840)) (|has| |#4| (-1047))) +(-2198 (|has| |#3| (-172)) (|has| |#3| (-716)) (|has| |#3| (-840)) (|has| |#3| (-1047))) +((((-1161) (-57)) . T)) +(-2198 (|has| |#1| (-453)) (|has| |#1| (-558)) (|has| |#1| (-904))) +(-2198 (|has| |#1| (-365)) (|has| |#1| (-453)) (|has| |#1| (-558)) (|has| |#1| (-904))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(-2198 (|has| |#2| (-25)) (|has| |#2| (-137)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-788)) (|has| |#2| (-840)) (|has| |#2| (-1047))) +(-2198 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-840)) (|has| |#2| (-1047))) +(|has| |#1| (-904)) +(|has| |#1| (-904)) +((((-2 (|:| |k| (-568)) (|:| |c| |#1|))) . T)) +(((|#2|) . T)) +(((|#1|) . T)) +((((-850)) . T)) +((((-568)) . T)) +((((-409 (-568)) (-409 (-568))) . T) (($ $) . T)) +((((-409 (-568))) . T) (($) . T)) +(((|#1| (-409 (-568)) (-1075)) . T)) +(|has| |#1| (-1090)) +(|has| |#1| (-558)) +(|has| |#1| (-43 (-409 (-568)))) +(|has| |#1| (-43 (-409 (-568)))) +(|has| |#1| (-43 (-409 (-568)))) +(|has| |#1| (-43 (-409 (-568)))) +(-2198 (|has| |#1| (-365)) (|has| |#1| (-453)) (|has| |#1| (-558)) (|has| |#1| (-904))) +(|has| |#1| (-815)) +((((-850)) |has| |#1| (-1090))) +((((-905 |#1|) (-905 |#1|)) . T) (($ $) . T) (((-409 (-568)) (-409 (-568))) . T)) +((((-409 |#2|)) . T)) +((((-850)) . T)) +(|has| |#1| (-840)) +((((-850)) |has| |#1| (-1090))) +(((|#1| |#1|) . T) (((-409 (-568)) (-409 (-568))) . T) (((-568) (-568)) . T) (($ $) . T)) +((((-905 |#1|)) . T) (($) . T) (((-409 (-568))) . T)) +(|has| |#1| (-172)) +(((|#2|) |has| |#2| (-1047)) (((-568)) -12 (|has| |#2| (-630 (-568))) (|has| |#2| (-1047)))) +(|has| |#2| (-150)) (|has| |#2| (-148)) -(|has| |#2| (-146)) -(((|#1|) . T) (((-403 (-560))) . T) (((-560)) . T) (($) . T)) +(((|#1|) . T) (((-409 (-568))) . T) (((-568)) . T) (($) . T)) (((|#1| |#2| |#3| |#4|) . T)) +(|has| |#1| (-150)) (|has| |#1| (-148)) -(|has| |#1| (-146)) -(((|#2|) . T)) -(-2318 (|has| |#1| (-146)) (|has| |#1| (-364))) -(-2318 (|has| |#1| (-146)) (|has| |#1| (-364))) -(-2318 (|has| |#1| (-146)) (|has| |#1| (-364))) -((((-2 (|:| -3655 (-1153)) (|:| -2371 (-57)))) . T)) -((((-57)) . T) (((-2 (|:| -3655 (-1153)) (|:| -2371 (-57)))) . T)) -(|has| |#1| (-344)) -((((-560)) . T)) -((((-842)) . T)) -((((-842)) . T)) -((((-533)) |has| |#2| (-601 (-533))) (((-879 (-560))) |has| |#2| (-601 (-879 (-560)))) (((-879 (-375))) |has| |#2| (-601 (-879 (-375))))) -((((-1221 |#1| |#2| |#3| |#4|) $) |has| (-1221 |#1| |#2| |#3| |#4|) (-276 (-1221 |#1| |#2| |#3| |#4|) (-1221 |#1| |#2| |#3| |#4|)))) -(|has| |#1| (-359)) -((((-1067) |#1|) . T) (((-1067) $) . T) (($ $) . T)) -(-2318 (|has| |#1| (-359)) (|has| |#1| (-344))) -((((-403 (-560)) (-403 (-560))) . T) (((-680) (-680)) . T) (($ $) . T)) -((((-304 |#1|)) . T) (($) . T)) -(((|#1|) . T) (((-403 (-560))) |has| |#1| (-359))) -(|has| |#1| (-1082)) -(((|#1|) . T)) -(((|#1|) -2318 (|has| |#2| (-363 |#1|)) (|has| |#2| (-413 |#1|)))) -(((|#1|) -2318 (|has| |#2| (-363 |#1|)) (|has| |#2| (-413 |#1|)))) -(((|#2|) . T)) -((((-403 (-560))) . T) (((-680)) . T) (($) . T)) -(|has| |#1| (-43 (-403 (-560)))) +(((|#2|) . T)) +(-2198 (|has| |#1| (-148)) (|has| |#1| (-370))) +(-2198 (|has| |#1| (-148)) (|has| |#1| (-370))) +(-2198 (|has| |#1| (-148)) (|has| |#1| (-370))) +((((-2 (|:| -3649 (-1161)) (|:| -4083 (-57)))) . T)) +((((-57)) . T) (((-2 (|:| -3649 (-1161)) (|:| -4083 (-57)))) . T)) +(|has| |#1| (-350)) +((((-568)) . T)) +((((-850)) . T)) +((((-850)) . T)) +((((-541)) |has| |#2| (-609 (-541))) (((-887 (-568))) |has| |#2| (-609 (-887 (-568)))) (((-887 (-381))) |has| |#2| (-609 (-887 (-381))))) +((((-1229 |#1| |#2| |#3| |#4|) $) |has| (-1229 |#1| |#2| |#3| |#4|) (-281 (-1229 |#1| |#2| |#3| |#4|) (-1229 |#1| |#2| |#3| |#4|)))) +(|has| |#1| (-365)) +((((-1075) |#1|) . T) (((-1075) $) . T) (($ $) . T)) +(-2198 (|has| |#1| (-365)) (|has| |#1| (-350))) +((((-409 (-568)) (-409 (-568))) . T) (((-688) (-688)) . T) (($ $) . T)) +((((-310 |#1|)) . T) (($) . T)) +(((|#1|) . T) (((-409 (-568))) |has| |#1| (-365))) +(|has| |#1| (-1090)) +(((|#1|) . T)) +(((|#1|) -2198 (|has| |#2| (-369 |#1|)) (|has| |#2| (-419 |#1|)))) +(((|#1|) -2198 (|has| |#2| (-369 |#1|)) (|has| |#2| (-419 |#1|)))) +(((|#2|) . T)) +((((-409 (-568))) . T) (((-688)) . T) (($) . T)) +(|has| |#1| (-43 (-409 (-568)))) (((|#3| |#3|) . T)) -(|has| |#2| (-221)) -((((-844 |#1|)) . T)) -((((-1153)) |has| |#1| (-887 (-1153))) ((|#3|) . T)) -(-12 (|has| |#1| (-359)) (|has| |#2| (-1013))) -((((-1151 |#1| |#2| |#3|)) |has| |#1| (-359))) -((((-842)) . T)) -(((|#1| (-755)) . T)) -(|has| |#1| (-359)) -(|has| |#1| (-359)) -((((-403 (-560))) . T) (($) . T) (((-403 |#1|)) . T) ((|#1|) . T)) -((((-560)) . T)) -(|has| |#1| (-1082)) +(|has| |#2| (-225)) +((((-852 |#1|)) . T)) +((((-1161)) |has| |#1| (-895 (-1161))) ((|#3|) . T)) +(-12 (|has| |#1| (-365)) (|has| |#2| (-1021))) +((((-1159 |#1| |#2| |#3|)) |has| |#1| (-365))) +((((-850)) . T)) +(((|#1| (-763)) . T)) +(|has| |#1| (-365)) +(|has| |#1| (-365)) +((((-409 (-568))) . T) (($) . T) (((-409 |#1|)) . T) ((|#1|) . T)) +((((-568)) . T)) +(|has| |#1| (-1090)) (((|#3|) . T)) (((|#2|) . T)) (((|#1|) . T)) -((((-560)) . T)) -(-2318 (|has| |#1| (-170)) (|has| |#1| (-359)) (|has| |#1| (-447)) (|has| |#1| (-550)) (|has| |#1| (-896))) -(((|#2|) . T) (((-560)) |has| |#2| (-622 (-560)))) +((((-568)) . T)) +(-2198 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-453)) (|has| |#1| (-558)) (|has| |#1| (-904))) +(((|#2|) . T) (((-568)) |has| |#2| (-630 (-568)))) (((|#1| |#2|) . T)) ((($) . T)) -((((-573 |#1|)) . T) (((-403 (-560))) . T) (($) . T)) -((($) . T) (((-403 (-560))) . T)) +((((-581 |#1|)) . T) (((-409 (-568))) . T) (($) . T)) +((($) . T) (((-409 (-568))) . T)) ((($ $) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T) (($) . T)) -(((|#1| (-1236 |#1|) (-1236 |#1|)) . T)) +(((|#1| (-1244 |#1|) (-1244 |#1|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-842)) . T)) -((((-842)) . T)) -((((-125 |#1|) (-125 |#1|)) . T) (((-403 (-560)) (-403 (-560))) . T) (($ $) . T)) -((((-403 (-560))) |has| |#2| (-1029 (-403 (-560)))) (((-560)) |has| |#2| (-1029 (-560))) ((|#2|) . T) (((-844 |#1|)) . T)) -((((-1105 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-560)) |has| |#1| (-1029 (-560))) (((-403 (-560))) |has| |#1| (-1029 (-403 (-560)))) ((|#2|) . T)) +((((-850)) . T)) +((((-850)) . T)) +((((-125 |#1|) (-125 |#1|)) . T) (((-409 (-568)) (-409 (-568))) . T) (($ $) . T)) +((((-409 (-568))) |has| |#2| (-1037 (-409 (-568)))) (((-568)) |has| |#2| (-1037 (-568))) ((|#2|) . T) (((-852 |#1|)) . T)) +((((-1113 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-568)) |has| |#1| (-1037 (-568))) (((-409 (-568))) |has| |#1| (-1037 (-409 (-568)))) ((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((($ $) . T)) -((((-655 |#1|)) . T)) -((($) . T) (((-403 (-560))) |has| |#2| (-43 (-403 (-560)))) ((|#2|) . T)) -((((-125 |#1|)) . T) (((-403 (-560))) . T) (($) . T)) -((((-560)) -12 (|has| |#1| (-873 (-560))) (|has| |#3| (-873 (-560)))) (((-375)) -12 (|has| |#1| (-873 (-375))) (|has| |#3| (-873 (-375))))) +((((-663 |#1|)) . T)) +((($) . T) (((-409 (-568))) |has| |#2| (-43 (-409 (-568)))) ((|#2|) . T)) +((((-125 |#1|)) . T) (((-409 (-568))) . T) (($) . T)) +((((-568)) -12 (|has| |#1| (-881 (-568))) (|has| |#3| (-881 (-568)))) (((-381)) -12 (|has| |#1| (-881 (-381))) (|has| |#3| (-881 (-381))))) (((|#2|) . T) ((|#6|) . T)) -(((|#1|) . T) (((-403 (-560))) |has| |#1| (-43 (-403 (-560)))) (($) . T)) -((((-145)) . T)) +(((|#1|) . T) (((-409 (-568))) |has| |#1| (-43 (-409 (-568)))) (($) . T)) +((((-147)) . T)) ((($) . T)) -((($) . T) ((|#1|) . T) (((-403 (-560))) |has| |#1| (-43 (-403 (-560))))) -((($) . T) ((|#1|) . T) (((-403 (-560))) |has| |#1| (-43 (-403 (-560))))) +((($) . T) ((|#1|) . T) (((-409 (-568))) |has| |#1| (-43 (-409 (-568))))) +((($) . T) ((|#1|) . T) (((-409 (-568))) |has| |#1| (-43 (-409 (-568))))) (((|#1|) . T)) -(|has| |#2| (-896)) -(|has| |#1| (-896)) -(|has| |#1| (-896)) +(|has| |#2| (-904)) +(|has| |#1| (-904)) +(|has| |#1| (-904)) (((|#4|) . T)) -(|has| |#2| (-1013)) +(|has| |#2| (-1021)) ((($) . T)) -(|has| |#1| (-896)) -((((-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) . T)) -((($ $) -2318 (|has| |#1| (-170)) (|has| |#1| (-359)) (|has| |#1| (-447)) (|has| |#1| (-550)) (|has| |#1| (-896))) ((|#1| |#1|) . T) (((-403 (-560)) (-403 (-560))) |has| |#1| (-43 (-403 (-560))))) -((((-560)) . T)) +(|has| |#1| (-904)) +((((-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) . T)) +((($ $) -2198 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-453)) (|has| |#1| (-558)) (|has| |#1| (-904))) ((|#1| |#1|) . T) (((-409 (-568)) (-409 (-568))) |has| |#1| (-43 (-409 (-568))))) +((((-568)) . T)) ((($) . T)) (((|#2|) . T)) (((|#1|) . T)) -((($) -2318 (|has| |#1| (-170)) (|has| |#1| (-359)) (|has| |#1| (-447)) (|has| |#1| (-550)) (|has| |#1| (-896))) ((|#1|) . T) (((-403 (-560))) |has| |#1| (-43 (-403 (-560))))) +((($) -2198 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-453)) (|has| |#1| (-558)) (|has| |#1| (-904))) ((|#1|) . T) (((-409 (-568))) |has| |#1| (-43 (-409 (-568))))) (((|#1|) . T) (($) . T)) ((($) . T)) -(|has| |#1| (-359)) -((((-897 |#1|)) . T)) -((($) -2318 (|has| |#1| (-359)) (|has| |#1| (-447)) (|has| |#1| (-550)) (|has| |#1| (-896))) ((|#1|) |has| |#1| (-170)) (((-403 (-560))) |has| |#1| (-43 (-403 (-560))))) -((($ $) . T) (((-403 (-560)) (-403 (-560))) . T)) -(-2318 (|has| |#1| (-364)) (|has| |#1| (-834))) -(((|#1|) . T)) -((((-842)) . T)) -((((-1153)) -12 (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))) (|has| |#1| (-887 (-1153))))) -((((-403 |#2|) |#3|) . T)) -((((-1153)) -12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-887 (-1153))))) -((($) . T) (((-403 (-560))) . T)) -((((-755) |#1|) . T)) -(((|#2| (-228 (-2271 |#1|) (-755))) . T)) -(((|#1| (-526 |#3|)) . T)) -((((-403 (-560))) . T)) -(-2318 (|has| |#1| (-447)) (|has| |#1| (-550)) (|has| |#1| (-896))) -((((-842)) . T)) -((((-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (-2 (|:| -3655 (-1153)) (|:| -2371 (-57)))) |has| (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (-298 (-2 (|:| -3655 (-1153)) (|:| -2371 (-57)))))) -(|has| |#1| (-896)) -(|has| |#2| (-359)) -(-2318 (|has| |#2| (-137)) (|has| |#2| (-170)) (|has| |#2| (-359)) (|has| |#2| (-780)) (|has| |#2| (-832)) (|has| |#2| (-1039))) -(((|#1|) . T)) -((((-167 (-375))) . T) (((-213)) . T) (((-375)) . T)) -((((-842)) . T)) -((((-842)) . T)) -(((|#1|) . T)) -((((-375)) . T) (((-560)) . T)) -((((-403 (-560)) (-403 (-560))) . T) (($ $) . T)) +(|has| |#1| (-365)) +((((-905 |#1|)) . T)) +((($) -2198 (|has| |#1| (-365)) (|has| |#1| (-453)) (|has| |#1| (-558)) (|has| |#1| (-904))) ((|#1|) |has| |#1| (-172)) (((-409 (-568))) |has| |#1| (-43 (-409 (-568))))) +((($ $) . T) (((-409 (-568)) (-409 (-568))) . T)) +(-2198 (|has| |#1| (-370)) (|has| |#1| (-842))) +(((|#1|) . T)) +((((-850)) . T)) +((((-1161)) -12 (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))) (|has| |#1| (-895 (-1161))))) +((((-409 |#2|) |#3|) . T)) +((((-1161)) -12 (|has| |#1| (-15 * (|#1| (-568) |#1|))) (|has| |#1| (-895 (-1161))))) +((($) . T) (((-409 (-568))) . T)) +((((-763) |#1|) . T)) +(((|#2| (-232 (-1697 |#1|) (-763))) . T)) +(((|#1| (-534 |#3|)) . T)) +((((-409 (-568))) . T)) +(-2198 (|has| |#1| (-453)) (|has| |#1| (-558)) (|has| |#1| (-904))) +((((-850)) . T)) +((((-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (-2 (|:| -3649 (-1161)) (|:| -4083 (-57)))) |has| (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (-303 (-2 (|:| -3649 (-1161)) (|:| -4083 (-57)))))) +(|has| |#1| (-904)) +(|has| |#2| (-365)) +(-2198 (|has| |#2| (-137)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-788)) (|has| |#2| (-840)) (|has| |#2| (-1047))) +(((|#1|) . T)) +((((-169 (-381))) . T) (((-215)) . T) (((-381)) . T)) +((((-850)) . T)) +((((-850)) . T)) +(((|#1|) . T)) +((((-381)) . T) (((-568)) . T)) +((((-409 (-568)) (-409 (-568))) . T) (($ $) . T)) ((($ $) . T)) ((($ $) . T)) (((|#1| |#1|) . T)) -((((-842)) . T)) -(|has| |#1| (-550)) -((((-403 (-560))) . T) (($) . T)) -((($) . T)) -((($) . T)) -(|has| |#1| (-43 (-403 (-560)))) -(|has| |#1| (-43 (-403 (-560)))) -(|has| |#1| (-43 (-403 (-560)))) -(-2318 (|has| |#1| (-296)) (|has| |#1| (-359)) (|has| |#1| (-344))) -(|has| |#1| (-43 (-403 (-560)))) -(-12 (|has| |#1| (-542)) (|has| |#1| (-815))) -((((-842)) . T)) -((((-1153)) -2318 (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-887 (-1153)))) (-12 (|has| |#1| (-359)) (|has| |#2| (-887 (-1153)))))) -(|has| |#1| (-359)) -((((-1153)) -12 (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))) (|has| |#1| (-887 (-1153))))) -(|has| |#1| (-359)) -(((|#1|) . T)) -((((-403 (-560))) . T) (($) . T)) -((($) . T) (((-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((|#1|) . T)) -((((-560) |#1|) . T)) -(((|#1|) . T)) -(((|#2|) |has| |#1| (-359))) -(((|#2|) |has| |#1| (-359))) -((((-842)) . T)) -((((-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) . T)) -(((|#1|) . T)) -(((|#1|) |has| |#1| (-170))) -(((|#1|) . T)) -(((|#2|) . T) (((-1153)) -12 (|has| |#1| (-359)) (|has| |#2| (-1029 (-1153)))) (((-560)) -12 (|has| |#1| (-359)) (|has| |#2| (-1029 (-560)))) (((-403 (-560))) -12 (|has| |#1| (-359)) (|has| |#2| (-1029 (-560))))) -(((|#2|) . T)) -((((-1153) (-1221 |#1| |#2| |#3| |#4|)) |has| (-1221 |#1| |#2| |#3| |#4|) (-515 (-1153) (-1221 |#1| |#2| |#3| |#4|))) (((-1221 |#1| |#2| |#3| |#4|) (-1221 |#1| |#2| |#3| |#4|)) |has| (-1221 |#1| |#2| |#3| |#4|) (-298 (-1221 |#1| |#2| |#3| |#4|)))) -((((-599 $) $) . T) (($ $) . T)) -((((-167 (-213))) . T) (((-167 (-375))) . T) (((-1149 (-680))) . T) (((-879 (-375))) . T)) -((((-842)) . T)) -(|has| |#1| (-550)) -(|has| |#1| (-550)) -(|has| (-403 |#2|) (-221)) -(((|#1| (-403 (-560))) . T)) +((((-850)) . T)) +(|has| |#1| (-558)) +((((-409 (-568))) . T) (($) . T)) +((($) . T)) +((($) . T)) +(|has| |#1| (-43 (-409 (-568)))) +(|has| |#1| (-43 (-409 (-568)))) +(|has| |#1| (-43 (-409 (-568)))) +(-2198 (|has| |#1| (-301)) (|has| |#1| (-365)) (|has| |#1| (-350))) +(|has| |#1| (-43 (-409 (-568)))) +(-12 (|has| |#1| (-550)) (|has| |#1| (-823))) +((((-850)) . T)) +((((-1161)) -2198 (-12 (|has| |#1| (-15 * (|#1| (-568) |#1|))) (|has| |#1| (-895 (-1161)))) (-12 (|has| |#1| (-365)) (|has| |#2| (-895 (-1161)))))) +(|has| |#1| (-365)) +((((-1161)) -12 (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))) (|has| |#1| (-895 (-1161))))) +(|has| |#1| (-365)) +(((|#1|) . T)) +((((-409 (-568))) . T) (($) . T)) +((($) . T) (((-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((|#1|) . T)) +((((-568) |#1|) . T)) +(((|#1|) . T)) +(((|#2|) |has| |#1| (-365))) +(((|#2|) |has| |#1| (-365))) +((((-850)) . T)) +((((-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) . T)) +(((|#1|) . T)) +(((|#1|) |has| |#1| (-172))) +(((|#1|) . T)) +(((|#2|) . T) (((-1161)) -12 (|has| |#1| (-365)) (|has| |#2| (-1037 (-1161)))) (((-568)) -12 (|has| |#1| (-365)) (|has| |#2| (-1037 (-568)))) (((-409 (-568))) -12 (|has| |#1| (-365)) (|has| |#2| (-1037 (-568))))) +(((|#2|) . T)) +((((-1161) (-1229 |#1| |#2| |#3| |#4|)) |has| (-1229 |#1| |#2| |#3| |#4|) (-523 (-1161) (-1229 |#1| |#2| |#3| |#4|))) (((-1229 |#1| |#2| |#3| |#4|) (-1229 |#1| |#2| |#3| |#4|)) |has| (-1229 |#1| |#2| |#3| |#4|) (-303 (-1229 |#1| |#2| |#3| |#4|)))) +((((-607 $) $) . T) (($ $) . T)) +((((-169 (-215))) . T) (((-169 (-381))) . T) (((-1157 (-688))) . T) (((-887 (-381))) . T)) +((((-850)) . T)) +(|has| |#1| (-558)) +(|has| |#1| (-558)) +(|has| (-409 |#2|) (-225)) +(((|#1| (-409 (-568))) . T)) ((($ $) . T)) -(((|#1| (-560)) . T)) -((((-1153)) |has| |#2| (-887 (-1153)))) -((($) . T)) -((((-842)) . T)) -((((-403 (-560))) . T) (($) . T)) -(((|#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) -(|has| |#1| (-550)) -(((|#2|) |has| |#1| (-359))) -((((-375)) -12 (|has| |#1| (-359)) (|has| |#2| (-873 (-375)))) (((-560)) -12 (|has| |#1| (-359)) (|has| |#2| (-873 (-560))))) -(|has| |#1| (-359)) -(((|#1| |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) -(-2318 (|has| |#1| (-359)) (|has| |#1| (-550))) -(|has| |#1| (-359)) -(-2318 (|has| |#1| (-359)) (|has| |#1| (-550))) -(|has| |#1| (-359)) -(|has| |#1| (-550)) -(|has| |#1| (-550)) -(((|#4| |#4|) -12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082)))) +(((|#1| (-568)) . T)) +((((-1161)) |has| |#2| (-895 (-1161)))) +((($) . T)) +((((-850)) . T)) +((((-409 (-568))) . T) (($) . T)) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) +(|has| |#1| (-558)) +(((|#2|) |has| |#1| (-365))) +((((-381)) -12 (|has| |#1| (-365)) (|has| |#2| (-881 (-381)))) (((-568)) -12 (|has| |#1| (-365)) (|has| |#2| (-881 (-568))))) +(|has| |#1| (-365)) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) +(-2198 (|has| |#1| (-365)) (|has| |#1| (-558))) +(|has| |#1| (-365)) +(-2198 (|has| |#1| (-365)) (|has| |#1| (-558))) +(|has| |#1| (-365)) +(|has| |#1| (-558)) +(|has| |#1| (-558)) +(((|#4| |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090)))) (((|#3|) . T)) (((|#1|) . T)) -(|has| |#2| (-834)) -(-2318 (|has| |#2| (-137)) (|has| |#2| (-170)) (|has| |#2| (-359)) (|has| |#2| (-780)) (|has| |#2| (-832)) (|has| |#2| (-1039))) +(|has| |#2| (-842)) +(-2198 (|has| |#2| (-137)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-788)) (|has| |#2| (-840)) (|has| |#2| (-1047))) (((|#2|) . T)) (((|#2|) . T)) -(-2318 (|has| |#2| (-170)) (|has| |#2| (-708)) (|has| |#2| (-832)) (|has| |#2| (-1039))) -((((-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) . T)) -((((-2 (|:| -3655 (-1135)) (|:| -2371 |#1|))) . T)) -((((-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) . T)) -(|has| |#1| (-43 (-403 (-560)))) +(-2198 (|has| |#2| (-172)) (|has| |#2| (-716)) (|has| |#2| (-840)) (|has| |#2| (-1047))) +((((-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) . T)) +((((-2 (|:| -3649 (-1143)) (|:| -4083 |#1|))) . T)) +((((-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) . T)) +(|has| |#1| (-43 (-409 (-568)))) (((|#1| |#2|) . T)) -(|has| |#1| (-43 (-403 (-560)))) -(-2318 (|has| |#1| (-146)) (|has| |#1| (-364))) -(|has| |#1| (-148)) -((((-1135) |#1|) . T)) -(-2318 (|has| |#1| (-146)) (|has| |#1| (-364))) -(|has| |#1| (-148)) -(-2318 (|has| |#1| (-146)) (|has| |#1| (-364))) -(|has| |#1| (-148)) -((((-573 |#1|)) . T)) -((($) . T)) -((((-403 |#2|)) . T)) -(|has| |#1| (-550)) -(|has| |#1| (-43 (-403 (-560)))) -(|has| |#1| (-43 (-403 (-560)))) -((((-852)) . T) (((-403 (-560))) . T) (($) . T)) -((($) . T) (((-403 (-560))) . T)) -(-2318 (|has| |#1| (-146)) (|has| |#1| (-344))) -(|has| |#1| (-148)) -((((-403 |#2|) (-403 |#2|)) . T) (((-403 (-560)) (-403 (-560))) . T) (($ $) . T)) -((((-403 (-560))) |has| |#2| (-1029 (-560))) (((-560)) |has| |#2| (-1029 (-560))) (((-1153)) |has| |#2| (-1029 (-1153))) ((|#2|) . T)) -((((-842)) . T)) -((($) . T)) -((((-1117 |#1| |#2|)) . T)) -(((|#1| (-560)) . T)) -(((|#1| (-403 (-560))) . T)) -((((-560)) |has| |#2| (-873 (-560))) (((-375)) |has| |#2| (-873 (-375)))) -(((|#2|) . T)) -((((-403 |#2|)) . T) (((-403 (-560))) . T) (($) . T)) +(|has| |#1| (-43 (-409 (-568)))) +(-2198 (|has| |#1| (-148)) (|has| |#1| (-370))) +(|has| |#1| (-150)) +((((-1143) |#1|) . T)) +(-2198 (|has| |#1| (-148)) (|has| |#1| (-370))) +(|has| |#1| (-150)) +(-2198 (|has| |#1| (-148)) (|has| |#1| (-370))) +(|has| |#1| (-150)) +((((-581 |#1|)) . T)) +((($) . T)) +((((-409 |#2|)) . T)) +(|has| |#1| (-558)) +(|has| |#1| (-43 (-409 (-568)))) +(|has| |#1| (-43 (-409 (-568)))) +((((-860)) . T) (((-409 (-568))) . T) (($) . T)) +((($) . T) (((-409 (-568))) . T)) +(-2198 (|has| |#1| (-148)) (|has| |#1| (-350))) +(|has| |#1| (-150)) +((((-409 |#2|) (-409 |#2|)) . T) (((-409 (-568)) (-409 (-568))) . T) (($ $) . T)) +((((-409 (-568))) |has| |#2| (-1037 (-568))) (((-568)) |has| |#2| (-1037 (-568))) (((-1161)) |has| |#2| (-1037 (-1161))) ((|#2|) . T)) +((((-850)) . T)) +((($) . T)) +((((-1125 |#1| |#2|)) . T)) +(((|#1| (-568)) . T)) +(((|#1| (-409 (-568))) . T)) +((((-568)) |has| |#2| (-881 (-568))) (((-381)) |has| |#2| (-881 (-381)))) +(((|#2|) . T)) +((((-409 |#2|)) . T) (((-409 (-568))) . T) (($) . T)) ((((-121)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) -(((|#1| |#2| (-228 |#1| |#2|) (-228 |#1| |#2|)) . T)) -(((|#2|) . T)) -((((-842)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) -((((-1153) (-57)) . T)) -((((-403 |#2|)) . T)) -((((-842)) . T)) -(((|#1|) . T)) -(|has| |#1| (-1082)) -(|has| |#1| (-778)) -(|has| |#1| (-778)) -((((-842)) . T)) -((((-533)) |has| |#1| (-601 (-533)))) -((((-842)) -2318 (|has| |#1| (-834)) (|has| |#1| (-1082)))) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) +(((|#1| |#2| (-232 |#1| |#2|) (-232 |#1| |#2|)) . T)) +(((|#2|) . T)) +((((-850)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) +((((-1161) (-57)) . T)) +((((-409 |#2|)) . T)) +((((-850)) . T)) +(((|#1|) . T)) +(|has| |#1| (-1090)) +(|has| |#1| (-786)) +(|has| |#1| (-786)) +((((-850)) . T)) +((((-541)) |has| |#1| (-609 (-541)))) +((((-850)) -2198 (|has| |#1| (-842)) (|has| |#1| (-1090)))) ((((-123)) . T) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-213)) . T) (((-375)) . T) (((-879 (-375))) . T)) -((((-842)) . T)) -((((-1221 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-403 (-560))) . T)) -(((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-550)) (((-403 (-560))) |has| |#1| (-550))) -((((-842)) . T)) -((((-599 $) $) . T) (($ $) . T)) +((((-215)) . T) (((-381)) . T) (((-887 (-381))) . T)) +((((-850)) . T)) +((((-1229 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-409 (-568))) . T)) +(((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-558)) (((-409 (-568))) |has| |#1| (-558))) +((((-850)) . T)) +((((-607 $) $) . T) (($ $) . T)) (((|#2|) . T)) -((((-842)) . T)) -((((-897 |#1|) (-897 |#1|)) . T) (($ $) . T) (((-403 (-560)) (-403 (-560))) . T)) +((((-850)) . T)) +((((-905 |#1|) (-905 |#1|)) . T) (($ $) . T) (((-409 (-568)) (-409 (-568))) . T)) (((|#1|) . T)) -(-2318 (|has| |#1| (-170)) (|has| |#1| (-550))) +(-2198 (|has| |#1| (-172)) (|has| |#1| (-558))) (((|#1|) . T)) -((((-897 |#1|)) . T) (($) . T) (((-403 (-560))) . T)) -(|has| |#1| (-359)) +((((-905 |#1|)) . T) (($) . T) (((-409 (-568))) . T)) +(|has| |#1| (-365)) (((|#2|) . T)) -((((-560)) . T)) -((((-2 (|:| |k| (-560)) (|:| |c| |#1|))) . T)) -((((-560)) . T)) -(-2318 (|has| |#2| (-780)) (|has| |#2| (-832))) -((((-167 (-375))) . T) (((-213)) . T) (((-375)) . T)) -((((-842)) . T)) -((((-842)) . T)) -((((-1135)) . T) (((-533)) . T) (((-560)) . T) (((-879 (-560))) . T) (((-375)) . T) (((-213)) . T)) -((((-842)) . T)) +((((-568)) . T)) +((((-2 (|:| |k| (-568)) (|:| |c| |#1|))) . T)) +((((-568)) . T)) +(-2198 (|has| |#2| (-788)) (|has| |#2| (-840))) +((((-169 (-381))) . T) (((-215)) . T) (((-381)) . T)) +((((-850)) . T)) +((((-850)) . T)) +((((-1143)) . T) (((-541)) . T) (((-568)) . T) (((-887 (-568))) . T) (((-381)) . T) (((-215)) . T)) +((((-850)) . T)) +(|has| |#1| (-150)) (|has| |#1| (-148)) -(|has| |#1| (-146)) -((($) . T) (((-1220 |#2| |#3| |#4|)) |has| (-1220 |#2| |#3| |#4|) (-170)) (((-403 (-560))) |has| (-1220 |#2| |#3| |#4|) (-43 (-403 (-560))))) -(((|#1|) . T) (($) . T) (((-403 (-560))) . T)) -(|has| |#1| (-359)) -(|has| |#1| (-359)) -((((-842)) |has| |#1| (-1082))) -((((-842)) |has| |#1| (-1082))) -(-2318 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-170)) (|has| |#1| (-359)) (|has| |#1| (-471)) (|has| |#1| (-708)) (|has| |#1| (-887 (-1153))) (|has| |#1| (-1039)) (|has| |#1| (-1094)) (|has| |#1| (-1082))) -(|has| |#1| (-1128)) -((($) |has| |#1| (-550)) ((|#1|) |has| |#1| (-170)) (((-403 (-560))) |has| |#1| (-43 (-403 (-560))))) -((((-560) |#1|) . T)) -(((|#1|) . T)) -((((-125 |#1|) $) |has| (-125 |#1|) (-276 (-125 |#1|) (-125 |#1|)))) -(((|#1|) |has| |#1| (-170))) -((((-842)) . T)) -(((|#1|) . T)) -((((-849 |#1|)) . T)) +((($) . T) (((-1228 |#2| |#3| |#4|)) |has| (-1228 |#2| |#3| |#4|) (-172)) (((-409 (-568))) |has| (-1228 |#2| |#3| |#4|) (-43 (-409 (-568))))) +(((|#1|) . T) (($) . T) (((-409 (-568))) . T)) +(|has| |#1| (-365)) +(|has| |#1| (-365)) +((((-850)) |has| |#1| (-1090))) +((((-850)) |has| |#1| (-1090))) +(-2198 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-478)) (|has| |#1| (-716)) (|has| |#1| (-895 (-1161))) (|has| |#1| (-1047)) (|has| |#1| (-1102)) (|has| |#1| (-1090))) +(|has| |#1| (-1136)) +((($) |has| |#1| (-558)) ((|#1|) |has| |#1| (-172)) (((-409 (-568))) |has| |#1| (-43 (-409 (-568))))) +((((-568) |#1|) . T)) +((((-125 |#1|) $) |has| (-125 |#1|) (-281 (-125 |#1|) (-125 |#1|)))) +(((|#1|) . T)) +(((|#1|) |has| |#1| (-172))) +((((-850)) . T)) +(((|#1|) . T)) +((((-857 |#1|)) . T)) ((((-123)) . T) ((|#1|) . T)) -((((-842)) . T)) -((((-403 $) (-403 $)) |has| |#1| (-550)) (($ $) . T) ((|#1| |#1|) . T)) -(((|#1|) |has| |#1| (-298 |#1|))) -((((-560) |#1|) . T)) +((((-850)) . T)) +((((-409 $) (-409 $)) |has| |#1| (-558)) (($ $) . T) ((|#1| |#1|) . T)) +(((|#1|) |has| |#1| (-303 |#1|))) +((((-568) |#1|) . T)) (((|#1| |#2|) . T)) -((((-1153) |#1|) . T)) +((((-1161) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-560)) . T) (((-403 (-560))) . T)) +((((-568)) . T) (((-409 (-568))) . T)) (((|#1|) . T)) -(((|#2|) |has| |#2| (-170)) (($) . T) (((-403 (-560))) |has| |#2| (-550))) -((((-403 |#2|)) . T) (((-403 (-560))) . T) (($) . T)) -(|has| |#1| (-550)) -(-2318 (|has| |#1| (-359)) (|has| |#1| (-550))) -((((-375)) . T)) -(|has| |#1| (-1082)) +(((|#2|) |has| |#2| (-172)) (($) . T) (((-409 (-568))) |has| |#2| (-558))) +((((-409 |#2|)) . T) (((-409 (-568))) . T) (($) . T)) +(|has| |#1| (-558)) +(-2198 (|has| |#1| (-365)) (|has| |#1| (-558))) +((((-381)) . T)) +(|has| |#1| (-1090)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-359)) -(-2318 (|has| |#1| (-359)) (|has| |#1| (-550))) -(|has| |#1| (-359)) -(|has| |#1| (-550)) -(|has| |#1| (-1082)) -((((-767 |#1| (-844 |#2|))) |has| (-767 |#1| (-844 |#2|)) (-298 (-767 |#1| (-844 |#2|))))) -(-2318 (|has| |#2| (-447)) (|has| |#2| (-550)) (|has| |#2| (-896))) +(|has| |#1| (-365)) +(-2198 (|has| |#1| (-365)) (|has| |#1| (-558))) +(|has| |#1| (-365)) +(|has| |#1| (-558)) +(|has| |#1| (-1090)) +((((-775 |#1| (-852 |#2|))) |has| (-775 |#1| (-852 |#2|)) (-303 (-775 |#1| (-852 |#2|))))) +(-2198 (|has| |#2| (-453)) (|has| |#2| (-558)) (|has| |#2| (-904))) (((|#1|) . T)) (((|#2| |#3|) . T)) -(|has| |#2| (-896)) -(((|#1|) . T)) -(((|#1| (-526 |#2|)) . T)) -(((|#1| (-755)) . T)) -(|has| |#1| (-221)) -(((|#1| (-526 (-1071 (-1153)))) . T)) -(|has| |#2| (-359)) -((((-2 (|:| -3655 (-1135)) (|:| -2371 (-57)))) . T)) -(((|#1|) . T)) -((((-852)) . T) (((-403 (-560))) . T)) -((((-403 (-560))) . T)) -(((|#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) -((((-842)) . T)) -((((-842)) . T)) -(-2318 (|has| |#3| (-780)) (|has| |#3| (-832))) -((((-842)) . T)) -(((|#1|) . T)) -((($ $) . T) (((-599 $) $) . T)) -(((|#1|) . T)) -((((-560)) . T)) +(|has| |#2| (-904)) +(((|#1|) . T)) +(((|#1| (-534 |#2|)) . T)) +(((|#1| (-763)) . T)) +(|has| |#1| (-225)) +(((|#1| (-534 (-1079 (-1161)))) . T)) +(|has| |#2| (-365)) +((((-2 (|:| -3649 (-1143)) (|:| -4083 (-57)))) . T)) +(((|#1|) . T)) +((((-860)) . T) (((-409 (-568))) . T)) +((((-409 (-568))) . T)) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) +((((-850)) . T)) +((((-850)) . T)) +(-2198 (|has| |#3| (-788)) (|has| |#3| (-840))) +((((-850)) . T)) +(((|#1|) . T)) +((($ $) . T) (((-607 $) $) . T)) +(((|#1|) . T)) +((((-568)) . T)) (((|#3|) . T)) -((((-842)) . T)) -(-2318 (|has| |#1| (-296)) (|has| |#1| (-359)) (|has| |#1| (-344))) -((((-842)) . T)) -(-2318 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-170)) (|has| |#1| (-550)) (|has| |#1| (-1039))) -((((-560)) |has| |#2| (-622 (-560))) ((|#2|) . T)) -((((-573 |#1|) (-573 |#1|)) . T) (($ $) . T) (((-403 (-560)) (-403 (-560))) . T)) -((($ $) . T) (((-403 (-560)) (-403 (-560))) . T)) -(((|#1|) |has| |#1| (-170))) -(((|#1| (-1236 |#1|) (-1236 |#1|)) . T)) -((((-573 |#1|)) . T) (($) . T) (((-403 (-560))) . T)) -((($) . T) (((-403 (-560))) . T)) -((($) . T) (((-403 (-560))) . T)) -(((|#2|) |has| |#2| (-6 (-4507 "*")))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-283 |#3|)) . T)) -(((|#1|) . T)) -((((-403 (-560)) (-403 (-560))) |has| |#2| (-43 (-403 (-560)))) ((|#2| |#2|) . T) (($ $) -2318 (|has| |#2| (-170)) (|has| |#2| (-447)) (|has| |#2| (-550)) (|has| |#2| (-896)))) +((((-850)) . T)) +(-2198 (|has| |#1| (-301)) (|has| |#1| (-365)) (|has| |#1| (-350))) +((((-850)) . T)) +(-2198 (|has| |#1| (-148)) (|has| |#1| (-150)) (|has| |#1| (-172)) (|has| |#1| (-558)) (|has| |#1| (-1047))) +((((-568)) |has| |#2| (-630 (-568))) ((|#2|) . T)) +((((-581 |#1|) (-581 |#1|)) . T) (($ $) . T) (((-409 (-568)) (-409 (-568))) . T)) +((($ $) . T) (((-409 (-568)) (-409 (-568))) . T)) +(((|#1|) |has| |#1| (-172))) +(((|#1| (-1244 |#1|) (-1244 |#1|)) . T)) +((((-581 |#1|)) . T) (($) . T) (((-409 (-568))) . T)) +((($) . T) (((-409 (-568))) . T)) +((($) . T) (((-409 (-568))) . T)) +(((|#2|) |has| |#2| (-6 (-4521 "*")))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-288 |#3|)) . T)) +(((|#1|) . T)) +((((-409 (-568)) (-409 (-568))) |has| |#2| (-43 (-409 (-568)))) ((|#2| |#2|) . T) (($ $) -2198 (|has| |#2| (-172)) (|has| |#2| (-453)) (|has| |#2| (-558)) (|has| |#2| (-904)))) (((|#2| |#2|) . T) ((|#6| |#6|) . T)) -((($) . T) (((-403 (-560))) |has| |#2| (-43 (-403 (-560)))) ((|#2|) . T)) -((($) . T) ((|#1|) . T) (((-403 (-560))) |has| |#1| (-43 (-403 (-560))))) -(((|#1|) . T) (((-403 (-560))) . T) (($) . T)) -(((|#1|) . T) (((-403 (-560))) . T) (($) . T)) -(((|#1|) . T) (((-403 (-560))) . T) (($) . T)) -((($ $) -2318 (|has| |#1| (-170)) (|has| |#1| (-447)) (|has| |#1| (-550)) (|has| |#1| (-896))) ((|#1| |#1|) . T) (((-403 (-560)) (-403 (-560))) |has| |#1| (-43 (-403 (-560))))) -((($ $) -2318 (|has| |#1| (-170)) (|has| |#1| (-359)) (|has| |#1| (-447)) (|has| |#1| (-550)) (|has| |#1| (-896))) ((|#1| |#1|) . T) (((-403 (-560)) (-403 (-560))) |has| |#1| (-43 (-403 (-560))))) -(((|#2|) . T)) -((((-403 (-560))) |has| |#2| (-43 (-403 (-560)))) ((|#2|) . T) (($) -2318 (|has| |#2| (-170)) (|has| |#2| (-447)) (|has| |#2| (-550)) (|has| |#2| (-896)))) +((($) . T) (((-409 (-568))) |has| |#2| (-43 (-409 (-568)))) ((|#2|) . T)) +((($) . T) ((|#1|) . T) (((-409 (-568))) |has| |#1| (-43 (-409 (-568))))) +(((|#1|) . T) (((-409 (-568))) . T) (($) . T)) +(((|#1|) . T) (((-409 (-568))) . T) (($) . T)) +(((|#1|) . T) (((-409 (-568))) . T) (($) . T)) +((($ $) -2198 (|has| |#1| (-172)) (|has| |#1| (-453)) (|has| |#1| (-558)) (|has| |#1| (-904))) ((|#1| |#1|) . T) (((-409 (-568)) (-409 (-568))) |has| |#1| (-43 (-409 (-568))))) +((($ $) -2198 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-453)) (|has| |#1| (-558)) (|has| |#1| (-904))) ((|#1| |#1|) . T) (((-409 (-568)) (-409 (-568))) |has| |#1| (-43 (-409 (-568))))) +(((|#2|) . T)) +((((-409 (-568))) |has| |#2| (-43 (-409 (-568)))) ((|#2|) . T) (($) -2198 (|has| |#2| (-172)) (|has| |#2| (-453)) (|has| |#2| (-558)) (|has| |#2| (-904)))) (((|#2|) . T) ((|#6|) . T)) -((($ $) -2318 (|has| |#1| (-170)) (|has| |#1| (-447)) (|has| |#1| (-550)) (|has| |#1| (-896))) ((|#1| |#1|) . T) (((-403 (-560)) (-403 (-560))) |has| |#1| (-43 (-403 (-560))))) -((((-842)) . T)) -((($) -2318 (|has| |#1| (-170)) (|has| |#1| (-447)) (|has| |#1| (-550)) (|has| |#1| (-896))) ((|#1|) . T) (((-403 (-560))) |has| |#1| (-43 (-403 (-560))))) -((($) -2318 (|has| |#1| (-170)) (|has| |#1| (-359)) (|has| |#1| (-447)) (|has| |#1| (-550)) (|has| |#1| (-896))) ((|#1|) . T) (((-403 (-560))) |has| |#1| (-43 (-403 (-560))))) -(|has| |#2| (-896)) -(|has| |#1| (-896)) -((($) -2318 (|has| |#1| (-170)) (|has| |#1| (-447)) (|has| |#1| (-550)) (|has| |#1| (-896))) ((|#1|) . T) (((-403 (-560))) |has| |#1| (-43 (-403 (-560))))) -((((-560) (-560)) . T)) +((($ $) -2198 (|has| |#1| (-172)) (|has| |#1| (-453)) (|has| |#1| (-558)) (|has| |#1| (-904))) ((|#1| |#1|) . T) (((-409 (-568)) (-409 (-568))) |has| |#1| (-43 (-409 (-568))))) +((((-850)) . T)) +((($) -2198 (|has| |#1| (-172)) (|has| |#1| (-453)) (|has| |#1| (-558)) (|has| |#1| (-904))) ((|#1|) . T) (((-409 (-568))) |has| |#1| (-43 (-409 (-568))))) +((($) -2198 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-453)) (|has| |#1| (-558)) (|has| |#1| (-904))) ((|#1|) . T) (((-409 (-568))) |has| |#1| (-43 (-409 (-568))))) +(|has| |#2| (-904)) +(|has| |#1| (-904)) +((($) -2198 (|has| |#1| (-172)) (|has| |#1| (-453)) (|has| |#1| (-558)) (|has| |#1| (-904))) ((|#1|) . T) (((-409 (-568))) |has| |#1| (-43 (-409 (-568))))) +((((-568) (-568)) . T)) (((|#1|) . T)) -((((-2 (|:| -3655 (-1135)) (|:| -2371 |#1|))) . T)) +((((-2 (|:| -3649 (-1143)) (|:| -4083 |#1|))) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1082)) -((((-560)) . T)) -(((|#1|) . T)) -((((-1153)) . T) ((|#1|) . T)) -((((-842)) . T)) -((((-842)) . T)) -(((|#2|) -12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082)))) -((((-403 (-560)) (-403 (-560))) . T)) -((((-403 (-560))) . T)) -(-2318 (|has| |#2| (-25)) (|has| |#2| (-137)) (|has| |#2| (-170)) (|has| |#2| (-359)) (|has| |#2| (-780)) (|has| |#2| (-832)) (|has| |#2| (-1039))) -(((|#1|) . T)) -(((|#1|) . T)) -(-2318 (|has| |#2| (-170)) (|has| |#2| (-359)) (|has| |#2| (-832)) (|has| |#2| (-1039))) -((((-533)) . T)) -((((-842)) . T)) -((((-1153)) |has| |#2| (-887 (-1153))) (((-1067)) . T)) -((((-1220 |#2| |#3| |#4|)) . T)) -((((-897 |#1|)) . T)) -(-2318 (|has| |#1| (-359)) (|has| |#1| (-447)) (|has| |#1| (-550)) (|has| |#1| (-896))) -((($) . T) (((-403 (-560))) . T)) -(-12 (|has| |#1| (-359)) (|has| |#2| (-807))) -(-12 (|has| |#1| (-359)) (|has| |#2| (-807))) -(|has| |#1| (-1191)) -(((|#2|) . T)) -((($ $) . T) (((-403 (-560)) (-403 (-560))) . T)) -((((-1153)) |has| |#1| (-887 (-1153)))) -((((-897 |#1|)) . T) (((-403 (-560))) . T) (($) . T)) -((($) . T) (((-403 (-560))) -2318 (|has| |#1| (-43 (-403 (-560)))) (|has| |#1| (-359))) ((|#1|) . T)) -((((-403 (-560)) (-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((|#1| |#1|) . T) (($ $) -2318 (|has| |#1| (-170)) (|has| |#1| (-550)))) -((($) . T) (((-403 (-560))) . T) ((|#1|) . T)) -(((|#1|) . T) (((-403 (-560))) . T) (($) . T)) -((($) . T) (((-403 (-560))) . T)) -(((|#1|) . T) (((-403 (-560))) . T) (((-560)) . T) (($) . T)) -(((|#2|) |has| |#2| (-1039)) (((-560)) -12 (|has| |#2| (-622 (-560))) (|has| |#2| (-1039)))) -((((-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((|#1|) . T) (($) -2318 (|has| |#1| (-170)) (|has| |#1| (-550)))) -(|has| |#1| (-550)) -(((|#1|) |has| |#1| (-359))) -((((-560)) . T)) -(|has| |#1| (-778)) -(|has| |#1| (-778)) -((((-1153) (-125 |#1|)) |has| (-125 |#1|) (-515 (-1153) (-125 |#1|))) (((-125 |#1|) (-125 |#1|)) |has| (-125 |#1|) (-298 (-125 |#1|)))) -(((|#2|) . T) (((-560)) |has| |#2| (-1029 (-560))) (((-403 (-560))) |has| |#2| (-1029 (-403 (-560))))) -((((-1067)) . T) ((|#2|) . T) (((-560)) |has| |#2| (-1029 (-560))) (((-403 (-560))) |has| |#2| (-1029 (-403 (-560))))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-560) (-755)) . T) ((|#3| (-755)) . T)) -((((-1067) |#1|) . T) (((-1067) $) . T) (($ $) . T)) -(((|#1|) . T)) -(((|#1| |#2| (-237 |#2| |#1|) (-228 (-2271 |#2|) (-755)) (-958 |#1|) (-766 |#1|) (-913 |#1|) (-231 (-913 |#1|)) |#3|) . T)) -(((|#2|) . T)) -(((|#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) -((((-842)) . T)) +(|has| |#1| (-1090)) +((((-568)) . T)) +(((|#1|) . T)) +((((-1161)) . T) ((|#1|) . T)) +((((-850)) . T)) +((((-850)) . T)) +(((|#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090)))) +((((-409 (-568)) (-409 (-568))) . T)) +((((-409 (-568))) . T)) +(-2198 (|has| |#2| (-25)) (|has| |#2| (-137)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-788)) (|has| |#2| (-840)) (|has| |#2| (-1047))) +(((|#1|) . T)) +(((|#1|) . T)) +(-2198 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-840)) (|has| |#2| (-1047))) +((((-541)) . T)) +((((-850)) . T)) +((((-1161)) |has| |#2| (-895 (-1161))) (((-1075)) . T)) +((((-1228 |#2| |#3| |#4|)) . T)) +((((-905 |#1|)) . T)) +(-2198 (|has| |#1| (-365)) (|has| |#1| (-453)) (|has| |#1| (-558)) (|has| |#1| (-904))) +((($) . T) (((-409 (-568))) . T)) +(-12 (|has| |#1| (-365)) (|has| |#2| (-815))) +(-12 (|has| |#1| (-365)) (|has| |#2| (-815))) +(|has| |#1| (-1199)) +(((|#2|) . T)) +((($ $) . T) (((-409 (-568)) (-409 (-568))) . T)) +((((-1161)) |has| |#1| (-895 (-1161)))) +((((-905 |#1|)) . T) (((-409 (-568))) . T) (($) . T)) +((($) . T) (((-409 (-568))) -2198 (|has| |#1| (-43 (-409 (-568)))) (|has| |#1| (-365))) ((|#1|) . T)) +((((-409 (-568)) (-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((|#1| |#1|) . T) (($ $) -2198 (|has| |#1| (-172)) (|has| |#1| (-558)))) +((($) . T) (((-409 (-568))) . T) ((|#1|) . T)) +(((|#1|) . T) (((-409 (-568))) . T) (($) . T)) +((($) . T) (((-409 (-568))) . T)) +(((|#1|) . T) (((-409 (-568))) . T) (((-568)) . T) (($) . T)) +(((|#2|) |has| |#2| (-1047)) (((-568)) -12 (|has| |#2| (-630 (-568))) (|has| |#2| (-1047)))) +((((-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((|#1|) . T) (($) -2198 (|has| |#1| (-172)) (|has| |#1| (-558)))) +(|has| |#1| (-558)) +(((|#1|) |has| |#1| (-365))) +((((-568)) . T)) +(|has| |#1| (-786)) +(|has| |#1| (-786)) +((((-1161) (-125 |#1|)) |has| (-125 |#1|) (-523 (-1161) (-125 |#1|))) (((-125 |#1|) (-125 |#1|)) |has| (-125 |#1|) (-303 (-125 |#1|)))) +(((|#2|) . T) (((-568)) |has| |#2| (-1037 (-568))) (((-409 (-568))) |has| |#2| (-1037 (-409 (-568))))) +((((-1075)) . T) ((|#2|) . T) (((-568)) |has| |#2| (-1037 (-568))) (((-409 (-568))) |has| |#2| (-1037 (-409 (-568))))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-568) (-763)) . T) ((|#3| (-763)) . T)) +((((-1075) |#1|) . T) (((-1075) $) . T) (($ $) . T)) +(((|#1|) . T)) +(((|#1| |#2| (-242 |#2| |#1|) (-232 (-1697 |#2|) (-763)) (-966 |#1|) (-774 |#1|) (-921 |#1|) (-236 (-921 |#1|)) |#3|) . T)) +(((|#2|) . T)) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) +((((-850)) . T)) (((|#1| |#2|) . T)) -(|has| |#2| (-807)) -(|has| |#2| (-807)) -((((-403 (-560))) -2318 (|has| |#1| (-43 (-403 (-560)))) (|has| |#1| (-359))) ((|#2|) |has| |#1| (-359)) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-560)) |has| |#1| (-1029 (-560))) (((-403 (-560))) |has| |#1| (-1029 (-403 (-560))))) -(((|#1|) . T) (((-403 (-560))) -2318 (|has| |#1| (-43 (-403 (-560)))) (|has| |#1| (-359))) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) -((((-560)) |has| |#1| (-873 (-560))) (((-375)) |has| |#1| (-873 (-375)))) -(((|#1|) . T)) -((((-856 |#1|)) . T)) -((((-856 |#1|)) . T)) -(-12 (|has| |#1| (-359)) (|has| |#2| (-896))) -((((-403 (-560))) . T) (((-680)) . T) (($) . T)) -(|has| |#1| (-359)) -(|has| |#1| (-359)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#4|) -12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082)))) -(|has| |#1| (-359)) -(((|#2|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-844 |#1|)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#2| (-755)) . T)) -((((-1153)) . T)) -((((-856 |#1|)) . T)) -(-2318 (|has| |#3| (-25)) (|has| |#3| (-137)) (|has| |#3| (-170)) (|has| |#3| (-359)) (|has| |#3| (-780)) (|has| |#3| (-832)) (|has| |#3| (-1039))) -(-2318 (|has| |#3| (-170)) (|has| |#3| (-359)) (|has| |#3| (-832)) (|has| |#3| (-1039))) -((((-842)) . T)) -(((|#1|) . T)) -(-2318 (|has| |#2| (-780)) (|has| |#2| (-832))) -(-2318 (-12 (|has| |#1| (-780)) (|has| |#2| (-780))) (-12 (|has| |#1| (-834)) (|has| |#2| (-834)))) -((((-856 |#1|)) . T)) -(((|#1|) . T)) -(-2318 (|has| |#1| (-170)) (|has| |#1| (-359)) (|has| |#1| (-447)) (|has| |#1| (-550)) (|has| |#1| (-896))) -(|has| |#1| (-364)) -(|has| |#1| (-364)) -(|has| |#1| (-364)) -((($ $) . T) (((-599 $) $) . T)) -((((-852) (-852)) . T) (($ $) . T) (((-403 (-560)) (-403 (-560))) . T)) -((($ $) . T) (((-403 (-560)) (-403 (-560))) . T)) -((($) . T)) -((((-842)) . T)) -((((-842)) . T)) -(((|#2|) . T)) -((((-560)) . T)) -((((-842)) . T)) -((((-852)) . T) (($) . T) (((-403 (-560))) . T)) -((($) . T) (((-403 (-560))) . T)) -((((-842)) . T)) -(((|#1|) . T)) -((((-842)) . T)) -(((|#1|) . T) (((-403 (-560))) |has| |#1| (-359))) -((($) . T) ((|#2|) . T) (((-403 (-560))) . T)) -(|has| |#1| (-1082)) -(((|#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) -(((|#1| |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) -(((|#1| |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-842)) . T)) -(|has| |#2| (-896)) -((((-2 (|:| -3655 (-1153)) (|:| -2371 (-57)))) . T)) -((((-533)) |has| |#2| (-601 (-533))) (((-879 (-375))) |has| |#2| (-601 (-879 (-375)))) (((-879 (-560))) |has| |#2| (-601 (-879 (-560))))) -((((-842)) . T)) -((((-842)) . T)) -(((|#3|) |has| |#3| (-1039)) (((-560)) -12 (|has| |#3| (-622 (-560))) (|has| |#3| (-1039)))) -((((-1105 |#1| |#2|)) . T) (((-945 |#1|)) |has| |#2| (-601 (-1153))) (((-842)) . T)) -((((-945 |#1|)) |has| |#2| (-601 (-1153))) (((-1135)) -12 (|has| |#1| (-1029 (-560))) (|has| |#2| (-601 (-1153)))) (((-879 (-560))) -12 (|has| |#1| (-601 (-879 (-560)))) (|has| |#2| (-601 (-879 (-560))))) (((-879 (-375))) -12 (|has| |#1| (-601 (-879 (-375)))) (|has| |#2| (-601 (-879 (-375))))) (((-533)) -12 (|has| |#1| (-601 (-533))) (|has| |#2| (-601 (-533))))) -((((-1149 |#1|)) . T) (((-842)) . T)) -((((-842)) . T)) -((((-403 (-560))) |has| |#2| (-1029 (-403 (-560)))) (((-560)) |has| |#2| (-1029 (-560))) ((|#2|) . T) (((-844 |#1|)) . T)) -((((-125 |#1|)) . T) (($) . T) (((-403 (-560))) . T)) -((((-403 (-560))) |has| |#1| (-1029 (-403 (-560)))) (((-560)) |has| |#1| (-1029 (-560))) ((|#1|) . T) (((-1153)) . T)) -((((-842)) . T)) -((((-560)) . T)) -((($) . T)) -((((-375)) |has| |#1| (-873 (-375))) (((-560)) |has| |#1| (-873 (-560)))) -((((-560)) . T)) -(((|#1|) . T)) -((((-842)) . T)) -((((-842)) . T)) -(((|#1|) . T)) -((((-842)) . T)) -((($) -2318 (|has| |#1| (-359)) (|has| |#1| (-447)) (|has| |#1| (-550)) (|has| |#1| (-896))) ((|#1|) |has| |#1| (-170)) (((-403 (-560))) |has| |#1| (-43 (-403 (-560))))) -(((|#1|) |has| |#1| (-170)) (($) . T)) -((((-560)) . T) (((-403 (-560))) . T)) -(((|#1|) |has| |#1| (-298 |#1|))) -((((-842)) . T)) -((((-375)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-842)) . T)) -((((-403 (-560))) . T) (($) . T)) -((((-403 |#2|) |#3|) . T)) -(((|#1|) . T)) -(|has| |#1| (-1082)) -(((|#2| (-486 (-2271 |#1|) (-755))) . T)) -((((-560) |#1|) . T)) +(|has| |#2| (-815)) +(|has| |#2| (-815)) +((((-409 (-568))) -2198 (|has| |#1| (-43 (-409 (-568)))) (|has| |#1| (-365))) ((|#2|) |has| |#1| (-365)) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-568)) |has| |#1| (-1037 (-568))) (((-409 (-568))) |has| |#1| (-1037 (-409 (-568))))) +(((|#1|) . T) (((-409 (-568))) -2198 (|has| |#1| (-43 (-409 (-568)))) (|has| |#1| (-365))) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) +((((-568)) |has| |#1| (-881 (-568))) (((-381)) |has| |#1| (-881 (-381)))) +(((|#1|) . T)) +((((-864 |#1|)) . T)) +((((-864 |#1|)) . T)) +(-12 (|has| |#1| (-365)) (|has| |#2| (-904))) +((((-409 (-568))) . T) (((-688)) . T) (($) . T)) +(|has| |#1| (-365)) +(|has| |#1| (-365)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090)))) +(|has| |#1| (-365)) +(((|#2|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-852 |#1|)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#2| (-763)) . T)) +((((-1161)) . T)) +((((-864 |#1|)) . T)) +(-2198 (|has| |#3| (-25)) (|has| |#3| (-137)) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-788)) (|has| |#3| (-840)) (|has| |#3| (-1047))) +(-2198 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-840)) (|has| |#3| (-1047))) +((((-850)) . T)) +(((|#1|) . T)) +(-2198 (|has| |#2| (-788)) (|has| |#2| (-840))) +(-2198 (-12 (|has| |#1| (-788)) (|has| |#2| (-788))) (-12 (|has| |#1| (-842)) (|has| |#2| (-842)))) +((((-864 |#1|)) . T)) +(((|#1|) . T)) +(-2198 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-453)) (|has| |#1| (-558)) (|has| |#1| (-904))) +(|has| |#1| (-370)) +(|has| |#1| (-370)) +(|has| |#1| (-370)) +((($ $) . T) (((-607 $) $) . T)) +((((-860) (-860)) . T) (($ $) . T) (((-409 (-568)) (-409 (-568))) . T)) +((($ $) . T) (((-409 (-568)) (-409 (-568))) . T)) +((($) . T)) +((((-850)) . T)) +((((-850)) . T)) +(((|#2|) . T)) +((((-568)) . T)) +((((-850)) . T)) +((((-860)) . T) (($) . T) (((-409 (-568))) . T)) +((($) . T) (((-409 (-568))) . T)) +((((-850)) . T)) +(((|#1|) . T)) +((((-850)) . T)) +(((|#1|) . T) (((-409 (-568))) |has| |#1| (-365))) +((($) . T) ((|#2|) . T) (((-409 (-568))) . T)) +(|has| |#1| (-1090)) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-850)) . T)) +(|has| |#2| (-904)) +((((-2 (|:| -3649 (-1161)) (|:| -4083 (-57)))) . T)) +((((-541)) |has| |#2| (-609 (-541))) (((-887 (-381))) |has| |#2| (-609 (-887 (-381)))) (((-887 (-568))) |has| |#2| (-609 (-887 (-568))))) +((((-850)) . T)) +((((-850)) . T)) +(((|#3|) |has| |#3| (-1047)) (((-568)) -12 (|has| |#3| (-630 (-568))) (|has| |#3| (-1047)))) +((((-1113 |#1| |#2|)) . T) (((-953 |#1|)) |has| |#2| (-609 (-1161))) (((-850)) . T)) +((((-953 |#1|)) |has| |#2| (-609 (-1161))) (((-1143)) -12 (|has| |#1| (-1037 (-568))) (|has| |#2| (-609 (-1161)))) (((-887 (-568))) -12 (|has| |#1| (-609 (-887 (-568)))) (|has| |#2| (-609 (-887 (-568))))) (((-887 (-381))) -12 (|has| |#1| (-609 (-887 (-381)))) (|has| |#2| (-609 (-887 (-381))))) (((-541)) -12 (|has| |#1| (-609 (-541))) (|has| |#2| (-609 (-541))))) +((((-1157 |#1|)) . T) (((-850)) . T)) +((((-850)) . T)) +((((-409 (-568))) |has| |#2| (-1037 (-409 (-568)))) (((-568)) |has| |#2| (-1037 (-568))) ((|#2|) . T) (((-852 |#1|)) . T)) +((((-125 |#1|)) . T) (($) . T) (((-409 (-568))) . T)) +((((-409 (-568))) |has| |#1| (-1037 (-409 (-568)))) (((-568)) |has| |#1| (-1037 (-568))) ((|#1|) . T) (((-1161)) . T)) +((((-850)) . T)) +((((-568)) . T)) +((($) . T)) +((((-381)) |has| |#1| (-881 (-381))) (((-568)) |has| |#1| (-881 (-568)))) +((((-568)) . T)) +(((|#1|) . T)) +((((-850)) . T)) +((((-850)) . T)) +(((|#1|) . T)) +((((-850)) . T)) +((($) -2198 (|has| |#1| (-365)) (|has| |#1| (-453)) (|has| |#1| (-558)) (|has| |#1| (-904))) ((|#1|) |has| |#1| (-172)) (((-409 (-568))) |has| |#1| (-43 (-409 (-568))))) +(((|#1|) |has| |#1| (-172)) (($) . T)) +((((-568)) . T) (((-409 (-568))) . T)) +(((|#1|) |has| |#1| (-303 |#1|))) +((((-850)) . T)) +((((-381)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-850)) . T)) +((((-409 (-568))) . T) (($) . T)) +((((-409 |#2|) |#3|) . T)) +(((|#1|) . T)) +(|has| |#1| (-1090)) +(((|#2| (-493 (-1697 |#1|) (-763))) . T)) +((((-568) |#1|) . T)) (((|#2| |#2|) . T)) -(((|#1| (-526 (-1153))) . T)) -((((-2 (|:| |k| (-560)) (|:| |c| |#1|))) . T)) -(-2318 (|has| |#2| (-137)) (|has| |#2| (-170)) (|has| |#2| (-359)) (|has| |#2| (-780)) (|has| |#2| (-832)) (|has| |#2| (-1039))) -((((-560)) . T)) +(((|#1| (-534 (-1161))) . T)) +((((-2 (|:| |k| (-568)) (|:| |c| |#1|))) . T)) +(-2198 (|has| |#2| (-137)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-788)) (|has| |#2| (-840)) (|has| |#2| (-1047))) +((((-568)) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-1153)) |has| |#1| (-887 (-1153))) (((-1067)) . T)) -(((|#1|) . T) (((-560)) |has| |#1| (-622 (-560)))) -(|has| |#1| (-550)) +((((-1161)) |has| |#1| (-895 (-1161))) (((-1075)) . T)) +(((|#1|) . T) (((-568)) |has| |#1| (-630 (-568)))) +(|has| |#1| (-558)) (((|#1|) . T)) -((($) . T) (((-403 (-560))) . T)) +((($) . T) (((-409 (-568))) . T)) ((($) . T)) ((($) . T)) -(-2318 (|has| |#1| (-834)) (|has| |#1| (-1082))) +(-2198 (|has| |#1| (-842)) (|has| |#1| (-1090))) (((|#1|) . T)) -((($) -2318 (|has| |#1| (-359)) (|has| |#1| (-447)) (|has| |#1| (-550)) (|has| |#1| (-896))) ((|#1|) |has| |#1| (-170)) (((-403 (-560))) |has| |#1| (-43 (-403 (-560))))) -((((-842)) . T)) -((((-145)) . T)) -(((|#1|) . T) (((-403 (-560))) . T)) +((($) -2198 (|has| |#1| (-365)) (|has| |#1| (-453)) (|has| |#1| (-558)) (|has| |#1| (-904))) ((|#1|) |has| |#1| (-172)) (((-409 (-568))) |has| |#1| (-43 (-409 (-568))))) +((((-850)) . T)) +((((-147)) . T)) +(((|#1|) . T) (((-409 (-568))) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-842)) . T)) +((((-850)) . T)) (((|#1|) . T)) -(|has| |#1| (-1128)) -(((|#1| (-526 (-844 |#2|)) (-844 |#2|) (-767 |#1| (-844 |#2|))) . T)) +(|has| |#1| (-1136)) +(((|#1| (-534 (-852 |#2|)) (-852 |#2|) (-775 |#1| (-852 |#2|))) . T)) (((|#1|) . T)) -((((-842)) . T)) -((((-403 $) (-403 $)) |has| |#1| (-550)) (($ $) . T) ((|#1| |#1|) . T)) -(((|#1|) . T) (((-560)) |has| |#1| (-1029 (-560))) (((-403 (-560))) |has| |#1| (-1029 (-403 (-560))))) -((((-403 (-560))) |has| |#1| (-1029 (-403 (-560)))) (((-560)) |has| |#1| (-1029 (-560))) ((|#1|) . T) ((|#2|) . T)) -((((-1067)) . T) ((|#1|) . T) (((-560)) |has| |#1| (-1029 (-560))) (((-403 (-560))) |has| |#1| (-1029 (-403 (-560))))) -((((-375)) -12 (|has| |#1| (-873 (-375))) (|has| |#2| (-873 (-375)))) (((-560)) -12 (|has| |#1| (-873 (-560))) (|has| |#2| (-873 (-560))))) -((((-1221 |#1| |#2| |#3| |#4|)) . T)) -((((-560) |#1|) . T)) +((((-850)) . T)) +((((-409 $) (-409 $)) |has| |#1| (-558)) (($ $) . T) ((|#1| |#1|) . T)) +(((|#1|) . T) (((-568)) |has| |#1| (-1037 (-568))) (((-409 (-568))) |has| |#1| (-1037 (-409 (-568))))) +((((-409 (-568))) |has| |#1| (-1037 (-409 (-568)))) (((-568)) |has| |#1| (-1037 (-568))) ((|#1|) . T) ((|#2|) . T)) +((((-1075)) . T) ((|#1|) . T) (((-568)) |has| |#1| (-1037 (-568))) (((-409 (-568))) |has| |#1| (-1037 (-409 (-568))))) +((((-381)) -12 (|has| |#1| (-881 (-381))) (|has| |#2| (-881 (-381)))) (((-568)) -12 (|has| |#1| (-881 (-568))) (|has| |#2| (-881 (-568))))) +((((-1229 |#1| |#2| |#3| |#4|)) . T)) +((((-568) |#1|) . T)) (((|#1| |#1|) . T)) ((($) . T) ((|#2|) . T)) -(((|#1|) |has| |#1| (-170)) (($) . T)) -((($) . T)) -((((-680)) . T)) -((((-767 |#1| (-844 |#2|))) . T)) -((($) . T)) -((((-403 (-560))) . T) (($) . T)) -(|has| |#1| (-1082)) -(|has| |#1| (-1082)) -(|has| |#2| (-359)) -(|has| |#1| (-359)) -(|has| |#1| (-359)) -(|has| |#1| (-43 (-403 (-560)))) -((((-560)) . T)) -((((-1153)) -12 (|has| |#4| (-887 (-1153))) (|has| |#4| (-1039)))) -((((-1153)) -12 (|has| |#3| (-887 (-1153))) (|has| |#3| (-1039)))) -(-2318 (|has| |#2| (-359)) (|has| |#2| (-447)) (|has| |#2| (-550)) (|has| |#2| (-896))) -(((|#1|) . T)) -(|has| |#1| (-221)) -(((|#1| (-526 |#3|)) . T)) -(|has| |#1| (-364)) -(((|#2| (-228 (-2271 |#1|) (-755))) . T)) -(|has| |#1| (-364)) -(|has| |#1| (-364)) -(|has| |#2| (-896)) +(((|#1|) |has| |#1| (-172)) (($) . T)) +((($) . T)) +((((-688)) . T)) +((((-775 |#1| (-852 |#2|))) . T)) +((($) . T)) +((((-409 (-568))) . T) (($) . T)) +(|has| |#1| (-1090)) +(|has| |#1| (-1090)) +(|has| |#2| (-365)) +(|has| |#1| (-365)) +(|has| |#1| (-365)) +(|has| |#1| (-43 (-409 (-568)))) +((((-568)) . T)) +((((-1161)) -12 (|has| |#4| (-895 (-1161))) (|has| |#4| (-1047)))) +((((-1161)) -12 (|has| |#3| (-895 (-1161))) (|has| |#3| (-1047)))) +(-2198 (|has| |#2| (-365)) (|has| |#2| (-453)) (|has| |#2| (-558)) (|has| |#2| (-904))) +(((|#1|) . T)) +(|has| |#1| (-225)) +(((|#1| (-534 |#3|)) . T)) +(((|#2| (-232 (-1697 |#1|) (-763))) . T)) +(|has| |#1| (-370)) +(|has| |#1| (-370)) +(|has| |#1| (-370)) +(|has| |#2| (-904)) (((|#1|) . T) (($) . T)) -(-2318 (|has| |#2| (-137)) (|has| |#2| (-170)) (|has| |#2| (-359)) (|has| |#2| (-780)) (|has| |#2| (-832)) (|has| |#2| (-1039))) -(((|#1| (-526 |#2|)) . T)) -(((|#1| (-755)) . T)) -(-2318 (|has| |#2| (-25)) (|has| |#2| (-137)) (|has| |#2| (-170)) (|has| |#2| (-359)) (|has| |#2| (-780)) (|has| |#2| (-832)) (|has| |#2| (-1039))) -(-2318 (|has| |#2| (-170)) (|has| |#2| (-359)) (|has| |#2| (-832)) (|has| |#2| (-1039))) +(-2198 (|has| |#2| (-137)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-788)) (|has| |#2| (-840)) (|has| |#2| (-1047))) +(((|#1| (-534 |#2|)) . T)) +(((|#1| (-763)) . T)) +(-2198 (|has| |#2| (-25)) (|has| |#2| (-137)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-788)) (|has| |#2| (-840)) (|has| |#2| (-1047))) +(-2198 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-840)) (|has| |#2| (-1047))) (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) -((((-842)) . T)) -(-2318 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-137)) (|has| |#2| (-137))) (-12 (|has| |#1| (-780)) (|has| |#2| (-780)))) -(|has| |#1| (-550)) -(-2318 (|has| |#3| (-137)) (|has| |#3| (-170)) (|has| |#3| (-359)) (|has| |#3| (-780)) (|has| |#3| (-832)) (|has| |#3| (-1039))) -(-2318 (|has| |#2| (-170)) (|has| |#2| (-708)) (|has| |#2| (-832)) (|has| |#2| (-1039))) -(((|#1|) |has| |#1| (-170))) -((((-842)) . T)) -((((-842)) . T)) -(((|#4|) |has| |#4| (-1039))) -(((|#3|) |has| |#3| (-1039))) -(-12 (|has| |#1| (-359)) (|has| |#2| (-807))) -(-12 (|has| |#1| (-359)) (|has| |#2| (-807))) -((((-842)) -2318 (|has| |#1| (-834)) (|has| |#1| (-1082)))) -((((-533)) |has| |#1| (-601 (-533)))) -((((-403 |#2|)) . T) (((-403 (-560))) . T) (($) . T)) -((($ $) . T) (((-403 (-560)) (-403 (-560))) . T)) -((((-842)) . T)) -((($) . T) (((-403 (-560))) . T)) -(((|#1|) . T)) -(((|#4|) |has| |#4| (-1082)) (((-560)) -12 (|has| |#4| (-1029 (-560))) (|has| |#4| (-1082))) (((-403 (-560))) -12 (|has| |#4| (-1029 (-403 (-560)))) (|has| |#4| (-1082)))) -(((|#3|) |has| |#3| (-1082)) (((-560)) -12 (|has| |#3| (-1029 (-560))) (|has| |#3| (-1082))) (((-403 (-560))) -12 (|has| |#3| (-1029 (-403 (-560)))) (|has| |#3| (-1082)))) -(|has| |#2| (-359)) -(((|#2|) |has| |#2| (-1039)) (((-560)) -12 (|has| |#2| (-622 (-560))) (|has| |#2| (-1039)))) -(((|#1|) . T)) -(|has| |#2| (-359)) -((((-403 (-560)) (-403 (-560))) |has| |#2| (-43 (-403 (-560)))) ((|#2| |#2|) . T) (($ $) -2318 (|has| |#2| (-170)) (|has| |#2| (-447)) (|has| |#2| (-550)) (|has| |#2| (-896)))) -((($ $) -2318 (|has| |#1| (-170)) (|has| |#1| (-447)) (|has| |#1| (-550)) (|has| |#1| (-896))) ((|#1| |#1|) . T) (((-403 (-560)) (-403 (-560))) |has| |#1| (-43 (-403 (-560))))) -(((|#1| |#1|) . T) (($ $) . T) (((-403 (-560)) (-403 (-560))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-403 (-560)) (-403 (-560))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-403 (-560)) (-403 (-560))) . T)) +((((-850)) . T)) +(-2198 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-137)) (|has| |#2| (-137))) (-12 (|has| |#1| (-788)) (|has| |#2| (-788)))) +(|has| |#1| (-558)) +(-2198 (|has| |#3| (-137)) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-788)) (|has| |#3| (-840)) (|has| |#3| (-1047))) +(-2198 (|has| |#2| (-172)) (|has| |#2| (-716)) (|has| |#2| (-840)) (|has| |#2| (-1047))) +(((|#1|) |has| |#1| (-172))) +((((-850)) . T)) +((((-850)) . T)) +(((|#4|) |has| |#4| (-1047))) +(((|#3|) |has| |#3| (-1047))) +(-12 (|has| |#1| (-365)) (|has| |#2| (-815))) +(-12 (|has| |#1| (-365)) (|has| |#2| (-815))) +((((-850)) -2198 (|has| |#1| (-842)) (|has| |#1| (-1090)))) +((((-541)) |has| |#1| (-609 (-541)))) +((((-409 |#2|)) . T) (((-409 (-568))) . T) (($) . T)) +((($ $) . T) (((-409 (-568)) (-409 (-568))) . T)) +((((-850)) . T)) +((((-169 (-215))) . T)) +((((-215)) . T)) +((((-169 (-215))) . T)) +((((-215)) . T)) +((($) . T) (((-409 (-568))) . T)) +(((|#1|) . T)) +(((|#4|) |has| |#4| (-1090)) (((-568)) -12 (|has| |#4| (-1037 (-568))) (|has| |#4| (-1090))) (((-409 (-568))) -12 (|has| |#4| (-1037 (-409 (-568)))) (|has| |#4| (-1090)))) +(((|#3|) |has| |#3| (-1090)) (((-568)) -12 (|has| |#3| (-1037 (-568))) (|has| |#3| (-1090))) (((-409 (-568))) -12 (|has| |#3| (-1037 (-409 (-568)))) (|has| |#3| (-1090)))) +(|has| |#2| (-365)) +(((|#2|) |has| |#2| (-1047)) (((-568)) -12 (|has| |#2| (-630 (-568))) (|has| |#2| (-1047)))) +(((|#1|) . T)) +(|has| |#2| (-365)) +((((-409 (-568)) (-409 (-568))) |has| |#2| (-43 (-409 (-568)))) ((|#2| |#2|) . T) (($ $) -2198 (|has| |#2| (-172)) (|has| |#2| (-453)) (|has| |#2| (-558)) (|has| |#2| (-904)))) +((($ $) -2198 (|has| |#1| (-172)) (|has| |#1| (-453)) (|has| |#1| (-558)) (|has| |#1| (-904))) ((|#1| |#1|) . T) (((-409 (-568)) (-409 (-568))) |has| |#1| (-43 (-409 (-568))))) +(((|#1| |#1|) . T) (($ $) . T) (((-409 (-568)) (-409 (-568))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-409 (-568)) (-409 (-568))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-409 (-568)) (-409 (-568))) . T)) (((|#2| |#2|) . T)) -((((-403 (-560))) |has| |#2| (-43 (-403 (-560)))) ((|#2|) . T) (($) -2318 (|has| |#2| (-170)) (|has| |#2| (-447)) (|has| |#2| (-550)) (|has| |#2| (-896)))) -((($) -2318 (|has| |#1| (-170)) (|has| |#1| (-447)) (|has| |#1| (-550)) (|has| |#1| (-896))) ((|#1|) . T) (((-403 (-560))) |has| |#1| (-43 (-403 (-560))))) -(((|#1|) . T) (($) . T) (((-403 (-560))) . T)) -(((|#1|) . T) (($) . T) (((-403 (-560))) . T)) -(((|#1|) . T) (($) . T) (((-403 (-560))) . T)) -(((|#2|) . T)) -(((|#1|) . T)) -((($) . T)) -((((-842)) |has| |#1| (-1082))) -((((-1221 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#2| (-807)) -(|has| |#2| (-807)) -(|has| |#1| (-359)) -(|has| |#1| (-359)) -(|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))) -(|has| |#1| (-359)) -(|has| |#1| (-15 * (|#1| (-560) |#1|))) -(((|#1|) |has| |#2| (-413 |#1|))) -(((|#1|) |has| |#2| (-413 |#1|))) -((((-897 |#1|)) . T) (((-403 (-560))) . T) (($) . T)) -((((-842)) -2318 (|has| |#1| (-834)) (|has| |#1| (-1082)))) -((((-533)) |has| |#1| (-601 (-533)))) -((((-842)) . T)) -((((-2 (|:| -3655 (-1153)) (|:| -2371 (-57)))) |has| (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (-298 (-2 (|:| -3655 (-1153)) (|:| -2371 (-57)))))) -(-2318 (|has| |#2| (-447)) (|has| |#2| (-550)) (|has| |#2| (-896))) -((((-560) |#1|) . T)) -((((-560) |#1|) . T)) -((((-560) |#1|) . T)) -(-2318 (|has| |#1| (-447)) (|has| |#1| (-550)) (|has| |#1| (-896))) -((((-560) |#1|) . T)) -(((|#1|) . T)) -(-2318 (|has| |#1| (-359)) (|has| |#1| (-447)) (|has| |#1| (-550)) (|has| |#1| (-896))) -(-2318 (|has| |#1| (-447)) (|has| |#1| (-550)) (|has| |#1| (-896))) -((((-1153)) |has| |#1| (-887 (-1153))) (((-805 (-1153))) . T)) -(-2318 (|has| |#3| (-137)) (|has| |#3| (-170)) (|has| |#3| (-359)) (|has| |#3| (-780)) (|has| |#3| (-832)) (|has| |#3| (-1039))) -((((-806 |#1|)) . T)) +((((-409 (-568))) |has| |#2| (-43 (-409 (-568)))) ((|#2|) . T) (($) -2198 (|has| |#2| (-172)) (|has| |#2| (-453)) (|has| |#2| (-558)) (|has| |#2| (-904)))) +((($) -2198 (|has| |#1| (-172)) (|has| |#1| (-453)) (|has| |#1| (-558)) (|has| |#1| (-904))) ((|#1|) . T) (((-409 (-568))) |has| |#1| (-43 (-409 (-568))))) +(((|#1|) . T) (($) . T) (((-409 (-568))) . T)) +(((|#1|) . T) (($) . T) (((-409 (-568))) . T)) +(((|#1|) . T) (($) . T) (((-409 (-568))) . T)) +(((|#2|) . T)) +(((|#1|) . T)) +((($) . T)) +((((-850)) |has| |#1| (-1090))) +((((-1229 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#2| (-815)) +(|has| |#2| (-815)) +(|has| |#1| (-365)) +(|has| |#1| (-365)) +(|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))) +(|has| |#1| (-365)) +(|has| |#1| (-15 * (|#1| (-568) |#1|))) +(((|#1|) |has| |#2| (-419 |#1|))) +(((|#1|) |has| |#2| (-419 |#1|))) +((((-905 |#1|)) . T) (((-409 (-568))) . T) (($) . T)) +((((-850)) -2198 (|has| |#1| (-842)) (|has| |#1| (-1090)))) +((((-541)) |has| |#1| (-609 (-541)))) +((((-850)) . T)) +((((-2 (|:| -3649 (-1161)) (|:| -4083 (-57)))) |has| (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (-303 (-2 (|:| -3649 (-1161)) (|:| -4083 (-57)))))) +(-2198 (|has| |#2| (-453)) (|has| |#2| (-558)) (|has| |#2| (-904))) +((((-568) |#1|) . T)) +((((-568) |#1|) . T)) +((((-568) |#1|) . T)) +(-2198 (|has| |#1| (-453)) (|has| |#1| (-558)) (|has| |#1| (-904))) +((((-568) |#1|) . T)) +(((|#1|) . T)) +(-2198 (|has| |#1| (-365)) (|has| |#1| (-453)) (|has| |#1| (-558)) (|has| |#1| (-904))) +(-2198 (|has| |#1| (-453)) (|has| |#1| (-558)) (|has| |#1| (-904))) +((((-1161)) |has| |#1| (-895 (-1161))) (((-813 (-1161))) . T)) +(-2198 (|has| |#3| (-137)) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-788)) (|has| |#3| (-840)) (|has| |#3| (-1047))) +((((-814 |#1|)) . T)) (((|#1| |#2|) . T)) -((((-842)) . T)) -(-2318 (|has| |#3| (-170)) (|has| |#3| (-708)) (|has| |#3| (-832)) (|has| |#3| (-1039))) +((((-850)) . T)) +(-2198 (|has| |#3| (-172)) (|has| |#3| (-716)) (|has| |#3| (-840)) (|has| |#3| (-1047))) (((|#1| |#2|) . T)) -(|has| |#1| (-43 (-403 (-560)))) -((((-842)) . T)) -((((-1221 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-403 (-560))) . T)) -(((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-550)) (((-403 (-560))) |has| |#1| (-550))) -(((|#2|) . T) (((-560)) |has| |#2| (-622 (-560)))) -(|has| |#1| (-359)) -(-2318 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (-12 (|has| |#1| (-359)) (|has| |#2| (-221)))) -(|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))) -(|has| |#1| (-359)) -(((|#1|) . T)) -((((-403 (-560)) (-403 (-560))) -2318 (|has| |#1| (-43 (-403 (-560)))) (|has| |#1| (-359))) (($ $) -2318 (|has| |#1| (-170)) (|has| |#1| (-359)) (|has| |#1| (-550))) ((|#1| |#1|) . T)) -((((-560) |#1|) . T)) -((((-304 |#1|)) . T)) -((((-403 (-560)) (-403 (-560))) . T) (($ $) . T) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (((-403 (-560)) (-403 (-560))) . T) (($ $) . T)) -((((-680) (-1149 (-680))) . T)) -((((-403 (-560))) -2318 (|has| |#1| (-43 (-403 (-560)))) (|has| |#1| (-359))) (($) -2318 (|has| |#1| (-170)) (|has| |#1| (-359)) (|has| |#1| (-550))) ((|#1|) . T)) -((((-403 (-560))) . T) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-403 (-560))) . T) (($) . T)) +(|has| |#1| (-43 (-409 (-568)))) +((((-850)) . T)) +((((-1229 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-409 (-568))) . T)) +(((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-558)) (((-409 (-568))) |has| |#1| (-558))) +(((|#2|) . T) (((-568)) |has| |#2| (-630 (-568)))) +(|has| |#1| (-365)) +(-2198 (|has| |#1| (-15 * (|#1| (-568) |#1|))) (-12 (|has| |#1| (-365)) (|has| |#2| (-225)))) +(|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))) +(|has| |#1| (-365)) +(((|#1|) . T)) +((((-409 (-568)) (-409 (-568))) -2198 (|has| |#1| (-43 (-409 (-568)))) (|has| |#1| (-365))) (($ $) -2198 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) ((|#1| |#1|) . T)) +((((-568) |#1|) . T)) +((((-310 |#1|)) . T)) +((((-409 (-568)) (-409 (-568))) . T) (($ $) . T) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (((-409 (-568)) (-409 (-568))) . T) (($ $) . T)) +((((-688) (-1157 (-688))) . T)) +((((-409 (-568))) -2198 (|has| |#1| (-43 (-409 (-568)))) (|has| |#1| (-365))) (($) -2198 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) ((|#1|) . T)) +((((-409 (-568))) . T) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-409 (-568))) . T) (($) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(|has| |#1| (-832)) -((($ $) . T) (((-844 |#1|) $) . T) (((-844 |#1|) |#2|) . T)) -((((-1105 |#1| (-1153))) . T) (((-805 (-1153))) . T) ((|#1|) . T) (((-560)) |has| |#1| (-1029 (-560))) (((-403 (-560))) |has| |#1| (-1029 (-403 (-560)))) (((-1153)) . T)) +(|has| |#1| (-840)) +((($ $) . T) (((-852 |#1|) $) . T) (((-852 |#1|) |#2|) . T)) +((((-1113 |#1| (-1161))) . T) (((-813 (-1161))) . T) ((|#1|) . T) (((-568)) |has| |#1| (-1037 (-568))) (((-409 (-568))) |has| |#1| (-1037 (-409 (-568)))) (((-1161)) . T)) ((($) . T)) (((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T)) -((((-1067) |#1|) . T) (((-1067) $) . T) (($ $) . T)) -((($ $) . T) (((-1153) $) |has| |#1| (-221)) (((-1153) |#1|) |has| |#1| (-221)) (((-1071 (-1153)) |#1|) . T) (((-1071 (-1153)) $) . T)) +((((-1075) |#1|) . T) (((-1075) $) . T) (($ $) . T)) +((($ $) . T) (((-1161) $) |has| |#1| (-225)) (((-1161) |#1|) |has| |#1| (-225)) (((-1079 (-1161)) |#1|) . T) (((-1079 (-1161)) $) . T)) ((($) . T) ((|#2|) . T)) -((($) . T) ((|#2|) . T) (((-403 (-560))) |has| |#2| (-43 (-403 (-560))))) -(|has| |#2| (-896)) -((($) . T) (((-1220 |#2| |#3| |#4|)) |has| (-1220 |#2| |#3| |#4|) (-170)) (((-403 (-560))) |has| (-1220 |#2| |#3| |#4|) (-43 (-403 (-560))))) -((((-560) |#1|) . T)) -((((-1221 |#1| |#2| |#3| |#4|)) |has| (-1221 |#1| |#2| |#3| |#4|) (-298 (-1221 |#1| |#2| |#3| |#4|)))) -((($) . T)) -(((|#1|) . T)) -((($ $) -2318 (|has| |#1| (-170)) (|has| |#1| (-359)) (|has| |#1| (-550))) (((-403 (-560)) (-403 (-560))) -2318 (|has| |#1| (-43 (-403 (-560)))) (|has| |#1| (-359))) ((|#2| |#2|) |has| |#1| (-359)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -2318 (|has| |#1| (-170)) (|has| |#1| (-359)) (|has| |#1| (-550))) (((-403 (-560)) (-403 (-560))) -2318 (|has| |#1| (-43 (-403 (-560)))) (|has| |#1| (-359)))) -(((|#2|) . T)) -(|has| |#2| (-221)) -(|has| $ (-148)) -((((-842)) . T)) -((($) . T) (((-403 (-560))) -2318 (|has| |#1| (-359)) (|has| |#1| (-344))) ((|#1|) . T)) -((((-842)) . T)) -(|has| |#1| (-832)) -((((-1153)) -12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-887 (-1153))))) -((((-403 |#2|) |#3|) . T)) -(((|#1|) . T)) -((((-842)) . T)) -(((|#2| (-655 |#1|)) . T)) -(-12 (|has| |#1| (-296)) (|has| |#1| (-896))) -(((|#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) +((($) . T) ((|#2|) . T) (((-409 (-568))) |has| |#2| (-43 (-409 (-568))))) +(|has| |#2| (-904)) +((($) . T) (((-1228 |#2| |#3| |#4|)) |has| (-1228 |#2| |#3| |#4|) (-172)) (((-409 (-568))) |has| (-1228 |#2| |#3| |#4|) (-43 (-409 (-568))))) +((((-568) |#1|) . T)) +((((-1229 |#1| |#2| |#3| |#4|)) |has| (-1229 |#1| |#2| |#3| |#4|) (-303 (-1229 |#1| |#2| |#3| |#4|)))) +((($) . T)) +(((|#1|) . T)) +((($ $) -2198 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-568)) (-409 (-568))) -2198 (|has| |#1| (-43 (-409 (-568)))) (|has| |#1| (-365))) ((|#2| |#2|) |has| |#1| (-365)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -2198 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-568)) (-409 (-568))) -2198 (|has| |#1| (-43 (-409 (-568)))) (|has| |#1| (-365)))) +(((|#2|) . T)) +(|has| |#2| (-225)) +(|has| $ (-150)) +((((-850)) . T)) +((($) . T) (((-409 (-568))) -2198 (|has| |#1| (-365)) (|has| |#1| (-350))) ((|#1|) . T)) +((((-850)) . T)) +(|has| |#1| (-840)) +((((-1161)) -12 (|has| |#1| (-15 * (|#1| (-568) |#1|))) (|has| |#1| (-895 (-1161))))) +((((-409 |#2|) |#3|) . T)) +(((|#1|) . T)) +((((-850)) . T)) +(((|#2| (-663 |#1|)) . T)) +(-12 (|has| |#1| (-301)) (|has| |#1| (-904))) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (((|#4|) . T)) -(|has| |#1| (-550)) -((((-1153)) -12 (|has| |#1| (-15 * (|#1| (-755) |#1|))) (|has| |#1| (-887 (-1153))))) -((($) -2318 (|has| |#1| (-170)) (|has| |#1| (-359)) (|has| |#1| (-550))) (((-403 (-560))) -2318 (|has| |#1| (-43 (-403 (-560)))) (|has| |#1| (-359))) ((|#2|) |has| |#1| (-359)) ((|#1|) . T)) -((((-1153)) -2318 (-12 (|has| (-1227 |#1| |#2| |#3|) (-887 (-1153))) (|has| |#1| (-359))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-887 (-1153)))))) -(((|#1|) . T) (($) -2318 (|has| |#1| (-170)) (|has| |#1| (-359)) (|has| |#1| (-550))) (((-403 (-560))) -2318 (|has| |#1| (-43 (-403 (-560)))) (|has| |#1| (-359)))) -((((-1153)) -12 (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))) (|has| |#1| (-887 (-1153))))) -((((-1153)) -12 (|has| |#1| (-15 * (|#1| (-755) |#1|))) (|has| |#1| (-887 (-1153))))) -((($) |has| |#1| (-550)) ((|#1|) |has| |#1| (-170)) (((-403 (-560))) |has| |#1| (-43 (-403 (-560))))) -(((|#4|) -12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082)))) -((((-560) |#1|) . T)) -(-2318 (|has| |#2| (-170)) (|has| |#2| (-447)) (|has| |#2| (-550)) (|has| |#2| (-896))) -(((|#1|) . T)) -(((|#1| (-526 (-805 (-1153)))) . T)) -(-2318 (|has| |#1| (-170)) (|has| |#1| (-447)) (|has| |#1| (-550)) (|has| |#1| (-896))) -(-2318 (|has| |#1| (-170)) (|has| |#1| (-359)) (|has| |#1| (-447)) (|has| |#1| (-550)) (|has| |#1| (-896))) -((((-560) (-2 (|:| |k| (-560)) (|:| |c| |#1|))) . T)) -(((|#1|) . T)) -(-2318 (|has| |#1| (-170)) (|has| |#1| (-447)) (|has| |#1| (-550)) (|has| |#1| (-896))) -(((|#1|) . T)) -(-2318 (|has| |#2| (-137)) (|has| |#2| (-170)) (|has| |#2| (-359)) (|has| |#2| (-780)) (|has| |#2| (-832)) (|has| |#2| (-1039))) -(-2318 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-137)) (|has| |#2| (-137))) (-12 (|has| |#1| (-780)) (|has| |#2| (-780)))) -((((-1227 |#1| |#2| |#3|)) |has| |#1| (-359))) -((($) . T) (((-856 |#1|)) . T) (((-403 (-560))) . T)) -((((-1227 |#1| |#2| |#3|)) |has| |#1| (-359))) -(|has| |#1| (-550)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-403 |#2|)) . T)) -(-2318 (|has| |#1| (-359)) (|has| |#1| (-344))) -((((-842)) -2318 (|has| |#1| (-834)) (|has| |#1| (-1082)))) -((((-533)) |has| |#1| (-601 (-533)))) -((((-842)) |has| |#1| (-1082))) -((((-842)) -2318 (|has| |#1| (-834)) (|has| |#1| (-1082)))) -((((-533)) |has| |#1| (-601 (-533)))) -((((-842)) -2318 (|has| |#1| (-834)) (|has| |#1| (-1082)))) -((((-533)) |has| |#1| (-601 (-533)))) -((((-842)) |has| |#1| (-1082))) -(((|#2|) |has| |#2| (-170)) (($) . T) (((-403 (-560))) |has| |#2| (-550))) -(((|#1|) . T)) -(((|#2| |#2|) . T) (((-403 (-560)) (-403 (-560))) . T) (($ $) . T)) -((((-560)) . T)) -(((|#2|) . T) (((-403 (-560))) . T) (($) . T)) -((((-842)) . T)) -((((-842)) . T)) -(((|#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) -((((-842)) . T)) -((((-573 |#1|)) . T) (((-403 (-560))) . T) (($) . T)) -((((-560) |#1|) . T)) -((((-403 (-560))) . T) (($) . T)) -((((-842)) . T)) -((($ $) . T) (((-1153) $) . T)) -((((-1227 |#1| |#2| |#3|)) . T)) -((((-1227 |#1| |#2| |#3|)) . T) (((-1199 |#1| |#2| |#3|)) . T)) -(((|#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) -(((|#1| (-526 (-844 |#2|)) (-844 |#2|) (-767 |#1| (-844 |#2|))) . T)) -((((-533)) |has| |#2| (-601 (-533))) (((-879 (-375))) |has| |#2| (-601 (-879 (-375)))) (((-879 (-560))) |has| |#2| (-601 (-879 (-560))))) -((((-842)) . T)) -((((-842)) . T)) -((((-879 (-560))) -12 (|has| |#1| (-601 (-879 (-560)))) (|has| |#3| (-601 (-879 (-560))))) (((-879 (-375))) -12 (|has| |#1| (-601 (-879 (-375)))) (|has| |#3| (-601 (-879 (-375))))) (((-533)) -12 (|has| |#1| (-601 (-533))) (|has| |#3| (-601 (-533))))) -((((-842)) . T)) -((((-842)) . T)) -((((-842)) . T)) -((((-842)) . T)) -(((|#1| |#2| (-228 |#1| |#2|) (-228 |#1| |#2|)) . T)) -((((-842)) . T)) -((((-1227 |#1| |#2| |#3|)) |has| |#1| (-359))) -((((-1153)) . T) (((-842)) . T)) -(|has| |#1| (-359)) -((((-403 (-560))) |has| |#2| (-43 (-403 (-560)))) ((|#2|) |has| |#2| (-170)) (($) -2318 (|has| |#2| (-447)) (|has| |#2| (-550)) (|has| |#2| (-896)))) +(|has| |#1| (-558)) +((((-1161)) -12 (|has| |#1| (-15 * (|#1| (-763) |#1|))) (|has| |#1| (-895 (-1161))))) +((($) -2198 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-568))) -2198 (|has| |#1| (-43 (-409 (-568)))) (|has| |#1| (-365))) ((|#2|) |has| |#1| (-365)) ((|#1|) . T)) +((((-1161)) -2198 (-12 (|has| (-1235 |#1| |#2| |#3|) (-895 (-1161))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-568) |#1|))) (|has| |#1| (-895 (-1161)))))) +(((|#1|) . T) (($) -2198 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-568))) -2198 (|has| |#1| (-43 (-409 (-568)))) (|has| |#1| (-365)))) +((((-1161)) -12 (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))) (|has| |#1| (-895 (-1161))))) +((((-1161)) -12 (|has| |#1| (-15 * (|#1| (-763) |#1|))) (|has| |#1| (-895 (-1161))))) +((($) |has| |#1| (-558)) ((|#1|) |has| |#1| (-172)) (((-409 (-568))) |has| |#1| (-43 (-409 (-568))))) +(((|#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090)))) +((((-568) |#1|) . T)) +(-2198 (|has| |#2| (-172)) (|has| |#2| (-453)) (|has| |#2| (-558)) (|has| |#2| (-904))) +(((|#1|) . T)) +(((|#1| (-534 (-813 (-1161)))) . T)) +(-2198 (|has| |#1| (-172)) (|has| |#1| (-453)) (|has| |#1| (-558)) (|has| |#1| (-904))) +(-2198 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-453)) (|has| |#1| (-558)) (|has| |#1| (-904))) +((((-568) (-2 (|:| |k| (-568)) (|:| |c| |#1|))) . T)) +(((|#1|) . T)) +(-2198 (|has| |#1| (-172)) (|has| |#1| (-453)) (|has| |#1| (-558)) (|has| |#1| (-904))) +(((|#1|) . T)) +(-2198 (|has| |#2| (-137)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-788)) (|has| |#2| (-840)) (|has| |#2| (-1047))) +(-2198 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-137)) (|has| |#2| (-137))) (-12 (|has| |#1| (-788)) (|has| |#2| (-788)))) +((((-1235 |#1| |#2| |#3|)) |has| |#1| (-365))) +((($) . T) (((-864 |#1|)) . T) (((-409 (-568))) . T)) +((((-1235 |#1| |#2| |#3|)) |has| |#1| (-365))) +(|has| |#1| (-558)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-409 |#2|)) . T)) +(-2198 (|has| |#1| (-365)) (|has| |#1| (-350))) +((((-850)) -2198 (|has| |#1| (-842)) (|has| |#1| (-1090)))) +((((-541)) |has| |#1| (-609 (-541)))) +((((-850)) |has| |#1| (-1090))) +((((-850)) -2198 (|has| |#1| (-842)) (|has| |#1| (-1090)))) +((((-541)) |has| |#1| (-609 (-541)))) +((((-850)) -2198 (|has| |#1| (-842)) (|has| |#1| (-1090)))) +((((-541)) |has| |#1| (-609 (-541)))) +((((-850)) |has| |#1| (-1090))) +(((|#1|) . T)) +(((|#2|) |has| |#2| (-172)) (($) . T) (((-409 (-568))) |has| |#2| (-558))) +(((|#2| |#2|) . T) (((-409 (-568)) (-409 (-568))) . T) (($ $) . T)) +((((-568)) . T)) +(((|#2|) . T) (((-409 (-568))) . T) (($) . T)) +((((-850)) . T)) +((((-850)) . T)) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) +((((-850)) . T)) +((((-581 |#1|)) . T) (((-409 (-568))) . T) (($) . T)) +((((-568) |#1|) . T)) +((((-409 (-568))) . T) (($) . T)) +((((-850)) . T)) +((($ $) . T) (((-1161) $) . T)) +((((-1235 |#1| |#2| |#3|)) . T)) +((((-1235 |#1| |#2| |#3|)) . T) (((-1207 |#1| |#2| |#3|)) . T)) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) +(((|#1| (-534 (-852 |#2|)) (-852 |#2|) (-775 |#1| (-852 |#2|))) . T)) +((((-541)) |has| |#2| (-609 (-541))) (((-887 (-381))) |has| |#2| (-609 (-887 (-381)))) (((-887 (-568))) |has| |#2| (-609 (-887 (-568))))) +((((-850)) . T)) +((((-850)) . T)) +((((-887 (-568))) -12 (|has| |#1| (-609 (-887 (-568)))) (|has| |#3| (-609 (-887 (-568))))) (((-887 (-381))) -12 (|has| |#1| (-609 (-887 (-381)))) (|has| |#3| (-609 (-887 (-381))))) (((-541)) -12 (|has| |#1| (-609 (-541))) (|has| |#3| (-609 (-541))))) +((((-850)) . T)) +((((-850)) . T)) +((((-850)) . T)) +((((-850)) . T)) +(((|#1| |#2| (-232 |#1| |#2|) (-232 |#1| |#2|)) . T)) +((((-850)) . T)) +((((-1235 |#1| |#2| |#3|)) |has| |#1| (-365))) +((((-1161)) . T) (((-850)) . T)) +(|has| |#1| (-365)) +((((-409 (-568))) |has| |#2| (-43 (-409 (-568)))) ((|#2|) |has| |#2| (-172)) (($) -2198 (|has| |#2| (-453)) (|has| |#2| (-558)) (|has| |#2| (-904)))) (((|#2|) . T) ((|#6|) . T)) -((($) . T) (((-403 (-560))) |has| |#2| (-43 (-403 (-560)))) ((|#2|) . T)) -((($) -2318 (|has| |#1| (-447)) (|has| |#1| (-550)) (|has| |#1| (-896))) ((|#1|) |has| |#1| (-170)) (((-403 (-560))) |has| |#1| (-43 (-403 (-560))))) -((((-1086)) . T)) -((((-842)) . T)) -((($) -2318 (|has| |#1| (-359)) (|has| |#1| (-447)) (|has| |#1| (-550)) (|has| |#1| (-896))) ((|#1|) |has| |#1| (-170)) (((-403 (-560))) |has| |#1| (-43 (-403 (-560))))) -((($) . T) (((-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((|#1|) . T)) -((($) . T)) -((($) -2318 (|has| |#1| (-447)) (|has| |#1| (-550)) (|has| |#1| (-896))) ((|#1|) |has| |#1| (-170)) (((-403 (-560))) |has| |#1| (-43 (-403 (-560))))) -(|has| |#2| (-896)) -(|has| |#1| (-896)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1| |#1|) |has| |#1| (-170))) -((((-560)) . T)) -((((-680)) . T)) -((((-842)) |has| |#1| (-1082))) -(((|#1|) |has| |#1| (-170))) -((($) . T)) -(((|#1|) |has| |#1| (-170))) -((((-403 (-560))) . T) (($) . T)) -(((|#1| (-560)) . T)) -((((-842)) . T)) -(-2318 (|has| |#1| (-359)) (|has| |#1| (-344))) -(-2318 (|has| |#1| (-359)) (|has| |#1| (-344))) -(|has| |#1| (-359)) -(|has| |#1| (-359)) -(-2318 (|has| |#1| (-170)) (|has| |#1| (-550))) -(((|#1| (-755)) . T)) -(((|#1| (-560)) . T)) -(((|#1| (-403 (-560))) . T)) -(((|#1| (-755)) . T)) -(|has| |#1| (-43 (-403 (-560)))) -(|has| |#1| (-1082)) -((((-403 (-560))) . T)) -(((|#1| (-526 |#2|) |#2|) . T)) -((((-560) |#1|) . T)) -((((-560) |#1|) . T)) -(|has| |#1| (-1082)) -((((-560) |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-879 (-375))) . T) (((-879 (-560))) . T) (((-1153)) . T) (((-533)) . T)) -(((|#1|) . T)) -((((-842)) . T)) -(-2318 (|has| |#2| (-137)) (|has| |#2| (-170)) (|has| |#2| (-359)) (|has| |#2| (-780)) (|has| |#2| (-832)) (|has| |#2| (-1039))) -(-2318 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-137)) (|has| |#2| (-137))) (-12 (|has| |#1| (-780)) (|has| |#2| (-780)))) -((((-560)) . T)) -((((-560)) . T)) -((((-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) . T)) +((($) . T) (((-409 (-568))) |has| |#2| (-43 (-409 (-568)))) ((|#2|) . T)) +((($) -2198 (|has| |#1| (-453)) (|has| |#1| (-558)) (|has| |#1| (-904))) ((|#1|) |has| |#1| (-172)) (((-409 (-568))) |has| |#1| (-43 (-409 (-568))))) +((((-1094)) . T)) +((((-850)) . T)) +((($) -2198 (|has| |#1| (-365)) (|has| |#1| (-453)) (|has| |#1| (-558)) (|has| |#1| (-904))) ((|#1|) |has| |#1| (-172)) (((-409 (-568))) |has| |#1| (-43 (-409 (-568))))) +((($) . T) (((-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((|#1|) . T)) +((($) . T)) +((($) -2198 (|has| |#1| (-453)) (|has| |#1| (-558)) (|has| |#1| (-904))) ((|#1|) |has| |#1| (-172)) (((-409 (-568))) |has| |#1| (-43 (-409 (-568))))) +(|has| |#2| (-904)) +(|has| |#1| (-904)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1| |#1|) |has| |#1| (-172))) +((((-568)) . T)) +((((-688)) . T)) +((((-850)) |has| |#1| (-1090))) +(((|#1|) |has| |#1| (-172))) +(((|#1|) |has| |#1| (-172))) +((($) . T)) +((((-409 (-568))) . T) (($) . T)) +(((|#1| (-568)) . T)) +((((-850)) . T)) +(-2198 (|has| |#1| (-365)) (|has| |#1| (-350))) +(-2198 (|has| |#1| (-365)) (|has| |#1| (-350))) +(|has| |#1| (-365)) +(|has| |#1| (-365)) +(-2198 (|has| |#1| (-172)) (|has| |#1| (-558))) +(((|#1| (-763)) . T)) +(((|#1| (-568)) . T)) +(((|#1| (-409 (-568))) . T)) +(((|#1| (-763)) . T)) +(|has| |#1| (-43 (-409 (-568)))) +(|has| |#1| (-1090)) +((((-409 (-568))) . T)) +(((|#1| (-534 |#2|) |#2|) . T)) +((((-568) |#1|) . T)) +((((-568) |#1|) . T)) +(|has| |#1| (-1090)) +((((-568) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-887 (-381))) . T) (((-887 (-568))) . T) (((-1161)) . T) (((-541)) . T)) +(((|#1|) . T)) +((((-850)) . T)) +(-2198 (|has| |#2| (-137)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-788)) (|has| |#2| (-840)) (|has| |#2| (-1047))) +(-2198 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-137)) (|has| |#2| (-137))) (-12 (|has| |#1| (-788)) (|has| |#2| (-788)))) +((((-568)) . T)) +((((-568)) . T)) +((((-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(-2318 (|has| |#2| (-170)) (|has| |#2| (-708)) (|has| |#2| (-832)) (|has| |#2| (-1039))) -((((-1153)) -12 (|has| |#2| (-887 (-1153))) (|has| |#2| (-1039)))) -(-2318 (-12 (|has| |#1| (-471)) (|has| |#2| (-471))) (-12 (|has| |#1| (-708)) (|has| |#2| (-708)))) -(|has| |#1| (-146)) +(-2198 (|has| |#2| (-172)) (|has| |#2| (-716)) (|has| |#2| (-840)) (|has| |#2| (-1047))) +((((-1161)) -12 (|has| |#2| (-895 (-1161))) (|has| |#2| (-1047)))) +(-2198 (-12 (|has| |#1| (-478)) (|has| |#2| (-478))) (-12 (|has| |#1| (-716)) (|has| |#2| (-716)))) (|has| |#1| (-148)) -(|has| |#1| (-359)) +(|has| |#1| (-150)) +(|has| |#1| (-365)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -(|has| |#1| (-221)) -((((-842)) . T)) -(((|#1| (-755) (-1067)) . T)) -((((-842)) . T)) -((((-842)) . T)) -((((-560) |#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) -((((-560) |#1|) . T)) -((((-560) |#1|) . T)) +(|has| |#1| (-225)) +((((-850)) . T)) +(((|#1| (-763) (-1075)) . T)) +((((-850)) . T)) +((((-850)) . T)) +((((-568) |#1|) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) +((((-568) |#1|) . T)) +((((-568) |#1|) . T)) ((((-125 |#1|)) . T)) -((((-403 (-560))) . T) (((-560)) . T)) -(((|#2|) |has| |#2| (-1039))) -((((-403 (-560))) . T) (($) . T)) -(((|#2|) . T)) -((((-560)) . T)) -((((-560)) . T)) -((((-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-550))) -((((-1135) (-1153) (-560) (-213) (-842)) . T)) +((((-568) (-169 (-215))) . T)) +((((-568) (-215)) . T)) +(((|#2|) |has| |#2| (-1047))) +((((-409 (-568))) . T) (($) . T)) +(((|#2|) . T)) +((((-568)) . T)) +((((-568)) . T)) +((((-409 (-568))) . T) (((-568)) . T)) +((((-1143) (-1161) (-568) (-215) (-850)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) -(-2318 (|has| |#1| (-344)) (|has| |#1| (-364))) +((((-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-558))) +(-2198 (|has| |#1| (-350)) (|has| |#1| (-370))) (((|#1| |#2|) . T)) (((|#1|) . T)) ((($) . T) ((|#1|) . T)) -((((-842)) . T)) -((($) . T) (((-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((|#1|) . T)) -((($) . T) ((|#1|) . T) (((-403 (-560))) |has| |#1| (-43 (-403 (-560))))) -(((|#2|) |has| |#2| (-1082)) (((-560)) -12 (|has| |#2| (-1029 (-560))) (|has| |#2| (-1082))) (((-403 (-560))) -12 (|has| |#2| (-1029 (-403 (-560)))) (|has| |#2| (-1082)))) -((((-533)) |has| |#1| (-601 (-533)))) -((((-842)) -2318 (|has| |#1| (-834)) (|has| |#1| (-1082)))) -((($) . T) (((-403 (-560))) . T)) -(|has| |#1| (-896)) -(|has| |#1| (-896)) -((((-213)) -12 (|has| |#1| (-359)) (|has| |#2| (-1013))) (((-375)) -12 (|has| |#1| (-359)) (|has| |#2| (-1013))) (((-879 (-375))) -12 (|has| |#1| (-359)) (|has| |#2| (-601 (-879 (-375))))) (((-879 (-560))) -12 (|has| |#1| (-359)) (|has| |#2| (-601 (-879 (-560))))) (((-533)) -12 (|has| |#1| (-359)) (|has| |#2| (-601 (-533))))) -((((-842)) . T)) -((((-842)) . T)) +((((-850)) . T)) +((($) . T) (((-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((|#1|) . T)) +((($) . T) ((|#1|) . T) (((-409 (-568))) |has| |#1| (-43 (-409 (-568))))) +(((|#2|) |has| |#2| (-1090)) (((-568)) -12 (|has| |#2| (-1037 (-568))) (|has| |#2| (-1090))) (((-409 (-568))) -12 (|has| |#2| (-1037 (-409 (-568)))) (|has| |#2| (-1090)))) +((((-541)) |has| |#1| (-609 (-541)))) +((((-850)) -2198 (|has| |#1| (-842)) (|has| |#1| (-1090)))) +((($) . T) (((-409 (-568))) . T)) +(|has| |#1| (-904)) +(|has| |#1| (-904)) +((((-215)) -12 (|has| |#1| (-365)) (|has| |#2| (-1021))) (((-381)) -12 (|has| |#1| (-365)) (|has| |#2| (-1021))) (((-887 (-381))) -12 (|has| |#1| (-365)) (|has| |#2| (-609 (-887 (-381))))) (((-887 (-568))) -12 (|has| |#1| (-365)) (|has| |#2| (-609 (-887 (-568))))) (((-541)) -12 (|has| |#1| (-365)) (|has| |#2| (-609 (-541))))) +((((-850)) . T)) +((((-850)) . T)) (((|#2| |#2|) . T)) -(((|#1| |#1|) |has| |#1| (-170))) -(-2318 (|has| |#1| (-359)) (|has| |#1| (-550))) -(-2318 (|has| |#1| (-21)) (|has| |#1| (-832))) -(((|#2|) . T)) -(-2318 (|has| |#1| (-21)) (|has| |#1| (-832))) -(((|#1|) |has| |#1| (-170))) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| (-403 |#2|) (-148)) -((((-403 |#2|) |#3|) . T)) -((((-403 (-560))) . T) (($) . T)) -(|has| |#1| (-43 (-403 (-560)))) -(|has| |#1| (-359)) -((($ $) . T) (((-403 (-560)) (-403 (-560))) . T)) -(|has| (-403 |#2|) (-146)) -((((-680)) . T)) -(((|#1|) . T) (((-403 (-560))) . T) (((-560)) . T) (($) . T)) -((((-560) (-560)) . T)) -((($) . T) (((-403 (-560))) . T)) -(-2318 (|has| |#4| (-170)) (|has| |#4| (-832)) (|has| |#4| (-1039)) SEQ) -(-2318 (|has| |#3| (-170)) (|has| |#3| (-832)) (|has| |#3| (-1039)) SEQ) -(|has| |#4| (-780)) -(-2318 (|has| |#4| (-780)) (|has| |#4| (-832))) -(|has| |#4| (-832)) -(|has| |#3| (-780)) -(-2318 (|has| |#3| (-780)) (|has| |#3| (-832))) -(|has| |#3| (-832)) -((((-560)) . T)) -(((|#2|) . T)) -((((-1153)) -2318 (-12 (|has| (-1151 |#1| |#2| |#3|) (-887 (-1153))) (|has| |#1| (-359))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-887 (-1153)))))) -((((-1153)) -12 (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))) (|has| |#1| (-887 (-1153))))) -((((-1153)) -12 (|has| |#1| (-15 * (|#1| (-755) |#1|))) (|has| |#1| (-887 (-1153))))) +(((|#1| |#1|) |has| |#1| (-172))) +(-2198 (|has| |#1| (-365)) (|has| |#1| (-558))) +(-2198 (|has| |#1| (-21)) (|has| |#1| (-840))) +(((|#2|) . T)) +(-2198 (|has| |#1| (-21)) (|has| |#1| (-840))) +(((|#1|) |has| |#1| (-172))) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| (-409 |#2|) (-150)) +((((-409 |#2|) |#3|) . T)) +((((-409 (-568))) . T) (($) . T)) +(|has| |#1| (-43 (-409 (-568)))) +(|has| |#1| (-365)) +((($ $) . T) (((-409 (-568)) (-409 (-568))) . T)) +(|has| (-409 |#2|) (-148)) +((((-688)) . T)) +(((|#1|) . T) (((-409 (-568))) . T) (((-568)) . T) (($) . T)) +((((-568) (-568)) . T)) +((($) . T) (((-409 (-568))) . T)) +(-2198 (|has| |#4| (-172)) (|has| |#4| (-840)) (|has| |#4| (-1047)) SEQ) +(-2198 (|has| |#3| (-172)) (|has| |#3| (-840)) (|has| |#3| (-1047)) SEQ) +(|has| |#4| (-788)) +(-2198 (|has| |#4| (-788)) (|has| |#4| (-840))) +(|has| |#4| (-840)) +(|has| |#3| (-788)) +(-2198 (|has| |#3| (-788)) (|has| |#3| (-840))) +(|has| |#3| (-840)) +((((-568)) . T)) +(((|#2|) . T)) +((((-1161)) -2198 (-12 (|has| (-1159 |#1| |#2| |#3|) (-895 (-1161))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-568) |#1|))) (|has| |#1| (-895 (-1161)))))) +((((-1161)) -12 (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))) (|has| |#1| (-895 (-1161))))) +(((|#1|) |has| |#1| (-172)) (($) . T)) +((((-1161)) -12 (|has| |#1| (-15 * (|#1| (-763) |#1|))) (|has| |#1| (-895 (-1161))))) (((|#1| |#1|) . T) (($ $) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) -(|has| |#2| (-359)) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) +(|has| |#2| (-365)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T)) -((((-560) (-2 (|:| |k| (-560)) (|:| |c| |#1|))) . T)) -((((-844 |#1|)) . T)) -((((-2 (|:| |k| (-560)) (|:| |c| |#1|))) . T)) -((((-1151 |#1| |#2| |#3|)) |has| |#1| (-359))) -((((-1151 |#1| |#2| |#3|)) |has| |#1| (-359))) -((((-1117 |#1| |#2|)) . T)) -(((|#2|) . T) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) . T)) -((((-2 (|:| -3655 (-1153)) (|:| -2371 (-57)))) . T)) -((($) . T)) -(|has| |#1| (-1013)) -(((|#2|) . T) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) . T)) -((((-842)) . T)) -((((-533)) |has| |#2| (-601 (-533))) (((-879 (-560))) |has| |#2| (-601 (-879 (-560)))) (((-879 (-375))) |has| |#2| (-601 (-879 (-375)))) (((-375)) |has| |#2| (-1013)) (((-213)) |has| |#2| (-1013))) -((((-1153) (-57)) . T)) -(|has| |#1| (-43 (-403 (-560)))) -(|has| |#1| (-43 (-403 (-560)))) -((((-852)) . T) (((-403 (-560))) . T) (($) . T)) -((((-403 (-560))) . T) (($) . T)) +((((-568) (-2 (|:| |k| (-568)) (|:| |c| |#1|))) . T)) +((((-852 |#1|)) . T)) +((((-2 (|:| |k| (-568)) (|:| |c| |#1|))) . T)) +((((-1159 |#1| |#2| |#3|)) |has| |#1| (-365))) +((((-1159 |#1| |#2| |#3|)) |has| |#1| (-365))) +((((-1125 |#1| |#2|)) . T)) +(((|#2|) . T) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) . T)) +((((-2 (|:| -3649 (-1161)) (|:| -4083 (-57)))) . T)) +((($) . T)) +(|has| |#1| (-1021)) +(((|#2|) . T) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) . T)) +((((-850)) . T)) +((((-541)) |has| |#2| (-609 (-541))) (((-887 (-568))) |has| |#2| (-609 (-887 (-568)))) (((-887 (-381))) |has| |#2| (-609 (-887 (-381)))) (((-381)) |has| |#2| (-1021)) (((-215)) |has| |#2| (-1021))) +((((-1161) (-57)) . T)) +(|has| |#1| (-43 (-409 (-568)))) +(|has| |#1| (-43 (-409 (-568)))) +((((-860)) . T) (((-409 (-568))) . T) (($) . T)) +((((-409 (-568))) . T) (($) . T)) (((|#2|) . T)) ((($ $) . T)) -((((-403 (-560))) . T) (((-680)) . T) (($) . T)) -((((-560) (-2 (|:| |k| (-560)) (|:| |c| |#1|))) . T) (($ $) . T)) -((((-1151 |#1| |#2| |#3|)) . T)) -((((-1151 |#1| |#2| |#3|)) . T) (((-1143 |#1| |#2| |#3|)) . T)) -((((-842)) . T)) -((((-842)) |has| |#1| (-1082))) -((((-560) |#1|) . T)) -((((-1151 |#1| |#2| |#3|)) |has| |#1| (-359))) +((((-409 (-568))) . T) (((-688)) . T) (($) . T)) +((((-568) (-2 (|:| |k| (-568)) (|:| |c| |#1|))) . T) (($ $) . T)) +((((-1159 |#1| |#2| |#3|)) . T)) +((((-1159 |#1| |#2| |#3|)) . T) (((-1151 |#1| |#2| |#3|)) . T)) +((((-850)) . T)) +((((-850)) |has| |#1| (-1090))) +((((-568) |#1|) . T)) +((((-1159 |#1| |#2| |#3|)) |has| |#1| (-365))) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) (((|#2|) . T)) -(|has| |#2| (-359)) -(((|#3|) . T) ((|#2|) . T) (($) -2318 (|has| |#4| (-170)) (|has| |#4| (-832)) (|has| |#4| (-1039))) ((|#4|) -2318 (|has| |#4| (-170)) (|has| |#4| (-359)) (|has| |#4| (-1039)))) -(((|#2|) . T) (($) -2318 (|has| |#3| (-170)) (|has| |#3| (-832)) (|has| |#3| (-1039))) ((|#3|) -2318 (|has| |#3| (-170)) (|has| |#3| (-359)) (|has| |#3| (-1039)))) +(|has| |#2| (-365)) +(((|#3|) . T) ((|#2|) . T) (($) -2198 (|has| |#4| (-172)) (|has| |#4| (-840)) (|has| |#4| (-1047))) ((|#4|) -2198 (|has| |#4| (-172)) (|has| |#4| (-365)) (|has| |#4| (-1047)))) +(((|#2|) . T) (($) -2198 (|has| |#3| (-172)) (|has| |#3| (-840)) (|has| |#3| (-1047))) ((|#3|) -2198 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1047)))) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-359)) +(|has| |#1| (-365)) ((((-125 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-403 (-560))) |has| |#2| (-1029 (-403 (-560)))) (((-560)) |has| |#2| (-1029 (-560))) ((|#2|) . T) (((-844 |#1|)) . T)) -((((-842)) . T)) -((((-842)) . T)) -((((-842)) . T)) +((((-409 (-568))) |has| |#2| (-1037 (-409 (-568)))) (((-568)) |has| |#2| (-1037 (-568))) ((|#2|) . T) (((-852 |#1|)) . T)) +((((-541)) |has| (-169 (-215)) (-609 (-541)))) +((((-850)) . T)) +((((-850)) . T)) +((((-850)) . T)) +((((-541)) . T)) +((((-850)) . T)) +((((-850)) . T)) (((|#1|) . T)) -((((-842)) |has| |#1| (-1082))) -((((-560) |#1|) . T)) +((((-850)) |has| |#1| (-1090))) +((((-568) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#2| $) -12 (|has| |#1| (-359)) (|has| |#2| (-276 |#2| |#2|))) (($ $) . T)) +(((|#2| $) -12 (|has| |#1| (-365)) (|has| |#2| (-281 |#2| |#2|))) (($ $) . T)) ((($ $) . T)) -(-2318 (|has| |#1| (-359)) (|has| |#1| (-447)) (|has| |#1| (-896))) -(-2318 (|has| |#1| (-834)) (|has| |#1| (-1082))) -((((-842)) . T)) -((((-842)) . T)) -((((-842)) . T)) -(((|#1| (-526 |#2|)) . T)) -((((-2 (|:| -3655 (-1153)) (|:| -2371 (-57)))) . T)) -(((|#1| (-560)) . T)) -(((|#1| (-403 (-560))) . T)) -(((|#1| (-755)) . T)) -(((|#1| (-755)) . T)) -(((|#1|) . T)) -((((-125 |#1|)) . T) (($) . T) (((-403 (-560))) . T)) -(-2318 (|has| |#2| (-447)) (|has| |#2| (-550)) (|has| |#2| (-896))) -(-2318 (|has| |#1| (-447)) (|has| |#1| (-550)) (|has| |#1| (-896))) -((($) . T)) -(((|#2| (-526 (-844 |#1|))) . T)) -((((-2 (|:| |k| (-560)) (|:| |c| |#1|))) . T)) -((((-560) |#1|) . T)) -(((|#2|) . T)) -(((|#2| (-755)) . T)) -((((-842)) |has| |#1| (-1082))) +(-2198 (|has| |#1| (-365)) (|has| |#1| (-453)) (|has| |#1| (-904))) +(-2198 (|has| |#1| (-842)) (|has| |#1| (-1090))) +((((-850)) . T)) +((((-850)) . T)) +((((-850)) . T)) +(((|#1| (-534 |#2|)) . T)) +((((-2 (|:| -3649 (-1161)) (|:| -4083 (-57)))) . T)) +(((|#1| (-568)) . T)) +(((|#1| (-409 (-568))) . T)) +(((|#1| (-763)) . T)) +(((|#1| (-763)) . T)) +(((|#1|) . T)) +((((-125 |#1|)) . T) (($) . T) (((-409 (-568))) . T)) +(-2198 (|has| |#2| (-453)) (|has| |#2| (-558)) (|has| |#2| (-904))) +(-2198 (|has| |#1| (-453)) (|has| |#1| (-558)) (|has| |#1| (-904))) +((($) . T)) +(((|#2| (-534 (-852 |#1|))) . T)) +((((-2 (|:| |k| (-568)) (|:| |c| |#1|))) . T)) +((((-568) |#1|) . T)) +(((|#2|) . T)) +(((|#2| (-763)) . T)) +((((-850)) |has| |#1| (-1090))) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-1135) |#1|) . T)) -((((-403 |#2|)) . T)) -((((-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) . T)) -(|has| |#1| (-550)) -(|has| |#1| (-550)) -((($) -2318 (|has| |#1| (-359)) (|has| |#1| (-447)) (|has| |#1| (-550)) (|has| |#1| (-896))) ((|#1|) |has| |#1| (-170)) (((-403 (-560))) |has| |#1| (-43 (-403 (-560))))) +((((-1143) |#1|) . T)) +((((-409 |#2|)) . T)) +((((-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) . T)) +(|has| |#1| (-558)) +(|has| |#1| (-558)) +((($) -2198 (|has| |#1| (-365)) (|has| |#1| (-453)) (|has| |#1| (-558)) (|has| |#1| (-904))) ((|#1|) |has| |#1| (-172)) (((-409 (-568))) |has| |#1| (-43 (-409 (-568))))) ((($) . T) ((|#2|) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -(((|#2| $) |has| |#2| (-276 |#2| |#2|))) -(((|#1| (-626 |#1|)) |has| |#1| (-832))) -(-2318 (|has| |#1| (-221)) (|has| |#1| (-344))) -(-2318 (|has| |#1| (-359)) (|has| |#1| (-344))) -(|has| |#1| (-1082)) -(((|#1|) . T)) -(|has| |#1| (-1128)) -((((-403 (-560))) . T) (($) . T)) -((((-991 |#1|)) . T) ((|#1|) . T) (((-560)) -2318 (|has| (-991 |#1|) (-1029 (-560))) (|has| |#1| (-1029 (-560)))) (((-403 (-560))) -2318 (|has| (-991 |#1|) (-1029 (-403 (-560)))) (|has| |#1| (-1029 (-403 (-560)))))) -(((|#1| |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) -(((|#1| |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) -(((|#1| |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) -((((-1153)) |has| |#1| (-887 (-1153)))) -(((|#1| |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) -(((|#1| |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) -(((|#1| (-591 |#1| |#3|) (-591 |#1| |#2|)) . T)) -(((|#1|) . T)) +(((|#2| $) |has| |#2| (-281 |#2| |#2|))) +(((|#1| (-634 |#1|)) |has| |#1| (-840))) +(-2198 (|has| |#1| (-225)) (|has| |#1| (-350))) +(-2198 (|has| |#1| (-365)) (|has| |#1| (-350))) +(|has| |#1| (-1090)) +(((|#1|) . T)) +(|has| |#1| (-1136)) +((((-409 (-568))) . T) (($) . T)) +((((-999 |#1|)) . T) ((|#1|) . T) (((-568)) -2198 (|has| (-999 |#1|) (-1037 (-568))) (|has| |#1| (-1037 (-568)))) (((-409 (-568))) -2198 (|has| (-999 |#1|) (-1037 (-409 (-568)))) (|has| |#1| (-1037 (-409 (-568)))))) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) +((((-1161)) |has| |#1| (-895 (-1161)))) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) +((((-568) (-169 (-215))) . T)) +((((-568) (-215)) . T)) +(((|#1| (-599 |#1| |#3|) (-599 |#1| |#2|)) . T)) +(((|#1|) . T)) +((((-169 (-215))) . T)) +((((-215)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-1117 |#1| |#2|) (-1117 |#1| |#2|)) |has| (-1117 |#1| |#2|) (-298 (-1117 |#1| |#2|)))) -(((|#2| |#2|) -12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082))) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) |has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))))) -((((-125 |#1|)) |has| (-125 |#1|) (-298 (-125 |#1|)))) -(-2318 (|has| |#1| (-834)) (|has| |#1| (-1082))) +((((-1125 |#1| |#2|) (-1125 |#1| |#2|)) |has| (-1125 |#1| |#2|) (-303 (-1125 |#1| |#2|)))) +(((|#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090))) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) |has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))))) +((((-125 |#1|)) |has| (-125 |#1|) (-303 (-125 |#1|)))) +(-2198 (|has| |#1| (-842)) (|has| |#1| (-1090))) ((($ $) . T)) -((($ $) . T) (((-844 |#1|) $) . T) (((-844 |#1|) |#2|) . T)) -((($ $) . T) ((|#2| $) |has| |#1| (-221)) ((|#2| |#1|) |has| |#1| (-221)) ((|#3| |#1|) . T) ((|#3| $) . T)) -(((-644 . -1082) T) ((-252 . -515) 154528) ((-237 . -515) 154466) ((-567 . -120) 154451) ((-526 . -23) T) ((-235 . -1082) 154401) ((-126 . -298) 154345) ((-483 . -515) 154105) ((-675 . -105) T) ((-1118 . -515) 154013) ((-386 . -137) T) ((-1247 . -969) 153982) ((-591 . -492) 153966) ((-605 . -137) T) ((-806 . -830) T) ((-523 . -62) 153916) ((-64 . -515) 153849) ((-519 . -515) 153782) ((-414 . -887) 153741) ((-167 . -1039) T) ((-517 . -515) 153674) ((-498 . -515) 153607) ((-497 . -515) 153540) ((-786 . -1029) 153323) ((-680 . -43) 153288) ((-335 . -344) T) ((-1147 . -1128) 153266) ((-1076 . -1075) 153250) ((-1076 . -1082) 153228) ((-167 . -233) 153179) ((-167 . -221) 153130) ((-1076 . -1077) 153088) ((-858 . -276) 153046) ((-213 . -782) T) ((-213 . -779) T) ((-675 . -274) NIL) ((-1127 . -1164) 153025) ((-403 . -985) 153009) ((-960 . -105) T) ((-682 . -21) T) ((-682 . -25) T) ((-1249 . -629) 152983) ((-1147 . -43) 152812) ((-304 . -159) 152791) ((-304 . -144) 152770) ((-1127 . -111) 152720) ((-139 . -25) T) ((-45 . -219) 152697) ((-125 . -21) T) ((-125 . -25) T) ((-595 . -278) 152673) ((-473 . -278) 152652) ((-1208 . -1039) T) ((-839 . -1039) T) ((-786 . -330) 152636) ((-126 . -1128) NIL) ((-96 . -600) 152603) ((-482 . -137) T) ((-583 . -1187) T) ((-1208 . -318) 152580) ((-567 . -1039) T) ((-1208 . -221) T) ((-644 . -699) 152564) ((-950 . -278) 152541) ((-766 . -492) 152493) ((-65 . -39) T) ((-1050 . -782) T) ((-1050 . -779) T) ((-803 . -708) T) ((-713 . -52) 152458) ((-607 . -43) 152445) ((-350 . -280) T) ((-347 . -280) T) ((-336 . -280) T) ((-252 . -280) 152376) ((-237 . -280) 152307) ((-1015 . -105) T) ((-409 . -708) T) ((-126 . -43) 152252) ((-409 . -471) T) ((-349 . -105) T) ((-1182 . -1046) T) ((-693 . -1046) T) ((-1231 . -1226) 152236) ((-1231 . -1213) 152213) ((-1151 . -52) 152190) ((-1150 . -52) 152160) ((-1143 . -52) 152137) ((-1027 . -152) 152083) ((-897 . -280) T) ((-1106 . -52) 152055) ((-675 . -298) NIL) ((-516 . -600) 152037) ((-511 . -600) 152019) ((-509 . -600) 152001) ((-319 . -1082) 151951) ((-116 . -105) T) ((-694 . -447) 151882) ((-53 . -105) T) ((-1219 . -276) 151867) ((-1198 . -276) 151787) ((-626 . -650) 151771) ((-626 . -632) 151755) ((-331 . -21) T) ((-331 . -25) T) ((-45 . -344) NIL) ((-852 . -1082) T) ((-171 . -21) T) ((-171 . -25) T) ((-847 . -1082) T) ((-626 . -369) 151739) ((-591 . -276) 151716) ((-384 . -105) T) ((-1100 . -144) T) ((-135 . -600) 151683) ((-861 . -1082) T) ((-640 . -407) 151667) ((-696 . -600) 151649) ((-1249 . -708) T) ((-160 . -600) 151631) ((-156 . -600) 151613) ((-1084 . -39) T) ((-116 . -117) T) ((-857 . -782) NIL) ((-857 . -779) NIL) ((-841 . -834) T) ((-713 . -873) NIL) ((-1258 . -137) T) ((-377 . -137) T) ((-891 . -105) T) ((-713 . -1029) 151489) ((-526 . -137) T) ((-1070 . -407) 151473) ((-992 . -492) 151457) ((-126 . -396) 151434) ((-1143 . -1187) 151413) ((-769 . -407) 151397) ((-767 . -407) 151381) ((-936 . -39) T) ((-675 . -1128) NIL) ((-239 . -629) 151216) ((-238 . -629) 151038) ((-804 . -908) 151017) ((-449 . -407) 151001) ((-591 . -19) 150985) ((-1123 . -1181) 150954) ((-1143 . -873) NIL) ((-1143 . -871) 150906) ((-591 . -593) 150883) ((-1174 . -600) 150850) ((-1152 . -600) 150832) ((-67 . -391) T) ((-1150 . -1029) 150767) ((-1143 . -1029) 150733) ((-766 . -276) 150666) ((-675 . -43) 150616) ((-472 . -276) 150601) ((-713 . -373) 150585) ((-852 . -699) 150550) ((-640 . -1046) T) ((-847 . -699) 150500) ((-1219 . -994) 150466) ((-1198 . -994) 150432) ((-1051 . -1164) 150407) ((-858 . -601) 150208) ((-858 . -600) 150190) ((-1161 . -492) 150127) ((-414 . -1013) 150105) ((-53 . -298) 150092) ((-1051 . -111) 150038) ((-483 . -492) 149975) ((-520 . -1187) T) ((-1118 . -492) 149946) ((-1143 . -330) 149898) ((-1143 . -373) 149850) ((-433 . -105) T) ((-1070 . -1046) T) ((-239 . -39) T) ((-238 . -39) T) ((-766 . -1223) 149802) ((-769 . -1046) T) ((-767 . -1046) T) ((-713 . -887) 149779) ((-449 . -1046) T) ((-766 . -593) 149724) ((-64 . -492) 149708) ((-1026 . -1045) 149682) ((-915 . -1082) T) ((-519 . -492) 149666) ((-517 . -492) 149650) ((-498 . -492) 149634) ((-497 . -492) 149618) ((-726 . -908) 149597) ((-235 . -515) 149530) ((-1026 . -120) 149497) ((-1151 . -887) 149410) ((-654 . -1094) T) ((-1150 . -887) 149316) ((-1143 . -887) 149149) ((-1106 . -887) 149133) ((-349 . -1128) T) ((-313 . -1045) 149115) ((-239 . -778) 149094) ((-239 . -781) 149045) ((-239 . -780) 149024) ((-238 . -778) 149003) ((-238 . -781) 148954) ((-238 . -780) 148933) ((-55 . -1046) T) ((-239 . -708) 148859) ((-238 . -708) 148785) ((-1182 . -1082) T) ((-654 . -23) T) ((-573 . -1046) T) ((-518 . -1046) T) ((-375 . -1045) 148750) ((-313 . -120) 148725) ((-78 . -379) T) ((-78 . -391) T) ((-1015 . -43) 148662) ((-675 . -396) 148644) ((-101 . -105) T) ((-693 . -1082) T) ((-995 . -146) 148616) ((-375 . -120) 148565) ((-308 . -1191) 148544) ((-472 . -994) 148510) ((-349 . -43) 148475) ((-45 . -366) 148447) ((-995 . -148) 148419) ((-136 . -134) 148403) ((-130 . -134) 148387) ((-821 . -1045) 148357) ((-820 . -21) 148309) ((-814 . -1045) 148293) ((-820 . -25) 148245) ((-308 . -550) 148196) ((-560 . -815) T) ((-228 . -1187) T) ((-852 . -170) T) ((-847 . -170) T) ((-821 . -120) 148161) ((-814 . -120) 148140) ((-1219 . -600) 148122) ((-1198 . -600) 148104) ((-1198 . -601) 147775) ((-1149 . -896) 147754) ((-1105 . -896) 147733) ((-53 . -43) 147698) ((-1256 . -1094) T) ((-591 . -600) 147637) ((-591 . -601) 147598) ((-1254 . -1094) T) ((-228 . -1029) 147425) ((-1149 . -629) 147350) ((-1105 . -629) 147275) ((-700 . -600) 147257) ((-838 . -629) 147231) ((-1256 . -23) T) ((-1254 . -23) T) ((-1147 . -219) 147215) ((-1026 . -1039) T) ((-1161 . -276) 147194) ((-167 . -364) 147145) ((-996 . -1187) T) ((-49 . -23) T) ((-483 . -276) 147124) ((-577 . -1082) T) ((-1123 . -1091) 147093) ((-1086 . -1085) 147045) ((-386 . -21) T) ((-386 . -25) T) ((-153 . -1094) T) ((-1262 . -105) T) ((-1182 . -699) 146942) ((-996 . -871) 146924) ((-996 . -873) 146906) ((-725 . -105) T) ((-607 . -219) 146890) ((-605 . -21) T) ((-279 . -550) T) ((-605 . -25) T) ((-1168 . -1082) T) ((-693 . -699) 146855) ((-228 . -373) 146824) ((-996 . -1029) 146784) ((-375 . -1039) T) ((-211 . -1046) T) ((-126 . -219) 146761) ((-64 . -276) 146738) ((-153 . -23) T) ((-517 . -276) 146715) ((-319 . -515) 146648) ((-497 . -276) 146625) ((-375 . -233) T) ((-375 . -221) T) ((-849 . -600) 146607) ((-821 . -1039) T) ((-814 . -1039) T) ((-766 . -600) 146589) ((-766 . -601) NIL) ((-694 . -942) 146558) ((-682 . -834) T) ((-472 . -600) 146540) ((-814 . -221) 146519) ((-139 . -834) T) ((-640 . -1082) T) ((-1161 . -593) 146498) ((-543 . -1164) 146477) ((-328 . -1082) T) ((-308 . -359) 146456) ((-403 . -148) 146435) ((-403 . -146) 146414) ((-231 . -1082) T) ((-957 . -1094) 146313) ((-228 . -887) 146245) ((-802 . -1094) 146155) ((-636 . -836) 146139) ((-483 . -593) 146118) ((-543 . -111) 146068) ((-996 . -373) 146050) ((-996 . -330) 146032) ((-99 . -1082) T) ((-957 . -23) 145843) ((-482 . -21) T) ((-482 . -25) T) ((-802 . -23) 145713) ((-1153 . -600) 145695) ((-64 . -19) 145679) ((-1153 . -601) 145601) ((-1149 . -708) T) ((-1105 . -708) T) ((-517 . -19) 145585) ((-497 . -19) 145569) ((-64 . -593) 145546) ((-1070 . -1082) T) ((-888 . -105) 145524) ((-838 . -708) T) ((-769 . -1082) T) ((-517 . -593) 145501) ((-497 . -593) 145478) ((-767 . -1082) T) ((-767 . -1053) 145445) ((-456 . -1082) T) ((-449 . -1082) T) ((-1231 . -105) T) ((-577 . -699) 145420) ((-254 . -105) 145398) ((-630 . -1082) T) ((-1231 . -274) 145364) ((-1227 . -52) 145341) ((-1221 . -105) T) ((-1220 . -52) 145311) ((-996 . -887) NIL) ((-1199 . -52) 145288) ((-610 . -1094) T) ((-654 . -137) T) ((-1193 . -52) 145265) ((-1182 . -170) 145216) ((-1150 . -296) 145195) ((-1143 . -296) 145174) ((-1065 . -1191) 145125) ((-266 . -1082) T) ((-90 . -436) T) ((-90 . -391) T) ((-1065 . -550) 145076) ((-762 . -600) 145058) ((-55 . -1082) T) ((-693 . -170) T) ((-585 . -52) 145035) ((-213 . -629) 145000) ((-573 . -1082) T) ((-529 . -1082) T) ((-518 . -1082) T) ((-355 . -1191) T) ((-348 . -1191) T) ((-337 . -1191) T) ((-490 . -807) T) ((-490 . -908) T) ((-308 . -1094) T) ((-112 . -1191) T) ((-696 . -1045) 144970) ((-331 . -834) T) ((-206 . -908) T) ((-206 . -807) T) ((-725 . -298) 144957) ((-355 . -550) T) ((-348 . -550) T) ((-337 . -550) T) ((-112 . -550) T) ((-1143 . -1013) NIL) ((-640 . -699) 144927) ((-852 . -280) T) ((-847 . -280) T) ((-308 . -23) T) ((-72 . -1187) T) ((-992 . -600) 144894) ((-675 . -219) 144876) ((-231 . -699) 144858) ((-696 . -120) 144823) ((-626 . -39) T) ((-235 . -492) 144807) ((-1084 . -1079) 144791) ((-169 . -1082) T) ((-945 . -896) 144770) ((-485 . -896) 144749) ((-1258 . -21) T) ((-1258 . -25) T) ((-1256 . -137) T) ((-1254 . -137) T) ((-1070 . -699) 144598) ((-1050 . -629) 144585) ((-945 . -629) 144510) ((-769 . -699) 144339) ((-533 . -600) 144321) ((-533 . -601) 144302) ((-767 . -699) 144151) ((-1247 . -105) T) ((-1062 . -105) T) ((-377 . -25) T) ((-377 . -21) T) ((-485 . -629) 144076) ((-456 . -699) 144047) ((-449 . -699) 143896) ((-980 . -105) T) ((-719 . -105) T) ((-1262 . -1128) T) ((-526 . -25) T) ((-1199 . -1187) 143875) ((-1232 . -600) 143841) ((-1199 . -873) NIL) ((-1199 . -871) 143793) ((-142 . -105) T) ((-49 . -137) T) ((-1161 . -601) NIL) ((-1161 . -600) 143775) ((-1119 . -1103) 143720) ((-335 . -1046) T) ((-648 . -600) 143702) ((-279 . -1094) T) ((-350 . -600) 143684) ((-347 . -600) 143666) ((-336 . -600) 143648) ((-252 . -601) 143396) ((-252 . -600) 143378) ((-237 . -600) 143360) ((-237 . -601) 143221) ((-1036 . -1181) 143150) ((-888 . -298) 143088) ((-1220 . -1029) 143023) ((-1199 . -1029) 142989) ((-1182 . -515) 142956) ((-1118 . -600) 142938) ((-806 . -708) T) ((-573 . -699) 142903) ((-591 . -278) 142880) ((-518 . -699) 142825) ((-483 . -601) NIL) ((-483 . -600) 142807) ((-304 . -105) T) ((-254 . -298) 142745) ((-301 . -105) T) ((-279 . -23) T) ((-153 . -137) T) ((-959 . -600) 142727) ((-897 . -600) 142709) ((-382 . -708) T) ((-858 . -1045) 142661) ((-897 . -601) 142643) ((-858 . -120) 142574) ((-141 . -105) T) ((-123 . -105) T) ((-694 . -1211) 142558) ((-696 . -1039) T) ((-725 . -43) 142482) ((-675 . -344) NIL) ((-519 . -600) 142449) ((-375 . -782) T) ((-211 . -1082) T) ((-375 . -779) T) ((-213 . -781) T) ((-213 . -778) T) ((-64 . -601) 142410) ((-64 . -600) 142349) ((-213 . -708) T) ((-517 . -601) 142310) ((-517 . -600) 142249) ((-498 . -600) 142216) ((-497 . -601) 142177) ((-497 . -600) 142116) ((-1065 . -359) 142067) ((-45 . -407) 142044) ((-82 . -1187) T) ((-118 . -105) T) ((-958 . -963) 142028) ((-857 . -896) NIL) ((-355 . -321) 142012) ((-355 . -359) T) ((-348 . -321) 141996) ((-348 . -359) T) ((-337 . -321) 141980) ((-337 . -359) T) ((-304 . -274) 141959) ((-112 . -359) T) ((-75 . -1187) T) ((-1199 . -330) 141911) ((-857 . -629) 141856) ((-1199 . -373) 141808) ((-957 . -137) 141663) ((-802 . -137) 141533) ((-950 . -632) 141517) ((-1070 . -170) 141428) ((-1050 . -781) T) ((-950 . -369) 141412) ((-1050 . -778) T) ((-118 . -117) T) ((-766 . -278) 141357) ((-769 . -170) 141248) ((-767 . -170) 141159) ((-803 . -52) 141121) ((-1050 . -708) T) ((-319 . -492) 141105) ((-945 . -708) T) ((-449 . -170) 141016) ((-235 . -276) 140993) ((-485 . -708) T) ((-1247 . -298) 140931) ((-1231 . -43) 140828) ((-1227 . -887) 140741) ((-1220 . -887) 140647) ((-1219 . -1045) 140482) ((-1199 . -887) 140315) ((-1198 . -1045) 140123) ((-1193 . -887) 140036) ((-1182 . -280) 140015) ((-1123 . -152) 139999) ((-1060 . -105) T) ((-919 . -947) T) ((-719 . -298) 139937) ((-80 . -1187) T) ((-167 . -896) 139890) ((-34 . -105) T) ((-648 . -378) 139862) ((-30 . -947) T) ((-1 . -600) 139844) ((-1100 . -105) T) ((-1065 . -23) T) ((-55 . -604) 139828) ((-1065 . -1094) T) ((-995 . -405) 139800) ((-585 . -887) 139713) ((-434 . -105) T) ((-142 . -298) NIL) ((-858 . -1039) T) ((-820 . -834) 139692) ((-86 . -1187) T) ((-693 . -280) T) ((-45 . -1046) T) ((-573 . -170) T) ((-518 . -170) T) ((-512 . -600) 139674) ((-167 . -629) 139584) ((-508 . -600) 139566) ((-346 . -148) 139548) ((-346 . -146) T) ((-355 . -1094) T) ((-348 . -1094) T) ((-337 . -1094) T) ((-996 . -296) T) ((-902 . -296) T) ((-858 . -233) T) ((-112 . -1094) T) ((-858 . -221) 139527) ((-725 . -396) 139511) ((-1219 . -120) 139325) ((-1198 . -120) 139107) ((-235 . -1223) 139091) ((-560 . -832) T) ((-355 . -23) T) ((-349 . -344) T) ((-304 . -298) 139078) ((-301 . -298) 138974) ((-348 . -23) T) ((-308 . -137) T) ((-337 . -23) T) ((-996 . -1013) T) ((-112 . -23) T) ((-235 . -593) 138951) ((-1221 . -43) 138808) ((-1208 . -896) 138787) ((-121 . -1082) T) ((-1027 . -105) T) ((-1208 . -629) 138712) ((-857 . -781) NIL) ((-839 . -629) 138686) ((-857 . -778) NIL) ((-803 . -873) NIL) ((-857 . -708) T) ((-1070 . -515) 138549) ((-769 . -515) 138495) ((-767 . -515) 138447) ((-567 . -629) 138434) ((-803 . -1029) 138262) ((-449 . -515) 138200) ((-384 . -385) T) ((-65 . -1187) T) ((-605 . -834) 138179) ((-501 . -643) T) ((-1123 . -969) 138148) ((-849 . -1045) 138100) ((-766 . -1045) 138052) ((-995 . -447) T) ((-680 . -832) T) ((-511 . -779) T) ((-472 . -1045) 137887) ((-335 . -1082) T) ((-301 . -1128) NIL) ((-279 . -137) T) ((-390 . -1082) T) ((-856 . -1046) T) ((-675 . -366) 137854) ((-849 . -120) 137785) ((-766 . -120) 137716) ((-211 . -604) 137693) ((-319 . -276) 137670) ((-472 . -120) 137484) ((-1219 . -1039) T) ((-1198 . -1039) T) ((-803 . -373) 137468) ((-167 . -708) T) ((-636 . -105) T) ((-1219 . -233) 137447) ((-1219 . -221) 137399) ((-1198 . -221) 137304) ((-1198 . -233) 137283) ((-995 . -398) NIL) ((-654 . -622) 137231) ((-304 . -43) 137141) ((-301 . -43) 137070) ((-74 . -600) 137052) ((-308 . -494) 137018) ((-1161 . -278) 136997) ((-1095 . -1094) 136907) ((-88 . -1187) T) ((-66 . -600) 136889) ((-483 . -278) 136868) ((-1249 . -1029) 136845) ((-1141 . -1082) T) ((-1095 . -23) 136715) ((-803 . -887) 136651) ((-1208 . -708) T) ((-1084 . -1187) T) ((-1070 . -280) 136582) ((-880 . -105) T) ((-769 . -280) 136493) ((-319 . -19) 136477) ((-64 . -278) 136454) ((-767 . -280) 136385) ((-839 . -708) T) ((-126 . -832) NIL) ((-517 . -278) 136362) ((-319 . -593) 136339) ((-497 . -278) 136316) ((-449 . -280) 136247) ((-1027 . -298) 136098) ((-567 . -708) T) ((-644 . -600) 136080) ((-235 . -601) 136041) ((-235 . -600) 135980) ((-1124 . -39) T) ((-936 . -1187) T) ((-335 . -699) 135925) ((-849 . -1039) T) ((-766 . -1039) T) ((-654 . -25) T) ((-654 . -21) T) ((-1100 . -1128) T) ((-472 . -1039) T) ((-618 . -413) 135890) ((-594 . -413) 135855) ((-914 . -1082) T) ((-849 . -221) T) ((-849 . -233) T) ((-766 . -221) 135814) ((-766 . -233) T) ((-573 . -280) T) ((-518 . -280) T) ((-1220 . -296) 135793) ((-472 . -221) 135745) ((-472 . -233) 135724) ((-1199 . -296) 135703) ((-1065 . -137) T) ((-858 . -782) 135682) ((-145 . -105) T) ((-45 . -1082) T) ((-858 . -779) 135661) ((-626 . -1002) 135645) ((-572 . -1046) T) ((-560 . -1046) T) ((-496 . -1046) T) ((-403 . -447) T) ((-355 . -137) T) ((-304 . -396) 135629) ((-301 . -396) 135590) ((-348 . -137) T) ((-337 . -137) T) ((-1199 . -1013) NIL) ((-1076 . -600) 135557) ((-112 . -137) T) ((-1100 . -43) 135544) ((-909 . -1082) T) ((-755 . -1082) T) ((-655 . -1082) T) ((-682 . -148) T) ((-1147 . -407) 135528) ((-125 . -148) T) ((-1256 . -21) T) ((-1256 . -25) T) ((-1254 . -21) T) ((-1254 . -25) T) ((-648 . -1045) 135512) ((-526 . -834) T) ((-501 . -834) T) ((-350 . -1045) 135464) ((-347 . -1045) 135416) ((-336 . -1045) 135368) ((-239 . -1187) T) ((-238 . -1187) T) ((-252 . -1045) 135211) ((-237 . -1045) 135054) ((-648 . -120) 135033) ((-350 . -120) 134964) ((-347 . -120) 134895) ((-336 . -120) 134826) ((-252 . -120) 134648) ((-237 . -120) 134470) ((-804 . -1191) 134449) ((-607 . -407) 134433) ((-49 . -21) T) ((-49 . -25) T) ((-802 . -622) 134339) ((-804 . -550) 134318) ((-239 . -1029) 134145) ((-238 . -1029) 133972) ((-135 . -128) 133956) ((-897 . -1045) 133921) ((-680 . -1046) T) ((-694 . -105) T) ((-335 . -170) T) ((-153 . -21) T) ((-153 . -25) T) ((-93 . -600) 133903) ((-897 . -120) 133852) ((-45 . -699) 133797) ((-856 . -1082) T) ((-319 . -601) 133758) ((-319 . -600) 133697) ((-1198 . -779) 133650) ((-1147 . -1046) T) ((-1198 . -782) 133603) ((-239 . -373) 133572) ((-238 . -373) 133541) ((-852 . -600) 133523) ((-847 . -600) 133505) ((-636 . -43) 133475) ((-595 . -39) T) ((-486 . -1094) 133385) ((-473 . -39) T) ((-1095 . -137) 133255) ((-1155 . -550) 133234) ((-957 . -25) 133045) ((-861 . -600) 133027) ((-957 . -21) 132982) ((-802 . -21) 132892) ((-802 . -25) 132743) ((-1149 . -52) 132720) ((-607 . -1046) T) ((-1105 . -52) 132692) ((-457 . -1082) T) ((-350 . -1039) T) ((-347 . -1039) T) ((-486 . -23) 132562) ((-336 . -1039) T) ((-237 . -1039) T) ((-252 . -1039) T) ((-1026 . -629) 132536) ((-126 . -1046) T) ((-950 . -39) T) ((-726 . -1191) 132515) ((-350 . -221) 132494) ((-350 . -233) T) ((-347 . -221) 132473) ((-347 . -233) T) ((-237 . -318) 132430) ((-336 . -221) 132409) ((-336 . -233) T) ((-252 . -318) 132381) ((-252 . -221) 132360) ((-1133 . -152) 132344) ((-726 . -550) 132255) ((-239 . -887) 132187) ((-238 . -887) 132119) ((-1067 . -834) T) ((-1202 . -1187) T) ((-410 . -1094) T) ((-1043 . -23) T) ((-897 . -1039) T) ((-313 . -629) 132101) ((-1015 . -832) T) ((-1182 . -994) 132067) ((-1150 . -908) 132046) ((-1143 . -908) 132025) ((-897 . -233) T) ((-804 . -359) 132004) ((-381 . -23) T) ((-136 . -1082) 131982) ((-130 . -1082) 131960) ((-897 . -221) T) ((-1143 . -807) NIL) ((-375 . -629) 131925) ((-856 . -699) 131912) ((-1036 . -152) 131877) ((-45 . -170) T) ((-675 . -407) 131859) ((-694 . -298) 131846) ((-821 . -629) 131806) ((-814 . -629) 131780) ((-308 . -25) T) ((-308 . -21) T) ((-640 . -276) 131759) ((-572 . -1082) T) ((-560 . -1082) T) ((-496 . -1082) T) ((-235 . -278) 131736) ((-301 . -219) 131697) ((-1149 . -873) NIL) ((-1105 . -873) 131556) ((-1149 . -1029) 131436) ((-1105 . -1029) 131319) ((-838 . -1029) 131215) ((-769 . -276) 131142) ((-915 . -600) 131124) ((-804 . -1094) T) ((-1026 . -708) T) ((-591 . -632) 131108) ((-1036 . -969) 131037) ((-991 . -105) T) ((-804 . -23) T) ((-694 . -1128) 131015) ((-675 . -1046) T) ((-591 . -369) 130999) ((-346 . -447) T) ((-335 . -280) T) ((-1237 . -1082) T) ((-458 . -105) T) ((-395 . -105) T) ((-279 . -21) T) ((-279 . -25) T) ((-357 . -708) T) ((-692 . -1082) T) ((-680 . -1082) T) ((-357 . -471) T) ((-1182 . -600) 130981) ((-1149 . -373) 130965) ((-1105 . -373) 130949) ((-1015 . -407) 130911) ((-142 . -217) 130893) ((-375 . -781) T) ((-375 . -778) T) ((-856 . -170) T) ((-375 . -708) T) ((-693 . -600) 130875) ((-694 . -43) 130704) ((-1236 . -1234) 130688) ((-346 . -398) T) ((-1236 . -1082) 130638) ((-572 . -699) 130625) ((-560 . -699) 130612) ((-496 . -699) 130577) ((-849 . -1253) 130561) ((-304 . -612) 130540) ((-821 . -708) T) ((-814 . -708) T) ((-1147 . -1082) T) ((-626 . -1187) T) ((-1065 . -622) 130488) ((-1149 . -887) 130431) ((-1105 . -887) 130415) ((-644 . -1045) 130399) ((-112 . -622) 130381) ((-486 . -137) 130251) ((-766 . -632) 130203) ((-1155 . -1094) T) ((-849 . -364) T) ((-945 . -52) 130172) ((-726 . -1094) T) ((-607 . -1082) T) ((-644 . -120) 130151) ((-319 . -278) 130128) ((-485 . -52) 130085) ((-1155 . -23) T) ((-126 . -1082) T) ((-106 . -105) 130063) ((-726 . -23) T) ((-1246 . -1094) T) ((-1043 . -137) T) ((-1015 . -1046) T) ((-806 . -1029) 130047) ((-995 . -706) 130019) ((-1246 . -23) T) ((-680 . -699) 129984) ((-577 . -600) 129966) ((-382 . -1029) 129950) ((-349 . -1046) T) ((-381 . -137) T) ((-315 . -1029) 129934) ((-213 . -873) 129916) ((-996 . -908) T) ((-96 . -39) T) ((-996 . -807) T) ((-902 . -908) T) ((-490 . -1191) T) ((-1168 . -600) 129898) ((-1087 . -1082) T) ((-206 . -1191) T) ((-991 . -298) 129863) ((-213 . -1029) 129823) ((-45 . -280) T) ((-1065 . -21) T) ((-1065 . -25) T) ((-1100 . -815) T) ((-490 . -550) T) ((-355 . -25) T) ((-206 . -550) T) ((-355 . -21) T) ((-348 . -25) T) ((-348 . -21) T) ((-696 . -629) 129783) ((-337 . -25) T) ((-337 . -21) T) ((-112 . -25) T) ((-112 . -21) T) ((-53 . -1046) T) ((-1147 . -699) 129612) ((-572 . -170) T) ((-560 . -170) T) ((-496 . -170) T) ((-640 . -600) 129594) ((-719 . -718) 129578) ((-328 . -600) 129560) ((-231 . -600) 129542) ((-73 . -379) T) ((-73 . -391) T) ((-1084 . -111) 129526) ((-1050 . -873) 129508) ((-945 . -873) 129433) ((-635 . -1094) T) ((-607 . -699) 129420) ((-485 . -873) NIL) ((-1123 . -105) T) ((-1050 . -1029) 129402) ((-99 . -600) 129384) ((-482 . -148) T) ((-945 . -1029) 129264) ((-126 . -699) 129209) ((-635 . -23) T) ((-485 . -1029) 129085) ((-1070 . -601) NIL) ((-1070 . -600) 129067) ((-769 . -601) NIL) ((-769 . -600) 129028) ((-767 . -601) 128662) ((-767 . -600) 128576) ((-1095 . -622) 128482) ((-456 . -600) 128464) ((-449 . -600) 128446) ((-449 . -601) 128307) ((-1027 . -217) 128253) ((-135 . -39) T) ((-804 . -137) T) ((-858 . -896) 128232) ((-630 . -600) 128214) ((-350 . -1253) 128198) ((-347 . -1253) 128182) ((-336 . -1253) 128166) ((-136 . -515) 128099) ((-130 . -515) 128032) ((-512 . -779) T) ((-512 . -782) T) ((-511 . -781) T) ((-106 . -298) 127970) ((-210 . -105) 127948) ((-675 . -1082) T) ((-680 . -170) T) ((-858 . -629) 127900) ((-991 . -43) 127848) ((-70 . -380) T) ((-266 . -600) 127830) ((-70 . -391) T) ((-945 . -373) 127814) ((-856 . -280) T) ((-55 . -600) 127796) ((-852 . -1045) 127761) ((-847 . -1045) 127711) ((-573 . -600) 127693) ((-573 . -601) 127675) ((-485 . -373) 127659) ((-529 . -600) 127641) ((-518 . -600) 127623) ((-897 . -1253) 127610) ((-857 . -1187) T) ((-852 . -120) 127559) ((-682 . -447) T) ((-847 . -120) 127486) ((-496 . -515) 127452) ((-490 . -359) T) ((-350 . -364) 127431) ((-347 . -364) 127410) ((-336 . -364) 127389) ((-206 . -359) T) ((-696 . -708) T) ((-125 . -447) T) ((-1147 . -170) 127280) ((-1257 . -1248) 127264) ((-857 . -871) 127241) ((-857 . -873) NIL) ((-957 . -834) 127140) ((-802 . -834) 127091) ((-636 . -638) 127075) ((-1174 . -39) T) ((-169 . -600) 127057) ((-1095 . -21) 126967) ((-1095 . -25) 126818) ((-960 . -1082) T) ((-857 . -1029) 126795) ((-945 . -887) 126776) ((-1208 . -52) 126753) ((-897 . -364) T) ((-64 . -632) 126737) ((-517 . -632) 126721) ((-485 . -887) 126698) ((-76 . -436) T) ((-76 . -391) T) ((-497 . -632) 126682) ((-64 . -369) 126666) ((-607 . -170) T) ((-517 . -369) 126650) ((-497 . -369) 126634) ((-814 . -690) 126618) ((-1149 . -296) 126597) ((-1155 . -137) T) ((-126 . -170) T) ((-726 . -137) T) ((-1123 . -298) 126535) ((-167 . -1187) T) ((-618 . -728) 126519) ((-594 . -728) 126503) ((-1246 . -137) T) ((-1220 . -908) 126482) ((-1199 . -908) 126461) ((-1199 . -807) NIL) ((-675 . -699) 126411) ((-1198 . -896) 126364) ((-1015 . -1082) T) ((-857 . -373) 126341) ((-857 . -330) 126318) ((-892 . -1094) T) ((-167 . -871) 126302) ((-167 . -873) 126227) ((-1236 . -515) 126160) ((-490 . -1094) T) ((-349 . -1082) T) ((-206 . -1094) T) ((-81 . -436) T) ((-81 . -391) T) ((-1219 . -629) 126057) ((-167 . -1029) 125953) ((-308 . -834) T) ((-852 . -1039) T) ((-847 . -1039) T) ((-1198 . -629) 125823) ((-858 . -781) 125802) ((-858 . -778) 125781) ((-1258 . -1251) 125760) ((-858 . -708) T) ((-490 . -23) T) ((-211 . -600) 125742) ((-171 . -447) T) ((-210 . -298) 125680) ((-91 . -436) T) ((-91 . -391) T) ((-852 . -233) T) ((-206 . -23) T) ((-847 . -233) T) ((-725 . -407) 125664) ((-505 . -528) 125539) ((-572 . -280) T) ((-560 . -280) T) ((-659 . -1029) 125523) ((-496 . -280) T) ((-1147 . -515) 125469) ((-141 . -468) 125424) ((-116 . -1082) T) ((-53 . -1082) T) ((-694 . -219) 125408) ((-857 . -887) NIL) ((-1208 . -873) NIL) ((-876 . -105) T) ((-872 . -105) T) ((-384 . -1082) T) ((-167 . -373) 125392) ((-167 . -330) 125376) ((-1208 . -1029) 125256) ((-839 . -1029) 125152) ((-1119 . -105) T) ((-635 . -137) T) ((-126 . -515) 125015) ((-644 . -779) 124994) ((-644 . -782) 124973) ((-567 . -1029) 124955) ((-283 . -1243) 124925) ((-845 . -105) T) ((-956 . -550) 124904) ((-1182 . -1045) 124787) ((-486 . -622) 124693) ((-891 . -1082) T) ((-1015 . -699) 124630) ((-693 . -1045) 124595) ((-849 . -629) 124547) ((-766 . -629) 124499) ((-591 . -39) T) ((-1124 . -1187) T) ((-1182 . -120) 124361) ((-472 . -629) 124258) ((-349 . -699) 124203) ((-167 . -887) 124162) ((-680 . -280) T) ((-725 . -1046) T) ((-675 . -170) T) ((-693 . -120) 124111) ((-1262 . -1046) T) ((-1208 . -373) 124095) ((-414 . -1191) 124073) ((-301 . -832) NIL) ((-414 . -550) T) ((-213 . -296) T) ((-1198 . -778) 124026) ((-1198 . -781) 123979) ((-33 . -1080) T) ((-1219 . -708) T) ((-1198 . -708) T) ((-53 . -699) 123944) ((-1147 . -280) 123855) ((-213 . -1013) T) ((-346 . -1243) 123832) ((-1221 . -407) 123798) ((-700 . -708) T) ((-1208 . -887) 123741) ((-121 . -600) 123723) ((-121 . -601) 123705) ((-700 . -471) T) ((-486 . -21) 123615) ((-136 . -492) 123599) ((-130 . -492) 123583) ((-486 . -25) 123434) ((-607 . -280) T) ((-766 . -39) T) ((-577 . -1045) 123409) ((-433 . -1082) T) ((-1050 . -296) T) ((-126 . -280) T) ((-1086 . -105) T) ((-995 . -105) T) ((-577 . -120) 123370) ((-1231 . -1046) T) ((-1119 . -298) 123308) ((-1182 . -1039) T) ((-1050 . -1013) T) ((-71 . -1187) T) ((-1043 . -25) T) ((-1043 . -21) T) ((-693 . -1039) T) ((-381 . -21) T) ((-381 . -25) T) ((-675 . -515) NIL) ((-1015 . -170) T) ((-693 . -233) T) ((-1050 . -542) T) ((-849 . -708) T) ((-766 . -708) T) ((-503 . -105) T) ((-349 . -170) T) ((-335 . -600) 123290) ((-390 . -600) 123272) ((-472 . -708) T) ((-1100 . -832) T) ((-879 . -1029) 123240) ((-112 . -834) T) ((-640 . -1045) 123224) ((-490 . -137) T) ((-1221 . -1046) T) ((-206 . -137) T) ((-231 . -1045) 123206) ((-1133 . -105) 123184) ((-101 . -1082) T) ((-235 . -650) 123168) ((-235 . -632) 123152) ((-640 . -120) 123131) ((-304 . -407) 123115) ((-235 . -369) 123099) ((-1136 . -223) 123046) ((-991 . -219) 123030) ((-231 . -120) 123005) ((-79 . -1187) T) ((-53 . -170) T) ((-682 . -383) T) ((-682 . -144) T) ((-1257 . -105) T) ((-1070 . -1045) 122848) ((-252 . -896) 122827) ((-237 . -896) 122806) ((-769 . -1045) 122629) ((-767 . -1045) 122472) ((-595 . -1187) T) ((-1141 . -600) 122454) ((-1070 . -120) 122276) ((-1036 . -105) T) ((-473 . -1187) T) ((-456 . -1045) 122247) ((-449 . -1045) 122090) ((-648 . -629) 122074) ((-857 . -296) T) ((-769 . -120) 121876) ((-767 . -120) 121698) ((-350 . -629) 121650) ((-347 . -629) 121602) ((-336 . -629) 121554) ((-252 . -629) 121479) ((-237 . -629) 121404) ((-1135 . -834) T) ((-456 . -120) 121365) ((-449 . -120) 121187) ((-1071 . -1029) 121171) ((-1061 . -1029) 121148) ((-992 . -39) T) ((-950 . -1187) T) ((-135 . -1002) 121132) ((-956 . -1094) T) ((-857 . -1013) NIL) ((-717 . -1094) T) ((-697 . -1094) T) ((-1236 . -492) 121116) ((-1119 . -43) 121076) ((-956 . -23) T) ((-897 . -629) 121041) ((-827 . -105) T) ((-804 . -21) T) ((-804 . -25) T) ((-717 . -23) T) ((-697 . -23) T) ((-114 . -643) T) ((-762 . -708) T) ((-573 . -1045) 121006) ((-518 . -1045) 120951) ((-215 . -62) 120909) ((-448 . -23) T) ((-403 . -105) T) ((-251 . -105) T) ((-762 . -471) T) ((-958 . -105) T) ((-675 . -280) T) ((-845 . -43) 120879) ((-573 . -120) 120828) ((-518 . -120) 120745) ((-726 . -622) 120693) ((-414 . -1094) T) ((-304 . -1046) 120583) ((-301 . -1046) T) ((-914 . -600) 120565) ((-725 . -1082) T) ((-640 . -1039) T) ((-1262 . -1082) T) ((-167 . -296) 120496) ((-414 . -23) T) ((-45 . -600) 120478) ((-45 . -601) 120462) ((-112 . -985) 120444) ((-125 . -855) 120428) ((-53 . -515) 120394) ((-1174 . -1002) 120378) ((-1161 . -39) T) ((-909 . -600) 120360) ((-1095 . -834) 120311) ((-755 . -600) 120293) ((-655 . -600) 120275) ((-1133 . -298) 120213) ((-1074 . -1187) T) ((-483 . -39) T) ((-1070 . -1039) T) ((-482 . -447) T) ((-852 . -1253) 120188) ((-847 . -1253) 120148) ((-1118 . -39) T) ((-769 . -1039) T) ((-767 . -1039) T) ((-628 . -223) 120132) ((-615 . -223) 120078) ((-1208 . -296) 120057) ((-1070 . -318) 120018) ((-449 . -1039) T) ((-1155 . -21) T) ((-1070 . -221) 119997) ((-769 . -318) 119974) ((-769 . -221) T) ((-767 . -318) 119946) ((-319 . -632) 119930) ((-713 . -1191) 119909) ((-1155 . -25) T) ((-64 . -39) T) ((-519 . -39) T) ((-517 . -39) T) ((-449 . -318) 119888) ((-319 . -369) 119872) ((-498 . -39) T) ((-497 . -39) T) ((-995 . -1128) NIL) ((-618 . -105) T) ((-594 . -105) T) ((-713 . -550) 119803) ((-350 . -708) T) ((-347 . -708) T) ((-336 . -708) T) ((-252 . -708) T) ((-237 . -708) T) ((-726 . -25) T) ((-726 . -21) T) ((-1036 . -298) 119711) ((-1246 . -21) T) ((-1246 . -25) T) ((-888 . -1082) 119689) ((-55 . -1039) T) ((-1231 . -1082) T) ((-1151 . -550) 119668) ((-1150 . -1191) 119647) ((-1150 . -550) 119598) ((-1143 . -1191) 119577) ((-573 . -1039) T) ((-518 . -1039) T) ((-505 . -105) T) ((-1015 . -280) T) ((-357 . -1029) 119561) ((-313 . -1029) 119545) ((-254 . -1082) 119523) ((-375 . -873) 119505) ((-1143 . -550) 119456) ((-1106 . -550) 119435) ((-995 . -43) 119380) ((-786 . -1094) T) ((-897 . -708) T) ((-573 . -233) T) ((-573 . -221) T) ((-518 . -221) T) ((-518 . -233) T) ((-725 . -699) 119304) ((-349 . -280) T) ((-628 . -676) 119288) ((-375 . -1029) 119248) ((-254 . -253) 119232) ((-1100 . -1046) T) ((-106 . -134) 119216) ((-786 . -23) T) ((-1256 . -1251) 119192) ((-1254 . -1251) 119171) ((-1236 . -276) 119148) ((-403 . -298) 119113) ((-1221 . -1082) T) ((-1147 . -276) 119040) ((-856 . -600) 119022) ((-821 . -1029) 118991) ((-193 . -774) T) ((-192 . -774) T) ((-34 . -37) 118968) ((-191 . -774) T) ((-190 . -774) T) ((-189 . -774) T) ((-188 . -774) T) ((-187 . -774) T) ((-186 . -774) T) ((-185 . -774) T) ((-184 . -774) T) ((-496 . -994) T) ((-265 . -823) T) ((-264 . -823) T) ((-263 . -823) T) ((-262 . -823) T) ((-53 . -280) T) ((-261 . -823) T) ((-260 . -823) T) ((-259 . -823) T) ((-183 . -774) T) ((-599 . -834) T) ((-636 . -407) 118952) ((-114 . -834) T) ((-635 . -21) T) ((-635 . -25) T) ((-457 . -600) 118934) ((-1257 . -43) 118904) ((-126 . -276) 118834) ((-1236 . -19) 118818) ((-1236 . -593) 118795) ((-1247 . -1082) T) ((-1231 . -699) 118692) ((-1062 . -1082) T) ((-980 . -1082) T) ((-956 . -137) T) ((-719 . -1082) T) ((-717 . -137) T) ((-697 . -137) T) ((-512 . -780) T) ((-403 . -1128) 118670) ((-448 . -137) T) ((-512 . -781) T) ((-211 . -1039) T) ((-283 . -105) 118452) ((-142 . -1082) T) ((-680 . -994) T) ((-96 . -1187) T) ((-136 . -600) 118419) ((-130 . -600) 118386) ((-725 . -170) T) ((-1262 . -170) T) ((-1150 . -359) 118365) ((-1143 . -359) 118344) ((-304 . -1082) T) ((-414 . -137) T) ((-301 . -1082) T) ((-403 . -43) 118296) ((-1113 . -105) T) ((-1221 . -699) 118153) ((-636 . -1046) T) ((-308 . -146) 118132) ((-308 . -148) 118111) ((-141 . -1082) T) ((-123 . -1082) T) ((-841 . -105) T) ((-572 . -600) 118093) ((-560 . -601) 117992) ((-560 . -600) 117974) ((-496 . -600) 117956) ((-496 . -601) 117901) ((-488 . -23) T) ((-486 . -834) 117852) ((-118 . -1082) T) ((-490 . -622) 117834) ((-766 . -1002) 117786) ((-206 . -622) 117768) ((-213 . -400) T) ((-644 . -629) 117752) ((-1149 . -908) 117731) ((-713 . -1094) T) ((-346 . -105) T) ((-805 . -834) T) ((-713 . -23) T) ((-335 . -1045) 117676) ((-1135 . -1134) T) ((-1124 . -111) 117660) ((-1231 . -170) 117611) ((-1151 . -1094) T) ((-1150 . -1094) T) ((-516 . -1029) 117595) ((-1143 . -1094) T) ((-1106 . -1094) T) ((-335 . -120) 117512) ((-996 . -1191) T) ((-135 . -1187) T) ((-902 . -1191) T) ((-675 . -276) NIL) ((-1237 . -600) 117494) ((-1151 . -23) T) ((-1150 . -23) T) ((-1143 . -23) T) ((-1119 . -219) 117478) ((-996 . -550) T) ((-1106 . -23) T) ((-902 . -550) T) ((-1060 . -1082) T) ((-786 . -137) T) ((-725 . -515) 117444) ((-692 . -600) 117426) ((-34 . -1082) T) ((-304 . -699) 117336) ((-301 . -699) 117265) ((-680 . -600) 117247) ((-680 . -601) 117192) ((-403 . -396) 117176) ((-434 . -1082) T) ((-490 . -25) T) ((-490 . -21) T) ((-1100 . -1082) T) ((-206 . -25) T) ((-206 . -21) T) ((-694 . -407) 117160) ((-696 . -1029) 117129) ((-1236 . -600) 117068) ((-1236 . -601) 117029) ((-1221 . -170) T) ((-235 . -39) T) ((-1147 . -601) NIL) ((-1147 . -600) 117011) ((-918 . -967) T) ((-1174 . -1187) T) ((-644 . -778) 116990) ((-644 . -781) 116969) ((-394 . -391) T) ((-523 . -105) 116947) ((-1027 . -1082) T) ((-210 . -987) 116931) ((-506 . -105) T) ((-607 . -600) 116913) ((-50 . -834) NIL) ((-607 . -601) 116890) ((-1027 . -597) 116865) ((-888 . -515) 116798) ((-335 . -1039) T) ((-126 . -601) NIL) ((-126 . -600) 116780) ((-858 . -1187) T) ((-654 . -413) 116764) ((-654 . -1103) 116709) ((-254 . -515) 116642) ((-501 . -152) 116624) ((-335 . -221) T) ((-335 . -233) T) ((-45 . -1045) 116569) ((-858 . -871) 116553) ((-858 . -873) 116478) ((-694 . -1046) T) ((-675 . -994) NIL) ((-1219 . -52) 116448) ((-1198 . -52) 116425) ((-1118 . -1002) 116396) ((-1100 . -699) 116383) ((-1087 . -600) 116365) ((-858 . -1029) 116229) ((-213 . -908) T) ((-45 . -120) 116146) ((-725 . -280) T) ((-1065 . -148) 116125) ((-1065 . -146) 116076) ((-996 . -359) T) ((-852 . -629) 116041) ((-847 . -629) 115991) ((-308 . -1176) 115957) ((-375 . -296) T) ((-308 . -1173) 115923) ((-304 . -170) 115902) ((-301 . -170) T) ((-995 . -219) 115879) ((-902 . -359) T) ((-573 . -1253) 115866) ((-518 . -1253) 115843) ((-355 . -148) 115822) ((-355 . -146) 115773) ((-348 . -148) 115752) ((-348 . -146) 115703) ((-595 . -1164) 115679) ((-337 . -148) 115658) ((-337 . -146) 115609) ((-308 . -40) 115575) ((-473 . -1164) 115554) ((0 . |EnumerationCategory|) T) ((-308 . -98) 115520) ((-375 . -1013) T) ((-112 . -148) T) ((-112 . -146) NIL) ((-50 . -223) 115470) ((-636 . -1082) T) ((-595 . -111) 115417) ((-488 . -137) T) ((-473 . -111) 115367) ((-228 . -1094) 115277) ((-858 . -373) 115261) ((-858 . -330) 115245) ((-228 . -23) 115115) ((-1050 . -908) T) ((-1050 . -807) T) ((-573 . -364) T) ((-518 . -364) T) ((-726 . -834) 115094) ((-346 . -1128) T) ((-319 . -39) T) ((-49 . -413) 115078) ((-386 . -728) 115062) ((-1247 . -515) 114995) ((-713 . -137) T) ((-1231 . -280) 114974) ((-1227 . -550) 114953) ((-1220 . -1191) 114932) ((-1220 . -550) 114883) ((-1199 . -1191) 114862) ((-1199 . -550) 114813) ((-719 . -515) 114746) ((-1198 . -1187) 114725) ((-1198 . -873) 114598) ((-880 . -1082) T) ((-145 . -828) T) ((-1198 . -871) 114568) ((-1193 . -550) 114547) ((-1151 . -137) T) ((-523 . -298) 114485) ((-1150 . -137) T) ((-142 . -515) NIL) ((-1143 . -137) T) ((-1106 . -137) T) ((-1015 . -994) T) ((-996 . -23) T) ((-346 . -43) 114450) ((-996 . -1094) T) ((-902 . -1094) T) ((-87 . -600) 114432) ((-45 . -1039) T) ((-856 . -1045) 114419) ((-858 . -887) 114378) ((-766 . -52) 114355) ((-682 . -105) T) ((-995 . -344) NIL) ((-591 . -1187) T) ((-964 . -23) T) ((-902 . -23) T) ((-856 . -120) 114340) ((-423 . -1094) T) ((-472 . -52) 114310) ((-139 . -105) T) ((-45 . -221) 114282) ((-45 . -233) T) ((-125 . -105) T) ((-586 . -550) 114261) ((-585 . -550) 114240) ((-675 . -600) 114222) ((-675 . -601) 114130) ((-304 . -515) 114096) ((-301 . -515) 113847) ((-1219 . -1029) 113831) ((-1198 . -1029) 113617) ((-991 . -407) 113601) ((-423 . -23) T) ((-1100 . -170) T) ((-852 . -708) T) ((-847 . -708) T) ((-1221 . -280) T) ((-636 . -699) 113571) ((-145 . -1082) T) ((-53 . -994) T) ((-403 . -219) 113555) ((-284 . -223) 113505) ((-857 . -908) T) ((-857 . -807) NIL) ((-960 . -600) 113487) ((-844 . -834) T) ((-1198 . -330) 113457) ((-1198 . -373) 113427) ((-210 . -1101) 113411) ((-766 . -1187) T) ((-1236 . -278) 113388) ((-1182 . -629) 113313) ((-956 . -21) T) ((-956 . -25) T) ((-717 . -21) T) ((-717 . -25) T) ((-697 . -21) T) ((-697 . -25) T) ((-693 . -629) 113278) ((-448 . -21) T) ((-448 . -25) T) ((-331 . -105) T) ((-171 . -105) T) ((-991 . -1046) T) ((-856 . -1039) T) ((-849 . -1029) 113262) ((-758 . -105) T) ((-1220 . -359) 113241) ((-1219 . -887) 113147) ((-1199 . -359) 113126) ((-1198 . -887) 112977) ((-1015 . -600) 112959) ((-403 . -815) 112912) ((-1151 . -494) 112878) ((-167 . -908) 112809) ((-1150 . -494) 112775) ((-1143 . -494) 112741) ((-694 . -1082) T) ((-1106 . -494) 112707) ((-572 . -1045) 112694) ((-560 . -1045) 112681) ((-496 . -1045) 112646) ((-304 . -280) 112625) ((-301 . -280) T) ((-349 . -600) 112607) ((-414 . -25) T) ((-414 . -21) T) ((-101 . -276) 112586) ((-572 . -120) 112571) ((-560 . -120) 112556) ((-496 . -120) 112505) ((-1153 . -873) 112472) ((-35 . -105) T) ((-888 . -492) 112456) ((-116 . -600) 112438) ((-53 . -600) 112420) ((-53 . -601) 112365) ((-254 . -492) 112349) ((-228 . -137) 112219) ((-1208 . -908) 112198) ((-803 . -1191) 112177) ((-1027 . -515) 111985) ((-384 . -600) 111967) ((-803 . -550) 111898) ((-577 . -629) 111873) ((-252 . -52) 111845) ((-237 . -52) 111802) ((-526 . -510) 111779) ((-992 . -1187) T) ((-1227 . -23) T) ((-680 . -1045) 111744) ((-766 . -887) 111657) ((-1227 . -1094) T) ((-1220 . -1094) T) ((-1199 . -1094) T) ((-1193 . -1094) T) ((-995 . -366) 111629) ((-121 . -364) T) ((-472 . -887) 111535) ((-1220 . -23) T) ((-1199 . -23) T) ((-891 . -600) 111517) ((-96 . -111) 111501) ((-1182 . -708) T) ((-892 . -834) 111452) ((-682 . -1128) T) ((-680 . -120) 111401) ((-1193 . -23) T) ((-586 . -1094) T) ((-585 . -1094) T) ((-694 . -699) 111230) ((-693 . -708) T) ((-1100 . -280) T) ((-996 . -137) T) ((-490 . -834) T) ((-964 . -137) T) ((-902 . -137) T) ((-786 . -25) T) ((-206 . -834) T) ((-786 . -21) T) ((-572 . -1039) T) ((-560 . -1039) T) ((-496 . -1039) T) ((-586 . -23) T) ((-335 . -1253) 111207) ((-308 . -447) 111186) ((-331 . -298) 111173) ((-585 . -23) T) ((-423 . -137) T) ((-640 . -629) 111147) ((-1147 . -1045) 110970) ((-235 . -1002) 110954) ((-858 . -296) T) ((-1258 . -1248) 110938) ((-755 . -779) T) ((-755 . -782) T) ((-682 . -43) 110925) ((-231 . -629) 110907) ((-560 . -221) T) ((-496 . -233) T) ((-496 . -221) T) ((-1147 . -120) 110709) ((-1127 . -223) 110659) ((-1070 . -896) 110638) ((-125 . -43) 110625) ((-199 . -787) T) ((-198 . -787) T) ((-197 . -787) T) ((-196 . -787) T) ((-858 . -1013) 110603) ((-1247 . -492) 110587) ((-769 . -896) 110566) ((-767 . -896) 110545) ((-1161 . -1187) T) ((-449 . -896) 110524) ((-719 . -492) 110508) ((-1070 . -629) 110433) ((-769 . -629) 110358) ((-607 . -1045) 110345) ((-483 . -1187) T) ((-335 . -364) T) ((-142 . -492) 110327) ((-767 . -629) 110252) ((-1118 . -1187) T) ((-456 . -629) 110223) ((-252 . -873) 110082) ((-237 . -873) NIL) ((-126 . -1045) 110027) ((-449 . -629) 109952) ((-648 . -1029) 109929) ((-607 . -120) 109914) ((-350 . -1029) 109898) ((-347 . -1029) 109882) ((-336 . -1029) 109866) ((-252 . -1029) 109710) ((-237 . -1029) 109586) ((-126 . -120) 109503) ((-64 . -1187) T) ((-519 . -1187) T) ((-517 . -1187) T) ((-498 . -1187) T) ((-497 . -1187) T) ((-433 . -600) 109485) ((-430 . -600) 109467) ((-3 . -105) T) ((-1019 . -1181) 109436) ((-820 . -105) T) ((-671 . -62) 109394) ((-680 . -1039) T) ((-55 . -629) 109368) ((-279 . -447) T) ((-474 . -1181) 109337) ((-1231 . -276) 109322) ((0 . -105) T) ((-573 . -629) 109287) ((-518 . -629) 109232) ((-54 . -105) T) ((-897 . -1029) 109219) ((-680 . -233) T) ((-1065 . -405) 109198) ((-713 . -622) 109146) ((-991 . -1082) T) ((-694 . -170) 109037) ((-490 . -985) 109019) ((-458 . -1082) T) ((-252 . -373) 109003) ((-237 . -373) 108987) ((-395 . -1082) T) ((-1147 . -1039) T) ((-331 . -43) 108971) ((-1018 . -105) 108949) ((-206 . -985) 108931) ((-171 . -43) 108863) ((-1219 . -296) 108842) ((-1198 . -296) 108821) ((-1147 . -318) 108798) ((-640 . -708) T) ((-1147 . -221) T) ((-101 . -600) 108780) ((-1143 . -622) 108732) ((-488 . -25) T) ((-488 . -21) T) ((-1198 . -1013) 108684) ((-607 . -1039) T) ((-375 . -400) T) ((-386 . -105) T) ((-252 . -887) 108630) ((-237 . -887) 108607) ((-126 . -1039) T) ((-803 . -1094) T) ((-1070 . -708) T) ((-607 . -221) 108586) ((-605 . -105) T) ((-769 . -708) T) ((-767 . -708) T) ((-409 . -1094) T) ((-126 . -233) T) ((-45 . -364) NIL) ((-126 . -221) NIL) ((-449 . -708) T) ((-803 . -23) T) ((-713 . -25) T) ((-713 . -21) T) ((-684 . -834) T) ((-1062 . -276) 108565) ((-83 . -392) T) ((-83 . -391) T) ((-1231 . -994) 108531) ((-675 . -1045) 108481) ((-1227 . -137) T) ((-1220 . -137) T) ((-1199 . -137) T) ((-1193 . -137) T) ((-1151 . -25) T) ((-1119 . -407) 108465) ((-618 . -363) 108397) ((-594 . -363) 108329) ((-1133 . -1126) 108313) ((-106 . -1082) 108291) ((-1151 . -21) T) ((-1150 . -21) T) ((-1150 . -25) T) ((-991 . -699) 108239) ((-211 . -629) 108206) ((-675 . -120) 108133) ((-55 . -708) T) ((-1143 . -21) T) ((-346 . -344) T) ((-1143 . -25) T) ((-1065 . -447) 108084) ((-1106 . -21) T) ((-694 . -515) 108030) ((-573 . -708) T) ((-518 . -708) T) ((-849 . -296) T) ((-1106 . -25) T) ((-766 . -296) T) ((-586 . -137) T) ((-585 . -137) T) ((-355 . -447) T) ((-348 . -447) T) ((-337 . -447) T) ((-472 . -296) 108009) ((-301 . -276) 107875) ((-112 . -447) T) ((-84 . -436) T) ((-84 . -391) T) ((-482 . -105) T) ((-725 . -601) 107736) ((-725 . -600) 107718) ((-1262 . -600) 107700) ((-1262 . -601) 107682) ((-1065 . -398) 107661) ((-1027 . -492) 107593) ((-560 . -782) T) ((-560 . -779) T) ((-1051 . -223) 107539) ((-355 . -398) 107490) ((-348 . -398) 107441) ((-337 . -398) 107392) ((-1249 . -1094) T) ((-1249 . -23) T) ((-1238 . -105) T) ((-1119 . -1046) T) ((-654 . -728) 107376) ((-1155 . -146) 107355) ((-1155 . -148) 107334) ((-1123 . -1082) T) ((-1123 . -1058) 107303) ((-74 . -1187) T) ((-1015 . -1045) 107240) ((-845 . -1046) T) ((-726 . -146) 107219) ((-726 . -148) 107198) ((-228 . -622) 107104) ((-675 . -1039) T) ((-349 . -1045) 107049) ((-66 . -1187) T) ((-1015 . -120) 106958) ((-888 . -600) 106925) ((-675 . -233) T) ((-675 . -221) NIL) ((-827 . -832) 106904) ((-680 . -782) T) ((-680 . -779) T) ((-1231 . -600) 106886) ((-995 . -407) 106863) ((-349 . -120) 106780) ((-254 . -600) 106747) ((-375 . -908) T) ((-403 . -832) 106726) ((-694 . -280) 106637) ((-211 . -708) T) ((-1227 . -494) 106603) ((-1220 . -494) 106569) ((-1199 . -494) 106535) ((-1193 . -494) 106501) ((-304 . -994) 106480) ((-210 . -1082) 106458) ((-308 . -966) 106420) ((-109 . -105) T) ((-53 . -1045) 106385) ((-1258 . -105) T) ((-377 . -105) T) ((-53 . -120) 106334) ((-996 . -622) 106316) ((-1221 . -600) 106298) ((-526 . -105) T) ((-501 . -105) T) ((-1113 . -1114) 106282) ((-153 . -1243) 106266) ((-235 . -1187) T) ((-766 . -657) 106218) ((-1149 . -1191) 106197) ((-1105 . -1191) 106176) ((-228 . -21) 106086) ((-228 . -25) 105937) ((-136 . -128) 105921) ((-130 . -128) 105905) ((-49 . -728) 105889) ((-1149 . -550) 105800) ((-1105 . -550) 105731) ((-1027 . -276) 105706) ((-803 . -137) T) ((-126 . -782) NIL) ((-126 . -779) NIL) ((-350 . -296) T) ((-347 . -296) T) ((-336 . -296) T) ((-1076 . -1187) T) ((-239 . -1094) 105616) ((-238 . -1094) 105526) ((-1015 . -1039) T) ((-995 . -1046) T) ((-335 . -629) 105471) ((-605 . -43) 105455) ((-1247 . -600) 105417) ((-1247 . -601) 105378) ((-1062 . -600) 105360) ((-1015 . -233) T) ((-349 . -1039) T) ((-802 . -1243) 105330) ((-239 . -23) T) ((-238 . -23) T) ((-980 . -600) 105312) ((-719 . -601) 105273) ((-719 . -600) 105255) ((-786 . -834) 105234) ((-991 . -515) 105146) ((-349 . -221) T) ((-349 . -233) T) ((-1136 . -152) 105093) ((-996 . -25) T) ((-142 . -601) 105052) ((-142 . -600) 105034) ((-897 . -296) T) ((-996 . -21) T) ((-964 . -25) T) ((-902 . -21) T) ((-902 . -25) T) ((-423 . -21) T) ((-423 . -25) T) ((-827 . -407) 105018) ((-53 . -1039) T) ((-1256 . -1248) 105002) ((-1254 . -1248) 104986) ((-1027 . -593) 104961) ((-304 . -601) 104822) ((-304 . -600) 104804) ((-301 . -601) NIL) ((-301 . -600) 104786) ((-53 . -233) T) ((-53 . -221) T) ((-636 . -276) 104747) ((-543 . -223) 104697) ((-141 . -600) 104679) ((-123 . -600) 104661) ((-482 . -43) 104626) ((-1258 . -1255) 104605) ((-1249 . -137) T) ((-1257 . -1046) T) ((-1067 . -105) T) ((-118 . -600) 104587) ((-93 . -1187) T) ((-501 . -298) NIL) ((-992 . -111) 104571) ((-876 . -1082) T) ((-872 . -1082) T) ((-1236 . -632) 104555) ((-1236 . -369) 104539) ((-319 . -1187) T) ((-583 . -834) T) ((-1119 . -1082) T) ((-1119 . -1042) 104479) ((-106 . -515) 104412) ((-919 . -600) 104394) ((-335 . -708) T) ((-30 . -600) 104376) ((-845 . -1082) T) ((-827 . -1046) 104355) ((-45 . -629) 104300) ((-213 . -1191) T) ((-403 . -1046) T) ((-1135 . -152) 104282) ((-991 . -280) 104233) ((-213 . -550) T) ((-308 . -1216) 104217) ((-308 . -1213) 104187) ((-1161 . -1164) 104166) ((-1060 . -600) 104148) ((-34 . -600) 104130) ((-852 . -1029) 104090) ((-847 . -1029) 104035) ((-628 . -152) 104019) ((-615 . -152) 103965) ((-1161 . -111) 103915) ((-483 . -1164) 103894) ((-490 . -148) T) ((-490 . -146) NIL) ((-1100 . -601) 103809) ((-434 . -600) 103791) ((-206 . -148) T) ((-206 . -146) NIL) ((-1100 . -600) 103773) ((-57 . -105) T) ((-1199 . -622) 103725) ((-483 . -111) 103675) ((-986 . -23) T) ((-1258 . -43) 103645) ((-1149 . -1094) T) ((-1105 . -1094) T) ((-1050 . -1191) T) ((-838 . -1094) T) ((-945 . -1191) 103624) ((-485 . -1191) 103603) ((-713 . -834) 103582) ((-1050 . -550) T) ((-945 . -550) 103513) ((-1149 . -23) T) ((-1105 . -23) T) ((-838 . -23) T) ((-485 . -550) 103444) ((-1119 . -699) 103376) ((-1123 . -515) 103309) ((-1027 . -601) NIL) ((-1027 . -600) 103291) ((-845 . -699) 103261) ((-1262 . -1045) 103248) ((-1262 . -120) 103233) ((-1182 . -52) 103202) ((-239 . -137) T) ((-238 . -137) T) ((-1086 . -1082) T) ((-995 . -1082) T) ((-67 . -600) 103184) ((-1143 . -834) NIL) ((-1015 . -779) T) ((-1015 . -782) T) ((-1227 . -25) T) ((-725 . -1045) 103108) ((-1227 . -21) T) ((-1220 . -21) T) ((-856 . -629) 103095) ((-1220 . -25) T) ((-1199 . -21) T) ((-1199 . -25) T) ((-1193 . -25) T) ((-1193 . -21) T) ((-1019 . -152) 103079) ((-858 . -807) 103058) ((-858 . -908) T) ((-725 . -120) 102961) ((-694 . -276) 102888) ((-586 . -21) T) ((-586 . -25) T) ((-585 . -21) T) ((-45 . -708) T) ((-210 . -515) 102821) ((-585 . -25) T) ((-474 . -152) 102805) ((-461 . -152) 102789) ((-909 . -708) T) ((-755 . -780) T) ((-755 . -781) T) ((-503 . -1082) T) ((-755 . -708) T) ((-213 . -359) T) ((-1133 . -1082) 102767) ((-857 . -1191) T) ((-636 . -600) 102749) ((-857 . -550) T) ((-675 . -364) NIL) ((-355 . -1243) 102733) ((-654 . -105) T) ((-348 . -1243) 102717) ((-337 . -1243) 102701) ((-1257 . -1082) T) ((-520 . -834) 102680) ((-1231 . -1045) 102563) ((-804 . -447) 102542) ((-1036 . -1082) T) ((-1036 . -1058) 102471) ((-1019 . -969) 102440) ((-806 . -1094) T) ((-995 . -699) 102385) ((-1231 . -120) 102247) ((-382 . -1094) T) ((-474 . -969) 102216) ((-461 . -969) 102185) ((-913 . -1080) T) ((-114 . -152) 102167) ((-78 . -600) 102149) ((-880 . -600) 102131) ((-1065 . -706) 102110) ((-725 . -1039) T) ((-1262 . -1039) T) ((-803 . -622) 102058) ((-283 . -1046) 102000) ((-167 . -1191) 101905) ((-213 . -1094) T) ((-315 . -23) T) ((-1143 . -985) 101857) ((-827 . -1082) T) ((-725 . -233) 101836) ((-1106 . -722) 101815) ((-1221 . -1045) 101704) ((-1219 . -908) 101683) ((-856 . -708) T) ((-167 . -550) 101594) ((-1198 . -908) 101573) ((-572 . -629) 101560) ((-403 . -1082) T) ((-560 . -629) 101547) ((-251 . -1082) T) ((-496 . -629) 101512) ((-213 . -23) T) ((-1198 . -807) 101465) ((-958 . -1082) T) ((-1256 . -105) T) ((-349 . -1253) 101442) ((-1254 . -105) T) ((-1221 . -120) 101292) ((-145 . -600) 101274) ((-986 . -137) T) ((-49 . -105) T) ((-228 . -834) 101225) ((-1208 . -1191) 101204) ((-106 . -492) 101188) ((-1257 . -699) 101158) ((-1070 . -52) 101119) ((-1050 . -1094) T) ((-945 . -1094) T) ((-136 . -39) T) ((-130 . -39) T) ((-769 . -52) 101096) ((-767 . -52) 101068) ((-1208 . -550) 100979) ((-1149 . -137) T) ((-349 . -364) T) ((-485 . -1094) T) ((-1105 . -137) T) ((-1050 . -23) T) ((-449 . -52) 100958) ((-857 . -359) T) ((-838 . -137) T) ((-153 . -105) T) ((-726 . -447) 100889) ((-945 . -23) T) ((-567 . -550) T) ((-803 . -25) T) ((-803 . -21) T) ((-1119 . -515) 100822) ((-577 . -1029) 100806) ((-485 . -23) T) ((-346 . -1046) T) ((-1231 . -1039) T) ((-1182 . -887) 100787) ((-654 . -298) 100725) ((-1231 . -221) 100684) ((-1095 . -1243) 100654) ((-680 . -629) 100619) ((-996 . -834) T) ((-995 . -170) T) ((-956 . -146) 100598) ((-618 . -1082) T) ((-594 . -1082) T) ((-956 . -148) 100577) ((-849 . -908) T) ((-717 . -148) 100556) ((-717 . -146) 100535) ((-964 . -834) T) ((-766 . -908) T) ((-472 . -908) 100514) ((-304 . -1045) 100424) ((-301 . -1045) 100353) ((-991 . -276) 100311) ((-1147 . -896) 100290) ((-403 . -699) 100242) ((-682 . -832) T) ((-530 . -1080) T) ((-505 . -1082) T) ((-1221 . -1039) T) ((-304 . -120) 100131) ((-301 . -120) 100016) ((-1221 . -318) 99960) ((-1147 . -629) 99885) ((-957 . -105) T) ((-802 . -105) 99675) ((-694 . -601) NIL) ((-694 . -600) 99657) ((-1027 . -278) 99632) ((-640 . -1029) 99528) ((-852 . -296) T) ((-572 . -708) T) ((-560 . -781) T) ((-560 . -778) T) ((-167 . -359) 99479) ((-560 . -708) T) ((-496 . -708) T) ((-231 . -1029) 99463) ((-847 . -296) T) ((-1123 . -492) 99447) ((-1070 . -873) NIL) ((-857 . -1094) T) ((-126 . -896) NIL) ((-1256 . -1255) 99423) ((-1254 . -1255) 99402) ((-769 . -873) NIL) ((-767 . -873) 99261) ((-1249 . -25) T) ((-1249 . -21) T) ((-1185 . -105) 99239) ((-1088 . -391) T) ((-607 . -629) 99226) ((-449 . -873) NIL) ((-658 . -105) 99204) ((-1070 . -1029) 99031) ((-857 . -23) T) ((-769 . -1029) 98890) ((-767 . -1029) 98747) ((-126 . -629) 98692) ((-449 . -1029) 98568) ((-630 . -1029) 98552) ((-610 . -105) T) ((-210 . -492) 98536) ((-1236 . -39) T) ((-618 . -699) 98520) ((-594 . -699) 98504) ((-654 . -43) 98464) ((-308 . -105) T) ((-90 . -600) 98446) ((-55 . -1029) 98430) ((-1100 . -1045) 98417) ((-1070 . -373) 98401) ((-769 . -373) 98385) ((-65 . -62) 98347) ((-680 . -781) T) ((-680 . -778) T) ((-573 . -1029) 98334) ((-518 . -1029) 98311) ((-680 . -708) T) ((-315 . -137) T) ((-304 . -1039) 98201) ((-301 . -1039) T) ((-167 . -1094) T) ((-767 . -373) 98185) ((-50 . -152) 98135) ((-996 . -985) 98117) ((-449 . -373) 98101) ((-403 . -170) T) ((-304 . -233) 98080) ((-301 . -233) T) ((-301 . -221) NIL) ((-283 . -1082) 97862) ((-213 . -137) T) ((-1100 . -120) 97847) ((-167 . -23) T) ((-786 . -148) 97826) ((-786 . -146) 97805) ((-238 . -622) 97711) ((-239 . -622) 97617) ((-308 . -274) 97583) ((-1147 . -708) T) ((-1133 . -515) 97516) ((-1113 . -1082) T) ((-213 . -1048) T) ((-802 . -298) 97454) ((-1070 . -887) 97389) ((-769 . -887) 97332) ((-767 . -887) 97316) ((-1256 . -43) 97286) ((-1254 . -43) 97256) ((-1208 . -1094) T) ((-839 . -1094) T) ((-449 . -887) 97233) ((-841 . -1082) T) ((-1208 . -23) T) ((-567 . -1094) T) ((-839 . -23) T) ((-607 . -708) T) ((-350 . -908) T) ((-347 . -908) T) ((-279 . -105) T) ((-336 . -908) T) ((-1050 . -137) T) ((-945 . -137) T) ((-126 . -781) NIL) ((-126 . -778) NIL) ((-126 . -708) T) ((-675 . -896) NIL) ((-1036 . -515) 97117) ((-485 . -137) T) ((-567 . -23) T) ((-658 . -298) 97055) ((-618 . -745) T) ((-594 . -745) T) ((-1199 . -834) NIL) ((-995 . -280) T) ((-239 . -21) T) ((-675 . -629) 97005) ((-346 . -1082) T) ((-239 . -25) T) ((-238 . -21) T) ((-238 . -25) T) ((-153 . -43) 96989) ((-2 . -105) T) ((-897 . -908) T) ((-486 . -1243) 96959) ((-211 . -1029) 96936) ((-1100 . -1039) T) ((-693 . -296) T) ((-283 . -699) 96878) ((-682 . -1046) T) ((-490 . -447) T) ((-403 . -515) 96790) ((-206 . -447) T) ((-1100 . -221) T) ((-284 . -152) 96740) ((-991 . -601) 96701) ((-991 . -600) 96683) ((-982 . -600) 96665) ((-125 . -1046) T) ((-636 . -1045) 96649) ((-213 . -494) T) ((-458 . -600) 96631) ((-395 . -600) 96613) ((-395 . -601) 96590) ((-1043 . -1243) 96560) ((-636 . -120) 96539) ((-1119 . -492) 96523) ((-802 . -43) 96493) ((-68 . -436) T) ((-68 . -391) T) ((-1136 . -105) T) ((-857 . -137) T) ((-487 . -105) 96471) ((-1262 . -364) T) ((-726 . -942) 96440) ((-1065 . -105) T) ((-1049 . -105) T) ((-346 . -699) 96385) ((-713 . -148) 96364) ((-713 . -146) 96343) ((-1015 . -629) 96280) ((-523 . -1082) 96258) ((-355 . -105) T) ((-348 . -105) T) ((-337 . -105) T) ((-112 . -105) T) ((-506 . -1082) T) ((-349 . -629) 96203) ((-1149 . -622) 96151) ((-1105 . -622) 96099) ((-381 . -510) 96078) ((-820 . -832) 96057) ((-375 . -1191) T) ((-675 . -708) T) ((-331 . -1046) T) ((-1199 . -985) 96009) ((-171 . -1046) T) ((-106 . -600) 95976) ((-1151 . -146) 95955) ((-1151 . -148) 95934) ((-375 . -550) T) ((-1150 . -148) 95913) ((-1150 . -146) 95892) ((-1143 . -146) 95799) ((-403 . -280) T) ((-1143 . -148) 95706) ((-1106 . -148) 95685) ((-1106 . -146) 95664) ((-308 . -43) 95505) ((-167 . -137) T) ((-301 . -782) NIL) ((-301 . -779) NIL) ((-636 . -1039) T) ((-53 . -629) 95470) ((-986 . -21) T) ((-136 . -1002) 95454) ((-130 . -1002) 95438) ((-986 . -25) T) ((-888 . -128) 95422) ((-1135 . -105) T) ((-803 . -834) 95401) ((-1208 . -137) T) ((-1149 . -25) T) ((-1149 . -21) T) ((-839 . -137) T) ((-1105 . -25) T) ((-1105 . -21) T) ((-838 . -25) T) ((-838 . -21) T) ((-769 . -296) 95380) ((-35 . -37) 95364) ((-628 . -105) 95342) ((-615 . -105) T) ((-1136 . -298) 95137) ((-567 . -137) T) ((-605 . -832) 95116) ((-1133 . -492) 95100) ((-1127 . -152) 95050) ((-1123 . -600) 95012) ((-1123 . -601) 94973) ((-1015 . -778) T) ((-1015 . -781) T) ((-1015 . -708) T) ((-487 . -298) 94911) ((-448 . -413) 94881) ((-346 . -170) T) ((-279 . -43) 94868) ((-265 . -105) T) ((-264 . -105) T) ((-263 . -105) T) ((-262 . -105) T) ((-261 . -105) T) ((-260 . -105) T) ((-259 . -105) T) ((-335 . -1029) 94845) ((-202 . -105) T) ((-201 . -105) T) ((-199 . -105) T) ((-198 . -105) T) ((-197 . -105) T) ((-196 . -105) T) ((-193 . -105) T) ((-192 . -105) T) ((-694 . -1045) 94668) ((-191 . -105) T) ((-190 . -105) T) ((-189 . -105) T) ((-188 . -105) T) ((-187 . -105) T) ((-186 . -105) T) ((-185 . -105) T) ((-184 . -105) T) ((-183 . -105) T) ((-349 . -708) T) ((-694 . -120) 94470) ((-654 . -219) 94454) ((-573 . -296) T) ((-518 . -296) T) ((-283 . -515) 94403) ((-112 . -298) NIL) ((-77 . -391) T) ((-1095 . -105) 94193) ((-820 . -407) 94177) ((-1100 . -782) T) ((-1100 . -779) T) ((-682 . -1082) T) ((-375 . -359) T) ((-167 . -494) 94155) ((-210 . -600) 94122) ((-139 . -1082) T) ((-125 . -1082) T) ((-53 . -708) T) ((-1036 . -492) 94087) ((-142 . -421) 94069) ((-142 . -364) T) ((-1019 . -105) T) ((-513 . -510) 94048) ((-474 . -105) T) ((-461 . -105) T) ((-1026 . -1094) T) ((-726 . -1211) 94032) ((-1151 . -40) 93998) ((-1151 . -98) 93964) ((-1151 . -1176) 93930) ((-1151 . -1173) 93896) ((-1135 . -298) NIL) ((-94 . -392) T) ((-94 . -391) T) ((-1065 . -1128) 93875) ((-1150 . -1173) 93841) ((-1150 . -1176) 93807) ((-1026 . -23) T) ((-1150 . -98) 93773) ((-567 . -494) T) ((-1150 . -40) 93739) ((-1143 . -1173) 93705) ((-1143 . -1176) 93671) ((-1143 . -98) 93637) ((-357 . -1094) T) ((-355 . -1128) 93616) ((-348 . -1128) 93595) ((-337 . -1128) 93574) ((-1143 . -40) 93540) ((-1106 . -40) 93506) ((-1106 . -98) 93472) ((-112 . -1128) T) ((-1106 . -1176) 93438) ((-820 . -1046) 93417) ((-628 . -298) 93355) ((-615 . -298) 93206) ((-1106 . -1173) 93172) ((-694 . -1039) T) ((-1050 . -622) 93154) ((-1065 . -43) 93022) ((-945 . -622) 92970) ((-996 . -148) T) ((-996 . -146) NIL) ((-375 . -1094) T) ((-315 . -25) T) ((-313 . -23) T) ((-936 . -834) 92949) ((-694 . -318) 92926) ((-485 . -622) 92874) ((-45 . -1029) 92749) ((-682 . -699) 92736) ((-694 . -221) T) ((-331 . -1082) T) ((-171 . -1082) T) ((-323 . -834) T) ((-414 . -447) 92686) ((-375 . -23) T) ((-355 . -43) 92651) ((-348 . -43) 92616) ((-337 . -43) 92581) ((-85 . -436) T) ((-85 . -391) T) ((-213 . -25) T) ((-213 . -21) T) ((-821 . -1094) T) ((-112 . -43) 92531) ((-814 . -1094) T) ((-758 . -1082) T) ((-125 . -699) 92518) ((-655 . -1029) 92502) ((-599 . -105) T) ((-821 . -23) T) ((-814 . -23) T) ((-1133 . -276) 92479) ((-1095 . -298) 92417) ((-1084 . -223) 92401) ((-69 . -392) T) ((-69 . -391) T) ((-114 . -105) T) ((-45 . -373) 92378) ((-35 . -1082) T) ((-635 . -836) 92362) ((-1050 . -21) T) ((-1050 . -25) T) ((-802 . -219) 92331) ((-945 . -25) T) ((-945 . -21) T) ((-605 . -1046) T) ((-485 . -25) T) ((-485 . -21) T) ((-1019 . -298) 92269) ((-876 . -600) 92251) ((-872 . -600) 92233) ((-239 . -834) 92184) ((-238 . -834) 92135) ((-523 . -515) 92068) ((-857 . -622) 92045) ((-474 . -298) 91983) ((-461 . -298) 91921) ((-346 . -280) T) ((-1133 . -1223) 91905) ((-1119 . -600) 91867) ((-1119 . -601) 91828) ((-1117 . -105) T) ((-991 . -1045) 91724) ((-45 . -887) 91676) ((-1133 . -593) 91653) ((-725 . -629) 91577) ((-1262 . -629) 91564) ((-1051 . -152) 91510) ((-858 . -1191) T) ((-991 . -120) 91385) ((-331 . -699) 91369) ((-845 . -600) 91351) ((-171 . -699) 91283) ((-403 . -276) 91241) ((-858 . -550) T) ((-112 . -396) 91223) ((-89 . -380) T) ((-89 . -391) T) ((-852 . -908) T) ((-847 . -908) T) ((-682 . -170) T) ((-101 . -708) T) ((-486 . -105) 91013) ((-101 . -471) T) ((-125 . -170) T) ((-1095 . -43) 90983) ((-167 . -622) 90931) ((-1043 . -105) T) ((-857 . -25) T) ((-802 . -226) 90910) ((-857 . -21) T) ((-805 . -105) T) ((-410 . -105) T) ((-381 . -105) T) ((-114 . -298) NIL) ((-215 . -105) 90888) ((-136 . -1187) T) ((-130 . -1187) T) ((-1026 . -137) T) ((-654 . -363) 90872) ((-1231 . -629) 90797) ((-1262 . -708) T) ((-1227 . -146) 90776) ((-991 . -1039) T) ((-1227 . -148) 90755) ((-1208 . -622) 90703) ((-1220 . -148) 90682) ((-1086 . -600) 90664) ((-995 . -600) 90646) ((-516 . -23) T) ((-511 . -23) T) ((-335 . -296) T) ((-509 . -23) T) ((-313 . -137) T) ((-3 . -1082) T) ((-995 . -601) 90630) ((-991 . -233) 90609) ((-991 . -221) 90588) ((-1220 . -146) 90567) ((-1219 . -1191) 90546) ((-820 . -1082) T) ((-1199 . -146) 90453) ((-1199 . -148) 90360) ((-1198 . -1191) 90339) ((-1193 . -146) 90318) ((-1193 . -148) 90297) ((-375 . -137) T) ((-171 . -170) T) ((-725 . -708) T) ((-560 . -873) 90279) ((0 . -1082) T) ((-167 . -21) T) ((-167 . -25) T) ((-725 . -471) 90258) ((-54 . -1082) T) ((-1221 . -629) 90147) ((-1219 . -550) 90098) ((-696 . -1094) T) ((-1198 . -550) 90049) ((-560 . -1029) 90031) ((-585 . -148) 90010) ((-585 . -146) 89989) ((-496 . -1029) 89932) ((-92 . -380) T) ((-92 . -391) T) ((-858 . -359) T) ((-1147 . -52) 89909) ((-821 . -137) T) ((-814 . -137) T) ((-696 . -23) T) ((-503 . -600) 89891) ((-1258 . -1046) T) ((-375 . -1048) T) ((-1018 . -1082) 89869) ((-888 . -39) T) ((-486 . -298) 89807) ((-1133 . -601) 89768) ((-1133 . -600) 89735) ((-254 . -39) T) ((-1149 . -834) 89714) ((-50 . -105) T) ((-1105 . -834) 89693) ((-804 . -105) T) ((-1208 . -25) T) ((-1208 . -21) T) ((-839 . -25) T) ((-49 . -363) 89677) ((-839 . -21) T) ((-713 . -447) 89628) ((-1257 . -600) 89610) ((-567 . -25) T) ((-567 . -21) T) ((-386 . -1082) T) ((-1043 . -298) 89548) ((-605 . -1082) T) ((-680 . -873) 89530) ((-1236 . -1187) T) ((-215 . -298) 89468) ((-145 . -364) T) ((-1036 . -601) 89410) ((-1036 . -600) 89353) ((-849 . -1191) T) ((-301 . -896) NIL) ((-766 . -1191) T) ((-1231 . -708) T) ((-680 . -1029) 89298) ((-693 . -908) T) ((-472 . -1191) 89277) ((-1150 . -447) 89256) ((-1143 . -447) 89235) ((-849 . -550) T) ((-322 . -105) T) ((-766 . -550) T) ((-858 . -1094) T) ((-304 . -629) 89056) ((-301 . -629) 88985) ((-472 . -550) 88936) ((-331 . -515) 88902) ((-543 . -152) 88852) ((-45 . -296) T) ((-1147 . -873) NIL) ((-827 . -600) 88834) ((-682 . -280) T) ((-858 . -23) T) ((-375 . -494) T) ((-1065 . -219) 88804) ((-513 . -105) T) ((-403 . -601) 88605) ((-403 . -600) 88587) ((-251 . -600) 88569) ((-125 . -280) T) ((-1147 . -1029) 88449) ((-958 . -600) 88431) ((-1221 . -708) T) ((-1219 . -359) 88410) ((-1198 . -359) 88389) ((-1247 . -39) T) ((-126 . -1187) T) ((-112 . -219) 88371) ((-1155 . -105) T) ((-482 . -1082) T) ((-523 . -492) 88355) ((-726 . -105) T) ((-719 . -39) T) ((-486 . -43) 88325) ((-142 . -39) T) ((-126 . -871) 88302) ((-126 . -873) NIL) ((-607 . -1029) 88185) ((-626 . -834) 88164) ((-1246 . -105) T) ((-284 . -105) T) ((-694 . -364) 88143) ((-126 . -1029) 88120) ((-386 . -699) 88104) ((-1147 . -373) 88088) ((-605 . -699) 88072) ((-50 . -298) 87876) ((-803 . -146) 87855) ((-803 . -148) 87834) ((-1257 . -378) 87813) ((-806 . -834) T) ((-1238 . -1082) T) ((-1227 . -40) 87779) ((-1136 . -217) 87726) ((-1227 . -98) 87692) ((-382 . -834) 87671) ((-1227 . -1176) 87637) ((-1227 . -1173) 87603) ((-1220 . -1173) 87569) ((-1220 . -1176) 87535) ((-1220 . -98) 87501) ((-1220 . -40) 87467) ((-1219 . -1094) T) ((-1199 . -1173) 87433) ((-516 . -137) T) ((-1199 . -1176) 87399) ((-1193 . -1176) 87365) ((-1193 . -1173) 87331) ((-1199 . -98) 87297) ((-1199 . -40) 87263) ((-618 . -600) 87232) ((-594 . -600) 87201) ((-33 . -105) T) ((-213 . -834) T) ((-1198 . -1094) T) ((-1193 . -40) 87167) ((-1193 . -98) 87133) ((-1100 . -629) 87120) ((-1147 . -887) 87063) ((-1065 . -344) 87042) ((-583 . -152) 87024) ((-856 . -296) T) ((-126 . -373) 87001) ((-126 . -330) 86978) ((-171 . -280) T) ((-849 . -359) T) ((-766 . -359) T) ((-301 . -781) NIL) ((-301 . -778) NIL) ((-304 . -708) 86827) ((-301 . -708) T) ((-505 . -600) 86809) ((-472 . -359) 86788) ((-355 . -344) 86767) ((-348 . -344) 86746) ((-337 . -344) 86725) ((-304 . -471) 86704) ((-1219 . -23) T) ((-1198 . -23) T) ((-700 . -1094) T) ((-696 . -137) T) ((-635 . -105) T) ((-482 . -699) 86669) ((-50 . -272) 86619) ((-109 . -1082) T) ((-73 . -600) 86601) ((-844 . -105) T) ((-607 . -887) 86560) ((-1258 . -1082) T) ((-377 . -1082) T) ((-87 . -1187) T) ((-1050 . -834) T) ((-945 . -834) 86539) ((-126 . -887) NIL) ((-769 . -908) 86518) ((-695 . -834) T) ((-526 . -1082) T) ((-501 . -1082) T) ((-350 . -1191) T) ((-347 . -1191) T) ((-336 . -1191) T) ((-252 . -1191) 86497) ((-237 . -1191) 86476) ((-1095 . -219) 86445) ((-485 . -834) 86424) ((-1135 . -815) T) ((-1119 . -1045) 86408) ((-386 . -745) T) ((-726 . -298) 86395) ((-675 . -1187) T) ((-350 . -550) T) ((-347 . -550) T) ((-336 . -550) T) ((-252 . -550) 86326) ((-237 . -550) 86257) ((-1119 . -120) 86236) ((-448 . -728) 86206) ((-845 . -1045) 86176) ((-804 . -43) 86113) ((-675 . -871) 86095) ((-675 . -873) 86077) ((-284 . -298) 85881) ((-897 . -1191) T) ((-849 . -1094) T) ((-845 . -120) 85846) ((-654 . -407) 85830) ((-766 . -1094) T) ((-675 . -1029) 85775) ((-996 . -447) T) ((-897 . -550) T) ((-573 . -908) T) ((-472 . -1094) T) ((-518 . -908) T) ((-1133 . -278) 85752) ((-902 . -447) T) ((-70 . -600) 85734) ((-849 . -23) T) ((-615 . -217) 85680) ((-766 . -23) T) ((-472 . -23) T) ((-1100 . -781) T) ((-858 . -137) T) ((-1100 . -778) T) ((-1249 . -1251) 85659) ((-1100 . -708) T) ((-636 . -629) 85633) ((-283 . -600) 85374) ((-1027 . -39) T) ((-802 . -832) 85353) ((-572 . -296) T) ((-560 . -296) T) ((-496 . -296) T) ((-1258 . -699) 85323) ((-675 . -373) 85305) ((-675 . -330) 85287) ((-482 . -170) T) ((-377 . -699) 85257) ((-726 . -1128) 85235) ((-857 . -834) NIL) ((-560 . -1013) T) ((-496 . -1013) T) ((-1113 . -600) 85217) ((-1095 . -226) 85196) ((-203 . -105) T) ((-1127 . -105) T) ((-76 . -600) 85178) ((-1119 . -1039) T) ((-1155 . -43) 85075) ((-841 . -600) 85057) ((-560 . -542) T) ((-726 . -43) 84886) ((-654 . -1046) T) ((-713 . -942) 84839) ((-1119 . -221) 84818) ((-1067 . -1082) T) ((-1026 . -25) T) ((-1026 . -21) T) ((-995 . -1045) 84763) ((-892 . -105) T) ((-845 . -1039) T) ((-762 . -1094) T) ((-675 . -887) NIL) ((-350 . -321) 84747) ((-350 . -359) T) ((-347 . -321) 84731) ((-347 . -359) T) ((-336 . -321) 84715) ((-336 . -359) T) ((-490 . -105) T) ((-1246 . -43) 84685) ((-523 . -669) 84635) ((-206 . -105) T) ((-1015 . -1029) 84515) ((-995 . -120) 84432) ((-1151 . -966) 84401) ((-1150 . -966) 84363) ((-520 . -152) 84347) ((-1065 . -366) 84326) ((-346 . -600) 84308) ((-313 . -21) T) ((-349 . -1029) 84285) ((-313 . -25) T) ((-1143 . -966) 84254) ((-1106 . -966) 84221) ((-81 . -600) 84203) ((-680 . -296) T) ((-167 . -834) 84182) ((-897 . -359) T) ((-375 . -25) T) ((-375 . -21) T) ((-897 . -321) 84169) ((-91 . -600) 84151) ((-680 . -1013) T) ((-659 . -834) T) ((-1219 . -137) T) ((-1198 . -137) T) ((-888 . -1002) 84135) ((-821 . -21) T) ((-53 . -1029) 84078) ((-821 . -25) T) ((-814 . -25) T) ((-814 . -21) T) ((-1256 . -1046) T) ((-1254 . -1046) T) ((-636 . -708) T) ((-1147 . -296) 84057) ((-254 . -1002) 84041) ((-1257 . -1045) 84025) ((-1208 . -834) 84004) ((-802 . -407) 83973) ((-106 . -128) 83957) ((-57 . -1082) T) ((-918 . -600) 83939) ((-857 . -985) 83916) ((-810 . -105) T) ((-1257 . -120) 83895) ((-635 . -43) 83865) ((-567 . -834) T) ((-350 . -1094) T) ((-347 . -1094) T) ((-336 . -1094) T) ((-252 . -1094) T) ((-237 . -1094) T) ((-607 . -296) 83844) ((-1127 . -298) 83648) ((-648 . -23) T) ((-486 . -219) 83617) ((-153 . -1046) T) ((-350 . -23) T) ((-347 . -23) T) ((-336 . -23) T) ((-126 . -296) T) ((-252 . -23) T) ((-237 . -23) T) ((-995 . -1039) T) ((-694 . -896) 83596) ((-995 . -221) 83568) ((-995 . -233) T) ((-126 . -1013) NIL) ((-897 . -1094) T) ((-1220 . -447) 83547) ((-1199 . -447) 83526) ((-523 . -600) 83493) ((-694 . -629) 83418) ((-403 . -1045) 83370) ((-849 . -137) T) ((-506 . -600) 83352) ((-897 . -23) T) ((-766 . -137) T) ((-490 . -298) NIL) ((-472 . -137) T) ((-206 . -298) NIL) ((-403 . -120) 83283) ((-802 . -1046) 83213) ((-719 . -1079) 83197) ((-1219 . -494) 83163) ((-1198 . -494) 83129) ((-142 . -1079) 83111) ((-482 . -280) T) ((-1257 . -1039) T) ((-1051 . -105) T) ((-501 . -515) NIL) ((-684 . -105) T) ((-486 . -226) 83090) ((-1149 . -146) 83069) ((-1149 . -148) 83048) ((-1105 . -148) 83027) ((-1105 . -146) 83006) ((-618 . -1045) 82990) ((-594 . -1045) 82974) ((-654 . -1082) T) ((-654 . -1042) 82914) ((-1151 . -1226) 82898) ((-1151 . -1213) 82875) ((-490 . -1128) T) ((-1150 . -1218) 82836) ((-1150 . -1213) 82806) ((-1150 . -1216) 82790) ((-206 . -1128) T) ((-335 . -908) T) ((-805 . -257) 82774) ((-618 . -120) 82753) ((-594 . -120) 82732) ((-1143 . -1197) 82693) ((-827 . -1039) 82672) ((-1143 . -1213) 82649) ((-516 . -25) T) ((-496 . -291) T) ((-512 . -23) T) ((-511 . -25) T) ((-509 . -25) T) ((-508 . -23) T) ((-1143 . -1195) 82633) ((-403 . -1039) T) ((-308 . -1046) T) ((-675 . -296) T) ((-112 . -832) T) ((-403 . -233) T) ((-403 . -221) 82612) ((-694 . -708) T) ((-490 . -43) 82562) ((-206 . -43) 82512) ((-472 . -494) 82478) ((-1135 . -1121) T) ((-1083 . -105) T) ((-682 . -600) 82460) ((-682 . -601) 82375) ((-696 . -21) T) ((-696 . -25) T) ((-139 . -600) 82357) ((-125 . -600) 82339) ((-156 . -25) T) ((-1256 . -1082) T) ((-858 . -622) 82287) ((-1254 . -1082) T) ((-956 . -105) T) ((-717 . -105) T) ((-697 . -105) T) ((-448 . -105) T) ((-803 . -447) 82238) ((-49 . -1082) T) ((-1071 . -834) T) ((-648 . -137) T) ((-1051 . -298) 82089) ((-654 . -699) 82073) ((-279 . -1046) T) ((-350 . -137) T) ((-347 . -137) T) ((-336 . -137) T) ((-252 . -137) T) ((-237 . -137) T) ((-725 . -1187) T) ((-414 . -105) T) ((-1231 . -52) 82050) ((-153 . -1082) T) ((-50 . -217) 82000) ((-726 . -219) 81984) ((-991 . -629) 81922) ((-950 . -834) 81901) ((-725 . -871) 81885) ((-725 . -873) 81810) ((-228 . -1243) 81780) ((-1015 . -296) T) ((-283 . -1045) 81701) ((-897 . -137) T) ((-45 . -908) T) ((-725 . -1029) 81423) ((-490 . -396) 81405) ((-349 . -296) T) ((-206 . -396) 81387) ((-1065 . -407) 81371) ((-283 . -120) 81287) ((-852 . -1191) T) ((-847 . -1191) T) ((-858 . -25) T) ((-858 . -21) T) ((-852 . -550) T) ((-847 . -550) T) ((-331 . -600) 81269) ((-1221 . -52) 81213) ((-213 . -148) T) ((-171 . -600) 81195) ((-1095 . -832) 81174) ((-758 . -600) 81156) ((-595 . -223) 81103) ((-473 . -223) 81053) ((-1256 . -699) 81023) ((-53 . -296) T) ((-1254 . -699) 80993) ((-957 . -1082) T) ((-802 . -1082) 80783) ((-300 . -105) T) ((-888 . -1187) T) ((-725 . -373) 80752) ((-53 . -1013) T) ((-1198 . -622) 80660) ((-671 . -105) 80638) ((-49 . -699) 80622) ((-543 . -105) T) ((-72 . -379) T) ((-254 . -1187) T) ((-72 . -391) T) ((-35 . -600) 80604) ((-644 . -23) T) ((-654 . -745) T) ((-1185 . -1082) 80582) ((-346 . -1045) 80527) ((-658 . -1082) 80505) ((-1050 . -148) T) ((-945 . -148) 80484) ((-945 . -146) 80463) ((-786 . -105) T) ((-153 . -699) 80447) ((-485 . -148) 80426) ((-485 . -146) 80405) ((-346 . -120) 80322) ((-1065 . -1046) T) ((-313 . -834) 80301) ((-959 . -1080) T) ((-1227 . -966) 80270) ((-1220 . -966) 80232) ((-1199 . -966) 80201) ((-610 . -1082) T) ((-512 . -137) T) ((-725 . -887) 80182) ((-508 . -137) T) ((-284 . -217) 80132) ((-355 . -1046) T) ((-348 . -1046) T) ((-337 . -1046) T) ((-283 . -1039) 80074) ((-1193 . -966) 80043) ((-375 . -834) T) ((-112 . -1046) T) ((-991 . -708) T) ((-856 . -908) T) ((-827 . -782) 80022) ((-827 . -779) 80001) ((-414 . -298) 79940) ((-466 . -105) T) ((-585 . -966) 79909) ((-308 . -1082) T) ((-403 . -782) 79888) ((-403 . -779) 79867) ((-501 . -492) 79849) ((-1221 . -1029) 79815) ((-1219 . -21) T) ((-1219 . -25) T) ((-1198 . -21) T) ((-1198 . -25) T) ((-802 . -699) 79757) ((-852 . -359) T) ((-847 . -359) T) ((-680 . -400) T) ((-1247 . -1187) T) ((-1095 . -407) 79726) ((-995 . -364) NIL) ((-106 . -39) T) ((-719 . -1187) T) ((-49 . -745) T) ((-583 . -105) T) ((-82 . -392) T) ((-82 . -391) T) ((-635 . -638) 79710) ((-142 . -1187) T) ((-857 . -148) T) ((-857 . -146) NIL) ((-1231 . -887) 79623) ((-346 . -1039) T) ((-75 . -379) T) ((-75 . -391) T) ((-1142 . -105) T) ((-654 . -515) 79556) ((-671 . -298) 79494) ((-956 . -43) 79391) ((-717 . -43) 79361) ((-543 . -298) 79165) ((-304 . -1187) T) ((-346 . -221) T) ((-346 . -233) T) ((-301 . -1187) T) ((-279 . -1082) T) ((-1157 . -600) 79147) ((-693 . -1191) T) ((-1133 . -632) 79131) ((-1182 . -550) 79110) ((-849 . -25) T) ((-849 . -21) T) ((-693 . -550) T) ((-304 . -871) 79094) ((-304 . -873) 79019) ((-301 . -871) 78980) ((-301 . -873) NIL) ((-786 . -298) 78945) ((-766 . -25) T) ((-308 . -699) 78786) ((-766 . -21) T) ((-315 . -314) 78763) ((-488 . -105) T) ((-472 . -25) T) ((-472 . -21) T) ((-414 . -43) 78737) ((-304 . -1029) 78400) ((-213 . -1173) T) ((-213 . -1176) T) ((-3 . -600) 78382) ((-301 . -1029) 78312) ((-852 . -1094) T) ((-2 . -1082) T) ((-2 . |RecordCategory|) T) ((-847 . -1094) T) ((-820 . -600) 78294) ((-1095 . -1046) 78224) ((-572 . -908) T) ((-560 . -807) T) ((-560 . -908) T) ((-496 . -908) T) ((-141 . -1029) 78208) ((-213 . -98) T) ((-80 . -436) T) ((-80 . -391) T) ((0 . -600) 78190) ((-167 . -148) 78169) ((-167 . -146) 78120) ((-213 . -40) T) ((-54 . -600) 78102) ((-852 . -23) T) ((-482 . -1046) T) ((-847 . -23) T) ((-490 . -219) 78084) ((-487 . -961) 78068) ((-486 . -832) 78047) ((-206 . -219) 78029) ((-86 . -436) T) ((-86 . -391) T) ((-1123 . -39) T) ((-802 . -170) 78008) ((-713 . -105) T) ((-1018 . -600) 77975) ((-501 . -276) 77950) ((-304 . -373) 77919) ((-301 . -373) 77880) ((-301 . -330) 77841) ((-803 . -942) 77788) ((-644 . -137) T) ((-1208 . -146) 77767) ((-1208 . -148) 77746) ((-1151 . -105) T) ((-1150 . -105) T) ((-1143 . -105) T) ((-1136 . -1082) T) ((-1106 . -105) T) ((-210 . -39) T) ((-279 . -699) 77733) ((-1136 . -597) 77709) ((-583 . -298) NIL) ((-1227 . -1226) 77693) ((-1227 . -1213) 77670) ((-487 . -1082) 77648) ((-1220 . -1218) 77609) ((-386 . -600) 77591) ((-511 . -834) T) ((-1127 . -217) 77541) ((-1220 . -1213) 77511) ((-1220 . -1216) 77495) ((-1199 . -1197) 77456) ((-1199 . -1213) 77433) ((-1199 . -1195) 77417) ((-1193 . -1226) 77401) ((-1193 . -1213) 77378) ((-605 . -600) 77360) ((-1151 . -274) 77326) ((-680 . -908) T) ((-1150 . -274) 77292) ((-1143 . -274) 77258) ((-1106 . -274) 77224) ((-1065 . -1082) T) ((-1049 . -1082) T) ((-53 . -291) T) ((-304 . -887) 77190) ((-301 . -887) NIL) ((-1049 . -1055) 77169) ((-1100 . -873) 77151) ((-786 . -43) 77135) ((-252 . -622) 77083) ((-237 . -622) 77031) ((-682 . -1045) 77018) ((-585 . -1213) 76995) ((-1100 . -1029) 76977) ((-308 . -170) 76908) ((-355 . -1082) T) ((-348 . -1082) T) ((-337 . -1082) T) ((-501 . -19) 76890) ((-1084 . -152) 76874) ((-725 . -296) 76853) ((-112 . -1082) T) ((-125 . -1045) 76840) ((-693 . -359) T) ((-501 . -593) 76815) ((-682 . -120) 76800) ((-432 . -105) T) ((-50 . -1126) 76750) ((-125 . -120) 76735) ((-1147 . -908) 76714) ((-618 . -702) T) ((-594 . -702) T) ((-802 . -515) 76647) ((-1027 . -1187) T) ((-936 . -152) 76631) ((-520 . -105) 76581) ((-1070 . -1191) 76560) ((-769 . -1191) 76539) ((-767 . -1191) 76518) ((-67 . -1187) T) ((-482 . -600) 76470) ((-482 . -601) 76392) ((-1149 . -447) 76323) ((-1135 . -1082) T) ((-1119 . -629) 76297) ((-1070 . -550) 76228) ((-486 . -407) 76197) ((-607 . -908) 76176) ((-449 . -1191) 76155) ((-1105 . -447) 76106) ((-769 . -550) 76017) ((-394 . -600) 75999) ((-767 . -550) 75930) ((-658 . -515) 75863) ((-713 . -298) 75850) ((-648 . -25) T) ((-648 . -21) T) ((-449 . -550) 75781) ((-126 . -908) T) ((-126 . -807) NIL) ((-350 . -25) T) ((-350 . -21) T) ((-347 . -25) T) ((-347 . -21) T) ((-336 . -25) T) ((-336 . -21) T) ((-252 . -25) T) ((-252 . -21) T) ((-88 . -380) T) ((-88 . -391) T) ((-237 . -25) T) ((-237 . -21) T) ((-1238 . -600) 75763) ((-1182 . -1094) T) ((-1182 . -23) T) ((-1143 . -298) 75648) ((-1106 . -298) 75635) ((-1065 . -699) 75503) ((-845 . -629) 75463) ((-936 . -973) 75447) ((-897 . -21) T) ((-279 . -170) T) ((-897 . -25) T) ((-858 . -834) 75398) ((-852 . -137) T) ((-693 . -1094) T) ((-693 . -23) T) ((-628 . -1082) 75376) ((-615 . -597) 75351) ((-615 . -1082) T) ((-573 . -1191) T) ((-518 . -1191) T) ((-573 . -550) T) ((-518 . -550) T) ((-355 . -699) 75303) ((-348 . -699) 75255) ((-171 . -1045) 75187) ((-331 . -1045) 75171) ((-112 . -699) 75121) ((-171 . -120) 75020) ((-337 . -699) 74972) ((-331 . -120) 74951) ((-265 . -1082) T) ((-264 . -1082) T) ((-263 . -1082) T) ((-262 . -1082) T) ((-682 . -1039) T) ((-261 . -1082) T) ((-260 . -1082) T) ((-259 . -1082) T) ((-202 . -1082) T) ((-201 . -1082) T) ((-199 . -1082) T) ((-167 . -1176) 74929) ((-167 . -1173) 74907) ((-198 . -1082) T) ((-197 . -1082) T) ((-125 . -1039) T) ((-196 . -1082) T) ((-193 . -1082) T) ((-682 . -221) T) ((-192 . -1082) T) ((-191 . -1082) T) ((-190 . -1082) T) ((-189 . -1082) T) ((-188 . -1082) T) ((-187 . -1082) T) ((-186 . -1082) T) ((-185 . -1082) T) ((-184 . -1082) T) ((-183 . -1082) T) ((-228 . -105) 74697) ((-167 . -40) 74675) ((-167 . -98) 74653) ((-847 . -137) T) ((-636 . -1029) 74549) ((-486 . -1046) 74479) ((-1095 . -1082) 74269) ((-1119 . -39) T) ((-654 . -492) 74253) ((-78 . -1187) T) ((-109 . -600) 74235) ((-1258 . -600) 74217) ((-377 . -600) 74199) ((-567 . -1176) T) ((-567 . -1173) T) ((-713 . -43) 74048) ((-526 . -600) 74030) ((-520 . -298) 73968) ((-501 . -600) 73950) ((-501 . -601) 73932) ((-1143 . -1128) NIL) ((-1019 . -1058) 73901) ((-1019 . -1082) T) ((-996 . -105) T) ((-964 . -105) T) ((-902 . -105) T) ((-880 . -1029) 73878) ((-1119 . -708) T) ((-995 . -629) 73823) ((-474 . -1082) T) ((-461 . -1082) T) ((-577 . -23) T) ((-567 . -40) T) ((-567 . -98) T) ((-423 . -105) T) ((-1051 . -217) 73769) ((-1151 . -43) 73666) ((-845 . -708) T) ((-675 . -908) T) ((-512 . -25) T) ((-508 . -21) T) ((-508 . -25) T) ((-1150 . -43) 73507) ((-331 . -1039) T) ((-1143 . -43) 73303) ((-1065 . -170) T) ((-171 . -1039) T) ((-1106 . -43) 73200) ((-694 . -52) 73177) ((-355 . -170) T) ((-348 . -170) T) ((-519 . -62) 73151) ((-498 . -62) 73101) ((-346 . -1253) 73078) ((-213 . -447) T) ((-308 . -280) 73029) ((-337 . -170) T) ((-171 . -233) T) ((-1198 . -834) 72928) ((-112 . -170) T) ((-858 . -985) 72912) ((-640 . -1094) T) ((-573 . -359) T) ((-573 . -321) 72899) ((-518 . -321) 72876) ((-518 . -359) T) ((-304 . -296) 72855) ((-301 . -296) T) ((-591 . -834) 72834) ((-1095 . -699) 72776) ((-520 . -272) 72760) ((-640 . -23) T) ((-414 . -219) 72744) ((-301 . -1013) NIL) ((-328 . -23) T) ((-231 . -23) T) ((-106 . -1002) 72728) ((-50 . -41) 72707) ((-599 . -1082) T) ((-346 . -364) T) ((-496 . -27) T) ((-228 . -298) 72645) ((-1070 . -1094) T) ((-1257 . -629) 72619) ((-769 . -1094) T) ((-767 . -1094) T) ((-449 . -1094) T) ((-1050 . -447) T) ((-945 . -447) 72570) ((-114 . -1082) T) ((-1070 . -23) T) ((-804 . -1046) T) ((-769 . -23) T) ((-767 . -23) T) ((-485 . -447) 72521) ((-1136 . -515) 72269) ((-377 . -378) 72248) ((-1155 . -407) 72232) ((-456 . -23) T) ((-449 . -23) T) ((-726 . -407) 72216) ((-725 . -291) T) ((-487 . -515) 72149) ((-279 . -280) T) ((-1067 . -600) 72131) ((-403 . -896) 72110) ((-55 . -1094) T) ((-1015 . -908) T) ((-995 . -708) T) ((-694 . -873) NIL) ((-573 . -1094) T) ((-518 . -1094) T) ((-827 . -629) 72083) ((-1182 . -137) T) ((-1143 . -396) 72035) ((-996 . -298) NIL) ((-802 . -492) 72019) ((-349 . -908) T) ((-1133 . -39) T) ((-403 . -629) 71971) ((-55 . -23) T) ((-693 . -137) T) ((-694 . -1029) 71851) ((-573 . -23) T) ((-112 . -515) NIL) ((-518 . -23) T) ((-167 . -405) 71822) ((-213 . -1116) T) ((-1117 . -1082) T) ((-1249 . -1248) 71806) ((-682 . -782) T) ((-682 . -779) T) ((-375 . -148) T) ((-1100 . -296) T) ((-1198 . -985) 71776) ((-53 . -908) T) ((-658 . -492) 71760) ((-239 . -1243) 71730) ((-238 . -1243) 71700) ((-1153 . -834) T) ((-1095 . -170) 71679) ((-1100 . -1013) T) ((-1036 . -39) T) ((-821 . -148) 71658) ((-821 . -146) 71637) ((-719 . -111) 71621) ((-599 . -138) T) ((-486 . -1082) 71411) ((-1155 . -1046) T) ((-857 . -447) T) ((-90 . -1187) T) ((-228 . -43) 71381) ((-142 . -111) 71363) ((-915 . -1080) T) ((-694 . -373) 71347) ((-726 . -1046) T) ((-1100 . -542) T) ((-386 . -1045) 71331) ((-1257 . -708) T) ((-1149 . -942) 71300) ((-57 . -600) 71282) ((-1105 . -942) 71249) ((-635 . -407) 71233) ((-1246 . -1046) T) ((-1227 . -105) T) ((-605 . -1045) 71217) ((-644 . -25) T) ((-644 . -21) T) ((-1135 . -515) NIL) ((-1220 . -105) T) ((-1199 . -105) T) ((-386 . -120) 71196) ((-210 . -242) 71180) ((-1193 . -105) T) ((-1043 . -1082) T) ((-996 . -1128) T) ((-1043 . -1042) 71120) ((-805 . -1082) T) ((-335 . -1191) T) ((-618 . -629) 71104) ((-605 . -120) 71083) ((-594 . -629) 71067) ((-586 . -105) T) ((-577 . -137) T) ((-585 . -105) T) ((-410 . -1082) T) ((-381 . -1082) T) ((-215 . -1082) 71045) ((-628 . -515) 70978) ((-615 . -515) 70786) ((-820 . -1039) 70765) ((-626 . -152) 70749) ((-335 . -550) T) ((-694 . -887) 70692) ((-543 . -217) 70642) ((-1227 . -274) 70608) ((-1220 . -274) 70574) ((-1065 . -280) 70525) ((-490 . -832) T) ((-211 . -1094) T) ((-1199 . -274) 70491) ((-1193 . -274) 70457) ((-996 . -43) 70407) ((-206 . -832) T) ((-1182 . -494) 70373) ((-902 . -43) 70325) ((-827 . -781) 70304) ((-827 . -778) 70283) ((-827 . -708) 70262) ((-355 . -280) T) ((-348 . -280) T) ((-337 . -280) T) ((-167 . -447) 70193) ((-423 . -43) 70177) ((-112 . -280) T) ((-211 . -23) T) ((-403 . -781) 70156) ((-403 . -778) 70135) ((-403 . -708) T) ((-501 . -278) 70110) ((-482 . -1045) 70075) ((-640 . -137) T) ((-1095 . -515) 70008) ((-328 . -137) T) ((-167 . -398) 69987) ((-231 . -137) T) ((-486 . -699) 69929) ((-802 . -276) 69906) ((-482 . -120) 69855) ((-33 . -37) 69839) ((-635 . -1046) T) ((-1208 . -447) 69770) ((-1070 . -137) T) ((-252 . -834) 69749) ((-237 . -834) 69728) ((-769 . -137) T) ((-767 . -137) T) ((-567 . -447) T) ((-1043 . -699) 69670) ((-605 . -1039) T) ((-1019 . -515) 69603) ((-456 . -137) T) ((-449 . -137) T) ((-50 . -1082) T) ((-381 . -699) 69573) ((-804 . -1082) T) ((-474 . -515) 69506) ((-461 . -515) 69439) ((-448 . -363) 69409) ((-50 . -597) 69388) ((-304 . -291) T) ((-654 . -600) 69350) ((-64 . -834) 69329) ((-1199 . -298) 69214) ((-996 . -396) 69196) ((-802 . -593) 69173) ((-517 . -834) 69152) ((-497 . -834) 69131) ((-45 . -1191) T) ((-991 . -1029) 69027) ((-55 . -137) T) ((-573 . -137) T) ((-518 . -137) T) ((-283 . -629) 68887) ((-335 . -321) 68864) ((-335 . -359) T) ((-313 . -314) 68841) ((-308 . -276) 68826) ((-45 . -550) T) ((-375 . -1173) T) ((-375 . -1176) T) ((-1027 . -1164) 68801) ((-1161 . -223) 68751) ((-1143 . -219) 68703) ((-1027 . -111) 68649) ((-322 . -1082) T) ((-375 . -98) T) ((-375 . -40) T) ((-852 . -21) T) ((-852 . -25) T) ((-847 . -25) T) ((-482 . -1039) T) ((-530 . -528) 68593) ((-847 . -21) T) ((-483 . -223) 68543) ((-1136 . -492) 68477) ((-1258 . -1045) 68461) ((-377 . -1045) 68445) ((-482 . -233) T) ((-803 . -105) T) ((-696 . -148) 68424) ((-696 . -146) 68403) ((-487 . -492) 68387) ((-488 . -327) 68356) ((-1258 . -120) 68335) ((-513 . -1082) T) ((-486 . -170) 68314) ((-991 . -373) 68298) ((-409 . -105) T) ((-377 . -120) 68277) ((-991 . -330) 68261) ((-270 . -976) 68245) ((-269 . -976) 68229) ((-1256 . -600) 68211) ((-1254 . -600) 68193) ((-114 . -515) NIL) ((-1149 . -1211) 68177) ((-838 . -836) 68161) ((-1155 . -1082) T) ((-106 . -1187) T) ((-945 . -942) 68122) ((-726 . -1082) T) ((-804 . -699) 68059) ((-1199 . -1128) NIL) ((-485 . -942) 68004) ((-1050 . -144) T) ((-65 . -105) 67982) ((-49 . -600) 67964) ((-83 . -600) 67946) ((-346 . -629) 67891) ((-1246 . -1082) T) ((-512 . -834) T) ((-335 . -1094) T) ((-284 . -1082) T) ((-991 . -887) 67850) ((-284 . -597) 67829) ((-1227 . -43) 67726) ((-1220 . -43) 67567) ((-529 . -1080) T) ((-1199 . -43) 67363) ((-490 . -1046) T) ((-1193 . -43) 67260) ((-206 . -1046) T) ((-335 . -23) T) ((-153 . -600) 67242) ((-820 . -782) 67221) ((-820 . -779) 67200) ((-725 . -908) 67179) ((-586 . -43) 67152) ((-585 . -43) 67049) ((-856 . -550) T) ((-211 . -137) T) ((-308 . -994) 67015) ((-84 . -600) 66997) ((-694 . -296) 66976) ((-283 . -708) 66878) ((-811 . -105) T) ((-844 . -828) T) ((-283 . -471) 66857) ((-1249 . -105) T) ((-45 . -359) T) ((-858 . -148) 66836) ((-33 . -1082) T) ((-858 . -146) 66815) ((-1135 . -492) 66797) ((-1258 . -1039) T) ((-486 . -515) 66730) ((-1123 . -1187) T) ((-957 . -600) 66712) ((-628 . -492) 66696) ((-615 . -492) 66628) ((-802 . -600) 66386) ((-53 . -27) T) ((-1155 . -699) 66283) ((-635 . -1082) T) ((-432 . -360) 66257) ((-726 . -699) 66086) ((-1084 . -105) T) ((-803 . -298) 66073) ((-844 . -1082) T) ((-1254 . -378) 66045) ((-1043 . -515) 65978) ((-1136 . -276) 65954) ((-228 . -219) 65923) ((-1246 . -699) 65893) ((-804 . -170) 65872) ((-215 . -515) 65805) ((-605 . -782) 65784) ((-605 . -779) 65763) ((-1185 . -600) 65710) ((-210 . -1187) T) ((-658 . -600) 65677) ((-1133 . -1002) 65661) ((-346 . -708) T) ((-936 . -105) 65611) ((-1199 . -396) 65563) ((-1095 . -492) 65547) ((-65 . -298) 65485) ((-323 . -105) T) ((-1182 . -21) T) ((-1182 . -25) T) ((-45 . -1094) T) ((-693 . -21) T) ((-610 . -600) 65467) ((-516 . -314) 65446) ((-693 . -25) T) ((-112 . -276) NIL) ((-909 . -1094) T) ((-45 . -23) T) ((-755 . -1094) T) ((-560 . -1191) T) ((-496 . -1191) T) ((-308 . -600) 65428) ((-996 . -219) 65410) ((-167 . -164) 65394) ((-572 . -550) T) ((-560 . -550) T) ((-496 . -550) T) ((-755 . -23) T) ((-1219 . -148) 65373) ((-1136 . -593) 65349) ((-1219 . -146) 65328) ((-1019 . -492) 65312) ((-1198 . -146) 65237) ((-1198 . -148) 65162) ((-1249 . -1255) 65141) ((-474 . -492) 65125) ((-461 . -492) 65109) ((-523 . -39) T) ((-635 . -699) 65079) ((-644 . -834) 65058) ((-1155 . -170) 65009) ((-361 . -105) T) ((-228 . -226) 64988) ((-239 . -105) T) ((-238 . -105) T) ((-1208 . -942) 64957) ((-113 . -105) T) ((-235 . -834) 64936) ((-803 . -43) 64785) ((-726 . -170) 64676) ((-50 . -515) 64436) ((-1135 . -276) 64411) ((-203 . -1082) T) ((-1127 . -1082) T) ((-913 . -105) T) ((-1127 . -597) 64390) ((-577 . -25) T) ((-577 . -21) T) ((-1084 . -298) 64328) ((-956 . -407) 64312) ((-680 . -1191) T) ((-615 . -276) 64287) ((-1070 . -622) 64235) ((-769 . -622) 64183) ((-767 . -622) 64131) ((-335 . -137) T) ((-279 . -600) 64113) ((-913 . -912) 64085) ((-680 . -550) T) ((-892 . -1082) T) ((-856 . -1094) T) ((-449 . -622) 64033) ((-892 . -890) 64017) ((-849 . -848) T) ((-849 . -850) T) ((-936 . -298) 63955) ((-375 . -447) T) ((-856 . -23) T) ((-490 . -1082) T) ((-849 . -146) T) ((-682 . -629) 63942) ((-849 . -148) 63921) ((-206 . -1082) T) ((-304 . -908) 63900) ((-301 . -908) T) ((-301 . -807) NIL) ((-386 . -702) T) ((-766 . -146) 63879) ((-766 . -148) 63858) ((-125 . -629) 63845) ((-472 . -146) 63824) ((-414 . -407) 63808) ((-472 . -148) 63787) ((-114 . -492) 63769) ((-1147 . -1191) 63748) ((-2 . -600) 63730) ((-1135 . -19) 63712) ((-1147 . -550) 63623) ((-1135 . -593) 63598) ((-640 . -21) T) ((-640 . -25) T) ((-583 . -1121) T) ((-1095 . -276) 63575) ((-328 . -25) T) ((-328 . -21) T) ((-231 . -25) T) ((-231 . -21) T) ((-496 . -359) T) ((-1249 . -43) 63545) ((-1119 . -1187) T) ((-615 . -593) 63520) ((-1070 . -25) T) ((-1070 . -21) T) ((-956 . -1046) T) ((-526 . -779) T) ((-526 . -782) T) ((-126 . -1191) T) ((-726 . -515) 63466) ((-607 . -550) T) ((-769 . -25) T) ((-769 . -21) T) ((-767 . -21) T) ((-767 . -25) T) ((-717 . -1046) T) ((-697 . -1046) T) ((-654 . -1045) 63450) ((-456 . -25) T) ((-126 . -550) T) ((-456 . -21) T) ((-449 . -25) T) ((-449 . -21) T) ((-1119 . -1029) 63346) ((-804 . -280) 63325) ((-725 . -426) 63309) ((-810 . -1082) T) ((-654 . -120) 63288) ((-284 . -515) 63048) ((-1256 . -1045) 63032) ((-1254 . -1045) 63016) ((-1219 . -1173) 62982) ((-239 . -298) 62920) ((-238 . -298) 62858) ((-1202 . -105) 62836) ((-1136 . -601) NIL) ((-1136 . -600) 62818) ((-1219 . -1176) 62784) ((-1199 . -219) 62736) ((-1198 . -1173) 62702) ((-1198 . -1176) 62668) ((-1119 . -373) 62652) ((-1100 . -807) T) ((-1100 . -908) T) ((-1095 . -593) 62629) ((-1065 . -601) 62613) ((-530 . -105) T) ((-487 . -600) 62580) ((-802 . -278) 62557) ((-595 . -152) 62504) ((-414 . -1046) T) ((-490 . -699) 62454) ((-486 . -492) 62438) ((-319 . -834) 62417) ((-331 . -629) 62391) ((-55 . -21) T) ((-55 . -25) T) ((-206 . -699) 62341) ((-167 . -706) 62312) ((-171 . -629) 62244) ((-573 . -21) T) ((-573 . -25) T) ((-518 . -25) T) ((-518 . -21) T) ((-473 . -152) 62194) ((-1065 . -600) 62176) ((-1049 . -600) 62158) ((-986 . -105) T) ((-842 . -105) T) ((-786 . -407) 62122) ((-45 . -137) T) ((-680 . -359) T) ((-202 . -882) T) ((-682 . -781) T) ((-682 . -778) T) ((-572 . -1094) T) ((-560 . -1094) T) ((-496 . -1094) T) ((-682 . -708) T) ((-355 . -600) 62104) ((-348 . -600) 62086) ((-337 . -600) 62068) ((-71 . -392) T) ((-71 . -391) T) ((-112 . -601) 61998) ((-112 . -600) 61980) ((-201 . -882) T) ((-950 . -152) 61964) ((-1219 . -98) 61930) ((-755 . -137) T) ((-139 . -708) T) ((-125 . -708) T) ((-1219 . -40) 61896) ((-1043 . -492) 61880) ((-572 . -23) T) ((-560 . -23) T) ((-496 . -23) T) ((-1198 . -98) 61846) ((-1198 . -40) 61812) ((-1149 . -105) T) ((-1105 . -105) T) ((-838 . -105) T) ((-215 . -492) 61796) ((-1256 . -120) 61775) ((-1254 . -120) 61754) ((-49 . -1045) 61738) ((-1208 . -1211) 61722) ((-839 . -836) 61706) ((-1155 . -280) 61685) ((-114 . -276) 61660) ((-1119 . -887) 61619) ((-49 . -120) 61598) ((-726 . -280) 61509) ((-654 . -1039) T) ((-1143 . -832) NIL) ((-1135 . -601) NIL) ((-1135 . -600) 61491) ((-1051 . -597) 61466) ((-1051 . -1082) T) ((-79 . -436) T) ((-79 . -391) T) ((-654 . -221) 61445) ((-153 . -1045) 61429) ((-567 . -547) 61413) ((-350 . -148) 61392) ((-350 . -146) 61343) ((-347 . -148) 61322) ((-684 . -1082) T) ((-347 . -146) 61273) ((-336 . -148) 61252) ((-336 . -146) 61203) ((-252 . -146) 61182) ((-252 . -148) 61161) ((-239 . -43) 61131) ((-237 . -148) 61110) ((-126 . -359) T) ((-237 . -146) 61089) ((-238 . -43) 61059) ((-153 . -120) 61038) ((-995 . -1029) 60913) ((-914 . -1080) T) ((-675 . -1191) T) ((-786 . -1046) T) ((-680 . -1094) T) ((-1256 . -1039) T) ((-1254 . -1039) T) ((-1147 . -1094) T) ((-1133 . -1187) T) ((-995 . -373) 60890) ((-897 . -146) T) ((-897 . -148) 60872) ((-856 . -137) T) ((-802 . -1045) 60769) ((-675 . -550) T) ((-680 . -23) T) ((-628 . -600) 60736) ((-628 . -601) 60697) ((-615 . -601) NIL) ((-615 . -600) 60679) ((-490 . -170) T) ((-211 . -21) T) ((-206 . -170) T) ((-211 . -25) T) ((-472 . -1176) 60645) ((-472 . -1173) 60611) ((-265 . -600) 60593) ((-264 . -600) 60575) ((-263 . -600) 60557) ((-262 . -600) 60539) ((-261 . -600) 60521) ((-501 . -632) 60503) ((-260 . -600) 60485) ((-331 . -708) T) ((-259 . -600) 60467) ((-114 . -19) 60449) ((-171 . -708) T) ((-501 . -369) 60431) ((-202 . -600) 60413) ((-520 . -1126) 60397) ((-501 . -132) T) ((-114 . -593) 60372) ((-201 . -600) 60354) ((-472 . -40) 60320) ((-472 . -98) 60286) ((-199 . -600) 60268) ((-198 . -600) 60250) ((-197 . -600) 60232) ((-196 . -600) 60214) ((-193 . -600) 60196) ((-192 . -600) 60178) ((-191 . -600) 60160) ((-190 . -600) 60142) ((-189 . -600) 60124) ((-188 . -600) 60106) ((-187 . -600) 60088) ((-533 . -1085) 60040) ((-186 . -600) 60022) ((-185 . -600) 60004) ((-50 . -492) 59941) ((-184 . -600) 59923) ((-183 . -600) 59905) ((-1147 . -23) T) ((-802 . -120) 59795) ((-626 . -105) 59745) ((-486 . -276) 59722) ((-1095 . -600) 59480) ((-1083 . -1082) T) ((-1036 . -1187) T) ((-607 . -1094) T) ((-1257 . -1029) 59464) ((-1149 . -298) 59451) ((-1105 . -298) 59438) ((-126 . -1094) T) ((-806 . -105) T) ((-607 . -23) T) ((-1127 . -515) 59198) ((-382 . -105) T) ((-315 . -105) T) ((-995 . -887) 59150) ((-956 . -1082) T) ((-153 . -1039) T) ((-126 . -23) T) ((-713 . -407) 59134) ((-717 . -1082) T) ((-697 . -1082) T) ((-684 . -138) T) ((-448 . -1082) T) ((-304 . -426) 59118) ((-403 . -1187) T) ((-1019 . -601) 59079) ((-1015 . -1191) T) ((-213 . -105) T) ((-1019 . -600) 59041) ((-803 . -219) 59025) ((-1015 . -550) T) ((-820 . -629) 58998) ((-349 . -1191) T) ((-474 . -600) 58960) ((-474 . -601) 58921) ((-461 . -601) 58882) ((-461 . -600) 58844) ((-403 . -871) 58828) ((-308 . -1045) 58663) ((-403 . -873) 58588) ((-827 . -1029) 58484) ((-490 . -515) NIL) ((-486 . -593) 58461) ((-349 . -550) T) ((-206 . -515) NIL) ((-858 . -447) T) ((-414 . -1082) T) ((-403 . -1029) 58325) ((-308 . -120) 58139) ((-675 . -359) T) ((-213 . -274) T) ((-53 . -1191) T) ((-802 . -1039) 58069) ((-572 . -137) T) ((-560 . -137) T) ((-496 . -137) T) ((-53 . -550) T) ((-1136 . -278) 58045) ((-1149 . -1128) 58023) ((-304 . -27) 58002) ((-1050 . -105) T) ((-802 . -221) 57954) ((-228 . -832) 57933) ((-945 . -105) T) ((-695 . -105) T) ((-284 . -492) 57870) ((-485 . -105) T) ((-713 . -1046) T) ((-599 . -600) 57852) ((-599 . -601) 57713) ((-403 . -373) 57697) ((-403 . -330) 57681) ((-1149 . -43) 57510) ((-1105 . -43) 57359) ((-838 . -43) 57329) ((-386 . -629) 57313) ((-626 . -298) 57251) ((-956 . -699) 57148) ((-210 . -111) 57132) ((-50 . -276) 57057) ((-717 . -699) 57027) ((-605 . -629) 57001) ((-300 . -1082) T) ((-279 . -1045) 56988) ((-114 . -600) 56970) ((-114 . -601) 56952) ((-448 . -699) 56922) ((-803 . -241) 56861) ((-671 . -1082) 56839) ((-543 . -1082) T) ((-1151 . -1046) T) ((-1150 . -1046) T) ((-279 . -120) 56824) ((-1143 . -1046) T) ((-1106 . -1046) T) ((-543 . -597) 56803) ((-996 . -832) T) ((-215 . -669) 56761) ((-675 . -1094) T) ((-1182 . -722) 56737) ((-959 . -963) 56714) ((-308 . -1039) T) ((-335 . -25) T) ((-335 . -21) T) ((-403 . -887) 56673) ((-73 . -1187) T) ((-820 . -781) 56652) ((-414 . -699) 56626) ((-786 . -1082) T) ((-820 . -778) 56605) ((-680 . -137) T) ((-694 . -908) 56584) ((-675 . -23) T) ((-490 . -280) T) ((-820 . -708) 56563) ((-308 . -221) 56515) ((-308 . -233) 56494) ((-206 . -280) T) ((-1015 . -359) T) ((-1219 . -447) 56473) ((-1198 . -447) 56452) ((-349 . -321) 56429) ((-349 . -359) T) ((-1117 . -600) 56411) ((-50 . -1223) 56361) ((-857 . -105) T) ((-626 . -272) 56345) ((-680 . -1048) T) ((-482 . -629) 56310) ((-466 . -1082) T) ((-50 . -593) 56235) ((-1135 . -278) 56210) ((-1147 . -137) T) ((-45 . -622) 56144) ((-53 . -359) T) ((-1088 . -600) 56126) ((-1070 . -834) 56105) ((-615 . -278) 56080) ((-769 . -834) 56059) ((-767 . -834) 56038) ((-486 . -600) 55796) ((-228 . -407) 55765) ((-945 . -298) 55752) ((-449 . -834) 55731) ((-70 . -1187) T) ((-726 . -276) 55658) ((-607 . -137) T) ((-485 . -298) 55645) ((-1051 . -515) 55453) ((-279 . -1039) T) ((-126 . -137) T) ((-448 . -745) T) ((-956 . -170) 55404) ((-1142 . -1082) T) ((-1095 . -278) 55381) ((-1065 . -1045) 55291) ((-605 . -781) 55270) ((-583 . -1082) T) ((-605 . -778) 55249) ((-605 . -708) T) ((-284 . -276) 55228) ((-283 . -1187) T) ((-1043 . -600) 55190) ((-1043 . -601) 55151) ((-1015 . -1094) T) ((-167 . -105) T) ((-266 . -834) T) ((-1084 . -217) 55135) ((-805 . -600) 55117) ((-1065 . -120) 55006) ((-995 . -296) T) ((-849 . -447) T) ((-786 . -699) 54990) ((-355 . -1045) 54942) ((-349 . -1094) T) ((-348 . -1045) 54894) ((-410 . -600) 54876) ((-381 . -600) 54858) ((-337 . -1045) 54810) ((-215 . -600) 54777) ((-1015 . -23) T) ((-766 . -447) T) ((-112 . -1045) 54727) ((-885 . -105) T) ((-825 . -105) T) ((-795 . -105) T) ((-753 . -105) T) ((-659 . -105) T) ((-472 . -447) 54706) ((-414 . -170) T) ((-355 . -120) 54637) ((-348 . -120) 54568) ((-337 . -120) 54499) ((-239 . -219) 54468) ((-238 . -219) 54437) ((-349 . -23) T) ((-76 . -1187) T) ((-213 . -43) 54402) ((-112 . -120) 54329) ((-45 . -25) T) ((-45 . -21) T) ((-654 . -702) T) ((-167 . -274) 54307) ((-849 . -398) T) ((-53 . -1094) T) ((-909 . -25) T) ((-755 . -25) T) ((-1127 . -492) 54244) ((-488 . -1082) T) ((-1258 . -629) 54218) ((-1208 . -105) T) ((-839 . -105) T) ((-228 . -1046) 54148) ((-1050 . -1128) T) ((-957 . -779) 54101) ((-377 . -629) 54085) ((-53 . -23) T) ((-957 . -782) 54038) ((-802 . -782) 53989) ((-802 . -779) 53940) ((-284 . -593) 53919) ((-482 . -708) T) ((-1147 . -494) 53897) ((-567 . -105) T) ((-857 . -298) 53841) ((-635 . -276) 53820) ((-121 . -643) T) ((-81 . -1187) T) ((-1050 . -43) 53807) ((-648 . -370) 53786) ((-945 . -43) 53635) ((-713 . -1082) T) ((-485 . -43) 53484) ((-91 . -1187) T) ((-567 . -274) T) ((-1199 . -832) NIL) ((-1151 . -1082) T) ((-1150 . -1082) T) ((-1143 . -1082) T) ((-346 . -1029) 53461) ((-1065 . -1039) T) ((-996 . -1046) T) ((-50 . -600) 53443) ((-50 . -601) NIL) ((-902 . -1046) T) ((-804 . -600) 53425) ((-1124 . -105) 53403) ((-1065 . -233) 53354) ((-423 . -1046) T) ((-355 . -1039) T) ((-348 . -1039) T) ((-361 . -360) 53331) ((-337 . -1039) T) ((-239 . -226) 53310) ((-238 . -226) 53289) ((-113 . -360) 53263) ((-1065 . -221) 53188) ((-1106 . -1082) T) ((-283 . -887) 53147) ((-112 . -1039) T) ((-725 . -1191) 53126) ((-675 . -137) T) ((-414 . -515) 52968) ((-355 . -221) 52947) ((-355 . -233) T) ((-49 . -702) T) ((-348 . -221) 52926) ((-348 . -233) T) ((-337 . -221) 52905) ((-337 . -233) T) ((-725 . -550) T) ((-167 . -298) 52870) ((-112 . -233) T) ((-112 . -221) T) ((-308 . -779) T) ((-856 . -21) T) ((-856 . -25) T) ((-403 . -296) T) ((-501 . -39) T) ((-114 . -278) 52845) ((-1095 . -1045) 52742) ((-857 . -1128) NIL) ((-852 . -851) T) ((-852 . -850) T) ((-847 . -846) T) ((-847 . -850) T) ((-847 . -851) T) ((-322 . -600) 52724) ((-403 . -1013) 52702) ((-1095 . -120) 52592) ((-852 . -146) 52562) ((-852 . -148) T) ((-847 . -148) T) ((-847 . -146) 52532) ((-432 . -1082) T) ((-1258 . -708) T) ((-68 . -600) 52514) ((-857 . -43) 52459) ((-523 . -1187) T) ((-591 . -152) 52443) ((-513 . -600) 52425) ((-1208 . -298) 52412) ((-713 . -699) 52261) ((-526 . -780) T) ((-526 . -781) T) ((-560 . -622) 52243) ((-496 . -622) 52203) ((-350 . -447) T) ((-347 . -447) T) ((-336 . -447) T) ((-252 . -447) 52154) ((-520 . -1082) 52104) ((-237 . -447) 52055) ((-1127 . -276) 52034) ((-1155 . -600) 52016) ((-671 . -515) 51949) ((-956 . -280) 51928) ((-543 . -515) 51688) ((-726 . -601) NIL) ((-726 . -600) 51670) ((-1246 . -600) 51652) ((-1149 . -219) 51636) ((-167 . -1128) 51615) ((-1231 . -550) 51594) ((-1151 . -699) 51491) ((-1150 . -699) 51332) ((-879 . -105) T) ((-1143 . -699) 51128) ((-1106 . -699) 51025) ((-1133 . -657) 51009) ((-350 . -398) 50960) ((-347 . -398) 50911) ((-336 . -398) 50862) ((-1015 . -137) T) ((-786 . -515) 50774) ((-284 . -601) NIL) ((-284 . -600) 50756) ((-897 . -447) T) ((-957 . -364) 50709) ((-802 . -364) 50688) ((-511 . -510) 50667) ((-509 . -510) 50646) ((-490 . -276) NIL) ((-486 . -278) 50623) ((-414 . -280) T) ((-349 . -137) T) ((-206 . -276) NIL) ((-675 . -494) NIL) ((-101 . -1094) T) ((-167 . -43) 50451) ((-1221 . -550) T) ((-1219 . -966) 50413) ((-1124 . -298) 50351) ((-1198 . -966) 50320) ((-897 . -398) T) ((-1095 . -1039) 50250) ((-1127 . -593) 50229) ((-725 . -359) 50208) ((-766 . -152) 50160) ((-121 . -834) T) ((-1051 . -492) 50092) ((-572 . -21) T) ((-572 . -25) T) ((-560 . -21) T) ((-560 . -25) T) ((-496 . -25) T) ((-496 . -21) T) ((-1208 . -1128) 50070) ((-1095 . -221) 50022) ((-53 . -137) T) ((-33 . -600) 50004) ((-960 . -1080) T) ((-1169 . -105) T) ((-228 . -1082) 49794) ((-857 . -396) 49771) ((-1071 . -105) T) ((-1061 . -105) T) ((-595 . -105) T) ((-473 . -105) T) ((-1208 . -43) 49600) ((-839 . -43) 49570) ((-1147 . -622) 49518) ((-713 . -170) 49429) ((-635 . -600) 49411) ((-567 . -43) 49398) ((-950 . -105) 49348) ((-844 . -600) 49330) ((-844 . -601) 49252) ((-583 . -515) NIL) ((-1227 . -1046) T) ((-1220 . -1046) T) ((-1199 . -1046) T) ((-1193 . -1046) T) ((-1262 . -1094) T) ((-1182 . -148) 49231) ((-1151 . -170) 49182) ((-586 . -1046) T) ((-585 . -1046) T) ((-1150 . -170) 49113) ((-1143 . -170) 49044) ((-1106 . -170) 48995) ((-996 . -1082) T) ((-964 . -1082) T) ((-902 . -1082) T) ((-786 . -784) 48979) ((-766 . -633) 48963) ((-766 . -966) 48932) ((-725 . -1094) T) ((-680 . -25) T) ((-680 . -21) T) ((-126 . -622) 48909) ((-682 . -873) 48891) ((-423 . -1082) T) ((-304 . -1191) 48870) ((-301 . -1191) T) ((-167 . -396) 48854) ((-1182 . -146) 48833) ((-472 . -966) 48795) ((-77 . -600) 48777) ((-725 . -23) T) ((-112 . -782) T) ((-112 . -779) T) ((-304 . -550) 48756) ((-682 . -1029) 48738) ((-301 . -550) T) ((-1262 . -23) T) ((-139 . -1029) 48720) ((-486 . -1045) 48617) ((-50 . -278) 48542) ((-1147 . -25) T) ((-1147 . -21) T) ((-228 . -699) 48484) ((-486 . -120) 48374) ((-1074 . -105) 48352) ((-1026 . -105) T) ((-626 . -815) 48331) ((-713 . -515) 48269) ((-1043 . -1045) 48253) ((-607 . -21) T) ((-607 . -25) T) ((-1051 . -276) 48228) ((-357 . -105) T) ((-313 . -105) T) ((-654 . -629) 48202) ((-381 . -1045) 48186) ((-1043 . -120) 48165) ((-803 . -407) 48149) ((-126 . -25) T) ((-94 . -600) 48131) ((-126 . -21) T) ((-595 . -298) 47926) ((-473 . -298) 47730) ((-1231 . -1094) T) ((-1127 . -601) NIL) ((-381 . -120) 47709) ((-375 . -105) T) ((-203 . -600) 47691) ((-1127 . -600) 47673) ((-996 . -699) 47623) ((-1143 . -515) 47357) ((-902 . -699) 47309) ((-1106 . -515) 47279) ((-346 . -296) T) ((-1231 . -23) T) ((-1161 . -152) 47229) ((-950 . -298) 47167) ((-821 . -105) T) ((-423 . -699) 47151) ((-213 . -815) T) ((-814 . -105) T) ((-812 . -105) T) ((-483 . -152) 47101) ((-1219 . -1218) 47080) ((-1100 . -1191) T) ((-331 . -1029) 47047) ((-1219 . -1213) 47017) ((-1219 . -1216) 47001) ((-1198 . -1197) 46980) ((-85 . -600) 46962) ((-892 . -600) 46944) ((-1198 . -1213) 46921) ((-1100 . -550) T) ((-909 . -834) T) ((-755 . -834) T) ((-490 . -601) 46851) ((-490 . -600) 46833) ((-375 . -274) T) ((-655 . -834) T) ((-1198 . -1195) 46817) ((-1221 . -1094) T) ((-206 . -601) 46747) ((-206 . -600) 46729) ((-1051 . -593) 46704) ((-64 . -152) 46688) ((-517 . -152) 46672) ((-497 . -152) 46656) ((-355 . -1253) 46640) ((-348 . -1253) 46624) ((-337 . -1253) 46608) ((-304 . -359) 46587) ((-301 . -359) T) ((-486 . -1039) 46517) ((-675 . -622) 46499) ((-1256 . -629) 46473) ((-1254 . -629) 46447) ((-1221 . -23) T) ((-671 . -492) 46431) ((-69 . -600) 46413) ((-1095 . -782) 46364) ((-1095 . -779) 46315) ((-543 . -492) 46252) ((-654 . -39) T) ((-486 . -221) 46204) ((-284 . -278) 46183) ((-228 . -170) 46162) ((-849 . -1243) 46146) ((-803 . -1046) T) ((-49 . -629) 46104) ((-1065 . -364) 46055) ((-713 . -280) 45986) ((-520 . -515) 45919) ((-804 . -1045) 45870) ((-1070 . -146) 45849) ((-355 . -364) 45828) ((-348 . -364) 45807) ((-337 . -364) 45786) ((-1070 . -148) 45765) ((-857 . -219) 45742) ((-804 . -120) 45677) ((-769 . -146) 45656) ((-769 . -148) 45635) ((-252 . -942) 45602) ((-239 . -832) 45581) ((-237 . -942) 45526) ((-238 . -832) 45505) ((-767 . -146) 45484) ((-767 . -148) 45463) ((-153 . -629) 45437) ((-449 . -148) 45416) ((-449 . -146) 45395) ((-654 . -708) T) ((-810 . -600) 45377) ((-1227 . -1082) T) ((-1220 . -1082) T) ((-1199 . -1082) T) ((-1193 . -1082) T) ((-1182 . -1176) 45343) ((-1182 . -1173) 45309) ((-1151 . -280) 45288) ((-1150 . -280) 45239) ((-1143 . -280) 45190) ((-1106 . -280) 45169) ((-331 . -887) 45150) ((-996 . -170) T) ((-902 . -170) T) ((-766 . -1213) 45127) ((-586 . -1082) T) ((-585 . -1082) T) ((-675 . -21) T) ((-675 . -25) T) ((-472 . -1216) 45111) ((-472 . -1213) 45081) ((-414 . -276) 45009) ((-304 . -1094) 44858) ((-301 . -1094) T) ((-1182 . -40) 44824) ((-1182 . -98) 44790) ((-89 . -600) 44772) ((-96 . -105) 44750) ((-1262 . -137) T) ((-725 . -137) T) ((-573 . -146) T) ((-573 . -148) 44732) ((-518 . -148) 44714) ((-518 . -146) T) ((-304 . -23) 44566) ((-45 . -334) 44540) ((-301 . -23) T) ((-1135 . -632) 44522) ((-802 . -629) 44370) ((-1249 . -1046) T) ((-1135 . -369) 44352) ((-167 . -219) 44336) ((-583 . -492) 44318) ((-228 . -515) 44251) ((-1256 . -708) T) ((-1254 . -708) T) ((-1155 . -1045) 44134) ((-726 . -1045) 43957) ((-1155 . -120) 43819) ((-804 . -1039) T) ((-726 . -120) 43621) ((-516 . -105) T) ((-53 . -622) 43581) ((-511 . -105) T) ((-509 . -105) T) ((-1246 . -1045) 43551) ((-1026 . -43) 43535) ((-804 . -221) T) ((-804 . -233) 43514) ((-543 . -276) 43493) ((-1246 . -120) 43458) ((-1208 . -219) 43442) ((-1227 . -699) 43339) ((-1220 . -699) 43180) ((-1051 . -601) NIL) ((-1051 . -600) 43162) ((-1199 . -699) 42958) ((-1193 . -699) 42855) ((-995 . -908) T) ((-684 . -600) 42824) ((-153 . -708) T) ((-1231 . -137) T) ((-1095 . -364) 42803) ((-996 . -515) NIL) ((-239 . -407) 42772) ((-238 . -407) 42741) ((-1015 . -25) T) ((-1015 . -21) T) ((-586 . -699) 42714) ((-585 . -699) 42611) ((-786 . -276) 42569) ((-135 . -105) 42547) ((-820 . -1029) 42443) ((-167 . -815) 42422) ((-308 . -629) 42319) ((-802 . -39) T) ((-696 . -105) T) ((-1100 . -1094) T) ((-1018 . -1187) T) ((-375 . -43) 42284) ((-349 . -25) T) ((-349 . -21) T) ((-160 . -105) T) ((-156 . -105) T) ((-350 . -1243) 42268) ((-347 . -1243) 42252) ((-336 . -1243) 42236) ((-852 . -447) T) ((-167 . -344) 42215) ((-560 . -834) T) ((-496 . -834) T) ((-847 . -447) T) ((-1100 . -23) T) ((-92 . -600) 42197) ((-682 . -296) T) ((-821 . -43) 42167) ((-814 . -43) 42137) ((-1221 . -137) T) ((-1127 . -278) 42116) ((-957 . -708) 42015) ((-957 . -780) 41968) ((-957 . -781) 41921) ((-802 . -778) 41900) ((-125 . -296) T) ((-96 . -298) 41838) ((-658 . -39) T) ((-543 . -593) 41817) ((-53 . -25) T) ((-53 . -21) T) ((-802 . -781) 41768) ((-802 . -780) 41747) ((-682 . -1013) T) ((-635 . -1045) 41731) ((-957 . -471) 41684) ((-802 . -708) 41610) ((-897 . -1243) 41597) ((-231 . -314) 41574) ((-852 . -398) 41544) ((-486 . -782) 41495) ((-486 . -779) 41446) ((-847 . -398) 41416) ((-1155 . -1039) T) ((-726 . -1039) T) ((-635 . -120) 41395) ((-1155 . -318) 41372) ((-1174 . -105) 41350) ((-1083 . -600) 41332) ((-682 . -542) T) ((-726 . -318) 41309) ((-803 . -1082) T) ((-726 . -221) T) ((-1246 . -1039) T) ((-409 . -1082) T) ((-239 . -1046) 41239) ((-238 . -1046) 41169) ((-279 . -629) 41156) ((-583 . -276) 41131) ((-671 . -669) 41089) ((-1227 . -170) 41040) ((-956 . -600) 41022) ((-858 . -105) T) ((-717 . -600) 41004) ((-697 . -600) 40986) ((-1220 . -170) 40917) ((-1199 . -170) 40848) ((-1193 . -170) 40799) ((-680 . -834) T) ((-996 . -280) T) ((-448 . -600) 40781) ((-610 . -708) T) ((-65 . -1082) 40759) ((-235 . -152) 40743) ((-902 . -280) T) ((-1015 . -1004) T) ((-610 . -471) T) ((-694 . -1191) 40722) ((-1231 . -494) 40688) ((-586 . -170) 40667) ((-585 . -170) 40618) ((-1236 . -834) 40597) ((-694 . -550) 40508) ((-403 . -908) T) ((-403 . -807) 40487) ((-308 . -781) T) ((-308 . -708) T) ((-414 . -600) 40469) ((-414 . -601) 40370) ((-626 . -1126) 40354) ((-114 . -632) 40336) ((-135 . -298) 40274) ((-114 . -369) 40256) ((-171 . -296) T) ((-394 . -1187) T) ((-304 . -137) 40127) ((-301 . -137) T) ((-74 . -391) T) ((-114 . -132) T) ((-1147 . -834) 40106) ((-520 . -492) 40090) ((-636 . -1094) T) ((-583 . -19) 40072) ((-66 . -436) T) ((-66 . -391) T) ((-811 . -1082) T) ((-583 . -593) 40047) ((-482 . -1029) 40007) ((-635 . -1039) T) ((-636 . -23) T) ((-1249 . -1082) T) ((-803 . -699) 39856) ((-126 . -834) NIL) ((-1149 . -407) 39840) ((-1105 . -407) 39824) ((-838 . -407) 39808) ((-1219 . -105) T) ((-1199 . -515) 39542) ((-1174 . -298) 39480) ((-300 . -600) 39462) ((-1198 . -105) T) ((-1084 . -1082) T) ((-1151 . -276) 39447) ((-1150 . -276) 39432) ((-279 . -708) T) ((-112 . -896) NIL) ((-671 . -600) 39399) ((-671 . -601) 39360) ((-1065 . -629) 39270) ((-590 . -600) 39252) ((-543 . -601) NIL) ((-543 . -600) 39234) ((-1143 . -276) 39082) ((-490 . -1045) 39032) ((-693 . -447) T) ((-512 . -510) 39011) ((-508 . -510) 38990) ((-206 . -1045) 38940) ((-355 . -629) 38892) ((-348 . -629) 38844) ((-213 . -832) T) ((-337 . -629) 38796) ((-591 . -105) 38746) ((-486 . -364) 38725) ((-112 . -629) 38675) ((-490 . -120) 38602) ((-228 . -492) 38586) ((-335 . -148) 38568) ((-335 . -146) T) ((-167 . -366) 38539) ((-936 . -1234) 38523) ((-206 . -120) 38450) ((-858 . -298) 38415) ((-936 . -1082) 38365) ((-786 . -601) 38326) ((-786 . -600) 38308) ((-700 . -105) T) ((-323 . -1082) T) ((-1100 . -137) T) ((-696 . -43) 38278) ((-304 . -494) 38257) ((-501 . -1187) T) ((-1219 . -274) 38223) ((-1198 . -274) 38189) ((-319 . -152) 38173) ((-1051 . -278) 38148) ((-1249 . -699) 38118) ((-1136 . -39) T) ((-1258 . -1029) 38095) ((-466 . -600) 38077) ((-487 . -39) T) ((-725 . -622) 37983) ((-377 . -1029) 37967) ((-1149 . -1046) T) ((-1105 . -1046) T) ((-838 . -1046) T) ((-1050 . -832) T) ((-803 . -170) 37878) ((-520 . -276) 37855) ((-126 . -985) 37832) ((-849 . -105) T) ((-766 . -105) T) ((-1227 . -280) 37811) ((-1220 . -280) 37762) ((-1169 . -360) 37736) ((-1071 . -257) 37720) ((-472 . -105) T) ((-361 . -1082) T) ((-239 . -1082) T) ((-238 . -1082) T) ((-1199 . -280) 37671) ((-113 . -1082) T) ((-1193 . -280) 37650) ((-858 . -1128) 37628) ((-1151 . -994) 37594) ((-595 . -360) 37534) ((-1150 . -994) 37500) ((-595 . -217) 37447) ((-583 . -600) 37429) ((-583 . -601) NIL) ((-675 . -834) T) ((-473 . -217) 37379) ((-490 . -1039) T) ((-1143 . -994) 37345) ((-93 . -435) T) ((-93 . -391) T) ((-206 . -1039) T) ((-1106 . -994) 37311) ((-34 . -1080) T) ((-913 . -1082) T) ((-1065 . -708) T) ((-694 . -1094) T) ((-586 . -280) 37290) ((-585 . -280) 37269) ((-490 . -233) T) ((-490 . -221) T) ((-1142 . -600) 37251) ((-858 . -43) 37203) ((-206 . -233) T) ((-206 . -221) T) ((-520 . -1223) 37187) ((-725 . -25) T) ((-355 . -708) T) ((-348 . -708) T) ((-337 . -708) T) ((-112 . -781) T) ((-112 . -778) T) ((-725 . -21) T) ((-112 . -708) T) ((-694 . -23) T) ((-1262 . -25) T) ((-472 . -274) 37153) ((-1262 . -21) T) ((-1198 . -298) 37092) ((-1153 . -105) T) ((-45 . -146) 37064) ((-45 . -148) 37036) ((-520 . -593) 37013) ((-1095 . -629) 36861) ((-591 . -298) 36799) ((-50 . -632) 36749) ((-50 . -650) 36699) ((-50 . -369) 36649) ((-1135 . -39) T) ((-857 . -832) NIL) ((-636 . -137) T) ((-488 . -600) 36631) ((-228 . -276) 36608) ((-628 . -39) T) ((-615 . -39) T) ((-1070 . -447) 36559) ((-803 . -515) 36424) ((-769 . -447) 36355) ((-767 . -447) 36306) ((-762 . -105) T) ((-449 . -447) 36257) ((-945 . -407) 36241) ((-713 . -600) 36223) ((-239 . -699) 36165) ((-238 . -699) 36107) ((-713 . -601) 35968) ((-485 . -407) 35952) ((-331 . -291) T) ((-346 . -908) T) ((-992 . -105) 35930) ((-1015 . -834) T) ((-65 . -515) 35863) ((-1231 . -25) T) ((-1231 . -21) T) ((-1198 . -1128) 35815) ((-996 . -276) NIL) ((-213 . -1046) T) ((-375 . -815) T) ((-1095 . -39) T) ((-766 . -298) 35684) ((-573 . -447) T) ((-518 . -447) T) ((-1202 . -1075) 35668) ((-1202 . -1082) 35646) ((-228 . -593) 35623) ((-1202 . -1077) 35580) ((-1151 . -600) 35562) ((-1150 . -600) 35544) ((-1143 . -600) 35526) ((-1143 . -601) NIL) ((-1106 . -600) 35508) ((-858 . -396) 35492) ((-530 . -1082) T) ((-533 . -105) T) ((-1219 . -43) 35333) ((-1198 . -43) 35147) ((-856 . -148) T) ((-573 . -398) T) ((-53 . -834) T) ((-518 . -398) T) ((-1221 . -21) T) ((-1221 . -25) T) ((-1095 . -778) 35126) ((-1095 . -781) 35077) ((-1095 . -780) 35056) ((-986 . -1082) T) ((-1019 . -39) T) ((-842 . -1082) T) ((-1232 . -105) T) ((-1095 . -708) 34982) ((-648 . -105) T) ((-543 . -278) 34961) ((-1161 . -105) T) ((-474 . -39) T) ((-461 . -39) T) ((-350 . -105) T) ((-347 . -105) T) ((-336 . -105) T) ((-252 . -105) T) ((-237 . -105) T) ((-482 . -296) T) ((-1050 . -1046) T) ((-945 . -1046) T) ((-304 . -622) 34867) ((-301 . -622) 34828) ((-485 . -1046) T) ((-483 . -105) T) ((-432 . -600) 34810) ((-1149 . -1082) T) ((-1105 . -1082) T) ((-838 . -1082) T) ((-1118 . -105) T) ((-803 . -280) 34741) ((-956 . -1045) 34624) ((-482 . -1013) T) ((-717 . -1045) 34594) ((-1124 . -1101) 34578) ((-1084 . -515) 34511) ((-448 . -1045) 34481) ((-959 . -105) T) ((-852 . -1243) 34456) ((-847 . -1243) 34416) ((-956 . -120) 34278) ((-897 . -105) T) ((-849 . -1128) T) ((-717 . -120) 34243) ((-64 . -105) 34193) ((-520 . -601) 34154) ((-520 . -600) 34093) ((-519 . -105) 34071) ((-517 . -105) 34021) ((-498 . -105) 33999) ((-497 . -105) 33949) ((-448 . -120) 33900) ((-239 . -170) 33879) ((-238 . -170) 33858) ((-414 . -1045) 33832) ((-1182 . -966) 33793) ((-991 . -1094) T) ((-849 . -43) 33758) ((-766 . -43) 33696) ((-936 . -515) 33629) ((-490 . -782) T) ((-472 . -43) 33470) ((-414 . -120) 33437) ((-490 . -779) T) ((-992 . -298) 33375) ((-206 . -782) T) ((-206 . -779) T) ((-991 . -23) T) ((-694 . -137) T) ((-1198 . -396) 33345) ((-304 . -25) 33197) ((-167 . -407) 33181) ((-304 . -21) 33052) ((-301 . -25) T) ((-301 . -21) T) ((-844 . -364) T) ((-114 . -39) T) ((-486 . -629) 32900) ((-857 . -1046) T) ((-583 . -278) 32875) ((-572 . -148) T) ((-560 . -148) T) ((-496 . -148) T) ((-1149 . -699) 32704) ((-1105 . -699) 32553) ((-1100 . -622) 32535) ((-838 . -699) 32505) ((-654 . -1187) T) ((-1 . -105) T) ((-228 . -600) 32263) ((-1208 . -407) 32247) ((-1161 . -298) 32051) ((-956 . -1039) T) ((-717 . -1039) T) ((-697 . -1039) T) ((-626 . -1082) 32001) ((-1043 . -629) 31985) ((-839 . -407) 31969) ((-512 . -105) T) ((-508 . -105) T) ((-237 . -298) 31956) ((-252 . -298) 31943) ((-956 . -318) 31922) ((-381 . -629) 31906) ((-483 . -298) 31710) ((-239 . -515) 31643) ((-654 . -1029) 31539) ((-238 . -515) 31472) ((-1118 . -298) 31398) ((-806 . -1082) T) ((-786 . -1045) 31382) ((-1227 . -276) 31367) ((-1220 . -276) 31352) ((-1199 . -276) 31200) ((-1193 . -276) 31185) ((-382 . -1082) T) ((-315 . -1082) T) ((-414 . -1039) T) ((-167 . -1046) T) ((-64 . -298) 31123) ((-786 . -120) 31102) ((-585 . -276) 31087) ((-519 . -298) 31025) ((-517 . -298) 30963) ((-498 . -298) 30901) ((-497 . -298) 30839) ((-414 . -221) 30818) ((-486 . -39) T) ((-996 . -601) 30748) ((-213 . -1082) T) ((-996 . -600) 30730) ((-964 . -600) 30712) ((-964 . -601) 30687) ((-902 . -600) 30669) ((-680 . -148) T) ((-682 . -908) T) ((-682 . -807) T) ((-423 . -600) 30651) ((-1100 . -21) T) ((-1100 . -25) T) ((-654 . -373) 30635) ((-125 . -908) T) ((-858 . -219) 30619) ((-83 . -1187) T) ((-135 . -134) 30603) ((-1043 . -39) T) ((-1256 . -1029) 30577) ((-1254 . -1029) 30534) ((-1208 . -1046) T) ((-1147 . -146) 30513) ((-1147 . -148) 30492) ((-839 . -1046) T) ((-486 . -778) 30471) ((-350 . -1128) 30450) ((-347 . -1128) 30429) ((-336 . -1128) 30408) ((-486 . -781) 30359) ((-486 . -780) 30338) ((-215 . -39) T) ((-486 . -708) 30264) ((-65 . -492) 30248) ((-567 . -1046) T) ((-1149 . -170) 30139) ((-1105 . -170) 30050) ((-1050 . -1082) T) ((-1070 . -942) 29995) ((-945 . -1082) T) ((-804 . -629) 29946) ((-769 . -942) 29915) ((-695 . -1082) T) ((-767 . -942) 29882) ((-517 . -272) 29866) ((-654 . -887) 29825) ((-485 . -1082) T) ((-449 . -942) 29792) ((-84 . -1187) T) ((-350 . -43) 29757) ((-347 . -43) 29722) ((-336 . -43) 29687) ((-252 . -43) 29536) ((-237 . -43) 29385) ((-897 . -1128) T) ((-607 . -148) 29364) ((-607 . -146) 29343) ((-126 . -148) T) ((-126 . -146) NIL) ((-410 . -708) T) ((-786 . -1039) T) ((-335 . -447) T) ((-1227 . -994) 29309) ((-1220 . -994) 29275) ((-1199 . -994) 29241) ((-1193 . -994) 29207) ((-897 . -43) 29172) ((-213 . -699) 29137) ((-725 . -834) T) ((-45 . -405) 29109) ((-308 . -52) 29079) ((-991 . -137) T) ((-802 . -1187) T) ((-171 . -908) T) ((-335 . -398) T) ((-520 . -278) 29056) ((-50 . -39) T) ((-802 . -1029) 28883) ((-726 . -896) 28862) ((-644 . -105) T) ((-636 . -21) T) ((-636 . -25) T) ((-1084 . -492) 28846) ((-1198 . -219) 28816) ((-658 . -1187) T) ((-235 . -105) 28766) ((-857 . -1082) T) ((-1155 . -629) 28691) ((-1050 . -699) 28678) ((-713 . -1045) 28521) ((-1149 . -515) 28467) ((-945 . -699) 28316) ((-1105 . -515) 28268) ((-726 . -629) 28193) ((-485 . -699) 28042) ((-72 . -600) 28024) ((-713 . -120) 27846) ((-936 . -492) 27830) ((-1246 . -629) 27790) ((-804 . -708) T) ((-1151 . -1045) 27673) ((-1150 . -1045) 27508) ((-1143 . -1045) 27298) ((-1106 . -1045) 27181) ((-995 . -1191) T) ((-1076 . -105) 27159) ((-802 . -373) 27128) ((-995 . -550) T) ((-1151 . -120) 26990) ((-1150 . -120) 26804) ((-1143 . -120) 26550) ((-1106 . -120) 26412) ((-1087 . -1085) 26376) ((-375 . -832) T) ((-1227 . -600) 26358) ((-1220 . -600) 26340) ((-1199 . -600) 26322) ((-1199 . -601) NIL) ((-1193 . -600) 26304) ((-228 . -278) 26281) ((-45 . -447) T) ((-213 . -170) T) ((-167 . -1082) T) ((-675 . -148) T) ((-675 . -146) NIL) ((-586 . -600) 26263) ((-585 . -600) 26245) ((-885 . -1082) T) ((-825 . -1082) T) ((-795 . -1082) T) ((-753 . -1082) T) ((-640 . -836) 26229) ((-659 . -1082) T) ((-802 . -887) 26161) ((-1147 . -1173) 26139) ((-1147 . -1176) 26117) ((-45 . -398) NIL) ((-1100 . -643) T) ((-857 . -699) 26062) ((-239 . -492) 26046) ((-238 . -492) 26030) ((-694 . -622) 25978) ((-635 . -629) 25952) ((-284 . -39) T) ((-1147 . -98) 25930) ((-1147 . -40) 25908) ((-713 . -1039) T) ((-573 . -1243) 25895) ((-518 . -1243) 25872) ((-1208 . -1082) T) ((-1149 . -280) 25783) ((-1105 . -280) 25714) ((-1050 . -170) T) ((-839 . -1082) T) ((-945 . -170) 25625) ((-769 . -1211) 25609) ((-626 . -515) 25542) ((-82 . -600) 25524) ((-713 . -318) 25489) ((-1155 . -708) T) ((-567 . -1082) T) ((-485 . -170) 25400) ((-726 . -708) T) ((-235 . -298) 25338) ((-1119 . -1094) T) ((-75 . -600) 25320) ((-1246 . -708) T) ((-1151 . -1039) T) ((-1150 . -1039) T) ((-319 . -105) 25270) ((-1143 . -1039) T) ((-1119 . -23) T) ((-1106 . -1039) T) ((-96 . -1101) 25254) ((-845 . -1094) T) ((-1151 . -221) 25213) ((-1150 . -233) 25192) ((-1150 . -221) 25144) ((-1143 . -221) 25031) ((-1143 . -233) 25010) ((-308 . -887) 24916) ((-852 . -105) T) ((-847 . -105) T) ((-845 . -23) T) ((-167 . -699) 24744) ((-1083 . -364) T) ((-403 . -1191) T) ((-1015 . -148) T) ((-995 . -359) T) ((-936 . -276) 24721) ((-856 . -447) T) ((-849 . -344) T) ((-304 . -834) T) ((-301 . -834) NIL) ((-861 . -105) T) ((-529 . -528) 24575) ((-694 . -25) T) ((-403 . -550) T) ((-694 . -21) T) ((-349 . -148) 24557) ((-349 . -146) T) ((-1124 . -1082) 24535) ((-448 . -702) T) ((-80 . -600) 24517) ((-123 . -834) T) ((-235 . -272) 24501) ((-228 . -1045) 24398) ((-86 . -600) 24380) ((-717 . -364) 24333) ((-1153 . -815) T) ((-719 . -223) 24317) ((-1136 . -1187) T) ((-142 . -223) 24299) ((-228 . -120) 24189) ((-1208 . -699) 24018) ((-53 . -148) T) ((-857 . -170) T) ((-839 . -699) 23988) ((-487 . -1187) T) ((-945 . -515) 23934) ((-635 . -708) T) ((-567 . -699) 23921) ((-1026 . -1046) T) ((-485 . -515) 23859) ((-936 . -19) 23843) ((-936 . -593) 23820) ((-803 . -601) NIL) ((-803 . -600) 23802) ((-996 . -1045) 23752) ((-409 . -600) 23734) ((-239 . -276) 23711) ((-238 . -276) 23688) ((-490 . -896) NIL) ((-304 . -29) 23658) ((-112 . -1187) T) ((-995 . -1094) T) ((-206 . -896) NIL) ((-902 . -1045) 23610) ((-1065 . -1029) 23506) ((-996 . -120) 23433) ((-252 . -219) 23417) ((-719 . -676) 23401) ((-423 . -1045) 23385) ((-375 . -1046) T) ((-995 . -23) T) ((-902 . -120) 23316) ((-675 . -1176) NIL) ((-490 . -629) 23266) ((-112 . -871) 23248) ((-112 . -873) 23230) ((-675 . -1173) NIL) ((-206 . -629) 23180) ((-355 . -1029) 23164) ((-348 . -1029) 23148) ((-319 . -298) 23086) ((-337 . -1029) 23070) ((-213 . -280) T) ((-423 . -120) 23049) ((-65 . -600) 23016) ((-167 . -170) T) ((-1100 . -834) T) ((-112 . -1029) 22976) ((-879 . -1082) T) ((-821 . -1046) T) ((-814 . -1046) T) ((-675 . -40) NIL) ((-675 . -98) NIL) ((-301 . -985) 22937) ((-572 . -447) T) ((-560 . -447) T) ((-496 . -447) T) ((-403 . -359) T) ((-228 . -1039) 22867) ((-1127 . -39) T) ((-915 . -105) T) ((-482 . -908) T) ((-991 . -622) 22815) ((-239 . -593) 22792) ((-238 . -593) 22769) ((-1065 . -373) 22753) ((-857 . -515) 22616) ((-228 . -221) 22568) ((-1135 . -1187) T) ((-811 . -600) 22550) ((-960 . -963) 22534) ((-1257 . -1094) T) ((-1249 . -600) 22516) ((-1208 . -170) 22407) ((-112 . -373) 22389) ((-112 . -330) 22371) ((-1050 . -280) T) ((-945 . -280) 22302) ((-786 . -364) 22281) ((-915 . -912) 22260) ((-628 . -1187) T) ((-615 . -1187) T) ((-485 . -280) 22191) ((-567 . -170) T) ((-319 . -272) 22175) ((-1257 . -23) T) ((-1182 . -105) T) ((-1169 . -1082) T) ((-1071 . -1082) T) ((-1061 . -1082) T) ((-88 . -600) 22157) ((-693 . -105) T) ((-350 . -344) 22136) ((-595 . -1082) T) ((-347 . -344) 22115) ((-336 . -344) 22094) ((-473 . -1082) T) ((-1161 . -217) 22044) ((-252 . -241) 22006) ((-1119 . -137) T) ((-595 . -597) 21982) ((-1065 . -887) 21915) ((-996 . -1039) T) ((-902 . -1039) T) ((-473 . -597) 21894) ((-1143 . -779) NIL) ((-1143 . -782) NIL) ((-1084 . -601) 21855) ((-483 . -217) 21805) ((-1084 . -600) 21787) ((-996 . -233) T) ((-996 . -221) T) ((-423 . -1039) T) ((-950 . -1082) 21737) ((-902 . -233) T) ((-845 . -137) T) ((-680 . -447) T) ((-827 . -1094) 21716) ((-112 . -887) NIL) ((-1182 . -274) 21682) ((-858 . -832) 21661) ((-1095 . -1187) T) ((-892 . -708) T) ((-167 . -515) 21573) ((-991 . -25) T) ((-892 . -471) T) ((-403 . -1094) T) ((-490 . -781) T) ((-490 . -778) T) ((-897 . -344) T) ((-490 . -708) T) ((-206 . -781) T) ((-206 . -778) T) ((-991 . -21) T) ((-206 . -708) T) ((-827 . -23) 21525) ((-308 . -296) 21504) ((-1027 . -223) 21450) ((-403 . -23) T) ((-936 . -601) 21411) ((-936 . -600) 21350) ((-626 . -492) 21334) ((-50 . -1002) 21284) ((-852 . -43) 21249) ((-847 . -43) 21214) ((-1147 . -447) 21145) ((-323 . -600) 21127) ((-1095 . -1029) 20954) ((-583 . -632) 20936) ((-583 . -369) 20918) ((-335 . -1243) 20895) ((-1019 . -1187) T) ((-857 . -280) T) ((-1208 . -515) 20841) ((-474 . -1187) T) ((-461 . -1187) T) ((-577 . -105) T) ((-1149 . -276) 20768) ((-607 . -447) 20747) ((-992 . -987) 20731) ((-1249 . -378) 20703) ((-126 . -447) T) ((-1168 . -105) T) ((-1074 . -1082) 20681) ((-1026 . -1082) T) ((-880 . -834) T) ((-1227 . -1045) 20564) ((-346 . -1191) T) ((-1220 . -1045) 20399) ((-1095 . -373) 20368) ((-1199 . -1045) 20158) ((-1193 . -1045) 20041) ((-1227 . -120) 19903) ((-1220 . -120) 19717) ((-1199 . -120) 19463) ((-1193 . -120) 19325) ((-1182 . -298) 19312) ((-346 . -550) T) ((-361 . -600) 19294) ((-279 . -296) T) ((-586 . -1045) 19267) ((-585 . -1045) 19150) ((-357 . -1082) T) ((-313 . -1082) T) ((-239 . -600) 19111) ((-238 . -600) 19072) ((-995 . -137) T) ((-113 . -600) 19054) ((-618 . -23) T) ((-675 . -405) 19021) ((-594 . -23) T) ((-640 . -105) T) ((-586 . -120) 18992) ((-585 . -120) 18854) ((-375 . -1082) T) ((-328 . -105) T) ((-167 . -280) 18765) ((-231 . -105) T) ((-1198 . -832) 18718) ((-913 . -600) 18700) ((-696 . -1046) T) ((-1124 . -515) 18633) ((-1095 . -887) 18565) ((-821 . -1082) T) ((-814 . -1082) T) ((-812 . -1082) T) ((-99 . -105) T) ((-145 . -834) T) ((-725 . -148) 18544) ((-725 . -146) 18523) ((-599 . -871) 18507) ((-114 . -1187) T) ((-1070 . -105) T) ((-1051 . -39) T) ((-769 . -105) T) ((-767 . -105) T) ((-456 . -105) T) ((-449 . -105) T) ((-228 . -782) 18458) ((-228 . -779) 18409) ((-766 . -1126) 18361) ((-630 . -105) T) ((-1208 . -280) 18272) ((-648 . -617) 18256) ((-626 . -276) 18233) ((-1026 . -699) 18217) ((-567 . -280) T) ((-956 . -629) 18142) ((-1257 . -137) T) ((-717 . -629) 18102) ((-697 . -629) 18089) ((-266 . -105) T) ((-448 . -629) 18019) ((-55 . -105) T) ((-573 . -105) T) ((-529 . -105) T) ((-518 . -105) T) ((-1227 . -1039) T) ((-1220 . -1039) T) ((-1199 . -1039) T) ((-1193 . -1039) T) ((-1227 . -221) 17978) ((-313 . -699) 17960) ((-1220 . -233) 17939) ((-1220 . -221) 17891) ((-1199 . -221) 17778) ((-1199 . -233) 17757) ((-1193 . -221) 17716) ((-1182 . -43) 17613) ((-586 . -1039) T) ((-585 . -1039) T) ((-996 . -782) T) ((-996 . -779) T) ((-964 . -782) T) ((-964 . -779) T) ((-858 . -1046) T) ((-856 . -855) 17597) ((-675 . -447) T) ((-375 . -699) 17562) ((-414 . -629) 17536) ((-694 . -834) 17515) ((-693 . -43) 17480) ((-585 . -221) 17439) ((-45 . -706) 17411) ((-346 . -321) 17388) ((-346 . -359) T) ((-1231 . -146) 17367) ((-1231 . -148) 17346) ((-1065 . -296) 17297) ((-283 . -1094) 17178) ((-1088 . -1187) T) ((-169 . -105) T) ((-1202 . -600) 17145) ((-827 . -137) 17097) ((-626 . -1223) 17081) ((-821 . -699) 17051) ((-814 . -699) 17021) ((-486 . -1187) T) ((-355 . -296) T) ((-348 . -296) T) ((-337 . -296) T) ((-626 . -593) 16998) ((-403 . -137) T) ((-520 . -650) 16982) ((-112 . -296) T) ((-283 . -23) 16865) ((-520 . -632) 16849) ((-675 . -398) NIL) ((-520 . -369) 16833) ((-530 . -600) 16815) ((-96 . -1082) 16793) ((-112 . -1013) T) ((-560 . -144) T) ((-1236 . -152) 16777) ((-486 . -1029) 16604) ((-1221 . -146) 16565) ((-1221 . -148) 16526) ((-1043 . -1187) T) ((-986 . -600) 16508) ((-842 . -600) 16490) ((-803 . -1045) 16333) ((-1070 . -298) 16320) ((-215 . -1187) T) ((-769 . -298) 16307) ((-767 . -298) 16294) ((-803 . -120) 16116) ((-449 . -298) 16103) ((-1149 . -601) NIL) ((-1149 . -600) 16085) ((-1105 . -600) 16067) ((-1105 . -601) 15815) ((-1026 . -170) T) ((-838 . -600) 15797) ((-936 . -278) 15774) ((-595 . -515) 15522) ((-805 . -1029) 15506) ((-473 . -515) 15266) ((-956 . -708) T) ((-717 . -708) T) ((-697 . -708) T) ((-346 . -1094) T) ((-1156 . -600) 15248) ((-211 . -105) T) ((-486 . -373) 15217) ((-516 . -1082) T) ((-511 . -1082) T) ((-509 . -1082) T) ((-786 . -629) 15191) ((-1015 . -447) T) ((-950 . -515) 15124) ((-346 . -23) T) ((-618 . -137) T) ((-594 . -137) T) ((-349 . -447) T) ((-228 . -364) 15103) ((-375 . -170) T) ((-1219 . -1046) T) ((-1198 . -1046) T) ((-213 . -994) T) ((-958 . -1080) T) ((-680 . -383) T) ((-414 . -708) T) ((-682 . -1191) T) ((-1119 . -622) 15051) ((-572 . -855) 15035) ((-1136 . -1164) 15011) ((-682 . -550) T) ((-135 . -1082) 14989) ((-1249 . -1045) 14973) ((-696 . -1082) T) ((-486 . -887) 14905) ((-640 . -43) 14875) ((-349 . -398) T) ((-304 . -148) 14854) ((-304 . -146) 14833) ((-125 . -550) T) ((-301 . -148) 14789) ((-301 . -146) 14745) ((-53 . -447) T) ((-160 . -1082) T) ((-156 . -1082) T) ((-1136 . -111) 14692) ((-1147 . -942) 14661) ((-769 . -1128) 14639) ((-671 . -39) T) ((-1249 . -120) 14618) ((-543 . -39) T) ((-487 . -111) 14602) ((-239 . -278) 14579) ((-238 . -278) 14556) ((-857 . -276) 14486) ((-50 . -1187) T) ((-803 . -1039) T) ((-1155 . -52) 14463) ((-803 . -318) 14425) ((-1070 . -43) 14274) ((-803 . -221) 14253) ((-769 . -43) 14082) ((-767 . -43) 13931) ((-726 . -52) 13908) ((-449 . -43) 13757) ((-626 . -601) 13718) ((-626 . -600) 13657) ((-573 . -1128) T) ((-518 . -1128) T) ((-1124 . -492) 13641) ((-1174 . -1082) 13619) ((-1119 . -25) T) ((-1119 . -21) T) ((-849 . -1046) T) ((-766 . -1046) T) ((-1231 . -1176) 13585) ((-1231 . -1173) 13551) ((-472 . -1046) T) ((-1199 . -779) NIL) ((-1199 . -782) NIL) ((-991 . -834) 13530) ((-806 . -600) 13512) ((-845 . -21) T) ((-845 . -25) T) ((-786 . -708) T) ((-505 . -1080) T) ((-171 . -1191) T) ((-573 . -43) 13477) ((-518 . -43) 13442) ((-382 . -600) 13424) ((-315 . -600) 13406) ((-167 . -276) 13364) ((-1231 . -40) 13330) ((-1231 . -98) 13296) ((-68 . -1187) T) ((-121 . -105) T) ((-858 . -1082) T) ((-171 . -550) T) ((-696 . -699) 13266) ((-283 . -137) 13149) ((-213 . -600) 13131) ((-213 . -601) 13061) ((-995 . -622) 12995) ((-1249 . -1039) T) ((-1100 . -148) T) ((-615 . -1164) 12970) ((-713 . -896) 12949) ((-583 . -39) T) ((-628 . -111) 12933) ((-615 . -111) 12879) ((-726 . -873) NIL) ((-1208 . -276) 12806) ((-713 . -629) 12731) ((-284 . -1187) T) ((-1155 . -1029) 12627) ((-726 . -1029) 12507) ((-1143 . -896) NIL) ((-1050 . -601) 12422) ((-1050 . -600) 12404) ((-335 . -105) T) ((-239 . -1045) 12301) ((-238 . -1045) 12198) ((-390 . -105) T) ((-945 . -600) 12180) ((-945 . -601) 12041) ((-695 . -600) 12023) ((-1247 . -1181) 11992) ((-485 . -600) 11974) ((-485 . -601) 11835) ((-237 . -407) 11819) ((-252 . -407) 11803) ((-238 . -120) 11693) ((-239 . -120) 11583) ((-1151 . -629) 11508) ((-1150 . -629) 11405) ((-1143 . -629) 11257) ((-1106 . -629) 11182) ((-346 . -137) T) ((-87 . -436) T) ((-87 . -391) T) ((-995 . -25) T) ((-995 . -21) T) ((-858 . -699) 11134) ((-375 . -280) T) ((-167 . -994) 11086) ((-726 . -373) 11070) ((-675 . -383) T) ((-991 . -989) 11054) ((-682 . -1094) T) ((-675 . -164) 11036) ((-1219 . -1082) T) ((-1198 . -1082) T) ((-304 . -1173) 11015) ((-304 . -1176) 10994) ((-1141 . -105) T) ((-304 . -951) 10973) ((-139 . -1094) T) ((-125 . -1094) T) ((-591 . -1234) 10957) ((-682 . -23) T) ((-591 . -1082) 10907) ((-96 . -515) 10840) ((-171 . -359) T) ((-1147 . -1211) 10824) ((-304 . -98) 10803) ((-304 . -40) 10782) ((-595 . -492) 10716) ((-139 . -23) T) ((-125 . -23) T) ((-700 . -1082) T) ((-473 . -492) 10653) ((-403 . -622) 10601) ((-635 . -1029) 10497) ((-726 . -887) 10440) ((-950 . -492) 10424) ((-350 . -1046) T) ((-347 . -1046) T) ((-336 . -1046) T) ((-252 . -1046) T) ((-237 . -1046) T) ((-857 . -601) NIL) ((-857 . -600) 10406) ((-1257 . -21) T) ((-567 . -994) T) ((-713 . -708) T) ((-1257 . -25) T) ((-239 . -1039) 10336) ((-238 . -1039) 10266) ((-77 . -1187) T) ((-914 . -105) T) ((-239 . -221) 10218) ((-238 . -221) 10170) ((-45 . -105) T) ((-897 . -1046) T) ((-1151 . -708) T) ((-1150 . -708) T) ((-1143 . -708) T) ((-1143 . -778) NIL) ((-1143 . -781) NIL) ((-1106 . -708) T) ((-914 . -912) 10128) ((-849 . -1082) T) ((-909 . -105) T) ((-766 . -1082) T) ((-755 . -105) T) ((-655 . -105) T) ((-472 . -1082) T) ((-331 . -1094) T) ((-1219 . -699) 9969) ((-171 . -1094) T) ((-308 . -908) 9948) ((-725 . -447) 9927) ((-858 . -170) T) ((-1198 . -699) 9741) ((-827 . -21) 9693) ((-827 . -25) 9645) ((-235 . -1126) 9629) ((-135 . -515) 9562) ((-403 . -25) T) ((-403 . -21) T) ((-331 . -23) T) ((-167 . -601) 9328) ((-167 . -600) 9310) ((-171 . -23) T) ((-626 . -278) 9287) ((-520 . -39) T) ((-885 . -600) 9269) ((-94 . -1187) T) ((-825 . -600) 9251) ((-795 . -600) 9233) ((-753 . -600) 9215) ((-659 . -600) 9197) ((-228 . -629) 9045) ((-1153 . -1082) T) ((-1149 . -1045) 8868) ((-1127 . -1187) T) ((-1105 . -1045) 8711) ((-838 . -1045) 8695) ((-1149 . -120) 8497) ((-1105 . -120) 8319) ((-838 . -120) 8298) ((-1208 . -601) NIL) ((-1208 . -600) 8280) ((-335 . -1128) T) ((-839 . -600) 8262) ((-1061 . -276) 8241) ((-85 . -1187) T) ((-996 . -896) NIL) ((-595 . -276) 8217) ((-1174 . -515) 8150) ((-490 . -1187) T) ((-567 . -600) 8132) ((-473 . -276) 8111) ((-1070 . -219) 8095) ((-996 . -629) 8045) ((-206 . -1187) T) ((-950 . -276) 8022) ((-902 . -629) 7974) ((-279 . -908) T) ((-804 . -296) 7953) ((-856 . -105) T) ((-769 . -219) 7937) ((-762 . -1082) T) ((-849 . -699) 7889) ((-766 . -699) 7827) ((-618 . -21) T) ((-618 . -25) T) ((-594 . -21) T) ((-335 . -43) 7792) ((-675 . -706) 7759) ((-490 . -871) 7741) ((-490 . -873) 7723) ((-472 . -699) 7564) ((-206 . -871) 7546) ((-69 . -1187) T) ((-206 . -873) 7528) ((-594 . -25) T) ((-423 . -629) 7502) ((-490 . -1029) 7462) ((-858 . -515) 7374) ((-206 . -1029) 7334) ((-228 . -39) T) ((-992 . -1082) 7312) ((-1219 . -170) 7243) ((-1198 . -170) 7174) ((-694 . -146) 7153) ((-694 . -148) 7132) ((-682 . -137) T) ((-141 . -463) 7109) ((-457 . -105) T) ((-640 . -638) 7093) ((-1124 . -600) 7060) ((-125 . -137) T) ((-482 . -1191) T) ((-595 . -593) 7036) ((-473 . -593) 7015) ((-328 . -327) 6984) ((-533 . -1082) T) ((-1149 . -1039) T) ((-482 . -550) T) ((-231 . -230) 6968) ((-1105 . -1039) T) ((-838 . -1039) T) ((-228 . -778) 6947) ((-228 . -781) 6898) ((-228 . -780) 6877) ((-1149 . -318) 6854) ((-228 . -708) 6780) ((-950 . -19) 6764) ((-490 . -373) 6746) ((-490 . -330) 6728) ((-1105 . -318) 6700) ((-349 . -1243) 6677) ((-206 . -373) 6659) ((-206 . -330) 6641) ((-950 . -593) 6618) ((-1149 . -221) T) ((-648 . -1082) T) ((-1232 . -1082) T) ((-1161 . -1082) T) ((-1070 . -241) 6555) ((-350 . -1082) T) ((-347 . -1082) T) ((-336 . -1082) T) ((-252 . -1082) T) ((-237 . -1082) T) ((-89 . -1187) T) ((-136 . -105) 6533) ((-130 . -105) 6511) ((-726 . -296) 6490) ((-1161 . -597) 6469) ((-483 . -1082) T) ((-1118 . -1082) T) ((-483 . -597) 6448) ((-239 . -782) 6399) ((-239 . -779) 6350) ((-238 . -782) 6301) ((-45 . -1128) NIL) ((-238 . -779) 6252) ((-1065 . -908) 6203) ((-996 . -781) T) ((-996 . -778) T) ((-996 . -708) T) ((-964 . -781) T) ((-959 . -1082) T) ((-902 . -708) T) ((-897 . -1082) T) ((-858 . -280) T) ((-96 . -492) 6187) ((-490 . -887) NIL) ((-849 . -170) T) ((-213 . -1045) 6152) ((-820 . -1094) 6131) ((-206 . -887) NIL) ((-766 . -170) T) ((-64 . -1082) 6081) ((-519 . -1082) 6059) ((-517 . -1082) 6009) ((-498 . -1082) 5987) ((-497 . -1082) 5937) ((-572 . -105) T) ((-560 . -105) T) ((-496 . -105) T) ((-472 . -170) 5868) ((-355 . -908) T) ((-348 . -908) T) ((-337 . -908) T) ((-213 . -120) 5817) ((-820 . -23) 5769) ((-423 . -708) T) ((-112 . -908) T) ((-45 . -43) 5714) ((-112 . -807) T) ((-573 . -344) T) ((-518 . -344) T) ((-1198 . -515) 5574) ((-304 . -447) 5553) ((-301 . -447) T) ((-821 . -276) 5532) ((-331 . -137) T) ((-171 . -137) T) ((-283 . -25) 5396) ((-283 . -21) 5279) ((-50 . -1164) 5258) ((-71 . -600) 5240) ((-879 . -600) 5222) ((-591 . -515) 5155) ((-50 . -111) 5105) ((-1084 . -421) 5089) ((-1084 . -364) 5068) ((-1051 . -1187) T) ((-1050 . -1045) 5055) ((-945 . -1045) 4898) ((-485 . -1045) 4741) ((-648 . -699) 4725) ((-1050 . -120) 4710) ((-945 . -120) 4532) ((-482 . -359) T) ((-350 . -699) 4484) ((-347 . -699) 4436) ((-336 . -699) 4388) ((-252 . -699) 4237) ((-237 . -699) 4086) ((-936 . -632) 4070) ((-485 . -120) 3892) ((-1237 . -105) T) ((-1236 . -105) 3842) ((-936 . -369) 3826) ((-1199 . -896) NIL) ((-79 . -600) 3808) ((-956 . -52) 3787) ((-605 . -1094) T) ((-1 . -1082) T) ((-692 . -105) T) ((-680 . -105) T) ((-1227 . -629) 3712) ((-1220 . -629) 3609) ((-1199 . -629) 3461) ((-1193 . -629) 3386) ((-135 . -492) 3370) ((-1169 . -600) 3352) ((-1071 . -600) 3334) ((-386 . -23) T) ((-1061 . -600) 3316) ((-92 . -1187) T) ((-897 . -699) 3281) ((-766 . -515) 3113) ((-605 . -23) T) ((-595 . -600) 3095) ((-595 . -601) NIL) ((-473 . -601) NIL) ((-473 . -600) 3077) ((-512 . -1082) T) ((-508 . -1082) T) ((-346 . -25) T) ((-346 . -21) T) ((-136 . -298) 3015) ((-130 . -298) 2953) ((-586 . -629) 2940) ((-213 . -1039) T) ((-585 . -629) 2865) ((-375 . -994) T) ((-213 . -233) T) ((-213 . -221) T) ((-1147 . -105) T) ((-950 . -601) 2826) ((-950 . -600) 2765) ((-856 . -43) 2752) ((-1219 . -280) 2703) ((-1198 . -280) 2654) ((-1100 . -447) T) ((-503 . -834) T) ((-304 . -1116) 2633) ((-991 . -148) 2612) ((-991 . -146) 2591) ((-725 . -159) T) ((-725 . -144) T) ((-496 . -298) 2578) ((-284 . -1164) 2557) ((-482 . -1094) T) ((-857 . -1045) 2502) ((-607 . -105) T) ((-1174 . -492) 2486) ((-239 . -364) 2465) ((-238 . -364) 2444) ((-1147 . -274) 2422) ((-284 . -111) 2372) ((-1050 . -1039) T) ((-126 . -105) T) ((-35 . -1080) T) ((-945 . -1039) T) ((-857 . -120) 2289) ((-482 . -23) T) ((-485 . -1039) T) ((-1050 . -221) T) ((-945 . -318) 2258) ((-485 . -318) 2215) ((-350 . -170) T) ((-347 . -170) T) ((-336 . -170) T) ((-252 . -170) 2126) ((-237 . -170) 2037) ((-956 . -1029) 1933) ((-717 . -1029) 1904) ((-1087 . -105) T) ((-1074 . -600) 1871) ((-1026 . -600) 1853) ((-1231 . -966) 1822) ((-1227 . -708) T) ((-1220 . -708) T) ((-1199 . -708) T) ((-1199 . -778) NIL) ((-1199 . -781) NIL) ((-849 . -280) T) ((-167 . -1045) 1732) ((-897 . -170) T) ((-766 . -280) T) ((-1193 . -708) T) ((-1247 . -152) 1716) ((-995 . -334) 1690) ((-992 . -515) 1623) ((-827 . -834) 1602) ((-560 . -1128) T) ((-472 . -280) 1553) ((-586 . -708) T) ((-357 . -600) 1535) ((-313 . -600) 1517) ((-414 . -1029) 1413) ((-585 . -708) T) ((-403 . -834) 1364) ((-167 . -120) 1253) ((-852 . -1046) T) ((-847 . -1046) T) ((-820 . -137) 1205) ((-719 . -152) 1189) ((-1236 . -298) 1127) ((-490 . -296) T) ((-375 . -600) 1094) ((-520 . -1002) 1078) ((-375 . -601) 992) ((-206 . -296) T) ((-142 . -152) 974) ((-696 . -276) 953) ((-490 . -1013) T) ((-572 . -43) 940) ((-560 . -43) 927) ((-496 . -43) 892) ((-1147 . -298) 879) ((-206 . -1013) T) ((-857 . -1039) T) ((-821 . -600) 861) ((-814 . -600) 843) ((-812 . -600) 825) ((-803 . -896) 804) ((-1258 . -1094) T) ((-1208 . -1045) 627) ((-839 . -1045) 611) ((-857 . -233) T) ((-857 . -221) NIL) ((-671 . -1187) T) ((-1258 . -23) T) ((-803 . -629) 536) ((-543 . -1187) T) ((-414 . -330) 520) ((-567 . -1045) 507) ((-1208 . -120) 309) ((-682 . -622) 291) ((-839 . -120) 270) ((-377 . -23) T) ((-1161 . -515) 30)) \ No newline at end of file +((($ $) . T) (((-852 |#1|) $) . T) (((-852 |#1|) |#2|) . T)) +((($ $) . T) ((|#2| $) |has| |#1| (-225)) ((|#2| |#1|) |has| |#1| (-225)) ((|#3| |#1|) . T) ((|#3| $) . T)) +(((-652 . -1090) T) ((-257 . -523) 155696) ((-242 . -523) 155634) ((-575 . -120) 155619) ((-534 . -23) T) ((-240 . -1090) 155569) ((-126 . -303) 155513) ((-490 . -523) 155273) ((-683 . -105) T) ((-1126 . -523) 155181) ((-392 . -137) T) ((-1255 . -977) 155150) ((-218 . -19) 155132) ((-145 . -19) 155107) ((-599 . -499) 155091) ((-814 . -838) T) ((-613 . -137) T) ((-531 . -62) 155041) ((-218 . -601) 155016) ((-145 . -601) 154984) ((-64 . -523) 154917) ((-527 . -523) 154850) ((-420 . -895) 154809) ((-169 . -1047) T) ((-525 . -523) 154742) ((-506 . -523) 154675) ((-505 . -523) 154608) ((-794 . -1037) 154391) ((-688 . -43) 154356) ((-341 . -350) T) ((-1155 . -1136) 154334) ((-1084 . -1083) 154318) ((-1084 . -1090) 154296) ((-169 . -238) 154247) ((-169 . -225) 154198) ((-1084 . -1085) 154156) ((-866 . -281) 154114) ((-215 . -790) T) ((-215 . -787) T) ((-683 . -279) NIL) ((-1135 . -1172) 154093) ((-409 . -993) 154077) ((-968 . -105) T) ((-690 . -21) T) ((-690 . -25) T) ((-1257 . -637) 154051) ((-1155 . -43) 153880) ((-310 . -161) 153859) ((-310 . -146) 153838) ((-1135 . -111) 153788) ((-139 . -25) T) ((-45 . -223) 153765) ((-125 . -21) T) ((-125 . -25) T) ((-603 . -283) 153741) ((-480 . -283) 153720) ((-1216 . -1047) T) ((-847 . -1047) T) ((-794 . -336) 153704) ((-126 . -1136) NIL) ((-96 . -608) 153671) ((-489 . -137) T) ((-591 . -1195) T) ((-1216 . -324) 153648) ((-575 . -1047) T) ((-1216 . -225) T) ((-652 . -707) 153632) ((-958 . -283) 153609) ((-774 . -499) 153561) ((-65 . -39) T) ((-1058 . -790) T) ((-1058 . -787) T) ((-811 . -716) T) ((-721 . -52) 153526) ((-615 . -43) 153513) ((-356 . -285) T) ((-353 . -285) T) ((-342 . -285) T) ((-257 . -285) 153444) ((-242 . -285) 153375) ((-1023 . -105) T) ((-415 . -716) T) ((-126 . -43) 153320) ((-415 . -478) T) ((-355 . -105) T) ((-1190 . -1054) T) ((-701 . -1054) T) ((-1239 . -1234) 153304) ((-1239 . -1221) 153281) ((-1159 . -52) 153258) ((-1158 . -52) 153228) ((-1151 . -52) 153205) ((-1035 . -154) 153151) ((-905 . -285) T) ((-1114 . -52) 153123) ((-683 . -303) NIL) ((-524 . -608) 153105) ((-519 . -608) 153087) ((-517 . -608) 153069) ((-325 . -1090) 153019) ((-116 . -105) T) ((-702 . -453) 152950) ((-53 . -105) T) ((-1227 . -281) 152935) ((-1206 . -281) 152855) ((-634 . -658) 152839) ((-634 . -640) 152823) ((-337 . -21) T) ((-337 . -25) T) ((-45 . -350) NIL) ((-860 . -1090) T) ((-173 . -21) T) ((-173 . -25) T) ((-855 . -1090) T) ((-634 . -375) 152807) ((-599 . -281) 152784) ((-390 . -105) T) ((-1108 . -146) T) ((-135 . -608) 152751) ((-869 . -1090) T) ((-648 . -413) 152735) ((-704 . -608) 152717) ((-1257 . -716) T) ((-218 . -608) 152699) ((-218 . -609) 152681) ((-162 . -608) 152663) ((-158 . -608) 152645) ((-145 . -608) 152627) ((-145 . -609) 152579) ((-1092 . -39) T) ((-116 . -117) T) ((-865 . -790) NIL) ((-865 . -787) NIL) ((-849 . -842) T) ((-721 . -881) NIL) ((-1266 . -137) T) ((-383 . -137) T) ((-899 . -105) T) ((-721 . -1037) 152455) ((-534 . -137) T) ((-1078 . -413) 152439) ((-1000 . -499) 152423) ((-126 . -402) 152400) ((-1151 . -1195) 152379) ((-777 . -413) 152363) ((-775 . -413) 152347) ((-944 . -39) T) ((-683 . -1136) NIL) ((-244 . -637) 152182) ((-243 . -637) 152004) ((-812 . -916) 151983) ((-455 . -413) 151967) ((-599 . -19) 151951) ((-1131 . -1189) 151920) ((-1151 . -881) NIL) ((-1151 . -879) 151872) ((-599 . -601) 151849) ((-1182 . -608) 151816) ((-1160 . -608) 151798) ((-67 . -397) T) ((-1158 . -1037) 151733) ((-1151 . -1037) 151699) ((-774 . -281) 151632) ((-683 . -43) 151582) ((-479 . -281) 151567) ((-721 . -379) 151551) ((-860 . -707) 151516) ((-648 . -1054) T) ((-855 . -707) 151466) ((-1227 . -1002) 151432) ((-1206 . -1002) 151398) ((-1059 . -1172) 151373) ((-866 . -609) 151174) ((-866 . -608) 151156) ((-1169 . -499) 151093) ((-420 . -1021) 151071) ((-53 . -303) 151058) ((-1059 . -111) 151004) ((-490 . -499) 150941) ((-528 . -1195) T) ((-1126 . -499) 150912) ((-1151 . -336) 150864) ((-1151 . -379) 150816) ((-439 . -105) T) ((-1078 . -1054) T) ((-244 . -39) T) ((-243 . -39) T) ((-774 . -1231) 150768) ((-777 . -1054) T) ((-775 . -1054) T) ((-721 . -895) 150745) ((-455 . -1054) T) ((-774 . -601) 150690) ((-64 . -499) 150674) ((-1034 . -1053) 150648) ((-923 . -1090) T) ((-527 . -499) 150632) ((-525 . -499) 150616) ((-506 . -499) 150600) ((-505 . -499) 150584) ((-734 . -916) 150563) ((-240 . -523) 150496) ((-1034 . -120) 150463) ((-1159 . -895) 150376) ((-233 . -637) 150336) ((-662 . -1102) T) ((-1158 . -895) 150242) ((-1151 . -895) 150075) ((-1114 . -895) 150059) ((-355 . -1136) T) ((-319 . -1053) 150041) ((-244 . -786) 150020) ((-244 . -789) 149971) ((-244 . -788) 149950) ((-243 . -786) 149929) ((-243 . -789) 149880) ((-243 . -788) 149859) ((-55 . -1054) T) ((-244 . -716) 149785) ((-243 . -716) 149711) ((-1190 . -1090) T) ((-662 . -23) T) ((-581 . -1054) T) ((-526 . -1054) T) ((-381 . -1053) 149676) ((-319 . -120) 149651) ((-78 . -385) T) ((-78 . -397) T) ((-1023 . -43) 149588) ((-683 . -402) 149570) ((-101 . -105) T) ((-701 . -1090) T) ((-1003 . -148) 149542) ((-381 . -120) 149491) ((-314 . -1199) 149470) ((-479 . -1002) 149436) ((-355 . -43) 149401) ((-45 . -372) 149373) ((-1003 . -150) 149345) ((-136 . -134) 149329) ((-130 . -134) 149313) ((-829 . -1053) 149283) ((-828 . -21) 149235) ((-822 . -1053) 149219) ((-828 . -25) 149171) ((-314 . -558) 149122) ((-568 . -823) T) ((-232 . -1195) T) ((-860 . -172) T) ((-855 . -172) T) ((-829 . -120) 149087) ((-822 . -120) 149066) ((-1227 . -608) 149048) ((-1206 . -608) 149030) ((-1206 . -609) 148701) ((-1157 . -904) 148680) ((-1113 . -904) 148659) ((-53 . -43) 148624) ((-1264 . -1102) T) ((-599 . -608) 148563) ((-599 . -609) 148524) ((-1262 . -1102) T) ((-232 . -1037) 148351) ((-1157 . -637) 148276) ((-1113 . -637) 148201) ((-708 . -608) 148183) ((-846 . -637) 148157) ((-1264 . -23) T) ((-1262 . -23) T) ((-1155 . -223) 148141) ((-1034 . -1047) T) ((-1169 . -281) 148120) ((-169 . -370) 148071) ((-1004 . -1195) T) ((-49 . -23) T) ((-1270 . -105) T) ((-1190 . -707) 147968) ((-490 . -281) 147947) ((-585 . -1090) T) ((-1176 . -1090) T) ((-1131 . -1099) 147916) ((-1094 . -1093) 147868) ((-392 . -21) T) ((-392 . -25) T) ((-155 . -1102) T) ((-1004 . -1037) 147828) ((-1004 . -879) 147810) ((-1004 . -881) 147792) ((-733 . -105) T) ((-233 . -716) T) ((-615 . -223) 147776) ((-613 . -21) T) ((-284 . -558) T) ((-613 . -25) T) ((-701 . -707) 147741) ((-381 . -1047) T) ((-232 . -379) 147710) ((-218 . -283) 147685) ((-145 . -283) 147653) ((-213 . -1054) T) ((-126 . -223) 147630) ((-64 . -281) 147607) ((-155 . -23) T) ((-525 . -281) 147584) ((-325 . -523) 147517) ((-505 . -281) 147494) ((-381 . -238) T) ((-381 . -225) T) ((-857 . -608) 147476) ((-829 . -1047) T) ((-822 . -1047) T) ((-774 . -608) 147458) ((-774 . -609) NIL) ((-702 . -950) 147427) ((-690 . -842) T) ((-479 . -608) 147409) ((-822 . -225) 147388) ((-139 . -842) T) ((-648 . -1090) T) ((-1169 . -601) 147367) ((-551 . -1172) 147346) ((-334 . -1090) T) ((-314 . -365) 147325) ((-409 . -150) 147304) ((-409 . -148) 147283) ((-236 . -1090) T) ((-965 . -1102) 147182) ((-232 . -895) 147114) ((-810 . -1102) 147024) ((-644 . -844) 147008) ((-490 . -601) 146987) ((-551 . -111) 146937) ((-1004 . -379) 146919) ((-1004 . -336) 146901) ((-99 . -1090) T) ((-965 . -23) 146712) ((-489 . -21) T) ((-489 . -25) T) ((-810 . -23) 146582) ((-1161 . -608) 146564) ((-64 . -19) 146548) ((-1161 . -609) 146470) ((-1157 . -716) T) ((-1113 . -716) T) ((-525 . -19) 146454) ((-505 . -19) 146438) ((-64 . -601) 146415) ((-1078 . -1090) T) ((-896 . -105) 146393) ((-846 . -716) T) ((-777 . -1090) T) ((-525 . -601) 146370) ((-505 . -601) 146347) ((-775 . -1090) T) ((-775 . -1061) 146314) ((-463 . -1090) T) ((-455 . -1090) T) ((-1239 . -105) T) ((-585 . -707) 146289) ((-259 . -105) 146267) ((-638 . -1090) T) ((-1239 . -279) 146233) ((-1235 . -52) 146210) ((-1229 . -105) T) ((-1228 . -52) 146180) ((-1004 . -895) NIL) ((-1207 . -52) 146157) ((-618 . -1102) T) ((-662 . -137) T) ((-1201 . -52) 146134) ((-1190 . -172) 146085) ((-1158 . -301) 146064) ((-1151 . -301) 146043) ((-1073 . -1199) 145994) ((-271 . -1090) T) ((-90 . -442) T) ((-90 . -397) T) ((-1073 . -558) 145945) ((-770 . -608) 145927) ((-55 . -1090) T) ((-701 . -172) T) ((-593 . -52) 145904) ((-215 . -637) 145869) ((-581 . -1090) T) ((-537 . -1090) T) ((-526 . -1090) T) ((-361 . -1199) T) ((-354 . -1199) T) ((-343 . -1199) T) ((-497 . -815) T) ((-497 . -916) T) ((-314 . -1102) T) ((-112 . -1199) T) ((-733 . -303) 145856) ((-337 . -842) T) ((-208 . -916) T) ((-208 . -815) T) ((-704 . -1053) 145826) ((-361 . -558) T) ((-354 . -558) T) ((-343 . -558) T) ((-112 . -558) T) ((-1151 . -1021) NIL) ((-648 . -707) 145796) ((-860 . -285) T) ((-855 . -285) T) ((-314 . -23) T) ((-72 . -1195) T) ((-1000 . -608) 145763) ((-683 . -223) 145745) ((-236 . -707) 145727) ((-704 . -120) 145692) ((-634 . -39) T) ((-240 . -499) 145676) ((-1092 . -1087) 145660) ((-171 . -1090) T) ((-953 . -904) 145639) ((-492 . -904) 145618) ((-1266 . -21) T) ((-1266 . -25) T) ((-1264 . -137) T) ((-1262 . -137) T) ((-1078 . -707) 145467) ((-1058 . -637) 145454) ((-953 . -637) 145379) ((-777 . -707) 145208) ((-541 . -608) 145190) ((-541 . -609) 145171) ((-775 . -707) 145020) ((-1255 . -105) T) ((-1070 . -105) T) ((-383 . -25) T) ((-383 . -21) T) ((-492 . -637) 144945) ((-463 . -707) 144916) ((-455 . -707) 144765) ((-988 . -105) T) ((-727 . -105) T) ((-1270 . -1136) T) ((-534 . -25) T) ((-1207 . -1195) 144744) ((-1240 . -608) 144710) ((-1207 . -881) NIL) ((-1207 . -879) 144662) ((-142 . -105) T) ((-49 . -137) T) ((-1169 . -609) NIL) ((-1169 . -608) 144644) ((-1127 . -1111) 144589) ((-341 . -1054) T) ((-656 . -608) 144571) ((-284 . -1102) T) ((-356 . -608) 144553) ((-353 . -608) 144535) ((-342 . -608) 144517) ((-257 . -609) 144265) ((-257 . -608) 144247) ((-242 . -608) 144229) ((-242 . -609) 144090) ((-1044 . -1189) 144019) ((-896 . -303) 143957) ((-1228 . -1037) 143892) ((-1207 . -1037) 143858) ((-1190 . -523) 143825) ((-1126 . -608) 143807) ((-814 . -716) T) ((-581 . -707) 143772) ((-599 . -283) 143749) ((-526 . -707) 143694) ((-490 . -609) NIL) ((-490 . -608) 143676) ((-310 . -105) T) ((-259 . -303) 143614) ((-307 . -105) T) ((-284 . -23) T) ((-155 . -137) T) ((-967 . -608) 143596) ((-905 . -608) 143578) ((-388 . -716) T) ((-866 . -1053) 143530) ((-905 . -609) 143512) ((-866 . -120) 143443) ((-733 . -43) 143367) ((-141 . -105) T) ((-123 . -105) T) ((-702 . -1219) 143351) ((-704 . -1047) T) ((-683 . -350) NIL) ((-527 . -608) 143318) ((-381 . -790) T) ((-213 . -1090) T) ((-381 . -787) T) ((-215 . -789) T) ((-215 . -786) T) ((-64 . -609) 143279) ((-64 . -608) 143218) ((-215 . -716) T) ((-525 . -609) 143179) ((-525 . -608) 143118) ((-506 . -608) 143085) ((-505 . -609) 143046) ((-505 . -608) 142985) ((-1073 . -365) 142936) ((-45 . -413) 142913) ((-82 . -1195) T) ((-118 . -105) T) ((-966 . -971) 142897) ((-865 . -904) NIL) ((-361 . -327) 142881) ((-361 . -365) T) ((-354 . -327) 142865) ((-354 . -365) T) ((-343 . -327) 142849) ((-343 . -365) T) ((-310 . -279) 142828) ((-112 . -365) T) ((-75 . -1195) T) ((-1207 . -336) 142780) ((-865 . -637) 142725) ((-1207 . -379) 142677) ((-965 . -137) 142532) ((-810 . -137) 142402) ((-958 . -640) 142386) ((-1078 . -172) 142297) ((-1058 . -789) T) ((-958 . -375) 142281) ((-1058 . -786) T) ((-118 . -117) T) ((-774 . -283) 142226) ((-777 . -172) 142117) ((-775 . -172) 142028) ((-811 . -52) 141990) ((-1058 . -716) T) ((-325 . -499) 141974) ((-953 . -716) T) ((-455 . -172) 141885) ((-240 . -281) 141862) ((-492 . -716) T) ((-1255 . -303) 141800) ((-1239 . -43) 141697) ((-1235 . -895) 141610) ((-1228 . -895) 141516) ((-1227 . -1053) 141351) ((-1207 . -895) 141184) ((-1206 . -1053) 140992) ((-1201 . -895) 140905) ((-1190 . -285) 140884) ((-1131 . -154) 140868) ((-1068 . -105) T) ((-927 . -955) T) ((-727 . -303) 140806) ((-80 . -1195) T) ((-169 . -904) 140759) ((-34 . -105) T) ((-656 . -384) 140731) ((-30 . -955) T) ((-1 . -608) 140713) ((-1108 . -105) T) ((-1073 . -23) T) ((-55 . -612) 140697) ((-1073 . -1102) T) ((-1003 . -411) 140669) ((-593 . -895) 140582) ((-440 . -105) T) ((-142 . -303) NIL) ((-866 . -1047) T) ((-828 . -842) 140561) ((-86 . -1195) T) ((-701 . -285) T) ((-45 . -1054) T) ((-581 . -172) T) ((-526 . -172) T) ((-520 . -608) 140543) ((-169 . -637) 140453) ((-516 . -608) 140435) ((-352 . -150) 140417) ((-352 . -148) T) ((-361 . -1102) T) ((-354 . -1102) T) ((-343 . -1102) T) ((-1004 . -301) T) ((-910 . -301) T) ((-866 . -238) T) ((-112 . -1102) T) ((-866 . -225) 140396) ((-733 . -402) 140380) ((-1227 . -120) 140194) ((-1206 . -120) 139976) ((-240 . -1231) 139960) ((-568 . -840) T) ((-361 . -23) T) ((-355 . -350) T) ((-310 . -303) 139947) ((-307 . -303) 139843) ((-354 . -23) T) ((-314 . -137) T) ((-343 . -23) T) ((-1004 . -1021) T) ((-112 . -23) T) ((-240 . -601) 139820) ((-1229 . -43) 139677) ((-1216 . -904) 139656) ((-121 . -1090) T) ((-1035 . -105) T) ((-1216 . -637) 139581) ((-865 . -789) NIL) ((-847 . -637) 139555) ((-865 . -786) NIL) ((-811 . -881) NIL) ((-865 . -716) T) ((-1078 . -523) 139418) ((-777 . -523) 139364) ((-775 . -523) 139316) ((-575 . -637) 139303) ((-811 . -1037) 139131) ((-455 . -523) 139069) ((-390 . -391) T) ((-65 . -1195) T) ((-613 . -842) 139048) ((-509 . -651) T) ((-1131 . -977) 139017) ((-857 . -1053) 138969) ((-774 . -1053) 138921) ((-1003 . -453) T) ((-688 . -840) T) ((-519 . -787) T) ((-479 . -1053) 138756) ((-341 . -1090) T) ((-307 . -1136) NIL) ((-284 . -137) T) ((-396 . -1090) T) ((-864 . -1054) T) ((-683 . -372) 138723) ((-857 . -120) 138654) ((-774 . -120) 138585) ((-213 . -612) 138562) ((-325 . -281) 138539) ((-479 . -120) 138353) ((-1227 . -1047) T) ((-1206 . -1047) T) ((-811 . -379) 138337) ((-169 . -716) T) ((-644 . -105) T) ((-1227 . -238) 138316) ((-1227 . -225) 138268) ((-1206 . -225) 138173) ((-1206 . -238) 138152) ((-1003 . -404) NIL) ((-662 . -630) 138100) ((-310 . -43) 138010) ((-307 . -43) 137939) ((-74 . -608) 137921) ((-314 . -502) 137887) ((-1169 . -283) 137866) ((-1103 . -1102) 137776) ((-88 . -1195) T) ((-66 . -608) 137758) ((-490 . -283) 137737) ((-1257 . -1037) 137714) ((-1149 . -1090) T) ((-1103 . -23) 137584) ((-811 . -895) 137520) ((-1216 . -716) T) ((-1092 . -1195) T) ((-1078 . -285) 137451) ((-888 . -105) T) ((-777 . -285) 137362) ((-325 . -19) 137346) ((-64 . -283) 137323) ((-775 . -285) 137254) ((-847 . -716) T) ((-126 . -840) NIL) ((-525 . -283) 137231) ((-325 . -601) 137208) ((-505 . -283) 137185) ((-455 . -285) 137116) ((-1035 . -303) 136967) ((-575 . -716) T) ((-652 . -608) 136949) ((-240 . -609) 136910) ((-240 . -608) 136849) ((-1132 . -39) T) ((-944 . -1195) T) ((-341 . -707) 136794) ((-857 . -1047) T) ((-774 . -1047) T) ((-662 . -25) T) ((-662 . -21) T) ((-1108 . -1136) T) ((-479 . -1047) T) ((-626 . -419) 136759) ((-602 . -419) 136724) ((-922 . -1090) T) ((-857 . -225) T) ((-857 . -238) T) ((-774 . -225) 136683) ((-774 . -238) T) ((-581 . -285) T) ((-526 . -285) T) ((-1228 . -301) 136662) ((-479 . -225) 136614) ((-479 . -238) 136593) ((-1207 . -301) 136572) ((-1073 . -137) T) ((-866 . -790) 136551) ((-147 . -105) T) ((-45 . -1090) T) ((-866 . -787) 136530) ((-634 . -1010) 136514) ((-580 . -1054) T) ((-568 . -1054) T) ((-504 . -1054) T) ((-409 . -453) T) ((-361 . -137) T) ((-310 . -402) 136498) ((-307 . -402) 136459) ((-354 . -137) T) ((-343 . -137) T) ((-1207 . -1021) NIL) ((-1084 . -608) 136426) ((-112 . -137) T) ((-1108 . -43) 136413) ((-917 . -1090) T) ((-763 . -1090) T) ((-663 . -1090) T) ((-690 . -150) T) ((-1155 . -413) 136397) ((-125 . -150) T) ((-1264 . -21) T) ((-1264 . -25) T) ((-1262 . -21) T) ((-1262 . -25) T) ((-656 . -1053) 136381) ((-534 . -842) T) ((-509 . -842) T) ((-356 . -1053) 136333) ((-353 . -1053) 136285) ((-342 . -1053) 136237) ((-244 . -1195) T) ((-243 . -1195) T) ((-257 . -1053) 136080) ((-242 . -1053) 135923) ((-656 . -120) 135902) ((-356 . -120) 135833) ((-353 . -120) 135764) ((-342 . -120) 135695) ((-257 . -120) 135517) ((-242 . -120) 135339) ((-812 . -1199) 135318) ((-615 . -413) 135302) ((-49 . -21) T) ((-49 . -25) T) ((-810 . -630) 135208) ((-812 . -558) 135187) ((-244 . -1037) 135014) ((-243 . -1037) 134841) ((-135 . -128) 134825) ((-905 . -1053) 134790) ((-688 . -1054) T) ((-702 . -105) T) ((-218 . -640) 134772) ((-145 . -640) 134747) ((-341 . -172) T) ((-218 . -375) 134729) ((-145 . -375) 134704) ((-155 . -21) T) ((-155 . -25) T) ((-93 . -608) 134686) ((-905 . -120) 134635) ((-45 . -707) 134580) ((-864 . -1090) T) ((-325 . -609) 134541) ((-325 . -608) 134480) ((-1206 . -787) 134433) ((-1155 . -1054) T) ((-1206 . -790) 134386) ((-244 . -379) 134355) ((-243 . -379) 134324) ((-860 . -608) 134306) ((-855 . -608) 134288) ((-644 . -43) 134258) ((-603 . -39) T) ((-493 . -1102) 134168) ((-480 . -39) T) ((-1103 . -137) 134038) ((-1163 . -558) 134017) ((-965 . -25) 133828) ((-869 . -608) 133810) ((-965 . -21) 133765) ((-810 . -21) 133675) ((-810 . -25) 133526) ((-1157 . -52) 133503) ((-615 . -1054) T) ((-1113 . -52) 133475) ((-464 . -1090) T) ((-356 . -1047) T) ((-353 . -1047) T) ((-493 . -23) 133345) ((-342 . -1047) T) ((-257 . -1047) T) ((-242 . -1047) T) ((-1034 . -637) 133319) ((-126 . -1054) T) ((-958 . -39) T) ((-734 . -1199) 133298) ((-356 . -225) 133277) ((-356 . -238) T) ((-353 . -225) 133256) ((-353 . -238) T) ((-342 . -225) 133235) ((-242 . -324) 133192) ((-342 . -238) T) ((-257 . -324) 133164) ((-257 . -225) 133143) ((-1141 . -154) 133127) ((-734 . -558) 133038) ((-244 . -895) 132970) ((-243 . -895) 132902) ((-1075 . -842) T) ((-1210 . -1195) T) ((-416 . -1102) T) ((-1051 . -23) T) ((-905 . -1047) T) ((-319 . -637) 132884) ((-1023 . -840) T) ((-1190 . -1002) 132850) ((-1158 . -916) 132829) ((-1151 . -916) 132808) ((-905 . -238) T) ((-812 . -365) 132787) ((-387 . -23) T) ((-136 . -1090) 132765) ((-130 . -1090) 132743) ((-905 . -225) T) ((-1151 . -815) NIL) ((-381 . -637) 132708) ((-864 . -707) 132695) ((-1044 . -154) 132660) ((-45 . -172) T) ((-683 . -413) 132642) ((-702 . -303) 132629) ((-829 . -637) 132589) ((-822 . -637) 132563) ((-314 . -25) T) ((-314 . -21) T) ((-648 . -281) 132542) ((-580 . -1090) T) ((-568 . -1090) T) ((-504 . -1090) T) ((-240 . -283) 132519) ((-307 . -223) 132480) ((-1157 . -881) NIL) ((-1113 . -881) 132339) ((-1157 . -1037) 132219) ((-1113 . -1037) 132102) ((-846 . -1037) 131998) ((-777 . -281) 131925) ((-923 . -608) 131907) ((-812 . -1102) T) ((-1034 . -716) T) ((-599 . -640) 131891) ((-1044 . -977) 131820) ((-999 . -105) T) ((-812 . -23) T) ((-702 . -1136) 131798) ((-683 . -1054) T) ((-599 . -375) 131782) ((-352 . -453) T) ((-341 . -285) T) ((-1245 . -1090) T) ((-465 . -105) T) ((-401 . -105) T) ((-284 . -21) T) ((-284 . -25) T) ((-363 . -716) T) ((-700 . -1090) T) ((-688 . -1090) T) ((-363 . -478) T) ((-1190 . -608) 131764) ((-1157 . -379) 131748) ((-1113 . -379) 131732) ((-1023 . -413) 131694) ((-142 . -221) 131676) ((-381 . -789) T) ((-381 . -786) T) ((-864 . -172) T) ((-381 . -716) T) ((-701 . -608) 131658) ((-702 . -43) 131487) ((-1244 . -1242) 131471) ((-352 . -404) T) ((-1244 . -1090) 131421) ((-580 . -707) 131408) ((-568 . -707) 131395) ((-504 . -707) 131360) ((-857 . -1261) 131344) ((-310 . -620) 131323) ((-829 . -716) T) ((-822 . -716) T) ((-1155 . -1090) T) ((-634 . -1195) T) ((-1073 . -630) 131271) ((-1157 . -895) 131214) ((-1113 . -895) 131198) ((-652 . -1053) 131182) ((-112 . -630) 131164) ((-493 . -137) 131034) ((-774 . -640) 130986) ((-1163 . -1102) T) ((-857 . -370) T) ((-953 . -52) 130955) ((-734 . -1102) T) ((-615 . -1090) T) ((-652 . -120) 130934) ((-325 . -283) 130911) ((-492 . -52) 130868) ((-1163 . -23) T) ((-126 . -1090) T) ((-106 . -105) 130846) ((-734 . -23) T) ((-1254 . -1102) T) ((-1051 . -137) T) ((-1023 . -1054) T) ((-814 . -1037) 130830) ((-1003 . -714) 130802) ((-1254 . -23) T) ((-688 . -707) 130767) ((-585 . -608) 130749) ((-388 . -1037) 130733) ((-355 . -1054) T) ((-387 . -137) T) ((-321 . -1037) 130717) ((-215 . -881) 130699) ((-1004 . -916) T) ((-96 . -39) T) ((-1004 . -815) T) ((-910 . -916) T) ((-497 . -1199) T) ((-1176 . -608) 130681) ((-1095 . -1090) T) ((-208 . -1199) T) ((-999 . -303) 130646) ((-215 . -1037) 130606) ((-45 . -285) T) ((-1073 . -21) T) ((-1073 . -25) T) ((-1108 . -823) T) ((-497 . -558) T) ((-361 . -25) T) ((-208 . -558) T) ((-361 . -21) T) ((-354 . -25) T) ((-354 . -21) T) ((-704 . -637) 130566) ((-343 . -25) T) ((-343 . -21) T) ((-112 . -25) T) ((-112 . -21) T) ((-53 . -1054) T) ((-1155 . -707) 130395) ((-580 . -172) T) ((-568 . -172) T) ((-504 . -172) T) ((-648 . -608) 130377) ((-727 . -726) 130361) ((-334 . -608) 130343) ((-236 . -608) 130325) ((-73 . -385) T) ((-73 . -397) T) ((-1092 . -111) 130309) ((-1058 . -881) 130291) ((-953 . -881) 130216) ((-643 . -1102) T) ((-615 . -707) 130203) ((-492 . -881) NIL) ((-1131 . -105) T) ((-1058 . -1037) 130185) ((-99 . -608) 130167) ((-489 . -150) T) ((-953 . -1037) 130047) ((-126 . -707) 129992) ((-643 . -23) T) ((-492 . -1037) 129868) ((-1078 . -609) NIL) ((-1078 . -608) 129850) ((-777 . -609) NIL) ((-777 . -608) 129811) ((-775 . -609) 129445) ((-775 . -608) 129359) ((-1103 . -630) 129265) ((-463 . -608) 129247) ((-455 . -608) 129229) ((-455 . -609) 129090) ((-1035 . -221) 129036) ((-135 . -39) T) ((-812 . -137) T) ((-866 . -904) 129015) ((-638 . -608) 128997) ((-356 . -1261) 128981) ((-353 . -1261) 128965) ((-342 . -1261) 128949) ((-136 . -523) 128882) ((-130 . -523) 128815) ((-520 . -787) T) ((-520 . -790) T) ((-519 . -789) T) ((-106 . -303) 128753) ((-212 . -105) 128731) ((-218 . -39) T) ((-145 . -39) T) ((-683 . -1090) T) ((-688 . -172) T) ((-866 . -637) 128683) ((-999 . -43) 128631) ((-70 . -386) T) ((-271 . -608) 128613) ((-70 . -397) T) ((-953 . -379) 128597) ((-864 . -285) T) ((-55 . -608) 128579) ((-860 . -1053) 128544) ((-855 . -1053) 128494) ((-581 . -608) 128476) ((-581 . -609) 128458) ((-492 . -379) 128442) ((-537 . -608) 128424) ((-526 . -608) 128406) ((-905 . -1261) 128393) ((-865 . -1195) T) ((-860 . -120) 128342) ((-690 . -453) T) ((-855 . -120) 128269) ((-504 . -523) 128235) ((-497 . -365) T) ((-356 . -370) 128214) ((-353 . -370) 128193) ((-342 . -370) 128172) ((-208 . -365) T) ((-704 . -716) T) ((-125 . -453) T) ((-1155 . -172) 128063) ((-1265 . -1256) 128047) ((-865 . -879) 128024) ((-865 . -881) NIL) ((-965 . -842) 127923) ((-810 . -842) 127874) ((-644 . -646) 127858) ((-1182 . -39) T) ((-171 . -608) 127840) ((-1103 . -21) 127750) ((-1103 . -25) 127601) ((-968 . -1090) T) ((-865 . -1037) 127578) ((-953 . -895) 127559) ((-1216 . -52) 127536) ((-905 . -370) T) ((-64 . -640) 127520) ((-525 . -640) 127504) ((-492 . -895) 127481) ((-76 . -442) T) ((-76 . -397) T) ((-505 . -640) 127465) ((-64 . -375) 127449) ((-615 . -172) T) ((-525 . -375) 127433) ((-505 . -375) 127417) ((-822 . -698) 127401) ((-1157 . -301) 127380) ((-1163 . -137) T) ((-126 . -172) T) ((-734 . -137) T) ((-1131 . -303) 127318) ((-169 . -1195) T) ((-626 . -736) 127302) ((-602 . -736) 127286) ((-1254 . -137) T) ((-1228 . -916) 127265) ((-1207 . -916) 127244) ((-1207 . -815) NIL) ((-683 . -707) 127194) ((-1206 . -904) 127147) ((-1023 . -1090) T) ((-865 . -379) 127124) ((-865 . -336) 127101) ((-900 . -1102) T) ((-169 . -879) 127085) ((-169 . -881) 127010) ((-1244 . -523) 126943) ((-497 . -1102) T) ((-355 . -1090) T) ((-208 . -1102) T) ((-81 . -442) T) ((-81 . -397) T) ((-1227 . -637) 126840) ((-169 . -1037) 126736) ((-314 . -842) T) ((-860 . -1047) T) ((-855 . -1047) T) ((-1206 . -637) 126606) ((-866 . -789) 126585) ((-866 . -786) 126564) ((-1266 . -1259) 126543) ((-866 . -716) T) ((-497 . -23) T) ((-213 . -608) 126525) ((-173 . -453) T) ((-212 . -303) 126463) ((-91 . -442) T) ((-91 . -397) T) ((-860 . -238) T) ((-208 . -23) T) ((-855 . -238) T) ((-733 . -413) 126447) ((-513 . -536) 126322) ((-580 . -285) T) ((-568 . -285) T) ((-667 . -1037) 126306) ((-504 . -285) T) ((-1155 . -523) 126252) ((-141 . -475) 126207) ((-116 . -1090) T) ((-53 . -1090) T) ((-702 . -223) 126191) ((-865 . -895) NIL) ((-1216 . -881) NIL) ((-884 . -105) T) ((-880 . -105) T) ((-390 . -1090) T) ((-169 . -379) 126175) ((-169 . -336) 126159) ((-1216 . -1037) 126039) ((-847 . -1037) 125935) ((-1127 . -105) T) ((-643 . -137) T) ((-126 . -523) 125798) ((-652 . -787) 125777) ((-652 . -790) 125756) ((-575 . -1037) 125738) ((-288 . -1251) 125708) ((-853 . -105) T) ((-964 . -558) 125687) ((-1190 . -1053) 125570) ((-493 . -630) 125476) ((-899 . -1090) T) ((-1023 . -707) 125413) ((-701 . -1053) 125378) ((-857 . -637) 125330) ((-774 . -637) 125282) ((-599 . -39) T) ((-1132 . -1195) T) ((-1190 . -120) 125144) ((-479 . -637) 125041) ((-355 . -707) 124986) ((-169 . -895) 124945) ((-688 . -285) T) ((-733 . -1054) T) ((-683 . -172) T) ((-701 . -120) 124894) ((-1270 . -1054) T) ((-1216 . -379) 124878) ((-420 . -1199) 124856) ((-307 . -840) NIL) ((-420 . -558) T) ((-215 . -301) T) ((-1206 . -786) 124809) ((-1206 . -789) 124762) ((-33 . -1088) T) ((-1227 . -716) T) ((-1206 . -716) T) ((-53 . -707) 124727) ((-1155 . -285) 124638) ((-215 . -1021) T) ((-352 . -1251) 124615) ((-1229 . -413) 124581) ((-708 . -716) T) ((-1216 . -895) 124524) ((-121 . -608) 124506) ((-121 . -609) 124488) ((-708 . -478) T) ((-493 . -21) 124398) ((-136 . -499) 124382) ((-130 . -499) 124366) ((-493 . -25) 124217) ((-615 . -285) T) ((-774 . -39) T) ((-585 . -1053) 124192) ((-439 . -1090) T) ((-1058 . -301) T) ((-126 . -285) T) ((-1094 . -105) T) ((-1003 . -105) T) ((-585 . -120) 124153) ((-1239 . -1054) T) ((-1127 . -303) 124091) ((-1190 . -1047) T) ((-1058 . -1021) T) ((-71 . -1195) T) ((-1051 . -25) T) ((-1051 . -21) T) ((-701 . -1047) T) ((-387 . -21) T) ((-387 . -25) T) ((-683 . -523) NIL) ((-1023 . -172) T) ((-701 . -238) T) ((-1058 . -550) T) ((-857 . -716) T) ((-774 . -716) T) ((-511 . -105) T) ((-355 . -172) T) ((-341 . -608) 124073) ((-396 . -608) 124055) ((-479 . -716) T) ((-1108 . -840) T) ((-887 . -1037) 124023) ((-112 . -842) T) ((-648 . -1053) 124007) ((-497 . -137) T) ((-1229 . -1054) T) ((-208 . -137) T) ((-236 . -1053) 123989) ((-1141 . -105) 123967) ((-101 . -1090) T) ((-240 . -658) 123951) ((-240 . -640) 123935) ((-648 . -120) 123914) ((-310 . -413) 123898) ((-240 . -375) 123882) ((-1144 . -227) 123829) ((-999 . -223) 123813) ((-236 . -120) 123788) ((-79 . -1195) T) ((-53 . -172) T) ((-690 . -389) T) ((-690 . -146) T) ((-1265 . -105) T) ((-1078 . -1053) 123631) ((-257 . -904) 123610) ((-242 . -904) 123589) ((-777 . -1053) 123412) ((-775 . -1053) 123255) ((-603 . -1195) T) ((-1149 . -608) 123237) ((-1078 . -120) 123059) ((-1044 . -105) T) ((-480 . -1195) T) ((-463 . -1053) 123030) ((-455 . -1053) 122873) ((-656 . -637) 122857) ((-865 . -301) T) ((-777 . -120) 122659) ((-775 . -120) 122481) ((-356 . -637) 122433) ((-353 . -637) 122385) ((-342 . -637) 122337) ((-257 . -637) 122262) ((-242 . -637) 122187) ((-1143 . -842) T) ((-463 . -120) 122148) ((-455 . -120) 121970) ((-1079 . -1037) 121954) ((-1069 . -1037) 121931) ((-1000 . -39) T) ((-958 . -1195) T) ((-135 . -1010) 121915) ((-964 . -1102) T) ((-865 . -1021) NIL) ((-725 . -1102) T) ((-705 . -1102) T) ((-1244 . -499) 121899) ((-1127 . -43) 121859) ((-964 . -23) T) ((-905 . -637) 121824) ((-835 . -105) T) ((-812 . -21) T) ((-812 . -25) T) ((-725 . -23) T) ((-705 . -23) T) ((-114 . -651) T) ((-770 . -716) T) ((-581 . -1053) 121789) ((-526 . -1053) 121734) ((-219 . -62) 121692) ((-454 . -23) T) ((-409 . -105) T) ((-256 . -105) T) ((-770 . -478) T) ((-966 . -105) T) ((-683 . -285) T) ((-853 . -43) 121662) ((-581 . -120) 121611) ((-526 . -120) 121528) ((-734 . -630) 121476) ((-420 . -1102) T) ((-310 . -1054) 121366) ((-307 . -1054) T) ((-922 . -608) 121348) ((-733 . -1090) T) ((-648 . -1047) T) ((-1270 . -1090) T) ((-169 . -301) 121279) ((-420 . -23) T) ((-45 . -608) 121261) ((-45 . -609) 121245) ((-112 . -993) 121227) ((-125 . -863) 121211) ((-53 . -523) 121177) ((-1182 . -1010) 121161) ((-1169 . -39) T) ((-917 . -608) 121143) ((-1103 . -842) 121094) ((-763 . -608) 121076) ((-663 . -608) 121058) ((-1141 . -303) 120996) ((-1082 . -1195) T) ((-490 . -39) T) ((-1078 . -1047) T) ((-489 . -453) T) ((-860 . -1261) 120971) ((-855 . -1261) 120931) ((-1126 . -39) T) ((-777 . -1047) T) ((-775 . -1047) T) ((-636 . -227) 120915) ((-623 . -227) 120861) ((-1216 . -301) 120840) ((-1078 . -324) 120801) ((-455 . -1047) T) ((-1163 . -21) T) ((-1078 . -225) 120780) ((-777 . -324) 120757) ((-777 . -225) T) ((-775 . -324) 120729) ((-325 . -640) 120713) ((-721 . -1199) 120692) ((-1163 . -25) T) ((-64 . -39) T) ((-527 . -39) T) ((-525 . -39) T) ((-455 . -324) 120671) ((-325 . -375) 120655) ((-506 . -39) T) ((-505 . -39) T) ((-1003 . -1136) NIL) ((-626 . -105) T) ((-602 . -105) T) ((-721 . -558) 120586) ((-356 . -716) T) ((-353 . -716) T) ((-342 . -716) T) ((-257 . -716) T) ((-242 . -716) T) ((-734 . -25) T) ((-734 . -21) T) ((-1044 . -303) 120494) ((-1254 . -21) T) ((-1254 . -25) T) ((-896 . -1090) 120472) ((-55 . -1047) T) ((-1239 . -1090) T) ((-1159 . -558) 120451) ((-1158 . -1199) 120430) ((-1158 . -558) 120381) ((-1151 . -1199) 120360) ((-581 . -1047) T) ((-526 . -1047) T) ((-513 . -105) T) ((-1023 . -285) T) ((-363 . -1037) 120344) ((-319 . -1037) 120328) ((-259 . -1090) 120306) ((-381 . -881) 120288) ((-1151 . -558) 120239) ((-1114 . -558) 120218) ((-1003 . -43) 120163) ((-794 . -1102) T) ((-905 . -716) T) ((-581 . -238) T) ((-581 . -225) T) ((-526 . -225) T) ((-526 . -238) T) ((-733 . -707) 120087) ((-355 . -285) T) ((-636 . -684) 120071) ((-381 . -1037) 120031) ((-259 . -258) 120015) ((-1108 . -1054) T) ((-106 . -134) 119999) ((-794 . -23) T) ((-1264 . -1259) 119975) ((-1262 . -1259) 119954) ((-1244 . -281) 119931) ((-409 . -303) 119896) ((-1229 . -1090) T) ((-1155 . -281) 119823) ((-864 . -608) 119805) ((-829 . -1037) 119774) ((-195 . -782) T) ((-194 . -782) T) ((-34 . -37) 119751) ((-193 . -782) T) ((-192 . -782) T) ((-191 . -782) T) ((-190 . -782) T) ((-189 . -782) T) ((-188 . -782) T) ((-187 . -782) T) ((-186 . -782) T) ((-504 . -1002) T) ((-270 . -831) T) ((-269 . -831) T) ((-268 . -831) T) ((-267 . -831) T) ((-53 . -285) T) ((-266 . -831) T) ((-265 . -831) T) ((-264 . -831) T) ((-185 . -782) T) ((-607 . -842) T) ((-644 . -413) 119735) ((-114 . -842) T) ((-643 . -21) T) ((-643 . -25) T) ((-464 . -608) 119717) ((-1265 . -43) 119687) ((-1244 . -19) 119671) ((-126 . -281) 119601) ((-216 . -105) T) ((-144 . -105) T) ((-1244 . -601) 119578) ((-1255 . -1090) T) ((-1239 . -707) 119475) ((-1070 . -1090) T) ((-988 . -1090) T) ((-964 . -137) T) ((-727 . -1090) T) ((-725 . -137) T) ((-705 . -137) T) ((-520 . -788) T) ((-409 . -1136) 119453) ((-454 . -137) T) ((-520 . -789) T) ((-213 . -1047) T) ((-288 . -105) 119235) ((-142 . -1090) T) ((-688 . -1002) T) ((-96 . -1195) T) ((-136 . -608) 119202) ((-130 . -608) 119169) ((-733 . -172) T) ((-1270 . -172) T) ((-1158 . -365) 119148) ((-1151 . -365) 119127) ((-310 . -1090) T) ((-420 . -137) T) ((-307 . -1090) T) ((-409 . -43) 119079) ((-1121 . -105) T) ((-1229 . -707) 118936) ((-644 . -1054) T) ((-314 . -148) 118915) ((-314 . -150) 118894) ((-141 . -1090) T) ((-123 . -1090) T) ((-849 . -105) T) ((-580 . -608) 118876) ((-568 . -609) 118775) ((-568 . -608) 118757) ((-504 . -608) 118739) ((-504 . -609) 118684) ((-495 . -23) T) ((-493 . -842) 118635) ((-118 . -1090) T) ((-497 . -630) 118617) ((-774 . -1010) 118569) ((-208 . -630) 118551) ((-215 . -406) T) ((-652 . -637) 118535) ((-1157 . -916) 118514) ((-721 . -1102) T) ((-352 . -105) T) ((-813 . -842) T) ((-721 . -23) T) ((-341 . -1053) 118459) ((-1143 . -1142) T) ((-1132 . -111) 118443) ((-1239 . -172) 118394) ((-1159 . -1102) T) ((-1158 . -1102) T) ((-1151 . -1102) T) ((-1114 . -1102) T) ((-524 . -1037) 118378) ((-341 . -120) 118295) ((-216 . -303) NIL) ((-144 . -303) NIL) ((-1004 . -1199) T) ((-135 . -1195) T) ((-910 . -1199) T) ((-1245 . -608) 118277) ((-683 . -281) NIL) ((-1159 . -23) T) ((-1158 . -23) T) ((-1151 . -23) T) ((-1127 . -223) 118261) ((-1114 . -23) T) ((-1068 . -1090) T) ((-1004 . -558) T) ((-910 . -558) T) ((-794 . -137) T) ((-218 . -1195) T) ((-145 . -1195) T) ((-733 . -523) 118227) ((-700 . -608) 118209) ((-34 . -1090) T) ((-310 . -707) 118119) ((-307 . -707) 118048) ((-688 . -608) 118030) ((-688 . -609) 117975) ((-409 . -402) 117959) ((-440 . -1090) T) ((-497 . -25) T) ((-497 . -21) T) ((-1108 . -1090) T) ((-208 . -25) T) ((-208 . -21) T) ((-702 . -413) 117943) ((-704 . -1037) 117912) ((-1244 . -608) 117851) ((-1244 . -609) 117812) ((-1229 . -172) T) ((-240 . -39) T) ((-1155 . -609) NIL) ((-1155 . -608) 117794) ((-926 . -975) T) ((-1182 . -1195) T) ((-652 . -786) 117773) ((-652 . -789) 117752) ((-400 . -397) T) ((-531 . -105) 117730) ((-1035 . -1090) T) ((-212 . -995) 117714) ((-514 . -105) T) ((-615 . -608) 117696) ((-50 . -842) NIL) ((-615 . -609) 117673) ((-1035 . -605) 117648) ((-896 . -523) 117581) ((-341 . -1047) T) ((-126 . -609) NIL) ((-126 . -608) 117563) ((-866 . -1195) T) ((-662 . -419) 117547) ((-662 . -1111) 117492) ((-259 . -523) 117425) ((-509 . -154) 117407) ((-341 . -225) T) ((-341 . -238) T) ((-45 . -1053) 117352) ((-866 . -879) 117336) ((-866 . -881) 117261) ((-702 . -1054) T) ((-683 . -1002) NIL) ((-1227 . -52) 117231) ((-1206 . -52) 117208) ((-1126 . -1010) 117179) ((-1108 . -707) 117166) ((-1095 . -608) 117148) ((-866 . -1037) 117012) ((-215 . -916) T) ((-45 . -120) 116929) ((-733 . -285) T) ((-1073 . -150) 116908) ((-1073 . -148) 116859) ((-1004 . -365) T) ((-860 . -637) 116824) ((-855 . -637) 116774) ((-314 . -1184) 116740) ((-381 . -301) T) ((-314 . -1181) 116706) ((-310 . -172) 116685) ((-307 . -172) T) ((-1003 . -223) 116662) ((-910 . -365) T) ((-581 . -1261) 116649) ((-526 . -1261) 116626) ((-361 . -150) 116605) ((-361 . -148) 116556) ((-354 . -150) 116535) ((-354 . -148) 116486) ((-603 . -1172) 116462) ((-343 . -150) 116441) ((-343 . -148) 116392) ((-314 . -40) 116358) ((-480 . -1172) 116337) ((0 . |EnumerationCategory|) T) ((-314 . -98) 116303) ((-381 . -1021) T) ((-112 . -150) T) ((-112 . -148) NIL) ((-50 . -227) 116253) ((-644 . -1090) T) ((-603 . -111) 116200) ((-495 . -137) T) ((-480 . -111) 116150) ((-232 . -1102) 116060) ((-866 . -379) 116044) ((-866 . -336) 116028) ((-232 . -23) 115898) ((-1058 . -916) T) ((-1058 . -815) T) ((-581 . -370) T) ((-526 . -370) T) ((-734 . -842) 115877) ((-352 . -1136) T) ((-325 . -39) T) ((-49 . -419) 115861) ((-392 . -736) 115845) ((-1255 . -523) 115778) ((-721 . -137) T) ((-1239 . -285) 115757) ((-1235 . -558) 115736) ((-1228 . -1199) 115715) ((-1228 . -558) 115666) ((-1207 . -1199) 115645) ((-1207 . -558) 115596) ((-727 . -523) 115529) ((-1206 . -1195) 115508) ((-1206 . -881) 115381) ((-888 . -1090) T) ((-147 . -836) T) ((-1206 . -879) 115351) ((-1201 . -558) 115330) ((-1159 . -137) T) ((-531 . -303) 115268) ((-1158 . -137) T) ((-142 . -523) NIL) ((-1151 . -137) T) ((-1114 . -137) T) ((-1023 . -1002) T) ((-1004 . -23) T) ((-352 . -43) 115233) ((-1004 . -1102) T) ((-910 . -1102) T) ((-87 . -608) 115215) ((-45 . -1047) T) ((-864 . -1053) 115202) ((-866 . -895) 115161) ((-774 . -52) 115138) ((-690 . -105) T) ((-1003 . -350) NIL) ((-599 . -1195) T) ((-972 . -23) T) ((-910 . -23) T) ((-864 . -120) 115123) ((-429 . -1102) T) ((-479 . -52) 115093) ((-139 . -105) T) ((-45 . -225) 115065) ((-45 . -238) T) ((-125 . -105) T) ((-594 . -558) 115044) ((-593 . -558) 115023) ((-683 . -608) 115005) ((-683 . -609) 114913) ((-310 . -523) 114879) ((-307 . -523) 114630) ((-1227 . -1037) 114614) ((-1206 . -1037) 114400) ((-999 . -413) 114384) ((-429 . -23) T) ((-1108 . -172) T) ((-860 . -716) T) ((-855 . -716) T) ((-1229 . -285) T) ((-644 . -707) 114354) ((-147 . -1090) T) ((-53 . -1002) T) ((-409 . -223) 114338) ((-289 . -227) 114288) ((-865 . -916) T) ((-865 . -815) NIL) ((-968 . -608) 114270) ((-852 . -842) T) ((-1206 . -336) 114240) ((-1206 . -379) 114210) ((-212 . -1109) 114194) ((-774 . -1195) T) ((-1244 . -283) 114171) ((-500 . -105) T) ((-1190 . -637) 114096) ((-964 . -21) T) ((-964 . -25) T) ((-725 . -21) T) ((-725 . -25) T) ((-705 . -21) T) ((-705 . -25) T) ((-701 . -637) 114061) ((-454 . -21) T) ((-454 . -25) T) ((-337 . -105) T) ((-173 . -105) T) ((-999 . -1054) T) ((-864 . -1047) T) ((-857 . -1037) 114045) ((-766 . -105) T) ((-1228 . -365) 114024) ((-1227 . -895) 113930) ((-1207 . -365) 113909) ((-1206 . -895) 113760) ((-1023 . -608) 113742) ((-409 . -823) 113695) ((-1159 . -502) 113661) ((-169 . -916) 113592) ((-1158 . -502) 113558) ((-1151 . -502) 113524) ((-702 . -1090) T) ((-1114 . -502) 113490) ((-580 . -1053) 113477) ((-568 . -1053) 113464) ((-504 . -1053) 113429) ((-310 . -285) 113408) ((-307 . -285) T) ((-355 . -608) 113390) ((-420 . -25) T) ((-420 . -21) T) ((-101 . -281) 113369) ((-580 . -120) 113354) ((-568 . -120) 113339) ((-504 . -120) 113288) ((-1161 . -881) 113255) ((-35 . -105) T) ((-896 . -499) 113239) ((-116 . -608) 113221) ((-53 . -608) 113203) ((-53 . -609) 113148) ((-259 . -499) 113132) ((-232 . -137) 113002) ((-1216 . -916) 112981) ((-811 . -1199) 112960) ((-1035 . -523) 112768) ((-390 . -608) 112750) ((-811 . -558) 112681) ((-585 . -637) 112656) ((-257 . -52) 112628) ((-242 . -52) 112585) ((-534 . -518) 112562) ((-1000 . -1195) T) ((-1235 . -23) T) ((-688 . -1053) 112527) ((-774 . -895) 112440) ((-1235 . -1102) T) ((-1228 . -1102) T) ((-1207 . -1102) T) ((-1201 . -1102) T) ((-1003 . -372) 112412) ((-121 . -370) T) ((-479 . -895) 112318) ((-1228 . -23) T) ((-1207 . -23) T) ((-899 . -608) 112300) ((-96 . -111) 112284) ((-1190 . -716) T) ((-900 . -842) 112235) ((-690 . -1136) T) ((-688 . -120) 112184) ((-1201 . -23) T) ((-594 . -1102) T) ((-593 . -1102) T) ((-702 . -707) 112013) ((-701 . -716) T) ((-1108 . -285) T) ((-1004 . -137) T) ((-497 . -842) T) ((-972 . -137) T) ((-910 . -137) T) ((-794 . -25) T) ((-208 . -842) T) ((-794 . -21) T) ((-580 . -1047) T) ((-568 . -1047) T) ((-504 . -1047) T) ((-594 . -23) T) ((-341 . -1261) 111990) ((-314 . -453) 111969) ((-337 . -303) 111956) ((-593 . -23) T) ((-429 . -137) T) ((-648 . -637) 111930) ((-1155 . -1053) 111753) ((-240 . -1010) 111737) ((-866 . -301) T) ((-1266 . -1256) 111721) ((-763 . -787) T) ((-763 . -790) T) ((-690 . -43) 111708) ((-236 . -637) 111690) ((-568 . -225) T) ((-504 . -238) T) ((-504 . -225) T) ((-1155 . -120) 111492) ((-1135 . -227) 111442) ((-1078 . -904) 111421) ((-125 . -43) 111408) ((-201 . -795) T) ((-200 . -795) T) ((-199 . -795) T) ((-198 . -795) T) ((-866 . -1021) 111386) ((-1255 . -499) 111370) ((-777 . -904) 111349) ((-775 . -904) 111328) ((-1169 . -1195) T) ((-455 . -904) 111307) ((-727 . -499) 111291) ((-1078 . -637) 111216) ((-777 . -637) 111141) ((-615 . -1053) 111128) ((-490 . -1195) T) ((-341 . -370) T) ((-142 . -499) 111110) ((-775 . -637) 111035) ((-1126 . -1195) T) ((-463 . -637) 111006) ((-257 . -881) 110865) ((-242 . -881) NIL) ((-126 . -1053) 110810) ((-455 . -637) 110735) ((-656 . -1037) 110712) ((-615 . -120) 110697) ((-356 . -1037) 110681) ((-353 . -1037) 110665) ((-342 . -1037) 110649) ((-257 . -1037) 110493) ((-242 . -1037) 110369) ((-126 . -120) 110286) ((-64 . -1195) T) ((-527 . -1195) T) ((-525 . -1195) T) ((-506 . -1195) T) ((-505 . -1195) T) ((-439 . -608) 110268) ((-436 . -608) 110250) ((-3 . -105) T) ((-1027 . -1189) 110219) ((-828 . -105) T) ((-679 . -62) 110177) ((-688 . -1047) T) ((-55 . -637) 110151) ((-284 . -453) T) ((-481 . -1189) 110120) ((-1239 . -281) 110105) ((0 . -105) T) ((-581 . -637) 110070) ((-526 . -637) 110015) ((-54 . -105) T) ((-905 . -1037) 110002) ((-688 . -238) T) ((-1073 . -411) 109981) ((-721 . -630) 109929) ((-999 . -1090) T) ((-702 . -172) 109820) ((-497 . -993) 109802) ((-465 . -1090) T) ((-257 . -379) 109786) ((-242 . -379) 109770) ((-401 . -1090) T) ((-1155 . -1047) T) ((-337 . -43) 109754) ((-1026 . -105) 109732) ((-208 . -993) 109714) ((-173 . -43) 109646) ((-1227 . -301) 109625) ((-1206 . -301) 109604) ((-1155 . -324) 109581) ((-648 . -716) T) ((-1155 . -225) T) ((-101 . -608) 109563) ((-1151 . -630) 109515) ((-495 . -25) T) ((-495 . -21) T) ((-1206 . -1021) 109467) ((-615 . -1047) T) ((-381 . -406) T) ((-392 . -105) T) ((-257 . -895) 109413) ((-242 . -895) 109390) ((-126 . -1047) T) ((-811 . -1102) T) ((-1078 . -716) T) ((-615 . -225) 109369) ((-613 . -105) T) ((-777 . -716) T) ((-775 . -716) T) ((-415 . -1102) T) ((-126 . -238) T) ((-45 . -370) NIL) ((-126 . -225) NIL) ((-455 . -716) T) ((-811 . -23) T) ((-721 . -25) T) ((-721 . -21) T) ((-692 . -842) T) ((-1070 . -281) 109348) ((-83 . -398) T) ((-83 . -397) T) ((-1239 . -1002) 109314) ((-683 . -1053) 109264) ((-1235 . -137) T) ((-1228 . -137) T) ((-1207 . -137) T) ((-1201 . -137) T) ((-1159 . -25) T) ((-1127 . -413) 109248) ((-626 . -369) 109180) ((-602 . -369) 109112) ((-1141 . -1134) 109096) ((-106 . -1090) 109074) ((-1159 . -21) T) ((-1158 . -21) T) ((-1158 . -25) T) ((-999 . -707) 109022) ((-213 . -637) 108989) ((-683 . -120) 108916) ((-55 . -716) T) ((-1151 . -21) T) ((-352 . -350) T) ((-1151 . -25) T) ((-1073 . -453) 108867) ((-1114 . -21) T) ((-702 . -523) 108813) ((-581 . -716) T) ((-526 . -716) T) ((-857 . -301) T) ((-1114 . -25) T) ((-774 . -301) T) ((-594 . -137) T) ((-593 . -137) T) ((-361 . -453) T) ((-354 . -453) T) ((-343 . -453) T) ((-479 . -301) 108792) ((-307 . -281) 108658) ((-112 . -453) T) ((-84 . -442) T) ((-84 . -397) T) ((-489 . -105) T) ((-733 . -609) 108519) ((-733 . -608) 108501) ((-1270 . -608) 108483) ((-1270 . -609) 108465) ((-1073 . -404) 108444) ((-1035 . -499) 108376) ((-568 . -790) T) ((-568 . -787) T) ((-1059 . -227) 108322) ((-361 . -404) 108273) ((-354 . -404) 108224) ((-343 . -404) 108175) ((-1257 . -1102) T) ((-1257 . -23) T) ((-1246 . -105) T) ((-1127 . -1054) T) ((-662 . -736) 108159) ((-1163 . -148) 108138) ((-1163 . -150) 108117) ((-1131 . -1090) T) ((-1131 . -1066) 108086) ((-74 . -1195) T) ((-1023 . -1053) 108023) ((-853 . -1054) T) ((-734 . -148) 108002) ((-734 . -150) 107981) ((-232 . -630) 107887) ((-683 . -1047) T) ((-233 . -558) 107866) ((-355 . -1053) 107811) ((-66 . -1195) T) ((-1023 . -120) 107720) ((-896 . -608) 107687) ((-683 . -238) T) ((-683 . -225) NIL) ((-835 . -840) 107666) ((-688 . -790) T) ((-688 . -787) T) ((-1239 . -608) 107648) ((-1003 . -413) 107625) ((-355 . -120) 107542) ((-259 . -608) 107509) ((-381 . -916) T) ((-409 . -840) 107488) ((-702 . -285) 107399) ((-213 . -716) T) ((-1235 . -502) 107365) ((-1228 . -502) 107331) ((-1207 . -502) 107297) ((-1201 . -502) 107263) ((-310 . -1002) 107242) ((-212 . -1090) 107220) ((-314 . -974) 107182) ((-109 . -105) T) ((-53 . -1053) 107147) ((-1266 . -105) T) ((-383 . -105) T) ((-53 . -120) 107096) ((-1004 . -630) 107078) ((-1229 . -608) 107060) ((-534 . -105) T) ((-509 . -105) T) ((-1121 . -1122) 107044) ((-155 . -1251) 107028) ((-240 . -1195) T) ((-774 . -665) 106980) ((-1157 . -1199) 106959) ((-1113 . -1199) 106938) ((-232 . -21) 106848) ((-232 . -25) 106699) ((-136 . -128) 106683) ((-130 . -128) 106667) ((-49 . -736) 106651) ((-1157 . -558) 106562) ((-1113 . -558) 106493) ((-1035 . -281) 106468) ((-811 . -137) T) ((-126 . -790) NIL) ((-126 . -787) NIL) ((-356 . -301) T) ((-353 . -301) T) ((-342 . -301) T) ((-1084 . -1195) T) ((-244 . -1102) 106378) ((-243 . -1102) 106288) ((-1023 . -1047) T) ((-1003 . -1054) T) ((-341 . -637) 106233) ((-613 . -43) 106217) ((-1255 . -608) 106179) ((-1255 . -609) 106140) ((-1070 . -608) 106122) ((-1023 . -238) T) ((-355 . -1047) T) ((-810 . -1251) 106092) ((-244 . -23) T) ((-243 . -23) T) ((-988 . -608) 106074) ((-727 . -609) 106035) ((-727 . -608) 106017) ((-794 . -842) 105996) ((-999 . -523) 105908) ((-355 . -225) T) ((-355 . -238) T) ((-1144 . -154) 105855) ((-1004 . -25) T) ((-142 . -609) 105814) ((-142 . -608) 105796) ((-905 . -301) T) ((-1004 . -21) T) ((-972 . -25) T) ((-910 . -21) T) ((-910 . -25) T) ((-429 . -21) T) ((-429 . -25) T) ((-835 . -413) 105780) ((-53 . -1047) T) ((-1264 . -1256) 105764) ((-1262 . -1256) 105748) ((-1035 . -601) 105723) ((-310 . -609) 105584) ((-310 . -608) 105566) ((-307 . -609) NIL) ((-307 . -608) 105548) ((-53 . -238) T) ((-53 . -225) T) ((-644 . -281) 105509) ((-551 . -227) 105459) ((-141 . -608) 105441) ((-123 . -608) 105423) ((-489 . -43) 105388) ((-1266 . -1263) 105367) ((-1257 . -137) T) ((-1265 . -1054) T) ((-1075 . -105) T) ((-118 . -608) 105349) ((-93 . -1195) T) ((-509 . -303) NIL) ((-1000 . -111) 105333) ((-884 . -1090) T) ((-880 . -1090) T) ((-1244 . -640) 105317) ((-1244 . -375) 105301) ((-325 . -1195) T) ((-591 . -842) T) ((-233 . -1102) T) ((-1127 . -1090) T) ((-1127 . -1050) 105241) ((-106 . -523) 105174) ((-927 . -608) 105156) ((-233 . -23) T) ((-341 . -716) T) ((-30 . -608) 105138) ((-853 . -1090) T) ((-835 . -1054) 105117) ((-45 . -637) 105062) ((-215 . -1199) T) ((-409 . -1054) T) ((-1143 . -154) 105044) ((-999 . -285) 104995) ((-215 . -558) T) ((-314 . -1224) 104979) ((-314 . -1221) 104949) ((-1169 . -1172) 104928) ((-1068 . -608) 104910) ((-34 . -608) 104892) ((-860 . -1037) 104852) ((-855 . -1037) 104797) ((-636 . -154) 104781) ((-623 . -154) 104727) ((-1169 . -111) 104677) ((-490 . -1172) 104656) ((-497 . -150) T) ((-497 . -148) NIL) ((-1108 . -609) 104571) ((-440 . -608) 104553) ((-208 . -150) T) ((-208 . -148) NIL) ((-1108 . -608) 104535) ((-57 . -105) T) ((-1207 . -630) 104487) ((-490 . -111) 104437) ((-994 . -23) T) ((-1266 . -43) 104407) ((-1157 . -1102) T) ((-1113 . -1102) T) ((-1058 . -1199) T) ((-846 . -1102) T) ((-953 . -1199) 104386) ((-492 . -1199) 104365) ((-721 . -842) 104344) ((-1058 . -558) T) ((-953 . -558) 104275) ((-1157 . -23) T) ((-1113 . -23) T) ((-846 . -23) T) ((-492 . -558) 104206) ((-1127 . -707) 104138) ((-1131 . -523) 104071) ((-1035 . -609) NIL) ((-1035 . -608) 104053) ((-853 . -707) 104023) ((-1270 . -1053) 104010) ((-1270 . -120) 103995) ((-1190 . -52) 103964) ((-244 . -137) T) ((-243 . -137) T) ((-1094 . -1090) T) ((-1003 . -1090) T) ((-67 . -608) 103946) ((-1151 . -842) NIL) ((-1023 . -787) T) ((-1023 . -790) T) ((-1235 . -25) T) ((-733 . -1053) 103870) ((-1235 . -21) T) ((-1228 . -21) T) ((-864 . -637) 103857) ((-1228 . -25) T) ((-1207 . -21) T) ((-1207 . -25) T) ((-1201 . -25) T) ((-1201 . -21) T) ((-1027 . -154) 103841) ((-866 . -815) 103820) ((-866 . -916) T) ((-733 . -120) 103723) ((-702 . -281) 103650) ((-594 . -21) T) ((-594 . -25) T) ((-593 . -21) T) ((-45 . -716) T) ((-212 . -523) 103583) ((-593 . -25) T) ((-481 . -154) 103567) ((-468 . -154) 103551) ((-917 . -716) T) ((-763 . -788) T) ((-763 . -789) T) ((-511 . -1090) T) ((-763 . -716) T) ((-215 . -365) T) ((-1141 . -1090) 103529) ((-865 . -1199) T) ((-644 . -608) 103511) ((-865 . -558) T) ((-683 . -370) NIL) ((-361 . -1251) 103495) ((-662 . -105) T) ((-354 . -1251) 103479) ((-343 . -1251) 103463) ((-1265 . -1090) T) ((-528 . -842) 103442) ((-1239 . -1053) 103325) ((-812 . -453) 103304) ((-1044 . -1090) T) ((-1044 . -1066) 103233) ((-1027 . -977) 103202) ((-814 . -1102) T) ((-1003 . -707) 103147) ((-1239 . -120) 103009) ((-233 . -137) T) ((-388 . -1102) T) ((-481 . -977) 102978) ((-468 . -977) 102947) ((-921 . -1088) T) ((-114 . -154) 102929) ((-78 . -608) 102911) ((-888 . -608) 102893) ((-1073 . -714) 102872) ((-733 . -1047) T) ((-1270 . -1047) T) ((-811 . -630) 102820) ((-288 . -1054) 102762) ((-169 . -1199) 102667) ((-215 . -1102) T) ((-321 . -23) T) ((-1151 . -993) 102619) ((-835 . -1090) T) ((-733 . -238) 102598) ((-1114 . -730) 102577) ((-1229 . -1053) 102466) ((-1227 . -916) 102445) ((-864 . -716) T) ((-169 . -558) 102356) ((-1206 . -916) 102335) ((-580 . -637) 102322) ((-409 . -1090) T) ((-568 . -637) 102309) ((-256 . -1090) T) ((-504 . -637) 102274) ((-215 . -23) T) ((-1206 . -815) 102227) ((-966 . -1090) T) ((-1264 . -105) T) ((-355 . -1261) 102204) ((-1262 . -105) T) ((-1229 . -120) 102054) ((-147 . -608) 102036) ((-994 . -137) T) ((-49 . -105) T) ((-232 . -842) 101987) ((-1216 . -1199) 101966) ((-106 . -499) 101950) ((-1265 . -707) 101920) ((-1078 . -52) 101881) ((-1058 . -1102) T) ((-953 . -1102) T) ((-136 . -39) T) ((-130 . -39) T) ((-777 . -52) 101858) ((-775 . -52) 101830) ((-1216 . -558) 101741) ((-1157 . -137) T) ((-355 . -370) T) ((-492 . -1102) T) ((-1113 . -137) T) ((-1058 . -23) T) ((-455 . -52) 101720) ((-865 . -365) T) ((-846 . -137) T) ((-155 . -105) T) ((-734 . -453) 101651) ((-953 . -23) T) ((-575 . -558) T) ((-811 . -25) T) ((-811 . -21) T) ((-1127 . -523) 101584) ((-585 . -1037) 101568) ((-492 . -23) T) ((-352 . -1054) T) ((-1239 . -1047) T) ((-1190 . -895) 101549) ((-662 . -303) 101487) ((-1239 . -225) 101446) ((-1103 . -1251) 101416) ((-688 . -637) 101381) ((-1004 . -842) T) ((-1003 . -172) T) ((-964 . -148) 101360) ((-626 . -1090) T) ((-602 . -1090) T) ((-964 . -150) 101339) ((-857 . -916) T) ((-725 . -150) 101318) ((-725 . -148) 101297) ((-972 . -842) T) ((-774 . -916) T) ((-479 . -916) 101276) ((-310 . -1053) 101186) ((-307 . -1053) 101115) ((-999 . -281) 101073) ((-1155 . -904) 101052) ((-409 . -707) 101004) ((-690 . -840) T) ((-538 . -1088) T) ((-513 . -1090) T) ((-1229 . -1047) T) ((-310 . -120) 100893) ((-307 . -120) 100778) ((-1229 . -324) 100722) ((-1155 . -637) 100647) ((-965 . -105) T) ((-810 . -105) 100437) ((-702 . -609) NIL) ((-702 . -608) 100419) ((-1035 . -283) 100394) ((-648 . -1037) 100290) ((-860 . -301) T) ((-580 . -716) T) ((-568 . -789) T) ((-568 . -786) T) ((-169 . -365) 100241) ((-568 . -716) T) ((-504 . -716) T) ((-236 . -1037) 100225) ((-855 . -301) T) ((-1131 . -499) 100209) ((-1078 . -881) NIL) ((-865 . -1102) T) ((-126 . -904) NIL) ((-1264 . -1263) 100185) ((-1262 . -1263) 100164) ((-777 . -881) NIL) ((-775 . -881) 100023) ((-1257 . -25) T) ((-1257 . -21) T) ((-1193 . -105) 100001) ((-1096 . -397) T) ((-615 . -637) 99988) ((-455 . -881) NIL) ((-666 . -105) 99966) ((-1078 . -1037) 99793) ((-865 . -23) T) ((-777 . -1037) 99652) ((-775 . -1037) 99509) ((-126 . -637) 99454) ((-455 . -1037) 99330) ((-638 . -1037) 99314) ((-618 . -105) T) ((-212 . -499) 99298) ((-1244 . -39) T) ((-626 . -707) 99282) ((-602 . -707) 99266) ((-662 . -43) 99226) ((-314 . -105) T) ((-216 . -1090) T) ((-144 . -1090) T) ((-90 . -608) 99208) ((-55 . -1037) 99192) ((-1108 . -1053) 99179) ((-1078 . -379) 99163) ((-777 . -379) 99147) ((-65 . -62) 99109) ((-688 . -789) T) ((-688 . -786) T) ((-581 . -1037) 99096) ((-526 . -1037) 99073) ((-688 . -716) T) ((-321 . -137) T) ((-310 . -1047) 98963) ((-307 . -1047) T) ((-169 . -1102) T) ((-775 . -379) 98947) ((-50 . -154) 98897) ((-1004 . -993) 98879) ((-455 . -379) 98863) ((-409 . -172) T) ((-310 . -238) 98842) ((-307 . -238) T) ((-307 . -225) NIL) ((-288 . -1090) 98624) ((-215 . -137) T) ((-1108 . -120) 98609) ((-169 . -23) T) ((-794 . -150) 98588) ((-794 . -148) 98567) ((-244 . -630) 98473) ((-243 . -630) 98379) ((-314 . -279) 98345) ((-1155 . -716) T) ((-1141 . -523) 98278) ((-1121 . -1090) T) ((-215 . -1056) T) ((-810 . -303) 98216) ((-1078 . -895) 98151) ((-777 . -895) 98094) ((-775 . -895) 98078) ((-1264 . -43) 98048) ((-1262 . -43) 98018) ((-1216 . -1102) T) ((-847 . -1102) T) ((-455 . -895) 97995) ((-849 . -1090) T) ((-1216 . -23) T) ((-575 . -1102) T) ((-847 . -23) T) ((-615 . -716) T) ((-356 . -916) T) ((-353 . -916) T) ((-284 . -105) T) ((-342 . -916) T) ((-1058 . -137) T) ((-953 . -137) T) ((-126 . -789) NIL) ((-126 . -786) NIL) ((-126 . -716) T) ((-683 . -904) NIL) ((-1044 . -523) 97879) ((-492 . -137) T) ((-575 . -23) T) ((-666 . -303) 97817) ((-626 . -753) T) ((-602 . -753) T) ((-1207 . -842) NIL) ((-1003 . -285) T) ((-244 . -21) T) ((-683 . -637) 97767) ((-352 . -1090) T) ((-244 . -25) T) ((-243 . -21) T) ((-243 . -25) T) ((-155 . -43) 97751) ((-2 . -105) T) ((-905 . -916) T) ((-493 . -1251) 97721) ((-213 . -1037) 97698) ((-1108 . -1047) T) ((-701 . -301) T) ((-288 . -707) 97640) ((-690 . -1054) T) ((-497 . -453) T) ((-409 . -523) 97552) ((-208 . -453) T) ((-1108 . -225) T) ((-289 . -154) 97502) ((-999 . -609) 97463) ((-999 . -608) 97445) ((-990 . -608) 97427) ((-125 . -1054) T) ((-644 . -1053) 97411) ((-215 . -502) T) ((-465 . -608) 97393) ((-401 . -608) 97375) ((-401 . -609) 97352) ((-1051 . -1251) 97322) ((-644 . -120) 97301) ((-1127 . -499) 97285) ((-810 . -43) 97255) ((-68 . -442) T) ((-68 . -397) T) ((-1144 . -105) T) ((-865 . -137) T) ((-494 . -105) 97233) ((-1270 . -370) T) ((-734 . -950) 97202) ((-1073 . -105) T) ((-1057 . -105) T) ((-352 . -707) 97147) ((-721 . -150) 97126) ((-721 . -148) 97105) ((-1023 . -637) 97042) ((-531 . -1090) 97020) ((-361 . -105) T) ((-354 . -105) T) ((-343 . -105) T) ((-233 . -21) T) ((-233 . -25) T) ((-112 . -105) T) ((-514 . -1090) T) ((-355 . -637) 96965) ((-1157 . -630) 96913) ((-1113 . -630) 96861) ((-387 . -518) 96840) ((-828 . -840) 96819) ((-381 . -1199) T) ((-683 . -716) T) ((-337 . -1054) T) ((-1207 . -993) 96771) ((-173 . -1054) T) ((-106 . -608) 96738) ((-1159 . -148) 96717) ((-1159 . -150) 96696) ((-381 . -558) T) ((-1158 . -150) 96675) ((-1158 . -148) 96654) ((-1151 . -148) 96561) ((-409 . -285) T) ((-1151 . -150) 96468) ((-1114 . -150) 96447) ((-1114 . -148) 96426) ((-314 . -43) 96267) ((-169 . -137) T) ((-307 . -790) NIL) ((-307 . -787) NIL) ((-644 . -1047) T) ((-53 . -637) 96232) ((-994 . -21) T) ((-136 . -1010) 96216) ((-130 . -1010) 96200) ((-994 . -25) T) ((-896 . -128) 96184) ((-1143 . -105) T) ((-811 . -842) 96163) ((-1216 . -137) T) ((-1157 . -25) T) ((-1157 . -21) T) ((-847 . -137) T) ((-1113 . -25) T) ((-1113 . -21) T) ((-846 . -25) T) ((-846 . -21) T) ((-777 . -301) 96142) ((-35 . -37) 96126) ((-1144 . -303) 95921) ((-1141 . -499) 95905) ((-636 . -105) 95883) ((-623 . -105) T) ((-1135 . -154) 95833) ((-575 . -137) T) ((-613 . -840) 95812) ((-1131 . -608) 95774) ((-1131 . -609) 95735) ((-1023 . -786) T) ((-1023 . -789) T) ((-1023 . -716) T) ((-494 . -303) 95673) ((-454 . -419) 95643) ((-352 . -172) T) ((-216 . -523) NIL) ((-144 . -523) NIL) ((-284 . -43) 95630) ((-270 . -105) T) ((-269 . -105) T) ((-268 . -105) T) ((-267 . -105) T) ((-266 . -105) T) ((-265 . -105) T) ((-264 . -105) T) ((-341 . -1037) 95607) ((-204 . -105) T) ((-203 . -105) T) ((-201 . -105) T) ((-200 . -105) T) ((-199 . -105) T) ((-198 . -105) T) ((-195 . -105) T) ((-194 . -105) T) ((-702 . -1053) 95430) ((-193 . -105) T) ((-192 . -105) T) ((-191 . -105) T) ((-190 . -105) T) ((-189 . -105) T) ((-188 . -105) T) ((-187 . -105) T) ((-186 . -105) T) ((-185 . -105) T) ((-355 . -716) T) ((-702 . -120) 95232) ((-662 . -223) 95216) ((-581 . -301) T) ((-526 . -301) T) ((-288 . -523) 95165) ((-112 . -303) NIL) ((-77 . -397) T) ((-1103 . -105) 94955) ((-828 . -413) 94939) ((-1108 . -790) T) ((-1108 . -787) T) ((-690 . -1090) T) ((-381 . -365) T) ((-169 . -502) 94917) ((-212 . -608) 94884) ((-139 . -1090) T) ((-125 . -1090) T) ((-53 . -716) T) ((-1044 . -499) 94849) ((-142 . -427) 94831) ((-142 . -370) T) ((-1027 . -105) T) ((-521 . -518) 94810) ((-481 . -105) T) ((-468 . -105) T) ((-1034 . -1102) T) ((-734 . -1219) 94794) ((-1159 . -40) 94760) ((-1159 . -98) 94726) ((-1159 . -1184) 94692) ((-1159 . -1181) 94658) ((-1158 . -1181) 94624) ((-1143 . -303) NIL) ((-94 . -398) T) ((-94 . -397) T) ((-1073 . -1136) 94603) ((-1158 . -1184) 94569) ((-1158 . -98) 94535) ((-1034 . -23) T) ((-1158 . -40) 94501) ((-575 . -502) T) ((-1151 . -1181) 94467) ((-1151 . -1184) 94433) ((-1151 . -98) 94399) ((-1151 . -40) 94365) ((-363 . -1102) T) ((-361 . -1136) 94344) ((-354 . -1136) 94323) ((-343 . -1136) 94302) ((-1114 . -40) 94268) ((-1114 . -98) 94234) ((-1114 . -1184) 94200) ((-112 . -1136) T) ((-1114 . -1181) 94166) ((-828 . -1054) 94145) ((-636 . -303) 94083) ((-623 . -303) 93934) ((-1073 . -43) 93802) ((-702 . -1047) T) ((-1058 . -630) 93784) ((-1004 . -150) T) ((-953 . -630) 93732) ((-500 . -1090) T) ((-1004 . -148) NIL) ((-381 . -1102) T) ((-321 . -25) T) ((-319 . -23) T) ((-944 . -842) 93711) ((-702 . -324) 93688) ((-492 . -630) 93636) ((-45 . -1037) 93511) ((-690 . -707) 93498) ((-702 . -225) T) ((-337 . -1090) T) ((-173 . -1090) T) ((-329 . -842) T) ((-420 . -453) 93448) ((-381 . -23) T) ((-361 . -43) 93413) ((-354 . -43) 93378) ((-343 . -43) 93343) ((-85 . -442) T) ((-85 . -397) T) ((-215 . -25) T) ((-215 . -21) T) ((-829 . -1102) T) ((-112 . -43) 93293) ((-822 . -1102) T) ((-766 . -1090) T) ((-125 . -707) 93280) ((-663 . -1037) 93264) ((-607 . -105) T) ((-829 . -23) T) ((-822 . -23) T) ((-1141 . -281) 93241) ((-1103 . -303) 93179) ((-1092 . -227) 93163) ((-69 . -398) T) ((-69 . -397) T) ((-114 . -105) T) ((-45 . -379) 93140) ((-35 . -1090) T) ((-643 . -844) 93124) ((-1058 . -21) T) ((-1058 . -25) T) ((-810 . -223) 93093) ((-953 . -25) T) ((-953 . -21) T) ((-613 . -1054) T) ((-492 . -25) T) ((-492 . -21) T) ((-1027 . -303) 93031) ((-884 . -608) 93013) ((-880 . -608) 92995) ((-244 . -842) 92946) ((-243 . -842) 92897) ((-531 . -523) 92830) ((-865 . -630) 92807) ((-481 . -303) 92745) ((-468 . -303) 92683) ((-352 . -285) T) ((-1141 . -1231) 92667) ((-1127 . -608) 92629) ((-1127 . -609) 92590) ((-1125 . -105) T) ((-999 . -1053) 92486) ((-45 . -895) 92438) ((-1141 . -601) 92415) ((-733 . -637) 92339) ((-1270 . -637) 92326) ((-1059 . -154) 92272) ((-866 . -1199) T) ((-999 . -120) 92147) ((-337 . -707) 92131) ((-853 . -608) 92113) ((-173 . -707) 92045) ((-409 . -281) 92003) ((-866 . -558) T) ((-112 . -402) 91985) ((-89 . -386) T) ((-89 . -397) T) ((-860 . -916) T) ((-855 . -916) T) ((-690 . -172) T) ((-101 . -716) T) ((-493 . -105) 91775) ((-101 . -478) T) ((-125 . -172) T) ((-1103 . -43) 91745) ((-169 . -630) 91693) ((-216 . -499) 91675) ((-144 . -499) 91650) ((-1051 . -105) T) ((-865 . -25) T) ((-810 . -230) 91629) ((-865 . -21) T) ((-813 . -105) T) ((-416 . -105) T) ((-387 . -105) T) ((-114 . -303) NIL) ((-219 . -105) 91607) ((-136 . -1195) T) ((-130 . -1195) T) ((-1034 . -137) T) ((-662 . -369) 91591) ((-1239 . -637) 91516) ((-1270 . -716) T) ((-1235 . -148) 91495) ((-999 . -1047) T) ((-1235 . -150) 91474) ((-1216 . -630) 91422) ((-1228 . -150) 91401) ((-1094 . -608) 91383) ((-1003 . -608) 91365) ((-524 . -23) T) ((-519 . -23) T) ((-341 . -301) T) ((-517 . -23) T) ((-319 . -137) T) ((-3 . -1090) T) ((-1003 . -609) 91349) ((-999 . -238) 91328) ((-999 . -225) 91307) ((-1228 . -148) 91286) ((-1227 . -1199) 91265) ((-828 . -1090) T) ((-1207 . -148) 91172) ((-1207 . -150) 91079) ((-1206 . -1199) 91058) ((-1201 . -148) 91037) ((-1201 . -150) 91016) ((-733 . -478) 90995) ((-733 . -716) T) ((-381 . -137) T) ((-568 . -881) 90977) ((0 . -1090) T) ((-173 . -172) T) ((-169 . -21) T) ((-169 . -25) T) ((-54 . -1090) T) ((-1229 . -637) 90866) ((-1227 . -558) 90817) ((-704 . -1102) T) ((-1206 . -558) 90768) ((-568 . -1037) 90750) ((-593 . -150) 90729) ((-593 . -148) 90708) ((-504 . -1037) 90651) ((-92 . -386) T) ((-92 . -397) T) ((-866 . -365) T) ((-1155 . -52) 90628) ((-829 . -137) T) ((-822 . -137) T) ((-704 . -23) T) ((-511 . -608) 90610) ((-1266 . -1054) T) ((-381 . -1056) T) ((-1026 . -1090) 90588) ((-896 . -39) T) ((-493 . -303) 90526) ((-1141 . -609) 90487) ((-1141 . -608) 90454) ((-259 . -39) T) ((-1157 . -842) 90433) ((-50 . -105) T) ((-1113 . -842) 90412) ((-812 . -105) T) ((-1216 . -25) T) ((-1216 . -21) T) ((-847 . -25) T) ((-49 . -369) 90396) ((-847 . -21) T) ((-721 . -453) 90347) ((-1265 . -608) 90329) ((-575 . -25) T) ((-575 . -21) T) ((-392 . -1090) T) ((-1051 . -303) 90267) ((-613 . -1090) T) ((-688 . -881) 90249) ((-1244 . -1195) T) ((-219 . -303) 90187) ((-147 . -370) T) ((-1044 . -609) 90129) ((-1044 . -608) 90072) ((-857 . -1199) T) ((-307 . -904) NIL) ((-774 . -1199) T) ((-1239 . -716) T) ((-688 . -1037) 90017) ((-701 . -916) T) ((-479 . -1199) 89996) ((-1158 . -453) 89975) ((-1151 . -453) 89954) ((-857 . -558) T) ((-328 . -105) T) ((-774 . -558) T) ((-866 . -1102) T) ((-310 . -637) 89775) ((-307 . -637) 89704) ((-479 . -558) 89655) ((-337 . -523) 89621) ((-551 . -154) 89571) ((-45 . -301) T) ((-1155 . -881) NIL) ((-835 . -608) 89553) ((-690 . -285) T) ((-866 . -23) T) ((-381 . -502) T) ((-1073 . -223) 89523) ((-521 . -105) T) ((-409 . -609) 89324) ((-409 . -608) 89306) ((-256 . -608) 89288) ((-125 . -285) T) ((-1155 . -1037) 89168) ((-966 . -608) 89150) ((-1229 . -716) T) ((-1227 . -365) 89129) ((-1206 . -365) 89108) ((-1255 . -39) T) ((-126 . -1195) T) ((-112 . -223) 89090) ((-1163 . -105) T) ((-489 . -1090) T) ((-531 . -499) 89074) ((-734 . -105) T) ((-727 . -39) T) ((-493 . -43) 89044) ((-142 . -39) T) ((-126 . -879) 89021) ((-126 . -881) NIL) ((-615 . -1037) 88904) ((-634 . -842) 88883) ((-1254 . -105) T) ((-289 . -105) T) ((-702 . -370) 88862) ((-126 . -1037) 88839) ((-392 . -707) 88823) ((-1155 . -379) 88807) ((-613 . -707) 88791) ((-50 . -303) 88595) ((-811 . -148) 88574) ((-811 . -150) 88553) ((-1265 . -384) 88532) ((-814 . -842) T) ((-1246 . -1090) T) ((-1235 . -40) 88498) ((-1235 . -98) 88464) ((-1235 . -1184) 88430) ((-1144 . -221) 88377) ((-1235 . -1181) 88343) ((-388 . -842) 88322) ((-1228 . -1181) 88288) ((-1228 . -1184) 88254) ((-1228 . -98) 88220) ((-216 . -677) 88188) ((-144 . -677) 88149) ((-1228 . -40) 88115) ((-1227 . -1102) T) ((-1207 . -1181) 88081) ((-524 . -137) T) ((-1207 . -1184) 88047) ((-1201 . -1184) 88013) ((-1201 . -1181) 87979) ((-1207 . -98) 87945) ((-1207 . -40) 87911) ((-626 . -608) 87880) ((-602 . -608) 87849) ((-33 . -105) T) ((-215 . -842) T) ((-1206 . -1102) T) ((-1201 . -40) 87815) ((-1201 . -98) 87781) ((-1108 . -637) 87768) ((-1155 . -895) 87711) ((-1073 . -350) 87690) ((-591 . -154) 87672) ((-864 . -301) T) ((-126 . -379) 87649) ((-126 . -336) 87626) ((-173 . -285) T) ((-857 . -365) T) ((-774 . -365) T) ((-307 . -789) NIL) ((-307 . -786) NIL) ((-310 . -716) 87475) ((-307 . -716) T) ((-513 . -608) 87457) ((-479 . -365) 87436) ((-361 . -350) 87415) ((-354 . -350) 87394) ((-343 . -350) 87373) ((-310 . -478) 87352) ((-1227 . -23) T) ((-1206 . -23) T) ((-708 . -1102) T) ((-704 . -137) T) ((-643 . -105) T) ((-489 . -707) 87317) ((-50 . -277) 87267) ((-109 . -1090) T) ((-73 . -608) 87249) ((-852 . -105) T) ((-615 . -895) 87208) ((-1266 . -1090) T) ((-383 . -1090) T) ((-87 . -1195) T) ((-1058 . -842) T) ((-953 . -842) 87187) ((-126 . -895) NIL) ((-777 . -916) 87166) ((-703 . -842) T) ((-534 . -1090) T) ((-509 . -1090) T) ((-356 . -1199) T) ((-353 . -1199) T) ((-342 . -1199) T) ((-257 . -1199) 87145) ((-242 . -1199) 87124) ((-1103 . -223) 87093) ((-492 . -842) 87072) ((-1143 . -823) T) ((-1127 . -1053) 87056) ((-392 . -753) T) ((-734 . -303) 87043) ((-683 . -1195) T) ((-356 . -558) T) ((-353 . -558) T) ((-342 . -558) T) ((-257 . -558) 86974) ((-242 . -558) 86905) ((-1127 . -120) 86884) ((-454 . -736) 86854) ((-853 . -1053) 86824) ((-812 . -43) 86761) ((-683 . -879) 86743) ((-683 . -881) 86725) ((-289 . -303) 86529) ((-905 . -1199) T) ((-857 . -1102) T) ((-853 . -120) 86494) ((-662 . -413) 86478) ((-774 . -1102) T) ((-683 . -1037) 86423) ((-1141 . -283) 86400) ((-1004 . -453) T) ((-905 . -558) T) ((-581 . -916) T) ((-479 . -1102) T) ((-526 . -916) T) ((-910 . -453) T) ((-216 . -608) 86382) ((-144 . -608) 86364) ((-70 . -608) 86346) ((-857 . -23) T) ((-623 . -221) 86292) ((-774 . -23) T) ((-479 . -23) T) ((-1108 . -789) T) ((-866 . -137) T) ((-1108 . -786) T) ((-1257 . -1259) 86271) ((-1108 . -716) T) ((-644 . -637) 86245) ((-288 . -608) 85986) ((-1035 . -39) T) ((-810 . -840) 85965) ((-580 . -301) T) ((-568 . -301) T) ((-504 . -301) T) ((-1266 . -707) 85935) ((-683 . -379) 85917) ((-683 . -336) 85899) ((-489 . -172) T) ((-383 . -707) 85869) ((-734 . -1136) 85847) ((-865 . -842) NIL) ((-568 . -1021) T) ((-504 . -1021) T) ((-1121 . -608) 85829) ((-1103 . -230) 85808) ((-205 . -105) T) ((-1135 . -105) T) ((-76 . -608) 85790) ((-1127 . -1047) T) ((-1163 . -43) 85687) ((-849 . -608) 85669) ((-568 . -550) T) ((-734 . -43) 85498) ((-662 . -1054) T) ((-721 . -950) 85451) ((-1127 . -225) 85430) ((-1075 . -1090) T) ((-1034 . -25) T) ((-1034 . -21) T) ((-1003 . -1053) 85375) ((-900 . -105) T) ((-853 . -1047) T) ((-770 . -1102) T) ((-683 . -895) NIL) ((-356 . -327) 85359) ((-356 . -365) T) ((-353 . -327) 85343) ((-353 . -365) T) ((-342 . -327) 85327) ((-342 . -365) T) ((-497 . -105) T) ((-1254 . -43) 85297) ((-531 . -677) 85247) ((-208 . -105) T) ((-1023 . -1037) 85127) ((-1003 . -120) 85044) ((-1159 . -974) 85013) ((-1158 . -974) 84975) ((-528 . -154) 84959) ((-1073 . -372) 84938) ((-352 . -608) 84920) ((-319 . -21) T) ((-355 . -1037) 84897) ((-319 . -25) T) ((-1151 . -974) 84866) ((-1114 . -974) 84833) ((-81 . -608) 84815) ((-688 . -301) T) ((-169 . -842) 84794) ((-905 . -365) T) ((-381 . -25) T) ((-381 . -21) T) ((-905 . -327) 84781) ((-91 . -608) 84763) ((-688 . -1021) T) ((-667 . -842) T) ((-1227 . -137) T) ((-1206 . -137) T) ((-896 . -1010) 84747) ((-829 . -21) T) ((-53 . -1037) 84690) ((-829 . -25) T) ((-822 . -25) T) ((-822 . -21) T) ((-1264 . -1054) T) ((-1262 . -1054) T) ((-644 . -716) T) ((-1155 . -301) 84669) ((-259 . -1010) 84653) ((-1265 . -1053) 84637) ((-1216 . -842) 84616) ((-810 . -413) 84585) ((-106 . -128) 84569) ((-57 . -1090) T) ((-926 . -608) 84551) ((-865 . -993) 84528) ((-818 . -105) T) ((-1265 . -120) 84507) ((-643 . -43) 84477) ((-575 . -842) T) ((-356 . -1102) T) ((-353 . -1102) T) ((-342 . -1102) T) ((-257 . -1102) T) ((-242 . -1102) T) ((-615 . -301) 84456) ((-1135 . -303) 84260) ((-656 . -23) T) ((-493 . -223) 84229) ((-155 . -1054) T) ((-356 . -23) T) ((-353 . -23) T) ((-342 . -23) T) ((-126 . -301) T) ((-257 . -23) T) ((-242 . -23) T) ((-1003 . -1047) T) ((-702 . -904) 84208) ((-1003 . -225) 84180) ((-1003 . -238) T) ((-126 . -1021) NIL) ((-905 . -1102) T) ((-1228 . -453) 84159) ((-1207 . -453) 84138) ((-531 . -608) 84105) ((-702 . -637) 84030) ((-409 . -1053) 83982) ((-857 . -137) T) ((-514 . -608) 83964) ((-905 . -23) T) ((-774 . -137) T) ((-497 . -303) NIL) ((-479 . -137) T) ((-208 . -303) NIL) ((-409 . -120) 83895) ((-810 . -1054) 83825) ((-727 . -1087) 83809) ((-1227 . -502) 83775) ((-1206 . -502) 83741) ((-142 . -1087) 83723) ((-489 . -285) T) ((-1265 . -1047) T) ((-1059 . -105) T) ((-509 . -523) NIL) ((-692 . -105) T) ((-493 . -230) 83702) ((-1157 . -148) 83681) ((-1157 . -150) 83660) ((-1113 . -150) 83639) ((-1113 . -148) 83618) ((-626 . -1053) 83602) ((-602 . -1053) 83586) ((-662 . -1090) T) ((-662 . -1050) 83526) ((-1159 . -1234) 83510) ((-1159 . -1221) 83487) ((-497 . -1136) T) ((-1158 . -1226) 83448) ((-1158 . -1221) 83418) ((-1158 . -1224) 83402) ((-208 . -1136) T) ((-341 . -916) T) ((-813 . -262) 83386) ((-626 . -120) 83365) ((-602 . -120) 83344) ((-1151 . -1205) 83305) ((-835 . -1047) 83284) ((-1151 . -1221) 83261) ((-524 . -25) T) ((-504 . -296) T) ((-520 . -23) T) ((-519 . -25) T) ((-517 . -25) T) ((-516 . -23) T) ((-1151 . -1203) 83245) ((-409 . -1047) T) ((-314 . -1054) T) ((-683 . -301) T) ((-112 . -840) T) ((-409 . -238) T) ((-409 . -225) 83224) ((-702 . -716) T) ((-497 . -43) 83174) ((-208 . -43) 83124) ((-479 . -502) 83090) ((-1143 . -1129) T) ((-1091 . -105) T) ((-690 . -608) 83072) ((-690 . -609) 82987) ((-704 . -21) T) ((-704 . -25) T) ((-139 . -608) 82969) ((-125 . -608) 82951) ((-158 . -25) T) ((-1264 . -1090) T) ((-866 . -630) 82899) ((-1262 . -1090) T) ((-964 . -105) T) ((-725 . -105) T) ((-705 . -105) T) ((-454 . -105) T) ((-811 . -453) 82850) ((-49 . -1090) T) ((-1079 . -842) T) ((-656 . -137) T) ((-1059 . -303) 82701) ((-662 . -707) 82685) ((-284 . -1054) T) ((-356 . -137) T) ((-353 . -137) T) ((-342 . -137) T) ((-257 . -137) T) ((-242 . -137) T) ((-733 . -1195) T) ((-420 . -105) T) ((-1239 . -52) 82662) ((-155 . -1090) T) ((-50 . -221) 82612) ((-734 . -223) 82596) ((-999 . -637) 82534) ((-958 . -842) 82513) ((-733 . -879) 82497) ((-733 . -881) 82422) ((-232 . -1251) 82392) ((-1023 . -301) T) ((-288 . -1053) 82313) ((-905 . -137) T) ((-45 . -916) T) ((-733 . -1037) 82035) ((-497 . -402) 82017) ((-500 . -608) 81999) ((-355 . -301) T) ((-208 . -402) 81981) ((-1073 . -413) 81965) ((-288 . -120) 81881) ((-860 . -1199) T) ((-855 . -1199) T) ((-866 . -25) T) ((-866 . -21) T) ((-860 . -558) T) ((-855 . -558) T) ((-337 . -608) 81863) ((-1229 . -52) 81807) ((-215 . -150) T) ((-173 . -608) 81789) ((-1103 . -840) 81768) ((-766 . -608) 81750) ((-603 . -227) 81697) ((-480 . -227) 81647) ((-1264 . -707) 81617) ((-53 . -301) T) ((-1262 . -707) 81587) ((-965 . -1090) T) ((-810 . -1090) 81377) ((-305 . -105) T) ((-896 . -1195) T) ((-733 . -379) 81346) ((-53 . -1021) T) ((-1206 . -630) 81254) ((-679 . -105) 81232) ((-49 . -707) 81216) ((-551 . -105) T) ((-72 . -385) T) ((-259 . -1195) T) ((-72 . -397) T) ((-35 . -608) 81198) ((-652 . -23) T) ((-662 . -753) T) ((-1193 . -1090) 81176) ((-352 . -1053) 81121) ((-666 . -1090) 81099) ((-1058 . -150) T) ((-953 . -150) 81078) ((-953 . -148) 81057) ((-794 . -105) T) ((-155 . -707) 81041) ((-492 . -150) 81020) ((-492 . -148) 80999) ((-352 . -120) 80916) ((-1073 . -1054) T) ((-319 . -842) 80895) ((-967 . -1088) T) ((-1235 . -974) 80864) ((-1228 . -974) 80826) ((-1207 . -974) 80795) ((-618 . -1090) T) ((-733 . -895) 80776) ((-520 . -137) T) ((-516 . -137) T) ((-289 . -221) 80726) ((-361 . -1054) T) ((-354 . -1054) T) ((-343 . -1054) T) ((-288 . -1047) 80668) ((-1201 . -974) 80637) ((-381 . -842) T) ((-112 . -1054) T) ((-999 . -716) T) ((-864 . -916) T) ((-835 . -790) 80616) ((-835 . -787) 80595) ((-420 . -303) 80534) ((-473 . -105) T) ((-593 . -974) 80503) ((-314 . -1090) T) ((-409 . -790) 80482) ((-409 . -787) 80461) ((-509 . -499) 80443) ((-1229 . -1037) 80409) ((-1227 . -21) T) ((-1227 . -25) T) ((-1206 . -21) T) ((-1206 . -25) T) ((-810 . -707) 80351) ((-860 . -365) T) ((-855 . -365) T) ((-688 . -406) T) ((-1255 . -1195) T) ((-1103 . -413) 80320) ((-1003 . -370) NIL) ((-106 . -39) T) ((-727 . -1195) T) ((-49 . -753) T) ((-591 . -105) T) ((-82 . -398) T) ((-82 . -397) T) ((-643 . -646) 80304) ((-142 . -1195) T) ((-865 . -150) T) ((-865 . -148) NIL) ((-1239 . -895) 80217) ((-352 . -1047) T) ((-75 . -385) T) ((-75 . -397) T) ((-1150 . -105) T) ((-662 . -523) 80150) ((-679 . -303) 80088) ((-964 . -43) 79985) ((-725 . -43) 79955) ((-551 . -303) 79759) ((-310 . -1195) T) ((-352 . -225) T) ((-352 . -238) T) ((-307 . -1195) T) ((-284 . -1090) T) ((-1165 . -608) 79741) ((-701 . -1199) T) ((-1141 . -640) 79725) ((-1190 . -558) 79704) ((-857 . -25) T) ((-857 . -21) T) ((-701 . -558) T) ((-310 . -879) 79688) ((-310 . -881) 79613) ((-307 . -879) 79574) ((-307 . -881) NIL) ((-794 . -303) 79539) ((-774 . -25) T) ((-314 . -707) 79380) ((-774 . -21) T) ((-321 . -320) 79357) ((-495 . -105) T) ((-479 . -25) T) ((-479 . -21) T) ((-420 . -43) 79331) ((-310 . -1037) 78994) ((-215 . -1181) T) ((-215 . -1184) T) ((-3 . -608) 78976) ((-307 . -1037) 78906) ((-860 . -1102) T) ((-2 . -1090) T) ((-2 . |RecordCategory|) T) ((-855 . -1102) T) ((-828 . -608) 78888) ((-1103 . -1054) 78818) ((-580 . -916) T) ((-568 . -815) T) ((-568 . -916) T) ((-504 . -916) T) ((-141 . -1037) 78802) ((-215 . -98) T) ((-80 . -442) T) ((-80 . -397) T) ((0 . -608) 78784) ((-169 . -150) 78763) ((-169 . -148) 78714) ((-215 . -40) T) ((-54 . -608) 78696) ((-860 . -23) T) ((-489 . -1054) T) ((-855 . -23) T) ((-497 . -223) 78678) ((-494 . -969) 78662) ((-493 . -840) 78641) ((-208 . -223) 78623) ((-86 . -442) T) ((-86 . -397) T) ((-1131 . -39) T) ((-810 . -172) 78602) ((-721 . -105) T) ((-1026 . -608) 78569) ((-509 . -281) 78544) ((-310 . -379) 78513) ((-307 . -379) 78474) ((-307 . -336) 78435) ((-811 . -950) 78382) ((-652 . -137) T) ((-1216 . -148) 78361) ((-1216 . -150) 78340) ((-1159 . -105) T) ((-1158 . -105) T) ((-1151 . -105) T) ((-1144 . -1090) T) ((-1114 . -105) T) ((-212 . -39) T) ((-284 . -707) 78327) ((-1144 . -605) 78303) ((-591 . -303) NIL) ((-1235 . -1234) 78287) ((-1235 . -1221) 78264) ((-494 . -1090) 78242) ((-1228 . -1226) 78203) ((-392 . -608) 78185) ((-519 . -842) T) ((-1135 . -221) 78135) ((-1228 . -1221) 78105) ((-1228 . -1224) 78089) ((-1207 . -1205) 78050) ((-1207 . -1221) 78027) ((-1207 . -1203) 78011) ((-1201 . -1234) 77995) ((-1201 . -1221) 77972) ((-613 . -608) 77954) ((-1159 . -279) 77920) ((-688 . -916) T) ((-1158 . -279) 77886) ((-1151 . -279) 77852) ((-1114 . -279) 77818) ((-1073 . -1090) T) ((-1057 . -1090) T) ((-53 . -296) T) ((-310 . -895) 77784) ((-307 . -895) NIL) ((-1057 . -1063) 77763) ((-1108 . -881) 77745) ((-794 . -43) 77729) ((-257 . -630) 77677) ((-242 . -630) 77625) ((-690 . -1053) 77612) ((-593 . -1221) 77589) ((-1108 . -1037) 77571) ((-314 . -172) 77502) ((-361 . -1090) T) ((-354 . -1090) T) ((-343 . -1090) T) ((-509 . -19) 77484) ((-1092 . -154) 77468) ((-733 . -301) 77447) ((-112 . -1090) T) ((-125 . -1053) 77434) ((-701 . -365) T) ((-509 . -601) 77409) ((-690 . -120) 77394) ((-438 . -105) T) ((-1155 . -916) 77373) ((-50 . -1134) 77323) ((-125 . -120) 77308) ((-218 . -842) T) ((-145 . -842) 77278) ((-626 . -710) T) ((-602 . -710) T) ((-810 . -523) 77211) ((-1035 . -1195) T) ((-944 . -154) 77195) ((-528 . -105) 77145) ((-1078 . -1199) 77124) ((-777 . -1199) 77103) ((-775 . -1199) 77082) ((-67 . -1195) T) ((-489 . -608) 77034) ((-489 . -609) 76956) ((-1157 . -453) 76887) ((-1143 . -1090) T) ((-1127 . -637) 76861) ((-1078 . -558) 76792) ((-493 . -413) 76761) ((-615 . -916) 76740) ((-455 . -1199) 76719) ((-1113 . -453) 76670) ((-777 . -558) 76581) ((-400 . -608) 76563) ((-775 . -558) 76494) ((-666 . -523) 76427) ((-721 . -303) 76414) ((-656 . -25) T) ((-656 . -21) T) ((-455 . -558) 76345) ((-126 . -916) T) ((-126 . -815) NIL) ((-356 . -25) T) ((-356 . -21) T) ((-353 . -25) T) ((-353 . -21) T) ((-342 . -25) T) ((-342 . -21) T) ((-257 . -25) T) ((-257 . -21) T) ((-88 . -386) T) ((-88 . -397) T) ((-242 . -25) T) ((-242 . -21) T) ((-1246 . -608) 76327) ((-1190 . -1102) T) ((-1190 . -23) T) ((-1151 . -303) 76212) ((-1114 . -303) 76199) ((-1073 . -707) 76067) ((-853 . -637) 76027) ((-944 . -981) 76011) ((-905 . -21) T) ((-284 . -172) T) ((-905 . -25) T) ((-866 . -842) 75962) ((-860 . -137) T) ((-701 . -1102) T) ((-701 . -23) T) ((-636 . -1090) 75940) ((-623 . -605) 75915) ((-623 . -1090) T) ((-581 . -1199) T) ((-526 . -1199) T) ((-581 . -558) T) ((-526 . -558) T) ((-361 . -707) 75867) ((-354 . -707) 75819) ((-343 . -707) 75771) ((-337 . -1053) 75755) ((-173 . -120) 75654) ((-173 . -1053) 75586) ((-112 . -707) 75536) ((-337 . -120) 75515) ((-270 . -1090) T) ((-269 . -1090) T) ((-268 . -1090) T) ((-267 . -1090) T) ((-690 . -1047) T) ((-266 . -1090) T) ((-265 . -1090) T) ((-264 . -1090) T) ((-204 . -1090) T) ((-203 . -1090) T) ((-201 . -1090) T) ((-169 . -1184) 75493) ((-169 . -1181) 75471) ((-200 . -1090) T) ((-199 . -1090) T) ((-125 . -1047) T) ((-198 . -1090) T) ((-195 . -1090) T) ((-690 . -225) T) ((-194 . -1090) T) ((-193 . -1090) T) ((-192 . -1090) T) ((-191 . -1090) T) ((-190 . -1090) T) ((-189 . -1090) T) ((-188 . -1090) T) ((-187 . -1090) T) ((-186 . -1090) T) ((-185 . -1090) T) ((-232 . -105) 75261) ((-169 . -40) 75239) ((-169 . -98) 75217) ((-855 . -137) T) ((-644 . -1037) 75113) ((-493 . -1054) 75043) ((-1103 . -1090) 74833) ((-1127 . -39) T) ((-662 . -499) 74817) ((-78 . -1195) T) ((-109 . -608) 74799) ((-1266 . -608) 74781) ((-383 . -608) 74763) ((-575 . -1184) T) ((-575 . -1181) T) ((-721 . -43) 74612) ((-534 . -608) 74594) ((-528 . -303) 74532) ((-509 . -608) 74514) ((-509 . -609) 74496) ((-1151 . -1136) NIL) ((-1027 . -1066) 74465) ((-1027 . -1090) T) ((-1004 . -105) T) ((-972 . -105) T) ((-910 . -105) T) ((-888 . -1037) 74442) ((-1127 . -716) T) ((-1003 . -637) 74387) ((-481 . -1090) T) ((-468 . -1090) T) ((-585 . -23) T) ((-575 . -40) T) ((-575 . -98) T) ((-429 . -105) T) ((-1059 . -221) 74333) ((-1159 . -43) 74230) ((-853 . -716) T) ((-683 . -916) T) ((-520 . -25) T) ((-516 . -21) T) ((-516 . -25) T) ((-1158 . -43) 74071) ((-337 . -1047) T) ((-1151 . -43) 73867) ((-1073 . -172) T) ((-173 . -1047) T) ((-1114 . -43) 73764) ((-702 . -52) 73741) ((-361 . -172) T) ((-354 . -172) T) ((-527 . -62) 73715) ((-506 . -62) 73665) ((-352 . -1261) 73642) ((-215 . -453) T) ((-314 . -285) 73593) ((-343 . -172) T) ((-173 . -238) T) ((-1206 . -842) 73492) ((-112 . -172) T) ((-866 . -993) 73476) ((-648 . -1102) T) ((-581 . -365) T) ((-581 . -327) 73463) ((-526 . -327) 73440) ((-526 . -365) T) ((-310 . -301) 73419) ((-307 . -301) T) ((-599 . -842) 73398) ((-1103 . -707) 73340) ((-528 . -277) 73324) ((-648 . -23) T) ((-420 . -223) 73308) ((-307 . -1021) NIL) ((-334 . -23) T) ((-236 . -23) T) ((-106 . -1010) 73292) ((-50 . -41) 73271) ((-607 . -1090) T) ((-352 . -370) T) ((-504 . -27) T) ((-232 . -303) 73209) ((-1078 . -1102) T) ((-1265 . -637) 73183) ((-777 . -1102) T) ((-775 . -1102) T) ((-455 . -1102) T) ((-1058 . -453) T) ((-953 . -453) 73134) ((-114 . -1090) T) ((-1078 . -23) T) ((-812 . -1054) T) ((-777 . -23) T) ((-775 . -23) T) ((-492 . -453) 73085) ((-1144 . -523) 72833) ((-383 . -384) 72812) ((-1163 . -413) 72796) ((-463 . -23) T) ((-455 . -23) T) ((-734 . -413) 72780) ((-733 . -296) T) ((-494 . -523) 72713) ((-284 . -285) T) ((-1075 . -608) 72695) ((-409 . -904) 72674) ((-55 . -1102) T) ((-1023 . -916) T) ((-1003 . -716) T) ((-702 . -881) NIL) ((-581 . -1102) T) ((-526 . -1102) T) ((-835 . -637) 72647) ((-1190 . -137) T) ((-1151 . -402) 72599) ((-1004 . -303) NIL) ((-810 . -499) 72583) ((-355 . -916) T) ((-1141 . -39) T) ((-409 . -637) 72535) ((-55 . -23) T) ((-701 . -137) T) ((-702 . -1037) 72415) ((-581 . -23) T) ((-112 . -523) NIL) ((-526 . -23) T) ((-169 . -411) 72386) ((-215 . -1124) T) ((-1125 . -1090) T) ((-1257 . -1256) 72370) ((-690 . -790) T) ((-690 . -787) T) ((-381 . -150) T) ((-1108 . -301) T) ((-1206 . -993) 72340) ((-53 . -916) T) ((-666 . -499) 72324) ((-244 . -1251) 72294) ((-243 . -1251) 72264) ((-1161 . -842) T) ((-1103 . -172) 72243) ((-1108 . -1021) T) ((-1044 . -39) T) ((-829 . -150) 72222) ((-829 . -148) 72201) ((-727 . -111) 72185) ((-607 . -138) T) ((-493 . -1090) 71975) ((-1163 . -1054) T) ((-865 . -453) T) ((-90 . -1195) T) ((-232 . -43) 71945) ((-142 . -111) 71927) ((-923 . -1088) T) ((-702 . -379) 71911) ((-734 . -1054) T) ((-1108 . -550) T) ((-392 . -1053) 71895) ((-1265 . -716) T) ((-1157 . -950) 71864) ((-57 . -608) 71846) ((-1113 . -950) 71813) ((-643 . -413) 71797) ((-1254 . -1054) T) ((-1235 . -105) T) ((-613 . -1053) 71781) ((-652 . -25) T) ((-652 . -21) T) ((-1143 . -523) NIL) ((-1228 . -105) T) ((-1207 . -105) T) ((-392 . -120) 71760) ((-212 . -247) 71744) ((-1201 . -105) T) ((-1051 . -1090) T) ((-1004 . -1136) T) ((-1051 . -1050) 71684) ((-813 . -1090) T) ((-341 . -1199) T) ((-626 . -637) 71668) ((-613 . -120) 71647) ((-602 . -637) 71631) ((-594 . -105) T) ((-585 . -137) T) ((-593 . -105) T) ((-416 . -1090) T) ((-387 . -1090) T) ((-219 . -1090) 71609) ((-636 . -523) 71542) ((-623 . -523) 71350) ((-828 . -1047) 71329) ((-634 . -154) 71313) ((-341 . -558) T) ((-702 . -895) 71256) ((-551 . -221) 71206) ((-1235 . -279) 71172) ((-1228 . -279) 71138) ((-1073 . -285) 71089) ((-497 . -840) T) ((-213 . -1102) T) ((-1207 . -279) 71055) ((-1201 . -279) 71021) ((-1004 . -43) 70971) ((-208 . -840) T) ((-1190 . -502) 70937) ((-910 . -43) 70889) ((-835 . -789) 70868) ((-835 . -786) 70847) ((-835 . -716) 70826) ((-361 . -285) T) ((-354 . -285) T) ((-343 . -285) T) ((-169 . -453) 70757) ((-429 . -43) 70741) ((-112 . -285) T) ((-213 . -23) T) ((-409 . -789) 70720) ((-409 . -786) 70699) ((-409 . -716) T) ((-509 . -283) 70674) ((-489 . -1053) 70639) ((-648 . -137) T) ((-1103 . -523) 70572) ((-334 . -137) T) ((-169 . -404) 70551) ((-236 . -137) T) ((-493 . -707) 70493) ((-810 . -281) 70470) ((-489 . -120) 70419) ((-33 . -37) 70403) ((-643 . -1054) T) ((-1216 . -453) 70334) ((-1078 . -137) T) ((-257 . -842) 70313) ((-242 . -842) 70292) ((-777 . -137) T) ((-775 . -137) T) ((-575 . -453) T) ((-1051 . -707) 70234) ((-613 . -1047) T) ((-1027 . -523) 70167) ((-463 . -137) T) ((-455 . -137) T) ((-50 . -1090) T) ((-387 . -707) 70137) ((-812 . -1090) T) ((-481 . -523) 70070) ((-468 . -523) 70003) ((-454 . -369) 69973) ((-50 . -605) 69952) ((-310 . -296) T) ((-662 . -608) 69914) ((-64 . -842) 69893) ((-1207 . -303) 69778) ((-1004 . -402) 69760) ((-810 . -601) 69737) ((-525 . -842) 69716) ((-505 . -842) 69695) ((-45 . -1199) T) ((-999 . -1037) 69591) ((-55 . -137) T) ((-581 . -137) T) ((-526 . -137) T) ((-288 . -637) 69451) ((-341 . -327) 69428) ((-341 . -365) T) ((-319 . -320) 69405) ((-314 . -281) 69390) ((-45 . -558) T) ((-381 . -1181) T) ((-381 . -1184) T) ((-1035 . -1172) 69365) ((-1169 . -227) 69315) ((-1151 . -223) 69267) ((-1035 . -111) 69213) ((-328 . -1090) T) ((-381 . -98) T) ((-381 . -40) T) ((-860 . -21) T) ((-860 . -25) T) ((-855 . -25) T) ((-489 . -1047) T) ((-538 . -536) 69157) ((-855 . -21) T) ((-490 . -227) 69107) ((-1144 . -499) 69041) ((-1266 . -1053) 69025) ((-383 . -1053) 69009) ((-489 . -238) T) ((-811 . -105) T) ((-704 . -150) 68988) ((-704 . -148) 68967) ((-494 . -499) 68951) ((-1266 . -120) 68930) ((-495 . -333) 68899) ((-999 . -379) 68883) ((-521 . -1090) T) ((-493 . -172) 68862) ((-999 . -336) 68846) ((-415 . -105) T) ((-383 . -120) 68825) ((-275 . -984) 68809) ((-274 . -984) 68793) ((-216 . -39) T) ((-144 . -39) T) ((-1264 . -608) 68775) ((-1262 . -608) 68757) ((-114 . -523) NIL) ((-1157 . -1219) 68741) ((-846 . -844) 68725) ((-1163 . -1090) T) ((-106 . -1195) T) ((-953 . -950) 68686) ((-734 . -1090) T) ((-812 . -707) 68623) ((-1207 . -1136) NIL) ((-492 . -950) 68568) ((-1058 . -146) T) ((-65 . -105) 68546) ((-49 . -608) 68528) ((-83 . -608) 68510) ((-352 . -637) 68455) ((-1254 . -1090) T) ((-520 . -842) T) ((-341 . -1102) T) ((-289 . -1090) T) ((-999 . -895) 68414) ((-289 . -605) 68393) ((-1235 . -43) 68290) ((-1228 . -43) 68131) ((-537 . -1088) T) ((-1207 . -43) 67927) ((-497 . -1054) T) ((-1201 . -43) 67824) ((-208 . -1054) T) ((-341 . -23) T) ((-155 . -608) 67806) ((-828 . -790) 67785) ((-828 . -787) 67764) ((-733 . -916) 67743) ((-594 . -43) 67716) ((-593 . -43) 67613) ((-864 . -558) T) ((-213 . -137) T) ((-314 . -1002) 67579) ((-84 . -608) 67561) ((-702 . -301) 67540) ((-288 . -716) 67442) ((-819 . -105) T) ((-852 . -836) T) ((-288 . -478) 67421) ((-1257 . -105) T) ((-45 . -365) T) ((-866 . -150) 67400) ((-33 . -1090) T) ((-866 . -148) 67379) ((-1143 . -499) 67361) ((-1266 . -1047) T) ((-493 . -523) 67294) ((-1131 . -1195) T) ((-965 . -608) 67276) ((-636 . -499) 67260) ((-623 . -499) 67192) ((-810 . -608) 66950) ((-53 . -27) T) ((-1163 . -707) 66847) ((-643 . -1090) T) ((-438 . -366) 66821) ((-734 . -707) 66650) ((-1092 . -105) T) ((-811 . -303) 66637) ((-852 . -1090) T) ((-1262 . -384) 66609) ((-1051 . -523) 66542) ((-1144 . -281) 66518) ((-232 . -223) 66487) ((-1254 . -707) 66457) ((-812 . -172) 66436) ((-219 . -523) 66369) ((-613 . -790) 66348) ((-613 . -787) 66327) ((-1193 . -608) 66274) ((-212 . -1195) T) ((-666 . -608) 66241) ((-1141 . -1010) 66225) ((-352 . -716) T) ((-944 . -105) 66175) ((-1207 . -402) 66127) ((-1103 . -499) 66111) ((-65 . -303) 66049) ((-329 . -105) T) ((-1190 . -21) T) ((-1190 . -25) T) ((-45 . -1102) T) ((-701 . -21) T) ((-618 . -608) 66031) ((-524 . -320) 66010) ((-701 . -25) T) ((-112 . -281) NIL) ((-917 . -1102) T) ((-45 . -23) T) ((-763 . -1102) T) ((-568 . -1199) T) ((-504 . -1199) T) ((-314 . -608) 65992) ((-1004 . -223) 65974) ((-169 . -166) 65958) ((-580 . -558) T) ((-568 . -558) T) ((-504 . -558) T) ((-763 . -23) T) ((-1227 . -150) 65937) ((-1144 . -601) 65913) ((-1227 . -148) 65892) ((-1027 . -499) 65876) ((-1206 . -148) 65801) ((-1206 . -150) 65726) ((-1257 . -1263) 65705) ((-481 . -499) 65689) ((-468 . -499) 65673) ((-531 . -39) T) ((-643 . -707) 65643) ((-652 . -842) 65622) ((-1163 . -172) 65573) ((-367 . -105) T) ((-232 . -230) 65552) ((-244 . -105) T) ((-243 . -105) T) ((-1216 . -950) 65521) ((-113 . -105) T) ((-240 . -842) 65500) ((-811 . -43) 65349) ((-734 . -172) 65240) ((-50 . -523) 65000) ((-1143 . -281) 64975) ((-205 . -1090) T) ((-1135 . -1090) T) ((-921 . -105) T) ((-1135 . -605) 64954) ((-585 . -25) T) ((-585 . -21) T) ((-1092 . -303) 64892) ((-964 . -413) 64876) ((-688 . -1199) T) ((-623 . -281) 64851) ((-1078 . -630) 64799) ((-777 . -630) 64747) ((-775 . -630) 64695) ((-341 . -137) T) ((-284 . -608) 64677) ((-921 . -920) 64649) ((-688 . -558) T) ((-900 . -1090) T) ((-864 . -1102) T) ((-455 . -630) 64597) ((-900 . -898) 64581) ((-857 . -856) T) ((-857 . -858) T) ((-944 . -303) 64519) ((-381 . -453) T) ((-864 . -23) T) ((-497 . -1090) T) ((-857 . -148) T) ((-690 . -637) 64506) ((-857 . -150) 64485) ((-208 . -1090) T) ((-310 . -916) 64464) ((-307 . -916) T) ((-307 . -815) NIL) ((-392 . -710) T) ((-774 . -148) 64443) ((-774 . -150) 64422) ((-125 . -637) 64409) ((-479 . -148) 64388) ((-420 . -413) 64372) ((-479 . -150) 64351) ((-114 . -499) 64333) ((-1155 . -1199) 64312) ((-2 . -608) 64294) ((-1143 . -19) 64276) ((-1155 . -558) 64187) ((-1143 . -601) 64162) ((-648 . -21) T) ((-648 . -25) T) ((-591 . -1129) T) ((-1103 . -281) 64139) ((-334 . -25) T) ((-334 . -21) T) ((-236 . -25) T) ((-236 . -21) T) ((-504 . -365) T) ((-1257 . -43) 64109) ((-1127 . -1195) T) ((-623 . -601) 64084) ((-1078 . -25) T) ((-1078 . -21) T) ((-964 . -1054) T) ((-734 . -523) 64030) ((-534 . -787) T) ((-534 . -790) T) ((-126 . -1199) T) ((-233 . -105) T) ((-615 . -558) T) ((-777 . -25) T) ((-777 . -21) T) ((-775 . -21) T) ((-775 . -25) T) ((-725 . -1054) T) ((-705 . -1054) T) ((-662 . -1053) 64014) ((-463 . -25) T) ((-126 . -558) T) ((-463 . -21) T) ((-455 . -25) T) ((-455 . -21) T) ((-1127 . -1037) 63910) ((-812 . -285) 63889) ((-733 . -432) 63873) ((-818 . -1090) T) ((-662 . -120) 63852) ((-289 . -523) 63612) ((-1264 . -1053) 63596) ((-1262 . -1053) 63580) ((-1227 . -1181) 63546) ((-244 . -303) 63484) ((-243 . -303) 63422) ((-1210 . -105) 63400) ((-1144 . -609) NIL) ((-1144 . -608) 63382) ((-1227 . -1184) 63348) ((-1207 . -223) 63300) ((-1206 . -1181) 63266) ((-1206 . -1184) 63232) ((-1127 . -379) 63216) ((-1108 . -815) T) ((-1108 . -916) T) ((-1103 . -601) 63193) ((-1073 . -609) 63177) ((-538 . -105) T) ((-494 . -608) 63144) ((-810 . -283) 63121) ((-603 . -154) 63068) ((-420 . -1054) T) ((-497 . -707) 63018) ((-493 . -499) 63002) ((-325 . -842) 62981) ((-337 . -637) 62955) ((-55 . -21) T) ((-55 . -25) T) ((-208 . -707) 62905) ((-169 . -714) 62876) ((-173 . -637) 62808) ((-581 . -21) T) ((-581 . -25) T) ((-526 . -25) T) ((-526 . -21) T) ((-480 . -154) 62758) ((-1073 . -608) 62740) ((-1057 . -608) 62722) ((-994 . -105) T) ((-850 . -105) T) ((-794 . -413) 62686) ((-45 . -137) T) ((-688 . -365) T) ((-204 . -890) T) ((-690 . -789) T) ((-690 . -786) T) ((-580 . -1102) T) ((-568 . -1102) T) ((-504 . -1102) T) ((-690 . -716) T) ((-361 . -608) 62668) ((-354 . -608) 62650) ((-343 . -608) 62632) ((-71 . -398) T) ((-71 . -397) T) ((-112 . -609) 62562) ((-112 . -608) 62544) ((-203 . -890) T) ((-958 . -154) 62528) ((-1227 . -98) 62494) ((-763 . -137) T) ((-139 . -716) T) ((-125 . -716) T) ((-1227 . -40) 62460) ((-1051 . -499) 62444) ((-580 . -23) T) ((-568 . -23) T) ((-504 . -23) T) ((-1206 . -98) 62410) ((-1206 . -40) 62376) ((-1157 . -105) T) ((-1113 . -105) T) ((-846 . -105) T) ((-219 . -499) 62360) ((-1264 . -120) 62339) ((-1262 . -120) 62318) ((-49 . -1053) 62302) ((-1216 . -1219) 62286) ((-847 . -844) 62270) ((-1163 . -285) 62249) ((-114 . -281) 62224) ((-1127 . -895) 62183) ((-49 . -120) 62162) ((-734 . -285) 62073) ((-662 . -1047) T) ((-1151 . -840) NIL) ((-1143 . -609) NIL) ((-1143 . -608) 62055) ((-1059 . -605) 62030) ((-1059 . -1090) T) ((-79 . -442) T) ((-79 . -397) T) ((-662 . -225) 62009) ((-155 . -1053) 61993) ((-575 . -555) 61977) ((-356 . -150) 61956) ((-356 . -148) 61907) ((-353 . -150) 61886) ((-692 . -1090) T) ((-353 . -148) 61837) ((-342 . -150) 61816) ((-342 . -148) 61767) ((-257 . -148) 61746) ((-257 . -150) 61725) ((-244 . -43) 61695) ((-242 . -150) 61674) ((-126 . -365) T) ((-242 . -148) 61653) ((-243 . -43) 61623) ((-155 . -120) 61602) ((-1003 . -1037) 61477) ((-922 . -1088) T) ((-683 . -1199) T) ((-794 . -1054) T) ((-688 . -1102) T) ((-1264 . -1047) T) ((-1262 . -1047) T) ((-1155 . -1102) T) ((-1141 . -1195) T) ((-1003 . -379) 61454) ((-905 . -148) T) ((-905 . -150) 61436) ((-864 . -137) T) ((-810 . -1053) 61333) ((-683 . -558) T) ((-688 . -23) T) ((-636 . -608) 61300) ((-636 . -609) 61261) ((-623 . -609) NIL) ((-623 . -608) 61243) ((-497 . -172) T) ((-213 . -21) T) ((-213 . -25) T) ((-208 . -172) T) ((-479 . -1184) 61209) ((-479 . -1181) 61175) ((-270 . -608) 61157) ((-269 . -608) 61139) ((-268 . -608) 61121) ((-267 . -608) 61103) ((-266 . -608) 61085) ((-509 . -640) 61067) ((-265 . -608) 61049) ((-337 . -716) T) ((-264 . -608) 61031) ((-114 . -19) 61013) ((-173 . -716) T) ((-509 . -375) 60995) ((-204 . -608) 60977) ((-528 . -1134) 60961) ((-509 . -132) T) ((-114 . -601) 60936) ((-203 . -608) 60918) ((-479 . -40) 60884) ((-479 . -98) 60850) ((-201 . -608) 60832) ((-200 . -608) 60814) ((-199 . -608) 60796) ((-198 . -608) 60778) ((-195 . -608) 60760) ((-194 . -608) 60742) ((-193 . -608) 60724) ((-192 . -608) 60706) ((-191 . -608) 60688) ((-190 . -608) 60670) ((-189 . -608) 60652) ((-541 . -1093) 60604) ((-188 . -608) 60586) ((-187 . -608) 60568) ((-50 . -499) 60505) ((-186 . -608) 60487) ((-185 . -608) 60469) ((-1155 . -23) T) ((-810 . -120) 60359) ((-634 . -105) 60309) ((-493 . -281) 60286) ((-1103 . -608) 60044) ((-1091 . -1090) T) ((-1044 . -1195) T) ((-615 . -1102) T) ((-1265 . -1037) 60028) ((-1157 . -303) 60015) ((-1113 . -303) 60002) ((-126 . -1102) T) ((-814 . -105) T) ((-615 . -23) T) ((-1135 . -523) 59762) ((-388 . -105) T) ((-321 . -105) T) ((-1003 . -895) 59714) ((-964 . -1090) T) ((-155 . -1047) T) ((-126 . -23) T) ((-721 . -413) 59698) ((-725 . -1090) T) ((-705 . -1090) T) ((-692 . -138) T) ((-454 . -1090) T) ((-310 . -432) 59682) ((-409 . -1195) T) ((-1027 . -609) 59643) ((-1027 . -608) 59605) ((-1023 . -1199) T) ((-215 . -105) T) ((-233 . -43) 59551) ((-811 . -223) 59535) ((-1023 . -558) T) ((-828 . -637) 59508) ((-355 . -1199) T) ((-481 . -608) 59470) ((-481 . -609) 59431) ((-468 . -609) 59392) ((-468 . -608) 59354) ((-409 . -879) 59338) ((-314 . -1053) 59173) ((-409 . -881) 59098) ((-835 . -1037) 58994) ((-497 . -523) NIL) ((-493 . -601) 58971) ((-355 . -558) T) ((-208 . -523) NIL) ((-866 . -453) T) ((-420 . -1090) T) ((-409 . -1037) 58835) ((-314 . -120) 58649) ((-683 . -365) T) ((-215 . -279) T) ((-53 . -1199) T) ((-810 . -1047) 58579) ((-580 . -137) T) ((-568 . -137) T) ((-504 . -137) T) ((-53 . -558) T) ((-1144 . -283) 58555) ((-1157 . -1136) 58533) ((-310 . -27) 58512) ((-1058 . -105) T) ((-810 . -225) 58464) ((-232 . -840) 58443) ((-953 . -105) T) ((-703 . -105) T) ((-289 . -499) 58380) ((-492 . -105) T) ((-721 . -1054) T) ((-607 . -608) 58362) ((-607 . -609) 58223) ((-409 . -379) 58207) ((-409 . -336) 58191) ((-1157 . -43) 58020) ((-1113 . -43) 57869) ((-846 . -43) 57839) ((-392 . -637) 57823) ((-634 . -303) 57761) ((-964 . -707) 57658) ((-212 . -111) 57642) ((-50 . -281) 57567) ((-725 . -707) 57537) ((-613 . -637) 57511) ((-305 . -1090) T) ((-284 . -1053) 57498) ((-114 . -608) 57480) ((-114 . -609) 57462) ((-454 . -707) 57432) ((-811 . -246) 57371) ((-679 . -1090) 57349) ((-551 . -1090) T) ((-1159 . -1054) T) ((-1158 . -1054) T) ((-284 . -120) 57334) ((-1151 . -1054) T) ((-1114 . -1054) T) ((-551 . -605) 57313) ((-1004 . -840) T) ((-219 . -677) 57271) ((-683 . -1102) T) ((-1190 . -730) 57247) ((-967 . -971) 57224) ((-314 . -1047) T) ((-341 . -25) T) ((-341 . -21) T) ((-409 . -895) 57183) ((-73 . -1195) T) ((-828 . -789) 57162) ((-420 . -707) 57136) ((-794 . -1090) T) ((-828 . -786) 57115) ((-688 . -137) T) ((-702 . -916) 57094) ((-683 . -23) T) ((-497 . -285) T) ((-828 . -716) 57073) ((-314 . -225) 57025) ((-314 . -238) 57004) ((-208 . -285) T) ((-1023 . -365) T) ((-1227 . -453) 56983) ((-1206 . -453) 56962) ((-355 . -327) 56939) ((-355 . -365) T) ((-1125 . -608) 56921) ((-50 . -1231) 56871) ((-865 . -105) T) ((-634 . -277) 56855) ((-688 . -1056) T) ((-489 . -637) 56820) ((-473 . -1090) T) ((-50 . -601) 56745) ((-1143 . -283) 56720) ((-1155 . -137) T) ((-45 . -630) 56654) ((-53 . -365) T) ((-1096 . -608) 56636) ((-1078 . -842) 56615) ((-623 . -283) 56590) ((-953 . -303) 56577) ((-777 . -842) 56556) ((-775 . -842) 56535) ((-455 . -842) 56514) ((-493 . -608) 56272) ((-232 . -413) 56241) ((-216 . -1195) T) ((-144 . -1195) T) ((-218 . -154) 56223) ((-145 . -154) 56198) ((-70 . -1195) T) ((-734 . -281) 56125) ((-615 . -137) T) ((-492 . -303) 56112) ((-1059 . -523) 55920) ((-284 . -1047) T) ((-126 . -137) T) ((-454 . -753) T) ((-964 . -172) 55871) ((-1150 . -1090) T) ((-1103 . -283) 55848) ((-1073 . -1053) 55758) ((-613 . -789) 55737) ((-591 . -1090) T) ((-613 . -786) 55716) ((-613 . -716) T) ((-289 . -281) 55695) ((-288 . -1195) T) ((-1051 . -608) 55657) ((-1051 . -609) 55618) ((-1023 . -1102) T) ((-169 . -105) T) ((-271 . -842) T) ((-1092 . -221) 55602) ((-813 . -608) 55584) ((-1073 . -120) 55473) ((-1003 . -301) T) ((-857 . -453) T) ((-794 . -707) 55457) ((-361 . -1053) 55409) ((-355 . -1102) T) ((-354 . -1053) 55361) ((-416 . -608) 55343) ((-387 . -608) 55325) ((-343 . -1053) 55277) ((-219 . -608) 55244) ((-1023 . -23) T) ((-774 . -453) T) ((-112 . -1053) 55194) ((-893 . -105) T) ((-833 . -105) T) ((-803 . -105) T) ((-761 . -105) T) ((-667 . -105) T) ((-479 . -453) 55173) ((-420 . -172) T) ((-361 . -120) 55104) ((-354 . -120) 55035) ((-343 . -120) 54966) ((-244 . -223) 54935) ((-243 . -223) 54904) ((-355 . -23) T) ((-76 . -1195) T) ((-215 . -43) 54869) ((-112 . -120) 54796) ((-45 . -25) T) ((-45 . -21) T) ((-662 . -710) T) ((-169 . -279) 54774) ((-857 . -404) T) ((-53 . -1102) T) ((-917 . -25) T) ((-763 . -25) T) ((-1135 . -499) 54711) ((-495 . -1090) T) ((-1266 . -637) 54685) ((-1216 . -105) T) ((-847 . -105) T) ((-232 . -1054) 54615) ((-1058 . -1136) T) ((-965 . -787) 54568) ((-383 . -637) 54552) ((-53 . -23) T) ((-965 . -790) 54505) ((-810 . -790) 54456) ((-810 . -787) 54407) ((-289 . -601) 54386) ((-489 . -716) T) ((-1155 . -502) 54364) ((-575 . -105) T) ((-865 . -303) 54308) ((-643 . -281) 54287) ((-121 . -651) T) ((-81 . -1195) T) ((-1058 . -43) 54274) ((-656 . -376) 54253) ((-953 . -43) 54102) ((-721 . -1090) T) ((-492 . -43) 53951) ((-91 . -1195) T) ((-575 . -279) T) ((-1207 . -840) NIL) ((-1159 . -1090) T) ((-1158 . -1090) T) ((-1151 . -1090) T) ((-352 . -1037) 53928) ((-1073 . -1047) T) ((-1004 . -1054) T) ((-50 . -608) 53910) ((-50 . -609) NIL) ((-910 . -1054) T) ((-812 . -608) 53892) ((-1132 . -105) 53870) ((-1073 . -238) 53821) ((-429 . -1054) T) ((-361 . -1047) T) ((-354 . -1047) T) ((-367 . -366) 53798) ((-343 . -1047) T) ((-244 . -230) 53777) ((-243 . -230) 53756) ((-113 . -366) 53730) ((-1073 . -225) 53655) ((-1114 . -1090) T) ((-288 . -895) 53614) ((-112 . -1047) T) ((-733 . -1199) 53593) ((-683 . -137) T) ((-420 . -523) 53435) ((-361 . -225) 53414) ((-361 . -238) T) ((-49 . -710) T) ((-354 . -225) 53393) ((-354 . -238) T) ((-343 . -225) 53372) ((-343 . -238) T) ((-733 . -558) T) ((-169 . -303) 53337) ((-112 . -238) T) ((-112 . -225) T) ((-314 . -787) T) ((-864 . -21) T) ((-864 . -25) T) ((-409 . -301) T) ((-509 . -39) T) ((-114 . -283) 53312) ((-1103 . -1053) 53209) ((-865 . -1136) NIL) ((-860 . -859) T) ((-860 . -858) T) ((-855 . -854) T) ((-855 . -858) T) ((-855 . -859) T) ((-328 . -608) 53191) ((-409 . -1021) 53169) ((-1103 . -120) 53059) ((-860 . -148) 53029) ((-860 . -150) T) ((-855 . -150) T) ((-855 . -148) 52999) ((-438 . -1090) T) ((-1266 . -716) T) ((-68 . -608) 52981) ((-865 . -43) 52926) ((-531 . -1195) T) ((-599 . -154) 52910) ((-521 . -608) 52892) ((-1216 . -303) 52879) ((-721 . -707) 52728) ((-534 . -788) T) ((-534 . -789) T) ((-568 . -630) 52710) ((-504 . -630) 52670) ((-356 . -453) T) ((-353 . -453) T) ((-342 . -453) T) ((-257 . -453) 52621) ((-528 . -1090) 52571) ((-242 . -453) 52522) ((-1135 . -281) 52501) ((-1163 . -608) 52483) ((-679 . -523) 52416) ((-964 . -285) 52395) ((-551 . -523) 52155) ((-734 . -609) NIL) ((-734 . -608) 52137) ((-1254 . -608) 52119) ((-1157 . -223) 52103) ((-169 . -1136) 52082) ((-1239 . -558) 52061) ((-1159 . -707) 51958) ((-1158 . -707) 51799) ((-887 . -105) T) ((-1151 . -707) 51595) ((-1114 . -707) 51492) ((-1141 . -665) 51476) ((-356 . -404) 51427) ((-353 . -404) 51378) ((-342 . -404) 51329) ((-1023 . -137) T) ((-794 . -523) 51241) ((-289 . -609) NIL) ((-289 . -608) 51223) ((-905 . -453) T) ((-965 . -370) 51176) ((-810 . -370) 51155) ((-519 . -518) 51134) ((-517 . -518) 51113) ((-497 . -281) NIL) ((-493 . -283) 51090) ((-420 . -285) T) ((-355 . -137) T) ((-208 . -281) NIL) ((-683 . -502) NIL) ((-101 . -1102) T) ((-169 . -43) 50918) ((-1229 . -558) T) ((-1227 . -974) 50880) ((-1132 . -303) 50818) ((-1206 . -974) 50787) ((-905 . -404) T) ((-1103 . -1047) 50717) ((-1135 . -601) 50696) ((-733 . -365) 50675) ((-774 . -154) 50627) ((-121 . -842) T) ((-1059 . -499) 50559) ((-580 . -21) T) ((-580 . -25) T) ((-568 . -21) T) ((-568 . -25) T) ((-504 . -25) T) ((-504 . -21) T) ((-1216 . -1136) 50537) ((-1103 . -225) 50489) ((-53 . -137) T) ((-33 . -608) 50471) ((-968 . -1088) T) ((-1177 . -105) T) ((-232 . -1090) 50261) ((-865 . -402) 50238) ((-1079 . -105) T) ((-1069 . -105) T) ((-603 . -105) T) ((-480 . -105) T) ((-1216 . -43) 50067) ((-847 . -43) 50037) ((-1155 . -630) 49985) ((-721 . -172) 49896) ((-643 . -608) 49878) ((-575 . -43) 49865) ((-958 . -105) 49815) ((-852 . -608) 49797) ((-852 . -609) 49719) ((-591 . -523) NIL) ((-1235 . -1054) T) ((-1228 . -1054) T) ((-1207 . -1054) T) ((-1201 . -1054) T) ((-1270 . -1102) T) ((-1190 . -150) 49698) ((-1159 . -172) 49649) ((-594 . -1054) T) ((-593 . -1054) T) ((-1158 . -172) 49580) ((-1151 . -172) 49511) ((-1114 . -172) 49462) ((-1004 . -1090) T) ((-972 . -1090) T) ((-910 . -1090) T) ((-794 . -792) 49446) ((-774 . -641) 49430) ((-774 . -974) 49399) ((-733 . -1102) T) ((-688 . -25) T) ((-688 . -21) T) ((-126 . -630) 49376) ((-690 . -881) 49358) ((-429 . -1090) T) ((-310 . -1199) 49337) ((-307 . -1199) T) ((-169 . -402) 49321) ((-1190 . -148) 49300) ((-479 . -974) 49262) ((-77 . -608) 49244) ((-733 . -23) T) ((-112 . -790) T) ((-112 . -787) T) ((-310 . -558) 49223) ((-690 . -1037) 49205) ((-307 . -558) T) ((-1270 . -23) T) ((-139 . -1037) 49187) ((-493 . -1053) 49084) ((-50 . -283) 49009) ((-1155 . -25) T) ((-1155 . -21) T) ((-232 . -707) 48951) ((-493 . -120) 48841) ((-1082 . -105) 48819) ((-1034 . -105) T) ((-634 . -823) 48798) ((-721 . -523) 48736) ((-1051 . -1053) 48720) ((-615 . -21) T) ((-615 . -25) T) ((-1059 . -281) 48695) ((-363 . -105) T) ((-319 . -105) T) ((-662 . -637) 48669) ((-387 . -1053) 48653) ((-1051 . -120) 48632) ((-811 . -413) 48616) ((-126 . -25) T) ((-94 . -608) 48598) ((-126 . -21) T) ((-603 . -303) 48393) ((-480 . -303) 48197) ((-1239 . -1102) T) ((-1135 . -609) NIL) ((-387 . -120) 48176) ((-381 . -105) T) ((-205 . -608) 48158) ((-1135 . -608) 48140) ((-1004 . -707) 48090) ((-1151 . -523) 47824) ((-910 . -707) 47776) ((-1114 . -523) 47746) ((-352 . -301) T) ((-1239 . -23) T) ((-1169 . -154) 47696) ((-958 . -303) 47634) ((-829 . -105) T) ((-429 . -707) 47618) ((-215 . -823) T) ((-822 . -105) T) ((-820 . -105) T) ((-490 . -154) 47568) ((-1227 . -1226) 47547) ((-1108 . -1199) T) ((-337 . -1037) 47514) ((-1227 . -1221) 47484) ((-1227 . -1224) 47468) ((-1206 . -1205) 47447) ((-85 . -608) 47429) ((-900 . -608) 47411) ((-1206 . -1221) 47388) ((-1108 . -558) T) ((-917 . -842) T) ((-763 . -842) T) ((-497 . -609) 47318) ((-497 . -608) 47300) ((-381 . -279) T) ((-663 . -842) T) ((-1206 . -1203) 47284) ((-1229 . -1102) T) ((-208 . -609) 47214) ((-208 . -608) 47196) ((-1059 . -601) 47171) ((-64 . -154) 47155) ((-525 . -154) 47139) ((-505 . -154) 47123) ((-361 . -1261) 47107) ((-354 . -1261) 47091) ((-343 . -1261) 47075) ((-310 . -365) 47054) ((-307 . -365) T) ((-493 . -1047) 46984) ((-683 . -630) 46966) ((-1264 . -637) 46940) ((-1262 . -637) 46914) ((-1229 . -23) T) ((-679 . -499) 46898) ((-69 . -608) 46880) ((-1103 . -790) 46831) ((-1103 . -787) 46782) ((-551 . -499) 46719) ((-662 . -39) T) ((-493 . -225) 46671) ((-289 . -283) 46650) ((-232 . -172) 46629) ((-857 . -1251) 46613) ((-811 . -1054) T) ((-49 . -637) 46571) ((-1073 . -370) 46522) ((-721 . -285) 46453) ((-528 . -523) 46386) ((-812 . -1053) 46337) ((-1078 . -148) 46316) ((-361 . -370) 46295) ((-354 . -370) 46274) ((-343 . -370) 46253) ((-1078 . -150) 46232) ((-865 . -223) 46209) ((-812 . -120) 46144) ((-777 . -148) 46123) ((-777 . -150) 46102) ((-257 . -950) 46069) ((-244 . -840) 46048) ((-242 . -950) 45993) ((-243 . -840) 45972) ((-775 . -148) 45951) ((-775 . -150) 45930) ((-155 . -637) 45904) ((-455 . -150) 45883) ((-455 . -148) 45862) ((-662 . -716) T) ((-818 . -608) 45844) ((-1235 . -1090) T) ((-1228 . -1090) T) ((-1207 . -1090) T) ((-1201 . -1090) T) ((-1190 . -1184) 45810) ((-1190 . -1181) 45776) ((-1159 . -285) 45755) ((-1158 . -285) 45706) ((-1151 . -285) 45657) ((-1114 . -285) 45636) ((-337 . -895) 45617) ((-1004 . -172) T) ((-910 . -172) T) ((-774 . -1221) 45594) ((-594 . -1090) T) ((-593 . -1090) T) ((-683 . -21) T) ((-683 . -25) T) ((-479 . -1224) 45578) ((-479 . -1221) 45548) ((-420 . -281) 45476) ((-310 . -1102) 45325) ((-307 . -1102) T) ((-1190 . -40) 45291) ((-1190 . -98) 45257) ((-89 . -608) 45239) ((-96 . -105) 45217) ((-1270 . -137) T) ((-733 . -137) T) ((-581 . -148) T) ((-581 . -150) 45199) ((-526 . -150) 45181) ((-526 . -148) T) ((-310 . -23) 45033) ((-45 . -340) 45007) ((-307 . -23) T) ((-1143 . -640) 44989) ((-810 . -637) 44837) ((-1257 . -1054) T) ((-1143 . -375) 44819) ((-169 . -223) 44803) ((-591 . -499) 44785) ((-232 . -523) 44718) ((-1264 . -716) T) ((-1262 . -716) T) ((-1163 . -1053) 44601) ((-734 . -1053) 44424) ((-1163 . -120) 44286) ((-812 . -1047) T) ((-734 . -120) 44088) ((-524 . -105) T) ((-53 . -630) 44048) ((-519 . -105) T) ((-517 . -105) T) ((-1254 . -1053) 44018) ((-1034 . -43) 44002) ((-812 . -225) T) ((-812 . -238) 43981) ((-551 . -281) 43960) ((-1254 . -120) 43925) ((-1216 . -223) 43909) ((-1235 . -707) 43806) ((-1228 . -707) 43647) ((-1059 . -609) NIL) ((-1059 . -608) 43629) ((-1207 . -707) 43425) ((-1201 . -707) 43322) ((-1003 . -916) T) ((-692 . -608) 43291) ((-155 . -716) T) ((-1239 . -137) T) ((-1103 . -370) 43270) ((-1004 . -523) NIL) ((-244 . -413) 43239) ((-243 . -413) 43208) ((-1023 . -25) T) ((-1023 . -21) T) ((-594 . -707) 43181) ((-593 . -707) 43078) ((-794 . -281) 43036) ((-135 . -105) 43014) ((-828 . -1037) 42910) ((-169 . -823) 42889) ((-314 . -637) 42786) ((-810 . -39) T) ((-704 . -105) T) ((-1108 . -1102) T) ((-1026 . -1195) T) ((-381 . -43) 42751) ((-355 . -25) T) ((-355 . -21) T) ((-218 . -105) T) ((-162 . -105) T) ((-158 . -105) T) ((-145 . -105) T) ((-356 . -1251) 42735) ((-353 . -1251) 42719) ((-342 . -1251) 42703) ((-860 . -453) T) ((-169 . -350) 42682) ((-568 . -842) T) ((-504 . -842) T) ((-855 . -453) T) ((-1108 . -23) T) ((-92 . -608) 42664) ((-690 . -301) T) ((-829 . -43) 42634) ((-822 . -43) 42604) ((-1229 . -137) T) ((-1135 . -283) 42583) ((-965 . -716) 42482) ((-965 . -788) 42435) ((-965 . -789) 42388) ((-810 . -786) 42367) ((-125 . -301) T) ((-96 . -303) 42305) ((-666 . -39) T) ((-551 . -601) 42284) ((-53 . -25) T) ((-53 . -21) T) ((-810 . -789) 42235) ((-810 . -788) 42214) ((-690 . -1021) T) ((-643 . -1053) 42198) ((-965 . -478) 42151) ((-810 . -716) 42077) ((-905 . -1251) 42064) ((-236 . -320) 42041) ((-860 . -404) 42011) ((-493 . -790) 41962) ((-493 . -787) 41913) ((-855 . -404) 41883) ((-1163 . -1047) T) ((-734 . -1047) T) ((-643 . -120) 41862) ((-1163 . -324) 41839) ((-1182 . -105) 41817) ((-1091 . -608) 41799) ((-690 . -550) T) ((-734 . -324) 41776) ((-811 . -1090) T) ((-734 . -225) T) ((-1254 . -1047) T) ((-415 . -1090) T) ((-244 . -1054) 41706) ((-243 . -1054) 41636) ((-284 . -637) 41623) ((-591 . -281) 41598) ((-679 . -677) 41556) ((-1235 . -172) 41507) ((-964 . -608) 41489) ((-866 . -105) T) ((-725 . -608) 41471) ((-705 . -608) 41453) ((-1228 . -172) 41384) ((-1207 . -172) 41315) ((-1201 . -172) 41266) ((-688 . -842) T) ((-1004 . -285) T) ((-454 . -608) 41248) ((-618 . -716) T) ((-65 . -1090) 41226) ((-240 . -154) 41210) ((-910 . -285) T) ((-1023 . -1012) T) ((-618 . -478) T) ((-702 . -1199) 41189) ((-1239 . -502) 41155) ((-594 . -172) 41134) ((-593 . -172) 41085) ((-1244 . -842) 41064) ((-702 . -558) 40975) ((-409 . -916) T) ((-409 . -815) 40954) ((-314 . -789) T) ((-314 . -716) T) ((-420 . -608) 40936) ((-420 . -609) 40837) ((-634 . -1134) 40821) ((-114 . -640) 40803) ((-135 . -303) 40741) ((-114 . -375) 40723) ((-173 . -301) T) ((-400 . -1195) T) ((-310 . -137) 40594) ((-307 . -137) T) ((-74 . -397) T) ((-114 . -132) T) ((-1155 . -842) 40573) ((-528 . -499) 40557) ((-644 . -1102) T) ((-591 . -19) 40539) ((-218 . -303) NIL) ((-66 . -442) T) ((-145 . -303) NIL) ((-66 . -397) T) ((-819 . -1090) T) ((-591 . -601) 40514) ((-489 . -1037) 40474) ((-643 . -1047) T) ((-644 . -23) T) ((-1257 . -1090) T) ((-811 . -707) 40323) ((-126 . -842) NIL) ((-1157 . -413) 40307) ((-1113 . -413) 40291) ((-846 . -413) 40275) ((-233 . -1054) T) ((-1227 . -105) T) ((-1207 . -523) 40009) ((-1182 . -303) 39947) ((-305 . -608) 39929) ((-1206 . -105) T) ((-1092 . -1090) T) ((-1159 . -281) 39914) ((-1158 . -281) 39899) ((-284 . -716) T) ((-112 . -904) NIL) ((-679 . -608) 39866) ((-679 . -609) 39827) ((-1073 . -637) 39737) ((-598 . -608) 39719) ((-551 . -609) NIL) ((-551 . -608) 39701) ((-1151 . -281) 39549) ((-497 . -1053) 39499) ((-701 . -453) T) ((-520 . -518) 39478) ((-516 . -518) 39457) ((-208 . -1053) 39407) ((-361 . -637) 39359) ((-354 . -637) 39311) ((-215 . -840) T) ((-343 . -637) 39263) ((-599 . -105) 39213) ((-493 . -370) 39192) ((-112 . -637) 39142) ((-497 . -120) 39069) ((-232 . -499) 39053) ((-341 . -150) 39035) ((-341 . -148) T) ((-169 . -372) 39006) ((-944 . -1242) 38990) ((-208 . -120) 38917) ((-866 . -303) 38882) ((-944 . -1090) 38832) ((-794 . -609) 38793) ((-794 . -608) 38775) ((-708 . -105) T) ((-329 . -1090) T) ((-1108 . -137) T) ((-704 . -43) 38745) ((-310 . -502) 38724) ((-509 . -1195) T) ((-1227 . -279) 38690) ((-1206 . -279) 38656) ((-325 . -154) 38640) ((-1059 . -283) 38615) ((-1257 . -707) 38585) ((-1144 . -39) T) ((-1266 . -1037) 38562) ((-733 . -630) 38468) ((-473 . -608) 38450) ((-494 . -39) T) ((-383 . -1037) 38434) ((-1157 . -1054) T) ((-1113 . -1054) T) ((-846 . -1054) T) ((-1058 . -840) T) ((-811 . -172) 38345) ((-528 . -281) 38322) ((-126 . -993) 38299) ((-857 . -105) T) ((-774 . -105) T) ((-1235 . -285) 38278) ((-1228 . -285) 38229) ((-1177 . -366) 38203) ((-1079 . -262) 38187) ((-479 . -105) T) ((-367 . -1090) T) ((-244 . -1090) T) ((-243 . -1090) T) ((-1207 . -285) 38138) ((-113 . -1090) T) ((-1201 . -285) 38117) ((-866 . -1136) 38095) ((-1159 . -1002) 38061) ((-603 . -366) 38001) ((-1158 . -1002) 37967) ((-603 . -221) 37914) ((-591 . -608) 37896) ((-591 . -609) NIL) ((-683 . -842) T) ((-480 . -221) 37846) ((-497 . -1047) T) ((-1151 . -1002) 37812) ((-93 . -441) T) ((-93 . -397) T) ((-208 . -1047) T) ((-1114 . -1002) 37778) ((-34 . -1088) T) ((-921 . -1090) T) ((-1073 . -716) T) ((-702 . -1102) T) ((-594 . -285) 37757) ((-593 . -285) 37736) ((-497 . -238) T) ((-497 . -225) T) ((-1150 . -608) 37718) ((-866 . -43) 37670) ((-208 . -238) T) ((-208 . -225) T) ((-733 . -25) T) ((-733 . -21) T) ((-361 . -716) T) ((-354 . -716) T) ((-343 . -716) T) ((-112 . -789) T) ((-112 . -786) T) ((-528 . -1231) 37654) ((-112 . -716) T) ((-702 . -23) T) ((-1270 . -25) T) ((-479 . -279) 37620) ((-1270 . -21) T) ((-1206 . -303) 37559) ((-1161 . -105) T) ((-45 . -148) 37531) ((-45 . -150) 37503) ((-528 . -601) 37480) ((-1103 . -637) 37328) ((-599 . -303) 37266) ((-50 . -640) 37216) ((-50 . -658) 37166) ((-50 . -375) 37116) ((-1143 . -39) T) ((-865 . -840) NIL) ((-644 . -137) T) ((-495 . -608) 37098) ((-232 . -281) 37075) ((-636 . -39) T) ((-623 . -39) T) ((-1078 . -453) 37026) ((-811 . -523) 36891) ((-777 . -453) 36822) ((-775 . -453) 36773) ((-770 . -105) T) ((-455 . -453) 36724) ((-953 . -413) 36708) ((-721 . -608) 36690) ((-244 . -707) 36632) ((-243 . -707) 36574) ((-721 . -609) 36435) ((-492 . -413) 36419) ((-337 . -296) T) ((-233 . -1090) T) ((-352 . -916) T) ((-1000 . -105) 36397) ((-1023 . -842) T) ((-65 . -523) 36330) ((-1239 . -25) T) ((-1239 . -21) T) ((-1206 . -1136) 36282) ((-1004 . -281) NIL) ((-215 . -1054) T) ((-381 . -823) T) ((-1103 . -39) T) ((-774 . -303) 36151) ((-581 . -453) T) ((-526 . -453) T) ((-1210 . -1083) 36135) ((-1210 . -1090) 36113) ((-232 . -601) 36090) ((-1210 . -1085) 36047) ((-1159 . -608) 36029) ((-1158 . -608) 36011) ((-1151 . -608) 35993) ((-1151 . -609) NIL) ((-1114 . -608) 35975) ((-866 . -402) 35959) ((-538 . -1090) T) ((-541 . -105) T) ((-1227 . -43) 35800) ((-1206 . -43) 35614) ((-864 . -150) T) ((-581 . -404) T) ((-53 . -842) T) ((-526 . -404) T) ((-1229 . -21) T) ((-1229 . -25) T) ((-1103 . -786) 35593) ((-1103 . -789) 35544) ((-1103 . -788) 35523) ((-994 . -1090) T) ((-1027 . -39) T) ((-850 . -1090) T) ((-1240 . -105) T) ((-1103 . -716) 35449) ((-656 . -105) T) ((-551 . -283) 35428) ((-1169 . -105) T) ((-481 . -39) T) ((-468 . -39) T) ((-356 . -105) T) ((-353 . -105) T) ((-342 . -105) T) ((-257 . -105) T) ((-242 . -105) T) ((-489 . -301) T) ((-1058 . -1054) T) ((-953 . -1054) T) ((-310 . -630) 35334) ((-307 . -630) 35295) ((-492 . -1054) T) ((-490 . -105) T) ((-438 . -608) 35277) ((-1157 . -1090) T) ((-1113 . -1090) T) ((-846 . -1090) T) ((-1126 . -105) T) ((-811 . -285) 35208) ((-964 . -1053) 35091) ((-489 . -1021) T) ((-725 . -1053) 35061) ((-1132 . -1109) 35045) ((-1092 . -523) 34978) ((-967 . -105) T) ((-454 . -1053) 34948) ((-964 . -120) 34810) ((-860 . -1251) 34785) ((-855 . -1251) 34745) ((-905 . -105) T) ((-857 . -1136) T) ((-725 . -120) 34710) ((-233 . -707) 34656) ((-64 . -105) 34606) ((-528 . -609) 34567) ((-528 . -608) 34506) ((-527 . -105) 34484) ((-525 . -105) 34434) ((-506 . -105) 34412) ((-505 . -105) 34362) ((-454 . -120) 34313) ((-244 . -172) 34292) ((-243 . -172) 34271) ((-420 . -1053) 34245) ((-1190 . -974) 34206) ((-999 . -1102) T) ((-857 . -43) 34171) ((-774 . -43) 34109) ((-944 . -523) 34042) ((-497 . -790) T) ((-479 . -43) 33883) ((-420 . -120) 33850) ((-497 . -787) T) ((-1000 . -303) 33788) ((-208 . -790) T) ((-208 . -787) T) ((-999 . -23) T) ((-702 . -137) T) ((-1206 . -402) 33758) ((-310 . -25) 33610) ((-169 . -413) 33594) ((-310 . -21) 33465) ((-307 . -25) T) ((-307 . -21) T) ((-852 . -370) T) ((-114 . -39) T) ((-493 . -637) 33313) ((-865 . -1054) T) ((-591 . -283) 33288) ((-580 . -150) T) ((-568 . -150) T) ((-504 . -150) T) ((-1157 . -707) 33117) ((-1113 . -707) 32966) ((-1108 . -630) 32948) ((-846 . -707) 32918) ((-662 . -1195) T) ((-1 . -105) T) ((-232 . -608) 32676) ((-1216 . -413) 32660) ((-1169 . -303) 32464) ((-964 . -1047) T) ((-725 . -1047) T) ((-705 . -1047) T) ((-634 . -1090) 32414) ((-1051 . -637) 32398) ((-847 . -413) 32382) ((-520 . -105) T) ((-516 . -105) T) ((-242 . -303) 32369) ((-257 . -303) 32356) ((-964 . -324) 32335) ((-387 . -637) 32319) ((-490 . -303) 32123) ((-244 . -523) 32056) ((-662 . -1037) 31952) ((-243 . -523) 31885) ((-1126 . -303) 31811) ((-233 . -172) 31790) ((-814 . -1090) T) ((-794 . -1053) 31774) ((-1235 . -281) 31759) ((-1228 . -281) 31744) ((-1207 . -281) 31592) ((-1201 . -281) 31577) ((-388 . -1090) T) ((-321 . -1090) T) ((-420 . -1047) T) ((-169 . -1054) T) ((-64 . -303) 31515) ((-794 . -120) 31494) ((-593 . -281) 31479) ((-527 . -303) 31417) ((-525 . -303) 31355) ((-506 . -303) 31293) ((-505 . -303) 31231) ((-420 . -225) 31210) ((-493 . -39) T) ((-1004 . -609) 31140) ((-215 . -1090) T) ((-1004 . -608) 31122) ((-972 . -608) 31104) ((-972 . -609) 31079) ((-910 . -608) 31061) ((-688 . -150) T) ((-690 . -916) T) ((-690 . -815) T) ((-429 . -608) 31043) ((-1108 . -21) T) ((-1108 . -25) T) ((-662 . -379) 31027) ((-125 . -916) T) ((-866 . -223) 31011) ((-83 . -1195) T) ((-135 . -134) 30995) ((-1051 . -39) T) ((-1264 . -1037) 30969) ((-1262 . -1037) 30926) ((-1216 . -1054) T) ((-1155 . -148) 30905) ((-1155 . -150) 30884) ((-847 . -1054) T) ((-493 . -786) 30863) ((-356 . -1136) 30842) ((-353 . -1136) 30821) ((-342 . -1136) 30800) ((-493 . -789) 30751) ((-493 . -788) 30730) ((-219 . -39) T) ((-493 . -716) 30656) ((-65 . -499) 30640) ((-575 . -1054) T) ((-1157 . -172) 30531) ((-1113 . -172) 30442) ((-1058 . -1090) T) ((-1078 . -950) 30387) ((-953 . -1090) T) ((-812 . -637) 30338) ((-777 . -950) 30307) ((-703 . -1090) T) ((-775 . -950) 30274) ((-525 . -277) 30258) ((-662 . -895) 30217) ((-492 . -1090) T) ((-455 . -950) 30184) ((-84 . -1195) T) ((-356 . -43) 30149) ((-353 . -43) 30114) ((-342 . -43) 30079) ((-257 . -43) 29928) ((-242 . -43) 29777) ((-905 . -1136) T) ((-615 . -150) 29756) ((-615 . -148) 29735) ((-126 . -150) T) ((-126 . -148) NIL) ((-416 . -716) T) ((-794 . -1047) T) ((-341 . -453) T) ((-1235 . -1002) 29701) ((-1228 . -1002) 29667) ((-1207 . -1002) 29633) ((-1201 . -1002) 29599) ((-905 . -43) 29564) ((-215 . -707) 29529) ((-733 . -842) T) ((-45 . -411) 29501) ((-314 . -52) 29471) ((-999 . -137) T) ((-810 . -1195) T) ((-173 . -916) T) ((-341 . -404) T) ((-528 . -283) 29448) ((-50 . -39) T) ((-810 . -1037) 29275) ((-734 . -904) 29254) ((-652 . -105) T) ((-644 . -21) T) ((-644 . -25) T) ((-1092 . -499) 29238) ((-1206 . -223) 29208) ((-666 . -1195) T) ((-240 . -105) 29158) ((-865 . -1090) T) ((-1163 . -637) 29083) ((-1058 . -707) 29070) ((-721 . -1053) 28913) ((-1157 . -523) 28859) ((-953 . -707) 28708) ((-1113 . -523) 28660) ((-734 . -637) 28585) ((-492 . -707) 28434) ((-72 . -608) 28416) ((-721 . -120) 28238) ((-944 . -499) 28222) ((-1254 . -637) 28182) ((-1159 . -1053) 28065) ((-812 . -716) T) ((-1158 . -1053) 27900) ((-1151 . -1053) 27690) ((-233 . -285) 27669) ((-1114 . -1053) 27552) ((-1003 . -1199) T) ((-1084 . -105) 27530) ((-810 . -379) 27499) ((-1003 . -558) T) ((-1159 . -120) 27361) ((-1158 . -120) 27175) ((-1151 . -120) 26921) ((-1114 . -120) 26783) ((-1095 . -1093) 26747) ((-381 . -840) T) ((-1235 . -608) 26729) ((-1228 . -608) 26711) ((-1207 . -608) 26693) ((-1207 . -609) NIL) ((-1201 . -608) 26675) ((-232 . -283) 26652) ((-45 . -453) T) ((-215 . -172) T) ((-169 . -1090) T) ((-683 . -150) T) ((-683 . -148) NIL) ((-594 . -608) 26634) ((-593 . -608) 26616) ((-893 . -1090) T) ((-833 . -1090) T) ((-803 . -1090) T) ((-761 . -1090) T) ((-648 . -844) 26600) ((-667 . -1090) T) ((-810 . -895) 26532) ((-1155 . -1181) 26510) ((-1155 . -1184) 26488) ((-45 . -404) NIL) ((-1108 . -651) T) ((-865 . -707) 26433) ((-244 . -499) 26417) ((-243 . -499) 26401) ((-702 . -630) 26349) ((-643 . -637) 26323) ((-289 . -39) T) ((-1155 . -98) 26301) ((-1155 . -40) 26279) ((-721 . -1047) T) ((-581 . -1251) 26266) ((-526 . -1251) 26243) ((-1216 . -1090) T) ((-1157 . -285) 26154) ((-1113 . -285) 26085) ((-1058 . -172) T) ((-847 . -1090) T) ((-953 . -172) 25996) ((-777 . -1219) 25980) ((-634 . -523) 25913) ((-82 . -608) 25895) ((-721 . -324) 25860) ((-1163 . -716) T) ((-575 . -1090) T) ((-492 . -172) 25771) ((-734 . -716) T) ((-240 . -303) 25709) ((-1127 . -1102) T) ((-75 . -608) 25691) ((-1254 . -716) T) ((-1159 . -1047) T) ((-1158 . -1047) T) ((-325 . -105) 25641) ((-1151 . -1047) T) ((-1127 . -23) T) ((-1114 . -1047) T) ((-96 . -1109) 25625) ((-853 . -1102) T) ((-1159 . -225) 25584) ((-1158 . -238) 25563) ((-1158 . -225) 25515) ((-1151 . -225) 25402) ((-1151 . -238) 25381) ((-314 . -895) 25287) ((-860 . -105) T) ((-855 . -105) T) ((-853 . -23) T) ((-169 . -707) 25115) ((-1091 . -370) T) ((-409 . -1199) T) ((-1023 . -150) T) ((-1003 . -365) T) ((-944 . -281) 25092) ((-864 . -453) T) ((-857 . -350) T) ((-310 . -842) T) ((-307 . -842) NIL) ((-869 . -105) T) ((-537 . -536) 24946) ((-702 . -25) T) ((-409 . -558) T) ((-702 . -21) T) ((-355 . -150) 24928) ((-355 . -148) T) ((-1132 . -1090) 24906) ((-454 . -710) T) ((-80 . -608) 24888) ((-123 . -842) T) ((-240 . -277) 24872) ((-232 . -1053) 24769) ((-86 . -608) 24751) ((-725 . -370) 24704) ((-1161 . -823) T) ((-727 . -227) 24688) ((-1144 . -1195) T) ((-142 . -227) 24670) ((-232 . -120) 24560) ((-1216 . -707) 24389) ((-53 . -150) T) ((-865 . -172) T) ((-847 . -707) 24359) ((-494 . -1195) T) ((-953 . -523) 24305) ((-643 . -716) T) ((-575 . -707) 24292) ((-1034 . -1054) T) ((-492 . -523) 24230) ((-944 . -19) 24214) ((-944 . -601) 24191) ((-811 . -609) NIL) ((-811 . -608) 24173) ((-1004 . -1053) 24123) ((-415 . -608) 24105) ((-244 . -281) 24082) ((-243 . -281) 24059) ((-497 . -904) NIL) ((-310 . -29) 24029) ((-112 . -1195) T) ((-1003 . -1102) T) ((-208 . -904) NIL) ((-910 . -1053) 23981) ((-1073 . -1037) 23877) ((-1004 . -120) 23804) ((-727 . -684) 23788) ((-257 . -223) 23772) ((-429 . -1053) 23756) ((-381 . -1054) T) ((-1003 . -23) T) ((-910 . -120) 23687) ((-683 . -1184) NIL) ((-497 . -637) 23637) ((-112 . -879) 23619) ((-112 . -881) 23601) ((-683 . -1181) NIL) ((-208 . -637) 23551) ((-361 . -1037) 23535) ((-354 . -1037) 23519) ((-325 . -303) 23457) ((-343 . -1037) 23441) ((-215 . -285) T) ((-429 . -120) 23420) ((-65 . -608) 23387) ((-169 . -172) T) ((-1108 . -842) T) ((-112 . -1037) 23347) ((-887 . -1090) T) ((-829 . -1054) T) ((-822 . -1054) T) ((-683 . -40) NIL) ((-683 . -98) NIL) ((-307 . -993) 23308) ((-580 . -453) T) ((-568 . -453) T) ((-504 . -453) T) ((-409 . -365) T) ((-232 . -1047) 23238) ((-1135 . -39) T) ((-923 . -105) T) ((-489 . -916) T) ((-999 . -630) 23186) ((-244 . -601) 23163) ((-243 . -601) 23140) ((-1073 . -379) 23124) ((-865 . -523) 22987) ((-232 . -225) 22939) ((-1143 . -1195) T) ((-819 . -608) 22921) ((-968 . -971) 22905) ((-1265 . -1102) T) ((-1257 . -608) 22887) ((-1216 . -172) 22778) ((-112 . -379) 22760) ((-112 . -336) 22742) ((-1058 . -285) T) ((-953 . -285) 22673) ((-794 . -370) 22652) ((-923 . -920) 22631) ((-636 . -1195) T) ((-623 . -1195) T) ((-492 . -285) 22562) ((-575 . -172) T) ((-325 . -277) 22546) ((-1265 . -23) T) ((-1190 . -105) T) ((-1177 . -1090) T) ((-1079 . -1090) T) ((-1069 . -1090) T) ((-88 . -608) 22528) ((-701 . -105) T) ((-356 . -350) 22507) ((-603 . -1090) T) ((-353 . -350) 22486) ((-342 . -350) 22465) ((-1169 . -221) 22415) ((-480 . -1090) T) ((-233 . -281) 22392) ((-257 . -246) 22354) ((-1127 . -137) T) ((-603 . -605) 22330) ((-1073 . -895) 22263) ((-1004 . -1047) T) ((-910 . -1047) T) ((-480 . -605) 22242) ((-1151 . -787) NIL) ((-1151 . -790) NIL) ((-1092 . -609) 22203) ((-490 . -221) 22153) ((-1092 . -608) 22135) ((-1004 . -238) T) ((-1004 . -225) T) ((-429 . -1047) T) ((-958 . -1090) 22085) ((-910 . -238) T) ((-853 . -137) T) ((-688 . -453) T) ((-835 . -1102) 22064) ((-112 . -895) NIL) ((-1190 . -279) 22030) ((-866 . -840) 22009) ((-1103 . -1195) T) ((-900 . -716) T) ((-169 . -523) 21921) ((-999 . -25) T) ((-900 . -478) T) ((-409 . -1102) T) ((-497 . -789) T) ((-497 . -786) T) ((-905 . -350) T) ((-497 . -716) T) ((-208 . -789) T) ((-208 . -786) T) ((-999 . -21) T) ((-208 . -716) T) ((-835 . -23) 21873) ((-314 . -301) 21852) ((-1035 . -227) 21798) ((-409 . -23) T) ((-944 . -609) 21759) ((-944 . -608) 21698) ((-634 . -499) 21682) ((-50 . -1010) 21632) ((-860 . -43) 21597) ((-855 . -43) 21562) ((-1155 . -453) 21493) ((-329 . -608) 21475) ((-1103 . -1037) 21302) ((-591 . -640) 21284) ((-591 . -375) 21266) ((-341 . -1251) 21243) ((-1027 . -1195) T) ((-865 . -285) T) ((-1216 . -523) 21189) ((-481 . -1195) T) ((-468 . -1195) T) ((-585 . -105) T) ((-1157 . -281) 21116) ((-615 . -453) 21095) ((-1000 . -995) 21079) ((-1257 . -384) 21051) ((-126 . -453) T) ((-1176 . -105) T) ((-1082 . -1090) 21029) ((-1034 . -1090) T) ((-888 . -842) T) ((-1235 . -1053) 20912) ((-352 . -1199) T) ((-1228 . -1053) 20747) ((-1103 . -379) 20716) ((-1207 . -1053) 20506) ((-1201 . -1053) 20389) ((-1235 . -120) 20251) ((-1228 . -120) 20065) ((-1207 . -120) 19811) ((-1201 . -120) 19673) ((-1190 . -303) 19660) ((-352 . -558) T) ((-367 . -608) 19642) ((-284 . -301) T) ((-594 . -1053) 19615) ((-593 . -1053) 19498) ((-363 . -1090) T) ((-319 . -1090) T) ((-244 . -608) 19459) ((-243 . -608) 19420) ((-1003 . -137) T) ((-113 . -608) 19402) ((-626 . -23) T) ((-683 . -411) 19369) ((-602 . -23) T) ((-648 . -105) T) ((-594 . -120) 19340) ((-593 . -120) 19202) ((-381 . -1090) T) ((-334 . -105) T) ((-169 . -285) 19113) ((-236 . -105) T) ((-1206 . -840) 19066) ((-921 . -608) 19048) ((-704 . -1054) T) ((-1132 . -523) 18981) ((-1103 . -895) 18913) ((-829 . -1090) T) ((-822 . -1090) T) ((-820 . -1090) T) ((-99 . -105) T) ((-147 . -842) T) ((-733 . -150) 18892) ((-733 . -148) 18871) ((-607 . -879) 18855) ((-114 . -1195) T) ((-1078 . -105) T) ((-1059 . -39) T) ((-777 . -105) T) ((-775 . -105) T) ((-463 . -105) T) ((-455 . -105) T) ((-232 . -790) 18806) ((-232 . -787) 18757) ((-774 . -1134) 18709) ((-638 . -105) T) ((-1216 . -285) 18620) ((-656 . -625) 18604) ((-634 . -281) 18581) ((-1034 . -707) 18565) ((-575 . -285) T) ((-964 . -637) 18490) ((-1265 . -137) T) ((-725 . -637) 18450) ((-705 . -637) 18437) ((-271 . -105) T) ((-454 . -637) 18367) ((-55 . -105) T) ((-581 . -105) T) ((-537 . -105) T) ((-526 . -105) T) ((-1235 . -1047) T) ((-1228 . -1047) T) ((-1207 . -1047) T) ((-1201 . -1047) T) ((-1235 . -225) 18326) ((-1228 . -238) 18305) ((-319 . -707) 18287) ((-1228 . -225) 18239) ((-1207 . -225) 18126) ((-1207 . -238) 18105) ((-1201 . -225) 18064) ((-1190 . -43) 17961) ((-1004 . -790) T) ((-594 . -1047) T) ((-593 . -1047) T) ((-1004 . -787) T) ((-972 . -790) T) ((-972 . -787) T) ((-233 . -608) 17943) ((-866 . -1054) T) ((-864 . -863) 17927) ((-683 . -453) T) ((-381 . -707) 17892) ((-420 . -637) 17866) ((-702 . -842) 17845) ((-701 . -43) 17810) ((-593 . -225) 17769) ((-45 . -714) 17741) ((-352 . -327) 17718) ((-352 . -365) T) ((-1239 . -148) 17697) ((-1239 . -150) 17676) ((-1073 . -301) 17627) ((-288 . -1102) 17508) ((-1096 . -1195) T) ((-171 . -105) T) ((-1210 . -608) 17475) ((-835 . -137) 17427) ((-634 . -1231) 17411) ((-829 . -707) 17381) ((-822 . -707) 17351) ((-493 . -1195) T) ((-361 . -301) T) ((-354 . -301) T) ((-343 . -301) T) ((-634 . -601) 17328) ((-409 . -137) T) ((-528 . -658) 17312) ((-112 . -301) T) ((-288 . -23) 17195) ((-528 . -640) 17179) ((-683 . -404) NIL) ((-528 . -375) 17163) ((-538 . -608) 17145) ((-96 . -1090) 17123) ((-112 . -1021) T) ((-568 . -146) T) ((-1244 . -154) 17107) ((-493 . -1037) 16934) ((-1229 . -148) 16895) ((-1229 . -150) 16856) ((-1051 . -1195) T) ((-994 . -608) 16838) ((-850 . -608) 16820) ((-811 . -1053) 16663) ((-1078 . -303) 16650) ((-219 . -1195) T) ((-777 . -303) 16637) ((-775 . -303) 16624) ((-811 . -120) 16446) ((-455 . -303) 16433) ((-1157 . -609) NIL) ((-1157 . -608) 16415) ((-1113 . -608) 16397) ((-1113 . -609) 16145) ((-1034 . -172) T) ((-846 . -608) 16127) ((-944 . -283) 16104) ((-603 . -523) 15852) ((-813 . -1037) 15836) ((-480 . -523) 15596) ((-964 . -716) T) ((-725 . -716) T) ((-705 . -716) T) ((-352 . -1102) T) ((-1164 . -608) 15578) ((-213 . -105) T) ((-493 . -379) 15547) ((-524 . -1090) T) ((-519 . -1090) T) ((-517 . -1090) T) ((-794 . -637) 15521) ((-1023 . -453) T) ((-958 . -523) 15454) ((-352 . -23) T) ((-626 . -137) T) ((-602 . -137) T) ((-355 . -453) T) ((-232 . -370) 15433) ((-381 . -172) T) ((-1227 . -1054) T) ((-1206 . -1054) T) ((-215 . -1002) T) ((-966 . -1088) T) ((-688 . -389) T) ((-420 . -716) T) ((-690 . -1199) T) ((-1127 . -630) 15381) ((-1257 . -1053) 15365) ((-580 . -863) 15349) ((-1144 . -1172) 15325) ((-704 . -1090) T) ((-690 . -558) T) ((-135 . -1090) 15303) ((-493 . -895) 15235) ((-218 . -1242) 15217) ((-218 . -1090) T) ((-145 . -1242) 15192) ((-162 . -1090) T) ((-648 . -43) 15162) ((-355 . -404) T) ((-310 . -150) 15141) ((-310 . -148) 15120) ((-125 . -558) T) ((-307 . -150) 15076) ((-307 . -148) 15032) ((-53 . -453) T) ((-158 . -1090) T) ((-145 . -1090) T) ((-1144 . -111) 14979) ((-1155 . -950) 14948) ((-777 . -1136) 14926) ((-679 . -39) T) ((-1257 . -120) 14905) ((-551 . -39) T) ((-494 . -111) 14889) ((-244 . -283) 14866) ((-243 . -283) 14843) ((-865 . -281) 14773) ((-50 . -1195) T) ((-811 . -1047) T) ((-1163 . -52) 14750) ((-811 . -324) 14712) ((-1078 . -43) 14561) ((-811 . -225) 14540) ((-777 . -43) 14369) ((-775 . -43) 14218) ((-734 . -52) 14195) ((-455 . -43) 14044) ((-634 . -609) 14005) ((-634 . -608) 13944) ((-581 . -1136) T) ((-526 . -1136) T) ((-1132 . -499) 13928) ((-1182 . -1090) 13906) ((-1127 . -25) T) ((-1127 . -21) T) ((-857 . -1054) T) ((-774 . -1054) T) ((-1239 . -1184) 13872) ((-1239 . -1181) 13838) ((-479 . -1054) T) ((-1207 . -787) NIL) ((-1207 . -790) NIL) ((-999 . -842) 13817) ((-814 . -608) 13799) ((-853 . -21) T) ((-853 . -25) T) ((-794 . -716) T) ((-513 . -1088) T) ((-173 . -1199) T) ((-581 . -43) 13764) ((-526 . -43) 13729) ((-388 . -608) 13711) ((-321 . -608) 13693) ((-169 . -281) 13651) ((-1239 . -40) 13617) ((-1239 . -98) 13583) ((-68 . -1195) T) ((-121 . -105) T) ((-866 . -1090) T) ((-173 . -558) T) ((-704 . -707) 13553) ((-288 . -137) 13436) ((-215 . -608) 13418) ((-215 . -609) 13348) ((-1003 . -630) 13282) ((-1257 . -1047) T) ((-1108 . -150) T) ((-623 . -1172) 13257) ((-721 . -904) 13236) ((-591 . -39) T) ((-636 . -111) 13220) ((-623 . -111) 13166) ((-734 . -881) NIL) ((-1216 . -281) 13093) ((-721 . -637) 13018) ((-289 . -1195) T) ((-1163 . -1037) 12914) ((-734 . -1037) 12794) ((-1151 . -904) NIL) ((-1058 . -609) 12709) ((-1058 . -608) 12691) ((-341 . -105) T) ((-244 . -1053) 12588) ((-243 . -1053) 12485) ((-396 . -105) T) ((-953 . -608) 12467) ((-953 . -609) 12328) ((-703 . -608) 12310) ((-1255 . -1189) 12279) ((-492 . -608) 12261) ((-492 . -609) 12122) ((-257 . -413) 12106) ((-242 . -413) 12090) ((-244 . -120) 11980) ((-243 . -120) 11870) ((-1159 . -637) 11795) ((-1158 . -637) 11692) ((-1151 . -637) 11544) ((-1114 . -637) 11469) ((-352 . -137) T) ((-87 . -442) T) ((-87 . -397) T) ((-1003 . -25) T) ((-1003 . -21) T) ((-866 . -707) 11421) ((-381 . -285) T) ((-169 . -1002) 11372) ((-734 . -379) 11356) ((-683 . -389) T) ((-999 . -997) 11340) ((-690 . -1102) T) ((-683 . -166) 11322) ((-1227 . -1090) T) ((-1206 . -1090) T) ((-310 . -1181) 11301) ((-310 . -1184) 11280) ((-1149 . -105) T) ((-310 . -959) 11259) ((-139 . -1102) T) ((-125 . -1102) T) ((-599 . -1242) 11243) ((-690 . -23) T) ((-599 . -1090) 11193) ((-96 . -523) 11126) ((-173 . -365) T) ((-1155 . -1219) 11110) ((-310 . -98) 11089) ((-310 . -40) 11068) ((-603 . -499) 11002) ((-139 . -23) T) ((-125 . -23) T) ((-708 . -1090) T) ((-480 . -499) 10939) ((-409 . -630) 10887) ((-643 . -1037) 10783) ((-734 . -895) 10726) ((-958 . -499) 10710) ((-356 . -1054) T) ((-353 . -1054) T) ((-342 . -1054) T) ((-257 . -1054) T) ((-242 . -1054) T) ((-865 . -609) NIL) ((-865 . -608) 10692) ((-1265 . -21) T) ((-575 . -1002) T) ((-721 . -716) T) ((-1265 . -25) T) ((-244 . -1047) 10622) ((-243 . -1047) 10552) ((-233 . -1053) 10498) ((-77 . -1195) T) ((-922 . -105) T) ((-244 . -225) 10450) ((-243 . -225) 10402) ((-233 . -120) 10341) ((-45 . -105) T) ((-905 . -1054) T) ((-1159 . -716) T) ((-1158 . -716) T) ((-1151 . -716) T) ((-1151 . -786) NIL) ((-1151 . -789) NIL) ((-1114 . -716) T) ((-922 . -920) 10299) ((-857 . -1090) T) ((-917 . -105) T) ((-774 . -1090) T) ((-763 . -105) T) ((-663 . -105) T) ((-479 . -1090) T) ((-337 . -1102) T) ((-1227 . -707) 10140) ((-173 . -1102) T) ((-314 . -916) 10119) ((-733 . -453) 10098) ((-866 . -172) T) ((-1206 . -707) 9912) ((-835 . -21) 9864) ((-835 . -25) 9816) ((-240 . -1134) 9800) ((-135 . -523) 9733) ((-409 . -25) T) ((-409 . -21) T) ((-337 . -23) T) ((-169 . -608) 9715) ((-169 . -609) 9481) ((-173 . -23) T) ((-634 . -283) 9458) ((-218 . -523) NIL) ((-145 . -523) NIL) ((-528 . -39) T) ((-893 . -608) 9440) ((-94 . -1195) T) ((-833 . -608) 9422) ((-803 . -608) 9404) ((-761 . -608) 9386) ((-667 . -608) 9368) ((-232 . -637) 9216) ((-1161 . -1090) T) ((-1157 . -1053) 9039) ((-1135 . -1195) T) ((-1113 . -1053) 8882) ((-846 . -1053) 8866) ((-1157 . -120) 8668) ((-1113 . -120) 8490) ((-846 . -120) 8469) ((-1216 . -609) NIL) ((-1216 . -608) 8451) ((-341 . -1136) T) ((-847 . -608) 8433) ((-1069 . -281) 8412) ((-233 . -1047) T) ((-85 . -1195) T) ((-1004 . -904) NIL) ((-603 . -281) 8388) ((-1182 . -523) 8321) ((-497 . -1195) T) ((-575 . -608) 8303) ((-480 . -281) 8282) ((-1078 . -223) 8266) ((-1004 . -637) 8216) ((-208 . -1195) T) ((-958 . -281) 8193) ((-910 . -637) 8145) ((-284 . -916) T) ((-812 . -301) 8124) ((-864 . -105) T) ((-777 . -223) 8108) ((-770 . -1090) T) ((-857 . -707) 8060) ((-774 . -707) 7998) ((-626 . -21) T) ((-626 . -25) T) ((-602 . -21) T) ((-341 . -43) 7963) ((-683 . -714) 7930) ((-497 . -879) 7912) ((-497 . -881) 7894) ((-479 . -707) 7735) ((-208 . -879) 7717) ((-69 . -1195) T) ((-208 . -881) 7699) ((-602 . -25) T) ((-429 . -637) 7673) ((-497 . -1037) 7633) ((-866 . -523) 7545) ((-208 . -1037) 7505) ((-232 . -39) T) ((-1000 . -1090) 7483) ((-1227 . -172) 7414) ((-1206 . -172) 7345) ((-702 . -148) 7324) ((-702 . -150) 7303) ((-690 . -137) T) ((-141 . -470) 7280) ((-464 . -105) T) ((-648 . -646) 7264) ((-1132 . -608) 7231) ((-125 . -137) T) ((-489 . -1199) T) ((-603 . -601) 7207) ((-480 . -601) 7186) ((-334 . -333) 7155) ((-541 . -1090) T) ((-1157 . -1047) T) ((-489 . -558) T) ((-236 . -235) 7139) ((-1113 . -1047) T) ((-846 . -1047) T) ((-232 . -786) 7118) ((-232 . -789) 7069) ((-232 . -788) 7048) ((-1157 . -324) 7025) ((-232 . -716) 6951) ((-958 . -19) 6935) ((-497 . -379) 6917) ((-497 . -336) 6899) ((-1113 . -324) 6871) ((-355 . -1251) 6848) ((-208 . -379) 6830) ((-208 . -336) 6812) ((-958 . -601) 6789) ((-1157 . -225) T) ((-656 . -1090) T) ((-1240 . -1090) T) ((-1169 . -1090) T) ((-1078 . -246) 6726) ((-356 . -1090) T) ((-353 . -1090) T) ((-342 . -1090) T) ((-257 . -1090) T) ((-242 . -1090) T) ((-89 . -1195) T) ((-136 . -105) 6704) ((-130 . -105) 6682) ((-734 . -301) 6661) ((-1169 . -605) 6640) ((-490 . -1090) T) ((-1126 . -1090) T) ((-490 . -605) 6619) ((-244 . -790) 6570) ((-244 . -787) 6521) ((-243 . -790) 6472) ((-45 . -1136) NIL) ((-243 . -787) 6423) ((-1073 . -916) 6374) ((-1004 . -789) T) ((-1004 . -786) T) ((-1004 . -716) T) ((-972 . -789) T) ((-967 . -1090) T) ((-910 . -716) T) ((-905 . -1090) T) ((-866 . -285) T) ((-96 . -499) 6358) ((-497 . -895) NIL) ((-857 . -172) T) ((-215 . -1053) 6323) ((-828 . -1102) 6302) ((-208 . -895) NIL) ((-774 . -172) T) ((-64 . -1090) 6252) ((-527 . -1090) 6230) ((-525 . -1090) 6180) ((-506 . -1090) 6158) ((-505 . -1090) 6108) ((-580 . -105) T) ((-568 . -105) T) ((-504 . -105) T) ((-479 . -172) 6039) ((-361 . -916) T) ((-354 . -916) T) ((-343 . -916) T) ((-215 . -120) 5988) ((-828 . -23) 5940) ((-429 . -716) T) ((-112 . -916) T) ((-45 . -43) 5885) ((-112 . -815) T) ((-581 . -350) T) ((-526 . -350) T) ((-1206 . -523) 5745) ((-310 . -453) 5724) ((-307 . -453) T) ((-829 . -281) 5703) ((-337 . -137) T) ((-173 . -137) T) ((-288 . -25) 5567) ((-288 . -21) 5450) ((-50 . -1172) 5429) ((-71 . -608) 5411) ((-887 . -608) 5393) ((-599 . -523) 5326) ((-50 . -111) 5276) ((-1092 . -427) 5260) ((-1092 . -370) 5239) ((-1059 . -1195) T) ((-1058 . -1053) 5226) ((-953 . -1053) 5069) ((-492 . -1053) 4912) ((-656 . -707) 4896) ((-1058 . -120) 4881) ((-953 . -120) 4703) ((-489 . -365) T) ((-356 . -707) 4655) ((-353 . -707) 4607) ((-342 . -707) 4559) ((-257 . -707) 4408) ((-242 . -707) 4257) ((-1245 . -105) T) ((-1244 . -105) 4207) ((-944 . -640) 4191) ((-1235 . -637) 4116) ((-492 . -120) 3938) ((-1228 . -637) 3835) ((-1207 . -637) 3687) ((-1207 . -904) NIL) ((-944 . -375) 3671) ((-1201 . -637) 3596) ((-79 . -608) 3578) ((-964 . -52) 3557) ((-613 . -1102) T) ((-1 . -1090) T) ((-700 . -105) T) ((-688 . -105) T) ((-1177 . -608) 3539) ((-1079 . -608) 3521) ((-1069 . -608) 3503) ((-905 . -707) 3468) ((-135 . -499) 3452) ((-774 . -523) 3284) ((-613 . -23) T) ((-392 . -23) T) ((-603 . -608) 3266) ((-92 . -1195) T) ((-603 . -609) NIL) ((-480 . -609) NIL) ((-480 . -608) 3248) ((-352 . -25) T) ((-352 . -21) T) ((-218 . -499) 3230) ((-136 . -303) 3168) ((-520 . -1090) T) ((-516 . -1090) T) ((-145 . -499) 3143) ((-130 . -303) 3081) ((-594 . -637) 3068) ((-216 . -62) 3036) ((-144 . -62) 2997) ((-215 . -1047) T) ((-593 . -637) 2922) ((-381 . -1002) T) ((-215 . -238) T) ((-215 . -225) T) ((-1155 . -105) T) ((-958 . -609) 2883) ((-958 . -608) 2822) ((-864 . -43) 2809) ((-1227 . -285) 2760) ((-1206 . -285) 2711) ((-1108 . -453) T) ((-511 . -842) T) ((-310 . -1124) 2690) ((-999 . -150) 2669) ((-999 . -148) 2648) ((-733 . -161) T) ((-733 . -146) T) ((-504 . -303) 2635) ((-289 . -1172) 2614) ((-489 . -1102) T) ((-865 . -1053) 2559) ((-615 . -105) T) ((-1182 . -499) 2543) ((-244 . -370) 2522) ((-243 . -370) 2501) ((-1155 . -279) 2479) ((-289 . -111) 2429) ((-1058 . -1047) T) ((-126 . -105) T) ((-35 . -1088) T) ((-953 . -1047) T) ((-865 . -120) 2346) ((-489 . -23) T) ((-492 . -1047) T) ((-1058 . -225) T) ((-953 . -324) 2315) ((-492 . -324) 2272) ((-356 . -172) T) ((-353 . -172) T) ((-342 . -172) T) ((-257 . -172) 2183) ((-242 . -172) 2094) ((-964 . -1037) 1990) ((-725 . -1037) 1961) ((-1095 . -105) T) ((-1082 . -608) 1928) ((-1034 . -608) 1910) ((-1239 . -974) 1879) ((-1235 . -716) T) ((-1228 . -716) T) ((-1207 . -716) T) ((-1207 . -786) NIL) ((-1207 . -789) NIL) ((-857 . -285) T) ((-169 . -1053) 1789) ((-905 . -172) T) ((-774 . -285) T) ((-1201 . -716) T) ((-1255 . -154) 1773) ((-1003 . -340) 1747) ((-1000 . -523) 1680) ((-835 . -842) 1659) ((-568 . -1136) T) ((-479 . -285) 1610) ((-594 . -716) T) ((-363 . -608) 1592) ((-319 . -608) 1574) ((-420 . -1037) 1470) ((-593 . -716) T) ((-409 . -842) 1421) ((-169 . -120) 1310) ((-860 . -1054) T) ((-855 . -1054) T) ((-828 . -137) 1262) ((-727 . -154) 1246) ((-1244 . -303) 1184) ((-497 . -301) T) ((-381 . -608) 1151) ((-528 . -1010) 1135) ((-381 . -609) 1049) ((-208 . -301) T) ((-142 . -154) 1031) ((-704 . -281) 1010) ((-1155 . -303) 997) ((-497 . -1021) T) ((-580 . -43) 984) ((-568 . -43) 971) ((-504 . -43) 936) ((-218 . -281) 911) ((-145 . -281) 879) ((-208 . -1021) T) ((-865 . -1047) T) ((-829 . -608) 861) ((-822 . -608) 843) ((-820 . -608) 825) ((-811 . -904) 804) ((-1266 . -1102) T) ((-1216 . -1053) 627) ((-847 . -1053) 611) ((-865 . -238) T) ((-865 . -225) NIL) ((-679 . -1195) T) ((-1266 . -23) T) ((-811 . -637) 536) ((-551 . -1195) T) ((-420 . -336) 520) ((-575 . -1053) 507) ((-1216 . -120) 309) ((-690 . -630) 291) ((-847 . -120) 270) ((-383 . -23) T) ((-1169 . -523) 30)) \ No newline at end of file diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase index 779ca8c..8d7f0e0 100644 --- a/src/share/algebra/compress.daase +++ b/src/share/algebra/compress.daase @@ -1,3 +1,3 @@ -(30 . 3483827105) -(4508 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join| |ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&| |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup| |AbelianMonoid&| |AbelianMonoid| |AbelianSemiGroup&| |AbelianSemiGroup| |AlgebraicallyClosedField&| |AlgebraicallyClosedField| |AlgebraicallyClosedFunctionSpace&| |AlgebraicallyClosedFunctionSpace| |PlaneAlgebraicCurvePlot| |AffineAlgebraicSetComputeWithGroebnerBasis| |AffineAlgebraicSetComputeWithResultant| |AffinePlane| |AffinePlaneOverPseudoAlgebraicClosureOfFiniteField| |AffineSpace| |AlgebraicFunction| |AffineSpaceCategory| |Aggregate&| |Aggregate| |ArcHyperbolicFunctionCategory| |AssociationListAggregate| |Algebra&| |Algebra| |AlgFactor| |AlgebraicFunctionField| |AlgebraicManipulations| |AlgebraicMultFact| |AlgebraPackage| |AlgebraGivenByStructuralConstants| |AssociationList| |AbelianMonoidRing&| |AbelianMonoidRing| |AlgebraicNumber| |AnonymousFunction| |AntiSymm| |AnyFunctions1| |Any| |ApplicationProgramInterface| |ApplyUnivariateSkewPolynomial| |ApplyRules| |TwoDimensionalArrayCategory&| |TwoDimensionalArrayCategory| |OneDimensionalArrayFunctions2| |OneDimensionalArray| |TwoDimensionalArray| |Asp10| |Asp12| |Asp19| |Asp1| |Asp20| |Asp24| |Asp27| |Asp28| |Asp29| |Asp30| |Asp31| |Asp33| |Asp34| |Asp35| |Asp41| |Asp42| |Asp49| |Asp4| |Asp50| |Asp55| |Asp6| |Asp73| |Asp74| |Asp77| |Asp78| |Asp7| |Asp80| |Asp8| |Asp9| |AssociatedEquations| |ArrayStack| |ArcTrigonometricFunctionCategory&| |ArcTrigonometricFunctionCategory| |AttributeButtons| |AttributeRegistry| |Automorphism| |AxiomServer| |BalancedFactorisation| |BasicType&| |BasicType| |BalancedBinaryTree| |Bezier| |BezoutMatrix| |BasicFunctions| |BagAggregate&| |BagAggregate| |BinaryExpansion| |BinaryFile| |Bits| |BlasLevelOne| |BlowUpWithHamburgerNoether| |BlowUpMethodCategory| |BlowUpWithQuadTrans| |BlowUpPackage| |BiModule| |Boolean| |BasicOperatorFunctions1| |BasicOperator| |BoundIntegerRoots| |BalancedPAdicInteger| |BalancedPAdicRational| |BinaryRecursiveAggregate&| |BinaryRecursiveAggregate| |BrillhartTests| |BinarySearchTree| |BitAggregate&| |BitAggregate| |BinaryTreeCategory&| |BinaryTreeCategory| |BinaryTournament| |BinaryTree| |CancellationAbelianMonoid| |CachableSet| |CardinalNumber| |CartesianTensorFunctions2| |CartesianTensor| |CharacterClass| |CommonDenominator| |CombinatorialFunctionCategory| |Character| |CharacteristicNonZero| |CharacteristicPolynomialPackage| |CharacteristicZero| |ChangeOfVariable| |ComplexIntegerSolveLinearPolynomialEquation| |Collection&| |Collection| |CliffordAlgebra| |TwoDimensionalPlotClipping| |ComplexRootPackage| |Color| |CombinatorialFunction| |IntegerCombinatoricFunctions| |CombinatorialOpsCategory| |Commutator| |CommonOperators| |CommuteUnivariatePolynomialCategory| |ComplexCategory&| |ComplexCategory| |ComplexFactorization| |ComplexFunctions2| |Complex| |ComplexPattern| |SubSpaceComponentProperty| |CommutativeRing| |ContinuedFraction| |CoordinateSystems| |CharacteristicPolynomialInMonogenicalAlgebra| |ComplexPatternMatch| |CRApackage| |ComplexRootFindingPackage| |CyclicStreamTools| |ComplexTrigonometricManipulations| |CoerceVectorMatrixPackage| |CycleIndicators| |CyclotomicPolynomialPackage| |d01AgentsPackage| |d01ajfAnnaType| |d01akfAnnaType| |d01alfAnnaType| |d01amfAnnaType| |d01anfAnnaType| |d01apfAnnaType| |d01aqfAnnaType| |d01asfAnnaType| |d01fcfAnnaType| |d01gbfAnnaType| |d01TransformFunctionType| |d01WeightsPackage| |d02AgentsPackage| |d02bbfAnnaType| |d02bhfAnnaType| |d02cjfAnnaType| |d02ejfAnnaType| |d03AgentsPackage| |d03eefAnnaType| |d03fafAnnaType| |Database| |DoubleResultantPackage| |DistinctDegreeFactorize| |DecimalExpansion| |ElementaryFunctionDefiniteIntegration| |RationalFunctionDefiniteIntegration| |DegreeReductionPackage| |Dequeue| |DeRhamComplex| |DefiniteIntegrationTools| |DoubleFloat| |DoubleFloatSpecialFunctions| |DenavitHartenbergMatrix| |Dictionary&| |Dictionary| |DifferentialExtension&| |DifferentialExtension| |DifferentialRing&| |DifferentialRing| |DictionaryOperations&| |DictionaryOperations| |DiophantineSolutionPackage| |DirectProductCategory&| |DirectProductCategory| |DirectProductFunctions2| |DirectProduct| |DisplayPackage| |DivisorCategory| |Divisor| |DivisionRing&| |DivisionRing| |DoublyLinkedAggregate| |DataList| |DiscreteLogarithmPackage| |DistributedMultivariatePolynomial| |DirectProductMatrixModule| |DirectProductModule| |DifferentialPolynomialCategory&| |DifferentialPolynomialCategory| |DequeueAggregate| |TopLevelDrawFunctionsForCompiledFunctions| |TopLevelDrawFunctionsForAlgebraicCurves| |DrawComplex| |DrawNumericHack| |TopLevelDrawFunctions| |TopLevelDrawFunctionsForPoints| |DrawOptionFunctions0| |DrawOptionFunctions1| |DrawOption| |DifferentialSparseMultivariatePolynomial| |DesingTreeCategory| |DesingTree| |DesingTreePackage| |DifferentialVariableCategory&| |DifferentialVariableCategory| |e04AgentsPackage| |e04dgfAnnaType| |e04fdfAnnaType| |e04gcfAnnaType| |e04jafAnnaType| |e04mbfAnnaType| |e04nafAnnaType| |e04ucfAnnaType| |ExtAlgBasis| |ElementaryFunction| |ElementaryFunctionStructurePackage| |ElementaryFunctionsUnivariateLaurentSeries| |ElementaryFunctionsUnivariatePuiseuxSeries| |ExtensibleLinearAggregate&| |ExtensibleLinearAggregate| |ElementaryFunctionCategory&| |ElementaryFunctionCategory| |EllipticFunctionsUnivariateTaylorSeries| |Eltable| |EltableAggregate&| |EltableAggregate| |EuclideanModularRing| |EntireRing| |EigenPackage| |EquationFunctions2| |Equation| |EqTable| |ErrorFunctions| |ExpressionSpaceFunctions1| |ExpressionSpaceFunctions2| |ExpertSystemContinuityPackage1| |ExpertSystemContinuityPackage| |ExpressionSpace&| |ExpressionSpace| |ExpertSystemToolsPackage1| |ExpertSystemToolsPackage2| |ExpertSystemToolsPackage| |EuclideanDomain&| |EuclideanDomain| |Evalable&| |Evalable| |EvaluateCycleIndicators| |Exit| |ExponentialExpansion| |ExpressionFunctions2| |ExpressionToUnivariatePowerSeries| |Expression| |ExpressionSpaceODESolver| |ExpressionSolve| |ExpressionTubePlot| |ExponentialOfUnivariatePuiseuxSeries| |FactorisationOverPseudoAlgebraicClosureOfAlgExtOfRationalNumber| |FactoredFunctions| |FactorisationOverPseudoAlgebraicClosureOfRationalNumber| |FactoringUtilities| |FreeAbelianGroup| |FreeAbelianMonoidCategory| |FreeAbelianMonoid| |FiniteAbelianMonoidRingFunctions2| |FiniteAbelianMonoidRing&| |FiniteAbelianMonoidRing| |FlexibleArray| |FiniteAlgebraicExtensionField&| |FiniteAlgebraicExtensionField| |FortranCode| |FourierComponent| |FortranCodePackage1| |FiniteDivisorFunctions2| |FiniteDivisorCategory&| |FiniteDivisorCategory| |FiniteDivisor| |FullyEvalableOver&| |FullyEvalableOver| |FortranExpression| |FunctionFieldCategoryFunctions2| |FunctionFieldCategory&| |FunctionFieldCategory| |FiniteFieldCyclicGroup| |FiniteFieldCyclicGroupExtensionByPolynomial| |FiniteFieldCyclicGroupExtension| |FiniteFieldFactorizationWithSizeParseBySideEffect| |FractionFreeFastGaussianFractions| |FractionFreeFastGaussian| |FiniteFieldFunctions| |FiniteFieldHomomorphisms| |FiniteFieldCategory&| |FiniteFieldCategory| |FunctionFieldIntegralBasis| |FiniteFieldNormalBasis| |FiniteFieldNormalBasisExtensionByPolynomial| |FiniteFieldNormalBasisExtension| |FiniteField| |FiniteFieldExtensionByPolynomial| |FiniteFieldPolynomialPackage2| |FiniteFieldPolynomialPackage| |FiniteFieldSolveLinearPolynomialEquation| |FiniteFieldSquareFreeDecomposition| |FiniteFieldExtension| |FGLMIfCanPackage| |FreeGroup| |Field&| |Field| |FileCategory| |File| |FiniteRankNonAssociativeAlgebra&| |FiniteRankNonAssociativeAlgebra| |Finite| |FiniteRankAlgebra&| |FiniteRankAlgebra| |FiniteLinearAggregateFunctions2| |FiniteLinearAggregate&| |FiniteLinearAggregate| |FreeLieAlgebra| |FiniteLinearAggregateSort| |FullyLinearlyExplicitRingOver&| |FullyLinearlyExplicitRingOver| |FloatingComplexPackage| |Float| |FloatingRealPackage| |FreeModule1| |FreeModuleCat| |FortranMatrixCategory| |FortranMatrixFunctionCategory| |FreeModule| |FreeMonoid| |FortranMachineTypeCategory| |FileName| |FileNameCategory| |FreeNilpotentLie| |FortranOutputStackPackage| |FindOrderFinite| |ScriptFormulaFormat1| |ScriptFormulaFormat| |FortranProgramCategory| |FortranFunctionCategory| |FortranPackage| |FortranProgram| |FullPartialFractionExpansion| |FullyPatternMatchable| |FieldOfPrimeCharacteristic&| |FieldOfPrimeCharacteristic| |FloatingPointSystem&| |FloatingPointSystem| |FactoredFunctions2| |FractionFunctions2| |Fraction| |FramedAlgebra&| |FramedAlgebra| |FullyRetractableTo&| |FullyRetractableTo| |FractionalIdealFunctions2| |FractionalIdeal| |FramedModule| |FramedNonAssociativeAlgebraFunctions2| |FramedNonAssociativeAlgebra&| |FramedNonAssociativeAlgebra| |Factored| |FactoredFunctionUtilities| |FunctionSpaceToExponentialExpansion| |FunctionSpaceFunctions2| |FunctionSpaceToUnivariatePowerSeries| |FiniteSetAggregateFunctions2| |FiniteSetAggregate&| |FiniteSetAggregate| |FunctionSpaceComplexIntegration| |FourierSeries| |FunctionSpaceIntegration| |FunctionSpace&| |FunctionSpace| |FunctionalSpecialFunction| |FunctionSpacePrimitiveElement| |FunctionSpaceReduce| |FortranScalarType| |FunctionSpaceUnivariatePolynomialFactor| |FortranTemplate| |FortranType| |FunctionCalled| |FortranVectorCategory| |FortranVectorFunctionCategory| |GaloisGroupFactorizer| |GaloisGroupFactorizationUtilities| |GaloisGroupPolynomialUtilities| |GaloisGroupUtilities| |GaussianFactorizationPackage| |EuclideanGroebnerBasisPackage| |GroebnerFactorizationPackage| |GroebnerInternalPackage| |GroebnerPackage| |GcdDomain&| |GcdDomain| |GenericNonAssociativeAlgebra| |GeneralDistributedMultivariatePolynomial| |GenExEuclid| |GeneralizedMultivariateFactorize| |GeneralPolynomialGcdPackage| |GenUFactorize| |GenerateUnivariatePowerSeries| |GeneralHenselPackage| |GeneralModulePolynomial| |GuessOptionFunctions0| |GuessOption| |GosperSummationMethod| |GeneralPackageForAlgebraicFunctionField| |GeneralPolynomialSet| |GradedAlgebra&| |GradedAlgebra| |GrayCode| |GraphicsDefaults| |GraphImage| |GradedModule&| |GradedModule| |GroebnerSolve| |Group&| |Group| |GeneralUnivariatePowerSeries| |GeneralSparseTable| |GeneralTriangularSet| |GuessAlgebraicNumber| |GuessFiniteFunctions| |GuessFinite| |GuessInteger| |Guess| |GuessPolynomial| |GuessUnivariatePolynomial| |Pi| |HashTable| |HallBasis| |HomogeneousDistributedMultivariatePolynomial| |HomogeneousDirectProduct| |Heap| |HyperellipticFiniteDivisor| |HeuGcd| |HexadecimalExpansion| |HomogeneousAggregate&| |HomogeneousAggregate| |HyperbolicFunctionCategory&| |HyperbolicFunctionCategory| |InnerAlgFactor| |InnerAlgebraicNumber| |IndexedOneDimensionalArray| |IndexedTwoDimensionalArray| |ChineseRemainderToolsForIntegralBases| |IntegralBasisTools| |IndexedBits| |IntegralBasisPolynomialTools| |IndexCard| |InnerCommonDenominator| |InfClsPt| |PolynomialIdeals| |IdealDecompositionPackage| |IndexedDirectProductAbelianGroup| |IndexedDirectProductAbelianMonoid| |IndexedDirectProductCategory| |IndexedDirectProductOrderedAbelianMonoid| |IndexedDirectProductOrderedAbelianMonoidSup| |IndexedDirectProductObject| |InnerEvalable&| |InnerEvalable| |InnerFreeAbelianMonoid| |IndexedFlexibleArray| |InnerFiniteField| |InnerIndexedTwoDimensionalArray| |IndexedList| |InnerMatrixLinearAlgebraFunctions| |InnerMatrixQuotientFieldFunctions| |IndexedMatrix| |InnerNormalBasisFieldFunctions| |IncrementingMaps| |IndexedExponents| |InnerNumericEigenPackage| |InfinitlyClosePointCategory| |InfinitlyClosePointOverPseudoAlgebraicClosureOfFiniteField| |InfinitlyClosePoint| |Infinity| |InputFormFunctions1| |InputForm| |InfiniteProductCharacteristicZero| |InnerNumericFloatSolvePackage| |InnerModularGcd| |InnerMultFact| |InfiniteProductFiniteField| |InfiniteProductPrimeField| |InnerPolySign| |IntegerNumberSystem&| |IntegerNumberSystem| |InnerTable| |AlgebraicIntegration| |AlgebraicIntegrate| |IntegerBits| |IntervalCategory| |IntersectionDivisorPackage| |IntegralDomain&| |IntegralDomain| |ElementaryIntegration| |InterfaceGroebnerPackage| |IntegerFactorizationPackage| |InterpolateFormsPackage| |IntegrationFunctionsTable| |GenusZeroIntegration| |IntegerNumberTheoryFunctions| |AlgebraicHermiteIntegration| |TranscendentalHermiteIntegration| |Integer| |AnnaNumericalIntegrationPackage| |PureAlgebraicIntegration| |PatternMatchIntegration| |RationalIntegration| |IntegerRetractions| |RationalFunctionIntegration| |Interval| |IntegerSolveLinearPolynomialEquation| |IntegrationTools| |TranscendentalIntegration| |InverseLaplaceTransform| |InnerPAdicInteger| |InnerPrimeField| |InternalPrintPackage| |IntegrationResultToFunction| |IntegrationResultFunctions2| |IntegrationResult| |IntegerRoots| |IrredPolyOverFiniteField| |IntegrationResultRFToFunction| |IrrRepSymNatPackage| |InternalRationalUnivariateRepresentationPackage| |IndexedString| |InnerPolySum| |InnerSparseUnivariatePowerSeries| |InnerTaylorSeries| |InfiniteTupleFunctions2| |InfiniteTupleFunctions3| |InnerTrigonometricManipulations| |InfiniteTuple| |IndexedVector| |IndexedAggregate&| |IndexedAggregate| |AssociatedJordanAlgebra| |KeyedAccessFile| |KeyedDictionary&| |KeyedDictionary| |KernelFunctions2| |Kernel| |CoercibleTo| |ConvertibleTo| |Kovacic| |LeftAlgebra&| |LeftAlgebra| |LocalAlgebra| |LaplaceTransform| |LaurentPolynomial| |LazardSetSolvingPackage| |LeadingCoefDetermination| |LieExponentials| |LexTriangularPackage| |LiouvillianFunctionCategory| |LiouvillianFunction| |LinGroebnerPackage| |Library| |LieAlgebra&| |LieAlgebra| |AssociatedLieAlgebra| |PowerSeriesLimitPackage| |RationalFunctionLimitPackage| |LinearDependence| |LinearlyExplicitRingOver| |ListToMap| |ListFunctions2| |ListFunctions3| |List| |LinearSystemFromPowerSeriesPackage| |ListMultiDictionary| |LeftModule| |ListMonoidOps| |LinearAggregate&| |LinearAggregate| |LocalPowerSeriesCategory| |ElementaryFunctionLODESolver| |LinearOrdinaryDifferentialOperator1| |LinearOrdinaryDifferentialOperator2| |LinearOrdinaryDifferentialOperatorCategory&| |LinearOrdinaryDifferentialOperatorCategory| |LinearOrdinaryDifferentialOperatorFactorizer| |LinearOrdinaryDifferentialOperator| |LinearOrdinaryDifferentialOperatorsOps| |Logic&| |Logic| |Localize| |LinesOpPack| |LocalParametrizationOfSimplePointPackage| |LinearPolynomialEquationByFractions| |LiePolynomial| |ListAggregate&| |ListAggregate| |LinearSystemMatrixPackage1| |LinearSystemMatrixPackage| |LinearSystemPolynomialPackage| |LieSquareMatrix| |LyndonWord| |LazyStreamAggregate&| |LazyStreamAggregate| |ThreeDimensionalMatrix| |Magma| |MappingPackageInternalHacks1| |MappingPackageInternalHacks2| |MappingPackageInternalHacks3| |MappingPackage1| |MappingPackage2| |MappingPackage3| |MappingPackage4| |MatrixCategoryFunctions2| |MatrixCategory&| |MatrixCategory| |MatrixLinearAlgebraFunctions| |Matrix| |StorageEfficientMatrixOperations| |MultiVariableCalculusFunctions| |MatrixCommonDenominator| |MachineComplex| |MultiDictionary| |ModularDistinctDegreeFactorizer| |MeshCreationRoutinesForThreeDimensions| |MultFiniteFactorize| |MachineFloat| |ModularHermitianRowReduction| |MachineInteger| |MakeBinaryCompiledFunction| |MakeCachableSet| |MakeFloatCompiledFunction| |MakeFunction| |MakeRecord| |MakeUnaryCompiledFunction| |MultivariateLifting| |MonogenicLinearOperator| |MultipleMap| |MathMLFormat| |ModularField| |ModMonic| |ModuleMonomial| |ModuleOperator| |ModularRing| |Module&| |Module| |MoebiusTransform| |Monad&| |Monad| |MonadWithUnit&| |MonadWithUnit| |MonogenicAlgebra&| |MonogenicAlgebra| |Monoid&| |Monoid| |MonomialExtensionTools| |MPolyCatFunctions2| |MPolyCatFunctions3| |MPolyCatPolyFactorizer| |MultivariatePolynomial| |MPolyCatRationalFunctionFactorizer| |MRationalFactorize| |MonoidRingFunctions2| |MonoidRing| |MultisetAggregate| |Multiset| |MoreSystemCommands| |MergeThing| |MultivariateTaylorSeriesCategory| |MultivariateFactorize| |MultivariateSquareFree| |MyExpression| |MyUnivariatePolynomial| |NonAssociativeAlgebra&| |NonAssociativeAlgebra| |NagPolynomialRootsPackage| |NagRootFindingPackage| |NagSeriesSummationPackage| |NagIntegrationPackage| |NagOrdinaryDifferentialEquationsPackage| |NagPartialDifferentialEquationsPackage| |NagInterpolationPackage| |NagFittingPackage| |NagOptimisationPackage| |NagMatrixOperationsPackage| |NagEigenPackage| |NagLinearEquationSolvingPackage| |NagLapack| |NagSpecialFunctionsPackage| |NAGLinkSupportPackage| |NonAssociativeRng&| |NonAssociativeRng| |NonAssociativeRing&| |NonAssociativeRing| |NumericComplexEigenPackage| |NumericContinuedFraction| |NonCommutativeOperatorDivision| |NewtonInterpolation| |NumberFieldIntegralBasis| |NumericalIntegrationProblem| |NonLinearSolvePackage| |NonNegativeInteger| |NonLinearFirstOrderODESolver| |NoneFunctions1| |None| |NormInMonogenicAlgebra| |NormalizationPackage| |NormRetractPackage| |NottinghamGroup| |NPCoef| |NewtonPolygon| |NumericRealEigenPackage| |NeitherSparseOrDensePowerSeries| |NewSparseMultivariatePolynomial| |NewSparseUnivariatePolynomialFunctions2| |NewSparseUnivariatePolynomial| |NumberTheoreticPolynomialFunctions| |NormalizedTriangularSetCategory| |Numeric| |NumberFormats| |NumericalIntegrationCategory| |NumericalOrdinaryDifferentialEquations| |NumericalQuadrature| |NumericTubePlot| |OrderedAbelianGroup| |OrderedAbelianMonoid| |OrderedAbelianMonoidSup| |OrderedAbelianSemiGroup| |OrderedCancellationAbelianMonoid| |OctonionCategory&| |OctonionCategory| |OctonionCategoryFunctions2| |Octonion| |OrdinaryDifferentialEquationsSolverCategory| |ConstantLODE| |ElementaryFunctionODESolver| |ODEIntensityFunctionsTable| |ODEIntegration| |AnnaOrdinaryDifferentialEquationPackage| |PureAlgebraicLODE| |PrimitiveRatDE| |NumericalODEProblem| |PrimitiveRatRicDE| |RationalLODE| |ReduceLODE| |RationalRicDE| |SystemODESolver| |ODETools| |OrderedDirectProduct| |OrderlyDifferentialPolynomial| |OrdinaryDifferentialRing| |OrderlyDifferentialVariable| |OrderedFreeMonoid| |OrderedIntegralDomain| |OpenMathConnection| |OpenMathDevice| |OpenMathEncoding| |OpenMathErrorKind| |OpenMathError| |ExpressionToOpenMath| |OppositeMonogenicLinearOperator| |OpenMath| |OpenMathPackage| |OrderedMultisetAggregate| |OpenMathServerPackage| |OnePointCompletionFunctions2| |OnePointCompletion| |Operator| |OperationsQuery| |NumericalOptimizationCategory| |AnnaNumericalOptimizationPackage| |NumericalOptimizationProblem| |OrderedCompletionFunctions2| |OrderedCompletion| |OrderedFinite| |OrderingFunctions| |OrderedMonoid| |OrderedRing&| |OrderedRing| |OrderedSet&| |OrderedSet| |UnivariateSkewPolynomialCategory&| |UnivariateSkewPolynomialCategory| |UnivariateSkewPolynomialCategoryOps| |SparseUnivariateSkewPolynomial| |UnivariateSkewPolynomial| |OrthogonalPolynomialFunctions| |OrdSetInts| |OutputForm| |OutputPackage| |OrderedVariableList| |OrdinaryWeightedPolynomials| |PseudoAlgebraicClosureOfAlgExtOfRationalNumberCategory| |PseudoAlgebraicClosureOfAlgExtOfRationalNumber| |PseudoAlgebraicClosureOfFiniteFieldCategory| |PseudoAlgebraicClosureOfFiniteField| |PseudoAlgebraicClosureOfPerfectFieldCategory| |PseudoAlgebraicClosureOfRationalNumberCategory| |PseudoAlgebraicClosureOfRationalNumber| |PadeApproximants| |PadeApproximantPackage| |PAdicIntegerCategory| |PAdicInteger| |PAdicRational| |PAdicRationalConstructor| |PackageForAlgebraicFunctionFieldOverFiniteField| |PackageForAlgebraicFunctionField| |Palette| |PolynomialAN2Expression| |ParametrizationPackage| |ParametricPlaneCurveFunctions2| |ParametricPlaneCurve| |ParametricSpaceCurveFunctions2| |ParametricSpaceCurve| |ParametricSurfaceFunctions2| |ParametricSurface| |PartitionsAndPermutations| |Patternable| |PatternMatchListResult| |PatternMatchable| |PatternMatch| |PatternMatchResultFunctions2| |PatternMatchResult| |PatternFunctions1| |PatternFunctions2| |Pattern| |PoincareBirkhoffWittLyndonBasis| |PolynomialComposition| |PartialDifferentialEquationsSolverCategory| |PolynomialDecomposition| |AnnaPartialDifferentialEquationPackage| |NumericalPDEProblem| |PartialDifferentialRing&| |PartialDifferentialRing| |PendantTree| |Permanent| |PermutationCategory| |PermutationGroup| |Permutation| |PolynomialFactorizationByRecursion| |PolynomialFactorizationByRecursionUnivariate| |PolynomialFactorizationExplicit&| |PolynomialFactorizationExplicit| |PrimeField| |PointsOfFiniteOrder| |PointsOfFiniteOrderRational| |PackageForPoly| |PointsOfFiniteOrderTools| |PartialFraction| |PartialFractionPackage| |PolynomialGcdPackage| |PermutationGroupExamples| |PolyGroebner| |PiCoercions| |PrincipalIdealDomain| |PositiveInteger| |PolynomialInterpolationAlgorithms| |PolynomialInterpolation| |PlacesCategory| |Places| |PlacesOverPseudoAlgebraicClosureOfFiniteField| |Plcs| |ParametricLinearEquations| |PlotFunctions1| |Plot3D| |Plot| |PlotTools| |PolynomialPackageForCurve| |FunctionSpaceAssertions| |PatternMatchAssertions| |PatternMatchPushDown| |PatternMatchFunctionSpace| |PatternMatchIntegerNumberSystem| |PatternMatchKernel| |PatternMatchListAggregate| |PatternMatchPolynomialCategory| |FunctionSpaceAttachPredicates| |AttachPredicates| |PatternMatchQuotientFieldCategory| |PatternMatchSymbol| |PatternMatchTools| |PolynomialNumberTheoryFunctions| |Point| |PolToPol| |RealPolynomialUtilitiesPackage| |PolynomialFunctions2| |PolynomialToUnivariatePolynomial| |PolynomialCategory&| |PolynomialCategory| |PolynomialCategoryQuotientFunctions| |PolynomialCategoryLifting| |Polynomial| |PolynomialRoots| |PlottablePlaneCurveCategory| |PrecomputedAssociatedEquations| |PrimitiveArrayFunctions2| |PrimitiveArray| |PrimitiveFunctionCategory| |PrimitiveElement| |IntegerPrimesPackage| |PrintPackage| |ProjectiveAlgebraicSetPackage| |PolynomialRing| |Product| |ProjectivePlane| |ProjectivePlaneOverPseudoAlgebraicClosureOfFiniteField| |ProjectiveSpace| |PriorityQueueAggregate| |PseudoRemainderSequence| |ProjectiveSpaceCategory| |Partition| |PowerSeriesCategory&| |PowerSeriesCategory| |PlottableSpaceCurveCategory| |PolynomialSetCategory&| |PolynomialSetCategory| |PolynomialSetUtilitiesPackage| |PseudoLinearNormalForm| |PolynomialSquareFree| |PointCategory| |PointFunctions2| |PointPackage| |PartialTranscendentalFunctions| |PushVariables| |PAdicWildFunctionFieldIntegralBasis| |QuasiAlgebraicSet2| |QuasiAlgebraicSet| |QuasiComponentPackage| |QueryEquation| |QuotientFieldCategoryFunctions2| |QuotientFieldCategory&| |QuotientFieldCategory| |QuadraticForm| |QueueAggregate| |QuaternionCategory&| |QuaternionCategory| |QuaternionCategoryFunctions2| |Quaternion| |Queue| |RadicalCategory&| |RadicalCategory| |RadicalFunctionField| |RadixExpansion| |RadixUtilities| |RandomNumberSource| |RationalFactorize| |RationalRetractions| |RecursiveAggregate&| |RecursiveAggregate| |RealClosedField&| |RealClosedField| |ElementaryRischDE| |ElementaryRischDESystem| |TranscendentalRischDE| |TranscendentalRischDESystem| |RandomDistributions| |ReducedDivisor| |RealZeroPackage| |RealZeroPackageQ| |RealConstant| |RealSolvePackage| |RealClosure| |RecurrenceOperator| |ReductionOfOrder| |Reference| |RegularTriangularSet| |RepresentationPackage1| |RepresentationPackage2| |RepeatedDoubling| |RadicalEigenPackage| |RepeatedSquaring| |ResolveLatticeCompletion| |ResidueRing| |Result| |RetractableTo&| |RetractableTo| |RetractSolvePackage| |RandomFloatDistributions| |RationalFunctionFactor| |RationalFunctionFactorizer| |RationalFunction| |RootsFindingPackage| |RegularChain| |RandomIntegerDistributions| |Ring&| |Ring| |RationalInterpolation| |RectangularMatrixCategory&| |RectangularMatrixCategory| |RectangularMatrix| |RectangularMatrixCategoryFunctions2| |RightModule| |Rng| |RealNumberSystem&| |RealNumberSystem| |RightOpenIntervalRootCharacterization| |RomanNumeral| |RoutinesTable| |RecursivePolynomialCategory&| |RecursivePolynomialCategory| |RealRootCharacterizationCategory&| |RealRootCharacterizationCategory| |RegularSetDecompositionPackage| |RegularTriangularSetCategory&| |RegularTriangularSetCategory| |RegularTriangularSetGcdPackage| |RuleCalled| |RewriteRule| |Ruleset| |RationalUnivariateRepresentationPackage| |SimpleAlgebraicExtensionAlgFactor| |SimpleAlgebraicExtension| |SAERationalFunctionAlgFactor| |SingletonAsOrderedSet| |SortedCache| |StructuralConstantsPackage| |SequentialDifferentialPolynomial| |SequentialDifferentialVariable| |SegmentFunctions2| |SegmentBindingFunctions2| |SegmentBinding| |SegmentCategory| |Segment| |SegmentExpansionCategory| |SetAggregate&| |SetAggregate| |SetCategoryWithDegree| |SetCategory&| |SetCategory| |SetOfMIntegersInOneToN| |Set| |SExpressionCategory| |SExpression| |SExpressionOf| |SimpleFortranProgram| |SquareFreeQuasiComponentPackage| |SquareFreeRegularTriangularSetGcdPackage| |SquareFreeRegularTriangularSetCategory| |SymmetricGroupCombinatoricFunctions| |SemiGroup&| |SemiGroup| |SplitHomogeneousDirectProduct| |SturmHabichtPackage| |ElementaryFunctionSign| |RationalFunctionSign| |SimplifyAlgebraicNumberConvertPackage| |SingleInteger| |StackAggregate| |SquareMatrixCategory&| |SquareMatrixCategory| |SmithNormalForm| |SparseMultivariatePolynomial| |SparseMultivariateTaylorSeries| |SquareFreeNormalizedTriangularSetCategory| |PolynomialSolveByFormulas| |RadicalSolvePackage| |TransSolvePackageService| |TransSolvePackage| |SortPackage| |ThreeSpace| |ThreeSpaceCategory| |SpecialOutputPackage| |SpecialFunctionCategory| |SplittingNode| |SplittingTree| |SquareMatrix| |StringAggregate&| |StringAggregate| |SquareFreeRegularSetDecompositionPackage| |SquareFreeRegularTriangularSet| |Stack| |StreamAggregate&| |StreamAggregate| |SparseTable| |StepThrough| |StreamInfiniteProduct| |StreamFunctions1| |StreamFunctions2| |StreamFunctions3| |Stream| |StringCategory| |String| |StringTable| |StreamTaylorSeriesOperations| |StreamTranscendentalFunctionsNonCommutative| |StreamTranscendentalFunctions| |SubResultantPackage| |SubSpace| |SuchThat| |SparseUnivariateLaurentSeries| |FunctionSpaceSum| |RationalFunctionSum| |SparseUnivariatePolynomialFunctions2| |SparseUnivariatePolynomialExpressions| |SupFractionFactorizer| |SparseUnivariatePolynomial| |SparseUnivariatePuiseuxSeries| |SparseUnivariateTaylorSeries| |Switch| |Symbol| |SymmetricFunctions| |SymmetricPolynomial| |TheSymbolTable| |SymbolTable| |SystemSolvePackage| |TableauxBumpers| |Tableau| |Table| |TangentExpansions| |TableAggregate&| |TableAggregate| |TabulatedComputationPackage| |TemplateUtilities| |TexFormat1| |TexFormat| |TextFile| |ToolsForSign| |TopLevelThreeSpace| |TranscendentalFunctionCategory&| |TranscendentalFunctionCategory| |Tree| |TrigonometricFunctionCategory&| |TrigonometricFunctionCategory| |TrigonometricManipulations| |TriangularMatrixOperations| |TranscendentalManipulations| |TriangularSetCategory&| |TriangularSetCategory| |TaylorSeries| |TubePlot| |TubePlotTools| |Tuple| |TwoFactorize| |Type| |UserDefinedPartialOrdering| |UserDefinedVariableOrdering| |UniqueFactorizationDomain&| |UniqueFactorizationDomain| |UnivariateFormalPowerSeriesFunctions| |UnivariateFormalPowerSeries| |UnivariateLaurentSeriesFunctions2| |UnivariateLaurentSeriesCategory| |UnivariateLaurentSeriesConstructorCategory&| |UnivariateLaurentSeriesConstructorCategory| |UnivariateLaurentSeriesConstructor| |UnivariateLaurentSeries| |UnivariateFactorize| |UniversalSegmentFunctions2| |UniversalSegment| |UnivariatePolynomialFunctions2| |UnivariatePolynomialCommonDenominator| |UnivariatePolynomialDecompositionPackage| |UnivariatePolynomialDivisionPackage| |UnivariatePolynomialMultiplicationPackage| |UnivariatePolynomial| |UnivariatePolynomialCategoryFunctions2| |UnivariatePolynomialCategory&| |UnivariatePolynomialCategory| |UnivariatePowerSeriesCategory&| |UnivariatePowerSeriesCategory| |UnivariatePolynomialSquareFree| |UnivariatePuiseuxSeriesFunctions2| |UnivariatePuiseuxSeriesCategory| |UnivariatePuiseuxSeriesConstructorCategory&| |UnivariatePuiseuxSeriesConstructorCategory| |UnivariatePuiseuxSeriesConstructor| |UnivariatePuiseuxSeries| |UnivariatePuiseuxSeriesWithExponentialSingularity| |UnaryRecursiveAggregate&| |UnaryRecursiveAggregate| |UnivariateTaylorSeriesFunctions2| |UnivariateTaylorSeriesCategory&| |UnivariateTaylorSeriesCategory| |UnivariateTaylorSeries| |UnivariateTaylorSeriesODESolver| |UTSodetools| |TaylorSolve| |UnivariateTaylorSeriesCZero| |Variable| |VectorCategory&| |VectorCategory| |VectorFunctions2| |Vector| |TwoDimensionalViewport| |ThreeDimensionalViewport| |ViewDefaultsPackage| |ViewportPackage| |Void| |VectorSpace&| |VectorSpace| |WeierstrassPreparation| |WildFunctionFieldIntegralBasis| |WeightedPolynomials| |WuWenTsunTriangularSet| |XAlgebra| |XDistributedPolynomial| |XExponentialPackage| |XFreeAlgebra| |ExtensionField&| |ExtensionField| |XPBWPolynomial| |XPolynomialsCat| |XPolynomial| |XPolynomialRing| |XRecursivePolynomial| |ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage| |IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping| |Record| |Union| |Category| |aQuartic| |printInfo| |tanhIfCan| |lflimitedint| |sturmSequence| |ldf2vmf| |getExplanations| |whatInfinity| |graphImage| |indicialEquations| |separant| |leftTraceMatrix| |viewWriteDefault| |virtualDegree| |printHeader| |insertBottom!| |leftRegularRepresentation| |showScalarValues| |outputArgs| |karatsubaOnce| |reorder| |rationalFunction| |entry?| |latex| |cExp| |numericalIntegration| |setAdaptive3D| |solveLinearPolynomialEquationByRecursion| |OMputInteger| |cfirst| |unravel| |createZechTable| |options| |iiacoth| |stFunc2| |ideal| |mainVariable?| |fullPartialFraction| |sinhIfCan| |pToDmp| |stoseLastSubResultant| |rightRecip| |index?| |arrayStack| |eigenvector| |infinite?| |numberOfComputedEntries| |setPoly| |edf2fi| |palgextint0| |OMgetString| |genericLeftTrace| |rootBound| |reduceLODE| |copy!| |polygon?| |bumprow| |removeSuperfluousCases| |zoom| |nextPrimitiveNormalPoly| |ranges| |setright!| |index| |rename| |pseudoQuotient| F |taylorRep| |integralBasis| |OMopenString| |name| |trigs| |differentialVariables| |firstNumer| |center| |permutationGroup| |functionIsFracPolynomial?| |integerIfCan| |PDESolve| |outlineRender| |splitDenominator| |monicRightFactorIfCan| |lyndon?| |unitCanonical| |leftMinimalPolynomial| |mainPrimitivePart| |clearTheIFTable| |bag| |isMult| |infieldIntegrate| |viewZoomDefault| |currentSubProgram| |saturate| |approxSqrt| |qelt| |showTheIFTable| |numberOfChildren| |traverse| |normalDeriv| |dequeue| |rationalIfCan| |extendIfCan| |genericRightMinimalPolynomial| |optpair| |atanhIfCan| |color| |overbar| |rightTrace| |setMinPoints3D| |fortranCharacter| |keys| |subresultantVector| |lowerCase| |createNormalElement| |tanSum| |LyndonCoordinates| |stirling2| |failed| |trivialIdeal?| |commutativeEquality| |listOfTerms| |setMaxPoints3D| |psolve| |comp| |tab| |makeFloatFunction| |stopMusserTrials| |init| |variable| |range| |birth| |karatsuba| |stoseInvertible?reg| |weight| |univcase| |complex?| |showAllElements| UTS2UP |divisors| |setProperties| |scale| |suchThat| |OMgetEndBind| |removeConstantTerm| |fixedPoint| |imagj| |asinIfCan| |legendreP| |makeCrit| |basisOfCenter| |tail| |primes| |anticoord| |maxColIndex| |pushup| |btwFact| |times!| |nextItem| LODO2FUN |sqfree| |subTriSet?| |normal?| |setMinPoints| |chebyshevT| |euclideanNormalForm| |radical| |normalizedDivide| ~ |distance| |ODESolve| |car| |removeSinSq| |rowEchelon| |space| |hdmpToDmp| |cdr| |LyndonWordsList| |decomposeFunc| |polyPart| |pquo| |lazyEvaluate| |eigenMatrix| |rootOf| |solveLinear| |high| |iicot| |cosh2sech| |nrows| |debug3D| |pomopo!| |stepBlowUp| |iflist2Result| |One| |choosemon| |startTableInvSet!| |diagonalProduct| |stosePrepareSubResAlgo| |read!| |nextsousResultant2| |axesColorDefault| |matrixDimensions| |rangeIsFinite| |objects| |evaluate| |points| |extensionDegree| |retractIfCan| |countRealRootsMultiple| |nextSubsetGray| |discriminantEuclidean| |blue| |clearCache| |binarySearchTree| |head| |checkRur| |checkPrecision| |duplicates| |divideIfCan| |quadTransform| |ode1| |vark| |Si| |fullDisplay| |polyRingToBlUpRing| |iiacsc| |pr2dmp| |associatedEquations| |nextNormalPoly| |newtonPolySlope| |functionIsOscillatory| |cotIfCan| |rightPower| |varList| |biringToPolyRing| |roughBase?| |besselI| |RemainderList| |mapExponents| |applyTransform| |colorDef| |shiftRoots| |getlo| |OMgetEndAttr| |OMserve| |complement| |initializeParamOfPlaces| |fintegrate| |transCoord| |drawComplexVectorField| |coefChoose| |firstDenom| |initParLocLeaves| |rational| |ramifMult| |lowerCase!| |addBadValue| |tryFunctionalDecomposition| |inBetweenExcpDiv| |graeffe| |quotValuation| |repeatUntilLoop| |Nul| |indices| |genusTreeNeg| |relationsIdeal| |infClsPt?| |genericPosition| |ksec| |algebraic?| |genusTree| |primitive?| |excepCoord| |poisson| |numerator| |startTable!| |fullParamInit| |palgint| |createHN| |modifyPointData| |generalPosition| |showClipRegion| |divisorAtDesingTree| |definingEquations| |summary| |chartCoord| |slex| |style| |messagePrint| |lyndonIfCan| |desingTreeAtPoint| |brillhartIrreducible?| |pol| |deepestInitial| |limit| |show| |maxdeg| |blowUpWithExcpDiv| |xor| |someBasis| |calcRanges| |integralBasisAtInfinity| |coerceP| |blowUp| |e02aef| |interpolate| |basisOfNucleus| |nlde| |chvar| |balancedFactorisation| |oddInfiniteProduct| |OMgetType| |OMputEndObject| |encode| |complexNumeric| |c02agf| |OMgetBind| |cyclicCopy| |headReduced?| |splitConstant| |kernels| |dcopy| |c02aff| |integer?| |reduced?| |leadingSupport| |listYoungTableaus| |univariate| |dcabs1| |nthCoef| |integral?| |e02adf| |asimpson| |showAttributes| |ratDsolve| |factor| |initTable!| |second| |sylvesterMatrix| |daxpy| |lambda| |c05pbf| |super| |tanNa| |swapColumns!| |real| |dasum| |compile| |rowEchelonLocal| |lazyPquo| |airyBi| |continuedFraction| |imag| |subResultantChain| |credits| |directProduct| |B1solve| |ScanFloatIgnoreSpaces| |numberOfVariables| |argumentList!| |adaptive?| |binaryTree| |infix?| |yCoord| |branchPointAtInfinity?| |destruct| |root?| |coercePreimagesImages| |dioSolve| |e01sef| |decompose| |monomial| |transpose| |fractRagits| |shufflein| |polynomialZeros| |e01saf| |roughBasicSet| |OMgetInteger| |minPol| |denominator| |multivariate| |df2mf| |appendPoint| |cRationalPower| |e01daf| |realSolve| = |variables| |totalLex| |e01bhf| |graphStates| |leftZero| |epilogue| |moebius| |iomode| |exprHasWeightCosWXorSinWX| |rationalPoint?| |e01bgf| |OMconnectTCP| |random| < |solid| |leadingTerm| |e01bff| |commutator| |extendedResultant| |OMopenFile| |mainMonomial| > |taylor| |readLineIfCan!| |safeFloor| |e01bef| |getGoodPrime| |interReduce| |ode2| <= |laurent| |showTheRoutinesTable| |constantOpIfCan| |cyclic| |e01baf| |rational?| |infieldint| >= |showIntensityFunctions| |puiseux| |quadraticBezier| |outputGeneral| |e02zaf| |totalDegree| GF2FG |nonQsign| |torsionIfCan| |inv| |linearBezier| |e02gaf| |ground?| |cosSinInfo| |abelianGroup| |selectAndPolynomials| |determinant| |LowTriBddDenomInv| |cubicBezier| |ground| |e02dff| |listRepresentation| |patternVariable| |certainlySubVariety?| + |critMonD1| |randomR| |e02def| |outputForm| |new| |patternMatchTimes| |setOrder| |nthFactor| - |leadingMonomial| |digits| |elem?| |e02ddf| |stoseIntegralLastSubResultant| |slash| |ParCond| / |halfExtendedResultant2| |leadingCoefficient| |raisePolynomial| |factorGroebnerBasis| |e02dcf| |makeSUP| |imagE| |setrest!| |translate| |primitiveMonomials| |basisOfCommutingElements| |leadingBasisTerm| |qsetelt!| |e02daf| |rationalApproximation| |union| |reductum| |characteristic| |innerSolve1| |e02bef| |divideExponents| |linear| |sh| |OMsupportsSymbol?| |multiServ| |irreducibleFactors| |evenlambert| |getMeasure| |chiSquare1| |degreePartition| |outerProduct| |axServer| |suppOfZero| |augment| |rightQuotient| |OMputBVar| |toseInvertibleSet| |branchPoint?| |suppOfPole| |critM| |packageCall| |completeHensel| |squareFreePolynomial| |title| |deleteProperty!| |const| |palgintegrate| |numFunEvals3D| |supp| |minimumExponent| |bfKeys| |polar| |positive?| |plot| |internalZeroSetSplit| |effective?| |divOfZero| |clikeUniv| |rightFactorCandidate| |stoseSquareFreePart| |difference| |OMputObject| |summation| |phiCoord| |stoseInvertibleSetreg| |OMencodingXML| |factorList| |divOfPole| RF2UTS |oneDimensionalArray| |standardBasisOfCyclicSubmodule| |orbit| |upDateBranches| |complexRoots| |rationalPower| |physicalLength| |cAcot| |schwerpunkt| |HenselLift| |inc| |monomial?| |pole?| |exactQuotient| |fortranComplex| |leftAlternative?| |npcoef| |factorials| |generators| |abs| |recip| |linkToFortran| |rightCharacteristicPolynomial| |reducedContinuedFraction| |rightFactorIfCan| |midpoints| |maxPoints| |subscriptedVariables| |eulerPhi| |viewPhiDefault| |numberOfCycles| |absolutelyIrreducible?| |setAttributeButtonStep| |lexico| |append| |clipPointsDefault| |constDsolve| |explogs2trigs| |changeVar| |makeSin| |function| |actualExtensionV| |quasiAlgebraicSet| |expr| |lineColorDefault| |charpol| |weakBiRank| |deref| |rightTrim| |makeFR| |removeSinhSq| |monomials| |mkcomm| |omError| |lprop| |prefix| |OMgetEndObject| |mapdiv| |signAround| |completeHermite| |iidigamma| |halfExtendedSubResultantGcd1| |selectIntegrationRoutines| |complexNumericIfCan| |closed?| |retractable?| |iiBeta| |besselJ| |rootOfIrreduciblePoly| |fortranLinkerArgs| |constantCoefficientRicDE| |lexGroebner| |dmp2rfi| |musserTrials| |skewSFunction| |unary?| |convergents| |write!| |transcendenceDegree| |op| |hadamard| |elements| |pureLex| |third| |solveLinearPolynomialEquation| |separateDegrees| |lfextendedint| |tan2trig| |heap| |startTableGcd!| |topPredicate| |spherical| |iiBesselY| |content| |toseSquareFreePart| |cCsch| |repeating?| |iipow| |iiBesselK| |maximumExponent| |mathieu23| |coleman| |HermiteIntegrate| |lazy?| |aromberg| |newton| |validExponential| |pfaffian| |extractPoint| |postfix| |hypergeometric0F1| |totolex| |square?| |rotatez| |unit| |fortranReal| |columnSpace| |setlast!| |tubePointsDefault| |bracket| |viewpoint| |rotatey| |tanh2coth| |tan2cot| |rquo| |nthExponent| |selectfirst| |OMputString| |flush| |makeViewport3D| |seriesSolve| |KrullNumber| |innerEigenvectors| |compBound| |nextsubResultant2| |primaryDecomp| |mainForm| |binaryFunction| |polygamma| |showAll?| |ord| |trace| |binaryTournament| |e01sff| |wholePart| |sturmVariationsOf| |extractProperty| |dmpToP| |operators| |minimize| |writable?| |squareFreeLexTriangular| |usingTable?| |superHeight| |returns| |iiBesselJ| |interval| |headRemainder| |genericLeftMinimalPolynomial| |PollardSmallFactor| |iifact| |iiBesselI| |compiledFunction| |pile| |ReduceOrder| |ddFact| |defineProperty| |components| |partialNumerators| |useEisensteinCriterion?| |stopTable!| |mainDefiningPolynomial| |variationOfParameters| |OMgetObject| |makeCos| |iiAiryBi| |resultant| |approxNthRoot| |parts| |simpson| |OMgetFloat| |setFieldInfo| |mathieu22| |lazyIrreducibleFactors| |palglimint| |measure2Result| |nextIrreduciblePoly| |removeConjugate| |singularitiesOf| |initializeGroupForWordProblem| |groebnerIdeal| |minColIndex| |taylorQuoByVar| |divideIfCan!| |projectivePoint| |rightDiscriminant| |padecf| |pToHdmp| |power| |Beta| |toseLastSubResultant| |pointValue| |basisOfRightNucleus| |initial| |innerSolve| |sumSquares| |over| |groebgen| |mergeFactors| |lastNonNull| |setRow!| |oblateSpheroidal| |iiAiryAi| |complexNormalize| |sncndn| |fortranDoubleComplex| |partialDenominators| |lastNonNul| |mapCoef| |smith| |radicalSimplify| |linearlyDependentOverZ?| |selectMultiDimensionalRoutines| |element?| |homogenize| |edf2ef| |blankSeparate| |member?| |iibinom| |numberOfFactors| |movedPoints| |definingField| |product| |OMlistSymbols| |merge!| |sech2cosh| |cAsech| |addMatchRestricted| |cCot| |boundOfCauchy| |constantKernel| |lexTriangular| |csch2sinh| |trailingCoefficient| |binary| |resetVariableOrder| |fortranTypeOf| |dim| |characteristicSerie| |lllp| |lepol| |initiallyReduce| |evenInfiniteProduct| |iiacosh| |cap| |ode| |structuralConstants| |diophantineSystem| |invertibleElseSplit?| |localUnquote| |BasicMethod| |mpsode| |in?| |symmetricProduct| |satisfy?| |makeGraphImage| |mapUnivariateIfCan| |numberOfHues| |leftUnits| |iiatan| |denominators| |close!| |extendedIntegrate| |decrease| |property| |cross| |principal?| |leadingExponent| |bivariateSLPEBR| |bezoutResultant| |true| |prepareDecompose| |pointColor| |normalize| |schema| |printCode| |units| |shiftLeft| |atom?| |distFact| |palginfieldint| |multMonom| |expextendedint| |bits| |irreducible?| |clipSurface| |getOrder| |Lazard| |mainVariable| |iicos| |iiabs| |recolor| |fixPredicate| |lazyPremWithDefault| |leftGcd| |pointColorDefault| |factorAndSplit| |precision| |code| |subResultantGcdEuclidean| |newSubProgram| |rroot| |fibonacci| |deepExpand| |singularPointsWithRestriction| |aCubic| |rotate| |rspace| |lastSubResultantEuclidean| |more?| |updatF| |prevPrime| |singularPoints| |arity| |simpleBounds?| |flagFactor| |OMencodingUnknown| |members| |oddlambert| |numer| |algebraicSet| |removeZero| |drawStyle| |imagI| |leftPower| |outputList| |denom| |allRootsOf| |simplify| |derivationCoordinates| |sin?| |companionBlocks| |semiResultantEuclidean2| |extract!| |qqq| |seed| |contractSolve| |floor| |setClipValue| |draw| |maxrow| |vertConcat| |lazyPrem| |iitan| |OMputVariable| |hasPredicate?| |monomRDE| |makeObject| |resultantEuclideannaif| |basisOfLeftNucloid| |width| |acosIfCan| |constantToUnaryFunction| |coord| |directory| |monicRightDivide| |coef| |wordInStrongGenerators| |pointData| |addPointLast| |leaves| |normalElement| |monom| |findCycle| |cAcoth| |coth2trigh| |varselect| |nextSublist| |kernel| |imagk| |setprevious!| |listOfLists| |permanent| |cycleElt| |negative?| |monic?| |notelem| |basisOfRightNucloid| |rightOne| |var1StepsDefault| |cylindrical| |cubic| |oddintegers| |traceMatrix| |scanOneDimSubspaces| |cyclicEntries| |integerBound| |pop!| |jordanAdmissible?| |parametersOf| |makeTerm| FG2F |palgRDE| |explimitedint| |declare!| |acotIfCan| |symmetricGroup| |cAsin| |stFuncN| |dihedralGroup| |any| |eq?| |divide| |toScale| |permutations| |node| |brillhartTrials| |bubbleSort!| |doubleResultant| |iiasec| |constantLeft| |doubleDisc| |noLinearFactor?| |roughUnitIdeal?| |iprint| |numberOfPrimitivePoly| |check| |testModulus| |derivative| |OMreceive| |alphanumeric?| |complete| |setScreenResolution3D| |build| |cSin| |normalizeIfCan| |reducedDiscriminant| |jacobian| |primlimitedint| |rewriteIdealWithQuasiMonicGenerators| |condition| |rk4| |endSubProgram| |quickSort| |pointToPlace| |type| |result| |dimensions| |charClass| |useNagFunctions| |dominantTerm| |randnum| |chebyshevU| |and| |rootsOf| |mkAnswer| |numberOfComposites| |halfExtendedResultant1| |clipWithRanges| |basisOfCentroid| |leader| |quasiMonicPolynomials| |normInvertible?| |associative?| |Aleph| |localParamOfSimplePt| |wholeRadix| |setEmpty!| |#| |charthRoot| |ran| |cAsinh| |delay| |inverseIntegralMatrixAtInfinity| |lfextlimint| |rowEchWoZeroLinesWOVectorise| |comment| |sup| |ref| |integralDerivationMatrix| |rowEchWoZeroLines| |exptMod| |polarCoordinates| |fi2df| |id| |setnext!| |inf| |elliptic| |reduceRowOnList| |integer| |subNode?| |assign| |computeInt| |squareTop| |extractClosed| |subNodeOf?| |cyclePartition| |alphabetic?| |error| |sqfrFactor| |void| |divisor| |trace2PowMod| |reduceRow| |resultantnaif| |string| |pseudoRemainder| |fixedDivisor| |iidsum| NOT |reduceLineOverLine| |subtractIfCan| |trigs2explogs| |OMreadFile| |cAtan| OR |quotVecSpaceBasis| |genericLeftDiscriminant| |UP2ifCan| |inverseColeman| AND |curryLeft| |karatsubaDivide| |OMUnknownCD?| |isPlus| |associates?| |purelyTranscendental?| |rationalPoints| |moduloP| |cTanh| |setVariableOrder| |areEquivalent?| |lift| |exquo| |pascalTriangle| |primitivePart!| |exp1| |leastAffineMultiple| |basisOfInterpolateFormsForFact| |reduce| |div| |minPoints3D| |acscIfCan| |setClosed| |reset| |basisOfInterpolateForms| |length| |opeval| |limitedint| |paren| |Frobenius| |write| |scripts| |rdregime| ^= |doublyTransitive?| |save| |powmod| |semicolonSeparate| |resultantEuclidean| |rootRadius| |setOfMinN| |typeLists| |scalarMatrix| |translateToOrigin| |numberOfIrreduciblePoly| |loopPoints| |roman| |entry| |dot| |pointInIdeal?| * |printTypes| |integrate| |characteristicSet| |exprToUPS| |isQuotient| |multiplicity| |mapGen| |numberOfNormalPoly| |incrementKthElement| |symbolTable| |factorsOfCyclicGroupSize| |minimalForm| |factorSquareFree| |linears| |bezoutDiscriminant| |pushFortranOutputStack| |showTypeInOutput| |conjug| |createRandomElement| |jordanAlgebra?| |filename| |safetyMargin| |sinhcosh| |cPower| |patternMatch| |popFortranOutputStack| |primintfldpoly| |weights| |leftMult| |primlimintfrac| |outputAsFortran| |binomial| |zeroMatrix| |position!| |belong?| |OMunhandledSymbol| |qfactor| |geometric| |leftScalarTimes!| |extractSplittingLeaf| |central?| |SturmHabichtCoefficients| |ParCondList| |getMultiplicationTable| |cos2sec| |node?| |dmpToHdmp| |ptree| |coefficients| |removeCosSq| |coshIfCan| |maxint| |romberg| |upperCase?| |magnitude| |basisOfRightAnnihilator| |symmetricSquare| |basisOfLeftAnnihilator| |resetNew| |localIntegralBasis| |split!| |extractBottom!| |split| |complexEigenvalues| |matrixGcd| |critT| |nsqfree| |leftTrace| |differentiate| |fortranCompilerName| |integralMatrixAtInfinity| |finiteSeries2Vector| |rootProduct| |cycle| |increment| |colorFunction| |finiteSeries2LinSysWOVectorise| |polygon| |intensity| |evaluateInverse| |linearAssociatedExp| |finiteSeries2LinSys| |reindex| |basisOfLeftNucleus| |vector| |acothIfCan| |stopTableGcd!| |exponentialOrder| |hex| ^ |OMputError| |constantRight| |semiLastSubResultantEuclidean| |tableau| |exp| |startPolynomial| |radPoly| |laguerreL| |updatD| |pi| |normalForm| |Hausdorff| |innerint| |setButtonValue| |sqrt| |getMultiplicationMatrix| |primitiveElement| |connect| |mapDown!| |newTypeLists| |integralRepresents| |trim| |prod| |mix| |li| |supDimElseRittWu?| |hermite| |merge| |replace| |erf| |hMonic| |OMbindTCP| |quadraticNorm| |symmetricDifference| |green| D |max| |thetaCoord| |semiDegreeSubResultantEuclidean| |leftFactor| |physicalLength!| |OMputEndApp| |superscript| |fortranLiteralLine| |wholeRagits| |dilog| |genericRightTraceForm| |reduction| |relerror| |tan| |uniform| |library| |algebraicDecompose| |overlap| |cot| |highCommonTerms| |chainSubResultants| |tryFunctionalDecomposition?| |sec| |constant?| |inspect| |localReal?| |generalizedEigenvectors| |csc| |closedCurve| |rightRemainder| |minrank| |asin| |diff| |OMencodingBinary| |copies| |acos| |nil| |selectFiniteRoutines| |iiacos| |wordInGenerators| |atan| |changeWeightLevel| |makeEq| |perfectSquare?| |acot| |jacobi| |legendre| |nextPrimitivePoly| |asec| |approximate| |moduleSum| |makingStats?| |generalizedInverse| |acsc| |segment| |complex| |option?| |level| |newReduc| |viewDeltaYDefault| |sinh| |separate| |rem| |setEpilogue!| |primPartElseUnitCanonical| |cosh| |quoByVar| |iicoth| |intcompBasis| |tanh| |kmax| |quo| |tanh2trigh| |lazyGintegrate| |coth| |symbolIfCan| |secIfCan| |expandLog| |sech| |partialQuotients| |/\\| |lcm| |quotient| |shellSort| |csch| |nthRoot| |\\/| |refine| |splitNodeOf!| |asinh| |totalGroebner| |UnVectorise| |OMputSymbol| |acosh| |comparison| |completeEval| |repSq| |atanh| |numericalOptimization| |closeComponent| ~= |solveid| |selectsecond| |acoth| |alternatingGroup| |numeric| |quadratic| |asech| |supersub| |cyclicEqual?| |rightRegularRepresentation| |createPrimitiveElement| |genericRightTrace| |numberPlacesDegExtDeg| |removeIrreducibleRedundantFactors| |reducedSystem| |SFunction| |leftRank| |numberOfPlacesOfDegree| |createGenericMatrix| |doubleRank| |lBasis| |removeRedundantFactorsInPols| |OMgetBVar| |dAndcExp| |integralLastSubResultant| |squareFreePrim| |intersectionDivisor| |createNormalPoly| |outputFloating| |symbol?| |status| |interpolateFormsForFact| |ncols| |shallowExpand| |coefficient| |rules| |invertible?| |interpolateForms| |composites| |cycleSplit!| |one?| |OMsetEncoding| |goppaCode| |deepCopy| |lieAdmissible?| |module| |addPoint2| |setsubMatrix!| |genusNeg| |pointPlot| |trueEqual| LT |eq| |setImagSteps| |fullInfClsPt| |useEisensteinCriterion| |elRow1!| |perspective| |fullDesTree| |updateStatus!| |Ei| |atanIfCan| |iiGamma| |findOrderOfDivisor| |deleteRoutine!| |monomRDEsys| |cschIfCan| |sizePascalTriangle| |character?| |userOrdered?| |getRef| |collectUnder| |evalIfCan| |minus!| |associator| |outputAsTex| |pow| |desingTreeWoFullParam| |internalSubPolSet?| |linearDependence| |alternative?| |desingTree| |commaSeparate| |redmat| |classNumber| |OMgetEndBVar| |att2Result| |heapSort| |listexp| |factorial| |adjunctionDivisor| |listOfMonoms| |rightMult| |removeRoughlyRedundantFactorsInPols| |ZetaFunction| |cycleRagits| |submod| |compactFraction| |sum| |identitySquareMatrix| |LPolynomial| |argumentListOf| |implies| |BumInSepFFE| |consnewpol| |list?| |stFunc1| |radix| |expt| |log10| |partitions| |squareFreeFactors| |infiniteProduct| |var2StepsDefault| |transform| |indiceSubResultant| |mainContent| |exprHasAlgebraicWeight| |tValues| |iiatanh| |search| |nullary| F2EXPRR |bandedJacobian| |clearFortranOutputStack| LE |partition| |setTower!| |genericLeftNorm| |associatedSystem| |region| |previousTower| |rightExtendedGcd| |cartesian| |dom| |possiblyInfinite?| |newElement| |factorByRecursion| |stop| |lazyPseudoDivide| |maxTower| |conical| |unitNormal| |previous| |curve?| |fullOutput| |tubeRadiusDefault| |outputMeasure| |quadratic?| |cycleLength| |light| |makeResult| |quatern| |complexIntegrate| |atoms| |indicialEquation| |hitherPlane| |lyndon| |janko2| |bitCoef| |kovacic| |selectPolynomials| |setelt| |invertIfCan| |mkIntegral| |maxIndex| |completeEchelonBasis| GT |llprop| |setLegalFortranSourceExtensions| |create| |prolateSpheroidal| |maxPoints3D| |coth2tanh| |zRange| |quote| |elt| |OMgetVariable| |lagrange| |ravel| |goodnessOfFit| |rightGcd| |retractToGrn| |equation| |createPrimitiveNormalPoly| |generic?| |apply| |singularAtInfinity?| |sin| |composite| |quotientByP| |midpoint| |minPoints| |cos| |invmultisect| |showFortranOutputStack| |repeating| |brace| |dihedral| |coerce| |realZeros| |map| |fortranCarriageReturn| |unaryFunction| |normalDenom| |cons| |set| |balancedBinaryTree| |conditions| |simplifyExp| |radicalRoots| |copy| |setTex!| |normFactors| |diag| |rubiksGroup| |makeprod| |mvar| |testDim| |lp| |hcrf| |rightLcm| |first| |rCoord| |createPrimitivePoly| |vconcat| |normal| |null?| |monicModulo| |denomLODE| |zero?| |makeMulti| |decreasePrecision| |rightUnit| |move| |declare| |makeUnit| |position| |match| |symFunc| |unexpand| |list| |createNormalPrimitivePoly| |semiResultantEuclideannaif| |back| |generalInfiniteProduct| |withPredicates| |concat| |OMread| |dflist| |particularSolution| |children| |linear?| |shade| |rightNorm| |curve| |solveRetract| |inverseIntegralMatrix| |parent| |rdHack1| |rightUnits| |OMputEndAttr| |normalized?| |every?| GE |groebner?| |removeDuplicates| |e| |argscript| |base| |float?| |figureUnits| |noncommutativeJordanAlgebra?| |algintegrate| |errorKind| |rest| |logIfCan| |conditionsForIdempotents| |fortranLiteral| |nand| |useSingleFactorBound?| |reverse| |fTable| |ocf2ocdf| |generalizedContinuumHypothesisAssumed| |linearPart| |setDifference| |permutationRepresentation| |alphanumeric| |shiftRight| |expintfldpoly| |setIntersection| |purelyAlgebraic?| |algSplitSimple| |pdf2ef| |ipow| |stronglyReduced?| |eyeDistance| |hdmpToP| |showTheFTable| |tree| |commutative?| |bitTruth| |setUnion| |zeroDimPrimary?| |seriesToOutputForm| |enumerate| |assoc| |numberOfDivisors| |zeroDimensional?| |size| |isExpt| |presuper| |resetBadValues| |complexLimit| |OMputEndError| |substitute| |divergence| |laurentIfCan| |frst| |input| |monicDivide| |zeroDimPrime?| |unitsColorDefault| |viewport2D| |palglimint0| |pdf2df| |minPoly| |firstUncouplingMatrix| |idealiser| |hclf| |rotatex| |generalizedEigenvector| |discreteLog| |SturmHabichtMultiple| |primeFrobenius| |semiResultantEuclidean1| |identity| |changeName| |listConjugateBases| |changeMeasure| |fortranInteger| |bombieriNorm| |solid?| |prinshINFO| |nilFactor| |tanintegrate| |delete| |enterPointData| |En| |multiEuclideanTree| |squareFree| |regularRepresentation| |sumOfKthPowerDivisors| |shift| |explicitlyFinite?| |Ei6| |diagonals| |swap!| |exponents| |ratpart| |rewriteSetByReducingWithParticularGenerators| |Ei5| |univariatePolynomial| |leftRecip| |autoReduced?| |recur| |rightAlternative?| |Ei4| |iilog| |queue| |bitLength| |reciprocalPolynomial| |iiasinh| |Ei3| |cn| |diagonal| |qinterval| |infLex?| |value| |recoverAfterFail| |Ei2| |minRowIndex| |var2Steps| |nary?| |bat| |alphabetic| |Ei1| |gramschmidt| |ScanArabic| |dec| |besselK| |mirror| |properties| |finiteBasis| |typeList| |reopen!| |eulerE| |vectorise| |retract| |machineFraction| |wordsForStrongGenerators| |isPower| |fractRadix| |externalList| |cTan| |integerDecode| |parabolicCylindrical| |iicosh| |indicialEquationAtInfinity| |errorInfo| |rightRankPolynomial| |doubleFloatFormat| |morphism| |positiveRemainder| |basisOfMiddleNucleus| |primextendedint| |predicate| |removeZeroes| |lhs| |mapUp!| |unmakeSUP| |cAcsc| |factors| |drawCurves| |cSech| |generalSqFr| |squareMatrix| |insertionSort!| |asecIfCan| |factorPolynomial| |quoted?| |denomRicDE| |quasiComponent| |hexDigit| |iExquo| |fill!| |OMwrite| |gderiv| |redPo| |imaginary| |front| |integralAtInfinity?| |mkPrim| |mesh?| |leastPower| |returnType!| |createThreeSpace| |SturmHabicht| |rhs| |OMlistCDs| |revert| |iisin| |f04adf| |UpTriBddDenomInv| |expintegrate| |critMTonD1| |int| |antiAssociative?| |hasTopPredicate?| |neglist| |middle| |prem| |squareFreePart| |option| |double| |bernoulliB| |lastSubResultant| |pastel| |internalInfRittWu?| |fracPart| |linearDependenceOverZ| |topFortranOutputStack| |stoseInvertibleSet| |ricDsolve| |numerators| |continue| |sizeMultiplication| |tanIfCan| |leftRankPolynomial| |forLoop| |internalDecompose| |hasSolution?| |rootPoly| |prinb| |extendedSubResultantGcd| |rk4f| |internalIntegrate0| |char| |modularGcd| |xRange| |extractIndex| |times| Y |zeroDim?| |f07fef| |initiallyReduced?| |numberOfFractionalTerms| |iicsc| |conjugate| |clearTheFTable| |getDomains| |f07fdf| |rst| |gbasis| |rowEch| |constantOperator| |pattern| |beauzamyBound| |f07aef| |computeBasis| |univariatePolynomialsGcds| |string?| |fractionFreeGauss!| |contains?| |df2ef| |f07adf| |setvalue!| |sylvesterSequence| |setref| |finite?| |cSinh| |And| |arg1| |viewport3D| |antiCommutator| |symmetricTensors| |cot2tan| |alternating| |arg2| |s17dlf| |basicSet| |selectOrPolynomials| |removeRoughlyRedundantFactorsInContents| |wronskianMatrix| |interpretString| |s17dhf| |mathieu12| |clipParametric| |pdct| |lookup| |rank| |s17dgf| |univariatePolynomials| |lfunc| |critB| |xCoord| |OMgetSymbol| |f02xef| |flexibleArray| |relativeApprox| |mdeg| |cCsc| |routines| |left| |f02wef| |leftDiscriminant| |selectPDERoutines| |OMputFloat| |generalizedContinuumHypothesisAssumed?| |setScreenResolution| |multiple| |iroot| |height| |f02fjf| |returnTypeOf| |shiftHP| |meshPar2Var| |rightZero| |iidprod| |optional| |f02bjf| |update| |cscIfCan| |prepareSubResAlgo| |stronglyReduce| |is?| |minGbasis| |f02bbf| |OMcloseConn| |Ci| |direction| |conjugates| |diagonal?| |not| |f02axf| |complexExpand| |sorted?| |asinhIfCan| |removeRedundantFactorsInContents| |coordinate| |Yun| |iisqrt3| |f02awf| |clearTable!| |guessRec| |setAdaptive| |knownInfBasis| |obj| |Musser| |nonSingularModel| |f02akf| |euclideanGroebner| |enqueue!| |guessRat| |reseed| |sn| |applyQuote| |f02ajf| EQ |cyclicParents| |subHeight| |nthRootIfCan| |pack!| |operation| |f02agf| |getBadValues| |hyperelliptic| |radicalSolve| |unprotectedRemoveRedundantFactors| |mesh| |harmonic| |mapMatrixIfCan| |roughSubIdeal?| |LiePoly| |Gamma| |accuracyIF| |drawComplex| |f02aff| |localize| |bumptab1| |guessPade| |lowerCase?| |numberOfMonomials| |guessPRec| |f02aef| |unrankImproperPartitions0| |trunc| |maxrank| |semiIndiceSubResultantEuclidean| |lfinfieldint| |biRank| |f02adf| |mergeDifference| |getPickedPoints| |henselFact| |conditionP| |tower| |f02abf| |socf2socdf| |modularGcdPrimitive| |primPartElseUnitCanonical!| |modulus| |enterInCache| |f02aaf| |inverse| |normalise| |inrootof| |empty| |lifting1| |measure| |univariateSolve| |generalLambert| |inR?| |linearlyDependent?| |infix| |cache| |invertibleSet| |cyclotomicDecomposition| |critpOrder| |lllip| |countable?| |origin| |mapExpon| |atrapezoidal| |listBranches| |cothIfCan| |meatAxe| |affinePoint| |guessHolo| |chiSquare| |lastSubResultantElseSplit| |algebraicVariables| |exprToGenUPS| |chineseRemainder| |exprHasLogarithmicWeights| |iiacsch| |bat1| |guessHP| |randomLC| |extend| |top!| |guessExpRat| |unparse| |symmetricRemainder| |optAttributes| |antisymmetric?| |common| |getZechTable| |lazyPseudoQuotient| |guessBinRat| |powern| |Zero| |padicallyExpand| E1 |createLowComplexityNormalBasis| |triangSolve| |guessAlg| |deriv| |cSec| |linearAssociatedOrder| |guessADE| |exQuo| |octon| |cyclic?| |computeCycleEntry| |SturmHabichtSequence| |prime?| |normDeriv2| |setPredicates| |quasiMonic?| |mainMonomials| |polyRing2UPUP| |identityMatrix| |extractTop!| |subResultantsChain| |diagonalMatrix| |fprindINFO| |allPairsAmong| |singleFactorBound| |zeroSetSplit| |antiCommutative?| |nor| |monicDecomposeIfCan| |affineSingularPoints| |elRow2!| |sts2stst| |norm| |factorSFBRlcUnit| |groebner| |affineRationalPoints| |guess| |stoseInternalLastSubResultant| |simplifyLog| |stoseInvertible?| |perfectNthRoot| |odd?| |affineAlgSetLocal| |resultantReduit| |sdf2lst| |linearPolynomials| |genericRightDiscriminant| |principalIdeal| |affineAlgSet| |positiveSolve| |rur| |cAcsch| |dn| F2FG |symbol| |multinomial| |numberOfOperations| |csc2sin| |fixedPointExquo| |approximants| |or| |setFoundZeroes| |collectUpper| |LagrangeInterpolation| |viewWriteAvailable| |overset?| |credPol| |one| |ellipticCylindrical| |unit?| |foundZeroes| |quasiRegular?| |diffHP| |represents| |checkForZero| |zero| |distinguishedRootsOf| |normal01| |leftRemainder| |stopTableInvSet!| |leadingCoefficientRicDE| |collect| |taylorIfCan| |coordinates| |addMatch| |iiexp| |crest| |extDegree| |stoseInvertible?sqfreg| |rarrow| |rename!| |graphs| |normalizeAtInfinity| |distinguishedCommonRootsOf| |commonDenominator| |setRealSteps| |isList| |domainOf| |tablePow| |subQuasiComponent?| |monomialIntegrate| |algebraicSort| |ldf2lst| |idealSimplify| |makeSketch| |cAtanh| |functionIsContinuousAtEndPoints| |OMconnOutDevice| |factor1| |Not| |e02bcf| |untab| |solve1| |OMsupportsCD?| |insertMatch| |e02bbf| |escape| |sin2csc| |external?| |mathieu11| |e02baf| |problemPoints| |iisec| |asechIfCan| |selectSumOfSquaresRoutines| |e02akf| |gradient| |droot| |leastMonomial| |nullity| |right| |e02ajf| |acschIfCan| |plus!| |less?| |idealiserMatrix| |Or| |e04ycf| |parse| |curry| |semiResultantReduitEuclidean| |setleaves!| |leftExactQuotient| |e04ucf| |makeop| |pushdterm| |leftOne| |cup| |e04naf| |expressIdealMember| |LazardQuotient2| |xn| |e04mbf| |ratPoly| |nthExpon| |intermediateResultsIF| |e04jaf| |palgRDE0| |nthFractionalTerm| |degreeSubResultantEuclidean| |e04gcf| |transcendentalDecompose| |scan| |lazyVariations| |e04fdf| |bernoulli| |lighting| |solveInField| |e04dgf| |systemCommand| |leftUnit| |normalizedAssociate| |yCoordinates| |f01ref| |OMreadStr| |exists?| |mightHaveRoots| |rule| |f01rdf| |hessian| |binomThmExpt| |qShiftC| |iipolygamma| |f01rcf| |corrPoly| |factorFraction| |formula| |qShiftAction| |f01qef| |multiple?| |powerAssociative?| |adjoint| |ruleset| |generalInterpolation| |symbNameV| |f01qdf| |clearTheSymbolTable| |order| |extendedEuclidean| |generalCoefficient| |subMultV| |f01qcf| |mainCharacterization| |explicitlyEmpty?| |cLog| |rightRank| |fffg| |f01mcf| |setsymbName!| |getCode| |ScanRoman| |rischNormalize| |ShiftC| |f01maf| |exprex| |even?| |simpsono| |ShiftAction| |coerceS| |f01bsf| |crushedSet| |rk4qc| |exteriorDifferential| |DiffC| |f01brf| |shiftInfoRec| |matrixConcat3D| |setPosition| |DiffAction| |distdfact| |makeViewport2D| |exponential1| |semiSubResultantGcdEuclidean1| |numberOfValuesNeeded| |label| |leftNorm| |OMsend| |getShiftRec| |perfectNthPower?| |mainValue| |rotate!| |getOp| |multiplyExponents| |constantIfCan| |factorUsingYun| |gethi| |getEq| |branchIfCan| |setValue!| |factorUsingMusser| |inGroundField?| |evalRec| |setleft!| |factorCantorZassenhaus| |remove!| |evalADE| |viewDefaults| |infRittWu?| |constant| |groebnerFactorize| |coerceL| |removeDuplicates!| |universe| |setsubmult!| |parametric?| |semiDiscriminantEuclidean| |nextColeman| |leftTrim| |lex| |number?| |readLine!| |dimensionsOf| |cosIfCan| |lazyIntegrate| |gcdPrimitive| |algDsolve| |pushuconst| |sincos| |newLine| |symbolTableOf| |elementary| |intPatternMatch| |print| |setpoint!| |definingPolynomial| |rightDivide| |shallowCopy| |axes| |realEigenvectors| |tubePoints| |hue| |compdegd| |insertTop!| |OMgetApp| |iisinh| |concat!| |splitLinear| |drawToScale| |primitivePart| |setLabelValue| |tracePowMod| |setmult!| |quadraticForm| |tubeRadius| |inconsistent?| |ptFunc| |leftCharacteristicPolynomial| |setlocalPoint!| |weighted| |message| |triangular?| |setProperty| |scalarTypeOf| |screenResolution| |ratDenom| |bright| |palgLODE0| |rk4a| |extendedint| |realEigenvalues| |printStatement| |setlocalParam!| |lazyResidueClass| |splitSquarefree| |toroidal| |output| |mainCoefficients| |permutation| |totalfract| |inverseLaplace| |bumptab| |OMputAtp| |logpart| |iitanh| |doubleComplex?| |characteristicPolynomial| |expandPower| |lSpaceBasis| |bfEntry| |realRoots| |bringDown| |setParam!| |swapRows!| |leviCivitaSymbol| |parabolic| |component| |setexcpDiv!| |setFoundPlacesToEmpty| |key| |any?| |fortranLogical| |setcurve!| |probablyZeroDim?| |stack| |setDegree!| |degree| |prinpolINFO| |gcdcofactprim| |isTimes| |localParam| |removeRoughlyRedundantFactorsInPol| |stiffnessAndStabilityOfODEIF| |goto| |setchart!| |explicitEntries?| |itsALeaf!| |sec2cos| |pointV| |subMatrix| |qroot| |column| |foundPlaces| |setelt!| |multV| |polyred| |open?| |complexSolve| |numberOfComponents| |systemSizeIF| |localPointV| |cyclicGroup| |euler| |acsch| |overlabel| |specialTrigs| |localParamV| |minimumDegree| |noKaratsuba| |removeSuperfluousQuasiComponents| |removeRedundantFactors| |fullOut| |palgint0| |quasiRegular| |nullSpace| |purelyAlgebraicLeadingMonomial?| |e02bdf| |log2| |genericRightNorm| |gcdprim| |replaceKthElement| |minusInfinity| |edf2df| |sayLength| |plenaryPower| |startStats!| |plusInfinity| |excpDivV| |subresultantSequence| |lazyPseudoRemainder| |minset| |gcdcofact| |ramifiedAtInfinity?| |curveV| |addPoint| |countRealRoots| |cCos| |mapmult| |iter| |setFormula!| |OMUnknownSymbol?| |redpps| |generateIrredPoly| |insertRoot!| |rightMinimalPolynomial| |chartV| |variableName| |toseInvertible?| |isAbsolutelyIrreducible?| |leadingIndex| |OMputEndBVar| |float| |resize| |unrankImproperPartitions1| |putGraph| |interpret| |factorset| |sort| |elColumn2!| |hasoln| |collectQuasiMonic| |next| |safety| |deepestTail| |leftFactorIfCan| |sumOfDivisors| |laguerre| |eisensteinIrreducible?| |unvectorise| |maxRowIndex| |maxShift| |algebraicOf| |d01gbf| |getDatabase| |internalAugment| |child?| |suffix?| |select!| |d01gaf| |generate| |maxPower| |shrinkable| |bsolve| |froot| |pointColorPalette| |d01fcf| |incrementBy| |FormatRoman| |extractIfCan| |graphCurves| |subsInVar| |besselY| |map!| |d01bbf| |expand| |reduceBasisAtInfinity| |showRegion| |series| |subs2ndVar| |leftExtendedGcd| |find| |d01asf| |filterWhile| |powerSum| |zCoord| |hspace| |subs1stVar| |readIfCan!| |bivariatePolynomials| |filterUntil| |unitNormalize| |modularFactor| |getMatch| |replaceVarByZero| |bipolar| |d02raf| |select| |nextNormalPrimitivePoly| |replaceVarByOne| |nextLatticePermutation| |create3Space| |printInfo!| |objectOf| |d02kef| |inRadical?| |trapezoidalo| |baseRDEsys| |listVariable| |iicsch| |d02gbf| |wreath| |factorSquareFreePolynomial| |mat| |listAllMonoExp| |coerceImages| |definingInequation| |d02gaf| |dfRange| |quartic| |listAllMono| |minordet| |setStatus| |badValues| |d02ejf| |expPot| |firstExponent| |degreeSubResultant| |cyclotomic| |changeThreshhold| |d02cjf| |makeRecord| |tanQ| |degreeOfMinimalForm| |symmetric?| |initials| |laplacian| |substring?| |d02bhf| |rootKerSimp| |clipBoolean| |htrigs| |degOneCoef| |prefix?| |mathieu24| |d02bbf| |matrix| |rightTraceMatrix| |maxLevel| |po| |key?| |multiEuclidean| |e02ahf| |false| |setErrorBound| |regime| |singRicDE| |maxDerivative| |cAcos| |yellow| |monicLeftDivide| |rowEchLocal| |yRange| |ef2edf| |maxDegree| |primextintfrac| |bandedHessian| |decimal| |getButtonValue| |hermiteH| |combineFeatureCompatibility| |indexName| |makeSeries| |d03faf| |homogeneous| |linSolve| |push!| |indiceSubResultantEuclidean| |curryRight| |d03eef| |curveColorPalette| |aspFilename| |realElementary| |displayAsGF| |OMgetError| |d03edf| |addiag| |cAsec| |complexForm| |expenseOfEvaluationIF| |prindINFO| |argument| |controlPanel| |aLinear| |cyclicSubmodule| |meshPar1Var| |quotedOperators| |double?| |pair?| |sechIfCan| |zerosOf| |sumOfSquares| |checkOptions| |linGenPos| |size?| |possiblyNewVariety?| |tRange| |resultantReduitEuclidean| |transcendent?| |factorSqFree| |rootSimp| |inHallBasis?| |contract| |say| |perfectSqrt| |LyndonBasis| |nthr| |tubePlot| |allDegrees| |weierstrass| |debug| |getVariableOrder| |stripCommentsAndBlanks| |edf2efi| |irreducibleFactor| |firstSubsetGray| |cyclotomicFactorization| |antisymmetricTensors| |iteratedInitials| |rischDEsys| |imagK| |failed?| |replaceDiffs| |singular?| |Vectorise| |isobaric?| |primintegrate| |internalIntegrate| |OMputEndAtp| |c05nbf| |univariate?| |modifyPoint| |subset?| |c05adf| |pushucoef| |ignore?| |OMclose| |script| |c06gsf| |setMaxPoints| |sPol| |numberOfImproperPartitions| |c06gqf| |dictionary| |monicCompleteDecompose| |sbt| |uniform01| |t| |c06gcf| |safeCeiling| |low| |lifting| |c06gbf| |irreducibleRepresentation| |internalLastSubResultant| |removeFirstZeroes| |nodes| |c06fuf| |useSingleFactorBound| |airyAi| |zeroSetSplitIntoTriangularSystems| |posExpnPart| |c06frf| |orderIfNegative| |rewriteIdealWithHeadRemainder| |tensorProduct| |sub| |fortran| |c06fqf| |swap| |setTopPredicate| |monomial2series| |symmetricPower| |pmComplexintegrate| |c06fpf| |cCosh| |e01sbf| |leaf?| |findTerm| |multiplyCoefficients| |eigenvalues| |c06ekf| |open| |generic| |sinIfCan| |rightExactQuotient| |c06ecf| |nonLinearPart| |FormatArabic| |cond| |qPot| |c06ebf| |findCoef| |mindeg| |sinh2csch| |upperCase| |separateFactors| |c06eaf| |f2st| |setStatus!| |filterUpTo| |dimension| |viewSizeDefault| |s17def| |backOldPos| |coefOfFirstNonZeroTerm| |power!| |wrregime| |depth| |reducedForm| |leftQuotient| |s17dcf| |whileLoop| |closedCurve?| |prologue| |reverse!| |imagJ| |s17akf| |f2df| |exponent| |count| |removeCoshSq| |limitedIntegrate| |s17ajf| |rootSplit| |match?| |integral| |pointSizeDefault| |setchildren!| |s17ahf| |fortranDouble| |tab1| |headReduce| |reduceByQuasiMonic| |s17agf| |table| |pseudoDivide| |vspace| |vedf2vef| |s17aff| |rectangularMatrix| |halfExtendedSubResultantGcd2| |ScanFloatIgnoreSpacesIfCan| |OMmakeConn| |radicalOfLeftTraceForm| |sortConstraints| |s17aef| |exactQuotient!| |OMputAttr| |optimize| |fixedPoints| |mindegTerm| |sparsityIF| |strongGenerators| |discriminant| |s17adf| |close| |copyInto!| |algebraicCoefficients?| |predicates| |simplifyPower| |logical?| |s17acf| |putColorInfo| |setColumn!| |exprToXXP| |cAcosh| |graphState| |iiasin| |s15aef| |limitPlus| |factorSquareFreeByRecursion| |stirling1| |increasePrecision| |polCase| |slope| |nextPartition| |iisqrt2| |tex| |delete!| |s15adf| |functionName| |row| |digamma| |minIndex| |lfintegrate| |completeSmith| |s14baf| |insert| |radicalEigenvector| |numFunEvals| |display| |representationType| |minimalPolynomial| |s14abf| |iiasech| |parametrize| |partialFraction| |s14aaf| |printingInfo?| |radicalEigenvectors| |df2st| |point?| |newtonPolygon| |An| |s13adf| |OMputApp| |subst| |fillPascalTriangle| BY |negAndPosEdge| |block| |cardinality| |s13acf| |nthFlag| |dark| |cCoth| |scripted?| |setfirst!| |s13aaf| |lquo| |screenResolution3D| |paraboloidal| |terms| |last| |s01eaf| |theCurve| |adaptive3D?| |multisect| |rootPower| |s21bdf| |ridHack1| |rootNormalize| |setSingularPoints| |s21bcf| |iFTable| |point| |triangularSystems| |zeroSquareMatrix| |setCurve| |s21bbf| |subPolSet?| |exponential| |reshape| |solve| |lintgcd| |rationalPlaces| |construct| |createMultiplicationTable| |csubst| |s21baf| |optional?| |polyRicDE| |pointDominateBy| |nullary?| |dimensionOfIrreducibleRepresentation| |s20adf| |flexible?| |placesOfDegree| |prefixRagits| |linearAssociatedLog| |redPol| |critBonD| |e02agf| |sizeLess?| |leftLcm| |placesAbove| |applyRules| |kroneckerDelta| |bottom!| |s20acf| |monomialIntPoly| |anfactor| |numberRatPlacesExtDeg| |bit?| |infinity| |empty?| |d01aqf| |curveColor| |s19adf| |roughEqualIdeals?| |OMputEndBind| |cot2trig| |frobenius| |d01apf| |removeSquaresIfCan| |OMReadError?| |listLoops| |showTheSymbolTable| |localAbs| |s19acf| |mainSquareFreePart| |OMgetAtp| |cycleEntry| |directSum| |stiffnessAndStabilityFactor| |rangePascalTriangle| |d01anf| |polyRDE| |bivariate?| |OMgetEndApp| |iiperm| |var1Steps| |d01amf| |RittWuCompare| |mainKernel| |presub| |d01alf| |orthonormalBasis| |top| |isOp| |iCompose| SEGMENT |mapUnivariate| |complementaryBasis| |s19abf| |viewPosDefault| |clip| |rightScalarTimes!| |red| |sign| |sample| |d01akf| |OMconnInDevice| |bipolarCylindrical| |has?| |s19aaf| |laurentRep| |OMgetAttr| |acoshIfCan| |selectODEIVPRoutines| |shuffle| |mask| |processTemplate| |LyndonWordsList1| |generator| |d01ajf| |changeBase| |jacobiIdentity?| |subSet| |convert| |Is| |zeroVector| |s18def| |unitVector| |flatten| |surface| |compose| |associatorDependence| |plus| |s18dcf| |complexEigenvectors| |OMgetEndAtp| |integralMatrix| |integralCoordinates| |setPrologue!| |digit| |s18aff| |youngGroup| |preprocess| |pade| |se2rfi| |coHeight| |getStream| |radicalEigenvalues| |semiSubResultantGcdEuclidean2| |s18aef| |nodeOf?| |intersect| |baseRDE| |s18adf| |child| |pushdown| |rombergo| |stoseInvertibleSetsqfreg| |distribute| |test| |mantissa| |OMputBind| |s18acf| |solveLinearlyOverQ| |subCase?| |lambert| |primeFactor| |adaptive| |f04qaf| |null| |fractionPart| |eigenvectors| |uncouplingMatrices| |call| |duplicates?| |f04mcf| |box| |sequences| |remove| |gcdPolynomial| |integers| |groebSolve| |f04mbf| |LiePolyIfCan| |ceiling| |bezoutMatrix| |rewriteIdealWithRemainder| |complexZeros| |multiset| |f04maf| |lo| |setCondition!| |increase| |min| |f04jgf| |mapSolve| |complexElementary| |incr| |truncate| |goodPoint| |selectOptimizationRoutines| |elliptic?| |f04faf| |expandTrigProducts| |hi| |pointLists| |totalDifferential| |rewriteSetWithReduction| |makeVariable| |f04axf| |internalSubQuasiComponent?| |largest| |addmod| |insert!| |ramified?| |f04atf| |leftDivide| |delta| |polynomial| |datalist| |outputFixed| |hash| |f04asf| |viewDeltaXDefault| |equality| |tableForDiscreteLogarithm| |pleskenSplit| |trapezoidal| |iisech| |tube| |tanAn| |divisorCascade| |palgextint| |coerceListOfPairs| |f04arf| |finiteBound| |solveLinearPolynomialEquationByFractions| |readable?| |supRittWu?| |meshFun2Var| |numericIfCan| |badNum| |basis| |logGamma| |generalTwoFactor| |showArrayValues| |infinityNorm| |extension| |scaleRoots| |torsion?| |medialSet| |outputSpacing| |triangulate| |expenseOfEvaluation| |palgLODE| |digit?| |freeOf?| |invmod| |genus| |subspace| |LazardQuotient| |internal?| |padicFraction| |writeLine!| |computePowers| |remainder| |OMencodingSGML| |log| |iiacot| |mulmod| |viewThetaDefault| |operator| |hexDigit?| |powers| |reducedQPowers| |twist| |subResultantGcd| |createIrreduciblePoly| |sort!| |hasHi| |prime| |nextPrime| |changeNameToObjf| |getGraph| |identification| |horizConcat| |makeYoungTableau| |cycles| |aQuadratic| |algint| |round| |outputAsScript| |GospersMethod| |df2fi| |pmintegrate| |intChoose| |OMgetEndError| |lists| |shanksDiscLogAlgorithm| |twoFactor| |cycleTail| |dequeue!| |createMultiplicationMatrix| |Lazard2| |clearDenominator| |modTree| |factorsOfDegree| |mapBivariate| |gcd| |restorePrecision| |real?| ** |expint| |euclideanSize| |leadingIdeal| |expIfCan| |zeroOf| |zag| |eval| |getCurve| |reverseLex| |hconcat| |upperCase!| UP2UTS |linearMatrix| |moebiusMu| |ffactor| |resetAttributeButtons| |entries| |moreAlgebraic?| |selectNonFiniteRoutines| |root| |endOfFile?| |fmecg| |assert| |createLowComplexityTable| |imagi| |printStats!| |factorOfDegree| |OMParseError?| |homogeneous?| |plotPolar| |subscript| |mainVariables| |mr| |lowerPolynomial| |fglmIfCan| |lieAlgebra?| |computeCycleLength| |orbits| |myDegree| |genericLeftTraceForm| |rischDE| |laplace| |nil| |infinite| |arbitraryExponent| |approximate| |complex| |shallowMutable| |canonical| |noetherian| |central| |partiallyOrderedSet| |arbitraryPrecision| |canonicalsClosed| |noZeroDivisors| |rightUnitary| |leftUnitary| |additiveValuation| |unitsKnown| |canonicalUnitNormal| |multiplicativeValuation| |finiteAggregate| |shallowlyMutable| |commutative|) \ No newline at end of file +(30 . 3487447478) +(4522 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join| |ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&| |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup| |AbelianMonoid&| |AbelianMonoid| |AbelianSemiGroup&| |AbelianSemiGroup| |AlgebraicallyClosedField&| |AlgebraicallyClosedField| |AlgebraicallyClosedFunctionSpace&| |AlgebraicallyClosedFunctionSpace| |PlaneAlgebraicCurvePlot| |AffineAlgebraicSetComputeWithGroebnerBasis| |AffineAlgebraicSetComputeWithResultant| |AffinePlane| |AffinePlaneOverPseudoAlgebraicClosureOfFiniteField| |AffineSpace| |AlgebraicFunction| |AffineSpaceCategory| |Aggregate&| |Aggregate| |ArcHyperbolicFunctionCategory| |AssociationListAggregate| |Algebra&| |Algebra| |AlgFactor| |AlgebraicFunctionField| |AlgebraicManipulations| |AlgebraicMultFact| |AlgebraPackage| |AlgebraGivenByStructuralConstants| |AssociationList| |AbelianMonoidRing&| |AbelianMonoidRing| |AlgebraicNumber| |AnonymousFunction| |AntiSymm| |AnyFunctions1| |Any| |ApplicationProgramInterface| |ApplyUnivariateSkewPolynomial| |ApplyRules| |TwoDimensionalArrayCategory&| |TwoDimensionalArrayCategory| |OneDimensionalArrayFunctions2| |OneDimensionalArray| |TwoDimensionalArray| |Asp10| |Asp12| |Asp19| |Asp1| |Asp20| |Asp24| |Asp27| |Asp28| |Asp29| |Asp30| |Asp31| |Asp33| |Asp34| |Asp35| |Asp41| |Asp42| |Asp49| |Asp4| |Asp50| |Asp55| |Asp6| |Asp73| |Asp74| |Asp77| |Asp78| |Asp7| |Asp80| |Asp8| |Asp9| |AssociatedEquations| |ArrayStack| |ArcTrigonometricFunctionCategory&| |ArcTrigonometricFunctionCategory| |AttributeButtons| |AttributeRegistry| |Automorphism| |AxiomServer| |BalancedFactorisation| |BasicType&| |BasicType| |BalancedBinaryTree| |Bezier| |BezoutMatrix| |BasicFunctions| |BagAggregate&| |BagAggregate| |BinaryExpansion| |BinaryFile| |Bits| |BlasLevelOne| |BlowUpWithHamburgerNoether| |BlowUpMethodCategory| |BlowUpWithQuadTrans| |BlowUpPackage| |BiModule| |Boolean| |BasicOperatorFunctions1| |BasicOperator| |BoundIntegerRoots| |BalancedPAdicInteger| |BalancedPAdicRational| |BinaryRecursiveAggregate&| |BinaryRecursiveAggregate| |BrillhartTests| |BinarySearchTree| |BitAggregate&| |BitAggregate| |BinaryTreeCategory&| |BinaryTreeCategory| |BinaryTournament| |BinaryTree| |CancellationAbelianMonoid| |CachableSet| |CardinalNumber| |CartesianTensorFunctions2| |CartesianTensor| |CharacterClass| |CommonDenominator| |ComplexDoubleFloatMatrix| |ComplexDoubleFloatVector| |CombinatorialFunctionCategory| |Character| |CharacteristicNonZero| |CharacteristicPolynomialPackage| |CharacteristicZero| |ChangeOfVariable| |ComplexIntegerSolveLinearPolynomialEquation| |Collection&| |Collection| |CliffordAlgebra| |TwoDimensionalPlotClipping| |ComplexRootPackage| |Color| |CombinatorialFunction| |IntegerCombinatoricFunctions| |CombinatorialOpsCategory| |Commutator| |CommonOperators| |CommuteUnivariatePolynomialCategory| |ComplexCategory&| |ComplexCategory| |ComplexFactorization| |ComplexFunctions2| |Complex| |ComplexPattern| |SubSpaceComponentProperty| |CommutativeRing| |ContinuedFraction| |CoordinateSystems| |CharacteristicPolynomialInMonogenicalAlgebra| |ComplexPatternMatch| |CRApackage| |ComplexRootFindingPackage| |CyclicStreamTools| |ComplexTrigonometricManipulations| |CoerceVectorMatrixPackage| |CycleIndicators| |CyclotomicPolynomialPackage| |d01AgentsPackage| |d01ajfAnnaType| |d01akfAnnaType| |d01alfAnnaType| |d01amfAnnaType| |d01anfAnnaType| |d01apfAnnaType| |d01aqfAnnaType| |d01asfAnnaType| |d01fcfAnnaType| |d01gbfAnnaType| |d01TransformFunctionType| |d01WeightsPackage| |d02AgentsPackage| |d02bbfAnnaType| |d02bhfAnnaType| |d02cjfAnnaType| |d02ejfAnnaType| |d03AgentsPackage| |d03eefAnnaType| |d03fafAnnaType| |Database| |DoubleResultantPackage| |DistinctDegreeFactorize| |DecimalExpansion| |ElementaryFunctionDefiniteIntegration| |RationalFunctionDefiniteIntegration| |DegreeReductionPackage| |Dequeue| |DeRhamComplex| |DefiniteIntegrationTools| |DoubleFloat| |DoubleFloatMatrix| |DoubleFloatSpecialFunctions| |DoubleFloatVector| |DenavitHartenbergMatrix| |Dictionary&| |Dictionary| |DifferentialExtension&| |DifferentialExtension| |DifferentialRing&| |DifferentialRing| |DictionaryOperations&| |DictionaryOperations| |DiophantineSolutionPackage| |DirectProductCategory&| |DirectProductCategory| |DirectProductFunctions2| |DirectProduct| |DirichletRing| |DisplayPackage| |DivisorCategory| |Divisor| |DivisionRing&| |DivisionRing| |DoublyLinkedAggregate| |DataList| |DiscreteLogarithmPackage| |DistributedMultivariatePolynomial| |DirectProductMatrixModule| |DirectProductModule| |DifferentialPolynomialCategory&| |DifferentialPolynomialCategory| |DequeueAggregate| |TopLevelDrawFunctionsForCompiledFunctions| |TopLevelDrawFunctionsForAlgebraicCurves| |DrawComplex| |DrawNumericHack| |TopLevelDrawFunctions| |TopLevelDrawFunctionsForPoints| |DrawOptionFunctions0| |DrawOptionFunctions1| |DrawOption| |DifferentialSparseMultivariatePolynomial| |DesingTreeCategory| |DesingTree| |DesingTreePackage| |DifferentialVariableCategory&| |DifferentialVariableCategory| |e04AgentsPackage| |e04dgfAnnaType| |e04fdfAnnaType| |e04gcfAnnaType| |e04jafAnnaType| |e04mbfAnnaType| |e04nafAnnaType| |e04ucfAnnaType| |ExtAlgBasis| |ElementaryFunction| |ElementaryFunctionStructurePackage| |ElementaryFunctionsUnivariateLaurentSeries| |ElementaryFunctionsUnivariatePuiseuxSeries| |ExtensibleLinearAggregate&| |ExtensibleLinearAggregate| |ElementaryFunctionCategory&| |ElementaryFunctionCategory| |EllipticFunctionsUnivariateTaylorSeries| |Eltable| |EltableAggregate&| |EltableAggregate| |EuclideanModularRing| |EntireRing| |EigenPackage| |EquationFunctions2| |Equation| |EqTable| |ErrorFunctions| |ExpressionSpaceFunctions1| |ExpressionSpaceFunctions2| |ExpertSystemContinuityPackage1| |ExpertSystemContinuityPackage| |ExpressionSpace&| |ExpressionSpace| |ExpertSystemToolsPackage1| |ExpertSystemToolsPackage2| |ExpertSystemToolsPackage| |EuclideanDomain&| |EuclideanDomain| |Evalable&| |Evalable| |EvaluateCycleIndicators| |Exit| |Export3D| |ExponentialExpansion| |ExpressionFunctions2| |ExpressionToUnivariatePowerSeries| |Expression| |ExpressionSpaceODESolver| |ExpressionSolve| |ExpressionTubePlot| |ExponentialOfUnivariatePuiseuxSeries| |FactorisationOverPseudoAlgebraicClosureOfAlgExtOfRationalNumber| |FactoredFunctions| |FactorisationOverPseudoAlgebraicClosureOfRationalNumber| |FactoringUtilities| |FreeAbelianGroup| |FreeAbelianMonoidCategory| |FreeAbelianMonoid| |FiniteAbelianMonoidRingFunctions2| |FiniteAbelianMonoidRing&| |FiniteAbelianMonoidRing| |FlexibleArray| |FiniteAlgebraicExtensionField&| |FiniteAlgebraicExtensionField| |FortranCode| |FourierComponent| |FortranCodePackage1| |FiniteDivisorFunctions2| |FiniteDivisorCategory&| |FiniteDivisorCategory| |FiniteDivisor| |FullyEvalableOver&| |FullyEvalableOver| |FortranExpression| |FunctionFieldCategoryFunctions2| |FunctionFieldCategory&| |FunctionFieldCategory| |FiniteFieldCyclicGroup| |FiniteFieldCyclicGroupExtensionByPolynomial| |FiniteFieldCyclicGroupExtension| |FiniteFieldFactorizationWithSizeParseBySideEffect| |FractionFreeFastGaussianFractions| |FractionFreeFastGaussian| |FiniteFieldFunctions| |FiniteFieldHomomorphisms| |FiniteFieldCategory&| |FiniteFieldCategory| |FunctionFieldIntegralBasis| |FiniteFieldNormalBasis| |FiniteFieldNormalBasisExtensionByPolynomial| |FiniteFieldNormalBasisExtension| |FiniteField| |FiniteFieldExtensionByPolynomial| |FiniteFieldPolynomialPackage2| |FiniteFieldPolynomialPackage| |FiniteFieldSolveLinearPolynomialEquation| |FiniteFieldSquareFreeDecomposition| |FiniteFieldExtension| |FGLMIfCanPackage| |FreeGroup| |Field&| |Field| |FileCategory| |File| |FiniteRankNonAssociativeAlgebra&| |FiniteRankNonAssociativeAlgebra| |Finite| |FiniteRankAlgebra&| |FiniteRankAlgebra| |FiniteLinearAggregateFunctions2| |FiniteLinearAggregate&| |FiniteLinearAggregate| |FreeLieAlgebra| |FiniteLinearAggregateSort| |FullyLinearlyExplicitRingOver&| |FullyLinearlyExplicitRingOver| |FloatingComplexPackage| |Float| |FloatingRealPackage| |FreeModule1| |FreeModuleCat| |FortranMatrixCategory| |FortranMatrixFunctionCategory| |FreeModule| |FreeMonoid| |FortranMachineTypeCategory| |FileName| |FileNameCategory| |FreeNilpotentLie| |FortranOutputStackPackage| |FindOrderFinite| |ScriptFormulaFormat1| |ScriptFormulaFormat| |FortranProgramCategory| |FortranFunctionCategory| |FortranPackage| |FortranProgram| |FullPartialFractionExpansion| |FullyPatternMatchable| |FieldOfPrimeCharacteristic&| |FieldOfPrimeCharacteristic| |FloatingPointSystem&| |FloatingPointSystem| |FactoredFunctions2| |FractionFunctions2| |Fraction| |FramedAlgebra&| |FramedAlgebra| |FullyRetractableTo&| |FullyRetractableTo| |FractionalIdealFunctions2| |FractionalIdeal| |FramedModule| |FramedNonAssociativeAlgebraFunctions2| |FramedNonAssociativeAlgebra&| |FramedNonAssociativeAlgebra| |Factored| |FactoredFunctionUtilities| |FunctionSpaceToExponentialExpansion| |FunctionSpaceFunctions2| |FunctionSpaceToUnivariatePowerSeries| |FiniteSetAggregateFunctions2| |FiniteSetAggregate&| |FiniteSetAggregate| |FunctionSpaceComplexIntegration| |FourierSeries| |FunctionSpaceIntegration| |FunctionSpace&| |FunctionSpace| |FunctionalSpecialFunction| |FunctionSpacePrimitiveElement| |FunctionSpaceReduce| |FortranScalarType| |FunctionSpaceUnivariatePolynomialFactor| |FortranTemplate| |FortranType| |FunctionCalled| |FortranVectorCategory| |FortranVectorFunctionCategory| |GaloisGroupFactorizer| |GaloisGroupFactorizationUtilities| |GaloisGroupPolynomialUtilities| |GaloisGroupUtilities| |GaussianFactorizationPackage| |EuclideanGroebnerBasisPackage| |GroebnerFactorizationPackage| |GroebnerInternalPackage| |GroebnerPackage| |GcdDomain&| |GcdDomain| |GenericNonAssociativeAlgebra| |GeneralDistributedMultivariatePolynomial| |GnuDraw| |GenExEuclid| |GeneralizedMultivariateFactorize| |GeneralPolynomialGcdPackage| |GenUFactorize| |GenerateUnivariatePowerSeries| |GeneralHenselPackage| |GeneralModulePolynomial| |GuessOptionFunctions0| |GuessOption| |GosperSummationMethod| |GeneralPackageForAlgebraicFunctionField| |GeneralPolynomialSet| |GradedAlgebra&| |GradedAlgebra| |GrayCode| |GraphicsDefaults| |GraphImage| |GradedModule&| |GradedModule| |GroebnerSolve| |Group&| |Group| |GeneralUnivariatePowerSeries| |GeneralSparseTable| |GeneralTriangularSet| |GuessAlgebraicNumber| |GuessFiniteFunctions| |GuessFinite| |GuessInteger| |Guess| |GuessPolynomial| |GuessUnivariatePolynomial| |Pi| |HashTable| |HallBasis| |HomogeneousDistributedMultivariatePolynomial| |HomogeneousDirectProduct| |Heap| |HyperellipticFiniteDivisor| |HeuGcd| |HexadecimalExpansion| |HomogeneousAggregate&| |HomogeneousAggregate| |HTMLFormat| |HyperbolicFunctionCategory&| |HyperbolicFunctionCategory| |InnerAlgFactor| |InnerAlgebraicNumber| |IndexedOneDimensionalArray| |IndexedTwoDimensionalArray| |ChineseRemainderToolsForIntegralBases| |IntegralBasisTools| |IndexedBits| |IntegralBasisPolynomialTools| |IndexCard| |InnerCommonDenominator| |InfClsPt| |PolynomialIdeals| |IdealDecompositionPackage| |IndexedDirectProductAbelianGroup| |IndexedDirectProductAbelianMonoid| |IndexedDirectProductCategory| |IndexedDirectProductOrderedAbelianMonoid| |IndexedDirectProductOrderedAbelianMonoidSup| |IndexedDirectProductObject| |InnerEvalable&| |InnerEvalable| |InnerFreeAbelianMonoid| |IndexedFlexibleArray| |InnerFiniteField| |InnerIndexedTwoDimensionalArray| |IndexedList| |InnerMatrixLinearAlgebraFunctions| |InnerMatrixQuotientFieldFunctions| |IndexedMatrix| |InnerNormalBasisFieldFunctions| |IncrementingMaps| |IndexedExponents| |InnerNumericEigenPackage| |InfinitlyClosePointCategory| |InfinitlyClosePointOverPseudoAlgebraicClosureOfFiniteField| |InfinitlyClosePoint| |Infinity| |InputFormFunctions1| |InputForm| |InfiniteProductCharacteristicZero| |InnerNumericFloatSolvePackage| |InnerModularGcd| |InnerMultFact| |InfiniteProductFiniteField| |InfiniteProductPrimeField| |InnerPolySign| |IntegerNumberSystem&| |IntegerNumberSystem| |InnerTable| |AlgebraicIntegration| |AlgebraicIntegrate| |IntegerBits| |IntervalCategory| |IntersectionDivisorPackage| |IntegralDomain&| |IntegralDomain| |ElementaryIntegration| |InterfaceGroebnerPackage| |IntegerFactorizationPackage| |InterpolateFormsPackage| |IntegrationFunctionsTable| |GenusZeroIntegration| |IntegerNumberTheoryFunctions| |AlgebraicHermiteIntegration| |TranscendentalHermiteIntegration| |Integer| |AnnaNumericalIntegrationPackage| |PureAlgebraicIntegration| |PatternMatchIntegration| |RationalIntegration| |IntegerRetractions| |RationalFunctionIntegration| |Interval| |IntegerSolveLinearPolynomialEquation| |IntegrationTools| |TranscendentalIntegration| |InverseLaplaceTransform| |InnerPAdicInteger| |InnerPrimeField| |InternalPrintPackage| |IntegrationResultToFunction| |IntegrationResultFunctions2| |IntegrationResult| |IntegerRoots| |IrredPolyOverFiniteField| |IntegrationResultRFToFunction| |IrrRepSymNatPackage| |InternalRationalUnivariateRepresentationPackage| |IndexedString| |InnerPolySum| |InnerSparseUnivariatePowerSeries| |InnerTaylorSeries| |InfiniteTupleFunctions2| |InfiniteTupleFunctions3| |InnerTrigonometricManipulations| |InfiniteTuple| |IndexedVector| |IndexedAggregate&| |IndexedAggregate| |AssociatedJordanAlgebra| |KeyedAccessFile| |KeyedDictionary&| |KeyedDictionary| |KernelFunctions2| |Kernel| |CoercibleTo| |ConvertibleTo| |Kovacic| |LeftAlgebra&| |LeftAlgebra| |LocalAlgebra| |LaplaceTransform| |LaurentPolynomial| |LazardSetSolvingPackage| |LeadingCoefDetermination| |LieExponentials| |LexTriangularPackage| |LiouvillianFunctionCategory| |LiouvillianFunction| |LinGroebnerPackage| |Library| |LieAlgebra&| |LieAlgebra| |AssociatedLieAlgebra| |PowerSeriesLimitPackage| |RationalFunctionLimitPackage| |LinearDependence| |LinearlyExplicitRingOver| |ListToMap| |ListFunctions2| |ListFunctions3| |List| |LinearSystemFromPowerSeriesPackage| |ListMultiDictionary| |LeftModule| |ListMonoidOps| |LinearAggregate&| |LinearAggregate| |LocalPowerSeriesCategory| |ElementaryFunctionLODESolver| |LinearOrdinaryDifferentialOperator1| |LinearOrdinaryDifferentialOperator2| |LinearOrdinaryDifferentialOperatorCategory&| |LinearOrdinaryDifferentialOperatorCategory| |LinearOrdinaryDifferentialOperatorFactorizer| |LinearOrdinaryDifferentialOperator| |LinearOrdinaryDifferentialOperatorsOps| |Logic&| |Logic| |Localize| |LinesOpPack| |LocalParametrizationOfSimplePointPackage| |LinearPolynomialEquationByFractions| |LiePolynomial| |ListAggregate&| |ListAggregate| |LinearSystemMatrixPackage1| |LinearSystemMatrixPackage| |LinearSystemPolynomialPackage| |LieSquareMatrix| |LyndonWord| |LazyStreamAggregate&| |LazyStreamAggregate| |ThreeDimensionalMatrix| |Magma| |MappingPackageInternalHacks1| |MappingPackageInternalHacks2| |MappingPackageInternalHacks3| |MappingPackage1| |MappingPackage2| |MappingPackage3| |MappingPackage4| |MatrixCategoryFunctions2| |MatrixCategory&| |MatrixCategory| |MatrixLinearAlgebraFunctions| |Matrix| |StorageEfficientMatrixOperations| |MultiVariableCalculusFunctions| |MatrixCommonDenominator| |MachineComplex| |MultiDictionary| |ModularDistinctDegreeFactorizer| |MeshCreationRoutinesForThreeDimensions| |MultFiniteFactorize| |MachineFloat| |ModularHermitianRowReduction| |MachineInteger| |MakeBinaryCompiledFunction| |MakeCachableSet| |MakeFloatCompiledFunction| |MakeFunction| |MakeRecord| |MakeUnaryCompiledFunction| |MultivariateLifting| |MonogenicLinearOperator| |MultipleMap| |MathMLFormat| |ModularField| |ModMonic| |ModuleMonomial| |ModuleOperator| |ModularRing| |Module&| |Module| |MoebiusTransform| |Monad&| |Monad| |MonadWithUnit&| |MonadWithUnit| |MonogenicAlgebra&| |MonogenicAlgebra| |Monoid&| |Monoid| |MonomialExtensionTools| |MPolyCatFunctions2| |MPolyCatFunctions3| |MPolyCatPolyFactorizer| |MultivariatePolynomial| |MPolyCatRationalFunctionFactorizer| |MRationalFactorize| |MonoidRingFunctions2| |MonoidRing| |MultisetAggregate| |Multiset| |MoreSystemCommands| |MergeThing| |MultivariateTaylorSeriesCategory| |MultivariateFactorize| |MultivariateSquareFree| |MyExpression| |MyUnivariatePolynomial| |NonAssociativeAlgebra&| |NonAssociativeAlgebra| |NagPolynomialRootsPackage| |NagRootFindingPackage| |NagSeriesSummationPackage| |NagIntegrationPackage| |NagOrdinaryDifferentialEquationsPackage| |NagPartialDifferentialEquationsPackage| |NagInterpolationPackage| |NagFittingPackage| |NagOptimisationPackage| |NagMatrixOperationsPackage| |NagEigenPackage| |NagLinearEquationSolvingPackage| |NagLapack| |NagSpecialFunctionsPackage| |NAGLinkSupportPackage| |NonAssociativeRng&| |NonAssociativeRng| |NonAssociativeRing&| |NonAssociativeRing| |NumericComplexEigenPackage| |NumericContinuedFraction| |NonCommutativeOperatorDivision| |NewtonInterpolation| |NumberFieldIntegralBasis| |NumericalIntegrationProblem| |NonLinearSolvePackage| |NonNegativeInteger| |NonLinearFirstOrderODESolver| |NoneFunctions1| |None| |NormInMonogenicAlgebra| |NormalizationPackage| |NormRetractPackage| |NottinghamGroup| |NPCoef| |NewtonPolygon| |NumericRealEigenPackage| |NeitherSparseOrDensePowerSeries| |NewSparseMultivariatePolynomial| |NewSparseUnivariatePolynomialFunctions2| |NewSparseUnivariatePolynomial| |NumberTheoreticPolynomialFunctions| |NormalizedTriangularSetCategory| |Numeric| |NumberFormats| |NumericalIntegrationCategory| |NumericalOrdinaryDifferentialEquations| |NumericalQuadrature| |NumericTubePlot| |OrderedAbelianGroup| |OrderedAbelianMonoid| |OrderedAbelianMonoidSup| |OrderedAbelianSemiGroup| |OrderedCancellationAbelianMonoid| |OctonionCategory&| |OctonionCategory| |OctonionCategoryFunctions2| |Octonion| |OrdinaryDifferentialEquationsSolverCategory| |ConstantLODE| |ElementaryFunctionODESolver| |ODEIntensityFunctionsTable| |ODEIntegration| |AnnaOrdinaryDifferentialEquationPackage| |PureAlgebraicLODE| |PrimitiveRatDE| |NumericalODEProblem| |PrimitiveRatRicDE| |RationalLODE| |ReduceLODE| |RationalRicDE| |SystemODESolver| |ODETools| |OrderedDirectProduct| |OrderlyDifferentialPolynomial| |OrdinaryDifferentialRing| |OrderlyDifferentialVariable| |OrderedFreeMonoid| |OrderedIntegralDomain| |OpenMathConnection| |OpenMathDevice| |OpenMathEncoding| |OpenMathErrorKind| |OpenMathError| |ExpressionToOpenMath| |OppositeMonogenicLinearOperator| |OpenMath| |OpenMathPackage| |OrderedMultisetAggregate| |OpenMathServerPackage| |OnePointCompletionFunctions2| |OnePointCompletion| |Operator| |OperationsQuery| |NumericalOptimizationCategory| |AnnaNumericalOptimizationPackage| |NumericalOptimizationProblem| |OrderedCompletionFunctions2| |OrderedCompletion| |OrderedFinite| |OrderingFunctions| |OrderedMonoid| |OrderedRing&| |OrderedRing| |OrderedSet&| |OrderedSet| |UnivariateSkewPolynomialCategory&| |UnivariateSkewPolynomialCategory| |UnivariateSkewPolynomialCategoryOps| |SparseUnivariateSkewPolynomial| |UnivariateSkewPolynomial| |OrthogonalPolynomialFunctions| |OrdSetInts| |OutputForm| |OutputPackage| |OrderedVariableList| |OrdinaryWeightedPolynomials| |PseudoAlgebraicClosureOfAlgExtOfRationalNumberCategory| |PseudoAlgebraicClosureOfAlgExtOfRationalNumber| |PseudoAlgebraicClosureOfFiniteFieldCategory| |PseudoAlgebraicClosureOfFiniteField| |PseudoAlgebraicClosureOfPerfectFieldCategory| |PseudoAlgebraicClosureOfRationalNumberCategory| |PseudoAlgebraicClosureOfRationalNumber| |PadeApproximants| |PadeApproximantPackage| |PAdicIntegerCategory| |PAdicInteger| |PAdicRational| |PAdicRationalConstructor| |PackageForAlgebraicFunctionFieldOverFiniteField| |PackageForAlgebraicFunctionField| |Palette| |PolynomialAN2Expression| |ParametrizationPackage| |ParametricPlaneCurveFunctions2| |ParametricPlaneCurve| |ParametricSpaceCurveFunctions2| |ParametricSpaceCurve| |ParametricSurfaceFunctions2| |ParametricSurface| |PartitionsAndPermutations| |Patternable| |PatternMatchListResult| |PatternMatchable| |PatternMatch| |PatternMatchResultFunctions2| |PatternMatchResult| |PatternFunctions1| |PatternFunctions2| |Pattern| |PoincareBirkhoffWittLyndonBasis| |PolynomialComposition| |PartialDifferentialEquationsSolverCategory| |PolynomialDecomposition| |AnnaPartialDifferentialEquationPackage| |NumericalPDEProblem| |PartialDifferentialRing&| |PartialDifferentialRing| |PendantTree| |Permanent| |PermutationCategory| |PermutationGroup| |Permutation| |PolynomialFactorizationByRecursion| |PolynomialFactorizationByRecursionUnivariate| |PolynomialFactorizationExplicit&| |PolynomialFactorizationExplicit| |PrimeField| |PointsOfFiniteOrder| |PointsOfFiniteOrderRational| |PackageForPoly| |PointsOfFiniteOrderTools| |PartialFraction| |PartialFractionPackage| |PolynomialGcdPackage| |PermutationGroupExamples| |PolyGroebner| |PiCoercions| |PrincipalIdealDomain| |PositiveInteger| |PolynomialInterpolationAlgorithms| |PolynomialInterpolation| |PlacesCategory| |Places| |PlacesOverPseudoAlgebraicClosureOfFiniteField| |Plcs| |ParametricLinearEquations| |PlotFunctions1| |Plot3D| |Plot| |PlotTools| |PolynomialPackageForCurve| |FunctionSpaceAssertions| |PatternMatchAssertions| |PatternMatchPushDown| |PatternMatchFunctionSpace| |PatternMatchIntegerNumberSystem| |PatternMatchKernel| |PatternMatchListAggregate| |PatternMatchPolynomialCategory| |FunctionSpaceAttachPredicates| |AttachPredicates| |PatternMatchQuotientFieldCategory| |PatternMatchSymbol| |PatternMatchTools| |PolynomialNumberTheoryFunctions| |Point| |PolToPol| |RealPolynomialUtilitiesPackage| |PolynomialFunctions2| |PolynomialToUnivariatePolynomial| |PolynomialCategory&| |PolynomialCategory| |PolynomialCategoryQuotientFunctions| |PolynomialCategoryLifting| |Polynomial| |PolynomialRoots| |PlottablePlaneCurveCategory| |PrecomputedAssociatedEquations| |PrimitiveArrayFunctions2| |PrimitiveArray| |PrimitiveFunctionCategory| |PrimitiveElement| |IntegerPrimesPackage| |PrintPackage| |ProjectiveAlgebraicSetPackage| |PolynomialRing| |Product| |ProjectivePlane| |ProjectivePlaneOverPseudoAlgebraicClosureOfFiniteField| |ProjectiveSpace| |PriorityQueueAggregate| |PseudoRemainderSequence| |ProjectiveSpaceCategory| |Partition| |PowerSeriesCategory&| |PowerSeriesCategory| |PlottableSpaceCurveCategory| |PolynomialSetCategory&| |PolynomialSetCategory| |PolynomialSetUtilitiesPackage| |PseudoLinearNormalForm| |PolynomialSquareFree| |PointCategory| |PointFunctions2| |PointPackage| |PartialTranscendentalFunctions| |PushVariables| |PAdicWildFunctionFieldIntegralBasis| |QuasiAlgebraicSet2| |QuasiAlgebraicSet| |QuasiComponentPackage| |QueryEquation| |QuotientFieldCategoryFunctions2| |QuotientFieldCategory&| |QuotientFieldCategory| |QuadraticForm| |QueueAggregate| |QuaternionCategory&| |QuaternionCategory| |QuaternionCategoryFunctions2| |Quaternion| |Queue| |RadicalCategory&| |RadicalCategory| |RadicalFunctionField| |RadixExpansion| |RadixUtilities| |RandomNumberSource| |RationalFactorize| |RationalRetractions| |RecursiveAggregate&| |RecursiveAggregate| |RealClosedField&| |RealClosedField| |ElementaryRischDE| |ElementaryRischDESystem| |TranscendentalRischDE| |TranscendentalRischDESystem| |RandomDistributions| |ReducedDivisor| |RealZeroPackage| |RealZeroPackageQ| |RealConstant| |RealSolvePackage| |RealClosure| |RecurrenceOperator| |ReductionOfOrder| |Reference| |RegularTriangularSet| |RepresentationPackage1| |RepresentationPackage2| |RepeatedDoubling| |RadicalEigenPackage| |RepeatedSquaring| |ResolveLatticeCompletion| |ResidueRing| |Result| |RetractableTo&| |RetractableTo| |RetractSolvePackage| |RandomFloatDistributions| |RationalFunctionFactor| |RationalFunctionFactorizer| |RationalFunction| |RootsFindingPackage| |RegularChain| |RandomIntegerDistributions| |Ring&| |Ring| |RationalInterpolation| |RectangularMatrixCategory&| |RectangularMatrixCategory| |RectangularMatrix| |RectangularMatrixCategoryFunctions2| |RightModule| |Rng| |RealNumberSystem&| |RealNumberSystem| |RightOpenIntervalRootCharacterization| |RomanNumeral| |RoutinesTable| |RecursivePolynomialCategory&| |RecursivePolynomialCategory| |RealRootCharacterizationCategory&| |RealRootCharacterizationCategory| |RegularSetDecompositionPackage| |RegularTriangularSetCategory&| |RegularTriangularSetCategory| |RegularTriangularSetGcdPackage| |RuleCalled| |RewriteRule| |Ruleset| |RationalUnivariateRepresentationPackage| |SimpleAlgebraicExtensionAlgFactor| |SimpleAlgebraicExtension| |SAERationalFunctionAlgFactor| |SingletonAsOrderedSet| |SortedCache| |StructuralConstantsPackage| |SequentialDifferentialPolynomial| |SequentialDifferentialVariable| |SegmentFunctions2| |SegmentBindingFunctions2| |SegmentBinding| |SegmentCategory| |Segment| |SegmentExpansionCategory| |SetAggregate&| |SetAggregate| |SetCategoryWithDegree| |SetCategory&| |SetCategory| |SetOfMIntegersInOneToN| |Set| |SExpressionCategory| |SExpression| |SExpressionOf| |SimpleFortranProgram| |SquareFreeQuasiComponentPackage| |SquareFreeRegularTriangularSetGcdPackage| |SquareFreeRegularTriangularSetCategory| |SymmetricGroupCombinatoricFunctions| |SemiGroup&| |SemiGroup| |SplitHomogeneousDirectProduct| |SturmHabichtPackage| |ElementaryFunctionSign| |RationalFunctionSign| |SimplifyAlgebraicNumberConvertPackage| |SingleInteger| |StackAggregate| |SquareMatrixCategory&| |SquareMatrixCategory| |SmithNormalForm| |SparseMultivariatePolynomial| |SparseMultivariateTaylorSeries| |SquareFreeNormalizedTriangularSetCategory| |PolynomialSolveByFormulas| |RadicalSolvePackage| |TransSolvePackageService| |TransSolvePackage| |SortPackage| |ThreeSpace| |ThreeSpaceCategory| |SpecialOutputPackage| |SpecialFunctionCategory| |SplittingNode| |SplittingTree| |SquareMatrix| |StringAggregate&| |StringAggregate| |SquareFreeRegularSetDecompositionPackage| |SquareFreeRegularTriangularSet| |Stack| |StreamAggregate&| |StreamAggregate| |SparseTable| |StepThrough| |StreamInfiniteProduct| |StreamFunctions1| |StreamFunctions2| |StreamFunctions3| |Stream| |StringCategory| |String| |StringTable| |StreamTaylorSeriesOperations| |StreamTranscendentalFunctionsNonCommutative| |StreamTranscendentalFunctions| |SubResultantPackage| |SubSpace| |SuchThat| |SparseUnivariateLaurentSeries| |FunctionSpaceSum| |RationalFunctionSum| |SparseUnivariatePolynomialFunctions2| |SparseUnivariatePolynomialExpressions| |SupFractionFactorizer| |SparseUnivariatePolynomial| |SparseUnivariatePuiseuxSeries| |SparseUnivariateTaylorSeries| |Switch| |Symbol| |SymmetricFunctions| |SymmetricPolynomial| |TheSymbolTable| |SymbolTable| |SystemSolvePackage| |TableauxBumpers| |Tableau| |Table| |TangentExpansions| |TableAggregate&| |TableAggregate| |TabulatedComputationPackage| |TemplateUtilities| |TexFormat1| |TexFormat| |TextFile| |ToolsForSign| |TopLevelThreeSpace| |TranscendentalFunctionCategory&| |TranscendentalFunctionCategory| |Tree| |TrigonometricFunctionCategory&| |TrigonometricFunctionCategory| |TrigonometricManipulations| |TriangularMatrixOperations| |TranscendentalManipulations| |TriangularSetCategory&| |TriangularSetCategory| |TaylorSeries| |TubePlot| |TubePlotTools| |Tuple| |TwoFactorize| |Type| |UserDefinedPartialOrdering| |UserDefinedVariableOrdering| |UniqueFactorizationDomain&| |UniqueFactorizationDomain| |UnivariateFormalPowerSeriesFunctions| |UnivariateFormalPowerSeries| |UnivariateLaurentSeriesFunctions2| |UnivariateLaurentSeriesCategory| |UnivariateLaurentSeriesConstructorCategory&| |UnivariateLaurentSeriesConstructorCategory| |UnivariateLaurentSeriesConstructor| |UnivariateLaurentSeries| |UnivariateFactorize| |UniversalSegmentFunctions2| |UniversalSegment| |UnivariatePolynomialFunctions2| |UnivariatePolynomialCommonDenominator| |UnivariatePolynomialDecompositionPackage| |UnivariatePolynomialDivisionPackage| |UnivariatePolynomialMultiplicationPackage| |UnivariatePolynomial| |UnivariatePolynomialCategoryFunctions2| |UnivariatePolynomialCategory&| |UnivariatePolynomialCategory| |UnivariatePowerSeriesCategory&| |UnivariatePowerSeriesCategory| |UnivariatePolynomialSquareFree| |UnivariatePuiseuxSeriesFunctions2| |UnivariatePuiseuxSeriesCategory| |UnivariatePuiseuxSeriesConstructorCategory&| |UnivariatePuiseuxSeriesConstructorCategory| |UnivariatePuiseuxSeriesConstructor| |UnivariatePuiseuxSeries| |UnivariatePuiseuxSeriesWithExponentialSingularity| |UnaryRecursiveAggregate&| |UnaryRecursiveAggregate| |UnivariateTaylorSeriesFunctions2| |UnivariateTaylorSeriesCategory&| |UnivariateTaylorSeriesCategory| |UnivariateTaylorSeries| |UnivariateTaylorSeriesODESolver| |UTSodetools| |TaylorSolve| |UnivariateTaylorSeriesCZero| |Variable| |VectorCategory&| |VectorCategory| |VectorFunctions2| |Vector| |TwoDimensionalViewport| |ThreeDimensionalViewport| |ViewDefaultsPackage| |ViewportPackage| |Void| |VectorSpace&| |VectorSpace| |WeierstrassPreparation| |WildFunctionFieldIntegralBasis| |WeightedPolynomials| |WuWenTsunTriangularSet| |XAlgebra| |XDistributedPolynomial| |XExponentialPackage| |XFreeAlgebra| |ExtensionField&| |ExtensionField| |XPBWPolynomial| |XPolynomialsCat| |XPolynomial| |XPolynomialRing| |XRecursivePolynomial| |ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage| |IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping| |Record| |Union| |Category| |mapmult| |printInfo| |supDimElseRittWu?| |pointDominateBy| |semiResultantEuclidean2| |reduced?| |prinb| |positiveRemainder| |cExp| |setTower!| |mathieu22| |iter| |setFoundPlacesToEmpty| |rdHack1| |collectUpper| |legendre| |setFormula!| |leftDivide| |generalCoefficient| |wrregime| |nonSingularModel| |extendedSubResultantGcd| |poisson| |nullary?| |inverseIntegralMatrixAtInfinity| |degreeOfMinimalForm| |coefficients| |polygamma| |numericalIntegration| |variable| |nextPrimitivePoly| |rk4f| |hermite| |rightUnits| |stoseInvertibleSetreg| |leadingSupport| |OMUnknownSymbol?| |basisOfMiddleNucleus| |subMultV| |extract!| |Frobenius| |removeCosSq| |genericLeftNorm| |any?| |dimensionOfIrreducibleRepresentation| |axesColorDefault| |lazyIrreducibleFactors| |internalIntegrate0| |iiBeta| |delta| |setAdaptive3D| |LagrangeInterpolation| |euclideanGroebner| |redpps| |reducedDiscriminant| |reducedForm| |numerator| |OMputEndAttr| |bubbleSort!| |symmetric?| |modularGcd| |rewriteSetByReducingWithParticularGenerators| |range| |eval| |showAll?| |mainCharacterization| |changeMeasure| |plotPolar| |generateIrredPoly| |semiSubResultantGcdEuclidean2| |flexible?| |merge| |lfextlimint| |algDsolve| |moduleSum| |xRange| |fullDisplay| |zeroVector| |primextendedint| |solveLinearPolynomialEquationByRecursion| |OMencodingXML| |palglimint| |insertRoot!| |heap| |fortranLogical| |matrixDimensions| |normalized?| |qqq| |listYoungTableaus| |extractIndex| |associatedSystem| |polynomial| |explicitlyEmpty?| |besselJ| |rdregime| |rightMinimalPolynomial| |doubleResultant| |startTable!| |center| |placesOfDegree| |viewWriteAvailable| |initials| |chartV| |ord| |fortranInteger| |OMputInteger| |leftQuotient| |enqueue!| |times| |factorList| |replace| |every?| |pushuconst| |subscript| |coshIfCan| |cLog| |predicate| |rowEchWoZeroLinesWOVectorise| |unitVector| |doublyTransitive?| |zeroDim?| |rangeIsFinite| |setcurve!| |prefixRagits| |birth| |dcabs1| |variableName| |datalist| |iiasec| |cfirst| |writeLine!| |measure2Result| |maxint| |traverse| |fullParamInit| |rootOfIrreduciblePoly| |groebner?| |seed| |guessRat| |initiallyReduced?| |rightRank| |binaryTournament| |factorsOfCyclicGroupSize| |region| |makingStats?| |toseInvertible?| |linearAssociatedLog| |hMonic| |bombieriNorm| |overset?| |laplacian| |numberOfFractionalTerms| |unravel| |removeZeroes| |whileLoop| |sincos| |mainVariables| |isAbsolutelyIrreducible?| |oneDimensionalArray| |probablyZeroDim?| |argscript| |surface| |rootKerSimp| |iicsc| |divOfPole| |outputFixed| |fffg| |objects| |nthCoef| |leadingIndex| |comp| |redPol| |palgint| |computePowers| |fortranLinkerArgs| |nextIrreduciblePoly| |romberg| |createZechTable| |e01sff| |constantLeft| |karatsuba| |powmod| |conjugate| |solid?| |OMbindTCP| |base| |sup| |generalizedInverse| |OMputEndBVar| |newLine| |lhs| |setsymbName!| |contractSolve| |reseed| |clearTheFTable| |critBonD| |stack| |previousTower| |compose| |mr| |resize| |credPol| F |viewDeltaXDefault| |options| |evaluate| |clipBoolean| |getDomains| |initial| |createHN| |constantCoefficientRicDE| |float?| |closedCurve?| |integral?| |unrankImproperPartitions1| |getCode| |wholePart| |stoseInvertible?reg| |doubleDisc| |semicolonSeparate| |rst| |sizeLess?| |quadraticNorm| |prinshINFO| |remainder| |removeConjugate| |putGraph| |mapUp!| |iiacoth| |ref| |symbolTableOf| |option?| |gbasis| |associatorDependence| |setDegree!| |figureUnits| RF2UTS |sn| |factorset| |equality| |noLinearFactor?| |lowerPolynomial| |ScanRoman| |floor| |car| |rowEch| |sylvesterMatrix| |rightExtendedGcd| |modifyPointData| |leftLcm| |points| |cdr| |elColumn2!| |ellipticCylindrical| |sturmVariationsOf| |stFunc2| |lexGroebner| |rootRadius| |upperCase?| |elementary| |symmetricDifference| |noncommutativeJordanAlgebra?| |prologue| |singularitiesOf| |constantOperator| |cartesian| |rischNormalize| |nilFactor| |newReduc| |hasoln| |setClipValue| |placesAbove| |plus| |asimpson| |magnitude| |weight| |ideal| |extensionDegree| |resultantEuclidean| |basisOfRightAnnihilator| |One| |integralDerivationMatrix| |algintegrate| |dmp2rfi| |fglmIfCan| |pattern| |suchThat| |iiacot| |ShiftC| |roughUnitIdeal?| |cyclicParents| |collectQuasiMonic| |applyRules| |tanintegrate| |OMencodingSGML| |htrigs| |numberOfComposites| |unit?| |errorKind| |intPatternMatch| |computeCycleLength| |beauzamyBound| |reverse!| |complexEigenvectors| |lieAlgebra?| |safety| |rowEchWoZeroLines| |clearCache| |countRealRootsMultiple| |groebnerIdeal| |computeBasis| |checkPrecision| |musserTrials| |univcase| |ratDsolve| |symmetricSquare| |iprint| |standardBasisOfCyclicSubmodule| |initializeGroupForWordProblem| |deepestTail| |maxrow| |enterPointData| |viewDeltaYDefault| |univariatePolynomialsGcds| |setpoint!| |possiblyInfinite?| |subHeight| |leftFactorIfCan| |foundZeroes| |OMgetEndAtp| |degOneCoef| |halfExtendedResultant1| |nextSubsetGray| |initTable!| |basisOfLeftAnnihilator| ~ |dequeue| |skewSFunction| |setOfMinN| |clipWithRanges| |identitySquareMatrix| |numberOfPrimitivePoly| |crushedSet| |separate| |string?| |aCubic| |En| |nthRootIfCan| |sumOfDivisors| |cCosh| |definingPolynomial| |mathieu24| |fractionFreeGauss!| |critM| |integralMatrix| |rightTraceMatrix| |laguerre| |guess| |discriminantEuclidean| |typeLists| |resetNew| |LPolynomial| |unary?| |contains?| |findOrderOfDivisor| |summary| |rationalIfCan| |karatsubaDivide| |check| |eisensteinIrreducible?| |rotate| |show| |expIfCan| |multiEuclideanTree| |df2ef| |leaf?| |mathieu11| |rightDivide| |unvectorise| |e02aef| |packageCall| |slope| |integralCoordinates| |setvalue!| |argumentListOf| |cos2sec| |blue| |maxRowIndex| |c02agf| |extendIfCan| |maxdeg| |convergents| |sylvesterSequence| |c02aff| |rspace| |iifact| |testModulus| |tubePlot| |e02adf| |showAttributes| |stoseInternalLastSubResultant| |algebraicDecompose| |squareFree| |second| |c05pbf| |zeroOf| |findTerm| GF2FG |shallowCopy| |problemPoints| |genericRightMinimalPolynomial| |compile| |setPrologue!| |diophantineSystem| |leader| |credits| |derivative| |completeHensel| |nextPartition| |lieAdmissible?| |infix?| |#| |binarySearchTree| |BumInSepFFE| |node?| |iiacsch| |e01sef| |blowUpWithExcpDiv| |lastSubResultantEuclidean| |write!| |allDegrees| |comment| |e01saf| |regularRepresentation| |simplifyLog| |iiBesselI| |nonQsign| |id| |e01daf| |overlap| |multiplyCoefficients| = |axes| |invertibleElseSplit?| |arg1| |integer| |e01bhf| |digit| |consnewpol| |zag| |module| |arg2| |iisec| |e01bgf| |conjug| |random| < |head| |bat1| |iisqrt2| |e01bff| |more?| > |transcendenceDegree| |weierstrass| |someBasis| |string| |e01bef| |optpair| <= |OMreceive| |torsionIfCan| |localUnquote| |e01baf| |squareFreePolynomial| >= |dmpToHdmp| |sumOfKthPowerDivisors| |e02zaf| |compiledFunction| |stoseInvertible?| |realEigenvectors| |addPoint2| |e02gaf| |eigenvalues| |guessHP| |OMUnknownCD?| |youngGroup| |highCommonTerms| |e02dff| |updatF| + |checkRur| |getVariableOrder| |randomLC| |e02def| |createRandomElement| - |getCurve| |hadamard| |alphanumeric?| |e02ddf| |atanhIfCan| / |asechIfCan| |BasicMethod| |e02dcf| |delete!| |title| |setsubMatrix!| |explicitlyFinite?| |tubePoints| |e02daf| |perfectNthRoot| |calcRanges| |union| |stripCommentsAndBlanks| |e02bef| |isPlus| |list?| |preprocess| |mpsode| |open| |duplicates| |pile| |genusNeg| |outerProduct| |e01sbf| |jordanAlgebra?| |chainSubResultants| |elements| |extend| |deleteProperty!| |edf2efi| |reverseLex| |complete| |Ei6| |color| |selectSumOfSquaresRoutines| |top!| |in?| |stFunc1| |row| |hue| |integralBasisAtInfinity| |prevPrime| |pade| |pointPlot| |irreducibleFactor| |odd?| |associates?| |divideIfCan| |generic| |guessExpRat| |ReduceOrder| |pureLex| |affineAlgSetLocal| |tryFunctionalDecomposition?| |symmetricProduct| |setScreenResolution3D| |trueEqual| |overbar| |hconcat| |diagonals| |firstSubsetGray| |const| |gradient| |compdegd| |ptree| |se2rfi| |singularPoints| |digamma| |satisfy?| |new| |quadTransform| |radix| |coerceP| |eq| |unparse| |append| |sinIfCan| |ddFact| |solveLinearPolynomialEquation| |translate| |arity| |cyclotomicFactorization| |purelyTranscendental?| |build| |function| |setImagSteps| |rightTrace| |constant?| |swap!| |rightTrim| |shift| |insertTop!| |palgintegrate| |upperCase!| |makeGraphImage| |droot| |expt| |symmetricRemainder| |coHeight| |separateDegrees| |resultantReduit| |minIndex| |antisymmetricTensors| |blowUp| |rightExactQuotient| |optAttributes| |ode1| ^ |simpleBounds?| |exponents| |inspect| |mapUnivariateIfCan| |exp| |cSin| |setMinPoints3D| |rationalPoints| |fullInfClsPt| |pi| |getStream| |numFunEvals3D| |defineProperty| |iteratedInitials| |sqrt| |sdf2lst| |useEisensteinCriterion| UP2UTS |OMgetApp| |log10| |lfintegrate| |vark| |antisymmetric?| |li| |nonLinearPart| |lfextendedint| |moduloP| |rischDEsys| |erf| |supp| |normalizeIfCan| |interpolate| |elRow1!| |common| |fortranCharacter| |components| |ratpart| |flagFactor| |localReal?| |imagK| |dilog| |partitions| |conjugates| |perspective| |trace| |tan| |linearPolynomials| |linearMatrix| |getZechTable| |cot| |FormatArabic| |completeSmith| |failed?| |sec| |genericRightDiscriminant| |basisOfNucleus| |fullDesTree| |csc| |keys| |partialNumerators| |lazyPseudoQuotient| |asin| |minimumExponent| |cTanh| |replaceDiffs| |acos| |OMencodingUnknown| |generalizedEigenvectors| |updateStatus!| |mapUnivariate| |atan| |squareFreeFactors| |diagonal?| |guessBinRat| |acot| |qPot| |moebiusMu| |singular?| |asec| |bfKeys| |radicalEigenvector| |Ei| |acsc| |subresultantVector| |useEisensteinCriterion?| |powern| |sinh| |infiniteProduct| |nlde| |Vectorise| |cosh| |members| |setVariableOrder| |atanIfCan| |tanh| |principalIdeal| |closedCurve| |padicallyExpand| |coth| |findCoef| |complexExpand| |isobaric?| |sech| |affineAlgSet| |ffactor| E1 |csch| |basisOfCentroid| |numFunEvals| |primintegrate| |asinh| |Aleph| |chvar| |createLowComplexityNormalBasis| |acosh| |lowerCase| |areEquivalent?| |internalIntegrate| |atanh| |polar| |stopTable!| |triangSolve| |acoth| |oddlambert| |rightRemainder| |OMputEndAtp| |asech| |var2StepsDefault| |sorted?| |guessAlg| |mindeg| |resetAttributeButtons| |univariate?| |multinomial| |representationType| |deriv| |safetyMargin| |balancedFactorisation| |modifyPoint| |createNormalElement| |pascalTriangle| |cSec| |transform| |mainDefiningPolynomial| |subset?| |positive?| |minrank| |linearAssociatedOrder| |algebraicSet| |asinhIfCan| |pushucoef| |directProduct| |positiveSolve| |entries| |ignore?| |destruct| |sinh2csch| |minimalPolynomial| |mkPrim| |monomial| |indiceSubResultant| |oddInfiniteProduct| |OMclose| |multivariate| |quasiMonicPolynomials| |primitivePart!| |mesh?| |variables| |tanSum| |variationOfParameters| |setMaxPoints| |plot| |diff| |leastPower| |removeZero| |removeRedundantFactorsInContents| |sPol| |taylor| |getlo| |rur| |moreAlgebraic?| |returnType!| |laurent| |palgLODE0| |upperCase| |iiasech| |numberOfImproperPartitions| |puiseux| |pfaffian| |stirling2| |exp1| |createThreeSpace| |true| |inv| |evaluateInverse| |cAcsch| |OMgetType| |dictionary| |ground?| |minRowIndex| |LyndonCoordinates| |OMgetObject| |SturmHabicht| |ground| |box| |normInvertible?| |rules| |OMencodingBinary| |mapGen| |leadingMonomial| |OMgetEndAttr| |internalZeroSetSplit| |coordinate| |monicCompleteDecompose| |leadingCoefficient| |extractPoint| |leastMonomial| |drawStyle| |selectNonFiniteRoutines| |rhs| |primitiveMonomials| |linearAssociatedExp| |invmod| |mainContent| |copies| |numberOfNormalPoly| |reductum| |var2Steps| |repeating| |separateFactors| |leastAffineMultiple| |OMlistCDs| |rk4a| |nullity| |exprHasAlgebraicWeight| |OMputEndObject| |specialTrigs| |sequences| |genus| |sinhcosh| |makeCos| |revert| |nary?| |dihedral| |effective?| |Yun| |localParamV| |OMserve| |acschIfCan| |setStatus| |iisin| |and| |postfix| |subspace| |innerSolve1| |root| |minimumDegree| |finiteSeries2LinSys| |realZeros| |clipSurface| |zeta| |UpTriBddDenomInv| |extendedint| |plus!| |polyRing2UPUP| |encode| |noKaratsuba| |gcdPolynomial| |LazardQuotient| |lifting| |iisqrt3| |expintegrate| |complement| |fortranCarriageReturn| |monicRightFactorIfCan| |iiAiryBi| |removeSuperfluousQuasiComponents| |hypergeometric0F1| |less?| |divideExponents| |basisOfInterpolateFormsForFact| |critMTonD1| |reindex| |internal?| |getOrder| |removeRedundantFactors| |bat| |unaryFunction| |desingTree| |mkIntegral| |int| |realEigenvalues| |idealiserMatrix| |identityMatrix| |cycleElt| |error| |fullOut| |integers| |padicFraction| |irreducibleRepresentation| |cAtan| |antiAssociative?| |initializeParamOfPlaces| |normalDenom| NOT |lyndon?| |viewPhiDefault| |palgint0| |parse| |totolex| OR |commaSeparate| |shanksDiscLogAlgorithm| |hasTopPredicate?| |basisOfLeftNucleus| |balancedBinaryTree| AND |linear| |OMgetEndError| |quasiRegular| |alphabetic| |assert| |curry| |Lazard| |subQuasiComponent?| |condition| |printStatement| |parametrize| |extractTop!| |discriminant| |doubleRank| |type| |groebSolve| |conditions| |internalLastSubResultant| |maxIndex| |generalLambert| |fintegrate| |semiResultantReduitEuclidean| |unitCanonical| |quotVecSpaceBasis| |cyclicSubmodule| |square?| |partialFraction| |redmat| |lists| |rationalPoint?| |third| |acothIfCan| |simplifyExp| |sh| |numberOfCycles| |sech2cosh| |Ei1| |normal| |setleaves!| |mainVariable| |negative?| |lBasis| |setlocalParam!| |printingInfo?| |subResultantsChain| |monomialIntegrate| |inR?| |radicalRoots| |LiePolyIfCan| * |removeFirstZeroes| |copyInto!| |meshPar1Var| |isQuotient| |transCoord| |leftExactQuotient| |iicos| |absolutelyIrreducible?| |OMconnectTCP| |rotatez| |leftMinimalPolynomial| |radicalEigenvectors| |genericLeftDiscriminant| |cAsech| |matrix| |stopTableGcd!| |setTex!| |OMsupportsSymbol?| |completeEchelonBasis| |removeRedundantFactorsInPols| |gramschmidt| |makeop| |classNumber| |monic?| |linearlyDependent?| |lazyResidueClass| |df2st| |diagonalMatrix| |algebraicSort| |quotedOperators| |ceiling| |normFactors| |nodes| |algebraicCoefficients?| |solid| |drawComplexVectorField| |pushdterm| |multiServ| |notelem| |infix| |unit| |point?| |mainPrimitivePart| |twoFactor| |addMatchRestricted| |LowTriBddDenomInv| |exponentialOrder| |diag| |iiabs| |llprop| |OMgetBVar| |ScanArabic| |leftOne| |OMgetEndBVar| |ldf2lst| |double?| |splitSquarefree| |newtonPolygon| |fprindINFO| |predicates| |leadingTerm| |reset| |numer| |bezoutMatrix| |rubiksGroup| |useSingleFactorBound| |generalPosition| |cCot| |write| |denom| |toroidal| |cup| |clearTheIFTable| |basisOfRightNucloid| |dAndcExp| |save| |coefChoose| |An| |irreducibleFactors| |setLegalFortranSourceExtensions| |invertibleSet| |draw| |fortranReal| |makeprod| |recolor| |cycleTail| |pair?| |makeObject| |hex| |expressIdealMember| |att2Result| |idealSimplify| |cyclotomicDecomposition| |coef| |dec| |OMputApp| |allPairsAmong| |simplifyPower| |commutator| |monom| |rewriteIdealWithRemainder| |mvar| |airyAi| |showClipRegion| |boundOfCauchy| |firstDenom| |LazardQuotient2| |heapSort| |rightOne| |integralLastSubResultant| |columnSpace| |subst| |bag| |dequeue!| |sechIfCan| |OMputError| |testDim| |evenlambert| |create| |critpOrder| |besselK| |xn| |fixPredicate| |makeSketch| |extendedResultant| |mainCoefficients| |fillPascalTriangle| |singleFactorBound| |logical?| |constantKernel| |complexZeros| |lp| |zeroSetSplitIntoTriangularSystems| |divisorAtDesingTree| |squareFreePrim| |initParLocLeaves| |ratPoly| |isMult| |prolateSpheroidal| |zerosOf| |setlast!| |negAndPosEdge| |listexp| |var1StepsDefault| |OMopenFile| |dom| |rem| |constantRight| |hcrf| |getMeasure| |createMultiplicationMatrix| |lexTriangular| |mirror| |nthExpon| |lazyPremWithDefault| |cAtanh| |intersectionDivisor| |quo| |permutation| |block| |zeroSetSplit| |putColorInfo| |lllip| |library| |multiset| |rightLcm| |posExpnPart| |definingEquations| |sumOfSquares| |/\\| |rational| |intermediateResultsIF| |factorial| |cylindrical| |mainMonomial| |\\/| |tubePointsDefault| |cardinality| |antiCommutative?| |Lazard2| |csch2sinh| |setelt| |semiLastSubResultantEuclidean| |rCoord| |infieldIntegrate| |maxPoints3D| |createNormalPoly| |finiteBasis| |palgRDE0| |chiSquare1| |functionIsContinuousAtEndPoints| |countable?| ~= |totalfract| |nthFlag| |leftGcd| |setColumn!| |checkOptions| |setCondition!| |createPrimitivePoly| |orderIfNegative| |chartCoord| |readLineIfCan!| |ramifMult| |dark| |nor| |OMconnOutDevice| |trailingCoefficient| |segment| |nthFractionalTerm| |determinant| |bracket| |level| |degreePartition| |clearDenominator| |outputFloating| |complexLimit| |tableau| |vconcat| |viewZoomDefault| |cubic| |origin| |factorUsingMusser| |typeList| |degreeSubResultantEuclidean| |adjunctionDivisor| |coth2tanh| |linGenPos| |iCompose| |inverseLaplace| |cCoth| |pointColorDefault| |exprToXXP| |safeFloor| |edf2fi| |increase| |null?| |rewriteIdealWithHeadRemainder| |slex| |binary| |lcm| |lowerCase!| |transcendentalDecompose| |axServer| |UP2ifCan| |symbol?| |viewpoint| |scripted?| |factorAndSplit| |modTree| |mapExpon| |startPolynomial| |monicModulo| |currentSubProgram| |oddintegers| |size?| |reopen!| |scan| |listOfMonoms| |zRange| |getGoodPrime| |bumptab| |setfirst!| |monicDecomposeIfCan| |factor1| |resetVariableOrder| |min| |denomLODE| |tensorProduct| |cAcosh| |interpolateFormsForFact| |addBadValue| |lazyVariations| |saturate| |style| |atrapezoidal| |rotatey| |lquo| |suppOfZero| |factorsOfDegree| |possiblyNewVariety?| |radPoly| |zero?| |subResultantGcdEuclidean| |quote| |fortranTypeOf| |eulerE| |bernoulli| |rightMult| |untab| |interReduce| |OMputAtp| |screenResolution3D| |affineSingularPoints| |graphState| |listBranches| |mapSolve| |makeMulti| |sub| |messagePrint| |ncols| |tryFunctionalDecomposition| |lighting| |approxSqrt| |inverseColeman| |tRange| |tanh2coth| |paraboloidal| |minimalForm| |superHeight| |ode2| |laguerreL| |aQuartic| |removeRoughlyRedundantFactorsInPols| |mapBivariate| |dim| LT |vectorise| |decreasePrecision| |augment| |OMgetVariable| |shallowExpand| |logpart| |solveInField| |newSubProgram| |solve1| |cothIfCan| |complexElementary| |terms| |elRow2!| |iiasin| |resultantReduitEuclidean| |inBetweenExcpDiv| |tanhIfCan| |swap| |lyndonIfCan| |showTheRoutinesTable| |returns| |rightUnit| |tan2cot| |exquo| |ZetaFunction| |null| |characteristicSerie| |leftUnit| |updatD| |div| |qelt| |restorePrecision| |coefficient| |machineFraction| |theCurve| |rightQuotient| |lagrange| |meatAxe| |iitanh| |lflimitedint| ^= |rroot| |OMsupportsCD?| |transcendent?| |top| |truncate| |move| |sts2stst| |limitPlus| |constantOpIfCan| |graeffe| |normalizedAssociate| |setTopPredicate| |desingTreeAtPoint| |lllp| |sum| |rquo| |adaptive3D?| |factorSquareFree| |iiBesselJ| |invertible?| |normalForm| |sturmSequence| |fibonacci| |real?| |affinePoint| |viewport2D| |wordsForStrongGenerators| |makeUnit| |showTheIFTable| |goodnessOfFit| |factorSqFree| |infRittWu?| |doubleComplex?| |yCoordinates| |OMputBVar| |insertMatch| |cyclic| |goodPoint| |multisect| |cycleRagits| |factorSquareFreeByRecursion| |lepol| |quotValuation| |ldf2vmf| |norm| |central?| |guessHolo| |nthExponent| |match| |monomial2series| |brillhartIrreducible?| |interpolateForms| |Hausdorff| |OMreadStr| |affineRationalPoints| |interval| |rootSimp| |rootPower| |sample| |isPower| |deepExpand| |search| |expint| |incrementKthElement| |bumprow| |characteristicPolynomial| |getExplanations| |numberOfChildren| |rightGcd| |initiallyReduce| |call| LE |symFunc| |toseInvertibleSet| |escape| |rational?| |exists?| |submod| |stirling1| |chiSquare| |patternMatchTimes| |ridHack1| |factorSFBRlcUnit| |SturmHabichtCoefficients| |composites| |whatInfinity| |symmetricPower| |pol| |inHallBasis?| |showTypeInOutput| |unexpand| |generator| |headRemainder| |infieldint| |mightHaveRoots| |normalDeriv| |euclideanSize| |evenInfiniteProduct| |rootNormalize| |branchPoint?| |retractToGrn| |cycleSplit!| |groebner| |sin2csc| |lastSubResultantElseSplit| |decrease| |increasePrecision| |compactFraction| |gcd| |contract| GT |groebnerFactorize| |singularPointsWithRestriction| |genericLeftMinimalPolynomial| |showIntensityFunctions| |OMconnInDevice| |pmComplexintegrate| |ParCondList| |iiacosh| |bezoutDiscriminant| |ravel| |deepestInitial| |one?| |removeSuperfluousCases| |linears| |curryLeft| |algebraicVariables| |suppOfPole| |writeObj| |perfectSqrt| |setOrder| |createPrimitiveNormalPoly| |coerce| |lo| |quadraticBezier| |cross| |set| |leadingIdeal| |incr| |cap| |external?| |hi| |OMsetEncoding| |polCase| |exprToGenUPS| |getMultiplicationTable| |LyndonBasis| |PollardSmallFactor| |outputGeneral| |declare| |limit| |position| |ode| |goppaCode| |leftAlternative?| |concat| |chineseRemainder| |cyclePartition| |nthr| |wordInStrongGenerators| |totalDegree| GE |cycleLength| |structuralConstants| |iiexp| |deepCopy| |elt| |vspace| |generate| |exprHasLogarithmicWeights| |equation| |factorials| |incrementBy| |sin| |binomial| |guessPRec| |expand| |cos| |bit?| |npcoef| |root?| |filterWhile| |map| |tail| |iiAiryAi| |filterUntil| |getGraph| |comparison| |select| |assoc| |fTable| |pointData| |unrankImproperPartitions0| |rk4qc| |light| |hermiteH| |crest| |completeEval| |vedf2vef| |status| |coercePreimagesImages| |critT| |iiGamma| |trace2PowMod| |makeRecord| |complexNormalize| |stronglyReduce| |zeroMatrix| |trunc| |baseRDEsys| |property| |combineFeatureCompatibility| |sqfrFactor| |delete| |decomposeFunc| |primes| |dioSolve| |quasiAlgebraicSet| |identification| |units| |sncndn| |scanOneDimSubspaces| |addPointLast| |indexName| |nsqfree| |e| |makeResult| |repSq| |is?| |extDegree| |maxrank| |listVariable| |code| |rectangularMatrix| |decompose| |polyPart| |divisor| |value| |fortranDoubleComplex| |lineColorDefault| |anticoord| |retract| |numericalOptimization| |cyclicEntries| |coerceL| |horizConcat| |OMputEndError| |semiIndiceSubResultantEuclidean| |minGbasis| |properties| |bipolarCylindrical| |inGroundField?| |generators| |makeSeries| |iicsch| |zoom| |leaves| |transpose| |charpol| |implies| |quatern| |partialDenominators| |pquo| |stoseInvertible?sqfreg| |closeComponent| |integerBound| |halfExtendedSubResultantGcd2| |lfinfieldint| |wreath| |nthFactor| |normalElement| |homogeneous| |OMcloseConn| |principal?| |belong?| |fractRagits| |leftTrace| |complexIntegrate| |lastNonNul| |lazyEvaluate| |maxColIndex| |solveid| |weakBiRank| |f04adf| |abs| |biRank| |pop!| |ScanFloatIgnoreSpacesIfCan| |linSolve| |Ci| |makeYoungTableau| |shufflein| |factorSquareFreePolynomial| |rarrow| |mapCoef| |fortranCompilerName| |continue| |reduceRow| |selectsecond| |eigenMatrix| |OMunhandledSymbol| |mergeDifference| |deref| |char| |pushup| |push!| |jordanAdmissible?| |f07fef| |cycles| |polynomialZeros| |direction| |f07fdf| |recip| Y |alternatingGroup| |mat| |f07aef| |findCycle| |smith| |rootOf| |f07adf| |atoms| |getPickedPoints| |makeFR| |rename!| |indiceSubResultantEuclidean| |parametersOf| |s17dlf| |OMmakeConn| |numeric| |listAllMonoExp| |s17dhf| |radicalOfLeftTraceForm| |roughBasicSet| |solveLinear| |s17dgf| |linkToFortran| |radicalSimplify| |removeSinhSq| |f02xef| |btwFact| |henselFact| |makeTerm| |f02wef| |cAcoth| |curryRight| |palglimint0| |option| |height| |f02fjf| |resultantnaif| |OMgetInteger| |coerceImages| |f02bjf| |update| |palgextint0| |indicialEquation| |linearlyDependentOverZ?| |high| |f02bbf| |cubicBezier| |aQuadratic| |quadratic| |monomials| |f02axf| |graphs| |conditionP| FG2F |f02awf| |divergence| |reducedContinuedFraction| |curveColorPalette| |pdf2df| |table| |f02akf| |evalRec| |rightCharacteristicPolynomial| |minPol| |definingInequation| |f02ajf| EQ |algint| |selectMultiDimensionalRoutines| |iicot| |f02agf| |times!| |supersub| |mkcomm| |tower| |pseudoRemainder| |palgRDE| |isOp| |And| |f02aff| |minPoly| |coth2trigh| |aspFilename| |setPoly| |f02aef| |hitherPlane| |denominator| |dfRange| |f02adf| |complementaryBasis| |normalizeAtInfinity| |element?| |cosh2sech| |f02abf| |sortConstraints| |cyclicEqual?| |omError| |f02aaf| |qfactor| |socf2socdf| |explimitedint| |left| |measure| |varselect| |realElementary| |firstUncouplingMatrix| |multiple| |lyndon| |df2mf| |integralMatrixAtInfinity| |optional| |nextItem| |homogenize| |quartic| |fixedDivisor| |rightRegularRepresentation| |nrows| |not| |OMgetString| |functionName| |round| |modularGcdPrimitive| |lprop| |listRepresentation| |distinguishedCommonRootsOf| |displayAsGF| |acotIfCan| |appendPoint| |exactQuotient!| |Zero| |idealiser| |applyQuote| |infinity| |iidsum| |edf2ef| |listAllMono| |double| |geometric| |createPrimitiveElement| |debug3D| |numberOfHues| LODO2FUN |primPartElseUnitCanonical!| |OMgetEndObject| |outputAsScript| |OMgetError| |symmetricGroup| |laurentIfCan| |exteriorDifferential| |rightFactorIfCan| |cRationalPower| |hclf| |ocf2ocdf| |nextSublist| |blankSeparate| |minordet| |curveColor| |empty?| |lift| |janko2| |genericRightTrace| |pomopo!| |setleft!| |generalizedContinuumHypothesisAssumed| |xor| |reduce| |commonDenominator| |modulus| |mapdiv| |viewPosDefault| |DiffC| |OMputAttr| |addiag| |cAsin| |rotatex| |genericLeftTrace| |GospersMethod| |or| |realSolve| |roughEqualIdeals?| |stepBlowUp| |reduceLineOverLine| |member?| |linearPart| |patternVariable| |signAround| |midpoints| |numberPlacesDegExtDeg| |shiftInfoRec| |leftUnits| |imagk| |stFuncN| |enterInCache| |OMputEndBind| |frst| |generalizedEigenvector| |bitCoef| |cAsec| |permutationRepresentation| |setRealSteps| |matrixConcat3D| |totalLex| |nextColeman| |iibinom| |fixedPoints| |iflist2Result| |cot2trig| |subtractIfCan| |alphanumeric| |removeIrreducibleRedundantFactors| |completeHermite| |setPosition| |setprevious!| |inverse| |dihedralGroup| |e02bcf| |discreteLog| |maxPoints| |complexForm| |frobenius| |jacobian| |e02bbf| |df2fi| |graphStates| |shiftRight| |lex| |Ei5| |e02baf| |DiffAction| |kovacic| |numberOfFactors| |choosemon| |splitLinear| |e02akf| |factorCantorZassenhaus| |iidigamma| |isList| |reducedSystem| |removeSquaresIfCan| |nodeOf?| |e02ajf| |expintfldpoly| |mindegTerm| |normalise| |eq?| |polyRingToBlUpRing| |e04ycf| |script| |expenseOfEvaluationIF| |subscriptedVariables| |distdfact| |SturmHabichtMultiple| |startTableGcd!| |symbol| |e04ucf| |clip| |leftZero| |leftScalarTimes!| |number?| |OMReadError?| |primlimitedint| |e04naf| |one| D |pmintegrate| |movedPoints| |purelyAlgebraic?| |startTableInvSet!| |e04mbf| |univariatePolynomial| |unmakeSUP| |SFunction| |rootBound| |drawToScale| |trigs2explogs| |makeViewport2D| |halfExtendedSubResultantGcd1| |e04jaf| |zero| |degree| |inrootof| |listOfLists| |listLoops| |divide| |tableForDiscreteLogarithm| |intersect| |e04gcf| |rootsOf| |iiacsc| |selectPolynomials| |prindINFO| |primeFrobenius| |e04fdf| |fortran| |extractProperty| |domainOf| |algSplitSimple| |epilogue| |readLine!| |green| |topPredicate| |e04dgf| |systemCommand| |certainlySubVariety?| |sparsityIF| |finiteSeries2Vector| |definingField| |exponential1| |cAcsc| |rewriteIdealWithQuasiMonicGenerators| |f01ref| |leftRank| |extractSplittingLeaf| |showTheSymbolTable| |diagonalProduct| |prinpolINFO| |leftRecip| |f01rdf| |pleskenSplit| |pdf2ef| |eulerPhi| |empty| |selectIntegrationRoutines| |primitivePart| |Not| |f01rcf| |exprex| |toScale| |invertIfCan| |argument| |semiSubResultantGcdEuclidean1| |f01qef| |baseRDE| |dmpToP| |kroneckerDelta| |localAbs| |OMreadFile| |moebius| |semiResultantEuclidean1| |f01qdf| |pr2dmp| |max| |logIfCan| |ipow| |permanent| |product| |dimensionsOf| |spherical| |f01qcf| |factors| |even?| |rootProduct| |gcdcofactprim| |intChoose| |numberOfPlacesOfDegree| |numberOfValuesNeeded| |rk4| |right| |f01mcf| |bottom!| |tablePow| |lifting1| |f01maf| |mainSquareFreePart| |stosePrepareSubResAlgo| |autoReduced?| |Or| |trapezoidal| |conditionsForIdempotents| |operators| |complexNumericIfCan| |strongGenerators| |controlPanel| |stronglyReduced?| |setLabelValue| |cache| |f01bsf| |simpsono| |iomode| |label| |permutations| |f01brf| |child| |thetaCoord| |monomialIntPoly| |imagJ| |identity| |OMlistSymbols| |OMgetAtp| |associatedEquations| |drawCurves| |fortranLiteral| |complex?| |createGenericMatrix| |eyeDistance| |cosIfCan| |iiBesselY| |isTimes| |ShiftAction| |mulmod| |read!| |univariateSolve| |leftNorm| |endSubProgram| |iisech| |anfactor| |exptMod| |aLinear| |cycleEntry| |closed?| |recur| |minimize| |nand| |orbit| |node| |exprHasWeightCosWXorSinWX| |hdmpToP| |tracePowMod| |semiDegreeSubResultantEuclidean| |coerceS| |vertConcat| |changeName| |merge!| |OMsend| |iiatan| |pushdown| |cSech| |numberRatPlacesExtDeg| |newElement| |nextNormalPoly| |directSum| |lazyIntegrate| |precision| |rule| |localParam| |useSingleFactorBound?| |quasiRegular?| |minColIndex| |showTheFTable| |nextsousResultant2| |content| |tube| |removeDuplicates!| |f2df| |setEpilogue!| |has?| |getShiftRec| |retractable?| |brillhartTrials| |quickSort| |writable?| |polarCoordinates| |monicDivide| |pack!| |stiffnessAndStabilityFactor| |leftTrim| |nextPrimitiveNormalPoly| |rightAlternative?| |ruleset| |leftFactor| |listConjugateBases| |showAllElements| |orbits| |prefix| |name| |mainVariable?| |setmult!| |tex| |generalSqFr| |digits| |viewThetaDefault| |daxpy| |tree| |gcdPrimitive| |leadingExponent| |rombergo| |removeRoughlyRedundantFactorsInPol| |upDateBranches| |remove!| |operation| |perfectNthPower?| |Is| |newtonPolySlope| |rightScalarTimes!| |tanAn| |deleteRoutine!| |lazyPrem| |taylorQuoByVar| |universe| |rangePascalTriangle| |print| |toseSquareFreePart| |squareFreeLexTriangular| |factorByRecursion| |reduceLODE| |scalarMatrix| |maxShift| |directory| |fullPartialFraction| |critMonD1| |pointToPlace| |physicalLength!| |laurentRep| |diffHP| |primPartElseUnitCanonical| |setref| |commutative?| |denominators| |Ei4| |squareMatrix| |ranges| |exponent| |maxLevel| |algebraicOf| |stiffnessAndStabilityOfODEIF| |mainValue| |kernel| |quadraticForm| |iitan| |elem?| |zeroDimPrime?| |myDegree| |finite?| |polyRDE| |divisorCascade| |stoseInvertibleSetsqfreg| |fi2df| |bivariateSLPEBR| |evalADE| |genericLeftTraceForm| |getDatabase| |sinhIfCan| |functionIsOscillatory| |usingTable?| |monomRDEsys| UTS2UP |divideIfCan!| |cSinh| |any| |bitTruth| |bezoutResultant| |cCsch| |OMputEndApp| |setsubmult!| |complexRoots| |lambda| |internalAugment| |bright| |rotate!| |red| |result| |insertionSort!| |OMgetAttr| |stop| |translateToOrigin| |viewport3D| |failed| |bivariate?| |tubeRadius| |iilog| |goto| |operator| |copy!| |quoByVar| |child?| |t| |pToDmp| |output| |constant| |palgextint| |setright!| |represents| |getBadValues| |antiCommutator| |zeroDimPrimary?| |distribute| |cycle| |stoseIntegralLastSubResultant| |removeCoshSq| |po| |select!| |getOp| |cotIfCan| |superscript| |cschIfCan| |hexDigit?| |iicoth| |symmetricTensors| |OMgetEndApp| |repeating?| |asecIfCan| |parametric?| |setnext!| |numberOfIrreduciblePoly| |maxPower| |stoseLastSubResultant| |dimensions| |setchart!| |acoshIfCan| |divisors| |super| |cot2tan| |seriesToOutputForm| |queue| |coerceListOfPairs| |sizePascalTriangle| |rationalPower| |projectivePoint| |shrinkable| |multiplyExponents| |inconsistent?| |fortranLiteralLine| |rename| |OMputVariable| |hyperelliptic| |alternating| |iiperm| |mantissa| |factorPolynomial| |slash| |lazyPseudoDivide| |key?| |bsolve| |rightRecip| |rightPower| |explicitEntries?| |prepareDecompose| |checkForZero| |rischDE| |basicSet| |enumerate| |iipow| |finiteBound| |semiDiscriminantEuclidean| |limitedIntegrate| |multiEuclidean| |froot| |constantIfCan| |charClass| |wholeRagits| |selectODEIVPRoutines| |setProperties| |rightDiscriminant| |selectOrPolynomials| |var1Steps| |bitLength| |quoted?| |pointColor| |physicalLength| |tanNa| |pointColorPalette| |index?| |ptFunc| |itsALeaf!| |pseudoQuotient| |inf| |loopPoints| |removeRoughlyRedundantFactorsInContents| |numberOfDivisors| |e02bdf| |OMputBind| |solveLinearPolynomialEquationByFractions| |ParCond| |powers| |intcompBasis| |FormatRoman| |factorUsingYun| |minusInfinity| |varList| |readable?| |character?| |distinguishedRootsOf| |radicalSolve| |wronskianMatrix| |RittWuCompare| |plusInfinity| |iiBesselK| |genericRightTraceForm| |shuffle| |hasPredicate?| |laplace| |extractIfCan| |arrayStack| |useNagFunctions| |void| |denomRicDE| |taylorRep| |maxTower| |qnew| |interpretString| |linearBezier| |reciprocalPolynomial| |sec2cos| |halfExtendedResultant2| |rootSplit| |swapColumns!| |graphCurves| |zeroDimensional?| |conical| |leftCharacteristicPolynomial| |reduction| |normalize| |randomR| |roman| |mathieu12| |gethi| |elliptic| |solveLinearlyOverQ| |quasiComponent| |userOrdered?| |close!| |padecf| |subsInVar| |biringToPolyRing| |guessADE| |pointV| |interpret| |sort| |unitsColorDefault| |scale| |kmax| |clipParametric| |key| |next| |mask| |maximumExponent| |supRittWu?| |cAcot| |viewDefaults| |unprotectedRemoveRedundantFactors| |besselY| |dasum| |hexDigit| |dominantTerm| |integralBasis| |sign| |monomRDE| |setErrorBound| |pdct| |retractIfCan| |iiasinh| |d01gbf| |raisePolynomial| |relerror| |reducedQPowers| |polygon?| |suffix?| |map!| |setlocalPoint!| |subMatrix| |d01gaf| |length| |schema| |outputForm| |normal01| |dot| |lookup| |extendedIntegrate| |d01fcf| |subCase?| |scripts| |meshFun2Var| |getRef| |integral| |regime| |reduceBasisAtInfinity| |mainKernel| |d01bbf| |roughBase?| |iExquo| |exQuo| |schwerpunkt| |pToHdmp| |rank| |d01asf| |mathieu23| |uniform| |processTemplate| |primintfldpoly| |tanh2trigh| |showRegion| |eigenvector| |randnum| |qroot| |OMopenString| |unitNormal| |mesh| |localIntegralBasis| |d02raf| |Ei3| |numericIfCan| |factorGroebnerBasis| |OMgetEndBind| |harmonic| |univariatePolynomials| |d02kef| |weighted| |fill!| |printCode| |reduceRowOnList| |rowEchelonLocal| |series| |d02gbf| |lambert| |column| |collectUnder| |resultantEuclideannaif| |pointInIdeal?| |lfunc| |d02gaf| |besselI| |badNum| |octon| |twist| |power| |subs2ndVar| |cosSinInfo| |d02ejf| |coleman| |basis| |LyndonWordsList1| |leftRemainder| |lazyGintegrate| |critB| |isExpt| |d02cjf| |chebyshevU| |OMwrite| |trigs| |pointSizeDefault| |singRicDE| |leftExtendedGcd| |basisOfLeftNucloid| |substring?| |d02bhf| |cn| |foundPlaces| |makeSUP| |maxDerivative| |prefix?| |xCoord| |float| |d02bbf| |message| |gderiv| |shiftLeft| |previous| |lazyPquo| |find| |getEq| |imaginary| |e02ahf| |primeFactor| |setelt!| |evalIfCan| |HenselLift| |printTypes| |OMgetSymbol| |presub| |computeCycleEntry| |powerSum| |RemainderList| |logGamma| |cyclic?| |removeConstantTerm| |Beta| |computeInt| |infinite?| |differentialVariables| |iisinh| |HermiteIntegrate| |redPo| |changeBase| |subNode?| |symbolIfCan| |flexibleArray| |abelianGroup| |kernels| |createIrreduciblePoly| |increment| |multV| |mapMatrixIfCan| |subResultantGcd| |cAcos| |zCoord| |presuper| |declare!| |d03faf| |diagonal| |generalTwoFactor| |imagE| |stopTableInvSet!| |complexNumeric| |relativeApprox| |branchIfCan| |d03eef| |apply| |triangular?| |radicalEigenvalues| |atom?| |setchildren!| |airyBi| |hspace| |orthonormalBasis| |adaptive| |d03edf| |Si| |polyred| |minus!| |numberOfComputedEntries| |integrate| |mdeg| |univariate| |jacobiIdentity?| |subs1stVar| |mapExponents| |showArrayValues| |brace| |concat!| |roughSubIdeal?| |selectAndPolynomials| |factor| |infinityNorm| |inc| |lazy?| |cCsc| |cons| |tan2trig| |toseLastSubResultant| |resetBadValues| |real| |colorFunction| |fixedPoint| |front| |readIfCan!| |firstNumer| |copy| |secIfCan| |setValue!| |imag| |qinterval| |open?| |setrest!| |assign| |yellow| |sqfree| |setProperty| |integralAtInfinity?| |distFact| |first| |width| |continuedFraction| |routines| |fractionPart| |complexSolve| |associator| |curve?| |characteristicSet| |bivariatePolynomials| |applyTransform| |extension| |SturmHabichtSequence| |leadingCoefficientRicDE| |pointValue| |subTriSet?| |fortranDouble| |mkAnswer| |scaleRoots| |subSet| |list| |expandLog| |leftDiscriminant| |aromberg| |numberOfComponents| |permutationGroup| |weights| |LiePoly| |unitNormalize| |finiteSeries2LinSysWOVectorise| |generic?| |basisOfCommutingElements| |sort!| |subResultantChain| |split!| |false| |infLex?| |systemSizeIF| |palginfieldint| |imagj| |basisOfRightNucleus| |normal?| |scalarTypeOf| |torsion?| |outputAsTex| |monomial?| |partialQuotients| |extractBottom!| |removeDuplicates| |eigenvectors| |singularAtInfinity?| |prime?| |acosIfCan| |Gamma| |selectPDERoutines| |functionIsFracPolynomial?| |c05nbf| |newton| |localPointV| |rest| |fullOutput| |monicLeftDivide| |modularFactor| |leadingBasisTerm| |c05adf| |colorDef| |medialSet| |reverse| |collect| |B1solve| |setMinPoints| |multMonom| |c06gsf| |polygon| |composite| |setDifference| |tab1| |innerSolve| |OMputFloat| |basisOfCenter| |c06gqf| |recoverAfterFail| |outputSpacing| |pow| |setIntersection| |quotient| |getMatch| |c06gcf| |screenResolution| |cyclicGroup| |normDeriv2| |constantToUnaryFunction| |accuracyIF| |split| |uncouplingMatrices| |setUnion| |c06gbf| |nil| |quotientByP| |sbt| |squareTop| |rowEchLocal| |chebyshevT| |shiftRoots| |c06fuf| |integerIfCan| |euler| |size| |asinIfCan| |ScanFloatIgnoreSpaces| |generalizedContinuumHypothesisAssumed?| |validExponential| |c06frf| |qsetelt!| |triangulate| |substitute| |pole?| |sumSquares| |replaceVarByZero| |c06fqf| |approximate| |intensity| |exprToUPS| |expextendedint| |hasHi| |shellSort| |euclideanNormalForm| |complex| |c06fpf| |Ei2| |midpoint| |desingTreeWoFullParam| |tubeRadiusDefault| |drawComplex| |setScreenResolution| |say| |c06ekf| |ratDenom| |expenseOfEvaluation| |setPredicates| |taylorIfCan| |yRange| |bipolar| |debug| |duplicates?| |c06ecf| |hash| |acsch| |uniform01| |headReduce| |localize| |radical| |c06ebf| |multiplicity| |PDESolve| |position!| |numberOfVariables| |iroot| |c06eaf| |minPoints| |rationalApproximation| |outputMeasure| |over| |nextNormalPrimitivePoly| |s17def| |palgLODE| |bits| |legendreP| |nthRoot| |normalizedDivide| |s17dcf| |overlabel| |internalSubPolSet?| |exactQuotient| |ef2edf| |setAttributeButtonStep| |s17akf| |invmultisect| |quasiMonic?| |extractClosed| |groebgen| |returnTypeOf| |s17ajf| |freeOf?| |safeCeiling| |coord| |match?| |argumentList!| |replaceVarByOne| |s17ahf| |showFortranOutputStack| |irreducible?| |prime| |refine| |complexEigenvalues| |s17agf| |outlineRender| |coordinates| |bumptab1| |distance| |s17aff| |selectOptimizationRoutines| |characteristic| |reduceByQuasiMonic| |maxDegree| |lexico| |repeatUntilLoop| |entry| |s17aef| |linearDependence| |optimize| |quadratic?| |mergeFactors| |shiftHP| |s17adf| |selectfirst| |close| |mainMonomials| |leftMult| |adaptive?| |matrixGcd| |innerint| |s17acf| |symbolTable| |low| |fortranComplex| |guessPade| |nextLatticePermutation| |pushFortranOutputStack| |s15aef| |fractRadix| |alternative?| |makeCrit| |splitNodeOf!| |ODESolve| |filename| |s15adf| |expandPower| |splitDenominator| |subNodeOf?| |primextintfrac| |clipPointsDefault| |elliptic?| |popFortranOutputStack| |s14baf| |binaryTree| |insert| |monicRightDivide| |meshPar2Var| |display| |setButtonValue| |s14abf| |outputAsFortran| |graphImage| |nextPrime| |lastNonNull| |create3Space| |cond| |Nul| |s14aaf| |createNormalPrimitivePoly| |addMatch| |totalGroebner| |removeSinSq| |s13adf| |OMputString| |hessian| BY |pseudoDivide| |lowerCase?| |constDsolve| |lSpaceBasis| |s13acf| |setSingularPoints| |alphabetic?| |expr| |bandedHessian| |rightZero| |depth| |s13aaf| |externalList| |indicialEquations| |primlimintfrac| |setRow!| |printInfo!| |s01eaf| |last| |expandTrigProducts| |semiResultantEuclideannaif| |changeNameToObjf| |yCoord| |rowEchelon| |count| |flush| |s21bdf| |binomThmExpt| |UnVectorise| |explogs2trigs| |indices| |s21bcf| |iFTable| |associative?| |numberOfMonomials| |iidprod| |separant| |getMultiplicationMatrix| |s21bbf| |reshape| |imagI| |decimal| |objectOf| |cTan| |s21baf| |differentiate| |back| |dn| |op| |getButtonValue| |space| |bfEntry| |s20adf| |qShiftC| |f2st| |branchPointAtInfinity?| |changeVar| |pointLists| |e02agf| |point| |divOfZero| |oblateSpheroidal| |cscIfCan| |genusTreeNeg| |s20acf| |vector| |leftTraceMatrix| |trivialIdeal?| |OMputSymbol| |inRadical?| |d01aqf| |makeViewport3D| |generalInfiniteProduct| F2FG |hdmpToDmp| |s19adf| |primitiveElement| |iipolygamma| |leftPower| |selectFiniteRoutines| |makeSin| |integerDecode| |d01apf| |triangularSystems| |tValues| |badValues| |prepareSubResAlgo| |realRoots| |s19acf| |viewWriteDefault| |setStatus!| |endOfFile?| |trapezoidalo| |totalDifferential| |d01anf| |withPredicates| |cPower| |multiplicative?| |LyndonWordsList| |relationsIdeal| |d01amf| |corrPoly| |commutativeEquality| |iiacos| |actualExtensionV| |zeroSquareMatrix| |d01alf| |seriesSolve| |localParamOfSimplePt| SEGMENT |OMgetBind| |traceMatrix| |s19abf| |connect| |virtualDegree| |clikeUniv| |minPoints3D| |parabolicCylindrical| |d01akf| |OMread| |outputList| |resultant| |neglist| |bringDown| |s19aaf| |factorFraction| |iiatanh| |expPot| |nullSpace| |filterUpTo| |d01ajf| |rewriteSetWithReduction| |setCurve| |clearTable!| |convert| |middle| |mapDown!| |numberOfOperations| |s18def| |printHeader| |flatten| |fmecg| |purelyAlgebraicLeadingMonomial?| |construct| |infClsPt?| |s18dcf| |dflist| |wholeRadix| |additive?| |prem| |s18aff| |KrullNumber| |formula| |listOfTerms| |createLowComplexityTable| |log2| |makeVariable| |s18aef| |subPolSet?| |rightFactorCandidate| |approxNthRoot| |squareFreePart| |iicosh| |s18adf| |insertBottom!| |allRootsOf| |cyclicCopy| |genericRightNorm| |s18acf| |setParam!| |particularSolution| |nullary| |acscIfCan| |bernoulliB| |genericPosition| |f04qaf| |qShiftAction| |dimension| |wordInGenerators| |gcdprim| F2EXPRR |innerEigenvectors| |f04mcf| |exponential| |remove| |guessRec| |lastSubResultant| |f04mbf| |newTypeLists| |leftRegularRepresentation| |setEmpty!| |firstExponent| |replaceKthElement| |f04maf| |indicialEquationAtInfinity| |children| |setMaxPoints3D| |imagi| |pastel| |swapRows!| |f04jgf| |multiple?| |stoseSquareFreePart| |headReduced?| |edf2df| |f04faf| |internalSubQuasiComponent?| |solve| |simplify| |setClosed| |internalInfRittWu?| |index| |ksec| |f04axf| |showScalarValues| |csc2sin| |parts| |sayLength| |compBound| |f04atf| |linear?| |viewSizeDefault| |changeWeightLevel| |fracPart| |integralRepresents| |f04asf| |powerAssociative?| |charthRoot| |setAdaptive| |plenaryPower| |errorInfo| |lintgcd| |psolve| |degreeSubResultant| |linearDependenceOverZ| |leviCivitaSymbol| |f04arf| |outputArgs| |difference| |knownInfBasis| |startStats!| |largest| |shade| |derivationCoordinates| |basisOfInterpolateForms| |topFortranOutputStack| |algebraic?| |adjoint| |bandedJacobian| |splitConstant| |excpDivV| |input| |nextsubResultant2| |rationalPlaces| |fixedPointExquo| |simpson| |stoseInvertibleSet| |test| |digit?| |trim| |karatsubaOnce| |backOldPos| |makeEq| |subresultantSequence| |rightRankPolynomial| |rightNorm| |patternMatch| |cyclotomic| |ricDsolve| |parabolic| |ran| |generalInterpolation| |log| |printStats!| |lazyPseudoRemainder| |addmod| |createMultiplicationTable| |tab| |obj| |numerators| |genusTree| |reorder| |OMputObject| |dcopy| |minset| |primaryDecomp| |curve| |sin?| |opeval| |sizeMultiplication| |init| |prod| |symbNameV| |clearFortranOutputStack| |OMgetFloat| |gcdcofact| |doubleFloatFormat| |csubst| |approximants| |perfectSquare?| |tanIfCan| |component| |rationalFunction| |coefOfFirstNonZeroTerm| |factorOfDegree| |ramifiedAtInfinity?| |insert!| |solveRetract| |summation| |changeThreshhold| |leftRankPolynomial| |tanQ| |primitive?| |clearTheSymbolTable| |makeFloatFunction| |curveV| ** |mainForm| |optional?| |cAsinh| |setFieldInfo| |forLoop| |mix| |entry?| |companionBlocks| |integer?| |addPoint| |morphism| |inverseIntegralMatrix| |partition| |limitedint| |internalDecompose| |setexcpDiv!| |order| |setFoundZeroes| |jacobi| |countRealRoots| |ramified?| |polyRicDE| |power!| |Musser| |hasSolution?| |excepCoord| |latex| |stopMusserTrials| |OMParseError?| |cCos| |gnuDraw| |parent| |delay| |homogeneous?| |rootPoly| |binaryFunction| |extendedEuclidean| |phiCoord| |paren| |nil| |infinite| |arbitraryExponent| |approximate| |complex| |shallowMutable| |canonical| |noetherian| |central| |partiallyOrderedSet| |arbitraryPrecision| |canonicalsClosed| |noZeroDivisors| |rightUnitary| |leftUnitary| |additiveValuation| |unitsKnown| |canonicalUnitNormal| |multiplicativeValuation| |finiteAggregate| |shallowlyMutable| |commutative|) \ No newline at end of file diff --git a/src/share/algebra/dependents.daase/dependents.daase/index.kaf b/src/share/algebra/dependents.daase/dependents.daase/index.kaf index 3bf70a6..e935ec4 100644 --- a/src/share/algebra/dependents.daase/dependents.daase/index.kaf +++ b/src/share/algebra/dependents.daase/dependents.daase/index.kaf @@ -1,4 +1,4 @@ -76490 (|AbelianGroup&| |FourierSeries| |FreeAbelianGroup| |IndexedDirectProductAbelianGroup| |QuadraticForm|) +76844 (|AbelianGroup&| |FourierSeries| |FreeAbelianGroup| |IndexedDirectProductAbelianGroup| |QuadraticForm|) (|AbelianMonoid&| |CardinalNumber| |EuclideanModularRing| |GradedAlgebra| |GradedAlgebra&| |GradedModule| |GradedModule&| |IndexedDirectProductAbelianMonoid| |ListMonoidOps| |ModularField| |ModularRing| |RecurrenceOperator|) (|AbelianMonoidRing&| |FractionFreeFastGaussian|) (|AbelianSemiGroup&| |Color| |IncrementingMaps| |PositiveInteger|) @@ -30,8 +30,9 @@ (|Collection&|) (|FunctionSpaceSum| |Guess| |MyExpression| |RecurrenceOperator|) (|Algebra| |Algebra&| |AssociatedJordanAlgebra| |AssociatedLieAlgebra| |CartesianTensor| |CartesianTensorFunctions2| |CharacteristicPolynomialInMonogenicalAlgebra| |CharacteristicPolynomialPackage| |CoerceVectorMatrixPackage| |Complex| |ComplexCategory| |ComplexCategory&| |ComplexFunctions2| |ComplexPattern| |ComplexPatternMatch| |EuclideanModularRing| |FiniteRankAlgebra| |FiniteRankAlgebra&| |FiniteRankNonAssociativeAlgebra| |FiniteRankNonAssociativeAlgebra&| |FourierSeries| |FramedAlgebra| |FramedAlgebra&| |FramedNonAssociativeAlgebra| |FramedNonAssociativeAlgebra&| |FramedNonAssociativeAlgebraFunctions2| |FreeLieAlgebra| |FreeNilpotentLie| |GeneralModulePolynomial| |GenericNonAssociativeAlgebra| |GradedAlgebra| |GradedAlgebra&| |GradedModule| |GradedModule&| |IntegerMod| |LieAlgebra| |LieAlgebra&| |LieExponentials| |LiePolynomial| |LieSquareMatrix| |LocalAlgebra| |Localize| |MatrixLinearAlgebraFunctions| |ModularField| |ModularRing| |Module| |Module&| |MonogenicAlgebra| |MonogenicAlgebra&| |NonAssociativeAlgebra| |NonAssociativeAlgebra&| |NumberTheoreticPolynomialFunctions| |Octonion| |OctonionCategory| |OctonionCategory&| |OctonionCategoryFunctions2| |OrthogonalPolynomialFunctions| |Quaternion| |QuaternionCategory| |QuaternionCategory&| |QuaternionCategoryFunctions2| |ResidueRing| |SimpleAlgebraicExtension| |XPBWPolynomial|) -(|AlgebraicNumber| |ComplexFactorization| |ComplexRootFindingPackage| |ComplexRootPackage| |ComplexTrigonometricManipulations| |InnerAlgebraicNumber| |InnerTrigonometricManipulations|) +(|AlgebraicNumber| |ComplexDoubleFloatMatrix| |ComplexDoubleFloatVector| |ComplexFactorization| |ComplexRootFindingPackage| |ComplexRootPackage| |ComplexTrigonometricManipulations| |InnerAlgebraicNumber| |InnerTrigonometricManipulations|) (|Complex| |ComplexCategory&| |ComplexIntegerSolveLinearPolynomialEquation| |ComplexPattern| |ComplexPatternMatch| |MachineComplex|) +(|ComplexDoubleFloatMatrix|) (|AlgebraicNumber| |ApplyRules| |Boolean| |CharacterClass| |ComplexPattern| |DoubleFloat| |DrawNumericHack| |ExpressionSolve| |ExpressionSpaceODESolver| |Float| |FullPartialFractionExpansion| |GuessFinite| |GuessFiniteFunctions| |InfiniteProductFiniteField| |InfiniteProductPrimeField| |InnerAlgebraicNumber| |InnerPrimeField| |InputForm| |Integer| |IntegerMod| |LaurentPolynomial| |MakeBinaryCompiledFunction| |MakeFloatCompiledFunction| |MakeFunction| |MakeUnaryCompiledFunction| |Numeric| |OrderedVariableList| |ParametricLinearEquations| |Partition| |PatternMatch| |PatternMatchFunctionSpace| |PatternMatchKernel| |PatternMatchPolynomialCategory| |PatternMatchQuotientFieldCategory| |PatternMatchTools| |Pi| |PlotFunctions1| |PrimeField| |RecurrenceOperator| |RewriteRule| |Ruleset| |Symbol| |TopLevelDrawFunctions|) (|Dequeue|) (|DesingTree| |DesingTreePackage| |GeneralPackageForAlgebraicFunctionField| |IntersectionDivisorPackage|) @@ -47,9 +48,10 @@ (|DivisionRing&|) (|InfClsPt| |InfinitlyClosePointOverPseudoAlgebraicClosureOfFiniteField|) (|DesingTreePackage| |Divisor| |GeneralPackageForAlgebraicFunctionField| |InfinitlyClosePoint| |InfinitlyClosePointCategory| |InterpolateFormsPackage| |IntersectionDivisorPackage|) -(|ExpertSystemContinuityPackage1| |Float| |InputForm| |Pi| |SExpression|) +(|ComplexDoubleFloatMatrix| |ComplexDoubleFloatVector| |DoubleFloatMatrix| |DoubleFloatVector| |ExpertSystemContinuityPackage1| |Float| |InputForm| |Pi| |SExpression|) +(|DoubleFloatMatrix|) (|ElementaryFunctionCategory&| |GaloisGroupFactorizationUtilities|) -(|Automorphism| |LinearOrdinaryDifferentialOperator2| |ModuleOperator| |Operator| |RewriteRule| |Ruleset|) +(|Automorphism| |DirichletRing| |LinearOrdinaryDifferentialOperator2| |ModuleOperator| |Operator| |RewriteRule| |Ruleset|) (|EltableAggregate&|) (|RewriteRule|) (|CRApackage| |ComplexFactorization| |ConstantLODE| |ContinuedFraction| |ElementaryFunctionDefiniteIntegration| |ElementaryFunctionLODESolver| |ElementaryFunctionODESolver| |EuclideanDomain&| |EuclideanGroebnerBasisPackage| |EuclideanModularRing| |FractionalIdeal| |FractionalIdealFunctions2| |FramedModule| |FunctionFieldIntegralBasis| |FunctionSpaceComplexIntegration| |FunctionSpaceIntegration| |GenExEuclid| |GenUFactorize| |GeneralHenselPackage| |GroebnerFactorizationPackage| |InnerModularGcd| |InnerMultFact| |IntegralBasisTools| |InternalRationalUnivariateRepresentationPackage| |InverseLaplaceTransform| |LaplaceTransform| |LeadingCoefDetermination| |MPolyCatPolyFactorizer| |MRationalFactorize| |ModularHermitianRowReduction| |MultivariateFactorize| |MultivariateLifting| |MultivariateSquareFree| |NPCoef| |NonLinearFirstOrderODESolver| |ODEIntegration| |ParametricLinearEquations| |PartialFraction| |PartialFractionPackage| |PolynomialGcdPackage| |RadicalSolvePackage| |RationalFunctionDefiniteIntegration| |RationalFunctionFactorizer| |RationalUnivariateRepresentationPackage| |SmithNormalForm| |TransSolvePackage| |ZeroDimensionalSolvePackage|) @@ -130,7 +132,7 @@ (|LiePolynomial| |PoincareBirkhoffWittLyndonBasis|) (|MachineComplex|) (|AlgebraGivenByStructuralConstants| |GenericNonAssociativeAlgebra| |LieSquareMatrix| |RectangularMatrix| |SquareMatrix|) -(|BezoutMatrix| |DenavitHartenbergMatrix| |IndexedMatrix| |InnerMatrixLinearAlgebraFunctions| |InnerMatrixQuotientFieldFunctions| |LinearSystemMatrixPackage| |Matrix| |MatrixCategory&| |MatrixCategoryFunctions2| |MatrixLinearAlgebraFunctions| |SmithNormalForm| |TriangularMatrixOperations|) +(|BezoutMatrix| |ComplexDoubleFloatMatrix| |DenavitHartenbergMatrix| |DoubleFloatMatrix| |IndexedMatrix| |InnerMatrixLinearAlgebraFunctions| |InnerMatrixQuotientFieldFunctions| |LinearSystemMatrixPackage| |Matrix| |MatrixCategory&| |MatrixCategoryFunctions2| |MatrixLinearAlgebraFunctions| |SmithNormalForm| |TriangularMatrixOperations|) (|FreeAbelianGroup| |GeneralModulePolynomial| |IntegrationResult| |LieExponentials| |Localize| |Module&| |XExponentialPackage|) (|Monad&|) (|MonadWithUnit&|) @@ -187,7 +189,7 @@ (|AffineAlgebraicSetComputeWithGroebnerBasis| |AffineAlgebraicSetComputeWithResultant| |AlgebraicMultFact| |DesingTreePackage| |DistributedMultivariatePolynomial| |EuclideanGroebnerBasisPackage| |FactoringUtilities| |GeneralDistributedMultivariatePolynomial| |GeneralModulePolynomial| |GeneralPackageForAlgebraicFunctionField| |GeneralPolynomialGcdPackage| |GeneralizedMultivariateFactorize| |GosperSummationMethod| |GroebnerFactorizationPackage| |GroebnerInternalPackage| |GroebnerPackage| |HomogeneousDistributedMultivariatePolynomial| |InfinitlyClosePoint| |InfinitlyClosePointCategory| |InnerMultFact| |InnerPolySum| |InterfaceGroebnerPackage| |InterpolateFormsPackage| |IntersectionDivisorPackage| |LeadingCoefDetermination| |LinearSystemPolynomialPackage| |LocalParametrizationOfSimplePointPackage| |MPolyCatFunctions2| |MPolyCatFunctions3| |MPolyCatPolyFactorizer| |MPolyCatRationalFunctionFactorizer| |MRationalFactorize| |MultFiniteFactorize| |MultivariateFactorize| |MultivariateLifting| |MultivariatePolynomial| |MultivariateSquareFree| |NPCoef| |ParametricLinearEquations| |ParametrizationPackage| |PatternMatchPolynomialCategory| |Polynomial| |PolynomialCategory&| |PolynomialCategoryLifting| |PolynomialCategoryQuotientFunctions| |PolynomialFactorizationByRecursion| |PolynomialGcdPackage| |PolynomialIdeals| |PolynomialRoots| |PolynomialSquareFree| |ProjectiveAlgebraicSetPackage| |PushVariables| |QuasiAlgebraicSet| |ResidueRing| |SparseMultivariatePolynomial| |SparseMultivariateTaylorSeries| |SupFractionFactorizer| |WeightedPolynomials|) (|GeneralPolynomialGcdPackage| |LinearPolynomialEquationByFractions| |PolynomialFactorizationByRecursion| |PolynomialFactorizationByRecursionUnivariate| |PolynomialFactorizationExplicit&|) (|GeneralPolynomialSet| |PolynomialSetCategory&|) -(|AlgebraGivenByStructuralConstants| |CliffordAlgebra| |DirectProductMatrixModule| |FiniteField| |FiniteFieldCyclicGroup| |FiniteFieldCyclicGroupExtension| |FiniteFieldExtension| |FiniteFieldNormalBasis| |FiniteFieldNormalBasisExtension| |GenericNonAssociativeAlgebra| |InnerFiniteField| |InnerPrimeField| |IntegerMod| |LieExponentials| |LieSquareMatrix| |NormRetractPackage| |Permanent| |PrimeField| |QuadraticForm| |SetOfMIntegersInOneToN| |SubSpace|) +(|AlgebraGivenByStructuralConstants| |CliffordAlgebra| |DirectProductMatrixModule| |DirichletRing| |FiniteField| |FiniteFieldCyclicGroup| |FiniteFieldCyclicGroupExtension| |FiniteFieldExtension| |FiniteFieldNormalBasis| |FiniteFieldNormalBasisExtension| |GenericNonAssociativeAlgebra| |InnerFiniteField| |InnerPrimeField| |IntegerMod| |LieExponentials| |LieSquareMatrix| |NormRetractPackage| |Permanent| |PrimeField| |QuadraticForm| |SetOfMIntegersInOneToN| |SubSpace|) (|PowerSeriesCategory&|) (|FiniteField| |FiniteFieldCyclicGroup| |FiniteFieldNormalBasis|) (|Tuple|) @@ -216,7 +218,7 @@ (|GeneralPolynomialSet| |GeneralTriangularSet| |InternalRationalUnivariateRepresentationPackage| |LazardSetSolvingPackage| |NewSparseMultivariatePolynomial| |NormalizationPackage| |NormalizedTriangularSetCategory| |PolynomialSetCategory| |PolynomialSetCategory&| |PolynomialSetUtilitiesPackage| |QuasiComponentPackage| |RecursivePolynomialCategory&| |RegularSetDecompositionPackage| |RegularTriangularSet| |RegularTriangularSetCategory| |RegularTriangularSetCategory&| |RegularTriangularSetGcdPackage| |SquareFreeNormalizedTriangularSetCategory| |SquareFreeQuasiComponentPackage| |SquareFreeRegularSetDecompositionPackage| |SquareFreeRegularTriangularSet| |SquareFreeRegularTriangularSetCategory| |SquareFreeRegularTriangularSetGcdPackage| |TriangularSetCategory| |TriangularSetCategory&| |WuWenTsunTriangularSet|) (|LazardSetSolvingPackage| |NormalizationPackage| |QuasiComponentPackage| |RegularChain| |RegularSetDecompositionPackage| |RegularTriangularSet| |RegularTriangularSetCategory&| |RegularTriangularSetGcdPackage| |SquareFreeQuasiComponentPackage| |SquareFreeRegularTriangularSetGcdPackage|) (|AlgebraicIntegrate| |AlgebraicNumber| |AntiSymm| |BoundIntegerRoots| |CardinalNumber| |ComplexTrigonometricManipulations| |ConstantLODE| |DeRhamComplex| |DefiniteIntegrationTools| |DifferentialSparseMultivariatePolynomial| |ElementaryFunctionDefiniteIntegration| |ElementaryFunctionLODESolver| |ElementaryFunctionODESolver| |ElementaryFunctionSign| |ElementaryFunctionStructurePackage| |ElementaryIntegration| |ElementaryRischDE| |ElementaryRischDESystem| |ExponentialExpansion| |ExpressionToUnivariatePowerSeries| |FortranExpression| |FractionalIdeal| |FractionalIdealFunctions2| |FreeGroup| |FreeMonoid| |FunctionSpaceComplexIntegration| |FunctionSpaceIntegration| |FunctionSpaceReduce| |FunctionSpaceSum| |FunctionSpaceToExponentialExpansion| |FunctionSpaceToUnivariatePowerSeries| |FunctionSpaceUnivariatePolynomialFactor| |GaloisGroupFactorizationUtilities| |GenerateUnivariatePowerSeries| |GenusZeroIntegration| |GosperSummationMethod| |Guess| |InnerAlgebraicNumber| |IntegerRetractions| |IntegrationResult| |IntegrationResultRFToFunction| |IntegrationResultToFunction| |InverseLaplaceTransform| |Kovacic| |LaplaceTransform| |LaurentPolynomial| |LinearOrdinaryDifferentialOperatorFactorizer| |ListMonoidOps| |LyndonWord| |MachineFloat| |Magma| |ModuleOperator| |MonoidRing| |MyExpression| |NewSparseMultivariatePolynomial| |NewSparseUnivariatePolynomial| |NonLinearFirstOrderODESolver| |ODEIntegration| |Operator| |OrderedFreeMonoid| |OrderlyDifferentialPolynomial| |Pattern| |PatternMatchFunctionSpace| |PatternMatchIntegration| |PatternMatchKernel| |PatternMatchPushDown| |PatternMatchTools| |Pi| |PoincareBirkhoffWittLyndonBasis| |PointsOfFiniteOrder| |PowerSeriesLimitPackage| |PrimitiveRatDE| |PrimitiveRatRicDE| |PureAlgebraicIntegration| |PureAlgebraicLODE| |RationalFunctionDefiniteIntegration| |RationalFunctionIntegration| |RationalFunctionSum| |RationalIntegration| |RationalLODE| |RationalRetractions| |RationalRicDE| |RecurrenceOperator| |RetractSolvePackage| |RetractableTo&| |RewriteRule| |SequentialDifferentialPolynomial| |SparseUnivariatePuiseuxSeries| |TopLevelDrawFunctionsForAlgebraicCurves| |TransSolvePackage| |TranscendentalRischDE| |TranscendentalRischDESystem| |TrigonometricManipulations| |UnivariatePuiseuxSeries| |UnivariatePuiseuxSeriesWithExponentialSingularity|) -(|AbelianMonoidRing| |AbelianMonoidRing&| |AntiSymm| |ApplyRules| |ApplyUnivariateSkewPolynomial| |Automorphism| |Bezier| |BezoutMatrix| |BiModule| |CliffordAlgebra| |CommuteUnivariatePolynomialCategory| |DeRhamComplex| |DegreeReductionPackage| |DifferentialExtension| |DifferentialExtension&| |DifferentialPolynomialCategory| |DifferentialPolynomialCategory&| |DifferentialSparseMultivariatePolynomial| |DirectProductMatrixModule| |DirectProductModule| |DistributedMultivariatePolynomial| |ExpertSystemToolsPackage2| |ExpressionToOpenMath| |FactoringUtilities| |FiniteAbelianMonoidRing| |FiniteAbelianMonoidRing&| |FiniteAbelianMonoidRingFunctions2| |FreeModule| |FreeModule1| |FreeModuleCat| |FullyLinearlyExplicitRingOver| |FullyLinearlyExplicitRingOver&| |FunctionSpaceFunctions2| |GaloisGroupFactorizationUtilities| |GaloisGroupPolynomialUtilities| |GaloisGroupUtilities| |GeneralDistributedMultivariatePolynomial| |GeneralPolynomialSet| |GeneralUnivariatePowerSeries| |HomogeneousDistributedMultivariatePolynomial| |IndexedMatrix| |InnerPolySign| |InnerSparseUnivariatePowerSeries| |InnerTaylorSeries| |IntegralBasisPolynomialTools| |LeftAlgebra| |LeftAlgebra&| |LinearOrdinaryDifferentialOperator| |LinearOrdinaryDifferentialOperatorCategory| |LinearOrdinaryDifferentialOperatorCategory&| |LinearlyExplicitRingOver| |MPolyCatFunctions2| |MPolyCatFunctions3| |MappingPackage4| |Matrix| |MatrixCategory| |MatrixCategory&| |MatrixCategoryFunctions2| |ModMonic| |ModularRing| |ModuleOperator| |MonogenicLinearOperator| |MonoidRing| |MonoidRingFunctions2| |MultivariatePolynomial| |MultivariateTaylorSeriesCategory| |MyExpression| |MyUnivariatePolynomial| |NewSparseMultivariatePolynomial| |NewSparseUnivariatePolynomial| |NewSparseUnivariatePolynomialFunctions2| |NewtonPolygon| |Operator| |OppositeMonogenicLinearOperator| |OrderlyDifferentialPolynomial| |OrdinaryWeightedPolynomials| |PackageForPoly| |PatternMatchPolynomialCategory| |PatternMatchTools| |Permanent| |Point| |PointCategory| |PointFunctions2| |PointPackage| |PolToPol| |Polynomial| |PolynomialCategory| |PolynomialCategory&| |PolynomialCategoryLifting| |PolynomialCategoryQuotientFunctions| |PolynomialComposition| |PolynomialFunctions2| |PolynomialRing| |PolynomialSetCategory| |PolynomialSetCategory&| |PolynomialToUnivariatePolynomial| |PowerSeriesCategory| |PowerSeriesCategory&| |PushVariables| |RectangularMatrix| |RectangularMatrixCategory| |RectangularMatrixCategory&| |RectangularMatrixCategoryFunctions2| |RecursivePolynomialCategory| |RecursivePolynomialCategory&| |RepresentationPackage1| |RepresentationPackage2| |RewriteRule| |Ring&| |Ruleset| |SequentialDifferentialPolynomial| |SparseMultivariatePolynomial| |SparseMultivariateTaylorSeries| |SparseUnivariateLaurentSeries| |SparseUnivariatePolynomial| |SparseUnivariatePolynomialExpressions| |SparseUnivariatePolynomialFunctions2| |SparseUnivariatePuiseuxSeries| |SparseUnivariateSkewPolynomial| |SparseUnivariateTaylorSeries| |SquareMatrix| |SquareMatrixCategory| |SquareMatrixCategory&| |StorageEfficientMatrixOperations| |StreamTaylorSeriesOperations| |SubSpace| |SymmetricFunctions| |SymmetricPolynomial| |TaylorSeries| |ThreeSpace| |ThreeSpaceCategory| |ToolsForSign| |UTSodetools| |UnivariateFormalPowerSeries| |UnivariateFormalPowerSeriesFunctions| |UnivariateLaurentSeries| |UnivariateLaurentSeriesCategory| |UnivariateLaurentSeriesConstructor| |UnivariateLaurentSeriesConstructorCategory| |UnivariateLaurentSeriesConstructorCategory&| |UnivariateLaurentSeriesFunctions2| |UnivariatePolynomial| |UnivariatePolynomialCategory| |UnivariatePolynomialCategory&| |UnivariatePolynomialCategoryFunctions2| |UnivariatePolynomialFunctions2| |UnivariatePolynomialMultiplicationPackage| |UnivariatePowerSeriesCategory| |UnivariatePowerSeriesCategory&| |UnivariatePuiseuxSeries| |UnivariatePuiseuxSeriesCategory| |UnivariatePuiseuxSeriesConstructor| |UnivariatePuiseuxSeriesConstructorCategory| |UnivariatePuiseuxSeriesConstructorCategory&| |UnivariatePuiseuxSeriesFunctions2| |UnivariateSkewPolynomial| |UnivariateSkewPolynomialCategory| |UnivariateSkewPolynomialCategory&| |UnivariateSkewPolynomialCategoryOps| |UnivariateTaylorSeries| |UnivariateTaylorSeriesCZero| |UnivariateTaylorSeriesCategory| |UnivariateTaylorSeriesCategory&| |UnivariateTaylorSeriesFunctions2| |WeightedPolynomials| |XAlgebra| |XDistributedPolynomial| |XExponentialPackage| |XFreeAlgebra| |XPolynomial| |XPolynomialRing| |XPolynomialsCat| |XRecursivePolynomial|) +(|AbelianMonoidRing| |AbelianMonoidRing&| |AntiSymm| |ApplyRules| |ApplyUnivariateSkewPolynomial| |Automorphism| |Bezier| |BezoutMatrix| |BiModule| |CliffordAlgebra| |CommuteUnivariatePolynomialCategory| |DeRhamComplex| |DegreeReductionPackage| |DifferentialExtension| |DifferentialExtension&| |DifferentialPolynomialCategory| |DifferentialPolynomialCategory&| |DifferentialSparseMultivariatePolynomial| |DirectProductMatrixModule| |DirectProductModule| |DirichletRing| |DistributedMultivariatePolynomial| |ExpertSystemToolsPackage2| |ExpressionToOpenMath| |FactoringUtilities| |FiniteAbelianMonoidRing| |FiniteAbelianMonoidRing&| |FiniteAbelianMonoidRingFunctions2| |FreeModule| |FreeModule1| |FreeModuleCat| |FullyLinearlyExplicitRingOver| |FullyLinearlyExplicitRingOver&| |FunctionSpaceFunctions2| |GaloisGroupFactorizationUtilities| |GaloisGroupPolynomialUtilities| |GaloisGroupUtilities| |GeneralDistributedMultivariatePolynomial| |GeneralPolynomialSet| |GeneralUnivariatePowerSeries| |HomogeneousDistributedMultivariatePolynomial| |IndexedMatrix| |InnerPolySign| |InnerSparseUnivariatePowerSeries| |InnerTaylorSeries| |IntegralBasisPolynomialTools| |LeftAlgebra| |LeftAlgebra&| |LinearOrdinaryDifferentialOperator| |LinearOrdinaryDifferentialOperatorCategory| |LinearOrdinaryDifferentialOperatorCategory&| |LinearlyExplicitRingOver| |MPolyCatFunctions2| |MPolyCatFunctions3| |MappingPackage4| |Matrix| |MatrixCategory| |MatrixCategory&| |MatrixCategoryFunctions2| |ModMonic| |ModularRing| |ModuleOperator| |MonogenicLinearOperator| |MonoidRing| |MonoidRingFunctions2| |MultivariatePolynomial| |MultivariateTaylorSeriesCategory| |MyExpression| |MyUnivariatePolynomial| |NewSparseMultivariatePolynomial| |NewSparseUnivariatePolynomial| |NewSparseUnivariatePolynomialFunctions2| |NewtonPolygon| |Operator| |OppositeMonogenicLinearOperator| |OrderlyDifferentialPolynomial| |OrdinaryWeightedPolynomials| |PackageForPoly| |PatternMatchPolynomialCategory| |PatternMatchTools| |Permanent| |Point| |PointCategory| |PointFunctions2| |PointPackage| |PolToPol| |Polynomial| |PolynomialCategory| |PolynomialCategory&| |PolynomialCategoryLifting| |PolynomialCategoryQuotientFunctions| |PolynomialComposition| |PolynomialFunctions2| |PolynomialRing| |PolynomialSetCategory| |PolynomialSetCategory&| |PolynomialToUnivariatePolynomial| |PowerSeriesCategory| |PowerSeriesCategory&| |PushVariables| |RectangularMatrix| |RectangularMatrixCategory| |RectangularMatrixCategory&| |RectangularMatrixCategoryFunctions2| |RecursivePolynomialCategory| |RecursivePolynomialCategory&| |RepresentationPackage1| |RepresentationPackage2| |RewriteRule| |Ring&| |Ruleset| |SequentialDifferentialPolynomial| |SparseMultivariatePolynomial| |SparseMultivariateTaylorSeries| |SparseUnivariateLaurentSeries| |SparseUnivariatePolynomial| |SparseUnivariatePolynomialExpressions| |SparseUnivariatePolynomialFunctions2| |SparseUnivariatePuiseuxSeries| |SparseUnivariateSkewPolynomial| |SparseUnivariateTaylorSeries| |SquareMatrix| |SquareMatrixCategory| |SquareMatrixCategory&| |StorageEfficientMatrixOperations| |StreamTaylorSeriesOperations| |SubSpace| |SymmetricFunctions| |SymmetricPolynomial| |TaylorSeries| |ThreeSpace| |ThreeSpaceCategory| |ToolsForSign| |UTSodetools| |UnivariateFormalPowerSeries| |UnivariateFormalPowerSeriesFunctions| |UnivariateLaurentSeries| |UnivariateLaurentSeriesCategory| |UnivariateLaurentSeriesConstructor| |UnivariateLaurentSeriesConstructorCategory| |UnivariateLaurentSeriesConstructorCategory&| |UnivariateLaurentSeriesFunctions2| |UnivariatePolynomial| |UnivariatePolynomialCategory| |UnivariatePolynomialCategory&| |UnivariatePolynomialCategoryFunctions2| |UnivariatePolynomialFunctions2| |UnivariatePolynomialMultiplicationPackage| |UnivariatePowerSeriesCategory| |UnivariatePowerSeriesCategory&| |UnivariatePuiseuxSeries| |UnivariatePuiseuxSeriesCategory| |UnivariatePuiseuxSeriesConstructor| |UnivariatePuiseuxSeriesConstructorCategory| |UnivariatePuiseuxSeriesConstructorCategory&| |UnivariatePuiseuxSeriesFunctions2| |UnivariateSkewPolynomial| |UnivariateSkewPolynomialCategory| |UnivariateSkewPolynomialCategory&| |UnivariateSkewPolynomialCategoryOps| |UnivariateTaylorSeries| |UnivariateTaylorSeriesCZero| |UnivariateTaylorSeriesCategory| |UnivariateTaylorSeriesCategory&| |UnivariateTaylorSeriesFunctions2| |WeightedPolynomials| |XAlgebra| |XDistributedPolynomial| |XExponentialPackage| |XFreeAlgebra| |XPolynomial| |XPolynomialRing| |XPolynomialsCat| |XRecursivePolynomial|) (|LeftModule| |RightModule|) (|InputForm|) (|InputForm| |SExpression| |SExpressionOf|) @@ -224,7 +226,7 @@ (|SemiGroup&|) (|SequentialDifferentialPolynomial|) (|SetAggregate&|) -(|AnonymousFunction| |Any| |ApplyRules| |ArrayStack| |AssociationList| |AssociationListAggregate| |AttributeButtons| |BalancedBinaryTree| |BasicFunctions| |BasicOperatorFunctions1| |BinaryTree| |BinaryTreeCategory| |BinaryTreeCategory&| |CharacterClass| |Commutator| |ComplexPattern| |ComplexPatternMatch| |Database| |Dequeue| |DesingTree| |DesingTreeCategory| |Dictionary| |Dictionary&| |DictionaryOperations| |DictionaryOperations&| |DivisorCategory| |DrawOption| |Eltable| |EltableAggregate| |EltableAggregate&| |EqTable| |Evalable| |Evalable&| |Exit| |File| |FileCategory| |FiniteSetAggregate| |FiniteSetAggregate&| |FiniteSetAggregateFunctions2| |FortranCode| |FortranType| |FreeAbelianGroup| |FreeAbelianMonoid| |FreeAbelianMonoidCategory| |FreeGroup| |FreeModuleCat| |FreeMonoid| |FullPartialFractionExpansion| |FullyEvalableOver| |FullyEvalableOver&| |FunctionCalled| |GeneralSparseTable| |GenusZeroIntegration| |GraphImage| |GuessOption| |GuessOptionFunctions0| |HashTable| |IndexedAggregate| |IndexedAggregate&| |IndexedDirectProductCategory| |IndexedDirectProductObject| |InnerEvalable| |InnerEvalable&| |InnerFreeAbelianMonoid| |InnerTable| |KeyedAccessFile| |KeyedDictionary| |KeyedDictionary&| |ListMonoidOps| |ListMultiDictionary| |ListToMap| |MakeCachableSet| |MappingPackage1| |MappingPackage2| |MappingPackage3| |MappingPackage4| |MappingPackageInternalHacks1| |MappingPackageInternalHacks2| |MappingPackageInternalHacks3| |MathMLFormat| |ModuleMonomial| |MultiDictionary| |MultiVariableCalculusFunctions| |Multiset| |MultisetAggregate| |None| |NumericalIntegrationProblem| |NumericalODEProblem| |NumericalOptimizationProblem| |NumericalPDEProblem| |OnePointCompletion| |OnePointCompletionFunctions2| |OpenMathEncoding| |OpenMathError| |OpenMathErrorKind| |OrderedCompletion| |OrderedCompletionFunctions2| |OrdinaryDifferentialRing| |OutputForm| |Palette| |PartialDifferentialRing| |PartialDifferentialRing&| |Pattern| |PatternFunctions1| |PatternFunctions2| |PatternMatch| |PatternMatchFunctionSpace| |PatternMatchKernel| |PatternMatchListAggregate| |PatternMatchListResult| |PatternMatchPolynomialCategory| |PatternMatchPushDown| |PatternMatchQuotientFieldCategory| |PatternMatchResult| |PatternMatchResultFunctions2| |PatternMatchSymbol| |PatternMatchTools| |PatternMatchable| |PendantTree| |Permutation| |PermutationCategory| |PermutationGroup| |PolynomialCategoryLifting| |PolynomialIdeals| |Product| |PureAlgebraicIntegration| |QuasiAlgebraicSet| |Queue| |RandomDistributions| |RepeatedDoubling| |RepeatedSquaring| |RewriteRule| |RuleCalled| |Ruleset| |SExpressionCategory| |SExpressionOf| |ScriptFormulaFormat| |ScriptFormulaFormat1| |Set| |SetAggregate| |SetAggregate&| |SetCategory&| |SparseTable| |SplittingNode| |SplittingTree| |Stack| |StringTable| |SubSpace| |SubSpaceComponentProperty| |SuchThat| |Table| |TableAggregate| |TableAggregate&| |Tableau| |TabulatedComputationPackage| |TexFormat| |TexFormat1| |ThreeDimensionalMatrix| |ThreeDimensionalViewport| |TopLevelDrawFunctions| |Tree| |TwoDimensionalViewport| |UserDefinedPartialOrdering| |Variable|) +(|AnonymousFunction| |Any| |ApplyRules| |ArrayStack| |AssociationList| |AssociationListAggregate| |AttributeButtons| |BalancedBinaryTree| |BasicFunctions| |BasicOperatorFunctions1| |BinaryTree| |BinaryTreeCategory| |BinaryTreeCategory&| |CharacterClass| |Commutator| |ComplexPattern| |ComplexPatternMatch| |Database| |Dequeue| |DesingTree| |DesingTreeCategory| |Dictionary| |Dictionary&| |DictionaryOperations| |DictionaryOperations&| |DivisorCategory| |DrawOption| |Eltable| |EltableAggregate| |EltableAggregate&| |EqTable| |Evalable| |Evalable&| |Exit| |File| |FileCategory| |FiniteSetAggregate| |FiniteSetAggregate&| |FiniteSetAggregateFunctions2| |FortranCode| |FortranType| |FreeAbelianGroup| |FreeAbelianMonoid| |FreeAbelianMonoidCategory| |FreeGroup| |FreeModuleCat| |FreeMonoid| |FullPartialFractionExpansion| |FullyEvalableOver| |FullyEvalableOver&| |FunctionCalled| |GeneralSparseTable| |GenusZeroIntegration| |GraphImage| |GuessOption| |GuessOptionFunctions0| |HTMLFormat| |HashTable| |IndexedAggregate| |IndexedAggregate&| |IndexedDirectProductCategory| |IndexedDirectProductObject| |InnerEvalable| |InnerEvalable&| |InnerFreeAbelianMonoid| |InnerTable| |KeyedAccessFile| |KeyedDictionary| |KeyedDictionary&| |ListMonoidOps| |ListMultiDictionary| |ListToMap| |MakeCachableSet| |MappingPackage1| |MappingPackage2| |MappingPackage3| |MappingPackage4| |MappingPackageInternalHacks1| |MappingPackageInternalHacks2| |MappingPackageInternalHacks3| |MathMLFormat| |ModuleMonomial| |MultiDictionary| |MultiVariableCalculusFunctions| |Multiset| |MultisetAggregate| |None| |NumericalIntegrationProblem| |NumericalODEProblem| |NumericalOptimizationProblem| |NumericalPDEProblem| |OnePointCompletion| |OnePointCompletionFunctions2| |OpenMathEncoding| |OpenMathError| |OpenMathErrorKind| |OrderedCompletion| |OrderedCompletionFunctions2| |OrdinaryDifferentialRing| |OutputForm| |Palette| |PartialDifferentialRing| |PartialDifferentialRing&| |Pattern| |PatternFunctions1| |PatternFunctions2| |PatternMatch| |PatternMatchFunctionSpace| |PatternMatchKernel| |PatternMatchListAggregate| |PatternMatchListResult| |PatternMatchPolynomialCategory| |PatternMatchPushDown| |PatternMatchQuotientFieldCategory| |PatternMatchResult| |PatternMatchResultFunctions2| |PatternMatchSymbol| |PatternMatchTools| |PatternMatchable| |PendantTree| |Permutation| |PermutationCategory| |PermutationGroup| |PolynomialCategoryLifting| |PolynomialIdeals| |Product| |PureAlgebraicIntegration| |QuasiAlgebraicSet| |Queue| |RandomDistributions| |RepeatedDoubling| |RepeatedSquaring| |RewriteRule| |RuleCalled| |Ruleset| |SExpressionCategory| |SExpressionOf| |ScriptFormulaFormat| |ScriptFormulaFormat1| |Set| |SetAggregate| |SetAggregate&| |SetCategory&| |SparseTable| |SplittingNode| |SplittingTree| |Stack| |StringTable| |SubSpace| |SubSpaceComponentProperty| |SuchThat| |Table| |TableAggregate| |TableAggregate&| |Tableau| |TabulatedComputationPackage| |TexFormat| |TexFormat1| |ThreeDimensionalMatrix| |ThreeDimensionalViewport| |TopLevelDrawFunctions| |Tree| |TwoDimensionalViewport| |UserDefinedPartialOrdering| |Variable|) (|Divisor|) (|BinaryFile| |FiniteFieldNormalBasisExtensionByPolynomial|) (|DifferentialSparseMultivariatePolynomial| |NewSparseMultivariatePolynomial| |OrderlyDifferentialPolynomial| |SequentialDifferentialPolynomial|) @@ -267,8 +269,8 @@ (|UnivariateLaurentSeries| |UnivariatePuiseuxSeries|) (|ElementaryFunctionsUnivariateLaurentSeries| |EllipticFunctionsUnivariateTaylorSeries| |ExpressionSolve| |InfiniteProductCharacteristicZero| |InfiniteProductFiniteField| |InfiniteProductPrimeField| |PadeApproximants| |SparseUnivariateTaylorSeries| |TaylorSolve| |UTSodetools| |UnivariateFormalPowerSeries| |UnivariateLaurentSeriesConstructor| |UnivariateLaurentSeriesConstructorCategory| |UnivariateLaurentSeriesConstructorCategory&| |UnivariateTaylorSeries| |UnivariateTaylorSeriesCZero| |UnivariateTaylorSeriesCategory&| |UnivariateTaylorSeriesFunctions2| |UnivariateTaylorSeriesODESolver|) (|AlgebraGivenByStructuralConstants| |DenavitHartenbergMatrix| |FiniteFieldNormalBasisExtensionByPolynomial| |FramedModule| |GenericNonAssociativeAlgebra| |Matrix| |OrderedDirectProduct|) -(|IndexedVector| |Vector| |VectorCategory&|) +(|ComplexDoubleFloatVector| |DoubleFloatVector| |IndexedVector| |Vector| |VectorCategory&|) (|CliffordAlgebra| |VectorSpace&|) (|XPolynomialRing|) (|XDistributedPolynomial| |XExponentialPackage| |XPBWPolynomial| |XPolynomial| |XRecursivePolynomial|) -(("XPolynomialsCat" 0 76387) ("XAlgebra" 0 76367) ("VectorSpace" 0 76332) ("VectorCategory" 0 76287) ("Vector" 0 76099) ("UnivariateTaylorSeriesCategory" 0 75505) ("UnivariateTaylorSeries" 0 75451) ("UnivariateSkewPolynomialCategory" 0 75283) ("UnivariatePuiseuxSeriesWithExponentialSingularity" 0 75258) ("UnivariatePuiseuxSeriesConstructorCategory" 0 75070) ("UnivariatePuiseuxSeriesCategory" 0 74998) ("UnivariatePuiseuxSeries" 0 74921) ("UnivariatePowerSeriesCategory" 0 74812) ("UnivariatePolynomialCategory" 0 71779) ("UnivariateLaurentSeriesConstructorCategory" 0 71591) ("UnivariateLaurentSeriesCategory" 0 71416) ("UnivariateLaurentSeries" 0 71388) ("UniqueFactorizationDomain" 0 71232) ("UnaryRecursiveAggregate" 0 71203) ("Type" 0 68840) ("TwoDimensionalArrayCategory" 0 68722) ("TrigonometricFunctionCategory" 0 68687) ("TriangularSetCategory" 0 68612) ("TranscendentalFunctionCategory" 0 67458) ("ThreeSpaceCategory" 0 67443) ("TableAggregate" 0 67278) ("SymbolTable" 0 67259) ("Symbol" 0 64834) ("StringCategory" 0 64823) ("StringAggregate" 0 64786) ("String" 0 64640) ("StreamAggregate" 0 64592) ("StepThrough" 0 64577) ("StackAggregate" 0 64554) ("SquareMatrixCategory" 0 64467) ("SquareMatrix" 0 64398) ("SquareFreeRegularTriangularSetCategory" 0 64244) ("SplittingNode" 0 64226) ("SpecialFunctionCategory" 0 64184) ("SparseUnivariateTaylorSeries" 0 64118) ("SparseUnivariatePolynomialExpressions" 0 64084) ("SparseUnivariatePolynomial" 0 63918) ("SparseUnivariateLaurentSeries" 0 63884) ("SparseMultivariatePolynomial" 0 63738) ("SingleInteger" 0 63677) ("SetCategoryWithDegree" 0 63665) ("SetCategory" 0 60579) ("SetAggregate" 0 60561) ("SequentialDifferentialVariable" 0 60524) ("SemiGroup" 0 60509) ("SegmentCategory" 0 60478) ("SExpressionCategory" 0 60434) ("SExpression" 0 60420) ("Rng" 0 60391) ("Ring" 0 55920) ("RetractableTo" 0 53617) ("RegularTriangularSetCategory" 0 53329) ("RecursivePolynomialCategory" 0 52514) ("RecursiveAggregate" 0 52467) ("RectangularMatrixCategory" 0 52378) ("RealRootCharacterizationCategory" 0 52300) ("RealNumberSystem" 0 52278) ("RealConstant" 0 52186) ("RealClosedField" 0 52151) ("RadicalCategory" 0 52033) ("QuotientFieldCategory" 0 51550) ("QueueAggregate" 0 51540) ("QuaternionCategory" 0 51472) ("Quaternion" 0 51459) ("QuadraticForm" 0 51439) ("PseudoAlgebraicClosureOfRationalNumberCategory" 0 51338) ("PseudoAlgebraicClosureOfRationalNumber" 0 51287) ("PseudoAlgebraicClosureOfFiniteFieldCategory" 0 51247) ("PseudoAlgebraicClosureOfFiniteField" 0 51026) ("PseudoAlgebraicClosureOfAlgExtOfRationalNumberCategory" 0 50909) ("ProjectiveSpaceCategory" 0 50431) ("ProjectivePlaneOverPseudoAlgebraicClosureOfFiniteField" 0 50368) ("ProjectivePlane" 0 50355) ("PriorityQueueAggregate" 0 50346) ("PrimitiveFunctionCategory" 0 50108) ("PrimitiveArray" 0 50098) ("PrimeField" 0 50032) ("PowerSeriesCategory" 0 50007) ("PositiveInteger" 0 49553) ("PolynomialSetCategory" 0 49503) ("PolynomialFactorizationExplicit" 0 49314) ("PolynomialCategory" 0 47757) ("Polynomial" 0 47590) ("PointCategory" 0 47580) ("PoincareBirkhoffWittLyndonBasis" 0 47561) ("PlottableSpaceCurveCategory" 0 47521) ("PlottablePlaneCurveCategory" 0 47486) ("PlacesOverPseudoAlgebraicClosureOfFiniteField" 0 47423) ("PlacesCategory" 0 47120) ("Places" 0 47107) ("PermutationCategory" 0 47091) ("Patternable" 0 47080) ("PatternMatchable" 0 46826) ("Pattern" 0 46586) ("Partition" 0 46562) ("PartialTranscendentalFunctions" 0 46431) ("PartialDifferentialRing" 0 46278) ("PartialDifferentialEquationsSolverCategory" 0 46242) ("PAdicIntegerCategory" 0 46155) ("PAdicInteger" 0 46137) ("OutputForm" 0 45997) ("OrdinaryDifferentialEquationsSolverCategory" 0 45927) ("OrderlyDifferentialVariable" 0 45893) ("OrderedVariableList" 0 45344) ("OrderedSet" 0 40232) ("OrderedRing" 0 39756) ("OrderedMonoid" 0 39716) ("OrderedIntegralDomain" 0 39692) ("OrderedFreeMonoid" 0 39665) ("OrderedFinite" 0 39629) ("OrderedCancellationAbelianMonoid" 0 39615) ("OrderedAbelianMonoidSup" 0 37602) ("OrderedAbelianMonoid" 0 37241) ("OpenMath" 0 37159) ("OneDimensionalArrayAggregate" 0 37018) ("OneDimensionalArray" 0 36994) ("OctonionCategory" 0 36932) ("NumericalOptimizationCategory" 0 36811) ("NumericalIntegrationCategory" 0 36612) ("NonNegativeInteger" 0 35204) ("NonAssociativeRng" 0 35181) ("NonAssociativeRing" 0 35157) ("NonAssociativeAlgebra" 0 35062) ("NewSparseMultivariatePolynomial" 0 35045) ("NeitherSparseOrDensePowerSeries" 0 34914) ("MyUnivariatePolynomial" 0 34897) ("MultivariateTaylorSeriesCategory" 0 34847) ("MultisetAggregate" 0 34834) ("MultiDictionary" 0 34810) ("Monoid" 0 34606) ("MonogenicLinearOperator" 0 34537) ("MonogenicAlgebra" 0 34252) ("MonadWithUnit" 0 34233) ("Monad" 0 34222) ("Module" 0 34094) ("MatrixCategory" 0 33803) ("Matrix" 0 33681) ("MachineFloat" 0 33662) ("LyndonWord" 0 33610) ("Logic" 0 33573) ("LocalPowerSeriesCategory" 0 33239) ("ListAggregate" 0 33135) ("List" 0 31881) ("LinearlyExplicitRingOver" 0 30874) ("LinearOrdinaryDifferentialOperatorCategory" 0 30459) ("LinearAggregate" 0 30438) ("LieAlgebra" 0 30422) ("LeftModule" 0 30216) ("LeftAlgebra" 0 30172) ("LazyStreamAggregate" 0 30084) ("KeyedDictionary" 0 30063) ("Kernel" 0 30012) ("IntervalCategory" 0 29999) ("IntegralDomain" 0 27861) ("IntegerNumberSystem" 0 27599) ("Integer" 0 24567) ("InputForm" 0 24290) ("InnerPrimeField" 0 24269) ("InnerEvalable" 0 24250) ("InfinitlyClosePointCategory" 0 24063) ("IndexedVector" 0 24045) ("IndexedOneDimensionalArray" 0 24014) ("IndexedExponents" 0 23751) ("IndexedDirectProductCategory" 0 23528) ("IndexedAggregate" 0 23492) ("HyperbolicFunctionCategory" 0 23460) ("HomogeneousDirectProduct" 0 23411) ("HomogeneousAggregate" 0 23360) ("Group" 0 23249) ("GradedModule" 0 23213) ("GradedAlgebra" 0 23176) ("GcdDomain" 0 21690) ("FunctionSpace" 0 20457) ("FunctionFieldCategory" 0 20045) ("FullyRetractableTo" 0 19924) ("FullyLinearlyExplicitRingOver" 0 19889) ("FullyEvalableOver" 0 19855) ("FreeModuleCat" 0 19763) ("FreeLieAlgebra" 0 19745) ("FreeAbelianMonoidCategory" 0 19679) ("FramedNonAssociativeAlgebra" 0 19504) ("FramedAlgebra" 0 19314) ("Fraction" 0 17935) ("FortranVectorFunctionCategory" 0 17839) ("FortranVectorCategory" 0 17830) ("FortranScalarType" 0 17811) ("FortranProgramCategory" 0 17745) ("FortranMatrixFunctionCategory" 0 17711) ("FortranMatrixCategory" 0 17677) ("FortranMachineTypeCategory" 0 17606) ("FortranFunctionCategory" 0 17567) ("FloatingPointSystem" 0 17412) ("Float" 0 17290) ("FiniteSetAggregate" 0 17212) ("FiniteRankNonAssociativeAlgebra" 0 17175) ("FiniteRankAlgebra" 0 17152) ("FiniteLinearAggregate" 0 16635) ("FiniteFieldCategory" 0 15499) ("FiniteDivisorCategory" 0 15427) ("FiniteAlgebraicExtensionField" 0 15012) ("FiniteAbelianMonoidRing" 0 14743) ("Finite" 0 14574) ("FileNameCategory" 0 14561) ("FileName" 0 14492) ("FileCategory" 0 14423) ("FieldOfPrimeCharacteristic" 0 14359) ("Field" 0 11270) ("ExtensionField" 0 11212) ("ExtensibleLinearAggregate" 0 11142) ("ExpressionSpace" 0 10979) ("Expression" 0 10961) ("ExponentialOfUnivariatePuiseuxSeries" 0 10907) ("Evalable" 0 10893) ("EuclideanDomain" 0 9735) ("Equation" 0 9719) ("EltableAggregate" 0 9697) ("Eltable" 0 9590) ("ElementaryFunctionCategory" 0 9522) ("DoubleFloat" 0 9448) ("DivisorCategory" 0 9267) ("Divisor" 0 9193) ("DivisionRing" 0 9175) ("DistributedMultivariatePolynomial" 0 9101) ("DirectProductCategory" 0 8283) ("DirectProduct" 0 8092) ("DifferentialVariableCategory" 0 7885) ("DifferentialRing" 0 7697) ("DifferentialPolynomialCategory" 0 7551) ("DifferentialExtension" 0 7493) ("DictionaryOperations" 0 7467) ("Dictionary" 0 7451) ("DesingTreeCategory" 0 7345) ("DequeueAggregate" 0 7333) ("ConvertibleTo" 0 6512) ("ComplexCategory" 0 6379) ("Complex" 0 6194) ("CommutativeRing" 0 4843) ("CombinatorialOpsCategory" 0 4778) ("Collection" 0 4762) ("CoercibleTo" 0 4430) ("CharacteristicZero" 0 3086) ("Character" 0 3067) ("CancellationAbelianMonoid" 0 3012) ("CachableSet" 0 2969) ("Boolean" 0 2881) ("BlowUpMethodCategory" 0 2512) ("BitAggregate" 0 2473) ("BinaryTreeCategory" 0 2377) ("BinaryRecursiveAggregate" 0 2333) ("BiModule" 0 2291) ("BasicType" 0 2276) ("BasicOperator" 0 2246) ("BalancedPAdicInteger" 0 2220) ("BagAggregate" 0 2202) ("Automorphism" 0 2140) ("AssociationListAggregate" 0 2120) ("ArcTrigonometricFunctionCategory" 0 2082) ("Any" 0 2045) ("AlgebraicallyClosedFunctionSpace" 0 1680) ("AlgebraicallyClosedField" 0 1017) ("AlgebraicNumber" 0 983) ("Algebra" 0 596) ("Aggregate" 0 549) ("AffineSpaceCategory" 0 466) ("AbelianSemiGroup" 0 399) ("AbelianMonoidRing" 0 349) ("AbelianMonoid" 0 124) ("AbelianGroup" 0 20)) \ No newline at end of file +(("XPolynomialsCat" 0 76741) ("XAlgebra" 0 76721) ("VectorSpace" 0 76686) ("VectorCategory" 0 76594) ("Vector" 0 76406) ("UnivariateTaylorSeriesCategory" 0 75812) ("UnivariateTaylorSeries" 0 75758) ("UnivariateSkewPolynomialCategory" 0 75590) ("UnivariatePuiseuxSeriesWithExponentialSingularity" 0 75565) ("UnivariatePuiseuxSeriesConstructorCategory" 0 75377) ("UnivariatePuiseuxSeriesCategory" 0 75305) ("UnivariatePuiseuxSeries" 0 75228) ("UnivariatePowerSeriesCategory" 0 75119) ("UnivariatePolynomialCategory" 0 72086) ("UnivariateLaurentSeriesConstructorCategory" 0 71898) ("UnivariateLaurentSeriesCategory" 0 71723) ("UnivariateLaurentSeries" 0 71695) ("UniqueFactorizationDomain" 0 71539) ("UnaryRecursiveAggregate" 0 71510) ("Type" 0 69147) ("TwoDimensionalArrayCategory" 0 69029) ("TrigonometricFunctionCategory" 0 68994) ("TriangularSetCategory" 0 68919) ("TranscendentalFunctionCategory" 0 67765) ("ThreeSpaceCategory" 0 67750) ("TableAggregate" 0 67585) ("SymbolTable" 0 67566) ("Symbol" 0 65141) ("StringCategory" 0 65130) ("StringAggregate" 0 65093) ("String" 0 64947) ("StreamAggregate" 0 64899) ("StepThrough" 0 64884) ("StackAggregate" 0 64861) ("SquareMatrixCategory" 0 64774) ("SquareMatrix" 0 64705) ("SquareFreeRegularTriangularSetCategory" 0 64551) ("SplittingNode" 0 64533) ("SpecialFunctionCategory" 0 64491) ("SparseUnivariateTaylorSeries" 0 64425) ("SparseUnivariatePolynomialExpressions" 0 64391) ("SparseUnivariatePolynomial" 0 64225) ("SparseUnivariateLaurentSeries" 0 64191) ("SparseMultivariatePolynomial" 0 64045) ("SingleInteger" 0 63984) ("SetCategoryWithDegree" 0 63972) ("SetCategory" 0 60873) ("SetAggregate" 0 60855) ("SequentialDifferentialVariable" 0 60818) ("SemiGroup" 0 60803) ("SegmentCategory" 0 60772) ("SExpressionCategory" 0 60728) ("SExpression" 0 60714) ("Rng" 0 60685) ("Ring" 0 56198) ("RetractableTo" 0 53895) ("RegularTriangularSetCategory" 0 53607) ("RecursivePolynomialCategory" 0 52792) ("RecursiveAggregate" 0 52745) ("RectangularMatrixCategory" 0 52656) ("RealRootCharacterizationCategory" 0 52578) ("RealNumberSystem" 0 52556) ("RealConstant" 0 52464) ("RealClosedField" 0 52429) ("RadicalCategory" 0 52311) ("QuotientFieldCategory" 0 51828) ("QueueAggregate" 0 51818) ("QuaternionCategory" 0 51750) ("Quaternion" 0 51737) ("QuadraticForm" 0 51717) ("PseudoAlgebraicClosureOfRationalNumberCategory" 0 51616) ("PseudoAlgebraicClosureOfRationalNumber" 0 51565) ("PseudoAlgebraicClosureOfFiniteFieldCategory" 0 51525) ("PseudoAlgebraicClosureOfFiniteField" 0 51304) ("PseudoAlgebraicClosureOfAlgExtOfRationalNumberCategory" 0 51187) ("ProjectiveSpaceCategory" 0 50709) ("ProjectivePlaneOverPseudoAlgebraicClosureOfFiniteField" 0 50646) ("ProjectivePlane" 0 50633) ("PriorityQueueAggregate" 0 50624) ("PrimitiveFunctionCategory" 0 50386) ("PrimitiveArray" 0 50376) ("PrimeField" 0 50310) ("PowerSeriesCategory" 0 50285) ("PositiveInteger" 0 49815) ("PolynomialSetCategory" 0 49765) ("PolynomialFactorizationExplicit" 0 49576) ("PolynomialCategory" 0 48019) ("Polynomial" 0 47852) ("PointCategory" 0 47842) ("PoincareBirkhoffWittLyndonBasis" 0 47823) ("PlottableSpaceCurveCategory" 0 47783) ("PlottablePlaneCurveCategory" 0 47748) ("PlacesOverPseudoAlgebraicClosureOfFiniteField" 0 47685) ("PlacesCategory" 0 47382) ("Places" 0 47369) ("PermutationCategory" 0 47353) ("Patternable" 0 47342) ("PatternMatchable" 0 47088) ("Pattern" 0 46848) ("Partition" 0 46824) ("PartialTranscendentalFunctions" 0 46693) ("PartialDifferentialRing" 0 46540) ("PartialDifferentialEquationsSolverCategory" 0 46504) ("PAdicIntegerCategory" 0 46417) ("PAdicInteger" 0 46399) ("OutputForm" 0 46259) ("OrdinaryDifferentialEquationsSolverCategory" 0 46189) ("OrderlyDifferentialVariable" 0 46155) ("OrderedVariableList" 0 45606) ("OrderedSet" 0 40494) ("OrderedRing" 0 40018) ("OrderedMonoid" 0 39978) ("OrderedIntegralDomain" 0 39954) ("OrderedFreeMonoid" 0 39927) ("OrderedFinite" 0 39891) ("OrderedCancellationAbelianMonoid" 0 39877) ("OrderedAbelianMonoidSup" 0 37864) ("OrderedAbelianMonoid" 0 37503) ("OpenMath" 0 37421) ("OneDimensionalArrayAggregate" 0 37280) ("OneDimensionalArray" 0 37256) ("OctonionCategory" 0 37194) ("NumericalOptimizationCategory" 0 37073) ("NumericalIntegrationCategory" 0 36874) ("NonNegativeInteger" 0 35466) ("NonAssociativeRng" 0 35443) ("NonAssociativeRing" 0 35419) ("NonAssociativeAlgebra" 0 35324) ("NewSparseMultivariatePolynomial" 0 35307) ("NeitherSparseOrDensePowerSeries" 0 35176) ("MyUnivariatePolynomial" 0 35159) ("MultivariateTaylorSeriesCategory" 0 35109) ("MultisetAggregate" 0 35096) ("MultiDictionary" 0 35072) ("Monoid" 0 34868) ("MonogenicLinearOperator" 0 34799) ("MonogenicAlgebra" 0 34514) ("MonadWithUnit" 0 34495) ("Monad" 0 34484) ("Module" 0 34356) ("MatrixCategory" 0 34018) ("Matrix" 0 33896) ("MachineFloat" 0 33877) ("LyndonWord" 0 33825) ("Logic" 0 33788) ("LocalPowerSeriesCategory" 0 33454) ("ListAggregate" 0 33350) ("List" 0 32096) ("LinearlyExplicitRingOver" 0 31089) ("LinearOrdinaryDifferentialOperatorCategory" 0 30674) ("LinearAggregate" 0 30653) ("LieAlgebra" 0 30637) ("LeftModule" 0 30431) ("LeftAlgebra" 0 30387) ("LazyStreamAggregate" 0 30299) ("KeyedDictionary" 0 30278) ("Kernel" 0 30227) ("IntervalCategory" 0 30214) ("IntegralDomain" 0 28076) ("IntegerNumberSystem" 0 27814) ("Integer" 0 24782) ("InputForm" 0 24505) ("InnerPrimeField" 0 24484) ("InnerEvalable" 0 24465) ("InfinitlyClosePointCategory" 0 24278) ("IndexedVector" 0 24260) ("IndexedOneDimensionalArray" 0 24229) ("IndexedExponents" 0 23966) ("IndexedDirectProductCategory" 0 23743) ("IndexedAggregate" 0 23707) ("HyperbolicFunctionCategory" 0 23675) ("HomogeneousDirectProduct" 0 23626) ("HomogeneousAggregate" 0 23575) ("Group" 0 23464) ("GradedModule" 0 23428) ("GradedAlgebra" 0 23391) ("GcdDomain" 0 21905) ("FunctionSpace" 0 20672) ("FunctionFieldCategory" 0 20260) ("FullyRetractableTo" 0 20139) ("FullyLinearlyExplicitRingOver" 0 20104) ("FullyEvalableOver" 0 20070) ("FreeModuleCat" 0 19978) ("FreeLieAlgebra" 0 19960) ("FreeAbelianMonoidCategory" 0 19894) ("FramedNonAssociativeAlgebra" 0 19719) ("FramedAlgebra" 0 19529) ("Fraction" 0 18150) ("FortranVectorFunctionCategory" 0 18054) ("FortranVectorCategory" 0 18045) ("FortranScalarType" 0 18026) ("FortranProgramCategory" 0 17960) ("FortranMatrixFunctionCategory" 0 17926) ("FortranMatrixCategory" 0 17892) ("FortranMachineTypeCategory" 0 17821) ("FortranFunctionCategory" 0 17782) ("FloatingPointSystem" 0 17627) ("Float" 0 17505) ("FiniteSetAggregate" 0 17427) ("FiniteRankNonAssociativeAlgebra" 0 17390) ("FiniteRankAlgebra" 0 17367) ("FiniteLinearAggregate" 0 16850) ("FiniteFieldCategory" 0 15714) ("FiniteDivisorCategory" 0 15642) ("FiniteAlgebraicExtensionField" 0 15227) ("FiniteAbelianMonoidRing" 0 14958) ("Finite" 0 14789) ("FileNameCategory" 0 14776) ("FileName" 0 14707) ("FileCategory" 0 14638) ("FieldOfPrimeCharacteristic" 0 14574) ("Field" 0 11485) ("ExtensionField" 0 11427) ("ExtensibleLinearAggregate" 0 11357) ("ExpressionSpace" 0 11194) ("Expression" 0 11176) ("ExponentialOfUnivariatePuiseuxSeries" 0 11122) ("Evalable" 0 11108) ("EuclideanDomain" 0 9950) ("Equation" 0 9934) ("EltableAggregate" 0 9912) ("Eltable" 0 9789) ("ElementaryFunctionCategory" 0 9721) ("DoubleFloatVector" 0 9699) ("DoubleFloat" 0 9531) ("DivisorCategory" 0 9350) ("Divisor" 0 9276) ("DivisionRing" 0 9258) ("DistributedMultivariatePolynomial" 0 9184) ("DirectProductCategory" 0 8366) ("DirectProduct" 0 8175) ("DifferentialVariableCategory" 0 7968) ("DifferentialRing" 0 7780) ("DifferentialPolynomialCategory" 0 7634) ("DifferentialExtension" 0 7576) ("DictionaryOperations" 0 7550) ("Dictionary" 0 7534) ("DesingTreeCategory" 0 7428) ("DequeueAggregate" 0 7416) ("ConvertibleTo" 0 6595) ("ComplexDoubleFloatVector" 0 6566) ("ComplexCategory" 0 6433) ("Complex" 0 6194) ("CommutativeRing" 0 4843) ("CombinatorialOpsCategory" 0 4778) ("Collection" 0 4762) ("CoercibleTo" 0 4430) ("CharacteristicZero" 0 3086) ("Character" 0 3067) ("CancellationAbelianMonoid" 0 3012) ("CachableSet" 0 2969) ("Boolean" 0 2881) ("BlowUpMethodCategory" 0 2512) ("BitAggregate" 0 2473) ("BinaryTreeCategory" 0 2377) ("BinaryRecursiveAggregate" 0 2333) ("BiModule" 0 2291) ("BasicType" 0 2276) ("BasicOperator" 0 2246) ("BalancedPAdicInteger" 0 2220) ("BagAggregate" 0 2202) ("Automorphism" 0 2140) ("AssociationListAggregate" 0 2120) ("ArcTrigonometricFunctionCategory" 0 2082) ("Any" 0 2045) ("AlgebraicallyClosedFunctionSpace" 0 1680) ("AlgebraicallyClosedField" 0 1017) ("AlgebraicNumber" 0 983) ("Algebra" 0 596) ("Aggregate" 0 549) ("AffineSpaceCategory" 0 466) ("AbelianSemiGroup" 0 399) ("AbelianMonoidRing" 0 349) ("AbelianMonoid" 0 124) ("AbelianGroup" 0 20)) \ No newline at end of file diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase index 1a8f55f..ac2cc3f 100644 --- a/src/share/algebra/interp.daase +++ b/src/share/algebra/interp.daase @@ -1,5196 +1,5228 @@ -(3554147 . 3483827128) -((-3189 (((-121) (-1 (-121) |#2| |#2|) $) 62) (((-121) $) NIL)) (-4410 (($ (-1 (-121) |#2| |#2|) $) 17) (($ $) NIL)) (-2764 ((|#2| $ (-560) |#2|) NIL) ((|#2| $ (-1202 (-560)) |#2|) 34)) (-4030 (($ $) 58)) (-2342 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-2839 (((-560) (-1 (-121) |#2|) $) 22) (((-560) |#2| $) NIL) (((-560) |#2| $ (-560)) 70)) (-1981 (((-626 |#2|) $) 13)) (-2492 (($ (-1 (-121) |#2| |#2|) $ $) 47) (($ $ $) NIL)) (-3778 (($ (-1 |#2| |#2|) $) 29)) (-2803 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 44)) (-4103 (($ |#2| $ (-560)) NIL) (($ $ $ (-560)) 49)) (-3786 (((-3 |#2| "failed") (-1 (-121) |#2|) $) 24)) (-2865 (((-121) (-1 (-121) |#2|) $) 21)) (-2778 ((|#2| $ (-560) |#2|) NIL) ((|#2| $ (-560)) NIL) (($ $ (-1202 (-560))) 48)) (-2949 (($ $ (-560)) 55) (($ $ (-1202 (-560))) 54)) (-4035 (((-755) (-1 (-121) |#2|) $) 26) (((-755) |#2| $) NIL)) (-4072 (($ $ $ (-560)) 51)) (-2813 (($ $) 50)) (-4162 (($ (-626 |#2|)) 52)) (-2849 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 63) (($ (-626 $)) 61)) (-2801 (((-842) $) 69)) (-3656 (((-121) (-1 (-121) |#2|) $) 20)) (-1653 (((-121) $ $) 64)) (-1667 (((-121) $ $) 72))) -(((-18 |#1| |#2|) (-10 -8 (-15 -1653 ((-121) |#1| |#1|)) (-15 -2801 ((-842) |#1|)) (-15 -1667 ((-121) |#1| |#1|)) (-15 -4410 (|#1| |#1|)) (-15 -4410 (|#1| (-1 (-121) |#2| |#2|) |#1|)) (-15 -4030 (|#1| |#1|)) (-15 -4072 (|#1| |#1| |#1| (-560))) (-15 -3189 ((-121) |#1|)) (-15 -2492 (|#1| |#1| |#1|)) (-15 -2839 ((-560) |#2| |#1| (-560))) (-15 -2839 ((-560) |#2| |#1|)) (-15 -2839 ((-560) (-1 (-121) |#2|) |#1|)) (-15 -3189 ((-121) (-1 (-121) |#2| |#2|) |#1|)) (-15 -2492 (|#1| (-1 (-121) |#2| |#2|) |#1| |#1|)) (-15 -2764 (|#2| |#1| (-1202 (-560)) |#2|)) (-15 -4103 (|#1| |#1| |#1| (-560))) (-15 -4103 (|#1| |#2| |#1| (-560))) (-15 -2949 (|#1| |#1| (-1202 (-560)))) (-15 -2949 (|#1| |#1| (-560))) (-15 -2778 (|#1| |#1| (-1202 (-560)))) (-15 -2803 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2849 (|#1| (-626 |#1|))) (-15 -2849 (|#1| |#1| |#1|)) (-15 -2849 (|#1| |#2| |#1|)) (-15 -2849 (|#1| |#1| |#2|)) (-15 -4162 (|#1| (-626 |#2|))) (-15 -3786 ((-3 |#2| "failed") (-1 (-121) |#2|) |#1|)) (-15 -2342 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2342 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2342 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2778 (|#2| |#1| (-560))) (-15 -2778 (|#2| |#1| (-560) |#2|)) (-15 -2764 (|#2| |#1| (-560) |#2|)) (-15 -4035 ((-755) |#2| |#1|)) (-15 -1981 ((-626 |#2|) |#1|)) (-15 -4035 ((-755) (-1 (-121) |#2|) |#1|)) (-15 -2865 ((-121) (-1 (-121) |#2|) |#1|)) (-15 -3656 ((-121) (-1 (-121) |#2|) |#1|)) (-15 -3778 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2803 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2813 (|#1| |#1|))) (-19 |#2|) (-1187)) (T -18)) -NIL -(-10 -8 (-15 -1653 ((-121) |#1| |#1|)) (-15 -2801 ((-842) |#1|)) (-15 -1667 ((-121) |#1| |#1|)) (-15 -4410 (|#1| |#1|)) (-15 -4410 (|#1| (-1 (-121) |#2| |#2|) |#1|)) (-15 -4030 (|#1| |#1|)) (-15 -4072 (|#1| |#1| |#1| (-560))) (-15 -3189 ((-121) |#1|)) (-15 -2492 (|#1| |#1| |#1|)) (-15 -2839 ((-560) |#2| |#1| (-560))) (-15 -2839 ((-560) |#2| |#1|)) (-15 -2839 ((-560) (-1 (-121) |#2|) |#1|)) (-15 -3189 ((-121) (-1 (-121) |#2| |#2|) |#1|)) (-15 -2492 (|#1| (-1 (-121) |#2| |#2|) |#1| |#1|)) (-15 -2764 (|#2| |#1| (-1202 (-560)) |#2|)) (-15 -4103 (|#1| |#1| |#1| (-560))) (-15 -4103 (|#1| |#2| |#1| (-560))) (-15 -2949 (|#1| |#1| (-1202 (-560)))) (-15 -2949 (|#1| |#1| (-560))) (-15 -2778 (|#1| |#1| (-1202 (-560)))) (-15 -2803 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2849 (|#1| (-626 |#1|))) (-15 -2849 (|#1| |#1| |#1|)) (-15 -2849 (|#1| |#2| |#1|)) (-15 -2849 (|#1| |#1| |#2|)) (-15 -4162 (|#1| (-626 |#2|))) (-15 -3786 ((-3 |#2| "failed") (-1 (-121) |#2|) |#1|)) (-15 -2342 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2342 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2342 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2778 (|#2| |#1| (-560))) (-15 -2778 (|#2| |#1| (-560) |#2|)) (-15 -2764 (|#2| |#1| (-560) |#2|)) (-15 -4035 ((-755) |#2| |#1|)) (-15 -1981 ((-626 |#2|) |#1|)) (-15 -4035 ((-755) (-1 (-121) |#2|) |#1|)) (-15 -2865 ((-121) (-1 (-121) |#2|) |#1|)) (-15 -3656 ((-121) (-1 (-121) |#2|) |#1|)) (-15 -3778 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2803 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2813 (|#1| |#1|))) -((-2601 (((-121) $ $) 18 (|has| |#1| (-1082)))) (-2960 (((-1241) $ (-560) (-560)) 37 (|has| $ (-6 -4506)))) (-3189 (((-121) (-1 (-121) |#1| |#1|) $) 91) (((-121) $) 85 (|has| |#1| (-834)))) (-4410 (($ (-1 (-121) |#1| |#1|) $) 82 (|has| $ (-6 -4506))) (($ $) 81 (-12 (|has| |#1| (-834)) (|has| $ (-6 -4506))))) (-3743 (($ (-1 (-121) |#1| |#1|) $) 92) (($ $) 86 (|has| |#1| (-834)))) (-3909 (((-121) $ (-755)) 8)) (-2764 ((|#1| $ (-560) |#1|) 49 (|has| $ (-6 -4506))) ((|#1| $ (-1202 (-560)) |#1|) 53 (|has| $ (-6 -4506)))) (-3802 (($ (-1 (-121) |#1|) $) 70 (|has| $ (-6 -4505)))) (-4236 (($) 7 T CONST)) (-4030 (($ $) 83 (|has| $ (-6 -4506)))) (-2883 (($ $) 93)) (-2868 (($ $) 73 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-4310 (($ |#1| $) 72 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505)))) (($ (-1 (-121) |#1|) $) 69 (|has| $ (-6 -4505)))) (-2342 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 71 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 68 (|has| $ (-6 -4505))) ((|#1| (-1 |#1| |#1| |#1|) $) 67 (|has| $ (-6 -4505)))) (-1746 ((|#1| $ (-560) |#1|) 50 (|has| $ (-6 -4506)))) (-1361 ((|#1| $ (-560)) 48)) (-2839 (((-560) (-1 (-121) |#1|) $) 90) (((-560) |#1| $) 89 (|has| |#1| (-1082))) (((-560) |#1| $ (-560)) 88 (|has| |#1| (-1082)))) (-1981 (((-626 |#1|) $) 30 (|has| $ (-6 -4505)))) (-1721 (($ (-755) |#1|) 64)) (-2122 (((-121) $ (-755)) 9)) (-4099 (((-560) $) 40 (|has| (-560) (-834)))) (-4325 (($ $ $) 80 (|has| |#1| (-834)))) (-2492 (($ (-1 (-121) |#1| |#1|) $ $) 94) (($ $ $) 87 (|has| |#1| (-834)))) (-2130 (((-626 |#1|) $) 29 (|has| $ (-6 -4505)))) (-2030 (((-121) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-2767 (((-560) $) 41 (|has| (-560) (-834)))) (-2501 (($ $ $) 79 (|has| |#1| (-834)))) (-3778 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 59)) (-3441 (((-121) $ (-755)) 10)) (-1291 (((-1135) $) 22 (|has| |#1| (-1082)))) (-4103 (($ |#1| $ (-560)) 55) (($ $ $ (-560)) 54)) (-1529 (((-626 (-560)) $) 43)) (-1310 (((-121) (-560) $) 44)) (-4353 (((-1100) $) 21 (|has| |#1| (-1082)))) (-2824 ((|#1| $) 39 (|has| (-560) (-834)))) (-3786 (((-3 |#1| "failed") (-1 (-121) |#1|) $) 66)) (-3038 (($ $ |#1|) 38 (|has| $ (-6 -4506)))) (-2865 (((-121) (-1 (-121) |#1|) $) 32 (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#1|))) 26 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-283 |#1|)) 25 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-626 |#1|) (-626 |#1|)) 23 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))))) (-2214 (((-121) $ $) 14)) (-1290 (((-121) |#1| $) 42 (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-4460 (((-626 |#1|) $) 45)) (-4191 (((-121) $) 11)) (-3260 (($) 12)) (-2778 ((|#1| $ (-560) |#1|) 47) ((|#1| $ (-560)) 46) (($ $ (-1202 (-560))) 58)) (-2949 (($ $ (-560)) 57) (($ $ (-1202 (-560))) 56)) (-4035 (((-755) (-1 (-121) |#1|) $) 31 (|has| $ (-6 -4505))) (((-755) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-4072 (($ $ $ (-560)) 84 (|has| $ (-6 -4506)))) (-2813 (($ $) 13)) (-4255 (((-533) $) 74 (|has| |#1| (-601 (-533))))) (-4162 (($ (-626 |#1|)) 65)) (-2849 (($ $ |#1|) 63) (($ |#1| $) 62) (($ $ $) 61) (($ (-626 $)) 60)) (-2801 (((-842) $) 20 (|has| |#1| (-1082)))) (-3656 (((-121) (-1 (-121) |#1|) $) 33 (|has| $ (-6 -4505)))) (-1691 (((-121) $ $) 77 (|has| |#1| (-834)))) (-1675 (((-121) $ $) 76 (|has| |#1| (-834)))) (-1653 (((-121) $ $) 19 (|has| |#1| (-1082)))) (-1683 (((-121) $ $) 78 (|has| |#1| (-834)))) (-1667 (((-121) $ $) 75 (|has| |#1| (-834)))) (-2271 (((-755) $) 6 (|has| $ (-6 -4505))))) -(((-19 |#1|) (-1267) (-1187)) (T -19)) -NIL -(-13 (-369 |t#1|) (-10 -7 (-6 -4506))) -(((-39) . T) ((-105) -2318 (|has| |#1| (-1082)) (|has| |#1| (-834))) ((-600 (-842)) -2318 (|has| |#1| (-1082)) (|has| |#1| (-834))) ((-152 |#1|) . T) ((-601 (-533)) |has| |#1| (-601 (-533))) ((-276 (-560) |#1|) . T) ((-278 (-560) |#1|) . T) ((-298 |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))) ((-369 |#1|) . T) ((-492 |#1|) . T) ((-593 (-560) |#1|) . T) ((-515 |#1| |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))) ((-632 |#1|) . T) ((-834) |has| |#1| (-834)) ((-1082) -2318 (|has| |#1| (-1082)) (|has| |#1| (-834))) ((-1187) . T)) -((-2314 (((-3 $ "failed") $ $) 12)) (-1725 (($ $) NIL) (($ $ $) 9)) (* (($ (-909) $) NIL) (($ (-755) $) 16) (($ (-560) $) 21))) -(((-20 |#1|) (-10 -8 (-15 * (|#1| (-560) |#1|)) (-15 -1725 (|#1| |#1| |#1|)) (-15 -1725 (|#1| |#1|)) (-15 -2314 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-755) |#1|)) (-15 * (|#1| (-909) |#1|))) (-21)) (T -20)) -NIL -(-10 -8 (-15 * (|#1| (-560) |#1|)) (-15 -1725 (|#1| |#1| |#1|)) (-15 -1725 (|#1| |#1|)) (-15 -2314 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-755) |#1|)) (-15 * (|#1| (-909) |#1|))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-2314 (((-3 $ "failed") $ $) 18)) (-4236 (($) 16 T CONST)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-2801 (((-842) $) 11)) (-3304 (($) 17 T CONST)) (-1653 (((-121) $ $) 6)) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19))) -(((-21) (-1267)) (T -21)) -((-1725 (*1 *1 *1) (-4 *1 (-21))) (-1725 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-560))))) -(-13 (-137) (-10 -8 (-15 -1725 ($ $)) (-15 -1725 ($ $ $)) (-15 * ($ (-560) $)))) -(((-23) . T) ((-25) . T) ((-105) . T) ((-137) . T) ((-600 (-842)) . T) ((-1082) . T)) -((-2832 (((-121) $) 10)) (-4236 (($) 15)) (* (($ (-909) $) 14) (($ (-755) $) 18))) -(((-22 |#1|) (-10 -8 (-15 * (|#1| (-755) |#1|)) (-15 -2832 ((-121) |#1|)) (-15 -4236 (|#1|)) (-15 * (|#1| (-909) |#1|))) (-23)) (T -22)) -NIL -(-10 -8 (-15 * (|#1| (-755) |#1|)) (-15 -2832 ((-121) |#1|)) (-15 -4236 (|#1|)) (-15 * (|#1| (-909) |#1|))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-4236 (($) 16 T CONST)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-2801 (((-842) $) 11)) (-3304 (($) 17 T CONST)) (-1653 (((-121) $ $) 6)) (-1716 (($ $ $) 13)) (* (($ (-909) $) 12) (($ (-755) $) 14))) -(((-23) (-1267)) (T -23)) -((-3304 (*1 *1) (-4 *1 (-23))) (-4236 (*1 *1) (-4 *1 (-23))) (-2832 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-121)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-755))))) -(-13 (-25) (-10 -8 (-15 (-3304) ($) -3565) (-15 -4236 ($) -3565) (-15 -2832 ((-121) $)) (-15 * ($ (-755) $)))) -(((-25) . T) ((-105) . T) ((-600 (-842)) . T) ((-1082) . T)) -((* (($ (-909) $) 10))) -(((-24 |#1|) (-10 -8 (-15 * (|#1| (-909) |#1|))) (-25)) (T -24)) -NIL -(-10 -8 (-15 * (|#1| (-909) |#1|))) -((-2601 (((-121) $ $) 7)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-2801 (((-842) $) 11)) (-1653 (((-121) $ $) 6)) (-1716 (($ $ $) 13)) (* (($ (-909) $) 12))) -(((-25) (-1267)) (T -25)) -((-1716 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-909))))) -(-13 (-1082) (-10 -8 (-15 -1716 ($ $ $)) (-15 * ($ (-909) $)))) -(((-105) . T) ((-600 (-842)) . T) ((-1082) . T)) -((-3905 (((-626 $) (-945 $)) 29) (((-626 $) (-1149 $)) 16) (((-626 $) (-1149 $) (-1153)) 20)) (-4448 (($ (-945 $)) 27) (($ (-1149 $)) 11) (($ (-1149 $) (-1153)) 54)) (-2257 (((-626 $) (-945 $)) 30) (((-626 $) (-1149 $)) 18) (((-626 $) (-1149 $) (-1153)) 19)) (-1449 (($ (-945 $)) 28) (($ (-1149 $)) 13) (($ (-1149 $) (-1153)) NIL))) -(((-26 |#1|) (-10 -8 (-15 -3905 ((-626 |#1|) (-1149 |#1|) (-1153))) (-15 -3905 ((-626 |#1|) (-1149 |#1|))) (-15 -3905 ((-626 |#1|) (-945 |#1|))) (-15 -4448 (|#1| (-1149 |#1|) (-1153))) (-15 -4448 (|#1| (-1149 |#1|))) (-15 -4448 (|#1| (-945 |#1|))) (-15 -2257 ((-626 |#1|) (-1149 |#1|) (-1153))) (-15 -2257 ((-626 |#1|) (-1149 |#1|))) (-15 -2257 ((-626 |#1|) (-945 |#1|))) (-15 -1449 (|#1| (-1149 |#1|) (-1153))) (-15 -1449 (|#1| (-1149 |#1|))) (-15 -1449 (|#1| (-945 |#1|)))) (-27)) (T -26)) -NIL -(-10 -8 (-15 -3905 ((-626 |#1|) (-1149 |#1|) (-1153))) (-15 -3905 ((-626 |#1|) (-1149 |#1|))) (-15 -3905 ((-626 |#1|) (-945 |#1|))) (-15 -4448 (|#1| (-1149 |#1|) (-1153))) (-15 -4448 (|#1| (-1149 |#1|))) (-15 -4448 (|#1| (-945 |#1|))) (-15 -2257 ((-626 |#1|) (-1149 |#1|) (-1153))) (-15 -2257 ((-626 |#1|) (-1149 |#1|))) (-15 -2257 ((-626 |#1|) (-945 |#1|))) (-15 -1449 (|#1| (-1149 |#1|) (-1153))) (-15 -1449 (|#1| (-1149 |#1|))) (-15 -1449 (|#1| (-945 |#1|)))) -((-2601 (((-121) $ $) 7)) (-3905 (((-626 $) (-945 $)) 76) (((-626 $) (-1149 $)) 75) (((-626 $) (-1149 $) (-1153)) 74)) (-4448 (($ (-945 $)) 79) (($ (-1149 $)) 78) (($ (-1149 $) (-1153)) 77)) (-2832 (((-121) $) 15)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) 40)) (-1350 (($ $) 39)) (-3376 (((-121) $) 37)) (-2314 (((-3 $ "failed") $ $) 18)) (-3065 (($ $) 71)) (-2953 (((-414 $) $) 70)) (-2479 (($ $) 88)) (-4179 (((-121) $ $) 57)) (-4236 (($) 16 T CONST)) (-2257 (((-626 $) (-945 $)) 82) (((-626 $) (-1149 $)) 81) (((-626 $) (-1149 $) (-1153)) 80)) (-1449 (($ (-945 $)) 85) (($ (-1149 $)) 84) (($ (-1149 $) (-1153)) 83)) (-2563 (($ $ $) 53)) (-1823 (((-3 $ "failed") $) 33)) (-2572 (($ $ $) 54)) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) 49)) (-3319 (((-121) $) 69)) (-2642 (((-121) $) 30)) (-2586 (($ $ (-560)) 87)) (-3856 (((-3 (-626 $) "failed") (-626 $) $) 50)) (-2582 (($ $ $) 45) (($ (-626 $)) 44)) (-1291 (((-1135) $) 9)) (-1701 (($ $) 68)) (-4353 (((-1100) $) 10)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) 43)) (-4440 (($ $ $) 47) (($ (-626 $)) 46)) (-1601 (((-414 $) $) 72)) (-3505 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2336 (((-3 $ "failed") $ $) 41)) (-3456 (((-3 (-626 $) "failed") (-626 $) $) 48)) (-4445 (((-755) $) 56)) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) 55)) (-2801 (((-842) $) 11) (($ (-560)) 27) (($ $) 42) (($ (-403 (-560))) 63)) (-1751 (((-755)) 28)) (-2328 (((-121) $ $) 38)) (-2464 (($ $ (-909)) 25) (($ $ (-755)) 32) (($ $ (-560)) 67)) (-3304 (($) 17 T CONST)) (-1459 (($) 29 T CONST)) (-1653 (((-121) $ $) 6)) (-1733 (($ $ $) 62)) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 24) (($ $ (-755)) 31) (($ $ (-560)) 66) (($ $ (-403 (-560))) 86)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 23) (($ $ (-403 (-560))) 65) (($ (-403 (-560)) $) 64))) -(((-27) (-1267)) (T -27)) -((-1449 (*1 *1 *2) (-12 (-5 *2 (-945 *1)) (-4 *1 (-27)))) (-1449 (*1 *1 *2) (-12 (-5 *2 (-1149 *1)) (-4 *1 (-27)))) (-1449 (*1 *1 *2 *3) (-12 (-5 *2 (-1149 *1)) (-5 *3 (-1153)) (-4 *1 (-27)))) (-2257 (*1 *2 *3) (-12 (-5 *3 (-945 *1)) (-4 *1 (-27)) (-5 *2 (-626 *1)))) (-2257 (*1 *2 *3) (-12 (-5 *3 (-1149 *1)) (-4 *1 (-27)) (-5 *2 (-626 *1)))) (-2257 (*1 *2 *3 *4) (-12 (-5 *3 (-1149 *1)) (-5 *4 (-1153)) (-4 *1 (-27)) (-5 *2 (-626 *1)))) (-4448 (*1 *1 *2) (-12 (-5 *2 (-945 *1)) (-4 *1 (-27)))) (-4448 (*1 *1 *2) (-12 (-5 *2 (-1149 *1)) (-4 *1 (-27)))) (-4448 (*1 *1 *2 *3) (-12 (-5 *2 (-1149 *1)) (-5 *3 (-1153)) (-4 *1 (-27)))) (-3905 (*1 *2 *3) (-12 (-5 *3 (-945 *1)) (-4 *1 (-27)) (-5 *2 (-626 *1)))) (-3905 (*1 *2 *3) (-12 (-5 *3 (-1149 *1)) (-4 *1 (-27)) (-5 *2 (-626 *1)))) (-3905 (*1 *2 *3 *4) (-12 (-5 *3 (-1149 *1)) (-5 *4 (-1153)) (-4 *1 (-27)) (-5 *2 (-626 *1))))) -(-13 (-359) (-994) (-10 -8 (-15 -1449 ($ (-945 $))) (-15 -1449 ($ (-1149 $))) (-15 -1449 ($ (-1149 $) (-1153))) (-15 -2257 ((-626 $) (-945 $))) (-15 -2257 ((-626 $) (-1149 $))) (-15 -2257 ((-626 $) (-1149 $) (-1153))) (-15 -4448 ($ (-945 $))) (-15 -4448 ($ (-1149 $))) (-15 -4448 ($ (-1149 $) (-1153))) (-15 -3905 ((-626 $) (-945 $))) (-15 -3905 ((-626 $) (-1149 $))) (-15 -3905 ((-626 $) (-1149 $) (-1153))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-43 (-403 (-560))) . T) ((-43 $) . T) ((-105) . T) ((-120 (-403 (-560)) (-403 (-560))) . T) ((-120 $ $) . T) ((-137) . T) ((-600 (-842)) . T) ((-170) . T) ((-233) . T) ((-280) . T) ((-296) . T) ((-359) . T) ((-447) . T) ((-550) . T) ((-629 (-403 (-560))) . T) ((-629 $) . T) ((-699 (-403 (-560))) . T) ((-699 $) . T) ((-708) . T) ((-908) . T) ((-994) . T) ((-1045 (-403 (-560))) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1094) . T) ((-1082) . T) ((-1191) . T)) -((-3905 (((-626 $) (-945 $)) NIL) (((-626 $) (-1149 $)) NIL) (((-626 $) (-1149 $) (-1153)) 50) (((-626 $) $) 19) (((-626 $) $ (-1153)) 41)) (-4448 (($ (-945 $)) NIL) (($ (-1149 $)) NIL) (($ (-1149 $) (-1153)) 52) (($ $) 17) (($ $ (-1153)) 37)) (-2257 (((-626 $) (-945 $)) NIL) (((-626 $) (-1149 $)) NIL) (((-626 $) (-1149 $) (-1153)) 48) (((-626 $) $) 15) (((-626 $) $ (-1153)) 43)) (-1449 (($ (-945 $)) NIL) (($ (-1149 $)) NIL) (($ (-1149 $) (-1153)) NIL) (($ $) 12) (($ $ (-1153)) 39))) -(((-28 |#1| |#2|) (-10 -8 (-15 -3905 ((-626 |#1|) |#1| (-1153))) (-15 -4448 (|#1| |#1| (-1153))) (-15 -3905 ((-626 |#1|) |#1|)) (-15 -4448 (|#1| |#1|)) (-15 -2257 ((-626 |#1|) |#1| (-1153))) (-15 -1449 (|#1| |#1| (-1153))) (-15 -2257 ((-626 |#1|) |#1|)) (-15 -1449 (|#1| |#1|)) (-15 -3905 ((-626 |#1|) (-1149 |#1|) (-1153))) (-15 -3905 ((-626 |#1|) (-1149 |#1|))) (-15 -3905 ((-626 |#1|) (-945 |#1|))) (-15 -4448 (|#1| (-1149 |#1|) (-1153))) (-15 -4448 (|#1| (-1149 |#1|))) (-15 -4448 (|#1| (-945 |#1|))) (-15 -2257 ((-626 |#1|) (-1149 |#1|) (-1153))) (-15 -2257 ((-626 |#1|) (-1149 |#1|))) (-15 -2257 ((-626 |#1|) (-945 |#1|))) (-15 -1449 (|#1| (-1149 |#1|) (-1153))) (-15 -1449 (|#1| (-1149 |#1|))) (-15 -1449 (|#1| (-945 |#1|)))) (-29 |#2|) (-13 (-834) (-550))) (T -28)) -NIL -(-10 -8 (-15 -3905 ((-626 |#1|) |#1| (-1153))) (-15 -4448 (|#1| |#1| (-1153))) (-15 -3905 ((-626 |#1|) |#1|)) (-15 -4448 (|#1| |#1|)) (-15 -2257 ((-626 |#1|) |#1| (-1153))) (-15 -1449 (|#1| |#1| (-1153))) (-15 -2257 ((-626 |#1|) |#1|)) (-15 -1449 (|#1| |#1|)) (-15 -3905 ((-626 |#1|) (-1149 |#1|) (-1153))) (-15 -3905 ((-626 |#1|) (-1149 |#1|))) (-15 -3905 ((-626 |#1|) (-945 |#1|))) (-15 -4448 (|#1| (-1149 |#1|) (-1153))) (-15 -4448 (|#1| (-1149 |#1|))) (-15 -4448 (|#1| (-945 |#1|))) (-15 -2257 ((-626 |#1|) (-1149 |#1|) (-1153))) (-15 -2257 ((-626 |#1|) (-1149 |#1|))) (-15 -2257 ((-626 |#1|) (-945 |#1|))) (-15 -1449 (|#1| (-1149 |#1|) (-1153))) (-15 -1449 (|#1| (-1149 |#1|))) (-15 -1449 (|#1| (-945 |#1|)))) -((-2601 (((-121) $ $) 7)) (-3905 (((-626 $) (-945 $)) 76) (((-626 $) (-1149 $)) 75) (((-626 $) (-1149 $) (-1153)) 74) (((-626 $) $) 120) (((-626 $) $ (-1153)) 118)) (-4448 (($ (-945 $)) 79) (($ (-1149 $)) 78) (($ (-1149 $) (-1153)) 77) (($ $) 121) (($ $ (-1153)) 119)) (-2832 (((-121) $) 15)) (-1654 (((-626 (-1153)) $) 195)) (-1593 (((-403 (-1149 $)) $ (-599 $)) 227 (|has| |#1| (-550)))) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) 40)) (-1350 (($ $) 39)) (-3376 (((-121) $) 37)) (-3249 (((-626 (-599 $)) $) 158)) (-2314 (((-3 $ "failed") $ $) 18)) (-4122 (($ $ (-626 (-599 $)) (-626 $)) 148) (($ $ (-626 (-283 $))) 147) (($ $ (-283 $)) 146)) (-3065 (($ $) 71)) (-2953 (((-414 $) $) 70)) (-2479 (($ $) 88)) (-4179 (((-121) $ $) 57)) (-4236 (($) 16 T CONST)) (-2257 (((-626 $) (-945 $)) 82) (((-626 $) (-1149 $)) 81) (((-626 $) (-1149 $) (-1153)) 80) (((-626 $) $) 124) (((-626 $) $ (-1153)) 122)) (-1449 (($ (-945 $)) 85) (($ (-1149 $)) 84) (($ (-1149 $) (-1153)) 83) (($ $) 125) (($ $ (-1153)) 123)) (-1473 (((-3 (-945 |#1|) "failed") $) 245 (|has| |#1| (-1039))) (((-3 (-403 (-945 |#1|)) "failed") $) 229 (|has| |#1| (-550))) (((-3 |#1| "failed") $) 191) (((-3 (-560) "failed") $) 189 (|has| |#1| (-1029 (-560)))) (((-3 (-1153) "failed") $) 182) (((-3 (-599 $) "failed") $) 133) (((-3 (-403 (-560)) "failed") $) 117 (-2318 (-12 (|has| |#1| (-1029 (-560))) (|has| |#1| (-550))) (|has| |#1| (-1029 (-403 (-560))))))) (-3001 (((-945 |#1|) $) 246 (|has| |#1| (-1039))) (((-403 (-945 |#1|)) $) 230 (|has| |#1| (-550))) ((|#1| $) 192) (((-560) $) 188 (|has| |#1| (-1029 (-560)))) (((-1153) $) 183) (((-599 $) $) 134) (((-403 (-560)) $) 116 (-2318 (-12 (|has| |#1| (-1029 (-560))) (|has| |#1| (-550))) (|has| |#1| (-1029 (-403 (-560))))))) (-2563 (($ $ $) 53)) (-2616 (((-671 |#1|) (-671 $)) 235 (|has| |#1| (-1039))) (((-2 (|:| -3818 (-671 |#1|)) (|:| |vec| (-1236 |#1|))) (-671 $) (-1236 $)) 234 (|has| |#1| (-1039))) (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) 115 (-2318 (-2256 (|has| |#1| (-1039)) (|has| |#1| (-622 (-560)))) (-2256 (|has| |#1| (-622 (-560))) (|has| |#1| (-1039))))) (((-671 (-560)) (-671 $)) 114 (-2318 (-2256 (|has| |#1| (-1039)) (|has| |#1| (-622 (-560)))) (-2256 (|has| |#1| (-622 (-560))) (|has| |#1| (-1039)))))) (-1823 (((-3 $ "failed") $) 33)) (-2572 (($ $ $) 54)) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) 49)) (-3319 (((-121) $) 69)) (-2399 (((-876 (-375) $) $ (-879 (-375)) (-876 (-375) $)) 187 (|has| |#1| (-873 (-375)))) (((-876 (-560) $) $ (-879 (-560)) (-876 (-560) $)) 186 (|has| |#1| (-873 (-560))))) (-2352 (($ (-626 $)) 152) (($ $) 151)) (-1951 (((-626 (-123)) $) 159)) (-4403 (((-123) (-123)) 160)) (-2642 (((-121) $) 30)) (-3348 (((-121) $) 180 (|has| $ (-1029 (-560))))) (-1540 (($ $) 212 (|has| |#1| (-1039)))) (-2132 (((-1105 |#1| (-599 $)) $) 211 (|has| |#1| (-1039)))) (-2586 (($ $ (-560)) 87)) (-3856 (((-3 (-626 $) "failed") (-626 $) $) 50)) (-2929 (((-1149 $) (-599 $)) 177 (|has| $ (-1039)))) (-4325 (($ $ $) 131)) (-2501 (($ $ $) 130)) (-2803 (($ (-1 $ $) (-599 $)) 166)) (-4220 (((-3 (-599 $) "failed") $) 156)) (-2582 (($ $ $) 45) (($ (-626 $)) 44)) (-1291 (((-1135) $) 9)) (-1586 (((-626 (-599 $)) $) 157)) (-2181 (($ (-123) (-626 $)) 165) (($ (-123) $) 164)) (-3665 (((-3 (-626 $) "failed") $) 206 (|has| |#1| (-1094)))) (-3004 (((-3 (-2 (|:| |val| $) (|:| -4034 (-560))) "failed") $) 215 (|has| |#1| (-1039)))) (-2327 (((-3 (-626 $) "failed") $) 208 (|has| |#1| (-25)))) (-1355 (((-3 (-2 (|:| -2169 (-560)) (|:| |var| (-599 $))) "failed") $) 209 (|has| |#1| (-25)))) (-2913 (((-3 (-2 (|:| |var| (-599 $)) (|:| -4034 (-560))) "failed") $ (-1153)) 214 (|has| |#1| (-1039))) (((-3 (-2 (|:| |var| (-599 $)) (|:| -4034 (-560))) "failed") $ (-123)) 213 (|has| |#1| (-1039))) (((-3 (-2 (|:| |var| (-599 $)) (|:| -4034 (-560))) "failed") $) 207 (|has| |#1| (-1094)))) (-3178 (((-121) $ (-1153)) 163) (((-121) $ (-123)) 162)) (-1701 (($ $) 68)) (-3165 (((-755) $) 155)) (-4353 (((-1100) $) 10)) (-1704 (((-121) $) 193)) (-1711 ((|#1| $) 194)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) 43)) (-4440 (($ $ $) 47) (($ (-626 $)) 46)) (-4388 (((-121) $ (-1153)) 168) (((-121) $ $) 167)) (-1601 (((-414 $) $) 72)) (-3505 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2336 (((-3 $ "failed") $ $) 41)) (-3456 (((-3 (-626 $) "failed") (-626 $) $) 48)) (-3522 (((-121) $) 179 (|has| $ (-1029 (-560))))) (-4450 (($ $ (-1153) (-755) (-1 $ $)) 219 (|has| |#1| (-1039))) (($ $ (-1153) (-755) (-1 $ (-626 $))) 218 (|has| |#1| (-1039))) (($ $ (-626 (-1153)) (-626 (-755)) (-626 (-1 $ (-626 $)))) 217 (|has| |#1| (-1039))) (($ $ (-626 (-1153)) (-626 (-755)) (-626 (-1 $ $))) 216 (|has| |#1| (-1039))) (($ $ (-626 (-123)) (-626 $) (-1153)) 205 (|has| |#1| (-601 (-533)))) (($ $ (-123) $ (-1153)) 204 (|has| |#1| (-601 (-533)))) (($ $) 203 (|has| |#1| (-601 (-533)))) (($ $ (-626 (-1153))) 202 (|has| |#1| (-601 (-533)))) (($ $ (-1153)) 201 (|has| |#1| (-601 (-533)))) (($ $ (-123) (-1 $ $)) 176) (($ $ (-123) (-1 $ (-626 $))) 175) (($ $ (-626 (-123)) (-626 (-1 $ (-626 $)))) 174) (($ $ (-626 (-123)) (-626 (-1 $ $))) 173) (($ $ (-1153) (-1 $ $)) 172) (($ $ (-1153) (-1 $ (-626 $))) 171) (($ $ (-626 (-1153)) (-626 (-1 $ (-626 $)))) 170) (($ $ (-626 (-1153)) (-626 (-1 $ $))) 169) (($ $ (-626 $) (-626 $)) 140) (($ $ $ $) 139) (($ $ (-283 $)) 138) (($ $ (-626 (-283 $))) 137) (($ $ (-626 (-599 $)) (-626 $)) 136) (($ $ (-599 $) $) 135)) (-4445 (((-755) $) 56)) (-2778 (($ (-123) (-626 $)) 145) (($ (-123) $ $ $ $) 144) (($ (-123) $ $ $) 143) (($ (-123) $ $) 142) (($ (-123) $) 141)) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) 55)) (-4290 (($ $ $) 154) (($ $) 153)) (-2443 (($ $ (-1153)) 243 (|has| |#1| (-1039))) (($ $ (-626 (-1153))) 242 (|has| |#1| (-1039))) (($ $ (-1153) (-755)) 241 (|has| |#1| (-1039))) (($ $ (-626 (-1153)) (-626 (-755))) 240 (|has| |#1| (-1039)))) (-1646 (($ $) 222 (|has| |#1| (-550)))) (-2139 (((-1105 |#1| (-599 $)) $) 221 (|has| |#1| (-550)))) (-3591 (($ $) 178 (|has| $ (-1039)))) (-4255 (((-533) $) 249 (|has| |#1| (-601 (-533)))) (($ (-414 $)) 220 (|has| |#1| (-550))) (((-879 (-375)) $) 185 (|has| |#1| (-601 (-879 (-375))))) (((-879 (-560)) $) 184 (|has| |#1| (-601 (-879 (-560)))))) (-3101 (($ $ $) 248 (|has| |#1| (-471)))) (-1671 (($ $ $) 247 (|has| |#1| (-471)))) (-2801 (((-842) $) 11) (($ (-560)) 27) (($ $) 42) (($ (-403 (-560))) 63) (($ (-945 |#1|)) 244 (|has| |#1| (-1039))) (($ (-403 (-945 |#1|))) 228 (|has| |#1| (-550))) (($ (-403 (-945 (-403 |#1|)))) 226 (|has| |#1| (-550))) (($ (-945 (-403 |#1|))) 225 (|has| |#1| (-550))) (($ (-403 |#1|)) 224 (|has| |#1| (-550))) (($ (-1105 |#1| (-599 $))) 210 (|has| |#1| (-1039))) (($ |#1|) 190) (($ (-1153)) 181) (($ (-599 $)) 132)) (-2272 (((-3 $ "failed") $) 233 (|has| |#1| (-146)))) (-1751 (((-755)) 28)) (-4308 (($ (-626 $)) 150) (($ $) 149)) (-2409 (((-121) (-123)) 161)) (-2328 (((-121) $ $) 38)) (-3209 (($ (-1153) (-626 $)) 200) (($ (-1153) $ $ $ $) 199) (($ (-1153) $ $ $) 198) (($ (-1153) $ $) 197) (($ (-1153) $) 196)) (-2464 (($ $ (-909)) 25) (($ $ (-755)) 32) (($ $ (-560)) 67)) (-3304 (($) 17 T CONST)) (-1459 (($) 29 T CONST)) (-2500 (($ $ (-1153)) 239 (|has| |#1| (-1039))) (($ $ (-626 (-1153))) 238 (|has| |#1| (-1039))) (($ $ (-1153) (-755)) 237 (|has| |#1| (-1039))) (($ $ (-626 (-1153)) (-626 (-755))) 236 (|has| |#1| (-1039)))) (-1691 (((-121) $ $) 128)) (-1675 (((-121) $ $) 127)) (-1653 (((-121) $ $) 6)) (-1683 (((-121) $ $) 129)) (-1667 (((-121) $ $) 126)) (-1733 (($ $ $) 62) (($ (-1105 |#1| (-599 $)) (-1105 |#1| (-599 $))) 223 (|has| |#1| (-550)))) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 24) (($ $ (-755)) 31) (($ $ (-560)) 66) (($ $ (-403 (-560))) 86)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 23) (($ $ (-403 (-560))) 65) (($ (-403 (-560)) $) 64) (($ $ |#1|) 232 (|has| |#1| (-170))) (($ |#1| $) 231 (|has| |#1| (-170))))) -(((-29 |#1|) (-1267) (-13 (-834) (-550))) (T -29)) -((-1449 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-834) (-550))))) (-2257 (*1 *2 *1) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *2 (-626 *1)) (-4 *1 (-29 *3)))) (-1449 (*1 *1 *1 *2) (-12 (-5 *2 (-1153)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-834) (-550))))) (-2257 (*1 *2 *1 *3) (-12 (-5 *3 (-1153)) (-4 *4 (-13 (-834) (-550))) (-5 *2 (-626 *1)) (-4 *1 (-29 *4)))) (-4448 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-834) (-550))))) (-3905 (*1 *2 *1) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *2 (-626 *1)) (-4 *1 (-29 *3)))) (-4448 (*1 *1 *1 *2) (-12 (-5 *2 (-1153)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-834) (-550))))) (-3905 (*1 *2 *1 *3) (-12 (-5 *3 (-1153)) (-4 *4 (-13 (-834) (-550))) (-5 *2 (-626 *1)) (-4 *1 (-29 *4))))) -(-13 (-27) (-426 |t#1|) (-10 -8 (-15 -1449 ($ $)) (-15 -2257 ((-626 $) $)) (-15 -1449 ($ $ (-1153))) (-15 -2257 ((-626 $) $ (-1153))) (-15 -4448 ($ $)) (-15 -3905 ((-626 $) $)) (-15 -4448 ($ $ (-1153))) (-15 -3905 ((-626 $) $ (-1153))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-43 (-403 (-560))) . T) ((-43 |#1|) |has| |#1| (-170)) ((-43 $) . T) ((-27) . T) ((-105) . T) ((-120 (-403 (-560)) (-403 (-560))) . T) ((-120 |#1| |#1|) |has| |#1| (-170)) ((-120 $ $) . T) ((-137) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-600 (-842)) . T) ((-170) . T) ((-601 (-533)) |has| |#1| (-601 (-533))) ((-601 (-879 (-375))) |has| |#1| (-601 (-879 (-375)))) ((-601 (-879 (-560))) |has| |#1| (-601 (-879 (-560)))) ((-233) . T) ((-280) . T) ((-296) . T) ((-298 $) . T) ((-291) . T) ((-359) . T) ((-373 |#1|) |has| |#1| (-1039)) ((-396 |#1|) . T) ((-407 |#1|) . T) ((-426 |#1|) . T) ((-447) . T) ((-471) |has| |#1| (-471)) ((-515 (-599 $) $) . T) ((-515 $ $) . T) ((-550) . T) ((-629 (-403 (-560))) . T) ((-629 |#1|) |has| |#1| (-170)) ((-629 $) . T) ((-622 (-560)) -12 (|has| |#1| (-622 (-560))) (|has| |#1| (-1039))) ((-622 |#1|) |has| |#1| (-1039)) ((-699 (-403 (-560))) . T) ((-699 |#1|) |has| |#1| (-170)) ((-699 $) . T) ((-708) . T) ((-834) . T) ((-887 (-1153)) |has| |#1| (-1039)) ((-873 (-375)) |has| |#1| (-873 (-375))) ((-873 (-560)) |has| |#1| (-873 (-560))) ((-871 |#1|) . T) ((-908) . T) ((-994) . T) ((-1029 (-403 (-560))) -2318 (|has| |#1| (-1029 (-403 (-560)))) (-12 (|has| |#1| (-550)) (|has| |#1| (-1029 (-560))))) ((-1029 (-403 (-945 |#1|))) |has| |#1| (-550)) ((-1029 (-560)) |has| |#1| (-1029 (-560))) ((-1029 (-599 $)) . T) ((-1029 (-945 |#1|)) |has| |#1| (-1039)) ((-1029 (-1153)) . T) ((-1029 |#1|) . T) ((-1045 (-403 (-560))) . T) ((-1045 |#1|) |has| |#1| (-170)) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1094) . T) ((-1082) . T) ((-1187) . T) ((-1191) . T)) -((-3867 (((-1076 (-213)) $) NIL)) (-3092 (((-1076 (-213)) $) NIL)) (-2588 (($ $ (-213)) 122)) (-3411 (($ (-945 (-560)) (-1153) (-1153) (-1076 (-403 (-560))) (-1076 (-403 (-560)))) 84)) (-3277 (((-626 (-626 (-936 (-213)))) $) 134)) (-2801 (((-842) $) 146))) -(((-30) (-13 (-947) (-10 -8 (-15 -3411 ($ (-945 (-560)) (-1153) (-1153) (-1076 (-403 (-560))) (-1076 (-403 (-560))))) (-15 -2588 ($ $ (-213)))))) (T -30)) -((-3411 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-945 (-560))) (-5 *3 (-1153)) (-5 *4 (-1076 (-403 (-560)))) (-5 *1 (-30)))) (-2588 (*1 *1 *1 *2) (-12 (-5 *2 (-213)) (-5 *1 (-30))))) -(-13 (-947) (-10 -8 (-15 -3411 ($ (-945 (-560)) (-1153) (-1153) (-1076 (-403 (-560))) (-1076 (-403 (-560))))) (-15 -2588 ($ $ (-213))))) -((-3336 (((-3 (-626 |#5|) "failed" "Infinite" (-560)) |#3|) 38)) (-3342 (((-626 |#5|) |#3| (-909)) 33)) (-3355 (((-3 (-626 |#5|) "failed" "Infinite" (-560)) (-626 |#3|)) 40))) -(((-31 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3355 ((-3 (-626 |#5|) "failed" "Infinite" (-560)) (-626 |#3|))) (-15 -3336 ((-3 (-626 |#5|) "failed" "Infinite" (-560)) |#3|)) (-15 -3342 ((-626 |#5|) |#3| (-909)))) (-359) (-626 (-1153)) (-942 |#1| |#4| (-844 |#2|)) (-226 (-2271 |#2|) (-755)) (-963 |#1|)) (T -31)) -((-3342 (*1 *2 *3 *4) (-12 (-5 *4 (-909)) (-4 *5 (-359)) (-14 *6 (-626 (-1153))) (-4 *7 (-226 (-2271 *6) (-755))) (-5 *2 (-626 *8)) (-5 *1 (-31 *5 *6 *3 *7 *8)) (-4 *3 (-942 *5 *7 (-844 *6))) (-4 *8 (-963 *5)))) (-3336 (*1 *2 *3) (-12 (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *6 (-226 (-2271 *5) (-755))) (-5 *2 (-3 (-626 *7) "failed" "Infinite" (-560))) (-5 *1 (-31 *4 *5 *3 *6 *7)) (-4 *3 (-942 *4 *6 (-844 *5))) (-4 *7 (-963 *4)))) (-3355 (*1 *2 *3) (-12 (-5 *3 (-626 *6)) (-4 *6 (-942 *4 *7 (-844 *5))) (-4 *7 (-226 (-2271 *5) (-755))) (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-5 *2 (-3 (-626 *8) "failed" "Infinite" (-560))) (-5 *1 (-31 *4 *5 *6 *7 *8)) (-4 *8 (-963 *4))))) -(-10 -7 (-15 -3355 ((-3 (-626 |#5|) "failed" "Infinite" (-560)) (-626 |#3|))) (-15 -3336 ((-3 (-626 |#5|) "failed" "Infinite" (-560)) |#3|)) (-15 -3342 ((-626 |#5|) |#3| (-909)))) -((-3324 (((-1149 (-1149 |#1|)) |#3|) 35)) (-3330 (((-626 (-626 (-1149 (-1149 |#1|)))) (-626 (-1149 (-1149 |#1|)))) 54)) (-3336 (((-3 (-626 |#5|) "failed" "Infinite" (-560)) (-1149 (-1149 |#1|))) 56) (((-3 (-626 |#5|) "failed" "Infinite" (-560)) |#3|) 57)) (-3342 (((-3 (-626 |#5|) "failed" "Infinite" (-560)) |#3| (-909)) 51)) (-3349 (((-3 (-626 |#5|) "failed" "Infinite" (-560)) (-626 (-1149 (-1149 |#1|)))) 70)) (-3355 (((-3 (-626 |#5|) "failed" "Infinite" (-560)) (-626 |#3|)) 50))) -(((-32 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3336 ((-3 (-626 |#5|) "failed" "Infinite" (-560)) |#3|)) (-15 -3336 ((-3 (-626 |#5|) "failed" "Infinite" (-560)) (-1149 (-1149 |#1|)))) (-15 -3349 ((-3 (-626 |#5|) "failed" "Infinite" (-560)) (-626 (-1149 (-1149 |#1|))))) (-15 -3355 ((-3 (-626 |#5|) "failed" "Infinite" (-560)) (-626 |#3|))) (-15 -3324 ((-1149 (-1149 |#1|)) |#3|)) (-15 -3330 ((-626 (-626 (-1149 (-1149 |#1|)))) (-626 (-1149 (-1149 |#1|))))) (-15 -3342 ((-3 (-626 |#5|) "failed" "Infinite" (-560)) |#3| (-909)))) (-359) (-626 (-1153)) (-942 |#1| |#4| (-844 |#2|)) (-226 (-2271 |#2|) (-755)) (-963 |#1|)) (T -32)) -((-3342 (*1 *2 *3 *4) (-12 (-5 *4 (-909)) (-4 *5 (-359)) (-14 *6 (-626 (-1153))) (-4 *7 (-226 (-2271 *6) (-755))) (-5 *2 (-3 (-626 *8) "failed" "Infinite" (-560))) (-5 *1 (-32 *5 *6 *3 *7 *8)) (-4 *3 (-942 *5 *7 (-844 *6))) (-4 *8 (-963 *5)))) (-3330 (*1 *2 *3) (-12 (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *7 (-226 (-2271 *5) (-755))) (-5 *2 (-626 (-626 (-1149 (-1149 *4))))) (-5 *1 (-32 *4 *5 *6 *7 *8)) (-5 *3 (-626 (-1149 (-1149 *4)))) (-4 *6 (-942 *4 *7 (-844 *5))) (-4 *8 (-963 *4)))) (-3324 (*1 *2 *3) (-12 (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *6 (-226 (-2271 *5) (-755))) (-5 *2 (-1149 (-1149 *4))) (-5 *1 (-32 *4 *5 *3 *6 *7)) (-4 *3 (-942 *4 *6 (-844 *5))) (-4 *7 (-963 *4)))) (-3355 (*1 *2 *3) (-12 (-5 *3 (-626 *6)) (-4 *6 (-942 *4 *7 (-844 *5))) (-4 *7 (-226 (-2271 *5) (-755))) (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-5 *2 (-3 (-626 *8) "failed" "Infinite" (-560))) (-5 *1 (-32 *4 *5 *6 *7 *8)) (-4 *8 (-963 *4)))) (-3349 (*1 *2 *3) (-12 (-5 *3 (-626 (-1149 (-1149 *4)))) (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *7 (-226 (-2271 *5) (-755))) (-5 *2 (-3 (-626 *8) "failed" "Infinite" (-560))) (-5 *1 (-32 *4 *5 *6 *7 *8)) (-4 *6 (-942 *4 *7 (-844 *5))) (-4 *8 (-963 *4)))) (-3336 (*1 *2 *3) (-12 (-5 *3 (-1149 (-1149 *4))) (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *7 (-226 (-2271 *5) (-755))) (-5 *2 (-3 (-626 *8) "failed" "Infinite" (-560))) (-5 *1 (-32 *4 *5 *6 *7 *8)) (-4 *6 (-942 *4 *7 (-844 *5))) (-4 *8 (-963 *4)))) (-3336 (*1 *2 *3) (-12 (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *6 (-226 (-2271 *5) (-755))) (-5 *2 (-3 (-626 *7) "failed" "Infinite" (-560))) (-5 *1 (-32 *4 *5 *3 *6 *7)) (-4 *3 (-942 *4 *6 (-844 *5))) (-4 *7 (-963 *4))))) -(-10 -7 (-15 -3336 ((-3 (-626 |#5|) "failed" "Infinite" (-560)) |#3|)) (-15 -3336 ((-3 (-626 |#5|) "failed" "Infinite" (-560)) (-1149 (-1149 |#1|)))) (-15 -3349 ((-3 (-626 |#5|) "failed" "Infinite" (-560)) (-626 (-1149 (-1149 |#1|))))) (-15 -3355 ((-3 (-626 |#5|) "failed" "Infinite" (-560)) (-626 |#3|))) (-15 -3324 ((-1149 (-1149 |#1|)) |#3|)) (-15 -3330 ((-626 (-626 (-1149 (-1149 |#1|)))) (-626 (-1149 (-1149 |#1|))))) (-15 -3342 ((-3 (-626 |#5|) "failed" "Infinite" (-560)) |#3| (-909)))) -((-2601 (((-121) $ $) NIL)) (-2764 ((|#1| $ (-560) |#1|) NIL)) (-1990 (((-626 $) (-626 $) (-755)) NIL) (((-626 $) (-626 $)) NIL)) (-1689 (((-121) $ (-755)) NIL) (((-121) $) NIL)) (-2004 (((-626 |#1|) $) NIL)) (-3274 (($) NIL)) (-1805 (((-626 $) $) NIL) (((-626 $) $ (-755)) NIL)) (-2843 (((-626 |#1|) $) NIL)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2778 ((|#1| $ (-560)) NIL)) (-3662 (((-909) $) NIL)) (-2034 ((|#1| $) NIL)) (-3101 (($ $ (-755)) NIL) (($ $) NIL)) (-2801 (((-842) $) NIL) (((-626 |#1|) $) NIL) (($ (-626 |#1|)) NIL)) (-3280 (($ (-626 |#1|)) NIL)) (-1653 (((-121) $ $) NIL))) -(((-33 |#1|) (-37 |#1|) (-359)) (T -33)) +(3579021 . 3487447499) +((-2016 (((-121) (-1 (-121) |#2| |#2|) $) 62) (((-121) $) NIL)) (-3908 (($ (-1 (-121) |#2| |#2|) $) 17) (($ $) NIL)) (-2436 ((|#2| $ (-568) |#2|) NIL) ((|#2| $ (-1210 (-568)) |#2|) 34)) (-1578 (($ $) 58)) (-3092 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-2764 (((-568) (-1 (-121) |#2|) $) 22) (((-568) |#2| $) NIL) (((-568) |#2| $ (-568)) 70)) (-4360 (((-634 |#2|) $) 13)) (-1347 (($ (-1 (-121) |#2| |#2|) $ $) 47) (($ $ $) NIL)) (-3674 (($ (-1 |#2| |#2|) $) 29)) (-2795 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 44)) (-4122 (($ |#2| $ (-568)) NIL) (($ $ $ (-568)) 49)) (-3775 (((-3 |#2| "failed") (-1 (-121) |#2|) $) 24)) (-1387 (((-121) (-1 (-121) |#2|) $) 21)) (-2779 ((|#2| $ (-568) |#2|) NIL) ((|#2| $ (-568)) NIL) (($ $ (-1210 (-568))) 48)) (-2826 (($ $ (-568)) 55) (($ $ (-1210 (-568))) 54)) (-4168 (((-763) (-1 (-121) |#2|) $) 26) (((-763) |#2| $) NIL)) (-2256 (($ $ $ (-568)) 51)) (-3863 (($ $) 50)) (-4287 (($ (-634 |#2|)) 52)) (-2768 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 63) (($ (-634 $)) 61)) (-2745 (((-850) $) 69)) (-1319 (((-121) (-1 (-121) |#2|) $) 20)) (-1717 (((-121) $ $) 64)) (-1732 (((-121) $ $) 72))) +(((-18 |#1| |#2|) (-10 -8 (-15 -1717 ((-121) |#1| |#1|)) (-15 -2745 ((-850) |#1|)) (-15 -1732 ((-121) |#1| |#1|)) (-15 -3908 (|#1| |#1|)) (-15 -3908 (|#1| (-1 (-121) |#2| |#2|) |#1|)) (-15 -1578 (|#1| |#1|)) (-15 -2256 (|#1| |#1| |#1| (-568))) (-15 -2016 ((-121) |#1|)) (-15 -1347 (|#1| |#1| |#1|)) (-15 -2764 ((-568) |#2| |#1| (-568))) (-15 -2764 ((-568) |#2| |#1|)) (-15 -2764 ((-568) (-1 (-121) |#2|) |#1|)) (-15 -2016 ((-121) (-1 (-121) |#2| |#2|) |#1|)) (-15 -1347 (|#1| (-1 (-121) |#2| |#2|) |#1| |#1|)) (-15 -2436 (|#2| |#1| (-1210 (-568)) |#2|)) (-15 -4122 (|#1| |#1| |#1| (-568))) (-15 -4122 (|#1| |#2| |#1| (-568))) (-15 -2826 (|#1| |#1| (-1210 (-568)))) (-15 -2826 (|#1| |#1| (-568))) (-15 -2779 (|#1| |#1| (-1210 (-568)))) (-15 -2795 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2768 (|#1| (-634 |#1|))) (-15 -2768 (|#1| |#1| |#1|)) (-15 -2768 (|#1| |#2| |#1|)) (-15 -2768 (|#1| |#1| |#2|)) (-15 -4287 (|#1| (-634 |#2|))) (-15 -3775 ((-3 |#2| "failed") (-1 (-121) |#2|) |#1|)) (-15 -3092 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3092 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3092 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2779 (|#2| |#1| (-568))) (-15 -2779 (|#2| |#1| (-568) |#2|)) (-15 -2436 (|#2| |#1| (-568) |#2|)) (-15 -4168 ((-763) |#2| |#1|)) (-15 -4360 ((-634 |#2|) |#1|)) (-15 -4168 ((-763) (-1 (-121) |#2|) |#1|)) (-15 -1387 ((-121) (-1 (-121) |#2|) |#1|)) (-15 -1319 ((-121) (-1 (-121) |#2|) |#1|)) (-15 -3674 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2795 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3863 (|#1| |#1|))) (-19 |#2|) (-1195)) (T -18)) +NIL +(-10 -8 (-15 -1717 ((-121) |#1| |#1|)) (-15 -2745 ((-850) |#1|)) (-15 -1732 ((-121) |#1| |#1|)) (-15 -3908 (|#1| |#1|)) (-15 -3908 (|#1| (-1 (-121) |#2| |#2|) |#1|)) (-15 -1578 (|#1| |#1|)) (-15 -2256 (|#1| |#1| |#1| (-568))) (-15 -2016 ((-121) |#1|)) (-15 -1347 (|#1| |#1| |#1|)) (-15 -2764 ((-568) |#2| |#1| (-568))) (-15 -2764 ((-568) |#2| |#1|)) (-15 -2764 ((-568) (-1 (-121) |#2|) |#1|)) (-15 -2016 ((-121) (-1 (-121) |#2| |#2|) |#1|)) (-15 -1347 (|#1| (-1 (-121) |#2| |#2|) |#1| |#1|)) (-15 -2436 (|#2| |#1| (-1210 (-568)) |#2|)) (-15 -4122 (|#1| |#1| |#1| (-568))) (-15 -4122 (|#1| |#2| |#1| (-568))) (-15 -2826 (|#1| |#1| (-1210 (-568)))) (-15 -2826 (|#1| |#1| (-568))) (-15 -2779 (|#1| |#1| (-1210 (-568)))) (-15 -2795 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2768 (|#1| (-634 |#1|))) (-15 -2768 (|#1| |#1| |#1|)) (-15 -2768 (|#1| |#2| |#1|)) (-15 -2768 (|#1| |#1| |#2|)) (-15 -4287 (|#1| (-634 |#2|))) (-15 -3775 ((-3 |#2| "failed") (-1 (-121) |#2|) |#1|)) (-15 -3092 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3092 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3092 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2779 (|#2| |#1| (-568))) (-15 -2779 (|#2| |#1| (-568) |#2|)) (-15 -2436 (|#2| |#1| (-568) |#2|)) (-15 -4168 ((-763) |#2| |#1|)) (-15 -4360 ((-634 |#2|) |#1|)) (-15 -4168 ((-763) (-1 (-121) |#2|) |#1|)) (-15 -1387 ((-121) (-1 (-121) |#2|) |#1|)) (-15 -1319 ((-121) (-1 (-121) |#2|) |#1|)) (-15 -3674 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2795 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3863 (|#1| |#1|))) +((-2447 (((-121) $ $) 18 (|has| |#1| (-1090)))) (-1868 (((-1249) $ (-568) (-568)) 37 (|has| $ (-6 -4520)))) (-2016 (((-121) (-1 (-121) |#1| |#1|) $) 91) (((-121) $) 85 (|has| |#1| (-842)))) (-3908 (($ (-1 (-121) |#1| |#1|) $) 82 (|has| $ (-6 -4520))) (($ $) 81 (-12 (|has| |#1| (-842)) (|has| $ (-6 -4520))))) (-3644 (($ (-1 (-121) |#1| |#1|) $) 92) (($ $) 86 (|has| |#1| (-842)))) (-2510 (((-121) $ (-763)) 8)) (-2436 ((|#1| $ (-568) |#1|) 49 (|has| $ (-6 -4520))) ((|#1| $ (-1210 (-568)) |#1|) 53 (|has| $ (-6 -4520)))) (-2801 (($ (-1 (-121) |#1|) $) 70 (|has| $ (-6 -4519)))) (-2671 (($) 7 T CONST)) (-1578 (($ $) 83 (|has| $ (-6 -4520)))) (-3943 (($ $) 93)) (-3924 (($ $) 73 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-4328 (($ |#1| $) 72 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519)))) (($ (-1 (-121) |#1|) $) 69 (|has| $ (-6 -4519)))) (-3092 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 71 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 68 (|has| $ (-6 -4519))) ((|#1| (-1 |#1| |#1| |#1|) $) 67 (|has| $ (-6 -4519)))) (-3989 ((|#1| $ (-568) |#1|) 50 (|has| $ (-6 -4520)))) (-2602 ((|#1| $ (-568)) 48)) (-2764 (((-568) (-1 (-121) |#1|) $) 90) (((-568) |#1| $) 89 (|has| |#1| (-1090))) (((-568) |#1| $ (-568)) 88 (|has| |#1| (-1090)))) (-4360 (((-634 |#1|) $) 30 (|has| $ (-6 -4519)))) (-1849 (($ (-763) |#1|) 64)) (-1737 (((-121) $ (-763)) 9)) (-1881 (((-568) $) 40 (|has| (-568) (-842)))) (-2521 (($ $ $) 80 (|has| |#1| (-842)))) (-1347 (($ (-1 (-121) |#1| |#1|) $ $) 94) (($ $ $) 87 (|has| |#1| (-842)))) (-1979 (((-634 |#1|) $) 29 (|has| $ (-6 -4519)))) (-3109 (((-121) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-2223 (((-568) $) 41 (|has| (-568) (-842)))) (-3268 (($ $ $) 79 (|has| |#1| (-842)))) (-3674 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 59)) (-2166 (((-121) $ (-763)) 10)) (-4487 (((-1143) $) 22 (|has| |#1| (-1090)))) (-4122 (($ |#1| $ (-568)) 55) (($ $ $ (-568)) 54)) (-4174 (((-634 (-568)) $) 43)) (-3578 (((-121) (-568) $) 44)) (-4022 (((-1108) $) 21 (|has| |#1| (-1090)))) (-3876 ((|#1| $) 39 (|has| (-568) (-842)))) (-3775 (((-3 |#1| "failed") (-1 (-121) |#1|) $) 66)) (-3724 (($ $ |#1|) 38 (|has| $ (-6 -4520)))) (-1387 (((-121) (-1 (-121) |#1|) $) 32 (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-634 |#1|) (-634 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))))) (-3171 (((-121) $ $) 14)) (-4467 (((-121) |#1| $) 42 (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-2041 (((-634 |#1|) $) 45)) (-3084 (((-121) $) 11)) (-3248 (($) 12)) (-2779 ((|#1| $ (-568) |#1|) 47) ((|#1| $ (-568)) 46) (($ $ (-1210 (-568))) 58)) (-2826 (($ $ (-568)) 57) (($ $ (-1210 (-568))) 56)) (-4168 (((-763) (-1 (-121) |#1|) $) 31 (|has| $ (-6 -4519))) (((-763) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-2256 (($ $ $ (-568)) 84 (|has| $ (-6 -4520)))) (-3863 (($ $) 13)) (-4278 (((-541) $) 74 (|has| |#1| (-609 (-541))))) (-4287 (($ (-634 |#1|)) 65)) (-2768 (($ $ |#1|) 63) (($ |#1| $) 62) (($ $ $) 61) (($ (-634 $)) 60)) (-2745 (((-850) $) 20 (|has| |#1| (-1090)))) (-1319 (((-121) (-1 (-121) |#1|) $) 33 (|has| $ (-6 -4519)))) (-1751 (((-121) $ $) 77 (|has| |#1| (-842)))) (-1738 (((-121) $ $) 76 (|has| |#1| (-842)))) (-1717 (((-121) $ $) 19 (|has| |#1| (-1090)))) (-1745 (((-121) $ $) 78 (|has| |#1| (-842)))) (-1732 (((-121) $ $) 75 (|has| |#1| (-842)))) (-1697 (((-763) $) 6 (|has| $ (-6 -4519))))) +(((-19 |#1|) (-1275) (-1195)) (T -19)) +NIL +(-13 (-375 |t#1|) (-10 -7 (-6 -4520))) +(((-39) . T) ((-105) -2198 (|has| |#1| (-1090)) (|has| |#1| (-842))) ((-608 (-850)) -2198 (|has| |#1| (-1090)) (|has| |#1| (-842))) ((-154 |#1|) . T) ((-609 (-541)) |has| |#1| (-609 (-541))) ((-281 (-568) |#1|) . T) ((-283 (-568) |#1|) . T) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))) ((-375 |#1|) . T) ((-499 |#1|) . T) ((-601 (-568) |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))) ((-640 |#1|) . T) ((-842) |has| |#1| (-842)) ((-1090) -2198 (|has| |#1| (-1090)) (|has| |#1| (-842))) ((-1195) . T)) +((-3134 (((-3 $ "failed") $ $) 12)) (-1773 (($ $) NIL) (($ $ $) 9)) (* (($ (-917) $) NIL) (($ (-763) $) 16) (($ (-568) $) 21))) +(((-20 |#1|) (-10 -8 (-15 * (|#1| (-568) |#1|)) (-15 -1773 (|#1| |#1| |#1|)) (-15 -1773 (|#1| |#1|)) (-15 -3134 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-763) |#1|)) (-15 * (|#1| (-917) |#1|))) (-21)) (T -20)) +NIL +(-10 -8 (-15 * (|#1| (-568) |#1|)) (-15 -1773 (|#1| |#1| |#1|)) (-15 -1773 (|#1| |#1|)) (-15 -3134 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-763) |#1|)) (-15 * (|#1| (-917) |#1|))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-3134 (((-3 $ "failed") $ $) 18)) (-2671 (($) 16 T CONST)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-2745 (((-850) $) 11)) (-3056 (($) 17 T CONST)) (-1717 (((-121) $ $) 6)) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19))) +(((-21) (-1275)) (T -21)) +((-1773 (*1 *1 *1) (-4 *1 (-21))) (-1773 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-568))))) +(-13 (-137) (-10 -8 (-15 -1773 ($ $)) (-15 -1773 ($ $ $)) (-15 * ($ (-568) $)))) +(((-23) . T) ((-25) . T) ((-105) . T) ((-137) . T) ((-608 (-850)) . T) ((-1090) . T)) +((-2537 (((-121) $) 10)) (-2671 (($) 15)) (* (($ (-917) $) 14) (($ (-763) $) 18))) +(((-22 |#1|) (-10 -8 (-15 * (|#1| (-763) |#1|)) (-15 -2537 ((-121) |#1|)) (-15 -2671 (|#1|)) (-15 * (|#1| (-917) |#1|))) (-23)) (T -22)) +NIL +(-10 -8 (-15 * (|#1| (-763) |#1|)) (-15 -2537 ((-121) |#1|)) (-15 -2671 (|#1|)) (-15 * (|#1| (-917) |#1|))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-2671 (($) 16 T CONST)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-2745 (((-850) $) 11)) (-3056 (($) 17 T CONST)) (-1717 (((-121) $ $) 6)) (-1767 (($ $ $) 13)) (* (($ (-917) $) 12) (($ (-763) $) 14))) +(((-23) (-1275)) (T -23)) +((-3056 (*1 *1) (-4 *1 (-23))) (-2671 (*1 *1) (-4 *1 (-23))) (-2537 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-121)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-763))))) +(-13 (-25) (-10 -8 (-15 (-3056) ($) -3495) (-15 -2671 ($) -3495) (-15 -2537 ((-121) $)) (-15 * ($ (-763) $)))) +(((-25) . T) ((-105) . T) ((-608 (-850)) . T) ((-1090) . T)) +((* (($ (-917) $) 10))) +(((-24 |#1|) (-10 -8 (-15 * (|#1| (-917) |#1|))) (-25)) (T -24)) +NIL +(-10 -8 (-15 * (|#1| (-917) |#1|))) +((-2447 (((-121) $ $) 7)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-2745 (((-850) $) 11)) (-1717 (((-121) $ $) 6)) (-1767 (($ $ $) 13)) (* (($ (-917) $) 12))) +(((-25) (-1275)) (T -25)) +((-1767 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-917))))) +(-13 (-1090) (-10 -8 (-15 -1767 ($ $ $)) (-15 * ($ (-917) $)))) +(((-105) . T) ((-608 (-850)) . T) ((-1090) . T)) +((-2394 (((-634 $) (-953 $)) 29) (((-634 $) (-1157 $)) 16) (((-634 $) (-1157 $) (-1161)) 20)) (-1681 (($ (-953 $)) 27) (($ (-1157 $)) 11) (($ (-1157 $) (-1161)) 54)) (-3214 (((-634 $) (-953 $)) 30) (((-634 $) (-1157 $)) 18) (((-634 $) (-1157 $) (-1161)) 19)) (-2932 (($ (-953 $)) 28) (($ (-1157 $)) 13) (($ (-1157 $) (-1161)) NIL))) +(((-26 |#1|) (-10 -8 (-15 -2394 ((-634 |#1|) (-1157 |#1|) (-1161))) (-15 -2394 ((-634 |#1|) (-1157 |#1|))) (-15 -2394 ((-634 |#1|) (-953 |#1|))) (-15 -1681 (|#1| (-1157 |#1|) (-1161))) (-15 -1681 (|#1| (-1157 |#1|))) (-15 -1681 (|#1| (-953 |#1|))) (-15 -3214 ((-634 |#1|) (-1157 |#1|) (-1161))) (-15 -3214 ((-634 |#1|) (-1157 |#1|))) (-15 -3214 ((-634 |#1|) (-953 |#1|))) (-15 -2932 (|#1| (-1157 |#1|) (-1161))) (-15 -2932 (|#1| (-1157 |#1|))) (-15 -2932 (|#1| (-953 |#1|)))) (-27)) (T -26)) +NIL +(-10 -8 (-15 -2394 ((-634 |#1|) (-1157 |#1|) (-1161))) (-15 -2394 ((-634 |#1|) (-1157 |#1|))) (-15 -2394 ((-634 |#1|) (-953 |#1|))) (-15 -1681 (|#1| (-1157 |#1|) (-1161))) (-15 -1681 (|#1| (-1157 |#1|))) (-15 -1681 (|#1| (-953 |#1|))) (-15 -3214 ((-634 |#1|) (-1157 |#1|) (-1161))) (-15 -3214 ((-634 |#1|) (-1157 |#1|))) (-15 -3214 ((-634 |#1|) (-953 |#1|))) (-15 -2932 (|#1| (-1157 |#1|) (-1161))) (-15 -2932 (|#1| (-1157 |#1|))) (-15 -2932 (|#1| (-953 |#1|)))) +((-2447 (((-121) $ $) 7)) (-2394 (((-634 $) (-953 $)) 76) (((-634 $) (-1157 $)) 75) (((-634 $) (-1157 $) (-1161)) 74)) (-1681 (($ (-953 $)) 79) (($ (-1157 $)) 78) (($ (-1157 $) (-1161)) 77)) (-2537 (((-121) $) 15)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) 40)) (-2227 (($ $) 39)) (-1573 (((-121) $) 37)) (-3134 (((-3 $ "failed") $ $) 18)) (-4305 (($ $) 71)) (-1678 (((-420 $) $) 70)) (-1902 (($ $) 88)) (-1497 (((-121) $ $) 57)) (-2671 (($) 16 T CONST)) (-3214 (((-634 $) (-953 $)) 82) (((-634 $) (-1157 $)) 81) (((-634 $) (-1157 $) (-1161)) 80)) (-2932 (($ (-953 $)) 85) (($ (-1157 $)) 84) (($ (-1157 $) (-1161)) 83)) (-2401 (($ $ $) 53)) (-2925 (((-3 $ "failed") $) 33)) (-2412 (($ $ $) 54)) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) 49)) (-3927 (((-121) $) 69)) (-2735 (((-121) $) 30)) (-4044 (($ $ (-568)) 87)) (-3562 (((-3 (-634 $) "failed") (-634 $) $) 50)) (-2495 (($ $ $) 45) (($ (-634 $)) 44)) (-4487 (((-1143) $) 9)) (-2081 (($ $) 68)) (-4022 (((-1108) $) 10)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) 43)) (-2721 (($ $ $) 47) (($ (-634 $)) 46)) (-3848 (((-420 $) $) 72)) (-4497 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2595 (((-3 $ "failed") $ $) 41)) (-2344 (((-3 (-634 $) "failed") (-634 $) $) 48)) (-2709 (((-763) $) 56)) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) 55)) (-2745 (((-850) $) 11) (($ (-568)) 27) (($ $) 42) (($ (-409 (-568))) 63)) (-4078 (((-763)) 28)) (-1826 (((-121) $ $) 38)) (-1887 (($ $ (-917)) 25) (($ $ (-763)) 32) (($ $ (-568)) 67)) (-3056 (($) 17 T CONST)) (-1556 (($) 29 T CONST)) (-1717 (((-121) $ $) 6)) (-1779 (($ $ $) 62)) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 24) (($ $ (-763)) 31) (($ $ (-568)) 66) (($ $ (-409 (-568))) 86)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 23) (($ $ (-409 (-568))) 65) (($ (-409 (-568)) $) 64))) +(((-27) (-1275)) (T -27)) +((-2932 (*1 *1 *2) (-12 (-5 *2 (-953 *1)) (-4 *1 (-27)))) (-2932 (*1 *1 *2) (-12 (-5 *2 (-1157 *1)) (-4 *1 (-27)))) (-2932 (*1 *1 *2 *3) (-12 (-5 *2 (-1157 *1)) (-5 *3 (-1161)) (-4 *1 (-27)))) (-3214 (*1 *2 *3) (-12 (-5 *3 (-953 *1)) (-4 *1 (-27)) (-5 *2 (-634 *1)))) (-3214 (*1 *2 *3) (-12 (-5 *3 (-1157 *1)) (-4 *1 (-27)) (-5 *2 (-634 *1)))) (-3214 (*1 *2 *3 *4) (-12 (-5 *3 (-1157 *1)) (-5 *4 (-1161)) (-4 *1 (-27)) (-5 *2 (-634 *1)))) (-1681 (*1 *1 *2) (-12 (-5 *2 (-953 *1)) (-4 *1 (-27)))) (-1681 (*1 *1 *2) (-12 (-5 *2 (-1157 *1)) (-4 *1 (-27)))) (-1681 (*1 *1 *2 *3) (-12 (-5 *2 (-1157 *1)) (-5 *3 (-1161)) (-4 *1 (-27)))) (-2394 (*1 *2 *3) (-12 (-5 *3 (-953 *1)) (-4 *1 (-27)) (-5 *2 (-634 *1)))) (-2394 (*1 *2 *3) (-12 (-5 *3 (-1157 *1)) (-4 *1 (-27)) (-5 *2 (-634 *1)))) (-2394 (*1 *2 *3 *4) (-12 (-5 *3 (-1157 *1)) (-5 *4 (-1161)) (-4 *1 (-27)) (-5 *2 (-634 *1))))) +(-13 (-365) (-1002) (-10 -8 (-15 -2932 ($ (-953 $))) (-15 -2932 ($ (-1157 $))) (-15 -2932 ($ (-1157 $) (-1161))) (-15 -3214 ((-634 $) (-953 $))) (-15 -3214 ((-634 $) (-1157 $))) (-15 -3214 ((-634 $) (-1157 $) (-1161))) (-15 -1681 ($ (-953 $))) (-15 -1681 ($ (-1157 $))) (-15 -1681 ($ (-1157 $) (-1161))) (-15 -2394 ((-634 $) (-953 $))) (-15 -2394 ((-634 $) (-1157 $))) (-15 -2394 ((-634 $) (-1157 $) (-1161))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-43 (-409 (-568))) . T) ((-43 $) . T) ((-105) . T) ((-120 (-409 (-568)) (-409 (-568))) . T) ((-120 $ $) . T) ((-137) . T) ((-608 (-850)) . T) ((-172) . T) ((-238) . T) ((-285) . T) ((-301) . T) ((-365) . T) ((-453) . T) ((-558) . T) ((-637 (-409 (-568))) . T) ((-637 $) . T) ((-707 (-409 (-568))) . T) ((-707 $) . T) ((-716) . T) ((-916) . T) ((-1002) . T) ((-1053 (-409 (-568))) . T) ((-1053 $) . T) ((-1047) . T) ((-1054) . T) ((-1102) . T) ((-1090) . T) ((-1199) . T)) +((-2394 (((-634 $) (-953 $)) NIL) (((-634 $) (-1157 $)) NIL) (((-634 $) (-1157 $) (-1161)) 50) (((-634 $) $) 19) (((-634 $) $ (-1161)) 41)) (-1681 (($ (-953 $)) NIL) (($ (-1157 $)) NIL) (($ (-1157 $) (-1161)) 52) (($ $) 17) (($ $ (-1161)) 37)) (-3214 (((-634 $) (-953 $)) NIL) (((-634 $) (-1157 $)) NIL) (((-634 $) (-1157 $) (-1161)) 48) (((-634 $) $) 15) (((-634 $) $ (-1161)) 43)) (-2932 (($ (-953 $)) NIL) (($ (-1157 $)) NIL) (($ (-1157 $) (-1161)) NIL) (($ $) 12) (($ $ (-1161)) 39))) +(((-28 |#1| |#2|) (-10 -8 (-15 -2394 ((-634 |#1|) |#1| (-1161))) (-15 -1681 (|#1| |#1| (-1161))) (-15 -2394 ((-634 |#1|) |#1|)) (-15 -1681 (|#1| |#1|)) (-15 -3214 ((-634 |#1|) |#1| (-1161))) (-15 -2932 (|#1| |#1| (-1161))) (-15 -3214 ((-634 |#1|) |#1|)) (-15 -2932 (|#1| |#1|)) (-15 -2394 ((-634 |#1|) (-1157 |#1|) (-1161))) (-15 -2394 ((-634 |#1|) (-1157 |#1|))) (-15 -2394 ((-634 |#1|) (-953 |#1|))) (-15 -1681 (|#1| (-1157 |#1|) (-1161))) (-15 -1681 (|#1| (-1157 |#1|))) (-15 -1681 (|#1| (-953 |#1|))) (-15 -3214 ((-634 |#1|) (-1157 |#1|) (-1161))) (-15 -3214 ((-634 |#1|) (-1157 |#1|))) (-15 -3214 ((-634 |#1|) (-953 |#1|))) (-15 -2932 (|#1| (-1157 |#1|) (-1161))) (-15 -2932 (|#1| (-1157 |#1|))) (-15 -2932 (|#1| (-953 |#1|)))) (-29 |#2|) (-13 (-842) (-558))) (T -28)) +NIL +(-10 -8 (-15 -2394 ((-634 |#1|) |#1| (-1161))) (-15 -1681 (|#1| |#1| (-1161))) (-15 -2394 ((-634 |#1|) |#1|)) (-15 -1681 (|#1| |#1|)) (-15 -3214 ((-634 |#1|) |#1| (-1161))) (-15 -2932 (|#1| |#1| (-1161))) (-15 -3214 ((-634 |#1|) |#1|)) (-15 -2932 (|#1| |#1|)) (-15 -2394 ((-634 |#1|) (-1157 |#1|) (-1161))) (-15 -2394 ((-634 |#1|) (-1157 |#1|))) (-15 -2394 ((-634 |#1|) (-953 |#1|))) (-15 -1681 (|#1| (-1157 |#1|) (-1161))) (-15 -1681 (|#1| (-1157 |#1|))) (-15 -1681 (|#1| (-953 |#1|))) (-15 -3214 ((-634 |#1|) (-1157 |#1|) (-1161))) (-15 -3214 ((-634 |#1|) (-1157 |#1|))) (-15 -3214 ((-634 |#1|) (-953 |#1|))) (-15 -2932 (|#1| (-1157 |#1|) (-1161))) (-15 -2932 (|#1| (-1157 |#1|))) (-15 -2932 (|#1| (-953 |#1|)))) +((-2447 (((-121) $ $) 7)) (-2394 (((-634 $) (-953 $)) 76) (((-634 $) (-1157 $)) 75) (((-634 $) (-1157 $) (-1161)) 74) (((-634 $) $) 120) (((-634 $) $ (-1161)) 118)) (-1681 (($ (-953 $)) 79) (($ (-1157 $)) 78) (($ (-1157 $) (-1161)) 77) (($ $) 121) (($ $ (-1161)) 119)) (-2537 (((-121) $) 15)) (-2055 (((-634 (-1161)) $) 195)) (-3839 (((-409 (-1157 $)) $ (-607 $)) 227 (|has| |#1| (-558)))) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) 40)) (-2227 (($ $) 39)) (-1573 (((-121) $) 37)) (-3001 (((-634 (-607 $)) $) 158)) (-3134 (((-3 $ "failed") $ $) 18)) (-2366 (($ $ (-634 (-607 $)) (-634 $)) 148) (($ $ (-634 (-288 $))) 147) (($ $ (-288 $)) 146)) (-4305 (($ $) 71)) (-1678 (((-420 $) $) 70)) (-1902 (($ $) 88)) (-1497 (((-121) $ $) 57)) (-2671 (($) 16 T CONST)) (-3214 (((-634 $) (-953 $)) 82) (((-634 $) (-1157 $)) 81) (((-634 $) (-1157 $) (-1161)) 80) (((-634 $) $) 124) (((-634 $) $ (-1161)) 122)) (-2932 (($ (-953 $)) 85) (($ (-1157 $)) 84) (($ (-1157 $) (-1161)) 83) (($ $) 125) (($ $ (-1161)) 123)) (-3666 (((-3 (-953 |#1|) "failed") $) 245 (|has| |#1| (-1047))) (((-3 (-409 (-953 |#1|)) "failed") $) 229 (|has| |#1| (-558))) (((-3 |#1| "failed") $) 191) (((-3 (-568) "failed") $) 189 (|has| |#1| (-1037 (-568)))) (((-3 (-1161) "failed") $) 182) (((-3 (-607 $) "failed") $) 133) (((-3 (-409 (-568)) "failed") $) 117 (-2198 (-12 (|has| |#1| (-1037 (-568))) (|has| |#1| (-558))) (|has| |#1| (-1037 (-409 (-568))))))) (-2854 (((-953 |#1|) $) 246 (|has| |#1| (-1047))) (((-409 (-953 |#1|)) $) 230 (|has| |#1| (-558))) ((|#1| $) 192) (((-568) $) 188 (|has| |#1| (-1037 (-568)))) (((-1161) $) 183) (((-607 $) $) 134) (((-409 (-568)) $) 116 (-2198 (-12 (|has| |#1| (-1037 (-568))) (|has| |#1| (-558))) (|has| |#1| (-1037 (-409 (-568))))))) (-2401 (($ $ $) 53)) (-3164 (((-679 |#1|) (-679 $)) 235 (|has| |#1| (-1047))) (((-2 (|:| -2928 (-679 |#1|)) (|:| |vec| (-1244 |#1|))) (-679 $) (-1244 $)) 234 (|has| |#1| (-1047))) (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) 115 (-2198 (-2139 (|has| |#1| (-1047)) (|has| |#1| (-630 (-568)))) (-2139 (|has| |#1| (-630 (-568))) (|has| |#1| (-1047))))) (((-679 (-568)) (-679 $)) 114 (-2198 (-2139 (|has| |#1| (-1047)) (|has| |#1| (-630 (-568)))) (-2139 (|has| |#1| (-630 (-568))) (|has| |#1| (-1047)))))) (-2925 (((-3 $ "failed") $) 33)) (-2412 (($ $ $) 54)) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) 49)) (-3927 (((-121) $) 69)) (-4410 (((-884 (-381) $) $ (-887 (-381)) (-884 (-381) $)) 187 (|has| |#1| (-881 (-381)))) (((-884 (-568) $) $ (-887 (-568)) (-884 (-568) $)) 186 (|has| |#1| (-881 (-568))))) (-4499 (($ (-634 $)) 152) (($ $) 151)) (-3296 (((-634 (-123)) $) 159)) (-3488 (((-123) (-123)) 160)) (-2735 (((-121) $) 30)) (-1825 (((-121) $) 180 (|has| $ (-1037 (-568))))) (-1332 (($ $) 212 (|has| |#1| (-1047)))) (-2317 (((-1113 |#1| (-607 $)) $) 211 (|has| |#1| (-1047)))) (-4044 (($ $ (-568)) 87)) (-3562 (((-3 (-634 $) "failed") (-634 $) $) 50)) (-3007 (((-1157 $) (-607 $)) 177 (|has| $ (-1047)))) (-2521 (($ $ $) 131)) (-3268 (($ $ $) 130)) (-2795 (($ (-1 $ $) (-607 $)) 166)) (-3693 (((-3 (-607 $) "failed") $) 156)) (-2495 (($ $ $) 45) (($ (-634 $)) 44)) (-4487 (((-1143) $) 9)) (-3804 (((-634 (-607 $)) $) 157)) (-3443 (($ (-123) (-634 $)) 165) (($ (-123) $) 164)) (-3324 (((-3 (-634 $) "failed") $) 206 (|has| |#1| (-1102)))) (-2672 (((-3 (-2 (|:| |val| $) (|:| -3438 (-568))) "failed") $) 215 (|has| |#1| (-1047)))) (-1794 (((-3 (-634 $) "failed") $) 208 (|has| |#1| (-25)))) (-2392 (((-3 (-2 (|:| -2348 (-568)) (|:| |var| (-607 $))) "failed") $) 209 (|has| |#1| (-25)))) (-3751 (((-3 (-2 (|:| |var| (-607 $)) (|:| -3438 (-568))) "failed") $ (-1161)) 214 (|has| |#1| (-1047))) (((-3 (-2 (|:| |var| (-607 $)) (|:| -3438 (-568))) "failed") $ (-123)) 213 (|has| |#1| (-1047))) (((-3 (-2 (|:| |var| (-607 $)) (|:| -3438 (-568))) "failed") $) 207 (|has| |#1| (-1102)))) (-2841 (((-121) $ (-1161)) 163) (((-121) $ (-123)) 162)) (-2081 (($ $) 68)) (-2961 (((-763) $) 155)) (-4022 (((-1108) $) 10)) (-2086 (((-121) $) 193)) (-2091 ((|#1| $) 194)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) 43)) (-2721 (($ $ $) 47) (($ (-634 $)) 46)) (-4059 (((-121) $ (-1161)) 168) (((-121) $ $) 167)) (-3848 (((-420 $) $) 72)) (-4497 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2595 (((-3 $ "failed") $ $) 41)) (-2344 (((-3 (-634 $) "failed") (-634 $) $) 48)) (-3277 (((-121) $) 179 (|has| $ (-1037 (-568))))) (-1339 (($ $ (-1161) (-763) (-1 $ $)) 219 (|has| |#1| (-1047))) (($ $ (-1161) (-763) (-1 $ (-634 $))) 218 (|has| |#1| (-1047))) (($ $ (-634 (-1161)) (-634 (-763)) (-634 (-1 $ (-634 $)))) 217 (|has| |#1| (-1047))) (($ $ (-634 (-1161)) (-634 (-763)) (-634 (-1 $ $))) 216 (|has| |#1| (-1047))) (($ $ (-634 (-123)) (-634 $) (-1161)) 205 (|has| |#1| (-609 (-541)))) (($ $ (-123) $ (-1161)) 204 (|has| |#1| (-609 (-541)))) (($ $) 203 (|has| |#1| (-609 (-541)))) (($ $ (-634 (-1161))) 202 (|has| |#1| (-609 (-541)))) (($ $ (-1161)) 201 (|has| |#1| (-609 (-541)))) (($ $ (-123) (-1 $ $)) 176) (($ $ (-123) (-1 $ (-634 $))) 175) (($ $ (-634 (-123)) (-634 (-1 $ (-634 $)))) 174) (($ $ (-634 (-123)) (-634 (-1 $ $))) 173) (($ $ (-1161) (-1 $ $)) 172) (($ $ (-1161) (-1 $ (-634 $))) 171) (($ $ (-634 (-1161)) (-634 (-1 $ (-634 $)))) 170) (($ $ (-634 (-1161)) (-634 (-1 $ $))) 169) (($ $ (-634 $) (-634 $)) 140) (($ $ $ $) 139) (($ $ (-288 $)) 138) (($ $ (-634 (-288 $))) 137) (($ $ (-634 (-607 $)) (-634 $)) 136) (($ $ (-607 $) $) 135)) (-2709 (((-763) $) 56)) (-2779 (($ (-123) (-634 $)) 145) (($ (-123) $ $ $ $) 144) (($ (-123) $ $ $) 143) (($ (-123) $ $) 142) (($ (-123) $) 141)) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) 55)) (-3502 (($ $ $) 154) (($ $) 153)) (-4189 (($ $ (-1161)) 243 (|has| |#1| (-1047))) (($ $ (-634 (-1161))) 242 (|has| |#1| (-1047))) (($ $ (-1161) (-763)) 241 (|has| |#1| (-1047))) (($ $ (-634 (-1161)) (-634 (-763))) 240 (|has| |#1| (-1047)))) (-3013 (($ $) 222 (|has| |#1| (-558)))) (-2324 (((-1113 |#1| (-607 $)) $) 221 (|has| |#1| (-558)))) (-1626 (($ $) 178 (|has| $ (-1047)))) (-4278 (((-541) $) 249 (|has| |#1| (-609 (-541)))) (($ (-420 $)) 220 (|has| |#1| (-558))) (((-887 (-381)) $) 185 (|has| |#1| (-609 (-887 (-381))))) (((-887 (-568)) $) 184 (|has| |#1| (-609 (-887 (-568)))))) (-1458 (($ $ $) 248 (|has| |#1| (-478)))) (-2353 (($ $ $) 247 (|has| |#1| (-478)))) (-2745 (((-850) $) 11) (($ (-568)) 27) (($ $) 42) (($ (-409 (-568))) 63) (($ (-953 |#1|)) 244 (|has| |#1| (-1047))) (($ (-409 (-953 |#1|))) 228 (|has| |#1| (-558))) (($ (-409 (-953 (-409 |#1|)))) 226 (|has| |#1| (-558))) (($ (-953 (-409 |#1|))) 225 (|has| |#1| (-558))) (($ (-409 |#1|)) 224 (|has| |#1| (-558))) (($ (-1113 |#1| (-607 $))) 210 (|has| |#1| (-1047))) (($ |#1|) 190) (($ (-1161)) 181) (($ (-607 $)) 132)) (-4371 (((-3 $ "failed") $) 233 (|has| |#1| (-148)))) (-4078 (((-763)) 28)) (-2092 (($ (-634 $)) 150) (($ $) 149)) (-2887 (((-121) (-123)) 161)) (-1826 (((-121) $ $) 38)) (-3058 (($ (-1161) (-634 $)) 200) (($ (-1161) $ $ $ $) 199) (($ (-1161) $ $ $) 198) (($ (-1161) $ $) 197) (($ (-1161) $) 196)) (-1887 (($ $ (-917)) 25) (($ $ (-763)) 32) (($ $ (-568)) 67)) (-3056 (($) 17 T CONST)) (-1556 (($) 29 T CONST)) (-3190 (($ $ (-1161)) 239 (|has| |#1| (-1047))) (($ $ (-634 (-1161))) 238 (|has| |#1| (-1047))) (($ $ (-1161) (-763)) 237 (|has| |#1| (-1047))) (($ $ (-634 (-1161)) (-634 (-763))) 236 (|has| |#1| (-1047)))) (-1751 (((-121) $ $) 128)) (-1738 (((-121) $ $) 127)) (-1717 (((-121) $ $) 6)) (-1745 (((-121) $ $) 129)) (-1732 (((-121) $ $) 126)) (-1779 (($ $ $) 62) (($ (-1113 |#1| (-607 $)) (-1113 |#1| (-607 $))) 223 (|has| |#1| (-558)))) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 24) (($ $ (-763)) 31) (($ $ (-568)) 66) (($ $ (-409 (-568))) 86)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 23) (($ $ (-409 (-568))) 65) (($ (-409 (-568)) $) 64) (($ $ |#1|) 232 (|has| |#1| (-172))) (($ |#1| $) 231 (|has| |#1| (-172))))) +(((-29 |#1|) (-1275) (-13 (-842) (-558))) (T -29)) +((-2932 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-842) (-558))))) (-3214 (*1 *2 *1) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *2 (-634 *1)) (-4 *1 (-29 *3)))) (-2932 (*1 *1 *1 *2) (-12 (-5 *2 (-1161)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-842) (-558))))) (-3214 (*1 *2 *1 *3) (-12 (-5 *3 (-1161)) (-4 *4 (-13 (-842) (-558))) (-5 *2 (-634 *1)) (-4 *1 (-29 *4)))) (-1681 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-842) (-558))))) (-2394 (*1 *2 *1) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *2 (-634 *1)) (-4 *1 (-29 *3)))) (-1681 (*1 *1 *1 *2) (-12 (-5 *2 (-1161)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-842) (-558))))) (-2394 (*1 *2 *1 *3) (-12 (-5 *3 (-1161)) (-4 *4 (-13 (-842) (-558))) (-5 *2 (-634 *1)) (-4 *1 (-29 *4))))) +(-13 (-27) (-432 |t#1|) (-10 -8 (-15 -2932 ($ $)) (-15 -3214 ((-634 $) $)) (-15 -2932 ($ $ (-1161))) (-15 -3214 ((-634 $) $ (-1161))) (-15 -1681 ($ $)) (-15 -2394 ((-634 $) $)) (-15 -1681 ($ $ (-1161))) (-15 -2394 ((-634 $) $ (-1161))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-43 (-409 (-568))) . T) ((-43 |#1|) |has| |#1| (-172)) ((-43 $) . T) ((-27) . T) ((-105) . T) ((-120 (-409 (-568)) (-409 (-568))) . T) ((-120 |#1| |#1|) |has| |#1| (-172)) ((-120 $ $) . T) ((-137) . T) ((-148) |has| |#1| (-148)) ((-150) |has| |#1| (-150)) ((-608 (-850)) . T) ((-172) . T) ((-609 (-541)) |has| |#1| (-609 (-541))) ((-609 (-887 (-381))) |has| |#1| (-609 (-887 (-381)))) ((-609 (-887 (-568))) |has| |#1| (-609 (-887 (-568)))) ((-238) . T) ((-285) . T) ((-301) . T) ((-303 $) . T) ((-296) . T) ((-365) . T) ((-379 |#1|) |has| |#1| (-1047)) ((-402 |#1|) . T) ((-413 |#1|) . T) ((-432 |#1|) . T) ((-453) . T) ((-478) |has| |#1| (-478)) ((-523 (-607 $) $) . T) ((-523 $ $) . T) ((-558) . T) ((-637 (-409 (-568))) . T) ((-637 |#1|) |has| |#1| (-172)) ((-637 $) . T) ((-630 (-568)) -12 (|has| |#1| (-630 (-568))) (|has| |#1| (-1047))) ((-630 |#1|) |has| |#1| (-1047)) ((-707 (-409 (-568))) . T) ((-707 |#1|) |has| |#1| (-172)) ((-707 $) . T) ((-716) . T) ((-842) . T) ((-895 (-1161)) |has| |#1| (-1047)) ((-881 (-381)) |has| |#1| (-881 (-381))) ((-881 (-568)) |has| |#1| (-881 (-568))) ((-879 |#1|) . T) ((-916) . T) ((-1002) . T) ((-1037 (-409 (-568))) -2198 (|has| |#1| (-1037 (-409 (-568)))) (-12 (|has| |#1| (-558)) (|has| |#1| (-1037 (-568))))) ((-1037 (-409 (-953 |#1|))) |has| |#1| (-558)) ((-1037 (-568)) |has| |#1| (-1037 (-568))) ((-1037 (-607 $)) . T) ((-1037 (-953 |#1|)) |has| |#1| (-1047)) ((-1037 (-1161)) . T) ((-1037 |#1|) . T) ((-1053 (-409 (-568))) . T) ((-1053 |#1|) |has| |#1| (-172)) ((-1053 $) . T) ((-1047) . T) ((-1054) . T) ((-1102) . T) ((-1090) . T) ((-1195) . T) ((-1199) . T)) +((-4017 (((-1084 (-215)) $) NIL)) (-1351 (((-1084 (-215)) $) NIL)) (-4069 (($ $ (-215)) 122)) (-2378 (($ (-953 (-568)) (-1161) (-1161) (-1084 (-409 (-568))) (-1084 (-409 (-568)))) 84)) (-2550 (((-634 (-634 (-944 (-215)))) $) 134)) (-2745 (((-850) $) 146))) +(((-30) (-13 (-955) (-10 -8 (-15 -2378 ($ (-953 (-568)) (-1161) (-1161) (-1084 (-409 (-568))) (-1084 (-409 (-568))))) (-15 -4069 ($ $ (-215)))))) (T -30)) +((-2378 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-953 (-568))) (-5 *3 (-1161)) (-5 *4 (-1084 (-409 (-568)))) (-5 *1 (-30)))) (-4069 (*1 *1 *1 *2) (-12 (-5 *2 (-215)) (-5 *1 (-30))))) +(-13 (-955) (-10 -8 (-15 -2378 ($ (-953 (-568)) (-1161) (-1161) (-1084 (-409 (-568))) (-1084 (-409 (-568))))) (-15 -4069 ($ $ (-215))))) +((-2548 (((-3 (-634 |#5|) "failed" "Infinite" (-568)) |#3|) 38)) (-2667 (((-634 |#5|) |#3| (-917)) 33)) (-1991 (((-3 (-634 |#5|) "failed" "Infinite" (-568)) (-634 |#3|)) 40))) +(((-31 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1991 ((-3 (-634 |#5|) "failed" "Infinite" (-568)) (-634 |#3|))) (-15 -2548 ((-3 (-634 |#5|) "failed" "Infinite" (-568)) |#3|)) (-15 -2667 ((-634 |#5|) |#3| (-917)))) (-365) (-634 (-1161)) (-950 |#1| |#4| (-852 |#2|)) (-230 (-1697 |#2|) (-763)) (-971 |#1|)) (T -31)) +((-2667 (*1 *2 *3 *4) (-12 (-5 *4 (-917)) (-4 *5 (-365)) (-14 *6 (-634 (-1161))) (-4 *7 (-230 (-1697 *6) (-763))) (-5 *2 (-634 *8)) (-5 *1 (-31 *5 *6 *3 *7 *8)) (-4 *3 (-950 *5 *7 (-852 *6))) (-4 *8 (-971 *5)))) (-2548 (*1 *2 *3) (-12 (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *6 (-230 (-1697 *5) (-763))) (-5 *2 (-3 (-634 *7) "failed" "Infinite" (-568))) (-5 *1 (-31 *4 *5 *3 *6 *7)) (-4 *3 (-950 *4 *6 (-852 *5))) (-4 *7 (-971 *4)))) (-1991 (*1 *2 *3) (-12 (-5 *3 (-634 *6)) (-4 *6 (-950 *4 *7 (-852 *5))) (-4 *7 (-230 (-1697 *5) (-763))) (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-5 *2 (-3 (-634 *8) "failed" "Infinite" (-568))) (-5 *1 (-31 *4 *5 *6 *7 *8)) (-4 *8 (-971 *4))))) +(-10 -7 (-15 -1991 ((-3 (-634 |#5|) "failed" "Infinite" (-568)) (-634 |#3|))) (-15 -2548 ((-3 (-634 |#5|) "failed" "Infinite" (-568)) |#3|)) (-15 -2667 ((-634 |#5|) |#3| (-917)))) +((-2152 (((-1157 (-1157 |#1|)) |#3|) 35)) (-2351 (((-634 (-634 (-1157 (-1157 |#1|)))) (-634 (-1157 (-1157 |#1|)))) 54)) (-2548 (((-3 (-634 |#5|) "failed" "Infinite" (-568)) (-1157 (-1157 |#1|))) 56) (((-3 (-634 |#5|) "failed" "Infinite" (-568)) |#3|) 57)) (-2667 (((-3 (-634 |#5|) "failed" "Infinite" (-568)) |#3| (-917)) 51)) (-1832 (((-3 (-634 |#5|) "failed" "Infinite" (-568)) (-634 (-1157 (-1157 |#1|)))) 70)) (-1991 (((-3 (-634 |#5|) "failed" "Infinite" (-568)) (-634 |#3|)) 50))) +(((-32 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2548 ((-3 (-634 |#5|) "failed" "Infinite" (-568)) |#3|)) (-15 -2548 ((-3 (-634 |#5|) "failed" "Infinite" (-568)) (-1157 (-1157 |#1|)))) (-15 -1832 ((-3 (-634 |#5|) "failed" "Infinite" (-568)) (-634 (-1157 (-1157 |#1|))))) (-15 -1991 ((-3 (-634 |#5|) "failed" "Infinite" (-568)) (-634 |#3|))) (-15 -2152 ((-1157 (-1157 |#1|)) |#3|)) (-15 -2351 ((-634 (-634 (-1157 (-1157 |#1|)))) (-634 (-1157 (-1157 |#1|))))) (-15 -2667 ((-3 (-634 |#5|) "failed" "Infinite" (-568)) |#3| (-917)))) (-365) (-634 (-1161)) (-950 |#1| |#4| (-852 |#2|)) (-230 (-1697 |#2|) (-763)) (-971 |#1|)) (T -32)) +((-2667 (*1 *2 *3 *4) (-12 (-5 *4 (-917)) (-4 *5 (-365)) (-14 *6 (-634 (-1161))) (-4 *7 (-230 (-1697 *6) (-763))) (-5 *2 (-3 (-634 *8) "failed" "Infinite" (-568))) (-5 *1 (-32 *5 *6 *3 *7 *8)) (-4 *3 (-950 *5 *7 (-852 *6))) (-4 *8 (-971 *5)))) (-2351 (*1 *2 *3) (-12 (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *7 (-230 (-1697 *5) (-763))) (-5 *2 (-634 (-634 (-1157 (-1157 *4))))) (-5 *1 (-32 *4 *5 *6 *7 *8)) (-5 *3 (-634 (-1157 (-1157 *4)))) (-4 *6 (-950 *4 *7 (-852 *5))) (-4 *8 (-971 *4)))) (-2152 (*1 *2 *3) (-12 (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *6 (-230 (-1697 *5) (-763))) (-5 *2 (-1157 (-1157 *4))) (-5 *1 (-32 *4 *5 *3 *6 *7)) (-4 *3 (-950 *4 *6 (-852 *5))) (-4 *7 (-971 *4)))) (-1991 (*1 *2 *3) (-12 (-5 *3 (-634 *6)) (-4 *6 (-950 *4 *7 (-852 *5))) (-4 *7 (-230 (-1697 *5) (-763))) (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-5 *2 (-3 (-634 *8) "failed" "Infinite" (-568))) (-5 *1 (-32 *4 *5 *6 *7 *8)) (-4 *8 (-971 *4)))) (-1832 (*1 *2 *3) (-12 (-5 *3 (-634 (-1157 (-1157 *4)))) (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *7 (-230 (-1697 *5) (-763))) (-5 *2 (-3 (-634 *8) "failed" "Infinite" (-568))) (-5 *1 (-32 *4 *5 *6 *7 *8)) (-4 *6 (-950 *4 *7 (-852 *5))) (-4 *8 (-971 *4)))) (-2548 (*1 *2 *3) (-12 (-5 *3 (-1157 (-1157 *4))) (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *7 (-230 (-1697 *5) (-763))) (-5 *2 (-3 (-634 *8) "failed" "Infinite" (-568))) (-5 *1 (-32 *4 *5 *6 *7 *8)) (-4 *6 (-950 *4 *7 (-852 *5))) (-4 *8 (-971 *4)))) (-2548 (*1 *2 *3) (-12 (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *6 (-230 (-1697 *5) (-763))) (-5 *2 (-3 (-634 *7) "failed" "Infinite" (-568))) (-5 *1 (-32 *4 *5 *3 *6 *7)) (-4 *3 (-950 *4 *6 (-852 *5))) (-4 *7 (-971 *4))))) +(-10 -7 (-15 -2548 ((-3 (-634 |#5|) "failed" "Infinite" (-568)) |#3|)) (-15 -2548 ((-3 (-634 |#5|) "failed" "Infinite" (-568)) (-1157 (-1157 |#1|)))) (-15 -1832 ((-3 (-634 |#5|) "failed" "Infinite" (-568)) (-634 (-1157 (-1157 |#1|))))) (-15 -1991 ((-3 (-634 |#5|) "failed" "Infinite" (-568)) (-634 |#3|))) (-15 -2152 ((-1157 (-1157 |#1|)) |#3|)) (-15 -2351 ((-634 (-634 (-1157 (-1157 |#1|)))) (-634 (-1157 (-1157 |#1|))))) (-15 -2667 ((-3 (-634 |#5|) "failed" "Infinite" (-568)) |#3| (-917)))) +((-2447 (((-121) $ $) NIL)) (-2436 ((|#1| $ (-568) |#1|) NIL)) (-1501 (((-634 $) (-634 $) (-763)) NIL) (((-634 $) (-634 $)) NIL)) (-2688 (((-121) $ (-763)) NIL) (((-121) $) NIL)) (-3890 (((-634 |#1|) $) NIL)) (-2476 (($) NIL)) (-3340 (((-634 $) $) NIL) (((-634 $) $ (-763)) NIL)) (-3896 (((-634 |#1|) $) NIL)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2779 ((|#1| $ (-568)) NIL)) (-3206 (((-917) $) NIL)) (-3233 ((|#1| $) NIL)) (-1458 (($ $ (-763)) NIL) (($ $) NIL)) (-2745 (((-850) $) NIL) (((-634 |#1|) $) NIL) (($ (-634 |#1|)) NIL)) (-2637 (($ (-634 |#1|)) NIL)) (-1717 (((-121) $ $) NIL))) +(((-33 |#1|) (-37 |#1|) (-365)) (T -33)) NIL (-37 |#1|) -((-2601 (((-121) $ $) NIL)) (-2764 (((-849 |#1|) $ (-560) (-849 |#1|)) NIL)) (-1990 (((-626 $) (-626 $) (-755)) NIL) (((-626 $) (-626 $)) NIL)) (-1689 (((-121) $ (-755)) NIL) (((-121) $) NIL)) (-2004 (((-626 (-849 |#1|)) $) NIL)) (-3274 (($) NIL)) (-1805 (((-626 $) $) NIL) (((-626 $) $ (-755)) NIL)) (-2843 (((-626 (-849 |#1|)) $) NIL)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2778 (((-849 |#1|) $ (-560)) NIL)) (-3662 (((-909) $) NIL)) (-2034 (((-849 |#1|) $) NIL)) (-3101 (($ $ (-755)) NIL) (($ $) NIL)) (-2801 (((-842) $) NIL) (((-626 (-849 |#1|)) $) NIL) (($ (-626 (-849 |#1|))) NIL)) (-3280 (($ (-626 (-849 |#1|))) NIL)) (-1653 (((-121) $ $) NIL))) -(((-34 |#1|) (-37 (-849 |#1|)) (-344)) (T -34)) +((-2447 (((-121) $ $) NIL)) (-2436 (((-857 |#1|) $ (-568) (-857 |#1|)) NIL)) (-1501 (((-634 $) (-634 $) (-763)) NIL) (((-634 $) (-634 $)) NIL)) (-2688 (((-121) $ (-763)) NIL) (((-121) $) NIL)) (-3890 (((-634 (-857 |#1|)) $) NIL)) (-2476 (($) NIL)) (-3340 (((-634 $) $) NIL) (((-634 $) $ (-763)) NIL)) (-3896 (((-634 (-857 |#1|)) $) NIL)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2779 (((-857 |#1|) $ (-568)) NIL)) (-3206 (((-917) $) NIL)) (-3233 (((-857 |#1|) $) NIL)) (-1458 (($ $ (-763)) NIL) (($ $) NIL)) (-2745 (((-850) $) NIL) (((-634 (-857 |#1|)) $) NIL) (($ (-634 (-857 |#1|))) NIL)) (-2637 (($ (-634 (-857 |#1|))) NIL)) (-1717 (((-121) $ $) NIL))) +(((-34 |#1|) (-37 (-857 |#1|)) (-350)) (T -34)) NIL -(-37 (-849 |#1|)) -((-2601 (((-121) $ $) NIL)) (-2764 ((|#2| $ (-560) |#2|) NIL)) (-1990 (((-626 $) (-626 $) (-755)) 39) (((-626 $) (-626 $)) 40)) (-1689 (((-121) $ (-755)) 36) (((-121) $) 38)) (-2004 (((-626 |#2|) $) 31)) (-3274 (($) 12)) (-1805 (((-626 $) $) 48) (((-626 $) $ (-755)) 45)) (-2843 (((-626 |#2|) $) 30)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2778 ((|#2| $ (-560)) NIL)) (-3662 (((-909) $) 20)) (-2034 ((|#2| $) 26)) (-3101 (($ $ (-755)) 33) (($ $) 47)) (-2801 (((-842) $) 23) (((-626 |#2|) $) 28) (($ (-626 |#2|)) 51)) (-3280 (($ (-626 |#2|)) 29)) (-1653 (((-121) $ $) 35))) -(((-35 |#1| |#2|) (-37 |#2|) (-755) (-359)) (T -35)) +(-37 (-857 |#1|)) +((-2447 (((-121) $ $) NIL)) (-2436 ((|#2| $ (-568) |#2|) NIL)) (-1501 (((-634 $) (-634 $) (-763)) 39) (((-634 $) (-634 $)) 40)) (-2688 (((-121) $ (-763)) 36) (((-121) $) 38)) (-3890 (((-634 |#2|) $) 31)) (-2476 (($) 12)) (-3340 (((-634 $) $) 48) (((-634 $) $ (-763)) 45)) (-3896 (((-634 |#2|) $) 30)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2779 ((|#2| $ (-568)) NIL)) (-3206 (((-917) $) 20)) (-3233 ((|#2| $) 26)) (-1458 (($ $ (-763)) 33) (($ $) 47)) (-2745 (((-850) $) 23) (((-634 |#2|) $) 28) (($ (-634 |#2|)) 51)) (-2637 (($ (-634 |#2|)) 29)) (-1717 (((-121) $ $) 35))) +(((-35 |#1| |#2|) (-37 |#2|) (-763) (-365)) (T -35)) NIL (-37 |#2|) -((-1449 ((|#2| (-1149 |#2|) (-1153)) 42)) (-4403 (((-123) (-123)) 54)) (-2929 (((-1149 |#2|) (-599 |#2|)) 129 (|has| |#1| (-1029 (-560))))) (-3164 ((|#2| |#1| (-560)) 108 (|has| |#1| (-1029 (-560))))) (-3259 ((|#2| (-1149 |#2|) |#2|) 30)) (-3434 (((-842) (-626 |#2|)) 84)) (-3591 ((|#2| |#2|) 125 (|has| |#1| (-1029 (-560))))) (-2409 (((-121) (-123)) 18)) (** ((|#2| |#2| (-403 (-560))) 89 (|has| |#1| (-1029 (-560)))))) -(((-36 |#1| |#2|) (-10 -7 (-15 -1449 (|#2| (-1149 |#2|) (-1153))) (-15 -4403 ((-123) (-123))) (-15 -2409 ((-121) (-123))) (-15 -3259 (|#2| (-1149 |#2|) |#2|)) (-15 -3434 ((-842) (-626 |#2|))) (IF (|has| |#1| (-1029 (-560))) (PROGN (-15 ** (|#2| |#2| (-403 (-560)))) (-15 -2929 ((-1149 |#2|) (-599 |#2|))) (-15 -3591 (|#2| |#2|)) (-15 -3164 (|#2| |#1| (-560)))) |noBranch|)) (-13 (-834) (-550)) (-426 |#1|)) (T -36)) -((-3164 (*1 *2 *3 *4) (-12 (-5 *4 (-560)) (-4 *2 (-426 *3)) (-5 *1 (-36 *3 *2)) (-4 *3 (-1029 *4)) (-4 *3 (-13 (-834) (-550))))) (-3591 (*1 *2 *2) (-12 (-4 *3 (-1029 (-560))) (-4 *3 (-13 (-834) (-550))) (-5 *1 (-36 *3 *2)) (-4 *2 (-426 *3)))) (-2929 (*1 *2 *3) (-12 (-5 *3 (-599 *5)) (-4 *5 (-426 *4)) (-4 *4 (-1029 (-560))) (-4 *4 (-13 (-834) (-550))) (-5 *2 (-1149 *5)) (-5 *1 (-36 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-403 (-560))) (-4 *4 (-1029 (-560))) (-4 *4 (-13 (-834) (-550))) (-5 *1 (-36 *4 *2)) (-4 *2 (-426 *4)))) (-3434 (*1 *2 *3) (-12 (-5 *3 (-626 *5)) (-4 *5 (-426 *4)) (-4 *4 (-13 (-834) (-550))) (-5 *2 (-842)) (-5 *1 (-36 *4 *5)))) (-3259 (*1 *2 *3 *2) (-12 (-5 *3 (-1149 *2)) (-4 *2 (-426 *4)) (-4 *4 (-13 (-834) (-550))) (-5 *1 (-36 *4 *2)))) (-2409 (*1 *2 *3) (-12 (-5 *3 (-123)) (-4 *4 (-13 (-834) (-550))) (-5 *2 (-121)) (-5 *1 (-36 *4 *5)) (-4 *5 (-426 *4)))) (-4403 (*1 *2 *2) (-12 (-5 *2 (-123)) (-4 *3 (-13 (-834) (-550))) (-5 *1 (-36 *3 *4)) (-4 *4 (-426 *3)))) (-1449 (*1 *2 *3 *4) (-12 (-5 *3 (-1149 *2)) (-5 *4 (-1153)) (-4 *2 (-426 *5)) (-5 *1 (-36 *5 *2)) (-4 *5 (-13 (-834) (-550)))))) -(-10 -7 (-15 -1449 (|#2| (-1149 |#2|) (-1153))) (-15 -4403 ((-123) (-123))) (-15 -2409 ((-121) (-123))) (-15 -3259 (|#2| (-1149 |#2|) |#2|)) (-15 -3434 ((-842) (-626 |#2|))) (IF (|has| |#1| (-1029 (-560))) (PROGN (-15 ** (|#2| |#2| (-403 (-560)))) (-15 -2929 ((-1149 |#2|) (-599 |#2|))) (-15 -3591 (|#2| |#2|)) (-15 -3164 (|#2| |#1| (-560)))) |noBranch|)) -((-2601 (((-121) $ $) 7)) (-2764 ((|#1| $ (-560) |#1|) 14)) (-1990 (((-626 $) (-626 $) (-755)) 20) (((-626 $) (-626 $)) 19)) (-1689 (((-121) $ (-755)) 18) (((-121) $) 17)) (-2004 (((-626 |#1|) $) 13)) (-3274 (($) 29)) (-1805 (((-626 $) $) 24) (((-626 $) $ (-755)) 23)) (-2843 (((-626 |#1|) $) 16)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-2778 ((|#1| $ (-560)) 15)) (-3662 (((-909) $) 12)) (-2034 ((|#1| $) 27)) (-3101 (($ $ (-755)) 22) (($ $) 21)) (-2801 (((-842) $) 11) (((-626 |#1|) $) 26) (($ (-626 |#1|)) 25)) (-3280 (($ (-626 |#1|)) 28)) (-1653 (((-121) $ $) 6))) -(((-37 |#1|) (-1267) (-359)) (T -37)) -((-3274 (*1 *1) (-12 (-4 *1 (-37 *2)) (-4 *2 (-359)))) (-3280 (*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-359)) (-4 *1 (-37 *3)))) (-2034 (*1 *2 *1) (-12 (-4 *1 (-37 *2)) (-4 *2 (-359)))) (-2801 (*1 *2 *1) (-12 (-4 *1 (-37 *3)) (-4 *3 (-359)) (-5 *2 (-626 *3)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-359)) (-4 *1 (-37 *3)))) (-1805 (*1 *2 *1) (-12 (-4 *3 (-359)) (-5 *2 (-626 *1)) (-4 *1 (-37 *3)))) (-1805 (*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-4 *4 (-359)) (-5 *2 (-626 *1)) (-4 *1 (-37 *4)))) (-3101 (*1 *1 *1 *2) (-12 (-5 *2 (-755)) (-4 *1 (-37 *3)) (-4 *3 (-359)))) (-3101 (*1 *1 *1) (-12 (-4 *1 (-37 *2)) (-4 *2 (-359)))) (-1990 (*1 *2 *2 *3) (-12 (-5 *2 (-626 *1)) (-5 *3 (-755)) (-4 *1 (-37 *4)) (-4 *4 (-359)))) (-1990 (*1 *2 *2) (-12 (-5 *2 (-626 *1)) (-4 *1 (-37 *3)) (-4 *3 (-359)))) (-1689 (*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-4 *1 (-37 *4)) (-4 *4 (-359)) (-5 *2 (-121)))) (-1689 (*1 *2 *1) (-12 (-4 *1 (-37 *3)) (-4 *3 (-359)) (-5 *2 (-121)))) (-2843 (*1 *2 *1) (-12 (-4 *1 (-37 *3)) (-4 *3 (-359)) (-5 *2 (-626 *3)))) (-2778 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *1 (-37 *2)) (-4 *2 (-359)))) (-2764 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-560)) (-4 *1 (-37 *2)) (-4 *2 (-359)))) (-2004 (*1 *2 *1) (-12 (-4 *1 (-37 *3)) (-4 *3 (-359)) (-5 *2 (-626 *3))))) -(-13 (-1080) (-10 -8 (-15 -3274 ($)) (-15 -3280 ($ (-626 |t#1|))) (-15 -2034 (|t#1| $)) (-15 -2801 ((-626 |t#1|) $)) (-15 -2801 ($ (-626 |t#1|))) (-15 -1805 ((-626 $) $)) (-15 -1805 ((-626 $) $ (-755))) (-15 -3101 ($ $ (-755))) (-15 -3101 ($ $)) (-15 -1990 ((-626 $) (-626 $) (-755))) (-15 -1990 ((-626 $) (-626 $))) (-15 -1689 ((-121) $ (-755))) (-15 -1689 ((-121) $)) (-15 -2843 ((-626 |t#1|) $)) (-15 -2778 (|t#1| $ (-560))) (-15 -2764 (|t#1| $ (-560) |t#1|)) (-15 -2004 ((-626 |t#1|) $)))) -(((-105) . T) ((-600 (-842)) . T) ((-1082) . T) ((-1080) . T)) -((-3909 (((-121) $ (-755)) 16)) (-4236 (($) 10)) (-2122 (((-121) $ (-755)) 15)) (-3441 (((-121) $ (-755)) 14)) (-2214 (((-121) $ $) 8)) (-4191 (((-121) $) 13))) -(((-38 |#1|) (-10 -8 (-15 -4236 (|#1|)) (-15 -3909 ((-121) |#1| (-755))) (-15 -2122 ((-121) |#1| (-755))) (-15 -3441 ((-121) |#1| (-755))) (-15 -4191 ((-121) |#1|)) (-15 -2214 ((-121) |#1| |#1|))) (-39)) (T -38)) -NIL -(-10 -8 (-15 -4236 (|#1|)) (-15 -3909 ((-121) |#1| (-755))) (-15 -2122 ((-121) |#1| (-755))) (-15 -3441 ((-121) |#1| (-755))) (-15 -4191 ((-121) |#1|)) (-15 -2214 ((-121) |#1| |#1|))) -((-3909 (((-121) $ (-755)) 8)) (-4236 (($) 7 T CONST)) (-2122 (((-121) $ (-755)) 9)) (-3441 (((-121) $ (-755)) 10)) (-2214 (((-121) $ $) 14)) (-4191 (((-121) $) 11)) (-3260 (($) 12)) (-2813 (($ $) 13)) (-2271 (((-755) $) 6 (|has| $ (-6 -4505))))) -(((-39) (-1267)) (T -39)) -((-2214 (*1 *2 *1 *1) (-12 (-4 *1 (-39)) (-5 *2 (-121)))) (-2813 (*1 *1 *1) (-4 *1 (-39))) (-3260 (*1 *1) (-4 *1 (-39))) (-4191 (*1 *2 *1) (-12 (-4 *1 (-39)) (-5 *2 (-121)))) (-3441 (*1 *2 *1 *3) (-12 (-4 *1 (-39)) (-5 *3 (-755)) (-5 *2 (-121)))) (-2122 (*1 *2 *1 *3) (-12 (-4 *1 (-39)) (-5 *3 (-755)) (-5 *2 (-121)))) (-3909 (*1 *2 *1 *3) (-12 (-4 *1 (-39)) (-5 *3 (-755)) (-5 *2 (-121)))) (-4236 (*1 *1) (-4 *1 (-39))) (-2271 (*1 *2 *1) (-12 (|has| *1 (-6 -4505)) (-4 *1 (-39)) (-5 *2 (-755))))) -(-13 (-1187) (-10 -8 (-15 -2214 ((-121) $ $)) (-15 -2813 ($ $)) (-15 -3260 ($)) (-15 -4191 ((-121) $)) (-15 -3441 ((-121) $ (-755))) (-15 -2122 ((-121) $ (-755))) (-15 -3909 ((-121) $ (-755))) (-15 -4236 ($) -3565) (IF (|has| $ (-6 -4505)) (-15 -2271 ((-755) $)) |noBranch|))) -(((-1187) . T)) -((-2598 (($ $) 11)) (-2590 (($ $) 10)) (-2608 (($ $) 9)) (-3689 (($ $) 8)) (-2604 (($ $) 7)) (-2594 (($ $) 6))) -(((-40) (-1267)) (T -40)) -((-2598 (*1 *1 *1) (-4 *1 (-40))) (-2590 (*1 *1 *1) (-4 *1 (-40))) (-2608 (*1 *1 *1) (-4 *1 (-40))) (-3689 (*1 *1 *1) (-4 *1 (-40))) (-2604 (*1 *1 *1) (-4 *1 (-40))) (-2594 (*1 *1 *1) (-4 *1 (-40)))) -(-13 (-10 -8 (-15 -2594 ($ $)) (-15 -2604 ($ $)) (-15 -3689 ($ $)) (-15 -2608 ($ $)) (-15 -2590 ($ $)) (-15 -2598 ($ $)))) -((-2601 (((-121) $ $) 18 (-2318 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)) (|has| |#2| (-1082)) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082))))) (-2981 (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) 117)) (-1886 (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) 140)) (-1417 (($ $) 138)) (-4050 (($) 66) (($ (-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) 65)) (-2960 (((-1241) $ |#1| |#1|) 93 (|has| $ (-6 -4506))) (((-1241) $ (-560) (-560)) 170 (|has| $ (-6 -4506)))) (-2435 (($ $ (-560)) 151 (|has| $ (-6 -4506)))) (-3189 (((-121) (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) 201) (((-121) $) 195 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-834)))) (-4410 (($ (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) 192 (|has| $ (-6 -4506))) (($ $) 191 (-12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-834)) (|has| $ (-6 -4506))))) (-3743 (($ (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) 202) (($ $) 196 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-834)))) (-3909 (((-121) $ (-755)) 8)) (-3119 (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) 126 (|has| $ (-6 -4506)))) (-1741 (($ $ $) 147 (|has| $ (-6 -4506)))) (-1920 (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) 149 (|has| $ (-6 -4506)))) (-4133 (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) 145 (|has| $ (-6 -4506)))) (-2764 ((|#2| $ |#1| |#2|) 67) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $ (-560) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) 181 (|has| $ (-6 -4506))) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $ (-1202 (-560)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) 152 (|has| $ (-6 -4506))) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $ "last" (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) 150 (|has| $ (-6 -4506))) (($ $ "rest" $) 148 (|has| $ (-6 -4506))) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $ "first" (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) 146 (|has| $ (-6 -4506))) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $ "value" (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) 125 (|has| $ (-6 -4506)))) (-4043 (($ $ (-626 $)) 124 (|has| $ (-6 -4506)))) (-3763 (($ (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) 42 (|has| $ (-6 -4505))) (($ (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) 208)) (-3802 (($ (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) 52 (|has| $ (-6 -4505))) (($ (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) 167 (|has| $ (-6 -4505)))) (-1603 (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) 139)) (-2722 (((-3 |#2| "failed") |#1| $) 57)) (-4236 (($) 7 T CONST)) (-4030 (($ $) 193 (|has| $ (-6 -4506)))) (-2883 (($ $) 203)) (-2877 (($ $ (-755)) 134) (($ $) 132)) (-3568 (($ $) 206 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (-2868 (($ $) 55 (-2318 (-12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)) (|has| $ (-6 -4505))) (-12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)) (|has| $ (-6 -4505)))))) (-3561 (($ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) 44 (|has| $ (-6 -4505))) (($ (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) 43 (|has| $ (-6 -4505))) (((-3 |#2| "failed") |#1| $) 58) (($ (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) 212) (($ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) 207 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (-4310 (($ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) 54 (-12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)) (|has| $ (-6 -4505)))) (($ (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) 51 (|has| $ (-6 -4505))) (($ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) 169 (-12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)) (|has| $ (-6 -4505)))) (($ (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) 166 (|has| $ (-6 -4505)))) (-2342 (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) 53 (-12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)) (|has| $ (-6 -4505)))) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) 50 (|has| $ (-6 -4505))) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) 49 (|has| $ (-6 -4505))) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) 168 (-12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)) (|has| $ (-6 -4505)))) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) 165 (|has| $ (-6 -4505))) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) 164 (|has| $ (-6 -4505)))) (-1746 ((|#2| $ |#1| |#2|) 81 (|has| $ (-6 -4506))) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $ (-560) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) 182 (|has| $ (-6 -4506)))) (-1361 ((|#2| $ |#1|) 82) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $ (-560)) 180)) (-2737 (((-121) $) 184)) (-2839 (((-560) (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) 200) (((-560) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) 199 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082))) (((-560) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $ (-560)) 198 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (-1981 (((-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) 30 (|has| $ (-6 -4505))) (((-626 |#2|) $) 73 (|has| $ (-6 -4505))) (((-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) 106 (|has| $ (-6 -4505)))) (-3971 (((-626 $) $) 115)) (-2420 (((-121) $ $) 123 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (-1721 (($ (-755) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) 161)) (-2122 (((-121) $ (-755)) 9)) (-4099 ((|#1| $) 90 (|has| |#1| (-834))) (((-560) $) 172 (|has| (-560) (-834)))) (-4325 (($ $ $) 190 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-834)))) (-2037 (($ (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $ $) 209) (($ $ $) 205 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-834)))) (-2492 (($ (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $ $) 204) (($ $ $) 197 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-834)))) (-2130 (((-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) 29 (|has| $ (-6 -4505))) (((-626 |#2|) $) 74 (|has| $ (-6 -4505))) (((-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) 107 (|has| $ (-6 -4505)))) (-2030 (((-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)) (|has| $ (-6 -4505)))) (((-121) |#2| $) 76 (-12 (|has| |#2| (-1082)) (|has| $ (-6 -4505)))) (((-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) 109 (-12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)) (|has| $ (-6 -4505))))) (-2767 ((|#1| $) 89 (|has| |#1| (-834))) (((-560) $) 173 (|has| (-560) (-834)))) (-2501 (($ $ $) 189 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-834)))) (-3778 (($ (-1 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) 34 (|has| $ (-6 -4506))) (($ (-1 |#2| |#2|) $) 69 (|has| $ (-6 -4506))) (($ (-1 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) 102 (|has| $ (-6 -4506)))) (-2803 (($ (-1 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 68) (($ (-1 |#2| |#2| |#2|) $ $) 64) (($ (-1 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $ $) 158) (($ (-1 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) 101)) (-2843 (($ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) 217)) (-3441 (((-121) $ (-755)) 10)) (-2173 (((-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) 120)) (-3992 (((-121) $) 116)) (-1291 (((-1135) $) 22 (-2318 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)) (|has| |#2| (-1082)) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082))))) (-4139 (($ $ (-755)) 137) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) 135)) (-1377 (((-626 |#1|) $) 59)) (-3855 (((-121) |#1| $) 60)) (-2525 (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) 36)) (-4345 (($ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) 37) (($ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $ (-560)) 211) (($ $ $ (-560)) 210)) (-4103 (($ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $ (-560)) 154) (($ $ $ (-560)) 153)) (-1529 (((-626 |#1|) $) 87) (((-626 (-560)) $) 175)) (-1310 (((-121) |#1| $) 86) (((-121) (-560) $) 176)) (-4353 (((-1100) $) 21 (-2318 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)) (|has| |#2| (-1082)) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082))))) (-2824 ((|#2| $) 91 (|has| |#1| (-834))) (($ $ (-755)) 131) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) 129)) (-3786 (((-3 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) "failed") (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) 48) (((-3 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) "failed") (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) 163)) (-3038 (($ $ |#2|) 92 (|has| $ (-6 -4506))) (($ $ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) 171 (|has| $ (-6 -4506)))) (-2146 (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) 38)) (-2957 (((-121) $) 183)) (-2865 (((-121) (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) 32 (|has| $ (-6 -4505))) (((-121) (-1 (-121) |#2|) $) 71 (|has| $ (-6 -4505))) (((-121) (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) 104 (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))))) 26 (-12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (($ $ (-283 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) 25 (-12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (($ $ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) 24 (-12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (($ $ (-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) (-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) 23 (-12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (($ $ (-626 |#2|) (-626 |#2|)) 80 (-12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082)))) (($ $ |#2| |#2|) 79 (-12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082)))) (($ $ (-283 |#2|)) 78 (-12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082)))) (($ $ (-626 (-283 |#2|))) 77 (-12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082)))) (($ $ (-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) (-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) 113 (-12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (($ $ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) 112 (-12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (($ $ (-283 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) 111 (-12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (($ $ (-626 (-283 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))))) 110 (-12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082))))) (-2214 (((-121) $ $) 14)) (-1290 (((-121) |#2| $) 88 (-12 (|has| $ (-6 -4505)) (|has| |#2| (-1082)))) (((-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) 174 (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082))))) (-4460 (((-626 |#2|) $) 85) (((-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) 177)) (-4191 (((-121) $) 11)) (-3260 (($) 12)) (-2778 ((|#2| $ |#1|) 84) ((|#2| $ |#1| |#2|) 83) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $ (-560) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) 179) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $ (-560)) 178) (($ $ (-1202 (-560))) 157) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $ "last") 136) (($ $ "rest") 133) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $ "first") 130) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $ "value") 118)) (-1435 (((-560) $ $) 121)) (-3958 (($) 46) (($ (-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) 45)) (-4094 (($ $ (-560)) 214) (($ $ (-1202 (-560))) 213)) (-2949 (($ $ (-560)) 156) (($ $ (-1202 (-560))) 155)) (-3316 (((-121) $) 119)) (-4432 (($ $) 143)) (-2641 (($ $) 144 (|has| $ (-6 -4506)))) (-2751 (((-755) $) 142)) (-4208 (($ $) 141)) (-4035 (((-755) (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) 31 (|has| $ (-6 -4505))) (((-755) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)) (|has| $ (-6 -4505)))) (((-755) |#2| $) 75 (-12 (|has| |#2| (-1082)) (|has| $ (-6 -4505)))) (((-755) (-1 (-121) |#2|) $) 72 (|has| $ (-6 -4505))) (((-755) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) 108 (-12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)) (|has| $ (-6 -4505)))) (((-755) (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) 105 (|has| $ (-6 -4505)))) (-4072 (($ $ $ (-560)) 194 (|has| $ (-6 -4506)))) (-2813 (($ $) 13)) (-4255 (((-533) $) 56 (-2318 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-601 (-533))) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-601 (-533)))))) (-4162 (($ (-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) 47) (($ (-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) 162)) (-3602 (($ $ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) 216) (($ $ $) 215)) (-2849 (($ $ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) 160) (($ (-626 $)) 159) (($ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) 128) (($ $ $) 127)) (-2801 (((-842) $) 20 (-2318 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)) (|has| |#2| (-1082)) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082))))) (-2853 (((-626 $) $) 114)) (-3761 (((-121) $ $) 122 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (-1354 (($ (-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) 39)) (-2909 (((-3 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) "failed") |#1| $) 100)) (-3656 (((-121) (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) 33 (|has| $ (-6 -4505))) (((-121) (-1 (-121) |#2|) $) 70 (|has| $ (-6 -4505))) (((-121) (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) 103 (|has| $ (-6 -4505)))) (-1691 (((-121) $ $) 187 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-834)))) (-1675 (((-121) $ $) 186 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-834)))) (-1653 (((-121) $ $) 19 (-2318 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)) (|has| |#2| (-1082)) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082))))) (-1683 (((-121) $ $) 188 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-834)))) (-1667 (((-121) $ $) 185 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-834)))) (-2271 (((-755) $) 6 (|has| $ (-6 -4505))))) -(((-41 |#1| |#2|) (-1267) (-1082) (-1082)) (T -41)) -((-2909 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-41 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-5 *2 (-2 (|:| -3655 *3) (|:| -2371 *4)))))) -(-13 (-1164 |t#1| |t#2|) (-650 (-2 (|:| -3655 |t#1|) (|:| -2371 |t#2|))) (-10 -8 (-15 -2909 ((-3 (-2 (|:| -3655 |t#1|) (|:| -2371 |t#2|)) "failed") |t#1| $)))) -(((-39) . T) ((-111 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) . T) ((-105) -2318 (|has| |#2| (-1082)) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-834))) ((-600 (-842)) -2318 (|has| |#2| (-1082)) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-834))) ((-152 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) . T) ((-601 (-533)) |has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-601 (-533))) ((-217 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) . T) ((-223 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) . T) ((-276 (-560) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) . T) ((-276 |#1| |#2|) . T) ((-278 (-560) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) . T) ((-278 |#1| |#2|) . T) ((-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) -12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082))) ((-298 |#2|) -12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082))) ((-272 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) . T) ((-369 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) . T) ((-492 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) . T) ((-492 |#2|) . T) ((-593 (-560) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) . T) ((-593 |#1| |#2|) . T) ((-515 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) -12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082))) ((-515 |#2| |#2|) -12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082))) ((-597 |#1| |#2|) . T) ((-632 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) . T) ((-650 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) . T) ((-834) |has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-834)) ((-1002 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) . T) ((-1082) -2318 (|has| |#2| (-1082)) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-834))) ((-1126 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) . T) ((-1164 |#1| |#2|) . T) ((-1187) . T) ((-1223 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) . T)) -((-2801 (((-842) $) NIL) (($ (-560)) NIL) (($ |#2|) 10))) -(((-42 |#1| |#2|) (-10 -8 (-15 -2801 (|#1| |#2|)) (-15 -2801 (|#1| (-560))) (-15 -2801 ((-842) |#1|))) (-43 |#2|) (-170)) (T -42)) -NIL -(-10 -8 (-15 -2801 (|#1| |#2|)) (-15 -2801 (|#1| (-560))) (-15 -2801 ((-842) |#1|))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-2314 (((-3 $ "failed") $ $) 18)) (-4236 (($) 16 T CONST)) (-1823 (((-3 $ "failed") $) 33)) (-2642 (((-121) $) 30)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-2801 (((-842) $) 11) (($ (-560)) 27) (($ |#1|) 36)) (-1751 (((-755)) 28)) (-2464 (($ $ (-909)) 25) (($ $ (-755)) 32)) (-3304 (($) 17 T CONST)) (-1459 (($) 29 T CONST)) (-1653 (((-121) $ $) 6)) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 24) (($ $ (-755)) 31)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 23) (($ $ |#1|) 38) (($ |#1| $) 37))) -(((-43 |#1|) (-1267) (-170)) (T -43)) -((-2801 (*1 *1 *2) (-12 (-4 *1 (-43 *2)) (-4 *2 (-170))))) -(-13 (-1039) (-699 |t#1|) (-10 -8 (-15 -2801 ($ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-105) . T) ((-120 |#1| |#1|) . T) ((-137) . T) ((-600 (-842)) . T) ((-629 |#1|) . T) ((-629 $) . T) ((-699 |#1|) . T) ((-708) . T) ((-1045 |#1|) . T) ((-1039) . T) ((-1046) . T) ((-1094) . T) ((-1082) . T)) -((-2437 (((-414 |#1|) |#1|) 38)) (-1601 (((-414 |#1|) |#1|) 27) (((-414 |#1|) |#1| (-626 (-53))) 30)) (-2358 (((-121) |#1|) 54))) -(((-44 |#1|) (-10 -7 (-15 -1601 ((-414 |#1|) |#1| (-626 (-53)))) (-15 -1601 ((-414 |#1|) |#1|)) (-15 -2437 ((-414 |#1|) |#1|)) (-15 -2358 ((-121) |#1|))) (-1211 (-53))) (T -44)) -((-2358 (*1 *2 *3) (-12 (-5 *2 (-121)) (-5 *1 (-44 *3)) (-4 *3 (-1211 (-53))))) (-2437 (*1 *2 *3) (-12 (-5 *2 (-414 *3)) (-5 *1 (-44 *3)) (-4 *3 (-1211 (-53))))) (-1601 (*1 *2 *3) (-12 (-5 *2 (-414 *3)) (-5 *1 (-44 *3)) (-4 *3 (-1211 (-53))))) (-1601 (*1 *2 *3 *4) (-12 (-5 *4 (-626 (-53))) (-5 *2 (-414 *3)) (-5 *1 (-44 *3)) (-4 *3 (-1211 (-53)))))) -(-10 -7 (-15 -1601 ((-414 |#1|) |#1| (-626 (-53)))) (-15 -1601 ((-414 |#1|) |#1|)) (-15 -2437 ((-414 |#1|) |#1|)) (-15 -2358 ((-121) |#1|))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-3479 (((-2 (|:| |num| (-1236 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL (|has| (-403 |#2|) (-359)))) (-1350 (($ $) NIL (|has| (-403 |#2|) (-359)))) (-3376 (((-121) $) NIL (|has| (-403 |#2|) (-359)))) (-2196 (((-671 (-403 |#2|)) (-1236 $)) NIL) (((-671 (-403 |#2|))) NIL)) (-1944 (((-403 |#2|) $) NIL)) (-4357 (((-1161 (-909) (-755)) (-560)) NIL (|has| (-403 |#2|) (-344)))) (-2314 (((-3 $ "failed") $ $) NIL)) (-3065 (($ $) NIL (|has| (-403 |#2|) (-359)))) (-2953 (((-414 $) $) NIL (|has| (-403 |#2|) (-359)))) (-4179 (((-121) $ $) NIL (|has| (-403 |#2|) (-359)))) (-2912 (((-755)) NIL (|has| (-403 |#2|) (-364)))) (-2789 (((-121)) NIL)) (-3938 (((-121) |#1|) NIL) (((-121) |#2|) NIL)) (-4236 (($) NIL T CONST)) (-1473 (((-3 (-560) "failed") $) NIL (|has| (-403 |#2|) (-1029 (-560)))) (((-3 (-403 (-560)) "failed") $) NIL (|has| (-403 |#2|) (-1029 (-403 (-560))))) (((-3 (-403 |#2|) "failed") $) NIL)) (-3001 (((-560) $) NIL (|has| (-403 |#2|) (-1029 (-560)))) (((-403 (-560)) $) NIL (|has| (-403 |#2|) (-1029 (-403 (-560))))) (((-403 |#2|) $) NIL)) (-3380 (($ (-1236 (-403 |#2|)) (-1236 $)) NIL) (($ (-1236 (-403 |#2|))) 57) (($ (-1236 |#2|) |#2|) 124)) (-4107 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-403 |#2|) (-344)))) (-2563 (($ $ $) NIL (|has| (-403 |#2|) (-359)))) (-2954 (((-671 (-403 |#2|)) $ (-1236 $)) NIL) (((-671 (-403 |#2|)) $) NIL)) (-2616 (((-671 (-560)) (-671 $)) NIL (|has| (-403 |#2|) (-622 (-560)))) (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) NIL (|has| (-403 |#2|) (-622 (-560)))) (((-2 (|:| -3818 (-671 (-403 |#2|))) (|:| |vec| (-1236 (-403 |#2|)))) (-671 $) (-1236 $)) NIL) (((-671 (-403 |#2|)) (-671 $)) NIL)) (-3781 (((-1236 $) (-1236 $)) NIL)) (-2342 (($ |#3|) NIL) (((-3 $ "failed") (-403 |#3|)) NIL (|has| (-403 |#2|) (-359)))) (-1823 (((-3 $ "failed") $) NIL)) (-2330 (((-626 (-626 |#1|))) NIL (|has| |#1| (-364)))) (-1663 (((-121) |#1| |#1|) NIL)) (-3143 (((-909)) NIL)) (-1666 (($) NIL (|has| (-403 |#2|) (-364)))) (-3718 (((-121)) NIL)) (-4346 (((-121) |#1|) NIL) (((-121) |#2|) NIL)) (-2572 (($ $ $) NIL (|has| (-403 |#2|) (-359)))) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) NIL (|has| (-403 |#2|) (-359)))) (-3605 (($ $) NIL)) (-2481 (($) NIL (|has| (-403 |#2|) (-344)))) (-1537 (((-121) $) NIL (|has| (-403 |#2|) (-344)))) (-2937 (($ $ (-755)) NIL (|has| (-403 |#2|) (-344))) (($ $) NIL (|has| (-403 |#2|) (-344)))) (-3319 (((-121) $) NIL (|has| (-403 |#2|) (-359)))) (-3504 (((-909) $) NIL (|has| (-403 |#2|) (-344))) (((-820 (-909)) $) NIL (|has| (-403 |#2|) (-344)))) (-2642 (((-121) $) NIL)) (-3684 (((-755)) NIL)) (-3399 (((-1236 $) (-1236 $)) 100)) (-3339 (((-403 |#2|) $) NIL)) (-3202 (((-626 (-945 |#1|)) (-1153)) NIL (|has| |#1| (-359)))) (-1424 (((-3 $ "failed") $) NIL (|has| (-403 |#2|) (-344)))) (-3856 (((-3 (-626 $) "failed") (-626 $) $) NIL (|has| (-403 |#2|) (-359)))) (-4108 ((|#3| $) NIL (|has| (-403 |#2|) (-359)))) (-3142 (((-909) $) NIL (|has| (-403 |#2|) (-364)))) (-2335 ((|#3| $) NIL)) (-2582 (($ (-626 $)) NIL (|has| (-403 |#2|) (-359))) (($ $ $) NIL (|has| (-403 |#2|) (-359)))) (-1291 (((-1135) $) NIL)) (-3199 (((-1241) (-755)) 78)) (-2276 (((-671 (-403 |#2|))) 51)) (-2859 (((-671 (-403 |#2|))) 44)) (-1701 (($ $) NIL (|has| (-403 |#2|) (-359)))) (-2485 (($ (-1236 |#2|) |#2|) 125)) (-2445 (((-671 (-403 |#2|))) 45)) (-4268 (((-671 (-403 |#2|))) 43)) (-2282 (((-2 (|:| |num| (-671 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 122)) (-4269 (((-2 (|:| |num| (-1236 |#2|)) (|:| |den| |#2|)) $) 63)) (-1567 (((-1236 $)) 42)) (-1335 (((-1236 $)) 41)) (-3044 (((-121) $) NIL)) (-1596 (((-121) $) NIL) (((-121) $ |#1|) NIL) (((-121) $ |#2|) NIL)) (-1394 (($) NIL (|has| (-403 |#2|) (-344)) CONST)) (-1330 (($ (-909)) NIL (|has| (-403 |#2|) (-364)))) (-3219 (((-3 |#2| "failed")) NIL)) (-4353 (((-1100) $) NIL)) (-4390 (((-755)) NIL)) (-4250 (($) NIL)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL (|has| (-403 |#2|) (-359)))) (-4440 (($ (-626 $)) NIL (|has| (-403 |#2|) (-359))) (($ $ $) NIL (|has| (-403 |#2|) (-359)))) (-2385 (((-626 (-2 (|:| -1601 (-560)) (|:| -4034 (-560))))) NIL (|has| (-403 |#2|) (-344)))) (-1601 (((-414 $) $) NIL (|has| (-403 |#2|) (-359)))) (-3505 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-403 |#2|) (-359))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL (|has| (-403 |#2|) (-359)))) (-2336 (((-3 $ "failed") $ $) NIL (|has| (-403 |#2|) (-359)))) (-3456 (((-3 (-626 $) "failed") (-626 $) $) NIL (|has| (-403 |#2|) (-359)))) (-4445 (((-755) $) NIL (|has| (-403 |#2|) (-359)))) (-2778 ((|#1| $ |#1| |#1|) NIL)) (-2290 (((-3 |#2| "failed")) NIL)) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL (|has| (-403 |#2|) (-359)))) (-4069 (((-403 |#2|) (-1236 $)) NIL) (((-403 |#2|)) 39)) (-2935 (((-755) $) NIL (|has| (-403 |#2|) (-344))) (((-3 (-755) "failed") $ $) NIL (|has| (-403 |#2|) (-344)))) (-2443 (($ $ (-1 (-403 |#2|) (-403 |#2|)) (-755)) NIL (|has| (-403 |#2|) (-359))) (($ $ (-1 (-403 |#2|) (-403 |#2|))) NIL (|has| (-403 |#2|) (-359))) (($ $ (-1 |#2| |#2|)) 118) (($ $ (-626 (-1153)) (-626 (-755))) NIL (-12 (|has| (-403 |#2|) (-359)) (|has| (-403 |#2|) (-887 (-1153))))) (($ $ (-1153) (-755)) NIL (-12 (|has| (-403 |#2|) (-359)) (|has| (-403 |#2|) (-887 (-1153))))) (($ $ (-626 (-1153))) NIL (-12 (|has| (-403 |#2|) (-359)) (|has| (-403 |#2|) (-887 (-1153))))) (($ $ (-1153)) NIL (-12 (|has| (-403 |#2|) (-359)) (|has| (-403 |#2|) (-887 (-1153))))) (($ $ (-755)) NIL (-2318 (-12 (|has| (-403 |#2|) (-221)) (|has| (-403 |#2|) (-359))) (|has| (-403 |#2|) (-344)))) (($ $) NIL (-2318 (-12 (|has| (-403 |#2|) (-221)) (|has| (-403 |#2|) (-359))) (|has| (-403 |#2|) (-344))))) (-2142 (((-671 (-403 |#2|)) (-1236 $) (-1 (-403 |#2|) (-403 |#2|))) NIL (|has| (-403 |#2|) (-359)))) (-3591 ((|#3|) 50)) (-2612 (($) NIL (|has| (-403 |#2|) (-344)))) (-3390 (((-1236 (-403 |#2|)) $ (-1236 $)) NIL) (((-671 (-403 |#2|)) (-1236 $) (-1236 $)) NIL) (((-1236 (-403 |#2|)) $) 58) (((-671 (-403 |#2|)) (-1236 $)) 101)) (-4255 (((-1236 (-403 |#2|)) $) NIL) (($ (-1236 (-403 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3248 (((-3 (-1236 $) "failed") (-671 $)) NIL (|has| (-403 |#2|) (-344)))) (-4229 (((-1236 $) (-1236 $)) NIL)) (-2801 (((-842) $) NIL) (($ (-560)) NIL) (($ (-403 |#2|)) NIL) (($ (-403 (-560))) NIL (-2318 (|has| (-403 |#2|) (-359)) (|has| (-403 |#2|) (-1029 (-403 (-560)))))) (($ $) NIL (|has| (-403 |#2|) (-359)))) (-2272 (($ $) NIL (|has| (-403 |#2|) (-344))) (((-3 $ "failed") $) NIL (|has| (-403 |#2|) (-146)))) (-3642 ((|#3| $) NIL)) (-1751 (((-755)) NIL)) (-1630 (((-121)) 37)) (-1771 (((-121) |#1|) 49) (((-121) |#2|) 130)) (-4374 (((-1236 $)) 91)) (-2328 (((-121) $ $) NIL (|has| (-403 |#2|) (-359)))) (-2895 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1834 (((-121)) NIL)) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL (|has| (-403 |#2|) (-359)))) (-3304 (($) 16 T CONST)) (-1459 (($) 26 T CONST)) (-2500 (($ $ (-1 (-403 |#2|) (-403 |#2|)) (-755)) NIL (|has| (-403 |#2|) (-359))) (($ $ (-1 (-403 |#2|) (-403 |#2|))) NIL (|has| (-403 |#2|) (-359))) (($ $ (-626 (-1153)) (-626 (-755))) NIL (-12 (|has| (-403 |#2|) (-359)) (|has| (-403 |#2|) (-887 (-1153))))) (($ $ (-1153) (-755)) NIL (-12 (|has| (-403 |#2|) (-359)) (|has| (-403 |#2|) (-887 (-1153))))) (($ $ (-626 (-1153))) NIL (-12 (|has| (-403 |#2|) (-359)) (|has| (-403 |#2|) (-887 (-1153))))) (($ $ (-1153)) NIL (-12 (|has| (-403 |#2|) (-359)) (|has| (-403 |#2|) (-887 (-1153))))) (($ $ (-755)) NIL (-2318 (-12 (|has| (-403 |#2|) (-221)) (|has| (-403 |#2|) (-359))) (|has| (-403 |#2|) (-344)))) (($ $) NIL (-2318 (-12 (|has| (-403 |#2|) (-221)) (|has| (-403 |#2|) (-359))) (|has| (-403 |#2|) (-344))))) (-1653 (((-121) $ $) NIL)) (-1733 (($ $ $) NIL (|has| (-403 |#2|) (-359)))) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) NIL)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL (|has| (-403 |#2|) (-359)))) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) NIL) (($ $ (-403 |#2|)) NIL) (($ (-403 |#2|) $) NIL) (($ (-403 (-560)) $) NIL (|has| (-403 |#2|) (-359))) (($ $ (-403 (-560))) NIL (|has| (-403 |#2|) (-359))))) -(((-45 |#1| |#2| |#3| |#4|) (-13 (-334 |#1| |#2| |#3|) (-10 -7 (-15 -3199 ((-1241) (-755))))) (-359) (-1211 |#1|) (-1211 (-403 |#2|)) |#3|) (T -45)) -((-3199 (*1 *2 *3) (-12 (-5 *3 (-755)) (-4 *4 (-359)) (-4 *5 (-1211 *4)) (-5 *2 (-1241)) (-5 *1 (-45 *4 *5 *6 *7)) (-4 *6 (-1211 (-403 *5))) (-14 *7 *6)))) -(-13 (-334 |#1| |#2| |#3|) (-10 -7 (-15 -3199 ((-1241) (-755))))) -((-4039 ((|#2| |#2|) 47)) (-3915 ((|#2| |#2|) 116 (-12 (|has| |#2| (-426 |#1|)) (|has| |#1| (-447)) (|has| |#1| (-834)) (|has| |#1| (-1029 (-560)))))) (-2447 ((|#2| |#2|) 85 (-12 (|has| |#2| (-426 |#1|)) (|has| |#1| (-447)) (|has| |#1| (-834)) (|has| |#1| (-1029 (-560)))))) (-4144 ((|#2| |#2|) 86 (-12 (|has| |#2| (-426 |#1|)) (|has| |#1| (-447)) (|has| |#1| (-834)) (|has| |#1| (-1029 (-560)))))) (-3844 ((|#2| (-123) |#2| (-755)) 73 (-12 (|has| |#2| (-426 |#1|)) (|has| |#1| (-447)) (|has| |#1| (-834)) (|has| |#1| (-1029 (-560)))))) (-3460 (((-1149 |#2|) |#2|) 44)) (-3621 ((|#2| |#2| (-626 (-599 |#2|))) 17) ((|#2| |#2| (-626 |#2|)) 19) ((|#2| |#2| |#2|) 20) ((|#2| |#2|) 15))) -(((-46 |#1| |#2|) (-10 -7 (-15 -4039 (|#2| |#2|)) (-15 -3621 (|#2| |#2|)) (-15 -3621 (|#2| |#2| |#2|)) (-15 -3621 (|#2| |#2| (-626 |#2|))) (-15 -3621 (|#2| |#2| (-626 (-599 |#2|)))) (-15 -3460 ((-1149 |#2|) |#2|)) (IF (|has| |#1| (-834)) (IF (|has| |#1| (-447)) (IF (|has| |#1| (-1029 (-560))) (IF (|has| |#2| (-426 |#1|)) (PROGN (-15 -4144 (|#2| |#2|)) (-15 -2447 (|#2| |#2|)) (-15 -3915 (|#2| |#2|)) (-15 -3844 (|#2| (-123) |#2| (-755)))) |noBranch|) |noBranch|) |noBranch|) |noBranch|)) (-550) (-13 (-359) (-291) (-10 -8 (-15 -2132 ((-1105 |#1| (-599 $)) $)) (-15 -2139 ((-1105 |#1| (-599 $)) $)) (-15 -2801 ($ (-1105 |#1| (-599 $))))))) (T -46)) -((-3844 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-123)) (-5 *4 (-755)) (-4 *5 (-447)) (-4 *5 (-834)) (-4 *5 (-1029 (-560))) (-4 *5 (-550)) (-5 *1 (-46 *5 *2)) (-4 *2 (-426 *5)) (-4 *2 (-13 (-359) (-291) (-10 -8 (-15 -2132 ((-1105 *5 (-599 $)) $)) (-15 -2139 ((-1105 *5 (-599 $)) $)) (-15 -2801 ($ (-1105 *5 (-599 $))))))))) (-3915 (*1 *2 *2) (-12 (-4 *3 (-447)) (-4 *3 (-834)) (-4 *3 (-1029 (-560))) (-4 *3 (-550)) (-5 *1 (-46 *3 *2)) (-4 *2 (-426 *3)) (-4 *2 (-13 (-359) (-291) (-10 -8 (-15 -2132 ((-1105 *3 (-599 $)) $)) (-15 -2139 ((-1105 *3 (-599 $)) $)) (-15 -2801 ($ (-1105 *3 (-599 $))))))))) (-2447 (*1 *2 *2) (-12 (-4 *3 (-447)) (-4 *3 (-834)) (-4 *3 (-1029 (-560))) (-4 *3 (-550)) (-5 *1 (-46 *3 *2)) (-4 *2 (-426 *3)) (-4 *2 (-13 (-359) (-291) (-10 -8 (-15 -2132 ((-1105 *3 (-599 $)) $)) (-15 -2139 ((-1105 *3 (-599 $)) $)) (-15 -2801 ($ (-1105 *3 (-599 $))))))))) (-4144 (*1 *2 *2) (-12 (-4 *3 (-447)) (-4 *3 (-834)) (-4 *3 (-1029 (-560))) (-4 *3 (-550)) (-5 *1 (-46 *3 *2)) (-4 *2 (-426 *3)) (-4 *2 (-13 (-359) (-291) (-10 -8 (-15 -2132 ((-1105 *3 (-599 $)) $)) (-15 -2139 ((-1105 *3 (-599 $)) $)) (-15 -2801 ($ (-1105 *3 (-599 $))))))))) (-3460 (*1 *2 *3) (-12 (-4 *4 (-550)) (-5 *2 (-1149 *3)) (-5 *1 (-46 *4 *3)) (-4 *3 (-13 (-359) (-291) (-10 -8 (-15 -2132 ((-1105 *4 (-599 $)) $)) (-15 -2139 ((-1105 *4 (-599 $)) $)) (-15 -2801 ($ (-1105 *4 (-599 $))))))))) (-3621 (*1 *2 *2 *3) (-12 (-5 *3 (-626 (-599 *2))) (-4 *2 (-13 (-359) (-291) (-10 -8 (-15 -2132 ((-1105 *4 (-599 $)) $)) (-15 -2139 ((-1105 *4 (-599 $)) $)) (-15 -2801 ($ (-1105 *4 (-599 $))))))) (-4 *4 (-550)) (-5 *1 (-46 *4 *2)))) (-3621 (*1 *2 *2 *3) (-12 (-5 *3 (-626 *2)) (-4 *2 (-13 (-359) (-291) (-10 -8 (-15 -2132 ((-1105 *4 (-599 $)) $)) (-15 -2139 ((-1105 *4 (-599 $)) $)) (-15 -2801 ($ (-1105 *4 (-599 $))))))) (-4 *4 (-550)) (-5 *1 (-46 *4 *2)))) (-3621 (*1 *2 *2 *2) (-12 (-4 *3 (-550)) (-5 *1 (-46 *3 *2)) (-4 *2 (-13 (-359) (-291) (-10 -8 (-15 -2132 ((-1105 *3 (-599 $)) $)) (-15 -2139 ((-1105 *3 (-599 $)) $)) (-15 -2801 ($ (-1105 *3 (-599 $))))))))) (-3621 (*1 *2 *2) (-12 (-4 *3 (-550)) (-5 *1 (-46 *3 *2)) (-4 *2 (-13 (-359) (-291) (-10 -8 (-15 -2132 ((-1105 *3 (-599 $)) $)) (-15 -2139 ((-1105 *3 (-599 $)) $)) (-15 -2801 ($ (-1105 *3 (-599 $))))))))) (-4039 (*1 *2 *2) (-12 (-4 *3 (-550)) (-5 *1 (-46 *3 *2)) (-4 *2 (-13 (-359) (-291) (-10 -8 (-15 -2132 ((-1105 *3 (-599 $)) $)) (-15 -2139 ((-1105 *3 (-599 $)) $)) (-15 -2801 ($ (-1105 *3 (-599 $)))))))))) -(-10 -7 (-15 -4039 (|#2| |#2|)) (-15 -3621 (|#2| |#2|)) (-15 -3621 (|#2| |#2| |#2|)) (-15 -3621 (|#2| |#2| (-626 |#2|))) (-15 -3621 (|#2| |#2| (-626 (-599 |#2|)))) (-15 -3460 ((-1149 |#2|) |#2|)) (IF (|has| |#1| (-834)) (IF (|has| |#1| (-447)) (IF (|has| |#1| (-1029 (-560))) (IF (|has| |#2| (-426 |#1|)) (PROGN (-15 -4144 (|#2| |#2|)) (-15 -2447 (|#2| |#2|)) (-15 -3915 (|#2| |#2|)) (-15 -3844 (|#2| (-123) |#2| (-755)))) |noBranch|) |noBranch|) |noBranch|) |noBranch|)) -((-1601 (((-414 (-1149 |#3|)) (-1149 |#3|) (-626 (-53))) 22) (((-414 |#3|) |#3| (-626 (-53))) 18))) -(((-47 |#1| |#2| |#3|) (-10 -7 (-15 -1601 ((-414 |#3|) |#3| (-626 (-53)))) (-15 -1601 ((-414 (-1149 |#3|)) (-1149 |#3|) (-626 (-53))))) (-834) (-780) (-942 (-53) |#2| |#1|)) (T -47)) -((-1601 (*1 *2 *3 *4) (-12 (-5 *4 (-626 (-53))) (-4 *5 (-834)) (-4 *6 (-780)) (-4 *7 (-942 (-53) *6 *5)) (-5 *2 (-414 (-1149 *7))) (-5 *1 (-47 *5 *6 *7)) (-5 *3 (-1149 *7)))) (-1601 (*1 *2 *3 *4) (-12 (-5 *4 (-626 (-53))) (-4 *5 (-834)) (-4 *6 (-780)) (-5 *2 (-414 *3)) (-5 *1 (-47 *5 *6 *3)) (-4 *3 (-942 (-53) *6 *5))))) -(-10 -7 (-15 -1601 ((-414 |#3|) |#3| (-626 (-53)))) (-15 -1601 ((-414 (-1149 |#3|)) (-1149 |#3|) (-626 (-53))))) -((-1849 (((-755) |#2|) 65)) (-3512 (((-755) |#2|) 68)) (-4059 (((-626 |#2|)) 33)) (-2618 (((-755) |#2|) 67)) (-2621 (((-755) |#2|) 64)) (-3243 (((-755) |#2|) 66)) (-2190 (((-626 (-671 |#1|))) 60)) (-2005 (((-626 |#2|)) 55)) (-2430 (((-626 |#2|) |#2|) 43)) (-1572 (((-626 |#2|)) 57)) (-3017 (((-626 |#2|)) 56)) (-2162 (((-626 (-671 |#1|))) 48)) (-2458 (((-626 |#2|)) 54)) (-2432 (((-626 |#2|) |#2|) 42)) (-1744 (((-626 |#2|)) 50)) (-2262 (((-626 (-671 |#1|))) 61)) (-1416 (((-626 |#2|)) 59)) (-4374 (((-1236 |#2|) (-1236 |#2|)) 83 (|has| |#1| (-296))))) -(((-48 |#1| |#2|) (-10 -7 (-15 -2618 ((-755) |#2|)) (-15 -3512 ((-755) |#2|)) (-15 -2621 ((-755) |#2|)) (-15 -1849 ((-755) |#2|)) (-15 -3243 ((-755) |#2|)) (-15 -1744 ((-626 |#2|))) (-15 -2432 ((-626 |#2|) |#2|)) (-15 -2430 ((-626 |#2|) |#2|)) (-15 -2458 ((-626 |#2|))) (-15 -2005 ((-626 |#2|))) (-15 -3017 ((-626 |#2|))) (-15 -1572 ((-626 |#2|))) (-15 -1416 ((-626 |#2|))) (-15 -2162 ((-626 (-671 |#1|)))) (-15 -2190 ((-626 (-671 |#1|)))) (-15 -2262 ((-626 (-671 |#1|)))) (-15 -4059 ((-626 |#2|))) (IF (|has| |#1| (-296)) (-15 -4374 ((-1236 |#2|) (-1236 |#2|))) |noBranch|)) (-550) (-413 |#1|)) (T -48)) -((-4374 (*1 *2 *2) (-12 (-5 *2 (-1236 *4)) (-4 *4 (-413 *3)) (-4 *3 (-296)) (-4 *3 (-550)) (-5 *1 (-48 *3 *4)))) (-4059 (*1 *2) (-12 (-4 *3 (-550)) (-5 *2 (-626 *4)) (-5 *1 (-48 *3 *4)) (-4 *4 (-413 *3)))) (-2262 (*1 *2) (-12 (-4 *3 (-550)) (-5 *2 (-626 (-671 *3))) (-5 *1 (-48 *3 *4)) (-4 *4 (-413 *3)))) (-2190 (*1 *2) (-12 (-4 *3 (-550)) (-5 *2 (-626 (-671 *3))) (-5 *1 (-48 *3 *4)) (-4 *4 (-413 *3)))) (-2162 (*1 *2) (-12 (-4 *3 (-550)) (-5 *2 (-626 (-671 *3))) (-5 *1 (-48 *3 *4)) (-4 *4 (-413 *3)))) (-1416 (*1 *2) (-12 (-4 *3 (-550)) (-5 *2 (-626 *4)) (-5 *1 (-48 *3 *4)) (-4 *4 (-413 *3)))) (-1572 (*1 *2) (-12 (-4 *3 (-550)) (-5 *2 (-626 *4)) (-5 *1 (-48 *3 *4)) (-4 *4 (-413 *3)))) (-3017 (*1 *2) (-12 (-4 *3 (-550)) (-5 *2 (-626 *4)) (-5 *1 (-48 *3 *4)) (-4 *4 (-413 *3)))) (-2005 (*1 *2) (-12 (-4 *3 (-550)) (-5 *2 (-626 *4)) (-5 *1 (-48 *3 *4)) (-4 *4 (-413 *3)))) (-2458 (*1 *2) (-12 (-4 *3 (-550)) (-5 *2 (-626 *4)) (-5 *1 (-48 *3 *4)) (-4 *4 (-413 *3)))) (-2430 (*1 *2 *3) (-12 (-4 *4 (-550)) (-5 *2 (-626 *3)) (-5 *1 (-48 *4 *3)) (-4 *3 (-413 *4)))) (-2432 (*1 *2 *3) (-12 (-4 *4 (-550)) (-5 *2 (-626 *3)) (-5 *1 (-48 *4 *3)) (-4 *3 (-413 *4)))) (-1744 (*1 *2) (-12 (-4 *3 (-550)) (-5 *2 (-626 *4)) (-5 *1 (-48 *3 *4)) (-4 *4 (-413 *3)))) (-3243 (*1 *2 *3) (-12 (-4 *4 (-550)) (-5 *2 (-755)) (-5 *1 (-48 *4 *3)) (-4 *3 (-413 *4)))) (-1849 (*1 *2 *3) (-12 (-4 *4 (-550)) (-5 *2 (-755)) (-5 *1 (-48 *4 *3)) (-4 *3 (-413 *4)))) (-2621 (*1 *2 *3) (-12 (-4 *4 (-550)) (-5 *2 (-755)) (-5 *1 (-48 *4 *3)) (-4 *3 (-413 *4)))) (-3512 (*1 *2 *3) (-12 (-4 *4 (-550)) (-5 *2 (-755)) (-5 *1 (-48 *4 *3)) (-4 *3 (-413 *4)))) (-2618 (*1 *2 *3) (-12 (-4 *4 (-550)) (-5 *2 (-755)) (-5 *1 (-48 *4 *3)) (-4 *3 (-413 *4))))) -(-10 -7 (-15 -2618 ((-755) |#2|)) (-15 -3512 ((-755) |#2|)) (-15 -2621 ((-755) |#2|)) (-15 -1849 ((-755) |#2|)) (-15 -3243 ((-755) |#2|)) (-15 -1744 ((-626 |#2|))) (-15 -2432 ((-626 |#2|) |#2|)) (-15 -2430 ((-626 |#2|) |#2|)) (-15 -2458 ((-626 |#2|))) (-15 -2005 ((-626 |#2|))) (-15 -3017 ((-626 |#2|))) (-15 -1572 ((-626 |#2|))) (-15 -1416 ((-626 |#2|))) (-15 -2162 ((-626 (-671 |#1|)))) (-15 -2190 ((-626 (-671 |#1|)))) (-15 -2262 ((-626 (-671 |#1|)))) (-15 -4059 ((-626 |#2|))) (IF (|has| |#1| (-296)) (-15 -4374 ((-1236 |#2|) (-1236 |#2|))) |noBranch|)) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-1917 (((-3 $ "failed")) NIL (|has| |#1| (-550)))) (-2314 (((-3 $ "failed") $ $) NIL)) (-2059 (((-1236 (-671 |#1|)) (-1236 $)) NIL) (((-1236 (-671 |#1|))) 24)) (-1565 (((-1236 $)) 50)) (-4236 (($) NIL T CONST)) (-2862 (((-3 (-2 (|:| |particular| $) (|:| -4374 (-626 $))) "failed")) NIL (|has| |#1| (-550)))) (-2835 (((-3 $ "failed")) NIL (|has| |#1| (-550)))) (-3852 (((-671 |#1|) (-1236 $)) NIL) (((-671 |#1|)) NIL)) (-1374 ((|#1| $) NIL)) (-2611 (((-671 |#1|) $ (-1236 $)) NIL) (((-671 |#1|) $) NIL)) (-1309 (((-3 $ "failed") $) NIL (|has| |#1| (-550)))) (-3013 (((-1149 (-945 |#1|))) NIL (|has| |#1| (-359)))) (-1498 (($ $ (-909)) NIL)) (-2856 ((|#1| $) NIL)) (-3730 (((-1149 |#1|) $) NIL (|has| |#1| (-550)))) (-1998 ((|#1| (-1236 $)) NIL) ((|#1|) NIL)) (-1825 (((-1149 |#1|) $) NIL)) (-2969 (((-121)) 86)) (-3380 (($ (-1236 |#1|) (-1236 $)) NIL) (($ (-1236 |#1|)) NIL)) (-1823 (((-3 $ "failed") $) 14 (|has| |#1| (-550)))) (-3143 (((-909)) 51)) (-3497 (((-121)) NIL)) (-3710 (($ $ (-909)) NIL)) (-2874 (((-121)) NIL)) (-4479 (((-121)) NIL)) (-2646 (((-121)) 88)) (-2071 (((-3 (-2 (|:| |particular| $) (|:| -4374 (-626 $))) "failed")) NIL (|has| |#1| (-550)))) (-3477 (((-3 $ "failed")) NIL (|has| |#1| (-550)))) (-1279 (((-671 |#1|) (-1236 $)) NIL) (((-671 |#1|)) NIL)) (-2442 ((|#1| $) NIL)) (-1284 (((-671 |#1|) $ (-1236 $)) NIL) (((-671 |#1|) $) NIL)) (-2966 (((-3 $ "failed") $) NIL (|has| |#1| (-550)))) (-3081 (((-1149 (-945 |#1|))) NIL (|has| |#1| (-359)))) (-2137 (($ $ (-909)) NIL)) (-3542 ((|#1| $) NIL)) (-1351 (((-1149 |#1|) $) NIL (|has| |#1| (-550)))) (-3158 ((|#1| (-1236 $)) NIL) ((|#1|) NIL)) (-3613 (((-1149 |#1|) $) NIL)) (-1818 (((-121)) 85)) (-1291 (((-1135) $) NIL)) (-2394 (((-121)) 92)) (-2201 (((-121)) 91)) (-4253 (((-121)) 93)) (-4353 (((-1100) $) NIL)) (-4172 (((-121)) 87)) (-2778 ((|#1| $ (-560)) 53)) (-3390 (((-1236 |#1|) $ (-1236 $)) 47) (((-671 |#1|) (-1236 $) (-1236 $)) NIL) (((-1236 |#1|) $) 28) (((-671 |#1|) (-1236 $)) NIL)) (-4255 (((-1236 |#1|) $) NIL) (($ (-1236 |#1|)) NIL)) (-2879 (((-626 (-945 |#1|)) (-1236 $)) NIL) (((-626 (-945 |#1|))) NIL)) (-1671 (($ $ $) NIL)) (-2903 (((-121)) 83)) (-2801 (((-842) $) 68) (($ (-1236 |#1|)) 22)) (-4374 (((-1236 $)) 44)) (-4263 (((-626 (-1236 |#1|))) NIL (|has| |#1| (-550)))) (-2676 (($ $ $ $) NIL)) (-2266 (((-121)) 81)) (-2788 (($ (-671 |#1|) $) 18)) (-3127 (($ $ $) NIL)) (-3333 (((-121)) 84)) (-3060 (((-121)) 82)) (-2682 (((-121)) 80)) (-3304 (($) NIL T CONST)) (-1653 (((-121) $ $) NIL)) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) NIL)) (** (($ $ (-909)) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) 75) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1119 |#2| |#1|) $) 19))) -(((-49 |#1| |#2| |#3| |#4|) (-13 (-413 |#1|) (-629 (-1119 |#2| |#1|)) (-10 -8 (-15 -2801 ($ (-1236 |#1|))))) (-359) (-909) (-626 (-1153)) (-1236 (-671 |#1|))) (T -49)) -((-2801 (*1 *1 *2) (-12 (-5 *2 (-1236 *3)) (-4 *3 (-359)) (-14 *6 (-1236 (-671 *3))) (-5 *1 (-49 *3 *4 *5 *6)) (-14 *4 (-909)) (-14 *5 (-626 (-1153)))))) -(-13 (-413 |#1|) (-629 (-1119 |#2| |#1|)) (-10 -8 (-15 -2801 ($ (-1236 |#1|))))) -((-2601 (((-121) $ $) NIL (-2318 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-2981 (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) NIL)) (-1886 (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) NIL)) (-1417 (($ $) NIL)) (-4050 (($) NIL) (($ (-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) NIL)) (-2960 (((-1241) $ |#1| |#1|) NIL (|has| $ (-6 -4506))) (((-1241) $ (-560) (-560)) NIL (|has| $ (-6 -4506)))) (-2435 (($ $ (-560)) NIL (|has| $ (-6 -4506)))) (-3189 (((-121) (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL) (((-121) $) NIL (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-834)))) (-4410 (($ (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4506))) (($ $) NIL (-12 (|has| $ (-6 -4506)) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-834))))) (-3743 (($ (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-834)))) (-3909 (((-121) $ (-755)) NIL)) (-3119 (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) NIL (|has| $ (-6 -4506)))) (-1741 (($ $ $) 27 (|has| $ (-6 -4506)))) (-1920 (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) NIL (|has| $ (-6 -4506)))) (-4133 (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) 29 (|has| $ (-6 -4506)))) (-2764 ((|#2| $ |#1| |#2|) 45) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $ (-560) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) NIL (|has| $ (-6 -4506))) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $ (-1202 (-560)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) NIL (|has| $ (-6 -4506))) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $ "last" (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) NIL (|has| $ (-6 -4506))) (($ $ "rest" $) NIL (|has| $ (-6 -4506))) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $ "first" (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) NIL (|has| $ (-6 -4506))) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $ "value" (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) NIL (|has| $ (-6 -4506)))) (-4043 (($ $ (-626 $)) NIL (|has| $ (-6 -4506)))) (-3763 (($ (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505))) (($ (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL)) (-3802 (($ (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505))) (($ (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505)))) (-1603 (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) NIL)) (-2722 (((-3 |#2| "failed") |#1| $) 37)) (-4236 (($) NIL T CONST)) (-4030 (($ $) NIL (|has| $ (-6 -4506)))) (-2883 (($ $) NIL)) (-2877 (($ $ (-755)) NIL) (($ $) 24)) (-3568 (($ $) NIL (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (-2868 (($ $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082))))) (-3561 (($ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) NIL (|has| $ (-6 -4505))) (($ (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505))) (((-3 |#2| "failed") |#1| $) 46) (($ (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL) (($ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) NIL (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (-4310 (($ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (($ (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505))) (($ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (($ (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505)))) (-2342 (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) NIL (|has| $ (-6 -4505))) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505))) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) NIL (|has| $ (-6 -4505))) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505)))) (-1746 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4506))) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $ (-560) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) NIL (|has| $ (-6 -4506)))) (-1361 ((|#2| $ |#1|) NIL) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $ (-560)) NIL)) (-2737 (((-121) $) NIL)) (-2839 (((-560) (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL) (((-560) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) NIL (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082))) (((-560) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $ (-560)) NIL (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (-1981 (((-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) 18 (|has| $ (-6 -4505))) (((-626 |#2|) $) NIL (|has| $ (-6 -4505))) (((-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) 18 (|has| $ (-6 -4505)))) (-3971 (((-626 $) $) NIL)) (-2420 (((-121) $ $) NIL (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (-1721 (($ (-755) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) NIL)) (-2122 (((-121) $ (-755)) NIL)) (-4099 ((|#1| $) NIL (|has| |#1| (-834))) (((-560) $) 32 (|has| (-560) (-834)))) (-4325 (($ $ $) NIL (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-834)))) (-2037 (($ (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-834)))) (-2492 (($ (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-834)))) (-2130 (((-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505))) (((-626 |#2|) $) NIL (|has| $ (-6 -4505))) (((-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505)))) (-2030 (((-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (((-121) |#2| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#2| (-1082)))) (((-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082))))) (-2767 ((|#1| $) NIL (|has| |#1| (-834))) (((-560) $) 34 (|has| (-560) (-834)))) (-2501 (($ $ $) NIL (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-834)))) (-3778 (($ (-1 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4506))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4506))) (($ (-1 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4506)))) (-2803 (($ (-1 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL)) (-2843 (($ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) NIL)) (-3441 (((-121) $ (-755)) NIL)) (-2173 (((-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL)) (-3992 (((-121) $) NIL)) (-1291 (((-1135) $) 41 (-2318 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-4139 (($ $ (-755)) NIL) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) NIL)) (-1377 (((-626 |#1|) $) 20)) (-3855 (((-121) |#1| $) NIL)) (-2525 (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) NIL)) (-4345 (($ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) NIL) (($ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $ (-560)) NIL) (($ $ $ (-560)) NIL)) (-4103 (($ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $ (-560)) NIL) (($ $ $ (-560)) NIL)) (-1529 (((-626 |#1|) $) NIL) (((-626 (-560)) $) NIL)) (-1310 (((-121) |#1| $) NIL) (((-121) (-560) $) NIL)) (-4353 (((-1100) $) NIL (-2318 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-2824 ((|#2| $) NIL (|has| |#1| (-834))) (($ $ (-755)) NIL) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) 23)) (-3786 (((-3 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) "failed") (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL) (((-3 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) "failed") (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL)) (-3038 (($ $ |#2|) NIL (|has| $ (-6 -4506))) (($ $ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) NIL (|has| $ (-6 -4506)))) (-2146 (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) NIL)) (-2957 (((-121) $) NIL)) (-2865 (((-121) (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505))) (((-121) (-1 (-121) |#2|) $) NIL (|has| $ (-6 -4505))) (((-121) (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))))) NIL (-12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (($ $ (-283 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) NIL (-12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (($ $ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) NIL (-12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (($ $ (-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) (-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) NIL (-12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (($ $ (-626 |#2|) (-626 |#2|)) NIL (-12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082)))) (($ $ (-283 |#2|)) NIL (-12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082)))) (($ $ (-626 (-283 |#2|))) NIL (-12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082)))) (($ $ (-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) (-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) NIL (-12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (($ $ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) NIL (-12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (($ $ (-283 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) NIL (-12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (($ $ (-626 (-283 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))))) NIL (-12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082))))) (-2214 (((-121) $ $) NIL)) (-1290 (((-121) |#2| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#2| (-1082)))) (((-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082))))) (-4460 (((-626 |#2|) $) NIL) (((-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) 17)) (-4191 (((-121) $) 16)) (-3260 (($) 13)) (-2778 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $ (-560) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) NIL) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $ (-560)) NIL) (($ $ (-1202 (-560))) NIL) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $ "first") NIL) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $ "value") NIL)) (-1435 (((-560) $ $) NIL)) (-3958 (($) 12) (($ (-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) NIL)) (-4094 (($ $ (-560)) NIL) (($ $ (-1202 (-560))) NIL)) (-2949 (($ $ (-560)) NIL) (($ $ (-1202 (-560))) NIL)) (-3316 (((-121) $) NIL)) (-4432 (($ $) NIL)) (-2641 (($ $) NIL (|has| $ (-6 -4506)))) (-2751 (((-755) $) NIL)) (-4208 (($ $) NIL)) (-4035 (((-755) (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505))) (((-755) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (((-755) |#2| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#2| (-1082)))) (((-755) (-1 (-121) |#2|) $) NIL (|has| $ (-6 -4505))) (((-755) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (((-755) (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505)))) (-4072 (($ $ $ (-560)) NIL (|has| $ (-6 -4506)))) (-2813 (($ $) NIL)) (-4255 (((-533) $) NIL (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-601 (-533))))) (-4162 (($ (-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) NIL) (($ (-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) NIL)) (-3602 (($ $ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) NIL) (($ $ $) NIL)) (-2849 (($ $ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) NIL) (($ (-626 $)) NIL) (($ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) 25) (($ $ $) NIL)) (-2801 (((-842) $) NIL (-2318 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-2853 (((-626 $) $) NIL)) (-3761 (((-121) $ $) NIL (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (-1354 (($ (-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) NIL)) (-2909 (((-3 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) "failed") |#1| $) 43)) (-3656 (((-121) (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505))) (((-121) (-1 (-121) |#2|) $) NIL (|has| $ (-6 -4505))) (((-121) (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505)))) (-1691 (((-121) $ $) NIL (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-834)))) (-1675 (((-121) $ $) NIL (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-834)))) (-1653 (((-121) $ $) NIL (-2318 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-1683 (((-121) $ $) NIL (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-834)))) (-1667 (((-121) $ $) NIL (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-834)))) (-2271 (((-755) $) 22 (|has| $ (-6 -4505))))) -(((-50 |#1| |#2|) (-41 |#1| |#2|) (-1082) (-1082)) (T -50)) +((-2932 ((|#2| (-1157 |#2|) (-1161)) 42)) (-3488 (((-123) (-123)) 54)) (-3007 (((-1157 |#2|) (-607 |#2|)) 129 (|has| |#1| (-1037 (-568))))) (-4033 ((|#2| |#1| (-568)) 108 (|has| |#1| (-1037 (-568))))) (-3207 ((|#2| (-1157 |#2|) |#2|) 30)) (-1875 (((-850) (-634 |#2|)) 84)) (-1626 ((|#2| |#2|) 125 (|has| |#1| (-1037 (-568))))) (-2887 (((-121) (-123)) 18)) (** ((|#2| |#2| (-409 (-568))) 89 (|has| |#1| (-1037 (-568)))))) +(((-36 |#1| |#2|) (-10 -7 (-15 -2932 (|#2| (-1157 |#2|) (-1161))) (-15 -3488 ((-123) (-123))) (-15 -2887 ((-121) (-123))) (-15 -3207 (|#2| (-1157 |#2|) |#2|)) (-15 -1875 ((-850) (-634 |#2|))) (IF (|has| |#1| (-1037 (-568))) (PROGN (-15 ** (|#2| |#2| (-409 (-568)))) (-15 -3007 ((-1157 |#2|) (-607 |#2|))) (-15 -1626 (|#2| |#2|)) (-15 -4033 (|#2| |#1| (-568)))) |noBranch|)) (-13 (-842) (-558)) (-432 |#1|)) (T -36)) +((-4033 (*1 *2 *3 *4) (-12 (-5 *4 (-568)) (-4 *2 (-432 *3)) (-5 *1 (-36 *3 *2)) (-4 *3 (-1037 *4)) (-4 *3 (-13 (-842) (-558))))) (-1626 (*1 *2 *2) (-12 (-4 *3 (-1037 (-568))) (-4 *3 (-13 (-842) (-558))) (-5 *1 (-36 *3 *2)) (-4 *2 (-432 *3)))) (-3007 (*1 *2 *3) (-12 (-5 *3 (-607 *5)) (-4 *5 (-432 *4)) (-4 *4 (-1037 (-568))) (-4 *4 (-13 (-842) (-558))) (-5 *2 (-1157 *5)) (-5 *1 (-36 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-409 (-568))) (-4 *4 (-1037 (-568))) (-4 *4 (-13 (-842) (-558))) (-5 *1 (-36 *4 *2)) (-4 *2 (-432 *4)))) (-1875 (*1 *2 *3) (-12 (-5 *3 (-634 *5)) (-4 *5 (-432 *4)) (-4 *4 (-13 (-842) (-558))) (-5 *2 (-850)) (-5 *1 (-36 *4 *5)))) (-3207 (*1 *2 *3 *2) (-12 (-5 *3 (-1157 *2)) (-4 *2 (-432 *4)) (-4 *4 (-13 (-842) (-558))) (-5 *1 (-36 *4 *2)))) (-2887 (*1 *2 *3) (-12 (-5 *3 (-123)) (-4 *4 (-13 (-842) (-558))) (-5 *2 (-121)) (-5 *1 (-36 *4 *5)) (-4 *5 (-432 *4)))) (-3488 (*1 *2 *2) (-12 (-5 *2 (-123)) (-4 *3 (-13 (-842) (-558))) (-5 *1 (-36 *3 *4)) (-4 *4 (-432 *3)))) (-2932 (*1 *2 *3 *4) (-12 (-5 *3 (-1157 *2)) (-5 *4 (-1161)) (-4 *2 (-432 *5)) (-5 *1 (-36 *5 *2)) (-4 *5 (-13 (-842) (-558)))))) +(-10 -7 (-15 -2932 (|#2| (-1157 |#2|) (-1161))) (-15 -3488 ((-123) (-123))) (-15 -2887 ((-121) (-123))) (-15 -3207 (|#2| (-1157 |#2|) |#2|)) (-15 -1875 ((-850) (-634 |#2|))) (IF (|has| |#1| (-1037 (-568))) (PROGN (-15 ** (|#2| |#2| (-409 (-568)))) (-15 -3007 ((-1157 |#2|) (-607 |#2|))) (-15 -1626 (|#2| |#2|)) (-15 -4033 (|#2| |#1| (-568)))) |noBranch|)) +((-2447 (((-121) $ $) 7)) (-2436 ((|#1| $ (-568) |#1|) 14)) (-1501 (((-634 $) (-634 $) (-763)) 20) (((-634 $) (-634 $)) 19)) (-2688 (((-121) $ (-763)) 18) (((-121) $) 17)) (-3890 (((-634 |#1|) $) 13)) (-2476 (($) 29)) (-3340 (((-634 $) $) 24) (((-634 $) $ (-763)) 23)) (-3896 (((-634 |#1|) $) 16)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-2779 ((|#1| $ (-568)) 15)) (-3206 (((-917) $) 12)) (-3233 ((|#1| $) 27)) (-1458 (($ $ (-763)) 22) (($ $) 21)) (-2745 (((-850) $) 11) (((-634 |#1|) $) 26) (($ (-634 |#1|)) 25)) (-2637 (($ (-634 |#1|)) 28)) (-1717 (((-121) $ $) 6))) +(((-37 |#1|) (-1275) (-365)) (T -37)) +((-2476 (*1 *1) (-12 (-4 *1 (-37 *2)) (-4 *2 (-365)))) (-2637 (*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-365)) (-4 *1 (-37 *3)))) (-3233 (*1 *2 *1) (-12 (-4 *1 (-37 *2)) (-4 *2 (-365)))) (-2745 (*1 *2 *1) (-12 (-4 *1 (-37 *3)) (-4 *3 (-365)) (-5 *2 (-634 *3)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-365)) (-4 *1 (-37 *3)))) (-3340 (*1 *2 *1) (-12 (-4 *3 (-365)) (-5 *2 (-634 *1)) (-4 *1 (-37 *3)))) (-3340 (*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-4 *4 (-365)) (-5 *2 (-634 *1)) (-4 *1 (-37 *4)))) (-1458 (*1 *1 *1 *2) (-12 (-5 *2 (-763)) (-4 *1 (-37 *3)) (-4 *3 (-365)))) (-1458 (*1 *1 *1) (-12 (-4 *1 (-37 *2)) (-4 *2 (-365)))) (-1501 (*1 *2 *2 *3) (-12 (-5 *2 (-634 *1)) (-5 *3 (-763)) (-4 *1 (-37 *4)) (-4 *4 (-365)))) (-1501 (*1 *2 *2) (-12 (-5 *2 (-634 *1)) (-4 *1 (-37 *3)) (-4 *3 (-365)))) (-2688 (*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-4 *1 (-37 *4)) (-4 *4 (-365)) (-5 *2 (-121)))) (-2688 (*1 *2 *1) (-12 (-4 *1 (-37 *3)) (-4 *3 (-365)) (-5 *2 (-121)))) (-3896 (*1 *2 *1) (-12 (-4 *1 (-37 *3)) (-4 *3 (-365)) (-5 *2 (-634 *3)))) (-2779 (*1 *2 *1 *3) (-12 (-5 *3 (-568)) (-4 *1 (-37 *2)) (-4 *2 (-365)))) (-2436 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-568)) (-4 *1 (-37 *2)) (-4 *2 (-365)))) (-3890 (*1 *2 *1) (-12 (-4 *1 (-37 *3)) (-4 *3 (-365)) (-5 *2 (-634 *3))))) +(-13 (-1088) (-10 -8 (-15 -2476 ($)) (-15 -2637 ($ (-634 |t#1|))) (-15 -3233 (|t#1| $)) (-15 -2745 ((-634 |t#1|) $)) (-15 -2745 ($ (-634 |t#1|))) (-15 -3340 ((-634 $) $)) (-15 -3340 ((-634 $) $ (-763))) (-15 -1458 ($ $ (-763))) (-15 -1458 ($ $)) (-15 -1501 ((-634 $) (-634 $) (-763))) (-15 -1501 ((-634 $) (-634 $))) (-15 -2688 ((-121) $ (-763))) (-15 -2688 ((-121) $)) (-15 -3896 ((-634 |t#1|) $)) (-15 -2779 (|t#1| $ (-568))) (-15 -2436 (|t#1| $ (-568) |t#1|)) (-15 -3890 ((-634 |t#1|) $)))) +(((-105) . T) ((-608 (-850)) . T) ((-1090) . T) ((-1088) . T)) +((-2510 (((-121) $ (-763)) 16)) (-2671 (($) 10)) (-1737 (((-121) $ (-763)) 15)) (-2166 (((-121) $ (-763)) 14)) (-3171 (((-121) $ $) 8)) (-3084 (((-121) $) 13))) +(((-38 |#1|) (-10 -8 (-15 -2671 (|#1|)) (-15 -2510 ((-121) |#1| (-763))) (-15 -1737 ((-121) |#1| (-763))) (-15 -2166 ((-121) |#1| (-763))) (-15 -3084 ((-121) |#1|)) (-15 -3171 ((-121) |#1| |#1|))) (-39)) (T -38)) +NIL +(-10 -8 (-15 -2671 (|#1|)) (-15 -2510 ((-121) |#1| (-763))) (-15 -1737 ((-121) |#1| (-763))) (-15 -2166 ((-121) |#1| (-763))) (-15 -3084 ((-121) |#1|)) (-15 -3171 ((-121) |#1| |#1|))) +((-2510 (((-121) $ (-763)) 8)) (-2671 (($) 7 T CONST)) (-1737 (((-121) $ (-763)) 9)) (-2166 (((-121) $ (-763)) 10)) (-3171 (((-121) $ $) 14)) (-3084 (((-121) $) 11)) (-3248 (($) 12)) (-3863 (($ $) 13)) (-1697 (((-763) $) 6 (|has| $ (-6 -4519))))) +(((-39) (-1275)) (T -39)) +((-3171 (*1 *2 *1 *1) (-12 (-4 *1 (-39)) (-5 *2 (-121)))) (-3863 (*1 *1 *1) (-4 *1 (-39))) (-3248 (*1 *1) (-4 *1 (-39))) (-3084 (*1 *2 *1) (-12 (-4 *1 (-39)) (-5 *2 (-121)))) (-2166 (*1 *2 *1 *3) (-12 (-4 *1 (-39)) (-5 *3 (-763)) (-5 *2 (-121)))) (-1737 (*1 *2 *1 *3) (-12 (-4 *1 (-39)) (-5 *3 (-763)) (-5 *2 (-121)))) (-2510 (*1 *2 *1 *3) (-12 (-4 *1 (-39)) (-5 *3 (-763)) (-5 *2 (-121)))) (-2671 (*1 *1) (-4 *1 (-39))) (-1697 (*1 *2 *1) (-12 (|has| *1 (-6 -4519)) (-4 *1 (-39)) (-5 *2 (-763))))) +(-13 (-1195) (-10 -8 (-15 -3171 ((-121) $ $)) (-15 -3863 ($ $)) (-15 -3248 ($)) (-15 -3084 ((-121) $)) (-15 -2166 ((-121) $ (-763))) (-15 -1737 ((-121) $ (-763))) (-15 -2510 ((-121) $ (-763))) (-15 -2671 ($) -3495) (IF (|has| $ (-6 -4519)) (-15 -1697 ((-763) $)) |noBranch|))) +(((-1195) . T)) +((-2006 (($ $) 11)) (-1998 (($ $) 10)) (-2014 (($ $) 9)) (-4023 (($ $) 8)) (-2010 (($ $) 7)) (-2002 (($ $) 6))) +(((-40) (-1275)) (T -40)) +((-2006 (*1 *1 *1) (-4 *1 (-40))) (-1998 (*1 *1 *1) (-4 *1 (-40))) (-2014 (*1 *1 *1) (-4 *1 (-40))) (-4023 (*1 *1 *1) (-4 *1 (-40))) (-2010 (*1 *1 *1) (-4 *1 (-40))) (-2002 (*1 *1 *1) (-4 *1 (-40)))) +(-13 (-10 -8 (-15 -2002 ($ $)) (-15 -2010 ($ $)) (-15 -4023 ($ $)) (-15 -2014 ($ $)) (-15 -1998 ($ $)) (-15 -2006 ($ $)))) +((-2447 (((-121) $ $) 18 (-2198 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)) (|has| |#2| (-1090)) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090))))) (-2850 (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) 117)) (-2235 (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) 140)) (-2796 (($ $) 138)) (-2986 (($) 66) (($ (-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) 65)) (-1868 (((-1249) $ |#1| |#1|) 93 (|has| $ (-6 -4520))) (((-1249) $ (-568) (-568)) 170 (|has| $ (-6 -4520)))) (-3910 (($ $ (-568)) 151 (|has| $ (-6 -4520)))) (-2016 (((-121) (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) 201) (((-121) $) 195 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-842)))) (-3908 (($ (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) 192 (|has| $ (-6 -4520))) (($ $) 191 (-12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-842)) (|has| $ (-6 -4520))))) (-3644 (($ (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) 202) (($ $) 196 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-842)))) (-2510 (((-121) $ (-763)) 8)) (-1659 (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) 126 (|has| $ (-6 -4520)))) (-3869 (($ $ $) 147 (|has| $ (-6 -4520)))) (-2395 (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) 149 (|has| $ (-6 -4520)))) (-2517 (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) 145 (|has| $ (-6 -4520)))) (-2436 ((|#2| $ |#1| |#2|) 67) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $ (-568) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) 181 (|has| $ (-6 -4520))) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $ (-1210 (-568)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) 152 (|has| $ (-6 -4520))) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $ "last" (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) 150 (|has| $ (-6 -4520))) (($ $ "rest" $) 148 (|has| $ (-6 -4520))) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $ "first" (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) 146 (|has| $ (-6 -4520))) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $ "value" (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) 125 (|has| $ (-6 -4520)))) (-3827 (($ $ (-634 $)) 124 (|has| $ (-6 -4520)))) (-3507 (($ (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) 42 (|has| $ (-6 -4519))) (($ (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) 208)) (-2801 (($ (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) 52 (|has| $ (-6 -4519))) (($ (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) 167 (|has| $ (-6 -4519)))) (-1679 (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) 139)) (-2674 (((-3 |#2| "failed") |#1| $) 57)) (-2671 (($) 7 T CONST)) (-1578 (($ $) 193 (|has| $ (-6 -4520)))) (-3943 (($ $) 203)) (-3935 (($ $ (-763)) 134) (($ $) 132)) (-3369 (($ $) 206 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (-3924 (($ $) 55 (-2198 (-12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)) (|has| $ (-6 -4519))) (-12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)) (|has| $ (-6 -4519)))))) (-3405 (($ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) 44 (|has| $ (-6 -4519))) (($ (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) 43 (|has| $ (-6 -4519))) (((-3 |#2| "failed") |#1| $) 58) (($ (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) 212) (($ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) 207 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (-4328 (($ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) 54 (-12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)) (|has| $ (-6 -4519)))) (($ (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) 51 (|has| $ (-6 -4519))) (($ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) 169 (-12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)) (|has| $ (-6 -4519)))) (($ (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) 166 (|has| $ (-6 -4519)))) (-3092 (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) 53 (-12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)) (|has| $ (-6 -4519)))) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) 50 (|has| $ (-6 -4519))) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) 49 (|has| $ (-6 -4519))) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) 168 (-12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)) (|has| $ (-6 -4519)))) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) 165 (|has| $ (-6 -4519))) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) 164 (|has| $ (-6 -4519)))) (-3989 ((|#2| $ |#1| |#2|) 81 (|has| $ (-6 -4520))) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $ (-568) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) 182 (|has| $ (-6 -4520)))) (-2602 ((|#2| $ |#1|) 82) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $ (-568)) 180)) (-1601 (((-121) $) 184)) (-2764 (((-568) (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) 200) (((-568) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) 199 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090))) (((-568) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $ (-568)) 198 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (-4360 (((-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) 30 (|has| $ (-6 -4519))) (((-634 |#2|) $) 73 (|has| $ (-6 -4519))) (((-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) 106 (|has| $ (-6 -4519)))) (-2287 (((-634 $) $) 115)) (-1700 (((-121) $ $) 123 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (-1849 (($ (-763) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) 161)) (-1737 (((-121) $ (-763)) 9)) (-1881 ((|#1| $) 90 (|has| |#1| (-842))) (((-568) $) 172 (|has| (-568) (-842)))) (-2521 (($ $ $) 190 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-842)))) (-3349 (($ (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $ $) 209) (($ $ $) 205 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-842)))) (-1347 (($ (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $ $) 204) (($ $ $) 197 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-842)))) (-1979 (((-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) 29 (|has| $ (-6 -4519))) (((-634 |#2|) $) 74 (|has| $ (-6 -4519))) (((-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) 107 (|has| $ (-6 -4519)))) (-3109 (((-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)) (|has| $ (-6 -4519)))) (((-121) |#2| $) 76 (-12 (|has| |#2| (-1090)) (|has| $ (-6 -4519)))) (((-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) 109 (-12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)) (|has| $ (-6 -4519))))) (-2223 ((|#1| $) 89 (|has| |#1| (-842))) (((-568) $) 173 (|has| (-568) (-842)))) (-3268 (($ $ $) 189 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-842)))) (-3674 (($ (-1 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) 34 (|has| $ (-6 -4520))) (($ (-1 |#2| |#2|) $) 69 (|has| $ (-6 -4520))) (($ (-1 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) 102 (|has| $ (-6 -4520)))) (-2795 (($ (-1 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 68) (($ (-1 |#2| |#2| |#2|) $ $) 64) (($ (-1 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $ $) 158) (($ (-1 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) 101)) (-3896 (($ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) 217)) (-2166 (((-121) $ (-763)) 10)) (-2869 (((-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) 120)) (-1651 (((-121) $) 116)) (-4487 (((-1143) $) 22 (-2198 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)) (|has| |#2| (-1090)) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090))))) (-4162 (($ $ (-763)) 137) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) 135)) (-1946 (((-634 |#1|) $) 59)) (-3548 (((-121) |#1| $) 60)) (-1890 (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) 36)) (-4450 (($ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) 37) (($ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $ (-568)) 211) (($ $ $ (-568)) 210)) (-4122 (($ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $ (-568)) 154) (($ $ $ (-568)) 153)) (-4174 (((-634 |#1|) $) 87) (((-634 (-568)) $) 175)) (-3578 (((-121) |#1| $) 86) (((-121) (-568) $) 176)) (-4022 (((-1108) $) 21 (-2198 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)) (|has| |#2| (-1090)) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090))))) (-3876 ((|#2| $) 91 (|has| |#1| (-842))) (($ $ (-763)) 131) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) 129)) (-3775 (((-3 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) "failed") (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) 48) (((-3 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) "failed") (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) 163)) (-3724 (($ $ |#2|) 92 (|has| $ (-6 -4520))) (($ $ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) 171 (|has| $ (-6 -4520)))) (-1315 (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) 38)) (-1786 (((-121) $) 183)) (-1387 (((-121) (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) 32 (|has| $ (-6 -4519))) (((-121) (-1 (-121) |#2|) $) 71 (|has| $ (-6 -4519))) (((-121) (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) 104 (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))))) 26 (-12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (($ $ (-288 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) 25 (-12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (($ $ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) 24 (-12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (($ $ (-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) (-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) 23 (-12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (($ $ (-634 |#2|) (-634 |#2|)) 80 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090)))) (($ $ |#2| |#2|) 79 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090)))) (($ $ (-288 |#2|)) 78 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090)))) (($ $ (-634 (-288 |#2|))) 77 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090)))) (($ $ (-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) (-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) 113 (-12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (($ $ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) 112 (-12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (($ $ (-288 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) 111 (-12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (($ $ (-634 (-288 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))))) 110 (-12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090))))) (-3171 (((-121) $ $) 14)) (-4467 (((-121) |#2| $) 88 (-12 (|has| $ (-6 -4519)) (|has| |#2| (-1090)))) (((-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) 174 (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090))))) (-2041 (((-634 |#2|) $) 85) (((-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) 177)) (-3084 (((-121) $) 11)) (-3248 (($) 12)) (-2779 ((|#2| $ |#1|) 84) ((|#2| $ |#1| |#2|) 83) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $ (-568) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) 179) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $ (-568)) 178) (($ $ (-1210 (-568))) 157) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $ "last") 136) (($ $ "rest") 133) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $ "first") 130) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $ "value") 118)) (-4075 (((-568) $ $) 121)) (-2085 (($) 46) (($ (-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) 45)) (-1783 (($ $ (-568)) 214) (($ $ (-1210 (-568))) 213)) (-2826 (($ $ (-568)) 156) (($ $ (-1210 (-568))) 155)) (-3790 (((-121) $) 119)) (-2340 (($ $) 143)) (-2714 (($ $) 144 (|has| $ (-6 -4520)))) (-2775 (((-763) $) 142)) (-3335 (($ $) 141)) (-4168 (((-763) (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) 31 (|has| $ (-6 -4519))) (((-763) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)) (|has| $ (-6 -4519)))) (((-763) |#2| $) 75 (-12 (|has| |#2| (-1090)) (|has| $ (-6 -4519)))) (((-763) (-1 (-121) |#2|) $) 72 (|has| $ (-6 -4519))) (((-763) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) 108 (-12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)) (|has| $ (-6 -4519)))) (((-763) (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) 105 (|has| $ (-6 -4519)))) (-2256 (($ $ $ (-568)) 194 (|has| $ (-6 -4520)))) (-3863 (($ $) 13)) (-4278 (((-541) $) 56 (-2198 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-609 (-541))) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-609 (-541)))))) (-4287 (($ (-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) 47) (($ (-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) 162)) (-3845 (($ $ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) 216) (($ $ $) 215)) (-2768 (($ $ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) 160) (($ (-634 $)) 159) (($ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) 128) (($ $ $) 127)) (-2745 (((-850) $) 20 (-2198 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)) (|has| |#2| (-1090)) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090))))) (-4339 (((-634 $) $) 114)) (-3491 (((-121) $ $) 122 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (-2367 (($ (-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) 39)) (-2802 (((-3 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) "failed") |#1| $) 100)) (-1319 (((-121) (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) 33 (|has| $ (-6 -4519))) (((-121) (-1 (-121) |#2|) $) 70 (|has| $ (-6 -4519))) (((-121) (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) 103 (|has| $ (-6 -4519)))) (-1751 (((-121) $ $) 187 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-842)))) (-1738 (((-121) $ $) 186 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-842)))) (-1717 (((-121) $ $) 19 (-2198 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)) (|has| |#2| (-1090)) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090))))) (-1745 (((-121) $ $) 188 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-842)))) (-1732 (((-121) $ $) 185 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-842)))) (-1697 (((-763) $) 6 (|has| $ (-6 -4519))))) +(((-41 |#1| |#2|) (-1275) (-1090) (-1090)) (T -41)) +((-2802 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-41 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-5 *2 (-2 (|:| -3649 *3) (|:| -4083 *4)))))) +(-13 (-1172 |t#1| |t#2|) (-658 (-2 (|:| -3649 |t#1|) (|:| -4083 |t#2|))) (-10 -8 (-15 -2802 ((-3 (-2 (|:| -3649 |t#1|) (|:| -4083 |t#2|)) "failed") |t#1| $)))) +(((-39) . T) ((-111 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) . T) ((-105) -2198 (|has| |#2| (-1090)) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-842))) ((-608 (-850)) -2198 (|has| |#2| (-1090)) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-842))) ((-154 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) . T) ((-609 (-541)) |has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-609 (-541))) ((-221 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) . T) ((-227 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) . T) ((-281 (-568) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) . T) ((-281 |#1| |#2|) . T) ((-283 (-568) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) . T) ((-283 |#1| |#2|) . T) ((-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) -12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090))) ((-303 |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090))) ((-277 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) . T) ((-375 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) . T) ((-499 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) . T) ((-499 |#2|) . T) ((-601 (-568) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) . T) ((-601 |#1| |#2|) . T) ((-523 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) -12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090))) ((-523 |#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090))) ((-605 |#1| |#2|) . T) ((-640 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) . T) ((-658 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) . T) ((-842) |has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-842)) ((-1010 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) . T) ((-1090) -2198 (|has| |#2| (-1090)) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-842))) ((-1134 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) . T) ((-1172 |#1| |#2|) . T) ((-1195) . T) ((-1231 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) . T)) +((-2745 (((-850) $) NIL) (($ (-568)) NIL) (($ |#2|) 10))) +(((-42 |#1| |#2|) (-10 -8 (-15 -2745 (|#1| |#2|)) (-15 -2745 (|#1| (-568))) (-15 -2745 ((-850) |#1|))) (-43 |#2|) (-172)) (T -42)) +NIL +(-10 -8 (-15 -2745 (|#1| |#2|)) (-15 -2745 (|#1| (-568))) (-15 -2745 ((-850) |#1|))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-3134 (((-3 $ "failed") $ $) 18)) (-2671 (($) 16 T CONST)) (-2925 (((-3 $ "failed") $) 33)) (-2735 (((-121) $) 30)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-2745 (((-850) $) 11) (($ (-568)) 27) (($ |#1|) 36)) (-4078 (((-763)) 28)) (-1887 (($ $ (-917)) 25) (($ $ (-763)) 32)) (-3056 (($) 17 T CONST)) (-1556 (($) 29 T CONST)) (-1717 (((-121) $ $) 6)) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 24) (($ $ (-763)) 31)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 23) (($ $ |#1|) 38) (($ |#1| $) 37))) +(((-43 |#1|) (-1275) (-172)) (T -43)) +((-2745 (*1 *1 *2) (-12 (-4 *1 (-43 *2)) (-4 *2 (-172))))) +(-13 (-1047) (-707 |t#1|) (-10 -8 (-15 -2745 ($ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-105) . T) ((-120 |#1| |#1|) . T) ((-137) . T) ((-608 (-850)) . T) ((-637 |#1|) . T) ((-637 $) . T) ((-707 |#1|) . T) ((-716) . T) ((-1053 |#1|) . T) ((-1047) . T) ((-1054) . T) ((-1102) . T) ((-1090) . T)) +((-3969 (((-420 |#1|) |#1|) 38)) (-3848 (((-420 |#1|) |#1|) 27) (((-420 |#1|) |#1| (-634 (-53))) 30)) (-1395 (((-121) |#1|) 54))) +(((-44 |#1|) (-10 -7 (-15 -3848 ((-420 |#1|) |#1| (-634 (-53)))) (-15 -3848 ((-420 |#1|) |#1|)) (-15 -3969 ((-420 |#1|) |#1|)) (-15 -1395 ((-121) |#1|))) (-1219 (-53))) (T -44)) +((-1395 (*1 *2 *3) (-12 (-5 *2 (-121)) (-5 *1 (-44 *3)) (-4 *3 (-1219 (-53))))) (-3969 (*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-44 *3)) (-4 *3 (-1219 (-53))))) (-3848 (*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-44 *3)) (-4 *3 (-1219 (-53))))) (-3848 (*1 *2 *3 *4) (-12 (-5 *4 (-634 (-53))) (-5 *2 (-420 *3)) (-5 *1 (-44 *3)) (-4 *3 (-1219 (-53)))))) +(-10 -7 (-15 -3848 ((-420 |#1|) |#1| (-634 (-53)))) (-15 -3848 ((-420 |#1|) |#1|)) (-15 -3969 ((-420 |#1|) |#1|)) (-15 -1395 ((-121) |#1|))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-2646 (((-2 (|:| |num| (-1244 |#2|)) (|:| |den| |#2|)) $) NIL)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL (|has| (-409 |#2|) (-365)))) (-2227 (($ $) NIL (|has| (-409 |#2|) (-365)))) (-1573 (((-121) $) NIL (|has| (-409 |#2|) (-365)))) (-4255 (((-679 (-409 |#2|)) (-1244 $)) NIL) (((-679 (-409 |#2|))) NIL)) (-1932 (((-409 |#2|) $) NIL)) (-3211 (((-1169 (-917) (-763)) (-568)) NIL (|has| (-409 |#2|) (-350)))) (-3134 (((-3 $ "failed") $ $) NIL)) (-4305 (($ $) NIL (|has| (-409 |#2|) (-365)))) (-1678 (((-420 $) $) NIL (|has| (-409 |#2|) (-365)))) (-1497 (((-121) $ $) NIL (|has| (-409 |#2|) (-365)))) (-3983 (((-763)) NIL (|has| (-409 |#2|) (-370)))) (-3926 (((-121)) NIL)) (-1965 (((-121) |#1|) NIL) (((-121) |#2|) NIL)) (-2671 (($) NIL T CONST)) (-3666 (((-3 (-568) "failed") $) NIL (|has| (-409 |#2|) (-1037 (-568)))) (((-3 (-409 (-568)) "failed") $) NIL (|has| (-409 |#2|) (-1037 (-409 (-568))))) (((-3 (-409 |#2|) "failed") $) NIL)) (-2854 (((-568) $) NIL (|has| (-409 |#2|) (-1037 (-568)))) (((-409 (-568)) $) NIL (|has| (-409 |#2|) (-1037 (-409 (-568))))) (((-409 |#2|) $) NIL)) (-3498 (($ (-1244 (-409 |#2|)) (-1244 $)) NIL) (($ (-1244 (-409 |#2|))) 57) (($ (-1244 |#2|) |#2|) 124)) (-2022 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-409 |#2|) (-350)))) (-2401 (($ $ $) NIL (|has| (-409 |#2|) (-365)))) (-1709 (((-679 (-409 |#2|)) $ (-1244 $)) NIL) (((-679 (-409 |#2|)) $) NIL)) (-3164 (((-679 (-568)) (-679 $)) NIL (|has| (-409 |#2|) (-630 (-568)))) (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) NIL (|has| (-409 |#2|) (-630 (-568)))) (((-2 (|:| -2928 (-679 (-409 |#2|))) (|:| |vec| (-1244 (-409 |#2|)))) (-679 $) (-1244 $)) NIL) (((-679 (-409 |#2|)) (-679 $)) NIL)) (-3692 (((-1244 $) (-1244 $)) NIL)) (-3092 (($ |#3|) NIL) (((-3 $ "failed") (-409 |#3|)) NIL (|has| (-409 |#2|) (-365)))) (-2925 (((-3 $ "failed") $) NIL)) (-1895 (((-634 (-634 |#1|))) NIL (|has| |#1| (-370)))) (-2234 (((-121) |#1| |#1|) NIL)) (-3700 (((-917)) NIL)) (-1731 (($) NIL (|has| (-409 |#2|) (-370)))) (-4449 (((-121)) NIL)) (-4481 (((-121) |#1|) NIL) (((-121) |#2|) NIL)) (-2412 (($ $ $) NIL (|has| (-409 |#2|) (-365)))) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) NIL (|has| (-409 |#2|) (-365)))) (-3250 (($ $) NIL)) (-4220 (($) NIL (|has| (-409 |#2|) (-350)))) (-4456 (((-121) $) NIL (|has| (-409 |#2|) (-350)))) (-3218 (($ $ (-763)) NIL (|has| (-409 |#2|) (-350))) (($ $) NIL (|has| (-409 |#2|) (-350)))) (-3927 (((-121) $) NIL (|has| (-409 |#2|) (-365)))) (-4477 (((-917) $) NIL (|has| (-409 |#2|) (-350))) (((-828 (-917)) $) NIL (|has| (-409 |#2|) (-350)))) (-2735 (((-121) $) NIL)) (-3900 (((-763)) NIL)) (-3017 (((-1244 $) (-1244 $)) 100)) (-2657 (((-409 |#2|) $) NIL)) (-1296 (((-634 (-953 |#1|)) (-1161)) NIL (|has| |#1| (-365)))) (-3038 (((-3 $ "failed") $) NIL (|has| (-409 |#2|) (-350)))) (-3562 (((-3 (-634 $) "failed") (-634 $) $) NIL (|has| (-409 |#2|) (-365)))) (-2045 ((|#3| $) NIL (|has| (-409 |#2|) (-365)))) (-3683 (((-917) $) NIL (|has| (-409 |#2|) (-370)))) (-3085 ((|#3| $) NIL)) (-2495 (($ (-634 $)) NIL (|has| (-409 |#2|) (-365))) (($ $ $) NIL (|has| (-409 |#2|) (-365)))) (-4487 (((-1143) $) NIL)) (-4383 (((-1249) (-763)) 78)) (-1300 (((-679 (-409 |#2|))) 51)) (-4472 (((-679 (-409 |#2|))) 44)) (-2081 (($ $) NIL (|has| (-409 |#2|) (-365)))) (-4368 (($ (-1244 |#2|) |#2|) 125)) (-3036 (((-679 (-409 |#2|))) 45)) (-1630 (((-679 (-409 |#2|))) 43)) (-1557 (((-2 (|:| |num| (-679 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 122)) (-1658 (((-2 (|:| |num| (-1244 |#2|)) (|:| |den| |#2|)) $) 63)) (-1820 (((-1244 $)) 42)) (-3661 (((-1244 $)) 41)) (-3874 (((-121) $) NIL)) (-1489 (((-121) $) NIL) (((-121) $ |#1|) NIL) (((-121) $ |#2|) NIL)) (-4434 (($) NIL (|has| (-409 |#2|) (-350)) CONST)) (-4355 (($ (-917)) NIL (|has| (-409 |#2|) (-370)))) (-3541 (((-3 |#2| "failed")) NIL)) (-4022 (((-1108) $) NIL)) (-2126 (((-763)) NIL)) (-2704 (($) NIL)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL (|has| (-409 |#2|) (-365)))) (-2721 (($ (-634 $)) NIL (|has| (-409 |#2|) (-365))) (($ $ $) NIL (|has| (-409 |#2|) (-365)))) (-1418 (((-634 (-2 (|:| -3848 (-568)) (|:| -3438 (-568))))) NIL (|has| (-409 |#2|) (-350)))) (-3848 (((-420 $) $) NIL (|has| (-409 |#2|) (-365)))) (-4497 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-409 |#2|) (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL (|has| (-409 |#2|) (-365)))) (-2595 (((-3 $ "failed") $ $) NIL (|has| (-409 |#2|) (-365)))) (-2344 (((-3 (-634 $) "failed") (-634 $) $) NIL (|has| (-409 |#2|) (-365)))) (-2709 (((-763) $) NIL (|has| (-409 |#2|) (-365)))) (-2779 ((|#1| $ |#1| |#1|) NIL)) (-3633 (((-3 |#2| "failed")) NIL)) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL (|has| (-409 |#2|) (-365)))) (-2217 (((-409 |#2|) (-1244 $)) NIL) (((-409 |#2|)) 39)) (-3143 (((-763) $) NIL (|has| (-409 |#2|) (-350))) (((-3 (-763) "failed") $ $) NIL (|has| (-409 |#2|) (-350)))) (-4189 (($ $ (-1 (-409 |#2|) (-409 |#2|)) (-763)) NIL (|has| (-409 |#2|) (-365))) (($ $ (-1 (-409 |#2|) (-409 |#2|))) NIL (|has| (-409 |#2|) (-365))) (($ $ (-1 |#2| |#2|)) 118) (($ $ (-634 (-1161)) (-634 (-763))) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-895 (-1161))))) (($ $ (-1161) (-763)) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-895 (-1161))))) (($ $ (-634 (-1161))) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-895 (-1161))))) (($ $ (-1161)) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-895 (-1161))))) (($ $ (-763)) NIL (-2198 (-12 (|has| (-409 |#2|) (-225)) (|has| (-409 |#2|) (-365))) (|has| (-409 |#2|) (-350)))) (($ $) NIL (-2198 (-12 (|has| (-409 |#2|) (-225)) (|has| (-409 |#2|) (-365))) (|has| (-409 |#2|) (-350))))) (-4387 (((-679 (-409 |#2|)) (-1244 $) (-1 (-409 |#2|) (-409 |#2|))) NIL (|has| (-409 |#2|) (-365)))) (-1626 ((|#3|) 50)) (-3065 (($) NIL (|has| (-409 |#2|) (-350)))) (-4073 (((-1244 (-409 |#2|)) $ (-1244 $)) NIL) (((-679 (-409 |#2|)) (-1244 $) (-1244 $)) NIL) (((-1244 (-409 |#2|)) $) 58) (((-679 (-409 |#2|)) (-1244 $)) 101)) (-4278 (((-1244 (-409 |#2|)) $) NIL) (($ (-1244 (-409 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-2979 (((-3 (-1244 $) "failed") (-679 $)) NIL (|has| (-409 |#2|) (-350)))) (-3016 (((-1244 $) (-1244 $)) NIL)) (-2745 (((-850) $) NIL) (($ (-568)) NIL) (($ (-409 |#2|)) NIL) (($ (-409 (-568))) NIL (-2198 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-1037 (-409 (-568)))))) (($ $) NIL (|has| (-409 |#2|) (-365)))) (-4371 (($ $) NIL (|has| (-409 |#2|) (-350))) (((-3 $ "failed") $) NIL (|has| (-409 |#2|) (-148)))) (-2678 ((|#3| $) NIL)) (-4078 (((-763)) NIL)) (-4199 (((-121)) 37)) (-2712 (((-121) |#1|) 49) (((-121) |#2|) 130)) (-3746 (((-1244 $)) 91)) (-1826 (((-121) $ $) NIL (|has| (-409 |#2|) (-365)))) (-3223 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-2262 (((-121)) NIL)) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL (|has| (-409 |#2|) (-365)))) (-3056 (($) 16 T CONST)) (-1556 (($) 26 T CONST)) (-3190 (($ $ (-1 (-409 |#2|) (-409 |#2|)) (-763)) NIL (|has| (-409 |#2|) (-365))) (($ $ (-1 (-409 |#2|) (-409 |#2|))) NIL (|has| (-409 |#2|) (-365))) (($ $ (-634 (-1161)) (-634 (-763))) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-895 (-1161))))) (($ $ (-1161) (-763)) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-895 (-1161))))) (($ $ (-634 (-1161))) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-895 (-1161))))) (($ $ (-1161)) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-895 (-1161))))) (($ $ (-763)) NIL (-2198 (-12 (|has| (-409 |#2|) (-225)) (|has| (-409 |#2|) (-365))) (|has| (-409 |#2|) (-350)))) (($ $) NIL (-2198 (-12 (|has| (-409 |#2|) (-225)) (|has| (-409 |#2|) (-365))) (|has| (-409 |#2|) (-350))))) (-1717 (((-121) $ $) NIL)) (-1779 (($ $ $) NIL (|has| (-409 |#2|) (-365)))) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL (|has| (-409 |#2|) (-365)))) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) NIL) (($ $ (-409 |#2|)) NIL) (($ (-409 |#2|) $) NIL) (($ (-409 (-568)) $) NIL (|has| (-409 |#2|) (-365))) (($ $ (-409 (-568))) NIL (|has| (-409 |#2|) (-365))))) +(((-45 |#1| |#2| |#3| |#4|) (-13 (-340 |#1| |#2| |#3|) (-10 -7 (-15 -4383 ((-1249) (-763))))) (-365) (-1219 |#1|) (-1219 (-409 |#2|)) |#3|) (T -45)) +((-4383 (*1 *2 *3) (-12 (-5 *3 (-763)) (-4 *4 (-365)) (-4 *5 (-1219 *4)) (-5 *2 (-1249)) (-5 *1 (-45 *4 *5 *6 *7)) (-4 *6 (-1219 (-409 *5))) (-14 *7 *6)))) +(-13 (-340 |#1| |#2| |#3|) (-10 -7 (-15 -4383 ((-1249) (-763))))) +((-3621 ((|#2| |#2|) 47)) (-2669 ((|#2| |#2|) 116 (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-453)) (|has| |#1| (-842)) (|has| |#1| (-1037 (-568)))))) (-3278 ((|#2| |#2|) 85 (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-453)) (|has| |#1| (-842)) (|has| |#1| (-1037 (-568)))))) (-2670 ((|#2| |#2|) 86 (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-453)) (|has| |#1| (-842)) (|has| |#1| (-1037 (-568)))))) (-1438 ((|#2| (-123) |#2| (-763)) 73 (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-453)) (|has| |#1| (-842)) (|has| |#1| (-1037 (-568)))))) (-2391 (((-1157 |#2|) |#2|) 44)) (-4013 ((|#2| |#2| (-634 (-607 |#2|))) 17) ((|#2| |#2| (-634 |#2|)) 19) ((|#2| |#2| |#2|) 20) ((|#2| |#2|) 15))) +(((-46 |#1| |#2|) (-10 -7 (-15 -3621 (|#2| |#2|)) (-15 -4013 (|#2| |#2|)) (-15 -4013 (|#2| |#2| |#2|)) (-15 -4013 (|#2| |#2| (-634 |#2|))) (-15 -4013 (|#2| |#2| (-634 (-607 |#2|)))) (-15 -2391 ((-1157 |#2|) |#2|)) (IF (|has| |#1| (-842)) (IF (|has| |#1| (-453)) (IF (|has| |#1| (-1037 (-568))) (IF (|has| |#2| (-432 |#1|)) (PROGN (-15 -2670 (|#2| |#2|)) (-15 -3278 (|#2| |#2|)) (-15 -2669 (|#2| |#2|)) (-15 -1438 (|#2| (-123) |#2| (-763)))) |noBranch|) |noBranch|) |noBranch|) |noBranch|)) (-558) (-13 (-365) (-296) (-10 -8 (-15 -2317 ((-1113 |#1| (-607 $)) $)) (-15 -2324 ((-1113 |#1| (-607 $)) $)) (-15 -2745 ($ (-1113 |#1| (-607 $))))))) (T -46)) +((-1438 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-123)) (-5 *4 (-763)) (-4 *5 (-453)) (-4 *5 (-842)) (-4 *5 (-1037 (-568))) (-4 *5 (-558)) (-5 *1 (-46 *5 *2)) (-4 *2 (-432 *5)) (-4 *2 (-13 (-365) (-296) (-10 -8 (-15 -2317 ((-1113 *5 (-607 $)) $)) (-15 -2324 ((-1113 *5 (-607 $)) $)) (-15 -2745 ($ (-1113 *5 (-607 $))))))))) (-2669 (*1 *2 *2) (-12 (-4 *3 (-453)) (-4 *3 (-842)) (-4 *3 (-1037 (-568))) (-4 *3 (-558)) (-5 *1 (-46 *3 *2)) (-4 *2 (-432 *3)) (-4 *2 (-13 (-365) (-296) (-10 -8 (-15 -2317 ((-1113 *3 (-607 $)) $)) (-15 -2324 ((-1113 *3 (-607 $)) $)) (-15 -2745 ($ (-1113 *3 (-607 $))))))))) (-3278 (*1 *2 *2) (-12 (-4 *3 (-453)) (-4 *3 (-842)) (-4 *3 (-1037 (-568))) (-4 *3 (-558)) (-5 *1 (-46 *3 *2)) (-4 *2 (-432 *3)) (-4 *2 (-13 (-365) (-296) (-10 -8 (-15 -2317 ((-1113 *3 (-607 $)) $)) (-15 -2324 ((-1113 *3 (-607 $)) $)) (-15 -2745 ($ (-1113 *3 (-607 $))))))))) (-2670 (*1 *2 *2) (-12 (-4 *3 (-453)) (-4 *3 (-842)) (-4 *3 (-1037 (-568))) (-4 *3 (-558)) (-5 *1 (-46 *3 *2)) (-4 *2 (-432 *3)) (-4 *2 (-13 (-365) (-296) (-10 -8 (-15 -2317 ((-1113 *3 (-607 $)) $)) (-15 -2324 ((-1113 *3 (-607 $)) $)) (-15 -2745 ($ (-1113 *3 (-607 $))))))))) (-2391 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-1157 *3)) (-5 *1 (-46 *4 *3)) (-4 *3 (-13 (-365) (-296) (-10 -8 (-15 -2317 ((-1113 *4 (-607 $)) $)) (-15 -2324 ((-1113 *4 (-607 $)) $)) (-15 -2745 ($ (-1113 *4 (-607 $))))))))) (-4013 (*1 *2 *2 *3) (-12 (-5 *3 (-634 (-607 *2))) (-4 *2 (-13 (-365) (-296) (-10 -8 (-15 -2317 ((-1113 *4 (-607 $)) $)) (-15 -2324 ((-1113 *4 (-607 $)) $)) (-15 -2745 ($ (-1113 *4 (-607 $))))))) (-4 *4 (-558)) (-5 *1 (-46 *4 *2)))) (-4013 (*1 *2 *2 *3) (-12 (-5 *3 (-634 *2)) (-4 *2 (-13 (-365) (-296) (-10 -8 (-15 -2317 ((-1113 *4 (-607 $)) $)) (-15 -2324 ((-1113 *4 (-607 $)) $)) (-15 -2745 ($ (-1113 *4 (-607 $))))))) (-4 *4 (-558)) (-5 *1 (-46 *4 *2)))) (-4013 (*1 *2 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-46 *3 *2)) (-4 *2 (-13 (-365) (-296) (-10 -8 (-15 -2317 ((-1113 *3 (-607 $)) $)) (-15 -2324 ((-1113 *3 (-607 $)) $)) (-15 -2745 ($ (-1113 *3 (-607 $))))))))) (-4013 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-46 *3 *2)) (-4 *2 (-13 (-365) (-296) (-10 -8 (-15 -2317 ((-1113 *3 (-607 $)) $)) (-15 -2324 ((-1113 *3 (-607 $)) $)) (-15 -2745 ($ (-1113 *3 (-607 $))))))))) (-3621 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-46 *3 *2)) (-4 *2 (-13 (-365) (-296) (-10 -8 (-15 -2317 ((-1113 *3 (-607 $)) $)) (-15 -2324 ((-1113 *3 (-607 $)) $)) (-15 -2745 ($ (-1113 *3 (-607 $)))))))))) +(-10 -7 (-15 -3621 (|#2| |#2|)) (-15 -4013 (|#2| |#2|)) (-15 -4013 (|#2| |#2| |#2|)) (-15 -4013 (|#2| |#2| (-634 |#2|))) (-15 -4013 (|#2| |#2| (-634 (-607 |#2|)))) (-15 -2391 ((-1157 |#2|) |#2|)) (IF (|has| |#1| (-842)) (IF (|has| |#1| (-453)) (IF (|has| |#1| (-1037 (-568))) (IF (|has| |#2| (-432 |#1|)) (PROGN (-15 -2670 (|#2| |#2|)) (-15 -3278 (|#2| |#2|)) (-15 -2669 (|#2| |#2|)) (-15 -1438 (|#2| (-123) |#2| (-763)))) |noBranch|) |noBranch|) |noBranch|) |noBranch|)) +((-3848 (((-420 (-1157 |#3|)) (-1157 |#3|) (-634 (-53))) 22) (((-420 |#3|) |#3| (-634 (-53))) 18))) +(((-47 |#1| |#2| |#3|) (-10 -7 (-15 -3848 ((-420 |#3|) |#3| (-634 (-53)))) (-15 -3848 ((-420 (-1157 |#3|)) (-1157 |#3|) (-634 (-53))))) (-842) (-788) (-950 (-53) |#2| |#1|)) (T -47)) +((-3848 (*1 *2 *3 *4) (-12 (-5 *4 (-634 (-53))) (-4 *5 (-842)) (-4 *6 (-788)) (-4 *7 (-950 (-53) *6 *5)) (-5 *2 (-420 (-1157 *7))) (-5 *1 (-47 *5 *6 *7)) (-5 *3 (-1157 *7)))) (-3848 (*1 *2 *3 *4) (-12 (-5 *4 (-634 (-53))) (-4 *5 (-842)) (-4 *6 (-788)) (-5 *2 (-420 *3)) (-5 *1 (-47 *5 *6 *3)) (-4 *3 (-950 (-53) *6 *5))))) +(-10 -7 (-15 -3848 ((-420 |#3|) |#3| (-634 (-53)))) (-15 -3848 ((-420 (-1157 |#3|)) (-1157 |#3|) (-634 (-53))))) +((-2895 (((-763) |#2|) 65)) (-1416 (((-763) |#2|) 68)) (-2945 (((-634 |#2|)) 33)) (-3238 (((-763) |#2|) 67)) (-2218 (((-763) |#2|) 64)) (-2898 (((-763) |#2|) 66)) (-2328 (((-634 (-679 |#1|))) 60)) (-3916 (((-634 |#2|)) 55)) (-1555 (((-634 |#2|) |#2|) 43)) (-1943 (((-634 |#2|)) 57)) (-1313 (((-634 |#2|)) 56)) (-3759 (((-634 (-679 |#1|))) 48)) (-2202 (((-634 |#2|)) 54)) (-1610 (((-634 |#2|) |#2|) 42)) (-3907 (((-634 |#2|)) 50)) (-1995 (((-634 (-679 |#1|))) 61)) (-3955 (((-634 |#2|)) 59)) (-3746 (((-1244 |#2|) (-1244 |#2|)) 83 (|has| |#1| (-301))))) +(((-48 |#1| |#2|) (-10 -7 (-15 -3238 ((-763) |#2|)) (-15 -1416 ((-763) |#2|)) (-15 -2218 ((-763) |#2|)) (-15 -2895 ((-763) |#2|)) (-15 -2898 ((-763) |#2|)) (-15 -3907 ((-634 |#2|))) (-15 -1610 ((-634 |#2|) |#2|)) (-15 -1555 ((-634 |#2|) |#2|)) (-15 -2202 ((-634 |#2|))) (-15 -3916 ((-634 |#2|))) (-15 -1313 ((-634 |#2|))) (-15 -1943 ((-634 |#2|))) (-15 -3955 ((-634 |#2|))) (-15 -3759 ((-634 (-679 |#1|)))) (-15 -2328 ((-634 (-679 |#1|)))) (-15 -1995 ((-634 (-679 |#1|)))) (-15 -2945 ((-634 |#2|))) (IF (|has| |#1| (-301)) (-15 -3746 ((-1244 |#2|) (-1244 |#2|))) |noBranch|)) (-558) (-419 |#1|)) (T -48)) +((-3746 (*1 *2 *2) (-12 (-5 *2 (-1244 *4)) (-4 *4 (-419 *3)) (-4 *3 (-301)) (-4 *3 (-558)) (-5 *1 (-48 *3 *4)))) (-2945 (*1 *2) (-12 (-4 *3 (-558)) (-5 *2 (-634 *4)) (-5 *1 (-48 *3 *4)) (-4 *4 (-419 *3)))) (-1995 (*1 *2) (-12 (-4 *3 (-558)) (-5 *2 (-634 (-679 *3))) (-5 *1 (-48 *3 *4)) (-4 *4 (-419 *3)))) (-2328 (*1 *2) (-12 (-4 *3 (-558)) (-5 *2 (-634 (-679 *3))) (-5 *1 (-48 *3 *4)) (-4 *4 (-419 *3)))) (-3759 (*1 *2) (-12 (-4 *3 (-558)) (-5 *2 (-634 (-679 *3))) (-5 *1 (-48 *3 *4)) (-4 *4 (-419 *3)))) (-3955 (*1 *2) (-12 (-4 *3 (-558)) (-5 *2 (-634 *4)) (-5 *1 (-48 *3 *4)) (-4 *4 (-419 *3)))) (-1943 (*1 *2) (-12 (-4 *3 (-558)) (-5 *2 (-634 *4)) (-5 *1 (-48 *3 *4)) (-4 *4 (-419 *3)))) (-1313 (*1 *2) (-12 (-4 *3 (-558)) (-5 *2 (-634 *4)) (-5 *1 (-48 *3 *4)) (-4 *4 (-419 *3)))) (-3916 (*1 *2) (-12 (-4 *3 (-558)) (-5 *2 (-634 *4)) (-5 *1 (-48 *3 *4)) (-4 *4 (-419 *3)))) (-2202 (*1 *2) (-12 (-4 *3 (-558)) (-5 *2 (-634 *4)) (-5 *1 (-48 *3 *4)) (-4 *4 (-419 *3)))) (-1555 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-634 *3)) (-5 *1 (-48 *4 *3)) (-4 *3 (-419 *4)))) (-1610 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-634 *3)) (-5 *1 (-48 *4 *3)) (-4 *3 (-419 *4)))) (-3907 (*1 *2) (-12 (-4 *3 (-558)) (-5 *2 (-634 *4)) (-5 *1 (-48 *3 *4)) (-4 *4 (-419 *3)))) (-2898 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-763)) (-5 *1 (-48 *4 *3)) (-4 *3 (-419 *4)))) (-2895 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-763)) (-5 *1 (-48 *4 *3)) (-4 *3 (-419 *4)))) (-2218 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-763)) (-5 *1 (-48 *4 *3)) (-4 *3 (-419 *4)))) (-1416 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-763)) (-5 *1 (-48 *4 *3)) (-4 *3 (-419 *4)))) (-3238 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-763)) (-5 *1 (-48 *4 *3)) (-4 *3 (-419 *4))))) +(-10 -7 (-15 -3238 ((-763) |#2|)) (-15 -1416 ((-763) |#2|)) (-15 -2218 ((-763) |#2|)) (-15 -2895 ((-763) |#2|)) (-15 -2898 ((-763) |#2|)) (-15 -3907 ((-634 |#2|))) (-15 -1610 ((-634 |#2|) |#2|)) (-15 -1555 ((-634 |#2|) |#2|)) (-15 -2202 ((-634 |#2|))) (-15 -3916 ((-634 |#2|))) (-15 -1313 ((-634 |#2|))) (-15 -1943 ((-634 |#2|))) (-15 -3955 ((-634 |#2|))) (-15 -3759 ((-634 (-679 |#1|)))) (-15 -2328 ((-634 (-679 |#1|)))) (-15 -1995 ((-634 (-679 |#1|)))) (-15 -2945 ((-634 |#2|))) (IF (|has| |#1| (-301)) (-15 -3746 ((-1244 |#2|) (-1244 |#2|))) |noBranch|)) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-2295 (((-3 $ "failed")) NIL (|has| |#1| (-558)))) (-3134 (((-3 $ "failed") $ $) NIL)) (-2776 (((-1244 (-679 |#1|)) (-1244 $)) NIL) (((-1244 (-679 |#1|))) 24)) (-1741 (((-1244 $)) 50)) (-2671 (($) NIL T CONST)) (-1309 (((-3 (-2 (|:| |particular| $) (|:| -3746 (-634 $))) "failed")) NIL (|has| |#1| (-558)))) (-2593 (((-3 $ "failed")) NIL (|has| |#1| (-558)))) (-1631 (((-679 |#1|) (-1244 $)) NIL) (((-679 |#1|)) NIL)) (-1866 ((|#1| $) NIL)) (-3042 (((-679 |#1|) $ (-1244 $)) NIL) (((-679 |#1|) $) NIL)) (-3550 (((-3 $ "failed") $) NIL (|has| |#1| (-558)))) (-4408 (((-1157 (-953 |#1|))) NIL (|has| |#1| (-365)))) (-3551 (($ $ (-917)) NIL)) (-4409 ((|#1| $) NIL)) (-1371 (((-1157 |#1|) $) NIL (|has| |#1| (-558)))) (-3569 ((|#1| (-1244 $)) NIL) ((|#1|) NIL)) (-2989 (((-1157 |#1|) $) NIL)) (-3384 (((-121)) 86)) (-3498 (($ (-1244 |#1|) (-1244 $)) NIL) (($ (-1244 |#1|)) NIL)) (-2925 (((-3 $ "failed") $) 14 (|has| |#1| (-558)))) (-3700 (((-917)) 51)) (-4370 (((-121)) NIL)) (-4373 (($ $ (-917)) NIL)) (-1537 (((-121)) NIL)) (-1580 (((-121)) NIL)) (-1695 (((-121)) 88)) (-3116 (((-3 (-2 (|:| |particular| $) (|:| -3746 (-634 $))) "failed")) NIL (|has| |#1| (-558)))) (-2599 (((-3 $ "failed")) NIL (|has| |#1| (-558)))) (-4210 (((-679 |#1|) (-1244 $)) NIL) (((-679 |#1|)) NIL)) (-2889 ((|#1| $) NIL)) (-4333 (((-679 |#1|) $ (-1244 $)) NIL) (((-679 |#1|) $) NIL)) (-3243 (((-3 $ "failed") $) NIL (|has| |#1| (-558)))) (-4454 (((-1157 (-953 |#1|))) NIL (|has| |#1| (-365)))) (-4222 (($ $ (-917)) NIL)) (-3329 ((|#1| $) NIL)) (-2265 (((-1157 |#1|) $) NIL (|has| |#1| (-558)))) (-3898 ((|#1| (-1244 $)) NIL) ((|#1|) NIL)) (-3626 (((-1157 |#1|) $) NIL)) (-2767 (((-121)) 85)) (-4487 (((-1143) $) NIL)) (-1804 (((-121)) 92)) (-2919 (((-121)) 91)) (-3840 (((-121)) 93)) (-4022 (((-1108) $) NIL)) (-1346 (((-121)) 87)) (-2779 ((|#1| $ (-568)) 53)) (-4073 (((-1244 |#1|) $ (-1244 $)) 47) (((-679 |#1|) (-1244 $) (-1244 $)) NIL) (((-1244 |#1|) $) 28) (((-679 |#1|) (-1244 $)) NIL)) (-4278 (((-1244 |#1|) $) NIL) (($ (-1244 |#1|)) NIL)) (-3295 (((-634 (-953 |#1|)) (-1244 $)) NIL) (((-634 (-953 |#1|))) NIL)) (-2353 (($ $ $) NIL)) (-3433 (((-121)) 83)) (-2745 (((-850) $) 68) (($ (-1244 |#1|)) 22)) (-3746 (((-1244 $)) 44)) (-1509 (((-634 (-1244 |#1|))) NIL (|has| |#1| (-558)))) (-3882 (($ $ $ $) NIL)) (-4177 (((-121)) 81)) (-3823 (($ (-679 |#1|) $) 18)) (-3500 (($ $ $) NIL)) (-2433 (((-121)) 84)) (-2189 (((-121)) 82)) (-4107 (((-121)) 80)) (-3056 (($) NIL T CONST)) (-1717 (((-121) $ $) NIL)) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-917)) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) 75) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1127 |#2| |#1|) $) 19))) +(((-49 |#1| |#2| |#3| |#4|) (-13 (-419 |#1|) (-637 (-1127 |#2| |#1|)) (-10 -8 (-15 -2745 ($ (-1244 |#1|))))) (-365) (-917) (-634 (-1161)) (-1244 (-679 |#1|))) (T -49)) +((-2745 (*1 *1 *2) (-12 (-5 *2 (-1244 *3)) (-4 *3 (-365)) (-14 *6 (-1244 (-679 *3))) (-5 *1 (-49 *3 *4 *5 *6)) (-14 *4 (-917)) (-14 *5 (-634 (-1161)))))) +(-13 (-419 |#1|) (-637 (-1127 |#2| |#1|)) (-10 -8 (-15 -2745 ($ (-1244 |#1|))))) +((-2447 (((-121) $ $) NIL (-2198 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-2850 (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) NIL)) (-2235 (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) NIL)) (-2796 (($ $) NIL)) (-2986 (($) NIL) (($ (-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) NIL)) (-1868 (((-1249) $ |#1| |#1|) NIL (|has| $ (-6 -4520))) (((-1249) $ (-568) (-568)) NIL (|has| $ (-6 -4520)))) (-3910 (($ $ (-568)) NIL (|has| $ (-6 -4520)))) (-2016 (((-121) (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL) (((-121) $) NIL (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-842)))) (-3908 (($ (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4520))) (($ $) NIL (-12 (|has| $ (-6 -4520)) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-842))))) (-3644 (($ (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-842)))) (-2510 (((-121) $ (-763)) NIL)) (-1659 (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) NIL (|has| $ (-6 -4520)))) (-3869 (($ $ $) 27 (|has| $ (-6 -4520)))) (-2395 (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) NIL (|has| $ (-6 -4520)))) (-2517 (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) 29 (|has| $ (-6 -4520)))) (-2436 ((|#2| $ |#1| |#2|) 45) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $ (-568) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) NIL (|has| $ (-6 -4520))) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $ (-1210 (-568)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) NIL (|has| $ (-6 -4520))) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $ "last" (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) NIL (|has| $ (-6 -4520))) (($ $ "rest" $) NIL (|has| $ (-6 -4520))) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $ "first" (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) NIL (|has| $ (-6 -4520))) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $ "value" (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) NIL (|has| $ (-6 -4520)))) (-3827 (($ $ (-634 $)) NIL (|has| $ (-6 -4520)))) (-3507 (($ (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519))) (($ (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL)) (-2801 (($ (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519))) (($ (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519)))) (-1679 (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) NIL)) (-2674 (((-3 |#2| "failed") |#1| $) 37)) (-2671 (($) NIL T CONST)) (-1578 (($ $) NIL (|has| $ (-6 -4520)))) (-3943 (($ $) NIL)) (-3935 (($ $ (-763)) NIL) (($ $) 24)) (-3369 (($ $) NIL (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (-3924 (($ $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090))))) (-3405 (($ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) NIL (|has| $ (-6 -4519))) (($ (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519))) (((-3 |#2| "failed") |#1| $) 46) (($ (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL) (($ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) NIL (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (-4328 (($ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (($ (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519))) (($ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (($ (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519)))) (-3092 (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) NIL (|has| $ (-6 -4519))) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519))) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) NIL (|has| $ (-6 -4519))) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519)))) (-3989 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4520))) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $ (-568) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) NIL (|has| $ (-6 -4520)))) (-2602 ((|#2| $ |#1|) NIL) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $ (-568)) NIL)) (-1601 (((-121) $) NIL)) (-2764 (((-568) (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL) (((-568) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) NIL (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090))) (((-568) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $ (-568)) NIL (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (-4360 (((-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) 18 (|has| $ (-6 -4519))) (((-634 |#2|) $) NIL (|has| $ (-6 -4519))) (((-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) 18 (|has| $ (-6 -4519)))) (-2287 (((-634 $) $) NIL)) (-1700 (((-121) $ $) NIL (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (-1849 (($ (-763) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) NIL)) (-1737 (((-121) $ (-763)) NIL)) (-1881 ((|#1| $) NIL (|has| |#1| (-842))) (((-568) $) 32 (|has| (-568) (-842)))) (-2521 (($ $ $) NIL (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-842)))) (-3349 (($ (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-842)))) (-1347 (($ (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-842)))) (-1979 (((-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519))) (((-634 |#2|) $) NIL (|has| $ (-6 -4519))) (((-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519)))) (-3109 (((-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (((-121) |#2| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#2| (-1090)))) (((-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090))))) (-2223 ((|#1| $) NIL (|has| |#1| (-842))) (((-568) $) 34 (|has| (-568) (-842)))) (-3268 (($ $ $) NIL (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-842)))) (-3674 (($ (-1 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4520))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4520))) (($ (-1 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4520)))) (-2795 (($ (-1 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL)) (-3896 (($ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) NIL)) (-2166 (((-121) $ (-763)) NIL)) (-2869 (((-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL)) (-1651 (((-121) $) NIL)) (-4487 (((-1143) $) 41 (-2198 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-4162 (($ $ (-763)) NIL) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) NIL)) (-1946 (((-634 |#1|) $) 20)) (-3548 (((-121) |#1| $) NIL)) (-1890 (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) NIL)) (-4450 (($ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) NIL) (($ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $ (-568)) NIL) (($ $ $ (-568)) NIL)) (-4122 (($ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $ (-568)) NIL) (($ $ $ (-568)) NIL)) (-4174 (((-634 |#1|) $) NIL) (((-634 (-568)) $) NIL)) (-3578 (((-121) |#1| $) NIL) (((-121) (-568) $) NIL)) (-4022 (((-1108) $) NIL (-2198 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-3876 ((|#2| $) NIL (|has| |#1| (-842))) (($ $ (-763)) NIL) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) 23)) (-3775 (((-3 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) "failed") (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL) (((-3 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) "failed") (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL)) (-3724 (($ $ |#2|) NIL (|has| $ (-6 -4520))) (($ $ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) NIL (|has| $ (-6 -4520)))) (-1315 (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) NIL)) (-1786 (((-121) $) NIL)) (-1387 (((-121) (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519))) (((-121) (-1 (-121) |#2|) $) NIL (|has| $ (-6 -4519))) (((-121) (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))))) NIL (-12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (($ $ (-288 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) NIL (-12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (($ $ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) NIL (-12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (($ $ (-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) (-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) NIL (-12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (($ $ (-634 |#2|) (-634 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090)))) (($ $ (-634 (-288 |#2|))) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090)))) (($ $ (-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) (-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) NIL (-12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (($ $ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) NIL (-12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (($ $ (-288 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) NIL (-12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (($ $ (-634 (-288 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))))) NIL (-12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090))))) (-3171 (((-121) $ $) NIL)) (-4467 (((-121) |#2| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#2| (-1090)))) (((-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090))))) (-2041 (((-634 |#2|) $) NIL) (((-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) 17)) (-3084 (((-121) $) 16)) (-3248 (($) 13)) (-2779 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $ (-568) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) NIL) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $ (-568)) NIL) (($ $ (-1210 (-568))) NIL) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $ "first") NIL) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $ "value") NIL)) (-4075 (((-568) $ $) NIL)) (-2085 (($) 12) (($ (-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) NIL)) (-1783 (($ $ (-568)) NIL) (($ $ (-1210 (-568))) NIL)) (-2826 (($ $ (-568)) NIL) (($ $ (-1210 (-568))) NIL)) (-3790 (((-121) $) NIL)) (-2340 (($ $) NIL)) (-2714 (($ $) NIL (|has| $ (-6 -4520)))) (-2775 (((-763) $) NIL)) (-3335 (($ $) NIL)) (-4168 (((-763) (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519))) (((-763) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (((-763) |#2| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#2| (-1090)))) (((-763) (-1 (-121) |#2|) $) NIL (|has| $ (-6 -4519))) (((-763) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (((-763) (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519)))) (-2256 (($ $ $ (-568)) NIL (|has| $ (-6 -4520)))) (-3863 (($ $) NIL)) (-4278 (((-541) $) NIL (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-609 (-541))))) (-4287 (($ (-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) NIL) (($ (-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) NIL)) (-3845 (($ $ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) NIL) (($ $ $) NIL)) (-2768 (($ $ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) NIL) (($ (-634 $)) NIL) (($ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) 25) (($ $ $) NIL)) (-2745 (((-850) $) NIL (-2198 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-4339 (((-634 $) $) NIL)) (-3491 (((-121) $ $) NIL (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (-2367 (($ (-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) NIL)) (-2802 (((-3 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) "failed") |#1| $) 43)) (-1319 (((-121) (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519))) (((-121) (-1 (-121) |#2|) $) NIL (|has| $ (-6 -4519))) (((-121) (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519)))) (-1751 (((-121) $ $) NIL (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-842)))) (-1738 (((-121) $ $) NIL (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-842)))) (-1717 (((-121) $ $) NIL (-2198 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-1745 (((-121) $ $) NIL (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-842)))) (-1732 (((-121) $ $) NIL (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-842)))) (-1697 (((-763) $) 22 (|has| $ (-6 -4519))))) +(((-50 |#1| |#2|) (-41 |#1| |#2|) (-1090) (-1090)) (T -50)) NIL (-41 |#1| |#2|) -((-1814 (((-121) $) 12)) (-2803 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-403 (-560)) $) 24) (($ $ (-403 (-560))) NIL))) -(((-51 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-403 (-560)))) (-15 * (|#1| (-403 (-560)) |#1|)) (-15 -1814 ((-121) |#1|)) (-15 -2803 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 * (|#1| (-755) |#1|)) (-15 * (|#1| (-909) |#1|))) (-52 |#2| |#3|) (-1039) (-779)) (T -51)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-403 (-560)))) (-15 * (|#1| (-403 (-560)) |#1|)) (-15 -1814 ((-121) |#1|)) (-15 -2803 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 * (|#1| (-755) |#1|)) (-15 * (|#1| (-909) |#1|))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) 50 (|has| |#1| (-550)))) (-1350 (($ $) 51 (|has| |#1| (-550)))) (-3376 (((-121) $) 53 (|has| |#1| (-550)))) (-2314 (((-3 $ "failed") $ $) 18)) (-4236 (($) 16 T CONST)) (-1750 (($ $) 59)) (-1823 (((-3 $ "failed") $) 33)) (-2642 (((-121) $) 30)) (-1814 (((-121) $) 61)) (-1637 (($ |#1| |#2|) 60)) (-2803 (($ (-1 |#1| |#1|) $) 62)) (-1726 (($ $) 64)) (-1735 ((|#1| $) 65)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-2336 (((-3 $ "failed") $ $) 49 (|has| |#1| (-550)))) (-3662 ((|#2| $) 63)) (-2801 (((-842) $) 11) (($ (-560)) 27) (($ (-403 (-560))) 56 (|has| |#1| (-43 (-403 (-560))))) (($ $) 48 (|has| |#1| (-550))) (($ |#1|) 46 (|has| |#1| (-170)))) (-2636 ((|#1| $ |#2|) 58)) (-2272 (((-3 $ "failed") $) 47 (|has| |#1| (-146)))) (-1751 (((-755)) 28)) (-2328 (((-121) $ $) 52 (|has| |#1| (-550)))) (-2464 (($ $ (-909)) 25) (($ $ (-755)) 32)) (-3304 (($) 17 T CONST)) (-1459 (($) 29 T CONST)) (-1653 (((-121) $ $) 6)) (-1733 (($ $ |#1|) 57 (|has| |#1| (-359)))) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 24) (($ $ (-755)) 31)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 23) (($ $ |#1|) 67) (($ |#1| $) 66) (($ (-403 (-560)) $) 55 (|has| |#1| (-43 (-403 (-560))))) (($ $ (-403 (-560))) 54 (|has| |#1| (-43 (-403 (-560))))))) -(((-52 |#1| |#2|) (-1267) (-1039) (-779)) (T -52)) -((-1735 (*1 *2 *1) (-12 (-4 *1 (-52 *2 *3)) (-4 *3 (-779)) (-4 *2 (-1039)))) (-1726 (*1 *1 *1) (-12 (-4 *1 (-52 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-779)))) (-3662 (*1 *2 *1) (-12 (-4 *1 (-52 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-779)))) (-2803 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-52 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-779)))) (-1814 (*1 *2 *1) (-12 (-4 *1 (-52 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-779)) (-5 *2 (-121)))) (-1637 (*1 *1 *2 *3) (-12 (-4 *1 (-52 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-779)))) (-1750 (*1 *1 *1) (-12 (-4 *1 (-52 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-779)))) (-2636 (*1 *2 *1 *3) (-12 (-4 *1 (-52 *2 *3)) (-4 *3 (-779)) (-4 *2 (-1039)))) (-1733 (*1 *1 *1 *2) (-12 (-4 *1 (-52 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-779)) (-4 *2 (-359))))) -(-13 (-1039) (-120 |t#1| |t#1|) (-10 -8 (-15 -1735 (|t#1| $)) (-15 -1726 ($ $)) (-15 -3662 (|t#2| $)) (-15 -2803 ($ (-1 |t#1| |t#1|) $)) (-15 -1814 ((-121) $)) (-15 -1637 ($ |t#1| |t#2|)) (-15 -1750 ($ $)) (-15 -2636 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-359)) (-15 -1733 ($ $ |t#1|)) |noBranch|) (IF (|has| |t#1| (-170)) (PROGN (-6 (-170)) (-6 (-43 |t#1|))) |noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |noBranch|) (IF (|has| |t#1| (-550)) (-6 (-550)) |noBranch|) (IF (|has| |t#1| (-43 (-403 (-560)))) (-6 (-43 (-403 (-560)))) |noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-43 (-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((-43 |#1|) |has| |#1| (-170)) ((-43 $) |has| |#1| (-550)) ((-105) . T) ((-120 (-403 (-560)) (-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((-120 |#1| |#1|) . T) ((-120 $ $) -2318 (|has| |#1| (-550)) (|has| |#1| (-170))) ((-137) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-600 (-842)) . T) ((-170) -2318 (|has| |#1| (-550)) (|has| |#1| (-170))) ((-280) |has| |#1| (-550)) ((-550) |has| |#1| (-550)) ((-629 (-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((-629 |#1|) . T) ((-629 $) . T) ((-699 (-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((-699 |#1|) |has| |#1| (-170)) ((-699 $) |has| |#1| (-550)) ((-708) . T) ((-1045 (-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((-1045 |#1|) . T) ((-1045 $) -2318 (|has| |#1| (-550)) (|has| |#1| (-170))) ((-1039) . T) ((-1046) . T) ((-1094) . T) ((-1082) . T)) -((-2601 (((-121) $ $) NIL)) (-3905 (((-626 $) (-1149 $) (-1153)) NIL) (((-626 $) (-1149 $)) NIL) (((-626 $) (-945 $)) NIL)) (-4448 (($ (-1149 $) (-1153)) NIL) (($ (-1149 $)) NIL) (($ (-945 $)) NIL)) (-2832 (((-121) $) 11)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL)) (-1350 (($ $) NIL)) (-3376 (((-121) $) NIL)) (-3249 (((-626 (-599 $)) $) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-4122 (($ $ (-283 $)) NIL) (($ $ (-626 (-283 $))) NIL) (($ $ (-626 (-599 $)) (-626 $)) NIL)) (-3065 (($ $) NIL)) (-2953 (((-414 $) $) NIL)) (-2479 (($ $) NIL)) (-4179 (((-121) $ $) NIL)) (-4236 (($) NIL T CONST)) (-2257 (((-626 $) (-1149 $) (-1153)) NIL) (((-626 $) (-1149 $)) NIL) (((-626 $) (-945 $)) NIL)) (-1449 (($ (-1149 $) (-1153)) NIL) (($ (-1149 $)) NIL) (($ (-945 $)) NIL)) (-1473 (((-3 (-599 $) "failed") $) NIL) (((-3 (-560) "failed") $) NIL) (((-3 (-403 (-560)) "failed") $) NIL)) (-3001 (((-599 $) $) NIL) (((-560) $) NIL) (((-403 (-560)) $) NIL)) (-2563 (($ $ $) NIL)) (-2616 (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) NIL) (((-671 (-560)) (-671 $)) NIL) (((-2 (|:| -3818 (-671 (-403 (-560)))) (|:| |vec| (-1236 (-403 (-560))))) (-671 $) (-1236 $)) NIL) (((-671 (-403 (-560))) (-671 $)) NIL)) (-2342 (($ $) NIL)) (-1823 (((-3 $ "failed") $) NIL)) (-2572 (($ $ $) NIL)) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) NIL)) (-3319 (((-121) $) NIL)) (-2352 (($ $) NIL) (($ (-626 $)) NIL)) (-1951 (((-626 (-123)) $) NIL)) (-4403 (((-123) (-123)) NIL)) (-2642 (((-121) $) 14)) (-3348 (((-121) $) NIL (|has| $ (-1029 (-560))))) (-2132 (((-1105 (-560) (-599 $)) $) NIL)) (-2586 (($ $ (-560)) NIL)) (-3339 (((-1149 $) (-1149 $) (-599 $)) NIL) (((-1149 $) (-1149 $) (-626 (-599 $))) NIL) (($ $ (-599 $)) NIL) (($ $ (-626 (-599 $))) NIL)) (-3856 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-2929 (((-1149 $) (-599 $)) NIL (|has| $ (-1039)))) (-4325 (($ $ $) NIL)) (-2501 (($ $ $) NIL)) (-2803 (($ (-1 $ $) (-599 $)) NIL)) (-4220 (((-3 (-599 $) "failed") $) NIL)) (-2582 (($ (-626 $)) NIL) (($ $ $) NIL)) (-1291 (((-1135) $) NIL)) (-1586 (((-626 (-599 $)) $) NIL)) (-2181 (($ (-123) $) NIL) (($ (-123) (-626 $)) NIL)) (-3178 (((-121) $ (-123)) NIL) (((-121) $ (-1153)) NIL)) (-1701 (($ $) NIL)) (-3165 (((-755) $) NIL)) (-4353 (((-1100) $) NIL)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL)) (-4440 (($ (-626 $)) NIL) (($ $ $) NIL)) (-4388 (((-121) $ $) NIL) (((-121) $ (-1153)) NIL)) (-1601 (((-414 $) $) NIL)) (-3505 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL)) (-2336 (((-3 $ "failed") $ $) NIL)) (-3456 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-3522 (((-121) $) NIL (|has| $ (-1029 (-560))))) (-4450 (($ $ (-599 $) $) NIL) (($ $ (-626 (-599 $)) (-626 $)) NIL) (($ $ (-626 (-283 $))) NIL) (($ $ (-283 $)) NIL) (($ $ $ $) NIL) (($ $ (-626 $) (-626 $)) NIL) (($ $ (-626 (-1153)) (-626 (-1 $ $))) NIL) (($ $ (-626 (-1153)) (-626 (-1 $ (-626 $)))) NIL) (($ $ (-1153) (-1 $ (-626 $))) NIL) (($ $ (-1153) (-1 $ $)) NIL) (($ $ (-626 (-123)) (-626 (-1 $ $))) NIL) (($ $ (-626 (-123)) (-626 (-1 $ (-626 $)))) NIL) (($ $ (-123) (-1 $ (-626 $))) NIL) (($ $ (-123) (-1 $ $)) NIL)) (-4445 (((-755) $) NIL)) (-2778 (($ (-123) $) NIL) (($ (-123) $ $) NIL) (($ (-123) $ $ $) NIL) (($ (-123) $ $ $ $) NIL) (($ (-123) (-626 $)) NIL)) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL)) (-4290 (($ $) NIL) (($ $ $) NIL)) (-2443 (($ $ (-755)) NIL) (($ $) NIL)) (-2139 (((-1105 (-560) (-599 $)) $) NIL)) (-3591 (($ $) NIL (|has| $ (-1039)))) (-4255 (((-375) $) NIL) (((-213) $) NIL) (((-167 (-375)) $) NIL)) (-2801 (((-842) $) NIL) (($ (-599 $)) NIL) (($ (-403 (-560))) NIL) (($ $) NIL) (($ (-560)) NIL) (($ (-1105 (-560) (-599 $))) NIL)) (-1751 (((-755)) NIL)) (-4308 (($ $) NIL) (($ (-626 $)) NIL)) (-2409 (((-121) (-123)) NIL)) (-2328 (((-121) $ $) NIL)) (-2464 (($ $ (-560)) NIL) (($ $ (-755)) NIL) (($ $ (-909)) NIL)) (-3304 (($) 7 T CONST)) (-1459 (($) 12 T CONST)) (-2500 (($ $ (-755)) NIL) (($ $) NIL)) (-1691 (((-121) $ $) NIL)) (-1675 (((-121) $ $) NIL)) (-1653 (((-121) $ $) 16)) (-1683 (((-121) $ $) NIL)) (-1667 (((-121) $ $) NIL)) (-1733 (($ $ $) NIL)) (-1725 (($ $ $) 15) (($ $) NIL)) (-1716 (($ $ $) NIL)) (** (($ $ (-403 (-560))) NIL) (($ $ (-560)) NIL) (($ $ (-755)) NIL) (($ $ (-909)) NIL)) (* (($ (-403 (-560)) $) NIL) (($ $ (-403 (-560))) NIL) (($ $ $) NIL) (($ (-560) $) NIL) (($ (-755) $) NIL) (($ (-909) $) NIL))) -(((-53) (-13 (-291) (-27) (-1029 (-560)) (-1029 (-403 (-560))) (-622 (-560)) (-1013) (-622 (-403 (-560))) (-148) (-601 (-167 (-375))) (-221) (-10 -8 (-15 -2801 ($ (-1105 (-560) (-599 $)))) (-15 -2132 ((-1105 (-560) (-599 $)) $)) (-15 -2139 ((-1105 (-560) (-599 $)) $)) (-15 -2342 ($ $)) (-15 -3339 ((-1149 $) (-1149 $) (-599 $))) (-15 -3339 ((-1149 $) (-1149 $) (-626 (-599 $)))) (-15 -3339 ($ $ (-599 $))) (-15 -3339 ($ $ (-626 (-599 $))))))) (T -53)) -((-2801 (*1 *1 *2) (-12 (-5 *2 (-1105 (-560) (-599 (-53)))) (-5 *1 (-53)))) (-2132 (*1 *2 *1) (-12 (-5 *2 (-1105 (-560) (-599 (-53)))) (-5 *1 (-53)))) (-2139 (*1 *2 *1) (-12 (-5 *2 (-1105 (-560) (-599 (-53)))) (-5 *1 (-53)))) (-2342 (*1 *1 *1) (-5 *1 (-53))) (-3339 (*1 *2 *2 *3) (-12 (-5 *2 (-1149 (-53))) (-5 *3 (-599 (-53))) (-5 *1 (-53)))) (-3339 (*1 *2 *2 *3) (-12 (-5 *2 (-1149 (-53))) (-5 *3 (-626 (-599 (-53)))) (-5 *1 (-53)))) (-3339 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-53))) (-5 *1 (-53)))) (-3339 (*1 *1 *1 *2) (-12 (-5 *2 (-626 (-599 (-53)))) (-5 *1 (-53))))) -(-13 (-291) (-27) (-1029 (-560)) (-1029 (-403 (-560))) (-622 (-560)) (-1013) (-622 (-403 (-560))) (-148) (-601 (-167 (-375))) (-221) (-10 -8 (-15 -2801 ($ (-1105 (-560) (-599 $)))) (-15 -2132 ((-1105 (-560) (-599 $)) $)) (-15 -2139 ((-1105 (-560) (-599 $)) $)) (-15 -2342 ($ $)) (-15 -3339 ((-1149 $) (-1149 $) (-599 $))) (-15 -3339 ((-1149 $) (-1149 $) (-626 (-599 $)))) (-15 -3339 ($ $ (-599 $))) (-15 -3339 ($ $ (-626 (-599 $)))))) -((-2601 (((-121) $ $) NIL)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2801 (((-842) $) 7)) (-1653 (((-121) $ $) NIL))) -(((-54) (-1082)) (T -54)) -NIL -(-1082) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) 60)) (-2314 (((-3 $ "failed") $ $) NIL)) (-4236 (($) NIL T CONST)) (-1868 (((-121) $) 20)) (-1473 (((-3 |#1| "failed") $) 23)) (-3001 ((|#1| $) 24)) (-1750 (($ $) 27)) (-1823 (((-3 $ "failed") $) NIL)) (-2642 (((-121) $) NIL)) (-2803 (($ (-1 |#1| |#1|) $) NIL)) (-1735 ((|#1| $) 21)) (-1745 (($ $) 49)) (-1291 (((-1135) $) NIL)) (-4472 (((-121) $) 28)) (-4353 (((-1100) $) NIL)) (-4250 (($ (-755)) 47)) (-2469 (($ (-626 (-560))) 48)) (-3662 (((-755) $) 29)) (-2801 (((-842) $) 63) (($ (-560)) 44) (($ |#1|) 42)) (-2636 ((|#1| $ $) 19)) (-1751 (((-755)) 46)) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (-3304 (($) 30 T CONST)) (-1459 (($) 14 T CONST)) (-1653 (((-121) $ $) NIL)) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) 40)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) 41) (($ |#1| $) 35))) -(((-55 |#1| |#2|) (-13 (-604 |#1|) (-1029 |#1|) (-10 -8 (-15 -1735 (|#1| $)) (-15 -1745 ($ $)) (-15 -1750 ($ $)) (-15 -2636 (|#1| $ $)) (-15 -4250 ($ (-755))) (-15 -2469 ($ (-626 (-560)))) (-15 -4472 ((-121) $)) (-15 -1868 ((-121) $)) (-15 -3662 ((-755) $)) (-15 -2803 ($ (-1 |#1| |#1|) $)))) (-1039) (-626 (-1153))) (T -55)) -((-1735 (*1 *2 *1) (-12 (-4 *2 (-1039)) (-5 *1 (-55 *2 *3)) (-14 *3 (-626 (-1153))))) (-1745 (*1 *1 *1) (-12 (-5 *1 (-55 *2 *3)) (-4 *2 (-1039)) (-14 *3 (-626 (-1153))))) (-1750 (*1 *1 *1) (-12 (-5 *1 (-55 *2 *3)) (-4 *2 (-1039)) (-14 *3 (-626 (-1153))))) (-2636 (*1 *2 *1 *1) (-12 (-4 *2 (-1039)) (-5 *1 (-55 *2 *3)) (-14 *3 (-626 (-1153))))) (-4250 (*1 *1 *2) (-12 (-5 *2 (-755)) (-5 *1 (-55 *3 *4)) (-4 *3 (-1039)) (-14 *4 (-626 (-1153))))) (-2469 (*1 *1 *2) (-12 (-5 *2 (-626 (-560))) (-5 *1 (-55 *3 *4)) (-4 *3 (-1039)) (-14 *4 (-626 (-1153))))) (-4472 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-55 *3 *4)) (-4 *3 (-1039)) (-14 *4 (-626 (-1153))))) (-1868 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-55 *3 *4)) (-4 *3 (-1039)) (-14 *4 (-626 (-1153))))) (-3662 (*1 *2 *1) (-12 (-5 *2 (-755)) (-5 *1 (-55 *3 *4)) (-4 *3 (-1039)) (-14 *4 (-626 (-1153))))) (-2803 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1039)) (-5 *1 (-55 *3 *4)) (-14 *4 (-626 (-1153)))))) -(-13 (-604 |#1|) (-1029 |#1|) (-10 -8 (-15 -1735 (|#1| $)) (-15 -1745 ($ $)) (-15 -1750 ($ $)) (-15 -2636 (|#1| $ $)) (-15 -4250 ($ (-755))) (-15 -2469 ($ (-626 (-560)))) (-15 -4472 ((-121) $)) (-15 -1868 ((-121) $)) (-15 -3662 ((-755) $)) (-15 -2803 ($ (-1 |#1| |#1|) $)))) -((-1868 (((-121) (-57)) 13)) (-1473 (((-3 |#1| "failed") (-57)) 21)) (-3001 ((|#1| (-57)) 22)) (-2801 (((-57) |#1|) 18))) -(((-56 |#1|) (-10 -7 (-15 -2801 ((-57) |#1|)) (-15 -1473 ((-3 |#1| "failed") (-57))) (-15 -1868 ((-121) (-57))) (-15 -3001 (|#1| (-57)))) (-1187)) (T -56)) -((-3001 (*1 *2 *3) (-12 (-5 *3 (-57)) (-5 *1 (-56 *2)) (-4 *2 (-1187)))) (-1868 (*1 *2 *3) (-12 (-5 *3 (-57)) (-5 *2 (-121)) (-5 *1 (-56 *4)) (-4 *4 (-1187)))) (-1473 (*1 *2 *3) (|partial| -12 (-5 *3 (-57)) (-5 *1 (-56 *2)) (-4 *2 (-1187)))) (-2801 (*1 *2 *3) (-12 (-5 *2 (-57)) (-5 *1 (-56 *3)) (-4 *3 (-1187))))) -(-10 -7 (-15 -2801 ((-57) |#1|)) (-15 -1473 ((-3 |#1| "failed") (-57))) (-15 -1868 ((-121) (-57))) (-15 -3001 (|#1| (-57)))) -((-2601 (((-121) $ $) NIL)) (-2391 (((-1135) (-121)) 25)) (-3808 (((-842) $) 24)) (-3200 (((-758) $) 12)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-3404 (((-842) $) 16)) (-2736 (((-1086) $) 14)) (-2801 (((-842) $) 32)) (-2213 (($ (-1086) (-758)) 33)) (-1653 (((-121) $ $) 18))) -(((-57) (-13 (-1082) (-10 -8 (-15 -2213 ($ (-1086) (-758))) (-15 -3404 ((-842) $)) (-15 -3808 ((-842) $)) (-15 -2736 ((-1086) $)) (-15 -3200 ((-758) $)) (-15 -2391 ((-1135) (-121)))))) (T -57)) -((-2213 (*1 *1 *2 *3) (-12 (-5 *2 (-1086)) (-5 *3 (-758)) (-5 *1 (-57)))) (-3404 (*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-57)))) (-3808 (*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-57)))) (-2736 (*1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-57)))) (-3200 (*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-57)))) (-2391 (*1 *2 *3) (-12 (-5 *3 (-121)) (-5 *2 (-1135)) (-5 *1 (-57))))) -(-13 (-1082) (-10 -8 (-15 -2213 ($ (-1086) (-758))) (-15 -3404 ((-842) $)) (-15 -3808 ((-842) $)) (-15 -2736 ((-1086) $)) (-15 -3200 ((-758) $)) (-15 -2391 ((-1135) (-121))))) -((-1550 (((-1241)) 19)) (-3103 (((-1084 (-1153)) (-1153)) 15)) (-1620 (((-1241)) 18))) -(((-58) (-10 -7 (-15 -3103 ((-1084 (-1153)) (-1153))) (-15 -1620 ((-1241))) (-15 -1550 ((-1241))))) (T -58)) -((-1550 (*1 *2) (-12 (-5 *2 (-1241)) (-5 *1 (-58)))) (-1620 (*1 *2) (-12 (-5 *2 (-1241)) (-5 *1 (-58)))) (-3103 (*1 *2 *3) (-12 (-5 *2 (-1084 (-1153))) (-5 *1 (-58)) (-5 *3 (-1153))))) -(-10 -7 (-15 -3103 ((-1084 (-1153)) (-1153))) (-15 -1620 ((-1241))) (-15 -1550 ((-1241)))) -((-2788 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16))) -(((-59 |#1| |#2| |#3|) (-10 -7 (-15 -2788 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1039) (-629 |#1|) (-836 |#1|)) (T -59)) -((-2788 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-629 *5)) (-4 *5 (-1039)) (-5 *1 (-59 *5 *2 *3)) (-4 *3 (-836 *5))))) -(-10 -7 (-15 -2788 (|#2| |#3| (-1 |#2| |#2|) |#2|))) -((-2062 ((|#3| |#3| (-626 (-1153))) 35)) (-4182 ((|#3| (-626 (-1061 |#1| |#2| |#3|)) |#3| (-909)) 22) ((|#3| (-626 (-1061 |#1| |#2| |#3|)) |#3|) 20))) -(((-60 |#1| |#2| |#3|) (-10 -7 (-15 -4182 (|#3| (-626 (-1061 |#1| |#2| |#3|)) |#3|)) (-15 -4182 (|#3| (-626 (-1061 |#1| |#2| |#3|)) |#3| (-909))) (-15 -2062 (|#3| |#3| (-626 (-1153))))) (-1082) (-13 (-1039) (-873 |#1|) (-834) (-601 (-879 |#1|))) (-13 (-426 |#2|) (-873 |#1|) (-601 (-879 |#1|)))) (T -60)) -((-2062 (*1 *2 *2 *3) (-12 (-5 *3 (-626 (-1153))) (-4 *4 (-1082)) (-4 *5 (-13 (-1039) (-873 *4) (-834) (-601 (-879 *4)))) (-5 *1 (-60 *4 *5 *2)) (-4 *2 (-13 (-426 *5) (-873 *4) (-601 (-879 *4)))))) (-4182 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-626 (-1061 *5 *6 *2))) (-5 *4 (-909)) (-4 *5 (-1082)) (-4 *6 (-13 (-1039) (-873 *5) (-834) (-601 (-879 *5)))) (-4 *2 (-13 (-426 *6) (-873 *5) (-601 (-879 *5)))) (-5 *1 (-60 *5 *6 *2)))) (-4182 (*1 *2 *3 *2) (-12 (-5 *3 (-626 (-1061 *4 *5 *2))) (-4 *4 (-1082)) (-4 *5 (-13 (-1039) (-873 *4) (-834) (-601 (-879 *4)))) (-4 *2 (-13 (-426 *5) (-873 *4) (-601 (-879 *4)))) (-5 *1 (-60 *4 *5 *2))))) -(-10 -7 (-15 -4182 (|#3| (-626 (-1061 |#1| |#2| |#3|)) |#3|)) (-15 -4182 (|#3| (-626 (-1061 |#1| |#2| |#3|)) |#3| (-909))) (-15 -2062 (|#3| |#3| (-626 (-1153))))) -((-3909 (((-121) $ (-755)) 23)) (-2013 (($ $ (-560) |#3|) 45)) (-4079 (($ $ (-560) |#4|) 49)) (-4097 ((|#3| $ (-560)) 58)) (-1981 (((-626 |#2|) $) 30)) (-2122 (((-121) $ (-755)) 25)) (-2030 (((-121) |#2| $) 53)) (-3778 (($ (-1 |#2| |#2|) $) 37)) (-2803 (($ (-1 |#2| |#2|) $) 36) (($ (-1 |#2| |#2| |#2|) $ $) 39) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 41)) (-3441 (((-121) $ (-755)) 24)) (-3038 (($ $ |#2|) 34)) (-2865 (((-121) (-1 (-121) |#2|) $) 19)) (-2778 ((|#2| $ (-560) (-560)) NIL) ((|#2| $ (-560) (-560) |#2|) 27)) (-4035 (((-755) (-1 (-121) |#2|) $) 28) (((-755) |#2| $) 55)) (-2813 (($ $) 33)) (-3677 ((|#4| $ (-560)) 61)) (-2801 (((-842) $) 66)) (-3656 (((-121) (-1 (-121) |#2|) $) 18)) (-1653 (((-121) $ $) 52)) (-2271 (((-755) $) 26))) -(((-61 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2803 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -2803 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3778 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4079 (|#1| |#1| (-560) |#4|)) (-15 -2013 (|#1| |#1| (-560) |#3|)) (-15 -1981 ((-626 |#2|) |#1|)) (-15 -3677 (|#4| |#1| (-560))) (-15 -4097 (|#3| |#1| (-560))) (-15 -2778 (|#2| |#1| (-560) (-560) |#2|)) (-15 -2778 (|#2| |#1| (-560) (-560))) (-15 -3038 (|#1| |#1| |#2|)) (-15 -1653 ((-121) |#1| |#1|)) (-15 -2801 ((-842) |#1|)) (-15 -2030 ((-121) |#2| |#1|)) (-15 -4035 ((-755) |#2| |#1|)) (-15 -4035 ((-755) (-1 (-121) |#2|) |#1|)) (-15 -2865 ((-121) (-1 (-121) |#2|) |#1|)) (-15 -3656 ((-121) (-1 (-121) |#2|) |#1|)) (-15 -2803 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2271 ((-755) |#1|)) (-15 -3909 ((-121) |#1| (-755))) (-15 -2122 ((-121) |#1| (-755))) (-15 -3441 ((-121) |#1| (-755))) (-15 -2813 (|#1| |#1|))) (-62 |#2| |#3| |#4|) (-1187) (-369 |#2|) (-369 |#2|)) (T -61)) -NIL -(-10 -8 (-15 -2803 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -2803 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3778 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4079 (|#1| |#1| (-560) |#4|)) (-15 -2013 (|#1| |#1| (-560) |#3|)) (-15 -1981 ((-626 |#2|) |#1|)) (-15 -3677 (|#4| |#1| (-560))) (-15 -4097 (|#3| |#1| (-560))) (-15 -2778 (|#2| |#1| (-560) (-560) |#2|)) (-15 -2778 (|#2| |#1| (-560) (-560))) (-15 -3038 (|#1| |#1| |#2|)) (-15 -1653 ((-121) |#1| |#1|)) (-15 -2801 ((-842) |#1|)) (-15 -2030 ((-121) |#2| |#1|)) (-15 -4035 ((-755) |#2| |#1|)) (-15 -4035 ((-755) (-1 (-121) |#2|) |#1|)) (-15 -2865 ((-121) (-1 (-121) |#2|) |#1|)) (-15 -3656 ((-121) (-1 (-121) |#2|) |#1|)) (-15 -2803 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2271 ((-755) |#1|)) (-15 -3909 ((-121) |#1| (-755))) (-15 -2122 ((-121) |#1| (-755))) (-15 -3441 ((-121) |#1| (-755))) (-15 -2813 (|#1| |#1|))) -((-2601 (((-121) $ $) 18 (|has| |#1| (-1082)))) (-3909 (((-121) $ (-755)) 8)) (-2764 ((|#1| $ (-560) (-560) |#1|) 41)) (-2013 (($ $ (-560) |#2|) 39)) (-4079 (($ $ (-560) |#3|) 38)) (-4236 (($) 7 T CONST)) (-4097 ((|#2| $ (-560)) 43)) (-1746 ((|#1| $ (-560) (-560) |#1|) 40)) (-1361 ((|#1| $ (-560) (-560)) 45)) (-1981 (((-626 |#1|) $) 30)) (-1454 (((-755) $) 48)) (-1721 (($ (-755) (-755) |#1|) 54)) (-2634 (((-755) $) 47)) (-2122 (((-121) $ (-755)) 9)) (-2984 (((-560) $) 52)) (-1994 (((-560) $) 50)) (-2130 (((-626 |#1|) $) 29 (|has| $ (-6 -4505)))) (-2030 (((-121) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-3755 (((-560) $) 51)) (-1420 (((-560) $) 49)) (-3778 (($ (-1 |#1| |#1|) $) 34)) (-2803 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 37) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 36)) (-3441 (((-121) $ (-755)) 10)) (-1291 (((-1135) $) 22 (|has| |#1| (-1082)))) (-4353 (((-1100) $) 21 (|has| |#1| (-1082)))) (-3038 (($ $ |#1|) 53)) (-2865 (((-121) (-1 (-121) |#1|) $) 32 (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#1|))) 26 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-283 |#1|)) 25 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-626 |#1|) (-626 |#1|)) 23 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))))) (-2214 (((-121) $ $) 14)) (-4191 (((-121) $) 11)) (-3260 (($) 12)) (-2778 ((|#1| $ (-560) (-560)) 46) ((|#1| $ (-560) (-560) |#1|) 44)) (-4035 (((-755) (-1 (-121) |#1|) $) 31 (|has| $ (-6 -4505))) (((-755) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-2813 (($ $) 13)) (-3677 ((|#3| $ (-560)) 42)) (-2801 (((-842) $) 20 (|has| |#1| (-1082)))) (-3656 (((-121) (-1 (-121) |#1|) $) 33 (|has| $ (-6 -4505)))) (-1653 (((-121) $ $) 19 (|has| |#1| (-1082)))) (-2271 (((-755) $) 6 (|has| $ (-6 -4505))))) -(((-62 |#1| |#2| |#3|) (-1267) (-1187) (-369 |t#1|) (-369 |t#1|)) (T -62)) -((-2803 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-62 *3 *4 *5)) (-4 *3 (-1187)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)))) (-1721 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-755)) (-4 *3 (-1187)) (-4 *1 (-62 *3 *4 *5)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)))) (-3038 (*1 *1 *1 *2) (-12 (-4 *1 (-62 *2 *3 *4)) (-4 *2 (-1187)) (-4 *3 (-369 *2)) (-4 *4 (-369 *2)))) (-2984 (*1 *2 *1) (-12 (-4 *1 (-62 *3 *4 *5)) (-4 *3 (-1187)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)) (-5 *2 (-560)))) (-3755 (*1 *2 *1) (-12 (-4 *1 (-62 *3 *4 *5)) (-4 *3 (-1187)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)) (-5 *2 (-560)))) (-1994 (*1 *2 *1) (-12 (-4 *1 (-62 *3 *4 *5)) (-4 *3 (-1187)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)) (-5 *2 (-560)))) (-1420 (*1 *2 *1) (-12 (-4 *1 (-62 *3 *4 *5)) (-4 *3 (-1187)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)) (-5 *2 (-560)))) (-1454 (*1 *2 *1) (-12 (-4 *1 (-62 *3 *4 *5)) (-4 *3 (-1187)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)) (-5 *2 (-755)))) (-2634 (*1 *2 *1) (-12 (-4 *1 (-62 *3 *4 *5)) (-4 *3 (-1187)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)) (-5 *2 (-755)))) (-2778 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-560)) (-4 *1 (-62 *2 *4 *5)) (-4 *4 (-369 *2)) (-4 *5 (-369 *2)) (-4 *2 (-1187)))) (-1361 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-560)) (-4 *1 (-62 *2 *4 *5)) (-4 *4 (-369 *2)) (-4 *5 (-369 *2)) (-4 *2 (-1187)))) (-2778 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-560)) (-4 *1 (-62 *2 *4 *5)) (-4 *2 (-1187)) (-4 *4 (-369 *2)) (-4 *5 (-369 *2)))) (-4097 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *1 (-62 *4 *2 *5)) (-4 *4 (-1187)) (-4 *5 (-369 *4)) (-4 *2 (-369 *4)))) (-3677 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *1 (-62 *4 *5 *2)) (-4 *4 (-1187)) (-4 *5 (-369 *4)) (-4 *2 (-369 *4)))) (-1981 (*1 *2 *1) (-12 (-4 *1 (-62 *3 *4 *5)) (-4 *3 (-1187)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)) (-5 *2 (-626 *3)))) (-2764 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-560)) (-4 *1 (-62 *2 *4 *5)) (-4 *2 (-1187)) (-4 *4 (-369 *2)) (-4 *5 (-369 *2)))) (-1746 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-560)) (-4 *1 (-62 *2 *4 *5)) (-4 *2 (-1187)) (-4 *4 (-369 *2)) (-4 *5 (-369 *2)))) (-2013 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-560)) (-4 *1 (-62 *4 *3 *5)) (-4 *4 (-1187)) (-4 *3 (-369 *4)) (-4 *5 (-369 *4)))) (-4079 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-560)) (-4 *1 (-62 *4 *5 *3)) (-4 *4 (-1187)) (-4 *5 (-369 *4)) (-4 *3 (-369 *4)))) (-3778 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-62 *3 *4 *5)) (-4 *3 (-1187)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)))) (-2803 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-62 *3 *4 *5)) (-4 *3 (-1187)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)))) (-2803 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-62 *3 *4 *5)) (-4 *3 (-1187)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3))))) -(-13 (-492 |t#1|) (-10 -8 (-6 -4506) (-6 -4505) (-15 -1721 ($ (-755) (-755) |t#1|)) (-15 -3038 ($ $ |t#1|)) (-15 -2984 ((-560) $)) (-15 -3755 ((-560) $)) (-15 -1994 ((-560) $)) (-15 -1420 ((-560) $)) (-15 -1454 ((-755) $)) (-15 -2634 ((-755) $)) (-15 -2778 (|t#1| $ (-560) (-560))) (-15 -1361 (|t#1| $ (-560) (-560))) (-15 -2778 (|t#1| $ (-560) (-560) |t#1|)) (-15 -4097 (|t#2| $ (-560))) (-15 -3677 (|t#3| $ (-560))) (-15 -1981 ((-626 |t#1|) $)) (-15 -2764 (|t#1| $ (-560) (-560) |t#1|)) (-15 -1746 (|t#1| $ (-560) (-560) |t#1|)) (-15 -2013 ($ $ (-560) |t#2|)) (-15 -4079 ($ $ (-560) |t#3|)) (-15 -2803 ($ (-1 |t#1| |t#1|) $)) (-15 -3778 ($ (-1 |t#1| |t#1|) $)) (-15 -2803 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2803 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) -(((-39) . T) ((-105) |has| |#1| (-1082)) ((-600 (-842)) |has| |#1| (-1082)) ((-298 |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))) ((-492 |#1|) . T) ((-515 |#1| |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))) ((-1082) |has| |#1| (-1082)) ((-1187) . T)) -((-3469 (((-64 |#2|) (-1 |#2| |#1| |#2|) (-64 |#1|) |#2|) 16)) (-2342 ((|#2| (-1 |#2| |#1| |#2|) (-64 |#1|) |#2|) 18)) (-2803 (((-64 |#2|) (-1 |#2| |#1|) (-64 |#1|)) 13))) -(((-63 |#1| |#2|) (-10 -7 (-15 -3469 ((-64 |#2|) (-1 |#2| |#1| |#2|) (-64 |#1|) |#2|)) (-15 -2342 (|#2| (-1 |#2| |#1| |#2|) (-64 |#1|) |#2|)) (-15 -2803 ((-64 |#2|) (-1 |#2| |#1|) (-64 |#1|)))) (-1187) (-1187)) (T -63)) -((-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-64 *5)) (-4 *5 (-1187)) (-4 *6 (-1187)) (-5 *2 (-64 *6)) (-5 *1 (-63 *5 *6)))) (-2342 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-64 *5)) (-4 *5 (-1187)) (-4 *2 (-1187)) (-5 *1 (-63 *5 *2)))) (-3469 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-64 *6)) (-4 *6 (-1187)) (-4 *5 (-1187)) (-5 *2 (-64 *5)) (-5 *1 (-63 *6 *5))))) -(-10 -7 (-15 -3469 ((-64 |#2|) (-1 |#2| |#1| |#2|) (-64 |#1|) |#2|)) (-15 -2342 (|#2| (-1 |#2| |#1| |#2|) (-64 |#1|) |#2|)) (-15 -2803 ((-64 |#2|) (-1 |#2| |#1|) (-64 |#1|)))) -((-2601 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-2960 (((-1241) $ (-560) (-560)) NIL (|has| $ (-6 -4506)))) (-3189 (((-121) (-1 (-121) |#1| |#1|) $) NIL) (((-121) $) NIL (|has| |#1| (-834)))) (-4410 (($ (-1 (-121) |#1| |#1|) $) NIL (|has| $ (-6 -4506))) (($ $) NIL (-12 (|has| $ (-6 -4506)) (|has| |#1| (-834))))) (-3743 (($ (-1 (-121) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-834)))) (-3909 (((-121) $ (-755)) NIL)) (-2764 ((|#1| $ (-560) |#1|) 11 (|has| $ (-6 -4506))) ((|#1| $ (-1202 (-560)) |#1|) NIL (|has| $ (-6 -4506)))) (-3802 (($ (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-4236 (($) NIL T CONST)) (-4030 (($ $) NIL (|has| $ (-6 -4506)))) (-2883 (($ $) NIL)) (-2868 (($ $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-4310 (($ |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082)))) (($ (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-2342 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4505))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4505)))) (-1746 ((|#1| $ (-560) |#1|) NIL (|has| $ (-6 -4506)))) (-1361 ((|#1| $ (-560)) NIL)) (-2839 (((-560) (-1 (-121) |#1|) $) NIL) (((-560) |#1| $) NIL (|has| |#1| (-1082))) (((-560) |#1| $ (-560)) NIL (|has| |#1| (-1082)))) (-1981 (((-626 |#1|) $) NIL (|has| $ (-6 -4505)))) (-1803 (($ (-626 |#1|)) 13) (($ (-755) |#1|) 14)) (-1721 (($ (-755) |#1|) 9)) (-2122 (((-121) $ (-755)) NIL)) (-4099 (((-560) $) NIL (|has| (-560) (-834)))) (-4325 (($ $ $) NIL (|has| |#1| (-834)))) (-2492 (($ (-1 (-121) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-834)))) (-2130 (((-626 |#1|) $) NIL (|has| $ (-6 -4505)))) (-2030 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-2767 (((-560) $) NIL (|has| (-560) (-834)))) (-2501 (($ $ $) NIL (|has| |#1| (-834)))) (-3778 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3441 (((-121) $ (-755)) NIL)) (-1291 (((-1135) $) NIL (|has| |#1| (-1082)))) (-4103 (($ |#1| $ (-560)) NIL) (($ $ $ (-560)) NIL)) (-1529 (((-626 (-560)) $) NIL)) (-1310 (((-121) (-560) $) NIL)) (-4353 (((-1100) $) NIL (|has| |#1| (-1082)))) (-2824 ((|#1| $) NIL (|has| (-560) (-834)))) (-3786 (((-3 |#1| "failed") (-1 (-121) |#1|) $) NIL)) (-3038 (($ $ |#1|) NIL (|has| $ (-6 -4506)))) (-2865 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#1|))) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-283 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-626 |#1|) (-626 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))))) (-2214 (((-121) $ $) NIL)) (-1290 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-4460 (((-626 |#1|) $) NIL)) (-4191 (((-121) $) NIL)) (-3260 (($) 7)) (-2778 ((|#1| $ (-560) |#1|) NIL) ((|#1| $ (-560)) NIL) (($ $ (-1202 (-560))) NIL)) (-2949 (($ $ (-560)) NIL) (($ $ (-1202 (-560))) NIL)) (-4035 (((-755) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505))) (((-755) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-4072 (($ $ $ (-560)) NIL (|has| $ (-6 -4506)))) (-2813 (($ $) NIL)) (-4255 (((-533) $) NIL (|has| |#1| (-601 (-533))))) (-4162 (($ (-626 |#1|)) NIL)) (-2849 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-626 $)) NIL)) (-2801 (((-842) $) NIL (|has| |#1| (-1082)))) (-3656 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-1691 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1675 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1653 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-1683 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1667 (((-121) $ $) NIL (|has| |#1| (-834)))) (-2271 (((-755) $) NIL (|has| $ (-6 -4505))))) -(((-64 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -1803 ($ (-626 |#1|))) (-15 -1803 ($ (-755) |#1|)))) (-1187)) (T -64)) -((-1803 (*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-1187)) (-5 *1 (-64 *3)))) (-1803 (*1 *1 *2 *3) (-12 (-5 *2 (-755)) (-5 *1 (-64 *3)) (-4 *3 (-1187))))) -(-13 (-19 |#1|) (-10 -8 (-15 -1803 ($ (-626 |#1|))) (-15 -1803 ($ (-755) |#1|)))) -((-2601 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-3909 (((-121) $ (-755)) NIL)) (-2764 ((|#1| $ (-560) (-560) |#1|) NIL)) (-2013 (($ $ (-560) (-64 |#1|)) NIL)) (-4079 (($ $ (-560) (-64 |#1|)) NIL)) (-4236 (($) NIL T CONST)) (-4097 (((-64 |#1|) $ (-560)) NIL)) (-1746 ((|#1| $ (-560) (-560) |#1|) NIL)) (-1361 ((|#1| $ (-560) (-560)) NIL)) (-1981 (((-626 |#1|) $) NIL)) (-1454 (((-755) $) NIL)) (-1721 (($ (-755) (-755) |#1|) NIL)) (-2634 (((-755) $) NIL)) (-2122 (((-121) $ (-755)) NIL)) (-2984 (((-560) $) NIL)) (-1994 (((-560) $) NIL)) (-2130 (((-626 |#1|) $) NIL (|has| $ (-6 -4505)))) (-2030 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-3755 (((-560) $) NIL)) (-1420 (((-560) $) NIL)) (-3778 (($ (-1 |#1| |#1|) $) NIL)) (-2803 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3441 (((-121) $ (-755)) NIL)) (-1291 (((-1135) $) NIL (|has| |#1| (-1082)))) (-4353 (((-1100) $) NIL (|has| |#1| (-1082)))) (-3038 (($ $ |#1|) NIL)) (-2865 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#1|))) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-283 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-626 |#1|) (-626 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))))) (-2214 (((-121) $ $) NIL)) (-4191 (((-121) $) NIL)) (-3260 (($) NIL)) (-2778 ((|#1| $ (-560) (-560)) NIL) ((|#1| $ (-560) (-560) |#1|) NIL)) (-4035 (((-755) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505))) (((-755) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-2813 (($ $) NIL)) (-3677 (((-64 |#1|) $ (-560)) NIL)) (-2801 (((-842) $) NIL (|has| |#1| (-1082)))) (-3656 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-1653 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-2271 (((-755) $) NIL (|has| $ (-6 -4505))))) -(((-65 |#1|) (-13 (-62 |#1| (-64 |#1|) (-64 |#1|)) (-10 -7 (-6 -4506))) (-1187)) (T -65)) -NIL -(-13 (-62 |#1| (-64 |#1|) (-64 |#1|)) (-10 -7 (-6 -4506))) -((-1473 (((-3 $ "failed") (-1236 (-304 (-375)))) 69) (((-3 $ "failed") (-1236 (-304 (-560)))) 58) (((-3 $ "failed") (-1236 (-945 (-375)))) 91) (((-3 $ "failed") (-1236 (-945 (-560)))) 80) (((-3 $ "failed") (-1236 (-403 (-945 (-375))))) 47) (((-3 $ "failed") (-1236 (-403 (-945 (-560))))) 36)) (-3001 (($ (-1236 (-304 (-375)))) 65) (($ (-1236 (-304 (-560)))) 54) (($ (-1236 (-945 (-375)))) 87) (($ (-1236 (-945 (-560)))) 76) (($ (-1236 (-403 (-945 (-375))))) 43) (($ (-1236 (-403 (-945 (-560))))) 29)) (-2405 (((-1241) $) 118)) (-2801 (((-842) $) 111) (($ (-626 (-322))) 100) (($ (-322)) 94) (($ (-2 (|:| |localSymbols| (-1157)) (|:| -2111 (-626 (-322))))) 97) (($ (-1236 (-331 (-4162 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4162) (-680)))) 28))) -(((-66 |#1|) (-13 (-436) (-10 -8 (-15 -2801 ($ (-1236 (-331 (-4162 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4162) (-680))))))) (-1153)) (T -66)) -((-2801 (*1 *1 *2) (-12 (-5 *2 (-1236 (-331 (-4162 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4162) (-680)))) (-5 *1 (-66 *3)) (-14 *3 (-1153))))) -(-13 (-436) (-10 -8 (-15 -2801 ($ (-1236 (-331 (-4162 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4162) (-680))))))) -((-2405 (((-1241) $) 48) (((-1241)) 49)) (-2801 (((-842) $) 45))) -(((-67 |#1|) (-13 (-391) (-10 -7 (-15 -2405 ((-1241))))) (-1153)) (T -67)) -((-2405 (*1 *2) (-12 (-5 *2 (-1241)) (-5 *1 (-67 *3)) (-14 *3 (-1153))))) -(-13 (-391) (-10 -7 (-15 -2405 ((-1241))))) -((-1473 (((-3 $ "failed") (-1236 (-304 (-375)))) 142) (((-3 $ "failed") (-1236 (-304 (-560)))) 132) (((-3 $ "failed") (-1236 (-945 (-375)))) 163) (((-3 $ "failed") (-1236 (-945 (-560)))) 152) (((-3 $ "failed") (-1236 (-403 (-945 (-375))))) 121) (((-3 $ "failed") (-1236 (-403 (-945 (-560))))) 110)) (-3001 (($ (-1236 (-304 (-375)))) 138) (($ (-1236 (-304 (-560)))) 128) (($ (-1236 (-945 (-375)))) 159) (($ (-1236 (-945 (-560)))) 148) (($ (-1236 (-403 (-945 (-375))))) 117) (($ (-1236 (-403 (-945 (-560))))) 103)) (-2405 (((-1241) $) 96)) (-2801 (((-842) $) 90) (($ (-626 (-322))) 28) (($ (-322)) 34) (($ (-2 (|:| |localSymbols| (-1157)) (|:| -2111 (-626 (-322))))) 31) (($ (-1236 (-331 (-4162) (-4162 (QUOTE XC)) (-680)))) 88))) -(((-68 |#1|) (-13 (-436) (-10 -8 (-15 -2801 ($ (-1236 (-331 (-4162) (-4162 (QUOTE XC)) (-680))))))) (-1153)) (T -68)) -((-2801 (*1 *1 *2) (-12 (-5 *2 (-1236 (-331 (-4162) (-4162 (QUOTE XC)) (-680)))) (-5 *1 (-68 *3)) (-14 *3 (-1153))))) -(-13 (-436) (-10 -8 (-15 -2801 ($ (-1236 (-331 (-4162) (-4162 (QUOTE XC)) (-680))))))) -((-1473 (((-3 $ "failed") (-304 (-375))) 36) (((-3 $ "failed") (-304 (-560))) 41) (((-3 $ "failed") (-945 (-375))) 46) (((-3 $ "failed") (-945 (-560))) 51) (((-3 $ "failed") (-403 (-945 (-375)))) 31) (((-3 $ "failed") (-403 (-945 (-560)))) 26)) (-3001 (($ (-304 (-375))) 34) (($ (-304 (-560))) 39) (($ (-945 (-375))) 44) (($ (-945 (-560))) 49) (($ (-403 (-945 (-375)))) 29) (($ (-403 (-945 (-560)))) 23)) (-2405 (((-1241) $) 73)) (-2801 (((-842) $) 66) (($ (-626 (-322))) 57) (($ (-322)) 63) (($ (-2 (|:| |localSymbols| (-1157)) (|:| -2111 (-626 (-322))))) 60) (($ (-331 (-4162 (QUOTE X)) (-4162) (-680))) 22))) -(((-69 |#1|) (-13 (-392) (-10 -8 (-15 -2801 ($ (-331 (-4162 (QUOTE X)) (-4162) (-680)))))) (-1153)) (T -69)) -((-2801 (*1 *1 *2) (-12 (-5 *2 (-331 (-4162 (QUOTE X)) (-4162) (-680))) (-5 *1 (-69 *3)) (-14 *3 (-1153))))) -(-13 (-392) (-10 -8 (-15 -2801 ($ (-331 (-4162 (QUOTE X)) (-4162) (-680)))))) -((-1473 (((-3 $ "failed") (-671 (-304 (-375)))) 100) (((-3 $ "failed") (-671 (-304 (-560)))) 89) (((-3 $ "failed") (-671 (-945 (-375)))) 122) (((-3 $ "failed") (-671 (-945 (-560)))) 111) (((-3 $ "failed") (-671 (-403 (-945 (-375))))) 78) (((-3 $ "failed") (-671 (-403 (-945 (-560))))) 67)) (-3001 (($ (-671 (-304 (-375)))) 96) (($ (-671 (-304 (-560)))) 85) (($ (-671 (-945 (-375)))) 118) (($ (-671 (-945 (-560)))) 107) (($ (-671 (-403 (-945 (-375))))) 74) (($ (-671 (-403 (-945 (-560))))) 60)) (-2405 (((-1241) $) 130)) (-2801 (((-842) $) 124) (($ (-626 (-322))) 27) (($ (-322)) 33) (($ (-2 (|:| |localSymbols| (-1157)) (|:| -2111 (-626 (-322))))) 30) (($ (-671 (-331 (-4162) (-4162 (QUOTE X) (QUOTE HESS)) (-680)))) 53))) -(((-70 |#1|) (-13 (-380) (-10 -8 (-15 -2801 ($ (-671 (-331 (-4162) (-4162 (QUOTE X) (QUOTE HESS)) (-680))))))) (-1153)) (T -70)) -((-2801 (*1 *1 *2) (-12 (-5 *2 (-671 (-331 (-4162) (-4162 (QUOTE X) (QUOTE HESS)) (-680)))) (-5 *1 (-70 *3)) (-14 *3 (-1153))))) -(-13 (-380) (-10 -8 (-15 -2801 ($ (-671 (-331 (-4162) (-4162 (QUOTE X) (QUOTE HESS)) (-680))))))) -((-1473 (((-3 $ "failed") (-304 (-375))) 54) (((-3 $ "failed") (-304 (-560))) 59) (((-3 $ "failed") (-945 (-375))) 64) (((-3 $ "failed") (-945 (-560))) 69) (((-3 $ "failed") (-403 (-945 (-375)))) 49) (((-3 $ "failed") (-403 (-945 (-560)))) 44)) (-3001 (($ (-304 (-375))) 52) (($ (-304 (-560))) 57) (($ (-945 (-375))) 62) (($ (-945 (-560))) 67) (($ (-403 (-945 (-375)))) 47) (($ (-403 (-945 (-560)))) 41)) (-2405 (((-1241) $) 78)) (-2801 (((-842) $) 72) (($ (-626 (-322))) 27) (($ (-322)) 33) (($ (-2 (|:| |localSymbols| (-1157)) (|:| -2111 (-626 (-322))))) 30) (($ (-331 (-4162) (-4162 (QUOTE XC)) (-680))) 38))) -(((-71 |#1|) (-13 (-392) (-10 -8 (-15 -2801 ($ (-331 (-4162) (-4162 (QUOTE XC)) (-680)))))) (-1153)) (T -71)) -((-2801 (*1 *1 *2) (-12 (-5 *2 (-331 (-4162) (-4162 (QUOTE XC)) (-680))) (-5 *1 (-71 *3)) (-14 *3 (-1153))))) -(-13 (-392) (-10 -8 (-15 -2801 ($ (-331 (-4162) (-4162 (QUOTE XC)) (-680)))))) -((-2405 (((-1241) $) 63)) (-2801 (((-842) $) 57) (($ (-671 (-680))) 49) (($ (-626 (-322))) 48) (($ (-322)) 55) (($ (-2 (|:| |localSymbols| (-1157)) (|:| -2111 (-626 (-322))))) 53))) -(((-72 |#1|) (-379) (-1153)) (T -72)) -NIL -(-379) -((-2405 (((-1241) $) 64)) (-2801 (((-842) $) 58) (($ (-671 (-680))) 50) (($ (-626 (-322))) 49) (($ (-322)) 52) (($ (-2 (|:| |localSymbols| (-1157)) (|:| -2111 (-626 (-322))))) 55))) -(((-73 |#1|) (-379) (-1153)) (T -73)) -NIL -(-379) -((-2405 (((-1241) $) NIL) (((-1241)) 32)) (-2801 (((-842) $) NIL))) -(((-74 |#1|) (-13 (-391) (-10 -7 (-15 -2405 ((-1241))))) (-1153)) (T -74)) -((-2405 (*1 *2) (-12 (-5 *2 (-1241)) (-5 *1 (-74 *3)) (-14 *3 (-1153))))) -(-13 (-391) (-10 -7 (-15 -2405 ((-1241))))) -((-2405 (((-1241) $) 68)) (-2801 (((-842) $) 62) (($ (-671 (-680))) 53) (($ (-626 (-322))) 56) (($ (-322)) 59) (($ (-2 (|:| |localSymbols| (-1157)) (|:| -2111 (-626 (-322))))) 52))) -(((-75 |#1|) (-379) (-1153)) (T -75)) -NIL -(-379) -((-1473 (((-3 $ "failed") (-1236 (-304 (-375)))) 98) (((-3 $ "failed") (-1236 (-304 (-560)))) 87) (((-3 $ "failed") (-1236 (-945 (-375)))) 119) (((-3 $ "failed") (-1236 (-945 (-560)))) 108) (((-3 $ "failed") (-1236 (-403 (-945 (-375))))) 76) (((-3 $ "failed") (-1236 (-403 (-945 (-560))))) 65)) (-3001 (($ (-1236 (-304 (-375)))) 94) (($ (-1236 (-304 (-560)))) 83) (($ (-1236 (-945 (-375)))) 115) (($ (-1236 (-945 (-560)))) 104) (($ (-1236 (-403 (-945 (-375))))) 72) (($ (-1236 (-403 (-945 (-560))))) 58)) (-2405 (((-1241) $) 133)) (-2801 (((-842) $) 127) (($ (-626 (-322))) 122) (($ (-322)) 125) (($ (-2 (|:| |localSymbols| (-1157)) (|:| -2111 (-626 (-322))))) 50) (($ (-1236 (-331 (-4162 (QUOTE X)) (-4162 (QUOTE -3095)) (-680)))) 51))) -(((-76 |#1|) (-13 (-436) (-10 -8 (-15 -2801 ($ (-1236 (-331 (-4162 (QUOTE X)) (-4162 (QUOTE -3095)) (-680))))))) (-1153)) (T -76)) -((-2801 (*1 *1 *2) (-12 (-5 *2 (-1236 (-331 (-4162 (QUOTE X)) (-4162 (QUOTE -3095)) (-680)))) (-5 *1 (-76 *3)) (-14 *3 (-1153))))) -(-13 (-436) (-10 -8 (-15 -2801 ($ (-1236 (-331 (-4162 (QUOTE X)) (-4162 (QUOTE -3095)) (-680))))))) -((-2405 (((-1241) $) 32) (((-1241)) 31)) (-2801 (((-842) $) 35))) -(((-77 |#1|) (-13 (-391) (-10 -7 (-15 -2405 ((-1241))))) (-1153)) (T -77)) -((-2405 (*1 *2) (-12 (-5 *2 (-1241)) (-5 *1 (-77 *3)) (-14 *3 (-1153))))) -(-13 (-391) (-10 -7 (-15 -2405 ((-1241))))) -((-2405 (((-1241) $) 62)) (-2801 (((-842) $) 56) (($ (-671 (-680))) 47) (($ (-626 (-322))) 50) (($ (-322)) 53) (($ (-2 (|:| |localSymbols| (-1157)) (|:| -2111 (-626 (-322))))) 46))) -(((-78 |#1|) (-379) (-1153)) (T -78)) -NIL -(-379) -((-1473 (((-3 $ "failed") (-1236 (-304 (-375)))) 119) (((-3 $ "failed") (-1236 (-304 (-560)))) 108) (((-3 $ "failed") (-1236 (-945 (-375)))) 141) (((-3 $ "failed") (-1236 (-945 (-560)))) 130) (((-3 $ "failed") (-1236 (-403 (-945 (-375))))) 98) (((-3 $ "failed") (-1236 (-403 (-945 (-560))))) 87)) (-3001 (($ (-1236 (-304 (-375)))) 115) (($ (-1236 (-304 (-560)))) 104) (($ (-1236 (-945 (-375)))) 137) (($ (-1236 (-945 (-560)))) 126) (($ (-1236 (-403 (-945 (-375))))) 94) (($ (-1236 (-403 (-945 (-560))))) 80)) (-2405 (((-1241) $) 73)) (-2801 (((-842) $) 27) (($ (-626 (-322))) 63) (($ (-322)) 59) (($ (-2 (|:| |localSymbols| (-1157)) (|:| -2111 (-626 (-322))))) 66) (($ (-1236 (-331 (-4162) (-4162 (QUOTE X)) (-680)))) 60))) -(((-79 |#1|) (-13 (-436) (-10 -8 (-15 -2801 ($ (-1236 (-331 (-4162) (-4162 (QUOTE X)) (-680))))))) (-1153)) (T -79)) -((-2801 (*1 *1 *2) (-12 (-5 *2 (-1236 (-331 (-4162) (-4162 (QUOTE X)) (-680)))) (-5 *1 (-79 *3)) (-14 *3 (-1153))))) -(-13 (-436) (-10 -8 (-15 -2801 ($ (-1236 (-331 (-4162) (-4162 (QUOTE X)) (-680))))))) -((-1473 (((-3 $ "failed") (-1236 (-304 (-375)))) 125) (((-3 $ "failed") (-1236 (-304 (-560)))) 114) (((-3 $ "failed") (-1236 (-945 (-375)))) 147) (((-3 $ "failed") (-1236 (-945 (-560)))) 136) (((-3 $ "failed") (-1236 (-403 (-945 (-375))))) 103) (((-3 $ "failed") (-1236 (-403 (-945 (-560))))) 92)) (-3001 (($ (-1236 (-304 (-375)))) 121) (($ (-1236 (-304 (-560)))) 110) (($ (-1236 (-945 (-375)))) 143) (($ (-1236 (-945 (-560)))) 132) (($ (-1236 (-403 (-945 (-375))))) 99) (($ (-1236 (-403 (-945 (-560))))) 85)) (-2405 (((-1241) $) 78)) (-2801 (((-842) $) 70) (($ (-626 (-322))) NIL) (($ (-322)) NIL) (($ (-2 (|:| |localSymbols| (-1157)) (|:| -2111 (-626 (-322))))) NIL) (($ (-1236 (-331 (-4162 (QUOTE X) (QUOTE EPS)) (-4162 (QUOTE -3095)) (-680)))) 65))) -(((-80 |#1| |#2| |#3|) (-13 (-436) (-10 -8 (-15 -2801 ($ (-1236 (-331 (-4162 (QUOTE X) (QUOTE EPS)) (-4162 (QUOTE -3095)) (-680))))))) (-1153) (-1153) (-1153)) (T -80)) -((-2801 (*1 *1 *2) (-12 (-5 *2 (-1236 (-331 (-4162 (QUOTE X) (QUOTE EPS)) (-4162 (QUOTE -3095)) (-680)))) (-5 *1 (-80 *3 *4 *5)) (-14 *3 (-1153)) (-14 *4 (-1153)) (-14 *5 (-1153))))) -(-13 (-436) (-10 -8 (-15 -2801 ($ (-1236 (-331 (-4162 (QUOTE X) (QUOTE EPS)) (-4162 (QUOTE -3095)) (-680))))))) -((-1473 (((-3 $ "failed") (-1236 (-304 (-375)))) 129) (((-3 $ "failed") (-1236 (-304 (-560)))) 118) (((-3 $ "failed") (-1236 (-945 (-375)))) 151) (((-3 $ "failed") (-1236 (-945 (-560)))) 140) (((-3 $ "failed") (-1236 (-403 (-945 (-375))))) 107) (((-3 $ "failed") (-1236 (-403 (-945 (-560))))) 96)) (-3001 (($ (-1236 (-304 (-375)))) 125) (($ (-1236 (-304 (-560)))) 114) (($ (-1236 (-945 (-375)))) 147) (($ (-1236 (-945 (-560)))) 136) (($ (-1236 (-403 (-945 (-375))))) 103) (($ (-1236 (-403 (-945 (-560))))) 89)) (-2405 (((-1241) $) 82)) (-2801 (((-842) $) 74) (($ (-626 (-322))) NIL) (($ (-322)) NIL) (($ (-2 (|:| |localSymbols| (-1157)) (|:| -2111 (-626 (-322))))) NIL) (($ (-1236 (-331 (-4162 (QUOTE EPS)) (-4162 (QUOTE YA) (QUOTE YB)) (-680)))) 69))) -(((-81 |#1| |#2| |#3|) (-13 (-436) (-10 -8 (-15 -2801 ($ (-1236 (-331 (-4162 (QUOTE EPS)) (-4162 (QUOTE YA) (QUOTE YB)) (-680))))))) (-1153) (-1153) (-1153)) (T -81)) -((-2801 (*1 *1 *2) (-12 (-5 *2 (-1236 (-331 (-4162 (QUOTE EPS)) (-4162 (QUOTE YA) (QUOTE YB)) (-680)))) (-5 *1 (-81 *3 *4 *5)) (-14 *3 (-1153)) (-14 *4 (-1153)) (-14 *5 (-1153))))) -(-13 (-436) (-10 -8 (-15 -2801 ($ (-1236 (-331 (-4162 (QUOTE EPS)) (-4162 (QUOTE YA) (QUOTE YB)) (-680))))))) -((-1473 (((-3 $ "failed") (-304 (-375))) 77) (((-3 $ "failed") (-304 (-560))) 82) (((-3 $ "failed") (-945 (-375))) 87) (((-3 $ "failed") (-945 (-560))) 92) (((-3 $ "failed") (-403 (-945 (-375)))) 72) (((-3 $ "failed") (-403 (-945 (-560)))) 67)) (-3001 (($ (-304 (-375))) 75) (($ (-304 (-560))) 80) (($ (-945 (-375))) 85) (($ (-945 (-560))) 90) (($ (-403 (-945 (-375)))) 70) (($ (-403 (-945 (-560)))) 64)) (-2405 (((-1241) $) 61)) (-2801 (((-842) $) 49) (($ (-626 (-322))) 45) (($ (-322)) 55) (($ (-2 (|:| |localSymbols| (-1157)) (|:| -2111 (-626 (-322))))) 53) (($ (-331 (-4162) (-4162 (QUOTE X)) (-680))) 46))) -(((-82 |#1|) (-13 (-392) (-10 -8 (-15 -2801 ($ (-331 (-4162) (-4162 (QUOTE X)) (-680)))))) (-1153)) (T -82)) -((-2801 (*1 *1 *2) (-12 (-5 *2 (-331 (-4162) (-4162 (QUOTE X)) (-680))) (-5 *1 (-82 *3)) (-14 *3 (-1153))))) -(-13 (-392) (-10 -8 (-15 -2801 ($ (-331 (-4162) (-4162 (QUOTE X)) (-680)))))) -((-1473 (((-3 $ "failed") (-304 (-375))) 41) (((-3 $ "failed") (-304 (-560))) 46) (((-3 $ "failed") (-945 (-375))) 51) (((-3 $ "failed") (-945 (-560))) 56) (((-3 $ "failed") (-403 (-945 (-375)))) 36) (((-3 $ "failed") (-403 (-945 (-560)))) 31)) (-3001 (($ (-304 (-375))) 39) (($ (-304 (-560))) 44) (($ (-945 (-375))) 49) (($ (-945 (-560))) 54) (($ (-403 (-945 (-375)))) 34) (($ (-403 (-945 (-560)))) 28)) (-2405 (((-1241) $) 77)) (-2801 (((-842) $) 71) (($ (-626 (-322))) 62) (($ (-322)) 68) (($ (-2 (|:| |localSymbols| (-1157)) (|:| -2111 (-626 (-322))))) 65) (($ (-331 (-4162) (-4162 (QUOTE X)) (-680))) 27))) -(((-83 |#1|) (-13 (-392) (-10 -8 (-15 -2801 ($ (-331 (-4162) (-4162 (QUOTE X)) (-680)))))) (-1153)) (T -83)) -((-2801 (*1 *1 *2) (-12 (-5 *2 (-331 (-4162) (-4162 (QUOTE X)) (-680))) (-5 *1 (-83 *3)) (-14 *3 (-1153))))) -(-13 (-392) (-10 -8 (-15 -2801 ($ (-331 (-4162) (-4162 (QUOTE X)) (-680)))))) -((-1473 (((-3 $ "failed") (-1236 (-304 (-375)))) 84) (((-3 $ "failed") (-1236 (-304 (-560)))) 73) (((-3 $ "failed") (-1236 (-945 (-375)))) 106) (((-3 $ "failed") (-1236 (-945 (-560)))) 95) (((-3 $ "failed") (-1236 (-403 (-945 (-375))))) 62) (((-3 $ "failed") (-1236 (-403 (-945 (-560))))) 51)) (-3001 (($ (-1236 (-304 (-375)))) 80) (($ (-1236 (-304 (-560)))) 69) (($ (-1236 (-945 (-375)))) 102) (($ (-1236 (-945 (-560)))) 91) (($ (-1236 (-403 (-945 (-375))))) 58) (($ (-1236 (-403 (-945 (-560))))) 44)) (-2405 (((-1241) $) 122)) (-2801 (((-842) $) 116) (($ (-626 (-322))) 109) (($ (-322)) 36) (($ (-2 (|:| |localSymbols| (-1157)) (|:| -2111 (-626 (-322))))) 112) (($ (-1236 (-331 (-4162) (-4162 (QUOTE XC)) (-680)))) 37))) -(((-84 |#1|) (-13 (-436) (-10 -8 (-15 -2801 ($ (-1236 (-331 (-4162) (-4162 (QUOTE XC)) (-680))))))) (-1153)) (T -84)) -((-2801 (*1 *1 *2) (-12 (-5 *2 (-1236 (-331 (-4162) (-4162 (QUOTE XC)) (-680)))) (-5 *1 (-84 *3)) (-14 *3 (-1153))))) -(-13 (-436) (-10 -8 (-15 -2801 ($ (-1236 (-331 (-4162) (-4162 (QUOTE XC)) (-680))))))) -((-1473 (((-3 $ "failed") (-1236 (-304 (-375)))) 137) (((-3 $ "failed") (-1236 (-304 (-560)))) 126) (((-3 $ "failed") (-1236 (-945 (-375)))) 158) (((-3 $ "failed") (-1236 (-945 (-560)))) 147) (((-3 $ "failed") (-1236 (-403 (-945 (-375))))) 116) (((-3 $ "failed") (-1236 (-403 (-945 (-560))))) 105)) (-3001 (($ (-1236 (-304 (-375)))) 133) (($ (-1236 (-304 (-560)))) 122) (($ (-1236 (-945 (-375)))) 154) (($ (-1236 (-945 (-560)))) 143) (($ (-1236 (-403 (-945 (-375))))) 112) (($ (-1236 (-403 (-945 (-560))))) 98)) (-2405 (((-1241) $) 91)) (-2801 (((-842) $) 85) (($ (-626 (-322))) 76) (($ (-322)) 83) (($ (-2 (|:| |localSymbols| (-1157)) (|:| -2111 (-626 (-322))))) 81) (($ (-1236 (-331 (-4162) (-4162 (QUOTE X)) (-680)))) 77))) -(((-85 |#1|) (-13 (-436) (-10 -8 (-15 -2801 ($ (-1236 (-331 (-4162) (-4162 (QUOTE X)) (-680))))))) (-1153)) (T -85)) -((-2801 (*1 *1 *2) (-12 (-5 *2 (-1236 (-331 (-4162) (-4162 (QUOTE X)) (-680)))) (-5 *1 (-85 *3)) (-14 *3 (-1153))))) -(-13 (-436) (-10 -8 (-15 -2801 ($ (-1236 (-331 (-4162) (-4162 (QUOTE X)) (-680))))))) -((-1473 (((-3 $ "failed") (-1236 (-304 (-375)))) 73) (((-3 $ "failed") (-1236 (-304 (-560)))) 62) (((-3 $ "failed") (-1236 (-945 (-375)))) 95) (((-3 $ "failed") (-1236 (-945 (-560)))) 84) (((-3 $ "failed") (-1236 (-403 (-945 (-375))))) 51) (((-3 $ "failed") (-1236 (-403 (-945 (-560))))) 40)) (-3001 (($ (-1236 (-304 (-375)))) 69) (($ (-1236 (-304 (-560)))) 58) (($ (-1236 (-945 (-375)))) 91) (($ (-1236 (-945 (-560)))) 80) (($ (-1236 (-403 (-945 (-375))))) 47) (($ (-1236 (-403 (-945 (-560))))) 33)) (-2405 (((-1241) $) 121)) (-2801 (((-842) $) 115) (($ (-626 (-322))) 106) (($ (-322)) 112) (($ (-2 (|:| |localSymbols| (-1157)) (|:| -2111 (-626 (-322))))) 110) (($ (-1236 (-331 (-4162) (-4162 (QUOTE X)) (-680)))) 32))) -(((-86 |#1|) (-13 (-436) (-10 -8 (-15 -2801 ($ (-1236 (-331 (-4162) (-4162 (QUOTE X)) (-680))))))) (-1153)) (T -86)) -((-2801 (*1 *1 *2) (-12 (-5 *2 (-1236 (-331 (-4162) (-4162 (QUOTE X)) (-680)))) (-5 *1 (-86 *3)) (-14 *3 (-1153))))) -(-13 (-436) (-10 -8 (-15 -2801 ($ (-1236 (-331 (-4162) (-4162 (QUOTE X)) (-680))))))) -((-1473 (((-3 $ "failed") (-1236 (-304 (-375)))) 90) (((-3 $ "failed") (-1236 (-304 (-560)))) 79) (((-3 $ "failed") (-1236 (-945 (-375)))) 112) (((-3 $ "failed") (-1236 (-945 (-560)))) 101) (((-3 $ "failed") (-1236 (-403 (-945 (-375))))) 68) (((-3 $ "failed") (-1236 (-403 (-945 (-560))))) 57)) (-3001 (($ (-1236 (-304 (-375)))) 86) (($ (-1236 (-304 (-560)))) 75) (($ (-1236 (-945 (-375)))) 108) (($ (-1236 (-945 (-560)))) 97) (($ (-1236 (-403 (-945 (-375))))) 64) (($ (-1236 (-403 (-945 (-560))))) 50)) (-2405 (((-1241) $) 43)) (-2801 (((-842) $) 36) (($ (-626 (-322))) 26) (($ (-322)) 29) (($ (-2 (|:| |localSymbols| (-1157)) (|:| -2111 (-626 (-322))))) 32) (($ (-1236 (-331 (-4162 (QUOTE X) (QUOTE -3095)) (-4162) (-680)))) 27))) -(((-87 |#1|) (-13 (-436) (-10 -8 (-15 -2801 ($ (-1236 (-331 (-4162 (QUOTE X) (QUOTE -3095)) (-4162) (-680))))))) (-1153)) (T -87)) -((-2801 (*1 *1 *2) (-12 (-5 *2 (-1236 (-331 (-4162 (QUOTE X) (QUOTE -3095)) (-4162) (-680)))) (-5 *1 (-87 *3)) (-14 *3 (-1153))))) -(-13 (-436) (-10 -8 (-15 -2801 ($ (-1236 (-331 (-4162 (QUOTE X) (QUOTE -3095)) (-4162) (-680))))))) -((-1473 (((-3 $ "failed") (-671 (-304 (-375)))) 103) (((-3 $ "failed") (-671 (-304 (-560)))) 92) (((-3 $ "failed") (-671 (-945 (-375)))) 125) (((-3 $ "failed") (-671 (-945 (-560)))) 114) (((-3 $ "failed") (-671 (-403 (-945 (-375))))) 82) (((-3 $ "failed") (-671 (-403 (-945 (-560))))) 71)) (-3001 (($ (-671 (-304 (-375)))) 99) (($ (-671 (-304 (-560)))) 88) (($ (-671 (-945 (-375)))) 121) (($ (-671 (-945 (-560)))) 110) (($ (-671 (-403 (-945 (-375))))) 78) (($ (-671 (-403 (-945 (-560))))) 64)) (-2405 (((-1241) $) 57)) (-2801 (((-842) $) 43) (($ (-626 (-322))) 50) (($ (-322)) 39) (($ (-2 (|:| |localSymbols| (-1157)) (|:| -2111 (-626 (-322))))) 47) (($ (-671 (-331 (-4162 (QUOTE X) (QUOTE -3095)) (-4162) (-680)))) 40))) -(((-88 |#1|) (-13 (-380) (-10 -8 (-15 -2801 ($ (-671 (-331 (-4162 (QUOTE X) (QUOTE -3095)) (-4162) (-680))))))) (-1153)) (T -88)) -((-2801 (*1 *1 *2) (-12 (-5 *2 (-671 (-331 (-4162 (QUOTE X) (QUOTE -3095)) (-4162) (-680)))) (-5 *1 (-88 *3)) (-14 *3 (-1153))))) -(-13 (-380) (-10 -8 (-15 -2801 ($ (-671 (-331 (-4162 (QUOTE X) (QUOTE -3095)) (-4162) (-680))))))) -((-1473 (((-3 $ "failed") (-671 (-304 (-375)))) 103) (((-3 $ "failed") (-671 (-304 (-560)))) 92) (((-3 $ "failed") (-671 (-945 (-375)))) 124) (((-3 $ "failed") (-671 (-945 (-560)))) 113) (((-3 $ "failed") (-671 (-403 (-945 (-375))))) 81) (((-3 $ "failed") (-671 (-403 (-945 (-560))))) 70)) (-3001 (($ (-671 (-304 (-375)))) 99) (($ (-671 (-304 (-560)))) 88) (($ (-671 (-945 (-375)))) 120) (($ (-671 (-945 (-560)))) 109) (($ (-671 (-403 (-945 (-375))))) 77) (($ (-671 (-403 (-945 (-560))))) 63)) (-2405 (((-1241) $) 56)) (-2801 (((-842) $) 50) (($ (-626 (-322))) 44) (($ (-322)) 47) (($ (-2 (|:| |localSymbols| (-1157)) (|:| -2111 (-626 (-322))))) 40) (($ (-671 (-331 (-4162 (QUOTE X)) (-4162) (-680)))) 41))) -(((-89 |#1|) (-13 (-380) (-10 -8 (-15 -2801 ($ (-671 (-331 (-4162 (QUOTE X)) (-4162) (-680))))))) (-1153)) (T -89)) -((-2801 (*1 *1 *2) (-12 (-5 *2 (-671 (-331 (-4162 (QUOTE X)) (-4162) (-680)))) (-5 *1 (-89 *3)) (-14 *3 (-1153))))) -(-13 (-380) (-10 -8 (-15 -2801 ($ (-671 (-331 (-4162 (QUOTE X)) (-4162) (-680))))))) -((-1473 (((-3 $ "failed") (-1236 (-304 (-375)))) 99) (((-3 $ "failed") (-1236 (-304 (-560)))) 88) (((-3 $ "failed") (-1236 (-945 (-375)))) 121) (((-3 $ "failed") (-1236 (-945 (-560)))) 110) (((-3 $ "failed") (-1236 (-403 (-945 (-375))))) 77) (((-3 $ "failed") (-1236 (-403 (-945 (-560))))) 66)) (-3001 (($ (-1236 (-304 (-375)))) 95) (($ (-1236 (-304 (-560)))) 84) (($ (-1236 (-945 (-375)))) 117) (($ (-1236 (-945 (-560)))) 106) (($ (-1236 (-403 (-945 (-375))))) 73) (($ (-1236 (-403 (-945 (-560))))) 59)) (-2405 (((-1241) $) 45)) (-2801 (((-842) $) 39) (($ (-626 (-322))) 48) (($ (-322)) 35) (($ (-2 (|:| |localSymbols| (-1157)) (|:| -2111 (-626 (-322))))) 51) (($ (-1236 (-331 (-4162 (QUOTE X)) (-4162) (-680)))) 36))) -(((-90 |#1|) (-13 (-436) (-10 -8 (-15 -2801 ($ (-1236 (-331 (-4162 (QUOTE X)) (-4162) (-680))))))) (-1153)) (T -90)) -((-2801 (*1 *1 *2) (-12 (-5 *2 (-1236 (-331 (-4162 (QUOTE X)) (-4162) (-680)))) (-5 *1 (-90 *3)) (-14 *3 (-1153))))) -(-13 (-436) (-10 -8 (-15 -2801 ($ (-1236 (-331 (-4162 (QUOTE X)) (-4162) (-680))))))) -((-1473 (((-3 $ "failed") (-1236 (-304 (-375)))) 74) (((-3 $ "failed") (-1236 (-304 (-560)))) 63) (((-3 $ "failed") (-1236 (-945 (-375)))) 96) (((-3 $ "failed") (-1236 (-945 (-560)))) 85) (((-3 $ "failed") (-1236 (-403 (-945 (-375))))) 52) (((-3 $ "failed") (-1236 (-403 (-945 (-560))))) 41)) (-3001 (($ (-1236 (-304 (-375)))) 70) (($ (-1236 (-304 (-560)))) 59) (($ (-1236 (-945 (-375)))) 92) (($ (-1236 (-945 (-560)))) 81) (($ (-1236 (-403 (-945 (-375))))) 48) (($ (-1236 (-403 (-945 (-560))))) 34)) (-2405 (((-1241) $) 122)) (-2801 (((-842) $) 116) (($ (-626 (-322))) 107) (($ (-322)) 113) (($ (-2 (|:| |localSymbols| (-1157)) (|:| -2111 (-626 (-322))))) 111) (($ (-1236 (-331 (-4162 (QUOTE X)) (-4162 (QUOTE -3095)) (-680)))) 33))) -(((-91 |#1|) (-13 (-436) (-10 -8 (-15 -2801 ($ (-1236 (-331 (-4162 (QUOTE X)) (-4162 (QUOTE -3095)) (-680))))))) (-1153)) (T -91)) -((-2801 (*1 *1 *2) (-12 (-5 *2 (-1236 (-331 (-4162 (QUOTE X)) (-4162 (QUOTE -3095)) (-680)))) (-5 *1 (-91 *3)) (-14 *3 (-1153))))) -(-13 (-436) (-10 -8 (-15 -2801 ($ (-1236 (-331 (-4162 (QUOTE X)) (-4162 (QUOTE -3095)) (-680))))))) -((-1473 (((-3 $ "failed") (-671 (-304 (-375)))) 105) (((-3 $ "failed") (-671 (-304 (-560)))) 94) (((-3 $ "failed") (-671 (-945 (-375)))) 127) (((-3 $ "failed") (-671 (-945 (-560)))) 116) (((-3 $ "failed") (-671 (-403 (-945 (-375))))) 83) (((-3 $ "failed") (-671 (-403 (-945 (-560))))) 72)) (-3001 (($ (-671 (-304 (-375)))) 101) (($ (-671 (-304 (-560)))) 90) (($ (-671 (-945 (-375)))) 123) (($ (-671 (-945 (-560)))) 112) (($ (-671 (-403 (-945 (-375))))) 79) (($ (-671 (-403 (-945 (-560))))) 65)) (-2405 (((-1241) $) 58)) (-2801 (((-842) $) 52) (($ (-626 (-322))) 42) (($ (-322)) 49) (($ (-2 (|:| |localSymbols| (-1157)) (|:| -2111 (-626 (-322))))) 47) (($ (-671 (-331 (-4162 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4162) (-680)))) 43))) -(((-92 |#1|) (-13 (-380) (-10 -8 (-15 -2801 ($ (-671 (-331 (-4162 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4162) (-680))))))) (-1153)) (T -92)) -((-2801 (*1 *1 *2) (-12 (-5 *2 (-671 (-331 (-4162 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4162) (-680)))) (-5 *1 (-92 *3)) (-14 *3 (-1153))))) -(-13 (-380) (-10 -8 (-15 -2801 ($ (-671 (-331 (-4162 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4162) (-680))))))) -((-2405 (((-1241) $) 44)) (-2801 (((-842) $) 38) (($ (-1236 (-680))) 88) (($ (-626 (-322))) 29) (($ (-322)) 35) (($ (-2 (|:| |localSymbols| (-1157)) (|:| -2111 (-626 (-322))))) 32))) -(((-93 |#1|) (-435) (-1153)) (T -93)) -NIL -(-435) -((-1473 (((-3 $ "failed") (-304 (-375))) 42) (((-3 $ "failed") (-304 (-560))) 47) (((-3 $ "failed") (-945 (-375))) 52) (((-3 $ "failed") (-945 (-560))) 57) (((-3 $ "failed") (-403 (-945 (-375)))) 37) (((-3 $ "failed") (-403 (-945 (-560)))) 32)) (-3001 (($ (-304 (-375))) 40) (($ (-304 (-560))) 45) (($ (-945 (-375))) 50) (($ (-945 (-560))) 55) (($ (-403 (-945 (-375)))) 35) (($ (-403 (-945 (-560)))) 29)) (-2405 (((-1241) $) 88)) (-2801 (((-842) $) 82) (($ (-626 (-322))) 76) (($ (-322)) 79) (($ (-2 (|:| |localSymbols| (-1157)) (|:| -2111 (-626 (-322))))) 73) (($ (-331 (-4162 (QUOTE X)) (-4162 (QUOTE -3095)) (-680))) 28))) -(((-94 |#1|) (-13 (-392) (-10 -8 (-15 -2801 ($ (-331 (-4162 (QUOTE X)) (-4162 (QUOTE -3095)) (-680)))))) (-1153)) (T -94)) -((-2801 (*1 *1 *2) (-12 (-5 *2 (-331 (-4162 (QUOTE X)) (-4162 (QUOTE -3095)) (-680))) (-5 *1 (-94 *3)) (-14 *3 (-1153))))) -(-13 (-392) (-10 -8 (-15 -2801 ($ (-331 (-4162 (QUOTE X)) (-4162 (QUOTE -3095)) (-680)))))) -((-4304 (((-1236 (-671 |#1|)) (-671 |#1|)) 54)) (-2731 (((-2 (|:| -3818 (-671 |#1|)) (|:| |vec| (-1236 (-626 (-909))))) |#2| (-909)) 44)) (-1493 (((-2 (|:| |minor| (-626 (-909))) (|:| -2654 |#2|) (|:| |minors| (-626 (-626 (-909)))) (|:| |ops| (-626 |#2|))) |#2| (-909)) 62 (|has| |#1| (-359))))) -(((-95 |#1| |#2|) (-10 -7 (-15 -2731 ((-2 (|:| -3818 (-671 |#1|)) (|:| |vec| (-1236 (-626 (-909))))) |#2| (-909))) (-15 -4304 ((-1236 (-671 |#1|)) (-671 |#1|))) (IF (|has| |#1| (-359)) (-15 -1493 ((-2 (|:| |minor| (-626 (-909))) (|:| -2654 |#2|) (|:| |minors| (-626 (-626 (-909)))) (|:| |ops| (-626 |#2|))) |#2| (-909))) |noBranch|)) (-550) (-638 |#1|)) (T -95)) -((-1493 (*1 *2 *3 *4) (-12 (-4 *5 (-359)) (-4 *5 (-550)) (-5 *2 (-2 (|:| |minor| (-626 (-909))) (|:| -2654 *3) (|:| |minors| (-626 (-626 (-909)))) (|:| |ops| (-626 *3)))) (-5 *1 (-95 *5 *3)) (-5 *4 (-909)) (-4 *3 (-638 *5)))) (-4304 (*1 *2 *3) (-12 (-4 *4 (-550)) (-5 *2 (-1236 (-671 *4))) (-5 *1 (-95 *4 *5)) (-5 *3 (-671 *4)) (-4 *5 (-638 *4)))) (-2731 (*1 *2 *3 *4) (-12 (-4 *5 (-550)) (-5 *2 (-2 (|:| -3818 (-671 *5)) (|:| |vec| (-1236 (-626 (-909)))))) (-5 *1 (-95 *5 *3)) (-5 *4 (-909)) (-4 *3 (-638 *5))))) -(-10 -7 (-15 -2731 ((-2 (|:| -3818 (-671 |#1|)) (|:| |vec| (-1236 (-626 (-909))))) |#2| (-909))) (-15 -4304 ((-1236 (-671 |#1|)) (-671 |#1|))) (IF (|has| |#1| (-359)) (-15 -1493 ((-2 (|:| |minor| (-626 (-909))) (|:| -2654 |#2|) (|:| |minors| (-626 (-626 (-909)))) (|:| |ops| (-626 |#2|))) |#2| (-909))) |noBranch|)) -((-2601 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-4224 ((|#1| $) 34)) (-3909 (((-121) $ (-755)) NIL)) (-4236 (($) NIL T CONST)) (-3881 ((|#1| |#1| $) 30)) (-2200 ((|#1| $) 28)) (-1981 (((-626 |#1|) $) 39 (|has| $ (-6 -4505)))) (-2122 (((-121) $ (-755)) NIL)) (-2130 (((-626 |#1|) $) NIL (|has| $ (-6 -4505)))) (-2030 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-3778 (($ (-1 |#1| |#1|) $) 43 (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#1| |#1|) $) 41)) (-3441 (((-121) $ (-755)) NIL)) (-1291 (((-1135) $) NIL (|has| |#1| (-1082)))) (-2525 ((|#1| $) 45)) (-4345 (($ |#1| $) 31)) (-4353 (((-1100) $) NIL (|has| |#1| (-1082)))) (-2146 ((|#1| $) 29)) (-2865 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#1|))) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-283 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-626 |#1|) (-626 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))))) (-2214 (((-121) $ $) NIL)) (-4191 (((-121) $) 16)) (-3260 (($) 38)) (-4023 (((-755) $) 26)) (-4035 (((-755) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505))) (((-755) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-2813 (($ $) 15)) (-2801 (((-842) $) 25 (|has| |#1| (-1082)))) (-1354 (($ (-626 |#1|)) NIL)) (-1311 (($ (-626 |#1|)) 36)) (-3656 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-1653 (((-121) $ $) 13 (|has| |#1| (-1082)))) (-2271 (((-755) $) 10 (|has| $ (-6 -4505))))) -(((-96 |#1|) (-13 (-1101 |#1|) (-10 -8 (-15 -1311 ($ (-626 |#1|))) (-15 -2200 (|#1| $)) (-15 -2146 (|#1| $)) (-15 -3881 (|#1| |#1| $)) (-15 -4345 ($ |#1| $)) (-15 -2525 (|#1| $)) (-15 -4224 (|#1| $)) (-15 -4023 ((-755) $)) (-15 -3441 ((-121) $ (-755))) (-15 -2122 ((-121) $ (-755))) (-15 -3909 ((-121) $ (-755))) (-15 -1354 ($ (-626 |#1|))) (-15 -4191 ((-121) $)) (-15 -3260 ($)) (-15 -4236 ($)) (-15 -2813 ($ $)) (-15 -2214 ((-121) $ $)) (-15 -2803 ($ (-1 |#1| |#1|) $)) (IF (|has| $ (-6 -4506)) (-15 -3778 ($ (-1 |#1| |#1|) $)) |noBranch|) (IF (|has| |#1| (-1082)) (PROGN (-15 -1291 ((-1135) $)) (-15 -4353 ((-1100) $)) (-15 -2801 ((-842) $)) (-15 -1653 ((-121) $ $)) (-15 -2601 ((-121) $ $))) |noBranch|) (IF (|has| $ (-6 -4505)) (PROGN (-15 -2865 ((-121) (-1 (-121) |#1|) $)) (-15 -3656 ((-121) (-1 (-121) |#1|) $)) (-15 -4035 ((-755) (-1 (-121) |#1|) $)) (-15 -2271 ((-755) $)) (-15 -1981 ((-626 |#1|) $)) (-15 -2130 ((-626 |#1|) $))) |noBranch|) (IF (|has| $ (-6 -4505)) (IF (|has| |#1| (-1082)) (PROGN (-15 -2030 ((-121) |#1| $)) (-15 -4035 ((-755) |#1| $))) |noBranch|) |noBranch|))) (-1082)) (T -96)) -((-2214 (*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-96 *3)) (-4 *3 (-1082)))) (-2813 (*1 *1 *1) (-12 (-5 *1 (-96 *2)) (-4 *2 (-1082)))) (-3260 (*1 *1) (-12 (-5 *1 (-96 *2)) (-4 *2 (-1082)))) (-4191 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-96 *3)) (-4 *3 (-1082)))) (-3441 (*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *2 (-121)) (-5 *1 (-96 *4)) (-4 *4 (-1082)))) (-2122 (*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *2 (-121)) (-5 *1 (-96 *4)) (-4 *4 (-1082)))) (-3909 (*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *2 (-121)) (-5 *1 (-96 *4)) (-4 *4 (-1082)))) (-4236 (*1 *1) (-12 (-5 *1 (-96 *2)) (-4 *2 (-1082)))) (-2271 (*1 *2 *1) (-12 (|has| $ (-6 -4505)) (-5 *2 (-755)) (-5 *1 (-96 *3)) (-4 *3 (-1082)))) (-2803 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1082)) (-5 *1 (-96 *3)))) (-3778 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| $ (-6 -4506)) (-4 *3 (-1082)) (-5 *1 (-96 *3)))) (-3656 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| $ (-6 -4505)) (-4 *4 (-1082)) (-5 *2 (-121)) (-5 *1 (-96 *4)))) (-2865 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| $ (-6 -4505)) (-4 *4 (-1082)) (-5 *2 (-121)) (-5 *1 (-96 *4)))) (-4035 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| $ (-6 -4505)) (-4 *4 (-1082)) (-5 *2 (-755)) (-5 *1 (-96 *4)))) (-1981 (*1 *2 *1) (-12 (|has| $ (-6 -4505)) (-5 *2 (-626 *3)) (-5 *1 (-96 *3)) (-4 *3 (-1082)))) (-2130 (*1 *2 *1) (-12 (|has| $ (-6 -4505)) (-5 *2 (-626 *3)) (-5 *1 (-96 *3)) (-4 *3 (-1082)))) (-4035 (*1 *2 *3 *1) (-12 (|has| $ (-6 -4505)) (-5 *2 (-755)) (-5 *1 (-96 *3)) (-4 *3 (-1082)) (-4 *3 (-1082)))) (-2030 (*1 *2 *3 *1) (-12 (|has| $ (-6 -4505)) (-5 *2 (-121)) (-5 *1 (-96 *3)) (-4 *3 (-1082)) (-4 *3 (-1082)))) (-1291 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-96 *3)) (-4 *3 (-1082)) (-4 *3 (-1082)))) (-4353 (*1 *2 *1) (-12 (-5 *2 (-1100)) (-5 *1 (-96 *3)) (-4 *3 (-1082)) (-4 *3 (-1082)))) (-2801 (*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-96 *3)) (-4 *3 (-1082)) (-4 *3 (-1082)))) (-1653 (*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-96 *3)) (-4 *3 (-1082)) (-4 *3 (-1082)))) (-2601 (*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-96 *3)) (-4 *3 (-1082)) (-4 *3 (-1082)))) (-1354 (*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-1082)) (-5 *1 (-96 *3)))) (-2146 (*1 *2 *1) (-12 (-5 *1 (-96 *2)) (-4 *2 (-1082)))) (-4345 (*1 *1 *2 *1) (-12 (-5 *1 (-96 *2)) (-4 *2 (-1082)))) (-2525 (*1 *2 *1) (-12 (-5 *1 (-96 *2)) (-4 *2 (-1082)))) (-3881 (*1 *2 *2 *1) (-12 (-5 *1 (-96 *2)) (-4 *2 (-1082)))) (-2200 (*1 *2 *1) (-12 (-5 *1 (-96 *2)) (-4 *2 (-1082)))) (-4224 (*1 *2 *1) (-12 (-5 *1 (-96 *2)) (-4 *2 (-1082)))) (-4023 (*1 *2 *1) (-12 (-5 *2 (-755)) (-5 *1 (-96 *3)) (-4 *3 (-1082)))) (-1311 (*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-1082)) (-5 *1 (-96 *3))))) -(-13 (-1101 |#1|) (-10 -8 (-15 -1311 ($ (-626 |#1|))) (-15 -2200 (|#1| $)) (-15 -2146 (|#1| $)) (-15 -3881 (|#1| |#1| $)) (-15 -4345 ($ |#1| $)) (-15 -2525 (|#1| $)) (-15 -4224 (|#1| $)) (-15 -4023 ((-755) $)) (-15 -3441 ((-121) $ (-755))) (-15 -2122 ((-121) $ (-755))) (-15 -3909 ((-121) $ (-755))) (-15 -1354 ($ (-626 |#1|))) (-15 -4191 ((-121) $)) (-15 -3260 ($)) (-15 -4236 ($)) (-15 -2813 ($ $)) (-15 -2214 ((-121) $ $)) (-15 -2803 ($ (-1 |#1| |#1|) $)) (IF (|has| $ (-6 -4506)) (-15 -3778 ($ (-1 |#1| |#1|) $)) |noBranch|) (IF (|has| |#1| (-1082)) (PROGN (-15 -1291 ((-1135) $)) (-15 -4353 ((-1100) $)) (-15 -2801 ((-842) $)) (-15 -1653 ((-121) $ $)) (-15 -2601 ((-121) $ $))) |noBranch|) (IF (|has| $ (-6 -4505)) (PROGN (-15 -2865 ((-121) (-1 (-121) |#1|) $)) (-15 -3656 ((-121) (-1 (-121) |#1|) $)) (-15 -4035 ((-755) (-1 (-121) |#1|) $)) (-15 -2271 ((-755) $)) (-15 -1981 ((-626 |#1|) $)) (-15 -2130 ((-626 |#1|) $))) |noBranch|) (IF (|has| $ (-6 -4505)) (IF (|has| |#1| (-1082)) (PROGN (-15 -2030 ((-121) |#1| $)) (-15 -4035 ((-755) |#1| $))) |noBranch|) |noBranch|))) -((-2549 (($ $) 10)) (-2554 (($ $) 12))) -(((-97 |#1|) (-10 -8 (-15 -2554 (|#1| |#1|)) (-15 -2549 (|#1| |#1|))) (-98)) (T -97)) -NIL -(-10 -8 (-15 -2554 (|#1| |#1|)) (-15 -2549 (|#1| |#1|))) -((-2541 (($ $) 11)) (-2532 (($ $) 10)) (-2549 (($ $) 9)) (-2554 (($ $) 8)) (-2545 (($ $) 7)) (-2536 (($ $) 6))) -(((-98) (-1267)) (T -98)) -((-2541 (*1 *1 *1) (-4 *1 (-98))) (-2532 (*1 *1 *1) (-4 *1 (-98))) (-2549 (*1 *1 *1) (-4 *1 (-98))) (-2554 (*1 *1 *1) (-4 *1 (-98))) (-2545 (*1 *1 *1) (-4 *1 (-98))) (-2536 (*1 *1 *1) (-4 *1 (-98)))) -(-13 (-10 -8 (-15 -2536 ($ $)) (-15 -2545 ($ $)) (-15 -2554 ($ $)) (-15 -2549 ($ $)) (-15 -2532 ($ $)) (-15 -2541 ($ $)))) -((-2601 (((-121) $ $) NIL)) (-2478 (((-375) (-1135) (-375)) 42) (((-375) (-1135) (-1135) (-375)) 41)) (-1835 (((-375) (-375)) 33)) (-4459 (((-1241)) 36)) (-1291 (((-1135) $) NIL)) (-4324 (((-375) (-1135) (-1135)) 46) (((-375) (-1135)) 48)) (-4353 (((-1100) $) NIL)) (-3873 (((-375) (-1135) (-1135)) 47)) (-2076 (((-375) (-1135) (-1135)) 49) (((-375) (-1135)) 50)) (-2801 (((-842) $) NIL)) (-1653 (((-121) $ $) NIL))) -(((-99) (-13 (-1082) (-10 -7 (-15 -4324 ((-375) (-1135) (-1135))) (-15 -4324 ((-375) (-1135))) (-15 -2076 ((-375) (-1135) (-1135))) (-15 -2076 ((-375) (-1135))) (-15 -3873 ((-375) (-1135) (-1135))) (-15 -4459 ((-1241))) (-15 -1835 ((-375) (-375))) (-15 -2478 ((-375) (-1135) (-375))) (-15 -2478 ((-375) (-1135) (-1135) (-375))) (-6 -4505)))) (T -99)) -((-4324 (*1 *2 *3 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-375)) (-5 *1 (-99)))) (-4324 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-375)) (-5 *1 (-99)))) (-2076 (*1 *2 *3 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-375)) (-5 *1 (-99)))) (-2076 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-375)) (-5 *1 (-99)))) (-3873 (*1 *2 *3 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-375)) (-5 *1 (-99)))) (-4459 (*1 *2) (-12 (-5 *2 (-1241)) (-5 *1 (-99)))) (-1835 (*1 *2 *2) (-12 (-5 *2 (-375)) (-5 *1 (-99)))) (-2478 (*1 *2 *3 *2) (-12 (-5 *2 (-375)) (-5 *3 (-1135)) (-5 *1 (-99)))) (-2478 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-375)) (-5 *3 (-1135)) (-5 *1 (-99))))) -(-13 (-1082) (-10 -7 (-15 -4324 ((-375) (-1135) (-1135))) (-15 -4324 ((-375) (-1135))) (-15 -2076 ((-375) (-1135) (-1135))) (-15 -2076 ((-375) (-1135))) (-15 -3873 ((-375) (-1135) (-1135))) (-15 -4459 ((-1241))) (-15 -1835 ((-375) (-375))) (-15 -2478 ((-375) (-1135) (-375))) (-15 -2478 ((-375) (-1135) (-1135) (-375))) (-6 -4505))) -NIL -(((-100) (-1267)) (T -100)) -NIL -(-13 (-10 -7 (-6 -4505) (-6 (-4507 "*")) (-6 -4506) (-6 -4502) (-6 -4500) (-6 -4499) (-6 -4498) (-6 -4503) (-6 -4497) (-6 -4496) (-6 -4495) (-6 -4494) (-6 -4493) (-6 -4501) (-6 -4504) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4492) (-6 -2550))) -((-2601 (((-121) $ $) NIL)) (-4236 (($) NIL T CONST)) (-1823 (((-3 $ "failed") $) NIL)) (-2642 (((-121) $) NIL)) (-3015 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-560))) 22)) (-1291 (((-1135) $) NIL)) (-1701 (($ $) 14)) (-4353 (((-1100) $) NIL)) (-2778 ((|#1| $ |#1|) 11)) (-3101 (($ $ $) NIL)) (-1671 (($ $ $) NIL)) (-2801 (((-842) $) 20)) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL)) (-1459 (($) 8 T CONST)) (-1653 (((-121) $ $) 10)) (-1733 (($ $ $) NIL)) (** (($ $ (-909)) 28) (($ $ (-755)) NIL) (($ $ (-560)) 16)) (* (($ $ $) 29))) -(((-101 |#1|) (-13 (-471) (-276 |#1| |#1|) (-10 -8 (-15 -3015 ($ (-1 |#1| |#1|))) (-15 -3015 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -3015 ($ (-1 |#1| |#1| (-560)))))) (-1039)) (T -101)) -((-3015 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1039)) (-5 *1 (-101 *3)))) (-3015 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1039)) (-5 *1 (-101 *3)))) (-3015 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-560))) (-4 *3 (-1039)) (-5 *1 (-101 *3))))) -(-13 (-471) (-276 |#1| |#1|) (-10 -8 (-15 -3015 ($ (-1 |#1| |#1|))) (-15 -3015 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -3015 ($ (-1 |#1| |#1| (-560)))))) -((-1758 (((-1241) (-1086)) 20)) (-3759 (((-1135) (-1135) (-1135)) 7)) (-1765 (((-1241) (-560) (-1 (-1241) (-1086))) 14))) -(((-102) (-10 -7 (-15 -1765 ((-1241) (-560) (-1 (-1241) (-1086)))) (-15 -1758 ((-1241) (-1086))) (-15 -3759 ((-1135) (-1135) (-1135))))) (T -102)) -((-3759 (*1 *2 *2 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-102)))) (-1758 (*1 *2 *3) (-12 (-5 *3 (-1086)) (-5 *2 (-1241)) (-5 *1 (-102)))) (-1765 (*1 *2 *3 *4) (-12 (-5 *3 (-560)) (-5 *4 (-1 (-1241) (-1086))) (-5 *2 (-1241)) (-5 *1 (-102))))) -(-10 -7 (-15 -1765 ((-1241) (-560) (-1 (-1241) (-1086)))) (-15 -1758 ((-1241) (-1086))) (-15 -3759 ((-1135) (-1135) (-1135)))) -((-1575 (((-414 |#2|) |#2| (-626 |#2|)) 10) (((-414 |#2|) |#2| |#2|) 11))) -(((-103 |#1| |#2|) (-10 -7 (-15 -1575 ((-414 |#2|) |#2| |#2|)) (-15 -1575 ((-414 |#2|) |#2| (-626 |#2|)))) (-13 (-447) (-148)) (-1211 |#1|)) (T -103)) -((-1575 (*1 *2 *3 *4) (-12 (-5 *4 (-626 *3)) (-4 *3 (-1211 *5)) (-4 *5 (-13 (-447) (-148))) (-5 *2 (-414 *3)) (-5 *1 (-103 *5 *3)))) (-1575 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-447) (-148))) (-5 *2 (-414 *3)) (-5 *1 (-103 *4 *3)) (-4 *3 (-1211 *4))))) -(-10 -7 (-15 -1575 ((-414 |#2|) |#2| |#2|)) (-15 -1575 ((-414 |#2|) |#2| (-626 |#2|)))) -((-2601 (((-121) $ $) 9))) -(((-104 |#1|) (-10 -8 (-15 -2601 ((-121) |#1| |#1|))) (-105)) (T -104)) -NIL -(-10 -8 (-15 -2601 ((-121) |#1| |#1|))) -((-2601 (((-121) $ $) 7)) (-1653 (((-121) $ $) 6))) -(((-105) (-1267)) (T -105)) -((-2601 (*1 *2 *1 *1) (-12 (-4 *1 (-105)) (-5 *2 (-121)))) (-1653 (*1 *2 *1 *1) (-12 (-4 *1 (-105)) (-5 *2 (-121))))) -(-13 (-10 -8 (-15 -1653 ((-121) $ $)) (-15 -2601 ((-121) $ $)))) -((-2601 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-2981 ((|#1| $) NIL)) (-3909 (((-121) $ (-755)) NIL)) (-3119 ((|#1| $ |#1|) 13 (|has| $ (-6 -4506)))) (-1329 (($ $ $) NIL (|has| $ (-6 -4506)))) (-3559 (($ $ $) NIL (|has| $ (-6 -4506)))) (-3448 (($ $ (-626 |#1|)) 15)) (-2764 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4506))) (($ $ "left" $) NIL (|has| $ (-6 -4506))) (($ $ "right" $) NIL (|has| $ (-6 -4506)))) (-4043 (($ $ (-626 $)) NIL (|has| $ (-6 -4506)))) (-4236 (($) NIL T CONST)) (-3437 (($ $) 11)) (-1981 (((-626 |#1|) $) NIL (|has| $ (-6 -4505)))) (-3971 (((-626 $) $) NIL)) (-2420 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-2218 (($ $ |#1| $) 17)) (-2122 (((-121) $ (-755)) NIL)) (-2130 (((-626 |#1|) $) NIL (|has| $ (-6 -4505)))) (-2030 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-3022 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-2483 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-626 |#1|) |#1| |#1| |#1|)) 35)) (-3778 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#1| |#1|) $) NIL)) (-3441 (((-121) $ (-755)) NIL)) (-3156 (($ $) 10)) (-2173 (((-626 |#1|) $) NIL)) (-3992 (((-121) $) 12)) (-1291 (((-1135) $) NIL (|has| |#1| (-1082)))) (-4353 (((-1100) $) NIL (|has| |#1| (-1082)))) (-2865 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#1|))) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-283 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-626 |#1|) (-626 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))))) (-2214 (((-121) $ $) NIL)) (-4191 (((-121) $) 9)) (-3260 (($) 16)) (-2778 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1435 (((-560) $ $) NIL)) (-3316 (((-121) $) NIL)) (-4035 (((-755) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505))) (((-755) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-2813 (($ $) NIL)) (-2801 (((-842) $) NIL (|has| |#1| (-1082)))) (-2853 (((-626 $) $) NIL)) (-3761 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-2809 (($ (-755) |#1|) 19)) (-3656 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-1653 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-2271 (((-755) $) NIL (|has| $ (-6 -4505))))) -(((-106 |#1|) (-13 (-134 |#1|) (-10 -8 (-6 -4505) (-6 -4506) (-15 -2809 ($ (-755) |#1|)) (-15 -3448 ($ $ (-626 |#1|))) (-15 -3022 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3022 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -2483 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -2483 ($ $ |#1| (-1 (-626 |#1|) |#1| |#1| |#1|))))) (-1082)) (T -106)) -((-2809 (*1 *1 *2 *3) (-12 (-5 *2 (-755)) (-5 *1 (-106 *3)) (-4 *3 (-1082)))) (-3448 (*1 *1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-1082)) (-5 *1 (-106 *3)))) (-3022 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-106 *2)) (-4 *2 (-1082)))) (-3022 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1082)) (-5 *1 (-106 *3)))) (-2483 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1082)) (-5 *1 (-106 *2)))) (-2483 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-626 *2) *2 *2 *2)) (-4 *2 (-1082)) (-5 *1 (-106 *2))))) -(-13 (-134 |#1|) (-10 -8 (-6 -4505) (-6 -4506) (-15 -2809 ($ (-755) |#1|)) (-15 -3448 ($ $ (-626 |#1|))) (-15 -3022 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3022 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -2483 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -2483 ($ $ |#1| (-1 (-626 |#1|) |#1| |#1| |#1|))))) -((-1694 (((-1 (-626 |#1|) |#1|) (-626 |#1|) (-626 |#1|) (-626 |#1|)) 20)) (-1702 (((-1 (-626 |#1|) |#1|) (-626 |#1|) (-626 |#1|)) 17)) (-1710 (((-1 (-626 |#1|) |#1|) (-626 |#1|) (-626 |#1|) (-626 |#1|) (-626 |#1|)) 21))) -(((-107 |#1|) (-10 -7 (-15 -1702 ((-1 (-626 |#1|) |#1|) (-626 |#1|) (-626 |#1|))) (-15 -1694 ((-1 (-626 |#1|) |#1|) (-626 |#1|) (-626 |#1|) (-626 |#1|))) (-15 -1710 ((-1 (-626 |#1|) |#1|) (-626 |#1|) (-626 |#1|) (-626 |#1|) (-626 |#1|)))) (-1039)) (T -107)) -((-1710 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-1039)) (-5 *2 (-1 (-626 *4) *4)) (-5 *1 (-107 *4)) (-5 *3 (-626 *4)))) (-1694 (*1 *2 *3 *3 *3) (-12 (-4 *4 (-1039)) (-5 *2 (-1 (-626 *4) *4)) (-5 *1 (-107 *4)) (-5 *3 (-626 *4)))) (-1702 (*1 *2 *3 *3) (-12 (-4 *4 (-1039)) (-5 *2 (-1 (-626 *4) *4)) (-5 *1 (-107 *4)) (-5 *3 (-626 *4))))) -(-10 -7 (-15 -1702 ((-1 (-626 |#1|) |#1|) (-626 |#1|) (-626 |#1|))) (-15 -1694 ((-1 (-626 |#1|) |#1|) (-626 |#1|) (-626 |#1|) (-626 |#1|))) (-15 -1710 ((-1 (-626 |#1|) |#1|) (-626 |#1|) (-626 |#1|) (-626 |#1|) (-626 |#1|)))) -((-1604 ((|#3| |#2| |#2|) 28)) (-2082 ((|#1| |#2| |#2|) 36 (|has| |#1| (-6 (-4507 "*"))))) (-4317 ((|#3| |#2| |#2|) 29)) (-2389 ((|#1| |#2|) 40 (|has| |#1| (-6 (-4507 "*")))))) -(((-108 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1604 (|#3| |#2| |#2|)) (-15 -4317 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4507 "*"))) (PROGN (-15 -2082 (|#1| |#2| |#2|)) (-15 -2389 (|#1| |#2|))) |noBranch|)) (-1039) (-1211 |#1|) (-669 |#1| |#4| |#5|) (-369 |#1|) (-369 |#1|)) (T -108)) -((-2389 (*1 *2 *3) (-12 (|has| *2 (-6 (-4507 "*"))) (-4 *5 (-369 *2)) (-4 *6 (-369 *2)) (-4 *2 (-1039)) (-5 *1 (-108 *2 *3 *4 *5 *6)) (-4 *3 (-1211 *2)) (-4 *4 (-669 *2 *5 *6)))) (-2082 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4507 "*"))) (-4 *5 (-369 *2)) (-4 *6 (-369 *2)) (-4 *2 (-1039)) (-5 *1 (-108 *2 *3 *4 *5 *6)) (-4 *3 (-1211 *2)) (-4 *4 (-669 *2 *5 *6)))) (-4317 (*1 *2 *3 *3) (-12 (-4 *4 (-1039)) (-4 *2 (-669 *4 *5 *6)) (-5 *1 (-108 *4 *3 *2 *5 *6)) (-4 *3 (-1211 *4)) (-4 *5 (-369 *4)) (-4 *6 (-369 *4)))) (-1604 (*1 *2 *3 *3) (-12 (-4 *4 (-1039)) (-4 *2 (-669 *4 *5 *6)) (-5 *1 (-108 *4 *3 *2 *5 *6)) (-4 *3 (-1211 *4)) (-4 *5 (-369 *4)) (-4 *6 (-369 *4))))) -(-10 -7 (-15 -1604 (|#3| |#2| |#2|)) (-15 -4317 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4507 "*"))) (PROGN (-15 -2082 (|#1| |#2| |#2|)) (-15 -2389 (|#1| |#2|))) |noBranch|)) -((-2601 (((-121) $ $) NIL)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2801 (((-842) $) NIL)) (-1784 (((-626 (-1153))) 32)) (-3645 (((-2 (|:| |zeros| (-1133 (-213))) (|:| |ones| (-1133 (-213))) (|:| |singularities| (-1133 (-213)))) (-1153)) 35)) (-1653 (((-121) $ $) NIL))) -(((-109) (-13 (-1082) (-10 -7 (-15 -1784 ((-626 (-1153)))) (-15 -3645 ((-2 (|:| |zeros| (-1133 (-213))) (|:| |ones| (-1133 (-213))) (|:| |singularities| (-1133 (-213)))) (-1153))) (-6 -4505)))) (T -109)) -((-1784 (*1 *2) (-12 (-5 *2 (-626 (-1153))) (-5 *1 (-109)))) (-3645 (*1 *2 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-2 (|:| |zeros| (-1133 (-213))) (|:| |ones| (-1133 (-213))) (|:| |singularities| (-1133 (-213))))) (-5 *1 (-109))))) -(-13 (-1082) (-10 -7 (-15 -1784 ((-626 (-1153)))) (-15 -3645 ((-2 (|:| |zeros| (-1133 (-213))) (|:| |ones| (-1133 (-213))) (|:| |singularities| (-1133 (-213)))) (-1153))) (-6 -4505))) -((-1354 (($ (-626 |#2|)) 11))) -(((-110 |#1| |#2|) (-10 -8 (-15 -1354 (|#1| (-626 |#2|)))) (-111 |#2|) (-1187)) (T -110)) -NIL -(-10 -8 (-15 -1354 (|#1| (-626 |#2|)))) -((-2601 (((-121) $ $) 18 (|has| |#1| (-1082)))) (-3909 (((-121) $ (-755)) 8)) (-4236 (($) 7 T CONST)) (-1981 (((-626 |#1|) $) 30 (|has| $ (-6 -4505)))) (-2122 (((-121) $ (-755)) 9)) (-2130 (((-626 |#1|) $) 29 (|has| $ (-6 -4505)))) (-2030 (((-121) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-3778 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#1| |#1|) $) 35)) (-3441 (((-121) $ (-755)) 10)) (-1291 (((-1135) $) 22 (|has| |#1| (-1082)))) (-2525 ((|#1| $) 36)) (-4345 (($ |#1| $) 37)) (-4353 (((-1100) $) 21 (|has| |#1| (-1082)))) (-2146 ((|#1| $) 38)) (-2865 (((-121) (-1 (-121) |#1|) $) 32 (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#1|))) 26 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-283 |#1|)) 25 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-626 |#1|) (-626 |#1|)) 23 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))))) (-2214 (((-121) $ $) 14)) (-4191 (((-121) $) 11)) (-3260 (($) 12)) (-4035 (((-755) (-1 (-121) |#1|) $) 31 (|has| $ (-6 -4505))) (((-755) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-2813 (($ $) 13)) (-2801 (((-842) $) 20 (|has| |#1| (-1082)))) (-1354 (($ (-626 |#1|)) 39)) (-3656 (((-121) (-1 (-121) |#1|) $) 33 (|has| $ (-6 -4505)))) (-1653 (((-121) $ $) 19 (|has| |#1| (-1082)))) (-2271 (((-755) $) 6 (|has| $ (-6 -4505))))) -(((-111 |#1|) (-1267) (-1187)) (T -111)) -((-1354 (*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-1187)) (-4 *1 (-111 *3)))) (-2146 (*1 *2 *1) (-12 (-4 *1 (-111 *2)) (-4 *2 (-1187)))) (-4345 (*1 *1 *2 *1) (-12 (-4 *1 (-111 *2)) (-4 *2 (-1187)))) (-2525 (*1 *2 *1) (-12 (-4 *1 (-111 *2)) (-4 *2 (-1187))))) -(-13 (-492 |t#1|) (-10 -8 (-6 -4506) (-15 -1354 ($ (-626 |t#1|))) (-15 -2146 (|t#1| $)) (-15 -4345 ($ |t#1| $)) (-15 -2525 (|t#1| $)))) -(((-39) . T) ((-105) |has| |#1| (-1082)) ((-600 (-842)) |has| |#1| (-1082)) ((-298 |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))) ((-492 |#1|) . T) ((-515 |#1| |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))) ((-1082) |has| |#1| (-1082)) ((-1187) . T)) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-1947 (((-560) $) NIL (|has| (-560) (-296)))) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL)) (-1350 (($ $) NIL)) (-3376 (((-121) $) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-1776 (((-414 (-1149 $)) (-1149 $)) NIL (|has| (-560) (-896)))) (-3065 (($ $) NIL)) (-2953 (((-414 $) $) NIL)) (-1887 (((-3 (-626 (-1149 $)) "failed") (-626 (-1149 $)) (-1149 $)) NIL (|has| (-560) (-896)))) (-4179 (((-121) $ $) NIL)) (-4235 (((-560) $) NIL (|has| (-560) (-807)))) (-4236 (($) NIL T CONST)) (-1473 (((-3 (-560) "failed") $) NIL) (((-3 (-1153) "failed") $) NIL (|has| (-560) (-1029 (-1153)))) (((-3 (-403 (-560)) "failed") $) NIL (|has| (-560) (-1029 (-560)))) (((-3 (-560) "failed") $) NIL (|has| (-560) (-1029 (-560))))) (-3001 (((-560) $) NIL) (((-1153) $) NIL (|has| (-560) (-1029 (-1153)))) (((-403 (-560)) $) NIL (|has| (-560) (-1029 (-560)))) (((-560) $) NIL (|has| (-560) (-1029 (-560))))) (-2563 (($ $ $) NIL)) (-2616 (((-671 (-560)) (-671 $)) NIL (|has| (-560) (-622 (-560)))) (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) NIL (|has| (-560) (-622 (-560)))) (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) NIL) (((-671 (-560)) (-671 $)) NIL)) (-1823 (((-3 $ "failed") $) NIL)) (-1666 (($) NIL (|has| (-560) (-542)))) (-2572 (($ $ $) NIL)) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) NIL)) (-3319 (((-121) $) NIL)) (-1786 (((-121) $) NIL (|has| (-560) (-807)))) (-2399 (((-876 (-560) $) $ (-879 (-560)) (-876 (-560) $)) NIL (|has| (-560) (-873 (-560)))) (((-876 (-375) $) $ (-879 (-375)) (-876 (-375) $)) NIL (|has| (-560) (-873 (-375))))) (-2642 (((-121) $) NIL)) (-1540 (($ $) NIL)) (-2132 (((-560) $) NIL)) (-1424 (((-3 $ "failed") $) NIL (|has| (-560) (-1128)))) (-2187 (((-121) $) NIL (|has| (-560) (-807)))) (-3856 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-4325 (($ $ $) NIL (|has| (-560) (-834)))) (-2501 (($ $ $) NIL (|has| (-560) (-834)))) (-2803 (($ (-1 (-560) (-560)) $) NIL)) (-2582 (($ $ $) NIL) (($ (-626 $)) NIL)) (-1291 (((-1135) $) NIL)) (-1701 (($ $) NIL)) (-1394 (($) NIL (|has| (-560) (-1128)) CONST)) (-4353 (((-1100) $) NIL)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL)) (-4440 (($ $ $) NIL) (($ (-626 $)) NIL)) (-4302 (($ $) NIL (|has| (-560) (-296))) (((-403 (-560)) $) NIL)) (-2150 (((-560) $) NIL (|has| (-560) (-542)))) (-3817 (((-414 (-1149 $)) (-1149 $)) NIL (|has| (-560) (-896)))) (-3032 (((-414 (-1149 $)) (-1149 $)) NIL (|has| (-560) (-896)))) (-1601 (((-414 $) $) NIL)) (-3505 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2336 (((-3 $ "failed") $ $) NIL)) (-3456 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-4450 (($ $ (-626 (-560)) (-626 (-560))) NIL (|has| (-560) (-298 (-560)))) (($ $ (-560) (-560)) NIL (|has| (-560) (-298 (-560)))) (($ $ (-283 (-560))) NIL (|has| (-560) (-298 (-560)))) (($ $ (-626 (-283 (-560)))) NIL (|has| (-560) (-298 (-560)))) (($ $ (-626 (-1153)) (-626 (-560))) NIL (|has| (-560) (-515 (-1153) (-560)))) (($ $ (-1153) (-560)) NIL (|has| (-560) (-515 (-1153) (-560))))) (-4445 (((-755) $) NIL)) (-2778 (($ $ (-560)) NIL (|has| (-560) (-276 (-560) (-560))))) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL)) (-2443 (($ $) NIL (|has| (-560) (-221))) (($ $ (-755)) NIL (|has| (-560) (-221))) (($ $ (-1153)) NIL (|has| (-560) (-887 (-1153)))) (($ $ (-626 (-1153))) NIL (|has| (-560) (-887 (-1153)))) (($ $ (-1153) (-755)) NIL (|has| (-560) (-887 (-1153)))) (($ $ (-626 (-1153)) (-626 (-755))) NIL (|has| (-560) (-887 (-1153)))) (($ $ (-1 (-560) (-560)) (-755)) NIL) (($ $ (-1 (-560) (-560))) NIL)) (-1646 (($ $) NIL)) (-2139 (((-560) $) NIL)) (-4255 (((-879 (-560)) $) NIL (|has| (-560) (-601 (-879 (-560))))) (((-879 (-375)) $) NIL (|has| (-560) (-601 (-879 (-375))))) (((-533) $) NIL (|has| (-560) (-601 (-533)))) (((-375) $) NIL (|has| (-560) (-1013))) (((-213) $) NIL (|has| (-560) (-1013)))) (-3248 (((-3 (-1236 $) "failed") (-671 $)) NIL (-12 (|has| $ (-146)) (|has| (-560) (-896))))) (-2801 (((-842) $) NIL) (($ (-560)) NIL) (($ $) NIL) (($ (-403 (-560))) 7) (($ (-560)) NIL) (($ (-1153)) NIL (|has| (-560) (-1029 (-1153)))) (((-403 (-560)) $) NIL) (((-996 2) $) 9)) (-2272 (((-3 $ "failed") $) NIL (-2318 (-12 (|has| $ (-146)) (|has| (-560) (-896))) (|has| (-560) (-146))))) (-1751 (((-755)) NIL)) (-4316 (((-560) $) NIL (|has| (-560) (-542)))) (-2047 (($ (-403 (-560))) 8)) (-2328 (((-121) $ $) NIL)) (-1822 (($ $) NIL (|has| (-560) (-807)))) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL)) (-3304 (($) NIL T CONST)) (-1459 (($) NIL T CONST)) (-2500 (($ $) NIL (|has| (-560) (-221))) (($ $ (-755)) NIL (|has| (-560) (-221))) (($ $ (-1153)) NIL (|has| (-560) (-887 (-1153)))) (($ $ (-626 (-1153))) NIL (|has| (-560) (-887 (-1153)))) (($ $ (-1153) (-755)) NIL (|has| (-560) (-887 (-1153)))) (($ $ (-626 (-1153)) (-626 (-755))) NIL (|has| (-560) (-887 (-1153)))) (($ $ (-1 (-560) (-560)) (-755)) NIL) (($ $ (-1 (-560) (-560))) NIL)) (-1691 (((-121) $ $) NIL (|has| (-560) (-834)))) (-1675 (((-121) $ $) NIL (|has| (-560) (-834)))) (-1653 (((-121) $ $) NIL)) (-1683 (((-121) $ $) NIL (|has| (-560) (-834)))) (-1667 (((-121) $ $) NIL (|has| (-560) (-834)))) (-1733 (($ $ $) NIL) (($ (-560) (-560)) NIL)) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) NIL)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) NIL) (($ $ (-403 (-560))) NIL) (($ (-403 (-560)) $) NIL) (($ (-560) $) NIL) (($ $ (-560)) NIL))) -(((-112) (-13 (-985 (-560)) (-10 -8 (-15 -2801 ((-403 (-560)) $)) (-15 -2801 ((-996 2) $)) (-15 -4302 ((-403 (-560)) $)) (-15 -2047 ($ (-403 (-560))))))) (T -112)) -((-2801 (*1 *2 *1) (-12 (-5 *2 (-403 (-560))) (-5 *1 (-112)))) (-2801 (*1 *2 *1) (-12 (-5 *2 (-996 2)) (-5 *1 (-112)))) (-4302 (*1 *2 *1) (-12 (-5 *2 (-403 (-560))) (-5 *1 (-112)))) (-2047 (*1 *1 *2) (-12 (-5 *2 (-403 (-560))) (-5 *1 (-112))))) -(-13 (-985 (-560)) (-10 -8 (-15 -2801 ((-403 (-560)) $)) (-15 -2801 ((-996 2) $)) (-15 -4302 ((-403 (-560)) $)) (-15 -2047 ($ (-403 (-560)))))) -((-2601 (((-121) $ $) NIL)) (-1880 (((-1100) $ (-1100)) 23)) (-2998 (($ $ (-1135)) 17)) (-3793 (((-3 (-1100) "failed") $) 22)) (-1464 (((-1100) $) 20)) (-2408 (((-1100) $ (-1100)) 25)) (-2839 (((-1100) $) 24)) (-3997 (($ (-384)) NIL) (($ (-384) (-1135)) 16)) (-1337 (((-384) $) NIL)) (-1291 (((-1135) $) NIL)) (-1661 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-1931 (((-1241) $) NIL)) (-2801 (((-842) $) NIL)) (-2074 (($ $) 18)) (-1653 (((-121) $ $) NIL))) -(((-113) (-13 (-360 (-384) (-1100)) (-10 -8 (-15 -3793 ((-3 (-1100) "failed") $)) (-15 -2839 ((-1100) $)) (-15 -2408 ((-1100) $ (-1100)))))) (T -113)) -((-3793 (*1 *2 *1) (|partial| -12 (-5 *2 (-1100)) (-5 *1 (-113)))) (-2839 (*1 *2 *1) (-12 (-5 *2 (-1100)) (-5 *1 (-113)))) (-2408 (*1 *2 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-113))))) -(-13 (-360 (-384) (-1100)) (-10 -8 (-15 -3793 ((-3 (-1100) "failed") $)) (-15 -2839 ((-1100) $)) (-15 -2408 ((-1100) $ (-1100))))) -((-2601 (((-121) $ $) NIL)) (-1434 (($ $) NIL)) (-1564 (($ $ $) NIL)) (-2960 (((-1241) $ (-560) (-560)) NIL (|has| $ (-6 -4506)))) (-3189 (((-121) $) NIL (|has| (-121) (-834))) (((-121) (-1 (-121) (-121) (-121)) $) NIL)) (-4410 (($ $) NIL (-12 (|has| $ (-6 -4506)) (|has| (-121) (-834)))) (($ (-1 (-121) (-121) (-121)) $) NIL (|has| $ (-6 -4506)))) (-3743 (($ $) NIL (|has| (-121) (-834))) (($ (-1 (-121) (-121) (-121)) $) NIL)) (-3909 (((-121) $ (-755)) NIL)) (-2764 (((-121) $ (-1202 (-560)) (-121)) NIL (|has| $ (-6 -4506))) (((-121) $ (-560) (-121)) NIL (|has| $ (-6 -4506)))) (-3802 (($ (-1 (-121) (-121)) $) NIL (|has| $ (-6 -4505)))) (-4236 (($) NIL T CONST)) (-4030 (($ $) NIL (|has| $ (-6 -4506)))) (-2883 (($ $) NIL)) (-2868 (($ $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-121) (-1082))))) (-4310 (($ (-1 (-121) (-121)) $) NIL (|has| $ (-6 -4505))) (($ (-121) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-121) (-1082))))) (-2342 (((-121) (-1 (-121) (-121) (-121)) $) NIL (|has| $ (-6 -4505))) (((-121) (-1 (-121) (-121) (-121)) $ (-121)) NIL (|has| $ (-6 -4505))) (((-121) (-1 (-121) (-121) (-121)) $ (-121) (-121)) NIL (-12 (|has| $ (-6 -4505)) (|has| (-121) (-1082))))) (-1746 (((-121) $ (-560) (-121)) NIL (|has| $ (-6 -4506)))) (-1361 (((-121) $ (-560)) NIL)) (-2839 (((-560) (-121) $ (-560)) NIL (|has| (-121) (-1082))) (((-560) (-121) $) NIL (|has| (-121) (-1082))) (((-560) (-1 (-121) (-121)) $) NIL)) (-1981 (((-626 (-121)) $) NIL (|has| $ (-6 -4505)))) (-3367 (($ $ $) NIL)) (-3186 (($ $) NIL)) (-3334 (($ $ $) NIL)) (-1721 (($ (-755) (-121)) 8)) (-2881 (($ $ $) NIL)) (-2122 (((-121) $ (-755)) NIL)) (-4099 (((-560) $) NIL (|has| (-560) (-834)))) (-4325 (($ $ $) NIL)) (-2492 (($ $ $) NIL (|has| (-121) (-834))) (($ (-1 (-121) (-121) (-121)) $ $) NIL)) (-2130 (((-626 (-121)) $) NIL (|has| $ (-6 -4505)))) (-2030 (((-121) (-121) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-121) (-1082))))) (-2767 (((-560) $) NIL (|has| (-560) (-834)))) (-2501 (($ $ $) NIL)) (-3778 (($ (-1 (-121) (-121)) $) NIL (|has| $ (-6 -4506)))) (-2803 (($ (-1 (-121) (-121) (-121)) $ $) NIL) (($ (-1 (-121) (-121)) $) NIL)) (-3441 (((-121) $ (-755)) NIL)) (-1291 (((-1135) $) NIL)) (-4103 (($ $ $ (-560)) NIL) (($ (-121) $ (-560)) NIL)) (-1529 (((-626 (-560)) $) NIL)) (-1310 (((-121) (-560) $) NIL)) (-4353 (((-1100) $) NIL)) (-2824 (((-121) $) NIL (|has| (-560) (-834)))) (-3786 (((-3 (-121) "failed") (-1 (-121) (-121)) $) NIL)) (-3038 (($ $ (-121)) NIL (|has| $ (-6 -4506)))) (-2865 (((-121) (-1 (-121) (-121)) $) NIL (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-121)) (-626 (-121))) NIL (-12 (|has| (-121) (-298 (-121))) (|has| (-121) (-1082)))) (($ $ (-121) (-121)) NIL (-12 (|has| (-121) (-298 (-121))) (|has| (-121) (-1082)))) (($ $ (-283 (-121))) NIL (-12 (|has| (-121) (-298 (-121))) (|has| (-121) (-1082)))) (($ $ (-626 (-283 (-121)))) NIL (-12 (|has| (-121) (-298 (-121))) (|has| (-121) (-1082))))) (-2214 (((-121) $ $) NIL)) (-1290 (((-121) (-121) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-121) (-1082))))) (-4460 (((-626 (-121)) $) NIL)) (-4191 (((-121) $) NIL)) (-3260 (($) NIL)) (-2778 (($ $ (-1202 (-560))) NIL) (((-121) $ (-560)) NIL) (((-121) $ (-560) (-121)) NIL)) (-2949 (($ $ (-1202 (-560))) NIL) (($ $ (-560)) NIL)) (-4035 (((-755) (-121) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-121) (-1082)))) (((-755) (-1 (-121) (-121)) $) NIL (|has| $ (-6 -4505)))) (-4072 (($ $ $ (-560)) NIL (|has| $ (-6 -4506)))) (-2813 (($ $) NIL)) (-4255 (((-533) $) NIL (|has| (-121) (-601 (-533))))) (-4162 (($ (-626 (-121))) NIL)) (-2849 (($ (-626 $)) NIL) (($ $ $) NIL) (($ (-121) $) NIL) (($ $ (-121)) NIL)) (-2801 (((-842) $) NIL)) (-2096 (($ (-755) (-121)) 9)) (-3656 (((-121) (-1 (-121) (-121)) $) NIL (|has| $ (-6 -4505)))) (-2256 (($ $ $) NIL)) (-2464 (($ $) NIL)) (-2587 (($ $ $) NIL)) (-1691 (((-121) $ $) NIL)) (-1675 (((-121) $ $) NIL)) (-1653 (((-121) $ $) NIL)) (-1683 (((-121) $ $) NIL)) (-1667 (((-121) $ $) NIL)) (-2581 (($ $ $) NIL)) (-2271 (((-755) $) NIL (|has| $ (-6 -4505))))) -(((-114) (-13 (-132) (-10 -8 (-15 -2096 ($ (-755) (-121)))))) (T -114)) -((-2096 (*1 *1 *2 *3) (-12 (-5 *2 (-755)) (-5 *3 (-121)) (-5 *1 (-114))))) -(-13 (-132) (-10 -8 (-15 -2096 ($ (-755) (-121))))) -((-1587 (((-950 (-213)) (-1100) (-950 (-213)) (-1100) (-950 (-213)) (-1100)) 13)) (-1594 (((-213) (-167 (-213))) 8)) (-1605 (((-950 (-213)) (-1100) (-213) (-950 (-213)) (-1100) (-950 (-213)) (-1100)) 12)) (-1612 (((-213) (-1100) (-950 (-213)) (-1100)) 11))) -(((-115) (-10 -7 (-15 -1594 ((-213) (-167 (-213)))) (-15 -1612 ((-213) (-1100) (-950 (-213)) (-1100))) (-15 -1605 ((-950 (-213)) (-1100) (-213) (-950 (-213)) (-1100) (-950 (-213)) (-1100))) (-15 -1587 ((-950 (-213)) (-1100) (-950 (-213)) (-1100) (-950 (-213)) (-1100))))) (T -115)) -((-1587 (*1 *2 *3 *2 *3 *2 *3) (-12 (-5 *2 (-950 (-213))) (-5 *3 (-1100)) (-5 *1 (-115)))) (-1605 (*1 *2 *3 *4 *2 *3 *2 *3) (-12 (-5 *2 (-950 (-213))) (-5 *3 (-1100)) (-5 *4 (-213)) (-5 *1 (-115)))) (-1612 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-1100)) (-5 *4 (-950 (-213))) (-5 *2 (-213)) (-5 *1 (-115)))) (-1594 (*1 *2 *3) (-12 (-5 *3 (-167 (-213))) (-5 *2 (-213)) (-5 *1 (-115))))) -(-10 -7 (-15 -1594 ((-213) (-167 (-213)))) (-15 -1612 ((-213) (-1100) (-950 (-213)) (-1100))) (-15 -1605 ((-950 (-213)) (-1100) (-213) (-950 (-213)) (-1100) (-950 (-213)) (-1100))) (-15 -1587 ((-950 (-213)) (-1100) (-950 (-213)) (-1100) (-950 (-213)) (-1100)))) -((-2601 (((-121) $ $) NIL)) (-2248 (((-3 "left" "center" "right" "vertical" "horizontal") $) 17)) (-1514 (((-560) $) 14)) (-1520 (((-560) $) 15)) (-1526 (((-560) $) 16)) (-1291 (((-1135) $) NIL)) (-1532 (((-121) $) 8)) (-4353 (((-1100) $) NIL)) (-1538 (((-560) $) 12)) (-1544 (($ (-560) (-560) (-560) (-560) (-560) (-121) (-3 "left" "center" "right" "vertical" "horizontal")) 11)) (-2801 (((-842) $) 19) (($ (-626 (-560))) NIL)) (-1551 (((-560) $) 13)) (-1653 (((-121) $ $) NIL))) +((-3921 (((-121) $) 12)) (-2795 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-409 (-568)) $) 24) (($ $ (-409 (-568))) NIL))) +(((-51 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-409 (-568)))) (-15 * (|#1| (-409 (-568)) |#1|)) (-15 -3921 ((-121) |#1|)) (-15 -2795 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-568) |#1|)) (-15 * (|#1| (-763) |#1|)) (-15 * (|#1| (-917) |#1|))) (-52 |#2| |#3|) (-1047) (-787)) (T -51)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-409 (-568)))) (-15 * (|#1| (-409 (-568)) |#1|)) (-15 -3921 ((-121) |#1|)) (-15 -2795 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-568) |#1|)) (-15 * (|#1| (-763) |#1|)) (-15 * (|#1| (-917) |#1|))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) 50 (|has| |#1| (-558)))) (-2227 (($ $) 51 (|has| |#1| (-558)))) (-1573 (((-121) $) 53 (|has| |#1| (-558)))) (-3134 (((-3 $ "failed") $ $) 18)) (-2671 (($) 16 T CONST)) (-2114 (($ $) 59)) (-2925 (((-3 $ "failed") $) 33)) (-2735 (((-121) $) 30)) (-3921 (((-121) $) 61)) (-2047 (($ |#1| |#2|) 60)) (-2795 (($ (-1 |#1| |#1|) $) 62)) (-2097 (($ $) 64)) (-2102 ((|#1| $) 65)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-2595 (((-3 $ "failed") $ $) 49 (|has| |#1| (-558)))) (-3206 ((|#2| $) 63)) (-2745 (((-850) $) 11) (($ (-568)) 27) (($ (-409 (-568))) 56 (|has| |#1| (-43 (-409 (-568))))) (($ $) 48 (|has| |#1| (-558))) (($ |#1|) 46 (|has| |#1| (-172)))) (-2604 ((|#1| $ |#2|) 58)) (-4371 (((-3 $ "failed") $) 47 (|has| |#1| (-148)))) (-4078 (((-763)) 28)) (-1826 (((-121) $ $) 52 (|has| |#1| (-558)))) (-1887 (($ $ (-917)) 25) (($ $ (-763)) 32)) (-3056 (($) 17 T CONST)) (-1556 (($) 29 T CONST)) (-1717 (((-121) $ $) 6)) (-1779 (($ $ |#1|) 57 (|has| |#1| (-365)))) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 24) (($ $ (-763)) 31)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 23) (($ $ |#1|) 67) (($ |#1| $) 66) (($ (-409 (-568)) $) 55 (|has| |#1| (-43 (-409 (-568))))) (($ $ (-409 (-568))) 54 (|has| |#1| (-43 (-409 (-568))))))) +(((-52 |#1| |#2|) (-1275) (-1047) (-787)) (T -52)) +((-2102 (*1 *2 *1) (-12 (-4 *1 (-52 *2 *3)) (-4 *3 (-787)) (-4 *2 (-1047)))) (-2097 (*1 *1 *1) (-12 (-4 *1 (-52 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-787)))) (-3206 (*1 *2 *1) (-12 (-4 *1 (-52 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-787)))) (-2795 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-52 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-787)))) (-3921 (*1 *2 *1) (-12 (-4 *1 (-52 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-787)) (-5 *2 (-121)))) (-2047 (*1 *1 *2 *3) (-12 (-4 *1 (-52 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-787)))) (-2114 (*1 *1 *1) (-12 (-4 *1 (-52 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-787)))) (-2604 (*1 *2 *1 *3) (-12 (-4 *1 (-52 *2 *3)) (-4 *3 (-787)) (-4 *2 (-1047)))) (-1779 (*1 *1 *1 *2) (-12 (-4 *1 (-52 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-787)) (-4 *2 (-365))))) +(-13 (-1047) (-120 |t#1| |t#1|) (-10 -8 (-15 -2102 (|t#1| $)) (-15 -2097 ($ $)) (-15 -3206 (|t#2| $)) (-15 -2795 ($ (-1 |t#1| |t#1|) $)) (-15 -3921 ((-121) $)) (-15 -2047 ($ |t#1| |t#2|)) (-15 -2114 ($ $)) (-15 -2604 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-365)) (-15 -1779 ($ $ |t#1|)) |noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-6 (-172)) (-6 (-43 |t#1|))) |noBranch|) (IF (|has| |t#1| (-150)) (-6 (-150)) |noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |noBranch|) (IF (|has| |t#1| (-558)) (-6 (-558)) |noBranch|) (IF (|has| |t#1| (-43 (-409 (-568)))) (-6 (-43 (-409 (-568)))) |noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-43 (-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((-43 |#1|) |has| |#1| (-172)) ((-43 $) |has| |#1| (-558)) ((-105) . T) ((-120 (-409 (-568)) (-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((-120 |#1| |#1|) . T) ((-120 $ $) -2198 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-137) . T) ((-148) |has| |#1| (-148)) ((-150) |has| |#1| (-150)) ((-608 (-850)) . T) ((-172) -2198 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-285) |has| |#1| (-558)) ((-558) |has| |#1| (-558)) ((-637 (-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((-637 |#1|) . T) ((-637 $) . T) ((-707 (-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((-707 |#1|) |has| |#1| (-172)) ((-707 $) |has| |#1| (-558)) ((-716) . T) ((-1053 (-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((-1053 |#1|) . T) ((-1053 $) -2198 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-1047) . T) ((-1054) . T) ((-1102) . T) ((-1090) . T)) +((-2447 (((-121) $ $) NIL)) (-2394 (((-634 $) (-1157 $) (-1161)) NIL) (((-634 $) (-1157 $)) NIL) (((-634 $) (-953 $)) NIL)) (-1681 (($ (-1157 $) (-1161)) NIL) (($ (-1157 $)) NIL) (($ (-953 $)) NIL)) (-2537 (((-121) $) 11)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL)) (-2227 (($ $) NIL)) (-1573 (((-121) $) NIL)) (-3001 (((-634 (-607 $)) $) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-2366 (($ $ (-288 $)) NIL) (($ $ (-634 (-288 $))) NIL) (($ $ (-634 (-607 $)) (-634 $)) NIL)) (-4305 (($ $) NIL)) (-1678 (((-420 $) $) NIL)) (-1902 (($ $) NIL)) (-1497 (((-121) $ $) NIL)) (-2671 (($) NIL T CONST)) (-3214 (((-634 $) (-1157 $) (-1161)) NIL) (((-634 $) (-1157 $)) NIL) (((-634 $) (-953 $)) NIL)) (-2932 (($ (-1157 $) (-1161)) NIL) (($ (-1157 $)) NIL) (($ (-953 $)) NIL)) (-3666 (((-3 (-607 $) "failed") $) NIL) (((-3 (-568) "failed") $) NIL) (((-3 (-409 (-568)) "failed") $) NIL)) (-2854 (((-607 $) $) NIL) (((-568) $) NIL) (((-409 (-568)) $) NIL)) (-2401 (($ $ $) NIL)) (-3164 (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) NIL) (((-679 (-568)) (-679 $)) NIL) (((-2 (|:| -2928 (-679 (-409 (-568)))) (|:| |vec| (-1244 (-409 (-568))))) (-679 $) (-1244 $)) NIL) (((-679 (-409 (-568))) (-679 $)) NIL)) (-3092 (($ $) NIL)) (-2925 (((-3 $ "failed") $) NIL)) (-2412 (($ $ $) NIL)) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) NIL)) (-3927 (((-121) $) NIL)) (-4499 (($ $) NIL) (($ (-634 $)) NIL)) (-3296 (((-634 (-123)) $) NIL)) (-3488 (((-123) (-123)) NIL)) (-2735 (((-121) $) 14)) (-1825 (((-121) $) NIL (|has| $ (-1037 (-568))))) (-2317 (((-1113 (-568) (-607 $)) $) NIL)) (-4044 (($ $ (-568)) NIL)) (-2657 (((-1157 $) (-1157 $) (-607 $)) NIL) (((-1157 $) (-1157 $) (-634 (-607 $))) NIL) (($ $ (-607 $)) NIL) (($ $ (-634 (-607 $))) NIL)) (-3562 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-3007 (((-1157 $) (-607 $)) NIL (|has| $ (-1047)))) (-2521 (($ $ $) NIL)) (-3268 (($ $ $) NIL)) (-2795 (($ (-1 $ $) (-607 $)) NIL)) (-3693 (((-3 (-607 $) "failed") $) NIL)) (-2495 (($ (-634 $)) NIL) (($ $ $) NIL)) (-4487 (((-1143) $) NIL)) (-3804 (((-634 (-607 $)) $) NIL)) (-3443 (($ (-123) $) NIL) (($ (-123) (-634 $)) NIL)) (-2841 (((-121) $ (-123)) NIL) (((-121) $ (-1161)) NIL)) (-2081 (($ $) NIL)) (-2961 (((-763) $) NIL)) (-4022 (((-1108) $) NIL)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL)) (-2721 (($ (-634 $)) NIL) (($ $ $) NIL)) (-4059 (((-121) $ $) NIL) (((-121) $ (-1161)) NIL)) (-3848 (((-420 $) $) NIL)) (-4497 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL)) (-2595 (((-3 $ "failed") $ $) NIL)) (-2344 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-3277 (((-121) $) NIL (|has| $ (-1037 (-568))))) (-1339 (($ $ (-607 $) $) NIL) (($ $ (-634 (-607 $)) (-634 $)) NIL) (($ $ (-634 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-634 $) (-634 $)) NIL) (($ $ (-634 (-1161)) (-634 (-1 $ $))) NIL) (($ $ (-634 (-1161)) (-634 (-1 $ (-634 $)))) NIL) (($ $ (-1161) (-1 $ (-634 $))) NIL) (($ $ (-1161) (-1 $ $)) NIL) (($ $ (-634 (-123)) (-634 (-1 $ $))) NIL) (($ $ (-634 (-123)) (-634 (-1 $ (-634 $)))) NIL) (($ $ (-123) (-1 $ (-634 $))) NIL) (($ $ (-123) (-1 $ $)) NIL)) (-2709 (((-763) $) NIL)) (-2779 (($ (-123) $) NIL) (($ (-123) $ $) NIL) (($ (-123) $ $ $) NIL) (($ (-123) $ $ $ $) NIL) (($ (-123) (-634 $)) NIL)) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL)) (-3502 (($ $) NIL) (($ $ $) NIL)) (-4189 (($ $ (-763)) NIL) (($ $) NIL)) (-2324 (((-1113 (-568) (-607 $)) $) NIL)) (-1626 (($ $) NIL (|has| $ (-1047)))) (-4278 (((-381) $) NIL) (((-215) $) NIL) (((-169 (-381)) $) NIL)) (-2745 (((-850) $) NIL) (($ (-607 $)) NIL) (($ (-409 (-568))) NIL) (($ $) NIL) (($ (-568)) NIL) (($ (-1113 (-568) (-607 $))) NIL)) (-4078 (((-763)) NIL)) (-2092 (($ $) NIL) (($ (-634 $)) NIL)) (-2887 (((-121) (-123)) NIL)) (-1826 (((-121) $ $) NIL)) (-1887 (($ $ (-568)) NIL) (($ $ (-763)) NIL) (($ $ (-917)) NIL)) (-3056 (($) 7 T CONST)) (-1556 (($) 12 T CONST)) (-3190 (($ $ (-763)) NIL) (($ $) NIL)) (-1751 (((-121) $ $) NIL)) (-1738 (((-121) $ $) NIL)) (-1717 (((-121) $ $) 16)) (-1745 (((-121) $ $) NIL)) (-1732 (((-121) $ $) NIL)) (-1779 (($ $ $) NIL)) (-1773 (($ $ $) 15) (($ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-409 (-568))) NIL) (($ $ (-568)) NIL) (($ $ (-763)) NIL) (($ $ (-917)) NIL)) (* (($ (-409 (-568)) $) NIL) (($ $ (-409 (-568))) NIL) (($ $ $) NIL) (($ (-568) $) NIL) (($ (-763) $) NIL) (($ (-917) $) NIL))) +(((-53) (-13 (-296) (-27) (-1037 (-568)) (-1037 (-409 (-568))) (-630 (-568)) (-1021) (-630 (-409 (-568))) (-150) (-609 (-169 (-381))) (-225) (-10 -8 (-15 -2745 ($ (-1113 (-568) (-607 $)))) (-15 -2317 ((-1113 (-568) (-607 $)) $)) (-15 -2324 ((-1113 (-568) (-607 $)) $)) (-15 -3092 ($ $)) (-15 -2657 ((-1157 $) (-1157 $) (-607 $))) (-15 -2657 ((-1157 $) (-1157 $) (-634 (-607 $)))) (-15 -2657 ($ $ (-607 $))) (-15 -2657 ($ $ (-634 (-607 $))))))) (T -53)) +((-2745 (*1 *1 *2) (-12 (-5 *2 (-1113 (-568) (-607 (-53)))) (-5 *1 (-53)))) (-2317 (*1 *2 *1) (-12 (-5 *2 (-1113 (-568) (-607 (-53)))) (-5 *1 (-53)))) (-2324 (*1 *2 *1) (-12 (-5 *2 (-1113 (-568) (-607 (-53)))) (-5 *1 (-53)))) (-3092 (*1 *1 *1) (-5 *1 (-53))) (-2657 (*1 *2 *2 *3) (-12 (-5 *2 (-1157 (-53))) (-5 *3 (-607 (-53))) (-5 *1 (-53)))) (-2657 (*1 *2 *2 *3) (-12 (-5 *2 (-1157 (-53))) (-5 *3 (-634 (-607 (-53)))) (-5 *1 (-53)))) (-2657 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-53))) (-5 *1 (-53)))) (-2657 (*1 *1 *1 *2) (-12 (-5 *2 (-634 (-607 (-53)))) (-5 *1 (-53))))) +(-13 (-296) (-27) (-1037 (-568)) (-1037 (-409 (-568))) (-630 (-568)) (-1021) (-630 (-409 (-568))) (-150) (-609 (-169 (-381))) (-225) (-10 -8 (-15 -2745 ($ (-1113 (-568) (-607 $)))) (-15 -2317 ((-1113 (-568) (-607 $)) $)) (-15 -2324 ((-1113 (-568) (-607 $)) $)) (-15 -3092 ($ $)) (-15 -2657 ((-1157 $) (-1157 $) (-607 $))) (-15 -2657 ((-1157 $) (-1157 $) (-634 (-607 $)))) (-15 -2657 ($ $ (-607 $))) (-15 -2657 ($ $ (-634 (-607 $)))))) +((-2447 (((-121) $ $) NIL)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2745 (((-850) $) 7)) (-1717 (((-121) $ $) NIL))) +(((-54) (-1090)) (T -54)) +NIL +(-1090) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) 60)) (-3134 (((-3 $ "failed") $ $) NIL)) (-2671 (($) NIL T CONST)) (-3374 (((-121) $) 20)) (-3666 (((-3 |#1| "failed") $) 23)) (-2854 ((|#1| $) 24)) (-2114 (($ $) 27)) (-2925 (((-3 $ "failed") $) NIL)) (-2735 (((-121) $) NIL)) (-2795 (($ (-1 |#1| |#1|) $) NIL)) (-2102 ((|#1| $) 21)) (-3939 (($ $) 49)) (-4487 (((-1143) $) NIL)) (-4494 (((-121) $) 28)) (-4022 (((-1108) $) NIL)) (-2704 (($ (-763)) 47)) (-1892 (($ (-634 (-568))) 48)) (-3206 (((-763) $) 29)) (-2745 (((-850) $) 63) (($ (-568)) 44) (($ |#1|) 42)) (-2604 ((|#1| $ $) 19)) (-4078 (((-763)) 46)) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (-3056 (($) 30 T CONST)) (-1556 (($) 14 T CONST)) (-1717 (((-121) $ $) NIL)) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) 40)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) 41) (($ |#1| $) 35))) +(((-55 |#1| |#2|) (-13 (-612 |#1|) (-1037 |#1|) (-10 -8 (-15 -2102 (|#1| $)) (-15 -3939 ($ $)) (-15 -2114 ($ $)) (-15 -2604 (|#1| $ $)) (-15 -2704 ($ (-763))) (-15 -1892 ($ (-634 (-568)))) (-15 -4494 ((-121) $)) (-15 -3374 ((-121) $)) (-15 -3206 ((-763) $)) (-15 -2795 ($ (-1 |#1| |#1|) $)))) (-1047) (-634 (-1161))) (T -55)) +((-2102 (*1 *2 *1) (-12 (-4 *2 (-1047)) (-5 *1 (-55 *2 *3)) (-14 *3 (-634 (-1161))))) (-3939 (*1 *1 *1) (-12 (-5 *1 (-55 *2 *3)) (-4 *2 (-1047)) (-14 *3 (-634 (-1161))))) (-2114 (*1 *1 *1) (-12 (-5 *1 (-55 *2 *3)) (-4 *2 (-1047)) (-14 *3 (-634 (-1161))))) (-2604 (*1 *2 *1 *1) (-12 (-4 *2 (-1047)) (-5 *1 (-55 *2 *3)) (-14 *3 (-634 (-1161))))) (-2704 (*1 *1 *2) (-12 (-5 *2 (-763)) (-5 *1 (-55 *3 *4)) (-4 *3 (-1047)) (-14 *4 (-634 (-1161))))) (-1892 (*1 *1 *2) (-12 (-5 *2 (-634 (-568))) (-5 *1 (-55 *3 *4)) (-4 *3 (-1047)) (-14 *4 (-634 (-1161))))) (-4494 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-55 *3 *4)) (-4 *3 (-1047)) (-14 *4 (-634 (-1161))))) (-3374 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-55 *3 *4)) (-4 *3 (-1047)) (-14 *4 (-634 (-1161))))) (-3206 (*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-55 *3 *4)) (-4 *3 (-1047)) (-14 *4 (-634 (-1161))))) (-2795 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1047)) (-5 *1 (-55 *3 *4)) (-14 *4 (-634 (-1161)))))) +(-13 (-612 |#1|) (-1037 |#1|) (-10 -8 (-15 -2102 (|#1| $)) (-15 -3939 ($ $)) (-15 -2114 ($ $)) (-15 -2604 (|#1| $ $)) (-15 -2704 ($ (-763))) (-15 -1892 ($ (-634 (-568)))) (-15 -4494 ((-121) $)) (-15 -3374 ((-121) $)) (-15 -3206 ((-763) $)) (-15 -2795 ($ (-1 |#1| |#1|) $)))) +((-3374 (((-121) (-57)) 13)) (-3666 (((-3 |#1| "failed") (-57)) 21)) (-2854 ((|#1| (-57)) 22)) (-2745 (((-57) |#1|) 18))) +(((-56 |#1|) (-10 -7 (-15 -2745 ((-57) |#1|)) (-15 -3666 ((-3 |#1| "failed") (-57))) (-15 -3374 ((-121) (-57))) (-15 -2854 (|#1| (-57)))) (-1195)) (T -56)) +((-2854 (*1 *2 *3) (-12 (-5 *3 (-57)) (-5 *1 (-56 *2)) (-4 *2 (-1195)))) (-3374 (*1 *2 *3) (-12 (-5 *3 (-57)) (-5 *2 (-121)) (-5 *1 (-56 *4)) (-4 *4 (-1195)))) (-3666 (*1 *2 *3) (|partial| -12 (-5 *3 (-57)) (-5 *1 (-56 *2)) (-4 *2 (-1195)))) (-2745 (*1 *2 *3) (-12 (-5 *2 (-57)) (-5 *1 (-56 *3)) (-4 *3 (-1195))))) +(-10 -7 (-15 -2745 ((-57) |#1|)) (-15 -3666 ((-3 |#1| "failed") (-57))) (-15 -3374 ((-121) (-57))) (-15 -2854 (|#1| (-57)))) +((-2447 (((-121) $ $) NIL)) (-2702 (((-1143) (-121)) 25)) (-4186 (((-850) $) 24)) (-4422 (((-766) $) 12)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-3222 (((-850) $) 16)) (-2400 (((-1094) $) 14)) (-2745 (((-850) $) 32)) (-3465 (($ (-1094) (-766)) 33)) (-1717 (((-121) $ $) 18))) +(((-57) (-13 (-1090) (-10 -8 (-15 -3465 ($ (-1094) (-766))) (-15 -3222 ((-850) $)) (-15 -4186 ((-850) $)) (-15 -2400 ((-1094) $)) (-15 -4422 ((-766) $)) (-15 -2702 ((-1143) (-121)))))) (T -57)) +((-3465 (*1 *1 *2 *3) (-12 (-5 *2 (-1094)) (-5 *3 (-766)) (-5 *1 (-57)))) (-3222 (*1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-57)))) (-4186 (*1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-57)))) (-2400 (*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-57)))) (-4422 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-57)))) (-2702 (*1 *2 *3) (-12 (-5 *3 (-121)) (-5 *2 (-1143)) (-5 *1 (-57))))) +(-13 (-1090) (-10 -8 (-15 -3465 ($ (-1094) (-766))) (-15 -3222 ((-850) $)) (-15 -4186 ((-850) $)) (-15 -2400 ((-1094) $)) (-15 -4422 ((-766) $)) (-15 -2702 ((-1143) (-121))))) +((-1641 (((-1249)) 19)) (-1483 (((-1092 (-1161)) (-1161)) 15)) (-1691 (((-1249)) 18))) +(((-58) (-10 -7 (-15 -1483 ((-1092 (-1161)) (-1161))) (-15 -1691 ((-1249))) (-15 -1641 ((-1249))))) (T -58)) +((-1641 (*1 *2) (-12 (-5 *2 (-1249)) (-5 *1 (-58)))) (-1691 (*1 *2) (-12 (-5 *2 (-1249)) (-5 *1 (-58)))) (-1483 (*1 *2 *3) (-12 (-5 *2 (-1092 (-1161))) (-5 *1 (-58)) (-5 *3 (-1161))))) +(-10 -7 (-15 -1483 ((-1092 (-1161)) (-1161))) (-15 -1691 ((-1249))) (-15 -1641 ((-1249)))) +((-3823 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16))) +(((-59 |#1| |#2| |#3|) (-10 -7 (-15 -3823 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1047) (-637 |#1|) (-844 |#1|)) (T -59)) +((-3823 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-637 *5)) (-4 *5 (-1047)) (-5 *1 (-59 *5 *2 *3)) (-4 *3 (-844 *5))))) +(-10 -7 (-15 -3823 (|#2| |#3| (-1 |#2| |#2|) |#2|))) +((-1748 ((|#3| |#3| (-634 (-1161))) 35)) (-1568 ((|#3| (-634 (-1069 |#1| |#2| |#3|)) |#3| (-917)) 22) ((|#3| (-634 (-1069 |#1| |#2| |#3|)) |#3|) 20))) +(((-60 |#1| |#2| |#3|) (-10 -7 (-15 -1568 (|#3| (-634 (-1069 |#1| |#2| |#3|)) |#3|)) (-15 -1568 (|#3| (-634 (-1069 |#1| |#2| |#3|)) |#3| (-917))) (-15 -1748 (|#3| |#3| (-634 (-1161))))) (-1090) (-13 (-1047) (-881 |#1|) (-842) (-609 (-887 |#1|))) (-13 (-432 |#2|) (-881 |#1|) (-609 (-887 |#1|)))) (T -60)) +((-1748 (*1 *2 *2 *3) (-12 (-5 *3 (-634 (-1161))) (-4 *4 (-1090)) (-4 *5 (-13 (-1047) (-881 *4) (-842) (-609 (-887 *4)))) (-5 *1 (-60 *4 *5 *2)) (-4 *2 (-13 (-432 *5) (-881 *4) (-609 (-887 *4)))))) (-1568 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-634 (-1069 *5 *6 *2))) (-5 *4 (-917)) (-4 *5 (-1090)) (-4 *6 (-13 (-1047) (-881 *5) (-842) (-609 (-887 *5)))) (-4 *2 (-13 (-432 *6) (-881 *5) (-609 (-887 *5)))) (-5 *1 (-60 *5 *6 *2)))) (-1568 (*1 *2 *3 *2) (-12 (-5 *3 (-634 (-1069 *4 *5 *2))) (-4 *4 (-1090)) (-4 *5 (-13 (-1047) (-881 *4) (-842) (-609 (-887 *4)))) (-4 *2 (-13 (-432 *5) (-881 *4) (-609 (-887 *4)))) (-5 *1 (-60 *4 *5 *2))))) +(-10 -7 (-15 -1568 (|#3| (-634 (-1069 |#1| |#2| |#3|)) |#3|)) (-15 -1568 (|#3| (-634 (-1069 |#1| |#2| |#3|)) |#3| (-917))) (-15 -1748 (|#3| |#3| (-634 (-1161))))) +((-2510 (((-121) $ (-763)) 23)) (-4159 (($ $ (-568) |#3|) 45)) (-2451 (($ $ (-568) |#4|) 49)) (-1818 ((|#3| $ (-568)) 58)) (-4360 (((-634 |#2|) $) 30)) (-1737 (((-121) $ (-763)) 25)) (-3109 (((-121) |#2| $) 53)) (-3674 (($ (-1 |#2| |#2|) $) 37)) (-2795 (($ (-1 |#2| |#2|) $) 36) (($ (-1 |#2| |#2| |#2|) $ $) 39) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 41)) (-2166 (((-121) $ (-763)) 24)) (-3724 (($ $ |#2|) 34)) (-1387 (((-121) (-1 (-121) |#2|) $) 19)) (-2779 ((|#2| $ (-568) (-568)) NIL) ((|#2| $ (-568) (-568) |#2|) 27)) (-4168 (((-763) (-1 (-121) |#2|) $) 28) (((-763) |#2| $) 55)) (-3863 (($ $) 33)) (-3731 ((|#4| $ (-568)) 61)) (-2745 (((-850) $) 66)) (-1319 (((-121) (-1 (-121) |#2|) $) 18)) (-1717 (((-121) $ $) 52)) (-1697 (((-763) $) 26))) +(((-61 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2795 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -2795 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3674 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2451 (|#1| |#1| (-568) |#4|)) (-15 -4159 (|#1| |#1| (-568) |#3|)) (-15 -4360 ((-634 |#2|) |#1|)) (-15 -3731 (|#4| |#1| (-568))) (-15 -1818 (|#3| |#1| (-568))) (-15 -2779 (|#2| |#1| (-568) (-568) |#2|)) (-15 -2779 (|#2| |#1| (-568) (-568))) (-15 -3724 (|#1| |#1| |#2|)) (-15 -1717 ((-121) |#1| |#1|)) (-15 -2745 ((-850) |#1|)) (-15 -3109 ((-121) |#2| |#1|)) (-15 -4168 ((-763) |#2| |#1|)) (-15 -4168 ((-763) (-1 (-121) |#2|) |#1|)) (-15 -1387 ((-121) (-1 (-121) |#2|) |#1|)) (-15 -1319 ((-121) (-1 (-121) |#2|) |#1|)) (-15 -2795 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1697 ((-763) |#1|)) (-15 -2510 ((-121) |#1| (-763))) (-15 -1737 ((-121) |#1| (-763))) (-15 -2166 ((-121) |#1| (-763))) (-15 -3863 (|#1| |#1|))) (-62 |#2| |#3| |#4|) (-1195) (-375 |#2|) (-375 |#2|)) (T -61)) +NIL +(-10 -8 (-15 -2795 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -2795 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3674 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2451 (|#1| |#1| (-568) |#4|)) (-15 -4159 (|#1| |#1| (-568) |#3|)) (-15 -4360 ((-634 |#2|) |#1|)) (-15 -3731 (|#4| |#1| (-568))) (-15 -1818 (|#3| |#1| (-568))) (-15 -2779 (|#2| |#1| (-568) (-568) |#2|)) (-15 -2779 (|#2| |#1| (-568) (-568))) (-15 -3724 (|#1| |#1| |#2|)) (-15 -1717 ((-121) |#1| |#1|)) (-15 -2745 ((-850) |#1|)) (-15 -3109 ((-121) |#2| |#1|)) (-15 -4168 ((-763) |#2| |#1|)) (-15 -4168 ((-763) (-1 (-121) |#2|) |#1|)) (-15 -1387 ((-121) (-1 (-121) |#2|) |#1|)) (-15 -1319 ((-121) (-1 (-121) |#2|) |#1|)) (-15 -2795 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1697 ((-763) |#1|)) (-15 -2510 ((-121) |#1| (-763))) (-15 -1737 ((-121) |#1| (-763))) (-15 -2166 ((-121) |#1| (-763))) (-15 -3863 (|#1| |#1|))) +((-2447 (((-121) $ $) 18 (|has| |#1| (-1090)))) (-2510 (((-121) $ (-763)) 8)) (-2436 ((|#1| $ (-568) (-568) |#1|) 41)) (-4159 (($ $ (-568) |#2|) 39)) (-2451 (($ $ (-568) |#3|) 38)) (-2671 (($) 7 T CONST)) (-1818 ((|#2| $ (-568)) 43)) (-3989 ((|#1| $ (-568) (-568) |#1|) 40)) (-2602 ((|#1| $ (-568) (-568)) 45)) (-4360 (((-634 |#1|) $) 30)) (-3043 (((-763) $) 48)) (-1849 (($ (-763) (-763) |#1|) 54)) (-2555 (((-763) $) 47)) (-1737 (((-121) $ (-763)) 9)) (-2087 (((-568) $) 52)) (-3364 (((-568) $) 50)) (-1979 (((-634 |#1|) $) 29 (|has| $ (-6 -4519)))) (-3109 (((-121) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-1663 (((-568) $) 51)) (-2893 (((-568) $) 49)) (-3674 (($ (-1 |#1| |#1|) $) 34)) (-2795 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 37) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 36)) (-2166 (((-121) $ (-763)) 10)) (-4487 (((-1143) $) 22 (|has| |#1| (-1090)))) (-4022 (((-1108) $) 21 (|has| |#1| (-1090)))) (-3724 (($ $ |#1|) 53)) (-1387 (((-121) (-1 (-121) |#1|) $) 32 (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-634 |#1|) (-634 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))))) (-3171 (((-121) $ $) 14)) (-3084 (((-121) $) 11)) (-3248 (($) 12)) (-2779 ((|#1| $ (-568) (-568)) 46) ((|#1| $ (-568) (-568) |#1|) 44)) (-4168 (((-763) (-1 (-121) |#1|) $) 31 (|has| $ (-6 -4519))) (((-763) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-3863 (($ $) 13)) (-3731 ((|#3| $ (-568)) 42)) (-2745 (((-850) $) 20 (|has| |#1| (-1090)))) (-1319 (((-121) (-1 (-121) |#1|) $) 33 (|has| $ (-6 -4519)))) (-1717 (((-121) $ $) 19 (|has| |#1| (-1090)))) (-1697 (((-763) $) 6 (|has| $ (-6 -4519))))) +(((-62 |#1| |#2| |#3|) (-1275) (-1195) (-375 |t#1|) (-375 |t#1|)) (T -62)) +((-2795 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-62 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-1849 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-763)) (-4 *3 (-1195)) (-4 *1 (-62 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-3724 (*1 *1 *1 *2) (-12 (-4 *1 (-62 *2 *3 *4)) (-4 *2 (-1195)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-2087 (*1 *2 *1) (-12 (-4 *1 (-62 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-568)))) (-1663 (*1 *2 *1) (-12 (-4 *1 (-62 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-568)))) (-3364 (*1 *2 *1) (-12 (-4 *1 (-62 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-568)))) (-2893 (*1 *2 *1) (-12 (-4 *1 (-62 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-568)))) (-3043 (*1 *2 *1) (-12 (-4 *1 (-62 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-763)))) (-2555 (*1 *2 *1) (-12 (-4 *1 (-62 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-763)))) (-2779 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-568)) (-4 *1 (-62 *2 *4 *5)) (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-1195)))) (-2602 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-568)) (-4 *1 (-62 *2 *4 *5)) (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-1195)))) (-2779 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-568)) (-4 *1 (-62 *2 *4 *5)) (-4 *2 (-1195)) (-4 *4 (-375 *2)) (-4 *5 (-375 *2)))) (-1818 (*1 *2 *1 *3) (-12 (-5 *3 (-568)) (-4 *1 (-62 *4 *2 *5)) (-4 *4 (-1195)) (-4 *5 (-375 *4)) (-4 *2 (-375 *4)))) (-3731 (*1 *2 *1 *3) (-12 (-5 *3 (-568)) (-4 *1 (-62 *4 *5 *2)) (-4 *4 (-1195)) (-4 *5 (-375 *4)) (-4 *2 (-375 *4)))) (-4360 (*1 *2 *1) (-12 (-4 *1 (-62 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-634 *3)))) (-2436 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-568)) (-4 *1 (-62 *2 *4 *5)) (-4 *2 (-1195)) (-4 *4 (-375 *2)) (-4 *5 (-375 *2)))) (-3989 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-568)) (-4 *1 (-62 *2 *4 *5)) (-4 *2 (-1195)) (-4 *4 (-375 *2)) (-4 *5 (-375 *2)))) (-4159 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-568)) (-4 *1 (-62 *4 *3 *5)) (-4 *4 (-1195)) (-4 *3 (-375 *4)) (-4 *5 (-375 *4)))) (-2451 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-568)) (-4 *1 (-62 *4 *5 *3)) (-4 *4 (-1195)) (-4 *5 (-375 *4)) (-4 *3 (-375 *4)))) (-3674 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-62 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-2795 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-62 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-2795 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-62 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3))))) +(-13 (-499 |t#1|) (-10 -8 (-6 -4520) (-6 -4519) (-15 -1849 ($ (-763) (-763) |t#1|)) (-15 -3724 ($ $ |t#1|)) (-15 -2087 ((-568) $)) (-15 -1663 ((-568) $)) (-15 -3364 ((-568) $)) (-15 -2893 ((-568) $)) (-15 -3043 ((-763) $)) (-15 -2555 ((-763) $)) (-15 -2779 (|t#1| $ (-568) (-568))) (-15 -2602 (|t#1| $ (-568) (-568))) (-15 -2779 (|t#1| $ (-568) (-568) |t#1|)) (-15 -1818 (|t#2| $ (-568))) (-15 -3731 (|t#3| $ (-568))) (-15 -4360 ((-634 |t#1|) $)) (-15 -2436 (|t#1| $ (-568) (-568) |t#1|)) (-15 -3989 (|t#1| $ (-568) (-568) |t#1|)) (-15 -4159 ($ $ (-568) |t#2|)) (-15 -2451 ($ $ (-568) |t#3|)) (-15 -2795 ($ (-1 |t#1| |t#1|) $)) (-15 -3674 ($ (-1 |t#1| |t#1|) $)) (-15 -2795 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2795 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) +(((-39) . T) ((-105) |has| |#1| (-1090)) ((-608 (-850)) |has| |#1| (-1090)) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))) ((-499 |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))) ((-1090) |has| |#1| (-1090)) ((-1195) . T)) +((-2512 (((-64 |#2|) (-1 |#2| |#1| |#2|) (-64 |#1|) |#2|) 16)) (-3092 ((|#2| (-1 |#2| |#1| |#2|) (-64 |#1|) |#2|) 18)) (-2795 (((-64 |#2|) (-1 |#2| |#1|) (-64 |#1|)) 13))) +(((-63 |#1| |#2|) (-10 -7 (-15 -2512 ((-64 |#2|) (-1 |#2| |#1| |#2|) (-64 |#1|) |#2|)) (-15 -3092 (|#2| (-1 |#2| |#1| |#2|) (-64 |#1|) |#2|)) (-15 -2795 ((-64 |#2|) (-1 |#2| |#1|) (-64 |#1|)))) (-1195) (-1195)) (T -63)) +((-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-64 *5)) (-4 *5 (-1195)) (-4 *6 (-1195)) (-5 *2 (-64 *6)) (-5 *1 (-63 *5 *6)))) (-3092 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-64 *5)) (-4 *5 (-1195)) (-4 *2 (-1195)) (-5 *1 (-63 *5 *2)))) (-2512 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-64 *6)) (-4 *6 (-1195)) (-4 *5 (-1195)) (-5 *2 (-64 *5)) (-5 *1 (-63 *6 *5))))) +(-10 -7 (-15 -2512 ((-64 |#2|) (-1 |#2| |#1| |#2|) (-64 |#1|) |#2|)) (-15 -3092 (|#2| (-1 |#2| |#1| |#2|) (-64 |#1|) |#2|)) (-15 -2795 ((-64 |#2|) (-1 |#2| |#1|) (-64 |#1|)))) +((-2447 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-1868 (((-1249) $ (-568) (-568)) NIL (|has| $ (-6 -4520)))) (-2016 (((-121) (-1 (-121) |#1| |#1|) $) NIL) (((-121) $) NIL (|has| |#1| (-842)))) (-3908 (($ (-1 (-121) |#1| |#1|) $) NIL (|has| $ (-6 -4520))) (($ $) NIL (-12 (|has| $ (-6 -4520)) (|has| |#1| (-842))))) (-3644 (($ (-1 (-121) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-842)))) (-2510 (((-121) $ (-763)) NIL)) (-2436 ((|#1| $ (-568) |#1|) 11 (|has| $ (-6 -4520))) ((|#1| $ (-1210 (-568)) |#1|) NIL (|has| $ (-6 -4520)))) (-2801 (($ (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-2671 (($) NIL T CONST)) (-1578 (($ $) NIL (|has| $ (-6 -4520)))) (-3943 (($ $) NIL)) (-3924 (($ $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-4328 (($ |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090)))) (($ (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-3092 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4519))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4519)))) (-3989 ((|#1| $ (-568) |#1|) NIL (|has| $ (-6 -4520)))) (-2602 ((|#1| $ (-568)) NIL)) (-2764 (((-568) (-1 (-121) |#1|) $) NIL) (((-568) |#1| $) NIL (|has| |#1| (-1090))) (((-568) |#1| $ (-568)) NIL (|has| |#1| (-1090)))) (-4360 (((-634 |#1|) $) NIL (|has| $ (-6 -4519)))) (-1434 (($ (-634 |#1|)) 13) (($ (-763) |#1|) 14)) (-1849 (($ (-763) |#1|) 9)) (-1737 (((-121) $ (-763)) NIL)) (-1881 (((-568) $) NIL (|has| (-568) (-842)))) (-2521 (($ $ $) NIL (|has| |#1| (-842)))) (-1347 (($ (-1 (-121) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-842)))) (-1979 (((-634 |#1|) $) NIL (|has| $ (-6 -4519)))) (-3109 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-2223 (((-568) $) NIL (|has| (-568) (-842)))) (-3268 (($ $ $) NIL (|has| |#1| (-842)))) (-3674 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2166 (((-121) $ (-763)) NIL)) (-4487 (((-1143) $) NIL (|has| |#1| (-1090)))) (-4122 (($ |#1| $ (-568)) NIL) (($ $ $ (-568)) NIL)) (-4174 (((-634 (-568)) $) NIL)) (-3578 (((-121) (-568) $) NIL)) (-4022 (((-1108) $) NIL (|has| |#1| (-1090)))) (-3876 ((|#1| $) NIL (|has| (-568) (-842)))) (-3775 (((-3 |#1| "failed") (-1 (-121) |#1|) $) NIL)) (-3724 (($ $ |#1|) NIL (|has| $ (-6 -4520)))) (-1387 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-634 |#1|) (-634 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))))) (-3171 (((-121) $ $) NIL)) (-4467 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-2041 (((-634 |#1|) $) NIL)) (-3084 (((-121) $) NIL)) (-3248 (($) 7)) (-2779 ((|#1| $ (-568) |#1|) NIL) ((|#1| $ (-568)) NIL) (($ $ (-1210 (-568))) NIL)) (-2826 (($ $ (-568)) NIL) (($ $ (-1210 (-568))) NIL)) (-4168 (((-763) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519))) (((-763) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-2256 (($ $ $ (-568)) NIL (|has| $ (-6 -4520)))) (-3863 (($ $) NIL)) (-4278 (((-541) $) NIL (|has| |#1| (-609 (-541))))) (-4287 (($ (-634 |#1|)) NIL)) (-2768 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-634 $)) NIL)) (-2745 (((-850) $) NIL (|has| |#1| (-1090)))) (-1319 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-1751 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1738 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1717 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-1745 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1732 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1697 (((-763) $) NIL (|has| $ (-6 -4519))))) +(((-64 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -1434 ($ (-634 |#1|))) (-15 -1434 ($ (-763) |#1|)))) (-1195)) (T -64)) +((-1434 (*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-1195)) (-5 *1 (-64 *3)))) (-1434 (*1 *1 *2 *3) (-12 (-5 *2 (-763)) (-5 *1 (-64 *3)) (-4 *3 (-1195))))) +(-13 (-19 |#1|) (-10 -8 (-15 -1434 ($ (-634 |#1|))) (-15 -1434 ($ (-763) |#1|)))) +((-2447 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-2510 (((-121) $ (-763)) NIL)) (-2436 ((|#1| $ (-568) (-568) |#1|) NIL)) (-4159 (($ $ (-568) (-64 |#1|)) NIL)) (-2451 (($ $ (-568) (-64 |#1|)) NIL)) (-2671 (($) NIL T CONST)) (-1818 (((-64 |#1|) $ (-568)) NIL)) (-3989 ((|#1| $ (-568) (-568) |#1|) NIL)) (-2602 ((|#1| $ (-568) (-568)) NIL)) (-4360 (((-634 |#1|) $) NIL)) (-3043 (((-763) $) NIL)) (-1849 (($ (-763) (-763) |#1|) NIL)) (-2555 (((-763) $) NIL)) (-1737 (((-121) $ (-763)) NIL)) (-2087 (((-568) $) NIL)) (-3364 (((-568) $) NIL)) (-1979 (((-634 |#1|) $) NIL (|has| $ (-6 -4519)))) (-3109 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-1663 (((-568) $) NIL)) (-2893 (((-568) $) NIL)) (-3674 (($ (-1 |#1| |#1|) $) NIL)) (-2795 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2166 (((-121) $ (-763)) NIL)) (-4487 (((-1143) $) NIL (|has| |#1| (-1090)))) (-4022 (((-1108) $) NIL (|has| |#1| (-1090)))) (-3724 (($ $ |#1|) NIL)) (-1387 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-634 |#1|) (-634 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))))) (-3171 (((-121) $ $) NIL)) (-3084 (((-121) $) NIL)) (-3248 (($) NIL)) (-2779 ((|#1| $ (-568) (-568)) NIL) ((|#1| $ (-568) (-568) |#1|) NIL)) (-4168 (((-763) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519))) (((-763) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-3863 (($ $) NIL)) (-3731 (((-64 |#1|) $ (-568)) NIL)) (-2745 (((-850) $) NIL (|has| |#1| (-1090)))) (-1319 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-1717 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-1697 (((-763) $) NIL (|has| $ (-6 -4519))))) +(((-65 |#1|) (-13 (-62 |#1| (-64 |#1|) (-64 |#1|)) (-10 -7 (-6 -4520))) (-1195)) (T -65)) +NIL +(-13 (-62 |#1| (-64 |#1|) (-64 |#1|)) (-10 -7 (-6 -4520))) +((-3666 (((-3 $ "failed") (-1244 (-310 (-381)))) 69) (((-3 $ "failed") (-1244 (-310 (-568)))) 58) (((-3 $ "failed") (-1244 (-953 (-381)))) 91) (((-3 $ "failed") (-1244 (-953 (-568)))) 80) (((-3 $ "failed") (-1244 (-409 (-953 (-381))))) 47) (((-3 $ "failed") (-1244 (-409 (-953 (-568))))) 36)) (-2854 (($ (-1244 (-310 (-381)))) 65) (($ (-1244 (-310 (-568)))) 54) (($ (-1244 (-953 (-381)))) 87) (($ (-1244 (-953 (-568)))) 76) (($ (-1244 (-409 (-953 (-381))))) 43) (($ (-1244 (-409 (-953 (-568))))) 29)) (-4128 (((-1249) $) 118)) (-2745 (((-850) $) 111) (($ (-634 (-328))) 100) (($ (-328)) 94) (($ (-2 (|:| |localSymbols| (-1165)) (|:| -2845 (-634 (-328))))) 97) (($ (-1244 (-337 (-4287 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4287) (-688)))) 28))) +(((-66 |#1|) (-13 (-442) (-10 -8 (-15 -2745 ($ (-1244 (-337 (-4287 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4287) (-688))))))) (-1161)) (T -66)) +((-2745 (*1 *1 *2) (-12 (-5 *2 (-1244 (-337 (-4287 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4287) (-688)))) (-5 *1 (-66 *3)) (-14 *3 (-1161))))) +(-13 (-442) (-10 -8 (-15 -2745 ($ (-1244 (-337 (-4287 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4287) (-688))))))) +((-4128 (((-1249) $) 48) (((-1249)) 49)) (-2745 (((-850) $) 45))) +(((-67 |#1|) (-13 (-397) (-10 -7 (-15 -4128 ((-1249))))) (-1161)) (T -67)) +((-4128 (*1 *2) (-12 (-5 *2 (-1249)) (-5 *1 (-67 *3)) (-14 *3 (-1161))))) +(-13 (-397) (-10 -7 (-15 -4128 ((-1249))))) +((-3666 (((-3 $ "failed") (-1244 (-310 (-381)))) 142) (((-3 $ "failed") (-1244 (-310 (-568)))) 132) (((-3 $ "failed") (-1244 (-953 (-381)))) 163) (((-3 $ "failed") (-1244 (-953 (-568)))) 152) (((-3 $ "failed") (-1244 (-409 (-953 (-381))))) 121) (((-3 $ "failed") (-1244 (-409 (-953 (-568))))) 110)) (-2854 (($ (-1244 (-310 (-381)))) 138) (($ (-1244 (-310 (-568)))) 128) (($ (-1244 (-953 (-381)))) 159) (($ (-1244 (-953 (-568)))) 148) (($ (-1244 (-409 (-953 (-381))))) 117) (($ (-1244 (-409 (-953 (-568))))) 103)) (-4128 (((-1249) $) 96)) (-2745 (((-850) $) 90) (($ (-634 (-328))) 28) (($ (-328)) 34) (($ (-2 (|:| |localSymbols| (-1165)) (|:| -2845 (-634 (-328))))) 31) (($ (-1244 (-337 (-4287) (-4287 (QUOTE XC)) (-688)))) 88))) +(((-68 |#1|) (-13 (-442) (-10 -8 (-15 -2745 ($ (-1244 (-337 (-4287) (-4287 (QUOTE XC)) (-688))))))) (-1161)) (T -68)) +((-2745 (*1 *1 *2) (-12 (-5 *2 (-1244 (-337 (-4287) (-4287 (QUOTE XC)) (-688)))) (-5 *1 (-68 *3)) (-14 *3 (-1161))))) +(-13 (-442) (-10 -8 (-15 -2745 ($ (-1244 (-337 (-4287) (-4287 (QUOTE XC)) (-688))))))) +((-3666 (((-3 $ "failed") (-310 (-381))) 36) (((-3 $ "failed") (-310 (-568))) 41) (((-3 $ "failed") (-953 (-381))) 46) (((-3 $ "failed") (-953 (-568))) 51) (((-3 $ "failed") (-409 (-953 (-381)))) 31) (((-3 $ "failed") (-409 (-953 (-568)))) 26)) (-2854 (($ (-310 (-381))) 34) (($ (-310 (-568))) 39) (($ (-953 (-381))) 44) (($ (-953 (-568))) 49) (($ (-409 (-953 (-381)))) 29) (($ (-409 (-953 (-568)))) 23)) (-4128 (((-1249) $) 73)) (-2745 (((-850) $) 66) (($ (-634 (-328))) 57) (($ (-328)) 63) (($ (-2 (|:| |localSymbols| (-1165)) (|:| -2845 (-634 (-328))))) 60) (($ (-337 (-4287 (QUOTE X)) (-4287) (-688))) 22))) +(((-69 |#1|) (-13 (-398) (-10 -8 (-15 -2745 ($ (-337 (-4287 (QUOTE X)) (-4287) (-688)))))) (-1161)) (T -69)) +((-2745 (*1 *1 *2) (-12 (-5 *2 (-337 (-4287 (QUOTE X)) (-4287) (-688))) (-5 *1 (-69 *3)) (-14 *3 (-1161))))) +(-13 (-398) (-10 -8 (-15 -2745 ($ (-337 (-4287 (QUOTE X)) (-4287) (-688)))))) +((-3666 (((-3 $ "failed") (-679 (-310 (-381)))) 100) (((-3 $ "failed") (-679 (-310 (-568)))) 89) (((-3 $ "failed") (-679 (-953 (-381)))) 122) (((-3 $ "failed") (-679 (-953 (-568)))) 111) (((-3 $ "failed") (-679 (-409 (-953 (-381))))) 78) (((-3 $ "failed") (-679 (-409 (-953 (-568))))) 67)) (-2854 (($ (-679 (-310 (-381)))) 96) (($ (-679 (-310 (-568)))) 85) (($ (-679 (-953 (-381)))) 118) (($ (-679 (-953 (-568)))) 107) (($ (-679 (-409 (-953 (-381))))) 74) (($ (-679 (-409 (-953 (-568))))) 60)) (-4128 (((-1249) $) 130)) (-2745 (((-850) $) 124) (($ (-634 (-328))) 27) (($ (-328)) 33) (($ (-2 (|:| |localSymbols| (-1165)) (|:| -2845 (-634 (-328))))) 30) (($ (-679 (-337 (-4287) (-4287 (QUOTE X) (QUOTE HESS)) (-688)))) 53))) +(((-70 |#1|) (-13 (-386) (-10 -8 (-15 -2745 ($ (-679 (-337 (-4287) (-4287 (QUOTE X) (QUOTE HESS)) (-688))))))) (-1161)) (T -70)) +((-2745 (*1 *1 *2) (-12 (-5 *2 (-679 (-337 (-4287) (-4287 (QUOTE X) (QUOTE HESS)) (-688)))) (-5 *1 (-70 *3)) (-14 *3 (-1161))))) +(-13 (-386) (-10 -8 (-15 -2745 ($ (-679 (-337 (-4287) (-4287 (QUOTE X) (QUOTE HESS)) (-688))))))) +((-3666 (((-3 $ "failed") (-310 (-381))) 54) (((-3 $ "failed") (-310 (-568))) 59) (((-3 $ "failed") (-953 (-381))) 64) (((-3 $ "failed") (-953 (-568))) 69) (((-3 $ "failed") (-409 (-953 (-381)))) 49) (((-3 $ "failed") (-409 (-953 (-568)))) 44)) (-2854 (($ (-310 (-381))) 52) (($ (-310 (-568))) 57) (($ (-953 (-381))) 62) (($ (-953 (-568))) 67) (($ (-409 (-953 (-381)))) 47) (($ (-409 (-953 (-568)))) 41)) (-4128 (((-1249) $) 78)) (-2745 (((-850) $) 72) (($ (-634 (-328))) 27) (($ (-328)) 33) (($ (-2 (|:| |localSymbols| (-1165)) (|:| -2845 (-634 (-328))))) 30) (($ (-337 (-4287) (-4287 (QUOTE XC)) (-688))) 38))) +(((-71 |#1|) (-13 (-398) (-10 -8 (-15 -2745 ($ (-337 (-4287) (-4287 (QUOTE XC)) (-688)))))) (-1161)) (T -71)) +((-2745 (*1 *1 *2) (-12 (-5 *2 (-337 (-4287) (-4287 (QUOTE XC)) (-688))) (-5 *1 (-71 *3)) (-14 *3 (-1161))))) +(-13 (-398) (-10 -8 (-15 -2745 ($ (-337 (-4287) (-4287 (QUOTE XC)) (-688)))))) +((-4128 (((-1249) $) 63)) (-2745 (((-850) $) 57) (($ (-679 (-688))) 49) (($ (-634 (-328))) 48) (($ (-328)) 55) (($ (-2 (|:| |localSymbols| (-1165)) (|:| -2845 (-634 (-328))))) 53))) +(((-72 |#1|) (-385) (-1161)) (T -72)) +NIL +(-385) +((-4128 (((-1249) $) 64)) (-2745 (((-850) $) 58) (($ (-679 (-688))) 50) (($ (-634 (-328))) 49) (($ (-328)) 52) (($ (-2 (|:| |localSymbols| (-1165)) (|:| -2845 (-634 (-328))))) 55))) +(((-73 |#1|) (-385) (-1161)) (T -73)) +NIL +(-385) +((-4128 (((-1249) $) NIL) (((-1249)) 32)) (-2745 (((-850) $) NIL))) +(((-74 |#1|) (-13 (-397) (-10 -7 (-15 -4128 ((-1249))))) (-1161)) (T -74)) +((-4128 (*1 *2) (-12 (-5 *2 (-1249)) (-5 *1 (-74 *3)) (-14 *3 (-1161))))) +(-13 (-397) (-10 -7 (-15 -4128 ((-1249))))) +((-4128 (((-1249) $) 68)) (-2745 (((-850) $) 62) (($ (-679 (-688))) 53) (($ (-634 (-328))) 56) (($ (-328)) 59) (($ (-2 (|:| |localSymbols| (-1165)) (|:| -2845 (-634 (-328))))) 52))) +(((-75 |#1|) (-385) (-1161)) (T -75)) +NIL +(-385) +((-3666 (((-3 $ "failed") (-1244 (-310 (-381)))) 98) (((-3 $ "failed") (-1244 (-310 (-568)))) 87) (((-3 $ "failed") (-1244 (-953 (-381)))) 119) (((-3 $ "failed") (-1244 (-953 (-568)))) 108) (((-3 $ "failed") (-1244 (-409 (-953 (-381))))) 76) (((-3 $ "failed") (-1244 (-409 (-953 (-568))))) 65)) (-2854 (($ (-1244 (-310 (-381)))) 94) (($ (-1244 (-310 (-568)))) 83) (($ (-1244 (-953 (-381)))) 115) (($ (-1244 (-953 (-568)))) 104) (($ (-1244 (-409 (-953 (-381))))) 72) (($ (-1244 (-409 (-953 (-568))))) 58)) (-4128 (((-1249) $) 133)) (-2745 (((-850) $) 127) (($ (-634 (-328))) 122) (($ (-328)) 125) (($ (-2 (|:| |localSymbols| (-1165)) (|:| -2845 (-634 (-328))))) 50) (($ (-1244 (-337 (-4287 (QUOTE X)) (-4287 (QUOTE -2926)) (-688)))) 51))) +(((-76 |#1|) (-13 (-442) (-10 -8 (-15 -2745 ($ (-1244 (-337 (-4287 (QUOTE X)) (-4287 (QUOTE -2926)) (-688))))))) (-1161)) (T -76)) +((-2745 (*1 *1 *2) (-12 (-5 *2 (-1244 (-337 (-4287 (QUOTE X)) (-4287 (QUOTE -2926)) (-688)))) (-5 *1 (-76 *3)) (-14 *3 (-1161))))) +(-13 (-442) (-10 -8 (-15 -2745 ($ (-1244 (-337 (-4287 (QUOTE X)) (-4287 (QUOTE -2926)) (-688))))))) +((-4128 (((-1249) $) 32) (((-1249)) 31)) (-2745 (((-850) $) 35))) +(((-77 |#1|) (-13 (-397) (-10 -7 (-15 -4128 ((-1249))))) (-1161)) (T -77)) +((-4128 (*1 *2) (-12 (-5 *2 (-1249)) (-5 *1 (-77 *3)) (-14 *3 (-1161))))) +(-13 (-397) (-10 -7 (-15 -4128 ((-1249))))) +((-4128 (((-1249) $) 62)) (-2745 (((-850) $) 56) (($ (-679 (-688))) 47) (($ (-634 (-328))) 50) (($ (-328)) 53) (($ (-2 (|:| |localSymbols| (-1165)) (|:| -2845 (-634 (-328))))) 46))) +(((-78 |#1|) (-385) (-1161)) (T -78)) +NIL +(-385) +((-3666 (((-3 $ "failed") (-1244 (-310 (-381)))) 119) (((-3 $ "failed") (-1244 (-310 (-568)))) 108) (((-3 $ "failed") (-1244 (-953 (-381)))) 141) (((-3 $ "failed") (-1244 (-953 (-568)))) 130) (((-3 $ "failed") (-1244 (-409 (-953 (-381))))) 98) (((-3 $ "failed") (-1244 (-409 (-953 (-568))))) 87)) (-2854 (($ (-1244 (-310 (-381)))) 115) (($ (-1244 (-310 (-568)))) 104) (($ (-1244 (-953 (-381)))) 137) (($ (-1244 (-953 (-568)))) 126) (($ (-1244 (-409 (-953 (-381))))) 94) (($ (-1244 (-409 (-953 (-568))))) 80)) (-4128 (((-1249) $) 73)) (-2745 (((-850) $) 27) (($ (-634 (-328))) 63) (($ (-328)) 59) (($ (-2 (|:| |localSymbols| (-1165)) (|:| -2845 (-634 (-328))))) 66) (($ (-1244 (-337 (-4287) (-4287 (QUOTE X)) (-688)))) 60))) +(((-79 |#1|) (-13 (-442) (-10 -8 (-15 -2745 ($ (-1244 (-337 (-4287) (-4287 (QUOTE X)) (-688))))))) (-1161)) (T -79)) +((-2745 (*1 *1 *2) (-12 (-5 *2 (-1244 (-337 (-4287) (-4287 (QUOTE X)) (-688)))) (-5 *1 (-79 *3)) (-14 *3 (-1161))))) +(-13 (-442) (-10 -8 (-15 -2745 ($ (-1244 (-337 (-4287) (-4287 (QUOTE X)) (-688))))))) +((-3666 (((-3 $ "failed") (-1244 (-310 (-381)))) 125) (((-3 $ "failed") (-1244 (-310 (-568)))) 114) (((-3 $ "failed") (-1244 (-953 (-381)))) 147) (((-3 $ "failed") (-1244 (-953 (-568)))) 136) (((-3 $ "failed") (-1244 (-409 (-953 (-381))))) 103) (((-3 $ "failed") (-1244 (-409 (-953 (-568))))) 92)) (-2854 (($ (-1244 (-310 (-381)))) 121) (($ (-1244 (-310 (-568)))) 110) (($ (-1244 (-953 (-381)))) 143) (($ (-1244 (-953 (-568)))) 132) (($ (-1244 (-409 (-953 (-381))))) 99) (($ (-1244 (-409 (-953 (-568))))) 85)) (-4128 (((-1249) $) 78)) (-2745 (((-850) $) 70) (($ (-634 (-328))) NIL) (($ (-328)) NIL) (($ (-2 (|:| |localSymbols| (-1165)) (|:| -2845 (-634 (-328))))) NIL) (($ (-1244 (-337 (-4287 (QUOTE X) (QUOTE EPS)) (-4287 (QUOTE -2926)) (-688)))) 65))) +(((-80 |#1| |#2| |#3|) (-13 (-442) (-10 -8 (-15 -2745 ($ (-1244 (-337 (-4287 (QUOTE X) (QUOTE EPS)) (-4287 (QUOTE -2926)) (-688))))))) (-1161) (-1161) (-1161)) (T -80)) +((-2745 (*1 *1 *2) (-12 (-5 *2 (-1244 (-337 (-4287 (QUOTE X) (QUOTE EPS)) (-4287 (QUOTE -2926)) (-688)))) (-5 *1 (-80 *3 *4 *5)) (-14 *3 (-1161)) (-14 *4 (-1161)) (-14 *5 (-1161))))) +(-13 (-442) (-10 -8 (-15 -2745 ($ (-1244 (-337 (-4287 (QUOTE X) (QUOTE EPS)) (-4287 (QUOTE -2926)) (-688))))))) +((-3666 (((-3 $ "failed") (-1244 (-310 (-381)))) 129) (((-3 $ "failed") (-1244 (-310 (-568)))) 118) (((-3 $ "failed") (-1244 (-953 (-381)))) 151) (((-3 $ "failed") (-1244 (-953 (-568)))) 140) (((-3 $ "failed") (-1244 (-409 (-953 (-381))))) 107) (((-3 $ "failed") (-1244 (-409 (-953 (-568))))) 96)) (-2854 (($ (-1244 (-310 (-381)))) 125) (($ (-1244 (-310 (-568)))) 114) (($ (-1244 (-953 (-381)))) 147) (($ (-1244 (-953 (-568)))) 136) (($ (-1244 (-409 (-953 (-381))))) 103) (($ (-1244 (-409 (-953 (-568))))) 89)) (-4128 (((-1249) $) 82)) (-2745 (((-850) $) 74) (($ (-634 (-328))) NIL) (($ (-328)) NIL) (($ (-2 (|:| |localSymbols| (-1165)) (|:| -2845 (-634 (-328))))) NIL) (($ (-1244 (-337 (-4287 (QUOTE EPS)) (-4287 (QUOTE YA) (QUOTE YB)) (-688)))) 69))) +(((-81 |#1| |#2| |#3|) (-13 (-442) (-10 -8 (-15 -2745 ($ (-1244 (-337 (-4287 (QUOTE EPS)) (-4287 (QUOTE YA) (QUOTE YB)) (-688))))))) (-1161) (-1161) (-1161)) (T -81)) +((-2745 (*1 *1 *2) (-12 (-5 *2 (-1244 (-337 (-4287 (QUOTE EPS)) (-4287 (QUOTE YA) (QUOTE YB)) (-688)))) (-5 *1 (-81 *3 *4 *5)) (-14 *3 (-1161)) (-14 *4 (-1161)) (-14 *5 (-1161))))) +(-13 (-442) (-10 -8 (-15 -2745 ($ (-1244 (-337 (-4287 (QUOTE EPS)) (-4287 (QUOTE YA) (QUOTE YB)) (-688))))))) +((-3666 (((-3 $ "failed") (-310 (-381))) 77) (((-3 $ "failed") (-310 (-568))) 82) (((-3 $ "failed") (-953 (-381))) 87) (((-3 $ "failed") (-953 (-568))) 92) (((-3 $ "failed") (-409 (-953 (-381)))) 72) (((-3 $ "failed") (-409 (-953 (-568)))) 67)) (-2854 (($ (-310 (-381))) 75) (($ (-310 (-568))) 80) (($ (-953 (-381))) 85) (($ (-953 (-568))) 90) (($ (-409 (-953 (-381)))) 70) (($ (-409 (-953 (-568)))) 64)) (-4128 (((-1249) $) 61)) (-2745 (((-850) $) 49) (($ (-634 (-328))) 45) (($ (-328)) 55) (($ (-2 (|:| |localSymbols| (-1165)) (|:| -2845 (-634 (-328))))) 53) (($ (-337 (-4287) (-4287 (QUOTE X)) (-688))) 46))) +(((-82 |#1|) (-13 (-398) (-10 -8 (-15 -2745 ($ (-337 (-4287) (-4287 (QUOTE X)) (-688)))))) (-1161)) (T -82)) +((-2745 (*1 *1 *2) (-12 (-5 *2 (-337 (-4287) (-4287 (QUOTE X)) (-688))) (-5 *1 (-82 *3)) (-14 *3 (-1161))))) +(-13 (-398) (-10 -8 (-15 -2745 ($ (-337 (-4287) (-4287 (QUOTE X)) (-688)))))) +((-3666 (((-3 $ "failed") (-310 (-381))) 41) (((-3 $ "failed") (-310 (-568))) 46) (((-3 $ "failed") (-953 (-381))) 51) (((-3 $ "failed") (-953 (-568))) 56) (((-3 $ "failed") (-409 (-953 (-381)))) 36) (((-3 $ "failed") (-409 (-953 (-568)))) 31)) (-2854 (($ (-310 (-381))) 39) (($ (-310 (-568))) 44) (($ (-953 (-381))) 49) (($ (-953 (-568))) 54) (($ (-409 (-953 (-381)))) 34) (($ (-409 (-953 (-568)))) 28)) (-4128 (((-1249) $) 77)) (-2745 (((-850) $) 71) (($ (-634 (-328))) 62) (($ (-328)) 68) (($ (-2 (|:| |localSymbols| (-1165)) (|:| -2845 (-634 (-328))))) 65) (($ (-337 (-4287) (-4287 (QUOTE X)) (-688))) 27))) +(((-83 |#1|) (-13 (-398) (-10 -8 (-15 -2745 ($ (-337 (-4287) (-4287 (QUOTE X)) (-688)))))) (-1161)) (T -83)) +((-2745 (*1 *1 *2) (-12 (-5 *2 (-337 (-4287) (-4287 (QUOTE X)) (-688))) (-5 *1 (-83 *3)) (-14 *3 (-1161))))) +(-13 (-398) (-10 -8 (-15 -2745 ($ (-337 (-4287) (-4287 (QUOTE X)) (-688)))))) +((-3666 (((-3 $ "failed") (-1244 (-310 (-381)))) 84) (((-3 $ "failed") (-1244 (-310 (-568)))) 73) (((-3 $ "failed") (-1244 (-953 (-381)))) 106) (((-3 $ "failed") (-1244 (-953 (-568)))) 95) (((-3 $ "failed") (-1244 (-409 (-953 (-381))))) 62) (((-3 $ "failed") (-1244 (-409 (-953 (-568))))) 51)) (-2854 (($ (-1244 (-310 (-381)))) 80) (($ (-1244 (-310 (-568)))) 69) (($ (-1244 (-953 (-381)))) 102) (($ (-1244 (-953 (-568)))) 91) (($ (-1244 (-409 (-953 (-381))))) 58) (($ (-1244 (-409 (-953 (-568))))) 44)) (-4128 (((-1249) $) 122)) (-2745 (((-850) $) 116) (($ (-634 (-328))) 109) (($ (-328)) 36) (($ (-2 (|:| |localSymbols| (-1165)) (|:| -2845 (-634 (-328))))) 112) (($ (-1244 (-337 (-4287) (-4287 (QUOTE XC)) (-688)))) 37))) +(((-84 |#1|) (-13 (-442) (-10 -8 (-15 -2745 ($ (-1244 (-337 (-4287) (-4287 (QUOTE XC)) (-688))))))) (-1161)) (T -84)) +((-2745 (*1 *1 *2) (-12 (-5 *2 (-1244 (-337 (-4287) (-4287 (QUOTE XC)) (-688)))) (-5 *1 (-84 *3)) (-14 *3 (-1161))))) +(-13 (-442) (-10 -8 (-15 -2745 ($ (-1244 (-337 (-4287) (-4287 (QUOTE XC)) (-688))))))) +((-3666 (((-3 $ "failed") (-1244 (-310 (-381)))) 137) (((-3 $ "failed") (-1244 (-310 (-568)))) 126) (((-3 $ "failed") (-1244 (-953 (-381)))) 158) (((-3 $ "failed") (-1244 (-953 (-568)))) 147) (((-3 $ "failed") (-1244 (-409 (-953 (-381))))) 116) (((-3 $ "failed") (-1244 (-409 (-953 (-568))))) 105)) (-2854 (($ (-1244 (-310 (-381)))) 133) (($ (-1244 (-310 (-568)))) 122) (($ (-1244 (-953 (-381)))) 154) (($ (-1244 (-953 (-568)))) 143) (($ (-1244 (-409 (-953 (-381))))) 112) (($ (-1244 (-409 (-953 (-568))))) 98)) (-4128 (((-1249) $) 91)) (-2745 (((-850) $) 85) (($ (-634 (-328))) 76) (($ (-328)) 83) (($ (-2 (|:| |localSymbols| (-1165)) (|:| -2845 (-634 (-328))))) 81) (($ (-1244 (-337 (-4287) (-4287 (QUOTE X)) (-688)))) 77))) +(((-85 |#1|) (-13 (-442) (-10 -8 (-15 -2745 ($ (-1244 (-337 (-4287) (-4287 (QUOTE X)) (-688))))))) (-1161)) (T -85)) +((-2745 (*1 *1 *2) (-12 (-5 *2 (-1244 (-337 (-4287) (-4287 (QUOTE X)) (-688)))) (-5 *1 (-85 *3)) (-14 *3 (-1161))))) +(-13 (-442) (-10 -8 (-15 -2745 ($ (-1244 (-337 (-4287) (-4287 (QUOTE X)) (-688))))))) +((-3666 (((-3 $ "failed") (-1244 (-310 (-381)))) 73) (((-3 $ "failed") (-1244 (-310 (-568)))) 62) (((-3 $ "failed") (-1244 (-953 (-381)))) 95) (((-3 $ "failed") (-1244 (-953 (-568)))) 84) (((-3 $ "failed") (-1244 (-409 (-953 (-381))))) 51) (((-3 $ "failed") (-1244 (-409 (-953 (-568))))) 40)) (-2854 (($ (-1244 (-310 (-381)))) 69) (($ (-1244 (-310 (-568)))) 58) (($ (-1244 (-953 (-381)))) 91) (($ (-1244 (-953 (-568)))) 80) (($ (-1244 (-409 (-953 (-381))))) 47) (($ (-1244 (-409 (-953 (-568))))) 33)) (-4128 (((-1249) $) 121)) (-2745 (((-850) $) 115) (($ (-634 (-328))) 106) (($ (-328)) 112) (($ (-2 (|:| |localSymbols| (-1165)) (|:| -2845 (-634 (-328))))) 110) (($ (-1244 (-337 (-4287) (-4287 (QUOTE X)) (-688)))) 32))) +(((-86 |#1|) (-13 (-442) (-10 -8 (-15 -2745 ($ (-1244 (-337 (-4287) (-4287 (QUOTE X)) (-688))))))) (-1161)) (T -86)) +((-2745 (*1 *1 *2) (-12 (-5 *2 (-1244 (-337 (-4287) (-4287 (QUOTE X)) (-688)))) (-5 *1 (-86 *3)) (-14 *3 (-1161))))) +(-13 (-442) (-10 -8 (-15 -2745 ($ (-1244 (-337 (-4287) (-4287 (QUOTE X)) (-688))))))) +((-3666 (((-3 $ "failed") (-1244 (-310 (-381)))) 90) (((-3 $ "failed") (-1244 (-310 (-568)))) 79) (((-3 $ "failed") (-1244 (-953 (-381)))) 112) (((-3 $ "failed") (-1244 (-953 (-568)))) 101) (((-3 $ "failed") (-1244 (-409 (-953 (-381))))) 68) (((-3 $ "failed") (-1244 (-409 (-953 (-568))))) 57)) (-2854 (($ (-1244 (-310 (-381)))) 86) (($ (-1244 (-310 (-568)))) 75) (($ (-1244 (-953 (-381)))) 108) (($ (-1244 (-953 (-568)))) 97) (($ (-1244 (-409 (-953 (-381))))) 64) (($ (-1244 (-409 (-953 (-568))))) 50)) (-4128 (((-1249) $) 43)) (-2745 (((-850) $) 36) (($ (-634 (-328))) 26) (($ (-328)) 29) (($ (-2 (|:| |localSymbols| (-1165)) (|:| -2845 (-634 (-328))))) 32) (($ (-1244 (-337 (-4287 (QUOTE X) (QUOTE -2926)) (-4287) (-688)))) 27))) +(((-87 |#1|) (-13 (-442) (-10 -8 (-15 -2745 ($ (-1244 (-337 (-4287 (QUOTE X) (QUOTE -2926)) (-4287) (-688))))))) (-1161)) (T -87)) +((-2745 (*1 *1 *2) (-12 (-5 *2 (-1244 (-337 (-4287 (QUOTE X) (QUOTE -2926)) (-4287) (-688)))) (-5 *1 (-87 *3)) (-14 *3 (-1161))))) +(-13 (-442) (-10 -8 (-15 -2745 ($ (-1244 (-337 (-4287 (QUOTE X) (QUOTE -2926)) (-4287) (-688))))))) +((-3666 (((-3 $ "failed") (-679 (-310 (-381)))) 103) (((-3 $ "failed") (-679 (-310 (-568)))) 92) (((-3 $ "failed") (-679 (-953 (-381)))) 125) (((-3 $ "failed") (-679 (-953 (-568)))) 114) (((-3 $ "failed") (-679 (-409 (-953 (-381))))) 82) (((-3 $ "failed") (-679 (-409 (-953 (-568))))) 71)) (-2854 (($ (-679 (-310 (-381)))) 99) (($ (-679 (-310 (-568)))) 88) (($ (-679 (-953 (-381)))) 121) (($ (-679 (-953 (-568)))) 110) (($ (-679 (-409 (-953 (-381))))) 78) (($ (-679 (-409 (-953 (-568))))) 64)) (-4128 (((-1249) $) 57)) (-2745 (((-850) $) 43) (($ (-634 (-328))) 50) (($ (-328)) 39) (($ (-2 (|:| |localSymbols| (-1165)) (|:| -2845 (-634 (-328))))) 47) (($ (-679 (-337 (-4287 (QUOTE X) (QUOTE -2926)) (-4287) (-688)))) 40))) +(((-88 |#1|) (-13 (-386) (-10 -8 (-15 -2745 ($ (-679 (-337 (-4287 (QUOTE X) (QUOTE -2926)) (-4287) (-688))))))) (-1161)) (T -88)) +((-2745 (*1 *1 *2) (-12 (-5 *2 (-679 (-337 (-4287 (QUOTE X) (QUOTE -2926)) (-4287) (-688)))) (-5 *1 (-88 *3)) (-14 *3 (-1161))))) +(-13 (-386) (-10 -8 (-15 -2745 ($ (-679 (-337 (-4287 (QUOTE X) (QUOTE -2926)) (-4287) (-688))))))) +((-3666 (((-3 $ "failed") (-679 (-310 (-381)))) 103) (((-3 $ "failed") (-679 (-310 (-568)))) 92) (((-3 $ "failed") (-679 (-953 (-381)))) 124) (((-3 $ "failed") (-679 (-953 (-568)))) 113) (((-3 $ "failed") (-679 (-409 (-953 (-381))))) 81) (((-3 $ "failed") (-679 (-409 (-953 (-568))))) 70)) (-2854 (($ (-679 (-310 (-381)))) 99) (($ (-679 (-310 (-568)))) 88) (($ (-679 (-953 (-381)))) 120) (($ (-679 (-953 (-568)))) 109) (($ (-679 (-409 (-953 (-381))))) 77) (($ (-679 (-409 (-953 (-568))))) 63)) (-4128 (((-1249) $) 56)) (-2745 (((-850) $) 50) (($ (-634 (-328))) 44) (($ (-328)) 47) (($ (-2 (|:| |localSymbols| (-1165)) (|:| -2845 (-634 (-328))))) 40) (($ (-679 (-337 (-4287 (QUOTE X)) (-4287) (-688)))) 41))) +(((-89 |#1|) (-13 (-386) (-10 -8 (-15 -2745 ($ (-679 (-337 (-4287 (QUOTE X)) (-4287) (-688))))))) (-1161)) (T -89)) +((-2745 (*1 *1 *2) (-12 (-5 *2 (-679 (-337 (-4287 (QUOTE X)) (-4287) (-688)))) (-5 *1 (-89 *3)) (-14 *3 (-1161))))) +(-13 (-386) (-10 -8 (-15 -2745 ($ (-679 (-337 (-4287 (QUOTE X)) (-4287) (-688))))))) +((-3666 (((-3 $ "failed") (-1244 (-310 (-381)))) 99) (((-3 $ "failed") (-1244 (-310 (-568)))) 88) (((-3 $ "failed") (-1244 (-953 (-381)))) 121) (((-3 $ "failed") (-1244 (-953 (-568)))) 110) (((-3 $ "failed") (-1244 (-409 (-953 (-381))))) 77) (((-3 $ "failed") (-1244 (-409 (-953 (-568))))) 66)) (-2854 (($ (-1244 (-310 (-381)))) 95) (($ (-1244 (-310 (-568)))) 84) (($ (-1244 (-953 (-381)))) 117) (($ (-1244 (-953 (-568)))) 106) (($ (-1244 (-409 (-953 (-381))))) 73) (($ (-1244 (-409 (-953 (-568))))) 59)) (-4128 (((-1249) $) 45)) (-2745 (((-850) $) 39) (($ (-634 (-328))) 48) (($ (-328)) 35) (($ (-2 (|:| |localSymbols| (-1165)) (|:| -2845 (-634 (-328))))) 51) (($ (-1244 (-337 (-4287 (QUOTE X)) (-4287) (-688)))) 36))) +(((-90 |#1|) (-13 (-442) (-10 -8 (-15 -2745 ($ (-1244 (-337 (-4287 (QUOTE X)) (-4287) (-688))))))) (-1161)) (T -90)) +((-2745 (*1 *1 *2) (-12 (-5 *2 (-1244 (-337 (-4287 (QUOTE X)) (-4287) (-688)))) (-5 *1 (-90 *3)) (-14 *3 (-1161))))) +(-13 (-442) (-10 -8 (-15 -2745 ($ (-1244 (-337 (-4287 (QUOTE X)) (-4287) (-688))))))) +((-3666 (((-3 $ "failed") (-1244 (-310 (-381)))) 74) (((-3 $ "failed") (-1244 (-310 (-568)))) 63) (((-3 $ "failed") (-1244 (-953 (-381)))) 96) (((-3 $ "failed") (-1244 (-953 (-568)))) 85) (((-3 $ "failed") (-1244 (-409 (-953 (-381))))) 52) (((-3 $ "failed") (-1244 (-409 (-953 (-568))))) 41)) (-2854 (($ (-1244 (-310 (-381)))) 70) (($ (-1244 (-310 (-568)))) 59) (($ (-1244 (-953 (-381)))) 92) (($ (-1244 (-953 (-568)))) 81) (($ (-1244 (-409 (-953 (-381))))) 48) (($ (-1244 (-409 (-953 (-568))))) 34)) (-4128 (((-1249) $) 122)) (-2745 (((-850) $) 116) (($ (-634 (-328))) 107) (($ (-328)) 113) (($ (-2 (|:| |localSymbols| (-1165)) (|:| -2845 (-634 (-328))))) 111) (($ (-1244 (-337 (-4287 (QUOTE X)) (-4287 (QUOTE -2926)) (-688)))) 33))) +(((-91 |#1|) (-13 (-442) (-10 -8 (-15 -2745 ($ (-1244 (-337 (-4287 (QUOTE X)) (-4287 (QUOTE -2926)) (-688))))))) (-1161)) (T -91)) +((-2745 (*1 *1 *2) (-12 (-5 *2 (-1244 (-337 (-4287 (QUOTE X)) (-4287 (QUOTE -2926)) (-688)))) (-5 *1 (-91 *3)) (-14 *3 (-1161))))) +(-13 (-442) (-10 -8 (-15 -2745 ($ (-1244 (-337 (-4287 (QUOTE X)) (-4287 (QUOTE -2926)) (-688))))))) +((-3666 (((-3 $ "failed") (-679 (-310 (-381)))) 105) (((-3 $ "failed") (-679 (-310 (-568)))) 94) (((-3 $ "failed") (-679 (-953 (-381)))) 127) (((-3 $ "failed") (-679 (-953 (-568)))) 116) (((-3 $ "failed") (-679 (-409 (-953 (-381))))) 83) (((-3 $ "failed") (-679 (-409 (-953 (-568))))) 72)) (-2854 (($ (-679 (-310 (-381)))) 101) (($ (-679 (-310 (-568)))) 90) (($ (-679 (-953 (-381)))) 123) (($ (-679 (-953 (-568)))) 112) (($ (-679 (-409 (-953 (-381))))) 79) (($ (-679 (-409 (-953 (-568))))) 65)) (-4128 (((-1249) $) 58)) (-2745 (((-850) $) 52) (($ (-634 (-328))) 42) (($ (-328)) 49) (($ (-2 (|:| |localSymbols| (-1165)) (|:| -2845 (-634 (-328))))) 47) (($ (-679 (-337 (-4287 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4287) (-688)))) 43))) +(((-92 |#1|) (-13 (-386) (-10 -8 (-15 -2745 ($ (-679 (-337 (-4287 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4287) (-688))))))) (-1161)) (T -92)) +((-2745 (*1 *1 *2) (-12 (-5 *2 (-679 (-337 (-4287 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4287) (-688)))) (-5 *1 (-92 *3)) (-14 *3 (-1161))))) +(-13 (-386) (-10 -8 (-15 -2745 ($ (-679 (-337 (-4287 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4287) (-688))))))) +((-4128 (((-1249) $) 44)) (-2745 (((-850) $) 38) (($ (-1244 (-688))) 88) (($ (-634 (-328))) 29) (($ (-328)) 35) (($ (-2 (|:| |localSymbols| (-1165)) (|:| -2845 (-634 (-328))))) 32))) +(((-93 |#1|) (-441) (-1161)) (T -93)) +NIL +(-441) +((-3666 (((-3 $ "failed") (-310 (-381))) 42) (((-3 $ "failed") (-310 (-568))) 47) (((-3 $ "failed") (-953 (-381))) 52) (((-3 $ "failed") (-953 (-568))) 57) (((-3 $ "failed") (-409 (-953 (-381)))) 37) (((-3 $ "failed") (-409 (-953 (-568)))) 32)) (-2854 (($ (-310 (-381))) 40) (($ (-310 (-568))) 45) (($ (-953 (-381))) 50) (($ (-953 (-568))) 55) (($ (-409 (-953 (-381)))) 35) (($ (-409 (-953 (-568)))) 29)) (-4128 (((-1249) $) 88)) (-2745 (((-850) $) 82) (($ (-634 (-328))) 76) (($ (-328)) 79) (($ (-2 (|:| |localSymbols| (-1165)) (|:| -2845 (-634 (-328))))) 73) (($ (-337 (-4287 (QUOTE X)) (-4287 (QUOTE -2926)) (-688))) 28))) +(((-94 |#1|) (-13 (-398) (-10 -8 (-15 -2745 ($ (-337 (-4287 (QUOTE X)) (-4287 (QUOTE -2926)) (-688)))))) (-1161)) (T -94)) +((-2745 (*1 *1 *2) (-12 (-5 *2 (-337 (-4287 (QUOTE X)) (-4287 (QUOTE -2926)) (-688))) (-5 *1 (-94 *3)) (-14 *3 (-1161))))) +(-13 (-398) (-10 -8 (-15 -2745 ($ (-337 (-4287 (QUOTE X)) (-4287 (QUOTE -2926)) (-688)))))) +((-3970 (((-1244 (-679 |#1|)) (-679 |#1|)) 54)) (-1366 (((-2 (|:| -2928 (-679 |#1|)) (|:| |vec| (-1244 (-634 (-917))))) |#2| (-917)) 44)) (-3316 (((-2 (|:| |minor| (-634 (-917))) (|:| -1853 |#2|) (|:| |minors| (-634 (-634 (-917)))) (|:| |ops| (-634 |#2|))) |#2| (-917)) 62 (|has| |#1| (-365))))) +(((-95 |#1| |#2|) (-10 -7 (-15 -1366 ((-2 (|:| -2928 (-679 |#1|)) (|:| |vec| (-1244 (-634 (-917))))) |#2| (-917))) (-15 -3970 ((-1244 (-679 |#1|)) (-679 |#1|))) (IF (|has| |#1| (-365)) (-15 -3316 ((-2 (|:| |minor| (-634 (-917))) (|:| -1853 |#2|) (|:| |minors| (-634 (-634 (-917)))) (|:| |ops| (-634 |#2|))) |#2| (-917))) |noBranch|)) (-558) (-646 |#1|)) (T -95)) +((-3316 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *5 (-558)) (-5 *2 (-2 (|:| |minor| (-634 (-917))) (|:| -1853 *3) (|:| |minors| (-634 (-634 (-917)))) (|:| |ops| (-634 *3)))) (-5 *1 (-95 *5 *3)) (-5 *4 (-917)) (-4 *3 (-646 *5)))) (-3970 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-1244 (-679 *4))) (-5 *1 (-95 *4 *5)) (-5 *3 (-679 *4)) (-4 *5 (-646 *4)))) (-1366 (*1 *2 *3 *4) (-12 (-4 *5 (-558)) (-5 *2 (-2 (|:| -2928 (-679 *5)) (|:| |vec| (-1244 (-634 (-917)))))) (-5 *1 (-95 *5 *3)) (-5 *4 (-917)) (-4 *3 (-646 *5))))) +(-10 -7 (-15 -1366 ((-2 (|:| -2928 (-679 |#1|)) (|:| |vec| (-1244 (-634 (-917))))) |#2| (-917))) (-15 -3970 ((-1244 (-679 |#1|)) (-679 |#1|))) (IF (|has| |#1| (-365)) (-15 -3316 ((-2 (|:| |minor| (-634 (-917))) (|:| -1853 |#2|) (|:| |minors| (-634 (-634 (-917)))) (|:| |ops| (-634 |#2|))) |#2| (-917))) |noBranch|)) +((-2447 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-2616 ((|#1| $) 34)) (-2510 (((-121) $ (-763)) NIL)) (-2671 (($) NIL T CONST)) (-2918 ((|#1| |#1| $) 30)) (-2899 ((|#1| $) 28)) (-4360 (((-634 |#1|) $) 39 (|has| $ (-6 -4519)))) (-1737 (((-121) $ (-763)) NIL)) (-1979 (((-634 |#1|) $) NIL (|has| $ (-6 -4519)))) (-3109 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-3674 (($ (-1 |#1| |#1|) $) 43 (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#1| |#1|) $) 41)) (-2166 (((-121) $ (-763)) NIL)) (-4487 (((-1143) $) NIL (|has| |#1| (-1090)))) (-1890 ((|#1| $) 45)) (-4450 (($ |#1| $) 31)) (-4022 (((-1108) $) NIL (|has| |#1| (-1090)))) (-1315 ((|#1| $) 29)) (-1387 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-634 |#1|) (-634 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))))) (-3171 (((-121) $ $) NIL)) (-3084 (((-121) $) 16)) (-3248 (($) 38)) (-4154 (((-763) $) 26)) (-4168 (((-763) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519))) (((-763) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-3863 (($ $) 15)) (-2745 (((-850) $) 25 (|has| |#1| (-1090)))) (-2367 (($ (-634 |#1|)) NIL)) (-3609 (($ (-634 |#1|)) 36)) (-1319 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-1717 (((-121) $ $) 13 (|has| |#1| (-1090)))) (-1697 (((-763) $) 10 (|has| $ (-6 -4519))))) +(((-96 |#1|) (-13 (-1109 |#1|) (-10 -8 (-15 -3609 ($ (-634 |#1|))) (-15 -2899 (|#1| $)) (-15 -1315 (|#1| $)) (-15 -2918 (|#1| |#1| $)) (-15 -4450 ($ |#1| $)) (-15 -1890 (|#1| $)) (-15 -2616 (|#1| $)) (-15 -4154 ((-763) $)) (-15 -2166 ((-121) $ (-763))) (-15 -1737 ((-121) $ (-763))) (-15 -2510 ((-121) $ (-763))) (-15 -2367 ($ (-634 |#1|))) (-15 -3084 ((-121) $)) (-15 -3248 ($)) (-15 -2671 ($)) (-15 -3863 ($ $)) (-15 -3171 ((-121) $ $)) (-15 -2795 ($ (-1 |#1| |#1|) $)) (IF (|has| $ (-6 -4520)) (-15 -3674 ($ (-1 |#1| |#1|) $)) |noBranch|) (IF (|has| |#1| (-1090)) (PROGN (-15 -4487 ((-1143) $)) (-15 -4022 ((-1108) $)) (-15 -2745 ((-850) $)) (-15 -1717 ((-121) $ $)) (-15 -2447 ((-121) $ $))) |noBranch|) (IF (|has| $ (-6 -4519)) (PROGN (-15 -1387 ((-121) (-1 (-121) |#1|) $)) (-15 -1319 ((-121) (-1 (-121) |#1|) $)) (-15 -4168 ((-763) (-1 (-121) |#1|) $)) (-15 -1697 ((-763) $)) (-15 -4360 ((-634 |#1|) $)) (-15 -1979 ((-634 |#1|) $))) |noBranch|) (IF (|has| $ (-6 -4519)) (IF (|has| |#1| (-1090)) (PROGN (-15 -3109 ((-121) |#1| $)) (-15 -4168 ((-763) |#1| $))) |noBranch|) |noBranch|))) (-1090)) (T -96)) +((-3171 (*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-96 *3)) (-4 *3 (-1090)))) (-3863 (*1 *1 *1) (-12 (-5 *1 (-96 *2)) (-4 *2 (-1090)))) (-3248 (*1 *1) (-12 (-5 *1 (-96 *2)) (-4 *2 (-1090)))) (-3084 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-96 *3)) (-4 *3 (-1090)))) (-2166 (*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-5 *2 (-121)) (-5 *1 (-96 *4)) (-4 *4 (-1090)))) (-1737 (*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-5 *2 (-121)) (-5 *1 (-96 *4)) (-4 *4 (-1090)))) (-2510 (*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-5 *2 (-121)) (-5 *1 (-96 *4)) (-4 *4 (-1090)))) (-2671 (*1 *1) (-12 (-5 *1 (-96 *2)) (-4 *2 (-1090)))) (-1697 (*1 *2 *1) (-12 (|has| $ (-6 -4519)) (-5 *2 (-763)) (-5 *1 (-96 *3)) (-4 *3 (-1090)))) (-2795 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1090)) (-5 *1 (-96 *3)))) (-3674 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| $ (-6 -4520)) (-4 *3 (-1090)) (-5 *1 (-96 *3)))) (-1319 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| $ (-6 -4519)) (-4 *4 (-1090)) (-5 *2 (-121)) (-5 *1 (-96 *4)))) (-1387 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| $ (-6 -4519)) (-4 *4 (-1090)) (-5 *2 (-121)) (-5 *1 (-96 *4)))) (-4168 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| $ (-6 -4519)) (-4 *4 (-1090)) (-5 *2 (-763)) (-5 *1 (-96 *4)))) (-4360 (*1 *2 *1) (-12 (|has| $ (-6 -4519)) (-5 *2 (-634 *3)) (-5 *1 (-96 *3)) (-4 *3 (-1090)))) (-1979 (*1 *2 *1) (-12 (|has| $ (-6 -4519)) (-5 *2 (-634 *3)) (-5 *1 (-96 *3)) (-4 *3 (-1090)))) (-4168 (*1 *2 *3 *1) (-12 (|has| $ (-6 -4519)) (-5 *2 (-763)) (-5 *1 (-96 *3)) (-4 *3 (-1090)) (-4 *3 (-1090)))) (-3109 (*1 *2 *3 *1) (-12 (|has| $ (-6 -4519)) (-5 *2 (-121)) (-5 *1 (-96 *3)) (-4 *3 (-1090)) (-4 *3 (-1090)))) (-4487 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-96 *3)) (-4 *3 (-1090)) (-4 *3 (-1090)))) (-4022 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-96 *3)) (-4 *3 (-1090)) (-4 *3 (-1090)))) (-2745 (*1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-96 *3)) (-4 *3 (-1090)) (-4 *3 (-1090)))) (-1717 (*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-96 *3)) (-4 *3 (-1090)) (-4 *3 (-1090)))) (-2447 (*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-96 *3)) (-4 *3 (-1090)) (-4 *3 (-1090)))) (-2367 (*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-1090)) (-5 *1 (-96 *3)))) (-1315 (*1 *2 *1) (-12 (-5 *1 (-96 *2)) (-4 *2 (-1090)))) (-4450 (*1 *1 *2 *1) (-12 (-5 *1 (-96 *2)) (-4 *2 (-1090)))) (-1890 (*1 *2 *1) (-12 (-5 *1 (-96 *2)) (-4 *2 (-1090)))) (-2918 (*1 *2 *2 *1) (-12 (-5 *1 (-96 *2)) (-4 *2 (-1090)))) (-2899 (*1 *2 *1) (-12 (-5 *1 (-96 *2)) (-4 *2 (-1090)))) (-2616 (*1 *2 *1) (-12 (-5 *1 (-96 *2)) (-4 *2 (-1090)))) (-4154 (*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-96 *3)) (-4 *3 (-1090)))) (-3609 (*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-1090)) (-5 *1 (-96 *3))))) +(-13 (-1109 |#1|) (-10 -8 (-15 -3609 ($ (-634 |#1|))) (-15 -2899 (|#1| $)) (-15 -1315 (|#1| $)) (-15 -2918 (|#1| |#1| $)) (-15 -4450 ($ |#1| $)) (-15 -1890 (|#1| $)) (-15 -2616 (|#1| $)) (-15 -4154 ((-763) $)) (-15 -2166 ((-121) $ (-763))) (-15 -1737 ((-121) $ (-763))) (-15 -2510 ((-121) $ (-763))) (-15 -2367 ($ (-634 |#1|))) (-15 -3084 ((-121) $)) (-15 -3248 ($)) (-15 -2671 ($)) (-15 -3863 ($ $)) (-15 -3171 ((-121) $ $)) (-15 -2795 ($ (-1 |#1| |#1|) $)) (IF (|has| $ (-6 -4520)) (-15 -3674 ($ (-1 |#1| |#1|) $)) |noBranch|) (IF (|has| |#1| (-1090)) (PROGN (-15 -4487 ((-1143) $)) (-15 -4022 ((-1108) $)) (-15 -2745 ((-850) $)) (-15 -1717 ((-121) $ $)) (-15 -2447 ((-121) $ $))) |noBranch|) (IF (|has| $ (-6 -4519)) (PROGN (-15 -1387 ((-121) (-1 (-121) |#1|) $)) (-15 -1319 ((-121) (-1 (-121) |#1|) $)) (-15 -4168 ((-763) (-1 (-121) |#1|) $)) (-15 -1697 ((-763) $)) (-15 -4360 ((-634 |#1|) $)) (-15 -1979 ((-634 |#1|) $))) |noBranch|) (IF (|has| $ (-6 -4519)) (IF (|has| |#1| (-1090)) (PROGN (-15 -3109 ((-121) |#1| $)) (-15 -4168 ((-763) |#1| $))) |noBranch|) |noBranch|))) +((-1966 (($ $) 10)) (-1970 (($ $) 12))) +(((-97 |#1|) (-10 -8 (-15 -1970 (|#1| |#1|)) (-15 -1966 (|#1| |#1|))) (-98)) (T -97)) +NIL +(-10 -8 (-15 -1970 (|#1| |#1|)) (-15 -1966 (|#1| |#1|))) +((-1958 (($ $) 11)) (-1949 (($ $) 10)) (-1966 (($ $) 9)) (-1970 (($ $) 8)) (-1962 (($ $) 7)) (-1953 (($ $) 6))) +(((-98) (-1275)) (T -98)) +((-1958 (*1 *1 *1) (-4 *1 (-98))) (-1949 (*1 *1 *1) (-4 *1 (-98))) (-1966 (*1 *1 *1) (-4 *1 (-98))) (-1970 (*1 *1 *1) (-4 *1 (-98))) (-1962 (*1 *1 *1) (-4 *1 (-98))) (-1953 (*1 *1 *1) (-4 *1 (-98)))) +(-13 (-10 -8 (-15 -1953 ($ $)) (-15 -1962 ($ $)) (-15 -1970 ($ $)) (-15 -1966 ($ $)) (-15 -1949 ($ $)) (-15 -1958 ($ $)))) +((-2447 (((-121) $ $) NIL)) (-4126 (((-381) (-1143) (-381)) 42) (((-381) (-1143) (-1143) (-381)) 41)) (-4051 (((-381) (-381)) 33)) (-2019 (((-1249)) 36)) (-4487 (((-1143) $) NIL)) (-2490 (((-381) (-1143) (-1143)) 46) (((-381) (-1143)) 48)) (-4022 (((-1108) $) NIL)) (-4193 (((-381) (-1143) (-1143)) 47)) (-2718 (((-381) (-1143) (-1143)) 49) (((-381) (-1143)) 50)) (-2745 (((-850) $) NIL)) (-1717 (((-121) $ $) NIL))) +(((-99) (-13 (-1090) (-10 -7 (-15 -2490 ((-381) (-1143) (-1143))) (-15 -2490 ((-381) (-1143))) (-15 -2718 ((-381) (-1143) (-1143))) (-15 -2718 ((-381) (-1143))) (-15 -4193 ((-381) (-1143) (-1143))) (-15 -2019 ((-1249))) (-15 -4051 ((-381) (-381))) (-15 -4126 ((-381) (-1143) (-381))) (-15 -4126 ((-381) (-1143) (-1143) (-381))) (-6 -4519)))) (T -99)) +((-2490 (*1 *2 *3 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-381)) (-5 *1 (-99)))) (-2490 (*1 *2 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-381)) (-5 *1 (-99)))) (-2718 (*1 *2 *3 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-381)) (-5 *1 (-99)))) (-2718 (*1 *2 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-381)) (-5 *1 (-99)))) (-4193 (*1 *2 *3 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-381)) (-5 *1 (-99)))) (-2019 (*1 *2) (-12 (-5 *2 (-1249)) (-5 *1 (-99)))) (-4051 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-99)))) (-4126 (*1 *2 *3 *2) (-12 (-5 *2 (-381)) (-5 *3 (-1143)) (-5 *1 (-99)))) (-4126 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-381)) (-5 *3 (-1143)) (-5 *1 (-99))))) +(-13 (-1090) (-10 -7 (-15 -2490 ((-381) (-1143) (-1143))) (-15 -2490 ((-381) (-1143))) (-15 -2718 ((-381) (-1143) (-1143))) (-15 -2718 ((-381) (-1143))) (-15 -4193 ((-381) (-1143) (-1143))) (-15 -2019 ((-1249))) (-15 -4051 ((-381) (-381))) (-15 -4126 ((-381) (-1143) (-381))) (-15 -4126 ((-381) (-1143) (-1143) (-381))) (-6 -4519))) +NIL +(((-100) (-1275)) (T -100)) +NIL +(-13 (-10 -7 (-6 -4519) (-6 (-4521 "*")) (-6 -4520) (-6 -4516) (-6 -4514) (-6 -4513) (-6 -4512) (-6 -4517) (-6 -4511) (-6 -4510) (-6 -4509) (-6 -4508) (-6 -4507) (-6 -4515) (-6 -4518) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4506) (-6 -3996))) +((-2447 (((-121) $ $) NIL)) (-2671 (($) NIL T CONST)) (-2925 (((-3 $ "failed") $) NIL)) (-2735 (((-121) $) NIL)) (-4471 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-568))) 22)) (-4487 (((-1143) $) NIL)) (-2081 (($ $) 14)) (-4022 (((-1108) $) NIL)) (-2779 ((|#1| $ |#1|) 11)) (-1458 (($ $ $) NIL)) (-2353 (($ $ $) NIL)) (-2745 (((-850) $) 20)) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL)) (-1556 (($) 8 T CONST)) (-1717 (((-121) $ $) 10)) (-1779 (($ $ $) NIL)) (** (($ $ (-917)) 28) (($ $ (-763)) NIL) (($ $ (-568)) 16)) (* (($ $ $) 29))) +(((-101 |#1|) (-13 (-478) (-281 |#1| |#1|) (-10 -8 (-15 -4471 ($ (-1 |#1| |#1|))) (-15 -4471 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -4471 ($ (-1 |#1| |#1| (-568)))))) (-1047)) (T -101)) +((-4471 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1047)) (-5 *1 (-101 *3)))) (-4471 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1047)) (-5 *1 (-101 *3)))) (-4471 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-568))) (-4 *3 (-1047)) (-5 *1 (-101 *3))))) +(-13 (-478) (-281 |#1| |#1|) (-10 -8 (-15 -4471 ($ (-1 |#1| |#1|))) (-15 -4471 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -4471 ($ (-1 |#1| |#1| (-568)))))) +((-2292 (((-1249) (-1094)) 20)) (-3457 (((-1143) (-1143) (-1143)) 7)) (-2498 (((-1249) (-568) (-1 (-1249) (-1094))) 14))) +(((-102) (-10 -7 (-15 -2498 ((-1249) (-568) (-1 (-1249) (-1094)))) (-15 -2292 ((-1249) (-1094))) (-15 -3457 ((-1143) (-1143) (-1143))))) (T -102)) +((-3457 (*1 *2 *2 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-102)))) (-2292 (*1 *2 *3) (-12 (-5 *3 (-1094)) (-5 *2 (-1249)) (-5 *1 (-102)))) (-2498 (*1 *2 *3 *4) (-12 (-5 *3 (-568)) (-5 *4 (-1 (-1249) (-1094))) (-5 *2 (-1249)) (-5 *1 (-102))))) +(-10 -7 (-15 -2498 ((-1249) (-568) (-1 (-1249) (-1094)))) (-15 -2292 ((-1249) (-1094))) (-15 -3457 ((-1143) (-1143) (-1143)))) +((-2025 (((-420 |#2|) |#2| (-634 |#2|)) 10) (((-420 |#2|) |#2| |#2|) 11))) +(((-103 |#1| |#2|) (-10 -7 (-15 -2025 ((-420 |#2|) |#2| |#2|)) (-15 -2025 ((-420 |#2|) |#2| (-634 |#2|)))) (-13 (-453) (-150)) (-1219 |#1|)) (T -103)) +((-2025 (*1 *2 *3 *4) (-12 (-5 *4 (-634 *3)) (-4 *3 (-1219 *5)) (-4 *5 (-13 (-453) (-150))) (-5 *2 (-420 *3)) (-5 *1 (-103 *5 *3)))) (-2025 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-453) (-150))) (-5 *2 (-420 *3)) (-5 *1 (-103 *4 *3)) (-4 *3 (-1219 *4))))) +(-10 -7 (-15 -2025 ((-420 |#2|) |#2| |#2|)) (-15 -2025 ((-420 |#2|) |#2| (-634 |#2|)))) +((-2447 (((-121) $ $) 9))) +(((-104 |#1|) (-10 -8 (-15 -2447 ((-121) |#1| |#1|))) (-105)) (T -104)) +NIL +(-10 -8 (-15 -2447 ((-121) |#1| |#1|))) +((-2447 (((-121) $ $) 7)) (-1717 (((-121) $ $) 6))) +(((-105) (-1275)) (T -105)) +((-2447 (*1 *2 *1 *1) (-12 (-4 *1 (-105)) (-5 *2 (-121)))) (-1717 (*1 *2 *1 *1) (-12 (-4 *1 (-105)) (-5 *2 (-121))))) +(-13 (-10 -8 (-15 -1717 ((-121) $ $)) (-15 -2447 ((-121) $ $)))) +((-2447 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-2850 ((|#1| $) NIL)) (-2510 (((-121) $ (-763)) NIL)) (-1659 ((|#1| $ |#1|) 13 (|has| $ (-6 -4520)))) (-3497 (($ $ $) NIL (|has| $ (-6 -4520)))) (-3089 (($ $ $) NIL (|has| $ (-6 -4520)))) (-2243 (($ $ (-634 |#1|)) 15)) (-2436 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4520))) (($ $ "left" $) NIL (|has| $ (-6 -4520))) (($ $ "right" $) NIL (|has| $ (-6 -4520)))) (-3827 (($ $ (-634 $)) NIL (|has| $ (-6 -4520)))) (-2671 (($) NIL T CONST)) (-3284 (($ $) 11)) (-4360 (((-634 |#1|) $) NIL (|has| $ (-6 -4519)))) (-2287 (((-634 $) $) NIL)) (-1700 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-3341 (($ $ |#1| $) 17)) (-1737 (((-121) $ (-763)) NIL)) (-1979 (((-634 |#1|) $) NIL (|has| $ (-6 -4519)))) (-3109 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-1503 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-4280 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-634 |#1|) |#1| |#1| |#1|)) 35)) (-3674 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#1| |#1|) $) NIL)) (-2166 (((-121) $ (-763)) NIL)) (-3028 (($ $) 10)) (-2869 (((-634 |#1|) $) NIL)) (-1651 (((-121) $) 12)) (-4487 (((-1143) $) NIL (|has| |#1| (-1090)))) (-4022 (((-1108) $) NIL (|has| |#1| (-1090)))) (-1387 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-634 |#1|) (-634 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))))) (-3171 (((-121) $ $) NIL)) (-3084 (((-121) $) 9)) (-3248 (($) 16)) (-2779 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4075 (((-568) $ $) NIL)) (-3790 (((-121) $) NIL)) (-4168 (((-763) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519))) (((-763) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-3863 (($ $) NIL)) (-2745 (((-850) $) NIL (|has| |#1| (-1090)))) (-4339 (((-634 $) $) NIL)) (-3491 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-2203 (($ (-763) |#1|) 19)) (-1319 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-1717 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-1697 (((-763) $) NIL (|has| $ (-6 -4519))))) +(((-106 |#1|) (-13 (-134 |#1|) (-10 -8 (-6 -4519) (-6 -4520) (-15 -2203 ($ (-763) |#1|)) (-15 -2243 ($ $ (-634 |#1|))) (-15 -1503 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1503 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -4280 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -4280 ($ $ |#1| (-1 (-634 |#1|) |#1| |#1| |#1|))))) (-1090)) (T -106)) +((-2203 (*1 *1 *2 *3) (-12 (-5 *2 (-763)) (-5 *1 (-106 *3)) (-4 *3 (-1090)))) (-2243 (*1 *1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-1090)) (-5 *1 (-106 *3)))) (-1503 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-106 *2)) (-4 *2 (-1090)))) (-1503 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1090)) (-5 *1 (-106 *3)))) (-4280 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1090)) (-5 *1 (-106 *2)))) (-4280 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-634 *2) *2 *2 *2)) (-4 *2 (-1090)) (-5 *1 (-106 *2))))) +(-13 (-134 |#1|) (-10 -8 (-6 -4519) (-6 -4520) (-15 -2203 ($ (-763) |#1|)) (-15 -2243 ($ $ (-634 |#1|))) (-15 -1503 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1503 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -4280 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -4280 ($ $ |#1| (-1 (-634 |#1|) |#1| |#1| |#1|))))) +((-2747 (((-1 (-634 |#1|) |#1|) (-634 |#1|) (-634 |#1|) (-634 |#1|)) 20)) (-3617 (((-1 (-634 |#1|) |#1|) (-634 |#1|) (-634 |#1|)) 17)) (-2973 (((-1 (-634 |#1|) |#1|) (-634 |#1|) (-634 |#1|) (-634 |#1|) (-634 |#1|)) 21))) +(((-107 |#1|) (-10 -7 (-15 -3617 ((-1 (-634 |#1|) |#1|) (-634 |#1|) (-634 |#1|))) (-15 -2747 ((-1 (-634 |#1|) |#1|) (-634 |#1|) (-634 |#1|) (-634 |#1|))) (-15 -2973 ((-1 (-634 |#1|) |#1|) (-634 |#1|) (-634 |#1|) (-634 |#1|) (-634 |#1|)))) (-1047)) (T -107)) +((-2973 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-1047)) (-5 *2 (-1 (-634 *4) *4)) (-5 *1 (-107 *4)) (-5 *3 (-634 *4)))) (-2747 (*1 *2 *3 *3 *3) (-12 (-4 *4 (-1047)) (-5 *2 (-1 (-634 *4) *4)) (-5 *1 (-107 *4)) (-5 *3 (-634 *4)))) (-3617 (*1 *2 *3 *3) (-12 (-4 *4 (-1047)) (-5 *2 (-1 (-634 *4) *4)) (-5 *1 (-107 *4)) (-5 *3 (-634 *4))))) +(-10 -7 (-15 -3617 ((-1 (-634 |#1|) |#1|) (-634 |#1|) (-634 |#1|))) (-15 -2747 ((-1 (-634 |#1|) |#1|) (-634 |#1|) (-634 |#1|) (-634 |#1|))) (-15 -2973 ((-1 (-634 |#1|) |#1|) (-634 |#1|) (-634 |#1|) (-634 |#1|) (-634 |#1|)))) +((-1522 ((|#3| |#2| |#2|) 28)) (-3467 ((|#1| |#2| |#2|) 36 (|has| |#1| (-6 (-4521 "*"))))) (-2318 ((|#3| |#2| |#2|) 29)) (-2732 ((|#1| |#2|) 40 (|has| |#1| (-6 (-4521 "*")))))) +(((-108 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1522 (|#3| |#2| |#2|)) (-15 -2318 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4521 "*"))) (PROGN (-15 -3467 (|#1| |#2| |#2|)) (-15 -2732 (|#1| |#2|))) |noBranch|)) (-1047) (-1219 |#1|) (-677 |#1| |#4| |#5|) (-375 |#1|) (-375 |#1|)) (T -108)) +((-2732 (*1 *2 *3) (-12 (|has| *2 (-6 (-4521 "*"))) (-4 *5 (-375 *2)) (-4 *6 (-375 *2)) (-4 *2 (-1047)) (-5 *1 (-108 *2 *3 *4 *5 *6)) (-4 *3 (-1219 *2)) (-4 *4 (-677 *2 *5 *6)))) (-3467 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4521 "*"))) (-4 *5 (-375 *2)) (-4 *6 (-375 *2)) (-4 *2 (-1047)) (-5 *1 (-108 *2 *3 *4 *5 *6)) (-4 *3 (-1219 *2)) (-4 *4 (-677 *2 *5 *6)))) (-2318 (*1 *2 *3 *3) (-12 (-4 *4 (-1047)) (-4 *2 (-677 *4 *5 *6)) (-5 *1 (-108 *4 *3 *2 *5 *6)) (-4 *3 (-1219 *4)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)))) (-1522 (*1 *2 *3 *3) (-12 (-4 *4 (-1047)) (-4 *2 (-677 *4 *5 *6)) (-5 *1 (-108 *4 *3 *2 *5 *6)) (-4 *3 (-1219 *4)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4))))) +(-10 -7 (-15 -1522 (|#3| |#2| |#2|)) (-15 -2318 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4521 "*"))) (PROGN (-15 -3467 (|#1| |#2| |#2|)) (-15 -2732 (|#1| |#2|))) |noBranch|)) +((-2447 (((-121) $ $) NIL)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2745 (((-850) $) NIL)) (-1967 (((-634 (-1161))) 32)) (-4195 (((-2 (|:| |zeros| (-1141 (-215))) (|:| |ones| (-1141 (-215))) (|:| |singularities| (-1141 (-215)))) (-1161)) 35)) (-1717 (((-121) $ $) NIL))) +(((-109) (-13 (-1090) (-10 -7 (-15 -1967 ((-634 (-1161)))) (-15 -4195 ((-2 (|:| |zeros| (-1141 (-215))) (|:| |ones| (-1141 (-215))) (|:| |singularities| (-1141 (-215)))) (-1161))) (-6 -4519)))) (T -109)) +((-1967 (*1 *2) (-12 (-5 *2 (-634 (-1161))) (-5 *1 (-109)))) (-4195 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-2 (|:| |zeros| (-1141 (-215))) (|:| |ones| (-1141 (-215))) (|:| |singularities| (-1141 (-215))))) (-5 *1 (-109))))) +(-13 (-1090) (-10 -7 (-15 -1967 ((-634 (-1161)))) (-15 -4195 ((-2 (|:| |zeros| (-1141 (-215))) (|:| |ones| (-1141 (-215))) (|:| |singularities| (-1141 (-215)))) (-1161))) (-6 -4519))) +((-2367 (($ (-634 |#2|)) 11))) +(((-110 |#1| |#2|) (-10 -8 (-15 -2367 (|#1| (-634 |#2|)))) (-111 |#2|) (-1195)) (T -110)) +NIL +(-10 -8 (-15 -2367 (|#1| (-634 |#2|)))) +((-2447 (((-121) $ $) 18 (|has| |#1| (-1090)))) (-2510 (((-121) $ (-763)) 8)) (-2671 (($) 7 T CONST)) (-4360 (((-634 |#1|) $) 30 (|has| $ (-6 -4519)))) (-1737 (((-121) $ (-763)) 9)) (-1979 (((-634 |#1|) $) 29 (|has| $ (-6 -4519)))) (-3109 (((-121) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-3674 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#1| |#1|) $) 35)) (-2166 (((-121) $ (-763)) 10)) (-4487 (((-1143) $) 22 (|has| |#1| (-1090)))) (-1890 ((|#1| $) 36)) (-4450 (($ |#1| $) 37)) (-4022 (((-1108) $) 21 (|has| |#1| (-1090)))) (-1315 ((|#1| $) 38)) (-1387 (((-121) (-1 (-121) |#1|) $) 32 (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-634 |#1|) (-634 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))))) (-3171 (((-121) $ $) 14)) (-3084 (((-121) $) 11)) (-3248 (($) 12)) (-4168 (((-763) (-1 (-121) |#1|) $) 31 (|has| $ (-6 -4519))) (((-763) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-3863 (($ $) 13)) (-2745 (((-850) $) 20 (|has| |#1| (-1090)))) (-2367 (($ (-634 |#1|)) 39)) (-1319 (((-121) (-1 (-121) |#1|) $) 33 (|has| $ (-6 -4519)))) (-1717 (((-121) $ $) 19 (|has| |#1| (-1090)))) (-1697 (((-763) $) 6 (|has| $ (-6 -4519))))) +(((-111 |#1|) (-1275) (-1195)) (T -111)) +((-2367 (*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-1195)) (-4 *1 (-111 *3)))) (-1315 (*1 *2 *1) (-12 (-4 *1 (-111 *2)) (-4 *2 (-1195)))) (-4450 (*1 *1 *2 *1) (-12 (-4 *1 (-111 *2)) (-4 *2 (-1195)))) (-1890 (*1 *2 *1) (-12 (-4 *1 (-111 *2)) (-4 *2 (-1195))))) +(-13 (-499 |t#1|) (-10 -8 (-6 -4520) (-15 -2367 ($ (-634 |t#1|))) (-15 -1315 (|t#1| $)) (-15 -4450 ($ |t#1| $)) (-15 -1890 (|t#1| $)))) +(((-39) . T) ((-105) |has| |#1| (-1090)) ((-608 (-850)) |has| |#1| (-1090)) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))) ((-499 |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))) ((-1090) |has| |#1| (-1090)) ((-1195) . T)) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-1492 (((-568) $) NIL (|has| (-568) (-301)))) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL)) (-2227 (($ $) NIL)) (-1573 (((-121) $) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-1750 (((-420 (-1157 $)) (-1157 $)) NIL (|has| (-568) (-904)))) (-4305 (($ $) NIL)) (-1678 (((-420 $) $) NIL)) (-1858 (((-3 (-634 (-1157 $)) "failed") (-634 (-1157 $)) (-1157 $)) NIL (|has| (-568) (-904)))) (-1497 (((-121) $ $) NIL)) (-3662 (((-568) $) NIL (|has| (-568) (-815)))) (-2671 (($) NIL T CONST)) (-3666 (((-3 (-568) "failed") $) NIL) (((-3 (-1161) "failed") $) NIL (|has| (-568) (-1037 (-1161)))) (((-3 (-409 (-568)) "failed") $) NIL (|has| (-568) (-1037 (-568)))) (((-3 (-568) "failed") $) NIL (|has| (-568) (-1037 (-568))))) (-2854 (((-568) $) NIL) (((-1161) $) NIL (|has| (-568) (-1037 (-1161)))) (((-409 (-568)) $) NIL (|has| (-568) (-1037 (-568)))) (((-568) $) NIL (|has| (-568) (-1037 (-568))))) (-2401 (($ $ $) NIL)) (-3164 (((-679 (-568)) (-679 $)) NIL (|has| (-568) (-630 (-568)))) (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) NIL (|has| (-568) (-630 (-568)))) (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) NIL) (((-679 (-568)) (-679 $)) NIL)) (-2925 (((-3 $ "failed") $) NIL)) (-1731 (($) NIL (|has| (-568) (-550)))) (-2412 (($ $ $) NIL)) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) NIL)) (-3927 (((-121) $) NIL)) (-2033 (((-121) $) NIL (|has| (-568) (-815)))) (-4410 (((-884 (-568) $) $ (-887 (-568)) (-884 (-568) $)) NIL (|has| (-568) (-881 (-568)))) (((-884 (-381) $) $ (-887 (-381)) (-884 (-381) $)) NIL (|has| (-568) (-881 (-381))))) (-2735 (((-121) $) NIL)) (-1332 (($ $) NIL)) (-2317 (((-568) $) NIL)) (-3038 (((-3 $ "failed") $) NIL (|has| (-568) (-1136)))) (-2245 (((-121) $) NIL (|has| (-568) (-815)))) (-3562 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-2521 (($ $ $) NIL (|has| (-568) (-842)))) (-3268 (($ $ $) NIL (|has| (-568) (-842)))) (-2795 (($ (-1 (-568) (-568)) $) NIL)) (-2495 (($ $ $) NIL) (($ (-634 $)) NIL)) (-4487 (((-1143) $) NIL)) (-2081 (($ $) NIL)) (-4434 (($) NIL (|has| (-568) (-1136)) CONST)) (-4022 (((-1108) $) NIL)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL)) (-2721 (($ $ $) NIL) (($ (-634 $)) NIL)) (-3880 (($ $) NIL (|has| (-568) (-301))) (((-409 (-568)) $) NIL)) (-1519 (((-568) $) NIL (|has| (-568) (-550)))) (-2905 (((-420 (-1157 $)) (-1157 $)) NIL (|has| (-568) (-904)))) (-3545 (((-420 (-1157 $)) (-1157 $)) NIL (|has| (-568) (-904)))) (-3848 (((-420 $) $) NIL)) (-4497 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2595 (((-3 $ "failed") $ $) NIL)) (-2344 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-1339 (($ $ (-634 (-568)) (-634 (-568))) NIL (|has| (-568) (-303 (-568)))) (($ $ (-568) (-568)) NIL (|has| (-568) (-303 (-568)))) (($ $ (-288 (-568))) NIL (|has| (-568) (-303 (-568)))) (($ $ (-634 (-288 (-568)))) NIL (|has| (-568) (-303 (-568)))) (($ $ (-634 (-1161)) (-634 (-568))) NIL (|has| (-568) (-523 (-1161) (-568)))) (($ $ (-1161) (-568)) NIL (|has| (-568) (-523 (-1161) (-568))))) (-2709 (((-763) $) NIL)) (-2779 (($ $ (-568)) NIL (|has| (-568) (-281 (-568) (-568))))) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL)) (-4189 (($ $) NIL (|has| (-568) (-225))) (($ $ (-763)) NIL (|has| (-568) (-225))) (($ $ (-1161)) NIL (|has| (-568) (-895 (-1161)))) (($ $ (-634 (-1161))) NIL (|has| (-568) (-895 (-1161)))) (($ $ (-1161) (-763)) NIL (|has| (-568) (-895 (-1161)))) (($ $ (-634 (-1161)) (-634 (-763))) NIL (|has| (-568) (-895 (-1161)))) (($ $ (-1 (-568) (-568)) (-763)) NIL) (($ $ (-1 (-568) (-568))) NIL)) (-3013 (($ $) NIL)) (-2324 (((-568) $) NIL)) (-4278 (((-887 (-568)) $) NIL (|has| (-568) (-609 (-887 (-568))))) (((-887 (-381)) $) NIL (|has| (-568) (-609 (-887 (-381))))) (((-541) $) NIL (|has| (-568) (-609 (-541)))) (((-381) $) NIL (|has| (-568) (-1021))) (((-215) $) NIL (|has| (-568) (-1021)))) (-2979 (((-3 (-1244 $) "failed") (-679 $)) NIL (-12 (|has| $ (-148)) (|has| (-568) (-904))))) (-2745 (((-850) $) NIL) (($ (-568)) NIL) (($ $) NIL) (($ (-409 (-568))) 7) (($ (-568)) NIL) (($ (-1161)) NIL (|has| (-568) (-1037 (-1161)))) (((-409 (-568)) $) NIL) (((-1004 2) $) 9)) (-4371 (((-3 $ "failed") $) NIL (-2198 (-12 (|has| $ (-148)) (|has| (-568) (-904))) (|has| (-568) (-148))))) (-4078 (((-763)) NIL)) (-2285 (((-568) $) NIL (|has| (-568) (-550)))) (-2494 (($ (-409 (-568))) 8)) (-1826 (((-121) $ $) NIL)) (-2897 (($ $) NIL (|has| (-568) (-815)))) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL)) (-3056 (($) NIL T CONST)) (-1556 (($) NIL T CONST)) (-3190 (($ $) NIL (|has| (-568) (-225))) (($ $ (-763)) NIL (|has| (-568) (-225))) (($ $ (-1161)) NIL (|has| (-568) (-895 (-1161)))) (($ $ (-634 (-1161))) NIL (|has| (-568) (-895 (-1161)))) (($ $ (-1161) (-763)) NIL (|has| (-568) (-895 (-1161)))) (($ $ (-634 (-1161)) (-634 (-763))) NIL (|has| (-568) (-895 (-1161)))) (($ $ (-1 (-568) (-568)) (-763)) NIL) (($ $ (-1 (-568) (-568))) NIL)) (-1751 (((-121) $ $) NIL (|has| (-568) (-842)))) (-1738 (((-121) $ $) NIL (|has| (-568) (-842)))) (-1717 (((-121) $ $) NIL)) (-1745 (((-121) $ $) NIL (|has| (-568) (-842)))) (-1732 (((-121) $ $) NIL (|has| (-568) (-842)))) (-1779 (($ $ $) NIL) (($ (-568) (-568)) NIL)) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) NIL) (($ $ (-409 (-568))) NIL) (($ (-409 (-568)) $) NIL) (($ (-568) $) NIL) (($ $ (-568)) NIL))) +(((-112) (-13 (-993 (-568)) (-10 -8 (-15 -2745 ((-409 (-568)) $)) (-15 -2745 ((-1004 2) $)) (-15 -3880 ((-409 (-568)) $)) (-15 -2494 ($ (-409 (-568))))))) (T -112)) +((-2745 (*1 *2 *1) (-12 (-5 *2 (-409 (-568))) (-5 *1 (-112)))) (-2745 (*1 *2 *1) (-12 (-5 *2 (-1004 2)) (-5 *1 (-112)))) (-3880 (*1 *2 *1) (-12 (-5 *2 (-409 (-568))) (-5 *1 (-112)))) (-2494 (*1 *1 *2) (-12 (-5 *2 (-409 (-568))) (-5 *1 (-112))))) +(-13 (-993 (-568)) (-10 -8 (-15 -2745 ((-409 (-568)) $)) (-15 -2745 ((-1004 2) $)) (-15 -3880 ((-409 (-568)) $)) (-15 -2494 ($ (-409 (-568)))))) +((-2447 (((-121) $ $) NIL)) (-1705 (((-1108) $ (-1108)) 23)) (-2511 (($ $ (-1143)) 17)) (-3861 (((-3 (-1108) "failed") $) 22)) (-3327 (((-1108) $) 20)) (-4031 (((-1108) $ (-1108)) 25)) (-2764 (((-1108) $) 24)) (-1798 (($ (-390)) NIL) (($ (-390) (-1143)) 16)) (-3391 (((-390) $) NIL)) (-4487 (((-1143) $) NIL)) (-3305 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-4169 (((-1249) $) NIL)) (-2745 (((-850) $) NIL)) (-3637 (($ $) 18)) (-1717 (((-121) $ $) NIL))) +(((-113) (-13 (-366 (-390) (-1108)) (-10 -8 (-15 -3861 ((-3 (-1108) "failed") $)) (-15 -2764 ((-1108) $)) (-15 -4031 ((-1108) $ (-1108)))))) (T -113)) +((-3861 (*1 *2 *1) (|partial| -12 (-5 *2 (-1108)) (-5 *1 (-113)))) (-2764 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-113)))) (-4031 (*1 *2 *1 *2) (-12 (-5 *2 (-1108)) (-5 *1 (-113))))) +(-13 (-366 (-390) (-1108)) (-10 -8 (-15 -3861 ((-3 (-1108) "failed") $)) (-15 -2764 ((-1108) $)) (-15 -4031 ((-1108) $ (-1108))))) +((-2447 (((-121) $ $) NIL)) (-1611 (($ $) NIL)) (-3091 (($ $ $) NIL)) (-1868 (((-1249) $ (-568) (-568)) NIL (|has| $ (-6 -4520)))) (-2016 (((-121) $) NIL (|has| (-121) (-842))) (((-121) (-1 (-121) (-121) (-121)) $) NIL)) (-3908 (($ $) NIL (-12 (|has| $ (-6 -4520)) (|has| (-121) (-842)))) (($ (-1 (-121) (-121) (-121)) $) NIL (|has| $ (-6 -4520)))) (-3644 (($ $) NIL (|has| (-121) (-842))) (($ (-1 (-121) (-121) (-121)) $) NIL)) (-2510 (((-121) $ (-763)) NIL)) (-2436 (((-121) $ (-1210 (-568)) (-121)) NIL (|has| $ (-6 -4520))) (((-121) $ (-568) (-121)) NIL (|has| $ (-6 -4520)))) (-2801 (($ (-1 (-121) (-121)) $) NIL (|has| $ (-6 -4519)))) (-2671 (($) NIL T CONST)) (-1578 (($ $) NIL (|has| $ (-6 -4520)))) (-3943 (($ $) NIL)) (-3924 (($ $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-121) (-1090))))) (-4328 (($ (-1 (-121) (-121)) $) NIL (|has| $ (-6 -4519))) (($ (-121) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-121) (-1090))))) (-3092 (((-121) (-1 (-121) (-121) (-121)) $) NIL (|has| $ (-6 -4519))) (((-121) (-1 (-121) (-121) (-121)) $ (-121)) NIL (|has| $ (-6 -4519))) (((-121) (-1 (-121) (-121) (-121)) $ (-121) (-121)) NIL (-12 (|has| $ (-6 -4519)) (|has| (-121) (-1090))))) (-3989 (((-121) $ (-568) (-121)) NIL (|has| $ (-6 -4520)))) (-2602 (((-121) $ (-568)) NIL)) (-2764 (((-568) (-121) $ (-568)) NIL (|has| (-121) (-1090))) (((-568) (-121) $) NIL (|has| (-121) (-1090))) (((-568) (-1 (-121) (-121)) $) NIL)) (-4360 (((-634 (-121)) $) NIL (|has| $ (-6 -4519)))) (-3104 (($ $ $) NIL)) (-3044 (($ $) NIL)) (-2460 (($ $ $) NIL)) (-1849 (($ (-763) (-121)) 8)) (-3339 (($ $ $) NIL)) (-1737 (((-121) $ (-763)) NIL)) (-1881 (((-568) $) NIL (|has| (-568) (-842)))) (-2521 (($ $ $) NIL)) (-1347 (($ $ $) NIL (|has| (-121) (-842))) (($ (-1 (-121) (-121) (-121)) $ $) NIL)) (-1979 (((-634 (-121)) $) NIL (|has| $ (-6 -4519)))) (-3109 (((-121) (-121) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-121) (-1090))))) (-2223 (((-568) $) NIL (|has| (-568) (-842)))) (-3268 (($ $ $) NIL)) (-3674 (($ (-1 (-121) (-121)) $) NIL (|has| $ (-6 -4520)))) (-2795 (($ (-1 (-121) (-121) (-121)) $ $) NIL) (($ (-1 (-121) (-121)) $) NIL)) (-2166 (((-121) $ (-763)) NIL)) (-4487 (((-1143) $) NIL)) (-4122 (($ $ $ (-568)) NIL) (($ (-121) $ (-568)) NIL)) (-4174 (((-634 (-568)) $) NIL)) (-3578 (((-121) (-568) $) NIL)) (-4022 (((-1108) $) NIL)) (-3876 (((-121) $) NIL (|has| (-568) (-842)))) (-3775 (((-3 (-121) "failed") (-1 (-121) (-121)) $) NIL)) (-3724 (($ $ (-121)) NIL (|has| $ (-6 -4520)))) (-1387 (((-121) (-1 (-121) (-121)) $) NIL (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-121)) (-634 (-121))) NIL (-12 (|has| (-121) (-303 (-121))) (|has| (-121) (-1090)))) (($ $ (-121) (-121)) NIL (-12 (|has| (-121) (-303 (-121))) (|has| (-121) (-1090)))) (($ $ (-288 (-121))) NIL (-12 (|has| (-121) (-303 (-121))) (|has| (-121) (-1090)))) (($ $ (-634 (-288 (-121)))) NIL (-12 (|has| (-121) (-303 (-121))) (|has| (-121) (-1090))))) (-3171 (((-121) $ $) NIL)) (-4467 (((-121) (-121) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-121) (-1090))))) (-2041 (((-634 (-121)) $) NIL)) (-3084 (((-121) $) NIL)) (-3248 (($) NIL)) (-2779 (($ $ (-1210 (-568))) NIL) (((-121) $ (-568)) NIL) (((-121) $ (-568) (-121)) NIL)) (-2826 (($ $ (-1210 (-568))) NIL) (($ $ (-568)) NIL)) (-4168 (((-763) (-121) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-121) (-1090)))) (((-763) (-1 (-121) (-121)) $) NIL (|has| $ (-6 -4519)))) (-2256 (($ $ $ (-568)) NIL (|has| $ (-6 -4520)))) (-3863 (($ $) NIL)) (-4278 (((-541) $) NIL (|has| (-121) (-609 (-541))))) (-4287 (($ (-634 (-121))) NIL)) (-2768 (($ (-634 $)) NIL) (($ $ $) NIL) (($ (-121) $) NIL) (($ $ (-121)) NIL)) (-2745 (((-850) $) NIL)) (-4042 (($ (-763) (-121)) 9)) (-1319 (((-121) (-1 (-121) (-121)) $) NIL (|has| $ (-6 -4519)))) (-2139 (($ $ $) NIL)) (-1887 (($ $) NIL)) (-2430 (($ $ $) NIL)) (-1751 (((-121) $ $) NIL)) (-1738 (((-121) $ $) NIL)) (-1717 (((-121) $ $) NIL)) (-1745 (((-121) $ $) NIL)) (-1732 (((-121) $ $) NIL)) (-2424 (($ $ $) NIL)) (-1697 (((-763) $) NIL (|has| $ (-6 -4519))))) +(((-114) (-13 (-132) (-10 -8 (-15 -4042 ($ (-763) (-121)))))) (T -114)) +((-4042 (*1 *1 *2 *3) (-12 (-5 *2 (-763)) (-5 *3 (-121)) (-5 *1 (-114))))) +(-13 (-132) (-10 -8 (-15 -4042 ($ (-763) (-121))))) +((-4427 (((-958 (-215)) (-1108) (-958 (-215)) (-1108) (-958 (-215)) (-1108)) 13)) (-1401 (((-215) (-169 (-215))) 8)) (-3398 (((-958 (-215)) (-1108) (-215) (-958 (-215)) (-1108) (-958 (-215)) (-1108)) 12)) (-3658 (((-215) (-1108) (-958 (-215)) (-1108)) 11))) +(((-115) (-10 -7 (-15 -1401 ((-215) (-169 (-215)))) (-15 -3658 ((-215) (-1108) (-958 (-215)) (-1108))) (-15 -3398 ((-958 (-215)) (-1108) (-215) (-958 (-215)) (-1108) (-958 (-215)) (-1108))) (-15 -4427 ((-958 (-215)) (-1108) (-958 (-215)) (-1108) (-958 (-215)) (-1108))))) (T -115)) +((-4427 (*1 *2 *3 *2 *3 *2 *3) (-12 (-5 *2 (-958 (-215))) (-5 *3 (-1108)) (-5 *1 (-115)))) (-3398 (*1 *2 *3 *4 *2 *3 *2 *3) (-12 (-5 *2 (-958 (-215))) (-5 *3 (-1108)) (-5 *4 (-215)) (-5 *1 (-115)))) (-3658 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-1108)) (-5 *4 (-958 (-215))) (-5 *2 (-215)) (-5 *1 (-115)))) (-1401 (*1 *2 *3) (-12 (-5 *3 (-169 (-215))) (-5 *2 (-215)) (-5 *1 (-115))))) +(-10 -7 (-15 -1401 ((-215) (-169 (-215)))) (-15 -3658 ((-215) (-1108) (-958 (-215)) (-1108))) (-15 -3398 ((-958 (-215)) (-1108) (-215) (-958 (-215)) (-1108) (-958 (-215)) (-1108))) (-15 -4427 ((-958 (-215)) (-1108) (-958 (-215)) (-1108) (-958 (-215)) (-1108)))) +((-2447 (((-121) $ $) NIL)) (-2219 (((-3 "left" "center" "right" "vertical" "horizontal") $) 17)) (-2259 (((-568) $) 14)) (-2458 (((-568) $) 15)) (-2655 (((-568) $) 16)) (-4487 (((-1143) $) NIL)) (-4288 (((-121) $) 8)) (-4022 (((-1108) $) NIL)) (-4486 (((-568) $) 12)) (-1485 (($ (-568) (-568) (-568) (-568) (-568) (-121) (-3 "left" "center" "right" "vertical" "horizontal")) 11)) (-2745 (((-850) $) 19) (($ (-634 (-568))) NIL)) (-2456 (((-568) $) 13)) (-1717 (((-121) $ $) NIL))) (((-116) (-13 (-117) (-10 -7 (-6 |HamburgerNoether|)))) (T -116)) NIL (-13 (-117) (-10 -7 (-6 |HamburgerNoether|))) -((-2601 (((-121) $ $) 7)) (-2248 (((-3 "left" "center" "right" "vertical" "horizontal") $) 12)) (-1514 (((-560) $) 17)) (-1520 (((-560) $) 15)) (-1526 (((-560) $) 13)) (-1291 (((-1135) $) 9)) (-1532 (((-121) $) 14)) (-4353 (((-1100) $) 10)) (-1538 (((-560) $) 19)) (-1544 (($ (-560) (-560) (-560) (-560) (-560) (-121) (-3 "left" "center" "right" "vertical" "horizontal")) 16)) (-2801 (((-842) $) 11) (($ (-626 (-560))) 20)) (-1551 (((-560) $) 18)) (-1653 (((-121) $ $) 6))) -(((-117) (-1267)) (T -117)) -((-2801 (*1 *1 *2) (-12 (-5 *2 (-626 (-560))) (-4 *1 (-117)))) (-1538 (*1 *2 *1) (-12 (-4 *1 (-117)) (-5 *2 (-560)))) (-1551 (*1 *2 *1) (-12 (-4 *1 (-117)) (-5 *2 (-560)))) (-1514 (*1 *2 *1) (-12 (-4 *1 (-117)) (-5 *2 (-560)))) (-1544 (*1 *1 *2 *2 *2 *2 *2 *3 *4) (-12 (-5 *2 (-560)) (-5 *3 (-121)) (-5 *4 (-3 "left" "center" "right" "vertical" "horizontal")) (-4 *1 (-117)))) (-1520 (*1 *2 *1) (-12 (-4 *1 (-117)) (-5 *2 (-560)))) (-1532 (*1 *2 *1) (-12 (-4 *1 (-117)) (-5 *2 (-121)))) (-1526 (*1 *2 *1) (-12 (-4 *1 (-117)) (-5 *2 (-560)))) (-2248 (*1 *2 *1) (-12 (-4 *1 (-117)) (-5 *2 (-3 "left" "center" "right" "vertical" "horizontal"))))) -(-13 (-1082) (-10 -8 (-15 -2801 ($ (-626 (-560)))) (-15 -1538 ((-560) $)) (-15 -1551 ((-560) $)) (-15 -1514 ((-560) $)) (-15 -1544 ($ (-560) (-560) (-560) (-560) (-560) (-121) (-3 "left" "center" "right" "vertical" "horizontal"))) (-15 -1520 ((-560) $)) (-15 -1532 ((-121) $)) (-15 -1526 ((-560) $)) (-15 -2248 ((-3 "left" "center" "right" "vertical" "horizontal") $)))) -(((-105) . T) ((-600 (-842)) . T) ((-1082) . T)) -((-2601 (((-121) $ $) NIL)) (-2248 (((-3 "left" "center" "right" "vertical" "horizontal") $) NIL)) (-1514 (((-560) $) 14)) (-1520 (((-560) $) 11)) (-1526 (((-560) $) 15)) (-1291 (((-1135) $) NIL)) (-1532 (((-121) $) NIL)) (-4353 (((-1100) $) NIL)) (-1538 (((-560) $) 12)) (-1544 (($ (-560) (-560) (-560) (-560) (-560) (-121) (-3 "left" "center" "right" "vertical" "horizontal")) NIL)) (-2801 (((-842) $) 17) (($ (-626 (-560))) 10)) (-1551 (((-560) $) 13)) (-1653 (((-121) $ $) NIL))) +((-2447 (((-121) $ $) 7)) (-2219 (((-3 "left" "center" "right" "vertical" "horizontal") $) 12)) (-2259 (((-568) $) 17)) (-2458 (((-568) $) 15)) (-2655 (((-568) $) 13)) (-4487 (((-1143) $) 9)) (-4288 (((-121) $) 14)) (-4022 (((-1108) $) 10)) (-4486 (((-568) $) 19)) (-1485 (($ (-568) (-568) (-568) (-568) (-568) (-121) (-3 "left" "center" "right" "vertical" "horizontal")) 16)) (-2745 (((-850) $) 11) (($ (-634 (-568))) 20)) (-2456 (((-568) $) 18)) (-1717 (((-121) $ $) 6))) +(((-117) (-1275)) (T -117)) +((-2745 (*1 *1 *2) (-12 (-5 *2 (-634 (-568))) (-4 *1 (-117)))) (-4486 (*1 *2 *1) (-12 (-4 *1 (-117)) (-5 *2 (-568)))) (-2456 (*1 *2 *1) (-12 (-4 *1 (-117)) (-5 *2 (-568)))) (-2259 (*1 *2 *1) (-12 (-4 *1 (-117)) (-5 *2 (-568)))) (-1485 (*1 *1 *2 *2 *2 *2 *2 *3 *4) (-12 (-5 *2 (-568)) (-5 *3 (-121)) (-5 *4 (-3 "left" "center" "right" "vertical" "horizontal")) (-4 *1 (-117)))) (-2458 (*1 *2 *1) (-12 (-4 *1 (-117)) (-5 *2 (-568)))) (-4288 (*1 *2 *1) (-12 (-4 *1 (-117)) (-5 *2 (-121)))) (-2655 (*1 *2 *1) (-12 (-4 *1 (-117)) (-5 *2 (-568)))) (-2219 (*1 *2 *1) (-12 (-4 *1 (-117)) (-5 *2 (-3 "left" "center" "right" "vertical" "horizontal"))))) +(-13 (-1090) (-10 -8 (-15 -2745 ($ (-634 (-568)))) (-15 -4486 ((-568) $)) (-15 -2456 ((-568) $)) (-15 -2259 ((-568) $)) (-15 -1485 ($ (-568) (-568) (-568) (-568) (-568) (-121) (-3 "left" "center" "right" "vertical" "horizontal"))) (-15 -2458 ((-568) $)) (-15 -4288 ((-121) $)) (-15 -2655 ((-568) $)) (-15 -2219 ((-3 "left" "center" "right" "vertical" "horizontal") $)))) +(((-105) . T) ((-608 (-850)) . T) ((-1090) . T)) +((-2447 (((-121) $ $) NIL)) (-2219 (((-3 "left" "center" "right" "vertical" "horizontal") $) NIL)) (-2259 (((-568) $) 14)) (-2458 (((-568) $) 11)) (-2655 (((-568) $) 15)) (-4487 (((-1143) $) NIL)) (-4288 (((-121) $) NIL)) (-4022 (((-1108) $) NIL)) (-4486 (((-568) $) 12)) (-1485 (($ (-568) (-568) (-568) (-568) (-568) (-121) (-3 "left" "center" "right" "vertical" "horizontal")) NIL)) (-2745 (((-850) $) 17) (($ (-634 (-568))) 10)) (-2456 (((-568) $) 13)) (-1717 (((-121) $ $) NIL))) (((-118) (-13 (-117) (-10 -7 (-6 |QuadraticTransform|)))) (T -118)) NIL (-13 (-117) (-10 -7 (-6 |QuadraticTransform|))) -((-1457 (((-2 (|:| |mult| (-755)) (|:| |subMult| (-755)) (|:| |blUpRec| (-626 (-2 (|:| |recTransStr| (-237 (-4162 (QUOTE X) (QUOTE -3095)) |#1|)) (|:| |recPoint| (-33 |#1|)) (|:| |recChart| |#5|) (|:| |definingExtension| |#1|))))) (-237 (-4162 (QUOTE X) (QUOTE -3095)) |#1|) (-33 |#1|) |#5| |#1|) 70)) (-1485 (((-237 (-4162 (QUOTE X) (QUOTE -3095)) |#1|) (-237 (-4162 (QUOTE X) (QUOTE -3095)) |#1|) (-755) |#5|) 54)) (-1490 (((-237 (-4162 (QUOTE X) (QUOTE -3095)) |#1|) |#3| |#5|) 99)) (-1495 (((-626 (-626 (-755))) (-237 (-4162 (QUOTE X) (QUOTE -3095)) |#1|)) NIL)) (-1500 ((|#3| (-237 (-4162 (QUOTE X) (QUOTE -3095)) |#1|) |#5|) 105)) (-1505 ((|#3| |#3| |#5|) 107))) -(((-119 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1505 (|#3| |#3| |#5|)) (-15 -1485 ((-237 (-4162 (QUOTE X) (QUOTE -3095)) |#1|) (-237 (-4162 (QUOTE X) (QUOTE -3095)) |#1|) (-755) |#5|)) (-15 -1457 ((-2 (|:| |mult| (-755)) (|:| |subMult| (-755)) (|:| |blUpRec| (-626 (-2 (|:| |recTransStr| (-237 (-4162 (QUOTE X) (QUOTE -3095)) |#1|)) (|:| |recPoint| (-33 |#1|)) (|:| |recChart| |#5|) (|:| |definingExtension| |#1|))))) (-237 (-4162 (QUOTE X) (QUOTE -3095)) |#1|) (-33 |#1|) |#5| |#1|)) (-15 -1495 ((-626 (-626 (-755))) (-237 (-4162 (QUOTE X) (QUOTE -3095)) |#1|))) (-15 -1490 ((-237 (-4162 (QUOTE X) (QUOTE -3095)) |#1|) |#3| |#5|)) (-15 -1500 (|#3| (-237 (-4162 (QUOTE X) (QUOTE -3095)) |#1|) |#5|))) (-359) (-626 (-1153)) (-318 |#1| |#4|) (-226 (-2271 |#2|) (-755)) (-117)) (T -119)) -((-1500 (*1 *2 *3 *4) (-12 (-5 *3 (-237 (-4162 (QUOTE X) (QUOTE -3095)) *5)) (-4 *5 (-359)) (-14 *6 (-626 (-1153))) (-4 *2 (-318 *5 *7)) (-5 *1 (-119 *5 *6 *2 *7 *4)) (-4 *7 (-226 (-2271 *6) (-755))) (-4 *4 (-117)))) (-1490 (*1 *2 *3 *4) (-12 (-4 *5 (-359)) (-14 *6 (-626 (-1153))) (-4 *7 (-226 (-2271 *6) (-755))) (-5 *2 (-237 (-4162 (QUOTE X) (QUOTE -3095)) *5)) (-5 *1 (-119 *5 *6 *3 *7 *4)) (-4 *3 (-318 *5 *7)) (-4 *4 (-117)))) (-1495 (*1 *2 *3) (-12 (-5 *3 (-237 (-4162 (QUOTE X) (QUOTE -3095)) *4)) (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *7 (-226 (-2271 *5) (-755))) (-5 *2 (-626 (-626 (-755)))) (-5 *1 (-119 *4 *5 *6 *7 *8)) (-4 *6 (-318 *4 *7)) (-4 *8 (-117)))) (-1457 (*1 *2 *3 *4 *5 *6) (-12 (-4 *6 (-359)) (-14 *7 (-626 (-1153))) (-4 *9 (-226 (-2271 *7) (-755))) (-5 *2 (-2 (|:| |mult| (-755)) (|:| |subMult| (-755)) (|:| |blUpRec| (-626 (-2 (|:| |recTransStr| (-237 (-4162 (QUOTE X) (QUOTE -3095)) *6)) (|:| |recPoint| (-33 *6)) (|:| |recChart| *5) (|:| |definingExtension| *6)))))) (-5 *1 (-119 *6 *7 *8 *9 *5)) (-5 *3 (-237 (-4162 (QUOTE X) (QUOTE -3095)) *6)) (-5 *4 (-33 *6)) (-4 *8 (-318 *6 *9)) (-4 *5 (-117)))) (-1485 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-237 (-4162 (QUOTE X) (QUOTE -3095)) *5)) (-4 *5 (-359)) (-5 *3 (-755)) (-14 *6 (-626 (-1153))) (-4 *8 (-226 (-2271 *6) *3)) (-5 *1 (-119 *5 *6 *7 *8 *4)) (-4 *7 (-318 *5 *8)) (-4 *4 (-117)))) (-1505 (*1 *2 *2 *3) (-12 (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *6 (-226 (-2271 *5) (-755))) (-5 *1 (-119 *4 *5 *2 *6 *3)) (-4 *2 (-318 *4 *6)) (-4 *3 (-117))))) -(-10 -7 (-15 -1505 (|#3| |#3| |#5|)) (-15 -1485 ((-237 (-4162 (QUOTE X) (QUOTE -3095)) |#1|) (-237 (-4162 (QUOTE X) (QUOTE -3095)) |#1|) (-755) |#5|)) (-15 -1457 ((-2 (|:| |mult| (-755)) (|:| |subMult| (-755)) (|:| |blUpRec| (-626 (-2 (|:| |recTransStr| (-237 (-4162 (QUOTE X) (QUOTE -3095)) |#1|)) (|:| |recPoint| (-33 |#1|)) (|:| |recChart| |#5|) (|:| |definingExtension| |#1|))))) (-237 (-4162 (QUOTE X) (QUOTE -3095)) |#1|) (-33 |#1|) |#5| |#1|)) (-15 -1495 ((-626 (-626 (-755))) (-237 (-4162 (QUOTE X) (QUOTE -3095)) |#1|))) (-15 -1490 ((-237 (-4162 (QUOTE X) (QUOTE -3095)) |#1|) |#3| |#5|)) (-15 -1500 (|#3| (-237 (-4162 (QUOTE X) (QUOTE -3095)) |#1|) |#5|))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-2314 (((-3 $ "failed") $ $) 18)) (-4236 (($) 16 T CONST)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-2801 (((-842) $) 11)) (-3304 (($) 17 T CONST)) (-1653 (((-121) $ $) 6)) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ |#1| $) 22) (($ $ |#2|) 24))) -(((-120 |#1| |#2|) (-1267) (-1039) (-1039)) (T -120)) -NIL -(-13 (-629 |t#1|) (-1045 |t#2|) (-10 -7 (-6 -4500) (-6 -4499))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-105) . T) ((-137) . T) ((-600 (-842)) . T) ((-629 |#1|) . T) ((-1045 |#2|) . T) ((-1082) . T)) -((-2601 (((-121) $ $) NIL)) (-1434 (($ $) 12)) (-1564 (($ $ $) 17)) (-2083 (($) 8 T CONST)) (-4291 (((-121) $) 7)) (-2912 (((-755)) 24)) (-1666 (($) 30)) (-3367 (($ $ $) 15)) (-3186 (($ $) 10)) (-3334 (($ $ $) 18)) (-2881 (($ $ $) 19)) (-4325 (($ $ $) NIL)) (-2501 (($ $ $) NIL)) (-3142 (((-909) $) 29)) (-1291 (((-1135) $) NIL)) (-1330 (($ (-909)) 28)) (-2704 (($ $ $) 21)) (-4353 (((-1100) $) NIL)) (-3858 (($) 9 T CONST)) (-4255 (((-533) $) 36)) (-2801 (((-842) $) 39)) (-2256 (($ $ $) 13)) (-2464 (($ $) 11)) (-2587 (($ $ $) 16)) (-1691 (((-121) $ $) NIL)) (-1675 (((-121) $ $) NIL)) (-1653 (((-121) $ $) 20)) (-1683 (((-121) $ $) NIL)) (-1667 (((-121) $ $) 22)) (-2581 (($ $ $) 14))) -(((-121) (-13 (-834) (-364) (-643) (-601 (-533)) (-10 -8 (-15 -2083 ($) -3565) (-15 -3858 ($) -3565) (-15 -2464 ($ $)) (-15 -3186 ($ $)) (-15 -2256 ($ $ $)) (-15 -3367 ($ $ $)) (-15 -1564 ($ $ $)) (-15 -2881 ($ $ $)) (-15 -3334 ($ $ $)) (-15 -2704 ($ $ $)) (-15 -4291 ((-121) $))))) (T -121)) -((-2083 (*1 *1) (-5 *1 (-121))) (-3858 (*1 *1) (-5 *1 (-121))) (-2464 (*1 *1 *1) (-5 *1 (-121))) (-3186 (*1 *1 *1) (-5 *1 (-121))) (-2256 (*1 *1 *1 *1) (-5 *1 (-121))) (-3367 (*1 *1 *1 *1) (-5 *1 (-121))) (-1564 (*1 *1 *1 *1) (-5 *1 (-121))) (-2881 (*1 *1 *1 *1) (-5 *1 (-121))) (-3334 (*1 *1 *1 *1) (-5 *1 (-121))) (-2704 (*1 *1 *1 *1) (-5 *1 (-121))) (-4291 (*1 *1 *1) (-5 *1 (-121)))) -(-13 (-834) (-364) (-643) (-601 (-533)) (-10 -8 (-15 -2083 ($) -3565) (-15 -3858 ($) -3565) (-15 -2464 ($ $)) (-15 -3186 ($ $)) (-15 -2256 ($ $ $)) (-15 -3367 ($ $ $)) (-15 -1564 ($ $ $)) (-15 -2881 ($ $ $)) (-15 -3334 ($ $ $)) (-15 -2704 ($ $ $)) (-15 -4291 ((-121) $)))) -((-1470 (((-3 (-1 |#1| (-626 |#1|)) "failed") (-123)) 18) (((-123) (-123) (-1 |#1| |#1|)) 13) (((-123) (-123) (-1 |#1| (-626 |#1|))) 11) (((-3 |#1| "failed") (-123) (-626 |#1|)) 20)) (-2231 (((-3 (-626 (-1 |#1| (-626 |#1|))) "failed") (-123)) 24) (((-123) (-123) (-1 |#1| |#1|)) 30) (((-123) (-123) (-626 (-1 |#1| (-626 |#1|)))) 26)) (-3108 (((-123) |#1|) 53 (|has| |#1| (-834)))) (-1686 (((-3 |#1| "failed") (-123)) 48 (|has| |#1| (-834))))) -(((-122 |#1|) (-10 -7 (-15 -1470 ((-3 |#1| "failed") (-123) (-626 |#1|))) (-15 -1470 ((-123) (-123) (-1 |#1| (-626 |#1|)))) (-15 -1470 ((-123) (-123) (-1 |#1| |#1|))) (-15 -1470 ((-3 (-1 |#1| (-626 |#1|)) "failed") (-123))) (-15 -2231 ((-123) (-123) (-626 (-1 |#1| (-626 |#1|))))) (-15 -2231 ((-123) (-123) (-1 |#1| |#1|))) (-15 -2231 ((-3 (-626 (-1 |#1| (-626 |#1|))) "failed") (-123))) (IF (|has| |#1| (-834)) (PROGN (-15 -3108 ((-123) |#1|)) (-15 -1686 ((-3 |#1| "failed") (-123)))) |noBranch|)) (-1082)) (T -122)) -((-1686 (*1 *2 *3) (|partial| -12 (-5 *3 (-123)) (-4 *2 (-1082)) (-4 *2 (-834)) (-5 *1 (-122 *2)))) (-3108 (*1 *2 *3) (-12 (-5 *2 (-123)) (-5 *1 (-122 *3)) (-4 *3 (-834)) (-4 *3 (-1082)))) (-2231 (*1 *2 *3) (|partial| -12 (-5 *3 (-123)) (-5 *2 (-626 (-1 *4 (-626 *4)))) (-5 *1 (-122 *4)) (-4 *4 (-1082)))) (-2231 (*1 *2 *2 *3) (-12 (-5 *2 (-123)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1082)) (-5 *1 (-122 *4)))) (-2231 (*1 *2 *2 *3) (-12 (-5 *2 (-123)) (-5 *3 (-626 (-1 *4 (-626 *4)))) (-4 *4 (-1082)) (-5 *1 (-122 *4)))) (-1470 (*1 *2 *3) (|partial| -12 (-5 *3 (-123)) (-5 *2 (-1 *4 (-626 *4))) (-5 *1 (-122 *4)) (-4 *4 (-1082)))) (-1470 (*1 *2 *2 *3) (-12 (-5 *2 (-123)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1082)) (-5 *1 (-122 *4)))) (-1470 (*1 *2 *2 *3) (-12 (-5 *2 (-123)) (-5 *3 (-1 *4 (-626 *4))) (-4 *4 (-1082)) (-5 *1 (-122 *4)))) (-1470 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-123)) (-5 *4 (-626 *2)) (-5 *1 (-122 *2)) (-4 *2 (-1082))))) -(-10 -7 (-15 -1470 ((-3 |#1| "failed") (-123) (-626 |#1|))) (-15 -1470 ((-123) (-123) (-1 |#1| (-626 |#1|)))) (-15 -1470 ((-123) (-123) (-1 |#1| |#1|))) (-15 -1470 ((-3 (-1 |#1| (-626 |#1|)) "failed") (-123))) (-15 -2231 ((-123) (-123) (-626 (-1 |#1| (-626 |#1|))))) (-15 -2231 ((-123) (-123) (-1 |#1| |#1|))) (-15 -2231 ((-3 (-626 (-1 |#1| (-626 |#1|))) "failed") (-123))) (IF (|has| |#1| (-834)) (PROGN (-15 -3108 ((-123) |#1|)) (-15 -1686 ((-3 |#1| "failed") (-123)))) |noBranch|)) -((-2601 (((-121) $ $) NIL)) (-1400 (((-755) $) 68) (($ $ (-755)) 30)) (-1878 (((-121) $) 32)) (-3618 (($ $ (-1135) (-758)) 26)) (-1406 (($ $ (-50 (-1135) (-758))) 13)) (-2077 (((-3 (-758) "failed") $ (-1135)) 24)) (-2995 (((-50 (-1135) (-758)) $) 12)) (-4403 (($ (-1153)) 15) (($ (-1153) (-755)) 20)) (-4169 (((-121) $) 31)) (-2986 (((-121) $) 33)) (-1337 (((-1153) $) 8)) (-4325 (($ $ $) NIL)) (-2501 (($ $ $) NIL)) (-1291 (((-1135) $) NIL)) (-3178 (((-121) $ (-1153)) 10)) (-2922 (($ $ (-1 (-533) (-626 (-533)))) 50) (((-3 (-1 (-533) (-626 (-533))) "failed") $) 54)) (-4353 (((-1100) $) NIL)) (-4240 (((-121) $ (-1135)) 29)) (-4356 (($ $ (-1 (-121) $ $)) 35)) (-4106 (((-3 (-1 (-842) (-626 (-842))) "failed") $) 52) (($ $ (-1 (-842) (-626 (-842)))) 41) (($ $ (-1 (-842) (-842))) 43)) (-1778 (($ $ (-1135)) 45)) (-2813 (($ $) 61)) (-2595 (($ $ (-1 (-121) $ $)) 36)) (-2801 (((-842) $) 48)) (-4466 (($ $ (-1135)) 27)) (-2126 (((-3 (-755) "failed") $) 56)) (-1691 (((-121) $ $) NIL)) (-1675 (((-121) $ $) NIL)) (-1653 (((-121) $ $) 67)) (-1683 (((-121) $ $) NIL)) (-1667 (((-121) $ $) 72))) -(((-123) (-13 (-834) (-10 -8 (-15 -1337 ((-1153) $)) (-15 -2995 ((-50 (-1135) (-758)) $)) (-15 -2813 ($ $)) (-15 -4403 ($ (-1153))) (-15 -4403 ($ (-1153) (-755))) (-15 -2126 ((-3 (-755) "failed") $)) (-15 -4169 ((-121) $)) (-15 -1878 ((-121) $)) (-15 -2986 ((-121) $)) (-15 -1400 ((-755) $)) (-15 -1400 ($ $ (-755))) (-15 -4356 ($ $ (-1 (-121) $ $))) (-15 -2595 ($ $ (-1 (-121) $ $))) (-15 -4106 ((-3 (-1 (-842) (-626 (-842))) "failed") $)) (-15 -4106 ($ $ (-1 (-842) (-626 (-842))))) (-15 -4106 ($ $ (-1 (-842) (-842)))) (-15 -2922 ($ $ (-1 (-533) (-626 (-533))))) (-15 -2922 ((-3 (-1 (-533) (-626 (-533))) "failed") $)) (-15 -3178 ((-121) $ (-1153))) (-15 -4240 ((-121) $ (-1135))) (-15 -4466 ($ $ (-1135))) (-15 -1778 ($ $ (-1135))) (-15 -2077 ((-3 (-758) "failed") $ (-1135))) (-15 -3618 ($ $ (-1135) (-758))) (-15 -1406 ($ $ (-50 (-1135) (-758))))))) (T -123)) -((-1337 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-123)))) (-2995 (*1 *2 *1) (-12 (-5 *2 (-50 (-1135) (-758))) (-5 *1 (-123)))) (-2813 (*1 *1 *1) (-5 *1 (-123))) (-4403 (*1 *1 *2) (-12 (-5 *2 (-1153)) (-5 *1 (-123)))) (-4403 (*1 *1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-755)) (-5 *1 (-123)))) (-2126 (*1 *2 *1) (|partial| -12 (-5 *2 (-755)) (-5 *1 (-123)))) (-4169 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-123)))) (-1878 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-123)))) (-2986 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-123)))) (-1400 (*1 *2 *1) (-12 (-5 *2 (-755)) (-5 *1 (-123)))) (-1400 (*1 *1 *1 *2) (-12 (-5 *2 (-755)) (-5 *1 (-123)))) (-4356 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-121) (-123) (-123))) (-5 *1 (-123)))) (-2595 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-121) (-123) (-123))) (-5 *1 (-123)))) (-4106 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-842) (-626 (-842)))) (-5 *1 (-123)))) (-4106 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-842) (-626 (-842)))) (-5 *1 (-123)))) (-4106 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-842) (-842))) (-5 *1 (-123)))) (-2922 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-533) (-626 (-533)))) (-5 *1 (-123)))) (-2922 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-533) (-626 (-533)))) (-5 *1 (-123)))) (-3178 (*1 *2 *1 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-121)) (-5 *1 (-123)))) (-4240 (*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-121)) (-5 *1 (-123)))) (-4466 (*1 *1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-123)))) (-1778 (*1 *1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-123)))) (-2077 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1135)) (-5 *2 (-758)) (-5 *1 (-123)))) (-3618 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-758)) (-5 *1 (-123)))) (-1406 (*1 *1 *1 *2) (-12 (-5 *2 (-50 (-1135) (-758))) (-5 *1 (-123))))) -(-13 (-834) (-10 -8 (-15 -1337 ((-1153) $)) (-15 -2995 ((-50 (-1135) (-758)) $)) (-15 -2813 ($ $)) (-15 -4403 ($ (-1153))) (-15 -4403 ($ (-1153) (-755))) (-15 -2126 ((-3 (-755) "failed") $)) (-15 -4169 ((-121) $)) (-15 -1878 ((-121) $)) (-15 -2986 ((-121) $)) (-15 -1400 ((-755) $)) (-15 -1400 ($ $ (-755))) (-15 -4356 ($ $ (-1 (-121) $ $))) (-15 -2595 ($ $ (-1 (-121) $ $))) (-15 -4106 ((-3 (-1 (-842) (-626 (-842))) "failed") $)) (-15 -4106 ($ $ (-1 (-842) (-626 (-842))))) (-15 -4106 ($ $ (-1 (-842) (-842)))) (-15 -2922 ($ $ (-1 (-533) (-626 (-533))))) (-15 -2922 ((-3 (-1 (-533) (-626 (-533))) "failed") $)) (-15 -3178 ((-121) $ (-1153))) (-15 -4240 ((-121) $ (-1135))) (-15 -4466 ($ $ (-1135))) (-15 -1778 ($ $ (-1135))) (-15 -2077 ((-3 (-758) "failed") $ (-1135))) (-15 -3618 ($ $ (-1135) (-758))) (-15 -1406 ($ $ (-50 (-1135) (-758)))))) -((-2199 (((-560) |#2|) 36))) -(((-124 |#1| |#2|) (-10 -7 (-15 -2199 ((-560) |#2|))) (-13 (-359) (-1029 (-403 (-560)))) (-1211 |#1|)) (T -124)) -((-2199 (*1 *2 *3) (-12 (-4 *4 (-13 (-359) (-1029 (-403 *2)))) (-5 *2 (-560)) (-5 *1 (-124 *4 *3)) (-4 *3 (-1211 *4))))) -(-10 -7 (-15 -2199 ((-560) |#2|))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL)) (-1350 (($ $) NIL)) (-3376 (((-121) $) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-2479 (($ $ (-560)) NIL)) (-4179 (((-121) $ $) NIL)) (-4236 (($) NIL T CONST)) (-4463 (($ (-1149 (-560)) (-560)) NIL)) (-2563 (($ $ $) NIL)) (-1823 (((-3 $ "failed") $) NIL)) (-2792 (($ $) NIL)) (-2572 (($ $ $) NIL)) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) NIL)) (-3504 (((-755) $) NIL)) (-2642 (((-121) $) NIL)) (-3856 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-3254 (((-560)) NIL)) (-2331 (((-560) $) NIL)) (-2582 (($ $ $) NIL) (($ (-626 $)) NIL)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL)) (-4440 (($ $ $) NIL) (($ (-626 $)) NIL)) (-3505 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3292 (($ $ (-560)) NIL)) (-2336 (((-3 $ "failed") $ $) NIL)) (-3456 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-4445 (((-755) $) NIL)) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL)) (-1727 (((-1133 (-560)) $) NIL)) (-2234 (($ $) NIL)) (-2801 (((-842) $) NIL) (($ (-560)) NIL) (($ $) NIL)) (-1751 (((-755)) NIL)) (-2328 (((-121) $ $) NIL)) (-2550 (((-560) $ (-560)) NIL)) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (-3304 (($) NIL T CONST)) (-1459 (($) NIL T CONST)) (-1653 (((-121) $ $) NIL)) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) NIL)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) NIL))) -(((-125 |#1|) (-855 |#1|) (-560)) (T -125)) -NIL -(-855 |#1|) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-1947 (((-125 |#1|) $) NIL (|has| (-125 |#1|) (-296)))) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL)) (-1350 (($ $) NIL)) (-3376 (((-121) $) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-1776 (((-414 (-1149 $)) (-1149 $)) NIL (|has| (-125 |#1|) (-896)))) (-3065 (($ $) NIL)) (-2953 (((-414 $) $) NIL)) (-1887 (((-3 (-626 (-1149 $)) "failed") (-626 (-1149 $)) (-1149 $)) NIL (|has| (-125 |#1|) (-896)))) (-4179 (((-121) $ $) NIL)) (-4235 (((-560) $) NIL (|has| (-125 |#1|) (-807)))) (-4236 (($) NIL T CONST)) (-1473 (((-3 (-125 |#1|) "failed") $) NIL) (((-3 (-1153) "failed") $) NIL (|has| (-125 |#1|) (-1029 (-1153)))) (((-3 (-403 (-560)) "failed") $) NIL (|has| (-125 |#1|) (-1029 (-560)))) (((-3 (-560) "failed") $) NIL (|has| (-125 |#1|) (-1029 (-560))))) (-3001 (((-125 |#1|) $) NIL) (((-1153) $) NIL (|has| (-125 |#1|) (-1029 (-1153)))) (((-403 (-560)) $) NIL (|has| (-125 |#1|) (-1029 (-560)))) (((-560) $) NIL (|has| (-125 |#1|) (-1029 (-560))))) (-3020 (($ $) NIL) (($ (-560) $) NIL)) (-2563 (($ $ $) NIL)) (-2616 (((-671 (-560)) (-671 $)) NIL (|has| (-125 |#1|) (-622 (-560)))) (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) NIL (|has| (-125 |#1|) (-622 (-560)))) (((-2 (|:| -3818 (-671 (-125 |#1|))) (|:| |vec| (-1236 (-125 |#1|)))) (-671 $) (-1236 $)) NIL) (((-671 (-125 |#1|)) (-671 $)) NIL)) (-1823 (((-3 $ "failed") $) NIL)) (-1666 (($) NIL (|has| (-125 |#1|) (-542)))) (-2572 (($ $ $) NIL)) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) NIL)) (-3319 (((-121) $) NIL)) (-1786 (((-121) $) NIL (|has| (-125 |#1|) (-807)))) (-2399 (((-876 (-560) $) $ (-879 (-560)) (-876 (-560) $)) NIL (|has| (-125 |#1|) (-873 (-560)))) (((-876 (-375) $) $ (-879 (-375)) (-876 (-375) $)) NIL (|has| (-125 |#1|) (-873 (-375))))) (-2642 (((-121) $) NIL)) (-1540 (($ $) NIL)) (-2132 (((-125 |#1|) $) NIL)) (-1424 (((-3 $ "failed") $) NIL (|has| (-125 |#1|) (-1128)))) (-2187 (((-121) $) NIL (|has| (-125 |#1|) (-807)))) (-3856 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-4325 (($ $ $) NIL (|has| (-125 |#1|) (-834)))) (-2501 (($ $ $) NIL (|has| (-125 |#1|) (-834)))) (-2803 (($ (-1 (-125 |#1|) (-125 |#1|)) $) NIL)) (-2582 (($ $ $) NIL) (($ (-626 $)) NIL)) (-1291 (((-1135) $) NIL)) (-1701 (($ $) NIL)) (-1394 (($) NIL (|has| (-125 |#1|) (-1128)) CONST)) (-4353 (((-1100) $) NIL)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL)) (-4440 (($ $ $) NIL) (($ (-626 $)) NIL)) (-4302 (($ $) NIL (|has| (-125 |#1|) (-296)))) (-2150 (((-125 |#1|) $) NIL (|has| (-125 |#1|) (-542)))) (-3817 (((-414 (-1149 $)) (-1149 $)) NIL (|has| (-125 |#1|) (-896)))) (-3032 (((-414 (-1149 $)) (-1149 $)) NIL (|has| (-125 |#1|) (-896)))) (-1601 (((-414 $) $) NIL)) (-3505 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2336 (((-3 $ "failed") $ $) NIL)) (-3456 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-4450 (($ $ (-626 (-125 |#1|)) (-626 (-125 |#1|))) NIL (|has| (-125 |#1|) (-298 (-125 |#1|)))) (($ $ (-125 |#1|) (-125 |#1|)) NIL (|has| (-125 |#1|) (-298 (-125 |#1|)))) (($ $ (-283 (-125 |#1|))) NIL (|has| (-125 |#1|) (-298 (-125 |#1|)))) (($ $ (-626 (-283 (-125 |#1|)))) NIL (|has| (-125 |#1|) (-298 (-125 |#1|)))) (($ $ (-626 (-1153)) (-626 (-125 |#1|))) NIL (|has| (-125 |#1|) (-515 (-1153) (-125 |#1|)))) (($ $ (-1153) (-125 |#1|)) NIL (|has| (-125 |#1|) (-515 (-1153) (-125 |#1|))))) (-4445 (((-755) $) NIL)) (-2778 (($ $ (-125 |#1|)) NIL (|has| (-125 |#1|) (-276 (-125 |#1|) (-125 |#1|))))) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL)) (-2443 (($ $) NIL (|has| (-125 |#1|) (-221))) (($ $ (-755)) NIL (|has| (-125 |#1|) (-221))) (($ $ (-1153)) NIL (|has| (-125 |#1|) (-887 (-1153)))) (($ $ (-626 (-1153))) NIL (|has| (-125 |#1|) (-887 (-1153)))) (($ $ (-1153) (-755)) NIL (|has| (-125 |#1|) (-887 (-1153)))) (($ $ (-626 (-1153)) (-626 (-755))) NIL (|has| (-125 |#1|) (-887 (-1153)))) (($ $ (-1 (-125 |#1|) (-125 |#1|)) (-755)) NIL) (($ $ (-1 (-125 |#1|) (-125 |#1|))) NIL)) (-1646 (($ $) NIL)) (-2139 (((-125 |#1|) $) NIL)) (-4255 (((-879 (-560)) $) NIL (|has| (-125 |#1|) (-601 (-879 (-560))))) (((-879 (-375)) $) NIL (|has| (-125 |#1|) (-601 (-879 (-375))))) (((-533) $) NIL (|has| (-125 |#1|) (-601 (-533)))) (((-375) $) NIL (|has| (-125 |#1|) (-1013))) (((-213) $) NIL (|has| (-125 |#1|) (-1013)))) (-1617 (((-171 (-403 (-560))) $) NIL)) (-3248 (((-3 (-1236 $) "failed") (-671 $)) NIL (-12 (|has| $ (-146)) (|has| (-125 |#1|) (-896))))) (-2801 (((-842) $) NIL) (($ (-560)) NIL) (($ $) NIL) (($ (-403 (-560))) NIL) (($ (-125 |#1|)) NIL) (($ (-1153)) NIL (|has| (-125 |#1|) (-1029 (-1153))))) (-2272 (((-3 $ "failed") $) NIL (-2318 (-12 (|has| $ (-146)) (|has| (-125 |#1|) (-896))) (|has| (-125 |#1|) (-146))))) (-1751 (((-755)) NIL)) (-4316 (((-125 |#1|) $) NIL (|has| (-125 |#1|) (-542)))) (-2328 (((-121) $ $) NIL)) (-2550 (((-403 (-560)) $ (-560)) NIL)) (-1822 (($ $) NIL (|has| (-125 |#1|) (-807)))) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL)) (-3304 (($) NIL T CONST)) (-1459 (($) NIL T CONST)) (-2500 (($ $) NIL (|has| (-125 |#1|) (-221))) (($ $ (-755)) NIL (|has| (-125 |#1|) (-221))) (($ $ (-1153)) NIL (|has| (-125 |#1|) (-887 (-1153)))) (($ $ (-626 (-1153))) NIL (|has| (-125 |#1|) (-887 (-1153)))) (($ $ (-1153) (-755)) NIL (|has| (-125 |#1|) (-887 (-1153)))) (($ $ (-626 (-1153)) (-626 (-755))) NIL (|has| (-125 |#1|) (-887 (-1153)))) (($ $ (-1 (-125 |#1|) (-125 |#1|)) (-755)) NIL) (($ $ (-1 (-125 |#1|) (-125 |#1|))) NIL)) (-1691 (((-121) $ $) NIL (|has| (-125 |#1|) (-834)))) (-1675 (((-121) $ $) NIL (|has| (-125 |#1|) (-834)))) (-1653 (((-121) $ $) NIL)) (-1683 (((-121) $ $) NIL (|has| (-125 |#1|) (-834)))) (-1667 (((-121) $ $) NIL (|has| (-125 |#1|) (-834)))) (-1733 (($ $ $) NIL) (($ (-125 |#1|) (-125 |#1|)) NIL)) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) NIL)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) NIL) (($ $ (-403 (-560))) NIL) (($ (-403 (-560)) $) NIL) (($ (-125 |#1|) $) NIL) (($ $ (-125 |#1|)) NIL))) -(((-126 |#1|) (-13 (-985 (-125 |#1|)) (-10 -8 (-15 -2550 ((-403 (-560)) $ (-560))) (-15 -1617 ((-171 (-403 (-560))) $)) (-15 -3020 ($ $)) (-15 -3020 ($ (-560) $)))) (-560)) (T -126)) -((-2550 (*1 *2 *1 *3) (-12 (-5 *2 (-403 (-560))) (-5 *1 (-126 *4)) (-14 *4 *3) (-5 *3 (-560)))) (-1617 (*1 *2 *1) (-12 (-5 *2 (-171 (-403 (-560)))) (-5 *1 (-126 *3)) (-14 *3 (-560)))) (-3020 (*1 *1 *1) (-12 (-5 *1 (-126 *2)) (-14 *2 (-560)))) (-3020 (*1 *1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-126 *3)) (-14 *3 *2)))) -(-13 (-985 (-125 |#1|)) (-10 -8 (-15 -2550 ((-403 (-560)) $ (-560))) (-15 -1617 ((-171 (-403 (-560))) $)) (-15 -3020 ($ $)) (-15 -3020 ($ (-560) $)))) -((-2764 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 48) (($ $ "right" $) 50)) (-3971 (((-626 $) $) 27)) (-2420 (((-121) $ $) 32)) (-2030 (((-121) |#2| $) 36)) (-2173 (((-626 |#2|) $) 22)) (-3992 (((-121) $) 16)) (-2778 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-3316 (((-121) $) 45)) (-2801 (((-842) $) 41)) (-2853 (((-626 $) $) 28)) (-1653 (((-121) $ $) 34)) (-2271 (((-755) $) 43))) -(((-127 |#1| |#2|) (-10 -8 (-15 -2764 (|#1| |#1| "right" |#1|)) (-15 -2764 (|#1| |#1| "left" |#1|)) (-15 -2778 (|#1| |#1| "right")) (-15 -2778 (|#1| |#1| "left")) (-15 -2764 (|#2| |#1| "value" |#2|)) (-15 -2420 ((-121) |#1| |#1|)) (-15 -2173 ((-626 |#2|) |#1|)) (-15 -3316 ((-121) |#1|)) (-15 -2778 (|#2| |#1| "value")) (-15 -3992 ((-121) |#1|)) (-15 -3971 ((-626 |#1|) |#1|)) (-15 -2853 ((-626 |#1|) |#1|)) (-15 -1653 ((-121) |#1| |#1|)) (-15 -2801 ((-842) |#1|)) (-15 -2030 ((-121) |#2| |#1|)) (-15 -2271 ((-755) |#1|))) (-128 |#2|) (-1187)) (T -127)) -NIL -(-10 -8 (-15 -2764 (|#1| |#1| "right" |#1|)) (-15 -2764 (|#1| |#1| "left" |#1|)) (-15 -2778 (|#1| |#1| "right")) (-15 -2778 (|#1| |#1| "left")) (-15 -2764 (|#2| |#1| "value" |#2|)) (-15 -2420 ((-121) |#1| |#1|)) (-15 -2173 ((-626 |#2|) |#1|)) (-15 -3316 ((-121) |#1|)) (-15 -2778 (|#2| |#1| "value")) (-15 -3992 ((-121) |#1|)) (-15 -3971 ((-626 |#1|) |#1|)) (-15 -2853 ((-626 |#1|) |#1|)) (-15 -1653 ((-121) |#1| |#1|)) (-15 -2801 ((-842) |#1|)) (-15 -2030 ((-121) |#2| |#1|)) (-15 -2271 ((-755) |#1|))) -((-2601 (((-121) $ $) 18 (|has| |#1| (-1082)))) (-2981 ((|#1| $) 45)) (-3909 (((-121) $ (-755)) 8)) (-3119 ((|#1| $ |#1|) 36 (|has| $ (-6 -4506)))) (-1329 (($ $ $) 49 (|has| $ (-6 -4506)))) (-3559 (($ $ $) 51 (|has| $ (-6 -4506)))) (-2764 ((|#1| $ "value" |#1|) 37 (|has| $ (-6 -4506))) (($ $ "left" $) 52 (|has| $ (-6 -4506))) (($ $ "right" $) 50 (|has| $ (-6 -4506)))) (-4043 (($ $ (-626 $)) 38 (|has| $ (-6 -4506)))) (-4236 (($) 7 T CONST)) (-3437 (($ $) 54)) (-1981 (((-626 |#1|) $) 30 (|has| $ (-6 -4505)))) (-3971 (((-626 $) $) 47)) (-2420 (((-121) $ $) 39 (|has| |#1| (-1082)))) (-2122 (((-121) $ (-755)) 9)) (-2130 (((-626 |#1|) $) 29 (|has| $ (-6 -4505)))) (-2030 (((-121) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-3778 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#1| |#1|) $) 35)) (-3441 (((-121) $ (-755)) 10)) (-3156 (($ $) 56)) (-2173 (((-626 |#1|) $) 42)) (-3992 (((-121) $) 46)) (-1291 (((-1135) $) 22 (|has| |#1| (-1082)))) (-4353 (((-1100) $) 21 (|has| |#1| (-1082)))) (-2865 (((-121) (-1 (-121) |#1|) $) 32 (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#1|))) 26 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-283 |#1|)) 25 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-626 |#1|) (-626 |#1|)) 23 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))))) (-2214 (((-121) $ $) 14)) (-4191 (((-121) $) 11)) (-3260 (($) 12)) (-2778 ((|#1| $ "value") 44) (($ $ "left") 55) (($ $ "right") 53)) (-1435 (((-560) $ $) 41)) (-3316 (((-121) $) 43)) (-4035 (((-755) (-1 (-121) |#1|) $) 31 (|has| $ (-6 -4505))) (((-755) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-2813 (($ $) 13)) (-2801 (((-842) $) 20 (|has| |#1| (-1082)))) (-2853 (((-626 $) $) 48)) (-3761 (((-121) $ $) 40 (|has| |#1| (-1082)))) (-3656 (((-121) (-1 (-121) |#1|) $) 33 (|has| $ (-6 -4505)))) (-1653 (((-121) $ $) 19 (|has| |#1| (-1082)))) (-2271 (((-755) $) 6 (|has| $ (-6 -4505))))) -(((-128 |#1|) (-1267) (-1187)) (T -128)) -((-3156 (*1 *1 *1) (-12 (-4 *1 (-128 *2)) (-4 *2 (-1187)))) (-2778 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-128 *3)) (-4 *3 (-1187)))) (-3437 (*1 *1 *1) (-12 (-4 *1 (-128 *2)) (-4 *2 (-1187)))) (-2778 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-128 *3)) (-4 *3 (-1187)))) (-2764 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4506)) (-4 *1 (-128 *3)) (-4 *3 (-1187)))) (-3559 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4506)) (-4 *1 (-128 *2)) (-4 *2 (-1187)))) (-2764 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4506)) (-4 *1 (-128 *3)) (-4 *3 (-1187)))) (-1329 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4506)) (-4 *1 (-128 *2)) (-4 *2 (-1187))))) -(-13 (-1002 |t#1|) (-10 -8 (-15 -3156 ($ $)) (-15 -2778 ($ $ "left")) (-15 -3437 ($ $)) (-15 -2778 ($ $ "right")) (IF (|has| $ (-6 -4506)) (PROGN (-15 -2764 ($ $ "left" $)) (-15 -3559 ($ $ $)) (-15 -2764 ($ $ "right" $)) (-15 -1329 ($ $ $))) |noBranch|))) -(((-39) . T) ((-105) |has| |#1| (-1082)) ((-600 (-842)) |has| |#1| (-1082)) ((-298 |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))) ((-492 |#1|) . T) ((-515 |#1| |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))) ((-1002 |#1|) . T) ((-1082) |has| |#1| (-1082)) ((-1187) . T)) -((-2225 (((-121) |#1|) 24)) (-2219 (((-755) (-755)) 23) (((-755)) 22)) (-1557 (((-121) |#1| (-121)) 25) (((-121) |#1|) 26))) -(((-129 |#1|) (-10 -7 (-15 -1557 ((-121) |#1|)) (-15 -1557 ((-121) |#1| (-121))) (-15 -2219 ((-755))) (-15 -2219 ((-755) (-755))) (-15 -2225 ((-121) |#1|))) (-1211 (-560))) (T -129)) -((-2225 (*1 *2 *3) (-12 (-5 *2 (-121)) (-5 *1 (-129 *3)) (-4 *3 (-1211 (-560))))) (-2219 (*1 *2 *2) (-12 (-5 *2 (-755)) (-5 *1 (-129 *3)) (-4 *3 (-1211 (-560))))) (-2219 (*1 *2) (-12 (-5 *2 (-755)) (-5 *1 (-129 *3)) (-4 *3 (-1211 (-560))))) (-1557 (*1 *2 *3 *2) (-12 (-5 *2 (-121)) (-5 *1 (-129 *3)) (-4 *3 (-1211 (-560))))) (-1557 (*1 *2 *3) (-12 (-5 *2 (-121)) (-5 *1 (-129 *3)) (-4 *3 (-1211 (-560)))))) -(-10 -7 (-15 -1557 ((-121) |#1|)) (-15 -1557 ((-121) |#1| (-121))) (-15 -2219 ((-755))) (-15 -2219 ((-755) (-755))) (-15 -2225 ((-121) |#1|))) -((-2601 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-2981 ((|#1| $) 15)) (-2437 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-3909 (((-121) $ (-755)) NIL)) (-3119 ((|#1| $ |#1|) NIL (|has| $ (-6 -4506)))) (-1329 (($ $ $) 18 (|has| $ (-6 -4506)))) (-3559 (($ $ $) 20 (|has| $ (-6 -4506)))) (-2764 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4506))) (($ $ "left" $) NIL (|has| $ (-6 -4506))) (($ $ "right" $) NIL (|has| $ (-6 -4506)))) (-4043 (($ $ (-626 $)) NIL (|has| $ (-6 -4506)))) (-4236 (($) NIL T CONST)) (-3437 (($ $) 17)) (-1981 (((-626 |#1|) $) NIL (|has| $ (-6 -4505)))) (-3971 (((-626 $) $) NIL)) (-2420 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-2218 (($ $ |#1| $) 23)) (-2122 (((-121) $ (-755)) NIL)) (-2130 (((-626 |#1|) $) NIL (|has| $ (-6 -4505)))) (-2030 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-3778 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#1| |#1|) $) NIL)) (-3441 (((-121) $ (-755)) NIL)) (-3156 (($ $) 19)) (-2173 (((-626 |#1|) $) NIL)) (-3992 (((-121) $) NIL)) (-1291 (((-1135) $) NIL (|has| |#1| (-1082)))) (-3729 (($ |#1| $) 24)) (-4345 (($ |#1| $) 10)) (-4353 (((-1100) $) NIL (|has| |#1| (-1082)))) (-2865 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#1|))) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-283 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-626 |#1|) (-626 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))))) (-2214 (((-121) $ $) NIL)) (-4191 (((-121) $) 14)) (-3260 (($) 8)) (-2778 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1435 (((-560) $ $) NIL)) (-3316 (((-121) $) NIL)) (-4035 (((-755) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505))) (((-755) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-2813 (($ $) NIL)) (-2801 (((-842) $) NIL (|has| |#1| (-1082)))) (-2853 (((-626 $) $) NIL)) (-3761 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-1479 (($ (-626 |#1|)) 12)) (-3656 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-1653 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-2271 (((-755) $) NIL (|has| $ (-6 -4505))))) -(((-130 |#1|) (-13 (-134 |#1|) (-10 -8 (-6 -4506) (-6 -4505) (-15 -1479 ($ (-626 |#1|))) (-15 -4345 ($ |#1| $)) (-15 -3729 ($ |#1| $)) (-15 -2437 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-834)) (T -130)) -((-1479 (*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-834)) (-5 *1 (-130 *3)))) (-4345 (*1 *1 *2 *1) (-12 (-5 *1 (-130 *2)) (-4 *2 (-834)))) (-3729 (*1 *1 *2 *1) (-12 (-5 *1 (-130 *2)) (-4 *2 (-834)))) (-2437 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-130 *3)) (|:| |greater| (-130 *3)))) (-5 *1 (-130 *3)) (-4 *3 (-834))))) -(-13 (-134 |#1|) (-10 -8 (-6 -4506) (-6 -4505) (-15 -1479 ($ (-626 |#1|))) (-15 -4345 ($ |#1| $)) (-15 -3729 ($ |#1| $)) (-15 -2437 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) -((-1434 (($ $) 14)) (-3186 (($ $) 11)) (-3334 (($ $ $) 24)) (-2881 (($ $ $) 22)) (-2464 (($ $) 12)) (-2587 (($ $ $) 20)) (-2581 (($ $ $) 18))) -(((-131 |#1|) (-10 -8 (-15 -3334 (|#1| |#1| |#1|)) (-15 -2881 (|#1| |#1| |#1|)) (-15 -2464 (|#1| |#1|)) (-15 -3186 (|#1| |#1|)) (-15 -1434 (|#1| |#1|)) (-15 -2581 (|#1| |#1| |#1|)) (-15 -2587 (|#1| |#1| |#1|))) (-132)) (T -131)) -NIL -(-10 -8 (-15 -3334 (|#1| |#1| |#1|)) (-15 -2881 (|#1| |#1| |#1|)) (-15 -2464 (|#1| |#1|)) (-15 -3186 (|#1| |#1|)) (-15 -1434 (|#1| |#1|)) (-15 -2581 (|#1| |#1| |#1|)) (-15 -2587 (|#1| |#1| |#1|))) -((-2601 (((-121) $ $) 7)) (-1434 (($ $) 103)) (-1564 (($ $ $) 24)) (-2960 (((-1241) $ (-560) (-560)) 66 (|has| $ (-6 -4506)))) (-3189 (((-121) $) 98 (|has| (-121) (-834))) (((-121) (-1 (-121) (-121) (-121)) $) 92)) (-4410 (($ $) 102 (-12 (|has| (-121) (-834)) (|has| $ (-6 -4506)))) (($ (-1 (-121) (-121) (-121)) $) 101 (|has| $ (-6 -4506)))) (-3743 (($ $) 97 (|has| (-121) (-834))) (($ (-1 (-121) (-121) (-121)) $) 91)) (-3909 (((-121) $ (-755)) 37)) (-2764 (((-121) $ (-1202 (-560)) (-121)) 88 (|has| $ (-6 -4506))) (((-121) $ (-560) (-121)) 54 (|has| $ (-6 -4506)))) (-3802 (($ (-1 (-121) (-121)) $) 71 (|has| $ (-6 -4505)))) (-4236 (($) 38 T CONST)) (-4030 (($ $) 100 (|has| $ (-6 -4506)))) (-2883 (($ $) 90)) (-2868 (($ $) 68 (-12 (|has| (-121) (-1082)) (|has| $ (-6 -4505))))) (-4310 (($ (-1 (-121) (-121)) $) 72 (|has| $ (-6 -4505))) (($ (-121) $) 69 (-12 (|has| (-121) (-1082)) (|has| $ (-6 -4505))))) (-2342 (((-121) (-1 (-121) (-121) (-121)) $) 74 (|has| $ (-6 -4505))) (((-121) (-1 (-121) (-121) (-121)) $ (-121)) 73 (|has| $ (-6 -4505))) (((-121) (-1 (-121) (-121) (-121)) $ (-121) (-121)) 70 (-12 (|has| (-121) (-1082)) (|has| $ (-6 -4505))))) (-1746 (((-121) $ (-560) (-121)) 53 (|has| $ (-6 -4506)))) (-1361 (((-121) $ (-560)) 55)) (-2839 (((-560) (-121) $ (-560)) 95 (|has| (-121) (-1082))) (((-560) (-121) $) 94 (|has| (-121) (-1082))) (((-560) (-1 (-121) (-121)) $) 93)) (-1981 (((-626 (-121)) $) 45 (|has| $ (-6 -4505)))) (-3367 (($ $ $) 25)) (-3186 (($ $) 30)) (-3334 (($ $ $) 27)) (-1721 (($ (-755) (-121)) 77)) (-2881 (($ $ $) 28)) (-2122 (((-121) $ (-755)) 36)) (-4099 (((-560) $) 63 (|has| (-560) (-834)))) (-4325 (($ $ $) 12)) (-2492 (($ $ $) 96 (|has| (-121) (-834))) (($ (-1 (-121) (-121) (-121)) $ $) 89)) (-2130 (((-626 (-121)) $) 46 (|has| $ (-6 -4505)))) (-2030 (((-121) (-121) $) 48 (-12 (|has| (-121) (-1082)) (|has| $ (-6 -4505))))) (-2767 (((-560) $) 62 (|has| (-560) (-834)))) (-2501 (($ $ $) 13)) (-3778 (($ (-1 (-121) (-121)) $) 41 (|has| $ (-6 -4506)))) (-2803 (($ (-1 (-121) (-121) (-121)) $ $) 82) (($ (-1 (-121) (-121)) $) 40)) (-3441 (((-121) $ (-755)) 35)) (-1291 (((-1135) $) 9)) (-4103 (($ $ $ (-560)) 87) (($ (-121) $ (-560)) 86)) (-1529 (((-626 (-560)) $) 60)) (-1310 (((-121) (-560) $) 59)) (-4353 (((-1100) $) 10)) (-2824 (((-121) $) 64 (|has| (-560) (-834)))) (-3786 (((-3 (-121) "failed") (-1 (-121) (-121)) $) 75)) (-3038 (($ $ (-121)) 65 (|has| $ (-6 -4506)))) (-2865 (((-121) (-1 (-121) (-121)) $) 43 (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-121)) (-626 (-121))) 52 (-12 (|has| (-121) (-298 (-121))) (|has| (-121) (-1082)))) (($ $ (-121) (-121)) 51 (-12 (|has| (-121) (-298 (-121))) (|has| (-121) (-1082)))) (($ $ (-283 (-121))) 50 (-12 (|has| (-121) (-298 (-121))) (|has| (-121) (-1082)))) (($ $ (-626 (-283 (-121)))) 49 (-12 (|has| (-121) (-298 (-121))) (|has| (-121) (-1082))))) (-2214 (((-121) $ $) 31)) (-1290 (((-121) (-121) $) 61 (-12 (|has| $ (-6 -4505)) (|has| (-121) (-1082))))) (-4460 (((-626 (-121)) $) 58)) (-4191 (((-121) $) 34)) (-3260 (($) 33)) (-2778 (($ $ (-1202 (-560))) 83) (((-121) $ (-560)) 57) (((-121) $ (-560) (-121)) 56)) (-2949 (($ $ (-1202 (-560))) 85) (($ $ (-560)) 84)) (-4035 (((-755) (-121) $) 47 (-12 (|has| (-121) (-1082)) (|has| $ (-6 -4505)))) (((-755) (-1 (-121) (-121)) $) 44 (|has| $ (-6 -4505)))) (-4072 (($ $ $ (-560)) 99 (|has| $ (-6 -4506)))) (-2813 (($ $) 32)) (-4255 (((-533) $) 67 (|has| (-121) (-601 (-533))))) (-4162 (($ (-626 (-121))) 76)) (-2849 (($ (-626 $)) 81) (($ $ $) 80) (($ (-121) $) 79) (($ $ (-121)) 78)) (-2801 (((-842) $) 11)) (-3656 (((-121) (-1 (-121) (-121)) $) 42 (|has| $ (-6 -4505)))) (-2256 (($ $ $) 26)) (-2464 (($ $) 29)) (-2587 (($ $ $) 105)) (-1691 (((-121) $ $) 15)) (-1675 (((-121) $ $) 16)) (-1653 (((-121) $ $) 6)) (-1683 (((-121) $ $) 14)) (-1667 (((-121) $ $) 17)) (-2581 (($ $ $) 104)) (-2271 (((-755) $) 39 (|has| $ (-6 -4505))))) -(((-132) (-1267)) (T -132)) -((-3186 (*1 *1 *1) (-4 *1 (-132))) (-2464 (*1 *1 *1) (-4 *1 (-132))) (-2881 (*1 *1 *1 *1) (-4 *1 (-132))) (-3334 (*1 *1 *1 *1) (-4 *1 (-132))) (-2256 (*1 *1 *1 *1) (-4 *1 (-132))) (-3367 (*1 *1 *1 *1) (-4 *1 (-132))) (-1564 (*1 *1 *1 *1) (-4 *1 (-132)))) -(-13 (-834) (-643) (-19 (-121)) (-10 -8 (-15 -3186 ($ $)) (-15 -2464 ($ $)) (-15 -2881 ($ $ $)) (-15 -3334 ($ $ $)) (-15 -2256 ($ $ $)) (-15 -3367 ($ $ $)) (-15 -1564 ($ $ $)))) -(((-39) . T) ((-105) . T) ((-600 (-842)) . T) ((-152 (-121)) . T) ((-601 (-533)) |has| (-121) (-601 (-533))) ((-276 (-560) (-121)) . T) ((-278 (-560) (-121)) . T) ((-298 (-121)) -12 (|has| (-121) (-298 (-121))) (|has| (-121) (-1082))) ((-369 (-121)) . T) ((-492 (-121)) . T) ((-593 (-560) (-121)) . T) ((-515 (-121) (-121)) -12 (|has| (-121) (-298 (-121))) (|has| (-121) (-1082))) ((-632 (-121)) . T) ((-643) . T) ((-19 (-121)) . T) ((-834) . T) ((-1082) . T) ((-1187) . T)) -((-3778 (($ (-1 |#2| |#2|) $) 22)) (-2813 (($ $) 16)) (-2271 (((-755) $) 24))) -(((-133 |#1| |#2|) (-10 -8 (-15 -3778 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2271 ((-755) |#1|)) (-15 -2813 (|#1| |#1|))) (-134 |#2|) (-1082)) (T -133)) -NIL -(-10 -8 (-15 -3778 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2271 ((-755) |#1|)) (-15 -2813 (|#1| |#1|))) -((-2601 (((-121) $ $) 18 (|has| |#1| (-1082)))) (-2981 ((|#1| $) 45)) (-3909 (((-121) $ (-755)) 8)) (-3119 ((|#1| $ |#1|) 36 (|has| $ (-6 -4506)))) (-1329 (($ $ $) 49 (|has| $ (-6 -4506)))) (-3559 (($ $ $) 51 (|has| $ (-6 -4506)))) (-2764 ((|#1| $ "value" |#1|) 37 (|has| $ (-6 -4506))) (($ $ "left" $) 52 (|has| $ (-6 -4506))) (($ $ "right" $) 50 (|has| $ (-6 -4506)))) (-4043 (($ $ (-626 $)) 38 (|has| $ (-6 -4506)))) (-4236 (($) 7 T CONST)) (-3437 (($ $) 54)) (-1981 (((-626 |#1|) $) 30 (|has| $ (-6 -4505)))) (-3971 (((-626 $) $) 47)) (-2420 (((-121) $ $) 39 (|has| |#1| (-1082)))) (-2218 (($ $ |#1| $) 57)) (-2122 (((-121) $ (-755)) 9)) (-2130 (((-626 |#1|) $) 29 (|has| $ (-6 -4505)))) (-2030 (((-121) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-3778 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#1| |#1|) $) 35)) (-3441 (((-121) $ (-755)) 10)) (-3156 (($ $) 56)) (-2173 (((-626 |#1|) $) 42)) (-3992 (((-121) $) 46)) (-1291 (((-1135) $) 22 (|has| |#1| (-1082)))) (-4353 (((-1100) $) 21 (|has| |#1| (-1082)))) (-2865 (((-121) (-1 (-121) |#1|) $) 32 (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#1|))) 26 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-283 |#1|)) 25 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-626 |#1|) (-626 |#1|)) 23 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))))) (-2214 (((-121) $ $) 14)) (-4191 (((-121) $) 11)) (-3260 (($) 12)) (-2778 ((|#1| $ "value") 44) (($ $ "left") 55) (($ $ "right") 53)) (-1435 (((-560) $ $) 41)) (-3316 (((-121) $) 43)) (-4035 (((-755) (-1 (-121) |#1|) $) 31 (|has| $ (-6 -4505))) (((-755) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-2813 (($ $) 13)) (-2801 (((-842) $) 20 (|has| |#1| (-1082)))) (-2853 (((-626 $) $) 48)) (-3761 (((-121) $ $) 40 (|has| |#1| (-1082)))) (-3656 (((-121) (-1 (-121) |#1|) $) 33 (|has| $ (-6 -4505)))) (-1653 (((-121) $ $) 19 (|has| |#1| (-1082)))) (-2271 (((-755) $) 6 (|has| $ (-6 -4505))))) -(((-134 |#1|) (-1267) (-1082)) (T -134)) -((-2218 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-134 *2)) (-4 *2 (-1082))))) -(-13 (-128 |t#1|) (-10 -8 (-6 -4506) (-6 -4505) (-15 -2218 ($ $ |t#1| $)))) -(((-39) . T) ((-105) |has| |#1| (-1082)) ((-128 |#1|) . T) ((-600 (-842)) |has| |#1| (-1082)) ((-298 |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))) ((-492 |#1|) . T) ((-515 |#1| |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))) ((-1002 |#1|) . T) ((-1082) |has| |#1| (-1082)) ((-1187) . T)) -((-2601 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-2981 ((|#1| $) 15)) (-3909 (((-121) $ (-755)) NIL)) (-3119 ((|#1| $ |#1|) 19 (|has| $ (-6 -4506)))) (-1329 (($ $ $) 20 (|has| $ (-6 -4506)))) (-3559 (($ $ $) 18 (|has| $ (-6 -4506)))) (-2764 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4506))) (($ $ "left" $) NIL (|has| $ (-6 -4506))) (($ $ "right" $) NIL (|has| $ (-6 -4506)))) (-4043 (($ $ (-626 $)) NIL (|has| $ (-6 -4506)))) (-4236 (($) NIL T CONST)) (-3437 (($ $) 21)) (-1981 (((-626 |#1|) $) NIL (|has| $ (-6 -4505)))) (-3971 (((-626 $) $) NIL)) (-2420 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-2218 (($ $ |#1| $) NIL)) (-2122 (((-121) $ (-755)) NIL)) (-2130 (((-626 |#1|) $) NIL (|has| $ (-6 -4505)))) (-2030 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-3778 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#1| |#1|) $) NIL)) (-3441 (((-121) $ (-755)) NIL)) (-3156 (($ $) NIL)) (-2173 (((-626 |#1|) $) NIL)) (-3992 (((-121) $) NIL)) (-1291 (((-1135) $) NIL (|has| |#1| (-1082)))) (-4345 (($ |#1| $) 10)) (-4353 (((-1100) $) NIL (|has| |#1| (-1082)))) (-2865 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#1|))) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-283 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-626 |#1|) (-626 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))))) (-2214 (((-121) $ $) NIL)) (-4191 (((-121) $) 14)) (-3260 (($) 8)) (-2778 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1435 (((-560) $ $) NIL)) (-3316 (((-121) $) NIL)) (-4035 (((-755) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505))) (((-755) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-2813 (($ $) 17)) (-2801 (((-842) $) NIL (|has| |#1| (-1082)))) (-2853 (((-626 $) $) NIL)) (-3761 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-1945 (($ (-626 |#1|)) 12)) (-3656 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-1653 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-2271 (((-755) $) NIL (|has| $ (-6 -4505))))) -(((-135 |#1|) (-13 (-134 |#1|) (-10 -8 (-6 -4506) (-15 -1945 ($ (-626 |#1|))) (-15 -4345 ($ |#1| $)))) (-834)) (T -135)) -((-1945 (*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-834)) (-5 *1 (-135 *3)))) (-4345 (*1 *1 *2 *1) (-12 (-5 *1 (-135 *2)) (-4 *2 (-834))))) -(-13 (-134 |#1|) (-10 -8 (-6 -4506) (-15 -1945 ($ (-626 |#1|))) (-15 -4345 ($ |#1| $)))) -((-2601 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-2981 ((|#1| $) 24)) (-3909 (((-121) $ (-755)) NIL)) (-3119 ((|#1| $ |#1|) 26 (|has| $ (-6 -4506)))) (-1329 (($ $ $) 30 (|has| $ (-6 -4506)))) (-3559 (($ $ $) 28 (|has| $ (-6 -4506)))) (-2764 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4506))) (($ $ "left" $) NIL (|has| $ (-6 -4506))) (($ $ "right" $) NIL (|has| $ (-6 -4506)))) (-4043 (($ $ (-626 $)) NIL (|has| $ (-6 -4506)))) (-4236 (($) NIL T CONST)) (-3437 (($ $) 20)) (-1981 (((-626 |#1|) $) NIL (|has| $ (-6 -4505)))) (-3971 (((-626 $) $) NIL)) (-2420 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-2218 (($ $ |#1| $) 15)) (-2122 (((-121) $ (-755)) NIL)) (-2130 (((-626 |#1|) $) NIL (|has| $ (-6 -4505)))) (-2030 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-3778 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#1| |#1|) $) NIL)) (-3441 (((-121) $ (-755)) NIL)) (-3156 (($ $) 19)) (-2173 (((-626 |#1|) $) NIL)) (-3992 (((-121) $) 21)) (-1291 (((-1135) $) NIL (|has| |#1| (-1082)))) (-4353 (((-1100) $) NIL (|has| |#1| (-1082)))) (-2865 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#1|))) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-283 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-626 |#1|) (-626 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))))) (-2214 (((-121) $ $) NIL)) (-4191 (((-121) $) 18)) (-3260 (($) 11)) (-2778 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1435 (((-560) $ $) NIL)) (-3316 (((-121) $) NIL)) (-4035 (((-755) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505))) (((-755) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-2813 (($ $) NIL)) (-2801 (((-842) $) NIL (|has| |#1| (-1082)))) (-2853 (((-626 $) $) NIL)) (-3761 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-1627 (($ |#1|) 17) (($ $ |#1| $) 16)) (-3656 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-1653 (((-121) $ $) 10 (|has| |#1| (-1082)))) (-2271 (((-755) $) NIL (|has| $ (-6 -4505))))) -(((-136 |#1|) (-13 (-134 |#1|) (-10 -8 (-15 -1627 ($ |#1|)) (-15 -1627 ($ $ |#1| $)))) (-1082)) (T -136)) -((-1627 (*1 *1 *2) (-12 (-5 *1 (-136 *2)) (-4 *2 (-1082)))) (-1627 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-136 *2)) (-4 *2 (-1082))))) -(-13 (-134 |#1|) (-10 -8 (-15 -1627 ($ |#1|)) (-15 -1627 ($ $ |#1| $)))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-2314 (((-3 $ "failed") $ $) 18)) (-4236 (($) 16 T CONST)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-2801 (((-842) $) 11)) (-3304 (($) 17 T CONST)) (-1653 (((-121) $ $) 6)) (-1716 (($ $ $) 13)) (* (($ (-909) $) 12) (($ (-755) $) 14))) -(((-137) (-1267)) (T -137)) -((-2314 (*1 *1 *1 *1) (|partial| -4 *1 (-137)))) -(-13 (-23) (-10 -8 (-15 -2314 ((-3 $ "failed") $ $)))) -(((-23) . T) ((-25) . T) ((-105) . T) ((-600 (-842)) . T) ((-1082) . T)) -((-2601 (((-121) $ $) 7)) (-3534 (((-1241) $ (-755)) 18)) (-2839 (((-755) $) 19)) (-4325 (($ $ $) 12)) (-2501 (($ $ $) 13)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-2801 (((-842) $) 11)) (-1691 (((-121) $ $) 15)) (-1675 (((-121) $ $) 16)) (-1653 (((-121) $ $) 6)) (-1683 (((-121) $ $) 14)) (-1667 (((-121) $ $) 17))) -(((-138) (-1267)) (T -138)) -((-2839 (*1 *2 *1) (-12 (-4 *1 (-138)) (-5 *2 (-755)))) (-3534 (*1 *2 *1 *3) (-12 (-4 *1 (-138)) (-5 *3 (-755)) (-5 *2 (-1241))))) -(-13 (-834) (-10 -8 (-15 -2839 ((-755) $)) (-15 -3534 ((-1241) $ (-755))))) -(((-105) . T) ((-600 (-842)) . T) ((-834) . T) ((-1082) . T)) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-4236 (($) NIL T CONST)) (-1473 (((-3 (-755) "failed") $) 38)) (-3001 (((-755) $) 36)) (-1823 (((-3 $ "failed") $) NIL)) (-2642 (((-121) $) NIL)) (-4325 (($ $ $) NIL)) (-2501 (($ $ $) 26)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-3161 (((-121)) 39)) (-2886 (((-121) (-121)) 41)) (-3122 (((-121) $) 23)) (-3273 (((-121) $) 35)) (-2801 (((-842) $) 22) (($ (-755)) 14)) (-2464 (($ $ (-755)) NIL) (($ $ (-909)) NIL)) (-3304 (($) 12 T CONST)) (-1459 (($) 11 T CONST)) (-2267 (($ (-755)) 15)) (-1691 (((-121) $ $) NIL)) (-1675 (((-121) $ $) NIL)) (-1653 (((-121) $ $) 24)) (-1683 (((-121) $ $) NIL)) (-1667 (((-121) $ $) 25)) (-1725 (((-3 $ "failed") $ $) 29)) (-1716 (($ $ $) 27)) (** (($ $ (-755)) NIL) (($ $ (-909)) NIL) (($ $ $) 34)) (* (($ (-755) $) 32) (($ (-909) $) NIL) (($ $ $) 30))) -(((-139) (-13 (-834) (-23) (-708) (-1029 (-755)) (-10 -8 (-6 (-4507 "*")) (-15 -1725 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2267 ($ (-755))) (-15 -3122 ((-121) $)) (-15 -3273 ((-121) $)) (-15 -3161 ((-121))) (-15 -2886 ((-121) (-121)))))) (T -139)) -((-1725 (*1 *1 *1 *1) (|partial| -5 *1 (-139))) (** (*1 *1 *1 *1) (-5 *1 (-139))) (-2267 (*1 *1 *2) (-12 (-5 *2 (-755)) (-5 *1 (-139)))) (-3122 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-139)))) (-3273 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-139)))) (-3161 (*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-139)))) (-2886 (*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-139))))) -(-13 (-834) (-23) (-708) (-1029 (-755)) (-10 -8 (-6 (-4507 "*")) (-15 -1725 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2267 ($ (-755))) (-15 -3122 ((-121) $)) (-15 -3273 ((-121) $)) (-15 -3161 ((-121))) (-15 -2886 ((-121) (-121))))) -((-4158 (((-141 |#1| |#2| |#4|) (-626 |#4|) (-141 |#1| |#2| |#3|)) 14)) (-2803 (((-141 |#1| |#2| |#4|) (-1 |#4| |#3|) (-141 |#1| |#2| |#3|)) 18))) -(((-140 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4158 ((-141 |#1| |#2| |#4|) (-626 |#4|) (-141 |#1| |#2| |#3|))) (-15 -2803 ((-141 |#1| |#2| |#4|) (-1 |#4| |#3|) (-141 |#1| |#2| |#3|)))) (-560) (-755) (-170) (-170)) (T -140)) -((-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-141 *5 *6 *7)) (-14 *5 (-560)) (-14 *6 (-755)) (-4 *7 (-170)) (-4 *8 (-170)) (-5 *2 (-141 *5 *6 *8)) (-5 *1 (-140 *5 *6 *7 *8)))) (-4158 (*1 *2 *3 *4) (-12 (-5 *3 (-626 *8)) (-5 *4 (-141 *5 *6 *7)) (-14 *5 (-560)) (-14 *6 (-755)) (-4 *7 (-170)) (-4 *8 (-170)) (-5 *2 (-141 *5 *6 *8)) (-5 *1 (-140 *5 *6 *7 *8))))) -(-10 -7 (-15 -4158 ((-141 |#1| |#2| |#4|) (-626 |#4|) (-141 |#1| |#2| |#3|))) (-15 -2803 ((-141 |#1| |#2| |#4|) (-1 |#4| |#3|) (-141 |#1| |#2| |#3|)))) -((-2601 (((-121) $ $) NIL)) (-1298 (($ (-626 |#3|)) 38)) (-1638 (($ $) 97) (($ $ (-560) (-560)) 96)) (-4236 (($) 17)) (-1473 (((-3 |#3| "failed") $) 58)) (-3001 ((|#3| $) NIL)) (-2457 (($ $ (-626 (-560))) 98)) (-2781 (((-626 |#3|) $) 34)) (-3143 (((-755) $) 42)) (-2035 (($ $ $) 91)) (-3650 (($) 41)) (-1291 (((-1135) $) NIL)) (-4183 (($) 16)) (-4353 (((-1100) $) NIL)) (-2778 ((|#3| $) 44) ((|#3| $ (-560)) 45) ((|#3| $ (-560) (-560)) 46) ((|#3| $ (-560) (-560) (-560)) 47) ((|#3| $ (-560) (-560) (-560) (-560)) 48) ((|#3| $ (-626 (-560))) 50)) (-3662 (((-755) $) 43)) (-3917 (($ $ (-560) $ (-560)) 92) (($ $ (-560) (-560)) 94)) (-2801 (((-842) $) 65) (($ |#3|) 66) (($ (-228 |#2| |#3|)) 73) (($ (-1119 |#2| |#3|)) 76) (($ (-626 |#3|)) 51) (($ (-626 $)) 56)) (-3304 (($) 67 T CONST)) (-1459 (($) 68 T CONST)) (-1653 (((-121) $ $) 78)) (-1725 (($ $) 84) (($ $ $) 82)) (-1716 (($ $ $) 80)) (* (($ |#3| $) 89) (($ $ |#3|) 90) (($ $ (-560)) 87) (($ (-560) $) 86) (($ $ $) 93))) -(((-141 |#1| |#2| |#3|) (-13 (-463 |#3| (-755)) (-468 (-560) (-755)) (-10 -8 (-15 -2801 ($ (-228 |#2| |#3|))) (-15 -2801 ($ (-1119 |#2| |#3|))) (-15 -2801 ($ (-626 |#3|))) (-15 -2801 ($ (-626 $))) (-15 -3143 ((-755) $)) (-15 -2778 (|#3| $)) (-15 -2778 (|#3| $ (-560))) (-15 -2778 (|#3| $ (-560) (-560))) (-15 -2778 (|#3| $ (-560) (-560) (-560))) (-15 -2778 (|#3| $ (-560) (-560) (-560) (-560))) (-15 -2778 (|#3| $ (-626 (-560)))) (-15 -2035 ($ $ $)) (-15 * ($ $ $)) (-15 -3917 ($ $ (-560) $ (-560))) (-15 -3917 ($ $ (-560) (-560))) (-15 -1638 ($ $)) (-15 -1638 ($ $ (-560) (-560))) (-15 -2457 ($ $ (-626 (-560)))) (-15 -4183 ($)) (-15 -3650 ($)) (-15 -2781 ((-626 |#3|) $)) (-15 -1298 ($ (-626 |#3|))) (-15 -4236 ($)))) (-560) (-755) (-170)) (T -141)) -((-2035 (*1 *1 *1 *1) (-12 (-5 *1 (-141 *2 *3 *4)) (-14 *2 (-560)) (-14 *3 (-755)) (-4 *4 (-170)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-228 *4 *5)) (-14 *4 (-755)) (-4 *5 (-170)) (-5 *1 (-141 *3 *4 *5)) (-14 *3 (-560)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-1119 *4 *5)) (-14 *4 (-755)) (-4 *5 (-170)) (-5 *1 (-141 *3 *4 *5)) (-14 *3 (-560)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-626 *5)) (-4 *5 (-170)) (-5 *1 (-141 *3 *4 *5)) (-14 *3 (-560)) (-14 *4 (-755)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-626 (-141 *3 *4 *5))) (-5 *1 (-141 *3 *4 *5)) (-14 *3 (-560)) (-14 *4 (-755)) (-4 *5 (-170)))) (-3143 (*1 *2 *1) (-12 (-5 *2 (-755)) (-5 *1 (-141 *3 *4 *5)) (-14 *3 (-560)) (-14 *4 *2) (-4 *5 (-170)))) (-2778 (*1 *2 *1) (-12 (-4 *2 (-170)) (-5 *1 (-141 *3 *4 *2)) (-14 *3 (-560)) (-14 *4 (-755)))) (-2778 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *2 (-170)) (-5 *1 (-141 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-755)))) (-2778 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-560)) (-4 *2 (-170)) (-5 *1 (-141 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-755)))) (-2778 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-560)) (-4 *2 (-170)) (-5 *1 (-141 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-755)))) (-2778 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-560)) (-4 *2 (-170)) (-5 *1 (-141 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-755)))) (-2778 (*1 *2 *1 *3) (-12 (-5 *3 (-626 (-560))) (-4 *2 (-170)) (-5 *1 (-141 *4 *5 *2)) (-14 *4 (-560)) (-14 *5 (-755)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-141 *2 *3 *4)) (-14 *2 (-560)) (-14 *3 (-755)) (-4 *4 (-170)))) (-3917 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-141 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-755)) (-4 *5 (-170)))) (-3917 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-141 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-755)) (-4 *5 (-170)))) (-1638 (*1 *1 *1) (-12 (-5 *1 (-141 *2 *3 *4)) (-14 *2 (-560)) (-14 *3 (-755)) (-4 *4 (-170)))) (-1638 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-141 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-755)) (-4 *5 (-170)))) (-2457 (*1 *1 *1 *2) (-12 (-5 *2 (-626 (-560))) (-5 *1 (-141 *3 *4 *5)) (-14 *3 (-560)) (-14 *4 (-755)) (-4 *5 (-170)))) (-4183 (*1 *1) (-12 (-5 *1 (-141 *2 *3 *4)) (-14 *2 (-560)) (-14 *3 (-755)) (-4 *4 (-170)))) (-3650 (*1 *1) (-12 (-5 *1 (-141 *2 *3 *4)) (-14 *2 (-560)) (-14 *3 (-755)) (-4 *4 (-170)))) (-2781 (*1 *2 *1) (-12 (-5 *2 (-626 *5)) (-5 *1 (-141 *3 *4 *5)) (-14 *3 (-560)) (-14 *4 (-755)) (-4 *5 (-170)))) (-1298 (*1 *1 *2) (-12 (-5 *2 (-626 *5)) (-4 *5 (-170)) (-5 *1 (-141 *3 *4 *5)) (-14 *3 (-560)) (-14 *4 (-755)))) (-4236 (*1 *1) (-12 (-5 *1 (-141 *2 *3 *4)) (-14 *2 (-560)) (-14 *3 (-755)) (-4 *4 (-170))))) -(-13 (-463 |#3| (-755)) (-468 (-560) (-755)) (-10 -8 (-15 -2801 ($ (-228 |#2| |#3|))) (-15 -2801 ($ (-1119 |#2| |#3|))) (-15 -2801 ($ (-626 |#3|))) (-15 -2801 ($ (-626 $))) (-15 -3143 ((-755) $)) (-15 -2778 (|#3| $)) (-15 -2778 (|#3| $ (-560))) (-15 -2778 (|#3| $ (-560) (-560))) (-15 -2778 (|#3| $ (-560) (-560) (-560))) (-15 -2778 (|#3| $ (-560) (-560) (-560) (-560))) (-15 -2778 (|#3| $ (-626 (-560)))) (-15 -2035 ($ $ $)) (-15 * ($ $ $)) (-15 -3917 ($ $ (-560) $ (-560))) (-15 -3917 ($ $ (-560) (-560))) (-15 -1638 ($ $)) (-15 -1638 ($ $ (-560) (-560))) (-15 -2457 ($ $ (-626 (-560)))) (-15 -4183 ($)) (-15 -3650 ($)) (-15 -2781 ((-626 |#3|) $)) (-15 -1298 ($ (-626 |#3|))) (-15 -4236 ($)))) -((-2601 (((-121) $ $) NIL)) (-4010 (($) 15 T CONST)) (-3569 (($) NIL (|has| (-145) (-364)))) (-1749 (($ $ $) 17) (($ $ (-145)) NIL) (($ (-145) $) NIL)) (-2498 (($ $ $) NIL)) (-3947 (((-121) $ $) NIL)) (-3909 (((-121) $ (-755)) NIL)) (-2912 (((-755)) NIL (|has| (-145) (-364)))) (-2808 (($) NIL) (($ (-626 (-145))) NIL)) (-3763 (($ (-1 (-121) (-145)) $) NIL (|has| $ (-6 -4505)))) (-3802 (($ (-1 (-121) (-145)) $) NIL (|has| $ (-6 -4505)))) (-4236 (($) NIL T CONST)) (-2868 (($ $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-145) (-1082))))) (-3561 (($ (-1 (-121) (-145)) $) NIL (|has| $ (-6 -4505))) (($ (-145) $) 51 (|has| $ (-6 -4505)))) (-4310 (($ (-1 (-121) (-145)) $) NIL (|has| $ (-6 -4505))) (($ (-145) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-145) (-1082))))) (-2342 (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4505))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4505))) (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4505)) (|has| (-145) (-1082))))) (-1666 (($) NIL (|has| (-145) (-364)))) (-1981 (((-626 (-145)) $) 60 (|has| $ (-6 -4505)))) (-2122 (((-121) $ (-755)) NIL)) (-4325 (((-145) $) NIL (|has| (-145) (-834)))) (-2130 (((-626 (-145)) $) NIL (|has| $ (-6 -4505)))) (-2030 (((-121) (-145) $) 26 (-12 (|has| $ (-6 -4505)) (|has| (-145) (-1082))))) (-2501 (((-145) $) NIL (|has| (-145) (-834)))) (-3778 (($ (-1 (-145) (-145)) $) 59 (|has| $ (-6 -4506)))) (-2803 (($ (-1 (-145) (-145)) $) 55)) (-1379 (($) 16 T CONST)) (-3142 (((-909) $) NIL (|has| (-145) (-364)))) (-3441 (((-121) $ (-755)) NIL)) (-1291 (((-1135) $) NIL)) (-4283 (($ $ $) 29)) (-2525 (((-145) $) 52)) (-4345 (($ (-145) $) 50)) (-1330 (($ (-909)) NIL (|has| (-145) (-364)))) (-3036 (($) 14 T CONST)) (-4353 (((-1100) $) NIL)) (-3786 (((-3 (-145) "failed") (-1 (-121) (-145)) $) NIL)) (-2146 (((-145) $) 53)) (-2865 (((-121) (-1 (-121) (-145)) $) NIL (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-145)) (-626 (-145))) NIL (-12 (|has| (-145) (-298 (-145))) (|has| (-145) (-1082)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-298 (-145))) (|has| (-145) (-1082)))) (($ $ (-283 (-145))) NIL (-12 (|has| (-145) (-298 (-145))) (|has| (-145) (-1082)))) (($ $ (-626 (-283 (-145)))) NIL (-12 (|has| (-145) (-298 (-145))) (|has| (-145) (-1082))))) (-2214 (((-121) $ $) NIL)) (-4191 (((-121) $) NIL)) (-3260 (($) 48)) (-4271 (($) 13 T CONST)) (-1794 (($ $ $) 31) (($ $ (-145)) NIL)) (-3958 (($ (-626 (-145))) NIL) (($) NIL)) (-4035 (((-755) (-145) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-145) (-1082)))) (((-755) (-1 (-121) (-145)) $) NIL (|has| $ (-6 -4505)))) (-2813 (($ $) NIL)) (-4255 (((-1135) $) 36) (((-533) $) NIL (|has| (-145) (-601 (-533)))) (((-626 (-145)) $) 34)) (-4162 (($ (-626 (-145))) NIL)) (-1511 (($ $) 32 (|has| (-145) (-364)))) (-2801 (((-842) $) 46)) (-2251 (($ (-1135)) 12) (($ (-626 (-145))) 43)) (-4127 (((-755) $) NIL)) (-2799 (($) 49) (($ (-626 (-145))) NIL)) (-1354 (($ (-626 (-145))) NIL)) (-3656 (((-121) (-1 (-121) (-145)) $) NIL (|has| $ (-6 -4505)))) (-2890 (($) 19 T CONST)) (-2988 (($) 18 T CONST)) (-1653 (((-121) $ $) 22)) (-1667 (((-121) $ $) NIL)) (-2271 (((-755) $) 47 (|has| $ (-6 -4505))))) -(((-142) (-13 (-1082) (-601 (-1135)) (-421 (-145)) (-601 (-626 (-145))) (-10 -8 (-15 -2251 ($ (-1135))) (-15 -2251 ($ (-626 (-145)))) (-15 -4271 ($) -3565) (-15 -3036 ($) -3565) (-15 -4010 ($) -3565) (-15 -1379 ($) -3565) (-15 -2988 ($) -3565) (-15 -2890 ($) -3565)))) (T -142)) -((-2251 (*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-142)))) (-2251 (*1 *1 *2) (-12 (-5 *2 (-626 (-145))) (-5 *1 (-142)))) (-4271 (*1 *1) (-5 *1 (-142))) (-3036 (*1 *1) (-5 *1 (-142))) (-4010 (*1 *1) (-5 *1 (-142))) (-1379 (*1 *1) (-5 *1 (-142))) (-2988 (*1 *1) (-5 *1 (-142))) (-2890 (*1 *1) (-5 *1 (-142)))) -(-13 (-1082) (-601 (-1135)) (-421 (-145)) (-601 (-626 (-145))) (-10 -8 (-15 -2251 ($ (-1135))) (-15 -2251 ($ (-626 (-145)))) (-15 -4271 ($) -3565) (-15 -3036 ($) -3565) (-15 -4010 ($) -3565) (-15 -1379 ($) -3565) (-15 -2988 ($) -3565) (-15 -2890 ($) -3565))) -((-1347 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-3401 ((|#1| |#3|) 9)) (-4436 ((|#3| |#3|) 15))) -(((-143 |#1| |#2| |#3|) (-10 -7 (-15 -3401 (|#1| |#3|)) (-15 -4436 (|#3| |#3|)) (-15 -1347 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-550) (-985 |#1|) (-369 |#2|)) (T -143)) -((-1347 (*1 *2 *3) (-12 (-4 *4 (-550)) (-4 *5 (-985 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-143 *4 *5 *3)) (-4 *3 (-369 *5)))) (-4436 (*1 *2 *2) (-12 (-4 *3 (-550)) (-4 *4 (-985 *3)) (-5 *1 (-143 *3 *4 *2)) (-4 *2 (-369 *4)))) (-3401 (*1 *2 *3) (-12 (-4 *4 (-985 *2)) (-4 *2 (-550)) (-5 *1 (-143 *2 *4 *3)) (-4 *3 (-369 *4))))) -(-10 -7 (-15 -3401 (|#1| |#3|)) (-15 -4436 (|#3| |#3|)) (-15 -1347 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-3634 (($ $ $) 8)) (-2691 (($ $) 7)) (-2406 (($ $ $) 6))) -(((-144) (-1267)) (T -144)) -((-3634 (*1 *1 *1 *1) (-4 *1 (-144))) (-2691 (*1 *1 *1) (-4 *1 (-144))) (-2406 (*1 *1 *1 *1) (-4 *1 (-144)))) -(-13 (-10 -8 (-15 -2406 ($ $ $)) (-15 -2691 ($ $)) (-15 -3634 ($ $ $)))) -((-2601 (((-121) $ $) NIL)) (-2428 (((-121) $) 38)) (-4010 (($ $) 50)) (-1440 (($) 25)) (-2912 (((-755)) 16)) (-1666 (($) 24)) (-2777 (($) 26)) (-1943 (((-560) $) 21)) (-4325 (($ $ $) NIL)) (-2501 (($ $ $) NIL)) (-3234 (((-121) $) 40)) (-1379 (($ $) 51)) (-3142 (((-909) $) 22)) (-1291 (((-1135) $) 46)) (-1330 (($ (-909)) 20)) (-4404 (((-121) $) 36)) (-4353 (((-1100) $) NIL)) (-3423 (($) 27)) (-4387 (((-121) $) 34)) (-2801 (((-842) $) 29)) (-3090 (($ (-560)) 18) (($ (-1135)) 49)) (-2233 (((-121) $) 44)) (-2300 (((-121) $) 42)) (-1691 (((-121) $ $) NIL)) (-1675 (((-121) $ $) NIL)) (-1653 (((-121) $ $) 13)) (-1683 (((-121) $ $) NIL)) (-1667 (((-121) $ $) 14))) -(((-145) (-13 (-828) (-10 -8 (-15 -1943 ((-560) $)) (-15 -3090 ($ (-560))) (-15 -3090 ($ (-1135))) (-15 -1440 ($)) (-15 -2777 ($)) (-15 -3423 ($)) (-15 -4010 ($ $)) (-15 -1379 ($ $)) (-15 -4387 ((-121) $)) (-15 -4404 ((-121) $)) (-15 -2300 ((-121) $)) (-15 -2428 ((-121) $)) (-15 -3234 ((-121) $)) (-15 -2233 ((-121) $))))) (T -145)) -((-1943 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-145)))) (-3090 (*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-145)))) (-3090 (*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-145)))) (-1440 (*1 *1) (-5 *1 (-145))) (-2777 (*1 *1) (-5 *1 (-145))) (-3423 (*1 *1) (-5 *1 (-145))) (-4010 (*1 *1 *1) (-5 *1 (-145))) (-1379 (*1 *1 *1) (-5 *1 (-145))) (-4387 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-145)))) (-4404 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-145)))) (-2300 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-145)))) (-2428 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-145)))) (-3234 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-145)))) (-2233 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-145))))) -(-13 (-828) (-10 -8 (-15 -1943 ((-560) $)) (-15 -3090 ($ (-560))) (-15 -3090 ($ (-1135))) (-15 -1440 ($)) (-15 -2777 ($)) (-15 -3423 ($)) (-15 -4010 ($ $)) (-15 -1379 ($ $)) (-15 -4387 ((-121) $)) (-15 -4404 ((-121) $)) (-15 -2300 ((-121) $)) (-15 -2428 ((-121) $)) (-15 -3234 ((-121) $)) (-15 -2233 ((-121) $)))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-2314 (((-3 $ "failed") $ $) 18)) (-4236 (($) 16 T CONST)) (-1823 (((-3 $ "failed") $) 33)) (-2642 (((-121) $) 30)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-2801 (((-842) $) 11) (($ (-560)) 27)) (-2272 (((-3 $ "failed") $) 34)) (-1751 (((-755)) 28)) (-2464 (($ $ (-909)) 25) (($ $ (-755)) 32)) (-3304 (($) 17 T CONST)) (-1459 (($) 29 T CONST)) (-1653 (((-121) $ $) 6)) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 24) (($ $ (-755)) 31)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 23))) -(((-146) (-1267)) (T -146)) -((-2272 (*1 *1 *1) (|partial| -4 *1 (-146)))) -(-13 (-1039) (-10 -8 (-15 -2272 ((-3 $ "failed") $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-105) . T) ((-137) . T) ((-600 (-842)) . T) ((-629 $) . T) ((-708) . T) ((-1039) . T) ((-1046) . T) ((-1094) . T) ((-1082) . T)) -((-3642 ((|#1| (-671 |#1|) |#1|) 17))) -(((-147 |#1|) (-10 -7 (-15 -3642 (|#1| (-671 |#1|) |#1|))) (-170)) (T -147)) -((-3642 (*1 *2 *3 *2) (-12 (-5 *3 (-671 *2)) (-4 *2 (-170)) (-5 *1 (-147 *2))))) -(-10 -7 (-15 -3642 (|#1| (-671 |#1|) |#1|))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-2314 (((-3 $ "failed") $ $) 18)) (-4236 (($) 16 T CONST)) (-1823 (((-3 $ "failed") $) 33)) (-2642 (((-121) $) 30)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-2801 (((-842) $) 11) (($ (-560)) 27)) (-1751 (((-755)) 28)) (-2464 (($ $ (-909)) 25) (($ $ (-755)) 32)) (-3304 (($) 17 T CONST)) (-1459 (($) 29 T CONST)) (-1653 (((-121) $ $) 6)) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 24) (($ $ (-755)) 31)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 23))) -(((-148) (-1267)) (T -148)) -NIL -(-13 (-1039)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-105) . T) ((-137) . T) ((-600 (-842)) . T) ((-629 $) . T) ((-708) . T) ((-1039) . T) ((-1046) . T) ((-1094) . T) ((-1082) . T)) -((-3085 (((-2 (|:| -4034 (-755)) (|:| -2169 (-403 |#2|)) (|:| |radicand| |#2|)) (-403 |#2|) (-755)) 69)) (-2471 (((-3 (-2 (|:| |radicand| (-403 |#2|)) (|:| |deg| (-755))) "failed") |#3|) 51)) (-2766 (((-2 (|:| -2169 (-403 |#2|)) (|:| |poly| |#3|)) |#3|) 36)) (-4331 ((|#1| |#3| |#3|) 39)) (-4450 ((|#3| |#3| (-403 |#2|) (-403 |#2|)) 19)) (-1574 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-403 |#2|)) (|:| |c2| (-403 |#2|)) (|:| |deg| (-755))) |#3| |#3|) 48))) -(((-149 |#1| |#2| |#3|) (-10 -7 (-15 -2766 ((-2 (|:| -2169 (-403 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2471 ((-3 (-2 (|:| |radicand| (-403 |#2|)) (|:| |deg| (-755))) "failed") |#3|)) (-15 -3085 ((-2 (|:| -4034 (-755)) (|:| -2169 (-403 |#2|)) (|:| |radicand| |#2|)) (-403 |#2|) (-755))) (-15 -4331 (|#1| |#3| |#3|)) (-15 -4450 (|#3| |#3| (-403 |#2|) (-403 |#2|))) (-15 -1574 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-403 |#2|)) (|:| |c2| (-403 |#2|)) (|:| |deg| (-755))) |#3| |#3|))) (-1191) (-1211 |#1|) (-1211 (-403 |#2|))) (T -149)) -((-1574 (*1 *2 *3 *3) (-12 (-4 *4 (-1191)) (-4 *5 (-1211 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-403 *5)) (|:| |c2| (-403 *5)) (|:| |deg| (-755)))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1211 (-403 *5))))) (-4450 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-403 *5)) (-4 *4 (-1191)) (-4 *5 (-1211 *4)) (-5 *1 (-149 *4 *5 *2)) (-4 *2 (-1211 *3)))) (-4331 (*1 *2 *3 *3) (-12 (-4 *4 (-1211 *2)) (-4 *2 (-1191)) (-5 *1 (-149 *2 *4 *3)) (-4 *3 (-1211 (-403 *4))))) (-3085 (*1 *2 *3 *4) (-12 (-5 *3 (-403 *6)) (-4 *5 (-1191)) (-4 *6 (-1211 *5)) (-5 *2 (-2 (|:| -4034 (-755)) (|:| -2169 *3) (|:| |radicand| *6))) (-5 *1 (-149 *5 *6 *7)) (-5 *4 (-755)) (-4 *7 (-1211 *3)))) (-2471 (*1 *2 *3) (|partial| -12 (-4 *4 (-1191)) (-4 *5 (-1211 *4)) (-5 *2 (-2 (|:| |radicand| (-403 *5)) (|:| |deg| (-755)))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1211 (-403 *5))))) (-2766 (*1 *2 *3) (-12 (-4 *4 (-1191)) (-4 *5 (-1211 *4)) (-5 *2 (-2 (|:| -2169 (-403 *5)) (|:| |poly| *3))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1211 (-403 *5)))))) -(-10 -7 (-15 -2766 ((-2 (|:| -2169 (-403 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2471 ((-3 (-2 (|:| |radicand| (-403 |#2|)) (|:| |deg| (-755))) "failed") |#3|)) (-15 -3085 ((-2 (|:| -4034 (-755)) (|:| -2169 (-403 |#2|)) (|:| |radicand| |#2|)) (-403 |#2|) (-755))) (-15 -4331 (|#1| |#3| |#3|)) (-15 -4450 (|#3| |#3| (-403 |#2|) (-403 |#2|))) (-15 -1574 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-403 |#2|)) (|:| |c2| (-403 |#2|)) (|:| |deg| (-755))) |#3| |#3|))) -((-1887 (((-3 (-626 (-1149 |#2|)) "failed") (-626 (-1149 |#2|)) (-1149 |#2|)) 31))) -(((-150 |#1| |#2|) (-10 -7 (-15 -1887 ((-3 (-626 (-1149 |#2|)) "failed") (-626 (-1149 |#2|)) (-1149 |#2|)))) (-542) (-164 |#1|)) (T -150)) -((-1887 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-626 (-1149 *5))) (-5 *3 (-1149 *5)) (-4 *5 (-164 *4)) (-4 *4 (-542)) (-5 *1 (-150 *4 *5))))) -(-10 -7 (-15 -1887 ((-3 (-626 (-1149 |#2|)) "failed") (-626 (-1149 |#2|)) (-1149 |#2|)))) -((-3802 (($ (-1 (-121) |#2|) $) 29)) (-2868 (($ $) 36)) (-4310 (($ (-1 (-121) |#2|) $) 27) (($ |#2| $) 32)) (-2342 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-3786 (((-3 |#2| "failed") (-1 (-121) |#2|) $) 19)) (-2865 (((-121) (-1 (-121) |#2|) $) 16)) (-4035 (((-755) (-1 (-121) |#2|) $) 13) (((-755) |#2| $) NIL)) (-3656 (((-121) (-1 (-121) |#2|) $) 15)) (-2271 (((-755) $) 11))) -(((-151 |#1| |#2|) (-10 -8 (-15 -2868 (|#1| |#1|)) (-15 -4310 (|#1| |#2| |#1|)) (-15 -2342 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3802 (|#1| (-1 (-121) |#2|) |#1|)) (-15 -4310 (|#1| (-1 (-121) |#2|) |#1|)) (-15 -2342 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2342 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3786 ((-3 |#2| "failed") (-1 (-121) |#2|) |#1|)) (-15 -4035 ((-755) |#2| |#1|)) (-15 -4035 ((-755) (-1 (-121) |#2|) |#1|)) (-15 -2865 ((-121) (-1 (-121) |#2|) |#1|)) (-15 -3656 ((-121) (-1 (-121) |#2|) |#1|)) (-15 -2271 ((-755) |#1|))) (-152 |#2|) (-1187)) (T -151)) -NIL -(-10 -8 (-15 -2868 (|#1| |#1|)) (-15 -4310 (|#1| |#2| |#1|)) (-15 -2342 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3802 (|#1| (-1 (-121) |#2|) |#1|)) (-15 -4310 (|#1| (-1 (-121) |#2|) |#1|)) (-15 -2342 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2342 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3786 ((-3 |#2| "failed") (-1 (-121) |#2|) |#1|)) (-15 -4035 ((-755) |#2| |#1|)) (-15 -4035 ((-755) (-1 (-121) |#2|) |#1|)) (-15 -2865 ((-121) (-1 (-121) |#2|) |#1|)) (-15 -3656 ((-121) (-1 (-121) |#2|) |#1|)) (-15 -2271 ((-755) |#1|))) -((-2601 (((-121) $ $) 18 (|has| |#1| (-1082)))) (-3909 (((-121) $ (-755)) 8)) (-3802 (($ (-1 (-121) |#1|) $) 41 (|has| $ (-6 -4505)))) (-4236 (($) 7 T CONST)) (-2868 (($ $) 38 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-4310 (($ (-1 (-121) |#1|) $) 42 (|has| $ (-6 -4505))) (($ |#1| $) 39 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-2342 ((|#1| (-1 |#1| |#1| |#1|) $) 44 (|has| $ (-6 -4505))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 43 (|has| $ (-6 -4505))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 40 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-1981 (((-626 |#1|) $) 30 (|has| $ (-6 -4505)))) (-2122 (((-121) $ (-755)) 9)) (-2130 (((-626 |#1|) $) 29 (|has| $ (-6 -4505)))) (-2030 (((-121) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-3778 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#1| |#1|) $) 35)) (-3441 (((-121) $ (-755)) 10)) (-1291 (((-1135) $) 22 (|has| |#1| (-1082)))) (-4353 (((-1100) $) 21 (|has| |#1| (-1082)))) (-3786 (((-3 |#1| "failed") (-1 (-121) |#1|) $) 45)) (-2865 (((-121) (-1 (-121) |#1|) $) 32 (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#1|))) 26 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-283 |#1|)) 25 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-626 |#1|) (-626 |#1|)) 23 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))))) (-2214 (((-121) $ $) 14)) (-4191 (((-121) $) 11)) (-3260 (($) 12)) (-4035 (((-755) (-1 (-121) |#1|) $) 31 (|has| $ (-6 -4505))) (((-755) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-2813 (($ $) 13)) (-4255 (((-533) $) 37 (|has| |#1| (-601 (-533))))) (-4162 (($ (-626 |#1|)) 46)) (-2801 (((-842) $) 20 (|has| |#1| (-1082)))) (-3656 (((-121) (-1 (-121) |#1|) $) 33 (|has| $ (-6 -4505)))) (-1653 (((-121) $ $) 19 (|has| |#1| (-1082)))) (-2271 (((-755) $) 6 (|has| $ (-6 -4505))))) -(((-152 |#1|) (-1267) (-1187)) (T -152)) -((-4162 (*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-1187)) (-4 *1 (-152 *3)))) (-3786 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-121) *2)) (-4 *1 (-152 *2)) (-4 *2 (-1187)))) (-2342 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4505)) (-4 *1 (-152 *2)) (-4 *2 (-1187)))) (-2342 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4505)) (-4 *1 (-152 *2)) (-4 *2 (-1187)))) (-4310 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-121) *3)) (|has| *1 (-6 -4505)) (-4 *1 (-152 *3)) (-4 *3 (-1187)))) (-3802 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-121) *3)) (|has| *1 (-6 -4505)) (-4 *1 (-152 *3)) (-4 *3 (-1187)))) (-2342 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1082)) (|has| *1 (-6 -4505)) (-4 *1 (-152 *2)) (-4 *2 (-1187)))) (-4310 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4505)) (-4 *1 (-152 *2)) (-4 *2 (-1187)) (-4 *2 (-1082)))) (-2868 (*1 *1 *1) (-12 (|has| *1 (-6 -4505)) (-4 *1 (-152 *2)) (-4 *2 (-1187)) (-4 *2 (-1082))))) -(-13 (-492 |t#1|) (-10 -8 (-15 -4162 ($ (-626 |t#1|))) (-15 -3786 ((-3 |t#1| "failed") (-1 (-121) |t#1|) $)) (IF (|has| $ (-6 -4505)) (PROGN (-15 -2342 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -2342 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -4310 ($ (-1 (-121) |t#1|) $)) (-15 -3802 ($ (-1 (-121) |t#1|) $)) (IF (|has| |t#1| (-1082)) (PROGN (-15 -2342 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -4310 ($ |t#1| $)) (-15 -2868 ($ $))) |noBranch|)) |noBranch|) (IF (|has| |t#1| (-601 (-533))) (-6 (-601 (-533))) |noBranch|))) -(((-39) . T) ((-105) |has| |#1| (-1082)) ((-600 (-842)) |has| |#1| (-1082)) ((-601 (-533)) |has| |#1| (-601 (-533))) ((-298 |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))) ((-492 |#1|) . T) ((-515 |#1| |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))) ((-1082) |has| |#1| (-1082)) ((-1187) . T)) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-4236 (($) NIL T CONST)) (-1823 (((-3 $ "failed") $) 85)) (-2642 (((-121) $) NIL)) (-1637 (($ |#2| (-626 (-909))) 56)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2869 (($ (-909)) 48)) (-4016 (((-139)) 23)) (-2801 (((-842) $) 68) (($ (-560)) 46) (($ |#2|) 47)) (-2636 ((|#2| $ (-626 (-909))) 58)) (-1751 (((-755)) 20)) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (-3304 (($) 40 T CONST)) (-1459 (($) 44 T CONST)) (-1653 (((-121) $ $) 26)) (-1733 (($ $ |#2|) NIL)) (-1725 (($ $) 34) (($ $ $) 32)) (-1716 (($ $ $) 30)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) 37) (($ $ $) 52) (($ |#2| $) 39) (($ $ |#2|) NIL))) -(((-153 |#1| |#2| |#3|) (-13 (-1039) (-43 |#2|) (-1243 |#2|) (-10 -8 (-15 -2869 ($ (-909))) (-15 -1637 ($ |#2| (-626 (-909)))) (-15 -2636 (|#2| $ (-626 (-909)))) (-15 -1823 ((-3 $ "failed") $)))) (-909) (-359) (-986 |#1| |#2|)) (T -153)) -((-1823 (*1 *1 *1) (|partial| -12 (-5 *1 (-153 *2 *3 *4)) (-14 *2 (-909)) (-4 *3 (-359)) (-14 *4 (-986 *2 *3)))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-909)) (-5 *1 (-153 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-359)) (-14 *5 (-986 *3 *4)))) (-1637 (*1 *1 *2 *3) (-12 (-5 *3 (-626 (-909))) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-909)) (-4 *2 (-359)) (-14 *5 (-986 *4 *2)))) (-2636 (*1 *2 *1 *3) (-12 (-5 *3 (-626 (-909))) (-4 *2 (-359)) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-909)) (-14 *5 (-986 *4 *2))))) -(-13 (-1039) (-43 |#2|) (-1243 |#2|) (-10 -8 (-15 -2869 ($ (-909))) (-15 -1637 ($ |#2| (-626 (-909)))) (-15 -2636 (|#2| $ (-626 (-909)))) (-15 -1823 ((-3 $ "failed") $)))) -((-2261 (((-2 (|:| |brans| (-626 (-626 (-936 (-213))))) (|:| |xValues| (-1076 (-213))) (|:| |yValues| (-1076 (-213)))) (-626 (-626 (-936 (-213)))) (-213) (-213) (-213) (-213)) 38)) (-3140 (((-2 (|:| |brans| (-626 (-626 (-936 (-213))))) (|:| |xValues| (-1076 (-213))) (|:| |yValues| (-1076 (-213)))) (-919) (-403 (-560)) (-403 (-560))) 62) (((-2 (|:| |brans| (-626 (-626 (-936 (-213))))) (|:| |xValues| (-1076 (-213))) (|:| |yValues| (-1076 (-213)))) (-919)) 63)) (-4232 (((-2 (|:| |brans| (-626 (-626 (-936 (-213))))) (|:| |xValues| (-1076 (-213))) (|:| |yValues| (-1076 (-213)))) (-626 (-626 (-936 (-213))))) 66) (((-2 (|:| |brans| (-626 (-626 (-936 (-213))))) (|:| |xValues| (-1076 (-213))) (|:| |yValues| (-1076 (-213)))) (-626 (-936 (-213)))) 65) (((-2 (|:| |brans| (-626 (-626 (-936 (-213))))) (|:| |xValues| (-1076 (-213))) (|:| |yValues| (-1076 (-213)))) (-919) (-403 (-560)) (-403 (-560))) 57) (((-2 (|:| |brans| (-626 (-626 (-936 (-213))))) (|:| |xValues| (-1076 (-213))) (|:| |yValues| (-1076 (-213)))) (-919)) 58))) -(((-154) (-10 -7 (-15 -4232 ((-2 (|:| |brans| (-626 (-626 (-936 (-213))))) (|:| |xValues| (-1076 (-213))) (|:| |yValues| (-1076 (-213)))) (-919))) (-15 -4232 ((-2 (|:| |brans| (-626 (-626 (-936 (-213))))) (|:| |xValues| (-1076 (-213))) (|:| |yValues| (-1076 (-213)))) (-919) (-403 (-560)) (-403 (-560)))) (-15 -3140 ((-2 (|:| |brans| (-626 (-626 (-936 (-213))))) (|:| |xValues| (-1076 (-213))) (|:| |yValues| (-1076 (-213)))) (-919))) (-15 -3140 ((-2 (|:| |brans| (-626 (-626 (-936 (-213))))) (|:| |xValues| (-1076 (-213))) (|:| |yValues| (-1076 (-213)))) (-919) (-403 (-560)) (-403 (-560)))) (-15 -2261 ((-2 (|:| |brans| (-626 (-626 (-936 (-213))))) (|:| |xValues| (-1076 (-213))) (|:| |yValues| (-1076 (-213)))) (-626 (-626 (-936 (-213)))) (-213) (-213) (-213) (-213))) (-15 -4232 ((-2 (|:| |brans| (-626 (-626 (-936 (-213))))) (|:| |xValues| (-1076 (-213))) (|:| |yValues| (-1076 (-213)))) (-626 (-936 (-213))))) (-15 -4232 ((-2 (|:| |brans| (-626 (-626 (-936 (-213))))) (|:| |xValues| (-1076 (-213))) (|:| |yValues| (-1076 (-213)))) (-626 (-626 (-936 (-213)))))))) (T -154)) -((-4232 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-626 (-626 (-936 (-213))))) (|:| |xValues| (-1076 (-213))) (|:| |yValues| (-1076 (-213))))) (-5 *1 (-154)) (-5 *3 (-626 (-626 (-936 (-213))))))) (-4232 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-626 (-626 (-936 (-213))))) (|:| |xValues| (-1076 (-213))) (|:| |yValues| (-1076 (-213))))) (-5 *1 (-154)) (-5 *3 (-626 (-936 (-213)))))) (-2261 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-213)) (-5 *2 (-2 (|:| |brans| (-626 (-626 (-936 *4)))) (|:| |xValues| (-1076 *4)) (|:| |yValues| (-1076 *4)))) (-5 *1 (-154)) (-5 *3 (-626 (-626 (-936 *4)))))) (-3140 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-919)) (-5 *4 (-403 (-560))) (-5 *2 (-2 (|:| |brans| (-626 (-626 (-936 (-213))))) (|:| |xValues| (-1076 (-213))) (|:| |yValues| (-1076 (-213))))) (-5 *1 (-154)))) (-3140 (*1 *2 *3) (-12 (-5 *3 (-919)) (-5 *2 (-2 (|:| |brans| (-626 (-626 (-936 (-213))))) (|:| |xValues| (-1076 (-213))) (|:| |yValues| (-1076 (-213))))) (-5 *1 (-154)))) (-4232 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-919)) (-5 *4 (-403 (-560))) (-5 *2 (-2 (|:| |brans| (-626 (-626 (-936 (-213))))) (|:| |xValues| (-1076 (-213))) (|:| |yValues| (-1076 (-213))))) (-5 *1 (-154)))) (-4232 (*1 *2 *3) (-12 (-5 *3 (-919)) (-5 *2 (-2 (|:| |brans| (-626 (-626 (-936 (-213))))) (|:| |xValues| (-1076 (-213))) (|:| |yValues| (-1076 (-213))))) (-5 *1 (-154))))) -(-10 -7 (-15 -4232 ((-2 (|:| |brans| (-626 (-626 (-936 (-213))))) (|:| |xValues| (-1076 (-213))) (|:| |yValues| (-1076 (-213)))) (-919))) (-15 -4232 ((-2 (|:| |brans| (-626 (-626 (-936 (-213))))) (|:| |xValues| (-1076 (-213))) (|:| |yValues| (-1076 (-213)))) (-919) (-403 (-560)) (-403 (-560)))) (-15 -3140 ((-2 (|:| |brans| (-626 (-626 (-936 (-213))))) (|:| |xValues| (-1076 (-213))) (|:| |yValues| (-1076 (-213)))) (-919))) (-15 -3140 ((-2 (|:| |brans| (-626 (-626 (-936 (-213))))) (|:| |xValues| (-1076 (-213))) (|:| |yValues| (-1076 (-213)))) (-919) (-403 (-560)) (-403 (-560)))) (-15 -2261 ((-2 (|:| |brans| (-626 (-626 (-936 (-213))))) (|:| |xValues| (-1076 (-213))) (|:| |yValues| (-1076 (-213)))) (-626 (-626 (-936 (-213)))) (-213) (-213) (-213) (-213))) (-15 -4232 ((-2 (|:| |brans| (-626 (-626 (-936 (-213))))) (|:| |xValues| (-1076 (-213))) (|:| |yValues| (-1076 (-213)))) (-626 (-936 (-213))))) (-15 -4232 ((-2 (|:| |brans| (-626 (-626 (-936 (-213))))) (|:| |xValues| (-1076 (-213))) (|:| |yValues| (-1076 (-213)))) (-626 (-626 (-936 (-213))))))) -((-4319 (((-626 (-167 |#2|)) |#1| |#2|) 45))) -(((-155 |#1| |#2|) (-10 -7 (-15 -4319 ((-626 (-167 |#2|)) |#1| |#2|))) (-1211 (-167 (-560))) (-13 (-359) (-832))) (T -155)) -((-4319 (*1 *2 *3 *4) (-12 (-5 *2 (-626 (-167 *4))) (-5 *1 (-155 *3 *4)) (-4 *3 (-1211 (-167 (-560)))) (-4 *4 (-13 (-359) (-832)))))) -(-10 -7 (-15 -4319 ((-626 (-167 |#2|)) |#1| |#2|))) -((-2601 (((-121) $ $) NIL)) (-3864 (($) 15)) (-4234 (($) 14)) (-2070 (((-909)) 22)) (-1291 (((-1135) $) NIL)) (-3597 (((-560) $) 19)) (-4353 (((-1100) $) NIL)) (-2499 (($) 16)) (-1372 (($ (-560)) 23)) (-2801 (((-842) $) 29)) (-1477 (($) 17)) (-1653 (((-121) $ $) 13)) (-1716 (($ $ $) 11)) (* (($ (-909) $) 21) (($ (-213) $) 8))) -(((-156) (-13 (-25) (-10 -8 (-15 * ($ (-909) $)) (-15 * ($ (-213) $)) (-15 -1716 ($ $ $)) (-15 -4234 ($)) (-15 -3864 ($)) (-15 -2499 ($)) (-15 -1477 ($)) (-15 -3597 ((-560) $)) (-15 -2070 ((-909))) (-15 -1372 ($ (-560)))))) (T -156)) -((-1716 (*1 *1 *1 *1) (-5 *1 (-156))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-909)) (-5 *1 (-156)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-213)) (-5 *1 (-156)))) (-4234 (*1 *1) (-5 *1 (-156))) (-3864 (*1 *1) (-5 *1 (-156))) (-2499 (*1 *1) (-5 *1 (-156))) (-1477 (*1 *1) (-5 *1 (-156))) (-3597 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-156)))) (-2070 (*1 *2) (-12 (-5 *2 (-909)) (-5 *1 (-156)))) (-1372 (*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-156))))) -(-13 (-25) (-10 -8 (-15 * ($ (-909) $)) (-15 * ($ (-213) $)) (-15 -1716 ($ $ $)) (-15 -4234 ($)) (-15 -3864 ($)) (-15 -2499 ($)) (-15 -1477 ($)) (-15 -3597 ((-560) $)) (-15 -2070 ((-909))) (-15 -1372 ($ (-560))))) -((-1796 ((|#2| |#2| (-1074 |#2|)) 87) ((|#2| |#2| (-1153)) 67)) (-2035 ((|#2| |#2| (-1074 |#2|)) 86) ((|#2| |#2| (-1153)) 66)) (-3634 ((|#2| |#2| |#2|) 27)) (-4403 (((-123) (-123)) 97)) (-2897 ((|#2| (-626 |#2|)) 116)) (-1900 ((|#2| (-626 |#2|)) 134)) (-4216 ((|#2| (-626 |#2|)) 124)) (-1963 ((|#2| |#2|) 122)) (-2311 ((|#2| (-626 |#2|)) 109)) (-3171 ((|#2| (-626 |#2|)) 110)) (-2031 ((|#2| (-626 |#2|)) 132)) (-1820 ((|#2| |#2| (-1153)) 54) ((|#2| |#2|) 53)) (-2691 ((|#2| |#2|) 23)) (-2406 ((|#2| |#2| |#2|) 26)) (-2409 (((-121) (-123)) 47)) (** ((|#2| |#2| |#2|) 38))) -(((-157 |#1| |#2|) (-10 -7 (-15 -2409 ((-121) (-123))) (-15 -4403 ((-123) (-123))) (-15 ** (|#2| |#2| |#2|)) (-15 -2406 (|#2| |#2| |#2|)) (-15 -3634 (|#2| |#2| |#2|)) (-15 -2691 (|#2| |#2|)) (-15 -1820 (|#2| |#2|)) (-15 -1820 (|#2| |#2| (-1153))) (-15 -1796 (|#2| |#2| (-1153))) (-15 -1796 (|#2| |#2| (-1074 |#2|))) (-15 -2035 (|#2| |#2| (-1153))) (-15 -2035 (|#2| |#2| (-1074 |#2|))) (-15 -1963 (|#2| |#2|)) (-15 -2031 (|#2| (-626 |#2|))) (-15 -4216 (|#2| (-626 |#2|))) (-15 -1900 (|#2| (-626 |#2|))) (-15 -2311 (|#2| (-626 |#2|))) (-15 -3171 (|#2| (-626 |#2|))) (-15 -2897 (|#2| (-626 |#2|)))) (-13 (-834) (-550)) (-426 |#1|)) (T -157)) -((-2897 (*1 *2 *3) (-12 (-5 *3 (-626 *2)) (-4 *2 (-426 *4)) (-5 *1 (-157 *4 *2)) (-4 *4 (-13 (-834) (-550))))) (-3171 (*1 *2 *3) (-12 (-5 *3 (-626 *2)) (-4 *2 (-426 *4)) (-5 *1 (-157 *4 *2)) (-4 *4 (-13 (-834) (-550))))) (-2311 (*1 *2 *3) (-12 (-5 *3 (-626 *2)) (-4 *2 (-426 *4)) (-5 *1 (-157 *4 *2)) (-4 *4 (-13 (-834) (-550))))) (-1900 (*1 *2 *3) (-12 (-5 *3 (-626 *2)) (-4 *2 (-426 *4)) (-5 *1 (-157 *4 *2)) (-4 *4 (-13 (-834) (-550))))) (-4216 (*1 *2 *3) (-12 (-5 *3 (-626 *2)) (-4 *2 (-426 *4)) (-5 *1 (-157 *4 *2)) (-4 *4 (-13 (-834) (-550))))) (-2031 (*1 *2 *3) (-12 (-5 *3 (-626 *2)) (-4 *2 (-426 *4)) (-5 *1 (-157 *4 *2)) (-4 *4 (-13 (-834) (-550))))) (-1963 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-157 *3 *2)) (-4 *2 (-426 *3)))) (-2035 (*1 *2 *2 *3) (-12 (-5 *3 (-1074 *2)) (-4 *2 (-426 *4)) (-4 *4 (-13 (-834) (-550))) (-5 *1 (-157 *4 *2)))) (-2035 (*1 *2 *2 *3) (-12 (-5 *3 (-1153)) (-4 *4 (-13 (-834) (-550))) (-5 *1 (-157 *4 *2)) (-4 *2 (-426 *4)))) (-1796 (*1 *2 *2 *3) (-12 (-5 *3 (-1074 *2)) (-4 *2 (-426 *4)) (-4 *4 (-13 (-834) (-550))) (-5 *1 (-157 *4 *2)))) (-1796 (*1 *2 *2 *3) (-12 (-5 *3 (-1153)) (-4 *4 (-13 (-834) (-550))) (-5 *1 (-157 *4 *2)) (-4 *2 (-426 *4)))) (-1820 (*1 *2 *2 *3) (-12 (-5 *3 (-1153)) (-4 *4 (-13 (-834) (-550))) (-5 *1 (-157 *4 *2)) (-4 *2 (-426 *4)))) (-1820 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-157 *3 *2)) (-4 *2 (-426 *3)))) (-2691 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-157 *3 *2)) (-4 *2 (-426 *3)))) (-3634 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-157 *3 *2)) (-4 *2 (-426 *3)))) (-2406 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-157 *3 *2)) (-4 *2 (-426 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-157 *3 *2)) (-4 *2 (-426 *3)))) (-4403 (*1 *2 *2) (-12 (-5 *2 (-123)) (-4 *3 (-13 (-834) (-550))) (-5 *1 (-157 *3 *4)) (-4 *4 (-426 *3)))) (-2409 (*1 *2 *3) (-12 (-5 *3 (-123)) (-4 *4 (-13 (-834) (-550))) (-5 *2 (-121)) (-5 *1 (-157 *4 *5)) (-4 *5 (-426 *4))))) -(-10 -7 (-15 -2409 ((-121) (-123))) (-15 -4403 ((-123) (-123))) (-15 ** (|#2| |#2| |#2|)) (-15 -2406 (|#2| |#2| |#2|)) (-15 -3634 (|#2| |#2| |#2|)) (-15 -2691 (|#2| |#2|)) (-15 -1820 (|#2| |#2|)) (-15 -1820 (|#2| |#2| (-1153))) (-15 -1796 (|#2| |#2| (-1153))) (-15 -1796 (|#2| |#2| (-1074 |#2|))) (-15 -2035 (|#2| |#2| (-1153))) (-15 -2035 (|#2| |#2| (-1074 |#2|))) (-15 -1963 (|#2| |#2|)) (-15 -2031 (|#2| (-626 |#2|))) (-15 -4216 (|#2| (-626 |#2|))) (-15 -1900 (|#2| (-626 |#2|))) (-15 -2311 (|#2| (-626 |#2|))) (-15 -3171 (|#2| (-626 |#2|))) (-15 -2897 (|#2| (-626 |#2|)))) -((-1383 ((|#1| |#1| |#1|) 52)) (-4087 ((|#1| |#1| |#1|) 49)) (-3634 ((|#1| |#1| |#1|) 43)) (-2728 ((|#1| |#1|) 34)) (-3362 ((|#1| |#1| (-626 |#1|)) 42)) (-2691 ((|#1| |#1|) 36)) (-2406 ((|#1| |#1| |#1|) 39))) -(((-158 |#1|) (-10 -7 (-15 -2406 (|#1| |#1| |#1|)) (-15 -2691 (|#1| |#1|)) (-15 -3362 (|#1| |#1| (-626 |#1|))) (-15 -2728 (|#1| |#1|)) (-15 -3634 (|#1| |#1| |#1|)) (-15 -4087 (|#1| |#1| |#1|)) (-15 -1383 (|#1| |#1| |#1|))) (-542)) (T -158)) -((-1383 (*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-542)))) (-4087 (*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-542)))) (-3634 (*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-542)))) (-2728 (*1 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-542)))) (-3362 (*1 *2 *2 *3) (-12 (-5 *3 (-626 *2)) (-4 *2 (-542)) (-5 *1 (-158 *2)))) (-2691 (*1 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-542)))) (-2406 (*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-542))))) -(-10 -7 (-15 -2406 (|#1| |#1| |#1|)) (-15 -2691 (|#1| |#1|)) (-15 -3362 (|#1| |#1| (-626 |#1|))) (-15 -2728 (|#1| |#1|)) (-15 -3634 (|#1| |#1| |#1|)) (-15 -4087 (|#1| |#1| |#1|)) (-15 -1383 (|#1| |#1| |#1|))) -((-1796 (($ $ (-1153)) 12) (($ $ (-1074 $)) 11)) (-2035 (($ $ (-1153)) 10) (($ $ (-1074 $)) 9)) (-3634 (($ $ $) 8)) (-1820 (($ $) 14) (($ $ (-1153)) 13)) (-2691 (($ $) 7)) (-2406 (($ $ $) 6))) -(((-159) (-1267)) (T -159)) -((-1820 (*1 *1 *1) (-4 *1 (-159))) (-1820 (*1 *1 *1 *2) (-12 (-4 *1 (-159)) (-5 *2 (-1153)))) (-1796 (*1 *1 *1 *2) (-12 (-4 *1 (-159)) (-5 *2 (-1153)))) (-1796 (*1 *1 *1 *2) (-12 (-5 *2 (-1074 *1)) (-4 *1 (-159)))) (-2035 (*1 *1 *1 *2) (-12 (-4 *1 (-159)) (-5 *2 (-1153)))) (-2035 (*1 *1 *1 *2) (-12 (-5 *2 (-1074 *1)) (-4 *1 (-159))))) -(-13 (-144) (-10 -8 (-15 -1820 ($ $)) (-15 -1820 ($ $ (-1153))) (-15 -1796 ($ $ (-1153))) (-15 -1796 ($ $ (-1074 $))) (-15 -2035 ($ $ (-1153))) (-15 -2035 ($ $ (-1074 $))))) -(((-144) . T)) -((-2601 (((-121) $ $) NIL)) (-1855 (($ (-560)) 13) (($ $ $) 14)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2801 (((-842) $) 17)) (-1653 (((-121) $ $) 9))) -(((-160) (-13 (-1082) (-10 -8 (-15 -1855 ($ (-560))) (-15 -1855 ($ $ $))))) (T -160)) -((-1855 (*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-160)))) (-1855 (*1 *1 *1 *1) (-5 *1 (-160)))) -(-13 (-1082) (-10 -8 (-15 -1855 ($ (-560))) (-15 -1855 ($ $ $)))) -((-4403 (((-123) (-1153)) 97))) -(((-161) (-10 -7 (-15 -4403 ((-123) (-1153))))) (T -161)) -((-4403 (*1 *2 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-123)) (-5 *1 (-161))))) -(-10 -7 (-15 -4403 ((-123) (-1153)))) -((-3984 ((|#3| |#3|) 19))) -(((-162 |#1| |#2| |#3|) (-10 -7 (-15 -3984 (|#3| |#3|))) (-1039) (-1211 |#1|) (-1211 |#2|)) (T -162)) -((-3984 (*1 *2 *2) (-12 (-4 *3 (-1039)) (-4 *4 (-1211 *3)) (-5 *1 (-162 *3 *4 *2)) (-4 *2 (-1211 *4))))) -(-10 -7 (-15 -3984 (|#3| |#3|))) -((-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) 215)) (-1944 ((|#2| $) 95)) (-2570 (($ $) 242)) (-2514 (($ $) 236)) (-1887 (((-3 (-626 (-1149 $)) "failed") (-626 (-1149 $)) (-1149 $)) 39)) (-2561 (($ $) 240)) (-2790 (($ $) 234)) (-1473 (((-3 (-560) "failed") $) NIL) (((-3 (-403 (-560)) "failed") $) NIL) (((-3 |#2| "failed") $) 139)) (-3001 (((-560) $) NIL) (((-403 (-560)) $) NIL) ((|#2| $) 137)) (-2563 (($ $ $) 220)) (-2616 (((-671 (-560)) (-671 $)) NIL) (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) NIL) (((-2 (|:| -3818 (-671 |#2|)) (|:| |vec| (-1236 |#2|))) (-671 $) (-1236 $)) 153) (((-671 |#2|) (-671 $)) 147)) (-2342 (($ (-1149 |#2|)) 118) (((-3 $ "failed") (-403 (-1149 |#2|))) NIL)) (-1823 (((-3 $ "failed") $) 207)) (-1367 (((-3 (-403 (-560)) "failed") $) 197)) (-1689 (((-121) $) 192)) (-1519 (((-403 (-560)) $) 195)) (-3143 (((-909)) 88)) (-2572 (($ $ $) 222)) (-2285 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 258)) (-2474 (($) 231)) (-2399 (((-876 (-560) $) $ (-879 (-560)) (-876 (-560) $)) 184) (((-876 (-375) $) $ (-879 (-375)) (-876 (-375) $)) 189)) (-3339 ((|#2| $) 93)) (-4108 (((-1149 |#2|) $) 120)) (-2803 (($ (-1 |#2| |#2|) $) 101)) (-4399 (($ $) 233)) (-2335 (((-1149 |#2|) $) 119)) (-1701 (($ $) 200)) (-3042 (($) 96)) (-3817 (((-414 (-1149 $)) (-1149 $)) 87)) (-3032 (((-414 (-1149 $)) (-1149 $)) 56)) (-2336 (((-3 $ "failed") $ |#2|) 202) (((-3 $ "failed") $ $) 205)) (-2469 (($ $) 232)) (-4445 (((-755) $) 217)) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) 226)) (-4069 ((|#2| (-1236 $)) NIL) ((|#2|) 90)) (-2443 (($ $ (-1 |#2| |#2|) (-755)) NIL) (($ $ (-1 |#2| |#2|)) 112) (($ $ (-626 (-1153)) (-626 (-755))) NIL) (($ $ (-1153) (-755)) NIL) (($ $ (-626 (-1153))) NIL) (($ $ (-1153)) NIL) (($ $ (-755)) NIL) (($ $) NIL)) (-3591 (((-1149 |#2|)) 113)) (-2566 (($ $) 241)) (-2795 (($ $) 235)) (-3390 (((-1236 |#2|) $ (-1236 $)) 126) (((-671 |#2|) (-1236 $) (-1236 $)) NIL) (((-1236 |#2|) $) 109) (((-671 |#2|) (-1236 $)) NIL)) (-4255 (((-1236 |#2|) $) NIL) (($ (-1236 |#2|)) NIL) (((-1149 |#2|) $) NIL) (($ (-1149 |#2|)) NIL) (((-879 (-560)) $) 175) (((-879 (-375)) $) 179) (((-167 (-375)) $) 165) (((-167 (-213)) $) 160) (((-533) $) 171)) (-3101 (($ $) 97)) (-2801 (((-842) $) 136) (($ (-560)) NIL) (($ |#2|) NIL) (($ (-403 (-560))) NIL) (($ $) NIL)) (-3642 (((-1149 |#2|) $) 23)) (-1751 (((-755)) 99)) (-2598 (($ $) 245)) (-2541 (($ $) 239)) (-2590 (($ $) 243)) (-2532 (($ $) 237)) (-3896 ((|#2| $) 230)) (-2594 (($ $) 244)) (-2536 (($ $) 238)) (-1822 (($ $) 155)) (-1653 (((-121) $ $) 103)) (-1667 (((-121) $ $) 191)) (-1725 (($ $) 105) (($ $ $) NIL)) (-1716 (($ $ $) 104)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-403 (-560))) 264) (($ $ $) NIL) (($ $ (-560)) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) 111) (($ $ $) 140) (($ $ |#2|) NIL) (($ |#2| $) 107) (($ (-403 (-560)) $) NIL) (($ $ (-403 (-560))) NIL))) -(((-163 |#1| |#2|) (-10 -8 (-15 -2443 (|#1| |#1|)) (-15 -2443 (|#1| |#1| (-755))) (-15 -2801 (|#1| |#1|)) (-15 -2336 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2744 ((-2 (|:| -1917 |#1|) (|:| -4492 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2443 (|#1| |#1| (-1153))) (-15 -2443 (|#1| |#1| (-626 (-1153)))) (-15 -2443 (|#1| |#1| (-1153) (-755))) (-15 -2443 (|#1| |#1| (-626 (-1153)) (-626 (-755)))) (-15 -4445 ((-755) |#1|)) (-15 -2215 ((-2 (|:| -2583 |#1|) (|:| -4397 |#1|)) |#1| |#1|)) (-15 -2572 (|#1| |#1| |#1|)) (-15 -2563 (|#1| |#1| |#1|)) (-15 -1701 (|#1| |#1|)) (-15 ** (|#1| |#1| (-560))) (-15 * (|#1| |#1| (-403 (-560)))) (-15 * (|#1| (-403 (-560)) |#1|)) (-15 -2801 (|#1| (-403 (-560)))) (-15 -1667 ((-121) |#1| |#1|)) (-15 -4255 ((-533) |#1|)) (-15 -4255 ((-167 (-213)) |#1|)) (-15 -4255 ((-167 (-375)) |#1|)) (-15 -2514 (|#1| |#1|)) (-15 -2790 (|#1| |#1|)) (-15 -2795 (|#1| |#1|)) (-15 -2536 (|#1| |#1|)) (-15 -2532 (|#1| |#1|)) (-15 -2541 (|#1| |#1|)) (-15 -2566 (|#1| |#1|)) (-15 -2561 (|#1| |#1|)) (-15 -2570 (|#1| |#1|)) (-15 -2594 (|#1| |#1|)) (-15 -2590 (|#1| |#1|)) (-15 -2598 (|#1| |#1|)) (-15 -4399 (|#1| |#1|)) (-15 -2469 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2474 (|#1|)) (-15 ** (|#1| |#1| (-403 (-560)))) (-15 -3032 ((-414 (-1149 |#1|)) (-1149 |#1|))) (-15 -3817 ((-414 (-1149 |#1|)) (-1149 |#1|))) (-15 -1887 ((-3 (-626 (-1149 |#1|)) "failed") (-626 (-1149 |#1|)) (-1149 |#1|))) (-15 -1367 ((-3 (-403 (-560)) "failed") |#1|)) (-15 -1519 ((-403 (-560)) |#1|)) (-15 -1689 ((-121) |#1|)) (-15 -2285 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3896 (|#2| |#1|)) (-15 -1822 (|#1| |#1|)) (-15 -2336 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3101 (|#1| |#1|)) (-15 -3042 (|#1|)) (-15 -4255 ((-879 (-375)) |#1|)) (-15 -4255 ((-879 (-560)) |#1|)) (-15 -2399 ((-876 (-375) |#1|) |#1| (-879 (-375)) (-876 (-375) |#1|))) (-15 -2399 ((-876 (-560) |#1|) |#1| (-879 (-560)) (-876 (-560) |#1|))) (-15 -2803 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2443 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2443 (|#1| |#1| (-1 |#2| |#2|) (-755))) (-15 -2342 ((-3 |#1| "failed") (-403 (-1149 |#2|)))) (-15 -2335 ((-1149 |#2|) |#1|)) (-15 -4255 (|#1| (-1149 |#2|))) (-15 -2342 (|#1| (-1149 |#2|))) (-15 -3591 ((-1149 |#2|))) (-15 -2616 ((-671 |#2|) (-671 |#1|))) (-15 -2616 ((-2 (|:| -3818 (-671 |#2|)) (|:| |vec| (-1236 |#2|))) (-671 |#1|) (-1236 |#1|))) (-15 -2616 ((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 |#1|) (-1236 |#1|))) (-15 -2616 ((-671 (-560)) (-671 |#1|))) (-15 -3001 (|#2| |#1|)) (-15 -1473 ((-3 |#2| "failed") |#1|)) (-15 -1473 ((-3 (-403 (-560)) "failed") |#1|)) (-15 -3001 ((-403 (-560)) |#1|)) (-15 -1473 ((-3 (-560) "failed") |#1|)) (-15 -3001 ((-560) |#1|)) (-15 -4255 ((-1149 |#2|) |#1|)) (-15 -4069 (|#2|)) (-15 -4255 (|#1| (-1236 |#2|))) (-15 -4255 ((-1236 |#2|) |#1|)) (-15 -3390 ((-671 |#2|) (-1236 |#1|))) (-15 -3390 ((-1236 |#2|) |#1|)) (-15 -4108 ((-1149 |#2|) |#1|)) (-15 -3642 ((-1149 |#2|) |#1|)) (-15 -4069 (|#2| (-1236 |#1|))) (-15 -3390 ((-671 |#2|) (-1236 |#1|) (-1236 |#1|))) (-15 -3390 ((-1236 |#2|) |#1| (-1236 |#1|))) (-15 -3339 (|#2| |#1|)) (-15 -1944 (|#2| |#1|)) (-15 -3143 ((-909))) (-15 -2801 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2801 (|#1| (-560))) (-15 -1751 ((-755))) (-15 ** (|#1| |#1| (-755))) (-15 -1823 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-909))) (-15 * (|#1| (-560) |#1|)) (-15 -1725 (|#1| |#1| |#1|)) (-15 -1725 (|#1| |#1|)) (-15 * (|#1| (-755) |#1|)) (-15 * (|#1| (-909) |#1|)) (-15 -1716 (|#1| |#1| |#1|)) (-15 -2801 ((-842) |#1|)) (-15 -1653 ((-121) |#1| |#1|))) (-164 |#2|) (-170)) (T -163)) -((-1751 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-755)) (-5 *1 (-163 *3 *4)) (-4 *3 (-164 *4)))) (-3143 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-909)) (-5 *1 (-163 *3 *4)) (-4 *3 (-164 *4)))) (-4069 (*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-163 *3 *2)) (-4 *3 (-164 *2)))) (-3591 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-1149 *4)) (-5 *1 (-163 *3 *4)) (-4 *3 (-164 *4))))) -(-10 -8 (-15 -2443 (|#1| |#1|)) (-15 -2443 (|#1| |#1| (-755))) (-15 -2801 (|#1| |#1|)) (-15 -2336 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2744 ((-2 (|:| -1917 |#1|) (|:| -4492 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2443 (|#1| |#1| (-1153))) (-15 -2443 (|#1| |#1| (-626 (-1153)))) (-15 -2443 (|#1| |#1| (-1153) (-755))) (-15 -2443 (|#1| |#1| (-626 (-1153)) (-626 (-755)))) (-15 -4445 ((-755) |#1|)) (-15 -2215 ((-2 (|:| -2583 |#1|) (|:| -4397 |#1|)) |#1| |#1|)) (-15 -2572 (|#1| |#1| |#1|)) (-15 -2563 (|#1| |#1| |#1|)) (-15 -1701 (|#1| |#1|)) (-15 ** (|#1| |#1| (-560))) (-15 * (|#1| |#1| (-403 (-560)))) (-15 * (|#1| (-403 (-560)) |#1|)) (-15 -2801 (|#1| (-403 (-560)))) (-15 -1667 ((-121) |#1| |#1|)) (-15 -4255 ((-533) |#1|)) (-15 -4255 ((-167 (-213)) |#1|)) (-15 -4255 ((-167 (-375)) |#1|)) (-15 -2514 (|#1| |#1|)) (-15 -2790 (|#1| |#1|)) (-15 -2795 (|#1| |#1|)) (-15 -2536 (|#1| |#1|)) (-15 -2532 (|#1| |#1|)) (-15 -2541 (|#1| |#1|)) (-15 -2566 (|#1| |#1|)) (-15 -2561 (|#1| |#1|)) (-15 -2570 (|#1| |#1|)) (-15 -2594 (|#1| |#1|)) (-15 -2590 (|#1| |#1|)) (-15 -2598 (|#1| |#1|)) (-15 -4399 (|#1| |#1|)) (-15 -2469 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2474 (|#1|)) (-15 ** (|#1| |#1| (-403 (-560)))) (-15 -3032 ((-414 (-1149 |#1|)) (-1149 |#1|))) (-15 -3817 ((-414 (-1149 |#1|)) (-1149 |#1|))) (-15 -1887 ((-3 (-626 (-1149 |#1|)) "failed") (-626 (-1149 |#1|)) (-1149 |#1|))) (-15 -1367 ((-3 (-403 (-560)) "failed") |#1|)) (-15 -1519 ((-403 (-560)) |#1|)) (-15 -1689 ((-121) |#1|)) (-15 -2285 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3896 (|#2| |#1|)) (-15 -1822 (|#1| |#1|)) (-15 -2336 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3101 (|#1| |#1|)) (-15 -3042 (|#1|)) (-15 -4255 ((-879 (-375)) |#1|)) (-15 -4255 ((-879 (-560)) |#1|)) (-15 -2399 ((-876 (-375) |#1|) |#1| (-879 (-375)) (-876 (-375) |#1|))) (-15 -2399 ((-876 (-560) |#1|) |#1| (-879 (-560)) (-876 (-560) |#1|))) (-15 -2803 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2443 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2443 (|#1| |#1| (-1 |#2| |#2|) (-755))) (-15 -2342 ((-3 |#1| "failed") (-403 (-1149 |#2|)))) (-15 -2335 ((-1149 |#2|) |#1|)) (-15 -4255 (|#1| (-1149 |#2|))) (-15 -2342 (|#1| (-1149 |#2|))) (-15 -3591 ((-1149 |#2|))) (-15 -2616 ((-671 |#2|) (-671 |#1|))) (-15 -2616 ((-2 (|:| -3818 (-671 |#2|)) (|:| |vec| (-1236 |#2|))) (-671 |#1|) (-1236 |#1|))) (-15 -2616 ((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 |#1|) (-1236 |#1|))) (-15 -2616 ((-671 (-560)) (-671 |#1|))) (-15 -3001 (|#2| |#1|)) (-15 -1473 ((-3 |#2| "failed") |#1|)) (-15 -1473 ((-3 (-403 (-560)) "failed") |#1|)) (-15 -3001 ((-403 (-560)) |#1|)) (-15 -1473 ((-3 (-560) "failed") |#1|)) (-15 -3001 ((-560) |#1|)) (-15 -4255 ((-1149 |#2|) |#1|)) (-15 -4069 (|#2|)) (-15 -4255 (|#1| (-1236 |#2|))) (-15 -4255 ((-1236 |#2|) |#1|)) (-15 -3390 ((-671 |#2|) (-1236 |#1|))) (-15 -3390 ((-1236 |#2|) |#1|)) (-15 -4108 ((-1149 |#2|) |#1|)) (-15 -3642 ((-1149 |#2|) |#1|)) (-15 -4069 (|#2| (-1236 |#1|))) (-15 -3390 ((-671 |#2|) (-1236 |#1|) (-1236 |#1|))) (-15 -3390 ((-1236 |#2|) |#1| (-1236 |#1|))) (-15 -3339 (|#2| |#1|)) (-15 -1944 (|#2| |#1|)) (-15 -3143 ((-909))) (-15 -2801 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2801 (|#1| (-560))) (-15 -1751 ((-755))) (-15 ** (|#1| |#1| (-755))) (-15 -1823 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-909))) (-15 * (|#1| (-560) |#1|)) (-15 -1725 (|#1| |#1| |#1|)) (-15 -1725 (|#1| |#1|)) (-15 * (|#1| (-755) |#1|)) (-15 * (|#1| (-909) |#1|)) (-15 -1716 (|#1| |#1| |#1|)) (-15 -2801 ((-842) |#1|)) (-15 -1653 ((-121) |#1| |#1|))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) 87 (-2318 (|has| |#1| (-550)) (-12 (|has| |#1| (-296)) (|has| |#1| (-896)))))) (-1350 (($ $) 88 (-2318 (|has| |#1| (-550)) (-12 (|has| |#1| (-296)) (|has| |#1| (-896)))))) (-3376 (((-121) $) 90 (-2318 (|has| |#1| (-550)) (-12 (|has| |#1| (-296)) (|has| |#1| (-896)))))) (-2196 (((-671 |#1|) (-1236 $)) 44) (((-671 |#1|)) 55)) (-1944 ((|#1| $) 50)) (-2570 (($ $) 212 (|has| |#1| (-1173)))) (-2514 (($ $) 195 (|has| |#1| (-1173)))) (-4357 (((-1161 (-909) (-755)) (-560)) 141 (|has| |#1| (-344)))) (-2314 (((-3 $ "failed") $ $) 18)) (-1776 (((-414 (-1149 $)) (-1149 $)) 226 (-12 (|has| |#1| (-296)) (|has| |#1| (-896))))) (-3065 (($ $) 107 (-2318 (-12 (|has| |#1| (-296)) (|has| |#1| (-896))) (|has| |#1| (-359))))) (-2953 (((-414 $) $) 108 (-2318 (-12 (|has| |#1| (-296)) (|has| |#1| (-896))) (|has| |#1| (-359))))) (-2479 (($ $) 225 (-12 (|has| |#1| (-994)) (|has| |#1| (-1173))))) (-1887 (((-3 (-626 (-1149 $)) "failed") (-626 (-1149 $)) (-1149 $)) 229 (-12 (|has| |#1| (-296)) (|has| |#1| (-896))))) (-4179 (((-121) $ $) 98 (|has| |#1| (-296)))) (-2912 (((-755)) 81 (|has| |#1| (-364)))) (-2561 (($ $) 211 (|has| |#1| (-1173)))) (-2790 (($ $) 196 (|has| |#1| (-1173)))) (-2579 (($ $) 210 (|has| |#1| (-1173)))) (-2523 (($ $) 197 (|has| |#1| (-1173)))) (-4236 (($) 16 T CONST)) (-1473 (((-3 (-560) "failed") $) 163 (|has| |#1| (-1029 (-560)))) (((-3 (-403 (-560)) "failed") $) 161 (|has| |#1| (-1029 (-403 (-560))))) (((-3 |#1| "failed") $) 160)) (-3001 (((-560) $) 164 (|has| |#1| (-1029 (-560)))) (((-403 (-560)) $) 162 (|has| |#1| (-1029 (-403 (-560))))) ((|#1| $) 159)) (-3380 (($ (-1236 |#1|) (-1236 $)) 46) (($ (-1236 |#1|)) 58)) (-4107 (((-3 "prime" "polynomial" "normal" "cyclic")) 147 (|has| |#1| (-344)))) (-2563 (($ $ $) 102 (|has| |#1| (-296)))) (-2954 (((-671 |#1|) $ (-1236 $)) 51) (((-671 |#1|) $) 53)) (-2616 (((-671 (-560)) (-671 $)) 158 (|has| |#1| (-622 (-560)))) (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) 157 (|has| |#1| (-622 (-560)))) (((-2 (|:| -3818 (-671 |#1|)) (|:| |vec| (-1236 |#1|))) (-671 $) (-1236 $)) 156) (((-671 |#1|) (-671 $)) 155)) (-2342 (($ (-1149 |#1|)) 152) (((-3 $ "failed") (-403 (-1149 |#1|))) 149 (|has| |#1| (-359)))) (-1823 (((-3 $ "failed") $) 33)) (-1611 ((|#1| $) 237)) (-1367 (((-3 (-403 (-560)) "failed") $) 230 (|has| |#1| (-542)))) (-1689 (((-121) $) 232 (|has| |#1| (-542)))) (-1519 (((-403 (-560)) $) 231 (|has| |#1| (-542)))) (-3143 (((-909)) 52)) (-1666 (($) 84 (|has| |#1| (-364)))) (-2572 (($ $ $) 101 (|has| |#1| (-296)))) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) 96 (|has| |#1| (-296)))) (-2481 (($) 143 (|has| |#1| (-344)))) (-1537 (((-121) $) 144 (|has| |#1| (-344)))) (-2937 (($ $ (-755)) 135 (|has| |#1| (-344))) (($ $) 134 (|has| |#1| (-344)))) (-3319 (((-121) $) 109 (-2318 (-12 (|has| |#1| (-296)) (|has| |#1| (-896))) (|has| |#1| (-359))))) (-2285 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 233 (-12 (|has| |#1| (-1048)) (|has| |#1| (-1173))))) (-2474 (($) 222 (|has| |#1| (-1173)))) (-2399 (((-876 (-560) $) $ (-879 (-560)) (-876 (-560) $)) 245 (|has| |#1| (-873 (-560)))) (((-876 (-375) $) $ (-879 (-375)) (-876 (-375) $)) 244 (|has| |#1| (-873 (-375))))) (-3504 (((-909) $) 146 (|has| |#1| (-344))) (((-820 (-909)) $) 132 (|has| |#1| (-344)))) (-2642 (((-121) $) 30)) (-2586 (($ $ (-560)) 224 (-12 (|has| |#1| (-994)) (|has| |#1| (-1173))))) (-3339 ((|#1| $) 49)) (-1424 (((-3 $ "failed") $) 136 (|has| |#1| (-344)))) (-3856 (((-3 (-626 $) "failed") (-626 $) $) 105 (|has| |#1| (-296)))) (-4108 (((-1149 |#1|) $) 42 (|has| |#1| (-359)))) (-4325 (($ $ $) 191 (|has| |#1| (-834)))) (-2501 (($ $ $) 190 (|has| |#1| (-834)))) (-2803 (($ (-1 |#1| |#1|) $) 246)) (-3142 (((-909) $) 83 (|has| |#1| (-364)))) (-4399 (($ $) 219 (|has| |#1| (-1173)))) (-2335 (((-1149 |#1|) $) 150)) (-2582 (($ (-626 $)) 94 (-2318 (|has| |#1| (-296)) (-12 (|has| |#1| (-296)) (|has| |#1| (-896))))) (($ $ $) 93 (-2318 (|has| |#1| (-296)) (-12 (|has| |#1| (-296)) (|has| |#1| (-896)))))) (-1291 (((-1135) $) 9)) (-1701 (($ $) 110 (|has| |#1| (-359)))) (-1394 (($) 137 (|has| |#1| (-344)) CONST)) (-1330 (($ (-909)) 82 (|has| |#1| (-364)))) (-3042 (($) 241)) (-1618 ((|#1| $) 238)) (-4353 (((-1100) $) 10)) (-4250 (($) 154)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) 95 (-2318 (|has| |#1| (-296)) (-12 (|has| |#1| (-296)) (|has| |#1| (-896)))))) (-4440 (($ (-626 $)) 92 (-2318 (|has| |#1| (-296)) (-12 (|has| |#1| (-296)) (|has| |#1| (-896))))) (($ $ $) 91 (-2318 (|has| |#1| (-296)) (-12 (|has| |#1| (-296)) (|has| |#1| (-896)))))) (-2385 (((-626 (-2 (|:| -1601 (-560)) (|:| -4034 (-560))))) 140 (|has| |#1| (-344)))) (-3817 (((-414 (-1149 $)) (-1149 $)) 228 (-12 (|has| |#1| (-296)) (|has| |#1| (-896))))) (-3032 (((-414 (-1149 $)) (-1149 $)) 227 (-12 (|has| |#1| (-296)) (|has| |#1| (-896))))) (-1601 (((-414 $) $) 106 (-2318 (-12 (|has| |#1| (-296)) (|has| |#1| (-896))) (|has| |#1| (-359))))) (-3505 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 104 (|has| |#1| (-296))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) 103 (|has| |#1| (-296)))) (-2336 (((-3 $ "failed") $ |#1|) 236 (|has| |#1| (-550))) (((-3 $ "failed") $ $) 86 (-2318 (|has| |#1| (-550)) (-12 (|has| |#1| (-296)) (|has| |#1| (-896)))))) (-3456 (((-3 (-626 $) "failed") (-626 $) $) 97 (|has| |#1| (-296)))) (-2469 (($ $) 220 (|has| |#1| (-1173)))) (-4450 (($ $ (-626 |#1|) (-626 |#1|)) 252 (|has| |#1| (-298 |#1|))) (($ $ |#1| |#1|) 251 (|has| |#1| (-298 |#1|))) (($ $ (-283 |#1|)) 250 (|has| |#1| (-298 |#1|))) (($ $ (-626 (-283 |#1|))) 249 (|has| |#1| (-298 |#1|))) (($ $ (-626 (-1153)) (-626 |#1|)) 248 (|has| |#1| (-515 (-1153) |#1|))) (($ $ (-1153) |#1|) 247 (|has| |#1| (-515 (-1153) |#1|)))) (-4445 (((-755) $) 99 (|has| |#1| (-296)))) (-2778 (($ $ |#1|) 253 (|has| |#1| (-276 |#1| |#1|)))) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) 100 (|has| |#1| (-296)))) (-4069 ((|#1| (-1236 $)) 45) ((|#1|) 54)) (-2935 (((-755) $) 145 (|has| |#1| (-344))) (((-3 (-755) "failed") $ $) 133 (|has| |#1| (-344)))) (-2443 (($ $ (-1 |#1| |#1|) (-755)) 117) (($ $ (-1 |#1| |#1|)) 116) (($ $ (-626 (-1153)) (-626 (-755))) 124 (|has| |#1| (-887 (-1153)))) (($ $ (-1153) (-755)) 125 (|has| |#1| (-887 (-1153)))) (($ $ (-626 (-1153))) 126 (|has| |#1| (-887 (-1153)))) (($ $ (-1153)) 127 (|has| |#1| (-887 (-1153)))) (($ $ (-755)) 129 (-2318 (-2256 (|has| |#1| (-359)) (|has| |#1| (-221))) (|has| |#1| (-221)) (-2256 (|has| |#1| (-221)) (|has| |#1| (-359))))) (($ $) 131 (-2318 (-2256 (|has| |#1| (-359)) (|has| |#1| (-221))) (|has| |#1| (-221)) (-2256 (|has| |#1| (-221)) (|has| |#1| (-359)))))) (-2142 (((-671 |#1|) (-1236 $) (-1 |#1| |#1|)) 148 (|has| |#1| (-359)))) (-3591 (((-1149 |#1|)) 153)) (-2585 (($ $) 209 (|has| |#1| (-1173)))) (-2528 (($ $) 198 (|has| |#1| (-1173)))) (-2612 (($) 142 (|has| |#1| (-344)))) (-2575 (($ $) 208 (|has| |#1| (-1173)))) (-2519 (($ $) 199 (|has| |#1| (-1173)))) (-2566 (($ $) 207 (|has| |#1| (-1173)))) (-2795 (($ $) 200 (|has| |#1| (-1173)))) (-3390 (((-1236 |#1|) $ (-1236 $)) 48) (((-671 |#1|) (-1236 $) (-1236 $)) 47) (((-1236 |#1|) $) 60) (((-671 |#1|) (-1236 $)) 59)) (-4255 (((-1236 |#1|) $) 57) (($ (-1236 |#1|)) 56) (((-1149 |#1|) $) 165) (($ (-1149 |#1|)) 151) (((-879 (-560)) $) 243 (|has| |#1| (-601 (-879 (-560))))) (((-879 (-375)) $) 242 (|has| |#1| (-601 (-879 (-375))))) (((-167 (-375)) $) 194 (|has| |#1| (-1013))) (((-167 (-213)) $) 193 (|has| |#1| (-1013))) (((-533) $) 192 (|has| |#1| (-601 (-533))))) (-3101 (($ $) 240)) (-3248 (((-3 (-1236 $) "failed") (-671 $)) 139 (-2318 (-2256 (|has| $ (-146)) (-12 (|has| |#1| (-296)) (|has| |#1| (-896)))) (|has| |#1| (-344))))) (-2556 (($ |#1| |#1|) 239)) (-2801 (((-842) $) 11) (($ (-560)) 27) (($ |#1|) 36) (($ (-403 (-560))) 80 (-2318 (|has| |#1| (-359)) (|has| |#1| (-1029 (-403 (-560)))))) (($ $) 85 (-2318 (|has| |#1| (-550)) (-12 (|has| |#1| (-296)) (|has| |#1| (-896)))))) (-2272 (($ $) 138 (|has| |#1| (-344))) (((-3 $ "failed") $) 41 (-2318 (-2256 (|has| $ (-146)) (-12 (|has| |#1| (-296)) (|has| |#1| (-896)))) (|has| |#1| (-146))))) (-3642 (((-1149 |#1|) $) 43)) (-1751 (((-755)) 28)) (-4374 (((-1236 $)) 61)) (-2598 (($ $) 218 (|has| |#1| (-1173)))) (-2541 (($ $) 206 (|has| |#1| (-1173)))) (-2328 (((-121) $ $) 89 (-2318 (|has| |#1| (-550)) (-12 (|has| |#1| (-296)) (|has| |#1| (-896)))))) (-2590 (($ $) 217 (|has| |#1| (-1173)))) (-2532 (($ $) 205 (|has| |#1| (-1173)))) (-2608 (($ $) 216 (|has| |#1| (-1173)))) (-2549 (($ $) 204 (|has| |#1| (-1173)))) (-3896 ((|#1| $) 234 (|has| |#1| (-1173)))) (-3689 (($ $) 215 (|has| |#1| (-1173)))) (-2554 (($ $) 203 (|has| |#1| (-1173)))) (-2604 (($ $) 214 (|has| |#1| (-1173)))) (-2545 (($ $) 202 (|has| |#1| (-1173)))) (-2594 (($ $) 213 (|has| |#1| (-1173)))) (-2536 (($ $) 201 (|has| |#1| (-1173)))) (-1822 (($ $) 235 (|has| |#1| (-1048)))) (-2464 (($ $ (-909)) 25) (($ $ (-755)) 32) (($ $ (-560)) 111 (|has| |#1| (-359)))) (-3304 (($) 17 T CONST)) (-1459 (($) 29 T CONST)) (-2500 (($ $ (-1 |#1| |#1|) (-755)) 119) (($ $ (-1 |#1| |#1|)) 118) (($ $ (-626 (-1153)) (-626 (-755))) 120 (|has| |#1| (-887 (-1153)))) (($ $ (-1153) (-755)) 121 (|has| |#1| (-887 (-1153)))) (($ $ (-626 (-1153))) 122 (|has| |#1| (-887 (-1153)))) (($ $ (-1153)) 123 (|has| |#1| (-887 (-1153)))) (($ $ (-755)) 128 (-2318 (-2256 (|has| |#1| (-359)) (|has| |#1| (-221))) (|has| |#1| (-221)) (-2256 (|has| |#1| (-221)) (|has| |#1| (-359))))) (($ $) 130 (-2318 (-2256 (|has| |#1| (-359)) (|has| |#1| (-221))) (|has| |#1| (-221)) (-2256 (|has| |#1| (-221)) (|has| |#1| (-359)))))) (-1691 (((-121) $ $) 188 (|has| |#1| (-834)))) (-1675 (((-121) $ $) 187 (|has| |#1| (-834)))) (-1653 (((-121) $ $) 6)) (-1683 (((-121) $ $) 189 (|has| |#1| (-834)))) (-1667 (((-121) $ $) 186 (|has| |#1| (-834)))) (-1733 (($ $ $) 115 (|has| |#1| (-359)))) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 24) (($ $ (-755)) 31) (($ $ (-403 (-560))) 223 (-12 (|has| |#1| (-994)) (|has| |#1| (-1173)))) (($ $ $) 221 (|has| |#1| (-1173))) (($ $ (-560)) 112 (|has| |#1| (-359)))) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 23) (($ $ |#1|) 38) (($ |#1| $) 37) (($ (-403 (-560)) $) 114 (|has| |#1| (-359))) (($ $ (-403 (-560))) 113 (|has| |#1| (-359))))) -(((-164 |#1|) (-1267) (-170)) (T -164)) -((-3339 (*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-3042 (*1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-3101 (*1 *1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-2556 (*1 *1 *2 *2) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-1618 (*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-1611 (*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-2336 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-550)))) (-1822 (*1 *1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-1048)))) (-3896 (*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-1173)))) (-2285 (*1 *2 *1) (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-1048)) (-4 *3 (-1173)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-1689 (*1 *2 *1) (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-542)) (-5 *2 (-121)))) (-1519 (*1 *2 *1) (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-542)) (-5 *2 (-403 (-560))))) (-1367 (*1 *2 *1) (|partial| -12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-542)) (-5 *2 (-403 (-560)))))) -(-13 (-706 |t#1| (-1149 |t#1|)) (-407 |t#1|) (-219 |t#1|) (-330 |t#1|) (-396 |t#1|) (-871 |t#1|) (-373 |t#1|) (-170) (-10 -8 (-6 -2556) (-15 -3042 ($)) (-15 -3101 ($ $)) (-15 -2556 ($ |t#1| |t#1|)) (-15 -1618 (|t#1| $)) (-15 -1611 (|t#1| $)) (-15 -3339 (|t#1| $)) (IF (|has| |t#1| (-834)) (-6 (-834)) |noBranch|) (IF (|has| |t#1| (-550)) (PROGN (-6 (-550)) (-15 -2336 ((-3 $ "failed") $ |t#1|))) |noBranch|) (IF (|has| |t#1| (-296)) (-6 (-296)) |noBranch|) (IF (|has| |t#1| (-6 -4504)) (-6 -4504) |noBranch|) (IF (|has| |t#1| (-6 -4501)) (-6 -4501) |noBranch|) (IF (|has| |t#1| (-359)) (-6 (-359)) |noBranch|) (IF (|has| |t#1| (-601 (-533))) (-6 (-601 (-533))) |noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |noBranch|) (IF (|has| |t#1| (-1013)) (PROGN (-6 (-601 (-167 (-213)))) (-6 (-601 (-167 (-375))))) |noBranch|) (IF (|has| |t#1| (-1048)) (-15 -1822 ($ $)) |noBranch|) (IF (|has| |t#1| (-1173)) (PROGN (-6 (-1173)) (-15 -3896 (|t#1| $)) (IF (|has| |t#1| (-994)) (-6 (-994)) |noBranch|) (IF (|has| |t#1| (-1048)) (-15 -2285 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |noBranch|)) |noBranch|) (IF (|has| |t#1| (-542)) (PROGN (-15 -1689 ((-121) $)) (-15 -1519 ((-403 (-560)) $)) (-15 -1367 ((-3 (-403 (-560)) "failed") $))) |noBranch|) (IF (|has| |t#1| (-896)) (IF (|has| |t#1| (-296)) (-6 (-896)) |noBranch|) |noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-43 (-403 (-560))) -2318 (|has| |#1| (-344)) (|has| |#1| (-359))) ((-43 |#1|) . T) ((-43 $) -2318 (|has| |#1| (-550)) (|has| |#1| (-344)) (|has| |#1| (-359)) (|has| |#1| (-296))) ((-40) |has| |#1| (-1173)) ((-98) |has| |#1| (-1173)) ((-105) . T) ((-120 (-403 (-560)) (-403 (-560))) -2318 (|has| |#1| (-344)) (|has| |#1| (-359))) ((-120 |#1| |#1|) . T) ((-120 $ $) . T) ((-137) . T) ((-146) -2318 (|has| |#1| (-344)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-600 (-842)) . T) ((-170) . T) ((-601 (-167 (-213))) |has| |#1| (-1013)) ((-601 (-167 (-375))) |has| |#1| (-1013)) ((-601 (-533)) |has| |#1| (-601 (-533))) ((-601 (-879 (-375))) |has| |#1| (-601 (-879 (-375)))) ((-601 (-879 (-560))) |has| |#1| (-601 (-879 (-560)))) ((-601 (-1149 |#1|)) . T) ((-219 |#1|) . T) ((-221) -2318 (|has| |#1| (-344)) (|has| |#1| (-221))) ((-233) -2318 (|has| |#1| (-344)) (|has| |#1| (-359))) ((-274) |has| |#1| (-1173)) ((-276 |#1| $) |has| |#1| (-276 |#1| |#1|)) ((-280) -2318 (|has| |#1| (-550)) (|has| |#1| (-344)) (|has| |#1| (-359)) (|has| |#1| (-296))) ((-296) -2318 (|has| |#1| (-344)) (|has| |#1| (-359)) (|has| |#1| (-296))) ((-298 |#1|) |has| |#1| (-298 |#1|)) ((-359) -2318 (|has| |#1| (-344)) (|has| |#1| (-359))) ((-398) |has| |#1| (-344)) ((-364) -2318 (|has| |#1| (-364)) (|has| |#1| (-344))) ((-344) |has| |#1| (-344)) ((-366 |#1| (-1149 |#1|)) . T) ((-405 |#1| (-1149 |#1|)) . T) ((-330 |#1|) . T) ((-373 |#1|) . T) ((-396 |#1|) . T) ((-407 |#1|) . T) ((-447) -2318 (|has| |#1| (-344)) (|has| |#1| (-359)) (|has| |#1| (-296))) ((-494) |has| |#1| (-1173)) ((-515 (-1153) |#1|) |has| |#1| (-515 (-1153) |#1|)) ((-515 |#1| |#1|) |has| |#1| (-298 |#1|)) ((-550) -2318 (|has| |#1| (-550)) (|has| |#1| (-344)) (|has| |#1| (-359)) (|has| |#1| (-296))) ((-629 (-403 (-560))) -2318 (|has| |#1| (-344)) (|has| |#1| (-359))) ((-629 |#1|) . T) ((-629 $) . T) ((-622 (-560)) |has| |#1| (-622 (-560))) ((-622 |#1|) . T) ((-699 (-403 (-560))) -2318 (|has| |#1| (-344)) (|has| |#1| (-359))) ((-699 |#1|) . T) ((-699 $) -2318 (|has| |#1| (-550)) (|has| |#1| (-344)) (|has| |#1| (-359)) (|has| |#1| (-296))) ((-706 |#1| (-1149 |#1|)) . T) ((-708) . T) ((-834) |has| |#1| (-834)) ((-887 (-1153)) |has| |#1| (-887 (-1153))) ((-873 (-375)) |has| |#1| (-873 (-375))) ((-873 (-560)) |has| |#1| (-873 (-560))) ((-871 |#1|) . T) ((-896) -12 (|has| |#1| (-296)) (|has| |#1| (-896))) ((-908) -2318 (|has| |#1| (-344)) (|has| |#1| (-359)) (|has| |#1| (-296))) ((-994) -12 (|has| |#1| (-994)) (|has| |#1| (-1173))) ((-1029 (-403 (-560))) |has| |#1| (-1029 (-403 (-560)))) ((-1029 (-560)) |has| |#1| (-1029 (-560))) ((-1029 |#1|) . T) ((-1045 (-403 (-560))) -2318 (|has| |#1| (-344)) (|has| |#1| (-359))) ((-1045 |#1|) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1094) . T) ((-1082) . T) ((-1128) |has| |#1| (-344)) ((-1173) |has| |#1| (-1173)) ((-1176) |has| |#1| (-1173)) ((-1187) . T) ((-1191) -2318 (|has| |#1| (-344)) (|has| |#1| (-359)) (-12 (|has| |#1| (-296)) (|has| |#1| (-896))))) -((-1601 (((-414 |#2|) |#2|) 63))) -(((-165 |#1| |#2|) (-10 -7 (-15 -1601 ((-414 |#2|) |#2|))) (-296) (-1211 (-167 |#1|))) (T -165)) -((-1601 (*1 *2 *3) (-12 (-4 *4 (-296)) (-5 *2 (-414 *3)) (-5 *1 (-165 *4 *3)) (-4 *3 (-1211 (-167 *4)))))) -(-10 -7 (-15 -1601 ((-414 |#2|) |#2|))) -((-2803 (((-167 |#2|) (-1 |#2| |#1|) (-167 |#1|)) 14))) -(((-166 |#1| |#2|) (-10 -7 (-15 -2803 ((-167 |#2|) (-1 |#2| |#1|) (-167 |#1|)))) (-170) (-170)) (T -166)) -((-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-167 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-5 *2 (-167 *6)) (-5 *1 (-166 *5 *6))))) -(-10 -7 (-15 -2803 ((-167 |#2|) (-1 |#2| |#1|) (-167 |#1|)))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) 33)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL (-2318 (-12 (|has| |#1| (-296)) (|has| |#1| (-896))) (|has| |#1| (-550))))) (-1350 (($ $) NIL (-2318 (-12 (|has| |#1| (-296)) (|has| |#1| (-896))) (|has| |#1| (-550))))) (-3376 (((-121) $) NIL (-2318 (-12 (|has| |#1| (-296)) (|has| |#1| (-896))) (|has| |#1| (-550))))) (-2196 (((-671 |#1|) (-1236 $)) NIL) (((-671 |#1|)) NIL)) (-1944 ((|#1| $) NIL)) (-2570 (($ $) NIL (|has| |#1| (-1173)))) (-2514 (($ $) NIL (|has| |#1| (-1173)))) (-4357 (((-1161 (-909) (-755)) (-560)) NIL (|has| |#1| (-344)))) (-2314 (((-3 $ "failed") $ $) NIL)) (-1776 (((-414 (-1149 $)) (-1149 $)) NIL (-12 (|has| |#1| (-296)) (|has| |#1| (-896))))) (-3065 (($ $) NIL (-2318 (-12 (|has| |#1| (-296)) (|has| |#1| (-896))) (|has| |#1| (-359))))) (-2953 (((-414 $) $) NIL (-2318 (-12 (|has| |#1| (-296)) (|has| |#1| (-896))) (|has| |#1| (-359))))) (-2479 (($ $) NIL (-12 (|has| |#1| (-994)) (|has| |#1| (-1173))))) (-1887 (((-3 (-626 (-1149 $)) "failed") (-626 (-1149 $)) (-1149 $)) NIL (-12 (|has| |#1| (-296)) (|has| |#1| (-896))))) (-4179 (((-121) $ $) NIL (|has| |#1| (-296)))) (-2912 (((-755)) NIL (|has| |#1| (-364)))) (-2561 (($ $) NIL (|has| |#1| (-1173)))) (-2790 (($ $) NIL (|has| |#1| (-1173)))) (-2579 (($ $) NIL (|has| |#1| (-1173)))) (-2523 (($ $) NIL (|has| |#1| (-1173)))) (-4236 (($) NIL T CONST)) (-1473 (((-3 (-560) "failed") $) NIL (|has| |#1| (-1029 (-560)))) (((-3 (-403 (-560)) "failed") $) NIL (|has| |#1| (-1029 (-403 (-560))))) (((-3 |#1| "failed") $) NIL)) (-3001 (((-560) $) NIL (|has| |#1| (-1029 (-560)))) (((-403 (-560)) $) NIL (|has| |#1| (-1029 (-403 (-560))))) ((|#1| $) NIL)) (-3380 (($ (-1236 |#1|) (-1236 $)) NIL) (($ (-1236 |#1|)) NIL)) (-4107 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-344)))) (-2563 (($ $ $) NIL (|has| |#1| (-296)))) (-2954 (((-671 |#1|) $ (-1236 $)) NIL) (((-671 |#1|) $) NIL)) (-2616 (((-671 (-560)) (-671 $)) NIL (|has| |#1| (-622 (-560)))) (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) NIL (|has| |#1| (-622 (-560)))) (((-2 (|:| -3818 (-671 |#1|)) (|:| |vec| (-1236 |#1|))) (-671 $) (-1236 $)) NIL) (((-671 |#1|) (-671 $)) NIL)) (-2342 (($ (-1149 |#1|)) NIL) (((-3 $ "failed") (-403 (-1149 |#1|))) NIL (|has| |#1| (-359)))) (-1823 (((-3 $ "failed") $) NIL)) (-1611 ((|#1| $) 13)) (-1367 (((-3 (-403 (-560)) "failed") $) NIL (|has| |#1| (-542)))) (-1689 (((-121) $) NIL (|has| |#1| (-542)))) (-1519 (((-403 (-560)) $) NIL (|has| |#1| (-542)))) (-3143 (((-909)) NIL)) (-1666 (($) NIL (|has| |#1| (-364)))) (-2572 (($ $ $) NIL (|has| |#1| (-296)))) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) NIL (|has| |#1| (-296)))) (-2481 (($) NIL (|has| |#1| (-344)))) (-1537 (((-121) $) NIL (|has| |#1| (-344)))) (-2937 (($ $ (-755)) NIL (|has| |#1| (-344))) (($ $) NIL (|has| |#1| (-344)))) (-3319 (((-121) $) NIL (-2318 (-12 (|has| |#1| (-296)) (|has| |#1| (-896))) (|has| |#1| (-359))))) (-2285 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1048)) (|has| |#1| (-1173))))) (-2474 (($) NIL (|has| |#1| (-1173)))) (-2399 (((-876 (-560) $) $ (-879 (-560)) (-876 (-560) $)) NIL (|has| |#1| (-873 (-560)))) (((-876 (-375) $) $ (-879 (-375)) (-876 (-375) $)) NIL (|has| |#1| (-873 (-375))))) (-3504 (((-909) $) NIL (|has| |#1| (-344))) (((-820 (-909)) $) NIL (|has| |#1| (-344)))) (-2642 (((-121) $) 35)) (-2586 (($ $ (-560)) NIL (-12 (|has| |#1| (-994)) (|has| |#1| (-1173))))) (-3339 ((|#1| $) 46)) (-1424 (((-3 $ "failed") $) NIL (|has| |#1| (-344)))) (-3856 (((-3 (-626 $) "failed") (-626 $) $) NIL (|has| |#1| (-296)))) (-4108 (((-1149 |#1|) $) NIL (|has| |#1| (-359)))) (-4325 (($ $ $) NIL (|has| |#1| (-834)))) (-2501 (($ $ $) NIL (|has| |#1| (-834)))) (-2803 (($ (-1 |#1| |#1|) $) NIL)) (-3142 (((-909) $) NIL (|has| |#1| (-364)))) (-4399 (($ $) NIL (|has| |#1| (-1173)))) (-2335 (((-1149 |#1|) $) NIL)) (-2582 (($ (-626 $)) NIL (|has| |#1| (-296))) (($ $ $) NIL (|has| |#1| (-296)))) (-1291 (((-1135) $) NIL)) (-1701 (($ $) NIL (|has| |#1| (-359)))) (-1394 (($) NIL (|has| |#1| (-344)) CONST)) (-1330 (($ (-909)) NIL (|has| |#1| (-364)))) (-3042 (($) NIL)) (-1618 ((|#1| $) 15)) (-4353 (((-1100) $) NIL)) (-4250 (($) NIL)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL (|has| |#1| (-296)))) (-4440 (($ (-626 $)) NIL (|has| |#1| (-296))) (($ $ $) NIL (|has| |#1| (-296)))) (-2385 (((-626 (-2 (|:| -1601 (-560)) (|:| -4034 (-560))))) NIL (|has| |#1| (-344)))) (-3817 (((-414 (-1149 $)) (-1149 $)) NIL (-12 (|has| |#1| (-296)) (|has| |#1| (-896))))) (-3032 (((-414 (-1149 $)) (-1149 $)) NIL (-12 (|has| |#1| (-296)) (|has| |#1| (-896))))) (-1601 (((-414 $) $) NIL (-2318 (-12 (|has| |#1| (-296)) (|has| |#1| (-896))) (|has| |#1| (-359))))) (-3505 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-296))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL (|has| |#1| (-296)))) (-2336 (((-3 $ "failed") $ |#1|) 44 (|has| |#1| (-550))) (((-3 $ "failed") $ $) 47 (-2318 (-12 (|has| |#1| (-296)) (|has| |#1| (-896))) (|has| |#1| (-550))))) (-3456 (((-3 (-626 $) "failed") (-626 $) $) NIL (|has| |#1| (-296)))) (-2469 (($ $) NIL (|has| |#1| (-1173)))) (-4450 (($ $ (-626 |#1|) (-626 |#1|)) NIL (|has| |#1| (-298 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-298 |#1|))) (($ $ (-283 |#1|)) NIL (|has| |#1| (-298 |#1|))) (($ $ (-626 (-283 |#1|))) NIL (|has| |#1| (-298 |#1|))) (($ $ (-626 (-1153)) (-626 |#1|)) NIL (|has| |#1| (-515 (-1153) |#1|))) (($ $ (-1153) |#1|) NIL (|has| |#1| (-515 (-1153) |#1|)))) (-4445 (((-755) $) NIL (|has| |#1| (-296)))) (-2778 (($ $ |#1|) NIL (|has| |#1| (-276 |#1| |#1|)))) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL (|has| |#1| (-296)))) (-4069 ((|#1| (-1236 $)) NIL) ((|#1|) NIL)) (-2935 (((-755) $) NIL (|has| |#1| (-344))) (((-3 (-755) "failed") $ $) NIL (|has| |#1| (-344)))) (-2443 (($ $ (-1 |#1| |#1|) (-755)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-626 (-1153)) (-626 (-755))) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-1153) (-755)) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-626 (-1153))) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-1153)) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-755)) NIL (|has| |#1| (-221))) (($ $) NIL (|has| |#1| (-221)))) (-2142 (((-671 |#1|) (-1236 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-359)))) (-3591 (((-1149 |#1|)) NIL)) (-2585 (($ $) NIL (|has| |#1| (-1173)))) (-2528 (($ $) NIL (|has| |#1| (-1173)))) (-2612 (($) NIL (|has| |#1| (-344)))) (-2575 (($ $) NIL (|has| |#1| (-1173)))) (-2519 (($ $) NIL (|has| |#1| (-1173)))) (-2566 (($ $) NIL (|has| |#1| (-1173)))) (-2795 (($ $) NIL (|has| |#1| (-1173)))) (-3390 (((-1236 |#1|) $ (-1236 $)) NIL) (((-671 |#1|) (-1236 $) (-1236 $)) NIL) (((-1236 |#1|) $) NIL) (((-671 |#1|) (-1236 $)) NIL)) (-4255 (((-1236 |#1|) $) NIL) (($ (-1236 |#1|)) NIL) (((-1149 |#1|) $) NIL) (($ (-1149 |#1|)) NIL) (((-879 (-560)) $) NIL (|has| |#1| (-601 (-879 (-560))))) (((-879 (-375)) $) NIL (|has| |#1| (-601 (-879 (-375))))) (((-167 (-375)) $) NIL (|has| |#1| (-1013))) (((-167 (-213)) $) NIL (|has| |#1| (-1013))) (((-533) $) NIL (|has| |#1| (-601 (-533))))) (-3101 (($ $) 45)) (-3248 (((-3 (-1236 $) "failed") (-671 $)) NIL (-2318 (-12 (|has| $ (-146)) (|has| |#1| (-296)) (|has| |#1| (-896))) (|has| |#1| (-344))))) (-2556 (($ |#1| |#1|) 37)) (-2801 (((-842) $) NIL) (($ (-560)) NIL) (($ |#1|) 36) (($ (-403 (-560))) NIL (-2318 (|has| |#1| (-359)) (|has| |#1| (-1029 (-403 (-560)))))) (($ $) NIL (-2318 (-12 (|has| |#1| (-296)) (|has| |#1| (-896))) (|has| |#1| (-550))))) (-2272 (($ $) NIL (|has| |#1| (-344))) (((-3 $ "failed") $) NIL (-2318 (-12 (|has| $ (-146)) (|has| |#1| (-296)) (|has| |#1| (-896))) (|has| |#1| (-146))))) (-3642 (((-1149 |#1|) $) NIL)) (-1751 (((-755)) NIL)) (-4374 (((-1236 $)) NIL)) (-2598 (($ $) NIL (|has| |#1| (-1173)))) (-2541 (($ $) NIL (|has| |#1| (-1173)))) (-2328 (((-121) $ $) NIL (-2318 (-12 (|has| |#1| (-296)) (|has| |#1| (-896))) (|has| |#1| (-550))))) (-2590 (($ $) NIL (|has| |#1| (-1173)))) (-2532 (($ $) NIL (|has| |#1| (-1173)))) (-2608 (($ $) NIL (|has| |#1| (-1173)))) (-2549 (($ $) NIL (|has| |#1| (-1173)))) (-3896 ((|#1| $) NIL (|has| |#1| (-1173)))) (-3689 (($ $) NIL (|has| |#1| (-1173)))) (-2554 (($ $) NIL (|has| |#1| (-1173)))) (-2604 (($ $) NIL (|has| |#1| (-1173)))) (-2545 (($ $) NIL (|has| |#1| (-1173)))) (-2594 (($ $) NIL (|has| |#1| (-1173)))) (-2536 (($ $) NIL (|has| |#1| (-1173)))) (-1822 (($ $) NIL (|has| |#1| (-1048)))) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL (|has| |#1| (-359)))) (-3304 (($) 28 T CONST)) (-1459 (($) 30 T CONST)) (-3039 (((-1135) $) 23 (|has| |#1| (-815))) (((-1135) $ (-121)) 25 (|has| |#1| (-815))) (((-1241) (-809) $) 26 (|has| |#1| (-815))) (((-1241) (-809) $ (-121)) 27 (|has| |#1| (-815)))) (-2500 (($ $ (-1 |#1| |#1|) (-755)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-626 (-1153)) (-626 (-755))) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-1153) (-755)) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-626 (-1153))) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-1153)) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-755)) NIL (|has| |#1| (-221))) (($ $) NIL (|has| |#1| (-221)))) (-1691 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1675 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1653 (((-121) $ $) NIL)) (-1683 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1667 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1733 (($ $ $) NIL (|has| |#1| (-359)))) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) 39)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-403 (-560))) NIL (-12 (|has| |#1| (-994)) (|has| |#1| (-1173)))) (($ $ $) NIL (|has| |#1| (-1173))) (($ $ (-560)) NIL (|has| |#1| (-359)))) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-403 (-560)) $) NIL (|has| |#1| (-359))) (($ $ (-403 (-560))) NIL (|has| |#1| (-359))))) -(((-167 |#1|) (-13 (-164 |#1|) (-10 -7 (IF (|has| |#1| (-815)) (-6 (-815)) |noBranch|))) (-170)) (T -167)) -NIL -(-13 (-164 |#1|) (-10 -7 (IF (|has| |#1| (-815)) (-6 (-815)) |noBranch|))) -((-4255 (((-879 |#1|) |#3|) 22))) -(((-168 |#1| |#2| |#3|) (-10 -7 (-15 -4255 ((-879 |#1|) |#3|))) (-1082) (-13 (-601 (-879 |#1|)) (-170)) (-164 |#2|)) (T -168)) -((-4255 (*1 *2 *3) (-12 (-4 *5 (-13 (-601 *2) (-170))) (-5 *2 (-879 *4)) (-5 *1 (-168 *4 *5 *3)) (-4 *4 (-1082)) (-4 *3 (-164 *5))))) -(-10 -7 (-15 -4255 ((-879 |#1|) |#3|))) -((-2601 (((-121) $ $) NIL)) (-2945 (((-121) $) 9)) (-1668 (((-121) $ (-121)) 11)) (-1721 (($) 12)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2813 (($ $) 13)) (-2801 (((-842) $) 17)) (-1867 (((-121) $) 8)) (-4071 (((-121) $ (-121)) 10)) (-1653 (((-121) $ $) NIL))) -(((-169) (-13 (-1082) (-10 -8 (-15 -1721 ($)) (-15 -1867 ((-121) $)) (-15 -2945 ((-121) $)) (-15 -4071 ((-121) $ (-121))) (-15 -1668 ((-121) $ (-121))) (-15 -2813 ($ $))))) (T -169)) -((-1721 (*1 *1) (-5 *1 (-169))) (-1867 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-169)))) (-2945 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-169)))) (-4071 (*1 *2 *1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-169)))) (-1668 (*1 *2 *1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-169)))) (-2813 (*1 *1 *1) (-5 *1 (-169)))) -(-13 (-1082) (-10 -8 (-15 -1721 ($)) (-15 -1867 ((-121) $)) (-15 -2945 ((-121) $)) (-15 -4071 ((-121) $ (-121))) (-15 -1668 ((-121) $ (-121))) (-15 -2813 ($ $)))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-2314 (((-3 $ "failed") $ $) 18)) (-4236 (($) 16 T CONST)) (-1823 (((-3 $ "failed") $) 33)) (-2642 (((-121) $) 30)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-2801 (((-842) $) 11) (($ (-560)) 27)) (-1751 (((-755)) 28)) (-2464 (($ $ (-909)) 25) (($ $ (-755)) 32)) (-3304 (($) 17 T CONST)) (-1459 (($) 29 T CONST)) (-1653 (((-121) $ $) 6)) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 24) (($ $ (-755)) 31)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 23))) -(((-170) (-1267)) (T -170)) -NIL -(-13 (-1039) (-120 $ $) (-10 -7 (-6 (-4507 "*")))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-105) . T) ((-120 $ $) . T) ((-137) . T) ((-600 (-842)) . T) ((-629 $) . T) ((-708) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1094) . T) ((-1082) . T)) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-1947 ((|#1| $) 74)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL)) (-1350 (($ $) NIL)) (-3376 (((-121) $) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-3065 (($ $) NIL)) (-2953 (((-414 $) $) NIL)) (-4179 (((-121) $ $) NIL)) (-4236 (($) NIL T CONST)) (-2563 (($ $ $) NIL)) (-4024 (($ $) 19)) (-1826 (($ |#1| (-1133 |#1|)) 47)) (-1823 (((-3 $ "failed") $) 116)) (-2572 (($ $ $) NIL)) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) NIL)) (-3319 (((-121) $) NIL)) (-2580 (((-1133 |#1|) $) 81)) (-1971 (((-1133 |#1|) $) 78)) (-2019 (((-1133 |#1|) $) 79)) (-2642 (((-121) $) NIL)) (-3077 (((-1133 |#1|) $) 87)) (-3856 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-2582 (($ (-626 $)) NIL) (($ $ $) NIL)) (-1291 (((-1135) $) NIL)) (-1701 (($ $) NIL)) (-4353 (((-1100) $) NIL)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL)) (-4440 (($ (-626 $)) NIL) (($ $ $) NIL)) (-1601 (((-414 $) $) NIL)) (-3505 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL)) (-3292 (($ $ (-560)) 90)) (-2336 (((-3 $ "failed") $ $) NIL)) (-3456 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-4445 (((-755) $) NIL)) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL)) (-2073 (((-1133 |#1|) $) 88)) (-1879 (((-1133 (-403 |#1|)) $) 13)) (-1617 (($ (-403 |#1|)) 17) (($ |#1| (-1133 |#1|) (-1133 |#1|)) 37)) (-2234 (($ $) 92)) (-2801 (((-842) $) 126) (($ (-560)) 50) (($ |#1|) 51) (($ (-403 |#1|)) 35) (($ (-403 (-560))) NIL) (($ $) NIL)) (-1751 (((-755)) 63)) (-2328 (((-121) $ $) NIL)) (-3366 (((-1133 (-403 |#1|)) $) 18)) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL)) (-3304 (($) 25 T CONST)) (-1459 (($) 28 T CONST)) (-1653 (((-121) $ $) 34)) (-1733 (($ $ $) 114)) (-1725 (($ $) 105) (($ $ $) 102)) (-1716 (($ $ $) 100)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) 112) (($ $ $) 107) (($ $ |#1|) NIL) (($ |#1| $) 109) (($ (-403 |#1|) $) 110) (($ $ (-403 |#1|)) NIL) (($ (-403 (-560)) $) NIL) (($ $ (-403 (-560))) NIL))) -(((-171 |#1|) (-13 (-43 |#1|) (-43 (-403 |#1|)) (-359) (-10 -8 (-15 -1617 ($ (-403 |#1|))) (-15 -1617 ($ |#1| (-1133 |#1|) (-1133 |#1|))) (-15 -1826 ($ |#1| (-1133 |#1|))) (-15 -1971 ((-1133 |#1|) $)) (-15 -2019 ((-1133 |#1|) $)) (-15 -2580 ((-1133 |#1|) $)) (-15 -1947 (|#1| $)) (-15 -4024 ($ $)) (-15 -3366 ((-1133 (-403 |#1|)) $)) (-15 -1879 ((-1133 (-403 |#1|)) $)) (-15 -3077 ((-1133 |#1|) $)) (-15 -2073 ((-1133 |#1|) $)) (-15 -3292 ($ $ (-560))) (-15 -2234 ($ $)))) (-296)) (T -171)) -((-1617 (*1 *1 *2) (-12 (-5 *2 (-403 *3)) (-4 *3 (-296)) (-5 *1 (-171 *3)))) (-1617 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1133 *2)) (-4 *2 (-296)) (-5 *1 (-171 *2)))) (-1826 (*1 *1 *2 *3) (-12 (-5 *3 (-1133 *2)) (-4 *2 (-296)) (-5 *1 (-171 *2)))) (-1971 (*1 *2 *1) (-12 (-5 *2 (-1133 *3)) (-5 *1 (-171 *3)) (-4 *3 (-296)))) (-2019 (*1 *2 *1) (-12 (-5 *2 (-1133 *3)) (-5 *1 (-171 *3)) (-4 *3 (-296)))) (-2580 (*1 *2 *1) (-12 (-5 *2 (-1133 *3)) (-5 *1 (-171 *3)) (-4 *3 (-296)))) (-1947 (*1 *2 *1) (-12 (-5 *1 (-171 *2)) (-4 *2 (-296)))) (-4024 (*1 *1 *1) (-12 (-5 *1 (-171 *2)) (-4 *2 (-296)))) (-3366 (*1 *2 *1) (-12 (-5 *2 (-1133 (-403 *3))) (-5 *1 (-171 *3)) (-4 *3 (-296)))) (-1879 (*1 *2 *1) (-12 (-5 *2 (-1133 (-403 *3))) (-5 *1 (-171 *3)) (-4 *3 (-296)))) (-3077 (*1 *2 *1) (-12 (-5 *2 (-1133 *3)) (-5 *1 (-171 *3)) (-4 *3 (-296)))) (-2073 (*1 *2 *1) (-12 (-5 *2 (-1133 *3)) (-5 *1 (-171 *3)) (-4 *3 (-296)))) (-3292 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-171 *3)) (-4 *3 (-296)))) (-2234 (*1 *1 *1) (-12 (-5 *1 (-171 *2)) (-4 *2 (-296))))) -(-13 (-43 |#1|) (-43 (-403 |#1|)) (-359) (-10 -8 (-15 -1617 ($ (-403 |#1|))) (-15 -1617 ($ |#1| (-1133 |#1|) (-1133 |#1|))) (-15 -1826 ($ |#1| (-1133 |#1|))) (-15 -1971 ((-1133 |#1|) $)) (-15 -2019 ((-1133 |#1|) $)) (-15 -2580 ((-1133 |#1|) $)) (-15 -1947 (|#1| $)) (-15 -4024 ($ $)) (-15 -3366 ((-1133 (-403 |#1|)) $)) (-15 -1879 ((-1133 (-403 |#1|)) $)) (-15 -3077 ((-1133 |#1|) $)) (-15 -2073 ((-1133 |#1|) $)) (-15 -3292 ($ $ (-560))) (-15 -2234 ($ $)))) -((-3631 (((-1 (-936 |#1|) (-936 |#1|)) |#1|) 40)) (-1894 (((-936 |#1|) (-936 |#1|)) 19)) (-2773 (((-1 (-936 |#1|) (-936 |#1|)) |#1|) 36)) (-1785 (((-936 |#1|) (-936 |#1|)) 17)) (-4137 (((-936 |#1|) (-936 |#1|)) 25)) (-3009 (((-936 |#1|) (-936 |#1|)) 24)) (-3651 (((-936 |#1|) (-936 |#1|)) 23)) (-2014 (((-1 (-936 |#1|) (-936 |#1|)) |#1|) 37)) (-3375 (((-1 (-936 |#1|) (-936 |#1|)) |#1|) 35)) (-2290 (((-1 (-936 |#1|) (-936 |#1|)) |#1|) 34)) (-2193 (((-936 |#1|) (-936 |#1|)) 18)) (-2743 (((-1 (-936 |#1|) (-936 |#1|)) |#1| |#1|) 43)) (-2735 (((-936 |#1|) (-936 |#1|)) 8)) (-4239 (((-1 (-936 |#1|) (-936 |#1|)) |#1|) 39)) (-3800 (((-1 (-936 |#1|) (-936 |#1|)) |#1|) 38))) -(((-172 |#1|) (-10 -7 (-15 -2735 ((-936 |#1|) (-936 |#1|))) (-15 -1785 ((-936 |#1|) (-936 |#1|))) (-15 -2193 ((-936 |#1|) (-936 |#1|))) (-15 -1894 ((-936 |#1|) (-936 |#1|))) (-15 -3651 ((-936 |#1|) (-936 |#1|))) (-15 -3009 ((-936 |#1|) (-936 |#1|))) (-15 -4137 ((-936 |#1|) (-936 |#1|))) (-15 -2290 ((-1 (-936 |#1|) (-936 |#1|)) |#1|)) (-15 -3375 ((-1 (-936 |#1|) (-936 |#1|)) |#1|)) (-15 -2773 ((-1 (-936 |#1|) (-936 |#1|)) |#1|)) (-15 -2014 ((-1 (-936 |#1|) (-936 |#1|)) |#1|)) (-15 -3800 ((-1 (-936 |#1|) (-936 |#1|)) |#1|)) (-15 -4239 ((-1 (-936 |#1|) (-936 |#1|)) |#1|)) (-15 -3631 ((-1 (-936 |#1|) (-936 |#1|)) |#1|)) (-15 -2743 ((-1 (-936 |#1|) (-936 |#1|)) |#1| |#1|))) (-13 (-359) (-1173) (-994))) (T -172)) -((-2743 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-172 *3)) (-4 *3 (-13 (-359) (-1173) (-994))))) (-3631 (*1 *2 *3) (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-172 *3)) (-4 *3 (-13 (-359) (-1173) (-994))))) (-4239 (*1 *2 *3) (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-172 *3)) (-4 *3 (-13 (-359) (-1173) (-994))))) (-3800 (*1 *2 *3) (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-172 *3)) (-4 *3 (-13 (-359) (-1173) (-994))))) (-2014 (*1 *2 *3) (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-172 *3)) (-4 *3 (-13 (-359) (-1173) (-994))))) (-2773 (*1 *2 *3) (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-172 *3)) (-4 *3 (-13 (-359) (-1173) (-994))))) (-3375 (*1 *2 *3) (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-172 *3)) (-4 *3 (-13 (-359) (-1173) (-994))))) (-2290 (*1 *2 *3) (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-172 *3)) (-4 *3 (-13 (-359) (-1173) (-994))))) (-4137 (*1 *2 *2) (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-359) (-1173) (-994))) (-5 *1 (-172 *3)))) (-3009 (*1 *2 *2) (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-359) (-1173) (-994))) (-5 *1 (-172 *3)))) (-3651 (*1 *2 *2) (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-359) (-1173) (-994))) (-5 *1 (-172 *3)))) (-1894 (*1 *2 *2) (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-359) (-1173) (-994))) (-5 *1 (-172 *3)))) (-2193 (*1 *2 *2) (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-359) (-1173) (-994))) (-5 *1 (-172 *3)))) (-1785 (*1 *2 *2) (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-359) (-1173) (-994))) (-5 *1 (-172 *3)))) (-2735 (*1 *2 *2) (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-359) (-1173) (-994))) (-5 *1 (-172 *3))))) -(-10 -7 (-15 -2735 ((-936 |#1|) (-936 |#1|))) (-15 -1785 ((-936 |#1|) (-936 |#1|))) (-15 -2193 ((-936 |#1|) (-936 |#1|))) (-15 -1894 ((-936 |#1|) (-936 |#1|))) (-15 -3651 ((-936 |#1|) (-936 |#1|))) (-15 -3009 ((-936 |#1|) (-936 |#1|))) (-15 -4137 ((-936 |#1|) (-936 |#1|))) (-15 -2290 ((-1 (-936 |#1|) (-936 |#1|)) |#1|)) (-15 -3375 ((-1 (-936 |#1|) (-936 |#1|)) |#1|)) (-15 -2773 ((-1 (-936 |#1|) (-936 |#1|)) |#1|)) (-15 -2014 ((-1 (-936 |#1|) (-936 |#1|)) |#1|)) (-15 -3800 ((-1 (-936 |#1|) (-936 |#1|)) |#1|)) (-15 -4239 ((-1 (-936 |#1|) (-936 |#1|)) |#1|)) (-15 -3631 ((-1 (-936 |#1|) (-936 |#1|)) |#1|)) (-15 -2743 ((-1 (-936 |#1|) (-936 |#1|)) |#1| |#1|))) -((-3642 ((|#2| |#3|) 27))) -(((-173 |#1| |#2| |#3|) (-10 -7 (-15 -3642 (|#2| |#3|))) (-170) (-1211 |#1|) (-706 |#1| |#2|)) (T -173)) -((-3642 (*1 *2 *3) (-12 (-4 *4 (-170)) (-4 *2 (-1211 *4)) (-5 *1 (-173 *4 *2 *3)) (-4 *3 (-706 *4 *2))))) -(-10 -7 (-15 -3642 (|#2| |#3|))) -((-2399 (((-876 |#1| |#3|) |#3| (-879 |#1|) (-876 |#1| |#3|)) 47 (|has| (-945 |#2|) (-873 |#1|))))) -(((-174 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-945 |#2|) (-873 |#1|)) (-15 -2399 ((-876 |#1| |#3|) |#3| (-879 |#1|) (-876 |#1| |#3|))) |noBranch|)) (-1082) (-13 (-873 |#1|) (-170)) (-164 |#2|)) (T -174)) -((-2399 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-876 *5 *3)) (-5 *4 (-879 *5)) (-4 *5 (-1082)) (-4 *3 (-164 *6)) (-4 (-945 *6) (-873 *5)) (-4 *6 (-13 (-873 *5) (-170))) (-5 *1 (-174 *5 *6 *3))))) -(-10 -7 (IF (|has| (-945 |#2|) (-873 |#1|)) (-15 -2399 ((-876 |#1| |#3|) |#3| (-879 |#1|) (-876 |#1| |#3|))) |noBranch|)) -((-2952 (((-626 |#1|) (-626 |#1|) |#1|) 36)) (-4437 (((-626 |#1|) |#1| (-626 |#1|)) 19)) (-3286 (((-626 |#1|) (-626 (-626 |#1|)) (-626 |#1|)) 31) ((|#1| (-626 |#1|) (-626 |#1|)) 29))) -(((-175 |#1|) (-10 -7 (-15 -4437 ((-626 |#1|) |#1| (-626 |#1|))) (-15 -3286 (|#1| (-626 |#1|) (-626 |#1|))) (-15 -3286 ((-626 |#1|) (-626 (-626 |#1|)) (-626 |#1|))) (-15 -2952 ((-626 |#1|) (-626 |#1|) |#1|))) (-296)) (T -175)) -((-2952 (*1 *2 *2 *3) (-12 (-5 *2 (-626 *3)) (-4 *3 (-296)) (-5 *1 (-175 *3)))) (-3286 (*1 *2 *3 *2) (-12 (-5 *3 (-626 (-626 *4))) (-5 *2 (-626 *4)) (-4 *4 (-296)) (-5 *1 (-175 *4)))) (-3286 (*1 *2 *3 *3) (-12 (-5 *3 (-626 *2)) (-5 *1 (-175 *2)) (-4 *2 (-296)))) (-4437 (*1 *2 *3 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-296)) (-5 *1 (-175 *3))))) -(-10 -7 (-15 -4437 ((-626 |#1|) |#1| (-626 |#1|))) (-15 -3286 (|#1| (-626 |#1|) (-626 |#1|))) (-15 -3286 ((-626 |#1|) (-626 (-626 |#1|)) (-626 |#1|))) (-15 -2952 ((-626 |#1|) (-626 |#1|) |#1|))) -((-2470 (((-2 (|:| |start| |#2|) (|:| -3025 (-414 |#2|))) |#2|) 61)) (-3859 ((|#1| |#1|) 54)) (-1811 (((-167 |#1|) |#2|) 82)) (-2363 ((|#1| |#2|) 122) ((|#1| |#2| |#1|) 80)) (-2974 ((|#2| |#2|) 81)) (-4358 (((-414 |#2|) |#2| |#1|) 112) (((-414 |#2|) |#2| |#1| (-121)) 79)) (-3339 ((|#1| |#2|) 111)) (-1525 ((|#2| |#2|) 118)) (-1601 (((-414 |#2|) |#2|) 133) (((-414 |#2|) |#2| |#1|) 32) (((-414 |#2|) |#2| |#1| (-121)) 132)) (-4363 (((-626 (-2 (|:| -3025 (-626 |#2|)) (|:| -2301 |#1|))) |#2| |#2|) 131) (((-626 (-2 (|:| -3025 (-626 |#2|)) (|:| -2301 |#1|))) |#2| |#2| (-121)) 75)) (-4319 (((-626 (-167 |#1|)) |#2| |#1|) 40) (((-626 (-167 |#1|)) |#2|) 41))) -(((-176 |#1| |#2|) (-10 -7 (-15 -4319 ((-626 (-167 |#1|)) |#2|)) (-15 -4319 ((-626 (-167 |#1|)) |#2| |#1|)) (-15 -4363 ((-626 (-2 (|:| -3025 (-626 |#2|)) (|:| -2301 |#1|))) |#2| |#2| (-121))) (-15 -4363 ((-626 (-2 (|:| -3025 (-626 |#2|)) (|:| -2301 |#1|))) |#2| |#2|)) (-15 -1601 ((-414 |#2|) |#2| |#1| (-121))) (-15 -1601 ((-414 |#2|) |#2| |#1|)) (-15 -1601 ((-414 |#2|) |#2|)) (-15 -1525 (|#2| |#2|)) (-15 -3339 (|#1| |#2|)) (-15 -4358 ((-414 |#2|) |#2| |#1| (-121))) (-15 -4358 ((-414 |#2|) |#2| |#1|)) (-15 -2974 (|#2| |#2|)) (-15 -2363 (|#1| |#2| |#1|)) (-15 -2363 (|#1| |#2|)) (-15 -1811 ((-167 |#1|) |#2|)) (-15 -3859 (|#1| |#1|)) (-15 -2470 ((-2 (|:| |start| |#2|) (|:| -3025 (-414 |#2|))) |#2|))) (-13 (-359) (-832)) (-1211 (-167 |#1|))) (T -176)) -((-2470 (*1 *2 *3) (-12 (-4 *4 (-13 (-359) (-832))) (-5 *2 (-2 (|:| |start| *3) (|:| -3025 (-414 *3)))) (-5 *1 (-176 *4 *3)) (-4 *3 (-1211 (-167 *4))))) (-3859 (*1 *2 *2) (-12 (-4 *2 (-13 (-359) (-832))) (-5 *1 (-176 *2 *3)) (-4 *3 (-1211 (-167 *2))))) (-1811 (*1 *2 *3) (-12 (-5 *2 (-167 *4)) (-5 *1 (-176 *4 *3)) (-4 *4 (-13 (-359) (-832))) (-4 *3 (-1211 *2)))) (-2363 (*1 *2 *3) (-12 (-4 *2 (-13 (-359) (-832))) (-5 *1 (-176 *2 *3)) (-4 *3 (-1211 (-167 *2))))) (-2363 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-359) (-832))) (-5 *1 (-176 *2 *3)) (-4 *3 (-1211 (-167 *2))))) (-2974 (*1 *2 *2) (-12 (-4 *3 (-13 (-359) (-832))) (-5 *1 (-176 *3 *2)) (-4 *2 (-1211 (-167 *3))))) (-4358 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-359) (-832))) (-5 *2 (-414 *3)) (-5 *1 (-176 *4 *3)) (-4 *3 (-1211 (-167 *4))))) (-4358 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-121)) (-4 *4 (-13 (-359) (-832))) (-5 *2 (-414 *3)) (-5 *1 (-176 *4 *3)) (-4 *3 (-1211 (-167 *4))))) (-3339 (*1 *2 *3) (-12 (-4 *2 (-13 (-359) (-832))) (-5 *1 (-176 *2 *3)) (-4 *3 (-1211 (-167 *2))))) (-1525 (*1 *2 *2) (-12 (-4 *3 (-13 (-359) (-832))) (-5 *1 (-176 *3 *2)) (-4 *2 (-1211 (-167 *3))))) (-1601 (*1 *2 *3) (-12 (-4 *4 (-13 (-359) (-832))) (-5 *2 (-414 *3)) (-5 *1 (-176 *4 *3)) (-4 *3 (-1211 (-167 *4))))) (-1601 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-359) (-832))) (-5 *2 (-414 *3)) (-5 *1 (-176 *4 *3)) (-4 *3 (-1211 (-167 *4))))) (-1601 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-121)) (-4 *4 (-13 (-359) (-832))) (-5 *2 (-414 *3)) (-5 *1 (-176 *4 *3)) (-4 *3 (-1211 (-167 *4))))) (-4363 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-359) (-832))) (-5 *2 (-626 (-2 (|:| -3025 (-626 *3)) (|:| -2301 *4)))) (-5 *1 (-176 *4 *3)) (-4 *3 (-1211 (-167 *4))))) (-4363 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-121)) (-4 *5 (-13 (-359) (-832))) (-5 *2 (-626 (-2 (|:| -3025 (-626 *3)) (|:| -2301 *5)))) (-5 *1 (-176 *5 *3)) (-4 *3 (-1211 (-167 *5))))) (-4319 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-359) (-832))) (-5 *2 (-626 (-167 *4))) (-5 *1 (-176 *4 *3)) (-4 *3 (-1211 (-167 *4))))) (-4319 (*1 *2 *3) (-12 (-4 *4 (-13 (-359) (-832))) (-5 *2 (-626 (-167 *4))) (-5 *1 (-176 *4 *3)) (-4 *3 (-1211 (-167 *4)))))) -(-10 -7 (-15 -4319 ((-626 (-167 |#1|)) |#2|)) (-15 -4319 ((-626 (-167 |#1|)) |#2| |#1|)) (-15 -4363 ((-626 (-2 (|:| -3025 (-626 |#2|)) (|:| -2301 |#1|))) |#2| |#2| (-121))) (-15 -4363 ((-626 (-2 (|:| -3025 (-626 |#2|)) (|:| -2301 |#1|))) |#2| |#2|)) (-15 -1601 ((-414 |#2|) |#2| |#1| (-121))) (-15 -1601 ((-414 |#2|) |#2| |#1|)) (-15 -1601 ((-414 |#2|) |#2|)) (-15 -1525 (|#2| |#2|)) (-15 -3339 (|#1| |#2|)) (-15 -4358 ((-414 |#2|) |#2| |#1| (-121))) (-15 -4358 ((-414 |#2|) |#2| |#1|)) (-15 -2974 (|#2| |#2|)) (-15 -2363 (|#1| |#2| |#1|)) (-15 -2363 (|#1| |#2|)) (-15 -1811 ((-167 |#1|) |#2|)) (-15 -3859 (|#1| |#1|)) (-15 -2470 ((-2 (|:| |start| |#2|) (|:| -3025 (-414 |#2|))) |#2|))) -((-2186 (((-3 |#2| "failed") |#2|) 14)) (-4480 (((-755) |#2|) 16)) (-3317 ((|#2| |#2| |#2|) 18))) -(((-177 |#1| |#2|) (-10 -7 (-15 -2186 ((-3 |#2| "failed") |#2|)) (-15 -4480 ((-755) |#2|)) (-15 -3317 (|#2| |#2| |#2|))) (-1187) (-657 |#1|)) (T -177)) -((-3317 (*1 *2 *2 *2) (-12 (-4 *3 (-1187)) (-5 *1 (-177 *3 *2)) (-4 *2 (-657 *3)))) (-4480 (*1 *2 *3) (-12 (-4 *4 (-1187)) (-5 *2 (-755)) (-5 *1 (-177 *4 *3)) (-4 *3 (-657 *4)))) (-2186 (*1 *2 *2) (|partial| -12 (-4 *3 (-1187)) (-5 *1 (-177 *3 *2)) (-4 *2 (-657 *3))))) -(-10 -7 (-15 -2186 ((-3 |#2| "failed") |#2|)) (-15 -4480 ((-755) |#2|)) (-15 -3317 (|#2| |#2| |#2|))) -((-1338 ((|#2| |#2|) 28)) (-4442 (((-121) |#2|) 19)) (-1611 (((-304 |#1|) |#2|) 12)) (-1618 (((-304 |#1|) |#2|) 14)) (-2016 ((|#2| |#2| (-1153)) 68) ((|#2| |#2|) 69)) (-3893 (((-167 (-304 |#1|)) |#2|) 9)) (-4328 ((|#2| |#2| (-1153)) 65) ((|#2| |#2|) 58))) -(((-178 |#1| |#2|) (-10 -7 (-15 -2016 (|#2| |#2|)) (-15 -2016 (|#2| |#2| (-1153))) (-15 -4328 (|#2| |#2|)) (-15 -4328 (|#2| |#2| (-1153))) (-15 -1611 ((-304 |#1|) |#2|)) (-15 -1618 ((-304 |#1|) |#2|)) (-15 -4442 ((-121) |#2|)) (-15 -1338 (|#2| |#2|)) (-15 -3893 ((-167 (-304 |#1|)) |#2|))) (-13 (-550) (-834) (-1029 (-560))) (-13 (-27) (-1173) (-426 (-167 |#1|)))) (T -178)) -((-3893 (*1 *2 *3) (-12 (-4 *4 (-13 (-550) (-834) (-1029 (-560)))) (-5 *2 (-167 (-304 *4))) (-5 *1 (-178 *4 *3)) (-4 *3 (-13 (-27) (-1173) (-426 (-167 *4)))))) (-1338 (*1 *2 *2) (-12 (-4 *3 (-13 (-550) (-834) (-1029 (-560)))) (-5 *1 (-178 *3 *2)) (-4 *2 (-13 (-27) (-1173) (-426 (-167 *3)))))) (-4442 (*1 *2 *3) (-12 (-4 *4 (-13 (-550) (-834) (-1029 (-560)))) (-5 *2 (-121)) (-5 *1 (-178 *4 *3)) (-4 *3 (-13 (-27) (-1173) (-426 (-167 *4)))))) (-1618 (*1 *2 *3) (-12 (-4 *4 (-13 (-550) (-834) (-1029 (-560)))) (-5 *2 (-304 *4)) (-5 *1 (-178 *4 *3)) (-4 *3 (-13 (-27) (-1173) (-426 (-167 *4)))))) (-1611 (*1 *2 *3) (-12 (-4 *4 (-13 (-550) (-834) (-1029 (-560)))) (-5 *2 (-304 *4)) (-5 *1 (-178 *4 *3)) (-4 *3 (-13 (-27) (-1173) (-426 (-167 *4)))))) (-4328 (*1 *2 *2 *3) (-12 (-5 *3 (-1153)) (-4 *4 (-13 (-550) (-834) (-1029 (-560)))) (-5 *1 (-178 *4 *2)) (-4 *2 (-13 (-27) (-1173) (-426 (-167 *4)))))) (-4328 (*1 *2 *2) (-12 (-4 *3 (-13 (-550) (-834) (-1029 (-560)))) (-5 *1 (-178 *3 *2)) (-4 *2 (-13 (-27) (-1173) (-426 (-167 *3)))))) (-2016 (*1 *2 *2 *3) (-12 (-5 *3 (-1153)) (-4 *4 (-13 (-550) (-834) (-1029 (-560)))) (-5 *1 (-178 *4 *2)) (-4 *2 (-13 (-27) (-1173) (-426 (-167 *4)))))) (-2016 (*1 *2 *2) (-12 (-4 *3 (-13 (-550) (-834) (-1029 (-560)))) (-5 *1 (-178 *3 *2)) (-4 *2 (-13 (-27) (-1173) (-426 (-167 *3))))))) -(-10 -7 (-15 -2016 (|#2| |#2|)) (-15 -2016 (|#2| |#2| (-1153))) (-15 -4328 (|#2| |#2|)) (-15 -4328 (|#2| |#2| (-1153))) (-15 -1611 ((-304 |#1|) |#2|)) (-15 -1618 ((-304 |#1|) |#2|)) (-15 -4442 ((-121) |#2|)) (-15 -1338 (|#2| |#2|)) (-15 -3893 ((-167 (-304 |#1|)) |#2|))) -((-1568 (((-1236 (-671 (-945 |#1|))) (-1236 (-671 |#1|))) 22)) (-2801 (((-1236 (-671 (-403 (-945 |#1|)))) (-1236 (-671 |#1|))) 30))) -(((-179 |#1|) (-10 -7 (-15 -1568 ((-1236 (-671 (-945 |#1|))) (-1236 (-671 |#1|)))) (-15 -2801 ((-1236 (-671 (-403 (-945 |#1|)))) (-1236 (-671 |#1|))))) (-170)) (T -179)) -((-2801 (*1 *2 *3) (-12 (-5 *3 (-1236 (-671 *4))) (-4 *4 (-170)) (-5 *2 (-1236 (-671 (-403 (-945 *4))))) (-5 *1 (-179 *4)))) (-1568 (*1 *2 *3) (-12 (-5 *3 (-1236 (-671 *4))) (-4 *4 (-170)) (-5 *2 (-1236 (-671 (-945 *4)))) (-5 *1 (-179 *4))))) -(-10 -7 (-15 -1568 ((-1236 (-671 (-945 |#1|))) (-1236 (-671 |#1|)))) (-15 -2801 ((-1236 (-671 (-403 (-945 |#1|)))) (-1236 (-671 |#1|))))) -((-3816 (((-1155 (-403 (-560))) (-1155 (-403 (-560))) (-1155 (-403 (-560)))) 66)) (-1877 (((-1155 (-403 (-560))) (-626 (-560)) (-626 (-560))) 74)) (-3789 (((-1155 (-403 (-560))) (-560)) 40)) (-3398 (((-1155 (-403 (-560))) (-560)) 52)) (-4450 (((-403 (-560)) (-1155 (-403 (-560)))) 62)) (-3587 (((-1155 (-403 (-560))) (-560)) 32)) (-2800 (((-1155 (-403 (-560))) (-560)) 48)) (-1687 (((-1155 (-403 (-560))) (-560)) 46)) (-3454 (((-1155 (-403 (-560))) (-1155 (-403 (-560))) (-1155 (-403 (-560)))) 60)) (-2234 (((-1155 (-403 (-560))) (-560)) 25)) (-2057 (((-403 (-560)) (-1155 (-403 (-560))) (-1155 (-403 (-560)))) 64)) (-3130 (((-1155 (-403 (-560))) (-560)) 30)) (-2617 (((-1155 (-403 (-560))) (-626 (-560))) 71))) -(((-180) (-10 -7 (-15 -2234 ((-1155 (-403 (-560))) (-560))) (-15 -3789 ((-1155 (-403 (-560))) (-560))) (-15 -3587 ((-1155 (-403 (-560))) (-560))) (-15 -3130 ((-1155 (-403 (-560))) (-560))) (-15 -1687 ((-1155 (-403 (-560))) (-560))) (-15 -2800 ((-1155 (-403 (-560))) (-560))) (-15 -3398 ((-1155 (-403 (-560))) (-560))) (-15 -2057 ((-403 (-560)) (-1155 (-403 (-560))) (-1155 (-403 (-560))))) (-15 -3454 ((-1155 (-403 (-560))) (-1155 (-403 (-560))) (-1155 (-403 (-560))))) (-15 -4450 ((-403 (-560)) (-1155 (-403 (-560))))) (-15 -3816 ((-1155 (-403 (-560))) (-1155 (-403 (-560))) (-1155 (-403 (-560))))) (-15 -2617 ((-1155 (-403 (-560))) (-626 (-560)))) (-15 -1877 ((-1155 (-403 (-560))) (-626 (-560)) (-626 (-560)))))) (T -180)) -((-1877 (*1 *2 *3 *3) (-12 (-5 *3 (-626 (-560))) (-5 *2 (-1155 (-403 (-560)))) (-5 *1 (-180)))) (-2617 (*1 *2 *3) (-12 (-5 *3 (-626 (-560))) (-5 *2 (-1155 (-403 (-560)))) (-5 *1 (-180)))) (-3816 (*1 *2 *2 *2) (-12 (-5 *2 (-1155 (-403 (-560)))) (-5 *1 (-180)))) (-4450 (*1 *2 *3) (-12 (-5 *3 (-1155 (-403 (-560)))) (-5 *2 (-403 (-560))) (-5 *1 (-180)))) (-3454 (*1 *2 *2 *2) (-12 (-5 *2 (-1155 (-403 (-560)))) (-5 *1 (-180)))) (-2057 (*1 *2 *3 *3) (-12 (-5 *3 (-1155 (-403 (-560)))) (-5 *2 (-403 (-560))) (-5 *1 (-180)))) (-3398 (*1 *2 *3) (-12 (-5 *2 (-1155 (-403 (-560)))) (-5 *1 (-180)) (-5 *3 (-560)))) (-2800 (*1 *2 *3) (-12 (-5 *2 (-1155 (-403 (-560)))) (-5 *1 (-180)) (-5 *3 (-560)))) (-1687 (*1 *2 *3) (-12 (-5 *2 (-1155 (-403 (-560)))) (-5 *1 (-180)) (-5 *3 (-560)))) (-3130 (*1 *2 *3) (-12 (-5 *2 (-1155 (-403 (-560)))) (-5 *1 (-180)) (-5 *3 (-560)))) (-3587 (*1 *2 *3) (-12 (-5 *2 (-1155 (-403 (-560)))) (-5 *1 (-180)) (-5 *3 (-560)))) (-3789 (*1 *2 *3) (-12 (-5 *2 (-1155 (-403 (-560)))) (-5 *1 (-180)) (-5 *3 (-560)))) (-2234 (*1 *2 *3) (-12 (-5 *2 (-1155 (-403 (-560)))) (-5 *1 (-180)) (-5 *3 (-560))))) -(-10 -7 (-15 -2234 ((-1155 (-403 (-560))) (-560))) (-15 -3789 ((-1155 (-403 (-560))) (-560))) (-15 -3587 ((-1155 (-403 (-560))) (-560))) (-15 -3130 ((-1155 (-403 (-560))) (-560))) (-15 -1687 ((-1155 (-403 (-560))) (-560))) (-15 -2800 ((-1155 (-403 (-560))) (-560))) (-15 -3398 ((-1155 (-403 (-560))) (-560))) (-15 -2057 ((-403 (-560)) (-1155 (-403 (-560))) (-1155 (-403 (-560))))) (-15 -3454 ((-1155 (-403 (-560))) (-1155 (-403 (-560))) (-1155 (-403 (-560))))) (-15 -4450 ((-403 (-560)) (-1155 (-403 (-560))))) (-15 -3816 ((-1155 (-403 (-560))) (-1155 (-403 (-560))) (-1155 (-403 (-560))))) (-15 -2617 ((-1155 (-403 (-560))) (-626 (-560)))) (-15 -1877 ((-1155 (-403 (-560))) (-626 (-560)) (-626 (-560))))) -((-3931 (((-414 (-1149 (-560))) (-560)) 28)) (-3270 (((-626 (-1149 (-560))) (-560)) 23)) (-3833 (((-1149 (-560)) (-560)) 21))) -(((-181) (-10 -7 (-15 -3270 ((-626 (-1149 (-560))) (-560))) (-15 -3833 ((-1149 (-560)) (-560))) (-15 -3931 ((-414 (-1149 (-560))) (-560))))) (T -181)) -((-3931 (*1 *2 *3) (-12 (-5 *2 (-414 (-1149 (-560)))) (-5 *1 (-181)) (-5 *3 (-560)))) (-3833 (*1 *2 *3) (-12 (-5 *2 (-1149 (-560))) (-5 *1 (-181)) (-5 *3 (-560)))) (-3270 (*1 *2 *3) (-12 (-5 *2 (-626 (-1149 (-560)))) (-5 *1 (-181)) (-5 *3 (-560))))) -(-10 -7 (-15 -3270 ((-626 (-1149 (-560))) (-560))) (-15 -3833 ((-1149 (-560)) (-560))) (-15 -3931 ((-414 (-1149 (-560))) (-560)))) -((-1991 (((-1133 (-213)) (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) 101)) (-3351 (((-626 (-1135)) (-1133 (-213))) NIL)) (-1468 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) 77)) (-3428 (((-626 (-213)) (-304 (-213)) (-1153) (-1076 (-827 (-213)))) NIL)) (-3409 (((-626 (-1135)) (-626 (-213))) NIL)) (-1508 (((-213) (-1076 (-827 (-213)))) 22)) (-3552 (((-213) (-1076 (-827 (-213)))) 23)) (-1496 (((-375) (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) 93)) (-3413 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) 40)) (-4116 (((-1135) (-213)) NIL)) (-2684 (((-1135) (-626 (-1135))) 19)) (-2940 (((-1027) (-1153) (-1153) (-1027)) 12))) -(((-182) (-10 -7 (-15 -1468 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213))))) (-15 -3413 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213))))) (-15 -1508 ((-213) (-1076 (-827 (-213))))) (-15 -3552 ((-213) (-1076 (-827 (-213))))) (-15 -1496 ((-375) (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213))))) (-15 -3428 ((-626 (-213)) (-304 (-213)) (-1153) (-1076 (-827 (-213))))) (-15 -1991 ((-1133 (-213)) (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213))))) (-15 -4116 ((-1135) (-213))) (-15 -3409 ((-626 (-1135)) (-626 (-213)))) (-15 -3351 ((-626 (-1135)) (-1133 (-213)))) (-15 -2684 ((-1135) (-626 (-1135)))) (-15 -2940 ((-1027) (-1153) (-1153) (-1027))))) (T -182)) -((-2940 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1027)) (-5 *3 (-1153)) (-5 *1 (-182)))) (-2684 (*1 *2 *3) (-12 (-5 *3 (-626 (-1135))) (-5 *2 (-1135)) (-5 *1 (-182)))) (-3351 (*1 *2 *3) (-12 (-5 *3 (-1133 (-213))) (-5 *2 (-626 (-1135))) (-5 *1 (-182)))) (-3409 (*1 *2 *3) (-12 (-5 *3 (-626 (-213))) (-5 *2 (-626 (-1135))) (-5 *1 (-182)))) (-4116 (*1 *2 *3) (-12 (-5 *3 (-213)) (-5 *2 (-1135)) (-5 *1 (-182)))) (-1991 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (-5 *2 (-1133 (-213))) (-5 *1 (-182)))) (-3428 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-304 (-213))) (-5 *4 (-1153)) (-5 *5 (-1076 (-827 (-213)))) (-5 *2 (-626 (-213))) (-5 *1 (-182)))) (-1496 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (-5 *2 (-375)) (-5 *1 (-182)))) (-3552 (*1 *2 *3) (-12 (-5 *3 (-1076 (-827 (-213)))) (-5 *2 (-213)) (-5 *1 (-182)))) (-1508 (*1 *2 *3) (-12 (-5 *3 (-1076 (-827 (-213)))) (-5 *2 (-213)) (-5 *1 (-182)))) (-3413 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-182)))) (-1468 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-182))))) -(-10 -7 (-15 -1468 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213))))) (-15 -3413 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213))))) (-15 -1508 ((-213) (-1076 (-827 (-213))))) (-15 -3552 ((-213) (-1076 (-827 (-213))))) (-15 -1496 ((-375) (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213))))) (-15 -3428 ((-626 (-213)) (-304 (-213)) (-1153) (-1076 (-827 (-213))))) (-15 -1991 ((-1133 (-213)) (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213))))) (-15 -4116 ((-1135) (-213))) (-15 -3409 ((-626 (-1135)) (-626 (-213)))) (-15 -3351 ((-626 (-1135)) (-1133 (-213)))) (-15 -2684 ((-1135) (-626 (-1135)))) (-15 -2940 ((-1027) (-1153) (-1153) (-1027)))) -((-2601 (((-121) $ $) NIL)) (-1293 (((-1027) (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213))) (-1027)) 53) (((-1027) (-2 (|:| |fn| (-304 (-213))) (|:| -1396 (-626 (-1076 (-827 (-213))))) (|:| |abserr| (-213)) (|:| |relerr| (-213))) (-1027)) NIL)) (-3262 (((-2 (|:| -3262 (-375)) (|:| |explanations| (-1135)) (|:| |extra| (-1027))) (-1051) (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) 28) (((-2 (|:| -3262 (-375)) (|:| |explanations| (-1135)) (|:| |extra| (-1027))) (-1051) (-2 (|:| |fn| (-304 (-213))) (|:| -1396 (-626 (-1076 (-827 (-213))))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) NIL)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2801 (((-842) $) NIL)) (-1653 (((-121) $ $) NIL))) -(((-183) (-774)) (T -183)) -NIL -(-774) -((-2601 (((-121) $ $) NIL)) (-1293 (((-1027) (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213))) (-1027)) 58) (((-1027) (-2 (|:| |fn| (-304 (-213))) (|:| -1396 (-626 (-1076 (-827 (-213))))) (|:| |abserr| (-213)) (|:| |relerr| (-213))) (-1027)) NIL)) (-3262 (((-2 (|:| -3262 (-375)) (|:| |explanations| (-1135)) (|:| |extra| (-1027))) (-1051) (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) 37) (((-2 (|:| -3262 (-375)) (|:| |explanations| (-1135)) (|:| |extra| (-1027))) (-1051) (-2 (|:| |fn| (-304 (-213))) (|:| -1396 (-626 (-1076 (-827 (-213))))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) NIL)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2801 (((-842) $) NIL)) (-1653 (((-121) $ $) NIL))) -(((-184) (-774)) (T -184)) -NIL -(-774) -((-2601 (((-121) $ $) NIL)) (-1293 (((-1027) (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213))) (-1027)) 67) (((-1027) (-2 (|:| |fn| (-304 (-213))) (|:| -1396 (-626 (-1076 (-827 (-213))))) (|:| |abserr| (-213)) (|:| |relerr| (-213))) (-1027)) NIL)) (-3262 (((-2 (|:| -3262 (-375)) (|:| |explanations| (-1135)) (|:| |extra| (-1027))) (-1051) (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) 36) (((-2 (|:| -3262 (-375)) (|:| |explanations| (-1135)) (|:| |extra| (-1027))) (-1051) (-2 (|:| |fn| (-304 (-213))) (|:| -1396 (-626 (-1076 (-827 (-213))))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) NIL)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2801 (((-842) $) NIL)) (-1653 (((-121) $ $) NIL))) -(((-185) (-774)) (T -185)) -NIL -(-774) -((-2601 (((-121) $ $) NIL)) (-1293 (((-1027) (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213))) (-1027)) 54) (((-1027) (-2 (|:| |fn| (-304 (-213))) (|:| -1396 (-626 (-1076 (-827 (-213))))) (|:| |abserr| (-213)) (|:| |relerr| (-213))) (-1027)) NIL)) (-3262 (((-2 (|:| -3262 (-375)) (|:| |explanations| (-1135)) (|:| |extra| (-1027))) (-1051) (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) 30) (((-2 (|:| -3262 (-375)) (|:| |explanations| (-1135)) (|:| |extra| (-1027))) (-1051) (-2 (|:| |fn| (-304 (-213))) (|:| -1396 (-626 (-1076 (-827 (-213))))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) NIL)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2801 (((-842) $) NIL)) (-1653 (((-121) $ $) NIL))) -(((-186) (-774)) (T -186)) -NIL -(-774) -((-2601 (((-121) $ $) NIL)) (-1293 (((-1027) (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213))) (-1027)) 65) (((-1027) (-2 (|:| |fn| (-304 (-213))) (|:| -1396 (-626 (-1076 (-827 (-213))))) (|:| |abserr| (-213)) (|:| |relerr| (-213))) (-1027)) NIL)) (-3262 (((-2 (|:| -3262 (-375)) (|:| |explanations| (-1135)) (|:| |extra| (-1027))) (-1051) (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) 35) (((-2 (|:| -3262 (-375)) (|:| |explanations| (-1135)) (|:| |extra| (-1027))) (-1051) (-2 (|:| |fn| (-304 (-213))) (|:| -1396 (-626 (-1076 (-827 (-213))))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) NIL)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2801 (((-842) $) NIL)) (-1653 (((-121) $ $) NIL))) -(((-187) (-774)) (T -187)) -NIL -(-774) -((-2601 (((-121) $ $) NIL)) (-1293 (((-1027) (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213))) (-1027)) 71) (((-1027) (-2 (|:| |fn| (-304 (-213))) (|:| -1396 (-626 (-1076 (-827 (-213))))) (|:| |abserr| (-213)) (|:| |relerr| (-213))) (-1027)) NIL)) (-3262 (((-2 (|:| -3262 (-375)) (|:| |explanations| (-1135)) (|:| |extra| (-1027))) (-1051) (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) 33) (((-2 (|:| -3262 (-375)) (|:| |explanations| (-1135)) (|:| |extra| (-1027))) (-1051) (-2 (|:| |fn| (-304 (-213))) (|:| -1396 (-626 (-1076 (-827 (-213))))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) NIL)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2801 (((-842) $) NIL)) (-1653 (((-121) $ $) NIL))) -(((-188) (-774)) (T -188)) -NIL -(-774) -((-2601 (((-121) $ $) NIL)) (-1293 (((-1027) (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213))) (-1027)) 78) (((-1027) (-2 (|:| |fn| (-304 (-213))) (|:| -1396 (-626 (-1076 (-827 (-213))))) (|:| |abserr| (-213)) (|:| |relerr| (-213))) (-1027)) NIL)) (-3262 (((-2 (|:| -3262 (-375)) (|:| |explanations| (-1135)) (|:| |extra| (-1027))) (-1051) (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) 43) (((-2 (|:| -3262 (-375)) (|:| |explanations| (-1135)) (|:| |extra| (-1027))) (-1051) (-2 (|:| |fn| (-304 (-213))) (|:| -1396 (-626 (-1076 (-827 (-213))))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) NIL)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2801 (((-842) $) NIL)) (-1653 (((-121) $ $) NIL))) -(((-189) (-774)) (T -189)) -NIL -(-774) -((-2601 (((-121) $ $) NIL)) (-1293 (((-1027) (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213))) (-1027)) 68) (((-1027) (-2 (|:| |fn| (-304 (-213))) (|:| -1396 (-626 (-1076 (-827 (-213))))) (|:| |abserr| (-213)) (|:| |relerr| (-213))) (-1027)) NIL)) (-3262 (((-2 (|:| -3262 (-375)) (|:| |explanations| (-1135)) (|:| |extra| (-1027))) (-1051) (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) 37) (((-2 (|:| -3262 (-375)) (|:| |explanations| (-1135)) (|:| |extra| (-1027))) (-1051) (-2 (|:| |fn| (-304 (-213))) (|:| -1396 (-626 (-1076 (-827 (-213))))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) NIL)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2801 (((-842) $) NIL)) (-1653 (((-121) $ $) NIL))) -(((-190) (-774)) (T -190)) -NIL -(-774) -((-2601 (((-121) $ $) NIL)) (-1293 (((-1027) (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213))) (-1027)) NIL) (((-1027) (-2 (|:| |fn| (-304 (-213))) (|:| -1396 (-626 (-1076 (-827 (-213))))) (|:| |abserr| (-213)) (|:| |relerr| (-213))) (-1027)) 62)) (-3262 (((-2 (|:| -3262 (-375)) (|:| |explanations| (-1135)) (|:| |extra| (-1027))) (-1051) (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) NIL) (((-2 (|:| -3262 (-375)) (|:| |explanations| (-1135)) (|:| |extra| (-1027))) (-1051) (-2 (|:| |fn| (-304 (-213))) (|:| -1396 (-626 (-1076 (-827 (-213))))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) 29)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2801 (((-842) $) NIL)) (-1653 (((-121) $ $) NIL))) -(((-191) (-774)) (T -191)) -NIL -(-774) -((-2601 (((-121) $ $) NIL)) (-1293 (((-1027) (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213))) (-1027)) NIL) (((-1027) (-2 (|:| |fn| (-304 (-213))) (|:| -1396 (-626 (-1076 (-827 (-213))))) (|:| |abserr| (-213)) (|:| |relerr| (-213))) (-1027)) 60)) (-3262 (((-2 (|:| -3262 (-375)) (|:| |explanations| (-1135)) (|:| |extra| (-1027))) (-1051) (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) NIL) (((-2 (|:| -3262 (-375)) (|:| |explanations| (-1135)) (|:| |extra| (-1027))) (-1051) (-2 (|:| |fn| (-304 (-213))) (|:| -1396 (-626 (-1076 (-827 (-213))))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) 32)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2801 (((-842) $) NIL)) (-1653 (((-121) $ $) NIL))) -(((-192) (-774)) (T -192)) -NIL -(-774) -((-2601 (((-121) $ $) NIL)) (-1293 (((-1027) (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213))) (-1027)) 89) (((-1027) (-2 (|:| |fn| (-304 (-213))) (|:| -1396 (-626 (-1076 (-827 (-213))))) (|:| |abserr| (-213)) (|:| |relerr| (-213))) (-1027)) NIL)) (-3262 (((-2 (|:| -3262 (-375)) (|:| |explanations| (-1135)) (|:| |extra| (-1027))) (-1051) (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) 77) (((-2 (|:| -3262 (-375)) (|:| |explanations| (-1135)) (|:| |extra| (-1027))) (-1051) (-2 (|:| |fn| (-304 (-213))) (|:| -1396 (-626 (-1076 (-827 (-213))))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) NIL)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2801 (((-842) $) NIL)) (-1653 (((-121) $ $) NIL))) -(((-193) (-774)) (T -193)) -NIL -(-774) -((-1662 (((-3 (-2 (|:| -1882 (-123)) (|:| |w| (-213))) "failed") (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) 80)) (-3287 (((-560) (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) 39)) (-2719 (((-3 (-626 (-213)) "failed") (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) 69))) -(((-194) (-10 -7 (-15 -1662 ((-3 (-2 (|:| -1882 (-123)) (|:| |w| (-213))) "failed") (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213))))) (-15 -2719 ((-3 (-626 (-213)) "failed") (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213))))) (-15 -3287 ((-560) (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213))))))) (T -194)) -((-3287 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (-5 *2 (-560)) (-5 *1 (-194)))) (-2719 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (-5 *2 (-626 (-213))) (-5 *1 (-194)))) (-1662 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (-5 *2 (-2 (|:| -1882 (-123)) (|:| |w| (-213)))) (-5 *1 (-194))))) -(-10 -7 (-15 -1662 ((-3 (-2 (|:| -1882 (-123)) (|:| |w| (-213))) "failed") (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213))))) (-15 -2719 ((-3 (-626 (-213)) "failed") (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213))))) (-15 -3287 ((-560) (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))))) -((-3685 (((-375) (-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) 37)) (-3668 (((-2 (|:| |stiffnessFactor| (-375)) (|:| |stabilityFactor| (-375))) (-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) 127)) (-4210 (((-2 (|:| |stiffnessFactor| (-375)) (|:| |stabilityFactor| (-375))) (-671 (-304 (-213)))) 87)) (-4067 (((-375) (-671 (-304 (-213)))) 110)) (-2240 (((-671 (-304 (-213))) (-1236 (-304 (-213))) (-626 (-1153))) 107)) (-3462 (((-375) (-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) 26)) (-3894 (((-375) (-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) 42)) (-4450 (((-671 (-304 (-213))) (-671 (-304 (-213))) (-626 (-1153)) (-1236 (-304 (-213)))) 99)) (-3875 (((-375) (-375) (-626 (-375))) 104) (((-375) (-375) (-375)) 102)) (-3228 (((-375) (-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) 33))) -(((-195) (-10 -7 (-15 -3875 ((-375) (-375) (-375))) (-15 -3875 ((-375) (-375) (-626 (-375)))) (-15 -4067 ((-375) (-671 (-304 (-213))))) (-15 -2240 ((-671 (-304 (-213))) (-1236 (-304 (-213))) (-626 (-1153)))) (-15 -4450 ((-671 (-304 (-213))) (-671 (-304 (-213))) (-626 (-1153)) (-1236 (-304 (-213))))) (-15 -4210 ((-2 (|:| |stiffnessFactor| (-375)) (|:| |stabilityFactor| (-375))) (-671 (-304 (-213))))) (-15 -3668 ((-2 (|:| |stiffnessFactor| (-375)) (|:| |stabilityFactor| (-375))) (-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213))))) (-15 -3685 ((-375) (-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213))))) (-15 -3894 ((-375) (-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213))))) (-15 -3228 ((-375) (-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213))))) (-15 -3462 ((-375) (-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213))))))) (T -195)) -((-3462 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (-5 *2 (-375)) (-5 *1 (-195)))) (-3228 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (-5 *2 (-375)) (-5 *1 (-195)))) (-3894 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (-5 *2 (-375)) (-5 *1 (-195)))) (-3685 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (-5 *2 (-375)) (-5 *1 (-195)))) (-3668 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-375)) (|:| |stabilityFactor| (-375)))) (-5 *1 (-195)))) (-4210 (*1 *2 *3) (-12 (-5 *3 (-671 (-304 (-213)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-375)) (|:| |stabilityFactor| (-375)))) (-5 *1 (-195)))) (-4450 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-671 (-304 (-213)))) (-5 *3 (-626 (-1153))) (-5 *4 (-1236 (-304 (-213)))) (-5 *1 (-195)))) (-2240 (*1 *2 *3 *4) (-12 (-5 *3 (-1236 (-304 (-213)))) (-5 *4 (-626 (-1153))) (-5 *2 (-671 (-304 (-213)))) (-5 *1 (-195)))) (-4067 (*1 *2 *3) (-12 (-5 *3 (-671 (-304 (-213)))) (-5 *2 (-375)) (-5 *1 (-195)))) (-3875 (*1 *2 *2 *3) (-12 (-5 *3 (-626 (-375))) (-5 *2 (-375)) (-5 *1 (-195)))) (-3875 (*1 *2 *2 *2) (-12 (-5 *2 (-375)) (-5 *1 (-195))))) -(-10 -7 (-15 -3875 ((-375) (-375) (-375))) (-15 -3875 ((-375) (-375) (-626 (-375)))) (-15 -4067 ((-375) (-671 (-304 (-213))))) (-15 -2240 ((-671 (-304 (-213))) (-1236 (-304 (-213))) (-626 (-1153)))) (-15 -4450 ((-671 (-304 (-213))) (-671 (-304 (-213))) (-626 (-1153)) (-1236 (-304 (-213))))) (-15 -4210 ((-2 (|:| |stiffnessFactor| (-375)) (|:| |stabilityFactor| (-375))) (-671 (-304 (-213))))) (-15 -3668 ((-2 (|:| |stiffnessFactor| (-375)) (|:| |stabilityFactor| (-375))) (-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213))))) (-15 -3685 ((-375) (-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213))))) (-15 -3894 ((-375) (-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213))))) (-15 -3228 ((-375) (-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213))))) (-15 -3462 ((-375) (-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))))) -((-2601 (((-121) $ $) NIL)) (-3262 (((-2 (|:| -3262 (-375)) (|:| |explanations| (-1135))) (-1051) (-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) 37)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2801 (((-842) $) NIL)) (-1436 (((-1027) (-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) 60)) (-1653 (((-121) $ $) NIL))) -(((-196) (-787)) (T -196)) -NIL -(-787) -((-2601 (((-121) $ $) NIL)) (-3262 (((-2 (|:| -3262 (-375)) (|:| |explanations| (-1135))) (-1051) (-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) 37)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2801 (((-842) $) NIL)) (-1436 (((-1027) (-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) 60)) (-1653 (((-121) $ $) NIL))) -(((-197) (-787)) (T -197)) -NIL -(-787) -((-2601 (((-121) $ $) NIL)) (-3262 (((-2 (|:| -3262 (-375)) (|:| |explanations| (-1135))) (-1051) (-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) 36)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2801 (((-842) $) NIL)) (-1436 (((-1027) (-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) 64)) (-1653 (((-121) $ $) NIL))) -(((-198) (-787)) (T -198)) -NIL -(-787) -((-2601 (((-121) $ $) NIL)) (-3262 (((-2 (|:| -3262 (-375)) (|:| |explanations| (-1135))) (-1051) (-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) 42)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2801 (((-842) $) NIL)) (-1436 (((-1027) (-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) 73)) (-1653 (((-121) $ $) NIL))) -(((-199) (-787)) (T -199)) -NIL -(-787) -((-1499 (((-626 (-1153)) (-1153) (-755)) 22)) (-1830 (((-304 (-213)) (-304 (-213))) 29)) (-4333 (((-121) (-2 (|:| |pde| (-626 (-304 (-213)))) (|:| |constraints| (-626 (-2 (|:| |start| (-213)) (|:| |finish| (-213)) (|:| |grid| (-755)) (|:| |boundaryType| (-560)) (|:| |dStart| (-671 (-213))) (|:| |dFinish| (-671 (-213)))))) (|:| |f| (-626 (-626 (-304 (-213))))) (|:| |st| (-1135)) (|:| |tol| (-213)))) 67)) (-2415 (((-121) (-213) (-213) (-626 (-304 (-213)))) 43))) -(((-200) (-10 -7 (-15 -1499 ((-626 (-1153)) (-1153) (-755))) (-15 -1830 ((-304 (-213)) (-304 (-213)))) (-15 -2415 ((-121) (-213) (-213) (-626 (-304 (-213))))) (-15 -4333 ((-121) (-2 (|:| |pde| (-626 (-304 (-213)))) (|:| |constraints| (-626 (-2 (|:| |start| (-213)) (|:| |finish| (-213)) (|:| |grid| (-755)) (|:| |boundaryType| (-560)) (|:| |dStart| (-671 (-213))) (|:| |dFinish| (-671 (-213)))))) (|:| |f| (-626 (-626 (-304 (-213))))) (|:| |st| (-1135)) (|:| |tol| (-213))))))) (T -200)) -((-4333 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-626 (-304 (-213)))) (|:| |constraints| (-626 (-2 (|:| |start| (-213)) (|:| |finish| (-213)) (|:| |grid| (-755)) (|:| |boundaryType| (-560)) (|:| |dStart| (-671 (-213))) (|:| |dFinish| (-671 (-213)))))) (|:| |f| (-626 (-626 (-304 (-213))))) (|:| |st| (-1135)) (|:| |tol| (-213)))) (-5 *2 (-121)) (-5 *1 (-200)))) (-2415 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-626 (-304 (-213)))) (-5 *3 (-213)) (-5 *2 (-121)) (-5 *1 (-200)))) (-1830 (*1 *2 *2) (-12 (-5 *2 (-304 (-213))) (-5 *1 (-200)))) (-1499 (*1 *2 *3 *4) (-12 (-5 *4 (-755)) (-5 *2 (-626 (-1153))) (-5 *1 (-200)) (-5 *3 (-1153))))) -(-10 -7 (-15 -1499 ((-626 (-1153)) (-1153) (-755))) (-15 -1830 ((-304 (-213)) (-304 (-213)))) (-15 -2415 ((-121) (-213) (-213) (-626 (-304 (-213))))) (-15 -4333 ((-121) (-2 (|:| |pde| (-626 (-304 (-213)))) (|:| |constraints| (-626 (-2 (|:| |start| (-213)) (|:| |finish| (-213)) (|:| |grid| (-755)) (|:| |boundaryType| (-560)) (|:| |dStart| (-671 (-213))) (|:| |dFinish| (-671 (-213)))))) (|:| |f| (-626 (-626 (-304 (-213))))) (|:| |st| (-1135)) (|:| |tol| (-213)))))) -((-2601 (((-121) $ $) NIL)) (-3262 (((-2 (|:| -3262 (-375)) (|:| |explanations| (-1135))) (-1051) (-2 (|:| |pde| (-626 (-304 (-213)))) (|:| |constraints| (-626 (-2 (|:| |start| (-213)) (|:| |finish| (-213)) (|:| |grid| (-755)) (|:| |boundaryType| (-560)) (|:| |dStart| (-671 (-213))) (|:| |dFinish| (-671 (-213)))))) (|:| |f| (-626 (-626 (-304 (-213))))) (|:| |st| (-1135)) (|:| |tol| (-213)))) 17)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2801 (((-842) $) NIL)) (-1345 (((-1027) (-2 (|:| |pde| (-626 (-304 (-213)))) (|:| |constraints| (-626 (-2 (|:| |start| (-213)) (|:| |finish| (-213)) (|:| |grid| (-755)) (|:| |boundaryType| (-560)) (|:| |dStart| (-671 (-213))) (|:| |dFinish| (-671 (-213)))))) (|:| |f| (-626 (-626 (-304 (-213))))) (|:| |st| (-1135)) (|:| |tol| (-213)))) 55)) (-1653 (((-121) $ $) NIL))) -(((-201) (-882)) (T -201)) -NIL -(-882) -((-2601 (((-121) $ $) NIL)) (-3262 (((-2 (|:| -3262 (-375)) (|:| |explanations| (-1135))) (-1051) (-2 (|:| |pde| (-626 (-304 (-213)))) (|:| |constraints| (-626 (-2 (|:| |start| (-213)) (|:| |finish| (-213)) (|:| |grid| (-755)) (|:| |boundaryType| (-560)) (|:| |dStart| (-671 (-213))) (|:| |dFinish| (-671 (-213)))))) (|:| |f| (-626 (-626 (-304 (-213))))) (|:| |st| (-1135)) (|:| |tol| (-213)))) 12)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2801 (((-842) $) NIL)) (-1345 (((-1027) (-2 (|:| |pde| (-626 (-304 (-213)))) (|:| |constraints| (-626 (-2 (|:| |start| (-213)) (|:| |finish| (-213)) (|:| |grid| (-755)) (|:| |boundaryType| (-560)) (|:| |dStart| (-671 (-213))) (|:| |dFinish| (-671 (-213)))))) (|:| |f| (-626 (-626 (-304 (-213))))) (|:| |st| (-1135)) (|:| |tol| (-213)))) NIL)) (-1653 (((-121) $ $) NIL))) -(((-202) (-882)) (T -202)) -NIL -(-882) -((-2601 (((-121) $ $) NIL)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-1489 (((-1241) $) 36) (((-1241) $ (-909) (-909)) 38)) (-2778 (($ $ (-982)) 19) (((-235 (-1135)) $ (-1153)) 15)) (-4106 (((-1241) $) 34)) (-2801 (((-842) $) 31) (($ (-626 |#1|)) 8)) (-1653 (((-121) $ $) NIL)) (-1725 (($ $ $) 27)) (-1716 (($ $ $) 22))) -(((-203 |#1|) (-13 (-1082) (-10 -8 (-15 -2778 ($ $ (-982))) (-15 -2778 ((-235 (-1135)) $ (-1153))) (-15 -1716 ($ $ $)) (-15 -1725 ($ $ $)) (-15 -2801 ($ (-626 |#1|))) (-15 -4106 ((-1241) $)) (-15 -1489 ((-1241) $)) (-15 -1489 ((-1241) $ (-909) (-909))))) (-13 (-834) (-10 -8 (-15 -2778 ((-1135) $ (-1153))) (-15 -4106 ((-1241) $)) (-15 -1489 ((-1241) $))))) (T -203)) -((-2778 (*1 *1 *1 *2) (-12 (-5 *2 (-982)) (-5 *1 (-203 *3)) (-4 *3 (-13 (-834) (-10 -8 (-15 -2778 ((-1135) $ (-1153))) (-15 -4106 ((-1241) $)) (-15 -1489 ((-1241) $))))))) (-2778 (*1 *2 *1 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-235 (-1135))) (-5 *1 (-203 *4)) (-4 *4 (-13 (-834) (-10 -8 (-15 -2778 ((-1135) $ *3)) (-15 -4106 ((-1241) $)) (-15 -1489 ((-1241) $))))))) (-1716 (*1 *1 *1 *1) (-12 (-5 *1 (-203 *2)) (-4 *2 (-13 (-834) (-10 -8 (-15 -2778 ((-1135) $ (-1153))) (-15 -4106 ((-1241) $)) (-15 -1489 ((-1241) $))))))) (-1725 (*1 *1 *1 *1) (-12 (-5 *1 (-203 *2)) (-4 *2 (-13 (-834) (-10 -8 (-15 -2778 ((-1135) $ (-1153))) (-15 -4106 ((-1241) $)) (-15 -1489 ((-1241) $))))))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-13 (-834) (-10 -8 (-15 -2778 ((-1135) $ (-1153))) (-15 -4106 ((-1241) $)) (-15 -1489 ((-1241) $))))) (-5 *1 (-203 *3)))) (-4106 (*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-203 *3)) (-4 *3 (-13 (-834) (-10 -8 (-15 -2778 ((-1135) $ (-1153))) (-15 -4106 (*2 $)) (-15 -1489 (*2 $))))))) (-1489 (*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-203 *3)) (-4 *3 (-13 (-834) (-10 -8 (-15 -2778 ((-1135) $ (-1153))) (-15 -4106 (*2 $)) (-15 -1489 (*2 $))))))) (-1489 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-909)) (-5 *2 (-1241)) (-5 *1 (-203 *4)) (-4 *4 (-13 (-834) (-10 -8 (-15 -2778 ((-1135) $ (-1153))) (-15 -4106 (*2 $)) (-15 -1489 (*2 $)))))))) -(-13 (-1082) (-10 -8 (-15 -2778 ($ $ (-982))) (-15 -2778 ((-235 (-1135)) $ (-1153))) (-15 -1716 ($ $ $)) (-15 -1725 ($ $ $)) (-15 -2801 ($ (-626 |#1|))) (-15 -4106 ((-1241) $)) (-15 -1489 ((-1241) $)) (-15 -1489 ((-1241) $ (-909) (-909))))) -((-2221 ((|#2| |#4| (-1 |#2| |#2|)) 46))) -(((-204 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2221 (|#2| |#4| (-1 |#2| |#2|)))) (-359) (-1211 |#1|) (-1211 (-403 |#2|)) (-334 |#1| |#2| |#3|)) (T -204)) -((-2221 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-359)) (-4 *6 (-1211 (-403 *2))) (-4 *2 (-1211 *5)) (-5 *1 (-204 *5 *2 *6 *3)) (-4 *3 (-334 *5 *2 *6))))) -(-10 -7 (-15 -2221 (|#2| |#4| (-1 |#2| |#2|)))) -((-3607 ((|#2| |#2| (-755) |#2|) 41)) (-2305 ((|#2| |#2| (-755) |#2|) 37)) (-4011 (((-626 |#2|) (-626 (-2 (|:| |deg| (-755)) (|:| -2487 |#2|)))) 55)) (-1888 (((-626 (-2 (|:| |deg| (-755)) (|:| -2487 |#2|))) |#2|) 51)) (-2097 (((-121) |#2|) 48)) (-2387 (((-414 |#2|) |#2|) 74)) (-1601 (((-414 |#2|) |#2|) 73)) (-2284 ((|#2| |#2| (-755) |#2|) 35)) (-3536 (((-2 (|:| |cont| |#1|) (|:| -3025 (-626 (-2 (|:| |irr| |#2|) (|:| -2678 (-560)))))) |#2| (-121)) 66))) -(((-205 |#1| |#2|) (-10 -7 (-15 -1601 ((-414 |#2|) |#2|)) (-15 -2387 ((-414 |#2|) |#2|)) (-15 -3536 ((-2 (|:| |cont| |#1|) (|:| -3025 (-626 (-2 (|:| |irr| |#2|) (|:| -2678 (-560)))))) |#2| (-121))) (-15 -1888 ((-626 (-2 (|:| |deg| (-755)) (|:| -2487 |#2|))) |#2|)) (-15 -4011 ((-626 |#2|) (-626 (-2 (|:| |deg| (-755)) (|:| -2487 |#2|))))) (-15 -2284 (|#2| |#2| (-755) |#2|)) (-15 -2305 (|#2| |#2| (-755) |#2|)) (-15 -3607 (|#2| |#2| (-755) |#2|)) (-15 -2097 ((-121) |#2|))) (-344) (-1211 |#1|)) (T -205)) -((-2097 (*1 *2 *3) (-12 (-4 *4 (-344)) (-5 *2 (-121)) (-5 *1 (-205 *4 *3)) (-4 *3 (-1211 *4)))) (-3607 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-755)) (-4 *4 (-344)) (-5 *1 (-205 *4 *2)) (-4 *2 (-1211 *4)))) (-2305 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-755)) (-4 *4 (-344)) (-5 *1 (-205 *4 *2)) (-4 *2 (-1211 *4)))) (-2284 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-755)) (-4 *4 (-344)) (-5 *1 (-205 *4 *2)) (-4 *2 (-1211 *4)))) (-4011 (*1 *2 *3) (-12 (-5 *3 (-626 (-2 (|:| |deg| (-755)) (|:| -2487 *5)))) (-4 *5 (-1211 *4)) (-4 *4 (-344)) (-5 *2 (-626 *5)) (-5 *1 (-205 *4 *5)))) (-1888 (*1 *2 *3) (-12 (-4 *4 (-344)) (-5 *2 (-626 (-2 (|:| |deg| (-755)) (|:| -2487 *3)))) (-5 *1 (-205 *4 *3)) (-4 *3 (-1211 *4)))) (-3536 (*1 *2 *3 *4) (-12 (-5 *4 (-121)) (-4 *5 (-344)) (-5 *2 (-2 (|:| |cont| *5) (|:| -3025 (-626 (-2 (|:| |irr| *3) (|:| -2678 (-560))))))) (-5 *1 (-205 *5 *3)) (-4 *3 (-1211 *5)))) (-2387 (*1 *2 *3) (-12 (-4 *4 (-344)) (-5 *2 (-414 *3)) (-5 *1 (-205 *4 *3)) (-4 *3 (-1211 *4)))) (-1601 (*1 *2 *3) (-12 (-4 *4 (-344)) (-5 *2 (-414 *3)) (-5 *1 (-205 *4 *3)) (-4 *3 (-1211 *4))))) -(-10 -7 (-15 -1601 ((-414 |#2|) |#2|)) (-15 -2387 ((-414 |#2|) |#2|)) (-15 -3536 ((-2 (|:| |cont| |#1|) (|:| -3025 (-626 (-2 (|:| |irr| |#2|) (|:| -2678 (-560)))))) |#2| (-121))) (-15 -1888 ((-626 (-2 (|:| |deg| (-755)) (|:| -2487 |#2|))) |#2|)) (-15 -4011 ((-626 |#2|) (-626 (-2 (|:| |deg| (-755)) (|:| -2487 |#2|))))) (-15 -2284 (|#2| |#2| (-755) |#2|)) (-15 -2305 (|#2| |#2| (-755) |#2|)) (-15 -3607 (|#2| |#2| (-755) |#2|)) (-15 -2097 ((-121) |#2|))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-1947 (((-560) $) NIL (|has| (-560) (-296)))) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL)) (-1350 (($ $) NIL)) (-3376 (((-121) $) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-1776 (((-414 (-1149 $)) (-1149 $)) NIL (|has| (-560) (-896)))) (-3065 (($ $) NIL)) (-2953 (((-414 $) $) NIL)) (-1887 (((-3 (-626 (-1149 $)) "failed") (-626 (-1149 $)) (-1149 $)) NIL (|has| (-560) (-896)))) (-4179 (((-121) $ $) NIL)) (-4235 (((-560) $) NIL (|has| (-560) (-807)))) (-4236 (($) NIL T CONST)) (-1473 (((-3 (-560) "failed") $) NIL) (((-3 (-1153) "failed") $) NIL (|has| (-560) (-1029 (-1153)))) (((-3 (-403 (-560)) "failed") $) NIL (|has| (-560) (-1029 (-560)))) (((-3 (-560) "failed") $) NIL (|has| (-560) (-1029 (-560))))) (-3001 (((-560) $) NIL) (((-1153) $) NIL (|has| (-560) (-1029 (-1153)))) (((-403 (-560)) $) NIL (|has| (-560) (-1029 (-560)))) (((-560) $) NIL (|has| (-560) (-1029 (-560))))) (-2563 (($ $ $) NIL)) (-2616 (((-671 (-560)) (-671 $)) NIL (|has| (-560) (-622 (-560)))) (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) NIL (|has| (-560) (-622 (-560)))) (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) NIL) (((-671 (-560)) (-671 $)) NIL)) (-1823 (((-3 $ "failed") $) NIL)) (-1666 (($) NIL (|has| (-560) (-542)))) (-2572 (($ $ $) NIL)) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) NIL)) (-3319 (((-121) $) NIL)) (-1786 (((-121) $) NIL (|has| (-560) (-807)))) (-2399 (((-876 (-560) $) $ (-879 (-560)) (-876 (-560) $)) NIL (|has| (-560) (-873 (-560)))) (((-876 (-375) $) $ (-879 (-375)) (-876 (-375) $)) NIL (|has| (-560) (-873 (-375))))) (-2642 (((-121) $) NIL)) (-1540 (($ $) NIL)) (-2132 (((-560) $) NIL)) (-1424 (((-3 $ "failed") $) NIL (|has| (-560) (-1128)))) (-2187 (((-121) $) NIL (|has| (-560) (-807)))) (-3856 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-4325 (($ $ $) NIL (|has| (-560) (-834)))) (-2501 (($ $ $) NIL (|has| (-560) (-834)))) (-2803 (($ (-1 (-560) (-560)) $) NIL)) (-2582 (($ $ $) NIL) (($ (-626 $)) NIL)) (-1291 (((-1135) $) NIL)) (-1701 (($ $) NIL)) (-1394 (($) NIL (|has| (-560) (-1128)) CONST)) (-4353 (((-1100) $) NIL)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL)) (-4440 (($ $ $) NIL) (($ (-626 $)) NIL)) (-4302 (($ $) NIL (|has| (-560) (-296))) (((-403 (-560)) $) NIL)) (-2150 (((-560) $) NIL (|has| (-560) (-542)))) (-3817 (((-414 (-1149 $)) (-1149 $)) NIL (|has| (-560) (-896)))) (-3032 (((-414 (-1149 $)) (-1149 $)) NIL (|has| (-560) (-896)))) (-1601 (((-414 $) $) NIL)) (-3505 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2336 (((-3 $ "failed") $ $) NIL)) (-3456 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-4450 (($ $ (-626 (-560)) (-626 (-560))) NIL (|has| (-560) (-298 (-560)))) (($ $ (-560) (-560)) NIL (|has| (-560) (-298 (-560)))) (($ $ (-283 (-560))) NIL (|has| (-560) (-298 (-560)))) (($ $ (-626 (-283 (-560)))) NIL (|has| (-560) (-298 (-560)))) (($ $ (-626 (-1153)) (-626 (-560))) NIL (|has| (-560) (-515 (-1153) (-560)))) (($ $ (-1153) (-560)) NIL (|has| (-560) (-515 (-1153) (-560))))) (-4445 (((-755) $) NIL)) (-2778 (($ $ (-560)) NIL (|has| (-560) (-276 (-560) (-560))))) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL)) (-2443 (($ $) NIL (|has| (-560) (-221))) (($ $ (-755)) NIL (|has| (-560) (-221))) (($ $ (-1153)) NIL (|has| (-560) (-887 (-1153)))) (($ $ (-626 (-1153))) NIL (|has| (-560) (-887 (-1153)))) (($ $ (-1153) (-755)) NIL (|has| (-560) (-887 (-1153)))) (($ $ (-626 (-1153)) (-626 (-755))) NIL (|has| (-560) (-887 (-1153)))) (($ $ (-1 (-560) (-560)) (-755)) NIL) (($ $ (-1 (-560) (-560))) NIL)) (-1646 (($ $) NIL)) (-2139 (((-560) $) NIL)) (-3872 (($ (-403 (-560))) 8)) (-4255 (((-879 (-560)) $) NIL (|has| (-560) (-601 (-879 (-560))))) (((-879 (-375)) $) NIL (|has| (-560) (-601 (-879 (-375))))) (((-533) $) NIL (|has| (-560) (-601 (-533)))) (((-375) $) NIL (|has| (-560) (-1013))) (((-213) $) NIL (|has| (-560) (-1013)))) (-3248 (((-3 (-1236 $) "failed") (-671 $)) NIL (-12 (|has| $ (-146)) (|has| (-560) (-896))))) (-2801 (((-842) $) NIL) (($ (-560)) NIL) (($ $) NIL) (($ (-403 (-560))) 7) (($ (-560)) NIL) (($ (-1153)) NIL (|has| (-560) (-1029 (-1153)))) (((-403 (-560)) $) NIL) (((-996 10) $) 9)) (-2272 (((-3 $ "failed") $) NIL (-2318 (-12 (|has| $ (-146)) (|has| (-560) (-896))) (|has| (-560) (-146))))) (-1751 (((-755)) NIL)) (-4316 (((-560) $) NIL (|has| (-560) (-542)))) (-2328 (((-121) $ $) NIL)) (-1822 (($ $) NIL (|has| (-560) (-807)))) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL)) (-3304 (($) NIL T CONST)) (-1459 (($) NIL T CONST)) (-2500 (($ $) NIL (|has| (-560) (-221))) (($ $ (-755)) NIL (|has| (-560) (-221))) (($ $ (-1153)) NIL (|has| (-560) (-887 (-1153)))) (($ $ (-626 (-1153))) NIL (|has| (-560) (-887 (-1153)))) (($ $ (-1153) (-755)) NIL (|has| (-560) (-887 (-1153)))) (($ $ (-626 (-1153)) (-626 (-755))) NIL (|has| (-560) (-887 (-1153)))) (($ $ (-1 (-560) (-560)) (-755)) NIL) (($ $ (-1 (-560) (-560))) NIL)) (-1691 (((-121) $ $) NIL (|has| (-560) (-834)))) (-1675 (((-121) $ $) NIL (|has| (-560) (-834)))) (-1653 (((-121) $ $) NIL)) (-1683 (((-121) $ $) NIL (|has| (-560) (-834)))) (-1667 (((-121) $ $) NIL (|has| (-560) (-834)))) (-1733 (($ $ $) NIL) (($ (-560) (-560)) NIL)) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) NIL)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) NIL) (($ $ (-403 (-560))) NIL) (($ (-403 (-560)) $) NIL) (($ (-560) $) NIL) (($ $ (-560)) NIL))) -(((-206) (-13 (-985 (-560)) (-10 -8 (-15 -2801 ((-403 (-560)) $)) (-15 -2801 ((-996 10) $)) (-15 -4302 ((-403 (-560)) $)) (-15 -3872 ($ (-403 (-560))))))) (T -206)) -((-2801 (*1 *2 *1) (-12 (-5 *2 (-403 (-560))) (-5 *1 (-206)))) (-2801 (*1 *2 *1) (-12 (-5 *2 (-996 10)) (-5 *1 (-206)))) (-4302 (*1 *2 *1) (-12 (-5 *2 (-403 (-560))) (-5 *1 (-206)))) (-3872 (*1 *1 *2) (-12 (-5 *2 (-403 (-560))) (-5 *1 (-206))))) -(-13 (-985 (-560)) (-10 -8 (-15 -2801 ((-403 (-560)) $)) (-15 -2801 ((-996 10) $)) (-15 -4302 ((-403 (-560)) $)) (-15 -3872 ($ (-403 (-560)))))) -((-2376 (((-3 (|:| |f1| (-827 |#2|)) (|:| |f2| (-626 (-827 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1074 (-827 |#2|)) (-1135)) 27) (((-3 (|:| |f1| (-827 |#2|)) (|:| |f2| (-626 (-827 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1074 (-827 |#2|))) 23)) (-2477 (((-3 (|:| |f1| (-827 |#2|)) (|:| |f2| (-626 (-827 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1153) (-827 |#2|) (-827 |#2|) (-121)) 16))) -(((-207 |#1| |#2|) (-10 -7 (-15 -2376 ((-3 (|:| |f1| (-827 |#2|)) (|:| |f2| (-626 (-827 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1074 (-827 |#2|)))) (-15 -2376 ((-3 (|:| |f1| (-827 |#2|)) (|:| |f2| (-626 (-827 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1074 (-827 |#2|)) (-1135))) (-15 -2477 ((-3 (|:| |f1| (-827 |#2|)) (|:| |f2| (-626 (-827 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1153) (-827 |#2|) (-827 |#2|) (-121)))) (-13 (-296) (-834) (-148) (-1029 (-560)) (-622 (-560))) (-13 (-1173) (-951) (-29 |#1|))) (T -207)) -((-2477 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1153)) (-5 *6 (-121)) (-4 *7 (-13 (-296) (-834) (-148) (-1029 (-560)) (-622 (-560)))) (-4 *3 (-13 (-1173) (-951) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-827 *3)) (|:| |f2| (-626 (-827 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-207 *7 *3)) (-5 *5 (-827 *3)))) (-2376 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1074 (-827 *3))) (-5 *5 (-1135)) (-4 *3 (-13 (-1173) (-951) (-29 *6))) (-4 *6 (-13 (-296) (-834) (-148) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-3 (|:| |f1| (-827 *3)) (|:| |f2| (-626 (-827 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-207 *6 *3)))) (-2376 (*1 *2 *3 *4) (-12 (-5 *4 (-1074 (-827 *3))) (-4 *3 (-13 (-1173) (-951) (-29 *5))) (-4 *5 (-13 (-296) (-834) (-148) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-3 (|:| |f1| (-827 *3)) (|:| |f2| (-626 (-827 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-207 *5 *3))))) -(-10 -7 (-15 -2376 ((-3 (|:| |f1| (-827 |#2|)) (|:| |f2| (-626 (-827 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1074 (-827 |#2|)))) (-15 -2376 ((-3 (|:| |f1| (-827 |#2|)) (|:| |f2| (-626 (-827 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1074 (-827 |#2|)) (-1135))) (-15 -2477 ((-3 (|:| |f1| (-827 |#2|)) (|:| |f2| (-626 (-827 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1153) (-827 |#2|) (-827 |#2|) (-121)))) -((-2376 (((-3 (|:| |f1| (-827 (-304 |#1|))) (|:| |f2| (-626 (-827 (-304 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-403 (-945 |#1|)) (-1074 (-827 (-403 (-945 |#1|)))) (-1135)) 44) (((-3 (|:| |f1| (-827 (-304 |#1|))) (|:| |f2| (-626 (-827 (-304 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-403 (-945 |#1|)) (-1074 (-827 (-403 (-945 |#1|))))) 41) (((-3 (|:| |f1| (-827 (-304 |#1|))) (|:| |f2| (-626 (-827 (-304 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-403 (-945 |#1|)) (-1074 (-827 (-304 |#1|))) (-1135)) 45) (((-3 (|:| |f1| (-827 (-304 |#1|))) (|:| |f2| (-626 (-827 (-304 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-403 (-945 |#1|)) (-1074 (-827 (-304 |#1|)))) 17))) -(((-208 |#1|) (-10 -7 (-15 -2376 ((-3 (|:| |f1| (-827 (-304 |#1|))) (|:| |f2| (-626 (-827 (-304 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-403 (-945 |#1|)) (-1074 (-827 (-304 |#1|))))) (-15 -2376 ((-3 (|:| |f1| (-827 (-304 |#1|))) (|:| |f2| (-626 (-827 (-304 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-403 (-945 |#1|)) (-1074 (-827 (-304 |#1|))) (-1135))) (-15 -2376 ((-3 (|:| |f1| (-827 (-304 |#1|))) (|:| |f2| (-626 (-827 (-304 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-403 (-945 |#1|)) (-1074 (-827 (-403 (-945 |#1|)))))) (-15 -2376 ((-3 (|:| |f1| (-827 (-304 |#1|))) (|:| |f2| (-626 (-827 (-304 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-403 (-945 |#1|)) (-1074 (-827 (-403 (-945 |#1|)))) (-1135)))) (-13 (-296) (-834) (-148) (-1029 (-560)) (-622 (-560)))) (T -208)) -((-2376 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1074 (-827 (-403 (-945 *6))))) (-5 *5 (-1135)) (-5 *3 (-403 (-945 *6))) (-4 *6 (-13 (-296) (-834) (-148) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-3 (|:| |f1| (-827 (-304 *6))) (|:| |f2| (-626 (-827 (-304 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-208 *6)))) (-2376 (*1 *2 *3 *4) (-12 (-5 *4 (-1074 (-827 (-403 (-945 *5))))) (-5 *3 (-403 (-945 *5))) (-4 *5 (-13 (-296) (-834) (-148) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-3 (|:| |f1| (-827 (-304 *5))) (|:| |f2| (-626 (-827 (-304 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-208 *5)))) (-2376 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-403 (-945 *6))) (-5 *4 (-1074 (-827 (-304 *6)))) (-5 *5 (-1135)) (-4 *6 (-13 (-296) (-834) (-148) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-3 (|:| |f1| (-827 (-304 *6))) (|:| |f2| (-626 (-827 (-304 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-208 *6)))) (-2376 (*1 *2 *3 *4) (-12 (-5 *3 (-403 (-945 *5))) (-5 *4 (-1074 (-827 (-304 *5)))) (-4 *5 (-13 (-296) (-834) (-148) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-3 (|:| |f1| (-827 (-304 *5))) (|:| |f2| (-626 (-827 (-304 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-208 *5))))) -(-10 -7 (-15 -2376 ((-3 (|:| |f1| (-827 (-304 |#1|))) (|:| |f2| (-626 (-827 (-304 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-403 (-945 |#1|)) (-1074 (-827 (-304 |#1|))))) (-15 -2376 ((-3 (|:| |f1| (-827 (-304 |#1|))) (|:| |f2| (-626 (-827 (-304 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-403 (-945 |#1|)) (-1074 (-827 (-304 |#1|))) (-1135))) (-15 -2376 ((-3 (|:| |f1| (-827 (-304 |#1|))) (|:| |f2| (-626 (-827 (-304 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-403 (-945 |#1|)) (-1074 (-827 (-403 (-945 |#1|)))))) (-15 -2376 ((-3 (|:| |f1| (-827 (-304 |#1|))) (|:| |f2| (-626 (-827 (-304 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-403 (-945 |#1|)) (-1074 (-827 (-403 (-945 |#1|)))) (-1135)))) -((-2342 (((-2 (|:| -1558 (-1149 |#1|)) (|:| |deg| (-909))) (-1149 |#1|)) 20)) (-3780 (((-626 (-304 |#2|)) (-304 |#2|) (-909)) 42))) -(((-209 |#1| |#2|) (-10 -7 (-15 -2342 ((-2 (|:| -1558 (-1149 |#1|)) (|:| |deg| (-909))) (-1149 |#1|))) (-15 -3780 ((-626 (-304 |#2|)) (-304 |#2|) (-909)))) (-1039) (-13 (-550) (-834))) (T -209)) -((-3780 (*1 *2 *3 *4) (-12 (-5 *4 (-909)) (-4 *6 (-13 (-550) (-834))) (-5 *2 (-626 (-304 *6))) (-5 *1 (-209 *5 *6)) (-5 *3 (-304 *6)) (-4 *5 (-1039)))) (-2342 (*1 *2 *3) (-12 (-4 *4 (-1039)) (-5 *2 (-2 (|:| -1558 (-1149 *4)) (|:| |deg| (-909)))) (-5 *1 (-209 *4 *5)) (-5 *3 (-1149 *4)) (-4 *5 (-13 (-550) (-834)))))) -(-10 -7 (-15 -2342 ((-2 (|:| -1558 (-1149 |#1|)) (|:| |deg| (-909))) (-1149 |#1|))) (-15 -3780 ((-626 (-304 |#2|)) (-304 |#2|) (-909)))) -((-2601 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-3293 ((|#1| $) 25)) (-4224 ((|#1| $) 26)) (-3909 (((-121) $ (-755)) NIL)) (-4236 (($) NIL T CONST)) (-3547 (($ $) NIL)) (-4030 (($ $) 32)) (-3881 ((|#1| |#1| $) NIL)) (-2200 ((|#1| $) NIL)) (-1981 (((-626 |#1|) $) NIL (|has| $ (-6 -4505)))) (-2122 (((-121) $ (-755)) NIL)) (-2130 (((-626 |#1|) $) NIL (|has| $ (-6 -4505)))) (-2030 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-3778 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#1| |#1|) $) NIL)) (-3441 (((-121) $ (-755)) NIL)) (-2349 (((-755) $) NIL)) (-1291 (((-1135) $) NIL (|has| |#1| (-1082)))) (-2525 ((|#1| $) NIL)) (-3599 ((|#1| |#1| $) 29)) (-1283 ((|#1| |#1| $) 31)) (-4345 (($ |#1| $) NIL)) (-3165 (((-755) $) 27)) (-4353 (((-1100) $) NIL (|has| |#1| (-1082)))) (-3043 ((|#1| $) NIL)) (-3326 ((|#1| $) 24)) (-2436 ((|#1| $) 8)) (-2146 ((|#1| $) NIL)) (-2865 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#1|))) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-283 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-626 |#1|) (-626 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))))) (-2214 (((-121) $ $) NIL)) (-3205 ((|#1| |#1| $) NIL)) (-4191 (((-121) $) 15)) (-3260 (($) NIL)) (-4433 ((|#1| $) NIL)) (-1366 (($) NIL) (($ (-626 |#1|)) 13)) (-4023 (((-755) $) 28)) (-4035 (((-755) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505))) (((-755) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-2813 (($ $) NIL)) (-2801 (((-842) $) NIL (|has| |#1| (-1082)))) (-4184 ((|#1| $) 9)) (-1354 (($ (-626 |#1|)) NIL)) (-2846 ((|#1| $) NIL)) (-3656 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-1653 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-2271 (((-755) $) NIL (|has| $ (-6 -4505))))) -(((-210 |#1|) (-13 (-242 |#1|) (-10 -8 (-15 -1366 ($ (-626 |#1|))) (-15 -4433 (|#1| $)) (-15 -2146 (|#1| $)) (-15 -3205 (|#1| |#1| $)) (-15 -4345 ($ |#1| $)) (-15 -2525 (|#1| $)) (-15 -3043 (|#1| $)) (-15 -2846 (|#1| $)) (-15 -3547 ($ $)) (-15 -2349 ((-755) $)) (-15 -3441 ((-121) $ (-755))) (-15 -2122 ((-121) $ (-755))) (-15 -3909 ((-121) $ (-755))) (-15 -1354 ($ (-626 |#1|))) (-15 -4191 ((-121) $)) (-15 -3260 ($)) (-15 -4236 ($)) (-15 -2813 ($ $)) (-15 -2214 ((-121) $ $)) (-15 -2803 ($ (-1 |#1| |#1|) $)) (-15 -4023 ((-755) $)) (-15 -1366 ($)) (-15 -3165 ((-755) $)) (-15 -4224 (|#1| $)) (-15 -4184 (|#1| $)) (-15 -2436 (|#1| $)) (-15 -3326 (|#1| $)) (-15 -1283 (|#1| |#1| $)) (-15 -3599 (|#1| |#1| $)) (-15 -2200 (|#1| $)) (-15 -3881 (|#1| |#1| $)) (-15 -4030 ($ $)) (-15 -3293 (|#1| $)) (IF (|has| $ (-6 -4506)) (-15 -3778 ($ (-1 |#1| |#1|) $)) |noBranch|) (IF (|has| |#1| (-1082)) (PROGN (-15 -1291 ((-1135) $)) (-15 -4353 ((-1100) $)) (-15 -2801 ((-842) $)) (-15 -1653 ((-121) $ $)) (-15 -2601 ((-121) $ $))) |noBranch|) (IF (|has| $ (-6 -4505)) (PROGN (-15 -2865 ((-121) (-1 (-121) |#1|) $)) (-15 -3656 ((-121) (-1 (-121) |#1|) $)) (-15 -4035 ((-755) (-1 (-121) |#1|) $)) (-15 -2271 ((-755) $)) (-15 -1981 ((-626 |#1|) $)) (-15 -2130 ((-626 |#1|) $))) |noBranch|) (IF (|has| $ (-6 -4505)) (IF (|has| |#1| (-1082)) (PROGN (-15 -2030 ((-121) |#1| $)) (-15 -4035 ((-755) |#1| $))) |noBranch|) |noBranch|))) (-1082)) (T -210)) -((-2214 (*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-210 *3)) (-4 *3 (-1082)))) (-2813 (*1 *1 *1) (-12 (-5 *1 (-210 *2)) (-4 *2 (-1082)))) (-3260 (*1 *1) (-12 (-5 *1 (-210 *2)) (-4 *2 (-1082)))) (-4191 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-210 *3)) (-4 *3 (-1082)))) (-3441 (*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *2 (-121)) (-5 *1 (-210 *4)) (-4 *4 (-1082)))) (-2122 (*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *2 (-121)) (-5 *1 (-210 *4)) (-4 *4 (-1082)))) (-3909 (*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *2 (-121)) (-5 *1 (-210 *4)) (-4 *4 (-1082)))) (-4236 (*1 *1) (-12 (-5 *1 (-210 *2)) (-4 *2 (-1082)))) (-2271 (*1 *2 *1) (-12 (|has| $ (-6 -4505)) (-5 *2 (-755)) (-5 *1 (-210 *3)) (-4 *3 (-1082)))) (-2803 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1082)) (-5 *1 (-210 *3)))) (-3778 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| $ (-6 -4506)) (-4 *3 (-1082)) (-5 *1 (-210 *3)))) (-3656 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| $ (-6 -4505)) (-4 *4 (-1082)) (-5 *2 (-121)) (-5 *1 (-210 *4)))) (-2865 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| $ (-6 -4505)) (-4 *4 (-1082)) (-5 *2 (-121)) (-5 *1 (-210 *4)))) (-4035 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| $ (-6 -4505)) (-4 *4 (-1082)) (-5 *2 (-755)) (-5 *1 (-210 *4)))) (-1981 (*1 *2 *1) (-12 (|has| $ (-6 -4505)) (-5 *2 (-626 *3)) (-5 *1 (-210 *3)) (-4 *3 (-1082)))) (-2130 (*1 *2 *1) (-12 (|has| $ (-6 -4505)) (-5 *2 (-626 *3)) (-5 *1 (-210 *3)) (-4 *3 (-1082)))) (-4035 (*1 *2 *3 *1) (-12 (|has| $ (-6 -4505)) (-5 *2 (-755)) (-5 *1 (-210 *3)) (-4 *3 (-1082)) (-4 *3 (-1082)))) (-2030 (*1 *2 *3 *1) (-12 (|has| $ (-6 -4505)) (-5 *2 (-121)) (-5 *1 (-210 *3)) (-4 *3 (-1082)) (-4 *3 (-1082)))) (-1291 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-210 *3)) (-4 *3 (-1082)) (-4 *3 (-1082)))) (-4353 (*1 *2 *1) (-12 (-5 *2 (-1100)) (-5 *1 (-210 *3)) (-4 *3 (-1082)) (-4 *3 (-1082)))) (-2801 (*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-210 *3)) (-4 *3 (-1082)) (-4 *3 (-1082)))) (-1653 (*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-210 *3)) (-4 *3 (-1082)) (-4 *3 (-1082)))) (-2601 (*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-210 *3)) (-4 *3 (-1082)) (-4 *3 (-1082)))) (-1354 (*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-1082)) (-5 *1 (-210 *3)))) (-2146 (*1 *2 *1) (-12 (-5 *1 (-210 *2)) (-4 *2 (-1082)))) (-4345 (*1 *1 *2 *1) (-12 (-5 *1 (-210 *2)) (-4 *2 (-1082)))) (-2525 (*1 *2 *1) (-12 (-5 *1 (-210 *2)) (-4 *2 (-1082)))) (-3881 (*1 *2 *2 *1) (-12 (-5 *1 (-210 *2)) (-4 *2 (-1082)))) (-2200 (*1 *2 *1) (-12 (-5 *1 (-210 *2)) (-4 *2 (-1082)))) (-4224 (*1 *2 *1) (-12 (-5 *1 (-210 *2)) (-4 *2 (-1082)))) (-4023 (*1 *2 *1) (-12 (-5 *2 (-755)) (-5 *1 (-210 *3)) (-4 *3 (-1082)))) (-2846 (*1 *2 *1) (-12 (-5 *1 (-210 *2)) (-4 *2 (-1082)))) (-3043 (*1 *2 *1) (-12 (-5 *1 (-210 *2)) (-4 *2 (-1082)))) (-2349 (*1 *2 *1) (-12 (-5 *2 (-755)) (-5 *1 (-210 *3)) (-4 *3 (-1082)))) (-3547 (*1 *1 *1) (-12 (-5 *1 (-210 *2)) (-4 *2 (-1082)))) (-4433 (*1 *2 *1) (-12 (-5 *1 (-210 *2)) (-4 *2 (-1082)))) (-3205 (*1 *2 *2 *1) (-12 (-5 *1 (-210 *2)) (-4 *2 (-1082)))) (-1366 (*1 *1) (-12 (-5 *1 (-210 *2)) (-4 *2 (-1082)))) (-1366 (*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-1082)) (-5 *1 (-210 *3)))) (-3165 (*1 *2 *1) (-12 (-5 *2 (-755)) (-5 *1 (-210 *3)) (-4 *3 (-1082)))) (-3293 (*1 *2 *1) (-12 (-5 *1 (-210 *2)) (-4 *2 (-1082)))) (-4184 (*1 *2 *1) (-12 (-5 *1 (-210 *2)) (-4 *2 (-1082)))) (-3599 (*1 *2 *2 *1) (-12 (-5 *1 (-210 *2)) (-4 *2 (-1082)))) (-1283 (*1 *2 *2 *1) (-12 (-5 *1 (-210 *2)) (-4 *2 (-1082)))) (-3326 (*1 *2 *1) (-12 (-5 *1 (-210 *2)) (-4 *2 (-1082)))) (-2436 (*1 *2 *1) (-12 (-5 *1 (-210 *2)) (-4 *2 (-1082)))) (-4030 (*1 *1 *1) (-12 (-5 *1 (-210 *2)) (-4 *2 (-1082))))) -(-13 (-242 |#1|) (-10 -8 (-15 -1366 ($ (-626 |#1|))) (-15 -4433 (|#1| $)) (-15 -2146 (|#1| $)) (-15 -3205 (|#1| |#1| $)) (-15 -4345 ($ |#1| $)) (-15 -2525 (|#1| $)) (-15 -3043 (|#1| $)) (-15 -2846 (|#1| $)) (-15 -3547 ($ $)) (-15 -2349 ((-755) $)) (-15 -3441 ((-121) $ (-755))) (-15 -2122 ((-121) $ (-755))) (-15 -3909 ((-121) $ (-755))) (-15 -1354 ($ (-626 |#1|))) (-15 -4191 ((-121) $)) (-15 -3260 ($)) (-15 -4236 ($)) (-15 -2813 ($ $)) (-15 -2214 ((-121) $ $)) (-15 -2803 ($ (-1 |#1| |#1|) $)) (-15 -4023 ((-755) $)) (-15 -1366 ($)) (-15 -3165 ((-755) $)) (-15 -4224 (|#1| $)) (-15 -4184 (|#1| $)) (-15 -2436 (|#1| $)) (-15 -3326 (|#1| $)) (-15 -1283 (|#1| |#1| $)) (-15 -3599 (|#1| |#1| $)) (-15 -2200 (|#1| $)) (-15 -3881 (|#1| |#1| $)) (-15 -4030 ($ $)) (-15 -3293 (|#1| $)) (IF (|has| $ (-6 -4506)) (-15 -3778 ($ (-1 |#1| |#1|) $)) |noBranch|) (IF (|has| |#1| (-1082)) (PROGN (-15 -1291 ((-1135) $)) (-15 -4353 ((-1100) $)) (-15 -2801 ((-842) $)) (-15 -1653 ((-121) $ $)) (-15 -2601 ((-121) $ $))) |noBranch|) (IF (|has| $ (-6 -4505)) (PROGN (-15 -2865 ((-121) (-1 (-121) |#1|) $)) (-15 -3656 ((-121) (-1 (-121) |#1|) $)) (-15 -4035 ((-755) (-1 (-121) |#1|) $)) (-15 -2271 ((-755) $)) (-15 -1981 ((-626 |#1|) $)) (-15 -2130 ((-626 |#1|) $))) |noBranch|) (IF (|has| $ (-6 -4505)) (IF (|has| |#1| (-1082)) (PROGN (-15 -2030 ((-121) |#1| $)) (-15 -4035 ((-755) |#1| $))) |noBranch|) |noBranch|))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-4338 (($ (-304 |#1|)) 23)) (-2314 (((-3 $ "failed") $ $) NIL)) (-4236 (($) NIL T CONST)) (-1868 (((-121) $) NIL)) (-1473 (((-3 (-304 |#1|) "failed") $) NIL)) (-3001 (((-304 |#1|) $) NIL)) (-1750 (($ $) 31)) (-1823 (((-3 $ "failed") $) NIL)) (-2642 (((-121) $) NIL)) (-2803 (($ (-1 (-304 |#1|) (-304 |#1|)) $) NIL)) (-1735 (((-304 |#1|) $) NIL)) (-1745 (($ $) 30)) (-1291 (((-1135) $) NIL)) (-4472 (((-121) $) NIL)) (-4353 (((-1100) $) NIL)) (-4250 (($ (-755)) NIL)) (-3529 (($ $) 32)) (-3662 (((-560) $) NIL)) (-2801 (((-842) $) 57) (($ (-560)) NIL) (($ (-304 |#1|)) NIL)) (-2636 (((-304 |#1|) $ $) NIL)) (-1751 (((-755)) NIL)) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (-3304 (($) 25 T CONST)) (-1459 (($) 50 T CONST)) (-1653 (((-121) $ $) 28)) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) 19)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) 24) (($ (-304 |#1|) $) 18))) -(((-211 |#1| |#2|) (-13 (-604 (-304 |#1|)) (-1029 (-304 |#1|)) (-10 -8 (-15 -1735 ((-304 |#1|) $)) (-15 -1745 ($ $)) (-15 -1750 ($ $)) (-15 -2636 ((-304 |#1|) $ $)) (-15 -4250 ($ (-755))) (-15 -4472 ((-121) $)) (-15 -1868 ((-121) $)) (-15 -3662 ((-560) $)) (-15 -2803 ($ (-1 (-304 |#1|) (-304 |#1|)) $)) (-15 -4338 ($ (-304 |#1|))) (-15 -3529 ($ $)))) (-13 (-1039) (-834)) (-626 (-1153))) (T -211)) -((-1735 (*1 *2 *1) (-12 (-5 *2 (-304 *3)) (-5 *1 (-211 *3 *4)) (-4 *3 (-13 (-1039) (-834))) (-14 *4 (-626 (-1153))))) (-1745 (*1 *1 *1) (-12 (-5 *1 (-211 *2 *3)) (-4 *2 (-13 (-1039) (-834))) (-14 *3 (-626 (-1153))))) (-1750 (*1 *1 *1) (-12 (-5 *1 (-211 *2 *3)) (-4 *2 (-13 (-1039) (-834))) (-14 *3 (-626 (-1153))))) (-2636 (*1 *2 *1 *1) (-12 (-5 *2 (-304 *3)) (-5 *1 (-211 *3 *4)) (-4 *3 (-13 (-1039) (-834))) (-14 *4 (-626 (-1153))))) (-4250 (*1 *1 *2) (-12 (-5 *2 (-755)) (-5 *1 (-211 *3 *4)) (-4 *3 (-13 (-1039) (-834))) (-14 *4 (-626 (-1153))))) (-4472 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-211 *3 *4)) (-4 *3 (-13 (-1039) (-834))) (-14 *4 (-626 (-1153))))) (-1868 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-211 *3 *4)) (-4 *3 (-13 (-1039) (-834))) (-14 *4 (-626 (-1153))))) (-3662 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-211 *3 *4)) (-4 *3 (-13 (-1039) (-834))) (-14 *4 (-626 (-1153))))) (-2803 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-304 *3) (-304 *3))) (-4 *3 (-13 (-1039) (-834))) (-5 *1 (-211 *3 *4)) (-14 *4 (-626 (-1153))))) (-4338 (*1 *1 *2) (-12 (-5 *2 (-304 *3)) (-4 *3 (-13 (-1039) (-834))) (-5 *1 (-211 *3 *4)) (-14 *4 (-626 (-1153))))) (-3529 (*1 *1 *1) (-12 (-5 *1 (-211 *2 *3)) (-4 *2 (-13 (-1039) (-834))) (-14 *3 (-626 (-1153)))))) -(-13 (-604 (-304 |#1|)) (-1029 (-304 |#1|)) (-10 -8 (-15 -1735 ((-304 |#1|) $)) (-15 -1745 ($ $)) (-15 -1750 ($ $)) (-15 -2636 ((-304 |#1|) $ $)) (-15 -4250 ($ (-755))) (-15 -4472 ((-121) $)) (-15 -1868 ((-121) $)) (-15 -3662 ((-560) $)) (-15 -2803 ($ (-1 (-304 |#1|) (-304 |#1|)) $)) (-15 -4338 ($ (-304 |#1|))) (-15 -3529 ($ $)))) -((-3950 (((-121) (-1135)) 22)) (-2295 (((-3 (-827 |#2|) "failed") (-599 |#2|) |#2| (-827 |#2|) (-827 |#2|) (-121)) 32)) (-3381 (((-3 (-121) "failed") (-1149 |#2|) (-827 |#2|) (-827 |#2|) (-121)) 73) (((-3 (-121) "failed") (-945 |#1|) (-1153) (-827 |#2|) (-827 |#2|) (-121)) 74))) -(((-212 |#1| |#2|) (-10 -7 (-15 -3950 ((-121) (-1135))) (-15 -2295 ((-3 (-827 |#2|) "failed") (-599 |#2|) |#2| (-827 |#2|) (-827 |#2|) (-121))) (-15 -3381 ((-3 (-121) "failed") (-945 |#1|) (-1153) (-827 |#2|) (-827 |#2|) (-121))) (-15 -3381 ((-3 (-121) "failed") (-1149 |#2|) (-827 |#2|) (-827 |#2|) (-121)))) (-13 (-447) (-834) (-1029 (-560)) (-622 (-560))) (-13 (-1173) (-29 |#1|))) (T -212)) -((-3381 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-121)) (-5 *3 (-1149 *6)) (-5 *4 (-827 *6)) (-4 *6 (-13 (-1173) (-29 *5))) (-4 *5 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *1 (-212 *5 *6)))) (-3381 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-121)) (-5 *3 (-945 *6)) (-5 *4 (-1153)) (-5 *5 (-827 *7)) (-4 *6 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-4 *7 (-13 (-1173) (-29 *6))) (-5 *1 (-212 *6 *7)))) (-2295 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-827 *4)) (-5 *3 (-599 *4)) (-5 *5 (-121)) (-4 *4 (-13 (-1173) (-29 *6))) (-4 *6 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *1 (-212 *6 *4)))) (-3950 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-121)) (-5 *1 (-212 *4 *5)) (-4 *5 (-13 (-1173) (-29 *4)))))) -(-10 -7 (-15 -3950 ((-121) (-1135))) (-15 -2295 ((-3 (-827 |#2|) "failed") (-599 |#2|) |#2| (-827 |#2|) (-827 |#2|) (-121))) (-15 -3381 ((-3 (-121) "failed") (-945 |#1|) (-1153) (-827 |#2|) (-827 |#2|) (-121))) (-15 -3381 ((-3 (-121) "failed") (-1149 |#2|) (-827 |#2|) (-827 |#2|) (-121)))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) 95)) (-1947 (((-560) $) 124)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL)) (-1350 (($ $) NIL)) (-3376 (((-121) $) NIL)) (-4330 (($ $) NIL)) (-2570 (($ $) 83)) (-2514 (($ $) 71)) (-2314 (((-3 $ "failed") $ $) NIL)) (-3065 (($ $) NIL)) (-2953 (((-414 $) $) NIL)) (-2479 (($ $) 62)) (-4179 (((-121) $ $) NIL)) (-2561 (($ $) 81)) (-2790 (($ $) 69)) (-4235 (((-560) $) 137)) (-2579 (($ $) 86)) (-2523 (($ $) 73)) (-4236 (($) NIL T CONST)) (-4422 (($ $) NIL)) (-1473 (((-3 (-560) "failed") $) 120) (((-3 (-403 (-560)) "failed") $) 135)) (-3001 (((-560) $) 136) (((-403 (-560)) $) 133)) (-2563 (($ $ $) NIL)) (-1823 (((-3 $ "failed") $) 98)) (-1748 (((-403 (-560)) $ (-755)) 131) (((-403 (-560)) $ (-755) (-755)) 130)) (-2572 (($ $ $) NIL)) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) NIL)) (-3319 (((-121) $) NIL)) (-2110 (((-909)) 34) (((-909) (-909)) NIL (|has| $ (-6 -4496)))) (-1786 (((-121) $) NIL)) (-1941 (($ $ $) 123)) (-2474 (($) 44)) (-2399 (((-876 (-375) $) $ (-879 (-375)) (-876 (-375) $)) NIL)) (-3504 (((-560) $) 40)) (-2642 (((-121) $) NIL)) (-2586 (($ $ (-560)) NIL)) (-3339 (($ $) NIL)) (-2187 (((-121) $) 94)) (-3856 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-4325 (($ $ $) 59) (($) 39 (-12 (-3186 (|has| $ (-6 -4488))) (-3186 (|has| $ (-6 -4496)))))) (-2501 (($ $ $) 58) (($) 38 (-12 (-3186 (|has| $ (-6 -4488))) (-3186 (|has| $ (-6 -4496)))))) (-4292 (((-560) $) 32)) (-3002 (((-403 (-560)) $) 27)) (-3703 (($ $) 35)) (-2711 (($ $) 63)) (-4399 (($ $) 68)) (-2582 (($ $ $) NIL) (($ (-626 $)) NIL)) (-1291 (((-1135) $) NIL)) (-1701 (($ $) NIL)) (-3008 (((-626 (-560)) $) 29)) (-4088 (((-909) (-560)) NIL (|has| $ (-6 -4496)))) (-4353 (((-1100) $) NIL) (((-560) $) 96)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL)) (-4440 (($ $ $) NIL) (($ (-626 $)) NIL)) (-4302 (($ $) NIL)) (-2150 (($ $) NIL)) (-3737 (($ (-560) (-560)) NIL) (($ (-560) (-560) (-909)) 125)) (-1601 (((-414 $) $) NIL)) (-3505 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2336 (((-3 $ "failed") $ $) NIL)) (-3456 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-4034 (((-560) $) 33)) (-2339 (($) 43)) (-2469 (($ $) 67)) (-4445 (((-755) $) NIL)) (-3014 (((-1135) (-1135)) 8)) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL)) (-1727 (((-909)) NIL) (((-909) (-909)) NIL (|has| $ (-6 -4496)))) (-4098 (($ $) 116)) (-2443 (($ $ (-755)) NIL) (($ $) 99)) (-2834 (((-909) (-560)) NIL (|has| $ (-6 -4496)))) (-2585 (($ $) 84)) (-2528 (($ $) 74)) (-2575 (($ $) 85)) (-2519 (($ $) 72)) (-2566 (($ $) 82)) (-2795 (($ $) 70)) (-4255 (((-375) $) 129) (((-213) $) 126) (((-879 (-375)) $) NIL) (((-533) $) 51)) (-2801 (((-842) $) 48) (($ (-560)) 66) (($ $) NIL) (($ (-403 (-560))) NIL) (($ (-560)) 66) (($ (-403 (-560))) NIL)) (-1751 (((-755)) NIL)) (-4316 (($ $) NIL)) (-2096 (((-909)) 37) (((-909) (-909)) NIL (|has| $ (-6 -4496)))) (-3777 (($ $ $) 112)) (-2993 (($ $ $) 110)) (-1870 (($ $ $) 108)) (-1502 (($ $ $) 106)) (-2871 (((-909)) 31)) (-2598 (($ $) 89)) (-2541 (($ $) 77) (($ $ $) 132)) (-2328 (((-121) $ $) NIL)) (-2590 (($ $) 87)) (-2532 (($ $) 75)) (-2608 (($ $) 92)) (-2549 (($ $) 80)) (-1616 (($ $) 104)) (-3974 (($ $) 102)) (-3689 (($ $) 90)) (-2554 (($ $) 78)) (-2604 (($ $) 91)) (-2545 (($ $) 79)) (-2594 (($ $) 88)) (-2536 (($ $) 76)) (-1822 (($ $) 138)) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL)) (-3304 (($) 41 T CONST)) (-1459 (($) 42 T CONST)) (-3039 (((-1135) $) 19) (((-1135) $ (-121)) 21) (((-1241) (-809) $) 22) (((-1241) (-809) $ (-121)) 23)) (-3227 (($ $) 118) (($ $ $) NIL)) (-2500 (($ $ (-755)) NIL) (($ $) NIL)) (-2002 (($ $ $) 114)) (-1691 (((-121) $ $) NIL)) (-1675 (((-121) $ $) NIL)) (-1653 (((-121) $ $) 60)) (-1683 (((-121) $ $) NIL)) (-1667 (((-121) $ $) 52)) (-1733 (($ $ $) 93) (($ $ (-560)) 61)) (-1725 (($ $) 53) (($ $ $) 55)) (-1716 (($ $ $) 54)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) 64) (($ $ (-403 (-560))) 148) (($ $ $) 65)) (* (($ (-909) $) 36) (($ (-755) $) NIL) (($ (-560) $) 57) (($ $ $) 56) (($ $ (-403 (-560))) NIL) (($ (-403 (-560)) $) NIL))) -(((-213) (-13 (-400) (-221) (-815) (-1173) (-1116) (-601 (-533)) (-10 -8 (-15 -1733 ($ $ (-560))) (-15 ** ($ $ $)) (-15 -2339 ($)) (-15 -4353 ((-560) $)) (-15 -3703 ($ $)) (-15 -2711 ($ $)) (-15 -2541 ($ $ $)) (-15 -3227 ($ $)) (-15 -2002 ($ $ $)) (-15 -3014 ((-1135) (-1135))) (-15 -1748 ((-403 (-560)) $ (-755))) (-15 -1748 ((-403 (-560)) $ (-755) (-755))) (-15 -3002 ((-403 (-560)) $)) (-15 -3008 ((-626 (-560)) $))))) (T -213)) -((** (*1 *1 *1 *1) (-5 *1 (-213))) (-3227 (*1 *1 *1) (-5 *1 (-213))) (-2002 (*1 *1 *1 *1) (-5 *1 (-213))) (-1733 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-213)))) (-2339 (*1 *1) (-5 *1 (-213))) (-4353 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-213)))) (-3703 (*1 *1 *1) (-5 *1 (-213))) (-2711 (*1 *1 *1) (-5 *1 (-213))) (-2541 (*1 *1 *1 *1) (-5 *1 (-213))) (-3014 (*1 *2 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-213)))) (-1748 (*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *2 (-403 (-560))) (-5 *1 (-213)))) (-1748 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-755)) (-5 *2 (-403 (-560))) (-5 *1 (-213)))) (-3002 (*1 *2 *1) (-12 (-5 *2 (-403 (-560))) (-5 *1 (-213)))) (-3008 (*1 *2 *1) (-12 (-5 *2 (-626 (-560))) (-5 *1 (-213))))) -(-13 (-400) (-221) (-815) (-1173) (-1116) (-601 (-533)) (-10 -8 (-15 -1733 ($ $ (-560))) (-15 ** ($ $ $)) (-15 -2339 ($)) (-15 -4353 ((-560) $)) (-15 -3703 ($ $)) (-15 -2711 ($ $)) (-15 -2541 ($ $ $)) (-15 -3227 ($ $)) (-15 -2002 ($ $ $)) (-15 -3014 ((-1135) (-1135))) (-15 -1748 ((-403 (-560)) $ (-755))) (-15 -1748 ((-403 (-560)) $ (-755) (-755))) (-15 -3002 ((-403 (-560)) $)) (-15 -3008 ((-626 (-560)) $)))) -((-1941 (((-167 (-213)) (-755) (-167 (-213))) 40) (((-213) (-755) (-213)) 41)) (-4375 (((-167 (-213)) (-167 (-213))) 42) (((-213) (-213)) 43)) (-1913 (((-167 (-213)) (-167 (-213)) (-167 (-213))) 48) (((-213) (-213) (-213)) 51)) (-4098 (((-167 (-213)) (-167 (-213))) 53) (((-213) (-213)) 52)) (-3777 (((-167 (-213)) (-167 (-213)) (-167 (-213))) 70) (((-213) (-213) (-213)) 62)) (-2993 (((-167 (-213)) (-167 (-213)) (-167 (-213))) 73) (((-213) (-213) (-213)) 71)) (-1870 (((-167 (-213)) (-167 (-213)) (-167 (-213))) 44) (((-213) (-213) (-213)) 45)) (-1502 (((-167 (-213)) (-167 (-213)) (-167 (-213))) 46) (((-213) (-213) (-213)) 47)) (-1616 (((-167 (-213)) (-167 (-213))) 84) (((-213) (-213)) 83)) (-3974 (((-213) (-213)) 78) (((-167 (-213)) (-167 (-213))) 82)) (-3227 (((-167 (-213)) (-167 (-213))) 7) (((-213) (-213)) 9)) (-2951 (((-820 (-213)) (-560) (-213)) 23)) (-2958 (((-820 (-213)) (-820 (-213))) 36)) (-2964 (((-820 (-213)) (-820 (-213))) 35)) (-2970 (((-820 (-213)) (-820 (-213))) 34)) (-2976 (((-820 (-213)) (-820 (-213))) 33)) (-2983 (((-820 (-213)) (-820 (-213))) 32)) (-2989 (((-820 (-213)) (-820 (-213))) 31)) (-2662 (((-820 (-213)) (-820 (-213))) 37)) (-3306 (((-820 (-213)) (-213)) 22)) (-2002 (((-167 (-213)) (-167 (-213)) (-167 (-213))) 58) (((-213) (-213) (-213)) 54))) -(((-214) (-10 -7 (-15 -3227 ((-213) (-213))) (-15 -3227 ((-167 (-213)) (-167 (-213)))) (-15 -3306 ((-820 (-213)) (-213))) (-15 -2951 ((-820 (-213)) (-560) (-213))) (-15 -2662 ((-820 (-213)) (-820 (-213)))) (-15 -2989 ((-820 (-213)) (-820 (-213)))) (-15 -2983 ((-820 (-213)) (-820 (-213)))) (-15 -2976 ((-820 (-213)) (-820 (-213)))) (-15 -2970 ((-820 (-213)) (-820 (-213)))) (-15 -2964 ((-820 (-213)) (-820 (-213)))) (-15 -2958 ((-820 (-213)) (-820 (-213)))) (-15 -2002 ((-213) (-213) (-213))) (-15 -2002 ((-167 (-213)) (-167 (-213)) (-167 (-213)))) (-15 -4375 ((-213) (-213))) (-15 -4375 ((-167 (-213)) (-167 (-213)))) (-15 -4098 ((-213) (-213))) (-15 -4098 ((-167 (-213)) (-167 (-213)))) (-15 -1941 ((-213) (-755) (-213))) (-15 -1941 ((-167 (-213)) (-755) (-167 (-213)))) (-15 -1870 ((-213) (-213) (-213))) (-15 -1870 ((-167 (-213)) (-167 (-213)) (-167 (-213)))) (-15 -3777 ((-213) (-213) (-213))) (-15 -3777 ((-167 (-213)) (-167 (-213)) (-167 (-213)))) (-15 -1502 ((-213) (-213) (-213))) (-15 -1502 ((-167 (-213)) (-167 (-213)) (-167 (-213)))) (-15 -2993 ((-213) (-213) (-213))) (-15 -2993 ((-167 (-213)) (-167 (-213)) (-167 (-213)))) (-15 -3974 ((-167 (-213)) (-167 (-213)))) (-15 -3974 ((-213) (-213))) (-15 -1616 ((-213) (-213))) (-15 -1616 ((-167 (-213)) (-167 (-213)))) (-15 -1913 ((-213) (-213) (-213))) (-15 -1913 ((-167 (-213)) (-167 (-213)) (-167 (-213)))))) (T -214)) -((-1913 (*1 *2 *2 *2) (-12 (-5 *2 (-167 (-213))) (-5 *1 (-214)))) (-1913 (*1 *2 *2 *2) (-12 (-5 *2 (-213)) (-5 *1 (-214)))) (-1616 (*1 *2 *2) (-12 (-5 *2 (-167 (-213))) (-5 *1 (-214)))) (-1616 (*1 *2 *2) (-12 (-5 *2 (-213)) (-5 *1 (-214)))) (-3974 (*1 *2 *2) (-12 (-5 *2 (-213)) (-5 *1 (-214)))) (-3974 (*1 *2 *2) (-12 (-5 *2 (-167 (-213))) (-5 *1 (-214)))) (-2993 (*1 *2 *2 *2) (-12 (-5 *2 (-167 (-213))) (-5 *1 (-214)))) (-2993 (*1 *2 *2 *2) (-12 (-5 *2 (-213)) (-5 *1 (-214)))) (-1502 (*1 *2 *2 *2) (-12 (-5 *2 (-167 (-213))) (-5 *1 (-214)))) (-1502 (*1 *2 *2 *2) (-12 (-5 *2 (-213)) (-5 *1 (-214)))) (-3777 (*1 *2 *2 *2) (-12 (-5 *2 (-167 (-213))) (-5 *1 (-214)))) (-3777 (*1 *2 *2 *2) (-12 (-5 *2 (-213)) (-5 *1 (-214)))) (-1870 (*1 *2 *2 *2) (-12 (-5 *2 (-167 (-213))) (-5 *1 (-214)))) (-1870 (*1 *2 *2 *2) (-12 (-5 *2 (-213)) (-5 *1 (-214)))) (-1941 (*1 *2 *3 *2) (-12 (-5 *2 (-167 (-213))) (-5 *3 (-755)) (-5 *1 (-214)))) (-1941 (*1 *2 *3 *2) (-12 (-5 *2 (-213)) (-5 *3 (-755)) (-5 *1 (-214)))) (-4098 (*1 *2 *2) (-12 (-5 *2 (-167 (-213))) (-5 *1 (-214)))) (-4098 (*1 *2 *2) (-12 (-5 *2 (-213)) (-5 *1 (-214)))) (-4375 (*1 *2 *2) (-12 (-5 *2 (-167 (-213))) (-5 *1 (-214)))) (-4375 (*1 *2 *2) (-12 (-5 *2 (-213)) (-5 *1 (-214)))) (-2002 (*1 *2 *2 *2) (-12 (-5 *2 (-167 (-213))) (-5 *1 (-214)))) (-2002 (*1 *2 *2 *2) (-12 (-5 *2 (-213)) (-5 *1 (-214)))) (-2958 (*1 *2 *2) (-12 (-5 *2 (-820 (-213))) (-5 *1 (-214)))) (-2964 (*1 *2 *2) (-12 (-5 *2 (-820 (-213))) (-5 *1 (-214)))) (-2970 (*1 *2 *2) (-12 (-5 *2 (-820 (-213))) (-5 *1 (-214)))) (-2976 (*1 *2 *2) (-12 (-5 *2 (-820 (-213))) (-5 *1 (-214)))) (-2983 (*1 *2 *2) (-12 (-5 *2 (-820 (-213))) (-5 *1 (-214)))) (-2989 (*1 *2 *2) (-12 (-5 *2 (-820 (-213))) (-5 *1 (-214)))) (-2662 (*1 *2 *2) (-12 (-5 *2 (-820 (-213))) (-5 *1 (-214)))) (-2951 (*1 *2 *3 *4) (-12 (-5 *3 (-560)) (-5 *2 (-820 (-213))) (-5 *1 (-214)) (-5 *4 (-213)))) (-3306 (*1 *2 *3) (-12 (-5 *2 (-820 (-213))) (-5 *1 (-214)) (-5 *3 (-213)))) (-3227 (*1 *2 *2) (-12 (-5 *2 (-167 (-213))) (-5 *1 (-214)))) (-3227 (*1 *2 *2) (-12 (-5 *2 (-213)) (-5 *1 (-214))))) -(-10 -7 (-15 -3227 ((-213) (-213))) (-15 -3227 ((-167 (-213)) (-167 (-213)))) (-15 -3306 ((-820 (-213)) (-213))) (-15 -2951 ((-820 (-213)) (-560) (-213))) (-15 -2662 ((-820 (-213)) (-820 (-213)))) (-15 -2989 ((-820 (-213)) (-820 (-213)))) (-15 -2983 ((-820 (-213)) (-820 (-213)))) (-15 -2976 ((-820 (-213)) (-820 (-213)))) (-15 -2970 ((-820 (-213)) (-820 (-213)))) (-15 -2964 ((-820 (-213)) (-820 (-213)))) (-15 -2958 ((-820 (-213)) (-820 (-213)))) (-15 -2002 ((-213) (-213) (-213))) (-15 -2002 ((-167 (-213)) (-167 (-213)) (-167 (-213)))) (-15 -4375 ((-213) (-213))) (-15 -4375 ((-167 (-213)) (-167 (-213)))) (-15 -4098 ((-213) (-213))) (-15 -4098 ((-167 (-213)) (-167 (-213)))) (-15 -1941 ((-213) (-755) (-213))) (-15 -1941 ((-167 (-213)) (-755) (-167 (-213)))) (-15 -1870 ((-213) (-213) (-213))) (-15 -1870 ((-167 (-213)) (-167 (-213)) (-167 (-213)))) (-15 -3777 ((-213) (-213) (-213))) (-15 -3777 ((-167 (-213)) (-167 (-213)) (-167 (-213)))) (-15 -1502 ((-213) (-213) (-213))) (-15 -1502 ((-167 (-213)) (-167 (-213)) (-167 (-213)))) (-15 -2993 ((-213) (-213) (-213))) (-15 -2993 ((-167 (-213)) (-167 (-213)) (-167 (-213)))) (-15 -3974 ((-167 (-213)) (-167 (-213)))) (-15 -3974 ((-213) (-213))) (-15 -1616 ((-213) (-213))) (-15 -1616 ((-167 (-213)) (-167 (-213)))) (-15 -1913 ((-213) (-213) (-213))) (-15 -1913 ((-167 (-213)) (-167 (-213)) (-167 (-213))))) -((-2601 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-3382 (($ (-755) (-755)) NIL)) (-2154 (($ $ $) NIL)) (-1638 (($ (-1236 |#1|)) NIL) (($ $) NIL)) (-1742 (($ |#1| |#1| |#1|) 32)) (-3839 (((-121) $) NIL)) (-3649 (($ $ (-560) (-560)) NIL)) (-1610 (($ $ (-560) (-560)) NIL)) (-3675 (($ $ (-560) (-560) (-560) (-560)) NIL)) (-2296 (($ $) NIL)) (-1915 (((-121) $) NIL)) (-3909 (((-121) $ (-755)) NIL)) (-2649 (($ $ (-560) (-560) $) NIL)) (-2764 ((|#1| $ (-560) (-560) |#1|) NIL) (($ $ (-626 (-560)) (-626 (-560)) $) NIL)) (-2013 (($ $ (-560) (-1236 |#1|)) NIL)) (-4079 (($ $ (-560) (-1236 |#1|)) NIL)) (-1407 (($ |#1| |#1| |#1|) 31)) (-2366 (($ (-755) |#1|) NIL)) (-4236 (($) NIL T CONST)) (-1439 (($ $) NIL (|has| |#1| (-296)))) (-4097 (((-1236 |#1|) $ (-560)) NIL)) (-1916 (($ |#1|) 30)) (-1924 (($ |#1|) 29)) (-2933 (($ |#1|) 28)) (-3143 (((-755) $) NIL (|has| |#1| (-550)))) (-1746 ((|#1| $ (-560) (-560) |#1|) NIL)) (-1361 ((|#1| $ (-560) (-560)) NIL)) (-1910 ((|#1| $) NIL (|has| |#1| (-170)))) (-1981 (((-626 |#1|) $) NIL)) (-3436 (((-755) $) NIL (|has| |#1| (-550)))) (-3700 (((-626 (-1236 |#1|)) $) NIL (|has| |#1| (-550)))) (-1454 (((-755) $) NIL)) (-1721 (($ (-755) (-755) |#1|) NIL)) (-2634 (((-755) $) NIL)) (-2122 (((-121) $ (-755)) NIL)) (-3826 ((|#1| $) NIL (|has| |#1| (-6 (-4507 "*"))))) (-2984 (((-560) $) NIL)) (-1994 (((-560) $) NIL)) (-2130 (((-626 |#1|) $) NIL (|has| $ (-6 -4505)))) (-2030 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-3755 (((-560) $) NIL)) (-1420 (((-560) $) NIL)) (-3851 (($ (-626 (-626 |#1|))) 10)) (-3778 (($ (-1 |#1| |#1|) $) NIL)) (-2803 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2184 (((-626 (-626 |#1|)) $) NIL)) (-3441 (((-121) $ (-755)) NIL)) (-1291 (((-1135) $) NIL (|has| |#1| (-1082)))) (-3257 (((-3 $ "failed") $) NIL (|has| |#1| (-359)))) (-2939 (($) 11)) (-4417 (($ $ $) NIL)) (-4353 (((-1100) $) NIL (|has| |#1| (-1082)))) (-3038 (($ $ |#1|) NIL)) (-2336 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-550)))) (-2865 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#1|))) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-283 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-626 |#1|) (-626 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))))) (-2214 (((-121) $ $) NIL)) (-4191 (((-121) $) NIL)) (-3260 (($) NIL)) (-2778 ((|#1| $ (-560) (-560)) NIL) ((|#1| $ (-560) (-560) |#1|) NIL) (($ $ (-626 (-560)) (-626 (-560))) NIL)) (-3328 (($ (-626 |#1|)) NIL) (($ (-626 $)) NIL)) (-3185 (((-121) $) NIL)) (-1708 ((|#1| $) NIL (|has| |#1| (-6 (-4507 "*"))))) (-4035 (((-755) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505))) (((-755) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-2813 (($ $) NIL)) (-1919 (((-626 (-1236 |#1|)) $) NIL (|has| |#1| (-296)))) (-3677 (((-1236 |#1|) $ (-560)) NIL)) (-2801 (((-842) $) NIL (|has| |#1| (-1082))) (($ (-1236 |#1|)) NIL)) (-3656 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-3298 (((-121) $) NIL)) (-1653 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-1733 (($ $ |#1|) NIL (|has| |#1| (-359)))) (-1725 (($ $ $) NIL) (($ $) NIL)) (-1716 (($ $ $) NIL)) (** (($ $ (-755)) NIL) (($ $ (-560)) NIL (|has| |#1| (-359)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-560) $) NIL) (((-1236 |#1|) $ (-1236 |#1|)) 14) (((-1236 |#1|) (-1236 |#1|) $) NIL) (((-936 |#1|) $ (-936 |#1|)) 20)) (-2271 (((-755) $) NIL (|has| $ (-6 -4505))))) -(((-215 |#1|) (-13 (-669 |#1| (-1236 |#1|) (-1236 |#1|)) (-10 -8 (-15 * ((-936 |#1|) $ (-936 |#1|))) (-15 -2939 ($)) (-15 -2933 ($ |#1|)) (-15 -1924 ($ |#1|)) (-15 -1916 ($ |#1|)) (-15 -1407 ($ |#1| |#1| |#1|)) (-15 -1742 ($ |#1| |#1| |#1|)))) (-13 (-359) (-1173))) (T -215)) -((* (*1 *2 *1 *2) (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-359) (-1173))) (-5 *1 (-215 *3)))) (-2939 (*1 *1) (-12 (-5 *1 (-215 *2)) (-4 *2 (-13 (-359) (-1173))))) (-2933 (*1 *1 *2) (-12 (-5 *1 (-215 *2)) (-4 *2 (-13 (-359) (-1173))))) (-1924 (*1 *1 *2) (-12 (-5 *1 (-215 *2)) (-4 *2 (-13 (-359) (-1173))))) (-1916 (*1 *1 *2) (-12 (-5 *1 (-215 *2)) (-4 *2 (-13 (-359) (-1173))))) (-1407 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-215 *2)) (-4 *2 (-13 (-359) (-1173))))) (-1742 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-215 *2)) (-4 *2 (-13 (-359) (-1173)))))) -(-13 (-669 |#1| (-1236 |#1|) (-1236 |#1|)) (-10 -8 (-15 * ((-936 |#1|) $ (-936 |#1|))) (-15 -2939 ($)) (-15 -2933 ($ |#1|)) (-15 -1924 ($ |#1|)) (-15 -1916 ($ |#1|)) (-15 -1407 ($ |#1| |#1| |#1|)) (-15 -1742 ($ |#1| |#1| |#1|)))) -((-3763 (($ (-1 (-121) |#2|) $) 17)) (-3561 (($ |#2| $) NIL) (($ (-1 (-121) |#2|) $) 25)) (-3958 (($) NIL) (($ (-626 |#2|)) 11)) (-1653 (((-121) $ $) 23))) -(((-216 |#1| |#2|) (-10 -8 (-15 -3763 (|#1| (-1 (-121) |#2|) |#1|)) (-15 -3561 (|#1| (-1 (-121) |#2|) |#1|)) (-15 -3561 (|#1| |#2| |#1|)) (-15 -3958 (|#1| (-626 |#2|))) (-15 -3958 (|#1|)) (-15 -1653 ((-121) |#1| |#1|))) (-217 |#2|) (-1082)) (T -216)) -NIL -(-10 -8 (-15 -3763 (|#1| (-1 (-121) |#2|) |#1|)) (-15 -3561 (|#1| (-1 (-121) |#2|) |#1|)) (-15 -3561 (|#1| |#2| |#1|)) (-15 -3958 (|#1| (-626 |#2|))) (-15 -3958 (|#1|)) (-15 -1653 ((-121) |#1| |#1|))) -((-2601 (((-121) $ $) 18 (|has| |#1| (-1082)))) (-3909 (((-121) $ (-755)) 8)) (-3763 (($ (-1 (-121) |#1|) $) 42 (|has| $ (-6 -4505)))) (-3802 (($ (-1 (-121) |#1|) $) 52 (|has| $ (-6 -4505)))) (-4236 (($) 7 T CONST)) (-2868 (($ $) 55 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-3561 (($ |#1| $) 44 (|has| $ (-6 -4505))) (($ (-1 (-121) |#1|) $) 43 (|has| $ (-6 -4505)))) (-4310 (($ |#1| $) 54 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505)))) (($ (-1 (-121) |#1|) $) 51 (|has| $ (-6 -4505)))) (-2342 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 53 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 50 (|has| $ (-6 -4505))) ((|#1| (-1 |#1| |#1| |#1|) $) 49 (|has| $ (-6 -4505)))) (-1981 (((-626 |#1|) $) 30 (|has| $ (-6 -4505)))) (-2122 (((-121) $ (-755)) 9)) (-2130 (((-626 |#1|) $) 29 (|has| $ (-6 -4505)))) (-2030 (((-121) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-3778 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#1| |#1|) $) 35)) (-3441 (((-121) $ (-755)) 10)) (-1291 (((-1135) $) 22 (|has| |#1| (-1082)))) (-2525 ((|#1| $) 36)) (-4345 (($ |#1| $) 37)) (-4353 (((-1100) $) 21 (|has| |#1| (-1082)))) (-3786 (((-3 |#1| "failed") (-1 (-121) |#1|) $) 48)) (-2146 ((|#1| $) 38)) (-2865 (((-121) (-1 (-121) |#1|) $) 32 (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#1|))) 26 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-283 |#1|)) 25 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-626 |#1|) (-626 |#1|)) 23 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))))) (-2214 (((-121) $ $) 14)) (-4191 (((-121) $) 11)) (-3260 (($) 12)) (-3958 (($) 46) (($ (-626 |#1|)) 45)) (-4035 (((-755) (-1 (-121) |#1|) $) 31 (|has| $ (-6 -4505))) (((-755) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-2813 (($ $) 13)) (-4255 (((-533) $) 56 (|has| |#1| (-601 (-533))))) (-4162 (($ (-626 |#1|)) 47)) (-2801 (((-842) $) 20 (|has| |#1| (-1082)))) (-1354 (($ (-626 |#1|)) 39)) (-3656 (((-121) (-1 (-121) |#1|) $) 33 (|has| $ (-6 -4505)))) (-1653 (((-121) $ $) 19 (|has| |#1| (-1082)))) (-2271 (((-755) $) 6 (|has| $ (-6 -4505))))) -(((-217 |#1|) (-1267) (-1082)) (T -217)) -NIL -(-13 (-223 |t#1|)) -(((-39) . T) ((-111 |#1|) . T) ((-105) |has| |#1| (-1082)) ((-600 (-842)) |has| |#1| (-1082)) ((-152 |#1|) . T) ((-601 (-533)) |has| |#1| (-601 (-533))) ((-223 |#1|) . T) ((-298 |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))) ((-492 |#1|) . T) ((-515 |#1| |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))) ((-1082) |has| |#1| (-1082)) ((-1187) . T)) -((-2443 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-755)) 11) (($ $ (-626 (-1153)) (-626 (-755))) NIL) (($ $ (-1153) (-755)) NIL) (($ $ (-626 (-1153))) NIL) (($ $ (-1153)) 19) (($ $ (-755)) NIL) (($ $) 16)) (-2500 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-755)) 14) (($ $ (-626 (-1153)) (-626 (-755))) NIL) (($ $ (-1153) (-755)) NIL) (($ $ (-626 (-1153))) NIL) (($ $ (-1153)) NIL) (($ $ (-755)) NIL) (($ $) NIL))) -(((-218 |#1| |#2|) (-10 -8 (-15 -2443 (|#1| |#1|)) (-15 -2500 (|#1| |#1|)) (-15 -2443 (|#1| |#1| (-755))) (-15 -2500 (|#1| |#1| (-755))) (-15 -2443 (|#1| |#1| (-1153))) (-15 -2443 (|#1| |#1| (-626 (-1153)))) (-15 -2443 (|#1| |#1| (-1153) (-755))) (-15 -2443 (|#1| |#1| (-626 (-1153)) (-626 (-755)))) (-15 -2500 (|#1| |#1| (-1153))) (-15 -2500 (|#1| |#1| (-626 (-1153)))) (-15 -2500 (|#1| |#1| (-1153) (-755))) (-15 -2500 (|#1| |#1| (-626 (-1153)) (-626 (-755)))) (-15 -2500 (|#1| |#1| (-1 |#2| |#2|) (-755))) (-15 -2500 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2443 (|#1| |#1| (-1 |#2| |#2|) (-755))) (-15 -2443 (|#1| |#1| (-1 |#2| |#2|)))) (-219 |#2|) (-1039)) (T -218)) -NIL -(-10 -8 (-15 -2443 (|#1| |#1|)) (-15 -2500 (|#1| |#1|)) (-15 -2443 (|#1| |#1| (-755))) (-15 -2500 (|#1| |#1| (-755))) (-15 -2443 (|#1| |#1| (-1153))) (-15 -2443 (|#1| |#1| (-626 (-1153)))) (-15 -2443 (|#1| |#1| (-1153) (-755))) (-15 -2443 (|#1| |#1| (-626 (-1153)) (-626 (-755)))) (-15 -2500 (|#1| |#1| (-1153))) (-15 -2500 (|#1| |#1| (-626 (-1153)))) (-15 -2500 (|#1| |#1| (-1153) (-755))) (-15 -2500 (|#1| |#1| (-626 (-1153)) (-626 (-755)))) (-15 -2500 (|#1| |#1| (-1 |#2| |#2|) (-755))) (-15 -2500 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2443 (|#1| |#1| (-1 |#2| |#2|) (-755))) (-15 -2443 (|#1| |#1| (-1 |#2| |#2|)))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-2314 (((-3 $ "failed") $ $) 18)) (-4236 (($) 16 T CONST)) (-1823 (((-3 $ "failed") $) 33)) (-2642 (((-121) $) 30)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-2443 (($ $ (-1 |#1| |#1|)) 51) (($ $ (-1 |#1| |#1|) (-755)) 50) (($ $ (-626 (-1153)) (-626 (-755))) 43 (|has| |#1| (-887 (-1153)))) (($ $ (-1153) (-755)) 42 (|has| |#1| (-887 (-1153)))) (($ $ (-626 (-1153))) 41 (|has| |#1| (-887 (-1153)))) (($ $ (-1153)) 40 (|has| |#1| (-887 (-1153)))) (($ $ (-755)) 38 (|has| |#1| (-221))) (($ $) 36 (|has| |#1| (-221)))) (-2801 (((-842) $) 11) (($ (-560)) 27)) (-1751 (((-755)) 28)) (-2464 (($ $ (-909)) 25) (($ $ (-755)) 32)) (-3304 (($) 17 T CONST)) (-1459 (($) 29 T CONST)) (-2500 (($ $ (-1 |#1| |#1|)) 49) (($ $ (-1 |#1| |#1|) (-755)) 48) (($ $ (-626 (-1153)) (-626 (-755))) 47 (|has| |#1| (-887 (-1153)))) (($ $ (-1153) (-755)) 46 (|has| |#1| (-887 (-1153)))) (($ $ (-626 (-1153))) 45 (|has| |#1| (-887 (-1153)))) (($ $ (-1153)) 44 (|has| |#1| (-887 (-1153)))) (($ $ (-755)) 39 (|has| |#1| (-221))) (($ $) 37 (|has| |#1| (-221)))) (-1653 (((-121) $ $) 6)) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 24) (($ $ (-755)) 31)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 23))) -(((-219 |#1|) (-1267) (-1039)) (T -219)) -((-2443 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-219 *3)) (-4 *3 (-1039)))) (-2443 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-755)) (-4 *1 (-219 *4)) (-4 *4 (-1039)))) (-2500 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-219 *3)) (-4 *3 (-1039)))) (-2500 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-755)) (-4 *1 (-219 *4)) (-4 *4 (-1039))))) -(-13 (-1039) (-10 -8 (-15 -2443 ($ $ (-1 |t#1| |t#1|))) (-15 -2443 ($ $ (-1 |t#1| |t#1|) (-755))) (-15 -2500 ($ $ (-1 |t#1| |t#1|))) (-15 -2500 ($ $ (-1 |t#1| |t#1|) (-755))) (IF (|has| |t#1| (-221)) (-6 (-221)) |noBranch|) (IF (|has| |t#1| (-887 (-1153))) (-6 (-887 (-1153))) |noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-105) . T) ((-137) . T) ((-600 (-842)) . T) ((-221) |has| |#1| (-221)) ((-629 $) . T) ((-708) . T) ((-887 (-1153)) |has| |#1| (-887 (-1153))) ((-1039) . T) ((-1046) . T) ((-1094) . T) ((-1082) . T)) -((-2443 (($ $) NIL) (($ $ (-755)) 10)) (-2500 (($ $) 8) (($ $ (-755)) 12))) -(((-220 |#1|) (-10 -8 (-15 -2500 (|#1| |#1| (-755))) (-15 -2443 (|#1| |#1| (-755))) (-15 -2500 (|#1| |#1|)) (-15 -2443 (|#1| |#1|))) (-221)) (T -220)) -NIL -(-10 -8 (-15 -2500 (|#1| |#1| (-755))) (-15 -2443 (|#1| |#1| (-755))) (-15 -2500 (|#1| |#1|)) (-15 -2443 (|#1| |#1|))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-2314 (((-3 $ "failed") $ $) 18)) (-4236 (($) 16 T CONST)) (-1823 (((-3 $ "failed") $) 33)) (-2642 (((-121) $) 30)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-2443 (($ $) 37) (($ $ (-755)) 35)) (-2801 (((-842) $) 11) (($ (-560)) 27)) (-1751 (((-755)) 28)) (-2464 (($ $ (-909)) 25) (($ $ (-755)) 32)) (-3304 (($) 17 T CONST)) (-1459 (($) 29 T CONST)) (-2500 (($ $) 36) (($ $ (-755)) 34)) (-1653 (((-121) $ $) 6)) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 24) (($ $ (-755)) 31)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 23))) -(((-221) (-1267)) (T -221)) -((-2443 (*1 *1 *1) (-4 *1 (-221))) (-2500 (*1 *1 *1) (-4 *1 (-221))) (-2443 (*1 *1 *1 *2) (-12 (-4 *1 (-221)) (-5 *2 (-755)))) (-2500 (*1 *1 *1 *2) (-12 (-4 *1 (-221)) (-5 *2 (-755))))) -(-13 (-1039) (-10 -8 (-15 -2443 ($ $)) (-15 -2500 ($ $)) (-15 -2443 ($ $ (-755))) (-15 -2500 ($ $ (-755))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-105) . T) ((-137) . T) ((-600 (-842)) . T) ((-629 $) . T) ((-708) . T) ((-1039) . T) ((-1046) . T) ((-1094) . T) ((-1082) . T)) -((-3958 (($) 12) (($ (-626 |#2|)) NIL)) (-2813 (($ $) 14)) (-4162 (($ (-626 |#2|)) 10)) (-2801 (((-842) $) 21))) -(((-222 |#1| |#2|) (-10 -8 (-15 -3958 (|#1| (-626 |#2|))) (-15 -3958 (|#1|)) (-15 -4162 (|#1| (-626 |#2|))) (-15 -2801 ((-842) |#1|)) (-15 -2813 (|#1| |#1|))) (-223 |#2|) (-1082)) (T -222)) -NIL -(-10 -8 (-15 -3958 (|#1| (-626 |#2|))) (-15 -3958 (|#1|)) (-15 -4162 (|#1| (-626 |#2|))) (-15 -2801 ((-842) |#1|)) (-15 -2813 (|#1| |#1|))) -((-2601 (((-121) $ $) 18 (|has| |#1| (-1082)))) (-3909 (((-121) $ (-755)) 8)) (-3763 (($ (-1 (-121) |#1|) $) 42 (|has| $ (-6 -4505)))) (-3802 (($ (-1 (-121) |#1|) $) 52 (|has| $ (-6 -4505)))) (-4236 (($) 7 T CONST)) (-2868 (($ $) 55 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-3561 (($ |#1| $) 44 (|has| $ (-6 -4505))) (($ (-1 (-121) |#1|) $) 43 (|has| $ (-6 -4505)))) (-4310 (($ |#1| $) 54 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505)))) (($ (-1 (-121) |#1|) $) 51 (|has| $ (-6 -4505)))) (-2342 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 53 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 50 (|has| $ (-6 -4505))) ((|#1| (-1 |#1| |#1| |#1|) $) 49 (|has| $ (-6 -4505)))) (-1981 (((-626 |#1|) $) 30 (|has| $ (-6 -4505)))) (-2122 (((-121) $ (-755)) 9)) (-2130 (((-626 |#1|) $) 29 (|has| $ (-6 -4505)))) (-2030 (((-121) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-3778 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#1| |#1|) $) 35)) (-3441 (((-121) $ (-755)) 10)) (-1291 (((-1135) $) 22 (|has| |#1| (-1082)))) (-2525 ((|#1| $) 36)) (-4345 (($ |#1| $) 37)) (-4353 (((-1100) $) 21 (|has| |#1| (-1082)))) (-3786 (((-3 |#1| "failed") (-1 (-121) |#1|) $) 48)) (-2146 ((|#1| $) 38)) (-2865 (((-121) (-1 (-121) |#1|) $) 32 (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#1|))) 26 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-283 |#1|)) 25 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-626 |#1|) (-626 |#1|)) 23 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))))) (-2214 (((-121) $ $) 14)) (-4191 (((-121) $) 11)) (-3260 (($) 12)) (-3958 (($) 46) (($ (-626 |#1|)) 45)) (-4035 (((-755) (-1 (-121) |#1|) $) 31 (|has| $ (-6 -4505))) (((-755) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-2813 (($ $) 13)) (-4255 (((-533) $) 56 (|has| |#1| (-601 (-533))))) (-4162 (($ (-626 |#1|)) 47)) (-2801 (((-842) $) 20 (|has| |#1| (-1082)))) (-1354 (($ (-626 |#1|)) 39)) (-3656 (((-121) (-1 (-121) |#1|) $) 33 (|has| $ (-6 -4505)))) (-1653 (((-121) $ $) 19 (|has| |#1| (-1082)))) (-2271 (((-755) $) 6 (|has| $ (-6 -4505))))) -(((-223 |#1|) (-1267) (-1082)) (T -223)) -((-3958 (*1 *1) (-12 (-4 *1 (-223 *2)) (-4 *2 (-1082)))) (-3958 (*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-1082)) (-4 *1 (-223 *3)))) (-3561 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4505)) (-4 *1 (-223 *2)) (-4 *2 (-1082)))) (-3561 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-121) *3)) (|has| *1 (-6 -4505)) (-4 *1 (-223 *3)) (-4 *3 (-1082)))) (-3763 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-121) *3)) (|has| *1 (-6 -4505)) (-4 *1 (-223 *3)) (-4 *3 (-1082))))) -(-13 (-111 |t#1|) (-152 |t#1|) (-10 -8 (-15 -3958 ($)) (-15 -3958 ($ (-626 |t#1|))) (IF (|has| $ (-6 -4505)) (PROGN (-15 -3561 ($ |t#1| $)) (-15 -3561 ($ (-1 (-121) |t#1|) $)) (-15 -3763 ($ (-1 (-121) |t#1|) $))) |noBranch|))) -(((-39) . T) ((-111 |#1|) . T) ((-105) |has| |#1| (-1082)) ((-600 (-842)) |has| |#1| (-1082)) ((-152 |#1|) . T) ((-601 (-533)) |has| |#1| (-601 (-533))) ((-298 |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))) ((-492 |#1|) . T) ((-515 |#1| |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))) ((-1082) |has| |#1| (-1082)) ((-1187) . T)) -((-1634 (((-2 (|:| |varOrder| (-626 (-1153))) (|:| |inhom| (-3 (-626 (-1236 (-755))) "failed")) (|:| |hom| (-626 (-1236 (-755))))) (-283 (-945 (-560)))) 25))) -(((-224) (-10 -7 (-15 -1634 ((-2 (|:| |varOrder| (-626 (-1153))) (|:| |inhom| (-3 (-626 (-1236 (-755))) "failed")) (|:| |hom| (-626 (-1236 (-755))))) (-283 (-945 (-560))))))) (T -224)) -((-1634 (*1 *2 *3) (-12 (-5 *3 (-283 (-945 (-560)))) (-5 *2 (-2 (|:| |varOrder| (-626 (-1153))) (|:| |inhom| (-3 (-626 (-1236 (-755))) "failed")) (|:| |hom| (-626 (-1236 (-755)))))) (-5 *1 (-224))))) -(-10 -7 (-15 -1634 ((-2 (|:| |varOrder| (-626 (-1153))) (|:| |inhom| (-3 (-626 (-1236 (-755))) "failed")) (|:| |hom| (-626 (-1236 (-755))))) (-283 (-945 (-560)))))) -((-2912 (((-755)) 51)) (-2616 (((-2 (|:| -3818 (-671 |#3|)) (|:| |vec| (-1236 |#3|))) (-671 $) (-1236 $)) 49) (((-671 |#3|) (-671 $)) 41) (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) NIL) (((-671 (-560)) (-671 $)) NIL)) (-4016 (((-139)) 57)) (-2443 (($ $ (-1 |#3| |#3|) (-755)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-626 (-1153)) (-626 (-755))) NIL) (($ $ (-1153) (-755)) NIL) (($ $ (-626 (-1153))) NIL) (($ $ (-1153)) NIL) (($ $ (-755)) NIL) (($ $) NIL)) (-2801 (((-1236 |#3|) $) NIL) (($ |#3|) NIL) (((-842) $) NIL) (($ (-560)) 12) (($ (-403 (-560))) NIL)) (-1751 (((-755)) 15)) (-1733 (($ $ |#3|) 54))) -(((-225 |#1| |#2| |#3|) (-10 -8 (-15 -2801 (|#1| (-403 (-560)))) (-15 -2801 (|#1| (-560))) (-15 -2801 ((-842) |#1|)) (-15 -1751 ((-755))) (-15 -2443 (|#1| |#1|)) (-15 -2443 (|#1| |#1| (-755))) (-15 -2443 (|#1| |#1| (-1153))) (-15 -2443 (|#1| |#1| (-626 (-1153)))) (-15 -2443 (|#1| |#1| (-1153) (-755))) (-15 -2443 (|#1| |#1| (-626 (-1153)) (-626 (-755)))) (-15 -2616 ((-671 (-560)) (-671 |#1|))) (-15 -2616 ((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 |#1|) (-1236 |#1|))) (-15 -2801 (|#1| |#3|)) (-15 -2443 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2443 (|#1| |#1| (-1 |#3| |#3|) (-755))) (-15 -2616 ((-671 |#3|) (-671 |#1|))) (-15 -2616 ((-2 (|:| -3818 (-671 |#3|)) (|:| |vec| (-1236 |#3|))) (-671 |#1|) (-1236 |#1|))) (-15 -2912 ((-755))) (-15 -1733 (|#1| |#1| |#3|)) (-15 -4016 ((-139))) (-15 -2801 ((-1236 |#3|) |#1|))) (-226 |#2| |#3|) (-755) (-1187)) (T -225)) -((-4016 (*1 *2) (-12 (-14 *4 (-755)) (-4 *5 (-1187)) (-5 *2 (-139)) (-5 *1 (-225 *3 *4 *5)) (-4 *3 (-226 *4 *5)))) (-2912 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1187)) (-5 *2 (-755)) (-5 *1 (-225 *3 *4 *5)) (-4 *3 (-226 *4 *5)))) (-1751 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1187)) (-5 *2 (-755)) (-5 *1 (-225 *3 *4 *5)) (-4 *3 (-226 *4 *5))))) -(-10 -8 (-15 -2801 (|#1| (-403 (-560)))) (-15 -2801 (|#1| (-560))) (-15 -2801 ((-842) |#1|)) (-15 -1751 ((-755))) (-15 -2443 (|#1| |#1|)) (-15 -2443 (|#1| |#1| (-755))) (-15 -2443 (|#1| |#1| (-1153))) (-15 -2443 (|#1| |#1| (-626 (-1153)))) (-15 -2443 (|#1| |#1| (-1153) (-755))) (-15 -2443 (|#1| |#1| (-626 (-1153)) (-626 (-755)))) (-15 -2616 ((-671 (-560)) (-671 |#1|))) (-15 -2616 ((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 |#1|) (-1236 |#1|))) (-15 -2801 (|#1| |#3|)) (-15 -2443 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2443 (|#1| |#1| (-1 |#3| |#3|) (-755))) (-15 -2616 ((-671 |#3|) (-671 |#1|))) (-15 -2616 ((-2 (|:| -3818 (-671 |#3|)) (|:| |vec| (-1236 |#3|))) (-671 |#1|) (-1236 |#1|))) (-15 -2912 ((-755))) (-15 -1733 (|#1| |#1| |#3|)) (-15 -4016 ((-139))) (-15 -2801 ((-1236 |#3|) |#1|))) -((-2601 (((-121) $ $) 18 (|has| |#2| (-1082)))) (-2832 (((-121) $) 67 (|has| |#2| (-137)))) (-4259 (($ (-909)) 122 (|has| |#2| (-1039)))) (-2960 (((-1241) $ (-560) (-560)) 37 (|has| $ (-6 -4506)))) (-2280 (($ $ $) 118 (|has| |#2| (-780)))) (-2314 (((-3 $ "failed") $ $) 69 (|has| |#2| (-137)))) (-3909 (((-121) $ (-755)) 8)) (-2912 (((-755)) 104 (|has| |#2| (-364)))) (-4235 (((-560) $) 116 (|has| |#2| (-832)))) (-2764 ((|#2| $ (-560) |#2|) 49 (|has| $ (-6 -4506)))) (-4236 (($) 7 T CONST)) (-1473 (((-3 (-560) "failed") $) 62 (-2256 (|has| |#2| (-1029 (-560))) (|has| |#2| (-1082)))) (((-3 (-403 (-560)) "failed") $) 59 (-2256 (|has| |#2| (-1029 (-403 (-560)))) (|has| |#2| (-1082)))) (((-3 |#2| "failed") $) 56 (|has| |#2| (-1082)))) (-3001 (((-560) $) 63 (-2256 (|has| |#2| (-1029 (-560))) (|has| |#2| (-1082)))) (((-403 (-560)) $) 60 (-2256 (|has| |#2| (-1029 (-403 (-560)))) (|has| |#2| (-1082)))) ((|#2| $) 55 (|has| |#2| (-1082)))) (-2616 (((-671 (-560)) (-671 $)) 103 (-2256 (|has| |#2| (-622 (-560))) (|has| |#2| (-1039)))) (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) 102 (-2256 (|has| |#2| (-622 (-560))) (|has| |#2| (-1039)))) (((-2 (|:| -3818 (-671 |#2|)) (|:| |vec| (-1236 |#2|))) (-671 $) (-1236 $)) 101 (|has| |#2| (-1039))) (((-671 |#2|) (-671 $)) 100 (|has| |#2| (-1039)))) (-1823 (((-3 $ "failed") $) 75 (|has| |#2| (-708)))) (-1666 (($) 107 (|has| |#2| (-364)))) (-1746 ((|#2| $ (-560) |#2|) 50 (|has| $ (-6 -4506)))) (-1361 ((|#2| $ (-560)) 48)) (-1786 (((-121) $) 114 (|has| |#2| (-832)))) (-1981 (((-626 |#2|) $) 30 (|has| $ (-6 -4505)))) (-2642 (((-121) $) 78 (|has| |#2| (-708)))) (-2187 (((-121) $) 115 (|has| |#2| (-832)))) (-2122 (((-121) $ (-755)) 9)) (-4099 (((-560) $) 40 (|has| (-560) (-834)))) (-4325 (($ $ $) 113 (-2318 (|has| |#2| (-832)) (|has| |#2| (-780))))) (-2130 (((-626 |#2|) $) 29 (|has| $ (-6 -4505)))) (-2030 (((-121) |#2| $) 27 (-12 (|has| |#2| (-1082)) (|has| $ (-6 -4505))))) (-2767 (((-560) $) 41 (|has| (-560) (-834)))) (-2501 (($ $ $) 112 (-2318 (|has| |#2| (-832)) (|has| |#2| (-780))))) (-3778 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#2| |#2|) $) 35)) (-3142 (((-909) $) 106 (|has| |#2| (-364)))) (-3441 (((-121) $ (-755)) 10)) (-1291 (((-1135) $) 22 (|has| |#2| (-1082)))) (-1529 (((-626 (-560)) $) 43)) (-1310 (((-121) (-560) $) 44)) (-1330 (($ (-909)) 105 (|has| |#2| (-364)))) (-4353 (((-1100) $) 21 (|has| |#2| (-1082)))) (-2824 ((|#2| $) 39 (|has| (-560) (-834)))) (-3038 (($ $ |#2|) 38 (|has| $ (-6 -4506)))) (-2865 (((-121) (-1 (-121) |#2|) $) 32 (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#2|))) 26 (-12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082)))) (($ $ (-283 |#2|)) 25 (-12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082)))) (($ $ (-626 |#2|) (-626 |#2|)) 23 (-12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082))))) (-2214 (((-121) $ $) 14)) (-1290 (((-121) |#2| $) 42 (-12 (|has| $ (-6 -4505)) (|has| |#2| (-1082))))) (-4460 (((-626 |#2|) $) 45)) (-4191 (((-121) $) 11)) (-3260 (($) 12)) (-2778 ((|#2| $ (-560) |#2|) 47) ((|#2| $ (-560)) 46)) (-2372 ((|#2| $ $) 121 (|has| |#2| (-1039)))) (-1621 (($ (-1236 |#2|)) 123)) (-4016 (((-139)) 120 (|has| |#2| (-359)))) (-2443 (($ $) 95 (-2256 (|has| |#2| (-221)) (|has| |#2| (-1039)))) (($ $ (-755)) 93 (-2256 (|has| |#2| (-221)) (|has| |#2| (-1039)))) (($ $ (-1153)) 91 (-2256 (|has| |#2| (-887 (-1153))) (|has| |#2| (-1039)))) (($ $ (-626 (-1153))) 90 (-2256 (|has| |#2| (-887 (-1153))) (|has| |#2| (-1039)))) (($ $ (-1153) (-755)) 89 (-2256 (|has| |#2| (-887 (-1153))) (|has| |#2| (-1039)))) (($ $ (-626 (-1153)) (-626 (-755))) 88 (-2256 (|has| |#2| (-887 (-1153))) (|has| |#2| (-1039)))) (($ $ (-1 |#2| |#2|) (-755)) 81 (|has| |#2| (-1039))) (($ $ (-1 |#2| |#2|)) 80 (|has| |#2| (-1039)))) (-4035 (((-755) (-1 (-121) |#2|) $) 31 (|has| $ (-6 -4505))) (((-755) |#2| $) 28 (-12 (|has| |#2| (-1082)) (|has| $ (-6 -4505))))) (-2813 (($ $) 13)) (-2801 (((-1236 |#2|) $) 124) (((-842) $) 20 (|has| |#2| (-1082))) (($ (-560)) 61 (-2318 (-2256 (|has| |#2| (-1029 (-560))) (|has| |#2| (-1082))) (|has| |#2| (-1039)))) (($ (-403 (-560))) 58 (-2256 (|has| |#2| (-1029 (-403 (-560)))) (|has| |#2| (-1082)))) (($ |#2|) 57 (|has| |#2| (-1082)))) (-1751 (((-755)) 99 (|has| |#2| (-1039)))) (-3656 (((-121) (-1 (-121) |#2|) $) 33 (|has| $ (-6 -4505)))) (-1822 (($ $) 117 (|has| |#2| (-832)))) (-2464 (($ $ (-755)) 76 (|has| |#2| (-708))) (($ $ (-909)) 72 (|has| |#2| (-708)))) (-3304 (($) 66 (|has| |#2| (-137)) CONST)) (-1459 (($) 79 (|has| |#2| (-708)) CONST)) (-2500 (($ $) 94 (-2256 (|has| |#2| (-221)) (|has| |#2| (-1039)))) (($ $ (-755)) 92 (-2256 (|has| |#2| (-221)) (|has| |#2| (-1039)))) (($ $ (-1153)) 87 (-2256 (|has| |#2| (-887 (-1153))) (|has| |#2| (-1039)))) (($ $ (-626 (-1153))) 86 (-2256 (|has| |#2| (-887 (-1153))) (|has| |#2| (-1039)))) (($ $ (-1153) (-755)) 85 (-2256 (|has| |#2| (-887 (-1153))) (|has| |#2| (-1039)))) (($ $ (-626 (-1153)) (-626 (-755))) 84 (-2256 (|has| |#2| (-887 (-1153))) (|has| |#2| (-1039)))) (($ $ (-1 |#2| |#2|) (-755)) 83 (|has| |#2| (-1039))) (($ $ (-1 |#2| |#2|)) 82 (|has| |#2| (-1039)))) (-1691 (((-121) $ $) 110 (-2318 (|has| |#2| (-832)) (|has| |#2| (-780))))) (-1675 (((-121) $ $) 109 (-2318 (|has| |#2| (-832)) (|has| |#2| (-780))))) (-1653 (((-121) $ $) 19 (|has| |#2| (-1082)))) (-1683 (((-121) $ $) 111 (-2318 (|has| |#2| (-832)) (|has| |#2| (-780))))) (-1667 (((-121) $ $) 108 (-2318 (|has| |#2| (-832)) (|has| |#2| (-780))))) (-1733 (($ $ |#2|) 119 (|has| |#2| (-359)))) (-1725 (($ $ $) 97 (|has| |#2| (-1039))) (($ $) 96 (|has| |#2| (-1039)))) (-1716 (($ $ $) 64 (|has| |#2| (-25)))) (** (($ $ (-755)) 77 (|has| |#2| (-708))) (($ $ (-909)) 73 (|has| |#2| (-708)))) (* (($ (-560) $) 98 (|has| |#2| (-1039))) (($ $ $) 74 (|has| |#2| (-708))) (($ $ |#2|) 71 (|has| |#2| (-1039))) (($ |#2| $) 70 (|has| |#2| (-1039))) (($ (-755) $) 68 (|has| |#2| (-137))) (($ (-909) $) 65 (|has| |#2| (-25)))) (-2271 (((-755) $) 6 (|has| $ (-6 -4505))))) -(((-226 |#1| |#2|) (-1267) (-755) (-1187)) (T -226)) -((-1621 (*1 *1 *2) (-12 (-5 *2 (-1236 *4)) (-4 *4 (-1187)) (-4 *1 (-226 *3 *4)))) (-4259 (*1 *1 *2) (-12 (-5 *2 (-909)) (-4 *1 (-226 *3 *4)) (-4 *4 (-1039)) (-4 *4 (-1187)))) (-2372 (*1 *2 *1 *1) (-12 (-4 *1 (-226 *3 *2)) (-4 *2 (-1187)) (-4 *2 (-1039))))) -(-13 (-593 (-560) |t#2|) (-600 (-1236 |t#2|)) (-10 -8 (-6 -4505) (-15 -1621 ($ (-1236 |t#2|))) (IF (|has| |t#2| (-1082)) (-6 (-407 |t#2|)) |noBranch|) (IF (|has| |t#2| (-1039)) (PROGN (-6 (-120 |t#2| |t#2|)) (-6 (-219 |t#2|)) (-6 (-373 |t#2|)) (-15 -4259 ($ (-909))) (-15 -2372 (|t#2| $ $))) |noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |noBranch|) (IF (|has| |t#2| (-137)) (-6 (-137)) |noBranch|) (IF (|has| |t#2| (-708)) (-6 (-708 (SEQ (|:| * (-1 $ |t#2| $)) (|exit| 1 (|:| * (-1 $ $ |t#2|)))))) |noBranch|) (IF (|has| |t#2| (-364)) (-6 (-364)) |noBranch|) (IF (|has| |t#2| (-170)) (PROGN (-6 (-43 |t#2|)) (-6 (-170))) |noBranch|) (IF (|has| |t#2| (-6 -4502)) (-6 -4502) |noBranch|) (IF (|has| |t#2| (-832)) (-6 (-832)) |noBranch|) (IF (|has| |t#2| (-780)) (-6 (-780)) |noBranch|) (IF (|has| |t#2| (-359)) (-6 (-1243 |t#2|)) |noBranch|))) -(((-21) -2318 (|has| |#2| (-1039)) (|has| |#2| (-832)) (|has| |#2| (-359)) (|has| |#2| (-170))) ((-23) -2318 (|has| |#2| (-1039)) (|has| |#2| (-832)) (|has| |#2| (-780)) (|has| |#2| (-359)) (|has| |#2| (-170)) (|has| |#2| (-137))) ((-25) -2318 (|has| |#2| (-1039)) (|has| |#2| (-832)) (|has| |#2| (-780)) (|has| |#2| (-359)) (|has| |#2| (-170)) (|has| |#2| (-137)) (|has| |#2| (-25))) ((-39) . T) ((-43 |#2|) |has| |#2| (-170)) ((-105) -2318 (|has| |#2| (-1082)) (|has| |#2| (-1039)) (|has| |#2| (-832)) (|has| |#2| (-780)) (|has| |#2| (-708)) (|has| |#2| (-364)) (|has| |#2| (-359)) (|has| |#2| (-170)) (|has| |#2| (-137)) (|has| |#2| (-25))) ((-120 |#2| |#2|) -2318 (|has| |#2| (-1039)) (|has| |#2| (-359)) (|has| |#2| (-170))) ((-120 $ $) |has| |#2| (-170)) ((-137) -2318 (|has| |#2| (-1039)) (|has| |#2| (-832)) (|has| |#2| (-780)) (|has| |#2| (-359)) (|has| |#2| (-170)) (|has| |#2| (-137))) ((-600 (-842)) -2318 (|has| |#2| (-1082)) (|has| |#2| (-1039)) (|has| |#2| (-832)) (|has| |#2| (-780)) (|has| |#2| (-708)) (|has| |#2| (-364)) (|has| |#2| (-359)) (|has| |#2| (-170)) (|has| |#2| (-137)) (|has| |#2| (-25))) ((-600 (-1236 |#2|)) . T) ((-170) |has| |#2| (-170)) ((-219 |#2|) |has| |#2| (-1039)) ((-221) -12 (|has| |#2| (-221)) (|has| |#2| (-1039))) ((-276 (-560) |#2|) . T) ((-278 (-560) |#2|) . T) ((-298 |#2|) -12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082))) ((-364) |has| |#2| (-364)) ((-373 |#2|) |has| |#2| (-1039)) ((-407 |#2|) |has| |#2| (-1082)) ((-492 |#2|) . T) ((-593 (-560) |#2|) . T) ((-515 |#2| |#2|) -12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082))) ((-629 |#2|) -2318 (|has| |#2| (-1039)) (|has| |#2| (-359)) (|has| |#2| (-170))) ((-629 $) -2318 (|has| |#2| (-1039)) (|has| |#2| (-832)) (|has| |#2| (-170))) ((-622 (-560)) -12 (|has| |#2| (-622 (-560))) (|has| |#2| (-1039))) ((-622 |#2|) |has| |#2| (-1039)) ((-699 |#2|) -2318 (|has| |#2| (-359)) (|has| |#2| (-170))) ((-708 (SEQ (|:| * (-1 $ |#2| $)) (|exit| 1 (|:| * (-1 $ $ |#2|))))) |has| |#2| (-708)) ((-708) -2318 (|has| |#2| (-1039)) (|has| |#2| (-832)) (|has| |#2| (-170))) ((-778) |has| |#2| (-832)) ((-779) -2318 (|has| |#2| (-832)) (|has| |#2| (-780))) ((-780) |has| |#2| (-780)) ((-781) -2318 (|has| |#2| (-832)) (|has| |#2| (-780))) ((-782) -2318 (|has| |#2| (-832)) (|has| |#2| (-780))) ((-832) |has| |#2| (-832)) ((-834) -2318 (|has| |#2| (-832)) (|has| |#2| (-780))) ((-887 (-1153)) -12 (|has| |#2| (-887 (-1153))) (|has| |#2| (-1039))) ((-1029 (-403 (-560))) -12 (|has| |#2| (-1029 (-403 (-560)))) (|has| |#2| (-1082))) ((-1029 (-560)) -12 (|has| |#2| (-1029 (-560))) (|has| |#2| (-1082))) ((-1029 |#2|) |has| |#2| (-1082)) ((-1045 |#2|) -2318 (|has| |#2| (-1039)) (|has| |#2| (-359)) (|has| |#2| (-170))) ((-1045 $) |has| |#2| (-170)) ((-1039) -2318 (|has| |#2| (-1039)) (|has| |#2| (-832)) (|has| |#2| (-170))) ((-1046) -2318 (|has| |#2| (-1039)) (|has| |#2| (-832)) (|has| |#2| (-170))) ((-1094) -2318 (|has| |#2| (-1039)) (|has| |#2| (-832)) (|has| |#2| (-708)) (|has| |#2| (-170))) ((-1082) -2318 (|has| |#2| (-1082)) (|has| |#2| (-1039)) (|has| |#2| (-832)) (|has| |#2| (-780)) (|has| |#2| (-708)) (|has| |#2| (-364)) (|has| |#2| (-359)) (|has| |#2| (-170)) (|has| |#2| (-137)) (|has| |#2| (-25))) ((-1187) . T) ((-1243 |#2|) |has| |#2| (-359))) -((-3469 (((-228 |#1| |#3|) (-1 |#3| |#2| |#3|) (-228 |#1| |#2|) |#3|) 21)) (-2342 ((|#3| (-1 |#3| |#2| |#3|) (-228 |#1| |#2|) |#3|) 23)) (-2803 (((-228 |#1| |#3|) (-1 |#3| |#2|) (-228 |#1| |#2|)) 18))) -(((-227 |#1| |#2| |#3|) (-10 -7 (-15 -3469 ((-228 |#1| |#3|) (-1 |#3| |#2| |#3|) (-228 |#1| |#2|) |#3|)) (-15 -2342 (|#3| (-1 |#3| |#2| |#3|) (-228 |#1| |#2|) |#3|)) (-15 -2803 ((-228 |#1| |#3|) (-1 |#3| |#2|) (-228 |#1| |#2|)))) (-755) (-1187) (-1187)) (T -227)) -((-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-228 *5 *6)) (-14 *5 (-755)) (-4 *6 (-1187)) (-4 *7 (-1187)) (-5 *2 (-228 *5 *7)) (-5 *1 (-227 *5 *6 *7)))) (-2342 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-228 *5 *6)) (-14 *5 (-755)) (-4 *6 (-1187)) (-4 *2 (-1187)) (-5 *1 (-227 *5 *6 *2)))) (-3469 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-228 *6 *7)) (-14 *6 (-755)) (-4 *7 (-1187)) (-4 *5 (-1187)) (-5 *2 (-228 *6 *5)) (-5 *1 (-227 *6 *7 *5))))) -(-10 -7 (-15 -3469 ((-228 |#1| |#3|) (-1 |#3| |#2| |#3|) (-228 |#1| |#2|) |#3|)) (-15 -2342 (|#3| (-1 |#3| |#2| |#3|) (-228 |#1| |#2|) |#3|)) (-15 -2803 ((-228 |#1| |#3|) (-1 |#3| |#2|) (-228 |#1| |#2|)))) -((-2601 (((-121) $ $) NIL (|has| |#2| (-1082)))) (-2832 (((-121) $) NIL (|has| |#2| (-137)))) (-4259 (($ (-909)) 56 (|has| |#2| (-1039)))) (-2960 (((-1241) $ (-560) (-560)) NIL (|has| $ (-6 -4506)))) (-2280 (($ $ $) 60 (|has| |#2| (-780)))) (-2314 (((-3 $ "failed") $ $) 49 (|has| |#2| (-137)))) (-3909 (((-121) $ (-755)) 17)) (-2912 (((-755)) NIL (|has| |#2| (-364)))) (-4235 (((-560) $) NIL (|has| |#2| (-832)))) (-2764 ((|#2| $ (-560) |#2|) NIL (|has| $ (-6 -4506)))) (-4236 (($) NIL T CONST)) (-1473 (((-3 (-560) "failed") $) NIL (-12 (|has| |#2| (-1029 (-560))) (|has| |#2| (-1082)))) (((-3 (-403 (-560)) "failed") $) NIL (-12 (|has| |#2| (-1029 (-403 (-560)))) (|has| |#2| (-1082)))) (((-3 |#2| "failed") $) 29 (|has| |#2| (-1082)))) (-3001 (((-560) $) NIL (-12 (|has| |#2| (-1029 (-560))) (|has| |#2| (-1082)))) (((-403 (-560)) $) NIL (-12 (|has| |#2| (-1029 (-403 (-560)))) (|has| |#2| (-1082)))) ((|#2| $) 27 (|has| |#2| (-1082)))) (-2616 (((-671 (-560)) (-671 $)) NIL (-12 (|has| |#2| (-622 (-560))) (|has| |#2| (-1039)))) (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) NIL (-12 (|has| |#2| (-622 (-560))) (|has| |#2| (-1039)))) (((-2 (|:| -3818 (-671 |#2|)) (|:| |vec| (-1236 |#2|))) (-671 $) (-1236 $)) NIL (|has| |#2| (-1039))) (((-671 |#2|) (-671 $)) NIL (|has| |#2| (-1039)))) (-1823 (((-3 $ "failed") $) 53 (|has| |#2| (-708)))) (-1666 (($) NIL (|has| |#2| (-364)))) (-1746 ((|#2| $ (-560) |#2|) NIL (|has| $ (-6 -4506)))) (-1361 ((|#2| $ (-560)) 51)) (-1786 (((-121) $) NIL (|has| |#2| (-832)))) (-1981 (((-626 |#2|) $) 15 (|has| $ (-6 -4505)))) (-2642 (((-121) $) NIL (|has| |#2| (-708)))) (-2187 (((-121) $) NIL (|has| |#2| (-832)))) (-2122 (((-121) $ (-755)) NIL)) (-4099 (((-560) $) 20 (|has| (-560) (-834)))) (-4325 (($ $ $) NIL (-2318 (|has| |#2| (-780)) (|has| |#2| (-832))))) (-2130 (((-626 |#2|) $) NIL (|has| $ (-6 -4505)))) (-2030 (((-121) |#2| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#2| (-1082))))) (-2767 (((-560) $) 50 (|has| (-560) (-834)))) (-2501 (($ $ $) NIL (-2318 (|has| |#2| (-780)) (|has| |#2| (-832))))) (-3778 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#2| |#2|) $) 41)) (-3142 (((-909) $) NIL (|has| |#2| (-364)))) (-3441 (((-121) $ (-755)) NIL)) (-1291 (((-1135) $) NIL (|has| |#2| (-1082)))) (-1529 (((-626 (-560)) $) NIL)) (-1310 (((-121) (-560) $) NIL)) (-1330 (($ (-909)) NIL (|has| |#2| (-364)))) (-4353 (((-1100) $) NIL (|has| |#2| (-1082)))) (-2824 ((|#2| $) NIL (|has| (-560) (-834)))) (-3038 (($ $ |#2|) NIL (|has| $ (-6 -4506)))) (-2865 (((-121) (-1 (-121) |#2|) $) 24 (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#2|))) NIL (-12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082)))) (($ $ (-283 |#2|)) NIL (-12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082)))) (($ $ (-626 |#2|) (-626 |#2|)) NIL (-12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082))))) (-2214 (((-121) $ $) NIL)) (-1290 (((-121) |#2| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#2| (-1082))))) (-4460 (((-626 |#2|) $) NIL)) (-4191 (((-121) $) NIL)) (-3260 (($) NIL)) (-2778 ((|#2| $ (-560) |#2|) NIL) ((|#2| $ (-560)) 21)) (-2372 ((|#2| $ $) NIL (|has| |#2| (-1039)))) (-1621 (($ (-1236 |#2|)) 18)) (-4016 (((-139)) NIL (|has| |#2| (-359)))) (-2443 (($ $) NIL (-12 (|has| |#2| (-221)) (|has| |#2| (-1039)))) (($ $ (-755)) NIL (-12 (|has| |#2| (-221)) (|has| |#2| (-1039)))) (($ $ (-1153)) NIL (-12 (|has| |#2| (-887 (-1153))) (|has| |#2| (-1039)))) (($ $ (-626 (-1153))) NIL (-12 (|has| |#2| (-887 (-1153))) (|has| |#2| (-1039)))) (($ $ (-1153) (-755)) NIL (-12 (|has| |#2| (-887 (-1153))) (|has| |#2| (-1039)))) (($ $ (-626 (-1153)) (-626 (-755))) NIL (-12 (|has| |#2| (-887 (-1153))) (|has| |#2| (-1039)))) (($ $ (-1 |#2| |#2|) (-755)) NIL (|has| |#2| (-1039))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1039)))) (-4035 (((-755) (-1 (-121) |#2|) $) NIL (|has| $ (-6 -4505))) (((-755) |#2| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#2| (-1082))))) (-2813 (($ $) NIL)) (-2801 (((-1236 |#2|) $) 10) (((-842) $) NIL (|has| |#2| (-1082))) (($ (-560)) NIL (-2318 (-12 (|has| |#2| (-1029 (-560))) (|has| |#2| (-1082))) (|has| |#2| (-1039)))) (($ (-403 (-560))) NIL (-12 (|has| |#2| (-1029 (-403 (-560)))) (|has| |#2| (-1082)))) (($ |#2|) 13 (|has| |#2| (-1082)))) (-1751 (((-755)) NIL (|has| |#2| (-1039)))) (-3656 (((-121) (-1 (-121) |#2|) $) NIL (|has| $ (-6 -4505)))) (-1822 (($ $) NIL (|has| |#2| (-832)))) (-2464 (($ $ (-755)) NIL (|has| |#2| (-708))) (($ $ (-909)) NIL (|has| |#2| (-708)))) (-3304 (($) 35 (|has| |#2| (-137)) CONST)) (-1459 (($) 38 (|has| |#2| (-708)) CONST)) (-2500 (($ $) NIL (-12 (|has| |#2| (-221)) (|has| |#2| (-1039)))) (($ $ (-755)) NIL (-12 (|has| |#2| (-221)) (|has| |#2| (-1039)))) (($ $ (-1153)) NIL (-12 (|has| |#2| (-887 (-1153))) (|has| |#2| (-1039)))) (($ $ (-626 (-1153))) NIL (-12 (|has| |#2| (-887 (-1153))) (|has| |#2| (-1039)))) (($ $ (-1153) (-755)) NIL (-12 (|has| |#2| (-887 (-1153))) (|has| |#2| (-1039)))) (($ $ (-626 (-1153)) (-626 (-755))) NIL (-12 (|has| |#2| (-887 (-1153))) (|has| |#2| (-1039)))) (($ $ (-1 |#2| |#2|) (-755)) NIL (|has| |#2| (-1039))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1039)))) (-1691 (((-121) $ $) NIL (-2318 (|has| |#2| (-780)) (|has| |#2| (-832))))) (-1675 (((-121) $ $) NIL (-2318 (|has| |#2| (-780)) (|has| |#2| (-832))))) (-1653 (((-121) $ $) 26 (|has| |#2| (-1082)))) (-1683 (((-121) $ $) NIL (-2318 (|has| |#2| (-780)) (|has| |#2| (-832))))) (-1667 (((-121) $ $) 58 (-2318 (|has| |#2| (-780)) (|has| |#2| (-832))))) (-1733 (($ $ |#2|) NIL (|has| |#2| (-359)))) (-1725 (($ $ $) NIL (|has| |#2| (-1039))) (($ $) NIL (|has| |#2| (-1039)))) (-1716 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-755)) NIL (|has| |#2| (-708))) (($ $ (-909)) NIL (|has| |#2| (-708)))) (* (($ (-560) $) NIL (|has| |#2| (-1039))) (($ $ $) 44 (|has| |#2| (-708))) (($ $ |#2|) 42 (|has| |#2| (-1039))) (($ |#2| $) 43 (|has| |#2| (-1039))) (($ (-755) $) NIL (|has| |#2| (-137))) (($ (-909) $) NIL (|has| |#2| (-25)))) (-2271 (((-755) $) NIL (|has| $ (-6 -4505))))) -(((-228 |#1| |#2|) (-226 |#1| |#2|) (-755) (-1187)) (T -228)) -NIL -(-226 |#1| |#2|) -((-3709 (((-560) (-626 (-1135))) 24) (((-560) (-1135)) 19)) (-3918 (((-1241) (-626 (-1135))) 29) (((-1241) (-1135)) 28)) (-3585 (((-1135)) 14)) (-2535 (((-1135) (-560) (-1135)) 16)) (-1341 (((-626 (-1135)) (-626 (-1135)) (-560) (-1135)) 25) (((-1135) (-1135) (-560) (-1135)) 23)) (-3622 (((-626 (-1135)) (-626 (-1135))) 13) (((-626 (-1135)) (-1135)) 11))) -(((-229) (-10 -7 (-15 -3622 ((-626 (-1135)) (-1135))) (-15 -3622 ((-626 (-1135)) (-626 (-1135)))) (-15 -3585 ((-1135))) (-15 -2535 ((-1135) (-560) (-1135))) (-15 -1341 ((-1135) (-1135) (-560) (-1135))) (-15 -1341 ((-626 (-1135)) (-626 (-1135)) (-560) (-1135))) (-15 -3918 ((-1241) (-1135))) (-15 -3918 ((-1241) (-626 (-1135)))) (-15 -3709 ((-560) (-1135))) (-15 -3709 ((-560) (-626 (-1135)))))) (T -229)) -((-3709 (*1 *2 *3) (-12 (-5 *3 (-626 (-1135))) (-5 *2 (-560)) (-5 *1 (-229)))) (-3709 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-560)) (-5 *1 (-229)))) (-3918 (*1 *2 *3) (-12 (-5 *3 (-626 (-1135))) (-5 *2 (-1241)) (-5 *1 (-229)))) (-3918 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1241)) (-5 *1 (-229)))) (-1341 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-626 (-1135))) (-5 *3 (-560)) (-5 *4 (-1135)) (-5 *1 (-229)))) (-1341 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1135)) (-5 *3 (-560)) (-5 *1 (-229)))) (-2535 (*1 *2 *3 *2) (-12 (-5 *2 (-1135)) (-5 *3 (-560)) (-5 *1 (-229)))) (-3585 (*1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-229)))) (-3622 (*1 *2 *2) (-12 (-5 *2 (-626 (-1135))) (-5 *1 (-229)))) (-3622 (*1 *2 *3) (-12 (-5 *2 (-626 (-1135))) (-5 *1 (-229)) (-5 *3 (-1135))))) -(-10 -7 (-15 -3622 ((-626 (-1135)) (-1135))) (-15 -3622 ((-626 (-1135)) (-626 (-1135)))) (-15 -3585 ((-1135))) (-15 -2535 ((-1135) (-560) (-1135))) (-15 -1341 ((-1135) (-1135) (-560) (-1135))) (-15 -1341 ((-626 (-1135)) (-626 (-1135)) (-560) (-1135))) (-15 -3918 ((-1241) (-1135))) (-15 -3918 ((-1241) (-626 (-1135)))) (-15 -3709 ((-560) (-1135))) (-15 -3709 ((-560) (-626 (-1135))))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-4138 (((-626 (-2 (|:| |gen| |#1|) (|:| -2469 (-560)))) $) 44)) (-1766 (((-626 |#1|) $) 30)) (-1772 (((-626 |#1|) $) 29)) (-1782 (((-626 |#1|) $) 31)) (-2314 (((-3 $ "failed") $ $) 18)) (-2437 (((-626 $) $) 36)) (-2912 (((-755) $) 43)) (-4236 (($) 16 T CONST)) (-1473 (((-3 |#1| "failed") $) 39)) (-3001 ((|#1| $) 40)) (-1724 ((|#1| $ (-560)) 46)) (-1595 (((-560) $ (-560)) 45)) (-2381 (($ (-1 |#1| |#1|) $) 49)) (-2021 (($ (-1 (-560) (-560)) $) 48)) (-1291 (((-1135) $) 9)) (-4329 (($ $) 26)) (-2520 (($ $ $) 50 (|has| (-560) (-779)))) (-4353 (((-1100) $) 10)) (-1789 (((-121) $) 32)) (-1790 (($ $) 28)) (-1801 (($ $) 27)) (-3662 (((-560) $) 37)) (-2849 (($ $ $) 33)) (-3388 (($ $) 34)) (-2801 (((-842) $) 11) (($ |#1|) 38)) (-2636 (((-560) |#1| $) 47)) (-3304 (($) 17 T CONST)) (-1653 (((-121) $ $) 6)) (-1683 (((-121) $ $) 35)) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13) (($ |#1| $) 41)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ (-560)) 52) (($ (-560) $) 51) (($ (-560) |#1|) 42))) -(((-230 |#1|) (-1267) (-1082)) (T -230)) -((-3662 (*1 *2 *1) (-12 (-4 *1 (-230 *3)) (-4 *3 (-1082)) (-5 *2 (-560)))) (-2437 (*1 *2 *1) (-12 (-4 *3 (-1082)) (-5 *2 (-626 *1)) (-4 *1 (-230 *3)))) (-1683 (*1 *2 *1 *1) (-12 (-4 *1 (-230 *3)) (-4 *3 (-1082)) (-5 *2 (-121)))) (-3388 (*1 *1 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1082)))) (-2849 (*1 *1 *1 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1082)))) (-1789 (*1 *2 *1) (-12 (-4 *1 (-230 *3)) (-4 *3 (-1082)) (-5 *2 (-121)))) (-1782 (*1 *2 *1) (-12 (-4 *1 (-230 *3)) (-4 *3 (-1082)) (-5 *2 (-626 *3)))) (-1766 (*1 *2 *1) (-12 (-4 *1 (-230 *3)) (-4 *3 (-1082)) (-5 *2 (-626 *3)))) (-1772 (*1 *2 *1) (-12 (-4 *1 (-230 *3)) (-4 *3 (-1082)) (-5 *2 (-626 *3)))) (-1790 (*1 *1 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1082)))) (-1801 (*1 *1 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1082)))) (-4329 (*1 *1 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1082))))) -(-13 (-21) (-699 (-560)) (-314 |t#1| (-560)) (-10 -8 (-15 -3662 ((-560) $)) (-15 -2437 ((-626 $) $)) (-15 -1683 ((-121) $ $)) (-15 -3388 ($ $)) (-15 -2849 ($ $ $)) (-15 -1789 ((-121) $)) (-15 -1782 ((-626 |t#1|) $)) (-15 -1766 ((-626 |t#1|) $)) (-15 -1772 ((-626 |t#1|) $)) (-15 -1790 ($ $)) (-15 -1801 ($ $)) (-15 -4329 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-105) . T) ((-120 (-560) (-560)) . T) ((-137) . T) ((-600 (-842)) . T) ((-314 |#1| (-560)) . T) ((-629 (-560)) . T) ((-699 (-560)) . T) ((-1029 |#1|) . T) ((-1045 (-560)) . T) ((-1082) . T)) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) 17)) (-4138 (((-626 (-2 (|:| |gen| |#1|) (|:| -2469 (-560)))) $) 30)) (-1766 (((-626 |#1|) $) 36)) (-1772 (((-626 |#1|) $) 37)) (-1782 (((-626 |#1|) $) 35)) (-2314 (((-3 $ "failed") $ $) NIL)) (-2437 (((-626 $) $) 29)) (-2912 (((-755) $) NIL)) (-4236 (($) NIL T CONST)) (-1473 (((-3 |#1| "failed") $) NIL)) (-3001 ((|#1| $) NIL)) (-1750 (($ $) 24)) (-1724 ((|#1| $ (-560)) NIL)) (-1595 (((-560) $ (-560)) NIL)) (-2381 (($ (-1 |#1| |#1|) $) NIL)) (-2021 (($ (-1 (-560) (-560)) $) NIL)) (-1291 (((-1135) $) NIL)) (-4329 (($ $) 8)) (-2520 (($ $ $) NIL (|has| (-560) (-779)))) (-1480 (((-2 (|:| |gen| |#1|) (|:| -2469 (-560))) $) 26)) (-4353 (((-1100) $) NIL)) (-1789 (((-121) $) 50)) (-1790 (($ $) 38)) (-1801 (($ $) 39)) (-3662 (((-560) $) 58)) (-2849 (($ $ $) 44)) (-3388 (($ $) 33)) (-2801 (((-842) $) 22) (($ |#1|) 27)) (-2636 (((-560) |#1| $) 32)) (-3304 (($) 23 T CONST)) (-1653 (((-121) $ $) 40)) (-1683 (((-121) $ $) 51)) (-1725 (($ $) 48) (($ $ $) 47)) (-1716 (($ $ $) 45) (($ |#1| $) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) 49) (($ $ (-560)) NIL) (($ (-560) $) 49) (($ (-560) |#1|) NIL))) -(((-231 |#1|) (-13 (-230 |#1|) (-10 -8 (-15 -1480 ((-2 (|:| |gen| |#1|) (|:| -2469 (-560))) $)) (-15 -1750 ($ $)))) (-1080)) (T -231)) -((-1480 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |gen| *3) (|:| -2469 (-560)))) (-5 *1 (-231 *3)) (-4 *3 (-1080)))) (-1750 (*1 *1 *1) (-12 (-5 *1 (-231 *2)) (-4 *2 (-1080))))) -(-13 (-230 |#1|) (-10 -8 (-15 -1480 ((-2 (|:| |gen| |#1|) (|:| -2469 (-560))) $)) (-15 -1750 ($ $)))) -((-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) 9)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) 18)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) NIL) (($ (-403 (-560)) $) 25) (($ $ (-403 (-560))) NIL))) -(((-232 |#1|) (-10 -8 (-15 -2464 (|#1| |#1| (-560))) (-15 ** (|#1| |#1| (-560))) (-15 * (|#1| |#1| (-403 (-560)))) (-15 * (|#1| (-403 (-560)) |#1|)) (-15 ** (|#1| |#1| (-755))) (-15 -2464 (|#1| |#1| (-755))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-909))) (-15 -2464 (|#1| |#1| (-909))) (-15 * (|#1| (-560) |#1|)) (-15 * (|#1| (-755) |#1|)) (-15 * (|#1| (-909) |#1|))) (-233)) (T -232)) -NIL -(-10 -8 (-15 -2464 (|#1| |#1| (-560))) (-15 ** (|#1| |#1| (-560))) (-15 * (|#1| |#1| (-403 (-560)))) (-15 * (|#1| (-403 (-560)) |#1|)) (-15 ** (|#1| |#1| (-755))) (-15 -2464 (|#1| |#1| (-755))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-909))) (-15 -2464 (|#1| |#1| (-909))) (-15 * (|#1| (-560) |#1|)) (-15 * (|#1| (-755) |#1|)) (-15 * (|#1| (-909) |#1|))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-2314 (((-3 $ "failed") $ $) 18)) (-4236 (($) 16 T CONST)) (-1823 (((-3 $ "failed") $) 33)) (-2642 (((-121) $) 30)) (-1291 (((-1135) $) 9)) (-1701 (($ $) 38)) (-4353 (((-1100) $) 10)) (-2801 (((-842) $) 11) (($ (-560)) 27) (($ (-403 (-560))) 43)) (-1751 (((-755)) 28)) (-2464 (($ $ (-909)) 25) (($ $ (-755)) 32) (($ $ (-560)) 39)) (-3304 (($) 17 T CONST)) (-1459 (($) 29 T CONST)) (-1653 (((-121) $ $) 6)) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 24) (($ $ (-755)) 31) (($ $ (-560)) 40)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 23) (($ (-403 (-560)) $) 42) (($ $ (-403 (-560))) 41))) -(((-233) (-1267)) (T -233)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-560)))) (-2464 (*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-560)))) (-1701 (*1 *1 *1) (-4 *1 (-233)))) -(-13 (-280) (-43 (-403 (-560))) (-10 -8 (-15 ** ($ $ (-560))) (-15 -2464 ($ $ (-560))) (-15 -1701 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-43 (-403 (-560))) . T) ((-105) . T) ((-120 (-403 (-560)) (-403 (-560))) . T) ((-120 $ $) . T) ((-137) . T) ((-600 (-842)) . T) ((-280) . T) ((-629 (-403 (-560))) . T) ((-629 $) . T) ((-699 (-403 (-560))) . T) ((-708) . T) ((-1045 (-403 (-560))) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1094) . T) ((-1082) . T)) -((-2601 (((-121) $ $) 18 (|has| |#1| (-1082)))) (-2981 ((|#1| $) 45)) (-1417 (($ $) 54)) (-3909 (((-121) $ (-755)) 8)) (-3119 ((|#1| $ |#1|) 36 (|has| $ (-6 -4506)))) (-2183 (($ $ $) 50 (|has| $ (-6 -4506)))) (-2288 (($ $ $) 49 (|has| $ (-6 -4506)))) (-2764 ((|#1| $ "value" |#1|) 37 (|has| $ (-6 -4506)))) (-4043 (($ $ (-626 $)) 38 (|has| $ (-6 -4506)))) (-4236 (($) 7 T CONST)) (-2745 (($ $) 53)) (-1981 (((-626 |#1|) $) 30 (|has| $ (-6 -4505)))) (-3971 (((-626 $) $) 47)) (-2420 (((-121) $ $) 39 (|has| |#1| (-1082)))) (-3747 (($ $) 52)) (-2122 (((-121) $ (-755)) 9)) (-2130 (((-626 |#1|) $) 29 (|has| $ (-6 -4505)))) (-2030 (((-121) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-3778 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#1| |#1|) $) 35)) (-3441 (((-121) $ (-755)) 10)) (-2173 (((-626 |#1|) $) 42)) (-3992 (((-121) $) 46)) (-1291 (((-1135) $) 22 (|has| |#1| (-1082)))) (-4139 ((|#1| $) 56)) (-1480 (($ $) 55)) (-4353 (((-1100) $) 21 (|has| |#1| (-1082)))) (-2865 (((-121) (-1 (-121) |#1|) $) 32 (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#1|))) 26 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-283 |#1|)) 25 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-626 |#1|) (-626 |#1|)) 23 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))))) (-2214 (((-121) $ $) 14)) (-4191 (((-121) $) 11)) (-3260 (($) 12)) (-2778 ((|#1| $ "value") 44)) (-1435 (((-560) $ $) 41)) (-3316 (((-121) $) 43)) (-4035 (((-755) (-1 (-121) |#1|) $) 31 (|has| $ (-6 -4505))) (((-755) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-2813 (($ $) 13)) (-3602 (($ $ $) 51 (|has| $ (-6 -4506)))) (-2801 (((-842) $) 20 (|has| |#1| (-1082)))) (-2853 (((-626 $) $) 48)) (-3761 (((-121) $ $) 40 (|has| |#1| (-1082)))) (-3656 (((-121) (-1 (-121) |#1|) $) 33 (|has| $ (-6 -4505)))) (-1653 (((-121) $ $) 19 (|has| |#1| (-1082)))) (-2271 (((-755) $) 6 (|has| $ (-6 -4505))))) -(((-234 |#1|) (-1267) (-1187)) (T -234)) -((-4139 (*1 *2 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1187)))) (-1480 (*1 *1 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1187)))) (-1417 (*1 *1 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1187)))) (-2745 (*1 *1 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1187)))) (-3747 (*1 *1 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1187)))) (-3602 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4506)) (-4 *1 (-234 *2)) (-4 *2 (-1187)))) (-2183 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4506)) (-4 *1 (-234 *2)) (-4 *2 (-1187)))) (-2288 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4506)) (-4 *1 (-234 *2)) (-4 *2 (-1187))))) -(-13 (-1002 |t#1|) (-10 -8 (-15 -4139 (|t#1| $)) (-15 -1480 ($ $)) (-15 -1417 ($ $)) (-15 -2745 ($ $)) (-15 -3747 ($ $)) (IF (|has| $ (-6 -4506)) (PROGN (-15 -3602 ($ $ $)) (-15 -2183 ($ $ $)) (-15 -2288 ($ $ $))) |noBranch|))) -(((-39) . T) ((-105) |has| |#1| (-1082)) ((-600 (-842)) |has| |#1| (-1082)) ((-298 |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))) ((-492 |#1|) . T) ((-515 |#1| |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))) ((-1002 |#1|) . T) ((-1082) |has| |#1| (-1082)) ((-1187) . T)) -((-2601 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-2981 ((|#1| $) NIL)) (-1886 ((|#1| $) NIL)) (-1417 (($ $) NIL)) (-2960 (((-1241) $ (-560) (-560)) NIL (|has| $ (-6 -4506)))) (-2435 (($ $ (-560)) NIL (|has| $ (-6 -4506)))) (-3189 (((-121) $) NIL (|has| |#1| (-834))) (((-121) (-1 (-121) |#1| |#1|) $) NIL)) (-4410 (($ $) NIL (-12 (|has| $ (-6 -4506)) (|has| |#1| (-834)))) (($ (-1 (-121) |#1| |#1|) $) NIL (|has| $ (-6 -4506)))) (-3743 (($ $) 10 (|has| |#1| (-834))) (($ (-1 (-121) |#1| |#1|) $) NIL)) (-3909 (((-121) $ (-755)) NIL)) (-3119 ((|#1| $ |#1|) NIL (|has| $ (-6 -4506)))) (-1741 (($ $ $) NIL (|has| $ (-6 -4506)))) (-1920 ((|#1| $ |#1|) NIL (|has| $ (-6 -4506)))) (-4133 ((|#1| $ |#1|) NIL (|has| $ (-6 -4506)))) (-2764 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4506))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4506))) (($ $ "rest" $) NIL (|has| $ (-6 -4506))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4506))) ((|#1| $ (-1202 (-560)) |#1|) NIL (|has| $ (-6 -4506))) ((|#1| $ (-560) |#1|) NIL (|has| $ (-6 -4506)))) (-4043 (($ $ (-626 $)) NIL (|has| $ (-6 -4506)))) (-3763 (($ (-1 (-121) |#1|) $) NIL)) (-3802 (($ (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-1603 ((|#1| $) NIL)) (-4236 (($) NIL T CONST)) (-4030 (($ $) NIL (|has| $ (-6 -4506)))) (-2883 (($ $) NIL)) (-2877 (($ $) NIL) (($ $ (-755)) NIL)) (-3568 (($ $) NIL (|has| |#1| (-1082)))) (-2868 (($ $) 7 (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-3561 (($ |#1| $) NIL (|has| |#1| (-1082))) (($ (-1 (-121) |#1|) $) NIL)) (-4310 (($ (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-2342 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4505))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4505))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-1746 ((|#1| $ (-560) |#1|) NIL (|has| $ (-6 -4506)))) (-1361 ((|#1| $ (-560)) NIL)) (-2737 (((-121) $) NIL)) (-2839 (((-560) |#1| $ (-560)) NIL (|has| |#1| (-1082))) (((-560) |#1| $) NIL (|has| |#1| (-1082))) (((-560) (-1 (-121) |#1|) $) NIL)) (-1981 (((-626 |#1|) $) NIL (|has| $ (-6 -4505)))) (-3971 (((-626 $) $) NIL)) (-2420 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-1721 (($ (-755) |#1|) NIL)) (-2122 (((-121) $ (-755)) NIL)) (-4099 (((-560) $) NIL (|has| (-560) (-834)))) (-4325 (($ $ $) NIL (|has| |#1| (-834)))) (-2037 (($ $ $) NIL (|has| |#1| (-834))) (($ (-1 (-121) |#1| |#1|) $ $) NIL)) (-2492 (($ $ $) NIL (|has| |#1| (-834))) (($ (-1 (-121) |#1| |#1|) $ $) NIL)) (-2130 (((-626 |#1|) $) NIL (|has| $ (-6 -4505)))) (-2030 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-2767 (((-560) $) NIL (|has| (-560) (-834)))) (-2501 (($ $ $) NIL (|has| |#1| (-834)))) (-3778 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2843 (($ |#1|) NIL)) (-3441 (((-121) $ (-755)) NIL)) (-2173 (((-626 |#1|) $) NIL)) (-3992 (((-121) $) NIL)) (-1291 (((-1135) $) NIL (|has| |#1| (-1082)))) (-4139 ((|#1| $) NIL) (($ $ (-755)) NIL)) (-4345 (($ $ $ (-560)) NIL) (($ |#1| $ (-560)) NIL)) (-4103 (($ $ $ (-560)) NIL) (($ |#1| $ (-560)) NIL)) (-1529 (((-626 (-560)) $) NIL)) (-1310 (((-121) (-560) $) NIL)) (-4353 (((-1100) $) NIL (|has| |#1| (-1082)))) (-2824 ((|#1| $) NIL) (($ $ (-755)) NIL)) (-3786 (((-3 |#1| "failed") (-1 (-121) |#1|) $) NIL)) (-3038 (($ $ |#1|) NIL (|has| $ (-6 -4506)))) (-2957 (((-121) $) NIL)) (-2865 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#1|))) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-283 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-626 |#1|) (-626 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))))) (-2214 (((-121) $ $) NIL)) (-1290 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-4460 (((-626 |#1|) $) NIL)) (-4191 (((-121) $) NIL)) (-3260 (($) NIL)) (-2778 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1202 (-560))) NIL) ((|#1| $ (-560)) NIL) ((|#1| $ (-560) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-755) $ "count") 16)) (-1435 (((-560) $ $) NIL)) (-4094 (($ $ (-1202 (-560))) NIL) (($ $ (-560)) NIL)) (-2949 (($ $ (-1202 (-560))) NIL) (($ $ (-560)) NIL)) (-4351 (($ (-626 |#1|)) 22)) (-3316 (((-121) $) NIL)) (-4432 (($ $) NIL)) (-2641 (($ $) NIL (|has| $ (-6 -4506)))) (-2751 (((-755) $) NIL)) (-4208 (($ $) NIL)) (-4035 (((-755) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505))) (((-755) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-4072 (($ $ $ (-560)) NIL (|has| $ (-6 -4506)))) (-2813 (($ $) NIL)) (-4255 (((-533) $) NIL (|has| |#1| (-601 (-533))))) (-4162 (($ (-626 |#1|)) NIL)) (-3602 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2849 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-626 $)) NIL) (($ $ |#1|) NIL)) (-2801 (($ (-626 |#1|)) 17) (((-626 |#1|) $) 18) (((-842) $) 21 (|has| |#1| (-1082)))) (-2853 (((-626 $) $) NIL)) (-3761 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-3656 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-1691 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1675 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1653 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-1683 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1667 (((-121) $ $) NIL (|has| |#1| (-834)))) (-2271 (((-755) $) 14 (|has| $ (-6 -4505))))) -(((-235 |#1|) (-13 (-650 |#1|) (-10 -8 (-15 -2801 ($ (-626 |#1|))) (-15 -2801 ((-626 |#1|) $)) (-15 -4351 ($ (-626 |#1|))) (-15 -2778 ($ $ "unique")) (-15 -2778 ($ $ "sort")) (-15 -2778 ((-755) $ "count")))) (-834)) (T -235)) -((-2801 (*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-834)) (-5 *1 (-235 *3)))) (-2801 (*1 *2 *1) (-12 (-5 *2 (-626 *3)) (-5 *1 (-235 *3)) (-4 *3 (-834)))) (-4351 (*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-834)) (-5 *1 (-235 *3)))) (-2778 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-235 *3)) (-4 *3 (-834)))) (-2778 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-235 *3)) (-4 *3 (-834)))) (-2778 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-755)) (-5 *1 (-235 *4)) (-4 *4 (-834))))) -(-13 (-650 |#1|) (-10 -8 (-15 -2801 ($ (-626 |#1|))) (-15 -2801 ((-626 |#1|) $)) (-15 -4351 ($ (-626 |#1|))) (-15 -2778 ($ $ "unique")) (-15 -2778 ($ $ "sort")) (-15 -2778 ((-755) $ "count")))) -((-4430 (((-3 (-755) "failed") |#1| |#1| (-755)) 26))) -(((-236 |#1|) (-10 -7 (-15 -4430 ((-3 (-755) "failed") |#1| |#1| (-755)))) (-13 (-708) (-364) (-10 -7 (-15 ** (|#1| |#1| (-560)))))) (T -236)) -((-4430 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-755)) (-4 *3 (-13 (-708) (-364) (-10 -7 (-15 ** (*3 *3 (-560)))))) (-5 *1 (-236 *3))))) -(-10 -7 (-15 -4430 ((-3 (-755) "failed") |#1| |#1| (-755)))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-1654 (((-626 (-844 |#1|)) $) NIL)) (-1593 (((-1149 $) $ (-844 |#1|)) NIL) (((-1149 |#2|) $) NIL)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL (|has| |#2| (-550)))) (-1350 (($ $) NIL (|has| |#2| (-550)))) (-3376 (((-121) $) NIL (|has| |#2| (-550)))) (-1697 (((-755) $) NIL) (((-755) $ (-626 (-844 |#1|))) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-1776 (((-414 (-1149 $)) (-1149 $)) NIL (|has| |#2| (-896)))) (-3065 (($ $) NIL (|has| |#2| (-447)))) (-2953 (((-414 $) $) NIL (|has| |#2| (-447)))) (-1887 (((-3 (-626 (-1149 $)) "failed") (-626 (-1149 $)) (-1149 $)) NIL (|has| |#2| (-896)))) (-4236 (($) NIL T CONST)) (-1473 (((-3 |#2| "failed") $) NIL) (((-3 (-403 (-560)) "failed") $) NIL (|has| |#2| (-1029 (-403 (-560))))) (((-3 (-560) "failed") $) NIL (|has| |#2| (-1029 (-560)))) (((-3 (-844 |#1|) "failed") $) NIL)) (-3001 ((|#2| $) NIL) (((-403 (-560)) $) NIL (|has| |#2| (-1029 (-403 (-560))))) (((-560) $) NIL (|has| |#2| (-1029 (-560)))) (((-844 |#1|) $) NIL)) (-1979 (($ $ $ (-844 |#1|)) NIL (|has| |#2| (-170)))) (-1288 (($ $ (-626 (-560))) NIL)) (-1750 (($ $) NIL)) (-2616 (((-671 (-560)) (-671 $)) NIL (|has| |#2| (-622 (-560)))) (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) NIL (|has| |#2| (-622 (-560)))) (((-2 (|:| -3818 (-671 |#2|)) (|:| |vec| (-1236 |#2|))) (-671 $) (-1236 $)) NIL) (((-671 |#2|) (-671 $)) NIL)) (-1823 (((-3 $ "failed") $) NIL)) (-3605 (($ $) NIL (|has| |#2| (-447))) (($ $ (-844 |#1|)) NIL (|has| |#2| (-447)))) (-1743 (((-626 $) $) NIL)) (-3319 (((-121) $) NIL (|has| |#2| (-896)))) (-1456 (($ $ |#2| (-228 (-2271 |#1|) (-755)) $) NIL)) (-2399 (((-876 (-375) $) $ (-879 (-375)) (-876 (-375) $)) NIL (-12 (|has| (-844 |#1|) (-873 (-375))) (|has| |#2| (-873 (-375))))) (((-876 (-560) $) $ (-879 (-560)) (-876 (-560) $)) NIL (-12 (|has| (-844 |#1|) (-873 (-560))) (|has| |#2| (-873 (-560)))))) (-2642 (((-121) $) NIL)) (-3235 (((-755) $) NIL)) (-1647 (($ (-1149 |#2|) (-844 |#1|)) NIL) (($ (-1149 $) (-844 |#1|)) NIL)) (-1854 (((-626 $) $) NIL)) (-1814 (((-121) $) NIL)) (-1637 (($ |#2| (-228 (-2271 |#1|) (-755))) NIL) (($ $ (-844 |#1|) (-755)) NIL) (($ $ (-626 (-844 |#1|)) (-626 (-755))) NIL)) (-2923 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $ (-844 |#1|)) NIL)) (-3693 (((-228 (-2271 |#1|) (-755)) $) NIL) (((-755) $ (-844 |#1|)) NIL) (((-626 (-755)) $ (-626 (-844 |#1|))) NIL)) (-4325 (($ $ $) NIL (|has| |#2| (-834)))) (-2501 (($ $ $) NIL (|has| |#2| (-834)))) (-1504 (($ (-1 (-228 (-2271 |#1|) (-755)) (-228 (-2271 |#1|) (-755))) $) NIL)) (-2803 (($ (-1 |#2| |#2|) $) NIL)) (-2101 (((-3 (-844 |#1|) "failed") $) NIL)) (-1726 (($ $) NIL)) (-1735 ((|#2| $) NIL)) (-2582 (($ (-626 $)) NIL (|has| |#2| (-447))) (($ $ $) NIL (|has| |#2| (-447)))) (-1291 (((-1135) $) NIL)) (-3665 (((-3 (-626 $) "failed") $) NIL)) (-2327 (((-3 (-626 $) "failed") $) NIL)) (-2913 (((-3 (-2 (|:| |var| (-844 |#1|)) (|:| -4034 (-755))) "failed") $) NIL)) (-4353 (((-1100) $) NIL)) (-1704 (((-121) $) NIL)) (-1711 ((|#2| $) NIL)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL (|has| |#2| (-447)))) (-4440 (($ (-626 $)) NIL (|has| |#2| (-447))) (($ $ $) NIL (|has| |#2| (-447)))) (-3817 (((-414 (-1149 $)) (-1149 $)) NIL (|has| |#2| (-896)))) (-3032 (((-414 (-1149 $)) (-1149 $)) NIL (|has| |#2| (-896)))) (-1601 (((-414 $) $) NIL (|has| |#2| (-896)))) (-2336 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-550))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-550)))) (-4450 (($ $ (-626 (-283 $))) NIL) (($ $ (-283 $)) NIL) (($ $ $ $) NIL) (($ $ (-626 $) (-626 $)) NIL) (($ $ (-844 |#1|) |#2|) NIL) (($ $ (-626 (-844 |#1|)) (-626 |#2|)) NIL) (($ $ (-844 |#1|) $) NIL) (($ $ (-626 (-844 |#1|)) (-626 $)) NIL)) (-4069 (($ $ (-844 |#1|)) NIL (|has| |#2| (-170)))) (-2443 (($ $ (-844 |#1|)) NIL) (($ $ (-626 (-844 |#1|))) NIL) (($ $ (-844 |#1|) (-755)) NIL) (($ $ (-626 (-844 |#1|)) (-626 (-755))) NIL)) (-3662 (((-228 (-2271 |#1|) (-755)) $) NIL) (((-755) $ (-844 |#1|)) NIL) (((-626 (-755)) $ (-626 (-844 |#1|))) NIL)) (-4255 (((-879 (-375)) $) NIL (-12 (|has| (-844 |#1|) (-601 (-879 (-375)))) (|has| |#2| (-601 (-879 (-375)))))) (((-879 (-560)) $) NIL (-12 (|has| (-844 |#1|) (-601 (-879 (-560)))) (|has| |#2| (-601 (-879 (-560)))))) (((-533) $) NIL (-12 (|has| (-844 |#1|) (-601 (-533))) (|has| |#2| (-601 (-533)))))) (-1896 ((|#2| $) NIL (|has| |#2| (-447))) (($ $ (-844 |#1|)) NIL (|has| |#2| (-447)))) (-3248 (((-3 (-1236 $) "failed") (-671 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-896))))) (-2801 (((-842) $) NIL) (($ (-560)) NIL) (($ |#2|) NIL) (($ (-844 |#1|)) NIL) (($ (-403 (-560))) NIL (-2318 (|has| |#2| (-43 (-403 (-560)))) (|has| |#2| (-1029 (-403 (-560)))))) (($ $) NIL (|has| |#2| (-550)))) (-2423 (((-626 |#2|) $) NIL)) (-2636 ((|#2| $ (-228 (-2271 |#1|) (-755))) NIL) (($ $ (-844 |#1|) (-755)) NIL) (($ $ (-626 (-844 |#1|)) (-626 (-755))) NIL)) (-2272 (((-3 $ "failed") $) NIL (-2318 (-12 (|has| $ (-146)) (|has| |#2| (-896))) (|has| |#2| (-146))))) (-1751 (((-755)) NIL)) (-3487 (($ $ $ (-755)) NIL (|has| |#2| (-170)))) (-2328 (((-121) $ $) NIL (|has| |#2| (-550)))) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (-3304 (($) NIL T CONST)) (-1459 (($) NIL T CONST)) (-2500 (($ $ (-844 |#1|)) NIL) (($ $ (-626 (-844 |#1|))) NIL) (($ $ (-844 |#1|) (-755)) NIL) (($ $ (-626 (-844 |#1|)) (-626 (-755))) NIL)) (-1691 (((-121) $ $) NIL (|has| |#2| (-834)))) (-1675 (((-121) $ $) NIL (|has| |#2| (-834)))) (-1653 (((-121) $ $) NIL)) (-1683 (((-121) $ $) NIL (|has| |#2| (-834)))) (-1667 (((-121) $ $) NIL (|has| |#2| (-834)))) (-1733 (($ $ |#2|) NIL (|has| |#2| (-359)))) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) NIL)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) NIL) (($ $ (-403 (-560))) NIL (|has| |#2| (-43 (-403 (-560))))) (($ (-403 (-560)) $) NIL (|has| |#2| (-43 (-403 (-560))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-237 |#1| |#2|) (-13 (-942 |#2| (-228 (-2271 |#1|) (-755)) (-844 |#1|)) (-10 -8 (-15 -1288 ($ $ (-626 (-560)))))) (-626 (-1153)) (-1039)) (T -237)) -((-1288 (*1 *1 *1 *2) (-12 (-5 *2 (-626 (-560))) (-5 *1 (-237 *3 *4)) (-14 *3 (-626 (-1153))) (-4 *4 (-1039))))) -(-13 (-942 |#2| (-228 (-2271 |#1|) (-755)) (-844 |#1|)) (-10 -8 (-15 -1288 ($ $ (-626 (-560)))))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-4259 (($ (-909)) NIL (|has| |#4| (-1039)))) (-2960 (((-1241) $ (-560) (-560)) NIL (|has| $ (-6 -4506)))) (-2280 (($ $ $) NIL (|has| |#4| (-780)))) (-2314 (((-3 $ "failed") $ $) NIL)) (-3909 (((-121) $ (-755)) NIL)) (-2912 (((-755)) NIL (|has| |#4| (-364)))) (-4235 (((-560) $) NIL (|has| |#4| (-832)))) (-2764 ((|#4| $ (-560) |#4|) NIL (|has| $ (-6 -4506)))) (-4236 (($) NIL T CONST)) (-1473 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1082))) (((-3 (-560) "failed") $) NIL (-12 (|has| |#4| (-1029 (-560))) (|has| |#4| (-1082)))) (((-3 (-403 (-560)) "failed") $) NIL (-12 (|has| |#4| (-1029 (-403 (-560)))) (|has| |#4| (-1082))))) (-3001 ((|#4| $) NIL (|has| |#4| (-1082))) (((-560) $) NIL (-12 (|has| |#4| (-1029 (-560))) (|has| |#4| (-1082)))) (((-403 (-560)) $) NIL (-12 (|has| |#4| (-1029 (-403 (-560)))) (|has| |#4| (-1082))))) (-2616 (((-2 (|:| -3818 (-671 |#4|)) (|:| |vec| (-1236 |#4|))) (-671 $) (-1236 $)) NIL (|has| |#4| (-1039))) (((-671 |#4|) (-671 $)) NIL (|has| |#4| (-1039))) (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) NIL (-12 (|has| |#4| (-622 (-560))) (|has| |#4| (-1039)))) (((-671 (-560)) (-671 $)) NIL (-12 (|has| |#4| (-622 (-560))) (|has| |#4| (-1039))))) (-1823 (((-3 $ "failed") $) NIL (-2318 (-12 (|has| |#4| (-221)) (|has| |#4| (-1039))) (-12 (|has| |#4| (-622 (-560))) (|has| |#4| (-1039))) (|has| |#4| (-708)) (-12 (|has| |#4| (-887 (-1153))) (|has| |#4| (-1039)))))) (-1666 (($) NIL (|has| |#4| (-364)))) (-1746 ((|#4| $ (-560) |#4|) NIL (|has| $ (-6 -4506)))) (-1361 ((|#4| $ (-560)) NIL)) (-1786 (((-121) $) NIL (|has| |#4| (-832)))) (-1981 (((-626 |#4|) $) NIL (|has| $ (-6 -4505)))) (-2642 (((-121) $) NIL (-2318 (-12 (|has| |#4| (-221)) (|has| |#4| (-1039))) (-12 (|has| |#4| (-622 (-560))) (|has| |#4| (-1039))) (|has| |#4| (-708)) (-12 (|has| |#4| (-887 (-1153))) (|has| |#4| (-1039)))))) (-2187 (((-121) $) NIL (|has| |#4| (-832)))) (-2122 (((-121) $ (-755)) NIL)) (-4099 (((-560) $) NIL (|has| (-560) (-834)))) (-4325 (($ $ $) NIL (-2318 (|has| |#4| (-780)) (|has| |#4| (-832))))) (-2130 (((-626 |#4|) $) NIL (|has| $ (-6 -4505)))) (-2030 (((-121) |#4| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#4| (-1082))))) (-2767 (((-560) $) NIL (|has| (-560) (-834)))) (-2501 (($ $ $) NIL (-2318 (|has| |#4| (-780)) (|has| |#4| (-832))))) (-3778 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#4| |#4|) $) NIL)) (-3142 (((-909) $) NIL (|has| |#4| (-364)))) (-3441 (((-121) $ (-755)) NIL)) (-1291 (((-1135) $) NIL)) (-1529 (((-626 (-560)) $) NIL)) (-1310 (((-121) (-560) $) NIL)) (-1330 (($ (-909)) NIL (|has| |#4| (-364)))) (-4353 (((-1100) $) NIL)) (-2824 ((|#4| $) NIL (|has| (-560) (-834)))) (-3038 (($ $ |#4|) NIL (|has| $ (-6 -4506)))) (-2865 (((-121) (-1 (-121) |#4|) $) NIL (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#4|))) NIL (-12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082)))) (($ $ (-283 |#4|)) NIL (-12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082)))) (($ $ (-626 |#4|) (-626 |#4|)) NIL (-12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082))))) (-2214 (((-121) $ $) NIL)) (-1290 (((-121) |#4| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#4| (-1082))))) (-4460 (((-626 |#4|) $) NIL)) (-4191 (((-121) $) NIL)) (-3260 (($) NIL)) (-2778 ((|#4| $ (-560) |#4|) NIL) ((|#4| $ (-560)) 12)) (-2372 ((|#4| $ $) NIL (|has| |#4| (-1039)))) (-1621 (($ (-1236 |#4|)) NIL)) (-4016 (((-139)) NIL (|has| |#4| (-359)))) (-2443 (($ $ (-1 |#4| |#4|) (-755)) NIL (|has| |#4| (-1039))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1039))) (($ $ (-626 (-1153)) (-626 (-755))) NIL (-12 (|has| |#4| (-887 (-1153))) (|has| |#4| (-1039)))) (($ $ (-1153) (-755)) NIL (-12 (|has| |#4| (-887 (-1153))) (|has| |#4| (-1039)))) (($ $ (-626 (-1153))) NIL (-12 (|has| |#4| (-887 (-1153))) (|has| |#4| (-1039)))) (($ $ (-1153)) NIL (-12 (|has| |#4| (-887 (-1153))) (|has| |#4| (-1039)))) (($ $ (-755)) NIL (-12 (|has| |#4| (-221)) (|has| |#4| (-1039)))) (($ $) NIL (-12 (|has| |#4| (-221)) (|has| |#4| (-1039))))) (-4035 (((-755) (-1 (-121) |#4|) $) NIL (|has| $ (-6 -4505))) (((-755) |#4| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#4| (-1082))))) (-2813 (($ $) NIL)) (-2801 (((-1236 |#4|) $) NIL) (((-842) $) NIL) (($ |#4|) NIL (|has| |#4| (-1082))) (($ (-560)) NIL (-2318 (-12 (|has| |#4| (-1029 (-560))) (|has| |#4| (-1082))) (|has| |#4| (-1039)))) (($ (-403 (-560))) NIL (-12 (|has| |#4| (-1029 (-403 (-560)))) (|has| |#4| (-1082))))) (-1751 (((-755)) NIL (|has| |#4| (-1039)))) (-3656 (((-121) (-1 (-121) |#4|) $) NIL (|has| $ (-6 -4505)))) (-1822 (($ $) NIL (|has| |#4| (-832)))) (-2464 (($ $ (-755)) NIL (-2318 (-12 (|has| |#4| (-221)) (|has| |#4| (-1039))) (-12 (|has| |#4| (-622 (-560))) (|has| |#4| (-1039))) (|has| |#4| (-708)) (-12 (|has| |#4| (-887 (-1153))) (|has| |#4| (-1039))))) (($ $ (-909)) NIL (-2318 (-12 (|has| |#4| (-221)) (|has| |#4| (-1039))) (-12 (|has| |#4| (-622 (-560))) (|has| |#4| (-1039))) (|has| |#4| (-708)) (-12 (|has| |#4| (-887 (-1153))) (|has| |#4| (-1039)))))) (-3304 (($) NIL T CONST)) (-1459 (($) NIL (-2318 (-12 (|has| |#4| (-221)) (|has| |#4| (-1039))) (-12 (|has| |#4| (-622 (-560))) (|has| |#4| (-1039))) (|has| |#4| (-708)) (-12 (|has| |#4| (-887 (-1153))) (|has| |#4| (-1039)))) CONST)) (-2500 (($ $ (-1 |#4| |#4|) (-755)) NIL (|has| |#4| (-1039))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1039))) (($ $ (-626 (-1153)) (-626 (-755))) NIL (-12 (|has| |#4| (-887 (-1153))) (|has| |#4| (-1039)))) (($ $ (-1153) (-755)) NIL (-12 (|has| |#4| (-887 (-1153))) (|has| |#4| (-1039)))) (($ $ (-626 (-1153))) NIL (-12 (|has| |#4| (-887 (-1153))) (|has| |#4| (-1039)))) (($ $ (-1153)) NIL (-12 (|has| |#4| (-887 (-1153))) (|has| |#4| (-1039)))) (($ $ (-755)) NIL (-12 (|has| |#4| (-221)) (|has| |#4| (-1039)))) (($ $) NIL (-12 (|has| |#4| (-221)) (|has| |#4| (-1039))))) (-1691 (((-121) $ $) NIL (-2318 (|has| |#4| (-780)) (|has| |#4| (-832))))) (-1675 (((-121) $ $) NIL (-2318 (|has| |#4| (-780)) (|has| |#4| (-832))))) (-1653 (((-121) $ $) NIL)) (-1683 (((-121) $ $) NIL (-2318 (|has| |#4| (-780)) (|has| |#4| (-832))))) (-1667 (((-121) $ $) NIL (-2318 (|has| |#4| (-780)) (|has| |#4| (-832))))) (-1733 (($ $ |#4|) NIL (|has| |#4| (-359)))) (-1725 (($ $ $) NIL) (($ $) NIL)) (-1716 (($ $ $) NIL)) (** (($ $ (-755)) NIL (-2318 (-12 (|has| |#4| (-221)) (|has| |#4| (-1039))) (-12 (|has| |#4| (-622 (-560))) (|has| |#4| (-1039))) (|has| |#4| (-708)) (-12 (|has| |#4| (-887 (-1153))) (|has| |#4| (-1039))))) (($ $ (-909)) NIL (-2318 (-12 (|has| |#4| (-221)) (|has| |#4| (-1039))) (-12 (|has| |#4| (-622 (-560))) (|has| |#4| (-1039))) (|has| |#4| (-708)) (-12 (|has| |#4| (-887 (-1153))) (|has| |#4| (-1039)))))) (* (($ |#2| $) 14) (($ (-560) $) NIL) (($ (-755) $) NIL) (($ (-909) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-1039))) (($ |#4| $) NIL (|has| |#4| (-1039))) (($ $ $) NIL (-2318 (-12 (|has| |#4| (-221)) (|has| |#4| (-1039))) (-12 (|has| |#4| (-622 (-560))) (|has| |#4| (-1039))) (|has| |#4| (-708)) (-12 (|has| |#4| (-887 (-1153))) (|has| |#4| (-1039)))))) (-2271 (((-755) $) NIL (|has| $ (-6 -4505))))) -(((-238 |#1| |#2| |#3| |#4|) (-13 (-226 |#1| |#4|) (-629 |#2|) (-629 |#3|)) (-909) (-1039) (-1103 |#1| |#2| (-228 |#1| |#2|) (-228 |#1| |#2|)) (-629 |#2|)) (T -238)) -NIL -(-13 (-226 |#1| |#4|) (-629 |#2|) (-629 |#3|)) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-4259 (($ (-909)) NIL (|has| |#3| (-1039)))) (-2960 (((-1241) $ (-560) (-560)) NIL (|has| $ (-6 -4506)))) (-2280 (($ $ $) NIL (|has| |#3| (-780)))) (-2314 (((-3 $ "failed") $ $) NIL)) (-3909 (((-121) $ (-755)) NIL)) (-2912 (((-755)) NIL (|has| |#3| (-364)))) (-4235 (((-560) $) NIL (|has| |#3| (-832)))) (-2764 ((|#3| $ (-560) |#3|) NIL (|has| $ (-6 -4506)))) (-4236 (($) NIL T CONST)) (-1473 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1082))) (((-3 (-560) "failed") $) NIL (-12 (|has| |#3| (-1029 (-560))) (|has| |#3| (-1082)))) (((-3 (-403 (-560)) "failed") $) NIL (-12 (|has| |#3| (-1029 (-403 (-560)))) (|has| |#3| (-1082))))) (-3001 ((|#3| $) NIL (|has| |#3| (-1082))) (((-560) $) NIL (-12 (|has| |#3| (-1029 (-560))) (|has| |#3| (-1082)))) (((-403 (-560)) $) NIL (-12 (|has| |#3| (-1029 (-403 (-560)))) (|has| |#3| (-1082))))) (-2616 (((-2 (|:| -3818 (-671 |#3|)) (|:| |vec| (-1236 |#3|))) (-671 $) (-1236 $)) NIL (|has| |#3| (-1039))) (((-671 |#3|) (-671 $)) NIL (|has| |#3| (-1039))) (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) NIL (-12 (|has| |#3| (-622 (-560))) (|has| |#3| (-1039)))) (((-671 (-560)) (-671 $)) NIL (-12 (|has| |#3| (-622 (-560))) (|has| |#3| (-1039))))) (-1823 (((-3 $ "failed") $) NIL (-2318 (-12 (|has| |#3| (-221)) (|has| |#3| (-1039))) (-12 (|has| |#3| (-622 (-560))) (|has| |#3| (-1039))) (|has| |#3| (-708)) (-12 (|has| |#3| (-887 (-1153))) (|has| |#3| (-1039)))))) (-1666 (($) NIL (|has| |#3| (-364)))) (-1746 ((|#3| $ (-560) |#3|) NIL (|has| $ (-6 -4506)))) (-1361 ((|#3| $ (-560)) NIL)) (-1786 (((-121) $) NIL (|has| |#3| (-832)))) (-1981 (((-626 |#3|) $) NIL (|has| $ (-6 -4505)))) (-2642 (((-121) $) NIL (-2318 (-12 (|has| |#3| (-221)) (|has| |#3| (-1039))) (-12 (|has| |#3| (-622 (-560))) (|has| |#3| (-1039))) (|has| |#3| (-708)) (-12 (|has| |#3| (-887 (-1153))) (|has| |#3| (-1039)))))) (-2187 (((-121) $) NIL (|has| |#3| (-832)))) (-2122 (((-121) $ (-755)) NIL)) (-4099 (((-560) $) NIL (|has| (-560) (-834)))) (-4325 (($ $ $) NIL (-2318 (|has| |#3| (-780)) (|has| |#3| (-832))))) (-2130 (((-626 |#3|) $) NIL (|has| $ (-6 -4505)))) (-2030 (((-121) |#3| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#3| (-1082))))) (-2767 (((-560) $) NIL (|has| (-560) (-834)))) (-2501 (($ $ $) NIL (-2318 (|has| |#3| (-780)) (|has| |#3| (-832))))) (-3778 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#3| |#3|) $) NIL)) (-3142 (((-909) $) NIL (|has| |#3| (-364)))) (-3441 (((-121) $ (-755)) NIL)) (-1291 (((-1135) $) NIL)) (-1529 (((-626 (-560)) $) NIL)) (-1310 (((-121) (-560) $) NIL)) (-1330 (($ (-909)) NIL (|has| |#3| (-364)))) (-4353 (((-1100) $) NIL)) (-2824 ((|#3| $) NIL (|has| (-560) (-834)))) (-3038 (($ $ |#3|) NIL (|has| $ (-6 -4506)))) (-2865 (((-121) (-1 (-121) |#3|) $) NIL (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#3|))) NIL (-12 (|has| |#3| (-298 |#3|)) (|has| |#3| (-1082)))) (($ $ (-283 |#3|)) NIL (-12 (|has| |#3| (-298 |#3|)) (|has| |#3| (-1082)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-298 |#3|)) (|has| |#3| (-1082)))) (($ $ (-626 |#3|) (-626 |#3|)) NIL (-12 (|has| |#3| (-298 |#3|)) (|has| |#3| (-1082))))) (-2214 (((-121) $ $) NIL)) (-1290 (((-121) |#3| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#3| (-1082))))) (-4460 (((-626 |#3|) $) NIL)) (-4191 (((-121) $) NIL)) (-3260 (($) NIL)) (-2778 ((|#3| $ (-560) |#3|) NIL) ((|#3| $ (-560)) 11)) (-2372 ((|#3| $ $) NIL (|has| |#3| (-1039)))) (-1621 (($ (-1236 |#3|)) NIL)) (-4016 (((-139)) NIL (|has| |#3| (-359)))) (-2443 (($ $ (-1 |#3| |#3|) (-755)) NIL (|has| |#3| (-1039))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1039))) (($ $ (-626 (-1153)) (-626 (-755))) NIL (-12 (|has| |#3| (-887 (-1153))) (|has| |#3| (-1039)))) (($ $ (-1153) (-755)) NIL (-12 (|has| |#3| (-887 (-1153))) (|has| |#3| (-1039)))) (($ $ (-626 (-1153))) NIL (-12 (|has| |#3| (-887 (-1153))) (|has| |#3| (-1039)))) (($ $ (-1153)) NIL (-12 (|has| |#3| (-887 (-1153))) (|has| |#3| (-1039)))) (($ $ (-755)) NIL (-12 (|has| |#3| (-221)) (|has| |#3| (-1039)))) (($ $) NIL (-12 (|has| |#3| (-221)) (|has| |#3| (-1039))))) (-4035 (((-755) (-1 (-121) |#3|) $) NIL (|has| $ (-6 -4505))) (((-755) |#3| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#3| (-1082))))) (-2813 (($ $) NIL)) (-2801 (((-1236 |#3|) $) NIL) (((-842) $) NIL) (($ |#3|) NIL (|has| |#3| (-1082))) (($ (-560)) NIL (-2318 (-12 (|has| |#3| (-1029 (-560))) (|has| |#3| (-1082))) (|has| |#3| (-1039)))) (($ (-403 (-560))) NIL (-12 (|has| |#3| (-1029 (-403 (-560)))) (|has| |#3| (-1082))))) (-1751 (((-755)) NIL (|has| |#3| (-1039)))) (-3656 (((-121) (-1 (-121) |#3|) $) NIL (|has| $ (-6 -4505)))) (-1822 (($ $) NIL (|has| |#3| (-832)))) (-2464 (($ $ (-755)) NIL (-2318 (-12 (|has| |#3| (-221)) (|has| |#3| (-1039))) (-12 (|has| |#3| (-622 (-560))) (|has| |#3| (-1039))) (|has| |#3| (-708)) (-12 (|has| |#3| (-887 (-1153))) (|has| |#3| (-1039))))) (($ $ (-909)) NIL (-2318 (-12 (|has| |#3| (-221)) (|has| |#3| (-1039))) (-12 (|has| |#3| (-622 (-560))) (|has| |#3| (-1039))) (|has| |#3| (-708)) (-12 (|has| |#3| (-887 (-1153))) (|has| |#3| (-1039)))))) (-3304 (($) NIL T CONST)) (-1459 (($) NIL (-2318 (-12 (|has| |#3| (-221)) (|has| |#3| (-1039))) (-12 (|has| |#3| (-622 (-560))) (|has| |#3| (-1039))) (|has| |#3| (-708)) (-12 (|has| |#3| (-887 (-1153))) (|has| |#3| (-1039)))) CONST)) (-2500 (($ $ (-1 |#3| |#3|) (-755)) NIL (|has| |#3| (-1039))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1039))) (($ $ (-626 (-1153)) (-626 (-755))) NIL (-12 (|has| |#3| (-887 (-1153))) (|has| |#3| (-1039)))) (($ $ (-1153) (-755)) NIL (-12 (|has| |#3| (-887 (-1153))) (|has| |#3| (-1039)))) (($ $ (-626 (-1153))) NIL (-12 (|has| |#3| (-887 (-1153))) (|has| |#3| (-1039)))) (($ $ (-1153)) NIL (-12 (|has| |#3| (-887 (-1153))) (|has| |#3| (-1039)))) (($ $ (-755)) NIL (-12 (|has| |#3| (-221)) (|has| |#3| (-1039)))) (($ $) NIL (-12 (|has| |#3| (-221)) (|has| |#3| (-1039))))) (-1691 (((-121) $ $) NIL (-2318 (|has| |#3| (-780)) (|has| |#3| (-832))))) (-1675 (((-121) $ $) NIL (-2318 (|has| |#3| (-780)) (|has| |#3| (-832))))) (-1653 (((-121) $ $) NIL)) (-1683 (((-121) $ $) NIL (-2318 (|has| |#3| (-780)) (|has| |#3| (-832))))) (-1667 (((-121) $ $) NIL (-2318 (|has| |#3| (-780)) (|has| |#3| (-832))))) (-1733 (($ $ |#3|) NIL (|has| |#3| (-359)))) (-1725 (($ $ $) NIL) (($ $) NIL)) (-1716 (($ $ $) NIL)) (** (($ $ (-755)) NIL (-2318 (-12 (|has| |#3| (-221)) (|has| |#3| (-1039))) (-12 (|has| |#3| (-622 (-560))) (|has| |#3| (-1039))) (|has| |#3| (-708)) (-12 (|has| |#3| (-887 (-1153))) (|has| |#3| (-1039))))) (($ $ (-909)) NIL (-2318 (-12 (|has| |#3| (-221)) (|has| |#3| (-1039))) (-12 (|has| |#3| (-622 (-560))) (|has| |#3| (-1039))) (|has| |#3| (-708)) (-12 (|has| |#3| (-887 (-1153))) (|has| |#3| (-1039)))))) (* (($ |#2| $) 13) (($ (-560) $) NIL) (($ (-755) $) NIL) (($ (-909) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-1039))) (($ |#3| $) NIL (|has| |#3| (-1039))) (($ $ $) NIL (-2318 (-12 (|has| |#3| (-221)) (|has| |#3| (-1039))) (-12 (|has| |#3| (-622 (-560))) (|has| |#3| (-1039))) (|has| |#3| (-708)) (-12 (|has| |#3| (-887 (-1153))) (|has| |#3| (-1039)))))) (-2271 (((-755) $) NIL (|has| $ (-6 -4505))))) -(((-239 |#1| |#2| |#3|) (-13 (-226 |#1| |#3|) (-629 |#2|)) (-755) (-1039) (-629 |#2|)) (T -239)) -NIL -(-13 (-226 |#1| |#3|) (-629 |#2|)) -((-2402 (((-626 (-755)) $) 47) (((-626 (-755)) $ |#3|) 50)) (-1400 (((-755) $) 49) (((-755) $ |#3|) 52)) (-1278 (($ $) 65)) (-1473 (((-3 |#2| "failed") $) NIL) (((-3 (-403 (-560)) "failed") $) NIL) (((-3 (-560) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 72)) (-3504 (((-755) $ |#3|) 39) (((-755) $) 36)) (-4340 (((-1 $ (-755)) |#3|) 15) (((-1 $ (-755)) $) 77)) (-2263 ((|#4| $) 58)) (-3940 (((-121) $) 56)) (-2006 (($ $) 64)) (-4450 (($ $ (-626 (-283 $))) 96) (($ $ (-283 $)) NIL) (($ $ $ $) NIL) (($ $ (-626 $) (-626 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-626 |#4|) (-626 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-626 |#4|) (-626 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-626 |#3|) (-626 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-626 |#3|) (-626 |#2|)) 84)) (-2443 (($ $ |#4|) NIL) (($ $ (-626 |#4|)) NIL) (($ $ |#4| (-755)) NIL) (($ $ (-626 |#4|) (-626 (-755))) NIL) (($ $) NIL) (($ $ (-755)) NIL) (($ $ (-1153)) NIL) (($ $ (-626 (-1153))) NIL) (($ $ (-1153) (-755)) NIL) (($ $ (-626 (-1153)) (-626 (-755))) NIL) (($ $ (-1 |#2| |#2|) (-755)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-1339 (((-626 |#3|) $) 75)) (-3662 ((|#5| $) NIL) (((-755) $ |#4|) NIL) (((-626 (-755)) $ (-626 |#4|)) NIL) (((-755) $ |#3|) 44)) (-2801 (((-842) $) NIL) (($ (-560)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-403 (-560))) NIL) (($ $) NIL))) -(((-240 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2801 (|#1| |#1|)) (-15 -2801 (|#1| (-403 (-560)))) (-15 -4450 (|#1| |#1| (-626 |#3|) (-626 |#2|))) (-15 -4450 (|#1| |#1| |#3| |#2|)) (-15 -4450 (|#1| |#1| (-626 |#3|) (-626 |#1|))) (-15 -4450 (|#1| |#1| |#3| |#1|)) (-15 -4340 ((-1 |#1| (-755)) |#1|)) (-15 -1278 (|#1| |#1|)) (-15 -2006 (|#1| |#1|)) (-15 -2263 (|#4| |#1|)) (-15 -3940 ((-121) |#1|)) (-15 -1400 ((-755) |#1| |#3|)) (-15 -2402 ((-626 (-755)) |#1| |#3|)) (-15 -1400 ((-755) |#1|)) (-15 -2402 ((-626 (-755)) |#1|)) (-15 -3662 ((-755) |#1| |#3|)) (-15 -3504 ((-755) |#1|)) (-15 -3504 ((-755) |#1| |#3|)) (-15 -1339 ((-626 |#3|) |#1|)) (-15 -4340 ((-1 |#1| (-755)) |#3|)) (-15 -1473 ((-3 |#3| "failed") |#1|)) (-15 -2801 (|#1| |#3|)) (-15 -2443 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2443 (|#1| |#1| (-1 |#2| |#2|) (-755))) (-15 -2443 (|#1| |#1| (-626 (-1153)) (-626 (-755)))) (-15 -2443 (|#1| |#1| (-1153) (-755))) (-15 -2443 (|#1| |#1| (-626 (-1153)))) (-15 -2443 (|#1| |#1| (-1153))) (-15 -2443 (|#1| |#1| (-755))) (-15 -2443 (|#1| |#1|)) (-15 -3662 ((-626 (-755)) |#1| (-626 |#4|))) (-15 -3662 ((-755) |#1| |#4|)) (-15 -1473 ((-3 |#4| "failed") |#1|)) (-15 -2801 (|#1| |#4|)) (-15 -4450 (|#1| |#1| (-626 |#4|) (-626 |#1|))) (-15 -4450 (|#1| |#1| |#4| |#1|)) (-15 -4450 (|#1| |#1| (-626 |#4|) (-626 |#2|))) (-15 -4450 (|#1| |#1| |#4| |#2|)) (-15 -4450 (|#1| |#1| (-626 |#1|) (-626 |#1|))) (-15 -4450 (|#1| |#1| |#1| |#1|)) (-15 -4450 (|#1| |#1| (-283 |#1|))) (-15 -4450 (|#1| |#1| (-626 (-283 |#1|)))) (-15 -3662 (|#5| |#1|)) (-15 -1473 ((-3 (-560) "failed") |#1|)) (-15 -1473 ((-3 (-403 (-560)) "failed") |#1|)) (-15 -2801 (|#1| |#2|)) (-15 -1473 ((-3 |#2| "failed") |#1|)) (-15 -2443 (|#1| |#1| (-626 |#4|) (-626 (-755)))) (-15 -2443 (|#1| |#1| |#4| (-755))) (-15 -2443 (|#1| |#1| (-626 |#4|))) (-15 -2443 (|#1| |#1| |#4|)) (-15 -2801 (|#1| (-560))) (-15 -2801 ((-842) |#1|))) (-241 |#2| |#3| |#4| |#5|) (-1039) (-834) (-257 |#3|) (-780)) (T -240)) -NIL -(-10 -8 (-15 -2801 (|#1| |#1|)) (-15 -2801 (|#1| (-403 (-560)))) (-15 -4450 (|#1| |#1| (-626 |#3|) (-626 |#2|))) (-15 -4450 (|#1| |#1| |#3| |#2|)) (-15 -4450 (|#1| |#1| (-626 |#3|) (-626 |#1|))) (-15 -4450 (|#1| |#1| |#3| |#1|)) (-15 -4340 ((-1 |#1| (-755)) |#1|)) (-15 -1278 (|#1| |#1|)) (-15 -2006 (|#1| |#1|)) (-15 -2263 (|#4| |#1|)) (-15 -3940 ((-121) |#1|)) (-15 -1400 ((-755) |#1| |#3|)) (-15 -2402 ((-626 (-755)) |#1| |#3|)) (-15 -1400 ((-755) |#1|)) (-15 -2402 ((-626 (-755)) |#1|)) (-15 -3662 ((-755) |#1| |#3|)) (-15 -3504 ((-755) |#1|)) (-15 -3504 ((-755) |#1| |#3|)) (-15 -1339 ((-626 |#3|) |#1|)) (-15 -4340 ((-1 |#1| (-755)) |#3|)) (-15 -1473 ((-3 |#3| "failed") |#1|)) (-15 -2801 (|#1| |#3|)) (-15 -2443 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2443 (|#1| |#1| (-1 |#2| |#2|) (-755))) (-15 -2443 (|#1| |#1| (-626 (-1153)) (-626 (-755)))) (-15 -2443 (|#1| |#1| (-1153) (-755))) (-15 -2443 (|#1| |#1| (-626 (-1153)))) (-15 -2443 (|#1| |#1| (-1153))) (-15 -2443 (|#1| |#1| (-755))) (-15 -2443 (|#1| |#1|)) (-15 -3662 ((-626 (-755)) |#1| (-626 |#4|))) (-15 -3662 ((-755) |#1| |#4|)) (-15 -1473 ((-3 |#4| "failed") |#1|)) (-15 -2801 (|#1| |#4|)) (-15 -4450 (|#1| |#1| (-626 |#4|) (-626 |#1|))) (-15 -4450 (|#1| |#1| |#4| |#1|)) (-15 -4450 (|#1| |#1| (-626 |#4|) (-626 |#2|))) (-15 -4450 (|#1| |#1| |#4| |#2|)) (-15 -4450 (|#1| |#1| (-626 |#1|) (-626 |#1|))) (-15 -4450 (|#1| |#1| |#1| |#1|)) (-15 -4450 (|#1| |#1| (-283 |#1|))) (-15 -4450 (|#1| |#1| (-626 (-283 |#1|)))) (-15 -3662 (|#5| |#1|)) (-15 -1473 ((-3 (-560) "failed") |#1|)) (-15 -1473 ((-3 (-403 (-560)) "failed") |#1|)) (-15 -2801 (|#1| |#2|)) (-15 -1473 ((-3 |#2| "failed") |#1|)) (-15 -2443 (|#1| |#1| (-626 |#4|) (-626 (-755)))) (-15 -2443 (|#1| |#1| |#4| (-755))) (-15 -2443 (|#1| |#1| (-626 |#4|))) (-15 -2443 (|#1| |#1| |#4|)) (-15 -2801 (|#1| (-560))) (-15 -2801 ((-842) |#1|))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-2402 (((-626 (-755)) $) 193) (((-626 (-755)) $ |#2|) 191)) (-1400 (((-755) $) 192) (((-755) $ |#2|) 190)) (-1654 (((-626 |#3|) $) 108)) (-1593 (((-1149 $) $ |#3|) 123) (((-1149 |#1|) $) 122)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) 85 (|has| |#1| (-550)))) (-1350 (($ $) 86 (|has| |#1| (-550)))) (-3376 (((-121) $) 88 (|has| |#1| (-550)))) (-1697 (((-755) $) 110) (((-755) $ (-626 |#3|)) 109)) (-2314 (((-3 $ "failed") $ $) 18)) (-1776 (((-414 (-1149 $)) (-1149 $)) 98 (|has| |#1| (-896)))) (-3065 (($ $) 96 (|has| |#1| (-447)))) (-2953 (((-414 $) $) 95 (|has| |#1| (-447)))) (-1887 (((-3 (-626 (-1149 $)) "failed") (-626 (-1149 $)) (-1149 $)) 101 (|has| |#1| (-896)))) (-1278 (($ $) 186)) (-4236 (($) 16 T CONST)) (-1473 (((-3 |#1| "failed") $) 162) (((-3 (-403 (-560)) "failed") $) 160 (|has| |#1| (-1029 (-403 (-560))))) (((-3 (-560) "failed") $) 158 (|has| |#1| (-1029 (-560)))) (((-3 |#3| "failed") $) 134) (((-3 |#2| "failed") $) 200)) (-3001 ((|#1| $) 163) (((-403 (-560)) $) 159 (|has| |#1| (-1029 (-403 (-560))))) (((-560) $) 157 (|has| |#1| (-1029 (-560)))) ((|#3| $) 133) ((|#2| $) 199)) (-1979 (($ $ $ |#3|) 106 (|has| |#1| (-170)))) (-1750 (($ $) 152)) (-2616 (((-671 (-560)) (-671 $)) 132 (|has| |#1| (-622 (-560)))) (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) 131 (|has| |#1| (-622 (-560)))) (((-2 (|:| -3818 (-671 |#1|)) (|:| |vec| (-1236 |#1|))) (-671 $) (-1236 $)) 130) (((-671 |#1|) (-671 $)) 129)) (-1823 (((-3 $ "failed") $) 33)) (-3605 (($ $) 174 (|has| |#1| (-447))) (($ $ |#3|) 103 (|has| |#1| (-447)))) (-1743 (((-626 $) $) 107)) (-3319 (((-121) $) 94 (|has| |#1| (-896)))) (-1456 (($ $ |#1| |#4| $) 170)) (-2399 (((-876 (-375) $) $ (-879 (-375)) (-876 (-375) $)) 82 (-12 (|has| |#3| (-873 (-375))) (|has| |#1| (-873 (-375))))) (((-876 (-560) $) $ (-879 (-560)) (-876 (-560) $)) 81 (-12 (|has| |#3| (-873 (-560))) (|has| |#1| (-873 (-560)))))) (-3504 (((-755) $ |#2|) 196) (((-755) $) 195)) (-2642 (((-121) $) 30)) (-3235 (((-755) $) 167)) (-1647 (($ (-1149 |#1|) |#3|) 115) (($ (-1149 $) |#3|) 114)) (-1854 (((-626 $) $) 124)) (-1814 (((-121) $) 150)) (-1637 (($ |#1| |#4|) 151) (($ $ |#3| (-755)) 117) (($ $ (-626 |#3|) (-626 (-755))) 116)) (-2923 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $ |#3|) 118)) (-3693 ((|#4| $) 168) (((-755) $ |#3|) 120) (((-626 (-755)) $ (-626 |#3|)) 119)) (-4325 (($ $ $) 77 (|has| |#1| (-834)))) (-2501 (($ $ $) 76 (|has| |#1| (-834)))) (-1504 (($ (-1 |#4| |#4|) $) 169)) (-2803 (($ (-1 |#1| |#1|) $) 149)) (-4340 (((-1 $ (-755)) |#2|) 198) (((-1 $ (-755)) $) 185 (|has| |#1| (-221)))) (-2101 (((-3 |#3| "failed") $) 121)) (-1726 (($ $) 147)) (-1735 ((|#1| $) 146)) (-2263 ((|#3| $) 188)) (-2582 (($ (-626 $)) 92 (|has| |#1| (-447))) (($ $ $) 91 (|has| |#1| (-447)))) (-1291 (((-1135) $) 9)) (-3940 (((-121) $) 189)) (-3665 (((-3 (-626 $) "failed") $) 112)) (-2327 (((-3 (-626 $) "failed") $) 113)) (-2913 (((-3 (-2 (|:| |var| |#3|) (|:| -4034 (-755))) "failed") $) 111)) (-2006 (($ $) 187)) (-4353 (((-1100) $) 10)) (-1704 (((-121) $) 164)) (-1711 ((|#1| $) 165)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) 93 (|has| |#1| (-447)))) (-4440 (($ (-626 $)) 90 (|has| |#1| (-447))) (($ $ $) 89 (|has| |#1| (-447)))) (-3817 (((-414 (-1149 $)) (-1149 $)) 100 (|has| |#1| (-896)))) (-3032 (((-414 (-1149 $)) (-1149 $)) 99 (|has| |#1| (-896)))) (-1601 (((-414 $) $) 97 (|has| |#1| (-896)))) (-2336 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-550))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-550)))) (-4450 (($ $ (-626 (-283 $))) 143) (($ $ (-283 $)) 142) (($ $ $ $) 141) (($ $ (-626 $) (-626 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-626 |#3|) (-626 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-626 |#3|) (-626 $)) 136) (($ $ |#2| $) 184 (|has| |#1| (-221))) (($ $ (-626 |#2|) (-626 $)) 183 (|has| |#1| (-221))) (($ $ |#2| |#1|) 182 (|has| |#1| (-221))) (($ $ (-626 |#2|) (-626 |#1|)) 181 (|has| |#1| (-221)))) (-4069 (($ $ |#3|) 105 (|has| |#1| (-170)))) (-2443 (($ $ |#3|) 41) (($ $ (-626 |#3|)) 40) (($ $ |#3| (-755)) 39) (($ $ (-626 |#3|) (-626 (-755))) 38) (($ $) 217 (|has| |#1| (-221))) (($ $ (-755)) 215 (|has| |#1| (-221))) (($ $ (-1153)) 213 (|has| |#1| (-887 (-1153)))) (($ $ (-626 (-1153))) 212 (|has| |#1| (-887 (-1153)))) (($ $ (-1153) (-755)) 211 (|has| |#1| (-887 (-1153)))) (($ $ (-626 (-1153)) (-626 (-755))) 210 (|has| |#1| (-887 (-1153)))) (($ $ (-1 |#1| |#1|) (-755)) 203) (($ $ (-1 |#1| |#1|)) 202)) (-1339 (((-626 |#2|) $) 197)) (-3662 ((|#4| $) 148) (((-755) $ |#3|) 128) (((-626 (-755)) $ (-626 |#3|)) 127) (((-755) $ |#2|) 194)) (-4255 (((-879 (-375)) $) 80 (-12 (|has| |#3| (-601 (-879 (-375)))) (|has| |#1| (-601 (-879 (-375)))))) (((-879 (-560)) $) 79 (-12 (|has| |#3| (-601 (-879 (-560)))) (|has| |#1| (-601 (-879 (-560)))))) (((-533) $) 78 (-12 (|has| |#3| (-601 (-533))) (|has| |#1| (-601 (-533)))))) (-1896 ((|#1| $) 173 (|has| |#1| (-447))) (($ $ |#3|) 104 (|has| |#1| (-447)))) (-3248 (((-3 (-1236 $) "failed") (-671 $)) 102 (-2256 (|has| $ (-146)) (|has| |#1| (-896))))) (-2801 (((-842) $) 11) (($ (-560)) 27) (($ |#1|) 161) (($ |#3|) 135) (($ |#2|) 201) (($ (-403 (-560))) 70 (-2318 (|has| |#1| (-1029 (-403 (-560)))) (|has| |#1| (-43 (-403 (-560)))))) (($ $) 83 (|has| |#1| (-550)))) (-2423 (((-626 |#1|) $) 166)) (-2636 ((|#1| $ |#4|) 153) (($ $ |#3| (-755)) 126) (($ $ (-626 |#3|) (-626 (-755))) 125)) (-2272 (((-3 $ "failed") $) 71 (-2318 (-2256 (|has| $ (-146)) (|has| |#1| (-896))) (|has| |#1| (-146))))) (-1751 (((-755)) 28)) (-3487 (($ $ $ (-755)) 171 (|has| |#1| (-170)))) (-2328 (((-121) $ $) 87 (|has| |#1| (-550)))) (-2464 (($ $ (-909)) 25) (($ $ (-755)) 32)) (-3304 (($) 17 T CONST)) (-1459 (($) 29 T CONST)) (-2500 (($ $ |#3|) 37) (($ $ (-626 |#3|)) 36) (($ $ |#3| (-755)) 35) (($ $ (-626 |#3|) (-626 (-755))) 34) (($ $) 216 (|has| |#1| (-221))) (($ $ (-755)) 214 (|has| |#1| (-221))) (($ $ (-1153)) 209 (|has| |#1| (-887 (-1153)))) (($ $ (-626 (-1153))) 208 (|has| |#1| (-887 (-1153)))) (($ $ (-1153) (-755)) 207 (|has| |#1| (-887 (-1153)))) (($ $ (-626 (-1153)) (-626 (-755))) 206 (|has| |#1| (-887 (-1153)))) (($ $ (-1 |#1| |#1|) (-755)) 205) (($ $ (-1 |#1| |#1|)) 204)) (-1691 (((-121) $ $) 74 (|has| |#1| (-834)))) (-1675 (((-121) $ $) 73 (|has| |#1| (-834)))) (-1653 (((-121) $ $) 6)) (-1683 (((-121) $ $) 75 (|has| |#1| (-834)))) (-1667 (((-121) $ $) 72 (|has| |#1| (-834)))) (-1733 (($ $ |#1|) 154 (|has| |#1| (-359)))) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 24) (($ $ (-755)) 31)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 23) (($ $ (-403 (-560))) 156 (|has| |#1| (-43 (-403 (-560))))) (($ (-403 (-560)) $) 155 (|has| |#1| (-43 (-403 (-560))))) (($ |#1| $) 145) (($ $ |#1|) 144))) -(((-241 |#1| |#2| |#3| |#4|) (-1267) (-1039) (-834) (-257 |t#2|) (-780)) (T -241)) -((-4340 (*1 *2 *3) (-12 (-4 *4 (-1039)) (-4 *3 (-834)) (-4 *5 (-257 *3)) (-4 *6 (-780)) (-5 *2 (-1 *1 (-755))) (-4 *1 (-241 *4 *3 *5 *6)))) (-1339 (*1 *2 *1) (-12 (-4 *1 (-241 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-834)) (-4 *5 (-257 *4)) (-4 *6 (-780)) (-5 *2 (-626 *4)))) (-3504 (*1 *2 *1 *3) (-12 (-4 *1 (-241 *4 *3 *5 *6)) (-4 *4 (-1039)) (-4 *3 (-834)) (-4 *5 (-257 *3)) (-4 *6 (-780)) (-5 *2 (-755)))) (-3504 (*1 *2 *1) (-12 (-4 *1 (-241 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-834)) (-4 *5 (-257 *4)) (-4 *6 (-780)) (-5 *2 (-755)))) (-3662 (*1 *2 *1 *3) (-12 (-4 *1 (-241 *4 *3 *5 *6)) (-4 *4 (-1039)) (-4 *3 (-834)) (-4 *5 (-257 *3)) (-4 *6 (-780)) (-5 *2 (-755)))) (-2402 (*1 *2 *1) (-12 (-4 *1 (-241 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-834)) (-4 *5 (-257 *4)) (-4 *6 (-780)) (-5 *2 (-626 (-755))))) (-1400 (*1 *2 *1) (-12 (-4 *1 (-241 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-834)) (-4 *5 (-257 *4)) (-4 *6 (-780)) (-5 *2 (-755)))) (-2402 (*1 *2 *1 *3) (-12 (-4 *1 (-241 *4 *3 *5 *6)) (-4 *4 (-1039)) (-4 *3 (-834)) (-4 *5 (-257 *3)) (-4 *6 (-780)) (-5 *2 (-626 (-755))))) (-1400 (*1 *2 *1 *3) (-12 (-4 *1 (-241 *4 *3 *5 *6)) (-4 *4 (-1039)) (-4 *3 (-834)) (-4 *5 (-257 *3)) (-4 *6 (-780)) (-5 *2 (-755)))) (-3940 (*1 *2 *1) (-12 (-4 *1 (-241 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-834)) (-4 *5 (-257 *4)) (-4 *6 (-780)) (-5 *2 (-121)))) (-2263 (*1 *2 *1) (-12 (-4 *1 (-241 *3 *4 *2 *5)) (-4 *3 (-1039)) (-4 *4 (-834)) (-4 *5 (-780)) (-4 *2 (-257 *4)))) (-2006 (*1 *1 *1) (-12 (-4 *1 (-241 *2 *3 *4 *5)) (-4 *2 (-1039)) (-4 *3 (-834)) (-4 *4 (-257 *3)) (-4 *5 (-780)))) (-1278 (*1 *1 *1) (-12 (-4 *1 (-241 *2 *3 *4 *5)) (-4 *2 (-1039)) (-4 *3 (-834)) (-4 *4 (-257 *3)) (-4 *5 (-780)))) (-4340 (*1 *2 *1) (-12 (-4 *3 (-221)) (-4 *3 (-1039)) (-4 *4 (-834)) (-4 *5 (-257 *4)) (-4 *6 (-780)) (-5 *2 (-1 *1 (-755))) (-4 *1 (-241 *3 *4 *5 *6))))) -(-13 (-942 |t#1| |t#4| |t#3|) (-219 |t#1|) (-1029 |t#2|) (-10 -8 (-15 -4340 ((-1 $ (-755)) |t#2|)) (-15 -1339 ((-626 |t#2|) $)) (-15 -3504 ((-755) $ |t#2|)) (-15 -3504 ((-755) $)) (-15 -3662 ((-755) $ |t#2|)) (-15 -2402 ((-626 (-755)) $)) (-15 -1400 ((-755) $)) (-15 -2402 ((-626 (-755)) $ |t#2|)) (-15 -1400 ((-755) $ |t#2|)) (-15 -3940 ((-121) $)) (-15 -2263 (|t#3| $)) (-15 -2006 ($ $)) (-15 -1278 ($ $)) (IF (|has| |t#1| (-221)) (PROGN (-6 (-515 |t#2| |t#1|)) (-6 (-515 |t#2| $)) (-6 (-298 $)) (-15 -4340 ((-1 $ (-755)) $))) |noBranch|))) -(((-21) . T) ((-23) . T) ((-52 |#1| |#4|) . T) ((-25) . T) ((-43 (-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((-43 |#1|) |has| |#1| (-170)) ((-43 $) -2318 (|has| |#1| (-896)) (|has| |#1| (-550)) (|has| |#1| (-447))) ((-105) . T) ((-120 (-403 (-560)) (-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((-120 |#1| |#1|) . T) ((-120 $ $) -2318 (|has| |#1| (-896)) (|has| |#1| (-550)) (|has| |#1| (-447)) (|has| |#1| (-170))) ((-137) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-600 (-842)) . T) ((-170) -2318 (|has| |#1| (-896)) (|has| |#1| (-550)) (|has| |#1| (-447)) (|has| |#1| (-170))) ((-601 (-533)) -12 (|has| |#1| (-601 (-533))) (|has| |#3| (-601 (-533)))) ((-601 (-879 (-375))) -12 (|has| |#1| (-601 (-879 (-375)))) (|has| |#3| (-601 (-879 (-375))))) ((-601 (-879 (-560))) -12 (|has| |#1| (-601 (-879 (-560)))) (|has| |#3| (-601 (-879 (-560))))) ((-219 |#1|) . T) ((-221) |has| |#1| (-221)) ((-280) -2318 (|has| |#1| (-896)) (|has| |#1| (-550)) (|has| |#1| (-447))) ((-298 $) . T) ((-318 |#1| |#4|) . T) ((-373 |#1|) . T) ((-407 |#1|) . T) ((-447) -2318 (|has| |#1| (-896)) (|has| |#1| (-447))) ((-515 |#2| |#1|) |has| |#1| (-221)) ((-515 |#2| $) |has| |#1| (-221)) ((-515 |#3| |#1|) . T) ((-515 |#3| $) . T) ((-515 $ $) . T) ((-550) -2318 (|has| |#1| (-896)) (|has| |#1| (-550)) (|has| |#1| (-447))) ((-629 (-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((-629 |#1|) . T) ((-629 $) . T) ((-622 (-560)) |has| |#1| (-622 (-560))) ((-622 |#1|) . T) ((-699 (-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((-699 |#1|) |has| |#1| (-170)) ((-699 $) -2318 (|has| |#1| (-896)) (|has| |#1| (-550)) (|has| |#1| (-447))) ((-708) . T) ((-834) |has| |#1| (-834)) ((-887 (-1153)) |has| |#1| (-887 (-1153))) ((-887 |#3|) . T) ((-873 (-375)) -12 (|has| |#1| (-873 (-375))) (|has| |#3| (-873 (-375)))) ((-873 (-560)) -12 (|has| |#1| (-873 (-560))) (|has| |#3| (-873 (-560)))) ((-942 |#1| |#4| |#3|) . T) ((-896) |has| |#1| (-896)) ((-1029 (-403 (-560))) |has| |#1| (-1029 (-403 (-560)))) ((-1029 (-560)) |has| |#1| (-1029 (-560))) ((-1029 |#1|) . T) ((-1029 |#2|) . T) ((-1029 |#3|) . T) ((-1045 (-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((-1045 |#1|) . T) ((-1045 $) -2318 (|has| |#1| (-896)) (|has| |#1| (-550)) (|has| |#1| (-447)) (|has| |#1| (-170))) ((-1039) . T) ((-1046) . T) ((-1094) . T) ((-1082) . T) ((-1191) |has| |#1| (-896))) -((-2601 (((-121) $ $) 18 (|has| |#1| (-1082)))) (-3293 ((|#1| $) 51)) (-4224 ((|#1| $) 41)) (-3909 (((-121) $ (-755)) 8)) (-4236 (($) 7 T CONST)) (-3547 (($ $) 57)) (-4030 (($ $) 45)) (-3881 ((|#1| |#1| $) 43)) (-2200 ((|#1| $) 42)) (-1981 (((-626 |#1|) $) 30 (|has| $ (-6 -4505)))) (-2122 (((-121) $ (-755)) 9)) (-2130 (((-626 |#1|) $) 29 (|has| $ (-6 -4505)))) (-2030 (((-121) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-3778 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#1| |#1|) $) 35)) (-3441 (((-121) $ (-755)) 10)) (-2349 (((-755) $) 58)) (-1291 (((-1135) $) 22 (|has| |#1| (-1082)))) (-2525 ((|#1| $) 36)) (-3599 ((|#1| |#1| $) 49)) (-1283 ((|#1| |#1| $) 48)) (-4345 (($ |#1| $) 37)) (-3165 (((-755) $) 52)) (-4353 (((-1100) $) 21 (|has| |#1| (-1082)))) (-3043 ((|#1| $) 59)) (-3326 ((|#1| $) 47)) (-2436 ((|#1| $) 46)) (-2146 ((|#1| $) 38)) (-2865 (((-121) (-1 (-121) |#1|) $) 32 (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#1|))) 26 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-283 |#1|)) 25 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-626 |#1|) (-626 |#1|)) 23 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))))) (-2214 (((-121) $ $) 14)) (-3205 ((|#1| |#1| $) 55)) (-4191 (((-121) $) 11)) (-3260 (($) 12)) (-4433 ((|#1| $) 56)) (-1366 (($) 54) (($ (-626 |#1|)) 53)) (-4023 (((-755) $) 40)) (-4035 (((-755) (-1 (-121) |#1|) $) 31 (|has| $ (-6 -4505))) (((-755) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-2813 (($ $) 13)) (-2801 (((-842) $) 20 (|has| |#1| (-1082)))) (-4184 ((|#1| $) 50)) (-1354 (($ (-626 |#1|)) 39)) (-2846 ((|#1| $) 60)) (-3656 (((-121) (-1 (-121) |#1|) $) 33 (|has| $ (-6 -4505)))) (-1653 (((-121) $ $) 19 (|has| |#1| (-1082)))) (-2271 (((-755) $) 6 (|has| $ (-6 -4505))))) -(((-242 |#1|) (-1267) (-1187)) (T -242)) -((-1366 (*1 *1) (-12 (-4 *1 (-242 *2)) (-4 *2 (-1187)))) (-1366 (*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-1187)) (-4 *1 (-242 *3)))) (-3165 (*1 *2 *1) (-12 (-4 *1 (-242 *3)) (-4 *3 (-1187)) (-5 *2 (-755)))) (-3293 (*1 *2 *1) (-12 (-4 *1 (-242 *2)) (-4 *2 (-1187)))) (-4184 (*1 *2 *1) (-12 (-4 *1 (-242 *2)) (-4 *2 (-1187)))) (-3599 (*1 *2 *2 *1) (-12 (-4 *1 (-242 *2)) (-4 *2 (-1187)))) (-1283 (*1 *2 *2 *1) (-12 (-4 *1 (-242 *2)) (-4 *2 (-1187)))) (-3326 (*1 *2 *1) (-12 (-4 *1 (-242 *2)) (-4 *2 (-1187)))) (-2436 (*1 *2 *1) (-12 (-4 *1 (-242 *2)) (-4 *2 (-1187)))) (-4030 (*1 *1 *1) (-12 (-4 *1 (-242 *2)) (-4 *2 (-1187))))) -(-13 (-1101 |t#1|) (-987 |t#1|) (-10 -8 (-15 -1366 ($)) (-15 -1366 ($ (-626 |t#1|))) (-15 -3165 ((-755) $)) (-15 -3293 (|t#1| $)) (-15 -4184 (|t#1| $)) (-15 -3599 (|t#1| |t#1| $)) (-15 -1283 (|t#1| |t#1| $)) (-15 -3326 (|t#1| $)) (-15 -2436 (|t#1| $)) (-15 -4030 ($ $)))) -(((-39) . T) ((-111 |#1|) . T) ((-105) |has| |#1| (-1082)) ((-600 (-842)) |has| |#1| (-1082)) ((-298 |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))) ((-492 |#1|) . T) ((-515 |#1| |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))) ((-987 |#1|) . T) ((-1082) |has| |#1| (-1082)) ((-1101 |#1|) . T) ((-1187) . T)) -((-2104 (((-1 (-936 (-213)) (-213) (-213)) (-1 (-936 (-213)) (-213) (-213)) (-1 (-213) (-213) (-213) (-213))) 139)) (-2160 (((-1113 (-213)) (-869 (-1 (-213) (-213) (-213))) (-1076 (-375)) (-1076 (-375))) 160) (((-1113 (-213)) (-869 (-1 (-213) (-213) (-213))) (-1076 (-375)) (-1076 (-375)) (-626 (-251))) 158) (((-1113 (-213)) (-1 (-936 (-213)) (-213) (-213)) (-1076 (-375)) (-1076 (-375))) 163) (((-1113 (-213)) (-1 (-936 (-213)) (-213) (-213)) (-1076 (-375)) (-1076 (-375)) (-626 (-251))) 159) (((-1113 (-213)) (-1 (-213) (-213) (-213)) (-1076 (-375)) (-1076 (-375))) 150) (((-1113 (-213)) (-1 (-213) (-213) (-213)) (-1076 (-375)) (-1076 (-375)) (-626 (-251))) 149) (((-1113 (-213)) (-1 (-936 (-213)) (-213)) (-1076 (-375))) 129) (((-1113 (-213)) (-1 (-936 (-213)) (-213)) (-1076 (-375)) (-626 (-251))) 127) (((-1113 (-213)) (-867 (-1 (-213) (-213))) (-1076 (-375))) 128) (((-1113 (-213)) (-867 (-1 (-213) (-213))) (-1076 (-375)) (-626 (-251))) 125)) (-2152 (((-1238) (-869 (-1 (-213) (-213) (-213))) (-1076 (-375)) (-1076 (-375))) 162) (((-1238) (-869 (-1 (-213) (-213) (-213))) (-1076 (-375)) (-1076 (-375)) (-626 (-251))) 161) (((-1238) (-1 (-936 (-213)) (-213) (-213)) (-1076 (-375)) (-1076 (-375))) 165) (((-1238) (-1 (-936 (-213)) (-213) (-213)) (-1076 (-375)) (-1076 (-375)) (-626 (-251))) 164) (((-1238) (-1 (-213) (-213) (-213)) (-1076 (-375)) (-1076 (-375))) 152) (((-1238) (-1 (-213) (-213) (-213)) (-1076 (-375)) (-1076 (-375)) (-626 (-251))) 151) (((-1238) (-1 (-936 (-213)) (-213)) (-1076 (-375))) 135) (((-1238) (-1 (-936 (-213)) (-213)) (-1076 (-375)) (-626 (-251))) 134) (((-1238) (-867 (-1 (-213) (-213))) (-1076 (-375))) 133) (((-1238) (-867 (-1 (-213) (-213))) (-1076 (-375)) (-626 (-251))) 132) (((-1237) (-865 (-1 (-213) (-213))) (-1076 (-375))) 99) (((-1237) (-865 (-1 (-213) (-213))) (-1076 (-375)) (-626 (-251))) 98) (((-1237) (-1 (-213) (-213)) (-1076 (-375))) 95) (((-1237) (-1 (-213) (-213)) (-1076 (-375)) (-626 (-251))) 94))) -(((-243) (-10 -7 (-15 -2152 ((-1237) (-1 (-213) (-213)) (-1076 (-375)) (-626 (-251)))) (-15 -2152 ((-1237) (-1 (-213) (-213)) (-1076 (-375)))) (-15 -2152 ((-1237) (-865 (-1 (-213) (-213))) (-1076 (-375)) (-626 (-251)))) (-15 -2152 ((-1237) (-865 (-1 (-213) (-213))) (-1076 (-375)))) (-15 -2152 ((-1238) (-867 (-1 (-213) (-213))) (-1076 (-375)) (-626 (-251)))) (-15 -2152 ((-1238) (-867 (-1 (-213) (-213))) (-1076 (-375)))) (-15 -2152 ((-1238) (-1 (-936 (-213)) (-213)) (-1076 (-375)) (-626 (-251)))) (-15 -2152 ((-1238) (-1 (-936 (-213)) (-213)) (-1076 (-375)))) (-15 -2160 ((-1113 (-213)) (-867 (-1 (-213) (-213))) (-1076 (-375)) (-626 (-251)))) (-15 -2160 ((-1113 (-213)) (-867 (-1 (-213) (-213))) (-1076 (-375)))) (-15 -2160 ((-1113 (-213)) (-1 (-936 (-213)) (-213)) (-1076 (-375)) (-626 (-251)))) (-15 -2160 ((-1113 (-213)) (-1 (-936 (-213)) (-213)) (-1076 (-375)))) (-15 -2152 ((-1238) (-1 (-213) (-213) (-213)) (-1076 (-375)) (-1076 (-375)) (-626 (-251)))) (-15 -2152 ((-1238) (-1 (-213) (-213) (-213)) (-1076 (-375)) (-1076 (-375)))) (-15 -2160 ((-1113 (-213)) (-1 (-213) (-213) (-213)) (-1076 (-375)) (-1076 (-375)) (-626 (-251)))) (-15 -2160 ((-1113 (-213)) (-1 (-213) (-213) (-213)) (-1076 (-375)) (-1076 (-375)))) (-15 -2152 ((-1238) (-1 (-936 (-213)) (-213) (-213)) (-1076 (-375)) (-1076 (-375)) (-626 (-251)))) (-15 -2152 ((-1238) (-1 (-936 (-213)) (-213) (-213)) (-1076 (-375)) (-1076 (-375)))) (-15 -2160 ((-1113 (-213)) (-1 (-936 (-213)) (-213) (-213)) (-1076 (-375)) (-1076 (-375)) (-626 (-251)))) (-15 -2160 ((-1113 (-213)) (-1 (-936 (-213)) (-213) (-213)) (-1076 (-375)) (-1076 (-375)))) (-15 -2152 ((-1238) (-869 (-1 (-213) (-213) (-213))) (-1076 (-375)) (-1076 (-375)) (-626 (-251)))) (-15 -2152 ((-1238) (-869 (-1 (-213) (-213) (-213))) (-1076 (-375)) (-1076 (-375)))) (-15 -2160 ((-1113 (-213)) (-869 (-1 (-213) (-213) (-213))) (-1076 (-375)) (-1076 (-375)) (-626 (-251)))) (-15 -2160 ((-1113 (-213)) (-869 (-1 (-213) (-213) (-213))) (-1076 (-375)) (-1076 (-375)))) (-15 -2104 ((-1 (-936 (-213)) (-213) (-213)) (-1 (-936 (-213)) (-213) (-213)) (-1 (-213) (-213) (-213) (-213)))))) (T -243)) -((-2104 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-936 (-213)) (-213) (-213))) (-5 *3 (-1 (-213) (-213) (-213) (-213))) (-5 *1 (-243)))) (-2160 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-869 (-1 (-213) (-213) (-213)))) (-5 *4 (-1076 (-375))) (-5 *2 (-1113 (-213))) (-5 *1 (-243)))) (-2160 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-869 (-1 (-213) (-213) (-213)))) (-5 *4 (-1076 (-375))) (-5 *5 (-626 (-251))) (-5 *2 (-1113 (-213))) (-5 *1 (-243)))) (-2152 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-869 (-1 (-213) (-213) (-213)))) (-5 *4 (-1076 (-375))) (-5 *2 (-1238)) (-5 *1 (-243)))) (-2152 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-869 (-1 (-213) (-213) (-213)))) (-5 *4 (-1076 (-375))) (-5 *5 (-626 (-251))) (-5 *2 (-1238)) (-5 *1 (-243)))) (-2160 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-936 (-213)) (-213) (-213))) (-5 *4 (-1076 (-375))) (-5 *2 (-1113 (-213))) (-5 *1 (-243)))) (-2160 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-936 (-213)) (-213) (-213))) (-5 *4 (-1076 (-375))) (-5 *5 (-626 (-251))) (-5 *2 (-1113 (-213))) (-5 *1 (-243)))) (-2152 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-936 (-213)) (-213) (-213))) (-5 *4 (-1076 (-375))) (-5 *2 (-1238)) (-5 *1 (-243)))) (-2152 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-936 (-213)) (-213) (-213))) (-5 *4 (-1076 (-375))) (-5 *5 (-626 (-251))) (-5 *2 (-1238)) (-5 *1 (-243)))) (-2160 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-213) (-213) (-213))) (-5 *4 (-1076 (-375))) (-5 *2 (-1113 (-213))) (-5 *1 (-243)))) (-2160 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-213) (-213) (-213))) (-5 *4 (-1076 (-375))) (-5 *5 (-626 (-251))) (-5 *2 (-1113 (-213))) (-5 *1 (-243)))) (-2152 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-213) (-213) (-213))) (-5 *4 (-1076 (-375))) (-5 *2 (-1238)) (-5 *1 (-243)))) (-2152 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-213) (-213) (-213))) (-5 *4 (-1076 (-375))) (-5 *5 (-626 (-251))) (-5 *2 (-1238)) (-5 *1 (-243)))) (-2160 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-936 (-213)) (-213))) (-5 *4 (-1076 (-375))) (-5 *2 (-1113 (-213))) (-5 *1 (-243)))) (-2160 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-936 (-213)) (-213))) (-5 *4 (-1076 (-375))) (-5 *5 (-626 (-251))) (-5 *2 (-1113 (-213))) (-5 *1 (-243)))) (-2160 (*1 *2 *3 *4) (-12 (-5 *3 (-867 (-1 (-213) (-213)))) (-5 *4 (-1076 (-375))) (-5 *2 (-1113 (-213))) (-5 *1 (-243)))) (-2160 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-867 (-1 (-213) (-213)))) (-5 *4 (-1076 (-375))) (-5 *5 (-626 (-251))) (-5 *2 (-1113 (-213))) (-5 *1 (-243)))) (-2152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-936 (-213)) (-213))) (-5 *4 (-1076 (-375))) (-5 *2 (-1238)) (-5 *1 (-243)))) (-2152 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-936 (-213)) (-213))) (-5 *4 (-1076 (-375))) (-5 *5 (-626 (-251))) (-5 *2 (-1238)) (-5 *1 (-243)))) (-2152 (*1 *2 *3 *4) (-12 (-5 *3 (-867 (-1 (-213) (-213)))) (-5 *4 (-1076 (-375))) (-5 *2 (-1238)) (-5 *1 (-243)))) (-2152 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-867 (-1 (-213) (-213)))) (-5 *4 (-1076 (-375))) (-5 *5 (-626 (-251))) (-5 *2 (-1238)) (-5 *1 (-243)))) (-2152 (*1 *2 *3 *4) (-12 (-5 *3 (-865 (-1 (-213) (-213)))) (-5 *4 (-1076 (-375))) (-5 *2 (-1237)) (-5 *1 (-243)))) (-2152 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-865 (-1 (-213) (-213)))) (-5 *4 (-1076 (-375))) (-5 *5 (-626 (-251))) (-5 *2 (-1237)) (-5 *1 (-243)))) (-2152 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-213) (-213))) (-5 *4 (-1076 (-375))) (-5 *2 (-1237)) (-5 *1 (-243)))) (-2152 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-213) (-213))) (-5 *4 (-1076 (-375))) (-5 *5 (-626 (-251))) (-5 *2 (-1237)) (-5 *1 (-243))))) -(-10 -7 (-15 -2152 ((-1237) (-1 (-213) (-213)) (-1076 (-375)) (-626 (-251)))) (-15 -2152 ((-1237) (-1 (-213) (-213)) (-1076 (-375)))) (-15 -2152 ((-1237) (-865 (-1 (-213) (-213))) (-1076 (-375)) (-626 (-251)))) (-15 -2152 ((-1237) (-865 (-1 (-213) (-213))) (-1076 (-375)))) (-15 -2152 ((-1238) (-867 (-1 (-213) (-213))) (-1076 (-375)) (-626 (-251)))) (-15 -2152 ((-1238) (-867 (-1 (-213) (-213))) (-1076 (-375)))) (-15 -2152 ((-1238) (-1 (-936 (-213)) (-213)) (-1076 (-375)) (-626 (-251)))) (-15 -2152 ((-1238) (-1 (-936 (-213)) (-213)) (-1076 (-375)))) (-15 -2160 ((-1113 (-213)) (-867 (-1 (-213) (-213))) (-1076 (-375)) (-626 (-251)))) (-15 -2160 ((-1113 (-213)) (-867 (-1 (-213) (-213))) (-1076 (-375)))) (-15 -2160 ((-1113 (-213)) (-1 (-936 (-213)) (-213)) (-1076 (-375)) (-626 (-251)))) (-15 -2160 ((-1113 (-213)) (-1 (-936 (-213)) (-213)) (-1076 (-375)))) (-15 -2152 ((-1238) (-1 (-213) (-213) (-213)) (-1076 (-375)) (-1076 (-375)) (-626 (-251)))) (-15 -2152 ((-1238) (-1 (-213) (-213) (-213)) (-1076 (-375)) (-1076 (-375)))) (-15 -2160 ((-1113 (-213)) (-1 (-213) (-213) (-213)) (-1076 (-375)) (-1076 (-375)) (-626 (-251)))) (-15 -2160 ((-1113 (-213)) (-1 (-213) (-213) (-213)) (-1076 (-375)) (-1076 (-375)))) (-15 -2152 ((-1238) (-1 (-936 (-213)) (-213) (-213)) (-1076 (-375)) (-1076 (-375)) (-626 (-251)))) (-15 -2152 ((-1238) (-1 (-936 (-213)) (-213) (-213)) (-1076 (-375)) (-1076 (-375)))) (-15 -2160 ((-1113 (-213)) (-1 (-936 (-213)) (-213) (-213)) (-1076 (-375)) (-1076 (-375)) (-626 (-251)))) (-15 -2160 ((-1113 (-213)) (-1 (-936 (-213)) (-213) (-213)) (-1076 (-375)) (-1076 (-375)))) (-15 -2152 ((-1238) (-869 (-1 (-213) (-213) (-213))) (-1076 (-375)) (-1076 (-375)) (-626 (-251)))) (-15 -2152 ((-1238) (-869 (-1 (-213) (-213) (-213))) (-1076 (-375)) (-1076 (-375)))) (-15 -2160 ((-1113 (-213)) (-869 (-1 (-213) (-213) (-213))) (-1076 (-375)) (-1076 (-375)) (-626 (-251)))) (-15 -2160 ((-1113 (-213)) (-869 (-1 (-213) (-213) (-213))) (-1076 (-375)) (-1076 (-375)))) (-15 -2104 ((-1 (-936 (-213)) (-213) (-213)) (-1 (-936 (-213)) (-213) (-213)) (-1 (-213) (-213) (-213) (-213))))) -((-2152 (((-1237) (-283 |#2|) (-1153) (-1153) (-626 (-251))) 93))) -(((-244 |#1| |#2|) (-10 -7 (-15 -2152 ((-1237) (-283 |#2|) (-1153) (-1153) (-626 (-251))))) (-13 (-550) (-834) (-1029 (-560))) (-426 |#1|)) (T -244)) -((-2152 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-283 *7)) (-5 *4 (-1153)) (-5 *5 (-626 (-251))) (-4 *7 (-426 *6)) (-4 *6 (-13 (-550) (-834) (-1029 (-560)))) (-5 *2 (-1237)) (-5 *1 (-244 *6 *7))))) -(-10 -7 (-15 -2152 ((-1237) (-283 |#2|) (-1153) (-1153) (-626 (-251))))) -((-3402 (((-560) (-560)) 50)) (-2655 (((-560) (-560)) 51)) (-2151 (((-213) (-213)) 52)) (-1515 (((-1238) (-1 (-167 (-213)) (-167 (-213))) (-1076 (-213)) (-1076 (-213))) 49)) (-3229 (((-1238) (-1 (-167 (-213)) (-167 (-213))) (-1076 (-213)) (-1076 (-213)) (-121)) 47))) -(((-245) (-10 -7 (-15 -3229 ((-1238) (-1 (-167 (-213)) (-167 (-213))) (-1076 (-213)) (-1076 (-213)) (-121))) (-15 -1515 ((-1238) (-1 (-167 (-213)) (-167 (-213))) (-1076 (-213)) (-1076 (-213)))) (-15 -3402 ((-560) (-560))) (-15 -2655 ((-560) (-560))) (-15 -2151 ((-213) (-213))))) (T -245)) -((-2151 (*1 *2 *2) (-12 (-5 *2 (-213)) (-5 *1 (-245)))) (-2655 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-245)))) (-3402 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-245)))) (-1515 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-167 (-213)) (-167 (-213)))) (-5 *4 (-1076 (-213))) (-5 *2 (-1238)) (-5 *1 (-245)))) (-3229 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-167 (-213)) (-167 (-213)))) (-5 *4 (-1076 (-213))) (-5 *5 (-121)) (-5 *2 (-1238)) (-5 *1 (-245))))) -(-10 -7 (-15 -3229 ((-1238) (-1 (-167 (-213)) (-167 (-213))) (-1076 (-213)) (-1076 (-213)) (-121))) (-15 -1515 ((-1238) (-1 (-167 (-213)) (-167 (-213))) (-1076 (-213)) (-1076 (-213)))) (-15 -3402 ((-560) (-560))) (-15 -2655 ((-560) (-560))) (-15 -2151 ((-213) (-213)))) -((-2801 (((-1074 (-375)) (-1074 (-304 |#1|))) 16))) -(((-246 |#1|) (-10 -7 (-15 -2801 ((-1074 (-375)) (-1074 (-304 |#1|))))) (-13 (-834) (-550) (-601 (-375)))) (T -246)) -((-2801 (*1 *2 *3) (-12 (-5 *3 (-1074 (-304 *4))) (-4 *4 (-13 (-834) (-550) (-601 (-375)))) (-5 *2 (-1074 (-375))) (-5 *1 (-246 *4))))) -(-10 -7 (-15 -2801 ((-1074 (-375)) (-1074 (-304 |#1|))))) -((-2160 (((-1113 (-213)) (-869 |#1|) (-1074 (-375)) (-1074 (-375))) 69) (((-1113 (-213)) (-869 |#1|) (-1074 (-375)) (-1074 (-375)) (-626 (-251))) 68) (((-1113 (-213)) |#1| (-1074 (-375)) (-1074 (-375))) 59) (((-1113 (-213)) |#1| (-1074 (-375)) (-1074 (-375)) (-626 (-251))) 58) (((-1113 (-213)) (-867 |#1|) (-1074 (-375))) 50) (((-1113 (-213)) (-867 |#1|) (-1074 (-375)) (-626 (-251))) 49)) (-2152 (((-1238) (-869 |#1|) (-1074 (-375)) (-1074 (-375))) 72) (((-1238) (-869 |#1|) (-1074 (-375)) (-1074 (-375)) (-626 (-251))) 71) (((-1238) |#1| (-1074 (-375)) (-1074 (-375))) 62) (((-1238) |#1| (-1074 (-375)) (-1074 (-375)) (-626 (-251))) 61) (((-1238) (-867 |#1|) (-1074 (-375))) 54) (((-1238) (-867 |#1|) (-1074 (-375)) (-626 (-251))) 53) (((-1237) (-865 |#1|) (-1074 (-375))) 41) (((-1237) (-865 |#1|) (-1074 (-375)) (-626 (-251))) 40) (((-1237) |#1| (-1074 (-375))) 33) (((-1237) |#1| (-1074 (-375)) (-626 (-251))) 32))) -(((-247 |#1|) (-10 -7 (-15 -2152 ((-1237) |#1| (-1074 (-375)) (-626 (-251)))) (-15 -2152 ((-1237) |#1| (-1074 (-375)))) (-15 -2152 ((-1237) (-865 |#1|) (-1074 (-375)) (-626 (-251)))) (-15 -2152 ((-1237) (-865 |#1|) (-1074 (-375)))) (-15 -2152 ((-1238) (-867 |#1|) (-1074 (-375)) (-626 (-251)))) (-15 -2152 ((-1238) (-867 |#1|) (-1074 (-375)))) (-15 -2160 ((-1113 (-213)) (-867 |#1|) (-1074 (-375)) (-626 (-251)))) (-15 -2160 ((-1113 (-213)) (-867 |#1|) (-1074 (-375)))) (-15 -2152 ((-1238) |#1| (-1074 (-375)) (-1074 (-375)) (-626 (-251)))) (-15 -2152 ((-1238) |#1| (-1074 (-375)) (-1074 (-375)))) (-15 -2160 ((-1113 (-213)) |#1| (-1074 (-375)) (-1074 (-375)) (-626 (-251)))) (-15 -2160 ((-1113 (-213)) |#1| (-1074 (-375)) (-1074 (-375)))) (-15 -2152 ((-1238) (-869 |#1|) (-1074 (-375)) (-1074 (-375)) (-626 (-251)))) (-15 -2152 ((-1238) (-869 |#1|) (-1074 (-375)) (-1074 (-375)))) (-15 -2160 ((-1113 (-213)) (-869 |#1|) (-1074 (-375)) (-1074 (-375)) (-626 (-251)))) (-15 -2160 ((-1113 (-213)) (-869 |#1|) (-1074 (-375)) (-1074 (-375))))) (-13 (-601 (-533)) (-1082))) (T -247)) -((-2160 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-869 *5)) (-5 *4 (-1074 (-375))) (-4 *5 (-13 (-601 (-533)) (-1082))) (-5 *2 (-1113 (-213))) (-5 *1 (-247 *5)))) (-2160 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-869 *6)) (-5 *4 (-1074 (-375))) (-5 *5 (-626 (-251))) (-4 *6 (-13 (-601 (-533)) (-1082))) (-5 *2 (-1113 (-213))) (-5 *1 (-247 *6)))) (-2152 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-869 *5)) (-5 *4 (-1074 (-375))) (-4 *5 (-13 (-601 (-533)) (-1082))) (-5 *2 (-1238)) (-5 *1 (-247 *5)))) (-2152 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-869 *6)) (-5 *4 (-1074 (-375))) (-5 *5 (-626 (-251))) (-4 *6 (-13 (-601 (-533)) (-1082))) (-5 *2 (-1238)) (-5 *1 (-247 *6)))) (-2160 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1074 (-375))) (-5 *2 (-1113 (-213))) (-5 *1 (-247 *3)) (-4 *3 (-13 (-601 (-533)) (-1082))))) (-2160 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1074 (-375))) (-5 *5 (-626 (-251))) (-5 *2 (-1113 (-213))) (-5 *1 (-247 *3)) (-4 *3 (-13 (-601 (-533)) (-1082))))) (-2152 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1074 (-375))) (-5 *2 (-1238)) (-5 *1 (-247 *3)) (-4 *3 (-13 (-601 (-533)) (-1082))))) (-2152 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1074 (-375))) (-5 *5 (-626 (-251))) (-5 *2 (-1238)) (-5 *1 (-247 *3)) (-4 *3 (-13 (-601 (-533)) (-1082))))) (-2160 (*1 *2 *3 *4) (-12 (-5 *3 (-867 *5)) (-5 *4 (-1074 (-375))) (-4 *5 (-13 (-601 (-533)) (-1082))) (-5 *2 (-1113 (-213))) (-5 *1 (-247 *5)))) (-2160 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-867 *6)) (-5 *4 (-1074 (-375))) (-5 *5 (-626 (-251))) (-4 *6 (-13 (-601 (-533)) (-1082))) (-5 *2 (-1113 (-213))) (-5 *1 (-247 *6)))) (-2152 (*1 *2 *3 *4) (-12 (-5 *3 (-867 *5)) (-5 *4 (-1074 (-375))) (-4 *5 (-13 (-601 (-533)) (-1082))) (-5 *2 (-1238)) (-5 *1 (-247 *5)))) (-2152 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-867 *6)) (-5 *4 (-1074 (-375))) (-5 *5 (-626 (-251))) (-4 *6 (-13 (-601 (-533)) (-1082))) (-5 *2 (-1238)) (-5 *1 (-247 *6)))) (-2152 (*1 *2 *3 *4) (-12 (-5 *3 (-865 *5)) (-5 *4 (-1074 (-375))) (-4 *5 (-13 (-601 (-533)) (-1082))) (-5 *2 (-1237)) (-5 *1 (-247 *5)))) (-2152 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-865 *6)) (-5 *4 (-1074 (-375))) (-5 *5 (-626 (-251))) (-4 *6 (-13 (-601 (-533)) (-1082))) (-5 *2 (-1237)) (-5 *1 (-247 *6)))) (-2152 (*1 *2 *3 *4) (-12 (-5 *4 (-1074 (-375))) (-5 *2 (-1237)) (-5 *1 (-247 *3)) (-4 *3 (-13 (-601 (-533)) (-1082))))) (-2152 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1074 (-375))) (-5 *5 (-626 (-251))) (-5 *2 (-1237)) (-5 *1 (-247 *3)) (-4 *3 (-13 (-601 (-533)) (-1082)))))) -(-10 -7 (-15 -2152 ((-1237) |#1| (-1074 (-375)) (-626 (-251)))) (-15 -2152 ((-1237) |#1| (-1074 (-375)))) (-15 -2152 ((-1237) (-865 |#1|) (-1074 (-375)) (-626 (-251)))) (-15 -2152 ((-1237) (-865 |#1|) (-1074 (-375)))) (-15 -2152 ((-1238) (-867 |#1|) (-1074 (-375)) (-626 (-251)))) (-15 -2152 ((-1238) (-867 |#1|) (-1074 (-375)))) (-15 -2160 ((-1113 (-213)) (-867 |#1|) (-1074 (-375)) (-626 (-251)))) (-15 -2160 ((-1113 (-213)) (-867 |#1|) (-1074 (-375)))) (-15 -2152 ((-1238) |#1| (-1074 (-375)) (-1074 (-375)) (-626 (-251)))) (-15 -2152 ((-1238) |#1| (-1074 (-375)) (-1074 (-375)))) (-15 -2160 ((-1113 (-213)) |#1| (-1074 (-375)) (-1074 (-375)) (-626 (-251)))) (-15 -2160 ((-1113 (-213)) |#1| (-1074 (-375)) (-1074 (-375)))) (-15 -2152 ((-1238) (-869 |#1|) (-1074 (-375)) (-1074 (-375)) (-626 (-251)))) (-15 -2152 ((-1238) (-869 |#1|) (-1074 (-375)) (-1074 (-375)))) (-15 -2160 ((-1113 (-213)) (-869 |#1|) (-1074 (-375)) (-1074 (-375)) (-626 (-251)))) (-15 -2160 ((-1113 (-213)) (-869 |#1|) (-1074 (-375)) (-1074 (-375))))) -((-2152 (((-1238) (-626 (-213)) (-626 (-213)) (-626 (-213)) (-626 (-251))) 21) (((-1238) (-626 (-213)) (-626 (-213)) (-626 (-213))) 22) (((-1237) (-626 (-936 (-213))) (-626 (-251))) 13) (((-1237) (-626 (-936 (-213)))) 14) (((-1237) (-626 (-213)) (-626 (-213)) (-626 (-251))) 18) (((-1237) (-626 (-213)) (-626 (-213))) 19))) -(((-248) (-10 -7 (-15 -2152 ((-1237) (-626 (-213)) (-626 (-213)))) (-15 -2152 ((-1237) (-626 (-213)) (-626 (-213)) (-626 (-251)))) (-15 -2152 ((-1237) (-626 (-936 (-213))))) (-15 -2152 ((-1237) (-626 (-936 (-213))) (-626 (-251)))) (-15 -2152 ((-1238) (-626 (-213)) (-626 (-213)) (-626 (-213)))) (-15 -2152 ((-1238) (-626 (-213)) (-626 (-213)) (-626 (-213)) (-626 (-251)))))) (T -248)) -((-2152 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-626 (-213))) (-5 *4 (-626 (-251))) (-5 *2 (-1238)) (-5 *1 (-248)))) (-2152 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-626 (-213))) (-5 *2 (-1238)) (-5 *1 (-248)))) (-2152 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-936 (-213)))) (-5 *4 (-626 (-251))) (-5 *2 (-1237)) (-5 *1 (-248)))) (-2152 (*1 *2 *3) (-12 (-5 *3 (-626 (-936 (-213)))) (-5 *2 (-1237)) (-5 *1 (-248)))) (-2152 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-626 (-213))) (-5 *4 (-626 (-251))) (-5 *2 (-1237)) (-5 *1 (-248)))) (-2152 (*1 *2 *3 *3) (-12 (-5 *3 (-626 (-213))) (-5 *2 (-1237)) (-5 *1 (-248))))) -(-10 -7 (-15 -2152 ((-1237) (-626 (-213)) (-626 (-213)))) (-15 -2152 ((-1237) (-626 (-213)) (-626 (-213)) (-626 (-251)))) (-15 -2152 ((-1237) (-626 (-936 (-213))))) (-15 -2152 ((-1237) (-626 (-936 (-213))) (-626 (-251)))) (-15 -2152 ((-1238) (-626 (-213)) (-626 (-213)) (-626 (-213)))) (-15 -2152 ((-1238) (-626 (-213)) (-626 (-213)) (-626 (-213)) (-626 (-251))))) -((-1923 (((-2 (|:| |theta| (-213)) (|:| |phi| (-213)) (|:| -1407 (-213)) (|:| |scaleX| (-213)) (|:| |scaleY| (-213)) (|:| |scaleZ| (-213)) (|:| |deltaX| (-213)) (|:| |deltaY| (-213))) (-626 (-251)) (-2 (|:| |theta| (-213)) (|:| |phi| (-213)) (|:| -1407 (-213)) (|:| |scaleX| (-213)) (|:| |scaleY| (-213)) (|:| |scaleZ| (-213)) (|:| |deltaX| (-213)) (|:| |deltaY| (-213)))) 24)) (-2985 (((-909) (-626 (-251)) (-909)) 49)) (-4217 (((-909) (-626 (-251)) (-909)) 48)) (-2089 (((-626 (-375)) (-626 (-251)) (-626 (-375))) 65)) (-3610 (((-375) (-626 (-251)) (-375)) 55)) (-3596 (((-909) (-626 (-251)) (-909)) 50)) (-2216 (((-121) (-626 (-251)) (-121)) 26)) (-1777 (((-1135) (-626 (-251)) (-1135)) 19)) (-1553 (((-1135) (-626 (-251)) (-1135)) 25)) (-1440 (((-1113 (-213)) (-626 (-251))) 43)) (-1328 (((-626 (-1076 (-375))) (-626 (-251)) (-626 (-1076 (-375)))) 37)) (-3770 (((-861) (-626 (-251)) (-861)) 31)) (-3885 (((-861) (-626 (-251)) (-861)) 32)) (-2166 (((-1 (-936 (-213)) (-936 (-213))) (-626 (-251)) (-1 (-936 (-213)) (-936 (-213)))) 60)) (-3845 (((-121) (-626 (-251)) (-121)) 15)) (-4299 (((-121) (-626 (-251)) (-121)) 14))) -(((-249) (-10 -7 (-15 -4299 ((-121) (-626 (-251)) (-121))) (-15 -3845 ((-121) (-626 (-251)) (-121))) (-15 -1923 ((-2 (|:| |theta| (-213)) (|:| |phi| (-213)) (|:| -1407 (-213)) (|:| |scaleX| (-213)) (|:| |scaleY| (-213)) (|:| |scaleZ| (-213)) (|:| |deltaX| (-213)) (|:| |deltaY| (-213))) (-626 (-251)) (-2 (|:| |theta| (-213)) (|:| |phi| (-213)) (|:| -1407 (-213)) (|:| |scaleX| (-213)) (|:| |scaleY| (-213)) (|:| |scaleZ| (-213)) (|:| |deltaX| (-213)) (|:| |deltaY| (-213))))) (-15 -1777 ((-1135) (-626 (-251)) (-1135))) (-15 -1553 ((-1135) (-626 (-251)) (-1135))) (-15 -2216 ((-121) (-626 (-251)) (-121))) (-15 -3770 ((-861) (-626 (-251)) (-861))) (-15 -3885 ((-861) (-626 (-251)) (-861))) (-15 -1328 ((-626 (-1076 (-375))) (-626 (-251)) (-626 (-1076 (-375))))) (-15 -4217 ((-909) (-626 (-251)) (-909))) (-15 -2985 ((-909) (-626 (-251)) (-909))) (-15 -1440 ((-1113 (-213)) (-626 (-251)))) (-15 -3596 ((-909) (-626 (-251)) (-909))) (-15 -3610 ((-375) (-626 (-251)) (-375))) (-15 -2166 ((-1 (-936 (-213)) (-936 (-213))) (-626 (-251)) (-1 (-936 (-213)) (-936 (-213))))) (-15 -2089 ((-626 (-375)) (-626 (-251)) (-626 (-375)))))) (T -249)) -((-2089 (*1 *2 *3 *2) (-12 (-5 *2 (-626 (-375))) (-5 *3 (-626 (-251))) (-5 *1 (-249)))) (-2166 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-936 (-213)) (-936 (-213)))) (-5 *3 (-626 (-251))) (-5 *1 (-249)))) (-3610 (*1 *2 *3 *2) (-12 (-5 *2 (-375)) (-5 *3 (-626 (-251))) (-5 *1 (-249)))) (-3596 (*1 *2 *3 *2) (-12 (-5 *2 (-909)) (-5 *3 (-626 (-251))) (-5 *1 (-249)))) (-1440 (*1 *2 *3) (-12 (-5 *3 (-626 (-251))) (-5 *2 (-1113 (-213))) (-5 *1 (-249)))) (-2985 (*1 *2 *3 *2) (-12 (-5 *2 (-909)) (-5 *3 (-626 (-251))) (-5 *1 (-249)))) (-4217 (*1 *2 *3 *2) (-12 (-5 *2 (-909)) (-5 *3 (-626 (-251))) (-5 *1 (-249)))) (-1328 (*1 *2 *3 *2) (-12 (-5 *2 (-626 (-1076 (-375)))) (-5 *3 (-626 (-251))) (-5 *1 (-249)))) (-3885 (*1 *2 *3 *2) (-12 (-5 *2 (-861)) (-5 *3 (-626 (-251))) (-5 *1 (-249)))) (-3770 (*1 *2 *3 *2) (-12 (-5 *2 (-861)) (-5 *3 (-626 (-251))) (-5 *1 (-249)))) (-2216 (*1 *2 *3 *2) (-12 (-5 *2 (-121)) (-5 *3 (-626 (-251))) (-5 *1 (-249)))) (-1553 (*1 *2 *3 *2) (-12 (-5 *2 (-1135)) (-5 *3 (-626 (-251))) (-5 *1 (-249)))) (-1777 (*1 *2 *3 *2) (-12 (-5 *2 (-1135)) (-5 *3 (-626 (-251))) (-5 *1 (-249)))) (-1923 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-213)) (|:| |phi| (-213)) (|:| -1407 (-213)) (|:| |scaleX| (-213)) (|:| |scaleY| (-213)) (|:| |scaleZ| (-213)) (|:| |deltaX| (-213)) (|:| |deltaY| (-213)))) (-5 *3 (-626 (-251))) (-5 *1 (-249)))) (-3845 (*1 *2 *3 *2) (-12 (-5 *2 (-121)) (-5 *3 (-626 (-251))) (-5 *1 (-249)))) (-4299 (*1 *2 *3 *2) (-12 (-5 *2 (-121)) (-5 *3 (-626 (-251))) (-5 *1 (-249))))) -(-10 -7 (-15 -4299 ((-121) (-626 (-251)) (-121))) (-15 -3845 ((-121) (-626 (-251)) (-121))) (-15 -1923 ((-2 (|:| |theta| (-213)) (|:| |phi| (-213)) (|:| -1407 (-213)) (|:| |scaleX| (-213)) (|:| |scaleY| (-213)) (|:| |scaleZ| (-213)) (|:| |deltaX| (-213)) (|:| |deltaY| (-213))) (-626 (-251)) (-2 (|:| |theta| (-213)) (|:| |phi| (-213)) (|:| -1407 (-213)) (|:| |scaleX| (-213)) (|:| |scaleY| (-213)) (|:| |scaleZ| (-213)) (|:| |deltaX| (-213)) (|:| |deltaY| (-213))))) (-15 -1777 ((-1135) (-626 (-251)) (-1135))) (-15 -1553 ((-1135) (-626 (-251)) (-1135))) (-15 -2216 ((-121) (-626 (-251)) (-121))) (-15 -3770 ((-861) (-626 (-251)) (-861))) (-15 -3885 ((-861) (-626 (-251)) (-861))) (-15 -1328 ((-626 (-1076 (-375))) (-626 (-251)) (-626 (-1076 (-375))))) (-15 -4217 ((-909) (-626 (-251)) (-909))) (-15 -2985 ((-909) (-626 (-251)) (-909))) (-15 -1440 ((-1113 (-213)) (-626 (-251)))) (-15 -3596 ((-909) (-626 (-251)) (-909))) (-15 -3610 ((-375) (-626 (-251)) (-375))) (-15 -2166 ((-1 (-936 (-213)) (-936 (-213))) (-626 (-251)) (-1 (-936 (-213)) (-936 (-213))))) (-15 -2089 ((-626 (-375)) (-626 (-251)) (-626 (-375))))) -((-3066 (((-3 |#1| "failed") (-626 (-251)) (-1153)) 17))) -(((-250 |#1|) (-10 -7 (-15 -3066 ((-3 |#1| "failed") (-626 (-251)) (-1153)))) (-1187)) (T -250)) -((-3066 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-626 (-251))) (-5 *4 (-1153)) (-5 *1 (-250 *2)) (-4 *2 (-1187))))) -(-10 -7 (-15 -3066 ((-3 |#1| "failed") (-626 (-251)) (-1153)))) -((-2601 (((-121) $ $) NIL)) (-1923 (($ (-2 (|:| |theta| (-213)) (|:| |phi| (-213)) (|:| -1407 (-213)) (|:| |scaleX| (-213)) (|:| |scaleY| (-213)) (|:| |scaleZ| (-213)) (|:| |deltaX| (-213)) (|:| |deltaY| (-213)))) 14)) (-2985 (($ (-909)) 70)) (-4217 (($ (-909)) 69)) (-1917 (($ (-626 (-375))) 76)) (-3610 (($ (-375)) 55)) (-3596 (($ (-909)) 71)) (-2216 (($ (-121)) 22)) (-1777 (($ (-1135)) 17)) (-1553 (($ (-1135)) 18)) (-1440 (($ (-1113 (-213))) 65)) (-1328 (($ (-626 (-1076 (-375)))) 61)) (-1396 (($ (-626 (-1076 (-375)))) 56) (($ (-626 (-1076 (-403 (-560))))) 60)) (-2085 (($ (-375)) 28) (($ (-861)) 32)) (-2557 (((-121) (-626 $) (-1153)) 85)) (-3066 (((-3 (-57) "failed") (-626 $) (-1153)) 87)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-4193 (($ (-375)) 33) (($ (-861)) 34)) (-3390 (($ (-1 (-936 (-213)) (-936 (-213)))) 54)) (-2166 (($ (-1 (-936 (-213)) (-936 (-213)))) 72)) (-2450 (($ (-1 (-213) (-213))) 38) (($ (-1 (-213) (-213) (-213))) 42) (($ (-1 (-213) (-213) (-213) (-213))) 46)) (-2801 (((-842) $) 81)) (-4232 (($ (-121)) 23) (($ (-626 (-1076 (-375)))) 50)) (-4299 (($ (-121)) 24)) (-1653 (((-121) $ $) 83))) -(((-251) (-13 (-1082) (-10 -8 (-15 -4299 ($ (-121))) (-15 -4232 ($ (-121))) (-15 -1923 ($ (-2 (|:| |theta| (-213)) (|:| |phi| (-213)) (|:| -1407 (-213)) (|:| |scaleX| (-213)) (|:| |scaleY| (-213)) (|:| |scaleZ| (-213)) (|:| |deltaX| (-213)) (|:| |deltaY| (-213))))) (-15 -1777 ($ (-1135))) (-15 -1553 ($ (-1135))) (-15 -2216 ($ (-121))) (-15 -4232 ($ (-626 (-1076 (-375))))) (-15 -3390 ($ (-1 (-936 (-213)) (-936 (-213))))) (-15 -2085 ($ (-375))) (-15 -2085 ($ (-861))) (-15 -4193 ($ (-375))) (-15 -4193 ($ (-861))) (-15 -2450 ($ (-1 (-213) (-213)))) (-15 -2450 ($ (-1 (-213) (-213) (-213)))) (-15 -2450 ($ (-1 (-213) (-213) (-213) (-213)))) (-15 -3610 ($ (-375))) (-15 -1396 ($ (-626 (-1076 (-375))))) (-15 -1396 ($ (-626 (-1076 (-403 (-560)))))) (-15 -1328 ($ (-626 (-1076 (-375))))) (-15 -1440 ($ (-1113 (-213)))) (-15 -4217 ($ (-909))) (-15 -2985 ($ (-909))) (-15 -3596 ($ (-909))) (-15 -2166 ($ (-1 (-936 (-213)) (-936 (-213))))) (-15 -1917 ($ (-626 (-375)))) (-15 -3066 ((-3 (-57) "failed") (-626 $) (-1153))) (-15 -2557 ((-121) (-626 $) (-1153)))))) (T -251)) -((-4299 (*1 *1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-251)))) (-4232 (*1 *1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-251)))) (-1923 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-213)) (|:| |phi| (-213)) (|:| -1407 (-213)) (|:| |scaleX| (-213)) (|:| |scaleY| (-213)) (|:| |scaleZ| (-213)) (|:| |deltaX| (-213)) (|:| |deltaY| (-213)))) (-5 *1 (-251)))) (-1777 (*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-251)))) (-1553 (*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-251)))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-251)))) (-4232 (*1 *1 *2) (-12 (-5 *2 (-626 (-1076 (-375)))) (-5 *1 (-251)))) (-3390 (*1 *1 *2) (-12 (-5 *2 (-1 (-936 (-213)) (-936 (-213)))) (-5 *1 (-251)))) (-2085 (*1 *1 *2) (-12 (-5 *2 (-375)) (-5 *1 (-251)))) (-2085 (*1 *1 *2) (-12 (-5 *2 (-861)) (-5 *1 (-251)))) (-4193 (*1 *1 *2) (-12 (-5 *2 (-375)) (-5 *1 (-251)))) (-4193 (*1 *1 *2) (-12 (-5 *2 (-861)) (-5 *1 (-251)))) (-2450 (*1 *1 *2) (-12 (-5 *2 (-1 (-213) (-213))) (-5 *1 (-251)))) (-2450 (*1 *1 *2) (-12 (-5 *2 (-1 (-213) (-213) (-213))) (-5 *1 (-251)))) (-2450 (*1 *1 *2) (-12 (-5 *2 (-1 (-213) (-213) (-213) (-213))) (-5 *1 (-251)))) (-3610 (*1 *1 *2) (-12 (-5 *2 (-375)) (-5 *1 (-251)))) (-1396 (*1 *1 *2) (-12 (-5 *2 (-626 (-1076 (-375)))) (-5 *1 (-251)))) (-1396 (*1 *1 *2) (-12 (-5 *2 (-626 (-1076 (-403 (-560))))) (-5 *1 (-251)))) (-1328 (*1 *1 *2) (-12 (-5 *2 (-626 (-1076 (-375)))) (-5 *1 (-251)))) (-1440 (*1 *1 *2) (-12 (-5 *2 (-1113 (-213))) (-5 *1 (-251)))) (-4217 (*1 *1 *2) (-12 (-5 *2 (-909)) (-5 *1 (-251)))) (-2985 (*1 *1 *2) (-12 (-5 *2 (-909)) (-5 *1 (-251)))) (-3596 (*1 *1 *2) (-12 (-5 *2 (-909)) (-5 *1 (-251)))) (-2166 (*1 *1 *2) (-12 (-5 *2 (-1 (-936 (-213)) (-936 (-213)))) (-5 *1 (-251)))) (-1917 (*1 *1 *2) (-12 (-5 *2 (-626 (-375))) (-5 *1 (-251)))) (-3066 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-626 (-251))) (-5 *4 (-1153)) (-5 *2 (-57)) (-5 *1 (-251)))) (-2557 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-251))) (-5 *4 (-1153)) (-5 *2 (-121)) (-5 *1 (-251))))) -(-13 (-1082) (-10 -8 (-15 -4299 ($ (-121))) (-15 -4232 ($ (-121))) (-15 -1923 ($ (-2 (|:| |theta| (-213)) (|:| |phi| (-213)) (|:| -1407 (-213)) (|:| |scaleX| (-213)) (|:| |scaleY| (-213)) (|:| |scaleZ| (-213)) (|:| |deltaX| (-213)) (|:| |deltaY| (-213))))) (-15 -1777 ($ (-1135))) (-15 -1553 ($ (-1135))) (-15 -2216 ($ (-121))) (-15 -4232 ($ (-626 (-1076 (-375))))) (-15 -3390 ($ (-1 (-936 (-213)) (-936 (-213))))) (-15 -2085 ($ (-375))) (-15 -2085 ($ (-861))) (-15 -4193 ($ (-375))) (-15 -4193 ($ (-861))) (-15 -2450 ($ (-1 (-213) (-213)))) (-15 -2450 ($ (-1 (-213) (-213) (-213)))) (-15 -2450 ($ (-1 (-213) (-213) (-213) (-213)))) (-15 -3610 ($ (-375))) (-15 -1396 ($ (-626 (-1076 (-375))))) (-15 -1396 ($ (-626 (-1076 (-403 (-560)))))) (-15 -1328 ($ (-626 (-1076 (-375))))) (-15 -1440 ($ (-1113 (-213)))) (-15 -4217 ($ (-909))) (-15 -2985 ($ (-909))) (-15 -3596 ($ (-909))) (-15 -2166 ($ (-1 (-936 (-213)) (-936 (-213))))) (-15 -1917 ($ (-626 (-375)))) (-15 -3066 ((-3 (-57) "failed") (-626 $) (-1153))) (-15 -2557 ((-121) (-626 $) (-1153))))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-2402 (((-626 (-755)) $) NIL) (((-626 (-755)) $ |#2|) NIL)) (-1400 (((-755) $) NIL) (((-755) $ |#2|) NIL)) (-1654 (((-626 |#3|) $) NIL)) (-1593 (((-1149 $) $ |#3|) NIL) (((-1149 |#1|) $) NIL)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL (|has| |#1| (-550)))) (-1350 (($ $) NIL (|has| |#1| (-550)))) (-3376 (((-121) $) NIL (|has| |#1| (-550)))) (-1697 (((-755) $) NIL) (((-755) $ (-626 |#3|)) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-1776 (((-414 (-1149 $)) (-1149 $)) NIL (|has| |#1| (-896)))) (-3065 (($ $) NIL (|has| |#1| (-447)))) (-2953 (((-414 $) $) NIL (|has| |#1| (-447)))) (-1887 (((-3 (-626 (-1149 $)) "failed") (-626 (-1149 $)) (-1149 $)) NIL (|has| |#1| (-896)))) (-1278 (($ $) NIL)) (-4236 (($) NIL T CONST)) (-1473 (((-3 |#1| "failed") $) NIL) (((-3 (-403 (-560)) "failed") $) NIL (|has| |#1| (-1029 (-403 (-560))))) (((-3 (-560) "failed") $) NIL (|has| |#1| (-1029 (-560)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1105 |#1| |#2|) "failed") $) 20)) (-3001 ((|#1| $) NIL) (((-403 (-560)) $) NIL (|has| |#1| (-1029 (-403 (-560))))) (((-560) $) NIL (|has| |#1| (-1029 (-560)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1105 |#1| |#2|) $) NIL)) (-1979 (($ $ $ |#3|) NIL (|has| |#1| (-170)))) (-1750 (($ $) NIL)) (-2616 (((-671 (-560)) (-671 $)) NIL (|has| |#1| (-622 (-560)))) (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) NIL (|has| |#1| (-622 (-560)))) (((-2 (|:| -3818 (-671 |#1|)) (|:| |vec| (-1236 |#1|))) (-671 $) (-1236 $)) NIL) (((-671 |#1|) (-671 $)) NIL)) (-1823 (((-3 $ "failed") $) NIL)) (-3605 (($ $) NIL (|has| |#1| (-447))) (($ $ |#3|) NIL (|has| |#1| (-447)))) (-1743 (((-626 $) $) NIL)) (-3319 (((-121) $) NIL (|has| |#1| (-896)))) (-1456 (($ $ |#1| (-526 |#3|) $) NIL)) (-2399 (((-876 (-375) $) $ (-879 (-375)) (-876 (-375) $)) NIL (-12 (|has| |#1| (-873 (-375))) (|has| |#3| (-873 (-375))))) (((-876 (-560) $) $ (-879 (-560)) (-876 (-560) $)) NIL (-12 (|has| |#1| (-873 (-560))) (|has| |#3| (-873 (-560)))))) (-3504 (((-755) $ |#2|) NIL) (((-755) $) 10)) (-2642 (((-121) $) NIL)) (-3235 (((-755) $) NIL)) (-1647 (($ (-1149 |#1|) |#3|) NIL) (($ (-1149 $) |#3|) NIL)) (-1854 (((-626 $) $) NIL)) (-1814 (((-121) $) NIL)) (-1637 (($ |#1| (-526 |#3|)) NIL) (($ $ |#3| (-755)) NIL) (($ $ (-626 |#3|) (-626 (-755))) NIL)) (-2923 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $ |#3|) NIL)) (-3693 (((-526 |#3|) $) NIL) (((-755) $ |#3|) NIL) (((-626 (-755)) $ (-626 |#3|)) NIL)) (-4325 (($ $ $) NIL (|has| |#1| (-834)))) (-2501 (($ $ $) NIL (|has| |#1| (-834)))) (-1504 (($ (-1 (-526 |#3|) (-526 |#3|)) $) NIL)) (-2803 (($ (-1 |#1| |#1|) $) NIL)) (-4340 (((-1 $ (-755)) |#2|) NIL) (((-1 $ (-755)) $) NIL (|has| |#1| (-221)))) (-2101 (((-3 |#3| "failed") $) NIL)) (-1726 (($ $) NIL)) (-1735 ((|#1| $) NIL)) (-2263 ((|#3| $) NIL)) (-2582 (($ (-626 $)) NIL (|has| |#1| (-447))) (($ $ $) NIL (|has| |#1| (-447)))) (-1291 (((-1135) $) NIL)) (-3940 (((-121) $) NIL)) (-3665 (((-3 (-626 $) "failed") $) NIL)) (-2327 (((-3 (-626 $) "failed") $) NIL)) (-2913 (((-3 (-2 (|:| |var| |#3|) (|:| -4034 (-755))) "failed") $) NIL)) (-2006 (($ $) NIL)) (-4353 (((-1100) $) NIL)) (-1704 (((-121) $) NIL)) (-1711 ((|#1| $) NIL)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL (|has| |#1| (-447)))) (-4440 (($ (-626 $)) NIL (|has| |#1| (-447))) (($ $ $) NIL (|has| |#1| (-447)))) (-3817 (((-414 (-1149 $)) (-1149 $)) NIL (|has| |#1| (-896)))) (-3032 (((-414 (-1149 $)) (-1149 $)) NIL (|has| |#1| (-896)))) (-1601 (((-414 $) $) NIL (|has| |#1| (-896)))) (-2336 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-550))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-550)))) (-4450 (($ $ (-626 (-283 $))) NIL) (($ $ (-283 $)) NIL) (($ $ $ $) NIL) (($ $ (-626 $) (-626 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-626 |#3|) (-626 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-626 |#3|) (-626 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-221))) (($ $ (-626 |#2|) (-626 $)) NIL (|has| |#1| (-221))) (($ $ |#2| |#1|) NIL (|has| |#1| (-221))) (($ $ (-626 |#2|) (-626 |#1|)) NIL (|has| |#1| (-221)))) (-4069 (($ $ |#3|) NIL (|has| |#1| (-170)))) (-2443 (($ $ |#3|) NIL) (($ $ (-626 |#3|)) NIL) (($ $ |#3| (-755)) NIL) (($ $ (-626 |#3|) (-626 (-755))) NIL) (($ $) NIL (|has| |#1| (-221))) (($ $ (-755)) NIL (|has| |#1| (-221))) (($ $ (-1153)) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-626 (-1153))) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-1153) (-755)) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-626 (-1153)) (-626 (-755))) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-1 |#1| |#1|) (-755)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1339 (((-626 |#2|) $) NIL)) (-3662 (((-526 |#3|) $) NIL) (((-755) $ |#3|) NIL) (((-626 (-755)) $ (-626 |#3|)) NIL) (((-755) $ |#2|) NIL)) (-4255 (((-879 (-375)) $) NIL (-12 (|has| |#1| (-601 (-879 (-375)))) (|has| |#3| (-601 (-879 (-375)))))) (((-879 (-560)) $) NIL (-12 (|has| |#1| (-601 (-879 (-560)))) (|has| |#3| (-601 (-879 (-560)))))) (((-533) $) NIL (-12 (|has| |#1| (-601 (-533))) (|has| |#3| (-601 (-533)))))) (-1896 ((|#1| $) NIL (|has| |#1| (-447))) (($ $ |#3|) NIL (|has| |#1| (-447)))) (-3248 (((-3 (-1236 $) "failed") (-671 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-896))))) (-2801 (((-842) $) NIL) (($ (-560)) NIL) (($ |#1|) 23) (($ |#3|) 22) (($ |#2|) NIL) (($ (-1105 |#1| |#2|)) 28) (($ (-403 (-560))) NIL (-2318 (|has| |#1| (-43 (-403 (-560)))) (|has| |#1| (-1029 (-403 (-560)))))) (($ $) NIL (|has| |#1| (-550)))) (-2423 (((-626 |#1|) $) NIL)) (-2636 ((|#1| $ (-526 |#3|)) NIL) (($ $ |#3| (-755)) NIL) (($ $ (-626 |#3|) (-626 (-755))) NIL)) (-2272 (((-3 $ "failed") $) NIL (-2318 (-12 (|has| $ (-146)) (|has| |#1| (-896))) (|has| |#1| (-146))))) (-1751 (((-755)) NIL)) (-3487 (($ $ $ (-755)) NIL (|has| |#1| (-170)))) (-2328 (((-121) $ $) NIL (|has| |#1| (-550)))) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (-3304 (($) NIL T CONST)) (-1459 (($) NIL T CONST)) (-2500 (($ $ |#3|) NIL) (($ $ (-626 |#3|)) NIL) (($ $ |#3| (-755)) NIL) (($ $ (-626 |#3|) (-626 (-755))) NIL) (($ $) NIL (|has| |#1| (-221))) (($ $ (-755)) NIL (|has| |#1| (-221))) (($ $ (-1153)) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-626 (-1153))) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-1153) (-755)) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-626 (-1153)) (-626 (-755))) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-1 |#1| |#1|) (-755)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1691 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1675 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1653 (((-121) $ $) NIL)) (-1683 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1667 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1733 (($ $ |#1|) NIL (|has| |#1| (-359)))) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) NIL)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) NIL) (($ $ (-403 (-560))) NIL (|has| |#1| (-43 (-403 (-560))))) (($ (-403 (-560)) $) NIL (|has| |#1| (-43 (-403 (-560))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-252 |#1| |#2| |#3|) (-13 (-241 |#1| |#2| |#3| (-526 |#3|)) (-1029 (-1105 |#1| |#2|))) (-1039) (-834) (-257 |#2|)) (T -252)) -NIL -(-13 (-241 |#1| |#2| |#3| (-526 |#3|)) (-1029 (-1105 |#1| |#2|))) -((-2601 (((-121) $ $) 18 (|has| |#1| (-1082)))) (-2981 ((|#1| $) 45)) (-2902 (($ |#1| (-626 $)) 51) (($ |#1|) 50) (($ (-626 |#1|)) 49)) (-3909 (((-121) $ (-755)) 8)) (-3119 ((|#1| $ |#1|) 36 (|has| $ (-6 -4506)))) (-2764 ((|#1| $ "value" |#1|) 37 (|has| $ (-6 -4506)))) (-4043 (($ $ (-626 $)) 38 (|has| $ (-6 -4506)))) (-4236 (($) 7 T CONST)) (-1981 (((-626 |#1|) $) 30 (|has| $ (-6 -4505)))) (-3971 (((-626 $) $) 47)) (-2420 (((-121) $ $) 39 (|has| |#1| (-1082)))) (-2122 (((-121) $ (-755)) 9)) (-2130 (((-626 |#1|) $) 29 (|has| $ (-6 -4505)))) (-2030 (((-121) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-3778 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#1| |#1|) $) 35)) (-3441 (((-121) $ (-755)) 10)) (-2173 (((-626 |#1|) $) 42)) (-3992 (((-121) $) 46)) (-1291 (((-1135) $) 22 (|has| |#1| (-1082)))) (-4353 (((-1100) $) 21 (|has| |#1| (-1082)))) (-2865 (((-121) (-1 (-121) |#1|) $) 32 (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#1|))) 26 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-283 |#1|)) 25 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-626 |#1|) (-626 |#1|)) 23 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))))) (-2214 (((-121) $ $) 14)) (-4191 (((-121) $) 11)) (-3260 (($) 12)) (-2778 ((|#1| $ "value") 44)) (-1435 (((-560) $ $) 41)) (-3316 (((-121) $) 43)) (-4035 (((-755) (-1 (-121) |#1|) $) 31 (|has| $ (-6 -4505))) (((-755) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-2813 (($ $) 13)) (-2801 (((-842) $) 20 (|has| |#1| (-1082)))) (-2853 (((-626 $) $) 48)) (-3761 (((-121) $ $) 40 (|has| |#1| (-1082)))) (-3656 (((-121) (-1 (-121) |#1|) $) 33 (|has| $ (-6 -4505)))) (-1653 (((-121) $ $) 19 (|has| |#1| (-1082)))) (-2271 (((-755) $) 6 (|has| $ (-6 -4505))))) -(((-253 |#1|) (-1267) (-1082)) (T -253)) -((-2902 (*1 *1 *2 *3) (-12 (-5 *3 (-626 *1)) (-4 *1 (-253 *2)) (-4 *2 (-1082)))) (-2902 (*1 *1 *2) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1082)))) (-2902 (*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-1082)) (-4 *1 (-253 *3))))) -(-13 (-1002 |t#1|) (-10 -8 (-6 -4506) (-6 -4505) (-15 -2902 ($ |t#1| (-626 $))) (-15 -2902 ($ |t#1|)) (-15 -2902 ($ (-626 |t#1|))))) -(((-39) . T) ((-105) |has| |#1| (-1082)) ((-600 (-842)) |has| |#1| (-1082)) ((-298 |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))) ((-492 |#1|) . T) ((-515 |#1| |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))) ((-1002 |#1|) . T) ((-1082) |has| |#1| (-1082)) ((-1187) . T)) -((-2601 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-2981 ((|#1| $) 12)) (-2902 (($ |#1| (-626 $)) 31) (($ |#1|) 32) (($ (-626 |#1|)) 33)) (-3909 (((-121) $ (-755)) NIL)) (-3119 ((|#1| $ |#1|) 35 (|has| $ (-6 -4506)))) (-2764 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4506)))) (-4043 (($ $ (-626 $)) 34 (|has| $ (-6 -4506)))) (-4236 (($) NIL T CONST)) (-1981 (((-626 |#1|) $) NIL (|has| $ (-6 -4505)))) (-3971 (((-626 $) $) NIL)) (-2420 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-2122 (((-121) $ (-755)) NIL)) (-2130 (((-626 |#1|) $) NIL (|has| $ (-6 -4505)))) (-2030 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-3778 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#1| |#1|) $) NIL)) (-3441 (((-121) $ (-755)) NIL)) (-2173 (((-626 |#1|) $) 22)) (-3992 (((-121) $) NIL)) (-1291 (((-1135) $) NIL (|has| |#1| (-1082)))) (-4353 (((-1100) $) NIL (|has| |#1| (-1082)))) (-2747 (((-121) (-121)) 18) (((-121)) 19)) (-3697 (((-842) $) 15)) (-2865 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#1|))) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-283 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-626 |#1|) (-626 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))))) (-2214 (((-121) $ $) NIL)) (-1579 (((-1135) $) 28)) (-4191 (((-121) $) NIL)) (-3260 (($) NIL)) (-2778 ((|#1| $ "value") NIL)) (-1435 (((-560) $ $) NIL)) (-3316 (((-121) $) NIL)) (-4035 (((-755) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505))) (((-755) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-2813 (($ $) NIL)) (-2801 (((-842) $) 30 (|has| |#1| (-1082)))) (-2853 (((-626 $) $) 8)) (-3761 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-3656 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-1653 (((-121) $ $) 26 (|has| |#1| (-1082)))) (-2271 (((-755) $) NIL (|has| $ (-6 -4505))))) -(((-254 |#1|) (-13 (-253 |#1|) (-10 -8 (-15 -1579 ((-1135) $)) (-15 -3697 ((-842) $)) (-15 -2747 ((-121) (-121))) (-15 -2747 ((-121))))) (-1082)) (T -254)) -((-1579 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-254 *3)) (-4 *3 (-1082)))) (-3697 (*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-254 *3)) (-4 *3 (-1082)))) (-2747 (*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-254 *3)) (-4 *3 (-1082)))) (-2747 (*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-254 *3)) (-4 *3 (-1082))))) -(-13 (-253 |#1|) (-10 -8 (-15 -1579 ((-1135) $)) (-15 -3697 ((-842) $)) (-15 -2747 ((-121) (-121))) (-15 -2747 ((-121))))) -((-1512 (((-1241) |#10| (-626 |#3|)) 133) (((-1241) |#10|) 135)) (-1518 (((-1241) |#10|) NIL)) (-1524 ((|#8| |#10|) 28)) (-1530 (((-560) (-755) (-626 |#10|)) 147)) (-1536 (((-755) (-755) (-626 |#10|)) 145)) (-2650 (((-560) |#3|) 148)) (-4390 (((-755) |#3|) 146)) (-1542 (((-1241) |#10|) 136)) (-1548 ((|#8| |#3| |#10|) 111)) (-1556 ((|#10| |#5| |#3|) 138)) (-2683 (((-626 |#10|) |#3|) 144)) (-1563 (((-1241) |#10|) 134)) (-1569 (((-626 |#9|) |#9|) 87)) (-2692 ((|#8| |#10|) 110))) -(((-255 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10| |#11|) (-10 -7 (-15 -1569 ((-626 |#9|) |#9|)) (-15 -1548 (|#8| |#3| |#10|)) (-15 -2692 (|#8| |#10|)) (-15 -1563 ((-1241) |#10|)) (-15 -1556 (|#10| |#5| |#3|)) (-15 -2683 ((-626 |#10|) |#3|)) (-15 -1542 ((-1241) |#10|)) (-15 -1518 ((-1241) |#10|)) (-15 -1512 ((-1241) |#10|)) (-15 -1512 ((-1241) |#10| (-626 |#3|))) (-15 -4390 ((-755) |#3|)) (-15 -2650 ((-560) |#3|)) (-15 -1536 ((-755) (-755) (-626 |#10|))) (-15 -1524 (|#8| |#10|)) (-15 -1530 ((-560) (-755) (-626 |#10|)))) (-359) (-626 (-1153)) (-942 |#1| |#4| (-844 |#2|)) (-226 (-2271 |#2|) (-755)) (-963 |#1|) (-633 |#1|) (-912 |#1| |#6|) (-230 |#7|) (-528 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#11|) (-253 |#9|) (-117)) (T -255)) -((-1530 (*1 *2 *3 *4) (-12 (-5 *4 (-626 *14)) (-4 *14 (-253 *13)) (-4 *13 (-528 *5 *6 *7 *8 *9 *10 *11 *12 *15)) (-4 *15 (-117)) (-4 *5 (-359)) (-14 *6 (-626 (-1153))) (-4 *7 (-942 *5 *8 (-844 *6))) (-4 *8 (-226 (-2271 *6) *3)) (-4 *9 (-963 *5)) (-4 *10 (-633 *5)) (-4 *11 (-912 *5 *10)) (-4 *12 (-230 *11)) (-5 *3 (-755)) (-5 *2 (-560)) (-5 *1 (-255 *5 *6 *7 *8 *9 *10 *11 *12 *13 *14 *15)))) (-1524 (*1 *2 *3) (-12 (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *6 (-942 *4 *7 (-844 *5))) (-4 *7 (-226 (-2271 *5) (-755))) (-4 *8 (-963 *4)) (-4 *9 (-633 *4)) (-4 *10 (-912 *4 *9)) (-4 *11 (-528 *4 *5 *6 *7 *8 *9 *10 *2 *12)) (-4 *12 (-117)) (-4 *2 (-230 *10)) (-5 *1 (-255 *4 *5 *6 *7 *8 *9 *10 *2 *11 *3 *12)) (-4 *3 (-253 *11)))) (-1536 (*1 *2 *2 *3) (-12 (-5 *3 (-626 *13)) (-4 *13 (-253 *12)) (-4 *12 (-528 *4 *5 *6 *7 *8 *9 *10 *11 *14)) (-4 *14 (-117)) (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *6 (-942 *4 *7 (-844 *5))) (-4 *7 (-226 (-2271 *5) *2)) (-4 *8 (-963 *4)) (-4 *9 (-633 *4)) (-4 *10 (-912 *4 *9)) (-4 *11 (-230 *10)) (-5 *2 (-755)) (-5 *1 (-255 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13 *14)))) (-2650 (*1 *2 *3) (-12 (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *3 (-942 *4 *6 (-844 *5))) (-4 *6 (-226 (-2271 *5) (-755))) (-4 *7 (-963 *4)) (-4 *8 (-633 *4)) (-4 *9 (-912 *4 *8)) (-4 *10 (-230 *9)) (-4 *11 (-528 *4 *5 *3 *6 *7 *8 *9 *10 *13)) (-4 *13 (-117)) (-5 *2 (-560)) (-5 *1 (-255 *4 *5 *3 *6 *7 *8 *9 *10 *11 *12 *13)) (-4 *12 (-253 *11)))) (-4390 (*1 *2 *3) (-12 (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *3 (-942 *4 *6 (-844 *5))) (-4 *6 (-226 (-2271 *5) *2)) (-4 *7 (-963 *4)) (-4 *8 (-633 *4)) (-4 *9 (-912 *4 *8)) (-4 *10 (-230 *9)) (-4 *11 (-528 *4 *5 *3 *6 *7 *8 *9 *10 *13)) (-4 *13 (-117)) (-5 *2 (-755)) (-5 *1 (-255 *4 *5 *3 *6 *7 *8 *9 *10 *11 *12 *13)) (-4 *12 (-253 *11)))) (-1512 (*1 *2 *3 *4) (-12 (-5 *4 (-626 *7)) (-4 *7 (-942 *5 *8 (-844 *6))) (-4 *8 (-226 (-2271 *6) (-755))) (-4 *5 (-359)) (-14 *6 (-626 (-1153))) (-4 *9 (-963 *5)) (-4 *10 (-633 *5)) (-4 *11 (-912 *5 *10)) (-4 *12 (-230 *11)) (-4 *13 (-528 *5 *6 *7 *8 *9 *10 *11 *12 *14)) (-4 *14 (-117)) (-5 *2 (-1241)) (-5 *1 (-255 *5 *6 *7 *8 *9 *10 *11 *12 *13 *3 *14)) (-4 *3 (-253 *13)))) (-1512 (*1 *2 *3) (-12 (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *6 (-942 *4 *7 (-844 *5))) (-4 *7 (-226 (-2271 *5) (-755))) (-4 *8 (-963 *4)) (-4 *9 (-633 *4)) (-4 *10 (-912 *4 *9)) (-4 *11 (-230 *10)) (-4 *12 (-528 *4 *5 *6 *7 *8 *9 *10 *11 *13)) (-4 *13 (-117)) (-5 *2 (-1241)) (-5 *1 (-255 *4 *5 *6 *7 *8 *9 *10 *11 *12 *3 *13)) (-4 *3 (-253 *12)))) (-1518 (*1 *2 *3) (-12 (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *6 (-942 *4 *7 (-844 *5))) (-4 *7 (-226 (-2271 *5) (-755))) (-4 *8 (-963 *4)) (-4 *9 (-633 *4)) (-4 *10 (-912 *4 *9)) (-4 *11 (-230 *10)) (-4 *12 (-528 *4 *5 *6 *7 *8 *9 *10 *11 *13)) (-4 *13 (-117)) (-5 *2 (-1241)) (-5 *1 (-255 *4 *5 *6 *7 *8 *9 *10 *11 *12 *3 *13)) (-4 *3 (-253 *12)))) (-1542 (*1 *2 *3) (-12 (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *6 (-942 *4 *7 (-844 *5))) (-4 *7 (-226 (-2271 *5) (-755))) (-4 *8 (-963 *4)) (-4 *9 (-633 *4)) (-4 *10 (-912 *4 *9)) (-4 *11 (-230 *10)) (-4 *12 (-528 *4 *5 *6 *7 *8 *9 *10 *11 *13)) (-4 *13 (-117)) (-5 *2 (-1241)) (-5 *1 (-255 *4 *5 *6 *7 *8 *9 *10 *11 *12 *3 *13)) (-4 *3 (-253 *12)))) (-2683 (*1 *2 *3) (-12 (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *3 (-942 *4 *6 (-844 *5))) (-4 *6 (-226 (-2271 *5) (-755))) (-4 *7 (-963 *4)) (-4 *8 (-633 *4)) (-4 *9 (-912 *4 *8)) (-4 *10 (-230 *9)) (-4 *11 (-528 *4 *5 *3 *6 *7 *8 *9 *10 *13)) (-4 *13 (-117)) (-5 *2 (-626 *12)) (-5 *1 (-255 *4 *5 *3 *6 *7 *8 *9 *10 *11 *12 *13)) (-4 *12 (-253 *11)))) (-1556 (*1 *2 *3 *4) (-12 (-4 *5 (-359)) (-14 *6 (-626 (-1153))) (-4 *4 (-942 *5 *7 (-844 *6))) (-4 *7 (-226 (-2271 *6) (-755))) (-4 *3 (-963 *5)) (-4 *8 (-633 *5)) (-4 *9 (-912 *5 *8)) (-4 *10 (-230 *9)) (-4 *12 (-117)) (-4 *2 (-253 *11)) (-5 *1 (-255 *5 *6 *4 *7 *3 *8 *9 *10 *11 *2 *12)) (-4 *11 (-528 *5 *6 *4 *7 *3 *8 *9 *10 *12)))) (-1563 (*1 *2 *3) (-12 (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *6 (-942 *4 *7 (-844 *5))) (-4 *7 (-226 (-2271 *5) (-755))) (-4 *8 (-963 *4)) (-4 *9 (-633 *4)) (-4 *10 (-912 *4 *9)) (-4 *11 (-230 *10)) (-4 *12 (-528 *4 *5 *6 *7 *8 *9 *10 *11 *13)) (-4 *13 (-117)) (-5 *2 (-1241)) (-5 *1 (-255 *4 *5 *6 *7 *8 *9 *10 *11 *12 *3 *13)) (-4 *3 (-253 *12)))) (-2692 (*1 *2 *3) (-12 (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *6 (-942 *4 *7 (-844 *5))) (-4 *7 (-226 (-2271 *5) (-755))) (-4 *8 (-963 *4)) (-4 *9 (-633 *4)) (-4 *10 (-912 *4 *9)) (-4 *11 (-528 *4 *5 *6 *7 *8 *9 *10 *2 *12)) (-4 *12 (-117)) (-4 *2 (-230 *10)) (-5 *1 (-255 *4 *5 *6 *7 *8 *9 *10 *2 *11 *3 *12)) (-4 *3 (-253 *11)))) (-1548 (*1 *2 *3 *4) (-12 (-4 *5 (-359)) (-14 *6 (-626 (-1153))) (-4 *3 (-942 *5 *7 (-844 *6))) (-4 *7 (-226 (-2271 *6) (-755))) (-4 *8 (-963 *5)) (-4 *9 (-633 *5)) (-4 *10 (-912 *5 *9)) (-4 *11 (-528 *5 *6 *3 *7 *8 *9 *10 *2 *12)) (-4 *12 (-117)) (-4 *2 (-230 *10)) (-5 *1 (-255 *5 *6 *3 *7 *8 *9 *10 *2 *11 *4 *12)) (-4 *4 (-253 *11)))) (-1569 (*1 *2 *3) (-12 (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *6 (-942 *4 *7 (-844 *5))) (-4 *7 (-226 (-2271 *5) (-755))) (-4 *8 (-963 *4)) (-4 *9 (-633 *4)) (-4 *10 (-912 *4 *9)) (-4 *11 (-230 *10)) (-4 *3 (-528 *4 *5 *6 *7 *8 *9 *10 *11 *13)) (-4 *13 (-117)) (-5 *2 (-626 *3)) (-5 *1 (-255 *4 *5 *6 *7 *8 *9 *10 *11 *3 *12 *13)) (-4 *12 (-253 *3))))) -(-10 -7 (-15 -1569 ((-626 |#9|) |#9|)) (-15 -1548 (|#8| |#3| |#10|)) (-15 -2692 (|#8| |#10|)) (-15 -1563 ((-1241) |#10|)) (-15 -1556 (|#10| |#5| |#3|)) (-15 -2683 ((-626 |#10|) |#3|)) (-15 -1542 ((-1241) |#10|)) (-15 -1518 ((-1241) |#10|)) (-15 -1512 ((-1241) |#10|)) (-15 -1512 ((-1241) |#10| (-626 |#3|))) (-15 -4390 ((-755) |#3|)) (-15 -2650 ((-560) |#3|)) (-15 -1536 ((-755) (-755) (-626 |#10|))) (-15 -1524 (|#8| |#10|)) (-15 -1530 ((-560) (-755) (-626 |#10|)))) -((-1400 (((-755) $) 30)) (-1473 (((-3 |#2| "failed") $) 17)) (-3001 ((|#2| $) 27)) (-2443 (($ $) 12) (($ $ (-755)) 15)) (-2801 (((-842) $) 26) (($ |#2|) 10)) (-1653 (((-121) $ $) 20)) (-1667 (((-121) $ $) 29))) -(((-256 |#1| |#2|) (-10 -8 (-15 -2443 (|#1| |#1| (-755))) (-15 -2443 (|#1| |#1|)) (-15 -1400 ((-755) |#1|)) (-15 -3001 (|#2| |#1|)) (-15 -1473 ((-3 |#2| "failed") |#1|)) (-15 -2801 (|#1| |#2|)) (-15 -1667 ((-121) |#1| |#1|)) (-15 -2801 ((-842) |#1|)) (-15 -1653 ((-121) |#1| |#1|))) (-257 |#2|) (-834)) (T -256)) -NIL -(-10 -8 (-15 -2443 (|#1| |#1| (-755))) (-15 -2443 (|#1| |#1|)) (-15 -1400 ((-755) |#1|)) (-15 -3001 (|#2| |#1|)) (-15 -1473 ((-3 |#2| "failed") |#1|)) (-15 -2801 (|#1| |#2|)) (-15 -1667 ((-121) |#1| |#1|)) (-15 -2801 ((-842) |#1|)) (-15 -1653 ((-121) |#1| |#1|))) -((-2601 (((-121) $ $) 7)) (-1400 (((-755) $) 21)) (-1395 ((|#1| $) 22)) (-1473 (((-3 |#1| "failed") $) 26)) (-3001 ((|#1| $) 25)) (-3504 (((-755) $) 23)) (-4325 (($ $ $) 12)) (-2501 (($ $ $) 13)) (-4340 (($ |#1| (-755)) 24)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-2443 (($ $) 20) (($ $ (-755)) 19)) (-2801 (((-842) $) 11) (($ |#1|) 27)) (-1691 (((-121) $ $) 15)) (-1675 (((-121) $ $) 16)) (-1653 (((-121) $ $) 6)) (-1683 (((-121) $ $) 14)) (-1667 (((-121) $ $) 17))) -(((-257 |#1|) (-1267) (-834)) (T -257)) -((-2801 (*1 *1 *2) (-12 (-4 *1 (-257 *2)) (-4 *2 (-834)))) (-4340 (*1 *1 *2 *3) (-12 (-5 *3 (-755)) (-4 *1 (-257 *2)) (-4 *2 (-834)))) (-3504 (*1 *2 *1) (-12 (-4 *1 (-257 *3)) (-4 *3 (-834)) (-5 *2 (-755)))) (-1395 (*1 *2 *1) (-12 (-4 *1 (-257 *2)) (-4 *2 (-834)))) (-1400 (*1 *2 *1) (-12 (-4 *1 (-257 *3)) (-4 *3 (-834)) (-5 *2 (-755)))) (-2443 (*1 *1 *1) (-12 (-4 *1 (-257 *2)) (-4 *2 (-834)))) (-2443 (*1 *1 *1 *2) (-12 (-5 *2 (-755)) (-4 *1 (-257 *3)) (-4 *3 (-834))))) -(-13 (-834) (-1029 |t#1|) (-10 -8 (-15 -4340 ($ |t#1| (-755))) (-15 -3504 ((-755) $)) (-15 -1395 (|t#1| $)) (-15 -1400 ((-755) $)) (-15 -2443 ($ $)) (-15 -2443 ($ $ (-755))) (-15 -2801 ($ |t#1|)))) -(((-105) . T) ((-600 (-842)) . T) ((-834) . T) ((-1029 |#1|) . T) ((-1082) . T)) -((-1654 (((-626 (-1153)) (-2 (|:| |lfn| (-626 (-304 (-213)))) (|:| -1394 (-626 (-213))))) 40)) (-1499 (((-626 (-1153)) (-304 (-213)) (-755)) 79)) (-3906 (((-3 (-304 (-213)) "failed") (-304 (-213))) 50)) (-3603 (((-304 (-213)) (-304 (-213))) 65)) (-4060 (((-2 (|:| |fn| (-304 (-213))) (|:| -1394 (-626 (-213))) (|:| |lb| (-626 (-827 (-213)))) (|:| |cf| (-626 (-304 (-213)))) (|:| |ub| (-626 (-827 (-213))))) (-2 (|:| |fn| (-304 (-213))) (|:| -1394 (-626 (-213))) (|:| |lb| (-626 (-827 (-213)))) (|:| |cf| (-626 (-304 (-213)))) (|:| |ub| (-626 (-827 (-213)))))) 26)) (-2127 (((-121) (-626 (-304 (-213)))) 83)) (-2750 (((-121) (-304 (-213))) 24)) (-3297 (((-626 (-1135)) (-3 (|:| |noa| (-2 (|:| |fn| (-304 (-213))) (|:| -1394 (-626 (-213))) (|:| |lb| (-626 (-827 (-213)))) (|:| |cf| (-626 (-304 (-213)))) (|:| |ub| (-626 (-827 (-213)))))) (|:| |lsa| (-2 (|:| |lfn| (-626 (-304 (-213)))) (|:| -1394 (-626 (-213))))))) 104)) (-4002 (((-626 (-304 (-213))) (-626 (-304 (-213)))) 86)) (-2887 (((-626 (-304 (-213))) (-626 (-304 (-213)))) 85)) (-4456 (((-671 (-213)) (-626 (-304 (-213))) (-755)) 93)) (-2854 (((-121) (-304 (-213))) 20) (((-121) (-626 (-304 (-213)))) 84)) (-4367 (((-626 (-213)) (-626 (-827 (-213))) (-213)) 14)) (-4385 (((-375) (-2 (|:| |lfn| (-626 (-304 (-213)))) (|:| -1394 (-626 (-213))))) 99)) (-4414 (((-1027) (-1153) (-1027)) 33))) -(((-258) (-10 -7 (-15 -4367 ((-626 (-213)) (-626 (-827 (-213))) (-213))) (-15 -4060 ((-2 (|:| |fn| (-304 (-213))) (|:| -1394 (-626 (-213))) (|:| |lb| (-626 (-827 (-213)))) (|:| |cf| (-626 (-304 (-213)))) (|:| |ub| (-626 (-827 (-213))))) (-2 (|:| |fn| (-304 (-213))) (|:| -1394 (-626 (-213))) (|:| |lb| (-626 (-827 (-213)))) (|:| |cf| (-626 (-304 (-213)))) (|:| |ub| (-626 (-827 (-213))))))) (-15 -3906 ((-3 (-304 (-213)) "failed") (-304 (-213)))) (-15 -3603 ((-304 (-213)) (-304 (-213)))) (-15 -2127 ((-121) (-626 (-304 (-213))))) (-15 -2854 ((-121) (-626 (-304 (-213))))) (-15 -2854 ((-121) (-304 (-213)))) (-15 -4456 ((-671 (-213)) (-626 (-304 (-213))) (-755))) (-15 -2887 ((-626 (-304 (-213))) (-626 (-304 (-213))))) (-15 -4002 ((-626 (-304 (-213))) (-626 (-304 (-213))))) (-15 -2750 ((-121) (-304 (-213)))) (-15 -1654 ((-626 (-1153)) (-2 (|:| |lfn| (-626 (-304 (-213)))) (|:| -1394 (-626 (-213)))))) (-15 -1499 ((-626 (-1153)) (-304 (-213)) (-755))) (-15 -4414 ((-1027) (-1153) (-1027))) (-15 -4385 ((-375) (-2 (|:| |lfn| (-626 (-304 (-213)))) (|:| -1394 (-626 (-213)))))) (-15 -3297 ((-626 (-1135)) (-3 (|:| |noa| (-2 (|:| |fn| (-304 (-213))) (|:| -1394 (-626 (-213))) (|:| |lb| (-626 (-827 (-213)))) (|:| |cf| (-626 (-304 (-213)))) (|:| |ub| (-626 (-827 (-213)))))) (|:| |lsa| (-2 (|:| |lfn| (-626 (-304 (-213)))) (|:| -1394 (-626 (-213)))))))))) (T -258)) -((-3297 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-304 (-213))) (|:| -1394 (-626 (-213))) (|:| |lb| (-626 (-827 (-213)))) (|:| |cf| (-626 (-304 (-213)))) (|:| |ub| (-626 (-827 (-213)))))) (|:| |lsa| (-2 (|:| |lfn| (-626 (-304 (-213)))) (|:| -1394 (-626 (-213))))))) (-5 *2 (-626 (-1135))) (-5 *1 (-258)))) (-4385 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-626 (-304 (-213)))) (|:| -1394 (-626 (-213))))) (-5 *2 (-375)) (-5 *1 (-258)))) (-4414 (*1 *2 *3 *2) (-12 (-5 *2 (-1027)) (-5 *3 (-1153)) (-5 *1 (-258)))) (-1499 (*1 *2 *3 *4) (-12 (-5 *3 (-304 (-213))) (-5 *4 (-755)) (-5 *2 (-626 (-1153))) (-5 *1 (-258)))) (-1654 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-626 (-304 (-213)))) (|:| -1394 (-626 (-213))))) (-5 *2 (-626 (-1153))) (-5 *1 (-258)))) (-2750 (*1 *2 *3) (-12 (-5 *3 (-304 (-213))) (-5 *2 (-121)) (-5 *1 (-258)))) (-4002 (*1 *2 *2) (-12 (-5 *2 (-626 (-304 (-213)))) (-5 *1 (-258)))) (-2887 (*1 *2 *2) (-12 (-5 *2 (-626 (-304 (-213)))) (-5 *1 (-258)))) (-4456 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-304 (-213)))) (-5 *4 (-755)) (-5 *2 (-671 (-213))) (-5 *1 (-258)))) (-2854 (*1 *2 *3) (-12 (-5 *3 (-304 (-213))) (-5 *2 (-121)) (-5 *1 (-258)))) (-2854 (*1 *2 *3) (-12 (-5 *3 (-626 (-304 (-213)))) (-5 *2 (-121)) (-5 *1 (-258)))) (-2127 (*1 *2 *3) (-12 (-5 *3 (-626 (-304 (-213)))) (-5 *2 (-121)) (-5 *1 (-258)))) (-3603 (*1 *2 *2) (-12 (-5 *2 (-304 (-213))) (-5 *1 (-258)))) (-3906 (*1 *2 *2) (|partial| -12 (-5 *2 (-304 (-213))) (-5 *1 (-258)))) (-4060 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-304 (-213))) (|:| -1394 (-626 (-213))) (|:| |lb| (-626 (-827 (-213)))) (|:| |cf| (-626 (-304 (-213)))) (|:| |ub| (-626 (-827 (-213)))))) (-5 *1 (-258)))) (-4367 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-827 (-213)))) (-5 *4 (-213)) (-5 *2 (-626 *4)) (-5 *1 (-258))))) -(-10 -7 (-15 -4367 ((-626 (-213)) (-626 (-827 (-213))) (-213))) (-15 -4060 ((-2 (|:| |fn| (-304 (-213))) (|:| -1394 (-626 (-213))) (|:| |lb| (-626 (-827 (-213)))) (|:| |cf| (-626 (-304 (-213)))) (|:| |ub| (-626 (-827 (-213))))) (-2 (|:| |fn| (-304 (-213))) (|:| -1394 (-626 (-213))) (|:| |lb| (-626 (-827 (-213)))) (|:| |cf| (-626 (-304 (-213)))) (|:| |ub| (-626 (-827 (-213))))))) (-15 -3906 ((-3 (-304 (-213)) "failed") (-304 (-213)))) (-15 -3603 ((-304 (-213)) (-304 (-213)))) (-15 -2127 ((-121) (-626 (-304 (-213))))) (-15 -2854 ((-121) (-626 (-304 (-213))))) (-15 -2854 ((-121) (-304 (-213)))) (-15 -4456 ((-671 (-213)) (-626 (-304 (-213))) (-755))) (-15 -2887 ((-626 (-304 (-213))) (-626 (-304 (-213))))) (-15 -4002 ((-626 (-304 (-213))) (-626 (-304 (-213))))) (-15 -2750 ((-121) (-304 (-213)))) (-15 -1654 ((-626 (-1153)) (-2 (|:| |lfn| (-626 (-304 (-213)))) (|:| -1394 (-626 (-213)))))) (-15 -1499 ((-626 (-1153)) (-304 (-213)) (-755))) (-15 -4414 ((-1027) (-1153) (-1027))) (-15 -4385 ((-375) (-2 (|:| |lfn| (-626 (-304 (-213)))) (|:| -1394 (-626 (-213)))))) (-15 -3297 ((-626 (-1135)) (-3 (|:| |noa| (-2 (|:| |fn| (-304 (-213))) (|:| -1394 (-626 (-213))) (|:| |lb| (-626 (-827 (-213)))) (|:| |cf| (-626 (-304 (-213)))) (|:| |ub| (-626 (-827 (-213)))))) (|:| |lsa| (-2 (|:| |lfn| (-626 (-304 (-213)))) (|:| -1394 (-626 (-213))))))))) -((-2601 (((-121) $ $) NIL)) (-2599 (((-1027) (-2 (|:| |lfn| (-626 (-304 (-213)))) (|:| -1394 (-626 (-213))))) NIL) (((-1027) (-2 (|:| |fn| (-304 (-213))) (|:| -1394 (-626 (-213))) (|:| |lb| (-626 (-827 (-213)))) (|:| |cf| (-626 (-304 (-213)))) (|:| |ub| (-626 (-827 (-213)))))) 39)) (-3262 (((-2 (|:| -3262 (-375)) (|:| |explanations| (-1135))) (-1051) (-2 (|:| |fn| (-304 (-213))) (|:| -1394 (-626 (-213))) (|:| |lb| (-626 (-827 (-213)))) (|:| |cf| (-626 (-304 (-213)))) (|:| |ub| (-626 (-827 (-213)))))) 20) (((-2 (|:| -3262 (-375)) (|:| |explanations| (-1135))) (-1051) (-2 (|:| |lfn| (-626 (-304 (-213)))) (|:| -1394 (-626 (-213))))) NIL)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2801 (((-842) $) NIL)) (-1653 (((-121) $ $) NIL))) -(((-259) (-823)) (T -259)) -NIL -(-823) -((-2601 (((-121) $ $) NIL)) (-2599 (((-1027) (-2 (|:| |lfn| (-626 (-304 (-213)))) (|:| -1394 (-626 (-213))))) 54) (((-1027) (-2 (|:| |fn| (-304 (-213))) (|:| -1394 (-626 (-213))) (|:| |lb| (-626 (-827 (-213)))) (|:| |cf| (-626 (-304 (-213)))) (|:| |ub| (-626 (-827 (-213)))))) 49)) (-3262 (((-2 (|:| -3262 (-375)) (|:| |explanations| (-1135))) (-1051) (-2 (|:| |fn| (-304 (-213))) (|:| -1394 (-626 (-213))) (|:| |lb| (-626 (-827 (-213)))) (|:| |cf| (-626 (-304 (-213)))) (|:| |ub| (-626 (-827 (-213)))))) 29) (((-2 (|:| -3262 (-375)) (|:| |explanations| (-1135))) (-1051) (-2 (|:| |lfn| (-626 (-304 (-213)))) (|:| -1394 (-626 (-213))))) 31)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2801 (((-842) $) NIL)) (-1653 (((-121) $ $) NIL))) -(((-260) (-823)) (T -260)) -NIL -(-823) -((-2601 (((-121) $ $) NIL)) (-2599 (((-1027) (-2 (|:| |lfn| (-626 (-304 (-213)))) (|:| -1394 (-626 (-213))))) 73) (((-1027) (-2 (|:| |fn| (-304 (-213))) (|:| -1394 (-626 (-213))) (|:| |lb| (-626 (-827 (-213)))) (|:| |cf| (-626 (-304 (-213)))) (|:| |ub| (-626 (-827 (-213)))))) 69)) (-3262 (((-2 (|:| -3262 (-375)) (|:| |explanations| (-1135))) (-1051) (-2 (|:| |fn| (-304 (-213))) (|:| -1394 (-626 (-213))) (|:| |lb| (-626 (-827 (-213)))) (|:| |cf| (-626 (-304 (-213)))) (|:| |ub| (-626 (-827 (-213)))))) 40) (((-2 (|:| -3262 (-375)) (|:| |explanations| (-1135))) (-1051) (-2 (|:| |lfn| (-626 (-304 (-213)))) (|:| -1394 (-626 (-213))))) 51)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2801 (((-842) $) NIL)) (-1653 (((-121) $ $) NIL))) -(((-261) (-823)) (T -261)) -NIL -(-823) -((-2601 (((-121) $ $) NIL)) (-2599 (((-1027) (-2 (|:| |lfn| (-626 (-304 (-213)))) (|:| -1394 (-626 (-213))))) NIL) (((-1027) (-2 (|:| |fn| (-304 (-213))) (|:| -1394 (-626 (-213))) (|:| |lb| (-626 (-827 (-213)))) (|:| |cf| (-626 (-304 (-213)))) (|:| |ub| (-626 (-827 (-213)))))) 48)) (-3262 (((-2 (|:| -3262 (-375)) (|:| |explanations| (-1135))) (-1051) (-2 (|:| |fn| (-304 (-213))) (|:| -1394 (-626 (-213))) (|:| |lb| (-626 (-827 (-213)))) (|:| |cf| (-626 (-304 (-213)))) (|:| |ub| (-626 (-827 (-213)))))) 27) (((-2 (|:| -3262 (-375)) (|:| |explanations| (-1135))) (-1051) (-2 (|:| |lfn| (-626 (-304 (-213)))) (|:| -1394 (-626 (-213))))) NIL)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2801 (((-842) $) NIL)) (-1653 (((-121) $ $) NIL))) -(((-262) (-823)) (T -262)) -NIL -(-823) -((-2601 (((-121) $ $) NIL)) (-2599 (((-1027) (-2 (|:| |lfn| (-626 (-304 (-213)))) (|:| -1394 (-626 (-213))))) NIL) (((-1027) (-2 (|:| |fn| (-304 (-213))) (|:| -1394 (-626 (-213))) (|:| |lb| (-626 (-827 (-213)))) (|:| |cf| (-626 (-304 (-213)))) (|:| |ub| (-626 (-827 (-213)))))) 48)) (-3262 (((-2 (|:| -3262 (-375)) (|:| |explanations| (-1135))) (-1051) (-2 (|:| |fn| (-304 (-213))) (|:| -1394 (-626 (-213))) (|:| |lb| (-626 (-827 (-213)))) (|:| |cf| (-626 (-304 (-213)))) (|:| |ub| (-626 (-827 (-213)))))) 23) (((-2 (|:| -3262 (-375)) (|:| |explanations| (-1135))) (-1051) (-2 (|:| |lfn| (-626 (-304 (-213)))) (|:| -1394 (-626 (-213))))) NIL)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2801 (((-842) $) NIL)) (-1653 (((-121) $ $) NIL))) -(((-263) (-823)) (T -263)) -NIL -(-823) -((-2601 (((-121) $ $) NIL)) (-2599 (((-1027) (-2 (|:| |lfn| (-626 (-304 (-213)))) (|:| -1394 (-626 (-213))))) NIL) (((-1027) (-2 (|:| |fn| (-304 (-213))) (|:| -1394 (-626 (-213))) (|:| |lb| (-626 (-827 (-213)))) (|:| |cf| (-626 (-304 (-213)))) (|:| |ub| (-626 (-827 (-213)))))) 69)) (-3262 (((-2 (|:| -3262 (-375)) (|:| |explanations| (-1135))) (-1051) (-2 (|:| |fn| (-304 (-213))) (|:| -1394 (-626 (-213))) (|:| |lb| (-626 (-827 (-213)))) (|:| |cf| (-626 (-304 (-213)))) (|:| |ub| (-626 (-827 (-213)))))) 23) (((-2 (|:| -3262 (-375)) (|:| |explanations| (-1135))) (-1051) (-2 (|:| |lfn| (-626 (-304 (-213)))) (|:| -1394 (-626 (-213))))) NIL)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2801 (((-842) $) NIL)) (-1653 (((-121) $ $) NIL))) -(((-264) (-823)) (T -264)) -NIL -(-823) -((-2601 (((-121) $ $) NIL)) (-2599 (((-1027) (-2 (|:| |lfn| (-626 (-304 (-213)))) (|:| -1394 (-626 (-213))))) NIL) (((-1027) (-2 (|:| |fn| (-304 (-213))) (|:| -1394 (-626 (-213))) (|:| |lb| (-626 (-827 (-213)))) (|:| |cf| (-626 (-304 (-213)))) (|:| |ub| (-626 (-827 (-213)))))) 73)) (-3262 (((-2 (|:| -3262 (-375)) (|:| |explanations| (-1135))) (-1051) (-2 (|:| |fn| (-304 (-213))) (|:| -1394 (-626 (-213))) (|:| |lb| (-626 (-827 (-213)))) (|:| |cf| (-626 (-304 (-213)))) (|:| |ub| (-626 (-827 (-213)))))) 19) (((-2 (|:| -3262 (-375)) (|:| |explanations| (-1135))) (-1051) (-2 (|:| |lfn| (-626 (-304 (-213)))) (|:| -1394 (-626 (-213))))) NIL)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2801 (((-842) $) NIL)) (-1653 (((-121) $ $) NIL))) -(((-265) (-823)) (T -265)) -NIL -(-823) -((-2601 (((-121) $ $) NIL)) (-4325 (($ $ $) NIL)) (-2501 (($ $ $) NIL)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2961 (((-626 (-560)) $) 16)) (-3662 (((-755) $) 14)) (-2801 (((-842) $) 20) (($ (-626 (-560))) 12)) (-1528 (($ (-755)) 17)) (-1691 (((-121) $ $) NIL)) (-1675 (((-121) $ $) NIL)) (-1653 (((-121) $ $) 9)) (-1683 (((-121) $ $) NIL)) (-1667 (((-121) $ $) 10))) -(((-266) (-13 (-834) (-10 -8 (-15 -2801 ($ (-626 (-560)))) (-15 -3662 ((-755) $)) (-15 -2961 ((-626 (-560)) $)) (-15 -1528 ($ (-755)))))) (T -266)) -((-2801 (*1 *1 *2) (-12 (-5 *2 (-626 (-560))) (-5 *1 (-266)))) (-3662 (*1 *2 *1) (-12 (-5 *2 (-755)) (-5 *1 (-266)))) (-2961 (*1 *2 *1) (-12 (-5 *2 (-626 (-560))) (-5 *1 (-266)))) (-1528 (*1 *1 *2) (-12 (-5 *2 (-755)) (-5 *1 (-266))))) -(-13 (-834) (-10 -8 (-15 -2801 ($ (-626 (-560)))) (-15 -3662 ((-755) $)) (-15 -2961 ((-626 (-560)) $)) (-15 -1528 ($ (-755))))) -((-2570 ((|#2| |#2|) 77)) (-2514 ((|#2| |#2|) 65)) (-3691 (((-3 |#2| "failed") |#2| (-626 (-2 (|:| |func| |#2|) (|:| |pole| (-121))))) 116)) (-2561 ((|#2| |#2|) 75)) (-2790 ((|#2| |#2|) 63)) (-2579 ((|#2| |#2|) 79)) (-2523 ((|#2| |#2|) 67)) (-2474 ((|#2|) 46)) (-4403 (((-123) (-123)) 95)) (-4399 ((|#2| |#2|) 61)) (-2526 (((-121) |#2|) 134)) (-3640 ((|#2| |#2|) 180)) (-2156 ((|#2| |#2|) 156)) (-3194 ((|#2|) 59)) (-4092 ((|#2|) 58)) (-3601 ((|#2| |#2|) 176)) (-3054 ((|#2| |#2|) 152)) (-4360 ((|#2| |#2|) 184)) (-3429 ((|#2| |#2|) 160)) (-2971 ((|#2| |#2|) 148)) (-3392 ((|#2| |#2|) 150)) (-3814 ((|#2| |#2|) 186)) (-3100 ((|#2| |#2|) 162)) (-2568 ((|#2| |#2|) 182)) (-1452 ((|#2| |#2|) 158)) (-3010 ((|#2| |#2|) 178)) (-2102 ((|#2| |#2|) 154)) (-2721 ((|#2| |#2|) 192)) (-2072 ((|#2| |#2|) 168)) (-2975 ((|#2| |#2|) 188)) (-4083 ((|#2| |#2|) 164)) (-4110 ((|#2| |#2|) 196)) (-2222 ((|#2| |#2|) 172)) (-3288 ((|#2| |#2|) 198)) (-1491 ((|#2| |#2|) 174)) (-1301 ((|#2| |#2|) 194)) (-4400 ((|#2| |#2|) 170)) (-2056 ((|#2| |#2|) 190)) (-2539 ((|#2| |#2|) 166)) (-2469 ((|#2| |#2|) 62)) (-2585 ((|#2| |#2|) 80)) (-2528 ((|#2| |#2|) 68)) (-2575 ((|#2| |#2|) 78)) (-2519 ((|#2| |#2|) 66)) (-2566 ((|#2| |#2|) 76)) (-2795 ((|#2| |#2|) 64)) (-2409 (((-121) (-123)) 93)) (-2598 ((|#2| |#2|) 83)) (-2541 ((|#2| |#2|) 71)) (-2590 ((|#2| |#2|) 81)) (-2532 ((|#2| |#2|) 69)) (-2608 ((|#2| |#2|) 85)) (-2549 ((|#2| |#2|) 73)) (-3689 ((|#2| |#2|) 86)) (-2554 ((|#2| |#2|) 74)) (-2604 ((|#2| |#2|) 84)) (-2545 ((|#2| |#2|) 72)) (-2594 ((|#2| |#2|) 82)) (-2536 ((|#2| |#2|) 70))) -(((-267 |#1| |#2|) (-10 -7 (-15 -2469 (|#2| |#2|)) (-15 -4399 (|#2| |#2|)) (-15 -2790 (|#2| |#2|)) (-15 -2795 (|#2| |#2|)) (-15 -2514 (|#2| |#2|)) (-15 -2519 (|#2| |#2|)) (-15 -2523 (|#2| |#2|)) (-15 -2528 (|#2| |#2|)) (-15 -2532 (|#2| |#2|)) (-15 -2536 (|#2| |#2|)) (-15 -2541 (|#2| |#2|)) (-15 -2545 (|#2| |#2|)) (-15 -2549 (|#2| |#2|)) (-15 -2554 (|#2| |#2|)) (-15 -2561 (|#2| |#2|)) (-15 -2566 (|#2| |#2|)) (-15 -2570 (|#2| |#2|)) (-15 -2575 (|#2| |#2|)) (-15 -2579 (|#2| |#2|)) (-15 -2585 (|#2| |#2|)) (-15 -2590 (|#2| |#2|)) (-15 -2594 (|#2| |#2|)) (-15 -2598 (|#2| |#2|)) (-15 -2604 (|#2| |#2|)) (-15 -2608 (|#2| |#2|)) (-15 -3689 (|#2| |#2|)) (-15 -2474 (|#2|)) (-15 -2409 ((-121) (-123))) (-15 -4403 ((-123) (-123))) (-15 -4092 (|#2|)) (-15 -3194 (|#2|)) (-15 -3392 (|#2| |#2|)) (-15 -2971 (|#2| |#2|)) (-15 -3054 (|#2| |#2|)) (-15 -2102 (|#2| |#2|)) (-15 -2156 (|#2| |#2|)) (-15 -1452 (|#2| |#2|)) (-15 -3429 (|#2| |#2|)) (-15 -3100 (|#2| |#2|)) (-15 -4083 (|#2| |#2|)) (-15 -2539 (|#2| |#2|)) (-15 -2072 (|#2| |#2|)) (-15 -4400 (|#2| |#2|)) (-15 -2222 (|#2| |#2|)) (-15 -1491 (|#2| |#2|)) (-15 -3601 (|#2| |#2|)) (-15 -3010 (|#2| |#2|)) (-15 -3640 (|#2| |#2|)) (-15 -2568 (|#2| |#2|)) (-15 -4360 (|#2| |#2|)) (-15 -3814 (|#2| |#2|)) (-15 -2975 (|#2| |#2|)) (-15 -2056 (|#2| |#2|)) (-15 -2721 (|#2| |#2|)) (-15 -1301 (|#2| |#2|)) (-15 -4110 (|#2| |#2|)) (-15 -3288 (|#2| |#2|)) (-15 -3691 ((-3 |#2| "failed") |#2| (-626 (-2 (|:| |func| |#2|) (|:| |pole| (-121)))))) (-15 -2526 ((-121) |#2|))) (-13 (-834) (-550)) (-13 (-426 |#1|) (-994))) (T -267)) -((-2526 (*1 *2 *3) (-12 (-4 *4 (-13 (-834) (-550))) (-5 *2 (-121)) (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-426 *4) (-994))))) (-3691 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-626 (-2 (|:| |func| *2) (|:| |pole| (-121))))) (-4 *2 (-13 (-426 *4) (-994))) (-4 *4 (-13 (-834) (-550))) (-5 *1 (-267 *4 *2)))) (-3288 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) (-4110 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) (-1301 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) (-2721 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) (-2056 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) (-2975 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) (-3814 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) (-4360 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) (-2568 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) (-3640 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) (-3010 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) (-3601 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) (-1491 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) (-2222 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) (-4400 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) (-2072 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) (-2539 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) (-4083 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) (-3100 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) (-3429 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) (-1452 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) (-2156 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) (-2102 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) (-3054 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) (-2971 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) (-3392 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) (-3194 (*1 *2) (-12 (-4 *2 (-13 (-426 *3) (-994))) (-5 *1 (-267 *3 *2)) (-4 *3 (-13 (-834) (-550))))) (-4092 (*1 *2) (-12 (-4 *2 (-13 (-426 *3) (-994))) (-5 *1 (-267 *3 *2)) (-4 *3 (-13 (-834) (-550))))) (-4403 (*1 *2 *2) (-12 (-5 *2 (-123)) (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *4)) (-4 *4 (-13 (-426 *3) (-994))))) (-2409 (*1 *2 *3) (-12 (-5 *3 (-123)) (-4 *4 (-13 (-834) (-550))) (-5 *2 (-121)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-426 *4) (-994))))) (-2474 (*1 *2) (-12 (-4 *2 (-13 (-426 *3) (-994))) (-5 *1 (-267 *3 *2)) (-4 *3 (-13 (-834) (-550))))) (-3689 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) (-2608 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) (-2604 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) (-2598 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) (-2594 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) (-2590 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) (-2585 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) (-2579 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) (-2575 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) (-2570 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) (-2566 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) (-2561 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) (-2554 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) (-2549 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) (-2545 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) (-2541 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) (-2536 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) (-2532 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) (-2528 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) (-2523 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) (-2519 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) (-2514 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) (-2795 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) (-2790 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) (-4399 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) (-2469 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994)))))) -(-10 -7 (-15 -2469 (|#2| |#2|)) (-15 -4399 (|#2| |#2|)) (-15 -2790 (|#2| |#2|)) (-15 -2795 (|#2| |#2|)) (-15 -2514 (|#2| |#2|)) (-15 -2519 (|#2| |#2|)) (-15 -2523 (|#2| |#2|)) (-15 -2528 (|#2| |#2|)) (-15 -2532 (|#2| |#2|)) (-15 -2536 (|#2| |#2|)) (-15 -2541 (|#2| |#2|)) (-15 -2545 (|#2| |#2|)) (-15 -2549 (|#2| |#2|)) (-15 -2554 (|#2| |#2|)) (-15 -2561 (|#2| |#2|)) (-15 -2566 (|#2| |#2|)) (-15 -2570 (|#2| |#2|)) (-15 -2575 (|#2| |#2|)) (-15 -2579 (|#2| |#2|)) (-15 -2585 (|#2| |#2|)) (-15 -2590 (|#2| |#2|)) (-15 -2594 (|#2| |#2|)) (-15 -2598 (|#2| |#2|)) (-15 -2604 (|#2| |#2|)) (-15 -2608 (|#2| |#2|)) (-15 -3689 (|#2| |#2|)) (-15 -2474 (|#2|)) (-15 -2409 ((-121) (-123))) (-15 -4403 ((-123) (-123))) (-15 -4092 (|#2|)) (-15 -3194 (|#2|)) (-15 -3392 (|#2| |#2|)) (-15 -2971 (|#2| |#2|)) (-15 -3054 (|#2| |#2|)) (-15 -2102 (|#2| |#2|)) (-15 -2156 (|#2| |#2|)) (-15 -1452 (|#2| |#2|)) (-15 -3429 (|#2| |#2|)) (-15 -3100 (|#2| |#2|)) (-15 -4083 (|#2| |#2|)) (-15 -2539 (|#2| |#2|)) (-15 -2072 (|#2| |#2|)) (-15 -4400 (|#2| |#2|)) (-15 -2222 (|#2| |#2|)) (-15 -1491 (|#2| |#2|)) (-15 -3601 (|#2| |#2|)) (-15 -3010 (|#2| |#2|)) (-15 -3640 (|#2| |#2|)) (-15 -2568 (|#2| |#2|)) (-15 -4360 (|#2| |#2|)) (-15 -3814 (|#2| |#2|)) (-15 -2975 (|#2| |#2|)) (-15 -2056 (|#2| |#2|)) (-15 -2721 (|#2| |#2|)) (-15 -1301 (|#2| |#2|)) (-15 -4110 (|#2| |#2|)) (-15 -3288 (|#2| |#2|)) (-15 -3691 ((-3 |#2| "failed") |#2| (-626 (-2 (|:| |func| |#2|) (|:| |pole| (-121)))))) (-15 -2526 ((-121) |#2|))) -((-1909 (((-3 |#2| "failed") (-626 (-599 |#2|)) |#2| (-1153)) 133)) (-3837 ((|#2| (-403 (-560)) |#2|) 50)) (-4147 ((|#2| |#2| (-599 |#2|)) 126)) (-3518 (((-2 (|:| |func| |#2|) (|:| |kers| (-626 (-599 |#2|))) (|:| |vals| (-626 |#2|))) |#2| (-1153)) 125)) (-3887 ((|#2| |#2| (-1153)) 19) ((|#2| |#2|) 22)) (-2086 ((|#2| |#2| (-1153)) 139) ((|#2| |#2|) 137))) -(((-268 |#1| |#2|) (-10 -7 (-15 -2086 (|#2| |#2|)) (-15 -2086 (|#2| |#2| (-1153))) (-15 -3518 ((-2 (|:| |func| |#2|) (|:| |kers| (-626 (-599 |#2|))) (|:| |vals| (-626 |#2|))) |#2| (-1153))) (-15 -3887 (|#2| |#2|)) (-15 -3887 (|#2| |#2| (-1153))) (-15 -1909 ((-3 |#2| "failed") (-626 (-599 |#2|)) |#2| (-1153))) (-15 -4147 (|#2| |#2| (-599 |#2|))) (-15 -3837 (|#2| (-403 (-560)) |#2|))) (-13 (-550) (-834) (-1029 (-560)) (-622 (-560))) (-13 (-27) (-1173) (-426 |#1|))) (T -268)) -((-3837 (*1 *2 *3 *2) (-12 (-5 *3 (-403 (-560))) (-4 *4 (-13 (-550) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *1 (-268 *4 *2)) (-4 *2 (-13 (-27) (-1173) (-426 *4))))) (-4147 (*1 *2 *2 *3) (-12 (-5 *3 (-599 *2)) (-4 *2 (-13 (-27) (-1173) (-426 *4))) (-4 *4 (-13 (-550) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *1 (-268 *4 *2)))) (-1909 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-626 (-599 *2))) (-5 *4 (-1153)) (-4 *2 (-13 (-27) (-1173) (-426 *5))) (-4 *5 (-13 (-550) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *1 (-268 *5 *2)))) (-3887 (*1 *2 *2 *3) (-12 (-5 *3 (-1153)) (-4 *4 (-13 (-550) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *1 (-268 *4 *2)) (-4 *2 (-13 (-27) (-1173) (-426 *4))))) (-3887 (*1 *2 *2) (-12 (-4 *3 (-13 (-550) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-27) (-1173) (-426 *3))))) (-3518 (*1 *2 *3 *4) (-12 (-5 *4 (-1153)) (-4 *5 (-13 (-550) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-626 (-599 *3))) (|:| |vals| (-626 *3)))) (-5 *1 (-268 *5 *3)) (-4 *3 (-13 (-27) (-1173) (-426 *5))))) (-2086 (*1 *2 *2 *3) (-12 (-5 *3 (-1153)) (-4 *4 (-13 (-550) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *1 (-268 *4 *2)) (-4 *2 (-13 (-27) (-1173) (-426 *4))))) (-2086 (*1 *2 *2) (-12 (-4 *3 (-13 (-550) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-27) (-1173) (-426 *3)))))) -(-10 -7 (-15 -2086 (|#2| |#2|)) (-15 -2086 (|#2| |#2| (-1153))) (-15 -3518 ((-2 (|:| |func| |#2|) (|:| |kers| (-626 (-599 |#2|))) (|:| |vals| (-626 |#2|))) |#2| (-1153))) (-15 -3887 (|#2| |#2|)) (-15 -3887 (|#2| |#2| (-1153))) (-15 -1909 ((-3 |#2| "failed") (-626 (-599 |#2|)) |#2| (-1153))) (-15 -4147 (|#2| |#2| (-599 |#2|))) (-15 -3837 (|#2| (-403 (-560)) |#2|))) -((-1270 (((-3 |#3| "failed") |#3|) 110)) (-2570 ((|#3| |#3|) 131)) (-3080 (((-3 |#3| "failed") |#3|) 82)) (-2514 ((|#3| |#3|) 121)) (-1306 (((-3 |#3| "failed") |#3|) 58)) (-2561 ((|#3| |#3|) 129)) (-3999 (((-3 |#3| "failed") |#3|) 46)) (-2790 ((|#3| |#3|) 119)) (-3904 (((-3 |#3| "failed") |#3|) 112)) (-2579 ((|#3| |#3|) 133)) (-2577 (((-3 |#3| "failed") |#3|) 84)) (-2523 ((|#3| |#3|) 123)) (-3214 (((-3 |#3| "failed") |#3| (-755)) 36)) (-2878 (((-3 |#3| "failed") |#3|) 74)) (-4399 ((|#3| |#3|) 118)) (-4447 (((-3 |#3| "failed") |#3|) 44)) (-2469 ((|#3| |#3|) 117)) (-2668 (((-3 |#3| "failed") |#3|) 113)) (-2585 ((|#3| |#3|) 134)) (-3175 (((-3 |#3| "failed") |#3|) 85)) (-2528 ((|#3| |#3|) 124)) (-3278 (((-3 |#3| "failed") |#3|) 111)) (-2575 ((|#3| |#3|) 132)) (-1497 (((-3 |#3| "failed") |#3|) 83)) (-2519 ((|#3| |#3|) 122)) (-2425 (((-3 |#3| "failed") |#3|) 60)) (-2566 ((|#3| |#3|) 130)) (-3579 (((-3 |#3| "failed") |#3|) 48)) (-2795 ((|#3| |#3|) 120)) (-1371 (((-3 |#3| "failed") |#3|) 66)) (-2598 ((|#3| |#3|) 137)) (-2663 (((-3 |#3| "failed") |#3|) 104)) (-2541 ((|#3| |#3|) 142)) (-3190 (((-3 |#3| "failed") |#3|) 62)) (-2590 ((|#3| |#3|) 135)) (-1413 (((-3 |#3| "failed") |#3|) 50)) (-2532 ((|#3| |#3|) 125)) (-3430 (((-3 |#3| "failed") |#3|) 70)) (-2608 ((|#3| |#3|) 139)) (-3031 (((-3 |#3| "failed") |#3|) 54)) (-2549 ((|#3| |#3|) 127)) (-3439 (((-3 |#3| "failed") |#3|) 72)) (-3689 ((|#3| |#3|) 140)) (-2345 (((-3 |#3| "failed") |#3|) 56)) (-2554 ((|#3| |#3|) 128)) (-2460 (((-3 |#3| "failed") |#3|) 68)) (-2604 ((|#3| |#3|) 138)) (-2208 (((-3 |#3| "failed") |#3|) 107)) (-2545 ((|#3| |#3|) 143)) (-4244 (((-3 |#3| "failed") |#3|) 64)) (-2594 ((|#3| |#3|) 136)) (-2164 (((-3 |#3| "failed") |#3|) 52)) (-2536 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-403 (-560))) 40 (|has| |#1| (-359))))) -(((-269 |#1| |#2| |#3|) (-13 (-976 |#3|) (-10 -7 (IF (|has| |#1| (-359)) (-15 ** (|#3| |#3| (-403 (-560)))) |noBranch|) (-15 -2469 (|#3| |#3|)) (-15 -4399 (|#3| |#3|)) (-15 -2790 (|#3| |#3|)) (-15 -2795 (|#3| |#3|)) (-15 -2514 (|#3| |#3|)) (-15 -2519 (|#3| |#3|)) (-15 -2523 (|#3| |#3|)) (-15 -2528 (|#3| |#3|)) (-15 -2532 (|#3| |#3|)) (-15 -2536 (|#3| |#3|)) (-15 -2541 (|#3| |#3|)) (-15 -2545 (|#3| |#3|)) (-15 -2549 (|#3| |#3|)) (-15 -2554 (|#3| |#3|)) (-15 -2561 (|#3| |#3|)) (-15 -2566 (|#3| |#3|)) (-15 -2570 (|#3| |#3|)) (-15 -2575 (|#3| |#3|)) (-15 -2579 (|#3| |#3|)) (-15 -2585 (|#3| |#3|)) (-15 -2590 (|#3| |#3|)) (-15 -2594 (|#3| |#3|)) (-15 -2598 (|#3| |#3|)) (-15 -2604 (|#3| |#3|)) (-15 -2608 (|#3| |#3|)) (-15 -3689 (|#3| |#3|)))) (-43 (-403 (-560))) (-1226 |#1|) (-1197 |#1| |#2|)) (T -269)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-403 (-560))) (-4 *4 (-359)) (-4 *4 (-43 *3)) (-4 *5 (-1226 *4)) (-5 *1 (-269 *4 *5 *2)) (-4 *2 (-1197 *4 *5)))) (-2469 (*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1226 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-4399 (*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1226 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-2790 (*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1226 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-2795 (*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1226 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-2514 (*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1226 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-2519 (*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1226 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-2523 (*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1226 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-2528 (*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1226 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-2532 (*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1226 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-2536 (*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1226 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-2541 (*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1226 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-2545 (*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1226 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-2549 (*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1226 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-2554 (*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1226 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-2561 (*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1226 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-2566 (*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1226 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-2570 (*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1226 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-2575 (*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1226 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-2579 (*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1226 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-2585 (*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1226 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-2590 (*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1226 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-2594 (*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1226 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-2598 (*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1226 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-2604 (*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1226 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-2608 (*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1226 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-3689 (*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1226 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1197 *3 *4))))) -(-13 (-976 |#3|) (-10 -7 (IF (|has| |#1| (-359)) (-15 ** (|#3| |#3| (-403 (-560)))) |noBranch|) (-15 -2469 (|#3| |#3|)) (-15 -4399 (|#3| |#3|)) (-15 -2790 (|#3| |#3|)) (-15 -2795 (|#3| |#3|)) (-15 -2514 (|#3| |#3|)) (-15 -2519 (|#3| |#3|)) (-15 -2523 (|#3| |#3|)) (-15 -2528 (|#3| |#3|)) (-15 -2532 (|#3| |#3|)) (-15 -2536 (|#3| |#3|)) (-15 -2541 (|#3| |#3|)) (-15 -2545 (|#3| |#3|)) (-15 -2549 (|#3| |#3|)) (-15 -2554 (|#3| |#3|)) (-15 -2561 (|#3| |#3|)) (-15 -2566 (|#3| |#3|)) (-15 -2570 (|#3| |#3|)) (-15 -2575 (|#3| |#3|)) (-15 -2579 (|#3| |#3|)) (-15 -2585 (|#3| |#3|)) (-15 -2590 (|#3| |#3|)) (-15 -2594 (|#3| |#3|)) (-15 -2598 (|#3| |#3|)) (-15 -2604 (|#3| |#3|)) (-15 -2608 (|#3| |#3|)) (-15 -3689 (|#3| |#3|)))) -((-1270 (((-3 |#3| "failed") |#3|) 66)) (-2570 ((|#3| |#3|) 133)) (-3080 (((-3 |#3| "failed") |#3|) 50)) (-2514 ((|#3| |#3|) 121)) (-1306 (((-3 |#3| "failed") |#3|) 62)) (-2561 ((|#3| |#3|) 131)) (-3999 (((-3 |#3| "failed") |#3|) 46)) (-2790 ((|#3| |#3|) 119)) (-3904 (((-3 |#3| "failed") |#3|) 70)) (-2579 ((|#3| |#3|) 135)) (-2577 (((-3 |#3| "failed") |#3|) 54)) (-2523 ((|#3| |#3|) 123)) (-3214 (((-3 |#3| "failed") |#3| (-755)) 35)) (-2878 (((-3 |#3| "failed") |#3|) 44)) (-4399 ((|#3| |#3|) 112)) (-4447 (((-3 |#3| "failed") |#3|) 42)) (-2469 ((|#3| |#3|) 118)) (-2668 (((-3 |#3| "failed") |#3|) 72)) (-2585 ((|#3| |#3|) 136)) (-3175 (((-3 |#3| "failed") |#3|) 56)) (-2528 ((|#3| |#3|) 124)) (-3278 (((-3 |#3| "failed") |#3|) 68)) (-2575 ((|#3| |#3|) 134)) (-1497 (((-3 |#3| "failed") |#3|) 52)) (-2519 ((|#3| |#3|) 122)) (-2425 (((-3 |#3| "failed") |#3|) 64)) (-2566 ((|#3| |#3|) 132)) (-3579 (((-3 |#3| "failed") |#3|) 48)) (-2795 ((|#3| |#3|) 120)) (-1371 (((-3 |#3| "failed") |#3|) 78)) (-2598 ((|#3| |#3|) 139)) (-2663 (((-3 |#3| "failed") |#3|) 58)) (-2541 ((|#3| |#3|) 127)) (-3190 (((-3 |#3| "failed") |#3|) 74)) (-2590 ((|#3| |#3|) 137)) (-1413 (((-3 |#3| "failed") |#3|) 102)) (-2532 ((|#3| |#3|) 125)) (-3430 (((-3 |#3| "failed") |#3|) 82)) (-2608 ((|#3| |#3|) 141)) (-3031 (((-3 |#3| "failed") |#3|) 109)) (-2549 ((|#3| |#3|) 129)) (-3439 (((-3 |#3| "failed") |#3|) 84)) (-3689 ((|#3| |#3|) 142)) (-2345 (((-3 |#3| "failed") |#3|) 111)) (-2554 ((|#3| |#3|) 130)) (-2460 (((-3 |#3| "failed") |#3|) 80)) (-2604 ((|#3| |#3|) 140)) (-2208 (((-3 |#3| "failed") |#3|) 60)) (-2545 ((|#3| |#3|) 128)) (-4244 (((-3 |#3| "failed") |#3|) 76)) (-2594 ((|#3| |#3|) 138)) (-2164 (((-3 |#3| "failed") |#3|) 105)) (-2536 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-403 (-560))) 40 (|has| |#1| (-359))))) -(((-270 |#1| |#2| |#3| |#4|) (-13 (-976 |#3|) (-10 -7 (IF (|has| |#1| (-359)) (-15 ** (|#3| |#3| (-403 (-560)))) |noBranch|) (-15 -2469 (|#3| |#3|)) (-15 -4399 (|#3| |#3|)) (-15 -2790 (|#3| |#3|)) (-15 -2795 (|#3| |#3|)) (-15 -2514 (|#3| |#3|)) (-15 -2519 (|#3| |#3|)) (-15 -2523 (|#3| |#3|)) (-15 -2528 (|#3| |#3|)) (-15 -2532 (|#3| |#3|)) (-15 -2536 (|#3| |#3|)) (-15 -2541 (|#3| |#3|)) (-15 -2545 (|#3| |#3|)) (-15 -2549 (|#3| |#3|)) (-15 -2554 (|#3| |#3|)) (-15 -2561 (|#3| |#3|)) (-15 -2566 (|#3| |#3|)) (-15 -2570 (|#3| |#3|)) (-15 -2575 (|#3| |#3|)) (-15 -2579 (|#3| |#3|)) (-15 -2585 (|#3| |#3|)) (-15 -2590 (|#3| |#3|)) (-15 -2594 (|#3| |#3|)) (-15 -2598 (|#3| |#3|)) (-15 -2604 (|#3| |#3|)) (-15 -2608 (|#3| |#3|)) (-15 -3689 (|#3| |#3|)))) (-43 (-403 (-560))) (-1195 |#1|) (-1218 |#1| |#2|) (-976 |#2|)) (T -270)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-403 (-560))) (-4 *4 (-359)) (-4 *4 (-43 *3)) (-4 *5 (-1195 *4)) (-5 *1 (-270 *4 *5 *2 *6)) (-4 *2 (-1218 *4 *5)) (-4 *6 (-976 *5)))) (-2469 (*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1195 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-976 *4)))) (-4399 (*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1195 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-976 *4)))) (-2790 (*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1195 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-976 *4)))) (-2795 (*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1195 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-976 *4)))) (-2514 (*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1195 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-976 *4)))) (-2519 (*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1195 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-976 *4)))) (-2523 (*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1195 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-976 *4)))) (-2528 (*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1195 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-976 *4)))) (-2532 (*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1195 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-976 *4)))) (-2536 (*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1195 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-976 *4)))) (-2541 (*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1195 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-976 *4)))) (-2545 (*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1195 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-976 *4)))) (-2549 (*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1195 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-976 *4)))) (-2554 (*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1195 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-976 *4)))) (-2561 (*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1195 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-976 *4)))) (-2566 (*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1195 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-976 *4)))) (-2570 (*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1195 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-976 *4)))) (-2575 (*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1195 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-976 *4)))) (-2579 (*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1195 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-976 *4)))) (-2585 (*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1195 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-976 *4)))) (-2590 (*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1195 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-976 *4)))) (-2594 (*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1195 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-976 *4)))) (-2598 (*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1195 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-976 *4)))) (-2604 (*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1195 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-976 *4)))) (-2608 (*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1195 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-976 *4)))) (-3689 (*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1195 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-976 *4))))) -(-13 (-976 |#3|) (-10 -7 (IF (|has| |#1| (-359)) (-15 ** (|#3| |#3| (-403 (-560)))) |noBranch|) (-15 -2469 (|#3| |#3|)) (-15 -4399 (|#3| |#3|)) (-15 -2790 (|#3| |#3|)) (-15 -2795 (|#3| |#3|)) (-15 -2514 (|#3| |#3|)) (-15 -2519 (|#3| |#3|)) (-15 -2523 (|#3| |#3|)) (-15 -2528 (|#3| |#3|)) (-15 -2532 (|#3| |#3|)) (-15 -2536 (|#3| |#3|)) (-15 -2541 (|#3| |#3|)) (-15 -2545 (|#3| |#3|)) (-15 -2549 (|#3| |#3|)) (-15 -2554 (|#3| |#3|)) (-15 -2561 (|#3| |#3|)) (-15 -2566 (|#3| |#3|)) (-15 -2570 (|#3| |#3|)) (-15 -2575 (|#3| |#3|)) (-15 -2579 (|#3| |#3|)) (-15 -2585 (|#3| |#3|)) (-15 -2590 (|#3| |#3|)) (-15 -2594 (|#3| |#3|)) (-15 -2598 (|#3| |#3|)) (-15 -2604 (|#3| |#3|)) (-15 -2608 (|#3| |#3|)) (-15 -3689 (|#3| |#3|)))) -((-3802 (($ (-1 (-121) |#2|) $) 23)) (-2868 (($ $) 36)) (-3561 (($ (-1 (-121) |#2|) $) NIL) (($ |#2| $) 34)) (-4310 (($ |#2| $) 31) (($ (-1 (-121) |#2|) $) 17)) (-2037 (($ (-1 (-121) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-4103 (($ |#2| $ (-560)) 19) (($ $ $ (-560)) 21)) (-2949 (($ $ (-560)) 11) (($ $ (-1202 (-560))) 14)) (-3602 (($ $ |#2|) 29) (($ $ $) NIL)) (-2849 (($ $ |#2|) 28) (($ |#2| $) NIL) (($ $ $) 25) (($ (-626 $)) NIL))) -(((-271 |#1| |#2|) (-10 -8 (-15 -2037 (|#1| |#1| |#1|)) (-15 -3561 (|#1| |#2| |#1|)) (-15 -2037 (|#1| (-1 (-121) |#2| |#2|) |#1| |#1|)) (-15 -3561 (|#1| (-1 (-121) |#2|) |#1|)) (-15 -3602 (|#1| |#1| |#1|)) (-15 -3602 (|#1| |#1| |#2|)) (-15 -4103 (|#1| |#1| |#1| (-560))) (-15 -4103 (|#1| |#2| |#1| (-560))) (-15 -2949 (|#1| |#1| (-1202 (-560)))) (-15 -2949 (|#1| |#1| (-560))) (-15 -2849 (|#1| (-626 |#1|))) (-15 -2849 (|#1| |#1| |#1|)) (-15 -2849 (|#1| |#2| |#1|)) (-15 -2849 (|#1| |#1| |#2|)) (-15 -4310 (|#1| (-1 (-121) |#2|) |#1|)) (-15 -3802 (|#1| (-1 (-121) |#2|) |#1|)) (-15 -4310 (|#1| |#2| |#1|)) (-15 -2868 (|#1| |#1|))) (-272 |#2|) (-1187)) (T -271)) -NIL -(-10 -8 (-15 -2037 (|#1| |#1| |#1|)) (-15 -3561 (|#1| |#2| |#1|)) (-15 -2037 (|#1| (-1 (-121) |#2| |#2|) |#1| |#1|)) (-15 -3561 (|#1| (-1 (-121) |#2|) |#1|)) (-15 -3602 (|#1| |#1| |#1|)) (-15 -3602 (|#1| |#1| |#2|)) (-15 -4103 (|#1| |#1| |#1| (-560))) (-15 -4103 (|#1| |#2| |#1| (-560))) (-15 -2949 (|#1| |#1| (-1202 (-560)))) (-15 -2949 (|#1| |#1| (-560))) (-15 -2849 (|#1| (-626 |#1|))) (-15 -2849 (|#1| |#1| |#1|)) (-15 -2849 (|#1| |#2| |#1|)) (-15 -2849 (|#1| |#1| |#2|)) (-15 -4310 (|#1| (-1 (-121) |#2|) |#1|)) (-15 -3802 (|#1| (-1 (-121) |#2|) |#1|)) (-15 -4310 (|#1| |#2| |#1|)) (-15 -2868 (|#1| |#1|))) -((-2601 (((-121) $ $) 18 (|has| |#1| (-1082)))) (-2960 (((-1241) $ (-560) (-560)) 37 (|has| $ (-6 -4506)))) (-3909 (((-121) $ (-755)) 8)) (-2764 ((|#1| $ (-560) |#1|) 49 (|has| $ (-6 -4506))) ((|#1| $ (-1202 (-560)) |#1|) 53 (|has| $ (-6 -4506)))) (-3763 (($ (-1 (-121) |#1|) $) 78)) (-3802 (($ (-1 (-121) |#1|) $) 70 (|has| $ (-6 -4505)))) (-4236 (($) 7 T CONST)) (-3568 (($ $) 76 (|has| |#1| (-1082)))) (-2868 (($ $) 73 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-3561 (($ (-1 (-121) |#1|) $) 82) (($ |#1| $) 77 (|has| |#1| (-1082)))) (-4310 (($ |#1| $) 72 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505)))) (($ (-1 (-121) |#1|) $) 69 (|has| $ (-6 -4505)))) (-2342 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 71 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 68 (|has| $ (-6 -4505))) ((|#1| (-1 |#1| |#1| |#1|) $) 67 (|has| $ (-6 -4505)))) (-1746 ((|#1| $ (-560) |#1|) 50 (|has| $ (-6 -4506)))) (-1361 ((|#1| $ (-560)) 48)) (-1981 (((-626 |#1|) $) 30 (|has| $ (-6 -4505)))) (-1721 (($ (-755) |#1|) 64)) (-2122 (((-121) $ (-755)) 9)) (-4099 (((-560) $) 40 (|has| (-560) (-834)))) (-2037 (($ (-1 (-121) |#1| |#1|) $ $) 79) (($ $ $) 75 (|has| |#1| (-834)))) (-2130 (((-626 |#1|) $) 29 (|has| $ (-6 -4505)))) (-2030 (((-121) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-2767 (((-560) $) 41 (|has| (-560) (-834)))) (-3778 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 59)) (-3441 (((-121) $ (-755)) 10)) (-1291 (((-1135) $) 22 (|has| |#1| (-1082)))) (-4345 (($ |#1| $ (-560)) 81) (($ $ $ (-560)) 80)) (-4103 (($ |#1| $ (-560)) 55) (($ $ $ (-560)) 54)) (-1529 (((-626 (-560)) $) 43)) (-1310 (((-121) (-560) $) 44)) (-4353 (((-1100) $) 21 (|has| |#1| (-1082)))) (-2824 ((|#1| $) 39 (|has| (-560) (-834)))) (-3786 (((-3 |#1| "failed") (-1 (-121) |#1|) $) 66)) (-3038 (($ $ |#1|) 38 (|has| $ (-6 -4506)))) (-2865 (((-121) (-1 (-121) |#1|) $) 32 (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#1|))) 26 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-283 |#1|)) 25 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-626 |#1|) (-626 |#1|)) 23 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))))) (-2214 (((-121) $ $) 14)) (-1290 (((-121) |#1| $) 42 (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-4460 (((-626 |#1|) $) 45)) (-4191 (((-121) $) 11)) (-3260 (($) 12)) (-2778 ((|#1| $ (-560) |#1|) 47) ((|#1| $ (-560)) 46) (($ $ (-1202 (-560))) 58)) (-4094 (($ $ (-560)) 84) (($ $ (-1202 (-560))) 83)) (-2949 (($ $ (-560)) 57) (($ $ (-1202 (-560))) 56)) (-4035 (((-755) (-1 (-121) |#1|) $) 31 (|has| $ (-6 -4505))) (((-755) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-2813 (($ $) 13)) (-4255 (((-533) $) 74 (|has| |#1| (-601 (-533))))) (-4162 (($ (-626 |#1|)) 65)) (-3602 (($ $ |#1|) 86) (($ $ $) 85)) (-2849 (($ $ |#1|) 63) (($ |#1| $) 62) (($ $ $) 61) (($ (-626 $)) 60)) (-2801 (((-842) $) 20 (|has| |#1| (-1082)))) (-3656 (((-121) (-1 (-121) |#1|) $) 33 (|has| $ (-6 -4505)))) (-1653 (((-121) $ $) 19 (|has| |#1| (-1082)))) (-2271 (((-755) $) 6 (|has| $ (-6 -4505))))) -(((-272 |#1|) (-1267) (-1187)) (T -272)) -((-3602 (*1 *1 *1 *2) (-12 (-4 *1 (-272 *2)) (-4 *2 (-1187)))) (-3602 (*1 *1 *1 *1) (-12 (-4 *1 (-272 *2)) (-4 *2 (-1187)))) (-4094 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-272 *3)) (-4 *3 (-1187)))) (-4094 (*1 *1 *1 *2) (-12 (-5 *2 (-1202 (-560))) (-4 *1 (-272 *3)) (-4 *3 (-1187)))) (-3561 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-121) *3)) (-4 *1 (-272 *3)) (-4 *3 (-1187)))) (-4345 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *1 (-272 *2)) (-4 *2 (-1187)))) (-4345 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-272 *3)) (-4 *3 (-1187)))) (-2037 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-121) *3 *3)) (-4 *1 (-272 *3)) (-4 *3 (-1187)))) (-3763 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-121) *3)) (-4 *1 (-272 *3)) (-4 *3 (-1187)))) (-3561 (*1 *1 *2 *1) (-12 (-4 *1 (-272 *2)) (-4 *2 (-1187)) (-4 *2 (-1082)))) (-3568 (*1 *1 *1) (-12 (-4 *1 (-272 *2)) (-4 *2 (-1187)) (-4 *2 (-1082)))) (-2037 (*1 *1 *1 *1) (-12 (-4 *1 (-272 *2)) (-4 *2 (-1187)) (-4 *2 (-834))))) -(-13 (-632 |t#1|) (-10 -8 (-6 -4506) (-15 -3602 ($ $ |t#1|)) (-15 -3602 ($ $ $)) (-15 -4094 ($ $ (-560))) (-15 -4094 ($ $ (-1202 (-560)))) (-15 -3561 ($ (-1 (-121) |t#1|) $)) (-15 -4345 ($ |t#1| $ (-560))) (-15 -4345 ($ $ $ (-560))) (-15 -2037 ($ (-1 (-121) |t#1| |t#1|) $ $)) (-15 -3763 ($ (-1 (-121) |t#1|) $)) (IF (|has| |t#1| (-1082)) (PROGN (-15 -3561 ($ |t#1| $)) (-15 -3568 ($ $))) |noBranch|) (IF (|has| |t#1| (-834)) (-15 -2037 ($ $ $)) |noBranch|))) -(((-39) . T) ((-105) |has| |#1| (-1082)) ((-600 (-842)) |has| |#1| (-1082)) ((-152 |#1|) . T) ((-601 (-533)) |has| |#1| (-601 (-533))) ((-276 (-560) |#1|) . T) ((-278 (-560) |#1|) . T) ((-298 |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))) ((-492 |#1|) . T) ((-593 (-560) |#1|) . T) ((-515 |#1| |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))) ((-632 |#1|) . T) ((-1082) |has| |#1| (-1082)) ((-1187) . T)) +((-3107 (((-2 (|:| |mult| (-763)) (|:| |subMult| (-763)) (|:| |blUpRec| (-634 (-2 (|:| |recTransStr| (-242 (-4287 (QUOTE X) (QUOTE -2926)) |#1|)) (|:| |recPoint| (-33 |#1|)) (|:| |recChart| |#5|) (|:| |definingExtension| |#1|))))) (-242 (-4287 (QUOTE X) (QUOTE -2926)) |#1|) (-33 |#1|) |#5| |#1|) 70)) (-1850 (((-242 (-4287 (QUOTE X) (QUOTE -2926)) |#1|) (-242 (-4287 (QUOTE X) (QUOTE -2926)) |#1|) (-763) |#5|) 54)) (-3172 (((-242 (-4287 (QUOTE X) (QUOTE -2926)) |#1|) |#3| |#5|) 99)) (-3409 (((-634 (-634 (-763))) (-242 (-4287 (QUOTE X) (QUOTE -2926)) |#1|)) NIL)) (-3640 ((|#3| (-242 (-4287 (QUOTE X) (QUOTE -2926)) |#1|) |#5|) 105)) (-3886 ((|#3| |#3| |#5|) 107))) +(((-119 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3886 (|#3| |#3| |#5|)) (-15 -1850 ((-242 (-4287 (QUOTE X) (QUOTE -2926)) |#1|) (-242 (-4287 (QUOTE X) (QUOTE -2926)) |#1|) (-763) |#5|)) (-15 -3107 ((-2 (|:| |mult| (-763)) (|:| |subMult| (-763)) (|:| |blUpRec| (-634 (-2 (|:| |recTransStr| (-242 (-4287 (QUOTE X) (QUOTE -2926)) |#1|)) (|:| |recPoint| (-33 |#1|)) (|:| |recChart| |#5|) (|:| |definingExtension| |#1|))))) (-242 (-4287 (QUOTE X) (QUOTE -2926)) |#1|) (-33 |#1|) |#5| |#1|)) (-15 -3409 ((-634 (-634 (-763))) (-242 (-4287 (QUOTE X) (QUOTE -2926)) |#1|))) (-15 -3172 ((-242 (-4287 (QUOTE X) (QUOTE -2926)) |#1|) |#3| |#5|)) (-15 -3640 (|#3| (-242 (-4287 (QUOTE X) (QUOTE -2926)) |#1|) |#5|))) (-365) (-634 (-1161)) (-324 |#1| |#4|) (-230 (-1697 |#2|) (-763)) (-117)) (T -119)) +((-3640 (*1 *2 *3 *4) (-12 (-5 *3 (-242 (-4287 (QUOTE X) (QUOTE -2926)) *5)) (-4 *5 (-365)) (-14 *6 (-634 (-1161))) (-4 *2 (-324 *5 *7)) (-5 *1 (-119 *5 *6 *2 *7 *4)) (-4 *7 (-230 (-1697 *6) (-763))) (-4 *4 (-117)))) (-3172 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-14 *6 (-634 (-1161))) (-4 *7 (-230 (-1697 *6) (-763))) (-5 *2 (-242 (-4287 (QUOTE X) (QUOTE -2926)) *5)) (-5 *1 (-119 *5 *6 *3 *7 *4)) (-4 *3 (-324 *5 *7)) (-4 *4 (-117)))) (-3409 (*1 *2 *3) (-12 (-5 *3 (-242 (-4287 (QUOTE X) (QUOTE -2926)) *4)) (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *7 (-230 (-1697 *5) (-763))) (-5 *2 (-634 (-634 (-763)))) (-5 *1 (-119 *4 *5 *6 *7 *8)) (-4 *6 (-324 *4 *7)) (-4 *8 (-117)))) (-3107 (*1 *2 *3 *4 *5 *6) (-12 (-4 *6 (-365)) (-14 *7 (-634 (-1161))) (-4 *9 (-230 (-1697 *7) (-763))) (-5 *2 (-2 (|:| |mult| (-763)) (|:| |subMult| (-763)) (|:| |blUpRec| (-634 (-2 (|:| |recTransStr| (-242 (-4287 (QUOTE X) (QUOTE -2926)) *6)) (|:| |recPoint| (-33 *6)) (|:| |recChart| *5) (|:| |definingExtension| *6)))))) (-5 *1 (-119 *6 *7 *8 *9 *5)) (-5 *3 (-242 (-4287 (QUOTE X) (QUOTE -2926)) *6)) (-5 *4 (-33 *6)) (-4 *8 (-324 *6 *9)) (-4 *5 (-117)))) (-1850 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-242 (-4287 (QUOTE X) (QUOTE -2926)) *5)) (-4 *5 (-365)) (-5 *3 (-763)) (-14 *6 (-634 (-1161))) (-4 *8 (-230 (-1697 *6) *3)) (-5 *1 (-119 *5 *6 *7 *8 *4)) (-4 *7 (-324 *5 *8)) (-4 *4 (-117)))) (-3886 (*1 *2 *2 *3) (-12 (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *6 (-230 (-1697 *5) (-763))) (-5 *1 (-119 *4 *5 *2 *6 *3)) (-4 *2 (-324 *4 *6)) (-4 *3 (-117))))) +(-10 -7 (-15 -3886 (|#3| |#3| |#5|)) (-15 -1850 ((-242 (-4287 (QUOTE X) (QUOTE -2926)) |#1|) (-242 (-4287 (QUOTE X) (QUOTE -2926)) |#1|) (-763) |#5|)) (-15 -3107 ((-2 (|:| |mult| (-763)) (|:| |subMult| (-763)) (|:| |blUpRec| (-634 (-2 (|:| |recTransStr| (-242 (-4287 (QUOTE X) (QUOTE -2926)) |#1|)) (|:| |recPoint| (-33 |#1|)) (|:| |recChart| |#5|) (|:| |definingExtension| |#1|))))) (-242 (-4287 (QUOTE X) (QUOTE -2926)) |#1|) (-33 |#1|) |#5| |#1|)) (-15 -3409 ((-634 (-634 (-763))) (-242 (-4287 (QUOTE X) (QUOTE -2926)) |#1|))) (-15 -3172 ((-242 (-4287 (QUOTE X) (QUOTE -2926)) |#1|) |#3| |#5|)) (-15 -3640 (|#3| (-242 (-4287 (QUOTE X) (QUOTE -2926)) |#1|) |#5|))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-3134 (((-3 $ "failed") $ $) 18)) (-2671 (($) 16 T CONST)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-2745 (((-850) $) 11)) (-3056 (($) 17 T CONST)) (-1717 (((-121) $ $) 6)) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ |#1| $) 22) (($ $ |#2|) 24))) +(((-120 |#1| |#2|) (-1275) (-1047) (-1047)) (T -120)) +NIL +(-13 (-637 |t#1|) (-1053 |t#2|) (-10 -7 (-6 -4514) (-6 -4513))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-105) . T) ((-137) . T) ((-608 (-850)) . T) ((-637 |#1|) . T) ((-1053 |#2|) . T) ((-1090) . T)) +((-2447 (((-121) $ $) NIL)) (-1611 (($ $) 12)) (-3091 (($ $ $) 17)) (-2080 (($) 8 T CONST)) (-4401 (((-121) $) 7)) (-3983 (((-763)) 24)) (-1731 (($) 30)) (-3104 (($ $ $) 15)) (-3044 (($ $) 10)) (-2460 (($ $ $) 18)) (-3339 (($ $ $) 19)) (-2521 (($ $ $) NIL)) (-3268 (($ $ $) NIL)) (-3683 (((-917) $) 29)) (-4487 (((-1143) $) NIL)) (-4355 (($ (-917)) 28)) (-2872 (($ $ $) 21)) (-4022 (((-1108) $) NIL)) (-3911 (($) 9 T CONST)) (-4278 (((-541) $) 36)) (-2745 (((-850) $) 39)) (-2139 (($ $ $) 13)) (-1887 (($ $) 11)) (-2430 (($ $ $) 16)) (-1751 (((-121) $ $) NIL)) (-1738 (((-121) $ $) NIL)) (-1717 (((-121) $ $) 20)) (-1745 (((-121) $ $) NIL)) (-1732 (((-121) $ $) 22)) (-2424 (($ $ $) 14))) +(((-121) (-13 (-842) (-370) (-651) (-609 (-541)) (-10 -8 (-15 -2080 ($) -3495) (-15 -3911 ($) -3495) (-15 -1887 ($ $)) (-15 -3044 ($ $)) (-15 -2139 ($ $ $)) (-15 -3104 ($ $ $)) (-15 -3091 ($ $ $)) (-15 -3339 ($ $ $)) (-15 -2460 ($ $ $)) (-15 -2872 ($ $ $)) (-15 -4401 ((-121) $))))) (T -121)) +((-2080 (*1 *1) (-5 *1 (-121))) (-3911 (*1 *1) (-5 *1 (-121))) (-1887 (*1 *1 *1) (-5 *1 (-121))) (-3044 (*1 *1 *1) (-5 *1 (-121))) (-2139 (*1 *1 *1 *1) (-5 *1 (-121))) (-3104 (*1 *1 *1 *1) (-5 *1 (-121))) (-3091 (*1 *1 *1 *1) (-5 *1 (-121))) (-3339 (*1 *1 *1 *1) (-5 *1 (-121))) (-2460 (*1 *1 *1 *1) (-5 *1 (-121))) (-2872 (*1 *1 *1 *1) (-5 *1 (-121))) (-4401 (*1 *1 *1) (-5 *1 (-121)))) +(-13 (-842) (-370) (-651) (-609 (-541)) (-10 -8 (-15 -2080 ($) -3495) (-15 -3911 ($) -3495) (-15 -1887 ($ $)) (-15 -3044 ($ $)) (-15 -2139 ($ $ $)) (-15 -3104 ($ $ $)) (-15 -3091 ($ $ $)) (-15 -3339 ($ $ $)) (-15 -2460 ($ $ $)) (-15 -2872 ($ $ $)) (-15 -4401 ((-121) $)))) +((-1481 (((-3 (-1 |#1| (-634 |#1|)) "failed") (-123)) 18) (((-123) (-123) (-1 |#1| |#1|)) 13) (((-123) (-123) (-1 |#1| (-634 |#1|))) 11) (((-3 |#1| "failed") (-123) (-634 |#1|)) 20)) (-1692 (((-3 (-634 (-1 |#1| (-634 |#1|))) "failed") (-123)) 24) (((-123) (-123) (-1 |#1| |#1|)) 30) (((-123) (-123) (-634 (-1 |#1| (-634 |#1|)))) 26)) (-1540 (((-123) |#1|) 53 (|has| |#1| (-842)))) (-2621 (((-3 |#1| "failed") (-123)) 48 (|has| |#1| (-842))))) +(((-122 |#1|) (-10 -7 (-15 -1481 ((-3 |#1| "failed") (-123) (-634 |#1|))) (-15 -1481 ((-123) (-123) (-1 |#1| (-634 |#1|)))) (-15 -1481 ((-123) (-123) (-1 |#1| |#1|))) (-15 -1481 ((-3 (-1 |#1| (-634 |#1|)) "failed") (-123))) (-15 -1692 ((-123) (-123) (-634 (-1 |#1| (-634 |#1|))))) (-15 -1692 ((-123) (-123) (-1 |#1| |#1|))) (-15 -1692 ((-3 (-634 (-1 |#1| (-634 |#1|))) "failed") (-123))) (IF (|has| |#1| (-842)) (PROGN (-15 -1540 ((-123) |#1|)) (-15 -2621 ((-3 |#1| "failed") (-123)))) |noBranch|)) (-1090)) (T -122)) +((-2621 (*1 *2 *3) (|partial| -12 (-5 *3 (-123)) (-4 *2 (-1090)) (-4 *2 (-842)) (-5 *1 (-122 *2)))) (-1540 (*1 *2 *3) (-12 (-5 *2 (-123)) (-5 *1 (-122 *3)) (-4 *3 (-842)) (-4 *3 (-1090)))) (-1692 (*1 *2 *3) (|partial| -12 (-5 *3 (-123)) (-5 *2 (-634 (-1 *4 (-634 *4)))) (-5 *1 (-122 *4)) (-4 *4 (-1090)))) (-1692 (*1 *2 *2 *3) (-12 (-5 *2 (-123)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1090)) (-5 *1 (-122 *4)))) (-1692 (*1 *2 *2 *3) (-12 (-5 *2 (-123)) (-5 *3 (-634 (-1 *4 (-634 *4)))) (-4 *4 (-1090)) (-5 *1 (-122 *4)))) (-1481 (*1 *2 *3) (|partial| -12 (-5 *3 (-123)) (-5 *2 (-1 *4 (-634 *4))) (-5 *1 (-122 *4)) (-4 *4 (-1090)))) (-1481 (*1 *2 *2 *3) (-12 (-5 *2 (-123)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1090)) (-5 *1 (-122 *4)))) (-1481 (*1 *2 *2 *3) (-12 (-5 *2 (-123)) (-5 *3 (-1 *4 (-634 *4))) (-4 *4 (-1090)) (-5 *1 (-122 *4)))) (-1481 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-123)) (-5 *4 (-634 *2)) (-5 *1 (-122 *2)) (-4 *2 (-1090))))) +(-10 -7 (-15 -1481 ((-3 |#1| "failed") (-123) (-634 |#1|))) (-15 -1481 ((-123) (-123) (-1 |#1| (-634 |#1|)))) (-15 -1481 ((-123) (-123) (-1 |#1| |#1|))) (-15 -1481 ((-3 (-1 |#1| (-634 |#1|)) "failed") (-123))) (-15 -1692 ((-123) (-123) (-634 (-1 |#1| (-634 |#1|))))) (-15 -1692 ((-123) (-123) (-1 |#1| |#1|))) (-15 -1692 ((-3 (-634 (-1 |#1| (-634 |#1|))) "failed") (-123))) (IF (|has| |#1| (-842)) (PROGN (-15 -1540 ((-123) |#1|)) (-15 -2621 ((-3 |#1| "failed") (-123)))) |noBranch|)) +((-2447 (((-121) $ $) NIL)) (-1551 (((-763) $) 68) (($ $ (-763)) 30)) (-1638 (((-121) $) 32)) (-3873 (($ $ (-1143) (-766)) 26)) (-3568 (($ $ (-50 (-1143) (-766))) 13)) (-2823 (((-3 (-766) "failed") $ (-1143)) 24)) (-2862 (((-50 (-1143) (-766)) $) 12)) (-3488 (($ (-1161)) 15) (($ (-1161) (-763)) 20)) (-1299 (((-121) $) 31)) (-2130 (((-121) $) 33)) (-3391 (((-1161) $) 8)) (-2521 (($ $ $) NIL)) (-3268 (($ $ $) NIL)) (-4487 (((-1143) $) NIL)) (-2841 (((-121) $ (-1161)) 10)) (-4395 (($ $ (-1 (-541) (-634 (-541)))) 50) (((-3 (-1 (-541) (-634 (-541))) "failed") $) 54)) (-4022 (((-1108) $) NIL)) (-3372 (((-121) $ (-1143)) 29)) (-1515 (($ $ (-1 (-121) $ $)) 35)) (-4125 (((-3 (-1 (-850) (-634 (-850))) "failed") $) 52) (($ $ (-1 (-850) (-634 (-850)))) 41) (($ $ (-1 (-850) (-850))) 43)) (-1808 (($ $ (-1143)) 45)) (-3863 (($ $) 61)) (-2800 (($ $ (-1 (-121) $ $)) 36)) (-2745 (((-850) $) 48)) (-2209 (($ $ (-1143)) 27)) (-1860 (((-3 (-763) "failed") $) 56)) (-1751 (((-121) $ $) NIL)) (-1738 (((-121) $ $) NIL)) (-1717 (((-121) $ $) 67)) (-1745 (((-121) $ $) NIL)) (-1732 (((-121) $ $) 72))) +(((-123) (-13 (-842) (-10 -8 (-15 -3391 ((-1161) $)) (-15 -2862 ((-50 (-1143) (-766)) $)) (-15 -3863 ($ $)) (-15 -3488 ($ (-1161))) (-15 -3488 ($ (-1161) (-763))) (-15 -1860 ((-3 (-763) "failed") $)) (-15 -1299 ((-121) $)) (-15 -1638 ((-121) $)) (-15 -2130 ((-121) $)) (-15 -1551 ((-763) $)) (-15 -1551 ($ $ (-763))) (-15 -1515 ($ $ (-1 (-121) $ $))) (-15 -2800 ($ $ (-1 (-121) $ $))) (-15 -4125 ((-3 (-1 (-850) (-634 (-850))) "failed") $)) (-15 -4125 ($ $ (-1 (-850) (-634 (-850))))) (-15 -4125 ($ $ (-1 (-850) (-850)))) (-15 -4395 ($ $ (-1 (-541) (-634 (-541))))) (-15 -4395 ((-3 (-1 (-541) (-634 (-541))) "failed") $)) (-15 -2841 ((-121) $ (-1161))) (-15 -3372 ((-121) $ (-1143))) (-15 -2209 ($ $ (-1143))) (-15 -1808 ($ $ (-1143))) (-15 -2823 ((-3 (-766) "failed") $ (-1143))) (-15 -3873 ($ $ (-1143) (-766))) (-15 -3568 ($ $ (-50 (-1143) (-766))))))) (T -123)) +((-3391 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-123)))) (-2862 (*1 *2 *1) (-12 (-5 *2 (-50 (-1143) (-766))) (-5 *1 (-123)))) (-3863 (*1 *1 *1) (-5 *1 (-123))) (-3488 (*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-123)))) (-3488 (*1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-763)) (-5 *1 (-123)))) (-1860 (*1 *2 *1) (|partial| -12 (-5 *2 (-763)) (-5 *1 (-123)))) (-1299 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-123)))) (-1638 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-123)))) (-2130 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-123)))) (-1551 (*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-123)))) (-1551 (*1 *1 *1 *2) (-12 (-5 *2 (-763)) (-5 *1 (-123)))) (-1515 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-121) (-123) (-123))) (-5 *1 (-123)))) (-2800 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-121) (-123) (-123))) (-5 *1 (-123)))) (-4125 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-850) (-634 (-850)))) (-5 *1 (-123)))) (-4125 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-850) (-634 (-850)))) (-5 *1 (-123)))) (-4125 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-850) (-850))) (-5 *1 (-123)))) (-4395 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-541) (-634 (-541)))) (-5 *1 (-123)))) (-4395 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-541) (-634 (-541)))) (-5 *1 (-123)))) (-2841 (*1 *2 *1 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-121)) (-5 *1 (-123)))) (-3372 (*1 *2 *1 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-121)) (-5 *1 (-123)))) (-2209 (*1 *1 *1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-123)))) (-1808 (*1 *1 *1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-123)))) (-2823 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1143)) (-5 *2 (-766)) (-5 *1 (-123)))) (-3873 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1143)) (-5 *3 (-766)) (-5 *1 (-123)))) (-3568 (*1 *1 *1 *2) (-12 (-5 *2 (-50 (-1143) (-766))) (-5 *1 (-123))))) +(-13 (-842) (-10 -8 (-15 -3391 ((-1161) $)) (-15 -2862 ((-50 (-1143) (-766)) $)) (-15 -3863 ($ $)) (-15 -3488 ($ (-1161))) (-15 -3488 ($ (-1161) (-763))) (-15 -1860 ((-3 (-763) "failed") $)) (-15 -1299 ((-121) $)) (-15 -1638 ((-121) $)) (-15 -2130 ((-121) $)) (-15 -1551 ((-763) $)) (-15 -1551 ($ $ (-763))) (-15 -1515 ($ $ (-1 (-121) $ $))) (-15 -2800 ($ $ (-1 (-121) $ $))) (-15 -4125 ((-3 (-1 (-850) (-634 (-850))) "failed") $)) (-15 -4125 ($ $ (-1 (-850) (-634 (-850))))) (-15 -4125 ($ $ (-1 (-850) (-850)))) (-15 -4395 ($ $ (-1 (-541) (-634 (-541))))) (-15 -4395 ((-3 (-1 (-541) (-634 (-541))) "failed") $)) (-15 -2841 ((-121) $ (-1161))) (-15 -3372 ((-121) $ (-1143))) (-15 -2209 ($ $ (-1143))) (-15 -1808 ($ $ (-1143))) (-15 -2823 ((-3 (-766) "failed") $ (-1143))) (-15 -3873 ($ $ (-1143) (-766))) (-15 -3568 ($ $ (-50 (-1143) (-766)))))) +((-2878 (((-568) |#2|) 36))) +(((-124 |#1| |#2|) (-10 -7 (-15 -2878 ((-568) |#2|))) (-13 (-365) (-1037 (-409 (-568)))) (-1219 |#1|)) (T -124)) +((-2878 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-1037 (-409 *2)))) (-5 *2 (-568)) (-5 *1 (-124 *4 *3)) (-4 *3 (-1219 *4))))) +(-10 -7 (-15 -2878 ((-568) |#2|))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL)) (-2227 (($ $) NIL)) (-1573 (((-121) $) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-1902 (($ $ (-568)) NIL)) (-1497 (((-121) $ $) NIL)) (-2671 (($) NIL T CONST)) (-2143 (($ (-1157 (-568)) (-568)) NIL)) (-2401 (($ $ $) NIL)) (-2925 (((-3 $ "failed") $) NIL)) (-3974 (($ $) NIL)) (-2412 (($ $ $) NIL)) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) NIL)) (-4477 (((-763) $) NIL)) (-2735 (((-121) $) NIL)) (-3562 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-3094 (((-568)) NIL)) (-1914 (((-568) $) NIL)) (-2495 (($ $ $) NIL) (($ (-634 $)) NIL)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL)) (-2721 (($ $ $) NIL) (($ (-634 $)) NIL)) (-4497 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1807 (($ $ (-568)) NIL)) (-2595 (((-3 $ "failed") $ $) NIL)) (-2344 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-2709 (((-763) $) NIL)) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL)) (-3396 (((-1141 (-568)) $) NIL)) (-1811 (($ $) NIL)) (-2745 (((-850) $) NIL) (($ (-568)) NIL) (($ $) NIL)) (-4078 (((-763)) NIL)) (-1826 (((-121) $ $) NIL)) (-3996 (((-568) $ (-568)) NIL)) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (-3056 (($) NIL T CONST)) (-1556 (($) NIL T CONST)) (-1717 (((-121) $ $) NIL)) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) NIL))) +(((-125 |#1|) (-863 |#1|) (-568)) (T -125)) +NIL +(-863 |#1|) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-1492 (((-125 |#1|) $) NIL (|has| (-125 |#1|) (-301)))) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL)) (-2227 (($ $) NIL)) (-1573 (((-121) $) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-1750 (((-420 (-1157 $)) (-1157 $)) NIL (|has| (-125 |#1|) (-904)))) (-4305 (($ $) NIL)) (-1678 (((-420 $) $) NIL)) (-1858 (((-3 (-634 (-1157 $)) "failed") (-634 (-1157 $)) (-1157 $)) NIL (|has| (-125 |#1|) (-904)))) (-1497 (((-121) $ $) NIL)) (-3662 (((-568) $) NIL (|has| (-125 |#1|) (-815)))) (-2671 (($) NIL T CONST)) (-3666 (((-3 (-125 |#1|) "failed") $) NIL) (((-3 (-1161) "failed") $) NIL (|has| (-125 |#1|) (-1037 (-1161)))) (((-3 (-409 (-568)) "failed") $) NIL (|has| (-125 |#1|) (-1037 (-568)))) (((-3 (-568) "failed") $) NIL (|has| (-125 |#1|) (-1037 (-568))))) (-2854 (((-125 |#1|) $) NIL) (((-1161) $) NIL (|has| (-125 |#1|) (-1037 (-1161)))) (((-409 (-568)) $) NIL (|has| (-125 |#1|) (-1037 (-568)))) (((-568) $) NIL (|has| (-125 |#1|) (-1037 (-568))))) (-1429 (($ $) NIL) (($ (-568) $) NIL)) (-2401 (($ $ $) NIL)) (-3164 (((-679 (-568)) (-679 $)) NIL (|has| (-125 |#1|) (-630 (-568)))) (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) NIL (|has| (-125 |#1|) (-630 (-568)))) (((-2 (|:| -2928 (-679 (-125 |#1|))) (|:| |vec| (-1244 (-125 |#1|)))) (-679 $) (-1244 $)) NIL) (((-679 (-125 |#1|)) (-679 $)) NIL)) (-2925 (((-3 $ "failed") $) NIL)) (-1731 (($) NIL (|has| (-125 |#1|) (-550)))) (-2412 (($ $ $) NIL)) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) NIL)) (-3927 (((-121) $) NIL)) (-2033 (((-121) $) NIL (|has| (-125 |#1|) (-815)))) (-4410 (((-884 (-568) $) $ (-887 (-568)) (-884 (-568) $)) NIL (|has| (-125 |#1|) (-881 (-568)))) (((-884 (-381) $) $ (-887 (-381)) (-884 (-381) $)) NIL (|has| (-125 |#1|) (-881 (-381))))) (-2735 (((-121) $) NIL)) (-1332 (($ $) NIL)) (-2317 (((-125 |#1|) $) NIL)) (-3038 (((-3 $ "failed") $) NIL (|has| (-125 |#1|) (-1136)))) (-2245 (((-121) $) NIL (|has| (-125 |#1|) (-815)))) (-3562 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-2521 (($ $ $) NIL (|has| (-125 |#1|) (-842)))) (-3268 (($ $ $) NIL (|has| (-125 |#1|) (-842)))) (-2795 (($ (-1 (-125 |#1|) (-125 |#1|)) $) NIL)) (-2495 (($ $ $) NIL) (($ (-634 $)) NIL)) (-4487 (((-1143) $) NIL)) (-2081 (($ $) NIL)) (-4434 (($) NIL (|has| (-125 |#1|) (-1136)) CONST)) (-4022 (((-1108) $) NIL)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL)) (-2721 (($ $ $) NIL) (($ (-634 $)) NIL)) (-3880 (($ $) NIL (|has| (-125 |#1|) (-301)))) (-1519 (((-125 |#1|) $) NIL (|has| (-125 |#1|) (-550)))) (-2905 (((-420 (-1157 $)) (-1157 $)) NIL (|has| (-125 |#1|) (-904)))) (-3545 (((-420 (-1157 $)) (-1157 $)) NIL (|has| (-125 |#1|) (-904)))) (-3848 (((-420 $) $) NIL)) (-4497 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2595 (((-3 $ "failed") $ $) NIL)) (-2344 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-1339 (($ $ (-634 (-125 |#1|)) (-634 (-125 |#1|))) NIL (|has| (-125 |#1|) (-303 (-125 |#1|)))) (($ $ (-125 |#1|) (-125 |#1|)) NIL (|has| (-125 |#1|) (-303 (-125 |#1|)))) (($ $ (-288 (-125 |#1|))) NIL (|has| (-125 |#1|) (-303 (-125 |#1|)))) (($ $ (-634 (-288 (-125 |#1|)))) NIL (|has| (-125 |#1|) (-303 (-125 |#1|)))) (($ $ (-634 (-1161)) (-634 (-125 |#1|))) NIL (|has| (-125 |#1|) (-523 (-1161) (-125 |#1|)))) (($ $ (-1161) (-125 |#1|)) NIL (|has| (-125 |#1|) (-523 (-1161) (-125 |#1|))))) (-2709 (((-763) $) NIL)) (-2779 (($ $ (-125 |#1|)) NIL (|has| (-125 |#1|) (-281 (-125 |#1|) (-125 |#1|))))) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL)) (-4189 (($ $) NIL (|has| (-125 |#1|) (-225))) (($ $ (-763)) NIL (|has| (-125 |#1|) (-225))) (($ $ (-1161)) NIL (|has| (-125 |#1|) (-895 (-1161)))) (($ $ (-634 (-1161))) NIL (|has| (-125 |#1|) (-895 (-1161)))) (($ $ (-1161) (-763)) NIL (|has| (-125 |#1|) (-895 (-1161)))) (($ $ (-634 (-1161)) (-634 (-763))) NIL (|has| (-125 |#1|) (-895 (-1161)))) (($ $ (-1 (-125 |#1|) (-125 |#1|)) (-763)) NIL) (($ $ (-1 (-125 |#1|) (-125 |#1|))) NIL)) (-3013 (($ $) NIL)) (-2324 (((-125 |#1|) $) NIL)) (-4278 (((-887 (-568)) $) NIL (|has| (-125 |#1|) (-609 (-887 (-568))))) (((-887 (-381)) $) NIL (|has| (-125 |#1|) (-609 (-887 (-381))))) (((-541) $) NIL (|has| (-125 |#1|) (-609 (-541)))) (((-381) $) NIL (|has| (-125 |#1|) (-1021))) (((-215) $) NIL (|has| (-125 |#1|) (-1021)))) (-3878 (((-173 (-409 (-568))) $) NIL)) (-2979 (((-3 (-1244 $) "failed") (-679 $)) NIL (-12 (|has| $ (-148)) (|has| (-125 |#1|) (-904))))) (-2745 (((-850) $) NIL) (($ (-568)) NIL) (($ $) NIL) (($ (-409 (-568))) NIL) (($ (-125 |#1|)) NIL) (($ (-1161)) NIL (|has| (-125 |#1|) (-1037 (-1161))))) (-4371 (((-3 $ "failed") $) NIL (-2198 (-12 (|has| $ (-148)) (|has| (-125 |#1|) (-904))) (|has| (-125 |#1|) (-148))))) (-4078 (((-763)) NIL)) (-2285 (((-125 |#1|) $) NIL (|has| (-125 |#1|) (-550)))) (-1826 (((-121) $ $) NIL)) (-3996 (((-409 (-568)) $ (-568)) NIL)) (-2897 (($ $) NIL (|has| (-125 |#1|) (-815)))) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL)) (-3056 (($) NIL T CONST)) (-1556 (($) NIL T CONST)) (-3190 (($ $) NIL (|has| (-125 |#1|) (-225))) (($ $ (-763)) NIL (|has| (-125 |#1|) (-225))) (($ $ (-1161)) NIL (|has| (-125 |#1|) (-895 (-1161)))) (($ $ (-634 (-1161))) NIL (|has| (-125 |#1|) (-895 (-1161)))) (($ $ (-1161) (-763)) NIL (|has| (-125 |#1|) (-895 (-1161)))) (($ $ (-634 (-1161)) (-634 (-763))) NIL (|has| (-125 |#1|) (-895 (-1161)))) (($ $ (-1 (-125 |#1|) (-125 |#1|)) (-763)) NIL) (($ $ (-1 (-125 |#1|) (-125 |#1|))) NIL)) (-1751 (((-121) $ $) NIL (|has| (-125 |#1|) (-842)))) (-1738 (((-121) $ $) NIL (|has| (-125 |#1|) (-842)))) (-1717 (((-121) $ $) NIL)) (-1745 (((-121) $ $) NIL (|has| (-125 |#1|) (-842)))) (-1732 (((-121) $ $) NIL (|has| (-125 |#1|) (-842)))) (-1779 (($ $ $) NIL) (($ (-125 |#1|) (-125 |#1|)) NIL)) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) NIL) (($ $ (-409 (-568))) NIL) (($ (-409 (-568)) $) NIL) (($ (-125 |#1|) $) NIL) (($ $ (-125 |#1|)) NIL))) +(((-126 |#1|) (-13 (-993 (-125 |#1|)) (-10 -8 (-15 -3996 ((-409 (-568)) $ (-568))) (-15 -3878 ((-173 (-409 (-568))) $)) (-15 -1429 ($ $)) (-15 -1429 ($ (-568) $)))) (-568)) (T -126)) +((-3996 (*1 *2 *1 *3) (-12 (-5 *2 (-409 (-568))) (-5 *1 (-126 *4)) (-14 *4 *3) (-5 *3 (-568)))) (-3878 (*1 *2 *1) (-12 (-5 *2 (-173 (-409 (-568)))) (-5 *1 (-126 *3)) (-14 *3 (-568)))) (-1429 (*1 *1 *1) (-12 (-5 *1 (-126 *2)) (-14 *2 (-568)))) (-1429 (*1 *1 *2 *1) (-12 (-5 *2 (-568)) (-5 *1 (-126 *3)) (-14 *3 *2)))) +(-13 (-993 (-125 |#1|)) (-10 -8 (-15 -3996 ((-409 (-568)) $ (-568))) (-15 -3878 ((-173 (-409 (-568))) $)) (-15 -1429 ($ $)) (-15 -1429 ($ (-568) $)))) +((-2436 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 48) (($ $ "right" $) 50)) (-2287 (((-634 $) $) 27)) (-1700 (((-121) $ $) 32)) (-3109 (((-121) |#2| $) 36)) (-2869 (((-634 |#2|) $) 22)) (-1651 (((-121) $) 16)) (-2779 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-3790 (((-121) $) 45)) (-2745 (((-850) $) 41)) (-4339 (((-634 $) $) 28)) (-1717 (((-121) $ $) 34)) (-1697 (((-763) $) 43))) +(((-127 |#1| |#2|) (-10 -8 (-15 -2436 (|#1| |#1| "right" |#1|)) (-15 -2436 (|#1| |#1| "left" |#1|)) (-15 -2779 (|#1| |#1| "right")) (-15 -2779 (|#1| |#1| "left")) (-15 -2436 (|#2| |#1| "value" |#2|)) (-15 -1700 ((-121) |#1| |#1|)) (-15 -2869 ((-634 |#2|) |#1|)) (-15 -3790 ((-121) |#1|)) (-15 -2779 (|#2| |#1| "value")) (-15 -1651 ((-121) |#1|)) (-15 -2287 ((-634 |#1|) |#1|)) (-15 -4339 ((-634 |#1|) |#1|)) (-15 -1717 ((-121) |#1| |#1|)) (-15 -2745 ((-850) |#1|)) (-15 -3109 ((-121) |#2| |#1|)) (-15 -1697 ((-763) |#1|))) (-128 |#2|) (-1195)) (T -127)) +NIL +(-10 -8 (-15 -2436 (|#1| |#1| "right" |#1|)) (-15 -2436 (|#1| |#1| "left" |#1|)) (-15 -2779 (|#1| |#1| "right")) (-15 -2779 (|#1| |#1| "left")) (-15 -2436 (|#2| |#1| "value" |#2|)) (-15 -1700 ((-121) |#1| |#1|)) (-15 -2869 ((-634 |#2|) |#1|)) (-15 -3790 ((-121) |#1|)) (-15 -2779 (|#2| |#1| "value")) (-15 -1651 ((-121) |#1|)) (-15 -2287 ((-634 |#1|) |#1|)) (-15 -4339 ((-634 |#1|) |#1|)) (-15 -1717 ((-121) |#1| |#1|)) (-15 -2745 ((-850) |#1|)) (-15 -3109 ((-121) |#2| |#1|)) (-15 -1697 ((-763) |#1|))) +((-2447 (((-121) $ $) 18 (|has| |#1| (-1090)))) (-2850 ((|#1| $) 45)) (-2510 (((-121) $ (-763)) 8)) (-1659 ((|#1| $ |#1|) 36 (|has| $ (-6 -4520)))) (-3497 (($ $ $) 49 (|has| $ (-6 -4520)))) (-3089 (($ $ $) 51 (|has| $ (-6 -4520)))) (-2436 ((|#1| $ "value" |#1|) 37 (|has| $ (-6 -4520))) (($ $ "left" $) 52 (|has| $ (-6 -4520))) (($ $ "right" $) 50 (|has| $ (-6 -4520)))) (-3827 (($ $ (-634 $)) 38 (|has| $ (-6 -4520)))) (-2671 (($) 7 T CONST)) (-3284 (($ $) 54)) (-4360 (((-634 |#1|) $) 30 (|has| $ (-6 -4519)))) (-2287 (((-634 $) $) 47)) (-1700 (((-121) $ $) 39 (|has| |#1| (-1090)))) (-1737 (((-121) $ (-763)) 9)) (-1979 (((-634 |#1|) $) 29 (|has| $ (-6 -4519)))) (-3109 (((-121) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-3674 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#1| |#1|) $) 35)) (-2166 (((-121) $ (-763)) 10)) (-3028 (($ $) 56)) (-2869 (((-634 |#1|) $) 42)) (-1651 (((-121) $) 46)) (-4487 (((-1143) $) 22 (|has| |#1| (-1090)))) (-4022 (((-1108) $) 21 (|has| |#1| (-1090)))) (-1387 (((-121) (-1 (-121) |#1|) $) 32 (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-634 |#1|) (-634 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))))) (-3171 (((-121) $ $) 14)) (-3084 (((-121) $) 11)) (-3248 (($) 12)) (-2779 ((|#1| $ "value") 44) (($ $ "left") 55) (($ $ "right") 53)) (-4075 (((-568) $ $) 41)) (-3790 (((-121) $) 43)) (-4168 (((-763) (-1 (-121) |#1|) $) 31 (|has| $ (-6 -4519))) (((-763) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-3863 (($ $) 13)) (-2745 (((-850) $) 20 (|has| |#1| (-1090)))) (-4339 (((-634 $) $) 48)) (-3491 (((-121) $ $) 40 (|has| |#1| (-1090)))) (-1319 (((-121) (-1 (-121) |#1|) $) 33 (|has| $ (-6 -4519)))) (-1717 (((-121) $ $) 19 (|has| |#1| (-1090)))) (-1697 (((-763) $) 6 (|has| $ (-6 -4519))))) +(((-128 |#1|) (-1275) (-1195)) (T -128)) +((-3028 (*1 *1 *1) (-12 (-4 *1 (-128 *2)) (-4 *2 (-1195)))) (-2779 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-128 *3)) (-4 *3 (-1195)))) (-3284 (*1 *1 *1) (-12 (-4 *1 (-128 *2)) (-4 *2 (-1195)))) (-2779 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-128 *3)) (-4 *3 (-1195)))) (-2436 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4520)) (-4 *1 (-128 *3)) (-4 *3 (-1195)))) (-3089 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4520)) (-4 *1 (-128 *2)) (-4 *2 (-1195)))) (-2436 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4520)) (-4 *1 (-128 *3)) (-4 *3 (-1195)))) (-3497 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4520)) (-4 *1 (-128 *2)) (-4 *2 (-1195))))) +(-13 (-1010 |t#1|) (-10 -8 (-15 -3028 ($ $)) (-15 -2779 ($ $ "left")) (-15 -3284 ($ $)) (-15 -2779 ($ $ "right")) (IF (|has| $ (-6 -4520)) (PROGN (-15 -2436 ($ $ "left" $)) (-15 -3089 ($ $ $)) (-15 -2436 ($ $ "right" $)) (-15 -3497 ($ $ $))) |noBranch|))) +(((-39) . T) ((-105) |has| |#1| (-1090)) ((-608 (-850)) |has| |#1| (-1090)) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))) ((-499 |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))) ((-1010 |#1|) . T) ((-1090) |has| |#1| (-1090)) ((-1195) . T)) +((-1516 (((-121) |#1|) 24)) (-3375 (((-763) (-763)) 23) (((-763)) 22)) (-2663 (((-121) |#1| (-121)) 25) (((-121) |#1|) 26))) +(((-129 |#1|) (-10 -7 (-15 -2663 ((-121) |#1|)) (-15 -2663 ((-121) |#1| (-121))) (-15 -3375 ((-763))) (-15 -3375 ((-763) (-763))) (-15 -1516 ((-121) |#1|))) (-1219 (-568))) (T -129)) +((-1516 (*1 *2 *3) (-12 (-5 *2 (-121)) (-5 *1 (-129 *3)) (-4 *3 (-1219 (-568))))) (-3375 (*1 *2 *2) (-12 (-5 *2 (-763)) (-5 *1 (-129 *3)) (-4 *3 (-1219 (-568))))) (-3375 (*1 *2) (-12 (-5 *2 (-763)) (-5 *1 (-129 *3)) (-4 *3 (-1219 (-568))))) (-2663 (*1 *2 *3 *2) (-12 (-5 *2 (-121)) (-5 *1 (-129 *3)) (-4 *3 (-1219 (-568))))) (-2663 (*1 *2 *3) (-12 (-5 *2 (-121)) (-5 *1 (-129 *3)) (-4 *3 (-1219 (-568)))))) +(-10 -7 (-15 -2663 ((-121) |#1|)) (-15 -2663 ((-121) |#1| (-121))) (-15 -3375 ((-763))) (-15 -3375 ((-763) (-763))) (-15 -1516 ((-121) |#1|))) +((-2447 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-2850 ((|#1| $) 15)) (-3969 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-2510 (((-121) $ (-763)) NIL)) (-1659 ((|#1| $ |#1|) NIL (|has| $ (-6 -4520)))) (-3497 (($ $ $) 18 (|has| $ (-6 -4520)))) (-3089 (($ $ $) 20 (|has| $ (-6 -4520)))) (-2436 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4520))) (($ $ "left" $) NIL (|has| $ (-6 -4520))) (($ $ "right" $) NIL (|has| $ (-6 -4520)))) (-3827 (($ $ (-634 $)) NIL (|has| $ (-6 -4520)))) (-2671 (($) NIL T CONST)) (-3284 (($ $) 17)) (-4360 (((-634 |#1|) $) NIL (|has| $ (-6 -4519)))) (-2287 (((-634 $) $) NIL)) (-1700 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-3341 (($ $ |#1| $) 23)) (-1737 (((-121) $ (-763)) NIL)) (-1979 (((-634 |#1|) $) NIL (|has| $ (-6 -4519)))) (-3109 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-3674 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#1| |#1|) $) NIL)) (-2166 (((-121) $ (-763)) NIL)) (-3028 (($ $) 19)) (-2869 (((-634 |#1|) $) NIL)) (-1651 (((-121) $) NIL)) (-4487 (((-1143) $) NIL (|has| |#1| (-1090)))) (-1358 (($ |#1| $) 24)) (-4450 (($ |#1| $) 10)) (-4022 (((-1108) $) NIL (|has| |#1| (-1090)))) (-1387 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-634 |#1|) (-634 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))))) (-3171 (((-121) $ $) NIL)) (-3084 (((-121) $) 14)) (-3248 (($) 8)) (-2779 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4075 (((-568) $ $) NIL)) (-3790 (((-121) $) NIL)) (-4168 (((-763) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519))) (((-763) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-3863 (($ $) NIL)) (-2745 (((-850) $) NIL (|has| |#1| (-1090)))) (-4339 (((-634 $) $) NIL)) (-3491 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-1698 (($ (-634 |#1|)) 12)) (-1319 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-1717 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-1697 (((-763) $) NIL (|has| $ (-6 -4519))))) +(((-130 |#1|) (-13 (-134 |#1|) (-10 -8 (-6 -4520) (-6 -4519) (-15 -1698 ($ (-634 |#1|))) (-15 -4450 ($ |#1| $)) (-15 -1358 ($ |#1| $)) (-15 -3969 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-842)) (T -130)) +((-1698 (*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-842)) (-5 *1 (-130 *3)))) (-4450 (*1 *1 *2 *1) (-12 (-5 *1 (-130 *2)) (-4 *2 (-842)))) (-1358 (*1 *1 *2 *1) (-12 (-5 *1 (-130 *2)) (-4 *2 (-842)))) (-3969 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-130 *3)) (|:| |greater| (-130 *3)))) (-5 *1 (-130 *3)) (-4 *3 (-842))))) +(-13 (-134 |#1|) (-10 -8 (-6 -4520) (-6 -4519) (-15 -1698 ($ (-634 |#1|))) (-15 -4450 ($ |#1| $)) (-15 -1358 ($ |#1| $)) (-15 -3969 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) +((-1611 (($ $) 14)) (-3044 (($ $) 11)) (-2460 (($ $ $) 24)) (-3339 (($ $ $) 22)) (-1887 (($ $) 12)) (-2430 (($ $ $) 20)) (-2424 (($ $ $) 18))) +(((-131 |#1|) (-10 -8 (-15 -2460 (|#1| |#1| |#1|)) (-15 -3339 (|#1| |#1| |#1|)) (-15 -1887 (|#1| |#1|)) (-15 -3044 (|#1| |#1|)) (-15 -1611 (|#1| |#1|)) (-15 -2424 (|#1| |#1| |#1|)) (-15 -2430 (|#1| |#1| |#1|))) (-132)) (T -131)) +NIL +(-10 -8 (-15 -2460 (|#1| |#1| |#1|)) (-15 -3339 (|#1| |#1| |#1|)) (-15 -1887 (|#1| |#1|)) (-15 -3044 (|#1| |#1|)) (-15 -1611 (|#1| |#1|)) (-15 -2424 (|#1| |#1| |#1|)) (-15 -2430 (|#1| |#1| |#1|))) +((-2447 (((-121) $ $) 7)) (-1611 (($ $) 103)) (-3091 (($ $ $) 24)) (-1868 (((-1249) $ (-568) (-568)) 66 (|has| $ (-6 -4520)))) (-2016 (((-121) $) 98 (|has| (-121) (-842))) (((-121) (-1 (-121) (-121) (-121)) $) 92)) (-3908 (($ $) 102 (-12 (|has| (-121) (-842)) (|has| $ (-6 -4520)))) (($ (-1 (-121) (-121) (-121)) $) 101 (|has| $ (-6 -4520)))) (-3644 (($ $) 97 (|has| (-121) (-842))) (($ (-1 (-121) (-121) (-121)) $) 91)) (-2510 (((-121) $ (-763)) 37)) (-2436 (((-121) $ (-1210 (-568)) (-121)) 88 (|has| $ (-6 -4520))) (((-121) $ (-568) (-121)) 54 (|has| $ (-6 -4520)))) (-2801 (($ (-1 (-121) (-121)) $) 71 (|has| $ (-6 -4519)))) (-2671 (($) 38 T CONST)) (-1578 (($ $) 100 (|has| $ (-6 -4520)))) (-3943 (($ $) 90)) (-3924 (($ $) 68 (-12 (|has| (-121) (-1090)) (|has| $ (-6 -4519))))) (-4328 (($ (-1 (-121) (-121)) $) 72 (|has| $ (-6 -4519))) (($ (-121) $) 69 (-12 (|has| (-121) (-1090)) (|has| $ (-6 -4519))))) (-3092 (((-121) (-1 (-121) (-121) (-121)) $) 74 (|has| $ (-6 -4519))) (((-121) (-1 (-121) (-121) (-121)) $ (-121)) 73 (|has| $ (-6 -4519))) (((-121) (-1 (-121) (-121) (-121)) $ (-121) (-121)) 70 (-12 (|has| (-121) (-1090)) (|has| $ (-6 -4519))))) (-3989 (((-121) $ (-568) (-121)) 53 (|has| $ (-6 -4520)))) (-2602 (((-121) $ (-568)) 55)) (-2764 (((-568) (-121) $ (-568)) 95 (|has| (-121) (-1090))) (((-568) (-121) $) 94 (|has| (-121) (-1090))) (((-568) (-1 (-121) (-121)) $) 93)) (-4360 (((-634 (-121)) $) 45 (|has| $ (-6 -4519)))) (-3104 (($ $ $) 25)) (-3044 (($ $) 30)) (-2460 (($ $ $) 27)) (-1849 (($ (-763) (-121)) 77)) (-3339 (($ $ $) 28)) (-1737 (((-121) $ (-763)) 36)) (-1881 (((-568) $) 63 (|has| (-568) (-842)))) (-2521 (($ $ $) 12)) (-1347 (($ $ $) 96 (|has| (-121) (-842))) (($ (-1 (-121) (-121) (-121)) $ $) 89)) (-1979 (((-634 (-121)) $) 46 (|has| $ (-6 -4519)))) (-3109 (((-121) (-121) $) 48 (-12 (|has| (-121) (-1090)) (|has| $ (-6 -4519))))) (-2223 (((-568) $) 62 (|has| (-568) (-842)))) (-3268 (($ $ $) 13)) (-3674 (($ (-1 (-121) (-121)) $) 41 (|has| $ (-6 -4520)))) (-2795 (($ (-1 (-121) (-121) (-121)) $ $) 82) (($ (-1 (-121) (-121)) $) 40)) (-2166 (((-121) $ (-763)) 35)) (-4487 (((-1143) $) 9)) (-4122 (($ $ $ (-568)) 87) (($ (-121) $ (-568)) 86)) (-4174 (((-634 (-568)) $) 60)) (-3578 (((-121) (-568) $) 59)) (-4022 (((-1108) $) 10)) (-3876 (((-121) $) 64 (|has| (-568) (-842)))) (-3775 (((-3 (-121) "failed") (-1 (-121) (-121)) $) 75)) (-3724 (($ $ (-121)) 65 (|has| $ (-6 -4520)))) (-1387 (((-121) (-1 (-121) (-121)) $) 43 (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-121)) (-634 (-121))) 52 (-12 (|has| (-121) (-303 (-121))) (|has| (-121) (-1090)))) (($ $ (-121) (-121)) 51 (-12 (|has| (-121) (-303 (-121))) (|has| (-121) (-1090)))) (($ $ (-288 (-121))) 50 (-12 (|has| (-121) (-303 (-121))) (|has| (-121) (-1090)))) (($ $ (-634 (-288 (-121)))) 49 (-12 (|has| (-121) (-303 (-121))) (|has| (-121) (-1090))))) (-3171 (((-121) $ $) 31)) (-4467 (((-121) (-121) $) 61 (-12 (|has| $ (-6 -4519)) (|has| (-121) (-1090))))) (-2041 (((-634 (-121)) $) 58)) (-3084 (((-121) $) 34)) (-3248 (($) 33)) (-2779 (($ $ (-1210 (-568))) 83) (((-121) $ (-568)) 57) (((-121) $ (-568) (-121)) 56)) (-2826 (($ $ (-1210 (-568))) 85) (($ $ (-568)) 84)) (-4168 (((-763) (-121) $) 47 (-12 (|has| (-121) (-1090)) (|has| $ (-6 -4519)))) (((-763) (-1 (-121) (-121)) $) 44 (|has| $ (-6 -4519)))) (-2256 (($ $ $ (-568)) 99 (|has| $ (-6 -4520)))) (-3863 (($ $) 32)) (-4278 (((-541) $) 67 (|has| (-121) (-609 (-541))))) (-4287 (($ (-634 (-121))) 76)) (-2768 (($ (-634 $)) 81) (($ $ $) 80) (($ (-121) $) 79) (($ $ (-121)) 78)) (-2745 (((-850) $) 11)) (-1319 (((-121) (-1 (-121) (-121)) $) 42 (|has| $ (-6 -4519)))) (-2139 (($ $ $) 26)) (-1887 (($ $) 29)) (-2430 (($ $ $) 105)) (-1751 (((-121) $ $) 15)) (-1738 (((-121) $ $) 16)) (-1717 (((-121) $ $) 6)) (-1745 (((-121) $ $) 14)) (-1732 (((-121) $ $) 17)) (-2424 (($ $ $) 104)) (-1697 (((-763) $) 39 (|has| $ (-6 -4519))))) +(((-132) (-1275)) (T -132)) +((-3044 (*1 *1 *1) (-4 *1 (-132))) (-1887 (*1 *1 *1) (-4 *1 (-132))) (-3339 (*1 *1 *1 *1) (-4 *1 (-132))) (-2460 (*1 *1 *1 *1) (-4 *1 (-132))) (-2139 (*1 *1 *1 *1) (-4 *1 (-132))) (-3104 (*1 *1 *1 *1) (-4 *1 (-132))) (-3091 (*1 *1 *1 *1) (-4 *1 (-132)))) +(-13 (-842) (-651) (-19 (-121)) (-10 -8 (-15 -3044 ($ $)) (-15 -1887 ($ $)) (-15 -3339 ($ $ $)) (-15 -2460 ($ $ $)) (-15 -2139 ($ $ $)) (-15 -3104 ($ $ $)) (-15 -3091 ($ $ $)))) +(((-39) . T) ((-105) . T) ((-608 (-850)) . T) ((-154 (-121)) . T) ((-609 (-541)) |has| (-121) (-609 (-541))) ((-281 (-568) (-121)) . T) ((-283 (-568) (-121)) . T) ((-303 (-121)) -12 (|has| (-121) (-303 (-121))) (|has| (-121) (-1090))) ((-375 (-121)) . T) ((-499 (-121)) . T) ((-601 (-568) (-121)) . T) ((-523 (-121) (-121)) -12 (|has| (-121) (-303 (-121))) (|has| (-121) (-1090))) ((-640 (-121)) . T) ((-651) . T) ((-19 (-121)) . T) ((-842) . T) ((-1090) . T) ((-1195) . T)) +((-3674 (($ (-1 |#2| |#2|) $) 22)) (-3863 (($ $) 16)) (-1697 (((-763) $) 24))) +(((-133 |#1| |#2|) (-10 -8 (-15 -3674 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1697 ((-763) |#1|)) (-15 -3863 (|#1| |#1|))) (-134 |#2|) (-1090)) (T -133)) +NIL +(-10 -8 (-15 -3674 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1697 ((-763) |#1|)) (-15 -3863 (|#1| |#1|))) +((-2447 (((-121) $ $) 18 (|has| |#1| (-1090)))) (-2850 ((|#1| $) 45)) (-2510 (((-121) $ (-763)) 8)) (-1659 ((|#1| $ |#1|) 36 (|has| $ (-6 -4520)))) (-3497 (($ $ $) 49 (|has| $ (-6 -4520)))) (-3089 (($ $ $) 51 (|has| $ (-6 -4520)))) (-2436 ((|#1| $ "value" |#1|) 37 (|has| $ (-6 -4520))) (($ $ "left" $) 52 (|has| $ (-6 -4520))) (($ $ "right" $) 50 (|has| $ (-6 -4520)))) (-3827 (($ $ (-634 $)) 38 (|has| $ (-6 -4520)))) (-2671 (($) 7 T CONST)) (-3284 (($ $) 54)) (-4360 (((-634 |#1|) $) 30 (|has| $ (-6 -4519)))) (-2287 (((-634 $) $) 47)) (-1700 (((-121) $ $) 39 (|has| |#1| (-1090)))) (-3341 (($ $ |#1| $) 57)) (-1737 (((-121) $ (-763)) 9)) (-1979 (((-634 |#1|) $) 29 (|has| $ (-6 -4519)))) (-3109 (((-121) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-3674 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#1| |#1|) $) 35)) (-2166 (((-121) $ (-763)) 10)) (-3028 (($ $) 56)) (-2869 (((-634 |#1|) $) 42)) (-1651 (((-121) $) 46)) (-4487 (((-1143) $) 22 (|has| |#1| (-1090)))) (-4022 (((-1108) $) 21 (|has| |#1| (-1090)))) (-1387 (((-121) (-1 (-121) |#1|) $) 32 (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-634 |#1|) (-634 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))))) (-3171 (((-121) $ $) 14)) (-3084 (((-121) $) 11)) (-3248 (($) 12)) (-2779 ((|#1| $ "value") 44) (($ $ "left") 55) (($ $ "right") 53)) (-4075 (((-568) $ $) 41)) (-3790 (((-121) $) 43)) (-4168 (((-763) (-1 (-121) |#1|) $) 31 (|has| $ (-6 -4519))) (((-763) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-3863 (($ $) 13)) (-2745 (((-850) $) 20 (|has| |#1| (-1090)))) (-4339 (((-634 $) $) 48)) (-3491 (((-121) $ $) 40 (|has| |#1| (-1090)))) (-1319 (((-121) (-1 (-121) |#1|) $) 33 (|has| $ (-6 -4519)))) (-1717 (((-121) $ $) 19 (|has| |#1| (-1090)))) (-1697 (((-763) $) 6 (|has| $ (-6 -4519))))) +(((-134 |#1|) (-1275) (-1090)) (T -134)) +((-3341 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-134 *2)) (-4 *2 (-1090))))) +(-13 (-128 |t#1|) (-10 -8 (-6 -4520) (-6 -4519) (-15 -3341 ($ $ |t#1| $)))) +(((-39) . T) ((-105) |has| |#1| (-1090)) ((-128 |#1|) . T) ((-608 (-850)) |has| |#1| (-1090)) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))) ((-499 |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))) ((-1010 |#1|) . T) ((-1090) |has| |#1| (-1090)) ((-1195) . T)) +((-2447 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-2850 ((|#1| $) 15)) (-2510 (((-121) $ (-763)) NIL)) (-1659 ((|#1| $ |#1|) 19 (|has| $ (-6 -4520)))) (-3497 (($ $ $) 20 (|has| $ (-6 -4520)))) (-3089 (($ $ $) 18 (|has| $ (-6 -4520)))) (-2436 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4520))) (($ $ "left" $) NIL (|has| $ (-6 -4520))) (($ $ "right" $) NIL (|has| $ (-6 -4520)))) (-3827 (($ $ (-634 $)) NIL (|has| $ (-6 -4520)))) (-2671 (($) NIL T CONST)) (-3284 (($ $) 21)) (-4360 (((-634 |#1|) $) NIL (|has| $ (-6 -4519)))) (-2287 (((-634 $) $) NIL)) (-1700 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-3341 (($ $ |#1| $) NIL)) (-1737 (((-121) $ (-763)) NIL)) (-1979 (((-634 |#1|) $) NIL (|has| $ (-6 -4519)))) (-3109 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-3674 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#1| |#1|) $) NIL)) (-2166 (((-121) $ (-763)) NIL)) (-3028 (($ $) NIL)) (-2869 (((-634 |#1|) $) NIL)) (-1651 (((-121) $) NIL)) (-4487 (((-1143) $) NIL (|has| |#1| (-1090)))) (-4450 (($ |#1| $) 10)) (-4022 (((-1108) $) NIL (|has| |#1| (-1090)))) (-1387 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-634 |#1|) (-634 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))))) (-3171 (((-121) $ $) NIL)) (-3084 (((-121) $) 14)) (-3248 (($) 8)) (-2779 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4075 (((-568) $ $) NIL)) (-3790 (((-121) $) NIL)) (-4168 (((-763) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519))) (((-763) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-3863 (($ $) 17)) (-2745 (((-850) $) NIL (|has| |#1| (-1090)))) (-4339 (((-634 $) $) NIL)) (-3491 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-1417 (($ (-634 |#1|)) 12)) (-1319 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-1717 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-1697 (((-763) $) NIL (|has| $ (-6 -4519))))) +(((-135 |#1|) (-13 (-134 |#1|) (-10 -8 (-6 -4520) (-15 -1417 ($ (-634 |#1|))) (-15 -4450 ($ |#1| $)))) (-842)) (T -135)) +((-1417 (*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-842)) (-5 *1 (-135 *3)))) (-4450 (*1 *1 *2 *1) (-12 (-5 *1 (-135 *2)) (-4 *2 (-842))))) +(-13 (-134 |#1|) (-10 -8 (-6 -4520) (-15 -1417 ($ (-634 |#1|))) (-15 -4450 ($ |#1| $)))) +((-2447 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-2850 ((|#1| $) 24)) (-2510 (((-121) $ (-763)) NIL)) (-1659 ((|#1| $ |#1|) 26 (|has| $ (-6 -4520)))) (-3497 (($ $ $) 30 (|has| $ (-6 -4520)))) (-3089 (($ $ $) 28 (|has| $ (-6 -4520)))) (-2436 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4520))) (($ $ "left" $) NIL (|has| $ (-6 -4520))) (($ $ "right" $) NIL (|has| $ (-6 -4520)))) (-3827 (($ $ (-634 $)) NIL (|has| $ (-6 -4520)))) (-2671 (($) NIL T CONST)) (-3284 (($ $) 20)) (-4360 (((-634 |#1|) $) NIL (|has| $ (-6 -4519)))) (-2287 (((-634 $) $) NIL)) (-1700 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-3341 (($ $ |#1| $) 15)) (-1737 (((-121) $ (-763)) NIL)) (-1979 (((-634 |#1|) $) NIL (|has| $ (-6 -4519)))) (-3109 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-3674 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#1| |#1|) $) NIL)) (-2166 (((-121) $ (-763)) NIL)) (-3028 (($ $) 19)) (-2869 (((-634 |#1|) $) NIL)) (-1651 (((-121) $) 21)) (-4487 (((-1143) $) NIL (|has| |#1| (-1090)))) (-4022 (((-1108) $) NIL (|has| |#1| (-1090)))) (-1387 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-634 |#1|) (-634 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))))) (-3171 (((-121) $ $) NIL)) (-3084 (((-121) $) 18)) (-3248 (($) 11)) (-2779 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4075 (((-568) $ $) NIL)) (-3790 (((-121) $) NIL)) (-4168 (((-763) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519))) (((-763) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-3863 (($ $) NIL)) (-2745 (((-850) $) NIL (|has| |#1| (-1090)))) (-4339 (((-634 $) $) NIL)) (-3491 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-4121 (($ |#1|) 17) (($ $ |#1| $) 16)) (-1319 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-1717 (((-121) $ $) 10 (|has| |#1| (-1090)))) (-1697 (((-763) $) NIL (|has| $ (-6 -4519))))) +(((-136 |#1|) (-13 (-134 |#1|) (-10 -8 (-15 -4121 ($ |#1|)) (-15 -4121 ($ $ |#1| $)))) (-1090)) (T -136)) +((-4121 (*1 *1 *2) (-12 (-5 *1 (-136 *2)) (-4 *2 (-1090)))) (-4121 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-136 *2)) (-4 *2 (-1090))))) +(-13 (-134 |#1|) (-10 -8 (-15 -4121 ($ |#1|)) (-15 -4121 ($ $ |#1| $)))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-3134 (((-3 $ "failed") $ $) 18)) (-2671 (($) 16 T CONST)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-2745 (((-850) $) 11)) (-3056 (($) 17 T CONST)) (-1717 (((-121) $ $) 6)) (-1767 (($ $ $) 13)) (* (($ (-917) $) 12) (($ (-763) $) 14))) +(((-137) (-1275)) (T -137)) +((-3134 (*1 *1 *1 *1) (|partial| -4 *1 (-137)))) +(-13 (-23) (-10 -8 (-15 -3134 ((-3 $ "failed") $ $)))) +(((-23) . T) ((-25) . T) ((-105) . T) ((-608 (-850)) . T) ((-1090) . T)) +((-2447 (((-121) $ $) 7)) (-3138 (((-1249) $ (-763)) 18)) (-2764 (((-763) $) 19)) (-2521 (($ $ $) 12)) (-3268 (($ $ $) 13)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-2745 (((-850) $) 11)) (-1751 (((-121) $ $) 15)) (-1738 (((-121) $ $) 16)) (-1717 (((-121) $ $) 6)) (-1745 (((-121) $ $) 14)) (-1732 (((-121) $ $) 17))) +(((-138) (-1275)) (T -138)) +((-2764 (*1 *2 *1) (-12 (-4 *1 (-138)) (-5 *2 (-763)))) (-3138 (*1 *2 *1 *3) (-12 (-4 *1 (-138)) (-5 *3 (-763)) (-5 *2 (-1249))))) +(-13 (-842) (-10 -8 (-15 -2764 ((-763) $)) (-15 -3138 ((-1249) $ (-763))))) +(((-105) . T) ((-608 (-850)) . T) ((-842) . T) ((-1090) . T)) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-2671 (($) NIL T CONST)) (-3666 (((-3 (-763) "failed") $) 38)) (-2854 (((-763) $) 36)) (-2925 (((-3 $ "failed") $) NIL)) (-2735 (((-121) $) NIL)) (-2521 (($ $ $) NIL)) (-3268 (($ $ $) 26)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-3986 (((-121)) 39)) (-3090 (((-121) (-121)) 41)) (-3449 (((-121) $) 23)) (-2446 (((-121) $) 35)) (-2745 (((-850) $) 22) (($ (-763)) 14)) (-1887 (($ $ (-763)) NIL) (($ $ (-917)) NIL)) (-3056 (($) 12 T CONST)) (-1556 (($) 11 T CONST)) (-1999 (($ (-763)) 15)) (-1751 (((-121) $ $) NIL)) (-1738 (((-121) $ $) NIL)) (-1717 (((-121) $ $) 24)) (-1745 (((-121) $ $) NIL)) (-1732 (((-121) $ $) 25)) (-1773 (((-3 $ "failed") $ $) 29)) (-1767 (($ $ $) 27)) (** (($ $ (-763)) NIL) (($ $ (-917)) NIL) (($ $ $) 34)) (* (($ (-763) $) 32) (($ (-917) $) NIL) (($ $ $) 30))) +(((-139) (-13 (-842) (-23) (-716) (-1037 (-763)) (-10 -8 (-6 (-4521 "*")) (-15 -1773 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1999 ($ (-763))) (-15 -3449 ((-121) $)) (-15 -2446 ((-121) $)) (-15 -3986 ((-121))) (-15 -3090 ((-121) (-121)))))) (T -139)) +((-1773 (*1 *1 *1 *1) (|partial| -5 *1 (-139))) (** (*1 *1 *1 *1) (-5 *1 (-139))) (-1999 (*1 *1 *2) (-12 (-5 *2 (-763)) (-5 *1 (-139)))) (-3449 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-139)))) (-2446 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-139)))) (-3986 (*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-139)))) (-3090 (*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-139))))) +(-13 (-842) (-23) (-716) (-1037 (-763)) (-10 -8 (-6 (-4521 "*")) (-15 -1773 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1999 ($ (-763))) (-15 -3449 ((-121) $)) (-15 -2446 ((-121) $)) (-15 -3986 ((-121))) (-15 -3090 ((-121) (-121))))) +((-4183 (((-141 |#1| |#2| |#4|) (-634 |#4|) (-141 |#1| |#2| |#3|)) 14)) (-2795 (((-141 |#1| |#2| |#4|) (-1 |#4| |#3|) (-141 |#1| |#2| |#3|)) 18))) +(((-140 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4183 ((-141 |#1| |#2| |#4|) (-634 |#4|) (-141 |#1| |#2| |#3|))) (-15 -2795 ((-141 |#1| |#2| |#4|) (-1 |#4| |#3|) (-141 |#1| |#2| |#3|)))) (-568) (-763) (-172) (-172)) (T -140)) +((-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-141 *5 *6 *7)) (-14 *5 (-568)) (-14 *6 (-763)) (-4 *7 (-172)) (-4 *8 (-172)) (-5 *2 (-141 *5 *6 *8)) (-5 *1 (-140 *5 *6 *7 *8)))) (-4183 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *8)) (-5 *4 (-141 *5 *6 *7)) (-14 *5 (-568)) (-14 *6 (-763)) (-4 *7 (-172)) (-4 *8 (-172)) (-5 *2 (-141 *5 *6 *8)) (-5 *1 (-140 *5 *6 *7 *8))))) +(-10 -7 (-15 -4183 ((-141 |#1| |#2| |#4|) (-634 |#4|) (-141 |#1| |#2| |#3|))) (-15 -2795 ((-141 |#1| |#2| |#4|) (-1 |#4| |#3|) (-141 |#1| |#2| |#3|)))) +((-2447 (((-121) $ $) NIL)) (-1428 (($ (-634 |#3|)) 38)) (-2870 (($ $) 97) (($ $ (-568) (-568)) 96)) (-2671 (($) 17)) (-3666 (((-3 |#3| "failed") $) 58)) (-2854 ((|#3| $) NIL)) (-2170 (($ $ (-634 (-568))) 98)) (-2733 (((-634 |#3|) $) 34)) (-3700 (((-763) $) 42)) (-3272 (($ $ $) 91)) (-4379 (($) 41)) (-4487 (((-1143) $) NIL)) (-3261 (($) 16)) (-4022 (((-1108) $) NIL)) (-2779 ((|#3| $) 44) ((|#3| $ (-568)) 45) ((|#3| $ (-568) (-568)) 46) ((|#3| $ (-568) (-568) (-568)) 47) ((|#3| $ (-568) (-568) (-568) (-568)) 48) ((|#3| $ (-634 (-568))) 50)) (-3206 (((-763) $) 43)) (-2722 (($ $ (-568) $ (-568)) 92) (($ $ (-568) (-568)) 94)) (-2745 (((-850) $) 65) (($ |#3|) 66) (($ (-232 |#2| |#3|)) 73) (($ (-1127 |#2| |#3|)) 76) (($ (-634 |#3|)) 51) (($ (-634 $)) 56)) (-3056 (($) 67 T CONST)) (-1556 (($) 68 T CONST)) (-1717 (((-121) $ $) 78)) (-1773 (($ $) 84) (($ $ $) 82)) (-1767 (($ $ $) 80)) (* (($ |#3| $) 89) (($ $ |#3|) 90) (($ $ (-568)) 87) (($ (-568) $) 86) (($ $ $) 93))) +(((-141 |#1| |#2| |#3|) (-13 (-470 |#3| (-763)) (-475 (-568) (-763)) (-10 -8 (-15 -2745 ($ (-232 |#2| |#3|))) (-15 -2745 ($ (-1127 |#2| |#3|))) (-15 -2745 ($ (-634 |#3|))) (-15 -2745 ($ (-634 $))) (-15 -3700 ((-763) $)) (-15 -2779 (|#3| $)) (-15 -2779 (|#3| $ (-568))) (-15 -2779 (|#3| $ (-568) (-568))) (-15 -2779 (|#3| $ (-568) (-568) (-568))) (-15 -2779 (|#3| $ (-568) (-568) (-568) (-568))) (-15 -2779 (|#3| $ (-634 (-568)))) (-15 -3272 ($ $ $)) (-15 * ($ $ $)) (-15 -2722 ($ $ (-568) $ (-568))) (-15 -2722 ($ $ (-568) (-568))) (-15 -2870 ($ $)) (-15 -2870 ($ $ (-568) (-568))) (-15 -2170 ($ $ (-634 (-568)))) (-15 -3261 ($)) (-15 -4379 ($)) (-15 -2733 ((-634 |#3|) $)) (-15 -1428 ($ (-634 |#3|))) (-15 -2671 ($)))) (-568) (-763) (-172)) (T -141)) +((-3272 (*1 *1 *1 *1) (-12 (-5 *1 (-141 *2 *3 *4)) (-14 *2 (-568)) (-14 *3 (-763)) (-4 *4 (-172)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-232 *4 *5)) (-14 *4 (-763)) (-4 *5 (-172)) (-5 *1 (-141 *3 *4 *5)) (-14 *3 (-568)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-1127 *4 *5)) (-14 *4 (-763)) (-4 *5 (-172)) (-5 *1 (-141 *3 *4 *5)) (-14 *3 (-568)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-634 *5)) (-4 *5 (-172)) (-5 *1 (-141 *3 *4 *5)) (-14 *3 (-568)) (-14 *4 (-763)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-634 (-141 *3 *4 *5))) (-5 *1 (-141 *3 *4 *5)) (-14 *3 (-568)) (-14 *4 (-763)) (-4 *5 (-172)))) (-3700 (*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-141 *3 *4 *5)) (-14 *3 (-568)) (-14 *4 *2) (-4 *5 (-172)))) (-2779 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-141 *3 *4 *2)) (-14 *3 (-568)) (-14 *4 (-763)))) (-2779 (*1 *2 *1 *3) (-12 (-5 *3 (-568)) (-4 *2 (-172)) (-5 *1 (-141 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-763)))) (-2779 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-568)) (-4 *2 (-172)) (-5 *1 (-141 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-763)))) (-2779 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-568)) (-4 *2 (-172)) (-5 *1 (-141 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-763)))) (-2779 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-568)) (-4 *2 (-172)) (-5 *1 (-141 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-763)))) (-2779 (*1 *2 *1 *3) (-12 (-5 *3 (-634 (-568))) (-4 *2 (-172)) (-5 *1 (-141 *4 *5 *2)) (-14 *4 (-568)) (-14 *5 (-763)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-141 *2 *3 *4)) (-14 *2 (-568)) (-14 *3 (-763)) (-4 *4 (-172)))) (-2722 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-141 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-763)) (-4 *5 (-172)))) (-2722 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-141 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-763)) (-4 *5 (-172)))) (-2870 (*1 *1 *1) (-12 (-5 *1 (-141 *2 *3 *4)) (-14 *2 (-568)) (-14 *3 (-763)) (-4 *4 (-172)))) (-2870 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-141 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-763)) (-4 *5 (-172)))) (-2170 (*1 *1 *1 *2) (-12 (-5 *2 (-634 (-568))) (-5 *1 (-141 *3 *4 *5)) (-14 *3 (-568)) (-14 *4 (-763)) (-4 *5 (-172)))) (-3261 (*1 *1) (-12 (-5 *1 (-141 *2 *3 *4)) (-14 *2 (-568)) (-14 *3 (-763)) (-4 *4 (-172)))) (-4379 (*1 *1) (-12 (-5 *1 (-141 *2 *3 *4)) (-14 *2 (-568)) (-14 *3 (-763)) (-4 *4 (-172)))) (-2733 (*1 *2 *1) (-12 (-5 *2 (-634 *5)) (-5 *1 (-141 *3 *4 *5)) (-14 *3 (-568)) (-14 *4 (-763)) (-4 *5 (-172)))) (-1428 (*1 *1 *2) (-12 (-5 *2 (-634 *5)) (-4 *5 (-172)) (-5 *1 (-141 *3 *4 *5)) (-14 *3 (-568)) (-14 *4 (-763)))) (-2671 (*1 *1) (-12 (-5 *1 (-141 *2 *3 *4)) (-14 *2 (-568)) (-14 *3 (-763)) (-4 *4 (-172))))) +(-13 (-470 |#3| (-763)) (-475 (-568) (-763)) (-10 -8 (-15 -2745 ($ (-232 |#2| |#3|))) (-15 -2745 ($ (-1127 |#2| |#3|))) (-15 -2745 ($ (-634 |#3|))) (-15 -2745 ($ (-634 $))) (-15 -3700 ((-763) $)) (-15 -2779 (|#3| $)) (-15 -2779 (|#3| $ (-568))) (-15 -2779 (|#3| $ (-568) (-568))) (-15 -2779 (|#3| $ (-568) (-568) (-568))) (-15 -2779 (|#3| $ (-568) (-568) (-568) (-568))) (-15 -2779 (|#3| $ (-634 (-568)))) (-15 -3272 ($ $ $)) (-15 * ($ $ $)) (-15 -2722 ($ $ (-568) $ (-568))) (-15 -2722 ($ $ (-568) (-568))) (-15 -2870 ($ $)) (-15 -2870 ($ $ (-568) (-568))) (-15 -2170 ($ $ (-634 (-568)))) (-15 -3261 ($)) (-15 -4379 ($)) (-15 -2733 ((-634 |#3|) $)) (-15 -1428 ($ (-634 |#3|))) (-15 -2671 ($)))) +((-2447 (((-121) $ $) NIL)) (-2072 (($) 15 T CONST)) (-3415 (($) NIL (|has| (-147) (-370)))) (-1791 (($ $ $) 17) (($ $ (-147)) NIL) (($ (-147) $) NIL)) (-1536 (($ $ $) NIL)) (-2032 (((-121) $ $) NIL)) (-2510 (((-121) $ (-763)) NIL)) (-3983 (((-763)) NIL (|has| (-147) (-370)))) (-2749 (($) NIL) (($ (-634 (-147))) NIL)) (-3507 (($ (-1 (-121) (-147)) $) NIL (|has| $ (-6 -4519)))) (-2801 (($ (-1 (-121) (-147)) $) NIL (|has| $ (-6 -4519)))) (-2671 (($) NIL T CONST)) (-3924 (($ $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-147) (-1090))))) (-3405 (($ (-1 (-121) (-147)) $) NIL (|has| $ (-6 -4519))) (($ (-147) $) 51 (|has| $ (-6 -4519)))) (-4328 (($ (-1 (-121) (-147)) $) NIL (|has| $ (-6 -4519))) (($ (-147) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-147) (-1090))))) (-3092 (((-147) (-1 (-147) (-147) (-147)) $) NIL (|has| $ (-6 -4519))) (((-147) (-1 (-147) (-147) (-147)) $ (-147)) NIL (|has| $ (-6 -4519))) (((-147) (-1 (-147) (-147) (-147)) $ (-147) (-147)) NIL (-12 (|has| $ (-6 -4519)) (|has| (-147) (-1090))))) (-1731 (($) NIL (|has| (-147) (-370)))) (-4360 (((-634 (-147)) $) 60 (|has| $ (-6 -4519)))) (-1737 (((-121) $ (-763)) NIL)) (-2521 (((-147) $) NIL (|has| (-147) (-842)))) (-1979 (((-634 (-147)) $) NIL (|has| $ (-6 -4519)))) (-3109 (((-121) (-147) $) 26 (-12 (|has| $ (-6 -4519)) (|has| (-147) (-1090))))) (-3268 (((-147) $) NIL (|has| (-147) (-842)))) (-3674 (($ (-1 (-147) (-147)) $) 59 (|has| $ (-6 -4520)))) (-2795 (($ (-1 (-147) (-147)) $) 55)) (-2003 (($) 16 T CONST)) (-3683 (((-917) $) NIL (|has| (-147) (-370)))) (-2166 (((-121) $ (-763)) NIL)) (-4487 (((-1143) $) NIL)) (-3212 (($ $ $) 29)) (-1890 (((-147) $) 52)) (-4450 (($ (-147) $) 50)) (-4355 (($ (-917)) NIL (|has| (-147) (-370)))) (-3659 (($) 14 T CONST)) (-4022 (((-1108) $) NIL)) (-3775 (((-3 (-147) "failed") (-1 (-121) (-147)) $) NIL)) (-1315 (((-147) $) 53)) (-1387 (((-121) (-1 (-121) (-147)) $) NIL (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-147)) (-634 (-147))) NIL (-12 (|has| (-147) (-303 (-147))) (|has| (-147) (-1090)))) (($ $ (-147) (-147)) NIL (-12 (|has| (-147) (-303 (-147))) (|has| (-147) (-1090)))) (($ $ (-288 (-147))) NIL (-12 (|has| (-147) (-303 (-147))) (|has| (-147) (-1090)))) (($ $ (-634 (-288 (-147)))) NIL (-12 (|has| (-147) (-303 (-147))) (|has| (-147) (-1090))))) (-3171 (((-121) $ $) NIL)) (-3084 (((-121) $) NIL)) (-3248 (($) 48)) (-1723 (($) 13 T CONST)) (-4382 (($ $ $) 31) (($ $ (-147)) NIL)) (-2085 (($ (-634 (-147))) NIL) (($) NIL)) (-4168 (((-763) (-147) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-147) (-1090)))) (((-763) (-1 (-121) (-147)) $) NIL (|has| $ (-6 -4519)))) (-3863 (($ $) NIL)) (-4278 (((-1143) $) 36) (((-541) $) NIL (|has| (-147) (-609 (-541)))) (((-634 (-147)) $) 34)) (-4287 (($ (-634 (-147))) NIL)) (-2160 (($ $) 32 (|has| (-147) (-370)))) (-2745 (((-850) $) 46)) (-3565 (($ (-1143)) 12) (($ (-634 (-147))) 43)) (-2432 (((-763) $) NIL)) (-3844 (($) 49) (($ (-634 (-147))) NIL)) (-2367 (($ (-634 (-147))) NIL)) (-1319 (((-121) (-1 (-121) (-147)) $) NIL (|has| $ (-6 -4519)))) (-3135 (($) 19 T CONST)) (-2208 (($) 18 T CONST)) (-1717 (((-121) $ $) 22)) (-1732 (((-121) $ $) NIL)) (-1697 (((-763) $) 47 (|has| $ (-6 -4519))))) +(((-142) (-13 (-1090) (-609 (-1143)) (-427 (-147)) (-609 (-634 (-147))) (-10 -8 (-15 -3565 ($ (-1143))) (-15 -3565 ($ (-634 (-147)))) (-15 -1723 ($) -3495) (-15 -3659 ($) -3495) (-15 -2072 ($) -3495) (-15 -2003 ($) -3495) (-15 -2208 ($) -3495) (-15 -3135 ($) -3495)))) (T -142)) +((-3565 (*1 *1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-142)))) (-3565 (*1 *1 *2) (-12 (-5 *2 (-634 (-147))) (-5 *1 (-142)))) (-1723 (*1 *1) (-5 *1 (-142))) (-3659 (*1 *1) (-5 *1 (-142))) (-2072 (*1 *1) (-5 *1 (-142))) (-2003 (*1 *1) (-5 *1 (-142))) (-2208 (*1 *1) (-5 *1 (-142))) (-3135 (*1 *1) (-5 *1 (-142)))) +(-13 (-1090) (-609 (-1143)) (-427 (-147)) (-609 (-634 (-147))) (-10 -8 (-15 -3565 ($ (-1143))) (-15 -3565 ($ (-634 (-147)))) (-15 -1723 ($) -3495) (-15 -3659 ($) -3495) (-15 -2072 ($) -3495) (-15 -2003 ($) -3495) (-15 -2208 ($) -3495) (-15 -3135 ($) -3495))) +((-4114 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-3093 ((|#1| |#3|) 9)) (-2469 ((|#3| |#3|) 15))) +(((-143 |#1| |#2| |#3|) (-10 -7 (-15 -3093 (|#1| |#3|)) (-15 -2469 (|#3| |#3|)) (-15 -4114 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-558) (-993 |#1|) (-375 |#2|)) (T -143)) +((-4114 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-993 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-143 *4 *5 *3)) (-4 *3 (-375 *5)))) (-2469 (*1 *2 *2) (-12 (-4 *3 (-558)) (-4 *4 (-993 *3)) (-5 *1 (-143 *3 *4 *2)) (-4 *2 (-375 *4)))) (-3093 (*1 *2 *3) (-12 (-4 *4 (-993 *2)) (-4 *2 (-558)) (-5 *1 (-143 *2 *4 *3)) (-4 *3 (-375 *4))))) +(-10 -7 (-15 -3093 (|#1| |#3|)) (-15 -2469 (|#3| |#3|)) (-15 -4114 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-2447 (((-121) $ $) NIL (|has| (-169 (-215)) (-1090)))) (-3205 (($ (-763) (-763)) NIL)) (-3347 (($ $ $) NIL)) (-2870 (($ (-145)) NIL) (($ $) NIL)) (-1335 (((-121) $) NIL)) (-4343 (($ $ (-568) (-568)) NIL)) (-3622 (($ $ (-568) (-568)) NIL)) (-3676 (($ $ (-568) (-568) (-568) (-568)) NIL)) (-3976 (($ $) NIL)) (-2230 (((-121) $) NIL)) (-2510 (((-121) $ (-763)) NIL)) (-1785 (($ $ (-568) (-568) $) NIL)) (-2436 (((-169 (-215)) $ (-568) (-568) (-169 (-215))) NIL) (($ $ (-634 (-568)) (-634 (-568)) $) NIL)) (-4159 (($ $ (-568) (-145)) NIL)) (-2451 (($ $ (-568) (-145)) NIL)) (-3422 (($ (-763) (-169 (-215))) NIL)) (-2671 (($) NIL T CONST)) (-4167 (($ $) NIL (|has| (-169 (-215)) (-301)))) (-1818 (((-145) $ (-568)) NIL)) (-3700 (((-763) $) NIL (|has| (-169 (-215)) (-558)))) (-3989 (((-169 (-215)) $ (-568) (-568) (-169 (-215))) 16)) (-3615 (($ (-568) (-568)) 18)) (-2602 (((-169 (-215)) $ (-568) (-568)) 15)) (-2076 (((-169 (-215)) $) NIL (|has| (-169 (-215)) (-172)))) (-4360 (((-634 (-169 (-215))) $) NIL)) (-2121 (((-763) $) NIL (|has| (-169 (-215)) (-558)))) (-4272 (((-634 (-145)) $) NIL (|has| (-169 (-215)) (-558)))) (-3043 (((-763) $) 10)) (-1849 (($ (-763) (-763) (-169 (-215))) 19)) (-2555 (((-763) $) 11)) (-1737 (((-121) $ (-763)) NIL)) (-3082 (((-169 (-215)) $) NIL (|has| (-169 (-215)) (-6 (-4521 "*"))))) (-2087 (((-568) $) 7)) (-3364 (((-568) $) 8)) (-1979 (((-634 (-169 (-215))) $) NIL (|has| $ (-6 -4519)))) (-3109 (((-121) (-169 (-215)) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-169 (-215)) (-1090))))) (-1663 (((-568) $) 12)) (-2893 (((-568) $) 13)) (-2269 (($ (-634 (-634 (-169 (-215))))) NIL)) (-3674 (($ (-1 (-169 (-215)) (-169 (-215))) $) NIL)) (-2795 (($ (-1 (-169 (-215)) (-169 (-215))) $) NIL) (($ (-1 (-169 (-215)) (-169 (-215)) (-169 (-215))) $ $) NIL) (($ (-1 (-169 (-215)) (-169 (-215)) (-169 (-215))) $ $ (-169 (-215))) NIL)) (-3208 (((-634 (-634 (-169 (-215)))) $) NIL)) (-2166 (((-121) $ (-763)) NIL)) (-4487 (((-1143) $) NIL (|has| (-169 (-215)) (-1090)))) (-3140 (((-3 $ "failed") $) NIL (|has| (-169 (-215)) (-365)))) (-2858 (($ $ $) NIL)) (-4022 (((-1108) $) NIL (|has| (-169 (-215)) (-1090)))) (-3724 (($ $ (-169 (-215))) NIL)) (-2595 (((-3 $ "failed") $ (-169 (-215))) NIL (|has| (-169 (-215)) (-558)))) (-1387 (((-121) (-1 (-121) (-169 (-215))) $) NIL (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 (-169 (-215))))) NIL (-12 (|has| (-169 (-215)) (-303 (-169 (-215)))) (|has| (-169 (-215)) (-1090)))) (($ $ (-288 (-169 (-215)))) NIL (-12 (|has| (-169 (-215)) (-303 (-169 (-215)))) (|has| (-169 (-215)) (-1090)))) (($ $ (-169 (-215)) (-169 (-215))) NIL (-12 (|has| (-169 (-215)) (-303 (-169 (-215)))) (|has| (-169 (-215)) (-1090)))) (($ $ (-634 (-169 (-215))) (-634 (-169 (-215)))) NIL (-12 (|has| (-169 (-215)) (-303 (-169 (-215)))) (|has| (-169 (-215)) (-1090))))) (-3171 (((-121) $ $) NIL)) (-3084 (((-121) $) NIL)) (-3248 (($) 17)) (-2779 (((-169 (-215)) $ (-568) (-568)) NIL) (((-169 (-215)) $ (-568) (-568) (-169 (-215))) NIL) (($ $ (-634 (-568)) (-634 (-568))) NIL)) (-2282 (($ (-634 (-169 (-215)))) NIL) (($ (-634 $)) NIL)) (-1960 (((-121) $) NIL)) (-2465 (((-169 (-215)) $) NIL (|has| (-169 (-215)) (-6 (-4521 "*"))))) (-4168 (((-763) (-1 (-121) (-169 (-215))) $) NIL (|has| $ (-6 -4519))) (((-763) (-169 (-215)) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-169 (-215)) (-1090))))) (-3863 (($ $) NIL)) (-2365 (((-634 (-145)) $) NIL (|has| (-169 (-215)) (-301)))) (-3731 (((-145) $ (-568)) NIL)) (-2745 (((-850) $) NIL (|has| (-169 (-215)) (-1090))) (($ (-145)) NIL)) (-1319 (((-121) (-1 (-121) (-169 (-215))) $) NIL (|has| $ (-6 -4519)))) (-1910 (((-121) $) NIL)) (-1717 (((-121) $ $) NIL (|has| (-169 (-215)) (-1090)))) (-1779 (($ $ (-169 (-215))) NIL (|has| (-169 (-215)) (-365)))) (-1773 (($ $ $) NIL) (($ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-763)) NIL) (($ $ (-568)) NIL (|has| (-169 (-215)) (-365)))) (* (($ $ $) NIL) (($ (-169 (-215)) $) NIL) (($ $ (-169 (-215))) NIL) (($ (-568) $) NIL) (((-145) $ (-145)) NIL) (((-145) (-145) $) NIL)) (-1697 (((-763) $) NIL (|has| $ (-6 -4519))))) +(((-144) (-13 (-677 (-169 (-215)) (-145) (-145)) (-10 -8 (-15 -3615 ($ (-568) (-568)))))) (T -144)) +((-3615 (*1 *1 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-144))))) +(-13 (-677 (-169 (-215)) (-145) (-145)) (-10 -8 (-15 -3615 ($ (-568) (-568))))) +((-2447 (((-121) $ $) NIL (|has| (-169 (-215)) (-1090)))) (-3205 (($ (-763)) NIL (|has| (-169 (-215)) (-23)))) (-4209 (($ (-634 (-169 (-215)))) NIL)) (-1868 (((-1249) $ (-568) (-568)) NIL (|has| $ (-6 -4520)))) (-2016 (((-121) (-1 (-121) (-169 (-215)) (-169 (-215))) $) NIL) (((-121) $) NIL (|has| (-169 (-215)) (-842)))) (-3908 (($ (-1 (-121) (-169 (-215)) (-169 (-215))) $) NIL (|has| $ (-6 -4520))) (($ $) NIL (-12 (|has| $ (-6 -4520)) (|has| (-169 (-215)) (-842))))) (-3644 (($ (-1 (-121) (-169 (-215)) (-169 (-215))) $) NIL) (($ $) NIL (|has| (-169 (-215)) (-842)))) (-2510 (((-121) $ (-763)) NIL)) (-2436 (((-169 (-215)) $ (-568) (-169 (-215))) 18 (|has| $ (-6 -4520))) (((-169 (-215)) $ (-1210 (-568)) (-169 (-215))) NIL (|has| $ (-6 -4520)))) (-2801 (($ (-1 (-121) (-169 (-215))) $) NIL (|has| $ (-6 -4519)))) (-2671 (($) NIL T CONST)) (-1578 (($ $) NIL (|has| $ (-6 -4520)))) (-3943 (($ $) NIL)) (-3924 (($ $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-169 (-215)) (-1090))))) (-4328 (($ (-169 (-215)) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-169 (-215)) (-1090)))) (($ (-1 (-121) (-169 (-215))) $) NIL (|has| $ (-6 -4519)))) (-3092 (((-169 (-215)) (-1 (-169 (-215)) (-169 (-215)) (-169 (-215))) $ (-169 (-215)) (-169 (-215))) NIL (-12 (|has| $ (-6 -4519)) (|has| (-169 (-215)) (-1090)))) (((-169 (-215)) (-1 (-169 (-215)) (-169 (-215)) (-169 (-215))) $ (-169 (-215))) NIL (|has| $ (-6 -4519))) (((-169 (-215)) (-1 (-169 (-215)) (-169 (-215)) (-169 (-215))) $) NIL (|has| $ (-6 -4519)))) (-3989 (((-169 (-215)) $ (-568) (-169 (-215))) 9 (|has| $ (-6 -4520)))) (-3615 (($ (-568)) 14)) (-2602 (((-169 (-215)) $ (-568)) 8)) (-2764 (((-568) (-1 (-121) (-169 (-215))) $) NIL) (((-568) (-169 (-215)) $) NIL (|has| (-169 (-215)) (-1090))) (((-568) (-169 (-215)) $ (-568)) NIL (|has| (-169 (-215)) (-1090)))) (-4360 (((-634 (-169 (-215))) $) NIL (|has| $ (-6 -4519)))) (-1802 (((-679 (-169 (-215))) $ $) NIL (|has| (-169 (-215)) (-1047)))) (-1849 (($ (-763) (-169 (-215))) 16)) (-1737 (((-121) $ (-763)) NIL)) (-1881 (((-568) $) 12 (|has| (-568) (-842)))) (-2521 (($ $ $) NIL (|has| (-169 (-215)) (-842)))) (-1347 (($ (-1 (-121) (-169 (-215)) (-169 (-215))) $ $) NIL) (($ $ $) NIL (|has| (-169 (-215)) (-842)))) (-1979 (((-634 (-169 (-215))) $) NIL (|has| $ (-6 -4519)))) (-3109 (((-121) (-169 (-215)) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-169 (-215)) (-1090))))) (-2223 (((-568) $) NIL (|has| (-568) (-842)))) (-3268 (($ $ $) NIL (|has| (-169 (-215)) (-842)))) (-3674 (($ (-1 (-169 (-215)) (-169 (-215))) $) NIL (|has| $ (-6 -4520)))) (-2795 (($ (-1 (-169 (-215)) (-169 (-215))) $) NIL) (($ (-1 (-169 (-215)) (-169 (-215)) (-169 (-215))) $ $) NIL)) (-1550 (((-169 (-215)) $) NIL (-12 (|has| (-169 (-215)) (-1002)) (|has| (-169 (-215)) (-1047))))) (-2166 (((-121) $ (-763)) NIL)) (-3678 (((-169 (-215)) $) NIL (-12 (|has| (-169 (-215)) (-1002)) (|has| (-169 (-215)) (-1047))))) (-4487 (((-1143) $) NIL (|has| (-169 (-215)) (-1090)))) (-4122 (($ (-169 (-215)) $ (-568)) NIL) (($ $ $ (-568)) NIL)) (-4174 (((-634 (-568)) $) NIL)) (-3578 (((-121) (-568) $) NIL)) (-4022 (((-1108) $) NIL (|has| (-169 (-215)) (-1090)))) (-3876 (((-169 (-215)) $) NIL (|has| (-568) (-842)))) (-3775 (((-3 (-169 (-215)) "failed") (-1 (-121) (-169 (-215))) $) NIL)) (-3724 (($ $ (-169 (-215))) 15 (|has| $ (-6 -4520)))) (-1387 (((-121) (-1 (-121) (-169 (-215))) $) NIL (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 (-169 (-215))))) NIL (-12 (|has| (-169 (-215)) (-303 (-169 (-215)))) (|has| (-169 (-215)) (-1090)))) (($ $ (-288 (-169 (-215)))) NIL (-12 (|has| (-169 (-215)) (-303 (-169 (-215)))) (|has| (-169 (-215)) (-1090)))) (($ $ (-169 (-215)) (-169 (-215))) NIL (-12 (|has| (-169 (-215)) (-303 (-169 (-215)))) (|has| (-169 (-215)) (-1090)))) (($ $ (-634 (-169 (-215))) (-634 (-169 (-215)))) NIL (-12 (|has| (-169 (-215)) (-303 (-169 (-215)))) (|has| (-169 (-215)) (-1090))))) (-3171 (((-121) $ $) NIL)) (-4467 (((-121) (-169 (-215)) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-169 (-215)) (-1090))))) (-2041 (((-634 (-169 (-215))) $) NIL)) (-3084 (((-121) $) NIL)) (-3248 (($) 13)) (-2779 (((-169 (-215)) $ (-568) (-169 (-215))) NIL) (((-169 (-215)) $ (-568)) 17) (($ $ (-1210 (-568))) NIL)) (-3682 (((-169 (-215)) $ $) NIL (|has| (-169 (-215)) (-1047)))) (-2826 (($ $ (-568)) NIL) (($ $ (-1210 (-568))) NIL)) (-2748 (($ $ $) NIL (|has| (-169 (-215)) (-1047)))) (-4168 (((-763) (-1 (-121) (-169 (-215))) $) NIL (|has| $ (-6 -4519))) (((-763) (-169 (-215)) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-169 (-215)) (-1090))))) (-2256 (($ $ $ (-568)) NIL (|has| $ (-6 -4520)))) (-3863 (($ $) NIL)) (-4278 (((-541) $) NIL (|has| (-169 (-215)) (-609 (-541))))) (-4287 (($ (-634 (-169 (-215)))) NIL)) (-2768 (($ $ (-169 (-215))) NIL) (($ (-169 (-215)) $) NIL) (($ $ $) NIL) (($ (-634 $)) NIL)) (-2745 (((-850) $) NIL (|has| (-169 (-215)) (-1090)))) (-1319 (((-121) (-1 (-121) (-169 (-215))) $) NIL (|has| $ (-6 -4519)))) (-1751 (((-121) $ $) NIL (|has| (-169 (-215)) (-842)))) (-1738 (((-121) $ $) NIL (|has| (-169 (-215)) (-842)))) (-1717 (((-121) $ $) NIL (|has| (-169 (-215)) (-1090)))) (-1745 (((-121) $ $) NIL (|has| (-169 (-215)) (-842)))) (-1732 (((-121) $ $) NIL (|has| (-169 (-215)) (-842)))) (-1773 (($ $) NIL (|has| (-169 (-215)) (-21))) (($ $ $) NIL (|has| (-169 (-215)) (-21)))) (-1767 (($ $ $) NIL (|has| (-169 (-215)) (-25)))) (* (($ (-568) $) NIL (|has| (-169 (-215)) (-21))) (($ (-169 (-215)) $) NIL (|has| (-169 (-215)) (-716))) (($ $ (-169 (-215))) NIL (|has| (-169 (-215)) (-716)))) (-1697 (((-763) $) 11 (|has| $ (-6 -4519))))) +(((-145) (-13 (-1242 (-169 (-215))) (-10 -8 (-15 -3615 ($ (-568))) (-15 -4209 ($ (-634 (-169 (-215)))))))) (T -145)) +((-3615 (*1 *1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-145)))) (-4209 (*1 *1 *2) (-12 (-5 *2 (-634 (-169 (-215)))) (-5 *1 (-145))))) +(-13 (-1242 (-169 (-215))) (-10 -8 (-15 -3615 ($ (-568))) (-15 -4209 ($ (-634 (-169 (-215))))))) +((-2413 (($ $ $) 8)) (-2427 (($ $) 7)) (-2787 (($ $ $) 6))) +(((-146) (-1275)) (T -146)) +((-2413 (*1 *1 *1 *1) (-4 *1 (-146))) (-2427 (*1 *1 *1) (-4 *1 (-146))) (-2787 (*1 *1 *1 *1) (-4 *1 (-146)))) +(-13 (-10 -8 (-15 -2787 ($ $ $)) (-15 -2427 ($ $)) (-15 -2413 ($ $ $)))) +((-2447 (((-121) $ $) NIL)) (-1534 (((-121) $) 38)) (-2072 (($ $) 50)) (-4194 (($) 25)) (-3983 (((-763)) 16)) (-1731 (($) 24)) (-2539 (($) 26)) (-1379 (((-568) $) 21)) (-2521 (($ $ $) NIL)) (-3268 (($ $ $) NIL)) (-4145 (((-121) $) 40)) (-2003 (($ $) 51)) (-3683 (((-917) $) 22)) (-4487 (((-1143) $) 46)) (-4355 (($ (-917)) 20)) (-3512 (((-121) $) 36)) (-4022 (((-1108) $) NIL)) (-2687 (($) 27)) (-4402 (((-121) $) 34)) (-2745 (((-850) $) 29)) (-2916 (($ (-568)) 18) (($ (-1143)) 49)) (-1776 (((-121) $) 44)) (-4150 (((-121) $) 42)) (-1751 (((-121) $ $) NIL)) (-1738 (((-121) $ $) NIL)) (-1717 (((-121) $ $) 13)) (-1745 (((-121) $ $) NIL)) (-1732 (((-121) $ $) 14))) +(((-147) (-13 (-836) (-10 -8 (-15 -1379 ((-568) $)) (-15 -2916 ($ (-568))) (-15 -2916 ($ (-1143))) (-15 -4194 ($)) (-15 -2539 ($)) (-15 -2687 ($)) (-15 -2072 ($ $)) (-15 -2003 ($ $)) (-15 -4402 ((-121) $)) (-15 -3512 ((-121) $)) (-15 -4150 ((-121) $)) (-15 -1534 ((-121) $)) (-15 -4145 ((-121) $)) (-15 -1776 ((-121) $))))) (T -147)) +((-1379 (*1 *2 *1) (-12 (-5 *2 (-568)) (-5 *1 (-147)))) (-2916 (*1 *1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-147)))) (-2916 (*1 *1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-147)))) (-4194 (*1 *1) (-5 *1 (-147))) (-2539 (*1 *1) (-5 *1 (-147))) (-2687 (*1 *1) (-5 *1 (-147))) (-2072 (*1 *1 *1) (-5 *1 (-147))) (-2003 (*1 *1 *1) (-5 *1 (-147))) (-4402 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-147)))) (-3512 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-147)))) (-4150 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-147)))) (-1534 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-147)))) (-4145 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-147)))) (-1776 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-147))))) +(-13 (-836) (-10 -8 (-15 -1379 ((-568) $)) (-15 -2916 ($ (-568))) (-15 -2916 ($ (-1143))) (-15 -4194 ($)) (-15 -2539 ($)) (-15 -2687 ($)) (-15 -2072 ($ $)) (-15 -2003 ($ $)) (-15 -4402 ((-121) $)) (-15 -3512 ((-121) $)) (-15 -4150 ((-121) $)) (-15 -1534 ((-121) $)) (-15 -4145 ((-121) $)) (-15 -1776 ((-121) $)))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-3134 (((-3 $ "failed") $ $) 18)) (-2671 (($) 16 T CONST)) (-2925 (((-3 $ "failed") $) 33)) (-2735 (((-121) $) 30)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-2745 (((-850) $) 11) (($ (-568)) 27)) (-4371 (((-3 $ "failed") $) 34)) (-4078 (((-763)) 28)) (-1887 (($ $ (-917)) 25) (($ $ (-763)) 32)) (-3056 (($) 17 T CONST)) (-1556 (($) 29 T CONST)) (-1717 (((-121) $ $) 6)) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 24) (($ $ (-763)) 31)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 23))) +(((-148) (-1275)) (T -148)) +((-4371 (*1 *1 *1) (|partial| -4 *1 (-148)))) +(-13 (-1047) (-10 -8 (-15 -4371 ((-3 $ "failed") $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-105) . T) ((-137) . T) ((-608 (-850)) . T) ((-637 $) . T) ((-716) . T) ((-1047) . T) ((-1054) . T) ((-1102) . T) ((-1090) . T)) +((-2678 ((|#1| (-679 |#1|) |#1|) 17))) +(((-149 |#1|) (-10 -7 (-15 -2678 (|#1| (-679 |#1|) |#1|))) (-172)) (T -149)) +((-2678 (*1 *2 *3 *2) (-12 (-5 *3 (-679 *2)) (-4 *2 (-172)) (-5 *1 (-149 *2))))) +(-10 -7 (-15 -2678 (|#1| (-679 |#1|) |#1|))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-3134 (((-3 $ "failed") $ $) 18)) (-2671 (($) 16 T CONST)) (-2925 (((-3 $ "failed") $) 33)) (-2735 (((-121) $) 30)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-2745 (((-850) $) 11) (($ (-568)) 27)) (-4078 (((-763)) 28)) (-1887 (($ $ (-917)) 25) (($ $ (-763)) 32)) (-3056 (($) 17 T CONST)) (-1556 (($) 29 T CONST)) (-1717 (((-121) $ $) 6)) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 24) (($ $ (-763)) 31)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 23))) +(((-150) (-1275)) (T -150)) +NIL +(-13 (-1047)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-105) . T) ((-137) . T) ((-608 (-850)) . T) ((-637 $) . T) ((-716) . T) ((-1047) . T) ((-1054) . T) ((-1102) . T) ((-1090) . T)) +((-4495 (((-2 (|:| -3438 (-763)) (|:| -2348 (-409 |#2|)) (|:| |radicand| |#2|)) (-409 |#2|) (-763)) 69)) (-2536 (((-3 (-2 (|:| |radicand| (-409 |#2|)) (|:| |deg| (-763))) "failed") |#3|) 51)) (-2177 (((-2 (|:| -2348 (-409 |#2|)) (|:| |poly| |#3|)) |#3|) 36)) (-2650 ((|#1| |#3| |#3|) 39)) (-1339 ((|#3| |#3| (-409 |#2|) (-409 |#2|)) 19)) (-2000 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-409 |#2|)) (|:| |c2| (-409 |#2|)) (|:| |deg| (-763))) |#3| |#3|) 48))) +(((-151 |#1| |#2| |#3|) (-10 -7 (-15 -2177 ((-2 (|:| -2348 (-409 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2536 ((-3 (-2 (|:| |radicand| (-409 |#2|)) (|:| |deg| (-763))) "failed") |#3|)) (-15 -4495 ((-2 (|:| -3438 (-763)) (|:| -2348 (-409 |#2|)) (|:| |radicand| |#2|)) (-409 |#2|) (-763))) (-15 -2650 (|#1| |#3| |#3|)) (-15 -1339 (|#3| |#3| (-409 |#2|) (-409 |#2|))) (-15 -2000 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-409 |#2|)) (|:| |c2| (-409 |#2|)) (|:| |deg| (-763))) |#3| |#3|))) (-1199) (-1219 |#1|) (-1219 (-409 |#2|))) (T -151)) +((-2000 (*1 *2 *3 *3) (-12 (-4 *4 (-1199)) (-4 *5 (-1219 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-409 *5)) (|:| |c2| (-409 *5)) (|:| |deg| (-763)))) (-5 *1 (-151 *4 *5 *3)) (-4 *3 (-1219 (-409 *5))))) (-1339 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-409 *5)) (-4 *4 (-1199)) (-4 *5 (-1219 *4)) (-5 *1 (-151 *4 *5 *2)) (-4 *2 (-1219 *3)))) (-2650 (*1 *2 *3 *3) (-12 (-4 *4 (-1219 *2)) (-4 *2 (-1199)) (-5 *1 (-151 *2 *4 *3)) (-4 *3 (-1219 (-409 *4))))) (-4495 (*1 *2 *3 *4) (-12 (-5 *3 (-409 *6)) (-4 *5 (-1199)) (-4 *6 (-1219 *5)) (-5 *2 (-2 (|:| -3438 (-763)) (|:| -2348 *3) (|:| |radicand| *6))) (-5 *1 (-151 *5 *6 *7)) (-5 *4 (-763)) (-4 *7 (-1219 *3)))) (-2536 (*1 *2 *3) (|partial| -12 (-4 *4 (-1199)) (-4 *5 (-1219 *4)) (-5 *2 (-2 (|:| |radicand| (-409 *5)) (|:| |deg| (-763)))) (-5 *1 (-151 *4 *5 *3)) (-4 *3 (-1219 (-409 *5))))) (-2177 (*1 *2 *3) (-12 (-4 *4 (-1199)) (-4 *5 (-1219 *4)) (-5 *2 (-2 (|:| -2348 (-409 *5)) (|:| |poly| *3))) (-5 *1 (-151 *4 *5 *3)) (-4 *3 (-1219 (-409 *5)))))) +(-10 -7 (-15 -2177 ((-2 (|:| -2348 (-409 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2536 ((-3 (-2 (|:| |radicand| (-409 |#2|)) (|:| |deg| (-763))) "failed") |#3|)) (-15 -4495 ((-2 (|:| -3438 (-763)) (|:| -2348 (-409 |#2|)) (|:| |radicand| |#2|)) (-409 |#2|) (-763))) (-15 -2650 (|#1| |#3| |#3|)) (-15 -1339 (|#3| |#3| (-409 |#2|) (-409 |#2|))) (-15 -2000 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-409 |#2|)) (|:| |c2| (-409 |#2|)) (|:| |deg| (-763))) |#3| |#3|))) +((-1858 (((-3 (-634 (-1157 |#2|)) "failed") (-634 (-1157 |#2|)) (-1157 |#2|)) 31))) +(((-152 |#1| |#2|) (-10 -7 (-15 -1858 ((-3 (-634 (-1157 |#2|)) "failed") (-634 (-1157 |#2|)) (-1157 |#2|)))) (-550) (-166 |#1|)) (T -152)) +((-1858 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-634 (-1157 *5))) (-5 *3 (-1157 *5)) (-4 *5 (-166 *4)) (-4 *4 (-550)) (-5 *1 (-152 *4 *5))))) +(-10 -7 (-15 -1858 ((-3 (-634 (-1157 |#2|)) "failed") (-634 (-1157 |#2|)) (-1157 |#2|)))) +((-2801 (($ (-1 (-121) |#2|) $) 29)) (-3924 (($ $) 36)) (-4328 (($ (-1 (-121) |#2|) $) 27) (($ |#2| $) 32)) (-3092 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-3775 (((-3 |#2| "failed") (-1 (-121) |#2|) $) 19)) (-1387 (((-121) (-1 (-121) |#2|) $) 16)) (-4168 (((-763) (-1 (-121) |#2|) $) 13) (((-763) |#2| $) NIL)) (-1319 (((-121) (-1 (-121) |#2|) $) 15)) (-1697 (((-763) $) 11))) +(((-153 |#1| |#2|) (-10 -8 (-15 -3924 (|#1| |#1|)) (-15 -4328 (|#1| |#2| |#1|)) (-15 -3092 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2801 (|#1| (-1 (-121) |#2|) |#1|)) (-15 -4328 (|#1| (-1 (-121) |#2|) |#1|)) (-15 -3092 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3092 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3775 ((-3 |#2| "failed") (-1 (-121) |#2|) |#1|)) (-15 -4168 ((-763) |#2| |#1|)) (-15 -4168 ((-763) (-1 (-121) |#2|) |#1|)) (-15 -1387 ((-121) (-1 (-121) |#2|) |#1|)) (-15 -1319 ((-121) (-1 (-121) |#2|) |#1|)) (-15 -1697 ((-763) |#1|))) (-154 |#2|) (-1195)) (T -153)) +NIL +(-10 -8 (-15 -3924 (|#1| |#1|)) (-15 -4328 (|#1| |#2| |#1|)) (-15 -3092 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2801 (|#1| (-1 (-121) |#2|) |#1|)) (-15 -4328 (|#1| (-1 (-121) |#2|) |#1|)) (-15 -3092 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3092 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3775 ((-3 |#2| "failed") (-1 (-121) |#2|) |#1|)) (-15 -4168 ((-763) |#2| |#1|)) (-15 -4168 ((-763) (-1 (-121) |#2|) |#1|)) (-15 -1387 ((-121) (-1 (-121) |#2|) |#1|)) (-15 -1319 ((-121) (-1 (-121) |#2|) |#1|)) (-15 -1697 ((-763) |#1|))) +((-2447 (((-121) $ $) 18 (|has| |#1| (-1090)))) (-2510 (((-121) $ (-763)) 8)) (-2801 (($ (-1 (-121) |#1|) $) 41 (|has| $ (-6 -4519)))) (-2671 (($) 7 T CONST)) (-3924 (($ $) 38 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-4328 (($ (-1 (-121) |#1|) $) 42 (|has| $ (-6 -4519))) (($ |#1| $) 39 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-3092 ((|#1| (-1 |#1| |#1| |#1|) $) 44 (|has| $ (-6 -4519))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 43 (|has| $ (-6 -4519))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 40 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-4360 (((-634 |#1|) $) 30 (|has| $ (-6 -4519)))) (-1737 (((-121) $ (-763)) 9)) (-1979 (((-634 |#1|) $) 29 (|has| $ (-6 -4519)))) (-3109 (((-121) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-3674 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#1| |#1|) $) 35)) (-2166 (((-121) $ (-763)) 10)) (-4487 (((-1143) $) 22 (|has| |#1| (-1090)))) (-4022 (((-1108) $) 21 (|has| |#1| (-1090)))) (-3775 (((-3 |#1| "failed") (-1 (-121) |#1|) $) 45)) (-1387 (((-121) (-1 (-121) |#1|) $) 32 (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-634 |#1|) (-634 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))))) (-3171 (((-121) $ $) 14)) (-3084 (((-121) $) 11)) (-3248 (($) 12)) (-4168 (((-763) (-1 (-121) |#1|) $) 31 (|has| $ (-6 -4519))) (((-763) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-3863 (($ $) 13)) (-4278 (((-541) $) 37 (|has| |#1| (-609 (-541))))) (-4287 (($ (-634 |#1|)) 46)) (-2745 (((-850) $) 20 (|has| |#1| (-1090)))) (-1319 (((-121) (-1 (-121) |#1|) $) 33 (|has| $ (-6 -4519)))) (-1717 (((-121) $ $) 19 (|has| |#1| (-1090)))) (-1697 (((-763) $) 6 (|has| $ (-6 -4519))))) +(((-154 |#1|) (-1275) (-1195)) (T -154)) +((-4287 (*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-1195)) (-4 *1 (-154 *3)))) (-3775 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-121) *2)) (-4 *1 (-154 *2)) (-4 *2 (-1195)))) (-3092 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4519)) (-4 *1 (-154 *2)) (-4 *2 (-1195)))) (-3092 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4519)) (-4 *1 (-154 *2)) (-4 *2 (-1195)))) (-4328 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-121) *3)) (|has| *1 (-6 -4519)) (-4 *1 (-154 *3)) (-4 *3 (-1195)))) (-2801 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-121) *3)) (|has| *1 (-6 -4519)) (-4 *1 (-154 *3)) (-4 *3 (-1195)))) (-3092 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1090)) (|has| *1 (-6 -4519)) (-4 *1 (-154 *2)) (-4 *2 (-1195)))) (-4328 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4519)) (-4 *1 (-154 *2)) (-4 *2 (-1195)) (-4 *2 (-1090)))) (-3924 (*1 *1 *1) (-12 (|has| *1 (-6 -4519)) (-4 *1 (-154 *2)) (-4 *2 (-1195)) (-4 *2 (-1090))))) +(-13 (-499 |t#1|) (-10 -8 (-15 -4287 ($ (-634 |t#1|))) (-15 -3775 ((-3 |t#1| "failed") (-1 (-121) |t#1|) $)) (IF (|has| $ (-6 -4519)) (PROGN (-15 -3092 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -3092 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -4328 ($ (-1 (-121) |t#1|) $)) (-15 -2801 ($ (-1 (-121) |t#1|) $)) (IF (|has| |t#1| (-1090)) (PROGN (-15 -3092 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -4328 ($ |t#1| $)) (-15 -3924 ($ $))) |noBranch|)) |noBranch|) (IF (|has| |t#1| (-609 (-541))) (-6 (-609 (-541))) |noBranch|))) +(((-39) . T) ((-105) |has| |#1| (-1090)) ((-608 (-850)) |has| |#1| (-1090)) ((-609 (-541)) |has| |#1| (-609 (-541))) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))) ((-499 |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))) ((-1090) |has| |#1| (-1090)) ((-1195) . T)) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-2671 (($) NIL T CONST)) (-2925 (((-3 $ "failed") $) 85)) (-2735 (((-121) $) NIL)) (-2047 (($ |#2| (-634 (-917))) 56)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2838 (($ (-917)) 48)) (-4321 (((-139)) 23)) (-2745 (((-850) $) 68) (($ (-568)) 46) (($ |#2|) 47)) (-2604 ((|#2| $ (-634 (-917))) 58)) (-4078 (((-763)) 20)) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (-3056 (($) 40 T CONST)) (-1556 (($) 44 T CONST)) (-1717 (((-121) $ $) 26)) (-1779 (($ $ |#2|) NIL)) (-1773 (($ $) 34) (($ $ $) 32)) (-1767 (($ $ $) 30)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) 37) (($ $ $) 52) (($ |#2| $) 39) (($ $ |#2|) NIL))) +(((-155 |#1| |#2| |#3|) (-13 (-1047) (-43 |#2|) (-1251 |#2|) (-10 -8 (-15 -2838 ($ (-917))) (-15 -2047 ($ |#2| (-634 (-917)))) (-15 -2604 (|#2| $ (-634 (-917)))) (-15 -2925 ((-3 $ "failed") $)))) (-917) (-365) (-994 |#1| |#2|)) (T -155)) +((-2925 (*1 *1 *1) (|partial| -12 (-5 *1 (-155 *2 *3 *4)) (-14 *2 (-917)) (-4 *3 (-365)) (-14 *4 (-994 *2 *3)))) (-2838 (*1 *1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-155 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-365)) (-14 *5 (-994 *3 *4)))) (-2047 (*1 *1 *2 *3) (-12 (-5 *3 (-634 (-917))) (-5 *1 (-155 *4 *2 *5)) (-14 *4 (-917)) (-4 *2 (-365)) (-14 *5 (-994 *4 *2)))) (-2604 (*1 *2 *1 *3) (-12 (-5 *3 (-634 (-917))) (-4 *2 (-365)) (-5 *1 (-155 *4 *2 *5)) (-14 *4 (-917)) (-14 *5 (-994 *4 *2))))) +(-13 (-1047) (-43 |#2|) (-1251 |#2|) (-10 -8 (-15 -2838 ($ (-917))) (-15 -2047 ($ |#2| (-634 (-917)))) (-15 -2604 (|#2| $ (-634 (-917)))) (-15 -2925 ((-3 $ "failed") $)))) +((-1615 (((-2 (|:| |brans| (-634 (-634 (-944 (-215))))) (|:| |xValues| (-1084 (-215))) (|:| |yValues| (-1084 (-215)))) (-634 (-634 (-944 (-215)))) (-215) (-215) (-215) (-215)) 38)) (-3648 (((-2 (|:| |brans| (-634 (-634 (-944 (-215))))) (|:| |xValues| (-1084 (-215))) (|:| |yValues| (-1084 (-215)))) (-927) (-409 (-568)) (-409 (-568))) 62) (((-2 (|:| |brans| (-634 (-634 (-944 (-215))))) (|:| |xValues| (-1084 (-215))) (|:| |yValues| (-1084 (-215)))) (-927)) 63)) (-3182 (((-2 (|:| |brans| (-634 (-634 (-944 (-215))))) (|:| |xValues| (-1084 (-215))) (|:| |yValues| (-1084 (-215)))) (-634 (-634 (-944 (-215))))) 66) (((-2 (|:| |brans| (-634 (-634 (-944 (-215))))) (|:| |xValues| (-1084 (-215))) (|:| |yValues| (-1084 (-215)))) (-634 (-944 (-215)))) 65) (((-2 (|:| |brans| (-634 (-634 (-944 (-215))))) (|:| |xValues| (-1084 (-215))) (|:| |yValues| (-1084 (-215)))) (-927) (-409 (-568)) (-409 (-568))) 57) (((-2 (|:| |brans| (-634 (-634 (-944 (-215))))) (|:| |xValues| (-1084 (-215))) (|:| |yValues| (-1084 (-215)))) (-927)) 58))) +(((-156) (-10 -7 (-15 -3182 ((-2 (|:| |brans| (-634 (-634 (-944 (-215))))) (|:| |xValues| (-1084 (-215))) (|:| |yValues| (-1084 (-215)))) (-927))) (-15 -3182 ((-2 (|:| |brans| (-634 (-634 (-944 (-215))))) (|:| |xValues| (-1084 (-215))) (|:| |yValues| (-1084 (-215)))) (-927) (-409 (-568)) (-409 (-568)))) (-15 -3648 ((-2 (|:| |brans| (-634 (-634 (-944 (-215))))) (|:| |xValues| (-1084 (-215))) (|:| |yValues| (-1084 (-215)))) (-927))) (-15 -3648 ((-2 (|:| |brans| (-634 (-634 (-944 (-215))))) (|:| |xValues| (-1084 (-215))) (|:| |yValues| (-1084 (-215)))) (-927) (-409 (-568)) (-409 (-568)))) (-15 -1615 ((-2 (|:| |brans| (-634 (-634 (-944 (-215))))) (|:| |xValues| (-1084 (-215))) (|:| |yValues| (-1084 (-215)))) (-634 (-634 (-944 (-215)))) (-215) (-215) (-215) (-215))) (-15 -3182 ((-2 (|:| |brans| (-634 (-634 (-944 (-215))))) (|:| |xValues| (-1084 (-215))) (|:| |yValues| (-1084 (-215)))) (-634 (-944 (-215))))) (-15 -3182 ((-2 (|:| |brans| (-634 (-634 (-944 (-215))))) (|:| |xValues| (-1084 (-215))) (|:| |yValues| (-1084 (-215)))) (-634 (-634 (-944 (-215)))))))) (T -156)) +((-3182 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-634 (-634 (-944 (-215))))) (|:| |xValues| (-1084 (-215))) (|:| |yValues| (-1084 (-215))))) (-5 *1 (-156)) (-5 *3 (-634 (-634 (-944 (-215))))))) (-3182 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-634 (-634 (-944 (-215))))) (|:| |xValues| (-1084 (-215))) (|:| |yValues| (-1084 (-215))))) (-5 *1 (-156)) (-5 *3 (-634 (-944 (-215)))))) (-1615 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-215)) (-5 *2 (-2 (|:| |brans| (-634 (-634 (-944 *4)))) (|:| |xValues| (-1084 *4)) (|:| |yValues| (-1084 *4)))) (-5 *1 (-156)) (-5 *3 (-634 (-634 (-944 *4)))))) (-3648 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-927)) (-5 *4 (-409 (-568))) (-5 *2 (-2 (|:| |brans| (-634 (-634 (-944 (-215))))) (|:| |xValues| (-1084 (-215))) (|:| |yValues| (-1084 (-215))))) (-5 *1 (-156)))) (-3648 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-2 (|:| |brans| (-634 (-634 (-944 (-215))))) (|:| |xValues| (-1084 (-215))) (|:| |yValues| (-1084 (-215))))) (-5 *1 (-156)))) (-3182 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-927)) (-5 *4 (-409 (-568))) (-5 *2 (-2 (|:| |brans| (-634 (-634 (-944 (-215))))) (|:| |xValues| (-1084 (-215))) (|:| |yValues| (-1084 (-215))))) (-5 *1 (-156)))) (-3182 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-2 (|:| |brans| (-634 (-634 (-944 (-215))))) (|:| |xValues| (-1084 (-215))) (|:| |yValues| (-1084 (-215))))) (-5 *1 (-156))))) +(-10 -7 (-15 -3182 ((-2 (|:| |brans| (-634 (-634 (-944 (-215))))) (|:| |xValues| (-1084 (-215))) (|:| |yValues| (-1084 (-215)))) (-927))) (-15 -3182 ((-2 (|:| |brans| (-634 (-634 (-944 (-215))))) (|:| |xValues| (-1084 (-215))) (|:| |yValues| (-1084 (-215)))) (-927) (-409 (-568)) (-409 (-568)))) (-15 -3648 ((-2 (|:| |brans| (-634 (-634 (-944 (-215))))) (|:| |xValues| (-1084 (-215))) (|:| |yValues| (-1084 (-215)))) (-927))) (-15 -3648 ((-2 (|:| |brans| (-634 (-634 (-944 (-215))))) (|:| |xValues| (-1084 (-215))) (|:| |yValues| (-1084 (-215)))) (-927) (-409 (-568)) (-409 (-568)))) (-15 -1615 ((-2 (|:| |brans| (-634 (-634 (-944 (-215))))) (|:| |xValues| (-1084 (-215))) (|:| |yValues| (-1084 (-215)))) (-634 (-634 (-944 (-215)))) (-215) (-215) (-215) (-215))) (-15 -3182 ((-2 (|:| |brans| (-634 (-634 (-944 (-215))))) (|:| |xValues| (-1084 (-215))) (|:| |yValues| (-1084 (-215)))) (-634 (-944 (-215))))) (-15 -3182 ((-2 (|:| |brans| (-634 (-634 (-944 (-215))))) (|:| |xValues| (-1084 (-215))) (|:| |yValues| (-1084 (-215)))) (-634 (-634 (-944 (-215))))))) +((-2385 (((-634 (-169 |#2|)) |#1| |#2|) 45))) +(((-157 |#1| |#2|) (-10 -7 (-15 -2385 ((-634 (-169 |#2|)) |#1| |#2|))) (-1219 (-169 (-568))) (-13 (-365) (-840))) (T -157)) +((-2385 (*1 *2 *3 *4) (-12 (-5 *2 (-634 (-169 *4))) (-5 *1 (-157 *3 *4)) (-4 *3 (-1219 (-169 (-568)))) (-4 *4 (-13 (-365) (-840)))))) +(-10 -7 (-15 -2385 ((-634 (-169 |#2|)) |#1| |#2|))) +((-2447 (((-121) $ $) NIL)) (-3871 (($) 15)) (-3476 (($) 14)) (-3067 (((-917)) 22)) (-4487 (((-1143) $) NIL)) (-1819 (((-568) $) 19)) (-4022 (((-1108) $) NIL)) (-3226 (($) 16)) (-1813 (($ (-568)) 23)) (-2745 (((-850) $) 29)) (-1662 (($) 17)) (-1717 (((-121) $ $) 13)) (-1767 (($ $ $) 11)) (* (($ (-917) $) 21) (($ (-215) $) 8))) +(((-158) (-13 (-25) (-10 -8 (-15 * ($ (-917) $)) (-15 * ($ (-215) $)) (-15 -1767 ($ $ $)) (-15 -3476 ($)) (-15 -3871 ($)) (-15 -3226 ($)) (-15 -1662 ($)) (-15 -1819 ((-568) $)) (-15 -3067 ((-917))) (-15 -1813 ($ (-568)))))) (T -158)) +((-1767 (*1 *1 *1 *1) (-5 *1 (-158))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-917)) (-5 *1 (-158)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-215)) (-5 *1 (-158)))) (-3476 (*1 *1) (-5 *1 (-158))) (-3871 (*1 *1) (-5 *1 (-158))) (-3226 (*1 *1) (-5 *1 (-158))) (-1662 (*1 *1) (-5 *1 (-158))) (-1819 (*1 *2 *1) (-12 (-5 *2 (-568)) (-5 *1 (-158)))) (-3067 (*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-158)))) (-1813 (*1 *1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-158))))) +(-13 (-25) (-10 -8 (-15 * ($ (-917) $)) (-15 * ($ (-215) $)) (-15 -1767 ($ $ $)) (-15 -3476 ($)) (-15 -3871 ($)) (-15 -3226 ($)) (-15 -1662 ($)) (-15 -1819 ((-568) $)) (-15 -3067 ((-917))) (-15 -1813 ($ (-568))))) +((-4452 ((|#2| |#2| (-1082 |#2|)) 87) ((|#2| |#2| (-1161)) 67)) (-3272 ((|#2| |#2| (-1082 |#2|)) 86) ((|#2| |#2| (-1161)) 66)) (-2413 ((|#2| |#2| |#2|) 27)) (-3488 (((-123) (-123)) 97)) (-3270 ((|#2| (-634 |#2|)) 116)) (-3558 ((|#2| (-634 |#2|)) 134)) (-3543 ((|#2| (-634 |#2|)) 124)) (-1671 ((|#2| |#2|) 122)) (-3060 ((|#2| (-634 |#2|)) 109)) (-4179 ((|#2| (-634 |#2|)) 110)) (-3130 ((|#2| (-634 |#2|)) 132)) (-2784 ((|#2| |#2| (-1161)) 54) ((|#2| |#2|) 53)) (-2427 ((|#2| |#2|) 23)) (-2787 ((|#2| |#2| |#2|) 26)) (-2887 (((-121) (-123)) 47)) (** ((|#2| |#2| |#2|) 38))) +(((-159 |#1| |#2|) (-10 -7 (-15 -2887 ((-121) (-123))) (-15 -3488 ((-123) (-123))) (-15 ** (|#2| |#2| |#2|)) (-15 -2787 (|#2| |#2| |#2|)) (-15 -2413 (|#2| |#2| |#2|)) (-15 -2427 (|#2| |#2|)) (-15 -2784 (|#2| |#2|)) (-15 -2784 (|#2| |#2| (-1161))) (-15 -4452 (|#2| |#2| (-1161))) (-15 -4452 (|#2| |#2| (-1082 |#2|))) (-15 -3272 (|#2| |#2| (-1161))) (-15 -3272 (|#2| |#2| (-1082 |#2|))) (-15 -1671 (|#2| |#2|)) (-15 -3130 (|#2| (-634 |#2|))) (-15 -3543 (|#2| (-634 |#2|))) (-15 -3558 (|#2| (-634 |#2|))) (-15 -3060 (|#2| (-634 |#2|))) (-15 -4179 (|#2| (-634 |#2|))) (-15 -3270 (|#2| (-634 |#2|)))) (-13 (-842) (-558)) (-432 |#1|)) (T -159)) +((-3270 (*1 *2 *3) (-12 (-5 *3 (-634 *2)) (-4 *2 (-432 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-13 (-842) (-558))))) (-4179 (*1 *2 *3) (-12 (-5 *3 (-634 *2)) (-4 *2 (-432 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-13 (-842) (-558))))) (-3060 (*1 *2 *3) (-12 (-5 *3 (-634 *2)) (-4 *2 (-432 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-13 (-842) (-558))))) (-3558 (*1 *2 *3) (-12 (-5 *3 (-634 *2)) (-4 *2 (-432 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-13 (-842) (-558))))) (-3543 (*1 *2 *3) (-12 (-5 *3 (-634 *2)) (-4 *2 (-432 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-13 (-842) (-558))))) (-3130 (*1 *2 *3) (-12 (-5 *3 (-634 *2)) (-4 *2 (-432 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-13 (-842) (-558))))) (-1671 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-159 *3 *2)) (-4 *2 (-432 *3)))) (-3272 (*1 *2 *2 *3) (-12 (-5 *3 (-1082 *2)) (-4 *2 (-432 *4)) (-4 *4 (-13 (-842) (-558))) (-5 *1 (-159 *4 *2)))) (-3272 (*1 *2 *2 *3) (-12 (-5 *3 (-1161)) (-4 *4 (-13 (-842) (-558))) (-5 *1 (-159 *4 *2)) (-4 *2 (-432 *4)))) (-4452 (*1 *2 *2 *3) (-12 (-5 *3 (-1082 *2)) (-4 *2 (-432 *4)) (-4 *4 (-13 (-842) (-558))) (-5 *1 (-159 *4 *2)))) (-4452 (*1 *2 *2 *3) (-12 (-5 *3 (-1161)) (-4 *4 (-13 (-842) (-558))) (-5 *1 (-159 *4 *2)) (-4 *2 (-432 *4)))) (-2784 (*1 *2 *2 *3) (-12 (-5 *3 (-1161)) (-4 *4 (-13 (-842) (-558))) (-5 *1 (-159 *4 *2)) (-4 *2 (-432 *4)))) (-2784 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-159 *3 *2)) (-4 *2 (-432 *3)))) (-2427 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-159 *3 *2)) (-4 *2 (-432 *3)))) (-2413 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-159 *3 *2)) (-4 *2 (-432 *3)))) (-2787 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-159 *3 *2)) (-4 *2 (-432 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-159 *3 *2)) (-4 *2 (-432 *3)))) (-3488 (*1 *2 *2) (-12 (-5 *2 (-123)) (-4 *3 (-13 (-842) (-558))) (-5 *1 (-159 *3 *4)) (-4 *4 (-432 *3)))) (-2887 (*1 *2 *3) (-12 (-5 *3 (-123)) (-4 *4 (-13 (-842) (-558))) (-5 *2 (-121)) (-5 *1 (-159 *4 *5)) (-4 *5 (-432 *4))))) +(-10 -7 (-15 -2887 ((-121) (-123))) (-15 -3488 ((-123) (-123))) (-15 ** (|#2| |#2| |#2|)) (-15 -2787 (|#2| |#2| |#2|)) (-15 -2413 (|#2| |#2| |#2|)) (-15 -2427 (|#2| |#2|)) (-15 -2784 (|#2| |#2|)) (-15 -2784 (|#2| |#2| (-1161))) (-15 -4452 (|#2| |#2| (-1161))) (-15 -4452 (|#2| |#2| (-1082 |#2|))) (-15 -3272 (|#2| |#2| (-1161))) (-15 -3272 (|#2| |#2| (-1082 |#2|))) (-15 -1671 (|#2| |#2|)) (-15 -3130 (|#2| (-634 |#2|))) (-15 -3543 (|#2| (-634 |#2|))) (-15 -3558 (|#2| (-634 |#2|))) (-15 -3060 (|#2| (-634 |#2|))) (-15 -4179 (|#2| (-634 |#2|))) (-15 -3270 (|#2| (-634 |#2|)))) +((-2077 ((|#1| |#1| |#1|) 52)) (-2691 ((|#1| |#1| |#1|) 49)) (-2413 ((|#1| |#1| |#1|) 43)) (-4473 ((|#1| |#1|) 34)) (-2021 ((|#1| |#1| (-634 |#1|)) 42)) (-2427 ((|#1| |#1|) 36)) (-2787 ((|#1| |#1| |#1|) 39))) +(((-160 |#1|) (-10 -7 (-15 -2787 (|#1| |#1| |#1|)) (-15 -2427 (|#1| |#1|)) (-15 -2021 (|#1| |#1| (-634 |#1|))) (-15 -4473 (|#1| |#1|)) (-15 -2413 (|#1| |#1| |#1|)) (-15 -2691 (|#1| |#1| |#1|)) (-15 -2077 (|#1| |#1| |#1|))) (-550)) (T -160)) +((-2077 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-550)))) (-2691 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-550)))) (-2413 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-550)))) (-4473 (*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-550)))) (-2021 (*1 *2 *2 *3) (-12 (-5 *3 (-634 *2)) (-4 *2 (-550)) (-5 *1 (-160 *2)))) (-2427 (*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-550)))) (-2787 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-550))))) +(-10 -7 (-15 -2787 (|#1| |#1| |#1|)) (-15 -2427 (|#1| |#1|)) (-15 -2021 (|#1| |#1| (-634 |#1|))) (-15 -4473 (|#1| |#1|)) (-15 -2413 (|#1| |#1| |#1|)) (-15 -2691 (|#1| |#1| |#1|)) (-15 -2077 (|#1| |#1| |#1|))) +((-4452 (($ $ (-1161)) 12) (($ $ (-1082 $)) 11)) (-3272 (($ $ (-1161)) 10) (($ $ (-1082 $)) 9)) (-2413 (($ $ $) 8)) (-2784 (($ $) 14) (($ $ (-1161)) 13)) (-2427 (($ $) 7)) (-2787 (($ $ $) 6))) +(((-161) (-1275)) (T -161)) +((-2784 (*1 *1 *1) (-4 *1 (-161))) (-2784 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1161)))) (-4452 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1161)))) (-4452 (*1 *1 *1 *2) (-12 (-5 *2 (-1082 *1)) (-4 *1 (-161)))) (-3272 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1161)))) (-3272 (*1 *1 *1 *2) (-12 (-5 *2 (-1082 *1)) (-4 *1 (-161))))) +(-13 (-146) (-10 -8 (-15 -2784 ($ $)) (-15 -2784 ($ $ (-1161))) (-15 -4452 ($ $ (-1161))) (-15 -4452 ($ $ (-1082 $))) (-15 -3272 ($ $ (-1161))) (-15 -3272 ($ $ (-1082 $))))) +(((-146) . T)) +((-2447 (((-121) $ $) NIL)) (-3000 (($ (-568)) 13) (($ $ $) 14)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2745 (((-850) $) 17)) (-1717 (((-121) $ $) 9))) +(((-162) (-13 (-1090) (-10 -8 (-15 -3000 ($ (-568))) (-15 -3000 ($ $ $))))) (T -162)) +((-3000 (*1 *1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-162)))) (-3000 (*1 *1 *1 *1) (-5 *1 (-162)))) +(-13 (-1090) (-10 -8 (-15 -3000 ($ (-568))) (-15 -3000 ($ $ $)))) +((-3488 (((-123) (-1161)) 97))) +(((-163) (-10 -7 (-15 -3488 ((-123) (-1161))))) (T -163)) +((-3488 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-123)) (-5 *1 (-163))))) +(-10 -7 (-15 -3488 ((-123) (-1161)))) +((-2589 ((|#3| |#3|) 19))) +(((-164 |#1| |#2| |#3|) (-10 -7 (-15 -2589 (|#3| |#3|))) (-1047) (-1219 |#1|) (-1219 |#2|)) (T -164)) +((-2589 (*1 *2 *2) (-12 (-4 *3 (-1047)) (-4 *4 (-1219 *3)) (-5 *1 (-164 *3 *4 *2)) (-4 *2 (-1219 *4))))) +(-10 -7 (-15 -2589 (|#3| |#3|))) +((-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) 215)) (-1932 ((|#2| $) 95)) (-1982 (($ $) 242)) (-1933 (($ $) 236)) (-1858 (((-3 (-634 (-1157 $)) "failed") (-634 (-1157 $)) (-1157 $)) 39)) (-1974 (($ $) 240)) (-2786 (($ $) 234)) (-3666 (((-3 (-568) "failed") $) NIL) (((-3 (-409 (-568)) "failed") $) NIL) (((-3 |#2| "failed") $) 139)) (-2854 (((-568) $) NIL) (((-409 (-568)) $) NIL) ((|#2| $) 137)) (-2401 (($ $ $) 220)) (-3164 (((-679 (-568)) (-679 $)) NIL) (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) NIL) (((-2 (|:| -2928 (-679 |#2|)) (|:| |vec| (-1244 |#2|))) (-679 $) (-1244 $)) 153) (((-679 |#2|) (-679 $)) 147)) (-3092 (($ (-1157 |#2|)) 118) (((-3 $ "failed") (-409 (-1157 |#2|))) NIL)) (-2925 (((-3 $ "failed") $) 207)) (-1642 (((-3 (-409 (-568)) "failed") $) 197)) (-2688 (((-121) $) 192)) (-2425 (((-409 (-568)) $) 195)) (-3700 (((-917)) 88)) (-2412 (($ $ $) 222)) (-3378 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 258)) (-1897 (($) 231)) (-4410 (((-884 (-568) $) $ (-887 (-568)) (-884 (-568) $)) 184) (((-884 (-381) $) $ (-887 (-381)) (-884 (-381) $)) 189)) (-2657 ((|#2| $) 93)) (-2045 (((-1157 |#2|) $) 120)) (-2795 (($ (-1 |#2| |#2|) $) 101)) (-4416 (($ $) 233)) (-3085 (((-1157 |#2|) $) 119)) (-2081 (($ $) 200)) (-3777 (($) 96)) (-2905 (((-420 (-1157 $)) (-1157 $)) 87)) (-3545 (((-420 (-1157 $)) (-1157 $)) 56)) (-2595 (((-3 $ "failed") $ |#2|) 202) (((-3 $ "failed") $ $) 205)) (-1892 (($ $) 232)) (-2709 (((-763) $) 217)) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) 226)) (-2217 ((|#2| (-1244 $)) NIL) ((|#2|) 90)) (-4189 (($ $ (-1 |#2| |#2|) (-763)) NIL) (($ $ (-1 |#2| |#2|)) 112) (($ $ (-634 (-1161)) (-634 (-763))) NIL) (($ $ (-1161) (-763)) NIL) (($ $ (-634 (-1161))) NIL) (($ $ (-1161)) NIL) (($ $ (-763)) NIL) (($ $) NIL)) (-1626 (((-1157 |#2|)) 113)) (-1978 (($ $) 241)) (-2790 (($ $) 235)) (-4073 (((-1244 |#2|) $ (-1244 $)) 126) (((-679 |#2|) (-1244 $) (-1244 $)) NIL) (((-1244 |#2|) $) 109) (((-679 |#2|) (-1244 $)) NIL)) (-4278 (((-1244 |#2|) $) NIL) (($ (-1244 |#2|)) NIL) (((-1157 |#2|) $) NIL) (($ (-1157 |#2|)) NIL) (((-887 (-568)) $) 175) (((-887 (-381)) $) 179) (((-169 (-381)) $) 165) (((-169 (-215)) $) 160) (((-541) $) 171)) (-1458 (($ $) 97)) (-2745 (((-850) $) 136) (($ (-568)) NIL) (($ |#2|) NIL) (($ (-409 (-568))) NIL) (($ $) NIL)) (-2678 (((-1157 |#2|) $) 23)) (-4078 (((-763)) 99)) (-2006 (($ $) 245)) (-1958 (($ $) 239)) (-1998 (($ $) 243)) (-1949 (($ $) 237)) (-3256 ((|#2| $) 230)) (-2002 (($ $) 244)) (-1953 (($ $) 238)) (-2897 (($ $) 155)) (-1717 (((-121) $ $) 103)) (-1732 (((-121) $ $) 191)) (-1773 (($ $) 105) (($ $ $) NIL)) (-1767 (($ $ $) 104)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-409 (-568))) 264) (($ $ $) NIL) (($ $ (-568)) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) 111) (($ $ $) 140) (($ $ |#2|) NIL) (($ |#2| $) 107) (($ (-409 (-568)) $) NIL) (($ $ (-409 (-568))) NIL))) +(((-165 |#1| |#2|) (-10 -8 (-15 -4189 (|#1| |#1|)) (-15 -4189 (|#1| |#1| (-763))) (-15 -2745 (|#1| |#1|)) (-15 -2595 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3712 ((-2 (|:| -2295 |#1|) (|:| -4506 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4189 (|#1| |#1| (-1161))) (-15 -4189 (|#1| |#1| (-634 (-1161)))) (-15 -4189 (|#1| |#1| (-1161) (-763))) (-15 -4189 (|#1| |#1| (-634 (-1161)) (-634 (-763)))) (-15 -2709 ((-763) |#1|)) (-15 -3210 ((-2 (|:| -3961 |#1|) (|:| -1500 |#1|)) |#1| |#1|)) (-15 -2412 (|#1| |#1| |#1|)) (-15 -2401 (|#1| |#1| |#1|)) (-15 -2081 (|#1| |#1|)) (-15 ** (|#1| |#1| (-568))) (-15 * (|#1| |#1| (-409 (-568)))) (-15 * (|#1| (-409 (-568)) |#1|)) (-15 -2745 (|#1| (-409 (-568)))) (-15 -1732 ((-121) |#1| |#1|)) (-15 -4278 ((-541) |#1|)) (-15 -4278 ((-169 (-215)) |#1|)) (-15 -4278 ((-169 (-381)) |#1|)) (-15 -1933 (|#1| |#1|)) (-15 -2786 (|#1| |#1|)) (-15 -2790 (|#1| |#1|)) (-15 -1953 (|#1| |#1|)) (-15 -1949 (|#1| |#1|)) (-15 -1958 (|#1| |#1|)) (-15 -1978 (|#1| |#1|)) (-15 -1974 (|#1| |#1|)) (-15 -1982 (|#1| |#1|)) (-15 -2002 (|#1| |#1|)) (-15 -1998 (|#1| |#1|)) (-15 -2006 (|#1| |#1|)) (-15 -4416 (|#1| |#1|)) (-15 -1892 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1897 (|#1|)) (-15 ** (|#1| |#1| (-409 (-568)))) (-15 -3545 ((-420 (-1157 |#1|)) (-1157 |#1|))) (-15 -2905 ((-420 (-1157 |#1|)) (-1157 |#1|))) (-15 -1858 ((-3 (-634 (-1157 |#1|)) "failed") (-634 (-1157 |#1|)) (-1157 |#1|))) (-15 -1642 ((-3 (-409 (-568)) "failed") |#1|)) (-15 -2425 ((-409 (-568)) |#1|)) (-15 -2688 ((-121) |#1|)) (-15 -3378 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3256 (|#2| |#1|)) (-15 -2897 (|#1| |#1|)) (-15 -2595 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1458 (|#1| |#1|)) (-15 -3777 (|#1|)) (-15 -4278 ((-887 (-381)) |#1|)) (-15 -4278 ((-887 (-568)) |#1|)) (-15 -4410 ((-884 (-381) |#1|) |#1| (-887 (-381)) (-884 (-381) |#1|))) (-15 -4410 ((-884 (-568) |#1|) |#1| (-887 (-568)) (-884 (-568) |#1|))) (-15 -2795 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4189 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4189 (|#1| |#1| (-1 |#2| |#2|) (-763))) (-15 -3092 ((-3 |#1| "failed") (-409 (-1157 |#2|)))) (-15 -3085 ((-1157 |#2|) |#1|)) (-15 -4278 (|#1| (-1157 |#2|))) (-15 -3092 (|#1| (-1157 |#2|))) (-15 -1626 ((-1157 |#2|))) (-15 -3164 ((-679 |#2|) (-679 |#1|))) (-15 -3164 ((-2 (|:| -2928 (-679 |#2|)) (|:| |vec| (-1244 |#2|))) (-679 |#1|) (-1244 |#1|))) (-15 -3164 ((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 |#1|) (-1244 |#1|))) (-15 -3164 ((-679 (-568)) (-679 |#1|))) (-15 -2854 (|#2| |#1|)) (-15 -3666 ((-3 |#2| "failed") |#1|)) (-15 -3666 ((-3 (-409 (-568)) "failed") |#1|)) (-15 -2854 ((-409 (-568)) |#1|)) (-15 -3666 ((-3 (-568) "failed") |#1|)) (-15 -2854 ((-568) |#1|)) (-15 -4278 ((-1157 |#2|) |#1|)) (-15 -2217 (|#2|)) (-15 -4278 (|#1| (-1244 |#2|))) (-15 -4278 ((-1244 |#2|) |#1|)) (-15 -4073 ((-679 |#2|) (-1244 |#1|))) (-15 -4073 ((-1244 |#2|) |#1|)) (-15 -2045 ((-1157 |#2|) |#1|)) (-15 -2678 ((-1157 |#2|) |#1|)) (-15 -2217 (|#2| (-1244 |#1|))) (-15 -4073 ((-679 |#2|) (-1244 |#1|) (-1244 |#1|))) (-15 -4073 ((-1244 |#2|) |#1| (-1244 |#1|))) (-15 -2657 (|#2| |#1|)) (-15 -1932 (|#2| |#1|)) (-15 -3700 ((-917))) (-15 -2745 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2745 (|#1| (-568))) (-15 -4078 ((-763))) (-15 ** (|#1| |#1| (-763))) (-15 -2925 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-917))) (-15 * (|#1| (-568) |#1|)) (-15 -1773 (|#1| |#1| |#1|)) (-15 -1773 (|#1| |#1|)) (-15 * (|#1| (-763) |#1|)) (-15 * (|#1| (-917) |#1|)) (-15 -1767 (|#1| |#1| |#1|)) (-15 -2745 ((-850) |#1|)) (-15 -1717 ((-121) |#1| |#1|))) (-166 |#2|) (-172)) (T -165)) +((-4078 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-763)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) (-3700 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-917)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) (-2217 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-165 *3 *2)) (-4 *3 (-166 *2)))) (-1626 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1157 *4)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4))))) +(-10 -8 (-15 -4189 (|#1| |#1|)) (-15 -4189 (|#1| |#1| (-763))) (-15 -2745 (|#1| |#1|)) (-15 -2595 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3712 ((-2 (|:| -2295 |#1|) (|:| -4506 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4189 (|#1| |#1| (-1161))) (-15 -4189 (|#1| |#1| (-634 (-1161)))) (-15 -4189 (|#1| |#1| (-1161) (-763))) (-15 -4189 (|#1| |#1| (-634 (-1161)) (-634 (-763)))) (-15 -2709 ((-763) |#1|)) (-15 -3210 ((-2 (|:| -3961 |#1|) (|:| -1500 |#1|)) |#1| |#1|)) (-15 -2412 (|#1| |#1| |#1|)) (-15 -2401 (|#1| |#1| |#1|)) (-15 -2081 (|#1| |#1|)) (-15 ** (|#1| |#1| (-568))) (-15 * (|#1| |#1| (-409 (-568)))) (-15 * (|#1| (-409 (-568)) |#1|)) (-15 -2745 (|#1| (-409 (-568)))) (-15 -1732 ((-121) |#1| |#1|)) (-15 -4278 ((-541) |#1|)) (-15 -4278 ((-169 (-215)) |#1|)) (-15 -4278 ((-169 (-381)) |#1|)) (-15 -1933 (|#1| |#1|)) (-15 -2786 (|#1| |#1|)) (-15 -2790 (|#1| |#1|)) (-15 -1953 (|#1| |#1|)) (-15 -1949 (|#1| |#1|)) (-15 -1958 (|#1| |#1|)) (-15 -1978 (|#1| |#1|)) (-15 -1974 (|#1| |#1|)) (-15 -1982 (|#1| |#1|)) (-15 -2002 (|#1| |#1|)) (-15 -1998 (|#1| |#1|)) (-15 -2006 (|#1| |#1|)) (-15 -4416 (|#1| |#1|)) (-15 -1892 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1897 (|#1|)) (-15 ** (|#1| |#1| (-409 (-568)))) (-15 -3545 ((-420 (-1157 |#1|)) (-1157 |#1|))) (-15 -2905 ((-420 (-1157 |#1|)) (-1157 |#1|))) (-15 -1858 ((-3 (-634 (-1157 |#1|)) "failed") (-634 (-1157 |#1|)) (-1157 |#1|))) (-15 -1642 ((-3 (-409 (-568)) "failed") |#1|)) (-15 -2425 ((-409 (-568)) |#1|)) (-15 -2688 ((-121) |#1|)) (-15 -3378 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3256 (|#2| |#1|)) (-15 -2897 (|#1| |#1|)) (-15 -2595 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1458 (|#1| |#1|)) (-15 -3777 (|#1|)) (-15 -4278 ((-887 (-381)) |#1|)) (-15 -4278 ((-887 (-568)) |#1|)) (-15 -4410 ((-884 (-381) |#1|) |#1| (-887 (-381)) (-884 (-381) |#1|))) (-15 -4410 ((-884 (-568) |#1|) |#1| (-887 (-568)) (-884 (-568) |#1|))) (-15 -2795 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4189 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4189 (|#1| |#1| (-1 |#2| |#2|) (-763))) (-15 -3092 ((-3 |#1| "failed") (-409 (-1157 |#2|)))) (-15 -3085 ((-1157 |#2|) |#1|)) (-15 -4278 (|#1| (-1157 |#2|))) (-15 -3092 (|#1| (-1157 |#2|))) (-15 -1626 ((-1157 |#2|))) (-15 -3164 ((-679 |#2|) (-679 |#1|))) (-15 -3164 ((-2 (|:| -2928 (-679 |#2|)) (|:| |vec| (-1244 |#2|))) (-679 |#1|) (-1244 |#1|))) (-15 -3164 ((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 |#1|) (-1244 |#1|))) (-15 -3164 ((-679 (-568)) (-679 |#1|))) (-15 -2854 (|#2| |#1|)) (-15 -3666 ((-3 |#2| "failed") |#1|)) (-15 -3666 ((-3 (-409 (-568)) "failed") |#1|)) (-15 -2854 ((-409 (-568)) |#1|)) (-15 -3666 ((-3 (-568) "failed") |#1|)) (-15 -2854 ((-568) |#1|)) (-15 -4278 ((-1157 |#2|) |#1|)) (-15 -2217 (|#2|)) (-15 -4278 (|#1| (-1244 |#2|))) (-15 -4278 ((-1244 |#2|) |#1|)) (-15 -4073 ((-679 |#2|) (-1244 |#1|))) (-15 -4073 ((-1244 |#2|) |#1|)) (-15 -2045 ((-1157 |#2|) |#1|)) (-15 -2678 ((-1157 |#2|) |#1|)) (-15 -2217 (|#2| (-1244 |#1|))) (-15 -4073 ((-679 |#2|) (-1244 |#1|) (-1244 |#1|))) (-15 -4073 ((-1244 |#2|) |#1| (-1244 |#1|))) (-15 -2657 (|#2| |#1|)) (-15 -1932 (|#2| |#1|)) (-15 -3700 ((-917))) (-15 -2745 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2745 (|#1| (-568))) (-15 -4078 ((-763))) (-15 ** (|#1| |#1| (-763))) (-15 -2925 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-917))) (-15 * (|#1| (-568) |#1|)) (-15 -1773 (|#1| |#1| |#1|)) (-15 -1773 (|#1| |#1|)) (-15 * (|#1| (-763) |#1|)) (-15 * (|#1| (-917) |#1|)) (-15 -1767 (|#1| |#1| |#1|)) (-15 -2745 ((-850) |#1|)) (-15 -1717 ((-121) |#1| |#1|))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) 87 (-2198 (|has| |#1| (-558)) (-12 (|has| |#1| (-301)) (|has| |#1| (-904)))))) (-2227 (($ $) 88 (-2198 (|has| |#1| (-558)) (-12 (|has| |#1| (-301)) (|has| |#1| (-904)))))) (-1573 (((-121) $) 90 (-2198 (|has| |#1| (-558)) (-12 (|has| |#1| (-301)) (|has| |#1| (-904)))))) (-4255 (((-679 |#1|) (-1244 $)) 44) (((-679 |#1|)) 55)) (-1932 ((|#1| $) 50)) (-1982 (($ $) 212 (|has| |#1| (-1181)))) (-1933 (($ $) 195 (|has| |#1| (-1181)))) (-3211 (((-1169 (-917) (-763)) (-568)) 141 (|has| |#1| (-350)))) (-3134 (((-3 $ "failed") $ $) 18)) (-1750 (((-420 (-1157 $)) (-1157 $)) 226 (-12 (|has| |#1| (-301)) (|has| |#1| (-904))))) (-4305 (($ $) 107 (-2198 (-12 (|has| |#1| (-301)) (|has| |#1| (-904))) (|has| |#1| (-365))))) (-1678 (((-420 $) $) 108 (-2198 (-12 (|has| |#1| (-301)) (|has| |#1| (-904))) (|has| |#1| (-365))))) (-1902 (($ $) 225 (-12 (|has| |#1| (-1002)) (|has| |#1| (-1181))))) (-1858 (((-3 (-634 (-1157 $)) "failed") (-634 (-1157 $)) (-1157 $)) 229 (-12 (|has| |#1| (-301)) (|has| |#1| (-904))))) (-1497 (((-121) $ $) 98 (|has| |#1| (-301)))) (-3983 (((-763)) 81 (|has| |#1| (-370)))) (-1974 (($ $) 211 (|has| |#1| (-1181)))) (-2786 (($ $) 196 (|has| |#1| (-1181)))) (-1990 (($ $) 210 (|has| |#1| (-1181)))) (-1941 (($ $) 197 (|has| |#1| (-1181)))) (-2671 (($) 16 T CONST)) (-3666 (((-3 (-568) "failed") $) 163 (|has| |#1| (-1037 (-568)))) (((-3 (-409 (-568)) "failed") $) 161 (|has| |#1| (-1037 (-409 (-568))))) (((-3 |#1| "failed") $) 160)) (-2854 (((-568) $) 164 (|has| |#1| (-1037 (-568)))) (((-409 (-568)) $) 162 (|has| |#1| (-1037 (-409 (-568))))) ((|#1| $) 159)) (-3498 (($ (-1244 |#1|) (-1244 $)) 46) (($ (-1244 |#1|)) 58)) (-2022 (((-3 "prime" "polynomial" "normal" "cyclic")) 147 (|has| |#1| (-350)))) (-2401 (($ $ $) 102 (|has| |#1| (-301)))) (-1709 (((-679 |#1|) $ (-1244 $)) 51) (((-679 |#1|) $) 53)) (-3164 (((-679 (-568)) (-679 $)) 158 (|has| |#1| (-630 (-568)))) (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) 157 (|has| |#1| (-630 (-568)))) (((-2 (|:| -2928 (-679 |#1|)) (|:| |vec| (-1244 |#1|))) (-679 $) (-1244 $)) 156) (((-679 |#1|) (-679 $)) 155)) (-3092 (($ (-1157 |#1|)) 152) (((-3 $ "failed") (-409 (-1157 |#1|))) 149 (|has| |#1| (-365)))) (-2925 (((-3 $ "failed") $) 33)) (-3857 ((|#1| $) 237)) (-1642 (((-3 (-409 (-568)) "failed") $) 230 (|has| |#1| (-550)))) (-2688 (((-121) $) 232 (|has| |#1| (-550)))) (-2425 (((-409 (-568)) $) 231 (|has| |#1| (-550)))) (-3700 (((-917)) 52)) (-1731 (($) 84 (|has| |#1| (-370)))) (-2412 (($ $ $) 101 (|has| |#1| (-301)))) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) 96 (|has| |#1| (-301)))) (-4220 (($) 143 (|has| |#1| (-350)))) (-4456 (((-121) $) 144 (|has| |#1| (-350)))) (-3218 (($ $ (-763)) 135 (|has| |#1| (-350))) (($ $) 134 (|has| |#1| (-350)))) (-3927 (((-121) $) 109 (-2198 (-12 (|has| |#1| (-301)) (|has| |#1| (-904))) (|has| |#1| (-365))))) (-3378 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 233 (-12 (|has| |#1| (-1056)) (|has| |#1| (-1181))))) (-1897 (($) 222 (|has| |#1| (-1181)))) (-4410 (((-884 (-568) $) $ (-887 (-568)) (-884 (-568) $)) 245 (|has| |#1| (-881 (-568)))) (((-884 (-381) $) $ (-887 (-381)) (-884 (-381) $)) 244 (|has| |#1| (-881 (-381))))) (-4477 (((-917) $) 146 (|has| |#1| (-350))) (((-828 (-917)) $) 132 (|has| |#1| (-350)))) (-2735 (((-121) $) 30)) (-4044 (($ $ (-568)) 224 (-12 (|has| |#1| (-1002)) (|has| |#1| (-1181))))) (-2657 ((|#1| $) 49)) (-3038 (((-3 $ "failed") $) 136 (|has| |#1| (-350)))) (-3562 (((-3 (-634 $) "failed") (-634 $) $) 105 (|has| |#1| (-301)))) (-2045 (((-1157 |#1|) $) 42 (|has| |#1| (-365)))) (-2521 (($ $ $) 191 (|has| |#1| (-842)))) (-3268 (($ $ $) 190 (|has| |#1| (-842)))) (-2795 (($ (-1 |#1| |#1|) $) 246)) (-3683 (((-917) $) 83 (|has| |#1| (-370)))) (-4416 (($ $) 219 (|has| |#1| (-1181)))) (-3085 (((-1157 |#1|) $) 150)) (-2495 (($ (-634 $)) 94 (-2198 (|has| |#1| (-301)) (-12 (|has| |#1| (-301)) (|has| |#1| (-904))))) (($ $ $) 93 (-2198 (|has| |#1| (-301)) (-12 (|has| |#1| (-301)) (|has| |#1| (-904)))))) (-4487 (((-1143) $) 9)) (-2081 (($ $) 110 (|has| |#1| (-365)))) (-4434 (($) 137 (|has| |#1| (-350)) CONST)) (-4355 (($ (-917)) 82 (|has| |#1| (-370)))) (-3777 (($) 241)) (-3866 ((|#1| $) 238)) (-4022 (((-1108) $) 10)) (-2704 (($) 154)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) 95 (-2198 (|has| |#1| (-301)) (-12 (|has| |#1| (-301)) (|has| |#1| (-904)))))) (-2721 (($ (-634 $)) 92 (-2198 (|has| |#1| (-301)) (-12 (|has| |#1| (-301)) (|has| |#1| (-904))))) (($ $ $) 91 (-2198 (|has| |#1| (-301)) (-12 (|has| |#1| (-301)) (|has| |#1| (-904)))))) (-1418 (((-634 (-2 (|:| -3848 (-568)) (|:| -3438 (-568))))) 140 (|has| |#1| (-350)))) (-2905 (((-420 (-1157 $)) (-1157 $)) 228 (-12 (|has| |#1| (-301)) (|has| |#1| (-904))))) (-3545 (((-420 (-1157 $)) (-1157 $)) 227 (-12 (|has| |#1| (-301)) (|has| |#1| (-904))))) (-3848 (((-420 $) $) 106 (-2198 (-12 (|has| |#1| (-301)) (|has| |#1| (-904))) (|has| |#1| (-365))))) (-4497 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 104 (|has| |#1| (-301))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) 103 (|has| |#1| (-301)))) (-2595 (((-3 $ "failed") $ |#1|) 236 (|has| |#1| (-558))) (((-3 $ "failed") $ $) 86 (-2198 (|has| |#1| (-558)) (-12 (|has| |#1| (-301)) (|has| |#1| (-904)))))) (-2344 (((-3 (-634 $) "failed") (-634 $) $) 97 (|has| |#1| (-301)))) (-1892 (($ $) 220 (|has| |#1| (-1181)))) (-1339 (($ $ (-634 |#1|) (-634 |#1|)) 252 (|has| |#1| (-303 |#1|))) (($ $ |#1| |#1|) 251 (|has| |#1| (-303 |#1|))) (($ $ (-288 |#1|)) 250 (|has| |#1| (-303 |#1|))) (($ $ (-634 (-288 |#1|))) 249 (|has| |#1| (-303 |#1|))) (($ $ (-634 (-1161)) (-634 |#1|)) 248 (|has| |#1| (-523 (-1161) |#1|))) (($ $ (-1161) |#1|) 247 (|has| |#1| (-523 (-1161) |#1|)))) (-2709 (((-763) $) 99 (|has| |#1| (-301)))) (-2779 (($ $ |#1|) 253 (|has| |#1| (-281 |#1| |#1|)))) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) 100 (|has| |#1| (-301)))) (-2217 ((|#1| (-1244 $)) 45) ((|#1|) 54)) (-3143 (((-763) $) 145 (|has| |#1| (-350))) (((-3 (-763) "failed") $ $) 133 (|has| |#1| (-350)))) (-4189 (($ $ (-1 |#1| |#1|) (-763)) 117) (($ $ (-1 |#1| |#1|)) 116) (($ $ (-634 (-1161)) (-634 (-763))) 124 (|has| |#1| (-895 (-1161)))) (($ $ (-1161) (-763)) 125 (|has| |#1| (-895 (-1161)))) (($ $ (-634 (-1161))) 126 (|has| |#1| (-895 (-1161)))) (($ $ (-1161)) 127 (|has| |#1| (-895 (-1161)))) (($ $ (-763)) 129 (-2198 (-2139 (|has| |#1| (-365)) (|has| |#1| (-225))) (|has| |#1| (-225)) (-2139 (|has| |#1| (-225)) (|has| |#1| (-365))))) (($ $) 131 (-2198 (-2139 (|has| |#1| (-365)) (|has| |#1| (-225))) (|has| |#1| (-225)) (-2139 (|has| |#1| (-225)) (|has| |#1| (-365)))))) (-4387 (((-679 |#1|) (-1244 $) (-1 |#1| |#1|)) 148 (|has| |#1| (-365)))) (-1626 (((-1157 |#1|)) 153)) (-1994 (($ $) 209 (|has| |#1| (-1181)))) (-1945 (($ $) 198 (|has| |#1| (-1181)))) (-3065 (($) 142 (|has| |#1| (-350)))) (-1986 (($ $) 208 (|has| |#1| (-1181)))) (-1937 (($ $) 199 (|has| |#1| (-1181)))) (-1978 (($ $) 207 (|has| |#1| (-1181)))) (-2790 (($ $) 200 (|has| |#1| (-1181)))) (-4073 (((-1244 |#1|) $ (-1244 $)) 48) (((-679 |#1|) (-1244 $) (-1244 $)) 47) (((-1244 |#1|) $) 60) (((-679 |#1|) (-1244 $)) 59)) (-4278 (((-1244 |#1|) $) 57) (($ (-1244 |#1|)) 56) (((-1157 |#1|) $) 165) (($ (-1157 |#1|)) 151) (((-887 (-568)) $) 243 (|has| |#1| (-609 (-887 (-568))))) (((-887 (-381)) $) 242 (|has| |#1| (-609 (-887 (-381))))) (((-169 (-381)) $) 194 (|has| |#1| (-1021))) (((-169 (-215)) $) 193 (|has| |#1| (-1021))) (((-541) $) 192 (|has| |#1| (-609 (-541))))) (-1458 (($ $) 240)) (-2979 (((-3 (-1244 $) "failed") (-679 $)) 139 (-2198 (-2139 (|has| $ (-148)) (-12 (|has| |#1| (-301)) (|has| |#1| (-904)))) (|has| |#1| (-350))))) (-4003 (($ |#1| |#1|) 239)) (-2745 (((-850) $) 11) (($ (-568)) 27) (($ |#1|) 36) (($ (-409 (-568))) 80 (-2198 (|has| |#1| (-365)) (|has| |#1| (-1037 (-409 (-568)))))) (($ $) 85 (-2198 (|has| |#1| (-558)) (-12 (|has| |#1| (-301)) (|has| |#1| (-904)))))) (-4371 (($ $) 138 (|has| |#1| (-350))) (((-3 $ "failed") $) 41 (-2198 (-2139 (|has| $ (-148)) (-12 (|has| |#1| (-301)) (|has| |#1| (-904)))) (|has| |#1| (-148))))) (-2678 (((-1157 |#1|) $) 43)) (-4078 (((-763)) 28)) (-3746 (((-1244 $)) 61)) (-2006 (($ $) 218 (|has| |#1| (-1181)))) (-1958 (($ $) 206 (|has| |#1| (-1181)))) (-1826 (((-121) $ $) 89 (-2198 (|has| |#1| (-558)) (-12 (|has| |#1| (-301)) (|has| |#1| (-904)))))) (-1998 (($ $) 217 (|has| |#1| (-1181)))) (-1949 (($ $) 205 (|has| |#1| (-1181)))) (-2014 (($ $) 216 (|has| |#1| (-1181)))) (-1966 (($ $) 204 (|has| |#1| (-1181)))) (-3256 ((|#1| $) 234 (|has| |#1| (-1181)))) (-4023 (($ $) 215 (|has| |#1| (-1181)))) (-1970 (($ $) 203 (|has| |#1| (-1181)))) (-2010 (($ $) 214 (|has| |#1| (-1181)))) (-1962 (($ $) 202 (|has| |#1| (-1181)))) (-2002 (($ $) 213 (|has| |#1| (-1181)))) (-1953 (($ $) 201 (|has| |#1| (-1181)))) (-2897 (($ $) 235 (|has| |#1| (-1056)))) (-1887 (($ $ (-917)) 25) (($ $ (-763)) 32) (($ $ (-568)) 111 (|has| |#1| (-365)))) (-3056 (($) 17 T CONST)) (-1556 (($) 29 T CONST)) (-3190 (($ $ (-1 |#1| |#1|) (-763)) 119) (($ $ (-1 |#1| |#1|)) 118) (($ $ (-634 (-1161)) (-634 (-763))) 120 (|has| |#1| (-895 (-1161)))) (($ $ (-1161) (-763)) 121 (|has| |#1| (-895 (-1161)))) (($ $ (-634 (-1161))) 122 (|has| |#1| (-895 (-1161)))) (($ $ (-1161)) 123 (|has| |#1| (-895 (-1161)))) (($ $ (-763)) 128 (-2198 (-2139 (|has| |#1| (-365)) (|has| |#1| (-225))) (|has| |#1| (-225)) (-2139 (|has| |#1| (-225)) (|has| |#1| (-365))))) (($ $) 130 (-2198 (-2139 (|has| |#1| (-365)) (|has| |#1| (-225))) (|has| |#1| (-225)) (-2139 (|has| |#1| (-225)) (|has| |#1| (-365)))))) (-1751 (((-121) $ $) 188 (|has| |#1| (-842)))) (-1738 (((-121) $ $) 187 (|has| |#1| (-842)))) (-1717 (((-121) $ $) 6)) (-1745 (((-121) $ $) 189 (|has| |#1| (-842)))) (-1732 (((-121) $ $) 186 (|has| |#1| (-842)))) (-1779 (($ $ $) 115 (|has| |#1| (-365)))) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 24) (($ $ (-763)) 31) (($ $ (-409 (-568))) 223 (-12 (|has| |#1| (-1002)) (|has| |#1| (-1181)))) (($ $ $) 221 (|has| |#1| (-1181))) (($ $ (-568)) 112 (|has| |#1| (-365)))) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 23) (($ $ |#1|) 38) (($ |#1| $) 37) (($ (-409 (-568)) $) 114 (|has| |#1| (-365))) (($ $ (-409 (-568))) 113 (|has| |#1| (-365))))) +(((-166 |#1|) (-1275) (-172)) (T -166)) +((-2657 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-3777 (*1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-1458 (*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-4003 (*1 *1 *2 *2) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-3866 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-3857 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-2595 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-558)))) (-2897 (*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1056)))) (-3256 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1181)))) (-3378 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-1056)) (-4 *3 (-1181)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-2688 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-550)) (-5 *2 (-121)))) (-2425 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-550)) (-5 *2 (-409 (-568))))) (-1642 (*1 *2 *1) (|partial| -12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-550)) (-5 *2 (-409 (-568)))))) +(-13 (-714 |t#1| (-1157 |t#1|)) (-413 |t#1|) (-223 |t#1|) (-336 |t#1|) (-402 |t#1|) (-879 |t#1|) (-379 |t#1|) (-172) (-10 -8 (-6 -4003) (-15 -3777 ($)) (-15 -1458 ($ $)) (-15 -4003 ($ |t#1| |t#1|)) (-15 -3866 (|t#1| $)) (-15 -3857 (|t#1| $)) (-15 -2657 (|t#1| $)) (IF (|has| |t#1| (-842)) (-6 (-842)) |noBranch|) (IF (|has| |t#1| (-558)) (PROGN (-6 (-558)) (-15 -2595 ((-3 $ "failed") $ |t#1|))) |noBranch|) (IF (|has| |t#1| (-301)) (-6 (-301)) |noBranch|) (IF (|has| |t#1| (-6 -4518)) (-6 -4518) |noBranch|) (IF (|has| |t#1| (-6 -4515)) (-6 -4515) |noBranch|) (IF (|has| |t#1| (-365)) (-6 (-365)) |noBranch|) (IF (|has| |t#1| (-609 (-541))) (-6 (-609 (-541))) |noBranch|) (IF (|has| |t#1| (-150)) (-6 (-150)) |noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |noBranch|) (IF (|has| |t#1| (-1021)) (PROGN (-6 (-609 (-169 (-215)))) (-6 (-609 (-169 (-381))))) |noBranch|) (IF (|has| |t#1| (-1056)) (-15 -2897 ($ $)) |noBranch|) (IF (|has| |t#1| (-1181)) (PROGN (-6 (-1181)) (-15 -3256 (|t#1| $)) (IF (|has| |t#1| (-1002)) (-6 (-1002)) |noBranch|) (IF (|has| |t#1| (-1056)) (-15 -3378 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |noBranch|)) |noBranch|) (IF (|has| |t#1| (-550)) (PROGN (-15 -2688 ((-121) $)) (-15 -2425 ((-409 (-568)) $)) (-15 -1642 ((-3 (-409 (-568)) "failed") $))) |noBranch|) (IF (|has| |t#1| (-904)) (IF (|has| |t#1| (-301)) (-6 (-904)) |noBranch|) |noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-43 (-409 (-568))) -2198 (|has| |#1| (-350)) (|has| |#1| (-365))) ((-43 |#1|) . T) ((-43 $) -2198 (|has| |#1| (-558)) (|has| |#1| (-350)) (|has| |#1| (-365)) (|has| |#1| (-301))) ((-40) |has| |#1| (-1181)) ((-98) |has| |#1| (-1181)) ((-105) . T) ((-120 (-409 (-568)) (-409 (-568))) -2198 (|has| |#1| (-350)) (|has| |#1| (-365))) ((-120 |#1| |#1|) . T) ((-120 $ $) . T) ((-137) . T) ((-148) -2198 (|has| |#1| (-350)) (|has| |#1| (-148))) ((-150) |has| |#1| (-150)) ((-608 (-850)) . T) ((-172) . T) ((-609 (-169 (-215))) |has| |#1| (-1021)) ((-609 (-169 (-381))) |has| |#1| (-1021)) ((-609 (-541)) |has| |#1| (-609 (-541))) ((-609 (-887 (-381))) |has| |#1| (-609 (-887 (-381)))) ((-609 (-887 (-568))) |has| |#1| (-609 (-887 (-568)))) ((-609 (-1157 |#1|)) . T) ((-223 |#1|) . T) ((-225) -2198 (|has| |#1| (-350)) (|has| |#1| (-225))) ((-238) -2198 (|has| |#1| (-350)) (|has| |#1| (-365))) ((-279) |has| |#1| (-1181)) ((-281 |#1| $) |has| |#1| (-281 |#1| |#1|)) ((-285) -2198 (|has| |#1| (-558)) (|has| |#1| (-350)) (|has| |#1| (-365)) (|has| |#1| (-301))) ((-301) -2198 (|has| |#1| (-350)) (|has| |#1| (-365)) (|has| |#1| (-301))) ((-303 |#1|) |has| |#1| (-303 |#1|)) ((-365) -2198 (|has| |#1| (-350)) (|has| |#1| (-365))) ((-404) |has| |#1| (-350)) ((-370) -2198 (|has| |#1| (-370)) (|has| |#1| (-350))) ((-350) |has| |#1| (-350)) ((-372 |#1| (-1157 |#1|)) . T) ((-411 |#1| (-1157 |#1|)) . T) ((-336 |#1|) . T) ((-379 |#1|) . T) ((-402 |#1|) . T) ((-413 |#1|) . T) ((-453) -2198 (|has| |#1| (-350)) (|has| |#1| (-365)) (|has| |#1| (-301))) ((-502) |has| |#1| (-1181)) ((-523 (-1161) |#1|) |has| |#1| (-523 (-1161) |#1|)) ((-523 |#1| |#1|) |has| |#1| (-303 |#1|)) ((-558) -2198 (|has| |#1| (-558)) (|has| |#1| (-350)) (|has| |#1| (-365)) (|has| |#1| (-301))) ((-637 (-409 (-568))) -2198 (|has| |#1| (-350)) (|has| |#1| (-365))) ((-637 |#1|) . T) ((-637 $) . T) ((-630 (-568)) |has| |#1| (-630 (-568))) ((-630 |#1|) . T) ((-707 (-409 (-568))) -2198 (|has| |#1| (-350)) (|has| |#1| (-365))) ((-707 |#1|) . T) ((-707 $) -2198 (|has| |#1| (-558)) (|has| |#1| (-350)) (|has| |#1| (-365)) (|has| |#1| (-301))) ((-714 |#1| (-1157 |#1|)) . T) ((-716) . T) ((-842) |has| |#1| (-842)) ((-895 (-1161)) |has| |#1| (-895 (-1161))) ((-881 (-381)) |has| |#1| (-881 (-381))) ((-881 (-568)) |has| |#1| (-881 (-568))) ((-879 |#1|) . T) ((-904) -12 (|has| |#1| (-301)) (|has| |#1| (-904))) ((-916) -2198 (|has| |#1| (-350)) (|has| |#1| (-365)) (|has| |#1| (-301))) ((-1002) -12 (|has| |#1| (-1002)) (|has| |#1| (-1181))) ((-1037 (-409 (-568))) |has| |#1| (-1037 (-409 (-568)))) ((-1037 (-568)) |has| |#1| (-1037 (-568))) ((-1037 |#1|) . T) ((-1053 (-409 (-568))) -2198 (|has| |#1| (-350)) (|has| |#1| (-365))) ((-1053 |#1|) . T) ((-1053 $) . T) ((-1047) . T) ((-1054) . T) ((-1102) . T) ((-1090) . T) ((-1136) |has| |#1| (-350)) ((-1181) |has| |#1| (-1181)) ((-1184) |has| |#1| (-1181)) ((-1195) . T) ((-1199) -2198 (|has| |#1| (-350)) (|has| |#1| (-365)) (-12 (|has| |#1| (-301)) (|has| |#1| (-904))))) +((-3848 (((-420 |#2|) |#2|) 63))) +(((-167 |#1| |#2|) (-10 -7 (-15 -3848 ((-420 |#2|) |#2|))) (-301) (-1219 (-169 |#1|))) (T -167)) +((-3848 (*1 *2 *3) (-12 (-4 *4 (-301)) (-5 *2 (-420 *3)) (-5 *1 (-167 *4 *3)) (-4 *3 (-1219 (-169 *4)))))) +(-10 -7 (-15 -3848 ((-420 |#2|) |#2|))) +((-2795 (((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|)) 14))) +(((-168 |#1| |#2|) (-10 -7 (-15 -2795 ((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|)))) (-172) (-172)) (T -168)) +((-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-169 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-5 *2 (-169 *6)) (-5 *1 (-168 *5 *6))))) +(-10 -7 (-15 -2795 ((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|)))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) 33)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL (-2198 (-12 (|has| |#1| (-301)) (|has| |#1| (-904))) (|has| |#1| (-558))))) (-2227 (($ $) NIL (-2198 (-12 (|has| |#1| (-301)) (|has| |#1| (-904))) (|has| |#1| (-558))))) (-1573 (((-121) $) NIL (-2198 (-12 (|has| |#1| (-301)) (|has| |#1| (-904))) (|has| |#1| (-558))))) (-4255 (((-679 |#1|) (-1244 $)) NIL) (((-679 |#1|)) NIL)) (-1932 ((|#1| $) NIL)) (-1982 (($ $) NIL (|has| |#1| (-1181)))) (-1933 (($ $) NIL (|has| |#1| (-1181)))) (-3211 (((-1169 (-917) (-763)) (-568)) NIL (|has| |#1| (-350)))) (-3134 (((-3 $ "failed") $ $) NIL)) (-1750 (((-420 (-1157 $)) (-1157 $)) NIL (-12 (|has| |#1| (-301)) (|has| |#1| (-904))))) (-4305 (($ $) NIL (-2198 (-12 (|has| |#1| (-301)) (|has| |#1| (-904))) (|has| |#1| (-365))))) (-1678 (((-420 $) $) NIL (-2198 (-12 (|has| |#1| (-301)) (|has| |#1| (-904))) (|has| |#1| (-365))))) (-1902 (($ $) NIL (-12 (|has| |#1| (-1002)) (|has| |#1| (-1181))))) (-1858 (((-3 (-634 (-1157 $)) "failed") (-634 (-1157 $)) (-1157 $)) NIL (-12 (|has| |#1| (-301)) (|has| |#1| (-904))))) (-1497 (((-121) $ $) NIL (|has| |#1| (-301)))) (-3983 (((-763)) NIL (|has| |#1| (-370)))) (-1974 (($ $) NIL (|has| |#1| (-1181)))) (-2786 (($ $) NIL (|has| |#1| (-1181)))) (-1990 (($ $) NIL (|has| |#1| (-1181)))) (-1941 (($ $) NIL (|has| |#1| (-1181)))) (-2671 (($) NIL T CONST)) (-3666 (((-3 (-568) "failed") $) NIL (|has| |#1| (-1037 (-568)))) (((-3 (-409 (-568)) "failed") $) NIL (|has| |#1| (-1037 (-409 (-568))))) (((-3 |#1| "failed") $) NIL)) (-2854 (((-568) $) NIL (|has| |#1| (-1037 (-568)))) (((-409 (-568)) $) NIL (|has| |#1| (-1037 (-409 (-568))))) ((|#1| $) NIL)) (-3498 (($ (-1244 |#1|) (-1244 $)) NIL) (($ (-1244 |#1|)) NIL)) (-2022 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-350)))) (-2401 (($ $ $) NIL (|has| |#1| (-301)))) (-1709 (((-679 |#1|) $ (-1244 $)) NIL) (((-679 |#1|) $) NIL)) (-3164 (((-679 (-568)) (-679 $)) NIL (|has| |#1| (-630 (-568)))) (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) NIL (|has| |#1| (-630 (-568)))) (((-2 (|:| -2928 (-679 |#1|)) (|:| |vec| (-1244 |#1|))) (-679 $) (-1244 $)) NIL) (((-679 |#1|) (-679 $)) NIL)) (-3092 (($ (-1157 |#1|)) NIL) (((-3 $ "failed") (-409 (-1157 |#1|))) NIL (|has| |#1| (-365)))) (-2925 (((-3 $ "failed") $) NIL)) (-3857 ((|#1| $) 13)) (-1642 (((-3 (-409 (-568)) "failed") $) NIL (|has| |#1| (-550)))) (-2688 (((-121) $) NIL (|has| |#1| (-550)))) (-2425 (((-409 (-568)) $) NIL (|has| |#1| (-550)))) (-3700 (((-917)) NIL)) (-1731 (($) NIL (|has| |#1| (-370)))) (-2412 (($ $ $) NIL (|has| |#1| (-301)))) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) NIL (|has| |#1| (-301)))) (-4220 (($) NIL (|has| |#1| (-350)))) (-4456 (((-121) $) NIL (|has| |#1| (-350)))) (-3218 (($ $ (-763)) NIL (|has| |#1| (-350))) (($ $) NIL (|has| |#1| (-350)))) (-3927 (((-121) $) NIL (-2198 (-12 (|has| |#1| (-301)) (|has| |#1| (-904))) (|has| |#1| (-365))))) (-3378 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1056)) (|has| |#1| (-1181))))) (-1897 (($) NIL (|has| |#1| (-1181)))) (-4410 (((-884 (-568) $) $ (-887 (-568)) (-884 (-568) $)) NIL (|has| |#1| (-881 (-568)))) (((-884 (-381) $) $ (-887 (-381)) (-884 (-381) $)) NIL (|has| |#1| (-881 (-381))))) (-4477 (((-917) $) NIL (|has| |#1| (-350))) (((-828 (-917)) $) NIL (|has| |#1| (-350)))) (-2735 (((-121) $) 35)) (-4044 (($ $ (-568)) NIL (-12 (|has| |#1| (-1002)) (|has| |#1| (-1181))))) (-2657 ((|#1| $) 46)) (-3038 (((-3 $ "failed") $) NIL (|has| |#1| (-350)))) (-3562 (((-3 (-634 $) "failed") (-634 $) $) NIL (|has| |#1| (-301)))) (-2045 (((-1157 |#1|) $) NIL (|has| |#1| (-365)))) (-2521 (($ $ $) NIL (|has| |#1| (-842)))) (-3268 (($ $ $) NIL (|has| |#1| (-842)))) (-2795 (($ (-1 |#1| |#1|) $) NIL)) (-3683 (((-917) $) NIL (|has| |#1| (-370)))) (-4416 (($ $) NIL (|has| |#1| (-1181)))) (-3085 (((-1157 |#1|) $) NIL)) (-2495 (($ (-634 $)) NIL (|has| |#1| (-301))) (($ $ $) NIL (|has| |#1| (-301)))) (-4487 (((-1143) $) NIL)) (-2081 (($ $) NIL (|has| |#1| (-365)))) (-4434 (($) NIL (|has| |#1| (-350)) CONST)) (-4355 (($ (-917)) NIL (|has| |#1| (-370)))) (-3777 (($) NIL)) (-3866 ((|#1| $) 15)) (-4022 (((-1108) $) NIL)) (-2704 (($) NIL)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL (|has| |#1| (-301)))) (-2721 (($ (-634 $)) NIL (|has| |#1| (-301))) (($ $ $) NIL (|has| |#1| (-301)))) (-1418 (((-634 (-2 (|:| -3848 (-568)) (|:| -3438 (-568))))) NIL (|has| |#1| (-350)))) (-2905 (((-420 (-1157 $)) (-1157 $)) NIL (-12 (|has| |#1| (-301)) (|has| |#1| (-904))))) (-3545 (((-420 (-1157 $)) (-1157 $)) NIL (-12 (|has| |#1| (-301)) (|has| |#1| (-904))))) (-3848 (((-420 $) $) NIL (-2198 (-12 (|has| |#1| (-301)) (|has| |#1| (-904))) (|has| |#1| (-365))))) (-4497 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-301))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL (|has| |#1| (-301)))) (-2595 (((-3 $ "failed") $ |#1|) 44 (|has| |#1| (-558))) (((-3 $ "failed") $ $) 47 (-2198 (-12 (|has| |#1| (-301)) (|has| |#1| (-904))) (|has| |#1| (-558))))) (-2344 (((-3 (-634 $) "failed") (-634 $) $) NIL (|has| |#1| (-301)))) (-1892 (($ $) NIL (|has| |#1| (-1181)))) (-1339 (($ $ (-634 |#1|) (-634 |#1|)) NIL (|has| |#1| (-303 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-303 |#1|))) (($ $ (-288 |#1|)) NIL (|has| |#1| (-303 |#1|))) (($ $ (-634 (-288 |#1|))) NIL (|has| |#1| (-303 |#1|))) (($ $ (-634 (-1161)) (-634 |#1|)) NIL (|has| |#1| (-523 (-1161) |#1|))) (($ $ (-1161) |#1|) NIL (|has| |#1| (-523 (-1161) |#1|)))) (-2709 (((-763) $) NIL (|has| |#1| (-301)))) (-2779 (($ $ |#1|) NIL (|has| |#1| (-281 |#1| |#1|)))) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL (|has| |#1| (-301)))) (-2217 ((|#1| (-1244 $)) NIL) ((|#1|) NIL)) (-3143 (((-763) $) NIL (|has| |#1| (-350))) (((-3 (-763) "failed") $ $) NIL (|has| |#1| (-350)))) (-4189 (($ $ (-1 |#1| |#1|) (-763)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-634 (-1161)) (-634 (-763))) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-1161) (-763)) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-634 (-1161))) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-1161)) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-763)) NIL (|has| |#1| (-225))) (($ $) NIL (|has| |#1| (-225)))) (-4387 (((-679 |#1|) (-1244 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-365)))) (-1626 (((-1157 |#1|)) NIL)) (-1994 (($ $) NIL (|has| |#1| (-1181)))) (-1945 (($ $) NIL (|has| |#1| (-1181)))) (-3065 (($) NIL (|has| |#1| (-350)))) (-1986 (($ $) NIL (|has| |#1| (-1181)))) (-1937 (($ $) NIL (|has| |#1| (-1181)))) (-1978 (($ $) NIL (|has| |#1| (-1181)))) (-2790 (($ $) NIL (|has| |#1| (-1181)))) (-4073 (((-1244 |#1|) $ (-1244 $)) NIL) (((-679 |#1|) (-1244 $) (-1244 $)) NIL) (((-1244 |#1|) $) NIL) (((-679 |#1|) (-1244 $)) NIL)) (-4278 (((-1244 |#1|) $) NIL) (($ (-1244 |#1|)) NIL) (((-1157 |#1|) $) NIL) (($ (-1157 |#1|)) NIL) (((-887 (-568)) $) NIL (|has| |#1| (-609 (-887 (-568))))) (((-887 (-381)) $) NIL (|has| |#1| (-609 (-887 (-381))))) (((-169 (-381)) $) NIL (|has| |#1| (-1021))) (((-169 (-215)) $) NIL (|has| |#1| (-1021))) (((-541) $) NIL (|has| |#1| (-609 (-541))))) (-1458 (($ $) 45)) (-2979 (((-3 (-1244 $) "failed") (-679 $)) NIL (-2198 (-12 (|has| $ (-148)) (|has| |#1| (-301)) (|has| |#1| (-904))) (|has| |#1| (-350))))) (-4003 (($ |#1| |#1|) 37)) (-2745 (((-850) $) NIL) (($ (-568)) NIL) (($ |#1|) 36) (($ (-409 (-568))) NIL (-2198 (|has| |#1| (-365)) (|has| |#1| (-1037 (-409 (-568)))))) (($ $) NIL (-2198 (-12 (|has| |#1| (-301)) (|has| |#1| (-904))) (|has| |#1| (-558))))) (-4371 (($ $) NIL (|has| |#1| (-350))) (((-3 $ "failed") $) NIL (-2198 (-12 (|has| $ (-148)) (|has| |#1| (-301)) (|has| |#1| (-904))) (|has| |#1| (-148))))) (-2678 (((-1157 |#1|) $) NIL)) (-4078 (((-763)) NIL)) (-3746 (((-1244 $)) NIL)) (-2006 (($ $) NIL (|has| |#1| (-1181)))) (-1958 (($ $) NIL (|has| |#1| (-1181)))) (-1826 (((-121) $ $) NIL (-2198 (-12 (|has| |#1| (-301)) (|has| |#1| (-904))) (|has| |#1| (-558))))) (-1998 (($ $) NIL (|has| |#1| (-1181)))) (-1949 (($ $) NIL (|has| |#1| (-1181)))) (-2014 (($ $) NIL (|has| |#1| (-1181)))) (-1966 (($ $) NIL (|has| |#1| (-1181)))) (-3256 ((|#1| $) NIL (|has| |#1| (-1181)))) (-4023 (($ $) NIL (|has| |#1| (-1181)))) (-1970 (($ $) NIL (|has| |#1| (-1181)))) (-2010 (($ $) NIL (|has| |#1| (-1181)))) (-1962 (($ $) NIL (|has| |#1| (-1181)))) (-2002 (($ $) NIL (|has| |#1| (-1181)))) (-1953 (($ $) NIL (|has| |#1| (-1181)))) (-2897 (($ $) NIL (|has| |#1| (-1056)))) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL (|has| |#1| (-365)))) (-3056 (($) 28 T CONST)) (-1556 (($) 30 T CONST)) (-3754 (((-1143) $) 23 (|has| |#1| (-823))) (((-1143) $ (-121)) 25 (|has| |#1| (-823))) (((-1249) (-817) $) 26 (|has| |#1| (-823))) (((-1249) (-817) $ (-121)) 27 (|has| |#1| (-823)))) (-3190 (($ $ (-1 |#1| |#1|) (-763)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-634 (-1161)) (-634 (-763))) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-1161) (-763)) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-634 (-1161))) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-1161)) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-763)) NIL (|has| |#1| (-225))) (($ $) NIL (|has| |#1| (-225)))) (-1751 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1738 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1717 (((-121) $ $) NIL)) (-1745 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1732 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1779 (($ $ $) NIL (|has| |#1| (-365)))) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) 39)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-409 (-568))) NIL (-12 (|has| |#1| (-1002)) (|has| |#1| (-1181)))) (($ $ $) NIL (|has| |#1| (-1181))) (($ $ (-568)) NIL (|has| |#1| (-365)))) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-409 (-568)) $) NIL (|has| |#1| (-365))) (($ $ (-409 (-568))) NIL (|has| |#1| (-365))))) +(((-169 |#1|) (-13 (-166 |#1|) (-10 -7 (IF (|has| |#1| (-823)) (-6 (-823)) |noBranch|))) (-172)) (T -169)) +NIL +(-13 (-166 |#1|) (-10 -7 (IF (|has| |#1| (-823)) (-6 (-823)) |noBranch|))) +((-4278 (((-887 |#1|) |#3|) 22))) +(((-170 |#1| |#2| |#3|) (-10 -7 (-15 -4278 ((-887 |#1|) |#3|))) (-1090) (-13 (-609 (-887 |#1|)) (-172)) (-166 |#2|)) (T -170)) +((-4278 (*1 *2 *3) (-12 (-4 *5 (-13 (-609 *2) (-172))) (-5 *2 (-887 *4)) (-5 *1 (-170 *4 *5 *3)) (-4 *4 (-1090)) (-4 *3 (-166 *5))))) +(-10 -7 (-15 -4278 ((-887 |#1|) |#3|))) +((-2447 (((-121) $ $) NIL)) (-1459 (((-121) $) 9)) (-2289 (((-121) $ (-121)) 11)) (-1849 (($) 12)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-3863 (($ $) 13)) (-2745 (((-850) $) 17)) (-3336 (((-121) $) 8)) (-4092 (((-121) $ (-121)) 10)) (-1717 (((-121) $ $) NIL))) +(((-171) (-13 (-1090) (-10 -8 (-15 -1849 ($)) (-15 -3336 ((-121) $)) (-15 -1459 ((-121) $)) (-15 -4092 ((-121) $ (-121))) (-15 -2289 ((-121) $ (-121))) (-15 -3863 ($ $))))) (T -171)) +((-1849 (*1 *1) (-5 *1 (-171))) (-3336 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-171)))) (-1459 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-171)))) (-4092 (*1 *2 *1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-171)))) (-2289 (*1 *2 *1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-171)))) (-3863 (*1 *1 *1) (-5 *1 (-171)))) +(-13 (-1090) (-10 -8 (-15 -1849 ($)) (-15 -3336 ((-121) $)) (-15 -1459 ((-121) $)) (-15 -4092 ((-121) $ (-121))) (-15 -2289 ((-121) $ (-121))) (-15 -3863 ($ $)))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-3134 (((-3 $ "failed") $ $) 18)) (-2671 (($) 16 T CONST)) (-2925 (((-3 $ "failed") $) 33)) (-2735 (((-121) $) 30)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-2745 (((-850) $) 11) (($ (-568)) 27)) (-4078 (((-763)) 28)) (-1887 (($ $ (-917)) 25) (($ $ (-763)) 32)) (-3056 (($) 17 T CONST)) (-1556 (($) 29 T CONST)) (-1717 (((-121) $ $) 6)) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 24) (($ $ (-763)) 31)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 23))) +(((-172) (-1275)) (T -172)) +NIL +(-13 (-1047) (-120 $ $) (-10 -7 (-6 (-4521 "*")))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-105) . T) ((-120 $ $) . T) ((-137) . T) ((-608 (-850)) . T) ((-637 $) . T) ((-716) . T) ((-1053 $) . T) ((-1047) . T) ((-1054) . T) ((-1102) . T) ((-1090) . T)) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-1492 ((|#1| $) 74)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL)) (-2227 (($ $) NIL)) (-1573 (((-121) $) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-4305 (($ $) NIL)) (-1678 (((-420 $) $) NIL)) (-1497 (((-121) $ $) NIL)) (-2671 (($) NIL T CONST)) (-2401 (($ $ $) NIL)) (-1331 (($ $) 19)) (-2983 (($ |#1| (-1141 |#1|)) 47)) (-2925 (((-3 $ "failed") $) 116)) (-2412 (($ $ $) NIL)) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) NIL)) (-3927 (((-121) $) NIL)) (-3922 (((-1141 |#1|) $) 81)) (-1947 (((-1141 |#1|) $) 78)) (-2874 (((-1141 |#1|) $) 79)) (-2735 (((-121) $) NIL)) (-4423 (((-1141 |#1|) $) 87)) (-3562 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-2495 (($ (-634 $)) NIL) (($ $ $) NIL)) (-4487 (((-1143) $) NIL)) (-2081 (($ $) NIL)) (-4022 (((-1108) $) NIL)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL)) (-2721 (($ (-634 $)) NIL) (($ $ $) NIL)) (-3848 (((-420 $) $) NIL)) (-4497 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL)) (-1807 (($ $ (-568)) 90)) (-2595 (((-3 $ "failed") $ $) NIL)) (-2344 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-2709 (((-763) $) NIL)) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL)) (-3434 (((-1141 |#1|) $) 88)) (-1667 (((-1141 (-409 |#1|)) $) 13)) (-3878 (($ (-409 |#1|)) 17) (($ |#1| (-1141 |#1|) (-1141 |#1|)) 37)) (-1811 (($ $) 92)) (-2745 (((-850) $) 126) (($ (-568)) 50) (($ |#1|) 51) (($ (-409 |#1|)) 35) (($ (-409 (-568))) NIL) (($ $) NIL)) (-4078 (((-763)) 63)) (-1826 (((-121) $ $) NIL)) (-4442 (((-1141 (-409 |#1|)) $) 18)) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL)) (-3056 (($) 25 T CONST)) (-1556 (($) 28 T CONST)) (-1717 (((-121) $ $) 34)) (-1779 (($ $ $) 114)) (-1773 (($ $) 105) (($ $ $) 102)) (-1767 (($ $ $) 100)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) 112) (($ $ $) 107) (($ $ |#1|) NIL) (($ |#1| $) 109) (($ (-409 |#1|) $) 110) (($ $ (-409 |#1|)) NIL) (($ (-409 (-568)) $) NIL) (($ $ (-409 (-568))) NIL))) +(((-173 |#1|) (-13 (-43 |#1|) (-43 (-409 |#1|)) (-365) (-10 -8 (-15 -3878 ($ (-409 |#1|))) (-15 -3878 ($ |#1| (-1141 |#1|) (-1141 |#1|))) (-15 -2983 ($ |#1| (-1141 |#1|))) (-15 -1947 ((-1141 |#1|) $)) (-15 -2874 ((-1141 |#1|) $)) (-15 -3922 ((-1141 |#1|) $)) (-15 -1492 (|#1| $)) (-15 -1331 ($ $)) (-15 -4442 ((-1141 (-409 |#1|)) $)) (-15 -1667 ((-1141 (-409 |#1|)) $)) (-15 -4423 ((-1141 |#1|) $)) (-15 -3434 ((-1141 |#1|) $)) (-15 -1807 ($ $ (-568))) (-15 -1811 ($ $)))) (-301)) (T -173)) +((-3878 (*1 *1 *2) (-12 (-5 *2 (-409 *3)) (-4 *3 (-301)) (-5 *1 (-173 *3)))) (-3878 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1141 *2)) (-4 *2 (-301)) (-5 *1 (-173 *2)))) (-2983 (*1 *1 *2 *3) (-12 (-5 *3 (-1141 *2)) (-4 *2 (-301)) (-5 *1 (-173 *2)))) (-1947 (*1 *2 *1) (-12 (-5 *2 (-1141 *3)) (-5 *1 (-173 *3)) (-4 *3 (-301)))) (-2874 (*1 *2 *1) (-12 (-5 *2 (-1141 *3)) (-5 *1 (-173 *3)) (-4 *3 (-301)))) (-3922 (*1 *2 *1) (-12 (-5 *2 (-1141 *3)) (-5 *1 (-173 *3)) (-4 *3 (-301)))) (-1492 (*1 *2 *1) (-12 (-5 *1 (-173 *2)) (-4 *2 (-301)))) (-1331 (*1 *1 *1) (-12 (-5 *1 (-173 *2)) (-4 *2 (-301)))) (-4442 (*1 *2 *1) (-12 (-5 *2 (-1141 (-409 *3))) (-5 *1 (-173 *3)) (-4 *3 (-301)))) (-1667 (*1 *2 *1) (-12 (-5 *2 (-1141 (-409 *3))) (-5 *1 (-173 *3)) (-4 *3 (-301)))) (-4423 (*1 *2 *1) (-12 (-5 *2 (-1141 *3)) (-5 *1 (-173 *3)) (-4 *3 (-301)))) (-3434 (*1 *2 *1) (-12 (-5 *2 (-1141 *3)) (-5 *1 (-173 *3)) (-4 *3 (-301)))) (-1807 (*1 *1 *1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-173 *3)) (-4 *3 (-301)))) (-1811 (*1 *1 *1) (-12 (-5 *1 (-173 *2)) (-4 *2 (-301))))) +(-13 (-43 |#1|) (-43 (-409 |#1|)) (-365) (-10 -8 (-15 -3878 ($ (-409 |#1|))) (-15 -3878 ($ |#1| (-1141 |#1|) (-1141 |#1|))) (-15 -2983 ($ |#1| (-1141 |#1|))) (-15 -1947 ((-1141 |#1|) $)) (-15 -2874 ((-1141 |#1|) $)) (-15 -3922 ((-1141 |#1|) $)) (-15 -1492 (|#1| $)) (-15 -1331 ($ $)) (-15 -4442 ((-1141 (-409 |#1|)) $)) (-15 -1667 ((-1141 (-409 |#1|)) $)) (-15 -4423 ((-1141 |#1|) $)) (-15 -3434 ((-1141 |#1|) $)) (-15 -1807 ($ $ (-568))) (-15 -1811 ($ $)))) +((-2325 (((-1 (-944 |#1|) (-944 |#1|)) |#1|) 40)) (-3274 (((-944 |#1|) (-944 |#1|)) 19)) (-2393 (((-1 (-944 |#1|) (-944 |#1|)) |#1|) 36)) (-2007 (((-944 |#1|) (-944 |#1|)) 17)) (-2562 (((-944 |#1|) (-944 |#1|)) 25)) (-4261 (((-944 |#1|) (-944 |#1|)) 24)) (-4413 (((-944 |#1|) (-944 |#1|)) 23)) (-4205 (((-1 (-944 |#1|) (-944 |#1|)) |#1|) 37)) (-1529 (((-1 (-944 |#1|) (-944 |#1|)) |#1|) 35)) (-3633 (((-1 (-944 |#1|) (-944 |#1|)) |#1|) 34)) (-2428 (((-944 |#1|) (-944 |#1|)) 18)) (-3625 (((-1 (-944 |#1|) (-944 |#1|)) |#1| |#1|) 43)) (-1541 (((-944 |#1|) (-944 |#1|)) 8)) (-2863 (((-1 (-944 |#1|) (-944 |#1|)) |#1|) 39)) (-4018 (((-1 (-944 |#1|) (-944 |#1|)) |#1|) 38))) +(((-174 |#1|) (-10 -7 (-15 -1541 ((-944 |#1|) (-944 |#1|))) (-15 -2007 ((-944 |#1|) (-944 |#1|))) (-15 -2428 ((-944 |#1|) (-944 |#1|))) (-15 -3274 ((-944 |#1|) (-944 |#1|))) (-15 -4413 ((-944 |#1|) (-944 |#1|))) (-15 -4261 ((-944 |#1|) (-944 |#1|))) (-15 -2562 ((-944 |#1|) (-944 |#1|))) (-15 -3633 ((-1 (-944 |#1|) (-944 |#1|)) |#1|)) (-15 -1529 ((-1 (-944 |#1|) (-944 |#1|)) |#1|)) (-15 -2393 ((-1 (-944 |#1|) (-944 |#1|)) |#1|)) (-15 -4205 ((-1 (-944 |#1|) (-944 |#1|)) |#1|)) (-15 -4018 ((-1 (-944 |#1|) (-944 |#1|)) |#1|)) (-15 -2863 ((-1 (-944 |#1|) (-944 |#1|)) |#1|)) (-15 -2325 ((-1 (-944 |#1|) (-944 |#1|)) |#1|)) (-15 -3625 ((-1 (-944 |#1|) (-944 |#1|)) |#1| |#1|))) (-13 (-365) (-1181) (-1002))) (T -174)) +((-3625 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-944 *3) (-944 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-365) (-1181) (-1002))))) (-2325 (*1 *2 *3) (-12 (-5 *2 (-1 (-944 *3) (-944 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-365) (-1181) (-1002))))) (-2863 (*1 *2 *3) (-12 (-5 *2 (-1 (-944 *3) (-944 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-365) (-1181) (-1002))))) (-4018 (*1 *2 *3) (-12 (-5 *2 (-1 (-944 *3) (-944 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-365) (-1181) (-1002))))) (-4205 (*1 *2 *3) (-12 (-5 *2 (-1 (-944 *3) (-944 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-365) (-1181) (-1002))))) (-2393 (*1 *2 *3) (-12 (-5 *2 (-1 (-944 *3) (-944 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-365) (-1181) (-1002))))) (-1529 (*1 *2 *3) (-12 (-5 *2 (-1 (-944 *3) (-944 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-365) (-1181) (-1002))))) (-3633 (*1 *2 *3) (-12 (-5 *2 (-1 (-944 *3) (-944 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-365) (-1181) (-1002))))) (-2562 (*1 *2 *2) (-12 (-5 *2 (-944 *3)) (-4 *3 (-13 (-365) (-1181) (-1002))) (-5 *1 (-174 *3)))) (-4261 (*1 *2 *2) (-12 (-5 *2 (-944 *3)) (-4 *3 (-13 (-365) (-1181) (-1002))) (-5 *1 (-174 *3)))) (-4413 (*1 *2 *2) (-12 (-5 *2 (-944 *3)) (-4 *3 (-13 (-365) (-1181) (-1002))) (-5 *1 (-174 *3)))) (-3274 (*1 *2 *2) (-12 (-5 *2 (-944 *3)) (-4 *3 (-13 (-365) (-1181) (-1002))) (-5 *1 (-174 *3)))) (-2428 (*1 *2 *2) (-12 (-5 *2 (-944 *3)) (-4 *3 (-13 (-365) (-1181) (-1002))) (-5 *1 (-174 *3)))) (-2007 (*1 *2 *2) (-12 (-5 *2 (-944 *3)) (-4 *3 (-13 (-365) (-1181) (-1002))) (-5 *1 (-174 *3)))) (-1541 (*1 *2 *2) (-12 (-5 *2 (-944 *3)) (-4 *3 (-13 (-365) (-1181) (-1002))) (-5 *1 (-174 *3))))) +(-10 -7 (-15 -1541 ((-944 |#1|) (-944 |#1|))) (-15 -2007 ((-944 |#1|) (-944 |#1|))) (-15 -2428 ((-944 |#1|) (-944 |#1|))) (-15 -3274 ((-944 |#1|) (-944 |#1|))) (-15 -4413 ((-944 |#1|) (-944 |#1|))) (-15 -4261 ((-944 |#1|) (-944 |#1|))) (-15 -2562 ((-944 |#1|) (-944 |#1|))) (-15 -3633 ((-1 (-944 |#1|) (-944 |#1|)) |#1|)) (-15 -1529 ((-1 (-944 |#1|) (-944 |#1|)) |#1|)) (-15 -2393 ((-1 (-944 |#1|) (-944 |#1|)) |#1|)) (-15 -4205 ((-1 (-944 |#1|) (-944 |#1|)) |#1|)) (-15 -4018 ((-1 (-944 |#1|) (-944 |#1|)) |#1|)) (-15 -2863 ((-1 (-944 |#1|) (-944 |#1|)) |#1|)) (-15 -2325 ((-1 (-944 |#1|) (-944 |#1|)) |#1|)) (-15 -3625 ((-1 (-944 |#1|) (-944 |#1|)) |#1| |#1|))) +((-2678 ((|#2| |#3|) 27))) +(((-175 |#1| |#2| |#3|) (-10 -7 (-15 -2678 (|#2| |#3|))) (-172) (-1219 |#1|) (-714 |#1| |#2|)) (T -175)) +((-2678 (*1 *2 *3) (-12 (-4 *4 (-172)) (-4 *2 (-1219 *4)) (-5 *1 (-175 *4 *2 *3)) (-4 *3 (-714 *4 *2))))) +(-10 -7 (-15 -2678 (|#2| |#3|))) +((-4410 (((-884 |#1| |#3|) |#3| (-887 |#1|) (-884 |#1| |#3|)) 47 (|has| (-953 |#2|) (-881 |#1|))))) +(((-176 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-953 |#2|) (-881 |#1|)) (-15 -4410 ((-884 |#1| |#3|) |#3| (-887 |#1|) (-884 |#1| |#3|))) |noBranch|)) (-1090) (-13 (-881 |#1|) (-172)) (-166 |#2|)) (T -176)) +((-4410 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-884 *5 *3)) (-5 *4 (-887 *5)) (-4 *5 (-1090)) (-4 *3 (-166 *6)) (-4 (-953 *6) (-881 *5)) (-4 *6 (-13 (-881 *5) (-172))) (-5 *1 (-176 *5 *6 *3))))) +(-10 -7 (IF (|has| (-953 |#2|) (-881 |#1|)) (-15 -4410 ((-884 |#1| |#3|) |#3| (-887 |#1|) (-884 |#1| |#3|))) |noBranch|)) +((-1649 (((-634 |#1|) (-634 |#1|) |#1|) 36)) (-2504 (((-634 |#1|) |#1| (-634 |#1|)) 19)) (-2769 (((-634 |#1|) (-634 (-634 |#1|)) (-634 |#1|)) 31) ((|#1| (-634 |#1|) (-634 |#1|)) 29))) +(((-177 |#1|) (-10 -7 (-15 -2504 ((-634 |#1|) |#1| (-634 |#1|))) (-15 -2769 (|#1| (-634 |#1|) (-634 |#1|))) (-15 -2769 ((-634 |#1|) (-634 (-634 |#1|)) (-634 |#1|))) (-15 -1649 ((-634 |#1|) (-634 |#1|) |#1|))) (-301)) (T -177)) +((-1649 (*1 *2 *2 *3) (-12 (-5 *2 (-634 *3)) (-4 *3 (-301)) (-5 *1 (-177 *3)))) (-2769 (*1 *2 *3 *2) (-12 (-5 *3 (-634 (-634 *4))) (-5 *2 (-634 *4)) (-4 *4 (-301)) (-5 *1 (-177 *4)))) (-2769 (*1 *2 *3 *3) (-12 (-5 *3 (-634 *2)) (-5 *1 (-177 *2)) (-4 *2 (-301)))) (-2504 (*1 *2 *3 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-301)) (-5 *1 (-177 *3))))) +(-10 -7 (-15 -2504 ((-634 |#1|) |#1| (-634 |#1|))) (-15 -2769 (|#1| (-634 |#1|) (-634 |#1|))) (-15 -2769 ((-634 |#1|) (-634 (-634 |#1|)) (-634 |#1|))) (-15 -1649 ((-634 |#1|) (-634 |#1|) |#1|))) +((-2506 (((-2 (|:| |start| |#2|) (|:| -3276 (-420 |#2|))) |#2|) 61)) (-3664 ((|#1| |#1|) 54)) (-3698 (((-169 |#1|) |#2|) 82)) (-1533 ((|#1| |#2|) 122) ((|#1| |#2| |#1|) 80)) (-3618 ((|#2| |#2|) 81)) (-3245 (((-420 |#2|) |#2| |#1|) 112) (((-420 |#2|) |#2| |#1| (-121)) 79)) (-2657 ((|#1| |#2|) 111)) (-2622 ((|#2| |#2|) 118)) (-3848 (((-420 |#2|) |#2|) 133) (((-420 |#2|) |#2| |#1|) 32) (((-420 |#2|) |#2| |#1| (-121)) 132)) (-3451 (((-634 (-2 (|:| -3276 (-634 |#2|)) (|:| -2183 |#1|))) |#2| |#2|) 131) (((-634 (-2 (|:| -3276 (-634 |#2|)) (|:| -2183 |#1|))) |#2| |#2| (-121)) 75)) (-2385 (((-634 (-169 |#1|)) |#2| |#1|) 40) (((-634 (-169 |#1|)) |#2|) 41))) +(((-178 |#1| |#2|) (-10 -7 (-15 -2385 ((-634 (-169 |#1|)) |#2|)) (-15 -2385 ((-634 (-169 |#1|)) |#2| |#1|)) (-15 -3451 ((-634 (-2 (|:| -3276 (-634 |#2|)) (|:| -2183 |#1|))) |#2| |#2| (-121))) (-15 -3451 ((-634 (-2 (|:| -3276 (-634 |#2|)) (|:| -2183 |#1|))) |#2| |#2|)) (-15 -3848 ((-420 |#2|) |#2| |#1| (-121))) (-15 -3848 ((-420 |#2|) |#2| |#1|)) (-15 -3848 ((-420 |#2|) |#2|)) (-15 -2622 (|#2| |#2|)) (-15 -2657 (|#1| |#2|)) (-15 -3245 ((-420 |#2|) |#2| |#1| (-121))) (-15 -3245 ((-420 |#2|) |#2| |#1|)) (-15 -3618 (|#2| |#2|)) (-15 -1533 (|#1| |#2| |#1|)) (-15 -1533 (|#1| |#2|)) (-15 -3698 ((-169 |#1|) |#2|)) (-15 -3664 (|#1| |#1|)) (-15 -2506 ((-2 (|:| |start| |#2|) (|:| -3276 (-420 |#2|))) |#2|))) (-13 (-365) (-840)) (-1219 (-169 |#1|))) (T -178)) +((-2506 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-840))) (-5 *2 (-2 (|:| |start| *3) (|:| -3276 (-420 *3)))) (-5 *1 (-178 *4 *3)) (-4 *3 (-1219 (-169 *4))))) (-3664 (*1 *2 *2) (-12 (-4 *2 (-13 (-365) (-840))) (-5 *1 (-178 *2 *3)) (-4 *3 (-1219 (-169 *2))))) (-3698 (*1 *2 *3) (-12 (-5 *2 (-169 *4)) (-5 *1 (-178 *4 *3)) (-4 *4 (-13 (-365) (-840))) (-4 *3 (-1219 *2)))) (-1533 (*1 *2 *3) (-12 (-4 *2 (-13 (-365) (-840))) (-5 *1 (-178 *2 *3)) (-4 *3 (-1219 (-169 *2))))) (-1533 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-365) (-840))) (-5 *1 (-178 *2 *3)) (-4 *3 (-1219 (-169 *2))))) (-3618 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-840))) (-5 *1 (-178 *3 *2)) (-4 *2 (-1219 (-169 *3))))) (-3245 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-365) (-840))) (-5 *2 (-420 *3)) (-5 *1 (-178 *4 *3)) (-4 *3 (-1219 (-169 *4))))) (-3245 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-121)) (-4 *4 (-13 (-365) (-840))) (-5 *2 (-420 *3)) (-5 *1 (-178 *4 *3)) (-4 *3 (-1219 (-169 *4))))) (-2657 (*1 *2 *3) (-12 (-4 *2 (-13 (-365) (-840))) (-5 *1 (-178 *2 *3)) (-4 *3 (-1219 (-169 *2))))) (-2622 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-840))) (-5 *1 (-178 *3 *2)) (-4 *2 (-1219 (-169 *3))))) (-3848 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-840))) (-5 *2 (-420 *3)) (-5 *1 (-178 *4 *3)) (-4 *3 (-1219 (-169 *4))))) (-3848 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-365) (-840))) (-5 *2 (-420 *3)) (-5 *1 (-178 *4 *3)) (-4 *3 (-1219 (-169 *4))))) (-3848 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-121)) (-4 *4 (-13 (-365) (-840))) (-5 *2 (-420 *3)) (-5 *1 (-178 *4 *3)) (-4 *3 (-1219 (-169 *4))))) (-3451 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-365) (-840))) (-5 *2 (-634 (-2 (|:| -3276 (-634 *3)) (|:| -2183 *4)))) (-5 *1 (-178 *4 *3)) (-4 *3 (-1219 (-169 *4))))) (-3451 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-121)) (-4 *5 (-13 (-365) (-840))) (-5 *2 (-634 (-2 (|:| -3276 (-634 *3)) (|:| -2183 *5)))) (-5 *1 (-178 *5 *3)) (-4 *3 (-1219 (-169 *5))))) (-2385 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-365) (-840))) (-5 *2 (-634 (-169 *4))) (-5 *1 (-178 *4 *3)) (-4 *3 (-1219 (-169 *4))))) (-2385 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-840))) (-5 *2 (-634 (-169 *4))) (-5 *1 (-178 *4 *3)) (-4 *3 (-1219 (-169 *4)))))) +(-10 -7 (-15 -2385 ((-634 (-169 |#1|)) |#2|)) (-15 -2385 ((-634 (-169 |#1|)) |#2| |#1|)) (-15 -3451 ((-634 (-2 (|:| -3276 (-634 |#2|)) (|:| -2183 |#1|))) |#2| |#2| (-121))) (-15 -3451 ((-634 (-2 (|:| -3276 (-634 |#2|)) (|:| -2183 |#1|))) |#2| |#2|)) (-15 -3848 ((-420 |#2|) |#2| |#1| (-121))) (-15 -3848 ((-420 |#2|) |#2| |#1|)) (-15 -3848 ((-420 |#2|) |#2|)) (-15 -2622 (|#2| |#2|)) (-15 -2657 (|#1| |#2|)) (-15 -3245 ((-420 |#2|) |#2| |#1| (-121))) (-15 -3245 ((-420 |#2|) |#2| |#1|)) (-15 -3618 (|#2| |#2|)) (-15 -1533 (|#1| |#2| |#1|)) (-15 -1533 (|#1| |#2|)) (-15 -3698 ((-169 |#1|) |#2|)) (-15 -3664 (|#1| |#1|)) (-15 -2506 ((-2 (|:| |start| |#2|) (|:| -3276 (-420 |#2|))) |#2|))) +((-2182 (((-3 |#2| "failed") |#2|) 14)) (-1576 (((-763) |#2|) 16)) (-3786 ((|#2| |#2| |#2|) 18))) +(((-179 |#1| |#2|) (-10 -7 (-15 -2182 ((-3 |#2| "failed") |#2|)) (-15 -1576 ((-763) |#2|)) (-15 -3786 (|#2| |#2| |#2|))) (-1195) (-665 |#1|)) (T -179)) +((-3786 (*1 *2 *2 *2) (-12 (-4 *3 (-1195)) (-5 *1 (-179 *3 *2)) (-4 *2 (-665 *3)))) (-1576 (*1 *2 *3) (-12 (-4 *4 (-1195)) (-5 *2 (-763)) (-5 *1 (-179 *4 *3)) (-4 *3 (-665 *4)))) (-2182 (*1 *2 *2) (|partial| -12 (-4 *3 (-1195)) (-5 *1 (-179 *3 *2)) (-4 *2 (-665 *3))))) +(-10 -7 (-15 -2182 ((-3 |#2| "failed") |#2|)) (-15 -1576 ((-763) |#2|)) (-15 -3786 (|#2| |#2| |#2|))) +((-3755 ((|#2| |#2|) 28)) (-2636 (((-121) |#2|) 19)) (-3857 (((-310 |#1|) |#2|) 12)) (-3866 (((-310 |#1|) |#2|) 14)) (-2818 ((|#2| |#2| (-1161)) 68) ((|#2| |#2|) 69)) (-3145 (((-169 (-310 |#1|)) |#2|) 9)) (-2582 ((|#2| |#2| (-1161)) 65) ((|#2| |#2|) 58))) +(((-180 |#1| |#2|) (-10 -7 (-15 -2818 (|#2| |#2|)) (-15 -2818 (|#2| |#2| (-1161))) (-15 -2582 (|#2| |#2|)) (-15 -2582 (|#2| |#2| (-1161))) (-15 -3857 ((-310 |#1|) |#2|)) (-15 -3866 ((-310 |#1|) |#2|)) (-15 -2636 ((-121) |#2|)) (-15 -3755 (|#2| |#2|)) (-15 -3145 ((-169 (-310 |#1|)) |#2|))) (-13 (-558) (-842) (-1037 (-568))) (-13 (-27) (-1181) (-432 (-169 |#1|)))) (T -180)) +((-3145 (*1 *2 *3) (-12 (-4 *4 (-13 (-558) (-842) (-1037 (-568)))) (-5 *2 (-169 (-310 *4))) (-5 *1 (-180 *4 *3)) (-4 *3 (-13 (-27) (-1181) (-432 (-169 *4)))))) (-3755 (*1 *2 *2) (-12 (-4 *3 (-13 (-558) (-842) (-1037 (-568)))) (-5 *1 (-180 *3 *2)) (-4 *2 (-13 (-27) (-1181) (-432 (-169 *3)))))) (-2636 (*1 *2 *3) (-12 (-4 *4 (-13 (-558) (-842) (-1037 (-568)))) (-5 *2 (-121)) (-5 *1 (-180 *4 *3)) (-4 *3 (-13 (-27) (-1181) (-432 (-169 *4)))))) (-3866 (*1 *2 *3) (-12 (-4 *4 (-13 (-558) (-842) (-1037 (-568)))) (-5 *2 (-310 *4)) (-5 *1 (-180 *4 *3)) (-4 *3 (-13 (-27) (-1181) (-432 (-169 *4)))))) (-3857 (*1 *2 *3) (-12 (-4 *4 (-13 (-558) (-842) (-1037 (-568)))) (-5 *2 (-310 *4)) (-5 *1 (-180 *4 *3)) (-4 *3 (-13 (-27) (-1181) (-432 (-169 *4)))))) (-2582 (*1 *2 *2 *3) (-12 (-5 *3 (-1161)) (-4 *4 (-13 (-558) (-842) (-1037 (-568)))) (-5 *1 (-180 *4 *2)) (-4 *2 (-13 (-27) (-1181) (-432 (-169 *4)))))) (-2582 (*1 *2 *2) (-12 (-4 *3 (-13 (-558) (-842) (-1037 (-568)))) (-5 *1 (-180 *3 *2)) (-4 *2 (-13 (-27) (-1181) (-432 (-169 *3)))))) (-2818 (*1 *2 *2 *3) (-12 (-5 *3 (-1161)) (-4 *4 (-13 (-558) (-842) (-1037 (-568)))) (-5 *1 (-180 *4 *2)) (-4 *2 (-13 (-27) (-1181) (-432 (-169 *4)))))) (-2818 (*1 *2 *2) (-12 (-4 *3 (-13 (-558) (-842) (-1037 (-568)))) (-5 *1 (-180 *3 *2)) (-4 *2 (-13 (-27) (-1181) (-432 (-169 *3))))))) +(-10 -7 (-15 -2818 (|#2| |#2|)) (-15 -2818 (|#2| |#2| (-1161))) (-15 -2582 (|#2| |#2|)) (-15 -2582 (|#2| |#2| (-1161))) (-15 -3857 ((-310 |#1|) |#2|)) (-15 -3866 ((-310 |#1|) |#2|)) (-15 -2636 ((-121) |#2|)) (-15 -3755 (|#2| |#2|)) (-15 -3145 ((-169 (-310 |#1|)) |#2|))) +((-1852 (((-1244 (-679 (-953 |#1|))) (-1244 (-679 |#1|))) 22)) (-2745 (((-1244 (-679 (-409 (-953 |#1|)))) (-1244 (-679 |#1|))) 30))) +(((-181 |#1|) (-10 -7 (-15 -1852 ((-1244 (-679 (-953 |#1|))) (-1244 (-679 |#1|)))) (-15 -2745 ((-1244 (-679 (-409 (-953 |#1|)))) (-1244 (-679 |#1|))))) (-172)) (T -181)) +((-2745 (*1 *2 *3) (-12 (-5 *3 (-1244 (-679 *4))) (-4 *4 (-172)) (-5 *2 (-1244 (-679 (-409 (-953 *4))))) (-5 *1 (-181 *4)))) (-1852 (*1 *2 *3) (-12 (-5 *3 (-1244 (-679 *4))) (-4 *4 (-172)) (-5 *2 (-1244 (-679 (-953 *4)))) (-5 *1 (-181 *4))))) +(-10 -7 (-15 -1852 ((-1244 (-679 (-953 |#1|))) (-1244 (-679 |#1|)))) (-15 -2745 ((-1244 (-679 (-409 (-953 |#1|)))) (-1244 (-679 |#1|))))) +((-2881 (((-1163 (-409 (-568))) (-1163 (-409 (-568))) (-1163 (-409 (-568)))) 66)) (-1613 (((-1163 (-409 (-568))) (-634 (-568)) (-634 (-568))) 74)) (-3787 (((-1163 (-409 (-568))) (-568)) 40)) (-2978 (((-1163 (-409 (-568))) (-568)) 52)) (-1339 (((-409 (-568)) (-1163 (-409 (-568)))) 62)) (-1535 (((-1163 (-409 (-568))) (-568)) 32)) (-2131 (((-1163 (-409 (-568))) (-568)) 48)) (-2649 (((-1163 (-409 (-568))) (-568)) 46)) (-2326 (((-1163 (-409 (-568))) (-1163 (-409 (-568))) (-1163 (-409 (-568)))) 60)) (-1811 (((-1163 (-409 (-568))) (-568)) 25)) (-2752 (((-409 (-568)) (-1163 (-409 (-568))) (-1163 (-409 (-568)))) 64)) (-3542 (((-1163 (-409 (-568))) (-568)) 30)) (-3198 (((-1163 (-409 (-568))) (-634 (-568))) 71))) +(((-182) (-10 -7 (-15 -1811 ((-1163 (-409 (-568))) (-568))) (-15 -3787 ((-1163 (-409 (-568))) (-568))) (-15 -1535 ((-1163 (-409 (-568))) (-568))) (-15 -3542 ((-1163 (-409 (-568))) (-568))) (-15 -2649 ((-1163 (-409 (-568))) (-568))) (-15 -2131 ((-1163 (-409 (-568))) (-568))) (-15 -2978 ((-1163 (-409 (-568))) (-568))) (-15 -2752 ((-409 (-568)) (-1163 (-409 (-568))) (-1163 (-409 (-568))))) (-15 -2326 ((-1163 (-409 (-568))) (-1163 (-409 (-568))) (-1163 (-409 (-568))))) (-15 -1339 ((-409 (-568)) (-1163 (-409 (-568))))) (-15 -2881 ((-1163 (-409 (-568))) (-1163 (-409 (-568))) (-1163 (-409 (-568))))) (-15 -3198 ((-1163 (-409 (-568))) (-634 (-568)))) (-15 -1613 ((-1163 (-409 (-568))) (-634 (-568)) (-634 (-568)))))) (T -182)) +((-1613 (*1 *2 *3 *3) (-12 (-5 *3 (-634 (-568))) (-5 *2 (-1163 (-409 (-568)))) (-5 *1 (-182)))) (-3198 (*1 *2 *3) (-12 (-5 *3 (-634 (-568))) (-5 *2 (-1163 (-409 (-568)))) (-5 *1 (-182)))) (-2881 (*1 *2 *2 *2) (-12 (-5 *2 (-1163 (-409 (-568)))) (-5 *1 (-182)))) (-1339 (*1 *2 *3) (-12 (-5 *3 (-1163 (-409 (-568)))) (-5 *2 (-409 (-568))) (-5 *1 (-182)))) (-2326 (*1 *2 *2 *2) (-12 (-5 *2 (-1163 (-409 (-568)))) (-5 *1 (-182)))) (-2752 (*1 *2 *3 *3) (-12 (-5 *3 (-1163 (-409 (-568)))) (-5 *2 (-409 (-568))) (-5 *1 (-182)))) (-2978 (*1 *2 *3) (-12 (-5 *2 (-1163 (-409 (-568)))) (-5 *1 (-182)) (-5 *3 (-568)))) (-2131 (*1 *2 *3) (-12 (-5 *2 (-1163 (-409 (-568)))) (-5 *1 (-182)) (-5 *3 (-568)))) (-2649 (*1 *2 *3) (-12 (-5 *2 (-1163 (-409 (-568)))) (-5 *1 (-182)) (-5 *3 (-568)))) (-3542 (*1 *2 *3) (-12 (-5 *2 (-1163 (-409 (-568)))) (-5 *1 (-182)) (-5 *3 (-568)))) (-1535 (*1 *2 *3) (-12 (-5 *2 (-1163 (-409 (-568)))) (-5 *1 (-182)) (-5 *3 (-568)))) (-3787 (*1 *2 *3) (-12 (-5 *2 (-1163 (-409 (-568)))) (-5 *1 (-182)) (-5 *3 (-568)))) (-1811 (*1 *2 *3) (-12 (-5 *2 (-1163 (-409 (-568)))) (-5 *1 (-182)) (-5 *3 (-568))))) +(-10 -7 (-15 -1811 ((-1163 (-409 (-568))) (-568))) (-15 -3787 ((-1163 (-409 (-568))) (-568))) (-15 -1535 ((-1163 (-409 (-568))) (-568))) (-15 -3542 ((-1163 (-409 (-568))) (-568))) (-15 -2649 ((-1163 (-409 (-568))) (-568))) (-15 -2131 ((-1163 (-409 (-568))) (-568))) (-15 -2978 ((-1163 (-409 (-568))) (-568))) (-15 -2752 ((-409 (-568)) (-1163 (-409 (-568))) (-1163 (-409 (-568))))) (-15 -2326 ((-1163 (-409 (-568))) (-1163 (-409 (-568))) (-1163 (-409 (-568))))) (-15 -1339 ((-409 (-568)) (-1163 (-409 (-568))))) (-15 -2881 ((-1163 (-409 (-568))) (-1163 (-409 (-568))) (-1163 (-409 (-568))))) (-15 -3198 ((-1163 (-409 (-568))) (-634 (-568)))) (-15 -1613 ((-1163 (-409 (-568))) (-634 (-568)) (-634 (-568))))) +((-1861 (((-420 (-1157 (-568))) (-568)) 28)) (-2347 (((-634 (-1157 (-568))) (-568)) 23)) (-4411 (((-1157 (-568)) (-568)) 21))) +(((-183) (-10 -7 (-15 -2347 ((-634 (-1157 (-568))) (-568))) (-15 -4411 ((-1157 (-568)) (-568))) (-15 -1861 ((-420 (-1157 (-568))) (-568))))) (T -183)) +((-1861 (*1 *2 *3) (-12 (-5 *2 (-420 (-1157 (-568)))) (-5 *1 (-183)) (-5 *3 (-568)))) (-4411 (*1 *2 *3) (-12 (-5 *2 (-1157 (-568))) (-5 *1 (-183)) (-5 *3 (-568)))) (-2347 (*1 *2 *3) (-12 (-5 *2 (-634 (-1157 (-568)))) (-5 *1 (-183)) (-5 *3 (-568))))) +(-10 -7 (-15 -2347 ((-634 (-1157 (-568))) (-568))) (-15 -4411 ((-1157 (-568)) (-568))) (-15 -1861 ((-420 (-1157 (-568))) (-568)))) +((-1539 (((-1141 (-215)) (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) 101)) (-1903 (((-634 (-1143)) (-1141 (-215))) NIL)) (-1397 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) 77)) (-1685 (((-634 (-215)) (-310 (-215)) (-1161) (-1084 (-835 (-215)))) NIL)) (-2309 (((-634 (-1143)) (-634 (-215))) NIL)) (-2066 (((-215) (-1084 (-835 (-215)))) 22)) (-3632 (((-215) (-1084 (-835 (-215)))) 23)) (-3459 (((-381) (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) 93)) (-2445 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) 40)) (-2281 (((-1143) (-215)) NIL)) (-2199 (((-1143) (-634 (-1143))) 19)) (-3348 (((-1035) (-1161) (-1161) (-1035)) 12))) +(((-184) (-10 -7 (-15 -1397 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215))))) (-15 -2445 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215))))) (-15 -2066 ((-215) (-1084 (-835 (-215))))) (-15 -3632 ((-215) (-1084 (-835 (-215))))) (-15 -3459 ((-381) (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215))))) (-15 -1685 ((-634 (-215)) (-310 (-215)) (-1161) (-1084 (-835 (-215))))) (-15 -1539 ((-1141 (-215)) (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215))))) (-15 -2281 ((-1143) (-215))) (-15 -2309 ((-634 (-1143)) (-634 (-215)))) (-15 -1903 ((-634 (-1143)) (-1141 (-215)))) (-15 -2199 ((-1143) (-634 (-1143)))) (-15 -3348 ((-1035) (-1161) (-1161) (-1035))))) (T -184)) +((-3348 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1035)) (-5 *3 (-1161)) (-5 *1 (-184)))) (-2199 (*1 *2 *3) (-12 (-5 *3 (-634 (-1143))) (-5 *2 (-1143)) (-5 *1 (-184)))) (-1903 (*1 *2 *3) (-12 (-5 *3 (-1141 (-215))) (-5 *2 (-634 (-1143))) (-5 *1 (-184)))) (-2309 (*1 *2 *3) (-12 (-5 *3 (-634 (-215))) (-5 *2 (-634 (-1143))) (-5 *1 (-184)))) (-2281 (*1 *2 *3) (-12 (-5 *3 (-215)) (-5 *2 (-1143)) (-5 *1 (-184)))) (-1539 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (-5 *2 (-1141 (-215))) (-5 *1 (-184)))) (-1685 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-310 (-215))) (-5 *4 (-1161)) (-5 *5 (-1084 (-835 (-215)))) (-5 *2 (-634 (-215))) (-5 *1 (-184)))) (-3459 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (-5 *2 (-381)) (-5 *1 (-184)))) (-3632 (*1 *2 *3) (-12 (-5 *3 (-1084 (-835 (-215)))) (-5 *2 (-215)) (-5 *1 (-184)))) (-2066 (*1 *2 *3) (-12 (-5 *3 (-1084 (-835 (-215)))) (-5 *2 (-215)) (-5 *1 (-184)))) (-2445 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-184)))) (-1397 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-184))))) +(-10 -7 (-15 -1397 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215))))) (-15 -2445 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215))))) (-15 -2066 ((-215) (-1084 (-835 (-215))))) (-15 -3632 ((-215) (-1084 (-835 (-215))))) (-15 -3459 ((-381) (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215))))) (-15 -1685 ((-634 (-215)) (-310 (-215)) (-1161) (-1084 (-835 (-215))))) (-15 -1539 ((-1141 (-215)) (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215))))) (-15 -2281 ((-1143) (-215))) (-15 -2309 ((-634 (-1143)) (-634 (-215)))) (-15 -1903 ((-634 (-1143)) (-1141 (-215)))) (-15 -2199 ((-1143) (-634 (-1143)))) (-15 -3348 ((-1035) (-1161) (-1161) (-1035)))) +((-2447 (((-121) $ $) NIL)) (-1304 (((-1035) (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215))) (-1035)) 53) (((-1035) (-2 (|:| |fn| (-310 (-215))) (|:| -1338 (-634 (-1084 (-835 (-215))))) (|:| |abserr| (-215)) (|:| |relerr| (-215))) (-1035)) NIL)) (-3029 (((-2 (|:| -3029 (-381)) (|:| |explanations| (-1143)) (|:| |extra| (-1035))) (-1059) (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) 28) (((-2 (|:| -3029 (-381)) (|:| |explanations| (-1143)) (|:| |extra| (-1035))) (-1059) (-2 (|:| |fn| (-310 (-215))) (|:| -1338 (-634 (-1084 (-835 (-215))))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) NIL)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2745 (((-850) $) NIL)) (-1717 (((-121) $ $) NIL))) +(((-185) (-782)) (T -185)) +NIL +(-782) +((-2447 (((-121) $ $) NIL)) (-1304 (((-1035) (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215))) (-1035)) 58) (((-1035) (-2 (|:| |fn| (-310 (-215))) (|:| -1338 (-634 (-1084 (-835 (-215))))) (|:| |abserr| (-215)) (|:| |relerr| (-215))) (-1035)) NIL)) (-3029 (((-2 (|:| -3029 (-381)) (|:| |explanations| (-1143)) (|:| |extra| (-1035))) (-1059) (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) 37) (((-2 (|:| -3029 (-381)) (|:| |explanations| (-1143)) (|:| |extra| (-1035))) (-1059) (-2 (|:| |fn| (-310 (-215))) (|:| -1338 (-634 (-1084 (-835 (-215))))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) NIL)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2745 (((-850) $) NIL)) (-1717 (((-121) $ $) NIL))) +(((-186) (-782)) (T -186)) +NIL +(-782) +((-2447 (((-121) $ $) NIL)) (-1304 (((-1035) (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215))) (-1035)) 67) (((-1035) (-2 (|:| |fn| (-310 (-215))) (|:| -1338 (-634 (-1084 (-835 (-215))))) (|:| |abserr| (-215)) (|:| |relerr| (-215))) (-1035)) NIL)) (-3029 (((-2 (|:| -3029 (-381)) (|:| |explanations| (-1143)) (|:| |extra| (-1035))) (-1059) (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) 36) (((-2 (|:| -3029 (-381)) (|:| |explanations| (-1143)) (|:| |extra| (-1035))) (-1059) (-2 (|:| |fn| (-310 (-215))) (|:| -1338 (-634 (-1084 (-835 (-215))))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) NIL)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2745 (((-850) $) NIL)) (-1717 (((-121) $ $) NIL))) +(((-187) (-782)) (T -187)) +NIL +(-782) +((-2447 (((-121) $ $) NIL)) (-1304 (((-1035) (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215))) (-1035)) 54) (((-1035) (-2 (|:| |fn| (-310 (-215))) (|:| -1338 (-634 (-1084 (-835 (-215))))) (|:| |abserr| (-215)) (|:| |relerr| (-215))) (-1035)) NIL)) (-3029 (((-2 (|:| -3029 (-381)) (|:| |explanations| (-1143)) (|:| |extra| (-1035))) (-1059) (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) 30) (((-2 (|:| -3029 (-381)) (|:| |explanations| (-1143)) (|:| |extra| (-1035))) (-1059) (-2 (|:| |fn| (-310 (-215))) (|:| -1338 (-634 (-1084 (-835 (-215))))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) NIL)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2745 (((-850) $) NIL)) (-1717 (((-121) $ $) NIL))) +(((-188) (-782)) (T -188)) +NIL +(-782) +((-2447 (((-121) $ $) NIL)) (-1304 (((-1035) (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215))) (-1035)) 65) (((-1035) (-2 (|:| |fn| (-310 (-215))) (|:| -1338 (-634 (-1084 (-835 (-215))))) (|:| |abserr| (-215)) (|:| |relerr| (-215))) (-1035)) NIL)) (-3029 (((-2 (|:| -3029 (-381)) (|:| |explanations| (-1143)) (|:| |extra| (-1035))) (-1059) (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) 35) (((-2 (|:| -3029 (-381)) (|:| |explanations| (-1143)) (|:| |extra| (-1035))) (-1059) (-2 (|:| |fn| (-310 (-215))) (|:| -1338 (-634 (-1084 (-835 (-215))))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) NIL)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2745 (((-850) $) NIL)) (-1717 (((-121) $ $) NIL))) +(((-189) (-782)) (T -189)) +NIL +(-782) +((-2447 (((-121) $ $) NIL)) (-1304 (((-1035) (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215))) (-1035)) 71) (((-1035) (-2 (|:| |fn| (-310 (-215))) (|:| -1338 (-634 (-1084 (-835 (-215))))) (|:| |abserr| (-215)) (|:| |relerr| (-215))) (-1035)) NIL)) (-3029 (((-2 (|:| -3029 (-381)) (|:| |explanations| (-1143)) (|:| |extra| (-1035))) (-1059) (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) 33) (((-2 (|:| -3029 (-381)) (|:| |explanations| (-1143)) (|:| |extra| (-1035))) (-1059) (-2 (|:| |fn| (-310 (-215))) (|:| -1338 (-634 (-1084 (-835 (-215))))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) NIL)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2745 (((-850) $) NIL)) (-1717 (((-121) $ $) NIL))) +(((-190) (-782)) (T -190)) +NIL +(-782) +((-2447 (((-121) $ $) NIL)) (-1304 (((-1035) (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215))) (-1035)) 78) (((-1035) (-2 (|:| |fn| (-310 (-215))) (|:| -1338 (-634 (-1084 (-835 (-215))))) (|:| |abserr| (-215)) (|:| |relerr| (-215))) (-1035)) NIL)) (-3029 (((-2 (|:| -3029 (-381)) (|:| |explanations| (-1143)) (|:| |extra| (-1035))) (-1059) (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) 43) (((-2 (|:| -3029 (-381)) (|:| |explanations| (-1143)) (|:| |extra| (-1035))) (-1059) (-2 (|:| |fn| (-310 (-215))) (|:| -1338 (-634 (-1084 (-835 (-215))))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) NIL)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2745 (((-850) $) NIL)) (-1717 (((-121) $ $) NIL))) +(((-191) (-782)) (T -191)) +NIL +(-782) +((-2447 (((-121) $ $) NIL)) (-1304 (((-1035) (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215))) (-1035)) 68) (((-1035) (-2 (|:| |fn| (-310 (-215))) (|:| -1338 (-634 (-1084 (-835 (-215))))) (|:| |abserr| (-215)) (|:| |relerr| (-215))) (-1035)) NIL)) (-3029 (((-2 (|:| -3029 (-381)) (|:| |explanations| (-1143)) (|:| |extra| (-1035))) (-1059) (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) 37) (((-2 (|:| -3029 (-381)) (|:| |explanations| (-1143)) (|:| |extra| (-1035))) (-1059) (-2 (|:| |fn| (-310 (-215))) (|:| -1338 (-634 (-1084 (-835 (-215))))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) NIL)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2745 (((-850) $) NIL)) (-1717 (((-121) $ $) NIL))) +(((-192) (-782)) (T -192)) +NIL +(-782) +((-2447 (((-121) $ $) NIL)) (-1304 (((-1035) (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215))) (-1035)) NIL) (((-1035) (-2 (|:| |fn| (-310 (-215))) (|:| -1338 (-634 (-1084 (-835 (-215))))) (|:| |abserr| (-215)) (|:| |relerr| (-215))) (-1035)) 62)) (-3029 (((-2 (|:| -3029 (-381)) (|:| |explanations| (-1143)) (|:| |extra| (-1035))) (-1059) (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) NIL) (((-2 (|:| -3029 (-381)) (|:| |explanations| (-1143)) (|:| |extra| (-1035))) (-1059) (-2 (|:| |fn| (-310 (-215))) (|:| -1338 (-634 (-1084 (-835 (-215))))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) 29)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2745 (((-850) $) NIL)) (-1717 (((-121) $ $) NIL))) +(((-193) (-782)) (T -193)) +NIL +(-782) +((-2447 (((-121) $ $) NIL)) (-1304 (((-1035) (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215))) (-1035)) NIL) (((-1035) (-2 (|:| |fn| (-310 (-215))) (|:| -1338 (-634 (-1084 (-835 (-215))))) (|:| |abserr| (-215)) (|:| |relerr| (-215))) (-1035)) 60)) (-3029 (((-2 (|:| -3029 (-381)) (|:| |explanations| (-1143)) (|:| |extra| (-1035))) (-1059) (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) NIL) (((-2 (|:| -3029 (-381)) (|:| |explanations| (-1143)) (|:| |extra| (-1035))) (-1059) (-2 (|:| |fn| (-310 (-215))) (|:| -1338 (-634 (-1084 (-835 (-215))))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) 32)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2745 (((-850) $) NIL)) (-1717 (((-121) $ $) NIL))) +(((-194) (-782)) (T -194)) +NIL +(-782) +((-2447 (((-121) $ $) NIL)) (-1304 (((-1035) (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215))) (-1035)) 89) (((-1035) (-2 (|:| |fn| (-310 (-215))) (|:| -1338 (-634 (-1084 (-835 (-215))))) (|:| |abserr| (-215)) (|:| |relerr| (-215))) (-1035)) NIL)) (-3029 (((-2 (|:| -3029 (-381)) (|:| |explanations| (-1143)) (|:| |extra| (-1035))) (-1059) (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) 77) (((-2 (|:| -3029 (-381)) (|:| |explanations| (-1143)) (|:| |extra| (-1035))) (-1059) (-2 (|:| |fn| (-310 (-215))) (|:| -1338 (-634 (-1084 (-835 (-215))))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) NIL)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2745 (((-850) $) NIL)) (-1717 (((-121) $ $) NIL))) +(((-195) (-782)) (T -195)) +NIL +(-782) +((-3342 (((-3 (-2 (|:| -4192 (-123)) (|:| |w| (-215))) "failed") (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) 80)) (-2782 (((-568) (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) 39)) (-2122 (((-3 (-634 (-215)) "failed") (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) 69))) +(((-196) (-10 -7 (-15 -3342 ((-3 (-2 (|:| -4192 (-123)) (|:| |w| (-215))) "failed") (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215))))) (-15 -2122 ((-3 (-634 (-215)) "failed") (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215))))) (-15 -2782 ((-568) (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215))))))) (T -196)) +((-2782 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (-5 *2 (-568)) (-5 *1 (-196)))) (-2122 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (-5 *2 (-634 (-215))) (-5 *1 (-196)))) (-3342 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (-5 *2 (-2 (|:| -4192 (-123)) (|:| |w| (-215)))) (-5 *1 (-196))))) +(-10 -7 (-15 -3342 ((-3 (-2 (|:| -4192 (-123)) (|:| |w| (-215))) "failed") (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215))))) (-15 -2122 ((-3 (-634 (-215)) "failed") (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215))))) (-15 -2782 ((-568) (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))))) +((-3913 (((-381) (-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) 37)) (-3441 (((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) 127)) (-3381 (((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-679 (-310 (-215)))) 87)) (-3231 (((-381) (-679 (-310 (-215)))) 110)) (-3147 (((-679 (-310 (-215))) (-1244 (-310 (-215))) (-634 (-1161))) 107)) (-2426 (((-381) (-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) 26)) (-3175 (((-381) (-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) 42)) (-1339 (((-679 (-310 (-215))) (-679 (-310 (-215))) (-634 (-1161)) (-1244 (-310 (-215)))) 99)) (-2824 (((-381) (-381) (-634 (-381))) 104) (((-381) (-381) (-381)) 102)) (-3968 (((-381) (-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) 33))) +(((-197) (-10 -7 (-15 -2824 ((-381) (-381) (-381))) (-15 -2824 ((-381) (-381) (-634 (-381)))) (-15 -3231 ((-381) (-679 (-310 (-215))))) (-15 -3147 ((-679 (-310 (-215))) (-1244 (-310 (-215))) (-634 (-1161)))) (-15 -1339 ((-679 (-310 (-215))) (-679 (-310 (-215))) (-634 (-1161)) (-1244 (-310 (-215))))) (-15 -3381 ((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-679 (-310 (-215))))) (-15 -3441 ((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215))))) (-15 -3913 ((-381) (-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215))))) (-15 -3175 ((-381) (-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215))))) (-15 -3968 ((-381) (-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215))))) (-15 -2426 ((-381) (-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215))))))) (T -197)) +((-2426 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (-5 *2 (-381)) (-5 *1 (-197)))) (-3968 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (-5 *2 (-381)) (-5 *1 (-197)))) (-3175 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (-5 *2 (-381)) (-5 *1 (-197)))) (-3913 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (-5 *2 (-381)) (-5 *1 (-197)))) (-3441 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381)))) (-5 *1 (-197)))) (-3381 (*1 *2 *3) (-12 (-5 *3 (-679 (-310 (-215)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381)))) (-5 *1 (-197)))) (-1339 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-679 (-310 (-215)))) (-5 *3 (-634 (-1161))) (-5 *4 (-1244 (-310 (-215)))) (-5 *1 (-197)))) (-3147 (*1 *2 *3 *4) (-12 (-5 *3 (-1244 (-310 (-215)))) (-5 *4 (-634 (-1161))) (-5 *2 (-679 (-310 (-215)))) (-5 *1 (-197)))) (-3231 (*1 *2 *3) (-12 (-5 *3 (-679 (-310 (-215)))) (-5 *2 (-381)) (-5 *1 (-197)))) (-2824 (*1 *2 *2 *3) (-12 (-5 *3 (-634 (-381))) (-5 *2 (-381)) (-5 *1 (-197)))) (-2824 (*1 *2 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-197))))) +(-10 -7 (-15 -2824 ((-381) (-381) (-381))) (-15 -2824 ((-381) (-381) (-634 (-381)))) (-15 -3231 ((-381) (-679 (-310 (-215))))) (-15 -3147 ((-679 (-310 (-215))) (-1244 (-310 (-215))) (-634 (-1161)))) (-15 -1339 ((-679 (-310 (-215))) (-679 (-310 (-215))) (-634 (-1161)) (-1244 (-310 (-215))))) (-15 -3381 ((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-679 (-310 (-215))))) (-15 -3441 ((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215))))) (-15 -3913 ((-381) (-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215))))) (-15 -3175 ((-381) (-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215))))) (-15 -3968 ((-381) (-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215))))) (-15 -2426 ((-381) (-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))))) +((-2447 (((-121) $ $) NIL)) (-3029 (((-2 (|:| -3029 (-381)) (|:| |explanations| (-1143))) (-1059) (-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) 37)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2745 (((-850) $) NIL)) (-4110 (((-1035) (-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) 60)) (-1717 (((-121) $ $) NIL))) +(((-198) (-795)) (T -198)) +NIL +(-795) +((-2447 (((-121) $ $) NIL)) (-3029 (((-2 (|:| -3029 (-381)) (|:| |explanations| (-1143))) (-1059) (-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) 37)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2745 (((-850) $) NIL)) (-4110 (((-1035) (-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) 60)) (-1717 (((-121) $ $) NIL))) +(((-199) (-795)) (T -199)) +NIL +(-795) +((-2447 (((-121) $ $) NIL)) (-3029 (((-2 (|:| -3029 (-381)) (|:| |explanations| (-1143))) (-1059) (-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) 36)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2745 (((-850) $) NIL)) (-4110 (((-1035) (-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) 64)) (-1717 (((-121) $ $) NIL))) +(((-200) (-795)) (T -200)) +NIL +(-795) +((-2447 (((-121) $ $) NIL)) (-3029 (((-2 (|:| -3029 (-381)) (|:| |explanations| (-1143))) (-1059) (-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) 42)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2745 (((-850) $) NIL)) (-4110 (((-1035) (-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) 73)) (-1717 (((-121) $ $) NIL))) +(((-201) (-795)) (T -201)) +NIL +(-795) +((-3595 (((-634 (-1161)) (-1161) (-763)) 22)) (-3176 (((-310 (-215)) (-310 (-215))) 29)) (-4118 (((-121) (-2 (|:| |pde| (-634 (-310 (-215)))) (|:| |constraints| (-634 (-2 (|:| |start| (-215)) (|:| |finish| (-215)) (|:| |grid| (-763)) (|:| |boundaryType| (-568)) (|:| |dStart| (-679 (-215))) (|:| |dFinish| (-679 (-215)))))) (|:| |f| (-634 (-634 (-310 (-215))))) (|:| |st| (-1143)) (|:| |tol| (-215)))) 67)) (-2658 (((-121) (-215) (-215) (-634 (-310 (-215)))) 43))) +(((-202) (-10 -7 (-15 -3595 ((-634 (-1161)) (-1161) (-763))) (-15 -3176 ((-310 (-215)) (-310 (-215)))) (-15 -2658 ((-121) (-215) (-215) (-634 (-310 (-215))))) (-15 -4118 ((-121) (-2 (|:| |pde| (-634 (-310 (-215)))) (|:| |constraints| (-634 (-2 (|:| |start| (-215)) (|:| |finish| (-215)) (|:| |grid| (-763)) (|:| |boundaryType| (-568)) (|:| |dStart| (-679 (-215))) (|:| |dFinish| (-679 (-215)))))) (|:| |f| (-634 (-634 (-310 (-215))))) (|:| |st| (-1143)) (|:| |tol| (-215))))))) (T -202)) +((-4118 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-634 (-310 (-215)))) (|:| |constraints| (-634 (-2 (|:| |start| (-215)) (|:| |finish| (-215)) (|:| |grid| (-763)) (|:| |boundaryType| (-568)) (|:| |dStart| (-679 (-215))) (|:| |dFinish| (-679 (-215)))))) (|:| |f| (-634 (-634 (-310 (-215))))) (|:| |st| (-1143)) (|:| |tol| (-215)))) (-5 *2 (-121)) (-5 *1 (-202)))) (-2658 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-634 (-310 (-215)))) (-5 *3 (-215)) (-5 *2 (-121)) (-5 *1 (-202)))) (-3176 (*1 *2 *2) (-12 (-5 *2 (-310 (-215))) (-5 *1 (-202)))) (-3595 (*1 *2 *3 *4) (-12 (-5 *4 (-763)) (-5 *2 (-634 (-1161))) (-5 *1 (-202)) (-5 *3 (-1161))))) +(-10 -7 (-15 -3595 ((-634 (-1161)) (-1161) (-763))) (-15 -3176 ((-310 (-215)) (-310 (-215)))) (-15 -2658 ((-121) (-215) (-215) (-634 (-310 (-215))))) (-15 -4118 ((-121) (-2 (|:| |pde| (-634 (-310 (-215)))) (|:| |constraints| (-634 (-2 (|:| |start| (-215)) (|:| |finish| (-215)) (|:| |grid| (-763)) (|:| |boundaryType| (-568)) (|:| |dStart| (-679 (-215))) (|:| |dFinish| (-679 (-215)))))) (|:| |f| (-634 (-634 (-310 (-215))))) (|:| |st| (-1143)) (|:| |tol| (-215)))))) +((-2447 (((-121) $ $) NIL)) (-3029 (((-2 (|:| -3029 (-381)) (|:| |explanations| (-1143))) (-1059) (-2 (|:| |pde| (-634 (-310 (-215)))) (|:| |constraints| (-634 (-2 (|:| |start| (-215)) (|:| |finish| (-215)) (|:| |grid| (-763)) (|:| |boundaryType| (-568)) (|:| |dStart| (-679 (-215))) (|:| |dFinish| (-679 (-215)))))) (|:| |f| (-634 (-634 (-310 (-215))))) (|:| |st| (-1143)) (|:| |tol| (-215)))) 17)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2745 (((-850) $) NIL)) (-4030 (((-1035) (-2 (|:| |pde| (-634 (-310 (-215)))) (|:| |constraints| (-634 (-2 (|:| |start| (-215)) (|:| |finish| (-215)) (|:| |grid| (-763)) (|:| |boundaryType| (-568)) (|:| |dStart| (-679 (-215))) (|:| |dFinish| (-679 (-215)))))) (|:| |f| (-634 (-634 (-310 (-215))))) (|:| |st| (-1143)) (|:| |tol| (-215)))) 55)) (-1717 (((-121) $ $) NIL))) +(((-203) (-890)) (T -203)) +NIL +(-890) +((-2447 (((-121) $ $) NIL)) (-3029 (((-2 (|:| -3029 (-381)) (|:| |explanations| (-1143))) (-1059) (-2 (|:| |pde| (-634 (-310 (-215)))) (|:| |constraints| (-634 (-2 (|:| |start| (-215)) (|:| |finish| (-215)) (|:| |grid| (-763)) (|:| |boundaryType| (-568)) (|:| |dStart| (-679 (-215))) (|:| |dFinish| (-679 (-215)))))) (|:| |f| (-634 (-634 (-310 (-215))))) (|:| |st| (-1143)) (|:| |tol| (-215)))) 12)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2745 (((-850) $) NIL)) (-4030 (((-1035) (-2 (|:| |pde| (-634 (-310 (-215)))) (|:| |constraints| (-634 (-2 (|:| |start| (-215)) (|:| |finish| (-215)) (|:| |grid| (-763)) (|:| |boundaryType| (-568)) (|:| |dStart| (-679 (-215))) (|:| |dFinish| (-679 (-215)))))) (|:| |f| (-634 (-634 (-310 (-215))))) (|:| |st| (-1143)) (|:| |tol| (-215)))) NIL)) (-1717 (((-121) $ $) NIL))) +(((-204) (-890)) (T -204)) +NIL +(-890) +((-2447 (((-121) $ $) NIL)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-1352 (((-1249) $) 36) (((-1249) $ (-917) (-917)) 38)) (-2779 (($ $ (-990)) 19) (((-240 (-1143)) $ (-1161)) 15)) (-4125 (((-1249) $) 34)) (-2745 (((-850) $) 31) (($ (-634 |#1|)) 8)) (-1717 (((-121) $ $) NIL)) (-1773 (($ $ $) 27)) (-1767 (($ $ $) 22))) +(((-205 |#1|) (-13 (-1090) (-10 -8 (-15 -2779 ($ $ (-990))) (-15 -2779 ((-240 (-1143)) $ (-1161))) (-15 -1767 ($ $ $)) (-15 -1773 ($ $ $)) (-15 -2745 ($ (-634 |#1|))) (-15 -4125 ((-1249) $)) (-15 -1352 ((-1249) $)) (-15 -1352 ((-1249) $ (-917) (-917))))) (-13 (-842) (-10 -8 (-15 -2779 ((-1143) $ (-1161))) (-15 -4125 ((-1249) $)) (-15 -1352 ((-1249) $))))) (T -205)) +((-2779 (*1 *1 *1 *2) (-12 (-5 *2 (-990)) (-5 *1 (-205 *3)) (-4 *3 (-13 (-842) (-10 -8 (-15 -2779 ((-1143) $ (-1161))) (-15 -4125 ((-1249) $)) (-15 -1352 ((-1249) $))))))) (-2779 (*1 *2 *1 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-240 (-1143))) (-5 *1 (-205 *4)) (-4 *4 (-13 (-842) (-10 -8 (-15 -2779 ((-1143) $ *3)) (-15 -4125 ((-1249) $)) (-15 -1352 ((-1249) $))))))) (-1767 (*1 *1 *1 *1) (-12 (-5 *1 (-205 *2)) (-4 *2 (-13 (-842) (-10 -8 (-15 -2779 ((-1143) $ (-1161))) (-15 -4125 ((-1249) $)) (-15 -1352 ((-1249) $))))))) (-1773 (*1 *1 *1 *1) (-12 (-5 *1 (-205 *2)) (-4 *2 (-13 (-842) (-10 -8 (-15 -2779 ((-1143) $ (-1161))) (-15 -4125 ((-1249) $)) (-15 -1352 ((-1249) $))))))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-13 (-842) (-10 -8 (-15 -2779 ((-1143) $ (-1161))) (-15 -4125 ((-1249) $)) (-15 -1352 ((-1249) $))))) (-5 *1 (-205 *3)))) (-4125 (*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-205 *3)) (-4 *3 (-13 (-842) (-10 -8 (-15 -2779 ((-1143) $ (-1161))) (-15 -4125 (*2 $)) (-15 -1352 (*2 $))))))) (-1352 (*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-205 *3)) (-4 *3 (-13 (-842) (-10 -8 (-15 -2779 ((-1143) $ (-1161))) (-15 -4125 (*2 $)) (-15 -1352 (*2 $))))))) (-1352 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1249)) (-5 *1 (-205 *4)) (-4 *4 (-13 (-842) (-10 -8 (-15 -2779 ((-1143) $ (-1161))) (-15 -4125 (*2 $)) (-15 -1352 (*2 $)))))))) +(-13 (-1090) (-10 -8 (-15 -2779 ($ $ (-990))) (-15 -2779 ((-240 (-1143)) $ (-1161))) (-15 -1767 ($ $ $)) (-15 -1773 ($ $ $)) (-15 -2745 ($ (-634 |#1|))) (-15 -4125 ((-1249) $)) (-15 -1352 ((-1249) $)) (-15 -1352 ((-1249) $ (-917) (-917))))) +((-1372 ((|#2| |#4| (-1 |#2| |#2|)) 46))) +(((-206 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1372 (|#2| |#4| (-1 |#2| |#2|)))) (-365) (-1219 |#1|) (-1219 (-409 |#2|)) (-340 |#1| |#2| |#3|)) (T -206)) +((-1372 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-365)) (-4 *6 (-1219 (-409 *2))) (-4 *2 (-1219 *5)) (-5 *1 (-206 *5 *2 *6 *3)) (-4 *3 (-340 *5 *2 *6))))) +(-10 -7 (-15 -1372 (|#2| |#4| (-1 |#2| |#2|)))) +((-3344 ((|#2| |#2| (-763) |#2|) 41)) (-2816 ((|#2| |#2| (-763) |#2|) 37)) (-2117 (((-634 |#2|) (-634 (-2 (|:| |deg| (-763)) (|:| -4435 |#2|)))) 55)) (-1879 (((-634 (-2 (|:| |deg| (-763)) (|:| -4435 |#2|))) |#2|) 51)) (-4067 (((-121) |#2|) 48)) (-2630 (((-420 |#2|) |#2|) 74)) (-3848 (((-420 |#2|) |#2|) 73)) (-3333 ((|#2| |#2| (-763) |#2|) 35)) (-3177 (((-2 (|:| |cont| |#1|) (|:| -3276 (-634 (-2 (|:| |irr| |#2|) (|:| -3959 (-568)))))) |#2| (-121)) 66))) +(((-207 |#1| |#2|) (-10 -7 (-15 -3848 ((-420 |#2|) |#2|)) (-15 -2630 ((-420 |#2|) |#2|)) (-15 -3177 ((-2 (|:| |cont| |#1|) (|:| -3276 (-634 (-2 (|:| |irr| |#2|) (|:| -3959 (-568)))))) |#2| (-121))) (-15 -1879 ((-634 (-2 (|:| |deg| (-763)) (|:| -4435 |#2|))) |#2|)) (-15 -2117 ((-634 |#2|) (-634 (-2 (|:| |deg| (-763)) (|:| -4435 |#2|))))) (-15 -3333 (|#2| |#2| (-763) |#2|)) (-15 -2816 (|#2| |#2| (-763) |#2|)) (-15 -3344 (|#2| |#2| (-763) |#2|)) (-15 -4067 ((-121) |#2|))) (-350) (-1219 |#1|)) (T -207)) +((-4067 (*1 *2 *3) (-12 (-4 *4 (-350)) (-5 *2 (-121)) (-5 *1 (-207 *4 *3)) (-4 *3 (-1219 *4)))) (-3344 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-763)) (-4 *4 (-350)) (-5 *1 (-207 *4 *2)) (-4 *2 (-1219 *4)))) (-2816 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-763)) (-4 *4 (-350)) (-5 *1 (-207 *4 *2)) (-4 *2 (-1219 *4)))) (-3333 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-763)) (-4 *4 (-350)) (-5 *1 (-207 *4 *2)) (-4 *2 (-1219 *4)))) (-2117 (*1 *2 *3) (-12 (-5 *3 (-634 (-2 (|:| |deg| (-763)) (|:| -4435 *5)))) (-4 *5 (-1219 *4)) (-4 *4 (-350)) (-5 *2 (-634 *5)) (-5 *1 (-207 *4 *5)))) (-1879 (*1 *2 *3) (-12 (-4 *4 (-350)) (-5 *2 (-634 (-2 (|:| |deg| (-763)) (|:| -4435 *3)))) (-5 *1 (-207 *4 *3)) (-4 *3 (-1219 *4)))) (-3177 (*1 *2 *3 *4) (-12 (-5 *4 (-121)) (-4 *5 (-350)) (-5 *2 (-2 (|:| |cont| *5) (|:| -3276 (-634 (-2 (|:| |irr| *3) (|:| -3959 (-568))))))) (-5 *1 (-207 *5 *3)) (-4 *3 (-1219 *5)))) (-2630 (*1 *2 *3) (-12 (-4 *4 (-350)) (-5 *2 (-420 *3)) (-5 *1 (-207 *4 *3)) (-4 *3 (-1219 *4)))) (-3848 (*1 *2 *3) (-12 (-4 *4 (-350)) (-5 *2 (-420 *3)) (-5 *1 (-207 *4 *3)) (-4 *3 (-1219 *4))))) +(-10 -7 (-15 -3848 ((-420 |#2|) |#2|)) (-15 -2630 ((-420 |#2|) |#2|)) (-15 -3177 ((-2 (|:| |cont| |#1|) (|:| -3276 (-634 (-2 (|:| |irr| |#2|) (|:| -3959 (-568)))))) |#2| (-121))) (-15 -1879 ((-634 (-2 (|:| |deg| (-763)) (|:| -4435 |#2|))) |#2|)) (-15 -2117 ((-634 |#2|) (-634 (-2 (|:| |deg| (-763)) (|:| -4435 |#2|))))) (-15 -3333 (|#2| |#2| (-763) |#2|)) (-15 -2816 (|#2| |#2| (-763) |#2|)) (-15 -3344 (|#2| |#2| (-763) |#2|)) (-15 -4067 ((-121) |#2|))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-1492 (((-568) $) NIL (|has| (-568) (-301)))) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL)) (-2227 (($ $) NIL)) (-1573 (((-121) $) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-1750 (((-420 (-1157 $)) (-1157 $)) NIL (|has| (-568) (-904)))) (-4305 (($ $) NIL)) (-1678 (((-420 $) $) NIL)) (-1858 (((-3 (-634 (-1157 $)) "failed") (-634 (-1157 $)) (-1157 $)) NIL (|has| (-568) (-904)))) (-1497 (((-121) $ $) NIL)) (-3662 (((-568) $) NIL (|has| (-568) (-815)))) (-2671 (($) NIL T CONST)) (-3666 (((-3 (-568) "failed") $) NIL) (((-3 (-1161) "failed") $) NIL (|has| (-568) (-1037 (-1161)))) (((-3 (-409 (-568)) "failed") $) NIL (|has| (-568) (-1037 (-568)))) (((-3 (-568) "failed") $) NIL (|has| (-568) (-1037 (-568))))) (-2854 (((-568) $) NIL) (((-1161) $) NIL (|has| (-568) (-1037 (-1161)))) (((-409 (-568)) $) NIL (|has| (-568) (-1037 (-568)))) (((-568) $) NIL (|has| (-568) (-1037 (-568))))) (-2401 (($ $ $) NIL)) (-3164 (((-679 (-568)) (-679 $)) NIL (|has| (-568) (-630 (-568)))) (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) NIL (|has| (-568) (-630 (-568)))) (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) NIL) (((-679 (-568)) (-679 $)) NIL)) (-2925 (((-3 $ "failed") $) NIL)) (-1731 (($) NIL (|has| (-568) (-550)))) (-2412 (($ $ $) NIL)) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) NIL)) (-3927 (((-121) $) NIL)) (-2033 (((-121) $) NIL (|has| (-568) (-815)))) (-4410 (((-884 (-568) $) $ (-887 (-568)) (-884 (-568) $)) NIL (|has| (-568) (-881 (-568)))) (((-884 (-381) $) $ (-887 (-381)) (-884 (-381) $)) NIL (|has| (-568) (-881 (-381))))) (-2735 (((-121) $) NIL)) (-1332 (($ $) NIL)) (-2317 (((-568) $) NIL)) (-3038 (((-3 $ "failed") $) NIL (|has| (-568) (-1136)))) (-2245 (((-121) $) NIL (|has| (-568) (-815)))) (-3562 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-2521 (($ $ $) NIL (|has| (-568) (-842)))) (-3268 (($ $ $) NIL (|has| (-568) (-842)))) (-2795 (($ (-1 (-568) (-568)) $) NIL)) (-2495 (($ $ $) NIL) (($ (-634 $)) NIL)) (-4487 (((-1143) $) NIL)) (-2081 (($ $) NIL)) (-4434 (($) NIL (|has| (-568) (-1136)) CONST)) (-4022 (((-1108) $) NIL)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL)) (-2721 (($ $ $) NIL) (($ (-634 $)) NIL)) (-3880 (($ $) NIL (|has| (-568) (-301))) (((-409 (-568)) $) NIL)) (-1519 (((-568) $) NIL (|has| (-568) (-550)))) (-2905 (((-420 (-1157 $)) (-1157 $)) NIL (|has| (-568) (-904)))) (-3545 (((-420 (-1157 $)) (-1157 $)) NIL (|has| (-568) (-904)))) (-3848 (((-420 $) $) NIL)) (-4497 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2595 (((-3 $ "failed") $ $) NIL)) (-2344 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-1339 (($ $ (-634 (-568)) (-634 (-568))) NIL (|has| (-568) (-303 (-568)))) (($ $ (-568) (-568)) NIL (|has| (-568) (-303 (-568)))) (($ $ (-288 (-568))) NIL (|has| (-568) (-303 (-568)))) (($ $ (-634 (-288 (-568)))) NIL (|has| (-568) (-303 (-568)))) (($ $ (-634 (-1161)) (-634 (-568))) NIL (|has| (-568) (-523 (-1161) (-568)))) (($ $ (-1161) (-568)) NIL (|has| (-568) (-523 (-1161) (-568))))) (-2709 (((-763) $) NIL)) (-2779 (($ $ (-568)) NIL (|has| (-568) (-281 (-568) (-568))))) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL)) (-4189 (($ $) NIL (|has| (-568) (-225))) (($ $ (-763)) NIL (|has| (-568) (-225))) (($ $ (-1161)) NIL (|has| (-568) (-895 (-1161)))) (($ $ (-634 (-1161))) NIL (|has| (-568) (-895 (-1161)))) (($ $ (-1161) (-763)) NIL (|has| (-568) (-895 (-1161)))) (($ $ (-634 (-1161)) (-634 (-763))) NIL (|has| (-568) (-895 (-1161)))) (($ $ (-1 (-568) (-568)) (-763)) NIL) (($ $ (-1 (-568) (-568))) NIL)) (-3013 (($ $) NIL)) (-2324 (((-568) $) NIL)) (-4185 (($ (-409 (-568))) 8)) (-4278 (((-887 (-568)) $) NIL (|has| (-568) (-609 (-887 (-568))))) (((-887 (-381)) $) NIL (|has| (-568) (-609 (-887 (-381))))) (((-541) $) NIL (|has| (-568) (-609 (-541)))) (((-381) $) NIL (|has| (-568) (-1021))) (((-215) $) NIL (|has| (-568) (-1021)))) (-2979 (((-3 (-1244 $) "failed") (-679 $)) NIL (-12 (|has| $ (-148)) (|has| (-568) (-904))))) (-2745 (((-850) $) NIL) (($ (-568)) NIL) (($ $) NIL) (($ (-409 (-568))) 7) (($ (-568)) NIL) (($ (-1161)) NIL (|has| (-568) (-1037 (-1161)))) (((-409 (-568)) $) NIL) (((-1004 10) $) 9)) (-4371 (((-3 $ "failed") $) NIL (-2198 (-12 (|has| $ (-148)) (|has| (-568) (-904))) (|has| (-568) (-148))))) (-4078 (((-763)) NIL)) (-2285 (((-568) $) NIL (|has| (-568) (-550)))) (-1826 (((-121) $ $) NIL)) (-2897 (($ $) NIL (|has| (-568) (-815)))) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL)) (-3056 (($) NIL T CONST)) (-1556 (($) NIL T CONST)) (-3190 (($ $) NIL (|has| (-568) (-225))) (($ $ (-763)) NIL (|has| (-568) (-225))) (($ $ (-1161)) NIL (|has| (-568) (-895 (-1161)))) (($ $ (-634 (-1161))) NIL (|has| (-568) (-895 (-1161)))) (($ $ (-1161) (-763)) NIL (|has| (-568) (-895 (-1161)))) (($ $ (-634 (-1161)) (-634 (-763))) NIL (|has| (-568) (-895 (-1161)))) (($ $ (-1 (-568) (-568)) (-763)) NIL) (($ $ (-1 (-568) (-568))) NIL)) (-1751 (((-121) $ $) NIL (|has| (-568) (-842)))) (-1738 (((-121) $ $) NIL (|has| (-568) (-842)))) (-1717 (((-121) $ $) NIL)) (-1745 (((-121) $ $) NIL (|has| (-568) (-842)))) (-1732 (((-121) $ $) NIL (|has| (-568) (-842)))) (-1779 (($ $ $) NIL) (($ (-568) (-568)) NIL)) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) NIL) (($ $ (-409 (-568))) NIL) (($ (-409 (-568)) $) NIL) (($ (-568) $) NIL) (($ $ (-568)) NIL))) +(((-208) (-13 (-993 (-568)) (-10 -8 (-15 -2745 ((-409 (-568)) $)) (-15 -2745 ((-1004 10) $)) (-15 -3880 ((-409 (-568)) $)) (-15 -4185 ($ (-409 (-568))))))) (T -208)) +((-2745 (*1 *2 *1) (-12 (-5 *2 (-409 (-568))) (-5 *1 (-208)))) (-2745 (*1 *2 *1) (-12 (-5 *2 (-1004 10)) (-5 *1 (-208)))) (-3880 (*1 *2 *1) (-12 (-5 *2 (-409 (-568))) (-5 *1 (-208)))) (-4185 (*1 *1 *2) (-12 (-5 *2 (-409 (-568))) (-5 *1 (-208))))) +(-13 (-993 (-568)) (-10 -8 (-15 -2745 ((-409 (-568)) $)) (-15 -2745 ((-1004 10) $)) (-15 -3880 ((-409 (-568)) $)) (-15 -4185 ($ (-409 (-568)))))) +((-3837 (((-3 (|:| |f1| (-835 |#2|)) (|:| |f2| (-634 (-835 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1082 (-835 |#2|)) (-1143)) 27) (((-3 (|:| |f1| (-835 |#2|)) (|:| |f2| (-634 (-835 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1082 (-835 |#2|))) 23)) (-4097 (((-3 (|:| |f1| (-835 |#2|)) (|:| |f2| (-634 (-835 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1161) (-835 |#2|) (-835 |#2|) (-121)) 16))) +(((-209 |#1| |#2|) (-10 -7 (-15 -3837 ((-3 (|:| |f1| (-835 |#2|)) (|:| |f2| (-634 (-835 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1082 (-835 |#2|)))) (-15 -3837 ((-3 (|:| |f1| (-835 |#2|)) (|:| |f2| (-634 (-835 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1082 (-835 |#2|)) (-1143))) (-15 -4097 ((-3 (|:| |f1| (-835 |#2|)) (|:| |f2| (-634 (-835 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1161) (-835 |#2|) (-835 |#2|) (-121)))) (-13 (-301) (-842) (-150) (-1037 (-568)) (-630 (-568))) (-13 (-1181) (-959) (-29 |#1|))) (T -209)) +((-4097 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1161)) (-5 *6 (-121)) (-4 *7 (-13 (-301) (-842) (-150) (-1037 (-568)) (-630 (-568)))) (-4 *3 (-13 (-1181) (-959) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-835 *3)) (|:| |f2| (-634 (-835 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-209 *7 *3)) (-5 *5 (-835 *3)))) (-3837 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1082 (-835 *3))) (-5 *5 (-1143)) (-4 *3 (-13 (-1181) (-959) (-29 *6))) (-4 *6 (-13 (-301) (-842) (-150) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-3 (|:| |f1| (-835 *3)) (|:| |f2| (-634 (-835 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-209 *6 *3)))) (-3837 (*1 *2 *3 *4) (-12 (-5 *4 (-1082 (-835 *3))) (-4 *3 (-13 (-1181) (-959) (-29 *5))) (-4 *5 (-13 (-301) (-842) (-150) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-3 (|:| |f1| (-835 *3)) (|:| |f2| (-634 (-835 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-209 *5 *3))))) +(-10 -7 (-15 -3837 ((-3 (|:| |f1| (-835 |#2|)) (|:| |f2| (-634 (-835 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1082 (-835 |#2|)))) (-15 -3837 ((-3 (|:| |f1| (-835 |#2|)) (|:| |f2| (-634 (-835 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1082 (-835 |#2|)) (-1143))) (-15 -4097 ((-3 (|:| |f1| (-835 |#2|)) (|:| |f2| (-634 (-835 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1161) (-835 |#2|) (-835 |#2|) (-121)))) +((-3837 (((-3 (|:| |f1| (-835 (-310 |#1|))) (|:| |f2| (-634 (-835 (-310 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-409 (-953 |#1|)) (-1082 (-835 (-409 (-953 |#1|)))) (-1143)) 44) (((-3 (|:| |f1| (-835 (-310 |#1|))) (|:| |f2| (-634 (-835 (-310 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-409 (-953 |#1|)) (-1082 (-835 (-409 (-953 |#1|))))) 41) (((-3 (|:| |f1| (-835 (-310 |#1|))) (|:| |f2| (-634 (-835 (-310 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-409 (-953 |#1|)) (-1082 (-835 (-310 |#1|))) (-1143)) 45) (((-3 (|:| |f1| (-835 (-310 |#1|))) (|:| |f2| (-634 (-835 (-310 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-409 (-953 |#1|)) (-1082 (-835 (-310 |#1|)))) 17))) +(((-210 |#1|) (-10 -7 (-15 -3837 ((-3 (|:| |f1| (-835 (-310 |#1|))) (|:| |f2| (-634 (-835 (-310 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-409 (-953 |#1|)) (-1082 (-835 (-310 |#1|))))) (-15 -3837 ((-3 (|:| |f1| (-835 (-310 |#1|))) (|:| |f2| (-634 (-835 (-310 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-409 (-953 |#1|)) (-1082 (-835 (-310 |#1|))) (-1143))) (-15 -3837 ((-3 (|:| |f1| (-835 (-310 |#1|))) (|:| |f2| (-634 (-835 (-310 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-409 (-953 |#1|)) (-1082 (-835 (-409 (-953 |#1|)))))) (-15 -3837 ((-3 (|:| |f1| (-835 (-310 |#1|))) (|:| |f2| (-634 (-835 (-310 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-409 (-953 |#1|)) (-1082 (-835 (-409 (-953 |#1|)))) (-1143)))) (-13 (-301) (-842) (-150) (-1037 (-568)) (-630 (-568)))) (T -210)) +((-3837 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1082 (-835 (-409 (-953 *6))))) (-5 *5 (-1143)) (-5 *3 (-409 (-953 *6))) (-4 *6 (-13 (-301) (-842) (-150) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-3 (|:| |f1| (-835 (-310 *6))) (|:| |f2| (-634 (-835 (-310 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-210 *6)))) (-3837 (*1 *2 *3 *4) (-12 (-5 *4 (-1082 (-835 (-409 (-953 *5))))) (-5 *3 (-409 (-953 *5))) (-4 *5 (-13 (-301) (-842) (-150) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-3 (|:| |f1| (-835 (-310 *5))) (|:| |f2| (-634 (-835 (-310 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-210 *5)))) (-3837 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-409 (-953 *6))) (-5 *4 (-1082 (-835 (-310 *6)))) (-5 *5 (-1143)) (-4 *6 (-13 (-301) (-842) (-150) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-3 (|:| |f1| (-835 (-310 *6))) (|:| |f2| (-634 (-835 (-310 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-210 *6)))) (-3837 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-953 *5))) (-5 *4 (-1082 (-835 (-310 *5)))) (-4 *5 (-13 (-301) (-842) (-150) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-3 (|:| |f1| (-835 (-310 *5))) (|:| |f2| (-634 (-835 (-310 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-210 *5))))) +(-10 -7 (-15 -3837 ((-3 (|:| |f1| (-835 (-310 |#1|))) (|:| |f2| (-634 (-835 (-310 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-409 (-953 |#1|)) (-1082 (-835 (-310 |#1|))))) (-15 -3837 ((-3 (|:| |f1| (-835 (-310 |#1|))) (|:| |f2| (-634 (-835 (-310 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-409 (-953 |#1|)) (-1082 (-835 (-310 |#1|))) (-1143))) (-15 -3837 ((-3 (|:| |f1| (-835 (-310 |#1|))) (|:| |f2| (-634 (-835 (-310 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-409 (-953 |#1|)) (-1082 (-835 (-409 (-953 |#1|)))))) (-15 -3837 ((-3 (|:| |f1| (-835 (-310 |#1|))) (|:| |f2| (-634 (-835 (-310 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-409 (-953 |#1|)) (-1082 (-835 (-409 (-953 |#1|)))) (-1143)))) +((-3092 (((-2 (|:| -2700 (-1157 |#1|)) (|:| |deg| (-917))) (-1157 |#1|)) 20)) (-2789 (((-634 (-310 |#2|)) (-310 |#2|) (-917)) 42))) +(((-211 |#1| |#2|) (-10 -7 (-15 -3092 ((-2 (|:| -2700 (-1157 |#1|)) (|:| |deg| (-917))) (-1157 |#1|))) (-15 -2789 ((-634 (-310 |#2|)) (-310 |#2|) (-917)))) (-1047) (-13 (-558) (-842))) (T -211)) +((-2789 (*1 *2 *3 *4) (-12 (-5 *4 (-917)) (-4 *6 (-13 (-558) (-842))) (-5 *2 (-634 (-310 *6))) (-5 *1 (-211 *5 *6)) (-5 *3 (-310 *6)) (-4 *5 (-1047)))) (-3092 (*1 *2 *3) (-12 (-4 *4 (-1047)) (-5 *2 (-2 (|:| -2700 (-1157 *4)) (|:| |deg| (-917)))) (-5 *1 (-211 *4 *5)) (-5 *3 (-1157 *4)) (-4 *5 (-13 (-558) (-842)))))) +(-10 -7 (-15 -3092 ((-2 (|:| -2700 (-1157 |#1|)) (|:| |deg| (-917))) (-1157 |#1|))) (-15 -2789 ((-634 (-310 |#2|)) (-310 |#2|) (-917)))) +((-2447 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-1815 ((|#1| $) 25)) (-2616 ((|#1| $) 26)) (-2510 (((-121) $ (-763)) NIL)) (-2671 (($) NIL T CONST)) (-3475 (($ $) NIL)) (-1578 (($ $) 32)) (-2918 ((|#1| |#1| $) NIL)) (-2899 ((|#1| $) NIL)) (-4360 (((-634 |#1|) $) NIL (|has| $ (-6 -4519)))) (-1737 (((-121) $ (-763)) NIL)) (-1979 (((-634 |#1|) $) NIL (|has| $ (-6 -4519)))) (-3109 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-3674 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#1| |#1|) $) NIL)) (-2166 (((-121) $ (-763)) NIL)) (-3678 (((-763) $) NIL)) (-4487 (((-1143) $) NIL (|has| |#1| (-1090)))) (-1890 ((|#1| $) NIL)) (-1871 ((|#1| |#1| $) 29)) (-4308 ((|#1| |#1| $) 31)) (-4450 (($ |#1| $) NIL)) (-2961 (((-763) $) 27)) (-4022 (((-1108) $) NIL (|has| |#1| (-1090)))) (-3860 ((|#1| $) NIL)) (-2216 ((|#1| $) 24)) (-3923 ((|#1| $) 8)) (-1315 ((|#1| $) NIL)) (-1387 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-634 |#1|) (-634 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))))) (-3171 (((-121) $ $) NIL)) (-1383 ((|#1| |#1| $) NIL)) (-3084 (((-121) $) 15)) (-3248 (($) NIL)) (-2368 ((|#1| $) NIL)) (-1612 (($) NIL) (($ (-634 |#1|)) 13)) (-4154 (((-763) $) 28)) (-4168 (((-763) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519))) (((-763) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-3863 (($ $) NIL)) (-2745 (((-850) $) NIL (|has| |#1| (-1090)))) (-3286 ((|#1| $) 9)) (-2367 (($ (-634 |#1|)) NIL)) (-4190 ((|#1| $) NIL)) (-1319 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-1717 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-1697 (((-763) $) NIL (|has| $ (-6 -4519))))) +(((-212 |#1|) (-13 (-247 |#1|) (-10 -8 (-15 -1612 ($ (-634 |#1|))) (-15 -2368 (|#1| $)) (-15 -1315 (|#1| $)) (-15 -1383 (|#1| |#1| $)) (-15 -4450 ($ |#1| $)) (-15 -1890 (|#1| $)) (-15 -3860 (|#1| $)) (-15 -4190 (|#1| $)) (-15 -3475 ($ $)) (-15 -3678 ((-763) $)) (-15 -2166 ((-121) $ (-763))) (-15 -1737 ((-121) $ (-763))) (-15 -2510 ((-121) $ (-763))) (-15 -2367 ($ (-634 |#1|))) (-15 -3084 ((-121) $)) (-15 -3248 ($)) (-15 -2671 ($)) (-15 -3863 ($ $)) (-15 -3171 ((-121) $ $)) (-15 -2795 ($ (-1 |#1| |#1|) $)) (-15 -4154 ((-763) $)) (-15 -1612 ($)) (-15 -2961 ((-763) $)) (-15 -2616 (|#1| $)) (-15 -3286 (|#1| $)) (-15 -3923 (|#1| $)) (-15 -2216 (|#1| $)) (-15 -4308 (|#1| |#1| $)) (-15 -1871 (|#1| |#1| $)) (-15 -2899 (|#1| $)) (-15 -2918 (|#1| |#1| $)) (-15 -1578 ($ $)) (-15 -1815 (|#1| $)) (IF (|has| $ (-6 -4520)) (-15 -3674 ($ (-1 |#1| |#1|) $)) |noBranch|) (IF (|has| |#1| (-1090)) (PROGN (-15 -4487 ((-1143) $)) (-15 -4022 ((-1108) $)) (-15 -2745 ((-850) $)) (-15 -1717 ((-121) $ $)) (-15 -2447 ((-121) $ $))) |noBranch|) (IF (|has| $ (-6 -4519)) (PROGN (-15 -1387 ((-121) (-1 (-121) |#1|) $)) (-15 -1319 ((-121) (-1 (-121) |#1|) $)) (-15 -4168 ((-763) (-1 (-121) |#1|) $)) (-15 -1697 ((-763) $)) (-15 -4360 ((-634 |#1|) $)) (-15 -1979 ((-634 |#1|) $))) |noBranch|) (IF (|has| $ (-6 -4519)) (IF (|has| |#1| (-1090)) (PROGN (-15 -3109 ((-121) |#1| $)) (-15 -4168 ((-763) |#1| $))) |noBranch|) |noBranch|))) (-1090)) (T -212)) +((-3171 (*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-212 *3)) (-4 *3 (-1090)))) (-3863 (*1 *1 *1) (-12 (-5 *1 (-212 *2)) (-4 *2 (-1090)))) (-3248 (*1 *1) (-12 (-5 *1 (-212 *2)) (-4 *2 (-1090)))) (-3084 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-212 *3)) (-4 *3 (-1090)))) (-2166 (*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-5 *2 (-121)) (-5 *1 (-212 *4)) (-4 *4 (-1090)))) (-1737 (*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-5 *2 (-121)) (-5 *1 (-212 *4)) (-4 *4 (-1090)))) (-2510 (*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-5 *2 (-121)) (-5 *1 (-212 *4)) (-4 *4 (-1090)))) (-2671 (*1 *1) (-12 (-5 *1 (-212 *2)) (-4 *2 (-1090)))) (-1697 (*1 *2 *1) (-12 (|has| $ (-6 -4519)) (-5 *2 (-763)) (-5 *1 (-212 *3)) (-4 *3 (-1090)))) (-2795 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1090)) (-5 *1 (-212 *3)))) (-3674 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| $ (-6 -4520)) (-4 *3 (-1090)) (-5 *1 (-212 *3)))) (-1319 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| $ (-6 -4519)) (-4 *4 (-1090)) (-5 *2 (-121)) (-5 *1 (-212 *4)))) (-1387 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| $ (-6 -4519)) (-4 *4 (-1090)) (-5 *2 (-121)) (-5 *1 (-212 *4)))) (-4168 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| $ (-6 -4519)) (-4 *4 (-1090)) (-5 *2 (-763)) (-5 *1 (-212 *4)))) (-4360 (*1 *2 *1) (-12 (|has| $ (-6 -4519)) (-5 *2 (-634 *3)) (-5 *1 (-212 *3)) (-4 *3 (-1090)))) (-1979 (*1 *2 *1) (-12 (|has| $ (-6 -4519)) (-5 *2 (-634 *3)) (-5 *1 (-212 *3)) (-4 *3 (-1090)))) (-4168 (*1 *2 *3 *1) (-12 (|has| $ (-6 -4519)) (-5 *2 (-763)) (-5 *1 (-212 *3)) (-4 *3 (-1090)) (-4 *3 (-1090)))) (-3109 (*1 *2 *3 *1) (-12 (|has| $ (-6 -4519)) (-5 *2 (-121)) (-5 *1 (-212 *3)) (-4 *3 (-1090)) (-4 *3 (-1090)))) (-4487 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-212 *3)) (-4 *3 (-1090)) (-4 *3 (-1090)))) (-4022 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-212 *3)) (-4 *3 (-1090)) (-4 *3 (-1090)))) (-2745 (*1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-212 *3)) (-4 *3 (-1090)) (-4 *3 (-1090)))) (-1717 (*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-212 *3)) (-4 *3 (-1090)) (-4 *3 (-1090)))) (-2447 (*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-212 *3)) (-4 *3 (-1090)) (-4 *3 (-1090)))) (-2367 (*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-1090)) (-5 *1 (-212 *3)))) (-1315 (*1 *2 *1) (-12 (-5 *1 (-212 *2)) (-4 *2 (-1090)))) (-4450 (*1 *1 *2 *1) (-12 (-5 *1 (-212 *2)) (-4 *2 (-1090)))) (-1890 (*1 *2 *1) (-12 (-5 *1 (-212 *2)) (-4 *2 (-1090)))) (-2918 (*1 *2 *2 *1) (-12 (-5 *1 (-212 *2)) (-4 *2 (-1090)))) (-2899 (*1 *2 *1) (-12 (-5 *1 (-212 *2)) (-4 *2 (-1090)))) (-2616 (*1 *2 *1) (-12 (-5 *1 (-212 *2)) (-4 *2 (-1090)))) (-4154 (*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-212 *3)) (-4 *3 (-1090)))) (-4190 (*1 *2 *1) (-12 (-5 *1 (-212 *2)) (-4 *2 (-1090)))) (-3860 (*1 *2 *1) (-12 (-5 *1 (-212 *2)) (-4 *2 (-1090)))) (-3678 (*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-212 *3)) (-4 *3 (-1090)))) (-3475 (*1 *1 *1) (-12 (-5 *1 (-212 *2)) (-4 *2 (-1090)))) (-2368 (*1 *2 *1) (-12 (-5 *1 (-212 *2)) (-4 *2 (-1090)))) (-1383 (*1 *2 *2 *1) (-12 (-5 *1 (-212 *2)) (-4 *2 (-1090)))) (-1612 (*1 *1) (-12 (-5 *1 (-212 *2)) (-4 *2 (-1090)))) (-1612 (*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-1090)) (-5 *1 (-212 *3)))) (-2961 (*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-212 *3)) (-4 *3 (-1090)))) (-1815 (*1 *2 *1) (-12 (-5 *1 (-212 *2)) (-4 *2 (-1090)))) (-3286 (*1 *2 *1) (-12 (-5 *1 (-212 *2)) (-4 *2 (-1090)))) (-1871 (*1 *2 *2 *1) (-12 (-5 *1 (-212 *2)) (-4 *2 (-1090)))) (-4308 (*1 *2 *2 *1) (-12 (-5 *1 (-212 *2)) (-4 *2 (-1090)))) (-2216 (*1 *2 *1) (-12 (-5 *1 (-212 *2)) (-4 *2 (-1090)))) (-3923 (*1 *2 *1) (-12 (-5 *1 (-212 *2)) (-4 *2 (-1090)))) (-1578 (*1 *1 *1) (-12 (-5 *1 (-212 *2)) (-4 *2 (-1090))))) +(-13 (-247 |#1|) (-10 -8 (-15 -1612 ($ (-634 |#1|))) (-15 -2368 (|#1| $)) (-15 -1315 (|#1| $)) (-15 -1383 (|#1| |#1| $)) (-15 -4450 ($ |#1| $)) (-15 -1890 (|#1| $)) (-15 -3860 (|#1| $)) (-15 -4190 (|#1| $)) (-15 -3475 ($ $)) (-15 -3678 ((-763) $)) (-15 -2166 ((-121) $ (-763))) (-15 -1737 ((-121) $ (-763))) (-15 -2510 ((-121) $ (-763))) (-15 -2367 ($ (-634 |#1|))) (-15 -3084 ((-121) $)) (-15 -3248 ($)) (-15 -2671 ($)) (-15 -3863 ($ $)) (-15 -3171 ((-121) $ $)) (-15 -2795 ($ (-1 |#1| |#1|) $)) (-15 -4154 ((-763) $)) (-15 -1612 ($)) (-15 -2961 ((-763) $)) (-15 -2616 (|#1| $)) (-15 -3286 (|#1| $)) (-15 -3923 (|#1| $)) (-15 -2216 (|#1| $)) (-15 -4308 (|#1| |#1| $)) (-15 -1871 (|#1| |#1| $)) (-15 -2899 (|#1| $)) (-15 -2918 (|#1| |#1| $)) (-15 -1578 ($ $)) (-15 -1815 (|#1| $)) (IF (|has| $ (-6 -4520)) (-15 -3674 ($ (-1 |#1| |#1|) $)) |noBranch|) (IF (|has| |#1| (-1090)) (PROGN (-15 -4487 ((-1143) $)) (-15 -4022 ((-1108) $)) (-15 -2745 ((-850) $)) (-15 -1717 ((-121) $ $)) (-15 -2447 ((-121) $ $))) |noBranch|) (IF (|has| $ (-6 -4519)) (PROGN (-15 -1387 ((-121) (-1 (-121) |#1|) $)) (-15 -1319 ((-121) (-1 (-121) |#1|) $)) (-15 -4168 ((-763) (-1 (-121) |#1|) $)) (-15 -1697 ((-763) $)) (-15 -4360 ((-634 |#1|) $)) (-15 -1979 ((-634 |#1|) $))) |noBranch|) (IF (|has| $ (-6 -4519)) (IF (|has| |#1| (-1090)) (PROGN (-15 -3109 ((-121) |#1| $)) (-15 -4168 ((-763) |#1| $))) |noBranch|) |noBranch|))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-4237 (($ (-310 |#1|)) 23)) (-3134 (((-3 $ "failed") $ $) NIL)) (-2671 (($) NIL T CONST)) (-3374 (((-121) $) NIL)) (-3666 (((-3 (-310 |#1|) "failed") $) NIL)) (-2854 (((-310 |#1|) $) NIL)) (-2114 (($ $) 31)) (-2925 (((-3 $ "failed") $) NIL)) (-2735 (((-121) $) NIL)) (-2795 (($ (-1 (-310 |#1|) (-310 |#1|)) $) NIL)) (-2102 (((-310 |#1|) $) NIL)) (-3939 (($ $) 30)) (-4487 (((-1143) $) NIL)) (-4494 (((-121) $) NIL)) (-4022 (((-1108) $) NIL)) (-2704 (($ (-763)) NIL)) (-3075 (($ $) 32)) (-3206 (((-568) $) NIL)) (-2745 (((-850) $) 57) (($ (-568)) NIL) (($ (-310 |#1|)) NIL)) (-2604 (((-310 |#1|) $ $) NIL)) (-4078 (((-763)) NIL)) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (-3056 (($) 25 T CONST)) (-1556 (($) 50 T CONST)) (-1717 (((-121) $ $) 28)) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) 19)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) 24) (($ (-310 |#1|) $) 18))) +(((-213 |#1| |#2|) (-13 (-612 (-310 |#1|)) (-1037 (-310 |#1|)) (-10 -8 (-15 -2102 ((-310 |#1|) $)) (-15 -3939 ($ $)) (-15 -2114 ($ $)) (-15 -2604 ((-310 |#1|) $ $)) (-15 -2704 ($ (-763))) (-15 -4494 ((-121) $)) (-15 -3374 ((-121) $)) (-15 -3206 ((-568) $)) (-15 -2795 ($ (-1 (-310 |#1|) (-310 |#1|)) $)) (-15 -4237 ($ (-310 |#1|))) (-15 -3075 ($ $)))) (-13 (-1047) (-842)) (-634 (-1161))) (T -213)) +((-2102 (*1 *2 *1) (-12 (-5 *2 (-310 *3)) (-5 *1 (-213 *3 *4)) (-4 *3 (-13 (-1047) (-842))) (-14 *4 (-634 (-1161))))) (-3939 (*1 *1 *1) (-12 (-5 *1 (-213 *2 *3)) (-4 *2 (-13 (-1047) (-842))) (-14 *3 (-634 (-1161))))) (-2114 (*1 *1 *1) (-12 (-5 *1 (-213 *2 *3)) (-4 *2 (-13 (-1047) (-842))) (-14 *3 (-634 (-1161))))) (-2604 (*1 *2 *1 *1) (-12 (-5 *2 (-310 *3)) (-5 *1 (-213 *3 *4)) (-4 *3 (-13 (-1047) (-842))) (-14 *4 (-634 (-1161))))) (-2704 (*1 *1 *2) (-12 (-5 *2 (-763)) (-5 *1 (-213 *3 *4)) (-4 *3 (-13 (-1047) (-842))) (-14 *4 (-634 (-1161))))) (-4494 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-213 *3 *4)) (-4 *3 (-13 (-1047) (-842))) (-14 *4 (-634 (-1161))))) (-3374 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-213 *3 *4)) (-4 *3 (-13 (-1047) (-842))) (-14 *4 (-634 (-1161))))) (-3206 (*1 *2 *1) (-12 (-5 *2 (-568)) (-5 *1 (-213 *3 *4)) (-4 *3 (-13 (-1047) (-842))) (-14 *4 (-634 (-1161))))) (-2795 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-310 *3) (-310 *3))) (-4 *3 (-13 (-1047) (-842))) (-5 *1 (-213 *3 *4)) (-14 *4 (-634 (-1161))))) (-4237 (*1 *1 *2) (-12 (-5 *2 (-310 *3)) (-4 *3 (-13 (-1047) (-842))) (-5 *1 (-213 *3 *4)) (-14 *4 (-634 (-1161))))) (-3075 (*1 *1 *1) (-12 (-5 *1 (-213 *2 *3)) (-4 *2 (-13 (-1047) (-842))) (-14 *3 (-634 (-1161)))))) +(-13 (-612 (-310 |#1|)) (-1037 (-310 |#1|)) (-10 -8 (-15 -2102 ((-310 |#1|) $)) (-15 -3939 ($ $)) (-15 -2114 ($ $)) (-15 -2604 ((-310 |#1|) $ $)) (-15 -2704 ($ (-763))) (-15 -4494 ((-121) $)) (-15 -3374 ((-121) $)) (-15 -3206 ((-568) $)) (-15 -2795 ($ (-1 (-310 |#1|) (-310 |#1|)) $)) (-15 -4237 ($ (-310 |#1|))) (-15 -3075 ($ $)))) +((-2042 (((-121) (-1143)) 22)) (-3793 (((-3 (-835 |#2|) "failed") (-607 |#2|) |#2| (-835 |#2|) (-835 |#2|) (-121)) 32)) (-3554 (((-3 (-121) "failed") (-1157 |#2|) (-835 |#2|) (-835 |#2|) (-121)) 73) (((-3 (-121) "failed") (-953 |#1|) (-1161) (-835 |#2|) (-835 |#2|) (-121)) 74))) +(((-214 |#1| |#2|) (-10 -7 (-15 -2042 ((-121) (-1143))) (-15 -3793 ((-3 (-835 |#2|) "failed") (-607 |#2|) |#2| (-835 |#2|) (-835 |#2|) (-121))) (-15 -3554 ((-3 (-121) "failed") (-953 |#1|) (-1161) (-835 |#2|) (-835 |#2|) (-121))) (-15 -3554 ((-3 (-121) "failed") (-1157 |#2|) (-835 |#2|) (-835 |#2|) (-121)))) (-13 (-453) (-842) (-1037 (-568)) (-630 (-568))) (-13 (-1181) (-29 |#1|))) (T -214)) +((-3554 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-121)) (-5 *3 (-1157 *6)) (-5 *4 (-835 *6)) (-4 *6 (-13 (-1181) (-29 *5))) (-4 *5 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *1 (-214 *5 *6)))) (-3554 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-121)) (-5 *3 (-953 *6)) (-5 *4 (-1161)) (-5 *5 (-835 *7)) (-4 *6 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-4 *7 (-13 (-1181) (-29 *6))) (-5 *1 (-214 *6 *7)))) (-3793 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-835 *4)) (-5 *3 (-607 *4)) (-5 *5 (-121)) (-4 *4 (-13 (-1181) (-29 *6))) (-4 *6 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *1 (-214 *6 *4)))) (-2042 (*1 *2 *3) (-12 (-5 *3 (-1143)) (-4 *4 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-121)) (-5 *1 (-214 *4 *5)) (-4 *5 (-13 (-1181) (-29 *4)))))) +(-10 -7 (-15 -2042 ((-121) (-1143))) (-15 -3793 ((-3 (-835 |#2|) "failed") (-607 |#2|) |#2| (-835 |#2|) (-835 |#2|) (-121))) (-15 -3554 ((-3 (-121) "failed") (-953 |#1|) (-1161) (-835 |#2|) (-835 |#2|) (-121))) (-15 -3554 ((-3 (-121) "failed") (-1157 |#2|) (-835 |#2|) (-835 |#2|) (-121)))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) 95)) (-1492 (((-568) $) 124)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL)) (-2227 (($ $) NIL)) (-1573 (((-121) $) NIL)) (-2617 (($ $) NIL)) (-1982 (($ $) 83)) (-1933 (($ $) 71)) (-3134 (((-3 $ "failed") $ $) NIL)) (-4305 (($ $) NIL)) (-1678 (((-420 $) $) NIL)) (-1902 (($ $) 62)) (-1497 (((-121) $ $) NIL)) (-1974 (($ $) 81)) (-2786 (($ $) 69)) (-3662 (((-568) $) 137)) (-1990 (($ $) 86)) (-1941 (($ $) 73)) (-2671 (($) NIL T CONST)) (-3047 (($ $) NIL)) (-3666 (((-3 (-568) "failed") $) 120) (((-3 (-409 (-568)) "failed") $) 135)) (-2854 (((-568) $) 136) (((-409 (-568)) $) 133)) (-2401 (($ $ $) NIL)) (-2925 (((-3 $ "failed") $) 98)) (-4036 (((-409 (-568)) $ (-763)) 131) (((-409 (-568)) $ (-763) (-763)) 130)) (-2412 (($ $ $) NIL)) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) NIL)) (-3927 (((-121) $) NIL)) (-3359 (((-917)) 34) (((-917) (-917)) NIL (|has| $ (-6 -4510)))) (-2033 (((-121) $) NIL)) (-1303 (($ $ $) 123)) (-1897 (($) 44)) (-4410 (((-884 (-381) $) $ (-887 (-381)) (-884 (-381) $)) NIL)) (-4477 (((-568) $) 40)) (-2735 (((-121) $) NIL)) (-4044 (($ $ (-568)) NIL)) (-2657 (($ $) NIL)) (-2245 (((-121) $) 94)) (-3562 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-2521 (($ $ $) 59) (($) 39 (-12 (-3044 (|has| $ (-6 -4502))) (-3044 (|has| $ (-6 -4510)))))) (-3268 (($ $ $) 58) (($) 38 (-12 (-3044 (|has| $ (-6 -4502))) (-3044 (|has| $ (-6 -4510)))))) (-3544 (((-568) $) 32)) (-2605 (((-409 (-568)) $) 27)) (-4299 (($ $) 35)) (-1907 (($ $) 63)) (-4416 (($ $) 68)) (-2495 (($ $ $) NIL) (($ (-634 $)) NIL)) (-4487 (((-1143) $) NIL)) (-2081 (($ $) NIL)) (-4225 (((-634 (-568)) $) 29)) (-2719 (((-917) (-568)) NIL (|has| $ (-6 -4510)))) (-4022 (((-1108) $) NIL) (((-568) $) 96)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL)) (-2721 (($ $ $) NIL) (($ (-634 $)) NIL)) (-3880 (($ $) NIL)) (-1519 (($ $) NIL)) (-3768 (($ (-568) (-568)) NIL) (($ (-568) (-568) (-917)) 125)) (-3848 (((-420 $) $) NIL)) (-4497 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2595 (((-3 $ "failed") $ $) NIL)) (-2344 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-3438 (((-568) $) 33)) (-2078 (($) 43)) (-1892 (($ $) 67)) (-2709 (((-763) $) NIL)) (-4440 (((-1143) (-1143)) 8)) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL)) (-3396 (((-917)) NIL) (((-917) (-917)) NIL (|has| $ (-6 -4510)))) (-1847 (($ $) 116)) (-4189 (($ $ (-763)) NIL) (($ $) 99)) (-2573 (((-917) (-568)) NIL (|has| $ (-6 -4510)))) (-1994 (($ $) 84)) (-1945 (($ $) 74)) (-1986 (($ $) 85)) (-1937 (($ $) 72)) (-1978 (($ $) 82)) (-2790 (($ $) 70)) (-4278 (((-381) $) 129) (((-215) $) 126) (((-887 (-381)) $) NIL) (((-541) $) 51)) (-2745 (((-850) $) 48) (($ (-568)) 66) (($ $) NIL) (($ (-409 (-568))) NIL) (($ (-568)) 66) (($ (-409 (-568))) NIL)) (-4078 (((-763)) NIL)) (-2285 (($ $) NIL)) (-4042 (((-917)) 37) (((-917) (-917)) NIL (|has| $ (-6 -4510)))) (-3657 (($ $ $) 112)) (-2375 (($ $ $) 110)) (-1369 (($ $ $) 108)) (-3737 (($ $ $) 106)) (-1461 (((-917)) 31)) (-2006 (($ $) 89)) (-1958 (($ $) 77) (($ $ $) 132)) (-1826 (((-121) $ $) NIL)) (-1998 (($ $) 87)) (-1949 (($ $) 75)) (-2014 (($ $) 92)) (-1966 (($ $) 80)) (-3828 (($ $) 104)) (-2357 (($ $) 102)) (-4023 (($ $) 90)) (-1970 (($ $) 78)) (-2010 (($ $) 91)) (-1962 (($ $) 79)) (-2002 (($ $) 88)) (-1953 (($ $) 76)) (-2897 (($ $) 138)) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL)) (-3056 (($) 41 T CONST)) (-1556 (($) 42 T CONST)) (-3754 (((-1143) $) 19) (((-1143) $ (-121)) 21) (((-1249) (-817) $) 22) (((-1249) (-817) $ (-121)) 23)) (-3929 (($ $) 118) (($ $ $) NIL)) (-3190 (($ $ (-763)) NIL) (($ $) NIL)) (-3792 (($ $ $) 114)) (-1751 (((-121) $ $) NIL)) (-1738 (((-121) $ $) NIL)) (-1717 (((-121) $ $) 60)) (-1745 (((-121) $ $) NIL)) (-1732 (((-121) $ $) 52)) (-1779 (($ $ $) 93) (($ $ (-568)) 61)) (-1773 (($ $) 53) (($ $ $) 55)) (-1767 (($ $ $) 54)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) 64) (($ $ (-409 (-568))) 148) (($ $ $) 65)) (* (($ (-917) $) 36) (($ (-763) $) NIL) (($ (-568) $) 57) (($ $ $) 56) (($ $ (-409 (-568))) NIL) (($ (-409 (-568)) $) NIL))) +(((-215) (-13 (-406) (-225) (-823) (-1181) (-1124) (-609 (-541)) (-10 -8 (-15 -1779 ($ $ (-568))) (-15 ** ($ $ $)) (-15 -2078 ($)) (-15 -4022 ((-568) $)) (-15 -4299 ($ $)) (-15 -1907 ($ $)) (-15 -1958 ($ $ $)) (-15 -3929 ($ $)) (-15 -3792 ($ $ $)) (-15 -4440 ((-1143) (-1143))) (-15 -4036 ((-409 (-568)) $ (-763))) (-15 -4036 ((-409 (-568)) $ (-763) (-763))) (-15 -2605 ((-409 (-568)) $)) (-15 -4225 ((-634 (-568)) $))))) (T -215)) +((** (*1 *1 *1 *1) (-5 *1 (-215))) (-3929 (*1 *1 *1) (-5 *1 (-215))) (-3792 (*1 *1 *1 *1) (-5 *1 (-215))) (-1779 (*1 *1 *1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-215)))) (-2078 (*1 *1) (-5 *1 (-215))) (-4022 (*1 *2 *1) (-12 (-5 *2 (-568)) (-5 *1 (-215)))) (-4299 (*1 *1 *1) (-5 *1 (-215))) (-1907 (*1 *1 *1) (-5 *1 (-215))) (-1958 (*1 *1 *1 *1) (-5 *1 (-215))) (-4440 (*1 *2 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-215)))) (-4036 (*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-5 *2 (-409 (-568))) (-5 *1 (-215)))) (-4036 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-763)) (-5 *2 (-409 (-568))) (-5 *1 (-215)))) (-2605 (*1 *2 *1) (-12 (-5 *2 (-409 (-568))) (-5 *1 (-215)))) (-4225 (*1 *2 *1) (-12 (-5 *2 (-634 (-568))) (-5 *1 (-215))))) +(-13 (-406) (-225) (-823) (-1181) (-1124) (-609 (-541)) (-10 -8 (-15 -1779 ($ $ (-568))) (-15 ** ($ $ $)) (-15 -2078 ($)) (-15 -4022 ((-568) $)) (-15 -4299 ($ $)) (-15 -1907 ($ $)) (-15 -1958 ($ $ $)) (-15 -3929 ($ $)) (-15 -3792 ($ $ $)) (-15 -4440 ((-1143) (-1143))) (-15 -4036 ((-409 (-568)) $ (-763))) (-15 -4036 ((-409 (-568)) $ (-763) (-763))) (-15 -2605 ((-409 (-568)) $)) (-15 -4225 ((-634 (-568)) $)))) +((-2447 (((-121) $ $) NIL (|has| (-215) (-1090)))) (-3205 (($ (-763) (-763)) NIL)) (-3347 (($ $ $) NIL)) (-2870 (($ (-218)) NIL) (($ $) NIL)) (-1335 (((-121) $) NIL)) (-4343 (($ $ (-568) (-568)) NIL)) (-3622 (($ $ (-568) (-568)) NIL)) (-3676 (($ $ (-568) (-568) (-568) (-568)) NIL)) (-3976 (($ $) NIL)) (-2230 (((-121) $) NIL)) (-2510 (((-121) $ (-763)) NIL)) (-1785 (($ $ (-568) (-568) $) NIL)) (-2436 (((-215) $ (-568) (-568) (-215)) NIL) (($ $ (-634 (-568)) (-634 (-568)) $) NIL)) (-4159 (($ $ (-568) (-218)) NIL)) (-2451 (($ $ (-568) (-218)) NIL)) (-3422 (($ (-763) (-215)) NIL)) (-2671 (($) NIL T CONST)) (-4167 (($ $) NIL (|has| (-215) (-301)))) (-1818 (((-218) $ (-568)) NIL)) (-3700 (((-763) $) NIL (|has| (-215) (-558)))) (-3989 (((-215) $ (-568) (-568) (-215)) 16)) (-3615 (($ (-568) (-568)) 18)) (-2602 (((-215) $ (-568) (-568)) 15)) (-2076 (((-215) $) NIL (|has| (-215) (-172)))) (-4360 (((-634 (-215)) $) NIL)) (-2121 (((-763) $) NIL (|has| (-215) (-558)))) (-4272 (((-634 (-218)) $) NIL (|has| (-215) (-558)))) (-3043 (((-763) $) 10)) (-1849 (($ (-763) (-763) (-215)) 19)) (-2555 (((-763) $) 11)) (-1737 (((-121) $ (-763)) NIL)) (-3082 (((-215) $) NIL (|has| (-215) (-6 (-4521 "*"))))) (-2087 (((-568) $) 7)) (-3364 (((-568) $) 8)) (-1979 (((-634 (-215)) $) NIL (|has| $ (-6 -4519)))) (-3109 (((-121) (-215) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-215) (-1090))))) (-1663 (((-568) $) 12)) (-2893 (((-568) $) 13)) (-2269 (($ (-634 (-634 (-215)))) NIL)) (-3674 (($ (-1 (-215) (-215)) $) NIL)) (-2795 (($ (-1 (-215) (-215)) $) NIL) (($ (-1 (-215) (-215) (-215)) $ $) NIL) (($ (-1 (-215) (-215) (-215)) $ $ (-215)) NIL)) (-3208 (((-634 (-634 (-215))) $) NIL)) (-2166 (((-121) $ (-763)) NIL)) (-4487 (((-1143) $) NIL (|has| (-215) (-1090)))) (-3140 (((-3 $ "failed") $) NIL (|has| (-215) (-365)))) (-2858 (($ $ $) NIL)) (-4022 (((-1108) $) NIL (|has| (-215) (-1090)))) (-3724 (($ $ (-215)) NIL)) (-2595 (((-3 $ "failed") $ (-215)) NIL (|has| (-215) (-558)))) (-1387 (((-121) (-1 (-121) (-215)) $) NIL (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 (-215)))) NIL (-12 (|has| (-215) (-303 (-215))) (|has| (-215) (-1090)))) (($ $ (-288 (-215))) NIL (-12 (|has| (-215) (-303 (-215))) (|has| (-215) (-1090)))) (($ $ (-215) (-215)) NIL (-12 (|has| (-215) (-303 (-215))) (|has| (-215) (-1090)))) (($ $ (-634 (-215)) (-634 (-215))) NIL (-12 (|has| (-215) (-303 (-215))) (|has| (-215) (-1090))))) (-3171 (((-121) $ $) NIL)) (-3084 (((-121) $) NIL)) (-3248 (($) 17)) (-2779 (((-215) $ (-568) (-568)) NIL) (((-215) $ (-568) (-568) (-215)) NIL) (($ $ (-634 (-568)) (-634 (-568))) NIL)) (-2282 (($ (-634 (-215))) NIL) (($ (-634 $)) NIL)) (-1960 (((-121) $) NIL)) (-2465 (((-215) $) NIL (|has| (-215) (-6 (-4521 "*"))))) (-4168 (((-763) (-1 (-121) (-215)) $) NIL (|has| $ (-6 -4519))) (((-763) (-215) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-215) (-1090))))) (-3863 (($ $) NIL)) (-2365 (((-634 (-218)) $) NIL (|has| (-215) (-301)))) (-3731 (((-218) $ (-568)) NIL)) (-2745 (((-850) $) NIL (|has| (-215) (-1090))) (($ (-218)) NIL)) (-1319 (((-121) (-1 (-121) (-215)) $) NIL (|has| $ (-6 -4519)))) (-1910 (((-121) $) NIL)) (-1717 (((-121) $ $) NIL (|has| (-215) (-1090)))) (-1779 (($ $ (-215)) NIL (|has| (-215) (-365)))) (-1773 (($ $ $) NIL) (($ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-763)) NIL) (($ $ (-568)) NIL (|has| (-215) (-365)))) (* (($ $ $) NIL) (($ (-215) $) NIL) (($ $ (-215)) NIL) (($ (-568) $) NIL) (((-218) $ (-218)) NIL) (((-218) (-218) $) NIL)) (-1697 (((-763) $) NIL (|has| $ (-6 -4519))))) +(((-216) (-13 (-677 (-215) (-218) (-218)) (-10 -8 (-15 -3615 ($ (-568) (-568)))))) (T -216)) +((-3615 (*1 *1 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-216))))) +(-13 (-677 (-215) (-218) (-218)) (-10 -8 (-15 -3615 ($ (-568) (-568))))) +((-1303 (((-169 (-215)) (-763) (-169 (-215))) 40) (((-215) (-763) (-215)) 41)) (-3789 (((-169 (-215)) (-169 (-215))) 42) (((-215) (-215)) 43)) (-2165 (((-169 (-215)) (-169 (-215)) (-169 (-215))) 48) (((-215) (-215) (-215)) 51)) (-1847 (((-169 (-215)) (-169 (-215))) 53) (((-215) (-215)) 52)) (-3657 (((-169 (-215)) (-169 (-215)) (-169 (-215))) 70) (((-215) (-215) (-215)) 62)) (-2375 (((-169 (-215)) (-169 (-215)) (-169 (-215))) 73) (((-215) (-215) (-215)) 71)) (-1369 (((-169 (-215)) (-169 (-215)) (-169 (-215))) 44) (((-215) (-215) (-215)) 45)) (-3737 (((-169 (-215)) (-169 (-215)) (-169 (-215))) 46) (((-215) (-215) (-215)) 47)) (-3828 (((-169 (-215)) (-169 (-215))) 84) (((-215) (-215)) 83)) (-2357 (((-215) (-215)) 78) (((-169 (-215)) (-169 (-215))) 82)) (-3929 (((-169 (-215)) (-169 (-215))) 7) (((-215) (-215)) 9)) (-1622 (((-828 (-215)) (-568) (-215)) 23)) (-1812 (((-828 (-215)) (-828 (-215))) 36)) (-3153 (((-828 (-215)) (-828 (-215))) 35)) (-3435 (((-828 (-215)) (-828 (-215))) 34)) (-3716 (((-828 (-215)) (-828 (-215))) 33)) (-4005 (((-828 (-215)) (-828 (-215))) 32)) (-2241 (((-828 (-215)) (-828 (-215))) 31)) (-1969 (((-828 (-215)) (-828 (-215))) 37)) (-1993 (((-828 (-215)) (-215)) 22)) (-3792 (((-169 (-215)) (-169 (-215)) (-169 (-215))) 58) (((-215) (-215) (-215)) 54))) +(((-217) (-10 -7 (-15 -3929 ((-215) (-215))) (-15 -3929 ((-169 (-215)) (-169 (-215)))) (-15 -1993 ((-828 (-215)) (-215))) (-15 -1622 ((-828 (-215)) (-568) (-215))) (-15 -1969 ((-828 (-215)) (-828 (-215)))) (-15 -2241 ((-828 (-215)) (-828 (-215)))) (-15 -4005 ((-828 (-215)) (-828 (-215)))) (-15 -3716 ((-828 (-215)) (-828 (-215)))) (-15 -3435 ((-828 (-215)) (-828 (-215)))) (-15 -3153 ((-828 (-215)) (-828 (-215)))) (-15 -1812 ((-828 (-215)) (-828 (-215)))) (-15 -3792 ((-215) (-215) (-215))) (-15 -3792 ((-169 (-215)) (-169 (-215)) (-169 (-215)))) (-15 -3789 ((-215) (-215))) (-15 -3789 ((-169 (-215)) (-169 (-215)))) (-15 -1847 ((-215) (-215))) (-15 -1847 ((-169 (-215)) (-169 (-215)))) (-15 -1303 ((-215) (-763) (-215))) (-15 -1303 ((-169 (-215)) (-763) (-169 (-215)))) (-15 -1369 ((-215) (-215) (-215))) (-15 -1369 ((-169 (-215)) (-169 (-215)) (-169 (-215)))) (-15 -3657 ((-215) (-215) (-215))) (-15 -3657 ((-169 (-215)) (-169 (-215)) (-169 (-215)))) (-15 -3737 ((-215) (-215) (-215))) (-15 -3737 ((-169 (-215)) (-169 (-215)) (-169 (-215)))) (-15 -2375 ((-215) (-215) (-215))) (-15 -2375 ((-169 (-215)) (-169 (-215)) (-169 (-215)))) (-15 -2357 ((-169 (-215)) (-169 (-215)))) (-15 -2357 ((-215) (-215))) (-15 -3828 ((-215) (-215))) (-15 -3828 ((-169 (-215)) (-169 (-215)))) (-15 -2165 ((-215) (-215) (-215))) (-15 -2165 ((-169 (-215)) (-169 (-215)) (-169 (-215)))))) (T -217)) +((-2165 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-215))) (-5 *1 (-217)))) (-2165 (*1 *2 *2 *2) (-12 (-5 *2 (-215)) (-5 *1 (-217)))) (-3828 (*1 *2 *2) (-12 (-5 *2 (-169 (-215))) (-5 *1 (-217)))) (-3828 (*1 *2 *2) (-12 (-5 *2 (-215)) (-5 *1 (-217)))) (-2357 (*1 *2 *2) (-12 (-5 *2 (-215)) (-5 *1 (-217)))) (-2357 (*1 *2 *2) (-12 (-5 *2 (-169 (-215))) (-5 *1 (-217)))) (-2375 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-215))) (-5 *1 (-217)))) (-2375 (*1 *2 *2 *2) (-12 (-5 *2 (-215)) (-5 *1 (-217)))) (-3737 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-215))) (-5 *1 (-217)))) (-3737 (*1 *2 *2 *2) (-12 (-5 *2 (-215)) (-5 *1 (-217)))) (-3657 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-215))) (-5 *1 (-217)))) (-3657 (*1 *2 *2 *2) (-12 (-5 *2 (-215)) (-5 *1 (-217)))) (-1369 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-215))) (-5 *1 (-217)))) (-1369 (*1 *2 *2 *2) (-12 (-5 *2 (-215)) (-5 *1 (-217)))) (-1303 (*1 *2 *3 *2) (-12 (-5 *2 (-169 (-215))) (-5 *3 (-763)) (-5 *1 (-217)))) (-1303 (*1 *2 *3 *2) (-12 (-5 *2 (-215)) (-5 *3 (-763)) (-5 *1 (-217)))) (-1847 (*1 *2 *2) (-12 (-5 *2 (-169 (-215))) (-5 *1 (-217)))) (-1847 (*1 *2 *2) (-12 (-5 *2 (-215)) (-5 *1 (-217)))) (-3789 (*1 *2 *2) (-12 (-5 *2 (-169 (-215))) (-5 *1 (-217)))) (-3789 (*1 *2 *2) (-12 (-5 *2 (-215)) (-5 *1 (-217)))) (-3792 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-215))) (-5 *1 (-217)))) (-3792 (*1 *2 *2 *2) (-12 (-5 *2 (-215)) (-5 *1 (-217)))) (-1812 (*1 *2 *2) (-12 (-5 *2 (-828 (-215))) (-5 *1 (-217)))) (-3153 (*1 *2 *2) (-12 (-5 *2 (-828 (-215))) (-5 *1 (-217)))) (-3435 (*1 *2 *2) (-12 (-5 *2 (-828 (-215))) (-5 *1 (-217)))) (-3716 (*1 *2 *2) (-12 (-5 *2 (-828 (-215))) (-5 *1 (-217)))) (-4005 (*1 *2 *2) (-12 (-5 *2 (-828 (-215))) (-5 *1 (-217)))) (-2241 (*1 *2 *2) (-12 (-5 *2 (-828 (-215))) (-5 *1 (-217)))) (-1969 (*1 *2 *2) (-12 (-5 *2 (-828 (-215))) (-5 *1 (-217)))) (-1622 (*1 *2 *3 *4) (-12 (-5 *3 (-568)) (-5 *2 (-828 (-215))) (-5 *1 (-217)) (-5 *4 (-215)))) (-1993 (*1 *2 *3) (-12 (-5 *2 (-828 (-215))) (-5 *1 (-217)) (-5 *3 (-215)))) (-3929 (*1 *2 *2) (-12 (-5 *2 (-169 (-215))) (-5 *1 (-217)))) (-3929 (*1 *2 *2) (-12 (-5 *2 (-215)) (-5 *1 (-217))))) +(-10 -7 (-15 -3929 ((-215) (-215))) (-15 -3929 ((-169 (-215)) (-169 (-215)))) (-15 -1993 ((-828 (-215)) (-215))) (-15 -1622 ((-828 (-215)) (-568) (-215))) (-15 -1969 ((-828 (-215)) (-828 (-215)))) (-15 -2241 ((-828 (-215)) (-828 (-215)))) (-15 -4005 ((-828 (-215)) (-828 (-215)))) (-15 -3716 ((-828 (-215)) (-828 (-215)))) (-15 -3435 ((-828 (-215)) (-828 (-215)))) (-15 -3153 ((-828 (-215)) (-828 (-215)))) (-15 -1812 ((-828 (-215)) (-828 (-215)))) (-15 -3792 ((-215) (-215) (-215))) (-15 -3792 ((-169 (-215)) (-169 (-215)) (-169 (-215)))) (-15 -3789 ((-215) (-215))) (-15 -3789 ((-169 (-215)) (-169 (-215)))) (-15 -1847 ((-215) (-215))) (-15 -1847 ((-169 (-215)) (-169 (-215)))) (-15 -1303 ((-215) (-763) (-215))) (-15 -1303 ((-169 (-215)) (-763) (-169 (-215)))) (-15 -1369 ((-215) (-215) (-215))) (-15 -1369 ((-169 (-215)) (-169 (-215)) (-169 (-215)))) (-15 -3657 ((-215) (-215) (-215))) (-15 -3657 ((-169 (-215)) (-169 (-215)) (-169 (-215)))) (-15 -3737 ((-215) (-215) (-215))) (-15 -3737 ((-169 (-215)) (-169 (-215)) (-169 (-215)))) (-15 -2375 ((-215) (-215) (-215))) (-15 -2375 ((-169 (-215)) (-169 (-215)) (-169 (-215)))) (-15 -2357 ((-169 (-215)) (-169 (-215)))) (-15 -2357 ((-215) (-215))) (-15 -3828 ((-215) (-215))) (-15 -3828 ((-169 (-215)) (-169 (-215)))) (-15 -2165 ((-215) (-215) (-215))) (-15 -2165 ((-169 (-215)) (-169 (-215)) (-169 (-215))))) +((-2447 (((-121) $ $) NIL (|has| (-215) (-1090)))) (-3205 (($ (-763)) NIL (|has| (-215) (-23)))) (-1868 (((-1249) $ (-568) (-568)) NIL (|has| $ (-6 -4520)))) (-2016 (((-121) (-1 (-121) (-215) (-215)) $) NIL) (((-121) $) NIL (|has| (-215) (-842)))) (-3908 (($ (-1 (-121) (-215) (-215)) $) NIL (|has| $ (-6 -4520))) (($ $) NIL (-12 (|has| $ (-6 -4520)) (|has| (-215) (-842))))) (-3644 (($ (-1 (-121) (-215) (-215)) $) NIL) (($ $) NIL (|has| (-215) (-842)))) (-2510 (((-121) $ (-763)) NIL)) (-2436 (((-215) $ (-568) (-215)) 17 (|has| $ (-6 -4520))) (((-215) $ (-1210 (-568)) (-215)) NIL (|has| $ (-6 -4520)))) (-2801 (($ (-1 (-121) (-215)) $) NIL (|has| $ (-6 -4519)))) (-2671 (($) NIL T CONST)) (-1578 (($ $) NIL (|has| $ (-6 -4520)))) (-3943 (($ $) NIL)) (-3924 (($ $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-215) (-1090))))) (-4328 (($ (-215) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-215) (-1090)))) (($ (-1 (-121) (-215)) $) NIL (|has| $ (-6 -4519)))) (-3092 (((-215) (-1 (-215) (-215) (-215)) $ (-215) (-215)) NIL (-12 (|has| $ (-6 -4519)) (|has| (-215) (-1090)))) (((-215) (-1 (-215) (-215) (-215)) $ (-215)) NIL (|has| $ (-6 -4519))) (((-215) (-1 (-215) (-215) (-215)) $) NIL (|has| $ (-6 -4519)))) (-3989 (((-215) $ (-568) (-215)) 9 (|has| $ (-6 -4520)))) (-3615 (($ (-568)) 14)) (-2602 (((-215) $ (-568)) 8)) (-2764 (((-568) (-1 (-121) (-215)) $) NIL) (((-568) (-215) $) NIL (|has| (-215) (-1090))) (((-568) (-215) $ (-568)) NIL (|has| (-215) (-1090)))) (-4360 (((-634 (-215)) $) NIL (|has| $ (-6 -4519)))) (-1802 (((-679 (-215)) $ $) NIL (|has| (-215) (-1047)))) (-1849 (($ (-763) (-215)) 15)) (-1737 (((-121) $ (-763)) NIL)) (-1881 (((-568) $) 12 (|has| (-568) (-842)))) (-2521 (($ $ $) NIL (|has| (-215) (-842)))) (-1347 (($ (-1 (-121) (-215) (-215)) $ $) NIL) (($ $ $) NIL (|has| (-215) (-842)))) (-1979 (((-634 (-215)) $) NIL (|has| $ (-6 -4519)))) (-3109 (((-121) (-215) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-215) (-1090))))) (-2223 (((-568) $) NIL (|has| (-568) (-842)))) (-3268 (($ $ $) NIL (|has| (-215) (-842)))) (-3674 (($ (-1 (-215) (-215)) $) NIL (|has| $ (-6 -4520)))) (-2795 (($ (-1 (-215) (-215)) $) NIL) (($ (-1 (-215) (-215) (-215)) $ $) NIL)) (-1550 (((-215) $) NIL (-12 (|has| (-215) (-1002)) (|has| (-215) (-1047))))) (-2166 (((-121) $ (-763)) NIL)) (-3678 (((-215) $) NIL (-12 (|has| (-215) (-1002)) (|has| (-215) (-1047))))) (-4487 (((-1143) $) NIL (|has| (-215) (-1090)))) (-4122 (($ (-215) $ (-568)) NIL) (($ $ $ (-568)) NIL)) (-4174 (((-634 (-568)) $) NIL)) (-3578 (((-121) (-568) $) NIL)) (-4022 (((-1108) $) NIL (|has| (-215) (-1090)))) (-3876 (((-215) $) NIL (|has| (-568) (-842)))) (-3775 (((-3 (-215) "failed") (-1 (-121) (-215)) $) NIL)) (-3724 (($ $ (-215)) 18 (|has| $ (-6 -4520)))) (-1387 (((-121) (-1 (-121) (-215)) $) NIL (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 (-215)))) NIL (-12 (|has| (-215) (-303 (-215))) (|has| (-215) (-1090)))) (($ $ (-288 (-215))) NIL (-12 (|has| (-215) (-303 (-215))) (|has| (-215) (-1090)))) (($ $ (-215) (-215)) NIL (-12 (|has| (-215) (-303 (-215))) (|has| (-215) (-1090)))) (($ $ (-634 (-215)) (-634 (-215))) NIL (-12 (|has| (-215) (-303 (-215))) (|has| (-215) (-1090))))) (-3171 (((-121) $ $) NIL)) (-4467 (((-121) (-215) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-215) (-1090))))) (-2041 (((-634 (-215)) $) NIL)) (-3084 (((-121) $) NIL)) (-3248 (($) 13)) (-2779 (((-215) $ (-568) (-215)) NIL) (((-215) $ (-568)) 16) (($ $ (-1210 (-568))) NIL)) (-3682 (((-215) $ $) NIL (|has| (-215) (-1047)))) (-2826 (($ $ (-568)) NIL) (($ $ (-1210 (-568))) NIL)) (-2748 (($ $ $) NIL (|has| (-215) (-1047)))) (-4168 (((-763) (-1 (-121) (-215)) $) NIL (|has| $ (-6 -4519))) (((-763) (-215) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-215) (-1090))))) (-2256 (($ $ $ (-568)) NIL (|has| $ (-6 -4520)))) (-3863 (($ $) NIL)) (-4278 (((-541) $) NIL (|has| (-215) (-609 (-541))))) (-4287 (($ (-634 (-215))) NIL)) (-2768 (($ $ (-215)) NIL) (($ (-215) $) NIL) (($ $ $) NIL) (($ (-634 $)) NIL)) (-2745 (((-850) $) NIL (|has| (-215) (-1090)))) (-1319 (((-121) (-1 (-121) (-215)) $) NIL (|has| $ (-6 -4519)))) (-1751 (((-121) $ $) NIL (|has| (-215) (-842)))) (-1738 (((-121) $ $) NIL (|has| (-215) (-842)))) (-1717 (((-121) $ $) NIL (|has| (-215) (-1090)))) (-1745 (((-121) $ $) NIL (|has| (-215) (-842)))) (-1732 (((-121) $ $) NIL (|has| (-215) (-842)))) (-1773 (($ $) NIL (|has| (-215) (-21))) (($ $ $) NIL (|has| (-215) (-21)))) (-1767 (($ $ $) NIL (|has| (-215) (-25)))) (* (($ (-568) $) NIL (|has| (-215) (-21))) (($ (-215) $) NIL (|has| (-215) (-716))) (($ $ (-215)) NIL (|has| (-215) (-716)))) (-1697 (((-763) $) 11 (|has| $ (-6 -4519))))) +(((-218) (-13 (-1242 (-215)) (-10 -8 (-15 -3615 ($ (-568)))))) (T -218)) +((-3615 (*1 *1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-218))))) +(-13 (-1242 (-215)) (-10 -8 (-15 -3615 ($ (-568))))) +((-2447 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-3205 (($ (-763) (-763)) NIL)) (-3347 (($ $ $) NIL)) (-2870 (($ (-1244 |#1|)) NIL) (($ $) NIL)) (-1859 (($ |#1| |#1| |#1|) 32)) (-1335 (((-121) $) NIL)) (-4343 (($ $ (-568) (-568)) NIL)) (-3622 (($ $ (-568) (-568)) NIL)) (-3676 (($ $ (-568) (-568) (-568) (-568)) NIL)) (-3976 (($ $) NIL)) (-2230 (((-121) $) NIL)) (-2510 (((-121) $ (-763)) NIL)) (-1785 (($ $ (-568) (-568) $) NIL)) (-2436 ((|#1| $ (-568) (-568) |#1|) NIL) (($ $ (-634 (-568)) (-634 (-568)) $) NIL)) (-4159 (($ $ (-568) (-1244 |#1|)) NIL)) (-2451 (($ $ (-568) (-1244 |#1|)) NIL)) (-3646 (($ |#1| |#1| |#1|) 31)) (-3422 (($ (-763) |#1|) NIL)) (-2671 (($) NIL T CONST)) (-4167 (($ $) NIL (|has| |#1| (-301)))) (-1818 (((-1244 |#1|) $ (-568)) NIL)) (-2264 (($ |#1|) 30)) (-2531 (($ |#1|) 29)) (-3101 (($ |#1|) 28)) (-3700 (((-763) $) NIL (|has| |#1| (-558)))) (-3989 ((|#1| $ (-568) (-568) |#1|) NIL)) (-2602 ((|#1| $ (-568) (-568)) NIL)) (-2076 ((|#1| $) NIL (|has| |#1| (-172)))) (-4360 (((-634 |#1|) $) NIL)) (-2121 (((-763) $) NIL (|has| |#1| (-558)))) (-4272 (((-634 (-1244 |#1|)) $) NIL (|has| |#1| (-558)))) (-3043 (((-763) $) NIL)) (-1849 (($ (-763) (-763) |#1|) NIL)) (-2555 (((-763) $) NIL)) (-1737 (((-121) $ (-763)) NIL)) (-3082 ((|#1| $) NIL (|has| |#1| (-6 (-4521 "*"))))) (-2087 (((-568) $) NIL)) (-3364 (((-568) $) NIL)) (-1979 (((-634 |#1|) $) NIL (|has| $ (-6 -4519)))) (-3109 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-1663 (((-568) $) NIL)) (-2893 (((-568) $) NIL)) (-2269 (($ (-634 (-634 |#1|))) 10)) (-3674 (($ (-1 |#1| |#1|) $) NIL)) (-2795 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3208 (((-634 (-634 |#1|)) $) NIL)) (-2166 (((-121) $ (-763)) NIL)) (-4487 (((-1143) $) NIL (|has| |#1| (-1090)))) (-3140 (((-3 $ "failed") $) NIL (|has| |#1| (-365)))) (-3313 (($) 11)) (-2858 (($ $ $) NIL)) (-4022 (((-1108) $) NIL (|has| |#1| (-1090)))) (-3724 (($ $ |#1|) NIL)) (-2595 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558)))) (-1387 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-634 |#1|) (-634 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))))) (-3171 (((-121) $ $) NIL)) (-3084 (((-121) $) NIL)) (-3248 (($) NIL)) (-2779 ((|#1| $ (-568) (-568)) NIL) ((|#1| $ (-568) (-568) |#1|) NIL) (($ $ (-634 (-568)) (-634 (-568))) NIL)) (-2282 (($ (-634 |#1|)) NIL) (($ (-634 $)) NIL)) (-1960 (((-121) $) NIL)) (-2465 ((|#1| $) NIL (|has| |#1| (-6 (-4521 "*"))))) (-4168 (((-763) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519))) (((-763) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-3863 (($ $) NIL)) (-2365 (((-634 (-1244 |#1|)) $) NIL (|has| |#1| (-301)))) (-3731 (((-1244 |#1|) $ (-568)) NIL)) (-2745 (((-850) $) NIL (|has| |#1| (-1090))) (($ (-1244 |#1|)) NIL)) (-1319 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-1910 (((-121) $) NIL)) (-1717 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-1779 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-1773 (($ $ $) NIL) (($ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-763)) NIL) (($ $ (-568)) NIL (|has| |#1| (-365)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-568) $) NIL) (((-1244 |#1|) $ (-1244 |#1|)) 14) (((-1244 |#1|) (-1244 |#1|) $) NIL) (((-944 |#1|) $ (-944 |#1|)) 20)) (-1697 (((-763) $) NIL (|has| $ (-6 -4519))))) +(((-219 |#1|) (-13 (-677 |#1| (-1244 |#1|) (-1244 |#1|)) (-10 -8 (-15 * ((-944 |#1|) $ (-944 |#1|))) (-15 -3313 ($)) (-15 -3101 ($ |#1|)) (-15 -2531 ($ |#1|)) (-15 -2264 ($ |#1|)) (-15 -3646 ($ |#1| |#1| |#1|)) (-15 -1859 ($ |#1| |#1| |#1|)))) (-13 (-365) (-1181))) (T -219)) +((* (*1 *2 *1 *2) (-12 (-5 *2 (-944 *3)) (-4 *3 (-13 (-365) (-1181))) (-5 *1 (-219 *3)))) (-3313 (*1 *1) (-12 (-5 *1 (-219 *2)) (-4 *2 (-13 (-365) (-1181))))) (-3101 (*1 *1 *2) (-12 (-5 *1 (-219 *2)) (-4 *2 (-13 (-365) (-1181))))) (-2531 (*1 *1 *2) (-12 (-5 *1 (-219 *2)) (-4 *2 (-13 (-365) (-1181))))) (-2264 (*1 *1 *2) (-12 (-5 *1 (-219 *2)) (-4 *2 (-13 (-365) (-1181))))) (-3646 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-219 *2)) (-4 *2 (-13 (-365) (-1181))))) (-1859 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-219 *2)) (-4 *2 (-13 (-365) (-1181)))))) +(-13 (-677 |#1| (-1244 |#1|) (-1244 |#1|)) (-10 -8 (-15 * ((-944 |#1|) $ (-944 |#1|))) (-15 -3313 ($)) (-15 -3101 ($ |#1|)) (-15 -2531 ($ |#1|)) (-15 -2264 ($ |#1|)) (-15 -3646 ($ |#1| |#1| |#1|)) (-15 -1859 ($ |#1| |#1| |#1|)))) +((-3507 (($ (-1 (-121) |#2|) $) 17)) (-3405 (($ |#2| $) NIL) (($ (-1 (-121) |#2|) $) 25)) (-2085 (($) NIL) (($ (-634 |#2|)) 11)) (-1717 (((-121) $ $) 23))) +(((-220 |#1| |#2|) (-10 -8 (-15 -3507 (|#1| (-1 (-121) |#2|) |#1|)) (-15 -3405 (|#1| (-1 (-121) |#2|) |#1|)) (-15 -3405 (|#1| |#2| |#1|)) (-15 -2085 (|#1| (-634 |#2|))) (-15 -2085 (|#1|)) (-15 -1717 ((-121) |#1| |#1|))) (-221 |#2|) (-1090)) (T -220)) +NIL +(-10 -8 (-15 -3507 (|#1| (-1 (-121) |#2|) |#1|)) (-15 -3405 (|#1| (-1 (-121) |#2|) |#1|)) (-15 -3405 (|#1| |#2| |#1|)) (-15 -2085 (|#1| (-634 |#2|))) (-15 -2085 (|#1|)) (-15 -1717 ((-121) |#1| |#1|))) +((-2447 (((-121) $ $) 18 (|has| |#1| (-1090)))) (-2510 (((-121) $ (-763)) 8)) (-3507 (($ (-1 (-121) |#1|) $) 42 (|has| $ (-6 -4519)))) (-2801 (($ (-1 (-121) |#1|) $) 52 (|has| $ (-6 -4519)))) (-2671 (($) 7 T CONST)) (-3924 (($ $) 55 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-3405 (($ |#1| $) 44 (|has| $ (-6 -4519))) (($ (-1 (-121) |#1|) $) 43 (|has| $ (-6 -4519)))) (-4328 (($ |#1| $) 54 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519)))) (($ (-1 (-121) |#1|) $) 51 (|has| $ (-6 -4519)))) (-3092 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 53 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 50 (|has| $ (-6 -4519))) ((|#1| (-1 |#1| |#1| |#1|) $) 49 (|has| $ (-6 -4519)))) (-4360 (((-634 |#1|) $) 30 (|has| $ (-6 -4519)))) (-1737 (((-121) $ (-763)) 9)) (-1979 (((-634 |#1|) $) 29 (|has| $ (-6 -4519)))) (-3109 (((-121) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-3674 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#1| |#1|) $) 35)) (-2166 (((-121) $ (-763)) 10)) (-4487 (((-1143) $) 22 (|has| |#1| (-1090)))) (-1890 ((|#1| $) 36)) (-4450 (($ |#1| $) 37)) (-4022 (((-1108) $) 21 (|has| |#1| (-1090)))) (-3775 (((-3 |#1| "failed") (-1 (-121) |#1|) $) 48)) (-1315 ((|#1| $) 38)) (-1387 (((-121) (-1 (-121) |#1|) $) 32 (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-634 |#1|) (-634 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))))) (-3171 (((-121) $ $) 14)) (-3084 (((-121) $) 11)) (-3248 (($) 12)) (-2085 (($) 46) (($ (-634 |#1|)) 45)) (-4168 (((-763) (-1 (-121) |#1|) $) 31 (|has| $ (-6 -4519))) (((-763) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-3863 (($ $) 13)) (-4278 (((-541) $) 56 (|has| |#1| (-609 (-541))))) (-4287 (($ (-634 |#1|)) 47)) (-2745 (((-850) $) 20 (|has| |#1| (-1090)))) (-2367 (($ (-634 |#1|)) 39)) (-1319 (((-121) (-1 (-121) |#1|) $) 33 (|has| $ (-6 -4519)))) (-1717 (((-121) $ $) 19 (|has| |#1| (-1090)))) (-1697 (((-763) $) 6 (|has| $ (-6 -4519))))) +(((-221 |#1|) (-1275) (-1090)) (T -221)) +NIL +(-13 (-227 |t#1|)) +(((-39) . T) ((-111 |#1|) . T) ((-105) |has| |#1| (-1090)) ((-608 (-850)) |has| |#1| (-1090)) ((-154 |#1|) . T) ((-609 (-541)) |has| |#1| (-609 (-541))) ((-227 |#1|) . T) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))) ((-499 |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))) ((-1090) |has| |#1| (-1090)) ((-1195) . T)) +((-4189 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-763)) 11) (($ $ (-634 (-1161)) (-634 (-763))) NIL) (($ $ (-1161) (-763)) NIL) (($ $ (-634 (-1161))) NIL) (($ $ (-1161)) 19) (($ $ (-763)) NIL) (($ $) 16)) (-3190 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-763)) 14) (($ $ (-634 (-1161)) (-634 (-763))) NIL) (($ $ (-1161) (-763)) NIL) (($ $ (-634 (-1161))) NIL) (($ $ (-1161)) NIL) (($ $ (-763)) NIL) (($ $) NIL))) +(((-222 |#1| |#2|) (-10 -8 (-15 -4189 (|#1| |#1|)) (-15 -3190 (|#1| |#1|)) (-15 -4189 (|#1| |#1| (-763))) (-15 -3190 (|#1| |#1| (-763))) (-15 -4189 (|#1| |#1| (-1161))) (-15 -4189 (|#1| |#1| (-634 (-1161)))) (-15 -4189 (|#1| |#1| (-1161) (-763))) (-15 -4189 (|#1| |#1| (-634 (-1161)) (-634 (-763)))) (-15 -3190 (|#1| |#1| (-1161))) (-15 -3190 (|#1| |#1| (-634 (-1161)))) (-15 -3190 (|#1| |#1| (-1161) (-763))) (-15 -3190 (|#1| |#1| (-634 (-1161)) (-634 (-763)))) (-15 -3190 (|#1| |#1| (-1 |#2| |#2|) (-763))) (-15 -3190 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4189 (|#1| |#1| (-1 |#2| |#2|) (-763))) (-15 -4189 (|#1| |#1| (-1 |#2| |#2|)))) (-223 |#2|) (-1047)) (T -222)) +NIL +(-10 -8 (-15 -4189 (|#1| |#1|)) (-15 -3190 (|#1| |#1|)) (-15 -4189 (|#1| |#1| (-763))) (-15 -3190 (|#1| |#1| (-763))) (-15 -4189 (|#1| |#1| (-1161))) (-15 -4189 (|#1| |#1| (-634 (-1161)))) (-15 -4189 (|#1| |#1| (-1161) (-763))) (-15 -4189 (|#1| |#1| (-634 (-1161)) (-634 (-763)))) (-15 -3190 (|#1| |#1| (-1161))) (-15 -3190 (|#1| |#1| (-634 (-1161)))) (-15 -3190 (|#1| |#1| (-1161) (-763))) (-15 -3190 (|#1| |#1| (-634 (-1161)) (-634 (-763)))) (-15 -3190 (|#1| |#1| (-1 |#2| |#2|) (-763))) (-15 -3190 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4189 (|#1| |#1| (-1 |#2| |#2|) (-763))) (-15 -4189 (|#1| |#1| (-1 |#2| |#2|)))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-3134 (((-3 $ "failed") $ $) 18)) (-2671 (($) 16 T CONST)) (-2925 (((-3 $ "failed") $) 33)) (-2735 (((-121) $) 30)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-4189 (($ $ (-1 |#1| |#1|)) 51) (($ $ (-1 |#1| |#1|) (-763)) 50) (($ $ (-634 (-1161)) (-634 (-763))) 43 (|has| |#1| (-895 (-1161)))) (($ $ (-1161) (-763)) 42 (|has| |#1| (-895 (-1161)))) (($ $ (-634 (-1161))) 41 (|has| |#1| (-895 (-1161)))) (($ $ (-1161)) 40 (|has| |#1| (-895 (-1161)))) (($ $ (-763)) 38 (|has| |#1| (-225))) (($ $) 36 (|has| |#1| (-225)))) (-2745 (((-850) $) 11) (($ (-568)) 27)) (-4078 (((-763)) 28)) (-1887 (($ $ (-917)) 25) (($ $ (-763)) 32)) (-3056 (($) 17 T CONST)) (-1556 (($) 29 T CONST)) (-3190 (($ $ (-1 |#1| |#1|)) 49) (($ $ (-1 |#1| |#1|) (-763)) 48) (($ $ (-634 (-1161)) (-634 (-763))) 47 (|has| |#1| (-895 (-1161)))) (($ $ (-1161) (-763)) 46 (|has| |#1| (-895 (-1161)))) (($ $ (-634 (-1161))) 45 (|has| |#1| (-895 (-1161)))) (($ $ (-1161)) 44 (|has| |#1| (-895 (-1161)))) (($ $ (-763)) 39 (|has| |#1| (-225))) (($ $) 37 (|has| |#1| (-225)))) (-1717 (((-121) $ $) 6)) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 24) (($ $ (-763)) 31)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 23))) +(((-223 |#1|) (-1275) (-1047)) (T -223)) +((-4189 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-223 *3)) (-4 *3 (-1047)))) (-4189 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-763)) (-4 *1 (-223 *4)) (-4 *4 (-1047)))) (-3190 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-223 *3)) (-4 *3 (-1047)))) (-3190 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-763)) (-4 *1 (-223 *4)) (-4 *4 (-1047))))) +(-13 (-1047) (-10 -8 (-15 -4189 ($ $ (-1 |t#1| |t#1|))) (-15 -4189 ($ $ (-1 |t#1| |t#1|) (-763))) (-15 -3190 ($ $ (-1 |t#1| |t#1|))) (-15 -3190 ($ $ (-1 |t#1| |t#1|) (-763))) (IF (|has| |t#1| (-225)) (-6 (-225)) |noBranch|) (IF (|has| |t#1| (-895 (-1161))) (-6 (-895 (-1161))) |noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-105) . T) ((-137) . T) ((-608 (-850)) . T) ((-225) |has| |#1| (-225)) ((-637 $) . T) ((-716) . T) ((-895 (-1161)) |has| |#1| (-895 (-1161))) ((-1047) . T) ((-1054) . T) ((-1102) . T) ((-1090) . T)) +((-4189 (($ $) NIL) (($ $ (-763)) 10)) (-3190 (($ $) 8) (($ $ (-763)) 12))) +(((-224 |#1|) (-10 -8 (-15 -3190 (|#1| |#1| (-763))) (-15 -4189 (|#1| |#1| (-763))) (-15 -3190 (|#1| |#1|)) (-15 -4189 (|#1| |#1|))) (-225)) (T -224)) +NIL +(-10 -8 (-15 -3190 (|#1| |#1| (-763))) (-15 -4189 (|#1| |#1| (-763))) (-15 -3190 (|#1| |#1|)) (-15 -4189 (|#1| |#1|))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-3134 (((-3 $ "failed") $ $) 18)) (-2671 (($) 16 T CONST)) (-2925 (((-3 $ "failed") $) 33)) (-2735 (((-121) $) 30)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-4189 (($ $) 37) (($ $ (-763)) 35)) (-2745 (((-850) $) 11) (($ (-568)) 27)) (-4078 (((-763)) 28)) (-1887 (($ $ (-917)) 25) (($ $ (-763)) 32)) (-3056 (($) 17 T CONST)) (-1556 (($) 29 T CONST)) (-3190 (($ $) 36) (($ $ (-763)) 34)) (-1717 (((-121) $ $) 6)) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 24) (($ $ (-763)) 31)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 23))) +(((-225) (-1275)) (T -225)) +((-4189 (*1 *1 *1) (-4 *1 (-225))) (-3190 (*1 *1 *1) (-4 *1 (-225))) (-4189 (*1 *1 *1 *2) (-12 (-4 *1 (-225)) (-5 *2 (-763)))) (-3190 (*1 *1 *1 *2) (-12 (-4 *1 (-225)) (-5 *2 (-763))))) +(-13 (-1047) (-10 -8 (-15 -4189 ($ $)) (-15 -3190 ($ $)) (-15 -4189 ($ $ (-763))) (-15 -3190 ($ $ (-763))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-105) . T) ((-137) . T) ((-608 (-850)) . T) ((-637 $) . T) ((-716) . T) ((-1047) . T) ((-1054) . T) ((-1102) . T) ((-1090) . T)) +((-2085 (($) 12) (($ (-634 |#2|)) NIL)) (-3863 (($ $) 14)) (-4287 (($ (-634 |#2|)) 10)) (-2745 (((-850) $) 21))) +(((-226 |#1| |#2|) (-10 -8 (-15 -2085 (|#1| (-634 |#2|))) (-15 -2085 (|#1|)) (-15 -4287 (|#1| (-634 |#2|))) (-15 -2745 ((-850) |#1|)) (-15 -3863 (|#1| |#1|))) (-227 |#2|) (-1090)) (T -226)) +NIL +(-10 -8 (-15 -2085 (|#1| (-634 |#2|))) (-15 -2085 (|#1|)) (-15 -4287 (|#1| (-634 |#2|))) (-15 -2745 ((-850) |#1|)) (-15 -3863 (|#1| |#1|))) +((-2447 (((-121) $ $) 18 (|has| |#1| (-1090)))) (-2510 (((-121) $ (-763)) 8)) (-3507 (($ (-1 (-121) |#1|) $) 42 (|has| $ (-6 -4519)))) (-2801 (($ (-1 (-121) |#1|) $) 52 (|has| $ (-6 -4519)))) (-2671 (($) 7 T CONST)) (-3924 (($ $) 55 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-3405 (($ |#1| $) 44 (|has| $ (-6 -4519))) (($ (-1 (-121) |#1|) $) 43 (|has| $ (-6 -4519)))) (-4328 (($ |#1| $) 54 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519)))) (($ (-1 (-121) |#1|) $) 51 (|has| $ (-6 -4519)))) (-3092 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 53 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 50 (|has| $ (-6 -4519))) ((|#1| (-1 |#1| |#1| |#1|) $) 49 (|has| $ (-6 -4519)))) (-4360 (((-634 |#1|) $) 30 (|has| $ (-6 -4519)))) (-1737 (((-121) $ (-763)) 9)) (-1979 (((-634 |#1|) $) 29 (|has| $ (-6 -4519)))) (-3109 (((-121) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-3674 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#1| |#1|) $) 35)) (-2166 (((-121) $ (-763)) 10)) (-4487 (((-1143) $) 22 (|has| |#1| (-1090)))) (-1890 ((|#1| $) 36)) (-4450 (($ |#1| $) 37)) (-4022 (((-1108) $) 21 (|has| |#1| (-1090)))) (-3775 (((-3 |#1| "failed") (-1 (-121) |#1|) $) 48)) (-1315 ((|#1| $) 38)) (-1387 (((-121) (-1 (-121) |#1|) $) 32 (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-634 |#1|) (-634 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))))) (-3171 (((-121) $ $) 14)) (-3084 (((-121) $) 11)) (-3248 (($) 12)) (-2085 (($) 46) (($ (-634 |#1|)) 45)) (-4168 (((-763) (-1 (-121) |#1|) $) 31 (|has| $ (-6 -4519))) (((-763) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-3863 (($ $) 13)) (-4278 (((-541) $) 56 (|has| |#1| (-609 (-541))))) (-4287 (($ (-634 |#1|)) 47)) (-2745 (((-850) $) 20 (|has| |#1| (-1090)))) (-2367 (($ (-634 |#1|)) 39)) (-1319 (((-121) (-1 (-121) |#1|) $) 33 (|has| $ (-6 -4519)))) (-1717 (((-121) $ $) 19 (|has| |#1| (-1090)))) (-1697 (((-763) $) 6 (|has| $ (-6 -4519))))) +(((-227 |#1|) (-1275) (-1090)) (T -227)) +((-2085 (*1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1090)))) (-2085 (*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-1090)) (-4 *1 (-227 *3)))) (-3405 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4519)) (-4 *1 (-227 *2)) (-4 *2 (-1090)))) (-3405 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-121) *3)) (|has| *1 (-6 -4519)) (-4 *1 (-227 *3)) (-4 *3 (-1090)))) (-3507 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-121) *3)) (|has| *1 (-6 -4519)) (-4 *1 (-227 *3)) (-4 *3 (-1090))))) +(-13 (-111 |t#1|) (-154 |t#1|) (-10 -8 (-15 -2085 ($)) (-15 -2085 ($ (-634 |t#1|))) (IF (|has| $ (-6 -4519)) (PROGN (-15 -3405 ($ |t#1| $)) (-15 -3405 ($ (-1 (-121) |t#1|) $)) (-15 -3507 ($ (-1 (-121) |t#1|) $))) |noBranch|))) +(((-39) . T) ((-111 |#1|) . T) ((-105) |has| |#1| (-1090)) ((-608 (-850)) |has| |#1| (-1090)) ((-154 |#1|) . T) ((-609 (-541)) |has| |#1| (-609 (-541))) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))) ((-499 |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))) ((-1090) |has| |#1| (-1090)) ((-1195) . T)) +((-2829 (((-2 (|:| |varOrder| (-634 (-1161))) (|:| |inhom| (-3 (-634 (-1244 (-763))) "failed")) (|:| |hom| (-634 (-1244 (-763))))) (-288 (-953 (-568)))) 25))) +(((-228) (-10 -7 (-15 -2829 ((-2 (|:| |varOrder| (-634 (-1161))) (|:| |inhom| (-3 (-634 (-1244 (-763))) "failed")) (|:| |hom| (-634 (-1244 (-763))))) (-288 (-953 (-568))))))) (T -228)) +((-2829 (*1 *2 *3) (-12 (-5 *3 (-288 (-953 (-568)))) (-5 *2 (-2 (|:| |varOrder| (-634 (-1161))) (|:| |inhom| (-3 (-634 (-1244 (-763))) "failed")) (|:| |hom| (-634 (-1244 (-763)))))) (-5 *1 (-228))))) +(-10 -7 (-15 -2829 ((-2 (|:| |varOrder| (-634 (-1161))) (|:| |inhom| (-3 (-634 (-1244 (-763))) "failed")) (|:| |hom| (-634 (-1244 (-763))))) (-288 (-953 (-568)))))) +((-3983 (((-763)) 51)) (-3164 (((-2 (|:| -2928 (-679 |#3|)) (|:| |vec| (-1244 |#3|))) (-679 $) (-1244 $)) 49) (((-679 |#3|) (-679 $)) 41) (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) NIL) (((-679 (-568)) (-679 $)) NIL)) (-4321 (((-139)) 57)) (-4189 (($ $ (-1 |#3| |#3|) (-763)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-634 (-1161)) (-634 (-763))) NIL) (($ $ (-1161) (-763)) NIL) (($ $ (-634 (-1161))) NIL) (($ $ (-1161)) NIL) (($ $ (-763)) NIL) (($ $) NIL)) (-2745 (((-1244 |#3|) $) NIL) (($ |#3|) NIL) (((-850) $) NIL) (($ (-568)) 12) (($ (-409 (-568))) NIL)) (-4078 (((-763)) 15)) (-1779 (($ $ |#3|) 54))) +(((-229 |#1| |#2| |#3|) (-10 -8 (-15 -2745 (|#1| (-409 (-568)))) (-15 -2745 (|#1| (-568))) (-15 -2745 ((-850) |#1|)) (-15 -4078 ((-763))) (-15 -4189 (|#1| |#1|)) (-15 -4189 (|#1| |#1| (-763))) (-15 -4189 (|#1| |#1| (-1161))) (-15 -4189 (|#1| |#1| (-634 (-1161)))) (-15 -4189 (|#1| |#1| (-1161) (-763))) (-15 -4189 (|#1| |#1| (-634 (-1161)) (-634 (-763)))) (-15 -3164 ((-679 (-568)) (-679 |#1|))) (-15 -3164 ((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 |#1|) (-1244 |#1|))) (-15 -2745 (|#1| |#3|)) (-15 -4189 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4189 (|#1| |#1| (-1 |#3| |#3|) (-763))) (-15 -3164 ((-679 |#3|) (-679 |#1|))) (-15 -3164 ((-2 (|:| -2928 (-679 |#3|)) (|:| |vec| (-1244 |#3|))) (-679 |#1|) (-1244 |#1|))) (-15 -3983 ((-763))) (-15 -1779 (|#1| |#1| |#3|)) (-15 -4321 ((-139))) (-15 -2745 ((-1244 |#3|) |#1|))) (-230 |#2| |#3|) (-763) (-1195)) (T -229)) +((-4321 (*1 *2) (-12 (-14 *4 (-763)) (-4 *5 (-1195)) (-5 *2 (-139)) (-5 *1 (-229 *3 *4 *5)) (-4 *3 (-230 *4 *5)))) (-3983 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1195)) (-5 *2 (-763)) (-5 *1 (-229 *3 *4 *5)) (-4 *3 (-230 *4 *5)))) (-4078 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1195)) (-5 *2 (-763)) (-5 *1 (-229 *3 *4 *5)) (-4 *3 (-230 *4 *5))))) +(-10 -8 (-15 -2745 (|#1| (-409 (-568)))) (-15 -2745 (|#1| (-568))) (-15 -2745 ((-850) |#1|)) (-15 -4078 ((-763))) (-15 -4189 (|#1| |#1|)) (-15 -4189 (|#1| |#1| (-763))) (-15 -4189 (|#1| |#1| (-1161))) (-15 -4189 (|#1| |#1| (-634 (-1161)))) (-15 -4189 (|#1| |#1| (-1161) (-763))) (-15 -4189 (|#1| |#1| (-634 (-1161)) (-634 (-763)))) (-15 -3164 ((-679 (-568)) (-679 |#1|))) (-15 -3164 ((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 |#1|) (-1244 |#1|))) (-15 -2745 (|#1| |#3|)) (-15 -4189 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4189 (|#1| |#1| (-1 |#3| |#3|) (-763))) (-15 -3164 ((-679 |#3|) (-679 |#1|))) (-15 -3164 ((-2 (|:| -2928 (-679 |#3|)) (|:| |vec| (-1244 |#3|))) (-679 |#1|) (-1244 |#1|))) (-15 -3983 ((-763))) (-15 -1779 (|#1| |#1| |#3|)) (-15 -4321 ((-139))) (-15 -2745 ((-1244 |#3|) |#1|))) +((-2447 (((-121) $ $) 18 (|has| |#2| (-1090)))) (-2537 (((-121) $) 67 (|has| |#2| (-137)))) (-1394 (($ (-917)) 122 (|has| |#2| (-1047)))) (-1868 (((-1249) $ (-568) (-568)) 37 (|has| $ (-6 -4520)))) (-1462 (($ $ $) 118 (|has| |#2| (-788)))) (-3134 (((-3 $ "failed") $ $) 69 (|has| |#2| (-137)))) (-2510 (((-121) $ (-763)) 8)) (-3983 (((-763)) 104 (|has| |#2| (-370)))) (-3662 (((-568) $) 116 (|has| |#2| (-840)))) (-2436 ((|#2| $ (-568) |#2|) 49 (|has| $ (-6 -4520)))) (-2671 (($) 7 T CONST)) (-3666 (((-3 (-568) "failed") $) 62 (-2139 (|has| |#2| (-1037 (-568))) (|has| |#2| (-1090)))) (((-3 (-409 (-568)) "failed") $) 59 (-2139 (|has| |#2| (-1037 (-409 (-568)))) (|has| |#2| (-1090)))) (((-3 |#2| "failed") $) 56 (|has| |#2| (-1090)))) (-2854 (((-568) $) 63 (-2139 (|has| |#2| (-1037 (-568))) (|has| |#2| (-1090)))) (((-409 (-568)) $) 60 (-2139 (|has| |#2| (-1037 (-409 (-568)))) (|has| |#2| (-1090)))) ((|#2| $) 55 (|has| |#2| (-1090)))) (-3164 (((-679 (-568)) (-679 $)) 103 (-2139 (|has| |#2| (-630 (-568))) (|has| |#2| (-1047)))) (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) 102 (-2139 (|has| |#2| (-630 (-568))) (|has| |#2| (-1047)))) (((-2 (|:| -2928 (-679 |#2|)) (|:| |vec| (-1244 |#2|))) (-679 $) (-1244 $)) 101 (|has| |#2| (-1047))) (((-679 |#2|) (-679 $)) 100 (|has| |#2| (-1047)))) (-2925 (((-3 $ "failed") $) 75 (|has| |#2| (-716)))) (-1731 (($) 107 (|has| |#2| (-370)))) (-3989 ((|#2| $ (-568) |#2|) 50 (|has| $ (-6 -4520)))) (-2602 ((|#2| $ (-568)) 48)) (-2033 (((-121) $) 114 (|has| |#2| (-840)))) (-4360 (((-634 |#2|) $) 30 (|has| $ (-6 -4519)))) (-2735 (((-121) $) 78 (|has| |#2| (-716)))) (-2245 (((-121) $) 115 (|has| |#2| (-840)))) (-1737 (((-121) $ (-763)) 9)) (-1881 (((-568) $) 40 (|has| (-568) (-842)))) (-2521 (($ $ $) 113 (-2198 (|has| |#2| (-840)) (|has| |#2| (-788))))) (-1979 (((-634 |#2|) $) 29 (|has| $ (-6 -4519)))) (-3109 (((-121) |#2| $) 27 (-12 (|has| |#2| (-1090)) (|has| $ (-6 -4519))))) (-2223 (((-568) $) 41 (|has| (-568) (-842)))) (-3268 (($ $ $) 112 (-2198 (|has| |#2| (-840)) (|has| |#2| (-788))))) (-3674 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#2| |#2|) $) 35)) (-3683 (((-917) $) 106 (|has| |#2| (-370)))) (-2166 (((-121) $ (-763)) 10)) (-4487 (((-1143) $) 22 (|has| |#2| (-1090)))) (-4174 (((-634 (-568)) $) 43)) (-3578 (((-121) (-568) $) 44)) (-4355 (($ (-917)) 105 (|has| |#2| (-370)))) (-4022 (((-1108) $) 21 (|has| |#2| (-1090)))) (-3876 ((|#2| $) 39 (|has| (-568) (-842)))) (-3724 (($ $ |#2|) 38 (|has| $ (-6 -4520)))) (-1387 (((-121) (-1 (-121) |#2|) $) 32 (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#2|))) 26 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090)))) (($ $ (-288 |#2|)) 25 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090)))) (($ $ (-634 |#2|) (-634 |#2|)) 23 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090))))) (-3171 (((-121) $ $) 14)) (-4467 (((-121) |#2| $) 42 (-12 (|has| $ (-6 -4519)) (|has| |#2| (-1090))))) (-2041 (((-634 |#2|) $) 45)) (-3084 (((-121) $) 11)) (-3248 (($) 12)) (-2779 ((|#2| $ (-568) |#2|) 47) ((|#2| $ (-568)) 46)) (-3682 ((|#2| $ $) 121 (|has| |#2| (-1047)))) (-2039 (($ (-1244 |#2|)) 123)) (-4321 (((-139)) 120 (|has| |#2| (-365)))) (-4189 (($ $) 95 (-2139 (|has| |#2| (-225)) (|has| |#2| (-1047)))) (($ $ (-763)) 93 (-2139 (|has| |#2| (-225)) (|has| |#2| (-1047)))) (($ $ (-1161)) 91 (-2139 (|has| |#2| (-895 (-1161))) (|has| |#2| (-1047)))) (($ $ (-634 (-1161))) 90 (-2139 (|has| |#2| (-895 (-1161))) (|has| |#2| (-1047)))) (($ $ (-1161) (-763)) 89 (-2139 (|has| |#2| (-895 (-1161))) (|has| |#2| (-1047)))) (($ $ (-634 (-1161)) (-634 (-763))) 88 (-2139 (|has| |#2| (-895 (-1161))) (|has| |#2| (-1047)))) (($ $ (-1 |#2| |#2|) (-763)) 81 (|has| |#2| (-1047))) (($ $ (-1 |#2| |#2|)) 80 (|has| |#2| (-1047)))) (-4168 (((-763) (-1 (-121) |#2|) $) 31 (|has| $ (-6 -4519))) (((-763) |#2| $) 28 (-12 (|has| |#2| (-1090)) (|has| $ (-6 -4519))))) (-3863 (($ $) 13)) (-2745 (((-1244 |#2|) $) 124) (((-850) $) 20 (|has| |#2| (-1090))) (($ (-568)) 61 (-2198 (-2139 (|has| |#2| (-1037 (-568))) (|has| |#2| (-1090))) (|has| |#2| (-1047)))) (($ (-409 (-568))) 58 (-2139 (|has| |#2| (-1037 (-409 (-568)))) (|has| |#2| (-1090)))) (($ |#2|) 57 (|has| |#2| (-1090)))) (-4078 (((-763)) 99 (|has| |#2| (-1047)))) (-1319 (((-121) (-1 (-121) |#2|) $) 33 (|has| $ (-6 -4519)))) (-2897 (($ $) 117 (|has| |#2| (-840)))) (-1887 (($ $ (-763)) 76 (|has| |#2| (-716))) (($ $ (-917)) 72 (|has| |#2| (-716)))) (-3056 (($) 66 (|has| |#2| (-137)) CONST)) (-1556 (($) 79 (|has| |#2| (-716)) CONST)) (-3190 (($ $) 94 (-2139 (|has| |#2| (-225)) (|has| |#2| (-1047)))) (($ $ (-763)) 92 (-2139 (|has| |#2| (-225)) (|has| |#2| (-1047)))) (($ $ (-1161)) 87 (-2139 (|has| |#2| (-895 (-1161))) (|has| |#2| (-1047)))) (($ $ (-634 (-1161))) 86 (-2139 (|has| |#2| (-895 (-1161))) (|has| |#2| (-1047)))) (($ $ (-1161) (-763)) 85 (-2139 (|has| |#2| (-895 (-1161))) (|has| |#2| (-1047)))) (($ $ (-634 (-1161)) (-634 (-763))) 84 (-2139 (|has| |#2| (-895 (-1161))) (|has| |#2| (-1047)))) (($ $ (-1 |#2| |#2|) (-763)) 83 (|has| |#2| (-1047))) (($ $ (-1 |#2| |#2|)) 82 (|has| |#2| (-1047)))) (-1751 (((-121) $ $) 110 (-2198 (|has| |#2| (-840)) (|has| |#2| (-788))))) (-1738 (((-121) $ $) 109 (-2198 (|has| |#2| (-840)) (|has| |#2| (-788))))) (-1717 (((-121) $ $) 19 (|has| |#2| (-1090)))) (-1745 (((-121) $ $) 111 (-2198 (|has| |#2| (-840)) (|has| |#2| (-788))))) (-1732 (((-121) $ $) 108 (-2198 (|has| |#2| (-840)) (|has| |#2| (-788))))) (-1779 (($ $ |#2|) 119 (|has| |#2| (-365)))) (-1773 (($ $ $) 97 (|has| |#2| (-1047))) (($ $) 96 (|has| |#2| (-1047)))) (-1767 (($ $ $) 64 (|has| |#2| (-25)))) (** (($ $ (-763)) 77 (|has| |#2| (-716))) (($ $ (-917)) 73 (|has| |#2| (-716)))) (* (($ (-568) $) 98 (|has| |#2| (-1047))) (($ $ $) 74 (|has| |#2| (-716))) (($ $ |#2|) 71 (|has| |#2| (-1047))) (($ |#2| $) 70 (|has| |#2| (-1047))) (($ (-763) $) 68 (|has| |#2| (-137))) (($ (-917) $) 65 (|has| |#2| (-25)))) (-1697 (((-763) $) 6 (|has| $ (-6 -4519))))) +(((-230 |#1| |#2|) (-1275) (-763) (-1195)) (T -230)) +((-2039 (*1 *1 *2) (-12 (-5 *2 (-1244 *4)) (-4 *4 (-1195)) (-4 *1 (-230 *3 *4)))) (-1394 (*1 *1 *2) (-12 (-5 *2 (-917)) (-4 *1 (-230 *3 *4)) (-4 *4 (-1047)) (-4 *4 (-1195)))) (-3682 (*1 *2 *1 *1) (-12 (-4 *1 (-230 *3 *2)) (-4 *2 (-1195)) (-4 *2 (-1047))))) +(-13 (-601 (-568) |t#2|) (-608 (-1244 |t#2|)) (-10 -8 (-6 -4519) (-15 -2039 ($ (-1244 |t#2|))) (IF (|has| |t#2| (-1090)) (-6 (-413 |t#2|)) |noBranch|) (IF (|has| |t#2| (-1047)) (PROGN (-6 (-120 |t#2| |t#2|)) (-6 (-223 |t#2|)) (-6 (-379 |t#2|)) (-15 -1394 ($ (-917))) (-15 -3682 (|t#2| $ $))) |noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |noBranch|) (IF (|has| |t#2| (-137)) (-6 (-137)) |noBranch|) (IF (|has| |t#2| (-716)) (-6 (-716 (SEQ (|:| * (-1 $ |t#2| $)) (|exit| 1 (|:| * (-1 $ $ |t#2|)))))) |noBranch|) (IF (|has| |t#2| (-370)) (-6 (-370)) |noBranch|) (IF (|has| |t#2| (-172)) (PROGN (-6 (-43 |t#2|)) (-6 (-172))) |noBranch|) (IF (|has| |t#2| (-6 -4516)) (-6 -4516) |noBranch|) (IF (|has| |t#2| (-840)) (-6 (-840)) |noBranch|) (IF (|has| |t#2| (-788)) (-6 (-788)) |noBranch|) (IF (|has| |t#2| (-365)) (-6 (-1251 |t#2|)) |noBranch|))) +(((-21) -2198 (|has| |#2| (-1047)) (|has| |#2| (-840)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-23) -2198 (|has| |#2| (-1047)) (|has| |#2| (-840)) (|has| |#2| (-788)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-137))) ((-25) -2198 (|has| |#2| (-1047)) (|has| |#2| (-840)) (|has| |#2| (-788)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-137)) (|has| |#2| (-25))) ((-39) . T) ((-43 |#2|) |has| |#2| (-172)) ((-105) -2198 (|has| |#2| (-1090)) (|has| |#2| (-1047)) (|has| |#2| (-840)) (|has| |#2| (-788)) (|has| |#2| (-716)) (|has| |#2| (-370)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-137)) (|has| |#2| (-25))) ((-120 |#2| |#2|) -2198 (|has| |#2| (-1047)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-120 $ $) |has| |#2| (-172)) ((-137) -2198 (|has| |#2| (-1047)) (|has| |#2| (-840)) (|has| |#2| (-788)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-137))) ((-608 (-850)) -2198 (|has| |#2| (-1090)) (|has| |#2| (-1047)) (|has| |#2| (-840)) (|has| |#2| (-788)) (|has| |#2| (-716)) (|has| |#2| (-370)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-137)) (|has| |#2| (-25))) ((-608 (-1244 |#2|)) . T) ((-172) |has| |#2| (-172)) ((-223 |#2|) |has| |#2| (-1047)) ((-225) -12 (|has| |#2| (-225)) (|has| |#2| (-1047))) ((-281 (-568) |#2|) . T) ((-283 (-568) |#2|) . T) ((-303 |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090))) ((-370) |has| |#2| (-370)) ((-379 |#2|) |has| |#2| (-1047)) ((-413 |#2|) |has| |#2| (-1090)) ((-499 |#2|) . T) ((-601 (-568) |#2|) . T) ((-523 |#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090))) ((-637 |#2|) -2198 (|has| |#2| (-1047)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-637 $) -2198 (|has| |#2| (-1047)) (|has| |#2| (-840)) (|has| |#2| (-172))) ((-630 (-568)) -12 (|has| |#2| (-630 (-568))) (|has| |#2| (-1047))) ((-630 |#2|) |has| |#2| (-1047)) ((-707 |#2|) -2198 (|has| |#2| (-365)) (|has| |#2| (-172))) ((-716 (SEQ (|:| * (-1 $ |#2| $)) (|exit| 1 (|:| * (-1 $ $ |#2|))))) |has| |#2| (-716)) ((-716) -2198 (|has| |#2| (-1047)) (|has| |#2| (-840)) (|has| |#2| (-172))) ((-786) |has| |#2| (-840)) ((-787) -2198 (|has| |#2| (-840)) (|has| |#2| (-788))) ((-788) |has| |#2| (-788)) ((-789) -2198 (|has| |#2| (-840)) (|has| |#2| (-788))) ((-790) -2198 (|has| |#2| (-840)) (|has| |#2| (-788))) ((-840) |has| |#2| (-840)) ((-842) -2198 (|has| |#2| (-840)) (|has| |#2| (-788))) ((-895 (-1161)) -12 (|has| |#2| (-895 (-1161))) (|has| |#2| (-1047))) ((-1037 (-409 (-568))) -12 (|has| |#2| (-1037 (-409 (-568)))) (|has| |#2| (-1090))) ((-1037 (-568)) -12 (|has| |#2| (-1037 (-568))) (|has| |#2| (-1090))) ((-1037 |#2|) |has| |#2| (-1090)) ((-1053 |#2|) -2198 (|has| |#2| (-1047)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-1053 $) |has| |#2| (-172)) ((-1047) -2198 (|has| |#2| (-1047)) (|has| |#2| (-840)) (|has| |#2| (-172))) ((-1054) -2198 (|has| |#2| (-1047)) (|has| |#2| (-840)) (|has| |#2| (-172))) ((-1102) -2198 (|has| |#2| (-1047)) (|has| |#2| (-840)) (|has| |#2| (-716)) (|has| |#2| (-172))) ((-1090) -2198 (|has| |#2| (-1090)) (|has| |#2| (-1047)) (|has| |#2| (-840)) (|has| |#2| (-788)) (|has| |#2| (-716)) (|has| |#2| (-370)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-137)) (|has| |#2| (-25))) ((-1195) . T) ((-1251 |#2|) |has| |#2| (-365))) +((-2512 (((-232 |#1| |#3|) (-1 |#3| |#2| |#3|) (-232 |#1| |#2|) |#3|) 21)) (-3092 ((|#3| (-1 |#3| |#2| |#3|) (-232 |#1| |#2|) |#3|) 23)) (-2795 (((-232 |#1| |#3|) (-1 |#3| |#2|) (-232 |#1| |#2|)) 18))) +(((-231 |#1| |#2| |#3|) (-10 -7 (-15 -2512 ((-232 |#1| |#3|) (-1 |#3| |#2| |#3|) (-232 |#1| |#2|) |#3|)) (-15 -3092 (|#3| (-1 |#3| |#2| |#3|) (-232 |#1| |#2|) |#3|)) (-15 -2795 ((-232 |#1| |#3|) (-1 |#3| |#2|) (-232 |#1| |#2|)))) (-763) (-1195) (-1195)) (T -231)) +((-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-232 *5 *6)) (-14 *5 (-763)) (-4 *6 (-1195)) (-4 *7 (-1195)) (-5 *2 (-232 *5 *7)) (-5 *1 (-231 *5 *6 *7)))) (-3092 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-232 *5 *6)) (-14 *5 (-763)) (-4 *6 (-1195)) (-4 *2 (-1195)) (-5 *1 (-231 *5 *6 *2)))) (-2512 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-232 *6 *7)) (-14 *6 (-763)) (-4 *7 (-1195)) (-4 *5 (-1195)) (-5 *2 (-232 *6 *5)) (-5 *1 (-231 *6 *7 *5))))) +(-10 -7 (-15 -2512 ((-232 |#1| |#3|) (-1 |#3| |#2| |#3|) (-232 |#1| |#2|) |#3|)) (-15 -3092 (|#3| (-1 |#3| |#2| |#3|) (-232 |#1| |#2|) |#3|)) (-15 -2795 ((-232 |#1| |#3|) (-1 |#3| |#2|) (-232 |#1| |#2|)))) +((-2447 (((-121) $ $) NIL (|has| |#2| (-1090)))) (-2537 (((-121) $) NIL (|has| |#2| (-137)))) (-1394 (($ (-917)) 56 (|has| |#2| (-1047)))) (-1868 (((-1249) $ (-568) (-568)) NIL (|has| $ (-6 -4520)))) (-1462 (($ $ $) 60 (|has| |#2| (-788)))) (-3134 (((-3 $ "failed") $ $) 49 (|has| |#2| (-137)))) (-2510 (((-121) $ (-763)) 17)) (-3983 (((-763)) NIL (|has| |#2| (-370)))) (-3662 (((-568) $) NIL (|has| |#2| (-840)))) (-2436 ((|#2| $ (-568) |#2|) NIL (|has| $ (-6 -4520)))) (-2671 (($) NIL T CONST)) (-3666 (((-3 (-568) "failed") $) NIL (-12 (|has| |#2| (-1037 (-568))) (|has| |#2| (-1090)))) (((-3 (-409 (-568)) "failed") $) NIL (-12 (|has| |#2| (-1037 (-409 (-568)))) (|has| |#2| (-1090)))) (((-3 |#2| "failed") $) 29 (|has| |#2| (-1090)))) (-2854 (((-568) $) NIL (-12 (|has| |#2| (-1037 (-568))) (|has| |#2| (-1090)))) (((-409 (-568)) $) NIL (-12 (|has| |#2| (-1037 (-409 (-568)))) (|has| |#2| (-1090)))) ((|#2| $) 27 (|has| |#2| (-1090)))) (-3164 (((-679 (-568)) (-679 $)) NIL (-12 (|has| |#2| (-630 (-568))) (|has| |#2| (-1047)))) (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) NIL (-12 (|has| |#2| (-630 (-568))) (|has| |#2| (-1047)))) (((-2 (|:| -2928 (-679 |#2|)) (|:| |vec| (-1244 |#2|))) (-679 $) (-1244 $)) NIL (|has| |#2| (-1047))) (((-679 |#2|) (-679 $)) NIL (|has| |#2| (-1047)))) (-2925 (((-3 $ "failed") $) 53 (|has| |#2| (-716)))) (-1731 (($) NIL (|has| |#2| (-370)))) (-3989 ((|#2| $ (-568) |#2|) NIL (|has| $ (-6 -4520)))) (-2602 ((|#2| $ (-568)) 51)) (-2033 (((-121) $) NIL (|has| |#2| (-840)))) (-4360 (((-634 |#2|) $) 15 (|has| $ (-6 -4519)))) (-2735 (((-121) $) NIL (|has| |#2| (-716)))) (-2245 (((-121) $) NIL (|has| |#2| (-840)))) (-1737 (((-121) $ (-763)) NIL)) (-1881 (((-568) $) 20 (|has| (-568) (-842)))) (-2521 (($ $ $) NIL (-2198 (|has| |#2| (-788)) (|has| |#2| (-840))))) (-1979 (((-634 |#2|) $) NIL (|has| $ (-6 -4519)))) (-3109 (((-121) |#2| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#2| (-1090))))) (-2223 (((-568) $) 50 (|has| (-568) (-842)))) (-3268 (($ $ $) NIL (-2198 (|has| |#2| (-788)) (|has| |#2| (-840))))) (-3674 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#2| |#2|) $) 41)) (-3683 (((-917) $) NIL (|has| |#2| (-370)))) (-2166 (((-121) $ (-763)) NIL)) (-4487 (((-1143) $) NIL (|has| |#2| (-1090)))) (-4174 (((-634 (-568)) $) NIL)) (-3578 (((-121) (-568) $) NIL)) (-4355 (($ (-917)) NIL (|has| |#2| (-370)))) (-4022 (((-1108) $) NIL (|has| |#2| (-1090)))) (-3876 ((|#2| $) NIL (|has| (-568) (-842)))) (-3724 (($ $ |#2|) NIL (|has| $ (-6 -4520)))) (-1387 (((-121) (-1 (-121) |#2|) $) 24 (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#2|))) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090)))) (($ $ (-634 |#2|) (-634 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090))))) (-3171 (((-121) $ $) NIL)) (-4467 (((-121) |#2| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#2| (-1090))))) (-2041 (((-634 |#2|) $) NIL)) (-3084 (((-121) $) NIL)) (-3248 (($) NIL)) (-2779 ((|#2| $ (-568) |#2|) NIL) ((|#2| $ (-568)) 21)) (-3682 ((|#2| $ $) NIL (|has| |#2| (-1047)))) (-2039 (($ (-1244 |#2|)) 18)) (-4321 (((-139)) NIL (|has| |#2| (-365)))) (-4189 (($ $) NIL (-12 (|has| |#2| (-225)) (|has| |#2| (-1047)))) (($ $ (-763)) NIL (-12 (|has| |#2| (-225)) (|has| |#2| (-1047)))) (($ $ (-1161)) NIL (-12 (|has| |#2| (-895 (-1161))) (|has| |#2| (-1047)))) (($ $ (-634 (-1161))) NIL (-12 (|has| |#2| (-895 (-1161))) (|has| |#2| (-1047)))) (($ $ (-1161) (-763)) NIL (-12 (|has| |#2| (-895 (-1161))) (|has| |#2| (-1047)))) (($ $ (-634 (-1161)) (-634 (-763))) NIL (-12 (|has| |#2| (-895 (-1161))) (|has| |#2| (-1047)))) (($ $ (-1 |#2| |#2|) (-763)) NIL (|has| |#2| (-1047))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1047)))) (-4168 (((-763) (-1 (-121) |#2|) $) NIL (|has| $ (-6 -4519))) (((-763) |#2| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#2| (-1090))))) (-3863 (($ $) NIL)) (-2745 (((-1244 |#2|) $) 10) (((-850) $) NIL (|has| |#2| (-1090))) (($ (-568)) NIL (-2198 (-12 (|has| |#2| (-1037 (-568))) (|has| |#2| (-1090))) (|has| |#2| (-1047)))) (($ (-409 (-568))) NIL (-12 (|has| |#2| (-1037 (-409 (-568)))) (|has| |#2| (-1090)))) (($ |#2|) 13 (|has| |#2| (-1090)))) (-4078 (((-763)) NIL (|has| |#2| (-1047)))) (-1319 (((-121) (-1 (-121) |#2|) $) NIL (|has| $ (-6 -4519)))) (-2897 (($ $) NIL (|has| |#2| (-840)))) (-1887 (($ $ (-763)) NIL (|has| |#2| (-716))) (($ $ (-917)) NIL (|has| |#2| (-716)))) (-3056 (($) 35 (|has| |#2| (-137)) CONST)) (-1556 (($) 38 (|has| |#2| (-716)) CONST)) (-3190 (($ $) NIL (-12 (|has| |#2| (-225)) (|has| |#2| (-1047)))) (($ $ (-763)) NIL (-12 (|has| |#2| (-225)) (|has| |#2| (-1047)))) (($ $ (-1161)) NIL (-12 (|has| |#2| (-895 (-1161))) (|has| |#2| (-1047)))) (($ $ (-634 (-1161))) NIL (-12 (|has| |#2| (-895 (-1161))) (|has| |#2| (-1047)))) (($ $ (-1161) (-763)) NIL (-12 (|has| |#2| (-895 (-1161))) (|has| |#2| (-1047)))) (($ $ (-634 (-1161)) (-634 (-763))) NIL (-12 (|has| |#2| (-895 (-1161))) (|has| |#2| (-1047)))) (($ $ (-1 |#2| |#2|) (-763)) NIL (|has| |#2| (-1047))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1047)))) (-1751 (((-121) $ $) NIL (-2198 (|has| |#2| (-788)) (|has| |#2| (-840))))) (-1738 (((-121) $ $) NIL (-2198 (|has| |#2| (-788)) (|has| |#2| (-840))))) (-1717 (((-121) $ $) 26 (|has| |#2| (-1090)))) (-1745 (((-121) $ $) NIL (-2198 (|has| |#2| (-788)) (|has| |#2| (-840))))) (-1732 (((-121) $ $) 58 (-2198 (|has| |#2| (-788)) (|has| |#2| (-840))))) (-1779 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-1773 (($ $ $) NIL (|has| |#2| (-1047))) (($ $) NIL (|has| |#2| (-1047)))) (-1767 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-763)) NIL (|has| |#2| (-716))) (($ $ (-917)) NIL (|has| |#2| (-716)))) (* (($ (-568) $) NIL (|has| |#2| (-1047))) (($ $ $) 44 (|has| |#2| (-716))) (($ $ |#2|) 42 (|has| |#2| (-1047))) (($ |#2| $) 43 (|has| |#2| (-1047))) (($ (-763) $) NIL (|has| |#2| (-137))) (($ (-917) $) NIL (|has| |#2| (-25)))) (-1697 (((-763) $) NIL (|has| $ (-6 -4519))))) +(((-232 |#1| |#2|) (-230 |#1| |#2|) (-763) (-1195)) (T -232)) +NIL +(-230 |#1| |#2|) +((-2447 (((-121) $ $) NIL)) (-2148 (($) 34 T CONST)) (-2537 (((-121) $) NIL)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL (|has| |#1| (-172)))) (-2227 (($ $) NIL (|has| |#1| (-172)))) (-1573 (((-121) $) 54 (|has| |#1| (-172)))) (-3134 (((-3 $ "failed") $ $) NIL)) (-2671 (($) NIL T CONST)) (-2925 (((-3 $ "failed") $) 55)) (-2735 (((-121) $) NIL)) (-4241 (((-121) $ (-917)) 71)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2595 (((-3 $ "failed") $ $) NIL (|has| |#1| (-172)))) (-2779 ((|#1| $ (-917)) 9)) (-2745 (((-850) $) 29) (($ (-568)) NIL) (($ (-1 |#1| (-917))) 12) (((-1 |#1| (-917)) $) 11) (($ (-1141 |#1|)) 26) (((-1141 |#1|) $) 24) (($ |#1|) NIL (|has| |#1| (-172))) (($ $) NIL (|has| |#1| (-172)))) (-4078 (((-763)) NIL)) (-1826 (((-121) $ $) NIL (|has| |#1| (-172)))) (-4292 (((-121) $ (-917)) 72)) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (-3056 (($) 33 T CONST)) (-1556 (($) 13 T CONST)) (-1717 (((-121) $ $) NIL)) (-1773 (($ $) 38) (($ $ $) NIL)) (-1767 (($ $ $) 36)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) 40) (($ $ $) 51) (($ |#1| $) 42 (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))))) +(((-233 |#1|) (-13 (-1047) (-281 (-917) |#1|) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-558)) |noBranch|) (IF (|has| |#1| (-172)) (-6 (-43 |#1|)) |noBranch|) (-15 -2745 ($ (-1 |#1| (-917)))) (-15 -2745 ((-1 |#1| (-917)) $)) (-15 -2745 ($ (-1141 |#1|))) (-15 -2745 ((-1141 |#1|) $)) (-15 -2148 ($) -3495) (-15 -4241 ((-121) $ (-917))) (-15 -4292 ((-121) $ (-917))))) (-1047)) (T -233)) +((-2745 (*1 *1 *2) (-12 (-5 *2 (-1 *3 (-917))) (-4 *3 (-1047)) (-5 *1 (-233 *3)))) (-2745 (*1 *2 *1) (-12 (-5 *2 (-1 *3 (-917))) (-5 *1 (-233 *3)) (-4 *3 (-1047)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-1047)) (-5 *1 (-233 *3)))) (-2745 (*1 *2 *1) (-12 (-5 *2 (-1141 *3)) (-5 *1 (-233 *3)) (-4 *3 (-1047)))) (-2148 (*1 *1) (-12 (-5 *1 (-233 *2)) (-4 *2 (-1047)))) (-4241 (*1 *2 *1 *3) (-12 (-5 *3 (-917)) (-5 *2 (-121)) (-5 *1 (-233 *4)) (-4 *4 (-1047)))) (-4292 (*1 *2 *1 *3) (-12 (-5 *3 (-917)) (-5 *2 (-121)) (-5 *1 (-233 *4)) (-4 *4 (-1047))))) +(-13 (-1047) (-281 (-917) |#1|) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-558)) |noBranch|) (IF (|has| |#1| (-172)) (-6 (-43 |#1|)) |noBranch|) (-15 -2745 ($ (-1 |#1| (-917)))) (-15 -2745 ((-1 |#1| (-917)) $)) (-15 -2745 ($ (-1141 |#1|))) (-15 -2745 ((-1141 |#1|) $)) (-15 -2148 ($) -3495) (-15 -4241 ((-121) $ (-917))) (-15 -4292 ((-121) $ (-917))))) +((-4361 (((-568) (-634 (-1143))) 24) (((-568) (-1143)) 19)) (-4011 (((-1249) (-634 (-1143))) 29) (((-1249) (-1143)) 28)) (-1465 (((-1143)) 14)) (-2112 (((-1143) (-568) (-1143)) 16)) (-1374 (((-634 (-1143)) (-634 (-1143)) (-568) (-1143)) 25) (((-1143) (-1143) (-568) (-1143)) 23)) (-3474 (((-634 (-1143)) (-634 (-1143))) 13) (((-634 (-1143)) (-1143)) 11))) +(((-234) (-10 -7 (-15 -3474 ((-634 (-1143)) (-1143))) (-15 -3474 ((-634 (-1143)) (-634 (-1143)))) (-15 -1465 ((-1143))) (-15 -2112 ((-1143) (-568) (-1143))) (-15 -1374 ((-1143) (-1143) (-568) (-1143))) (-15 -1374 ((-634 (-1143)) (-634 (-1143)) (-568) (-1143))) (-15 -4011 ((-1249) (-1143))) (-15 -4011 ((-1249) (-634 (-1143)))) (-15 -4361 ((-568) (-1143))) (-15 -4361 ((-568) (-634 (-1143)))))) (T -234)) +((-4361 (*1 *2 *3) (-12 (-5 *3 (-634 (-1143))) (-5 *2 (-568)) (-5 *1 (-234)))) (-4361 (*1 *2 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-568)) (-5 *1 (-234)))) (-4011 (*1 *2 *3) (-12 (-5 *3 (-634 (-1143))) (-5 *2 (-1249)) (-5 *1 (-234)))) (-4011 (*1 *2 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-1249)) (-5 *1 (-234)))) (-1374 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-634 (-1143))) (-5 *3 (-568)) (-5 *4 (-1143)) (-5 *1 (-234)))) (-1374 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1143)) (-5 *3 (-568)) (-5 *1 (-234)))) (-2112 (*1 *2 *3 *2) (-12 (-5 *2 (-1143)) (-5 *3 (-568)) (-5 *1 (-234)))) (-1465 (*1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-234)))) (-3474 (*1 *2 *2) (-12 (-5 *2 (-634 (-1143))) (-5 *1 (-234)))) (-3474 (*1 *2 *3) (-12 (-5 *2 (-634 (-1143))) (-5 *1 (-234)) (-5 *3 (-1143))))) +(-10 -7 (-15 -3474 ((-634 (-1143)) (-1143))) (-15 -3474 ((-634 (-1143)) (-634 (-1143)))) (-15 -1465 ((-1143))) (-15 -2112 ((-1143) (-568) (-1143))) (-15 -1374 ((-1143) (-1143) (-568) (-1143))) (-15 -1374 ((-634 (-1143)) (-634 (-1143)) (-568) (-1143))) (-15 -4011 ((-1249) (-1143))) (-15 -4011 ((-1249) (-634 (-1143)))) (-15 -4361 ((-568) (-1143))) (-15 -4361 ((-568) (-634 (-1143))))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-2583 (((-634 (-2 (|:| |gen| |#1|) (|:| -1892 (-568)))) $) 44)) (-2533 (((-634 |#1|) $) 30)) (-2740 (((-634 |#1|) $) 29)) (-1917 (((-634 |#1|) $) 31)) (-3134 (((-3 $ "failed") $ $) 18)) (-3969 (((-634 $) $) 36)) (-3983 (((-763) $) 43)) (-2671 (($) 16 T CONST)) (-3666 (((-3 |#1| "failed") $) 39)) (-2854 ((|#1| $) 40)) (-2882 ((|#1| $ (-568)) 46)) (-1444 (((-568) $ (-568)) 45)) (-2096 (($ (-1 |#1| |#1|) $) 49)) (-2907 (($ (-1 (-568) (-568)) $) 48)) (-4487 (((-1143) $) 9)) (-2751 (($ $) 26)) (-1764 (($ $ $) 50 (|has| (-568) (-787)))) (-4022 (((-1108) $) 10)) (-2132 (((-121) $) 32)) (-4204 (($ $) 28)) (-1440 (($ $) 27)) (-3206 (((-568) $) 37)) (-2768 (($ $ $) 33)) (-3944 (($ $) 34)) (-2745 (((-850) $) 11) (($ |#1|) 38)) (-2604 (((-568) |#1| $) 47)) (-3056 (($) 17 T CONST)) (-1717 (((-121) $ $) 6)) (-1745 (((-121) $ $) 35)) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13) (($ |#1| $) 41)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ (-568)) 52) (($ (-568) $) 51) (($ (-568) |#1|) 42))) +(((-235 |#1|) (-1275) (-1090)) (T -235)) +((-3206 (*1 *2 *1) (-12 (-4 *1 (-235 *3)) (-4 *3 (-1090)) (-5 *2 (-568)))) (-3969 (*1 *2 *1) (-12 (-4 *3 (-1090)) (-5 *2 (-634 *1)) (-4 *1 (-235 *3)))) (-1745 (*1 *2 *1 *1) (-12 (-4 *1 (-235 *3)) (-4 *3 (-1090)) (-5 *2 (-121)))) (-3944 (*1 *1 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1090)))) (-2768 (*1 *1 *1 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1090)))) (-2132 (*1 *2 *1) (-12 (-4 *1 (-235 *3)) (-4 *3 (-1090)) (-5 *2 (-121)))) (-1917 (*1 *2 *1) (-12 (-4 *1 (-235 *3)) (-4 *3 (-1090)) (-5 *2 (-634 *3)))) (-2533 (*1 *2 *1) (-12 (-4 *1 (-235 *3)) (-4 *3 (-1090)) (-5 *2 (-634 *3)))) (-2740 (*1 *2 *1) (-12 (-4 *1 (-235 *3)) (-4 *3 (-1090)) (-5 *2 (-634 *3)))) (-4204 (*1 *1 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1090)))) (-1440 (*1 *1 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1090)))) (-2751 (*1 *1 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1090))))) +(-13 (-21) (-707 (-568)) (-320 |t#1| (-568)) (-10 -8 (-15 -3206 ((-568) $)) (-15 -3969 ((-634 $) $)) (-15 -1745 ((-121) $ $)) (-15 -3944 ($ $)) (-15 -2768 ($ $ $)) (-15 -2132 ((-121) $)) (-15 -1917 ((-634 |t#1|) $)) (-15 -2533 ((-634 |t#1|) $)) (-15 -2740 ((-634 |t#1|) $)) (-15 -4204 ($ $)) (-15 -1440 ($ $)) (-15 -2751 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-105) . T) ((-120 (-568) (-568)) . T) ((-137) . T) ((-608 (-850)) . T) ((-320 |#1| (-568)) . T) ((-637 (-568)) . T) ((-707 (-568)) . T) ((-1037 |#1|) . T) ((-1053 (-568)) . T) ((-1090) . T)) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) 17)) (-2583 (((-634 (-2 (|:| |gen| |#1|) (|:| -1892 (-568)))) $) 30)) (-2533 (((-634 |#1|) $) 36)) (-2740 (((-634 |#1|) $) 37)) (-1917 (((-634 |#1|) $) 35)) (-3134 (((-3 $ "failed") $ $) NIL)) (-3969 (((-634 $) $) 29)) (-3983 (((-763) $) NIL)) (-2671 (($) NIL T CONST)) (-3666 (((-3 |#1| "failed") $) NIL)) (-2854 ((|#1| $) NIL)) (-2114 (($ $) 24)) (-2882 ((|#1| $ (-568)) NIL)) (-1444 (((-568) $ (-568)) NIL)) (-2096 (($ (-1 |#1| |#1|) $) NIL)) (-2907 (($ (-1 (-568) (-568)) $) NIL)) (-4487 (((-1143) $) NIL)) (-2751 (($ $) 8)) (-1764 (($ $ $) NIL (|has| (-568) (-787)))) (-1733 (((-2 (|:| |gen| |#1|) (|:| -1892 (-568))) $) 26)) (-4022 (((-1108) $) NIL)) (-2132 (((-121) $) 50)) (-4204 (($ $) 38)) (-1440 (($ $) 39)) (-3206 (((-568) $) 58)) (-2768 (($ $ $) 44)) (-3944 (($ $) 33)) (-2745 (((-850) $) 22) (($ |#1|) 27)) (-2604 (((-568) |#1| $) 32)) (-3056 (($) 23 T CONST)) (-1717 (((-121) $ $) 40)) (-1745 (((-121) $ $) 51)) (-1773 (($ $) 48) (($ $ $) 47)) (-1767 (($ $ $) 45) (($ |#1| $) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) 49) (($ $ (-568)) NIL) (($ (-568) $) 49) (($ (-568) |#1|) NIL))) +(((-236 |#1|) (-13 (-235 |#1|) (-10 -8 (-15 -1733 ((-2 (|:| |gen| |#1|) (|:| -1892 (-568))) $)) (-15 -2114 ($ $)))) (-1088)) (T -236)) +((-1733 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |gen| *3) (|:| -1892 (-568)))) (-5 *1 (-236 *3)) (-4 *3 (-1088)))) (-2114 (*1 *1 *1) (-12 (-5 *1 (-236 *2)) (-4 *2 (-1088))))) +(-13 (-235 |#1|) (-10 -8 (-15 -1733 ((-2 (|:| |gen| |#1|) (|:| -1892 (-568))) $)) (-15 -2114 ($ $)))) +((-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) 9)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) 18)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) NIL) (($ (-409 (-568)) $) 25) (($ $ (-409 (-568))) NIL))) +(((-237 |#1|) (-10 -8 (-15 -1887 (|#1| |#1| (-568))) (-15 ** (|#1| |#1| (-568))) (-15 * (|#1| |#1| (-409 (-568)))) (-15 * (|#1| (-409 (-568)) |#1|)) (-15 ** (|#1| |#1| (-763))) (-15 -1887 (|#1| |#1| (-763))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-917))) (-15 -1887 (|#1| |#1| (-917))) (-15 * (|#1| (-568) |#1|)) (-15 * (|#1| (-763) |#1|)) (-15 * (|#1| (-917) |#1|))) (-238)) (T -237)) +NIL +(-10 -8 (-15 -1887 (|#1| |#1| (-568))) (-15 ** (|#1| |#1| (-568))) (-15 * (|#1| |#1| (-409 (-568)))) (-15 * (|#1| (-409 (-568)) |#1|)) (-15 ** (|#1| |#1| (-763))) (-15 -1887 (|#1| |#1| (-763))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-917))) (-15 -1887 (|#1| |#1| (-917))) (-15 * (|#1| (-568) |#1|)) (-15 * (|#1| (-763) |#1|)) (-15 * (|#1| (-917) |#1|))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-3134 (((-3 $ "failed") $ $) 18)) (-2671 (($) 16 T CONST)) (-2925 (((-3 $ "failed") $) 33)) (-2735 (((-121) $) 30)) (-4487 (((-1143) $) 9)) (-2081 (($ $) 38)) (-4022 (((-1108) $) 10)) (-2745 (((-850) $) 11) (($ (-568)) 27) (($ (-409 (-568))) 43)) (-4078 (((-763)) 28)) (-1887 (($ $ (-917)) 25) (($ $ (-763)) 32) (($ $ (-568)) 39)) (-3056 (($) 17 T CONST)) (-1556 (($) 29 T CONST)) (-1717 (((-121) $ $) 6)) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 24) (($ $ (-763)) 31) (($ $ (-568)) 40)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 23) (($ (-409 (-568)) $) 42) (($ $ (-409 (-568))) 41))) +(((-238) (-1275)) (T -238)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-238)) (-5 *2 (-568)))) (-1887 (*1 *1 *1 *2) (-12 (-4 *1 (-238)) (-5 *2 (-568)))) (-2081 (*1 *1 *1) (-4 *1 (-238)))) +(-13 (-285) (-43 (-409 (-568))) (-10 -8 (-15 ** ($ $ (-568))) (-15 -1887 ($ $ (-568))) (-15 -2081 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-43 (-409 (-568))) . T) ((-105) . T) ((-120 (-409 (-568)) (-409 (-568))) . T) ((-120 $ $) . T) ((-137) . T) ((-608 (-850)) . T) ((-285) . T) ((-637 (-409 (-568))) . T) ((-637 $) . T) ((-707 (-409 (-568))) . T) ((-716) . T) ((-1053 (-409 (-568))) . T) ((-1053 $) . T) ((-1047) . T) ((-1054) . T) ((-1102) . T) ((-1090) . T)) +((-2447 (((-121) $ $) 18 (|has| |#1| (-1090)))) (-2850 ((|#1| $) 45)) (-2796 (($ $) 54)) (-2510 (((-121) $ (-763)) 8)) (-1659 ((|#1| $ |#1|) 36 (|has| $ (-6 -4520)))) (-3139 (($ $ $) 50 (|has| $ (-6 -4520)))) (-3519 (($ $ $) 49 (|has| $ (-6 -4520)))) (-2436 ((|#1| $ "value" |#1|) 37 (|has| $ (-6 -4520)))) (-3827 (($ $ (-634 $)) 38 (|has| $ (-6 -4520)))) (-2671 (($) 7 T CONST)) (-3773 (($ $) 53)) (-4360 (((-634 |#1|) $) 30 (|has| $ (-6 -4519)))) (-2287 (((-634 $) $) 47)) (-1700 (((-121) $ $) 39 (|has| |#1| (-1090)))) (-3650 (($ $) 52)) (-1737 (((-121) $ (-763)) 9)) (-1979 (((-634 |#1|) $) 29 (|has| $ (-6 -4519)))) (-3109 (((-121) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-3674 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#1| |#1|) $) 35)) (-2166 (((-121) $ (-763)) 10)) (-2869 (((-634 |#1|) $) 42)) (-1651 (((-121) $) 46)) (-4487 (((-1143) $) 22 (|has| |#1| (-1090)))) (-4162 ((|#1| $) 56)) (-1733 (($ $) 55)) (-4022 (((-1108) $) 21 (|has| |#1| (-1090)))) (-1387 (((-121) (-1 (-121) |#1|) $) 32 (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-634 |#1|) (-634 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))))) (-3171 (((-121) $ $) 14)) (-3084 (((-121) $) 11)) (-3248 (($) 12)) (-2779 ((|#1| $ "value") 44)) (-4075 (((-568) $ $) 41)) (-3790 (((-121) $) 43)) (-4168 (((-763) (-1 (-121) |#1|) $) 31 (|has| $ (-6 -4519))) (((-763) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-3863 (($ $) 13)) (-3845 (($ $ $) 51 (|has| $ (-6 -4520)))) (-2745 (((-850) $) 20 (|has| |#1| (-1090)))) (-4339 (((-634 $) $) 48)) (-3491 (((-121) $ $) 40 (|has| |#1| (-1090)))) (-1319 (((-121) (-1 (-121) |#1|) $) 33 (|has| $ (-6 -4519)))) (-1717 (((-121) $ $) 19 (|has| |#1| (-1090)))) (-1697 (((-763) $) 6 (|has| $ (-6 -4519))))) +(((-239 |#1|) (-1275) (-1195)) (T -239)) +((-4162 (*1 *2 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1195)))) (-1733 (*1 *1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1195)))) (-2796 (*1 *1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1195)))) (-3773 (*1 *1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1195)))) (-3650 (*1 *1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1195)))) (-3845 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4520)) (-4 *1 (-239 *2)) (-4 *2 (-1195)))) (-3139 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4520)) (-4 *1 (-239 *2)) (-4 *2 (-1195)))) (-3519 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4520)) (-4 *1 (-239 *2)) (-4 *2 (-1195))))) +(-13 (-1010 |t#1|) (-10 -8 (-15 -4162 (|t#1| $)) (-15 -1733 ($ $)) (-15 -2796 ($ $)) (-15 -3773 ($ $)) (-15 -3650 ($ $)) (IF (|has| $ (-6 -4520)) (PROGN (-15 -3845 ($ $ $)) (-15 -3139 ($ $ $)) (-15 -3519 ($ $ $))) |noBranch|))) +(((-39) . T) ((-105) |has| |#1| (-1090)) ((-608 (-850)) |has| |#1| (-1090)) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))) ((-499 |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))) ((-1010 |#1|) . T) ((-1090) |has| |#1| (-1090)) ((-1195) . T)) +((-2447 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-2850 ((|#1| $) NIL)) (-2235 ((|#1| $) NIL)) (-2796 (($ $) NIL)) (-1868 (((-1249) $ (-568) (-568)) NIL (|has| $ (-6 -4520)))) (-3910 (($ $ (-568)) NIL (|has| $ (-6 -4520)))) (-2016 (((-121) $) NIL (|has| |#1| (-842))) (((-121) (-1 (-121) |#1| |#1|) $) NIL)) (-3908 (($ $) NIL (-12 (|has| $ (-6 -4520)) (|has| |#1| (-842)))) (($ (-1 (-121) |#1| |#1|) $) NIL (|has| $ (-6 -4520)))) (-3644 (($ $) 10 (|has| |#1| (-842))) (($ (-1 (-121) |#1| |#1|) $) NIL)) (-2510 (((-121) $ (-763)) NIL)) (-1659 ((|#1| $ |#1|) NIL (|has| $ (-6 -4520)))) (-3869 (($ $ $) NIL (|has| $ (-6 -4520)))) (-2395 ((|#1| $ |#1|) NIL (|has| $ (-6 -4520)))) (-2517 ((|#1| $ |#1|) NIL (|has| $ (-6 -4520)))) (-2436 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4520))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4520))) (($ $ "rest" $) NIL (|has| $ (-6 -4520))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4520))) ((|#1| $ (-1210 (-568)) |#1|) NIL (|has| $ (-6 -4520))) ((|#1| $ (-568) |#1|) NIL (|has| $ (-6 -4520)))) (-3827 (($ $ (-634 $)) NIL (|has| $ (-6 -4520)))) (-3507 (($ (-1 (-121) |#1|) $) NIL)) (-2801 (($ (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-1679 ((|#1| $) NIL)) (-2671 (($) NIL T CONST)) (-1578 (($ $) NIL (|has| $ (-6 -4520)))) (-3943 (($ $) NIL)) (-3935 (($ $) NIL) (($ $ (-763)) NIL)) (-3369 (($ $) NIL (|has| |#1| (-1090)))) (-3924 (($ $) 7 (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-3405 (($ |#1| $) NIL (|has| |#1| (-1090))) (($ (-1 (-121) |#1|) $) NIL)) (-4328 (($ (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-3092 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4519))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4519))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-3989 ((|#1| $ (-568) |#1|) NIL (|has| $ (-6 -4520)))) (-2602 ((|#1| $ (-568)) NIL)) (-1601 (((-121) $) NIL)) (-2764 (((-568) |#1| $ (-568)) NIL (|has| |#1| (-1090))) (((-568) |#1| $) NIL (|has| |#1| (-1090))) (((-568) (-1 (-121) |#1|) $) NIL)) (-4360 (((-634 |#1|) $) NIL (|has| $ (-6 -4519)))) (-2287 (((-634 $) $) NIL)) (-1700 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-1849 (($ (-763) |#1|) NIL)) (-1737 (((-121) $ (-763)) NIL)) (-1881 (((-568) $) NIL (|has| (-568) (-842)))) (-2521 (($ $ $) NIL (|has| |#1| (-842)))) (-3349 (($ $ $) NIL (|has| |#1| (-842))) (($ (-1 (-121) |#1| |#1|) $ $) NIL)) (-1347 (($ $ $) NIL (|has| |#1| (-842))) (($ (-1 (-121) |#1| |#1|) $ $) NIL)) (-1979 (((-634 |#1|) $) NIL (|has| $ (-6 -4519)))) (-3109 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-2223 (((-568) $) NIL (|has| (-568) (-842)))) (-3268 (($ $ $) NIL (|has| |#1| (-842)))) (-3674 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3896 (($ |#1|) NIL)) (-2166 (((-121) $ (-763)) NIL)) (-2869 (((-634 |#1|) $) NIL)) (-1651 (((-121) $) NIL)) (-4487 (((-1143) $) NIL (|has| |#1| (-1090)))) (-4162 ((|#1| $) NIL) (($ $ (-763)) NIL)) (-4450 (($ $ $ (-568)) NIL) (($ |#1| $ (-568)) NIL)) (-4122 (($ $ $ (-568)) NIL) (($ |#1| $ (-568)) NIL)) (-4174 (((-634 (-568)) $) NIL)) (-3578 (((-121) (-568) $) NIL)) (-4022 (((-1108) $) NIL (|has| |#1| (-1090)))) (-3876 ((|#1| $) NIL) (($ $ (-763)) NIL)) (-3775 (((-3 |#1| "failed") (-1 (-121) |#1|) $) NIL)) (-3724 (($ $ |#1|) NIL (|has| $ (-6 -4520)))) (-1786 (((-121) $) NIL)) (-1387 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-634 |#1|) (-634 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))))) (-3171 (((-121) $ $) NIL)) (-4467 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-2041 (((-634 |#1|) $) NIL)) (-3084 (((-121) $) NIL)) (-3248 (($) NIL)) (-2779 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1210 (-568))) NIL) ((|#1| $ (-568)) NIL) ((|#1| $ (-568) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-763) $ "count") 16)) (-4075 (((-568) $ $) NIL)) (-1783 (($ $ (-1210 (-568))) NIL) (($ $ (-568)) NIL)) (-2826 (($ $ (-1210 (-568))) NIL) (($ $ (-568)) NIL)) (-1403 (($ (-634 |#1|)) 22)) (-3790 (((-121) $) NIL)) (-2340 (($ $) NIL)) (-2714 (($ $) NIL (|has| $ (-6 -4520)))) (-2775 (((-763) $) NIL)) (-3335 (($ $) NIL)) (-4168 (((-763) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519))) (((-763) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-2256 (($ $ $ (-568)) NIL (|has| $ (-6 -4520)))) (-3863 (($ $) NIL)) (-4278 (((-541) $) NIL (|has| |#1| (-609 (-541))))) (-4287 (($ (-634 |#1|)) NIL)) (-3845 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2768 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-634 $)) NIL) (($ $ |#1|) NIL)) (-2745 (($ (-634 |#1|)) 17) (((-634 |#1|) $) 18) (((-850) $) 21 (|has| |#1| (-1090)))) (-4339 (((-634 $) $) NIL)) (-3491 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-1319 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-1751 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1738 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1717 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-1745 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1732 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1697 (((-763) $) 14 (|has| $ (-6 -4519))))) +(((-240 |#1|) (-13 (-658 |#1|) (-10 -8 (-15 -2745 ($ (-634 |#1|))) (-15 -2745 ((-634 |#1|) $)) (-15 -1403 ($ (-634 |#1|))) (-15 -2779 ($ $ "unique")) (-15 -2779 ($ $ "sort")) (-15 -2779 ((-763) $ "count")))) (-842)) (T -240)) +((-2745 (*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-842)) (-5 *1 (-240 *3)))) (-2745 (*1 *2 *1) (-12 (-5 *2 (-634 *3)) (-5 *1 (-240 *3)) (-4 *3 (-842)))) (-1403 (*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-842)) (-5 *1 (-240 *3)))) (-2779 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-240 *3)) (-4 *3 (-842)))) (-2779 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-240 *3)) (-4 *3 (-842)))) (-2779 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-763)) (-5 *1 (-240 *4)) (-4 *4 (-842))))) +(-13 (-658 |#1|) (-10 -8 (-15 -2745 ($ (-634 |#1|))) (-15 -2745 ((-634 |#1|) $)) (-15 -1403 ($ (-634 |#1|))) (-15 -2779 ($ $ "unique")) (-15 -2779 ($ $ "sort")) (-15 -2779 ((-763) $ "count")))) +((-2200 (((-3 (-763) "failed") |#1| |#1| (-763)) 26))) +(((-241 |#1|) (-10 -7 (-15 -2200 ((-3 (-763) "failed") |#1| |#1| (-763)))) (-13 (-716) (-370) (-10 -7 (-15 ** (|#1| |#1| (-568)))))) (T -241)) +((-2200 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-763)) (-4 *3 (-13 (-716) (-370) (-10 -7 (-15 ** (*3 *3 (-568)))))) (-5 *1 (-241 *3))))) +(-10 -7 (-15 -2200 ((-3 (-763) "failed") |#1| |#1| (-763)))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-2055 (((-634 (-852 |#1|)) $) NIL)) (-3839 (((-1157 $) $ (-852 |#1|)) NIL) (((-1157 |#2|) $) NIL)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL (|has| |#2| (-558)))) (-2227 (($ $) NIL (|has| |#2| (-558)))) (-1573 (((-121) $) NIL (|has| |#2| (-558)))) (-2773 (((-763) $) NIL) (((-763) $ (-634 (-852 |#1|))) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-1750 (((-420 (-1157 $)) (-1157 $)) NIL (|has| |#2| (-904)))) (-4305 (($ $) NIL (|has| |#2| (-453)))) (-1678 (((-420 $) $) NIL (|has| |#2| (-453)))) (-1858 (((-3 (-634 (-1157 $)) "failed") (-634 (-1157 $)) (-1157 $)) NIL (|has| |#2| (-904)))) (-2671 (($) NIL T CONST)) (-3666 (((-3 |#2| "failed") $) NIL) (((-3 (-409 (-568)) "failed") $) NIL (|has| |#2| (-1037 (-409 (-568))))) (((-3 (-568) "failed") $) NIL (|has| |#2| (-1037 (-568)))) (((-3 (-852 |#1|) "failed") $) NIL)) (-2854 ((|#2| $) NIL) (((-409 (-568)) $) NIL (|has| |#2| (-1037 (-409 (-568))))) (((-568) $) NIL (|has| |#2| (-1037 (-568)))) (((-852 |#1|) $) NIL)) (-4265 (($ $ $ (-852 |#1|)) NIL (|has| |#2| (-172)))) (-4425 (($ $ (-634 (-568))) NIL)) (-2114 (($ $) NIL)) (-3164 (((-679 (-568)) (-679 $)) NIL (|has| |#2| (-630 (-568)))) (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) NIL (|has| |#2| (-630 (-568)))) (((-2 (|:| -2928 (-679 |#2|)) (|:| |vec| (-1244 |#2|))) (-679 $) (-1244 $)) NIL) (((-679 |#2|) (-679 $)) NIL)) (-2925 (((-3 $ "failed") $) NIL)) (-3250 (($ $) NIL (|has| |#2| (-453))) (($ $ (-852 |#1|)) NIL (|has| |#2| (-453)))) (-2108 (((-634 $) $) NIL)) (-3927 (((-121) $) NIL (|has| |#2| (-904)))) (-3088 (($ $ |#2| (-232 (-1697 |#1|) (-763)) $) NIL)) (-4410 (((-884 (-381) $) $ (-887 (-381)) (-884 (-381) $)) NIL (-12 (|has| (-852 |#1|) (-881 (-381))) (|has| |#2| (-881 (-381))))) (((-884 (-568) $) $ (-887 (-568)) (-884 (-568) $)) NIL (-12 (|has| (-852 |#1|) (-881 (-568))) (|has| |#2| (-881 (-568)))))) (-2735 (((-121) $) NIL)) (-4178 (((-763) $) NIL)) (-2051 (($ (-1157 |#2|) (-852 |#1|)) NIL) (($ (-1157 $) (-852 |#1|)) NIL)) (-2976 (((-634 $) $) NIL)) (-3921 (((-121) $) NIL)) (-2047 (($ |#2| (-232 (-1697 |#1|) (-763))) NIL) (($ $ (-852 |#1|) (-763)) NIL) (($ $ (-634 (-852 |#1|)) (-634 (-763))) NIL)) (-3379 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $ (-852 |#1|)) NIL)) (-2144 (((-232 (-1697 |#1|) (-763)) $) NIL) (((-763) $ (-852 |#1|)) NIL) (((-634 (-763)) $ (-634 (-852 |#1|))) NIL)) (-2521 (($ $ $) NIL (|has| |#2| (-842)))) (-3268 (($ $ $) NIL (|has| |#2| (-842)))) (-3842 (($ (-1 (-232 (-1697 |#1|) (-763)) (-232 (-1697 |#1|) (-763))) $) NIL)) (-2795 (($ (-1 |#2| |#2|) $) NIL)) (-2244 (((-3 (-852 |#1|) "failed") $) NIL)) (-2097 (($ $) NIL)) (-2102 ((|#2| $) NIL)) (-2495 (($ (-634 $)) NIL (|has| |#2| (-453))) (($ $ $) NIL (|has| |#2| (-453)))) (-4487 (((-1143) $) NIL)) (-3324 (((-3 (-634 $) "failed") $) NIL)) (-1794 (((-3 (-634 $) "failed") $) NIL)) (-3751 (((-3 (-2 (|:| |var| (-852 |#1|)) (|:| -3438 (-763))) "failed") $) NIL)) (-4022 (((-1108) $) NIL)) (-2086 (((-121) $) NIL)) (-2091 ((|#2| $) NIL)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL (|has| |#2| (-453)))) (-2721 (($ (-634 $)) NIL (|has| |#2| (-453))) (($ $ $) NIL (|has| |#2| (-453)))) (-2905 (((-420 (-1157 $)) (-1157 $)) NIL (|has| |#2| (-904)))) (-3545 (((-420 (-1157 $)) (-1157 $)) NIL (|has| |#2| (-904)))) (-3848 (((-420 $) $) NIL (|has| |#2| (-904)))) (-2595 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-558))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-558)))) (-1339 (($ $ (-634 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-634 $) (-634 $)) NIL) (($ $ (-852 |#1|) |#2|) NIL) (($ $ (-634 (-852 |#1|)) (-634 |#2|)) NIL) (($ $ (-852 |#1|) $) NIL) (($ $ (-634 (-852 |#1|)) (-634 $)) NIL)) (-2217 (($ $ (-852 |#1|)) NIL (|has| |#2| (-172)))) (-4189 (($ $ (-852 |#1|)) NIL) (($ $ (-634 (-852 |#1|))) NIL) (($ $ (-852 |#1|) (-763)) NIL) (($ $ (-634 (-852 |#1|)) (-634 (-763))) NIL)) (-3206 (((-232 (-1697 |#1|) (-763)) $) NIL) (((-763) $ (-852 |#1|)) NIL) (((-634 (-763)) $ (-634 (-852 |#1|))) NIL)) (-4278 (((-887 (-381)) $) NIL (-12 (|has| (-852 |#1|) (-609 (-887 (-381)))) (|has| |#2| (-609 (-887 (-381)))))) (((-887 (-568)) $) NIL (-12 (|has| (-852 |#1|) (-609 (-887 (-568)))) (|has| |#2| (-609 (-887 (-568)))))) (((-541) $) NIL (-12 (|has| (-852 |#1|) (-609 (-541))) (|has| |#2| (-609 (-541)))))) (-3367 ((|#2| $) NIL (|has| |#2| (-453))) (($ $ (-852 |#1|)) NIL (|has| |#2| (-453)))) (-2979 (((-3 (-1244 $) "failed") (-679 $)) NIL (-12 (|has| $ (-148)) (|has| |#2| (-904))))) (-2745 (((-850) $) NIL) (($ (-568)) NIL) (($ |#2|) NIL) (($ (-852 |#1|)) NIL) (($ (-409 (-568))) NIL (-2198 (|has| |#2| (-43 (-409 (-568)))) (|has| |#2| (-1037 (-409 (-568)))))) (($ $) NIL (|has| |#2| (-558)))) (-1302 (((-634 |#2|) $) NIL)) (-2604 ((|#2| $ (-232 (-1697 |#1|) (-763))) NIL) (($ $ (-852 |#1|) (-763)) NIL) (($ $ (-634 (-852 |#1|)) (-634 (-763))) NIL)) (-4371 (((-3 $ "failed") $) NIL (-2198 (-12 (|has| $ (-148)) (|has| |#2| (-904))) (|has| |#2| (-148))))) (-4078 (((-763)) NIL)) (-4171 (($ $ $ (-763)) NIL (|has| |#2| (-172)))) (-1826 (((-121) $ $) NIL (|has| |#2| (-558)))) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (-3056 (($) NIL T CONST)) (-1556 (($) NIL T CONST)) (-3190 (($ $ (-852 |#1|)) NIL) (($ $ (-634 (-852 |#1|))) NIL) (($ $ (-852 |#1|) (-763)) NIL) (($ $ (-634 (-852 |#1|)) (-634 (-763))) NIL)) (-1751 (((-121) $ $) NIL (|has| |#2| (-842)))) (-1738 (((-121) $ $) NIL (|has| |#2| (-842)))) (-1717 (((-121) $ $) NIL)) (-1745 (((-121) $ $) NIL (|has| |#2| (-842)))) (-1732 (((-121) $ $) NIL (|has| |#2| (-842)))) (-1779 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) NIL) (($ $ (-409 (-568))) NIL (|has| |#2| (-43 (-409 (-568))))) (($ (-409 (-568)) $) NIL (|has| |#2| (-43 (-409 (-568))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-242 |#1| |#2|) (-13 (-950 |#2| (-232 (-1697 |#1|) (-763)) (-852 |#1|)) (-10 -8 (-15 -4425 ($ $ (-634 (-568)))))) (-634 (-1161)) (-1047)) (T -242)) +((-4425 (*1 *1 *1 *2) (-12 (-5 *2 (-634 (-568))) (-5 *1 (-242 *3 *4)) (-14 *3 (-634 (-1161))) (-4 *4 (-1047))))) +(-13 (-950 |#2| (-232 (-1697 |#1|) (-763)) (-852 |#1|)) (-10 -8 (-15 -4425 ($ $ (-634 (-568)))))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-1394 (($ (-917)) NIL (|has| |#4| (-1047)))) (-1868 (((-1249) $ (-568) (-568)) NIL (|has| $ (-6 -4520)))) (-1462 (($ $ $) NIL (|has| |#4| (-788)))) (-3134 (((-3 $ "failed") $ $) NIL)) (-2510 (((-121) $ (-763)) NIL)) (-3983 (((-763)) NIL (|has| |#4| (-370)))) (-3662 (((-568) $) NIL (|has| |#4| (-840)))) (-2436 ((|#4| $ (-568) |#4|) NIL (|has| $ (-6 -4520)))) (-2671 (($) NIL T CONST)) (-3666 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1090))) (((-3 (-568) "failed") $) NIL (-12 (|has| |#4| (-1037 (-568))) (|has| |#4| (-1090)))) (((-3 (-409 (-568)) "failed") $) NIL (-12 (|has| |#4| (-1037 (-409 (-568)))) (|has| |#4| (-1090))))) (-2854 ((|#4| $) NIL (|has| |#4| (-1090))) (((-568) $) NIL (-12 (|has| |#4| (-1037 (-568))) (|has| |#4| (-1090)))) (((-409 (-568)) $) NIL (-12 (|has| |#4| (-1037 (-409 (-568)))) (|has| |#4| (-1090))))) (-3164 (((-2 (|:| -2928 (-679 |#4|)) (|:| |vec| (-1244 |#4|))) (-679 $) (-1244 $)) NIL (|has| |#4| (-1047))) (((-679 |#4|) (-679 $)) NIL (|has| |#4| (-1047))) (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) NIL (-12 (|has| |#4| (-630 (-568))) (|has| |#4| (-1047)))) (((-679 (-568)) (-679 $)) NIL (-12 (|has| |#4| (-630 (-568))) (|has| |#4| (-1047))))) (-2925 (((-3 $ "failed") $) NIL (-2198 (-12 (|has| |#4| (-225)) (|has| |#4| (-1047))) (-12 (|has| |#4| (-630 (-568))) (|has| |#4| (-1047))) (|has| |#4| (-716)) (-12 (|has| |#4| (-895 (-1161))) (|has| |#4| (-1047)))))) (-1731 (($) NIL (|has| |#4| (-370)))) (-3989 ((|#4| $ (-568) |#4|) NIL (|has| $ (-6 -4520)))) (-2602 ((|#4| $ (-568)) NIL)) (-2033 (((-121) $) NIL (|has| |#4| (-840)))) (-4360 (((-634 |#4|) $) NIL (|has| $ (-6 -4519)))) (-2735 (((-121) $) NIL (-2198 (-12 (|has| |#4| (-225)) (|has| |#4| (-1047))) (-12 (|has| |#4| (-630 (-568))) (|has| |#4| (-1047))) (|has| |#4| (-716)) (-12 (|has| |#4| (-895 (-1161))) (|has| |#4| (-1047)))))) (-2245 (((-121) $) NIL (|has| |#4| (-840)))) (-1737 (((-121) $ (-763)) NIL)) (-1881 (((-568) $) NIL (|has| (-568) (-842)))) (-2521 (($ $ $) NIL (-2198 (|has| |#4| (-788)) (|has| |#4| (-840))))) (-1979 (((-634 |#4|) $) NIL (|has| $ (-6 -4519)))) (-3109 (((-121) |#4| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#4| (-1090))))) (-2223 (((-568) $) NIL (|has| (-568) (-842)))) (-3268 (($ $ $) NIL (-2198 (|has| |#4| (-788)) (|has| |#4| (-840))))) (-3674 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#4| |#4|) $) NIL)) (-3683 (((-917) $) NIL (|has| |#4| (-370)))) (-2166 (((-121) $ (-763)) NIL)) (-4487 (((-1143) $) NIL)) (-4174 (((-634 (-568)) $) NIL)) (-3578 (((-121) (-568) $) NIL)) (-4355 (($ (-917)) NIL (|has| |#4| (-370)))) (-4022 (((-1108) $) NIL)) (-3876 ((|#4| $) NIL (|has| (-568) (-842)))) (-3724 (($ $ |#4|) NIL (|has| $ (-6 -4520)))) (-1387 (((-121) (-1 (-121) |#4|) $) NIL (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#4|))) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090)))) (($ $ (-288 |#4|)) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090)))) (($ $ (-634 |#4|) (-634 |#4|)) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090))))) (-3171 (((-121) $ $) NIL)) (-4467 (((-121) |#4| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#4| (-1090))))) (-2041 (((-634 |#4|) $) NIL)) (-3084 (((-121) $) NIL)) (-3248 (($) NIL)) (-2779 ((|#4| $ (-568) |#4|) NIL) ((|#4| $ (-568)) 12)) (-3682 ((|#4| $ $) NIL (|has| |#4| (-1047)))) (-2039 (($ (-1244 |#4|)) NIL)) (-4321 (((-139)) NIL (|has| |#4| (-365)))) (-4189 (($ $ (-1 |#4| |#4|) (-763)) NIL (|has| |#4| (-1047))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1047))) (($ $ (-634 (-1161)) (-634 (-763))) NIL (-12 (|has| |#4| (-895 (-1161))) (|has| |#4| (-1047)))) (($ $ (-1161) (-763)) NIL (-12 (|has| |#4| (-895 (-1161))) (|has| |#4| (-1047)))) (($ $ (-634 (-1161))) NIL (-12 (|has| |#4| (-895 (-1161))) (|has| |#4| (-1047)))) (($ $ (-1161)) NIL (-12 (|has| |#4| (-895 (-1161))) (|has| |#4| (-1047)))) (($ $ (-763)) NIL (-12 (|has| |#4| (-225)) (|has| |#4| (-1047)))) (($ $) NIL (-12 (|has| |#4| (-225)) (|has| |#4| (-1047))))) (-4168 (((-763) (-1 (-121) |#4|) $) NIL (|has| $ (-6 -4519))) (((-763) |#4| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#4| (-1090))))) (-3863 (($ $) NIL)) (-2745 (((-1244 |#4|) $) NIL) (((-850) $) NIL) (($ |#4|) NIL (|has| |#4| (-1090))) (($ (-568)) NIL (-2198 (-12 (|has| |#4| (-1037 (-568))) (|has| |#4| (-1090))) (|has| |#4| (-1047)))) (($ (-409 (-568))) NIL (-12 (|has| |#4| (-1037 (-409 (-568)))) (|has| |#4| (-1090))))) (-4078 (((-763)) NIL (|has| |#4| (-1047)))) (-1319 (((-121) (-1 (-121) |#4|) $) NIL (|has| $ (-6 -4519)))) (-2897 (($ $) NIL (|has| |#4| (-840)))) (-1887 (($ $ (-763)) NIL (-2198 (-12 (|has| |#4| (-225)) (|has| |#4| (-1047))) (-12 (|has| |#4| (-630 (-568))) (|has| |#4| (-1047))) (|has| |#4| (-716)) (-12 (|has| |#4| (-895 (-1161))) (|has| |#4| (-1047))))) (($ $ (-917)) NIL (-2198 (-12 (|has| |#4| (-225)) (|has| |#4| (-1047))) (-12 (|has| |#4| (-630 (-568))) (|has| |#4| (-1047))) (|has| |#4| (-716)) (-12 (|has| |#4| (-895 (-1161))) (|has| |#4| (-1047)))))) (-3056 (($) NIL T CONST)) (-1556 (($) NIL (-2198 (-12 (|has| |#4| (-225)) (|has| |#4| (-1047))) (-12 (|has| |#4| (-630 (-568))) (|has| |#4| (-1047))) (|has| |#4| (-716)) (-12 (|has| |#4| (-895 (-1161))) (|has| |#4| (-1047)))) CONST)) (-3190 (($ $ (-1 |#4| |#4|) (-763)) NIL (|has| |#4| (-1047))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1047))) (($ $ (-634 (-1161)) (-634 (-763))) NIL (-12 (|has| |#4| (-895 (-1161))) (|has| |#4| (-1047)))) (($ $ (-1161) (-763)) NIL (-12 (|has| |#4| (-895 (-1161))) (|has| |#4| (-1047)))) (($ $ (-634 (-1161))) NIL (-12 (|has| |#4| (-895 (-1161))) (|has| |#4| (-1047)))) (($ $ (-1161)) NIL (-12 (|has| |#4| (-895 (-1161))) (|has| |#4| (-1047)))) (($ $ (-763)) NIL (-12 (|has| |#4| (-225)) (|has| |#4| (-1047)))) (($ $) NIL (-12 (|has| |#4| (-225)) (|has| |#4| (-1047))))) (-1751 (((-121) $ $) NIL (-2198 (|has| |#4| (-788)) (|has| |#4| (-840))))) (-1738 (((-121) $ $) NIL (-2198 (|has| |#4| (-788)) (|has| |#4| (-840))))) (-1717 (((-121) $ $) NIL)) (-1745 (((-121) $ $) NIL (-2198 (|has| |#4| (-788)) (|has| |#4| (-840))))) (-1732 (((-121) $ $) NIL (-2198 (|has| |#4| (-788)) (|has| |#4| (-840))))) (-1779 (($ $ |#4|) NIL (|has| |#4| (-365)))) (-1773 (($ $ $) NIL) (($ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-763)) NIL (-2198 (-12 (|has| |#4| (-225)) (|has| |#4| (-1047))) (-12 (|has| |#4| (-630 (-568))) (|has| |#4| (-1047))) (|has| |#4| (-716)) (-12 (|has| |#4| (-895 (-1161))) (|has| |#4| (-1047))))) (($ $ (-917)) NIL (-2198 (-12 (|has| |#4| (-225)) (|has| |#4| (-1047))) (-12 (|has| |#4| (-630 (-568))) (|has| |#4| (-1047))) (|has| |#4| (-716)) (-12 (|has| |#4| (-895 (-1161))) (|has| |#4| (-1047)))))) (* (($ |#2| $) 14) (($ (-568) $) NIL) (($ (-763) $) NIL) (($ (-917) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-1047))) (($ |#4| $) NIL (|has| |#4| (-1047))) (($ $ $) NIL (-2198 (-12 (|has| |#4| (-225)) (|has| |#4| (-1047))) (-12 (|has| |#4| (-630 (-568))) (|has| |#4| (-1047))) (|has| |#4| (-716)) (-12 (|has| |#4| (-895 (-1161))) (|has| |#4| (-1047)))))) (-1697 (((-763) $) NIL (|has| $ (-6 -4519))))) +(((-243 |#1| |#2| |#3| |#4|) (-13 (-230 |#1| |#4|) (-637 |#2|) (-637 |#3|)) (-917) (-1047) (-1111 |#1| |#2| (-232 |#1| |#2|) (-232 |#1| |#2|)) (-637 |#2|)) (T -243)) +NIL +(-13 (-230 |#1| |#4|) (-637 |#2|) (-637 |#3|)) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-1394 (($ (-917)) NIL (|has| |#3| (-1047)))) (-1868 (((-1249) $ (-568) (-568)) NIL (|has| $ (-6 -4520)))) (-1462 (($ $ $) NIL (|has| |#3| (-788)))) (-3134 (((-3 $ "failed") $ $) NIL)) (-2510 (((-121) $ (-763)) NIL)) (-3983 (((-763)) NIL (|has| |#3| (-370)))) (-3662 (((-568) $) NIL (|has| |#3| (-840)))) (-2436 ((|#3| $ (-568) |#3|) NIL (|has| $ (-6 -4520)))) (-2671 (($) NIL T CONST)) (-3666 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1090))) (((-3 (-568) "failed") $) NIL (-12 (|has| |#3| (-1037 (-568))) (|has| |#3| (-1090)))) (((-3 (-409 (-568)) "failed") $) NIL (-12 (|has| |#3| (-1037 (-409 (-568)))) (|has| |#3| (-1090))))) (-2854 ((|#3| $) NIL (|has| |#3| (-1090))) (((-568) $) NIL (-12 (|has| |#3| (-1037 (-568))) (|has| |#3| (-1090)))) (((-409 (-568)) $) NIL (-12 (|has| |#3| (-1037 (-409 (-568)))) (|has| |#3| (-1090))))) (-3164 (((-2 (|:| -2928 (-679 |#3|)) (|:| |vec| (-1244 |#3|))) (-679 $) (-1244 $)) NIL (|has| |#3| (-1047))) (((-679 |#3|) (-679 $)) NIL (|has| |#3| (-1047))) (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) NIL (-12 (|has| |#3| (-630 (-568))) (|has| |#3| (-1047)))) (((-679 (-568)) (-679 $)) NIL (-12 (|has| |#3| (-630 (-568))) (|has| |#3| (-1047))))) (-2925 (((-3 $ "failed") $) NIL (-2198 (-12 (|has| |#3| (-225)) (|has| |#3| (-1047))) (-12 (|has| |#3| (-630 (-568))) (|has| |#3| (-1047))) (|has| |#3| (-716)) (-12 (|has| |#3| (-895 (-1161))) (|has| |#3| (-1047)))))) (-1731 (($) NIL (|has| |#3| (-370)))) (-3989 ((|#3| $ (-568) |#3|) NIL (|has| $ (-6 -4520)))) (-2602 ((|#3| $ (-568)) NIL)) (-2033 (((-121) $) NIL (|has| |#3| (-840)))) (-4360 (((-634 |#3|) $) NIL (|has| $ (-6 -4519)))) (-2735 (((-121) $) NIL (-2198 (-12 (|has| |#3| (-225)) (|has| |#3| (-1047))) (-12 (|has| |#3| (-630 (-568))) (|has| |#3| (-1047))) (|has| |#3| (-716)) (-12 (|has| |#3| (-895 (-1161))) (|has| |#3| (-1047)))))) (-2245 (((-121) $) NIL (|has| |#3| (-840)))) (-1737 (((-121) $ (-763)) NIL)) (-1881 (((-568) $) NIL (|has| (-568) (-842)))) (-2521 (($ $ $) NIL (-2198 (|has| |#3| (-788)) (|has| |#3| (-840))))) (-1979 (((-634 |#3|) $) NIL (|has| $ (-6 -4519)))) (-3109 (((-121) |#3| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#3| (-1090))))) (-2223 (((-568) $) NIL (|has| (-568) (-842)))) (-3268 (($ $ $) NIL (-2198 (|has| |#3| (-788)) (|has| |#3| (-840))))) (-3674 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#3| |#3|) $) NIL)) (-3683 (((-917) $) NIL (|has| |#3| (-370)))) (-2166 (((-121) $ (-763)) NIL)) (-4487 (((-1143) $) NIL)) (-4174 (((-634 (-568)) $) NIL)) (-3578 (((-121) (-568) $) NIL)) (-4355 (($ (-917)) NIL (|has| |#3| (-370)))) (-4022 (((-1108) $) NIL)) (-3876 ((|#3| $) NIL (|has| (-568) (-842)))) (-3724 (($ $ |#3|) NIL (|has| $ (-6 -4520)))) (-1387 (((-121) (-1 (-121) |#3|) $) NIL (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#3|))) NIL (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1090)))) (($ $ (-288 |#3|)) NIL (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1090)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1090)))) (($ $ (-634 |#3|) (-634 |#3|)) NIL (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1090))))) (-3171 (((-121) $ $) NIL)) (-4467 (((-121) |#3| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#3| (-1090))))) (-2041 (((-634 |#3|) $) NIL)) (-3084 (((-121) $) NIL)) (-3248 (($) NIL)) (-2779 ((|#3| $ (-568) |#3|) NIL) ((|#3| $ (-568)) 11)) (-3682 ((|#3| $ $) NIL (|has| |#3| (-1047)))) (-2039 (($ (-1244 |#3|)) NIL)) (-4321 (((-139)) NIL (|has| |#3| (-365)))) (-4189 (($ $ (-1 |#3| |#3|) (-763)) NIL (|has| |#3| (-1047))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1047))) (($ $ (-634 (-1161)) (-634 (-763))) NIL (-12 (|has| |#3| (-895 (-1161))) (|has| |#3| (-1047)))) (($ $ (-1161) (-763)) NIL (-12 (|has| |#3| (-895 (-1161))) (|has| |#3| (-1047)))) (($ $ (-634 (-1161))) NIL (-12 (|has| |#3| (-895 (-1161))) (|has| |#3| (-1047)))) (($ $ (-1161)) NIL (-12 (|has| |#3| (-895 (-1161))) (|has| |#3| (-1047)))) (($ $ (-763)) NIL (-12 (|has| |#3| (-225)) (|has| |#3| (-1047)))) (($ $) NIL (-12 (|has| |#3| (-225)) (|has| |#3| (-1047))))) (-4168 (((-763) (-1 (-121) |#3|) $) NIL (|has| $ (-6 -4519))) (((-763) |#3| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#3| (-1090))))) (-3863 (($ $) NIL)) (-2745 (((-1244 |#3|) $) NIL) (((-850) $) NIL) (($ |#3|) NIL (|has| |#3| (-1090))) (($ (-568)) NIL (-2198 (-12 (|has| |#3| (-1037 (-568))) (|has| |#3| (-1090))) (|has| |#3| (-1047)))) (($ (-409 (-568))) NIL (-12 (|has| |#3| (-1037 (-409 (-568)))) (|has| |#3| (-1090))))) (-4078 (((-763)) NIL (|has| |#3| (-1047)))) (-1319 (((-121) (-1 (-121) |#3|) $) NIL (|has| $ (-6 -4519)))) (-2897 (($ $) NIL (|has| |#3| (-840)))) (-1887 (($ $ (-763)) NIL (-2198 (-12 (|has| |#3| (-225)) (|has| |#3| (-1047))) (-12 (|has| |#3| (-630 (-568))) (|has| |#3| (-1047))) (|has| |#3| (-716)) (-12 (|has| |#3| (-895 (-1161))) (|has| |#3| (-1047))))) (($ $ (-917)) NIL (-2198 (-12 (|has| |#3| (-225)) (|has| |#3| (-1047))) (-12 (|has| |#3| (-630 (-568))) (|has| |#3| (-1047))) (|has| |#3| (-716)) (-12 (|has| |#3| (-895 (-1161))) (|has| |#3| (-1047)))))) (-3056 (($) NIL T CONST)) (-1556 (($) NIL (-2198 (-12 (|has| |#3| (-225)) (|has| |#3| (-1047))) (-12 (|has| |#3| (-630 (-568))) (|has| |#3| (-1047))) (|has| |#3| (-716)) (-12 (|has| |#3| (-895 (-1161))) (|has| |#3| (-1047)))) CONST)) (-3190 (($ $ (-1 |#3| |#3|) (-763)) NIL (|has| |#3| (-1047))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1047))) (($ $ (-634 (-1161)) (-634 (-763))) NIL (-12 (|has| |#3| (-895 (-1161))) (|has| |#3| (-1047)))) (($ $ (-1161) (-763)) NIL (-12 (|has| |#3| (-895 (-1161))) (|has| |#3| (-1047)))) (($ $ (-634 (-1161))) NIL (-12 (|has| |#3| (-895 (-1161))) (|has| |#3| (-1047)))) (($ $ (-1161)) NIL (-12 (|has| |#3| (-895 (-1161))) (|has| |#3| (-1047)))) (($ $ (-763)) NIL (-12 (|has| |#3| (-225)) (|has| |#3| (-1047)))) (($ $) NIL (-12 (|has| |#3| (-225)) (|has| |#3| (-1047))))) (-1751 (((-121) $ $) NIL (-2198 (|has| |#3| (-788)) (|has| |#3| (-840))))) (-1738 (((-121) $ $) NIL (-2198 (|has| |#3| (-788)) (|has| |#3| (-840))))) (-1717 (((-121) $ $) NIL)) (-1745 (((-121) $ $) NIL (-2198 (|has| |#3| (-788)) (|has| |#3| (-840))))) (-1732 (((-121) $ $) NIL (-2198 (|has| |#3| (-788)) (|has| |#3| (-840))))) (-1779 (($ $ |#3|) NIL (|has| |#3| (-365)))) (-1773 (($ $ $) NIL) (($ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-763)) NIL (-2198 (-12 (|has| |#3| (-225)) (|has| |#3| (-1047))) (-12 (|has| |#3| (-630 (-568))) (|has| |#3| (-1047))) (|has| |#3| (-716)) (-12 (|has| |#3| (-895 (-1161))) (|has| |#3| (-1047))))) (($ $ (-917)) NIL (-2198 (-12 (|has| |#3| (-225)) (|has| |#3| (-1047))) (-12 (|has| |#3| (-630 (-568))) (|has| |#3| (-1047))) (|has| |#3| (-716)) (-12 (|has| |#3| (-895 (-1161))) (|has| |#3| (-1047)))))) (* (($ |#2| $) 13) (($ (-568) $) NIL) (($ (-763) $) NIL) (($ (-917) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-1047))) (($ |#3| $) NIL (|has| |#3| (-1047))) (($ $ $) NIL (-2198 (-12 (|has| |#3| (-225)) (|has| |#3| (-1047))) (-12 (|has| |#3| (-630 (-568))) (|has| |#3| (-1047))) (|has| |#3| (-716)) (-12 (|has| |#3| (-895 (-1161))) (|has| |#3| (-1047)))))) (-1697 (((-763) $) NIL (|has| $ (-6 -4519))))) +(((-244 |#1| |#2| |#3|) (-13 (-230 |#1| |#3|) (-637 |#2|)) (-763) (-1047) (-637 |#2|)) (T -244)) +NIL +(-13 (-230 |#1| |#3|) (-637 |#2|)) +((-3902 (((-634 (-763)) $) 47) (((-634 (-763)) $ |#3|) 50)) (-1551 (((-763) $) 49) (((-763) $ |#3|) 52)) (-4180 (($ $) 65)) (-3666 (((-3 |#2| "failed") $) NIL) (((-3 (-409 (-568)) "failed") $) NIL) (((-3 (-568) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 72)) (-4477 (((-763) $ |#3|) 39) (((-763) $) 36)) (-4300 (((-1 $ (-763)) |#3|) 15) (((-1 $ (-763)) $) 77)) (-1690 ((|#4| $) 58)) (-1989 (((-121) $) 56)) (-1484 (($ $) 64)) (-1339 (($ $ (-634 (-288 $))) 96) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-634 $) (-634 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-634 |#4|) (-634 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-634 |#4|) (-634 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-634 |#3|) (-634 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-634 |#3|) (-634 |#2|)) 84)) (-4189 (($ $ |#4|) NIL) (($ $ (-634 |#4|)) NIL) (($ $ |#4| (-763)) NIL) (($ $ (-634 |#4|) (-634 (-763))) NIL) (($ $) NIL) (($ $ (-763)) NIL) (($ $ (-1161)) NIL) (($ $ (-634 (-1161))) NIL) (($ $ (-1161) (-763)) NIL) (($ $ (-634 (-1161)) (-634 (-763))) NIL) (($ $ (-1 |#2| |#2|) (-763)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-3795 (((-634 |#3|) $) 75)) (-3206 ((|#5| $) NIL) (((-763) $ |#4|) NIL) (((-634 (-763)) $ (-634 |#4|)) NIL) (((-763) $ |#3|) 44)) (-2745 (((-850) $) NIL) (($ (-568)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-409 (-568))) NIL) (($ $) NIL))) +(((-245 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2745 (|#1| |#1|)) (-15 -2745 (|#1| (-409 (-568)))) (-15 -1339 (|#1| |#1| (-634 |#3|) (-634 |#2|))) (-15 -1339 (|#1| |#1| |#3| |#2|)) (-15 -1339 (|#1| |#1| (-634 |#3|) (-634 |#1|))) (-15 -1339 (|#1| |#1| |#3| |#1|)) (-15 -4300 ((-1 |#1| (-763)) |#1|)) (-15 -4180 (|#1| |#1|)) (-15 -1484 (|#1| |#1|)) (-15 -1690 (|#4| |#1|)) (-15 -1989 ((-121) |#1|)) (-15 -1551 ((-763) |#1| |#3|)) (-15 -3902 ((-634 (-763)) |#1| |#3|)) (-15 -1551 ((-763) |#1|)) (-15 -3902 ((-634 (-763)) |#1|)) (-15 -3206 ((-763) |#1| |#3|)) (-15 -4477 ((-763) |#1|)) (-15 -4477 ((-763) |#1| |#3|)) (-15 -3795 ((-634 |#3|) |#1|)) (-15 -4300 ((-1 |#1| (-763)) |#3|)) (-15 -3666 ((-3 |#3| "failed") |#1|)) (-15 -2745 (|#1| |#3|)) (-15 -4189 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4189 (|#1| |#1| (-1 |#2| |#2|) (-763))) (-15 -4189 (|#1| |#1| (-634 (-1161)) (-634 (-763)))) (-15 -4189 (|#1| |#1| (-1161) (-763))) (-15 -4189 (|#1| |#1| (-634 (-1161)))) (-15 -4189 (|#1| |#1| (-1161))) (-15 -4189 (|#1| |#1| (-763))) (-15 -4189 (|#1| |#1|)) (-15 -3206 ((-634 (-763)) |#1| (-634 |#4|))) (-15 -3206 ((-763) |#1| |#4|)) (-15 -3666 ((-3 |#4| "failed") |#1|)) (-15 -2745 (|#1| |#4|)) (-15 -1339 (|#1| |#1| (-634 |#4|) (-634 |#1|))) (-15 -1339 (|#1| |#1| |#4| |#1|)) (-15 -1339 (|#1| |#1| (-634 |#4|) (-634 |#2|))) (-15 -1339 (|#1| |#1| |#4| |#2|)) (-15 -1339 (|#1| |#1| (-634 |#1|) (-634 |#1|))) (-15 -1339 (|#1| |#1| |#1| |#1|)) (-15 -1339 (|#1| |#1| (-288 |#1|))) (-15 -1339 (|#1| |#1| (-634 (-288 |#1|)))) (-15 -3206 (|#5| |#1|)) (-15 -3666 ((-3 (-568) "failed") |#1|)) (-15 -3666 ((-3 (-409 (-568)) "failed") |#1|)) (-15 -2745 (|#1| |#2|)) (-15 -3666 ((-3 |#2| "failed") |#1|)) (-15 -4189 (|#1| |#1| (-634 |#4|) (-634 (-763)))) (-15 -4189 (|#1| |#1| |#4| (-763))) (-15 -4189 (|#1| |#1| (-634 |#4|))) (-15 -4189 (|#1| |#1| |#4|)) (-15 -2745 (|#1| (-568))) (-15 -2745 ((-850) |#1|))) (-246 |#2| |#3| |#4| |#5|) (-1047) (-842) (-262 |#3|) (-788)) (T -245)) +NIL +(-10 -8 (-15 -2745 (|#1| |#1|)) (-15 -2745 (|#1| (-409 (-568)))) (-15 -1339 (|#1| |#1| (-634 |#3|) (-634 |#2|))) (-15 -1339 (|#1| |#1| |#3| |#2|)) (-15 -1339 (|#1| |#1| (-634 |#3|) (-634 |#1|))) (-15 -1339 (|#1| |#1| |#3| |#1|)) (-15 -4300 ((-1 |#1| (-763)) |#1|)) (-15 -4180 (|#1| |#1|)) (-15 -1484 (|#1| |#1|)) (-15 -1690 (|#4| |#1|)) (-15 -1989 ((-121) |#1|)) (-15 -1551 ((-763) |#1| |#3|)) (-15 -3902 ((-634 (-763)) |#1| |#3|)) (-15 -1551 ((-763) |#1|)) (-15 -3902 ((-634 (-763)) |#1|)) (-15 -3206 ((-763) |#1| |#3|)) (-15 -4477 ((-763) |#1|)) (-15 -4477 ((-763) |#1| |#3|)) (-15 -3795 ((-634 |#3|) |#1|)) (-15 -4300 ((-1 |#1| (-763)) |#3|)) (-15 -3666 ((-3 |#3| "failed") |#1|)) (-15 -2745 (|#1| |#3|)) (-15 -4189 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4189 (|#1| |#1| (-1 |#2| |#2|) (-763))) (-15 -4189 (|#1| |#1| (-634 (-1161)) (-634 (-763)))) (-15 -4189 (|#1| |#1| (-1161) (-763))) (-15 -4189 (|#1| |#1| (-634 (-1161)))) (-15 -4189 (|#1| |#1| (-1161))) (-15 -4189 (|#1| |#1| (-763))) (-15 -4189 (|#1| |#1|)) (-15 -3206 ((-634 (-763)) |#1| (-634 |#4|))) (-15 -3206 ((-763) |#1| |#4|)) (-15 -3666 ((-3 |#4| "failed") |#1|)) (-15 -2745 (|#1| |#4|)) (-15 -1339 (|#1| |#1| (-634 |#4|) (-634 |#1|))) (-15 -1339 (|#1| |#1| |#4| |#1|)) (-15 -1339 (|#1| |#1| (-634 |#4|) (-634 |#2|))) (-15 -1339 (|#1| |#1| |#4| |#2|)) (-15 -1339 (|#1| |#1| (-634 |#1|) (-634 |#1|))) (-15 -1339 (|#1| |#1| |#1| |#1|)) (-15 -1339 (|#1| |#1| (-288 |#1|))) (-15 -1339 (|#1| |#1| (-634 (-288 |#1|)))) (-15 -3206 (|#5| |#1|)) (-15 -3666 ((-3 (-568) "failed") |#1|)) (-15 -3666 ((-3 (-409 (-568)) "failed") |#1|)) (-15 -2745 (|#1| |#2|)) (-15 -3666 ((-3 |#2| "failed") |#1|)) (-15 -4189 (|#1| |#1| (-634 |#4|) (-634 (-763)))) (-15 -4189 (|#1| |#1| |#4| (-763))) (-15 -4189 (|#1| |#1| (-634 |#4|))) (-15 -4189 (|#1| |#1| |#4|)) (-15 -2745 (|#1| (-568))) (-15 -2745 ((-850) |#1|))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-3902 (((-634 (-763)) $) 193) (((-634 (-763)) $ |#2|) 191)) (-1551 (((-763) $) 192) (((-763) $ |#2|) 190)) (-2055 (((-634 |#3|) $) 108)) (-3839 (((-1157 $) $ |#3|) 123) (((-1157 |#1|) $) 122)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) 85 (|has| |#1| (-558)))) (-2227 (($ $) 86 (|has| |#1| (-558)))) (-1573 (((-121) $) 88 (|has| |#1| (-558)))) (-2773 (((-763) $) 110) (((-763) $ (-634 |#3|)) 109)) (-3134 (((-3 $ "failed") $ $) 18)) (-1750 (((-420 (-1157 $)) (-1157 $)) 98 (|has| |#1| (-904)))) (-4305 (($ $) 96 (|has| |#1| (-453)))) (-1678 (((-420 $) $) 95 (|has| |#1| (-453)))) (-1858 (((-3 (-634 (-1157 $)) "failed") (-634 (-1157 $)) (-1157 $)) 101 (|has| |#1| (-904)))) (-4180 (($ $) 186)) (-2671 (($) 16 T CONST)) (-3666 (((-3 |#1| "failed") $) 162) (((-3 (-409 (-568)) "failed") $) 160 (|has| |#1| (-1037 (-409 (-568))))) (((-3 (-568) "failed") $) 158 (|has| |#1| (-1037 (-568)))) (((-3 |#3| "failed") $) 134) (((-3 |#2| "failed") $) 200)) (-2854 ((|#1| $) 163) (((-409 (-568)) $) 159 (|has| |#1| (-1037 (-409 (-568))))) (((-568) $) 157 (|has| |#1| (-1037 (-568)))) ((|#3| $) 133) ((|#2| $) 199)) (-4265 (($ $ $ |#3|) 106 (|has| |#1| (-172)))) (-2114 (($ $) 152)) (-3164 (((-679 (-568)) (-679 $)) 132 (|has| |#1| (-630 (-568)))) (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) 131 (|has| |#1| (-630 (-568)))) (((-2 (|:| -2928 (-679 |#1|)) (|:| |vec| (-1244 |#1|))) (-679 $) (-1244 $)) 130) (((-679 |#1|) (-679 $)) 129)) (-2925 (((-3 $ "failed") $) 33)) (-3250 (($ $) 174 (|has| |#1| (-453))) (($ $ |#3|) 103 (|has| |#1| (-453)))) (-2108 (((-634 $) $) 107)) (-3927 (((-121) $) 94 (|has| |#1| (-904)))) (-3088 (($ $ |#1| |#4| $) 170)) (-4410 (((-884 (-381) $) $ (-887 (-381)) (-884 (-381) $)) 82 (-12 (|has| |#3| (-881 (-381))) (|has| |#1| (-881 (-381))))) (((-884 (-568) $) $ (-887 (-568)) (-884 (-568) $)) 81 (-12 (|has| |#3| (-881 (-568))) (|has| |#1| (-881 (-568)))))) (-4477 (((-763) $ |#2|) 196) (((-763) $) 195)) (-2735 (((-121) $) 30)) (-4178 (((-763) $) 167)) (-2051 (($ (-1157 |#1|) |#3|) 115) (($ (-1157 $) |#3|) 114)) (-2976 (((-634 $) $) 124)) (-3921 (((-121) $) 150)) (-2047 (($ |#1| |#4|) 151) (($ $ |#3| (-763)) 117) (($ $ (-634 |#3|) (-634 (-763))) 116)) (-3379 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $ |#3|) 118)) (-2144 ((|#4| $) 168) (((-763) $ |#3|) 120) (((-634 (-763)) $ (-634 |#3|)) 119)) (-2521 (($ $ $) 77 (|has| |#1| (-842)))) (-3268 (($ $ $) 76 (|has| |#1| (-842)))) (-3842 (($ (-1 |#4| |#4|) $) 169)) (-2795 (($ (-1 |#1| |#1|) $) 149)) (-4300 (((-1 $ (-763)) |#2|) 198) (((-1 $ (-763)) $) 185 (|has| |#1| (-225)))) (-2244 (((-3 |#3| "failed") $) 121)) (-2097 (($ $) 147)) (-2102 ((|#1| $) 146)) (-1690 ((|#3| $) 188)) (-2495 (($ (-634 $)) 92 (|has| |#1| (-453))) (($ $ $) 91 (|has| |#1| (-453)))) (-4487 (((-1143) $) 9)) (-1989 (((-121) $) 189)) (-3324 (((-3 (-634 $) "failed") $) 112)) (-1794 (((-3 (-634 $) "failed") $) 113)) (-3751 (((-3 (-2 (|:| |var| |#3|) (|:| -3438 (-763))) "failed") $) 111)) (-1484 (($ $) 187)) (-4022 (((-1108) $) 10)) (-2086 (((-121) $) 164)) (-2091 ((|#1| $) 165)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) 93 (|has| |#1| (-453)))) (-2721 (($ (-634 $)) 90 (|has| |#1| (-453))) (($ $ $) 89 (|has| |#1| (-453)))) (-2905 (((-420 (-1157 $)) (-1157 $)) 100 (|has| |#1| (-904)))) (-3545 (((-420 (-1157 $)) (-1157 $)) 99 (|has| |#1| (-904)))) (-3848 (((-420 $) $) 97 (|has| |#1| (-904)))) (-2595 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-558))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-558)))) (-1339 (($ $ (-634 (-288 $))) 143) (($ $ (-288 $)) 142) (($ $ $ $) 141) (($ $ (-634 $) (-634 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-634 |#3|) (-634 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-634 |#3|) (-634 $)) 136) (($ $ |#2| $) 184 (|has| |#1| (-225))) (($ $ (-634 |#2|) (-634 $)) 183 (|has| |#1| (-225))) (($ $ |#2| |#1|) 182 (|has| |#1| (-225))) (($ $ (-634 |#2|) (-634 |#1|)) 181 (|has| |#1| (-225)))) (-2217 (($ $ |#3|) 105 (|has| |#1| (-172)))) (-4189 (($ $ |#3|) 41) (($ $ (-634 |#3|)) 40) (($ $ |#3| (-763)) 39) (($ $ (-634 |#3|) (-634 (-763))) 38) (($ $) 217 (|has| |#1| (-225))) (($ $ (-763)) 215 (|has| |#1| (-225))) (($ $ (-1161)) 213 (|has| |#1| (-895 (-1161)))) (($ $ (-634 (-1161))) 212 (|has| |#1| (-895 (-1161)))) (($ $ (-1161) (-763)) 211 (|has| |#1| (-895 (-1161)))) (($ $ (-634 (-1161)) (-634 (-763))) 210 (|has| |#1| (-895 (-1161)))) (($ $ (-1 |#1| |#1|) (-763)) 203) (($ $ (-1 |#1| |#1|)) 202)) (-3795 (((-634 |#2|) $) 197)) (-3206 ((|#4| $) 148) (((-763) $ |#3|) 128) (((-634 (-763)) $ (-634 |#3|)) 127) (((-763) $ |#2|) 194)) (-4278 (((-887 (-381)) $) 80 (-12 (|has| |#3| (-609 (-887 (-381)))) (|has| |#1| (-609 (-887 (-381)))))) (((-887 (-568)) $) 79 (-12 (|has| |#3| (-609 (-887 (-568)))) (|has| |#1| (-609 (-887 (-568)))))) (((-541) $) 78 (-12 (|has| |#3| (-609 (-541))) (|has| |#1| (-609 (-541)))))) (-3367 ((|#1| $) 173 (|has| |#1| (-453))) (($ $ |#3|) 104 (|has| |#1| (-453)))) (-2979 (((-3 (-1244 $) "failed") (-679 $)) 102 (-2139 (|has| $ (-148)) (|has| |#1| (-904))))) (-2745 (((-850) $) 11) (($ (-568)) 27) (($ |#1|) 161) (($ |#3|) 135) (($ |#2|) 201) (($ (-409 (-568))) 70 (-2198 (|has| |#1| (-1037 (-409 (-568)))) (|has| |#1| (-43 (-409 (-568)))))) (($ $) 83 (|has| |#1| (-558)))) (-1302 (((-634 |#1|) $) 166)) (-2604 ((|#1| $ |#4|) 153) (($ $ |#3| (-763)) 126) (($ $ (-634 |#3|) (-634 (-763))) 125)) (-4371 (((-3 $ "failed") $) 71 (-2198 (-2139 (|has| $ (-148)) (|has| |#1| (-904))) (|has| |#1| (-148))))) (-4078 (((-763)) 28)) (-4171 (($ $ $ (-763)) 171 (|has| |#1| (-172)))) (-1826 (((-121) $ $) 87 (|has| |#1| (-558)))) (-1887 (($ $ (-917)) 25) (($ $ (-763)) 32)) (-3056 (($) 17 T CONST)) (-1556 (($) 29 T CONST)) (-3190 (($ $ |#3|) 37) (($ $ (-634 |#3|)) 36) (($ $ |#3| (-763)) 35) (($ $ (-634 |#3|) (-634 (-763))) 34) (($ $) 216 (|has| |#1| (-225))) (($ $ (-763)) 214 (|has| |#1| (-225))) (($ $ (-1161)) 209 (|has| |#1| (-895 (-1161)))) (($ $ (-634 (-1161))) 208 (|has| |#1| (-895 (-1161)))) (($ $ (-1161) (-763)) 207 (|has| |#1| (-895 (-1161)))) (($ $ (-634 (-1161)) (-634 (-763))) 206 (|has| |#1| (-895 (-1161)))) (($ $ (-1 |#1| |#1|) (-763)) 205) (($ $ (-1 |#1| |#1|)) 204)) (-1751 (((-121) $ $) 74 (|has| |#1| (-842)))) (-1738 (((-121) $ $) 73 (|has| |#1| (-842)))) (-1717 (((-121) $ $) 6)) (-1745 (((-121) $ $) 75 (|has| |#1| (-842)))) (-1732 (((-121) $ $) 72 (|has| |#1| (-842)))) (-1779 (($ $ |#1|) 154 (|has| |#1| (-365)))) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 24) (($ $ (-763)) 31)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 23) (($ $ (-409 (-568))) 156 (|has| |#1| (-43 (-409 (-568))))) (($ (-409 (-568)) $) 155 (|has| |#1| (-43 (-409 (-568))))) (($ |#1| $) 145) (($ $ |#1|) 144))) +(((-246 |#1| |#2| |#3| |#4|) (-1275) (-1047) (-842) (-262 |t#2|) (-788)) (T -246)) +((-4300 (*1 *2 *3) (-12 (-4 *4 (-1047)) (-4 *3 (-842)) (-4 *5 (-262 *3)) (-4 *6 (-788)) (-5 *2 (-1 *1 (-763))) (-4 *1 (-246 *4 *3 *5 *6)))) (-3795 (*1 *2 *1) (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-842)) (-4 *5 (-262 *4)) (-4 *6 (-788)) (-5 *2 (-634 *4)))) (-4477 (*1 *2 *1 *3) (-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1047)) (-4 *3 (-842)) (-4 *5 (-262 *3)) (-4 *6 (-788)) (-5 *2 (-763)))) (-4477 (*1 *2 *1) (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-842)) (-4 *5 (-262 *4)) (-4 *6 (-788)) (-5 *2 (-763)))) (-3206 (*1 *2 *1 *3) (-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1047)) (-4 *3 (-842)) (-4 *5 (-262 *3)) (-4 *6 (-788)) (-5 *2 (-763)))) (-3902 (*1 *2 *1) (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-842)) (-4 *5 (-262 *4)) (-4 *6 (-788)) (-5 *2 (-634 (-763))))) (-1551 (*1 *2 *1) (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-842)) (-4 *5 (-262 *4)) (-4 *6 (-788)) (-5 *2 (-763)))) (-3902 (*1 *2 *1 *3) (-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1047)) (-4 *3 (-842)) (-4 *5 (-262 *3)) (-4 *6 (-788)) (-5 *2 (-634 (-763))))) (-1551 (*1 *2 *1 *3) (-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1047)) (-4 *3 (-842)) (-4 *5 (-262 *3)) (-4 *6 (-788)) (-5 *2 (-763)))) (-1989 (*1 *2 *1) (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-842)) (-4 *5 (-262 *4)) (-4 *6 (-788)) (-5 *2 (-121)))) (-1690 (*1 *2 *1) (-12 (-4 *1 (-246 *3 *4 *2 *5)) (-4 *3 (-1047)) (-4 *4 (-842)) (-4 *5 (-788)) (-4 *2 (-262 *4)))) (-1484 (*1 *1 *1) (-12 (-4 *1 (-246 *2 *3 *4 *5)) (-4 *2 (-1047)) (-4 *3 (-842)) (-4 *4 (-262 *3)) (-4 *5 (-788)))) (-4180 (*1 *1 *1) (-12 (-4 *1 (-246 *2 *3 *4 *5)) (-4 *2 (-1047)) (-4 *3 (-842)) (-4 *4 (-262 *3)) (-4 *5 (-788)))) (-4300 (*1 *2 *1) (-12 (-4 *3 (-225)) (-4 *3 (-1047)) (-4 *4 (-842)) (-4 *5 (-262 *4)) (-4 *6 (-788)) (-5 *2 (-1 *1 (-763))) (-4 *1 (-246 *3 *4 *5 *6))))) +(-13 (-950 |t#1| |t#4| |t#3|) (-223 |t#1|) (-1037 |t#2|) (-10 -8 (-15 -4300 ((-1 $ (-763)) |t#2|)) (-15 -3795 ((-634 |t#2|) $)) (-15 -4477 ((-763) $ |t#2|)) (-15 -4477 ((-763) $)) (-15 -3206 ((-763) $ |t#2|)) (-15 -3902 ((-634 (-763)) $)) (-15 -1551 ((-763) $)) (-15 -3902 ((-634 (-763)) $ |t#2|)) (-15 -1551 ((-763) $ |t#2|)) (-15 -1989 ((-121) $)) (-15 -1690 (|t#3| $)) (-15 -1484 ($ $)) (-15 -4180 ($ $)) (IF (|has| |t#1| (-225)) (PROGN (-6 (-523 |t#2| |t#1|)) (-6 (-523 |t#2| $)) (-6 (-303 $)) (-15 -4300 ((-1 $ (-763)) $))) |noBranch|))) +(((-21) . T) ((-23) . T) ((-52 |#1| |#4|) . T) ((-25) . T) ((-43 (-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((-43 |#1|) |has| |#1| (-172)) ((-43 $) -2198 (|has| |#1| (-904)) (|has| |#1| (-558)) (|has| |#1| (-453))) ((-105) . T) ((-120 (-409 (-568)) (-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((-120 |#1| |#1|) . T) ((-120 $ $) -2198 (|has| |#1| (-904)) (|has| |#1| (-558)) (|has| |#1| (-453)) (|has| |#1| (-172))) ((-137) . T) ((-148) |has| |#1| (-148)) ((-150) |has| |#1| (-150)) ((-608 (-850)) . T) ((-172) -2198 (|has| |#1| (-904)) (|has| |#1| (-558)) (|has| |#1| (-453)) (|has| |#1| (-172))) ((-609 (-541)) -12 (|has| |#1| (-609 (-541))) (|has| |#3| (-609 (-541)))) ((-609 (-887 (-381))) -12 (|has| |#1| (-609 (-887 (-381)))) (|has| |#3| (-609 (-887 (-381))))) ((-609 (-887 (-568))) -12 (|has| |#1| (-609 (-887 (-568)))) (|has| |#3| (-609 (-887 (-568))))) ((-223 |#1|) . T) ((-225) |has| |#1| (-225)) ((-285) -2198 (|has| |#1| (-904)) (|has| |#1| (-558)) (|has| |#1| (-453))) ((-303 $) . T) ((-324 |#1| |#4|) . T) ((-379 |#1|) . T) ((-413 |#1|) . T) ((-453) -2198 (|has| |#1| (-904)) (|has| |#1| (-453))) ((-523 |#2| |#1|) |has| |#1| (-225)) ((-523 |#2| $) |has| |#1| (-225)) ((-523 |#3| |#1|) . T) ((-523 |#3| $) . T) ((-523 $ $) . T) ((-558) -2198 (|has| |#1| (-904)) (|has| |#1| (-558)) (|has| |#1| (-453))) ((-637 (-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((-637 |#1|) . T) ((-637 $) . T) ((-630 (-568)) |has| |#1| (-630 (-568))) ((-630 |#1|) . T) ((-707 (-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((-707 |#1|) |has| |#1| (-172)) ((-707 $) -2198 (|has| |#1| (-904)) (|has| |#1| (-558)) (|has| |#1| (-453))) ((-716) . T) ((-842) |has| |#1| (-842)) ((-895 (-1161)) |has| |#1| (-895 (-1161))) ((-895 |#3|) . T) ((-881 (-381)) -12 (|has| |#1| (-881 (-381))) (|has| |#3| (-881 (-381)))) ((-881 (-568)) -12 (|has| |#1| (-881 (-568))) (|has| |#3| (-881 (-568)))) ((-950 |#1| |#4| |#3|) . T) ((-904) |has| |#1| (-904)) ((-1037 (-409 (-568))) |has| |#1| (-1037 (-409 (-568)))) ((-1037 (-568)) |has| |#1| (-1037 (-568))) ((-1037 |#1|) . T) ((-1037 |#2|) . T) ((-1037 |#3|) . T) ((-1053 (-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((-1053 |#1|) . T) ((-1053 $) -2198 (|has| |#1| (-904)) (|has| |#1| (-558)) (|has| |#1| (-453)) (|has| |#1| (-172))) ((-1047) . T) ((-1054) . T) ((-1102) . T) ((-1090) . T) ((-1199) |has| |#1| (-904))) +((-2447 (((-121) $ $) 18 (|has| |#1| (-1090)))) (-1815 ((|#1| $) 51)) (-2616 ((|#1| $) 41)) (-2510 (((-121) $ (-763)) 8)) (-2671 (($) 7 T CONST)) (-3475 (($ $) 57)) (-1578 (($ $) 45)) (-2918 ((|#1| |#1| $) 43)) (-2899 ((|#1| $) 42)) (-4360 (((-634 |#1|) $) 30 (|has| $ (-6 -4519)))) (-1737 (((-121) $ (-763)) 9)) (-1979 (((-634 |#1|) $) 29 (|has| $ (-6 -4519)))) (-3109 (((-121) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-3674 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#1| |#1|) $) 35)) (-2166 (((-121) $ (-763)) 10)) (-3678 (((-763) $) 58)) (-4487 (((-1143) $) 22 (|has| |#1| (-1090)))) (-1890 ((|#1| $) 36)) (-1871 ((|#1| |#1| $) 49)) (-4308 ((|#1| |#1| $) 48)) (-4450 (($ |#1| $) 37)) (-2961 (((-763) $) 52)) (-4022 (((-1108) $) 21 (|has| |#1| (-1090)))) (-3860 ((|#1| $) 59)) (-2216 ((|#1| $) 47)) (-3923 ((|#1| $) 46)) (-1315 ((|#1| $) 38)) (-1387 (((-121) (-1 (-121) |#1|) $) 32 (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-634 |#1|) (-634 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))))) (-3171 (((-121) $ $) 14)) (-1383 ((|#1| |#1| $) 55)) (-3084 (((-121) $) 11)) (-3248 (($) 12)) (-2368 ((|#1| $) 56)) (-1612 (($) 54) (($ (-634 |#1|)) 53)) (-4154 (((-763) $) 40)) (-4168 (((-763) (-1 (-121) |#1|) $) 31 (|has| $ (-6 -4519))) (((-763) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-3863 (($ $) 13)) (-2745 (((-850) $) 20 (|has| |#1| (-1090)))) (-3286 ((|#1| $) 50)) (-2367 (($ (-634 |#1|)) 39)) (-4190 ((|#1| $) 60)) (-1319 (((-121) (-1 (-121) |#1|) $) 33 (|has| $ (-6 -4519)))) (-1717 (((-121) $ $) 19 (|has| |#1| (-1090)))) (-1697 (((-763) $) 6 (|has| $ (-6 -4519))))) +(((-247 |#1|) (-1275) (-1195)) (T -247)) +((-1612 (*1 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1195)))) (-1612 (*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-1195)) (-4 *1 (-247 *3)))) (-2961 (*1 *2 *1) (-12 (-4 *1 (-247 *3)) (-4 *3 (-1195)) (-5 *2 (-763)))) (-1815 (*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1195)))) (-3286 (*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1195)))) (-1871 (*1 *2 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1195)))) (-4308 (*1 *2 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1195)))) (-2216 (*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1195)))) (-3923 (*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1195)))) (-1578 (*1 *1 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1195))))) +(-13 (-1109 |t#1|) (-995 |t#1|) (-10 -8 (-15 -1612 ($)) (-15 -1612 ($ (-634 |t#1|))) (-15 -2961 ((-763) $)) (-15 -1815 (|t#1| $)) (-15 -3286 (|t#1| $)) (-15 -1871 (|t#1| |t#1| $)) (-15 -4308 (|t#1| |t#1| $)) (-15 -2216 (|t#1| $)) (-15 -3923 (|t#1| $)) (-15 -1578 ($ $)))) +(((-39) . T) ((-111 |#1|) . T) ((-105) |has| |#1| (-1090)) ((-608 (-850)) |has| |#1| (-1090)) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))) ((-499 |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))) ((-995 |#1|) . T) ((-1090) |has| |#1| (-1090)) ((-1109 |#1|) . T) ((-1195) . T)) +((-2339 (((-1 (-944 (-215)) (-215) (-215)) (-1 (-944 (-215)) (-215) (-215)) (-1 (-215) (-215) (-215) (-215))) 139)) (-2342 (((-1121 (-215)) (-877 (-1 (-215) (-215) (-215))) (-1084 (-381)) (-1084 (-381))) 160) (((-1121 (-215)) (-877 (-1 (-215) (-215) (-215))) (-1084 (-381)) (-1084 (-381)) (-634 (-256))) 158) (((-1121 (-215)) (-1 (-944 (-215)) (-215) (-215)) (-1084 (-381)) (-1084 (-381))) 163) (((-1121 (-215)) (-1 (-944 (-215)) (-215) (-215)) (-1084 (-381)) (-1084 (-381)) (-634 (-256))) 159) (((-1121 (-215)) (-1 (-215) (-215) (-215)) (-1084 (-381)) (-1084 (-381))) 150) (((-1121 (-215)) (-1 (-215) (-215) (-215)) (-1084 (-381)) (-1084 (-381)) (-634 (-256))) 149) (((-1121 (-215)) (-1 (-944 (-215)) (-215)) (-1084 (-381))) 129) (((-1121 (-215)) (-1 (-944 (-215)) (-215)) (-1084 (-381)) (-634 (-256))) 127) (((-1121 (-215)) (-875 (-1 (-215) (-215))) (-1084 (-381))) 128) (((-1121 (-215)) (-875 (-1 (-215) (-215))) (-1084 (-381)) (-634 (-256))) 125)) (-2336 (((-1246) (-877 (-1 (-215) (-215) (-215))) (-1084 (-381)) (-1084 (-381))) 162) (((-1246) (-877 (-1 (-215) (-215) (-215))) (-1084 (-381)) (-1084 (-381)) (-634 (-256))) 161) (((-1246) (-1 (-944 (-215)) (-215) (-215)) (-1084 (-381)) (-1084 (-381))) 165) (((-1246) (-1 (-944 (-215)) (-215) (-215)) (-1084 (-381)) (-1084 (-381)) (-634 (-256))) 164) (((-1246) (-1 (-215) (-215) (-215)) (-1084 (-381)) (-1084 (-381))) 152) (((-1246) (-1 (-215) (-215) (-215)) (-1084 (-381)) (-1084 (-381)) (-634 (-256))) 151) (((-1246) (-1 (-944 (-215)) (-215)) (-1084 (-381))) 135) (((-1246) (-1 (-944 (-215)) (-215)) (-1084 (-381)) (-634 (-256))) 134) (((-1246) (-875 (-1 (-215) (-215))) (-1084 (-381))) 133) (((-1246) (-875 (-1 (-215) (-215))) (-1084 (-381)) (-634 (-256))) 132) (((-1245) (-873 (-1 (-215) (-215))) (-1084 (-381))) 99) (((-1245) (-873 (-1 (-215) (-215))) (-1084 (-381)) (-634 (-256))) 98) (((-1245) (-1 (-215) (-215)) (-1084 (-381))) 95) (((-1245) (-1 (-215) (-215)) (-1084 (-381)) (-634 (-256))) 94))) +(((-248) (-10 -7 (-15 -2336 ((-1245) (-1 (-215) (-215)) (-1084 (-381)) (-634 (-256)))) (-15 -2336 ((-1245) (-1 (-215) (-215)) (-1084 (-381)))) (-15 -2336 ((-1245) (-873 (-1 (-215) (-215))) (-1084 (-381)) (-634 (-256)))) (-15 -2336 ((-1245) (-873 (-1 (-215) (-215))) (-1084 (-381)))) (-15 -2336 ((-1246) (-875 (-1 (-215) (-215))) (-1084 (-381)) (-634 (-256)))) (-15 -2336 ((-1246) (-875 (-1 (-215) (-215))) (-1084 (-381)))) (-15 -2336 ((-1246) (-1 (-944 (-215)) (-215)) (-1084 (-381)) (-634 (-256)))) (-15 -2336 ((-1246) (-1 (-944 (-215)) (-215)) (-1084 (-381)))) (-15 -2342 ((-1121 (-215)) (-875 (-1 (-215) (-215))) (-1084 (-381)) (-634 (-256)))) (-15 -2342 ((-1121 (-215)) (-875 (-1 (-215) (-215))) (-1084 (-381)))) (-15 -2342 ((-1121 (-215)) (-1 (-944 (-215)) (-215)) (-1084 (-381)) (-634 (-256)))) (-15 -2342 ((-1121 (-215)) (-1 (-944 (-215)) (-215)) (-1084 (-381)))) (-15 -2336 ((-1246) (-1 (-215) (-215) (-215)) (-1084 (-381)) (-1084 (-381)) (-634 (-256)))) (-15 -2336 ((-1246) (-1 (-215) (-215) (-215)) (-1084 (-381)) (-1084 (-381)))) (-15 -2342 ((-1121 (-215)) (-1 (-215) (-215) (-215)) (-1084 (-381)) (-1084 (-381)) (-634 (-256)))) (-15 -2342 ((-1121 (-215)) (-1 (-215) (-215) (-215)) (-1084 (-381)) (-1084 (-381)))) (-15 -2336 ((-1246) (-1 (-944 (-215)) (-215) (-215)) (-1084 (-381)) (-1084 (-381)) (-634 (-256)))) (-15 -2336 ((-1246) (-1 (-944 (-215)) (-215) (-215)) (-1084 (-381)) (-1084 (-381)))) (-15 -2342 ((-1121 (-215)) (-1 (-944 (-215)) (-215) (-215)) (-1084 (-381)) (-1084 (-381)) (-634 (-256)))) (-15 -2342 ((-1121 (-215)) (-1 (-944 (-215)) (-215) (-215)) (-1084 (-381)) (-1084 (-381)))) (-15 -2336 ((-1246) (-877 (-1 (-215) (-215) (-215))) (-1084 (-381)) (-1084 (-381)) (-634 (-256)))) (-15 -2336 ((-1246) (-877 (-1 (-215) (-215) (-215))) (-1084 (-381)) (-1084 (-381)))) (-15 -2342 ((-1121 (-215)) (-877 (-1 (-215) (-215) (-215))) (-1084 (-381)) (-1084 (-381)) (-634 (-256)))) (-15 -2342 ((-1121 (-215)) (-877 (-1 (-215) (-215) (-215))) (-1084 (-381)) (-1084 (-381)))) (-15 -2339 ((-1 (-944 (-215)) (-215) (-215)) (-1 (-944 (-215)) (-215) (-215)) (-1 (-215) (-215) (-215) (-215)))))) (T -248)) +((-2339 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-944 (-215)) (-215) (-215))) (-5 *3 (-1 (-215) (-215) (-215) (-215))) (-5 *1 (-248)))) (-2342 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-877 (-1 (-215) (-215) (-215)))) (-5 *4 (-1084 (-381))) (-5 *2 (-1121 (-215))) (-5 *1 (-248)))) (-2342 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-877 (-1 (-215) (-215) (-215)))) (-5 *4 (-1084 (-381))) (-5 *5 (-634 (-256))) (-5 *2 (-1121 (-215))) (-5 *1 (-248)))) (-2336 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-877 (-1 (-215) (-215) (-215)))) (-5 *4 (-1084 (-381))) (-5 *2 (-1246)) (-5 *1 (-248)))) (-2336 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-877 (-1 (-215) (-215) (-215)))) (-5 *4 (-1084 (-381))) (-5 *5 (-634 (-256))) (-5 *2 (-1246)) (-5 *1 (-248)))) (-2342 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-944 (-215)) (-215) (-215))) (-5 *4 (-1084 (-381))) (-5 *2 (-1121 (-215))) (-5 *1 (-248)))) (-2342 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-944 (-215)) (-215) (-215))) (-5 *4 (-1084 (-381))) (-5 *5 (-634 (-256))) (-5 *2 (-1121 (-215))) (-5 *1 (-248)))) (-2336 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-944 (-215)) (-215) (-215))) (-5 *4 (-1084 (-381))) (-5 *2 (-1246)) (-5 *1 (-248)))) (-2336 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-944 (-215)) (-215) (-215))) (-5 *4 (-1084 (-381))) (-5 *5 (-634 (-256))) (-5 *2 (-1246)) (-5 *1 (-248)))) (-2342 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-215) (-215) (-215))) (-5 *4 (-1084 (-381))) (-5 *2 (-1121 (-215))) (-5 *1 (-248)))) (-2342 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-215) (-215) (-215))) (-5 *4 (-1084 (-381))) (-5 *5 (-634 (-256))) (-5 *2 (-1121 (-215))) (-5 *1 (-248)))) (-2336 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-215) (-215) (-215))) (-5 *4 (-1084 (-381))) (-5 *2 (-1246)) (-5 *1 (-248)))) (-2336 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-215) (-215) (-215))) (-5 *4 (-1084 (-381))) (-5 *5 (-634 (-256))) (-5 *2 (-1246)) (-5 *1 (-248)))) (-2342 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-944 (-215)) (-215))) (-5 *4 (-1084 (-381))) (-5 *2 (-1121 (-215))) (-5 *1 (-248)))) (-2342 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-944 (-215)) (-215))) (-5 *4 (-1084 (-381))) (-5 *5 (-634 (-256))) (-5 *2 (-1121 (-215))) (-5 *1 (-248)))) (-2342 (*1 *2 *3 *4) (-12 (-5 *3 (-875 (-1 (-215) (-215)))) (-5 *4 (-1084 (-381))) (-5 *2 (-1121 (-215))) (-5 *1 (-248)))) (-2342 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-875 (-1 (-215) (-215)))) (-5 *4 (-1084 (-381))) (-5 *5 (-634 (-256))) (-5 *2 (-1121 (-215))) (-5 *1 (-248)))) (-2336 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-944 (-215)) (-215))) (-5 *4 (-1084 (-381))) (-5 *2 (-1246)) (-5 *1 (-248)))) (-2336 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-944 (-215)) (-215))) (-5 *4 (-1084 (-381))) (-5 *5 (-634 (-256))) (-5 *2 (-1246)) (-5 *1 (-248)))) (-2336 (*1 *2 *3 *4) (-12 (-5 *3 (-875 (-1 (-215) (-215)))) (-5 *4 (-1084 (-381))) (-5 *2 (-1246)) (-5 *1 (-248)))) (-2336 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-875 (-1 (-215) (-215)))) (-5 *4 (-1084 (-381))) (-5 *5 (-634 (-256))) (-5 *2 (-1246)) (-5 *1 (-248)))) (-2336 (*1 *2 *3 *4) (-12 (-5 *3 (-873 (-1 (-215) (-215)))) (-5 *4 (-1084 (-381))) (-5 *2 (-1245)) (-5 *1 (-248)))) (-2336 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-873 (-1 (-215) (-215)))) (-5 *4 (-1084 (-381))) (-5 *5 (-634 (-256))) (-5 *2 (-1245)) (-5 *1 (-248)))) (-2336 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-215) (-215))) (-5 *4 (-1084 (-381))) (-5 *2 (-1245)) (-5 *1 (-248)))) (-2336 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-215) (-215))) (-5 *4 (-1084 (-381))) (-5 *5 (-634 (-256))) (-5 *2 (-1245)) (-5 *1 (-248))))) +(-10 -7 (-15 -2336 ((-1245) (-1 (-215) (-215)) (-1084 (-381)) (-634 (-256)))) (-15 -2336 ((-1245) (-1 (-215) (-215)) (-1084 (-381)))) (-15 -2336 ((-1245) (-873 (-1 (-215) (-215))) (-1084 (-381)) (-634 (-256)))) (-15 -2336 ((-1245) (-873 (-1 (-215) (-215))) (-1084 (-381)))) (-15 -2336 ((-1246) (-875 (-1 (-215) (-215))) (-1084 (-381)) (-634 (-256)))) (-15 -2336 ((-1246) (-875 (-1 (-215) (-215))) (-1084 (-381)))) (-15 -2336 ((-1246) (-1 (-944 (-215)) (-215)) (-1084 (-381)) (-634 (-256)))) (-15 -2336 ((-1246) (-1 (-944 (-215)) (-215)) (-1084 (-381)))) (-15 -2342 ((-1121 (-215)) (-875 (-1 (-215) (-215))) (-1084 (-381)) (-634 (-256)))) (-15 -2342 ((-1121 (-215)) (-875 (-1 (-215) (-215))) (-1084 (-381)))) (-15 -2342 ((-1121 (-215)) (-1 (-944 (-215)) (-215)) (-1084 (-381)) (-634 (-256)))) (-15 -2342 ((-1121 (-215)) (-1 (-944 (-215)) (-215)) (-1084 (-381)))) (-15 -2336 ((-1246) (-1 (-215) (-215) (-215)) (-1084 (-381)) (-1084 (-381)) (-634 (-256)))) (-15 -2336 ((-1246) (-1 (-215) (-215) (-215)) (-1084 (-381)) (-1084 (-381)))) (-15 -2342 ((-1121 (-215)) (-1 (-215) (-215) (-215)) (-1084 (-381)) (-1084 (-381)) (-634 (-256)))) (-15 -2342 ((-1121 (-215)) (-1 (-215) (-215) (-215)) (-1084 (-381)) (-1084 (-381)))) (-15 -2336 ((-1246) (-1 (-944 (-215)) (-215) (-215)) (-1084 (-381)) (-1084 (-381)) (-634 (-256)))) (-15 -2336 ((-1246) (-1 (-944 (-215)) (-215) (-215)) (-1084 (-381)) (-1084 (-381)))) (-15 -2342 ((-1121 (-215)) (-1 (-944 (-215)) (-215) (-215)) (-1084 (-381)) (-1084 (-381)) (-634 (-256)))) (-15 -2342 ((-1121 (-215)) (-1 (-944 (-215)) (-215) (-215)) (-1084 (-381)) (-1084 (-381)))) (-15 -2336 ((-1246) (-877 (-1 (-215) (-215) (-215))) (-1084 (-381)) (-1084 (-381)) (-634 (-256)))) (-15 -2336 ((-1246) (-877 (-1 (-215) (-215) (-215))) (-1084 (-381)) (-1084 (-381)))) (-15 -2342 ((-1121 (-215)) (-877 (-1 (-215) (-215) (-215))) (-1084 (-381)) (-1084 (-381)) (-634 (-256)))) (-15 -2342 ((-1121 (-215)) (-877 (-1 (-215) (-215) (-215))) (-1084 (-381)) (-1084 (-381)))) (-15 -2339 ((-1 (-944 (-215)) (-215) (-215)) (-1 (-944 (-215)) (-215) (-215)) (-1 (-215) (-215) (-215) (-215))))) +((-2336 (((-1245) (-288 |#2|) (-1161) (-1161) (-634 (-256))) 93))) +(((-249 |#1| |#2|) (-10 -7 (-15 -2336 ((-1245) (-288 |#2|) (-1161) (-1161) (-634 (-256))))) (-13 (-558) (-842) (-1037 (-568))) (-432 |#1|)) (T -249)) +((-2336 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-288 *7)) (-5 *4 (-1161)) (-5 *5 (-634 (-256))) (-4 *7 (-432 *6)) (-4 *6 (-13 (-558) (-842) (-1037 (-568)))) (-5 *2 (-1245)) (-5 *1 (-249 *6 *7))))) +(-10 -7 (-15 -2336 ((-1245) (-288 |#2|) (-1161) (-1161) (-634 (-256))))) +((-3126 (((-568) (-568)) 50)) (-1865 (((-568) (-568)) 51)) (-1546 (((-215) (-215)) 52)) (-2290 (((-1246) (-1 (-169 (-215)) (-169 (-215))) (-1084 (-215)) (-1084 (-215))) 49)) (-4009 (((-1246) (-1 (-169 (-215)) (-169 (-215))) (-1084 (-215)) (-1084 (-215)) (-121)) 47))) +(((-250) (-10 -7 (-15 -4009 ((-1246) (-1 (-169 (-215)) (-169 (-215))) (-1084 (-215)) (-1084 (-215)) (-121))) (-15 -2290 ((-1246) (-1 (-169 (-215)) (-169 (-215))) (-1084 (-215)) (-1084 (-215)))) (-15 -3126 ((-568) (-568))) (-15 -1865 ((-568) (-568))) (-15 -1546 ((-215) (-215))))) (T -250)) +((-1546 (*1 *2 *2) (-12 (-5 *2 (-215)) (-5 *1 (-250)))) (-1865 (*1 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-250)))) (-3126 (*1 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-250)))) (-2290 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-169 (-215)) (-169 (-215)))) (-5 *4 (-1084 (-215))) (-5 *2 (-1246)) (-5 *1 (-250)))) (-4009 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-169 (-215)) (-169 (-215)))) (-5 *4 (-1084 (-215))) (-5 *5 (-121)) (-5 *2 (-1246)) (-5 *1 (-250))))) +(-10 -7 (-15 -4009 ((-1246) (-1 (-169 (-215)) (-169 (-215))) (-1084 (-215)) (-1084 (-215)) (-121))) (-15 -2290 ((-1246) (-1 (-169 (-215)) (-169 (-215))) (-1084 (-215)) (-1084 (-215)))) (-15 -3126 ((-568) (-568))) (-15 -1865 ((-568) (-568))) (-15 -1546 ((-215) (-215)))) +((-2745 (((-1082 (-381)) (-1082 (-310 |#1|))) 16))) +(((-251 |#1|) (-10 -7 (-15 -2745 ((-1082 (-381)) (-1082 (-310 |#1|))))) (-13 (-842) (-558) (-609 (-381)))) (T -251)) +((-2745 (*1 *2 *3) (-12 (-5 *3 (-1082 (-310 *4))) (-4 *4 (-13 (-842) (-558) (-609 (-381)))) (-5 *2 (-1082 (-381))) (-5 *1 (-251 *4))))) +(-10 -7 (-15 -2745 ((-1082 (-381)) (-1082 (-310 |#1|))))) +((-2342 (((-1121 (-215)) (-877 |#1|) (-1082 (-381)) (-1082 (-381))) 69) (((-1121 (-215)) (-877 |#1|) (-1082 (-381)) (-1082 (-381)) (-634 (-256))) 68) (((-1121 (-215)) |#1| (-1082 (-381)) (-1082 (-381))) 59) (((-1121 (-215)) |#1| (-1082 (-381)) (-1082 (-381)) (-634 (-256))) 58) (((-1121 (-215)) (-875 |#1|) (-1082 (-381))) 50) (((-1121 (-215)) (-875 |#1|) (-1082 (-381)) (-634 (-256))) 49)) (-2336 (((-1246) (-877 |#1|) (-1082 (-381)) (-1082 (-381))) 72) (((-1246) (-877 |#1|) (-1082 (-381)) (-1082 (-381)) (-634 (-256))) 71) (((-1246) |#1| (-1082 (-381)) (-1082 (-381))) 62) (((-1246) |#1| (-1082 (-381)) (-1082 (-381)) (-634 (-256))) 61) (((-1246) (-875 |#1|) (-1082 (-381))) 54) (((-1246) (-875 |#1|) (-1082 (-381)) (-634 (-256))) 53) (((-1245) (-873 |#1|) (-1082 (-381))) 41) (((-1245) (-873 |#1|) (-1082 (-381)) (-634 (-256))) 40) (((-1245) |#1| (-1082 (-381))) 33) (((-1245) |#1| (-1082 (-381)) (-634 (-256))) 32))) +(((-252 |#1|) (-10 -7 (-15 -2336 ((-1245) |#1| (-1082 (-381)) (-634 (-256)))) (-15 -2336 ((-1245) |#1| (-1082 (-381)))) (-15 -2336 ((-1245) (-873 |#1|) (-1082 (-381)) (-634 (-256)))) (-15 -2336 ((-1245) (-873 |#1|) (-1082 (-381)))) (-15 -2336 ((-1246) (-875 |#1|) (-1082 (-381)) (-634 (-256)))) (-15 -2336 ((-1246) (-875 |#1|) (-1082 (-381)))) (-15 -2342 ((-1121 (-215)) (-875 |#1|) (-1082 (-381)) (-634 (-256)))) (-15 -2342 ((-1121 (-215)) (-875 |#1|) (-1082 (-381)))) (-15 -2336 ((-1246) |#1| (-1082 (-381)) (-1082 (-381)) (-634 (-256)))) (-15 -2336 ((-1246) |#1| (-1082 (-381)) (-1082 (-381)))) (-15 -2342 ((-1121 (-215)) |#1| (-1082 (-381)) (-1082 (-381)) (-634 (-256)))) (-15 -2342 ((-1121 (-215)) |#1| (-1082 (-381)) (-1082 (-381)))) (-15 -2336 ((-1246) (-877 |#1|) (-1082 (-381)) (-1082 (-381)) (-634 (-256)))) (-15 -2336 ((-1246) (-877 |#1|) (-1082 (-381)) (-1082 (-381)))) (-15 -2342 ((-1121 (-215)) (-877 |#1|) (-1082 (-381)) (-1082 (-381)) (-634 (-256)))) (-15 -2342 ((-1121 (-215)) (-877 |#1|) (-1082 (-381)) (-1082 (-381))))) (-13 (-609 (-541)) (-1090))) (T -252)) +((-2342 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-877 *5)) (-5 *4 (-1082 (-381))) (-4 *5 (-13 (-609 (-541)) (-1090))) (-5 *2 (-1121 (-215))) (-5 *1 (-252 *5)))) (-2342 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-877 *6)) (-5 *4 (-1082 (-381))) (-5 *5 (-634 (-256))) (-4 *6 (-13 (-609 (-541)) (-1090))) (-5 *2 (-1121 (-215))) (-5 *1 (-252 *6)))) (-2336 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-877 *5)) (-5 *4 (-1082 (-381))) (-4 *5 (-13 (-609 (-541)) (-1090))) (-5 *2 (-1246)) (-5 *1 (-252 *5)))) (-2336 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-877 *6)) (-5 *4 (-1082 (-381))) (-5 *5 (-634 (-256))) (-4 *6 (-13 (-609 (-541)) (-1090))) (-5 *2 (-1246)) (-5 *1 (-252 *6)))) (-2342 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1082 (-381))) (-5 *2 (-1121 (-215))) (-5 *1 (-252 *3)) (-4 *3 (-13 (-609 (-541)) (-1090))))) (-2342 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1082 (-381))) (-5 *5 (-634 (-256))) (-5 *2 (-1121 (-215))) (-5 *1 (-252 *3)) (-4 *3 (-13 (-609 (-541)) (-1090))))) (-2336 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1082 (-381))) (-5 *2 (-1246)) (-5 *1 (-252 *3)) (-4 *3 (-13 (-609 (-541)) (-1090))))) (-2336 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1082 (-381))) (-5 *5 (-634 (-256))) (-5 *2 (-1246)) (-5 *1 (-252 *3)) (-4 *3 (-13 (-609 (-541)) (-1090))))) (-2342 (*1 *2 *3 *4) (-12 (-5 *3 (-875 *5)) (-5 *4 (-1082 (-381))) (-4 *5 (-13 (-609 (-541)) (-1090))) (-5 *2 (-1121 (-215))) (-5 *1 (-252 *5)))) (-2342 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-875 *6)) (-5 *4 (-1082 (-381))) (-5 *5 (-634 (-256))) (-4 *6 (-13 (-609 (-541)) (-1090))) (-5 *2 (-1121 (-215))) (-5 *1 (-252 *6)))) (-2336 (*1 *2 *3 *4) (-12 (-5 *3 (-875 *5)) (-5 *4 (-1082 (-381))) (-4 *5 (-13 (-609 (-541)) (-1090))) (-5 *2 (-1246)) (-5 *1 (-252 *5)))) (-2336 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-875 *6)) (-5 *4 (-1082 (-381))) (-5 *5 (-634 (-256))) (-4 *6 (-13 (-609 (-541)) (-1090))) (-5 *2 (-1246)) (-5 *1 (-252 *6)))) (-2336 (*1 *2 *3 *4) (-12 (-5 *3 (-873 *5)) (-5 *4 (-1082 (-381))) (-4 *5 (-13 (-609 (-541)) (-1090))) (-5 *2 (-1245)) (-5 *1 (-252 *5)))) (-2336 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-873 *6)) (-5 *4 (-1082 (-381))) (-5 *5 (-634 (-256))) (-4 *6 (-13 (-609 (-541)) (-1090))) (-5 *2 (-1245)) (-5 *1 (-252 *6)))) (-2336 (*1 *2 *3 *4) (-12 (-5 *4 (-1082 (-381))) (-5 *2 (-1245)) (-5 *1 (-252 *3)) (-4 *3 (-13 (-609 (-541)) (-1090))))) (-2336 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1082 (-381))) (-5 *5 (-634 (-256))) (-5 *2 (-1245)) (-5 *1 (-252 *3)) (-4 *3 (-13 (-609 (-541)) (-1090)))))) +(-10 -7 (-15 -2336 ((-1245) |#1| (-1082 (-381)) (-634 (-256)))) (-15 -2336 ((-1245) |#1| (-1082 (-381)))) (-15 -2336 ((-1245) (-873 |#1|) (-1082 (-381)) (-634 (-256)))) (-15 -2336 ((-1245) (-873 |#1|) (-1082 (-381)))) (-15 -2336 ((-1246) (-875 |#1|) (-1082 (-381)) (-634 (-256)))) (-15 -2336 ((-1246) (-875 |#1|) (-1082 (-381)))) (-15 -2342 ((-1121 (-215)) (-875 |#1|) (-1082 (-381)) (-634 (-256)))) (-15 -2342 ((-1121 (-215)) (-875 |#1|) (-1082 (-381)))) (-15 -2336 ((-1246) |#1| (-1082 (-381)) (-1082 (-381)) (-634 (-256)))) (-15 -2336 ((-1246) |#1| (-1082 (-381)) (-1082 (-381)))) (-15 -2342 ((-1121 (-215)) |#1| (-1082 (-381)) (-1082 (-381)) (-634 (-256)))) (-15 -2342 ((-1121 (-215)) |#1| (-1082 (-381)) (-1082 (-381)))) (-15 -2336 ((-1246) (-877 |#1|) (-1082 (-381)) (-1082 (-381)) (-634 (-256)))) (-15 -2336 ((-1246) (-877 |#1|) (-1082 (-381)) (-1082 (-381)))) (-15 -2342 ((-1121 (-215)) (-877 |#1|) (-1082 (-381)) (-1082 (-381)) (-634 (-256)))) (-15 -2342 ((-1121 (-215)) (-877 |#1|) (-1082 (-381)) (-1082 (-381))))) +((-2336 (((-1246) (-634 (-215)) (-634 (-215)) (-634 (-215)) (-634 (-256))) 21) (((-1246) (-634 (-215)) (-634 (-215)) (-634 (-215))) 22) (((-1245) (-634 (-944 (-215))) (-634 (-256))) 13) (((-1245) (-634 (-944 (-215)))) 14) (((-1245) (-634 (-215)) (-634 (-215)) (-634 (-256))) 18) (((-1245) (-634 (-215)) (-634 (-215))) 19))) +(((-253) (-10 -7 (-15 -2336 ((-1245) (-634 (-215)) (-634 (-215)))) (-15 -2336 ((-1245) (-634 (-215)) (-634 (-215)) (-634 (-256)))) (-15 -2336 ((-1245) (-634 (-944 (-215))))) (-15 -2336 ((-1245) (-634 (-944 (-215))) (-634 (-256)))) (-15 -2336 ((-1246) (-634 (-215)) (-634 (-215)) (-634 (-215)))) (-15 -2336 ((-1246) (-634 (-215)) (-634 (-215)) (-634 (-215)) (-634 (-256)))))) (T -253)) +((-2336 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-634 (-215))) (-5 *4 (-634 (-256))) (-5 *2 (-1246)) (-5 *1 (-253)))) (-2336 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-634 (-215))) (-5 *2 (-1246)) (-5 *1 (-253)))) (-2336 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-944 (-215)))) (-5 *4 (-634 (-256))) (-5 *2 (-1245)) (-5 *1 (-253)))) (-2336 (*1 *2 *3) (-12 (-5 *3 (-634 (-944 (-215)))) (-5 *2 (-1245)) (-5 *1 (-253)))) (-2336 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-634 (-215))) (-5 *4 (-634 (-256))) (-5 *2 (-1245)) (-5 *1 (-253)))) (-2336 (*1 *2 *3 *3) (-12 (-5 *3 (-634 (-215))) (-5 *2 (-1245)) (-5 *1 (-253))))) +(-10 -7 (-15 -2336 ((-1245) (-634 (-215)) (-634 (-215)))) (-15 -2336 ((-1245) (-634 (-215)) (-634 (-215)) (-634 (-256)))) (-15 -2336 ((-1245) (-634 (-944 (-215))))) (-15 -2336 ((-1245) (-634 (-944 (-215))) (-634 (-256)))) (-15 -2336 ((-1246) (-634 (-215)) (-634 (-215)) (-634 (-215)))) (-15 -2336 ((-1246) (-634 (-215)) (-634 (-215)) (-634 (-215)) (-634 (-256))))) +((-2501 (((-2 (|:| |theta| (-215)) (|:| |phi| (-215)) (|:| -3646 (-215)) (|:| |scaleX| (-215)) (|:| |scaleY| (-215)) (|:| |scaleZ| (-215)) (|:| |deltaX| (-215)) (|:| |deltaY| (-215))) (-634 (-256)) (-2 (|:| |theta| (-215)) (|:| |phi| (-215)) (|:| -3646 (-215)) (|:| |scaleX| (-215)) (|:| |scaleY| (-215)) (|:| |scaleZ| (-215)) (|:| |deltaX| (-215)) (|:| |deltaY| (-215)))) 24)) (-2115 (((-917) (-634 (-256)) (-917)) 49)) (-3571 (((-917) (-634 (-256)) (-917)) 48)) (-2832 (((-634 (-381)) (-634 (-256)) (-634 (-381))) 65)) (-3485 (((-381) (-634 (-256)) (-381)) 55)) (-1787 (((-917) (-634 (-256)) (-917)) 50)) (-3254 (((-121) (-634 (-256)) (-121)) 26)) (-1784 (((-1143) (-634 (-256)) (-1143)) 19)) (-2529 (((-1143) (-634 (-256)) (-1143)) 25)) (-4194 (((-1121 (-215)) (-634 (-256))) 43)) (-3437 (((-634 (-1084 (-381))) (-634 (-256)) (-634 (-1084 (-381)))) 37)) (-3577 (((-869) (-634 (-256)) (-869)) 31)) (-2984 (((-869) (-634 (-256)) (-869)) 32)) (-4061 (((-1 (-944 (-215)) (-944 (-215))) (-634 (-256)) (-1 (-944 (-215)) (-944 (-215)))) 60)) (-1482 (((-121) (-634 (-256)) (-121)) 15)) (-3831 (((-121) (-634 (-256)) (-121)) 14))) +(((-254) (-10 -7 (-15 -3831 ((-121) (-634 (-256)) (-121))) (-15 -1482 ((-121) (-634 (-256)) (-121))) (-15 -2501 ((-2 (|:| |theta| (-215)) (|:| |phi| (-215)) (|:| -3646 (-215)) (|:| |scaleX| (-215)) (|:| |scaleY| (-215)) (|:| |scaleZ| (-215)) (|:| |deltaX| (-215)) (|:| |deltaY| (-215))) (-634 (-256)) (-2 (|:| |theta| (-215)) (|:| |phi| (-215)) (|:| -3646 (-215)) (|:| |scaleX| (-215)) (|:| |scaleY| (-215)) (|:| |scaleZ| (-215)) (|:| |deltaX| (-215)) (|:| |deltaY| (-215))))) (-15 -1784 ((-1143) (-634 (-256)) (-1143))) (-15 -2529 ((-1143) (-634 (-256)) (-1143))) (-15 -3254 ((-121) (-634 (-256)) (-121))) (-15 -3577 ((-869) (-634 (-256)) (-869))) (-15 -2984 ((-869) (-634 (-256)) (-869))) (-15 -3437 ((-634 (-1084 (-381))) (-634 (-256)) (-634 (-1084 (-381))))) (-15 -3571 ((-917) (-634 (-256)) (-917))) (-15 -2115 ((-917) (-634 (-256)) (-917))) (-15 -4194 ((-1121 (-215)) (-634 (-256)))) (-15 -1787 ((-917) (-634 (-256)) (-917))) (-15 -3485 ((-381) (-634 (-256)) (-381))) (-15 -4061 ((-1 (-944 (-215)) (-944 (-215))) (-634 (-256)) (-1 (-944 (-215)) (-944 (-215))))) (-15 -2832 ((-634 (-381)) (-634 (-256)) (-634 (-381)))))) (T -254)) +((-2832 (*1 *2 *3 *2) (-12 (-5 *2 (-634 (-381))) (-5 *3 (-634 (-256))) (-5 *1 (-254)))) (-4061 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-944 (-215)) (-944 (-215)))) (-5 *3 (-634 (-256))) (-5 *1 (-254)))) (-3485 (*1 *2 *3 *2) (-12 (-5 *2 (-381)) (-5 *3 (-634 (-256))) (-5 *1 (-254)))) (-1787 (*1 *2 *3 *2) (-12 (-5 *2 (-917)) (-5 *3 (-634 (-256))) (-5 *1 (-254)))) (-4194 (*1 *2 *3) (-12 (-5 *3 (-634 (-256))) (-5 *2 (-1121 (-215))) (-5 *1 (-254)))) (-2115 (*1 *2 *3 *2) (-12 (-5 *2 (-917)) (-5 *3 (-634 (-256))) (-5 *1 (-254)))) (-3571 (*1 *2 *3 *2) (-12 (-5 *2 (-917)) (-5 *3 (-634 (-256))) (-5 *1 (-254)))) (-3437 (*1 *2 *3 *2) (-12 (-5 *2 (-634 (-1084 (-381)))) (-5 *3 (-634 (-256))) (-5 *1 (-254)))) (-2984 (*1 *2 *3 *2) (-12 (-5 *2 (-869)) (-5 *3 (-634 (-256))) (-5 *1 (-254)))) (-3577 (*1 *2 *3 *2) (-12 (-5 *2 (-869)) (-5 *3 (-634 (-256))) (-5 *1 (-254)))) (-3254 (*1 *2 *3 *2) (-12 (-5 *2 (-121)) (-5 *3 (-634 (-256))) (-5 *1 (-254)))) (-2529 (*1 *2 *3 *2) (-12 (-5 *2 (-1143)) (-5 *3 (-634 (-256))) (-5 *1 (-254)))) (-1784 (*1 *2 *3 *2) (-12 (-5 *2 (-1143)) (-5 *3 (-634 (-256))) (-5 *1 (-254)))) (-2501 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-215)) (|:| |phi| (-215)) (|:| -3646 (-215)) (|:| |scaleX| (-215)) (|:| |scaleY| (-215)) (|:| |scaleZ| (-215)) (|:| |deltaX| (-215)) (|:| |deltaY| (-215)))) (-5 *3 (-634 (-256))) (-5 *1 (-254)))) (-1482 (*1 *2 *3 *2) (-12 (-5 *2 (-121)) (-5 *3 (-634 (-256))) (-5 *1 (-254)))) (-3831 (*1 *2 *3 *2) (-12 (-5 *2 (-121)) (-5 *3 (-634 (-256))) (-5 *1 (-254))))) +(-10 -7 (-15 -3831 ((-121) (-634 (-256)) (-121))) (-15 -1482 ((-121) (-634 (-256)) (-121))) (-15 -2501 ((-2 (|:| |theta| (-215)) (|:| |phi| (-215)) (|:| -3646 (-215)) (|:| |scaleX| (-215)) (|:| |scaleY| (-215)) (|:| |scaleZ| (-215)) (|:| |deltaX| (-215)) (|:| |deltaY| (-215))) (-634 (-256)) (-2 (|:| |theta| (-215)) (|:| |phi| (-215)) (|:| -3646 (-215)) (|:| |scaleX| (-215)) (|:| |scaleY| (-215)) (|:| |scaleZ| (-215)) (|:| |deltaX| (-215)) (|:| |deltaY| (-215))))) (-15 -1784 ((-1143) (-634 (-256)) (-1143))) (-15 -2529 ((-1143) (-634 (-256)) (-1143))) (-15 -3254 ((-121) (-634 (-256)) (-121))) (-15 -3577 ((-869) (-634 (-256)) (-869))) (-15 -2984 ((-869) (-634 (-256)) (-869))) (-15 -3437 ((-634 (-1084 (-381))) (-634 (-256)) (-634 (-1084 (-381))))) (-15 -3571 ((-917) (-634 (-256)) (-917))) (-15 -2115 ((-917) (-634 (-256)) (-917))) (-15 -4194 ((-1121 (-215)) (-634 (-256)))) (-15 -1787 ((-917) (-634 (-256)) (-917))) (-15 -3485 ((-381) (-634 (-256)) (-381))) (-15 -4061 ((-1 (-944 (-215)) (-944 (-215))) (-634 (-256)) (-1 (-944 (-215)) (-944 (-215))))) (-15 -2832 ((-634 (-381)) (-634 (-256)) (-634 (-381))))) +((-2960 (((-3 |#1| "failed") (-634 (-256)) (-1161)) 17))) +(((-255 |#1|) (-10 -7 (-15 -2960 ((-3 |#1| "failed") (-634 (-256)) (-1161)))) (-1195)) (T -255)) +((-2960 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-634 (-256))) (-5 *4 (-1161)) (-5 *1 (-255 *2)) (-4 *2 (-1195))))) +(-10 -7 (-15 -2960 ((-3 |#1| "failed") (-634 (-256)) (-1161)))) +((-2447 (((-121) $ $) NIL)) (-2501 (($ (-2 (|:| |theta| (-215)) (|:| |phi| (-215)) (|:| -3646 (-215)) (|:| |scaleX| (-215)) (|:| |scaleY| (-215)) (|:| |scaleZ| (-215)) (|:| |deltaX| (-215)) (|:| |deltaY| (-215)))) 14)) (-2115 (($ (-917)) 70)) (-3571 (($ (-917)) 69)) (-2295 (($ (-634 (-381))) 76)) (-3485 (($ (-381)) 55)) (-1787 (($ (-917)) 71)) (-3254 (($ (-121)) 22)) (-1784 (($ (-1143)) 17)) (-2529 (($ (-1143)) 18)) (-4194 (($ (-1121 (-215))) 65)) (-3437 (($ (-634 (-1084 (-381)))) 61)) (-1338 (($ (-634 (-1084 (-381)))) 56) (($ (-634 (-1084 (-409 (-568))))) 60)) (-3574 (($ (-381)) 28) (($ (-869)) 32)) (-1507 (((-121) (-634 $) (-1161)) 85)) (-2960 (((-3 (-57) "failed") (-634 $) (-1161)) 87)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-3083 (($ (-381)) 33) (($ (-869)) 34)) (-4073 (($ (-1 (-944 (-215)) (-944 (-215)))) 54)) (-4061 (($ (-1 (-944 (-215)) (-944 (-215)))) 72)) (-3858 (($ (-1 (-215) (-215))) 38) (($ (-1 (-215) (-215) (-215))) 42) (($ (-1 (-215) (-215) (-215) (-215))) 46)) (-2745 (((-850) $) 81)) (-3182 (($ (-121)) 23) (($ (-634 (-1084 (-381)))) 50)) (-3831 (($ (-121)) 24)) (-1717 (((-121) $ $) 83))) +(((-256) (-13 (-1090) (-10 -8 (-15 -3831 ($ (-121))) (-15 -3182 ($ (-121))) (-15 -2501 ($ (-2 (|:| |theta| (-215)) (|:| |phi| (-215)) (|:| -3646 (-215)) (|:| |scaleX| (-215)) (|:| |scaleY| (-215)) (|:| |scaleZ| (-215)) (|:| |deltaX| (-215)) (|:| |deltaY| (-215))))) (-15 -1784 ($ (-1143))) (-15 -2529 ($ (-1143))) (-15 -3254 ($ (-121))) (-15 -3182 ($ (-634 (-1084 (-381))))) (-15 -4073 ($ (-1 (-944 (-215)) (-944 (-215))))) (-15 -3574 ($ (-381))) (-15 -3574 ($ (-869))) (-15 -3083 ($ (-381))) (-15 -3083 ($ (-869))) (-15 -3858 ($ (-1 (-215) (-215)))) (-15 -3858 ($ (-1 (-215) (-215) (-215)))) (-15 -3858 ($ (-1 (-215) (-215) (-215) (-215)))) (-15 -3485 ($ (-381))) (-15 -1338 ($ (-634 (-1084 (-381))))) (-15 -1338 ($ (-634 (-1084 (-409 (-568)))))) (-15 -3437 ($ (-634 (-1084 (-381))))) (-15 -4194 ($ (-1121 (-215)))) (-15 -3571 ($ (-917))) (-15 -2115 ($ (-917))) (-15 -1787 ($ (-917))) (-15 -4061 ($ (-1 (-944 (-215)) (-944 (-215))))) (-15 -2295 ($ (-634 (-381)))) (-15 -2960 ((-3 (-57) "failed") (-634 $) (-1161))) (-15 -1507 ((-121) (-634 $) (-1161)))))) (T -256)) +((-3831 (*1 *1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-256)))) (-3182 (*1 *1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-256)))) (-2501 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-215)) (|:| |phi| (-215)) (|:| -3646 (-215)) (|:| |scaleX| (-215)) (|:| |scaleY| (-215)) (|:| |scaleZ| (-215)) (|:| |deltaX| (-215)) (|:| |deltaY| (-215)))) (-5 *1 (-256)))) (-1784 (*1 *1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-256)))) (-2529 (*1 *1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-256)))) (-3254 (*1 *1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-256)))) (-3182 (*1 *1 *2) (-12 (-5 *2 (-634 (-1084 (-381)))) (-5 *1 (-256)))) (-4073 (*1 *1 *2) (-12 (-5 *2 (-1 (-944 (-215)) (-944 (-215)))) (-5 *1 (-256)))) (-3574 (*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-256)))) (-3574 (*1 *1 *2) (-12 (-5 *2 (-869)) (-5 *1 (-256)))) (-3083 (*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-256)))) (-3083 (*1 *1 *2) (-12 (-5 *2 (-869)) (-5 *1 (-256)))) (-3858 (*1 *1 *2) (-12 (-5 *2 (-1 (-215) (-215))) (-5 *1 (-256)))) (-3858 (*1 *1 *2) (-12 (-5 *2 (-1 (-215) (-215) (-215))) (-5 *1 (-256)))) (-3858 (*1 *1 *2) (-12 (-5 *2 (-1 (-215) (-215) (-215) (-215))) (-5 *1 (-256)))) (-3485 (*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-256)))) (-1338 (*1 *1 *2) (-12 (-5 *2 (-634 (-1084 (-381)))) (-5 *1 (-256)))) (-1338 (*1 *1 *2) (-12 (-5 *2 (-634 (-1084 (-409 (-568))))) (-5 *1 (-256)))) (-3437 (*1 *1 *2) (-12 (-5 *2 (-634 (-1084 (-381)))) (-5 *1 (-256)))) (-4194 (*1 *1 *2) (-12 (-5 *2 (-1121 (-215))) (-5 *1 (-256)))) (-3571 (*1 *1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-256)))) (-2115 (*1 *1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-256)))) (-1787 (*1 *1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-256)))) (-4061 (*1 *1 *2) (-12 (-5 *2 (-1 (-944 (-215)) (-944 (-215)))) (-5 *1 (-256)))) (-2295 (*1 *1 *2) (-12 (-5 *2 (-634 (-381))) (-5 *1 (-256)))) (-2960 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-634 (-256))) (-5 *4 (-1161)) (-5 *2 (-57)) (-5 *1 (-256)))) (-1507 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-256))) (-5 *4 (-1161)) (-5 *2 (-121)) (-5 *1 (-256))))) +(-13 (-1090) (-10 -8 (-15 -3831 ($ (-121))) (-15 -3182 ($ (-121))) (-15 -2501 ($ (-2 (|:| |theta| (-215)) (|:| |phi| (-215)) (|:| -3646 (-215)) (|:| |scaleX| (-215)) (|:| |scaleY| (-215)) (|:| |scaleZ| (-215)) (|:| |deltaX| (-215)) (|:| |deltaY| (-215))))) (-15 -1784 ($ (-1143))) (-15 -2529 ($ (-1143))) (-15 -3254 ($ (-121))) (-15 -3182 ($ (-634 (-1084 (-381))))) (-15 -4073 ($ (-1 (-944 (-215)) (-944 (-215))))) (-15 -3574 ($ (-381))) (-15 -3574 ($ (-869))) (-15 -3083 ($ (-381))) (-15 -3083 ($ (-869))) (-15 -3858 ($ (-1 (-215) (-215)))) (-15 -3858 ($ (-1 (-215) (-215) (-215)))) (-15 -3858 ($ (-1 (-215) (-215) (-215) (-215)))) (-15 -3485 ($ (-381))) (-15 -1338 ($ (-634 (-1084 (-381))))) (-15 -1338 ($ (-634 (-1084 (-409 (-568)))))) (-15 -3437 ($ (-634 (-1084 (-381))))) (-15 -4194 ($ (-1121 (-215)))) (-15 -3571 ($ (-917))) (-15 -2115 ($ (-917))) (-15 -1787 ($ (-917))) (-15 -4061 ($ (-1 (-944 (-215)) (-944 (-215))))) (-15 -2295 ($ (-634 (-381)))) (-15 -2960 ((-3 (-57) "failed") (-634 $) (-1161))) (-15 -1507 ((-121) (-634 $) (-1161))))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-3902 (((-634 (-763)) $) NIL) (((-634 (-763)) $ |#2|) NIL)) (-1551 (((-763) $) NIL) (((-763) $ |#2|) NIL)) (-2055 (((-634 |#3|) $) NIL)) (-3839 (((-1157 $) $ |#3|) NIL) (((-1157 |#1|) $) NIL)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-2227 (($ $) NIL (|has| |#1| (-558)))) (-1573 (((-121) $) NIL (|has| |#1| (-558)))) (-2773 (((-763) $) NIL) (((-763) $ (-634 |#3|)) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-1750 (((-420 (-1157 $)) (-1157 $)) NIL (|has| |#1| (-904)))) (-4305 (($ $) NIL (|has| |#1| (-453)))) (-1678 (((-420 $) $) NIL (|has| |#1| (-453)))) (-1858 (((-3 (-634 (-1157 $)) "failed") (-634 (-1157 $)) (-1157 $)) NIL (|has| |#1| (-904)))) (-4180 (($ $) NIL)) (-2671 (($) NIL T CONST)) (-3666 (((-3 |#1| "failed") $) NIL) (((-3 (-409 (-568)) "failed") $) NIL (|has| |#1| (-1037 (-409 (-568))))) (((-3 (-568) "failed") $) NIL (|has| |#1| (-1037 (-568)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1113 |#1| |#2|) "failed") $) 20)) (-2854 ((|#1| $) NIL) (((-409 (-568)) $) NIL (|has| |#1| (-1037 (-409 (-568))))) (((-568) $) NIL (|has| |#1| (-1037 (-568)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1113 |#1| |#2|) $) NIL)) (-4265 (($ $ $ |#3|) NIL (|has| |#1| (-172)))) (-2114 (($ $) NIL)) (-3164 (((-679 (-568)) (-679 $)) NIL (|has| |#1| (-630 (-568)))) (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) NIL (|has| |#1| (-630 (-568)))) (((-2 (|:| -2928 (-679 |#1|)) (|:| |vec| (-1244 |#1|))) (-679 $) (-1244 $)) NIL) (((-679 |#1|) (-679 $)) NIL)) (-2925 (((-3 $ "failed") $) NIL)) (-3250 (($ $) NIL (|has| |#1| (-453))) (($ $ |#3|) NIL (|has| |#1| (-453)))) (-2108 (((-634 $) $) NIL)) (-3927 (((-121) $) NIL (|has| |#1| (-904)))) (-3088 (($ $ |#1| (-534 |#3|) $) NIL)) (-4410 (((-884 (-381) $) $ (-887 (-381)) (-884 (-381) $)) NIL (-12 (|has| |#1| (-881 (-381))) (|has| |#3| (-881 (-381))))) (((-884 (-568) $) $ (-887 (-568)) (-884 (-568) $)) NIL (-12 (|has| |#1| (-881 (-568))) (|has| |#3| (-881 (-568)))))) (-4477 (((-763) $ |#2|) NIL) (((-763) $) 10)) (-2735 (((-121) $) NIL)) (-4178 (((-763) $) NIL)) (-2051 (($ (-1157 |#1|) |#3|) NIL) (($ (-1157 $) |#3|) NIL)) (-2976 (((-634 $) $) NIL)) (-3921 (((-121) $) NIL)) (-2047 (($ |#1| (-534 |#3|)) NIL) (($ $ |#3| (-763)) NIL) (($ $ (-634 |#3|) (-634 (-763))) NIL)) (-3379 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $ |#3|) NIL)) (-2144 (((-534 |#3|) $) NIL) (((-763) $ |#3|) NIL) (((-634 (-763)) $ (-634 |#3|)) NIL)) (-2521 (($ $ $) NIL (|has| |#1| (-842)))) (-3268 (($ $ $) NIL (|has| |#1| (-842)))) (-3842 (($ (-1 (-534 |#3|) (-534 |#3|)) $) NIL)) (-2795 (($ (-1 |#1| |#1|) $) NIL)) (-4300 (((-1 $ (-763)) |#2|) NIL) (((-1 $ (-763)) $) NIL (|has| |#1| (-225)))) (-2244 (((-3 |#3| "failed") $) NIL)) (-2097 (($ $) NIL)) (-2102 ((|#1| $) NIL)) (-1690 ((|#3| $) NIL)) (-2495 (($ (-634 $)) NIL (|has| |#1| (-453))) (($ $ $) NIL (|has| |#1| (-453)))) (-4487 (((-1143) $) NIL)) (-1989 (((-121) $) NIL)) (-3324 (((-3 (-634 $) "failed") $) NIL)) (-1794 (((-3 (-634 $) "failed") $) NIL)) (-3751 (((-3 (-2 (|:| |var| |#3|) (|:| -3438 (-763))) "failed") $) NIL)) (-1484 (($ $) NIL)) (-4022 (((-1108) $) NIL)) (-2086 (((-121) $) NIL)) (-2091 ((|#1| $) NIL)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL (|has| |#1| (-453)))) (-2721 (($ (-634 $)) NIL (|has| |#1| (-453))) (($ $ $) NIL (|has| |#1| (-453)))) (-2905 (((-420 (-1157 $)) (-1157 $)) NIL (|has| |#1| (-904)))) (-3545 (((-420 (-1157 $)) (-1157 $)) NIL (|has| |#1| (-904)))) (-3848 (((-420 $) $) NIL (|has| |#1| (-904)))) (-2595 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-1339 (($ $ (-634 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-634 $) (-634 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-634 |#3|) (-634 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-634 |#3|) (-634 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-225))) (($ $ (-634 |#2|) (-634 $)) NIL (|has| |#1| (-225))) (($ $ |#2| |#1|) NIL (|has| |#1| (-225))) (($ $ (-634 |#2|) (-634 |#1|)) NIL (|has| |#1| (-225)))) (-2217 (($ $ |#3|) NIL (|has| |#1| (-172)))) (-4189 (($ $ |#3|) NIL) (($ $ (-634 |#3|)) NIL) (($ $ |#3| (-763)) NIL) (($ $ (-634 |#3|) (-634 (-763))) NIL) (($ $) NIL (|has| |#1| (-225))) (($ $ (-763)) NIL (|has| |#1| (-225))) (($ $ (-1161)) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-634 (-1161))) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-1161) (-763)) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-634 (-1161)) (-634 (-763))) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-1 |#1| |#1|) (-763)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3795 (((-634 |#2|) $) NIL)) (-3206 (((-534 |#3|) $) NIL) (((-763) $ |#3|) NIL) (((-634 (-763)) $ (-634 |#3|)) NIL) (((-763) $ |#2|) NIL)) (-4278 (((-887 (-381)) $) NIL (-12 (|has| |#1| (-609 (-887 (-381)))) (|has| |#3| (-609 (-887 (-381)))))) (((-887 (-568)) $) NIL (-12 (|has| |#1| (-609 (-887 (-568)))) (|has| |#3| (-609 (-887 (-568)))))) (((-541) $) NIL (-12 (|has| |#1| (-609 (-541))) (|has| |#3| (-609 (-541)))))) (-3367 ((|#1| $) NIL (|has| |#1| (-453))) (($ $ |#3|) NIL (|has| |#1| (-453)))) (-2979 (((-3 (-1244 $) "failed") (-679 $)) NIL (-12 (|has| $ (-148)) (|has| |#1| (-904))))) (-2745 (((-850) $) NIL) (($ (-568)) NIL) (($ |#1|) 23) (($ |#3|) 22) (($ |#2|) NIL) (($ (-1113 |#1| |#2|)) 28) (($ (-409 (-568))) NIL (-2198 (|has| |#1| (-43 (-409 (-568)))) (|has| |#1| (-1037 (-409 (-568)))))) (($ $) NIL (|has| |#1| (-558)))) (-1302 (((-634 |#1|) $) NIL)) (-2604 ((|#1| $ (-534 |#3|)) NIL) (($ $ |#3| (-763)) NIL) (($ $ (-634 |#3|) (-634 (-763))) NIL)) (-4371 (((-3 $ "failed") $) NIL (-2198 (-12 (|has| $ (-148)) (|has| |#1| (-904))) (|has| |#1| (-148))))) (-4078 (((-763)) NIL)) (-4171 (($ $ $ (-763)) NIL (|has| |#1| (-172)))) (-1826 (((-121) $ $) NIL (|has| |#1| (-558)))) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (-3056 (($) NIL T CONST)) (-1556 (($) NIL T CONST)) (-3190 (($ $ |#3|) NIL) (($ $ (-634 |#3|)) NIL) (($ $ |#3| (-763)) NIL) (($ $ (-634 |#3|) (-634 (-763))) NIL) (($ $) NIL (|has| |#1| (-225))) (($ $ (-763)) NIL (|has| |#1| (-225))) (($ $ (-1161)) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-634 (-1161))) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-1161) (-763)) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-634 (-1161)) (-634 (-763))) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-1 |#1| |#1|) (-763)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1751 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1738 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1717 (((-121) $ $) NIL)) (-1745 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1732 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1779 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) NIL) (($ $ (-409 (-568))) NIL (|has| |#1| (-43 (-409 (-568))))) (($ (-409 (-568)) $) NIL (|has| |#1| (-43 (-409 (-568))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-257 |#1| |#2| |#3|) (-13 (-246 |#1| |#2| |#3| (-534 |#3|)) (-1037 (-1113 |#1| |#2|))) (-1047) (-842) (-262 |#2|)) (T -257)) +NIL +(-13 (-246 |#1| |#2| |#3| (-534 |#3|)) (-1037 (-1113 |#1| |#2|))) +((-2447 (((-121) $ $) 18 (|has| |#1| (-1090)))) (-2850 ((|#1| $) 45)) (-3399 (($ |#1| (-634 $)) 51) (($ |#1|) 50) (($ (-634 |#1|)) 49)) (-2510 (((-121) $ (-763)) 8)) (-1659 ((|#1| $ |#1|) 36 (|has| $ (-6 -4520)))) (-2436 ((|#1| $ "value" |#1|) 37 (|has| $ (-6 -4520)))) (-3827 (($ $ (-634 $)) 38 (|has| $ (-6 -4520)))) (-2671 (($) 7 T CONST)) (-4360 (((-634 |#1|) $) 30 (|has| $ (-6 -4519)))) (-2287 (((-634 $) $) 47)) (-1700 (((-121) $ $) 39 (|has| |#1| (-1090)))) (-1737 (((-121) $ (-763)) 9)) (-1979 (((-634 |#1|) $) 29 (|has| $ (-6 -4519)))) (-3109 (((-121) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-3674 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#1| |#1|) $) 35)) (-2166 (((-121) $ (-763)) 10)) (-2869 (((-634 |#1|) $) 42)) (-1651 (((-121) $) 46)) (-4487 (((-1143) $) 22 (|has| |#1| (-1090)))) (-4022 (((-1108) $) 21 (|has| |#1| (-1090)))) (-1387 (((-121) (-1 (-121) |#1|) $) 32 (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-634 |#1|) (-634 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))))) (-3171 (((-121) $ $) 14)) (-3084 (((-121) $) 11)) (-3248 (($) 12)) (-2779 ((|#1| $ "value") 44)) (-4075 (((-568) $ $) 41)) (-3790 (((-121) $) 43)) (-4168 (((-763) (-1 (-121) |#1|) $) 31 (|has| $ (-6 -4519))) (((-763) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-3863 (($ $) 13)) (-2745 (((-850) $) 20 (|has| |#1| (-1090)))) (-4339 (((-634 $) $) 48)) (-3491 (((-121) $ $) 40 (|has| |#1| (-1090)))) (-1319 (((-121) (-1 (-121) |#1|) $) 33 (|has| $ (-6 -4519)))) (-1717 (((-121) $ $) 19 (|has| |#1| (-1090)))) (-1697 (((-763) $) 6 (|has| $ (-6 -4519))))) +(((-258 |#1|) (-1275) (-1090)) (T -258)) +((-3399 (*1 *1 *2 *3) (-12 (-5 *3 (-634 *1)) (-4 *1 (-258 *2)) (-4 *2 (-1090)))) (-3399 (*1 *1 *2) (-12 (-4 *1 (-258 *2)) (-4 *2 (-1090)))) (-3399 (*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-1090)) (-4 *1 (-258 *3))))) +(-13 (-1010 |t#1|) (-10 -8 (-6 -4520) (-6 -4519) (-15 -3399 ($ |t#1| (-634 $))) (-15 -3399 ($ |t#1|)) (-15 -3399 ($ (-634 |t#1|))))) +(((-39) . T) ((-105) |has| |#1| (-1090)) ((-608 (-850)) |has| |#1| (-1090)) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))) ((-499 |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))) ((-1010 |#1|) . T) ((-1090) |has| |#1| (-1090)) ((-1195) . T)) +((-2447 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-2850 ((|#1| $) 12)) (-3399 (($ |#1| (-634 $)) 31) (($ |#1|) 32) (($ (-634 |#1|)) 33)) (-2510 (((-121) $ (-763)) NIL)) (-1659 ((|#1| $ |#1|) 35 (|has| $ (-6 -4520)))) (-2436 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4520)))) (-3827 (($ $ (-634 $)) 34 (|has| $ (-6 -4520)))) (-2671 (($) NIL T CONST)) (-4360 (((-634 |#1|) $) NIL (|has| $ (-6 -4519)))) (-2287 (((-634 $) $) NIL)) (-1700 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-1737 (((-121) $ (-763)) NIL)) (-1979 (((-634 |#1|) $) NIL (|has| $ (-6 -4519)))) (-3109 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-3674 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#1| |#1|) $) NIL)) (-2166 (((-121) $ (-763)) NIL)) (-2869 (((-634 |#1|) $) 22)) (-1651 (((-121) $) NIL)) (-4487 (((-1143) $) NIL (|has| |#1| (-1090)))) (-4022 (((-1108) $) NIL (|has| |#1| (-1090)))) (-3936 (((-121) (-121)) 18) (((-121)) 19)) (-2184 (((-850) $) 15)) (-1387 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-634 |#1|) (-634 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))))) (-3171 (((-121) $ $) NIL)) (-2153 (((-1143) $) 28)) (-3084 (((-121) $) NIL)) (-3248 (($) NIL)) (-2779 ((|#1| $ "value") NIL)) (-4075 (((-568) $ $) NIL)) (-3790 (((-121) $) NIL)) (-4168 (((-763) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519))) (((-763) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-3863 (($ $) NIL)) (-2745 (((-850) $) 30 (|has| |#1| (-1090)))) (-4339 (((-634 $) $) 8)) (-3491 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-1319 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-1717 (((-121) $ $) 26 (|has| |#1| (-1090)))) (-1697 (((-763) $) NIL (|has| $ (-6 -4519))))) +(((-259 |#1|) (-13 (-258 |#1|) (-10 -8 (-15 -2153 ((-1143) $)) (-15 -2184 ((-850) $)) (-15 -3936 ((-121) (-121))) (-15 -3936 ((-121))))) (-1090)) (T -259)) +((-2153 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-259 *3)) (-4 *3 (-1090)))) (-2184 (*1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-259 *3)) (-4 *3 (-1090)))) (-3936 (*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-259 *3)) (-4 *3 (-1090)))) (-3936 (*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-259 *3)) (-4 *3 (-1090))))) +(-13 (-258 |#1|) (-10 -8 (-15 -2153 ((-1143) $)) (-15 -2184 ((-850) $)) (-15 -3936 ((-121) (-121))) (-15 -3936 ((-121))))) +((-2190 (((-1249) |#10| (-634 |#3|)) 133) (((-1249) |#10|) 135)) (-2390 (((-1249) |#10|) NIL)) (-2587 ((|#8| |#10|) 28)) (-4207 (((-568) (-763) (-634 |#10|)) 147)) (-4424 (((-763) (-763) (-634 |#10|)) 145)) (-1801 (((-568) |#3|) 148)) (-2126 (((-763) |#3|) 146)) (-1410 (((-1249) |#10|) 136)) (-2388 ((|#8| |#3| |#10|) 111)) (-2625 ((|#10| |#5| |#3|) 138)) (-2176 (((-634 |#10|) |#3|) 144)) (-1703 (((-1249) |#10|) 134)) (-1883 (((-634 |#9|) |#9|) 87)) (-2480 ((|#8| |#10|) 110))) +(((-260 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10| |#11|) (-10 -7 (-15 -1883 ((-634 |#9|) |#9|)) (-15 -2388 (|#8| |#3| |#10|)) (-15 -2480 (|#8| |#10|)) (-15 -1703 ((-1249) |#10|)) (-15 -2625 (|#10| |#5| |#3|)) (-15 -2176 ((-634 |#10|) |#3|)) (-15 -1410 ((-1249) |#10|)) (-15 -2390 ((-1249) |#10|)) (-15 -2190 ((-1249) |#10|)) (-15 -2190 ((-1249) |#10| (-634 |#3|))) (-15 -2126 ((-763) |#3|)) (-15 -1801 ((-568) |#3|)) (-15 -4424 ((-763) (-763) (-634 |#10|))) (-15 -2587 (|#8| |#10|)) (-15 -4207 ((-568) (-763) (-634 |#10|)))) (-365) (-634 (-1161)) (-950 |#1| |#4| (-852 |#2|)) (-230 (-1697 |#2|) (-763)) (-971 |#1|) (-641 |#1|) (-920 |#1| |#6|) (-235 |#7|) (-536 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#11|) (-258 |#9|) (-117)) (T -260)) +((-4207 (*1 *2 *3 *4) (-12 (-5 *4 (-634 *14)) (-4 *14 (-258 *13)) (-4 *13 (-536 *5 *6 *7 *8 *9 *10 *11 *12 *15)) (-4 *15 (-117)) (-4 *5 (-365)) (-14 *6 (-634 (-1161))) (-4 *7 (-950 *5 *8 (-852 *6))) (-4 *8 (-230 (-1697 *6) *3)) (-4 *9 (-971 *5)) (-4 *10 (-641 *5)) (-4 *11 (-920 *5 *10)) (-4 *12 (-235 *11)) (-5 *3 (-763)) (-5 *2 (-568)) (-5 *1 (-260 *5 *6 *7 *8 *9 *10 *11 *12 *13 *14 *15)))) (-2587 (*1 *2 *3) (-12 (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *6 (-950 *4 *7 (-852 *5))) (-4 *7 (-230 (-1697 *5) (-763))) (-4 *8 (-971 *4)) (-4 *9 (-641 *4)) (-4 *10 (-920 *4 *9)) (-4 *11 (-536 *4 *5 *6 *7 *8 *9 *10 *2 *12)) (-4 *12 (-117)) (-4 *2 (-235 *10)) (-5 *1 (-260 *4 *5 *6 *7 *8 *9 *10 *2 *11 *3 *12)) (-4 *3 (-258 *11)))) (-4424 (*1 *2 *2 *3) (-12 (-5 *3 (-634 *13)) (-4 *13 (-258 *12)) (-4 *12 (-536 *4 *5 *6 *7 *8 *9 *10 *11 *14)) (-4 *14 (-117)) (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *6 (-950 *4 *7 (-852 *5))) (-4 *7 (-230 (-1697 *5) *2)) (-4 *8 (-971 *4)) (-4 *9 (-641 *4)) (-4 *10 (-920 *4 *9)) (-4 *11 (-235 *10)) (-5 *2 (-763)) (-5 *1 (-260 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13 *14)))) (-1801 (*1 *2 *3) (-12 (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *3 (-950 *4 *6 (-852 *5))) (-4 *6 (-230 (-1697 *5) (-763))) (-4 *7 (-971 *4)) (-4 *8 (-641 *4)) (-4 *9 (-920 *4 *8)) (-4 *10 (-235 *9)) (-4 *11 (-536 *4 *5 *3 *6 *7 *8 *9 *10 *13)) (-4 *13 (-117)) (-5 *2 (-568)) (-5 *1 (-260 *4 *5 *3 *6 *7 *8 *9 *10 *11 *12 *13)) (-4 *12 (-258 *11)))) (-2126 (*1 *2 *3) (-12 (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *3 (-950 *4 *6 (-852 *5))) (-4 *6 (-230 (-1697 *5) *2)) (-4 *7 (-971 *4)) (-4 *8 (-641 *4)) (-4 *9 (-920 *4 *8)) (-4 *10 (-235 *9)) (-4 *11 (-536 *4 *5 *3 *6 *7 *8 *9 *10 *13)) (-4 *13 (-117)) (-5 *2 (-763)) (-5 *1 (-260 *4 *5 *3 *6 *7 *8 *9 *10 *11 *12 *13)) (-4 *12 (-258 *11)))) (-2190 (*1 *2 *3 *4) (-12 (-5 *4 (-634 *7)) (-4 *7 (-950 *5 *8 (-852 *6))) (-4 *8 (-230 (-1697 *6) (-763))) (-4 *5 (-365)) (-14 *6 (-634 (-1161))) (-4 *9 (-971 *5)) (-4 *10 (-641 *5)) (-4 *11 (-920 *5 *10)) (-4 *12 (-235 *11)) (-4 *13 (-536 *5 *6 *7 *8 *9 *10 *11 *12 *14)) (-4 *14 (-117)) (-5 *2 (-1249)) (-5 *1 (-260 *5 *6 *7 *8 *9 *10 *11 *12 *13 *3 *14)) (-4 *3 (-258 *13)))) (-2190 (*1 *2 *3) (-12 (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *6 (-950 *4 *7 (-852 *5))) (-4 *7 (-230 (-1697 *5) (-763))) (-4 *8 (-971 *4)) (-4 *9 (-641 *4)) (-4 *10 (-920 *4 *9)) (-4 *11 (-235 *10)) (-4 *12 (-536 *4 *5 *6 *7 *8 *9 *10 *11 *13)) (-4 *13 (-117)) (-5 *2 (-1249)) (-5 *1 (-260 *4 *5 *6 *7 *8 *9 *10 *11 *12 *3 *13)) (-4 *3 (-258 *12)))) (-2390 (*1 *2 *3) (-12 (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *6 (-950 *4 *7 (-852 *5))) (-4 *7 (-230 (-1697 *5) (-763))) (-4 *8 (-971 *4)) (-4 *9 (-641 *4)) (-4 *10 (-920 *4 *9)) (-4 *11 (-235 *10)) (-4 *12 (-536 *4 *5 *6 *7 *8 *9 *10 *11 *13)) (-4 *13 (-117)) (-5 *2 (-1249)) (-5 *1 (-260 *4 *5 *6 *7 *8 *9 *10 *11 *12 *3 *13)) (-4 *3 (-258 *12)))) (-1410 (*1 *2 *3) (-12 (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *6 (-950 *4 *7 (-852 *5))) (-4 *7 (-230 (-1697 *5) (-763))) (-4 *8 (-971 *4)) (-4 *9 (-641 *4)) (-4 *10 (-920 *4 *9)) (-4 *11 (-235 *10)) (-4 *12 (-536 *4 *5 *6 *7 *8 *9 *10 *11 *13)) (-4 *13 (-117)) (-5 *2 (-1249)) (-5 *1 (-260 *4 *5 *6 *7 *8 *9 *10 *11 *12 *3 *13)) (-4 *3 (-258 *12)))) (-2176 (*1 *2 *3) (-12 (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *3 (-950 *4 *6 (-852 *5))) (-4 *6 (-230 (-1697 *5) (-763))) (-4 *7 (-971 *4)) (-4 *8 (-641 *4)) (-4 *9 (-920 *4 *8)) (-4 *10 (-235 *9)) (-4 *11 (-536 *4 *5 *3 *6 *7 *8 *9 *10 *13)) (-4 *13 (-117)) (-5 *2 (-634 *12)) (-5 *1 (-260 *4 *5 *3 *6 *7 *8 *9 *10 *11 *12 *13)) (-4 *12 (-258 *11)))) (-2625 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-14 *6 (-634 (-1161))) (-4 *4 (-950 *5 *7 (-852 *6))) (-4 *7 (-230 (-1697 *6) (-763))) (-4 *3 (-971 *5)) (-4 *8 (-641 *5)) (-4 *9 (-920 *5 *8)) (-4 *10 (-235 *9)) (-4 *12 (-117)) (-4 *2 (-258 *11)) (-5 *1 (-260 *5 *6 *4 *7 *3 *8 *9 *10 *11 *2 *12)) (-4 *11 (-536 *5 *6 *4 *7 *3 *8 *9 *10 *12)))) (-1703 (*1 *2 *3) (-12 (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *6 (-950 *4 *7 (-852 *5))) (-4 *7 (-230 (-1697 *5) (-763))) (-4 *8 (-971 *4)) (-4 *9 (-641 *4)) (-4 *10 (-920 *4 *9)) (-4 *11 (-235 *10)) (-4 *12 (-536 *4 *5 *6 *7 *8 *9 *10 *11 *13)) (-4 *13 (-117)) (-5 *2 (-1249)) (-5 *1 (-260 *4 *5 *6 *7 *8 *9 *10 *11 *12 *3 *13)) (-4 *3 (-258 *12)))) (-2480 (*1 *2 *3) (-12 (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *6 (-950 *4 *7 (-852 *5))) (-4 *7 (-230 (-1697 *5) (-763))) (-4 *8 (-971 *4)) (-4 *9 (-641 *4)) (-4 *10 (-920 *4 *9)) (-4 *11 (-536 *4 *5 *6 *7 *8 *9 *10 *2 *12)) (-4 *12 (-117)) (-4 *2 (-235 *10)) (-5 *1 (-260 *4 *5 *6 *7 *8 *9 *10 *2 *11 *3 *12)) (-4 *3 (-258 *11)))) (-2388 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-14 *6 (-634 (-1161))) (-4 *3 (-950 *5 *7 (-852 *6))) (-4 *7 (-230 (-1697 *6) (-763))) (-4 *8 (-971 *5)) (-4 *9 (-641 *5)) (-4 *10 (-920 *5 *9)) (-4 *11 (-536 *5 *6 *3 *7 *8 *9 *10 *2 *12)) (-4 *12 (-117)) (-4 *2 (-235 *10)) (-5 *1 (-260 *5 *6 *3 *7 *8 *9 *10 *2 *11 *4 *12)) (-4 *4 (-258 *11)))) (-1883 (*1 *2 *3) (-12 (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *6 (-950 *4 *7 (-852 *5))) (-4 *7 (-230 (-1697 *5) (-763))) (-4 *8 (-971 *4)) (-4 *9 (-641 *4)) (-4 *10 (-920 *4 *9)) (-4 *11 (-235 *10)) (-4 *3 (-536 *4 *5 *6 *7 *8 *9 *10 *11 *13)) (-4 *13 (-117)) (-5 *2 (-634 *3)) (-5 *1 (-260 *4 *5 *6 *7 *8 *9 *10 *11 *3 *12 *13)) (-4 *12 (-258 *3))))) +(-10 -7 (-15 -1883 ((-634 |#9|) |#9|)) (-15 -2388 (|#8| |#3| |#10|)) (-15 -2480 (|#8| |#10|)) (-15 -1703 ((-1249) |#10|)) (-15 -2625 (|#10| |#5| |#3|)) (-15 -2176 ((-634 |#10|) |#3|)) (-15 -1410 ((-1249) |#10|)) (-15 -2390 ((-1249) |#10|)) (-15 -2190 ((-1249) |#10|)) (-15 -2190 ((-1249) |#10| (-634 |#3|))) (-15 -2126 ((-763) |#3|)) (-15 -1801 ((-568) |#3|)) (-15 -4424 ((-763) (-763) (-634 |#10|))) (-15 -2587 (|#8| |#10|)) (-15 -4207 ((-568) (-763) (-634 |#10|)))) +((-1551 (((-763) $) 30)) (-3666 (((-3 |#2| "failed") $) 17)) (-2854 ((|#2| $) 27)) (-4189 (($ $) 12) (($ $ (-763)) 15)) (-2745 (((-850) $) 26) (($ |#2|) 10)) (-1717 (((-121) $ $) 20)) (-1732 (((-121) $ $) 29))) +(((-261 |#1| |#2|) (-10 -8 (-15 -4189 (|#1| |#1| (-763))) (-15 -4189 (|#1| |#1|)) (-15 -1551 ((-763) |#1|)) (-15 -2854 (|#2| |#1|)) (-15 -3666 ((-3 |#2| "failed") |#1|)) (-15 -2745 (|#1| |#2|)) (-15 -1732 ((-121) |#1| |#1|)) (-15 -2745 ((-850) |#1|)) (-15 -1717 ((-121) |#1| |#1|))) (-262 |#2|) (-842)) (T -261)) +NIL +(-10 -8 (-15 -4189 (|#1| |#1| (-763))) (-15 -4189 (|#1| |#1|)) (-15 -1551 ((-763) |#1|)) (-15 -2854 (|#2| |#1|)) (-15 -3666 ((-3 |#2| "failed") |#1|)) (-15 -2745 (|#1| |#2|)) (-15 -1732 ((-121) |#1| |#1|)) (-15 -2745 ((-850) |#1|)) (-15 -1717 ((-121) |#1| |#1|))) +((-2447 (((-121) $ $) 7)) (-1551 (((-763) $) 21)) (-1305 ((|#1| $) 22)) (-3666 (((-3 |#1| "failed") $) 26)) (-2854 ((|#1| $) 25)) (-4477 (((-763) $) 23)) (-2521 (($ $ $) 12)) (-3268 (($ $ $) 13)) (-4300 (($ |#1| (-763)) 24)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-4189 (($ $) 20) (($ $ (-763)) 19)) (-2745 (((-850) $) 11) (($ |#1|) 27)) (-1751 (((-121) $ $) 15)) (-1738 (((-121) $ $) 16)) (-1717 (((-121) $ $) 6)) (-1745 (((-121) $ $) 14)) (-1732 (((-121) $ $) 17))) +(((-262 |#1|) (-1275) (-842)) (T -262)) +((-2745 (*1 *1 *2) (-12 (-4 *1 (-262 *2)) (-4 *2 (-842)))) (-4300 (*1 *1 *2 *3) (-12 (-5 *3 (-763)) (-4 *1 (-262 *2)) (-4 *2 (-842)))) (-4477 (*1 *2 *1) (-12 (-4 *1 (-262 *3)) (-4 *3 (-842)) (-5 *2 (-763)))) (-1305 (*1 *2 *1) (-12 (-4 *1 (-262 *2)) (-4 *2 (-842)))) (-1551 (*1 *2 *1) (-12 (-4 *1 (-262 *3)) (-4 *3 (-842)) (-5 *2 (-763)))) (-4189 (*1 *1 *1) (-12 (-4 *1 (-262 *2)) (-4 *2 (-842)))) (-4189 (*1 *1 *1 *2) (-12 (-5 *2 (-763)) (-4 *1 (-262 *3)) (-4 *3 (-842))))) +(-13 (-842) (-1037 |t#1|) (-10 -8 (-15 -4300 ($ |t#1| (-763))) (-15 -4477 ((-763) $)) (-15 -1305 (|t#1| $)) (-15 -1551 ((-763) $)) (-15 -4189 ($ $)) (-15 -4189 ($ $ (-763))) (-15 -2745 ($ |t#1|)))) +(((-105) . T) ((-608 (-850)) . T) ((-842) . T) ((-1037 |#1|) . T) ((-1090) . T)) +((-2055 (((-634 (-1161)) (-2 (|:| |lfn| (-634 (-310 (-215)))) (|:| -4434 (-634 (-215))))) 40)) (-3595 (((-634 (-1161)) (-310 (-215)) (-763)) 79)) (-2423 (((-3 (-310 (-215)) "failed") (-310 (-215))) 50)) (-3159 (((-310 (-215)) (-310 (-215))) 65)) (-3021 (((-2 (|:| |fn| (-310 (-215))) (|:| -4434 (-634 (-215))) (|:| |lb| (-634 (-835 (-215)))) (|:| |cf| (-634 (-310 (-215)))) (|:| |ub| (-634 (-835 (-215))))) (-2 (|:| |fn| (-310 (-215))) (|:| -4434 (-634 (-215))) (|:| |lb| (-634 (-835 (-215)))) (|:| |cf| (-634 (-310 (-215)))) (|:| |ub| (-634 (-835 (-215)))))) 26)) (-1888 (((-121) (-634 (-310 (-215)))) 83)) (-4087 (((-121) (-310 (-215))) 24)) (-1885 (((-634 (-1143)) (-3 (|:| |noa| (-2 (|:| |fn| (-310 (-215))) (|:| -4434 (-634 (-215))) (|:| |lb| (-634 (-835 (-215)))) (|:| |cf| (-634 (-310 (-215)))) (|:| |ub| (-634 (-835 (-215)))))) (|:| |lsa| (-2 (|:| |lfn| (-634 (-310 (-215)))) (|:| -4434 (-634 (-215))))))) 104)) (-1912 (((-634 (-310 (-215))) (-634 (-310 (-215)))) 86)) (-3110 (((-634 (-310 (-215))) (-634 (-310 (-215)))) 85)) (-1935 (((-679 (-215)) (-634 (-310 (-215))) (-763)) 93)) (-4364 (((-121) (-310 (-215))) 20) (((-121) (-634 (-310 (-215)))) 84)) (-3559 (((-634 (-215)) (-634 (-835 (-215))) (-215)) 14)) (-4014 (((-381) (-2 (|:| |lfn| (-634 (-310 (-215)))) (|:| -4434 (-634 (-215))))) 99)) (-4165 (((-1035) (-1161) (-1035)) 33))) +(((-263) (-10 -7 (-15 -3559 ((-634 (-215)) (-634 (-835 (-215))) (-215))) (-15 -3021 ((-2 (|:| |fn| (-310 (-215))) (|:| -4434 (-634 (-215))) (|:| |lb| (-634 (-835 (-215)))) (|:| |cf| (-634 (-310 (-215)))) (|:| |ub| (-634 (-835 (-215))))) (-2 (|:| |fn| (-310 (-215))) (|:| -4434 (-634 (-215))) (|:| |lb| (-634 (-835 (-215)))) (|:| |cf| (-634 (-310 (-215)))) (|:| |ub| (-634 (-835 (-215))))))) (-15 -2423 ((-3 (-310 (-215)) "failed") (-310 (-215)))) (-15 -3159 ((-310 (-215)) (-310 (-215)))) (-15 -1888 ((-121) (-634 (-310 (-215))))) (-15 -4364 ((-121) (-634 (-310 (-215))))) (-15 -4364 ((-121) (-310 (-215)))) (-15 -1935 ((-679 (-215)) (-634 (-310 (-215))) (-763))) (-15 -3110 ((-634 (-310 (-215))) (-634 (-310 (-215))))) (-15 -1912 ((-634 (-310 (-215))) (-634 (-310 (-215))))) (-15 -4087 ((-121) (-310 (-215)))) (-15 -2055 ((-634 (-1161)) (-2 (|:| |lfn| (-634 (-310 (-215)))) (|:| -4434 (-634 (-215)))))) (-15 -3595 ((-634 (-1161)) (-310 (-215)) (-763))) (-15 -4165 ((-1035) (-1161) (-1035))) (-15 -4014 ((-381) (-2 (|:| |lfn| (-634 (-310 (-215)))) (|:| -4434 (-634 (-215)))))) (-15 -1885 ((-634 (-1143)) (-3 (|:| |noa| (-2 (|:| |fn| (-310 (-215))) (|:| -4434 (-634 (-215))) (|:| |lb| (-634 (-835 (-215)))) (|:| |cf| (-634 (-310 (-215)))) (|:| |ub| (-634 (-835 (-215)))))) (|:| |lsa| (-2 (|:| |lfn| (-634 (-310 (-215)))) (|:| -4434 (-634 (-215)))))))))) (T -263)) +((-1885 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-310 (-215))) (|:| -4434 (-634 (-215))) (|:| |lb| (-634 (-835 (-215)))) (|:| |cf| (-634 (-310 (-215)))) (|:| |ub| (-634 (-835 (-215)))))) (|:| |lsa| (-2 (|:| |lfn| (-634 (-310 (-215)))) (|:| -4434 (-634 (-215))))))) (-5 *2 (-634 (-1143))) (-5 *1 (-263)))) (-4014 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-634 (-310 (-215)))) (|:| -4434 (-634 (-215))))) (-5 *2 (-381)) (-5 *1 (-263)))) (-4165 (*1 *2 *3 *2) (-12 (-5 *2 (-1035)) (-5 *3 (-1161)) (-5 *1 (-263)))) (-3595 (*1 *2 *3 *4) (-12 (-5 *3 (-310 (-215))) (-5 *4 (-763)) (-5 *2 (-634 (-1161))) (-5 *1 (-263)))) (-2055 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-634 (-310 (-215)))) (|:| -4434 (-634 (-215))))) (-5 *2 (-634 (-1161))) (-5 *1 (-263)))) (-4087 (*1 *2 *3) (-12 (-5 *3 (-310 (-215))) (-5 *2 (-121)) (-5 *1 (-263)))) (-1912 (*1 *2 *2) (-12 (-5 *2 (-634 (-310 (-215)))) (-5 *1 (-263)))) (-3110 (*1 *2 *2) (-12 (-5 *2 (-634 (-310 (-215)))) (-5 *1 (-263)))) (-1935 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-310 (-215)))) (-5 *4 (-763)) (-5 *2 (-679 (-215))) (-5 *1 (-263)))) (-4364 (*1 *2 *3) (-12 (-5 *3 (-310 (-215))) (-5 *2 (-121)) (-5 *1 (-263)))) (-4364 (*1 *2 *3) (-12 (-5 *3 (-634 (-310 (-215)))) (-5 *2 (-121)) (-5 *1 (-263)))) (-1888 (*1 *2 *3) (-12 (-5 *3 (-634 (-310 (-215)))) (-5 *2 (-121)) (-5 *1 (-263)))) (-3159 (*1 *2 *2) (-12 (-5 *2 (-310 (-215))) (-5 *1 (-263)))) (-2423 (*1 *2 *2) (|partial| -12 (-5 *2 (-310 (-215))) (-5 *1 (-263)))) (-3021 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-310 (-215))) (|:| -4434 (-634 (-215))) (|:| |lb| (-634 (-835 (-215)))) (|:| |cf| (-634 (-310 (-215)))) (|:| |ub| (-634 (-835 (-215)))))) (-5 *1 (-263)))) (-3559 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-835 (-215)))) (-5 *4 (-215)) (-5 *2 (-634 *4)) (-5 *1 (-263))))) +(-10 -7 (-15 -3559 ((-634 (-215)) (-634 (-835 (-215))) (-215))) (-15 -3021 ((-2 (|:| |fn| (-310 (-215))) (|:| -4434 (-634 (-215))) (|:| |lb| (-634 (-835 (-215)))) (|:| |cf| (-634 (-310 (-215)))) (|:| |ub| (-634 (-835 (-215))))) (-2 (|:| |fn| (-310 (-215))) (|:| -4434 (-634 (-215))) (|:| |lb| (-634 (-835 (-215)))) (|:| |cf| (-634 (-310 (-215)))) (|:| |ub| (-634 (-835 (-215))))))) (-15 -2423 ((-3 (-310 (-215)) "failed") (-310 (-215)))) (-15 -3159 ((-310 (-215)) (-310 (-215)))) (-15 -1888 ((-121) (-634 (-310 (-215))))) (-15 -4364 ((-121) (-634 (-310 (-215))))) (-15 -4364 ((-121) (-310 (-215)))) (-15 -1935 ((-679 (-215)) (-634 (-310 (-215))) (-763))) (-15 -3110 ((-634 (-310 (-215))) (-634 (-310 (-215))))) (-15 -1912 ((-634 (-310 (-215))) (-634 (-310 (-215))))) (-15 -4087 ((-121) (-310 (-215)))) (-15 -2055 ((-634 (-1161)) (-2 (|:| |lfn| (-634 (-310 (-215)))) (|:| -4434 (-634 (-215)))))) (-15 -3595 ((-634 (-1161)) (-310 (-215)) (-763))) (-15 -4165 ((-1035) (-1161) (-1035))) (-15 -4014 ((-381) (-2 (|:| |lfn| (-634 (-310 (-215)))) (|:| -4434 (-634 (-215)))))) (-15 -1885 ((-634 (-1143)) (-3 (|:| |noa| (-2 (|:| |fn| (-310 (-215))) (|:| -4434 (-634 (-215))) (|:| |lb| (-634 (-835 (-215)))) (|:| |cf| (-634 (-310 (-215)))) (|:| |ub| (-634 (-835 (-215)))))) (|:| |lsa| (-2 (|:| |lfn| (-634 (-310 (-215)))) (|:| -4434 (-634 (-215))))))))) +((-2447 (((-121) $ $) NIL)) (-2855 (((-1035) (-2 (|:| |lfn| (-634 (-310 (-215)))) (|:| -4434 (-634 (-215))))) NIL) (((-1035) (-2 (|:| |fn| (-310 (-215))) (|:| -4434 (-634 (-215))) (|:| |lb| (-634 (-835 (-215)))) (|:| |cf| (-634 (-310 (-215)))) (|:| |ub| (-634 (-835 (-215)))))) 39)) (-3029 (((-2 (|:| -3029 (-381)) (|:| |explanations| (-1143))) (-1059) (-2 (|:| |fn| (-310 (-215))) (|:| -4434 (-634 (-215))) (|:| |lb| (-634 (-835 (-215)))) (|:| |cf| (-634 (-310 (-215)))) (|:| |ub| (-634 (-835 (-215)))))) 20) (((-2 (|:| -3029 (-381)) (|:| |explanations| (-1143))) (-1059) (-2 (|:| |lfn| (-634 (-310 (-215)))) (|:| -4434 (-634 (-215))))) NIL)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2745 (((-850) $) NIL)) (-1717 (((-121) $ $) NIL))) +(((-264) (-831)) (T -264)) +NIL +(-831) +((-2447 (((-121) $ $) NIL)) (-2855 (((-1035) (-2 (|:| |lfn| (-634 (-310 (-215)))) (|:| -4434 (-634 (-215))))) 54) (((-1035) (-2 (|:| |fn| (-310 (-215))) (|:| -4434 (-634 (-215))) (|:| |lb| (-634 (-835 (-215)))) (|:| |cf| (-634 (-310 (-215)))) (|:| |ub| (-634 (-835 (-215)))))) 49)) (-3029 (((-2 (|:| -3029 (-381)) (|:| |explanations| (-1143))) (-1059) (-2 (|:| |fn| (-310 (-215))) (|:| -4434 (-634 (-215))) (|:| |lb| (-634 (-835 (-215)))) (|:| |cf| (-634 (-310 (-215)))) (|:| |ub| (-634 (-835 (-215)))))) 29) (((-2 (|:| -3029 (-381)) (|:| |explanations| (-1143))) (-1059) (-2 (|:| |lfn| (-634 (-310 (-215)))) (|:| -4434 (-634 (-215))))) 31)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2745 (((-850) $) NIL)) (-1717 (((-121) $ $) NIL))) +(((-265) (-831)) (T -265)) +NIL +(-831) +((-2447 (((-121) $ $) NIL)) (-2855 (((-1035) (-2 (|:| |lfn| (-634 (-310 (-215)))) (|:| -4434 (-634 (-215))))) 73) (((-1035) (-2 (|:| |fn| (-310 (-215))) (|:| -4434 (-634 (-215))) (|:| |lb| (-634 (-835 (-215)))) (|:| |cf| (-634 (-310 (-215)))) (|:| |ub| (-634 (-835 (-215)))))) 69)) (-3029 (((-2 (|:| -3029 (-381)) (|:| |explanations| (-1143))) (-1059) (-2 (|:| |fn| (-310 (-215))) (|:| -4434 (-634 (-215))) (|:| |lb| (-634 (-835 (-215)))) (|:| |cf| (-634 (-310 (-215)))) (|:| |ub| (-634 (-835 (-215)))))) 40) (((-2 (|:| -3029 (-381)) (|:| |explanations| (-1143))) (-1059) (-2 (|:| |lfn| (-634 (-310 (-215)))) (|:| -4434 (-634 (-215))))) 51)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2745 (((-850) $) NIL)) (-1717 (((-121) $ $) NIL))) +(((-266) (-831)) (T -266)) +NIL +(-831) +((-2447 (((-121) $ $) NIL)) (-2855 (((-1035) (-2 (|:| |lfn| (-634 (-310 (-215)))) (|:| -4434 (-634 (-215))))) NIL) (((-1035) (-2 (|:| |fn| (-310 (-215))) (|:| -4434 (-634 (-215))) (|:| |lb| (-634 (-835 (-215)))) (|:| |cf| (-634 (-310 (-215)))) (|:| |ub| (-634 (-835 (-215)))))) 48)) (-3029 (((-2 (|:| -3029 (-381)) (|:| |explanations| (-1143))) (-1059) (-2 (|:| |fn| (-310 (-215))) (|:| -4434 (-634 (-215))) (|:| |lb| (-634 (-835 (-215)))) (|:| |cf| (-634 (-310 (-215)))) (|:| |ub| (-634 (-835 (-215)))))) 27) (((-2 (|:| -3029 (-381)) (|:| |explanations| (-1143))) (-1059) (-2 (|:| |lfn| (-634 (-310 (-215)))) (|:| -4434 (-634 (-215))))) NIL)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2745 (((-850) $) NIL)) (-1717 (((-121) $ $) NIL))) +(((-267) (-831)) (T -267)) +NIL +(-831) +((-2447 (((-121) $ $) NIL)) (-2855 (((-1035) (-2 (|:| |lfn| (-634 (-310 (-215)))) (|:| -4434 (-634 (-215))))) NIL) (((-1035) (-2 (|:| |fn| (-310 (-215))) (|:| -4434 (-634 (-215))) (|:| |lb| (-634 (-835 (-215)))) (|:| |cf| (-634 (-310 (-215)))) (|:| |ub| (-634 (-835 (-215)))))) 48)) (-3029 (((-2 (|:| -3029 (-381)) (|:| |explanations| (-1143))) (-1059) (-2 (|:| |fn| (-310 (-215))) (|:| -4434 (-634 (-215))) (|:| |lb| (-634 (-835 (-215)))) (|:| |cf| (-634 (-310 (-215)))) (|:| |ub| (-634 (-835 (-215)))))) 23) (((-2 (|:| -3029 (-381)) (|:| |explanations| (-1143))) (-1059) (-2 (|:| |lfn| (-634 (-310 (-215)))) (|:| -4434 (-634 (-215))))) NIL)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2745 (((-850) $) NIL)) (-1717 (((-121) $ $) NIL))) +(((-268) (-831)) (T -268)) +NIL +(-831) +((-2447 (((-121) $ $) NIL)) (-2855 (((-1035) (-2 (|:| |lfn| (-634 (-310 (-215)))) (|:| -4434 (-634 (-215))))) NIL) (((-1035) (-2 (|:| |fn| (-310 (-215))) (|:| -4434 (-634 (-215))) (|:| |lb| (-634 (-835 (-215)))) (|:| |cf| (-634 (-310 (-215)))) (|:| |ub| (-634 (-835 (-215)))))) 69)) (-3029 (((-2 (|:| -3029 (-381)) (|:| |explanations| (-1143))) (-1059) (-2 (|:| |fn| (-310 (-215))) (|:| -4434 (-634 (-215))) (|:| |lb| (-634 (-835 (-215)))) (|:| |cf| (-634 (-310 (-215)))) (|:| |ub| (-634 (-835 (-215)))))) 23) (((-2 (|:| -3029 (-381)) (|:| |explanations| (-1143))) (-1059) (-2 (|:| |lfn| (-634 (-310 (-215)))) (|:| -4434 (-634 (-215))))) NIL)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2745 (((-850) $) NIL)) (-1717 (((-121) $ $) NIL))) +(((-269) (-831)) (T -269)) +NIL +(-831) +((-2447 (((-121) $ $) NIL)) (-2855 (((-1035) (-2 (|:| |lfn| (-634 (-310 (-215)))) (|:| -4434 (-634 (-215))))) NIL) (((-1035) (-2 (|:| |fn| (-310 (-215))) (|:| -4434 (-634 (-215))) (|:| |lb| (-634 (-835 (-215)))) (|:| |cf| (-634 (-310 (-215)))) (|:| |ub| (-634 (-835 (-215)))))) 73)) (-3029 (((-2 (|:| -3029 (-381)) (|:| |explanations| (-1143))) (-1059) (-2 (|:| |fn| (-310 (-215))) (|:| -4434 (-634 (-215))) (|:| |lb| (-634 (-835 (-215)))) (|:| |cf| (-634 (-310 (-215)))) (|:| |ub| (-634 (-835 (-215)))))) 19) (((-2 (|:| -3029 (-381)) (|:| |explanations| (-1143))) (-1059) (-2 (|:| |lfn| (-634 (-310 (-215)))) (|:| -4434 (-634 (-215))))) NIL)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2745 (((-850) $) NIL)) (-1717 (((-121) $ $) NIL))) +(((-270) (-831)) (T -270)) +NIL +(-831) +((-2447 (((-121) $ $) NIL)) (-2521 (($ $ $) NIL)) (-3268 (($ $ $) NIL)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-1889 (((-634 (-568)) $) 16)) (-3206 (((-763) $) 14)) (-2745 (((-850) $) 20) (($ (-634 (-568))) 12)) (-4134 (($ (-763)) 17)) (-1751 (((-121) $ $) NIL)) (-1738 (((-121) $ $) NIL)) (-1717 (((-121) $ $) 9)) (-1745 (((-121) $ $) NIL)) (-1732 (((-121) $ $) 10))) +(((-271) (-13 (-842) (-10 -8 (-15 -2745 ($ (-634 (-568)))) (-15 -3206 ((-763) $)) (-15 -1889 ((-634 (-568)) $)) (-15 -4134 ($ (-763)))))) (T -271)) +((-2745 (*1 *1 *2) (-12 (-5 *2 (-634 (-568))) (-5 *1 (-271)))) (-3206 (*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-271)))) (-1889 (*1 *2 *1) (-12 (-5 *2 (-634 (-568))) (-5 *1 (-271)))) (-4134 (*1 *1 *2) (-12 (-5 *2 (-763)) (-5 *1 (-271))))) +(-13 (-842) (-10 -8 (-15 -2745 ($ (-634 (-568)))) (-15 -3206 ((-763) $)) (-15 -1889 ((-634 (-568)) $)) (-15 -4134 ($ (-763))))) +((-1982 ((|#2| |#2|) 77)) (-1933 ((|#2| |#2|) 65)) (-2124 (((-3 |#2| "failed") |#2| (-634 (-2 (|:| |func| |#2|) (|:| |pole| (-121))))) 116)) (-1974 ((|#2| |#2|) 75)) (-2786 ((|#2| |#2|) 63)) (-1990 ((|#2| |#2|) 79)) (-1941 ((|#2| |#2|) 67)) (-1897 ((|#2|) 46)) (-3488 (((-123) (-123)) 95)) (-4416 ((|#2| |#2|) 61)) (-1926 (((-121) |#2|) 134)) (-2610 ((|#2| |#2|) 180)) (-3445 ((|#2| |#2|) 156)) (-2158 ((|#2|) 59)) (-1735 ((|#2|) 58)) (-3796 ((|#2| |#2|) 176)) (-2138 ((|#2| |#2|) 152)) (-3331 ((|#2| |#2|) 184)) (-1728 ((|#2| |#2|) 160)) (-3486 ((|#2| |#2|) 148)) (-2777 ((|#2| |#2|) 150)) (-2867 ((|#2| |#2|) 186)) (-1439 ((|#2| |#2|) 162)) (-3513 ((|#2| |#2|) 182)) (-2996 ((|#2| |#2|) 158)) (-4306 ((|#2| |#2|) 178)) (-2261 ((|#2| |#2|) 154)) (-4270 ((|#2| |#2|) 192)) (-3351 ((|#2| |#2|) 168)) (-3667 ((|#2| |#2|) 188)) (-2585 ((|#2| |#2|) 164)) (-2073 ((|#2| |#2|) 196)) (-1404 ((|#2| |#2|) 172)) (-1701 ((|#2| |#2|) 198)) (-3215 ((|#2| |#2|) 174)) (-1504 ((|#2| |#2|) 194)) (-1563 ((|#2| |#2|) 170)) (-2731 ((|#2| |#2|) 190)) (-4247 ((|#2| |#2|) 166)) (-1892 ((|#2| |#2|) 62)) (-1994 ((|#2| |#2|) 80)) (-1945 ((|#2| |#2|) 68)) (-1986 ((|#2| |#2|) 78)) (-1937 ((|#2| |#2|) 66)) (-1978 ((|#2| |#2|) 76)) (-2790 ((|#2| |#2|) 64)) (-2887 (((-121) (-123)) 93)) (-2006 ((|#2| |#2|) 83)) (-1958 ((|#2| |#2|) 71)) (-1998 ((|#2| |#2|) 81)) (-1949 ((|#2| |#2|) 69)) (-2014 ((|#2| |#2|) 85)) (-1966 ((|#2| |#2|) 73)) (-4023 ((|#2| |#2|) 86)) (-1970 ((|#2| |#2|) 74)) (-2010 ((|#2| |#2|) 84)) (-1962 ((|#2| |#2|) 72)) (-2002 ((|#2| |#2|) 82)) (-1953 ((|#2| |#2|) 70))) +(((-272 |#1| |#2|) (-10 -7 (-15 -1892 (|#2| |#2|)) (-15 -4416 (|#2| |#2|)) (-15 -2786 (|#2| |#2|)) (-15 -2790 (|#2| |#2|)) (-15 -1933 (|#2| |#2|)) (-15 -1937 (|#2| |#2|)) (-15 -1941 (|#2| |#2|)) (-15 -1945 (|#2| |#2|)) (-15 -1949 (|#2| |#2|)) (-15 -1953 (|#2| |#2|)) (-15 -1958 (|#2| |#2|)) (-15 -1962 (|#2| |#2|)) (-15 -1966 (|#2| |#2|)) (-15 -1970 (|#2| |#2|)) (-15 -1974 (|#2| |#2|)) (-15 -1978 (|#2| |#2|)) (-15 -1982 (|#2| |#2|)) (-15 -1986 (|#2| |#2|)) (-15 -1990 (|#2| |#2|)) (-15 -1994 (|#2| |#2|)) (-15 -1998 (|#2| |#2|)) (-15 -2002 (|#2| |#2|)) (-15 -2006 (|#2| |#2|)) (-15 -2010 (|#2| |#2|)) (-15 -2014 (|#2| |#2|)) (-15 -4023 (|#2| |#2|)) (-15 -1897 (|#2|)) (-15 -2887 ((-121) (-123))) (-15 -3488 ((-123) (-123))) (-15 -1735 (|#2|)) (-15 -2158 (|#2|)) (-15 -2777 (|#2| |#2|)) (-15 -3486 (|#2| |#2|)) (-15 -2138 (|#2| |#2|)) (-15 -2261 (|#2| |#2|)) (-15 -3445 (|#2| |#2|)) (-15 -2996 (|#2| |#2|)) (-15 -1728 (|#2| |#2|)) (-15 -1439 (|#2| |#2|)) (-15 -2585 (|#2| |#2|)) (-15 -4247 (|#2| |#2|)) (-15 -3351 (|#2| |#2|)) (-15 -1563 (|#2| |#2|)) (-15 -1404 (|#2| |#2|)) (-15 -3215 (|#2| |#2|)) (-15 -3796 (|#2| |#2|)) (-15 -4306 (|#2| |#2|)) (-15 -2610 (|#2| |#2|)) (-15 -3513 (|#2| |#2|)) (-15 -3331 (|#2| |#2|)) (-15 -2867 (|#2| |#2|)) (-15 -3667 (|#2| |#2|)) (-15 -2731 (|#2| |#2|)) (-15 -4270 (|#2| |#2|)) (-15 -1504 (|#2| |#2|)) (-15 -2073 (|#2| |#2|)) (-15 -1701 (|#2| |#2|)) (-15 -2124 ((-3 |#2| "failed") |#2| (-634 (-2 (|:| |func| |#2|) (|:| |pole| (-121)))))) (-15 -1926 ((-121) |#2|))) (-13 (-842) (-558)) (-13 (-432 |#1|) (-1002))) (T -272)) +((-1926 (*1 *2 *3) (-12 (-4 *4 (-13 (-842) (-558))) (-5 *2 (-121)) (-5 *1 (-272 *4 *3)) (-4 *3 (-13 (-432 *4) (-1002))))) (-2124 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-634 (-2 (|:| |func| *2) (|:| |pole| (-121))))) (-4 *2 (-13 (-432 *4) (-1002))) (-4 *4 (-13 (-842) (-558))) (-5 *1 (-272 *4 *2)))) (-1701 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-2073 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-1504 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-4270 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-2731 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3667 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-2867 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3331 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3513 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-2610 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-4306 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3796 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3215 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-1404 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-1563 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3351 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-4247 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-2585 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-1439 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-1728 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-2996 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3445 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-2261 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-2138 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3486 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-2777 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-2158 (*1 *2) (-12 (-4 *2 (-13 (-432 *3) (-1002))) (-5 *1 (-272 *3 *2)) (-4 *3 (-13 (-842) (-558))))) (-1735 (*1 *2) (-12 (-4 *2 (-13 (-432 *3) (-1002))) (-5 *1 (-272 *3 *2)) (-4 *3 (-13 (-842) (-558))))) (-3488 (*1 *2 *2) (-12 (-5 *2 (-123)) (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *4)) (-4 *4 (-13 (-432 *3) (-1002))))) (-2887 (*1 *2 *3) (-12 (-5 *3 (-123)) (-4 *4 (-13 (-842) (-558))) (-5 *2 (-121)) (-5 *1 (-272 *4 *5)) (-4 *5 (-13 (-432 *4) (-1002))))) (-1897 (*1 *2) (-12 (-4 *2 (-13 (-432 *3) (-1002))) (-5 *1 (-272 *3 *2)) (-4 *3 (-13 (-842) (-558))))) (-4023 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-2014 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-2010 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-2006 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-2002 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-1998 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-1994 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-1990 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-1986 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-1982 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-1978 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-1974 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-1970 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-1966 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-1962 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-1958 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-1953 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-1949 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-1945 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-1941 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-1937 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-1933 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-2790 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-2786 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-4416 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-1892 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002)))))) +(-10 -7 (-15 -1892 (|#2| |#2|)) (-15 -4416 (|#2| |#2|)) (-15 -2786 (|#2| |#2|)) (-15 -2790 (|#2| |#2|)) (-15 -1933 (|#2| |#2|)) (-15 -1937 (|#2| |#2|)) (-15 -1941 (|#2| |#2|)) (-15 -1945 (|#2| |#2|)) (-15 -1949 (|#2| |#2|)) (-15 -1953 (|#2| |#2|)) (-15 -1958 (|#2| |#2|)) (-15 -1962 (|#2| |#2|)) (-15 -1966 (|#2| |#2|)) (-15 -1970 (|#2| |#2|)) (-15 -1974 (|#2| |#2|)) (-15 -1978 (|#2| |#2|)) (-15 -1982 (|#2| |#2|)) (-15 -1986 (|#2| |#2|)) (-15 -1990 (|#2| |#2|)) (-15 -1994 (|#2| |#2|)) (-15 -1998 (|#2| |#2|)) (-15 -2002 (|#2| |#2|)) (-15 -2006 (|#2| |#2|)) (-15 -2010 (|#2| |#2|)) (-15 -2014 (|#2| |#2|)) (-15 -4023 (|#2| |#2|)) (-15 -1897 (|#2|)) (-15 -2887 ((-121) (-123))) (-15 -3488 ((-123) (-123))) (-15 -1735 (|#2|)) (-15 -2158 (|#2|)) (-15 -2777 (|#2| |#2|)) (-15 -3486 (|#2| |#2|)) (-15 -2138 (|#2| |#2|)) (-15 -2261 (|#2| |#2|)) (-15 -3445 (|#2| |#2|)) (-15 -2996 (|#2| |#2|)) (-15 -1728 (|#2| |#2|)) (-15 -1439 (|#2| |#2|)) (-15 -2585 (|#2| |#2|)) (-15 -4247 (|#2| |#2|)) (-15 -3351 (|#2| |#2|)) (-15 -1563 (|#2| |#2|)) (-15 -1404 (|#2| |#2|)) (-15 -3215 (|#2| |#2|)) (-15 -3796 (|#2| |#2|)) (-15 -4306 (|#2| |#2|)) (-15 -2610 (|#2| |#2|)) (-15 -3513 (|#2| |#2|)) (-15 -3331 (|#2| |#2|)) (-15 -2867 (|#2| |#2|)) (-15 -3667 (|#2| |#2|)) (-15 -2731 (|#2| |#2|)) (-15 -4270 (|#2| |#2|)) (-15 -1504 (|#2| |#2|)) (-15 -2073 (|#2| |#2|)) (-15 -1701 (|#2| |#2|)) (-15 -2124 ((-3 |#2| "failed") |#2| (-634 (-2 (|:| |func| |#2|) (|:| |pole| (-121)))))) (-15 -1926 ((-121) |#2|))) +((-3987 (((-3 |#2| "failed") (-634 (-607 |#2|)) |#2| (-1161)) 133)) (-4455 ((|#2| (-409 (-568)) |#2|) 50)) (-2711 ((|#2| |#2| (-607 |#2|)) 126)) (-1542 (((-2 (|:| |func| |#2|) (|:| |kers| (-634 (-607 |#2|))) (|:| |vals| (-634 |#2|))) |#2| (-1161)) 125)) (-3031 ((|#2| |#2| (-1161)) 19) ((|#2| |#2|) 22)) (-3628 ((|#2| |#2| (-1161)) 139) ((|#2| |#2|) 137))) +(((-273 |#1| |#2|) (-10 -7 (-15 -3628 (|#2| |#2|)) (-15 -3628 (|#2| |#2| (-1161))) (-15 -1542 ((-2 (|:| |func| |#2|) (|:| |kers| (-634 (-607 |#2|))) (|:| |vals| (-634 |#2|))) |#2| (-1161))) (-15 -3031 (|#2| |#2|)) (-15 -3031 (|#2| |#2| (-1161))) (-15 -3987 ((-3 |#2| "failed") (-634 (-607 |#2|)) |#2| (-1161))) (-15 -2711 (|#2| |#2| (-607 |#2|))) (-15 -4455 (|#2| (-409 (-568)) |#2|))) (-13 (-558) (-842) (-1037 (-568)) (-630 (-568))) (-13 (-27) (-1181) (-432 |#1|))) (T -273)) +((-4455 (*1 *2 *3 *2) (-12 (-5 *3 (-409 (-568))) (-4 *4 (-13 (-558) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *1 (-273 *4 *2)) (-4 *2 (-13 (-27) (-1181) (-432 *4))))) (-2711 (*1 *2 *2 *3) (-12 (-5 *3 (-607 *2)) (-4 *2 (-13 (-27) (-1181) (-432 *4))) (-4 *4 (-13 (-558) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *1 (-273 *4 *2)))) (-3987 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-634 (-607 *2))) (-5 *4 (-1161)) (-4 *2 (-13 (-27) (-1181) (-432 *5))) (-4 *5 (-13 (-558) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *1 (-273 *5 *2)))) (-3031 (*1 *2 *2 *3) (-12 (-5 *3 (-1161)) (-4 *4 (-13 (-558) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *1 (-273 *4 *2)) (-4 *2 (-13 (-27) (-1181) (-432 *4))))) (-3031 (*1 *2 *2) (-12 (-4 *3 (-13 (-558) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *1 (-273 *3 *2)) (-4 *2 (-13 (-27) (-1181) (-432 *3))))) (-1542 (*1 *2 *3 *4) (-12 (-5 *4 (-1161)) (-4 *5 (-13 (-558) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-634 (-607 *3))) (|:| |vals| (-634 *3)))) (-5 *1 (-273 *5 *3)) (-4 *3 (-13 (-27) (-1181) (-432 *5))))) (-3628 (*1 *2 *2 *3) (-12 (-5 *3 (-1161)) (-4 *4 (-13 (-558) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *1 (-273 *4 *2)) (-4 *2 (-13 (-27) (-1181) (-432 *4))))) (-3628 (*1 *2 *2) (-12 (-4 *3 (-13 (-558) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *1 (-273 *3 *2)) (-4 *2 (-13 (-27) (-1181) (-432 *3)))))) +(-10 -7 (-15 -3628 (|#2| |#2|)) (-15 -3628 (|#2| |#2| (-1161))) (-15 -1542 ((-2 (|:| |func| |#2|) (|:| |kers| (-634 (-607 |#2|))) (|:| |vals| (-634 |#2|))) |#2| (-1161))) (-15 -3031 (|#2| |#2|)) (-15 -3031 (|#2| |#2| (-1161))) (-15 -3987 ((-3 |#2| "failed") (-634 (-607 |#2|)) |#2| (-1161))) (-15 -2711 (|#2| |#2| (-607 |#2|))) (-15 -4455 (|#2| (-409 (-568)) |#2|))) +((-2588 (((-3 |#3| "failed") |#3|) 110)) (-1982 ((|#3| |#3|) 131)) (-4444 (((-3 |#3| "failed") |#3|) 82)) (-1933 ((|#3| |#3|) 121)) (-3458 (((-3 |#3| "failed") |#3|) 58)) (-1974 ((|#3| |#3|) 129)) (-1856 (((-3 |#3| "failed") |#3|) 46)) (-2786 ((|#3| |#3|) 119)) (-2369 (((-3 |#3| "failed") |#3|) 112)) (-1990 ((|#3| |#3|) 133)) (-3864 (((-3 |#3| "failed") |#3|) 84)) (-1941 ((|#3| |#3|) 123)) (-1623 (((-3 |#3| "failed") |#3| (-763)) 36)) (-3269 (((-3 |#3| "failed") |#3|) 74)) (-4416 ((|#3| |#3|) 118)) (-1648 (((-3 |#3| "failed") |#3|) 44)) (-1892 ((|#3| |#3|) 117)) (-3511 (((-3 |#3| "failed") |#3|) 113)) (-1994 ((|#3| |#3|) 134)) (-4206 (((-3 |#3| "failed") |#3|) 85)) (-1945 ((|#3| |#3|) 124)) (-2581 (((-3 |#3| "failed") |#3|) 111)) (-1986 ((|#3| |#3|) 132)) (-3509 (((-3 |#3| "failed") |#3|) 83)) (-1937 ((|#3| |#3|) 122)) (-1390 (((-3 |#3| "failed") |#3|) 60)) (-1978 ((|#3| |#3|) 130)) (-3322 (((-3 |#3| "failed") |#3|) 48)) (-2790 ((|#3| |#3|) 120)) (-1778 (((-3 |#3| "failed") |#3|) 66)) (-2006 ((|#3| |#3|) 137)) (-1981 (((-3 |#3| "failed") |#3|) 104)) (-1958 ((|#3| |#3|) 142)) (-2037 (((-3 |#3| "failed") |#3|) 62)) (-1998 ((|#3| |#3|) 135)) (-3984 (((-3 |#3| "failed") |#3|) 50)) (-1949 ((|#3| |#3|) 125)) (-1780 (((-3 |#3| "failed") |#3|) 70)) (-2014 ((|#3| |#3|) 139)) (-3517 (((-3 |#3| "failed") |#3|) 54)) (-1966 ((|#3| |#3|) 127)) (-2136 (((-3 |#3| "failed") |#3|) 72)) (-4023 ((|#3| |#3|) 140)) (-4316 (((-3 |#3| "failed") |#3|) 56)) (-1970 ((|#3| |#3|) 128)) (-2236 (((-3 |#3| "failed") |#3|) 68)) (-2010 ((|#3| |#3|) 138)) (-3053 (((-3 |#3| "failed") |#3|) 107)) (-1962 ((|#3| |#3|) 143)) (-3525 (((-3 |#3| "failed") |#3|) 64)) (-2002 ((|#3| |#3|) 136)) (-3928 (((-3 |#3| "failed") |#3|) 52)) (-1953 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-409 (-568))) 40 (|has| |#1| (-365))))) +(((-274 |#1| |#2| |#3|) (-13 (-984 |#3|) (-10 -7 (IF (|has| |#1| (-365)) (-15 ** (|#3| |#3| (-409 (-568)))) |noBranch|) (-15 -1892 (|#3| |#3|)) (-15 -4416 (|#3| |#3|)) (-15 -2786 (|#3| |#3|)) (-15 -2790 (|#3| |#3|)) (-15 -1933 (|#3| |#3|)) (-15 -1937 (|#3| |#3|)) (-15 -1941 (|#3| |#3|)) (-15 -1945 (|#3| |#3|)) (-15 -1949 (|#3| |#3|)) (-15 -1953 (|#3| |#3|)) (-15 -1958 (|#3| |#3|)) (-15 -1962 (|#3| |#3|)) (-15 -1966 (|#3| |#3|)) (-15 -1970 (|#3| |#3|)) (-15 -1974 (|#3| |#3|)) (-15 -1978 (|#3| |#3|)) (-15 -1982 (|#3| |#3|)) (-15 -1986 (|#3| |#3|)) (-15 -1990 (|#3| |#3|)) (-15 -1994 (|#3| |#3|)) (-15 -1998 (|#3| |#3|)) (-15 -2002 (|#3| |#3|)) (-15 -2006 (|#3| |#3|)) (-15 -2010 (|#3| |#3|)) (-15 -2014 (|#3| |#3|)) (-15 -4023 (|#3| |#3|)))) (-43 (-409 (-568))) (-1234 |#1|) (-1205 |#1| |#2|)) (T -274)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-409 (-568))) (-4 *4 (-365)) (-4 *4 (-43 *3)) (-4 *5 (-1234 *4)) (-5 *1 (-274 *4 *5 *2)) (-4 *2 (-1205 *4 *5)))) (-1892 (*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1234 *3)) (-5 *1 (-274 *3 *4 *2)) (-4 *2 (-1205 *3 *4)))) (-4416 (*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1234 *3)) (-5 *1 (-274 *3 *4 *2)) (-4 *2 (-1205 *3 *4)))) (-2786 (*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1234 *3)) (-5 *1 (-274 *3 *4 *2)) (-4 *2 (-1205 *3 *4)))) (-2790 (*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1234 *3)) (-5 *1 (-274 *3 *4 *2)) (-4 *2 (-1205 *3 *4)))) (-1933 (*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1234 *3)) (-5 *1 (-274 *3 *4 *2)) (-4 *2 (-1205 *3 *4)))) (-1937 (*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1234 *3)) (-5 *1 (-274 *3 *4 *2)) (-4 *2 (-1205 *3 *4)))) (-1941 (*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1234 *3)) (-5 *1 (-274 *3 *4 *2)) (-4 *2 (-1205 *3 *4)))) (-1945 (*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1234 *3)) (-5 *1 (-274 *3 *4 *2)) (-4 *2 (-1205 *3 *4)))) (-1949 (*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1234 *3)) (-5 *1 (-274 *3 *4 *2)) (-4 *2 (-1205 *3 *4)))) (-1953 (*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1234 *3)) (-5 *1 (-274 *3 *4 *2)) (-4 *2 (-1205 *3 *4)))) (-1958 (*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1234 *3)) (-5 *1 (-274 *3 *4 *2)) (-4 *2 (-1205 *3 *4)))) (-1962 (*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1234 *3)) (-5 *1 (-274 *3 *4 *2)) (-4 *2 (-1205 *3 *4)))) (-1966 (*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1234 *3)) (-5 *1 (-274 *3 *4 *2)) (-4 *2 (-1205 *3 *4)))) (-1970 (*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1234 *3)) (-5 *1 (-274 *3 *4 *2)) (-4 *2 (-1205 *3 *4)))) (-1974 (*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1234 *3)) (-5 *1 (-274 *3 *4 *2)) (-4 *2 (-1205 *3 *4)))) (-1978 (*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1234 *3)) (-5 *1 (-274 *3 *4 *2)) (-4 *2 (-1205 *3 *4)))) (-1982 (*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1234 *3)) (-5 *1 (-274 *3 *4 *2)) (-4 *2 (-1205 *3 *4)))) (-1986 (*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1234 *3)) (-5 *1 (-274 *3 *4 *2)) (-4 *2 (-1205 *3 *4)))) (-1990 (*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1234 *3)) (-5 *1 (-274 *3 *4 *2)) (-4 *2 (-1205 *3 *4)))) (-1994 (*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1234 *3)) (-5 *1 (-274 *3 *4 *2)) (-4 *2 (-1205 *3 *4)))) (-1998 (*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1234 *3)) (-5 *1 (-274 *3 *4 *2)) (-4 *2 (-1205 *3 *4)))) (-2002 (*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1234 *3)) (-5 *1 (-274 *3 *4 *2)) (-4 *2 (-1205 *3 *4)))) (-2006 (*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1234 *3)) (-5 *1 (-274 *3 *4 *2)) (-4 *2 (-1205 *3 *4)))) (-2010 (*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1234 *3)) (-5 *1 (-274 *3 *4 *2)) (-4 *2 (-1205 *3 *4)))) (-2014 (*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1234 *3)) (-5 *1 (-274 *3 *4 *2)) (-4 *2 (-1205 *3 *4)))) (-4023 (*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1234 *3)) (-5 *1 (-274 *3 *4 *2)) (-4 *2 (-1205 *3 *4))))) +(-13 (-984 |#3|) (-10 -7 (IF (|has| |#1| (-365)) (-15 ** (|#3| |#3| (-409 (-568)))) |noBranch|) (-15 -1892 (|#3| |#3|)) (-15 -4416 (|#3| |#3|)) (-15 -2786 (|#3| |#3|)) (-15 -2790 (|#3| |#3|)) (-15 -1933 (|#3| |#3|)) (-15 -1937 (|#3| |#3|)) (-15 -1941 (|#3| |#3|)) (-15 -1945 (|#3| |#3|)) (-15 -1949 (|#3| |#3|)) (-15 -1953 (|#3| |#3|)) (-15 -1958 (|#3| |#3|)) (-15 -1962 (|#3| |#3|)) (-15 -1966 (|#3| |#3|)) (-15 -1970 (|#3| |#3|)) (-15 -1974 (|#3| |#3|)) (-15 -1978 (|#3| |#3|)) (-15 -1982 (|#3| |#3|)) (-15 -1986 (|#3| |#3|)) (-15 -1990 (|#3| |#3|)) (-15 -1994 (|#3| |#3|)) (-15 -1998 (|#3| |#3|)) (-15 -2002 (|#3| |#3|)) (-15 -2006 (|#3| |#3|)) (-15 -2010 (|#3| |#3|)) (-15 -2014 (|#3| |#3|)) (-15 -4023 (|#3| |#3|)))) +((-2588 (((-3 |#3| "failed") |#3|) 66)) (-1982 ((|#3| |#3|) 133)) (-4444 (((-3 |#3| "failed") |#3|) 50)) (-1933 ((|#3| |#3|) 121)) (-3458 (((-3 |#3| "failed") |#3|) 62)) (-1974 ((|#3| |#3|) 131)) (-1856 (((-3 |#3| "failed") |#3|) 46)) (-2786 ((|#3| |#3|) 119)) (-2369 (((-3 |#3| "failed") |#3|) 70)) (-1990 ((|#3| |#3|) 135)) (-3864 (((-3 |#3| "failed") |#3|) 54)) (-1941 ((|#3| |#3|) 123)) (-1623 (((-3 |#3| "failed") |#3| (-763)) 35)) (-3269 (((-3 |#3| "failed") |#3|) 44)) (-4416 ((|#3| |#3|) 112)) (-1648 (((-3 |#3| "failed") |#3|) 42)) (-1892 ((|#3| |#3|) 118)) (-3511 (((-3 |#3| "failed") |#3|) 72)) (-1994 ((|#3| |#3|) 136)) (-4206 (((-3 |#3| "failed") |#3|) 56)) (-1945 ((|#3| |#3|) 124)) (-2581 (((-3 |#3| "failed") |#3|) 68)) (-1986 ((|#3| |#3|) 134)) (-3509 (((-3 |#3| "failed") |#3|) 52)) (-1937 ((|#3| |#3|) 122)) (-1390 (((-3 |#3| "failed") |#3|) 64)) (-1978 ((|#3| |#3|) 132)) (-3322 (((-3 |#3| "failed") |#3|) 48)) (-2790 ((|#3| |#3|) 120)) (-1778 (((-3 |#3| "failed") |#3|) 78)) (-2006 ((|#3| |#3|) 139)) (-1981 (((-3 |#3| "failed") |#3|) 58)) (-1958 ((|#3| |#3|) 127)) (-2037 (((-3 |#3| "failed") |#3|) 74)) (-1998 ((|#3| |#3|) 137)) (-3984 (((-3 |#3| "failed") |#3|) 102)) (-1949 ((|#3| |#3|) 125)) (-1780 (((-3 |#3| "failed") |#3|) 82)) (-2014 ((|#3| |#3|) 141)) (-3517 (((-3 |#3| "failed") |#3|) 109)) (-1966 ((|#3| |#3|) 129)) (-2136 (((-3 |#3| "failed") |#3|) 84)) (-4023 ((|#3| |#3|) 142)) (-4316 (((-3 |#3| "failed") |#3|) 111)) (-1970 ((|#3| |#3|) 130)) (-2236 (((-3 |#3| "failed") |#3|) 80)) (-2010 ((|#3| |#3|) 140)) (-3053 (((-3 |#3| "failed") |#3|) 60)) (-1962 ((|#3| |#3|) 128)) (-3525 (((-3 |#3| "failed") |#3|) 76)) (-2002 ((|#3| |#3|) 138)) (-3928 (((-3 |#3| "failed") |#3|) 105)) (-1953 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-409 (-568))) 40 (|has| |#1| (-365))))) +(((-275 |#1| |#2| |#3| |#4|) (-13 (-984 |#3|) (-10 -7 (IF (|has| |#1| (-365)) (-15 ** (|#3| |#3| (-409 (-568)))) |noBranch|) (-15 -1892 (|#3| |#3|)) (-15 -4416 (|#3| |#3|)) (-15 -2786 (|#3| |#3|)) (-15 -2790 (|#3| |#3|)) (-15 -1933 (|#3| |#3|)) (-15 -1937 (|#3| |#3|)) (-15 -1941 (|#3| |#3|)) (-15 -1945 (|#3| |#3|)) (-15 -1949 (|#3| |#3|)) (-15 -1953 (|#3| |#3|)) (-15 -1958 (|#3| |#3|)) (-15 -1962 (|#3| |#3|)) (-15 -1966 (|#3| |#3|)) (-15 -1970 (|#3| |#3|)) (-15 -1974 (|#3| |#3|)) (-15 -1978 (|#3| |#3|)) (-15 -1982 (|#3| |#3|)) (-15 -1986 (|#3| |#3|)) (-15 -1990 (|#3| |#3|)) (-15 -1994 (|#3| |#3|)) (-15 -1998 (|#3| |#3|)) (-15 -2002 (|#3| |#3|)) (-15 -2006 (|#3| |#3|)) (-15 -2010 (|#3| |#3|)) (-15 -2014 (|#3| |#3|)) (-15 -4023 (|#3| |#3|)))) (-43 (-409 (-568))) (-1203 |#1|) (-1226 |#1| |#2|) (-984 |#2|)) (T -275)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-409 (-568))) (-4 *4 (-365)) (-4 *4 (-43 *3)) (-4 *5 (-1203 *4)) (-5 *1 (-275 *4 *5 *2 *6)) (-4 *2 (-1226 *4 *5)) (-4 *6 (-984 *5)))) (-1892 (*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1203 *3)) (-5 *1 (-275 *3 *4 *2 *5)) (-4 *2 (-1226 *3 *4)) (-4 *5 (-984 *4)))) (-4416 (*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1203 *3)) (-5 *1 (-275 *3 *4 *2 *5)) (-4 *2 (-1226 *3 *4)) (-4 *5 (-984 *4)))) (-2786 (*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1203 *3)) (-5 *1 (-275 *3 *4 *2 *5)) (-4 *2 (-1226 *3 *4)) (-4 *5 (-984 *4)))) (-2790 (*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1203 *3)) (-5 *1 (-275 *3 *4 *2 *5)) (-4 *2 (-1226 *3 *4)) (-4 *5 (-984 *4)))) (-1933 (*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1203 *3)) (-5 *1 (-275 *3 *4 *2 *5)) (-4 *2 (-1226 *3 *4)) (-4 *5 (-984 *4)))) (-1937 (*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1203 *3)) (-5 *1 (-275 *3 *4 *2 *5)) (-4 *2 (-1226 *3 *4)) (-4 *5 (-984 *4)))) (-1941 (*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1203 *3)) (-5 *1 (-275 *3 *4 *2 *5)) (-4 *2 (-1226 *3 *4)) (-4 *5 (-984 *4)))) (-1945 (*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1203 *3)) (-5 *1 (-275 *3 *4 *2 *5)) (-4 *2 (-1226 *3 *4)) (-4 *5 (-984 *4)))) (-1949 (*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1203 *3)) (-5 *1 (-275 *3 *4 *2 *5)) (-4 *2 (-1226 *3 *4)) (-4 *5 (-984 *4)))) (-1953 (*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1203 *3)) (-5 *1 (-275 *3 *4 *2 *5)) (-4 *2 (-1226 *3 *4)) (-4 *5 (-984 *4)))) (-1958 (*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1203 *3)) (-5 *1 (-275 *3 *4 *2 *5)) (-4 *2 (-1226 *3 *4)) (-4 *5 (-984 *4)))) (-1962 (*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1203 *3)) (-5 *1 (-275 *3 *4 *2 *5)) (-4 *2 (-1226 *3 *4)) (-4 *5 (-984 *4)))) (-1966 (*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1203 *3)) (-5 *1 (-275 *3 *4 *2 *5)) (-4 *2 (-1226 *3 *4)) (-4 *5 (-984 *4)))) (-1970 (*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1203 *3)) (-5 *1 (-275 *3 *4 *2 *5)) (-4 *2 (-1226 *3 *4)) (-4 *5 (-984 *4)))) (-1974 (*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1203 *3)) (-5 *1 (-275 *3 *4 *2 *5)) (-4 *2 (-1226 *3 *4)) (-4 *5 (-984 *4)))) (-1978 (*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1203 *3)) (-5 *1 (-275 *3 *4 *2 *5)) (-4 *2 (-1226 *3 *4)) (-4 *5 (-984 *4)))) (-1982 (*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1203 *3)) (-5 *1 (-275 *3 *4 *2 *5)) (-4 *2 (-1226 *3 *4)) (-4 *5 (-984 *4)))) (-1986 (*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1203 *3)) (-5 *1 (-275 *3 *4 *2 *5)) (-4 *2 (-1226 *3 *4)) (-4 *5 (-984 *4)))) (-1990 (*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1203 *3)) (-5 *1 (-275 *3 *4 *2 *5)) (-4 *2 (-1226 *3 *4)) (-4 *5 (-984 *4)))) (-1994 (*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1203 *3)) (-5 *1 (-275 *3 *4 *2 *5)) (-4 *2 (-1226 *3 *4)) (-4 *5 (-984 *4)))) (-1998 (*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1203 *3)) (-5 *1 (-275 *3 *4 *2 *5)) (-4 *2 (-1226 *3 *4)) (-4 *5 (-984 *4)))) (-2002 (*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1203 *3)) (-5 *1 (-275 *3 *4 *2 *5)) (-4 *2 (-1226 *3 *4)) (-4 *5 (-984 *4)))) (-2006 (*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1203 *3)) (-5 *1 (-275 *3 *4 *2 *5)) (-4 *2 (-1226 *3 *4)) (-4 *5 (-984 *4)))) (-2010 (*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1203 *3)) (-5 *1 (-275 *3 *4 *2 *5)) (-4 *2 (-1226 *3 *4)) (-4 *5 (-984 *4)))) (-2014 (*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1203 *3)) (-5 *1 (-275 *3 *4 *2 *5)) (-4 *2 (-1226 *3 *4)) (-4 *5 (-984 *4)))) (-4023 (*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1203 *3)) (-5 *1 (-275 *3 *4 *2 *5)) (-4 *2 (-1226 *3 *4)) (-4 *5 (-984 *4))))) +(-13 (-984 |#3|) (-10 -7 (IF (|has| |#1| (-365)) (-15 ** (|#3| |#3| (-409 (-568)))) |noBranch|) (-15 -1892 (|#3| |#3|)) (-15 -4416 (|#3| |#3|)) (-15 -2786 (|#3| |#3|)) (-15 -2790 (|#3| |#3|)) (-15 -1933 (|#3| |#3|)) (-15 -1937 (|#3| |#3|)) (-15 -1941 (|#3| |#3|)) (-15 -1945 (|#3| |#3|)) (-15 -1949 (|#3| |#3|)) (-15 -1953 (|#3| |#3|)) (-15 -1958 (|#3| |#3|)) (-15 -1962 (|#3| |#3|)) (-15 -1966 (|#3| |#3|)) (-15 -1970 (|#3| |#3|)) (-15 -1974 (|#3| |#3|)) (-15 -1978 (|#3| |#3|)) (-15 -1982 (|#3| |#3|)) (-15 -1986 (|#3| |#3|)) (-15 -1990 (|#3| |#3|)) (-15 -1994 (|#3| |#3|)) (-15 -1998 (|#3| |#3|)) (-15 -2002 (|#3| |#3|)) (-15 -2006 (|#3| |#3|)) (-15 -2010 (|#3| |#3|)) (-15 -2014 (|#3| |#3|)) (-15 -4023 (|#3| |#3|)))) +((-2801 (($ (-1 (-121) |#2|) $) 23)) (-3924 (($ $) 36)) (-3405 (($ (-1 (-121) |#2|) $) NIL) (($ |#2| $) 34)) (-4328 (($ |#2| $) 31) (($ (-1 (-121) |#2|) $) 17)) (-3349 (($ (-1 (-121) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-4122 (($ |#2| $ (-568)) 19) (($ $ $ (-568)) 21)) (-2826 (($ $ (-568)) 11) (($ $ (-1210 (-568))) 14)) (-3845 (($ $ |#2|) 29) (($ $ $) NIL)) (-2768 (($ $ |#2|) 28) (($ |#2| $) NIL) (($ $ $) 25) (($ (-634 $)) NIL))) +(((-276 |#1| |#2|) (-10 -8 (-15 -3349 (|#1| |#1| |#1|)) (-15 -3405 (|#1| |#2| |#1|)) (-15 -3349 (|#1| (-1 (-121) |#2| |#2|) |#1| |#1|)) (-15 -3405 (|#1| (-1 (-121) |#2|) |#1|)) (-15 -3845 (|#1| |#1| |#1|)) (-15 -3845 (|#1| |#1| |#2|)) (-15 -4122 (|#1| |#1| |#1| (-568))) (-15 -4122 (|#1| |#2| |#1| (-568))) (-15 -2826 (|#1| |#1| (-1210 (-568)))) (-15 -2826 (|#1| |#1| (-568))) (-15 -2768 (|#1| (-634 |#1|))) (-15 -2768 (|#1| |#1| |#1|)) (-15 -2768 (|#1| |#2| |#1|)) (-15 -2768 (|#1| |#1| |#2|)) (-15 -4328 (|#1| (-1 (-121) |#2|) |#1|)) (-15 -2801 (|#1| (-1 (-121) |#2|) |#1|)) (-15 -4328 (|#1| |#2| |#1|)) (-15 -3924 (|#1| |#1|))) (-277 |#2|) (-1195)) (T -276)) +NIL +(-10 -8 (-15 -3349 (|#1| |#1| |#1|)) (-15 -3405 (|#1| |#2| |#1|)) (-15 -3349 (|#1| (-1 (-121) |#2| |#2|) |#1| |#1|)) (-15 -3405 (|#1| (-1 (-121) |#2|) |#1|)) (-15 -3845 (|#1| |#1| |#1|)) (-15 -3845 (|#1| |#1| |#2|)) (-15 -4122 (|#1| |#1| |#1| (-568))) (-15 -4122 (|#1| |#2| |#1| (-568))) (-15 -2826 (|#1| |#1| (-1210 (-568)))) (-15 -2826 (|#1| |#1| (-568))) (-15 -2768 (|#1| (-634 |#1|))) (-15 -2768 (|#1| |#1| |#1|)) (-15 -2768 (|#1| |#2| |#1|)) (-15 -2768 (|#1| |#1| |#2|)) (-15 -4328 (|#1| (-1 (-121) |#2|) |#1|)) (-15 -2801 (|#1| (-1 (-121) |#2|) |#1|)) (-15 -4328 (|#1| |#2| |#1|)) (-15 -3924 (|#1| |#1|))) +((-2447 (((-121) $ $) 18 (|has| |#1| (-1090)))) (-1868 (((-1249) $ (-568) (-568)) 37 (|has| $ (-6 -4520)))) (-2510 (((-121) $ (-763)) 8)) (-2436 ((|#1| $ (-568) |#1|) 49 (|has| $ (-6 -4520))) ((|#1| $ (-1210 (-568)) |#1|) 53 (|has| $ (-6 -4520)))) (-3507 (($ (-1 (-121) |#1|) $) 78)) (-2801 (($ (-1 (-121) |#1|) $) 70 (|has| $ (-6 -4519)))) (-2671 (($) 7 T CONST)) (-3369 (($ $) 76 (|has| |#1| (-1090)))) (-3924 (($ $) 73 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-3405 (($ (-1 (-121) |#1|) $) 82) (($ |#1| $) 77 (|has| |#1| (-1090)))) (-4328 (($ |#1| $) 72 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519)))) (($ (-1 (-121) |#1|) $) 69 (|has| $ (-6 -4519)))) (-3092 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 71 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 68 (|has| $ (-6 -4519))) ((|#1| (-1 |#1| |#1| |#1|) $) 67 (|has| $ (-6 -4519)))) (-3989 ((|#1| $ (-568) |#1|) 50 (|has| $ (-6 -4520)))) (-2602 ((|#1| $ (-568)) 48)) (-4360 (((-634 |#1|) $) 30 (|has| $ (-6 -4519)))) (-1849 (($ (-763) |#1|) 64)) (-1737 (((-121) $ (-763)) 9)) (-1881 (((-568) $) 40 (|has| (-568) (-842)))) (-3349 (($ (-1 (-121) |#1| |#1|) $ $) 79) (($ $ $) 75 (|has| |#1| (-842)))) (-1979 (((-634 |#1|) $) 29 (|has| $ (-6 -4519)))) (-3109 (((-121) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-2223 (((-568) $) 41 (|has| (-568) (-842)))) (-3674 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 59)) (-2166 (((-121) $ (-763)) 10)) (-4487 (((-1143) $) 22 (|has| |#1| (-1090)))) (-4450 (($ |#1| $ (-568)) 81) (($ $ $ (-568)) 80)) (-4122 (($ |#1| $ (-568)) 55) (($ $ $ (-568)) 54)) (-4174 (((-634 (-568)) $) 43)) (-3578 (((-121) (-568) $) 44)) (-4022 (((-1108) $) 21 (|has| |#1| (-1090)))) (-3876 ((|#1| $) 39 (|has| (-568) (-842)))) (-3775 (((-3 |#1| "failed") (-1 (-121) |#1|) $) 66)) (-3724 (($ $ |#1|) 38 (|has| $ (-6 -4520)))) (-1387 (((-121) (-1 (-121) |#1|) $) 32 (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-634 |#1|) (-634 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))))) (-3171 (((-121) $ $) 14)) (-4467 (((-121) |#1| $) 42 (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-2041 (((-634 |#1|) $) 45)) (-3084 (((-121) $) 11)) (-3248 (($) 12)) (-2779 ((|#1| $ (-568) |#1|) 47) ((|#1| $ (-568)) 46) (($ $ (-1210 (-568))) 58)) (-1783 (($ $ (-568)) 84) (($ $ (-1210 (-568))) 83)) (-2826 (($ $ (-568)) 57) (($ $ (-1210 (-568))) 56)) (-4168 (((-763) (-1 (-121) |#1|) $) 31 (|has| $ (-6 -4519))) (((-763) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-3863 (($ $) 13)) (-4278 (((-541) $) 74 (|has| |#1| (-609 (-541))))) (-4287 (($ (-634 |#1|)) 65)) (-3845 (($ $ |#1|) 86) (($ $ $) 85)) (-2768 (($ $ |#1|) 63) (($ |#1| $) 62) (($ $ $) 61) (($ (-634 $)) 60)) (-2745 (((-850) $) 20 (|has| |#1| (-1090)))) (-1319 (((-121) (-1 (-121) |#1|) $) 33 (|has| $ (-6 -4519)))) (-1717 (((-121) $ $) 19 (|has| |#1| (-1090)))) (-1697 (((-763) $) 6 (|has| $ (-6 -4519))))) +(((-277 |#1|) (-1275) (-1195)) (T -277)) +((-3845 (*1 *1 *1 *2) (-12 (-4 *1 (-277 *2)) (-4 *2 (-1195)))) (-3845 (*1 *1 *1 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-1195)))) (-1783 (*1 *1 *1 *2) (-12 (-5 *2 (-568)) (-4 *1 (-277 *3)) (-4 *3 (-1195)))) (-1783 (*1 *1 *1 *2) (-12 (-5 *2 (-1210 (-568))) (-4 *1 (-277 *3)) (-4 *3 (-1195)))) (-3405 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-121) *3)) (-4 *1 (-277 *3)) (-4 *3 (-1195)))) (-4450 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-568)) (-4 *1 (-277 *2)) (-4 *2 (-1195)))) (-4450 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-568)) (-4 *1 (-277 *3)) (-4 *3 (-1195)))) (-3349 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-121) *3 *3)) (-4 *1 (-277 *3)) (-4 *3 (-1195)))) (-3507 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-121) *3)) (-4 *1 (-277 *3)) (-4 *3 (-1195)))) (-3405 (*1 *1 *2 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-1195)) (-4 *2 (-1090)))) (-3369 (*1 *1 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-1195)) (-4 *2 (-1090)))) (-3349 (*1 *1 *1 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-1195)) (-4 *2 (-842))))) +(-13 (-640 |t#1|) (-10 -8 (-6 -4520) (-15 -3845 ($ $ |t#1|)) (-15 -3845 ($ $ $)) (-15 -1783 ($ $ (-568))) (-15 -1783 ($ $ (-1210 (-568)))) (-15 -3405 ($ (-1 (-121) |t#1|) $)) (-15 -4450 ($ |t#1| $ (-568))) (-15 -4450 ($ $ $ (-568))) (-15 -3349 ($ (-1 (-121) |t#1| |t#1|) $ $)) (-15 -3507 ($ (-1 (-121) |t#1|) $)) (IF (|has| |t#1| (-1090)) (PROGN (-15 -3405 ($ |t#1| $)) (-15 -3369 ($ $))) |noBranch|) (IF (|has| |t#1| (-842)) (-15 -3349 ($ $ $)) |noBranch|))) +(((-39) . T) ((-105) |has| |#1| (-1090)) ((-608 (-850)) |has| |#1| (-1090)) ((-154 |#1|) . T) ((-609 (-541)) |has| |#1| (-609 (-541))) ((-281 (-568) |#1|) . T) ((-283 (-568) |#1|) . T) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))) ((-499 |#1|) . T) ((-601 (-568) |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))) ((-640 |#1|) . T) ((-1090) |has| |#1| (-1090)) ((-1195) . T)) ((** (($ $ $) 10))) -(((-273 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-274)) (T -273)) +(((-278 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-279)) (T -278)) NIL (-10 -8 (-15 ** (|#1| |#1| |#1|))) -((-4399 (($ $) 6)) (-2469 (($ $) 7)) (** (($ $ $) 8))) -(((-274) (-1267)) (T -274)) -((** (*1 *1 *1 *1) (-4 *1 (-274))) (-2469 (*1 *1 *1) (-4 *1 (-274))) (-4399 (*1 *1 *1) (-4 *1 (-274)))) -(-13 (-10 -8 (-15 -4399 ($ $)) (-15 -2469 ($ $)) (-15 ** ($ $ $)))) -((-2017 (((-626 (-1133 |#1|)) (-1133 |#1|) |#1|) 35)) (-3208 ((|#2| |#2| |#1|) 38)) (-3359 ((|#2| |#2| |#1|) 40)) (-2977 ((|#2| |#2| |#1|) 39))) -(((-275 |#1| |#2|) (-10 -7 (-15 -3208 (|#2| |#2| |#1|)) (-15 -2977 (|#2| |#2| |#1|)) (-15 -3359 (|#2| |#2| |#1|)) (-15 -2017 ((-626 (-1133 |#1|)) (-1133 |#1|) |#1|))) (-359) (-1226 |#1|)) (T -275)) -((-2017 (*1 *2 *3 *4) (-12 (-4 *4 (-359)) (-5 *2 (-626 (-1133 *4))) (-5 *1 (-275 *4 *5)) (-5 *3 (-1133 *4)) (-4 *5 (-1226 *4)))) (-3359 (*1 *2 *2 *3) (-12 (-4 *3 (-359)) (-5 *1 (-275 *3 *2)) (-4 *2 (-1226 *3)))) (-2977 (*1 *2 *2 *3) (-12 (-4 *3 (-359)) (-5 *1 (-275 *3 *2)) (-4 *2 (-1226 *3)))) (-3208 (*1 *2 *2 *3) (-12 (-4 *3 (-359)) (-5 *1 (-275 *3 *2)) (-4 *2 (-1226 *3))))) -(-10 -7 (-15 -3208 (|#2| |#2| |#1|)) (-15 -2977 (|#2| |#2| |#1|)) (-15 -3359 (|#2| |#2| |#1|)) (-15 -2017 ((-626 (-1133 |#1|)) (-1133 |#1|) |#1|))) -((-2778 ((|#2| $ |#1|) 6))) -(((-276 |#1| |#2|) (-1267) (-1082) (-1187)) (T -276)) -((-2778 (*1 *2 *1 *3) (-12 (-4 *1 (-276 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-1187))))) -(-13 (-10 -8 (-15 -2778 (|t#2| $ |t#1|)))) -((-1746 ((|#3| $ |#2| |#3|) 12)) (-1361 ((|#3| $ |#2|) 10))) -(((-277 |#1| |#2| |#3|) (-10 -8 (-15 -1746 (|#3| |#1| |#2| |#3|)) (-15 -1361 (|#3| |#1| |#2|))) (-278 |#2| |#3|) (-1082) (-1187)) (T -277)) -NIL -(-10 -8 (-15 -1746 (|#3| |#1| |#2| |#3|)) (-15 -1361 (|#3| |#1| |#2|))) -((-2764 ((|#2| $ |#1| |#2|) 8 (|has| $ (-6 -4506)))) (-1746 ((|#2| $ |#1| |#2|) 7 (|has| $ (-6 -4506)))) (-1361 ((|#2| $ |#1|) 9)) (-2778 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 10))) -(((-278 |#1| |#2|) (-1267) (-1082) (-1187)) (T -278)) -((-2778 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-278 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-1187)))) (-1361 (*1 *2 *1 *3) (-12 (-4 *1 (-278 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-1187)))) (-2764 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4506)) (-4 *1 (-278 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-1187)))) (-1746 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4506)) (-4 *1 (-278 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-1187))))) -(-13 (-276 |t#1| |t#2|) (-10 -8 (-15 -2778 (|t#2| $ |t#1| |t#2|)) (-15 -1361 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4506)) (PROGN (-15 -2764 (|t#2| $ |t#1| |t#2|)) (-15 -1746 (|t#2| $ |t#1| |t#2|))) |noBranch|))) -(((-276 |#1| |#2|) . T)) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) 34)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) 39)) (-1350 (($ $) 37)) (-3376 (((-121) $) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-4179 (((-121) $ $) NIL)) (-4236 (($) NIL T CONST)) (-2563 (($ $ $) 32)) (-2342 (($ |#2| |#3|) 19)) (-1823 (((-3 $ "failed") $) NIL)) (-2572 (($ $ $) NIL)) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) NIL)) (-2642 (((-121) $) NIL)) (-3856 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-3254 ((|#3| $) NIL)) (-2582 (($ $ $) NIL) (($ (-626 $)) NIL)) (-1291 (((-1135) $) NIL)) (-1701 (($ $) 20)) (-4353 (((-1100) $) NIL)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL)) (-4440 (($ $ $) NIL) (($ (-626 $)) NIL)) (-3505 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2336 (((-3 $ "failed") $ $) NIL)) (-3456 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-3314 (((-3 $ "failed") $ $) NIL)) (-4445 (((-755) $) 33)) (-2778 ((|#2| $ |#2|) 41)) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) 24)) (-2801 (((-842) $) NIL) (($ (-560)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-1751 (((-755)) NIL)) (-2328 (((-121) $ $) NIL)) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (-3304 (($) 27 T CONST)) (-1459 (($) 35 T CONST)) (-1653 (((-121) $ $) NIL)) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) NIL)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) 36))) -(((-279 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-296) (-10 -8 (-15 -3254 (|#3| $)) (-15 -2801 (|#2| $)) (-15 -2342 ($ |#2| |#3|)) (-15 -3314 ((-3 $ "failed") $ $)) (-15 -1823 ((-3 $ "failed") $)) (-15 -1701 ($ $)) (-15 -2778 (|#2| $ |#2|)))) (-170) (-1211 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -279)) -((-1823 (*1 *1 *1) (|partial| -12 (-4 *2 (-170)) (-5 *1 (-279 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1211 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3254 (*1 *2 *1) (-12 (-4 *3 (-170)) (-4 *2 (-23)) (-5 *1 (-279 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1211 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-2801 (*1 *2 *1) (-12 (-4 *2 (-1211 *3)) (-5 *1 (-279 *3 *2 *4 *5 *6 *7)) (-4 *3 (-170)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-2342 (*1 *1 *2 *3) (-12 (-4 *4 (-170)) (-5 *1 (-279 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1211 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3314 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-170)) (-5 *1 (-279 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1211 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1701 (*1 *1 *1) (-12 (-4 *2 (-170)) (-5 *1 (-279 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1211 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2778 (*1 *2 *1 *2) (-12 (-4 *3 (-170)) (-5 *1 (-279 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1211 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))) -(-13 (-296) (-10 -8 (-15 -3254 (|#3| $)) (-15 -2801 (|#2| $)) (-15 -2342 ($ |#2| |#3|)) (-15 -3314 ((-3 $ "failed") $ $)) (-15 -1823 ((-3 $ "failed") $)) (-15 -1701 ($ $)) (-15 -2778 (|#2| $ |#2|)))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-2314 (((-3 $ "failed") $ $) 18)) (-4236 (($) 16 T CONST)) (-1823 (((-3 $ "failed") $) 33)) (-2642 (((-121) $) 30)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-2801 (((-842) $) 11) (($ (-560)) 27)) (-1751 (((-755)) 28)) (-2464 (($ $ (-909)) 25) (($ $ (-755)) 32)) (-3304 (($) 17 T CONST)) (-1459 (($) 29 T CONST)) (-1653 (((-121) $ $) 6)) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 24) (($ $ (-755)) 31)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 23))) -(((-280) (-1267)) (T -280)) -NIL -(-13 (-1039) (-120 $ $) (-10 -7 (-6 -4498))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-105) . T) ((-120 $ $) . T) ((-137) . T) ((-600 (-842)) . T) ((-629 $) . T) ((-708) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1094) . T) ((-1082) . T)) -((-2527 (((-626 (-2 (|:| |eigval| (-3 (-403 (-945 |#1|)) (-1142 (-1153) (-945 |#1|)))) (|:| |geneigvec| (-626 (-671 (-403 (-945 |#1|))))))) (-671 (-403 (-945 |#1|)))) 83)) (-2934 (((-626 (-671 (-403 (-945 |#1|)))) (-2 (|:| |eigval| (-3 (-403 (-945 |#1|)) (-1142 (-1153) (-945 |#1|)))) (|:| |eigmult| (-755)) (|:| |eigvec| (-626 (-671 (-403 (-945 |#1|)))))) (-671 (-403 (-945 |#1|)))) 78) (((-626 (-671 (-403 (-945 |#1|)))) (-3 (-403 (-945 |#1|)) (-1142 (-1153) (-945 |#1|))) (-671 (-403 (-945 |#1|))) (-755) (-755)) 36)) (-4303 (((-626 (-2 (|:| |eigval| (-3 (-403 (-945 |#1|)) (-1142 (-1153) (-945 |#1|)))) (|:| |eigmult| (-755)) (|:| |eigvec| (-626 (-671 (-403 (-945 |#1|))))))) (-671 (-403 (-945 |#1|)))) 80)) (-1312 (((-626 (-671 (-403 (-945 |#1|)))) (-3 (-403 (-945 |#1|)) (-1142 (-1153) (-945 |#1|))) (-671 (-403 (-945 |#1|)))) 60)) (-3995 (((-626 (-3 (-403 (-945 |#1|)) (-1142 (-1153) (-945 |#1|)))) (-671 (-403 (-945 |#1|)))) 59)) (-3642 (((-945 |#1|) (-671 (-403 (-945 |#1|)))) 47) (((-945 |#1|) (-671 (-403 (-945 |#1|))) (-1153)) 48))) -(((-281 |#1|) (-10 -7 (-15 -3642 ((-945 |#1|) (-671 (-403 (-945 |#1|))) (-1153))) (-15 -3642 ((-945 |#1|) (-671 (-403 (-945 |#1|))))) (-15 -3995 ((-626 (-3 (-403 (-945 |#1|)) (-1142 (-1153) (-945 |#1|)))) (-671 (-403 (-945 |#1|))))) (-15 -1312 ((-626 (-671 (-403 (-945 |#1|)))) (-3 (-403 (-945 |#1|)) (-1142 (-1153) (-945 |#1|))) (-671 (-403 (-945 |#1|))))) (-15 -2934 ((-626 (-671 (-403 (-945 |#1|)))) (-3 (-403 (-945 |#1|)) (-1142 (-1153) (-945 |#1|))) (-671 (-403 (-945 |#1|))) (-755) (-755))) (-15 -2934 ((-626 (-671 (-403 (-945 |#1|)))) (-2 (|:| |eigval| (-3 (-403 (-945 |#1|)) (-1142 (-1153) (-945 |#1|)))) (|:| |eigmult| (-755)) (|:| |eigvec| (-626 (-671 (-403 (-945 |#1|)))))) (-671 (-403 (-945 |#1|))))) (-15 -2527 ((-626 (-2 (|:| |eigval| (-3 (-403 (-945 |#1|)) (-1142 (-1153) (-945 |#1|)))) (|:| |geneigvec| (-626 (-671 (-403 (-945 |#1|))))))) (-671 (-403 (-945 |#1|))))) (-15 -4303 ((-626 (-2 (|:| |eigval| (-3 (-403 (-945 |#1|)) (-1142 (-1153) (-945 |#1|)))) (|:| |eigmult| (-755)) (|:| |eigvec| (-626 (-671 (-403 (-945 |#1|))))))) (-671 (-403 (-945 |#1|)))))) (-447)) (T -281)) -((-4303 (*1 *2 *3) (-12 (-4 *4 (-447)) (-5 *2 (-626 (-2 (|:| |eigval| (-3 (-403 (-945 *4)) (-1142 (-1153) (-945 *4)))) (|:| |eigmult| (-755)) (|:| |eigvec| (-626 (-671 (-403 (-945 *4)))))))) (-5 *1 (-281 *4)) (-5 *3 (-671 (-403 (-945 *4)))))) (-2527 (*1 *2 *3) (-12 (-4 *4 (-447)) (-5 *2 (-626 (-2 (|:| |eigval| (-3 (-403 (-945 *4)) (-1142 (-1153) (-945 *4)))) (|:| |geneigvec| (-626 (-671 (-403 (-945 *4)))))))) (-5 *1 (-281 *4)) (-5 *3 (-671 (-403 (-945 *4)))))) (-2934 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-403 (-945 *5)) (-1142 (-1153) (-945 *5)))) (|:| |eigmult| (-755)) (|:| |eigvec| (-626 *4)))) (-4 *5 (-447)) (-5 *2 (-626 (-671 (-403 (-945 *5))))) (-5 *1 (-281 *5)) (-5 *4 (-671 (-403 (-945 *5)))))) (-2934 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-403 (-945 *6)) (-1142 (-1153) (-945 *6)))) (-5 *5 (-755)) (-4 *6 (-447)) (-5 *2 (-626 (-671 (-403 (-945 *6))))) (-5 *1 (-281 *6)) (-5 *4 (-671 (-403 (-945 *6)))))) (-1312 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-403 (-945 *5)) (-1142 (-1153) (-945 *5)))) (-4 *5 (-447)) (-5 *2 (-626 (-671 (-403 (-945 *5))))) (-5 *1 (-281 *5)) (-5 *4 (-671 (-403 (-945 *5)))))) (-3995 (*1 *2 *3) (-12 (-5 *3 (-671 (-403 (-945 *4)))) (-4 *4 (-447)) (-5 *2 (-626 (-3 (-403 (-945 *4)) (-1142 (-1153) (-945 *4))))) (-5 *1 (-281 *4)))) (-3642 (*1 *2 *3) (-12 (-5 *3 (-671 (-403 (-945 *4)))) (-5 *2 (-945 *4)) (-5 *1 (-281 *4)) (-4 *4 (-447)))) (-3642 (*1 *2 *3 *4) (-12 (-5 *3 (-671 (-403 (-945 *5)))) (-5 *4 (-1153)) (-5 *2 (-945 *5)) (-5 *1 (-281 *5)) (-4 *5 (-447))))) -(-10 -7 (-15 -3642 ((-945 |#1|) (-671 (-403 (-945 |#1|))) (-1153))) (-15 -3642 ((-945 |#1|) (-671 (-403 (-945 |#1|))))) (-15 -3995 ((-626 (-3 (-403 (-945 |#1|)) (-1142 (-1153) (-945 |#1|)))) (-671 (-403 (-945 |#1|))))) (-15 -1312 ((-626 (-671 (-403 (-945 |#1|)))) (-3 (-403 (-945 |#1|)) (-1142 (-1153) (-945 |#1|))) (-671 (-403 (-945 |#1|))))) (-15 -2934 ((-626 (-671 (-403 (-945 |#1|)))) (-3 (-403 (-945 |#1|)) (-1142 (-1153) (-945 |#1|))) (-671 (-403 (-945 |#1|))) (-755) (-755))) (-15 -2934 ((-626 (-671 (-403 (-945 |#1|)))) (-2 (|:| |eigval| (-3 (-403 (-945 |#1|)) (-1142 (-1153) (-945 |#1|)))) (|:| |eigmult| (-755)) (|:| |eigvec| (-626 (-671 (-403 (-945 |#1|)))))) (-671 (-403 (-945 |#1|))))) (-15 -2527 ((-626 (-2 (|:| |eigval| (-3 (-403 (-945 |#1|)) (-1142 (-1153) (-945 |#1|)))) (|:| |geneigvec| (-626 (-671 (-403 (-945 |#1|))))))) (-671 (-403 (-945 |#1|))))) (-15 -4303 ((-626 (-2 (|:| |eigval| (-3 (-403 (-945 |#1|)) (-1142 (-1153) (-945 |#1|)))) (|:| |eigmult| (-755)) (|:| |eigvec| (-626 (-671 (-403 (-945 |#1|))))))) (-671 (-403 (-945 |#1|)))))) -((-2803 (((-283 |#2|) (-1 |#2| |#1|) (-283 |#1|)) 14))) -(((-282 |#1| |#2|) (-10 -7 (-15 -2803 ((-283 |#2|) (-1 |#2| |#1|) (-283 |#1|)))) (-1187) (-1187)) (T -282)) -((-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-283 *5)) (-4 *5 (-1187)) (-4 *6 (-1187)) (-5 *2 (-283 *6)) (-5 *1 (-282 *5 *6))))) -(-10 -7 (-15 -2803 ((-283 |#2|) (-1 |#2| |#1|) (-283 |#1|)))) -((-2601 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-2832 (((-121) $) NIL (|has| |#1| (-21)))) (-3984 (($ $) 22)) (-2314 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-4122 (($ $ $) 93 (|has| |#1| (-291)))) (-4236 (($) NIL (-2318 (|has| |#1| (-21)) (|has| |#1| (-708))) CONST)) (-3170 (($ $) 8 (|has| |#1| (-21)))) (-2191 (((-3 $ "failed") $) 68 (|has| |#1| (-708)))) (-3051 ((|#1| $) 21)) (-1823 (((-3 $ "failed") $) 66 (|has| |#1| (-708)))) (-2642 (((-121) $) NIL (|has| |#1| (-708)))) (-2803 (($ (-1 |#1| |#1|) $) 24)) (-3021 ((|#1| $) 9)) (-1658 (($ $) 57 (|has| |#1| (-21)))) (-3453 (((-3 $ "failed") $) 67 (|has| |#1| (-708)))) (-1291 (((-1135) $) NIL (|has| |#1| (-1082)))) (-1701 (($ $) 70 (-2318 (|has| |#1| (-359)) (|has| |#1| (-471))))) (-4353 (((-1100) $) NIL (|has| |#1| (-1082)))) (-2109 (((-626 $) $) 19 (|has| |#1| (-550)))) (-4450 (($ $ $) 34 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-626 $)) 37 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-1153) |#1|) 27 (|has| |#1| (-515 (-1153) |#1|))) (($ $ (-626 (-1153)) (-626 |#1|)) 31 (|has| |#1| (-515 (-1153) |#1|)))) (-2785 (($ |#1| |#1|) 17)) (-4016 (((-139)) 88 (|has| |#1| (-359)))) (-2443 (($ $ (-626 (-1153)) (-626 (-755))) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-1153) (-755)) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-626 (-1153))) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-1153)) 85 (|has| |#1| (-887 (-1153))))) (-3101 (($ $ $) NIL (|has| |#1| (-471)))) (-1671 (($ $ $) NIL (|has| |#1| (-471)))) (-2801 (($ (-560)) NIL (|has| |#1| (-1039))) (((-121) $) 45 (|has| |#1| (-1082))) (((-842) $) 44 (|has| |#1| (-1082)))) (-1751 (((-755)) 73 (|has| |#1| (-1039)))) (-2464 (($ $ (-560)) NIL (|has| |#1| (-471))) (($ $ (-755)) NIL (|has| |#1| (-708))) (($ $ (-909)) NIL (|has| |#1| (-1094)))) (-3304 (($) 55 (|has| |#1| (-21)) CONST)) (-1459 (($) 63 (|has| |#1| (-708)) CONST)) (-2500 (($ $ (-626 (-1153)) (-626 (-755))) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-1153) (-755)) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-626 (-1153))) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-1153)) NIL (|has| |#1| (-887 (-1153))))) (-1653 (($ |#1| |#1|) 20) (((-121) $ $) 40 (|has| |#1| (-1082)))) (-1733 (($ $ |#1|) NIL (|has| |#1| (-359))) (($ $ $) 90 (-2318 (|has| |#1| (-359)) (|has| |#1| (-471))))) (-1725 (($ |#1| $) 53 (|has| |#1| (-21))) (($ $ |#1|) 54 (|has| |#1| (-21))) (($ $ $) 52 (|has| |#1| (-21))) (($ $) 51 (|has| |#1| (-21)))) (-1716 (($ |#1| $) 48 (|has| |#1| (-25))) (($ $ |#1|) 49 (|has| |#1| (-25))) (($ $ $) 47 (|has| |#1| (-25)))) (** (($ $ (-560)) NIL (|has| |#1| (-471))) (($ $ (-755)) NIL (|has| |#1| (-708))) (($ $ (-909)) NIL (|has| |#1| (-1094)))) (* (($ $ |#1|) 61 (|has| |#1| (-1094))) (($ |#1| $) 60 (|has| |#1| (-1094))) (($ $ $) 59 (|has| |#1| (-1094))) (($ (-560) $) 76 (|has| |#1| (-21))) (($ (-755) $) NIL (|has| |#1| (-21))) (($ (-909) $) NIL (|has| |#1| (-25))))) -(((-283 |#1|) (-13 (-1187) (-10 -8 (-15 -1653 ($ |#1| |#1|)) (-15 -2785 ($ |#1| |#1|)) (-15 -3984 ($ $)) (-15 -3021 (|#1| $)) (-15 -3051 (|#1| $)) (-15 -2803 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-515 (-1153) |#1|)) (-6 (-515 (-1153) |#1|)) |noBranch|) (IF (|has| |#1| (-1082)) (PROGN (-6 (-1082)) (-6 (-600 (-121))) (IF (|has| |#1| (-298 |#1|)) (PROGN (-15 -4450 ($ $ $)) (-15 -4450 ($ $ (-626 $)))) |noBranch|)) |noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -1716 ($ |#1| $)) (-15 -1716 ($ $ |#1|))) |noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1658 ($ $)) (-15 -3170 ($ $)) (-15 -1725 ($ |#1| $)) (-15 -1725 ($ $ |#1|))) |noBranch|) (IF (|has| |#1| (-1094)) (PROGN (-6 (-1094)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |noBranch|) (IF (|has| |#1| (-708)) (PROGN (-6 (-708)) (-15 -3453 ((-3 $ "failed") $)) (-15 -2191 ((-3 $ "failed") $))) |noBranch|) (IF (|has| |#1| (-471)) (PROGN (-6 (-471)) (-15 -3453 ((-3 $ "failed") $)) (-15 -2191 ((-3 $ "failed") $))) |noBranch|) (IF (|has| |#1| (-1039)) (PROGN (-6 (-1039)) (-6 (-120 |#1| |#1|))) |noBranch|) (IF (|has| |#1| (-170)) (-6 (-699 |#1|)) |noBranch|) (IF (|has| |#1| (-550)) (-15 -2109 ((-626 $) $)) |noBranch|) (IF (|has| |#1| (-887 (-1153))) (-6 (-887 (-1153))) |noBranch|) (IF (|has| |#1| (-359)) (PROGN (-6 (-1243 |#1|)) (-15 -1733 ($ $ $)) (-15 -1701 ($ $))) |noBranch|) (IF (|has| |#1| (-291)) (-15 -4122 ($ $ $)) |noBranch|))) (-1187)) (T -283)) -((-1653 (*1 *1 *2 *2) (-12 (-5 *1 (-283 *2)) (-4 *2 (-1187)))) (-2785 (*1 *1 *2 *2) (-12 (-5 *1 (-283 *2)) (-4 *2 (-1187)))) (-3984 (*1 *1 *1) (-12 (-5 *1 (-283 *2)) (-4 *2 (-1187)))) (-3021 (*1 *2 *1) (-12 (-5 *1 (-283 *2)) (-4 *2 (-1187)))) (-3051 (*1 *2 *1) (-12 (-5 *1 (-283 *2)) (-4 *2 (-1187)))) (-2803 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1187)) (-5 *1 (-283 *3)))) (-4450 (*1 *1 *1 *1) (-12 (-4 *2 (-298 *2)) (-4 *2 (-1082)) (-4 *2 (-1187)) (-5 *1 (-283 *2)))) (-4450 (*1 *1 *1 *2) (-12 (-5 *2 (-626 (-283 *3))) (-4 *3 (-298 *3)) (-4 *3 (-1082)) (-4 *3 (-1187)) (-5 *1 (-283 *3)))) (-1716 (*1 *1 *2 *1) (-12 (-5 *1 (-283 *2)) (-4 *2 (-25)) (-4 *2 (-1187)))) (-1716 (*1 *1 *1 *2) (-12 (-5 *1 (-283 *2)) (-4 *2 (-25)) (-4 *2 (-1187)))) (-1658 (*1 *1 *1) (-12 (-5 *1 (-283 *2)) (-4 *2 (-21)) (-4 *2 (-1187)))) (-3170 (*1 *1 *1) (-12 (-5 *1 (-283 *2)) (-4 *2 (-21)) (-4 *2 (-1187)))) (-1725 (*1 *1 *2 *1) (-12 (-5 *1 (-283 *2)) (-4 *2 (-21)) (-4 *2 (-1187)))) (-1725 (*1 *1 *1 *2) (-12 (-5 *1 (-283 *2)) (-4 *2 (-21)) (-4 *2 (-1187)))) (-3453 (*1 *1 *1) (|partial| -12 (-5 *1 (-283 *2)) (-4 *2 (-708)) (-4 *2 (-1187)))) (-2191 (*1 *1 *1) (|partial| -12 (-5 *1 (-283 *2)) (-4 *2 (-708)) (-4 *2 (-1187)))) (-2109 (*1 *2 *1) (-12 (-5 *2 (-626 (-283 *3))) (-5 *1 (-283 *3)) (-4 *3 (-550)) (-4 *3 (-1187)))) (-4122 (*1 *1 *1 *1) (-12 (-5 *1 (-283 *2)) (-4 *2 (-291)) (-4 *2 (-1187)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-283 *2)) (-4 *2 (-1094)) (-4 *2 (-1187)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-283 *2)) (-4 *2 (-1094)) (-4 *2 (-1187)))) (-1733 (*1 *1 *1 *1) (-2318 (-12 (-5 *1 (-283 *2)) (-4 *2 (-359)) (-4 *2 (-1187))) (-12 (-5 *1 (-283 *2)) (-4 *2 (-471)) (-4 *2 (-1187))))) (-1701 (*1 *1 *1) (-2318 (-12 (-5 *1 (-283 *2)) (-4 *2 (-359)) (-4 *2 (-1187))) (-12 (-5 *1 (-283 *2)) (-4 *2 (-471)) (-4 *2 (-1187)))))) -(-13 (-1187) (-10 -8 (-15 -1653 ($ |#1| |#1|)) (-15 -2785 ($ |#1| |#1|)) (-15 -3984 ($ $)) (-15 -3021 (|#1| $)) (-15 -3051 (|#1| $)) (-15 -2803 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-515 (-1153) |#1|)) (-6 (-515 (-1153) |#1|)) |noBranch|) (IF (|has| |#1| (-1082)) (PROGN (-6 (-1082)) (-6 (-600 (-121))) (IF (|has| |#1| (-298 |#1|)) (PROGN (-15 -4450 ($ $ $)) (-15 -4450 ($ $ (-626 $)))) |noBranch|)) |noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -1716 ($ |#1| $)) (-15 -1716 ($ $ |#1|))) |noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1658 ($ $)) (-15 -3170 ($ $)) (-15 -1725 ($ |#1| $)) (-15 -1725 ($ $ |#1|))) |noBranch|) (IF (|has| |#1| (-1094)) (PROGN (-6 (-1094)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |noBranch|) (IF (|has| |#1| (-708)) (PROGN (-6 (-708)) (-15 -3453 ((-3 $ "failed") $)) (-15 -2191 ((-3 $ "failed") $))) |noBranch|) (IF (|has| |#1| (-471)) (PROGN (-6 (-471)) (-15 -3453 ((-3 $ "failed") $)) (-15 -2191 ((-3 $ "failed") $))) |noBranch|) (IF (|has| |#1| (-1039)) (PROGN (-6 (-1039)) (-6 (-120 |#1| |#1|))) |noBranch|) (IF (|has| |#1| (-170)) (-6 (-699 |#1|)) |noBranch|) (IF (|has| |#1| (-550)) (-15 -2109 ((-626 $) $)) |noBranch|) (IF (|has| |#1| (-887 (-1153))) (-6 (-887 (-1153))) |noBranch|) (IF (|has| |#1| (-359)) (PROGN (-6 (-1243 |#1|)) (-15 -1733 ($ $ $)) (-15 -1701 ($ $))) |noBranch|) (IF (|has| |#1| (-291)) (-15 -4122 ($ $ $)) |noBranch|))) -((-2601 (((-121) $ $) NIL (-2318 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-4050 (($) NIL) (($ (-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) NIL)) (-2960 (((-1241) $ |#1| |#1|) NIL (|has| $ (-6 -4506)))) (-3909 (((-121) $ (-755)) NIL)) (-2764 ((|#2| $ |#1| |#2|) NIL)) (-3763 (($ (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505)))) (-3802 (($ (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505)))) (-2722 (((-3 |#2| "failed") |#1| $) NIL)) (-4236 (($) NIL T CONST)) (-2868 (($ $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082))))) (-3561 (($ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) NIL (|has| $ (-6 -4505))) (($ (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505))) (((-3 |#2| "failed") |#1| $) NIL)) (-4310 (($ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (($ (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505)))) (-2342 (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) NIL (|has| $ (-6 -4505))) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505)))) (-1746 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4506)))) (-1361 ((|#2| $ |#1|) NIL)) (-1981 (((-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505))) (((-626 |#2|) $) NIL (|has| $ (-6 -4505)))) (-2122 (((-121) $ (-755)) NIL)) (-4099 ((|#1| $) NIL (|has| |#1| (-834)))) (-2130 (((-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505))) (((-626 |#2|) $) NIL (|has| $ (-6 -4505)))) (-2030 (((-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (((-121) |#2| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#2| (-1082))))) (-2767 ((|#1| $) NIL (|has| |#1| (-834)))) (-3778 (($ (-1 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4506))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4506)))) (-2803 (($ (-1 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3441 (((-121) $ (-755)) NIL)) (-1291 (((-1135) $) NIL (-2318 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-1377 (((-626 |#1|) $) NIL)) (-3855 (((-121) |#1| $) NIL)) (-2525 (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) NIL)) (-4345 (($ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) NIL)) (-1529 (((-626 |#1|) $) NIL)) (-1310 (((-121) |#1| $) NIL)) (-4353 (((-1100) $) NIL (-2318 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-2824 ((|#2| $) NIL (|has| |#1| (-834)))) (-3786 (((-3 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) "failed") (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL)) (-3038 (($ $ |#2|) NIL (|has| $ (-6 -4506)))) (-2146 (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) NIL)) (-2865 (((-121) (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505))) (((-121) (-1 (-121) |#2|) $) NIL (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))))) NIL (-12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (($ $ (-283 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) NIL (-12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (($ $ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) NIL (-12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (($ $ (-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) (-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) NIL (-12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (($ $ (-626 |#2|) (-626 |#2|)) NIL (-12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082)))) (($ $ (-283 |#2|)) NIL (-12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082)))) (($ $ (-626 (-283 |#2|))) NIL (-12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082))))) (-2214 (((-121) $ $) NIL)) (-1290 (((-121) |#2| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#2| (-1082))))) (-4460 (((-626 |#2|) $) NIL)) (-4191 (((-121) $) NIL)) (-3260 (($) NIL)) (-2778 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3958 (($) NIL) (($ (-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) NIL)) (-4035 (((-755) (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505))) (((-755) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (((-755) |#2| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#2| (-1082)))) (((-755) (-1 (-121) |#2|) $) NIL (|has| $ (-6 -4505)))) (-2813 (($ $) NIL)) (-4255 (((-533) $) NIL (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-601 (-533))))) (-4162 (($ (-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) NIL)) (-2801 (((-842) $) NIL (-2318 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-1354 (($ (-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) NIL)) (-3656 (((-121) (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505))) (((-121) (-1 (-121) |#2|) $) NIL (|has| $ (-6 -4505)))) (-1653 (((-121) $ $) NIL (-2318 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-2271 (((-755) $) NIL (|has| $ (-6 -4505))))) -(((-284 |#1| |#2|) (-13 (-1164 |#1| |#2|) (-10 -7 (-6 -4505))) (-1082) (-1082)) (T -284)) -NIL -(-13 (-1164 |#1| |#2|) (-10 -7 (-6 -4505))) -((-2301 (((-300) (-1135) (-626 (-1135))) 16) (((-300) (-1135) (-1135)) 15) (((-300) (-626 (-1135))) 14) (((-300) (-1135)) 12))) -(((-285) (-10 -7 (-15 -2301 ((-300) (-1135))) (-15 -2301 ((-300) (-626 (-1135)))) (-15 -2301 ((-300) (-1135) (-1135))) (-15 -2301 ((-300) (-1135) (-626 (-1135)))))) (T -285)) -((-2301 (*1 *2 *3 *4) (-12 (-5 *4 (-626 (-1135))) (-5 *3 (-1135)) (-5 *2 (-300)) (-5 *1 (-285)))) (-2301 (*1 *2 *3 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-300)) (-5 *1 (-285)))) (-2301 (*1 *2 *3) (-12 (-5 *3 (-626 (-1135))) (-5 *2 (-300)) (-5 *1 (-285)))) (-2301 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-300)) (-5 *1 (-285))))) -(-10 -7 (-15 -2301 ((-300) (-1135))) (-15 -2301 ((-300) (-626 (-1135)))) (-15 -2301 ((-300) (-1135) (-1135))) (-15 -2301 ((-300) (-1135) (-626 (-1135))))) -((-2803 ((|#2| (-1 |#2| |#1|) (-1135) (-599 |#1|)) 17))) -(((-286 |#1| |#2|) (-10 -7 (-15 -2803 (|#2| (-1 |#2| |#1|) (-1135) (-599 |#1|)))) (-291) (-1187)) (T -286)) -((-2803 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1135)) (-5 *5 (-599 *6)) (-4 *6 (-291)) (-4 *2 (-1187)) (-5 *1 (-286 *6 *2))))) -(-10 -7 (-15 -2803 (|#2| (-1 |#2| |#1|) (-1135) (-599 |#1|)))) -((-2803 ((|#2| (-1 |#2| |#1|) (-599 |#1|)) 17))) -(((-287 |#1| |#2|) (-10 -7 (-15 -2803 (|#2| (-1 |#2| |#1|) (-599 |#1|)))) (-291) (-291)) (T -287)) -((-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-599 *5)) (-4 *5 (-291)) (-4 *2 (-291)) (-5 *1 (-287 *5 *2))))) -(-10 -7 (-15 -2803 (|#2| (-1 |#2| |#1|) (-599 |#1|)))) -((-2065 (((-121) (-213)) 10))) -(((-288 |#1| |#2|) (-10 -7 (-15 -2065 ((-121) (-213)))) (-213) (-213)) (T -288)) -((-2065 (*1 *2 *3) (-12 (-5 *3 (-213)) (-5 *2 (-121)) (-5 *1 (-288 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-10 -7 (-15 -2065 ((-121) (-213)))) -((-3905 (((-1133 (-213)) (-304 (-213)) (-626 (-1153)) (-1076 (-827 (-213)))) 88)) (-1991 (((-1133 (-213)) (-1236 (-304 (-213))) (-626 (-1153)) (-1076 (-827 (-213)))) 103) (((-1133 (-213)) (-304 (-213)) (-626 (-1153)) (-1076 (-827 (-213)))) 58)) (-3351 (((-626 (-1135)) (-1133 (-213))) NIL)) (-3428 (((-626 (-213)) (-304 (-213)) (-1153) (-1076 (-827 (-213)))) 55)) (-1641 (((-626 (-213)) (-945 (-403 (-560))) (-1153) (-1076 (-827 (-213)))) 47)) (-3409 (((-626 (-1135)) (-626 (-213))) NIL)) (-1508 (((-213) (-1076 (-827 (-213)))) 23)) (-3552 (((-213) (-1076 (-827 (-213)))) 24)) (-1343 (((-121) (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) 51)) (-4116 (((-1135) (-213)) NIL))) -(((-289) (-10 -7 (-15 -1508 ((-213) (-1076 (-827 (-213))))) (-15 -3552 ((-213) (-1076 (-827 (-213))))) (-15 -1343 ((-121) (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213))))) (-15 -3428 ((-626 (-213)) (-304 (-213)) (-1153) (-1076 (-827 (-213))))) (-15 -3905 ((-1133 (-213)) (-304 (-213)) (-626 (-1153)) (-1076 (-827 (-213))))) (-15 -1991 ((-1133 (-213)) (-304 (-213)) (-626 (-1153)) (-1076 (-827 (-213))))) (-15 -1991 ((-1133 (-213)) (-1236 (-304 (-213))) (-626 (-1153)) (-1076 (-827 (-213))))) (-15 -1641 ((-626 (-213)) (-945 (-403 (-560))) (-1153) (-1076 (-827 (-213))))) (-15 -4116 ((-1135) (-213))) (-15 -3409 ((-626 (-1135)) (-626 (-213)))) (-15 -3351 ((-626 (-1135)) (-1133 (-213)))))) (T -289)) -((-3351 (*1 *2 *3) (-12 (-5 *3 (-1133 (-213))) (-5 *2 (-626 (-1135))) (-5 *1 (-289)))) (-3409 (*1 *2 *3) (-12 (-5 *3 (-626 (-213))) (-5 *2 (-626 (-1135))) (-5 *1 (-289)))) (-4116 (*1 *2 *3) (-12 (-5 *3 (-213)) (-5 *2 (-1135)) (-5 *1 (-289)))) (-1641 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-945 (-403 (-560)))) (-5 *4 (-1153)) (-5 *5 (-1076 (-827 (-213)))) (-5 *2 (-626 (-213))) (-5 *1 (-289)))) (-1991 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1236 (-304 (-213)))) (-5 *4 (-626 (-1153))) (-5 *5 (-1076 (-827 (-213)))) (-5 *2 (-1133 (-213))) (-5 *1 (-289)))) (-1991 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-304 (-213))) (-5 *4 (-626 (-1153))) (-5 *5 (-1076 (-827 (-213)))) (-5 *2 (-1133 (-213))) (-5 *1 (-289)))) (-3905 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-304 (-213))) (-5 *4 (-626 (-1153))) (-5 *5 (-1076 (-827 (-213)))) (-5 *2 (-1133 (-213))) (-5 *1 (-289)))) (-3428 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-304 (-213))) (-5 *4 (-1153)) (-5 *5 (-1076 (-827 (-213)))) (-5 *2 (-626 (-213))) (-5 *1 (-289)))) (-1343 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (-5 *2 (-121)) (-5 *1 (-289)))) (-3552 (*1 *2 *3) (-12 (-5 *3 (-1076 (-827 (-213)))) (-5 *2 (-213)) (-5 *1 (-289)))) (-1508 (*1 *2 *3) (-12 (-5 *3 (-1076 (-827 (-213)))) (-5 *2 (-213)) (-5 *1 (-289))))) -(-10 -7 (-15 -1508 ((-213) (-1076 (-827 (-213))))) (-15 -3552 ((-213) (-1076 (-827 (-213))))) (-15 -1343 ((-121) (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213))))) (-15 -3428 ((-626 (-213)) (-304 (-213)) (-1153) (-1076 (-827 (-213))))) (-15 -3905 ((-1133 (-213)) (-304 (-213)) (-626 (-1153)) (-1076 (-827 (-213))))) (-15 -1991 ((-1133 (-213)) (-304 (-213)) (-626 (-1153)) (-1076 (-827 (-213))))) (-15 -1991 ((-1133 (-213)) (-1236 (-304 (-213))) (-626 (-1153)) (-1076 (-827 (-213))))) (-15 -1641 ((-626 (-213)) (-945 (-403 (-560))) (-1153) (-1076 (-827 (-213))))) (-15 -4116 ((-1135) (-213))) (-15 -3409 ((-626 (-1135)) (-626 (-213)))) (-15 -3351 ((-626 (-1135)) (-1133 (-213))))) -((-3249 (((-626 (-599 $)) $) 28)) (-4122 (($ $ (-283 $)) 80) (($ $ (-626 (-283 $))) 120) (($ $ (-626 (-599 $)) (-626 $)) NIL)) (-1473 (((-3 (-599 $) "failed") $) 110)) (-3001 (((-599 $) $) 109)) (-2352 (($ $) 19) (($ (-626 $)) 54)) (-1951 (((-626 (-123)) $) 37)) (-4403 (((-123) (-123)) 90)) (-3348 (((-121) $) 128)) (-2803 (($ (-1 $ $) (-599 $)) 88)) (-4220 (((-3 (-599 $) "failed") $) 92)) (-2181 (($ (-123) $) 60) (($ (-123) (-626 $)) 98)) (-3178 (((-121) $ (-123)) 114) (((-121) $ (-1153)) 113)) (-3165 (((-755) $) 45)) (-4388 (((-121) $ $) 58) (((-121) $ (-1153)) 49)) (-3522 (((-121) $) 126)) (-4450 (($ $ (-599 $) $) NIL) (($ $ (-626 (-599 $)) (-626 $)) NIL) (($ $ (-626 (-283 $))) 118) (($ $ (-283 $)) NIL) (($ $ $ $) NIL) (($ $ (-626 $) (-626 $)) NIL) (($ $ (-626 (-1153)) (-626 (-1 $ $))) 83) (($ $ (-626 (-1153)) (-626 (-1 $ (-626 $)))) NIL) (($ $ (-1153) (-1 $ (-626 $))) 68) (($ $ (-1153) (-1 $ $)) 74) (($ $ (-626 (-123)) (-626 (-1 $ $))) 82) (($ $ (-626 (-123)) (-626 (-1 $ (-626 $)))) 84) (($ $ (-123) (-1 $ (-626 $))) 70) (($ $ (-123) (-1 $ $)) 76)) (-2778 (($ (-123) $) 61) (($ (-123) $ $) 62) (($ (-123) $ $ $) 63) (($ (-123) $ $ $ $) 64) (($ (-123) (-626 $)) 106)) (-4290 (($ $) 51) (($ $ $) 116)) (-4308 (($ $) 17) (($ (-626 $)) 53)) (-2409 (((-121) (-123)) 22))) -(((-290 |#1|) (-10 -8 (-15 -3348 ((-121) |#1|)) (-15 -3522 ((-121) |#1|)) (-15 -4450 (|#1| |#1| (-123) (-1 |#1| |#1|))) (-15 -4450 (|#1| |#1| (-123) (-1 |#1| (-626 |#1|)))) (-15 -4450 (|#1| |#1| (-626 (-123)) (-626 (-1 |#1| (-626 |#1|))))) (-15 -4450 (|#1| |#1| (-626 (-123)) (-626 (-1 |#1| |#1|)))) (-15 -4450 (|#1| |#1| (-1153) (-1 |#1| |#1|))) (-15 -4450 (|#1| |#1| (-1153) (-1 |#1| (-626 |#1|)))) (-15 -4450 (|#1| |#1| (-626 (-1153)) (-626 (-1 |#1| (-626 |#1|))))) (-15 -4450 (|#1| |#1| (-626 (-1153)) (-626 (-1 |#1| |#1|)))) (-15 -4388 ((-121) |#1| (-1153))) (-15 -4388 ((-121) |#1| |#1|)) (-15 -2803 (|#1| (-1 |#1| |#1|) (-599 |#1|))) (-15 -2181 (|#1| (-123) (-626 |#1|))) (-15 -2181 (|#1| (-123) |#1|)) (-15 -3178 ((-121) |#1| (-1153))) (-15 -3178 ((-121) |#1| (-123))) (-15 -2409 ((-121) (-123))) (-15 -4403 ((-123) (-123))) (-15 -1951 ((-626 (-123)) |#1|)) (-15 -3249 ((-626 (-599 |#1|)) |#1|)) (-15 -4220 ((-3 (-599 |#1|) "failed") |#1|)) (-15 -3165 ((-755) |#1|)) (-15 -4290 (|#1| |#1| |#1|)) (-15 -4290 (|#1| |#1|)) (-15 -2352 (|#1| (-626 |#1|))) (-15 -2352 (|#1| |#1|)) (-15 -4308 (|#1| (-626 |#1|))) (-15 -4308 (|#1| |#1|)) (-15 -4122 (|#1| |#1| (-626 (-599 |#1|)) (-626 |#1|))) (-15 -4122 (|#1| |#1| (-626 (-283 |#1|)))) (-15 -4122 (|#1| |#1| (-283 |#1|))) (-15 -2778 (|#1| (-123) (-626 |#1|))) (-15 -2778 (|#1| (-123) |#1| |#1| |#1| |#1|)) (-15 -2778 (|#1| (-123) |#1| |#1| |#1|)) (-15 -2778 (|#1| (-123) |#1| |#1|)) (-15 -2778 (|#1| (-123) |#1|)) (-15 -4450 (|#1| |#1| (-626 |#1|) (-626 |#1|))) (-15 -4450 (|#1| |#1| |#1| |#1|)) (-15 -4450 (|#1| |#1| (-283 |#1|))) (-15 -4450 (|#1| |#1| (-626 (-283 |#1|)))) (-15 -4450 (|#1| |#1| (-626 (-599 |#1|)) (-626 |#1|))) (-15 -4450 (|#1| |#1| (-599 |#1|) |#1|)) (-15 -3001 ((-599 |#1|) |#1|)) (-15 -1473 ((-3 (-599 |#1|) "failed") |#1|))) (-291)) (T -290)) -((-4403 (*1 *2 *2) (-12 (-5 *2 (-123)) (-5 *1 (-290 *3)) (-4 *3 (-291)))) (-2409 (*1 *2 *3) (-12 (-5 *3 (-123)) (-5 *2 (-121)) (-5 *1 (-290 *4)) (-4 *4 (-291))))) -(-10 -8 (-15 -3348 ((-121) |#1|)) (-15 -3522 ((-121) |#1|)) (-15 -4450 (|#1| |#1| (-123) (-1 |#1| |#1|))) (-15 -4450 (|#1| |#1| (-123) (-1 |#1| (-626 |#1|)))) (-15 -4450 (|#1| |#1| (-626 (-123)) (-626 (-1 |#1| (-626 |#1|))))) (-15 -4450 (|#1| |#1| (-626 (-123)) (-626 (-1 |#1| |#1|)))) (-15 -4450 (|#1| |#1| (-1153) (-1 |#1| |#1|))) (-15 -4450 (|#1| |#1| (-1153) (-1 |#1| (-626 |#1|)))) (-15 -4450 (|#1| |#1| (-626 (-1153)) (-626 (-1 |#1| (-626 |#1|))))) (-15 -4450 (|#1| |#1| (-626 (-1153)) (-626 (-1 |#1| |#1|)))) (-15 -4388 ((-121) |#1| (-1153))) (-15 -4388 ((-121) |#1| |#1|)) (-15 -2803 (|#1| (-1 |#1| |#1|) (-599 |#1|))) (-15 -2181 (|#1| (-123) (-626 |#1|))) (-15 -2181 (|#1| (-123) |#1|)) (-15 -3178 ((-121) |#1| (-1153))) (-15 -3178 ((-121) |#1| (-123))) (-15 -2409 ((-121) (-123))) (-15 -4403 ((-123) (-123))) (-15 -1951 ((-626 (-123)) |#1|)) (-15 -3249 ((-626 (-599 |#1|)) |#1|)) (-15 -4220 ((-3 (-599 |#1|) "failed") |#1|)) (-15 -3165 ((-755) |#1|)) (-15 -4290 (|#1| |#1| |#1|)) (-15 -4290 (|#1| |#1|)) (-15 -2352 (|#1| (-626 |#1|))) (-15 -2352 (|#1| |#1|)) (-15 -4308 (|#1| (-626 |#1|))) (-15 -4308 (|#1| |#1|)) (-15 -4122 (|#1| |#1| (-626 (-599 |#1|)) (-626 |#1|))) (-15 -4122 (|#1| |#1| (-626 (-283 |#1|)))) (-15 -4122 (|#1| |#1| (-283 |#1|))) (-15 -2778 (|#1| (-123) (-626 |#1|))) (-15 -2778 (|#1| (-123) |#1| |#1| |#1| |#1|)) (-15 -2778 (|#1| (-123) |#1| |#1| |#1|)) (-15 -2778 (|#1| (-123) |#1| |#1|)) (-15 -2778 (|#1| (-123) |#1|)) (-15 -4450 (|#1| |#1| (-626 |#1|) (-626 |#1|))) (-15 -4450 (|#1| |#1| |#1| |#1|)) (-15 -4450 (|#1| |#1| (-283 |#1|))) (-15 -4450 (|#1| |#1| (-626 (-283 |#1|)))) (-15 -4450 (|#1| |#1| (-626 (-599 |#1|)) (-626 |#1|))) (-15 -4450 (|#1| |#1| (-599 |#1|) |#1|)) (-15 -3001 ((-599 |#1|) |#1|)) (-15 -1473 ((-3 (-599 |#1|) "failed") |#1|))) -((-2601 (((-121) $ $) 7)) (-3249 (((-626 (-599 $)) $) 43)) (-4122 (($ $ (-283 $)) 55) (($ $ (-626 (-283 $))) 54) (($ $ (-626 (-599 $)) (-626 $)) 53)) (-1473 (((-3 (-599 $) "failed") $) 68)) (-3001 (((-599 $) $) 67)) (-2352 (($ $) 50) (($ (-626 $)) 49)) (-1951 (((-626 (-123)) $) 42)) (-4403 (((-123) (-123)) 41)) (-3348 (((-121) $) 21 (|has| $ (-1029 (-560))))) (-2929 (((-1149 $) (-599 $)) 24 (|has| $ (-1039)))) (-4325 (($ $ $) 12)) (-2501 (($ $ $) 13)) (-2803 (($ (-1 $ $) (-599 $)) 35)) (-4220 (((-3 (-599 $) "failed") $) 45)) (-1291 (((-1135) $) 9)) (-1586 (((-626 (-599 $)) $) 44)) (-2181 (($ (-123) $) 37) (($ (-123) (-626 $)) 36)) (-3178 (((-121) $ (-123)) 39) (((-121) $ (-1153)) 38)) (-3165 (((-755) $) 46)) (-4353 (((-1100) $) 10)) (-4388 (((-121) $ $) 34) (((-121) $ (-1153)) 33)) (-3522 (((-121) $) 22 (|has| $ (-1029 (-560))))) (-4450 (($ $ (-599 $) $) 66) (($ $ (-626 (-599 $)) (-626 $)) 65) (($ $ (-626 (-283 $))) 64) (($ $ (-283 $)) 63) (($ $ $ $) 62) (($ $ (-626 $) (-626 $)) 61) (($ $ (-626 (-1153)) (-626 (-1 $ $))) 32) (($ $ (-626 (-1153)) (-626 (-1 $ (-626 $)))) 31) (($ $ (-1153) (-1 $ (-626 $))) 30) (($ $ (-1153) (-1 $ $)) 29) (($ $ (-626 (-123)) (-626 (-1 $ $))) 28) (($ $ (-626 (-123)) (-626 (-1 $ (-626 $)))) 27) (($ $ (-123) (-1 $ (-626 $))) 26) (($ $ (-123) (-1 $ $)) 25)) (-2778 (($ (-123) $) 60) (($ (-123) $ $) 59) (($ (-123) $ $ $) 58) (($ (-123) $ $ $ $) 57) (($ (-123) (-626 $)) 56)) (-4290 (($ $) 48) (($ $ $) 47)) (-3591 (($ $) 23 (|has| $ (-1039)))) (-2801 (((-842) $) 11) (($ (-599 $)) 69)) (-4308 (($ $) 52) (($ (-626 $)) 51)) (-2409 (((-121) (-123)) 40)) (-1691 (((-121) $ $) 15)) (-1675 (((-121) $ $) 16)) (-1653 (((-121) $ $) 6)) (-1683 (((-121) $ $) 14)) (-1667 (((-121) $ $) 17))) -(((-291) (-1267)) (T -291)) -((-2778 (*1 *1 *2 *1) (-12 (-4 *1 (-291)) (-5 *2 (-123)))) (-2778 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-291)) (-5 *2 (-123)))) (-2778 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-291)) (-5 *2 (-123)))) (-2778 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-291)) (-5 *2 (-123)))) (-2778 (*1 *1 *2 *3) (-12 (-5 *2 (-123)) (-5 *3 (-626 *1)) (-4 *1 (-291)))) (-4122 (*1 *1 *1 *2) (-12 (-5 *2 (-283 *1)) (-4 *1 (-291)))) (-4122 (*1 *1 *1 *2) (-12 (-5 *2 (-626 (-283 *1))) (-4 *1 (-291)))) (-4122 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-626 (-599 *1))) (-5 *3 (-626 *1)) (-4 *1 (-291)))) (-4308 (*1 *1 *1) (-4 *1 (-291))) (-4308 (*1 *1 *2) (-12 (-5 *2 (-626 *1)) (-4 *1 (-291)))) (-2352 (*1 *1 *1) (-4 *1 (-291))) (-2352 (*1 *1 *2) (-12 (-5 *2 (-626 *1)) (-4 *1 (-291)))) (-4290 (*1 *1 *1) (-4 *1 (-291))) (-4290 (*1 *1 *1 *1) (-4 *1 (-291))) (-3165 (*1 *2 *1) (-12 (-4 *1 (-291)) (-5 *2 (-755)))) (-4220 (*1 *2 *1) (|partial| -12 (-5 *2 (-599 *1)) (-4 *1 (-291)))) (-1586 (*1 *2 *1) (-12 (-5 *2 (-626 (-599 *1))) (-4 *1 (-291)))) (-3249 (*1 *2 *1) (-12 (-5 *2 (-626 (-599 *1))) (-4 *1 (-291)))) (-1951 (*1 *2 *1) (-12 (-4 *1 (-291)) (-5 *2 (-626 (-123))))) (-4403 (*1 *2 *2) (-12 (-4 *1 (-291)) (-5 *2 (-123)))) (-2409 (*1 *2 *3) (-12 (-4 *1 (-291)) (-5 *3 (-123)) (-5 *2 (-121)))) (-3178 (*1 *2 *1 *3) (-12 (-4 *1 (-291)) (-5 *3 (-123)) (-5 *2 (-121)))) (-3178 (*1 *2 *1 *3) (-12 (-4 *1 (-291)) (-5 *3 (-1153)) (-5 *2 (-121)))) (-2181 (*1 *1 *2 *1) (-12 (-4 *1 (-291)) (-5 *2 (-123)))) (-2181 (*1 *1 *2 *3) (-12 (-5 *2 (-123)) (-5 *3 (-626 *1)) (-4 *1 (-291)))) (-2803 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-599 *1)) (-4 *1 (-291)))) (-4388 (*1 *2 *1 *1) (-12 (-4 *1 (-291)) (-5 *2 (-121)))) (-4388 (*1 *2 *1 *3) (-12 (-4 *1 (-291)) (-5 *3 (-1153)) (-5 *2 (-121)))) (-4450 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-626 (-1153))) (-5 *3 (-626 (-1 *1 *1))) (-4 *1 (-291)))) (-4450 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-626 (-1153))) (-5 *3 (-626 (-1 *1 (-626 *1)))) (-4 *1 (-291)))) (-4450 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-1 *1 (-626 *1))) (-4 *1 (-291)))) (-4450 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-1 *1 *1)) (-4 *1 (-291)))) (-4450 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-626 (-123))) (-5 *3 (-626 (-1 *1 *1))) (-4 *1 (-291)))) (-4450 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-626 (-123))) (-5 *3 (-626 (-1 *1 (-626 *1)))) (-4 *1 (-291)))) (-4450 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-123)) (-5 *3 (-1 *1 (-626 *1))) (-4 *1 (-291)))) (-4450 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-123)) (-5 *3 (-1 *1 *1)) (-4 *1 (-291)))) (-2929 (*1 *2 *3) (-12 (-5 *3 (-599 *1)) (-4 *1 (-1039)) (-4 *1 (-291)) (-5 *2 (-1149 *1)))) (-3591 (*1 *1 *1) (-12 (-4 *1 (-1039)) (-4 *1 (-291)))) (-3522 (*1 *2 *1) (-12 (-4 *1 (-1029 (-560))) (-4 *1 (-291)) (-5 *2 (-121)))) (-3348 (*1 *2 *1) (-12 (-4 *1 (-1029 (-560))) (-4 *1 (-291)) (-5 *2 (-121))))) -(-13 (-834) (-1029 (-599 $)) (-515 (-599 $) $) (-298 $) (-10 -8 (-15 -2778 ($ (-123) $)) (-15 -2778 ($ (-123) $ $)) (-15 -2778 ($ (-123) $ $ $)) (-15 -2778 ($ (-123) $ $ $ $)) (-15 -2778 ($ (-123) (-626 $))) (-15 -4122 ($ $ (-283 $))) (-15 -4122 ($ $ (-626 (-283 $)))) (-15 -4122 ($ $ (-626 (-599 $)) (-626 $))) (-15 -4308 ($ $)) (-15 -4308 ($ (-626 $))) (-15 -2352 ($ $)) (-15 -2352 ($ (-626 $))) (-15 -4290 ($ $)) (-15 -4290 ($ $ $)) (-15 -3165 ((-755) $)) (-15 -4220 ((-3 (-599 $) "failed") $)) (-15 -1586 ((-626 (-599 $)) $)) (-15 -3249 ((-626 (-599 $)) $)) (-15 -1951 ((-626 (-123)) $)) (-15 -4403 ((-123) (-123))) (-15 -2409 ((-121) (-123))) (-15 -3178 ((-121) $ (-123))) (-15 -3178 ((-121) $ (-1153))) (-15 -2181 ($ (-123) $)) (-15 -2181 ($ (-123) (-626 $))) (-15 -2803 ($ (-1 $ $) (-599 $))) (-15 -4388 ((-121) $ $)) (-15 -4388 ((-121) $ (-1153))) (-15 -4450 ($ $ (-626 (-1153)) (-626 (-1 $ $)))) (-15 -4450 ($ $ (-626 (-1153)) (-626 (-1 $ (-626 $))))) (-15 -4450 ($ $ (-1153) (-1 $ (-626 $)))) (-15 -4450 ($ $ (-1153) (-1 $ $))) (-15 -4450 ($ $ (-626 (-123)) (-626 (-1 $ $)))) (-15 -4450 ($ $ (-626 (-123)) (-626 (-1 $ (-626 $))))) (-15 -4450 ($ $ (-123) (-1 $ (-626 $)))) (-15 -4450 ($ $ (-123) (-1 $ $))) (IF (|has| $ (-1039)) (PROGN (-15 -2929 ((-1149 $) (-599 $))) (-15 -3591 ($ $))) |noBranch|) (IF (|has| $ (-1029 (-560))) (PROGN (-15 -3522 ((-121) $)) (-15 -3348 ((-121) $))) |noBranch|))) -(((-105) . T) ((-600 (-842)) . T) ((-298 $) . T) ((-515 (-599 $) $) . T) ((-515 $ $) . T) ((-834) . T) ((-1029 (-599 $)) . T) ((-1082) . T)) -((-3062 (((-626 |#1|) (-626 |#1|)) 10))) -(((-292 |#1|) (-10 -7 (-15 -3062 ((-626 |#1|) (-626 |#1|)))) (-832)) (T -292)) -((-3062 (*1 *2 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-832)) (-5 *1 (-292 *3))))) -(-10 -7 (-15 -3062 ((-626 |#1|) (-626 |#1|)))) -((-2803 (((-671 |#2|) (-1 |#2| |#1|) (-671 |#1|)) 15))) -(((-293 |#1| |#2|) (-10 -7 (-15 -2803 ((-671 |#2|) (-1 |#2| |#1|) (-671 |#1|)))) (-1039) (-1039)) (T -293)) -((-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-671 *5)) (-4 *5 (-1039)) (-4 *6 (-1039)) (-5 *2 (-671 *6)) (-5 *1 (-293 *5 *6))))) -(-10 -7 (-15 -2803 ((-671 |#2|) (-1 |#2| |#1|) (-671 |#1|)))) -((-4053 (((-1236 (-304 (-375))) (-1236 (-304 (-213)))) 105)) (-3251 (((-1076 (-827 (-213))) (-1076 (-827 (-375)))) 39)) (-3351 (((-626 (-1135)) (-1133 (-213))) 87)) (-2896 (((-304 (-375)) (-945 (-213))) 49)) (-2928 (((-213) (-945 (-213))) 45)) (-2749 (((-1135) (-375)) 167)) (-2885 (((-827 (-213)) (-827 (-375))) 33)) (-3363 (((-2 (|:| |additions| (-560)) (|:| |multiplications| (-560)) (|:| |exponentiations| (-560)) (|:| |functionCalls| (-560))) (-1236 (-304 (-213)))) 142)) (-1988 (((-1027) (-2 (|:| -3262 (-375)) (|:| -1337 (-1135)) (|:| |explanations| (-626 (-1135))) (|:| |extra| (-1027)))) 180) (((-1027) (-2 (|:| -3262 (-375)) (|:| -1337 (-1135)) (|:| |explanations| (-626 (-1135))))) 178)) (-3818 (((-671 (-213)) (-626 (-213)) (-755)) 13)) (-1273 (((-1236 (-680)) (-626 (-213))) 94)) (-3409 (((-626 (-1135)) (-626 (-213))) 74)) (-2379 (((-3 (-304 (-213)) "failed") (-304 (-213))) 120)) (-2065 (((-121) (-213) (-1076 (-827 (-213)))) 109)) (-1458 (((-1027) (-2 (|:| |stiffness| (-375)) (|:| |stability| (-375)) (|:| |expense| (-375)) (|:| |accuracy| (-375)) (|:| |intermediateResults| (-375)))) 198)) (-1508 (((-213) (-1076 (-827 (-213)))) 107)) (-3552 (((-213) (-1076 (-827 (-213)))) 108)) (-2286 (((-213) (-403 (-560))) 26)) (-4013 (((-1135) (-375)) 72)) (-4033 (((-213) (-375)) 17)) (-4385 (((-375) (-1236 (-304 (-213)))) 153)) (-3868 (((-304 (-213)) (-304 (-375))) 23)) (-1316 (((-403 (-560)) (-304 (-213))) 52)) (-3928 (((-304 (-403 (-560))) (-304 (-213))) 68)) (-2028 (((-304 (-375)) (-304 (-213))) 98)) (-3708 (((-213) (-304 (-213))) 53)) (-2851 (((-626 (-213)) (-626 (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560)))))) 63)) (-3823 (((-1076 (-827 (-213))) (-1076 (-827 (-213)))) 60)) (-4116 (((-1135) (-213)) 71)) (-1648 (((-680) (-213)) 90)) (-4425 (((-403 (-560)) (-213)) 54)) (-3117 (((-304 (-375)) (-213)) 48)) (-4255 (((-626 (-1076 (-827 (-213)))) (-626 (-1076 (-827 (-375))))) 42)) (-2849 (((-1027) (-626 (-1027))) 163) (((-1027) (-1027) (-1027)) 160)) (-2688 (((-1027) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1133 (-213))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1396 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 194))) -(((-294) (-10 -7 (-15 -4033 ((-213) (-375))) (-15 -3868 ((-304 (-213)) (-304 (-375)))) (-15 -2885 ((-827 (-213)) (-827 (-375)))) (-15 -3251 ((-1076 (-827 (-213))) (-1076 (-827 (-375))))) (-15 -4255 ((-626 (-1076 (-827 (-213)))) (-626 (-1076 (-827 (-375)))))) (-15 -4425 ((-403 (-560)) (-213))) (-15 -1316 ((-403 (-560)) (-304 (-213)))) (-15 -3708 ((-213) (-304 (-213)))) (-15 -2379 ((-3 (-304 (-213)) "failed") (-304 (-213)))) (-15 -4385 ((-375) (-1236 (-304 (-213))))) (-15 -3363 ((-2 (|:| |additions| (-560)) (|:| |multiplications| (-560)) (|:| |exponentiations| (-560)) (|:| |functionCalls| (-560))) (-1236 (-304 (-213))))) (-15 -3928 ((-304 (-403 (-560))) (-304 (-213)))) (-15 -3823 ((-1076 (-827 (-213))) (-1076 (-827 (-213))))) (-15 -2851 ((-626 (-213)) (-626 (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560))))))) (-15 -1648 ((-680) (-213))) (-15 -1273 ((-1236 (-680)) (-626 (-213)))) (-15 -2028 ((-304 (-375)) (-304 (-213)))) (-15 -4053 ((-1236 (-304 (-375))) (-1236 (-304 (-213))))) (-15 -2065 ((-121) (-213) (-1076 (-827 (-213))))) (-15 -4116 ((-1135) (-213))) (-15 -4013 ((-1135) (-375))) (-15 -3409 ((-626 (-1135)) (-626 (-213)))) (-15 -3351 ((-626 (-1135)) (-1133 (-213)))) (-15 -1508 ((-213) (-1076 (-827 (-213))))) (-15 -3552 ((-213) (-1076 (-827 (-213))))) (-15 -2849 ((-1027) (-1027) (-1027))) (-15 -2849 ((-1027) (-626 (-1027)))) (-15 -2749 ((-1135) (-375))) (-15 -1988 ((-1027) (-2 (|:| -3262 (-375)) (|:| -1337 (-1135)) (|:| |explanations| (-626 (-1135)))))) (-15 -1988 ((-1027) (-2 (|:| -3262 (-375)) (|:| -1337 (-1135)) (|:| |explanations| (-626 (-1135))) (|:| |extra| (-1027))))) (-15 -2688 ((-1027) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1133 (-213))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1396 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1458 ((-1027) (-2 (|:| |stiffness| (-375)) (|:| |stability| (-375)) (|:| |expense| (-375)) (|:| |accuracy| (-375)) (|:| |intermediateResults| (-375))))) (-15 -2896 ((-304 (-375)) (-945 (-213)))) (-15 -2928 ((-213) (-945 (-213)))) (-15 -3117 ((-304 (-375)) (-213))) (-15 -2286 ((-213) (-403 (-560)))) (-15 -3818 ((-671 (-213)) (-626 (-213)) (-755))))) (T -294)) -((-3818 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-213))) (-5 *4 (-755)) (-5 *2 (-671 (-213))) (-5 *1 (-294)))) (-2286 (*1 *2 *3) (-12 (-5 *3 (-403 (-560))) (-5 *2 (-213)) (-5 *1 (-294)))) (-3117 (*1 *2 *3) (-12 (-5 *3 (-213)) (-5 *2 (-304 (-375))) (-5 *1 (-294)))) (-2928 (*1 *2 *3) (-12 (-5 *3 (-945 (-213))) (-5 *2 (-213)) (-5 *1 (-294)))) (-2896 (*1 *2 *3) (-12 (-5 *3 (-945 (-213))) (-5 *2 (-304 (-375))) (-5 *1 (-294)))) (-1458 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-375)) (|:| |stability| (-375)) (|:| |expense| (-375)) (|:| |accuracy| (-375)) (|:| |intermediateResults| (-375)))) (-5 *2 (-1027)) (-5 *1 (-294)))) (-2688 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1133 (-213))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1396 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1027)) (-5 *1 (-294)))) (-1988 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3262 (-375)) (|:| -1337 (-1135)) (|:| |explanations| (-626 (-1135))) (|:| |extra| (-1027)))) (-5 *2 (-1027)) (-5 *1 (-294)))) (-1988 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3262 (-375)) (|:| -1337 (-1135)) (|:| |explanations| (-626 (-1135))))) (-5 *2 (-1027)) (-5 *1 (-294)))) (-2749 (*1 *2 *3) (-12 (-5 *3 (-375)) (-5 *2 (-1135)) (-5 *1 (-294)))) (-2849 (*1 *2 *3) (-12 (-5 *3 (-626 (-1027))) (-5 *2 (-1027)) (-5 *1 (-294)))) (-2849 (*1 *2 *2 *2) (-12 (-5 *2 (-1027)) (-5 *1 (-294)))) (-3552 (*1 *2 *3) (-12 (-5 *3 (-1076 (-827 (-213)))) (-5 *2 (-213)) (-5 *1 (-294)))) (-1508 (*1 *2 *3) (-12 (-5 *3 (-1076 (-827 (-213)))) (-5 *2 (-213)) (-5 *1 (-294)))) (-3351 (*1 *2 *3) (-12 (-5 *3 (-1133 (-213))) (-5 *2 (-626 (-1135))) (-5 *1 (-294)))) (-3409 (*1 *2 *3) (-12 (-5 *3 (-626 (-213))) (-5 *2 (-626 (-1135))) (-5 *1 (-294)))) (-4013 (*1 *2 *3) (-12 (-5 *3 (-375)) (-5 *2 (-1135)) (-5 *1 (-294)))) (-4116 (*1 *2 *3) (-12 (-5 *3 (-213)) (-5 *2 (-1135)) (-5 *1 (-294)))) (-2065 (*1 *2 *3 *4) (-12 (-5 *4 (-1076 (-827 (-213)))) (-5 *3 (-213)) (-5 *2 (-121)) (-5 *1 (-294)))) (-4053 (*1 *2 *3) (-12 (-5 *3 (-1236 (-304 (-213)))) (-5 *2 (-1236 (-304 (-375)))) (-5 *1 (-294)))) (-2028 (*1 *2 *3) (-12 (-5 *3 (-304 (-213))) (-5 *2 (-304 (-375))) (-5 *1 (-294)))) (-1273 (*1 *2 *3) (-12 (-5 *3 (-626 (-213))) (-5 *2 (-1236 (-680))) (-5 *1 (-294)))) (-1648 (*1 *2 *3) (-12 (-5 *3 (-213)) (-5 *2 (-680)) (-5 *1 (-294)))) (-2851 (*1 *2 *3) (-12 (-5 *3 (-626 (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560)))))) (-5 *2 (-626 (-213))) (-5 *1 (-294)))) (-3823 (*1 *2 *2) (-12 (-5 *2 (-1076 (-827 (-213)))) (-5 *1 (-294)))) (-3928 (*1 *2 *3) (-12 (-5 *3 (-304 (-213))) (-5 *2 (-304 (-403 (-560)))) (-5 *1 (-294)))) (-3363 (*1 *2 *3) (-12 (-5 *3 (-1236 (-304 (-213)))) (-5 *2 (-2 (|:| |additions| (-560)) (|:| |multiplications| (-560)) (|:| |exponentiations| (-560)) (|:| |functionCalls| (-560)))) (-5 *1 (-294)))) (-4385 (*1 *2 *3) (-12 (-5 *3 (-1236 (-304 (-213)))) (-5 *2 (-375)) (-5 *1 (-294)))) (-2379 (*1 *2 *2) (|partial| -12 (-5 *2 (-304 (-213))) (-5 *1 (-294)))) (-3708 (*1 *2 *3) (-12 (-5 *3 (-304 (-213))) (-5 *2 (-213)) (-5 *1 (-294)))) (-1316 (*1 *2 *3) (-12 (-5 *3 (-304 (-213))) (-5 *2 (-403 (-560))) (-5 *1 (-294)))) (-4425 (*1 *2 *3) (-12 (-5 *3 (-213)) (-5 *2 (-403 (-560))) (-5 *1 (-294)))) (-4255 (*1 *2 *3) (-12 (-5 *3 (-626 (-1076 (-827 (-375))))) (-5 *2 (-626 (-1076 (-827 (-213))))) (-5 *1 (-294)))) (-3251 (*1 *2 *3) (-12 (-5 *3 (-1076 (-827 (-375)))) (-5 *2 (-1076 (-827 (-213)))) (-5 *1 (-294)))) (-2885 (*1 *2 *3) (-12 (-5 *3 (-827 (-375))) (-5 *2 (-827 (-213))) (-5 *1 (-294)))) (-3868 (*1 *2 *3) (-12 (-5 *3 (-304 (-375))) (-5 *2 (-304 (-213))) (-5 *1 (-294)))) (-4033 (*1 *2 *3) (-12 (-5 *3 (-375)) (-5 *2 (-213)) (-5 *1 (-294))))) -(-10 -7 (-15 -4033 ((-213) (-375))) (-15 -3868 ((-304 (-213)) (-304 (-375)))) (-15 -2885 ((-827 (-213)) (-827 (-375)))) (-15 -3251 ((-1076 (-827 (-213))) (-1076 (-827 (-375))))) (-15 -4255 ((-626 (-1076 (-827 (-213)))) (-626 (-1076 (-827 (-375)))))) (-15 -4425 ((-403 (-560)) (-213))) (-15 -1316 ((-403 (-560)) (-304 (-213)))) (-15 -3708 ((-213) (-304 (-213)))) (-15 -2379 ((-3 (-304 (-213)) "failed") (-304 (-213)))) (-15 -4385 ((-375) (-1236 (-304 (-213))))) (-15 -3363 ((-2 (|:| |additions| (-560)) (|:| |multiplications| (-560)) (|:| |exponentiations| (-560)) (|:| |functionCalls| (-560))) (-1236 (-304 (-213))))) (-15 -3928 ((-304 (-403 (-560))) (-304 (-213)))) (-15 -3823 ((-1076 (-827 (-213))) (-1076 (-827 (-213))))) (-15 -2851 ((-626 (-213)) (-626 (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560))))))) (-15 -1648 ((-680) (-213))) (-15 -1273 ((-1236 (-680)) (-626 (-213)))) (-15 -2028 ((-304 (-375)) (-304 (-213)))) (-15 -4053 ((-1236 (-304 (-375))) (-1236 (-304 (-213))))) (-15 -2065 ((-121) (-213) (-1076 (-827 (-213))))) (-15 -4116 ((-1135) (-213))) (-15 -4013 ((-1135) (-375))) (-15 -3409 ((-626 (-1135)) (-626 (-213)))) (-15 -3351 ((-626 (-1135)) (-1133 (-213)))) (-15 -1508 ((-213) (-1076 (-827 (-213))))) (-15 -3552 ((-213) (-1076 (-827 (-213))))) (-15 -2849 ((-1027) (-1027) (-1027))) (-15 -2849 ((-1027) (-626 (-1027)))) (-15 -2749 ((-1135) (-375))) (-15 -1988 ((-1027) (-2 (|:| -3262 (-375)) (|:| -1337 (-1135)) (|:| |explanations| (-626 (-1135)))))) (-15 -1988 ((-1027) (-2 (|:| -3262 (-375)) (|:| -1337 (-1135)) (|:| |explanations| (-626 (-1135))) (|:| |extra| (-1027))))) (-15 -2688 ((-1027) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1133 (-213))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1396 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1458 ((-1027) (-2 (|:| |stiffness| (-375)) (|:| |stability| (-375)) (|:| |expense| (-375)) (|:| |accuracy| (-375)) (|:| |intermediateResults| (-375))))) (-15 -2896 ((-304 (-375)) (-945 (-213)))) (-15 -2928 ((-213) (-945 (-213)))) (-15 -3117 ((-304 (-375)) (-213))) (-15 -2286 ((-213) (-403 (-560)))) (-15 -3818 ((-671 (-213)) (-626 (-213)) (-755)))) -((-4179 (((-121) $ $) 11)) (-2563 (($ $ $) 15)) (-2572 (($ $ $) 14)) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) 43)) (-3856 (((-3 (-626 $) "failed") (-626 $) $) 52)) (-4440 (($ $ $) 21) (($ (-626 $)) NIL)) (-3505 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) 31) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 36)) (-2336 (((-3 $ "failed") $ $) 18)) (-3456 (((-3 (-626 $) "failed") (-626 $) $) 45))) -(((-295 |#1|) (-10 -8 (-15 -3856 ((-3 (-626 |#1|) "failed") (-626 |#1|) |#1|)) (-15 -3505 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3505 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4250 |#1|)) |#1| |#1|)) (-15 -2563 (|#1| |#1| |#1|)) (-15 -2572 (|#1| |#1| |#1|)) (-15 -4179 ((-121) |#1| |#1|)) (-15 -3456 ((-3 (-626 |#1|) "failed") (-626 |#1|) |#1|)) (-15 -3354 ((-2 (|:| -2169 (-626 |#1|)) (|:| -4250 |#1|)) (-626 |#1|))) (-15 -4440 (|#1| (-626 |#1|))) (-15 -4440 (|#1| |#1| |#1|)) (-15 -2336 ((-3 |#1| "failed") |#1| |#1|))) (-296)) (T -295)) -NIL -(-10 -8 (-15 -3856 ((-3 (-626 |#1|) "failed") (-626 |#1|) |#1|)) (-15 -3505 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3505 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4250 |#1|)) |#1| |#1|)) (-15 -2563 (|#1| |#1| |#1|)) (-15 -2572 (|#1| |#1| |#1|)) (-15 -4179 ((-121) |#1| |#1|)) (-15 -3456 ((-3 (-626 |#1|) "failed") (-626 |#1|) |#1|)) (-15 -3354 ((-2 (|:| -2169 (-626 |#1|)) (|:| -4250 |#1|)) (-626 |#1|))) (-15 -4440 (|#1| (-626 |#1|))) (-15 -4440 (|#1| |#1| |#1|)) (-15 -2336 ((-3 |#1| "failed") |#1| |#1|))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) 40)) (-1350 (($ $) 39)) (-3376 (((-121) $) 37)) (-2314 (((-3 $ "failed") $ $) 18)) (-4179 (((-121) $ $) 57)) (-4236 (($) 16 T CONST)) (-2563 (($ $ $) 53)) (-1823 (((-3 $ "failed") $) 33)) (-2572 (($ $ $) 54)) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) 49)) (-2642 (((-121) $) 30)) (-3856 (((-3 (-626 $) "failed") (-626 $) $) 50)) (-2582 (($ $ $) 45) (($ (-626 $)) 44)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) 43)) (-4440 (($ $ $) 47) (($ (-626 $)) 46)) (-3505 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2336 (((-3 $ "failed") $ $) 41)) (-3456 (((-3 (-626 $) "failed") (-626 $) $) 48)) (-4445 (((-755) $) 56)) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) 55)) (-2801 (((-842) $) 11) (($ (-560)) 27) (($ $) 42)) (-1751 (((-755)) 28)) (-2328 (((-121) $ $) 38)) (-2464 (($ $ (-909)) 25) (($ $ (-755)) 32)) (-3304 (($) 17 T CONST)) (-1459 (($) 29 T CONST)) (-1653 (((-121) $ $) 6)) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 24) (($ $ (-755)) 31)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 23))) -(((-296) (-1267)) (T -296)) -((-4179 (*1 *2 *1 *1) (-12 (-4 *1 (-296)) (-5 *2 (-121)))) (-4445 (*1 *2 *1) (-12 (-4 *1 (-296)) (-5 *2 (-755)))) (-2215 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2583 *1) (|:| -4397 *1))) (-4 *1 (-296)))) (-2572 (*1 *1 *1 *1) (-4 *1 (-296))) (-2563 (*1 *1 *1 *1) (-4 *1 (-296))) (-3505 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4250 *1))) (-4 *1 (-296)))) (-3505 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-296)))) (-3856 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-626 *1)) (-4 *1 (-296))))) -(-13 (-908) (-10 -8 (-15 -4179 ((-121) $ $)) (-15 -4445 ((-755) $)) (-15 -2215 ((-2 (|:| -2583 $) (|:| -4397 $)) $ $)) (-15 -2572 ($ $ $)) (-15 -2563 ($ $ $)) (-15 -3505 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $)) (-15 -3505 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -3856 ((-3 (-626 $) "failed") (-626 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-43 $) . T) ((-105) . T) ((-120 $ $) . T) ((-137) . T) ((-600 (-842)) . T) ((-170) . T) ((-280) . T) ((-447) . T) ((-550) . T) ((-629 $) . T) ((-699 $) . T) ((-708) . T) ((-908) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1094) . T) ((-1082) . T)) -((-4450 (($ $ (-626 |#2|) (-626 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-283 |#2|)) 11) (($ $ (-626 (-283 |#2|))) NIL))) -(((-297 |#1| |#2|) (-10 -8 (-15 -4450 (|#1| |#1| (-626 (-283 |#2|)))) (-15 -4450 (|#1| |#1| (-283 |#2|))) (-15 -4450 (|#1| |#1| |#2| |#2|)) (-15 -4450 (|#1| |#1| (-626 |#2|) (-626 |#2|)))) (-298 |#2|) (-1082)) (T -297)) -NIL -(-10 -8 (-15 -4450 (|#1| |#1| (-626 (-283 |#2|)))) (-15 -4450 (|#1| |#1| (-283 |#2|))) (-15 -4450 (|#1| |#1| |#2| |#2|)) (-15 -4450 (|#1| |#1| (-626 |#2|) (-626 |#2|)))) -((-4450 (($ $ (-626 |#1|) (-626 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-283 |#1|)) 9) (($ $ (-626 (-283 |#1|))) 8))) -(((-298 |#1|) (-1267) (-1082)) (T -298)) -((-4450 (*1 *1 *1 *2) (-12 (-5 *2 (-283 *3)) (-4 *1 (-298 *3)) (-4 *3 (-1082)))) (-4450 (*1 *1 *1 *2) (-12 (-5 *2 (-626 (-283 *3))) (-4 *1 (-298 *3)) (-4 *3 (-1082))))) -(-13 (-515 |t#1| |t#1|) (-10 -8 (-15 -4450 ($ $ (-283 |t#1|))) (-15 -4450 ($ $ (-626 (-283 |t#1|)))))) -(((-515 |#1| |#1|) . T)) -((-4450 ((|#1| (-1 |#1| (-560)) (-1155 (-403 (-560)))) 24))) -(((-299 |#1|) (-10 -7 (-15 -4450 (|#1| (-1 |#1| (-560)) (-1155 (-403 (-560)))))) (-43 (-403 (-560)))) (T -299)) -((-4450 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-560))) (-5 *4 (-1155 (-403 (-560)))) (-5 *1 (-299 *2)) (-4 *2 (-43 (-403 (-560))))))) -(-10 -7 (-15 -4450 (|#1| (-1 |#1| (-560)) (-1155 (-403 (-560)))))) -((-2601 (((-121) $ $) NIL)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2801 (((-842) $) 7)) (-1653 (((-121) $ $) 9))) -(((-300) (-1082)) (T -300)) -NIL -(-1082) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) 62)) (-1947 (((-1221 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-296)))) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL)) (-1350 (($ $) NIL)) (-3376 (((-121) $) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-1776 (((-414 (-1149 $)) (-1149 $)) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-896)))) (-3065 (($ $) NIL)) (-2953 (((-414 $) $) NIL)) (-1887 (((-3 (-626 (-1149 $)) "failed") (-626 (-1149 $)) (-1149 $)) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-896)))) (-4179 (((-121) $ $) NIL)) (-4235 (((-560) $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-807)))) (-4236 (($) NIL T CONST)) (-1473 (((-3 (-1221 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1153) "failed") $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-1029 (-1153)))) (((-3 (-403 (-560)) "failed") $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-1029 (-560)))) (((-3 (-560) "failed") $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-1029 (-560)))) (((-3 (-1220 |#2| |#3| |#4|) "failed") $) 24)) (-3001 (((-1221 |#1| |#2| |#3| |#4|) $) NIL) (((-1153) $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-1029 (-1153)))) (((-403 (-560)) $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-1029 (-560)))) (((-560) $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-1029 (-560)))) (((-1220 |#2| |#3| |#4|) $) NIL)) (-2563 (($ $ $) NIL)) (-2616 (((-671 (-560)) (-671 $)) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-622 (-560)))) (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-622 (-560)))) (((-2 (|:| -3818 (-671 (-1221 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1236 (-1221 |#1| |#2| |#3| |#4|)))) (-671 $) (-1236 $)) NIL) (((-671 (-1221 |#1| |#2| |#3| |#4|)) (-671 $)) NIL)) (-1823 (((-3 $ "failed") $) NIL)) (-1666 (($) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-542)))) (-2572 (($ $ $) NIL)) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) NIL)) (-3319 (((-121) $) NIL)) (-1786 (((-121) $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-807)))) (-2399 (((-876 (-560) $) $ (-879 (-560)) (-876 (-560) $)) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-873 (-560)))) (((-876 (-375) $) $ (-879 (-375)) (-876 (-375) $)) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-873 (-375))))) (-2642 (((-121) $) NIL)) (-1540 (($ $) NIL)) (-2132 (((-1221 |#1| |#2| |#3| |#4|) $) 21)) (-1424 (((-3 $ "failed") $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-1128)))) (-2187 (((-121) $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-807)))) (-3856 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-4325 (($ $ $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-834)))) (-2501 (($ $ $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-834)))) (-2803 (($ (-1 (-1221 |#1| |#2| |#3| |#4|) (-1221 |#1| |#2| |#3| |#4|)) $) NIL)) (-4085 (((-3 (-827 |#2|) "failed") $) 76)) (-2582 (($ $ $) NIL) (($ (-626 $)) NIL)) (-1291 (((-1135) $) NIL)) (-1701 (($ $) NIL)) (-1394 (($) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-1128)) CONST)) (-4353 (((-1100) $) NIL)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL)) (-4440 (($ $ $) NIL) (($ (-626 $)) NIL)) (-4302 (($ $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-296)))) (-2150 (((-1221 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-542)))) (-3817 (((-414 (-1149 $)) (-1149 $)) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-896)))) (-3032 (((-414 (-1149 $)) (-1149 $)) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-896)))) (-1601 (((-414 $) $) NIL)) (-3505 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2336 (((-3 $ "failed") $ $) NIL)) (-3456 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-4450 (($ $ (-626 (-1221 |#1| |#2| |#3| |#4|)) (-626 (-1221 |#1| |#2| |#3| |#4|))) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-298 (-1221 |#1| |#2| |#3| |#4|)))) (($ $ (-1221 |#1| |#2| |#3| |#4|) (-1221 |#1| |#2| |#3| |#4|)) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-298 (-1221 |#1| |#2| |#3| |#4|)))) (($ $ (-283 (-1221 |#1| |#2| |#3| |#4|))) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-298 (-1221 |#1| |#2| |#3| |#4|)))) (($ $ (-626 (-283 (-1221 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-298 (-1221 |#1| |#2| |#3| |#4|)))) (($ $ (-626 (-1153)) (-626 (-1221 |#1| |#2| |#3| |#4|))) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-515 (-1153) (-1221 |#1| |#2| |#3| |#4|)))) (($ $ (-1153) (-1221 |#1| |#2| |#3| |#4|)) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-515 (-1153) (-1221 |#1| |#2| |#3| |#4|))))) (-4445 (((-755) $) NIL)) (-2778 (($ $ (-1221 |#1| |#2| |#3| |#4|)) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-276 (-1221 |#1| |#2| |#3| |#4|) (-1221 |#1| |#2| |#3| |#4|))))) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL)) (-2443 (($ $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-221))) (($ $ (-755)) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-221))) (($ $ (-1153)) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-887 (-1153)))) (($ $ (-626 (-1153))) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-887 (-1153)))) (($ $ (-1153) (-755)) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-887 (-1153)))) (($ $ (-626 (-1153)) (-626 (-755))) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-887 (-1153)))) (($ $ (-1 (-1221 |#1| |#2| |#3| |#4|) (-1221 |#1| |#2| |#3| |#4|)) (-755)) NIL) (($ $ (-1 (-1221 |#1| |#2| |#3| |#4|) (-1221 |#1| |#2| |#3| |#4|))) NIL)) (-1646 (($ $) NIL)) (-2139 (((-1221 |#1| |#2| |#3| |#4|) $) 17)) (-4255 (((-879 (-560)) $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-601 (-879 (-560))))) (((-879 (-375)) $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-601 (-879 (-375))))) (((-533) $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-601 (-533)))) (((-375) $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-1013))) (((-213) $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-1013)))) (-3248 (((-3 (-1236 $) "failed") (-671 $)) NIL (-12 (|has| $ (-146)) (|has| (-1221 |#1| |#2| |#3| |#4|) (-896))))) (-2801 (((-842) $) NIL) (($ (-560)) NIL) (($ $) NIL) (($ (-403 (-560))) NIL) (($ (-1221 |#1| |#2| |#3| |#4|)) 28) (($ (-1153)) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-1029 (-1153)))) (($ (-1220 |#2| |#3| |#4|)) 36)) (-2272 (((-3 $ "failed") $) NIL (-2318 (-12 (|has| $ (-146)) (|has| (-1221 |#1| |#2| |#3| |#4|) (-896))) (|has| (-1221 |#1| |#2| |#3| |#4|) (-146))))) (-1751 (((-755)) NIL)) (-4316 (((-1221 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-542)))) (-2328 (((-121) $ $) NIL)) (-1822 (($ $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-807)))) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL)) (-3304 (($) 41 T CONST)) (-1459 (($) NIL T CONST)) (-2500 (($ $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-221))) (($ $ (-755)) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-221))) (($ $ (-1153)) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-887 (-1153)))) (($ $ (-626 (-1153))) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-887 (-1153)))) (($ $ (-1153) (-755)) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-887 (-1153)))) (($ $ (-626 (-1153)) (-626 (-755))) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-887 (-1153)))) (($ $ (-1 (-1221 |#1| |#2| |#3| |#4|) (-1221 |#1| |#2| |#3| |#4|)) (-755)) NIL) (($ $ (-1 (-1221 |#1| |#2| |#3| |#4|) (-1221 |#1| |#2| |#3| |#4|))) NIL)) (-1691 (((-121) $ $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-834)))) (-1675 (((-121) $ $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-834)))) (-1653 (((-121) $ $) NIL)) (-1683 (((-121) $ $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-834)))) (-1667 (((-121) $ $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-834)))) (-1733 (($ $ $) 33) (($ (-1221 |#1| |#2| |#3| |#4|) (-1221 |#1| |#2| |#3| |#4|)) 30)) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) NIL)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) NIL) (($ $ (-403 (-560))) NIL) (($ (-403 (-560)) $) NIL) (($ (-1221 |#1| |#2| |#3| |#4|) $) 29) (($ $ (-1221 |#1| |#2| |#3| |#4|)) NIL))) -(((-301 |#1| |#2| |#3| |#4|) (-13 (-985 (-1221 |#1| |#2| |#3| |#4|)) (-1029 (-1220 |#2| |#3| |#4|)) (-10 -8 (-15 -4085 ((-3 (-827 |#2|) "failed") $)) (-15 -2801 ($ (-1220 |#2| |#3| |#4|))))) (-13 (-834) (-1029 (-560)) (-622 (-560)) (-447)) (-13 (-27) (-1173) (-426 |#1|)) (-1153) |#2|) (T -301)) -((-2801 (*1 *1 *2) (-12 (-5 *2 (-1220 *4 *5 *6)) (-4 *4 (-13 (-27) (-1173) (-426 *3))) (-14 *5 (-1153)) (-14 *6 *4) (-4 *3 (-13 (-834) (-1029 (-560)) (-622 (-560)) (-447))) (-5 *1 (-301 *3 *4 *5 *6)))) (-4085 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-834) (-1029 (-560)) (-622 (-560)) (-447))) (-5 *2 (-827 *4)) (-5 *1 (-301 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1173) (-426 *3))) (-14 *5 (-1153)) (-14 *6 *4)))) -(-13 (-985 (-1221 |#1| |#2| |#3| |#4|)) (-1029 (-1220 |#2| |#3| |#4|)) (-10 -8 (-15 -4085 ((-3 (-827 |#2|) "failed") $)) (-15 -2801 ($ (-1220 |#2| |#3| |#4|))))) -((-2803 (((-304 |#2|) (-1 |#2| |#1|) (-304 |#1|)) 13))) -(((-302 |#1| |#2|) (-10 -7 (-15 -2803 ((-304 |#2|) (-1 |#2| |#1|) (-304 |#1|)))) (-834) (-834)) (T -302)) -((-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-304 *5)) (-4 *5 (-834)) (-4 *6 (-834)) (-5 *2 (-304 *6)) (-5 *1 (-302 *5 *6))))) -(-10 -7 (-15 -2803 ((-304 |#2|) (-1 |#2| |#1|) (-304 |#1|)))) -((-1676 (((-57) |#2| (-283 |#2|) (-755)) 33) (((-57) |#2| (-283 |#2|)) 24) (((-57) |#2| (-755)) 28) (((-57) |#2|) 25) (((-57) (-1153)) 21)) (-3783 (((-57) |#2| (-283 |#2|) (-403 (-560))) 51) (((-57) |#2| (-283 |#2|)) 48) (((-57) |#2| (-403 (-560))) 50) (((-57) |#2|) 49) (((-57) (-1153)) 47)) (-1693 (((-57) |#2| (-283 |#2|) (-403 (-560))) 46) (((-57) |#2| (-283 |#2|)) 43) (((-57) |#2| (-403 (-560))) 45) (((-57) |#2|) 44) (((-57) (-1153)) 42)) (-1684 (((-57) |#2| (-283 |#2|) (-560)) 39) (((-57) |#2| (-283 |#2|)) 35) (((-57) |#2| (-560)) 38) (((-57) |#2|) 36) (((-57) (-1153)) 34))) -(((-303 |#1| |#2|) (-10 -7 (-15 -1676 ((-57) (-1153))) (-15 -1676 ((-57) |#2|)) (-15 -1676 ((-57) |#2| (-755))) (-15 -1676 ((-57) |#2| (-283 |#2|))) (-15 -1676 ((-57) |#2| (-283 |#2|) (-755))) (-15 -1684 ((-57) (-1153))) (-15 -1684 ((-57) |#2|)) (-15 -1684 ((-57) |#2| (-560))) (-15 -1684 ((-57) |#2| (-283 |#2|))) (-15 -1684 ((-57) |#2| (-283 |#2|) (-560))) (-15 -1693 ((-57) (-1153))) (-15 -1693 ((-57) |#2|)) (-15 -1693 ((-57) |#2| (-403 (-560)))) (-15 -1693 ((-57) |#2| (-283 |#2|))) (-15 -1693 ((-57) |#2| (-283 |#2|) (-403 (-560)))) (-15 -3783 ((-57) (-1153))) (-15 -3783 ((-57) |#2|)) (-15 -3783 ((-57) |#2| (-403 (-560)))) (-15 -3783 ((-57) |#2| (-283 |#2|))) (-15 -3783 ((-57) |#2| (-283 |#2|) (-403 (-560))))) (-13 (-447) (-834) (-1029 (-560)) (-622 (-560))) (-13 (-27) (-1173) (-426 |#1|))) (T -303)) -((-3783 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-283 *3)) (-5 *5 (-403 (-560))) (-4 *3 (-13 (-27) (-1173) (-426 *6))) (-4 *6 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-57)) (-5 *1 (-303 *6 *3)))) (-3783 (*1 *2 *3 *4) (-12 (-5 *4 (-283 *3)) (-4 *3 (-13 (-27) (-1173) (-426 *5))) (-4 *5 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-57)) (-5 *1 (-303 *5 *3)))) (-3783 (*1 *2 *3 *4) (-12 (-5 *4 (-403 (-560))) (-4 *5 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-57)) (-5 *1 (-303 *5 *3)) (-4 *3 (-13 (-27) (-1173) (-426 *5))))) (-3783 (*1 *2 *3) (-12 (-4 *4 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-57)) (-5 *1 (-303 *4 *3)) (-4 *3 (-13 (-27) (-1173) (-426 *4))))) (-3783 (*1 *2 *3) (-12 (-5 *3 (-1153)) (-4 *4 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-57)) (-5 *1 (-303 *4 *5)) (-4 *5 (-13 (-27) (-1173) (-426 *4))))) (-1693 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-283 *3)) (-5 *5 (-403 (-560))) (-4 *3 (-13 (-27) (-1173) (-426 *6))) (-4 *6 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-57)) (-5 *1 (-303 *6 *3)))) (-1693 (*1 *2 *3 *4) (-12 (-5 *4 (-283 *3)) (-4 *3 (-13 (-27) (-1173) (-426 *5))) (-4 *5 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-57)) (-5 *1 (-303 *5 *3)))) (-1693 (*1 *2 *3 *4) (-12 (-5 *4 (-403 (-560))) (-4 *5 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-57)) (-5 *1 (-303 *5 *3)) (-4 *3 (-13 (-27) (-1173) (-426 *5))))) (-1693 (*1 *2 *3) (-12 (-4 *4 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-57)) (-5 *1 (-303 *4 *3)) (-4 *3 (-13 (-27) (-1173) (-426 *4))))) (-1693 (*1 *2 *3) (-12 (-5 *3 (-1153)) (-4 *4 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-57)) (-5 *1 (-303 *4 *5)) (-4 *5 (-13 (-27) (-1173) (-426 *4))))) (-1684 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-283 *3)) (-4 *3 (-13 (-27) (-1173) (-426 *6))) (-4 *6 (-13 (-447) (-834) (-1029 *5) (-622 *5))) (-5 *5 (-560)) (-5 *2 (-57)) (-5 *1 (-303 *6 *3)))) (-1684 (*1 *2 *3 *4) (-12 (-5 *4 (-283 *3)) (-4 *3 (-13 (-27) (-1173) (-426 *5))) (-4 *5 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-57)) (-5 *1 (-303 *5 *3)))) (-1684 (*1 *2 *3 *4) (-12 (-5 *4 (-560)) (-4 *5 (-13 (-447) (-834) (-1029 *4) (-622 *4))) (-5 *2 (-57)) (-5 *1 (-303 *5 *3)) (-4 *3 (-13 (-27) (-1173) (-426 *5))))) (-1684 (*1 *2 *3) (-12 (-4 *4 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-57)) (-5 *1 (-303 *4 *3)) (-4 *3 (-13 (-27) (-1173) (-426 *4))))) (-1684 (*1 *2 *3) (-12 (-5 *3 (-1153)) (-4 *4 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-57)) (-5 *1 (-303 *4 *5)) (-4 *5 (-13 (-27) (-1173) (-426 *4))))) (-1676 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-283 *3)) (-5 *5 (-755)) (-4 *3 (-13 (-27) (-1173) (-426 *6))) (-4 *6 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-57)) (-5 *1 (-303 *6 *3)))) (-1676 (*1 *2 *3 *4) (-12 (-5 *4 (-283 *3)) (-4 *3 (-13 (-27) (-1173) (-426 *5))) (-4 *5 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-57)) (-5 *1 (-303 *5 *3)))) (-1676 (*1 *2 *3 *4) (-12 (-5 *4 (-755)) (-4 *5 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-57)) (-5 *1 (-303 *5 *3)) (-4 *3 (-13 (-27) (-1173) (-426 *5))))) (-1676 (*1 *2 *3) (-12 (-4 *4 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-57)) (-5 *1 (-303 *4 *3)) (-4 *3 (-13 (-27) (-1173) (-426 *4))))) (-1676 (*1 *2 *3) (-12 (-5 *3 (-1153)) (-4 *4 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-57)) (-5 *1 (-303 *4 *5)) (-4 *5 (-13 (-27) (-1173) (-426 *4)))))) -(-10 -7 (-15 -1676 ((-57) (-1153))) (-15 -1676 ((-57) |#2|)) (-15 -1676 ((-57) |#2| (-755))) (-15 -1676 ((-57) |#2| (-283 |#2|))) (-15 -1676 ((-57) |#2| (-283 |#2|) (-755))) (-15 -1684 ((-57) (-1153))) (-15 -1684 ((-57) |#2|)) (-15 -1684 ((-57) |#2| (-560))) (-15 -1684 ((-57) |#2| (-283 |#2|))) (-15 -1684 ((-57) |#2| (-283 |#2|) (-560))) (-15 -1693 ((-57) (-1153))) (-15 -1693 ((-57) |#2|)) (-15 -1693 ((-57) |#2| (-403 (-560)))) (-15 -1693 ((-57) |#2| (-283 |#2|))) (-15 -1693 ((-57) |#2| (-283 |#2|) (-403 (-560)))) (-15 -3783 ((-57) (-1153))) (-15 -3783 ((-57) |#2|)) (-15 -3783 ((-57) |#2| (-403 (-560)))) (-15 -3783 ((-57) |#2| (-283 |#2|))) (-15 -3783 ((-57) |#2| (-283 |#2|) (-403 (-560))))) -((-2601 (((-121) $ $) NIL)) (-3905 (((-626 $) $ (-1153)) NIL (|has| |#1| (-550))) (((-626 $) $) NIL (|has| |#1| (-550))) (((-626 $) (-1149 $) (-1153)) NIL (|has| |#1| (-550))) (((-626 $) (-1149 $)) NIL (|has| |#1| (-550))) (((-626 $) (-945 $)) NIL (|has| |#1| (-550)))) (-4448 (($ $ (-1153)) NIL (|has| |#1| (-550))) (($ $) NIL (|has| |#1| (-550))) (($ (-1149 $) (-1153)) NIL (|has| |#1| (-550))) (($ (-1149 $)) NIL (|has| |#1| (-550))) (($ (-945 $)) NIL (|has| |#1| (-550)))) (-2832 (((-121) $) 27 (-2318 (|has| |#1| (-25)) (-12 (|has| |#1| (-622 (-560))) (|has| |#1| (-1039)))))) (-1654 (((-626 (-1153)) $) 344)) (-1593 (((-403 (-1149 $)) $ (-599 $)) NIL (|has| |#1| (-550)))) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL (|has| |#1| (-550)))) (-1350 (($ $) NIL (|has| |#1| (-550)))) (-3376 (((-121) $) NIL (|has| |#1| (-550)))) (-3249 (((-626 (-599 $)) $) NIL)) (-2570 (($ $) 154 (|has| |#1| (-550)))) (-2514 (($ $) 130 (|has| |#1| (-550)))) (-1796 (($ $ (-1074 $)) 215 (|has| |#1| (-550))) (($ $ (-1153)) 211 (|has| |#1| (-550)))) (-2314 (((-3 $ "failed") $ $) NIL (-2318 (|has| |#1| (-21)) (-12 (|has| |#1| (-622 (-560))) (|has| |#1| (-1039)))))) (-4122 (($ $ (-283 $)) NIL) (($ $ (-626 (-283 $))) 360) (($ $ (-626 (-599 $)) (-626 $)) 403)) (-1776 (((-414 (-1149 $)) (-1149 $)) 288 (-12 (|has| |#1| (-447)) (|has| |#1| (-550))))) (-3065 (($ $) NIL (|has| |#1| (-550)))) (-2953 (((-414 $) $) NIL (|has| |#1| (-550)))) (-2479 (($ $) NIL (|has| |#1| (-550)))) (-4179 (((-121) $ $) NIL (|has| |#1| (-550)))) (-2561 (($ $) 150 (|has| |#1| (-550)))) (-2790 (($ $) 126 (|has| |#1| (-550)))) (-4075 (($ $ (-560)) 64 (|has| |#1| (-550)))) (-2579 (($ $) 158 (|has| |#1| (-550)))) (-2523 (($ $) 134 (|has| |#1| (-550)))) (-4236 (($) NIL (-2318 (|has| |#1| (-25)) (-12 (|has| |#1| (-622 (-560))) (|has| |#1| (-1039))) (|has| |#1| (-1094))) CONST)) (-2257 (((-626 $) $ (-1153)) NIL (|has| |#1| (-550))) (((-626 $) $) NIL (|has| |#1| (-550))) (((-626 $) (-1149 $) (-1153)) NIL (|has| |#1| (-550))) (((-626 $) (-1149 $)) NIL (|has| |#1| (-550))) (((-626 $) (-945 $)) NIL (|has| |#1| (-550)))) (-1449 (($ $ (-1153)) NIL (|has| |#1| (-550))) (($ $) NIL (|has| |#1| (-550))) (($ (-1149 $) (-1153)) 117 (|has| |#1| (-550))) (($ (-1149 $)) NIL (|has| |#1| (-550))) (($ (-945 $)) NIL (|has| |#1| (-550)))) (-1473 (((-3 (-599 $) "failed") $) 17) (((-3 (-1153) "failed") $) NIL) (((-3 |#1| "failed") $) 412) (((-3 (-53) "failed") $) 317 (-12 (|has| |#1| (-550)) (|has| |#1| (-1029 (-560))))) (((-3 (-560) "failed") $) NIL (|has| |#1| (-1029 (-560)))) (((-3 (-403 (-945 |#1|)) "failed") $) NIL (|has| |#1| (-550))) (((-3 (-945 |#1|) "failed") $) NIL (|has| |#1| (-1039))) (((-3 (-403 (-560)) "failed") $) 45 (-2318 (-12 (|has| |#1| (-550)) (|has| |#1| (-1029 (-560)))) (|has| |#1| (-1029 (-403 (-560))))))) (-3001 (((-599 $) $) 11) (((-1153) $) NIL) ((|#1| $) 394) (((-53) $) NIL (-12 (|has| |#1| (-550)) (|has| |#1| (-1029 (-560))))) (((-560) $) NIL (|has| |#1| (-1029 (-560)))) (((-403 (-945 |#1|)) $) NIL (|has| |#1| (-550))) (((-945 |#1|) $) NIL (|has| |#1| (-1039))) (((-403 (-560)) $) 301 (-2318 (-12 (|has| |#1| (-550)) (|has| |#1| (-1029 (-560)))) (|has| |#1| (-1029 (-403 (-560))))))) (-2563 (($ $ $) NIL (|has| |#1| (-550)))) (-2616 (((-2 (|:| -3818 (-671 |#1|)) (|:| |vec| (-1236 |#1|))) (-671 $) (-1236 $)) 110 (|has| |#1| (-1039))) (((-671 |#1|) (-671 $)) 102 (|has| |#1| (-1039))) (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) NIL (-12 (|has| |#1| (-622 (-560))) (|has| |#1| (-1039)))) (((-671 (-560)) (-671 $)) NIL (-12 (|has| |#1| (-622 (-560))) (|has| |#1| (-1039))))) (-2342 (($ $) 84 (|has| |#1| (-550)))) (-1823 (((-3 $ "failed") $) NIL (-2318 (-12 (|has| |#1| (-622 (-560))) (|has| |#1| (-1039))) (|has| |#1| (-1094))))) (-2572 (($ $ $) NIL (|has| |#1| (-550)))) (-2035 (($ $ (-1074 $)) 219 (|has| |#1| (-550))) (($ $ (-1153)) 217 (|has| |#1| (-550)))) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) NIL (|has| |#1| (-550)))) (-3319 (((-121) $) NIL (|has| |#1| (-550)))) (-1941 (($ $ $) 185 (|has| |#1| (-550)))) (-2474 (($) 120 (|has| |#1| (-550)))) (-3634 (($ $ $) 205 (|has| |#1| (-550)))) (-2399 (((-876 (-560) $) $ (-879 (-560)) (-876 (-560) $)) 366 (|has| |#1| (-873 (-560)))) (((-876 (-375) $) $ (-879 (-375)) (-876 (-375) $)) 372 (|has| |#1| (-873 (-375))))) (-2352 (($ $) NIL) (($ (-626 $)) NIL)) (-1951 (((-626 (-123)) $) NIL)) (-4403 (((-123) (-123)) 260)) (-2642 (((-121) $) 25 (-2318 (-12 (|has| |#1| (-622 (-560))) (|has| |#1| (-1039))) (|has| |#1| (-1094))))) (-3348 (((-121) $) NIL (|has| $ (-1029 (-560))))) (-1540 (($ $) 66 (|has| |#1| (-1039)))) (-2132 (((-1105 |#1| (-599 $)) $) 79 (|has| |#1| (-1039)))) (-3576 (((-121) $) 46 (|has| |#1| (-550)))) (-2586 (($ $ (-560)) NIL (|has| |#1| (-550)))) (-3856 (((-3 (-626 $) "failed") (-626 $) $) NIL (|has| |#1| (-550)))) (-2929 (((-1149 $) (-599 $)) 261 (|has| $ (-1039)))) (-4325 (($ $ $) NIL)) (-2501 (($ $ $) NIL)) (-2803 (($ (-1 $ $) (-599 $)) 399)) (-4220 (((-3 (-599 $) "failed") $) NIL)) (-4399 (($ $) 124 (|has| |#1| (-550)))) (-2489 (($ $) 230 (|has| |#1| (-550)))) (-2582 (($ (-626 $)) NIL (|has| |#1| (-550))) (($ $ $) NIL (|has| |#1| (-550)))) (-1291 (((-1135) $) NIL)) (-1586 (((-626 (-599 $)) $) 48)) (-2181 (($ (-123) $) NIL) (($ (-123) (-626 $)) 404)) (-3665 (((-3 (-626 $) "failed") $) NIL (|has| |#1| (-1094)))) (-3004 (((-3 (-2 (|:| |val| $) (|:| -4034 (-560))) "failed") $) NIL (|has| |#1| (-1039)))) (-2327 (((-3 (-626 $) "failed") $) 407 (|has| |#1| (-25)))) (-1355 (((-3 (-2 (|:| -2169 (-560)) (|:| |var| (-599 $))) "failed") $) 411 (|has| |#1| (-25)))) (-2913 (((-3 (-2 (|:| |var| (-599 $)) (|:| -4034 (-560))) "failed") $) NIL (|has| |#1| (-1094))) (((-3 (-2 (|:| |var| (-599 $)) (|:| -4034 (-560))) "failed") $ (-123)) NIL (|has| |#1| (-1039))) (((-3 (-2 (|:| |var| (-599 $)) (|:| -4034 (-560))) "failed") $ (-1153)) NIL (|has| |#1| (-1039)))) (-3178 (((-121) $ (-123)) NIL) (((-121) $ (-1153)) 52)) (-1701 (($ $) NIL (-2318 (|has| |#1| (-471)) (|has| |#1| (-550))))) (-4041 (($ $ (-1153)) 234 (|has| |#1| (-550))) (($ $ (-1074 $)) 236 (|has| |#1| (-550)))) (-3165 (((-755) $) NIL)) (-4353 (((-1100) $) NIL)) (-1704 (((-121) $) 43)) (-1711 ((|#1| $) NIL)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) 281 (|has| |#1| (-550)))) (-4440 (($ (-626 $)) NIL (|has| |#1| (-550))) (($ $ $) NIL (|has| |#1| (-550)))) (-4388 (((-121) $ $) NIL) (((-121) $ (-1153)) NIL)) (-1820 (($ $ (-1153)) 209 (|has| |#1| (-550))) (($ $) 207 (|has| |#1| (-550)))) (-2691 (($ $) 201 (|has| |#1| (-550)))) (-3032 (((-414 (-1149 $)) (-1149 $)) 286 (-12 (|has| |#1| (-447)) (|has| |#1| (-550))))) (-1601 (((-414 $) $) NIL (|has| |#1| (-550)))) (-3505 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-550))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL (|has| |#1| (-550)))) (-2336 (((-3 $ "failed") $ $) NIL (|has| |#1| (-550)))) (-3456 (((-3 (-626 $) "failed") (-626 $) $) NIL (|has| |#1| (-550)))) (-2469 (($ $) 122 (|has| |#1| (-550)))) (-3522 (((-121) $) NIL (|has| $ (-1029 (-560))))) (-4450 (($ $ (-599 $) $) NIL) (($ $ (-626 (-599 $)) (-626 $)) 398) (($ $ (-626 (-283 $))) NIL) (($ $ (-283 $)) NIL) (($ $ $ $) NIL) (($ $ (-626 $) (-626 $)) NIL) (($ $ (-626 (-1153)) (-626 (-1 $ $))) NIL) (($ $ (-626 (-1153)) (-626 (-1 $ (-626 $)))) NIL) (($ $ (-1153) (-1 $ (-626 $))) NIL) (($ $ (-1153) (-1 $ $)) NIL) (($ $ (-626 (-123)) (-626 (-1 $ $))) 354) (($ $ (-626 (-123)) (-626 (-1 $ (-626 $)))) NIL) (($ $ (-123) (-1 $ (-626 $))) NIL) (($ $ (-123) (-1 $ $)) NIL) (($ $ (-1153)) NIL (|has| |#1| (-601 (-533)))) (($ $ (-626 (-1153))) NIL (|has| |#1| (-601 (-533)))) (($ $) NIL (|has| |#1| (-601 (-533)))) (($ $ (-123) $ (-1153)) 342 (|has| |#1| (-601 (-533)))) (($ $ (-626 (-123)) (-626 $) (-1153)) 341 (|has| |#1| (-601 (-533)))) (($ $ (-626 (-1153)) (-626 (-755)) (-626 (-1 $ $))) NIL (|has| |#1| (-1039))) (($ $ (-626 (-1153)) (-626 (-755)) (-626 (-1 $ (-626 $)))) NIL (|has| |#1| (-1039))) (($ $ (-1153) (-755) (-1 $ (-626 $))) NIL (|has| |#1| (-1039))) (($ $ (-1153) (-755) (-1 $ $)) NIL (|has| |#1| (-1039)))) (-4445 (((-755) $) NIL (|has| |#1| (-550)))) (-2494 (($ $) 222 (|has| |#1| (-550)))) (-2778 (($ (-123) $) NIL) (($ (-123) $ $) NIL) (($ (-123) $ $ $) NIL) (($ (-123) $ $ $ $) NIL) (($ (-123) (-626 $)) NIL)) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL (|has| |#1| (-550)))) (-4290 (($ $) NIL) (($ $ $) NIL)) (-2510 (($ $) 232 (|has| |#1| (-550)))) (-4098 (($ $) 183 (|has| |#1| (-550)))) (-2443 (($ $ (-626 (-1153)) (-626 (-755))) NIL (|has| |#1| (-1039))) (($ $ (-1153) (-755)) NIL (|has| |#1| (-1039))) (($ $ (-626 (-1153))) NIL (|has| |#1| (-1039))) (($ $ (-1153)) NIL (|has| |#1| (-1039)))) (-1646 (($ $) 67 (|has| |#1| (-550)))) (-2139 (((-1105 |#1| (-599 $)) $) 81 (|has| |#1| (-550)))) (-3591 (($ $) 299 (|has| $ (-1039)))) (-2585 (($ $) 160 (|has| |#1| (-550)))) (-2528 (($ $) 136 (|has| |#1| (-550)))) (-2575 (($ $) 156 (|has| |#1| (-550)))) (-2519 (($ $) 132 (|has| |#1| (-550)))) (-2566 (($ $) 152 (|has| |#1| (-550)))) (-2795 (($ $) 128 (|has| |#1| (-550)))) (-4255 (((-879 (-560)) $) NIL (|has| |#1| (-601 (-879 (-560))))) (((-879 (-375)) $) NIL (|has| |#1| (-601 (-879 (-375))))) (($ (-414 $)) NIL (|has| |#1| (-550))) (((-533) $) 339 (|has| |#1| (-601 (-533))))) (-3101 (($ $ $) NIL (|has| |#1| (-471)))) (-1671 (($ $ $) NIL (|has| |#1| (-471)))) (-2801 (((-842) $) 397) (($ (-599 $)) 388) (($ (-1153)) 356) (($ |#1|) 318) (($ $) NIL (|has| |#1| (-550))) (($ (-53)) 293 (-12 (|has| |#1| (-550)) (|has| |#1| (-1029 (-560))))) (($ (-1105 |#1| (-599 $))) 83 (|has| |#1| (-1039))) (($ (-403 |#1|)) NIL (|has| |#1| (-550))) (($ (-945 (-403 |#1|))) NIL (|has| |#1| (-550))) (($ (-403 (-945 (-403 |#1|)))) NIL (|has| |#1| (-550))) (($ (-403 (-945 |#1|))) NIL (|has| |#1| (-550))) (($ (-945 |#1|)) NIL (|has| |#1| (-1039))) (($ (-403 (-560))) NIL (-2318 (|has| |#1| (-550)) (|has| |#1| (-1029 (-403 (-560)))))) (($ (-560)) 34 (-2318 (|has| |#1| (-1029 (-560))) (|has| |#1| (-1039))))) (-2272 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1751 (((-755)) NIL (|has| |#1| (-1039)))) (-4308 (($ $) NIL) (($ (-626 $)) NIL)) (-2406 (($ $ $) 203 (|has| |#1| (-550)))) (-3777 (($ $ $) 189 (|has| |#1| (-550)))) (-2993 (($ $ $) 193 (|has| |#1| (-550)))) (-1870 (($ $ $) 187 (|has| |#1| (-550)))) (-1502 (($ $ $) 191 (|has| |#1| (-550)))) (-2409 (((-121) (-123)) 9)) (-2598 (($ $) 166 (|has| |#1| (-550)))) (-2541 (($ $) 142 (|has| |#1| (-550)))) (-2328 (((-121) $ $) NIL (|has| |#1| (-550)))) (-2590 (($ $) 162 (|has| |#1| (-550)))) (-2532 (($ $) 138 (|has| |#1| (-550)))) (-2608 (($ $) 170 (|has| |#1| (-550)))) (-2549 (($ $) 146 (|has| |#1| (-550)))) (-3209 (($ (-1153) $) NIL) (($ (-1153) $ $) NIL) (($ (-1153) $ $ $) NIL) (($ (-1153) $ $ $ $) NIL) (($ (-1153) (-626 $)) NIL)) (-1616 (($ $) 197 (|has| |#1| (-550)))) (-3974 (($ $) 195 (|has| |#1| (-550)))) (-3689 (($ $) 172 (|has| |#1| (-550)))) (-2554 (($ $) 148 (|has| |#1| (-550)))) (-2604 (($ $) 168 (|has| |#1| (-550)))) (-2545 (($ $) 144 (|has| |#1| (-550)))) (-2594 (($ $) 164 (|has| |#1| (-550)))) (-2536 (($ $) 140 (|has| |#1| (-550)))) (-1822 (($ $) 175 (|has| |#1| (-550)))) (-2464 (($ $ (-560)) NIL (-2318 (|has| |#1| (-471)) (|has| |#1| (-550)))) (($ $ (-755)) NIL (-2318 (-12 (|has| |#1| (-622 (-560))) (|has| |#1| (-1039))) (|has| |#1| (-1094)))) (($ $ (-909)) NIL (-2318 (-12 (|has| |#1| (-622 (-560))) (|has| |#1| (-1039))) (|has| |#1| (-1094))))) (-3304 (($) 20 (-2318 (|has| |#1| (-25)) (-12 (|has| |#1| (-622 (-560))) (|has| |#1| (-1039)))) CONST)) (-1488 (($ $) 226 (|has| |#1| (-550)))) (-1459 (($) 22 (-2318 (-12 (|has| |#1| (-622 (-560))) (|has| |#1| (-1039))) (|has| |#1| (-1094))) CONST)) (-3227 (($ $) 177 (|has| |#1| (-550))) (($ $ $) 179 (|has| |#1| (-550)))) (-2662 (($ $) 224 (|has| |#1| (-550)))) (-2500 (($ $ (-626 (-1153)) (-626 (-755))) NIL (|has| |#1| (-1039))) (($ $ (-1153) (-755)) NIL (|has| |#1| (-1039))) (($ $ (-626 (-1153))) NIL (|has| |#1| (-1039))) (($ $ (-1153)) NIL (|has| |#1| (-1039)))) (-3182 (($ $) 228 (|has| |#1| (-550)))) (-2002 (($ $ $) 181 (|has| |#1| (-550)))) (-1691 (((-121) $ $) NIL)) (-1675 (((-121) $ $) NIL)) (-1653 (((-121) $ $) 76)) (-1683 (((-121) $ $) NIL)) (-1667 (((-121) $ $) 75)) (-1733 (($ (-1105 |#1| (-599 $)) (-1105 |#1| (-599 $))) 93 (|has| |#1| (-550))) (($ $ $) 42 (-2318 (|has| |#1| (-471)) (|has| |#1| (-550))))) (-1725 (($ $ $) 40 (-2318 (|has| |#1| (-21)) (-12 (|has| |#1| (-622 (-560))) (|has| |#1| (-1039))))) (($ $) 29 (-2318 (|has| |#1| (-21)) (-12 (|has| |#1| (-622 (-560))) (|has| |#1| (-1039)))))) (-1716 (($ $ $) 38 (-2318 (|has| |#1| (-25)) (-12 (|has| |#1| (-622 (-560))) (|has| |#1| (-1039)))))) (** (($ $ $) 61 (|has| |#1| (-550))) (($ $ (-403 (-560))) 296 (|has| |#1| (-550))) (($ $ (-560)) 71 (-2318 (|has| |#1| (-471)) (|has| |#1| (-550)))) (($ $ (-755)) 68 (-2318 (-12 (|has| |#1| (-622 (-560))) (|has| |#1| (-1039))) (|has| |#1| (-1094)))) (($ $ (-909)) 73 (-2318 (-12 (|has| |#1| (-622 (-560))) (|has| |#1| (-1039))) (|has| |#1| (-1094))))) (* (($ (-403 (-560)) $) NIL (|has| |#1| (-550))) (($ $ (-403 (-560))) NIL (|has| |#1| (-550))) (($ |#1| $) NIL (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170))) (($ $ $) 36 (-2318 (-12 (|has| |#1| (-622 (-560))) (|has| |#1| (-1039))) (|has| |#1| (-1094)))) (($ (-560) $) 32 (-2318 (|has| |#1| (-21)) (-12 (|has| |#1| (-622 (-560))) (|has| |#1| (-1039))))) (($ (-755) $) NIL (-2318 (|has| |#1| (-25)) (-12 (|has| |#1| (-622 (-560))) (|has| |#1| (-1039))))) (($ (-909) $) NIL (-2318 (|has| |#1| (-25)) (-12 (|has| |#1| (-622 (-560))) (|has| |#1| (-1039))))))) -(((-304 |#1|) (-13 (-426 |#1|) (-10 -8 (IF (|has| |#1| (-550)) (PROGN (-6 (-29 |#1|)) (-6 (-1173)) (-6 (-159)) (-6 (-612)) (-6 (-1116)) (-15 -2342 ($ $)) (-15 -3576 ((-121) $)) (-15 -4075 ($ $ (-560))) (IF (|has| |#1| (-447)) (PROGN (-15 -3032 ((-414 (-1149 $)) (-1149 $))) (-15 -1776 ((-414 (-1149 $)) (-1149 $)))) |noBranch|) (IF (|has| |#1| (-1029 (-560))) (-6 (-1029 (-53))) |noBranch|)) |noBranch|))) (-834)) (T -304)) -((-2342 (*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-550)) (-4 *2 (-834)))) (-3576 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-304 *3)) (-4 *3 (-550)) (-4 *3 (-834)))) (-4075 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-304 *3)) (-4 *3 (-550)) (-4 *3 (-834)))) (-3032 (*1 *2 *3) (-12 (-5 *2 (-414 (-1149 *1))) (-5 *1 (-304 *4)) (-5 *3 (-1149 *1)) (-4 *4 (-447)) (-4 *4 (-550)) (-4 *4 (-834)))) (-1776 (*1 *2 *3) (-12 (-5 *2 (-414 (-1149 *1))) (-5 *1 (-304 *4)) (-5 *3 (-1149 *1)) (-4 *4 (-447)) (-4 *4 (-550)) (-4 *4 (-834))))) -(-13 (-426 |#1|) (-10 -8 (IF (|has| |#1| (-550)) (PROGN (-6 (-29 |#1|)) (-6 (-1173)) (-6 (-159)) (-6 (-612)) (-6 (-1116)) (-15 -2342 ($ $)) (-15 -3576 ((-121) $)) (-15 -4075 ($ $ (-560))) (IF (|has| |#1| (-447)) (PROGN (-15 -3032 ((-414 (-1149 $)) (-1149 $))) (-15 -1776 ((-414 (-1149 $)) (-1149 $)))) |noBranch|) (IF (|has| |#1| (-1029 (-560))) (-6 (-1029 (-53))) |noBranch|)) |noBranch|))) -((-1933 (((-57) |#2| (-123) (-283 |#2|) (-626 |#2|)) 86) (((-57) |#2| (-123) (-283 |#2|) (-283 |#2|)) 82) (((-57) |#2| (-123) (-283 |#2|) |#2|) 84) (((-57) (-283 |#2|) (-123) (-283 |#2|) |#2|) 85) (((-57) (-626 |#2|) (-626 (-123)) (-283 |#2|) (-626 (-283 |#2|))) 78) (((-57) (-626 |#2|) (-626 (-123)) (-283 |#2|) (-626 |#2|)) 80) (((-57) (-626 (-283 |#2|)) (-626 (-123)) (-283 |#2|) (-626 |#2|)) 81) (((-57) (-626 (-283 |#2|)) (-626 (-123)) (-283 |#2|) (-626 (-283 |#2|))) 79) (((-57) (-283 |#2|) (-123) (-283 |#2|) (-626 |#2|)) 87) (((-57) (-283 |#2|) (-123) (-283 |#2|) (-283 |#2|)) 83))) -(((-305 |#1| |#2|) (-10 -7 (-15 -1933 ((-57) (-283 |#2|) (-123) (-283 |#2|) (-283 |#2|))) (-15 -1933 ((-57) (-283 |#2|) (-123) (-283 |#2|) (-626 |#2|))) (-15 -1933 ((-57) (-626 (-283 |#2|)) (-626 (-123)) (-283 |#2|) (-626 (-283 |#2|)))) (-15 -1933 ((-57) (-626 (-283 |#2|)) (-626 (-123)) (-283 |#2|) (-626 |#2|))) (-15 -1933 ((-57) (-626 |#2|) (-626 (-123)) (-283 |#2|) (-626 |#2|))) (-15 -1933 ((-57) (-626 |#2|) (-626 (-123)) (-283 |#2|) (-626 (-283 |#2|)))) (-15 -1933 ((-57) (-283 |#2|) (-123) (-283 |#2|) |#2|)) (-15 -1933 ((-57) |#2| (-123) (-283 |#2|) |#2|)) (-15 -1933 ((-57) |#2| (-123) (-283 |#2|) (-283 |#2|))) (-15 -1933 ((-57) |#2| (-123) (-283 |#2|) (-626 |#2|)))) (-13 (-834) (-550) (-601 (-533))) (-426 |#1|)) (T -305)) -((-1933 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-123)) (-5 *5 (-283 *3)) (-5 *6 (-626 *3)) (-4 *3 (-426 *7)) (-4 *7 (-13 (-834) (-550) (-601 (-533)))) (-5 *2 (-57)) (-5 *1 (-305 *7 *3)))) (-1933 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-123)) (-5 *5 (-283 *3)) (-4 *3 (-426 *6)) (-4 *6 (-13 (-834) (-550) (-601 (-533)))) (-5 *2 (-57)) (-5 *1 (-305 *6 *3)))) (-1933 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-123)) (-5 *5 (-283 *3)) (-4 *3 (-426 *6)) (-4 *6 (-13 (-834) (-550) (-601 (-533)))) (-5 *2 (-57)) (-5 *1 (-305 *6 *3)))) (-1933 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-283 *5)) (-5 *4 (-123)) (-4 *5 (-426 *6)) (-4 *6 (-13 (-834) (-550) (-601 (-533)))) (-5 *2 (-57)) (-5 *1 (-305 *6 *5)))) (-1933 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-626 *8)) (-5 *4 (-626 (-123))) (-5 *6 (-626 (-283 *8))) (-4 *8 (-426 *7)) (-5 *5 (-283 *8)) (-4 *7 (-13 (-834) (-550) (-601 (-533)))) (-5 *2 (-57)) (-5 *1 (-305 *7 *8)))) (-1933 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-626 *7)) (-5 *4 (-626 (-123))) (-5 *5 (-283 *7)) (-4 *7 (-426 *6)) (-4 *6 (-13 (-834) (-550) (-601 (-533)))) (-5 *2 (-57)) (-5 *1 (-305 *6 *7)))) (-1933 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-626 (-283 *8))) (-5 *4 (-626 (-123))) (-5 *5 (-283 *8)) (-5 *6 (-626 *8)) (-4 *8 (-426 *7)) (-4 *7 (-13 (-834) (-550) (-601 (-533)))) (-5 *2 (-57)) (-5 *1 (-305 *7 *8)))) (-1933 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-626 (-283 *7))) (-5 *4 (-626 (-123))) (-5 *5 (-283 *7)) (-4 *7 (-426 *6)) (-4 *6 (-13 (-834) (-550) (-601 (-533)))) (-5 *2 (-57)) (-5 *1 (-305 *6 *7)))) (-1933 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-283 *7)) (-5 *4 (-123)) (-5 *5 (-626 *7)) (-4 *7 (-426 *6)) (-4 *6 (-13 (-834) (-550) (-601 (-533)))) (-5 *2 (-57)) (-5 *1 (-305 *6 *7)))) (-1933 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-283 *6)) (-5 *4 (-123)) (-4 *6 (-426 *5)) (-4 *5 (-13 (-834) (-550) (-601 (-533)))) (-5 *2 (-57)) (-5 *1 (-305 *5 *6))))) -(-10 -7 (-15 -1933 ((-57) (-283 |#2|) (-123) (-283 |#2|) (-283 |#2|))) (-15 -1933 ((-57) (-283 |#2|) (-123) (-283 |#2|) (-626 |#2|))) (-15 -1933 ((-57) (-626 (-283 |#2|)) (-626 (-123)) (-283 |#2|) (-626 (-283 |#2|)))) (-15 -1933 ((-57) (-626 (-283 |#2|)) (-626 (-123)) (-283 |#2|) (-626 |#2|))) (-15 -1933 ((-57) (-626 |#2|) (-626 (-123)) (-283 |#2|) (-626 |#2|))) (-15 -1933 ((-57) (-626 |#2|) (-626 (-123)) (-283 |#2|) (-626 (-283 |#2|)))) (-15 -1933 ((-57) (-283 |#2|) (-123) (-283 |#2|) |#2|)) (-15 -1933 ((-57) |#2| (-123) (-283 |#2|) |#2|)) (-15 -1933 ((-57) |#2| (-123) (-283 |#2|) (-283 |#2|))) (-15 -1933 ((-57) |#2| (-123) (-283 |#2|) (-626 |#2|)))) -((-1933 ((|#3| |#2| (-123) (-1153) (-626 |#2|)) 53)) (-3937 ((|#2| |#2| (-123) (-1153)) 30))) -(((-306 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1933 (|#3| |#2| (-123) (-1153) (-626 |#2|))) (-15 -3937 (|#2| |#2| (-123) (-1153)))) (-13 (-834) (-550) (-601 (-533))) (-426 |#1|) (-1226 |#2|) (-1226 (-1147 |#2|))) (T -306)) -((-3937 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-123)) (-5 *4 (-1153)) (-4 *5 (-13 (-834) (-550) (-601 (-533)))) (-4 *2 (-426 *5)) (-5 *1 (-306 *5 *2 *6 *7)) (-4 *6 (-1226 *2)) (-4 *7 (-1226 (-1147 *2))))) (-1933 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-123)) (-5 *5 (-1153)) (-5 *6 (-626 *3)) (-4 *3 (-426 *7)) (-4 *7 (-13 (-834) (-550) (-601 (-533)))) (-4 *2 (-1226 *3)) (-5 *1 (-306 *7 *3 *2 *8)) (-4 *8 (-1226 (-1147 *3)))))) -(-10 -7 (-15 -1933 (|#3| |#2| (-123) (-1153) (-626 |#2|))) (-15 -3937 (|#2| |#2| (-123) (-1153)))) -((-3922 (((-1183 (-918)) (-304 (-560)) (-304 (-560)) (-304 (-560)) (-1 (-213) (-213)) (-1076 (-213)) (-213) (-560) (-1135)) 45) (((-1183 (-918)) (-304 (-560)) (-304 (-560)) (-304 (-560)) (-1 (-213) (-213)) (-1076 (-213)) (-213) (-560)) 46) (((-1183 (-918)) (-304 (-560)) (-304 (-560)) (-304 (-560)) (-1 (-213) (-213)) (-1076 (-213)) (-1 (-213) (-213)) (-560) (-1135)) 42) (((-1183 (-918)) (-304 (-560)) (-304 (-560)) (-304 (-560)) (-1 (-213) (-213)) (-1076 (-213)) (-1 (-213) (-213)) (-560)) 43)) (-2165 (((-1 (-213) (-213)) (-213)) 44))) -(((-307) (-10 -7 (-15 -2165 ((-1 (-213) (-213)) (-213))) (-15 -3922 ((-1183 (-918)) (-304 (-560)) (-304 (-560)) (-304 (-560)) (-1 (-213) (-213)) (-1076 (-213)) (-1 (-213) (-213)) (-560))) (-15 -3922 ((-1183 (-918)) (-304 (-560)) (-304 (-560)) (-304 (-560)) (-1 (-213) (-213)) (-1076 (-213)) (-1 (-213) (-213)) (-560) (-1135))) (-15 -3922 ((-1183 (-918)) (-304 (-560)) (-304 (-560)) (-304 (-560)) (-1 (-213) (-213)) (-1076 (-213)) (-213) (-560))) (-15 -3922 ((-1183 (-918)) (-304 (-560)) (-304 (-560)) (-304 (-560)) (-1 (-213) (-213)) (-1076 (-213)) (-213) (-560) (-1135))))) (T -307)) -((-3922 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-304 (-560))) (-5 *4 (-1 (-213) (-213))) (-5 *5 (-1076 (-213))) (-5 *6 (-213)) (-5 *7 (-560)) (-5 *8 (-1135)) (-5 *2 (-1183 (-918))) (-5 *1 (-307)))) (-3922 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-304 (-560))) (-5 *4 (-1 (-213) (-213))) (-5 *5 (-1076 (-213))) (-5 *6 (-213)) (-5 *7 (-560)) (-5 *2 (-1183 (-918))) (-5 *1 (-307)))) (-3922 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-304 (-560))) (-5 *4 (-1 (-213) (-213))) (-5 *5 (-1076 (-213))) (-5 *6 (-560)) (-5 *7 (-1135)) (-5 *2 (-1183 (-918))) (-5 *1 (-307)))) (-3922 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-304 (-560))) (-5 *4 (-1 (-213) (-213))) (-5 *5 (-1076 (-213))) (-5 *6 (-560)) (-5 *2 (-1183 (-918))) (-5 *1 (-307)))) (-2165 (*1 *2 *3) (-12 (-5 *2 (-1 (-213) (-213))) (-5 *1 (-307)) (-5 *3 (-213))))) -(-10 -7 (-15 -2165 ((-1 (-213) (-213)) (-213))) (-15 -3922 ((-1183 (-918)) (-304 (-560)) (-304 (-560)) (-304 (-560)) (-1 (-213) (-213)) (-1076 (-213)) (-1 (-213) (-213)) (-560))) (-15 -3922 ((-1183 (-918)) (-304 (-560)) (-304 (-560)) (-304 (-560)) (-1 (-213) (-213)) (-1076 (-213)) (-1 (-213) (-213)) (-560) (-1135))) (-15 -3922 ((-1183 (-918)) (-304 (-560)) (-304 (-560)) (-304 (-560)) (-1 (-213) (-213)) (-1076 (-213)) (-213) (-560))) (-15 -3922 ((-1183 (-918)) (-304 (-560)) (-304 (-560)) (-304 (-560)) (-1 (-213) (-213)) (-1076 (-213)) (-213) (-560) (-1135)))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) 24)) (-1654 (((-626 (-1067)) $) NIL)) (-1395 (((-1153) $) NIL)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL (|has| |#1| (-550)))) (-1350 (($ $) NIL (|has| |#1| (-550)))) (-3376 (((-121) $) NIL (|has| |#1| (-550)))) (-4330 (($ $ (-403 (-560))) NIL) (($ $ (-403 (-560)) (-403 (-560))) NIL)) (-4138 (((-1133 (-2 (|:| |k| (-403 (-560))) (|:| |c| |#1|))) $) 19)) (-2570 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2514 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2314 (((-3 $ "failed") $ $) NIL)) (-3065 (($ $) NIL (|has| |#1| (-359)))) (-2953 (((-414 $) $) NIL (|has| |#1| (-359)))) (-2479 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-4179 (((-121) $ $) NIL (|has| |#1| (-359)))) (-2561 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2790 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-3783 (($ (-755) (-1133 (-2 (|:| |k| (-403 (-560))) (|:| |c| |#1|)))) NIL)) (-2579 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2523 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-4236 (($) NIL T CONST)) (-2563 (($ $ $) NIL (|has| |#1| (-359)))) (-1750 (($ $) 30)) (-1823 (((-3 $ "failed") $) NIL)) (-2572 (($ $ $) NIL (|has| |#1| (-359)))) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) NIL (|has| |#1| (-359)))) (-3319 (((-121) $) NIL (|has| |#1| (-359)))) (-1815 (((-121) $) NIL)) (-2474 (($) NIL (|has| |#1| (-43 (-403 (-560)))))) (-3504 (((-403 (-560)) $) NIL) (((-403 (-560)) $ (-403 (-560))) 15)) (-2642 (((-121) $) NIL)) (-2586 (($ $ (-560)) NIL (|has| |#1| (-43 (-403 (-560)))))) (-3549 (($ $ (-909)) NIL) (($ $ (-403 (-560))) NIL)) (-3856 (((-3 (-626 $) "failed") (-626 $) $) NIL (|has| |#1| (-359)))) (-1814 (((-121) $) NIL)) (-1637 (($ |#1| (-403 (-560))) NIL) (($ $ (-1067) (-403 (-560))) NIL) (($ $ (-626 (-1067)) (-626 (-403 (-560)))) NIL)) (-4325 (($ $ $) NIL)) (-2501 (($ $ $) NIL)) (-2803 (($ (-1 |#1| |#1|) $) NIL)) (-4399 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-1726 (($ $) NIL)) (-1735 ((|#1| $) NIL)) (-2582 (($ (-626 $)) NIL (|has| |#1| (-359))) (($ $ $) NIL (|has| |#1| (-359)))) (-1291 (((-1135) $) NIL)) (-1701 (($ $) NIL (|has| |#1| (-359)))) (-2376 (($ $) NIL (|has| |#1| (-43 (-403 (-560))))) (($ $ (-1153)) NIL (-2318 (-12 (|has| |#1| (-15 -2376 (|#1| |#1| (-1153)))) (|has| |#1| (-15 -1654 ((-626 (-1153)) |#1|))) (|has| |#1| (-43 (-403 (-560))))) (-12 (|has| |#1| (-29 (-560))) (|has| |#1| (-43 (-403 (-560)))) (|has| |#1| (-951)) (|has| |#1| (-1173)))))) (-4353 (((-1100) $) NIL)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL (|has| |#1| (-359)))) (-4440 (($ (-626 $)) NIL (|has| |#1| (-359))) (($ $ $) NIL (|has| |#1| (-359)))) (-1601 (((-414 $) $) NIL (|has| |#1| (-359)))) (-3505 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-359))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL (|has| |#1| (-359)))) (-3292 (($ $ (-403 (-560))) NIL)) (-2336 (((-3 $ "failed") $ $) NIL (|has| |#1| (-550)))) (-3456 (((-3 (-626 $) "failed") (-626 $) $) NIL (|has| |#1| (-359)))) (-2462 (((-403 (-560)) $) 16)) (-4157 (($ (-1220 |#1| |#2| |#3|)) 11)) (-4034 (((-1220 |#1| |#2| |#3|) $) 12)) (-2469 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-4450 (((-1133 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-403 (-560))))))) (-4445 (((-755) $) NIL (|has| |#1| (-359)))) (-2778 ((|#1| $ (-403 (-560))) NIL) (($ $ $) NIL (|has| (-403 (-560)) (-1094)))) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL (|has| |#1| (-359)))) (-2443 (($ $ (-626 (-1153)) (-626 (-755))) NIL (-12 (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-1153) (-755)) NIL (-12 (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-626 (-1153))) NIL (-12 (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-1153)) NIL (-12 (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-755)) NIL (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))))) (-3662 (((-403 (-560)) $) NIL)) (-2585 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2528 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2575 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2519 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2566 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2795 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2234 (($ $) 10)) (-2801 (((-842) $) 36) (($ (-560)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-403 (-560))) NIL (|has| |#1| (-43 (-403 (-560))))) (($ $) NIL (|has| |#1| (-550)))) (-2636 ((|#1| $ (-403 (-560))) 28)) (-2272 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1751 (((-755)) NIL)) (-1341 ((|#1| $) NIL)) (-2598 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2541 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2328 (((-121) $ $) NIL (|has| |#1| (-550)))) (-2590 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2532 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2608 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2549 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2550 ((|#1| $ (-403 (-560))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-403 (-560))))) (|has| |#1| (-15 -2801 (|#1| (-1153))))))) (-3689 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2554 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2604 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2545 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2594 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2536 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL (|has| |#1| (-359)))) (-3304 (($) NIL T CONST)) (-1459 (($) NIL T CONST)) (-2500 (($ $ (-626 (-1153)) (-626 (-755))) NIL (-12 (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-1153) (-755)) NIL (-12 (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-626 (-1153))) NIL (-12 (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-1153)) NIL (-12 (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-755)) NIL (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))))) (-1691 (((-121) $ $) NIL)) (-1675 (((-121) $ $) NIL)) (-1653 (((-121) $ $) 26)) (-1683 (((-121) $ $) NIL)) (-1667 (((-121) $ $) 31)) (-1733 (($ $ |#1|) NIL (|has| |#1| (-359))) (($ $ $) NIL (|has| |#1| (-359)))) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) NIL)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL (|has| |#1| (-359))) (($ $ $) NIL (|has| |#1| (-43 (-403 (-560))))) (($ $ (-403 (-560))) NIL (|has| |#1| (-43 (-403 (-560)))))) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-403 (-560)) $) NIL (|has| |#1| (-43 (-403 (-560))))) (($ $ (-403 (-560))) NIL (|has| |#1| (-43 (-403 (-560))))))) -(((-308 |#1| |#2| |#3|) (-13 (-1216 |#1|) (-779) (-10 -8 (-15 -4157 ($ (-1220 |#1| |#2| |#3|))) (-15 -4034 ((-1220 |#1| |#2| |#3|) $)) (-15 -2462 ((-403 (-560)) $)))) (-13 (-359) (-834)) (-1153) |#1|) (T -308)) -((-4157 (*1 *1 *2) (-12 (-5 *2 (-1220 *3 *4 *5)) (-4 *3 (-13 (-359) (-834))) (-14 *4 (-1153)) (-14 *5 *3) (-5 *1 (-308 *3 *4 *5)))) (-4034 (*1 *2 *1) (-12 (-5 *2 (-1220 *3 *4 *5)) (-5 *1 (-308 *3 *4 *5)) (-4 *3 (-13 (-359) (-834))) (-14 *4 (-1153)) (-14 *5 *3))) (-2462 (*1 *2 *1) (-12 (-5 *2 (-403 (-560))) (-5 *1 (-308 *3 *4 *5)) (-4 *3 (-13 (-359) (-834))) (-14 *4 (-1153)) (-14 *5 *3)))) -(-13 (-1216 |#1|) (-779) (-10 -8 (-15 -4157 ($ (-1220 |#1| |#2| |#3|))) (-15 -4034 ((-1220 |#1| |#2| |#3|) $)) (-15 -2462 ((-403 (-560)) $)))) -((-3914 (((-414 (-1149 |#1|)) (-1149 |#1|) |#1|) 15)) (-1601 (((-414 (-1149 |#1|)) (-1149 |#1|) |#1|) 24))) -(((-309 |#1|) (-10 -7 (-15 -1601 ((-414 (-1149 |#1|)) (-1149 |#1|) |#1|)) (-15 -3914 ((-414 (-1149 |#1|)) (-1149 |#1|) |#1|))) (-846)) (T -309)) -((-3914 (*1 *2 *3 *4) (-12 (-4 *4 (-846)) (-5 *2 (-414 (-1149 *4))) (-5 *1 (-309 *4)) (-5 *3 (-1149 *4)))) (-1601 (*1 *2 *3 *4) (-12 (-4 *4 (-846)) (-5 *2 (-414 (-1149 *4))) (-5 *1 (-309 *4)) (-5 *3 (-1149 *4))))) -(-10 -7 (-15 -1601 ((-414 (-1149 |#1|)) (-1149 |#1|) |#1|)) (-15 -3914 ((-414 (-1149 |#1|)) (-1149 |#1|) |#1|))) -((-2586 (((-2 (|:| -4034 (-755)) (|:| -2169 |#1|) (|:| |radicand| (-626 |#1|))) (-414 |#1|) (-755)) 24)) (-4399 (((-626 (-2 (|:| -2169 (-755)) (|:| |logand| |#1|))) (-414 |#1|)) 28))) -(((-310 |#1|) (-10 -7 (-15 -2586 ((-2 (|:| -4034 (-755)) (|:| -2169 |#1|) (|:| |radicand| (-626 |#1|))) (-414 |#1|) (-755))) (-15 -4399 ((-626 (-2 (|:| -2169 (-755)) (|:| |logand| |#1|))) (-414 |#1|)))) (-550)) (T -310)) -((-4399 (*1 *2 *3) (-12 (-5 *3 (-414 *4)) (-4 *4 (-550)) (-5 *2 (-626 (-2 (|:| -2169 (-755)) (|:| |logand| *4)))) (-5 *1 (-310 *4)))) (-2586 (*1 *2 *3 *4) (-12 (-5 *3 (-414 *5)) (-4 *5 (-550)) (-5 *2 (-2 (|:| -4034 (-755)) (|:| -2169 *5) (|:| |radicand| (-626 *5)))) (-5 *1 (-310 *5)) (-5 *4 (-755))))) -(-10 -7 (-15 -2586 ((-2 (|:| -4034 (-755)) (|:| -2169 |#1|) (|:| |radicand| (-626 |#1|))) (-414 |#1|) (-755))) (-15 -4399 ((-626 (-2 (|:| -2169 (-755)) (|:| |logand| |#1|))) (-414 |#1|)))) -((-3914 (((-414 (-1149 |#1|)) (-1149 |#1|) |#1|) 15)) (-1601 (((-414 (-1149 |#1|)) (-1149 |#1|) |#1|) 24))) -(((-311 |#1|) (-10 -7 (-15 -1601 ((-414 (-1149 |#1|)) (-1149 |#1|) |#1|)) (-15 -3914 ((-414 (-1149 |#1|)) (-1149 |#1|) |#1|))) (-851)) (T -311)) -((-3914 (*1 *2 *3 *4) (-12 (-4 *4 (-851)) (-5 *2 (-414 (-1149 *4))) (-5 *1 (-311 *4)) (-5 *3 (-1149 *4)))) (-1601 (*1 *2 *3 *4) (-12 (-4 *4 (-851)) (-5 *2 (-414 (-1149 *4))) (-5 *1 (-311 *4)) (-5 *3 (-1149 *4))))) -(-10 -7 (-15 -1601 ((-414 (-1149 |#1|)) (-1149 |#1|) |#1|)) (-15 -3914 ((-414 (-1149 |#1|)) (-1149 |#1|) |#1|))) -((-1654 (((-626 |#2|) (-1149 |#4|)) 43)) (-2273 ((|#3| (-560)) 46)) (-1736 (((-1149 |#4|) (-1149 |#3|)) 30)) (-1365 (((-1149 |#4|) (-1149 |#4|) (-560)) 55)) (-4477 (((-1149 |#3|) (-1149 |#4|)) 21)) (-3662 (((-626 (-755)) (-1149 |#4|) (-626 |#2|)) 40)) (-2596 (((-1149 |#3|) (-1149 |#4|) (-626 |#2|) (-626 |#3|)) 35))) -(((-312 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2596 ((-1149 |#3|) (-1149 |#4|) (-626 |#2|) (-626 |#3|))) (-15 -3662 ((-626 (-755)) (-1149 |#4|) (-626 |#2|))) (-15 -1654 ((-626 |#2|) (-1149 |#4|))) (-15 -4477 ((-1149 |#3|) (-1149 |#4|))) (-15 -1736 ((-1149 |#4|) (-1149 |#3|))) (-15 -1365 ((-1149 |#4|) (-1149 |#4|) (-560))) (-15 -2273 (|#3| (-560)))) (-780) (-834) (-1039) (-942 |#3| |#1| |#2|)) (T -312)) -((-2273 (*1 *2 *3) (-12 (-5 *3 (-560)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *2 (-1039)) (-5 *1 (-312 *4 *5 *2 *6)) (-4 *6 (-942 *2 *4 *5)))) (-1365 (*1 *2 *2 *3) (-12 (-5 *2 (-1149 *7)) (-5 *3 (-560)) (-4 *7 (-942 *6 *4 *5)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1039)) (-5 *1 (-312 *4 *5 *6 *7)))) (-1736 (*1 *2 *3) (-12 (-5 *3 (-1149 *6)) (-4 *6 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-1149 *7)) (-5 *1 (-312 *4 *5 *6 *7)) (-4 *7 (-942 *6 *4 *5)))) (-4477 (*1 *2 *3) (-12 (-5 *3 (-1149 *7)) (-4 *7 (-942 *6 *4 *5)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1039)) (-5 *2 (-1149 *6)) (-5 *1 (-312 *4 *5 *6 *7)))) (-1654 (*1 *2 *3) (-12 (-5 *3 (-1149 *7)) (-4 *7 (-942 *6 *4 *5)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1039)) (-5 *2 (-626 *5)) (-5 *1 (-312 *4 *5 *6 *7)))) (-3662 (*1 *2 *3 *4) (-12 (-5 *3 (-1149 *8)) (-5 *4 (-626 *6)) (-4 *6 (-834)) (-4 *8 (-942 *7 *5 *6)) (-4 *5 (-780)) (-4 *7 (-1039)) (-5 *2 (-626 (-755))) (-5 *1 (-312 *5 *6 *7 *8)))) (-2596 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1149 *9)) (-5 *4 (-626 *7)) (-5 *5 (-626 *8)) (-4 *7 (-834)) (-4 *8 (-1039)) (-4 *9 (-942 *8 *6 *7)) (-4 *6 (-780)) (-5 *2 (-1149 *8)) (-5 *1 (-312 *6 *7 *8 *9))))) -(-10 -7 (-15 -2596 ((-1149 |#3|) (-1149 |#4|) (-626 |#2|) (-626 |#3|))) (-15 -3662 ((-626 (-755)) (-1149 |#4|) (-626 |#2|))) (-15 -1654 ((-626 |#2|) (-1149 |#4|))) (-15 -4477 ((-1149 |#3|) (-1149 |#4|))) (-15 -1736 ((-1149 |#4|) (-1149 |#3|))) (-15 -1365 ((-1149 |#4|) (-1149 |#4|) (-560))) (-15 -2273 (|#3| (-560)))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) 14)) (-4138 (((-626 (-2 (|:| |gen| |#1|) (|:| -2469 (-560)))) $) 18)) (-2314 (((-3 $ "failed") $ $) NIL)) (-2912 (((-755) $) NIL)) (-4236 (($) NIL T CONST)) (-1473 (((-3 |#1| "failed") $) NIL)) (-3001 ((|#1| $) NIL)) (-1724 ((|#1| $ (-560)) NIL)) (-1595 (((-560) $ (-560)) NIL)) (-4325 (($ $ $) NIL (|has| |#1| (-834)))) (-2501 (($ $ $) NIL (|has| |#1| (-834)))) (-2381 (($ (-1 |#1| |#1|) $) NIL)) (-2021 (($ (-1 (-560) (-560)) $) 10)) (-1291 (((-1135) $) NIL)) (-2520 (($ $ $) NIL (|has| (-560) (-779)))) (-4353 (((-1100) $) NIL)) (-2801 (((-842) $) NIL) (($ |#1|) NIL)) (-2636 (((-560) |#1| $) NIL)) (-3304 (($) 15 T CONST)) (-1691 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1675 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1653 (((-121) $ $) NIL)) (-1683 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1667 (((-121) $ $) 21 (|has| |#1| (-834)))) (-1725 (($ $) 11) (($ $ $) 20)) (-1716 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ (-560)) NIL) (($ (-560) |#1|) 19))) -(((-313 |#1|) (-13 (-21) (-699 (-560)) (-314 |#1| (-560)) (-10 -7 (IF (|has| |#1| (-834)) (-6 (-834)) |noBranch|))) (-1082)) (T -313)) -NIL -(-13 (-21) (-699 (-560)) (-314 |#1| (-560)) (-10 -7 (IF (|has| |#1| (-834)) (-6 (-834)) |noBranch|))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-4138 (((-626 (-2 (|:| |gen| |#1|) (|:| -2469 |#2|))) $) 26)) (-2314 (((-3 $ "failed") $ $) 18)) (-2912 (((-755) $) 27)) (-4236 (($) 16 T CONST)) (-1473 (((-3 |#1| "failed") $) 31)) (-3001 ((|#1| $) 30)) (-1724 ((|#1| $ (-560)) 24)) (-1595 ((|#2| $ (-560)) 25)) (-2381 (($ (-1 |#1| |#1|) $) 21)) (-2021 (($ (-1 |#2| |#2|) $) 22)) (-1291 (((-1135) $) 9)) (-2520 (($ $ $) 20 (|has| |#2| (-779)))) (-4353 (((-1100) $) 10)) (-2801 (((-842) $) 11) (($ |#1|) 32)) (-2636 ((|#2| |#1| $) 23)) (-3304 (($) 17 T CONST)) (-1653 (((-121) $ $) 6)) (-1716 (($ $ $) 13) (($ |#1| $) 29)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ |#2| |#1|) 28))) -(((-314 |#1| |#2|) (-1267) (-1082) (-137)) (T -314)) -((-1716 (*1 *1 *2 *1) (-12 (-4 *1 (-314 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-137)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-314 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-137)))) (-2912 (*1 *2 *1) (-12 (-4 *1 (-314 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-137)) (-5 *2 (-755)))) (-4138 (*1 *2 *1) (-12 (-4 *1 (-314 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-137)) (-5 *2 (-626 (-2 (|:| |gen| *3) (|:| -2469 *4)))))) (-1595 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *1 (-314 *4 *2)) (-4 *4 (-1082)) (-4 *2 (-137)))) (-1724 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *1 (-314 *2 *4)) (-4 *4 (-137)) (-4 *2 (-1082)))) (-2636 (*1 *2 *3 *1) (-12 (-4 *1 (-314 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-137)))) (-2021 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-314 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-137)))) (-2381 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-314 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-137)))) (-2520 (*1 *1 *1 *1) (-12 (-4 *1 (-314 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-137)) (-4 *3 (-779))))) -(-13 (-137) (-1029 |t#1|) (-10 -8 (-15 -1716 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -2912 ((-755) $)) (-15 -4138 ((-626 (-2 (|:| |gen| |t#1|) (|:| -2469 |t#2|))) $)) (-15 -1595 (|t#2| $ (-560))) (-15 -1724 (|t#1| $ (-560))) (-15 -2636 (|t#2| |t#1| $)) (-15 -2021 ($ (-1 |t#2| |t#2|) $)) (-15 -2381 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-779)) (-15 -2520 ($ $ $)) |noBranch|))) -(((-23) . T) ((-25) . T) ((-105) . T) ((-137) . T) ((-600 (-842)) . T) ((-1029 |#1|) . T) ((-1082) . T)) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-4138 (((-626 (-2 (|:| |gen| |#1|) (|:| -2469 (-755)))) $) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-2912 (((-755) $) NIL)) (-4236 (($) NIL T CONST)) (-1473 (((-3 |#1| "failed") $) NIL)) (-3001 ((|#1| $) NIL)) (-1724 ((|#1| $ (-560)) NIL)) (-1595 (((-755) $ (-560)) NIL)) (-2381 (($ (-1 |#1| |#1|) $) NIL)) (-2021 (($ (-1 (-755) (-755)) $) NIL)) (-1291 (((-1135) $) NIL)) (-2520 (($ $ $) NIL (|has| (-755) (-779)))) (-4353 (((-1100) $) NIL)) (-2801 (((-842) $) NIL) (($ |#1|) NIL)) (-2636 (((-755) |#1| $) NIL)) (-3304 (($) NIL T CONST)) (-1653 (((-121) $ $) NIL)) (-1716 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-755) |#1|) NIL))) -(((-315 |#1|) (-314 |#1| (-755)) (-1082)) (T -315)) -NIL -(-314 |#1| (-755)) -((-2803 ((|#5| (-1 |#4| |#2|) |#3|) 19))) -(((-316 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2803 (|#5| (-1 |#4| |#2|) |#3|))) (-779) (-1039) (-318 |#2| |#1|) (-1039) (-318 |#4| |#1|)) (T -316)) -((-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-4 *6 (-1039)) (-4 *7 (-1039)) (-4 *5 (-779)) (-4 *2 (-318 *7 *5)) (-5 *1 (-316 *5 *6 *4 *7 *2)) (-4 *4 (-318 *6 *5))))) -(-10 -7 (-15 -2803 (|#5| (-1 |#4| |#2|) |#3|))) -((-3605 (($ $) 52)) (-1456 (($ $ |#2| |#3| $) 14)) (-1504 (($ (-1 |#3| |#3|) $) 35)) (-1704 (((-121) $) 27)) (-1711 ((|#2| $) 29)) (-2336 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 45)) (-1896 ((|#2| $) 48)) (-2423 (((-626 |#2|) $) 38)) (-3487 (($ $ $ (-755)) 23)) (-1733 (($ $ |#2|) 42))) -(((-317 |#1| |#2| |#3|) (-10 -8 (-15 -3605 (|#1| |#1|)) (-15 -1896 (|#2| |#1|)) (-15 -2336 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3487 (|#1| |#1| |#1| (-755))) (-15 -1456 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1504 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2423 ((-626 |#2|) |#1|)) (-15 -1711 (|#2| |#1|)) (-15 -1704 ((-121) |#1|)) (-15 -2336 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1733 (|#1| |#1| |#2|))) (-318 |#2| |#3|) (-1039) (-779)) (T -317)) -NIL -(-10 -8 (-15 -3605 (|#1| |#1|)) (-15 -1896 (|#2| |#1|)) (-15 -2336 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3487 (|#1| |#1| |#1| (-755))) (-15 -1456 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1504 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2423 ((-626 |#2|) |#1|)) (-15 -1711 (|#2| |#1|)) (-15 -1704 ((-121) |#1|)) (-15 -2336 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1733 (|#1| |#1| |#2|))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) 50 (|has| |#1| (-550)))) (-1350 (($ $) 51 (|has| |#1| (-550)))) (-3376 (((-121) $) 53 (|has| |#1| (-550)))) (-2314 (((-3 $ "failed") $ $) 18)) (-4236 (($) 16 T CONST)) (-1473 (((-3 (-560) "failed") $) 86 (|has| |#1| (-1029 (-560)))) (((-3 (-403 (-560)) "failed") $) 84 (|has| |#1| (-1029 (-403 (-560))))) (((-3 |#1| "failed") $) 83)) (-3001 (((-560) $) 87 (|has| |#1| (-1029 (-560)))) (((-403 (-560)) $) 85 (|has| |#1| (-1029 (-403 (-560))))) ((|#1| $) 82)) (-1750 (($ $) 59)) (-1823 (((-3 $ "failed") $) 33)) (-3605 (($ $) 71 (|has| |#1| (-447)))) (-1456 (($ $ |#1| |#2| $) 75)) (-2642 (((-121) $) 30)) (-3235 (((-755) $) 78)) (-1814 (((-121) $) 61)) (-1637 (($ |#1| |#2|) 60)) (-3693 ((|#2| $) 77)) (-1504 (($ (-1 |#2| |#2|) $) 76)) (-2803 (($ (-1 |#1| |#1|) $) 62)) (-1726 (($ $) 64)) (-1735 ((|#1| $) 65)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-1704 (((-121) $) 81)) (-1711 ((|#1| $) 80)) (-2336 (((-3 $ "failed") $ $) 49 (|has| |#1| (-550))) (((-3 $ "failed") $ |#1|) 73 (|has| |#1| (-550)))) (-3662 ((|#2| $) 63)) (-1896 ((|#1| $) 72 (|has| |#1| (-447)))) (-2801 (((-842) $) 11) (($ (-560)) 27) (($ $) 48 (|has| |#1| (-550))) (($ |#1|) 46) (($ (-403 (-560))) 56 (-2318 (|has| |#1| (-1029 (-403 (-560)))) (|has| |#1| (-43 (-403 (-560))))))) (-2423 (((-626 |#1|) $) 79)) (-2636 ((|#1| $ |#2|) 58)) (-2272 (((-3 $ "failed") $) 47 (|has| |#1| (-146)))) (-1751 (((-755)) 28)) (-3487 (($ $ $ (-755)) 74 (|has| |#1| (-170)))) (-2328 (((-121) $ $) 52 (|has| |#1| (-550)))) (-2464 (($ $ (-909)) 25) (($ $ (-755)) 32)) (-3304 (($) 17 T CONST)) (-1459 (($) 29 T CONST)) (-1653 (((-121) $ $) 6)) (-1733 (($ $ |#1|) 57 (|has| |#1| (-359)))) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 24) (($ $ (-755)) 31)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 23) (($ $ |#1|) 67) (($ |#1| $) 66) (($ (-403 (-560)) $) 55 (|has| |#1| (-43 (-403 (-560))))) (($ $ (-403 (-560))) 54 (|has| |#1| (-43 (-403 (-560))))))) -(((-318 |#1| |#2|) (-1267) (-1039) (-779)) (T -318)) -((-1704 (*1 *2 *1) (-12 (-4 *1 (-318 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-779)) (-5 *2 (-121)))) (-1711 (*1 *2 *1) (-12 (-4 *1 (-318 *2 *3)) (-4 *3 (-779)) (-4 *2 (-1039)))) (-2423 (*1 *2 *1) (-12 (-4 *1 (-318 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-779)) (-5 *2 (-626 *3)))) (-3235 (*1 *2 *1) (-12 (-4 *1 (-318 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-779)) (-5 *2 (-755)))) (-3693 (*1 *2 *1) (-12 (-4 *1 (-318 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-779)))) (-1504 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-318 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-779)))) (-1456 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-318 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-779)))) (-3487 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-755)) (-4 *1 (-318 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-779)) (-4 *3 (-170)))) (-2336 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-318 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-779)) (-4 *2 (-550)))) (-1896 (*1 *2 *1) (-12 (-4 *1 (-318 *2 *3)) (-4 *3 (-779)) (-4 *2 (-1039)) (-4 *2 (-447)))) (-3605 (*1 *1 *1) (-12 (-4 *1 (-318 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-779)) (-4 *2 (-447))))) -(-13 (-52 |t#1| |t#2|) (-407 |t#1|) (-10 -8 (-15 -1704 ((-121) $)) (-15 -1711 (|t#1| $)) (-15 -2423 ((-626 |t#1|) $)) (-15 -3235 ((-755) $)) (-15 -3693 (|t#2| $)) (-15 -1504 ($ (-1 |t#2| |t#2|) $)) (-15 -1456 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-170)) (-15 -3487 ($ $ $ (-755))) |noBranch|) (IF (|has| |t#1| (-550)) (-15 -2336 ((-3 $ "failed") $ |t#1|)) |noBranch|) (IF (|has| |t#1| (-447)) (PROGN (-15 -1896 (|t#1| $)) (-15 -3605 ($ $))) |noBranch|))) -(((-21) . T) ((-23) . T) ((-52 |#1| |#2|) . T) ((-25) . T) ((-43 (-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((-43 |#1|) |has| |#1| (-170)) ((-43 $) |has| |#1| (-550)) ((-105) . T) ((-120 (-403 (-560)) (-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((-120 |#1| |#1|) . T) ((-120 $ $) -2318 (|has| |#1| (-550)) (|has| |#1| (-170))) ((-137) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-600 (-842)) . T) ((-170) -2318 (|has| |#1| (-550)) (|has| |#1| (-170))) ((-280) |has| |#1| (-550)) ((-407 |#1|) . T) ((-550) |has| |#1| (-550)) ((-629 (-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((-629 |#1|) . T) ((-629 $) . T) ((-699 (-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((-699 |#1|) |has| |#1| (-170)) ((-699 $) |has| |#1| (-550)) ((-708) . T) ((-1029 (-403 (-560))) |has| |#1| (-1029 (-403 (-560)))) ((-1029 (-560)) |has| |#1| (-1029 (-560))) ((-1029 |#1|) . T) ((-1045 (-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((-1045 |#1|) . T) ((-1045 $) -2318 (|has| |#1| (-550)) (|has| |#1| (-170))) ((-1039) . T) ((-1046) . T) ((-1094) . T) ((-1082) . T)) -((-2601 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-2960 (((-1241) $ (-560) (-560)) NIL (|has| $ (-6 -4506)))) (-3189 (((-121) (-1 (-121) |#1| |#1|) $) NIL) (((-121) $) NIL (|has| |#1| (-834)))) (-4410 (($ (-1 (-121) |#1| |#1|) $) NIL (|has| $ (-6 -4506))) (($ $) NIL (-12 (|has| $ (-6 -4506)) (|has| |#1| (-834))))) (-3743 (($ (-1 (-121) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-834)))) (-3909 (((-121) $ (-755)) NIL)) (-3767 (((-121) (-121)) NIL)) (-2764 ((|#1| $ (-560) |#1|) NIL (|has| $ (-6 -4506))) ((|#1| $ (-1202 (-560)) |#1|) NIL (|has| $ (-6 -4506)))) (-3763 (($ (-1 (-121) |#1|) $) NIL)) (-3802 (($ (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-4236 (($) NIL T CONST)) (-4030 (($ $) NIL (|has| $ (-6 -4506)))) (-2883 (($ $) NIL)) (-3568 (($ $) NIL (|has| |#1| (-1082)))) (-2868 (($ $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-3561 (($ |#1| $) NIL (|has| |#1| (-1082))) (($ (-1 (-121) |#1|) $) NIL)) (-4310 (($ |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082)))) (($ (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-2342 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4505))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4505)))) (-1746 ((|#1| $ (-560) |#1|) NIL (|has| $ (-6 -4506)))) (-1361 ((|#1| $ (-560)) NIL)) (-2839 (((-560) (-1 (-121) |#1|) $) NIL) (((-560) |#1| $) NIL (|has| |#1| (-1082))) (((-560) |#1| $ (-560)) NIL (|has| |#1| (-1082)))) (-2505 (($ $ (-560)) NIL)) (-1809 (((-755) $) NIL)) (-1981 (((-626 |#1|) $) NIL (|has| $ (-6 -4505)))) (-1721 (($ (-755) |#1|) NIL)) (-2122 (((-121) $ (-755)) NIL)) (-4099 (((-560) $) NIL (|has| (-560) (-834)))) (-4325 (($ $ $) NIL (|has| |#1| (-834)))) (-2037 (($ $ $) NIL (|has| |#1| (-834))) (($ (-1 (-121) |#1| |#1|) $ $) NIL)) (-2492 (($ (-1 (-121) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-834)))) (-2130 (((-626 |#1|) $) NIL (|has| $ (-6 -4505)))) (-2030 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-2767 (((-560) $) NIL (|has| (-560) (-834)))) (-2501 (($ $ $) NIL (|has| |#1| (-834)))) (-3778 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3441 (((-121) $ (-755)) NIL)) (-1291 (((-1135) $) NIL (|has| |#1| (-1082)))) (-4345 (($ $ $ (-560)) NIL) (($ |#1| $ (-560)) NIL)) (-4103 (($ |#1| $ (-560)) NIL) (($ $ $ (-560)) NIL)) (-1529 (((-626 (-560)) $) NIL)) (-1310 (((-121) (-560) $) NIL)) (-4353 (((-1100) $) NIL (|has| |#1| (-1082)))) (-3151 (($ (-626 |#1|)) NIL)) (-2824 ((|#1| $) NIL (|has| (-560) (-834)))) (-3786 (((-3 |#1| "failed") (-1 (-121) |#1|) $) NIL)) (-3038 (($ $ |#1|) NIL (|has| $ (-6 -4506)))) (-2865 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#1|))) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-283 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-626 |#1|) (-626 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))))) (-2214 (((-121) $ $) NIL)) (-1290 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-4460 (((-626 |#1|) $) NIL)) (-4191 (((-121) $) NIL)) (-3260 (($) NIL)) (-2778 ((|#1| $ (-560) |#1|) NIL) ((|#1| $ (-560)) NIL) (($ $ (-1202 (-560))) NIL)) (-4094 (($ $ (-1202 (-560))) NIL) (($ $ (-560)) NIL)) (-2949 (($ $ (-560)) NIL) (($ $ (-1202 (-560))) NIL)) (-4035 (((-755) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505))) (((-755) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-4072 (($ $ $ (-560)) NIL (|has| $ (-6 -4506)))) (-2813 (($ $) NIL)) (-4255 (((-533) $) NIL (|has| |#1| (-601 (-533))))) (-4162 (($ (-626 |#1|)) NIL)) (-3602 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2849 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-626 $)) NIL)) (-2801 (((-842) $) NIL (|has| |#1| (-1082)))) (-3656 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-1691 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1675 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1653 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-1683 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1667 (((-121) $ $) NIL (|has| |#1| (-834)))) (-2271 (((-755) $) NIL (|has| $ (-6 -4505))))) -(((-319 |#1|) (-13 (-19 |#1|) (-272 |#1|) (-10 -8 (-15 -3151 ($ (-626 |#1|))) (-15 -1809 ((-755) $)) (-15 -2505 ($ $ (-560))) (-15 -3767 ((-121) (-121))))) (-1187)) (T -319)) -((-3151 (*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-1187)) (-5 *1 (-319 *3)))) (-1809 (*1 *2 *1) (-12 (-5 *2 (-755)) (-5 *1 (-319 *3)) (-4 *3 (-1187)))) (-2505 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-319 *3)) (-4 *3 (-1187)))) (-3767 (*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-319 *3)) (-4 *3 (-1187))))) -(-13 (-19 |#1|) (-272 |#1|) (-10 -8 (-15 -3151 ($ (-626 |#1|))) (-15 -1809 ((-755) $)) (-15 -2505 ($ $ (-560))) (-15 -3767 ((-121) (-121))))) -((-3913 (((-121) $) 37)) (-1881 (((-755)) 22)) (-1944 ((|#2| $) 41) (($ $ (-909)) 99)) (-2912 (((-755)) 93)) (-3380 (($ (-1236 |#2|)) 20)) (-1428 (((-121) $) 111)) (-3339 ((|#2| $) 43) (($ $ (-909)) 97)) (-4108 (((-1149 |#2|) $) NIL) (((-1149 $) $ (-909)) 88)) (-3312 (((-1149 |#2|) $) 78)) (-4175 (((-1149 |#2|) $) 75) (((-3 (-1149 |#2|) "failed") $ $) 72)) (-2455 (($ $ (-1149 |#2|)) 48)) (-1472 (((-820 (-909))) 91) (((-909)) 38)) (-4016 (((-139)) 25)) (-3662 (((-820 (-909)) $) NIL) (((-909) $) 112)) (-1380 (($) 105)) (-3390 (((-1236 |#2|) $) NIL) (((-671 |#2|) (-1236 $)) 34)) (-2272 (($ $) NIL) (((-3 $ "failed") $) 81)) (-1535 (((-121) $) 36))) -(((-320 |#1| |#2|) (-10 -8 (-15 -2272 ((-3 |#1| "failed") |#1|)) (-15 -2912 ((-755))) (-15 -2272 (|#1| |#1|)) (-15 -4175 ((-3 (-1149 |#2|) "failed") |#1| |#1|)) (-15 -4175 ((-1149 |#2|) |#1|)) (-15 -3312 ((-1149 |#2|) |#1|)) (-15 -2455 (|#1| |#1| (-1149 |#2|))) (-15 -1428 ((-121) |#1|)) (-15 -1380 (|#1|)) (-15 -1944 (|#1| |#1| (-909))) (-15 -3339 (|#1| |#1| (-909))) (-15 -4108 ((-1149 |#1|) |#1| (-909))) (-15 -1944 (|#2| |#1|)) (-15 -3339 (|#2| |#1|)) (-15 -3662 ((-909) |#1|)) (-15 -1472 ((-909))) (-15 -4108 ((-1149 |#2|) |#1|)) (-15 -3380 (|#1| (-1236 |#2|))) (-15 -3390 ((-671 |#2|) (-1236 |#1|))) (-15 -3390 ((-1236 |#2|) |#1|)) (-15 -1881 ((-755))) (-15 -1472 ((-820 (-909)))) (-15 -3662 ((-820 (-909)) |#1|)) (-15 -3913 ((-121) |#1|)) (-15 -1535 ((-121) |#1|)) (-15 -4016 ((-139)))) (-321 |#2|) (-359)) (T -320)) -((-4016 (*1 *2) (-12 (-4 *4 (-359)) (-5 *2 (-139)) (-5 *1 (-320 *3 *4)) (-4 *3 (-321 *4)))) (-1472 (*1 *2) (-12 (-4 *4 (-359)) (-5 *2 (-820 (-909))) (-5 *1 (-320 *3 *4)) (-4 *3 (-321 *4)))) (-1881 (*1 *2) (-12 (-4 *4 (-359)) (-5 *2 (-755)) (-5 *1 (-320 *3 *4)) (-4 *3 (-321 *4)))) (-1472 (*1 *2) (-12 (-4 *4 (-359)) (-5 *2 (-909)) (-5 *1 (-320 *3 *4)) (-4 *3 (-321 *4)))) (-2912 (*1 *2) (-12 (-4 *4 (-359)) (-5 *2 (-755)) (-5 *1 (-320 *3 *4)) (-4 *3 (-321 *4))))) -(-10 -8 (-15 -2272 ((-3 |#1| "failed") |#1|)) (-15 -2912 ((-755))) (-15 -2272 (|#1| |#1|)) (-15 -4175 ((-3 (-1149 |#2|) "failed") |#1| |#1|)) (-15 -4175 ((-1149 |#2|) |#1|)) (-15 -3312 ((-1149 |#2|) |#1|)) (-15 -2455 (|#1| |#1| (-1149 |#2|))) (-15 -1428 ((-121) |#1|)) (-15 -1380 (|#1|)) (-15 -1944 (|#1| |#1| (-909))) (-15 -3339 (|#1| |#1| (-909))) (-15 -4108 ((-1149 |#1|) |#1| (-909))) (-15 -1944 (|#2| |#1|)) (-15 -3339 (|#2| |#1|)) (-15 -3662 ((-909) |#1|)) (-15 -1472 ((-909))) (-15 -4108 ((-1149 |#2|) |#1|)) (-15 -3380 (|#1| (-1236 |#2|))) (-15 -3390 ((-671 |#2|) (-1236 |#1|))) (-15 -3390 ((-1236 |#2|) |#1|)) (-15 -1881 ((-755))) (-15 -1472 ((-820 (-909)))) (-15 -3662 ((-820 (-909)) |#1|)) (-15 -3913 ((-121) |#1|)) (-15 -1535 ((-121) |#1|)) (-15 -4016 ((-139)))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) 40)) (-1350 (($ $) 39)) (-3376 (((-121) $) 37)) (-3913 (((-121) $) 90)) (-1881 (((-755)) 86)) (-1944 ((|#1| $) 133) (($ $ (-909)) 130 (|has| |#1| (-364)))) (-4357 (((-1161 (-909) (-755)) (-560)) 115 (|has| |#1| (-364)))) (-2314 (((-3 $ "failed") $ $) 18)) (-3065 (($ $) 71)) (-2953 (((-414 $) $) 70)) (-4179 (((-121) $ $) 57)) (-2912 (((-755)) 105 (|has| |#1| (-364)))) (-4236 (($) 16 T CONST)) (-1473 (((-3 |#1| "failed") $) 97)) (-3001 ((|#1| $) 96)) (-3380 (($ (-1236 |#1|)) 139)) (-4107 (((-3 "prime" "polynomial" "normal" "cyclic")) 121 (|has| |#1| (-364)))) (-2563 (($ $ $) 53)) (-1823 (((-3 $ "failed") $) 33)) (-1666 (($) 102 (|has| |#1| (-364)))) (-2572 (($ $ $) 54)) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) 49)) (-2481 (($) 117 (|has| |#1| (-364)))) (-1537 (((-121) $) 118 (|has| |#1| (-364)))) (-2937 (($ $ (-755)) 83 (-2318 (|has| |#1| (-146)) (|has| |#1| (-364)))) (($ $) 82 (-2318 (|has| |#1| (-146)) (|has| |#1| (-364))))) (-3319 (((-121) $) 69)) (-3504 (((-909) $) 120 (|has| |#1| (-364))) (((-820 (-909)) $) 80 (-2318 (|has| |#1| (-146)) (|has| |#1| (-364))))) (-2642 (((-121) $) 30)) (-2174 (($) 128 (|has| |#1| (-364)))) (-1428 (((-121) $) 127 (|has| |#1| (-364)))) (-3339 ((|#1| $) 134) (($ $ (-909)) 131 (|has| |#1| (-364)))) (-1424 (((-3 $ "failed") $) 106 (|has| |#1| (-364)))) (-3856 (((-3 (-626 $) "failed") (-626 $) $) 50)) (-4108 (((-1149 |#1|) $) 138) (((-1149 $) $ (-909)) 132 (|has| |#1| (-364)))) (-3142 (((-909) $) 103 (|has| |#1| (-364)))) (-3312 (((-1149 |#1|) $) 124 (|has| |#1| (-364)))) (-4175 (((-1149 |#1|) $) 123 (|has| |#1| (-364))) (((-3 (-1149 |#1|) "failed") $ $) 122 (|has| |#1| (-364)))) (-2455 (($ $ (-1149 |#1|)) 125 (|has| |#1| (-364)))) (-2582 (($ $ $) 45) (($ (-626 $)) 44)) (-1291 (((-1135) $) 9)) (-1701 (($ $) 68)) (-1394 (($) 107 (|has| |#1| (-364)) CONST)) (-1330 (($ (-909)) 104 (|has| |#1| (-364)))) (-3557 (((-121) $) 89)) (-4353 (((-1100) $) 10)) (-4250 (($) 126 (|has| |#1| (-364)))) (-4311 (((-1149 $) (-1149 $) (-1149 $)) 43)) (-4440 (($ $ $) 47) (($ (-626 $)) 46)) (-2385 (((-626 (-2 (|:| -1601 (-560)) (|:| -4034 (-560))))) 114 (|has| |#1| (-364)))) (-1601 (((-414 $) $) 72)) (-1472 (((-820 (-909))) 87) (((-909)) 136)) (-3505 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2336 (((-3 $ "failed") $ $) 41)) (-3456 (((-3 (-626 $) "failed") (-626 $) $) 48)) (-4445 (((-755) $) 56)) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) 55)) (-2935 (((-755) $) 119 (|has| |#1| (-364))) (((-3 (-755) "failed") $ $) 81 (-2318 (|has| |#1| (-146)) (|has| |#1| (-364))))) (-4016 (((-139)) 95)) (-2443 (($ $) 111 (|has| |#1| (-364))) (($ $ (-755)) 109 (|has| |#1| (-364)))) (-3662 (((-820 (-909)) $) 88) (((-909) $) 135)) (-3591 (((-1149 |#1|)) 137)) (-2612 (($) 116 (|has| |#1| (-364)))) (-1380 (($) 129 (|has| |#1| (-364)))) (-3390 (((-1236 |#1|) $) 141) (((-671 |#1|) (-1236 $)) 140)) (-3248 (((-3 (-1236 $) "failed") (-671 $)) 113 (|has| |#1| (-364)))) (-2801 (((-842) $) 11) (($ (-560)) 27) (($ $) 42) (($ (-403 (-560))) 63) (($ |#1|) 98)) (-2272 (($ $) 112 (|has| |#1| (-364))) (((-3 $ "failed") $) 79 (-2318 (|has| |#1| (-146)) (|has| |#1| (-364))))) (-1751 (((-755)) 28)) (-4374 (((-1236 $)) 143) (((-1236 $) (-909)) 142)) (-2328 (((-121) $ $) 38)) (-1535 (((-121) $) 91)) (-2464 (($ $ (-909)) 25) (($ $ (-755)) 32) (($ $ (-560)) 67)) (-3304 (($) 17 T CONST)) (-1459 (($) 29 T CONST)) (-2353 (($ $) 85 (|has| |#1| (-364))) (($ $ (-755)) 84 (|has| |#1| (-364)))) (-2500 (($ $) 110 (|has| |#1| (-364))) (($ $ (-755)) 108 (|has| |#1| (-364)))) (-1653 (((-121) $ $) 6)) (-1733 (($ $ $) 62) (($ $ |#1|) 94)) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 24) (($ $ (-755)) 31) (($ $ (-560)) 66)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 23) (($ $ (-403 (-560))) 65) (($ (-403 (-560)) $) 64) (($ $ |#1|) 93) (($ |#1| $) 92))) -(((-321 |#1|) (-1267) (-359)) (T -321)) -((-4374 (*1 *2) (-12 (-4 *3 (-359)) (-5 *2 (-1236 *1)) (-4 *1 (-321 *3)))) (-4374 (*1 *2 *3) (-12 (-5 *3 (-909)) (-4 *4 (-359)) (-5 *2 (-1236 *1)) (-4 *1 (-321 *4)))) (-3390 (*1 *2 *1) (-12 (-4 *1 (-321 *3)) (-4 *3 (-359)) (-5 *2 (-1236 *3)))) (-3390 (*1 *2 *3) (-12 (-5 *3 (-1236 *1)) (-4 *1 (-321 *4)) (-4 *4 (-359)) (-5 *2 (-671 *4)))) (-3380 (*1 *1 *2) (-12 (-5 *2 (-1236 *3)) (-4 *3 (-359)) (-4 *1 (-321 *3)))) (-4108 (*1 *2 *1) (-12 (-4 *1 (-321 *3)) (-4 *3 (-359)) (-5 *2 (-1149 *3)))) (-3591 (*1 *2) (-12 (-4 *1 (-321 *3)) (-4 *3 (-359)) (-5 *2 (-1149 *3)))) (-1472 (*1 *2) (-12 (-4 *1 (-321 *3)) (-4 *3 (-359)) (-5 *2 (-909)))) (-3662 (*1 *2 *1) (-12 (-4 *1 (-321 *3)) (-4 *3 (-359)) (-5 *2 (-909)))) (-3339 (*1 *2 *1) (-12 (-4 *1 (-321 *2)) (-4 *2 (-359)))) (-1944 (*1 *2 *1) (-12 (-4 *1 (-321 *2)) (-4 *2 (-359)))) (-4108 (*1 *2 *1 *3) (-12 (-5 *3 (-909)) (-4 *4 (-364)) (-4 *4 (-359)) (-5 *2 (-1149 *1)) (-4 *1 (-321 *4)))) (-3339 (*1 *1 *1 *2) (-12 (-5 *2 (-909)) (-4 *1 (-321 *3)) (-4 *3 (-359)) (-4 *3 (-364)))) (-1944 (*1 *1 *1 *2) (-12 (-5 *2 (-909)) (-4 *1 (-321 *3)) (-4 *3 (-359)) (-4 *3 (-364)))) (-1380 (*1 *1) (-12 (-4 *1 (-321 *2)) (-4 *2 (-364)) (-4 *2 (-359)))) (-2174 (*1 *1) (-12 (-4 *1 (-321 *2)) (-4 *2 (-364)) (-4 *2 (-359)))) (-1428 (*1 *2 *1) (-12 (-4 *1 (-321 *3)) (-4 *3 (-359)) (-4 *3 (-364)) (-5 *2 (-121)))) (-4250 (*1 *1) (-12 (-4 *1 (-321 *2)) (-4 *2 (-364)) (-4 *2 (-359)))) (-2455 (*1 *1 *1 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-364)) (-4 *1 (-321 *3)) (-4 *3 (-359)))) (-3312 (*1 *2 *1) (-12 (-4 *1 (-321 *3)) (-4 *3 (-359)) (-4 *3 (-364)) (-5 *2 (-1149 *3)))) (-4175 (*1 *2 *1) (-12 (-4 *1 (-321 *3)) (-4 *3 (-359)) (-4 *3 (-364)) (-5 *2 (-1149 *3)))) (-4175 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-321 *3)) (-4 *3 (-359)) (-4 *3 (-364)) (-5 *2 (-1149 *3))))) -(-13 (-1253 |t#1|) (-1029 |t#1|) (-10 -8 (-15 -4374 ((-1236 $))) (-15 -4374 ((-1236 $) (-909))) (-15 -3390 ((-1236 |t#1|) $)) (-15 -3390 ((-671 |t#1|) (-1236 $))) (-15 -3380 ($ (-1236 |t#1|))) (-15 -4108 ((-1149 |t#1|) $)) (-15 -3591 ((-1149 |t#1|))) (-15 -1472 ((-909))) (-15 -3662 ((-909) $)) (-15 -3339 (|t#1| $)) (-15 -1944 (|t#1| $)) (IF (|has| |t#1| (-364)) (PROGN (-6 (-344)) (-15 -4108 ((-1149 $) $ (-909))) (-15 -3339 ($ $ (-909))) (-15 -1944 ($ $ (-909))) (-15 -1380 ($)) (-15 -2174 ($)) (-15 -1428 ((-121) $)) (-15 -4250 ($)) (-15 -2455 ($ $ (-1149 |t#1|))) (-15 -3312 ((-1149 |t#1|) $)) (-15 -4175 ((-1149 |t#1|) $)) (-15 -4175 ((-3 (-1149 |t#1|) "failed") $ $))) |noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-43 (-403 (-560))) . T) ((-43 $) . T) ((-105) . T) ((-120 (-403 (-560)) (-403 (-560))) . T) ((-120 |#1| |#1|) . T) ((-120 $ $) . T) ((-137) . T) ((-146) -2318 (|has| |#1| (-364)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-600 (-842)) . T) ((-170) . T) ((-221) |has| |#1| (-364)) ((-233) . T) ((-280) . T) ((-296) . T) ((-1253 |#1|) . T) ((-359) . T) ((-398) -2318 (|has| |#1| (-364)) (|has| |#1| (-146))) ((-364) |has| |#1| (-364)) ((-344) |has| |#1| (-364)) ((-447) . T) ((-550) . T) ((-629 (-403 (-560))) . T) ((-629 |#1|) . T) ((-629 $) . T) ((-699 (-403 (-560))) . T) ((-699 |#1|) . T) ((-699 $) . T) ((-708) . T) ((-908) . T) ((-1029 |#1|) . T) ((-1045 (-403 (-560))) . T) ((-1045 |#1|) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1094) . T) ((-1082) . T) ((-1128) |has| |#1| (-364)) ((-1191) . T) ((-1243 |#1|) . T)) -((-2601 (((-121) $ $) NIL)) (-4027 (($ (-1152) $) 88)) (-2740 (($) 76)) (-3606 (((-1100) (-1100)) 11)) (-2359 (($) 77)) (-1957 (($) 90) (($ (-304 (-680))) 96) (($ (-304 (-682))) 93) (($ (-304 (-675))) 99) (($ (-304 (-375))) 105) (($ (-304 (-560))) 102) (($ (-304 (-167 (-375)))) 108)) (-1527 (($ (-1152) $) 89)) (-3627 (($ (-626 (-842))) 79)) (-2088 (((-1241) $) 73)) (-3216 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 27)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-3669 (($ (-1100)) 45)) (-3516 (((-1086) $) 25)) (-3082 (($ (-1074 (-945 (-560))) $) 85) (($ (-1074 (-945 (-560))) (-945 (-560)) $) 86)) (-3078 (($ (-1100)) 87)) (-4004 (($ (-1152) $) 110) (($ (-1152) $ $) 111)) (-3299 (($ (-1153) (-626 (-1153))) 75)) (-2279 (($ (-1135)) 82) (($ (-626 (-1135))) 80)) (-2801 (((-842) $) 113)) (-2111 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1153)) (|:| |arrayIndex| (-626 (-945 (-560)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-121)) (|:| -1846 (-842)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1153)) (|:| |rand| (-842)) (|:| |ints2Floats?| (-121)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1152)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -4191 (-121)) (|:| -2981 (-2 (|:| |ints2Floats?| (-121)) (|:| -1846 (-842)))))) (|:| |blockBranch| (-626 $)) (|:| |commentBranch| (-626 (-1135))) (|:| |callBranch| (-1135)) (|:| |forBranch| (-2 (|:| -1396 (-1074 (-945 (-560)))) (|:| |span| (-945 (-560))) (|:| |body| $))) (|:| |labelBranch| (-1100)) (|:| |loopBranch| (-2 (|:| |switch| (-1152)) (|:| |body| $))) (|:| |commonBranch| (-2 (|:| -1337 (-1153)) (|:| |contents| (-626 (-1153))))) (|:| |printBranch| (-626 (-842)))) $) 37)) (-4305 (($ (-1135)) 182)) (-4126 (($ (-626 $)) 109)) (-2294 (($ (-1153) (-1135)) 115) (($ (-1153) (-304 (-682))) 155) (($ (-1153) (-304 (-680))) 156) (($ (-1153) (-304 (-675))) 157) (($ (-1153) (-671 (-682))) 118) (($ (-1153) (-671 (-680))) 121) (($ (-1153) (-671 (-675))) 124) (($ (-1153) (-1236 (-682))) 127) (($ (-1153) (-1236 (-680))) 130) (($ (-1153) (-1236 (-675))) 133) (($ (-1153) (-671 (-304 (-682)))) 136) (($ (-1153) (-671 (-304 (-680)))) 139) (($ (-1153) (-671 (-304 (-675)))) 142) (($ (-1153) (-1236 (-304 (-682)))) 145) (($ (-1153) (-1236 (-304 (-680)))) 148) (($ (-1153) (-1236 (-304 (-675)))) 151) (($ (-1153) (-626 (-945 (-560))) (-304 (-682))) 152) (($ (-1153) (-626 (-945 (-560))) (-304 (-680))) 153) (($ (-1153) (-626 (-945 (-560))) (-304 (-675))) 154) (($ (-1153) (-304 (-560))) 179) (($ (-1153) (-304 (-375))) 180) (($ (-1153) (-304 (-167 (-375)))) 181) (($ (-1153) (-671 (-304 (-560)))) 160) (($ (-1153) (-671 (-304 (-375)))) 163) (($ (-1153) (-671 (-304 (-167 (-375))))) 166) (($ (-1153) (-1236 (-304 (-560)))) 169) (($ (-1153) (-1236 (-304 (-375)))) 172) (($ (-1153) (-1236 (-304 (-167 (-375))))) 175) (($ (-1153) (-626 (-945 (-560))) (-304 (-560))) 176) (($ (-1153) (-626 (-945 (-560))) (-304 (-375))) 177) (($ (-1153) (-626 (-945 (-560))) (-304 (-167 (-375)))) 178)) (-1653 (((-121) $ $) NIL))) -(((-322) (-13 (-1082) (-10 -8 (-15 -2801 ((-842) $)) (-15 -3082 ($ (-1074 (-945 (-560))) $)) (-15 -3082 ($ (-1074 (-945 (-560))) (-945 (-560)) $)) (-15 -4027 ($ (-1152) $)) (-15 -1527 ($ (-1152) $)) (-15 -3669 ($ (-1100))) (-15 -3078 ($ (-1100))) (-15 -2279 ($ (-1135))) (-15 -2279 ($ (-626 (-1135)))) (-15 -4305 ($ (-1135))) (-15 -1957 ($)) (-15 -1957 ($ (-304 (-680)))) (-15 -1957 ($ (-304 (-682)))) (-15 -1957 ($ (-304 (-675)))) (-15 -1957 ($ (-304 (-375)))) (-15 -1957 ($ (-304 (-560)))) (-15 -1957 ($ (-304 (-167 (-375))))) (-15 -4004 ($ (-1152) $)) (-15 -4004 ($ (-1152) $ $)) (-15 -2294 ($ (-1153) (-1135))) (-15 -2294 ($ (-1153) (-304 (-682)))) (-15 -2294 ($ (-1153) (-304 (-680)))) (-15 -2294 ($ (-1153) (-304 (-675)))) (-15 -2294 ($ (-1153) (-671 (-682)))) (-15 -2294 ($ (-1153) (-671 (-680)))) (-15 -2294 ($ (-1153) (-671 (-675)))) (-15 -2294 ($ (-1153) (-1236 (-682)))) (-15 -2294 ($ (-1153) (-1236 (-680)))) (-15 -2294 ($ (-1153) (-1236 (-675)))) (-15 -2294 ($ (-1153) (-671 (-304 (-682))))) (-15 -2294 ($ (-1153) (-671 (-304 (-680))))) (-15 -2294 ($ (-1153) (-671 (-304 (-675))))) (-15 -2294 ($ (-1153) (-1236 (-304 (-682))))) (-15 -2294 ($ (-1153) (-1236 (-304 (-680))))) (-15 -2294 ($ (-1153) (-1236 (-304 (-675))))) (-15 -2294 ($ (-1153) (-626 (-945 (-560))) (-304 (-682)))) (-15 -2294 ($ (-1153) (-626 (-945 (-560))) (-304 (-680)))) (-15 -2294 ($ (-1153) (-626 (-945 (-560))) (-304 (-675)))) (-15 -2294 ($ (-1153) (-304 (-560)))) (-15 -2294 ($ (-1153) (-304 (-375)))) (-15 -2294 ($ (-1153) (-304 (-167 (-375))))) (-15 -2294 ($ (-1153) (-671 (-304 (-560))))) (-15 -2294 ($ (-1153) (-671 (-304 (-375))))) (-15 -2294 ($ (-1153) (-671 (-304 (-167 (-375)))))) (-15 -2294 ($ (-1153) (-1236 (-304 (-560))))) (-15 -2294 ($ (-1153) (-1236 (-304 (-375))))) (-15 -2294 ($ (-1153) (-1236 (-304 (-167 (-375)))))) (-15 -2294 ($ (-1153) (-626 (-945 (-560))) (-304 (-560)))) (-15 -2294 ($ (-1153) (-626 (-945 (-560))) (-304 (-375)))) (-15 -2294 ($ (-1153) (-626 (-945 (-560))) (-304 (-167 (-375))))) (-15 -4126 ($ (-626 $))) (-15 -2740 ($)) (-15 -2359 ($)) (-15 -3627 ($ (-626 (-842)))) (-15 -3299 ($ (-1153) (-626 (-1153)))) (-15 -3216 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2111 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1153)) (|:| |arrayIndex| (-626 (-945 (-560)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-121)) (|:| -1846 (-842)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1153)) (|:| |rand| (-842)) (|:| |ints2Floats?| (-121)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1152)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -4191 (-121)) (|:| -2981 (-2 (|:| |ints2Floats?| (-121)) (|:| -1846 (-842)))))) (|:| |blockBranch| (-626 $)) (|:| |commentBranch| (-626 (-1135))) (|:| |callBranch| (-1135)) (|:| |forBranch| (-2 (|:| -1396 (-1074 (-945 (-560)))) (|:| |span| (-945 (-560))) (|:| |body| $))) (|:| |labelBranch| (-1100)) (|:| |loopBranch| (-2 (|:| |switch| (-1152)) (|:| |body| $))) (|:| |commonBranch| (-2 (|:| -1337 (-1153)) (|:| |contents| (-626 (-1153))))) (|:| |printBranch| (-626 (-842)))) $)) (-15 -2088 ((-1241) $)) (-15 -3516 ((-1086) $)) (-15 -3606 ((-1100) (-1100)))))) (T -322)) -((-2801 (*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-322)))) (-3082 (*1 *1 *2 *1) (-12 (-5 *2 (-1074 (-945 (-560)))) (-5 *1 (-322)))) (-3082 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1074 (-945 (-560)))) (-5 *3 (-945 (-560))) (-5 *1 (-322)))) (-4027 (*1 *1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-322)))) (-1527 (*1 *1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-322)))) (-3669 (*1 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-322)))) (-3078 (*1 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-322)))) (-2279 (*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-322)))) (-2279 (*1 *1 *2) (-12 (-5 *2 (-626 (-1135))) (-5 *1 (-322)))) (-4305 (*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-322)))) (-1957 (*1 *1) (-5 *1 (-322))) (-1957 (*1 *1 *2) (-12 (-5 *2 (-304 (-680))) (-5 *1 (-322)))) (-1957 (*1 *1 *2) (-12 (-5 *2 (-304 (-682))) (-5 *1 (-322)))) (-1957 (*1 *1 *2) (-12 (-5 *2 (-304 (-675))) (-5 *1 (-322)))) (-1957 (*1 *1 *2) (-12 (-5 *2 (-304 (-375))) (-5 *1 (-322)))) (-1957 (*1 *1 *2) (-12 (-5 *2 (-304 (-560))) (-5 *1 (-322)))) (-1957 (*1 *1 *2) (-12 (-5 *2 (-304 (-167 (-375)))) (-5 *1 (-322)))) (-4004 (*1 *1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-322)))) (-4004 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-322)))) (-2294 (*1 *1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-1135)) (-5 *1 (-322)))) (-2294 (*1 *1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-304 (-682))) (-5 *1 (-322)))) (-2294 (*1 *1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-304 (-680))) (-5 *1 (-322)))) (-2294 (*1 *1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-304 (-675))) (-5 *1 (-322)))) (-2294 (*1 *1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-671 (-682))) (-5 *1 (-322)))) (-2294 (*1 *1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-671 (-680))) (-5 *1 (-322)))) (-2294 (*1 *1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-671 (-675))) (-5 *1 (-322)))) (-2294 (*1 *1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-1236 (-682))) (-5 *1 (-322)))) (-2294 (*1 *1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-1236 (-680))) (-5 *1 (-322)))) (-2294 (*1 *1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-1236 (-675))) (-5 *1 (-322)))) (-2294 (*1 *1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-671 (-304 (-682)))) (-5 *1 (-322)))) (-2294 (*1 *1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-671 (-304 (-680)))) (-5 *1 (-322)))) (-2294 (*1 *1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-671 (-304 (-675)))) (-5 *1 (-322)))) (-2294 (*1 *1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-1236 (-304 (-682)))) (-5 *1 (-322)))) (-2294 (*1 *1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-1236 (-304 (-680)))) (-5 *1 (-322)))) (-2294 (*1 *1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-1236 (-304 (-675)))) (-5 *1 (-322)))) (-2294 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1153)) (-5 *3 (-626 (-945 (-560)))) (-5 *4 (-304 (-682))) (-5 *1 (-322)))) (-2294 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1153)) (-5 *3 (-626 (-945 (-560)))) (-5 *4 (-304 (-680))) (-5 *1 (-322)))) (-2294 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1153)) (-5 *3 (-626 (-945 (-560)))) (-5 *4 (-304 (-675))) (-5 *1 (-322)))) (-2294 (*1 *1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-304 (-560))) (-5 *1 (-322)))) (-2294 (*1 *1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-304 (-375))) (-5 *1 (-322)))) (-2294 (*1 *1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-304 (-167 (-375)))) (-5 *1 (-322)))) (-2294 (*1 *1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-671 (-304 (-560)))) (-5 *1 (-322)))) (-2294 (*1 *1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-671 (-304 (-375)))) (-5 *1 (-322)))) (-2294 (*1 *1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-671 (-304 (-167 (-375))))) (-5 *1 (-322)))) (-2294 (*1 *1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-1236 (-304 (-560)))) (-5 *1 (-322)))) (-2294 (*1 *1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-1236 (-304 (-375)))) (-5 *1 (-322)))) (-2294 (*1 *1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-1236 (-304 (-167 (-375))))) (-5 *1 (-322)))) (-2294 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1153)) (-5 *3 (-626 (-945 (-560)))) (-5 *4 (-304 (-560))) (-5 *1 (-322)))) (-2294 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1153)) (-5 *3 (-626 (-945 (-560)))) (-5 *4 (-304 (-375))) (-5 *1 (-322)))) (-2294 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1153)) (-5 *3 (-626 (-945 (-560)))) (-5 *4 (-304 (-167 (-375)))) (-5 *1 (-322)))) (-4126 (*1 *1 *2) (-12 (-5 *2 (-626 (-322))) (-5 *1 (-322)))) (-2740 (*1 *1) (-5 *1 (-322))) (-2359 (*1 *1) (-5 *1 (-322))) (-3627 (*1 *1 *2) (-12 (-5 *2 (-626 (-842))) (-5 *1 (-322)))) (-3299 (*1 *1 *2 *3) (-12 (-5 *3 (-626 (-1153))) (-5 *2 (-1153)) (-5 *1 (-322)))) (-3216 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-322)))) (-2111 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1153)) (|:| |arrayIndex| (-626 (-945 (-560)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-121)) (|:| -1846 (-842)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1153)) (|:| |rand| (-842)) (|:| |ints2Floats?| (-121)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1152)) (|:| |thenClause| (-322)) (|:| |elseClause| (-322)))) (|:| |returnBranch| (-2 (|:| -4191 (-121)) (|:| -2981 (-2 (|:| |ints2Floats?| (-121)) (|:| -1846 (-842)))))) (|:| |blockBranch| (-626 (-322))) (|:| |commentBranch| (-626 (-1135))) (|:| |callBranch| (-1135)) (|:| |forBranch| (-2 (|:| -1396 (-1074 (-945 (-560)))) (|:| |span| (-945 (-560))) (|:| |body| (-322)))) (|:| |labelBranch| (-1100)) (|:| |loopBranch| (-2 (|:| |switch| (-1152)) (|:| |body| (-322)))) (|:| |commonBranch| (-2 (|:| -1337 (-1153)) (|:| |contents| (-626 (-1153))))) (|:| |printBranch| (-626 (-842))))) (-5 *1 (-322)))) (-2088 (*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-322)))) (-3516 (*1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-322)))) (-3606 (*1 *2 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-322))))) -(-13 (-1082) (-10 -8 (-15 -2801 ((-842) $)) (-15 -3082 ($ (-1074 (-945 (-560))) $)) (-15 -3082 ($ (-1074 (-945 (-560))) (-945 (-560)) $)) (-15 -4027 ($ (-1152) $)) (-15 -1527 ($ (-1152) $)) (-15 -3669 ($ (-1100))) (-15 -3078 ($ (-1100))) (-15 -2279 ($ (-1135))) (-15 -2279 ($ (-626 (-1135)))) (-15 -4305 ($ (-1135))) (-15 -1957 ($)) (-15 -1957 ($ (-304 (-680)))) (-15 -1957 ($ (-304 (-682)))) (-15 -1957 ($ (-304 (-675)))) (-15 -1957 ($ (-304 (-375)))) (-15 -1957 ($ (-304 (-560)))) (-15 -1957 ($ (-304 (-167 (-375))))) (-15 -4004 ($ (-1152) $)) (-15 -4004 ($ (-1152) $ $)) (-15 -2294 ($ (-1153) (-1135))) (-15 -2294 ($ (-1153) (-304 (-682)))) (-15 -2294 ($ (-1153) (-304 (-680)))) (-15 -2294 ($ (-1153) (-304 (-675)))) (-15 -2294 ($ (-1153) (-671 (-682)))) (-15 -2294 ($ (-1153) (-671 (-680)))) (-15 -2294 ($ (-1153) (-671 (-675)))) (-15 -2294 ($ (-1153) (-1236 (-682)))) (-15 -2294 ($ (-1153) (-1236 (-680)))) (-15 -2294 ($ (-1153) (-1236 (-675)))) (-15 -2294 ($ (-1153) (-671 (-304 (-682))))) (-15 -2294 ($ (-1153) (-671 (-304 (-680))))) (-15 -2294 ($ (-1153) (-671 (-304 (-675))))) (-15 -2294 ($ (-1153) (-1236 (-304 (-682))))) (-15 -2294 ($ (-1153) (-1236 (-304 (-680))))) (-15 -2294 ($ (-1153) (-1236 (-304 (-675))))) (-15 -2294 ($ (-1153) (-626 (-945 (-560))) (-304 (-682)))) (-15 -2294 ($ (-1153) (-626 (-945 (-560))) (-304 (-680)))) (-15 -2294 ($ (-1153) (-626 (-945 (-560))) (-304 (-675)))) (-15 -2294 ($ (-1153) (-304 (-560)))) (-15 -2294 ($ (-1153) (-304 (-375)))) (-15 -2294 ($ (-1153) (-304 (-167 (-375))))) (-15 -2294 ($ (-1153) (-671 (-304 (-560))))) (-15 -2294 ($ (-1153) (-671 (-304 (-375))))) (-15 -2294 ($ (-1153) (-671 (-304 (-167 (-375)))))) (-15 -2294 ($ (-1153) (-1236 (-304 (-560))))) (-15 -2294 ($ (-1153) (-1236 (-304 (-375))))) (-15 -2294 ($ (-1153) (-1236 (-304 (-167 (-375)))))) (-15 -2294 ($ (-1153) (-626 (-945 (-560))) (-304 (-560)))) (-15 -2294 ($ (-1153) (-626 (-945 (-560))) (-304 (-375)))) (-15 -2294 ($ (-1153) (-626 (-945 (-560))) (-304 (-167 (-375))))) (-15 -4126 ($ (-626 $))) (-15 -2740 ($)) (-15 -2359 ($)) (-15 -3627 ($ (-626 (-842)))) (-15 -3299 ($ (-1153) (-626 (-1153)))) (-15 -3216 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2111 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1153)) (|:| |arrayIndex| (-626 (-945 (-560)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-121)) (|:| -1846 (-842)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1153)) (|:| |rand| (-842)) (|:| |ints2Floats?| (-121)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1152)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -4191 (-121)) (|:| -2981 (-2 (|:| |ints2Floats?| (-121)) (|:| -1846 (-842)))))) (|:| |blockBranch| (-626 $)) (|:| |commentBranch| (-626 (-1135))) (|:| |callBranch| (-1135)) (|:| |forBranch| (-2 (|:| -1396 (-1074 (-945 (-560)))) (|:| |span| (-945 (-560))) (|:| |body| $))) (|:| |labelBranch| (-1100)) (|:| |loopBranch| (-2 (|:| |switch| (-1152)) (|:| |body| $))) (|:| |commonBranch| (-2 (|:| -1337 (-1153)) (|:| |contents| (-626 (-1153))))) (|:| |printBranch| (-626 (-842)))) $)) (-15 -2088 ((-1241) $)) (-15 -3516 ((-1086) $)) (-15 -3606 ((-1100) (-1100))))) -((-2601 (((-121) $ $) NIL)) (-2143 (((-121) $) 11)) (-2790 (($ |#1|) 8)) (-4325 (($ $ $) NIL)) (-2501 (($ $ $) NIL)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2795 (($ |#1|) 9)) (-2801 (((-842) $) 17)) (-3896 ((|#1| $) 12)) (-1691 (((-121) $ $) NIL)) (-1675 (((-121) $ $) NIL)) (-1653 (((-121) $ $) NIL)) (-1683 (((-121) $ $) NIL)) (-1667 (((-121) $ $) 19))) -(((-323 |#1|) (-13 (-834) (-10 -8 (-15 -2790 ($ |#1|)) (-15 -2795 ($ |#1|)) (-15 -2143 ((-121) $)) (-15 -3896 (|#1| $)))) (-834)) (T -323)) -((-2790 (*1 *1 *2) (-12 (-5 *1 (-323 *2)) (-4 *2 (-834)))) (-2795 (*1 *1 *2) (-12 (-5 *1 (-323 *2)) (-4 *2 (-834)))) (-2143 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-323 *3)) (-4 *3 (-834)))) (-3896 (*1 *2 *1) (-12 (-5 *1 (-323 *2)) (-4 *2 (-834))))) -(-13 (-834) (-10 -8 (-15 -2790 ($ |#1|)) (-15 -2795 ($ |#1|)) (-15 -2143 ((-121) $)) (-15 -3896 (|#1| $)))) -((-4257 (((-322) (-1153) (-945 (-560))) 22)) (-4153 (((-322) (-1153) (-945 (-560))) 26)) (-2407 (((-322) (-1153) (-1074 (-945 (-560))) (-1074 (-945 (-560)))) 25) (((-322) (-1153) (-945 (-560)) (-945 (-560))) 23)) (-2701 (((-322) (-1153) (-945 (-560))) 30))) -(((-324) (-10 -7 (-15 -4257 ((-322) (-1153) (-945 (-560)))) (-15 -2407 ((-322) (-1153) (-945 (-560)) (-945 (-560)))) (-15 -2407 ((-322) (-1153) (-1074 (-945 (-560))) (-1074 (-945 (-560))))) (-15 -4153 ((-322) (-1153) (-945 (-560)))) (-15 -2701 ((-322) (-1153) (-945 (-560)))))) (T -324)) -((-2701 (*1 *2 *3 *4) (-12 (-5 *3 (-1153)) (-5 *4 (-945 (-560))) (-5 *2 (-322)) (-5 *1 (-324)))) (-4153 (*1 *2 *3 *4) (-12 (-5 *3 (-1153)) (-5 *4 (-945 (-560))) (-5 *2 (-322)) (-5 *1 (-324)))) (-2407 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1153)) (-5 *4 (-1074 (-945 (-560)))) (-5 *2 (-322)) (-5 *1 (-324)))) (-2407 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1153)) (-5 *4 (-945 (-560))) (-5 *2 (-322)) (-5 *1 (-324)))) (-4257 (*1 *2 *3 *4) (-12 (-5 *3 (-1153)) (-5 *4 (-945 (-560))) (-5 *2 (-322)) (-5 *1 (-324))))) -(-10 -7 (-15 -4257 ((-322) (-1153) (-945 (-560)))) (-15 -2407 ((-322) (-1153) (-945 (-560)) (-945 (-560)))) (-15 -2407 ((-322) (-1153) (-1074 (-945 (-560))) (-1074 (-945 (-560))))) (-15 -4153 ((-322) (-1153) (-945 (-560)))) (-15 -2701 ((-322) (-1153) (-945 (-560))))) -((-2803 (((-328 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-328 |#1| |#2| |#3| |#4|)) 31))) -(((-325 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2803 ((-328 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-328 |#1| |#2| |#3| |#4|)))) (-359) (-1211 |#1|) (-1211 (-403 |#2|)) (-334 |#1| |#2| |#3|) (-359) (-1211 |#5|) (-1211 (-403 |#6|)) (-334 |#5| |#6| |#7|)) (T -325)) -((-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-328 *5 *6 *7 *8)) (-4 *5 (-359)) (-4 *6 (-1211 *5)) (-4 *7 (-1211 (-403 *6))) (-4 *8 (-334 *5 *6 *7)) (-4 *9 (-359)) (-4 *10 (-1211 *9)) (-4 *11 (-1211 (-403 *10))) (-5 *2 (-328 *9 *10 *11 *12)) (-5 *1 (-325 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-334 *9 *10 *11))))) -(-10 -7 (-15 -2803 ((-328 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-328 |#1| |#2| |#3| |#4|)))) -((-2079 (((-121) $) 14))) -(((-326 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2079 ((-121) |#1|))) (-327 |#2| |#3| |#4| |#5|) (-359) (-1211 |#2|) (-1211 (-403 |#3|)) (-334 |#2| |#3| |#4|)) (T -326)) -NIL -(-10 -8 (-15 -2079 ((-121) |#1|))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-2314 (((-3 $ "failed") $ $) 18)) (-4236 (($) 16 T CONST)) (-2342 (($ $) 25)) (-2079 (((-121) $) 24)) (-1291 (((-1135) $) 9)) (-1303 (((-409 |#2| (-403 |#2|) |#3| |#4|) $) 31)) (-4353 (((-1100) $) 10)) (-4250 (((-3 |#4| "failed") $) 23)) (-2304 (($ (-409 |#2| (-403 |#2|) |#3| |#4|)) 30) (($ |#4|) 29) (($ |#1| |#1|) 28) (($ |#1| |#1| (-560)) 27) (($ |#4| |#2| |#2| |#2| |#1|) 22)) (-1636 (((-2 (|:| -2287 (-409 |#2| (-403 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 26)) (-2801 (((-842) $) 11)) (-3304 (($) 17 T CONST)) (-1653 (((-121) $ $) 6)) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19))) -(((-327 |#1| |#2| |#3| |#4|) (-1267) (-359) (-1211 |t#1|) (-1211 (-403 |t#2|)) (-334 |t#1| |t#2| |t#3|)) (T -327)) -((-1303 (*1 *2 *1) (-12 (-4 *1 (-327 *3 *4 *5 *6)) (-4 *3 (-359)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-403 *4))) (-4 *6 (-334 *3 *4 *5)) (-5 *2 (-409 *4 (-403 *4) *5 *6)))) (-2304 (*1 *1 *2) (-12 (-5 *2 (-409 *4 (-403 *4) *5 *6)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-403 *4))) (-4 *6 (-334 *3 *4 *5)) (-4 *3 (-359)) (-4 *1 (-327 *3 *4 *5 *6)))) (-2304 (*1 *1 *2) (-12 (-4 *3 (-359)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-403 *4))) (-4 *1 (-327 *3 *4 *5 *2)) (-4 *2 (-334 *3 *4 *5)))) (-2304 (*1 *1 *2 *2) (-12 (-4 *2 (-359)) (-4 *3 (-1211 *2)) (-4 *4 (-1211 (-403 *3))) (-4 *1 (-327 *2 *3 *4 *5)) (-4 *5 (-334 *2 *3 *4)))) (-2304 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-560)) (-4 *2 (-359)) (-4 *4 (-1211 *2)) (-4 *5 (-1211 (-403 *4))) (-4 *1 (-327 *2 *4 *5 *6)) (-4 *6 (-334 *2 *4 *5)))) (-1636 (*1 *2 *1) (-12 (-4 *1 (-327 *3 *4 *5 *6)) (-4 *3 (-359)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-403 *4))) (-4 *6 (-334 *3 *4 *5)) (-5 *2 (-2 (|:| -2287 (-409 *4 (-403 *4) *5 *6)) (|:| |principalPart| *6))))) (-2342 (*1 *1 *1) (-12 (-4 *1 (-327 *2 *3 *4 *5)) (-4 *2 (-359)) (-4 *3 (-1211 *2)) (-4 *4 (-1211 (-403 *3))) (-4 *5 (-334 *2 *3 *4)))) (-2079 (*1 *2 *1) (-12 (-4 *1 (-327 *3 *4 *5 *6)) (-4 *3 (-359)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-403 *4))) (-4 *6 (-334 *3 *4 *5)) (-5 *2 (-121)))) (-4250 (*1 *2 *1) (|partial| -12 (-4 *1 (-327 *3 *4 *5 *2)) (-4 *3 (-359)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-403 *4))) (-4 *2 (-334 *3 *4 *5)))) (-2304 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-359)) (-4 *3 (-1211 *4)) (-4 *5 (-1211 (-403 *3))) (-4 *1 (-327 *4 *3 *5 *2)) (-4 *2 (-334 *4 *3 *5))))) -(-13 (-21) (-10 -8 (-15 -1303 ((-409 |t#2| (-403 |t#2|) |t#3| |t#4|) $)) (-15 -2304 ($ (-409 |t#2| (-403 |t#2|) |t#3| |t#4|))) (-15 -2304 ($ |t#4|)) (-15 -2304 ($ |t#1| |t#1|)) (-15 -2304 ($ |t#1| |t#1| (-560))) (-15 -1636 ((-2 (|:| -2287 (-409 |t#2| (-403 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -2342 ($ $)) (-15 -2079 ((-121) $)) (-15 -4250 ((-3 |t#4| "failed") $)) (-15 -2304 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-105) . T) ((-137) . T) ((-600 (-842)) . T) ((-1082) . T)) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-4236 (($) NIL T CONST)) (-2342 (($ $) 32)) (-2079 (((-121) $) NIL)) (-1291 (((-1135) $) NIL)) (-3644 (((-1236 |#4|) $) 124)) (-1303 (((-409 |#2| (-403 |#2|) |#3| |#4|) $) 30)) (-4353 (((-1100) $) NIL)) (-4250 (((-3 |#4| "failed") $) 35)) (-2996 (((-1236 |#4|) $) 117)) (-2304 (($ (-409 |#2| (-403 |#2|) |#3| |#4|)) 40) (($ |#4|) 42) (($ |#1| |#1|) 44) (($ |#1| |#1| (-560)) 46) (($ |#4| |#2| |#2| |#2| |#1|) 48)) (-1636 (((-2 (|:| -2287 (-409 |#2| (-403 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 38)) (-2801 (((-842) $) 17)) (-3304 (($) 14 T CONST)) (-1653 (((-121) $ $) 20)) (-1725 (($ $) 27) (($ $ $) NIL)) (-1716 (($ $ $) 25)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) 23))) -(((-328 |#1| |#2| |#3| |#4|) (-13 (-327 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2996 ((-1236 |#4|) $)) (-15 -3644 ((-1236 |#4|) $)))) (-359) (-1211 |#1|) (-1211 (-403 |#2|)) (-334 |#1| |#2| |#3|)) (T -328)) -((-2996 (*1 *2 *1) (-12 (-4 *3 (-359)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-403 *4))) (-5 *2 (-1236 *6)) (-5 *1 (-328 *3 *4 *5 *6)) (-4 *6 (-334 *3 *4 *5)))) (-3644 (*1 *2 *1) (-12 (-4 *3 (-359)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-403 *4))) (-5 *2 (-1236 *6)) (-5 *1 (-328 *3 *4 *5 *6)) (-4 *6 (-334 *3 *4 *5))))) -(-13 (-327 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2996 ((-1236 |#4|) $)) (-15 -3644 ((-1236 |#4|) $)))) -((-4450 (($ $ (-1153) |#2|) NIL) (($ $ (-626 (-1153)) (-626 |#2|)) 18) (($ $ (-626 (-283 |#2|))) 14) (($ $ (-283 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-626 |#2|) (-626 |#2|)) NIL)) (-2778 (($ $ |#2|) 11))) -(((-329 |#1| |#2|) (-10 -8 (-15 -2778 (|#1| |#1| |#2|)) (-15 -4450 (|#1| |#1| (-626 |#2|) (-626 |#2|))) (-15 -4450 (|#1| |#1| |#2| |#2|)) (-15 -4450 (|#1| |#1| (-283 |#2|))) (-15 -4450 (|#1| |#1| (-626 (-283 |#2|)))) (-15 -4450 (|#1| |#1| (-626 (-1153)) (-626 |#2|))) (-15 -4450 (|#1| |#1| (-1153) |#2|))) (-330 |#2|) (-1082)) (T -329)) -NIL -(-10 -8 (-15 -2778 (|#1| |#1| |#2|)) (-15 -4450 (|#1| |#1| (-626 |#2|) (-626 |#2|))) (-15 -4450 (|#1| |#1| |#2| |#2|)) (-15 -4450 (|#1| |#1| (-283 |#2|))) (-15 -4450 (|#1| |#1| (-626 (-283 |#2|)))) (-15 -4450 (|#1| |#1| (-626 (-1153)) (-626 |#2|))) (-15 -4450 (|#1| |#1| (-1153) |#2|))) -((-2803 (($ (-1 |#1| |#1|) $) 6)) (-4450 (($ $ (-1153) |#1|) 16 (|has| |#1| (-515 (-1153) |#1|))) (($ $ (-626 (-1153)) (-626 |#1|)) 15 (|has| |#1| (-515 (-1153) |#1|))) (($ $ (-626 (-283 |#1|))) 14 (|has| |#1| (-298 |#1|))) (($ $ (-283 |#1|)) 13 (|has| |#1| (-298 |#1|))) (($ $ |#1| |#1|) 12 (|has| |#1| (-298 |#1|))) (($ $ (-626 |#1|) (-626 |#1|)) 11 (|has| |#1| (-298 |#1|)))) (-2778 (($ $ |#1|) 10 (|has| |#1| (-276 |#1| |#1|))))) -(((-330 |#1|) (-1267) (-1082)) (T -330)) -((-2803 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-330 *3)) (-4 *3 (-1082))))) -(-13 (-10 -8 (-15 -2803 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-276 |t#1| |t#1|)) (-6 (-276 |t#1| $)) |noBranch|) (IF (|has| |t#1| (-298 |t#1|)) (-6 (-298 |t#1|)) |noBranch|) (IF (|has| |t#1| (-515 (-1153) |t#1|)) (-6 (-515 (-1153) |t#1|)) |noBranch|))) -(((-276 |#1| $) |has| |#1| (-276 |#1| |#1|)) ((-298 |#1|) |has| |#1| (-298 |#1|)) ((-515 (-1153) |#1|) |has| |#1| (-515 (-1153) |#1|)) ((-515 |#1| |#1|) |has| |#1| (-298 |#1|))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-1654 (((-626 (-1153)) $) NIL)) (-2252 (((-121)) 87) (((-121) (-121)) 88)) (-3249 (((-626 (-599 $)) $) NIL)) (-2570 (($ $) NIL)) (-2514 (($ $) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-4122 (($ $ (-283 $)) NIL) (($ $ (-626 (-283 $))) NIL) (($ $ (-626 (-599 $)) (-626 $)) NIL)) (-2479 (($ $) NIL)) (-2561 (($ $) NIL)) (-2790 (($ $) NIL)) (-4236 (($) NIL T CONST)) (-1473 (((-3 (-599 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-304 |#3|)) 69) (((-3 $ "failed") (-1153)) 93) (((-3 $ "failed") (-304 (-560))) 56 (|has| |#3| (-1029 (-560)))) (((-3 $ "failed") (-403 (-945 (-560)))) 62 (|has| |#3| (-1029 (-560)))) (((-3 $ "failed") (-945 (-560))) 57 (|has| |#3| (-1029 (-560)))) (((-3 $ "failed") (-304 (-375))) 74 (|has| |#3| (-1029 (-375)))) (((-3 $ "failed") (-403 (-945 (-375)))) 80 (|has| |#3| (-1029 (-375)))) (((-3 $ "failed") (-945 (-375))) 75 (|has| |#3| (-1029 (-375))))) (-3001 (((-599 $) $) NIL) ((|#3| $) NIL) (($ (-304 |#3|)) 70) (($ (-1153)) 94) (($ (-304 (-560))) 58 (|has| |#3| (-1029 (-560)))) (($ (-403 (-945 (-560)))) 63 (|has| |#3| (-1029 (-560)))) (($ (-945 (-560))) 59 (|has| |#3| (-1029 (-560)))) (($ (-304 (-375))) 76 (|has| |#3| (-1029 (-375)))) (($ (-403 (-945 (-375)))) 81 (|has| |#3| (-1029 (-375)))) (($ (-945 (-375))) 77 (|has| |#3| (-1029 (-375))))) (-1823 (((-3 $ "failed") $) NIL)) (-2474 (($) 10)) (-2352 (($ $) NIL) (($ (-626 $)) NIL)) (-1951 (((-626 (-123)) $) NIL)) (-4403 (((-123) (-123)) NIL)) (-2642 (((-121) $) NIL)) (-3348 (((-121) $) NIL (|has| $ (-1029 (-560))))) (-2929 (((-1149 $) (-599 $)) NIL (|has| $ (-1039)))) (-4325 (($ $ $) NIL)) (-2501 (($ $ $) NIL)) (-2803 (($ (-1 $ $) (-599 $)) NIL)) (-4220 (((-3 (-599 $) "failed") $) NIL)) (-2711 (($ $) 90)) (-4399 (($ $) NIL)) (-1291 (((-1135) $) NIL)) (-1586 (((-626 (-599 $)) $) NIL)) (-2181 (($ (-123) $) 89) (($ (-123) (-626 $)) NIL)) (-3178 (((-121) $ (-123)) NIL) (((-121) $ (-1153)) NIL)) (-3165 (((-755) $) NIL)) (-4353 (((-1100) $) NIL)) (-4388 (((-121) $ $) NIL) (((-121) $ (-1153)) NIL)) (-2469 (($ $) NIL)) (-3522 (((-121) $) NIL (|has| $ (-1029 (-560))))) (-4450 (($ $ (-599 $) $) NIL) (($ $ (-626 (-599 $)) (-626 $)) NIL) (($ $ (-626 (-283 $))) NIL) (($ $ (-283 $)) NIL) (($ $ $ $) NIL) (($ $ (-626 $) (-626 $)) NIL) (($ $ (-626 (-1153)) (-626 (-1 $ $))) NIL) (($ $ (-626 (-1153)) (-626 (-1 $ (-626 $)))) NIL) (($ $ (-1153) (-1 $ (-626 $))) NIL) (($ $ (-1153) (-1 $ $)) NIL) (($ $ (-626 (-123)) (-626 (-1 $ $))) NIL) (($ $ (-626 (-123)) (-626 (-1 $ (-626 $)))) NIL) (($ $ (-123) (-1 $ (-626 $))) NIL) (($ $ (-123) (-1 $ $)) NIL)) (-2778 (($ (-123) $) NIL) (($ (-123) $ $) NIL) (($ (-123) $ $ $) NIL) (($ (-123) $ $ $ $) NIL) (($ (-123) (-626 $)) NIL)) (-4290 (($ $) NIL) (($ $ $) NIL)) (-2443 (($ $ (-626 (-1153)) (-626 (-755))) NIL) (($ $ (-1153) (-755)) NIL) (($ $ (-626 (-1153))) NIL) (($ $ (-1153)) NIL)) (-3591 (($ $) NIL (|has| $ (-1039)))) (-2566 (($ $) NIL)) (-2795 (($ $) NIL)) (-2801 (((-842) $) NIL) (($ (-599 $)) NIL) (($ |#3|) NIL) (($ (-560)) NIL) (((-304 |#3|) $) 92)) (-1751 (((-755)) NIL)) (-4308 (($ $) NIL) (($ (-626 $)) NIL)) (-2409 (((-121) (-123)) NIL)) (-2541 (($ $) NIL)) (-2532 (($ $) NIL)) (-2536 (($ $) NIL)) (-1822 (($ $) NIL)) (-2464 (($ $ (-755)) NIL) (($ $ (-909)) NIL)) (-3304 (($) 91 T CONST)) (-1459 (($) 22 T CONST)) (-2500 (($ $ (-626 (-1153)) (-626 (-755))) NIL) (($ $ (-1153) (-755)) NIL) (($ $ (-626 (-1153))) NIL) (($ $ (-1153)) NIL)) (-1691 (((-121) $ $) NIL)) (-1675 (((-121) $ $) NIL)) (-1653 (((-121) $ $) NIL)) (-1683 (((-121) $ $) NIL)) (-1667 (((-121) $ $) NIL)) (-1725 (($ $ $) NIL) (($ $) NIL)) (-1716 (($ $ $) NIL)) (** (($ $ (-755)) NIL) (($ $ (-909)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-560) $) NIL) (($ (-755) $) NIL) (($ (-909) $) NIL))) -(((-331 |#1| |#2| |#3|) (-13 (-291) (-43 |#3|) (-1029 |#3|) (-887 (-1153)) (-10 -8 (-15 -3001 ($ (-304 |#3|))) (-15 -1473 ((-3 $ "failed") (-304 |#3|))) (-15 -3001 ($ (-1153))) (-15 -1473 ((-3 $ "failed") (-1153))) (-15 -2801 ((-304 |#3|) $)) (IF (|has| |#3| (-1029 (-560))) (PROGN (-15 -3001 ($ (-304 (-560)))) (-15 -1473 ((-3 $ "failed") (-304 (-560)))) (-15 -3001 ($ (-403 (-945 (-560))))) (-15 -1473 ((-3 $ "failed") (-403 (-945 (-560))))) (-15 -3001 ($ (-945 (-560)))) (-15 -1473 ((-3 $ "failed") (-945 (-560))))) |noBranch|) (IF (|has| |#3| (-1029 (-375))) (PROGN (-15 -3001 ($ (-304 (-375)))) (-15 -1473 ((-3 $ "failed") (-304 (-375)))) (-15 -3001 ($ (-403 (-945 (-375))))) (-15 -1473 ((-3 $ "failed") (-403 (-945 (-375))))) (-15 -3001 ($ (-945 (-375)))) (-15 -1473 ((-3 $ "failed") (-945 (-375))))) |noBranch|) (-15 -1822 ($ $)) (-15 -2479 ($ $)) (-15 -2469 ($ $)) (-15 -4399 ($ $)) (-15 -2711 ($ $)) (-15 -2790 ($ $)) (-15 -2795 ($ $)) (-15 -2514 ($ $)) (-15 -2532 ($ $)) (-15 -2536 ($ $)) (-15 -2541 ($ $)) (-15 -2561 ($ $)) (-15 -2566 ($ $)) (-15 -2570 ($ $)) (-15 -2474 ($)) (-15 -1654 ((-626 (-1153)) $)) (-15 -2252 ((-121))) (-15 -2252 ((-121) (-121))))) (-626 (-1153)) (-626 (-1153)) (-383)) (T -331)) -((-3001 (*1 *1 *2) (-12 (-5 *2 (-304 *5)) (-4 *5 (-383)) (-5 *1 (-331 *3 *4 *5)) (-14 *3 (-626 (-1153))) (-14 *4 (-626 (-1153))))) (-1473 (*1 *1 *2) (|partial| -12 (-5 *2 (-304 *5)) (-4 *5 (-383)) (-5 *1 (-331 *3 *4 *5)) (-14 *3 (-626 (-1153))) (-14 *4 (-626 (-1153))))) (-3001 (*1 *1 *2) (-12 (-5 *2 (-1153)) (-5 *1 (-331 *3 *4 *5)) (-14 *3 (-626 *2)) (-14 *4 (-626 *2)) (-4 *5 (-383)))) (-1473 (*1 *1 *2) (|partial| -12 (-5 *2 (-1153)) (-5 *1 (-331 *3 *4 *5)) (-14 *3 (-626 *2)) (-14 *4 (-626 *2)) (-4 *5 (-383)))) (-2801 (*1 *2 *1) (-12 (-5 *2 (-304 *5)) (-5 *1 (-331 *3 *4 *5)) (-14 *3 (-626 (-1153))) (-14 *4 (-626 (-1153))) (-4 *5 (-383)))) (-3001 (*1 *1 *2) (-12 (-5 *2 (-304 (-560))) (-5 *1 (-331 *3 *4 *5)) (-4 *5 (-1029 (-560))) (-14 *3 (-626 (-1153))) (-14 *4 (-626 (-1153))) (-4 *5 (-383)))) (-1473 (*1 *1 *2) (|partial| -12 (-5 *2 (-304 (-560))) (-5 *1 (-331 *3 *4 *5)) (-4 *5 (-1029 (-560))) (-14 *3 (-626 (-1153))) (-14 *4 (-626 (-1153))) (-4 *5 (-383)))) (-3001 (*1 *1 *2) (-12 (-5 *2 (-403 (-945 (-560)))) (-5 *1 (-331 *3 *4 *5)) (-4 *5 (-1029 (-560))) (-14 *3 (-626 (-1153))) (-14 *4 (-626 (-1153))) (-4 *5 (-383)))) (-1473 (*1 *1 *2) (|partial| -12 (-5 *2 (-403 (-945 (-560)))) (-5 *1 (-331 *3 *4 *5)) (-4 *5 (-1029 (-560))) (-14 *3 (-626 (-1153))) (-14 *4 (-626 (-1153))) (-4 *5 (-383)))) (-3001 (*1 *1 *2) (-12 (-5 *2 (-945 (-560))) (-5 *1 (-331 *3 *4 *5)) (-4 *5 (-1029 (-560))) (-14 *3 (-626 (-1153))) (-14 *4 (-626 (-1153))) (-4 *5 (-383)))) (-1473 (*1 *1 *2) (|partial| -12 (-5 *2 (-945 (-560))) (-5 *1 (-331 *3 *4 *5)) (-4 *5 (-1029 (-560))) (-14 *3 (-626 (-1153))) (-14 *4 (-626 (-1153))) (-4 *5 (-383)))) (-3001 (*1 *1 *2) (-12 (-5 *2 (-304 (-375))) (-5 *1 (-331 *3 *4 *5)) (-4 *5 (-1029 (-375))) (-14 *3 (-626 (-1153))) (-14 *4 (-626 (-1153))) (-4 *5 (-383)))) (-1473 (*1 *1 *2) (|partial| -12 (-5 *2 (-304 (-375))) (-5 *1 (-331 *3 *4 *5)) (-4 *5 (-1029 (-375))) (-14 *3 (-626 (-1153))) (-14 *4 (-626 (-1153))) (-4 *5 (-383)))) (-3001 (*1 *1 *2) (-12 (-5 *2 (-403 (-945 (-375)))) (-5 *1 (-331 *3 *4 *5)) (-4 *5 (-1029 (-375))) (-14 *3 (-626 (-1153))) (-14 *4 (-626 (-1153))) (-4 *5 (-383)))) (-1473 (*1 *1 *2) (|partial| -12 (-5 *2 (-403 (-945 (-375)))) (-5 *1 (-331 *3 *4 *5)) (-4 *5 (-1029 (-375))) (-14 *3 (-626 (-1153))) (-14 *4 (-626 (-1153))) (-4 *5 (-383)))) (-3001 (*1 *1 *2) (-12 (-5 *2 (-945 (-375))) (-5 *1 (-331 *3 *4 *5)) (-4 *5 (-1029 (-375))) (-14 *3 (-626 (-1153))) (-14 *4 (-626 (-1153))) (-4 *5 (-383)))) (-1473 (*1 *1 *2) (|partial| -12 (-5 *2 (-945 (-375))) (-5 *1 (-331 *3 *4 *5)) (-4 *5 (-1029 (-375))) (-14 *3 (-626 (-1153))) (-14 *4 (-626 (-1153))) (-4 *5 (-383)))) (-1822 (*1 *1 *1) (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-626 (-1153))) (-14 *3 (-626 (-1153))) (-4 *4 (-383)))) (-2479 (*1 *1 *1) (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-626 (-1153))) (-14 *3 (-626 (-1153))) (-4 *4 (-383)))) (-2469 (*1 *1 *1) (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-626 (-1153))) (-14 *3 (-626 (-1153))) (-4 *4 (-383)))) (-4399 (*1 *1 *1) (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-626 (-1153))) (-14 *3 (-626 (-1153))) (-4 *4 (-383)))) (-2711 (*1 *1 *1) (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-626 (-1153))) (-14 *3 (-626 (-1153))) (-4 *4 (-383)))) (-2790 (*1 *1 *1) (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-626 (-1153))) (-14 *3 (-626 (-1153))) (-4 *4 (-383)))) (-2795 (*1 *1 *1) (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-626 (-1153))) (-14 *3 (-626 (-1153))) (-4 *4 (-383)))) (-2514 (*1 *1 *1) (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-626 (-1153))) (-14 *3 (-626 (-1153))) (-4 *4 (-383)))) (-2532 (*1 *1 *1) (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-626 (-1153))) (-14 *3 (-626 (-1153))) (-4 *4 (-383)))) (-2536 (*1 *1 *1) (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-626 (-1153))) (-14 *3 (-626 (-1153))) (-4 *4 (-383)))) (-2541 (*1 *1 *1) (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-626 (-1153))) (-14 *3 (-626 (-1153))) (-4 *4 (-383)))) (-2561 (*1 *1 *1) (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-626 (-1153))) (-14 *3 (-626 (-1153))) (-4 *4 (-383)))) (-2566 (*1 *1 *1) (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-626 (-1153))) (-14 *3 (-626 (-1153))) (-4 *4 (-383)))) (-2570 (*1 *1 *1) (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-626 (-1153))) (-14 *3 (-626 (-1153))) (-4 *4 (-383)))) (-2474 (*1 *1) (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-626 (-1153))) (-14 *3 (-626 (-1153))) (-4 *4 (-383)))) (-1654 (*1 *2 *1) (-12 (-5 *2 (-626 (-1153))) (-5 *1 (-331 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-383)))) (-2252 (*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-331 *3 *4 *5)) (-14 *3 (-626 (-1153))) (-14 *4 (-626 (-1153))) (-4 *5 (-383)))) (-2252 (*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-331 *3 *4 *5)) (-14 *3 (-626 (-1153))) (-14 *4 (-626 (-1153))) (-4 *5 (-383))))) -(-13 (-291) (-43 |#3|) (-1029 |#3|) (-887 (-1153)) (-10 -8 (-15 -3001 ($ (-304 |#3|))) (-15 -1473 ((-3 $ "failed") (-304 |#3|))) (-15 -3001 ($ (-1153))) (-15 -1473 ((-3 $ "failed") (-1153))) (-15 -2801 ((-304 |#3|) $)) (IF (|has| |#3| (-1029 (-560))) (PROGN (-15 -3001 ($ (-304 (-560)))) (-15 -1473 ((-3 $ "failed") (-304 (-560)))) (-15 -3001 ($ (-403 (-945 (-560))))) (-15 -1473 ((-3 $ "failed") (-403 (-945 (-560))))) (-15 -3001 ($ (-945 (-560)))) (-15 -1473 ((-3 $ "failed") (-945 (-560))))) |noBranch|) (IF (|has| |#3| (-1029 (-375))) (PROGN (-15 -3001 ($ (-304 (-375)))) (-15 -1473 ((-3 $ "failed") (-304 (-375)))) (-15 -3001 ($ (-403 (-945 (-375))))) (-15 -1473 ((-3 $ "failed") (-403 (-945 (-375))))) (-15 -3001 ($ (-945 (-375)))) (-15 -1473 ((-3 $ "failed") (-945 (-375))))) |noBranch|) (-15 -1822 ($ $)) (-15 -2479 ($ $)) (-15 -2469 ($ $)) (-15 -4399 ($ $)) (-15 -2711 ($ $)) (-15 -2790 ($ $)) (-15 -2795 ($ $)) (-15 -2514 ($ $)) (-15 -2532 ($ $)) (-15 -2536 ($ $)) (-15 -2541 ($ $)) (-15 -2561 ($ $)) (-15 -2566 ($ $)) (-15 -2570 ($ $)) (-15 -2474 ($)) (-15 -1654 ((-626 (-1153)) $)) (-15 -2252 ((-121))) (-15 -2252 ((-121) (-121))))) -((-2803 ((|#8| (-1 |#5| |#1|) |#4|) 19))) -(((-332 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2803 (|#8| (-1 |#5| |#1|) |#4|))) (-1191) (-1211 |#1|) (-1211 (-403 |#2|)) (-334 |#1| |#2| |#3|) (-1191) (-1211 |#5|) (-1211 (-403 |#6|)) (-334 |#5| |#6| |#7|)) (T -332)) -((-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1191)) (-4 *8 (-1191)) (-4 *6 (-1211 *5)) (-4 *7 (-1211 (-403 *6))) (-4 *9 (-1211 *8)) (-4 *2 (-334 *8 *9 *10)) (-5 *1 (-332 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-334 *5 *6 *7)) (-4 *10 (-1211 (-403 *9)))))) -(-10 -7 (-15 -2803 (|#8| (-1 |#5| |#1|) |#4|))) -((-3479 (((-2 (|:| |num| (-1236 |#3|)) (|:| |den| |#3|)) $) 37)) (-3380 (($ (-1236 (-403 |#3|)) (-1236 $)) NIL) (($ (-1236 (-403 |#3|))) NIL) (($ (-1236 |#3|) |#3|) 158)) (-3781 (((-1236 $) (-1236 $)) 142)) (-2330 (((-626 (-626 |#2|))) 115)) (-1663 (((-121) |#2| |#2|) 71)) (-3605 (($ $) 136)) (-3684 (((-755)) 30)) (-3399 (((-1236 $) (-1236 $)) 195)) (-3202 (((-626 (-945 |#2|)) (-1153)) 108)) (-3044 (((-121) $) 155)) (-1596 (((-121) $) 24) (((-121) $ |#2|) 28) (((-121) $ |#3|) 199)) (-3219 (((-3 |#3| "failed")) 48)) (-4390 (((-755)) 167)) (-2778 ((|#2| $ |#2| |#2|) 129)) (-2290 (((-3 |#3| "failed")) 66)) (-2443 (($ $ (-1 (-403 |#3|) (-403 |#3|)) (-755)) NIL) (($ $ (-1 (-403 |#3|) (-403 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 203) (($ $ (-626 (-1153)) (-626 (-755))) NIL) (($ $ (-1153) (-755)) NIL) (($ $ (-626 (-1153))) NIL) (($ $ (-1153)) NIL) (($ $ (-755)) NIL) (($ $) NIL)) (-4229 (((-1236 $) (-1236 $)) 148)) (-2895 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 64)) (-1834 (((-121)) 32))) -(((-333 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2443 (|#1| |#1|)) (-15 -2443 (|#1| |#1| (-755))) (-15 -2443 (|#1| |#1| (-1153))) (-15 -2443 (|#1| |#1| (-626 (-1153)))) (-15 -2443 (|#1| |#1| (-1153) (-755))) (-15 -2443 (|#1| |#1| (-626 (-1153)) (-626 (-755)))) (-15 -2330 ((-626 (-626 |#2|)))) (-15 -3202 ((-626 (-945 |#2|)) (-1153))) (-15 -2895 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3219 ((-3 |#3| "failed"))) (-15 -2290 ((-3 |#3| "failed"))) (-15 -2778 (|#2| |#1| |#2| |#2|)) (-15 -3605 (|#1| |#1|)) (-15 -3380 (|#1| (-1236 |#3|) |#3|)) (-15 -2443 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1596 ((-121) |#1| |#3|)) (-15 -1596 ((-121) |#1| |#2|)) (-15 -3479 ((-2 (|:| |num| (-1236 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -3781 ((-1236 |#1|) (-1236 |#1|))) (-15 -3399 ((-1236 |#1|) (-1236 |#1|))) (-15 -4229 ((-1236 |#1|) (-1236 |#1|))) (-15 -1596 ((-121) |#1|)) (-15 -3044 ((-121) |#1|)) (-15 -1663 ((-121) |#2| |#2|)) (-15 -1834 ((-121))) (-15 -4390 ((-755))) (-15 -3684 ((-755))) (-15 -2443 (|#1| |#1| (-1 (-403 |#3|) (-403 |#3|)))) (-15 -2443 (|#1| |#1| (-1 (-403 |#3|) (-403 |#3|)) (-755))) (-15 -3380 (|#1| (-1236 (-403 |#3|)))) (-15 -3380 (|#1| (-1236 (-403 |#3|)) (-1236 |#1|)))) (-334 |#2| |#3| |#4|) (-1191) (-1211 |#2|) (-1211 (-403 |#3|))) (T -333)) -((-3684 (*1 *2) (-12 (-4 *4 (-1191)) (-4 *5 (-1211 *4)) (-4 *6 (-1211 (-403 *5))) (-5 *2 (-755)) (-5 *1 (-333 *3 *4 *5 *6)) (-4 *3 (-334 *4 *5 *6)))) (-4390 (*1 *2) (-12 (-4 *4 (-1191)) (-4 *5 (-1211 *4)) (-4 *6 (-1211 (-403 *5))) (-5 *2 (-755)) (-5 *1 (-333 *3 *4 *5 *6)) (-4 *3 (-334 *4 *5 *6)))) (-1834 (*1 *2) (-12 (-4 *4 (-1191)) (-4 *5 (-1211 *4)) (-4 *6 (-1211 (-403 *5))) (-5 *2 (-121)) (-5 *1 (-333 *3 *4 *5 *6)) (-4 *3 (-334 *4 *5 *6)))) (-1663 (*1 *2 *3 *3) (-12 (-4 *3 (-1191)) (-4 *5 (-1211 *3)) (-4 *6 (-1211 (-403 *5))) (-5 *2 (-121)) (-5 *1 (-333 *4 *3 *5 *6)) (-4 *4 (-334 *3 *5 *6)))) (-2290 (*1 *2) (|partial| -12 (-4 *4 (-1191)) (-4 *5 (-1211 (-403 *2))) (-4 *2 (-1211 *4)) (-5 *1 (-333 *3 *4 *2 *5)) (-4 *3 (-334 *4 *2 *5)))) (-3219 (*1 *2) (|partial| -12 (-4 *4 (-1191)) (-4 *5 (-1211 (-403 *2))) (-4 *2 (-1211 *4)) (-5 *1 (-333 *3 *4 *2 *5)) (-4 *3 (-334 *4 *2 *5)))) (-3202 (*1 *2 *3) (-12 (-5 *3 (-1153)) (-4 *5 (-1191)) (-4 *6 (-1211 *5)) (-4 *7 (-1211 (-403 *6))) (-5 *2 (-626 (-945 *5))) (-5 *1 (-333 *4 *5 *6 *7)) (-4 *4 (-334 *5 *6 *7)))) (-2330 (*1 *2) (-12 (-4 *4 (-1191)) (-4 *5 (-1211 *4)) (-4 *6 (-1211 (-403 *5))) (-5 *2 (-626 (-626 *4))) (-5 *1 (-333 *3 *4 *5 *6)) (-4 *3 (-334 *4 *5 *6))))) -(-10 -8 (-15 -2443 (|#1| |#1|)) (-15 -2443 (|#1| |#1| (-755))) (-15 -2443 (|#1| |#1| (-1153))) (-15 -2443 (|#1| |#1| (-626 (-1153)))) (-15 -2443 (|#1| |#1| (-1153) (-755))) (-15 -2443 (|#1| |#1| (-626 (-1153)) (-626 (-755)))) (-15 -2330 ((-626 (-626 |#2|)))) (-15 -3202 ((-626 (-945 |#2|)) (-1153))) (-15 -2895 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3219 ((-3 |#3| "failed"))) (-15 -2290 ((-3 |#3| "failed"))) (-15 -2778 (|#2| |#1| |#2| |#2|)) (-15 -3605 (|#1| |#1|)) (-15 -3380 (|#1| (-1236 |#3|) |#3|)) (-15 -2443 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1596 ((-121) |#1| |#3|)) (-15 -1596 ((-121) |#1| |#2|)) (-15 -3479 ((-2 (|:| |num| (-1236 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -3781 ((-1236 |#1|) (-1236 |#1|))) (-15 -3399 ((-1236 |#1|) (-1236 |#1|))) (-15 -4229 ((-1236 |#1|) (-1236 |#1|))) (-15 -1596 ((-121) |#1|)) (-15 -3044 ((-121) |#1|)) (-15 -1663 ((-121) |#2| |#2|)) (-15 -1834 ((-121))) (-15 -4390 ((-755))) (-15 -3684 ((-755))) (-15 -2443 (|#1| |#1| (-1 (-403 |#3|) (-403 |#3|)))) (-15 -2443 (|#1| |#1| (-1 (-403 |#3|) (-403 |#3|)) (-755))) (-15 -3380 (|#1| (-1236 (-403 |#3|)))) (-15 -3380 (|#1| (-1236 (-403 |#3|)) (-1236 |#1|)))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-3479 (((-2 (|:| |num| (-1236 |#2|)) (|:| |den| |#2|)) $) 180)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) 87 (|has| (-403 |#2|) (-359)))) (-1350 (($ $) 88 (|has| (-403 |#2|) (-359)))) (-3376 (((-121) $) 90 (|has| (-403 |#2|) (-359)))) (-2196 (((-671 (-403 |#2|)) (-1236 $)) 44) (((-671 (-403 |#2|))) 55)) (-1944 (((-403 |#2|) $) 50)) (-4357 (((-1161 (-909) (-755)) (-560)) 141 (|has| (-403 |#2|) (-344)))) (-2314 (((-3 $ "failed") $ $) 18)) (-3065 (($ $) 107 (|has| (-403 |#2|) (-359)))) (-2953 (((-414 $) $) 108 (|has| (-403 |#2|) (-359)))) (-4179 (((-121) $ $) 98 (|has| (-403 |#2|) (-359)))) (-2912 (((-755)) 81 (|has| (-403 |#2|) (-364)))) (-2789 (((-121)) 197)) (-3938 (((-121) |#1|) 196) (((-121) |#2|) 195)) (-4236 (($) 16 T CONST)) (-1473 (((-3 (-560) "failed") $) 163 (|has| (-403 |#2|) (-1029 (-560)))) (((-3 (-403 (-560)) "failed") $) 161 (|has| (-403 |#2|) (-1029 (-403 (-560))))) (((-3 (-403 |#2|) "failed") $) 160)) (-3001 (((-560) $) 164 (|has| (-403 |#2|) (-1029 (-560)))) (((-403 (-560)) $) 162 (|has| (-403 |#2|) (-1029 (-403 (-560))))) (((-403 |#2|) $) 159)) (-3380 (($ (-1236 (-403 |#2|)) (-1236 $)) 46) (($ (-1236 (-403 |#2|))) 58) (($ (-1236 |#2|) |#2|) 173)) (-4107 (((-3 "prime" "polynomial" "normal" "cyclic")) 147 (|has| (-403 |#2|) (-344)))) (-2563 (($ $ $) 102 (|has| (-403 |#2|) (-359)))) (-2954 (((-671 (-403 |#2|)) $ (-1236 $)) 51) (((-671 (-403 |#2|)) $) 53)) (-2616 (((-671 (-560)) (-671 $)) 158 (|has| (-403 |#2|) (-622 (-560)))) (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) 157 (|has| (-403 |#2|) (-622 (-560)))) (((-2 (|:| -3818 (-671 (-403 |#2|))) (|:| |vec| (-1236 (-403 |#2|)))) (-671 $) (-1236 $)) 156) (((-671 (-403 |#2|)) (-671 $)) 155)) (-3781 (((-1236 $) (-1236 $)) 185)) (-2342 (($ |#3|) 152) (((-3 $ "failed") (-403 |#3|)) 149 (|has| (-403 |#2|) (-359)))) (-1823 (((-3 $ "failed") $) 33)) (-2330 (((-626 (-626 |#1|))) 166 (|has| |#1| (-364)))) (-1663 (((-121) |#1| |#1|) 201)) (-3143 (((-909)) 52)) (-1666 (($) 84 (|has| (-403 |#2|) (-364)))) (-3718 (((-121)) 194)) (-4346 (((-121) |#1|) 193) (((-121) |#2|) 192)) (-2572 (($ $ $) 101 (|has| (-403 |#2|) (-359)))) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) 96 (|has| (-403 |#2|) (-359)))) (-3605 (($ $) 172)) (-2481 (($) 143 (|has| (-403 |#2|) (-344)))) (-1537 (((-121) $) 144 (|has| (-403 |#2|) (-344)))) (-2937 (($ $ (-755)) 135 (|has| (-403 |#2|) (-344))) (($ $) 134 (|has| (-403 |#2|) (-344)))) (-3319 (((-121) $) 109 (|has| (-403 |#2|) (-359)))) (-3504 (((-909) $) 146 (|has| (-403 |#2|) (-344))) (((-820 (-909)) $) 132 (|has| (-403 |#2|) (-344)))) (-2642 (((-121) $) 30)) (-3684 (((-755)) 204)) (-3399 (((-1236 $) (-1236 $)) 186)) (-3339 (((-403 |#2|) $) 49)) (-3202 (((-626 (-945 |#1|)) (-1153)) 167 (|has| |#1| (-359)))) (-1424 (((-3 $ "failed") $) 136 (|has| (-403 |#2|) (-344)))) (-3856 (((-3 (-626 $) "failed") (-626 $) $) 105 (|has| (-403 |#2|) (-359)))) (-4108 ((|#3| $) 42 (|has| (-403 |#2|) (-359)))) (-3142 (((-909) $) 83 (|has| (-403 |#2|) (-364)))) (-2335 ((|#3| $) 150)) (-2582 (($ (-626 $)) 94 (|has| (-403 |#2|) (-359))) (($ $ $) 93 (|has| (-403 |#2|) (-359)))) (-1291 (((-1135) $) 9)) (-2276 (((-671 (-403 |#2|))) 181)) (-2859 (((-671 (-403 |#2|))) 183)) (-1701 (($ $) 110 (|has| (-403 |#2|) (-359)))) (-2485 (($ (-1236 |#2|) |#2|) 178)) (-2445 (((-671 (-403 |#2|))) 182)) (-4268 (((-671 (-403 |#2|))) 184)) (-2282 (((-2 (|:| |num| (-671 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 177)) (-4269 (((-2 (|:| |num| (-1236 |#2|)) (|:| |den| |#2|)) $) 179)) (-1567 (((-1236 $)) 190)) (-1335 (((-1236 $)) 191)) (-3044 (((-121) $) 189)) (-1596 (((-121) $) 188) (((-121) $ |#1|) 176) (((-121) $ |#2|) 175)) (-1394 (($) 137 (|has| (-403 |#2|) (-344)) CONST)) (-1330 (($ (-909)) 82 (|has| (-403 |#2|) (-364)))) (-3219 (((-3 |#2| "failed")) 169)) (-4353 (((-1100) $) 10)) (-4390 (((-755)) 203)) (-4250 (($) 154)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) 95 (|has| (-403 |#2|) (-359)))) (-4440 (($ (-626 $)) 92 (|has| (-403 |#2|) (-359))) (($ $ $) 91 (|has| (-403 |#2|) (-359)))) (-2385 (((-626 (-2 (|:| -1601 (-560)) (|:| -4034 (-560))))) 140 (|has| (-403 |#2|) (-344)))) (-1601 (((-414 $) $) 106 (|has| (-403 |#2|) (-359)))) (-3505 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 104 (|has| (-403 |#2|) (-359))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) 103 (|has| (-403 |#2|) (-359)))) (-2336 (((-3 $ "failed") $ $) 86 (|has| (-403 |#2|) (-359)))) (-3456 (((-3 (-626 $) "failed") (-626 $) $) 97 (|has| (-403 |#2|) (-359)))) (-4445 (((-755) $) 99 (|has| (-403 |#2|) (-359)))) (-2778 ((|#1| $ |#1| |#1|) 171)) (-2290 (((-3 |#2| "failed")) 170)) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) 100 (|has| (-403 |#2|) (-359)))) (-4069 (((-403 |#2|) (-1236 $)) 45) (((-403 |#2|)) 54)) (-2935 (((-755) $) 145 (|has| (-403 |#2|) (-344))) (((-3 (-755) "failed") $ $) 133 (|has| (-403 |#2|) (-344)))) (-2443 (($ $ (-1 (-403 |#2|) (-403 |#2|)) (-755)) 117 (|has| (-403 |#2|) (-359))) (($ $ (-1 (-403 |#2|) (-403 |#2|))) 116 (|has| (-403 |#2|) (-359))) (($ $ (-1 |#2| |#2|)) 174) (($ $ (-626 (-1153)) (-626 (-755))) 124 (-2318 (-2256 (|has| (-403 |#2|) (-359)) (|has| (-403 |#2|) (-887 (-1153)))) (-2256 (|has| (-403 |#2|) (-887 (-1153))) (|has| (-403 |#2|) (-359))))) (($ $ (-1153) (-755)) 125 (-2318 (-2256 (|has| (-403 |#2|) (-359)) (|has| (-403 |#2|) (-887 (-1153)))) (-2256 (|has| (-403 |#2|) (-887 (-1153))) (|has| (-403 |#2|) (-359))))) (($ $ (-626 (-1153))) 126 (-2318 (-2256 (|has| (-403 |#2|) (-359)) (|has| (-403 |#2|) (-887 (-1153)))) (-2256 (|has| (-403 |#2|) (-887 (-1153))) (|has| (-403 |#2|) (-359))))) (($ $ (-1153)) 127 (-2318 (-2256 (|has| (-403 |#2|) (-359)) (|has| (-403 |#2|) (-887 (-1153)))) (-2256 (|has| (-403 |#2|) (-887 (-1153))) (|has| (-403 |#2|) (-359))))) (($ $ (-755)) 129 (-2318 (-2256 (|has| (-403 |#2|) (-359)) (|has| (-403 |#2|) (-221))) (-2256 (|has| (-403 |#2|) (-221)) (|has| (-403 |#2|) (-359))) (|has| (-403 |#2|) (-344)))) (($ $) 131 (-2318 (-2256 (|has| (-403 |#2|) (-359)) (|has| (-403 |#2|) (-221))) (-2256 (|has| (-403 |#2|) (-221)) (|has| (-403 |#2|) (-359))) (|has| (-403 |#2|) (-344))))) (-2142 (((-671 (-403 |#2|)) (-1236 $) (-1 (-403 |#2|) (-403 |#2|))) 148 (|has| (-403 |#2|) (-359)))) (-3591 ((|#3|) 153)) (-2612 (($) 142 (|has| (-403 |#2|) (-344)))) (-3390 (((-1236 (-403 |#2|)) $ (-1236 $)) 48) (((-671 (-403 |#2|)) (-1236 $) (-1236 $)) 47) (((-1236 (-403 |#2|)) $) 60) (((-671 (-403 |#2|)) (-1236 $)) 59)) (-4255 (((-1236 (-403 |#2|)) $) 57) (($ (-1236 (-403 |#2|))) 56) ((|#3| $) 165) (($ |#3|) 151)) (-3248 (((-3 (-1236 $) "failed") (-671 $)) 139 (|has| (-403 |#2|) (-344)))) (-4229 (((-1236 $) (-1236 $)) 187)) (-2801 (((-842) $) 11) (($ (-560)) 27) (($ (-403 |#2|)) 36) (($ (-403 (-560))) 80 (-2318 (|has| (-403 |#2|) (-359)) (|has| (-403 |#2|) (-1029 (-403 (-560)))))) (($ $) 85 (|has| (-403 |#2|) (-359)))) (-2272 (($ $) 138 (|has| (-403 |#2|) (-344))) (((-3 $ "failed") $) 41 (|has| (-403 |#2|) (-146)))) (-3642 ((|#3| $) 43)) (-1751 (((-755)) 28)) (-1630 (((-121)) 200)) (-1771 (((-121) |#1|) 199) (((-121) |#2|) 198)) (-4374 (((-1236 $)) 61)) (-2328 (((-121) $ $) 89 (|has| (-403 |#2|) (-359)))) (-2895 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 168)) (-1834 (((-121)) 202)) (-2464 (($ $ (-909)) 25) (($ $ (-755)) 32) (($ $ (-560)) 111 (|has| (-403 |#2|) (-359)))) (-3304 (($) 17 T CONST)) (-1459 (($) 29 T CONST)) (-2500 (($ $ (-1 (-403 |#2|) (-403 |#2|)) (-755)) 119 (|has| (-403 |#2|) (-359))) (($ $ (-1 (-403 |#2|) (-403 |#2|))) 118 (|has| (-403 |#2|) (-359))) (($ $ (-626 (-1153)) (-626 (-755))) 120 (-2318 (-2256 (|has| (-403 |#2|) (-359)) (|has| (-403 |#2|) (-887 (-1153)))) (-2256 (|has| (-403 |#2|) (-887 (-1153))) (|has| (-403 |#2|) (-359))))) (($ $ (-1153) (-755)) 121 (-2318 (-2256 (|has| (-403 |#2|) (-359)) (|has| (-403 |#2|) (-887 (-1153)))) (-2256 (|has| (-403 |#2|) (-887 (-1153))) (|has| (-403 |#2|) (-359))))) (($ $ (-626 (-1153))) 122 (-2318 (-2256 (|has| (-403 |#2|) (-359)) (|has| (-403 |#2|) (-887 (-1153)))) (-2256 (|has| (-403 |#2|) (-887 (-1153))) (|has| (-403 |#2|) (-359))))) (($ $ (-1153)) 123 (-2318 (-2256 (|has| (-403 |#2|) (-359)) (|has| (-403 |#2|) (-887 (-1153)))) (-2256 (|has| (-403 |#2|) (-887 (-1153))) (|has| (-403 |#2|) (-359))))) (($ $ (-755)) 128 (-2318 (-2256 (|has| (-403 |#2|) (-359)) (|has| (-403 |#2|) (-221))) (-2256 (|has| (-403 |#2|) (-221)) (|has| (-403 |#2|) (-359))) (|has| (-403 |#2|) (-344)))) (($ $) 130 (-2318 (-2256 (|has| (-403 |#2|) (-359)) (|has| (-403 |#2|) (-221))) (-2256 (|has| (-403 |#2|) (-221)) (|has| (-403 |#2|) (-359))) (|has| (-403 |#2|) (-344))))) (-1653 (((-121) $ $) 6)) (-1733 (($ $ $) 115 (|has| (-403 |#2|) (-359)))) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 24) (($ $ (-755)) 31) (($ $ (-560)) 112 (|has| (-403 |#2|) (-359)))) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 23) (($ $ (-403 |#2|)) 38) (($ (-403 |#2|) $) 37) (($ (-403 (-560)) $) 114 (|has| (-403 |#2|) (-359))) (($ $ (-403 (-560))) 113 (|has| (-403 |#2|) (-359))))) -(((-334 |#1| |#2| |#3|) (-1267) (-1191) (-1211 |t#1|) (-1211 (-403 |t#2|))) (T -334)) -((-3684 (*1 *2) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1191)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-403 *4))) (-5 *2 (-755)))) (-4390 (*1 *2) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1191)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-403 *4))) (-5 *2 (-755)))) (-1834 (*1 *2) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1191)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-403 *4))) (-5 *2 (-121)))) (-1663 (*1 *2 *3 *3) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1191)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-403 *4))) (-5 *2 (-121)))) (-1630 (*1 *2) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1191)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-403 *4))) (-5 *2 (-121)))) (-1771 (*1 *2 *3) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1191)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-403 *4))) (-5 *2 (-121)))) (-1771 (*1 *2 *3) (-12 (-4 *1 (-334 *4 *3 *5)) (-4 *4 (-1191)) (-4 *3 (-1211 *4)) (-4 *5 (-1211 (-403 *3))) (-5 *2 (-121)))) (-2789 (*1 *2) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1191)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-403 *4))) (-5 *2 (-121)))) (-3938 (*1 *2 *3) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1191)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-403 *4))) (-5 *2 (-121)))) (-3938 (*1 *2 *3) (-12 (-4 *1 (-334 *4 *3 *5)) (-4 *4 (-1191)) (-4 *3 (-1211 *4)) (-4 *5 (-1211 (-403 *3))) (-5 *2 (-121)))) (-3718 (*1 *2) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1191)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-403 *4))) (-5 *2 (-121)))) (-4346 (*1 *2 *3) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1191)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-403 *4))) (-5 *2 (-121)))) (-4346 (*1 *2 *3) (-12 (-4 *1 (-334 *4 *3 *5)) (-4 *4 (-1191)) (-4 *3 (-1211 *4)) (-4 *5 (-1211 (-403 *3))) (-5 *2 (-121)))) (-1335 (*1 *2) (-12 (-4 *3 (-1191)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-403 *4))) (-5 *2 (-1236 *1)) (-4 *1 (-334 *3 *4 *5)))) (-1567 (*1 *2) (-12 (-4 *3 (-1191)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-403 *4))) (-5 *2 (-1236 *1)) (-4 *1 (-334 *3 *4 *5)))) (-3044 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1191)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-403 *4))) (-5 *2 (-121)))) (-1596 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1191)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-403 *4))) (-5 *2 (-121)))) (-4229 (*1 *2 *2) (-12 (-5 *2 (-1236 *1)) (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1191)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-403 *4))))) (-3399 (*1 *2 *2) (-12 (-5 *2 (-1236 *1)) (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1191)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-403 *4))))) (-3781 (*1 *2 *2) (-12 (-5 *2 (-1236 *1)) (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1191)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-403 *4))))) (-4268 (*1 *2) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1191)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-403 *4))) (-5 *2 (-671 (-403 *4))))) (-2859 (*1 *2) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1191)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-403 *4))) (-5 *2 (-671 (-403 *4))))) (-2445 (*1 *2) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1191)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-403 *4))) (-5 *2 (-671 (-403 *4))))) (-2276 (*1 *2) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1191)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-403 *4))) (-5 *2 (-671 (-403 *4))))) (-3479 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1191)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-403 *4))) (-5 *2 (-2 (|:| |num| (-1236 *4)) (|:| |den| *4))))) (-4269 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1191)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-403 *4))) (-5 *2 (-2 (|:| |num| (-1236 *4)) (|:| |den| *4))))) (-2485 (*1 *1 *2 *3) (-12 (-5 *2 (-1236 *3)) (-4 *3 (-1211 *4)) (-4 *4 (-1191)) (-4 *1 (-334 *4 *3 *5)) (-4 *5 (-1211 (-403 *3))))) (-2282 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-334 *4 *5 *6)) (-4 *4 (-1191)) (-4 *5 (-1211 *4)) (-4 *6 (-1211 (-403 *5))) (-5 *2 (-2 (|:| |num| (-671 *5)) (|:| |den| *5))))) (-1596 (*1 *2 *1 *3) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1191)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-403 *4))) (-5 *2 (-121)))) (-1596 (*1 *2 *1 *3) (-12 (-4 *1 (-334 *4 *3 *5)) (-4 *4 (-1191)) (-4 *3 (-1211 *4)) (-4 *5 (-1211 (-403 *3))) (-5 *2 (-121)))) (-2443 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1191)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-403 *4))))) (-3380 (*1 *1 *2 *3) (-12 (-5 *2 (-1236 *3)) (-4 *3 (-1211 *4)) (-4 *4 (-1191)) (-4 *1 (-334 *4 *3 *5)) (-4 *5 (-1211 (-403 *3))))) (-3605 (*1 *1 *1) (-12 (-4 *1 (-334 *2 *3 *4)) (-4 *2 (-1191)) (-4 *3 (-1211 *2)) (-4 *4 (-1211 (-403 *3))))) (-2778 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-334 *2 *3 *4)) (-4 *2 (-1191)) (-4 *3 (-1211 *2)) (-4 *4 (-1211 (-403 *3))))) (-2290 (*1 *2) (|partial| -12 (-4 *1 (-334 *3 *2 *4)) (-4 *3 (-1191)) (-4 *4 (-1211 (-403 *2))) (-4 *2 (-1211 *3)))) (-3219 (*1 *2) (|partial| -12 (-4 *1 (-334 *3 *2 *4)) (-4 *3 (-1191)) (-4 *4 (-1211 (-403 *2))) (-4 *2 (-1211 *3)))) (-2895 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1211 *4)) (-4 *4 (-1191)) (-4 *6 (-1211 (-403 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-334 *4 *5 *6)))) (-3202 (*1 *2 *3) (-12 (-5 *3 (-1153)) (-4 *1 (-334 *4 *5 *6)) (-4 *4 (-1191)) (-4 *5 (-1211 *4)) (-4 *6 (-1211 (-403 *5))) (-4 *4 (-359)) (-5 *2 (-626 (-945 *4))))) (-2330 (*1 *2) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1191)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-403 *4))) (-4 *3 (-364)) (-5 *2 (-626 (-626 *3)))))) -(-13 (-706 (-403 |t#2|) |t#3|) (-10 -8 (-15 -3684 ((-755))) (-15 -4390 ((-755))) (-15 -1834 ((-121))) (-15 -1663 ((-121) |t#1| |t#1|)) (-15 -1630 ((-121))) (-15 -1771 ((-121) |t#1|)) (-15 -1771 ((-121) |t#2|)) (-15 -2789 ((-121))) (-15 -3938 ((-121) |t#1|)) (-15 -3938 ((-121) |t#2|)) (-15 -3718 ((-121))) (-15 -4346 ((-121) |t#1|)) (-15 -4346 ((-121) |t#2|)) (-15 -1335 ((-1236 $))) (-15 -1567 ((-1236 $))) (-15 -3044 ((-121) $)) (-15 -1596 ((-121) $)) (-15 -4229 ((-1236 $) (-1236 $))) (-15 -3399 ((-1236 $) (-1236 $))) (-15 -3781 ((-1236 $) (-1236 $))) (-15 -4268 ((-671 (-403 |t#2|)))) (-15 -2859 ((-671 (-403 |t#2|)))) (-15 -2445 ((-671 (-403 |t#2|)))) (-15 -2276 ((-671 (-403 |t#2|)))) (-15 -3479 ((-2 (|:| |num| (-1236 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -3380 ($ (-1236 |t#2|) |t#2|)) (-15 -4269 ((-2 (|:| |num| (-1236 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2485 ($ (-1236 |t#2|) |t#2|)) (-15 -2282 ((-2 (|:| |num| (-671 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -1596 ((-121) $ |t#1|)) (-15 -1596 ((-121) $ |t#2|)) (-15 -2443 ($ $ (-1 |t#2| |t#2|))) (-15 -3380 ($ (-1236 |t#2|) |t#2|)) (-15 -3605 ($ $)) (-15 -2778 (|t#1| $ |t#1| |t#1|)) (-15 -2290 ((-3 |t#2| "failed"))) (-15 -3219 ((-3 |t#2| "failed"))) (-15 -2895 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-359)) (-15 -3202 ((-626 (-945 |t#1|)) (-1153))) |noBranch|) (IF (|has| |t#1| (-364)) (-15 -2330 ((-626 (-626 |t#1|)))) |noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-43 (-403 (-560))) -2318 (|has| (-403 |#2|) (-344)) (|has| (-403 |#2|) (-359))) ((-43 (-403 |#2|)) . T) ((-43 $) -2318 (|has| (-403 |#2|) (-344)) (|has| (-403 |#2|) (-359))) ((-105) . T) ((-120 (-403 (-560)) (-403 (-560))) -2318 (|has| (-403 |#2|) (-344)) (|has| (-403 |#2|) (-359))) ((-120 (-403 |#2|) (-403 |#2|)) . T) ((-120 $ $) . T) ((-137) . T) ((-146) -2318 (|has| (-403 |#2|) (-344)) (|has| (-403 |#2|) (-146))) ((-148) |has| (-403 |#2|) (-148)) ((-600 (-842)) . T) ((-170) . T) ((-601 |#3|) . T) ((-219 (-403 |#2|)) |has| (-403 |#2|) (-359)) ((-221) -2318 (|has| (-403 |#2|) (-344)) (-12 (|has| (-403 |#2|) (-221)) (|has| (-403 |#2|) (-359)))) ((-233) -2318 (|has| (-403 |#2|) (-344)) (|has| (-403 |#2|) (-359))) ((-280) -2318 (|has| (-403 |#2|) (-344)) (|has| (-403 |#2|) (-359))) ((-296) -2318 (|has| (-403 |#2|) (-344)) (|has| (-403 |#2|) (-359))) ((-359) -2318 (|has| (-403 |#2|) (-344)) (|has| (-403 |#2|) (-359))) ((-398) |has| (-403 |#2|) (-344)) ((-364) -2318 (|has| (-403 |#2|) (-364)) (|has| (-403 |#2|) (-344))) ((-344) |has| (-403 |#2|) (-344)) ((-366 (-403 |#2|) |#3|) . T) ((-405 (-403 |#2|) |#3|) . T) ((-373 (-403 |#2|)) . T) ((-407 (-403 |#2|)) . T) ((-447) -2318 (|has| (-403 |#2|) (-344)) (|has| (-403 |#2|) (-359))) ((-550) -2318 (|has| (-403 |#2|) (-344)) (|has| (-403 |#2|) (-359))) ((-629 (-403 (-560))) -2318 (|has| (-403 |#2|) (-344)) (|has| (-403 |#2|) (-359))) ((-629 (-403 |#2|)) . T) ((-629 $) . T) ((-622 (-403 |#2|)) . T) ((-622 (-560)) |has| (-403 |#2|) (-622 (-560))) ((-699 (-403 (-560))) -2318 (|has| (-403 |#2|) (-344)) (|has| (-403 |#2|) (-359))) ((-699 (-403 |#2|)) . T) ((-699 $) -2318 (|has| (-403 |#2|) (-344)) (|has| (-403 |#2|) (-359))) ((-706 (-403 |#2|) |#3|) . T) ((-708) . T) ((-887 (-1153)) -12 (|has| (-403 |#2|) (-359)) (|has| (-403 |#2|) (-887 (-1153)))) ((-908) -2318 (|has| (-403 |#2|) (-344)) (|has| (-403 |#2|) (-359))) ((-1029 (-403 (-560))) |has| (-403 |#2|) (-1029 (-403 (-560)))) ((-1029 (-403 |#2|)) . T) ((-1029 (-560)) |has| (-403 |#2|) (-1029 (-560))) ((-1045 (-403 (-560))) -2318 (|has| (-403 |#2|) (-344)) (|has| (-403 |#2|) (-359))) ((-1045 (-403 |#2|)) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1094) . T) ((-1082) . T) ((-1128) |has| (-403 |#2|) (-344)) ((-1191) -2318 (|has| (-403 |#2|) (-344)) (|has| (-403 |#2|) (-359)))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL)) (-1350 (($ $) NIL)) (-3376 (((-121) $) NIL)) (-3913 (((-121) $) NIL)) (-1881 (((-755)) NIL)) (-1944 (((-897 |#1|) $) NIL) (($ $ (-909)) NIL (|has| (-897 |#1|) (-364)))) (-4357 (((-1161 (-909) (-755)) (-560)) NIL (|has| (-897 |#1|) (-364)))) (-2314 (((-3 $ "failed") $ $) NIL)) (-3065 (($ $) NIL)) (-2953 (((-414 $) $) NIL)) (-4179 (((-121) $ $) NIL)) (-2912 (((-755)) NIL (|has| (-897 |#1|) (-364)))) (-4236 (($) NIL T CONST)) (-1473 (((-3 (-897 |#1|) "failed") $) NIL)) (-3001 (((-897 |#1|) $) NIL)) (-3380 (($ (-1236 (-897 |#1|))) NIL)) (-4107 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-897 |#1|) (-364)))) (-2563 (($ $ $) NIL)) (-1823 (((-3 $ "failed") $) NIL)) (-1666 (($) NIL (|has| (-897 |#1|) (-364)))) (-2572 (($ $ $) NIL)) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) NIL)) (-2481 (($) NIL (|has| (-897 |#1|) (-364)))) (-1537 (((-121) $) NIL (|has| (-897 |#1|) (-364)))) (-2937 (($ $ (-755)) NIL (-2318 (|has| (-897 |#1|) (-146)) (|has| (-897 |#1|) (-364)))) (($ $) NIL (-2318 (|has| (-897 |#1|) (-146)) (|has| (-897 |#1|) (-364))))) (-3319 (((-121) $) NIL)) (-3504 (((-909) $) NIL (|has| (-897 |#1|) (-364))) (((-820 (-909)) $) NIL (-2318 (|has| (-897 |#1|) (-146)) (|has| (-897 |#1|) (-364))))) (-2642 (((-121) $) NIL)) (-2174 (($) NIL (|has| (-897 |#1|) (-364)))) (-1428 (((-121) $) NIL (|has| (-897 |#1|) (-364)))) (-3339 (((-897 |#1|) $) NIL) (($ $ (-909)) NIL (|has| (-897 |#1|) (-364)))) (-1424 (((-3 $ "failed") $) NIL (|has| (-897 |#1|) (-364)))) (-3856 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-4108 (((-1149 (-897 |#1|)) $) NIL) (((-1149 $) $ (-909)) NIL (|has| (-897 |#1|) (-364)))) (-3142 (((-909) $) NIL (|has| (-897 |#1|) (-364)))) (-3312 (((-1149 (-897 |#1|)) $) NIL (|has| (-897 |#1|) (-364)))) (-4175 (((-1149 (-897 |#1|)) $) NIL (|has| (-897 |#1|) (-364))) (((-3 (-1149 (-897 |#1|)) "failed") $ $) NIL (|has| (-897 |#1|) (-364)))) (-2455 (($ $ (-1149 (-897 |#1|))) NIL (|has| (-897 |#1|) (-364)))) (-2582 (($ $ $) NIL) (($ (-626 $)) NIL)) (-1291 (((-1135) $) NIL)) (-1701 (($ $) NIL)) (-1394 (($) NIL (|has| (-897 |#1|) (-364)) CONST)) (-1330 (($ (-909)) NIL (|has| (-897 |#1|) (-364)))) (-3557 (((-121) $) NIL)) (-4353 (((-1100) $) NIL)) (-3300 (((-950 (-1100))) NIL)) (-4250 (($) NIL (|has| (-897 |#1|) (-364)))) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL)) (-4440 (($ $ $) NIL) (($ (-626 $)) NIL)) (-2385 (((-626 (-2 (|:| -1601 (-560)) (|:| -4034 (-560))))) NIL (|has| (-897 |#1|) (-364)))) (-1601 (((-414 $) $) NIL)) (-1472 (((-820 (-909))) NIL) (((-909)) NIL)) (-3505 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2336 (((-3 $ "failed") $ $) NIL)) (-3456 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-4445 (((-755) $) NIL)) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL)) (-2935 (((-755) $) NIL (|has| (-897 |#1|) (-364))) (((-3 (-755) "failed") $ $) NIL (-2318 (|has| (-897 |#1|) (-146)) (|has| (-897 |#1|) (-364))))) (-4016 (((-139)) NIL)) (-2443 (($ $) NIL (|has| (-897 |#1|) (-364))) (($ $ (-755)) NIL (|has| (-897 |#1|) (-364)))) (-3662 (((-820 (-909)) $) NIL) (((-909) $) NIL)) (-3591 (((-1149 (-897 |#1|))) NIL)) (-2612 (($) NIL (|has| (-897 |#1|) (-364)))) (-1380 (($) NIL (|has| (-897 |#1|) (-364)))) (-3390 (((-1236 (-897 |#1|)) $) NIL) (((-671 (-897 |#1|)) (-1236 $)) NIL)) (-3248 (((-3 (-1236 $) "failed") (-671 $)) NIL (|has| (-897 |#1|) (-364)))) (-2801 (((-842) $) NIL) (($ (-560)) NIL) (($ $) NIL) (($ (-403 (-560))) NIL) (($ (-897 |#1|)) NIL)) (-2272 (($ $) NIL (|has| (-897 |#1|) (-364))) (((-3 $ "failed") $) NIL (-2318 (|has| (-897 |#1|) (-146)) (|has| (-897 |#1|) (-364))))) (-1751 (((-755)) NIL)) (-4374 (((-1236 $)) NIL) (((-1236 $) (-909)) NIL)) (-2328 (((-121) $ $) NIL)) (-1535 (((-121) $) NIL)) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL)) (-3304 (($) NIL T CONST)) (-1459 (($) NIL T CONST)) (-2353 (($ $) NIL (|has| (-897 |#1|) (-364))) (($ $ (-755)) NIL (|has| (-897 |#1|) (-364)))) (-2500 (($ $) NIL (|has| (-897 |#1|) (-364))) (($ $ (-755)) NIL (|has| (-897 |#1|) (-364)))) (-1653 (((-121) $ $) NIL)) (-1733 (($ $ $) NIL) (($ $ (-897 |#1|)) NIL)) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) NIL)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) NIL) (($ $ (-403 (-560))) NIL) (($ (-403 (-560)) $) NIL) (($ $ (-897 |#1|)) NIL) (($ (-897 |#1|) $) NIL))) -(((-335 |#1| |#2|) (-13 (-321 (-897 |#1|)) (-10 -7 (-15 -3300 ((-950 (-1100)))))) (-909) (-909)) (T -335)) -((-3300 (*1 *2) (-12 (-5 *2 (-950 (-1100))) (-5 *1 (-335 *3 *4)) (-14 *3 (-909)) (-14 *4 (-909))))) -(-13 (-321 (-897 |#1|)) (-10 -7 (-15 -3300 ((-950 (-1100)))))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) 46)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL)) (-1350 (($ $) NIL)) (-3376 (((-121) $) NIL)) (-3913 (((-121) $) NIL)) (-1881 (((-755)) NIL)) (-1944 ((|#1| $) NIL) (($ $ (-909)) NIL (|has| |#1| (-364)))) (-4357 (((-1161 (-909) (-755)) (-560)) 43 (|has| |#1| (-364)))) (-2314 (((-3 $ "failed") $ $) NIL)) (-3065 (($ $) NIL)) (-2953 (((-414 $) $) NIL)) (-4179 (((-121) $ $) NIL)) (-2912 (((-755)) NIL (|has| |#1| (-364)))) (-4236 (($) NIL T CONST)) (-1473 (((-3 |#1| "failed") $) 113)) (-3001 ((|#1| $) 84)) (-3380 (($ (-1236 |#1|)) 102)) (-4107 (((-3 "prime" "polynomial" "normal" "cyclic")) 93 (|has| |#1| (-364)))) (-2563 (($ $ $) NIL)) (-1823 (((-3 $ "failed") $) NIL)) (-1666 (($) 96 (|has| |#1| (-364)))) (-2572 (($ $ $) NIL)) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) NIL)) (-2481 (($) 128 (|has| |#1| (-364)))) (-1537 (((-121) $) 49 (|has| |#1| (-364)))) (-2937 (($ $ (-755)) NIL (-2318 (|has| |#1| (-146)) (|has| |#1| (-364)))) (($ $) NIL (-2318 (|has| |#1| (-146)) (|has| |#1| (-364))))) (-3319 (((-121) $) NIL)) (-3504 (((-909) $) 47 (|has| |#1| (-364))) (((-820 (-909)) $) NIL (-2318 (|has| |#1| (-146)) (|has| |#1| (-364))))) (-2642 (((-121) $) NIL)) (-2174 (($) 130 (|has| |#1| (-364)))) (-1428 (((-121) $) NIL (|has| |#1| (-364)))) (-3339 ((|#1| $) NIL) (($ $ (-909)) NIL (|has| |#1| (-364)))) (-1424 (((-3 $ "failed") $) NIL (|has| |#1| (-364)))) (-3856 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-4108 (((-1149 |#1|) $) 88) (((-1149 $) $ (-909)) NIL (|has| |#1| (-364)))) (-3142 (((-909) $) 138 (|has| |#1| (-364)))) (-3312 (((-1149 |#1|) $) NIL (|has| |#1| (-364)))) (-4175 (((-1149 |#1|) $) NIL (|has| |#1| (-364))) (((-3 (-1149 |#1|) "failed") $ $) NIL (|has| |#1| (-364)))) (-2455 (($ $ (-1149 |#1|)) NIL (|has| |#1| (-364)))) (-2582 (($ $ $) NIL) (($ (-626 $)) NIL)) (-1291 (((-1135) $) NIL)) (-1701 (($ $) 145)) (-1394 (($) NIL (|has| |#1| (-364)) CONST)) (-1330 (($ (-909)) 70 (|has| |#1| (-364)))) (-3557 (((-121) $) 116)) (-4353 (((-1100) $) NIL)) (-3300 (((-950 (-1100))) 44)) (-4250 (($) 126 (|has| |#1| (-364)))) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL)) (-4440 (($ $ $) NIL) (($ (-626 $)) NIL)) (-2385 (((-626 (-2 (|:| -1601 (-560)) (|:| -4034 (-560))))) 91 (|has| |#1| (-364)))) (-1601 (((-414 $) $) NIL)) (-1472 (((-820 (-909))) 67) (((-909)) 68)) (-3505 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2336 (((-3 $ "failed") $ $) NIL)) (-3456 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-4445 (((-755) $) NIL)) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL)) (-2935 (((-755) $) 129 (|has| |#1| (-364))) (((-3 (-755) "failed") $ $) 123 (-2318 (|has| |#1| (-146)) (|has| |#1| (-364))))) (-4016 (((-139)) NIL)) (-2443 (($ $) NIL (|has| |#1| (-364))) (($ $ (-755)) NIL (|has| |#1| (-364)))) (-3662 (((-820 (-909)) $) NIL) (((-909) $) NIL)) (-3591 (((-1149 |#1|)) 94)) (-2612 (($) 127 (|has| |#1| (-364)))) (-1380 (($) 135 (|has| |#1| (-364)))) (-3390 (((-1236 |#1|) $) 59) (((-671 |#1|) (-1236 $)) NIL)) (-3248 (((-3 (-1236 $) "failed") (-671 $)) NIL (|has| |#1| (-364)))) (-2801 (((-842) $) 141) (($ (-560)) NIL) (($ $) NIL) (($ (-403 (-560))) NIL) (($ |#1|) 74)) (-2272 (($ $) NIL (|has| |#1| (-364))) (((-3 $ "failed") $) NIL (-2318 (|has| |#1| (-146)) (|has| |#1| (-364))))) (-1751 (((-755)) 137)) (-4374 (((-1236 $)) 115) (((-1236 $) (-909)) 72)) (-2328 (((-121) $ $) NIL)) (-1535 (((-121) $) NIL)) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL)) (-3304 (($) 32 T CONST)) (-1459 (($) 19 T CONST)) (-2353 (($ $) 80 (|has| |#1| (-364))) (($ $ (-755)) NIL (|has| |#1| (-364)))) (-2500 (($ $) NIL (|has| |#1| (-364))) (($ $ (-755)) NIL (|has| |#1| (-364)))) (-1653 (((-121) $ $) 48)) (-1733 (($ $ $) 143) (($ $ |#1|) 144)) (-1725 (($ $) 125) (($ $ $) NIL)) (-1716 (($ $ $) 61)) (** (($ $ (-909)) 147) (($ $ (-755)) 148) (($ $ (-560)) 146)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) 76) (($ $ $) 75) (($ $ (-403 (-560))) NIL) (($ (-403 (-560)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 142))) -(((-336 |#1| |#2|) (-13 (-321 |#1|) (-10 -7 (-15 -3300 ((-950 (-1100)))))) (-344) (-1149 |#1|)) (T -336)) -((-3300 (*1 *2) (-12 (-5 *2 (-950 (-1100))) (-5 *1 (-336 *3 *4)) (-4 *3 (-344)) (-14 *4 (-1149 *3))))) -(-13 (-321 |#1|) (-10 -7 (-15 -3300 ((-950 (-1100)))))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL)) (-1350 (($ $) NIL)) (-3376 (((-121) $) NIL)) (-3913 (((-121) $) NIL)) (-1881 (((-755)) NIL)) (-1944 ((|#1| $) NIL) (($ $ (-909)) NIL (|has| |#1| (-364)))) (-4357 (((-1161 (-909) (-755)) (-560)) NIL (|has| |#1| (-364)))) (-2314 (((-3 $ "failed") $ $) NIL)) (-3065 (($ $) NIL)) (-2953 (((-414 $) $) NIL)) (-4179 (((-121) $ $) NIL)) (-2912 (((-755)) NIL (|has| |#1| (-364)))) (-4236 (($) NIL T CONST)) (-1473 (((-3 |#1| "failed") $) NIL)) (-3001 ((|#1| $) NIL)) (-3380 (($ (-1236 |#1|)) NIL)) (-4107 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-364)))) (-2563 (($ $ $) NIL)) (-1823 (((-3 $ "failed") $) NIL)) (-1666 (($) NIL (|has| |#1| (-364)))) (-2572 (($ $ $) NIL)) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) NIL)) (-2481 (($) NIL (|has| |#1| (-364)))) (-1537 (((-121) $) NIL (|has| |#1| (-364)))) (-2937 (($ $ (-755)) NIL (-2318 (|has| |#1| (-146)) (|has| |#1| (-364)))) (($ $) NIL (-2318 (|has| |#1| (-146)) (|has| |#1| (-364))))) (-3319 (((-121) $) NIL)) (-3504 (((-909) $) NIL (|has| |#1| (-364))) (((-820 (-909)) $) NIL (-2318 (|has| |#1| (-146)) (|has| |#1| (-364))))) (-2642 (((-121) $) NIL)) (-2174 (($) NIL (|has| |#1| (-364)))) (-1428 (((-121) $) NIL (|has| |#1| (-364)))) (-3339 ((|#1| $) NIL) (($ $ (-909)) NIL (|has| |#1| (-364)))) (-1424 (((-3 $ "failed") $) NIL (|has| |#1| (-364)))) (-3856 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-4108 (((-1149 |#1|) $) NIL) (((-1149 $) $ (-909)) NIL (|has| |#1| (-364)))) (-3142 (((-909) $) NIL (|has| |#1| (-364)))) (-3312 (((-1149 |#1|) $) NIL (|has| |#1| (-364)))) (-4175 (((-1149 |#1|) $) NIL (|has| |#1| (-364))) (((-3 (-1149 |#1|) "failed") $ $) NIL (|has| |#1| (-364)))) (-2455 (($ $ (-1149 |#1|)) NIL (|has| |#1| (-364)))) (-2582 (($ $ $) NIL) (($ (-626 $)) NIL)) (-1291 (((-1135) $) NIL)) (-1701 (($ $) NIL)) (-1394 (($) NIL (|has| |#1| (-364)) CONST)) (-1330 (($ (-909)) NIL (|has| |#1| (-364)))) (-3557 (((-121) $) NIL)) (-4353 (((-1100) $) NIL)) (-3300 (((-950 (-1100))) NIL)) (-4250 (($) NIL (|has| |#1| (-364)))) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL)) (-4440 (($ $ $) NIL) (($ (-626 $)) NIL)) (-2385 (((-626 (-2 (|:| -1601 (-560)) (|:| -4034 (-560))))) NIL (|has| |#1| (-364)))) (-1601 (((-414 $) $) NIL)) (-1472 (((-820 (-909))) NIL) (((-909)) NIL)) (-3505 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2336 (((-3 $ "failed") $ $) NIL)) (-3456 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-4445 (((-755) $) NIL)) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL)) (-2935 (((-755) $) NIL (|has| |#1| (-364))) (((-3 (-755) "failed") $ $) NIL (-2318 (|has| |#1| (-146)) (|has| |#1| (-364))))) (-4016 (((-139)) NIL)) (-2443 (($ $) NIL (|has| |#1| (-364))) (($ $ (-755)) NIL (|has| |#1| (-364)))) (-3662 (((-820 (-909)) $) NIL) (((-909) $) NIL)) (-3591 (((-1149 |#1|)) NIL)) (-2612 (($) NIL (|has| |#1| (-364)))) (-1380 (($) NIL (|has| |#1| (-364)))) (-3390 (((-1236 |#1|) $) NIL) (((-671 |#1|) (-1236 $)) NIL)) (-3248 (((-3 (-1236 $) "failed") (-671 $)) NIL (|has| |#1| (-364)))) (-2801 (((-842) $) NIL) (($ (-560)) NIL) (($ $) NIL) (($ (-403 (-560))) NIL) (($ |#1|) NIL)) (-2272 (($ $) NIL (|has| |#1| (-364))) (((-3 $ "failed") $) NIL (-2318 (|has| |#1| (-146)) (|has| |#1| (-364))))) (-1751 (((-755)) NIL)) (-4374 (((-1236 $)) NIL) (((-1236 $) (-909)) NIL)) (-2328 (((-121) $ $) NIL)) (-1535 (((-121) $) NIL)) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL)) (-3304 (($) NIL T CONST)) (-1459 (($) NIL T CONST)) (-2353 (($ $) NIL (|has| |#1| (-364))) (($ $ (-755)) NIL (|has| |#1| (-364)))) (-2500 (($ $) NIL (|has| |#1| (-364))) (($ $ (-755)) NIL (|has| |#1| (-364)))) (-1653 (((-121) $ $) NIL)) (-1733 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) NIL)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) NIL) (($ $ (-403 (-560))) NIL) (($ (-403 (-560)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-337 |#1| |#2|) (-13 (-321 |#1|) (-10 -7 (-15 -3300 ((-950 (-1100)))))) (-344) (-909)) (T -337)) -((-3300 (*1 *2) (-12 (-5 *2 (-950 (-1100))) (-5 *1 (-337 *3 *4)) (-4 *3 (-344)) (-14 *4 (-909))))) -(-13 (-321 |#1|) (-10 -7 (-15 -3300 ((-950 (-1100)))))) -((-2097 (((-121) |#2|) 68)) (-3551 (((-414 |#2|) |#2|) 56)) (-3556 (((-414 |#2|) |#2|) 58)) (-2387 (((-626 |#2|) |#2|) 61)) (-3560 (((-626 |#2|) |#2| (-755)) 62)) (-1601 (((-414 |#2|) |#2|) 59))) -(((-338 |#1| |#2|) (-10 -7 (-15 -2387 ((-626 |#2|) |#2|)) (-15 -3560 ((-626 |#2|) |#2| (-755))) (-15 -1601 ((-414 |#2|) |#2|)) (-15 -3551 ((-414 |#2|) |#2|)) (-15 -3556 ((-414 |#2|) |#2|)) (-15 -2097 ((-121) |#2|))) (-344) (-1211 |#1|)) (T -338)) -((-2097 (*1 *2 *3) (-12 (-4 *4 (-344)) (-5 *2 (-121)) (-5 *1 (-338 *4 *3)) (-4 *3 (-1211 *4)))) (-3556 (*1 *2 *3) (-12 (-4 *4 (-344)) (-5 *2 (-414 *3)) (-5 *1 (-338 *4 *3)) (-4 *3 (-1211 *4)))) (-3551 (*1 *2 *3) (-12 (-4 *4 (-344)) (-5 *2 (-414 *3)) (-5 *1 (-338 *4 *3)) (-4 *3 (-1211 *4)))) (-1601 (*1 *2 *3) (-12 (-4 *4 (-344)) (-5 *2 (-414 *3)) (-5 *1 (-338 *4 *3)) (-4 *3 (-1211 *4)))) (-3560 (*1 *2 *3 *4) (-12 (-5 *4 (-755)) (-4 *5 (-344)) (-5 *2 (-626 *3)) (-5 *1 (-338 *5 *3)) (-4 *3 (-1211 *5)))) (-2387 (*1 *2 *3) (-12 (-4 *4 (-344)) (-5 *2 (-626 *3)) (-5 *1 (-338 *4 *3)) (-4 *3 (-1211 *4))))) -(-10 -7 (-15 -2387 ((-626 |#2|) |#2|)) (-15 -3560 ((-626 |#2|) |#2| (-755))) (-15 -1601 ((-414 |#2|) |#2|)) (-15 -3551 ((-414 |#2|) |#2|)) (-15 -3556 ((-414 |#2|) |#2|)) (-15 -2097 ((-121) |#2|))) -((-3500 (((-1133 (-671 (-1149 |#1|))) (-626 |#1|) (-1 |#1| (-755) (-755) |#2|) (-1236 |#3|) (-755) (-755)) 54) (((-671 (-1149 |#1|)) (-626 |#1|) (-1 |#1| (-755) (-755) |#2|) (-1236 |#3|) (-626 (-755))) 42))) -(((-339 |#1| |#2| |#3|) (-10 -7 (-15 -3500 ((-671 (-1149 |#1|)) (-626 |#1|) (-1 |#1| (-755) (-755) |#2|) (-1236 |#3|) (-626 (-755)))) (-15 -3500 ((-1133 (-671 (-1149 |#1|))) (-626 |#1|) (-1 |#1| (-755) (-755) |#2|) (-1236 |#3|) (-755) (-755)))) (-13 (-550) (-447)) (-318 |#1| (-755)) (-318 (-403 |#1|) (-755))) (T -339)) -((-3500 (*1 *2 *3 *4 *5 *6 *6) (-12 (-5 *3 (-626 *7)) (-5 *4 (-1 *7 (-755) (-755) *8)) (-5 *5 (-1236 *9)) (-5 *6 (-755)) (-4 *7 (-13 (-550) (-447))) (-4 *8 (-318 *7 *6)) (-4 *9 (-318 (-403 *7) *6)) (-5 *2 (-1133 (-671 (-1149 *7)))) (-5 *1 (-339 *7 *8 *9)))) (-3500 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-626 *7)) (-5 *4 (-1 *7 (-755) (-755) *8)) (-5 *5 (-1236 *9)) (-5 *6 (-626 (-755))) (-4 *7 (-13 (-550) (-447))) (-4 *8 (-318 *7 (-755))) (-4 *9 (-318 (-403 *7) (-755))) (-5 *2 (-671 (-1149 *7))) (-5 *1 (-339 *7 *8 *9))))) -(-10 -7 (-15 -3500 ((-671 (-1149 |#1|)) (-626 |#1|) (-1 |#1| (-755) (-755) |#2|) (-1236 |#3|) (-626 (-755)))) (-15 -3500 ((-1133 (-671 (-1149 |#1|))) (-626 |#1|) (-1 |#1| (-755) (-755) |#2|) (-1236 |#3|) (-755) (-755)))) -((-3488 (((-626 |#1|) |#1| (-755)) 21)) (-3494 ((|#1| |#1| (-755) (-755) |#2|) 20)) (-1571 (((-403 (-1149 |#1|)) (-626 (-403 |#1|)) (-626 (-403 |#1|)) (-755)) 75) (((-403 (-1149 |#1|)) (-626 |#1|) (-626 |#1|) (-755)) 68)) (-3500 (((-1133 (-671 (-1149 |#1|))) (-626 |#1|) (-1 |#1| (-755) (-755) |#2|) (-1236 |#2|) (-755) (-755)) 62) (((-671 (-1149 |#1|)) (-626 |#1|) (-1 |#1| (-755) (-755) |#2|) (-1236 |#2|) (-626 (-755))) 44)) (-3506 ((|#1| (-1 |#1| (-755) (-755) |#2|) (-1236 |#2|) (-755) (-1236 (-1149 |#1|))) 37)) (-3513 (((-671 (-1149 |#1|)) (-626 |#1|) (-1 |#1| (-755) (-1236 (-1149 |#1|))) (-626 (-755))) 43)) (-3519 (((-626 |#1|) (-755)) 17)) (-3524 ((|#1| (-755) (-755) |#2|) 11)) (-3530 (((-626 |#1|) (-755)) 24)) (-3535 ((|#1| (-755) (-755) |#2|) 22))) -(((-340 |#1| |#2|) (-10 -7 (-15 -3513 ((-671 (-1149 |#1|)) (-626 |#1|) (-1 |#1| (-755) (-1236 (-1149 |#1|))) (-626 (-755)))) (-15 -1571 ((-403 (-1149 |#1|)) (-626 |#1|) (-626 |#1|) (-755))) (-15 -1571 ((-403 (-1149 |#1|)) (-626 (-403 |#1|)) (-626 (-403 |#1|)) (-755))) (-15 -3500 ((-671 (-1149 |#1|)) (-626 |#1|) (-1 |#1| (-755) (-755) |#2|) (-1236 |#2|) (-626 (-755)))) (-15 -3500 ((-1133 (-671 (-1149 |#1|))) (-626 |#1|) (-1 |#1| (-755) (-755) |#2|) (-1236 |#2|) (-755) (-755))) (-15 -3506 (|#1| (-1 |#1| (-755) (-755) |#2|) (-1236 |#2|) (-755) (-1236 (-1149 |#1|)))) (-15 -3524 (|#1| (-755) (-755) |#2|)) (-15 -3519 ((-626 |#1|) (-755))) (-15 -3535 (|#1| (-755) (-755) |#2|)) (-15 -3530 ((-626 |#1|) (-755))) (-15 -3494 (|#1| |#1| (-755) (-755) |#2|)) (-15 -3488 ((-626 |#1|) |#1| (-755)))) (-13 (-550) (-447)) (-52 |#1| (-755))) (T -340)) -((-3488 (*1 *2 *3 *4) (-12 (-5 *4 (-755)) (-4 *3 (-13 (-550) (-447))) (-5 *2 (-626 *3)) (-5 *1 (-340 *3 *5)) (-4 *5 (-52 *3 *4)))) (-3494 (*1 *2 *2 *3 *3 *4) (-12 (-5 *3 (-755)) (-4 *2 (-13 (-550) (-447))) (-5 *1 (-340 *2 *4)) (-4 *4 (-52 *2 *3)))) (-3530 (*1 *2 *3) (-12 (-5 *3 (-755)) (-4 *4 (-13 (-550) (-447))) (-5 *2 (-626 *4)) (-5 *1 (-340 *4 *5)) (-4 *5 (-52 *4 *3)))) (-3535 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-755)) (-4 *2 (-13 (-550) (-447))) (-5 *1 (-340 *2 *4)) (-4 *4 (-52 *2 *3)))) (-3519 (*1 *2 *3) (-12 (-5 *3 (-755)) (-4 *4 (-13 (-550) (-447))) (-5 *2 (-626 *4)) (-5 *1 (-340 *4 *5)) (-4 *5 (-52 *4 *3)))) (-3524 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-755)) (-4 *2 (-13 (-550) (-447))) (-5 *1 (-340 *2 *4)) (-4 *4 (-52 *2 *3)))) (-3506 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *2 (-755) (-755) *7)) (-5 *4 (-1236 *7)) (-5 *5 (-755)) (-5 *6 (-1236 (-1149 *2))) (-4 *7 (-52 *2 *5)) (-4 *2 (-13 (-550) (-447))) (-5 *1 (-340 *2 *7)))) (-3500 (*1 *2 *3 *4 *5 *6 *6) (-12 (-5 *3 (-626 *7)) (-5 *4 (-1 *7 (-755) (-755) *8)) (-5 *5 (-1236 *8)) (-5 *6 (-755)) (-4 *7 (-13 (-550) (-447))) (-4 *8 (-52 *7 *6)) (-5 *2 (-1133 (-671 (-1149 *7)))) (-5 *1 (-340 *7 *8)))) (-3500 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-626 *7)) (-5 *4 (-1 *7 (-755) (-755) *8)) (-5 *5 (-1236 *8)) (-5 *6 (-626 (-755))) (-4 *7 (-13 (-550) (-447))) (-4 *8 (-52 *7 (-755))) (-5 *2 (-671 (-1149 *7))) (-5 *1 (-340 *7 *8)))) (-1571 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-626 (-403 *5))) (-4 *5 (-13 (-550) (-447))) (-5 *4 (-755)) (-5 *2 (-403 (-1149 *5))) (-5 *1 (-340 *5 *6)) (-4 *6 (-52 *5 *4)))) (-1571 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-626 *5)) (-4 *5 (-13 (-550) (-447))) (-5 *4 (-755)) (-5 *2 (-403 (-1149 *5))) (-5 *1 (-340 *5 *6)) (-4 *6 (-52 *5 *4)))) (-3513 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-626 *6)) (-5 *4 (-1 *6 (-755) (-1236 (-1149 *6)))) (-5 *5 (-626 (-755))) (-4 *6 (-13 (-550) (-447))) (-5 *2 (-671 (-1149 *6))) (-5 *1 (-340 *6 *7)) (-4 *7 (-52 *6 (-755)))))) -(-10 -7 (-15 -3513 ((-671 (-1149 |#1|)) (-626 |#1|) (-1 |#1| (-755) (-1236 (-1149 |#1|))) (-626 (-755)))) (-15 -1571 ((-403 (-1149 |#1|)) (-626 |#1|) (-626 |#1|) (-755))) (-15 -1571 ((-403 (-1149 |#1|)) (-626 (-403 |#1|)) (-626 (-403 |#1|)) (-755))) (-15 -3500 ((-671 (-1149 |#1|)) (-626 |#1|) (-1 |#1| (-755) (-755) |#2|) (-1236 |#2|) (-626 (-755)))) (-15 -3500 ((-1133 (-671 (-1149 |#1|))) (-626 |#1|) (-1 |#1| (-755) (-755) |#2|) (-1236 |#2|) (-755) (-755))) (-15 -3506 (|#1| (-1 |#1| (-755) (-755) |#2|) (-1236 |#2|) (-755) (-1236 (-1149 |#1|)))) (-15 -3524 (|#1| (-755) (-755) |#2|)) (-15 -3519 ((-626 |#1|) (-755))) (-15 -3535 (|#1| (-755) (-755) |#2|)) (-15 -3530 ((-626 |#1|) (-755))) (-15 -3494 (|#1| |#1| (-755) (-755) |#2|)) (-15 -3488 ((-626 |#1|) |#1| (-755)))) -((-3079 (((-755) (-1236 (-626 (-2 (|:| -2981 |#1|) (|:| -1330 (-1100)))))) 40)) (-1299 (((-950 (-1100)) (-1149 |#1|)) 84)) (-4163 (((-1236 (-626 (-2 (|:| -2981 |#1|) (|:| -1330 (-1100))))) (-1149 |#1|)) 77)) (-4434 (((-671 |#1|) (-1236 (-626 (-2 (|:| -2981 |#1|) (|:| -1330 (-1100)))))) 85)) (-4467 (((-3 (-1236 (-626 (-2 (|:| -2981 |#1|) (|:| -1330 (-1100))))) "failed") (-909)) 10)) (-3307 (((-3 (-1149 |#1|) (-1236 (-626 (-2 (|:| -2981 |#1|) (|:| -1330 (-1100)))))) (-909)) 15))) -(((-341 |#1|) (-10 -7 (-15 -1299 ((-950 (-1100)) (-1149 |#1|))) (-15 -4163 ((-1236 (-626 (-2 (|:| -2981 |#1|) (|:| -1330 (-1100))))) (-1149 |#1|))) (-15 -4434 ((-671 |#1|) (-1236 (-626 (-2 (|:| -2981 |#1|) (|:| -1330 (-1100))))))) (-15 -3079 ((-755) (-1236 (-626 (-2 (|:| -2981 |#1|) (|:| -1330 (-1100))))))) (-15 -4467 ((-3 (-1236 (-626 (-2 (|:| -2981 |#1|) (|:| -1330 (-1100))))) "failed") (-909))) (-15 -3307 ((-3 (-1149 |#1|) (-1236 (-626 (-2 (|:| -2981 |#1|) (|:| -1330 (-1100)))))) (-909)))) (-344)) (T -341)) -((-3307 (*1 *2 *3) (-12 (-5 *3 (-909)) (-5 *2 (-3 (-1149 *4) (-1236 (-626 (-2 (|:| -2981 *4) (|:| -1330 (-1100))))))) (-5 *1 (-341 *4)) (-4 *4 (-344)))) (-4467 (*1 *2 *3) (|partial| -12 (-5 *3 (-909)) (-5 *2 (-1236 (-626 (-2 (|:| -2981 *4) (|:| -1330 (-1100)))))) (-5 *1 (-341 *4)) (-4 *4 (-344)))) (-3079 (*1 *2 *3) (-12 (-5 *3 (-1236 (-626 (-2 (|:| -2981 *4) (|:| -1330 (-1100)))))) (-4 *4 (-344)) (-5 *2 (-755)) (-5 *1 (-341 *4)))) (-4434 (*1 *2 *3) (-12 (-5 *3 (-1236 (-626 (-2 (|:| -2981 *4) (|:| -1330 (-1100)))))) (-4 *4 (-344)) (-5 *2 (-671 *4)) (-5 *1 (-341 *4)))) (-4163 (*1 *2 *3) (-12 (-5 *3 (-1149 *4)) (-4 *4 (-344)) (-5 *2 (-1236 (-626 (-2 (|:| -2981 *4) (|:| -1330 (-1100)))))) (-5 *1 (-341 *4)))) (-1299 (*1 *2 *3) (-12 (-5 *3 (-1149 *4)) (-4 *4 (-344)) (-5 *2 (-950 (-1100))) (-5 *1 (-341 *4))))) -(-10 -7 (-15 -1299 ((-950 (-1100)) (-1149 |#1|))) (-15 -4163 ((-1236 (-626 (-2 (|:| -2981 |#1|) (|:| -1330 (-1100))))) (-1149 |#1|))) (-15 -4434 ((-671 |#1|) (-1236 (-626 (-2 (|:| -2981 |#1|) (|:| -1330 (-1100))))))) (-15 -3079 ((-755) (-1236 (-626 (-2 (|:| -2981 |#1|) (|:| -1330 (-1100))))))) (-15 -4467 ((-3 (-1236 (-626 (-2 (|:| -2981 |#1|) (|:| -1330 (-1100))))) "failed") (-909))) (-15 -3307 ((-3 (-1149 |#1|) (-1236 (-626 (-2 (|:| -2981 |#1|) (|:| -1330 (-1100)))))) (-909)))) -((-2801 ((|#1| |#3|) 84) ((|#3| |#1|) 68))) -(((-342 |#1| |#2| |#3|) (-10 -7 (-15 -2801 (|#3| |#1|)) (-15 -2801 (|#1| |#3|))) (-321 |#2|) (-344) (-321 |#2|)) (T -342)) -((-2801 (*1 *2 *3) (-12 (-4 *4 (-344)) (-4 *2 (-321 *4)) (-5 *1 (-342 *2 *4 *3)) (-4 *3 (-321 *4)))) (-2801 (*1 *2 *3) (-12 (-4 *4 (-344)) (-4 *2 (-321 *4)) (-5 *1 (-342 *3 *4 *2)) (-4 *3 (-321 *4))))) -(-10 -7 (-15 -2801 (|#3| |#1|)) (-15 -2801 (|#1| |#3|))) -((-1537 (((-121) $) 50)) (-3504 (((-820 (-909)) $) 21) (((-909) $) 51)) (-1424 (((-3 $ "failed") $) 16)) (-1394 (($) 9)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) 91)) (-2935 (((-3 (-755) "failed") $ $) 70) (((-755) $) 59)) (-2443 (($ $ (-755)) NIL) (($ $) 8)) (-2612 (($) 44)) (-3248 (((-3 (-1236 $) "failed") (-671 $)) 33)) (-2272 (((-3 $ "failed") $) 39) (($ $) 38))) -(((-343 |#1|) (-10 -8 (-15 -3504 ((-909) |#1|)) (-15 -2935 ((-755) |#1|)) (-15 -1537 ((-121) |#1|)) (-15 -2612 (|#1|)) (-15 -3248 ((-3 (-1236 |#1|) "failed") (-671 |#1|))) (-15 -2272 (|#1| |#1|)) (-15 -2443 (|#1| |#1|)) (-15 -2443 (|#1| |#1| (-755))) (-15 -1394 (|#1|)) (-15 -1424 ((-3 |#1| "failed") |#1|)) (-15 -2935 ((-3 (-755) "failed") |#1| |#1|)) (-15 -3504 ((-820 (-909)) |#1|)) (-15 -2272 ((-3 |#1| "failed") |#1|)) (-15 -4311 ((-1149 |#1|) (-1149 |#1|) (-1149 |#1|)))) (-344)) (T -343)) -NIL -(-10 -8 (-15 -3504 ((-909) |#1|)) (-15 -2935 ((-755) |#1|)) (-15 -1537 ((-121) |#1|)) (-15 -2612 (|#1|)) (-15 -3248 ((-3 (-1236 |#1|) "failed") (-671 |#1|))) (-15 -2272 (|#1| |#1|)) (-15 -2443 (|#1| |#1|)) (-15 -2443 (|#1| |#1| (-755))) (-15 -1394 (|#1|)) (-15 -1424 ((-3 |#1| "failed") |#1|)) (-15 -2935 ((-3 (-755) "failed") |#1| |#1|)) (-15 -3504 ((-820 (-909)) |#1|)) (-15 -2272 ((-3 |#1| "failed") |#1|)) (-15 -4311 ((-1149 |#1|) (-1149 |#1|) (-1149 |#1|)))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) 40)) (-1350 (($ $) 39)) (-3376 (((-121) $) 37)) (-4357 (((-1161 (-909) (-755)) (-560)) 88)) (-2314 (((-3 $ "failed") $ $) 18)) (-3065 (($ $) 71)) (-2953 (((-414 $) $) 70)) (-4179 (((-121) $ $) 57)) (-2912 (((-755)) 98)) (-4236 (($) 16 T CONST)) (-4107 (((-3 "prime" "polynomial" "normal" "cyclic")) 82)) (-2563 (($ $ $) 53)) (-1823 (((-3 $ "failed") $) 33)) (-1666 (($) 101)) (-2572 (($ $ $) 54)) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) 49)) (-2481 (($) 86)) (-1537 (((-121) $) 85)) (-2937 (($ $) 75) (($ $ (-755)) 74)) (-3319 (((-121) $) 69)) (-3504 (((-820 (-909)) $) 77) (((-909) $) 83)) (-2642 (((-121) $) 30)) (-1424 (((-3 $ "failed") $) 97)) (-3856 (((-3 (-626 $) "failed") (-626 $) $) 50)) (-3142 (((-909) $) 100)) (-2582 (($ $ $) 45) (($ (-626 $)) 44)) (-1291 (((-1135) $) 9)) (-1701 (($ $) 68)) (-1394 (($) 96 T CONST)) (-1330 (($ (-909)) 99)) (-4353 (((-1100) $) 10)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) 43)) (-4440 (($ $ $) 47) (($ (-626 $)) 46)) (-2385 (((-626 (-2 (|:| -1601 (-560)) (|:| -4034 (-560))))) 89)) (-1601 (((-414 $) $) 72)) (-3505 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2336 (((-3 $ "failed") $ $) 41)) (-3456 (((-3 (-626 $) "failed") (-626 $) $) 48)) (-4445 (((-755) $) 56)) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) 55)) (-2935 (((-3 (-755) "failed") $ $) 76) (((-755) $) 84)) (-2443 (($ $ (-755)) 94) (($ $) 92)) (-2612 (($) 87)) (-3248 (((-3 (-1236 $) "failed") (-671 $)) 90)) (-2801 (((-842) $) 11) (($ (-560)) 27) (($ $) 42) (($ (-403 (-560))) 63)) (-2272 (((-3 $ "failed") $) 78) (($ $) 91)) (-1751 (((-755)) 28)) (-2328 (((-121) $ $) 38)) (-2464 (($ $ (-909)) 25) (($ $ (-755)) 32) (($ $ (-560)) 67)) (-3304 (($) 17 T CONST)) (-1459 (($) 29 T CONST)) (-2500 (($ $ (-755)) 95) (($ $) 93)) (-1653 (((-121) $ $) 6)) (-1733 (($ $ $) 62)) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 24) (($ $ (-755)) 31) (($ $ (-560)) 66)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 23) (($ $ (-403 (-560))) 65) (($ (-403 (-560)) $) 64))) -(((-344) (-1267)) (T -344)) -((-2272 (*1 *1 *1) (-4 *1 (-344))) (-3248 (*1 *2 *3) (|partial| -12 (-5 *3 (-671 *1)) (-4 *1 (-344)) (-5 *2 (-1236 *1)))) (-2385 (*1 *2) (-12 (-4 *1 (-344)) (-5 *2 (-626 (-2 (|:| -1601 (-560)) (|:| -4034 (-560))))))) (-4357 (*1 *2 *3) (-12 (-4 *1 (-344)) (-5 *3 (-560)) (-5 *2 (-1161 (-909) (-755))))) (-2612 (*1 *1) (-4 *1 (-344))) (-2481 (*1 *1) (-4 *1 (-344))) (-1537 (*1 *2 *1) (-12 (-4 *1 (-344)) (-5 *2 (-121)))) (-2935 (*1 *2 *1) (-12 (-4 *1 (-344)) (-5 *2 (-755)))) (-3504 (*1 *2 *1) (-12 (-4 *1 (-344)) (-5 *2 (-909)))) (-4107 (*1 *2) (-12 (-4 *1 (-344)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(-13 (-398) (-364) (-1128) (-221) (-10 -8 (-15 -2272 ($ $)) (-15 -3248 ((-3 (-1236 $) "failed") (-671 $))) (-15 -2385 ((-626 (-2 (|:| -1601 (-560)) (|:| -4034 (-560)))))) (-15 -4357 ((-1161 (-909) (-755)) (-560))) (-15 -2612 ($)) (-15 -2481 ($)) (-15 -1537 ((-121) $)) (-15 -2935 ((-755) $)) (-15 -3504 ((-909) $)) (-15 -4107 ((-3 "prime" "polynomial" "normal" "cyclic"))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-43 (-403 (-560))) . T) ((-43 $) . T) ((-105) . T) ((-120 (-403 (-560)) (-403 (-560))) . T) ((-120 $ $) . T) ((-137) . T) ((-146) . T) ((-600 (-842)) . T) ((-170) . T) ((-221) . T) ((-233) . T) ((-280) . T) ((-296) . T) ((-359) . T) ((-398) . T) ((-364) . T) ((-447) . T) ((-550) . T) ((-629 (-403 (-560))) . T) ((-629 $) . T) ((-699 (-403 (-560))) . T) ((-699 $) . T) ((-708) . T) ((-908) . T) ((-1045 (-403 (-560))) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1094) . T) ((-1082) . T) ((-1128) . T) ((-1191) . T)) -((-2434 (((-2 (|:| -4374 (-671 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-671 |#1|))) |#1|) 51)) (-1335 (((-2 (|:| -4374 (-671 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-671 |#1|)))) 49))) -(((-345 |#1| |#2| |#3|) (-10 -7 (-15 -1335 ((-2 (|:| -4374 (-671 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-671 |#1|))))) (-15 -2434 ((-2 (|:| -4374 (-671 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-671 |#1|))) |#1|))) (-13 (-296) (-10 -8 (-15 -2953 ((-414 $) $)))) (-1211 |#1|) (-405 |#1| |#2|)) (T -345)) -((-2434 (*1 *2 *3) (-12 (-4 *3 (-13 (-296) (-10 -8 (-15 -2953 ((-414 $) $))))) (-4 *4 (-1211 *3)) (-5 *2 (-2 (|:| -4374 (-671 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-671 *3)))) (-5 *1 (-345 *3 *4 *5)) (-4 *5 (-405 *3 *4)))) (-1335 (*1 *2) (-12 (-4 *3 (-13 (-296) (-10 -8 (-15 -2953 ((-414 $) $))))) (-4 *4 (-1211 *3)) (-5 *2 (-2 (|:| -4374 (-671 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-671 *3)))) (-5 *1 (-345 *3 *4 *5)) (-4 *5 (-405 *3 *4))))) -(-10 -7 (-15 -1335 ((-2 (|:| -4374 (-671 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-671 |#1|))))) (-15 -2434 ((-2 (|:| -4374 (-671 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-671 |#1|))) |#1|))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL)) (-1350 (($ $) NIL)) (-3376 (((-121) $) NIL)) (-3913 (((-121) $) NIL)) (-1881 (((-755)) NIL)) (-1944 (((-897 |#1|) $) NIL) (($ $ (-909)) NIL (|has| (-897 |#1|) (-364)))) (-4357 (((-1161 (-909) (-755)) (-560)) NIL (|has| (-897 |#1|) (-364)))) (-2314 (((-3 $ "failed") $ $) NIL)) (-3065 (($ $) NIL)) (-2953 (((-414 $) $) NIL)) (-3079 (((-755)) NIL)) (-4179 (((-121) $ $) NIL)) (-2912 (((-755)) NIL (|has| (-897 |#1|) (-364)))) (-4236 (($) NIL T CONST)) (-1473 (((-3 (-897 |#1|) "failed") $) NIL)) (-3001 (((-897 |#1|) $) NIL)) (-3380 (($ (-1236 (-897 |#1|))) NIL)) (-4107 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-897 |#1|) (-364)))) (-2563 (($ $ $) NIL)) (-1823 (((-3 $ "failed") $) NIL)) (-1666 (($) NIL (|has| (-897 |#1|) (-364)))) (-2572 (($ $ $) NIL)) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) NIL)) (-2481 (($) NIL (|has| (-897 |#1|) (-364)))) (-1537 (((-121) $) NIL (|has| (-897 |#1|) (-364)))) (-2937 (($ $ (-755)) NIL (-2318 (|has| (-897 |#1|) (-146)) (|has| (-897 |#1|) (-364)))) (($ $) NIL (-2318 (|has| (-897 |#1|) (-146)) (|has| (-897 |#1|) (-364))))) (-3319 (((-121) $) NIL)) (-3504 (((-909) $) NIL (|has| (-897 |#1|) (-364))) (((-820 (-909)) $) NIL (-2318 (|has| (-897 |#1|) (-146)) (|has| (-897 |#1|) (-364))))) (-2642 (((-121) $) NIL)) (-2174 (($) NIL (|has| (-897 |#1|) (-364)))) (-1428 (((-121) $) NIL (|has| (-897 |#1|) (-364)))) (-3339 (((-897 |#1|) $) NIL) (($ $ (-909)) NIL (|has| (-897 |#1|) (-364)))) (-1424 (((-3 $ "failed") $) NIL (|has| (-897 |#1|) (-364)))) (-3856 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-4108 (((-1149 (-897 |#1|)) $) NIL) (((-1149 $) $ (-909)) NIL (|has| (-897 |#1|) (-364)))) (-3142 (((-909) $) NIL (|has| (-897 |#1|) (-364)))) (-3312 (((-1149 (-897 |#1|)) $) NIL (|has| (-897 |#1|) (-364)))) (-4175 (((-1149 (-897 |#1|)) $) NIL (|has| (-897 |#1|) (-364))) (((-3 (-1149 (-897 |#1|)) "failed") $ $) NIL (|has| (-897 |#1|) (-364)))) (-2455 (($ $ (-1149 (-897 |#1|))) NIL (|has| (-897 |#1|) (-364)))) (-2582 (($ $ $) NIL) (($ (-626 $)) NIL)) (-1291 (((-1135) $) NIL)) (-1701 (($ $) NIL)) (-1394 (($) NIL (|has| (-897 |#1|) (-364)) CONST)) (-1330 (($ (-909)) NIL (|has| (-897 |#1|) (-364)))) (-3557 (((-121) $) NIL)) (-4353 (((-1100) $) NIL)) (-2418 (((-1236 (-626 (-2 (|:| -2981 (-897 |#1|)) (|:| -1330 (-1100)))))) NIL)) (-2480 (((-671 (-897 |#1|))) NIL)) (-4250 (($) NIL (|has| (-897 |#1|) (-364)))) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL)) (-4440 (($ $ $) NIL) (($ (-626 $)) NIL)) (-2385 (((-626 (-2 (|:| -1601 (-560)) (|:| -4034 (-560))))) NIL (|has| (-897 |#1|) (-364)))) (-1601 (((-414 $) $) NIL)) (-1472 (((-820 (-909))) NIL) (((-909)) NIL)) (-3505 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2336 (((-3 $ "failed") $ $) NIL)) (-3456 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-4445 (((-755) $) NIL)) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL)) (-2935 (((-755) $) NIL (|has| (-897 |#1|) (-364))) (((-3 (-755) "failed") $ $) NIL (-2318 (|has| (-897 |#1|) (-146)) (|has| (-897 |#1|) (-364))))) (-4016 (((-139)) NIL)) (-2443 (($ $) NIL (|has| (-897 |#1|) (-364))) (($ $ (-755)) NIL (|has| (-897 |#1|) (-364)))) (-3662 (((-820 (-909)) $) NIL) (((-909) $) NIL)) (-3591 (((-1149 (-897 |#1|))) NIL)) (-2612 (($) NIL (|has| (-897 |#1|) (-364)))) (-1380 (($) NIL (|has| (-897 |#1|) (-364)))) (-3390 (((-1236 (-897 |#1|)) $) NIL) (((-671 (-897 |#1|)) (-1236 $)) NIL)) (-3248 (((-3 (-1236 $) "failed") (-671 $)) NIL (|has| (-897 |#1|) (-364)))) (-2801 (((-842) $) NIL) (($ (-560)) NIL) (($ $) NIL) (($ (-403 (-560))) NIL) (($ (-897 |#1|)) NIL)) (-2272 (($ $) NIL (|has| (-897 |#1|) (-364))) (((-3 $ "failed") $) NIL (-2318 (|has| (-897 |#1|) (-146)) (|has| (-897 |#1|) (-364))))) (-1751 (((-755)) NIL)) (-4374 (((-1236 $)) NIL) (((-1236 $) (-909)) NIL)) (-2328 (((-121) $ $) NIL)) (-1535 (((-121) $) NIL)) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL)) (-3304 (($) NIL T CONST)) (-1459 (($) NIL T CONST)) (-2353 (($ $) NIL (|has| (-897 |#1|) (-364))) (($ $ (-755)) NIL (|has| (-897 |#1|) (-364)))) (-2500 (($ $) NIL (|has| (-897 |#1|) (-364))) (($ $ (-755)) NIL (|has| (-897 |#1|) (-364)))) (-1653 (((-121) $ $) NIL)) (-1733 (($ $ $) NIL) (($ $ (-897 |#1|)) NIL)) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) NIL)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) NIL) (($ $ (-403 (-560))) NIL) (($ (-403 (-560)) $) NIL) (($ $ (-897 |#1|)) NIL) (($ (-897 |#1|) $) NIL))) -(((-346 |#1| |#2|) (-13 (-321 (-897 |#1|)) (-10 -7 (-15 -2418 ((-1236 (-626 (-2 (|:| -2981 (-897 |#1|)) (|:| -1330 (-1100))))))) (-15 -2480 ((-671 (-897 |#1|)))) (-15 -3079 ((-755))))) (-909) (-909)) (T -346)) -((-2418 (*1 *2) (-12 (-5 *2 (-1236 (-626 (-2 (|:| -2981 (-897 *3)) (|:| -1330 (-1100)))))) (-5 *1 (-346 *3 *4)) (-14 *3 (-909)) (-14 *4 (-909)))) (-2480 (*1 *2) (-12 (-5 *2 (-671 (-897 *3))) (-5 *1 (-346 *3 *4)) (-14 *3 (-909)) (-14 *4 (-909)))) (-3079 (*1 *2) (-12 (-5 *2 (-755)) (-5 *1 (-346 *3 *4)) (-14 *3 (-909)) (-14 *4 (-909))))) -(-13 (-321 (-897 |#1|)) (-10 -7 (-15 -2418 ((-1236 (-626 (-2 (|:| -2981 (-897 |#1|)) (|:| -1330 (-1100))))))) (-15 -2480 ((-671 (-897 |#1|)))) (-15 -3079 ((-755))))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) 74)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL)) (-1350 (($ $) NIL)) (-3376 (((-121) $) NIL)) (-3913 (((-121) $) NIL)) (-1881 (((-755)) NIL)) (-1944 ((|#1| $) 92) (($ $ (-909)) 90 (|has| |#1| (-364)))) (-4357 (((-1161 (-909) (-755)) (-560)) 148 (|has| |#1| (-364)))) (-2314 (((-3 $ "failed") $ $) NIL)) (-3065 (($ $) NIL)) (-2953 (((-414 $) $) NIL)) (-3079 (((-755)) 89)) (-4179 (((-121) $ $) NIL)) (-2912 (((-755)) 162 (|has| |#1| (-364)))) (-4236 (($) NIL T CONST)) (-1473 (((-3 |#1| "failed") $) 111)) (-3001 ((|#1| $) 91)) (-3380 (($ (-1236 |#1|)) 57)) (-4107 (((-3 "prime" "polynomial" "normal" "cyclic")) 187 (|has| |#1| (-364)))) (-2563 (($ $ $) NIL)) (-1823 (((-3 $ "failed") $) NIL)) (-1666 (($) 158 (|has| |#1| (-364)))) (-2572 (($ $ $) NIL)) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) NIL)) (-2481 (($) 149 (|has| |#1| (-364)))) (-1537 (((-121) $) NIL (|has| |#1| (-364)))) (-2937 (($ $ (-755)) NIL (-2318 (|has| |#1| (-146)) (|has| |#1| (-364)))) (($ $) NIL (-2318 (|has| |#1| (-146)) (|has| |#1| (-364))))) (-3319 (((-121) $) NIL)) (-3504 (((-909) $) NIL (|has| |#1| (-364))) (((-820 (-909)) $) NIL (-2318 (|has| |#1| (-146)) (|has| |#1| (-364))))) (-2642 (((-121) $) NIL)) (-2174 (($) 97 (|has| |#1| (-364)))) (-1428 (((-121) $) 175 (|has| |#1| (-364)))) (-3339 ((|#1| $) 94) (($ $ (-909)) 93 (|has| |#1| (-364)))) (-1424 (((-3 $ "failed") $) NIL (|has| |#1| (-364)))) (-3856 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-4108 (((-1149 |#1|) $) 188) (((-1149 $) $ (-909)) NIL (|has| |#1| (-364)))) (-3142 (((-909) $) 133 (|has| |#1| (-364)))) (-3312 (((-1149 |#1|) $) 73 (|has| |#1| (-364)))) (-4175 (((-1149 |#1|) $) 70 (|has| |#1| (-364))) (((-3 (-1149 |#1|) "failed") $ $) 82 (|has| |#1| (-364)))) (-2455 (($ $ (-1149 |#1|)) 69 (|has| |#1| (-364)))) (-2582 (($ $ $) NIL) (($ (-626 $)) NIL)) (-1291 (((-1135) $) NIL)) (-1701 (($ $) 191)) (-1394 (($) NIL (|has| |#1| (-364)) CONST)) (-1330 (($ (-909)) 136 (|has| |#1| (-364)))) (-3557 (((-121) $) 107)) (-4353 (((-1100) $) NIL)) (-2418 (((-1236 (-626 (-2 (|:| -2981 |#1|) (|:| -1330 (-1100)))))) 83)) (-2480 (((-671 |#1|)) 87)) (-4250 (($) 96 (|has| |#1| (-364)))) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL)) (-4440 (($ $ $) NIL) (($ (-626 $)) NIL)) (-2385 (((-626 (-2 (|:| -1601 (-560)) (|:| -4034 (-560))))) 150 (|has| |#1| (-364)))) (-1601 (((-414 $) $) NIL)) (-1472 (((-820 (-909))) NIL) (((-909)) 151)) (-3505 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2336 (((-3 $ "failed") $ $) NIL)) (-3456 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-4445 (((-755) $) NIL)) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL)) (-2935 (((-755) $) NIL (|has| |#1| (-364))) (((-3 (-755) "failed") $ $) NIL (-2318 (|has| |#1| (-146)) (|has| |#1| (-364))))) (-4016 (((-139)) NIL)) (-2443 (($ $) NIL (|has| |#1| (-364))) (($ $ (-755)) NIL (|has| |#1| (-364)))) (-3662 (((-820 (-909)) $) NIL) (((-909) $) 62)) (-3591 (((-1149 |#1|)) 152)) (-2612 (($) 132 (|has| |#1| (-364)))) (-1380 (($) NIL (|has| |#1| (-364)))) (-3390 (((-1236 |#1|) $) 105) (((-671 |#1|) (-1236 $)) NIL)) (-3248 (((-3 (-1236 $) "failed") (-671 $)) NIL (|has| |#1| (-364)))) (-2801 (((-842) $) 123) (($ (-560)) NIL) (($ $) NIL) (($ (-403 (-560))) NIL) (($ |#1|) 56)) (-2272 (($ $) NIL (|has| |#1| (-364))) (((-3 $ "failed") $) NIL (-2318 (|has| |#1| (-146)) (|has| |#1| (-364))))) (-1751 (((-755)) 156)) (-4374 (((-1236 $)) 172) (((-1236 $) (-909)) 100)) (-2328 (((-121) $ $) NIL)) (-1535 (((-121) $) NIL)) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL)) (-3304 (($) 30 T CONST)) (-1459 (($) 22 T CONST)) (-2353 (($ $) 106 (|has| |#1| (-364))) (($ $ (-755)) 98 (|has| |#1| (-364)))) (-2500 (($ $) NIL (|has| |#1| (-364))) (($ $ (-755)) NIL (|has| |#1| (-364)))) (-1653 (((-121) $ $) 60)) (-1733 (($ $ $) 103) (($ $ |#1|) 104)) (-1725 (($ $) 177) (($ $ $) 181)) (-1716 (($ $ $) 179)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) 137)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) 185) (($ $ $) 142) (($ $ (-403 (-560))) NIL) (($ (-403 (-560)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 102))) -(((-347 |#1| |#2|) (-13 (-321 |#1|) (-10 -7 (-15 -2418 ((-1236 (-626 (-2 (|:| -2981 |#1|) (|:| -1330 (-1100))))))) (-15 -2480 ((-671 |#1|))) (-15 -3079 ((-755))))) (-344) (-3 (-1149 |#1|) (-1236 (-626 (-2 (|:| -2981 |#1|) (|:| -1330 (-1100))))))) (T -347)) -((-2418 (*1 *2) (-12 (-5 *2 (-1236 (-626 (-2 (|:| -2981 *3) (|:| -1330 (-1100)))))) (-5 *1 (-347 *3 *4)) (-4 *3 (-344)) (-14 *4 (-3 (-1149 *3) *2)))) (-2480 (*1 *2) (-12 (-5 *2 (-671 *3)) (-5 *1 (-347 *3 *4)) (-4 *3 (-344)) (-14 *4 (-3 (-1149 *3) (-1236 (-626 (-2 (|:| -2981 *3) (|:| -1330 (-1100))))))))) (-3079 (*1 *2) (-12 (-5 *2 (-755)) (-5 *1 (-347 *3 *4)) (-4 *3 (-344)) (-14 *4 (-3 (-1149 *3) (-1236 (-626 (-2 (|:| -2981 *3) (|:| -1330 (-1100)))))))))) -(-13 (-321 |#1|) (-10 -7 (-15 -2418 ((-1236 (-626 (-2 (|:| -2981 |#1|) (|:| -1330 (-1100))))))) (-15 -2480 ((-671 |#1|))) (-15 -3079 ((-755))))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL)) (-1350 (($ $) NIL)) (-3376 (((-121) $) NIL)) (-3913 (((-121) $) NIL)) (-1881 (((-755)) NIL)) (-1944 ((|#1| $) NIL) (($ $ (-909)) NIL (|has| |#1| (-364)))) (-4357 (((-1161 (-909) (-755)) (-560)) NIL (|has| |#1| (-364)))) (-2314 (((-3 $ "failed") $ $) NIL)) (-3065 (($ $) NIL)) (-2953 (((-414 $) $) NIL)) (-3079 (((-755)) NIL)) (-4179 (((-121) $ $) NIL)) (-2912 (((-755)) NIL (|has| |#1| (-364)))) (-4236 (($) NIL T CONST)) (-1473 (((-3 |#1| "failed") $) NIL)) (-3001 ((|#1| $) NIL)) (-3380 (($ (-1236 |#1|)) NIL)) (-4107 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-364)))) (-2563 (($ $ $) NIL)) (-1823 (((-3 $ "failed") $) NIL)) (-1666 (($) NIL (|has| |#1| (-364)))) (-2572 (($ $ $) NIL)) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) NIL)) (-2481 (($) NIL (|has| |#1| (-364)))) (-1537 (((-121) $) NIL (|has| |#1| (-364)))) (-2937 (($ $ (-755)) NIL (-2318 (|has| |#1| (-146)) (|has| |#1| (-364)))) (($ $) NIL (-2318 (|has| |#1| (-146)) (|has| |#1| (-364))))) (-3319 (((-121) $) NIL)) (-3504 (((-909) $) NIL (|has| |#1| (-364))) (((-820 (-909)) $) NIL (-2318 (|has| |#1| (-146)) (|has| |#1| (-364))))) (-2642 (((-121) $) NIL)) (-2174 (($) NIL (|has| |#1| (-364)))) (-1428 (((-121) $) NIL (|has| |#1| (-364)))) (-3339 ((|#1| $) NIL) (($ $ (-909)) NIL (|has| |#1| (-364)))) (-1424 (((-3 $ "failed") $) NIL (|has| |#1| (-364)))) (-3856 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-4108 (((-1149 |#1|) $) NIL) (((-1149 $) $ (-909)) NIL (|has| |#1| (-364)))) (-3142 (((-909) $) NIL (|has| |#1| (-364)))) (-3312 (((-1149 |#1|) $) NIL (|has| |#1| (-364)))) (-4175 (((-1149 |#1|) $) NIL (|has| |#1| (-364))) (((-3 (-1149 |#1|) "failed") $ $) NIL (|has| |#1| (-364)))) (-2455 (($ $ (-1149 |#1|)) NIL (|has| |#1| (-364)))) (-2582 (($ $ $) NIL) (($ (-626 $)) NIL)) (-1291 (((-1135) $) NIL)) (-1701 (($ $) NIL)) (-1394 (($) NIL (|has| |#1| (-364)) CONST)) (-1330 (($ (-909)) NIL (|has| |#1| (-364)))) (-3557 (((-121) $) NIL)) (-4353 (((-1100) $) NIL)) (-2418 (((-1236 (-626 (-2 (|:| -2981 |#1|) (|:| -1330 (-1100)))))) NIL)) (-2480 (((-671 |#1|)) NIL)) (-4250 (($) NIL (|has| |#1| (-364)))) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL)) (-4440 (($ $ $) NIL) (($ (-626 $)) NIL)) (-2385 (((-626 (-2 (|:| -1601 (-560)) (|:| -4034 (-560))))) NIL (|has| |#1| (-364)))) (-1601 (((-414 $) $) NIL)) (-1472 (((-820 (-909))) NIL) (((-909)) NIL)) (-3505 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2336 (((-3 $ "failed") $ $) NIL)) (-3456 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-4445 (((-755) $) NIL)) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL)) (-2935 (((-755) $) NIL (|has| |#1| (-364))) (((-3 (-755) "failed") $ $) NIL (-2318 (|has| |#1| (-146)) (|has| |#1| (-364))))) (-4016 (((-139)) NIL)) (-2443 (($ $) NIL (|has| |#1| (-364))) (($ $ (-755)) NIL (|has| |#1| (-364)))) (-3662 (((-820 (-909)) $) NIL) (((-909) $) NIL)) (-3591 (((-1149 |#1|)) NIL)) (-2612 (($) NIL (|has| |#1| (-364)))) (-1380 (($) NIL (|has| |#1| (-364)))) (-3390 (((-1236 |#1|) $) NIL) (((-671 |#1|) (-1236 $)) NIL)) (-3248 (((-3 (-1236 $) "failed") (-671 $)) NIL (|has| |#1| (-364)))) (-2801 (((-842) $) NIL) (($ (-560)) NIL) (($ $) NIL) (($ (-403 (-560))) NIL) (($ |#1|) NIL)) (-2272 (($ $) NIL (|has| |#1| (-364))) (((-3 $ "failed") $) NIL (-2318 (|has| |#1| (-146)) (|has| |#1| (-364))))) (-1751 (((-755)) NIL)) (-4374 (((-1236 $)) NIL) (((-1236 $) (-909)) NIL)) (-2328 (((-121) $ $) NIL)) (-1535 (((-121) $) NIL)) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL)) (-3304 (($) NIL T CONST)) (-1459 (($) NIL T CONST)) (-2353 (($ $) NIL (|has| |#1| (-364))) (($ $ (-755)) NIL (|has| |#1| (-364)))) (-2500 (($ $) NIL (|has| |#1| (-364))) (($ $ (-755)) NIL (|has| |#1| (-364)))) (-1653 (((-121) $ $) NIL)) (-1733 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) NIL)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) NIL) (($ $ (-403 (-560))) NIL) (($ (-403 (-560)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-348 |#1| |#2|) (-13 (-321 |#1|) (-10 -7 (-15 -2418 ((-1236 (-626 (-2 (|:| -2981 |#1|) (|:| -1330 (-1100))))))) (-15 -2480 ((-671 |#1|))) (-15 -3079 ((-755))))) (-344) (-909)) (T -348)) -((-2418 (*1 *2) (-12 (-5 *2 (-1236 (-626 (-2 (|:| -2981 *3) (|:| -1330 (-1100)))))) (-5 *1 (-348 *3 *4)) (-4 *3 (-344)) (-14 *4 (-909)))) (-2480 (*1 *2) (-12 (-5 *2 (-671 *3)) (-5 *1 (-348 *3 *4)) (-4 *3 (-344)) (-14 *4 (-909)))) (-3079 (*1 *2) (-12 (-5 *2 (-755)) (-5 *1 (-348 *3 *4)) (-4 *3 (-344)) (-14 *4 (-909))))) -(-13 (-321 |#1|) (-10 -7 (-15 -2418 ((-1236 (-626 (-2 (|:| -2981 |#1|) (|:| -1330 (-1100))))))) (-15 -2480 ((-671 |#1|))) (-15 -3079 ((-755))))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL)) (-1350 (($ $) NIL)) (-3376 (((-121) $) NIL)) (-3913 (((-121) $) NIL)) (-1881 (((-755)) NIL)) (-1944 (((-897 |#1|) $) NIL) (($ $ (-909)) NIL (|has| (-897 |#1|) (-364)))) (-4357 (((-1161 (-909) (-755)) (-560)) NIL (|has| (-897 |#1|) (-364)))) (-2314 (((-3 $ "failed") $ $) NIL)) (-3065 (($ $) NIL)) (-2953 (((-414 $) $) NIL)) (-4179 (((-121) $ $) NIL)) (-2912 (((-755)) NIL (|has| (-897 |#1|) (-364)))) (-4236 (($) NIL T CONST)) (-1473 (((-3 (-897 |#1|) "failed") $) NIL)) (-3001 (((-897 |#1|) $) NIL)) (-3380 (($ (-1236 (-897 |#1|))) NIL)) (-4107 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-897 |#1|) (-364)))) (-2563 (($ $ $) NIL)) (-1823 (((-3 $ "failed") $) NIL)) (-1666 (($) NIL (|has| (-897 |#1|) (-364)))) (-2572 (($ $ $) NIL)) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) NIL)) (-2481 (($) NIL (|has| (-897 |#1|) (-364)))) (-1537 (((-121) $) NIL (|has| (-897 |#1|) (-364)))) (-2937 (($ $ (-755)) NIL (-2318 (|has| (-897 |#1|) (-146)) (|has| (-897 |#1|) (-364)))) (($ $) NIL (-2318 (|has| (-897 |#1|) (-146)) (|has| (-897 |#1|) (-364))))) (-3319 (((-121) $) NIL)) (-3504 (((-909) $) NIL (|has| (-897 |#1|) (-364))) (((-820 (-909)) $) NIL (-2318 (|has| (-897 |#1|) (-146)) (|has| (-897 |#1|) (-364))))) (-2642 (((-121) $) NIL)) (-2174 (($) NIL (|has| (-897 |#1|) (-364)))) (-1428 (((-121) $) NIL (|has| (-897 |#1|) (-364)))) (-3339 (((-897 |#1|) $) NIL) (($ $ (-909)) NIL (|has| (-897 |#1|) (-364)))) (-1424 (((-3 $ "failed") $) NIL (|has| (-897 |#1|) (-364)))) (-3856 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-4108 (((-1149 (-897 |#1|)) $) NIL) (((-1149 $) $ (-909)) NIL (|has| (-897 |#1|) (-364)))) (-3142 (((-909) $) NIL (|has| (-897 |#1|) (-364)))) (-3312 (((-1149 (-897 |#1|)) $) NIL (|has| (-897 |#1|) (-364)))) (-4175 (((-1149 (-897 |#1|)) $) NIL (|has| (-897 |#1|) (-364))) (((-3 (-1149 (-897 |#1|)) "failed") $ $) NIL (|has| (-897 |#1|) (-364)))) (-2455 (($ $ (-1149 (-897 |#1|))) NIL (|has| (-897 |#1|) (-364)))) (-2582 (($ $ $) NIL) (($ (-626 $)) NIL)) (-1291 (((-1135) $) NIL)) (-1701 (($ $) NIL)) (-1394 (($) NIL (|has| (-897 |#1|) (-364)) CONST)) (-1330 (($ (-909)) NIL (|has| (-897 |#1|) (-364)))) (-3557 (((-121) $) NIL)) (-4353 (((-1100) $) NIL)) (-4250 (($) NIL (|has| (-897 |#1|) (-364)))) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL)) (-4440 (($ $ $) NIL) (($ (-626 $)) NIL)) (-2385 (((-626 (-2 (|:| -1601 (-560)) (|:| -4034 (-560))))) NIL (|has| (-897 |#1|) (-364)))) (-1601 (((-414 $) $) NIL)) (-1472 (((-820 (-909))) NIL) (((-909)) NIL)) (-3505 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2336 (((-3 $ "failed") $ $) NIL)) (-3456 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-4445 (((-755) $) NIL)) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL)) (-2935 (((-755) $) NIL (|has| (-897 |#1|) (-364))) (((-3 (-755) "failed") $ $) NIL (-2318 (|has| (-897 |#1|) (-146)) (|has| (-897 |#1|) (-364))))) (-4016 (((-139)) NIL)) (-2443 (($ $) NIL (|has| (-897 |#1|) (-364))) (($ $ (-755)) NIL (|has| (-897 |#1|) (-364)))) (-3662 (((-820 (-909)) $) NIL) (((-909) $) NIL)) (-3591 (((-1149 (-897 |#1|))) NIL)) (-2612 (($) NIL (|has| (-897 |#1|) (-364)))) (-1380 (($) NIL (|has| (-897 |#1|) (-364)))) (-3390 (((-1236 (-897 |#1|)) $) NIL) (((-671 (-897 |#1|)) (-1236 $)) NIL)) (-3248 (((-3 (-1236 $) "failed") (-671 $)) NIL (|has| (-897 |#1|) (-364)))) (-2801 (((-842) $) NIL) (($ (-560)) NIL) (($ $) NIL) (($ (-403 (-560))) NIL) (($ (-897 |#1|)) NIL)) (-2272 (($ $) NIL (|has| (-897 |#1|) (-364))) (((-3 $ "failed") $) NIL (-2318 (|has| (-897 |#1|) (-146)) (|has| (-897 |#1|) (-364))))) (-1751 (((-755)) NIL)) (-4374 (((-1236 $)) NIL) (((-1236 $) (-909)) NIL)) (-2328 (((-121) $ $) NIL)) (-1535 (((-121) $) NIL)) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL)) (-3304 (($) NIL T CONST)) (-1459 (($) NIL T CONST)) (-2353 (($ $) NIL (|has| (-897 |#1|) (-364))) (($ $ (-755)) NIL (|has| (-897 |#1|) (-364)))) (-2500 (($ $) NIL (|has| (-897 |#1|) (-364))) (($ $ (-755)) NIL (|has| (-897 |#1|) (-364)))) (-1653 (((-121) $ $) NIL)) (-1733 (($ $ $) NIL) (($ $ (-897 |#1|)) NIL)) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) NIL)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) NIL) (($ $ (-403 (-560))) NIL) (($ (-403 (-560)) $) NIL) (($ $ (-897 |#1|)) NIL) (($ (-897 |#1|) $) NIL))) -(((-349 |#1| |#2|) (-321 (-897 |#1|)) (-909) (-909)) (T -349)) -NIL -(-321 (-897 |#1|)) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL)) (-1350 (($ $) NIL)) (-3376 (((-121) $) NIL)) (-3913 (((-121) $) NIL)) (-1881 (((-755)) NIL)) (-1944 ((|#1| $) NIL) (($ $ (-909)) NIL (|has| |#1| (-364)))) (-4357 (((-1161 (-909) (-755)) (-560)) 119 (|has| |#1| (-364)))) (-2314 (((-3 $ "failed") $ $) NIL)) (-3065 (($ $) NIL)) (-2953 (((-414 $) $) NIL)) (-4179 (((-121) $ $) NIL)) (-2912 (((-755)) 138 (|has| |#1| (-364)))) (-4236 (($) NIL T CONST)) (-1473 (((-3 |#1| "failed") $) 91)) (-3001 ((|#1| $) 88)) (-3380 (($ (-1236 |#1|)) 83)) (-4107 (((-3 "prime" "polynomial" "normal" "cyclic")) 115 (|has| |#1| (-364)))) (-2563 (($ $ $) NIL)) (-1823 (((-3 $ "failed") $) NIL)) (-1666 (($) 80 (|has| |#1| (-364)))) (-2572 (($ $ $) NIL)) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) NIL)) (-2481 (($) 39 (|has| |#1| (-364)))) (-1537 (((-121) $) NIL (|has| |#1| (-364)))) (-2937 (($ $ (-755)) NIL (-2318 (|has| |#1| (-146)) (|has| |#1| (-364)))) (($ $) NIL (-2318 (|has| |#1| (-146)) (|has| |#1| (-364))))) (-3319 (((-121) $) NIL)) (-3504 (((-909) $) NIL (|has| |#1| (-364))) (((-820 (-909)) $) NIL (-2318 (|has| |#1| (-146)) (|has| |#1| (-364))))) (-2642 (((-121) $) NIL)) (-2174 (($) 120 (|has| |#1| (-364)))) (-1428 (((-121) $) 72 (|has| |#1| (-364)))) (-3339 ((|#1| $) 38) (($ $ (-909)) 40 (|has| |#1| (-364)))) (-1424 (((-3 $ "failed") $) NIL (|has| |#1| (-364)))) (-3856 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-4108 (((-1149 |#1|) $) 62) (((-1149 $) $ (-909)) NIL (|has| |#1| (-364)))) (-3142 (((-909) $) 95 (|has| |#1| (-364)))) (-3312 (((-1149 |#1|) $) NIL (|has| |#1| (-364)))) (-4175 (((-1149 |#1|) $) NIL (|has| |#1| (-364))) (((-3 (-1149 |#1|) "failed") $ $) NIL (|has| |#1| (-364)))) (-2455 (($ $ (-1149 |#1|)) NIL (|has| |#1| (-364)))) (-2582 (($ $ $) NIL) (($ (-626 $)) NIL)) (-1291 (((-1135) $) NIL)) (-1701 (($ $) NIL)) (-1394 (($) NIL (|has| |#1| (-364)) CONST)) (-1330 (($ (-909)) 93 (|has| |#1| (-364)))) (-3557 (((-121) $) 140)) (-4353 (((-1100) $) NIL)) (-4250 (($) 35 (|has| |#1| (-364)))) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL)) (-4440 (($ $ $) NIL) (($ (-626 $)) NIL)) (-2385 (((-626 (-2 (|:| -1601 (-560)) (|:| -4034 (-560))))) 113 (|has| |#1| (-364)))) (-1601 (((-414 $) $) NIL)) (-1472 (((-820 (-909))) NIL) (((-909)) 137)) (-3505 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2336 (((-3 $ "failed") $ $) NIL)) (-3456 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-4445 (((-755) $) NIL)) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL)) (-2935 (((-755) $) NIL (|has| |#1| (-364))) (((-3 (-755) "failed") $ $) NIL (-2318 (|has| |#1| (-146)) (|has| |#1| (-364))))) (-4016 (((-139)) NIL)) (-2443 (($ $) NIL (|has| |#1| (-364))) (($ $ (-755)) NIL (|has| |#1| (-364)))) (-3662 (((-820 (-909)) $) NIL) (((-909) $) 56)) (-3591 (((-1149 |#1|)) 86)) (-2612 (($) 125 (|has| |#1| (-364)))) (-1380 (($) NIL (|has| |#1| (-364)))) (-3390 (((-1236 |#1|) $) 50) (((-671 |#1|) (-1236 $)) NIL)) (-3248 (((-3 (-1236 $) "failed") (-671 $)) NIL (|has| |#1| (-364)))) (-2801 (((-842) $) 136) (($ (-560)) NIL) (($ $) NIL) (($ (-403 (-560))) NIL) (($ |#1|) 85)) (-2272 (($ $) NIL (|has| |#1| (-364))) (((-3 $ "failed") $) NIL (-2318 (|has| |#1| (-146)) (|has| |#1| (-364))))) (-1751 (((-755)) 142)) (-4374 (((-1236 $)) 107) (((-1236 $) (-909)) 46)) (-2328 (((-121) $ $) NIL)) (-1535 (((-121) $) NIL)) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL)) (-3304 (($) 109 T CONST)) (-1459 (($) 31 T CONST)) (-2353 (($ $) 65 (|has| |#1| (-364))) (($ $ (-755)) NIL (|has| |#1| (-364)))) (-2500 (($ $) NIL (|has| |#1| (-364))) (($ $ (-755)) NIL (|has| |#1| (-364)))) (-1653 (((-121) $ $) 105)) (-1733 (($ $ $) 97) (($ $ |#1|) 98)) (-1725 (($ $) 78) (($ $ $) 103)) (-1716 (($ $ $) 101)) (** (($ $ (-909)) NIL) (($ $ (-755)) 41) (($ $ (-560)) 128)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) 76) (($ $ $) 53) (($ $ (-403 (-560))) NIL) (($ (-403 (-560)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 74))) -(((-350 |#1| |#2|) (-321 |#1|) (-344) (-1149 |#1|)) (T -350)) -NIL -(-321 |#1|) -((-1871 ((|#1| (-1149 |#2|)) 51))) -(((-351 |#1| |#2|) (-10 -7 (-15 -1871 (|#1| (-1149 |#2|)))) (-13 (-398) (-10 -7 (-15 -2801 (|#1| |#2|)) (-15 -3142 ((-909) |#1|)) (-15 -4374 ((-1236 |#1|) (-909))) (-15 -2353 (|#1| |#1|)))) (-344)) (T -351)) -((-1871 (*1 *2 *3) (-12 (-5 *3 (-1149 *4)) (-4 *4 (-344)) (-4 *2 (-13 (-398) (-10 -7 (-15 -2801 (*2 *4)) (-15 -3142 ((-909) *2)) (-15 -4374 ((-1236 *2) (-909))) (-15 -2353 (*2 *2))))) (-5 *1 (-351 *2 *4))))) -(-10 -7 (-15 -1871 (|#1| (-1149 |#2|)))) -((-4406 (((-950 (-1149 |#1|)) (-1149 |#1|)) 36)) (-1666 (((-1149 |#1|) (-909) (-909)) 109) (((-1149 |#1|) (-909)) 108)) (-1537 (((-121) (-1149 |#1|)) 81)) (-2228 (((-909) (-909)) 71)) (-2382 (((-909) (-909)) 73)) (-2368 (((-909) (-909)) 69)) (-1428 (((-121) (-1149 |#1|)) 85)) (-2548 (((-3 (-1149 |#1|) "failed") (-1149 |#1|)) 97)) (-1327 (((-3 (-1149 |#1|) "failed") (-1149 |#1|)) 100)) (-3803 (((-3 (-1149 |#1|) "failed") (-1149 |#1|)) 99)) (-1494 (((-3 (-1149 |#1|) "failed") (-1149 |#1|)) 98)) (-1989 (((-3 (-1149 |#1|) "failed") (-1149 |#1|)) 94)) (-2340 (((-1149 |#1|) (-1149 |#1|)) 62)) (-2826 (((-1149 |#1|) (-909)) 103)) (-2786 (((-1149 |#1|) (-909)) 106)) (-2844 (((-1149 |#1|) (-909)) 105)) (-2629 (((-1149 |#1|) (-909)) 104)) (-4409 (((-1149 |#1|) (-909)) 101))) -(((-352 |#1|) (-10 -7 (-15 -1537 ((-121) (-1149 |#1|))) (-15 -1428 ((-121) (-1149 |#1|))) (-15 -2368 ((-909) (-909))) (-15 -2228 ((-909) (-909))) (-15 -2382 ((-909) (-909))) (-15 -4409 ((-1149 |#1|) (-909))) (-15 -2826 ((-1149 |#1|) (-909))) (-15 -2629 ((-1149 |#1|) (-909))) (-15 -2844 ((-1149 |#1|) (-909))) (-15 -2786 ((-1149 |#1|) (-909))) (-15 -1989 ((-3 (-1149 |#1|) "failed") (-1149 |#1|))) (-15 -2548 ((-3 (-1149 |#1|) "failed") (-1149 |#1|))) (-15 -1494 ((-3 (-1149 |#1|) "failed") (-1149 |#1|))) (-15 -3803 ((-3 (-1149 |#1|) "failed") (-1149 |#1|))) (-15 -1327 ((-3 (-1149 |#1|) "failed") (-1149 |#1|))) (-15 -1666 ((-1149 |#1|) (-909))) (-15 -1666 ((-1149 |#1|) (-909) (-909))) (-15 -2340 ((-1149 |#1|) (-1149 |#1|))) (-15 -4406 ((-950 (-1149 |#1|)) (-1149 |#1|)))) (-344)) (T -352)) -((-4406 (*1 *2 *3) (-12 (-4 *4 (-344)) (-5 *2 (-950 (-1149 *4))) (-5 *1 (-352 *4)) (-5 *3 (-1149 *4)))) (-2340 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-344)) (-5 *1 (-352 *3)))) (-1666 (*1 *2 *3 *3) (-12 (-5 *3 (-909)) (-5 *2 (-1149 *4)) (-5 *1 (-352 *4)) (-4 *4 (-344)))) (-1666 (*1 *2 *3) (-12 (-5 *3 (-909)) (-5 *2 (-1149 *4)) (-5 *1 (-352 *4)) (-4 *4 (-344)))) (-1327 (*1 *2 *2) (|partial| -12 (-5 *2 (-1149 *3)) (-4 *3 (-344)) (-5 *1 (-352 *3)))) (-3803 (*1 *2 *2) (|partial| -12 (-5 *2 (-1149 *3)) (-4 *3 (-344)) (-5 *1 (-352 *3)))) (-1494 (*1 *2 *2) (|partial| -12 (-5 *2 (-1149 *3)) (-4 *3 (-344)) (-5 *1 (-352 *3)))) (-2548 (*1 *2 *2) (|partial| -12 (-5 *2 (-1149 *3)) (-4 *3 (-344)) (-5 *1 (-352 *3)))) (-1989 (*1 *2 *2) (|partial| -12 (-5 *2 (-1149 *3)) (-4 *3 (-344)) (-5 *1 (-352 *3)))) (-2786 (*1 *2 *3) (-12 (-5 *3 (-909)) (-5 *2 (-1149 *4)) (-5 *1 (-352 *4)) (-4 *4 (-344)))) (-2844 (*1 *2 *3) (-12 (-5 *3 (-909)) (-5 *2 (-1149 *4)) (-5 *1 (-352 *4)) (-4 *4 (-344)))) (-2629 (*1 *2 *3) (-12 (-5 *3 (-909)) (-5 *2 (-1149 *4)) (-5 *1 (-352 *4)) (-4 *4 (-344)))) (-2826 (*1 *2 *3) (-12 (-5 *3 (-909)) (-5 *2 (-1149 *4)) (-5 *1 (-352 *4)) (-4 *4 (-344)))) (-4409 (*1 *2 *3) (-12 (-5 *3 (-909)) (-5 *2 (-1149 *4)) (-5 *1 (-352 *4)) (-4 *4 (-344)))) (-2382 (*1 *2 *2) (-12 (-5 *2 (-909)) (-5 *1 (-352 *3)) (-4 *3 (-344)))) (-2228 (*1 *2 *2) (-12 (-5 *2 (-909)) (-5 *1 (-352 *3)) (-4 *3 (-344)))) (-2368 (*1 *2 *2) (-12 (-5 *2 (-909)) (-5 *1 (-352 *3)) (-4 *3 (-344)))) (-1428 (*1 *2 *3) (-12 (-5 *3 (-1149 *4)) (-4 *4 (-344)) (-5 *2 (-121)) (-5 *1 (-352 *4)))) (-1537 (*1 *2 *3) (-12 (-5 *3 (-1149 *4)) (-4 *4 (-344)) (-5 *2 (-121)) (-5 *1 (-352 *4))))) -(-10 -7 (-15 -1537 ((-121) (-1149 |#1|))) (-15 -1428 ((-121) (-1149 |#1|))) (-15 -2368 ((-909) (-909))) (-15 -2228 ((-909) (-909))) (-15 -2382 ((-909) (-909))) (-15 -4409 ((-1149 |#1|) (-909))) (-15 -2826 ((-1149 |#1|) (-909))) (-15 -2629 ((-1149 |#1|) (-909))) (-15 -2844 ((-1149 |#1|) (-909))) (-15 -2786 ((-1149 |#1|) (-909))) (-15 -1989 ((-3 (-1149 |#1|) "failed") (-1149 |#1|))) (-15 -2548 ((-3 (-1149 |#1|) "failed") (-1149 |#1|))) (-15 -1494 ((-3 (-1149 |#1|) "failed") (-1149 |#1|))) (-15 -3803 ((-3 (-1149 |#1|) "failed") (-1149 |#1|))) (-15 -1327 ((-3 (-1149 |#1|) "failed") (-1149 |#1|))) (-15 -1666 ((-1149 |#1|) (-909))) (-15 -1666 ((-1149 |#1|) (-909) (-909))) (-15 -2340 ((-1149 |#1|) (-1149 |#1|))) (-15 -4406 ((-950 (-1149 |#1|)) (-1149 |#1|)))) -((-1887 (((-3 (-626 |#3|) "failed") (-626 |#3|) |#3|) 33))) -(((-353 |#1| |#2| |#3|) (-10 -7 (-15 -1887 ((-3 (-626 |#3|) "failed") (-626 |#3|) |#3|))) (-344) (-1211 |#1|) (-1211 |#2|)) (T -353)) -((-1887 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-626 *3)) (-4 *3 (-1211 *5)) (-4 *5 (-1211 *4)) (-4 *4 (-344)) (-5 *1 (-353 *4 *5 *3))))) -(-10 -7 (-15 -1887 ((-3 (-626 |#3|) "failed") (-626 |#3|) |#3|))) -((-3193 (((-414 |#2|) |#2|) 46)) (-3201 (((-414 |#2|) |#2|) 36))) -(((-354 |#1| |#2|) (-10 -7 (-15 -3201 ((-414 |#2|) |#2|)) (-15 -3193 ((-414 |#2|) |#2|))) (-344) (-1211 |#1|)) (T -354)) -((-3193 (*1 *2 *3) (-12 (-4 *4 (-344)) (-5 *2 (-414 *3)) (-5 *1 (-354 *4 *3)) (-4 *3 (-1211 *4)))) (-3201 (*1 *2 *3) (-12 (-4 *4 (-344)) (-5 *2 (-414 *3)) (-5 *1 (-354 *4 *3)) (-4 *3 (-1211 *4))))) -(-10 -7 (-15 -3201 ((-414 |#2|) |#2|)) (-15 -3193 ((-414 |#2|) |#2|))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL)) (-1350 (($ $) NIL)) (-3376 (((-121) $) NIL)) (-3913 (((-121) $) NIL)) (-1881 (((-755)) NIL)) (-1944 ((|#1| $) NIL) (($ $ (-909)) NIL (|has| |#1| (-364)))) (-4357 (((-1161 (-909) (-755)) (-560)) NIL (|has| |#1| (-364)))) (-2314 (((-3 $ "failed") $ $) NIL)) (-3065 (($ $) NIL)) (-2953 (((-414 $) $) NIL)) (-4179 (((-121) $ $) NIL)) (-2912 (((-755)) NIL (|has| |#1| (-364)))) (-4236 (($) NIL T CONST)) (-1473 (((-3 |#1| "failed") $) NIL)) (-3001 ((|#1| $) NIL)) (-3380 (($ (-1236 |#1|)) NIL)) (-4107 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-364)))) (-2563 (($ $ $) NIL)) (-1823 (((-3 $ "failed") $) NIL)) (-1666 (($) NIL (|has| |#1| (-364)))) (-2572 (($ $ $) NIL)) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) NIL)) (-2481 (($) NIL (|has| |#1| (-364)))) (-1537 (((-121) $) NIL (|has| |#1| (-364)))) (-2937 (($ $ (-755)) NIL (-2318 (|has| |#1| (-146)) (|has| |#1| (-364)))) (($ $) NIL (-2318 (|has| |#1| (-146)) (|has| |#1| (-364))))) (-3319 (((-121) $) NIL)) (-3504 (((-909) $) NIL (|has| |#1| (-364))) (((-820 (-909)) $) NIL (-2318 (|has| |#1| (-146)) (|has| |#1| (-364))))) (-2642 (((-121) $) NIL)) (-2174 (($) NIL (|has| |#1| (-364)))) (-1428 (((-121) $) NIL (|has| |#1| (-364)))) (-3339 ((|#1| $) NIL) (($ $ (-909)) NIL (|has| |#1| (-364)))) (-1424 (((-3 $ "failed") $) NIL (|has| |#1| (-364)))) (-3856 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-4108 (((-1149 |#1|) $) NIL) (((-1149 $) $ (-909)) NIL (|has| |#1| (-364)))) (-3142 (((-909) $) NIL (|has| |#1| (-364)))) (-3312 (((-1149 |#1|) $) NIL (|has| |#1| (-364)))) (-4175 (((-1149 |#1|) $) NIL (|has| |#1| (-364))) (((-3 (-1149 |#1|) "failed") $ $) NIL (|has| |#1| (-364)))) (-2455 (($ $ (-1149 |#1|)) NIL (|has| |#1| (-364)))) (-2582 (($ $ $) NIL) (($ (-626 $)) NIL)) (-1291 (((-1135) $) NIL)) (-1701 (($ $) NIL)) (-1394 (($) NIL (|has| |#1| (-364)) CONST)) (-1330 (($ (-909)) NIL (|has| |#1| (-364)))) (-3557 (((-121) $) NIL)) (-4353 (((-1100) $) NIL)) (-4250 (($) NIL (|has| |#1| (-364)))) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL)) (-4440 (($ $ $) NIL) (($ (-626 $)) NIL)) (-2385 (((-626 (-2 (|:| -1601 (-560)) (|:| -4034 (-560))))) NIL (|has| |#1| (-364)))) (-1601 (((-414 $) $) NIL)) (-1472 (((-820 (-909))) NIL) (((-909)) NIL)) (-3505 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2336 (((-3 $ "failed") $ $) NIL)) (-3456 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-4445 (((-755) $) NIL)) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL)) (-2935 (((-755) $) NIL (|has| |#1| (-364))) (((-3 (-755) "failed") $ $) NIL (-2318 (|has| |#1| (-146)) (|has| |#1| (-364))))) (-4016 (((-139)) NIL)) (-2443 (($ $) NIL (|has| |#1| (-364))) (($ $ (-755)) NIL (|has| |#1| (-364)))) (-3662 (((-820 (-909)) $) NIL) (((-909) $) NIL)) (-3591 (((-1149 |#1|)) NIL)) (-2612 (($) NIL (|has| |#1| (-364)))) (-1380 (($) NIL (|has| |#1| (-364)))) (-3390 (((-1236 |#1|) $) NIL) (((-671 |#1|) (-1236 $)) NIL)) (-3248 (((-3 (-1236 $) "failed") (-671 $)) NIL (|has| |#1| (-364)))) (-2801 (((-842) $) NIL) (($ (-560)) NIL) (($ $) NIL) (($ (-403 (-560))) NIL) (($ |#1|) NIL)) (-2272 (($ $) NIL (|has| |#1| (-364))) (((-3 $ "failed") $) NIL (-2318 (|has| |#1| (-146)) (|has| |#1| (-364))))) (-1751 (((-755)) NIL)) (-4374 (((-1236 $)) NIL) (((-1236 $) (-909)) NIL)) (-2328 (((-121) $ $) NIL)) (-1535 (((-121) $) NIL)) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL)) (-3304 (($) NIL T CONST)) (-1459 (($) NIL T CONST)) (-2353 (($ $) NIL (|has| |#1| (-364))) (($ $ (-755)) NIL (|has| |#1| (-364)))) (-2500 (($ $) NIL (|has| |#1| (-364))) (($ $ (-755)) NIL (|has| |#1| (-364)))) (-1653 (((-121) $ $) NIL)) (-1733 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) NIL)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) NIL) (($ $ (-403 (-560))) NIL) (($ (-403 (-560)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-355 |#1| |#2|) (-321 |#1|) (-344) (-909)) (T -355)) -NIL -(-321 |#1|) -((-2911 (((-121) (-626 (-945 |#1|))) 31)) (-3341 (((-626 (-945 |#1|)) (-626 (-945 |#1|))) 42)) (-4478 (((-3 (-626 (-945 |#1|)) "failed") (-626 (-945 |#1|))) 38))) -(((-356 |#1| |#2|) (-10 -7 (-15 -2911 ((-121) (-626 (-945 |#1|)))) (-15 -4478 ((-3 (-626 (-945 |#1|)) "failed") (-626 (-945 |#1|)))) (-15 -3341 ((-626 (-945 |#1|)) (-626 (-945 |#1|))))) (-447) (-626 (-1153))) (T -356)) -((-3341 (*1 *2 *2) (-12 (-5 *2 (-626 (-945 *3))) (-4 *3 (-447)) (-5 *1 (-356 *3 *4)) (-14 *4 (-626 (-1153))))) (-4478 (*1 *2 *2) (|partial| -12 (-5 *2 (-626 (-945 *3))) (-4 *3 (-447)) (-5 *1 (-356 *3 *4)) (-14 *4 (-626 (-1153))))) (-2911 (*1 *2 *3) (-12 (-5 *3 (-626 (-945 *4))) (-4 *4 (-447)) (-5 *2 (-121)) (-5 *1 (-356 *4 *5)) (-14 *5 (-626 (-1153)))))) -(-10 -7 (-15 -2911 ((-121) (-626 (-945 |#1|)))) (-15 -4478 ((-3 (-626 (-945 |#1|)) "failed") (-626 (-945 |#1|)))) (-15 -3341 ((-626 (-945 |#1|)) (-626 (-945 |#1|))))) -((-2601 (((-121) $ $) NIL)) (-2912 (((-755) $) NIL)) (-4236 (($) NIL T CONST)) (-1473 (((-3 |#1| "failed") $) NIL)) (-3001 ((|#1| $) NIL)) (-1823 (((-3 $ "failed") $) NIL)) (-2642 (((-121) $) 14)) (-1724 ((|#1| $ (-560)) NIL)) (-3461 (((-560) $ (-560)) NIL)) (-2381 (($ (-1 |#1| |#1|) $) 32)) (-3275 (($ (-1 (-560) (-560)) $) 24)) (-1291 (((-1135) $) NIL)) (-1701 (($ $) 26)) (-4353 (((-1100) $) NIL)) (-3025 (((-626 (-2 (|:| |gen| |#1|) (|:| -2469 (-560)))) $) 28)) (-3101 (($ $ $) NIL)) (-1671 (($ $ $) NIL)) (-2801 (((-842) $) 38) (($ |#1|) NIL)) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL)) (-1459 (($) 9 T CONST)) (-1653 (((-121) $ $) NIL)) (-1733 (($ $ $) NIL)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL) (($ |#1| (-560)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19))) -(((-357 |#1|) (-13 (-471) (-1029 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-560))) (-15 -2912 ((-755) $)) (-15 -3461 ((-560) $ (-560))) (-15 -1724 (|#1| $ (-560))) (-15 -3275 ($ (-1 (-560) (-560)) $)) (-15 -2381 ($ (-1 |#1| |#1|) $)) (-15 -3025 ((-626 (-2 (|:| |gen| |#1|) (|:| -2469 (-560)))) $)))) (-1082)) (T -357)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-357 *2)) (-4 *2 (-1082)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-357 *2)) (-4 *2 (-1082)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-560)) (-5 *1 (-357 *2)) (-4 *2 (-1082)))) (-2912 (*1 *2 *1) (-12 (-5 *2 (-755)) (-5 *1 (-357 *3)) (-4 *3 (-1082)))) (-3461 (*1 *2 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-357 *3)) (-4 *3 (-1082)))) (-1724 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-5 *1 (-357 *2)) (-4 *2 (-1082)))) (-3275 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-560) (-560))) (-5 *1 (-357 *3)) (-4 *3 (-1082)))) (-2381 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1082)) (-5 *1 (-357 *3)))) (-3025 (*1 *2 *1) (-12 (-5 *2 (-626 (-2 (|:| |gen| *3) (|:| -2469 (-560))))) (-5 *1 (-357 *3)) (-4 *3 (-1082))))) -(-13 (-471) (-1029 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-560))) (-15 -2912 ((-755) $)) (-15 -3461 ((-560) $ (-560))) (-15 -1724 (|#1| $ (-560))) (-15 -3275 ($ (-1 (-560) (-560)) $)) (-15 -2381 ($ (-1 |#1| |#1|) $)) (-15 -3025 ((-626 (-2 (|:| |gen| |#1|) (|:| -2469 (-560)))) $)))) -((-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) 13)) (-1350 (($ $) 14)) (-2953 (((-414 $) $) 29)) (-3319 (((-121) $) 25)) (-1701 (($ $) 18)) (-4440 (($ $ $) 22) (($ (-626 $)) NIL)) (-1601 (((-414 $) $) 30)) (-2336 (((-3 $ "failed") $ $) 21)) (-4445 (((-755) $) 24)) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) 34)) (-2328 (((-121) $ $) 15)) (-1733 (($ $ $) 32))) -(((-358 |#1|) (-10 -8 (-15 -1733 (|#1| |#1| |#1|)) (-15 -1701 (|#1| |#1|)) (-15 -3319 ((-121) |#1|)) (-15 -2953 ((-414 |#1|) |#1|)) (-15 -1601 ((-414 |#1|) |#1|)) (-15 -2215 ((-2 (|:| -2583 |#1|) (|:| -4397 |#1|)) |#1| |#1|)) (-15 -4445 ((-755) |#1|)) (-15 -4440 (|#1| (-626 |#1|))) (-15 -4440 (|#1| |#1| |#1|)) (-15 -2328 ((-121) |#1| |#1|)) (-15 -1350 (|#1| |#1|)) (-15 -2744 ((-2 (|:| -1917 |#1|) (|:| -4492 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2336 ((-3 |#1| "failed") |#1| |#1|))) (-359)) (T -358)) -NIL -(-10 -8 (-15 -1733 (|#1| |#1| |#1|)) (-15 -1701 (|#1| |#1|)) (-15 -3319 ((-121) |#1|)) (-15 -2953 ((-414 |#1|) |#1|)) (-15 -1601 ((-414 |#1|) |#1|)) (-15 -2215 ((-2 (|:| -2583 |#1|) (|:| -4397 |#1|)) |#1| |#1|)) (-15 -4445 ((-755) |#1|)) (-15 -4440 (|#1| (-626 |#1|))) (-15 -4440 (|#1| |#1| |#1|)) (-15 -2328 ((-121) |#1| |#1|)) (-15 -1350 (|#1| |#1|)) (-15 -2744 ((-2 (|:| -1917 |#1|) (|:| -4492 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2336 ((-3 |#1| "failed") |#1| |#1|))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) 40)) (-1350 (($ $) 39)) (-3376 (((-121) $) 37)) (-2314 (((-3 $ "failed") $ $) 18)) (-3065 (($ $) 71)) (-2953 (((-414 $) $) 70)) (-4179 (((-121) $ $) 57)) (-4236 (($) 16 T CONST)) (-2563 (($ $ $) 53)) (-1823 (((-3 $ "failed") $) 33)) (-2572 (($ $ $) 54)) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) 49)) (-3319 (((-121) $) 69)) (-2642 (((-121) $) 30)) (-3856 (((-3 (-626 $) "failed") (-626 $) $) 50)) (-2582 (($ $ $) 45) (($ (-626 $)) 44)) (-1291 (((-1135) $) 9)) (-1701 (($ $) 68)) (-4353 (((-1100) $) 10)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) 43)) (-4440 (($ $ $) 47) (($ (-626 $)) 46)) (-1601 (((-414 $) $) 72)) (-3505 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2336 (((-3 $ "failed") $ $) 41)) (-3456 (((-3 (-626 $) "failed") (-626 $) $) 48)) (-4445 (((-755) $) 56)) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) 55)) (-2801 (((-842) $) 11) (($ (-560)) 27) (($ $) 42) (($ (-403 (-560))) 63)) (-1751 (((-755)) 28)) (-2328 (((-121) $ $) 38)) (-2464 (($ $ (-909)) 25) (($ $ (-755)) 32) (($ $ (-560)) 67)) (-3304 (($) 17 T CONST)) (-1459 (($) 29 T CONST)) (-1653 (((-121) $ $) 6)) (-1733 (($ $ $) 62)) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 24) (($ $ (-755)) 31) (($ $ (-560)) 66)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 23) (($ $ (-403 (-560))) 65) (($ (-403 (-560)) $) 64))) -(((-359) (-1267)) (T -359)) -((-1733 (*1 *1 *1 *1) (-4 *1 (-359)))) -(-13 (-296) (-1191) (-233) (-10 -8 (-15 -1733 ($ $ $)) (-6 -4503) (-6 -4497))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-43 (-403 (-560))) . T) ((-43 $) . T) ((-105) . T) ((-120 (-403 (-560)) (-403 (-560))) . T) ((-120 $ $) . T) ((-137) . T) ((-600 (-842)) . T) ((-170) . T) ((-233) . T) ((-280) . T) ((-296) . T) ((-447) . T) ((-550) . T) ((-629 (-403 (-560))) . T) ((-629 $) . T) ((-699 (-403 (-560))) . T) ((-699 $) . T) ((-708) . T) ((-908) . T) ((-1045 (-403 (-560))) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1094) . T) ((-1082) . T) ((-1191) . T)) -((-2601 (((-121) $ $) 7)) (-1880 ((|#2| $ |#2|) 13)) (-2998 (($ $ (-1135)) 18)) (-1464 ((|#2| $) 14)) (-3997 (($ |#1|) 20) (($ |#1| (-1135)) 19)) (-1337 ((|#1| $) 16)) (-1291 (((-1135) $) 9)) (-1661 (((-1135) $) 15)) (-4353 (((-1100) $) 10)) (-1931 (((-1241) $) 12)) (-2801 (((-842) $) 11)) (-2074 (($ $) 17)) (-1653 (((-121) $ $) 6))) -(((-360 |#1| |#2|) (-1267) (-1082) (-1082)) (T -360)) -((-3997 (*1 *1 *2) (-12 (-4 *1 (-360 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-1082)))) (-3997 (*1 *1 *2 *3) (-12 (-5 *3 (-1135)) (-4 *1 (-360 *2 *4)) (-4 *2 (-1082)) (-4 *4 (-1082)))) (-2998 (*1 *1 *1 *2) (-12 (-5 *2 (-1135)) (-4 *1 (-360 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082)))) (-2074 (*1 *1 *1) (-12 (-4 *1 (-360 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-1082)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-360 *2 *3)) (-4 *3 (-1082)) (-4 *2 (-1082)))) (-1661 (*1 *2 *1) (-12 (-4 *1 (-360 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-5 *2 (-1135)))) (-1464 (*1 *2 *1) (-12 (-4 *1 (-360 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-1082)))) (-1880 (*1 *2 *1 *2) (-12 (-4 *1 (-360 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-1082)))) (-1931 (*1 *2 *1) (-12 (-4 *1 (-360 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-5 *2 (-1241))))) -(-13 (-1082) (-10 -8 (-15 -3997 ($ |t#1|)) (-15 -3997 ($ |t#1| (-1135))) (-15 -2998 ($ $ (-1135))) (-15 -2074 ($ $)) (-15 -1337 (|t#1| $)) (-15 -1661 ((-1135) $)) (-15 -1464 (|t#2| $)) (-15 -1880 (|t#2| $ |t#2|)) (-15 -1931 ((-1241) $)))) -(((-105) . T) ((-600 (-842)) . T) ((-1082) . T)) -((-2601 (((-121) $ $) NIL)) (-1880 ((|#1| $ |#1|) 29)) (-2998 (($ $ (-1135)) 22)) (-3793 (((-3 |#1| "failed") $) 28)) (-1464 ((|#1| $) 26)) (-3997 (($ (-384)) 21) (($ (-384) (-1135)) 20)) (-1337 (((-384) $) 24)) (-1291 (((-1135) $) NIL)) (-1661 (((-1135) $) 25)) (-4353 (((-1100) $) NIL)) (-1931 (((-1241) $) 31)) (-2801 (((-842) $) 19)) (-2074 (($ $) 23)) (-1653 (((-121) $ $) 18))) -(((-361 |#1|) (-13 (-360 (-384) |#1|) (-10 -8 (-15 -3793 ((-3 |#1| "failed") $)))) (-1082)) (T -361)) -((-3793 (*1 *2 *1) (|partial| -12 (-5 *1 (-361 *2)) (-4 *2 (-1082))))) -(-13 (-360 (-384) |#1|) (-10 -8 (-15 -3793 ((-3 |#1| "failed") $)))) -((-2059 (((-1236 (-671 |#2|)) (-1236 $)) 62)) (-3852 (((-671 |#2|) (-1236 $)) 120)) (-1374 ((|#2| $) 32)) (-2611 (((-671 |#2|) $ (-1236 $)) 124)) (-1309 (((-3 $ "failed") $) 76)) (-2856 ((|#2| $) 35)) (-3730 (((-1149 |#2|) $) 84)) (-1998 ((|#2| (-1236 $)) 107)) (-1825 (((-1149 |#2|) $) 28)) (-2969 (((-121)) 101)) (-3380 (($ (-1236 |#2|) (-1236 $)) 114)) (-1823 (((-3 $ "failed") $) 80)) (-2874 (((-121)) 96)) (-4479 (((-121)) 91)) (-2646 (((-121)) 54)) (-1279 (((-671 |#2|) (-1236 $)) 118)) (-2442 ((|#2| $) 31)) (-1284 (((-671 |#2|) $ (-1236 $)) 123)) (-2966 (((-3 $ "failed") $) 74)) (-3542 ((|#2| $) 34)) (-1351 (((-1149 |#2|) $) 83)) (-3158 ((|#2| (-1236 $)) 105)) (-3613 (((-1149 |#2|) $) 26)) (-1818 (((-121)) 100)) (-2394 (((-121)) 93)) (-2201 (((-121)) 52)) (-4253 (((-121)) 88)) (-4172 (((-121)) 102)) (-3390 (((-1236 |#2|) $ (-1236 $)) NIL) (((-671 |#2|) (-1236 $) (-1236 $)) 112)) (-2903 (((-121)) 98)) (-4263 (((-626 (-1236 |#2|))) 87)) (-2266 (((-121)) 99)) (-3333 (((-121)) 97)) (-3060 (((-121)) 46)) (-2682 (((-121)) 103))) -(((-362 |#1| |#2|) (-10 -8 (-15 -3730 ((-1149 |#2|) |#1|)) (-15 -1351 ((-1149 |#2|) |#1|)) (-15 -4263 ((-626 (-1236 |#2|)))) (-15 -1309 ((-3 |#1| "failed") |#1|)) (-15 -2966 ((-3 |#1| "failed") |#1|)) (-15 -1823 ((-3 |#1| "failed") |#1|)) (-15 -4479 ((-121))) (-15 -2394 ((-121))) (-15 -2874 ((-121))) (-15 -2201 ((-121))) (-15 -2646 ((-121))) (-15 -4253 ((-121))) (-15 -2682 ((-121))) (-15 -4172 ((-121))) (-15 -2969 ((-121))) (-15 -1818 ((-121))) (-15 -3060 ((-121))) (-15 -2266 ((-121))) (-15 -3333 ((-121))) (-15 -2903 ((-121))) (-15 -1825 ((-1149 |#2|) |#1|)) (-15 -3613 ((-1149 |#2|) |#1|)) (-15 -3852 ((-671 |#2|) (-1236 |#1|))) (-15 -1279 ((-671 |#2|) (-1236 |#1|))) (-15 -1998 (|#2| (-1236 |#1|))) (-15 -3158 (|#2| (-1236 |#1|))) (-15 -3380 (|#1| (-1236 |#2|) (-1236 |#1|))) (-15 -3390 ((-671 |#2|) (-1236 |#1|) (-1236 |#1|))) (-15 -3390 ((-1236 |#2|) |#1| (-1236 |#1|))) (-15 -2856 (|#2| |#1|)) (-15 -3542 (|#2| |#1|)) (-15 -1374 (|#2| |#1|)) (-15 -2442 (|#2| |#1|)) (-15 -2611 ((-671 |#2|) |#1| (-1236 |#1|))) (-15 -1284 ((-671 |#2|) |#1| (-1236 |#1|))) (-15 -2059 ((-1236 (-671 |#2|)) (-1236 |#1|)))) (-363 |#2|) (-170)) (T -362)) -((-2903 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-121)) (-5 *1 (-362 *3 *4)) (-4 *3 (-363 *4)))) (-3333 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-121)) (-5 *1 (-362 *3 *4)) (-4 *3 (-363 *4)))) (-2266 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-121)) (-5 *1 (-362 *3 *4)) (-4 *3 (-363 *4)))) (-3060 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-121)) (-5 *1 (-362 *3 *4)) (-4 *3 (-363 *4)))) (-1818 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-121)) (-5 *1 (-362 *3 *4)) (-4 *3 (-363 *4)))) (-2969 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-121)) (-5 *1 (-362 *3 *4)) (-4 *3 (-363 *4)))) (-4172 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-121)) (-5 *1 (-362 *3 *4)) (-4 *3 (-363 *4)))) (-2682 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-121)) (-5 *1 (-362 *3 *4)) (-4 *3 (-363 *4)))) (-4253 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-121)) (-5 *1 (-362 *3 *4)) (-4 *3 (-363 *4)))) (-2646 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-121)) (-5 *1 (-362 *3 *4)) (-4 *3 (-363 *4)))) (-2201 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-121)) (-5 *1 (-362 *3 *4)) (-4 *3 (-363 *4)))) (-2874 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-121)) (-5 *1 (-362 *3 *4)) (-4 *3 (-363 *4)))) (-2394 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-121)) (-5 *1 (-362 *3 *4)) (-4 *3 (-363 *4)))) (-4479 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-121)) (-5 *1 (-362 *3 *4)) (-4 *3 (-363 *4)))) (-4263 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-626 (-1236 *4))) (-5 *1 (-362 *3 *4)) (-4 *3 (-363 *4))))) -(-10 -8 (-15 -3730 ((-1149 |#2|) |#1|)) (-15 -1351 ((-1149 |#2|) |#1|)) (-15 -4263 ((-626 (-1236 |#2|)))) (-15 -1309 ((-3 |#1| "failed") |#1|)) (-15 -2966 ((-3 |#1| "failed") |#1|)) (-15 -1823 ((-3 |#1| "failed") |#1|)) (-15 -4479 ((-121))) (-15 -2394 ((-121))) (-15 -2874 ((-121))) (-15 -2201 ((-121))) (-15 -2646 ((-121))) (-15 -4253 ((-121))) (-15 -2682 ((-121))) (-15 -4172 ((-121))) (-15 -2969 ((-121))) (-15 -1818 ((-121))) (-15 -3060 ((-121))) (-15 -2266 ((-121))) (-15 -3333 ((-121))) (-15 -2903 ((-121))) (-15 -1825 ((-1149 |#2|) |#1|)) (-15 -3613 ((-1149 |#2|) |#1|)) (-15 -3852 ((-671 |#2|) (-1236 |#1|))) (-15 -1279 ((-671 |#2|) (-1236 |#1|))) (-15 -1998 (|#2| (-1236 |#1|))) (-15 -3158 (|#2| (-1236 |#1|))) (-15 -3380 (|#1| (-1236 |#2|) (-1236 |#1|))) (-15 -3390 ((-671 |#2|) (-1236 |#1|) (-1236 |#1|))) (-15 -3390 ((-1236 |#2|) |#1| (-1236 |#1|))) (-15 -2856 (|#2| |#1|)) (-15 -3542 (|#2| |#1|)) (-15 -1374 (|#2| |#1|)) (-15 -2442 (|#2| |#1|)) (-15 -2611 ((-671 |#2|) |#1| (-1236 |#1|))) (-15 -1284 ((-671 |#2|) |#1| (-1236 |#1|))) (-15 -2059 ((-1236 (-671 |#2|)) (-1236 |#1|)))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-1917 (((-3 $ "failed")) 35 (|has| |#1| (-550)))) (-2314 (((-3 $ "failed") $ $) 18)) (-2059 (((-1236 (-671 |#1|)) (-1236 $)) 76)) (-1565 (((-1236 $)) 79)) (-4236 (($) 16 T CONST)) (-2862 (((-3 (-2 (|:| |particular| $) (|:| -4374 (-626 $))) "failed")) 38 (|has| |#1| (-550)))) (-2835 (((-3 $ "failed")) 36 (|has| |#1| (-550)))) (-3852 (((-671 |#1|) (-1236 $)) 63)) (-1374 ((|#1| $) 72)) (-2611 (((-671 |#1|) $ (-1236 $)) 74)) (-1309 (((-3 $ "failed") $) 43 (|has| |#1| (-550)))) (-1498 (($ $ (-909)) 27)) (-2856 ((|#1| $) 70)) (-3730 (((-1149 |#1|) $) 40 (|has| |#1| (-550)))) (-1998 ((|#1| (-1236 $)) 65)) (-1825 (((-1149 |#1|) $) 61)) (-2969 (((-121)) 55)) (-3380 (($ (-1236 |#1|) (-1236 $)) 67)) (-1823 (((-3 $ "failed") $) 45 (|has| |#1| (-550)))) (-3143 (((-909)) 78)) (-3497 (((-121)) 52)) (-3710 (($ $ (-909)) 32)) (-2874 (((-121)) 48)) (-4479 (((-121)) 46)) (-2646 (((-121)) 50)) (-2071 (((-3 (-2 (|:| |particular| $) (|:| -4374 (-626 $))) "failed")) 39 (|has| |#1| (-550)))) (-3477 (((-3 $ "failed")) 37 (|has| |#1| (-550)))) (-1279 (((-671 |#1|) (-1236 $)) 64)) (-2442 ((|#1| $) 73)) (-1284 (((-671 |#1|) $ (-1236 $)) 75)) (-2966 (((-3 $ "failed") $) 44 (|has| |#1| (-550)))) (-2137 (($ $ (-909)) 28)) (-3542 ((|#1| $) 71)) (-1351 (((-1149 |#1|) $) 41 (|has| |#1| (-550)))) (-3158 ((|#1| (-1236 $)) 66)) (-3613 (((-1149 |#1|) $) 62)) (-1818 (((-121)) 56)) (-1291 (((-1135) $) 9)) (-2394 (((-121)) 47)) (-2201 (((-121)) 49)) (-4253 (((-121)) 51)) (-4353 (((-1100) $) 10)) (-4172 (((-121)) 54)) (-3390 (((-1236 |#1|) $ (-1236 $)) 69) (((-671 |#1|) (-1236 $) (-1236 $)) 68)) (-2879 (((-626 (-945 |#1|)) (-1236 $)) 77)) (-1671 (($ $ $) 24)) (-2903 (((-121)) 60)) (-2801 (((-842) $) 11)) (-4263 (((-626 (-1236 |#1|))) 42 (|has| |#1| (-550)))) (-2676 (($ $ $ $) 25)) (-2266 (((-121)) 58)) (-3127 (($ $ $) 23)) (-3333 (((-121)) 59)) (-3060 (((-121)) 57)) (-2682 (((-121)) 53)) (-3304 (($) 17 T CONST)) (-1653 (((-121) $ $) 6)) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 29)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 26) (($ $ |#1|) 34) (($ |#1| $) 33))) -(((-363 |#1|) (-1267) (-170)) (T -363)) -((-1565 (*1 *2) (-12 (-4 *3 (-170)) (-5 *2 (-1236 *1)) (-4 *1 (-363 *3)))) (-3143 (*1 *2) (-12 (-4 *1 (-363 *3)) (-4 *3 (-170)) (-5 *2 (-909)))) (-2879 (*1 *2 *3) (-12 (-5 *3 (-1236 *1)) (-4 *1 (-363 *4)) (-4 *4 (-170)) (-5 *2 (-626 (-945 *4))))) (-2059 (*1 *2 *3) (-12 (-5 *3 (-1236 *1)) (-4 *1 (-363 *4)) (-4 *4 (-170)) (-5 *2 (-1236 (-671 *4))))) (-1284 (*1 *2 *1 *3) (-12 (-5 *3 (-1236 *1)) (-4 *1 (-363 *4)) (-4 *4 (-170)) (-5 *2 (-671 *4)))) (-2611 (*1 *2 *1 *3) (-12 (-5 *3 (-1236 *1)) (-4 *1 (-363 *4)) (-4 *4 (-170)) (-5 *2 (-671 *4)))) (-2442 (*1 *2 *1) (-12 (-4 *1 (-363 *2)) (-4 *2 (-170)))) (-1374 (*1 *2 *1) (-12 (-4 *1 (-363 *2)) (-4 *2 (-170)))) (-3542 (*1 *2 *1) (-12 (-4 *1 (-363 *2)) (-4 *2 (-170)))) (-2856 (*1 *2 *1) (-12 (-4 *1 (-363 *2)) (-4 *2 (-170)))) (-3390 (*1 *2 *1 *3) (-12 (-5 *3 (-1236 *1)) (-4 *1 (-363 *4)) (-4 *4 (-170)) (-5 *2 (-1236 *4)))) (-3390 (*1 *2 *3 *3) (-12 (-5 *3 (-1236 *1)) (-4 *1 (-363 *4)) (-4 *4 (-170)) (-5 *2 (-671 *4)))) (-3380 (*1 *1 *2 *3) (-12 (-5 *2 (-1236 *4)) (-5 *3 (-1236 *1)) (-4 *4 (-170)) (-4 *1 (-363 *4)))) (-3158 (*1 *2 *3) (-12 (-5 *3 (-1236 *1)) (-4 *1 (-363 *2)) (-4 *2 (-170)))) (-1998 (*1 *2 *3) (-12 (-5 *3 (-1236 *1)) (-4 *1 (-363 *2)) (-4 *2 (-170)))) (-1279 (*1 *2 *3) (-12 (-5 *3 (-1236 *1)) (-4 *1 (-363 *4)) (-4 *4 (-170)) (-5 *2 (-671 *4)))) (-3852 (*1 *2 *3) (-12 (-5 *3 (-1236 *1)) (-4 *1 (-363 *4)) (-4 *4 (-170)) (-5 *2 (-671 *4)))) (-3613 (*1 *2 *1) (-12 (-4 *1 (-363 *3)) (-4 *3 (-170)) (-5 *2 (-1149 *3)))) (-1825 (*1 *2 *1) (-12 (-4 *1 (-363 *3)) (-4 *3 (-170)) (-5 *2 (-1149 *3)))) (-2903 (*1 *2) (-12 (-4 *1 (-363 *3)) (-4 *3 (-170)) (-5 *2 (-121)))) (-3333 (*1 *2) (-12 (-4 *1 (-363 *3)) (-4 *3 (-170)) (-5 *2 (-121)))) (-2266 (*1 *2) (-12 (-4 *1 (-363 *3)) (-4 *3 (-170)) (-5 *2 (-121)))) (-3060 (*1 *2) (-12 (-4 *1 (-363 *3)) (-4 *3 (-170)) (-5 *2 (-121)))) (-1818 (*1 *2) (-12 (-4 *1 (-363 *3)) (-4 *3 (-170)) (-5 *2 (-121)))) (-2969 (*1 *2) (-12 (-4 *1 (-363 *3)) (-4 *3 (-170)) (-5 *2 (-121)))) (-4172 (*1 *2) (-12 (-4 *1 (-363 *3)) (-4 *3 (-170)) (-5 *2 (-121)))) (-2682 (*1 *2) (-12 (-4 *1 (-363 *3)) (-4 *3 (-170)) (-5 *2 (-121)))) (-3497 (*1 *2) (-12 (-4 *1 (-363 *3)) (-4 *3 (-170)) (-5 *2 (-121)))) (-4253 (*1 *2) (-12 (-4 *1 (-363 *3)) (-4 *3 (-170)) (-5 *2 (-121)))) (-2646 (*1 *2) (-12 (-4 *1 (-363 *3)) (-4 *3 (-170)) (-5 *2 (-121)))) (-2201 (*1 *2) (-12 (-4 *1 (-363 *3)) (-4 *3 (-170)) (-5 *2 (-121)))) (-2874 (*1 *2) (-12 (-4 *1 (-363 *3)) (-4 *3 (-170)) (-5 *2 (-121)))) (-2394 (*1 *2) (-12 (-4 *1 (-363 *3)) (-4 *3 (-170)) (-5 *2 (-121)))) (-4479 (*1 *2) (-12 (-4 *1 (-363 *3)) (-4 *3 (-170)) (-5 *2 (-121)))) (-1823 (*1 *1 *1) (|partial| -12 (-4 *1 (-363 *2)) (-4 *2 (-170)) (-4 *2 (-550)))) (-2966 (*1 *1 *1) (|partial| -12 (-4 *1 (-363 *2)) (-4 *2 (-170)) (-4 *2 (-550)))) (-1309 (*1 *1 *1) (|partial| -12 (-4 *1 (-363 *2)) (-4 *2 (-170)) (-4 *2 (-550)))) (-4263 (*1 *2) (-12 (-4 *1 (-363 *3)) (-4 *3 (-170)) (-4 *3 (-550)) (-5 *2 (-626 (-1236 *3))))) (-1351 (*1 *2 *1) (-12 (-4 *1 (-363 *3)) (-4 *3 (-170)) (-4 *3 (-550)) (-5 *2 (-1149 *3)))) (-3730 (*1 *2 *1) (-12 (-4 *1 (-363 *3)) (-4 *3 (-170)) (-4 *3 (-550)) (-5 *2 (-1149 *3)))) (-2071 (*1 *2) (|partial| -12 (-4 *3 (-550)) (-4 *3 (-170)) (-5 *2 (-2 (|:| |particular| *1) (|:| -4374 (-626 *1)))) (-4 *1 (-363 *3)))) (-2862 (*1 *2) (|partial| -12 (-4 *3 (-550)) (-4 *3 (-170)) (-5 *2 (-2 (|:| |particular| *1) (|:| -4374 (-626 *1)))) (-4 *1 (-363 *3)))) (-3477 (*1 *1) (|partial| -12 (-4 *1 (-363 *2)) (-4 *2 (-550)) (-4 *2 (-170)))) (-2835 (*1 *1) (|partial| -12 (-4 *1 (-363 *2)) (-4 *2 (-550)) (-4 *2 (-170)))) (-1917 (*1 *1) (|partial| -12 (-4 *1 (-363 *2)) (-4 *2 (-550)) (-4 *2 (-170))))) -(-13 (-728 |t#1|) (-10 -8 (-15 -1565 ((-1236 $))) (-15 -3143 ((-909))) (-15 -2879 ((-626 (-945 |t#1|)) (-1236 $))) (-15 -2059 ((-1236 (-671 |t#1|)) (-1236 $))) (-15 -1284 ((-671 |t#1|) $ (-1236 $))) (-15 -2611 ((-671 |t#1|) $ (-1236 $))) (-15 -2442 (|t#1| $)) (-15 -1374 (|t#1| $)) (-15 -3542 (|t#1| $)) (-15 -2856 (|t#1| $)) (-15 -3390 ((-1236 |t#1|) $ (-1236 $))) (-15 -3390 ((-671 |t#1|) (-1236 $) (-1236 $))) (-15 -3380 ($ (-1236 |t#1|) (-1236 $))) (-15 -3158 (|t#1| (-1236 $))) (-15 -1998 (|t#1| (-1236 $))) (-15 -1279 ((-671 |t#1|) (-1236 $))) (-15 -3852 ((-671 |t#1|) (-1236 $))) (-15 -3613 ((-1149 |t#1|) $)) (-15 -1825 ((-1149 |t#1|) $)) (-15 -2903 ((-121))) (-15 -3333 ((-121))) (-15 -2266 ((-121))) (-15 -3060 ((-121))) (-15 -1818 ((-121))) (-15 -2969 ((-121))) (-15 -4172 ((-121))) (-15 -2682 ((-121))) (-15 -3497 ((-121))) (-15 -4253 ((-121))) (-15 -2646 ((-121))) (-15 -2201 ((-121))) (-15 -2874 ((-121))) (-15 -2394 ((-121))) (-15 -4479 ((-121))) (IF (|has| |t#1| (-550)) (PROGN (-15 -1823 ((-3 $ "failed") $)) (-15 -2966 ((-3 $ "failed") $)) (-15 -1309 ((-3 $ "failed") $)) (-15 -4263 ((-626 (-1236 |t#1|)))) (-15 -1351 ((-1149 |t#1|) $)) (-15 -3730 ((-1149 |t#1|) $)) (-15 -2071 ((-3 (-2 (|:| |particular| $) (|:| -4374 (-626 $))) "failed"))) (-15 -2862 ((-3 (-2 (|:| |particular| $) (|:| -4374 (-626 $))) "failed"))) (-15 -3477 ((-3 $ "failed"))) (-15 -2835 ((-3 $ "failed"))) (-15 -1917 ((-3 $ "failed"))) (-6 -4502)) |noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-105) . T) ((-120 |#1| |#1|) . T) ((-137) . T) ((-600 (-842)) . T) ((-629 |#1|) . T) ((-699 |#1|) . T) ((-702) . T) ((-728 |#1|) . T) ((-745) . T) ((-1045 |#1|) . T) ((-1082) . T)) -((-2601 (((-121) $ $) 7)) (-2912 (((-755)) 15)) (-1666 (($) 12)) (-3142 (((-909) $) 13)) (-1291 (((-1135) $) 9)) (-1330 (($ (-909)) 14)) (-4353 (((-1100) $) 10)) (-2801 (((-842) $) 11)) (-1653 (((-121) $ $) 6))) -(((-364) (-1267)) (T -364)) -((-2912 (*1 *2) (-12 (-4 *1 (-364)) (-5 *2 (-755)))) (-1330 (*1 *1 *2) (-12 (-5 *2 (-909)) (-4 *1 (-364)))) (-3142 (*1 *2 *1) (-12 (-4 *1 (-364)) (-5 *2 (-909)))) (-1666 (*1 *1) (-4 *1 (-364)))) -(-13 (-1082) (-10 -8 (-15 -2912 ((-755))) (-15 -1330 ($ (-909))) (-15 -3142 ((-909) $)) (-15 -1666 ($)))) -(((-105) . T) ((-600 (-842)) . T) ((-1082) . T)) -((-2196 (((-671 |#2|) (-1236 $)) 40)) (-3380 (($ (-1236 |#2|) (-1236 $)) 35)) (-2954 (((-671 |#2|) $ (-1236 $)) 43)) (-4069 ((|#2| (-1236 $)) 13)) (-3390 (((-1236 |#2|) $ (-1236 $)) NIL) (((-671 |#2|) (-1236 $) (-1236 $)) 25))) -(((-365 |#1| |#2| |#3|) (-10 -8 (-15 -2196 ((-671 |#2|) (-1236 |#1|))) (-15 -4069 (|#2| (-1236 |#1|))) (-15 -3380 (|#1| (-1236 |#2|) (-1236 |#1|))) (-15 -3390 ((-671 |#2|) (-1236 |#1|) (-1236 |#1|))) (-15 -3390 ((-1236 |#2|) |#1| (-1236 |#1|))) (-15 -2954 ((-671 |#2|) |#1| (-1236 |#1|)))) (-366 |#2| |#3|) (-170) (-1211 |#2|)) (T -365)) -NIL -(-10 -8 (-15 -2196 ((-671 |#2|) (-1236 |#1|))) (-15 -4069 (|#2| (-1236 |#1|))) (-15 -3380 (|#1| (-1236 |#2|) (-1236 |#1|))) (-15 -3390 ((-671 |#2|) (-1236 |#1|) (-1236 |#1|))) (-15 -3390 ((-1236 |#2|) |#1| (-1236 |#1|))) (-15 -2954 ((-671 |#2|) |#1| (-1236 |#1|)))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-2196 (((-671 |#1|) (-1236 $)) 44)) (-1944 ((|#1| $) 50)) (-2314 (((-3 $ "failed") $ $) 18)) (-4236 (($) 16 T CONST)) (-3380 (($ (-1236 |#1|) (-1236 $)) 46)) (-2954 (((-671 |#1|) $ (-1236 $)) 51)) (-1823 (((-3 $ "failed") $) 33)) (-3143 (((-909)) 52)) (-2642 (((-121) $) 30)) (-3339 ((|#1| $) 49)) (-4108 ((|#2| $) 42 (|has| |#1| (-359)))) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-4069 ((|#1| (-1236 $)) 45)) (-3390 (((-1236 |#1|) $ (-1236 $)) 48) (((-671 |#1|) (-1236 $) (-1236 $)) 47)) (-2801 (((-842) $) 11) (($ (-560)) 27) (($ |#1|) 36)) (-2272 (((-3 $ "failed") $) 41 (|has| |#1| (-146)))) (-3642 ((|#2| $) 43)) (-1751 (((-755)) 28)) (-2464 (($ $ (-909)) 25) (($ $ (-755)) 32)) (-3304 (($) 17 T CONST)) (-1459 (($) 29 T CONST)) (-1653 (((-121) $ $) 6)) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 24) (($ $ (-755)) 31)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 23) (($ $ |#1|) 38) (($ |#1| $) 37))) -(((-366 |#1| |#2|) (-1267) (-170) (-1211 |t#1|)) (T -366)) -((-3143 (*1 *2) (-12 (-4 *1 (-366 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1211 *3)) (-5 *2 (-909)))) (-2954 (*1 *2 *1 *3) (-12 (-5 *3 (-1236 *1)) (-4 *1 (-366 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1211 *4)) (-5 *2 (-671 *4)))) (-1944 (*1 *2 *1) (-12 (-4 *1 (-366 *2 *3)) (-4 *3 (-1211 *2)) (-4 *2 (-170)))) (-3339 (*1 *2 *1) (-12 (-4 *1 (-366 *2 *3)) (-4 *3 (-1211 *2)) (-4 *2 (-170)))) (-3390 (*1 *2 *1 *3) (-12 (-5 *3 (-1236 *1)) (-4 *1 (-366 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1211 *4)) (-5 *2 (-1236 *4)))) (-3390 (*1 *2 *3 *3) (-12 (-5 *3 (-1236 *1)) (-4 *1 (-366 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1211 *4)) (-5 *2 (-671 *4)))) (-3380 (*1 *1 *2 *3) (-12 (-5 *2 (-1236 *4)) (-5 *3 (-1236 *1)) (-4 *4 (-170)) (-4 *1 (-366 *4 *5)) (-4 *5 (-1211 *4)))) (-4069 (*1 *2 *3) (-12 (-5 *3 (-1236 *1)) (-4 *1 (-366 *2 *4)) (-4 *4 (-1211 *2)) (-4 *2 (-170)))) (-2196 (*1 *2 *3) (-12 (-5 *3 (-1236 *1)) (-4 *1 (-366 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1211 *4)) (-5 *2 (-671 *4)))) (-3642 (*1 *2 *1) (-12 (-4 *1 (-366 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1211 *3)))) (-4108 (*1 *2 *1) (-12 (-4 *1 (-366 *3 *2)) (-4 *3 (-170)) (-4 *3 (-359)) (-4 *2 (-1211 *3))))) -(-13 (-43 |t#1|) (-10 -8 (-15 -3143 ((-909))) (-15 -2954 ((-671 |t#1|) $ (-1236 $))) (-15 -1944 (|t#1| $)) (-15 -3339 (|t#1| $)) (-15 -3390 ((-1236 |t#1|) $ (-1236 $))) (-15 -3390 ((-671 |t#1|) (-1236 $) (-1236 $))) (-15 -3380 ($ (-1236 |t#1|) (-1236 $))) (-15 -4069 (|t#1| (-1236 $))) (-15 -2196 ((-671 |t#1|) (-1236 $))) (-15 -3642 (|t#2| $)) (IF (|has| |t#1| (-359)) (-15 -4108 (|t#2| $)) |noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-43 |#1|) . T) ((-105) . T) ((-120 |#1| |#1|) . T) ((-137) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-600 (-842)) . T) ((-629 |#1|) . T) ((-629 $) . T) ((-699 |#1|) . T) ((-708) . T) ((-1045 |#1|) . T) ((-1039) . T) ((-1046) . T) ((-1094) . T) ((-1082) . T)) -((-3469 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-2342 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-2803 ((|#4| (-1 |#3| |#1|) |#2|) 21))) -(((-367 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2803 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2342 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3469 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1187) (-369 |#1|) (-1187) (-369 |#3|)) (T -367)) -((-3469 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1187)) (-4 *5 (-1187)) (-4 *2 (-369 *5)) (-5 *1 (-367 *6 *4 *5 *2)) (-4 *4 (-369 *6)))) (-2342 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1187)) (-4 *2 (-1187)) (-5 *1 (-367 *5 *4 *2 *6)) (-4 *4 (-369 *5)) (-4 *6 (-369 *2)))) (-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1187)) (-4 *6 (-1187)) (-4 *2 (-369 *6)) (-5 *1 (-367 *5 *4 *6 *2)) (-4 *4 (-369 *5))))) -(-10 -7 (-15 -2803 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2342 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3469 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-3189 (((-121) (-1 (-121) |#2| |#2|) $) NIL) (((-121) $) 18)) (-4410 (($ (-1 (-121) |#2| |#2|) $) NIL) (($ $) 28)) (-3743 (($ (-1 (-121) |#2| |#2|) $) 27) (($ $) 22)) (-2883 (($ $) 25)) (-2839 (((-560) (-1 (-121) |#2|) $) NIL) (((-560) |#2| $) 11) (((-560) |#2| $ (-560)) NIL)) (-2492 (($ (-1 (-121) |#2| |#2|) $ $) NIL) (($ $ $) 20))) -(((-368 |#1| |#2|) (-10 -8 (-15 -4410 (|#1| |#1|)) (-15 -4410 (|#1| (-1 (-121) |#2| |#2|) |#1|)) (-15 -3189 ((-121) |#1|)) (-15 -3743 (|#1| |#1|)) (-15 -2492 (|#1| |#1| |#1|)) (-15 -2839 ((-560) |#2| |#1| (-560))) (-15 -2839 ((-560) |#2| |#1|)) (-15 -2839 ((-560) (-1 (-121) |#2|) |#1|)) (-15 -3189 ((-121) (-1 (-121) |#2| |#2|) |#1|)) (-15 -3743 (|#1| (-1 (-121) |#2| |#2|) |#1|)) (-15 -2883 (|#1| |#1|)) (-15 -2492 (|#1| (-1 (-121) |#2| |#2|) |#1| |#1|))) (-369 |#2|) (-1187)) (T -368)) -NIL -(-10 -8 (-15 -4410 (|#1| |#1|)) (-15 -4410 (|#1| (-1 (-121) |#2| |#2|) |#1|)) (-15 -3189 ((-121) |#1|)) (-15 -3743 (|#1| |#1|)) (-15 -2492 (|#1| |#1| |#1|)) (-15 -2839 ((-560) |#2| |#1| (-560))) (-15 -2839 ((-560) |#2| |#1|)) (-15 -2839 ((-560) (-1 (-121) |#2|) |#1|)) (-15 -3189 ((-121) (-1 (-121) |#2| |#2|) |#1|)) (-15 -3743 (|#1| (-1 (-121) |#2| |#2|) |#1|)) (-15 -2883 (|#1| |#1|)) (-15 -2492 (|#1| (-1 (-121) |#2| |#2|) |#1| |#1|))) -((-2601 (((-121) $ $) 18 (|has| |#1| (-1082)))) (-2960 (((-1241) $ (-560) (-560)) 37 (|has| $ (-6 -4506)))) (-3189 (((-121) (-1 (-121) |#1| |#1|) $) 91) (((-121) $) 85 (|has| |#1| (-834)))) (-4410 (($ (-1 (-121) |#1| |#1|) $) 82 (|has| $ (-6 -4506))) (($ $) 81 (-12 (|has| |#1| (-834)) (|has| $ (-6 -4506))))) (-3743 (($ (-1 (-121) |#1| |#1|) $) 92) (($ $) 86 (|has| |#1| (-834)))) (-3909 (((-121) $ (-755)) 8)) (-2764 ((|#1| $ (-560) |#1|) 49 (|has| $ (-6 -4506))) ((|#1| $ (-1202 (-560)) |#1|) 53 (|has| $ (-6 -4506)))) (-3802 (($ (-1 (-121) |#1|) $) 70 (|has| $ (-6 -4505)))) (-4236 (($) 7 T CONST)) (-4030 (($ $) 83 (|has| $ (-6 -4506)))) (-2883 (($ $) 93)) (-2868 (($ $) 73 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-4310 (($ |#1| $) 72 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505)))) (($ (-1 (-121) |#1|) $) 69 (|has| $ (-6 -4505)))) (-2342 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 71 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 68 (|has| $ (-6 -4505))) ((|#1| (-1 |#1| |#1| |#1|) $) 67 (|has| $ (-6 -4505)))) (-1746 ((|#1| $ (-560) |#1|) 50 (|has| $ (-6 -4506)))) (-1361 ((|#1| $ (-560)) 48)) (-2839 (((-560) (-1 (-121) |#1|) $) 90) (((-560) |#1| $) 89 (|has| |#1| (-1082))) (((-560) |#1| $ (-560)) 88 (|has| |#1| (-1082)))) (-1981 (((-626 |#1|) $) 30 (|has| $ (-6 -4505)))) (-1721 (($ (-755) |#1|) 64)) (-2122 (((-121) $ (-755)) 9)) (-4099 (((-560) $) 40 (|has| (-560) (-834)))) (-4325 (($ $ $) 80 (|has| |#1| (-834)))) (-2492 (($ (-1 (-121) |#1| |#1|) $ $) 94) (($ $ $) 87 (|has| |#1| (-834)))) (-2130 (((-626 |#1|) $) 29 (|has| $ (-6 -4505)))) (-2030 (((-121) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-2767 (((-560) $) 41 (|has| (-560) (-834)))) (-2501 (($ $ $) 79 (|has| |#1| (-834)))) (-3778 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 59)) (-3441 (((-121) $ (-755)) 10)) (-1291 (((-1135) $) 22 (|has| |#1| (-1082)))) (-4103 (($ |#1| $ (-560)) 55) (($ $ $ (-560)) 54)) (-1529 (((-626 (-560)) $) 43)) (-1310 (((-121) (-560) $) 44)) (-4353 (((-1100) $) 21 (|has| |#1| (-1082)))) (-2824 ((|#1| $) 39 (|has| (-560) (-834)))) (-3786 (((-3 |#1| "failed") (-1 (-121) |#1|) $) 66)) (-3038 (($ $ |#1|) 38 (|has| $ (-6 -4506)))) (-2865 (((-121) (-1 (-121) |#1|) $) 32 (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#1|))) 26 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-283 |#1|)) 25 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-626 |#1|) (-626 |#1|)) 23 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))))) (-2214 (((-121) $ $) 14)) (-1290 (((-121) |#1| $) 42 (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-4460 (((-626 |#1|) $) 45)) (-4191 (((-121) $) 11)) (-3260 (($) 12)) (-2778 ((|#1| $ (-560) |#1|) 47) ((|#1| $ (-560)) 46) (($ $ (-1202 (-560))) 58)) (-2949 (($ $ (-560)) 57) (($ $ (-1202 (-560))) 56)) (-4035 (((-755) (-1 (-121) |#1|) $) 31 (|has| $ (-6 -4505))) (((-755) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-4072 (($ $ $ (-560)) 84 (|has| $ (-6 -4506)))) (-2813 (($ $) 13)) (-4255 (((-533) $) 74 (|has| |#1| (-601 (-533))))) (-4162 (($ (-626 |#1|)) 65)) (-2849 (($ $ |#1|) 63) (($ |#1| $) 62) (($ $ $) 61) (($ (-626 $)) 60)) (-2801 (((-842) $) 20 (|has| |#1| (-1082)))) (-3656 (((-121) (-1 (-121) |#1|) $) 33 (|has| $ (-6 -4505)))) (-1691 (((-121) $ $) 77 (|has| |#1| (-834)))) (-1675 (((-121) $ $) 76 (|has| |#1| (-834)))) (-1653 (((-121) $ $) 19 (|has| |#1| (-1082)))) (-1683 (((-121) $ $) 78 (|has| |#1| (-834)))) (-1667 (((-121) $ $) 75 (|has| |#1| (-834)))) (-2271 (((-755) $) 6 (|has| $ (-6 -4505))))) -(((-369 |#1|) (-1267) (-1187)) (T -369)) -((-2492 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-121) *3 *3)) (-4 *1 (-369 *3)) (-4 *3 (-1187)))) (-2883 (*1 *1 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-1187)))) (-3743 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-121) *3 *3)) (-4 *1 (-369 *3)) (-4 *3 (-1187)))) (-3189 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4 *4)) (-4 *1 (-369 *4)) (-4 *4 (-1187)) (-5 *2 (-121)))) (-2839 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (-4 *1 (-369 *4)) (-4 *4 (-1187)) (-5 *2 (-560)))) (-2839 (*1 *2 *3 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-1187)) (-4 *3 (-1082)) (-5 *2 (-560)))) (-2839 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-369 *3)) (-4 *3 (-1187)) (-4 *3 (-1082)))) (-2492 (*1 *1 *1 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-1187)) (-4 *2 (-834)))) (-3743 (*1 *1 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-1187)) (-4 *2 (-834)))) (-3189 (*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-1187)) (-4 *3 (-834)) (-5 *2 (-121)))) (-4072 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-560)) (|has| *1 (-6 -4506)) (-4 *1 (-369 *3)) (-4 *3 (-1187)))) (-4030 (*1 *1 *1) (-12 (|has| *1 (-6 -4506)) (-4 *1 (-369 *2)) (-4 *2 (-1187)))) (-4410 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-121) *3 *3)) (|has| *1 (-6 -4506)) (-4 *1 (-369 *3)) (-4 *3 (-1187)))) (-4410 (*1 *1 *1) (-12 (|has| *1 (-6 -4506)) (-4 *1 (-369 *2)) (-4 *2 (-1187)) (-4 *2 (-834))))) -(-13 (-632 |t#1|) (-10 -8 (-6 -4505) (-15 -2492 ($ (-1 (-121) |t#1| |t#1|) $ $)) (-15 -2883 ($ $)) (-15 -3743 ($ (-1 (-121) |t#1| |t#1|) $)) (-15 -3189 ((-121) (-1 (-121) |t#1| |t#1|) $)) (-15 -2839 ((-560) (-1 (-121) |t#1|) $)) (IF (|has| |t#1| (-1082)) (PROGN (-15 -2839 ((-560) |t#1| $)) (-15 -2839 ((-560) |t#1| $ (-560)))) |noBranch|) (IF (|has| |t#1| (-834)) (PROGN (-6 (-834)) (-15 -2492 ($ $ $)) (-15 -3743 ($ $)) (-15 -3189 ((-121) $))) |noBranch|) (IF (|has| $ (-6 -4506)) (PROGN (-15 -4072 ($ $ $ (-560))) (-15 -4030 ($ $)) (-15 -4410 ($ (-1 (-121) |t#1| |t#1|) $)) (IF (|has| |t#1| (-834)) (-15 -4410 ($ $)) |noBranch|)) |noBranch|))) -(((-39) . T) ((-105) -2318 (|has| |#1| (-1082)) (|has| |#1| (-834))) ((-600 (-842)) -2318 (|has| |#1| (-1082)) (|has| |#1| (-834))) ((-152 |#1|) . T) ((-601 (-533)) |has| |#1| (-601 (-533))) ((-276 (-560) |#1|) . T) ((-278 (-560) |#1|) . T) ((-298 |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))) ((-492 |#1|) . T) ((-593 (-560) |#1|) . T) ((-515 |#1| |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))) ((-632 |#1|) . T) ((-834) |has| |#1| (-834)) ((-1082) -2318 (|has| |#1| (-1082)) (|has| |#1| (-834))) ((-1187) . T)) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-1499 (((-626 |#1|) $) 29)) (-3239 (($ $ (-755)) 30)) (-2314 (((-3 $ "failed") $ $) 18)) (-4236 (($) 16 T CONST)) (-1927 (((-1258 |#1| |#2|) (-1258 |#1| |#2|) $) 33)) (-2994 (($ $) 31)) (-4135 (((-1258 |#1| |#2|) (-1258 |#1| |#2|) $) 34)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-4450 (($ $ |#1| $) 28) (($ $ (-626 |#1|) (-626 $)) 27)) (-3662 (((-755) $) 35)) (-4162 (($ $ $) 26)) (-2801 (((-842) $) 11) (($ |#1|) 38) (((-1249 |#1| |#2|) $) 37) (((-1258 |#1| |#2|) $) 36)) (-2169 ((|#2| (-1258 |#1| |#2|) $) 39)) (-3304 (($) 17 T CONST)) (-3226 (($ (-655 |#1|)) 32)) (-1653 (((-121) $ $) 6)) (-1733 (($ $ |#2|) 25 (|has| |#2| (-359)))) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ |#2| $) 22) (($ $ |#2|) 24))) -(((-370 |#1| |#2|) (-1267) (-834) (-170)) (T -370)) -((-2169 (*1 *2 *3 *1) (-12 (-5 *3 (-1258 *4 *2)) (-4 *1 (-370 *4 *2)) (-4 *4 (-834)) (-4 *2 (-170)))) (-2801 (*1 *1 *2) (-12 (-4 *1 (-370 *2 *3)) (-4 *2 (-834)) (-4 *3 (-170)))) (-2801 (*1 *2 *1) (-12 (-4 *1 (-370 *3 *4)) (-4 *3 (-834)) (-4 *4 (-170)) (-5 *2 (-1249 *3 *4)))) (-2801 (*1 *2 *1) (-12 (-4 *1 (-370 *3 *4)) (-4 *3 (-834)) (-4 *4 (-170)) (-5 *2 (-1258 *3 *4)))) (-3662 (*1 *2 *1) (-12 (-4 *1 (-370 *3 *4)) (-4 *3 (-834)) (-4 *4 (-170)) (-5 *2 (-755)))) (-4135 (*1 *2 *2 *1) (-12 (-5 *2 (-1258 *3 *4)) (-4 *1 (-370 *3 *4)) (-4 *3 (-834)) (-4 *4 (-170)))) (-1927 (*1 *2 *2 *1) (-12 (-5 *2 (-1258 *3 *4)) (-4 *1 (-370 *3 *4)) (-4 *3 (-834)) (-4 *4 (-170)))) (-3226 (*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-834)) (-4 *1 (-370 *3 *4)) (-4 *4 (-170)))) (-2994 (*1 *1 *1) (-12 (-4 *1 (-370 *2 *3)) (-4 *2 (-834)) (-4 *3 (-170)))) (-3239 (*1 *1 *1 *2) (-12 (-5 *2 (-755)) (-4 *1 (-370 *3 *4)) (-4 *3 (-834)) (-4 *4 (-170)))) (-1499 (*1 *2 *1) (-12 (-4 *1 (-370 *3 *4)) (-4 *3 (-834)) (-4 *4 (-170)) (-5 *2 (-626 *3)))) (-4450 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-370 *2 *3)) (-4 *2 (-834)) (-4 *3 (-170)))) (-4450 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-626 *4)) (-5 *3 (-626 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-834)) (-4 *5 (-170))))) -(-13 (-617 |t#2|) (-10 -8 (-15 -2169 (|t#2| (-1258 |t#1| |t#2|) $)) (-15 -2801 ($ |t#1|)) (-15 -2801 ((-1249 |t#1| |t#2|) $)) (-15 -2801 ((-1258 |t#1| |t#2|) $)) (-15 -3662 ((-755) $)) (-15 -4135 ((-1258 |t#1| |t#2|) (-1258 |t#1| |t#2|) $)) (-15 -1927 ((-1258 |t#1| |t#2|) (-1258 |t#1| |t#2|) $)) (-15 -3226 ($ (-655 |t#1|))) (-15 -2994 ($ $)) (-15 -3239 ($ $ (-755))) (-15 -1499 ((-626 |t#1|) $)) (-15 -4450 ($ $ |t#1| $)) (-15 -4450 ($ $ (-626 |t#1|) (-626 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-105) . T) ((-120 |#2| |#2|) . T) ((-137) . T) ((-600 (-842)) . T) ((-629 |#2|) . T) ((-617 |#2|) . T) ((-699 |#2|) . T) ((-1045 |#2|) . T) ((-1082) . T)) -((-2584 ((|#2| (-1 (-121) |#1| |#1|) |#2|) 22)) (-2246 ((|#2| (-1 (-121) |#1| |#1|) |#2|) 12)) (-2689 ((|#2| (-1 (-121) |#1| |#1|) |#2|) 21))) -(((-371 |#1| |#2|) (-10 -7 (-15 -2246 (|#2| (-1 (-121) |#1| |#1|) |#2|)) (-15 -2689 (|#2| (-1 (-121) |#1| |#1|) |#2|)) (-15 -2584 (|#2| (-1 (-121) |#1| |#1|) |#2|))) (-1187) (-13 (-369 |#1|) (-10 -7 (-6 -4506)))) (T -371)) -((-2584 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-121) *4 *4)) (-4 *4 (-1187)) (-5 *1 (-371 *4 *2)) (-4 *2 (-13 (-369 *4) (-10 -7 (-6 -4506)))))) (-2689 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-121) *4 *4)) (-4 *4 (-1187)) (-5 *1 (-371 *4 *2)) (-4 *2 (-13 (-369 *4) (-10 -7 (-6 -4506)))))) (-2246 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-121) *4 *4)) (-4 *4 (-1187)) (-5 *1 (-371 *4 *2)) (-4 *2 (-13 (-369 *4) (-10 -7 (-6 -4506))))))) -(-10 -7 (-15 -2246 (|#2| (-1 (-121) |#1| |#1|) |#2|)) (-15 -2689 (|#2| (-1 (-121) |#1| |#1|) |#2|)) (-15 -2584 (|#2| (-1 (-121) |#1| |#1|) |#2|))) -((-2616 (((-671 |#2|) (-671 $)) NIL) (((-2 (|:| -3818 (-671 |#2|)) (|:| |vec| (-1236 |#2|))) (-671 $) (-1236 $)) NIL) (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) 19) (((-671 (-560)) (-671 $)) 13))) -(((-372 |#1| |#2|) (-10 -8 (-15 -2616 ((-671 (-560)) (-671 |#1|))) (-15 -2616 ((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 |#1|) (-1236 |#1|))) (-15 -2616 ((-2 (|:| -3818 (-671 |#2|)) (|:| |vec| (-1236 |#2|))) (-671 |#1|) (-1236 |#1|))) (-15 -2616 ((-671 |#2|) (-671 |#1|)))) (-373 |#2|) (-1039)) (T -372)) -NIL -(-10 -8 (-15 -2616 ((-671 (-560)) (-671 |#1|))) (-15 -2616 ((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 |#1|) (-1236 |#1|))) (-15 -2616 ((-2 (|:| -3818 (-671 |#2|)) (|:| |vec| (-1236 |#2|))) (-671 |#1|) (-1236 |#1|))) (-15 -2616 ((-671 |#2|) (-671 |#1|)))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-2314 (((-3 $ "failed") $ $) 18)) (-4236 (($) 16 T CONST)) (-2616 (((-671 |#1|) (-671 $)) 35) (((-2 (|:| -3818 (-671 |#1|)) (|:| |vec| (-1236 |#1|))) (-671 $) (-1236 $)) 34) (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) 38 (|has| |#1| (-622 (-560)))) (((-671 (-560)) (-671 $)) 37 (|has| |#1| (-622 (-560))))) (-1823 (((-3 $ "failed") $) 33)) (-2642 (((-121) $) 30)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-2801 (((-842) $) 11) (($ (-560)) 27)) (-1751 (((-755)) 28)) (-2464 (($ $ (-909)) 25) (($ $ (-755)) 32)) (-3304 (($) 17 T CONST)) (-1459 (($) 29 T CONST)) (-1653 (((-121) $ $) 6)) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 24) (($ $ (-755)) 31)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 23))) -(((-373 |#1|) (-1267) (-1039)) (T -373)) -NIL -(-13 (-622 |t#1|) (-10 -7 (IF (|has| |t#1| (-622 (-560))) (-6 (-622 (-560))) |noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-105) . T) ((-137) . T) ((-600 (-842)) . T) ((-629 $) . T) ((-622 (-560)) |has| |#1| (-622 (-560))) ((-622 |#1|) . T) ((-708) . T) ((-1039) . T) ((-1046) . T) ((-1094) . T) ((-1082) . T)) -((-3683 (((-626 (-283 (-945 (-167 |#1|)))) (-283 (-403 (-945 (-167 (-560))))) |#1|) 52) (((-626 (-283 (-945 (-167 |#1|)))) (-403 (-945 (-167 (-560)))) |#1|) 51) (((-626 (-626 (-283 (-945 (-167 |#1|))))) (-626 (-283 (-403 (-945 (-167 (-560)))))) |#1|) 47) (((-626 (-626 (-283 (-945 (-167 |#1|))))) (-626 (-403 (-945 (-167 (-560))))) |#1|) 40)) (-1807 (((-626 (-626 (-167 |#1|))) (-626 (-403 (-945 (-167 (-560))))) (-626 (-1153)) |#1|) 28) (((-626 (-167 |#1|)) (-403 (-945 (-167 (-560)))) |#1|) 15))) -(((-374 |#1|) (-10 -7 (-15 -3683 ((-626 (-626 (-283 (-945 (-167 |#1|))))) (-626 (-403 (-945 (-167 (-560))))) |#1|)) (-15 -3683 ((-626 (-626 (-283 (-945 (-167 |#1|))))) (-626 (-283 (-403 (-945 (-167 (-560)))))) |#1|)) (-15 -3683 ((-626 (-283 (-945 (-167 |#1|)))) (-403 (-945 (-167 (-560)))) |#1|)) (-15 -3683 ((-626 (-283 (-945 (-167 |#1|)))) (-283 (-403 (-945 (-167 (-560))))) |#1|)) (-15 -1807 ((-626 (-167 |#1|)) (-403 (-945 (-167 (-560)))) |#1|)) (-15 -1807 ((-626 (-626 (-167 |#1|))) (-626 (-403 (-945 (-167 (-560))))) (-626 (-1153)) |#1|))) (-13 (-359) (-832))) (T -374)) -((-1807 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-626 (-403 (-945 (-167 (-560)))))) (-5 *4 (-626 (-1153))) (-5 *2 (-626 (-626 (-167 *5)))) (-5 *1 (-374 *5)) (-4 *5 (-13 (-359) (-832))))) (-1807 (*1 *2 *3 *4) (-12 (-5 *3 (-403 (-945 (-167 (-560))))) (-5 *2 (-626 (-167 *4))) (-5 *1 (-374 *4)) (-4 *4 (-13 (-359) (-832))))) (-3683 (*1 *2 *3 *4) (-12 (-5 *3 (-283 (-403 (-945 (-167 (-560)))))) (-5 *2 (-626 (-283 (-945 (-167 *4))))) (-5 *1 (-374 *4)) (-4 *4 (-13 (-359) (-832))))) (-3683 (*1 *2 *3 *4) (-12 (-5 *3 (-403 (-945 (-167 (-560))))) (-5 *2 (-626 (-283 (-945 (-167 *4))))) (-5 *1 (-374 *4)) (-4 *4 (-13 (-359) (-832))))) (-3683 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-283 (-403 (-945 (-167 (-560))))))) (-5 *2 (-626 (-626 (-283 (-945 (-167 *4)))))) (-5 *1 (-374 *4)) (-4 *4 (-13 (-359) (-832))))) (-3683 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-945 (-167 (-560)))))) (-5 *2 (-626 (-626 (-283 (-945 (-167 *4)))))) (-5 *1 (-374 *4)) (-4 *4 (-13 (-359) (-832)))))) -(-10 -7 (-15 -3683 ((-626 (-626 (-283 (-945 (-167 |#1|))))) (-626 (-403 (-945 (-167 (-560))))) |#1|)) (-15 -3683 ((-626 (-626 (-283 (-945 (-167 |#1|))))) (-626 (-283 (-403 (-945 (-167 (-560)))))) |#1|)) (-15 -3683 ((-626 (-283 (-945 (-167 |#1|)))) (-403 (-945 (-167 (-560)))) |#1|)) (-15 -3683 ((-626 (-283 (-945 (-167 |#1|)))) (-283 (-403 (-945 (-167 (-560))))) |#1|)) (-15 -1807 ((-626 (-167 |#1|)) (-403 (-945 (-167 (-560)))) |#1|)) (-15 -1807 ((-626 (-626 (-167 |#1|))) (-626 (-403 (-945 (-167 (-560))))) (-626 (-1153)) |#1|))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) 33)) (-1947 (((-560) $) 55)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL)) (-1350 (($ $) NIL)) (-3376 (((-121) $) NIL)) (-4330 (($ $) 109)) (-2570 (($ $) 81)) (-2514 (($ $) 70)) (-2314 (((-3 $ "failed") $ $) NIL)) (-3065 (($ $) NIL)) (-2953 (((-414 $) $) NIL)) (-2479 (($ $) 44)) (-4179 (((-121) $ $) NIL)) (-2561 (($ $) 79)) (-2790 (($ $) 68)) (-4235 (((-560) $) 63)) (-2956 (($ $ (-560)) 62)) (-2579 (($ $) NIL)) (-2523 (($ $) NIL)) (-4236 (($) NIL T CONST)) (-4422 (($ $) 111)) (-1473 (((-3 (-560) "failed") $) 187) (((-3 (-403 (-560)) "failed") $) 183)) (-3001 (((-560) $) 185) (((-403 (-560)) $) 181)) (-2563 (($ $ $) NIL)) (-2513 (((-560) $ $) 101)) (-1823 (((-3 $ "failed") $) 113)) (-1748 (((-403 (-560)) $ (-755)) 188) (((-403 (-560)) $ (-755) (-755)) 180)) (-2572 (($ $ $) NIL)) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) NIL)) (-3319 (((-121) $) NIL)) (-2110 (((-909)) 72) (((-909) (-909)) 97 (|has| $ (-6 -4496)))) (-1786 (((-121) $) 105)) (-2474 (($) 40)) (-2399 (((-876 (-375) $) $ (-879 (-375)) (-876 (-375) $)) NIL)) (-4383 (((-1241) (-755)) 150)) (-1695 (((-1241)) 155) (((-1241) (-755)) 156)) (-2630 (((-1241)) 157) (((-1241) (-755)) 158)) (-4352 (((-1241)) 153) (((-1241) (-755)) 154)) (-3504 (((-560) $) 58)) (-2642 (((-121) $) 103)) (-2586 (($ $ (-560)) NIL)) (-2086 (($ $) 48)) (-3339 (($ $) NIL)) (-2187 (((-121) $) 35)) (-3856 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-4325 (($ $ $) NIL) (($) NIL (-12 (-3186 (|has| $ (-6 -4488))) (-3186 (|has| $ (-6 -4496)))))) (-2501 (($ $ $) NIL) (($) 98 (-12 (-3186 (|has| $ (-6 -4488))) (-3186 (|has| $ (-6 -4496)))))) (-4292 (((-560) $) 17)) (-3703 (($) 86) (($ $) 91)) (-2711 (($) 90) (($ $) 92)) (-4399 (($ $) 82)) (-2582 (($ $ $) NIL) (($ (-626 $)) NIL)) (-1291 (((-1135) $) NIL)) (-1701 (($ $) 115)) (-4088 (((-909) (-560)) 43 (|has| $ (-6 -4496)))) (-4353 (((-1100) $) NIL)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL)) (-4440 (($ $ $) NIL) (($ (-626 $)) NIL)) (-4302 (($ $) 53)) (-2150 (($ $) 108)) (-3737 (($ (-560) (-560)) 106) (($ (-560) (-560) (-909)) 107)) (-1601 (((-414 $) $) NIL)) (-3505 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2336 (((-3 $ "failed") $ $) NIL)) (-3456 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-4034 (((-560) $) 19)) (-2339 (($) 93)) (-2469 (($ $) 78)) (-4445 (((-755) $) NIL)) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL)) (-1727 (((-909)) 99) (((-909) (-909)) 100 (|has| $ (-6 -4496)))) (-2443 (($ $ (-755)) NIL) (($ $) 114)) (-2834 (((-909) (-560)) 47 (|has| $ (-6 -4496)))) (-2585 (($ $) NIL)) (-2528 (($ $) NIL)) (-2575 (($ $) NIL)) (-2519 (($ $) NIL)) (-2566 (($ $) 80)) (-2795 (($ $) 69)) (-4255 (((-375) $) 173) (((-213) $) 175) (((-879 (-375)) $) NIL) (((-1135) $) 160) (((-533) $) 171) (($ (-213)) 179)) (-2801 (((-842) $) 162) (($ (-560)) 184) (($ $) NIL) (($ (-403 (-560))) NIL) (($ (-560)) 184) (($ (-403 (-560))) NIL) (((-213) $) 176)) (-1751 (((-755)) NIL)) (-4316 (($ $) 110)) (-2096 (((-909)) 54) (((-909) (-909)) 65 (|has| $ (-6 -4496)))) (-2871 (((-909)) 102)) (-2598 (($ $) 85)) (-2541 (($ $) 46) (($ $ $) 52)) (-2328 (((-121) $ $) NIL)) (-2590 (($ $) 83)) (-2532 (($ $) 37)) (-2608 (($ $) NIL)) (-2549 (($ $) NIL)) (-3689 (($ $) NIL)) (-2554 (($ $) NIL)) (-2604 (($ $) NIL)) (-2545 (($ $) NIL)) (-2594 (($ $) 84)) (-2536 (($ $) 49)) (-1822 (($ $) 51)) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL)) (-3304 (($) 34 T CONST)) (-1459 (($) 38 T CONST)) (-3039 (((-1135) $) 27) (((-1135) $ (-121)) 29) (((-1241) (-809) $) 30) (((-1241) (-809) $ (-121)) 31)) (-2500 (($ $ (-755)) NIL) (($ $) NIL)) (-1691 (((-121) $ $) NIL)) (-1675 (((-121) $ $) NIL)) (-1653 (((-121) $ $) 39)) (-1683 (((-121) $ $) NIL)) (-1667 (((-121) $ $) 42)) (-1733 (($ $ $) 45) (($ $ (-560)) 41)) (-1725 (($ $) 36) (($ $ $) 50)) (-1716 (($ $ $) 61)) (** (($ $ (-909)) 66) (($ $ (-755)) NIL) (($ $ (-560)) 87) (($ $ (-403 (-560))) 124) (($ $ $) 116)) (* (($ (-909) $) 64) (($ (-755) $) NIL) (($ (-560) $) 67) (($ $ $) 60) (($ $ (-403 (-560))) NIL) (($ (-403 (-560)) $) NIL))) -(((-375) (-13 (-400) (-221) (-601 (-1135)) (-815) (-600 (-213)) (-1173) (-601 (-533)) (-10 -8 (-15 -1733 ($ $ (-560))) (-15 ** ($ $ $)) (-15 -2086 ($ $)) (-15 -2513 ((-560) $ $)) (-15 -2956 ($ $ (-560))) (-15 -1748 ((-403 (-560)) $ (-755))) (-15 -1748 ((-403 (-560)) $ (-755) (-755))) (-15 -3703 ($)) (-15 -2711 ($)) (-15 -2339 ($)) (-15 -2541 ($ $ $)) (-15 -3703 ($ $)) (-15 -2711 ($ $)) (-15 -4255 ($ (-213))) (-15 -2630 ((-1241))) (-15 -2630 ((-1241) (-755))) (-15 -4352 ((-1241))) (-15 -4352 ((-1241) (-755))) (-15 -1695 ((-1241))) (-15 -1695 ((-1241) (-755))) (-15 -4383 ((-1241) (-755))) (-6 -4496) (-6 -4488)))) (T -375)) -((** (*1 *1 *1 *1) (-5 *1 (-375))) (-1733 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-375)))) (-2086 (*1 *1 *1) (-5 *1 (-375))) (-2513 (*1 *2 *1 *1) (-12 (-5 *2 (-560)) (-5 *1 (-375)))) (-2956 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-375)))) (-1748 (*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *2 (-403 (-560))) (-5 *1 (-375)))) (-1748 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-755)) (-5 *2 (-403 (-560))) (-5 *1 (-375)))) (-3703 (*1 *1) (-5 *1 (-375))) (-2711 (*1 *1) (-5 *1 (-375))) (-2339 (*1 *1) (-5 *1 (-375))) (-2541 (*1 *1 *1 *1) (-5 *1 (-375))) (-3703 (*1 *1 *1) (-5 *1 (-375))) (-2711 (*1 *1 *1) (-5 *1 (-375))) (-4255 (*1 *1 *2) (-12 (-5 *2 (-213)) (-5 *1 (-375)))) (-2630 (*1 *2) (-12 (-5 *2 (-1241)) (-5 *1 (-375)))) (-2630 (*1 *2 *3) (-12 (-5 *3 (-755)) (-5 *2 (-1241)) (-5 *1 (-375)))) (-4352 (*1 *2) (-12 (-5 *2 (-1241)) (-5 *1 (-375)))) (-4352 (*1 *2 *3) (-12 (-5 *3 (-755)) (-5 *2 (-1241)) (-5 *1 (-375)))) (-1695 (*1 *2) (-12 (-5 *2 (-1241)) (-5 *1 (-375)))) (-1695 (*1 *2 *3) (-12 (-5 *3 (-755)) (-5 *2 (-1241)) (-5 *1 (-375)))) (-4383 (*1 *2 *3) (-12 (-5 *3 (-755)) (-5 *2 (-1241)) (-5 *1 (-375))))) -(-13 (-400) (-221) (-601 (-1135)) (-815) (-600 (-213)) (-1173) (-601 (-533)) (-10 -8 (-15 -1733 ($ $ (-560))) (-15 ** ($ $ $)) (-15 -2086 ($ $)) (-15 -2513 ((-560) $ $)) (-15 -2956 ($ $ (-560))) (-15 -1748 ((-403 (-560)) $ (-755))) (-15 -1748 ((-403 (-560)) $ (-755) (-755))) (-15 -3703 ($)) (-15 -2711 ($)) (-15 -2339 ($)) (-15 -2541 ($ $ $)) (-15 -3703 ($ $)) (-15 -2711 ($ $)) (-15 -4255 ($ (-213))) (-15 -2630 ((-1241))) (-15 -2630 ((-1241) (-755))) (-15 -4352 ((-1241))) (-15 -4352 ((-1241) (-755))) (-15 -1695 ((-1241))) (-15 -1695 ((-1241) (-755))) (-15 -4383 ((-1241) (-755))) (-6 -4496) (-6 -4488))) -((-4159 (((-626 (-283 (-945 |#1|))) (-283 (-403 (-945 (-560)))) |#1|) 47) (((-626 (-283 (-945 |#1|))) (-403 (-945 (-560))) |#1|) 46) (((-626 (-626 (-283 (-945 |#1|)))) (-626 (-283 (-403 (-945 (-560))))) |#1|) 42) (((-626 (-626 (-283 (-945 |#1|)))) (-626 (-403 (-945 (-560)))) |#1|) 36)) (-3646 (((-626 |#1|) (-403 (-945 (-560))) |#1|) 19) (((-626 (-626 |#1|)) (-626 (-403 (-945 (-560)))) (-626 (-1153)) |#1|) 31))) -(((-376 |#1|) (-10 -7 (-15 -4159 ((-626 (-626 (-283 (-945 |#1|)))) (-626 (-403 (-945 (-560)))) |#1|)) (-15 -4159 ((-626 (-626 (-283 (-945 |#1|)))) (-626 (-283 (-403 (-945 (-560))))) |#1|)) (-15 -4159 ((-626 (-283 (-945 |#1|))) (-403 (-945 (-560))) |#1|)) (-15 -4159 ((-626 (-283 (-945 |#1|))) (-283 (-403 (-945 (-560)))) |#1|)) (-15 -3646 ((-626 (-626 |#1|)) (-626 (-403 (-945 (-560)))) (-626 (-1153)) |#1|)) (-15 -3646 ((-626 |#1|) (-403 (-945 (-560))) |#1|))) (-13 (-832) (-359))) (T -376)) -((-3646 (*1 *2 *3 *4) (-12 (-5 *3 (-403 (-945 (-560)))) (-5 *2 (-626 *4)) (-5 *1 (-376 *4)) (-4 *4 (-13 (-832) (-359))))) (-3646 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-626 (-403 (-945 (-560))))) (-5 *4 (-626 (-1153))) (-5 *2 (-626 (-626 *5))) (-5 *1 (-376 *5)) (-4 *5 (-13 (-832) (-359))))) (-4159 (*1 *2 *3 *4) (-12 (-5 *3 (-283 (-403 (-945 (-560))))) (-5 *2 (-626 (-283 (-945 *4)))) (-5 *1 (-376 *4)) (-4 *4 (-13 (-832) (-359))))) (-4159 (*1 *2 *3 *4) (-12 (-5 *3 (-403 (-945 (-560)))) (-5 *2 (-626 (-283 (-945 *4)))) (-5 *1 (-376 *4)) (-4 *4 (-13 (-832) (-359))))) (-4159 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-283 (-403 (-945 (-560)))))) (-5 *2 (-626 (-626 (-283 (-945 *4))))) (-5 *1 (-376 *4)) (-4 *4 (-13 (-832) (-359))))) (-4159 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-945 (-560))))) (-5 *2 (-626 (-626 (-283 (-945 *4))))) (-5 *1 (-376 *4)) (-4 *4 (-13 (-832) (-359)))))) -(-10 -7 (-15 -4159 ((-626 (-626 (-283 (-945 |#1|)))) (-626 (-403 (-945 (-560)))) |#1|)) (-15 -4159 ((-626 (-626 (-283 (-945 |#1|)))) (-626 (-283 (-403 (-945 (-560))))) |#1|)) (-15 -4159 ((-626 (-283 (-945 |#1|))) (-403 (-945 (-560))) |#1|)) (-15 -4159 ((-626 (-283 (-945 |#1|))) (-283 (-403 (-945 (-560)))) |#1|)) (-15 -3646 ((-626 (-626 |#1|)) (-626 (-403 (-945 (-560)))) (-626 (-1153)) |#1|)) (-15 -3646 ((-626 |#1|) (-403 (-945 (-560))) |#1|))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-4236 (($) NIL T CONST)) (-1473 (((-3 |#2| "failed") $) 25)) (-3001 ((|#2| $) 27)) (-1750 (($ $) NIL)) (-3235 (((-755) $) 10)) (-1854 (((-626 $) $) 20)) (-1814 (((-121) $) NIL)) (-2175 (($ |#2| |#1|) 18)) (-2803 (($ (-1 |#1| |#1|) $) NIL)) (-1387 (((-626 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-1669 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-1726 ((|#2| $) 15)) (-1735 ((|#1| $) NIL)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2801 (((-842) $) 43) (($ |#2|) 26)) (-2423 (((-626 |#1|) $) 17)) (-2636 ((|#1| $ |#2|) 45)) (-3304 (($) 28 T CONST)) (-1653 (((-121) $ $) NIL)) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ |#1| $) 31) (($ $ |#1|) 32) (($ |#1| |#2|) 33) (($ |#2| |#1|) 34))) -(((-377 |#1| |#2|) (-13 (-378 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1039) (-834)) (T -377)) -((* (*1 *1 *2 *3) (-12 (-5 *1 (-377 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-834))))) -(-13 (-378 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-2314 (((-3 $ "failed") $ $) 18)) (-4236 (($) 16 T CONST)) (-1473 (((-3 |#2| "failed") $) 41)) (-3001 ((|#2| $) 40)) (-1750 (($ $) 27)) (-3235 (((-755) $) 31)) (-1854 (((-626 $) $) 32)) (-1814 (((-121) $) 35)) (-2175 (($ |#2| |#1|) 36)) (-2803 (($ (-1 |#1| |#1|) $) 37)) (-1387 (((-626 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 34)) (-1669 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 28)) (-1726 ((|#2| $) 30)) (-1735 ((|#1| $) 29)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-2801 (((-842) $) 11) (($ |#2|) 42)) (-2423 (((-626 |#1|) $) 33)) (-2636 ((|#1| $ |#2|) 38)) (-3304 (($) 17 T CONST)) (-1653 (((-121) $ $) 6)) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ |#1| $) 22) (($ $ |#1|) 24) (($ |#1| |#2|) 39))) -(((-378 |#1| |#2|) (-1267) (-1039) (-1082)) (T -378)) -((* (*1 *1 *2 *3) (-12 (-4 *1 (-378 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-1082)))) (-2636 (*1 *2 *1 *3) (-12 (-4 *1 (-378 *2 *3)) (-4 *3 (-1082)) (-4 *2 (-1039)))) (-2803 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-378 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-1082)))) (-2175 (*1 *1 *2 *3) (-12 (-4 *1 (-378 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-1082)))) (-1814 (*1 *2 *1) (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-1082)) (-5 *2 (-121)))) (-1387 (*1 *2 *1) (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-1082)) (-5 *2 (-626 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-2423 (*1 *2 *1) (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-1082)) (-5 *2 (-626 *3)))) (-1854 (*1 *2 *1) (-12 (-4 *3 (-1039)) (-4 *4 (-1082)) (-5 *2 (-626 *1)) (-4 *1 (-378 *3 *4)))) (-3235 (*1 *2 *1) (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-1082)) (-5 *2 (-755)))) (-1726 (*1 *2 *1) (-12 (-4 *1 (-378 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-1082)))) (-1735 (*1 *2 *1) (-12 (-4 *1 (-378 *2 *3)) (-4 *3 (-1082)) (-4 *2 (-1039)))) (-1669 (*1 *2 *1) (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-1082)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-1750 (*1 *1 *1) (-12 (-4 *1 (-378 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-1082))))) -(-13 (-120 |t#1| |t#1|) (-1029 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -2636 (|t#1| $ |t#2|)) (-15 -2803 ($ (-1 |t#1| |t#1|) $)) (-15 -2175 ($ |t#2| |t#1|)) (-15 -1814 ((-121) $)) (-15 -1387 ((-626 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -2423 ((-626 |t#1|) $)) (-15 -1854 ((-626 $) $)) (-15 -3235 ((-755) $)) (-15 -1726 (|t#2| $)) (-15 -1735 (|t#1| $)) (-15 -1669 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -1750 ($ $)) (IF (|has| |t#1| (-170)) (-6 (-699 |t#1|)) |noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-105) . T) ((-120 |#1| |#1|) . T) ((-137) . T) ((-600 (-842)) . T) ((-629 |#1|) . T) ((-699 |#1|) |has| |#1| (-170)) ((-1029 |#2|) . T) ((-1045 |#1|) . T) ((-1082) . T)) -((-2405 (((-1241) $) 7)) (-2801 (((-842) $) 8) (($ (-671 (-680))) 12) (($ (-626 (-322))) 11) (($ (-322)) 10) (($ (-2 (|:| |localSymbols| (-1157)) (|:| -2111 (-626 (-322))))) 9))) -(((-379) (-1267)) (T -379)) -((-2801 (*1 *1 *2) (-12 (-5 *2 (-671 (-680))) (-4 *1 (-379)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-626 (-322))) (-4 *1 (-379)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-322)) (-4 *1 (-379)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1157)) (|:| -2111 (-626 (-322))))) (-4 *1 (-379))))) -(-13 (-391) (-10 -8 (-15 -2801 ($ (-671 (-680)))) (-15 -2801 ($ (-626 (-322)))) (-15 -2801 ($ (-322))) (-15 -2801 ($ (-2 (|:| |localSymbols| (-1157)) (|:| -2111 (-626 (-322)))))))) -(((-600 (-842)) . T) ((-391) . T) ((-1187) . T)) -((-1473 (((-3 $ "failed") (-671 (-304 (-375)))) 19) (((-3 $ "failed") (-671 (-304 (-560)))) 17) (((-3 $ "failed") (-671 (-945 (-375)))) 15) (((-3 $ "failed") (-671 (-945 (-560)))) 13) (((-3 $ "failed") (-671 (-403 (-945 (-375))))) 11) (((-3 $ "failed") (-671 (-403 (-945 (-560))))) 9)) (-3001 (($ (-671 (-304 (-375)))) 20) (($ (-671 (-304 (-560)))) 18) (($ (-671 (-945 (-375)))) 16) (($ (-671 (-945 (-560)))) 14) (($ (-671 (-403 (-945 (-375))))) 12) (($ (-671 (-403 (-945 (-560))))) 10)) (-2405 (((-1241) $) 7)) (-2801 (((-842) $) 8) (($ (-626 (-322))) 23) (($ (-322)) 22) (($ (-2 (|:| |localSymbols| (-1157)) (|:| -2111 (-626 (-322))))) 21))) -(((-380) (-1267)) (T -380)) -((-2801 (*1 *1 *2) (-12 (-5 *2 (-626 (-322))) (-4 *1 (-380)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-322)) (-4 *1 (-380)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1157)) (|:| -2111 (-626 (-322))))) (-4 *1 (-380)))) (-3001 (*1 *1 *2) (-12 (-5 *2 (-671 (-304 (-375)))) (-4 *1 (-380)))) (-1473 (*1 *1 *2) (|partial| -12 (-5 *2 (-671 (-304 (-375)))) (-4 *1 (-380)))) (-3001 (*1 *1 *2) (-12 (-5 *2 (-671 (-304 (-560)))) (-4 *1 (-380)))) (-1473 (*1 *1 *2) (|partial| -12 (-5 *2 (-671 (-304 (-560)))) (-4 *1 (-380)))) (-3001 (*1 *1 *2) (-12 (-5 *2 (-671 (-945 (-375)))) (-4 *1 (-380)))) (-1473 (*1 *1 *2) (|partial| -12 (-5 *2 (-671 (-945 (-375)))) (-4 *1 (-380)))) (-3001 (*1 *1 *2) (-12 (-5 *2 (-671 (-945 (-560)))) (-4 *1 (-380)))) (-1473 (*1 *1 *2) (|partial| -12 (-5 *2 (-671 (-945 (-560)))) (-4 *1 (-380)))) (-3001 (*1 *1 *2) (-12 (-5 *2 (-671 (-403 (-945 (-375))))) (-4 *1 (-380)))) (-1473 (*1 *1 *2) (|partial| -12 (-5 *2 (-671 (-403 (-945 (-375))))) (-4 *1 (-380)))) (-3001 (*1 *1 *2) (-12 (-5 *2 (-671 (-403 (-945 (-560))))) (-4 *1 (-380)))) (-1473 (*1 *1 *2) (|partial| -12 (-5 *2 (-671 (-403 (-945 (-560))))) (-4 *1 (-380))))) -(-13 (-391) (-10 -8 (-15 -2801 ($ (-626 (-322)))) (-15 -2801 ($ (-322))) (-15 -2801 ($ (-2 (|:| |localSymbols| (-1157)) (|:| -2111 (-626 (-322)))))) (-15 -3001 ($ (-671 (-304 (-375))))) (-15 -1473 ((-3 $ "failed") (-671 (-304 (-375))))) (-15 -3001 ($ (-671 (-304 (-560))))) (-15 -1473 ((-3 $ "failed") (-671 (-304 (-560))))) (-15 -3001 ($ (-671 (-945 (-375))))) (-15 -1473 ((-3 $ "failed") (-671 (-945 (-375))))) (-15 -3001 ($ (-671 (-945 (-560))))) (-15 -1473 ((-3 $ "failed") (-671 (-945 (-560))))) (-15 -3001 ($ (-671 (-403 (-945 (-375)))))) (-15 -1473 ((-3 $ "failed") (-671 (-403 (-945 (-375)))))) (-15 -3001 ($ (-671 (-403 (-945 (-560)))))) (-15 -1473 ((-3 $ "failed") (-671 (-403 (-945 (-560)))))))) -(((-600 (-842)) . T) ((-391) . T) ((-1187) . T)) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-4236 (($) NIL T CONST)) (-1750 (($ $) NIL)) (-1637 (($ |#1| |#2|) NIL)) (-2803 (($ (-1 |#1| |#1|) $) NIL)) (-1591 ((|#2| $) NIL)) (-1735 ((|#1| $) NIL)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2801 (((-842) $) 27)) (-3304 (($) 12 T CONST)) (-1653 (((-121) $ $) NIL)) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 18))) -(((-381 |#1| |#2|) (-13 (-120 |#1| |#1|) (-510 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-170)) (-6 (-699 |#1|)) |noBranch|))) (-1039) (-834)) (T -381)) -NIL -(-13 (-120 |#1| |#1|) (-510 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-170)) (-6 (-699 |#1|)) |noBranch|))) -((-2601 (((-121) $ $) NIL)) (-2912 (((-755) $) 56)) (-4236 (($) NIL T CONST)) (-1927 (((-3 $ "failed") $ $) 58)) (-1473 (((-3 |#1| "failed") $) NIL)) (-3001 ((|#1| $) NIL)) (-1823 (((-3 $ "failed") $) NIL)) (-2518 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 52)) (-2642 (((-121) $) 14)) (-1724 ((|#1| $ (-560)) NIL)) (-3461 (((-755) $ (-560)) NIL)) (-4325 (($ $ $) NIL (|has| |#1| (-834)))) (-2501 (($ $ $) NIL (|has| |#1| (-834)))) (-2381 (($ (-1 |#1| |#1|) $) 37)) (-3275 (($ (-1 (-755) (-755)) $) 34)) (-4135 (((-3 $ "failed") $ $) 49)) (-1291 (((-1135) $) NIL)) (-2822 (($ $ $) 25)) (-2932 (($ $ $) 23)) (-4353 (((-1100) $) NIL)) (-3025 (((-626 (-2 (|:| |gen| |#1|) (|:| -2469 (-755)))) $) 31)) (-2215 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 55)) (-2801 (((-842) $) 21) (($ |#1|) NIL)) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (-1459 (($) 9 T CONST)) (-1691 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1675 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1653 (((-121) $ $) 41)) (-1683 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1667 (((-121) $ $) 60 (|has| |#1| (-834)))) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ |#1| (-755)) 40)) (* (($ $ $) 47) (($ |#1| $) 29) (($ $ |#1|) 27))) -(((-382 |#1|) (-13 (-708) (-1029 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-755))) (-15 -2932 ($ $ $)) (-15 -2822 ($ $ $)) (-15 -4135 ((-3 $ "failed") $ $)) (-15 -1927 ((-3 $ "failed") $ $)) (-15 -2215 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2518 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2912 ((-755) $)) (-15 -3025 ((-626 (-2 (|:| |gen| |#1|) (|:| -2469 (-755)))) $)) (-15 -3461 ((-755) $ (-560))) (-15 -1724 (|#1| $ (-560))) (-15 -3275 ($ (-1 (-755) (-755)) $)) (-15 -2381 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-834)) (-6 (-834)) |noBranch|))) (-1082)) (T -382)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-382 *2)) (-4 *2 (-1082)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-382 *2)) (-4 *2 (-1082)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-755)) (-5 *1 (-382 *2)) (-4 *2 (-1082)))) (-2932 (*1 *1 *1 *1) (-12 (-5 *1 (-382 *2)) (-4 *2 (-1082)))) (-2822 (*1 *1 *1 *1) (-12 (-5 *1 (-382 *2)) (-4 *2 (-1082)))) (-4135 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-382 *2)) (-4 *2 (-1082)))) (-1927 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-382 *2)) (-4 *2 (-1082)))) (-2215 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-382 *3)) (|:| |rm| (-382 *3)))) (-5 *1 (-382 *3)) (-4 *3 (-1082)))) (-2518 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-382 *3)) (|:| |mm| (-382 *3)) (|:| |rm| (-382 *3)))) (-5 *1 (-382 *3)) (-4 *3 (-1082)))) (-2912 (*1 *2 *1) (-12 (-5 *2 (-755)) (-5 *1 (-382 *3)) (-4 *3 (-1082)))) (-3025 (*1 *2 *1) (-12 (-5 *2 (-626 (-2 (|:| |gen| *3) (|:| -2469 (-755))))) (-5 *1 (-382 *3)) (-4 *3 (-1082)))) (-3461 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-5 *2 (-755)) (-5 *1 (-382 *4)) (-4 *4 (-1082)))) (-1724 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-5 *1 (-382 *2)) (-4 *2 (-1082)))) (-3275 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-755) (-755))) (-5 *1 (-382 *3)) (-4 *3 (-1082)))) (-2381 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1082)) (-5 *1 (-382 *3))))) -(-13 (-708) (-1029 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-755))) (-15 -2932 ($ $ $)) (-15 -2822 ($ $ $)) (-15 -4135 ((-3 $ "failed") $ $)) (-15 -1927 ((-3 $ "failed") $ $)) (-15 -2215 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2518 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2912 ((-755) $)) (-15 -3025 ((-626 (-2 (|:| |gen| |#1|) (|:| -2469 (-755)))) $)) (-15 -3461 ((-755) $ (-560))) (-15 -1724 (|#1| $ (-560))) (-15 -3275 ($ (-1 (-755) (-755)) $)) (-15 -2381 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-834)) (-6 (-834)) |noBranch|))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) 40)) (-1350 (($ $) 39)) (-3376 (((-121) $) 37)) (-2314 (((-3 $ "failed") $ $) 18)) (-4236 (($) 16 T CONST)) (-1473 (((-3 (-560) "failed") $) 46)) (-3001 (((-560) $) 45)) (-1823 (((-3 $ "failed") $) 33)) (-2642 (((-121) $) 30)) (-4325 (($ $ $) 53)) (-2501 (($ $ $) 52)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-2336 (((-3 $ "failed") $ $) 41)) (-2801 (((-842) $) 11) (($ (-560)) 27) (($ $) 42) (($ (-560)) 47)) (-1751 (((-755)) 28)) (-2328 (((-121) $ $) 38)) (-2464 (($ $ (-909)) 25) (($ $ (-755)) 32)) (-3304 (($) 17 T CONST)) (-1459 (($) 29 T CONST)) (-1691 (((-121) $ $) 50)) (-1675 (((-121) $ $) 49)) (-1653 (((-121) $ $) 6)) (-1683 (((-121) $ $) 51)) (-1667 (((-121) $ $) 48)) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 24) (($ $ (-755)) 31)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 23))) -(((-383) (-1267)) (T -383)) -NIL -(-13 (-550) (-834) (-1029 (-560))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-43 $) . T) ((-105) . T) ((-120 $ $) . T) ((-137) . T) ((-600 (-842)) . T) ((-170) . T) ((-280) . T) ((-550) . T) ((-629 $) . T) ((-699 $) . T) ((-708) . T) ((-834) . T) ((-1029 (-560)) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1094) . T) ((-1082) . T)) -((-2601 (((-121) $ $) NIL)) (-1953 (((-121) $) 20)) (-4369 (((-121) $) 19)) (-1721 (($ (-1135) (-1135) (-1135)) 21)) (-1337 (((-1135) $) 16)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2395 (($ (-1135) (-1135) (-1135)) 14)) (-4379 (((-1135) $) 17)) (-3482 (((-121) $) 18)) (-2167 (((-1135) $) 15)) (-2801 (((-842) $) 12) (($ (-1135)) 13) (((-1135) $) 9)) (-1653 (((-121) $ $) 7))) -(((-384) (-385)) (T -384)) -NIL -(-385) -((-2601 (((-121) $ $) 7)) (-1953 (((-121) $) 13)) (-4369 (((-121) $) 14)) (-1721 (($ (-1135) (-1135) (-1135)) 12)) (-1337 (((-1135) $) 17)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-2395 (($ (-1135) (-1135) (-1135)) 19)) (-4379 (((-1135) $) 16)) (-3482 (((-121) $) 15)) (-2167 (((-1135) $) 18)) (-2801 (((-842) $) 11) (($ (-1135)) 21) (((-1135) $) 20)) (-1653 (((-121) $ $) 6))) -(((-385) (-1267)) (T -385)) -((-2801 (*1 *1 *2) (-12 (-5 *2 (-1135)) (-4 *1 (-385)))) (-2801 (*1 *2 *1) (-12 (-4 *1 (-385)) (-5 *2 (-1135)))) (-2395 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1135)) (-4 *1 (-385)))) (-2167 (*1 *2 *1) (-12 (-4 *1 (-385)) (-5 *2 (-1135)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-385)) (-5 *2 (-1135)))) (-4379 (*1 *2 *1) (-12 (-4 *1 (-385)) (-5 *2 (-1135)))) (-3482 (*1 *2 *1) (-12 (-4 *1 (-385)) (-5 *2 (-121)))) (-4369 (*1 *2 *1) (-12 (-4 *1 (-385)) (-5 *2 (-121)))) (-1953 (*1 *2 *1) (-12 (-4 *1 (-385)) (-5 *2 (-121)))) (-1721 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1135)) (-4 *1 (-385))))) -(-13 (-1082) (-10 -8 (-15 -2801 ($ (-1135))) (-15 -2801 ((-1135) $)) (-15 -2395 ($ (-1135) (-1135) (-1135))) (-15 -2167 ((-1135) $)) (-15 -1337 ((-1135) $)) (-15 -4379 ((-1135) $)) (-15 -3482 ((-121) $)) (-15 -4369 ((-121) $)) (-15 -1953 ((-121) $)) (-15 -1721 ($ (-1135) (-1135) (-1135))))) -(((-105) . T) ((-600 (-842)) . T) ((-1082) . T)) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-2635 (((-842) $) 50)) (-4236 (($) NIL T CONST)) (-1498 (($ $ (-909)) NIL)) (-3710 (($ $ (-909)) NIL)) (-2137 (($ $ (-909)) NIL)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-4250 (($ (-755)) 26)) (-4016 (((-755)) 15)) (-2116 (((-842) $) 52)) (-1671 (($ $ $) NIL)) (-2801 (((-842) $) NIL)) (-2676 (($ $ $ $) NIL)) (-3127 (($ $ $) NIL)) (-3304 (($) 20 T CONST)) (-1653 (((-121) $ $) 28)) (-1725 (($ $) 34) (($ $ $) 36)) (-1716 (($ $ $) 37)) (** (($ $ (-909)) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33))) -(((-386 |#1| |#2| |#3|) (-13 (-728 |#3|) (-10 -8 (-15 -4016 ((-755))) (-15 -2116 ((-842) $)) (-15 -2635 ((-842) $)) (-15 -4250 ($ (-755))))) (-755) (-755) (-170)) (T -386)) -((-4016 (*1 *2) (-12 (-5 *2 (-755)) (-5 *1 (-386 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-170)))) (-2116 (*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-386 *3 *4 *5)) (-14 *3 (-755)) (-14 *4 (-755)) (-4 *5 (-170)))) (-2635 (*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-386 *3 *4 *5)) (-14 *3 (-755)) (-14 *4 (-755)) (-4 *5 (-170)))) (-4250 (*1 *1 *2) (-12 (-5 *2 (-755)) (-5 *1 (-386 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-170))))) -(-13 (-728 |#3|) (-10 -8 (-15 -4016 ((-755))) (-15 -2116 ((-842) $)) (-15 -2635 ((-842) $)) (-15 -4250 ($ (-755))))) -((-3074 (((-1135)) 10)) (-2797 (((-1124 (-1135))) 28)) (-2390 (((-1241) (-1135)) 25) (((-1241) (-384)) 24)) (-2400 (((-1241)) 26)) (-2726 (((-1124 (-1135))) 27))) -(((-387) (-10 -7 (-15 -2726 ((-1124 (-1135)))) (-15 -2797 ((-1124 (-1135)))) (-15 -2400 ((-1241))) (-15 -2390 ((-1241) (-384))) (-15 -2390 ((-1241) (-1135))) (-15 -3074 ((-1135))))) (T -387)) -((-3074 (*1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-387)))) (-2390 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1241)) (-5 *1 (-387)))) (-2390 (*1 *2 *3) (-12 (-5 *3 (-384)) (-5 *2 (-1241)) (-5 *1 (-387)))) (-2400 (*1 *2) (-12 (-5 *2 (-1241)) (-5 *1 (-387)))) (-2797 (*1 *2) (-12 (-5 *2 (-1124 (-1135))) (-5 *1 (-387)))) (-2726 (*1 *2) (-12 (-5 *2 (-1124 (-1135))) (-5 *1 (-387))))) -(-10 -7 (-15 -2726 ((-1124 (-1135)))) (-15 -2797 ((-1124 (-1135)))) (-15 -2400 ((-1241))) (-15 -2390 ((-1241) (-384))) (-15 -2390 ((-1241) (-1135))) (-15 -3074 ((-1135)))) -((-3504 (((-755) (-328 |#1| |#2| |#3| |#4|)) 16))) -(((-388 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3504 ((-755) (-328 |#1| |#2| |#3| |#4|)))) (-13 (-364) (-359)) (-1211 |#1|) (-1211 (-403 |#2|)) (-334 |#1| |#2| |#3|)) (T -388)) -((-3504 (*1 *2 *3) (-12 (-5 *3 (-328 *4 *5 *6 *7)) (-4 *4 (-13 (-364) (-359))) (-4 *5 (-1211 *4)) (-4 *6 (-1211 (-403 *5))) (-4 *7 (-334 *4 *5 *6)) (-5 *2 (-755)) (-5 *1 (-388 *4 *5 *6 *7))))) -(-10 -7 (-15 -3504 ((-755) (-328 |#1| |#2| |#3| |#4|)))) -((-2801 (((-390) |#1|) 11))) -(((-389 |#1|) (-10 -7 (-15 -2801 ((-390) |#1|))) (-1082)) (T -389)) -((-2801 (*1 *2 *3) (-12 (-5 *2 (-390)) (-5 *1 (-389 *3)) (-4 *3 (-1082))))) -(-10 -7 (-15 -2801 ((-390) |#1|))) -((-2601 (((-121) $ $) NIL)) (-4270 (((-626 (-1135)) $ (-626 (-1135))) 37)) (-3725 (((-626 (-1135)) $ (-626 (-1135))) 38)) (-2564 (((-626 (-1135)) $ (-626 (-1135))) 39)) (-4029 (((-626 (-1135)) $) 34)) (-1721 (($) 23)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-3493 (((-626 (-1135)) $) 35)) (-1659 (((-626 (-1135)) $) 36)) (-4106 (((-1241) $ (-560)) 32) (((-1241) $) 33)) (-4255 (($ (-842) (-560)) 29)) (-2801 (((-842) $) 41) (($ (-842)) 25)) (-1653 (((-121) $ $) NIL))) -(((-390) (-13 (-1082) (-10 -8 (-15 -2801 ($ (-842))) (-15 -4255 ($ (-842) (-560))) (-15 -4106 ((-1241) $ (-560))) (-15 -4106 ((-1241) $)) (-15 -1659 ((-626 (-1135)) $)) (-15 -3493 ((-626 (-1135)) $)) (-15 -1721 ($)) (-15 -4029 ((-626 (-1135)) $)) (-15 -2564 ((-626 (-1135)) $ (-626 (-1135)))) (-15 -3725 ((-626 (-1135)) $ (-626 (-1135)))) (-15 -4270 ((-626 (-1135)) $ (-626 (-1135))))))) (T -390)) -((-2801 (*1 *1 *2) (-12 (-5 *2 (-842)) (-5 *1 (-390)))) (-4255 (*1 *1 *2 *3) (-12 (-5 *2 (-842)) (-5 *3 (-560)) (-5 *1 (-390)))) (-4106 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-5 *2 (-1241)) (-5 *1 (-390)))) (-4106 (*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-390)))) (-1659 (*1 *2 *1) (-12 (-5 *2 (-626 (-1135))) (-5 *1 (-390)))) (-3493 (*1 *2 *1) (-12 (-5 *2 (-626 (-1135))) (-5 *1 (-390)))) (-1721 (*1 *1) (-5 *1 (-390))) (-4029 (*1 *2 *1) (-12 (-5 *2 (-626 (-1135))) (-5 *1 (-390)))) (-2564 (*1 *2 *1 *2) (-12 (-5 *2 (-626 (-1135))) (-5 *1 (-390)))) (-3725 (*1 *2 *1 *2) (-12 (-5 *2 (-626 (-1135))) (-5 *1 (-390)))) (-4270 (*1 *2 *1 *2) (-12 (-5 *2 (-626 (-1135))) (-5 *1 (-390))))) -(-13 (-1082) (-10 -8 (-15 -2801 ($ (-842))) (-15 -4255 ($ (-842) (-560))) (-15 -4106 ((-1241) $ (-560))) (-15 -4106 ((-1241) $)) (-15 -1659 ((-626 (-1135)) $)) (-15 -3493 ((-626 (-1135)) $)) (-15 -1721 ($)) (-15 -4029 ((-626 (-1135)) $)) (-15 -2564 ((-626 (-1135)) $ (-626 (-1135)))) (-15 -3725 ((-626 (-1135)) $ (-626 (-1135)))) (-15 -4270 ((-626 (-1135)) $ (-626 (-1135)))))) -((-2405 (((-1241) $) 7)) (-2801 (((-842) $) 8))) -(((-391) (-1267)) (T -391)) -((-2405 (*1 *2 *1) (-12 (-4 *1 (-391)) (-5 *2 (-1241))))) -(-13 (-1187) (-600 (-842)) (-10 -8 (-15 -2405 ((-1241) $)))) -(((-600 (-842)) . T) ((-1187) . T)) -((-1473 (((-3 $ "failed") (-304 (-375))) 19) (((-3 $ "failed") (-304 (-560))) 17) (((-3 $ "failed") (-945 (-375))) 15) (((-3 $ "failed") (-945 (-560))) 13) (((-3 $ "failed") (-403 (-945 (-375)))) 11) (((-3 $ "failed") (-403 (-945 (-560)))) 9)) (-3001 (($ (-304 (-375))) 20) (($ (-304 (-560))) 18) (($ (-945 (-375))) 16) (($ (-945 (-560))) 14) (($ (-403 (-945 (-375)))) 12) (($ (-403 (-945 (-560)))) 10)) (-2405 (((-1241) $) 7)) (-2801 (((-842) $) 8) (($ (-626 (-322))) 23) (($ (-322)) 22) (($ (-2 (|:| |localSymbols| (-1157)) (|:| -2111 (-626 (-322))))) 21))) -(((-392) (-1267)) (T -392)) -((-2801 (*1 *1 *2) (-12 (-5 *2 (-626 (-322))) (-4 *1 (-392)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-322)) (-4 *1 (-392)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1157)) (|:| -2111 (-626 (-322))))) (-4 *1 (-392)))) (-3001 (*1 *1 *2) (-12 (-5 *2 (-304 (-375))) (-4 *1 (-392)))) (-1473 (*1 *1 *2) (|partial| -12 (-5 *2 (-304 (-375))) (-4 *1 (-392)))) (-3001 (*1 *1 *2) (-12 (-5 *2 (-304 (-560))) (-4 *1 (-392)))) (-1473 (*1 *1 *2) (|partial| -12 (-5 *2 (-304 (-560))) (-4 *1 (-392)))) (-3001 (*1 *1 *2) (-12 (-5 *2 (-945 (-375))) (-4 *1 (-392)))) (-1473 (*1 *1 *2) (|partial| -12 (-5 *2 (-945 (-375))) (-4 *1 (-392)))) (-3001 (*1 *1 *2) (-12 (-5 *2 (-945 (-560))) (-4 *1 (-392)))) (-1473 (*1 *1 *2) (|partial| -12 (-5 *2 (-945 (-560))) (-4 *1 (-392)))) (-3001 (*1 *1 *2) (-12 (-5 *2 (-403 (-945 (-375)))) (-4 *1 (-392)))) (-1473 (*1 *1 *2) (|partial| -12 (-5 *2 (-403 (-945 (-375)))) (-4 *1 (-392)))) (-3001 (*1 *1 *2) (-12 (-5 *2 (-403 (-945 (-560)))) (-4 *1 (-392)))) (-1473 (*1 *1 *2) (|partial| -12 (-5 *2 (-403 (-945 (-560)))) (-4 *1 (-392))))) -(-13 (-391) (-10 -8 (-15 -2801 ($ (-626 (-322)))) (-15 -2801 ($ (-322))) (-15 -2801 ($ (-2 (|:| |localSymbols| (-1157)) (|:| -2111 (-626 (-322)))))) (-15 -3001 ($ (-304 (-375)))) (-15 -1473 ((-3 $ "failed") (-304 (-375)))) (-15 -3001 ($ (-304 (-560)))) (-15 -1473 ((-3 $ "failed") (-304 (-560)))) (-15 -3001 ($ (-945 (-375)))) (-15 -1473 ((-3 $ "failed") (-945 (-375)))) (-15 -3001 ($ (-945 (-560)))) (-15 -1473 ((-3 $ "failed") (-945 (-560)))) (-15 -3001 ($ (-403 (-945 (-375))))) (-15 -1473 ((-3 $ "failed") (-403 (-945 (-375))))) (-15 -3001 ($ (-403 (-945 (-560))))) (-15 -1473 ((-3 $ "failed") (-403 (-945 (-560))))))) -(((-600 (-842)) . T) ((-391) . T) ((-1187) . T)) -((-2771 (((-626 (-1135)) (-626 (-1135))) 8)) (-2405 (((-1241) (-384)) 27)) (-1824 (((-1086) (-1153) (-626 (-1153)) (-1156) (-626 (-1153))) 59) (((-1086) (-1153) (-626 (-3 (|:| |array| (-626 (-1153))) (|:| |scalar| (-1153)))) (-626 (-626 (-3 (|:| |array| (-626 (-1153))) (|:| |scalar| (-1153))))) (-626 (-1153)) (-1153)) 35) (((-1086) (-1153) (-626 (-3 (|:| |array| (-626 (-1153))) (|:| |scalar| (-1153)))) (-626 (-626 (-3 (|:| |array| (-626 (-1153))) (|:| |scalar| (-1153))))) (-626 (-1153))) 34))) -(((-393) (-10 -7 (-15 -1824 ((-1086) (-1153) (-626 (-3 (|:| |array| (-626 (-1153))) (|:| |scalar| (-1153)))) (-626 (-626 (-3 (|:| |array| (-626 (-1153))) (|:| |scalar| (-1153))))) (-626 (-1153)))) (-15 -1824 ((-1086) (-1153) (-626 (-3 (|:| |array| (-626 (-1153))) (|:| |scalar| (-1153)))) (-626 (-626 (-3 (|:| |array| (-626 (-1153))) (|:| |scalar| (-1153))))) (-626 (-1153)) (-1153))) (-15 -1824 ((-1086) (-1153) (-626 (-1153)) (-1156) (-626 (-1153)))) (-15 -2405 ((-1241) (-384))) (-15 -2771 ((-626 (-1135)) (-626 (-1135)))))) (T -393)) -((-2771 (*1 *2 *2) (-12 (-5 *2 (-626 (-1135))) (-5 *1 (-393)))) (-2405 (*1 *2 *3) (-12 (-5 *3 (-384)) (-5 *2 (-1241)) (-5 *1 (-393)))) (-1824 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-626 (-1153))) (-5 *5 (-1156)) (-5 *3 (-1153)) (-5 *2 (-1086)) (-5 *1 (-393)))) (-1824 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-626 (-626 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-626 (-3 (|:| |array| (-626 *3)) (|:| |scalar| (-1153))))) (-5 *6 (-626 (-1153))) (-5 *3 (-1153)) (-5 *2 (-1086)) (-5 *1 (-393)))) (-1824 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-626 (-626 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-626 (-3 (|:| |array| (-626 *3)) (|:| |scalar| (-1153))))) (-5 *6 (-626 (-1153))) (-5 *3 (-1153)) (-5 *2 (-1086)) (-5 *1 (-393))))) -(-10 -7 (-15 -1824 ((-1086) (-1153) (-626 (-3 (|:| |array| (-626 (-1153))) (|:| |scalar| (-1153)))) (-626 (-626 (-3 (|:| |array| (-626 (-1153))) (|:| |scalar| (-1153))))) (-626 (-1153)))) (-15 -1824 ((-1086) (-1153) (-626 (-3 (|:| |array| (-626 (-1153))) (|:| |scalar| (-1153)))) (-626 (-626 (-3 (|:| |array| (-626 (-1153))) (|:| |scalar| (-1153))))) (-626 (-1153)) (-1153))) (-15 -1824 ((-1086) (-1153) (-626 (-1153)) (-1156) (-626 (-1153)))) (-15 -2405 ((-1241) (-384))) (-15 -2771 ((-626 (-1135)) (-626 (-1135))))) -((-2405 (((-1241) $) 37)) (-2801 (((-842) $) 89) (($ (-322)) 92) (($ (-626 (-322))) 91) (($ (-2 (|:| |localSymbols| (-1157)) (|:| -2111 (-626 (-322))))) 88) (($ (-304 (-682))) 52) (($ (-304 (-680))) 66) (($ (-304 (-675))) 78) (($ (-283 (-304 (-682)))) 62) (($ (-283 (-304 (-680)))) 74) (($ (-283 (-304 (-675)))) 86) (($ (-304 (-560))) 96) (($ (-304 (-375))) 108) (($ (-304 (-167 (-375)))) 120) (($ (-283 (-304 (-560)))) 104) (($ (-283 (-304 (-375)))) 116) (($ (-283 (-304 (-167 (-375))))) 128))) -(((-394 |#1| |#2| |#3| |#4|) (-13 (-391) (-10 -8 (-15 -2801 ($ (-322))) (-15 -2801 ($ (-626 (-322)))) (-15 -2801 ($ (-2 (|:| |localSymbols| (-1157)) (|:| -2111 (-626 (-322)))))) (-15 -2801 ($ (-304 (-682)))) (-15 -2801 ($ (-304 (-680)))) (-15 -2801 ($ (-304 (-675)))) (-15 -2801 ($ (-283 (-304 (-682))))) (-15 -2801 ($ (-283 (-304 (-680))))) (-15 -2801 ($ (-283 (-304 (-675))))) (-15 -2801 ($ (-304 (-560)))) (-15 -2801 ($ (-304 (-375)))) (-15 -2801 ($ (-304 (-167 (-375))))) (-15 -2801 ($ (-283 (-304 (-560))))) (-15 -2801 ($ (-283 (-304 (-375))))) (-15 -2801 ($ (-283 (-304 (-167 (-375)))))))) (-1153) (-3 (|:| |fst| (-430)) (|:| -2303 "void")) (-626 (-1153)) (-1157)) (T -394)) -((-2801 (*1 *1 *2) (-12 (-5 *2 (-322)) (-5 *1 (-394 *3 *4 *5 *6)) (-14 *3 (-1153)) (-14 *4 (-3 (|:| |fst| (-430)) (|:| -2303 "void"))) (-14 *5 (-626 (-1153))) (-14 *6 (-1157)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-626 (-322))) (-5 *1 (-394 *3 *4 *5 *6)) (-14 *3 (-1153)) (-14 *4 (-3 (|:| |fst| (-430)) (|:| -2303 "void"))) (-14 *5 (-626 (-1153))) (-14 *6 (-1157)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1157)) (|:| -2111 (-626 (-322))))) (-5 *1 (-394 *3 *4 *5 *6)) (-14 *3 (-1153)) (-14 *4 (-3 (|:| |fst| (-430)) (|:| -2303 "void"))) (-14 *5 (-626 (-1153))) (-14 *6 (-1157)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-304 (-682))) (-5 *1 (-394 *3 *4 *5 *6)) (-14 *3 (-1153)) (-14 *4 (-3 (|:| |fst| (-430)) (|:| -2303 "void"))) (-14 *5 (-626 (-1153))) (-14 *6 (-1157)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-304 (-680))) (-5 *1 (-394 *3 *4 *5 *6)) (-14 *3 (-1153)) (-14 *4 (-3 (|:| |fst| (-430)) (|:| -2303 "void"))) (-14 *5 (-626 (-1153))) (-14 *6 (-1157)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-304 (-675))) (-5 *1 (-394 *3 *4 *5 *6)) (-14 *3 (-1153)) (-14 *4 (-3 (|:| |fst| (-430)) (|:| -2303 "void"))) (-14 *5 (-626 (-1153))) (-14 *6 (-1157)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-283 (-304 (-682)))) (-5 *1 (-394 *3 *4 *5 *6)) (-14 *3 (-1153)) (-14 *4 (-3 (|:| |fst| (-430)) (|:| -2303 "void"))) (-14 *5 (-626 (-1153))) (-14 *6 (-1157)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-283 (-304 (-680)))) (-5 *1 (-394 *3 *4 *5 *6)) (-14 *3 (-1153)) (-14 *4 (-3 (|:| |fst| (-430)) (|:| -2303 "void"))) (-14 *5 (-626 (-1153))) (-14 *6 (-1157)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-283 (-304 (-675)))) (-5 *1 (-394 *3 *4 *5 *6)) (-14 *3 (-1153)) (-14 *4 (-3 (|:| |fst| (-430)) (|:| -2303 "void"))) (-14 *5 (-626 (-1153))) (-14 *6 (-1157)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-304 (-560))) (-5 *1 (-394 *3 *4 *5 *6)) (-14 *3 (-1153)) (-14 *4 (-3 (|:| |fst| (-430)) (|:| -2303 "void"))) (-14 *5 (-626 (-1153))) (-14 *6 (-1157)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-304 (-375))) (-5 *1 (-394 *3 *4 *5 *6)) (-14 *3 (-1153)) (-14 *4 (-3 (|:| |fst| (-430)) (|:| -2303 "void"))) (-14 *5 (-626 (-1153))) (-14 *6 (-1157)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-304 (-167 (-375)))) (-5 *1 (-394 *3 *4 *5 *6)) (-14 *3 (-1153)) (-14 *4 (-3 (|:| |fst| (-430)) (|:| -2303 "void"))) (-14 *5 (-626 (-1153))) (-14 *6 (-1157)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-283 (-304 (-560)))) (-5 *1 (-394 *3 *4 *5 *6)) (-14 *3 (-1153)) (-14 *4 (-3 (|:| |fst| (-430)) (|:| -2303 "void"))) (-14 *5 (-626 (-1153))) (-14 *6 (-1157)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-283 (-304 (-375)))) (-5 *1 (-394 *3 *4 *5 *6)) (-14 *3 (-1153)) (-14 *4 (-3 (|:| |fst| (-430)) (|:| -2303 "void"))) (-14 *5 (-626 (-1153))) (-14 *6 (-1157)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-283 (-304 (-167 (-375))))) (-5 *1 (-394 *3 *4 *5 *6)) (-14 *3 (-1153)) (-14 *4 (-3 (|:| |fst| (-430)) (|:| -2303 "void"))) (-14 *5 (-626 (-1153))) (-14 *6 (-1157))))) -(-13 (-391) (-10 -8 (-15 -2801 ($ (-322))) (-15 -2801 ($ (-626 (-322)))) (-15 -2801 ($ (-2 (|:| |localSymbols| (-1157)) (|:| -2111 (-626 (-322)))))) (-15 -2801 ($ (-304 (-682)))) (-15 -2801 ($ (-304 (-680)))) (-15 -2801 ($ (-304 (-675)))) (-15 -2801 ($ (-283 (-304 (-682))))) (-15 -2801 ($ (-283 (-304 (-680))))) (-15 -2801 ($ (-283 (-304 (-675))))) (-15 -2801 ($ (-304 (-560)))) (-15 -2801 ($ (-304 (-375)))) (-15 -2801 ($ (-304 (-167 (-375))))) (-15 -2801 ($ (-283 (-304 (-560))))) (-15 -2801 ($ (-283 (-304 (-375))))) (-15 -2801 ($ (-283 (-304 (-167 (-375)))))))) -((-2601 (((-121) $ $) NIL)) (-1445 ((|#2| $) 36)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-1305 (($ (-403 |#2|)) 84)) (-3072 (((-626 (-2 (|:| -4034 (-755)) (|:| -1341 |#2|) (|:| |num| |#2|))) $) 37)) (-2443 (($ $) 32) (($ $ (-755)) 34)) (-4255 (((-403 |#2|) $) 46)) (-4162 (($ (-626 (-2 (|:| -4034 (-755)) (|:| -1341 |#2|) (|:| |num| |#2|)))) 31)) (-2801 (((-842) $) 120)) (-2500 (($ $) 33) (($ $ (-755)) 35)) (-1653 (((-121) $ $) NIL)) (-1716 (($ |#2| $) 39))) -(((-395 |#1| |#2|) (-13 (-1082) (-601 (-403 |#2|)) (-10 -8 (-15 -1716 ($ |#2| $)) (-15 -1305 ($ (-403 |#2|))) (-15 -1445 (|#2| $)) (-15 -3072 ((-626 (-2 (|:| -4034 (-755)) (|:| -1341 |#2|) (|:| |num| |#2|))) $)) (-15 -4162 ($ (-626 (-2 (|:| -4034 (-755)) (|:| -1341 |#2|) (|:| |num| |#2|))))) (-15 -2443 ($ $)) (-15 -2500 ($ $)) (-15 -2443 ($ $ (-755))) (-15 -2500 ($ $ (-755))))) (-13 (-359) (-148)) (-1211 |#1|)) (T -395)) -((-1716 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-359) (-148))) (-5 *1 (-395 *3 *2)) (-4 *2 (-1211 *3)))) (-1305 (*1 *1 *2) (-12 (-5 *2 (-403 *4)) (-4 *4 (-1211 *3)) (-4 *3 (-13 (-359) (-148))) (-5 *1 (-395 *3 *4)))) (-1445 (*1 *2 *1) (-12 (-4 *2 (-1211 *3)) (-5 *1 (-395 *3 *2)) (-4 *3 (-13 (-359) (-148))))) (-3072 (*1 *2 *1) (-12 (-4 *3 (-13 (-359) (-148))) (-5 *2 (-626 (-2 (|:| -4034 (-755)) (|:| -1341 *4) (|:| |num| *4)))) (-5 *1 (-395 *3 *4)) (-4 *4 (-1211 *3)))) (-4162 (*1 *1 *2) (-12 (-5 *2 (-626 (-2 (|:| -4034 (-755)) (|:| -1341 *4) (|:| |num| *4)))) (-4 *4 (-1211 *3)) (-4 *3 (-13 (-359) (-148))) (-5 *1 (-395 *3 *4)))) (-2443 (*1 *1 *1) (-12 (-4 *2 (-13 (-359) (-148))) (-5 *1 (-395 *2 *3)) (-4 *3 (-1211 *2)))) (-2500 (*1 *1 *1) (-12 (-4 *2 (-13 (-359) (-148))) (-5 *1 (-395 *2 *3)) (-4 *3 (-1211 *2)))) (-2443 (*1 *1 *1 *2) (-12 (-5 *2 (-755)) (-4 *3 (-13 (-359) (-148))) (-5 *1 (-395 *3 *4)) (-4 *4 (-1211 *3)))) (-2500 (*1 *1 *1 *2) (-12 (-5 *2 (-755)) (-4 *3 (-13 (-359) (-148))) (-5 *1 (-395 *3 *4)) (-4 *4 (-1211 *3))))) -(-13 (-1082) (-601 (-403 |#2|)) (-10 -8 (-15 -1716 ($ |#2| $)) (-15 -1305 ($ (-403 |#2|))) (-15 -1445 (|#2| $)) (-15 -3072 ((-626 (-2 (|:| -4034 (-755)) (|:| -1341 |#2|) (|:| |num| |#2|))) $)) (-15 -4162 ($ (-626 (-2 (|:| -4034 (-755)) (|:| -1341 |#2|) (|:| |num| |#2|))))) (-15 -2443 ($ $)) (-15 -2500 ($ $)) (-15 -2443 ($ $ (-755))) (-15 -2500 ($ $ (-755))))) -((-2601 (((-121) $ $) 9 (-2318 (|has| |#1| (-873 (-560))) (|has| |#1| (-873 (-375)))))) (-2399 (((-876 (-375) $) $ (-879 (-375)) (-876 (-375) $)) 15 (|has| |#1| (-873 (-375)))) (((-876 (-560) $) $ (-879 (-560)) (-876 (-560) $)) 14 (|has| |#1| (-873 (-560))))) (-1291 (((-1135) $) 13 (-2318 (|has| |#1| (-873 (-560))) (|has| |#1| (-873 (-375)))))) (-4353 (((-1100) $) 12 (-2318 (|has| |#1| (-873 (-560))) (|has| |#1| (-873 (-375)))))) (-2801 (((-842) $) 11 (-2318 (|has| |#1| (-873 (-560))) (|has| |#1| (-873 (-375)))))) (-1653 (((-121) $ $) 10 (-2318 (|has| |#1| (-873 (-560))) (|has| |#1| (-873 (-375))))))) -(((-396 |#1|) (-1267) (-1187)) (T -396)) -NIL -(-13 (-1187) (-10 -7 (IF (|has| |t#1| (-873 (-560))) (-6 (-873 (-560))) |noBranch|) (IF (|has| |t#1| (-873 (-375))) (-6 (-873 (-375))) |noBranch|))) -(((-105) -2318 (|has| |#1| (-873 (-560))) (|has| |#1| (-873 (-375)))) ((-600 (-842)) -2318 (|has| |#1| (-873 (-560))) (|has| |#1| (-873 (-375)))) ((-873 (-375)) |has| |#1| (-873 (-375))) ((-873 (-560)) |has| |#1| (-873 (-560))) ((-1082) -2318 (|has| |#1| (-873 (-560))) (|has| |#1| (-873 (-375)))) ((-1187) . T)) -((-2937 (($ $) 10) (($ $ (-755)) 11))) -(((-397 |#1|) (-10 -8 (-15 -2937 (|#1| |#1| (-755))) (-15 -2937 (|#1| |#1|))) (-398)) (T -397)) -NIL -(-10 -8 (-15 -2937 (|#1| |#1| (-755))) (-15 -2937 (|#1| |#1|))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) 40)) (-1350 (($ $) 39)) (-3376 (((-121) $) 37)) (-2314 (((-3 $ "failed") $ $) 18)) (-3065 (($ $) 71)) (-2953 (((-414 $) $) 70)) (-4179 (((-121) $ $) 57)) (-4236 (($) 16 T CONST)) (-2563 (($ $ $) 53)) (-1823 (((-3 $ "failed") $) 33)) (-2572 (($ $ $) 54)) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) 49)) (-2937 (($ $) 75) (($ $ (-755)) 74)) (-3319 (((-121) $) 69)) (-3504 (((-820 (-909)) $) 77)) (-2642 (((-121) $) 30)) (-3856 (((-3 (-626 $) "failed") (-626 $) $) 50)) (-2582 (($ $ $) 45) (($ (-626 $)) 44)) (-1291 (((-1135) $) 9)) (-1701 (($ $) 68)) (-4353 (((-1100) $) 10)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) 43)) (-4440 (($ $ $) 47) (($ (-626 $)) 46)) (-1601 (((-414 $) $) 72)) (-3505 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2336 (((-3 $ "failed") $ $) 41)) (-3456 (((-3 (-626 $) "failed") (-626 $) $) 48)) (-4445 (((-755) $) 56)) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) 55)) (-2935 (((-3 (-755) "failed") $ $) 76)) (-2801 (((-842) $) 11) (($ (-560)) 27) (($ $) 42) (($ (-403 (-560))) 63)) (-2272 (((-3 $ "failed") $) 78)) (-1751 (((-755)) 28)) (-2328 (((-121) $ $) 38)) (-2464 (($ $ (-909)) 25) (($ $ (-755)) 32) (($ $ (-560)) 67)) (-3304 (($) 17 T CONST)) (-1459 (($) 29 T CONST)) (-1653 (((-121) $ $) 6)) (-1733 (($ $ $) 62)) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 24) (($ $ (-755)) 31) (($ $ (-560)) 66)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 23) (($ $ (-403 (-560))) 65) (($ (-403 (-560)) $) 64))) -(((-398) (-1267)) (T -398)) -((-3504 (*1 *2 *1) (-12 (-4 *1 (-398)) (-5 *2 (-820 (-909))))) (-2935 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-398)) (-5 *2 (-755)))) (-2937 (*1 *1 *1) (-4 *1 (-398))) (-2937 (*1 *1 *1 *2) (-12 (-4 *1 (-398)) (-5 *2 (-755))))) -(-13 (-359) (-146) (-10 -8 (-15 -3504 ((-820 (-909)) $)) (-15 -2935 ((-3 (-755) "failed") $ $)) (-15 -2937 ($ $)) (-15 -2937 ($ $ (-755))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-43 (-403 (-560))) . T) ((-43 $) . T) ((-105) . T) ((-120 (-403 (-560)) (-403 (-560))) . T) ((-120 $ $) . T) ((-137) . T) ((-146) . T) ((-600 (-842)) . T) ((-170) . T) ((-233) . T) ((-280) . T) ((-296) . T) ((-359) . T) ((-447) . T) ((-550) . T) ((-629 (-403 (-560))) . T) ((-629 $) . T) ((-699 (-403 (-560))) . T) ((-699 $) . T) ((-708) . T) ((-908) . T) ((-1045 (-403 (-560))) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1094) . T) ((-1082) . T) ((-1191) . T)) -((-3737 (($ (-560) (-560)) 11) (($ (-560) (-560) (-909)) NIL)) (-1727 (((-909)) 16) (((-909) (-909)) NIL))) -(((-399 |#1|) (-10 -8 (-15 -1727 ((-909) (-909))) (-15 -1727 ((-909))) (-15 -3737 (|#1| (-560) (-560) (-909))) (-15 -3737 (|#1| (-560) (-560)))) (-400)) (T -399)) -((-1727 (*1 *2) (-12 (-5 *2 (-909)) (-5 *1 (-399 *3)) (-4 *3 (-400)))) (-1727 (*1 *2 *2) (-12 (-5 *2 (-909)) (-5 *1 (-399 *3)) (-4 *3 (-400))))) -(-10 -8 (-15 -1727 ((-909) (-909))) (-15 -1727 ((-909))) (-15 -3737 (|#1| (-560) (-560) (-909))) (-15 -3737 (|#1| (-560) (-560)))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-1947 (((-560) $) 85)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) 40)) (-1350 (($ $) 39)) (-3376 (((-121) $) 37)) (-4330 (($ $) 83)) (-2314 (((-3 $ "failed") $ $) 18)) (-3065 (($ $) 71)) (-2953 (((-414 $) $) 70)) (-2479 (($ $) 93)) (-4179 (((-121) $ $) 57)) (-4235 (((-560) $) 110)) (-4236 (($) 16 T CONST)) (-4422 (($ $) 82)) (-1473 (((-3 (-560) "failed") $) 98) (((-3 (-403 (-560)) "failed") $) 95)) (-3001 (((-560) $) 97) (((-403 (-560)) $) 94)) (-2563 (($ $ $) 53)) (-1823 (((-3 $ "failed") $) 33)) (-2572 (($ $ $) 54)) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) 49)) (-3319 (((-121) $) 69)) (-2110 (((-909)) 119) (((-909) (-909)) 116 (|has| $ (-6 -4496)))) (-1786 (((-121) $) 108)) (-2399 (((-876 (-375) $) $ (-879 (-375)) (-876 (-375) $)) 89)) (-3504 (((-560) $) 125)) (-2642 (((-121) $) 30)) (-2586 (($ $ (-560)) 92)) (-3339 (($ $) 88)) (-2187 (((-121) $) 109)) (-3856 (((-3 (-626 $) "failed") (-626 $) $) 50)) (-4325 (($ $ $) 107) (($) 113 (-12 (-3186 (|has| $ (-6 -4496))) (-3186 (|has| $ (-6 -4488)))))) (-2501 (($ $ $) 106) (($) 112 (-12 (-3186 (|has| $ (-6 -4496))) (-3186 (|has| $ (-6 -4488)))))) (-4292 (((-560) $) 122)) (-2582 (($ $ $) 45) (($ (-626 $)) 44)) (-1291 (((-1135) $) 9)) (-1701 (($ $) 68)) (-4088 (((-909) (-560)) 115 (|has| $ (-6 -4496)))) (-4353 (((-1100) $) 10)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) 43)) (-4440 (($ $ $) 47) (($ (-626 $)) 46)) (-4302 (($ $) 84)) (-2150 (($ $) 86)) (-3737 (($ (-560) (-560)) 127) (($ (-560) (-560) (-909)) 126)) (-1601 (((-414 $) $) 72)) (-3505 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2336 (((-3 $ "failed") $ $) 41)) (-3456 (((-3 (-626 $) "failed") (-626 $) $) 48)) (-4034 (((-560) $) 123)) (-4445 (((-755) $) 56)) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) 55)) (-1727 (((-909)) 120) (((-909) (-909)) 117 (|has| $ (-6 -4496)))) (-2834 (((-909) (-560)) 114 (|has| $ (-6 -4496)))) (-4255 (((-375) $) 101) (((-213) $) 100) (((-879 (-375)) $) 90)) (-2801 (((-842) $) 11) (($ (-560)) 27) (($ $) 42) (($ (-403 (-560))) 63) (($ (-560)) 99) (($ (-403 (-560))) 96)) (-1751 (((-755)) 28)) (-4316 (($ $) 87)) (-2096 (((-909)) 121) (((-909) (-909)) 118 (|has| $ (-6 -4496)))) (-2871 (((-909)) 124)) (-2328 (((-121) $ $) 38)) (-1822 (($ $) 111)) (-2464 (($ $ (-909)) 25) (($ $ (-755)) 32) (($ $ (-560)) 67)) (-3304 (($) 17 T CONST)) (-1459 (($) 29 T CONST)) (-1691 (((-121) $ $) 104)) (-1675 (((-121) $ $) 103)) (-1653 (((-121) $ $) 6)) (-1683 (((-121) $ $) 105)) (-1667 (((-121) $ $) 102)) (-1733 (($ $ $) 62)) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 24) (($ $ (-755)) 31) (($ $ (-560)) 66) (($ $ (-403 (-560))) 91)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 23) (($ $ (-403 (-560))) 65) (($ (-403 (-560)) $) 64))) -(((-400) (-1267)) (T -400)) -((-3737 (*1 *1 *2 *2) (-12 (-5 *2 (-560)) (-4 *1 (-400)))) (-3737 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-560)) (-5 *3 (-909)) (-4 *1 (-400)))) (-3504 (*1 *2 *1) (-12 (-4 *1 (-400)) (-5 *2 (-560)))) (-2871 (*1 *2) (-12 (-4 *1 (-400)) (-5 *2 (-909)))) (-4034 (*1 *2 *1) (-12 (-4 *1 (-400)) (-5 *2 (-560)))) (-4292 (*1 *2 *1) (-12 (-4 *1 (-400)) (-5 *2 (-560)))) (-2096 (*1 *2) (-12 (-4 *1 (-400)) (-5 *2 (-909)))) (-1727 (*1 *2) (-12 (-4 *1 (-400)) (-5 *2 (-909)))) (-2110 (*1 *2) (-12 (-4 *1 (-400)) (-5 *2 (-909)))) (-2096 (*1 *2 *2) (-12 (-5 *2 (-909)) (|has| *1 (-6 -4496)) (-4 *1 (-400)))) (-1727 (*1 *2 *2) (-12 (-5 *2 (-909)) (|has| *1 (-6 -4496)) (-4 *1 (-400)))) (-2110 (*1 *2 *2) (-12 (-5 *2 (-909)) (|has| *1 (-6 -4496)) (-4 *1 (-400)))) (-4088 (*1 *2 *3) (-12 (-5 *3 (-560)) (|has| *1 (-6 -4496)) (-4 *1 (-400)) (-5 *2 (-909)))) (-2834 (*1 *2 *3) (-12 (-5 *3 (-560)) (|has| *1 (-6 -4496)) (-4 *1 (-400)) (-5 *2 (-909)))) (-4325 (*1 *1) (-12 (-4 *1 (-400)) (-3186 (|has| *1 (-6 -4496))) (-3186 (|has| *1 (-6 -4488))))) (-2501 (*1 *1) (-12 (-4 *1 (-400)) (-3186 (|has| *1 (-6 -4496))) (-3186 (|has| *1 (-6 -4488)))))) -(-13 (-1048) (-10 -8 (-6 -2550) (-15 -3737 ($ (-560) (-560))) (-15 -3737 ($ (-560) (-560) (-909))) (-15 -3504 ((-560) $)) (-15 -2871 ((-909))) (-15 -4034 ((-560) $)) (-15 -4292 ((-560) $)) (-15 -2096 ((-909))) (-15 -1727 ((-909))) (-15 -2110 ((-909))) (IF (|has| $ (-6 -4496)) (PROGN (-15 -2096 ((-909) (-909))) (-15 -1727 ((-909) (-909))) (-15 -2110 ((-909) (-909))) (-15 -4088 ((-909) (-560))) (-15 -2834 ((-909) (-560)))) |noBranch|) (IF (|has| $ (-6 -4488)) |noBranch| (IF (|has| $ (-6 -4496)) |noBranch| (PROGN (-15 -4325 ($)) (-15 -2501 ($))))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-43 (-403 (-560))) . T) ((-43 $) . T) ((-105) . T) ((-120 (-403 (-560)) (-403 (-560))) . T) ((-120 $ $) . T) ((-137) . T) ((-148) . T) ((-600 (-842)) . T) ((-170) . T) ((-601 (-213)) . T) ((-601 (-375)) . T) ((-601 (-879 (-375))) . T) ((-233) . T) ((-280) . T) ((-296) . T) ((-359) . T) ((-447) . T) ((-550) . T) ((-629 (-403 (-560))) . T) ((-629 $) . T) ((-699 (-403 (-560))) . T) ((-699 $) . T) ((-708) . T) ((-778) . T) ((-779) . T) ((-781) . T) ((-782) . T) ((-832) . T) ((-834) . T) ((-873 (-375)) . T) ((-908) . T) ((-994) . T) ((-1013) . T) ((-1048) . T) ((-1029 (-403 (-560))) . T) ((-1029 (-560)) . T) ((-1045 (-403 (-560))) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1094) . T) ((-1082) . T) ((-1191) . T)) -((-2803 (((-414 |#2|) (-1 |#2| |#1|) (-414 |#1|)) 20))) -(((-401 |#1| |#2|) (-10 -7 (-15 -2803 ((-414 |#2|) (-1 |#2| |#1|) (-414 |#1|)))) (-550) (-550)) (T -401)) -((-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-414 *5)) (-4 *5 (-550)) (-4 *6 (-550)) (-5 *2 (-414 *6)) (-5 *1 (-401 *5 *6))))) -(-10 -7 (-15 -2803 ((-414 |#2|) (-1 |#2| |#1|) (-414 |#1|)))) -((-2803 (((-403 |#2|) (-1 |#2| |#1|) (-403 |#1|)) 13))) -(((-402 |#1| |#2|) (-10 -7 (-15 -2803 ((-403 |#2|) (-1 |#2| |#1|) (-403 |#1|)))) (-550) (-550)) (T -402)) -((-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-403 *5)) (-4 *5 (-550)) (-4 *6 (-550)) (-5 *2 (-403 *6)) (-5 *1 (-402 *5 *6))))) -(-10 -7 (-15 -2803 ((-403 |#2|) (-1 |#2| |#1|) (-403 |#1|)))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) 13)) (-1947 ((|#1| $) 21 (|has| |#1| (-296)))) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL)) (-1350 (($ $) NIL)) (-3376 (((-121) $) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-1776 (((-414 (-1149 $)) (-1149 $)) NIL (|has| |#1| (-896)))) (-3065 (($ $) NIL)) (-2953 (((-414 $) $) NIL)) (-1887 (((-3 (-626 (-1149 $)) "failed") (-626 (-1149 $)) (-1149 $)) NIL (|has| |#1| (-896)))) (-4179 (((-121) $ $) NIL)) (-4235 (((-560) $) NIL (|has| |#1| (-807)))) (-4236 (($) NIL T CONST)) (-1473 (((-3 |#1| "failed") $) 17) (((-3 (-1153) "failed") $) NIL (|has| |#1| (-1029 (-1153)))) (((-3 (-403 (-560)) "failed") $) 70 (|has| |#1| (-1029 (-560)))) (((-3 (-560) "failed") $) NIL (|has| |#1| (-1029 (-560))))) (-3001 ((|#1| $) 15) (((-1153) $) NIL (|has| |#1| (-1029 (-1153)))) (((-403 (-560)) $) 67 (|has| |#1| (-1029 (-560)))) (((-560) $) NIL (|has| |#1| (-1029 (-560))))) (-2563 (($ $ $) NIL)) (-2616 (((-671 (-560)) (-671 $)) NIL (|has| |#1| (-622 (-560)))) (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) NIL (|has| |#1| (-622 (-560)))) (((-2 (|:| -3818 (-671 |#1|)) (|:| |vec| (-1236 |#1|))) (-671 $) (-1236 $)) NIL) (((-671 |#1|) (-671 $)) NIL)) (-1823 (((-3 $ "failed") $) 50)) (-1666 (($) NIL (|has| |#1| (-542)))) (-2572 (($ $ $) NIL)) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) NIL)) (-3319 (((-121) $) NIL)) (-1786 (((-121) $) NIL (|has| |#1| (-807)))) (-2399 (((-876 (-560) $) $ (-879 (-560)) (-876 (-560) $)) NIL (|has| |#1| (-873 (-560)))) (((-876 (-375) $) $ (-879 (-375)) (-876 (-375) $)) NIL (|has| |#1| (-873 (-375))))) (-2642 (((-121) $) 64)) (-1540 (($ $) NIL)) (-2132 ((|#1| $) 71)) (-1424 (((-3 $ "failed") $) NIL (|has| |#1| (-1128)))) (-2187 (((-121) $) NIL (|has| |#1| (-807)))) (-3856 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-4325 (($ $ $) NIL (|has| |#1| (-834)))) (-2501 (($ $ $) NIL (|has| |#1| (-834)))) (-2803 (($ (-1 |#1| |#1|) $) NIL)) (-2582 (($ $ $) NIL) (($ (-626 $)) NIL)) (-1291 (((-1135) $) NIL)) (-1701 (($ $) NIL)) (-1394 (($) NIL (|has| |#1| (-1128)) CONST)) (-4353 (((-1100) $) NIL)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) 97)) (-4440 (($ $ $) NIL) (($ (-626 $)) NIL)) (-4302 (($ $) NIL (|has| |#1| (-296)))) (-2150 ((|#1| $) 28 (|has| |#1| (-542)))) (-3817 (((-414 (-1149 $)) (-1149 $)) 133 (|has| |#1| (-896)))) (-3032 (((-414 (-1149 $)) (-1149 $)) 129 (|has| |#1| (-896)))) (-1601 (((-414 $) $) NIL)) (-3505 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2336 (((-3 $ "failed") $ $) NIL)) (-3456 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-4450 (($ $ (-626 |#1|) (-626 |#1|)) NIL (|has| |#1| (-298 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-298 |#1|))) (($ $ (-283 |#1|)) NIL (|has| |#1| (-298 |#1|))) (($ $ (-626 (-283 |#1|))) NIL (|has| |#1| (-298 |#1|))) (($ $ (-626 (-1153)) (-626 |#1|)) NIL (|has| |#1| (-515 (-1153) |#1|))) (($ $ (-1153) |#1|) NIL (|has| |#1| (-515 (-1153) |#1|)))) (-4445 (((-755) $) NIL)) (-2778 (($ $ |#1|) NIL (|has| |#1| (-276 |#1| |#1|)))) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL)) (-2443 (($ $) NIL (|has| |#1| (-221))) (($ $ (-755)) NIL (|has| |#1| (-221))) (($ $ (-1153)) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-626 (-1153))) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-1153) (-755)) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-626 (-1153)) (-626 (-755))) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-1 |#1| |#1|) (-755)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-1646 (($ $) NIL)) (-2139 ((|#1| $) 73)) (-4255 (((-879 (-560)) $) NIL (|has| |#1| (-601 (-879 (-560))))) (((-879 (-375)) $) NIL (|has| |#1| (-601 (-879 (-375))))) (((-533) $) NIL (|has| |#1| (-601 (-533)))) (((-375) $) NIL (|has| |#1| (-1013))) (((-213) $) NIL (|has| |#1| (-1013)))) (-3248 (((-3 (-1236 $) "failed") (-671 $)) 113 (-12 (|has| $ (-146)) (|has| |#1| (-896))))) (-2801 (((-842) $) NIL) (($ (-560)) NIL) (($ $) NIL) (($ (-403 (-560))) NIL) (($ |#1|) 10) (($ (-1153)) NIL (|has| |#1| (-1029 (-1153))))) (-2272 (((-3 $ "failed") $) 99 (-2318 (-12 (|has| $ (-146)) (|has| |#1| (-896))) (|has| |#1| (-146))))) (-1751 (((-755)) 100)) (-4316 ((|#1| $) 26 (|has| |#1| (-542)))) (-2328 (((-121) $ $) NIL)) (-1822 (($ $) NIL (|has| |#1| (-807)))) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL)) (-3304 (($) 22 T CONST)) (-1459 (($) 8 T CONST)) (-3039 (((-1135) $) 43 (-12 (|has| |#1| (-542)) (|has| |#1| (-815)))) (((-1135) $ (-121)) 44 (-12 (|has| |#1| (-542)) (|has| |#1| (-815)))) (((-1241) (-809) $) 45 (-12 (|has| |#1| (-542)) (|has| |#1| (-815)))) (((-1241) (-809) $ (-121)) 46 (-12 (|has| |#1| (-542)) (|has| |#1| (-815))))) (-2500 (($ $) NIL (|has| |#1| (-221))) (($ $ (-755)) NIL (|has| |#1| (-221))) (($ $ (-1153)) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-626 (-1153))) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-1153) (-755)) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-626 (-1153)) (-626 (-755))) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-1 |#1| |#1|) (-755)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1691 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1675 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1653 (((-121) $ $) 56)) (-1683 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1667 (((-121) $ $) 24 (|has| |#1| (-834)))) (-1733 (($ $ $) 124) (($ |#1| |#1|) 52)) (-1725 (($ $) 25) (($ $ $) 55)) (-1716 (($ $ $) 53)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) 123)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) 60) (($ $ $) 57) (($ $ (-403 (-560))) NIL) (($ (-403 (-560)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85))) -(((-403 |#1|) (-13 (-985 |#1|) (-10 -7 (IF (|has| |#1| (-542)) (IF (|has| |#1| (-815)) (-6 (-815)) |noBranch|) |noBranch|) (IF (|has| |#1| (-6 -4492)) (IF (|has| |#1| (-447)) (IF (|has| |#1| (-6 -4503)) (-6 -4492) |noBranch|) |noBranch|) |noBranch|))) (-550)) (T -403)) -NIL -(-13 (-985 |#1|) (-10 -7 (IF (|has| |#1| (-542)) (IF (|has| |#1| (-815)) (-6 (-815)) |noBranch|) |noBranch|) (IF (|has| |#1| (-6 -4492)) (IF (|has| |#1| (-447)) (IF (|has| |#1| (-6 -4503)) (-6 -4492) |noBranch|) |noBranch|) |noBranch|))) -((-2196 (((-671 |#2|) (-1236 $)) NIL) (((-671 |#2|)) 18)) (-3380 (($ (-1236 |#2|) (-1236 $)) NIL) (($ (-1236 |#2|)) 26)) (-2954 (((-671 |#2|) $ (-1236 $)) NIL) (((-671 |#2|) $) 22)) (-4108 ((|#3| $) 59)) (-4069 ((|#2| (-1236 $)) NIL) ((|#2|) 20)) (-3390 (((-1236 |#2|) $ (-1236 $)) NIL) (((-671 |#2|) (-1236 $) (-1236 $)) NIL) (((-1236 |#2|) $) NIL) (((-671 |#2|) (-1236 $)) 24)) (-4255 (((-1236 |#2|) $) 11) (($ (-1236 |#2|)) 13)) (-3642 ((|#3| $) 51))) -(((-404 |#1| |#2| |#3|) (-10 -8 (-15 -2954 ((-671 |#2|) |#1|)) (-15 -4069 (|#2|)) (-15 -2196 ((-671 |#2|))) (-15 -4255 (|#1| (-1236 |#2|))) (-15 -4255 ((-1236 |#2|) |#1|)) (-15 -3380 (|#1| (-1236 |#2|))) (-15 -3390 ((-671 |#2|) (-1236 |#1|))) (-15 -3390 ((-1236 |#2|) |#1|)) (-15 -4108 (|#3| |#1|)) (-15 -3642 (|#3| |#1|)) (-15 -2196 ((-671 |#2|) (-1236 |#1|))) (-15 -4069 (|#2| (-1236 |#1|))) (-15 -3380 (|#1| (-1236 |#2|) (-1236 |#1|))) (-15 -3390 ((-671 |#2|) (-1236 |#1|) (-1236 |#1|))) (-15 -3390 ((-1236 |#2|) |#1| (-1236 |#1|))) (-15 -2954 ((-671 |#2|) |#1| (-1236 |#1|)))) (-405 |#2| |#3|) (-170) (-1211 |#2|)) (T -404)) -((-2196 (*1 *2) (-12 (-4 *4 (-170)) (-4 *5 (-1211 *4)) (-5 *2 (-671 *4)) (-5 *1 (-404 *3 *4 *5)) (-4 *3 (-405 *4 *5)))) (-4069 (*1 *2) (-12 (-4 *4 (-1211 *2)) (-4 *2 (-170)) (-5 *1 (-404 *3 *2 *4)) (-4 *3 (-405 *2 *4))))) -(-10 -8 (-15 -2954 ((-671 |#2|) |#1|)) (-15 -4069 (|#2|)) (-15 -2196 ((-671 |#2|))) (-15 -4255 (|#1| (-1236 |#2|))) (-15 -4255 ((-1236 |#2|) |#1|)) (-15 -3380 (|#1| (-1236 |#2|))) (-15 -3390 ((-671 |#2|) (-1236 |#1|))) (-15 -3390 ((-1236 |#2|) |#1|)) (-15 -4108 (|#3| |#1|)) (-15 -3642 (|#3| |#1|)) (-15 -2196 ((-671 |#2|) (-1236 |#1|))) (-15 -4069 (|#2| (-1236 |#1|))) (-15 -3380 (|#1| (-1236 |#2|) (-1236 |#1|))) (-15 -3390 ((-671 |#2|) (-1236 |#1|) (-1236 |#1|))) (-15 -3390 ((-1236 |#2|) |#1| (-1236 |#1|))) (-15 -2954 ((-671 |#2|) |#1| (-1236 |#1|)))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-2196 (((-671 |#1|) (-1236 $)) 44) (((-671 |#1|)) 55)) (-1944 ((|#1| $) 50)) (-2314 (((-3 $ "failed") $ $) 18)) (-4236 (($) 16 T CONST)) (-3380 (($ (-1236 |#1|) (-1236 $)) 46) (($ (-1236 |#1|)) 58)) (-2954 (((-671 |#1|) $ (-1236 $)) 51) (((-671 |#1|) $) 53)) (-1823 (((-3 $ "failed") $) 33)) (-3143 (((-909)) 52)) (-2642 (((-121) $) 30)) (-3339 ((|#1| $) 49)) (-4108 ((|#2| $) 42 (|has| |#1| (-359)))) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-4069 ((|#1| (-1236 $)) 45) ((|#1|) 54)) (-3390 (((-1236 |#1|) $ (-1236 $)) 48) (((-671 |#1|) (-1236 $) (-1236 $)) 47) (((-1236 |#1|) $) 60) (((-671 |#1|) (-1236 $)) 59)) (-4255 (((-1236 |#1|) $) 57) (($ (-1236 |#1|)) 56)) (-2801 (((-842) $) 11) (($ (-560)) 27) (($ |#1|) 36)) (-2272 (((-3 $ "failed") $) 41 (|has| |#1| (-146)))) (-3642 ((|#2| $) 43)) (-1751 (((-755)) 28)) (-4374 (((-1236 $)) 61)) (-2464 (($ $ (-909)) 25) (($ $ (-755)) 32)) (-3304 (($) 17 T CONST)) (-1459 (($) 29 T CONST)) (-1653 (((-121) $ $) 6)) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 24) (($ $ (-755)) 31)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 23) (($ $ |#1|) 38) (($ |#1| $) 37))) -(((-405 |#1| |#2|) (-1267) (-170) (-1211 |t#1|)) (T -405)) -((-4374 (*1 *2) (-12 (-4 *3 (-170)) (-4 *4 (-1211 *3)) (-5 *2 (-1236 *1)) (-4 *1 (-405 *3 *4)))) (-3390 (*1 *2 *1) (-12 (-4 *1 (-405 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1211 *3)) (-5 *2 (-1236 *3)))) (-3390 (*1 *2 *3) (-12 (-5 *3 (-1236 *1)) (-4 *1 (-405 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1211 *4)) (-5 *2 (-671 *4)))) (-3380 (*1 *1 *2) (-12 (-5 *2 (-1236 *3)) (-4 *3 (-170)) (-4 *1 (-405 *3 *4)) (-4 *4 (-1211 *3)))) (-4255 (*1 *2 *1) (-12 (-4 *1 (-405 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1211 *3)) (-5 *2 (-1236 *3)))) (-4255 (*1 *1 *2) (-12 (-5 *2 (-1236 *3)) (-4 *3 (-170)) (-4 *1 (-405 *3 *4)) (-4 *4 (-1211 *3)))) (-2196 (*1 *2) (-12 (-4 *1 (-405 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1211 *3)) (-5 *2 (-671 *3)))) (-4069 (*1 *2) (-12 (-4 *1 (-405 *2 *3)) (-4 *3 (-1211 *2)) (-4 *2 (-170)))) (-2954 (*1 *2 *1) (-12 (-4 *1 (-405 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1211 *3)) (-5 *2 (-671 *3))))) -(-13 (-366 |t#1| |t#2|) (-10 -8 (-15 -4374 ((-1236 $))) (-15 -3390 ((-1236 |t#1|) $)) (-15 -3390 ((-671 |t#1|) (-1236 $))) (-15 -3380 ($ (-1236 |t#1|))) (-15 -4255 ((-1236 |t#1|) $)) (-15 -4255 ($ (-1236 |t#1|))) (-15 -2196 ((-671 |t#1|))) (-15 -4069 (|t#1|)) (-15 -2954 ((-671 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-43 |#1|) . T) ((-105) . T) ((-120 |#1| |#1|) . T) ((-137) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-600 (-842)) . T) ((-366 |#1| |#2|) . T) ((-629 |#1|) . T) ((-629 $) . T) ((-699 |#1|) . T) ((-708) . T) ((-1045 |#1|) . T) ((-1039) . T) ((-1046) . T) ((-1094) . T) ((-1082) . T)) -((-1473 (((-3 |#2| "failed") $) NIL) (((-3 (-403 (-560)) "failed") $) 27) (((-3 (-560) "failed") $) 19)) (-3001 ((|#2| $) NIL) (((-403 (-560)) $) 24) (((-560) $) 14)) (-2801 (($ |#2|) NIL) (($ (-403 (-560))) 22) (($ (-560)) 11))) -(((-406 |#1| |#2|) (-10 -8 (-15 -3001 ((-560) |#1|)) (-15 -1473 ((-3 (-560) "failed") |#1|)) (-15 -2801 (|#1| (-560))) (-15 -3001 ((-403 (-560)) |#1|)) (-15 -1473 ((-3 (-403 (-560)) "failed") |#1|)) (-15 -2801 (|#1| (-403 (-560)))) (-15 -2801 (|#1| |#2|)) (-15 -1473 ((-3 |#2| "failed") |#1|)) (-15 -3001 (|#2| |#1|))) (-407 |#2|) (-1187)) (T -406)) -NIL -(-10 -8 (-15 -3001 ((-560) |#1|)) (-15 -1473 ((-3 (-560) "failed") |#1|)) (-15 -2801 (|#1| (-560))) (-15 -3001 ((-403 (-560)) |#1|)) (-15 -1473 ((-3 (-403 (-560)) "failed") |#1|)) (-15 -2801 (|#1| (-403 (-560)))) (-15 -2801 (|#1| |#2|)) (-15 -1473 ((-3 |#2| "failed") |#1|)) (-15 -3001 (|#2| |#1|))) -((-1473 (((-3 |#1| "failed") $) 7) (((-3 (-403 (-560)) "failed") $) 15 (|has| |#1| (-1029 (-403 (-560))))) (((-3 (-560) "failed") $) 12 (|has| |#1| (-1029 (-560))))) (-3001 ((|#1| $) 8) (((-403 (-560)) $) 14 (|has| |#1| (-1029 (-403 (-560))))) (((-560) $) 11 (|has| |#1| (-1029 (-560))))) (-2801 (($ |#1|) 6) (($ (-403 (-560))) 16 (|has| |#1| (-1029 (-403 (-560))))) (($ (-560)) 13 (|has| |#1| (-1029 (-560)))))) -(((-407 |#1|) (-1267) (-1187)) (T -407)) -NIL -(-13 (-1029 |t#1|) (-10 -7 (IF (|has| |t#1| (-1029 (-560))) (-6 (-1029 (-560))) |noBranch|) (IF (|has| |t#1| (-1029 (-403 (-560)))) (-6 (-1029 (-403 (-560)))) |noBranch|))) -(((-1029 (-403 (-560))) |has| |#1| (-1029 (-403 (-560)))) ((-1029 (-560)) |has| |#1| (-1029 (-560))) ((-1029 |#1|) . T)) -((-2803 (((-409 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-409 |#1| |#2| |#3| |#4|)) 33))) -(((-408 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2803 ((-409 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-409 |#1| |#2| |#3| |#4|)))) (-296) (-985 |#1|) (-1211 |#2|) (-13 (-405 |#2| |#3|) (-1029 |#2|)) (-296) (-985 |#5|) (-1211 |#6|) (-13 (-405 |#6| |#7|) (-1029 |#6|))) (T -408)) -((-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-409 *5 *6 *7 *8)) (-4 *5 (-296)) (-4 *6 (-985 *5)) (-4 *7 (-1211 *6)) (-4 *8 (-13 (-405 *6 *7) (-1029 *6))) (-4 *9 (-296)) (-4 *10 (-985 *9)) (-4 *11 (-1211 *10)) (-5 *2 (-409 *9 *10 *11 *12)) (-5 *1 (-408 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-405 *10 *11) (-1029 *10)))))) -(-10 -7 (-15 -2803 ((-409 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-409 |#1| |#2| |#3| |#4|)))) -((-2601 (((-121) $ $) NIL)) (-4236 (($) NIL T CONST)) (-1823 (((-3 $ "failed") $) NIL)) (-3291 ((|#4| (-755) (-1236 |#4|)) 55)) (-2642 (((-121) $) NIL)) (-2132 (((-1236 |#4|) $) 17)) (-3339 ((|#2| $) 53)) (-1952 (($ $) 136)) (-1291 (((-1135) $) NIL)) (-1701 (($ $) 98)) (-1303 (($ (-1236 |#4|)) 97)) (-4353 (((-1100) $) NIL)) (-2139 ((|#1| $) 18)) (-3101 (($ $ $) NIL)) (-1671 (($ $ $) NIL)) (-2801 (((-842) $) 131)) (-4374 (((-1236 |#4|) $) 126)) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL)) (-1459 (($) 11 T CONST)) (-1653 (((-121) $ $) 39)) (-1733 (($ $ $) NIL)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) 119)) (* (($ $ $) 118))) -(((-409 |#1| |#2| |#3| |#4|) (-13 (-471) (-10 -8 (-15 -1303 ($ (-1236 |#4|))) (-15 -4374 ((-1236 |#4|) $)) (-15 -3339 (|#2| $)) (-15 -2132 ((-1236 |#4|) $)) (-15 -2139 (|#1| $)) (-15 -1952 ($ $)) (-15 -3291 (|#4| (-755) (-1236 |#4|))))) (-296) (-985 |#1|) (-1211 |#2|) (-13 (-405 |#2| |#3|) (-1029 |#2|))) (T -409)) -((-1303 (*1 *1 *2) (-12 (-5 *2 (-1236 *6)) (-4 *6 (-13 (-405 *4 *5) (-1029 *4))) (-4 *4 (-985 *3)) (-4 *5 (-1211 *4)) (-4 *3 (-296)) (-5 *1 (-409 *3 *4 *5 *6)))) (-4374 (*1 *2 *1) (-12 (-4 *3 (-296)) (-4 *4 (-985 *3)) (-4 *5 (-1211 *4)) (-5 *2 (-1236 *6)) (-5 *1 (-409 *3 *4 *5 *6)) (-4 *6 (-13 (-405 *4 *5) (-1029 *4))))) (-3339 (*1 *2 *1) (-12 (-4 *4 (-1211 *2)) (-4 *2 (-985 *3)) (-5 *1 (-409 *3 *2 *4 *5)) (-4 *3 (-296)) (-4 *5 (-13 (-405 *2 *4) (-1029 *2))))) (-2132 (*1 *2 *1) (-12 (-4 *3 (-296)) (-4 *4 (-985 *3)) (-4 *5 (-1211 *4)) (-5 *2 (-1236 *6)) (-5 *1 (-409 *3 *4 *5 *6)) (-4 *6 (-13 (-405 *4 *5) (-1029 *4))))) (-2139 (*1 *2 *1) (-12 (-4 *3 (-985 *2)) (-4 *4 (-1211 *3)) (-4 *2 (-296)) (-5 *1 (-409 *2 *3 *4 *5)) (-4 *5 (-13 (-405 *3 *4) (-1029 *3))))) (-1952 (*1 *1 *1) (-12 (-4 *2 (-296)) (-4 *3 (-985 *2)) (-4 *4 (-1211 *3)) (-5 *1 (-409 *2 *3 *4 *5)) (-4 *5 (-13 (-405 *3 *4) (-1029 *3))))) (-3291 (*1 *2 *3 *4) (-12 (-5 *3 (-755)) (-5 *4 (-1236 *2)) (-4 *5 (-296)) (-4 *6 (-985 *5)) (-4 *2 (-13 (-405 *6 *7) (-1029 *6))) (-5 *1 (-409 *5 *6 *7 *2)) (-4 *7 (-1211 *6))))) -(-13 (-471) (-10 -8 (-15 -1303 ($ (-1236 |#4|))) (-15 -4374 ((-1236 |#4|) $)) (-15 -3339 (|#2| $)) (-15 -2132 ((-1236 |#4|) $)) (-15 -2139 (|#1| $)) (-15 -1952 ($ $)) (-15 -3291 (|#4| (-755) (-1236 |#4|))))) -((-2601 (((-121) $ $) NIL)) (-4236 (($) NIL T CONST)) (-1823 (((-3 $ "failed") $) NIL)) (-2642 (((-121) $) NIL)) (-3339 ((|#2| $) 60)) (-2647 (($ (-1236 |#4|)) 25) (($ (-409 |#1| |#2| |#3| |#4|)) 75 (|has| |#4| (-1029 |#2|)))) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2801 (((-842) $) 34)) (-4374 (((-1236 |#4|) $) 26)) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (-1459 (($) 23 T CONST)) (-1653 (((-121) $ $) NIL)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (* (($ $ $) 72))) -(((-410 |#1| |#2| |#3| |#4| |#5|) (-13 (-708) (-10 -8 (-15 -4374 ((-1236 |#4|) $)) (-15 -3339 (|#2| $)) (-15 -2647 ($ (-1236 |#4|))) (IF (|has| |#4| (-1029 |#2|)) (-15 -2647 ($ (-409 |#1| |#2| |#3| |#4|))) |noBranch|))) (-296) (-985 |#1|) (-1211 |#2|) (-405 |#2| |#3|) (-1236 |#4|)) (T -410)) -((-4374 (*1 *2 *1) (-12 (-4 *3 (-296)) (-4 *4 (-985 *3)) (-4 *5 (-1211 *4)) (-5 *2 (-1236 *6)) (-5 *1 (-410 *3 *4 *5 *6 *7)) (-4 *6 (-405 *4 *5)) (-14 *7 *2))) (-3339 (*1 *2 *1) (-12 (-4 *4 (-1211 *2)) (-4 *2 (-985 *3)) (-5 *1 (-410 *3 *2 *4 *5 *6)) (-4 *3 (-296)) (-4 *5 (-405 *2 *4)) (-14 *6 (-1236 *5)))) (-2647 (*1 *1 *2) (-12 (-5 *2 (-1236 *6)) (-4 *6 (-405 *4 *5)) (-4 *4 (-985 *3)) (-4 *5 (-1211 *4)) (-4 *3 (-296)) (-5 *1 (-410 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-2647 (*1 *1 *2) (-12 (-5 *2 (-409 *3 *4 *5 *6)) (-4 *6 (-1029 *4)) (-4 *3 (-296)) (-4 *4 (-985 *3)) (-4 *5 (-1211 *4)) (-4 *6 (-405 *4 *5)) (-14 *7 (-1236 *6)) (-5 *1 (-410 *3 *4 *5 *6 *7))))) -(-13 (-708) (-10 -8 (-15 -4374 ((-1236 |#4|) $)) (-15 -3339 (|#2| $)) (-15 -2647 ($ (-1236 |#4|))) (IF (|has| |#4| (-1029 |#2|)) (-15 -2647 ($ (-409 |#1| |#2| |#3| |#4|))) |noBranch|))) -((-2803 ((|#3| (-1 |#4| |#2|) |#1|) 26))) -(((-411 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2803 (|#3| (-1 |#4| |#2|) |#1|))) (-413 |#2|) (-170) (-413 |#4|) (-170)) (T -411)) -((-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-4 *2 (-413 *6)) (-5 *1 (-411 *4 *5 *2 *6)) (-4 *4 (-413 *5))))) -(-10 -7 (-15 -2803 (|#3| (-1 |#4| |#2|) |#1|))) -((-1917 (((-3 $ "failed")) 85)) (-2059 (((-1236 (-671 |#2|)) (-1236 $)) NIL) (((-1236 (-671 |#2|))) 90)) (-2862 (((-3 (-2 (|:| |particular| $) (|:| -4374 (-626 $))) "failed")) 84)) (-2835 (((-3 $ "failed")) 83)) (-3852 (((-671 |#2|) (-1236 $)) NIL) (((-671 |#2|)) 101)) (-2611 (((-671 |#2|) $ (-1236 $)) NIL) (((-671 |#2|) $) 109)) (-3013 (((-1149 (-945 |#2|))) 54)) (-1998 ((|#2| (-1236 $)) NIL) ((|#2|) 105)) (-3380 (($ (-1236 |#2|) (-1236 $)) NIL) (($ (-1236 |#2|)) 112)) (-2071 (((-3 (-2 (|:| |particular| $) (|:| -4374 (-626 $))) "failed")) 82)) (-3477 (((-3 $ "failed")) 74)) (-1279 (((-671 |#2|) (-1236 $)) NIL) (((-671 |#2|)) 99)) (-1284 (((-671 |#2|) $ (-1236 $)) NIL) (((-671 |#2|) $) 107)) (-3081 (((-1149 (-945 |#2|))) 53)) (-3158 ((|#2| (-1236 $)) NIL) ((|#2|) 103)) (-3390 (((-1236 |#2|) $ (-1236 $)) NIL) (((-671 |#2|) (-1236 $) (-1236 $)) NIL) (((-1236 |#2|) $) NIL) (((-671 |#2|) (-1236 $)) 111)) (-4255 (((-1236 |#2|) $) 95) (($ (-1236 |#2|)) 97)) (-2879 (((-626 (-945 |#2|)) (-1236 $)) NIL) (((-626 (-945 |#2|))) 93)) (-2788 (($ (-671 |#2|) $) 89))) -(((-412 |#1| |#2|) (-10 -8 (-15 -2788 (|#1| (-671 |#2|) |#1|)) (-15 -3013 ((-1149 (-945 |#2|)))) (-15 -3081 ((-1149 (-945 |#2|)))) (-15 -2611 ((-671 |#2|) |#1|)) (-15 -1284 ((-671 |#2|) |#1|)) (-15 -3852 ((-671 |#2|))) (-15 -1279 ((-671 |#2|))) (-15 -1998 (|#2|)) (-15 -3158 (|#2|)) (-15 -4255 (|#1| (-1236 |#2|))) (-15 -4255 ((-1236 |#2|) |#1|)) (-15 -3380 (|#1| (-1236 |#2|))) (-15 -2879 ((-626 (-945 |#2|)))) (-15 -2059 ((-1236 (-671 |#2|)))) (-15 -3390 ((-671 |#2|) (-1236 |#1|))) (-15 -3390 ((-1236 |#2|) |#1|)) (-15 -1917 ((-3 |#1| "failed"))) (-15 -2835 ((-3 |#1| "failed"))) (-15 -3477 ((-3 |#1| "failed"))) (-15 -2862 ((-3 (-2 (|:| |particular| |#1|) (|:| -4374 (-626 |#1|))) "failed"))) (-15 -2071 ((-3 (-2 (|:| |particular| |#1|) (|:| -4374 (-626 |#1|))) "failed"))) (-15 -3852 ((-671 |#2|) (-1236 |#1|))) (-15 -1279 ((-671 |#2|) (-1236 |#1|))) (-15 -1998 (|#2| (-1236 |#1|))) (-15 -3158 (|#2| (-1236 |#1|))) (-15 -3380 (|#1| (-1236 |#2|) (-1236 |#1|))) (-15 -3390 ((-671 |#2|) (-1236 |#1|) (-1236 |#1|))) (-15 -3390 ((-1236 |#2|) |#1| (-1236 |#1|))) (-15 -2611 ((-671 |#2|) |#1| (-1236 |#1|))) (-15 -1284 ((-671 |#2|) |#1| (-1236 |#1|))) (-15 -2059 ((-1236 (-671 |#2|)) (-1236 |#1|))) (-15 -2879 ((-626 (-945 |#2|)) (-1236 |#1|)))) (-413 |#2|) (-170)) (T -412)) -((-2059 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-1236 (-671 *4))) (-5 *1 (-412 *3 *4)) (-4 *3 (-413 *4)))) (-2879 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-626 (-945 *4))) (-5 *1 (-412 *3 *4)) (-4 *3 (-413 *4)))) (-3158 (*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-412 *3 *2)) (-4 *3 (-413 *2)))) (-1998 (*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-412 *3 *2)) (-4 *3 (-413 *2)))) (-1279 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-671 *4)) (-5 *1 (-412 *3 *4)) (-4 *3 (-413 *4)))) (-3852 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-671 *4)) (-5 *1 (-412 *3 *4)) (-4 *3 (-413 *4)))) (-3081 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-1149 (-945 *4))) (-5 *1 (-412 *3 *4)) (-4 *3 (-413 *4)))) (-3013 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-1149 (-945 *4))) (-5 *1 (-412 *3 *4)) (-4 *3 (-413 *4))))) -(-10 -8 (-15 -2788 (|#1| (-671 |#2|) |#1|)) (-15 -3013 ((-1149 (-945 |#2|)))) (-15 -3081 ((-1149 (-945 |#2|)))) (-15 -2611 ((-671 |#2|) |#1|)) (-15 -1284 ((-671 |#2|) |#1|)) (-15 -3852 ((-671 |#2|))) (-15 -1279 ((-671 |#2|))) (-15 -1998 (|#2|)) (-15 -3158 (|#2|)) (-15 -4255 (|#1| (-1236 |#2|))) (-15 -4255 ((-1236 |#2|) |#1|)) (-15 -3380 (|#1| (-1236 |#2|))) (-15 -2879 ((-626 (-945 |#2|)))) (-15 -2059 ((-1236 (-671 |#2|)))) (-15 -3390 ((-671 |#2|) (-1236 |#1|))) (-15 -3390 ((-1236 |#2|) |#1|)) (-15 -1917 ((-3 |#1| "failed"))) (-15 -2835 ((-3 |#1| "failed"))) (-15 -3477 ((-3 |#1| "failed"))) (-15 -2862 ((-3 (-2 (|:| |particular| |#1|) (|:| -4374 (-626 |#1|))) "failed"))) (-15 -2071 ((-3 (-2 (|:| |particular| |#1|) (|:| -4374 (-626 |#1|))) "failed"))) (-15 -3852 ((-671 |#2|) (-1236 |#1|))) (-15 -1279 ((-671 |#2|) (-1236 |#1|))) (-15 -1998 (|#2| (-1236 |#1|))) (-15 -3158 (|#2| (-1236 |#1|))) (-15 -3380 (|#1| (-1236 |#2|) (-1236 |#1|))) (-15 -3390 ((-671 |#2|) (-1236 |#1|) (-1236 |#1|))) (-15 -3390 ((-1236 |#2|) |#1| (-1236 |#1|))) (-15 -2611 ((-671 |#2|) |#1| (-1236 |#1|))) (-15 -1284 ((-671 |#2|) |#1| (-1236 |#1|))) (-15 -2059 ((-1236 (-671 |#2|)) (-1236 |#1|))) (-15 -2879 ((-626 (-945 |#2|)) (-1236 |#1|)))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-1917 (((-3 $ "failed")) 35 (|has| |#1| (-550)))) (-2314 (((-3 $ "failed") $ $) 18)) (-2059 (((-1236 (-671 |#1|)) (-1236 $)) 76) (((-1236 (-671 |#1|))) 93)) (-1565 (((-1236 $)) 79)) (-4236 (($) 16 T CONST)) (-2862 (((-3 (-2 (|:| |particular| $) (|:| -4374 (-626 $))) "failed")) 38 (|has| |#1| (-550)))) (-2835 (((-3 $ "failed")) 36 (|has| |#1| (-550)))) (-3852 (((-671 |#1|) (-1236 $)) 63) (((-671 |#1|)) 85)) (-1374 ((|#1| $) 72)) (-2611 (((-671 |#1|) $ (-1236 $)) 74) (((-671 |#1|) $) 83)) (-1309 (((-3 $ "failed") $) 43 (|has| |#1| (-550)))) (-3013 (((-1149 (-945 |#1|))) 81 (|has| |#1| (-359)))) (-1498 (($ $ (-909)) 27)) (-2856 ((|#1| $) 70)) (-3730 (((-1149 |#1|) $) 40 (|has| |#1| (-550)))) (-1998 ((|#1| (-1236 $)) 65) ((|#1|) 87)) (-1825 (((-1149 |#1|) $) 61)) (-2969 (((-121)) 55)) (-3380 (($ (-1236 |#1|) (-1236 $)) 67) (($ (-1236 |#1|)) 91)) (-1823 (((-3 $ "failed") $) 45 (|has| |#1| (-550)))) (-3143 (((-909)) 78)) (-3497 (((-121)) 52)) (-3710 (($ $ (-909)) 32)) (-2874 (((-121)) 48)) (-4479 (((-121)) 46)) (-2646 (((-121)) 50)) (-2071 (((-3 (-2 (|:| |particular| $) (|:| -4374 (-626 $))) "failed")) 39 (|has| |#1| (-550)))) (-3477 (((-3 $ "failed")) 37 (|has| |#1| (-550)))) (-1279 (((-671 |#1|) (-1236 $)) 64) (((-671 |#1|)) 86)) (-2442 ((|#1| $) 73)) (-1284 (((-671 |#1|) $ (-1236 $)) 75) (((-671 |#1|) $) 84)) (-2966 (((-3 $ "failed") $) 44 (|has| |#1| (-550)))) (-3081 (((-1149 (-945 |#1|))) 82 (|has| |#1| (-359)))) (-2137 (($ $ (-909)) 28)) (-3542 ((|#1| $) 71)) (-1351 (((-1149 |#1|) $) 41 (|has| |#1| (-550)))) (-3158 ((|#1| (-1236 $)) 66) ((|#1|) 88)) (-3613 (((-1149 |#1|) $) 62)) (-1818 (((-121)) 56)) (-1291 (((-1135) $) 9)) (-2394 (((-121)) 47)) (-2201 (((-121)) 49)) (-4253 (((-121)) 51)) (-4353 (((-1100) $) 10)) (-4172 (((-121)) 54)) (-2778 ((|#1| $ (-560)) 94)) (-3390 (((-1236 |#1|) $ (-1236 $)) 69) (((-671 |#1|) (-1236 $) (-1236 $)) 68) (((-1236 |#1|) $) 96) (((-671 |#1|) (-1236 $)) 95)) (-4255 (((-1236 |#1|) $) 90) (($ (-1236 |#1|)) 89)) (-2879 (((-626 (-945 |#1|)) (-1236 $)) 77) (((-626 (-945 |#1|))) 92)) (-1671 (($ $ $) 24)) (-2903 (((-121)) 60)) (-2801 (((-842) $) 11)) (-4374 (((-1236 $)) 97)) (-4263 (((-626 (-1236 |#1|))) 42 (|has| |#1| (-550)))) (-2676 (($ $ $ $) 25)) (-2266 (((-121)) 58)) (-2788 (($ (-671 |#1|) $) 80)) (-3127 (($ $ $) 23)) (-3333 (((-121)) 59)) (-3060 (((-121)) 57)) (-2682 (((-121)) 53)) (-3304 (($) 17 T CONST)) (-1653 (((-121) $ $) 6)) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 29)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 26) (($ $ |#1|) 34) (($ |#1| $) 33))) -(((-413 |#1|) (-1267) (-170)) (T -413)) -((-4374 (*1 *2) (-12 (-4 *3 (-170)) (-5 *2 (-1236 *1)) (-4 *1 (-413 *3)))) (-3390 (*1 *2 *1) (-12 (-4 *1 (-413 *3)) (-4 *3 (-170)) (-5 *2 (-1236 *3)))) (-3390 (*1 *2 *3) (-12 (-5 *3 (-1236 *1)) (-4 *1 (-413 *4)) (-4 *4 (-170)) (-5 *2 (-671 *4)))) (-2778 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *1 (-413 *2)) (-4 *2 (-170)))) (-2059 (*1 *2) (-12 (-4 *1 (-413 *3)) (-4 *3 (-170)) (-5 *2 (-1236 (-671 *3))))) (-2879 (*1 *2) (-12 (-4 *1 (-413 *3)) (-4 *3 (-170)) (-5 *2 (-626 (-945 *3))))) (-3380 (*1 *1 *2) (-12 (-5 *2 (-1236 *3)) (-4 *3 (-170)) (-4 *1 (-413 *3)))) (-4255 (*1 *2 *1) (-12 (-4 *1 (-413 *3)) (-4 *3 (-170)) (-5 *2 (-1236 *3)))) (-4255 (*1 *1 *2) (-12 (-5 *2 (-1236 *3)) (-4 *3 (-170)) (-4 *1 (-413 *3)))) (-3158 (*1 *2) (-12 (-4 *1 (-413 *2)) (-4 *2 (-170)))) (-1998 (*1 *2) (-12 (-4 *1 (-413 *2)) (-4 *2 (-170)))) (-1279 (*1 *2) (-12 (-4 *1 (-413 *3)) (-4 *3 (-170)) (-5 *2 (-671 *3)))) (-3852 (*1 *2) (-12 (-4 *1 (-413 *3)) (-4 *3 (-170)) (-5 *2 (-671 *3)))) (-1284 (*1 *2 *1) (-12 (-4 *1 (-413 *3)) (-4 *3 (-170)) (-5 *2 (-671 *3)))) (-2611 (*1 *2 *1) (-12 (-4 *1 (-413 *3)) (-4 *3 (-170)) (-5 *2 (-671 *3)))) (-3081 (*1 *2) (-12 (-4 *1 (-413 *3)) (-4 *3 (-170)) (-4 *3 (-359)) (-5 *2 (-1149 (-945 *3))))) (-3013 (*1 *2) (-12 (-4 *1 (-413 *3)) (-4 *3 (-170)) (-4 *3 (-359)) (-5 *2 (-1149 (-945 *3))))) (-2788 (*1 *1 *2 *1) (-12 (-5 *2 (-671 *3)) (-4 *1 (-413 *3)) (-4 *3 (-170))))) -(-13 (-363 |t#1|) (-10 -8 (-15 -4374 ((-1236 $))) (-15 -3390 ((-1236 |t#1|) $)) (-15 -3390 ((-671 |t#1|) (-1236 $))) (-15 -2778 (|t#1| $ (-560))) (-15 -2059 ((-1236 (-671 |t#1|)))) (-15 -2879 ((-626 (-945 |t#1|)))) (-15 -3380 ($ (-1236 |t#1|))) (-15 -4255 ((-1236 |t#1|) $)) (-15 -4255 ($ (-1236 |t#1|))) (-15 -3158 (|t#1|)) (-15 -1998 (|t#1|)) (-15 -1279 ((-671 |t#1|))) (-15 -3852 ((-671 |t#1|))) (-15 -1284 ((-671 |t#1|) $)) (-15 -2611 ((-671 |t#1|) $)) (IF (|has| |t#1| (-359)) (PROGN (-15 -3081 ((-1149 (-945 |t#1|)))) (-15 -3013 ((-1149 (-945 |t#1|))))) |noBranch|) (-15 -2788 ($ (-671 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-105) . T) ((-120 |#1| |#1|) . T) ((-137) . T) ((-600 (-842)) . T) ((-363 |#1|) . T) ((-629 |#1|) . T) ((-699 |#1|) . T) ((-702) . T) ((-728 |#1|) . T) ((-745) . T) ((-1045 |#1|) . T) ((-1082) . T)) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) 40)) (-3796 (($ $) 55)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) 142)) (-1350 (($ $) NIL)) (-3376 (((-121) $) 34)) (-1917 ((|#1| $) 12)) (-2314 (((-3 $ "failed") $ $) NIL)) (-3065 (($ $) NIL (|has| |#1| (-1191)))) (-2953 (((-414 $) $) NIL (|has| |#1| (-1191)))) (-2302 (($ |#1| (-560)) 30)) (-4236 (($) NIL T CONST)) (-1473 (((-3 (-560) "failed") $) NIL (|has| |#1| (-1029 (-560)))) (((-3 (-403 (-560)) "failed") $) NIL (|has| |#1| (-1029 (-403 (-560))))) (((-3 |#1| "failed") $) 112)) (-3001 (((-560) $) NIL (|has| |#1| (-1029 (-560)))) (((-403 (-560)) $) NIL (|has| |#1| (-1029 (-403 (-560))))) ((|#1| $) 53)) (-1823 (((-3 $ "failed") $) 127)) (-1367 (((-3 (-403 (-560)) "failed") $) 61 (|has| |#1| (-542)))) (-1689 (((-121) $) 57 (|has| |#1| (-542)))) (-1519 (((-403 (-560)) $) 59 (|has| |#1| (-542)))) (-4298 (($ |#1| (-560)) 32)) (-3319 (((-121) $) 148 (|has| |#1| (-1191)))) (-2642 (((-121) $) 41)) (-2032 (((-755) $) 36)) (-4129 (((-3 "nil" "sqfr" "irred" "prime") $ (-560)) 133)) (-1724 ((|#1| $ (-560)) 132)) (-1928 (((-560) $ (-560)) 131)) (-2947 (($ |#1| (-560)) 29)) (-2803 (($ (-1 |#1| |#1|) $) 139)) (-1852 (($ |#1| (-626 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-560))))) 56)) (-2582 (($ (-626 $)) NIL (|has| |#1| (-447))) (($ $ $) NIL (|has| |#1| (-447)))) (-1291 (((-1135) $) NIL)) (-3929 (($ |#1| (-560)) 31)) (-4353 (((-1100) $) NIL)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL (|has| |#1| (-447)))) (-4440 (($ (-626 $)) NIL (|has| |#1| (-447))) (($ $ $) 143 (|has| |#1| (-447)))) (-2128 (($ |#1| (-560) (-3 "nil" "sqfr" "irred" "prime")) 28)) (-3025 (((-626 (-2 (|:| -1601 |#1|) (|:| -4034 (-560)))) $) 52)) (-1800 (((-626 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-560)))) $) 11)) (-1601 (((-414 $) $) NIL (|has| |#1| (-1191)))) (-2336 (((-3 $ "failed") $ $) 134)) (-4034 (((-560) $) 128)) (-3780 ((|#1| $) 54)) (-4450 (($ $ (-626 |#1|) (-626 |#1|)) NIL (|has| |#1| (-298 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-298 |#1|))) (($ $ (-283 |#1|)) NIL (|has| |#1| (-298 |#1|))) (($ $ (-626 (-283 |#1|))) 76 (|has| |#1| (-298 |#1|))) (($ $ (-626 (-1153)) (-626 |#1|)) 81 (|has| |#1| (-515 (-1153) |#1|))) (($ $ (-1153) |#1|) NIL (|has| |#1| (-515 (-1153) |#1|))) (($ $ (-1153) $) NIL (|has| |#1| (-515 (-1153) $))) (($ $ (-626 (-1153)) (-626 $)) 82 (|has| |#1| (-515 (-1153) $))) (($ $ (-626 (-283 $))) 78 (|has| |#1| (-298 $))) (($ $ (-283 $)) NIL (|has| |#1| (-298 $))) (($ $ $ $) NIL (|has| |#1| (-298 $))) (($ $ (-626 $) (-626 $)) NIL (|has| |#1| (-298 $)))) (-2778 (($ $ |#1|) 68 (|has| |#1| (-276 |#1| |#1|))) (($ $ $) 69 (|has| |#1| (-276 $ $)))) (-2443 (($ $) NIL (|has| |#1| (-221))) (($ $ (-755)) NIL (|has| |#1| (-221))) (($ $ (-1153)) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-626 (-1153))) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-1153) (-755)) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-626 (-1153)) (-626 (-755))) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-1 |#1| |#1|) (-755)) NIL) (($ $ (-1 |#1| |#1|)) 138)) (-4255 (((-533) $) 26 (|has| |#1| (-601 (-533)))) (((-375) $) 88 (|has| |#1| (-1013))) (((-213) $) 91 (|has| |#1| (-1013)))) (-2801 (((-842) $) 110) (($ (-560)) 44) (($ $) NIL) (($ |#1|) 43) (($ (-403 (-560))) NIL (|has| |#1| (-1029 (-403 (-560)))))) (-1751 (((-755)) 46)) (-2328 (((-121) $ $) NIL)) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (-3304 (($) 38 T CONST)) (-1459 (($) 37 T CONST)) (-2500 (($ $) NIL (|has| |#1| (-221))) (($ $ (-755)) NIL (|has| |#1| (-221))) (($ $ (-1153)) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-626 (-1153))) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-1153) (-755)) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-626 (-1153)) (-626 (-755))) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-1 |#1| |#1|) (-755)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1653 (((-121) $ $) 92)) (-1725 (($ $) 124) (($ $ $) NIL)) (-1716 (($ $ $) 136)) (** (($ $ (-909)) NIL) (($ $ (-755)) 98)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) 48) (($ $ $) 47) (($ |#1| $) 49) (($ $ |#1|) NIL))) -(((-414 |#1|) (-13 (-550) (-219 |#1|) (-43 |#1|) (-330 |#1|) (-407 |#1|) (-10 -8 (-15 -3780 (|#1| $)) (-15 -4034 ((-560) $)) (-15 -1852 ($ |#1| (-626 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-560)))))) (-15 -1800 ((-626 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-560)))) $)) (-15 -2947 ($ |#1| (-560))) (-15 -3025 ((-626 (-2 (|:| -1601 |#1|) (|:| -4034 (-560)))) $)) (-15 -3929 ($ |#1| (-560))) (-15 -1928 ((-560) $ (-560))) (-15 -1724 (|#1| $ (-560))) (-15 -4129 ((-3 "nil" "sqfr" "irred" "prime") $ (-560))) (-15 -2032 ((-755) $)) (-15 -4298 ($ |#1| (-560))) (-15 -2302 ($ |#1| (-560))) (-15 -2128 ($ |#1| (-560) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -1917 (|#1| $)) (-15 -3796 ($ $)) (-15 -2803 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-447)) (-6 (-447)) |noBranch|) (IF (|has| |#1| (-1013)) (-6 (-1013)) |noBranch|) (IF (|has| |#1| (-1191)) (-6 (-1191)) |noBranch|) (IF (|has| |#1| (-601 (-533))) (-6 (-601 (-533))) |noBranch|) (IF (|has| |#1| (-542)) (PROGN (-15 -1689 ((-121) $)) (-15 -1519 ((-403 (-560)) $)) (-15 -1367 ((-3 (-403 (-560)) "failed") $))) |noBranch|) (IF (|has| |#1| (-276 $ $)) (-6 (-276 $ $)) |noBranch|) (IF (|has| |#1| (-298 $)) (-6 (-298 $)) |noBranch|) (IF (|has| |#1| (-515 (-1153) $)) (-6 (-515 (-1153) $)) |noBranch|))) (-550)) (T -414)) -((-2803 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-550)) (-5 *1 (-414 *3)))) (-3780 (*1 *2 *1) (-12 (-5 *1 (-414 *2)) (-4 *2 (-550)))) (-4034 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-414 *3)) (-4 *3 (-550)))) (-1852 (*1 *1 *2 *3) (-12 (-5 *3 (-626 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-560))))) (-4 *2 (-550)) (-5 *1 (-414 *2)))) (-1800 (*1 *2 *1) (-12 (-5 *2 (-626 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-560))))) (-5 *1 (-414 *3)) (-4 *3 (-550)))) (-2947 (*1 *1 *2 *3) (-12 (-5 *3 (-560)) (-5 *1 (-414 *2)) (-4 *2 (-550)))) (-3025 (*1 *2 *1) (-12 (-5 *2 (-626 (-2 (|:| -1601 *3) (|:| -4034 (-560))))) (-5 *1 (-414 *3)) (-4 *3 (-550)))) (-3929 (*1 *1 *2 *3) (-12 (-5 *3 (-560)) (-5 *1 (-414 *2)) (-4 *2 (-550)))) (-1928 (*1 *2 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-414 *3)) (-4 *3 (-550)))) (-1724 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-5 *1 (-414 *2)) (-4 *2 (-550)))) (-4129 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-414 *4)) (-4 *4 (-550)))) (-2032 (*1 *2 *1) (-12 (-5 *2 (-755)) (-5 *1 (-414 *3)) (-4 *3 (-550)))) (-4298 (*1 *1 *2 *3) (-12 (-5 *3 (-560)) (-5 *1 (-414 *2)) (-4 *2 (-550)))) (-2302 (*1 *1 *2 *3) (-12 (-5 *3 (-560)) (-5 *1 (-414 *2)) (-4 *2 (-550)))) (-2128 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-560)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-414 *2)) (-4 *2 (-550)))) (-1917 (*1 *2 *1) (-12 (-5 *1 (-414 *2)) (-4 *2 (-550)))) (-3796 (*1 *1 *1) (-12 (-5 *1 (-414 *2)) (-4 *2 (-550)))) (-1689 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-414 *3)) (-4 *3 (-542)) (-4 *3 (-550)))) (-1519 (*1 *2 *1) (-12 (-5 *2 (-403 (-560))) (-5 *1 (-414 *3)) (-4 *3 (-542)) (-4 *3 (-550)))) (-1367 (*1 *2 *1) (|partial| -12 (-5 *2 (-403 (-560))) (-5 *1 (-414 *3)) (-4 *3 (-542)) (-4 *3 (-550))))) -(-13 (-550) (-219 |#1|) (-43 |#1|) (-330 |#1|) (-407 |#1|) (-10 -8 (-15 -3780 (|#1| $)) (-15 -4034 ((-560) $)) (-15 -1852 ($ |#1| (-626 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-560)))))) (-15 -1800 ((-626 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-560)))) $)) (-15 -2947 ($ |#1| (-560))) (-15 -3025 ((-626 (-2 (|:| -1601 |#1|) (|:| -4034 (-560)))) $)) (-15 -3929 ($ |#1| (-560))) (-15 -1928 ((-560) $ (-560))) (-15 -1724 (|#1| $ (-560))) (-15 -4129 ((-3 "nil" "sqfr" "irred" "prime") $ (-560))) (-15 -2032 ((-755) $)) (-15 -4298 ($ |#1| (-560))) (-15 -2302 ($ |#1| (-560))) (-15 -2128 ($ |#1| (-560) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -1917 (|#1| $)) (-15 -3796 ($ $)) (-15 -2803 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-447)) (-6 (-447)) |noBranch|) (IF (|has| |#1| (-1013)) (-6 (-1013)) |noBranch|) (IF (|has| |#1| (-1191)) (-6 (-1191)) |noBranch|) (IF (|has| |#1| (-601 (-533))) (-6 (-601 (-533))) |noBranch|) (IF (|has| |#1| (-542)) (PROGN (-15 -1689 ((-121) $)) (-15 -1519 ((-403 (-560)) $)) (-15 -1367 ((-3 (-403 (-560)) "failed") $))) |noBranch|) (IF (|has| |#1| (-276 $ $)) (-6 (-276 $ $)) |noBranch|) (IF (|has| |#1| (-298 $)) (-6 (-298 $)) |noBranch|) (IF (|has| |#1| (-515 (-1153) $)) (-6 (-515 (-1153) $)) |noBranch|))) -((-2588 (((-414 |#1|) (-414 |#1|) (-1 (-414 |#1|) |#1|)) 20)) (-2011 (((-414 |#1|) (-414 |#1|) (-414 |#1|)) 15))) -(((-415 |#1|) (-10 -7 (-15 -2588 ((-414 |#1|) (-414 |#1|) (-1 (-414 |#1|) |#1|))) (-15 -2011 ((-414 |#1|) (-414 |#1|) (-414 |#1|)))) (-550)) (T -415)) -((-2011 (*1 *2 *2 *2) (-12 (-5 *2 (-414 *3)) (-4 *3 (-550)) (-5 *1 (-415 *3)))) (-2588 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-414 *4) *4)) (-4 *4 (-550)) (-5 *2 (-414 *4)) (-5 *1 (-415 *4))))) -(-10 -7 (-15 -2588 ((-414 |#1|) (-414 |#1|) (-1 (-414 |#1|) |#1|))) (-15 -2011 ((-414 |#1|) (-414 |#1|) (-414 |#1|)))) -((-4204 ((|#2| |#2|) 160)) (-4080 (((-3 (|:| |%expansion| (-301 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1135)) (|:| |prob| (-1135))))) |#2| (-121)) 55))) -(((-416 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4080 ((-3 (|:| |%expansion| (-301 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1135)) (|:| |prob| (-1135))))) |#2| (-121))) (-15 -4204 (|#2| |#2|))) (-13 (-447) (-834) (-1029 (-560)) (-622 (-560))) (-13 (-27) (-1173) (-426 |#1|)) (-1153) |#2|) (T -416)) -((-4204 (*1 *2 *2) (-12 (-4 *3 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *1 (-416 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1173) (-426 *3))) (-14 *4 (-1153)) (-14 *5 *2))) (-4080 (*1 *2 *3 *4) (-12 (-5 *4 (-121)) (-4 *5 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-3 (|:| |%expansion| (-301 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1135)) (|:| |prob| (-1135)))))) (-5 *1 (-416 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1173) (-426 *5))) (-14 *6 (-1153)) (-14 *7 *3)))) -(-10 -7 (-15 -4080 ((-3 (|:| |%expansion| (-301 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1135)) (|:| |prob| (-1135))))) |#2| (-121))) (-15 -4204 (|#2| |#2|))) -((-2803 ((|#4| (-1 |#3| |#1|) |#2|) 11))) -(((-417 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2803 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-1039) (-834)) (-426 |#1|) (-13 (-1039) (-834)) (-426 |#3|)) (T -417)) -((-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1039) (-834))) (-4 *6 (-13 (-1039) (-834))) (-4 *2 (-426 *6)) (-5 *1 (-417 *5 *4 *6 *2)) (-4 *4 (-426 *5))))) -(-10 -7 (-15 -2803 (|#4| (-1 |#3| |#1|) |#2|))) -((-4204 ((|#2| |#2|) 87)) (-2378 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1135)) (|:| |prob| (-1135))))) |#2| (-121) (-1135)) 46)) (-3285 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1135)) (|:| |prob| (-1135))))) |#2| (-121) (-1135)) 152))) -(((-418 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2378 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1135)) (|:| |prob| (-1135))))) |#2| (-121) (-1135))) (-15 -3285 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1135)) (|:| |prob| (-1135))))) |#2| (-121) (-1135))) (-15 -4204 (|#2| |#2|))) (-13 (-447) (-834) (-1029 (-560)) (-622 (-560))) (-13 (-27) (-1173) (-426 |#1|) (-10 -8 (-15 -2801 ($ |#3|)))) (-832) (-13 (-1213 |#2| |#3|) (-359) (-1173) (-10 -8 (-15 -2443 ($ $)) (-15 -2376 ($ $)))) (-976 |#4|) (-1153)) (T -418)) -((-4204 (*1 *2 *2) (-12 (-4 *3 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-4 *2 (-13 (-27) (-1173) (-426 *3) (-10 -8 (-15 -2801 ($ *4))))) (-4 *4 (-832)) (-4 *5 (-13 (-1213 *2 *4) (-359) (-1173) (-10 -8 (-15 -2443 ($ $)) (-15 -2376 ($ $))))) (-5 *1 (-418 *3 *2 *4 *5 *6 *7)) (-4 *6 (-976 *5)) (-14 *7 (-1153)))) (-3285 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-121)) (-4 *6 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-4 *3 (-13 (-27) (-1173) (-426 *6) (-10 -8 (-15 -2801 ($ *7))))) (-4 *7 (-832)) (-4 *8 (-13 (-1213 *3 *7) (-359) (-1173) (-10 -8 (-15 -2443 ($ $)) (-15 -2376 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1135)) (|:| |prob| (-1135)))))) (-5 *1 (-418 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1135)) (-4 *9 (-976 *8)) (-14 *10 (-1153)))) (-2378 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-121)) (-4 *6 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-4 *3 (-13 (-27) (-1173) (-426 *6) (-10 -8 (-15 -2801 ($ *7))))) (-4 *7 (-832)) (-4 *8 (-13 (-1213 *3 *7) (-359) (-1173) (-10 -8 (-15 -2443 ($ $)) (-15 -2376 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1135)) (|:| |prob| (-1135)))))) (-5 *1 (-418 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1135)) (-4 *9 (-976 *8)) (-14 *10 (-1153))))) -(-10 -7 (-15 -2378 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1135)) (|:| |prob| (-1135))))) |#2| (-121) (-1135))) (-15 -3285 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1135)) (|:| |prob| (-1135))))) |#2| (-121) (-1135))) (-15 -4204 (|#2| |#2|))) -((-3469 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-2342 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-2803 ((|#4| (-1 |#3| |#1|) |#2|) 17))) -(((-419 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2803 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2342 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3469 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1082) (-421 |#1|) (-1082) (-421 |#3|)) (T -419)) -((-3469 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1082)) (-4 *5 (-1082)) (-4 *2 (-421 *5)) (-5 *1 (-419 *6 *4 *5 *2)) (-4 *4 (-421 *6)))) (-2342 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1082)) (-4 *2 (-1082)) (-5 *1 (-419 *5 *4 *2 *6)) (-4 *4 (-421 *5)) (-4 *6 (-421 *2)))) (-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *2 (-421 *6)) (-5 *1 (-419 *5 *4 *6 *2)) (-4 *4 (-421 *5))))) -(-10 -7 (-15 -2803 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2342 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3469 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-3569 (($) 44)) (-1749 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-2498 (($ $ $) 39)) (-3947 (((-121) $ $) 28)) (-2912 (((-755)) 47)) (-2808 (($ (-626 |#2|)) 20) (($) NIL)) (-1666 (($) 53)) (-4325 ((|#2| $) 61)) (-2501 ((|#2| $) 59)) (-3142 (((-909) $) 55)) (-4283 (($ $ $) 35)) (-1330 (($ (-909)) 50)) (-1794 (($ $ |#2|) NIL) (($ $ $) 38)) (-4035 (((-755) (-1 (-121) |#2|) $) NIL) (((-755) |#2| $) 26)) (-4162 (($ (-626 |#2|)) 24)) (-1511 (($ $) 46)) (-2801 (((-842) $) 33)) (-4127 (((-755) $) 21)) (-2799 (($ (-626 |#2|)) 19) (($) NIL)) (-1653 (((-121) $ $) 16)) (-1667 (((-121) $ $) 13))) -(((-420 |#1| |#2|) (-10 -8 (-15 -2912 ((-755))) (-15 -1330 (|#1| (-909))) (-15 -3142 ((-909) |#1|)) (-15 -1666 (|#1|)) (-15 -4325 (|#2| |#1|)) (-15 -2501 (|#2| |#1|)) (-15 -3569 (|#1|)) (-15 -1511 (|#1| |#1|)) (-15 -4127 ((-755) |#1|)) (-15 -1653 ((-121) |#1| |#1|)) (-15 -2801 ((-842) |#1|)) (-15 -1667 ((-121) |#1| |#1|)) (-15 -2799 (|#1|)) (-15 -2799 (|#1| (-626 |#2|))) (-15 -2808 (|#1|)) (-15 -2808 (|#1| (-626 |#2|))) (-15 -4283 (|#1| |#1| |#1|)) (-15 -1794 (|#1| |#1| |#1|)) (-15 -1794 (|#1| |#1| |#2|)) (-15 -2498 (|#1| |#1| |#1|)) (-15 -3947 ((-121) |#1| |#1|)) (-15 -1749 (|#1| |#1| |#1|)) (-15 -1749 (|#1| |#1| |#2|)) (-15 -1749 (|#1| |#2| |#1|)) (-15 -4162 (|#1| (-626 |#2|))) (-15 -4035 ((-755) |#2| |#1|)) (-15 -4035 ((-755) (-1 (-121) |#2|) |#1|))) (-421 |#2|) (-1082)) (T -420)) -((-2912 (*1 *2) (-12 (-4 *4 (-1082)) (-5 *2 (-755)) (-5 *1 (-420 *3 *4)) (-4 *3 (-421 *4))))) -(-10 -8 (-15 -2912 ((-755))) (-15 -1330 (|#1| (-909))) (-15 -3142 ((-909) |#1|)) (-15 -1666 (|#1|)) (-15 -4325 (|#2| |#1|)) (-15 -2501 (|#2| |#1|)) (-15 -3569 (|#1|)) (-15 -1511 (|#1| |#1|)) (-15 -4127 ((-755) |#1|)) (-15 -1653 ((-121) |#1| |#1|)) (-15 -2801 ((-842) |#1|)) (-15 -1667 ((-121) |#1| |#1|)) (-15 -2799 (|#1|)) (-15 -2799 (|#1| (-626 |#2|))) (-15 -2808 (|#1|)) (-15 -2808 (|#1| (-626 |#2|))) (-15 -4283 (|#1| |#1| |#1|)) (-15 -1794 (|#1| |#1| |#1|)) (-15 -1794 (|#1| |#1| |#2|)) (-15 -2498 (|#1| |#1| |#1|)) (-15 -3947 ((-121) |#1| |#1|)) (-15 -1749 (|#1| |#1| |#1|)) (-15 -1749 (|#1| |#1| |#2|)) (-15 -1749 (|#1| |#2| |#1|)) (-15 -4162 (|#1| (-626 |#2|))) (-15 -4035 ((-755) |#2| |#1|)) (-15 -4035 ((-755) (-1 (-121) |#2|) |#1|))) -((-2601 (((-121) $ $) 18)) (-3569 (($) 63 (|has| |#1| (-364)))) (-1749 (($ |#1| $) 78) (($ $ |#1|) 77) (($ $ $) 76)) (-2498 (($ $ $) 74)) (-3947 (((-121) $ $) 75)) (-3909 (((-121) $ (-755)) 8)) (-2912 (((-755)) 57 (|has| |#1| (-364)))) (-2808 (($ (-626 |#1|)) 70) (($) 69)) (-3763 (($ (-1 (-121) |#1|) $) 42 (|has| $ (-6 -4505)))) (-3802 (($ (-1 (-121) |#1|) $) 52 (|has| $ (-6 -4505)))) (-4236 (($) 7 T CONST)) (-2868 (($ $) 55 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-3561 (($ |#1| $) 44 (|has| $ (-6 -4505))) (($ (-1 (-121) |#1|) $) 43 (|has| $ (-6 -4505)))) (-4310 (($ |#1| $) 54 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505)))) (($ (-1 (-121) |#1|) $) 51 (|has| $ (-6 -4505)))) (-2342 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 53 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 50 (|has| $ (-6 -4505))) ((|#1| (-1 |#1| |#1| |#1|) $) 49 (|has| $ (-6 -4505)))) (-1666 (($) 60 (|has| |#1| (-364)))) (-1981 (((-626 |#1|) $) 30 (|has| $ (-6 -4505)))) (-2122 (((-121) $ (-755)) 9)) (-4325 ((|#1| $) 61 (|has| |#1| (-834)))) (-2130 (((-626 |#1|) $) 29 (|has| $ (-6 -4505)))) (-2030 (((-121) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-2501 ((|#1| $) 62 (|has| |#1| (-834)))) (-3778 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#1| |#1|) $) 35)) (-3142 (((-909) $) 59 (|has| |#1| (-364)))) (-3441 (((-121) $ (-755)) 10)) (-1291 (((-1135) $) 22)) (-4283 (($ $ $) 71)) (-2525 ((|#1| $) 36)) (-4345 (($ |#1| $) 37)) (-1330 (($ (-909)) 58 (|has| |#1| (-364)))) (-4353 (((-1100) $) 21)) (-3786 (((-3 |#1| "failed") (-1 (-121) |#1|) $) 48)) (-2146 ((|#1| $) 38)) (-2865 (((-121) (-1 (-121) |#1|) $) 32 (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#1|))) 26 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-283 |#1|)) 25 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-626 |#1|) (-626 |#1|)) 23 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))))) (-2214 (((-121) $ $) 14)) (-4191 (((-121) $) 11)) (-3260 (($) 12)) (-1794 (($ $ |#1|) 73) (($ $ $) 72)) (-3958 (($) 46) (($ (-626 |#1|)) 45)) (-4035 (((-755) (-1 (-121) |#1|) $) 31 (|has| $ (-6 -4505))) (((-755) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-2813 (($ $) 13)) (-4255 (((-533) $) 56 (|has| |#1| (-601 (-533))))) (-4162 (($ (-626 |#1|)) 47)) (-1511 (($ $) 64 (|has| |#1| (-364)))) (-2801 (((-842) $) 20)) (-4127 (((-755) $) 65)) (-2799 (($ (-626 |#1|)) 68) (($) 67)) (-1354 (($ (-626 |#1|)) 39)) (-3656 (((-121) (-1 (-121) |#1|) $) 33 (|has| $ (-6 -4505)))) (-1653 (((-121) $ $) 19)) (-1667 (((-121) $ $) 66)) (-2271 (((-755) $) 6 (|has| $ (-6 -4505))))) -(((-421 |#1|) (-1267) (-1082)) (T -421)) -((-4127 (*1 *2 *1) (-12 (-4 *1 (-421 *3)) (-4 *3 (-1082)) (-5 *2 (-755)))) (-1511 (*1 *1 *1) (-12 (-4 *1 (-421 *2)) (-4 *2 (-1082)) (-4 *2 (-364)))) (-3569 (*1 *1) (-12 (-4 *1 (-421 *2)) (-4 *2 (-364)) (-4 *2 (-1082)))) (-2501 (*1 *2 *1) (-12 (-4 *1 (-421 *2)) (-4 *2 (-1082)) (-4 *2 (-834)))) (-4325 (*1 *2 *1) (-12 (-4 *1 (-421 *2)) (-4 *2 (-1082)) (-4 *2 (-834))))) -(-13 (-217 |t#1|) (-1079 |t#1|) (-10 -8 (-6 -4505) (-15 -4127 ((-755) $)) (IF (|has| |t#1| (-364)) (PROGN (-6 (-364)) (-15 -1511 ($ $)) (-15 -3569 ($))) |noBranch|) (IF (|has| |t#1| (-834)) (PROGN (-15 -2501 (|t#1| $)) (-15 -4325 (|t#1| $))) |noBranch|))) -(((-39) . T) ((-111 |#1|) . T) ((-105) . T) ((-600 (-842)) . T) ((-152 |#1|) . T) ((-601 (-533)) |has| |#1| (-601 (-533))) ((-217 |#1|) . T) ((-223 |#1|) . T) ((-298 |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))) ((-364) |has| |#1| (-364)) ((-492 |#1|) . T) ((-515 |#1| |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))) ((-1079 |#1|) . T) ((-1082) . T) ((-1187) . T)) -((-3089 (((-577 |#2|) |#2| (-1153)) 35)) (-3942 (((-577 |#2|) |#2| (-1153)) 19)) (-2755 ((|#2| |#2| (-1153)) 24))) -(((-422 |#1| |#2|) (-10 -7 (-15 -3942 ((-577 |#2|) |#2| (-1153))) (-15 -3089 ((-577 |#2|) |#2| (-1153))) (-15 -2755 (|#2| |#2| (-1153)))) (-13 (-296) (-834) (-148) (-1029 (-560)) (-622 (-560))) (-13 (-1173) (-29 |#1|))) (T -422)) -((-2755 (*1 *2 *2 *3) (-12 (-5 *3 (-1153)) (-4 *4 (-13 (-296) (-834) (-148) (-1029 (-560)) (-622 (-560)))) (-5 *1 (-422 *4 *2)) (-4 *2 (-13 (-1173) (-29 *4))))) (-3089 (*1 *2 *3 *4) (-12 (-5 *4 (-1153)) (-4 *5 (-13 (-296) (-834) (-148) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-577 *3)) (-5 *1 (-422 *5 *3)) (-4 *3 (-13 (-1173) (-29 *5))))) (-3942 (*1 *2 *3 *4) (-12 (-5 *4 (-1153)) (-4 *5 (-13 (-296) (-834) (-148) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-577 *3)) (-5 *1 (-422 *5 *3)) (-4 *3 (-13 (-1173) (-29 *5)))))) -(-10 -7 (-15 -3942 ((-577 |#2|) |#2| (-1153))) (-15 -3089 ((-577 |#2|) |#2| (-1153))) (-15 -2755 (|#2| |#2| (-1153)))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-4236 (($) NIL T CONST)) (-1823 (((-3 $ "failed") $) NIL)) (-2642 (((-121) $) NIL)) (-1842 (($ |#2| |#1|) 35)) (-1977 (($ |#2| |#1|) 33)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2801 (((-842) $) NIL) (($ (-560)) NIL) (($ |#1|) NIL) (($ (-323 |#2|)) 25)) (-1751 (((-755)) NIL)) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (-3304 (($) 10 T CONST)) (-1459 (($) 16 T CONST)) (-1653 (((-121) $ $) NIL)) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) 34)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-423 |#1| |#2|) (-13 (-43 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4492)) (IF (|has| |#1| (-6 -4492)) (-6 -4492) |noBranch|) |noBranch|) (-15 -2801 ($ |#1|)) (-15 -2801 ($ (-323 |#2|))) (-15 -1842 ($ |#2| |#1|)) (-15 -1977 ($ |#2| |#1|)))) (-13 (-170) (-43 (-403 (-560)))) (-13 (-834) (-21))) (T -423)) -((-2801 (*1 *1 *2) (-12 (-5 *1 (-423 *2 *3)) (-4 *2 (-13 (-170) (-43 (-403 (-560))))) (-4 *3 (-13 (-834) (-21))))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-323 *4)) (-4 *4 (-13 (-834) (-21))) (-5 *1 (-423 *3 *4)) (-4 *3 (-13 (-170) (-43 (-403 (-560))))))) (-1842 (*1 *1 *2 *3) (-12 (-5 *1 (-423 *3 *2)) (-4 *3 (-13 (-170) (-43 (-403 (-560))))) (-4 *2 (-13 (-834) (-21))))) (-1977 (*1 *1 *2 *3) (-12 (-5 *1 (-423 *3 *2)) (-4 *3 (-13 (-170) (-43 (-403 (-560))))) (-4 *2 (-13 (-834) (-21)))))) -(-13 (-43 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4492)) (IF (|has| |#1| (-6 -4492)) (-6 -4492) |noBranch|) |noBranch|) (-15 -2801 ($ |#1|)) (-15 -2801 ($ (-323 |#2|))) (-15 -1842 ($ |#2| |#1|)) (-15 -1977 ($ |#2| |#1|)))) -((-2376 (((-3 |#2| (-626 |#2|)) |#2| (-1153)) 104))) -(((-424 |#1| |#2|) (-10 -7 (-15 -2376 ((-3 |#2| (-626 |#2|)) |#2| (-1153)))) (-13 (-296) (-834) (-148) (-1029 (-560)) (-622 (-560))) (-13 (-1173) (-951) (-29 |#1|))) (T -424)) -((-2376 (*1 *2 *3 *4) (-12 (-5 *4 (-1153)) (-4 *5 (-13 (-296) (-834) (-148) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-3 *3 (-626 *3))) (-5 *1 (-424 *5 *3)) (-4 *3 (-13 (-1173) (-951) (-29 *5)))))) -(-10 -7 (-15 -2376 ((-3 |#2| (-626 |#2|)) |#2| (-1153)))) -((-1654 (((-626 (-1153)) $) 72)) (-1593 (((-403 (-1149 $)) $ (-599 $)) 268)) (-4122 (($ $ (-283 $)) NIL) (($ $ (-626 (-283 $))) NIL) (($ $ (-626 (-599 $)) (-626 $)) 233)) (-1473 (((-3 (-599 $) "failed") $) NIL) (((-3 (-1153) "failed") $) 75) (((-3 (-560) "failed") $) NIL) (((-3 |#2| "failed") $) 229) (((-3 (-403 (-945 |#2|)) "failed") $) 319) (((-3 (-945 |#2|) "failed") $) 231) (((-3 (-403 (-560)) "failed") $) NIL)) (-3001 (((-599 $) $) NIL) (((-1153) $) 30) (((-560) $) NIL) ((|#2| $) 227) (((-403 (-945 |#2|)) $) 300) (((-945 |#2|) $) 228) (((-403 (-560)) $) NIL)) (-4403 (((-123) (-123)) 47)) (-1540 (($ $) 87)) (-4220 (((-3 (-599 $) "failed") $) 224)) (-1586 (((-626 (-599 $)) $) 225)) (-3665 (((-3 (-626 $) "failed") $) 243)) (-3004 (((-3 (-2 (|:| |val| $) (|:| -4034 (-560))) "failed") $) 250)) (-2327 (((-3 (-626 $) "failed") $) 241)) (-1355 (((-3 (-2 (|:| -2169 (-560)) (|:| |var| (-599 $))) "failed") $) 259)) (-2913 (((-3 (-2 (|:| |var| (-599 $)) (|:| -4034 (-560))) "failed") $) 247) (((-3 (-2 (|:| |var| (-599 $)) (|:| -4034 (-560))) "failed") $ (-123)) 214) (((-3 (-2 (|:| |var| (-599 $)) (|:| -4034 (-560))) "failed") $ (-1153)) 216)) (-1704 (((-121) $) 19)) (-1711 ((|#2| $) 21)) (-4450 (($ $ (-599 $) $) NIL) (($ $ (-626 (-599 $)) (-626 $)) 232) (($ $ (-626 (-283 $))) NIL) (($ $ (-283 $)) NIL) (($ $ $ $) NIL) (($ $ (-626 $) (-626 $)) NIL) (($ $ (-626 (-1153)) (-626 (-1 $ $))) NIL) (($ $ (-626 (-1153)) (-626 (-1 $ (-626 $)))) 96) (($ $ (-1153) (-1 $ (-626 $))) NIL) (($ $ (-1153) (-1 $ $)) NIL) (($ $ (-626 (-123)) (-626 (-1 $ $))) NIL) (($ $ (-626 (-123)) (-626 (-1 $ (-626 $)))) NIL) (($ $ (-123) (-1 $ (-626 $))) NIL) (($ $ (-123) (-1 $ $)) NIL) (($ $ (-1153)) 57) (($ $ (-626 (-1153))) 236) (($ $) 237) (($ $ (-123) $ (-1153)) 60) (($ $ (-626 (-123)) (-626 $) (-1153)) 67) (($ $ (-626 (-1153)) (-626 (-755)) (-626 (-1 $ $))) 107) (($ $ (-626 (-1153)) (-626 (-755)) (-626 (-1 $ (-626 $)))) 238) (($ $ (-1153) (-755) (-1 $ (-626 $))) 94) (($ $ (-1153) (-755) (-1 $ $)) 93)) (-2778 (($ (-123) $) NIL) (($ (-123) $ $) NIL) (($ (-123) $ $ $) NIL) (($ (-123) $ $ $ $) NIL) (($ (-123) (-626 $)) 106)) (-2443 (($ $ (-626 (-1153)) (-626 (-755))) NIL) (($ $ (-1153) (-755)) NIL) (($ $ (-626 (-1153))) NIL) (($ $ (-1153)) 234)) (-1646 (($ $) 279)) (-4255 (((-879 (-560)) $) 253) (((-879 (-375)) $) 256) (($ (-414 $)) 315) (((-533) $) NIL)) (-2801 (((-842) $) 235) (($ (-599 $)) 84) (($ (-1153)) 26) (($ |#2|) NIL) (($ (-1105 |#2| (-599 $))) NIL) (($ (-403 |#2|)) 284) (($ (-945 (-403 |#2|))) 324) (($ (-403 (-945 (-403 |#2|)))) 296) (($ (-403 (-945 |#2|))) 290) (($ $) NIL) (($ (-945 |#2|)) 183) (($ (-403 (-560))) 329) (($ (-560)) NIL)) (-1751 (((-755)) 79)) (-2409 (((-121) (-123)) 41)) (-3209 (($ (-1153) $) 33) (($ (-1153) $ $) 34) (($ (-1153) $ $ $) 35) (($ (-1153) $ $ $ $) 36) (($ (-1153) (-626 $)) 39)) (* (($ (-403 (-560)) $) NIL) (($ $ (-403 (-560))) NIL) (($ |#2| $) 261) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-560) $) NIL) (($ (-755) $) NIL) (($ (-909) $) NIL))) -(((-425 |#1| |#2|) (-10 -8 (-15 * (|#1| (-909) |#1|)) (-15 * (|#1| (-755) |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1751 ((-755))) (-15 -2801 (|#1| (-560))) (-15 -3001 ((-403 (-560)) |#1|)) (-15 -1473 ((-3 (-403 (-560)) "failed") |#1|)) (-15 -2801 (|#1| (-403 (-560)))) (-15 -4255 ((-533) |#1|)) (-15 -3001 ((-945 |#2|) |#1|)) (-15 -1473 ((-3 (-945 |#2|) "failed") |#1|)) (-15 -2801 (|#1| (-945 |#2|))) (-15 -2443 (|#1| |#1| (-1153))) (-15 -2443 (|#1| |#1| (-626 (-1153)))) (-15 -2443 (|#1| |#1| (-1153) (-755))) (-15 -2443 (|#1| |#1| (-626 (-1153)) (-626 (-755)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2801 (|#1| |#1|)) (-15 * (|#1| |#1| (-403 (-560)))) (-15 * (|#1| (-403 (-560)) |#1|)) (-15 -3001 ((-403 (-945 |#2|)) |#1|)) (-15 -1473 ((-3 (-403 (-945 |#2|)) "failed") |#1|)) (-15 -2801 (|#1| (-403 (-945 |#2|)))) (-15 -1593 ((-403 (-1149 |#1|)) |#1| (-599 |#1|))) (-15 -2801 (|#1| (-403 (-945 (-403 |#2|))))) (-15 -2801 (|#1| (-945 (-403 |#2|)))) (-15 -2801 (|#1| (-403 |#2|))) (-15 -1646 (|#1| |#1|)) (-15 -4255 (|#1| (-414 |#1|))) (-15 -4450 (|#1| |#1| (-1153) (-755) (-1 |#1| |#1|))) (-15 -4450 (|#1| |#1| (-1153) (-755) (-1 |#1| (-626 |#1|)))) (-15 -4450 (|#1| |#1| (-626 (-1153)) (-626 (-755)) (-626 (-1 |#1| (-626 |#1|))))) (-15 -4450 (|#1| |#1| (-626 (-1153)) (-626 (-755)) (-626 (-1 |#1| |#1|)))) (-15 -3004 ((-3 (-2 (|:| |val| |#1|) (|:| -4034 (-560))) "failed") |#1|)) (-15 -2913 ((-3 (-2 (|:| |var| (-599 |#1|)) (|:| -4034 (-560))) "failed") |#1| (-1153))) (-15 -2913 ((-3 (-2 (|:| |var| (-599 |#1|)) (|:| -4034 (-560))) "failed") |#1| (-123))) (-15 -1540 (|#1| |#1|)) (-15 -2801 (|#1| (-1105 |#2| (-599 |#1|)))) (-15 -1355 ((-3 (-2 (|:| -2169 (-560)) (|:| |var| (-599 |#1|))) "failed") |#1|)) (-15 -2327 ((-3 (-626 |#1|) "failed") |#1|)) (-15 -2913 ((-3 (-2 (|:| |var| (-599 |#1|)) (|:| -4034 (-560))) "failed") |#1|)) (-15 -3665 ((-3 (-626 |#1|) "failed") |#1|)) (-15 -4450 (|#1| |#1| (-626 (-123)) (-626 |#1|) (-1153))) (-15 -4450 (|#1| |#1| (-123) |#1| (-1153))) (-15 -4450 (|#1| |#1|)) (-15 -4450 (|#1| |#1| (-626 (-1153)))) (-15 -4450 (|#1| |#1| (-1153))) (-15 -3209 (|#1| (-1153) (-626 |#1|))) (-15 -3209 (|#1| (-1153) |#1| |#1| |#1| |#1|)) (-15 -3209 (|#1| (-1153) |#1| |#1| |#1|)) (-15 -3209 (|#1| (-1153) |#1| |#1|)) (-15 -3209 (|#1| (-1153) |#1|)) (-15 -1654 ((-626 (-1153)) |#1|)) (-15 -1711 (|#2| |#1|)) (-15 -1704 ((-121) |#1|)) (-15 -3001 (|#2| |#1|)) (-15 -1473 ((-3 |#2| "failed") |#1|)) (-15 -2801 (|#1| |#2|)) (-15 -1473 ((-3 (-560) "failed") |#1|)) (-15 -3001 ((-560) |#1|)) (-15 -4255 ((-879 (-375)) |#1|)) (-15 -4255 ((-879 (-560)) |#1|)) (-15 -3001 ((-1153) |#1|)) (-15 -1473 ((-3 (-1153) "failed") |#1|)) (-15 -2801 (|#1| (-1153))) (-15 -4450 (|#1| |#1| (-123) (-1 |#1| |#1|))) (-15 -4450 (|#1| |#1| (-123) (-1 |#1| (-626 |#1|)))) (-15 -4450 (|#1| |#1| (-626 (-123)) (-626 (-1 |#1| (-626 |#1|))))) (-15 -4450 (|#1| |#1| (-626 (-123)) (-626 (-1 |#1| |#1|)))) (-15 -4450 (|#1| |#1| (-1153) (-1 |#1| |#1|))) (-15 -4450 (|#1| |#1| (-1153) (-1 |#1| (-626 |#1|)))) (-15 -4450 (|#1| |#1| (-626 (-1153)) (-626 (-1 |#1| (-626 |#1|))))) (-15 -4450 (|#1| |#1| (-626 (-1153)) (-626 (-1 |#1| |#1|)))) (-15 -2409 ((-121) (-123))) (-15 -4403 ((-123) (-123))) (-15 -1586 ((-626 (-599 |#1|)) |#1|)) (-15 -4220 ((-3 (-599 |#1|) "failed") |#1|)) (-15 -4122 (|#1| |#1| (-626 (-599 |#1|)) (-626 |#1|))) (-15 -4122 (|#1| |#1| (-626 (-283 |#1|)))) (-15 -4122 (|#1| |#1| (-283 |#1|))) (-15 -2778 (|#1| (-123) (-626 |#1|))) (-15 -2778 (|#1| (-123) |#1| |#1| |#1| |#1|)) (-15 -2778 (|#1| (-123) |#1| |#1| |#1|)) (-15 -2778 (|#1| (-123) |#1| |#1|)) (-15 -2778 (|#1| (-123) |#1|)) (-15 -4450 (|#1| |#1| (-626 |#1|) (-626 |#1|))) (-15 -4450 (|#1| |#1| |#1| |#1|)) (-15 -4450 (|#1| |#1| (-283 |#1|))) (-15 -4450 (|#1| |#1| (-626 (-283 |#1|)))) (-15 -4450 (|#1| |#1| (-626 (-599 |#1|)) (-626 |#1|))) (-15 -4450 (|#1| |#1| (-599 |#1|) |#1|)) (-15 -3001 ((-599 |#1|) |#1|)) (-15 -1473 ((-3 (-599 |#1|) "failed") |#1|)) (-15 -2801 (|#1| (-599 |#1|))) (-15 -2801 ((-842) |#1|))) (-426 |#2|) (-834)) (T -425)) -((-4403 (*1 *2 *2) (-12 (-5 *2 (-123)) (-4 *4 (-834)) (-5 *1 (-425 *3 *4)) (-4 *3 (-426 *4)))) (-2409 (*1 *2 *3) (-12 (-5 *3 (-123)) (-4 *5 (-834)) (-5 *2 (-121)) (-5 *1 (-425 *4 *5)) (-4 *4 (-426 *5)))) (-1751 (*1 *2) (-12 (-4 *4 (-834)) (-5 *2 (-755)) (-5 *1 (-425 *3 *4)) (-4 *3 (-426 *4))))) -(-10 -8 (-15 * (|#1| (-909) |#1|)) (-15 * (|#1| (-755) |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1751 ((-755))) (-15 -2801 (|#1| (-560))) (-15 -3001 ((-403 (-560)) |#1|)) (-15 -1473 ((-3 (-403 (-560)) "failed") |#1|)) (-15 -2801 (|#1| (-403 (-560)))) (-15 -4255 ((-533) |#1|)) (-15 -3001 ((-945 |#2|) |#1|)) (-15 -1473 ((-3 (-945 |#2|) "failed") |#1|)) (-15 -2801 (|#1| (-945 |#2|))) (-15 -2443 (|#1| |#1| (-1153))) (-15 -2443 (|#1| |#1| (-626 (-1153)))) (-15 -2443 (|#1| |#1| (-1153) (-755))) (-15 -2443 (|#1| |#1| (-626 (-1153)) (-626 (-755)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2801 (|#1| |#1|)) (-15 * (|#1| |#1| (-403 (-560)))) (-15 * (|#1| (-403 (-560)) |#1|)) (-15 -3001 ((-403 (-945 |#2|)) |#1|)) (-15 -1473 ((-3 (-403 (-945 |#2|)) "failed") |#1|)) (-15 -2801 (|#1| (-403 (-945 |#2|)))) (-15 -1593 ((-403 (-1149 |#1|)) |#1| (-599 |#1|))) (-15 -2801 (|#1| (-403 (-945 (-403 |#2|))))) (-15 -2801 (|#1| (-945 (-403 |#2|)))) (-15 -2801 (|#1| (-403 |#2|))) (-15 -1646 (|#1| |#1|)) (-15 -4255 (|#1| (-414 |#1|))) (-15 -4450 (|#1| |#1| (-1153) (-755) (-1 |#1| |#1|))) (-15 -4450 (|#1| |#1| (-1153) (-755) (-1 |#1| (-626 |#1|)))) (-15 -4450 (|#1| |#1| (-626 (-1153)) (-626 (-755)) (-626 (-1 |#1| (-626 |#1|))))) (-15 -4450 (|#1| |#1| (-626 (-1153)) (-626 (-755)) (-626 (-1 |#1| |#1|)))) (-15 -3004 ((-3 (-2 (|:| |val| |#1|) (|:| -4034 (-560))) "failed") |#1|)) (-15 -2913 ((-3 (-2 (|:| |var| (-599 |#1|)) (|:| -4034 (-560))) "failed") |#1| (-1153))) (-15 -2913 ((-3 (-2 (|:| |var| (-599 |#1|)) (|:| -4034 (-560))) "failed") |#1| (-123))) (-15 -1540 (|#1| |#1|)) (-15 -2801 (|#1| (-1105 |#2| (-599 |#1|)))) (-15 -1355 ((-3 (-2 (|:| -2169 (-560)) (|:| |var| (-599 |#1|))) "failed") |#1|)) (-15 -2327 ((-3 (-626 |#1|) "failed") |#1|)) (-15 -2913 ((-3 (-2 (|:| |var| (-599 |#1|)) (|:| -4034 (-560))) "failed") |#1|)) (-15 -3665 ((-3 (-626 |#1|) "failed") |#1|)) (-15 -4450 (|#1| |#1| (-626 (-123)) (-626 |#1|) (-1153))) (-15 -4450 (|#1| |#1| (-123) |#1| (-1153))) (-15 -4450 (|#1| |#1|)) (-15 -4450 (|#1| |#1| (-626 (-1153)))) (-15 -4450 (|#1| |#1| (-1153))) (-15 -3209 (|#1| (-1153) (-626 |#1|))) (-15 -3209 (|#1| (-1153) |#1| |#1| |#1| |#1|)) (-15 -3209 (|#1| (-1153) |#1| |#1| |#1|)) (-15 -3209 (|#1| (-1153) |#1| |#1|)) (-15 -3209 (|#1| (-1153) |#1|)) (-15 -1654 ((-626 (-1153)) |#1|)) (-15 -1711 (|#2| |#1|)) (-15 -1704 ((-121) |#1|)) (-15 -3001 (|#2| |#1|)) (-15 -1473 ((-3 |#2| "failed") |#1|)) (-15 -2801 (|#1| |#2|)) (-15 -1473 ((-3 (-560) "failed") |#1|)) (-15 -3001 ((-560) |#1|)) (-15 -4255 ((-879 (-375)) |#1|)) (-15 -4255 ((-879 (-560)) |#1|)) (-15 -3001 ((-1153) |#1|)) (-15 -1473 ((-3 (-1153) "failed") |#1|)) (-15 -2801 (|#1| (-1153))) (-15 -4450 (|#1| |#1| (-123) (-1 |#1| |#1|))) (-15 -4450 (|#1| |#1| (-123) (-1 |#1| (-626 |#1|)))) (-15 -4450 (|#1| |#1| (-626 (-123)) (-626 (-1 |#1| (-626 |#1|))))) (-15 -4450 (|#1| |#1| (-626 (-123)) (-626 (-1 |#1| |#1|)))) (-15 -4450 (|#1| |#1| (-1153) (-1 |#1| |#1|))) (-15 -4450 (|#1| |#1| (-1153) (-1 |#1| (-626 |#1|)))) (-15 -4450 (|#1| |#1| (-626 (-1153)) (-626 (-1 |#1| (-626 |#1|))))) (-15 -4450 (|#1| |#1| (-626 (-1153)) (-626 (-1 |#1| |#1|)))) (-15 -2409 ((-121) (-123))) (-15 -4403 ((-123) (-123))) (-15 -1586 ((-626 (-599 |#1|)) |#1|)) (-15 -4220 ((-3 (-599 |#1|) "failed") |#1|)) (-15 -4122 (|#1| |#1| (-626 (-599 |#1|)) (-626 |#1|))) (-15 -4122 (|#1| |#1| (-626 (-283 |#1|)))) (-15 -4122 (|#1| |#1| (-283 |#1|))) (-15 -2778 (|#1| (-123) (-626 |#1|))) (-15 -2778 (|#1| (-123) |#1| |#1| |#1| |#1|)) (-15 -2778 (|#1| (-123) |#1| |#1| |#1|)) (-15 -2778 (|#1| (-123) |#1| |#1|)) (-15 -2778 (|#1| (-123) |#1|)) (-15 -4450 (|#1| |#1| (-626 |#1|) (-626 |#1|))) (-15 -4450 (|#1| |#1| |#1| |#1|)) (-15 -4450 (|#1| |#1| (-283 |#1|))) (-15 -4450 (|#1| |#1| (-626 (-283 |#1|)))) (-15 -4450 (|#1| |#1| (-626 (-599 |#1|)) (-626 |#1|))) (-15 -4450 (|#1| |#1| (-599 |#1|) |#1|)) (-15 -3001 ((-599 |#1|) |#1|)) (-15 -1473 ((-3 (-599 |#1|) "failed") |#1|)) (-15 -2801 (|#1| (-599 |#1|))) (-15 -2801 ((-842) |#1|))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 108 (|has| |#1| (-25)))) (-1654 (((-626 (-1153)) $) 195)) (-1593 (((-403 (-1149 $)) $ (-599 $)) 163 (|has| |#1| (-550)))) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) 135 (|has| |#1| (-550)))) (-1350 (($ $) 136 (|has| |#1| (-550)))) (-3376 (((-121) $) 138 (|has| |#1| (-550)))) (-3249 (((-626 (-599 $)) $) 43)) (-2314 (((-3 $ "failed") $ $) 110 (|has| |#1| (-21)))) (-4122 (($ $ (-283 $)) 55) (($ $ (-626 (-283 $))) 54) (($ $ (-626 (-599 $)) (-626 $)) 53)) (-3065 (($ $) 155 (|has| |#1| (-550)))) (-2953 (((-414 $) $) 156 (|has| |#1| (-550)))) (-4179 (((-121) $ $) 146 (|has| |#1| (-550)))) (-4236 (($) 94 (-2318 (|has| |#1| (-1094)) (|has| |#1| (-25))) CONST)) (-1473 (((-3 (-599 $) "failed") $) 68) (((-3 (-1153) "failed") $) 208) (((-3 (-560) "failed") $) 201 (|has| |#1| (-1029 (-560)))) (((-3 |#1| "failed") $) 199) (((-3 (-403 (-945 |#1|)) "failed") $) 161 (|has| |#1| (-550))) (((-3 (-945 |#1|) "failed") $) 115 (|has| |#1| (-1039))) (((-3 (-403 (-560)) "failed") $) 87 (-2318 (-12 (|has| |#1| (-1029 (-560))) (|has| |#1| (-550))) (|has| |#1| (-1029 (-403 (-560))))))) (-3001 (((-599 $) $) 67) (((-1153) $) 207) (((-560) $) 202 (|has| |#1| (-1029 (-560)))) ((|#1| $) 198) (((-403 (-945 |#1|)) $) 160 (|has| |#1| (-550))) (((-945 |#1|) $) 114 (|has| |#1| (-1039))) (((-403 (-560)) $) 86 (-2318 (-12 (|has| |#1| (-1029 (-560))) (|has| |#1| (-550))) (|has| |#1| (-1029 (-403 (-560))))))) (-2563 (($ $ $) 150 (|has| |#1| (-550)))) (-2616 (((-671 (-560)) (-671 $)) 129 (-2256 (|has| |#1| (-622 (-560))) (|has| |#1| (-1039)))) (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) 128 (-2256 (|has| |#1| (-622 (-560))) (|has| |#1| (-1039)))) (((-2 (|:| -3818 (-671 |#1|)) (|:| |vec| (-1236 |#1|))) (-671 $) (-1236 $)) 127 (|has| |#1| (-1039))) (((-671 |#1|) (-671 $)) 126 (|has| |#1| (-1039)))) (-1823 (((-3 $ "failed") $) 97 (|has| |#1| (-1094)))) (-2572 (($ $ $) 149 (|has| |#1| (-550)))) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) 144 (|has| |#1| (-550)))) (-3319 (((-121) $) 157 (|has| |#1| (-550)))) (-2399 (((-876 (-560) $) $ (-879 (-560)) (-876 (-560) $)) 204 (|has| |#1| (-873 (-560)))) (((-876 (-375) $) $ (-879 (-375)) (-876 (-375) $)) 203 (|has| |#1| (-873 (-375))))) (-2352 (($ $) 50) (($ (-626 $)) 49)) (-1951 (((-626 (-123)) $) 42)) (-4403 (((-123) (-123)) 41)) (-2642 (((-121) $) 95 (|has| |#1| (-1094)))) (-3348 (((-121) $) 21 (|has| $ (-1029 (-560))))) (-1540 (($ $) 178 (|has| |#1| (-1039)))) (-2132 (((-1105 |#1| (-599 $)) $) 179 (|has| |#1| (-1039)))) (-3856 (((-3 (-626 $) "failed") (-626 $) $) 153 (|has| |#1| (-550)))) (-2929 (((-1149 $) (-599 $)) 24 (|has| $ (-1039)))) (-4325 (($ $ $) 12)) (-2501 (($ $ $) 13)) (-2803 (($ (-1 $ $) (-599 $)) 35)) (-4220 (((-3 (-599 $) "failed") $) 45)) (-2582 (($ (-626 $)) 142 (|has| |#1| (-550))) (($ $ $) 141 (|has| |#1| (-550)))) (-1291 (((-1135) $) 9)) (-1586 (((-626 (-599 $)) $) 44)) (-2181 (($ (-123) $) 37) (($ (-123) (-626 $)) 36)) (-3665 (((-3 (-626 $) "failed") $) 184 (|has| |#1| (-1094)))) (-3004 (((-3 (-2 (|:| |val| $) (|:| -4034 (-560))) "failed") $) 175 (|has| |#1| (-1039)))) (-2327 (((-3 (-626 $) "failed") $) 182 (|has| |#1| (-25)))) (-1355 (((-3 (-2 (|:| -2169 (-560)) (|:| |var| (-599 $))) "failed") $) 181 (|has| |#1| (-25)))) (-2913 (((-3 (-2 (|:| |var| (-599 $)) (|:| -4034 (-560))) "failed") $) 183 (|has| |#1| (-1094))) (((-3 (-2 (|:| |var| (-599 $)) (|:| -4034 (-560))) "failed") $ (-123)) 177 (|has| |#1| (-1039))) (((-3 (-2 (|:| |var| (-599 $)) (|:| -4034 (-560))) "failed") $ (-1153)) 176 (|has| |#1| (-1039)))) (-3178 (((-121) $ (-123)) 39) (((-121) $ (-1153)) 38)) (-1701 (($ $) 99 (-2318 (|has| |#1| (-471)) (|has| |#1| (-550))))) (-3165 (((-755) $) 46)) (-4353 (((-1100) $) 10)) (-1704 (((-121) $) 197)) (-1711 ((|#1| $) 196)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) 143 (|has| |#1| (-550)))) (-4440 (($ (-626 $)) 140 (|has| |#1| (-550))) (($ $ $) 139 (|has| |#1| (-550)))) (-4388 (((-121) $ $) 34) (((-121) $ (-1153)) 33)) (-1601 (((-414 $) $) 154 (|has| |#1| (-550)))) (-3505 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 152 (|has| |#1| (-550))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) 151 (|has| |#1| (-550)))) (-2336 (((-3 $ "failed") $ $) 134 (|has| |#1| (-550)))) (-3456 (((-3 (-626 $) "failed") (-626 $) $) 145 (|has| |#1| (-550)))) (-3522 (((-121) $) 22 (|has| $ (-1029 (-560))))) (-4450 (($ $ (-599 $) $) 66) (($ $ (-626 (-599 $)) (-626 $)) 65) (($ $ (-626 (-283 $))) 64) (($ $ (-283 $)) 63) (($ $ $ $) 62) (($ $ (-626 $) (-626 $)) 61) (($ $ (-626 (-1153)) (-626 (-1 $ $))) 32) (($ $ (-626 (-1153)) (-626 (-1 $ (-626 $)))) 31) (($ $ (-1153) (-1 $ (-626 $))) 30) (($ $ (-1153) (-1 $ $)) 29) (($ $ (-626 (-123)) (-626 (-1 $ $))) 28) (($ $ (-626 (-123)) (-626 (-1 $ (-626 $)))) 27) (($ $ (-123) (-1 $ (-626 $))) 26) (($ $ (-123) (-1 $ $)) 25) (($ $ (-1153)) 189 (|has| |#1| (-601 (-533)))) (($ $ (-626 (-1153))) 188 (|has| |#1| (-601 (-533)))) (($ $) 187 (|has| |#1| (-601 (-533)))) (($ $ (-123) $ (-1153)) 186 (|has| |#1| (-601 (-533)))) (($ $ (-626 (-123)) (-626 $) (-1153)) 185 (|has| |#1| (-601 (-533)))) (($ $ (-626 (-1153)) (-626 (-755)) (-626 (-1 $ $))) 174 (|has| |#1| (-1039))) (($ $ (-626 (-1153)) (-626 (-755)) (-626 (-1 $ (-626 $)))) 173 (|has| |#1| (-1039))) (($ $ (-1153) (-755) (-1 $ (-626 $))) 172 (|has| |#1| (-1039))) (($ $ (-1153) (-755) (-1 $ $)) 171 (|has| |#1| (-1039)))) (-4445 (((-755) $) 147 (|has| |#1| (-550)))) (-2778 (($ (-123) $) 60) (($ (-123) $ $) 59) (($ (-123) $ $ $) 58) (($ (-123) $ $ $ $) 57) (($ (-123) (-626 $)) 56)) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) 148 (|has| |#1| (-550)))) (-4290 (($ $) 48) (($ $ $) 47)) (-2443 (($ $ (-626 (-1153)) (-626 (-755))) 120 (|has| |#1| (-1039))) (($ $ (-1153) (-755)) 119 (|has| |#1| (-1039))) (($ $ (-626 (-1153))) 118 (|has| |#1| (-1039))) (($ $ (-1153)) 117 (|has| |#1| (-1039)))) (-1646 (($ $) 168 (|has| |#1| (-550)))) (-2139 (((-1105 |#1| (-599 $)) $) 169 (|has| |#1| (-550)))) (-3591 (($ $) 23 (|has| $ (-1039)))) (-4255 (((-879 (-560)) $) 206 (|has| |#1| (-601 (-879 (-560))))) (((-879 (-375)) $) 205 (|has| |#1| (-601 (-879 (-375))))) (($ (-414 $)) 170 (|has| |#1| (-550))) (((-533) $) 89 (|has| |#1| (-601 (-533))))) (-3101 (($ $ $) 103 (|has| |#1| (-471)))) (-1671 (($ $ $) 104 (|has| |#1| (-471)))) (-2801 (((-842) $) 11) (($ (-599 $)) 69) (($ (-1153)) 209) (($ |#1|) 200) (($ (-1105 |#1| (-599 $))) 180 (|has| |#1| (-1039))) (($ (-403 |#1|)) 166 (|has| |#1| (-550))) (($ (-945 (-403 |#1|))) 165 (|has| |#1| (-550))) (($ (-403 (-945 (-403 |#1|)))) 164 (|has| |#1| (-550))) (($ (-403 (-945 |#1|))) 162 (|has| |#1| (-550))) (($ $) 133 (|has| |#1| (-550))) (($ (-945 |#1|)) 116 (|has| |#1| (-1039))) (($ (-403 (-560))) 88 (-2318 (|has| |#1| (-550)) (-12 (|has| |#1| (-1029 (-560))) (|has| |#1| (-550))) (|has| |#1| (-1029 (-403 (-560)))))) (($ (-560)) 85 (-2318 (|has| |#1| (-1039)) (|has| |#1| (-1029 (-560)))))) (-2272 (((-3 $ "failed") $) 130 (|has| |#1| (-146)))) (-1751 (((-755)) 125 (|has| |#1| (-1039)))) (-4308 (($ $) 52) (($ (-626 $)) 51)) (-2409 (((-121) (-123)) 40)) (-2328 (((-121) $ $) 137 (|has| |#1| (-550)))) (-3209 (($ (-1153) $) 194) (($ (-1153) $ $) 193) (($ (-1153) $ $ $) 192) (($ (-1153) $ $ $ $) 191) (($ (-1153) (-626 $)) 190)) (-2464 (($ $ (-560)) 102 (-2318 (|has| |#1| (-471)) (|has| |#1| (-550)))) (($ $ (-755)) 96 (|has| |#1| (-1094))) (($ $ (-909)) 92 (|has| |#1| (-1094)))) (-3304 (($) 107 (|has| |#1| (-25)) CONST)) (-1459 (($) 93 (|has| |#1| (-1094)) CONST)) (-2500 (($ $ (-626 (-1153)) (-626 (-755))) 124 (|has| |#1| (-1039))) (($ $ (-1153) (-755)) 123 (|has| |#1| (-1039))) (($ $ (-626 (-1153))) 122 (|has| |#1| (-1039))) (($ $ (-1153)) 121 (|has| |#1| (-1039)))) (-1691 (((-121) $ $) 15)) (-1675 (((-121) $ $) 16)) (-1653 (((-121) $ $) 6)) (-1683 (((-121) $ $) 14)) (-1667 (((-121) $ $) 17)) (-1733 (($ (-1105 |#1| (-599 $)) (-1105 |#1| (-599 $))) 167 (|has| |#1| (-550))) (($ $ $) 100 (-2318 (|has| |#1| (-471)) (|has| |#1| (-550))))) (-1725 (($ $ $) 112 (|has| |#1| (-21))) (($ $) 111 (|has| |#1| (-21)))) (-1716 (($ $ $) 105 (|has| |#1| (-25)))) (** (($ $ (-560)) 101 (-2318 (|has| |#1| (-471)) (|has| |#1| (-550)))) (($ $ (-755)) 98 (|has| |#1| (-1094))) (($ $ (-909)) 91 (|has| |#1| (-1094)))) (* (($ (-403 (-560)) $) 159 (|has| |#1| (-550))) (($ $ (-403 (-560))) 158 (|has| |#1| (-550))) (($ |#1| $) 132 (|has| |#1| (-170))) (($ $ |#1|) 131 (|has| |#1| (-170))) (($ (-560) $) 113 (|has| |#1| (-21))) (($ (-755) $) 109 (|has| |#1| (-25))) (($ (-909) $) 106 (|has| |#1| (-25))) (($ $ $) 90 (|has| |#1| (-1094))))) -(((-426 |#1|) (-1267) (-834)) (T -426)) -((-1704 (*1 *2 *1) (-12 (-4 *1 (-426 *3)) (-4 *3 (-834)) (-5 *2 (-121)))) (-1711 (*1 *2 *1) (-12 (-4 *1 (-426 *2)) (-4 *2 (-834)))) (-1654 (*1 *2 *1) (-12 (-4 *1 (-426 *3)) (-4 *3 (-834)) (-5 *2 (-626 (-1153))))) (-3209 (*1 *1 *2 *1) (-12 (-5 *2 (-1153)) (-4 *1 (-426 *3)) (-4 *3 (-834)))) (-3209 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1153)) (-4 *1 (-426 *3)) (-4 *3 (-834)))) (-3209 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1153)) (-4 *1 (-426 *3)) (-4 *3 (-834)))) (-3209 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1153)) (-4 *1 (-426 *3)) (-4 *3 (-834)))) (-3209 (*1 *1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-626 *1)) (-4 *1 (-426 *4)) (-4 *4 (-834)))) (-4450 (*1 *1 *1 *2) (-12 (-5 *2 (-1153)) (-4 *1 (-426 *3)) (-4 *3 (-834)) (-4 *3 (-601 (-533))))) (-4450 (*1 *1 *1 *2) (-12 (-5 *2 (-626 (-1153))) (-4 *1 (-426 *3)) (-4 *3 (-834)) (-4 *3 (-601 (-533))))) (-4450 (*1 *1 *1) (-12 (-4 *1 (-426 *2)) (-4 *2 (-834)) (-4 *2 (-601 (-533))))) (-4450 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-123)) (-5 *3 (-1153)) (-4 *1 (-426 *4)) (-4 *4 (-834)) (-4 *4 (-601 (-533))))) (-4450 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-626 (-123))) (-5 *3 (-626 *1)) (-5 *4 (-1153)) (-4 *1 (-426 *5)) (-4 *5 (-834)) (-4 *5 (-601 (-533))))) (-3665 (*1 *2 *1) (|partial| -12 (-4 *3 (-1094)) (-4 *3 (-834)) (-5 *2 (-626 *1)) (-4 *1 (-426 *3)))) (-2913 (*1 *2 *1) (|partial| -12 (-4 *3 (-1094)) (-4 *3 (-834)) (-5 *2 (-2 (|:| |var| (-599 *1)) (|:| -4034 (-560)))) (-4 *1 (-426 *3)))) (-2327 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-834)) (-5 *2 (-626 *1)) (-4 *1 (-426 *3)))) (-1355 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-834)) (-5 *2 (-2 (|:| -2169 (-560)) (|:| |var| (-599 *1)))) (-4 *1 (-426 *3)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-1105 *3 (-599 *1))) (-4 *3 (-1039)) (-4 *3 (-834)) (-4 *1 (-426 *3)))) (-2132 (*1 *2 *1) (-12 (-4 *3 (-1039)) (-4 *3 (-834)) (-5 *2 (-1105 *3 (-599 *1))) (-4 *1 (-426 *3)))) (-1540 (*1 *1 *1) (-12 (-4 *1 (-426 *2)) (-4 *2 (-834)) (-4 *2 (-1039)))) (-2913 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-123)) (-4 *4 (-1039)) (-4 *4 (-834)) (-5 *2 (-2 (|:| |var| (-599 *1)) (|:| -4034 (-560)))) (-4 *1 (-426 *4)))) (-2913 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1153)) (-4 *4 (-1039)) (-4 *4 (-834)) (-5 *2 (-2 (|:| |var| (-599 *1)) (|:| -4034 (-560)))) (-4 *1 (-426 *4)))) (-3004 (*1 *2 *1) (|partial| -12 (-4 *3 (-1039)) (-4 *3 (-834)) (-5 *2 (-2 (|:| |val| *1) (|:| -4034 (-560)))) (-4 *1 (-426 *3)))) (-4450 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-626 (-1153))) (-5 *3 (-626 (-755))) (-5 *4 (-626 (-1 *1 *1))) (-4 *1 (-426 *5)) (-4 *5 (-834)) (-4 *5 (-1039)))) (-4450 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-626 (-1153))) (-5 *3 (-626 (-755))) (-5 *4 (-626 (-1 *1 (-626 *1)))) (-4 *1 (-426 *5)) (-4 *5 (-834)) (-4 *5 (-1039)))) (-4450 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1153)) (-5 *3 (-755)) (-5 *4 (-1 *1 (-626 *1))) (-4 *1 (-426 *5)) (-4 *5 (-834)) (-4 *5 (-1039)))) (-4450 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1153)) (-5 *3 (-755)) (-5 *4 (-1 *1 *1)) (-4 *1 (-426 *5)) (-4 *5 (-834)) (-4 *5 (-1039)))) (-4255 (*1 *1 *2) (-12 (-5 *2 (-414 *1)) (-4 *1 (-426 *3)) (-4 *3 (-550)) (-4 *3 (-834)))) (-2139 (*1 *2 *1) (-12 (-4 *3 (-550)) (-4 *3 (-834)) (-5 *2 (-1105 *3 (-599 *1))) (-4 *1 (-426 *3)))) (-1646 (*1 *1 *1) (-12 (-4 *1 (-426 *2)) (-4 *2 (-834)) (-4 *2 (-550)))) (-1733 (*1 *1 *2 *2) (-12 (-5 *2 (-1105 *3 (-599 *1))) (-4 *3 (-550)) (-4 *3 (-834)) (-4 *1 (-426 *3)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-403 *3)) (-4 *3 (-550)) (-4 *3 (-834)) (-4 *1 (-426 *3)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-945 (-403 *3))) (-4 *3 (-550)) (-4 *3 (-834)) (-4 *1 (-426 *3)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-403 (-945 (-403 *3)))) (-4 *3 (-550)) (-4 *3 (-834)) (-4 *1 (-426 *3)))) (-1593 (*1 *2 *1 *3) (-12 (-5 *3 (-599 *1)) (-4 *1 (-426 *4)) (-4 *4 (-834)) (-4 *4 (-550)) (-5 *2 (-403 (-1149 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-755)) (-4 *1 (-426 *3)) (-4 *3 (-834)) (-4 *3 (-1094))))) -(-13 (-291) (-1029 (-1153)) (-871 |t#1|) (-396 |t#1|) (-407 |t#1|) (-10 -8 (-15 -1704 ((-121) $)) (-15 -1711 (|t#1| $)) (-15 -1654 ((-626 (-1153)) $)) (-15 -3209 ($ (-1153) $)) (-15 -3209 ($ (-1153) $ $)) (-15 -3209 ($ (-1153) $ $ $)) (-15 -3209 ($ (-1153) $ $ $ $)) (-15 -3209 ($ (-1153) (-626 $))) (IF (|has| |t#1| (-601 (-533))) (PROGN (-6 (-601 (-533))) (-15 -4450 ($ $ (-1153))) (-15 -4450 ($ $ (-626 (-1153)))) (-15 -4450 ($ $)) (-15 -4450 ($ $ (-123) $ (-1153))) (-15 -4450 ($ $ (-626 (-123)) (-626 $) (-1153)))) |noBranch|) (IF (|has| |t#1| (-1094)) (PROGN (-6 (-708)) (-15 ** ($ $ (-755))) (-15 -3665 ((-3 (-626 $) "failed") $)) (-15 -2913 ((-3 (-2 (|:| |var| (-599 $)) (|:| -4034 (-560))) "failed") $))) |noBranch|) (IF (|has| |t#1| (-471)) (-6 (-471)) |noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -2327 ((-3 (-626 $) "failed") $)) (-15 -1355 ((-3 (-2 (|:| -2169 (-560)) (|:| |var| (-599 $))) "failed") $))) |noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |noBranch|) (IF (|has| |t#1| (-1039)) (PROGN (-6 (-1039)) (-6 (-1029 (-945 |t#1|))) (-6 (-887 (-1153))) (-6 (-373 |t#1|)) (-15 -2801 ($ (-1105 |t#1| (-599 $)))) (-15 -2132 ((-1105 |t#1| (-599 $)) $)) (-15 -1540 ($ $)) (-15 -2913 ((-3 (-2 (|:| |var| (-599 $)) (|:| -4034 (-560))) "failed") $ (-123))) (-15 -2913 ((-3 (-2 (|:| |var| (-599 $)) (|:| -4034 (-560))) "failed") $ (-1153))) (-15 -3004 ((-3 (-2 (|:| |val| $) (|:| -4034 (-560))) "failed") $)) (-15 -4450 ($ $ (-626 (-1153)) (-626 (-755)) (-626 (-1 $ $)))) (-15 -4450 ($ $ (-626 (-1153)) (-626 (-755)) (-626 (-1 $ (-626 $))))) (-15 -4450 ($ $ (-1153) (-755) (-1 $ (-626 $)))) (-15 -4450 ($ $ (-1153) (-755) (-1 $ $)))) |noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |noBranch|) (IF (|has| |t#1| (-170)) (-6 (-43 |t#1|)) |noBranch|) (IF (|has| |t#1| (-550)) (PROGN (-6 (-359)) (-6 (-1029 (-403 (-945 |t#1|)))) (-15 -4255 ($ (-414 $))) (-15 -2139 ((-1105 |t#1| (-599 $)) $)) (-15 -1646 ($ $)) (-15 -1733 ($ (-1105 |t#1| (-599 $)) (-1105 |t#1| (-599 $)))) (-15 -2801 ($ (-403 |t#1|))) (-15 -2801 ($ (-945 (-403 |t#1|)))) (-15 -2801 ($ (-403 (-945 (-403 |t#1|))))) (-15 -1593 ((-403 (-1149 $)) $ (-599 $))) (IF (|has| |t#1| (-1029 (-560))) (-6 (-1029 (-403 (-560)))) |noBranch|)) |noBranch|))) -(((-21) -2318 (|has| |#1| (-1039)) (|has| |#1| (-550)) (|has| |#1| (-170)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-23) -2318 (|has| |#1| (-1039)) (|has| |#1| (-550)) (|has| |#1| (-170)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -2318 (|has| |#1| (-1039)) (|has| |#1| (-550)) (|has| |#1| (-170)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-43 (-403 (-560))) |has| |#1| (-550)) ((-43 |#1|) |has| |#1| (-170)) ((-43 $) |has| |#1| (-550)) ((-105) . T) ((-120 (-403 (-560)) (-403 (-560))) |has| |#1| (-550)) ((-120 |#1| |#1|) |has| |#1| (-170)) ((-120 $ $) |has| |#1| (-550)) ((-137) -2318 (|has| |#1| (-1039)) (|has| |#1| (-550)) (|has| |#1| (-170)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-600 (-842)) . T) ((-170) |has| |#1| (-550)) ((-601 (-533)) |has| |#1| (-601 (-533))) ((-601 (-879 (-375))) |has| |#1| (-601 (-879 (-375)))) ((-601 (-879 (-560))) |has| |#1| (-601 (-879 (-560)))) ((-233) |has| |#1| (-550)) ((-280) |has| |#1| (-550)) ((-296) |has| |#1| (-550)) ((-298 $) . T) ((-291) . T) ((-359) |has| |#1| (-550)) ((-373 |#1|) |has| |#1| (-1039)) ((-396 |#1|) . T) ((-407 |#1|) . T) ((-447) |has| |#1| (-550)) ((-471) |has| |#1| (-471)) ((-515 (-599 $) $) . T) ((-515 $ $) . T) ((-550) |has| |#1| (-550)) ((-629 (-403 (-560))) |has| |#1| (-550)) ((-629 |#1|) |has| |#1| (-170)) ((-629 $) -2318 (|has| |#1| (-1039)) (|has| |#1| (-550)) (|has| |#1| (-170)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-622 (-560)) -12 (|has| |#1| (-622 (-560))) (|has| |#1| (-1039))) ((-622 |#1|) |has| |#1| (-1039)) ((-699 (-403 (-560))) |has| |#1| (-550)) ((-699 |#1|) |has| |#1| (-170)) ((-699 $) |has| |#1| (-550)) ((-708) -2318 (|has| |#1| (-1094)) (|has| |#1| (-1039)) (|has| |#1| (-550)) (|has| |#1| (-471)) (|has| |#1| (-170)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-834) . T) ((-887 (-1153)) |has| |#1| (-1039)) ((-873 (-375)) |has| |#1| (-873 (-375))) ((-873 (-560)) |has| |#1| (-873 (-560))) ((-871 |#1|) . T) ((-908) |has| |#1| (-550)) ((-1029 (-403 (-560))) -2318 (|has| |#1| (-1029 (-403 (-560)))) (-12 (|has| |#1| (-550)) (|has| |#1| (-1029 (-560))))) ((-1029 (-403 (-945 |#1|))) |has| |#1| (-550)) ((-1029 (-560)) |has| |#1| (-1029 (-560))) ((-1029 (-599 $)) . T) ((-1029 (-945 |#1|)) |has| |#1| (-1039)) ((-1029 (-1153)) . T) ((-1029 |#1|) . T) ((-1045 (-403 (-560))) |has| |#1| (-550)) ((-1045 |#1|) |has| |#1| (-170)) ((-1045 $) |has| |#1| (-550)) ((-1039) -2318 (|has| |#1| (-1039)) (|has| |#1| (-550)) (|has| |#1| (-170)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1046) -2318 (|has| |#1| (-1039)) (|has| |#1| (-550)) (|has| |#1| (-170)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1094) -2318 (|has| |#1| (-1094)) (|has| |#1| (-1039)) (|has| |#1| (-550)) (|has| |#1| (-471)) (|has| |#1| (-170)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1082) . T) ((-1187) . T) ((-1191) |has| |#1| (-550))) -((-1941 ((|#2| |#2| |#2|) 33)) (-4403 (((-123) (-123)) 44)) (-3489 ((|#2| (-626 |#2|)) 79)) (-1863 ((|#2| |#2|) 77)) (-2103 ((|#2| |#2|) 68)) (-2664 ((|#2| |#2|) 71)) (-1869 ((|#2| (-626 |#2|)) 75)) (-1895 ((|#2| (-626 |#2|)) 83)) (-1901 ((|#2| (-626 |#2|)) 87)) (-1958 ((|#2| (-626 |#2|)) 81)) (-1964 ((|#2| (-626 |#2|)) 85)) (-1978 ((|#2| |#2|) 91)) (-2015 ((|#2| |#2|) 89)) (-4098 ((|#2| |#2|) 32)) (-3777 ((|#2| |#2| |#2|) 35)) (-2993 ((|#2| |#2| |#2|) 37)) (-1870 ((|#2| |#2| |#2|) 34)) (-1502 ((|#2| |#2| |#2|) 36)) (-2409 (((-121) (-123)) 42)) (-1616 ((|#2| |#2|) 39)) (-3974 ((|#2| |#2|) 38)) (-1822 ((|#2| |#2|) 27)) (-3227 ((|#2| |#2| |#2|) 30) ((|#2| |#2|) 28)) (-2002 ((|#2| |#2| |#2|) 31))) -(((-427 |#1| |#2|) (-10 -7 (-15 -2409 ((-121) (-123))) (-15 -4403 ((-123) (-123))) (-15 -1822 (|#2| |#2|)) (-15 -3227 (|#2| |#2|)) (-15 -3227 (|#2| |#2| |#2|)) (-15 -2002 (|#2| |#2| |#2|)) (-15 -4098 (|#2| |#2|)) (-15 -1941 (|#2| |#2| |#2|)) (-15 -1870 (|#2| |#2| |#2|)) (-15 -3777 (|#2| |#2| |#2|)) (-15 -1502 (|#2| |#2| |#2|)) (-15 -2993 (|#2| |#2| |#2|)) (-15 -3974 (|#2| |#2|)) (-15 -1616 (|#2| |#2|)) (-15 -2664 (|#2| |#2|)) (-15 -2103 (|#2| |#2|)) (-15 -1869 (|#2| (-626 |#2|))) (-15 -1863 (|#2| |#2|)) (-15 -3489 (|#2| (-626 |#2|))) (-15 -1958 (|#2| (-626 |#2|))) (-15 -1895 (|#2| (-626 |#2|))) (-15 -1964 (|#2| (-626 |#2|))) (-15 -1901 (|#2| (-626 |#2|))) (-15 -2015 (|#2| |#2|)) (-15 -1978 (|#2| |#2|))) (-13 (-834) (-550)) (-426 |#1|)) (T -427)) -((-1978 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-427 *3 *2)) (-4 *2 (-426 *3)))) (-2015 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-427 *3 *2)) (-4 *2 (-426 *3)))) (-1901 (*1 *2 *3) (-12 (-5 *3 (-626 *2)) (-4 *2 (-426 *4)) (-5 *1 (-427 *4 *2)) (-4 *4 (-13 (-834) (-550))))) (-1964 (*1 *2 *3) (-12 (-5 *3 (-626 *2)) (-4 *2 (-426 *4)) (-5 *1 (-427 *4 *2)) (-4 *4 (-13 (-834) (-550))))) (-1895 (*1 *2 *3) (-12 (-5 *3 (-626 *2)) (-4 *2 (-426 *4)) (-5 *1 (-427 *4 *2)) (-4 *4 (-13 (-834) (-550))))) (-1958 (*1 *2 *3) (-12 (-5 *3 (-626 *2)) (-4 *2 (-426 *4)) (-5 *1 (-427 *4 *2)) (-4 *4 (-13 (-834) (-550))))) (-3489 (*1 *2 *3) (-12 (-5 *3 (-626 *2)) (-4 *2 (-426 *4)) (-5 *1 (-427 *4 *2)) (-4 *4 (-13 (-834) (-550))))) (-1863 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-427 *3 *2)) (-4 *2 (-426 *3)))) (-1869 (*1 *2 *3) (-12 (-5 *3 (-626 *2)) (-4 *2 (-426 *4)) (-5 *1 (-427 *4 *2)) (-4 *4 (-13 (-834) (-550))))) (-2103 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-427 *3 *2)) (-4 *2 (-426 *3)))) (-2664 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-427 *3 *2)) (-4 *2 (-426 *3)))) (-1616 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-427 *3 *2)) (-4 *2 (-426 *3)))) (-3974 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-427 *3 *2)) (-4 *2 (-426 *3)))) (-2993 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-427 *3 *2)) (-4 *2 (-426 *3)))) (-1502 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-427 *3 *2)) (-4 *2 (-426 *3)))) (-3777 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-427 *3 *2)) (-4 *2 (-426 *3)))) (-1870 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-427 *3 *2)) (-4 *2 (-426 *3)))) (-1941 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-427 *3 *2)) (-4 *2 (-426 *3)))) (-4098 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-427 *3 *2)) (-4 *2 (-426 *3)))) (-2002 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-427 *3 *2)) (-4 *2 (-426 *3)))) (-3227 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-427 *3 *2)) (-4 *2 (-426 *3)))) (-3227 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-427 *3 *2)) (-4 *2 (-426 *3)))) (-1822 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-427 *3 *2)) (-4 *2 (-426 *3)))) (-4403 (*1 *2 *2) (-12 (-5 *2 (-123)) (-4 *3 (-13 (-834) (-550))) (-5 *1 (-427 *3 *4)) (-4 *4 (-426 *3)))) (-2409 (*1 *2 *3) (-12 (-5 *3 (-123)) (-4 *4 (-13 (-834) (-550))) (-5 *2 (-121)) (-5 *1 (-427 *4 *5)) (-4 *5 (-426 *4))))) -(-10 -7 (-15 -2409 ((-121) (-123))) (-15 -4403 ((-123) (-123))) (-15 -1822 (|#2| |#2|)) (-15 -3227 (|#2| |#2|)) (-15 -3227 (|#2| |#2| |#2|)) (-15 -2002 (|#2| |#2| |#2|)) (-15 -4098 (|#2| |#2|)) (-15 -1941 (|#2| |#2| |#2|)) (-15 -1870 (|#2| |#2| |#2|)) (-15 -3777 (|#2| |#2| |#2|)) (-15 -1502 (|#2| |#2| |#2|)) (-15 -2993 (|#2| |#2| |#2|)) (-15 -3974 (|#2| |#2|)) (-15 -1616 (|#2| |#2|)) (-15 -2664 (|#2| |#2|)) (-15 -2103 (|#2| |#2|)) (-15 -1869 (|#2| (-626 |#2|))) (-15 -1863 (|#2| |#2|)) (-15 -3489 (|#2| (-626 |#2|))) (-15 -1958 (|#2| (-626 |#2|))) (-15 -1895 (|#2| (-626 |#2|))) (-15 -1964 (|#2| (-626 |#2|))) (-15 -1901 (|#2| (-626 |#2|))) (-15 -2015 (|#2| |#2|)) (-15 -1978 (|#2| |#2|))) -((-2481 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1149 |#2|)) (|:| |pol2| (-1149 |#2|)) (|:| |prim| (-1149 |#2|))) |#2| |#2|) 93 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-626 (-1149 |#2|))) (|:| |prim| (-1149 |#2|))) (-626 |#2|)) 58))) -(((-428 |#1| |#2|) (-10 -7 (-15 -2481 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-626 (-1149 |#2|))) (|:| |prim| (-1149 |#2|))) (-626 |#2|))) (IF (|has| |#2| (-27)) (-15 -2481 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1149 |#2|)) (|:| |pol2| (-1149 |#2|)) (|:| |prim| (-1149 |#2|))) |#2| |#2|)) |noBranch|)) (-13 (-550) (-834) (-148)) (-426 |#1|)) (T -428)) -((-2481 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-550) (-834) (-148))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1149 *3)) (|:| |pol2| (-1149 *3)) (|:| |prim| (-1149 *3)))) (-5 *1 (-428 *4 *3)) (-4 *3 (-27)) (-4 *3 (-426 *4)))) (-2481 (*1 *2 *3) (-12 (-5 *3 (-626 *5)) (-4 *5 (-426 *4)) (-4 *4 (-13 (-550) (-834) (-148))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-626 (-1149 *5))) (|:| |prim| (-1149 *5)))) (-5 *1 (-428 *4 *5))))) -(-10 -7 (-15 -2481 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-626 (-1149 |#2|))) (|:| |prim| (-1149 |#2|))) (-626 |#2|))) (IF (|has| |#2| (-27)) (-15 -2481 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1149 |#2|)) (|:| |pol2| (-1149 |#2|)) (|:| |prim| (-1149 |#2|))) |#2| |#2|)) |noBranch|)) -((-2559 (((-1241)) 18)) (-3647 (((-1149 (-403 (-560))) |#2| (-599 |#2|)) 40) (((-403 (-560)) |#2|) 23))) -(((-429 |#1| |#2|) (-10 -7 (-15 -3647 ((-403 (-560)) |#2|)) (-15 -3647 ((-1149 (-403 (-560))) |#2| (-599 |#2|))) (-15 -2559 ((-1241)))) (-13 (-834) (-550) (-1029 (-560))) (-426 |#1|)) (T -429)) -((-2559 (*1 *2) (-12 (-4 *3 (-13 (-834) (-550) (-1029 (-560)))) (-5 *2 (-1241)) (-5 *1 (-429 *3 *4)) (-4 *4 (-426 *3)))) (-3647 (*1 *2 *3 *4) (-12 (-5 *4 (-599 *3)) (-4 *3 (-426 *5)) (-4 *5 (-13 (-834) (-550) (-1029 (-560)))) (-5 *2 (-1149 (-403 (-560)))) (-5 *1 (-429 *5 *3)))) (-3647 (*1 *2 *3) (-12 (-4 *4 (-13 (-834) (-550) (-1029 (-560)))) (-5 *2 (-403 (-560))) (-5 *1 (-429 *4 *3)) (-4 *3 (-426 *4))))) -(-10 -7 (-15 -3647 ((-403 (-560)) |#2|)) (-15 -3647 ((-1149 (-403 (-560))) |#2| (-599 |#2|))) (-15 -2559 ((-1241)))) -((-4442 (((-121) $) 28)) (-4076 (((-121) $) 30)) (-1589 (((-121) $) 31)) (-3641 (((-121) $) 34)) (-3902 (((-121) $) 29)) (-1402 (((-121) $) 33)) (-2801 (((-842) $) 18) (($ (-1135)) 27) (($ (-1153)) 23) (((-1153) $) 22) (((-1086) $) 21)) (-2670 (((-121) $) 32)) (-1653 (((-121) $ $) 15))) -(((-430) (-13 (-600 (-842)) (-10 -8 (-15 -2801 ($ (-1135))) (-15 -2801 ($ (-1153))) (-15 -2801 ((-1153) $)) (-15 -2801 ((-1086) $)) (-15 -4442 ((-121) $)) (-15 -3902 ((-121) $)) (-15 -1589 ((-121) $)) (-15 -1402 ((-121) $)) (-15 -3641 ((-121) $)) (-15 -2670 ((-121) $)) (-15 -4076 ((-121) $)) (-15 -1653 ((-121) $ $))))) (T -430)) -((-2801 (*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-430)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-1153)) (-5 *1 (-430)))) (-2801 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-430)))) (-2801 (*1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-430)))) (-4442 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-430)))) (-3902 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-430)))) (-1589 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-430)))) (-1402 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-430)))) (-3641 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-430)))) (-2670 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-430)))) (-4076 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-430)))) (-1653 (*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-430))))) -(-13 (-600 (-842)) (-10 -8 (-15 -2801 ($ (-1135))) (-15 -2801 ($ (-1153))) (-15 -2801 ((-1153) $)) (-15 -2801 ((-1086) $)) (-15 -4442 ((-121) $)) (-15 -3902 ((-121) $)) (-15 -1589 ((-121) $)) (-15 -1402 ((-121) $)) (-15 -3641 ((-121) $)) (-15 -2670 ((-121) $)) (-15 -4076 ((-121) $)) (-15 -1653 ((-121) $ $)))) -((-2411 (((-3 (-414 (-1149 (-403 (-560)))) "failed") |#3|) 68)) (-4458 (((-414 |#3|) |#3|) 33)) (-4187 (((-3 (-414 (-1149 (-53))) "failed") |#3|) 27 (|has| |#2| (-1029 (-53))))) (-2321 (((-3 (|:| |overq| (-1149 (-403 (-560)))) (|:| |overan| (-1149 (-53))) (|:| -1384 (-121))) |#3|) 35))) -(((-431 |#1| |#2| |#3|) (-10 -7 (-15 -4458 ((-414 |#3|) |#3|)) (-15 -2411 ((-3 (-414 (-1149 (-403 (-560)))) "failed") |#3|)) (-15 -2321 ((-3 (|:| |overq| (-1149 (-403 (-560)))) (|:| |overan| (-1149 (-53))) (|:| -1384 (-121))) |#3|)) (IF (|has| |#2| (-1029 (-53))) (-15 -4187 ((-3 (-414 (-1149 (-53))) "failed") |#3|)) |noBranch|)) (-13 (-550) (-834) (-1029 (-560))) (-426 |#1|) (-1211 |#2|)) (T -431)) -((-4187 (*1 *2 *3) (|partial| -12 (-4 *5 (-1029 (-53))) (-4 *4 (-13 (-550) (-834) (-1029 (-560)))) (-4 *5 (-426 *4)) (-5 *2 (-414 (-1149 (-53)))) (-5 *1 (-431 *4 *5 *3)) (-4 *3 (-1211 *5)))) (-2321 (*1 *2 *3) (-12 (-4 *4 (-13 (-550) (-834) (-1029 (-560)))) (-4 *5 (-426 *4)) (-5 *2 (-3 (|:| |overq| (-1149 (-403 (-560)))) (|:| |overan| (-1149 (-53))) (|:| -1384 (-121)))) (-5 *1 (-431 *4 *5 *3)) (-4 *3 (-1211 *5)))) (-2411 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-550) (-834) (-1029 (-560)))) (-4 *5 (-426 *4)) (-5 *2 (-414 (-1149 (-403 (-560))))) (-5 *1 (-431 *4 *5 *3)) (-4 *3 (-1211 *5)))) (-4458 (*1 *2 *3) (-12 (-4 *4 (-13 (-550) (-834) (-1029 (-560)))) (-4 *5 (-426 *4)) (-5 *2 (-414 *3)) (-5 *1 (-431 *4 *5 *3)) (-4 *3 (-1211 *5))))) -(-10 -7 (-15 -4458 ((-414 |#3|) |#3|)) (-15 -2411 ((-3 (-414 (-1149 (-403 (-560)))) "failed") |#3|)) (-15 -2321 ((-3 (|:| |overq| (-1149 (-403 (-560)))) (|:| |overan| (-1149 (-53))) (|:| -1384 (-121))) |#3|)) (IF (|has| |#2| (-1029 (-53))) (-15 -4187 ((-3 (-414 (-1149 (-53))) "failed") |#3|)) |noBranch|)) -((-2601 (((-121) $ $) NIL)) (-1880 (((-1135) $ (-1135)) NIL)) (-2998 (($ $ (-1135)) NIL)) (-1464 (((-1135) $) NIL)) (-4248 (((-384) (-384) (-384)) 17) (((-384) (-384)) 15)) (-3997 (($ (-384)) NIL) (($ (-384) (-1135)) NIL)) (-1337 (((-384) $) NIL)) (-1291 (((-1135) $) NIL)) (-1661 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2508 (((-1241) (-1135)) 9)) (-2880 (((-1241) (-1135)) 10)) (-2804 (((-1241)) 11)) (-1931 (((-1241) $) NIL)) (-2801 (((-842) $) NIL)) (-2074 (($ $) 34)) (-1653 (((-121) $ $) NIL))) -(((-432) (-13 (-360 (-384) (-1135)) (-10 -7 (-15 -4248 ((-384) (-384) (-384))) (-15 -4248 ((-384) (-384))) (-15 -2508 ((-1241) (-1135))) (-15 -2880 ((-1241) (-1135))) (-15 -2804 ((-1241)))))) (T -432)) -((-4248 (*1 *2 *2 *2) (-12 (-5 *2 (-384)) (-5 *1 (-432)))) (-4248 (*1 *2 *2) (-12 (-5 *2 (-384)) (-5 *1 (-432)))) (-2508 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1241)) (-5 *1 (-432)))) (-2880 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1241)) (-5 *1 (-432)))) (-2804 (*1 *2) (-12 (-5 *2 (-1241)) (-5 *1 (-432))))) -(-13 (-360 (-384) (-1135)) (-10 -7 (-15 -4248 ((-384) (-384) (-384))) (-15 -4248 ((-384) (-384))) (-15 -2508 ((-1241) (-1135))) (-15 -2880 ((-1241) (-1135))) (-15 -2804 ((-1241))))) -((-2601 (((-121) $ $) NIL)) (-3619 (((-3 (|:| |fst| (-430)) (|:| -2303 "void")) $) 10)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-1918 (($) 31)) (-3657 (($) 37)) (-2943 (($) 33)) (-2018 (($) 35)) (-4045 (($) 32)) (-1817 (($) 34)) (-1376 (($) 36)) (-3425 (((-121) $) 8)) (-3578 (((-626 (-945 (-560))) $) 16)) (-4162 (($ (-3 (|:| |fst| (-430)) (|:| -2303 "void")) (-626 (-1153)) (-121)) 25) (($ (-3 (|:| |fst| (-430)) (|:| -2303 "void")) (-626 (-945 (-560))) (-121)) 26)) (-2801 (((-842) $) 21) (($ (-430)) 28)) (-1653 (((-121) $ $) NIL))) -(((-433) (-13 (-1082) (-10 -8 (-15 -2801 ((-842) $)) (-15 -2801 ($ (-430))) (-15 -3619 ((-3 (|:| |fst| (-430)) (|:| -2303 "void")) $)) (-15 -3578 ((-626 (-945 (-560))) $)) (-15 -3425 ((-121) $)) (-15 -4162 ($ (-3 (|:| |fst| (-430)) (|:| -2303 "void")) (-626 (-1153)) (-121))) (-15 -4162 ($ (-3 (|:| |fst| (-430)) (|:| -2303 "void")) (-626 (-945 (-560))) (-121))) (-15 -1918 ($)) (-15 -4045 ($)) (-15 -2943 ($)) (-15 -3657 ($)) (-15 -1817 ($)) (-15 -2018 ($)) (-15 -1376 ($))))) (T -433)) -((-2801 (*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-433)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-430)) (-5 *1 (-433)))) (-3619 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-430)) (|:| -2303 "void"))) (-5 *1 (-433)))) (-3578 (*1 *2 *1) (-12 (-5 *2 (-626 (-945 (-560)))) (-5 *1 (-433)))) (-3425 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-433)))) (-4162 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-430)) (|:| -2303 "void"))) (-5 *3 (-626 (-1153))) (-5 *4 (-121)) (-5 *1 (-433)))) (-4162 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-430)) (|:| -2303 "void"))) (-5 *3 (-626 (-945 (-560)))) (-5 *4 (-121)) (-5 *1 (-433)))) (-1918 (*1 *1) (-5 *1 (-433))) (-4045 (*1 *1) (-5 *1 (-433))) (-2943 (*1 *1) (-5 *1 (-433))) (-3657 (*1 *1) (-5 *1 (-433))) (-1817 (*1 *1) (-5 *1 (-433))) (-2018 (*1 *1) (-5 *1 (-433))) (-1376 (*1 *1) (-5 *1 (-433)))) -(-13 (-1082) (-10 -8 (-15 -2801 ((-842) $)) (-15 -2801 ($ (-430))) (-15 -3619 ((-3 (|:| |fst| (-430)) (|:| -2303 "void")) $)) (-15 -3578 ((-626 (-945 (-560))) $)) (-15 -3425 ((-121) $)) (-15 -4162 ($ (-3 (|:| |fst| (-430)) (|:| -2303 "void")) (-626 (-1153)) (-121))) (-15 -4162 ($ (-3 (|:| |fst| (-430)) (|:| -2303 "void")) (-626 (-945 (-560))) (-121))) (-15 -1918 ($)) (-15 -4045 ($)) (-15 -2943 ($)) (-15 -3657 ($)) (-15 -1817 ($)) (-15 -2018 ($)) (-15 -1376 ($)))) -((-2601 (((-121) $ $) NIL)) (-1337 (((-1153) $) 8)) (-1291 (((-1135) $) 16)) (-4353 (((-1100) $) NIL)) (-2801 (((-842) $) 11)) (-1653 (((-121) $ $) 13))) -(((-434 |#1|) (-13 (-1082) (-10 -8 (-15 -1337 ((-1153) $)))) (-1153)) (T -434)) -((-1337 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-434 *3)) (-14 *3 *2)))) -(-13 (-1082) (-10 -8 (-15 -1337 ((-1153) $)))) -((-2405 (((-1241) $) 7)) (-2801 (((-842) $) 8) (($ (-1236 (-680))) 12) (($ (-626 (-322))) 11) (($ (-322)) 10) (($ (-2 (|:| |localSymbols| (-1157)) (|:| -2111 (-626 (-322))))) 9))) -(((-435) (-1267)) (T -435)) -((-2801 (*1 *1 *2) (-12 (-5 *2 (-1236 (-680))) (-4 *1 (-435)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-626 (-322))) (-4 *1 (-435)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-322)) (-4 *1 (-435)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1157)) (|:| -2111 (-626 (-322))))) (-4 *1 (-435))))) -(-13 (-391) (-10 -8 (-15 -2801 ($ (-1236 (-680)))) (-15 -2801 ($ (-626 (-322)))) (-15 -2801 ($ (-322))) (-15 -2801 ($ (-2 (|:| |localSymbols| (-1157)) (|:| -2111 (-626 (-322)))))))) -(((-600 (-842)) . T) ((-391) . T) ((-1187) . T)) -((-1473 (((-3 $ "failed") (-1236 (-304 (-375)))) 19) (((-3 $ "failed") (-1236 (-304 (-560)))) 17) (((-3 $ "failed") (-1236 (-945 (-375)))) 15) (((-3 $ "failed") (-1236 (-945 (-560)))) 13) (((-3 $ "failed") (-1236 (-403 (-945 (-375))))) 11) (((-3 $ "failed") (-1236 (-403 (-945 (-560))))) 9)) (-3001 (($ (-1236 (-304 (-375)))) 20) (($ (-1236 (-304 (-560)))) 18) (($ (-1236 (-945 (-375)))) 16) (($ (-1236 (-945 (-560)))) 14) (($ (-1236 (-403 (-945 (-375))))) 12) (($ (-1236 (-403 (-945 (-560))))) 10)) (-2405 (((-1241) $) 7)) (-2801 (((-842) $) 8) (($ (-626 (-322))) 23) (($ (-322)) 22) (($ (-2 (|:| |localSymbols| (-1157)) (|:| -2111 (-626 (-322))))) 21))) -(((-436) (-1267)) (T -436)) -((-2801 (*1 *1 *2) (-12 (-5 *2 (-626 (-322))) (-4 *1 (-436)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-322)) (-4 *1 (-436)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1157)) (|:| -2111 (-626 (-322))))) (-4 *1 (-436)))) (-3001 (*1 *1 *2) (-12 (-5 *2 (-1236 (-304 (-375)))) (-4 *1 (-436)))) (-1473 (*1 *1 *2) (|partial| -12 (-5 *2 (-1236 (-304 (-375)))) (-4 *1 (-436)))) (-3001 (*1 *1 *2) (-12 (-5 *2 (-1236 (-304 (-560)))) (-4 *1 (-436)))) (-1473 (*1 *1 *2) (|partial| -12 (-5 *2 (-1236 (-304 (-560)))) (-4 *1 (-436)))) (-3001 (*1 *1 *2) (-12 (-5 *2 (-1236 (-945 (-375)))) (-4 *1 (-436)))) (-1473 (*1 *1 *2) (|partial| -12 (-5 *2 (-1236 (-945 (-375)))) (-4 *1 (-436)))) (-3001 (*1 *1 *2) (-12 (-5 *2 (-1236 (-945 (-560)))) (-4 *1 (-436)))) (-1473 (*1 *1 *2) (|partial| -12 (-5 *2 (-1236 (-945 (-560)))) (-4 *1 (-436)))) (-3001 (*1 *1 *2) (-12 (-5 *2 (-1236 (-403 (-945 (-375))))) (-4 *1 (-436)))) (-1473 (*1 *1 *2) (|partial| -12 (-5 *2 (-1236 (-403 (-945 (-375))))) (-4 *1 (-436)))) (-3001 (*1 *1 *2) (-12 (-5 *2 (-1236 (-403 (-945 (-560))))) (-4 *1 (-436)))) (-1473 (*1 *1 *2) (|partial| -12 (-5 *2 (-1236 (-403 (-945 (-560))))) (-4 *1 (-436))))) -(-13 (-391) (-10 -8 (-15 -2801 ($ (-626 (-322)))) (-15 -2801 ($ (-322))) (-15 -2801 ($ (-2 (|:| |localSymbols| (-1157)) (|:| -2111 (-626 (-322)))))) (-15 -3001 ($ (-1236 (-304 (-375))))) (-15 -1473 ((-3 $ "failed") (-1236 (-304 (-375))))) (-15 -3001 ($ (-1236 (-304 (-560))))) (-15 -1473 ((-3 $ "failed") (-1236 (-304 (-560))))) (-15 -3001 ($ (-1236 (-945 (-375))))) (-15 -1473 ((-3 $ "failed") (-1236 (-945 (-375))))) (-15 -3001 ($ (-1236 (-945 (-560))))) (-15 -1473 ((-3 $ "failed") (-1236 (-945 (-560))))) (-15 -3001 ($ (-1236 (-403 (-945 (-375)))))) (-15 -1473 ((-3 $ "failed") (-1236 (-403 (-945 (-375)))))) (-15 -3001 ($ (-1236 (-403 (-945 (-560)))))) (-15 -1473 ((-3 $ "failed") (-1236 (-403 (-945 (-560)))))))) -(((-600 (-842)) . T) ((-391) . T) ((-1187) . T)) -((-2882 (((-121)) 17)) (-3973 (((-121) (-121)) 18)) (-1972 (((-121)) 13)) (-2657 (((-121) (-121)) 14)) (-2522 (((-121)) 15)) (-1523 (((-121) (-121)) 16)) (-1393 (((-909) (-909)) 21) (((-909)) 20)) (-2032 (((-755) (-626 (-2 (|:| -1601 |#1|) (|:| -3662 (-560))))) 41)) (-1876 (((-909) (-909)) 23) (((-909)) 22)) (-3797 (((-2 (|:| -4412 (-560)) (|:| -3025 (-626 |#1|))) |#1|) 61)) (-1852 (((-414 |#1|) (-2 (|:| |contp| (-560)) (|:| -3025 (-626 (-2 (|:| |irr| |#1|) (|:| -2678 (-560))))))) 125)) (-3247 (((-2 (|:| |contp| (-560)) (|:| -3025 (-626 (-2 (|:| |irr| |#1|) (|:| -2678 (-560)))))) |#1| (-121)) 151)) (-2387 (((-414 |#1|) |#1| (-755) (-755)) 164) (((-414 |#1|) |#1| (-626 (-755)) (-755)) 161) (((-414 |#1|) |#1| (-626 (-755))) 163) (((-414 |#1|) |#1| (-755)) 162) (((-414 |#1|) |#1|) 160)) (-4470 (((-3 |#1| "failed") (-909) |#1| (-626 (-755)) (-755) (-121)) 166) (((-3 |#1| "failed") (-909) |#1| (-626 (-755)) (-755)) 167) (((-3 |#1| "failed") (-909) |#1| (-626 (-755))) 169) (((-3 |#1| "failed") (-909) |#1| (-755)) 168) (((-3 |#1| "failed") (-909) |#1|) 170)) (-1601 (((-414 |#1|) |#1| (-755) (-755)) 159) (((-414 |#1|) |#1| (-626 (-755)) (-755)) 155) (((-414 |#1|) |#1| (-626 (-755))) 157) (((-414 |#1|) |#1| (-755)) 156) (((-414 |#1|) |#1|) 154)) (-3753 (((-121) |#1|) 36)) (-1763 (((-719 (-755)) (-626 (-2 (|:| -1601 |#1|) (|:| -3662 (-560))))) 66)) (-1422 (((-2 (|:| |contp| (-560)) (|:| -3025 (-626 (-2 (|:| |irr| |#1|) (|:| -2678 (-560)))))) |#1| (-121) (-1084 (-755)) (-755)) 153))) -(((-437 |#1|) (-10 -7 (-15 -1852 ((-414 |#1|) (-2 (|:| |contp| (-560)) (|:| -3025 (-626 (-2 (|:| |irr| |#1|) (|:| -2678 (-560)))))))) (-15 -1763 ((-719 (-755)) (-626 (-2 (|:| -1601 |#1|) (|:| -3662 (-560)))))) (-15 -1876 ((-909))) (-15 -1876 ((-909) (-909))) (-15 -1393 ((-909))) (-15 -1393 ((-909) (-909))) (-15 -2032 ((-755) (-626 (-2 (|:| -1601 |#1|) (|:| -3662 (-560)))))) (-15 -3797 ((-2 (|:| -4412 (-560)) (|:| -3025 (-626 |#1|))) |#1|)) (-15 -2882 ((-121))) (-15 -3973 ((-121) (-121))) (-15 -1972 ((-121))) (-15 -2657 ((-121) (-121))) (-15 -3753 ((-121) |#1|)) (-15 -2522 ((-121))) (-15 -1523 ((-121) (-121))) (-15 -1601 ((-414 |#1|) |#1|)) (-15 -1601 ((-414 |#1|) |#1| (-755))) (-15 -1601 ((-414 |#1|) |#1| (-626 (-755)))) (-15 -1601 ((-414 |#1|) |#1| (-626 (-755)) (-755))) (-15 -1601 ((-414 |#1|) |#1| (-755) (-755))) (-15 -2387 ((-414 |#1|) |#1|)) (-15 -2387 ((-414 |#1|) |#1| (-755))) (-15 -2387 ((-414 |#1|) |#1| (-626 (-755)))) (-15 -2387 ((-414 |#1|) |#1| (-626 (-755)) (-755))) (-15 -2387 ((-414 |#1|) |#1| (-755) (-755))) (-15 -4470 ((-3 |#1| "failed") (-909) |#1|)) (-15 -4470 ((-3 |#1| "failed") (-909) |#1| (-755))) (-15 -4470 ((-3 |#1| "failed") (-909) |#1| (-626 (-755)))) (-15 -4470 ((-3 |#1| "failed") (-909) |#1| (-626 (-755)) (-755))) (-15 -4470 ((-3 |#1| "failed") (-909) |#1| (-626 (-755)) (-755) (-121))) (-15 -3247 ((-2 (|:| |contp| (-560)) (|:| -3025 (-626 (-2 (|:| |irr| |#1|) (|:| -2678 (-560)))))) |#1| (-121))) (-15 -1422 ((-2 (|:| |contp| (-560)) (|:| -3025 (-626 (-2 (|:| |irr| |#1|) (|:| -2678 (-560)))))) |#1| (-121) (-1084 (-755)) (-755)))) (-1211 (-560))) (T -437)) -((-1422 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-121)) (-5 *5 (-1084 (-755))) (-5 *6 (-755)) (-5 *2 (-2 (|:| |contp| (-560)) (|:| -3025 (-626 (-2 (|:| |irr| *3) (|:| -2678 (-560))))))) (-5 *1 (-437 *3)) (-4 *3 (-1211 (-560))))) (-3247 (*1 *2 *3 *4) (-12 (-5 *4 (-121)) (-5 *2 (-2 (|:| |contp| (-560)) (|:| -3025 (-626 (-2 (|:| |irr| *3) (|:| -2678 (-560))))))) (-5 *1 (-437 *3)) (-4 *3 (-1211 (-560))))) (-4470 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-909)) (-5 *4 (-626 (-755))) (-5 *5 (-755)) (-5 *6 (-121)) (-5 *1 (-437 *2)) (-4 *2 (-1211 (-560))))) (-4470 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-909)) (-5 *4 (-626 (-755))) (-5 *5 (-755)) (-5 *1 (-437 *2)) (-4 *2 (-1211 (-560))))) (-4470 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-909)) (-5 *4 (-626 (-755))) (-5 *1 (-437 *2)) (-4 *2 (-1211 (-560))))) (-4470 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-909)) (-5 *4 (-755)) (-5 *1 (-437 *2)) (-4 *2 (-1211 (-560))))) (-4470 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-909)) (-5 *1 (-437 *2)) (-4 *2 (-1211 (-560))))) (-2387 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-755)) (-5 *2 (-414 *3)) (-5 *1 (-437 *3)) (-4 *3 (-1211 (-560))))) (-2387 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-626 (-755))) (-5 *5 (-755)) (-5 *2 (-414 *3)) (-5 *1 (-437 *3)) (-4 *3 (-1211 (-560))))) (-2387 (*1 *2 *3 *4) (-12 (-5 *4 (-626 (-755))) (-5 *2 (-414 *3)) (-5 *1 (-437 *3)) (-4 *3 (-1211 (-560))))) (-2387 (*1 *2 *3 *4) (-12 (-5 *4 (-755)) (-5 *2 (-414 *3)) (-5 *1 (-437 *3)) (-4 *3 (-1211 (-560))))) (-2387 (*1 *2 *3) (-12 (-5 *2 (-414 *3)) (-5 *1 (-437 *3)) (-4 *3 (-1211 (-560))))) (-1601 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-755)) (-5 *2 (-414 *3)) (-5 *1 (-437 *3)) (-4 *3 (-1211 (-560))))) (-1601 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-626 (-755))) (-5 *5 (-755)) (-5 *2 (-414 *3)) (-5 *1 (-437 *3)) (-4 *3 (-1211 (-560))))) (-1601 (*1 *2 *3 *4) (-12 (-5 *4 (-626 (-755))) (-5 *2 (-414 *3)) (-5 *1 (-437 *3)) (-4 *3 (-1211 (-560))))) (-1601 (*1 *2 *3 *4) (-12 (-5 *4 (-755)) (-5 *2 (-414 *3)) (-5 *1 (-437 *3)) (-4 *3 (-1211 (-560))))) (-1601 (*1 *2 *3) (-12 (-5 *2 (-414 *3)) (-5 *1 (-437 *3)) (-4 *3 (-1211 (-560))))) (-1523 (*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-437 *3)) (-4 *3 (-1211 (-560))))) (-2522 (*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-437 *3)) (-4 *3 (-1211 (-560))))) (-3753 (*1 *2 *3) (-12 (-5 *2 (-121)) (-5 *1 (-437 *3)) (-4 *3 (-1211 (-560))))) (-2657 (*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-437 *3)) (-4 *3 (-1211 (-560))))) (-1972 (*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-437 *3)) (-4 *3 (-1211 (-560))))) (-3973 (*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-437 *3)) (-4 *3 (-1211 (-560))))) (-2882 (*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-437 *3)) (-4 *3 (-1211 (-560))))) (-3797 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -4412 (-560)) (|:| -3025 (-626 *3)))) (-5 *1 (-437 *3)) (-4 *3 (-1211 (-560))))) (-2032 (*1 *2 *3) (-12 (-5 *3 (-626 (-2 (|:| -1601 *4) (|:| -3662 (-560))))) (-4 *4 (-1211 (-560))) (-5 *2 (-755)) (-5 *1 (-437 *4)))) (-1393 (*1 *2 *2) (-12 (-5 *2 (-909)) (-5 *1 (-437 *3)) (-4 *3 (-1211 (-560))))) (-1393 (*1 *2) (-12 (-5 *2 (-909)) (-5 *1 (-437 *3)) (-4 *3 (-1211 (-560))))) (-1876 (*1 *2 *2) (-12 (-5 *2 (-909)) (-5 *1 (-437 *3)) (-4 *3 (-1211 (-560))))) (-1876 (*1 *2) (-12 (-5 *2 (-909)) (-5 *1 (-437 *3)) (-4 *3 (-1211 (-560))))) (-1763 (*1 *2 *3) (-12 (-5 *3 (-626 (-2 (|:| -1601 *4) (|:| -3662 (-560))))) (-4 *4 (-1211 (-560))) (-5 *2 (-719 (-755))) (-5 *1 (-437 *4)))) (-1852 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-560)) (|:| -3025 (-626 (-2 (|:| |irr| *4) (|:| -2678 (-560))))))) (-4 *4 (-1211 (-560))) (-5 *2 (-414 *4)) (-5 *1 (-437 *4))))) -(-10 -7 (-15 -1852 ((-414 |#1|) (-2 (|:| |contp| (-560)) (|:| -3025 (-626 (-2 (|:| |irr| |#1|) (|:| -2678 (-560)))))))) (-15 -1763 ((-719 (-755)) (-626 (-2 (|:| -1601 |#1|) (|:| -3662 (-560)))))) (-15 -1876 ((-909))) (-15 -1876 ((-909) (-909))) (-15 -1393 ((-909))) (-15 -1393 ((-909) (-909))) (-15 -2032 ((-755) (-626 (-2 (|:| -1601 |#1|) (|:| -3662 (-560)))))) (-15 -3797 ((-2 (|:| -4412 (-560)) (|:| -3025 (-626 |#1|))) |#1|)) (-15 -2882 ((-121))) (-15 -3973 ((-121) (-121))) (-15 -1972 ((-121))) (-15 -2657 ((-121) (-121))) (-15 -3753 ((-121) |#1|)) (-15 -2522 ((-121))) (-15 -1523 ((-121) (-121))) (-15 -1601 ((-414 |#1|) |#1|)) (-15 -1601 ((-414 |#1|) |#1| (-755))) (-15 -1601 ((-414 |#1|) |#1| (-626 (-755)))) (-15 -1601 ((-414 |#1|) |#1| (-626 (-755)) (-755))) (-15 -1601 ((-414 |#1|) |#1| (-755) (-755))) (-15 -2387 ((-414 |#1|) |#1|)) (-15 -2387 ((-414 |#1|) |#1| (-755))) (-15 -2387 ((-414 |#1|) |#1| (-626 (-755)))) (-15 -2387 ((-414 |#1|) |#1| (-626 (-755)) (-755))) (-15 -2387 ((-414 |#1|) |#1| (-755) (-755))) (-15 -4470 ((-3 |#1| "failed") (-909) |#1|)) (-15 -4470 ((-3 |#1| "failed") (-909) |#1| (-755))) (-15 -4470 ((-3 |#1| "failed") (-909) |#1| (-626 (-755)))) (-15 -4470 ((-3 |#1| "failed") (-909) |#1| (-626 (-755)) (-755))) (-15 -4470 ((-3 |#1| "failed") (-909) |#1| (-626 (-755)) (-755) (-121))) (-15 -3247 ((-2 (|:| |contp| (-560)) (|:| -3025 (-626 (-2 (|:| |irr| |#1|) (|:| -2678 (-560)))))) |#1| (-121))) (-15 -1422 ((-2 (|:| |contp| (-560)) (|:| -3025 (-626 (-2 (|:| |irr| |#1|) (|:| -2678 (-560)))))) |#1| (-121) (-1084 (-755)) (-755)))) -((-3331 (((-560) |#2|) 48) (((-560) |#2| (-755)) 47)) (-1320 (((-560) |#2|) 55)) (-2497 ((|#3| |#2|) 25)) (-3339 ((|#3| |#2| (-909)) 14)) (-2349 ((|#3| |#2|) 15)) (-4378 ((|#3| |#2|) 9)) (-3165 ((|#3| |#2|) 10)) (-2944 ((|#3| |#2| (-909)) 62) ((|#3| |#2|) 30)) (-3110 (((-560) |#2|) 57))) -(((-438 |#1| |#2| |#3|) (-10 -7 (-15 -3110 ((-560) |#2|)) (-15 -2944 (|#3| |#2|)) (-15 -2944 (|#3| |#2| (-909))) (-15 -1320 ((-560) |#2|)) (-15 -3331 ((-560) |#2| (-755))) (-15 -3331 ((-560) |#2|)) (-15 -3339 (|#3| |#2| (-909))) (-15 -2497 (|#3| |#2|)) (-15 -4378 (|#3| |#2|)) (-15 -3165 (|#3| |#2|)) (-15 -2349 (|#3| |#2|))) (-1039) (-1211 |#1|) (-13 (-400) (-1029 |#1|) (-359) (-1173) (-274))) (T -438)) -((-2349 (*1 *2 *3) (-12 (-4 *4 (-1039)) (-4 *2 (-13 (-400) (-1029 *4) (-359) (-1173) (-274))) (-5 *1 (-438 *4 *3 *2)) (-4 *3 (-1211 *4)))) (-3165 (*1 *2 *3) (-12 (-4 *4 (-1039)) (-4 *2 (-13 (-400) (-1029 *4) (-359) (-1173) (-274))) (-5 *1 (-438 *4 *3 *2)) (-4 *3 (-1211 *4)))) (-4378 (*1 *2 *3) (-12 (-4 *4 (-1039)) (-4 *2 (-13 (-400) (-1029 *4) (-359) (-1173) (-274))) (-5 *1 (-438 *4 *3 *2)) (-4 *3 (-1211 *4)))) (-2497 (*1 *2 *3) (-12 (-4 *4 (-1039)) (-4 *2 (-13 (-400) (-1029 *4) (-359) (-1173) (-274))) (-5 *1 (-438 *4 *3 *2)) (-4 *3 (-1211 *4)))) (-3339 (*1 *2 *3 *4) (-12 (-5 *4 (-909)) (-4 *5 (-1039)) (-4 *2 (-13 (-400) (-1029 *5) (-359) (-1173) (-274))) (-5 *1 (-438 *5 *3 *2)) (-4 *3 (-1211 *5)))) (-3331 (*1 *2 *3) (-12 (-4 *4 (-1039)) (-5 *2 (-560)) (-5 *1 (-438 *4 *3 *5)) (-4 *3 (-1211 *4)) (-4 *5 (-13 (-400) (-1029 *4) (-359) (-1173) (-274))))) (-3331 (*1 *2 *3 *4) (-12 (-5 *4 (-755)) (-4 *5 (-1039)) (-5 *2 (-560)) (-5 *1 (-438 *5 *3 *6)) (-4 *3 (-1211 *5)) (-4 *6 (-13 (-400) (-1029 *5) (-359) (-1173) (-274))))) (-1320 (*1 *2 *3) (-12 (-4 *4 (-1039)) (-5 *2 (-560)) (-5 *1 (-438 *4 *3 *5)) (-4 *3 (-1211 *4)) (-4 *5 (-13 (-400) (-1029 *4) (-359) (-1173) (-274))))) (-2944 (*1 *2 *3 *4) (-12 (-5 *4 (-909)) (-4 *5 (-1039)) (-4 *2 (-13 (-400) (-1029 *5) (-359) (-1173) (-274))) (-5 *1 (-438 *5 *3 *2)) (-4 *3 (-1211 *5)))) (-2944 (*1 *2 *3) (-12 (-4 *4 (-1039)) (-4 *2 (-13 (-400) (-1029 *4) (-359) (-1173) (-274))) (-5 *1 (-438 *4 *3 *2)) (-4 *3 (-1211 *4)))) (-3110 (*1 *2 *3) (-12 (-4 *4 (-1039)) (-5 *2 (-560)) (-5 *1 (-438 *4 *3 *5)) (-4 *3 (-1211 *4)) (-4 *5 (-13 (-400) (-1029 *4) (-359) (-1173) (-274)))))) -(-10 -7 (-15 -3110 ((-560) |#2|)) (-15 -2944 (|#3| |#2|)) (-15 -2944 (|#3| |#2| (-909))) (-15 -1320 ((-560) |#2|)) (-15 -3331 ((-560) |#2| (-755))) (-15 -3331 ((-560) |#2|)) (-15 -3339 (|#3| |#2| (-909))) (-15 -2497 (|#3| |#2|)) (-15 -4378 (|#3| |#2|)) (-15 -3165 (|#3| |#2|)) (-15 -2349 (|#3| |#2|))) -((-3754 ((|#2| (-1236 |#1|)) 36)) (-1507 ((|#2| |#2| |#1|) 49)) (-4380 ((|#2| |#2| |#1|) 41)) (-2883 ((|#2| |#2|) 38)) (-2188 (((-121) |#2|) 30)) (-4438 (((-626 |#2|) (-909) (-414 |#2|)) 16)) (-4470 ((|#2| (-909) (-414 |#2|)) 21)) (-1763 (((-719 (-755)) (-414 |#2|)) 25))) -(((-439 |#1| |#2|) (-10 -7 (-15 -2188 ((-121) |#2|)) (-15 -3754 (|#2| (-1236 |#1|))) (-15 -2883 (|#2| |#2|)) (-15 -4380 (|#2| |#2| |#1|)) (-15 -1507 (|#2| |#2| |#1|)) (-15 -1763 ((-719 (-755)) (-414 |#2|))) (-15 -4470 (|#2| (-909) (-414 |#2|))) (-15 -4438 ((-626 |#2|) (-909) (-414 |#2|)))) (-1039) (-1211 |#1|)) (T -439)) -((-4438 (*1 *2 *3 *4) (-12 (-5 *3 (-909)) (-5 *4 (-414 *6)) (-4 *6 (-1211 *5)) (-4 *5 (-1039)) (-5 *2 (-626 *6)) (-5 *1 (-439 *5 *6)))) (-4470 (*1 *2 *3 *4) (-12 (-5 *3 (-909)) (-5 *4 (-414 *2)) (-4 *2 (-1211 *5)) (-5 *1 (-439 *5 *2)) (-4 *5 (-1039)))) (-1763 (*1 *2 *3) (-12 (-5 *3 (-414 *5)) (-4 *5 (-1211 *4)) (-4 *4 (-1039)) (-5 *2 (-719 (-755))) (-5 *1 (-439 *4 *5)))) (-1507 (*1 *2 *2 *3) (-12 (-4 *3 (-1039)) (-5 *1 (-439 *3 *2)) (-4 *2 (-1211 *3)))) (-4380 (*1 *2 *2 *3) (-12 (-4 *3 (-1039)) (-5 *1 (-439 *3 *2)) (-4 *2 (-1211 *3)))) (-2883 (*1 *2 *2) (-12 (-4 *3 (-1039)) (-5 *1 (-439 *3 *2)) (-4 *2 (-1211 *3)))) (-3754 (*1 *2 *3) (-12 (-5 *3 (-1236 *4)) (-4 *4 (-1039)) (-4 *2 (-1211 *4)) (-5 *1 (-439 *4 *2)))) (-2188 (*1 *2 *3) (-12 (-4 *4 (-1039)) (-5 *2 (-121)) (-5 *1 (-439 *4 *3)) (-4 *3 (-1211 *4))))) -(-10 -7 (-15 -2188 ((-121) |#2|)) (-15 -3754 (|#2| (-1236 |#1|))) (-15 -2883 (|#2| |#2|)) (-15 -4380 (|#2| |#2| |#1|)) (-15 -1507 (|#2| |#2| |#1|)) (-15 -1763 ((-719 (-755)) (-414 |#2|))) (-15 -4470 (|#2| (-909) (-414 |#2|))) (-15 -4438 ((-626 |#2|) (-909) (-414 |#2|)))) -((-2669 (((-755)) 41)) (-2396 (((-755)) 23 (|has| |#1| (-400))) (((-755) (-755)) 22 (|has| |#1| (-400)))) (-1678 (((-560) |#1|) 18 (|has| |#1| (-400)))) (-3964 (((-560) |#1|) 20 (|has| |#1| (-400)))) (-4211 (((-755)) 40) (((-755) (-755)) 39)) (-2337 ((|#1| (-755) (-560)) 29)) (-4123 (((-1241)) 43))) -(((-440 |#1|) (-10 -7 (-15 -2337 (|#1| (-755) (-560))) (-15 -4211 ((-755) (-755))) (-15 -4211 ((-755))) (-15 -2669 ((-755))) (-15 -4123 ((-1241))) (IF (|has| |#1| (-400)) (PROGN (-15 -3964 ((-560) |#1|)) (-15 -1678 ((-560) |#1|)) (-15 -2396 ((-755) (-755))) (-15 -2396 ((-755)))) |noBranch|)) (-1039)) (T -440)) -((-2396 (*1 *2) (-12 (-5 *2 (-755)) (-5 *1 (-440 *3)) (-4 *3 (-400)) (-4 *3 (-1039)))) (-2396 (*1 *2 *2) (-12 (-5 *2 (-755)) (-5 *1 (-440 *3)) (-4 *3 (-400)) (-4 *3 (-1039)))) (-1678 (*1 *2 *3) (-12 (-5 *2 (-560)) (-5 *1 (-440 *3)) (-4 *3 (-400)) (-4 *3 (-1039)))) (-3964 (*1 *2 *3) (-12 (-5 *2 (-560)) (-5 *1 (-440 *3)) (-4 *3 (-400)) (-4 *3 (-1039)))) (-4123 (*1 *2) (-12 (-5 *2 (-1241)) (-5 *1 (-440 *3)) (-4 *3 (-1039)))) (-2669 (*1 *2) (-12 (-5 *2 (-755)) (-5 *1 (-440 *3)) (-4 *3 (-1039)))) (-4211 (*1 *2) (-12 (-5 *2 (-755)) (-5 *1 (-440 *3)) (-4 *3 (-1039)))) (-4211 (*1 *2 *2) (-12 (-5 *2 (-755)) (-5 *1 (-440 *3)) (-4 *3 (-1039)))) (-2337 (*1 *2 *3 *4) (-12 (-5 *3 (-755)) (-5 *4 (-560)) (-5 *1 (-440 *2)) (-4 *2 (-1039))))) -(-10 -7 (-15 -2337 (|#1| (-755) (-560))) (-15 -4211 ((-755) (-755))) (-15 -4211 ((-755))) (-15 -2669 ((-755))) (-15 -4123 ((-1241))) (IF (|has| |#1| (-400)) (PROGN (-15 -3964 ((-560) |#1|)) (-15 -1678 ((-560) |#1|)) (-15 -2396 ((-755) (-755))) (-15 -2396 ((-755)))) |noBranch|)) -((-2008 (((-626 (-560)) (-560)) 57)) (-3319 (((-121) (-167 (-560))) 61)) (-1601 (((-414 (-167 (-560))) (-167 (-560))) 56))) -(((-441) (-10 -7 (-15 -1601 ((-414 (-167 (-560))) (-167 (-560)))) (-15 -2008 ((-626 (-560)) (-560))) (-15 -3319 ((-121) (-167 (-560)))))) (T -441)) -((-3319 (*1 *2 *3) (-12 (-5 *3 (-167 (-560))) (-5 *2 (-121)) (-5 *1 (-441)))) (-2008 (*1 *2 *3) (-12 (-5 *2 (-626 (-560))) (-5 *1 (-441)) (-5 *3 (-560)))) (-1601 (*1 *2 *3) (-12 (-5 *2 (-414 (-167 (-560)))) (-5 *1 (-441)) (-5 *3 (-167 (-560)))))) -(-10 -7 (-15 -1601 ((-414 (-167 (-560))) (-167 (-560)))) (-15 -2008 ((-626 (-560)) (-560))) (-15 -3319 ((-121) (-167 (-560))))) -((-1431 ((|#4| |#4| (-626 |#4|)) 57)) (-3204 (((-626 |#4|) (-626 |#4|) (-1135) (-1135)) 17) (((-626 |#4|) (-626 |#4|) (-1135)) 16) (((-626 |#4|) (-626 |#4|)) 11))) -(((-442 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1431 (|#4| |#4| (-626 |#4|))) (-15 -3204 ((-626 |#4|) (-626 |#4|))) (-15 -3204 ((-626 |#4|) (-626 |#4|) (-1135))) (-15 -3204 ((-626 |#4|) (-626 |#4|) (-1135) (-1135)))) (-296) (-780) (-834) (-942 |#1| |#2| |#3|)) (T -442)) -((-3204 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-626 *7)) (-5 *3 (-1135)) (-4 *7 (-942 *4 *5 *6)) (-4 *4 (-296)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *1 (-442 *4 *5 *6 *7)))) (-3204 (*1 *2 *2 *3) (-12 (-5 *2 (-626 *7)) (-5 *3 (-1135)) (-4 *7 (-942 *4 *5 *6)) (-4 *4 (-296)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *1 (-442 *4 *5 *6 *7)))) (-3204 (*1 *2 *2) (-12 (-5 *2 (-626 *6)) (-4 *6 (-942 *3 *4 *5)) (-4 *3 (-296)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *1 (-442 *3 *4 *5 *6)))) (-1431 (*1 *2 *2 *3) (-12 (-5 *3 (-626 *2)) (-4 *2 (-942 *4 *5 *6)) (-4 *4 (-296)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *1 (-442 *4 *5 *6 *2))))) -(-10 -7 (-15 -1431 (|#4| |#4| (-626 |#4|))) (-15 -3204 ((-626 |#4|) (-626 |#4|))) (-15 -3204 ((-626 |#4|) (-626 |#4|) (-1135))) (-15 -3204 ((-626 |#4|) (-626 |#4|) (-1135) (-1135)))) -((-3566 (((-626 (-626 |#4|)) (-626 |#4|) (-121)) 70) (((-626 (-626 |#4|)) (-626 |#4|)) 69) (((-626 (-626 |#4|)) (-626 |#4|) (-626 |#4|) (-121)) 63) (((-626 (-626 |#4|)) (-626 |#4|) (-626 |#4|)) 64)) (-1737 (((-626 (-626 |#4|)) (-626 |#4|) (-121)) 40) (((-626 (-626 |#4|)) (-626 |#4|)) 60))) -(((-443 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1737 ((-626 (-626 |#4|)) (-626 |#4|))) (-15 -1737 ((-626 (-626 |#4|)) (-626 |#4|) (-121))) (-15 -3566 ((-626 (-626 |#4|)) (-626 |#4|) (-626 |#4|))) (-15 -3566 ((-626 (-626 |#4|)) (-626 |#4|) (-626 |#4|) (-121))) (-15 -3566 ((-626 (-626 |#4|)) (-626 |#4|))) (-15 -3566 ((-626 (-626 |#4|)) (-626 |#4|) (-121)))) (-13 (-296) (-148)) (-780) (-834) (-942 |#1| |#2| |#3|)) (T -443)) -((-3566 (*1 *2 *3 *4) (-12 (-5 *4 (-121)) (-4 *5 (-13 (-296) (-148))) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *8 (-942 *5 *6 *7)) (-5 *2 (-626 (-626 *8))) (-5 *1 (-443 *5 *6 *7 *8)) (-5 *3 (-626 *8)))) (-3566 (*1 *2 *3) (-12 (-4 *4 (-13 (-296) (-148))) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *7 (-942 *4 *5 *6)) (-5 *2 (-626 (-626 *7))) (-5 *1 (-443 *4 *5 *6 *7)) (-5 *3 (-626 *7)))) (-3566 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-121)) (-4 *5 (-13 (-296) (-148))) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *8 (-942 *5 *6 *7)) (-5 *2 (-626 (-626 *8))) (-5 *1 (-443 *5 *6 *7 *8)) (-5 *3 (-626 *8)))) (-3566 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-296) (-148))) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *7 (-942 *4 *5 *6)) (-5 *2 (-626 (-626 *7))) (-5 *1 (-443 *4 *5 *6 *7)) (-5 *3 (-626 *7)))) (-1737 (*1 *2 *3 *4) (-12 (-5 *4 (-121)) (-4 *5 (-13 (-296) (-148))) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *8 (-942 *5 *6 *7)) (-5 *2 (-626 (-626 *8))) (-5 *1 (-443 *5 *6 *7 *8)) (-5 *3 (-626 *8)))) (-1737 (*1 *2 *3) (-12 (-4 *4 (-13 (-296) (-148))) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *7 (-942 *4 *5 *6)) (-5 *2 (-626 (-626 *7))) (-5 *1 (-443 *4 *5 *6 *7)) (-5 *3 (-626 *7))))) -(-10 -7 (-15 -1737 ((-626 (-626 |#4|)) (-626 |#4|))) (-15 -1737 ((-626 (-626 |#4|)) (-626 |#4|) (-121))) (-15 -3566 ((-626 (-626 |#4|)) (-626 |#4|) (-626 |#4|))) (-15 -3566 ((-626 (-626 |#4|)) (-626 |#4|) (-626 |#4|) (-121))) (-15 -3566 ((-626 (-626 |#4|)) (-626 |#4|))) (-15 -3566 ((-626 (-626 |#4|)) (-626 |#4|) (-121)))) -((-1281 (((-755) |#4|) 12)) (-2123 (((-626 (-2 (|:| |totdeg| (-755)) (|:| -1558 |#4|))) |#4| (-755) (-626 (-2 (|:| |totdeg| (-755)) (|:| -1558 |#4|)))) 31)) (-2473 (((-626 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-755)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-626 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-755)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-626 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-755)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-3955 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-755)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 38)) (-4176 ((|#4| |#4| (-626 |#4|)) 39)) (-3041 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-626 |#4|)) 68)) (-2946 (((-1241) |#4|) 41)) (-3663 (((-1241) (-626 |#4|)) 50)) (-3895 (((-560) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-755)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-560) (-560) (-560)) 47)) (-3086 (((-1241) (-560)) 75)) (-3179 (((-626 |#4|) (-626 |#4|)) 73)) (-1415 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-755)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-755)) (|:| -1558 |#4|)) |#4| (-755)) 25)) (-2053 (((-560) |#4|) 74)) (-2495 ((|#4| |#4|) 29)) (-3106 (((-626 |#4|) (-626 |#4|) (-560) (-560)) 54)) (-3329 (((-560) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-755)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-560) (-560) (-560) (-560)) 85)) (-3271 (((-121) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-755)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-755)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-2440 (((-121) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-755)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 57)) (-1717 (((-626 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-755)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-626 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-755)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 56)) (-3058 (((-626 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-755)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-626 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-755)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 35)) (-1773 (((-121) |#2| |#2|) 55)) (-4177 (((-626 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-755)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-626 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-755)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-3147 (((-121) |#2| |#2| |#2| |#2|) 58)) (-3373 ((|#4| |#4| (-626 |#4|)) 69))) -(((-444 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3373 (|#4| |#4| (-626 |#4|))) (-15 -4176 (|#4| |#4| (-626 |#4|))) (-15 -3106 ((-626 |#4|) (-626 |#4|) (-560) (-560))) (-15 -2440 ((-121) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-755)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1773 ((-121) |#2| |#2|)) (-15 -3147 ((-121) |#2| |#2| |#2| |#2|)) (-15 -4177 ((-626 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-755)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-626 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-755)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3058 ((-626 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-755)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-626 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-755)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1717 ((-626 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-755)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-626 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-755)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3041 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-626 |#4|))) (-15 -2495 (|#4| |#4|)) (-15 -2123 ((-626 (-2 (|:| |totdeg| (-755)) (|:| -1558 |#4|))) |#4| (-755) (-626 (-2 (|:| |totdeg| (-755)) (|:| -1558 |#4|))))) (-15 -3955 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-755)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2473 ((-626 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-755)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-626 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-755)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-626 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-755)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3179 ((-626 |#4|) (-626 |#4|))) (-15 -2053 ((-560) |#4|)) (-15 -2946 ((-1241) |#4|)) (-15 -3895 ((-560) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-755)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-560) (-560) (-560))) (-15 -3329 ((-560) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-755)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-560) (-560) (-560) (-560))) (-15 -3663 ((-1241) (-626 |#4|))) (-15 -3086 ((-1241) (-560))) (-15 -3271 ((-121) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-755)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-755)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1415 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-755)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-755)) (|:| -1558 |#4|)) |#4| (-755))) (-15 -1281 ((-755) |#4|))) (-447) (-780) (-834) (-942 |#1| |#2| |#3|)) (T -444)) -((-1281 (*1 *2 *3) (-12 (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-755)) (-5 *1 (-444 *4 *5 *6 *3)) (-4 *3 (-942 *4 *5 *6)))) (-1415 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-755)) (|:| -1558 *4))) (-5 *5 (-755)) (-4 *4 (-942 *6 *7 *8)) (-4 *6 (-447)) (-4 *7 (-780)) (-4 *8 (-834)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-444 *6 *7 *8 *4)))) (-3271 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-755)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-780)) (-4 *7 (-942 *4 *5 *6)) (-4 *4 (-447)) (-4 *6 (-834)) (-5 *2 (-121)) (-5 *1 (-444 *4 *5 *6 *7)))) (-3086 (*1 *2 *3) (-12 (-5 *3 (-560)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-1241)) (-5 *1 (-444 *4 *5 *6 *7)) (-4 *7 (-942 *4 *5 *6)))) (-3663 (*1 *2 *3) (-12 (-5 *3 (-626 *7)) (-4 *7 (-942 *4 *5 *6)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-1241)) (-5 *1 (-444 *4 *5 *6 *7)))) (-3329 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-560)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-755)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-780)) (-4 *4 (-942 *5 *6 *7)) (-4 *5 (-447)) (-4 *7 (-834)) (-5 *1 (-444 *5 *6 *7 *4)))) (-3895 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-560)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-755)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-780)) (-4 *4 (-942 *5 *6 *7)) (-4 *5 (-447)) (-4 *7 (-834)) (-5 *1 (-444 *5 *6 *7 *4)))) (-2946 (*1 *2 *3) (-12 (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-1241)) (-5 *1 (-444 *4 *5 *6 *3)) (-4 *3 (-942 *4 *5 *6)))) (-2053 (*1 *2 *3) (-12 (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-560)) (-5 *1 (-444 *4 *5 *6 *3)) (-4 *3 (-942 *4 *5 *6)))) (-3179 (*1 *2 *2) (-12 (-5 *2 (-626 *6)) (-4 *6 (-942 *3 *4 *5)) (-4 *3 (-447)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *1 (-444 *3 *4 *5 *6)))) (-2473 (*1 *2 *2 *2) (-12 (-5 *2 (-626 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-755)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-780)) (-4 *6 (-942 *3 *4 *5)) (-4 *3 (-447)) (-4 *5 (-834)) (-5 *1 (-444 *3 *4 *5 *6)))) (-3955 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-755)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-780)) (-4 *2 (-942 *4 *5 *6)) (-5 *1 (-444 *4 *5 *6 *2)) (-4 *4 (-447)) (-4 *6 (-834)))) (-2123 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-626 (-2 (|:| |totdeg| (-755)) (|:| -1558 *3)))) (-5 *4 (-755)) (-4 *3 (-942 *5 *6 *7)) (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-5 *1 (-444 *5 *6 *7 *3)))) (-2495 (*1 *2 *2) (-12 (-4 *3 (-447)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *1 (-444 *3 *4 *5 *2)) (-4 *2 (-942 *3 *4 *5)))) (-3041 (*1 *2 *3 *4) (-12 (-5 *4 (-626 *3)) (-4 *3 (-942 *5 *6 *7)) (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-444 *5 *6 *7 *3)))) (-1717 (*1 *2 *3 *2) (-12 (-5 *2 (-626 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-755)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-780)) (-4 *6 (-942 *4 *3 *5)) (-4 *4 (-447)) (-4 *5 (-834)) (-5 *1 (-444 *4 *3 *5 *6)))) (-3058 (*1 *2 *2) (-12 (-5 *2 (-626 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-755)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-780)) (-4 *6 (-942 *3 *4 *5)) (-4 *3 (-447)) (-4 *5 (-834)) (-5 *1 (-444 *3 *4 *5 *6)))) (-4177 (*1 *2 *3 *2) (-12 (-5 *2 (-626 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-755)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-780)) (-4 *3 (-942 *4 *5 *6)) (-4 *4 (-447)) (-4 *6 (-834)) (-5 *1 (-444 *4 *5 *6 *3)))) (-3147 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-447)) (-4 *3 (-780)) (-4 *5 (-834)) (-5 *2 (-121)) (-5 *1 (-444 *4 *3 *5 *6)) (-4 *6 (-942 *4 *3 *5)))) (-1773 (*1 *2 *3 *3) (-12 (-4 *4 (-447)) (-4 *3 (-780)) (-4 *5 (-834)) (-5 *2 (-121)) (-5 *1 (-444 *4 *3 *5 *6)) (-4 *6 (-942 *4 *3 *5)))) (-2440 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-755)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-780)) (-4 *7 (-942 *4 *5 *6)) (-4 *4 (-447)) (-4 *6 (-834)) (-5 *2 (-121)) (-5 *1 (-444 *4 *5 *6 *7)))) (-3106 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-626 *7)) (-5 *3 (-560)) (-4 *7 (-942 *4 *5 *6)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *1 (-444 *4 *5 *6 *7)))) (-4176 (*1 *2 *2 *3) (-12 (-5 *3 (-626 *2)) (-4 *2 (-942 *4 *5 *6)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *1 (-444 *4 *5 *6 *2)))) (-3373 (*1 *2 *2 *3) (-12 (-5 *3 (-626 *2)) (-4 *2 (-942 *4 *5 *6)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *1 (-444 *4 *5 *6 *2))))) -(-10 -7 (-15 -3373 (|#4| |#4| (-626 |#4|))) (-15 -4176 (|#4| |#4| (-626 |#4|))) (-15 -3106 ((-626 |#4|) (-626 |#4|) (-560) (-560))) (-15 -2440 ((-121) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-755)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1773 ((-121) |#2| |#2|)) (-15 -3147 ((-121) |#2| |#2| |#2| |#2|)) (-15 -4177 ((-626 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-755)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-626 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-755)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3058 ((-626 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-755)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-626 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-755)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1717 ((-626 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-755)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-626 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-755)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3041 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-626 |#4|))) (-15 -2495 (|#4| |#4|)) (-15 -2123 ((-626 (-2 (|:| |totdeg| (-755)) (|:| -1558 |#4|))) |#4| (-755) (-626 (-2 (|:| |totdeg| (-755)) (|:| -1558 |#4|))))) (-15 -3955 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-755)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2473 ((-626 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-755)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-626 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-755)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-626 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-755)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3179 ((-626 |#4|) (-626 |#4|))) (-15 -2053 ((-560) |#4|)) (-15 -2946 ((-1241) |#4|)) (-15 -3895 ((-560) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-755)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-560) (-560) (-560))) (-15 -3329 ((-560) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-755)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-560) (-560) (-560) (-560))) (-15 -3663 ((-1241) (-626 |#4|))) (-15 -3086 ((-1241) (-560))) (-15 -3271 ((-121) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-755)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-755)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1415 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-755)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-755)) (|:| -1558 |#4|)) |#4| (-755))) (-15 -1281 ((-755) |#4|))) -((-2475 ((|#4| |#4| (-626 |#4|)) 22 (|has| |#1| (-359)))) (-3341 (((-626 |#4|) (-626 |#4|) (-1135) (-1135)) 41) (((-626 |#4|) (-626 |#4|) (-1135)) 40) (((-626 |#4|) (-626 |#4|)) 35))) -(((-445 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3341 ((-626 |#4|) (-626 |#4|))) (-15 -3341 ((-626 |#4|) (-626 |#4|) (-1135))) (-15 -3341 ((-626 |#4|) (-626 |#4|) (-1135) (-1135))) (IF (|has| |#1| (-359)) (-15 -2475 (|#4| |#4| (-626 |#4|))) |noBranch|)) (-447) (-780) (-834) (-942 |#1| |#2| |#3|)) (T -445)) -((-2475 (*1 *2 *2 *3) (-12 (-5 *3 (-626 *2)) (-4 *2 (-942 *4 *5 *6)) (-4 *4 (-359)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *1 (-445 *4 *5 *6 *2)))) (-3341 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-626 *7)) (-5 *3 (-1135)) (-4 *7 (-942 *4 *5 *6)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *1 (-445 *4 *5 *6 *7)))) (-3341 (*1 *2 *2 *3) (-12 (-5 *2 (-626 *7)) (-5 *3 (-1135)) (-4 *7 (-942 *4 *5 *6)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *1 (-445 *4 *5 *6 *7)))) (-3341 (*1 *2 *2) (-12 (-5 *2 (-626 *6)) (-4 *6 (-942 *3 *4 *5)) (-4 *3 (-447)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *1 (-445 *3 *4 *5 *6))))) -(-10 -7 (-15 -3341 ((-626 |#4|) (-626 |#4|))) (-15 -3341 ((-626 |#4|) (-626 |#4|) (-1135))) (-15 -3341 ((-626 |#4|) (-626 |#4|) (-1135) (-1135))) (IF (|has| |#1| (-359)) (-15 -2475 (|#4| |#4| (-626 |#4|))) |noBranch|)) -((-2582 (($ $ $) 14) (($ (-626 $)) 21)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) 41)) (-4440 (($ $ $) NIL) (($ (-626 $)) 22))) -(((-446 |#1|) (-10 -8 (-15 -4311 ((-1149 |#1|) (-1149 |#1|) (-1149 |#1|))) (-15 -2582 (|#1| (-626 |#1|))) (-15 -2582 (|#1| |#1| |#1|)) (-15 -4440 (|#1| (-626 |#1|))) (-15 -4440 (|#1| |#1| |#1|))) (-447)) (T -446)) -NIL -(-10 -8 (-15 -4311 ((-1149 |#1|) (-1149 |#1|) (-1149 |#1|))) (-15 -2582 (|#1| (-626 |#1|))) (-15 -2582 (|#1| |#1| |#1|)) (-15 -4440 (|#1| (-626 |#1|))) (-15 -4440 (|#1| |#1| |#1|))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) 40)) (-1350 (($ $) 39)) (-3376 (((-121) $) 37)) (-2314 (((-3 $ "failed") $ $) 18)) (-4236 (($) 16 T CONST)) (-1823 (((-3 $ "failed") $) 33)) (-2642 (((-121) $) 30)) (-2582 (($ $ $) 45) (($ (-626 $)) 44)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) 43)) (-4440 (($ $ $) 47) (($ (-626 $)) 46)) (-2336 (((-3 $ "failed") $ $) 41)) (-2801 (((-842) $) 11) (($ (-560)) 27) (($ $) 42)) (-1751 (((-755)) 28)) (-2328 (((-121) $ $) 38)) (-2464 (($ $ (-909)) 25) (($ $ (-755)) 32)) (-3304 (($) 17 T CONST)) (-1459 (($) 29 T CONST)) (-1653 (((-121) $ $) 6)) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 24) (($ $ (-755)) 31)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 23))) -(((-447) (-1267)) (T -447)) -((-4440 (*1 *1 *1 *1) (-4 *1 (-447))) (-4440 (*1 *1 *2) (-12 (-5 *2 (-626 *1)) (-4 *1 (-447)))) (-2582 (*1 *1 *1 *1) (-4 *1 (-447))) (-2582 (*1 *1 *2) (-12 (-5 *2 (-626 *1)) (-4 *1 (-447)))) (-4311 (*1 *2 *2 *2) (-12 (-5 *2 (-1149 *1)) (-4 *1 (-447))))) -(-13 (-550) (-10 -8 (-15 -4440 ($ $ $)) (-15 -4440 ($ (-626 $))) (-15 -2582 ($ $ $)) (-15 -2582 ($ (-626 $))) (-15 -4311 ((-1149 $) (-1149 $) (-1149 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-43 $) . T) ((-105) . T) ((-120 $ $) . T) ((-137) . T) ((-600 (-842)) . T) ((-170) . T) ((-280) . T) ((-550) . T) ((-629 $) . T) ((-699 $) . T) ((-708) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1094) . T) ((-1082) . T)) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-1917 (((-3 $ "failed")) NIL (|has| (-403 (-945 |#1|)) (-550)))) (-2314 (((-3 $ "failed") $ $) NIL)) (-2059 (((-1236 (-671 (-403 (-945 |#1|)))) (-1236 $)) NIL) (((-1236 (-671 (-403 (-945 |#1|))))) NIL)) (-1565 (((-1236 $)) NIL)) (-4236 (($) NIL T CONST)) (-2862 (((-3 (-2 (|:| |particular| $) (|:| -4374 (-626 $))) "failed")) NIL)) (-2835 (((-3 $ "failed")) NIL (|has| (-403 (-945 |#1|)) (-550)))) (-3852 (((-671 (-403 (-945 |#1|))) (-1236 $)) NIL) (((-671 (-403 (-945 |#1|)))) NIL)) (-1374 (((-403 (-945 |#1|)) $) NIL)) (-2611 (((-671 (-403 (-945 |#1|))) $ (-1236 $)) NIL) (((-671 (-403 (-945 |#1|))) $) NIL)) (-1309 (((-3 $ "failed") $) NIL (|has| (-403 (-945 |#1|)) (-550)))) (-3013 (((-1149 (-945 (-403 (-945 |#1|))))) NIL (|has| (-403 (-945 |#1|)) (-359))) (((-1149 (-403 (-945 |#1|)))) 79 (|has| |#1| (-550)))) (-1498 (($ $ (-909)) NIL)) (-2856 (((-403 (-945 |#1|)) $) NIL)) (-3730 (((-1149 (-403 (-945 |#1|))) $) 77 (|has| (-403 (-945 |#1|)) (-550)))) (-1998 (((-403 (-945 |#1|)) (-1236 $)) NIL) (((-403 (-945 |#1|))) NIL)) (-1825 (((-1149 (-403 (-945 |#1|))) $) NIL)) (-2969 (((-121)) NIL)) (-3380 (($ (-1236 (-403 (-945 |#1|))) (-1236 $)) 97) (($ (-1236 (-403 (-945 |#1|)))) NIL)) (-1823 (((-3 $ "failed") $) NIL (|has| (-403 (-945 |#1|)) (-550)))) (-3143 (((-909)) NIL)) (-3497 (((-121)) NIL)) (-3710 (($ $ (-909)) NIL)) (-2874 (((-121)) NIL)) (-4479 (((-121)) NIL)) (-2646 (((-121)) NIL)) (-2071 (((-3 (-2 (|:| |particular| $) (|:| -4374 (-626 $))) "failed")) NIL)) (-3477 (((-3 $ "failed")) NIL (|has| (-403 (-945 |#1|)) (-550)))) (-1279 (((-671 (-403 (-945 |#1|))) (-1236 $)) NIL) (((-671 (-403 (-945 |#1|)))) NIL)) (-2442 (((-403 (-945 |#1|)) $) NIL)) (-1284 (((-671 (-403 (-945 |#1|))) $ (-1236 $)) NIL) (((-671 (-403 (-945 |#1|))) $) NIL)) (-2966 (((-3 $ "failed") $) NIL (|has| (-403 (-945 |#1|)) (-550)))) (-3081 (((-1149 (-945 (-403 (-945 |#1|))))) NIL (|has| (-403 (-945 |#1|)) (-359))) (((-1149 (-403 (-945 |#1|)))) 78 (|has| |#1| (-550)))) (-2137 (($ $ (-909)) NIL)) (-3542 (((-403 (-945 |#1|)) $) NIL)) (-1351 (((-1149 (-403 (-945 |#1|))) $) 72 (|has| (-403 (-945 |#1|)) (-550)))) (-3158 (((-403 (-945 |#1|)) (-1236 $)) NIL) (((-403 (-945 |#1|))) NIL)) (-3613 (((-1149 (-403 (-945 |#1|))) $) NIL)) (-1818 (((-121)) NIL)) (-1291 (((-1135) $) NIL)) (-2394 (((-121)) NIL)) (-2201 (((-121)) NIL)) (-4253 (((-121)) NIL)) (-4353 (((-1100) $) NIL)) (-2511 (((-403 (-945 |#1|)) $ $) 66 (|has| |#1| (-550)))) (-2613 (((-403 (-945 |#1|)) $) 65 (|has| |#1| (-550)))) (-3704 (((-403 (-945 |#1|)) $) 89 (|has| |#1| (-550)))) (-1369 (((-1149 (-403 (-945 |#1|))) $) 83 (|has| |#1| (-550)))) (-3353 (((-403 (-945 |#1|))) 67 (|has| |#1| (-550)))) (-4483 (((-403 (-945 |#1|)) $ $) 54 (|has| |#1| (-550)))) (-1319 (((-403 (-945 |#1|)) $) 53 (|has| |#1| (-550)))) (-2730 (((-403 (-945 |#1|)) $) 88 (|has| |#1| (-550)))) (-1961 (((-1149 (-403 (-945 |#1|))) $) 82 (|has| |#1| (-550)))) (-2320 (((-403 (-945 |#1|))) 64 (|has| |#1| (-550)))) (-3998 (($) 95) (($ (-1153)) 101) (($ (-1236 (-1153))) 100) (($ (-1236 $)) 90) (($ (-1153) (-1236 $)) 99) (($ (-1236 (-1153)) (-1236 $)) 98)) (-4172 (((-121)) NIL)) (-2778 (((-403 (-945 |#1|)) $ (-560)) NIL)) (-3390 (((-1236 (-403 (-945 |#1|))) $ (-1236 $)) 92) (((-671 (-403 (-945 |#1|))) (-1236 $) (-1236 $)) NIL) (((-1236 (-403 (-945 |#1|))) $) 37) (((-671 (-403 (-945 |#1|))) (-1236 $)) NIL)) (-4255 (((-1236 (-403 (-945 |#1|))) $) NIL) (($ (-1236 (-403 (-945 |#1|)))) 34)) (-2879 (((-626 (-945 (-403 (-945 |#1|)))) (-1236 $)) NIL) (((-626 (-945 (-403 (-945 |#1|))))) NIL) (((-626 (-945 |#1|)) (-1236 $)) 93 (|has| |#1| (-550))) (((-626 (-945 |#1|))) 94 (|has| |#1| (-550)))) (-1671 (($ $ $) NIL)) (-2903 (((-121)) NIL)) (-2801 (((-842) $) NIL) (($ (-1236 (-403 (-945 |#1|)))) NIL)) (-4374 (((-1236 $)) 56)) (-4263 (((-626 (-1236 (-403 (-945 |#1|))))) NIL (|has| (-403 (-945 |#1|)) (-550)))) (-2676 (($ $ $ $) NIL)) (-2266 (((-121)) NIL)) (-2788 (($ (-671 (-403 (-945 |#1|))) $) NIL)) (-3127 (($ $ $) NIL)) (-3333 (((-121)) NIL)) (-3060 (((-121)) NIL)) (-2682 (((-121)) NIL)) (-3304 (($) NIL T CONST)) (-1653 (((-121) $ $) NIL)) (-1725 (($ $) NIL) (($ $ $) 91)) (-1716 (($ $ $) NIL)) (** (($ $ (-909)) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) 52) (($ $ (-403 (-945 |#1|))) NIL) (($ (-403 (-945 |#1|)) $) NIL) (($ (-1119 |#2| (-403 (-945 |#1|))) $) NIL))) -(((-448 |#1| |#2| |#3| |#4|) (-13 (-413 (-403 (-945 |#1|))) (-629 (-1119 |#2| (-403 (-945 |#1|)))) (-10 -8 (-15 -2801 ($ (-1236 (-403 (-945 |#1|))))) (-15 -2071 ((-3 (-2 (|:| |particular| $) (|:| -4374 (-626 $))) "failed"))) (-15 -2862 ((-3 (-2 (|:| |particular| $) (|:| -4374 (-626 $))) "failed"))) (-15 -3998 ($)) (-15 -3998 ($ (-1153))) (-15 -3998 ($ (-1236 (-1153)))) (-15 -3998 ($ (-1236 $))) (-15 -3998 ($ (-1153) (-1236 $))) (-15 -3998 ($ (-1236 (-1153)) (-1236 $))) (IF (|has| |#1| (-550)) (PROGN (-15 -3081 ((-1149 (-403 (-945 |#1|))))) (-15 -1961 ((-1149 (-403 (-945 |#1|))) $)) (-15 -1319 ((-403 (-945 |#1|)) $)) (-15 -2730 ((-403 (-945 |#1|)) $)) (-15 -3013 ((-1149 (-403 (-945 |#1|))))) (-15 -1369 ((-1149 (-403 (-945 |#1|))) $)) (-15 -2613 ((-403 (-945 |#1|)) $)) (-15 -3704 ((-403 (-945 |#1|)) $)) (-15 -4483 ((-403 (-945 |#1|)) $ $)) (-15 -2320 ((-403 (-945 |#1|)))) (-15 -2511 ((-403 (-945 |#1|)) $ $)) (-15 -3353 ((-403 (-945 |#1|)))) (-15 -2879 ((-626 (-945 |#1|)) (-1236 $))) (-15 -2879 ((-626 (-945 |#1|))))) |noBranch|))) (-170) (-909) (-626 (-1153)) (-1236 (-671 |#1|))) (T -448)) -((-2801 (*1 *1 *2) (-12 (-5 *2 (-1236 (-403 (-945 *3)))) (-4 *3 (-170)) (-14 *6 (-1236 (-671 *3))) (-5 *1 (-448 *3 *4 *5 *6)) (-14 *4 (-909)) (-14 *5 (-626 (-1153))))) (-2071 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-448 *3 *4 *5 *6)) (|:| -4374 (-626 (-448 *3 *4 *5 *6))))) (-5 *1 (-448 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-909)) (-14 *5 (-626 (-1153))) (-14 *6 (-1236 (-671 *3))))) (-2862 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-448 *3 *4 *5 *6)) (|:| -4374 (-626 (-448 *3 *4 *5 *6))))) (-5 *1 (-448 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-909)) (-14 *5 (-626 (-1153))) (-14 *6 (-1236 (-671 *3))))) (-3998 (*1 *1) (-12 (-5 *1 (-448 *2 *3 *4 *5)) (-4 *2 (-170)) (-14 *3 (-909)) (-14 *4 (-626 (-1153))) (-14 *5 (-1236 (-671 *2))))) (-3998 (*1 *1 *2) (-12 (-5 *2 (-1153)) (-5 *1 (-448 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-909)) (-14 *5 (-626 *2)) (-14 *6 (-1236 (-671 *3))))) (-3998 (*1 *1 *2) (-12 (-5 *2 (-1236 (-1153))) (-5 *1 (-448 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-909)) (-14 *5 (-626 (-1153))) (-14 *6 (-1236 (-671 *3))))) (-3998 (*1 *1 *2) (-12 (-5 *2 (-1236 (-448 *3 *4 *5 *6))) (-5 *1 (-448 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-909)) (-14 *5 (-626 (-1153))) (-14 *6 (-1236 (-671 *3))))) (-3998 (*1 *1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-1236 (-448 *4 *5 *6 *7))) (-5 *1 (-448 *4 *5 *6 *7)) (-4 *4 (-170)) (-14 *5 (-909)) (-14 *6 (-626 *2)) (-14 *7 (-1236 (-671 *4))))) (-3998 (*1 *1 *2 *3) (-12 (-5 *2 (-1236 (-1153))) (-5 *3 (-1236 (-448 *4 *5 *6 *7))) (-5 *1 (-448 *4 *5 *6 *7)) (-4 *4 (-170)) (-14 *5 (-909)) (-14 *6 (-626 (-1153))) (-14 *7 (-1236 (-671 *4))))) (-3081 (*1 *2) (-12 (-5 *2 (-1149 (-403 (-945 *3)))) (-5 *1 (-448 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *3 (-170)) (-14 *4 (-909)) (-14 *5 (-626 (-1153))) (-14 *6 (-1236 (-671 *3))))) (-1961 (*1 *2 *1) (-12 (-5 *2 (-1149 (-403 (-945 *3)))) (-5 *1 (-448 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *3 (-170)) (-14 *4 (-909)) (-14 *5 (-626 (-1153))) (-14 *6 (-1236 (-671 *3))))) (-1319 (*1 *2 *1) (-12 (-5 *2 (-403 (-945 *3))) (-5 *1 (-448 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *3 (-170)) (-14 *4 (-909)) (-14 *5 (-626 (-1153))) (-14 *6 (-1236 (-671 *3))))) (-2730 (*1 *2 *1) (-12 (-5 *2 (-403 (-945 *3))) (-5 *1 (-448 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *3 (-170)) (-14 *4 (-909)) (-14 *5 (-626 (-1153))) (-14 *6 (-1236 (-671 *3))))) (-3013 (*1 *2) (-12 (-5 *2 (-1149 (-403 (-945 *3)))) (-5 *1 (-448 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *3 (-170)) (-14 *4 (-909)) (-14 *5 (-626 (-1153))) (-14 *6 (-1236 (-671 *3))))) (-1369 (*1 *2 *1) (-12 (-5 *2 (-1149 (-403 (-945 *3)))) (-5 *1 (-448 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *3 (-170)) (-14 *4 (-909)) (-14 *5 (-626 (-1153))) (-14 *6 (-1236 (-671 *3))))) (-2613 (*1 *2 *1) (-12 (-5 *2 (-403 (-945 *3))) (-5 *1 (-448 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *3 (-170)) (-14 *4 (-909)) (-14 *5 (-626 (-1153))) (-14 *6 (-1236 (-671 *3))))) (-3704 (*1 *2 *1) (-12 (-5 *2 (-403 (-945 *3))) (-5 *1 (-448 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *3 (-170)) (-14 *4 (-909)) (-14 *5 (-626 (-1153))) (-14 *6 (-1236 (-671 *3))))) (-4483 (*1 *2 *1 *1) (-12 (-5 *2 (-403 (-945 *3))) (-5 *1 (-448 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *3 (-170)) (-14 *4 (-909)) (-14 *5 (-626 (-1153))) (-14 *6 (-1236 (-671 *3))))) (-2320 (*1 *2) (-12 (-5 *2 (-403 (-945 *3))) (-5 *1 (-448 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *3 (-170)) (-14 *4 (-909)) (-14 *5 (-626 (-1153))) (-14 *6 (-1236 (-671 *3))))) (-2511 (*1 *2 *1 *1) (-12 (-5 *2 (-403 (-945 *3))) (-5 *1 (-448 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *3 (-170)) (-14 *4 (-909)) (-14 *5 (-626 (-1153))) (-14 *6 (-1236 (-671 *3))))) (-3353 (*1 *2) (-12 (-5 *2 (-403 (-945 *3))) (-5 *1 (-448 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *3 (-170)) (-14 *4 (-909)) (-14 *5 (-626 (-1153))) (-14 *6 (-1236 (-671 *3))))) (-2879 (*1 *2 *3) (-12 (-5 *3 (-1236 (-448 *4 *5 *6 *7))) (-5 *2 (-626 (-945 *4))) (-5 *1 (-448 *4 *5 *6 *7)) (-4 *4 (-550)) (-4 *4 (-170)) (-14 *5 (-909)) (-14 *6 (-626 (-1153))) (-14 *7 (-1236 (-671 *4))))) (-2879 (*1 *2) (-12 (-5 *2 (-626 (-945 *3))) (-5 *1 (-448 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *3 (-170)) (-14 *4 (-909)) (-14 *5 (-626 (-1153))) (-14 *6 (-1236 (-671 *3)))))) -(-13 (-413 (-403 (-945 |#1|))) (-629 (-1119 |#2| (-403 (-945 |#1|)))) (-10 -8 (-15 -2801 ($ (-1236 (-403 (-945 |#1|))))) (-15 -2071 ((-3 (-2 (|:| |particular| $) (|:| -4374 (-626 $))) "failed"))) (-15 -2862 ((-3 (-2 (|:| |particular| $) (|:| -4374 (-626 $))) "failed"))) (-15 -3998 ($)) (-15 -3998 ($ (-1153))) (-15 -3998 ($ (-1236 (-1153)))) (-15 -3998 ($ (-1236 $))) (-15 -3998 ($ (-1153) (-1236 $))) (-15 -3998 ($ (-1236 (-1153)) (-1236 $))) (IF (|has| |#1| (-550)) (PROGN (-15 -3081 ((-1149 (-403 (-945 |#1|))))) (-15 -1961 ((-1149 (-403 (-945 |#1|))) $)) (-15 -1319 ((-403 (-945 |#1|)) $)) (-15 -2730 ((-403 (-945 |#1|)) $)) (-15 -3013 ((-1149 (-403 (-945 |#1|))))) (-15 -1369 ((-1149 (-403 (-945 |#1|))) $)) (-15 -2613 ((-403 (-945 |#1|)) $)) (-15 -3704 ((-403 (-945 |#1|)) $)) (-15 -4483 ((-403 (-945 |#1|)) $ $)) (-15 -2320 ((-403 (-945 |#1|)))) (-15 -2511 ((-403 (-945 |#1|)) $ $)) (-15 -3353 ((-403 (-945 |#1|)))) (-15 -2879 ((-626 (-945 |#1|)) (-1236 $))) (-15 -2879 ((-626 (-945 |#1|))))) |noBranch|))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) 13)) (-1654 (((-626 (-844 |#1|)) $) 73)) (-1593 (((-1149 $) $ (-844 |#1|)) 46) (((-1149 |#2|) $) 115)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL (|has| |#2| (-550)))) (-1350 (($ $) NIL (|has| |#2| (-550)))) (-3376 (((-121) $) NIL (|has| |#2| (-550)))) (-1697 (((-755) $) 21) (((-755) $ (-626 (-844 |#1|))) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-1776 (((-414 (-1149 $)) (-1149 $)) NIL (|has| |#2| (-896)))) (-3065 (($ $) NIL (|has| |#2| (-447)))) (-2953 (((-414 $) $) NIL (|has| |#2| (-447)))) (-1887 (((-3 (-626 (-1149 $)) "failed") (-626 (-1149 $)) (-1149 $)) NIL (|has| |#2| (-896)))) (-4236 (($) NIL T CONST)) (-1473 (((-3 |#2| "failed") $) 44) (((-3 (-403 (-560)) "failed") $) NIL (|has| |#2| (-1029 (-403 (-560))))) (((-3 (-560) "failed") $) NIL (|has| |#2| (-1029 (-560)))) (((-3 (-844 |#1|) "failed") $) NIL)) (-3001 ((|#2| $) 42) (((-403 (-560)) $) NIL (|has| |#2| (-1029 (-403 (-560))))) (((-560) $) NIL (|has| |#2| (-1029 (-560)))) (((-844 |#1|) $) NIL)) (-1979 (($ $ $ (-844 |#1|)) NIL (|has| |#2| (-170)))) (-1288 (($ $ (-626 (-560))) 78)) (-1750 (($ $) 67)) (-2616 (((-671 (-560)) (-671 $)) NIL (|has| |#2| (-622 (-560)))) (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) NIL (|has| |#2| (-622 (-560)))) (((-2 (|:| -3818 (-671 |#2|)) (|:| |vec| (-1236 |#2|))) (-671 $) (-1236 $)) NIL) (((-671 |#2|) (-671 $)) NIL)) (-1823 (((-3 $ "failed") $) NIL)) (-3605 (($ $) NIL (|has| |#2| (-447))) (($ $ (-844 |#1|)) NIL (|has| |#2| (-447)))) (-1743 (((-626 $) $) NIL)) (-3319 (((-121) $) NIL (|has| |#2| (-896)))) (-1456 (($ $ |#2| |#3| $) NIL)) (-2399 (((-876 (-375) $) $ (-879 (-375)) (-876 (-375) $)) NIL (-12 (|has| (-844 |#1|) (-873 (-375))) (|has| |#2| (-873 (-375))))) (((-876 (-560) $) $ (-879 (-560)) (-876 (-560) $)) NIL (-12 (|has| (-844 |#1|) (-873 (-560))) (|has| |#2| (-873 (-560)))))) (-2642 (((-121) $) NIL)) (-3235 (((-755) $) 58)) (-1647 (($ (-1149 |#2|) (-844 |#1|)) 120) (($ (-1149 $) (-844 |#1|)) 52)) (-1854 (((-626 $) $) NIL)) (-1814 (((-121) $) 59)) (-1637 (($ |#2| |#3|) 28) (($ $ (-844 |#1|) (-755)) 30) (($ $ (-626 (-844 |#1|)) (-626 (-755))) NIL)) (-2923 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $ (-844 |#1|)) NIL)) (-3693 ((|#3| $) NIL) (((-755) $ (-844 |#1|)) 50) (((-626 (-755)) $ (-626 (-844 |#1|))) 57)) (-4325 (($ $ $) NIL (|has| |#2| (-834)))) (-2501 (($ $ $) NIL (|has| |#2| (-834)))) (-1504 (($ (-1 |#3| |#3|) $) NIL)) (-2803 (($ (-1 |#2| |#2|) $) NIL)) (-2101 (((-3 (-844 |#1|) "failed") $) 39)) (-1726 (($ $) NIL)) (-1735 ((|#2| $) 41)) (-2582 (($ (-626 $)) NIL (|has| |#2| (-447))) (($ $ $) NIL (|has| |#2| (-447)))) (-1291 (((-1135) $) NIL)) (-3665 (((-3 (-626 $) "failed") $) NIL)) (-2327 (((-3 (-626 $) "failed") $) NIL)) (-2913 (((-3 (-2 (|:| |var| (-844 |#1|)) (|:| -4034 (-755))) "failed") $) NIL)) (-4353 (((-1100) $) NIL)) (-1704 (((-121) $) 40)) (-1711 ((|#2| $) 113)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL (|has| |#2| (-447)))) (-4440 (($ (-626 $)) NIL (|has| |#2| (-447))) (($ $ $) 125 (|has| |#2| (-447)))) (-3817 (((-414 (-1149 $)) (-1149 $)) NIL (|has| |#2| (-896)))) (-3032 (((-414 (-1149 $)) (-1149 $)) NIL (|has| |#2| (-896)))) (-1601 (((-414 $) $) NIL (|has| |#2| (-896)))) (-2336 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-550))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-550)))) (-4450 (($ $ (-626 (-283 $))) NIL) (($ $ (-283 $)) NIL) (($ $ $ $) NIL) (($ $ (-626 $) (-626 $)) NIL) (($ $ (-844 |#1|) |#2|) 85) (($ $ (-626 (-844 |#1|)) (-626 |#2|)) 88) (($ $ (-844 |#1|) $) 83) (($ $ (-626 (-844 |#1|)) (-626 $)) 104)) (-4069 (($ $ (-844 |#1|)) NIL (|has| |#2| (-170)))) (-2443 (($ $ (-844 |#1|)) 53) (($ $ (-626 (-844 |#1|))) NIL) (($ $ (-844 |#1|) (-755)) NIL) (($ $ (-626 (-844 |#1|)) (-626 (-755))) NIL)) (-3662 ((|#3| $) 66) (((-755) $ (-844 |#1|)) 37) (((-626 (-755)) $ (-626 (-844 |#1|))) 56)) (-4255 (((-879 (-375)) $) NIL (-12 (|has| (-844 |#1|) (-601 (-879 (-375)))) (|has| |#2| (-601 (-879 (-375)))))) (((-879 (-560)) $) NIL (-12 (|has| (-844 |#1|) (-601 (-879 (-560)))) (|has| |#2| (-601 (-879 (-560)))))) (((-533) $) NIL (-12 (|has| (-844 |#1|) (-601 (-533))) (|has| |#2| (-601 (-533)))))) (-1896 ((|#2| $) 122 (|has| |#2| (-447))) (($ $ (-844 |#1|)) NIL (|has| |#2| (-447)))) (-3248 (((-3 (-1236 $) "failed") (-671 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-896))))) (-2801 (((-842) $) 141) (($ (-560)) NIL) (($ |#2|) 84) (($ (-844 |#1|)) 31) (($ (-403 (-560))) NIL (-2318 (|has| |#2| (-43 (-403 (-560)))) (|has| |#2| (-1029 (-403 (-560)))))) (($ $) NIL (|has| |#2| (-550)))) (-2423 (((-626 |#2|) $) NIL)) (-2636 ((|#2| $ |#3|) NIL) (($ $ (-844 |#1|) (-755)) NIL) (($ $ (-626 (-844 |#1|)) (-626 (-755))) NIL)) (-2272 (((-3 $ "failed") $) NIL (-2318 (-12 (|has| $ (-146)) (|has| |#2| (-896))) (|has| |#2| (-146))))) (-1751 (((-755)) NIL)) (-3487 (($ $ $ (-755)) NIL (|has| |#2| (-170)))) (-2328 (((-121) $ $) NIL (|has| |#2| (-550)))) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (-3304 (($) 16 T CONST)) (-1459 (($) 25 T CONST)) (-2500 (($ $ (-844 |#1|)) NIL) (($ $ (-626 (-844 |#1|))) NIL) (($ $ (-844 |#1|) (-755)) NIL) (($ $ (-626 (-844 |#1|)) (-626 (-755))) NIL)) (-1691 (((-121) $ $) NIL (|has| |#2| (-834)))) (-1675 (((-121) $ $) NIL (|has| |#2| (-834)))) (-1653 (((-121) $ $) NIL)) (-1683 (((-121) $ $) NIL (|has| |#2| (-834)))) (-1667 (((-121) $ $) NIL (|has| |#2| (-834)))) (-1733 (($ $ |#2|) 64 (|has| |#2| (-359)))) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) 109)) (** (($ $ (-909)) NIL) (($ $ (-755)) 107)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) 29) (($ $ (-403 (-560))) NIL (|has| |#2| (-43 (-403 (-560))))) (($ (-403 (-560)) $) NIL (|has| |#2| (-43 (-403 (-560))))) (($ |#2| $) 63) (($ $ |#2|) NIL))) -(((-449 |#1| |#2| |#3|) (-13 (-942 |#2| |#3| (-844 |#1|)) (-10 -8 (-15 -1288 ($ $ (-626 (-560)))))) (-626 (-1153)) (-1039) (-226 (-2271 |#1|) (-755))) (T -449)) -((-1288 (*1 *1 *1 *2) (-12 (-5 *2 (-626 (-560))) (-14 *3 (-626 (-1153))) (-5 *1 (-449 *3 *4 *5)) (-4 *4 (-1039)) (-4 *5 (-226 (-2271 *3) (-755)))))) -(-13 (-942 |#2| |#3| (-844 |#1|)) (-10 -8 (-15 -1288 ($ $ (-626 (-560)))))) -((-2230 (((-121) |#1| (-626 |#2|)) 65)) (-3405 (((-3 (-1236 (-626 |#2|)) "failed") (-755) |#1| (-626 |#2|)) 74)) (-2602 (((-3 (-626 |#2|) "failed") |#2| |#1| (-1236 (-626 |#2|))) 76)) (-2512 ((|#2| |#2| |#1|) 28)) (-1936 (((-755) |#2| (-626 |#2|)) 20))) -(((-450 |#1| |#2|) (-10 -7 (-15 -2512 (|#2| |#2| |#1|)) (-15 -1936 ((-755) |#2| (-626 |#2|))) (-15 -3405 ((-3 (-1236 (-626 |#2|)) "failed") (-755) |#1| (-626 |#2|))) (-15 -2602 ((-3 (-626 |#2|) "failed") |#2| |#1| (-1236 (-626 |#2|)))) (-15 -2230 ((-121) |#1| (-626 |#2|)))) (-296) (-1211 |#1|)) (T -450)) -((-2230 (*1 *2 *3 *4) (-12 (-5 *4 (-626 *5)) (-4 *5 (-1211 *3)) (-4 *3 (-296)) (-5 *2 (-121)) (-5 *1 (-450 *3 *5)))) (-2602 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1236 (-626 *3))) (-4 *4 (-296)) (-5 *2 (-626 *3)) (-5 *1 (-450 *4 *3)) (-4 *3 (-1211 *4)))) (-3405 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-755)) (-4 *4 (-296)) (-4 *6 (-1211 *4)) (-5 *2 (-1236 (-626 *6))) (-5 *1 (-450 *4 *6)) (-5 *5 (-626 *6)))) (-1936 (*1 *2 *3 *4) (-12 (-5 *4 (-626 *3)) (-4 *3 (-1211 *5)) (-4 *5 (-296)) (-5 *2 (-755)) (-5 *1 (-450 *5 *3)))) (-2512 (*1 *2 *2 *3) (-12 (-4 *3 (-296)) (-5 *1 (-450 *3 *2)) (-4 *2 (-1211 *3))))) -(-10 -7 (-15 -2512 (|#2| |#2| |#1|)) (-15 -1936 ((-755) |#2| (-626 |#2|))) (-15 -3405 ((-3 (-1236 (-626 |#2|)) "failed") (-755) |#1| (-626 |#2|))) (-15 -2602 ((-3 (-626 |#2|) "failed") |#2| |#1| (-1236 (-626 |#2|)))) (-15 -2230 ((-121) |#1| (-626 |#2|)))) -((-1601 (((-414 |#5|) |#5|) 24))) -(((-451 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1601 ((-414 |#5|) |#5|))) (-13 (-834) (-10 -8 (-15 -4255 ((-1153) $)) (-15 -1395 ((-3 $ "failed") (-1153))))) (-780) (-550) (-550) (-942 |#4| |#2| |#1|)) (T -451)) -((-1601 (*1 *2 *3) (-12 (-4 *4 (-13 (-834) (-10 -8 (-15 -4255 ((-1153) $)) (-15 -1395 ((-3 $ "failed") (-1153)))))) (-4 *5 (-780)) (-4 *7 (-550)) (-5 *2 (-414 *3)) (-5 *1 (-451 *4 *5 *6 *7 *3)) (-4 *6 (-550)) (-4 *3 (-942 *7 *5 *4))))) -(-10 -7 (-15 -1601 ((-414 |#5|) |#5|))) -((-1718 ((|#3|) 36)) (-4311 (((-1149 |#4|) (-1149 |#4|) (-1149 |#4|)) 32))) -(((-452 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4311 ((-1149 |#4|) (-1149 |#4|) (-1149 |#4|))) (-15 -1718 (|#3|))) (-780) (-834) (-896) (-942 |#3| |#1| |#2|)) (T -452)) -((-1718 (*1 *2) (-12 (-4 *3 (-780)) (-4 *4 (-834)) (-4 *2 (-896)) (-5 *1 (-452 *3 *4 *2 *5)) (-4 *5 (-942 *2 *3 *4)))) (-4311 (*1 *2 *2 *2) (-12 (-5 *2 (-1149 *6)) (-4 *6 (-942 *5 *3 *4)) (-4 *3 (-780)) (-4 *4 (-834)) (-4 *5 (-896)) (-5 *1 (-452 *3 *4 *5 *6))))) -(-10 -7 (-15 -4311 ((-1149 |#4|) (-1149 |#4|) (-1149 |#4|))) (-15 -1718 (|#3|))) -((-1601 (((-414 (-1149 |#1|)) (-1149 |#1|)) 41))) -(((-453 |#1|) (-10 -7 (-15 -1601 ((-414 (-1149 |#1|)) (-1149 |#1|)))) (-296)) (T -453)) -((-1601 (*1 *2 *3) (-12 (-4 *4 (-296)) (-5 *2 (-414 (-1149 *4))) (-5 *1 (-453 *4)) (-5 *3 (-1149 *4))))) -(-10 -7 (-15 -1601 ((-414 (-1149 |#1|)) (-1149 |#1|)))) -((-1676 (((-57) |#2| (-1153) (-283 |#2|) (-1202 (-755))) 42) (((-57) (-1 |#2| (-560)) (-283 |#2|) (-1202 (-755))) 41) (((-57) |#2| (-1153) (-283 |#2|)) 35) (((-57) (-1 |#2| (-560)) (-283 |#2|)) 27)) (-3783 (((-57) |#2| (-1153) (-283 |#2|) (-1202 (-403 (-560))) (-403 (-560))) 80) (((-57) (-1 |#2| (-403 (-560))) (-283 |#2|) (-1202 (-403 (-560))) (-403 (-560))) 79) (((-57) |#2| (-1153) (-283 |#2|) (-1202 (-560))) 78) (((-57) (-1 |#2| (-560)) (-283 |#2|) (-1202 (-560))) 77) (((-57) |#2| (-1153) (-283 |#2|)) 72) (((-57) (-1 |#2| (-560)) (-283 |#2|)) 71)) (-1693 (((-57) |#2| (-1153) (-283 |#2|) (-1202 (-403 (-560))) (-403 (-560))) 66) (((-57) (-1 |#2| (-403 (-560))) (-283 |#2|) (-1202 (-403 (-560))) (-403 (-560))) 64)) (-1684 (((-57) |#2| (-1153) (-283 |#2|) (-1202 (-560))) 48) (((-57) (-1 |#2| (-560)) (-283 |#2|) (-1202 (-560))) 47))) -(((-454 |#1| |#2|) (-10 -7 (-15 -1676 ((-57) (-1 |#2| (-560)) (-283 |#2|))) (-15 -1676 ((-57) |#2| (-1153) (-283 |#2|))) (-15 -1676 ((-57) (-1 |#2| (-560)) (-283 |#2|) (-1202 (-755)))) (-15 -1676 ((-57) |#2| (-1153) (-283 |#2|) (-1202 (-755)))) (-15 -1684 ((-57) (-1 |#2| (-560)) (-283 |#2|) (-1202 (-560)))) (-15 -1684 ((-57) |#2| (-1153) (-283 |#2|) (-1202 (-560)))) (-15 -1693 ((-57) (-1 |#2| (-403 (-560))) (-283 |#2|) (-1202 (-403 (-560))) (-403 (-560)))) (-15 -1693 ((-57) |#2| (-1153) (-283 |#2|) (-1202 (-403 (-560))) (-403 (-560)))) (-15 -3783 ((-57) (-1 |#2| (-560)) (-283 |#2|))) (-15 -3783 ((-57) |#2| (-1153) (-283 |#2|))) (-15 -3783 ((-57) (-1 |#2| (-560)) (-283 |#2|) (-1202 (-560)))) (-15 -3783 ((-57) |#2| (-1153) (-283 |#2|) (-1202 (-560)))) (-15 -3783 ((-57) (-1 |#2| (-403 (-560))) (-283 |#2|) (-1202 (-403 (-560))) (-403 (-560)))) (-15 -3783 ((-57) |#2| (-1153) (-283 |#2|) (-1202 (-403 (-560))) (-403 (-560))))) (-13 (-550) (-834) (-1029 (-560)) (-622 (-560))) (-13 (-27) (-1173) (-426 |#1|))) (T -454)) -((-3783 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1153)) (-5 *5 (-283 *3)) (-5 *6 (-1202 (-403 (-560)))) (-5 *7 (-403 (-560))) (-4 *3 (-13 (-27) (-1173) (-426 *8))) (-4 *8 (-13 (-550) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-57)) (-5 *1 (-454 *8 *3)))) (-3783 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-403 (-560)))) (-5 *4 (-283 *8)) (-5 *5 (-1202 (-403 (-560)))) (-5 *6 (-403 (-560))) (-4 *8 (-13 (-27) (-1173) (-426 *7))) (-4 *7 (-13 (-550) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-57)) (-5 *1 (-454 *7 *8)))) (-3783 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1153)) (-5 *5 (-283 *3)) (-5 *6 (-1202 (-560))) (-4 *3 (-13 (-27) (-1173) (-426 *7))) (-4 *7 (-13 (-550) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-57)) (-5 *1 (-454 *7 *3)))) (-3783 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-560))) (-5 *4 (-283 *7)) (-5 *5 (-1202 (-560))) (-4 *7 (-13 (-27) (-1173) (-426 *6))) (-4 *6 (-13 (-550) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-57)) (-5 *1 (-454 *6 *7)))) (-3783 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1153)) (-5 *5 (-283 *3)) (-4 *3 (-13 (-27) (-1173) (-426 *6))) (-4 *6 (-13 (-550) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-57)) (-5 *1 (-454 *6 *3)))) (-3783 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-560))) (-5 *4 (-283 *6)) (-4 *6 (-13 (-27) (-1173) (-426 *5))) (-4 *5 (-13 (-550) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-57)) (-5 *1 (-454 *5 *6)))) (-1693 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1153)) (-5 *5 (-283 *3)) (-5 *6 (-1202 (-403 (-560)))) (-5 *7 (-403 (-560))) (-4 *3 (-13 (-27) (-1173) (-426 *8))) (-4 *8 (-13 (-550) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-57)) (-5 *1 (-454 *8 *3)))) (-1693 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-403 (-560)))) (-5 *4 (-283 *8)) (-5 *5 (-1202 (-403 (-560)))) (-5 *6 (-403 (-560))) (-4 *8 (-13 (-27) (-1173) (-426 *7))) (-4 *7 (-13 (-550) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-57)) (-5 *1 (-454 *7 *8)))) (-1684 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1153)) (-5 *5 (-283 *3)) (-5 *6 (-1202 (-560))) (-4 *3 (-13 (-27) (-1173) (-426 *7))) (-4 *7 (-13 (-550) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-57)) (-5 *1 (-454 *7 *3)))) (-1684 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-560))) (-5 *4 (-283 *7)) (-5 *5 (-1202 (-560))) (-4 *7 (-13 (-27) (-1173) (-426 *6))) (-4 *6 (-13 (-550) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-57)) (-5 *1 (-454 *6 *7)))) (-1676 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1153)) (-5 *5 (-283 *3)) (-5 *6 (-1202 (-755))) (-4 *3 (-13 (-27) (-1173) (-426 *7))) (-4 *7 (-13 (-550) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-57)) (-5 *1 (-454 *7 *3)))) (-1676 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-560))) (-5 *4 (-283 *7)) (-5 *5 (-1202 (-755))) (-4 *7 (-13 (-27) (-1173) (-426 *6))) (-4 *6 (-13 (-550) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-57)) (-5 *1 (-454 *6 *7)))) (-1676 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1153)) (-5 *5 (-283 *3)) (-4 *3 (-13 (-27) (-1173) (-426 *6))) (-4 *6 (-13 (-550) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-57)) (-5 *1 (-454 *6 *3)))) (-1676 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-560))) (-5 *4 (-283 *6)) (-4 *6 (-13 (-27) (-1173) (-426 *5))) (-4 *5 (-13 (-550) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-57)) (-5 *1 (-454 *5 *6))))) -(-10 -7 (-15 -1676 ((-57) (-1 |#2| (-560)) (-283 |#2|))) (-15 -1676 ((-57) |#2| (-1153) (-283 |#2|))) (-15 -1676 ((-57) (-1 |#2| (-560)) (-283 |#2|) (-1202 (-755)))) (-15 -1676 ((-57) |#2| (-1153) (-283 |#2|) (-1202 (-755)))) (-15 -1684 ((-57) (-1 |#2| (-560)) (-283 |#2|) (-1202 (-560)))) (-15 -1684 ((-57) |#2| (-1153) (-283 |#2|) (-1202 (-560)))) (-15 -1693 ((-57) (-1 |#2| (-403 (-560))) (-283 |#2|) (-1202 (-403 (-560))) (-403 (-560)))) (-15 -1693 ((-57) |#2| (-1153) (-283 |#2|) (-1202 (-403 (-560))) (-403 (-560)))) (-15 -3783 ((-57) (-1 |#2| (-560)) (-283 |#2|))) (-15 -3783 ((-57) |#2| (-1153) (-283 |#2|))) (-15 -3783 ((-57) (-1 |#2| (-560)) (-283 |#2|) (-1202 (-560)))) (-15 -3783 ((-57) |#2| (-1153) (-283 |#2|) (-1202 (-560)))) (-15 -3783 ((-57) (-1 |#2| (-403 (-560))) (-283 |#2|) (-1202 (-403 (-560))) (-403 (-560)))) (-15 -3783 ((-57) |#2| (-1153) (-283 |#2|) (-1202 (-403 (-560))) (-403 (-560))))) -((-2512 ((|#2| |#2| |#1|) 15)) (-1775 (((-626 |#2|) |#2| (-626 |#2|) |#1| (-909)) 65)) (-1812 (((-2 (|:| |plist| (-626 |#2|)) (|:| |modulo| |#1|)) |#2| (-626 |#2|) |#1| (-909)) 58))) -(((-455 |#1| |#2|) (-10 -7 (-15 -1812 ((-2 (|:| |plist| (-626 |#2|)) (|:| |modulo| |#1|)) |#2| (-626 |#2|) |#1| (-909))) (-15 -1775 ((-626 |#2|) |#2| (-626 |#2|) |#1| (-909))) (-15 -2512 (|#2| |#2| |#1|))) (-296) (-1211 |#1|)) (T -455)) -((-2512 (*1 *2 *2 *3) (-12 (-4 *3 (-296)) (-5 *1 (-455 *3 *2)) (-4 *2 (-1211 *3)))) (-1775 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-626 *3)) (-5 *5 (-909)) (-4 *3 (-1211 *4)) (-4 *4 (-296)) (-5 *1 (-455 *4 *3)))) (-1812 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-909)) (-4 *5 (-296)) (-4 *3 (-1211 *5)) (-5 *2 (-2 (|:| |plist| (-626 *3)) (|:| |modulo| *5))) (-5 *1 (-455 *5 *3)) (-5 *4 (-626 *3))))) -(-10 -7 (-15 -1812 ((-2 (|:| |plist| (-626 |#2|)) (|:| |modulo| |#1|)) |#2| (-626 |#2|) |#1| (-909))) (-15 -1775 ((-626 |#2|) |#2| (-626 |#2|) |#1| (-909))) (-15 -2512 (|#2| |#2| |#1|))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) 28)) (-4259 (($ |#3|) 25)) (-2314 (((-3 $ "failed") $ $) NIL)) (-4236 (($) NIL T CONST)) (-1750 (($ $) 32)) (-2094 (($ |#2| |#4| $) 33)) (-1637 (($ |#2| (-695 |#3| |#4| |#5|)) 24)) (-1726 (((-695 |#3| |#4| |#5|) $) 15)) (-3735 ((|#3| $) 19)) (-2080 ((|#4| $) 17)) (-1735 ((|#2| $) 29)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2801 (((-842) $) NIL)) (-2236 (($ |#2| |#3| |#4|) 26)) (-3304 (($) 36 T CONST)) (-1653 (((-121) $ $) NIL)) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) 34)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-456 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-699 |#6|) (-699 |#2|) (-10 -8 (-15 -1735 (|#2| $)) (-15 -1726 ((-695 |#3| |#4| |#5|) $)) (-15 -2080 (|#4| $)) (-15 -3735 (|#3| $)) (-15 -1750 ($ $)) (-15 -1637 ($ |#2| (-695 |#3| |#4| |#5|))) (-15 -4259 ($ |#3|)) (-15 -2236 ($ |#2| |#3| |#4|)) (-15 -2094 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-626 (-1153)) (-170) (-834) (-226 (-2271 |#1|) (-755)) (-1 (-121) (-2 (|:| -1330 |#3|) (|:| -4034 |#4|)) (-2 (|:| -1330 |#3|) (|:| -4034 |#4|))) (-942 |#2| |#4| (-844 |#1|))) (T -456)) -((* (*1 *1 *2 *1) (-12 (-14 *3 (-626 (-1153))) (-4 *4 (-170)) (-4 *6 (-226 (-2271 *3) (-755))) (-14 *7 (-1 (-121) (-2 (|:| -1330 *5) (|:| -4034 *6)) (-2 (|:| -1330 *5) (|:| -4034 *6)))) (-5 *1 (-456 *3 *4 *5 *6 *7 *2)) (-4 *5 (-834)) (-4 *2 (-942 *4 *6 (-844 *3))))) (-1735 (*1 *2 *1) (-12 (-14 *3 (-626 (-1153))) (-4 *5 (-226 (-2271 *3) (-755))) (-14 *6 (-1 (-121) (-2 (|:| -1330 *4) (|:| -4034 *5)) (-2 (|:| -1330 *4) (|:| -4034 *5)))) (-4 *2 (-170)) (-5 *1 (-456 *3 *2 *4 *5 *6 *7)) (-4 *4 (-834)) (-4 *7 (-942 *2 *5 (-844 *3))))) (-1726 (*1 *2 *1) (-12 (-14 *3 (-626 (-1153))) (-4 *4 (-170)) (-4 *6 (-226 (-2271 *3) (-755))) (-14 *7 (-1 (-121) (-2 (|:| -1330 *5) (|:| -4034 *6)) (-2 (|:| -1330 *5) (|:| -4034 *6)))) (-5 *2 (-695 *5 *6 *7)) (-5 *1 (-456 *3 *4 *5 *6 *7 *8)) (-4 *5 (-834)) (-4 *8 (-942 *4 *6 (-844 *3))))) (-2080 (*1 *2 *1) (-12 (-14 *3 (-626 (-1153))) (-4 *4 (-170)) (-14 *6 (-1 (-121) (-2 (|:| -1330 *5) (|:| -4034 *2)) (-2 (|:| -1330 *5) (|:| -4034 *2)))) (-4 *2 (-226 (-2271 *3) (-755))) (-5 *1 (-456 *3 *4 *5 *2 *6 *7)) (-4 *5 (-834)) (-4 *7 (-942 *4 *2 (-844 *3))))) (-3735 (*1 *2 *1) (-12 (-14 *3 (-626 (-1153))) (-4 *4 (-170)) (-4 *5 (-226 (-2271 *3) (-755))) (-14 *6 (-1 (-121) (-2 (|:| -1330 *2) (|:| -4034 *5)) (-2 (|:| -1330 *2) (|:| -4034 *5)))) (-4 *2 (-834)) (-5 *1 (-456 *3 *4 *2 *5 *6 *7)) (-4 *7 (-942 *4 *5 (-844 *3))))) (-1750 (*1 *1 *1) (-12 (-14 *2 (-626 (-1153))) (-4 *3 (-170)) (-4 *5 (-226 (-2271 *2) (-755))) (-14 *6 (-1 (-121) (-2 (|:| -1330 *4) (|:| -4034 *5)) (-2 (|:| -1330 *4) (|:| -4034 *5)))) (-5 *1 (-456 *2 *3 *4 *5 *6 *7)) (-4 *4 (-834)) (-4 *7 (-942 *3 *5 (-844 *2))))) (-1637 (*1 *1 *2 *3) (-12 (-5 *3 (-695 *5 *6 *7)) (-4 *5 (-834)) (-4 *6 (-226 (-2271 *4) (-755))) (-14 *7 (-1 (-121) (-2 (|:| -1330 *5) (|:| -4034 *6)) (-2 (|:| -1330 *5) (|:| -4034 *6)))) (-14 *4 (-626 (-1153))) (-4 *2 (-170)) (-5 *1 (-456 *4 *2 *5 *6 *7 *8)) (-4 *8 (-942 *2 *6 (-844 *4))))) (-4259 (*1 *1 *2) (-12 (-14 *3 (-626 (-1153))) (-4 *4 (-170)) (-4 *5 (-226 (-2271 *3) (-755))) (-14 *6 (-1 (-121) (-2 (|:| -1330 *2) (|:| -4034 *5)) (-2 (|:| -1330 *2) (|:| -4034 *5)))) (-5 *1 (-456 *3 *4 *2 *5 *6 *7)) (-4 *2 (-834)) (-4 *7 (-942 *4 *5 (-844 *3))))) (-2236 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-626 (-1153))) (-4 *2 (-170)) (-4 *4 (-226 (-2271 *5) (-755))) (-14 *6 (-1 (-121) (-2 (|:| -1330 *3) (|:| -4034 *4)) (-2 (|:| -1330 *3) (|:| -4034 *4)))) (-5 *1 (-456 *5 *2 *3 *4 *6 *7)) (-4 *3 (-834)) (-4 *7 (-942 *2 *4 (-844 *5))))) (-2094 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-626 (-1153))) (-4 *2 (-170)) (-4 *3 (-226 (-2271 *4) (-755))) (-14 *6 (-1 (-121) (-2 (|:| -1330 *5) (|:| -4034 *3)) (-2 (|:| -1330 *5) (|:| -4034 *3)))) (-5 *1 (-456 *4 *2 *5 *3 *6 *7)) (-4 *5 (-834)) (-4 *7 (-942 *2 *3 (-844 *4)))))) -(-13 (-699 |#6|) (-699 |#2|) (-10 -8 (-15 -1735 (|#2| $)) (-15 -1726 ((-695 |#3| |#4| |#5|) $)) (-15 -2080 (|#4| $)) (-15 -3735 (|#3| $)) (-15 -1750 ($ $)) (-15 -1637 ($ |#2| (-695 |#3| |#4| |#5|))) (-15 -4259 ($ |#3|)) (-15 -2236 ($ |#2| |#3| |#4|)) (-15 -2094 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) -((-2601 (((-121) $ $) NIL)) (-3732 (((-1153) (-626 (-458))) 34)) (-3748 (((-755) (-626 (-458))) 28)) (-3374 (((-121) (-626 (-458))) 29)) (-3756 (((-560) (-626 (-458))) 20)) (-3766 (((-560) (-626 (-458))) 26)) (-3853 (((-560) (-626 (-458))) 18)) (-3862 (((-560) (-626 (-458))) 19)) (-3869 (((-560) (-626 (-458))) 21)) (-1291 (((-1135) $) NIL)) (-3876 (((-1153) (-626 (-458))) 36)) (-3879 (((-121) (-626 (-458))) 31)) (-4353 (((-1100) $) NIL)) (-4096 (((-1153) (-626 (-458))) 35)) (-3888 (((-121) (-626 (-458))) 37)) (-3925 (((-121) (-626 (-458))) 30)) (-2801 (((-842) $) NIL)) (-3923 (((-121) (-626 (-458))) 25)) (-1653 (((-121) $ $) NIL))) -(((-457) (-13 (-1082) (-10 -7 (-15 -3853 ((-560) (-626 (-458)))) (-15 -3766 ((-560) (-626 (-458)))) (-15 -3862 ((-560) (-626 (-458)))) (-15 -3756 ((-560) (-626 (-458)))) (-15 -3869 ((-560) (-626 (-458)))) (-15 -3923 ((-121) (-626 (-458)))) (-15 -3748 ((-755) (-626 (-458)))) (-15 -3374 ((-121) (-626 (-458)))) (-15 -3879 ((-121) (-626 (-458)))) (-15 -4096 ((-1153) (-626 (-458)))) (-15 -3732 ((-1153) (-626 (-458)))) (-15 -3876 ((-1153) (-626 (-458)))) (-15 -3888 ((-121) (-626 (-458)))) (-15 -3925 ((-121) (-626 (-458))))))) (T -457)) -((-3853 (*1 *2 *3) (-12 (-5 *3 (-626 (-458))) (-5 *2 (-560)) (-5 *1 (-457)))) (-3766 (*1 *2 *3) (-12 (-5 *3 (-626 (-458))) (-5 *2 (-560)) (-5 *1 (-457)))) (-3862 (*1 *2 *3) (-12 (-5 *3 (-626 (-458))) (-5 *2 (-560)) (-5 *1 (-457)))) (-3756 (*1 *2 *3) (-12 (-5 *3 (-626 (-458))) (-5 *2 (-560)) (-5 *1 (-457)))) (-3869 (*1 *2 *3) (-12 (-5 *3 (-626 (-458))) (-5 *2 (-560)) (-5 *1 (-457)))) (-3923 (*1 *2 *3) (-12 (-5 *3 (-626 (-458))) (-5 *2 (-121)) (-5 *1 (-457)))) (-3748 (*1 *2 *3) (-12 (-5 *3 (-626 (-458))) (-5 *2 (-755)) (-5 *1 (-457)))) (-3374 (*1 *2 *3) (-12 (-5 *3 (-626 (-458))) (-5 *2 (-121)) (-5 *1 (-457)))) (-3879 (*1 *2 *3) (-12 (-5 *3 (-626 (-458))) (-5 *2 (-121)) (-5 *1 (-457)))) (-4096 (*1 *2 *3) (-12 (-5 *3 (-626 (-458))) (-5 *2 (-1153)) (-5 *1 (-457)))) (-3732 (*1 *2 *3) (-12 (-5 *3 (-626 (-458))) (-5 *2 (-1153)) (-5 *1 (-457)))) (-3876 (*1 *2 *3) (-12 (-5 *3 (-626 (-458))) (-5 *2 (-1153)) (-5 *1 (-457)))) (-3888 (*1 *2 *3) (-12 (-5 *3 (-626 (-458))) (-5 *2 (-121)) (-5 *1 (-457)))) (-3925 (*1 *2 *3) (-12 (-5 *3 (-626 (-458))) (-5 *2 (-121)) (-5 *1 (-457))))) -(-13 (-1082) (-10 -7 (-15 -3853 ((-560) (-626 (-458)))) (-15 -3766 ((-560) (-626 (-458)))) (-15 -3862 ((-560) (-626 (-458)))) (-15 -3756 ((-560) (-626 (-458)))) (-15 -3869 ((-560) (-626 (-458)))) (-15 -3923 ((-121) (-626 (-458)))) (-15 -3748 ((-755) (-626 (-458)))) (-15 -3374 ((-121) (-626 (-458)))) (-15 -3879 ((-121) (-626 (-458)))) (-15 -4096 ((-1153) (-626 (-458)))) (-15 -3732 ((-1153) (-626 (-458)))) (-15 -3876 ((-1153) (-626 (-458)))) (-15 -3888 ((-121) (-626 (-458)))) (-15 -3925 ((-121) (-626 (-458)))))) -((-2601 (((-121) $ $) NIL)) (-3732 (($ (-1153)) 31)) (-3748 (($ (-755)) 24)) (-2557 (((-121) (-626 $) (-1153)) 42)) (-3066 (((-3 (-57) "failed") (-626 $) (-1153)) 44)) (-3374 (($ (-121)) 27)) (-3756 (($ (-560)) 16)) (-3766 (($ (-560)) 22)) (-3853 (($ (-560)) 14)) (-3862 (($ (-560)) 15)) (-3869 (($ (-560)) 17)) (-1291 (((-1135) $) NIL)) (-3876 (($ (-1153)) 32)) (-3879 (($ (-121)) 25)) (-4353 (((-1100) $) NIL)) (-4096 (($ (-1153)) 30)) (-3888 (($ (-121)) 33)) (-3925 (($ (-121)) 26)) (-2801 (((-842) $) 38)) (-3907 (((-1241) (-626 $)) 54)) (-3923 (($ (-121)) 21)) (-1653 (((-121) $ $) 40))) -(((-458) (-13 (-1082) (-10 -8 (-15 -3862 ($ (-560))) (-15 -3756 ($ (-560))) (-15 -3766 ($ (-560))) (-15 -3879 ($ (-121))) (-15 -3853 ($ (-560))) (-15 -3869 ($ (-560))) (-15 -3923 ($ (-121))) (-15 -3748 ($ (-755))) (-15 -3374 ($ (-121))) (-15 -3925 ($ (-121))) (-15 -4096 ($ (-1153))) (-15 -3732 ($ (-1153))) (-15 -3876 ($ (-1153))) (-15 -3888 ($ (-121))) (-15 -3066 ((-3 (-57) "failed") (-626 $) (-1153))) (-15 -2557 ((-121) (-626 $) (-1153))) (-15 -3907 ((-1241) (-626 $)))))) (T -458)) -((-3862 (*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-458)))) (-3756 (*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-458)))) (-3766 (*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-458)))) (-3879 (*1 *1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-458)))) (-3853 (*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-458)))) (-3869 (*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-458)))) (-3923 (*1 *1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-458)))) (-3748 (*1 *1 *2) (-12 (-5 *2 (-755)) (-5 *1 (-458)))) (-3374 (*1 *1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-458)))) (-3925 (*1 *1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-458)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-1153)) (-5 *1 (-458)))) (-3732 (*1 *1 *2) (-12 (-5 *2 (-1153)) (-5 *1 (-458)))) (-3876 (*1 *1 *2) (-12 (-5 *2 (-1153)) (-5 *1 (-458)))) (-3888 (*1 *1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-458)))) (-3066 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-626 (-458))) (-5 *4 (-1153)) (-5 *2 (-57)) (-5 *1 (-458)))) (-2557 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-458))) (-5 *4 (-1153)) (-5 *2 (-121)) (-5 *1 (-458)))) (-3907 (*1 *2 *3) (-12 (-5 *3 (-626 (-458))) (-5 *2 (-1241)) (-5 *1 (-458))))) -(-13 (-1082) (-10 -8 (-15 -3862 ($ (-560))) (-15 -3756 ($ (-560))) (-15 -3766 ($ (-560))) (-15 -3879 ($ (-121))) (-15 -3853 ($ (-560))) (-15 -3869 ($ (-560))) (-15 -3923 ($ (-121))) (-15 -3748 ($ (-755))) (-15 -3374 ($ (-121))) (-15 -3925 ($ (-121))) (-15 -4096 ($ (-1153))) (-15 -3732 ($ (-1153))) (-15 -3876 ($ (-1153))) (-15 -3888 ($ (-121))) (-15 -3066 ((-3 (-57) "failed") (-626 $) (-1153))) (-15 -2557 ((-121) (-626 $) (-1153))) (-15 -3907 ((-1241) (-626 $))))) -((-4424 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 35))) -(((-459 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4424 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-780) (-834) (-550) (-942 |#3| |#1| |#2|) (-13 (-1029 (-403 (-560))) (-359) (-10 -8 (-15 -2801 ($ |#4|)) (-15 -2132 (|#4| $)) (-15 -2139 (|#4| $))))) (T -459)) -((-4424 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-834)) (-4 *5 (-780)) (-4 *6 (-550)) (-4 *7 (-942 *6 *5 *3)) (-5 *1 (-459 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1029 (-403 (-560))) (-359) (-10 -8 (-15 -2801 ($ *7)) (-15 -2132 (*7 $)) (-15 -2139 (*7 $)))))))) -(-10 -7 (-15 -4424 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) -((-4141 ((|#3|) 43)) (-2125 (((-626 |#5|)) 47)) (-4148 (((-626 |#5|) (-626 |#5|)) 129)) (-4154 ((|#3| |#3|) 107)) (-2347 (((-1241)) 106)) (-2330 (((-626 |#5|)) 150 (|has| |#1| (-364)))) (-4161 (((-626 |#7|)) 153 (|has| |#1| (-364)))) (-1269 (((-1241) (-626 (-121))) 120)) (-4168 ((|#5| |#7|) 94)) (-4173 (((-626 |#7|) (-909)) 149 (|has| |#1| (-364)))) (-4181 (((-626 |#7|) |#5|) 92)) (-4111 ((|#6| |#3| |#7|) 97)) (-4188 (((-560) (-909)) 194 (|has| |#1| (-364)))) (-2614 (((-560) (-909) (-909)) 193 (|has| |#1| (-364)))) (-2619 (((-560) (-909)) 176 (|has| |#1| (-364)))) (-2622 (((-2 (|:| |num| (-626 |#3|)) (|:| |den| |#3|)) |#8|) 69)) (-2628 ((|#8| |#3|) 50)) (-2633 (((-626 |#3|) |#8| (-626 |#3|)) 136)) (-2639 (((-626 |#3|) |#8| (-755)) 65)) (-2027 ((|#3| |#3| (-560)) 40)) (-2650 (((-560)) 74)) (-4390 (((-755)) 73)) (-2665 (((-2 (|:| -1943 (-560)) (|:| |num| |#3|) (|:| |den| |#3|) (|:| |upTo| (-560))) |#8| (-560) (-560)) 114)) (-2674 (((-3 |#1| "failed") (-403 |#3|) |#7|) 144) (((-3 |#1| "failed") |#3| |#3| |#7|) 139) (((-3 |#1| "failed") |#3| |#7|) 104)) (-4450 ((|#1| (-403 |#3|) |#7|) 145) ((|#1| |#3| |#3| |#7|) 140) ((|#1| |#3| |#7|) 105)) (-2679 (((-626 |#10|)) 70)) (-2683 (((-626 |#10|)) 45)) (-2686 (((-560)) 204 (|has| |#1| (-364)))) (-2692 ((|#8|) 54)) (-2696 (((-1231 (-560) -3962) (-909)) 155 (|has| |#1| (-364))) (((-1231 (-560) -3962)) 156 (|has| |#1| (-364)))) (-2702 (((-1149 (-560)) (-909)) 158 (|has| |#1| (-364))) (((-1149 (-560))) 196 (|has| |#1| (-364))))) -(((-460 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10| |#11|) (-10 -7 (-15 -2347 ((-1241))) (-15 -4154 (|#3| |#3|)) (-15 -2027 (|#3| |#3| (-560))) (-15 -1269 ((-1241) (-626 (-121)))) (-15 -4141 (|#3|)) (-15 -4390 ((-755))) (-15 -2650 ((-560))) (-15 -2683 ((-626 |#10|))) (-15 -2679 ((-626 |#10|))) (-15 -4148 ((-626 |#5|) (-626 |#5|))) (-15 -2125 ((-626 |#5|))) (-15 -4111 (|#6| |#3| |#7|)) (-15 -2622 ((-2 (|:| |num| (-626 |#3|)) (|:| |den| |#3|)) |#8|)) (-15 -2665 ((-2 (|:| -1943 (-560)) (|:| |num| |#3|) (|:| |den| |#3|) (|:| |upTo| (-560))) |#8| (-560) (-560))) (-15 -2639 ((-626 |#3|) |#8| (-755))) (-15 -2633 ((-626 |#3|) |#8| (-626 |#3|))) (-15 -4450 (|#1| |#3| |#7|)) (-15 -4450 (|#1| |#3| |#3| |#7|)) (-15 -4450 (|#1| (-403 |#3|) |#7|)) (-15 -2674 ((-3 |#1| "failed") |#3| |#7|)) (-15 -2674 ((-3 |#1| "failed") |#3| |#3| |#7|)) (-15 -2674 ((-3 |#1| "failed") (-403 |#3|) |#7|)) (-15 -2628 (|#8| |#3|)) (-15 -2692 (|#8|)) (-15 -4181 ((-626 |#7|) |#5|)) (-15 -4168 (|#5| |#7|)) (IF (|has| |#1| (-364)) (PROGN (-15 -4161 ((-626 |#7|))) (-15 -2330 ((-626 |#5|))) (-15 -2702 ((-1149 (-560)))) (-15 -2702 ((-1149 (-560)) (-909))) (-15 -2686 ((-560))) (-15 -4173 ((-626 |#7|) (-909))) (-15 -2619 ((-560) (-909))) (-15 -4188 ((-560) (-909))) (-15 -2614 ((-560) (-909) (-909))) (-15 -2696 ((-1231 (-560) -3962))) (-15 -2696 ((-1231 (-560) -3962) (-909)))) |noBranch|)) (-359) (-626 (-1153)) (-942 |#1| |#4| (-844 |#2|)) (-226 (-2271 |#2|) (-755)) (-963 |#1|) (-633 |#1|) (-912 |#1| |#6|) (-230 |#7|) (-528 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#11|) (-253 |#9|) (-117)) (T -460)) -((-2696 (*1 *2 *3) (-12 (-5 *3 (-909)) (-4 *4 (-364)) (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *6 (-942 *4 *7 (-844 *5))) (-4 *7 (-226 (-2271 *5) (-755))) (-4 *8 (-963 *4)) (-4 *9 (-633 *4)) (-4 *10 (-912 *4 *9)) (-4 *11 (-230 *10)) (-4 *12 (-528 *4 *5 *6 *7 *8 *9 *10 *11 *14)) (-4 *14 (-117)) (-5 *2 (-1231 (-560) -3962)) (-5 *1 (-460 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13 *14)) (-4 *13 (-253 *12)))) (-2696 (*1 *2) (-12 (-4 *3 (-364)) (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *6 (-226 (-2271 *4) (-755))) (-4 *7 (-963 *3)) (-4 *8 (-633 *3)) (-4 *9 (-912 *3 *8)) (-4 *10 (-230 *9)) (-4 *11 (-528 *3 *4 *5 *6 *7 *8 *9 *10 *13)) (-4 *13 (-117)) (-5 *2 (-1231 (-560) -3962)) (-5 *1 (-460 *3 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13)) (-4 *12 (-253 *11)))) (-2614 (*1 *2 *3 *3) (-12 (-5 *3 (-909)) (-4 *4 (-364)) (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *6 (-942 *4 *7 (-844 *5))) (-4 *7 (-226 (-2271 *5) (-755))) (-4 *8 (-963 *4)) (-4 *9 (-633 *4)) (-4 *10 (-912 *4 *9)) (-4 *11 (-230 *10)) (-4 *12 (-528 *4 *5 *6 *7 *8 *9 *10 *11 *14)) (-4 *14 (-117)) (-5 *2 (-560)) (-5 *1 (-460 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13 *14)) (-4 *13 (-253 *12)))) (-4188 (*1 *2 *3) (-12 (-5 *3 (-909)) (-4 *4 (-364)) (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *6 (-942 *4 *7 (-844 *5))) (-4 *7 (-226 (-2271 *5) (-755))) (-4 *8 (-963 *4)) (-4 *9 (-633 *4)) (-4 *10 (-912 *4 *9)) (-4 *11 (-230 *10)) (-4 *12 (-528 *4 *5 *6 *7 *8 *9 *10 *11 *14)) (-4 *14 (-117)) (-5 *2 (-560)) (-5 *1 (-460 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13 *14)) (-4 *13 (-253 *12)))) (-2619 (*1 *2 *3) (-12 (-5 *3 (-909)) (-4 *4 (-364)) (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *6 (-942 *4 *7 (-844 *5))) (-4 *7 (-226 (-2271 *5) (-755))) (-4 *8 (-963 *4)) (-4 *9 (-633 *4)) (-4 *10 (-912 *4 *9)) (-4 *11 (-230 *10)) (-4 *12 (-528 *4 *5 *6 *7 *8 *9 *10 *11 *14)) (-4 *14 (-117)) (-5 *2 (-560)) (-5 *1 (-460 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13 *14)) (-4 *13 (-253 *12)))) (-4173 (*1 *2 *3) (-12 (-5 *3 (-909)) (-4 *4 (-364)) (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *6 (-942 *4 *7 (-844 *5))) (-4 *7 (-226 (-2271 *5) (-755))) (-4 *8 (-963 *4)) (-4 *9 (-633 *4)) (-4 *10 (-912 *4 *9)) (-4 *11 (-230 *10)) (-4 *12 (-528 *4 *5 *6 *7 *8 *9 *10 *11 *14)) (-4 *14 (-117)) (-5 *2 (-626 *10)) (-5 *1 (-460 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13 *14)) (-4 *13 (-253 *12)))) (-2686 (*1 *2) (-12 (-4 *3 (-364)) (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *6 (-226 (-2271 *4) (-755))) (-4 *7 (-963 *3)) (-4 *8 (-633 *3)) (-4 *9 (-912 *3 *8)) (-4 *10 (-230 *9)) (-4 *11 (-528 *3 *4 *5 *6 *7 *8 *9 *10 *13)) (-4 *13 (-117)) (-5 *2 (-560)) (-5 *1 (-460 *3 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13)) (-4 *12 (-253 *11)))) (-2702 (*1 *2 *3) (-12 (-5 *3 (-909)) (-4 *4 (-364)) (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *6 (-942 *4 *7 (-844 *5))) (-4 *7 (-226 (-2271 *5) (-755))) (-4 *8 (-963 *4)) (-4 *9 (-633 *4)) (-4 *10 (-912 *4 *9)) (-4 *11 (-230 *10)) (-4 *12 (-528 *4 *5 *6 *7 *8 *9 *10 *11 *14)) (-4 *14 (-117)) (-5 *2 (-1149 (-560))) (-5 *1 (-460 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13 *14)) (-4 *13 (-253 *12)))) (-2702 (*1 *2) (-12 (-4 *3 (-364)) (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *6 (-226 (-2271 *4) (-755))) (-4 *7 (-963 *3)) (-4 *8 (-633 *3)) (-4 *9 (-912 *3 *8)) (-4 *10 (-230 *9)) (-4 *11 (-528 *3 *4 *5 *6 *7 *8 *9 *10 *13)) (-4 *13 (-117)) (-5 *2 (-1149 (-560))) (-5 *1 (-460 *3 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13)) (-4 *12 (-253 *11)))) (-2330 (*1 *2) (-12 (-4 *3 (-364)) (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *6 (-226 (-2271 *4) (-755))) (-4 *7 (-963 *3)) (-4 *8 (-633 *3)) (-4 *9 (-912 *3 *8)) (-4 *10 (-230 *9)) (-4 *11 (-528 *3 *4 *5 *6 *7 *8 *9 *10 *13)) (-4 *13 (-117)) (-5 *2 (-626 *7)) (-5 *1 (-460 *3 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13)) (-4 *12 (-253 *11)))) (-4161 (*1 *2) (-12 (-4 *3 (-364)) (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *6 (-226 (-2271 *4) (-755))) (-4 *7 (-963 *3)) (-4 *8 (-633 *3)) (-4 *9 (-912 *3 *8)) (-4 *10 (-230 *9)) (-4 *11 (-528 *3 *4 *5 *6 *7 *8 *9 *10 *13)) (-4 *13 (-117)) (-5 *2 (-626 *9)) (-5 *1 (-460 *3 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13)) (-4 *12 (-253 *11)))) (-4168 (*1 *2 *3) (-12 (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *6 (-942 *4 *7 (-844 *5))) (-4 *7 (-226 (-2271 *5) (-755))) (-4 *8 (-633 *4)) (-4 *3 (-912 *4 *8)) (-4 *9 (-230 *3)) (-4 *10 (-528 *4 *5 *6 *7 *2 *8 *3 *9 *12)) (-4 *12 (-117)) (-4 *2 (-963 *4)) (-5 *1 (-460 *4 *5 *6 *7 *2 *8 *3 *9 *10 *11 *12)) (-4 *11 (-253 *10)))) (-4181 (*1 *2 *3) (-12 (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *6 (-942 *4 *7 (-844 *5))) (-4 *7 (-226 (-2271 *5) (-755))) (-4 *3 (-963 *4)) (-4 *8 (-633 *4)) (-4 *9 (-912 *4 *8)) (-4 *10 (-230 *9)) (-4 *11 (-528 *4 *5 *6 *7 *3 *8 *9 *10 *13)) (-4 *13 (-117)) (-5 *2 (-626 *9)) (-5 *1 (-460 *4 *5 *6 *7 *3 *8 *9 *10 *11 *12 *13)) (-4 *12 (-253 *11)))) (-2692 (*1 *2) (-12 (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *6 (-226 (-2271 *4) (-755))) (-4 *7 (-963 *3)) (-4 *8 (-633 *3)) (-4 *9 (-912 *3 *8)) (-4 *10 (-528 *3 *4 *5 *6 *7 *8 *9 *2 *12)) (-4 *12 (-117)) (-4 *2 (-230 *9)) (-5 *1 (-460 *3 *4 *5 *6 *7 *8 *9 *2 *10 *11 *12)) (-4 *11 (-253 *10)))) (-2628 (*1 *2 *3) (-12 (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *3 (-942 *4 *6 (-844 *5))) (-4 *6 (-226 (-2271 *5) (-755))) (-4 *7 (-963 *4)) (-4 *8 (-633 *4)) (-4 *9 (-912 *4 *8)) (-4 *10 (-528 *4 *5 *3 *6 *7 *8 *9 *2 *12)) (-4 *12 (-117)) (-4 *2 (-230 *9)) (-5 *1 (-460 *4 *5 *3 *6 *7 *8 *9 *2 *10 *11 *12)) (-4 *11 (-253 *10)))) (-2674 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-403 *6)) (-4 *6 (-942 *2 *7 (-844 *5))) (-4 *7 (-226 (-2271 *5) (-755))) (-14 *5 (-626 (-1153))) (-4 *8 (-963 *2)) (-4 *9 (-633 *2)) (-4 *4 (-912 *2 *9)) (-4 *10 (-230 *4)) (-4 *11 (-528 *2 *5 *6 *7 *8 *9 *4 *10 *13)) (-4 *13 (-117)) (-4 *2 (-359)) (-5 *1 (-460 *2 *5 *6 *7 *8 *9 *4 *10 *11 *12 *13)) (-4 *12 (-253 *11)))) (-2674 (*1 *2 *3 *3 *4) (|partial| -12 (-14 *5 (-626 (-1153))) (-4 *3 (-942 *2 *6 (-844 *5))) (-4 *6 (-226 (-2271 *5) (-755))) (-4 *7 (-963 *2)) (-4 *8 (-633 *2)) (-4 *4 (-912 *2 *8)) (-4 *9 (-230 *4)) (-4 *10 (-528 *2 *5 *3 *6 *7 *8 *4 *9 *12)) (-4 *12 (-117)) (-4 *2 (-359)) (-5 *1 (-460 *2 *5 *3 *6 *7 *8 *4 *9 *10 *11 *12)) (-4 *11 (-253 *10)))) (-2674 (*1 *2 *3 *4) (|partial| -12 (-14 *5 (-626 (-1153))) (-4 *3 (-942 *2 *6 (-844 *5))) (-4 *6 (-226 (-2271 *5) (-755))) (-4 *7 (-963 *2)) (-4 *8 (-633 *2)) (-4 *4 (-912 *2 *8)) (-4 *9 (-230 *4)) (-4 *10 (-528 *2 *5 *3 *6 *7 *8 *4 *9 *12)) (-4 *12 (-117)) (-4 *2 (-359)) (-5 *1 (-460 *2 *5 *3 *6 *7 *8 *4 *9 *10 *11 *12)) (-4 *11 (-253 *10)))) (-4450 (*1 *2 *3 *4) (-12 (-5 *3 (-403 *6)) (-4 *6 (-942 *2 *7 (-844 *5))) (-4 *7 (-226 (-2271 *5) (-755))) (-14 *5 (-626 (-1153))) (-4 *8 (-963 *2)) (-4 *9 (-633 *2)) (-4 *4 (-912 *2 *9)) (-4 *10 (-230 *4)) (-4 *11 (-528 *2 *5 *6 *7 *8 *9 *4 *10 *13)) (-4 *13 (-117)) (-4 *2 (-359)) (-5 *1 (-460 *2 *5 *6 *7 *8 *9 *4 *10 *11 *12 *13)) (-4 *12 (-253 *11)))) (-4450 (*1 *2 *3 *3 *4) (-12 (-14 *5 (-626 (-1153))) (-4 *3 (-942 *2 *6 (-844 *5))) (-4 *6 (-226 (-2271 *5) (-755))) (-4 *7 (-963 *2)) (-4 *8 (-633 *2)) (-4 *4 (-912 *2 *8)) (-4 *9 (-230 *4)) (-4 *10 (-528 *2 *5 *3 *6 *7 *8 *4 *9 *12)) (-4 *12 (-117)) (-4 *2 (-359)) (-5 *1 (-460 *2 *5 *3 *6 *7 *8 *4 *9 *10 *11 *12)) (-4 *11 (-253 *10)))) (-4450 (*1 *2 *3 *4) (-12 (-14 *5 (-626 (-1153))) (-4 *3 (-942 *2 *6 (-844 *5))) (-4 *6 (-226 (-2271 *5) (-755))) (-4 *7 (-963 *2)) (-4 *8 (-633 *2)) (-4 *4 (-912 *2 *8)) (-4 *9 (-230 *4)) (-4 *10 (-528 *2 *5 *3 *6 *7 *8 *4 *9 *12)) (-4 *12 (-117)) (-4 *2 (-359)) (-5 *1 (-460 *2 *5 *3 *6 *7 *8 *4 *9 *10 *11 *12)) (-4 *11 (-253 *10)))) (-2633 (*1 *2 *3 *2) (-12 (-5 *2 (-626 *6)) (-4 *6 (-942 *4 *7 (-844 *5))) (-4 *7 (-226 (-2271 *5) (-755))) (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *8 (-963 *4)) (-4 *9 (-633 *4)) (-4 *10 (-912 *4 *9)) (-4 *3 (-230 *10)) (-4 *11 (-528 *4 *5 *6 *7 *8 *9 *10 *3 *13)) (-4 *13 (-117)) (-5 *1 (-460 *4 *5 *6 *7 *8 *9 *10 *3 *11 *12 *13)) (-4 *12 (-253 *11)))) (-2639 (*1 *2 *3 *4) (-12 (-5 *4 (-755)) (-4 *5 (-359)) (-14 *6 (-626 (-1153))) (-4 *7 (-942 *5 *8 (-844 *6))) (-4 *8 (-226 (-2271 *6) *4)) (-4 *9 (-963 *5)) (-4 *10 (-633 *5)) (-4 *11 (-912 *5 *10)) (-4 *3 (-230 *11)) (-4 *12 (-528 *5 *6 *7 *8 *9 *10 *11 *3 *14)) (-4 *14 (-117)) (-5 *2 (-626 *7)) (-5 *1 (-460 *5 *6 *7 *8 *9 *10 *11 *3 *12 *13 *14)) (-4 *13 (-253 *12)))) (-2665 (*1 *2 *3 *4 *4) (-12 (-4 *5 (-359)) (-14 *6 (-626 (-1153))) (-4 *7 (-942 *5 *8 (-844 *6))) (-4 *8 (-226 (-2271 *6) (-755))) (-4 *9 (-963 *5)) (-4 *10 (-633 *5)) (-4 *11 (-912 *5 *10)) (-4 *3 (-230 *11)) (-4 *12 (-528 *5 *6 *7 *8 *9 *10 *11 *3 *14)) (-4 *14 (-117)) (-5 *2 (-2 (|:| -1943 (-560)) (|:| |num| *7) (|:| |den| *7) (|:| |upTo| (-560)))) (-5 *1 (-460 *5 *6 *7 *8 *9 *10 *11 *3 *12 *13 *14)) (-5 *4 (-560)) (-4 *13 (-253 *12)))) (-2622 (*1 *2 *3) (-12 (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *6 (-942 *4 *7 (-844 *5))) (-4 *7 (-226 (-2271 *5) (-755))) (-4 *8 (-963 *4)) (-4 *9 (-633 *4)) (-4 *10 (-912 *4 *9)) (-4 *3 (-230 *10)) (-4 *11 (-528 *4 *5 *6 *7 *8 *9 *10 *3 *13)) (-4 *13 (-117)) (-5 *2 (-2 (|:| |num| (-626 *6)) (|:| |den| *6))) (-5 *1 (-460 *4 *5 *6 *7 *8 *9 *10 *3 *11 *12 *13)) (-4 *12 (-253 *11)))) (-4111 (*1 *2 *3 *4) (-12 (-4 *5 (-359)) (-14 *6 (-626 (-1153))) (-4 *3 (-942 *5 *7 (-844 *6))) (-4 *7 (-226 (-2271 *6) (-755))) (-4 *8 (-963 *5)) (-4 *4 (-912 *5 *2)) (-4 *9 (-230 *4)) (-4 *10 (-528 *5 *6 *3 *7 *8 *2 *4 *9 *12)) (-4 *12 (-117)) (-4 *2 (-633 *5)) (-5 *1 (-460 *5 *6 *3 *7 *8 *2 *4 *9 *10 *11 *12)) (-4 *11 (-253 *10)))) (-2125 (*1 *2) (-12 (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *6 (-226 (-2271 *4) (-755))) (-4 *7 (-963 *3)) (-4 *8 (-633 *3)) (-4 *9 (-912 *3 *8)) (-4 *10 (-230 *9)) (-4 *11 (-528 *3 *4 *5 *6 *7 *8 *9 *10 *13)) (-4 *13 (-117)) (-5 *2 (-626 *7)) (-5 *1 (-460 *3 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13)) (-4 *12 (-253 *11)))) (-4148 (*1 *2 *2) (-12 (-5 *2 (-626 *7)) (-4 *7 (-963 *3)) (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *6 (-226 (-2271 *4) (-755))) (-4 *8 (-633 *3)) (-4 *9 (-912 *3 *8)) (-4 *10 (-230 *9)) (-4 *11 (-528 *3 *4 *5 *6 *7 *8 *9 *10 *13)) (-4 *13 (-117)) (-5 *1 (-460 *3 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13)) (-4 *12 (-253 *11)))) (-2679 (*1 *2) (-12 (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *6 (-226 (-2271 *4) (-755))) (-4 *7 (-963 *3)) (-4 *8 (-633 *3)) (-4 *9 (-912 *3 *8)) (-4 *10 (-230 *9)) (-4 *11 (-528 *3 *4 *5 *6 *7 *8 *9 *10 *13)) (-4 *13 (-117)) (-5 *2 (-626 *12)) (-5 *1 (-460 *3 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13)) (-4 *12 (-253 *11)))) (-2683 (*1 *2) (-12 (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *6 (-226 (-2271 *4) (-755))) (-4 *7 (-963 *3)) (-4 *8 (-633 *3)) (-4 *9 (-912 *3 *8)) (-4 *10 (-230 *9)) (-4 *11 (-528 *3 *4 *5 *6 *7 *8 *9 *10 *13)) (-4 *13 (-117)) (-5 *2 (-626 *12)) (-5 *1 (-460 *3 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13)) (-4 *12 (-253 *11)))) (-2650 (*1 *2) (-12 (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *6 (-226 (-2271 *4) (-755))) (-4 *7 (-963 *3)) (-4 *8 (-633 *3)) (-4 *9 (-912 *3 *8)) (-4 *10 (-230 *9)) (-4 *11 (-528 *3 *4 *5 *6 *7 *8 *9 *10 *13)) (-4 *13 (-117)) (-5 *2 (-560)) (-5 *1 (-460 *3 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13)) (-4 *12 (-253 *11)))) (-4390 (*1 *2) (-12 (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *6 (-226 (-2271 *4) *2)) (-4 *7 (-963 *3)) (-4 *8 (-633 *3)) (-4 *9 (-912 *3 *8)) (-4 *10 (-230 *9)) (-4 *11 (-528 *3 *4 *5 *6 *7 *8 *9 *10 *13)) (-4 *13 (-117)) (-5 *2 (-755)) (-5 *1 (-460 *3 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13)) (-4 *12 (-253 *11)))) (-4141 (*1 *2) (-12 (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *5 (-226 (-2271 *4) (-755))) (-4 *6 (-963 *3)) (-4 *7 (-633 *3)) (-4 *8 (-912 *3 *7)) (-4 *9 (-230 *8)) (-4 *10 (-528 *3 *4 *2 *5 *6 *7 *8 *9 *12)) (-4 *12 (-117)) (-4 *2 (-942 *3 *5 (-844 *4))) (-5 *1 (-460 *3 *4 *2 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *11 (-253 *10)))) (-1269 (*1 *2 *3) (-12 (-5 *3 (-626 (-121))) (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *6 (-942 *4 *7 (-844 *5))) (-4 *7 (-226 (-2271 *5) (-755))) (-4 *8 (-963 *4)) (-4 *9 (-633 *4)) (-4 *10 (-912 *4 *9)) (-4 *11 (-230 *10)) (-4 *12 (-528 *4 *5 *6 *7 *8 *9 *10 *11 *14)) (-4 *14 (-117)) (-5 *2 (-1241)) (-5 *1 (-460 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13 *14)) (-4 *13 (-253 *12)))) (-2027 (*1 *2 *2 *3) (-12 (-5 *3 (-560)) (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *2 (-942 *4 *6 (-844 *5))) (-4 *6 (-226 (-2271 *5) (-755))) (-4 *7 (-963 *4)) (-4 *8 (-633 *4)) (-4 *9 (-912 *4 *8)) (-4 *10 (-230 *9)) (-4 *11 (-528 *4 *5 *2 *6 *7 *8 *9 *10 *13)) (-4 *13 (-117)) (-5 *1 (-460 *4 *5 *2 *6 *7 *8 *9 *10 *11 *12 *13)) (-4 *12 (-253 *11)))) (-4154 (*1 *2 *2) (-12 (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *2 (-942 *3 *5 (-844 *4))) (-4 *5 (-226 (-2271 *4) (-755))) (-4 *6 (-963 *3)) (-4 *7 (-633 *3)) (-4 *8 (-912 *3 *7)) (-4 *9 (-230 *8)) (-4 *10 (-528 *3 *4 *2 *5 *6 *7 *8 *9 *12)) (-4 *12 (-117)) (-5 *1 (-460 *3 *4 *2 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *11 (-253 *10)))) (-2347 (*1 *2) (-12 (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *6 (-226 (-2271 *4) (-755))) (-4 *7 (-963 *3)) (-4 *8 (-633 *3)) (-4 *9 (-912 *3 *8)) (-4 *10 (-230 *9)) (-4 *11 (-528 *3 *4 *5 *6 *7 *8 *9 *10 *13)) (-4 *13 (-117)) (-5 *2 (-1241)) (-5 *1 (-460 *3 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13)) (-4 *12 (-253 *11))))) -(-10 -7 (-15 -2347 ((-1241))) (-15 -4154 (|#3| |#3|)) (-15 -2027 (|#3| |#3| (-560))) (-15 -1269 ((-1241) (-626 (-121)))) (-15 -4141 (|#3|)) (-15 -4390 ((-755))) (-15 -2650 ((-560))) (-15 -2683 ((-626 |#10|))) (-15 -2679 ((-626 |#10|))) (-15 -4148 ((-626 |#5|) (-626 |#5|))) (-15 -2125 ((-626 |#5|))) (-15 -4111 (|#6| |#3| |#7|)) (-15 -2622 ((-2 (|:| |num| (-626 |#3|)) (|:| |den| |#3|)) |#8|)) (-15 -2665 ((-2 (|:| -1943 (-560)) (|:| |num| |#3|) (|:| |den| |#3|) (|:| |upTo| (-560))) |#8| (-560) (-560))) (-15 -2639 ((-626 |#3|) |#8| (-755))) (-15 -2633 ((-626 |#3|) |#8| (-626 |#3|))) (-15 -4450 (|#1| |#3| |#7|)) (-15 -4450 (|#1| |#3| |#3| |#7|)) (-15 -4450 (|#1| (-403 |#3|) |#7|)) (-15 -2674 ((-3 |#1| "failed") |#3| |#7|)) (-15 -2674 ((-3 |#1| "failed") |#3| |#3| |#7|)) (-15 -2674 ((-3 |#1| "failed") (-403 |#3|) |#7|)) (-15 -2628 (|#8| |#3|)) (-15 -2692 (|#8|)) (-15 -4181 ((-626 |#7|) |#5|)) (-15 -4168 (|#5| |#7|)) (IF (|has| |#1| (-364)) (PROGN (-15 -4161 ((-626 |#7|))) (-15 -2330 ((-626 |#5|))) (-15 -2702 ((-1149 (-560)))) (-15 -2702 ((-1149 (-560)) (-909))) (-15 -2686 ((-560))) (-15 -4173 ((-626 |#7|) (-909))) (-15 -2619 ((-560) (-909))) (-15 -4188 ((-560) (-909))) (-15 -2614 ((-560) (-909) (-909))) (-15 -2696 ((-1231 (-560) -3962))) (-15 -2696 ((-1231 (-560) -3962) (-909)))) |noBranch|)) -((-2601 (((-121) $ $) NIL)) (-1654 (((-626 |#3|) $) 41)) (-1385 (((-121) $) NIL)) (-3617 (((-121) $) NIL (|has| |#1| (-550)))) (-3743 (((-2 (|:| |under| $) (|:| -2150 $) (|:| |upper| $)) $ |#3|) NIL)) (-3909 (((-121) $ (-755)) NIL)) (-3802 (($ (-1 (-121) |#4|) $) NIL (|has| $ (-6 -4505)))) (-4236 (($) NIL T CONST)) (-2226 (((-121) $) NIL (|has| |#1| (-550)))) (-3225 (((-121) $ $) NIL (|has| |#1| (-550)))) (-4195 (((-121) $ $) NIL (|has| |#1| (-550)))) (-1501 (((-121) $) NIL (|has| |#1| (-550)))) (-4318 (((-626 |#4|) (-626 |#4|) $) NIL (|has| |#1| (-550)))) (-3979 (((-626 |#4|) (-626 |#4|) $) NIL (|has| |#1| (-550)))) (-1473 (((-3 $ "failed") (-626 |#4|)) 47)) (-3001 (($ (-626 |#4|)) NIL)) (-2868 (($ $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#4| (-1082))))) (-4310 (($ |#4| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#4| (-1082)))) (($ (-1 (-121) |#4|) $) NIL (|has| $ (-6 -4505)))) (-4397 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-550)))) (-2342 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4505)) (|has| |#4| (-1082)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4505))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4505)))) (-1981 (((-626 |#4|) $) 18 (|has| $ (-6 -4505)))) (-2819 ((|#3| $) 45)) (-2122 (((-121) $ (-755)) NIL)) (-2130 (((-626 |#4|) $) 14 (|has| $ (-6 -4505)))) (-2030 (((-121) |#4| $) 26 (-12 (|has| $ (-6 -4505)) (|has| |#4| (-1082))))) (-3778 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#4| |#4|) $) 21)) (-4475 (((-626 |#3|) $) NIL)) (-1304 (((-121) |#3| $) NIL)) (-3441 (((-121) $ (-755)) NIL)) (-1291 (((-1135) $) NIL)) (-1960 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-550)))) (-4353 (((-1100) $) NIL)) (-3786 (((-3 |#4| "failed") (-1 (-121) |#4|) $) NIL)) (-2865 (((-121) (-1 (-121) |#4|) $) NIL (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 |#4|) (-626 |#4|)) NIL (-12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082)))) (($ $ (-283 |#4|)) NIL (-12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082)))) (($ $ (-626 (-283 |#4|))) NIL (-12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082))))) (-2214 (((-121) $ $) NIL)) (-4191 (((-121) $) 39)) (-3260 (($) 17)) (-4035 (((-755) |#4| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#4| (-1082)))) (((-755) (-1 (-121) |#4|) $) NIL (|has| $ (-6 -4505)))) (-2813 (($ $) 16)) (-4255 (((-533) $) NIL (|has| |#4| (-601 (-533)))) (($ (-626 |#4|)) 49)) (-4162 (($ (-626 |#4|)) 13)) (-3369 (($ $ |#3|) NIL)) (-2673 (($ $ |#3|) NIL)) (-3388 (($ $ |#3|) NIL)) (-2801 (((-842) $) 38) (((-626 |#4|) $) 48)) (-3656 (((-121) (-1 (-121) |#4|) $) NIL (|has| $ (-6 -4505)))) (-1653 (((-121) $ $) 30)) (-2271 (((-755) $) NIL (|has| $ (-6 -4505))))) -(((-461 |#1| |#2| |#3| |#4|) (-13 (-969 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4255 ($ (-626 |#4|))) (-6 -4505) (-6 -4506))) (-1039) (-780) (-834) (-1053 |#1| |#2| |#3|)) (T -461)) -((-4255 (*1 *1 *2) (-12 (-5 *2 (-626 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *1 (-461 *3 *4 *5 *6))))) -(-13 (-969 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4255 ($ (-626 |#4|))) (-6 -4505) (-6 -4506))) -((-3304 (($) 11)) (-1459 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) -(((-462 |#1| |#2| |#3|) (-10 -8 (-15 -1459 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3304 (|#1|))) (-463 |#2| |#3|) (-170) (-23)) (T -462)) -NIL -(-10 -8 (-15 -1459 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3304 (|#1|))) -((-2601 (((-121) $ $) 7)) (-1473 (((-3 |#1| "failed") $) 23)) (-3001 ((|#1| $) 22)) (-2035 (($ $ $) 20)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-3662 ((|#2| $) 18)) (-2801 (((-842) $) 11) (($ |#1|) 24)) (-3304 (($) 17 T CONST)) (-1459 (($) 21 T CONST)) (-1653 (((-121) $ $) 6)) (-1725 (($ $) 14) (($ $ $) 12)) (-1716 (($ $ $) 13)) (* (($ |#1| $) 16) (($ $ |#1|) 15))) -(((-463 |#1| |#2|) (-1267) (-170) (-23)) (T -463)) -((-1459 (*1 *1) (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (-2035 (*1 *1 *1 *1) (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23))))) -(-13 (-468 |t#1| |t#2|) (-1029 |t#1|) (-10 -8 (-15 (-1459) ($) -3565) (-15 -2035 ($ $ $)))) -(((-105) . T) ((-600 (-842)) . T) ((-468 |#1| |#2|) . T) ((-1029 |#1|) . T) ((-1082) . T)) -((-1475 (((-1236 (-1236 (-560))) (-1236 (-1236 (-560))) (-909)) 18)) (-3930 (((-1236 (-1236 (-560))) (-909)) 16))) -(((-464) (-10 -7 (-15 -1475 ((-1236 (-1236 (-560))) (-1236 (-1236 (-560))) (-909))) (-15 -3930 ((-1236 (-1236 (-560))) (-909))))) (T -464)) -((-3930 (*1 *2 *3) (-12 (-5 *3 (-909)) (-5 *2 (-1236 (-1236 (-560)))) (-5 *1 (-464)))) (-1475 (*1 *2 *2 *3) (-12 (-5 *2 (-1236 (-1236 (-560)))) (-5 *3 (-909)) (-5 *1 (-464))))) -(-10 -7 (-15 -1475 ((-1236 (-1236 (-560))) (-1236 (-1236 (-560))) (-909))) (-15 -3930 ((-1236 (-1236 (-560))) (-909)))) -((-3620 (((-560) (-560)) 30) (((-560)) 22)) (-2794 (((-560) (-560)) 26) (((-560)) 18)) (-1829 (((-560) (-560)) 28) (((-560)) 20)) (-3604 (((-121) (-121)) 12) (((-121)) 10)) (-1838 (((-121) (-121)) 11) (((-121)) 9)) (-4299 (((-121) (-121)) 24) (((-121)) 15))) -(((-465) (-10 -7 (-15 -1838 ((-121))) (-15 -3604 ((-121))) (-15 -1838 ((-121) (-121))) (-15 -3604 ((-121) (-121))) (-15 -4299 ((-121))) (-15 -1829 ((-560))) (-15 -2794 ((-560))) (-15 -3620 ((-560))) (-15 -4299 ((-121) (-121))) (-15 -1829 ((-560) (-560))) (-15 -2794 ((-560) (-560))) (-15 -3620 ((-560) (-560))))) (T -465)) -((-3620 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-465)))) (-2794 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-465)))) (-1829 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-465)))) (-4299 (*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-465)))) (-3620 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-465)))) (-2794 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-465)))) (-1829 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-465)))) (-4299 (*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-465)))) (-3604 (*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-465)))) (-1838 (*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-465)))) (-3604 (*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-465)))) (-1838 (*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-465))))) -(-10 -7 (-15 -1838 ((-121))) (-15 -3604 ((-121))) (-15 -1838 ((-121) (-121))) (-15 -3604 ((-121) (-121))) (-15 -4299 ((-121))) (-15 -1829 ((-560))) (-15 -2794 ((-560))) (-15 -3620 ((-560))) (-15 -4299 ((-121) (-121))) (-15 -1829 ((-560) (-560))) (-15 -2794 ((-560) (-560))) (-15 -3620 ((-560) (-560)))) -((-2601 (((-121) $ $) NIL)) (-2089 (((-626 (-375)) $) 27) (((-626 (-375)) $ (-626 (-375))) 90)) (-1328 (((-626 (-1076 (-375))) $) 14) (((-626 (-1076 (-375))) $ (-626 (-1076 (-375)))) 87)) (-4078 (((-626 (-626 (-936 (-213)))) (-626 (-626 (-936 (-213)))) (-626 (-861))) 42)) (-4337 (((-626 (-626 (-936 (-213)))) $) 83)) (-4151 (((-1241) $ (-936 (-213)) (-861)) 103)) (-2068 (($ $) 82) (($ (-626 (-626 (-936 (-213))))) 93) (($ (-626 (-626 (-936 (-213)))) (-626 (-861)) (-626 (-861)) (-626 (-909))) 92) (($ (-626 (-626 (-936 (-213)))) (-626 (-861)) (-626 (-861)) (-626 (-909)) (-626 (-251))) 94)) (-1291 (((-1135) $) NIL)) (-3655 (((-560) $) 65)) (-4353 (((-1100) $) NIL)) (-1276 (($) 91)) (-2873 (((-626 (-213)) (-626 (-626 (-936 (-213))))) 52)) (-3652 (((-1241) $ (-626 (-936 (-213))) (-861) (-861) (-909)) 97) (((-1241) $ (-936 (-213))) 99) (((-1241) $ (-936 (-213)) (-861) (-861) (-909)) 98)) (-2801 (((-842) $) 109) (($ (-626 (-626 (-936 (-213))))) 104)) (-1649 (((-1241) $ (-936 (-213))) 102)) (-1653 (((-121) $ $) NIL))) -(((-466) (-13 (-1082) (-10 -8 (-15 -1276 ($)) (-15 -2068 ($ $)) (-15 -2068 ($ (-626 (-626 (-936 (-213)))))) (-15 -2068 ($ (-626 (-626 (-936 (-213)))) (-626 (-861)) (-626 (-861)) (-626 (-909)))) (-15 -2068 ($ (-626 (-626 (-936 (-213)))) (-626 (-861)) (-626 (-861)) (-626 (-909)) (-626 (-251)))) (-15 -4337 ((-626 (-626 (-936 (-213)))) $)) (-15 -3655 ((-560) $)) (-15 -1328 ((-626 (-1076 (-375))) $)) (-15 -1328 ((-626 (-1076 (-375))) $ (-626 (-1076 (-375))))) (-15 -2089 ((-626 (-375)) $)) (-15 -2089 ((-626 (-375)) $ (-626 (-375)))) (-15 -3652 ((-1241) $ (-626 (-936 (-213))) (-861) (-861) (-909))) (-15 -3652 ((-1241) $ (-936 (-213)))) (-15 -3652 ((-1241) $ (-936 (-213)) (-861) (-861) (-909))) (-15 -1649 ((-1241) $ (-936 (-213)))) (-15 -4151 ((-1241) $ (-936 (-213)) (-861))) (-15 -2801 ($ (-626 (-626 (-936 (-213)))))) (-15 -2801 ((-842) $)) (-15 -4078 ((-626 (-626 (-936 (-213)))) (-626 (-626 (-936 (-213)))) (-626 (-861)))) (-15 -2873 ((-626 (-213)) (-626 (-626 (-936 (-213))))))))) (T -466)) -((-2801 (*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-466)))) (-1276 (*1 *1) (-5 *1 (-466))) (-2068 (*1 *1 *1) (-5 *1 (-466))) (-2068 (*1 *1 *2) (-12 (-5 *2 (-626 (-626 (-936 (-213))))) (-5 *1 (-466)))) (-2068 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-626 (-626 (-936 (-213))))) (-5 *3 (-626 (-861))) (-5 *4 (-626 (-909))) (-5 *1 (-466)))) (-2068 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-626 (-626 (-936 (-213))))) (-5 *3 (-626 (-861))) (-5 *4 (-626 (-909))) (-5 *5 (-626 (-251))) (-5 *1 (-466)))) (-4337 (*1 *2 *1) (-12 (-5 *2 (-626 (-626 (-936 (-213))))) (-5 *1 (-466)))) (-3655 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-466)))) (-1328 (*1 *2 *1) (-12 (-5 *2 (-626 (-1076 (-375)))) (-5 *1 (-466)))) (-1328 (*1 *2 *1 *2) (-12 (-5 *2 (-626 (-1076 (-375)))) (-5 *1 (-466)))) (-2089 (*1 *2 *1) (-12 (-5 *2 (-626 (-375))) (-5 *1 (-466)))) (-2089 (*1 *2 *1 *2) (-12 (-5 *2 (-626 (-375))) (-5 *1 (-466)))) (-3652 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-626 (-936 (-213)))) (-5 *4 (-861)) (-5 *5 (-909)) (-5 *2 (-1241)) (-5 *1 (-466)))) (-3652 (*1 *2 *1 *3) (-12 (-5 *3 (-936 (-213))) (-5 *2 (-1241)) (-5 *1 (-466)))) (-3652 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-936 (-213))) (-5 *4 (-861)) (-5 *5 (-909)) (-5 *2 (-1241)) (-5 *1 (-466)))) (-1649 (*1 *2 *1 *3) (-12 (-5 *3 (-936 (-213))) (-5 *2 (-1241)) (-5 *1 (-466)))) (-4151 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-936 (-213))) (-5 *4 (-861)) (-5 *2 (-1241)) (-5 *1 (-466)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-626 (-626 (-936 (-213))))) (-5 *1 (-466)))) (-4078 (*1 *2 *2 *3) (-12 (-5 *2 (-626 (-626 (-936 (-213))))) (-5 *3 (-626 (-861))) (-5 *1 (-466)))) (-2873 (*1 *2 *3) (-12 (-5 *3 (-626 (-626 (-936 (-213))))) (-5 *2 (-626 (-213))) (-5 *1 (-466))))) -(-13 (-1082) (-10 -8 (-15 -1276 ($)) (-15 -2068 ($ $)) (-15 -2068 ($ (-626 (-626 (-936 (-213)))))) (-15 -2068 ($ (-626 (-626 (-936 (-213)))) (-626 (-861)) (-626 (-861)) (-626 (-909)))) (-15 -2068 ($ (-626 (-626 (-936 (-213)))) (-626 (-861)) (-626 (-861)) (-626 (-909)) (-626 (-251)))) (-15 -4337 ((-626 (-626 (-936 (-213)))) $)) (-15 -3655 ((-560) $)) (-15 -1328 ((-626 (-1076 (-375))) $)) (-15 -1328 ((-626 (-1076 (-375))) $ (-626 (-1076 (-375))))) (-15 -2089 ((-626 (-375)) $)) (-15 -2089 ((-626 (-375)) $ (-626 (-375)))) (-15 -3652 ((-1241) $ (-626 (-936 (-213))) (-861) (-861) (-909))) (-15 -3652 ((-1241) $ (-936 (-213)))) (-15 -3652 ((-1241) $ (-936 (-213)) (-861) (-861) (-909))) (-15 -1649 ((-1241) $ (-936 (-213)))) (-15 -4151 ((-1241) $ (-936 (-213)) (-861))) (-15 -2801 ($ (-626 (-626 (-936 (-213)))))) (-15 -2801 ((-842) $)) (-15 -4078 ((-626 (-626 (-936 (-213)))) (-626 (-626 (-936 (-213)))) (-626 (-861)))) (-15 -2873 ((-626 (-213)) (-626 (-626 (-936 (-213)))))))) -((-1725 (($ $) NIL) (($ $ $) 11))) -(((-467 |#1| |#2| |#3|) (-10 -8 (-15 -1725 (|#1| |#1| |#1|)) (-15 -1725 (|#1| |#1|))) (-468 |#2| |#3|) (-170) (-23)) (T -467)) -NIL -(-10 -8 (-15 -1725 (|#1| |#1| |#1|)) (-15 -1725 (|#1| |#1|))) -((-2601 (((-121) $ $) 7)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-3662 ((|#2| $) 18)) (-2801 (((-842) $) 11)) (-3304 (($) 17 T CONST)) (-1653 (((-121) $ $) 6)) (-1725 (($ $) 14) (($ $ $) 12)) (-1716 (($ $ $) 13)) (* (($ |#1| $) 16) (($ $ |#1|) 15))) -(((-468 |#1| |#2|) (-1267) (-170) (-23)) (T -468)) -((-3662 (*1 *2 *1) (-12 (-4 *1 (-468 *3 *2)) (-4 *3 (-170)) (-4 *2 (-23)))) (-3304 (*1 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (-1725 (*1 *1 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (-1716 (*1 *1 *1 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (-1725 (*1 *1 *1 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23))))) -(-13 (-1082) (-10 -8 (-15 -3662 (|t#2| $)) (-15 (-3304) ($) -3565) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -1725 ($ $)) (-15 -1716 ($ $ $)) (-15 -1725 ($ $ $)))) -(((-105) . T) ((-600 (-842)) . T) ((-1082) . T)) -((-2820 (((-3 (-626 (-485 |#1| |#2|)) "failed") (-626 (-485 |#1| |#2|)) (-626 (-844 |#1|))) 88)) (-4313 (((-626 (-626 (-237 |#1| |#2|))) (-626 (-237 |#1| |#2|)) (-626 (-844 |#1|))) 86)) (-1533 (((-2 (|:| |dpolys| (-626 (-237 |#1| |#2|))) (|:| |coords| (-626 (-560)))) (-626 (-237 |#1| |#2|)) (-626 (-844 |#1|))) 58))) -(((-469 |#1| |#2| |#3|) (-10 -7 (-15 -4313 ((-626 (-626 (-237 |#1| |#2|))) (-626 (-237 |#1| |#2|)) (-626 (-844 |#1|)))) (-15 -2820 ((-3 (-626 (-485 |#1| |#2|)) "failed") (-626 (-485 |#1| |#2|)) (-626 (-844 |#1|)))) (-15 -1533 ((-2 (|:| |dpolys| (-626 (-237 |#1| |#2|))) (|:| |coords| (-626 (-560)))) (-626 (-237 |#1| |#2|)) (-626 (-844 |#1|))))) (-626 (-1153)) (-447) (-447)) (T -469)) -((-1533 (*1 *2 *3 *4) (-12 (-5 *4 (-626 (-844 *5))) (-14 *5 (-626 (-1153))) (-4 *6 (-447)) (-5 *2 (-2 (|:| |dpolys| (-626 (-237 *5 *6))) (|:| |coords| (-626 (-560))))) (-5 *1 (-469 *5 *6 *7)) (-5 *3 (-626 (-237 *5 *6))) (-4 *7 (-447)))) (-2820 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-626 (-485 *4 *5))) (-5 *3 (-626 (-844 *4))) (-14 *4 (-626 (-1153))) (-4 *5 (-447)) (-5 *1 (-469 *4 *5 *6)) (-4 *6 (-447)))) (-4313 (*1 *2 *3 *4) (-12 (-5 *4 (-626 (-844 *5))) (-14 *5 (-626 (-1153))) (-4 *6 (-447)) (-5 *2 (-626 (-626 (-237 *5 *6)))) (-5 *1 (-469 *5 *6 *7)) (-5 *3 (-626 (-237 *5 *6))) (-4 *7 (-447))))) -(-10 -7 (-15 -4313 ((-626 (-626 (-237 |#1| |#2|))) (-626 (-237 |#1| |#2|)) (-626 (-844 |#1|)))) (-15 -2820 ((-3 (-626 (-485 |#1| |#2|)) "failed") (-626 (-485 |#1| |#2|)) (-626 (-844 |#1|)))) (-15 -1533 ((-2 (|:| |dpolys| (-626 (-237 |#1| |#2|))) (|:| |coords| (-626 (-560)))) (-626 (-237 |#1| |#2|)) (-626 (-844 |#1|))))) -((-1823 (((-3 $ "failed") $) 11)) (-3101 (($ $ $) 20)) (-1671 (($ $ $) 21)) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) 14)) (-1733 (($ $ $) 9)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) 19))) -(((-470 |#1|) (-10 -8 (-15 -1671 (|#1| |#1| |#1|)) (-15 -3101 (|#1| |#1| |#1|)) (-15 -2464 (|#1| |#1| (-560))) (-15 ** (|#1| |#1| (-560))) (-15 -1733 (|#1| |#1| |#1|)) (-15 -1823 ((-3 |#1| "failed") |#1|)) (-15 -2464 (|#1| |#1| (-755))) (-15 ** (|#1| |#1| (-755))) (-15 -2464 (|#1| |#1| (-909))) (-15 ** (|#1| |#1| (-909)))) (-471)) (T -470)) -NIL -(-10 -8 (-15 -1671 (|#1| |#1| |#1|)) (-15 -3101 (|#1| |#1| |#1|)) (-15 -2464 (|#1| |#1| (-560))) (-15 ** (|#1| |#1| (-560))) (-15 -1733 (|#1| |#1| |#1|)) (-15 -1823 ((-3 |#1| "failed") |#1|)) (-15 -2464 (|#1| |#1| (-755))) (-15 ** (|#1| |#1| (-755))) (-15 -2464 (|#1| |#1| (-909))) (-15 ** (|#1| |#1| (-909)))) -((-2601 (((-121) $ $) 7)) (-4236 (($) 19 T CONST)) (-1823 (((-3 $ "failed") $) 15)) (-2642 (((-121) $) 18)) (-1291 (((-1135) $) 9)) (-1701 (($ $) 26)) (-4353 (((-1100) $) 10)) (-3101 (($ $ $) 22)) (-1671 (($ $ $) 21)) (-2801 (((-842) $) 11)) (-2464 (($ $ (-909)) 12) (($ $ (-755)) 16) (($ $ (-560)) 23)) (-1459 (($) 20 T CONST)) (-1653 (((-121) $ $) 6)) (-1733 (($ $ $) 25)) (** (($ $ (-909)) 13) (($ $ (-755)) 17) (($ $ (-560)) 24)) (* (($ $ $) 14))) -(((-471) (-1267)) (T -471)) -((-1701 (*1 *1 *1) (-4 *1 (-471))) (-1733 (*1 *1 *1 *1) (-4 *1 (-471))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-471)) (-5 *2 (-560)))) (-2464 (*1 *1 *1 *2) (-12 (-4 *1 (-471)) (-5 *2 (-560)))) (-3101 (*1 *1 *1 *1) (-4 *1 (-471))) (-1671 (*1 *1 *1 *1) (-4 *1 (-471)))) -(-13 (-708) (-10 -8 (-15 -1701 ($ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ (-560))) (-15 -2464 ($ $ (-560))) (-6 -4502) (-15 -3101 ($ $ $)) (-15 -1671 ($ $ $)))) -(((-105) . T) ((-600 (-842)) . T) ((-708) . T) ((-1094) . T) ((-1082) . T)) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-1654 (((-626 (-1067)) $) NIL)) (-1395 (((-1153) $) 17)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL (|has| |#1| (-550)))) (-1350 (($ $) NIL (|has| |#1| (-550)))) (-3376 (((-121) $) NIL (|has| |#1| (-550)))) (-4330 (($ $ (-403 (-560))) NIL) (($ $ (-403 (-560)) (-403 (-560))) NIL)) (-4138 (((-1133 (-2 (|:| |k| (-403 (-560))) (|:| |c| |#1|))) $) NIL)) (-2570 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2514 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2314 (((-3 $ "failed") $ $) NIL)) (-3065 (($ $) NIL (|has| |#1| (-359)))) (-2953 (((-414 $) $) NIL (|has| |#1| (-359)))) (-2479 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-4179 (((-121) $ $) NIL (|has| |#1| (-359)))) (-2561 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2790 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-3783 (($ (-755) (-1133 (-2 (|:| |k| (-403 (-560))) (|:| |c| |#1|)))) NIL)) (-2579 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2523 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-4236 (($) NIL T CONST)) (-2563 (($ $ $) NIL (|has| |#1| (-359)))) (-1750 (($ $) NIL)) (-1823 (((-3 $ "failed") $) NIL)) (-2572 (($ $ $) NIL (|has| |#1| (-359)))) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) NIL (|has| |#1| (-359)))) (-3319 (((-121) $) NIL (|has| |#1| (-359)))) (-1815 (((-121) $) NIL)) (-2474 (($) NIL (|has| |#1| (-43 (-403 (-560)))))) (-3504 (((-403 (-560)) $) NIL) (((-403 (-560)) $ (-403 (-560))) NIL)) (-2642 (((-121) $) NIL)) (-2586 (($ $ (-560)) NIL (|has| |#1| (-43 (-403 (-560)))))) (-3549 (($ $ (-909)) NIL) (($ $ (-403 (-560))) NIL)) (-3856 (((-3 (-626 $) "failed") (-626 $) $) NIL (|has| |#1| (-359)))) (-1814 (((-121) $) NIL)) (-1637 (($ |#1| (-403 (-560))) NIL) (($ $ (-1067) (-403 (-560))) NIL) (($ $ (-626 (-1067)) (-626 (-403 (-560)))) NIL)) (-2803 (($ (-1 |#1| |#1|) $) 22)) (-4399 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-1726 (($ $) NIL)) (-1735 ((|#1| $) NIL)) (-2582 (($ (-626 $)) NIL (|has| |#1| (-359))) (($ $ $) NIL (|has| |#1| (-359)))) (-1291 (((-1135) $) NIL)) (-1701 (($ $) NIL (|has| |#1| (-359)))) (-2376 (($ $) 26 (|has| |#1| (-43 (-403 (-560))))) (($ $ (-1153)) 33 (-2318 (-12 (|has| |#1| (-15 -2376 (|#1| |#1| (-1153)))) (|has| |#1| (-15 -1654 ((-626 (-1153)) |#1|))) (|has| |#1| (-43 (-403 (-560))))) (-12 (|has| |#1| (-29 (-560))) (|has| |#1| (-43 (-403 (-560)))) (|has| |#1| (-951)) (|has| |#1| (-1173))))) (($ $ (-1232 |#2|)) 27 (|has| |#1| (-43 (-403 (-560)))))) (-4353 (((-1100) $) NIL)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL (|has| |#1| (-359)))) (-4440 (($ (-626 $)) NIL (|has| |#1| (-359))) (($ $ $) NIL (|has| |#1| (-359)))) (-1601 (((-414 $) $) NIL (|has| |#1| (-359)))) (-3505 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-359))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL (|has| |#1| (-359)))) (-3292 (($ $ (-403 (-560))) NIL)) (-2336 (((-3 $ "failed") $ $) NIL (|has| |#1| (-550)))) (-3456 (((-3 (-626 $) "failed") (-626 $) $) NIL (|has| |#1| (-359)))) (-2469 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-4450 (((-1133 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-403 (-560))))))) (-4445 (((-755) $) NIL (|has| |#1| (-359)))) (-2778 ((|#1| $ (-403 (-560))) NIL) (($ $ $) NIL (|has| (-403 (-560)) (-1094)))) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL (|has| |#1| (-359)))) (-2443 (($ $ (-626 (-1153)) (-626 (-755))) NIL (-12 (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-1153) (-755)) NIL (-12 (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-626 (-1153))) NIL (-12 (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-1153)) 25 (-12 (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-755)) NIL (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|)))) (($ $ (-1232 |#2|)) 15)) (-3662 (((-403 (-560)) $) NIL)) (-2585 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2528 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2575 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2519 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2566 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2795 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2234 (($ $) NIL)) (-2801 (((-842) $) NIL) (($ (-560)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1232 |#2|)) NIL) (($ (-1220 |#1| |#2| |#3|)) 9) (($ (-403 (-560))) NIL (|has| |#1| (-43 (-403 (-560))))) (($ $) NIL (|has| |#1| (-550)))) (-2636 ((|#1| $ (-403 (-560))) NIL)) (-2272 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1751 (((-755)) NIL)) (-1341 ((|#1| $) 18)) (-2598 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2541 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2328 (((-121) $ $) NIL (|has| |#1| (-550)))) (-2590 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2532 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2608 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2549 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2550 ((|#1| $ (-403 (-560))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-403 (-560))))) (|has| |#1| (-15 -2801 (|#1| (-1153))))))) (-3689 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2554 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2604 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2545 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2594 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2536 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL (|has| |#1| (-359)))) (-3304 (($) NIL T CONST)) (-1459 (($) NIL T CONST)) (-2500 (($ $ (-626 (-1153)) (-626 (-755))) NIL (-12 (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-1153) (-755)) NIL (-12 (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-626 (-1153))) NIL (-12 (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-1153)) NIL (-12 (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-755)) NIL (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))))) (-1653 (((-121) $ $) NIL)) (-1733 (($ $ |#1|) NIL (|has| |#1| (-359))) (($ $ $) NIL (|has| |#1| (-359)))) (-1725 (($ $) NIL) (($ $ $) 24)) (-1716 (($ $ $) NIL)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL (|has| |#1| (-359))) (($ $ $) NIL (|has| |#1| (-43 (-403 (-560))))) (($ $ (-403 (-560))) NIL (|has| |#1| (-43 (-403 (-560)))))) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-403 (-560)) $) NIL (|has| |#1| (-43 (-403 (-560))))) (($ $ (-403 (-560))) NIL (|has| |#1| (-43 (-403 (-560))))))) -(((-472 |#1| |#2| |#3|) (-13 (-1216 |#1|) (-10 -8 (-15 -2801 ($ (-1232 |#2|))) (-15 -2801 ($ (-1220 |#1| |#2| |#3|))) (-15 -2443 ($ $ (-1232 |#2|))) (IF (|has| |#1| (-43 (-403 (-560)))) (-15 -2376 ($ $ (-1232 |#2|))) |noBranch|))) (-1039) (-1153) |#1|) (T -472)) -((-2801 (*1 *1 *2) (-12 (-5 *2 (-1232 *4)) (-14 *4 (-1153)) (-5 *1 (-472 *3 *4 *5)) (-4 *3 (-1039)) (-14 *5 *3))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-1220 *3 *4 *5)) (-4 *3 (-1039)) (-14 *4 (-1153)) (-14 *5 *3) (-5 *1 (-472 *3 *4 *5)))) (-2443 (*1 *1 *1 *2) (-12 (-5 *2 (-1232 *4)) (-14 *4 (-1153)) (-5 *1 (-472 *3 *4 *5)) (-4 *3 (-1039)) (-14 *5 *3))) (-2376 (*1 *1 *1 *2) (-12 (-5 *2 (-1232 *4)) (-14 *4 (-1153)) (-5 *1 (-472 *3 *4 *5)) (-4 *3 (-43 (-403 (-560)))) (-4 *3 (-1039)) (-14 *5 *3)))) -(-13 (-1216 |#1|) (-10 -8 (-15 -2801 ($ (-1232 |#2|))) (-15 -2801 ($ (-1220 |#1| |#2| |#3|))) (-15 -2443 ($ $ (-1232 |#2|))) (IF (|has| |#1| (-43 (-403 (-560)))) (-15 -2376 ($ $ (-1232 |#2|))) |noBranch|))) -((-2601 (((-121) $ $) NIL (-2318 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-4050 (($) NIL) (($ (-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) NIL)) (-2960 (((-1241) $ |#1| |#1|) NIL (|has| $ (-6 -4506)))) (-3909 (((-121) $ (-755)) NIL)) (-2764 ((|#2| $ |#1| |#2|) 18)) (-3763 (($ (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505)))) (-3802 (($ (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505)))) (-2722 (((-3 |#2| "failed") |#1| $) 19)) (-4236 (($) NIL T CONST)) (-2868 (($ $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082))))) (-3561 (($ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) NIL (|has| $ (-6 -4505))) (($ (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505))) (((-3 |#2| "failed") |#1| $) 16)) (-4310 (($ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (($ (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505)))) (-2342 (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) NIL (|has| $ (-6 -4505))) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505)))) (-1746 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4506)))) (-1361 ((|#2| $ |#1|) NIL)) (-1981 (((-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505))) (((-626 |#2|) $) NIL (|has| $ (-6 -4505)))) (-2122 (((-121) $ (-755)) NIL)) (-4099 ((|#1| $) NIL (|has| |#1| (-834)))) (-2130 (((-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505))) (((-626 |#2|) $) NIL (|has| $ (-6 -4505)))) (-2030 (((-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (((-121) |#2| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#2| (-1082))))) (-2767 ((|#1| $) NIL (|has| |#1| (-834)))) (-3778 (($ (-1 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4506))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4506)))) (-2803 (($ (-1 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3441 (((-121) $ (-755)) NIL)) (-1291 (((-1135) $) NIL (-2318 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-1377 (((-626 |#1|) $) NIL)) (-3855 (((-121) |#1| $) NIL)) (-2525 (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) NIL)) (-4345 (($ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) NIL)) (-1529 (((-626 |#1|) $) NIL)) (-1310 (((-121) |#1| $) NIL)) (-4353 (((-1100) $) NIL (-2318 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-2824 ((|#2| $) NIL (|has| |#1| (-834)))) (-3786 (((-3 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) "failed") (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL)) (-3038 (($ $ |#2|) NIL (|has| $ (-6 -4506)))) (-2146 (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) NIL)) (-2865 (((-121) (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505))) (((-121) (-1 (-121) |#2|) $) NIL (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))))) NIL (-12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (($ $ (-283 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) NIL (-12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (($ $ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) NIL (-12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (($ $ (-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) (-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) NIL (-12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (($ $ (-626 |#2|) (-626 |#2|)) NIL (-12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082)))) (($ $ (-283 |#2|)) NIL (-12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082)))) (($ $ (-626 (-283 |#2|))) NIL (-12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082))))) (-2214 (((-121) $ $) NIL)) (-1290 (((-121) |#2| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#2| (-1082))))) (-4460 (((-626 |#2|) $) NIL)) (-4191 (((-121) $) NIL)) (-3260 (($) NIL)) (-2778 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-3958 (($) NIL) (($ (-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) NIL)) (-4035 (((-755) (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505))) (((-755) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (((-755) |#2| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#2| (-1082)))) (((-755) (-1 (-121) |#2|) $) NIL (|has| $ (-6 -4505)))) (-2813 (($ $) NIL)) (-4255 (((-533) $) NIL (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-601 (-533))))) (-4162 (($ (-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) NIL)) (-2801 (((-842) $) NIL (-2318 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-1354 (($ (-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) NIL)) (-3656 (((-121) (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505))) (((-121) (-1 (-121) |#2|) $) NIL (|has| $ (-6 -4505)))) (-1653 (((-121) $ $) NIL (-2318 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-2271 (((-755) $) NIL (|has| $ (-6 -4505))))) -(((-473 |#1| |#2| |#3| |#4|) (-1164 |#1| |#2|) (-1082) (-1082) (-1164 |#1| |#2|) |#2|) (T -473)) -NIL -(-1164 |#1| |#2|) -((-2601 (((-121) $ $) NIL)) (-3975 (((-626 (-2 (|:| -4071 $) (|:| -3997 (-626 |#4|)))) (-626 |#4|)) NIL)) (-3332 (((-626 $) (-626 |#4|)) NIL)) (-1654 (((-626 |#3|) $) NIL)) (-1385 (((-121) $) NIL)) (-3617 (((-121) $) NIL (|has| |#1| (-550)))) (-2898 (((-121) |#4| $) NIL) (((-121) $) NIL)) (-3177 ((|#4| |#4| $) NIL)) (-3743 (((-2 (|:| |under| $) (|:| -2150 $) (|:| |upper| $)) $ |#3|) NIL)) (-3909 (((-121) $ (-755)) NIL)) (-3802 (($ (-1 (-121) |#4|) $) NIL (|has| $ (-6 -4505))) (((-3 |#4| "failed") $ |#3|) NIL)) (-4236 (($) NIL T CONST)) (-2226 (((-121) $) 26 (|has| |#1| (-550)))) (-3225 (((-121) $ $) NIL (|has| |#1| (-550)))) (-4195 (((-121) $ $) NIL (|has| |#1| (-550)))) (-1501 (((-121) $) NIL (|has| |#1| (-550)))) (-4339 (((-626 |#4|) (-626 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-121) |#4| |#4|)) NIL)) (-4318 (((-626 |#4|) (-626 |#4|) $) NIL (|has| |#1| (-550)))) (-3979 (((-626 |#4|) (-626 |#4|) $) NIL (|has| |#1| (-550)))) (-1473 (((-3 $ "failed") (-626 |#4|)) NIL)) (-3001 (($ (-626 |#4|)) NIL)) (-2877 (((-3 $ "failed") $) 39)) (-2134 ((|#4| |#4| $) NIL)) (-2868 (($ $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#4| (-1082))))) (-4310 (($ |#4| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#4| (-1082)))) (($ (-1 (-121) |#4|) $) NIL (|has| $ (-6 -4505)))) (-4397 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-550)))) (-1590 (((-121) |#4| $ (-1 (-121) |#4| |#4|)) NIL)) (-4048 ((|#4| |#4| $) NIL)) (-2342 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4505)) (|has| |#4| (-1082)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4505))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4505))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-121) |#4| |#4|)) NIL)) (-3035 (((-2 (|:| -4071 (-626 |#4|)) (|:| -3997 (-626 |#4|))) $) NIL)) (-1981 (((-626 |#4|) $) 16 (|has| $ (-6 -4505)))) (-2864 (((-121) |#4| $) NIL) (((-121) $) NIL)) (-2819 ((|#3| $) 33)) (-2122 (((-121) $ (-755)) NIL)) (-2130 (((-626 |#4|) $) 17 (|has| $ (-6 -4505)))) (-2030 (((-121) |#4| $) 25 (-12 (|has| $ (-6 -4505)) (|has| |#4| (-1082))))) (-3778 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#4| |#4|) $) 21)) (-4475 (((-626 |#3|) $) NIL)) (-1304 (((-121) |#3| $) NIL)) (-3441 (((-121) $ (-755)) NIL)) (-1291 (((-1135) $) NIL)) (-4139 (((-3 |#4| "failed") $) 37)) (-3840 (((-626 |#4|) $) NIL)) (-3098 (((-121) |#4| $) NIL) (((-121) $) NIL)) (-2054 ((|#4| |#4| $) NIL)) (-3564 (((-121) $ $) NIL)) (-1960 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-550)))) (-1584 (((-121) |#4| $) NIL) (((-121) $) NIL)) (-4047 ((|#4| |#4| $) NIL)) (-4353 (((-1100) $) NIL)) (-2824 (((-3 |#4| "failed") $) 35)) (-3786 (((-3 |#4| "failed") (-1 (-121) |#4|) $) NIL)) (-1368 (((-3 $ "failed") $ |#4|) 46)) (-3292 (($ $ |#4|) NIL)) (-2865 (((-121) (-1 (-121) |#4|) $) NIL (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 |#4|) (-626 |#4|)) NIL (-12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082)))) (($ $ (-283 |#4|)) NIL (-12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082)))) (($ $ (-626 (-283 |#4|))) NIL (-12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082))))) (-2214 (((-121) $ $) NIL)) (-4191 (((-121) $) 15)) (-3260 (($) 13)) (-3662 (((-755) $) NIL)) (-4035 (((-755) |#4| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#4| (-1082)))) (((-755) (-1 (-121) |#4|) $) NIL (|has| $ (-6 -4505)))) (-2813 (($ $) 12)) (-4255 (((-533) $) NIL (|has| |#4| (-601 (-533))))) (-4162 (($ (-626 |#4|)) 20)) (-3369 (($ $ |#3|) 42)) (-2673 (($ $ |#3|) 43)) (-3746 (($ $) NIL)) (-3388 (($ $ |#3|) NIL)) (-2801 (((-842) $) 31) (((-626 |#4|) $) 40)) (-4277 (((-755) $) NIL (|has| |#3| (-364)))) (-3133 (((-3 (-2 (|:| |bas| $) (|:| -4224 (-626 |#4|))) "failed") (-626 |#4|) (-1 (-121) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -4224 (-626 |#4|))) "failed") (-626 |#4|) (-1 (-121) |#4|) (-1 (-121) |#4| |#4|)) NIL)) (-2967 (((-121) $ (-1 (-121) |#4| (-626 |#4|))) NIL)) (-3656 (((-121) (-1 (-121) |#4|) $) NIL (|has| $ (-6 -4505)))) (-3284 (((-626 |#3|) $) NIL)) (-1535 (((-121) |#3| $) NIL)) (-1653 (((-121) $ $) NIL)) (-2271 (((-755) $) NIL (|has| $ (-6 -4505))))) -(((-474 |#1| |#2| |#3| |#4|) (-1181 |#1| |#2| |#3| |#4|) (-550) (-780) (-834) (-1053 |#1| |#2| |#3|)) (T -474)) -NIL -(-1181 |#1| |#2| |#3| |#4|) -((-3168 (((-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 (-53))) (-1193 (-53)))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-53)))) (-1193 (-1149 (-53))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 (-53) (-755) (-755) (-1149 (-53)))) (|:| AF (-1 (-1149 (-53)) (-755) (-755) (-1193 (-1149 (-53))))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 (-53)) (-755)))) (-626 (-458))) (-1153)) NIL (|has| (-53) (-1029 (-1153)))) (((-2 (|:| |guessStream| (-1 (-1133 (-1193 (-53))) (-1193 (-53)))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-53)))) (-1193 (-1149 (-53))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 (-53) (-755) (-755) (-1149 (-53)))) (|:| AF (-1 (-1149 (-53)) (-755) (-755) (-1193 (-1149 (-53))))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 (-53)) (-755)))) (-626 (-458))) NIL)) (-3197 (((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458))) (-1153)) NIL (|has| (-53) (-1029 (-1153)))) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458))) NIL) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53))) NIL)) (-3206 (((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458))) (-1153)) NIL (|has| (-53) (-1029 (-1153)))) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53))) NIL) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458))) NIL)) (-3233 (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53))) NIL) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458))) NIL)) (-3236 (((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458))) (-1153)) NIL (|has| (-53) (-1029 (-1153)))) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53))) NIL) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458))) NIL)) (-3281 (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458))) NIL) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53))) NIL)) (-3290 (((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458))) (-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 (-53))) (-1193 (-53)))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-53)))) (-1193 (-1149 (-53))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 (-53) (-755) (-755) (-1149 (-53)))) (|:| AF (-1 (-1149 (-53)) (-755) (-755) (-1193 (-1149 (-53))))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 (-53)) (-755)))) (-626 (-458)))) NIL)) (-3294 (((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458))) (-1153)) NIL (|has| (-53) (-1029 (-1153)))) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458))) NIL) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53))) NIL)) (-3302 (((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458))) (-1153)) NIL (|has| (-53) (-1029 (-1153)))) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458))) NIL) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53))) NIL)) (-3309 (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458))) NIL) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53))) NIL)) (-3313 (((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458))) (-1153)) NIL (|has| (-53) (-1029 (-1153)))) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458))) NIL) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53))) NIL)) (-3343 (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458)))) (-626 (-1153)) (-626 (-458))) NIL) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458)))) (-626 (-1153))) NIL) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458))) NIL) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53))) NIL)) (-3379 (((-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 (-53))) (-1193 (-53)))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-53)))) (-1193 (-1149 (-53))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 (-53) (-755) (-755) (-1149 (-53)))) (|:| AF (-1 (-1149 (-53)) (-755) (-755) (-1193 (-1149 (-53))))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 (-53)) (-755)))) (-626 (-458))) (-1153)) NIL (|has| (-53) (-1029 (-1153)))) (((-2 (|:| |guessStream| (-1 (-1133 (-1193 (-53))) (-1193 (-53)))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-53)))) (-1193 (-1149 (-53))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 (-53) (-755) (-755) (-1149 (-53)))) (|:| AF (-1 (-1149 (-53)) (-755) (-755) (-1193 (-1149 (-53))))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 (-53)) (-755)))) (-626 (-458))) NIL))) -(((-475) (-10 -7 (-15 -3343 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)))) (-15 -3343 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458)))) (-15 -3343 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458)))) (-626 (-1153)))) (-15 -3343 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458)))) (-626 (-1153)) (-626 (-458)))) (-15 -3294 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)))) (-15 -3294 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458)))) (-15 -3302 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)))) (-15 -3302 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458)))) (IF (|has| (-53) (-1029 (-1153))) (IF (|has| (-53) (-1029 (-1153))) (PROGN (-15 -3294 ((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458))) (-1153))) (-15 -3302 ((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458))) (-1153)))) |noBranch|) |noBranch|) (-15 -3290 ((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458))) (-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 (-53))) (-1193 (-53)))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-53)))) (-1193 (-1149 (-53))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 (-53) (-755) (-755) (-1149 (-53)))) (|:| AF (-1 (-1149 (-53)) (-755) (-755) (-1193 (-1149 (-53))))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 (-53)) (-755)))) (-626 (-458))))) (-15 -3313 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)))) (-15 -3313 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458)))) (-15 -3309 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)))) (-15 -3309 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458)))) (-15 -3281 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)))) (-15 -3281 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458)))) (-15 -3233 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458)))) (-15 -3233 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)))) (-15 -3197 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)))) (-15 -3197 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458)))) (-15 -3236 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458)))) (-15 -3236 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)))) (-15 -3206 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458)))) (-15 -3206 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)))) (-15 -3379 ((-2 (|:| |guessStream| (-1 (-1133 (-1193 (-53))) (-1193 (-53)))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-53)))) (-1193 (-1149 (-53))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 (-53) (-755) (-755) (-1149 (-53)))) (|:| AF (-1 (-1149 (-53)) (-755) (-755) (-1193 (-1149 (-53))))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 (-53)) (-755)))) (-626 (-458)))) (-15 -3168 ((-2 (|:| |guessStream| (-1 (-1133 (-1193 (-53))) (-1193 (-53)))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-53)))) (-1193 (-1149 (-53))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 (-53) (-755) (-755) (-1149 (-53)))) (|:| AF (-1 (-1149 (-53)) (-755) (-755) (-1193 (-1149 (-53))))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 (-53)) (-755)))) (-626 (-458)))) (IF (|has| (-53) (-1029 (-1153))) (IF (|has| (-53) (-1029 (-1153))) (PROGN (-15 -3168 ((-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 (-53))) (-1193 (-53)))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-53)))) (-1193 (-1149 (-53))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 (-53) (-755) (-755) (-1149 (-53)))) (|:| AF (-1 (-1149 (-53)) (-755) (-755) (-1193 (-1149 (-53))))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 (-53)) (-755)))) (-626 (-458))) (-1153))) (-15 -3379 ((-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 (-53))) (-1193 (-53)))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-53)))) (-1193 (-1149 (-53))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 (-53) (-755) (-755) (-1149 (-53)))) (|:| AF (-1 (-1149 (-53)) (-755) (-755) (-1193 (-1149 (-53))))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 (-53)) (-755)))) (-626 (-458))) (-1153))) (-15 -3197 ((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458))) (-1153))) (-15 -3236 ((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458))) (-1153))) (-15 -3206 ((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458))) (-1153))) (-15 -3313 ((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458))) (-1153)))) |noBranch|) |noBranch|))) (T -475)) -((-3313 (*1 *2 *3) (-12 (-4 (-53) (-1029 *3)) (-5 *3 (-1153)) (-5 *2 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458)))) (-5 *1 (-475)))) (-3206 (*1 *2 *3) (-12 (-4 (-53) (-1029 *3)) (-5 *3 (-1153)) (-5 *2 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458)))) (-5 *1 (-475)))) (-3236 (*1 *2 *3) (-12 (-4 (-53) (-1029 *3)) (-5 *3 (-1153)) (-5 *2 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458)))) (-5 *1 (-475)))) (-3197 (*1 *2 *3) (-12 (-4 (-53) (-1029 *3)) (-5 *3 (-1153)) (-5 *2 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458)))) (-5 *1 (-475)))) (-3379 (*1 *2 *3) (-12 (-4 (-53) (-1029 *3)) (-5 *3 (-1153)) (-5 *2 (-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 (-53))) (-1193 (-53)))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-53)))) (-1193 (-1149 (-53))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) *3)) (|:| A (-1 (-53) (-755) (-755) (-1149 (-53)))) (|:| AF (-1 (-1149 (-53)) (-755) (-755) (-1193 (-1149 (-53))))) (|:| AX (-1 (-304 (-560)) (-755) *3 (-304 (-560)))) (|:| C (-1 (-626 (-53)) (-755)))) (-626 (-458)))) (-5 *1 (-475)))) (-3168 (*1 *2 *3) (-12 (-4 (-53) (-1029 *3)) (-5 *3 (-1153)) (-5 *2 (-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 (-53))) (-1193 (-53)))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-53)))) (-1193 (-1149 (-53))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) *3)) (|:| A (-1 (-53) (-755) (-755) (-1149 (-53)))) (|:| AF (-1 (-1149 (-53)) (-755) (-755) (-1193 (-1149 (-53))))) (|:| AX (-1 (-304 (-560)) (-755) *3 (-304 (-560)))) (|:| C (-1 (-626 (-53)) (-755)))) (-626 (-458)))) (-5 *1 (-475)))) (-3168 (*1 *2 *3) (-12 (-5 *3 (-626 (-458))) (-5 *2 (-2 (|:| |guessStream| (-1 (-1133 (-1193 (-53))) (-1193 (-53)))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-53)))) (-1193 (-1149 (-53))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 (-53) (-755) (-755) (-1149 (-53)))) (|:| AF (-1 (-1149 (-53)) (-755) (-755) (-1193 (-1149 (-53))))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 (-53)) (-755))))) (-5 *1 (-475)))) (-3379 (*1 *2 *3) (-12 (-5 *3 (-626 (-458))) (-5 *2 (-2 (|:| |guessStream| (-1 (-1133 (-1193 (-53))) (-1193 (-53)))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-53)))) (-1193 (-1149 (-53))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 (-53) (-755) (-755) (-1149 (-53)))) (|:| AF (-1 (-1149 (-53)) (-755) (-755) (-1193 (-1149 (-53))))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 (-53)) (-755))))) (-5 *1 (-475)))) (-3206 (*1 *2 *3) (-12 (-5 *3 (-626 (-53))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-475)))) (-3206 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-53))) (-5 *4 (-626 (-458))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-475)))) (-3236 (*1 *2 *3) (-12 (-5 *3 (-626 (-53))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-475)))) (-3236 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-53))) (-5 *4 (-626 (-458))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-475)))) (-3197 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-53))) (-5 *4 (-626 (-458))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-475)))) (-3197 (*1 *2 *3) (-12 (-5 *3 (-626 (-53))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-475)))) (-3233 (*1 *2 *3) (-12 (-5 *3 (-626 (-53))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-475)))) (-3233 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-53))) (-5 *4 (-626 (-458))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-475)))) (-3281 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-53))) (-5 *4 (-626 (-458))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-475)))) (-3281 (*1 *2 *3) (-12 (-5 *3 (-626 (-53))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-475)))) (-3309 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-53))) (-5 *4 (-626 (-458))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-475)))) (-3309 (*1 *2 *3) (-12 (-5 *3 (-626 (-53))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-475)))) (-3313 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-53))) (-5 *4 (-626 (-458))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-475)))) (-3313 (*1 *2 *3) (-12 (-5 *3 (-626 (-53))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-475)))) (-3290 (*1 *2 *3) (-12 (-5 *3 (-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 (-53))) (-1193 (-53)))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-53)))) (-1193 (-1149 (-53))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 (-53) (-755) (-755) (-1149 (-53)))) (|:| AF (-1 (-1149 (-53)) (-755) (-755) (-1193 (-1149 (-53))))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 (-53)) (-755)))) (-626 (-458)))) (-5 *2 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458)))) (-5 *1 (-475)))) (-3302 (*1 *2 *3) (-12 (-4 (-53) (-1029 *3)) (-5 *3 (-1153)) (-5 *2 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458)))) (-5 *1 (-475)))) (-3294 (*1 *2 *3) (-12 (-4 (-53) (-1029 *3)) (-5 *3 (-1153)) (-5 *2 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458)))) (-5 *1 (-475)))) (-3302 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-53))) (-5 *4 (-626 (-458))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-475)))) (-3302 (*1 *2 *3) (-12 (-5 *3 (-626 (-53))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-475)))) (-3294 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-53))) (-5 *4 (-626 (-458))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-475)))) (-3294 (*1 *2 *3) (-12 (-5 *3 (-626 (-53))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-475)))) (-3343 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-626 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458))))) (-5 *5 (-626 (-1153))) (-5 *6 (-626 (-458))) (-5 *3 (-626 (-53))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-475)))) (-3343 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-626 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458))))) (-5 *5 (-626 (-1153))) (-5 *3 (-626 (-53))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-475)))) (-3343 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-53))) (-5 *4 (-626 (-458))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-475)))) (-3343 (*1 *2 *3) (-12 (-5 *3 (-626 (-53))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-475))))) -(-10 -7 (-15 -3343 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)))) (-15 -3343 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458)))) (-15 -3343 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458)))) (-626 (-1153)))) (-15 -3343 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458)))) (-626 (-1153)) (-626 (-458)))) (-15 -3294 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)))) (-15 -3294 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458)))) (-15 -3302 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)))) (-15 -3302 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458)))) (IF (|has| (-53) (-1029 (-1153))) (IF (|has| (-53) (-1029 (-1153))) (PROGN (-15 -3294 ((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458))) (-1153))) (-15 -3302 ((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458))) (-1153)))) |noBranch|) |noBranch|) (-15 -3290 ((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458))) (-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 (-53))) (-1193 (-53)))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-53)))) (-1193 (-1149 (-53))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 (-53) (-755) (-755) (-1149 (-53)))) (|:| AF (-1 (-1149 (-53)) (-755) (-755) (-1193 (-1149 (-53))))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 (-53)) (-755)))) (-626 (-458))))) (-15 -3313 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)))) (-15 -3313 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458)))) (-15 -3309 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)))) (-15 -3309 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458)))) (-15 -3281 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)))) (-15 -3281 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458)))) (-15 -3233 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458)))) (-15 -3233 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)))) (-15 -3197 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)))) (-15 -3197 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458)))) (-15 -3236 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458)))) (-15 -3236 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)))) (-15 -3206 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458)))) (-15 -3206 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)))) (-15 -3379 ((-2 (|:| |guessStream| (-1 (-1133 (-1193 (-53))) (-1193 (-53)))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-53)))) (-1193 (-1149 (-53))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 (-53) (-755) (-755) (-1149 (-53)))) (|:| AF (-1 (-1149 (-53)) (-755) (-755) (-1193 (-1149 (-53))))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 (-53)) (-755)))) (-626 (-458)))) (-15 -3168 ((-2 (|:| |guessStream| (-1 (-1133 (-1193 (-53))) (-1193 (-53)))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-53)))) (-1193 (-1149 (-53))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 (-53) (-755) (-755) (-1149 (-53)))) (|:| AF (-1 (-1149 (-53)) (-755) (-755) (-1193 (-1149 (-53))))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 (-53)) (-755)))) (-626 (-458)))) (IF (|has| (-53) (-1029 (-1153))) (IF (|has| (-53) (-1029 (-1153))) (PROGN (-15 -3168 ((-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 (-53))) (-1193 (-53)))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-53)))) (-1193 (-1149 (-53))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 (-53) (-755) (-755) (-1149 (-53)))) (|:| AF (-1 (-1149 (-53)) (-755) (-755) (-1193 (-1149 (-53))))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 (-53)) (-755)))) (-626 (-458))) (-1153))) (-15 -3379 ((-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 (-53))) (-1193 (-53)))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-53)))) (-1193 (-1149 (-53))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 (-53) (-755) (-755) (-1149 (-53)))) (|:| AF (-1 (-1149 (-53)) (-755) (-755) (-1193 (-1149 (-53))))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 (-53)) (-755)))) (-626 (-458))) (-1153))) (-15 -3197 ((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458))) (-1153))) (-15 -3236 ((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458))) (-1153))) (-15 -3206 ((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458))) (-1153))) (-15 -3313 ((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458))) (-1153)))) |noBranch|) |noBranch|)) -((-2724 (((-304 (-560)) |#1|) 11))) -(((-476 |#1|) (-10 -7 (-15 -2724 ((-304 (-560)) |#1|))) (-13 (-344) (-601 (-560)))) (T -476)) -((-2724 (*1 *2 *3) (-12 (-5 *2 (-304 (-560))) (-5 *1 (-476 *3)) (-4 *3 (-13 (-344) (-601 (-560))))))) -(-10 -7 (-15 -2724 ((-304 (-560)) |#1|))) -((-3168 (((-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 |#1|)) (-1193 |#1|))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 |#1|))) (-1193 (-1149 |#1|)))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 |#1| (-755) (-755) (-1149 |#1|))) (|:| AF (-1 (-1149 |#1|) (-755) (-755) (-1193 (-1149 |#1|)))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 |#1|) (-755)))) (-626 (-458))) (-1153)) NIL (|has| |#1| (-1029 (-1153)))) (((-2 (|:| |guessStream| (-1 (-1133 (-1193 |#1|)) (-1193 |#1|))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 |#1|))) (-1193 (-1149 |#1|)))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 |#1| (-755) (-755) (-1149 |#1|))) (|:| AF (-1 (-1149 |#1|) (-755) (-755) (-1193 (-1149 |#1|)))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 |#1|) (-755)))) (-626 (-458))) NIL)) (-3197 (((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458))) (-1153)) NIL (|has| |#1| (-1029 (-1153)))) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458))) NIL) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|)) NIL)) (-3206 (((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458))) (-1153)) NIL (|has| |#1| (-1029 (-1153)))) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|)) NIL) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458))) NIL)) (-3233 (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|)) NIL) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458))) NIL)) (-3236 (((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458))) (-1153)) NIL (|has| |#1| (-1029 (-1153)))) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|)) NIL) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458))) NIL)) (-3281 (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458))) NIL) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|)) NIL)) (-3290 (((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458))) (-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 |#1|)) (-1193 |#1|))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 |#1|))) (-1193 (-1149 |#1|)))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 |#1| (-755) (-755) (-1149 |#1|))) (|:| AF (-1 (-1149 |#1|) (-755) (-755) (-1193 (-1149 |#1|)))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 |#1|) (-755)))) (-626 (-458)))) NIL)) (-3294 (((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458))) (-1153)) NIL (|has| |#1| (-1029 (-1153)))) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458))) NIL) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|)) NIL)) (-3302 (((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458))) (-1153)) NIL (|has| |#1| (-1029 (-1153)))) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458))) NIL) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|)) NIL)) (-3309 (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458))) NIL) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|)) NIL)) (-3313 (((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458))) (-1153)) NIL (|has| |#1| (-1029 (-1153)))) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458))) NIL) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|)) NIL)) (-3343 (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458)))) (-626 (-1153)) (-626 (-458))) NIL) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458)))) (-626 (-1153))) NIL) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458))) NIL) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|)) NIL)) (-3379 (((-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 |#1|)) (-1193 |#1|))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 |#1|))) (-1193 (-1149 |#1|)))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 |#1| (-755) (-755) (-1149 |#1|))) (|:| AF (-1 (-1149 |#1|) (-755) (-755) (-1193 (-1149 |#1|)))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 |#1|) (-755)))) (-626 (-458))) (-1153)) NIL (|has| |#1| (-1029 (-1153)))) (((-2 (|:| |guessStream| (-1 (-1133 (-1193 |#1|)) (-1193 |#1|))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 |#1|))) (-1193 (-1149 |#1|)))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 |#1| (-755) (-755) (-1149 |#1|))) (|:| AF (-1 (-1149 |#1|) (-755) (-755) (-1193 (-1149 |#1|)))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 |#1|) (-755)))) (-626 (-458))) NIL))) -(((-477 |#1|) (-10 -7 (-15 -3343 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|))) (-15 -3343 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458)))) (-15 -3343 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458)))) (-626 (-1153)))) (-15 -3343 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458)))) (-626 (-1153)) (-626 (-458)))) (-15 -3294 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|))) (-15 -3294 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458)))) (-15 -3302 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|))) (-15 -3302 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458)))) (IF (|has| |#1| (-1029 (-1153))) (IF (|has| |#1| (-1029 (-1153))) (PROGN (-15 -3294 ((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458))) (-1153))) (-15 -3302 ((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458))) (-1153)))) |noBranch|) |noBranch|) (-15 -3290 ((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458))) (-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 |#1|)) (-1193 |#1|))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 |#1|))) (-1193 (-1149 |#1|)))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 |#1| (-755) (-755) (-1149 |#1|))) (|:| AF (-1 (-1149 |#1|) (-755) (-755) (-1193 (-1149 |#1|)))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 |#1|) (-755)))) (-626 (-458))))) (-15 -3313 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|))) (-15 -3313 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458)))) (-15 -3309 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|))) (-15 -3309 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458)))) (-15 -3281 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|))) (-15 -3281 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458)))) (-15 -3233 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458)))) (-15 -3233 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|))) (-15 -3197 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|))) (-15 -3197 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458)))) (-15 -3236 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458)))) (-15 -3236 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|))) (-15 -3206 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458)))) (-15 -3206 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|))) (-15 -3379 ((-2 (|:| |guessStream| (-1 (-1133 (-1193 |#1|)) (-1193 |#1|))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 |#1|))) (-1193 (-1149 |#1|)))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 |#1| (-755) (-755) (-1149 |#1|))) (|:| AF (-1 (-1149 |#1|) (-755) (-755) (-1193 (-1149 |#1|)))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 |#1|) (-755)))) (-626 (-458)))) (-15 -3168 ((-2 (|:| |guessStream| (-1 (-1133 (-1193 |#1|)) (-1193 |#1|))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 |#1|))) (-1193 (-1149 |#1|)))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 |#1| (-755) (-755) (-1149 |#1|))) (|:| AF (-1 (-1149 |#1|) (-755) (-755) (-1193 (-1149 |#1|)))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 |#1|) (-755)))) (-626 (-458)))) (IF (|has| |#1| (-1029 (-1153))) (IF (|has| |#1| (-1029 (-1153))) (PROGN (-15 -3168 ((-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 |#1|)) (-1193 |#1|))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 |#1|))) (-1193 (-1149 |#1|)))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 |#1| (-755) (-755) (-1149 |#1|))) (|:| AF (-1 (-1149 |#1|) (-755) (-755) (-1193 (-1149 |#1|)))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 |#1|) (-755)))) (-626 (-458))) (-1153))) (-15 -3379 ((-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 |#1|)) (-1193 |#1|))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 |#1|))) (-1193 (-1149 |#1|)))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 |#1| (-755) (-755) (-1149 |#1|))) (|:| AF (-1 (-1149 |#1|) (-755) (-755) (-1193 (-1149 |#1|)))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 |#1|) (-755)))) (-626 (-458))) (-1153))) (-15 -3197 ((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458))) (-1153))) (-15 -3236 ((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458))) (-1153))) (-15 -3206 ((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458))) (-1153))) (-15 -3313 ((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458))) (-1153)))) |noBranch|) |noBranch|)) (-13 (-344) (-601 (-560)))) (T -477)) -((-3313 (*1 *2 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 *4) (-626 (-458)))) (-5 *1 (-477 *4)) (-4 *4 (-1029 *3)) (-4 *4 (-13 (-344) (-601 (-560)))))) (-3206 (*1 *2 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 *4) (-626 (-458)))) (-5 *1 (-477 *4)) (-4 *4 (-1029 *3)) (-4 *4 (-13 (-344) (-601 (-560)))))) (-3236 (*1 *2 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 *4) (-626 (-458)))) (-5 *1 (-477 *4)) (-4 *4 (-1029 *3)) (-4 *4 (-13 (-344) (-601 (-560)))))) (-3197 (*1 *2 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 *4) (-626 (-458)))) (-5 *1 (-477 *4)) (-4 *4 (-1029 *3)) (-4 *4 (-13 (-344) (-601 (-560)))))) (-3379 (*1 *2 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 *4)) (-1193 *4))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 *4))) (-1193 (-1149 *4)))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) *3)) (|:| A (-1 *4 (-755) (-755) (-1149 *4))) (|:| AF (-1 (-1149 *4) (-755) (-755) (-1193 (-1149 *4)))) (|:| AX (-1 (-304 (-560)) (-755) *3 (-304 (-560)))) (|:| C (-1 (-626 *4) (-755)))) (-626 (-458)))) (-5 *1 (-477 *4)) (-4 *4 (-1029 *3)) (-4 *4 (-13 (-344) (-601 (-560)))))) (-3168 (*1 *2 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 *4)) (-1193 *4))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 *4))) (-1193 (-1149 *4)))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) *3)) (|:| A (-1 *4 (-755) (-755) (-1149 *4))) (|:| AF (-1 (-1149 *4) (-755) (-755) (-1193 (-1149 *4)))) (|:| AX (-1 (-304 (-560)) (-755) *3 (-304 (-560)))) (|:| C (-1 (-626 *4) (-755)))) (-626 (-458)))) (-5 *1 (-477 *4)) (-4 *4 (-1029 *3)) (-4 *4 (-13 (-344) (-601 (-560)))))) (-3168 (*1 *2 *3) (-12 (-5 *3 (-626 (-458))) (-5 *2 (-2 (|:| |guessStream| (-1 (-1133 (-1193 *4)) (-1193 *4))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 *4))) (-1193 (-1149 *4)))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 *4 (-755) (-755) (-1149 *4))) (|:| AF (-1 (-1149 *4) (-755) (-755) (-1193 (-1149 *4)))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 *4) (-755))))) (-5 *1 (-477 *4)) (-4 *4 (-13 (-344) (-601 (-560)))))) (-3379 (*1 *2 *3) (-12 (-5 *3 (-626 (-458))) (-5 *2 (-2 (|:| |guessStream| (-1 (-1133 (-1193 *4)) (-1193 *4))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 *4))) (-1193 (-1149 *4)))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 *4 (-755) (-755) (-1149 *4))) (|:| AF (-1 (-1149 *4) (-755) (-755) (-1193 (-1149 *4)))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 *4) (-755))))) (-5 *1 (-477 *4)) (-4 *4 (-13 (-344) (-601 (-560)))))) (-3206 (*1 *2 *3) (-12 (-5 *3 (-626 *4)) (-4 *4 (-13 (-344) (-601 (-560)))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-477 *4)))) (-3206 (*1 *2 *3 *4) (-12 (-5 *3 (-626 *5)) (-5 *4 (-626 (-458))) (-4 *5 (-13 (-344) (-601 (-560)))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-477 *5)))) (-3236 (*1 *2 *3) (-12 (-5 *3 (-626 *4)) (-4 *4 (-13 (-344) (-601 (-560)))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-477 *4)))) (-3236 (*1 *2 *3 *4) (-12 (-5 *3 (-626 *5)) (-5 *4 (-626 (-458))) (-4 *5 (-13 (-344) (-601 (-560)))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-477 *5)))) (-3197 (*1 *2 *3 *4) (-12 (-5 *3 (-626 *5)) (-5 *4 (-626 (-458))) (-4 *5 (-13 (-344) (-601 (-560)))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-477 *5)))) (-3197 (*1 *2 *3) (-12 (-5 *3 (-626 *4)) (-4 *4 (-13 (-344) (-601 (-560)))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-477 *4)))) (-3233 (*1 *2 *3) (-12 (-5 *3 (-626 *4)) (-4 *4 (-13 (-344) (-601 (-560)))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-477 *4)))) (-3233 (*1 *2 *3 *4) (-12 (-5 *3 (-626 *5)) (-5 *4 (-626 (-458))) (-4 *5 (-13 (-344) (-601 (-560)))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-477 *5)))) (-3281 (*1 *2 *3 *4) (-12 (-5 *3 (-626 *5)) (-5 *4 (-626 (-458))) (-4 *5 (-13 (-344) (-601 (-560)))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-477 *5)))) (-3281 (*1 *2 *3) (-12 (-5 *3 (-626 *4)) (-4 *4 (-13 (-344) (-601 (-560)))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-477 *4)))) (-3309 (*1 *2 *3 *4) (-12 (-5 *3 (-626 *5)) (-5 *4 (-626 (-458))) (-4 *5 (-13 (-344) (-601 (-560)))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-477 *5)))) (-3309 (*1 *2 *3) (-12 (-5 *3 (-626 *4)) (-4 *4 (-13 (-344) (-601 (-560)))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-477 *4)))) (-3313 (*1 *2 *3 *4) (-12 (-5 *3 (-626 *5)) (-5 *4 (-626 (-458))) (-4 *5 (-13 (-344) (-601 (-560)))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-477 *5)))) (-3313 (*1 *2 *3) (-12 (-5 *3 (-626 *4)) (-4 *4 (-13 (-344) (-601 (-560)))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-477 *4)))) (-3290 (*1 *2 *3) (-12 (-5 *3 (-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 *4)) (-1193 *4))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 *4))) (-1193 (-1149 *4)))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 *4 (-755) (-755) (-1149 *4))) (|:| AF (-1 (-1149 *4) (-755) (-755) (-1193 (-1149 *4)))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 *4) (-755)))) (-626 (-458)))) (-4 *4 (-13 (-344) (-601 (-560)))) (-5 *2 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 *4) (-626 (-458)))) (-5 *1 (-477 *4)))) (-3302 (*1 *2 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 *4) (-626 (-458)))) (-5 *1 (-477 *4)) (-4 *4 (-1029 *3)) (-4 *4 (-13 (-344) (-601 (-560)))))) (-3294 (*1 *2 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 *4) (-626 (-458)))) (-5 *1 (-477 *4)) (-4 *4 (-1029 *3)) (-4 *4 (-13 (-344) (-601 (-560)))))) (-3302 (*1 *2 *3 *4) (-12 (-5 *3 (-626 *5)) (-5 *4 (-626 (-458))) (-4 *5 (-13 (-344) (-601 (-560)))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-477 *5)))) (-3302 (*1 *2 *3) (-12 (-5 *3 (-626 *4)) (-4 *4 (-13 (-344) (-601 (-560)))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-477 *4)))) (-3294 (*1 *2 *3 *4) (-12 (-5 *3 (-626 *5)) (-5 *4 (-626 (-458))) (-4 *5 (-13 (-344) (-601 (-560)))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-477 *5)))) (-3294 (*1 *2 *3) (-12 (-5 *3 (-626 *4)) (-4 *4 (-13 (-344) (-601 (-560)))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-477 *4)))) (-3343 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-626 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 *7) (-626 (-458))))) (-5 *5 (-626 (-1153))) (-5 *6 (-626 (-458))) (-5 *3 (-626 *7)) (-4 *7 (-13 (-344) (-601 (-560)))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-477 *7)))) (-3343 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-626 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 *6) (-626 (-458))))) (-5 *5 (-626 (-1153))) (-5 *3 (-626 *6)) (-4 *6 (-13 (-344) (-601 (-560)))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-477 *6)))) (-3343 (*1 *2 *3 *4) (-12 (-5 *3 (-626 *5)) (-5 *4 (-626 (-458))) (-4 *5 (-13 (-344) (-601 (-560)))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-477 *5)))) (-3343 (*1 *2 *3) (-12 (-5 *3 (-626 *4)) (-4 *4 (-13 (-344) (-601 (-560)))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-477 *4))))) -(-10 -7 (-15 -3343 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|))) (-15 -3343 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458)))) (-15 -3343 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458)))) (-626 (-1153)))) (-15 -3343 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458)))) (-626 (-1153)) (-626 (-458)))) (-15 -3294 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|))) (-15 -3294 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458)))) (-15 -3302 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|))) (-15 -3302 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458)))) (IF (|has| |#1| (-1029 (-1153))) (IF (|has| |#1| (-1029 (-1153))) (PROGN (-15 -3294 ((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458))) (-1153))) (-15 -3302 ((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458))) (-1153)))) |noBranch|) |noBranch|) (-15 -3290 ((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458))) (-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 |#1|)) (-1193 |#1|))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 |#1|))) (-1193 (-1149 |#1|)))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 |#1| (-755) (-755) (-1149 |#1|))) (|:| AF (-1 (-1149 |#1|) (-755) (-755) (-1193 (-1149 |#1|)))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 |#1|) (-755)))) (-626 (-458))))) (-15 -3313 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|))) (-15 -3313 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458)))) (-15 -3309 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|))) (-15 -3309 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458)))) (-15 -3281 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|))) (-15 -3281 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458)))) (-15 -3233 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458)))) (-15 -3233 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|))) (-15 -3197 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|))) (-15 -3197 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458)))) (-15 -3236 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458)))) (-15 -3236 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|))) (-15 -3206 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458)))) (-15 -3206 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|))) (-15 -3379 ((-2 (|:| |guessStream| (-1 (-1133 (-1193 |#1|)) (-1193 |#1|))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 |#1|))) (-1193 (-1149 |#1|)))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 |#1| (-755) (-755) (-1149 |#1|))) (|:| AF (-1 (-1149 |#1|) (-755) (-755) (-1193 (-1149 |#1|)))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 |#1|) (-755)))) (-626 (-458)))) (-15 -3168 ((-2 (|:| |guessStream| (-1 (-1133 (-1193 |#1|)) (-1193 |#1|))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 |#1|))) (-1193 (-1149 |#1|)))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 |#1| (-755) (-755) (-1149 |#1|))) (|:| AF (-1 (-1149 |#1|) (-755) (-755) (-1193 (-1149 |#1|)))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 |#1|) (-755)))) (-626 (-458)))) (IF (|has| |#1| (-1029 (-1153))) (IF (|has| |#1| (-1029 (-1153))) (PROGN (-15 -3168 ((-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 |#1|)) (-1193 |#1|))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 |#1|))) (-1193 (-1149 |#1|)))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 |#1| (-755) (-755) (-1149 |#1|))) (|:| AF (-1 (-1149 |#1|) (-755) (-755) (-1193 (-1149 |#1|)))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 |#1|) (-755)))) (-626 (-458))) (-1153))) (-15 -3379 ((-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 |#1|)) (-1193 |#1|))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 |#1|))) (-1193 (-1149 |#1|)))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 |#1| (-755) (-755) (-1149 |#1|))) (|:| AF (-1 (-1149 |#1|) (-755) (-755) (-1193 (-1149 |#1|)))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 |#1|) (-755)))) (-626 (-458))) (-1153))) (-15 -3197 ((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458))) (-1153))) (-15 -3236 ((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458))) (-1153))) (-15 -3206 ((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458))) (-1153))) (-15 -3313 ((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458))) (-1153)))) |noBranch|) |noBranch|)) -((-3168 (((-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 (-403 (-560)))) (-1193 (-403 (-560))))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-403 (-560))))) (-1193 (-1149 (-403 (-560)))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 (-560) (-755) (-755) (-1149 (-560)))) (|:| AF (-1 (-1149 (-403 (-560))) (-755) (-755) (-1193 (-1149 (-403 (-560)))))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 (-560)) (-755)))) (-626 (-458))) (-1153)) NIL (-12 (|has| (-403 (-560)) (-1029 (-1153))) (|has| (-560) (-1029 (-1153))))) (((-2 (|:| |guessStream| (-1 (-1133 (-1193 (-403 (-560)))) (-1193 (-403 (-560))))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-403 (-560))))) (-1193 (-1149 (-403 (-560)))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 (-560) (-755) (-755) (-1149 (-560)))) (|:| AF (-1 (-1149 (-403 (-560))) (-755) (-755) (-1193 (-1149 (-403 (-560)))))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 (-560)) (-755)))) (-626 (-458))) NIL)) (-3197 (((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458))) (-1153)) NIL (-12 (|has| (-403 (-560)) (-1029 (-1153))) (|has| (-560) (-1029 (-1153))))) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458))) NIL) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560)))) NIL)) (-3206 (((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458))) (-1153)) NIL (-12 (|has| (-403 (-560)) (-1029 (-1153))) (|has| (-560) (-1029 (-1153))))) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560)))) NIL) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458))) NIL)) (-3233 (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560)))) NIL) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458))) NIL)) (-3236 (((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458))) (-1153)) NIL (-12 (|has| (-403 (-560)) (-1029 (-1153))) (|has| (-560) (-1029 (-1153))))) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560)))) NIL) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458))) NIL)) (-3281 (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458))) NIL) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560)))) NIL)) (-3290 (((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458))) (-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 (-403 (-560)))) (-1193 (-403 (-560))))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-403 (-560))))) (-1193 (-1149 (-403 (-560)))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 (-560) (-755) (-755) (-1149 (-560)))) (|:| AF (-1 (-1149 (-403 (-560))) (-755) (-755) (-1193 (-1149 (-403 (-560)))))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 (-560)) (-755)))) (-626 (-458)))) NIL)) (-3294 (((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458))) (-1153)) NIL (-12 (|has| (-403 (-560)) (-1029 (-1153))) (|has| (-560) (-1029 (-1153))))) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458))) NIL) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560)))) NIL)) (-3302 (((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458))) (-1153)) NIL (-12 (|has| (-403 (-560)) (-1029 (-1153))) (|has| (-560) (-1029 (-1153))))) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458))) NIL) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560)))) NIL)) (-3309 (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458))) NIL) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560)))) NIL)) (-3313 (((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458))) (-1153)) NIL (-12 (|has| (-403 (-560)) (-1029 (-1153))) (|has| (-560) (-1029 (-1153))))) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458))) NIL) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560)))) NIL)) (-3343 (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458)))) (-626 (-1153)) (-626 (-458))) NIL) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458)))) (-626 (-1153))) NIL) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458))) NIL) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560)))) NIL)) (-3379 (((-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 (-403 (-560)))) (-1193 (-403 (-560))))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-403 (-560))))) (-1193 (-1149 (-403 (-560)))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 (-560) (-755) (-755) (-1149 (-560)))) (|:| AF (-1 (-1149 (-403 (-560))) (-755) (-755) (-1193 (-1149 (-403 (-560)))))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 (-560)) (-755)))) (-626 (-458))) (-1153)) NIL (-12 (|has| (-403 (-560)) (-1029 (-1153))) (|has| (-560) (-1029 (-1153))))) (((-2 (|:| |guessStream| (-1 (-1133 (-1193 (-403 (-560)))) (-1193 (-403 (-560))))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-403 (-560))))) (-1193 (-1149 (-403 (-560)))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 (-560) (-755) (-755) (-1149 (-560)))) (|:| AF (-1 (-1149 (-403 (-560))) (-755) (-755) (-1193 (-1149 (-403 (-560)))))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 (-560)) (-755)))) (-626 (-458))) NIL))) -(((-478) (-10 -7 (-15 -3343 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))))) (-15 -3343 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458)))) (-15 -3343 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458)))) (-626 (-1153)))) (-15 -3343 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458)))) (-626 (-1153)) (-626 (-458)))) (-15 -3294 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))))) (-15 -3294 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458)))) (-15 -3302 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))))) (-15 -3302 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458)))) (IF (|has| (-403 (-560)) (-1029 (-1153))) (IF (|has| (-560) (-1029 (-1153))) (PROGN (-15 -3294 ((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458))) (-1153))) (-15 -3302 ((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458))) (-1153)))) |noBranch|) |noBranch|) (-15 -3290 ((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458))) (-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 (-403 (-560)))) (-1193 (-403 (-560))))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-403 (-560))))) (-1193 (-1149 (-403 (-560)))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 (-560) (-755) (-755) (-1149 (-560)))) (|:| AF (-1 (-1149 (-403 (-560))) (-755) (-755) (-1193 (-1149 (-403 (-560)))))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 (-560)) (-755)))) (-626 (-458))))) (-15 -3313 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))))) (-15 -3313 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458)))) (-15 -3309 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))))) (-15 -3309 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458)))) (-15 -3281 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))))) (-15 -3281 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458)))) (-15 -3233 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458)))) (-15 -3233 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))))) (-15 -3197 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))))) (-15 -3197 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458)))) (-15 -3236 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458)))) (-15 -3236 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))))) (-15 -3206 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458)))) (-15 -3206 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))))) (-15 -3379 ((-2 (|:| |guessStream| (-1 (-1133 (-1193 (-403 (-560)))) (-1193 (-403 (-560))))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-403 (-560))))) (-1193 (-1149 (-403 (-560)))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 (-560) (-755) (-755) (-1149 (-560)))) (|:| AF (-1 (-1149 (-403 (-560))) (-755) (-755) (-1193 (-1149 (-403 (-560)))))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 (-560)) (-755)))) (-626 (-458)))) (-15 -3168 ((-2 (|:| |guessStream| (-1 (-1133 (-1193 (-403 (-560)))) (-1193 (-403 (-560))))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-403 (-560))))) (-1193 (-1149 (-403 (-560)))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 (-560) (-755) (-755) (-1149 (-560)))) (|:| AF (-1 (-1149 (-403 (-560))) (-755) (-755) (-1193 (-1149 (-403 (-560)))))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 (-560)) (-755)))) (-626 (-458)))) (IF (|has| (-403 (-560)) (-1029 (-1153))) (IF (|has| (-560) (-1029 (-1153))) (PROGN (-15 -3168 ((-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 (-403 (-560)))) (-1193 (-403 (-560))))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-403 (-560))))) (-1193 (-1149 (-403 (-560)))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 (-560) (-755) (-755) (-1149 (-560)))) (|:| AF (-1 (-1149 (-403 (-560))) (-755) (-755) (-1193 (-1149 (-403 (-560)))))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 (-560)) (-755)))) (-626 (-458))) (-1153))) (-15 -3379 ((-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 (-403 (-560)))) (-1193 (-403 (-560))))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-403 (-560))))) (-1193 (-1149 (-403 (-560)))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 (-560) (-755) (-755) (-1149 (-560)))) (|:| AF (-1 (-1149 (-403 (-560))) (-755) (-755) (-1193 (-1149 (-403 (-560)))))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 (-560)) (-755)))) (-626 (-458))) (-1153))) (-15 -3197 ((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458))) (-1153))) (-15 -3236 ((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458))) (-1153))) (-15 -3206 ((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458))) (-1153))) (-15 -3313 ((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458))) (-1153)))) |noBranch|) |noBranch|))) (T -478)) -((-3313 (*1 *2 *3) (-12 (-4 (-403 (-560)) (-1029 *3)) (-4 (-560) (-1029 *3)) (-5 *3 (-1153)) (-5 *2 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458)))) (-5 *1 (-478)))) (-3206 (*1 *2 *3) (-12 (-4 (-403 (-560)) (-1029 *3)) (-4 (-560) (-1029 *3)) (-5 *3 (-1153)) (-5 *2 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458)))) (-5 *1 (-478)))) (-3236 (*1 *2 *3) (-12 (-4 (-403 (-560)) (-1029 *3)) (-4 (-560) (-1029 *3)) (-5 *3 (-1153)) (-5 *2 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458)))) (-5 *1 (-478)))) (-3197 (*1 *2 *3) (-12 (-4 (-403 (-560)) (-1029 *3)) (-4 (-560) (-1029 *3)) (-5 *3 (-1153)) (-5 *2 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458)))) (-5 *1 (-478)))) (-3379 (*1 *2 *3) (-12 (-4 (-403 (-560)) (-1029 *3)) (-4 (-560) (-1029 *3)) (-5 *3 (-1153)) (-5 *2 (-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 (-403 (-560)))) (-1193 (-403 (-560))))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-403 (-560))))) (-1193 (-1149 (-403 (-560)))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) *3)) (|:| A (-1 (-560) (-755) (-755) (-1149 (-560)))) (|:| AF (-1 (-1149 (-403 (-560))) (-755) (-755) (-1193 (-1149 (-403 (-560)))))) (|:| AX (-1 (-304 (-560)) (-755) *3 (-304 (-560)))) (|:| C (-1 (-626 (-560)) (-755)))) (-626 (-458)))) (-5 *1 (-478)))) (-3168 (*1 *2 *3) (-12 (-4 (-403 (-560)) (-1029 *3)) (-4 (-560) (-1029 *3)) (-5 *3 (-1153)) (-5 *2 (-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 (-403 (-560)))) (-1193 (-403 (-560))))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-403 (-560))))) (-1193 (-1149 (-403 (-560)))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) *3)) (|:| A (-1 (-560) (-755) (-755) (-1149 (-560)))) (|:| AF (-1 (-1149 (-403 (-560))) (-755) (-755) (-1193 (-1149 (-403 (-560)))))) (|:| AX (-1 (-304 (-560)) (-755) *3 (-304 (-560)))) (|:| C (-1 (-626 (-560)) (-755)))) (-626 (-458)))) (-5 *1 (-478)))) (-3168 (*1 *2 *3) (-12 (-5 *3 (-626 (-458))) (-5 *2 (-2 (|:| |guessStream| (-1 (-1133 (-1193 (-403 (-560)))) (-1193 (-403 (-560))))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-403 (-560))))) (-1193 (-1149 (-403 (-560)))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 (-560) (-755) (-755) (-1149 (-560)))) (|:| AF (-1 (-1149 (-403 (-560))) (-755) (-755) (-1193 (-1149 (-403 (-560)))))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 (-560)) (-755))))) (-5 *1 (-478)))) (-3379 (*1 *2 *3) (-12 (-5 *3 (-626 (-458))) (-5 *2 (-2 (|:| |guessStream| (-1 (-1133 (-1193 (-403 (-560)))) (-1193 (-403 (-560))))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-403 (-560))))) (-1193 (-1149 (-403 (-560)))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 (-560) (-755) (-755) (-1149 (-560)))) (|:| AF (-1 (-1149 (-403 (-560))) (-755) (-755) (-1193 (-1149 (-403 (-560)))))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 (-560)) (-755))))) (-5 *1 (-478)))) (-3206 (*1 *2 *3) (-12 (-5 *3 (-626 (-403 (-560)))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-478)))) (-3206 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-560)))) (-5 *4 (-626 (-458))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-478)))) (-3236 (*1 *2 *3) (-12 (-5 *3 (-626 (-403 (-560)))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-478)))) (-3236 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-560)))) (-5 *4 (-626 (-458))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-478)))) (-3197 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-560)))) (-5 *4 (-626 (-458))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-478)))) (-3197 (*1 *2 *3) (-12 (-5 *3 (-626 (-403 (-560)))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-478)))) (-3233 (*1 *2 *3) (-12 (-5 *3 (-626 (-403 (-560)))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-478)))) (-3233 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-560)))) (-5 *4 (-626 (-458))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-478)))) (-3281 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-560)))) (-5 *4 (-626 (-458))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-478)))) (-3281 (*1 *2 *3) (-12 (-5 *3 (-626 (-403 (-560)))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-478)))) (-3309 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-560)))) (-5 *4 (-626 (-458))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-478)))) (-3309 (*1 *2 *3) (-12 (-5 *3 (-626 (-403 (-560)))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-478)))) (-3313 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-560)))) (-5 *4 (-626 (-458))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-478)))) (-3313 (*1 *2 *3) (-12 (-5 *3 (-626 (-403 (-560)))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-478)))) (-3290 (*1 *2 *3) (-12 (-5 *3 (-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 (-403 (-560)))) (-1193 (-403 (-560))))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-403 (-560))))) (-1193 (-1149 (-403 (-560)))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 (-560) (-755) (-755) (-1149 (-560)))) (|:| AF (-1 (-1149 (-403 (-560))) (-755) (-755) (-1193 (-1149 (-403 (-560)))))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 (-560)) (-755)))) (-626 (-458)))) (-5 *2 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458)))) (-5 *1 (-478)))) (-3302 (*1 *2 *3) (-12 (-4 (-403 (-560)) (-1029 *3)) (-4 (-560) (-1029 *3)) (-5 *3 (-1153)) (-5 *2 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458)))) (-5 *1 (-478)))) (-3294 (*1 *2 *3) (-12 (-4 (-403 (-560)) (-1029 *3)) (-4 (-560) (-1029 *3)) (-5 *3 (-1153)) (-5 *2 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458)))) (-5 *1 (-478)))) (-3302 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-560)))) (-5 *4 (-626 (-458))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-478)))) (-3302 (*1 *2 *3) (-12 (-5 *3 (-626 (-403 (-560)))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-478)))) (-3294 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-560)))) (-5 *4 (-626 (-458))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-478)))) (-3294 (*1 *2 *3) (-12 (-5 *3 (-626 (-403 (-560)))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-478)))) (-3343 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-626 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458))))) (-5 *5 (-626 (-1153))) (-5 *6 (-626 (-458))) (-5 *3 (-626 (-403 (-560)))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-478)))) (-3343 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-626 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458))))) (-5 *5 (-626 (-1153))) (-5 *3 (-626 (-403 (-560)))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-478)))) (-3343 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-560)))) (-5 *4 (-626 (-458))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-478)))) (-3343 (*1 *2 *3) (-12 (-5 *3 (-626 (-403 (-560)))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-478))))) -(-10 -7 (-15 -3343 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))))) (-15 -3343 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458)))) (-15 -3343 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458)))) (-626 (-1153)))) (-15 -3343 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458)))) (-626 (-1153)) (-626 (-458)))) (-15 -3294 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))))) (-15 -3294 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458)))) (-15 -3302 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))))) (-15 -3302 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458)))) (IF (|has| (-403 (-560)) (-1029 (-1153))) (IF (|has| (-560) (-1029 (-1153))) (PROGN (-15 -3294 ((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458))) (-1153))) (-15 -3302 ((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458))) (-1153)))) |noBranch|) |noBranch|) (-15 -3290 ((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458))) (-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 (-403 (-560)))) (-1193 (-403 (-560))))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-403 (-560))))) (-1193 (-1149 (-403 (-560)))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 (-560) (-755) (-755) (-1149 (-560)))) (|:| AF (-1 (-1149 (-403 (-560))) (-755) (-755) (-1193 (-1149 (-403 (-560)))))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 (-560)) (-755)))) (-626 (-458))))) (-15 -3313 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))))) (-15 -3313 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458)))) (-15 -3309 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))))) (-15 -3309 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458)))) (-15 -3281 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))))) (-15 -3281 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458)))) (-15 -3233 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458)))) (-15 -3233 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))))) (-15 -3197 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))))) (-15 -3197 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458)))) (-15 -3236 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458)))) (-15 -3236 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))))) (-15 -3206 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458)))) (-15 -3206 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))))) (-15 -3379 ((-2 (|:| |guessStream| (-1 (-1133 (-1193 (-403 (-560)))) (-1193 (-403 (-560))))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-403 (-560))))) (-1193 (-1149 (-403 (-560)))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 (-560) (-755) (-755) (-1149 (-560)))) (|:| AF (-1 (-1149 (-403 (-560))) (-755) (-755) (-1193 (-1149 (-403 (-560)))))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 (-560)) (-755)))) (-626 (-458)))) (-15 -3168 ((-2 (|:| |guessStream| (-1 (-1133 (-1193 (-403 (-560)))) (-1193 (-403 (-560))))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-403 (-560))))) (-1193 (-1149 (-403 (-560)))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 (-560) (-755) (-755) (-1149 (-560)))) (|:| AF (-1 (-1149 (-403 (-560))) (-755) (-755) (-1193 (-1149 (-403 (-560)))))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 (-560)) (-755)))) (-626 (-458)))) (IF (|has| (-403 (-560)) (-1029 (-1153))) (IF (|has| (-560) (-1029 (-1153))) (PROGN (-15 -3168 ((-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 (-403 (-560)))) (-1193 (-403 (-560))))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-403 (-560))))) (-1193 (-1149 (-403 (-560)))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 (-560) (-755) (-755) (-1149 (-560)))) (|:| AF (-1 (-1149 (-403 (-560))) (-755) (-755) (-1193 (-1149 (-403 (-560)))))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 (-560)) (-755)))) (-626 (-458))) (-1153))) (-15 -3379 ((-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 (-403 (-560)))) (-1193 (-403 (-560))))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-403 (-560))))) (-1193 (-1149 (-403 (-560)))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 (-560) (-755) (-755) (-1149 (-560)))) (|:| AF (-1 (-1149 (-403 (-560))) (-755) (-755) (-1193 (-1149 (-403 (-560)))))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 (-560)) (-755)))) (-626 (-458))) (-1153))) (-15 -3197 ((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458))) (-1153))) (-15 -3236 ((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458))) (-1153))) (-15 -3206 ((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458))) (-1153))) (-15 -3313 ((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458))) (-1153)))) |noBranch|) |noBranch|)) -((-3168 (((-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 |#1|)) (-1193 |#1|))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 |#1|))) (-1193 (-1149 |#1|)))) (|:| |exprStream| (-1 (-1133 |#3|) |#3| (-1153))) (|:| A (-1 |#2| (-755) (-755) (-1149 |#2|))) (|:| AF (-1 (-1149 |#1|) (-755) (-755) (-1193 (-1149 |#1|)))) (|:| AX (-1 |#3| (-755) (-1153) |#3|)) (|:| C (-1 (-626 |#2|) (-755)))) (-626 (-458))) (-1153)) 357 (-12 (|has| |#1| (-1029 (-1153))) (|has| |#2| (-1029 (-1153))))) (((-2 (|:| |guessStream| (-1 (-1133 (-1193 |#1|)) (-1193 |#1|))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 |#1|))) (-1193 (-1149 |#1|)))) (|:| |exprStream| (-1 (-1133 |#3|) |#3| (-1153))) (|:| A (-1 |#2| (-755) (-755) (-1149 |#2|))) (|:| AF (-1 (-1149 |#1|) (-755) (-755) (-1193 (-1149 |#1|)))) (|:| AX (-1 |#3| (-755) (-1153) |#3|)) (|:| C (-1 (-626 |#2|) (-755)))) (-626 (-458))) 351)) (-3197 (((-1 (-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458))) (-1153)) 477 (-12 (|has| |#1| (-1029 (-1153))) (|has| |#2| (-1029 (-1153))))) (((-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458))) 470) (((-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|)) 471)) (-3206 (((-1 (-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458))) (-1153)) 480 (-12 (|has| |#1| (-1029 (-1153))) (|has| |#2| (-1029 (-1153))))) (((-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|)) 476) (((-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458))) 475)) (-3233 (((-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|)) 467) (((-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458))) 466)) (-3236 (((-1 (-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458))) (-1153)) 479 (-12 (|has| |#1| (-1029 (-1153))) (|has| |#2| (-1029 (-1153))))) (((-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|)) 473) (((-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458))) 472)) (-3281 (((-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458))) 463) (((-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|)) 464)) (-3290 (((-1 (-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458))) (-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 |#1|)) (-1193 |#1|))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 |#1|))) (-1193 (-1149 |#1|)))) (|:| |exprStream| (-1 (-1133 |#3|) |#3| (-1153))) (|:| A (-1 |#2| (-755) (-755) (-1149 |#2|))) (|:| AF (-1 (-1149 |#1|) (-755) (-755) (-1193 (-1149 |#1|)))) (|:| AX (-1 |#3| (-755) (-1153) |#3|)) (|:| C (-1 (-626 |#2|) (-755)))) (-626 (-458)))) 454)) (-3294 (((-1 (-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458))) (-1153)) 192 (-12 (|has| |#1| (-1029 (-1153))) (|has| |#2| (-1029 (-1153))))) (((-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458))) 190) (((-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|)) 189)) (-3302 (((-1 (-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458))) (-1153)) 218 (-12 (|has| |#1| (-1029 (-1153))) (|has| |#2| (-1029 (-1153))))) (((-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458))) 207) (((-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|)) 206)) (-3309 (((-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458))) 460) (((-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|)) 461)) (-3313 (((-1 (-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458))) (-1153)) 469 (-12 (|has| |#1| (-1029 (-1153))) (|has| |#2| (-1029 (-1153))))) (((-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458))) 457) (((-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|)) 458)) (-3343 (((-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-1 (-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458)))) (-626 (-1153)) (-626 (-458))) 503) (((-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-1 (-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458)))) (-626 (-1153))) 509) (((-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458))) 508) (((-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|)) 507)) (-3379 (((-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 |#1|)) (-1193 |#1|))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 |#1|))) (-1193 (-1149 |#1|)))) (|:| |exprStream| (-1 (-1133 |#3|) |#3| (-1153))) (|:| A (-1 |#2| (-755) (-755) (-1149 |#2|))) (|:| AF (-1 (-1149 |#1|) (-755) (-755) (-1193 (-1149 |#1|)))) (|:| AX (-1 |#3| (-755) (-1153) |#3|)) (|:| C (-1 (-626 |#2|) (-755)))) (-626 (-458))) (-1153)) 327 (-12 (|has| |#1| (-1029 (-1153))) (|has| |#2| (-1029 (-1153))))) (((-2 (|:| |guessStream| (-1 (-1133 (-1193 |#1|)) (-1193 |#1|))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 |#1|))) (-1193 (-1149 |#1|)))) (|:| |exprStream| (-1 (-1133 |#3|) |#3| (-1153))) (|:| A (-1 |#2| (-755) (-755) (-1149 |#2|))) (|:| AF (-1 (-1149 |#1|) (-755) (-755) (-1193 (-1149 |#1|)))) (|:| AX (-1 |#3| (-755) (-1153) |#3|)) (|:| C (-1 (-626 |#2|) (-755)))) (-626 (-458))) 317))) -(((-479 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3343 ((-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|))) (-15 -3343 ((-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458)))) (-15 -3343 ((-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-1 (-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458)))) (-626 (-1153)))) (-15 -3343 ((-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-1 (-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458)))) (-626 (-1153)) (-626 (-458)))) (-15 -3294 ((-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|))) (-15 -3294 ((-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458)))) (-15 -3302 ((-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|))) (-15 -3302 ((-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458)))) (IF (|has| |#1| (-1029 (-1153))) (IF (|has| |#2| (-1029 (-1153))) (PROGN (-15 -3294 ((-1 (-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458))) (-1153))) (-15 -3302 ((-1 (-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458))) (-1153)))) |noBranch|) |noBranch|) (-15 -3290 ((-1 (-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458))) (-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 |#1|)) (-1193 |#1|))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 |#1|))) (-1193 (-1149 |#1|)))) (|:| |exprStream| (-1 (-1133 |#3|) |#3| (-1153))) (|:| A (-1 |#2| (-755) (-755) (-1149 |#2|))) (|:| AF (-1 (-1149 |#1|) (-755) (-755) (-1193 (-1149 |#1|)))) (|:| AX (-1 |#3| (-755) (-1153) |#3|)) (|:| C (-1 (-626 |#2|) (-755)))) (-626 (-458))))) (-15 -3313 ((-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|))) (-15 -3313 ((-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458)))) (-15 -3309 ((-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|))) (-15 -3309 ((-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458)))) (-15 -3281 ((-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|))) (-15 -3281 ((-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458)))) (-15 -3233 ((-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458)))) (-15 -3233 ((-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|))) (-15 -3197 ((-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|))) (-15 -3197 ((-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458)))) (-15 -3236 ((-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458)))) (-15 -3236 ((-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|))) (-15 -3206 ((-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458)))) (-15 -3206 ((-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|))) (-15 -3379 ((-2 (|:| |guessStream| (-1 (-1133 (-1193 |#1|)) (-1193 |#1|))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 |#1|))) (-1193 (-1149 |#1|)))) (|:| |exprStream| (-1 (-1133 |#3|) |#3| (-1153))) (|:| A (-1 |#2| (-755) (-755) (-1149 |#2|))) (|:| AF (-1 (-1149 |#1|) (-755) (-755) (-1193 (-1149 |#1|)))) (|:| AX (-1 |#3| (-755) (-1153) |#3|)) (|:| C (-1 (-626 |#2|) (-755)))) (-626 (-458)))) (-15 -3168 ((-2 (|:| |guessStream| (-1 (-1133 (-1193 |#1|)) (-1193 |#1|))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 |#1|))) (-1193 (-1149 |#1|)))) (|:| |exprStream| (-1 (-1133 |#3|) |#3| (-1153))) (|:| A (-1 |#2| (-755) (-755) (-1149 |#2|))) (|:| AF (-1 (-1149 |#1|) (-755) (-755) (-1193 (-1149 |#1|)))) (|:| AX (-1 |#3| (-755) (-1153) |#3|)) (|:| C (-1 (-626 |#2|) (-755)))) (-626 (-458)))) (IF (|has| |#1| (-1029 (-1153))) (IF (|has| |#2| (-1029 (-1153))) (PROGN (-15 -3168 ((-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 |#1|)) (-1193 |#1|))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 |#1|))) (-1193 (-1149 |#1|)))) (|:| |exprStream| (-1 (-1133 |#3|) |#3| (-1153))) (|:| A (-1 |#2| (-755) (-755) (-1149 |#2|))) (|:| AF (-1 (-1149 |#1|) (-755) (-755) (-1193 (-1149 |#1|)))) (|:| AX (-1 |#3| (-755) (-1153) |#3|)) (|:| C (-1 (-626 |#2|) (-755)))) (-626 (-458))) (-1153))) (-15 -3379 ((-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 |#1|)) (-1193 |#1|))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 |#1|))) (-1193 (-1149 |#1|)))) (|:| |exprStream| (-1 (-1133 |#3|) |#3| (-1153))) (|:| A (-1 |#2| (-755) (-755) (-1149 |#2|))) (|:| AF (-1 (-1149 |#1|) (-755) (-755) (-1193 (-1149 |#1|)))) (|:| AX (-1 |#3| (-755) (-1153) |#3|)) (|:| C (-1 (-626 |#2|) (-755)))) (-626 (-458))) (-1153))) (-15 -3197 ((-1 (-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458))) (-1153))) (-15 -3236 ((-1 (-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458))) (-1153))) (-15 -3206 ((-1 (-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458))) (-1153))) (-15 -3313 ((-1 (-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458))) (-1153)))) |noBranch|) |noBranch|)) (-359) (-447) (-13 (-426 (-560)) (-550) (-1029 |#4|) (-1029 (-1153)) (-1029 (-560)) (-159) (-887 (-1153)) (-10 -8 (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -1540 ($ $)) (-15 -1646 ($ $)) (-15 -1704 ((-121) $)))) (-13 (-834) (-550)) (-1 |#1| |#4|) (-1 |#3| |#1|)) (T -479)) -((-3313 (*1 *2 *3) (-12 (-5 *3 (-1153)) (-4 *7 (-13 (-834) (-550))) (-14 *8 (-1 *4 *7)) (-5 *2 (-1 (-626 (-2 (|:| -1843 *6) (|:| -3504 (-755)))) (-626 *4) (-626 (-458)))) (-5 *1 (-479 *4 *5 *6 *7 *8 *9)) (-4 *4 (-1029 *3)) (-4 *5 (-1029 *3)) (-4 *4 (-359)) (-4 *5 (-447)) (-4 *6 (-13 (-426 (-560)) (-550) (-1029 *7) (-1029 *3) (-1029 (-560)) (-159) (-887 *3) (-10 -8 (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -1540 ($ $)) (-15 -1646 ($ $)) (-15 -1704 ((-121) $))))) (-14 *9 (-1 *6 *4)))) (-3206 (*1 *2 *3) (-12 (-5 *3 (-1153)) (-4 *7 (-13 (-834) (-550))) (-14 *8 (-1 *4 *7)) (-5 *2 (-1 (-626 (-2 (|:| -1843 *6) (|:| -3504 (-755)))) (-626 *4) (-626 (-458)))) (-5 *1 (-479 *4 *5 *6 *7 *8 *9)) (-4 *4 (-1029 *3)) (-4 *5 (-1029 *3)) (-4 *4 (-359)) (-4 *5 (-447)) (-4 *6 (-13 (-426 (-560)) (-550) (-1029 *7) (-1029 *3) (-1029 (-560)) (-159) (-887 *3) (-10 -8 (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -1540 ($ $)) (-15 -1646 ($ $)) (-15 -1704 ((-121) $))))) (-14 *9 (-1 *6 *4)))) (-3236 (*1 *2 *3) (-12 (-5 *3 (-1153)) (-4 *7 (-13 (-834) (-550))) (-14 *8 (-1 *4 *7)) (-5 *2 (-1 (-626 (-2 (|:| -1843 *6) (|:| -3504 (-755)))) (-626 *4) (-626 (-458)))) (-5 *1 (-479 *4 *5 *6 *7 *8 *9)) (-4 *4 (-1029 *3)) (-4 *5 (-1029 *3)) (-4 *4 (-359)) (-4 *5 (-447)) (-4 *6 (-13 (-426 (-560)) (-550) (-1029 *7) (-1029 *3) (-1029 (-560)) (-159) (-887 *3) (-10 -8 (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -1540 ($ $)) (-15 -1646 ($ $)) (-15 -1704 ((-121) $))))) (-14 *9 (-1 *6 *4)))) (-3197 (*1 *2 *3) (-12 (-5 *3 (-1153)) (-4 *7 (-13 (-834) (-550))) (-14 *8 (-1 *4 *7)) (-5 *2 (-1 (-626 (-2 (|:| -1843 *6) (|:| -3504 (-755)))) (-626 *4) (-626 (-458)))) (-5 *1 (-479 *4 *5 *6 *7 *8 *9)) (-4 *4 (-1029 *3)) (-4 *5 (-1029 *3)) (-4 *4 (-359)) (-4 *5 (-447)) (-4 *6 (-13 (-426 (-560)) (-550) (-1029 *7) (-1029 *3) (-1029 (-560)) (-159) (-887 *3) (-10 -8 (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -1540 ($ $)) (-15 -1646 ($ $)) (-15 -1704 ((-121) $))))) (-14 *9 (-1 *6 *4)))) (-3379 (*1 *2 *3) (-12 (-5 *3 (-1153)) (-4 *7 (-13 (-834) (-550))) (-14 *8 (-1 *4 *7)) (-5 *2 (-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 *4)) (-1193 *4))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 *4))) (-1193 (-1149 *4)))) (|:| |exprStream| (-1 (-1133 *6) *6 *3)) (|:| A (-1 *5 (-755) (-755) (-1149 *5))) (|:| AF (-1 (-1149 *4) (-755) (-755) (-1193 (-1149 *4)))) (|:| AX (-1 *6 (-755) *3 *6)) (|:| C (-1 (-626 *5) (-755)))) (-626 (-458)))) (-5 *1 (-479 *4 *5 *6 *7 *8 *9)) (-4 *4 (-1029 *3)) (-4 *5 (-1029 *3)) (-4 *4 (-359)) (-4 *5 (-447)) (-4 *6 (-13 (-426 (-560)) (-550) (-1029 *7) (-1029 *3) (-1029 (-560)) (-159) (-887 *3) (-10 -8 (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -1540 ($ $)) (-15 -1646 ($ $)) (-15 -1704 ((-121) $))))) (-14 *9 (-1 *6 *4)))) (-3168 (*1 *2 *3) (-12 (-5 *3 (-1153)) (-4 *7 (-13 (-834) (-550))) (-14 *8 (-1 *4 *7)) (-5 *2 (-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 *4)) (-1193 *4))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 *4))) (-1193 (-1149 *4)))) (|:| |exprStream| (-1 (-1133 *6) *6 *3)) (|:| A (-1 *5 (-755) (-755) (-1149 *5))) (|:| AF (-1 (-1149 *4) (-755) (-755) (-1193 (-1149 *4)))) (|:| AX (-1 *6 (-755) *3 *6)) (|:| C (-1 (-626 *5) (-755)))) (-626 (-458)))) (-5 *1 (-479 *4 *5 *6 *7 *8 *9)) (-4 *4 (-1029 *3)) (-4 *5 (-1029 *3)) (-4 *4 (-359)) (-4 *5 (-447)) (-4 *6 (-13 (-426 (-560)) (-550) (-1029 *7) (-1029 *3) (-1029 (-560)) (-159) (-887 *3) (-10 -8 (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -1540 ($ $)) (-15 -1646 ($ $)) (-15 -1704 ((-121) $))))) (-14 *9 (-1 *6 *4)))) (-3168 (*1 *2 *3) (-12 (-5 *3 (-626 (-458))) (-4 *7 (-13 (-834) (-550))) (-14 *8 (-1 *4 *7)) (-5 *2 (-2 (|:| |guessStream| (-1 (-1133 (-1193 *4)) (-1193 *4))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 *4))) (-1193 (-1149 *4)))) (|:| |exprStream| (-1 (-1133 *6) *6 (-1153))) (|:| A (-1 *5 (-755) (-755) (-1149 *5))) (|:| AF (-1 (-1149 *4) (-755) (-755) (-1193 (-1149 *4)))) (|:| AX (-1 *6 (-755) (-1153) *6)) (|:| C (-1 (-626 *5) (-755))))) (-5 *1 (-479 *4 *5 *6 *7 *8 *9)) (-4 *4 (-359)) (-4 *5 (-447)) (-4 *6 (-13 (-426 (-560)) (-550) (-1029 *7) (-1029 (-1153)) (-1029 (-560)) (-159) (-887 (-1153)) (-10 -8 (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -1540 ($ $)) (-15 -1646 ($ $)) (-15 -1704 ((-121) $))))) (-14 *9 (-1 *6 *4)))) (-3379 (*1 *2 *3) (-12 (-5 *3 (-626 (-458))) (-4 *7 (-13 (-834) (-550))) (-14 *8 (-1 *4 *7)) (-5 *2 (-2 (|:| |guessStream| (-1 (-1133 (-1193 *4)) (-1193 *4))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 *4))) (-1193 (-1149 *4)))) (|:| |exprStream| (-1 (-1133 *6) *6 (-1153))) (|:| A (-1 *5 (-755) (-755) (-1149 *5))) (|:| AF (-1 (-1149 *4) (-755) (-755) (-1193 (-1149 *4)))) (|:| AX (-1 *6 (-755) (-1153) *6)) (|:| C (-1 (-626 *5) (-755))))) (-5 *1 (-479 *4 *5 *6 *7 *8 *9)) (-4 *4 (-359)) (-4 *5 (-447)) (-4 *6 (-13 (-426 (-560)) (-550) (-1029 *7) (-1029 (-1153)) (-1029 (-560)) (-159) (-887 (-1153)) (-10 -8 (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -1540 ($ $)) (-15 -1646 ($ $)) (-15 -1704 ((-121) $))))) (-14 *9 (-1 *6 *4)))) (-3206 (*1 *2 *3) (-12 (-5 *3 (-626 *4)) (-4 *4 (-359)) (-14 *9 (-1 *6 *4)) (-4 *7 (-13 (-834) (-550))) (-14 *8 (-1 *4 *7)) (-5 *2 (-626 (-2 (|:| -1843 *6) (|:| -3504 (-755))))) (-5 *1 (-479 *4 *5 *6 *7 *8 *9)) (-4 *5 (-447)) (-4 *6 (-13 (-426 (-560)) (-550) (-1029 *7) (-1029 (-1153)) (-1029 (-560)) (-159) (-887 (-1153)) (-10 -8 (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -1540 ($ $)) (-15 -1646 ($ $)) (-15 -1704 ((-121) $))))))) (-3206 (*1 *2 *3 *4) (-12 (-5 *3 (-626 *5)) (-5 *4 (-626 (-458))) (-4 *5 (-359)) (-14 *10 (-1 *7 *5)) (-4 *8 (-13 (-834) (-550))) (-14 *9 (-1 *5 *8)) (-5 *2 (-626 (-2 (|:| -1843 *7) (|:| -3504 (-755))))) (-5 *1 (-479 *5 *6 *7 *8 *9 *10)) (-4 *6 (-447)) (-4 *7 (-13 (-426 (-560)) (-550) (-1029 *8) (-1029 (-1153)) (-1029 (-560)) (-159) (-887 (-1153)) (-10 -8 (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -1540 ($ $)) (-15 -1646 ($ $)) (-15 -1704 ((-121) $))))))) (-3236 (*1 *2 *3) (-12 (-5 *3 (-626 *4)) (-4 *4 (-359)) (-14 *9 (-1 *6 *4)) (-4 *7 (-13 (-834) (-550))) (-14 *8 (-1 *4 *7)) (-5 *2 (-626 (-2 (|:| -1843 *6) (|:| -3504 (-755))))) (-5 *1 (-479 *4 *5 *6 *7 *8 *9)) (-4 *5 (-447)) (-4 *6 (-13 (-426 (-560)) (-550) (-1029 *7) (-1029 (-1153)) (-1029 (-560)) (-159) (-887 (-1153)) (-10 -8 (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -1540 ($ $)) (-15 -1646 ($ $)) (-15 -1704 ((-121) $))))))) (-3236 (*1 *2 *3 *4) (-12 (-5 *3 (-626 *5)) (-5 *4 (-626 (-458))) (-4 *5 (-359)) (-14 *10 (-1 *7 *5)) (-4 *8 (-13 (-834) (-550))) (-14 *9 (-1 *5 *8)) (-5 *2 (-626 (-2 (|:| -1843 *7) (|:| -3504 (-755))))) (-5 *1 (-479 *5 *6 *7 *8 *9 *10)) (-4 *6 (-447)) (-4 *7 (-13 (-426 (-560)) (-550) (-1029 *8) (-1029 (-1153)) (-1029 (-560)) (-159) (-887 (-1153)) (-10 -8 (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -1540 ($ $)) (-15 -1646 ($ $)) (-15 -1704 ((-121) $))))))) (-3197 (*1 *2 *3 *4) (-12 (-5 *3 (-626 *5)) (-5 *4 (-626 (-458))) (-4 *5 (-359)) (-14 *10 (-1 *7 *5)) (-4 *8 (-13 (-834) (-550))) (-14 *9 (-1 *5 *8)) (-5 *2 (-626 (-2 (|:| -1843 *7) (|:| -3504 (-755))))) (-5 *1 (-479 *5 *6 *7 *8 *9 *10)) (-4 *6 (-447)) (-4 *7 (-13 (-426 (-560)) (-550) (-1029 *8) (-1029 (-1153)) (-1029 (-560)) (-159) (-887 (-1153)) (-10 -8 (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -1540 ($ $)) (-15 -1646 ($ $)) (-15 -1704 ((-121) $))))))) (-3197 (*1 *2 *3) (-12 (-5 *3 (-626 *4)) (-4 *4 (-359)) (-14 *9 (-1 *6 *4)) (-4 *7 (-13 (-834) (-550))) (-14 *8 (-1 *4 *7)) (-5 *2 (-626 (-2 (|:| -1843 *6) (|:| -3504 (-755))))) (-5 *1 (-479 *4 *5 *6 *7 *8 *9)) (-4 *5 (-447)) (-4 *6 (-13 (-426 (-560)) (-550) (-1029 *7) (-1029 (-1153)) (-1029 (-560)) (-159) (-887 (-1153)) (-10 -8 (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -1540 ($ $)) (-15 -1646 ($ $)) (-15 -1704 ((-121) $))))))) (-3233 (*1 *2 *3) (-12 (-5 *3 (-626 *4)) (-4 *4 (-359)) (-14 *9 (-1 *6 *4)) (-4 *7 (-13 (-834) (-550))) (-14 *8 (-1 *4 *7)) (-5 *2 (-626 (-2 (|:| -1843 *6) (|:| -3504 (-755))))) (-5 *1 (-479 *4 *5 *6 *7 *8 *9)) (-4 *5 (-447)) (-4 *6 (-13 (-426 (-560)) (-550) (-1029 *7) (-1029 (-1153)) (-1029 (-560)) (-159) (-887 (-1153)) (-10 -8 (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -1540 ($ $)) (-15 -1646 ($ $)) (-15 -1704 ((-121) $))))))) (-3233 (*1 *2 *3 *4) (-12 (-5 *3 (-626 *5)) (-5 *4 (-626 (-458))) (-4 *5 (-359)) (-14 *10 (-1 *7 *5)) (-4 *8 (-13 (-834) (-550))) (-14 *9 (-1 *5 *8)) (-5 *2 (-626 (-2 (|:| -1843 *7) (|:| -3504 (-755))))) (-5 *1 (-479 *5 *6 *7 *8 *9 *10)) (-4 *6 (-447)) (-4 *7 (-13 (-426 (-560)) (-550) (-1029 *8) (-1029 (-1153)) (-1029 (-560)) (-159) (-887 (-1153)) (-10 -8 (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -1540 ($ $)) (-15 -1646 ($ $)) (-15 -1704 ((-121) $))))))) (-3281 (*1 *2 *3 *4) (-12 (-5 *3 (-626 *5)) (-5 *4 (-626 (-458))) (-4 *5 (-359)) (-14 *10 (-1 *7 *5)) (-4 *8 (-13 (-834) (-550))) (-14 *9 (-1 *5 *8)) (-5 *2 (-626 (-2 (|:| -1843 *7) (|:| -3504 (-755))))) (-5 *1 (-479 *5 *6 *7 *8 *9 *10)) (-4 *6 (-447)) (-4 *7 (-13 (-426 (-560)) (-550) (-1029 *8) (-1029 (-1153)) (-1029 (-560)) (-159) (-887 (-1153)) (-10 -8 (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -1540 ($ $)) (-15 -1646 ($ $)) (-15 -1704 ((-121) $))))))) (-3281 (*1 *2 *3) (-12 (-5 *3 (-626 *4)) (-4 *4 (-359)) (-14 *9 (-1 *6 *4)) (-4 *7 (-13 (-834) (-550))) (-14 *8 (-1 *4 *7)) (-5 *2 (-626 (-2 (|:| -1843 *6) (|:| -3504 (-755))))) (-5 *1 (-479 *4 *5 *6 *7 *8 *9)) (-4 *5 (-447)) (-4 *6 (-13 (-426 (-560)) (-550) (-1029 *7) (-1029 (-1153)) (-1029 (-560)) (-159) (-887 (-1153)) (-10 -8 (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -1540 ($ $)) (-15 -1646 ($ $)) (-15 -1704 ((-121) $))))))) (-3309 (*1 *2 *3 *4) (-12 (-5 *3 (-626 *5)) (-5 *4 (-626 (-458))) (-4 *5 (-359)) (-14 *10 (-1 *7 *5)) (-4 *8 (-13 (-834) (-550))) (-14 *9 (-1 *5 *8)) (-5 *2 (-626 (-2 (|:| -1843 *7) (|:| -3504 (-755))))) (-5 *1 (-479 *5 *6 *7 *8 *9 *10)) (-4 *6 (-447)) (-4 *7 (-13 (-426 (-560)) (-550) (-1029 *8) (-1029 (-1153)) (-1029 (-560)) (-159) (-887 (-1153)) (-10 -8 (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -1540 ($ $)) (-15 -1646 ($ $)) (-15 -1704 ((-121) $))))))) (-3309 (*1 *2 *3) (-12 (-5 *3 (-626 *4)) (-4 *4 (-359)) (-14 *9 (-1 *6 *4)) (-4 *7 (-13 (-834) (-550))) (-14 *8 (-1 *4 *7)) (-5 *2 (-626 (-2 (|:| -1843 *6) (|:| -3504 (-755))))) (-5 *1 (-479 *4 *5 *6 *7 *8 *9)) (-4 *5 (-447)) (-4 *6 (-13 (-426 (-560)) (-550) (-1029 *7) (-1029 (-1153)) (-1029 (-560)) (-159) (-887 (-1153)) (-10 -8 (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -1540 ($ $)) (-15 -1646 ($ $)) (-15 -1704 ((-121) $))))))) (-3313 (*1 *2 *3 *4) (-12 (-5 *3 (-626 *5)) (-5 *4 (-626 (-458))) (-4 *5 (-359)) (-14 *10 (-1 *7 *5)) (-4 *8 (-13 (-834) (-550))) (-14 *9 (-1 *5 *8)) (-5 *2 (-626 (-2 (|:| -1843 *7) (|:| -3504 (-755))))) (-5 *1 (-479 *5 *6 *7 *8 *9 *10)) (-4 *6 (-447)) (-4 *7 (-13 (-426 (-560)) (-550) (-1029 *8) (-1029 (-1153)) (-1029 (-560)) (-159) (-887 (-1153)) (-10 -8 (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -1540 ($ $)) (-15 -1646 ($ $)) (-15 -1704 ((-121) $))))))) (-3313 (*1 *2 *3) (-12 (-5 *3 (-626 *4)) (-4 *4 (-359)) (-14 *9 (-1 *6 *4)) (-4 *7 (-13 (-834) (-550))) (-14 *8 (-1 *4 *7)) (-5 *2 (-626 (-2 (|:| -1843 *6) (|:| -3504 (-755))))) (-5 *1 (-479 *4 *5 *6 *7 *8 *9)) (-4 *5 (-447)) (-4 *6 (-13 (-426 (-560)) (-550) (-1029 *7) (-1029 (-1153)) (-1029 (-560)) (-159) (-887 (-1153)) (-10 -8 (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -1540 ($ $)) (-15 -1646 ($ $)) (-15 -1704 ((-121) $))))))) (-3290 (*1 *2 *3) (-12 (-5 *3 (-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 *4)) (-1193 *4))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 *4))) (-1193 (-1149 *4)))) (|:| |exprStream| (-1 (-1133 *6) *6 (-1153))) (|:| A (-1 *5 (-755) (-755) (-1149 *5))) (|:| AF (-1 (-1149 *4) (-755) (-755) (-1193 (-1149 *4)))) (|:| AX (-1 *6 (-755) (-1153) *6)) (|:| C (-1 (-626 *5) (-755)))) (-626 (-458)))) (-4 *4 (-359)) (-4 *5 (-447)) (-4 *6 (-13 (-426 (-560)) (-550) (-1029 *7) (-1029 (-1153)) (-1029 (-560)) (-159) (-887 (-1153)) (-10 -8 (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -1540 ($ $)) (-15 -1646 ($ $)) (-15 -1704 ((-121) $))))) (-4 *7 (-13 (-834) (-550))) (-14 *8 (-1 *4 *7)) (-14 *9 (-1 *6 *4)) (-5 *2 (-1 (-626 (-2 (|:| -1843 *6) (|:| -3504 (-755)))) (-626 *4) (-626 (-458)))) (-5 *1 (-479 *4 *5 *6 *7 *8 *9)))) (-3302 (*1 *2 *3) (-12 (-5 *3 (-1153)) (-4 *7 (-13 (-834) (-550))) (-14 *8 (-1 *4 *7)) (-5 *2 (-1 (-626 (-2 (|:| -1843 *6) (|:| -3504 (-755)))) (-626 *4) (-626 (-458)))) (-5 *1 (-479 *4 *5 *6 *7 *8 *9)) (-4 *4 (-1029 *3)) (-4 *5 (-1029 *3)) (-4 *4 (-359)) (-4 *5 (-447)) (-4 *6 (-13 (-426 (-560)) (-550) (-1029 *7) (-1029 *3) (-1029 (-560)) (-159) (-887 *3) (-10 -8 (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -1540 ($ $)) (-15 -1646 ($ $)) (-15 -1704 ((-121) $))))) (-14 *9 (-1 *6 *4)))) (-3294 (*1 *2 *3) (-12 (-5 *3 (-1153)) (-4 *7 (-13 (-834) (-550))) (-14 *8 (-1 *4 *7)) (-5 *2 (-1 (-626 (-2 (|:| -1843 *6) (|:| -3504 (-755)))) (-626 *4) (-626 (-458)))) (-5 *1 (-479 *4 *5 *6 *7 *8 *9)) (-4 *4 (-1029 *3)) (-4 *5 (-1029 *3)) (-4 *4 (-359)) (-4 *5 (-447)) (-4 *6 (-13 (-426 (-560)) (-550) (-1029 *7) (-1029 *3) (-1029 (-560)) (-159) (-887 *3) (-10 -8 (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -1540 ($ $)) (-15 -1646 ($ $)) (-15 -1704 ((-121) $))))) (-14 *9 (-1 *6 *4)))) (-3302 (*1 *2 *3 *4) (-12 (-5 *3 (-626 *5)) (-5 *4 (-626 (-458))) (-4 *5 (-359)) (-14 *10 (-1 *7 *5)) (-4 *8 (-13 (-834) (-550))) (-14 *9 (-1 *5 *8)) (-5 *2 (-626 (-2 (|:| -1843 *7) (|:| -3504 (-755))))) (-5 *1 (-479 *5 *6 *7 *8 *9 *10)) (-4 *6 (-447)) (-4 *7 (-13 (-426 (-560)) (-550) (-1029 *8) (-1029 (-1153)) (-1029 (-560)) (-159) (-887 (-1153)) (-10 -8 (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -1540 ($ $)) (-15 -1646 ($ $)) (-15 -1704 ((-121) $))))))) (-3302 (*1 *2 *3) (-12 (-5 *3 (-626 *4)) (-4 *4 (-359)) (-14 *9 (-1 *6 *4)) (-4 *7 (-13 (-834) (-550))) (-14 *8 (-1 *4 *7)) (-5 *2 (-626 (-2 (|:| -1843 *6) (|:| -3504 (-755))))) (-5 *1 (-479 *4 *5 *6 *7 *8 *9)) (-4 *5 (-447)) (-4 *6 (-13 (-426 (-560)) (-550) (-1029 *7) (-1029 (-1153)) (-1029 (-560)) (-159) (-887 (-1153)) (-10 -8 (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -1540 ($ $)) (-15 -1646 ($ $)) (-15 -1704 ((-121) $))))))) (-3294 (*1 *2 *3 *4) (-12 (-5 *3 (-626 *5)) (-5 *4 (-626 (-458))) (-4 *5 (-359)) (-14 *10 (-1 *7 *5)) (-4 *8 (-13 (-834) (-550))) (-14 *9 (-1 *5 *8)) (-5 *2 (-626 (-2 (|:| -1843 *7) (|:| -3504 (-755))))) (-5 *1 (-479 *5 *6 *7 *8 *9 *10)) (-4 *6 (-447)) (-4 *7 (-13 (-426 (-560)) (-550) (-1029 *8) (-1029 (-1153)) (-1029 (-560)) (-159) (-887 (-1153)) (-10 -8 (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -1540 ($ $)) (-15 -1646 ($ $)) (-15 -1704 ((-121) $))))))) (-3294 (*1 *2 *3) (-12 (-5 *3 (-626 *4)) (-4 *4 (-359)) (-14 *9 (-1 *6 *4)) (-4 *7 (-13 (-834) (-550))) (-14 *8 (-1 *4 *7)) (-5 *2 (-626 (-2 (|:| -1843 *6) (|:| -3504 (-755))))) (-5 *1 (-479 *4 *5 *6 *7 *8 *9)) (-4 *5 (-447)) (-4 *6 (-13 (-426 (-560)) (-550) (-1029 *7) (-1029 (-1153)) (-1029 (-560)) (-159) (-887 (-1153)) (-10 -8 (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -1540 ($ $)) (-15 -1646 ($ $)) (-15 -1704 ((-121) $))))))) (-3343 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-626 (-1 (-626 (-2 (|:| -1843 *9) (|:| -3504 (-755)))) (-626 *7) (-626 (-458))))) (-5 *5 (-626 (-1153))) (-5 *6 (-626 (-458))) (-5 *3 (-626 *7)) (-4 *7 (-359)) (-14 *12 (-1 *9 *7)) (-4 *10 (-13 (-834) (-550))) (-14 *11 (-1 *7 *10)) (-5 *2 (-626 (-2 (|:| -1843 *9) (|:| -3504 (-755))))) (-5 *1 (-479 *7 *8 *9 *10 *11 *12)) (-4 *8 (-447)) (-4 *9 (-13 (-426 (-560)) (-550) (-1029 *10) (-1029 (-1153)) (-1029 (-560)) (-159) (-887 (-1153)) (-10 -8 (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -1540 ($ $)) (-15 -1646 ($ $)) (-15 -1704 ((-121) $))))))) (-3343 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-626 (-1 (-626 (-2 (|:| -1843 *8) (|:| -3504 (-755)))) (-626 *6) (-626 (-458))))) (-5 *5 (-626 (-1153))) (-5 *3 (-626 *6)) (-4 *6 (-359)) (-14 *11 (-1 *8 *6)) (-4 *9 (-13 (-834) (-550))) (-14 *10 (-1 *6 *9)) (-5 *2 (-626 (-2 (|:| -1843 *8) (|:| -3504 (-755))))) (-5 *1 (-479 *6 *7 *8 *9 *10 *11)) (-4 *7 (-447)) (-4 *8 (-13 (-426 (-560)) (-550) (-1029 *9) (-1029 (-1153)) (-1029 (-560)) (-159) (-887 (-1153)) (-10 -8 (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -1540 ($ $)) (-15 -1646 ($ $)) (-15 -1704 ((-121) $))))))) (-3343 (*1 *2 *3 *4) (-12 (-5 *3 (-626 *5)) (-5 *4 (-626 (-458))) (-4 *5 (-359)) (-14 *10 (-1 *7 *5)) (-4 *8 (-13 (-834) (-550))) (-14 *9 (-1 *5 *8)) (-5 *2 (-626 (-2 (|:| -1843 *7) (|:| -3504 (-755))))) (-5 *1 (-479 *5 *6 *7 *8 *9 *10)) (-4 *6 (-447)) (-4 *7 (-13 (-426 (-560)) (-550) (-1029 *8) (-1029 (-1153)) (-1029 (-560)) (-159) (-887 (-1153)) (-10 -8 (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -1540 ($ $)) (-15 -1646 ($ $)) (-15 -1704 ((-121) $))))))) (-3343 (*1 *2 *3) (-12 (-5 *3 (-626 *4)) (-4 *4 (-359)) (-14 *9 (-1 *6 *4)) (-4 *7 (-13 (-834) (-550))) (-14 *8 (-1 *4 *7)) (-5 *2 (-626 (-2 (|:| -1843 *6) (|:| -3504 (-755))))) (-5 *1 (-479 *4 *5 *6 *7 *8 *9)) (-4 *5 (-447)) (-4 *6 (-13 (-426 (-560)) (-550) (-1029 *7) (-1029 (-1153)) (-1029 (-560)) (-159) (-887 (-1153)) (-10 -8 (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -1540 ($ $)) (-15 -1646 ($ $)) (-15 -1704 ((-121) $)))))))) -(-10 -7 (-15 -3343 ((-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|))) (-15 -3343 ((-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458)))) (-15 -3343 ((-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-1 (-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458)))) (-626 (-1153)))) (-15 -3343 ((-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-1 (-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458)))) (-626 (-1153)) (-626 (-458)))) (-15 -3294 ((-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|))) (-15 -3294 ((-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458)))) (-15 -3302 ((-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|))) (-15 -3302 ((-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458)))) (IF (|has| |#1| (-1029 (-1153))) (IF (|has| |#2| (-1029 (-1153))) (PROGN (-15 -3294 ((-1 (-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458))) (-1153))) (-15 -3302 ((-1 (-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458))) (-1153)))) |noBranch|) |noBranch|) (-15 -3290 ((-1 (-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458))) (-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 |#1|)) (-1193 |#1|))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 |#1|))) (-1193 (-1149 |#1|)))) (|:| |exprStream| (-1 (-1133 |#3|) |#3| (-1153))) (|:| A (-1 |#2| (-755) (-755) (-1149 |#2|))) (|:| AF (-1 (-1149 |#1|) (-755) (-755) (-1193 (-1149 |#1|)))) (|:| AX (-1 |#3| (-755) (-1153) |#3|)) (|:| C (-1 (-626 |#2|) (-755)))) (-626 (-458))))) (-15 -3313 ((-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|))) (-15 -3313 ((-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458)))) (-15 -3309 ((-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|))) (-15 -3309 ((-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458)))) (-15 -3281 ((-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|))) (-15 -3281 ((-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458)))) (-15 -3233 ((-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458)))) (-15 -3233 ((-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|))) (-15 -3197 ((-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|))) (-15 -3197 ((-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458)))) (-15 -3236 ((-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458)))) (-15 -3236 ((-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|))) (-15 -3206 ((-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458)))) (-15 -3206 ((-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|))) (-15 -3379 ((-2 (|:| |guessStream| (-1 (-1133 (-1193 |#1|)) (-1193 |#1|))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 |#1|))) (-1193 (-1149 |#1|)))) (|:| |exprStream| (-1 (-1133 |#3|) |#3| (-1153))) (|:| A (-1 |#2| (-755) (-755) (-1149 |#2|))) (|:| AF (-1 (-1149 |#1|) (-755) (-755) (-1193 (-1149 |#1|)))) (|:| AX (-1 |#3| (-755) (-1153) |#3|)) (|:| C (-1 (-626 |#2|) (-755)))) (-626 (-458)))) (-15 -3168 ((-2 (|:| |guessStream| (-1 (-1133 (-1193 |#1|)) (-1193 |#1|))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 |#1|))) (-1193 (-1149 |#1|)))) (|:| |exprStream| (-1 (-1133 |#3|) |#3| (-1153))) (|:| A (-1 |#2| (-755) (-755) (-1149 |#2|))) (|:| AF (-1 (-1149 |#1|) (-755) (-755) (-1193 (-1149 |#1|)))) (|:| AX (-1 |#3| (-755) (-1153) |#3|)) (|:| C (-1 (-626 |#2|) (-755)))) (-626 (-458)))) (IF (|has| |#1| (-1029 (-1153))) (IF (|has| |#2| (-1029 (-1153))) (PROGN (-15 -3168 ((-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 |#1|)) (-1193 |#1|))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 |#1|))) (-1193 (-1149 |#1|)))) (|:| |exprStream| (-1 (-1133 |#3|) |#3| (-1153))) (|:| A (-1 |#2| (-755) (-755) (-1149 |#2|))) (|:| AF (-1 (-1149 |#1|) (-755) (-755) (-1193 (-1149 |#1|)))) (|:| AX (-1 |#3| (-755) (-1153) |#3|)) (|:| C (-1 (-626 |#2|) (-755)))) (-626 (-458))) (-1153))) (-15 -3379 ((-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 |#1|)) (-1193 |#1|))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 |#1|))) (-1193 (-1149 |#1|)))) (|:| |exprStream| (-1 (-1133 |#3|) |#3| (-1153))) (|:| A (-1 |#2| (-755) (-755) (-1149 |#2|))) (|:| AF (-1 (-1149 |#1|) (-755) (-755) (-1193 (-1149 |#1|)))) (|:| AX (-1 |#3| (-755) (-1153) |#3|)) (|:| C (-1 (-626 |#2|) (-755)))) (-626 (-458))) (-1153))) (-15 -3197 ((-1 (-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458))) (-1153))) (-15 -3236 ((-1 (-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458))) (-1153))) (-15 -3206 ((-1 (-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458))) (-1153))) (-15 -3313 ((-1 (-626 (-2 (|:| -1843 |#3|) (|:| -3504 (-755)))) (-626 |#1|) (-626 (-458))) (-1153)))) |noBranch|) |noBranch|)) -((-3168 (((-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 (-403 (-945 (-560))))) (-1193 (-403 (-945 (-560)))))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-403 (-945 (-560)))))) (-1193 (-1149 (-403 (-945 (-560))))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 (-945 (-560)) (-755) (-755) (-1149 (-945 (-560))))) (|:| AF (-1 (-1149 (-403 (-945 (-560)))) (-755) (-755) (-1193 (-1149 (-403 (-945 (-560))))))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 (-945 (-560))) (-755)))) (-626 (-458))) (-1153)) NIL (-12 (|has| (-403 (-945 (-560))) (-1029 (-1153))) (|has| (-945 (-560)) (-1029 (-1153))))) (((-2 (|:| |guessStream| (-1 (-1133 (-1193 (-403 (-945 (-560))))) (-1193 (-403 (-945 (-560)))))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-403 (-945 (-560)))))) (-1193 (-1149 (-403 (-945 (-560))))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 (-945 (-560)) (-755) (-755) (-1149 (-945 (-560))))) (|:| AF (-1 (-1149 (-403 (-945 (-560)))) (-755) (-755) (-1193 (-1149 (-403 (-945 (-560))))))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 (-945 (-560))) (-755)))) (-626 (-458))) NIL)) (-3197 (((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458))) (-1153)) NIL (-12 (|has| (-403 (-945 (-560))) (-1029 (-1153))) (|has| (-945 (-560)) (-1029 (-1153))))) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458))) NIL) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560))))) NIL)) (-3206 (((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458))) (-1153)) NIL (-12 (|has| (-403 (-945 (-560))) (-1029 (-1153))) (|has| (-945 (-560)) (-1029 (-1153))))) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560))))) NIL) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458))) NIL)) (-3233 (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560))))) NIL) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458))) NIL)) (-3236 (((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458))) (-1153)) NIL (-12 (|has| (-403 (-945 (-560))) (-1029 (-1153))) (|has| (-945 (-560)) (-1029 (-1153))))) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560))))) NIL) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458))) NIL)) (-3281 (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458))) NIL) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560))))) NIL)) (-3290 (((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458))) (-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 (-403 (-945 (-560))))) (-1193 (-403 (-945 (-560)))))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-403 (-945 (-560)))))) (-1193 (-1149 (-403 (-945 (-560))))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 (-945 (-560)) (-755) (-755) (-1149 (-945 (-560))))) (|:| AF (-1 (-1149 (-403 (-945 (-560)))) (-755) (-755) (-1193 (-1149 (-403 (-945 (-560))))))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 (-945 (-560))) (-755)))) (-626 (-458)))) NIL)) (-3294 (((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458))) (-1153)) NIL (-12 (|has| (-403 (-945 (-560))) (-1029 (-1153))) (|has| (-945 (-560)) (-1029 (-1153))))) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458))) NIL) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560))))) NIL)) (-3302 (((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458))) (-1153)) NIL (-12 (|has| (-403 (-945 (-560))) (-1029 (-1153))) (|has| (-945 (-560)) (-1029 (-1153))))) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458))) NIL) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560))))) NIL)) (-3309 (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458))) NIL) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560))))) NIL)) (-3313 (((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458))) (-1153)) NIL (-12 (|has| (-403 (-945 (-560))) (-1029 (-1153))) (|has| (-945 (-560)) (-1029 (-1153))))) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458))) NIL) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560))))) NIL)) (-3343 (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458)))) (-626 (-1153)) (-626 (-458))) NIL) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458)))) (-626 (-1153))) NIL) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458))) NIL) (((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560))))) NIL)) (-3379 (((-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 (-403 (-945 (-560))))) (-1193 (-403 (-945 (-560)))))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-403 (-945 (-560)))))) (-1193 (-1149 (-403 (-945 (-560))))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 (-945 (-560)) (-755) (-755) (-1149 (-945 (-560))))) (|:| AF (-1 (-1149 (-403 (-945 (-560)))) (-755) (-755) (-1193 (-1149 (-403 (-945 (-560))))))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 (-945 (-560))) (-755)))) (-626 (-458))) (-1153)) NIL (-12 (|has| (-403 (-945 (-560))) (-1029 (-1153))) (|has| (-945 (-560)) (-1029 (-1153))))) (((-2 (|:| |guessStream| (-1 (-1133 (-1193 (-403 (-945 (-560))))) (-1193 (-403 (-945 (-560)))))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-403 (-945 (-560)))))) (-1193 (-1149 (-403 (-945 (-560))))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 (-945 (-560)) (-755) (-755) (-1149 (-945 (-560))))) (|:| AF (-1 (-1149 (-403 (-945 (-560)))) (-755) (-755) (-1193 (-1149 (-403 (-945 (-560))))))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 (-945 (-560))) (-755)))) (-626 (-458))) NIL))) -(((-480) (-10 -7 (-15 -3343 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))))) (-15 -3343 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458)))) (-15 -3343 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458)))) (-626 (-1153)))) (-15 -3343 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458)))) (-626 (-1153)) (-626 (-458)))) (-15 -3294 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))))) (-15 -3294 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458)))) (-15 -3302 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))))) (-15 -3302 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458)))) (IF (|has| (-403 (-945 (-560))) (-1029 (-1153))) (IF (|has| (-945 (-560)) (-1029 (-1153))) (PROGN (-15 -3294 ((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458))) (-1153))) (-15 -3302 ((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458))) (-1153)))) |noBranch|) |noBranch|) (-15 -3290 ((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458))) (-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 (-403 (-945 (-560))))) (-1193 (-403 (-945 (-560)))))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-403 (-945 (-560)))))) (-1193 (-1149 (-403 (-945 (-560))))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 (-945 (-560)) (-755) (-755) (-1149 (-945 (-560))))) (|:| AF (-1 (-1149 (-403 (-945 (-560)))) (-755) (-755) (-1193 (-1149 (-403 (-945 (-560))))))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 (-945 (-560))) (-755)))) (-626 (-458))))) (-15 -3313 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))))) (-15 -3313 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458)))) (-15 -3309 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))))) (-15 -3309 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458)))) (-15 -3281 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))))) (-15 -3281 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458)))) (-15 -3233 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458)))) (-15 -3233 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))))) (-15 -3197 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))))) (-15 -3197 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458)))) (-15 -3236 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458)))) (-15 -3236 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))))) (-15 -3206 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458)))) (-15 -3206 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))))) (-15 -3379 ((-2 (|:| |guessStream| (-1 (-1133 (-1193 (-403 (-945 (-560))))) (-1193 (-403 (-945 (-560)))))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-403 (-945 (-560)))))) (-1193 (-1149 (-403 (-945 (-560))))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 (-945 (-560)) (-755) (-755) (-1149 (-945 (-560))))) (|:| AF (-1 (-1149 (-403 (-945 (-560)))) (-755) (-755) (-1193 (-1149 (-403 (-945 (-560))))))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 (-945 (-560))) (-755)))) (-626 (-458)))) (-15 -3168 ((-2 (|:| |guessStream| (-1 (-1133 (-1193 (-403 (-945 (-560))))) (-1193 (-403 (-945 (-560)))))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-403 (-945 (-560)))))) (-1193 (-1149 (-403 (-945 (-560))))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 (-945 (-560)) (-755) (-755) (-1149 (-945 (-560))))) (|:| AF (-1 (-1149 (-403 (-945 (-560)))) (-755) (-755) (-1193 (-1149 (-403 (-945 (-560))))))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 (-945 (-560))) (-755)))) (-626 (-458)))) (IF (|has| (-403 (-945 (-560))) (-1029 (-1153))) (IF (|has| (-945 (-560)) (-1029 (-1153))) (PROGN (-15 -3168 ((-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 (-403 (-945 (-560))))) (-1193 (-403 (-945 (-560)))))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-403 (-945 (-560)))))) (-1193 (-1149 (-403 (-945 (-560))))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 (-945 (-560)) (-755) (-755) (-1149 (-945 (-560))))) (|:| AF (-1 (-1149 (-403 (-945 (-560)))) (-755) (-755) (-1193 (-1149 (-403 (-945 (-560))))))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 (-945 (-560))) (-755)))) (-626 (-458))) (-1153))) (-15 -3379 ((-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 (-403 (-945 (-560))))) (-1193 (-403 (-945 (-560)))))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-403 (-945 (-560)))))) (-1193 (-1149 (-403 (-945 (-560))))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 (-945 (-560)) (-755) (-755) (-1149 (-945 (-560))))) (|:| AF (-1 (-1149 (-403 (-945 (-560)))) (-755) (-755) (-1193 (-1149 (-403 (-945 (-560))))))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 (-945 (-560))) (-755)))) (-626 (-458))) (-1153))) (-15 -3197 ((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458))) (-1153))) (-15 -3236 ((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458))) (-1153))) (-15 -3206 ((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458))) (-1153))) (-15 -3313 ((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458))) (-1153)))) |noBranch|) |noBranch|))) (T -480)) -((-3313 (*1 *2 *3) (-12 (-4 (-403 (-945 (-560))) (-1029 *3)) (-4 (-945 (-560)) (-1029 *3)) (-5 *3 (-1153)) (-5 *2 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458)))) (-5 *1 (-480)))) (-3206 (*1 *2 *3) (-12 (-4 (-403 (-945 (-560))) (-1029 *3)) (-4 (-945 (-560)) (-1029 *3)) (-5 *3 (-1153)) (-5 *2 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458)))) (-5 *1 (-480)))) (-3236 (*1 *2 *3) (-12 (-4 (-403 (-945 (-560))) (-1029 *3)) (-4 (-945 (-560)) (-1029 *3)) (-5 *3 (-1153)) (-5 *2 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458)))) (-5 *1 (-480)))) (-3197 (*1 *2 *3) (-12 (-4 (-403 (-945 (-560))) (-1029 *3)) (-4 (-945 (-560)) (-1029 *3)) (-5 *3 (-1153)) (-5 *2 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458)))) (-5 *1 (-480)))) (-3379 (*1 *2 *3) (-12 (-4 (-403 (-945 (-560))) (-1029 *3)) (-4 (-945 (-560)) (-1029 *3)) (-5 *3 (-1153)) (-5 *2 (-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 (-403 (-945 (-560))))) (-1193 (-403 (-945 (-560)))))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-403 (-945 (-560)))))) (-1193 (-1149 (-403 (-945 (-560))))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) *3)) (|:| A (-1 (-945 (-560)) (-755) (-755) (-1149 (-945 (-560))))) (|:| AF (-1 (-1149 (-403 (-945 (-560)))) (-755) (-755) (-1193 (-1149 (-403 (-945 (-560))))))) (|:| AX (-1 (-304 (-560)) (-755) *3 (-304 (-560)))) (|:| C (-1 (-626 (-945 (-560))) (-755)))) (-626 (-458)))) (-5 *1 (-480)))) (-3168 (*1 *2 *3) (-12 (-4 (-403 (-945 (-560))) (-1029 *3)) (-4 (-945 (-560)) (-1029 *3)) (-5 *3 (-1153)) (-5 *2 (-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 (-403 (-945 (-560))))) (-1193 (-403 (-945 (-560)))))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-403 (-945 (-560)))))) (-1193 (-1149 (-403 (-945 (-560))))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) *3)) (|:| A (-1 (-945 (-560)) (-755) (-755) (-1149 (-945 (-560))))) (|:| AF (-1 (-1149 (-403 (-945 (-560)))) (-755) (-755) (-1193 (-1149 (-403 (-945 (-560))))))) (|:| AX (-1 (-304 (-560)) (-755) *3 (-304 (-560)))) (|:| C (-1 (-626 (-945 (-560))) (-755)))) (-626 (-458)))) (-5 *1 (-480)))) (-3168 (*1 *2 *3) (-12 (-5 *3 (-626 (-458))) (-5 *2 (-2 (|:| |guessStream| (-1 (-1133 (-1193 (-403 (-945 (-560))))) (-1193 (-403 (-945 (-560)))))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-403 (-945 (-560)))))) (-1193 (-1149 (-403 (-945 (-560))))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 (-945 (-560)) (-755) (-755) (-1149 (-945 (-560))))) (|:| AF (-1 (-1149 (-403 (-945 (-560)))) (-755) (-755) (-1193 (-1149 (-403 (-945 (-560))))))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 (-945 (-560))) (-755))))) (-5 *1 (-480)))) (-3379 (*1 *2 *3) (-12 (-5 *3 (-626 (-458))) (-5 *2 (-2 (|:| |guessStream| (-1 (-1133 (-1193 (-403 (-945 (-560))))) (-1193 (-403 (-945 (-560)))))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-403 (-945 (-560)))))) (-1193 (-1149 (-403 (-945 (-560))))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 (-945 (-560)) (-755) (-755) (-1149 (-945 (-560))))) (|:| AF (-1 (-1149 (-403 (-945 (-560)))) (-755) (-755) (-1193 (-1149 (-403 (-945 (-560))))))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 (-945 (-560))) (-755))))) (-5 *1 (-480)))) (-3206 (*1 *2 *3) (-12 (-5 *3 (-626 (-403 (-945 (-560))))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-480)))) (-3206 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-945 (-560))))) (-5 *4 (-626 (-458))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-480)))) (-3236 (*1 *2 *3) (-12 (-5 *3 (-626 (-403 (-945 (-560))))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-480)))) (-3236 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-945 (-560))))) (-5 *4 (-626 (-458))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-480)))) (-3197 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-945 (-560))))) (-5 *4 (-626 (-458))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-480)))) (-3197 (*1 *2 *3) (-12 (-5 *3 (-626 (-403 (-945 (-560))))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-480)))) (-3233 (*1 *2 *3) (-12 (-5 *3 (-626 (-403 (-945 (-560))))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-480)))) (-3233 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-945 (-560))))) (-5 *4 (-626 (-458))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-480)))) (-3281 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-945 (-560))))) (-5 *4 (-626 (-458))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-480)))) (-3281 (*1 *2 *3) (-12 (-5 *3 (-626 (-403 (-945 (-560))))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-480)))) (-3309 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-945 (-560))))) (-5 *4 (-626 (-458))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-480)))) (-3309 (*1 *2 *3) (-12 (-5 *3 (-626 (-403 (-945 (-560))))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-480)))) (-3313 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-945 (-560))))) (-5 *4 (-626 (-458))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-480)))) (-3313 (*1 *2 *3) (-12 (-5 *3 (-626 (-403 (-945 (-560))))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-480)))) (-3290 (*1 *2 *3) (-12 (-5 *3 (-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 (-403 (-945 (-560))))) (-1193 (-403 (-945 (-560)))))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-403 (-945 (-560)))))) (-1193 (-1149 (-403 (-945 (-560))))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 (-945 (-560)) (-755) (-755) (-1149 (-945 (-560))))) (|:| AF (-1 (-1149 (-403 (-945 (-560)))) (-755) (-755) (-1193 (-1149 (-403 (-945 (-560))))))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 (-945 (-560))) (-755)))) (-626 (-458)))) (-5 *2 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458)))) (-5 *1 (-480)))) (-3302 (*1 *2 *3) (-12 (-4 (-403 (-945 (-560))) (-1029 *3)) (-4 (-945 (-560)) (-1029 *3)) (-5 *3 (-1153)) (-5 *2 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458)))) (-5 *1 (-480)))) (-3294 (*1 *2 *3) (-12 (-4 (-403 (-945 (-560))) (-1029 *3)) (-4 (-945 (-560)) (-1029 *3)) (-5 *3 (-1153)) (-5 *2 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458)))) (-5 *1 (-480)))) (-3302 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-945 (-560))))) (-5 *4 (-626 (-458))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-480)))) (-3302 (*1 *2 *3) (-12 (-5 *3 (-626 (-403 (-945 (-560))))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-480)))) (-3294 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-945 (-560))))) (-5 *4 (-626 (-458))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-480)))) (-3294 (*1 *2 *3) (-12 (-5 *3 (-626 (-403 (-945 (-560))))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-480)))) (-3343 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-626 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458))))) (-5 *5 (-626 (-1153))) (-5 *6 (-626 (-458))) (-5 *3 (-626 (-403 (-945 (-560))))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-480)))) (-3343 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-626 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458))))) (-5 *5 (-626 (-1153))) (-5 *3 (-626 (-403 (-945 (-560))))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-480)))) (-3343 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-945 (-560))))) (-5 *4 (-626 (-458))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-480)))) (-3343 (*1 *2 *3) (-12 (-5 *3 (-626 (-403 (-945 (-560))))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-480))))) -(-10 -7 (-15 -3343 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))))) (-15 -3343 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458)))) (-15 -3343 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458)))) (-626 (-1153)))) (-15 -3343 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458)))) (-626 (-1153)) (-626 (-458)))) (-15 -3294 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))))) (-15 -3294 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458)))) (-15 -3302 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))))) (-15 -3302 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458)))) (IF (|has| (-403 (-945 (-560))) (-1029 (-1153))) (IF (|has| (-945 (-560)) (-1029 (-1153))) (PROGN (-15 -3294 ((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458))) (-1153))) (-15 -3302 ((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458))) (-1153)))) |noBranch|) |noBranch|) (-15 -3290 ((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458))) (-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 (-403 (-945 (-560))))) (-1193 (-403 (-945 (-560)))))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-403 (-945 (-560)))))) (-1193 (-1149 (-403 (-945 (-560))))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 (-945 (-560)) (-755) (-755) (-1149 (-945 (-560))))) (|:| AF (-1 (-1149 (-403 (-945 (-560)))) (-755) (-755) (-1193 (-1149 (-403 (-945 (-560))))))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 (-945 (-560))) (-755)))) (-626 (-458))))) (-15 -3313 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))))) (-15 -3313 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458)))) (-15 -3309 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))))) (-15 -3309 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458)))) (-15 -3281 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))))) (-15 -3281 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458)))) (-15 -3233 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458)))) (-15 -3233 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))))) (-15 -3197 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))))) (-15 -3197 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458)))) (-15 -3236 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458)))) (-15 -3236 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))))) (-15 -3206 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458)))) (-15 -3206 ((-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))))) (-15 -3379 ((-2 (|:| |guessStream| (-1 (-1133 (-1193 (-403 (-945 (-560))))) (-1193 (-403 (-945 (-560)))))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-403 (-945 (-560)))))) (-1193 (-1149 (-403 (-945 (-560))))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 (-945 (-560)) (-755) (-755) (-1149 (-945 (-560))))) (|:| AF (-1 (-1149 (-403 (-945 (-560)))) (-755) (-755) (-1193 (-1149 (-403 (-945 (-560))))))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 (-945 (-560))) (-755)))) (-626 (-458)))) (-15 -3168 ((-2 (|:| |guessStream| (-1 (-1133 (-1193 (-403 (-945 (-560))))) (-1193 (-403 (-945 (-560)))))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-403 (-945 (-560)))))) (-1193 (-1149 (-403 (-945 (-560))))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 (-945 (-560)) (-755) (-755) (-1149 (-945 (-560))))) (|:| AF (-1 (-1149 (-403 (-945 (-560)))) (-755) (-755) (-1193 (-1149 (-403 (-945 (-560))))))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 (-945 (-560))) (-755)))) (-626 (-458)))) (IF (|has| (-403 (-945 (-560))) (-1029 (-1153))) (IF (|has| (-945 (-560)) (-1029 (-1153))) (PROGN (-15 -3168 ((-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 (-403 (-945 (-560))))) (-1193 (-403 (-945 (-560)))))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-403 (-945 (-560)))))) (-1193 (-1149 (-403 (-945 (-560))))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 (-945 (-560)) (-755) (-755) (-1149 (-945 (-560))))) (|:| AF (-1 (-1149 (-403 (-945 (-560)))) (-755) (-755) (-1193 (-1149 (-403 (-945 (-560))))))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 (-945 (-560))) (-755)))) (-626 (-458))) (-1153))) (-15 -3379 ((-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 (-403 (-945 (-560))))) (-1193 (-403 (-945 (-560)))))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-403 (-945 (-560)))))) (-1193 (-1149 (-403 (-945 (-560))))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 (-945 (-560)) (-755) (-755) (-1149 (-945 (-560))))) (|:| AF (-1 (-1149 (-403 (-945 (-560)))) (-755) (-755) (-1193 (-1149 (-403 (-945 (-560))))))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 (-945 (-560))) (-755)))) (-626 (-458))) (-1153))) (-15 -3197 ((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458))) (-1153))) (-15 -3236 ((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458))) (-1153))) (-15 -3206 ((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458))) (-1153))) (-15 -3313 ((-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458))) (-1153)))) |noBranch|) |noBranch|)) -((-3168 (((-1 HPSPEC (-626 (-458))) (-1153)) NIL) ((HPSPEC (-626 (-458))) NIL)) (-3197 (((-1 (-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))) (-626 (-458))) (-1153)) NIL) (((-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))) (-626 (-458))) NIL) (((-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560))))) NIL)) (-3206 (((-1 (-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))) (-626 (-458))) (-1153)) NIL) (((-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560))))) NIL) (((-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))) (-626 (-458))) NIL)) (-3233 (((-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560))))) NIL) (((-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))) (-626 (-458))) NIL)) (-3236 (((-1 (-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))) (-626 (-458))) (-1153)) NIL) (((-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560))))) NIL) (((-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))) (-626 (-458))) NIL)) (-3281 (((-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))) (-626 (-458))) NIL) (((-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560))))) NIL)) (-3290 (((-1 (-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))) (-626 (-458))) (-1 HPSPEC (-626 (-458)))) NIL)) (-3294 (((-1 (-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))) (-626 (-458))) (-1153)) NIL) (((-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))) (-626 (-458))) NIL) (((-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560))))) NIL)) (-3302 (((-1 (-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))) (-626 (-458))) (-1153)) NIL) (((-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))) (-626 (-458))) NIL) (((-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560))))) NIL)) (-3309 (((-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))) (-626 (-458))) NIL) (((-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560))))) NIL)) (-3313 (((-1 (-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))) (-626 (-458))) (-1153)) NIL) (((-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))) (-626 (-458))) NIL) (((-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560))))) NIL)) (-3343 (((-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))) (-626 (-1 (-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))) (-626 (-458)))) (-626 (-1153)) (-626 (-458))) NIL) (((-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))) (-626 (-1 (-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))) (-626 (-458)))) (-626 (-1153))) NIL) (((-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))) (-626 (-458))) NIL) (((-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560))))) NIL)) (-3379 (((-1 HPSPEC (-626 (-458))) (-1153)) NIL) ((HPSPEC (-626 (-458))) NIL))) -(((-481 |#1|) (-10 -7 (-15 -3343 ((-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))))) (-15 -3343 ((-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))) (-626 (-458)))) (-15 -3343 ((-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))) (-626 (-1 (-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))) (-626 (-458)))) (-626 (-1153)))) (-15 -3343 ((-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))) (-626 (-1 (-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))) (-626 (-458)))) (-626 (-1153)) (-626 (-458)))) (-15 -3294 ((-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))))) (-15 -3294 ((-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))) (-626 (-458)))) (-15 -3302 ((-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))))) (-15 -3302 ((-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))) (-626 (-458)))) (-15 -3294 ((-1 (-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))) (-626 (-458))) (-1153))) (-15 -3302 ((-1 (-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))) (-626 (-458))) (-1153))) (-15 -3290 ((-1 (-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))) (-626 (-458))) (-1 HPSPEC (-626 (-458))))) (-15 -3313 ((-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))))) (-15 -3313 ((-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))) (-626 (-458)))) (-15 -3309 ((-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))))) (-15 -3309 ((-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))) (-626 (-458)))) (-15 -3281 ((-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))))) (-15 -3281 ((-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))) (-626 (-458)))) (-15 -3233 ((-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))) (-626 (-458)))) (-15 -3233 ((-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))))) (-15 -3197 ((-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))))) (-15 -3197 ((-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))) (-626 (-458)))) (-15 -3236 ((-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))) (-626 (-458)))) (-15 -3236 ((-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))))) (-15 -3206 ((-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))) (-626 (-458)))) (-15 -3206 ((-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))))) (-15 -3379 (HPSPEC (-626 (-458)))) (-15 -3168 (HPSPEC (-626 (-458)))) (-15 -3168 ((-1 HPSPEC (-626 (-458))) (-1153))) (-15 -3379 ((-1 HPSPEC (-626 (-458))) (-1153))) (-15 -3197 ((-1 (-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))) (-626 (-458))) (-1153))) (-15 -3236 ((-1 (-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))) (-626 (-458))) (-1153))) (-15 -3206 ((-1 (-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))) (-626 (-458))) (-1153))) (-15 -3313 ((-1 (-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))) (-626 (-458))) (-1153)))) (-1153)) (T -481)) -((-3313 (*1 *2 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-1 (-626 (-2 (|:| -1843 (-725 *4 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 *4 (-560)))) (-626 (-458)))) (-5 *1 (-481 *4)) (-14 *4 *3))) (-3206 (*1 *2 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-1 (-626 (-2 (|:| -1843 (-725 *4 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 *4 (-560)))) (-626 (-458)))) (-5 *1 (-481 *4)) (-14 *4 *3))) (-3236 (*1 *2 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-1 (-626 (-2 (|:| -1843 (-725 *4 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 *4 (-560)))) (-626 (-458)))) (-5 *1 (-481 *4)) (-14 *4 *3))) (-3197 (*1 *2 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-1 (-626 (-2 (|:| -1843 (-725 *4 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 *4 (-560)))) (-626 (-458)))) (-5 *1 (-481 *4)) (-14 *4 *3))) (-3379 (*1 *2 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-1 HPSPEC (-626 (-458)))) (-5 *1 (-481 *4)) (-14 *4 *3))) (-3168 (*1 *2 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-1 HPSPEC (-626 (-458)))) (-5 *1 (-481 *4)) (-14 *4 *3))) (-3168 (*1 *2 *3) (-12 (-5 *3 (-626 (-458))) (-5 *2 HPSPEC) (-5 *1 (-481 *4)) (-14 *4 (-1153)))) (-3379 (*1 *2 *3) (-12 (-5 *3 (-626 (-458))) (-5 *2 HPSPEC) (-5 *1 (-481 *4)) (-14 *4 (-1153)))) (-3206 (*1 *2 *3) (-12 (-5 *3 (-626 (-403 (-726 *4 (-560))))) (-14 *4 (-1153)) (-5 *2 (-626 (-2 (|:| -1843 (-725 *4 (-560))) (|:| -3504 (-755))))) (-5 *1 (-481 *4)))) (-3206 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-726 *5 (-560))))) (-5 *4 (-626 (-458))) (-14 *5 (-1153)) (-5 *2 (-626 (-2 (|:| -1843 (-725 *5 (-560))) (|:| -3504 (-755))))) (-5 *1 (-481 *5)))) (-3236 (*1 *2 *3) (-12 (-5 *3 (-626 (-403 (-726 *4 (-560))))) (-14 *4 (-1153)) (-5 *2 (-626 (-2 (|:| -1843 (-725 *4 (-560))) (|:| -3504 (-755))))) (-5 *1 (-481 *4)))) (-3236 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-726 *5 (-560))))) (-5 *4 (-626 (-458))) (-14 *5 (-1153)) (-5 *2 (-626 (-2 (|:| -1843 (-725 *5 (-560))) (|:| -3504 (-755))))) (-5 *1 (-481 *5)))) (-3197 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-726 *5 (-560))))) (-5 *4 (-626 (-458))) (-14 *5 (-1153)) (-5 *2 (-626 (-2 (|:| -1843 (-725 *5 (-560))) (|:| -3504 (-755))))) (-5 *1 (-481 *5)))) (-3197 (*1 *2 *3) (-12 (-5 *3 (-626 (-403 (-726 *4 (-560))))) (-14 *4 (-1153)) (-5 *2 (-626 (-2 (|:| -1843 (-725 *4 (-560))) (|:| -3504 (-755))))) (-5 *1 (-481 *4)))) (-3233 (*1 *2 *3) (-12 (-5 *3 (-626 (-403 (-726 *4 (-560))))) (-14 *4 (-1153)) (-5 *2 (-626 (-2 (|:| -1843 (-725 *4 (-560))) (|:| -3504 (-755))))) (-5 *1 (-481 *4)))) (-3233 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-726 *5 (-560))))) (-5 *4 (-626 (-458))) (-14 *5 (-1153)) (-5 *2 (-626 (-2 (|:| -1843 (-725 *5 (-560))) (|:| -3504 (-755))))) (-5 *1 (-481 *5)))) (-3281 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-726 *5 (-560))))) (-5 *4 (-626 (-458))) (-14 *5 (-1153)) (-5 *2 (-626 (-2 (|:| -1843 (-725 *5 (-560))) (|:| -3504 (-755))))) (-5 *1 (-481 *5)))) (-3281 (*1 *2 *3) (-12 (-5 *3 (-626 (-403 (-726 *4 (-560))))) (-14 *4 (-1153)) (-5 *2 (-626 (-2 (|:| -1843 (-725 *4 (-560))) (|:| -3504 (-755))))) (-5 *1 (-481 *4)))) (-3309 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-726 *5 (-560))))) (-5 *4 (-626 (-458))) (-14 *5 (-1153)) (-5 *2 (-626 (-2 (|:| -1843 (-725 *5 (-560))) (|:| -3504 (-755))))) (-5 *1 (-481 *5)))) (-3309 (*1 *2 *3) (-12 (-5 *3 (-626 (-403 (-726 *4 (-560))))) (-14 *4 (-1153)) (-5 *2 (-626 (-2 (|:| -1843 (-725 *4 (-560))) (|:| -3504 (-755))))) (-5 *1 (-481 *4)))) (-3313 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-726 *5 (-560))))) (-5 *4 (-626 (-458))) (-14 *5 (-1153)) (-5 *2 (-626 (-2 (|:| -1843 (-725 *5 (-560))) (|:| -3504 (-755))))) (-5 *1 (-481 *5)))) (-3313 (*1 *2 *3) (-12 (-5 *3 (-626 (-403 (-726 *4 (-560))))) (-14 *4 (-1153)) (-5 *2 (-626 (-2 (|:| -1843 (-725 *4 (-560))) (|:| -3504 (-755))))) (-5 *1 (-481 *4)))) (-3290 (*1 *2 *3) (-12 (-5 *3 (-1 HPSPEC (-626 (-458)))) (-5 *2 (-1 (-626 (-2 (|:| -1843 (-725 *4 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 *4 (-560)))) (-626 (-458)))) (-5 *1 (-481 *4)) (-14 *4 (-1153)))) (-3302 (*1 *2 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-1 (-626 (-2 (|:| -1843 (-725 *4 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 *4 (-560)))) (-626 (-458)))) (-5 *1 (-481 *4)) (-14 *4 *3))) (-3294 (*1 *2 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-1 (-626 (-2 (|:| -1843 (-725 *4 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 *4 (-560)))) (-626 (-458)))) (-5 *1 (-481 *4)) (-14 *4 *3))) (-3302 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-726 *5 (-560))))) (-5 *4 (-626 (-458))) (-14 *5 (-1153)) (-5 *2 (-626 (-2 (|:| -1843 (-725 *5 (-560))) (|:| -3504 (-755))))) (-5 *1 (-481 *5)))) (-3302 (*1 *2 *3) (-12 (-5 *3 (-626 (-403 (-726 *4 (-560))))) (-14 *4 (-1153)) (-5 *2 (-626 (-2 (|:| -1843 (-725 *4 (-560))) (|:| -3504 (-755))))) (-5 *1 (-481 *4)))) (-3294 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-726 *5 (-560))))) (-5 *4 (-626 (-458))) (-14 *5 (-1153)) (-5 *2 (-626 (-2 (|:| -1843 (-725 *5 (-560))) (|:| -3504 (-755))))) (-5 *1 (-481 *5)))) (-3294 (*1 *2 *3) (-12 (-5 *3 (-626 (-403 (-726 *4 (-560))))) (-14 *4 (-1153)) (-5 *2 (-626 (-2 (|:| -1843 (-725 *4 (-560))) (|:| -3504 (-755))))) (-5 *1 (-481 *4)))) (-3343 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-626 (-1 (-626 (-2 (|:| -1843 (-725 *7 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 *7 (-560)))) (-626 (-458))))) (-5 *5 (-626 (-1153))) (-5 *6 (-626 (-458))) (-5 *3 (-626 (-403 (-726 *7 (-560))))) (-14 *7 (-1153)) (-5 *2 (-626 (-2 (|:| -1843 (-725 *7 (-560))) (|:| -3504 (-755))))) (-5 *1 (-481 *7)))) (-3343 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-626 (-1 (-626 (-2 (|:| -1843 (-725 *6 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 *6 (-560)))) (-626 (-458))))) (-5 *5 (-626 (-1153))) (-5 *3 (-626 (-403 (-726 *6 (-560))))) (-14 *6 (-1153)) (-5 *2 (-626 (-2 (|:| -1843 (-725 *6 (-560))) (|:| -3504 (-755))))) (-5 *1 (-481 *6)))) (-3343 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-726 *5 (-560))))) (-5 *4 (-626 (-458))) (-14 *5 (-1153)) (-5 *2 (-626 (-2 (|:| -1843 (-725 *5 (-560))) (|:| -3504 (-755))))) (-5 *1 (-481 *5)))) (-3343 (*1 *2 *3) (-12 (-5 *3 (-626 (-403 (-726 *4 (-560))))) (-14 *4 (-1153)) (-5 *2 (-626 (-2 (|:| -1843 (-725 *4 (-560))) (|:| -3504 (-755))))) (-5 *1 (-481 *4))))) -(-10 -7 (-15 -3343 ((-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))))) (-15 -3343 ((-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))) (-626 (-458)))) (-15 -3343 ((-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))) (-626 (-1 (-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))) (-626 (-458)))) (-626 (-1153)))) (-15 -3343 ((-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))) (-626 (-1 (-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))) (-626 (-458)))) (-626 (-1153)) (-626 (-458)))) (-15 -3294 ((-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))))) (-15 -3294 ((-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))) (-626 (-458)))) (-15 -3302 ((-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))))) (-15 -3302 ((-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))) (-626 (-458)))) (-15 -3294 ((-1 (-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))) (-626 (-458))) (-1153))) (-15 -3302 ((-1 (-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))) (-626 (-458))) (-1153))) (-15 -3290 ((-1 (-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))) (-626 (-458))) (-1 HPSPEC (-626 (-458))))) (-15 -3313 ((-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))))) (-15 -3313 ((-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))) (-626 (-458)))) (-15 -3309 ((-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))))) (-15 -3309 ((-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))) (-626 (-458)))) (-15 -3281 ((-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))))) (-15 -3281 ((-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))) (-626 (-458)))) (-15 -3233 ((-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))) (-626 (-458)))) (-15 -3233 ((-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))))) (-15 -3197 ((-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))))) (-15 -3197 ((-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))) (-626 (-458)))) (-15 -3236 ((-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))) (-626 (-458)))) (-15 -3236 ((-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))))) (-15 -3206 ((-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))) (-626 (-458)))) (-15 -3206 ((-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))))) (-15 -3379 (HPSPEC (-626 (-458)))) (-15 -3168 (HPSPEC (-626 (-458)))) (-15 -3168 ((-1 HPSPEC (-626 (-458))) (-1153))) (-15 -3379 ((-1 HPSPEC (-626 (-458))) (-1153))) (-15 -3197 ((-1 (-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))) (-626 (-458))) (-1153))) (-15 -3236 ((-1 (-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))) (-626 (-458))) (-1153))) (-15 -3206 ((-1 (-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))) (-626 (-458))) (-1153))) (-15 -3313 ((-1 (-626 (-2 (|:| -1843 (-725 |#1| (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 |#1| (-560)))) (-626 (-458))) (-1153)))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL)) (-1350 (($ $) NIL)) (-3376 (((-121) $) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-3065 (($ $) NIL)) (-2953 (((-414 $) $) NIL)) (-4179 (((-121) $ $) NIL)) (-4236 (($) NIL T CONST)) (-1473 (((-3 (-560) "failed") $) NIL) (((-3 (-403 (-560)) "failed") $) NIL)) (-3001 (((-560) $) NIL) (((-403 (-560)) $) NIL)) (-2563 (($ $ $) NIL)) (-1823 (((-3 $ "failed") $) NIL)) (-2572 (($ $ $) NIL)) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) NIL)) (-3319 (((-121) $) NIL)) (-2474 (($) 18)) (-2642 (((-121) $) NIL)) (-3856 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-2582 (($ $ $) NIL) (($ (-626 $)) NIL)) (-1291 (((-1135) $) NIL)) (-1701 (($ $) NIL)) (-4353 (((-1100) $) NIL)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL)) (-4440 (($ $ $) NIL) (($ (-626 $)) NIL)) (-1601 (((-414 $) $) NIL)) (-3505 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2336 (((-3 $ "failed") $ $) NIL)) (-3456 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-4445 (((-755) $) NIL)) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL)) (-4255 (((-375) $) 22) (((-213) $) 25) (((-403 (-1149 (-560))) $) 19) (((-533) $) 52)) (-2801 (((-842) $) 50) (($ (-560)) NIL) (($ $) NIL) (($ (-403 (-560))) NIL) (((-213) $) 24) (((-375) $) 21)) (-1751 (((-755)) NIL)) (-2328 (((-121) $ $) NIL)) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL)) (-3304 (($) 36 T CONST)) (-1459 (($) 11 T CONST)) (-1653 (((-121) $ $) NIL)) (-1733 (($ $ $) NIL)) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) NIL)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) NIL) (($ $ (-403 (-560))) NIL) (($ (-403 (-560)) $) NIL))) -(((-482) (-13 (-359) (-148) (-1029 (-560)) (-1029 (-403 (-560))) (-1013) (-600 (-213)) (-600 (-375)) (-601 (-403 (-1149 (-560)))) (-601 (-533)) (-10 -8 (-15 -2474 ($))))) (T -482)) -((-2474 (*1 *1) (-5 *1 (-482)))) -(-13 (-359) (-148) (-1029 (-560)) (-1029 (-403 (-560))) (-1013) (-600 (-213)) (-600 (-375)) (-601 (-403 (-1149 (-560)))) (-601 (-533)) (-10 -8 (-15 -2474 ($)))) -((-2601 (((-121) $ $) NIL (-2318 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-4050 (($) NIL) (($ (-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) NIL)) (-2960 (((-1241) $ |#1| |#1|) NIL (|has| $ (-6 -4506)))) (-3909 (((-121) $ (-755)) NIL)) (-2764 ((|#2| $ |#1| |#2|) 16)) (-3763 (($ (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505)))) (-3802 (($ (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505)))) (-2722 (((-3 |#2| "failed") |#1| $) 20)) (-4236 (($) NIL T CONST)) (-2868 (($ $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082))))) (-3561 (($ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) NIL (|has| $ (-6 -4505))) (($ (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505))) (((-3 |#2| "failed") |#1| $) 18)) (-4310 (($ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (($ (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505)))) (-2342 (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) NIL (|has| $ (-6 -4505))) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505)))) (-1746 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4506)))) (-1361 ((|#2| $ |#1|) NIL)) (-1981 (((-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505))) (((-626 |#2|) $) NIL (|has| $ (-6 -4505)))) (-2122 (((-121) $ (-755)) NIL)) (-4099 ((|#1| $) NIL (|has| |#1| (-834)))) (-2130 (((-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505))) (((-626 |#2|) $) NIL (|has| $ (-6 -4505)))) (-2030 (((-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (((-121) |#2| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#2| (-1082))))) (-2767 ((|#1| $) NIL (|has| |#1| (-834)))) (-3778 (($ (-1 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4506))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4506)))) (-2803 (($ (-1 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3441 (((-121) $ (-755)) NIL)) (-1291 (((-1135) $) NIL (-2318 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-1377 (((-626 |#1|) $) 13)) (-3855 (((-121) |#1| $) NIL)) (-2525 (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) NIL)) (-4345 (($ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) NIL)) (-1529 (((-626 |#1|) $) NIL)) (-1310 (((-121) |#1| $) NIL)) (-4353 (((-1100) $) NIL (-2318 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-2824 ((|#2| $) NIL (|has| |#1| (-834)))) (-3786 (((-3 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) "failed") (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL)) (-3038 (($ $ |#2|) NIL (|has| $ (-6 -4506)))) (-2146 (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) NIL)) (-2865 (((-121) (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505))) (((-121) (-1 (-121) |#2|) $) NIL (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))))) NIL (-12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (($ $ (-283 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) NIL (-12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (($ $ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) NIL (-12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (($ $ (-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) (-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) NIL (-12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (($ $ (-626 |#2|) (-626 |#2|)) NIL (-12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082)))) (($ $ (-283 |#2|)) NIL (-12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082)))) (($ $ (-626 (-283 |#2|))) NIL (-12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082))))) (-2214 (((-121) $ $) NIL)) (-1290 (((-121) |#2| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#2| (-1082))))) (-4460 (((-626 |#2|) $) NIL)) (-4191 (((-121) $) NIL)) (-3260 (($) 19)) (-2778 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3958 (($) NIL) (($ (-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) NIL)) (-4035 (((-755) (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505))) (((-755) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (((-755) |#2| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#2| (-1082)))) (((-755) (-1 (-121) |#2|) $) NIL (|has| $ (-6 -4505)))) (-2813 (($ $) NIL)) (-4255 (((-533) $) NIL (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-601 (-533))))) (-4162 (($ (-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) NIL)) (-2801 (((-842) $) NIL (-2318 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-1354 (($ (-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) NIL)) (-3656 (((-121) (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505))) (((-121) (-1 (-121) |#2|) $) NIL (|has| $ (-6 -4505)))) (-1653 (((-121) $ $) 11 (-2318 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-2271 (((-755) $) 15 (|has| $ (-6 -4505))))) -(((-483 |#1| |#2| |#3|) (-13 (-1164 |#1| |#2|) (-10 -7 (-6 -4505))) (-1082) (-1082) (-1135)) (T -483)) -NIL -(-13 (-1164 |#1| |#2|) (-10 -7 (-6 -4505))) -((-3146 (((-560) (-560) (-560)) 7)) (-3916 (((-121) (-560) (-560) (-560) (-560)) 11)) (-3765 (((-1236 (-626 (-560))) (-755) (-755)) 22))) -(((-484) (-10 -7 (-15 -3146 ((-560) (-560) (-560))) (-15 -3916 ((-121) (-560) (-560) (-560) (-560))) (-15 -3765 ((-1236 (-626 (-560))) (-755) (-755))))) (T -484)) -((-3765 (*1 *2 *3 *3) (-12 (-5 *3 (-755)) (-5 *2 (-1236 (-626 (-560)))) (-5 *1 (-484)))) (-3916 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-560)) (-5 *2 (-121)) (-5 *1 (-484)))) (-3146 (*1 *2 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-484))))) -(-10 -7 (-15 -3146 ((-560) (-560) (-560))) (-15 -3916 ((-121) (-560) (-560) (-560) (-560))) (-15 -3765 ((-1236 (-626 (-560))) (-755) (-755)))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-1654 (((-626 (-844 |#1|)) $) NIL)) (-1593 (((-1149 $) $ (-844 |#1|)) NIL) (((-1149 |#2|) $) NIL)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL (|has| |#2| (-550)))) (-1350 (($ $) NIL (|has| |#2| (-550)))) (-3376 (((-121) $) NIL (|has| |#2| (-550)))) (-1697 (((-755) $) NIL) (((-755) $ (-626 (-844 |#1|))) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-1776 (((-414 (-1149 $)) (-1149 $)) NIL (|has| |#2| (-896)))) (-3065 (($ $) NIL (|has| |#2| (-447)))) (-2953 (((-414 $) $) NIL (|has| |#2| (-447)))) (-1887 (((-3 (-626 (-1149 $)) "failed") (-626 (-1149 $)) (-1149 $)) NIL (|has| |#2| (-896)))) (-4236 (($) NIL T CONST)) (-1473 (((-3 |#2| "failed") $) NIL) (((-3 (-403 (-560)) "failed") $) NIL (|has| |#2| (-1029 (-403 (-560))))) (((-3 (-560) "failed") $) NIL (|has| |#2| (-1029 (-560)))) (((-3 (-844 |#1|) "failed") $) NIL)) (-3001 ((|#2| $) NIL) (((-403 (-560)) $) NIL (|has| |#2| (-1029 (-403 (-560))))) (((-560) $) NIL (|has| |#2| (-1029 (-560)))) (((-844 |#1|) $) NIL)) (-1979 (($ $ $ (-844 |#1|)) NIL (|has| |#2| (-170)))) (-1288 (($ $ (-626 (-560))) NIL)) (-1750 (($ $) NIL)) (-2616 (((-671 (-560)) (-671 $)) NIL (|has| |#2| (-622 (-560)))) (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) NIL (|has| |#2| (-622 (-560)))) (((-2 (|:| -3818 (-671 |#2|)) (|:| |vec| (-1236 |#2|))) (-671 $) (-1236 $)) NIL) (((-671 |#2|) (-671 $)) NIL)) (-1823 (((-3 $ "failed") $) NIL)) (-3605 (($ $) NIL (|has| |#2| (-447))) (($ $ (-844 |#1|)) NIL (|has| |#2| (-447)))) (-1743 (((-626 $) $) NIL)) (-3319 (((-121) $) NIL (|has| |#2| (-896)))) (-1456 (($ $ |#2| (-486 (-2271 |#1|) (-755)) $) NIL)) (-2399 (((-876 (-375) $) $ (-879 (-375)) (-876 (-375) $)) NIL (-12 (|has| (-844 |#1|) (-873 (-375))) (|has| |#2| (-873 (-375))))) (((-876 (-560) $) $ (-879 (-560)) (-876 (-560) $)) NIL (-12 (|has| (-844 |#1|) (-873 (-560))) (|has| |#2| (-873 (-560)))))) (-2642 (((-121) $) NIL)) (-3235 (((-755) $) NIL)) (-1647 (($ (-1149 |#2|) (-844 |#1|)) NIL) (($ (-1149 $) (-844 |#1|)) NIL)) (-1854 (((-626 $) $) NIL)) (-1814 (((-121) $) NIL)) (-1637 (($ |#2| (-486 (-2271 |#1|) (-755))) NIL) (($ $ (-844 |#1|) (-755)) NIL) (($ $ (-626 (-844 |#1|)) (-626 (-755))) NIL)) (-2923 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $ (-844 |#1|)) NIL)) (-3693 (((-486 (-2271 |#1|) (-755)) $) NIL) (((-755) $ (-844 |#1|)) NIL) (((-626 (-755)) $ (-626 (-844 |#1|))) NIL)) (-4325 (($ $ $) NIL (|has| |#2| (-834)))) (-2501 (($ $ $) NIL (|has| |#2| (-834)))) (-1504 (($ (-1 (-486 (-2271 |#1|) (-755)) (-486 (-2271 |#1|) (-755))) $) NIL)) (-2803 (($ (-1 |#2| |#2|) $) NIL)) (-2101 (((-3 (-844 |#1|) "failed") $) NIL)) (-1726 (($ $) NIL)) (-1735 ((|#2| $) NIL)) (-2582 (($ (-626 $)) NIL (|has| |#2| (-447))) (($ $ $) NIL (|has| |#2| (-447)))) (-1291 (((-1135) $) NIL)) (-3665 (((-3 (-626 $) "failed") $) NIL)) (-2327 (((-3 (-626 $) "failed") $) NIL)) (-2913 (((-3 (-2 (|:| |var| (-844 |#1|)) (|:| -4034 (-755))) "failed") $) NIL)) (-4353 (((-1100) $) NIL)) (-1704 (((-121) $) NIL)) (-1711 ((|#2| $) NIL)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL (|has| |#2| (-447)))) (-4440 (($ (-626 $)) NIL (|has| |#2| (-447))) (($ $ $) NIL (|has| |#2| (-447)))) (-3817 (((-414 (-1149 $)) (-1149 $)) NIL (|has| |#2| (-896)))) (-3032 (((-414 (-1149 $)) (-1149 $)) NIL (|has| |#2| (-896)))) (-1601 (((-414 $) $) NIL (|has| |#2| (-896)))) (-2336 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-550))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-550)))) (-4450 (($ $ (-626 (-283 $))) NIL) (($ $ (-283 $)) NIL) (($ $ $ $) NIL) (($ $ (-626 $) (-626 $)) NIL) (($ $ (-844 |#1|) |#2|) NIL) (($ $ (-626 (-844 |#1|)) (-626 |#2|)) NIL) (($ $ (-844 |#1|) $) NIL) (($ $ (-626 (-844 |#1|)) (-626 $)) NIL)) (-4069 (($ $ (-844 |#1|)) NIL (|has| |#2| (-170)))) (-2443 (($ $ (-844 |#1|)) NIL) (($ $ (-626 (-844 |#1|))) NIL) (($ $ (-844 |#1|) (-755)) NIL) (($ $ (-626 (-844 |#1|)) (-626 (-755))) NIL)) (-3662 (((-486 (-2271 |#1|) (-755)) $) NIL) (((-755) $ (-844 |#1|)) NIL) (((-626 (-755)) $ (-626 (-844 |#1|))) NIL)) (-4255 (((-879 (-375)) $) NIL (-12 (|has| (-844 |#1|) (-601 (-879 (-375)))) (|has| |#2| (-601 (-879 (-375)))))) (((-879 (-560)) $) NIL (-12 (|has| (-844 |#1|) (-601 (-879 (-560)))) (|has| |#2| (-601 (-879 (-560)))))) (((-533) $) NIL (-12 (|has| (-844 |#1|) (-601 (-533))) (|has| |#2| (-601 (-533)))))) (-1896 ((|#2| $) NIL (|has| |#2| (-447))) (($ $ (-844 |#1|)) NIL (|has| |#2| (-447)))) (-3248 (((-3 (-1236 $) "failed") (-671 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-896))))) (-2801 (((-842) $) NIL) (($ (-560)) NIL) (($ |#2|) NIL) (($ (-844 |#1|)) NIL) (($ (-403 (-560))) NIL (-2318 (|has| |#2| (-43 (-403 (-560)))) (|has| |#2| (-1029 (-403 (-560)))))) (($ $) NIL (|has| |#2| (-550)))) (-2423 (((-626 |#2|) $) NIL)) (-2636 ((|#2| $ (-486 (-2271 |#1|) (-755))) NIL) (($ $ (-844 |#1|) (-755)) NIL) (($ $ (-626 (-844 |#1|)) (-626 (-755))) NIL)) (-2272 (((-3 $ "failed") $) NIL (-2318 (-12 (|has| $ (-146)) (|has| |#2| (-896))) (|has| |#2| (-146))))) (-1751 (((-755)) NIL)) (-3487 (($ $ $ (-755)) NIL (|has| |#2| (-170)))) (-2328 (((-121) $ $) NIL (|has| |#2| (-550)))) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (-3304 (($) NIL T CONST)) (-1459 (($) NIL T CONST)) (-2500 (($ $ (-844 |#1|)) NIL) (($ $ (-626 (-844 |#1|))) NIL) (($ $ (-844 |#1|) (-755)) NIL) (($ $ (-626 (-844 |#1|)) (-626 (-755))) NIL)) (-1691 (((-121) $ $) NIL (|has| |#2| (-834)))) (-1675 (((-121) $ $) NIL (|has| |#2| (-834)))) (-1653 (((-121) $ $) NIL)) (-1683 (((-121) $ $) NIL (|has| |#2| (-834)))) (-1667 (((-121) $ $) NIL (|has| |#2| (-834)))) (-1733 (($ $ |#2|) NIL (|has| |#2| (-359)))) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) NIL)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) NIL) (($ $ (-403 (-560))) NIL (|has| |#2| (-43 (-403 (-560))))) (($ (-403 (-560)) $) NIL (|has| |#2| (-43 (-403 (-560))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-485 |#1| |#2|) (-13 (-942 |#2| (-486 (-2271 |#1|) (-755)) (-844 |#1|)) (-10 -8 (-15 -1288 ($ $ (-626 (-560)))))) (-626 (-1153)) (-1039)) (T -485)) -((-1288 (*1 *1 *1 *2) (-12 (-5 *2 (-626 (-560))) (-5 *1 (-485 *3 *4)) (-14 *3 (-626 (-1153))) (-4 *4 (-1039))))) -(-13 (-942 |#2| (-486 (-2271 |#1|) (-755)) (-844 |#1|)) (-10 -8 (-15 -1288 ($ $ (-626 (-560)))))) -((-2601 (((-121) $ $) NIL (|has| |#2| (-1082)))) (-2832 (((-121) $) NIL (|has| |#2| (-137)))) (-4259 (($ (-909)) NIL (|has| |#2| (-1039)))) (-2960 (((-1241) $ (-560) (-560)) NIL (|has| $ (-6 -4506)))) (-2280 (($ $ $) NIL (|has| |#2| (-780)))) (-2314 (((-3 $ "failed") $ $) NIL (|has| |#2| (-137)))) (-3909 (((-121) $ (-755)) NIL)) (-2912 (((-755)) NIL (|has| |#2| (-364)))) (-4235 (((-560) $) NIL (|has| |#2| (-832)))) (-2764 ((|#2| $ (-560) |#2|) NIL (|has| $ (-6 -4506)))) (-4236 (($) NIL T CONST)) (-1473 (((-3 (-560) "failed") $) NIL (-12 (|has| |#2| (-1029 (-560))) (|has| |#2| (-1082)))) (((-3 (-403 (-560)) "failed") $) NIL (-12 (|has| |#2| (-1029 (-403 (-560)))) (|has| |#2| (-1082)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1082)))) (-3001 (((-560) $) NIL (-12 (|has| |#2| (-1029 (-560))) (|has| |#2| (-1082)))) (((-403 (-560)) $) NIL (-12 (|has| |#2| (-1029 (-403 (-560)))) (|has| |#2| (-1082)))) ((|#2| $) NIL (|has| |#2| (-1082)))) (-2616 (((-671 (-560)) (-671 $)) NIL (-12 (|has| |#2| (-622 (-560))) (|has| |#2| (-1039)))) (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) NIL (-12 (|has| |#2| (-622 (-560))) (|has| |#2| (-1039)))) (((-2 (|:| -3818 (-671 |#2|)) (|:| |vec| (-1236 |#2|))) (-671 $) (-1236 $)) NIL (|has| |#2| (-1039))) (((-671 |#2|) (-671 $)) NIL (|has| |#2| (-1039)))) (-1823 (((-3 $ "failed") $) NIL (|has| |#2| (-708)))) (-1666 (($) NIL (|has| |#2| (-364)))) (-1746 ((|#2| $ (-560) |#2|) NIL (|has| $ (-6 -4506)))) (-1361 ((|#2| $ (-560)) 11)) (-1786 (((-121) $) NIL (|has| |#2| (-832)))) (-1981 (((-626 |#2|) $) NIL (|has| $ (-6 -4505)))) (-2642 (((-121) $) NIL (|has| |#2| (-708)))) (-2187 (((-121) $) NIL (|has| |#2| (-832)))) (-2122 (((-121) $ (-755)) NIL)) (-4099 (((-560) $) NIL (|has| (-560) (-834)))) (-4325 (($ $ $) NIL (-2318 (|has| |#2| (-780)) (|has| |#2| (-832))))) (-2130 (((-626 |#2|) $) NIL (|has| $ (-6 -4505)))) (-2030 (((-121) |#2| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#2| (-1082))))) (-2767 (((-560) $) NIL (|has| (-560) (-834)))) (-2501 (($ $ $) NIL (-2318 (|has| |#2| (-780)) (|has| |#2| (-832))))) (-3778 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#2| |#2|) $) NIL)) (-3142 (((-909) $) NIL (|has| |#2| (-364)))) (-3441 (((-121) $ (-755)) NIL)) (-1291 (((-1135) $) NIL (|has| |#2| (-1082)))) (-1529 (((-626 (-560)) $) NIL)) (-1310 (((-121) (-560) $) NIL)) (-1330 (($ (-909)) NIL (|has| |#2| (-364)))) (-4353 (((-1100) $) NIL (|has| |#2| (-1082)))) (-2824 ((|#2| $) NIL (|has| (-560) (-834)))) (-3038 (($ $ |#2|) NIL (|has| $ (-6 -4506)))) (-2865 (((-121) (-1 (-121) |#2|) $) NIL (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#2|))) NIL (-12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082)))) (($ $ (-283 |#2|)) NIL (-12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082)))) (($ $ (-626 |#2|) (-626 |#2|)) NIL (-12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082))))) (-2214 (((-121) $ $) NIL)) (-1290 (((-121) |#2| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#2| (-1082))))) (-4460 (((-626 |#2|) $) NIL)) (-4191 (((-121) $) NIL)) (-3260 (($) NIL)) (-2778 ((|#2| $ (-560) |#2|) NIL) ((|#2| $ (-560)) NIL)) (-2372 ((|#2| $ $) NIL (|has| |#2| (-1039)))) (-1621 (($ (-1236 |#2|)) NIL)) (-4016 (((-139)) NIL (|has| |#2| (-359)))) (-2443 (($ $) NIL (-12 (|has| |#2| (-221)) (|has| |#2| (-1039)))) (($ $ (-755)) NIL (-12 (|has| |#2| (-221)) (|has| |#2| (-1039)))) (($ $ (-1153)) NIL (-12 (|has| |#2| (-887 (-1153))) (|has| |#2| (-1039)))) (($ $ (-626 (-1153))) NIL (-12 (|has| |#2| (-887 (-1153))) (|has| |#2| (-1039)))) (($ $ (-1153) (-755)) NIL (-12 (|has| |#2| (-887 (-1153))) (|has| |#2| (-1039)))) (($ $ (-626 (-1153)) (-626 (-755))) NIL (-12 (|has| |#2| (-887 (-1153))) (|has| |#2| (-1039)))) (($ $ (-1 |#2| |#2|) (-755)) NIL (|has| |#2| (-1039))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1039)))) (-4035 (((-755) (-1 (-121) |#2|) $) NIL (|has| $ (-6 -4505))) (((-755) |#2| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#2| (-1082))))) (-2813 (($ $) NIL)) (-2801 (((-1236 |#2|) $) NIL) (((-842) $) NIL (|has| |#2| (-1082))) (($ (-560)) NIL (-2318 (-12 (|has| |#2| (-1029 (-560))) (|has| |#2| (-1082))) (|has| |#2| (-1039)))) (($ (-403 (-560))) NIL (-12 (|has| |#2| (-1029 (-403 (-560)))) (|has| |#2| (-1082)))) (($ |#2|) NIL (|has| |#2| (-1082)))) (-1751 (((-755)) NIL (|has| |#2| (-1039)))) (-3656 (((-121) (-1 (-121) |#2|) $) NIL (|has| $ (-6 -4505)))) (-1822 (($ $) NIL (|has| |#2| (-832)))) (-2464 (($ $ (-755)) NIL (|has| |#2| (-708))) (($ $ (-909)) NIL (|has| |#2| (-708)))) (-3304 (($) NIL (|has| |#2| (-137)) CONST)) (-1459 (($) NIL (|has| |#2| (-708)) CONST)) (-2500 (($ $) NIL (-12 (|has| |#2| (-221)) (|has| |#2| (-1039)))) (($ $ (-755)) NIL (-12 (|has| |#2| (-221)) (|has| |#2| (-1039)))) (($ $ (-1153)) NIL (-12 (|has| |#2| (-887 (-1153))) (|has| |#2| (-1039)))) (($ $ (-626 (-1153))) NIL (-12 (|has| |#2| (-887 (-1153))) (|has| |#2| (-1039)))) (($ $ (-1153) (-755)) NIL (-12 (|has| |#2| (-887 (-1153))) (|has| |#2| (-1039)))) (($ $ (-626 (-1153)) (-626 (-755))) NIL (-12 (|has| |#2| (-887 (-1153))) (|has| |#2| (-1039)))) (($ $ (-1 |#2| |#2|) (-755)) NIL (|has| |#2| (-1039))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1039)))) (-1691 (((-121) $ $) NIL (-2318 (|has| |#2| (-780)) (|has| |#2| (-832))))) (-1675 (((-121) $ $) NIL (-2318 (|has| |#2| (-780)) (|has| |#2| (-832))))) (-1653 (((-121) $ $) NIL (|has| |#2| (-1082)))) (-1683 (((-121) $ $) NIL (-2318 (|has| |#2| (-780)) (|has| |#2| (-832))))) (-1667 (((-121) $ $) 15 (-2318 (|has| |#2| (-780)) (|has| |#2| (-832))))) (-1733 (($ $ |#2|) NIL (|has| |#2| (-359)))) (-1725 (($ $ $) NIL (|has| |#2| (-1039))) (($ $) NIL (|has| |#2| (-1039)))) (-1716 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-755)) NIL (|has| |#2| (-708))) (($ $ (-909)) NIL (|has| |#2| (-708)))) (* (($ (-560) $) NIL (|has| |#2| (-1039))) (($ $ $) NIL (|has| |#2| (-708))) (($ $ |#2|) NIL (|has| |#2| (-1039))) (($ |#2| $) NIL (|has| |#2| (-1039))) (($ (-755) $) NIL (|has| |#2| (-137))) (($ (-909) $) NIL (|has| |#2| (-25)))) (-2271 (((-755) $) NIL (|has| $ (-6 -4505))))) -(((-486 |#1| |#2|) (-226 |#1| |#2|) (-755) (-780)) (T -486)) -NIL -(-226 |#1| |#2|) -((-2601 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-3909 (((-121) $ (-755)) NIL)) (-4236 (($) NIL T CONST)) (-1981 (((-626 |#1|) $) NIL (|has| $ (-6 -4505)))) (-2122 (((-121) $ (-755)) NIL)) (-2037 (($ $ $) 32)) (-2492 (($ $ $) 31)) (-2130 (((-626 |#1|) $) NIL (|has| $ (-6 -4505)))) (-2030 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-2501 ((|#1| $) 26)) (-3778 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#1| |#1|) $) NIL)) (-3441 (((-121) $ (-755)) NIL)) (-1291 (((-1135) $) NIL (|has| |#1| (-1082)))) (-2525 ((|#1| $) 27)) (-4345 (($ |#1| $) 10)) (-1891 (($ (-626 |#1|)) 12)) (-4353 (((-1100) $) NIL (|has| |#1| (-1082)))) (-2146 ((|#1| $) 23)) (-2865 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#1|))) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-283 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-626 |#1|) (-626 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))))) (-2214 (((-121) $ $) NIL)) (-4191 (((-121) $) NIL)) (-3260 (($) 9)) (-4035 (((-755) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505))) (((-755) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-2813 (($ $) NIL)) (-2801 (((-842) $) NIL (|has| |#1| (-1082)))) (-1354 (($ (-626 |#1|)) 29)) (-3656 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-1653 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-2271 (((-755) $) 21 (|has| $ (-6 -4505))))) -(((-487 |#1|) (-13 (-961 |#1|) (-10 -8 (-15 -1891 ($ (-626 |#1|))) (-15 -1354 ($ (-626 |#1|))) (-15 -2813 ($ $)) (-15 -4191 ((-121) $)) (-15 -3260 ($)) (-15 -2214 ((-121) $ $)) (-15 -2146 (|#1| $)) (-15 -4345 ($ |#1| $)) (-15 -2525 (|#1| $)) (-15 -2803 ($ (-1 |#1| |#1|) $)) (-15 -2501 (|#1| $)) (-15 -2492 ($ $ $)) (-15 -2037 ($ $ $)) (-15 -4236 ($)) (-15 -3441 ((-121) $ (-755))) (-15 -2122 ((-121) $ (-755))) (-15 -3909 ((-121) $ (-755))) (IF (|has| $ (-6 -4506)) (-15 -3778 ($ (-1 |#1| |#1|) $)) |noBranch|) (IF (|has| |#1| (-1082)) (PROGN (-15 -1291 ((-1135) $)) (-15 -4353 ((-1100) $)) (-15 -2801 ((-842) $)) (-15 -1653 ((-121) $ $)) (-15 -2601 ((-121) $ $))) |noBranch|) (IF (|has| $ (-6 -4505)) (PROGN (-15 -2865 ((-121) (-1 (-121) |#1|) $)) (-15 -3656 ((-121) (-1 (-121) |#1|) $)) (-15 -4035 ((-755) (-1 (-121) |#1|) $)) (-15 -2271 ((-755) $)) (-15 -1981 ((-626 |#1|) $)) (-15 -2130 ((-626 |#1|) $))) |noBranch|) (IF (|has| $ (-6 -4505)) (IF (|has| |#1| (-1082)) (PROGN (-15 -2030 ((-121) |#1| $)) (-15 -4035 ((-755) |#1| $))) |noBranch|) |noBranch|))) (-834)) (T -487)) -((-2214 (*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-487 *3)) (-4 *3 (-834)))) (-2813 (*1 *1 *1) (-12 (-5 *1 (-487 *2)) (-4 *2 (-834)))) (-3260 (*1 *1) (-12 (-5 *1 (-487 *2)) (-4 *2 (-834)))) (-4191 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-487 *3)) (-4 *3 (-834)))) (-3441 (*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *2 (-121)) (-5 *1 (-487 *4)) (-4 *4 (-834)))) (-2122 (*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *2 (-121)) (-5 *1 (-487 *4)) (-4 *4 (-834)))) (-3909 (*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *2 (-121)) (-5 *1 (-487 *4)) (-4 *4 (-834)))) (-4236 (*1 *1) (-12 (-5 *1 (-487 *2)) (-4 *2 (-834)))) (-2271 (*1 *2 *1) (-12 (|has| $ (-6 -4505)) (-5 *2 (-755)) (-5 *1 (-487 *3)) (-4 *3 (-834)))) (-2803 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-834)) (-5 *1 (-487 *3)))) (-3778 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| $ (-6 -4506)) (-4 *3 (-834)) (-5 *1 (-487 *3)))) (-3656 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| $ (-6 -4505)) (-4 *4 (-834)) (-5 *2 (-121)) (-5 *1 (-487 *4)))) (-2865 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| $ (-6 -4505)) (-4 *4 (-834)) (-5 *2 (-121)) (-5 *1 (-487 *4)))) (-4035 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| $ (-6 -4505)) (-4 *4 (-834)) (-5 *2 (-755)) (-5 *1 (-487 *4)))) (-1981 (*1 *2 *1) (-12 (|has| $ (-6 -4505)) (-5 *2 (-626 *3)) (-5 *1 (-487 *3)) (-4 *3 (-834)))) (-2130 (*1 *2 *1) (-12 (|has| $ (-6 -4505)) (-5 *2 (-626 *3)) (-5 *1 (-487 *3)) (-4 *3 (-834)))) (-4035 (*1 *2 *3 *1) (-12 (|has| $ (-6 -4505)) (-5 *2 (-755)) (-5 *1 (-487 *3)) (-4 *3 (-1082)) (-4 *3 (-834)))) (-2030 (*1 *2 *3 *1) (-12 (|has| $ (-6 -4505)) (-5 *2 (-121)) (-5 *1 (-487 *3)) (-4 *3 (-1082)) (-4 *3 (-834)))) (-1291 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-487 *3)) (-4 *3 (-1082)) (-4 *3 (-834)))) (-4353 (*1 *2 *1) (-12 (-5 *2 (-1100)) (-5 *1 (-487 *3)) (-4 *3 (-1082)) (-4 *3 (-834)))) (-2801 (*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-487 *3)) (-4 *3 (-1082)) (-4 *3 (-834)))) (-1653 (*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-487 *3)) (-4 *3 (-1082)) (-4 *3 (-834)))) (-2601 (*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-487 *3)) (-4 *3 (-1082)) (-4 *3 (-834)))) (-1354 (*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-834)) (-5 *1 (-487 *3)))) (-2146 (*1 *2 *1) (-12 (-5 *1 (-487 *2)) (-4 *2 (-834)))) (-4345 (*1 *1 *2 *1) (-12 (-5 *1 (-487 *2)) (-4 *2 (-834)))) (-2525 (*1 *2 *1) (-12 (-5 *1 (-487 *2)) (-4 *2 (-834)))) (-2501 (*1 *2 *1) (-12 (-5 *1 (-487 *2)) (-4 *2 (-834)))) (-2492 (*1 *1 *1 *1) (-12 (-5 *1 (-487 *2)) (-4 *2 (-834)))) (-2037 (*1 *1 *1 *1) (-12 (-5 *1 (-487 *2)) (-4 *2 (-834)))) (-1891 (*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-834)) (-5 *1 (-487 *3))))) -(-13 (-961 |#1|) (-10 -8 (-15 -1891 ($ (-626 |#1|))) (-15 -1354 ($ (-626 |#1|))) (-15 -2813 ($ $)) (-15 -4191 ((-121) $)) (-15 -3260 ($)) (-15 -2214 ((-121) $ $)) (-15 -2146 (|#1| $)) (-15 -4345 ($ |#1| $)) (-15 -2525 (|#1| $)) (-15 -2803 ($ (-1 |#1| |#1|) $)) (-15 -2501 (|#1| $)) (-15 -2492 ($ $ $)) (-15 -2037 ($ $ $)) (-15 -4236 ($)) (-15 -3441 ((-121) $ (-755))) (-15 -2122 ((-121) $ (-755))) (-15 -3909 ((-121) $ (-755))) (IF (|has| $ (-6 -4506)) (-15 -3778 ($ (-1 |#1| |#1|) $)) |noBranch|) (IF (|has| |#1| (-1082)) (PROGN (-15 -1291 ((-1135) $)) (-15 -4353 ((-1100) $)) (-15 -2801 ((-842) $)) (-15 -1653 ((-121) $ $)) (-15 -2601 ((-121) $ $))) |noBranch|) (IF (|has| $ (-6 -4505)) (PROGN (-15 -2865 ((-121) (-1 (-121) |#1|) $)) (-15 -3656 ((-121) (-1 (-121) |#1|) $)) (-15 -4035 ((-755) (-1 (-121) |#1|) $)) (-15 -2271 ((-755) $)) (-15 -1981 ((-626 |#1|) $)) (-15 -2130 ((-626 |#1|) $))) |noBranch|) (IF (|has| $ (-6 -4505)) (IF (|has| |#1| (-1082)) (PROGN (-15 -2030 ((-121) |#1| $)) (-15 -4035 ((-755) |#1| $))) |noBranch|) |noBranch|))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-4236 (($) NIL T CONST)) (-2342 (($ $) 69)) (-2079 (((-121) $) NIL)) (-1291 (((-1135) $) NIL)) (-1303 (((-409 |#2| (-403 |#2|) |#3| |#4|) $) 43)) (-4353 (((-1100) $) NIL)) (-4250 (((-3 |#4| "failed") $) 105)) (-2304 (($ (-409 |#2| (-403 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 113) (($ |#1| |#1| (-560)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 125)) (-1636 (((-2 (|:| -2287 (-409 |#2| (-403 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 45)) (-2801 (((-842) $) 100)) (-3304 (($) 33 T CONST)) (-1653 (((-121) $ $) 107)) (-1725 (($ $) 72) (($ $ $) NIL)) (-1716 (($ $ $) 70)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) 73))) -(((-488 |#1| |#2| |#3| |#4|) (-327 |#1| |#2| |#3| |#4|) (-359) (-1211 |#1|) (-1211 (-403 |#2|)) (-334 |#1| |#2| |#3|)) (T -488)) -NIL -(-327 |#1| |#2| |#3| |#4|) -((-4160 (((-560) (-626 (-560))) 28)) (-3705 ((|#1| (-626 |#1|)) 56)) (-3664 (((-626 |#1|) (-626 |#1|)) 57)) (-3717 (((-626 |#1|) (-626 |#1|)) 59)) (-4440 ((|#1| (-626 |#1|)) 58)) (-1896 (((-626 (-560)) (-626 |#1|)) 31))) -(((-489 |#1|) (-10 -7 (-15 -4440 (|#1| (-626 |#1|))) (-15 -3705 (|#1| (-626 |#1|))) (-15 -3717 ((-626 |#1|) (-626 |#1|))) (-15 -3664 ((-626 |#1|) (-626 |#1|))) (-15 -1896 ((-626 (-560)) (-626 |#1|))) (-15 -4160 ((-560) (-626 (-560))))) (-1211 (-560))) (T -489)) -((-4160 (*1 *2 *3) (-12 (-5 *3 (-626 (-560))) (-5 *2 (-560)) (-5 *1 (-489 *4)) (-4 *4 (-1211 *2)))) (-1896 (*1 *2 *3) (-12 (-5 *3 (-626 *4)) (-4 *4 (-1211 (-560))) (-5 *2 (-626 (-560))) (-5 *1 (-489 *4)))) (-3664 (*1 *2 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-1211 (-560))) (-5 *1 (-489 *3)))) (-3717 (*1 *2 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-1211 (-560))) (-5 *1 (-489 *3)))) (-3705 (*1 *2 *3) (-12 (-5 *3 (-626 *2)) (-5 *1 (-489 *2)) (-4 *2 (-1211 (-560))))) (-4440 (*1 *2 *3) (-12 (-5 *3 (-626 *2)) (-5 *1 (-489 *2)) (-4 *2 (-1211 (-560)))))) -(-10 -7 (-15 -4440 (|#1| (-626 |#1|))) (-15 -3705 (|#1| (-626 |#1|))) (-15 -3717 ((-626 |#1|) (-626 |#1|))) (-15 -3664 ((-626 |#1|) (-626 |#1|))) (-15 -1896 ((-626 (-560)) (-626 |#1|))) (-15 -4160 ((-560) (-626 (-560))))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-1947 (((-560) $) NIL (|has| (-560) (-296)))) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL)) (-1350 (($ $) NIL)) (-3376 (((-121) $) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-1776 (((-414 (-1149 $)) (-1149 $)) NIL (|has| (-560) (-896)))) (-3065 (($ $) NIL)) (-2953 (((-414 $) $) NIL)) (-1887 (((-3 (-626 (-1149 $)) "failed") (-626 (-1149 $)) (-1149 $)) NIL (|has| (-560) (-896)))) (-4179 (((-121) $ $) NIL)) (-4235 (((-560) $) NIL (|has| (-560) (-807)))) (-4236 (($) NIL T CONST)) (-1473 (((-3 (-560) "failed") $) NIL) (((-3 (-1153) "failed") $) NIL (|has| (-560) (-1029 (-1153)))) (((-3 (-403 (-560)) "failed") $) NIL (|has| (-560) (-1029 (-560)))) (((-3 (-560) "failed") $) NIL (|has| (-560) (-1029 (-560))))) (-3001 (((-560) $) NIL) (((-1153) $) NIL (|has| (-560) (-1029 (-1153)))) (((-403 (-560)) $) NIL (|has| (-560) (-1029 (-560)))) (((-560) $) NIL (|has| (-560) (-1029 (-560))))) (-2563 (($ $ $) NIL)) (-2616 (((-671 (-560)) (-671 $)) NIL (|has| (-560) (-622 (-560)))) (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) NIL (|has| (-560) (-622 (-560)))) (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) NIL) (((-671 (-560)) (-671 $)) NIL)) (-1823 (((-3 $ "failed") $) NIL)) (-1666 (($) NIL (|has| (-560) (-542)))) (-2572 (($ $ $) NIL)) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) NIL)) (-3319 (((-121) $) NIL)) (-1786 (((-121) $) NIL (|has| (-560) (-807)))) (-2399 (((-876 (-560) $) $ (-879 (-560)) (-876 (-560) $)) NIL (|has| (-560) (-873 (-560)))) (((-876 (-375) $) $ (-879 (-375)) (-876 (-375) $)) NIL (|has| (-560) (-873 (-375))))) (-2642 (((-121) $) NIL)) (-1540 (($ $) NIL)) (-2132 (((-560) $) NIL)) (-1424 (((-3 $ "failed") $) NIL (|has| (-560) (-1128)))) (-2187 (((-121) $) NIL (|has| (-560) (-807)))) (-3856 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-4325 (($ $ $) NIL (|has| (-560) (-834)))) (-2501 (($ $ $) NIL (|has| (-560) (-834)))) (-2803 (($ (-1 (-560) (-560)) $) NIL)) (-2582 (($ $ $) NIL) (($ (-626 $)) NIL)) (-1291 (((-1135) $) NIL)) (-1701 (($ $) NIL)) (-1394 (($) NIL (|has| (-560) (-1128)) CONST)) (-2463 (($ (-403 (-560))) 8)) (-4353 (((-1100) $) NIL)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL)) (-4440 (($ $ $) NIL) (($ (-626 $)) NIL)) (-4302 (($ $) NIL (|has| (-560) (-296))) (((-403 (-560)) $) NIL)) (-2150 (((-560) $) NIL (|has| (-560) (-542)))) (-3817 (((-414 (-1149 $)) (-1149 $)) NIL (|has| (-560) (-896)))) (-3032 (((-414 (-1149 $)) (-1149 $)) NIL (|has| (-560) (-896)))) (-1601 (((-414 $) $) NIL)) (-3505 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2336 (((-3 $ "failed") $ $) NIL)) (-3456 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-4450 (($ $ (-626 (-560)) (-626 (-560))) NIL (|has| (-560) (-298 (-560)))) (($ $ (-560) (-560)) NIL (|has| (-560) (-298 (-560)))) (($ $ (-283 (-560))) NIL (|has| (-560) (-298 (-560)))) (($ $ (-626 (-283 (-560)))) NIL (|has| (-560) (-298 (-560)))) (($ $ (-626 (-1153)) (-626 (-560))) NIL (|has| (-560) (-515 (-1153) (-560)))) (($ $ (-1153) (-560)) NIL (|has| (-560) (-515 (-1153) (-560))))) (-4445 (((-755) $) NIL)) (-2778 (($ $ (-560)) NIL (|has| (-560) (-276 (-560) (-560))))) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL)) (-2443 (($ $) NIL (|has| (-560) (-221))) (($ $ (-755)) NIL (|has| (-560) (-221))) (($ $ (-1153)) NIL (|has| (-560) (-887 (-1153)))) (($ $ (-626 (-1153))) NIL (|has| (-560) (-887 (-1153)))) (($ $ (-1153) (-755)) NIL (|has| (-560) (-887 (-1153)))) (($ $ (-626 (-1153)) (-626 (-755))) NIL (|has| (-560) (-887 (-1153)))) (($ $ (-1 (-560) (-560)) (-755)) NIL) (($ $ (-1 (-560) (-560))) NIL)) (-1646 (($ $) NIL)) (-2139 (((-560) $) NIL)) (-4255 (((-879 (-560)) $) NIL (|has| (-560) (-601 (-879 (-560))))) (((-879 (-375)) $) NIL (|has| (-560) (-601 (-879 (-375))))) (((-533) $) NIL (|has| (-560) (-601 (-533)))) (((-375) $) NIL (|has| (-560) (-1013))) (((-213) $) NIL (|has| (-560) (-1013)))) (-3248 (((-3 (-1236 $) "failed") (-671 $)) NIL (-12 (|has| $ (-146)) (|has| (-560) (-896))))) (-2801 (((-842) $) NIL) (($ (-560)) NIL) (($ $) NIL) (($ (-403 (-560))) 7) (($ (-560)) NIL) (($ (-1153)) NIL (|has| (-560) (-1029 (-1153)))) (((-403 (-560)) $) NIL) (((-996 16) $) 9)) (-2272 (((-3 $ "failed") $) NIL (-2318 (-12 (|has| $ (-146)) (|has| (-560) (-896))) (|has| (-560) (-146))))) (-1751 (((-755)) NIL)) (-4316 (((-560) $) NIL (|has| (-560) (-542)))) (-2328 (((-121) $ $) NIL)) (-1822 (($ $) NIL (|has| (-560) (-807)))) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL)) (-3304 (($) NIL T CONST)) (-1459 (($) NIL T CONST)) (-2500 (($ $) NIL (|has| (-560) (-221))) (($ $ (-755)) NIL (|has| (-560) (-221))) (($ $ (-1153)) NIL (|has| (-560) (-887 (-1153)))) (($ $ (-626 (-1153))) NIL (|has| (-560) (-887 (-1153)))) (($ $ (-1153) (-755)) NIL (|has| (-560) (-887 (-1153)))) (($ $ (-626 (-1153)) (-626 (-755))) NIL (|has| (-560) (-887 (-1153)))) (($ $ (-1 (-560) (-560)) (-755)) NIL) (($ $ (-1 (-560) (-560))) NIL)) (-1691 (((-121) $ $) NIL (|has| (-560) (-834)))) (-1675 (((-121) $ $) NIL (|has| (-560) (-834)))) (-1653 (((-121) $ $) NIL)) (-1683 (((-121) $ $) NIL (|has| (-560) (-834)))) (-1667 (((-121) $ $) NIL (|has| (-560) (-834)))) (-1733 (($ $ $) NIL) (($ (-560) (-560)) NIL)) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) NIL)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) NIL) (($ $ (-403 (-560))) NIL) (($ (-403 (-560)) $) NIL) (($ (-560) $) NIL) (($ $ (-560)) NIL))) -(((-490) (-13 (-985 (-560)) (-10 -8 (-15 -2801 ((-403 (-560)) $)) (-15 -2801 ((-996 16) $)) (-15 -4302 ((-403 (-560)) $)) (-15 -2463 ($ (-403 (-560))))))) (T -490)) -((-2801 (*1 *2 *1) (-12 (-5 *2 (-403 (-560))) (-5 *1 (-490)))) (-2801 (*1 *2 *1) (-12 (-5 *2 (-996 16)) (-5 *1 (-490)))) (-4302 (*1 *2 *1) (-12 (-5 *2 (-403 (-560))) (-5 *1 (-490)))) (-2463 (*1 *1 *2) (-12 (-5 *2 (-403 (-560))) (-5 *1 (-490))))) -(-13 (-985 (-560)) (-10 -8 (-15 -2801 ((-403 (-560)) $)) (-15 -2801 ((-996 16) $)) (-15 -4302 ((-403 (-560)) $)) (-15 -2463 ($ (-403 (-560)))))) -((-2130 (((-626 |#2|) $) 22)) (-2030 (((-121) |#2| $) 27)) (-2865 (((-121) (-1 (-121) |#2|) $) 20)) (-4450 (($ $ (-626 (-283 |#2|))) 12) (($ $ (-283 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-626 |#2|) (-626 |#2|)) NIL)) (-4035 (((-755) (-1 (-121) |#2|) $) 21) (((-755) |#2| $) 25)) (-2801 (((-842) $) 36)) (-3656 (((-121) (-1 (-121) |#2|) $) 19)) (-1653 (((-121) $ $) 30)) (-2271 (((-755) $) 16))) -(((-491 |#1| |#2|) (-10 -8 (-15 -1653 ((-121) |#1| |#1|)) (-15 -2801 ((-842) |#1|)) (-15 -4450 (|#1| |#1| (-626 |#2|) (-626 |#2|))) (-15 -4450 (|#1| |#1| |#2| |#2|)) (-15 -4450 (|#1| |#1| (-283 |#2|))) (-15 -4450 (|#1| |#1| (-626 (-283 |#2|)))) (-15 -2030 ((-121) |#2| |#1|)) (-15 -4035 ((-755) |#2| |#1|)) (-15 -2130 ((-626 |#2|) |#1|)) (-15 -4035 ((-755) (-1 (-121) |#2|) |#1|)) (-15 -2865 ((-121) (-1 (-121) |#2|) |#1|)) (-15 -3656 ((-121) (-1 (-121) |#2|) |#1|)) (-15 -2271 ((-755) |#1|))) (-492 |#2|) (-1187)) (T -491)) -NIL -(-10 -8 (-15 -1653 ((-121) |#1| |#1|)) (-15 -2801 ((-842) |#1|)) (-15 -4450 (|#1| |#1| (-626 |#2|) (-626 |#2|))) (-15 -4450 (|#1| |#1| |#2| |#2|)) (-15 -4450 (|#1| |#1| (-283 |#2|))) (-15 -4450 (|#1| |#1| (-626 (-283 |#2|)))) (-15 -2030 ((-121) |#2| |#1|)) (-15 -4035 ((-755) |#2| |#1|)) (-15 -2130 ((-626 |#2|) |#1|)) (-15 -4035 ((-755) (-1 (-121) |#2|) |#1|)) (-15 -2865 ((-121) (-1 (-121) |#2|) |#1|)) (-15 -3656 ((-121) (-1 (-121) |#2|) |#1|)) (-15 -2271 ((-755) |#1|))) -((-2601 (((-121) $ $) 18 (|has| |#1| (-1082)))) (-3909 (((-121) $ (-755)) 8)) (-4236 (($) 7 T CONST)) (-1981 (((-626 |#1|) $) 30 (|has| $ (-6 -4505)))) (-2122 (((-121) $ (-755)) 9)) (-2130 (((-626 |#1|) $) 29 (|has| $ (-6 -4505)))) (-2030 (((-121) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-3778 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#1| |#1|) $) 35)) (-3441 (((-121) $ (-755)) 10)) (-1291 (((-1135) $) 22 (|has| |#1| (-1082)))) (-4353 (((-1100) $) 21 (|has| |#1| (-1082)))) (-2865 (((-121) (-1 (-121) |#1|) $) 32 (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#1|))) 26 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-283 |#1|)) 25 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-626 |#1|) (-626 |#1|)) 23 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))))) (-2214 (((-121) $ $) 14)) (-4191 (((-121) $) 11)) (-3260 (($) 12)) (-4035 (((-755) (-1 (-121) |#1|) $) 31 (|has| $ (-6 -4505))) (((-755) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-2813 (($ $) 13)) (-2801 (((-842) $) 20 (|has| |#1| (-1082)))) (-3656 (((-121) (-1 (-121) |#1|) $) 33 (|has| $ (-6 -4505)))) (-1653 (((-121) $ $) 19 (|has| |#1| (-1082)))) (-2271 (((-755) $) 6 (|has| $ (-6 -4505))))) -(((-492 |#1|) (-1267) (-1187)) (T -492)) -((-2803 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-492 *3)) (-4 *3 (-1187)))) (-3778 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4506)) (-4 *1 (-492 *3)) (-4 *3 (-1187)))) (-3656 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| *1 (-6 -4505)) (-4 *1 (-492 *4)) (-4 *4 (-1187)) (-5 *2 (-121)))) (-2865 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| *1 (-6 -4505)) (-4 *1 (-492 *4)) (-4 *4 (-1187)) (-5 *2 (-121)))) (-4035 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| *1 (-6 -4505)) (-4 *1 (-492 *4)) (-4 *4 (-1187)) (-5 *2 (-755)))) (-1981 (*1 *2 *1) (-12 (|has| *1 (-6 -4505)) (-4 *1 (-492 *3)) (-4 *3 (-1187)) (-5 *2 (-626 *3)))) (-2130 (*1 *2 *1) (-12 (|has| *1 (-6 -4505)) (-4 *1 (-492 *3)) (-4 *3 (-1187)) (-5 *2 (-626 *3)))) (-4035 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4505)) (-4 *1 (-492 *3)) (-4 *3 (-1187)) (-4 *3 (-1082)) (-5 *2 (-755)))) (-2030 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4505)) (-4 *1 (-492 *3)) (-4 *3 (-1187)) (-4 *3 (-1082)) (-5 *2 (-121))))) -(-13 (-39) (-10 -8 (IF (|has| |t#1| (-1082)) (-6 (-1082)) |noBranch|) (IF (|has| |t#1| (-1082)) (IF (|has| |t#1| (-298 |t#1|)) (-6 (-298 |t#1|)) |noBranch|) |noBranch|) (-15 -2803 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4506)) (-15 -3778 ($ (-1 |t#1| |t#1|) $)) |noBranch|) (IF (|has| $ (-6 -4505)) (PROGN (-15 -3656 ((-121) (-1 (-121) |t#1|) $)) (-15 -2865 ((-121) (-1 (-121) |t#1|) $)) (-15 -4035 ((-755) (-1 (-121) |t#1|) $)) (-15 -1981 ((-626 |t#1|) $)) (-15 -2130 ((-626 |t#1|) $)) (IF (|has| |t#1| (-1082)) (PROGN (-15 -4035 ((-755) |t#1| $)) (-15 -2030 ((-121) |t#1| $))) |noBranch|)) |noBranch|))) -(((-39) . T) ((-105) |has| |#1| (-1082)) ((-600 (-842)) |has| |#1| (-1082)) ((-298 |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))) ((-515 |#1| |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))) ((-1082) |has| |#1| (-1082)) ((-1187) . T)) -((-2570 (($ $) 15)) (-2561 (($ $) 24)) (-2579 (($ $) 12)) (-2585 (($ $) 10)) (-2575 (($ $) 17)) (-2566 (($ $) 22))) -(((-493 |#1|) (-10 -8 (-15 -2566 (|#1| |#1|)) (-15 -2575 (|#1| |#1|)) (-15 -2585 (|#1| |#1|)) (-15 -2579 (|#1| |#1|)) (-15 -2561 (|#1| |#1|)) (-15 -2570 (|#1| |#1|))) (-494)) (T -493)) -NIL -(-10 -8 (-15 -2566 (|#1| |#1|)) (-15 -2575 (|#1| |#1|)) (-15 -2585 (|#1| |#1|)) (-15 -2579 (|#1| |#1|)) (-15 -2561 (|#1| |#1|)) (-15 -2570 (|#1| |#1|))) -((-2570 (($ $) 11)) (-2561 (($ $) 10)) (-2579 (($ $) 9)) (-2585 (($ $) 8)) (-2575 (($ $) 7)) (-2566 (($ $) 6))) -(((-494) (-1267)) (T -494)) -((-2570 (*1 *1 *1) (-4 *1 (-494))) (-2561 (*1 *1 *1) (-4 *1 (-494))) (-2579 (*1 *1 *1) (-4 *1 (-494))) (-2585 (*1 *1 *1) (-4 *1 (-494))) (-2575 (*1 *1 *1) (-4 *1 (-494))) (-2566 (*1 *1 *1) (-4 *1 (-494)))) -(-13 (-10 -8 (-15 -2566 ($ $)) (-15 -2575 ($ $)) (-15 -2585 ($ $)) (-15 -2579 ($ $)) (-15 -2561 ($ $)) (-15 -2570 ($ $)))) -((-1601 (((-414 |#4|) |#4| (-1 (-414 |#2|) |#2|)) 42))) -(((-495 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1601 ((-414 |#4|) |#4| (-1 (-414 |#2|) |#2|)))) (-359) (-1211 |#1|) (-13 (-359) (-148) (-706 |#1| |#2|)) (-1211 |#3|)) (T -495)) -((-1601 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-414 *6) *6)) (-4 *6 (-1211 *5)) (-4 *5 (-359)) (-4 *7 (-13 (-359) (-148) (-706 *5 *6))) (-5 *2 (-414 *3)) (-5 *1 (-495 *5 *6 *7 *3)) (-4 *3 (-1211 *7))))) -(-10 -7 (-15 -1601 ((-414 |#4|) |#4| (-1 (-414 |#2|) |#2|)))) -((-2601 (((-121) $ $) NIL)) (-3905 (((-626 $) (-1149 $) (-1153)) NIL) (((-626 $) (-1149 $)) NIL) (((-626 $) (-945 $)) NIL)) (-4448 (($ (-1149 $) (-1153)) NIL) (($ (-1149 $)) NIL) (($ (-945 $)) NIL)) (-2832 (((-121) $) 36)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL)) (-1350 (($ $) NIL)) (-3376 (((-121) $) NIL)) (-2652 (((-121) $ $) 62)) (-3249 (((-626 (-599 $)) $) 46)) (-2314 (((-3 $ "failed") $ $) NIL)) (-4122 (($ $ (-283 $)) NIL) (($ $ (-626 (-283 $))) NIL) (($ $ (-626 (-599 $)) (-626 $)) NIL)) (-3065 (($ $) NIL)) (-2953 (((-414 $) $) NIL)) (-2479 (($ $) NIL)) (-4179 (((-121) $ $) NIL)) (-4236 (($) NIL T CONST)) (-2257 (((-626 $) (-1149 $) (-1153)) NIL) (((-626 $) (-1149 $)) NIL) (((-626 $) (-945 $)) NIL)) (-1449 (($ (-1149 $) (-1153)) NIL) (($ (-1149 $)) NIL) (($ (-945 $)) NIL)) (-1473 (((-3 (-599 $) "failed") $) NIL) (((-3 (-560) "failed") $) NIL) (((-3 (-403 (-560)) "failed") $) NIL)) (-3001 (((-599 $) $) NIL) (((-560) $) NIL) (((-403 (-560)) $) 48)) (-2563 (($ $ $) NIL)) (-2616 (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) NIL) (((-671 (-560)) (-671 $)) NIL) (((-2 (|:| -3818 (-671 (-403 (-560)))) (|:| |vec| (-1236 (-403 (-560))))) (-671 $) (-1236 $)) NIL) (((-671 (-403 (-560))) (-671 $)) NIL)) (-2342 (($ $) NIL)) (-1823 (((-3 $ "failed") $) NIL)) (-2572 (($ $ $) NIL)) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) NIL)) (-3319 (((-121) $) NIL)) (-2352 (($ $) NIL) (($ (-626 $)) NIL)) (-1951 (((-626 (-123)) $) NIL)) (-4403 (((-123) (-123)) NIL)) (-2642 (((-121) $) 39)) (-3348 (((-121) $) NIL (|has| $ (-1029 (-560))))) (-2132 (((-1105 (-560) (-599 $)) $) 34)) (-2586 (($ $ (-560)) NIL)) (-3339 (((-1149 $) (-1149 $) (-599 $)) 77) (((-1149 $) (-1149 $) (-626 (-599 $))) 53) (($ $ (-599 $)) 66) (($ $ (-626 (-599 $))) 67)) (-3856 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-2929 (((-1149 $) (-599 $)) 64 (|has| $ (-1039)))) (-4325 (($ $ $) NIL)) (-2501 (($ $ $) NIL)) (-2803 (($ (-1 $ $) (-599 $)) NIL)) (-4220 (((-3 (-599 $) "failed") $) NIL)) (-2582 (($ (-626 $)) NIL) (($ $ $) NIL)) (-1291 (((-1135) $) NIL)) (-1586 (((-626 (-599 $)) $) NIL)) (-2181 (($ (-123) $) NIL) (($ (-123) (-626 $)) NIL)) (-3178 (((-121) $ (-123)) NIL) (((-121) $ (-1153)) NIL)) (-1701 (($ $) NIL)) (-3165 (((-755) $) NIL)) (-4353 (((-1100) $) NIL)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL)) (-4440 (($ (-626 $)) NIL) (($ $ $) NIL)) (-4388 (((-121) $ $) NIL) (((-121) $ (-1153)) NIL)) (-1601 (((-414 $) $) NIL)) (-3505 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL)) (-2336 (((-3 $ "failed") $ $) NIL)) (-3456 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-3522 (((-121) $) NIL (|has| $ (-1029 (-560))))) (-4450 (($ $ (-599 $) $) NIL) (($ $ (-626 (-599 $)) (-626 $)) NIL) (($ $ (-626 (-283 $))) NIL) (($ $ (-283 $)) NIL) (($ $ $ $) NIL) (($ $ (-626 $) (-626 $)) NIL) (($ $ (-626 (-1153)) (-626 (-1 $ $))) NIL) (($ $ (-626 (-1153)) (-626 (-1 $ (-626 $)))) NIL) (($ $ (-1153) (-1 $ (-626 $))) NIL) (($ $ (-1153) (-1 $ $)) NIL) (($ $ (-626 (-123)) (-626 (-1 $ $))) NIL) (($ $ (-626 (-123)) (-626 (-1 $ (-626 $)))) NIL) (($ $ (-123) (-1 $ (-626 $))) NIL) (($ $ (-123) (-1 $ $)) NIL)) (-4445 (((-755) $) NIL)) (-2778 (($ (-123) $) NIL) (($ (-123) $ $) NIL) (($ (-123) $ $ $) NIL) (($ (-123) $ $ $ $) NIL) (($ (-123) (-626 $)) NIL)) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL)) (-4290 (($ $) NIL) (($ $ $) NIL)) (-2443 (($ $ (-755)) NIL) (($ $) 33)) (-2139 (((-1105 (-560) (-599 $)) $) 17)) (-3591 (($ $) NIL (|has| $ (-1039)))) (-4255 (((-375) $) 91) (((-213) $) 99) (((-167 (-375)) $) 107)) (-2801 (((-842) $) NIL) (($ (-599 $)) NIL) (($ (-403 (-560))) NIL) (($ $) NIL) (($ (-560)) NIL) (($ (-1105 (-560) (-599 $))) 18)) (-1751 (((-755)) NIL)) (-4308 (($ $) NIL) (($ (-626 $)) NIL)) (-2409 (((-121) (-123)) 83)) (-2328 (((-121) $ $) NIL)) (-2464 (($ $ (-560)) NIL) (($ $ (-755)) NIL) (($ $ (-909)) NIL)) (-3304 (($) 9 T CONST)) (-1459 (($) 19 T CONST)) (-2500 (($ $ (-755)) NIL) (($ $) NIL)) (-1691 (((-121) $ $) NIL)) (-1675 (((-121) $ $) NIL)) (-1653 (((-121) $ $) 21)) (-1683 (((-121) $ $) NIL)) (-1667 (((-121) $ $) NIL)) (-1733 (($ $ $) 41)) (-1725 (($ $ $) NIL) (($ $) NIL)) (-1716 (($ $ $) NIL)) (** (($ $ (-403 (-560))) NIL) (($ $ (-560)) 44) (($ $ (-755)) NIL) (($ $ (-909)) NIL)) (* (($ (-403 (-560)) $) NIL) (($ $ (-403 (-560))) NIL) (($ $ $) 24) (($ (-560) $) NIL) (($ (-755) $) NIL) (($ (-909) $) NIL))) -(((-496) (-13 (-291) (-27) (-1029 (-560)) (-1029 (-403 (-560))) (-622 (-560)) (-1013) (-622 (-403 (-560))) (-148) (-601 (-167 (-375))) (-221) (-10 -8 (-15 -2801 ($ (-1105 (-560) (-599 $)))) (-15 -2132 ((-1105 (-560) (-599 $)) $)) (-15 -2139 ((-1105 (-560) (-599 $)) $)) (-15 -2342 ($ $)) (-15 -2652 ((-121) $ $)) (-15 -3339 ((-1149 $) (-1149 $) (-599 $))) (-15 -3339 ((-1149 $) (-1149 $) (-626 (-599 $)))) (-15 -3339 ($ $ (-599 $))) (-15 -3339 ($ $ (-626 (-599 $))))))) (T -496)) -((-2801 (*1 *1 *2) (-12 (-5 *2 (-1105 (-560) (-599 (-496)))) (-5 *1 (-496)))) (-2132 (*1 *2 *1) (-12 (-5 *2 (-1105 (-560) (-599 (-496)))) (-5 *1 (-496)))) (-2139 (*1 *2 *1) (-12 (-5 *2 (-1105 (-560) (-599 (-496)))) (-5 *1 (-496)))) (-2342 (*1 *1 *1) (-5 *1 (-496))) (-2652 (*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-496)))) (-3339 (*1 *2 *2 *3) (-12 (-5 *2 (-1149 (-496))) (-5 *3 (-599 (-496))) (-5 *1 (-496)))) (-3339 (*1 *2 *2 *3) (-12 (-5 *2 (-1149 (-496))) (-5 *3 (-626 (-599 (-496)))) (-5 *1 (-496)))) (-3339 (*1 *1 *1 *2) (-12 (-5 *2 (-599 (-496))) (-5 *1 (-496)))) (-3339 (*1 *1 *1 *2) (-12 (-5 *2 (-626 (-599 (-496)))) (-5 *1 (-496))))) -(-13 (-291) (-27) (-1029 (-560)) (-1029 (-403 (-560))) (-622 (-560)) (-1013) (-622 (-403 (-560))) (-148) (-601 (-167 (-375))) (-221) (-10 -8 (-15 -2801 ($ (-1105 (-560) (-599 $)))) (-15 -2132 ((-1105 (-560) (-599 $)) $)) (-15 -2139 ((-1105 (-560) (-599 $)) $)) (-15 -2342 ($ $)) (-15 -2652 ((-121) $ $)) (-15 -3339 ((-1149 $) (-1149 $) (-599 $))) (-15 -3339 ((-1149 $) (-1149 $) (-626 (-599 $)))) (-15 -3339 ($ $ (-599 $))) (-15 -3339 ($ $ (-626 (-599 $)))))) -((-2601 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-2960 (((-1241) $ (-560) (-560)) NIL (|has| $ (-6 -4506)))) (-3189 (((-121) (-1 (-121) |#1| |#1|) $) NIL) (((-121) $) NIL (|has| |#1| (-834)))) (-4410 (($ (-1 (-121) |#1| |#1|) $) NIL (|has| $ (-6 -4506))) (($ $) NIL (-12 (|has| $ (-6 -4506)) (|has| |#1| (-834))))) (-3743 (($ (-1 (-121) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-834)))) (-3909 (((-121) $ (-755)) NIL)) (-2764 ((|#1| $ (-560) |#1|) 25 (|has| $ (-6 -4506))) ((|#1| $ (-1202 (-560)) |#1|) NIL (|has| $ (-6 -4506)))) (-3802 (($ (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-4236 (($) NIL T CONST)) (-4030 (($ $) NIL (|has| $ (-6 -4506)))) (-2883 (($ $) NIL)) (-2868 (($ $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-4310 (($ |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082)))) (($ (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-2342 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4505))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4505)))) (-1746 ((|#1| $ (-560) |#1|) 22 (|has| $ (-6 -4506)))) (-1361 ((|#1| $ (-560)) 21)) (-2839 (((-560) (-1 (-121) |#1|) $) NIL) (((-560) |#1| $) NIL (|has| |#1| (-1082))) (((-560) |#1| $ (-560)) NIL (|has| |#1| (-1082)))) (-1981 (((-626 |#1|) $) NIL (|has| $ (-6 -4505)))) (-1721 (($ (-755) |#1|) 14)) (-2122 (((-121) $ (-755)) NIL)) (-4099 (((-560) $) 12 (|has| (-560) (-834)))) (-4325 (($ $ $) NIL (|has| |#1| (-834)))) (-2492 (($ (-1 (-121) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-834)))) (-2130 (((-626 |#1|) $) NIL (|has| $ (-6 -4505)))) (-2030 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-2767 (((-560) $) 23 (|has| (-560) (-834)))) (-2501 (($ $ $) NIL (|has| |#1| (-834)))) (-3778 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-3441 (((-121) $ (-755)) NIL)) (-1291 (((-1135) $) NIL (|has| |#1| (-1082)))) (-4103 (($ |#1| $ (-560)) NIL) (($ $ $ (-560)) NIL)) (-1529 (((-626 (-560)) $) NIL)) (-1310 (((-121) (-560) $) NIL)) (-4353 (((-1100) $) NIL (|has| |#1| (-1082)))) (-2824 ((|#1| $) NIL (|has| (-560) (-834)))) (-3786 (((-3 |#1| "failed") (-1 (-121) |#1|) $) NIL)) (-3038 (($ $ |#1|) 10 (|has| $ (-6 -4506)))) (-2865 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#1|))) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-283 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-626 |#1|) (-626 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))))) (-2214 (((-121) $ $) NIL)) (-1290 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-4460 (((-626 |#1|) $) NIL)) (-4191 (((-121) $) NIL)) (-3260 (($) 13)) (-2778 ((|#1| $ (-560) |#1|) NIL) ((|#1| $ (-560)) 24) (($ $ (-1202 (-560))) NIL)) (-2949 (($ $ (-560)) NIL) (($ $ (-1202 (-560))) NIL)) (-4035 (((-755) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505))) (((-755) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-4072 (($ $ $ (-560)) NIL (|has| $ (-6 -4506)))) (-2813 (($ $) NIL)) (-4255 (((-533) $) NIL (|has| |#1| (-601 (-533))))) (-4162 (($ (-626 |#1|)) NIL)) (-2849 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-626 $)) NIL)) (-2801 (((-842) $) NIL (|has| |#1| (-1082)))) (-3656 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-1691 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1675 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1653 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-1683 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1667 (((-121) $ $) NIL (|has| |#1| (-834)))) (-2271 (((-755) $) 9 (|has| $ (-6 -4505))))) -(((-497 |#1| |#2|) (-19 |#1|) (-1187) (-560)) (T -497)) +((-4416 (($ $) 6)) (-1892 (($ $) 7)) (** (($ $ $) 8))) +(((-279) (-1275)) (T -279)) +((** (*1 *1 *1 *1) (-4 *1 (-279))) (-1892 (*1 *1 *1) (-4 *1 (-279))) (-4416 (*1 *1 *1) (-4 *1 (-279)))) +(-13 (-10 -8 (-15 -4416 ($ $)) (-15 -1892 ($ $)) (-15 ** ($ $ $)))) +((-2833 (((-634 (-1141 |#1|)) (-1141 |#1|) |#1|) 35)) (-1513 ((|#2| |#2| |#1|) 38)) (-4191 ((|#2| |#2| |#1|) 40)) (-3762 ((|#2| |#2| |#1|) 39))) +(((-280 |#1| |#2|) (-10 -7 (-15 -1513 (|#2| |#2| |#1|)) (-15 -3762 (|#2| |#2| |#1|)) (-15 -4191 (|#2| |#2| |#1|)) (-15 -2833 ((-634 (-1141 |#1|)) (-1141 |#1|) |#1|))) (-365) (-1234 |#1|)) (T -280)) +((-2833 (*1 *2 *3 *4) (-12 (-4 *4 (-365)) (-5 *2 (-634 (-1141 *4))) (-5 *1 (-280 *4 *5)) (-5 *3 (-1141 *4)) (-4 *5 (-1234 *4)))) (-4191 (*1 *2 *2 *3) (-12 (-4 *3 (-365)) (-5 *1 (-280 *3 *2)) (-4 *2 (-1234 *3)))) (-3762 (*1 *2 *2 *3) (-12 (-4 *3 (-365)) (-5 *1 (-280 *3 *2)) (-4 *2 (-1234 *3)))) (-1513 (*1 *2 *2 *3) (-12 (-4 *3 (-365)) (-5 *1 (-280 *3 *2)) (-4 *2 (-1234 *3))))) +(-10 -7 (-15 -1513 (|#2| |#2| |#1|)) (-15 -3762 (|#2| |#2| |#1|)) (-15 -4191 (|#2| |#2| |#1|)) (-15 -2833 ((-634 (-1141 |#1|)) (-1141 |#1|) |#1|))) +((-2779 ((|#2| $ |#1|) 6))) +(((-281 |#1| |#2|) (-1275) (-1090) (-1195)) (T -281)) +((-2779 (*1 *2 *1 *3) (-12 (-4 *1 (-281 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-1195))))) +(-13 (-10 -8 (-15 -2779 (|t#2| $ |t#1|)))) +((-3989 ((|#3| $ |#2| |#3|) 12)) (-2602 ((|#3| $ |#2|) 10))) +(((-282 |#1| |#2| |#3|) (-10 -8 (-15 -3989 (|#3| |#1| |#2| |#3|)) (-15 -2602 (|#3| |#1| |#2|))) (-283 |#2| |#3|) (-1090) (-1195)) (T -282)) +NIL +(-10 -8 (-15 -3989 (|#3| |#1| |#2| |#3|)) (-15 -2602 (|#3| |#1| |#2|))) +((-2436 ((|#2| $ |#1| |#2|) 8 (|has| $ (-6 -4520)))) (-3989 ((|#2| $ |#1| |#2|) 7 (|has| $ (-6 -4520)))) (-2602 ((|#2| $ |#1|) 9)) (-2779 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 10))) +(((-283 |#1| |#2|) (-1275) (-1090) (-1195)) (T -283)) +((-2779 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-283 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-1195)))) (-2602 (*1 *2 *1 *3) (-12 (-4 *1 (-283 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-1195)))) (-2436 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4520)) (-4 *1 (-283 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-1195)))) (-3989 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4520)) (-4 *1 (-283 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-1195))))) +(-13 (-281 |t#1| |t#2|) (-10 -8 (-15 -2779 (|t#2| $ |t#1| |t#2|)) (-15 -2602 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4520)) (PROGN (-15 -2436 (|t#2| $ |t#1| |t#2|)) (-15 -3989 (|t#2| $ |t#1| |t#2|))) |noBranch|))) +(((-281 |#1| |#2|) . T)) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) 34)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) 39)) (-2227 (($ $) 37)) (-1573 (((-121) $) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-1497 (((-121) $ $) NIL)) (-2671 (($) NIL T CONST)) (-2401 (($ $ $) 32)) (-3092 (($ |#2| |#3|) 19)) (-2925 (((-3 $ "failed") $) NIL)) (-2412 (($ $ $) NIL)) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) NIL)) (-2735 (((-121) $) NIL)) (-3562 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-3094 ((|#3| $) NIL)) (-2495 (($ $ $) NIL) (($ (-634 $)) NIL)) (-4487 (((-1143) $) NIL)) (-2081 (($ $) 20)) (-4022 (((-1108) $) NIL)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL)) (-2721 (($ $ $) NIL) (($ (-634 $)) NIL)) (-4497 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2595 (((-3 $ "failed") $ $) NIL)) (-2344 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-3697 (((-3 $ "failed") $ $) NIL)) (-2709 (((-763) $) 33)) (-2779 ((|#2| $ |#2|) 41)) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) 24)) (-2745 (((-850) $) NIL) (($ (-568)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-4078 (((-763)) NIL)) (-1826 (((-121) $ $) NIL)) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (-3056 (($) 27 T CONST)) (-1556 (($) 35 T CONST)) (-1717 (((-121) $ $) NIL)) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) 36))) +(((-284 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-301) (-10 -8 (-15 -3094 (|#3| $)) (-15 -2745 (|#2| $)) (-15 -3092 ($ |#2| |#3|)) (-15 -3697 ((-3 $ "failed") $ $)) (-15 -2925 ((-3 $ "failed") $)) (-15 -2081 ($ $)) (-15 -2779 (|#2| $ |#2|)))) (-172) (-1219 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -284)) +((-2925 (*1 *1 *1) (|partial| -12 (-4 *2 (-172)) (-5 *1 (-284 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1219 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3094 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-23)) (-5 *1 (-284 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1219 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-2745 (*1 *2 *1) (-12 (-4 *2 (-1219 *3)) (-5 *1 (-284 *3 *2 *4 *5 *6 *7)) (-4 *3 (-172)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-3092 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-284 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1219 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3697 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-172)) (-5 *1 (-284 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1219 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2081 (*1 *1 *1) (-12 (-4 *2 (-172)) (-5 *1 (-284 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1219 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2779 (*1 *2 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-284 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1219 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))) +(-13 (-301) (-10 -8 (-15 -3094 (|#3| $)) (-15 -2745 (|#2| $)) (-15 -3092 ($ |#2| |#3|)) (-15 -3697 ((-3 $ "failed") $ $)) (-15 -2925 ((-3 $ "failed") $)) (-15 -2081 ($ $)) (-15 -2779 (|#2| $ |#2|)))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-3134 (((-3 $ "failed") $ $) 18)) (-2671 (($) 16 T CONST)) (-2925 (((-3 $ "failed") $) 33)) (-2735 (((-121) $) 30)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-2745 (((-850) $) 11) (($ (-568)) 27)) (-4078 (((-763)) 28)) (-1887 (($ $ (-917)) 25) (($ $ (-763)) 32)) (-3056 (($) 17 T CONST)) (-1556 (($) 29 T CONST)) (-1717 (((-121) $ $) 6)) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 24) (($ $ (-763)) 31)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 23))) +(((-285) (-1275)) (T -285)) +NIL +(-13 (-1047) (-120 $ $) (-10 -7 (-6 -4512))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-105) . T) ((-120 $ $) . T) ((-137) . T) ((-608 (-850)) . T) ((-637 $) . T) ((-716) . T) ((-1053 $) . T) ((-1047) . T) ((-1054) . T) ((-1102) . T) ((-1090) . T)) +((-1955 (((-634 (-2 (|:| |eigval| (-3 (-409 (-953 |#1|)) (-1150 (-1161) (-953 |#1|)))) (|:| |geneigvec| (-634 (-679 (-409 (-953 |#1|))))))) (-679 (-409 (-953 |#1|)))) 83)) (-3122 (((-634 (-679 (-409 (-953 |#1|)))) (-2 (|:| |eigval| (-3 (-409 (-953 |#1|)) (-1150 (-1161) (-953 |#1|)))) (|:| |eigmult| (-763)) (|:| |eigvec| (-634 (-679 (-409 (-953 |#1|)))))) (-679 (-409 (-953 |#1|)))) 78) (((-634 (-679 (-409 (-953 |#1|)))) (-3 (-409 (-953 |#1|)) (-1150 (-1161) (-953 |#1|))) (-679 (-409 (-953 |#1|))) (-763) (-763)) 36)) (-3925 (((-634 (-2 (|:| |eigval| (-3 (-409 (-953 |#1|)) (-1150 (-1161) (-953 |#1|)))) (|:| |eigmult| (-763)) (|:| |eigvec| (-634 (-679 (-409 (-953 |#1|))))))) (-679 (-409 (-953 |#1|)))) 80)) (-3708 (((-634 (-679 (-409 (-953 |#1|)))) (-3 (-409 (-953 |#1|)) (-1150 (-1161) (-953 |#1|))) (-679 (-409 (-953 |#1|)))) 60)) (-1760 (((-634 (-3 (-409 (-953 |#1|)) (-1150 (-1161) (-953 |#1|)))) (-679 (-409 (-953 |#1|)))) 59)) (-2678 (((-953 |#1|) (-679 (-409 (-953 |#1|)))) 47) (((-953 |#1|) (-679 (-409 (-953 |#1|))) (-1161)) 48))) +(((-286 |#1|) (-10 -7 (-15 -2678 ((-953 |#1|) (-679 (-409 (-953 |#1|))) (-1161))) (-15 -2678 ((-953 |#1|) (-679 (-409 (-953 |#1|))))) (-15 -1760 ((-634 (-3 (-409 (-953 |#1|)) (-1150 (-1161) (-953 |#1|)))) (-679 (-409 (-953 |#1|))))) (-15 -3708 ((-634 (-679 (-409 (-953 |#1|)))) (-3 (-409 (-953 |#1|)) (-1150 (-1161) (-953 |#1|))) (-679 (-409 (-953 |#1|))))) (-15 -3122 ((-634 (-679 (-409 (-953 |#1|)))) (-3 (-409 (-953 |#1|)) (-1150 (-1161) (-953 |#1|))) (-679 (-409 (-953 |#1|))) (-763) (-763))) (-15 -3122 ((-634 (-679 (-409 (-953 |#1|)))) (-2 (|:| |eigval| (-3 (-409 (-953 |#1|)) (-1150 (-1161) (-953 |#1|)))) (|:| |eigmult| (-763)) (|:| |eigvec| (-634 (-679 (-409 (-953 |#1|)))))) (-679 (-409 (-953 |#1|))))) (-15 -1955 ((-634 (-2 (|:| |eigval| (-3 (-409 (-953 |#1|)) (-1150 (-1161) (-953 |#1|)))) (|:| |geneigvec| (-634 (-679 (-409 (-953 |#1|))))))) (-679 (-409 (-953 |#1|))))) (-15 -3925 ((-634 (-2 (|:| |eigval| (-3 (-409 (-953 |#1|)) (-1150 (-1161) (-953 |#1|)))) (|:| |eigmult| (-763)) (|:| |eigvec| (-634 (-679 (-409 (-953 |#1|))))))) (-679 (-409 (-953 |#1|)))))) (-453)) (T -286)) +((-3925 (*1 *2 *3) (-12 (-4 *4 (-453)) (-5 *2 (-634 (-2 (|:| |eigval| (-3 (-409 (-953 *4)) (-1150 (-1161) (-953 *4)))) (|:| |eigmult| (-763)) (|:| |eigvec| (-634 (-679 (-409 (-953 *4)))))))) (-5 *1 (-286 *4)) (-5 *3 (-679 (-409 (-953 *4)))))) (-1955 (*1 *2 *3) (-12 (-4 *4 (-453)) (-5 *2 (-634 (-2 (|:| |eigval| (-3 (-409 (-953 *4)) (-1150 (-1161) (-953 *4)))) (|:| |geneigvec| (-634 (-679 (-409 (-953 *4)))))))) (-5 *1 (-286 *4)) (-5 *3 (-679 (-409 (-953 *4)))))) (-3122 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-409 (-953 *5)) (-1150 (-1161) (-953 *5)))) (|:| |eigmult| (-763)) (|:| |eigvec| (-634 *4)))) (-4 *5 (-453)) (-5 *2 (-634 (-679 (-409 (-953 *5))))) (-5 *1 (-286 *5)) (-5 *4 (-679 (-409 (-953 *5)))))) (-3122 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-409 (-953 *6)) (-1150 (-1161) (-953 *6)))) (-5 *5 (-763)) (-4 *6 (-453)) (-5 *2 (-634 (-679 (-409 (-953 *6))))) (-5 *1 (-286 *6)) (-5 *4 (-679 (-409 (-953 *6)))))) (-3708 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-409 (-953 *5)) (-1150 (-1161) (-953 *5)))) (-4 *5 (-453)) (-5 *2 (-634 (-679 (-409 (-953 *5))))) (-5 *1 (-286 *5)) (-5 *4 (-679 (-409 (-953 *5)))))) (-1760 (*1 *2 *3) (-12 (-5 *3 (-679 (-409 (-953 *4)))) (-4 *4 (-453)) (-5 *2 (-634 (-3 (-409 (-953 *4)) (-1150 (-1161) (-953 *4))))) (-5 *1 (-286 *4)))) (-2678 (*1 *2 *3) (-12 (-5 *3 (-679 (-409 (-953 *4)))) (-5 *2 (-953 *4)) (-5 *1 (-286 *4)) (-4 *4 (-453)))) (-2678 (*1 *2 *3 *4) (-12 (-5 *3 (-679 (-409 (-953 *5)))) (-5 *4 (-1161)) (-5 *2 (-953 *5)) (-5 *1 (-286 *5)) (-4 *5 (-453))))) +(-10 -7 (-15 -2678 ((-953 |#1|) (-679 (-409 (-953 |#1|))) (-1161))) (-15 -2678 ((-953 |#1|) (-679 (-409 (-953 |#1|))))) (-15 -1760 ((-634 (-3 (-409 (-953 |#1|)) (-1150 (-1161) (-953 |#1|)))) (-679 (-409 (-953 |#1|))))) (-15 -3708 ((-634 (-679 (-409 (-953 |#1|)))) (-3 (-409 (-953 |#1|)) (-1150 (-1161) (-953 |#1|))) (-679 (-409 (-953 |#1|))))) (-15 -3122 ((-634 (-679 (-409 (-953 |#1|)))) (-3 (-409 (-953 |#1|)) (-1150 (-1161) (-953 |#1|))) (-679 (-409 (-953 |#1|))) (-763) (-763))) (-15 -3122 ((-634 (-679 (-409 (-953 |#1|)))) (-2 (|:| |eigval| (-3 (-409 (-953 |#1|)) (-1150 (-1161) (-953 |#1|)))) (|:| |eigmult| (-763)) (|:| |eigvec| (-634 (-679 (-409 (-953 |#1|)))))) (-679 (-409 (-953 |#1|))))) (-15 -1955 ((-634 (-2 (|:| |eigval| (-3 (-409 (-953 |#1|)) (-1150 (-1161) (-953 |#1|)))) (|:| |geneigvec| (-634 (-679 (-409 (-953 |#1|))))))) (-679 (-409 (-953 |#1|))))) (-15 -3925 ((-634 (-2 (|:| |eigval| (-3 (-409 (-953 |#1|)) (-1150 (-1161) (-953 |#1|)))) (|:| |eigmult| (-763)) (|:| |eigvec| (-634 (-679 (-409 (-953 |#1|))))))) (-679 (-409 (-953 |#1|)))))) +((-2795 (((-288 |#2|) (-1 |#2| |#1|) (-288 |#1|)) 14))) +(((-287 |#1| |#2|) (-10 -7 (-15 -2795 ((-288 |#2|) (-1 |#2| |#1|) (-288 |#1|)))) (-1195) (-1195)) (T -287)) +((-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-288 *5)) (-4 *5 (-1195)) (-4 *6 (-1195)) (-5 *2 (-288 *6)) (-5 *1 (-287 *5 *6))))) +(-10 -7 (-15 -2795 ((-288 |#2|) (-1 |#2| |#1|) (-288 |#1|)))) +((-2447 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-2537 (((-121) $) NIL (|has| |#1| (-21)))) (-2589 (($ $) 22)) (-3134 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2366 (($ $ $) 93 (|has| |#1| (-296)))) (-2671 (($) NIL (-2198 (|has| |#1| (-21)) (|has| |#1| (-716))) CONST)) (-4153 (($ $) 8 (|has| |#1| (-21)))) (-2363 (((-3 $ "failed") $) 68 (|has| |#1| (-716)))) (-2107 ((|#1| $) 21)) (-2925 (((-3 $ "failed") $) 66 (|has| |#1| (-716)))) (-2735 (((-121) $) NIL (|has| |#1| (-716)))) (-2795 (($ (-1 |#1| |#1|) $) 24)) (-1466 ((|#1| $) 9)) (-3183 (($ $) 57 (|has| |#1| (-21)))) (-2307 (((-3 $ "failed") $) 67 (|has| |#1| (-716)))) (-4487 (((-1143) $) NIL (|has| |#1| (-1090)))) (-2081 (($ $) 70 (-2198 (|has| |#1| (-365)) (|has| |#1| (-478))))) (-4022 (((-1108) $) NIL (|has| |#1| (-1090)))) (-2503 (((-634 $) $) 19 (|has| |#1| (-558)))) (-1339 (($ $ $) 34 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-634 $)) 37 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-1161) |#1|) 27 (|has| |#1| (-523 (-1161) |#1|))) (($ $ (-634 (-1161)) (-634 |#1|)) 31 (|has| |#1| (-523 (-1161) |#1|)))) (-2783 (($ |#1| |#1|) 17)) (-4321 (((-139)) 88 (|has| |#1| (-365)))) (-4189 (($ $ (-634 (-1161)) (-634 (-763))) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-1161) (-763)) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-634 (-1161))) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-1161)) 85 (|has| |#1| (-895 (-1161))))) (-1458 (($ $ $) NIL (|has| |#1| (-478)))) (-2353 (($ $ $) NIL (|has| |#1| (-478)))) (-2745 (($ (-568)) NIL (|has| |#1| (-1047))) (((-121) $) 45 (|has| |#1| (-1090))) (((-850) $) 44 (|has| |#1| (-1090)))) (-4078 (((-763)) 73 (|has| |#1| (-1047)))) (-1887 (($ $ (-568)) NIL (|has| |#1| (-478))) (($ $ (-763)) NIL (|has| |#1| (-716))) (($ $ (-917)) NIL (|has| |#1| (-1102)))) (-3056 (($) 55 (|has| |#1| (-21)) CONST)) (-1556 (($) 63 (|has| |#1| (-716)) CONST)) (-3190 (($ $ (-634 (-1161)) (-634 (-763))) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-1161) (-763)) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-634 (-1161))) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-1161)) NIL (|has| |#1| (-895 (-1161))))) (-1717 (($ |#1| |#1|) 20) (((-121) $ $) 40 (|has| |#1| (-1090)))) (-1779 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) 90 (-2198 (|has| |#1| (-365)) (|has| |#1| (-478))))) (-1773 (($ |#1| $) 53 (|has| |#1| (-21))) (($ $ |#1|) 54 (|has| |#1| (-21))) (($ $ $) 52 (|has| |#1| (-21))) (($ $) 51 (|has| |#1| (-21)))) (-1767 (($ |#1| $) 48 (|has| |#1| (-25))) (($ $ |#1|) 49 (|has| |#1| (-25))) (($ $ $) 47 (|has| |#1| (-25)))) (** (($ $ (-568)) NIL (|has| |#1| (-478))) (($ $ (-763)) NIL (|has| |#1| (-716))) (($ $ (-917)) NIL (|has| |#1| (-1102)))) (* (($ $ |#1|) 61 (|has| |#1| (-1102))) (($ |#1| $) 60 (|has| |#1| (-1102))) (($ $ $) 59 (|has| |#1| (-1102))) (($ (-568) $) 76 (|has| |#1| (-21))) (($ (-763) $) NIL (|has| |#1| (-21))) (($ (-917) $) NIL (|has| |#1| (-25))))) +(((-288 |#1|) (-13 (-1195) (-10 -8 (-15 -1717 ($ |#1| |#1|)) (-15 -2783 ($ |#1| |#1|)) (-15 -2589 ($ $)) (-15 -1466 (|#1| $)) (-15 -2107 (|#1| $)) (-15 -2795 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-523 (-1161) |#1|)) (-6 (-523 (-1161) |#1|)) |noBranch|) (IF (|has| |#1| (-1090)) (PROGN (-6 (-1090)) (-6 (-608 (-121))) (IF (|has| |#1| (-303 |#1|)) (PROGN (-15 -1339 ($ $ $)) (-15 -1339 ($ $ (-634 $)))) |noBranch|)) |noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -1767 ($ |#1| $)) (-15 -1767 ($ $ |#1|))) |noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3183 ($ $)) (-15 -4153 ($ $)) (-15 -1773 ($ |#1| $)) (-15 -1773 ($ $ |#1|))) |noBranch|) (IF (|has| |#1| (-1102)) (PROGN (-6 (-1102)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |noBranch|) (IF (|has| |#1| (-716)) (PROGN (-6 (-716)) (-15 -2307 ((-3 $ "failed") $)) (-15 -2363 ((-3 $ "failed") $))) |noBranch|) (IF (|has| |#1| (-478)) (PROGN (-6 (-478)) (-15 -2307 ((-3 $ "failed") $)) (-15 -2363 ((-3 $ "failed") $))) |noBranch|) (IF (|has| |#1| (-1047)) (PROGN (-6 (-1047)) (-6 (-120 |#1| |#1|))) |noBranch|) (IF (|has| |#1| (-172)) (-6 (-707 |#1|)) |noBranch|) (IF (|has| |#1| (-558)) (-15 -2503 ((-634 $) $)) |noBranch|) (IF (|has| |#1| (-895 (-1161))) (-6 (-895 (-1161))) |noBranch|) (IF (|has| |#1| (-365)) (PROGN (-6 (-1251 |#1|)) (-15 -1779 ($ $ $)) (-15 -2081 ($ $))) |noBranch|) (IF (|has| |#1| (-296)) (-15 -2366 ($ $ $)) |noBranch|))) (-1195)) (T -288)) +((-1717 (*1 *1 *2 *2) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1195)))) (-2783 (*1 *1 *2 *2) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1195)))) (-2589 (*1 *1 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1195)))) (-1466 (*1 *2 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1195)))) (-2107 (*1 *2 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1195)))) (-2795 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1195)) (-5 *1 (-288 *3)))) (-1339 (*1 *1 *1 *1) (-12 (-4 *2 (-303 *2)) (-4 *2 (-1090)) (-4 *2 (-1195)) (-5 *1 (-288 *2)))) (-1339 (*1 *1 *1 *2) (-12 (-5 *2 (-634 (-288 *3))) (-4 *3 (-303 *3)) (-4 *3 (-1090)) (-4 *3 (-1195)) (-5 *1 (-288 *3)))) (-1767 (*1 *1 *2 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-25)) (-4 *2 (-1195)))) (-1767 (*1 *1 *1 *2) (-12 (-5 *1 (-288 *2)) (-4 *2 (-25)) (-4 *2 (-1195)))) (-3183 (*1 *1 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-21)) (-4 *2 (-1195)))) (-4153 (*1 *1 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-21)) (-4 *2 (-1195)))) (-1773 (*1 *1 *2 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-21)) (-4 *2 (-1195)))) (-1773 (*1 *1 *1 *2) (-12 (-5 *1 (-288 *2)) (-4 *2 (-21)) (-4 *2 (-1195)))) (-2307 (*1 *1 *1) (|partial| -12 (-5 *1 (-288 *2)) (-4 *2 (-716)) (-4 *2 (-1195)))) (-2363 (*1 *1 *1) (|partial| -12 (-5 *1 (-288 *2)) (-4 *2 (-716)) (-4 *2 (-1195)))) (-2503 (*1 *2 *1) (-12 (-5 *2 (-634 (-288 *3))) (-5 *1 (-288 *3)) (-4 *3 (-558)) (-4 *3 (-1195)))) (-2366 (*1 *1 *1 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-296)) (-4 *2 (-1195)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1102)) (-4 *2 (-1195)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1102)) (-4 *2 (-1195)))) (-1779 (*1 *1 *1 *1) (-2198 (-12 (-5 *1 (-288 *2)) (-4 *2 (-365)) (-4 *2 (-1195))) (-12 (-5 *1 (-288 *2)) (-4 *2 (-478)) (-4 *2 (-1195))))) (-2081 (*1 *1 *1) (-2198 (-12 (-5 *1 (-288 *2)) (-4 *2 (-365)) (-4 *2 (-1195))) (-12 (-5 *1 (-288 *2)) (-4 *2 (-478)) (-4 *2 (-1195)))))) +(-13 (-1195) (-10 -8 (-15 -1717 ($ |#1| |#1|)) (-15 -2783 ($ |#1| |#1|)) (-15 -2589 ($ $)) (-15 -1466 (|#1| $)) (-15 -2107 (|#1| $)) (-15 -2795 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-523 (-1161) |#1|)) (-6 (-523 (-1161) |#1|)) |noBranch|) (IF (|has| |#1| (-1090)) (PROGN (-6 (-1090)) (-6 (-608 (-121))) (IF (|has| |#1| (-303 |#1|)) (PROGN (-15 -1339 ($ $ $)) (-15 -1339 ($ $ (-634 $)))) |noBranch|)) |noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -1767 ($ |#1| $)) (-15 -1767 ($ $ |#1|))) |noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3183 ($ $)) (-15 -4153 ($ $)) (-15 -1773 ($ |#1| $)) (-15 -1773 ($ $ |#1|))) |noBranch|) (IF (|has| |#1| (-1102)) (PROGN (-6 (-1102)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |noBranch|) (IF (|has| |#1| (-716)) (PROGN (-6 (-716)) (-15 -2307 ((-3 $ "failed") $)) (-15 -2363 ((-3 $ "failed") $))) |noBranch|) (IF (|has| |#1| (-478)) (PROGN (-6 (-478)) (-15 -2307 ((-3 $ "failed") $)) (-15 -2363 ((-3 $ "failed") $))) |noBranch|) (IF (|has| |#1| (-1047)) (PROGN (-6 (-1047)) (-6 (-120 |#1| |#1|))) |noBranch|) (IF (|has| |#1| (-172)) (-6 (-707 |#1|)) |noBranch|) (IF (|has| |#1| (-558)) (-15 -2503 ((-634 $) $)) |noBranch|) (IF (|has| |#1| (-895 (-1161))) (-6 (-895 (-1161))) |noBranch|) (IF (|has| |#1| (-365)) (PROGN (-6 (-1251 |#1|)) (-15 -1779 ($ $ $)) (-15 -2081 ($ $))) |noBranch|) (IF (|has| |#1| (-296)) (-15 -2366 ($ $ $)) |noBranch|))) +((-2447 (((-121) $ $) NIL (-2198 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-2986 (($) NIL) (($ (-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) NIL)) (-1868 (((-1249) $ |#1| |#1|) NIL (|has| $ (-6 -4520)))) (-2510 (((-121) $ (-763)) NIL)) (-2436 ((|#2| $ |#1| |#2|) NIL)) (-3507 (($ (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519)))) (-2801 (($ (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519)))) (-2674 (((-3 |#2| "failed") |#1| $) NIL)) (-2671 (($) NIL T CONST)) (-3924 (($ $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090))))) (-3405 (($ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) NIL (|has| $ (-6 -4519))) (($ (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519))) (((-3 |#2| "failed") |#1| $) NIL)) (-4328 (($ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (($ (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519)))) (-3092 (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) NIL (|has| $ (-6 -4519))) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519)))) (-3989 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4520)))) (-2602 ((|#2| $ |#1|) NIL)) (-4360 (((-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519))) (((-634 |#2|) $) NIL (|has| $ (-6 -4519)))) (-1737 (((-121) $ (-763)) NIL)) (-1881 ((|#1| $) NIL (|has| |#1| (-842)))) (-1979 (((-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519))) (((-634 |#2|) $) NIL (|has| $ (-6 -4519)))) (-3109 (((-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (((-121) |#2| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#2| (-1090))))) (-2223 ((|#1| $) NIL (|has| |#1| (-842)))) (-3674 (($ (-1 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4520))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4520)))) (-2795 (($ (-1 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2166 (((-121) $ (-763)) NIL)) (-4487 (((-1143) $) NIL (-2198 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-1946 (((-634 |#1|) $) NIL)) (-3548 (((-121) |#1| $) NIL)) (-1890 (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) NIL)) (-4450 (($ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) NIL)) (-4174 (((-634 |#1|) $) NIL)) (-3578 (((-121) |#1| $) NIL)) (-4022 (((-1108) $) NIL (-2198 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-3876 ((|#2| $) NIL (|has| |#1| (-842)))) (-3775 (((-3 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) "failed") (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL)) (-3724 (($ $ |#2|) NIL (|has| $ (-6 -4520)))) (-1315 (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) NIL)) (-1387 (((-121) (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519))) (((-121) (-1 (-121) |#2|) $) NIL (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))))) NIL (-12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (($ $ (-288 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) NIL (-12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (($ $ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) NIL (-12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (($ $ (-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) (-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) NIL (-12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (($ $ (-634 |#2|) (-634 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090)))) (($ $ (-634 (-288 |#2|))) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090))))) (-3171 (((-121) $ $) NIL)) (-4467 (((-121) |#2| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#2| (-1090))))) (-2041 (((-634 |#2|) $) NIL)) (-3084 (((-121) $) NIL)) (-3248 (($) NIL)) (-2779 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2085 (($) NIL) (($ (-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) NIL)) (-4168 (((-763) (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519))) (((-763) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (((-763) |#2| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#2| (-1090)))) (((-763) (-1 (-121) |#2|) $) NIL (|has| $ (-6 -4519)))) (-3863 (($ $) NIL)) (-4278 (((-541) $) NIL (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-609 (-541))))) (-4287 (($ (-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) NIL)) (-2745 (((-850) $) NIL (-2198 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-2367 (($ (-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) NIL)) (-1319 (((-121) (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519))) (((-121) (-1 (-121) |#2|) $) NIL (|has| $ (-6 -4519)))) (-1717 (((-121) $ $) NIL (-2198 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-1697 (((-763) $) NIL (|has| $ (-6 -4519))))) +(((-289 |#1| |#2|) (-13 (-1172 |#1| |#2|) (-10 -7 (-6 -4519))) (-1090) (-1090)) (T -289)) +NIL +(-13 (-1172 |#1| |#2|) (-10 -7 (-6 -4519))) +((-2183 (((-305) (-1143) (-634 (-1143))) 16) (((-305) (-1143) (-1143)) 15) (((-305) (-634 (-1143))) 14) (((-305) (-1143)) 12))) +(((-290) (-10 -7 (-15 -2183 ((-305) (-1143))) (-15 -2183 ((-305) (-634 (-1143)))) (-15 -2183 ((-305) (-1143) (-1143))) (-15 -2183 ((-305) (-1143) (-634 (-1143)))))) (T -290)) +((-2183 (*1 *2 *3 *4) (-12 (-5 *4 (-634 (-1143))) (-5 *3 (-1143)) (-5 *2 (-305)) (-5 *1 (-290)))) (-2183 (*1 *2 *3 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-305)) (-5 *1 (-290)))) (-2183 (*1 *2 *3) (-12 (-5 *3 (-634 (-1143))) (-5 *2 (-305)) (-5 *1 (-290)))) (-2183 (*1 *2 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-305)) (-5 *1 (-290))))) +(-10 -7 (-15 -2183 ((-305) (-1143))) (-15 -2183 ((-305) (-634 (-1143)))) (-15 -2183 ((-305) (-1143) (-1143))) (-15 -2183 ((-305) (-1143) (-634 (-1143))))) +((-2795 ((|#2| (-1 |#2| |#1|) (-1143) (-607 |#1|)) 17))) +(((-291 |#1| |#2|) (-10 -7 (-15 -2795 (|#2| (-1 |#2| |#1|) (-1143) (-607 |#1|)))) (-296) (-1195)) (T -291)) +((-2795 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1143)) (-5 *5 (-607 *6)) (-4 *6 (-296)) (-4 *2 (-1195)) (-5 *1 (-291 *6 *2))))) +(-10 -7 (-15 -2795 (|#2| (-1 |#2| |#1|) (-1143) (-607 |#1|)))) +((-2795 ((|#2| (-1 |#2| |#1|) (-607 |#1|)) 17))) +(((-292 |#1| |#2|) (-10 -7 (-15 -2795 (|#2| (-1 |#2| |#1|) (-607 |#1|)))) (-296) (-296)) (T -292)) +((-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-607 *5)) (-4 *5 (-296)) (-4 *2 (-296)) (-5 *1 (-292 *5 *2))))) +(-10 -7 (-15 -2795 (|#2| (-1 |#2| |#1|) (-607 |#1|)))) +((-1816 (((-121) (-215)) 10))) +(((-293 |#1| |#2|) (-10 -7 (-15 -1816 ((-121) (-215)))) (-215) (-215)) (T -293)) +((-1816 (*1 *2 *3) (-12 (-5 *3 (-215)) (-5 *2 (-121)) (-5 *1 (-293 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-10 -7 (-15 -1816 ((-121) (-215)))) +((-2394 (((-1141 (-215)) (-310 (-215)) (-634 (-1161)) (-1084 (-835 (-215)))) 88)) (-1539 (((-1141 (-215)) (-1244 (-310 (-215))) (-634 (-1161)) (-1084 (-835 (-215)))) 103) (((-1141 (-215)) (-310 (-215)) (-634 (-1161)) (-1084 (-835 (-215)))) 58)) (-1903 (((-634 (-1143)) (-1141 (-215))) NIL)) (-1685 (((-634 (-215)) (-310 (-215)) (-1161) (-1084 (-835 (-215)))) 55)) (-2922 (((-634 (-215)) (-953 (-409 (-568))) (-1161) (-1084 (-835 (-215)))) 47)) (-2309 (((-634 (-1143)) (-634 (-215))) NIL)) (-2066 (((-215) (-1084 (-835 (-215)))) 23)) (-3632 (((-215) (-1084 (-835 (-215)))) 24)) (-3931 (((-121) (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) 51)) (-2281 (((-1143) (-215)) NIL))) +(((-294) (-10 -7 (-15 -2066 ((-215) (-1084 (-835 (-215))))) (-15 -3632 ((-215) (-1084 (-835 (-215))))) (-15 -3931 ((-121) (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215))))) (-15 -1685 ((-634 (-215)) (-310 (-215)) (-1161) (-1084 (-835 (-215))))) (-15 -2394 ((-1141 (-215)) (-310 (-215)) (-634 (-1161)) (-1084 (-835 (-215))))) (-15 -1539 ((-1141 (-215)) (-310 (-215)) (-634 (-1161)) (-1084 (-835 (-215))))) (-15 -1539 ((-1141 (-215)) (-1244 (-310 (-215))) (-634 (-1161)) (-1084 (-835 (-215))))) (-15 -2922 ((-634 (-215)) (-953 (-409 (-568))) (-1161) (-1084 (-835 (-215))))) (-15 -2281 ((-1143) (-215))) (-15 -2309 ((-634 (-1143)) (-634 (-215)))) (-15 -1903 ((-634 (-1143)) (-1141 (-215)))))) (T -294)) +((-1903 (*1 *2 *3) (-12 (-5 *3 (-1141 (-215))) (-5 *2 (-634 (-1143))) (-5 *1 (-294)))) (-2309 (*1 *2 *3) (-12 (-5 *3 (-634 (-215))) (-5 *2 (-634 (-1143))) (-5 *1 (-294)))) (-2281 (*1 *2 *3) (-12 (-5 *3 (-215)) (-5 *2 (-1143)) (-5 *1 (-294)))) (-2922 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-953 (-409 (-568)))) (-5 *4 (-1161)) (-5 *5 (-1084 (-835 (-215)))) (-5 *2 (-634 (-215))) (-5 *1 (-294)))) (-1539 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1244 (-310 (-215)))) (-5 *4 (-634 (-1161))) (-5 *5 (-1084 (-835 (-215)))) (-5 *2 (-1141 (-215))) (-5 *1 (-294)))) (-1539 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-310 (-215))) (-5 *4 (-634 (-1161))) (-5 *5 (-1084 (-835 (-215)))) (-5 *2 (-1141 (-215))) (-5 *1 (-294)))) (-2394 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-310 (-215))) (-5 *4 (-634 (-1161))) (-5 *5 (-1084 (-835 (-215)))) (-5 *2 (-1141 (-215))) (-5 *1 (-294)))) (-1685 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-310 (-215))) (-5 *4 (-1161)) (-5 *5 (-1084 (-835 (-215)))) (-5 *2 (-634 (-215))) (-5 *1 (-294)))) (-3931 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (-5 *2 (-121)) (-5 *1 (-294)))) (-3632 (*1 *2 *3) (-12 (-5 *3 (-1084 (-835 (-215)))) (-5 *2 (-215)) (-5 *1 (-294)))) (-2066 (*1 *2 *3) (-12 (-5 *3 (-1084 (-835 (-215)))) (-5 *2 (-215)) (-5 *1 (-294))))) +(-10 -7 (-15 -2066 ((-215) (-1084 (-835 (-215))))) (-15 -3632 ((-215) (-1084 (-835 (-215))))) (-15 -3931 ((-121) (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215))))) (-15 -1685 ((-634 (-215)) (-310 (-215)) (-1161) (-1084 (-835 (-215))))) (-15 -2394 ((-1141 (-215)) (-310 (-215)) (-634 (-1161)) (-1084 (-835 (-215))))) (-15 -1539 ((-1141 (-215)) (-310 (-215)) (-634 (-1161)) (-1084 (-835 (-215))))) (-15 -1539 ((-1141 (-215)) (-1244 (-310 (-215))) (-634 (-1161)) (-1084 (-835 (-215))))) (-15 -2922 ((-634 (-215)) (-953 (-409 (-568))) (-1161) (-1084 (-835 (-215))))) (-15 -2281 ((-1143) (-215))) (-15 -2309 ((-634 (-1143)) (-634 (-215)))) (-15 -1903 ((-634 (-1143)) (-1141 (-215))))) +((-3001 (((-634 (-607 $)) $) 28)) (-2366 (($ $ (-288 $)) 80) (($ $ (-634 (-288 $))) 120) (($ $ (-634 (-607 $)) (-634 $)) NIL)) (-3666 (((-3 (-607 $) "failed") $) 110)) (-2854 (((-607 $) $) 109)) (-4499 (($ $) 19) (($ (-634 $)) 54)) (-3296 (((-634 (-123)) $) 37)) (-3488 (((-123) (-123)) 90)) (-1825 (((-121) $) 128)) (-2795 (($ (-1 $ $) (-607 $)) 88)) (-3693 (((-3 (-607 $) "failed") $) 92)) (-3443 (($ (-123) $) 60) (($ (-123) (-634 $)) 98)) (-2841 (((-121) $ (-123)) 114) (((-121) $ (-1161)) 113)) (-2961 (((-763) $) 45)) (-4059 (((-121) $ $) 58) (((-121) $ (-1161)) 49)) (-3277 (((-121) $) 126)) (-1339 (($ $ (-607 $) $) NIL) (($ $ (-634 (-607 $)) (-634 $)) NIL) (($ $ (-634 (-288 $))) 118) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-634 $) (-634 $)) NIL) (($ $ (-634 (-1161)) (-634 (-1 $ $))) 83) (($ $ (-634 (-1161)) (-634 (-1 $ (-634 $)))) NIL) (($ $ (-1161) (-1 $ (-634 $))) 68) (($ $ (-1161) (-1 $ $)) 74) (($ $ (-634 (-123)) (-634 (-1 $ $))) 82) (($ $ (-634 (-123)) (-634 (-1 $ (-634 $)))) 84) (($ $ (-123) (-1 $ (-634 $))) 70) (($ $ (-123) (-1 $ $)) 76)) (-2779 (($ (-123) $) 61) (($ (-123) $ $) 62) (($ (-123) $ $ $) 63) (($ (-123) $ $ $ $) 64) (($ (-123) (-634 $)) 106)) (-3502 (($ $) 51) (($ $ $) 116)) (-2092 (($ $) 17) (($ (-634 $)) 53)) (-2887 (((-121) (-123)) 22))) +(((-295 |#1|) (-10 -8 (-15 -1825 ((-121) |#1|)) (-15 -3277 ((-121) |#1|)) (-15 -1339 (|#1| |#1| (-123) (-1 |#1| |#1|))) (-15 -1339 (|#1| |#1| (-123) (-1 |#1| (-634 |#1|)))) (-15 -1339 (|#1| |#1| (-634 (-123)) (-634 (-1 |#1| (-634 |#1|))))) (-15 -1339 (|#1| |#1| (-634 (-123)) (-634 (-1 |#1| |#1|)))) (-15 -1339 (|#1| |#1| (-1161) (-1 |#1| |#1|))) (-15 -1339 (|#1| |#1| (-1161) (-1 |#1| (-634 |#1|)))) (-15 -1339 (|#1| |#1| (-634 (-1161)) (-634 (-1 |#1| (-634 |#1|))))) (-15 -1339 (|#1| |#1| (-634 (-1161)) (-634 (-1 |#1| |#1|)))) (-15 -4059 ((-121) |#1| (-1161))) (-15 -4059 ((-121) |#1| |#1|)) (-15 -2795 (|#1| (-1 |#1| |#1|) (-607 |#1|))) (-15 -3443 (|#1| (-123) (-634 |#1|))) (-15 -3443 (|#1| (-123) |#1|)) (-15 -2841 ((-121) |#1| (-1161))) (-15 -2841 ((-121) |#1| (-123))) (-15 -2887 ((-121) (-123))) (-15 -3488 ((-123) (-123))) (-15 -3296 ((-634 (-123)) |#1|)) (-15 -3001 ((-634 (-607 |#1|)) |#1|)) (-15 -3693 ((-3 (-607 |#1|) "failed") |#1|)) (-15 -2961 ((-763) |#1|)) (-15 -3502 (|#1| |#1| |#1|)) (-15 -3502 (|#1| |#1|)) (-15 -4499 (|#1| (-634 |#1|))) (-15 -4499 (|#1| |#1|)) (-15 -2092 (|#1| (-634 |#1|))) (-15 -2092 (|#1| |#1|)) (-15 -2366 (|#1| |#1| (-634 (-607 |#1|)) (-634 |#1|))) (-15 -2366 (|#1| |#1| (-634 (-288 |#1|)))) (-15 -2366 (|#1| |#1| (-288 |#1|))) (-15 -2779 (|#1| (-123) (-634 |#1|))) (-15 -2779 (|#1| (-123) |#1| |#1| |#1| |#1|)) (-15 -2779 (|#1| (-123) |#1| |#1| |#1|)) (-15 -2779 (|#1| (-123) |#1| |#1|)) (-15 -2779 (|#1| (-123) |#1|)) (-15 -1339 (|#1| |#1| (-634 |#1|) (-634 |#1|))) (-15 -1339 (|#1| |#1| |#1| |#1|)) (-15 -1339 (|#1| |#1| (-288 |#1|))) (-15 -1339 (|#1| |#1| (-634 (-288 |#1|)))) (-15 -1339 (|#1| |#1| (-634 (-607 |#1|)) (-634 |#1|))) (-15 -1339 (|#1| |#1| (-607 |#1|) |#1|)) (-15 -2854 ((-607 |#1|) |#1|)) (-15 -3666 ((-3 (-607 |#1|) "failed") |#1|))) (-296)) (T -295)) +((-3488 (*1 *2 *2) (-12 (-5 *2 (-123)) (-5 *1 (-295 *3)) (-4 *3 (-296)))) (-2887 (*1 *2 *3) (-12 (-5 *3 (-123)) (-5 *2 (-121)) (-5 *1 (-295 *4)) (-4 *4 (-296))))) +(-10 -8 (-15 -1825 ((-121) |#1|)) (-15 -3277 ((-121) |#1|)) (-15 -1339 (|#1| |#1| (-123) (-1 |#1| |#1|))) (-15 -1339 (|#1| |#1| (-123) (-1 |#1| (-634 |#1|)))) (-15 -1339 (|#1| |#1| (-634 (-123)) (-634 (-1 |#1| (-634 |#1|))))) (-15 -1339 (|#1| |#1| (-634 (-123)) (-634 (-1 |#1| |#1|)))) (-15 -1339 (|#1| |#1| (-1161) (-1 |#1| |#1|))) (-15 -1339 (|#1| |#1| (-1161) (-1 |#1| (-634 |#1|)))) (-15 -1339 (|#1| |#1| (-634 (-1161)) (-634 (-1 |#1| (-634 |#1|))))) (-15 -1339 (|#1| |#1| (-634 (-1161)) (-634 (-1 |#1| |#1|)))) (-15 -4059 ((-121) |#1| (-1161))) (-15 -4059 ((-121) |#1| |#1|)) (-15 -2795 (|#1| (-1 |#1| |#1|) (-607 |#1|))) (-15 -3443 (|#1| (-123) (-634 |#1|))) (-15 -3443 (|#1| (-123) |#1|)) (-15 -2841 ((-121) |#1| (-1161))) (-15 -2841 ((-121) |#1| (-123))) (-15 -2887 ((-121) (-123))) (-15 -3488 ((-123) (-123))) (-15 -3296 ((-634 (-123)) |#1|)) (-15 -3001 ((-634 (-607 |#1|)) |#1|)) (-15 -3693 ((-3 (-607 |#1|) "failed") |#1|)) (-15 -2961 ((-763) |#1|)) (-15 -3502 (|#1| |#1| |#1|)) (-15 -3502 (|#1| |#1|)) (-15 -4499 (|#1| (-634 |#1|))) (-15 -4499 (|#1| |#1|)) (-15 -2092 (|#1| (-634 |#1|))) (-15 -2092 (|#1| |#1|)) (-15 -2366 (|#1| |#1| (-634 (-607 |#1|)) (-634 |#1|))) (-15 -2366 (|#1| |#1| (-634 (-288 |#1|)))) (-15 -2366 (|#1| |#1| (-288 |#1|))) (-15 -2779 (|#1| (-123) (-634 |#1|))) (-15 -2779 (|#1| (-123) |#1| |#1| |#1| |#1|)) (-15 -2779 (|#1| (-123) |#1| |#1| |#1|)) (-15 -2779 (|#1| (-123) |#1| |#1|)) (-15 -2779 (|#1| (-123) |#1|)) (-15 -1339 (|#1| |#1| (-634 |#1|) (-634 |#1|))) (-15 -1339 (|#1| |#1| |#1| |#1|)) (-15 -1339 (|#1| |#1| (-288 |#1|))) (-15 -1339 (|#1| |#1| (-634 (-288 |#1|)))) (-15 -1339 (|#1| |#1| (-634 (-607 |#1|)) (-634 |#1|))) (-15 -1339 (|#1| |#1| (-607 |#1|) |#1|)) (-15 -2854 ((-607 |#1|) |#1|)) (-15 -3666 ((-3 (-607 |#1|) "failed") |#1|))) +((-2447 (((-121) $ $) 7)) (-3001 (((-634 (-607 $)) $) 43)) (-2366 (($ $ (-288 $)) 55) (($ $ (-634 (-288 $))) 54) (($ $ (-634 (-607 $)) (-634 $)) 53)) (-3666 (((-3 (-607 $) "failed") $) 68)) (-2854 (((-607 $) $) 67)) (-4499 (($ $) 50) (($ (-634 $)) 49)) (-3296 (((-634 (-123)) $) 42)) (-3488 (((-123) (-123)) 41)) (-1825 (((-121) $) 21 (|has| $ (-1037 (-568))))) (-3007 (((-1157 $) (-607 $)) 24 (|has| $ (-1047)))) (-2521 (($ $ $) 12)) (-3268 (($ $ $) 13)) (-2795 (($ (-1 $ $) (-607 $)) 35)) (-3693 (((-3 (-607 $) "failed") $) 45)) (-4487 (((-1143) $) 9)) (-3804 (((-634 (-607 $)) $) 44)) (-3443 (($ (-123) $) 37) (($ (-123) (-634 $)) 36)) (-2841 (((-121) $ (-123)) 39) (((-121) $ (-1161)) 38)) (-2961 (((-763) $) 46)) (-4022 (((-1108) $) 10)) (-4059 (((-121) $ $) 34) (((-121) $ (-1161)) 33)) (-3277 (((-121) $) 22 (|has| $ (-1037 (-568))))) (-1339 (($ $ (-607 $) $) 66) (($ $ (-634 (-607 $)) (-634 $)) 65) (($ $ (-634 (-288 $))) 64) (($ $ (-288 $)) 63) (($ $ $ $) 62) (($ $ (-634 $) (-634 $)) 61) (($ $ (-634 (-1161)) (-634 (-1 $ $))) 32) (($ $ (-634 (-1161)) (-634 (-1 $ (-634 $)))) 31) (($ $ (-1161) (-1 $ (-634 $))) 30) (($ $ (-1161) (-1 $ $)) 29) (($ $ (-634 (-123)) (-634 (-1 $ $))) 28) (($ $ (-634 (-123)) (-634 (-1 $ (-634 $)))) 27) (($ $ (-123) (-1 $ (-634 $))) 26) (($ $ (-123) (-1 $ $)) 25)) (-2779 (($ (-123) $) 60) (($ (-123) $ $) 59) (($ (-123) $ $ $) 58) (($ (-123) $ $ $ $) 57) (($ (-123) (-634 $)) 56)) (-3502 (($ $) 48) (($ $ $) 47)) (-1626 (($ $) 23 (|has| $ (-1047)))) (-2745 (((-850) $) 11) (($ (-607 $)) 69)) (-2092 (($ $) 52) (($ (-634 $)) 51)) (-2887 (((-121) (-123)) 40)) (-1751 (((-121) $ $) 15)) (-1738 (((-121) $ $) 16)) (-1717 (((-121) $ $) 6)) (-1745 (((-121) $ $) 14)) (-1732 (((-121) $ $) 17))) +(((-296) (-1275)) (T -296)) +((-2779 (*1 *1 *2 *1) (-12 (-4 *1 (-296)) (-5 *2 (-123)))) (-2779 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-296)) (-5 *2 (-123)))) (-2779 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-296)) (-5 *2 (-123)))) (-2779 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-296)) (-5 *2 (-123)))) (-2779 (*1 *1 *2 *3) (-12 (-5 *2 (-123)) (-5 *3 (-634 *1)) (-4 *1 (-296)))) (-2366 (*1 *1 *1 *2) (-12 (-5 *2 (-288 *1)) (-4 *1 (-296)))) (-2366 (*1 *1 *1 *2) (-12 (-5 *2 (-634 (-288 *1))) (-4 *1 (-296)))) (-2366 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-634 (-607 *1))) (-5 *3 (-634 *1)) (-4 *1 (-296)))) (-2092 (*1 *1 *1) (-4 *1 (-296))) (-2092 (*1 *1 *2) (-12 (-5 *2 (-634 *1)) (-4 *1 (-296)))) (-4499 (*1 *1 *1) (-4 *1 (-296))) (-4499 (*1 *1 *2) (-12 (-5 *2 (-634 *1)) (-4 *1 (-296)))) (-3502 (*1 *1 *1) (-4 *1 (-296))) (-3502 (*1 *1 *1 *1) (-4 *1 (-296))) (-2961 (*1 *2 *1) (-12 (-4 *1 (-296)) (-5 *2 (-763)))) (-3693 (*1 *2 *1) (|partial| -12 (-5 *2 (-607 *1)) (-4 *1 (-296)))) (-3804 (*1 *2 *1) (-12 (-5 *2 (-634 (-607 *1))) (-4 *1 (-296)))) (-3001 (*1 *2 *1) (-12 (-5 *2 (-634 (-607 *1))) (-4 *1 (-296)))) (-3296 (*1 *2 *1) (-12 (-4 *1 (-296)) (-5 *2 (-634 (-123))))) (-3488 (*1 *2 *2) (-12 (-4 *1 (-296)) (-5 *2 (-123)))) (-2887 (*1 *2 *3) (-12 (-4 *1 (-296)) (-5 *3 (-123)) (-5 *2 (-121)))) (-2841 (*1 *2 *1 *3) (-12 (-4 *1 (-296)) (-5 *3 (-123)) (-5 *2 (-121)))) (-2841 (*1 *2 *1 *3) (-12 (-4 *1 (-296)) (-5 *3 (-1161)) (-5 *2 (-121)))) (-3443 (*1 *1 *2 *1) (-12 (-4 *1 (-296)) (-5 *2 (-123)))) (-3443 (*1 *1 *2 *3) (-12 (-5 *2 (-123)) (-5 *3 (-634 *1)) (-4 *1 (-296)))) (-2795 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-607 *1)) (-4 *1 (-296)))) (-4059 (*1 *2 *1 *1) (-12 (-4 *1 (-296)) (-5 *2 (-121)))) (-4059 (*1 *2 *1 *3) (-12 (-4 *1 (-296)) (-5 *3 (-1161)) (-5 *2 (-121)))) (-1339 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-634 (-1161))) (-5 *3 (-634 (-1 *1 *1))) (-4 *1 (-296)))) (-1339 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-634 (-1161))) (-5 *3 (-634 (-1 *1 (-634 *1)))) (-4 *1 (-296)))) (-1339 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-1 *1 (-634 *1))) (-4 *1 (-296)))) (-1339 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-1 *1 *1)) (-4 *1 (-296)))) (-1339 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-634 (-123))) (-5 *3 (-634 (-1 *1 *1))) (-4 *1 (-296)))) (-1339 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-634 (-123))) (-5 *3 (-634 (-1 *1 (-634 *1)))) (-4 *1 (-296)))) (-1339 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-123)) (-5 *3 (-1 *1 (-634 *1))) (-4 *1 (-296)))) (-1339 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-123)) (-5 *3 (-1 *1 *1)) (-4 *1 (-296)))) (-3007 (*1 *2 *3) (-12 (-5 *3 (-607 *1)) (-4 *1 (-1047)) (-4 *1 (-296)) (-5 *2 (-1157 *1)))) (-1626 (*1 *1 *1) (-12 (-4 *1 (-1047)) (-4 *1 (-296)))) (-3277 (*1 *2 *1) (-12 (-4 *1 (-1037 (-568))) (-4 *1 (-296)) (-5 *2 (-121)))) (-1825 (*1 *2 *1) (-12 (-4 *1 (-1037 (-568))) (-4 *1 (-296)) (-5 *2 (-121))))) +(-13 (-842) (-1037 (-607 $)) (-523 (-607 $) $) (-303 $) (-10 -8 (-15 -2779 ($ (-123) $)) (-15 -2779 ($ (-123) $ $)) (-15 -2779 ($ (-123) $ $ $)) (-15 -2779 ($ (-123) $ $ $ $)) (-15 -2779 ($ (-123) (-634 $))) (-15 -2366 ($ $ (-288 $))) (-15 -2366 ($ $ (-634 (-288 $)))) (-15 -2366 ($ $ (-634 (-607 $)) (-634 $))) (-15 -2092 ($ $)) (-15 -2092 ($ (-634 $))) (-15 -4499 ($ $)) (-15 -4499 ($ (-634 $))) (-15 -3502 ($ $)) (-15 -3502 ($ $ $)) (-15 -2961 ((-763) $)) (-15 -3693 ((-3 (-607 $) "failed") $)) (-15 -3804 ((-634 (-607 $)) $)) (-15 -3001 ((-634 (-607 $)) $)) (-15 -3296 ((-634 (-123)) $)) (-15 -3488 ((-123) (-123))) (-15 -2887 ((-121) (-123))) (-15 -2841 ((-121) $ (-123))) (-15 -2841 ((-121) $ (-1161))) (-15 -3443 ($ (-123) $)) (-15 -3443 ($ (-123) (-634 $))) (-15 -2795 ($ (-1 $ $) (-607 $))) (-15 -4059 ((-121) $ $)) (-15 -4059 ((-121) $ (-1161))) (-15 -1339 ($ $ (-634 (-1161)) (-634 (-1 $ $)))) (-15 -1339 ($ $ (-634 (-1161)) (-634 (-1 $ (-634 $))))) (-15 -1339 ($ $ (-1161) (-1 $ (-634 $)))) (-15 -1339 ($ $ (-1161) (-1 $ $))) (-15 -1339 ($ $ (-634 (-123)) (-634 (-1 $ $)))) (-15 -1339 ($ $ (-634 (-123)) (-634 (-1 $ (-634 $))))) (-15 -1339 ($ $ (-123) (-1 $ (-634 $)))) (-15 -1339 ($ $ (-123) (-1 $ $))) (IF (|has| $ (-1047)) (PROGN (-15 -3007 ((-1157 $) (-607 $))) (-15 -1626 ($ $))) |noBranch|) (IF (|has| $ (-1037 (-568))) (PROGN (-15 -3277 ((-121) $)) (-15 -1825 ((-121) $))) |noBranch|))) +(((-105) . T) ((-608 (-850)) . T) ((-303 $) . T) ((-523 (-607 $) $) . T) ((-523 $ $) . T) ((-842) . T) ((-1037 (-607 $)) . T) ((-1090) . T)) +((-4266 (((-634 |#1|) (-634 |#1|)) 10))) +(((-297 |#1|) (-10 -7 (-15 -4266 ((-634 |#1|) (-634 |#1|)))) (-840)) (T -297)) +((-4266 (*1 *2 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-840)) (-5 *1 (-297 *3))))) +(-10 -7 (-15 -4266 ((-634 |#1|) (-634 |#1|)))) +((-2795 (((-679 |#2|) (-1 |#2| |#1|) (-679 |#1|)) 15))) +(((-298 |#1| |#2|) (-10 -7 (-15 -2795 ((-679 |#2|) (-1 |#2| |#1|) (-679 |#1|)))) (-1047) (-1047)) (T -298)) +((-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-679 *5)) (-4 *5 (-1047)) (-4 *6 (-1047)) (-5 *2 (-679 *6)) (-5 *1 (-298 *5 *6))))) +(-10 -7 (-15 -2795 ((-679 |#2|) (-1 |#2| |#1|) (-679 |#1|)))) +((-2811 (((-1244 (-310 (-381))) (-1244 (-310 (-215)))) 105)) (-3026 (((-1084 (-835 (-215))) (-1084 (-835 (-381)))) 39)) (-1903 (((-634 (-1143)) (-1141 (-215))) 87)) (-3246 (((-310 (-381)) (-953 (-215))) 49)) (-2985 (((-215) (-953 (-215))) 45)) (-4037 (((-1143) (-381)) 167)) (-3079 (((-835 (-215)) (-835 (-381))) 33)) (-4281 (((-2 (|:| |additions| (-568)) (|:| |multiplications| (-568)) (|:| |exponentiations| (-568)) (|:| |functionCalls| (-568))) (-1244 (-310 (-215)))) 142)) (-1407 (((-1035) (-2 (|:| -3029 (-381)) (|:| -3391 (-1143)) (|:| |explanations| (-634 (-1143))) (|:| |extra| (-1035)))) 180) (((-1035) (-2 (|:| -3029 (-381)) (|:| -3391 (-1143)) (|:| |explanations| (-634 (-1143))))) 178)) (-2928 (((-679 (-215)) (-634 (-215)) (-763)) 13)) (-2656 (((-1244 (-688)) (-634 (-215))) 94)) (-2309 (((-634 (-1143)) (-634 (-215))) 74)) (-2258 (((-3 (-310 (-215)) "failed") (-310 (-215))) 120)) (-1816 (((-121) (-215) (-1084 (-835 (-215)))) 109)) (-3132 (((-1035) (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))) 198)) (-2066 (((-215) (-1084 (-835 (-215)))) 107)) (-3632 (((-215) (-1084 (-835 (-215)))) 108)) (-3453 (((-215) (-409 (-568))) 26)) (-4198 (((-1143) (-381)) 72)) (-3370 (((-215) (-381)) 17)) (-4014 (((-381) (-1244 (-310 (-215)))) 153)) (-4050 (((-310 (-215)) (-310 (-381))) 23)) (-2489 (((-409 (-568)) (-310 (-215))) 52)) (-1809 (((-310 (-409 (-568))) (-310 (-215))) 68)) (-3061 (((-310 (-381)) (-310 (-215))) 98)) (-4348 (((-215) (-310 (-215))) 53)) (-4290 (((-634 (-215)) (-634 (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568)))))) 63)) (-3014 (((-1084 (-835 (-215))) (-1084 (-835 (-215)))) 60)) (-2281 (((-1143) (-215)) 71)) (-3035 (((-688) (-215)) 90)) (-3149 (((-409 (-568)) (-215)) 54)) (-1650 (((-310 (-381)) (-215)) 48)) (-4278 (((-634 (-1084 (-835 (-215)))) (-634 (-1084 (-835 (-381))))) 42)) (-2768 (((-1035) (-634 (-1035))) 163) (((-1035) (-1035) (-1035)) 160)) (-2345 (((-1035) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1141 (-215))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1338 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 194))) +(((-299) (-10 -7 (-15 -3370 ((-215) (-381))) (-15 -4050 ((-310 (-215)) (-310 (-381)))) (-15 -3079 ((-835 (-215)) (-835 (-381)))) (-15 -3026 ((-1084 (-835 (-215))) (-1084 (-835 (-381))))) (-15 -4278 ((-634 (-1084 (-835 (-215)))) (-634 (-1084 (-835 (-381)))))) (-15 -3149 ((-409 (-568)) (-215))) (-15 -2489 ((-409 (-568)) (-310 (-215)))) (-15 -4348 ((-215) (-310 (-215)))) (-15 -2258 ((-3 (-310 (-215)) "failed") (-310 (-215)))) (-15 -4014 ((-381) (-1244 (-310 (-215))))) (-15 -4281 ((-2 (|:| |additions| (-568)) (|:| |multiplications| (-568)) (|:| |exponentiations| (-568)) (|:| |functionCalls| (-568))) (-1244 (-310 (-215))))) (-15 -1809 ((-310 (-409 (-568))) (-310 (-215)))) (-15 -3014 ((-1084 (-835 (-215))) (-1084 (-835 (-215))))) (-15 -4290 ((-634 (-215)) (-634 (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568))))))) (-15 -3035 ((-688) (-215))) (-15 -2656 ((-1244 (-688)) (-634 (-215)))) (-15 -3061 ((-310 (-381)) (-310 (-215)))) (-15 -2811 ((-1244 (-310 (-381))) (-1244 (-310 (-215))))) (-15 -1816 ((-121) (-215) (-1084 (-835 (-215))))) (-15 -2281 ((-1143) (-215))) (-15 -4198 ((-1143) (-381))) (-15 -2309 ((-634 (-1143)) (-634 (-215)))) (-15 -1903 ((-634 (-1143)) (-1141 (-215)))) (-15 -2066 ((-215) (-1084 (-835 (-215))))) (-15 -3632 ((-215) (-1084 (-835 (-215))))) (-15 -2768 ((-1035) (-1035) (-1035))) (-15 -2768 ((-1035) (-634 (-1035)))) (-15 -4037 ((-1143) (-381))) (-15 -1407 ((-1035) (-2 (|:| -3029 (-381)) (|:| -3391 (-1143)) (|:| |explanations| (-634 (-1143)))))) (-15 -1407 ((-1035) (-2 (|:| -3029 (-381)) (|:| -3391 (-1143)) (|:| |explanations| (-634 (-1143))) (|:| |extra| (-1035))))) (-15 -2345 ((-1035) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1141 (-215))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1338 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3132 ((-1035) (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))) (-15 -3246 ((-310 (-381)) (-953 (-215)))) (-15 -2985 ((-215) (-953 (-215)))) (-15 -1650 ((-310 (-381)) (-215))) (-15 -3453 ((-215) (-409 (-568)))) (-15 -2928 ((-679 (-215)) (-634 (-215)) (-763))))) (T -299)) +((-2928 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-215))) (-5 *4 (-763)) (-5 *2 (-679 (-215))) (-5 *1 (-299)))) (-3453 (*1 *2 *3) (-12 (-5 *3 (-409 (-568))) (-5 *2 (-215)) (-5 *1 (-299)))) (-1650 (*1 *2 *3) (-12 (-5 *3 (-215)) (-5 *2 (-310 (-381))) (-5 *1 (-299)))) (-2985 (*1 *2 *3) (-12 (-5 *3 (-953 (-215))) (-5 *2 (-215)) (-5 *1 (-299)))) (-3246 (*1 *2 *3) (-12 (-5 *3 (-953 (-215))) (-5 *2 (-310 (-381))) (-5 *1 (-299)))) (-3132 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))) (-5 *2 (-1035)) (-5 *1 (-299)))) (-2345 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1141 (-215))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1338 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1035)) (-5 *1 (-299)))) (-1407 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3029 (-381)) (|:| -3391 (-1143)) (|:| |explanations| (-634 (-1143))) (|:| |extra| (-1035)))) (-5 *2 (-1035)) (-5 *1 (-299)))) (-1407 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3029 (-381)) (|:| -3391 (-1143)) (|:| |explanations| (-634 (-1143))))) (-5 *2 (-1035)) (-5 *1 (-299)))) (-4037 (*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1143)) (-5 *1 (-299)))) (-2768 (*1 *2 *3) (-12 (-5 *3 (-634 (-1035))) (-5 *2 (-1035)) (-5 *1 (-299)))) (-2768 (*1 *2 *2 *2) (-12 (-5 *2 (-1035)) (-5 *1 (-299)))) (-3632 (*1 *2 *3) (-12 (-5 *3 (-1084 (-835 (-215)))) (-5 *2 (-215)) (-5 *1 (-299)))) (-2066 (*1 *2 *3) (-12 (-5 *3 (-1084 (-835 (-215)))) (-5 *2 (-215)) (-5 *1 (-299)))) (-1903 (*1 *2 *3) (-12 (-5 *3 (-1141 (-215))) (-5 *2 (-634 (-1143))) (-5 *1 (-299)))) (-2309 (*1 *2 *3) (-12 (-5 *3 (-634 (-215))) (-5 *2 (-634 (-1143))) (-5 *1 (-299)))) (-4198 (*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1143)) (-5 *1 (-299)))) (-2281 (*1 *2 *3) (-12 (-5 *3 (-215)) (-5 *2 (-1143)) (-5 *1 (-299)))) (-1816 (*1 *2 *3 *4) (-12 (-5 *4 (-1084 (-835 (-215)))) (-5 *3 (-215)) (-5 *2 (-121)) (-5 *1 (-299)))) (-2811 (*1 *2 *3) (-12 (-5 *3 (-1244 (-310 (-215)))) (-5 *2 (-1244 (-310 (-381)))) (-5 *1 (-299)))) (-3061 (*1 *2 *3) (-12 (-5 *3 (-310 (-215))) (-5 *2 (-310 (-381))) (-5 *1 (-299)))) (-2656 (*1 *2 *3) (-12 (-5 *3 (-634 (-215))) (-5 *2 (-1244 (-688))) (-5 *1 (-299)))) (-3035 (*1 *2 *3) (-12 (-5 *3 (-215)) (-5 *2 (-688)) (-5 *1 (-299)))) (-4290 (*1 *2 *3) (-12 (-5 *3 (-634 (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568)))))) (-5 *2 (-634 (-215))) (-5 *1 (-299)))) (-3014 (*1 *2 *2) (-12 (-5 *2 (-1084 (-835 (-215)))) (-5 *1 (-299)))) (-1809 (*1 *2 *3) (-12 (-5 *3 (-310 (-215))) (-5 *2 (-310 (-409 (-568)))) (-5 *1 (-299)))) (-4281 (*1 *2 *3) (-12 (-5 *3 (-1244 (-310 (-215)))) (-5 *2 (-2 (|:| |additions| (-568)) (|:| |multiplications| (-568)) (|:| |exponentiations| (-568)) (|:| |functionCalls| (-568)))) (-5 *1 (-299)))) (-4014 (*1 *2 *3) (-12 (-5 *3 (-1244 (-310 (-215)))) (-5 *2 (-381)) (-5 *1 (-299)))) (-2258 (*1 *2 *2) (|partial| -12 (-5 *2 (-310 (-215))) (-5 *1 (-299)))) (-4348 (*1 *2 *3) (-12 (-5 *3 (-310 (-215))) (-5 *2 (-215)) (-5 *1 (-299)))) (-2489 (*1 *2 *3) (-12 (-5 *3 (-310 (-215))) (-5 *2 (-409 (-568))) (-5 *1 (-299)))) (-3149 (*1 *2 *3) (-12 (-5 *3 (-215)) (-5 *2 (-409 (-568))) (-5 *1 (-299)))) (-4278 (*1 *2 *3) (-12 (-5 *3 (-634 (-1084 (-835 (-381))))) (-5 *2 (-634 (-1084 (-835 (-215))))) (-5 *1 (-299)))) (-3026 (*1 *2 *3) (-12 (-5 *3 (-1084 (-835 (-381)))) (-5 *2 (-1084 (-835 (-215)))) (-5 *1 (-299)))) (-3079 (*1 *2 *3) (-12 (-5 *3 (-835 (-381))) (-5 *2 (-835 (-215))) (-5 *1 (-299)))) (-4050 (*1 *2 *3) (-12 (-5 *3 (-310 (-381))) (-5 *2 (-310 (-215))) (-5 *1 (-299)))) (-3370 (*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-215)) (-5 *1 (-299))))) +(-10 -7 (-15 -3370 ((-215) (-381))) (-15 -4050 ((-310 (-215)) (-310 (-381)))) (-15 -3079 ((-835 (-215)) (-835 (-381)))) (-15 -3026 ((-1084 (-835 (-215))) (-1084 (-835 (-381))))) (-15 -4278 ((-634 (-1084 (-835 (-215)))) (-634 (-1084 (-835 (-381)))))) (-15 -3149 ((-409 (-568)) (-215))) (-15 -2489 ((-409 (-568)) (-310 (-215)))) (-15 -4348 ((-215) (-310 (-215)))) (-15 -2258 ((-3 (-310 (-215)) "failed") (-310 (-215)))) (-15 -4014 ((-381) (-1244 (-310 (-215))))) (-15 -4281 ((-2 (|:| |additions| (-568)) (|:| |multiplications| (-568)) (|:| |exponentiations| (-568)) (|:| |functionCalls| (-568))) (-1244 (-310 (-215))))) (-15 -1809 ((-310 (-409 (-568))) (-310 (-215)))) (-15 -3014 ((-1084 (-835 (-215))) (-1084 (-835 (-215))))) (-15 -4290 ((-634 (-215)) (-634 (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568))))))) (-15 -3035 ((-688) (-215))) (-15 -2656 ((-1244 (-688)) (-634 (-215)))) (-15 -3061 ((-310 (-381)) (-310 (-215)))) (-15 -2811 ((-1244 (-310 (-381))) (-1244 (-310 (-215))))) (-15 -1816 ((-121) (-215) (-1084 (-835 (-215))))) (-15 -2281 ((-1143) (-215))) (-15 -4198 ((-1143) (-381))) (-15 -2309 ((-634 (-1143)) (-634 (-215)))) (-15 -1903 ((-634 (-1143)) (-1141 (-215)))) (-15 -2066 ((-215) (-1084 (-835 (-215))))) (-15 -3632 ((-215) (-1084 (-835 (-215))))) (-15 -2768 ((-1035) (-1035) (-1035))) (-15 -2768 ((-1035) (-634 (-1035)))) (-15 -4037 ((-1143) (-381))) (-15 -1407 ((-1035) (-2 (|:| -3029 (-381)) (|:| -3391 (-1143)) (|:| |explanations| (-634 (-1143)))))) (-15 -1407 ((-1035) (-2 (|:| -3029 (-381)) (|:| -3391 (-1143)) (|:| |explanations| (-634 (-1143))) (|:| |extra| (-1035))))) (-15 -2345 ((-1035) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1141 (-215))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1338 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3132 ((-1035) (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))) (-15 -3246 ((-310 (-381)) (-953 (-215)))) (-15 -2985 ((-215) (-953 (-215)))) (-15 -1650 ((-310 (-381)) (-215))) (-15 -3453 ((-215) (-409 (-568)))) (-15 -2928 ((-679 (-215)) (-634 (-215)) (-763)))) +((-1497 (((-121) $ $) 11)) (-2401 (($ $ $) 15)) (-2412 (($ $ $) 14)) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) 43)) (-3562 (((-3 (-634 $) "failed") (-634 $) $) 52)) (-2721 (($ $ $) 21) (($ (-634 $)) NIL)) (-4497 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) 31) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 36)) (-2595 (((-3 $ "failed") $ $) 18)) (-2344 (((-3 (-634 $) "failed") (-634 $) $) 45))) +(((-300 |#1|) (-10 -8 (-15 -3562 ((-3 (-634 |#1|) "failed") (-634 |#1|) |#1|)) (-15 -4497 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -4497 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2704 |#1|)) |#1| |#1|)) (-15 -2401 (|#1| |#1| |#1|)) (-15 -2412 (|#1| |#1| |#1|)) (-15 -1497 ((-121) |#1| |#1|)) (-15 -2344 ((-3 (-634 |#1|) "failed") (-634 |#1|) |#1|)) (-15 -1983 ((-2 (|:| -2348 (-634 |#1|)) (|:| -2704 |#1|)) (-634 |#1|))) (-15 -2721 (|#1| (-634 |#1|))) (-15 -2721 (|#1| |#1| |#1|)) (-15 -2595 ((-3 |#1| "failed") |#1| |#1|))) (-301)) (T -300)) +NIL +(-10 -8 (-15 -3562 ((-3 (-634 |#1|) "failed") (-634 |#1|) |#1|)) (-15 -4497 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -4497 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2704 |#1|)) |#1| |#1|)) (-15 -2401 (|#1| |#1| |#1|)) (-15 -2412 (|#1| |#1| |#1|)) (-15 -1497 ((-121) |#1| |#1|)) (-15 -2344 ((-3 (-634 |#1|) "failed") (-634 |#1|) |#1|)) (-15 -1983 ((-2 (|:| -2348 (-634 |#1|)) (|:| -2704 |#1|)) (-634 |#1|))) (-15 -2721 (|#1| (-634 |#1|))) (-15 -2721 (|#1| |#1| |#1|)) (-15 -2595 ((-3 |#1| "failed") |#1| |#1|))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) 40)) (-2227 (($ $) 39)) (-1573 (((-121) $) 37)) (-3134 (((-3 $ "failed") $ $) 18)) (-1497 (((-121) $ $) 57)) (-2671 (($) 16 T CONST)) (-2401 (($ $ $) 53)) (-2925 (((-3 $ "failed") $) 33)) (-2412 (($ $ $) 54)) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) 49)) (-2735 (((-121) $) 30)) (-3562 (((-3 (-634 $) "failed") (-634 $) $) 50)) (-2495 (($ $ $) 45) (($ (-634 $)) 44)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) 43)) (-2721 (($ $ $) 47) (($ (-634 $)) 46)) (-4497 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2595 (((-3 $ "failed") $ $) 41)) (-2344 (((-3 (-634 $) "failed") (-634 $) $) 48)) (-2709 (((-763) $) 56)) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) 55)) (-2745 (((-850) $) 11) (($ (-568)) 27) (($ $) 42)) (-4078 (((-763)) 28)) (-1826 (((-121) $ $) 38)) (-1887 (($ $ (-917)) 25) (($ $ (-763)) 32)) (-3056 (($) 17 T CONST)) (-1556 (($) 29 T CONST)) (-1717 (((-121) $ $) 6)) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 24) (($ $ (-763)) 31)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 23))) +(((-301) (-1275)) (T -301)) +((-1497 (*1 *2 *1 *1) (-12 (-4 *1 (-301)) (-5 *2 (-121)))) (-2709 (*1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-763)))) (-3210 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3961 *1) (|:| -1500 *1))) (-4 *1 (-301)))) (-2412 (*1 *1 *1 *1) (-4 *1 (-301))) (-2401 (*1 *1 *1 *1) (-4 *1 (-301))) (-4497 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2704 *1))) (-4 *1 (-301)))) (-4497 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-301)))) (-3562 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-634 *1)) (-4 *1 (-301))))) +(-13 (-916) (-10 -8 (-15 -1497 ((-121) $ $)) (-15 -2709 ((-763) $)) (-15 -3210 ((-2 (|:| -3961 $) (|:| -1500 $)) $ $)) (-15 -2412 ($ $ $)) (-15 -2401 ($ $ $)) (-15 -4497 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $)) (-15 -4497 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -3562 ((-3 (-634 $) "failed") (-634 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-43 $) . T) ((-105) . T) ((-120 $ $) . T) ((-137) . T) ((-608 (-850)) . T) ((-172) . T) ((-285) . T) ((-453) . T) ((-558) . T) ((-637 $) . T) ((-707 $) . T) ((-716) . T) ((-916) . T) ((-1053 $) . T) ((-1047) . T) ((-1054) . T) ((-1102) . T) ((-1090) . T)) +((-1339 (($ $ (-634 |#2|) (-634 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-288 |#2|)) 11) (($ $ (-634 (-288 |#2|))) NIL))) +(((-302 |#1| |#2|) (-10 -8 (-15 -1339 (|#1| |#1| (-634 (-288 |#2|)))) (-15 -1339 (|#1| |#1| (-288 |#2|))) (-15 -1339 (|#1| |#1| |#2| |#2|)) (-15 -1339 (|#1| |#1| (-634 |#2|) (-634 |#2|)))) (-303 |#2|) (-1090)) (T -302)) +NIL +(-10 -8 (-15 -1339 (|#1| |#1| (-634 (-288 |#2|)))) (-15 -1339 (|#1| |#1| (-288 |#2|))) (-15 -1339 (|#1| |#1| |#2| |#2|)) (-15 -1339 (|#1| |#1| (-634 |#2|) (-634 |#2|)))) +((-1339 (($ $ (-634 |#1|) (-634 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-288 |#1|)) 9) (($ $ (-634 (-288 |#1|))) 8))) +(((-303 |#1|) (-1275) (-1090)) (T -303)) +((-1339 (*1 *1 *1 *2) (-12 (-5 *2 (-288 *3)) (-4 *1 (-303 *3)) (-4 *3 (-1090)))) (-1339 (*1 *1 *1 *2) (-12 (-5 *2 (-634 (-288 *3))) (-4 *1 (-303 *3)) (-4 *3 (-1090))))) +(-13 (-523 |t#1| |t#1|) (-10 -8 (-15 -1339 ($ $ (-288 |t#1|))) (-15 -1339 ($ $ (-634 (-288 |t#1|)))))) +(((-523 |#1| |#1|) . T)) +((-1339 ((|#1| (-1 |#1| (-568)) (-1163 (-409 (-568)))) 24))) +(((-304 |#1|) (-10 -7 (-15 -1339 (|#1| (-1 |#1| (-568)) (-1163 (-409 (-568)))))) (-43 (-409 (-568)))) (T -304)) +((-1339 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-568))) (-5 *4 (-1163 (-409 (-568)))) (-5 *1 (-304 *2)) (-4 *2 (-43 (-409 (-568))))))) +(-10 -7 (-15 -1339 (|#1| (-1 |#1| (-568)) (-1163 (-409 (-568)))))) +((-2447 (((-121) $ $) NIL)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2745 (((-850) $) 7)) (-1717 (((-121) $ $) 9))) +(((-305) (-1090)) (T -305)) +NIL +(-1090) +((-2741 (((-1249) (-1149 3 (-215)) (-1143)) 38))) +(((-306) (-10 -7 (-15 -2741 ((-1249) (-1149 3 (-215)) (-1143))))) (T -306)) +((-2741 (*1 *2 *3 *4) (-12 (-5 *3 (-1149 3 (-215))) (-5 *4 (-1143)) (-5 *2 (-1249)) (-5 *1 (-306))))) +(-10 -7 (-15 -2741 ((-1249) (-1149 3 (-215)) (-1143)))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) 62)) (-1492 (((-1229 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1229 |#1| |#2| |#3| |#4|) (-301)))) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL)) (-2227 (($ $) NIL)) (-1573 (((-121) $) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-1750 (((-420 (-1157 $)) (-1157 $)) NIL (|has| (-1229 |#1| |#2| |#3| |#4|) (-904)))) (-4305 (($ $) NIL)) (-1678 (((-420 $) $) NIL)) (-1858 (((-3 (-634 (-1157 $)) "failed") (-634 (-1157 $)) (-1157 $)) NIL (|has| (-1229 |#1| |#2| |#3| |#4|) (-904)))) (-1497 (((-121) $ $) NIL)) (-3662 (((-568) $) NIL (|has| (-1229 |#1| |#2| |#3| |#4|) (-815)))) (-2671 (($) NIL T CONST)) (-3666 (((-3 (-1229 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1161) "failed") $) NIL (|has| (-1229 |#1| |#2| |#3| |#4|) (-1037 (-1161)))) (((-3 (-409 (-568)) "failed") $) NIL (|has| (-1229 |#1| |#2| |#3| |#4|) (-1037 (-568)))) (((-3 (-568) "failed") $) NIL (|has| (-1229 |#1| |#2| |#3| |#4|) (-1037 (-568)))) (((-3 (-1228 |#2| |#3| |#4|) "failed") $) 24)) (-2854 (((-1229 |#1| |#2| |#3| |#4|) $) NIL) (((-1161) $) NIL (|has| (-1229 |#1| |#2| |#3| |#4|) (-1037 (-1161)))) (((-409 (-568)) $) NIL (|has| (-1229 |#1| |#2| |#3| |#4|) (-1037 (-568)))) (((-568) $) NIL (|has| (-1229 |#1| |#2| |#3| |#4|) (-1037 (-568)))) (((-1228 |#2| |#3| |#4|) $) NIL)) (-2401 (($ $ $) NIL)) (-3164 (((-679 (-568)) (-679 $)) NIL (|has| (-1229 |#1| |#2| |#3| |#4|) (-630 (-568)))) (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) NIL (|has| (-1229 |#1| |#2| |#3| |#4|) (-630 (-568)))) (((-2 (|:| -2928 (-679 (-1229 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1244 (-1229 |#1| |#2| |#3| |#4|)))) (-679 $) (-1244 $)) NIL) (((-679 (-1229 |#1| |#2| |#3| |#4|)) (-679 $)) NIL)) (-2925 (((-3 $ "failed") $) NIL)) (-1731 (($) NIL (|has| (-1229 |#1| |#2| |#3| |#4|) (-550)))) (-2412 (($ $ $) NIL)) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) NIL)) (-3927 (((-121) $) NIL)) (-2033 (((-121) $) NIL (|has| (-1229 |#1| |#2| |#3| |#4|) (-815)))) (-4410 (((-884 (-568) $) $ (-887 (-568)) (-884 (-568) $)) NIL (|has| (-1229 |#1| |#2| |#3| |#4|) (-881 (-568)))) (((-884 (-381) $) $ (-887 (-381)) (-884 (-381) $)) NIL (|has| (-1229 |#1| |#2| |#3| |#4|) (-881 (-381))))) (-2735 (((-121) $) NIL)) (-1332 (($ $) NIL)) (-2317 (((-1229 |#1| |#2| |#3| |#4|) $) 21)) (-3038 (((-3 $ "failed") $) NIL (|has| (-1229 |#1| |#2| |#3| |#4|) (-1136)))) (-2245 (((-121) $) NIL (|has| (-1229 |#1| |#2| |#3| |#4|) (-815)))) (-3562 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-2521 (($ $ $) NIL (|has| (-1229 |#1| |#2| |#3| |#4|) (-842)))) (-3268 (($ $ $) NIL (|has| (-1229 |#1| |#2| |#3| |#4|) (-842)))) (-2795 (($ (-1 (-1229 |#1| |#2| |#3| |#4|) (-1229 |#1| |#2| |#3| |#4|)) $) NIL)) (-2620 (((-3 (-835 |#2|) "failed") $) 76)) (-2495 (($ $ $) NIL) (($ (-634 $)) NIL)) (-4487 (((-1143) $) NIL)) (-2081 (($ $) NIL)) (-4434 (($) NIL (|has| (-1229 |#1| |#2| |#3| |#4|) (-1136)) CONST)) (-4022 (((-1108) $) NIL)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL)) (-2721 (($ $ $) NIL) (($ (-634 $)) NIL)) (-3880 (($ $) NIL (|has| (-1229 |#1| |#2| |#3| |#4|) (-301)))) (-1519 (((-1229 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1229 |#1| |#2| |#3| |#4|) (-550)))) (-2905 (((-420 (-1157 $)) (-1157 $)) NIL (|has| (-1229 |#1| |#2| |#3| |#4|) (-904)))) (-3545 (((-420 (-1157 $)) (-1157 $)) NIL (|has| (-1229 |#1| |#2| |#3| |#4|) (-904)))) (-3848 (((-420 $) $) NIL)) (-4497 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2595 (((-3 $ "failed") $ $) NIL)) (-2344 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-1339 (($ $ (-634 (-1229 |#1| |#2| |#3| |#4|)) (-634 (-1229 |#1| |#2| |#3| |#4|))) NIL (|has| (-1229 |#1| |#2| |#3| |#4|) (-303 (-1229 |#1| |#2| |#3| |#4|)))) (($ $ (-1229 |#1| |#2| |#3| |#4|) (-1229 |#1| |#2| |#3| |#4|)) NIL (|has| (-1229 |#1| |#2| |#3| |#4|) (-303 (-1229 |#1| |#2| |#3| |#4|)))) (($ $ (-288 (-1229 |#1| |#2| |#3| |#4|))) NIL (|has| (-1229 |#1| |#2| |#3| |#4|) (-303 (-1229 |#1| |#2| |#3| |#4|)))) (($ $ (-634 (-288 (-1229 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1229 |#1| |#2| |#3| |#4|) (-303 (-1229 |#1| |#2| |#3| |#4|)))) (($ $ (-634 (-1161)) (-634 (-1229 |#1| |#2| |#3| |#4|))) NIL (|has| (-1229 |#1| |#2| |#3| |#4|) (-523 (-1161) (-1229 |#1| |#2| |#3| |#4|)))) (($ $ (-1161) (-1229 |#1| |#2| |#3| |#4|)) NIL (|has| (-1229 |#1| |#2| |#3| |#4|) (-523 (-1161) (-1229 |#1| |#2| |#3| |#4|))))) (-2709 (((-763) $) NIL)) (-2779 (($ $ (-1229 |#1| |#2| |#3| |#4|)) NIL (|has| (-1229 |#1| |#2| |#3| |#4|) (-281 (-1229 |#1| |#2| |#3| |#4|) (-1229 |#1| |#2| |#3| |#4|))))) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL)) (-4189 (($ $) NIL (|has| (-1229 |#1| |#2| |#3| |#4|) (-225))) (($ $ (-763)) NIL (|has| (-1229 |#1| |#2| |#3| |#4|) (-225))) (($ $ (-1161)) NIL (|has| (-1229 |#1| |#2| |#3| |#4|) (-895 (-1161)))) (($ $ (-634 (-1161))) NIL (|has| (-1229 |#1| |#2| |#3| |#4|) (-895 (-1161)))) (($ $ (-1161) (-763)) NIL (|has| (-1229 |#1| |#2| |#3| |#4|) (-895 (-1161)))) (($ $ (-634 (-1161)) (-634 (-763))) NIL (|has| (-1229 |#1| |#2| |#3| |#4|) (-895 (-1161)))) (($ $ (-1 (-1229 |#1| |#2| |#3| |#4|) (-1229 |#1| |#2| |#3| |#4|)) (-763)) NIL) (($ $ (-1 (-1229 |#1| |#2| |#3| |#4|) (-1229 |#1| |#2| |#3| |#4|))) NIL)) (-3013 (($ $) NIL)) (-2324 (((-1229 |#1| |#2| |#3| |#4|) $) 17)) (-4278 (((-887 (-568)) $) NIL (|has| (-1229 |#1| |#2| |#3| |#4|) (-609 (-887 (-568))))) (((-887 (-381)) $) NIL (|has| (-1229 |#1| |#2| |#3| |#4|) (-609 (-887 (-381))))) (((-541) $) NIL (|has| (-1229 |#1| |#2| |#3| |#4|) (-609 (-541)))) (((-381) $) NIL (|has| (-1229 |#1| |#2| |#3| |#4|) (-1021))) (((-215) $) NIL (|has| (-1229 |#1| |#2| |#3| |#4|) (-1021)))) (-2979 (((-3 (-1244 $) "failed") (-679 $)) NIL (-12 (|has| $ (-148)) (|has| (-1229 |#1| |#2| |#3| |#4|) (-904))))) (-2745 (((-850) $) NIL) (($ (-568)) NIL) (($ $) NIL) (($ (-409 (-568))) NIL) (($ (-1229 |#1| |#2| |#3| |#4|)) 28) (($ (-1161)) NIL (|has| (-1229 |#1| |#2| |#3| |#4|) (-1037 (-1161)))) (($ (-1228 |#2| |#3| |#4|)) 36)) (-4371 (((-3 $ "failed") $) NIL (-2198 (-12 (|has| $ (-148)) (|has| (-1229 |#1| |#2| |#3| |#4|) (-904))) (|has| (-1229 |#1| |#2| |#3| |#4|) (-148))))) (-4078 (((-763)) NIL)) (-2285 (((-1229 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1229 |#1| |#2| |#3| |#4|) (-550)))) (-1826 (((-121) $ $) NIL)) (-2897 (($ $) NIL (|has| (-1229 |#1| |#2| |#3| |#4|) (-815)))) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL)) (-3056 (($) 41 T CONST)) (-1556 (($) NIL T CONST)) (-3190 (($ $) NIL (|has| (-1229 |#1| |#2| |#3| |#4|) (-225))) (($ $ (-763)) NIL (|has| (-1229 |#1| |#2| |#3| |#4|) (-225))) (($ $ (-1161)) NIL (|has| (-1229 |#1| |#2| |#3| |#4|) (-895 (-1161)))) (($ $ (-634 (-1161))) NIL (|has| (-1229 |#1| |#2| |#3| |#4|) (-895 (-1161)))) (($ $ (-1161) (-763)) NIL (|has| (-1229 |#1| |#2| |#3| |#4|) (-895 (-1161)))) (($ $ (-634 (-1161)) (-634 (-763))) NIL (|has| (-1229 |#1| |#2| |#3| |#4|) (-895 (-1161)))) (($ $ (-1 (-1229 |#1| |#2| |#3| |#4|) (-1229 |#1| |#2| |#3| |#4|)) (-763)) NIL) (($ $ (-1 (-1229 |#1| |#2| |#3| |#4|) (-1229 |#1| |#2| |#3| |#4|))) NIL)) (-1751 (((-121) $ $) NIL (|has| (-1229 |#1| |#2| |#3| |#4|) (-842)))) (-1738 (((-121) $ $) NIL (|has| (-1229 |#1| |#2| |#3| |#4|) (-842)))) (-1717 (((-121) $ $) NIL)) (-1745 (((-121) $ $) NIL (|has| (-1229 |#1| |#2| |#3| |#4|) (-842)))) (-1732 (((-121) $ $) NIL (|has| (-1229 |#1| |#2| |#3| |#4|) (-842)))) (-1779 (($ $ $) 33) (($ (-1229 |#1| |#2| |#3| |#4|) (-1229 |#1| |#2| |#3| |#4|)) 30)) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) NIL) (($ $ (-409 (-568))) NIL) (($ (-409 (-568)) $) NIL) (($ (-1229 |#1| |#2| |#3| |#4|) $) 29) (($ $ (-1229 |#1| |#2| |#3| |#4|)) NIL))) +(((-307 |#1| |#2| |#3| |#4|) (-13 (-993 (-1229 |#1| |#2| |#3| |#4|)) (-1037 (-1228 |#2| |#3| |#4|)) (-10 -8 (-15 -2620 ((-3 (-835 |#2|) "failed") $)) (-15 -2745 ($ (-1228 |#2| |#3| |#4|))))) (-13 (-842) (-1037 (-568)) (-630 (-568)) (-453)) (-13 (-27) (-1181) (-432 |#1|)) (-1161) |#2|) (T -307)) +((-2745 (*1 *1 *2) (-12 (-5 *2 (-1228 *4 *5 *6)) (-4 *4 (-13 (-27) (-1181) (-432 *3))) (-14 *5 (-1161)) (-14 *6 *4) (-4 *3 (-13 (-842) (-1037 (-568)) (-630 (-568)) (-453))) (-5 *1 (-307 *3 *4 *5 *6)))) (-2620 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-842) (-1037 (-568)) (-630 (-568)) (-453))) (-5 *2 (-835 *4)) (-5 *1 (-307 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1181) (-432 *3))) (-14 *5 (-1161)) (-14 *6 *4)))) +(-13 (-993 (-1229 |#1| |#2| |#3| |#4|)) (-1037 (-1228 |#2| |#3| |#4|)) (-10 -8 (-15 -2620 ((-3 (-835 |#2|) "failed") $)) (-15 -2745 ($ (-1228 |#2| |#3| |#4|))))) +((-2795 (((-310 |#2|) (-1 |#2| |#1|) (-310 |#1|)) 13))) +(((-308 |#1| |#2|) (-10 -7 (-15 -2795 ((-310 |#2|) (-1 |#2| |#1|) (-310 |#1|)))) (-842) (-842)) (T -308)) +((-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-310 *5)) (-4 *5 (-842)) (-4 *6 (-842)) (-5 *2 (-310 *6)) (-5 *1 (-308 *5 *6))))) +(-10 -7 (-15 -2795 ((-310 |#2|) (-1 |#2| |#1|) (-310 |#1|)))) +((-2065 (((-57) |#2| (-288 |#2|) (-763)) 33) (((-57) |#2| (-288 |#2|)) 24) (((-57) |#2| (-763)) 28) (((-57) |#2|) 25) (((-57) (-1161)) 21)) (-3728 (((-57) |#2| (-288 |#2|) (-409 (-568))) 51) (((-57) |#2| (-288 |#2|)) 48) (((-57) |#2| (-409 (-568))) 50) (((-57) |#2|) 49) (((-57) (-1161)) 47)) (-2075 (((-57) |#2| (-288 |#2|) (-409 (-568))) 46) (((-57) |#2| (-288 |#2|)) 43) (((-57) |#2| (-409 (-568))) 45) (((-57) |#2|) 44) (((-57) (-1161)) 42)) (-2070 (((-57) |#2| (-288 |#2|) (-568)) 39) (((-57) |#2| (-288 |#2|)) 35) (((-57) |#2| (-568)) 38) (((-57) |#2|) 36) (((-57) (-1161)) 34))) +(((-309 |#1| |#2|) (-10 -7 (-15 -2065 ((-57) (-1161))) (-15 -2065 ((-57) |#2|)) (-15 -2065 ((-57) |#2| (-763))) (-15 -2065 ((-57) |#2| (-288 |#2|))) (-15 -2065 ((-57) |#2| (-288 |#2|) (-763))) (-15 -2070 ((-57) (-1161))) (-15 -2070 ((-57) |#2|)) (-15 -2070 ((-57) |#2| (-568))) (-15 -2070 ((-57) |#2| (-288 |#2|))) (-15 -2070 ((-57) |#2| (-288 |#2|) (-568))) (-15 -2075 ((-57) (-1161))) (-15 -2075 ((-57) |#2|)) (-15 -2075 ((-57) |#2| (-409 (-568)))) (-15 -2075 ((-57) |#2| (-288 |#2|))) (-15 -2075 ((-57) |#2| (-288 |#2|) (-409 (-568)))) (-15 -3728 ((-57) (-1161))) (-15 -3728 ((-57) |#2|)) (-15 -3728 ((-57) |#2| (-409 (-568)))) (-15 -3728 ((-57) |#2| (-288 |#2|))) (-15 -3728 ((-57) |#2| (-288 |#2|) (-409 (-568))))) (-13 (-453) (-842) (-1037 (-568)) (-630 (-568))) (-13 (-27) (-1181) (-432 |#1|))) (T -309)) +((-3728 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-288 *3)) (-5 *5 (-409 (-568))) (-4 *3 (-13 (-27) (-1181) (-432 *6))) (-4 *6 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-57)) (-5 *1 (-309 *6 *3)))) (-3728 (*1 *2 *3 *4) (-12 (-5 *4 (-288 *3)) (-4 *3 (-13 (-27) (-1181) (-432 *5))) (-4 *5 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-57)) (-5 *1 (-309 *5 *3)))) (-3728 (*1 *2 *3 *4) (-12 (-5 *4 (-409 (-568))) (-4 *5 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-57)) (-5 *1 (-309 *5 *3)) (-4 *3 (-13 (-27) (-1181) (-432 *5))))) (-3728 (*1 *2 *3) (-12 (-4 *4 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-57)) (-5 *1 (-309 *4 *3)) (-4 *3 (-13 (-27) (-1181) (-432 *4))))) (-3728 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-4 *4 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-57)) (-5 *1 (-309 *4 *5)) (-4 *5 (-13 (-27) (-1181) (-432 *4))))) (-2075 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-288 *3)) (-5 *5 (-409 (-568))) (-4 *3 (-13 (-27) (-1181) (-432 *6))) (-4 *6 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-57)) (-5 *1 (-309 *6 *3)))) (-2075 (*1 *2 *3 *4) (-12 (-5 *4 (-288 *3)) (-4 *3 (-13 (-27) (-1181) (-432 *5))) (-4 *5 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-57)) (-5 *1 (-309 *5 *3)))) (-2075 (*1 *2 *3 *4) (-12 (-5 *4 (-409 (-568))) (-4 *5 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-57)) (-5 *1 (-309 *5 *3)) (-4 *3 (-13 (-27) (-1181) (-432 *5))))) (-2075 (*1 *2 *3) (-12 (-4 *4 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-57)) (-5 *1 (-309 *4 *3)) (-4 *3 (-13 (-27) (-1181) (-432 *4))))) (-2075 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-4 *4 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-57)) (-5 *1 (-309 *4 *5)) (-4 *5 (-13 (-27) (-1181) (-432 *4))))) (-2070 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-288 *3)) (-4 *3 (-13 (-27) (-1181) (-432 *6))) (-4 *6 (-13 (-453) (-842) (-1037 *5) (-630 *5))) (-5 *5 (-568)) (-5 *2 (-57)) (-5 *1 (-309 *6 *3)))) (-2070 (*1 *2 *3 *4) (-12 (-5 *4 (-288 *3)) (-4 *3 (-13 (-27) (-1181) (-432 *5))) (-4 *5 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-57)) (-5 *1 (-309 *5 *3)))) (-2070 (*1 *2 *3 *4) (-12 (-5 *4 (-568)) (-4 *5 (-13 (-453) (-842) (-1037 *4) (-630 *4))) (-5 *2 (-57)) (-5 *1 (-309 *5 *3)) (-4 *3 (-13 (-27) (-1181) (-432 *5))))) (-2070 (*1 *2 *3) (-12 (-4 *4 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-57)) (-5 *1 (-309 *4 *3)) (-4 *3 (-13 (-27) (-1181) (-432 *4))))) (-2070 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-4 *4 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-57)) (-5 *1 (-309 *4 *5)) (-4 *5 (-13 (-27) (-1181) (-432 *4))))) (-2065 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-288 *3)) (-5 *5 (-763)) (-4 *3 (-13 (-27) (-1181) (-432 *6))) (-4 *6 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-57)) (-5 *1 (-309 *6 *3)))) (-2065 (*1 *2 *3 *4) (-12 (-5 *4 (-288 *3)) (-4 *3 (-13 (-27) (-1181) (-432 *5))) (-4 *5 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-57)) (-5 *1 (-309 *5 *3)))) (-2065 (*1 *2 *3 *4) (-12 (-5 *4 (-763)) (-4 *5 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-57)) (-5 *1 (-309 *5 *3)) (-4 *3 (-13 (-27) (-1181) (-432 *5))))) (-2065 (*1 *2 *3) (-12 (-4 *4 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-57)) (-5 *1 (-309 *4 *3)) (-4 *3 (-13 (-27) (-1181) (-432 *4))))) (-2065 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-4 *4 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-57)) (-5 *1 (-309 *4 *5)) (-4 *5 (-13 (-27) (-1181) (-432 *4)))))) +(-10 -7 (-15 -2065 ((-57) (-1161))) (-15 -2065 ((-57) |#2|)) (-15 -2065 ((-57) |#2| (-763))) (-15 -2065 ((-57) |#2| (-288 |#2|))) (-15 -2065 ((-57) |#2| (-288 |#2|) (-763))) (-15 -2070 ((-57) (-1161))) (-15 -2070 ((-57) |#2|)) (-15 -2070 ((-57) |#2| (-568))) (-15 -2070 ((-57) |#2| (-288 |#2|))) (-15 -2070 ((-57) |#2| (-288 |#2|) (-568))) (-15 -2075 ((-57) (-1161))) (-15 -2075 ((-57) |#2|)) (-15 -2075 ((-57) |#2| (-409 (-568)))) (-15 -2075 ((-57) |#2| (-288 |#2|))) (-15 -2075 ((-57) |#2| (-288 |#2|) (-409 (-568)))) (-15 -3728 ((-57) (-1161))) (-15 -3728 ((-57) |#2|)) (-15 -3728 ((-57) |#2| (-409 (-568)))) (-15 -3728 ((-57) |#2| (-288 |#2|))) (-15 -3728 ((-57) |#2| (-288 |#2|) (-409 (-568))))) +((-2447 (((-121) $ $) NIL)) (-2394 (((-634 $) $ (-1161)) NIL (|has| |#1| (-558))) (((-634 $) $) NIL (|has| |#1| (-558))) (((-634 $) (-1157 $) (-1161)) NIL (|has| |#1| (-558))) (((-634 $) (-1157 $)) NIL (|has| |#1| (-558))) (((-634 $) (-953 $)) NIL (|has| |#1| (-558)))) (-1681 (($ $ (-1161)) NIL (|has| |#1| (-558))) (($ $) NIL (|has| |#1| (-558))) (($ (-1157 $) (-1161)) NIL (|has| |#1| (-558))) (($ (-1157 $)) NIL (|has| |#1| (-558))) (($ (-953 $)) NIL (|has| |#1| (-558)))) (-2537 (((-121) $) 27 (-2198 (|has| |#1| (-25)) (-12 (|has| |#1| (-630 (-568))) (|has| |#1| (-1047)))))) (-2055 (((-634 (-1161)) $) 344)) (-3839 (((-409 (-1157 $)) $ (-607 $)) NIL (|has| |#1| (-558)))) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-2227 (($ $) NIL (|has| |#1| (-558)))) (-1573 (((-121) $) NIL (|has| |#1| (-558)))) (-3001 (((-634 (-607 $)) $) NIL)) (-1982 (($ $) 154 (|has| |#1| (-558)))) (-1933 (($ $) 130 (|has| |#1| (-558)))) (-4452 (($ $ (-1082 $)) 215 (|has| |#1| (-558))) (($ $ (-1161)) 211 (|has| |#1| (-558)))) (-3134 (((-3 $ "failed") $ $) NIL (-2198 (|has| |#1| (-21)) (-12 (|has| |#1| (-630 (-568))) (|has| |#1| (-1047)))))) (-2366 (($ $ (-288 $)) NIL) (($ $ (-634 (-288 $))) 360) (($ $ (-634 (-607 $)) (-634 $)) 403)) (-1750 (((-420 (-1157 $)) (-1157 $)) 288 (-12 (|has| |#1| (-453)) (|has| |#1| (-558))))) (-4305 (($ $) NIL (|has| |#1| (-558)))) (-1678 (((-420 $) $) NIL (|has| |#1| (-558)))) (-1902 (($ $) NIL (|has| |#1| (-558)))) (-1497 (((-121) $ $) NIL (|has| |#1| (-558)))) (-1974 (($ $) 150 (|has| |#1| (-558)))) (-2786 (($ $) 126 (|has| |#1| (-558)))) (-2352 (($ $ (-568)) 64 (|has| |#1| (-558)))) (-1990 (($ $) 158 (|has| |#1| (-558)))) (-1941 (($ $) 134 (|has| |#1| (-558)))) (-2671 (($) NIL (-2198 (|has| |#1| (-25)) (-12 (|has| |#1| (-630 (-568))) (|has| |#1| (-1047))) (|has| |#1| (-1102))) CONST)) (-3214 (((-634 $) $ (-1161)) NIL (|has| |#1| (-558))) (((-634 $) $) NIL (|has| |#1| (-558))) (((-634 $) (-1157 $) (-1161)) NIL (|has| |#1| (-558))) (((-634 $) (-1157 $)) NIL (|has| |#1| (-558))) (((-634 $) (-953 $)) NIL (|has| |#1| (-558)))) (-2932 (($ $ (-1161)) NIL (|has| |#1| (-558))) (($ $) NIL (|has| |#1| (-558))) (($ (-1157 $) (-1161)) 117 (|has| |#1| (-558))) (($ (-1157 $)) NIL (|has| |#1| (-558))) (($ (-953 $)) NIL (|has| |#1| (-558)))) (-3666 (((-3 (-607 $) "failed") $) 17) (((-3 (-1161) "failed") $) NIL) (((-3 |#1| "failed") $) 412) (((-3 (-53) "failed") $) 317 (-12 (|has| |#1| (-558)) (|has| |#1| (-1037 (-568))))) (((-3 (-568) "failed") $) NIL (|has| |#1| (-1037 (-568)))) (((-3 (-409 (-953 |#1|)) "failed") $) NIL (|has| |#1| (-558))) (((-3 (-953 |#1|) "failed") $) NIL (|has| |#1| (-1047))) (((-3 (-409 (-568)) "failed") $) 45 (-2198 (-12 (|has| |#1| (-558)) (|has| |#1| (-1037 (-568)))) (|has| |#1| (-1037 (-409 (-568))))))) (-2854 (((-607 $) $) 11) (((-1161) $) NIL) ((|#1| $) 394) (((-53) $) NIL (-12 (|has| |#1| (-558)) (|has| |#1| (-1037 (-568))))) (((-568) $) NIL (|has| |#1| (-1037 (-568)))) (((-409 (-953 |#1|)) $) NIL (|has| |#1| (-558))) (((-953 |#1|) $) NIL (|has| |#1| (-1047))) (((-409 (-568)) $) 301 (-2198 (-12 (|has| |#1| (-558)) (|has| |#1| (-1037 (-568)))) (|has| |#1| (-1037 (-409 (-568))))))) (-2401 (($ $ $) NIL (|has| |#1| (-558)))) (-3164 (((-2 (|:| -2928 (-679 |#1|)) (|:| |vec| (-1244 |#1|))) (-679 $) (-1244 $)) 110 (|has| |#1| (-1047))) (((-679 |#1|) (-679 $)) 102 (|has| |#1| (-1047))) (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) NIL (-12 (|has| |#1| (-630 (-568))) (|has| |#1| (-1047)))) (((-679 (-568)) (-679 $)) NIL (-12 (|has| |#1| (-630 (-568))) (|has| |#1| (-1047))))) (-3092 (($ $) 84 (|has| |#1| (-558)))) (-2925 (((-3 $ "failed") $) NIL (-2198 (-12 (|has| |#1| (-630 (-568))) (|has| |#1| (-1047))) (|has| |#1| (-1102))))) (-2412 (($ $ $) NIL (|has| |#1| (-558)))) (-3272 (($ $ (-1082 $)) 219 (|has| |#1| (-558))) (($ $ (-1161)) 217 (|has| |#1| (-558)))) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) NIL (|has| |#1| (-558)))) (-3927 (((-121) $) NIL (|has| |#1| (-558)))) (-1303 (($ $ $) 185 (|has| |#1| (-558)))) (-1897 (($) 120 (|has| |#1| (-558)))) (-2413 (($ $ $) 205 (|has| |#1| (-558)))) (-4410 (((-884 (-568) $) $ (-887 (-568)) (-884 (-568) $)) 366 (|has| |#1| (-881 (-568)))) (((-884 (-381) $) $ (-887 (-381)) (-884 (-381) $)) 372 (|has| |#1| (-881 (-381))))) (-4499 (($ $) NIL) (($ (-634 $)) NIL)) (-3296 (((-634 (-123)) $) NIL)) (-3488 (((-123) (-123)) 260)) (-2735 (((-121) $) 25 (-2198 (-12 (|has| |#1| (-630 (-568))) (|has| |#1| (-1047))) (|has| |#1| (-1102))))) (-1825 (((-121) $) NIL (|has| $ (-1037 (-568))))) (-1332 (($ $) 66 (|has| |#1| (-1047)))) (-2317 (((-1113 |#1| (-607 $)) $) 79 (|has| |#1| (-1047)))) (-3185 (((-121) $) 46 (|has| |#1| (-558)))) (-4044 (($ $ (-568)) NIL (|has| |#1| (-558)))) (-3562 (((-3 (-634 $) "failed") (-634 $) $) NIL (|has| |#1| (-558)))) (-3007 (((-1157 $) (-607 $)) 261 (|has| $ (-1047)))) (-2521 (($ $ $) NIL)) (-3268 (($ $ $) NIL)) (-2795 (($ (-1 $ $) (-607 $)) 399)) (-3693 (((-3 (-607 $) "failed") $) NIL)) (-4416 (($ $) 124 (|has| |#1| (-558)))) (-1911 (($ $) 230 (|has| |#1| (-558)))) (-2495 (($ (-634 $)) NIL (|has| |#1| (-558))) (($ $ $) NIL (|has| |#1| (-558)))) (-4487 (((-1143) $) NIL)) (-3804 (((-634 (-607 $)) $) 48)) (-3443 (($ (-123) $) NIL) (($ (-123) (-634 $)) 404)) (-3324 (((-3 (-634 $) "failed") $) NIL (|has| |#1| (-1102)))) (-2672 (((-3 (-2 (|:| |val| $) (|:| -3438 (-568))) "failed") $) NIL (|has| |#1| (-1047)))) (-1794 (((-3 (-634 $) "failed") $) 407 (|has| |#1| (-25)))) (-2392 (((-3 (-2 (|:| -2348 (-568)) (|:| |var| (-607 $))) "failed") $) 411 (|has| |#1| (-25)))) (-3751 (((-3 (-2 (|:| |var| (-607 $)) (|:| -3438 (-568))) "failed") $) NIL (|has| |#1| (-1102))) (((-3 (-2 (|:| |var| (-607 $)) (|:| -3438 (-568))) "failed") $ (-123)) NIL (|has| |#1| (-1047))) (((-3 (-2 (|:| |var| (-607 $)) (|:| -3438 (-568))) "failed") $ (-1161)) NIL (|has| |#1| (-1047)))) (-2841 (((-121) $ (-123)) NIL) (((-121) $ (-1161)) 52)) (-2081 (($ $) NIL (-2198 (|has| |#1| (-478)) (|has| |#1| (-558))))) (-3690 (($ $ (-1161)) 234 (|has| |#1| (-558))) (($ $ (-1082 $)) 236 (|has| |#1| (-558)))) (-2961 (((-763) $) NIL)) (-4022 (((-1108) $) NIL)) (-2086 (((-121) $) 43)) (-2091 ((|#1| $) NIL)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) 281 (|has| |#1| (-558)))) (-2721 (($ (-634 $)) NIL (|has| |#1| (-558))) (($ $ $) NIL (|has| |#1| (-558)))) (-4059 (((-121) $ $) NIL) (((-121) $ (-1161)) NIL)) (-2784 (($ $ (-1161)) 209 (|has| |#1| (-558))) (($ $) 207 (|has| |#1| (-558)))) (-2427 (($ $) 201 (|has| |#1| (-558)))) (-3545 (((-420 (-1157 $)) (-1157 $)) 286 (-12 (|has| |#1| (-453)) (|has| |#1| (-558))))) (-3848 (((-420 $) $) NIL (|has| |#1| (-558)))) (-4497 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-558))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL (|has| |#1| (-558)))) (-2595 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-2344 (((-3 (-634 $) "failed") (-634 $) $) NIL (|has| |#1| (-558)))) (-1892 (($ $) 122 (|has| |#1| (-558)))) (-3277 (((-121) $) NIL (|has| $ (-1037 (-568))))) (-1339 (($ $ (-607 $) $) NIL) (($ $ (-634 (-607 $)) (-634 $)) 398) (($ $ (-634 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-634 $) (-634 $)) NIL) (($ $ (-634 (-1161)) (-634 (-1 $ $))) NIL) (($ $ (-634 (-1161)) (-634 (-1 $ (-634 $)))) NIL) (($ $ (-1161) (-1 $ (-634 $))) NIL) (($ $ (-1161) (-1 $ $)) NIL) (($ $ (-634 (-123)) (-634 (-1 $ $))) 354) (($ $ (-634 (-123)) (-634 (-1 $ (-634 $)))) NIL) (($ $ (-123) (-1 $ (-634 $))) NIL) (($ $ (-123) (-1 $ $)) NIL) (($ $ (-1161)) NIL (|has| |#1| (-609 (-541)))) (($ $ (-634 (-1161))) NIL (|has| |#1| (-609 (-541)))) (($ $) NIL (|has| |#1| (-609 (-541)))) (($ $ (-123) $ (-1161)) 342 (|has| |#1| (-609 (-541)))) (($ $ (-634 (-123)) (-634 $) (-1161)) 341 (|has| |#1| (-609 (-541)))) (($ $ (-634 (-1161)) (-634 (-763)) (-634 (-1 $ $))) NIL (|has| |#1| (-1047))) (($ $ (-634 (-1161)) (-634 (-763)) (-634 (-1 $ (-634 $)))) NIL (|has| |#1| (-1047))) (($ $ (-1161) (-763) (-1 $ (-634 $))) NIL (|has| |#1| (-1047))) (($ $ (-1161) (-763) (-1 $ $)) NIL (|has| |#1| (-1047)))) (-2709 (((-763) $) NIL (|has| |#1| (-558)))) (-1916 (($ $) 222 (|has| |#1| (-558)))) (-2779 (($ (-123) $) NIL) (($ (-123) $ $) NIL) (($ (-123) $ $ $) NIL) (($ (-123) $ $ $ $) NIL) (($ (-123) (-634 $)) NIL)) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL (|has| |#1| (-558)))) (-3502 (($ $) NIL) (($ $ $) NIL)) (-1928 (($ $) 232 (|has| |#1| (-558)))) (-1847 (($ $) 183 (|has| |#1| (-558)))) (-4189 (($ $ (-634 (-1161)) (-634 (-763))) NIL (|has| |#1| (-1047))) (($ $ (-1161) (-763)) NIL (|has| |#1| (-1047))) (($ $ (-634 (-1161))) NIL (|has| |#1| (-1047))) (($ $ (-1161)) NIL (|has| |#1| (-1047)))) (-3013 (($ $) 67 (|has| |#1| (-558)))) (-2324 (((-1113 |#1| (-607 $)) $) 81 (|has| |#1| (-558)))) (-1626 (($ $) 299 (|has| $ (-1047)))) (-1994 (($ $) 160 (|has| |#1| (-558)))) (-1945 (($ $) 136 (|has| |#1| (-558)))) (-1986 (($ $) 156 (|has| |#1| (-558)))) (-1937 (($ $) 132 (|has| |#1| (-558)))) (-1978 (($ $) 152 (|has| |#1| (-558)))) (-2790 (($ $) 128 (|has| |#1| (-558)))) (-4278 (((-887 (-568)) $) NIL (|has| |#1| (-609 (-887 (-568))))) (((-887 (-381)) $) NIL (|has| |#1| (-609 (-887 (-381))))) (($ (-420 $)) NIL (|has| |#1| (-558))) (((-541) $) 339 (|has| |#1| (-609 (-541))))) (-1458 (($ $ $) NIL (|has| |#1| (-478)))) (-2353 (($ $ $) NIL (|has| |#1| (-478)))) (-2745 (((-850) $) 397) (($ (-607 $)) 388) (($ (-1161)) 356) (($ |#1|) 318) (($ $) NIL (|has| |#1| (-558))) (($ (-53)) 293 (-12 (|has| |#1| (-558)) (|has| |#1| (-1037 (-568))))) (($ (-1113 |#1| (-607 $))) 83 (|has| |#1| (-1047))) (($ (-409 |#1|)) NIL (|has| |#1| (-558))) (($ (-953 (-409 |#1|))) NIL (|has| |#1| (-558))) (($ (-409 (-953 (-409 |#1|)))) NIL (|has| |#1| (-558))) (($ (-409 (-953 |#1|))) NIL (|has| |#1| (-558))) (($ (-953 |#1|)) NIL (|has| |#1| (-1047))) (($ (-409 (-568))) NIL (-2198 (|has| |#1| (-558)) (|has| |#1| (-1037 (-409 (-568)))))) (($ (-568)) 34 (-2198 (|has| |#1| (-1037 (-568))) (|has| |#1| (-1047))))) (-4371 (((-3 $ "failed") $) NIL (|has| |#1| (-148)))) (-4078 (((-763)) NIL (|has| |#1| (-1047)))) (-2092 (($ $) NIL) (($ (-634 $)) NIL)) (-2787 (($ $ $) 203 (|has| |#1| (-558)))) (-3657 (($ $ $) 189 (|has| |#1| (-558)))) (-2375 (($ $ $) 193 (|has| |#1| (-558)))) (-1369 (($ $ $) 187 (|has| |#1| (-558)))) (-3737 (($ $ $) 191 (|has| |#1| (-558)))) (-2887 (((-121) (-123)) 9)) (-2006 (($ $) 166 (|has| |#1| (-558)))) (-1958 (($ $) 142 (|has| |#1| (-558)))) (-1826 (((-121) $ $) NIL (|has| |#1| (-558)))) (-1998 (($ $) 162 (|has| |#1| (-558)))) (-1949 (($ $) 138 (|has| |#1| (-558)))) (-2014 (($ $) 170 (|has| |#1| (-558)))) (-1966 (($ $) 146 (|has| |#1| (-558)))) (-3058 (($ (-1161) $) NIL) (($ (-1161) $ $) NIL) (($ (-1161) $ $ $) NIL) (($ (-1161) $ $ $ $) NIL) (($ (-1161) (-634 $)) NIL)) (-3828 (($ $) 197 (|has| |#1| (-558)))) (-2357 (($ $) 195 (|has| |#1| (-558)))) (-4023 (($ $) 172 (|has| |#1| (-558)))) (-1970 (($ $) 148 (|has| |#1| (-558)))) (-2010 (($ $) 168 (|has| |#1| (-558)))) (-1962 (($ $) 144 (|has| |#1| (-558)))) (-2002 (($ $) 164 (|has| |#1| (-558)))) (-1953 (($ $) 140 (|has| |#1| (-558)))) (-2897 (($ $) 175 (|has| |#1| (-558)))) (-1887 (($ $ (-568)) NIL (-2198 (|has| |#1| (-478)) (|has| |#1| (-558)))) (($ $ (-763)) NIL (-2198 (-12 (|has| |#1| (-630 (-568))) (|has| |#1| (-1047))) (|has| |#1| (-1102)))) (($ $ (-917)) NIL (-2198 (-12 (|has| |#1| (-630 (-568))) (|has| |#1| (-1047))) (|has| |#1| (-1102))))) (-3056 (($) 20 (-2198 (|has| |#1| (-25)) (-12 (|has| |#1| (-630 (-568))) (|has| |#1| (-1047)))) CONST)) (-3833 (($ $) 226 (|has| |#1| (-558)))) (-1556 (($) 22 (-2198 (-12 (|has| |#1| (-630 (-568))) (|has| |#1| (-1047))) (|has| |#1| (-1102))) CONST)) (-3929 (($ $) 177 (|has| |#1| (-558))) (($ $ $) 179 (|has| |#1| (-558)))) (-1969 (($ $) 224 (|has| |#1| (-558)))) (-3190 (($ $ (-634 (-1161)) (-634 (-763))) NIL (|has| |#1| (-1047))) (($ $ (-1161) (-763)) NIL (|has| |#1| (-1047))) (($ $ (-634 (-1161))) NIL (|has| |#1| (-1047))) (($ $ (-1161)) NIL (|has| |#1| (-1047)))) (-2902 (($ $) 228 (|has| |#1| (-558)))) (-3792 (($ $ $) 181 (|has| |#1| (-558)))) (-1751 (((-121) $ $) NIL)) (-1738 (((-121) $ $) NIL)) (-1717 (((-121) $ $) 76)) (-1745 (((-121) $ $) NIL)) (-1732 (((-121) $ $) 75)) (-1779 (($ (-1113 |#1| (-607 $)) (-1113 |#1| (-607 $))) 93 (|has| |#1| (-558))) (($ $ $) 42 (-2198 (|has| |#1| (-478)) (|has| |#1| (-558))))) (-1773 (($ $ $) 40 (-2198 (|has| |#1| (-21)) (-12 (|has| |#1| (-630 (-568))) (|has| |#1| (-1047))))) (($ $) 29 (-2198 (|has| |#1| (-21)) (-12 (|has| |#1| (-630 (-568))) (|has| |#1| (-1047)))))) (-1767 (($ $ $) 38 (-2198 (|has| |#1| (-25)) (-12 (|has| |#1| (-630 (-568))) (|has| |#1| (-1047)))))) (** (($ $ $) 61 (|has| |#1| (-558))) (($ $ (-409 (-568))) 296 (|has| |#1| (-558))) (($ $ (-568)) 71 (-2198 (|has| |#1| (-478)) (|has| |#1| (-558)))) (($ $ (-763)) 68 (-2198 (-12 (|has| |#1| (-630 (-568))) (|has| |#1| (-1047))) (|has| |#1| (-1102)))) (($ $ (-917)) 73 (-2198 (-12 (|has| |#1| (-630 (-568))) (|has| |#1| (-1047))) (|has| |#1| (-1102))))) (* (($ (-409 (-568)) $) NIL (|has| |#1| (-558))) (($ $ (-409 (-568))) NIL (|has| |#1| (-558))) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))) (($ $ $) 36 (-2198 (-12 (|has| |#1| (-630 (-568))) (|has| |#1| (-1047))) (|has| |#1| (-1102)))) (($ (-568) $) 32 (-2198 (|has| |#1| (-21)) (-12 (|has| |#1| (-630 (-568))) (|has| |#1| (-1047))))) (($ (-763) $) NIL (-2198 (|has| |#1| (-25)) (-12 (|has| |#1| (-630 (-568))) (|has| |#1| (-1047))))) (($ (-917) $) NIL (-2198 (|has| |#1| (-25)) (-12 (|has| |#1| (-630 (-568))) (|has| |#1| (-1047))))))) +(((-310 |#1|) (-13 (-432 |#1|) (-10 -8 (IF (|has| |#1| (-558)) (PROGN (-6 (-29 |#1|)) (-6 (-1181)) (-6 (-161)) (-6 (-620)) (-6 (-1124)) (-15 -3092 ($ $)) (-15 -3185 ((-121) $)) (-15 -2352 ($ $ (-568))) (IF (|has| |#1| (-453)) (PROGN (-15 -3545 ((-420 (-1157 $)) (-1157 $))) (-15 -1750 ((-420 (-1157 $)) (-1157 $)))) |noBranch|) (IF (|has| |#1| (-1037 (-568))) (-6 (-1037 (-53))) |noBranch|)) |noBranch|))) (-842)) (T -310)) +((-3092 (*1 *1 *1) (-12 (-5 *1 (-310 *2)) (-4 *2 (-558)) (-4 *2 (-842)))) (-3185 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-310 *3)) (-4 *3 (-558)) (-4 *3 (-842)))) (-2352 (*1 *1 *1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-310 *3)) (-4 *3 (-558)) (-4 *3 (-842)))) (-3545 (*1 *2 *3) (-12 (-5 *2 (-420 (-1157 *1))) (-5 *1 (-310 *4)) (-5 *3 (-1157 *1)) (-4 *4 (-453)) (-4 *4 (-558)) (-4 *4 (-842)))) (-1750 (*1 *2 *3) (-12 (-5 *2 (-420 (-1157 *1))) (-5 *1 (-310 *4)) (-5 *3 (-1157 *1)) (-4 *4 (-453)) (-4 *4 (-558)) (-4 *4 (-842))))) +(-13 (-432 |#1|) (-10 -8 (IF (|has| |#1| (-558)) (PROGN (-6 (-29 |#1|)) (-6 (-1181)) (-6 (-161)) (-6 (-620)) (-6 (-1124)) (-15 -3092 ($ $)) (-15 -3185 ((-121) $)) (-15 -2352 ($ $ (-568))) (IF (|has| |#1| (-453)) (PROGN (-15 -3545 ((-420 (-1157 $)) (-1157 $))) (-15 -1750 ((-420 (-1157 $)) (-1157 $)))) |noBranch|) (IF (|has| |#1| (-1037 (-568))) (-6 (-1037 (-53))) |noBranch|)) |noBranch|))) +((-4251 (((-57) |#2| (-123) (-288 |#2|) (-634 |#2|)) 86) (((-57) |#2| (-123) (-288 |#2|) (-288 |#2|)) 82) (((-57) |#2| (-123) (-288 |#2|) |#2|) 84) (((-57) (-288 |#2|) (-123) (-288 |#2|) |#2|) 85) (((-57) (-634 |#2|) (-634 (-123)) (-288 |#2|) (-634 (-288 |#2|))) 78) (((-57) (-634 |#2|) (-634 (-123)) (-288 |#2|) (-634 |#2|)) 80) (((-57) (-634 (-288 |#2|)) (-634 (-123)) (-288 |#2|) (-634 |#2|)) 81) (((-57) (-634 (-288 |#2|)) (-634 (-123)) (-288 |#2|) (-634 (-288 |#2|))) 79) (((-57) (-288 |#2|) (-123) (-288 |#2|) (-634 |#2|)) 87) (((-57) (-288 |#2|) (-123) (-288 |#2|) (-288 |#2|)) 83))) +(((-311 |#1| |#2|) (-10 -7 (-15 -4251 ((-57) (-288 |#2|) (-123) (-288 |#2|) (-288 |#2|))) (-15 -4251 ((-57) (-288 |#2|) (-123) (-288 |#2|) (-634 |#2|))) (-15 -4251 ((-57) (-634 (-288 |#2|)) (-634 (-123)) (-288 |#2|) (-634 (-288 |#2|)))) (-15 -4251 ((-57) (-634 (-288 |#2|)) (-634 (-123)) (-288 |#2|) (-634 |#2|))) (-15 -4251 ((-57) (-634 |#2|) (-634 (-123)) (-288 |#2|) (-634 |#2|))) (-15 -4251 ((-57) (-634 |#2|) (-634 (-123)) (-288 |#2|) (-634 (-288 |#2|)))) (-15 -4251 ((-57) (-288 |#2|) (-123) (-288 |#2|) |#2|)) (-15 -4251 ((-57) |#2| (-123) (-288 |#2|) |#2|)) (-15 -4251 ((-57) |#2| (-123) (-288 |#2|) (-288 |#2|))) (-15 -4251 ((-57) |#2| (-123) (-288 |#2|) (-634 |#2|)))) (-13 (-842) (-558) (-609 (-541))) (-432 |#1|)) (T -311)) +((-4251 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-123)) (-5 *5 (-288 *3)) (-5 *6 (-634 *3)) (-4 *3 (-432 *7)) (-4 *7 (-13 (-842) (-558) (-609 (-541)))) (-5 *2 (-57)) (-5 *1 (-311 *7 *3)))) (-4251 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-123)) (-5 *5 (-288 *3)) (-4 *3 (-432 *6)) (-4 *6 (-13 (-842) (-558) (-609 (-541)))) (-5 *2 (-57)) (-5 *1 (-311 *6 *3)))) (-4251 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-123)) (-5 *5 (-288 *3)) (-4 *3 (-432 *6)) (-4 *6 (-13 (-842) (-558) (-609 (-541)))) (-5 *2 (-57)) (-5 *1 (-311 *6 *3)))) (-4251 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-288 *5)) (-5 *4 (-123)) (-4 *5 (-432 *6)) (-4 *6 (-13 (-842) (-558) (-609 (-541)))) (-5 *2 (-57)) (-5 *1 (-311 *6 *5)))) (-4251 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-634 *8)) (-5 *4 (-634 (-123))) (-5 *6 (-634 (-288 *8))) (-4 *8 (-432 *7)) (-5 *5 (-288 *8)) (-4 *7 (-13 (-842) (-558) (-609 (-541)))) (-5 *2 (-57)) (-5 *1 (-311 *7 *8)))) (-4251 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-634 *7)) (-5 *4 (-634 (-123))) (-5 *5 (-288 *7)) (-4 *7 (-432 *6)) (-4 *6 (-13 (-842) (-558) (-609 (-541)))) (-5 *2 (-57)) (-5 *1 (-311 *6 *7)))) (-4251 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-634 (-288 *8))) (-5 *4 (-634 (-123))) (-5 *5 (-288 *8)) (-5 *6 (-634 *8)) (-4 *8 (-432 *7)) (-4 *7 (-13 (-842) (-558) (-609 (-541)))) (-5 *2 (-57)) (-5 *1 (-311 *7 *8)))) (-4251 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-634 (-288 *7))) (-5 *4 (-634 (-123))) (-5 *5 (-288 *7)) (-4 *7 (-432 *6)) (-4 *6 (-13 (-842) (-558) (-609 (-541)))) (-5 *2 (-57)) (-5 *1 (-311 *6 *7)))) (-4251 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-288 *7)) (-5 *4 (-123)) (-5 *5 (-634 *7)) (-4 *7 (-432 *6)) (-4 *6 (-13 (-842) (-558) (-609 (-541)))) (-5 *2 (-57)) (-5 *1 (-311 *6 *7)))) (-4251 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-288 *6)) (-5 *4 (-123)) (-4 *6 (-432 *5)) (-4 *5 (-13 (-842) (-558) (-609 (-541)))) (-5 *2 (-57)) (-5 *1 (-311 *5 *6))))) +(-10 -7 (-15 -4251 ((-57) (-288 |#2|) (-123) (-288 |#2|) (-288 |#2|))) (-15 -4251 ((-57) (-288 |#2|) (-123) (-288 |#2|) (-634 |#2|))) (-15 -4251 ((-57) (-634 (-288 |#2|)) (-634 (-123)) (-288 |#2|) (-634 (-288 |#2|)))) (-15 -4251 ((-57) (-634 (-288 |#2|)) (-634 (-123)) (-288 |#2|) (-634 |#2|))) (-15 -4251 ((-57) (-634 |#2|) (-634 (-123)) (-288 |#2|) (-634 |#2|))) (-15 -4251 ((-57) (-634 |#2|) (-634 (-123)) (-288 |#2|) (-634 (-288 |#2|)))) (-15 -4251 ((-57) (-288 |#2|) (-123) (-288 |#2|) |#2|)) (-15 -4251 ((-57) |#2| (-123) (-288 |#2|) |#2|)) (-15 -4251 ((-57) |#2| (-123) (-288 |#2|) (-288 |#2|))) (-15 -4251 ((-57) |#2| (-123) (-288 |#2|) (-634 |#2|)))) +((-4251 ((|#3| |#2| (-123) (-1161) (-634 |#2|)) 53)) (-1952 ((|#2| |#2| (-123) (-1161)) 30))) +(((-312 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4251 (|#3| |#2| (-123) (-1161) (-634 |#2|))) (-15 -1952 (|#2| |#2| (-123) (-1161)))) (-13 (-842) (-558) (-609 (-541))) (-432 |#1|) (-1234 |#2|) (-1234 (-1155 |#2|))) (T -312)) +((-1952 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-123)) (-5 *4 (-1161)) (-4 *5 (-13 (-842) (-558) (-609 (-541)))) (-4 *2 (-432 *5)) (-5 *1 (-312 *5 *2 *6 *7)) (-4 *6 (-1234 *2)) (-4 *7 (-1234 (-1155 *2))))) (-4251 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-123)) (-5 *5 (-1161)) (-5 *6 (-634 *3)) (-4 *3 (-432 *7)) (-4 *7 (-13 (-842) (-558) (-609 (-541)))) (-4 *2 (-1234 *3)) (-5 *1 (-312 *7 *3 *2 *8)) (-4 *8 (-1234 (-1155 *3)))))) +(-10 -7 (-15 -4251 (|#3| |#2| (-123) (-1161) (-634 |#2|))) (-15 -1952 (|#2| |#2| (-123) (-1161)))) +((-1673 (((-1191 (-926)) (-310 (-568)) (-310 (-568)) (-310 (-568)) (-1 (-215) (-215)) (-1084 (-215)) (-215) (-568) (-1143)) 45) (((-1191 (-926)) (-310 (-568)) (-310 (-568)) (-310 (-568)) (-1 (-215) (-215)) (-1084 (-215)) (-215) (-568)) 46) (((-1191 (-926)) (-310 (-568)) (-310 (-568)) (-310 (-568)) (-1 (-215) (-215)) (-1084 (-215)) (-1 (-215) (-215)) (-568) (-1143)) 42) (((-1191 (-926)) (-310 (-568)) (-310 (-568)) (-310 (-568)) (-1 (-215) (-215)) (-1084 (-215)) (-1 (-215) (-215)) (-568)) 43)) (-3967 (((-1 (-215) (-215)) (-215)) 44))) +(((-313) (-10 -7 (-15 -3967 ((-1 (-215) (-215)) (-215))) (-15 -1673 ((-1191 (-926)) (-310 (-568)) (-310 (-568)) (-310 (-568)) (-1 (-215) (-215)) (-1084 (-215)) (-1 (-215) (-215)) (-568))) (-15 -1673 ((-1191 (-926)) (-310 (-568)) (-310 (-568)) (-310 (-568)) (-1 (-215) (-215)) (-1084 (-215)) (-1 (-215) (-215)) (-568) (-1143))) (-15 -1673 ((-1191 (-926)) (-310 (-568)) (-310 (-568)) (-310 (-568)) (-1 (-215) (-215)) (-1084 (-215)) (-215) (-568))) (-15 -1673 ((-1191 (-926)) (-310 (-568)) (-310 (-568)) (-310 (-568)) (-1 (-215) (-215)) (-1084 (-215)) (-215) (-568) (-1143))))) (T -313)) +((-1673 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-310 (-568))) (-5 *4 (-1 (-215) (-215))) (-5 *5 (-1084 (-215))) (-5 *6 (-215)) (-5 *7 (-568)) (-5 *8 (-1143)) (-5 *2 (-1191 (-926))) (-5 *1 (-313)))) (-1673 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-310 (-568))) (-5 *4 (-1 (-215) (-215))) (-5 *5 (-1084 (-215))) (-5 *6 (-215)) (-5 *7 (-568)) (-5 *2 (-1191 (-926))) (-5 *1 (-313)))) (-1673 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-310 (-568))) (-5 *4 (-1 (-215) (-215))) (-5 *5 (-1084 (-215))) (-5 *6 (-568)) (-5 *7 (-1143)) (-5 *2 (-1191 (-926))) (-5 *1 (-313)))) (-1673 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-310 (-568))) (-5 *4 (-1 (-215) (-215))) (-5 *5 (-1084 (-215))) (-5 *6 (-568)) (-5 *2 (-1191 (-926))) (-5 *1 (-313)))) (-3967 (*1 *2 *3) (-12 (-5 *2 (-1 (-215) (-215))) (-5 *1 (-313)) (-5 *3 (-215))))) +(-10 -7 (-15 -3967 ((-1 (-215) (-215)) (-215))) (-15 -1673 ((-1191 (-926)) (-310 (-568)) (-310 (-568)) (-310 (-568)) (-1 (-215) (-215)) (-1084 (-215)) (-1 (-215) (-215)) (-568))) (-15 -1673 ((-1191 (-926)) (-310 (-568)) (-310 (-568)) (-310 (-568)) (-1 (-215) (-215)) (-1084 (-215)) (-1 (-215) (-215)) (-568) (-1143))) (-15 -1673 ((-1191 (-926)) (-310 (-568)) (-310 (-568)) (-310 (-568)) (-1 (-215) (-215)) (-1084 (-215)) (-215) (-568))) (-15 -1673 ((-1191 (-926)) (-310 (-568)) (-310 (-568)) (-310 (-568)) (-1 (-215) (-215)) (-1084 (-215)) (-215) (-568) (-1143)))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) 24)) (-2055 (((-634 (-1075)) $) NIL)) (-1305 (((-1161) $) NIL)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-2227 (($ $) NIL (|has| |#1| (-558)))) (-1573 (((-121) $) NIL (|has| |#1| (-558)))) (-2617 (($ $ (-409 (-568))) NIL) (($ $ (-409 (-568)) (-409 (-568))) NIL)) (-2583 (((-1141 (-2 (|:| |k| (-409 (-568))) (|:| |c| |#1|))) $) 19)) (-1982 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1933 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-3134 (((-3 $ "failed") $ $) NIL)) (-4305 (($ $) NIL (|has| |#1| (-365)))) (-1678 (((-420 $) $) NIL (|has| |#1| (-365)))) (-1902 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1497 (((-121) $ $) NIL (|has| |#1| (-365)))) (-1974 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-2786 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-3728 (($ (-763) (-1141 (-2 (|:| |k| (-409 (-568))) (|:| |c| |#1|)))) NIL)) (-1990 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1941 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-2671 (($) NIL T CONST)) (-2401 (($ $ $) NIL (|has| |#1| (-365)))) (-2114 (($ $) 30)) (-2925 (((-3 $ "failed") $) NIL)) (-2412 (($ $ $) NIL (|has| |#1| (-365)))) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) NIL (|has| |#1| (-365)))) (-3927 (((-121) $) NIL (|has| |#1| (-365)))) (-3992 (((-121) $) NIL)) (-1897 (($) NIL (|has| |#1| (-43 (-409 (-568)))))) (-4477 (((-409 (-568)) $) NIL) (((-409 (-568)) $ (-409 (-568))) 15)) (-2735 (((-121) $) NIL)) (-4044 (($ $ (-568)) NIL (|has| |#1| (-43 (-409 (-568)))))) (-3536 (($ $ (-917)) NIL) (($ $ (-409 (-568))) NIL)) (-3562 (((-3 (-634 $) "failed") (-634 $) $) NIL (|has| |#1| (-365)))) (-3921 (((-121) $) NIL)) (-2047 (($ |#1| (-409 (-568))) NIL) (($ $ (-1075) (-409 (-568))) NIL) (($ $ (-634 (-1075)) (-634 (-409 (-568)))) NIL)) (-2521 (($ $ $) NIL)) (-3268 (($ $ $) NIL)) (-2795 (($ (-1 |#1| |#1|) $) NIL)) (-4416 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-2097 (($ $) NIL)) (-2102 ((|#1| $) NIL)) (-2495 (($ (-634 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-4487 (((-1143) $) NIL)) (-2081 (($ $) NIL (|has| |#1| (-365)))) (-3837 (($ $) NIL (|has| |#1| (-43 (-409 (-568))))) (($ $ (-1161)) NIL (-2198 (-12 (|has| |#1| (-15 -3837 (|#1| |#1| (-1161)))) (|has| |#1| (-15 -2055 ((-634 (-1161)) |#1|))) (|has| |#1| (-43 (-409 (-568))))) (-12 (|has| |#1| (-29 (-568))) (|has| |#1| (-43 (-409 (-568)))) (|has| |#1| (-959)) (|has| |#1| (-1181)))))) (-4022 (((-1108) $) NIL)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL (|has| |#1| (-365)))) (-2721 (($ (-634 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3848 (((-420 $) $) NIL (|has| |#1| (-365)))) (-4497 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL (|has| |#1| (-365)))) (-1807 (($ $ (-409 (-568))) NIL)) (-2595 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-2344 (((-3 (-634 $) "failed") (-634 $) $) NIL (|has| |#1| (-365)))) (-2301 (((-409 (-568)) $) 16)) (-4327 (($ (-1228 |#1| |#2| |#3|)) 11)) (-3438 (((-1228 |#1| |#2| |#3|) $) 12)) (-1892 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1339 (((-1141 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-409 (-568))))))) (-2709 (((-763) $) NIL (|has| |#1| (-365)))) (-2779 ((|#1| $ (-409 (-568))) NIL) (($ $ $) NIL (|has| (-409 (-568)) (-1102)))) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL (|has| |#1| (-365)))) (-4189 (($ $ (-634 (-1161)) (-634 (-763))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-1161) (-763)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-634 (-1161))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-1161)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-763)) NIL (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))))) (-3206 (((-409 (-568)) $) NIL)) (-1994 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1945 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1986 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1937 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1978 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-2790 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1811 (($ $) 10)) (-2745 (((-850) $) 36) (($ (-568)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-409 (-568))) NIL (|has| |#1| (-43 (-409 (-568))))) (($ $) NIL (|has| |#1| (-558)))) (-2604 ((|#1| $ (-409 (-568))) 28)) (-4371 (((-3 $ "failed") $) NIL (|has| |#1| (-148)))) (-4078 (((-763)) NIL)) (-1374 ((|#1| $) NIL)) (-2006 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1958 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1826 (((-121) $ $) NIL (|has| |#1| (-558)))) (-1998 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1949 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-2014 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1966 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-3996 ((|#1| $ (-409 (-568))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-409 (-568))))) (|has| |#1| (-15 -2745 (|#1| (-1161))))))) (-4023 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1970 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-2010 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1962 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-2002 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1953 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL (|has| |#1| (-365)))) (-3056 (($) NIL T CONST)) (-1556 (($) NIL T CONST)) (-3190 (($ $ (-634 (-1161)) (-634 (-763))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-1161) (-763)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-634 (-1161))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-1161)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-763)) NIL (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))))) (-1751 (((-121) $ $) NIL)) (-1738 (((-121) $ $) NIL)) (-1717 (((-121) $ $) 26)) (-1745 (((-121) $ $) NIL)) (-1732 (((-121) $ $) 31)) (-1779 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-43 (-409 (-568))))) (($ $ (-409 (-568))) NIL (|has| |#1| (-43 (-409 (-568)))))) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-409 (-568)) $) NIL (|has| |#1| (-43 (-409 (-568))))) (($ $ (-409 (-568))) NIL (|has| |#1| (-43 (-409 (-568))))))) +(((-314 |#1| |#2| |#3|) (-13 (-1224 |#1|) (-787) (-10 -8 (-15 -4327 ($ (-1228 |#1| |#2| |#3|))) (-15 -3438 ((-1228 |#1| |#2| |#3|) $)) (-15 -2301 ((-409 (-568)) $)))) (-13 (-365) (-842)) (-1161) |#1|) (T -314)) +((-4327 (*1 *1 *2) (-12 (-5 *2 (-1228 *3 *4 *5)) (-4 *3 (-13 (-365) (-842))) (-14 *4 (-1161)) (-14 *5 *3) (-5 *1 (-314 *3 *4 *5)))) (-3438 (*1 *2 *1) (-12 (-5 *2 (-1228 *3 *4 *5)) (-5 *1 (-314 *3 *4 *5)) (-4 *3 (-13 (-365) (-842))) (-14 *4 (-1161)) (-14 *5 *3))) (-2301 (*1 *2 *1) (-12 (-5 *2 (-409 (-568))) (-5 *1 (-314 *3 *4 *5)) (-4 *3 (-13 (-365) (-842))) (-14 *4 (-1161)) (-14 *5 *3)))) +(-13 (-1224 |#1|) (-787) (-10 -8 (-15 -4327 ($ (-1228 |#1| |#2| |#3|))) (-15 -3438 ((-1228 |#1| |#2| |#3|) $)) (-15 -2301 ((-409 (-568)) $)))) +((-2643 (((-420 (-1157 |#1|)) (-1157 |#1|) |#1|) 15)) (-3848 (((-420 (-1157 |#1|)) (-1157 |#1|) |#1|) 24))) +(((-315 |#1|) (-10 -7 (-15 -3848 ((-420 (-1157 |#1|)) (-1157 |#1|) |#1|)) (-15 -2643 ((-420 (-1157 |#1|)) (-1157 |#1|) |#1|))) (-854)) (T -315)) +((-2643 (*1 *2 *3 *4) (-12 (-4 *4 (-854)) (-5 *2 (-420 (-1157 *4))) (-5 *1 (-315 *4)) (-5 *3 (-1157 *4)))) (-3848 (*1 *2 *3 *4) (-12 (-4 *4 (-854)) (-5 *2 (-420 (-1157 *4))) (-5 *1 (-315 *4)) (-5 *3 (-1157 *4))))) +(-10 -7 (-15 -3848 ((-420 (-1157 |#1|)) (-1157 |#1|) |#1|)) (-15 -2643 ((-420 (-1157 |#1|)) (-1157 |#1|) |#1|))) +((-4044 (((-2 (|:| -3438 (-763)) (|:| -2348 |#1|) (|:| |radicand| (-634 |#1|))) (-420 |#1|) (-763)) 24)) (-4416 (((-634 (-2 (|:| -2348 (-763)) (|:| |logand| |#1|))) (-420 |#1|)) 28))) +(((-316 |#1|) (-10 -7 (-15 -4044 ((-2 (|:| -3438 (-763)) (|:| -2348 |#1|) (|:| |radicand| (-634 |#1|))) (-420 |#1|) (-763))) (-15 -4416 ((-634 (-2 (|:| -2348 (-763)) (|:| |logand| |#1|))) (-420 |#1|)))) (-558)) (T -316)) +((-4416 (*1 *2 *3) (-12 (-5 *3 (-420 *4)) (-4 *4 (-558)) (-5 *2 (-634 (-2 (|:| -2348 (-763)) (|:| |logand| *4)))) (-5 *1 (-316 *4)))) (-4044 (*1 *2 *3 *4) (-12 (-5 *3 (-420 *5)) (-4 *5 (-558)) (-5 *2 (-2 (|:| -3438 (-763)) (|:| -2348 *5) (|:| |radicand| (-634 *5)))) (-5 *1 (-316 *5)) (-5 *4 (-763))))) +(-10 -7 (-15 -4044 ((-2 (|:| -3438 (-763)) (|:| -2348 |#1|) (|:| |radicand| (-634 |#1|))) (-420 |#1|) (-763))) (-15 -4416 ((-634 (-2 (|:| -2348 (-763)) (|:| |logand| |#1|))) (-420 |#1|)))) +((-2643 (((-420 (-1157 |#1|)) (-1157 |#1|) |#1|) 15)) (-3848 (((-420 (-1157 |#1|)) (-1157 |#1|) |#1|) 24))) +(((-317 |#1|) (-10 -7 (-15 -3848 ((-420 (-1157 |#1|)) (-1157 |#1|) |#1|)) (-15 -2643 ((-420 (-1157 |#1|)) (-1157 |#1|) |#1|))) (-859)) (T -317)) +((-2643 (*1 *2 *3 *4) (-12 (-4 *4 (-859)) (-5 *2 (-420 (-1157 *4))) (-5 *1 (-317 *4)) (-5 *3 (-1157 *4)))) (-3848 (*1 *2 *3 *4) (-12 (-4 *4 (-859)) (-5 *2 (-420 (-1157 *4))) (-5 *1 (-317 *4)) (-5 *3 (-1157 *4))))) +(-10 -7 (-15 -3848 ((-420 (-1157 |#1|)) (-1157 |#1|) |#1|)) (-15 -2643 ((-420 (-1157 |#1|)) (-1157 |#1|) |#1|))) +((-2055 (((-634 |#2|) (-1157 |#4|)) 43)) (-4414 ((|#3| (-568)) 46)) (-3669 (((-1157 |#4|) (-1157 |#3|)) 30)) (-2708 (((-1157 |#4|) (-1157 |#4|) (-568)) 55)) (-1517 (((-1157 |#3|) (-1157 |#4|)) 21)) (-3206 (((-634 (-763)) (-1157 |#4|) (-634 |#2|)) 40)) (-2810 (((-1157 |#3|) (-1157 |#4|) (-634 |#2|) (-634 |#3|)) 35))) +(((-318 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2810 ((-1157 |#3|) (-1157 |#4|) (-634 |#2|) (-634 |#3|))) (-15 -3206 ((-634 (-763)) (-1157 |#4|) (-634 |#2|))) (-15 -2055 ((-634 |#2|) (-1157 |#4|))) (-15 -1517 ((-1157 |#3|) (-1157 |#4|))) (-15 -3669 ((-1157 |#4|) (-1157 |#3|))) (-15 -2708 ((-1157 |#4|) (-1157 |#4|) (-568))) (-15 -4414 (|#3| (-568)))) (-788) (-842) (-1047) (-950 |#3| |#1| |#2|)) (T -318)) +((-4414 (*1 *2 *3) (-12 (-5 *3 (-568)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *2 (-1047)) (-5 *1 (-318 *4 *5 *2 *6)) (-4 *6 (-950 *2 *4 *5)))) (-2708 (*1 *2 *2 *3) (-12 (-5 *2 (-1157 *7)) (-5 *3 (-568)) (-4 *7 (-950 *6 *4 *5)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1047)) (-5 *1 (-318 *4 *5 *6 *7)))) (-3669 (*1 *2 *3) (-12 (-5 *3 (-1157 *6)) (-4 *6 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-1157 *7)) (-5 *1 (-318 *4 *5 *6 *7)) (-4 *7 (-950 *6 *4 *5)))) (-1517 (*1 *2 *3) (-12 (-5 *3 (-1157 *7)) (-4 *7 (-950 *6 *4 *5)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1047)) (-5 *2 (-1157 *6)) (-5 *1 (-318 *4 *5 *6 *7)))) (-2055 (*1 *2 *3) (-12 (-5 *3 (-1157 *7)) (-4 *7 (-950 *6 *4 *5)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1047)) (-5 *2 (-634 *5)) (-5 *1 (-318 *4 *5 *6 *7)))) (-3206 (*1 *2 *3 *4) (-12 (-5 *3 (-1157 *8)) (-5 *4 (-634 *6)) (-4 *6 (-842)) (-4 *8 (-950 *7 *5 *6)) (-4 *5 (-788)) (-4 *7 (-1047)) (-5 *2 (-634 (-763))) (-5 *1 (-318 *5 *6 *7 *8)))) (-2810 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1157 *9)) (-5 *4 (-634 *7)) (-5 *5 (-634 *8)) (-4 *7 (-842)) (-4 *8 (-1047)) (-4 *9 (-950 *8 *6 *7)) (-4 *6 (-788)) (-5 *2 (-1157 *8)) (-5 *1 (-318 *6 *7 *8 *9))))) +(-10 -7 (-15 -2810 ((-1157 |#3|) (-1157 |#4|) (-634 |#2|) (-634 |#3|))) (-15 -3206 ((-634 (-763)) (-1157 |#4|) (-634 |#2|))) (-15 -2055 ((-634 |#2|) (-1157 |#4|))) (-15 -1517 ((-1157 |#3|) (-1157 |#4|))) (-15 -3669 ((-1157 |#4|) (-1157 |#3|))) (-15 -2708 ((-1157 |#4|) (-1157 |#4|) (-568))) (-15 -4414 (|#3| (-568)))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) 14)) (-2583 (((-634 (-2 (|:| |gen| |#1|) (|:| -1892 (-568)))) $) 18)) (-3134 (((-3 $ "failed") $ $) NIL)) (-3983 (((-763) $) NIL)) (-2671 (($) NIL T CONST)) (-3666 (((-3 |#1| "failed") $) NIL)) (-2854 ((|#1| $) NIL)) (-2882 ((|#1| $ (-568)) NIL)) (-1444 (((-568) $ (-568)) NIL)) (-2521 (($ $ $) NIL (|has| |#1| (-842)))) (-3268 (($ $ $) NIL (|has| |#1| (-842)))) (-2096 (($ (-1 |#1| |#1|) $) NIL)) (-2907 (($ (-1 (-568) (-568)) $) 10)) (-4487 (((-1143) $) NIL)) (-1764 (($ $ $) NIL (|has| (-568) (-787)))) (-4022 (((-1108) $) NIL)) (-2745 (((-850) $) NIL) (($ |#1|) NIL)) (-2604 (((-568) |#1| $) NIL)) (-3056 (($) 15 T CONST)) (-1751 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1738 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1717 (((-121) $ $) NIL)) (-1745 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1732 (((-121) $ $) 21 (|has| |#1| (-842)))) (-1773 (($ $) 11) (($ $ $) 20)) (-1767 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ (-568)) NIL) (($ (-568) |#1|) 19))) +(((-319 |#1|) (-13 (-21) (-707 (-568)) (-320 |#1| (-568)) (-10 -7 (IF (|has| |#1| (-842)) (-6 (-842)) |noBranch|))) (-1090)) (T -319)) +NIL +(-13 (-21) (-707 (-568)) (-320 |#1| (-568)) (-10 -7 (IF (|has| |#1| (-842)) (-6 (-842)) |noBranch|))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-2583 (((-634 (-2 (|:| |gen| |#1|) (|:| -1892 |#2|))) $) 26)) (-3134 (((-3 $ "failed") $ $) 18)) (-3983 (((-763) $) 27)) (-2671 (($) 16 T CONST)) (-3666 (((-3 |#1| "failed") $) 31)) (-2854 ((|#1| $) 30)) (-2882 ((|#1| $ (-568)) 24)) (-1444 ((|#2| $ (-568)) 25)) (-2096 (($ (-1 |#1| |#1|) $) 21)) (-2907 (($ (-1 |#2| |#2|) $) 22)) (-4487 (((-1143) $) 9)) (-1764 (($ $ $) 20 (|has| |#2| (-787)))) (-4022 (((-1108) $) 10)) (-2745 (((-850) $) 11) (($ |#1|) 32)) (-2604 ((|#2| |#1| $) 23)) (-3056 (($) 17 T CONST)) (-1717 (((-121) $ $) 6)) (-1767 (($ $ $) 13) (($ |#1| $) 29)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ |#2| |#1|) 28))) +(((-320 |#1| |#2|) (-1275) (-1090) (-137)) (T -320)) +((-1767 (*1 *1 *2 *1) (-12 (-4 *1 (-320 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-137)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-320 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-137)))) (-3983 (*1 *2 *1) (-12 (-4 *1 (-320 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-137)) (-5 *2 (-763)))) (-2583 (*1 *2 *1) (-12 (-4 *1 (-320 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-137)) (-5 *2 (-634 (-2 (|:| |gen| *3) (|:| -1892 *4)))))) (-1444 (*1 *2 *1 *3) (-12 (-5 *3 (-568)) (-4 *1 (-320 *4 *2)) (-4 *4 (-1090)) (-4 *2 (-137)))) (-2882 (*1 *2 *1 *3) (-12 (-5 *3 (-568)) (-4 *1 (-320 *2 *4)) (-4 *4 (-137)) (-4 *2 (-1090)))) (-2604 (*1 *2 *3 *1) (-12 (-4 *1 (-320 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-137)))) (-2907 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-320 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-137)))) (-2096 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-320 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-137)))) (-1764 (*1 *1 *1 *1) (-12 (-4 *1 (-320 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-137)) (-4 *3 (-787))))) +(-13 (-137) (-1037 |t#1|) (-10 -8 (-15 -1767 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3983 ((-763) $)) (-15 -2583 ((-634 (-2 (|:| |gen| |t#1|) (|:| -1892 |t#2|))) $)) (-15 -1444 (|t#2| $ (-568))) (-15 -2882 (|t#1| $ (-568))) (-15 -2604 (|t#2| |t#1| $)) (-15 -2907 ($ (-1 |t#2| |t#2|) $)) (-15 -2096 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-787)) (-15 -1764 ($ $ $)) |noBranch|))) +(((-23) . T) ((-25) . T) ((-105) . T) ((-137) . T) ((-608 (-850)) . T) ((-1037 |#1|) . T) ((-1090) . T)) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-2583 (((-634 (-2 (|:| |gen| |#1|) (|:| -1892 (-763)))) $) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-3983 (((-763) $) NIL)) (-2671 (($) NIL T CONST)) (-3666 (((-3 |#1| "failed") $) NIL)) (-2854 ((|#1| $) NIL)) (-2882 ((|#1| $ (-568)) NIL)) (-1444 (((-763) $ (-568)) NIL)) (-2096 (($ (-1 |#1| |#1|) $) NIL)) (-2907 (($ (-1 (-763) (-763)) $) NIL)) (-4487 (((-1143) $) NIL)) (-1764 (($ $ $) NIL (|has| (-763) (-787)))) (-4022 (((-1108) $) NIL)) (-2745 (((-850) $) NIL) (($ |#1|) NIL)) (-2604 (((-763) |#1| $) NIL)) (-3056 (($) NIL T CONST)) (-1717 (((-121) $ $) NIL)) (-1767 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-763) |#1|) NIL))) +(((-321 |#1|) (-320 |#1| (-763)) (-1090)) (T -321)) +NIL +(-320 |#1| (-763)) +((-2795 ((|#5| (-1 |#4| |#2|) |#3|) 19))) +(((-322 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2795 (|#5| (-1 |#4| |#2|) |#3|))) (-787) (-1047) (-324 |#2| |#1|) (-1047) (-324 |#4| |#1|)) (T -322)) +((-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-4 *6 (-1047)) (-4 *7 (-1047)) (-4 *5 (-787)) (-4 *2 (-324 *7 *5)) (-5 *1 (-322 *5 *6 *4 *7 *2)) (-4 *4 (-324 *6 *5))))) +(-10 -7 (-15 -2795 (|#5| (-1 |#4| |#2|) |#3|))) +((-3250 (($ $) 52)) (-3088 (($ $ |#2| |#3| $) 14)) (-3842 (($ (-1 |#3| |#3|) $) 35)) (-2086 (((-121) $) 27)) (-2091 ((|#2| $) 29)) (-2595 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 45)) (-3367 ((|#2| $) 48)) (-1302 (((-634 |#2|) $) 38)) (-4171 (($ $ $ (-763)) 23)) (-1779 (($ $ |#2|) 42))) +(((-323 |#1| |#2| |#3|) (-10 -8 (-15 -3250 (|#1| |#1|)) (-15 -3367 (|#2| |#1|)) (-15 -2595 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4171 (|#1| |#1| |#1| (-763))) (-15 -3088 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3842 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1302 ((-634 |#2|) |#1|)) (-15 -2091 (|#2| |#1|)) (-15 -2086 ((-121) |#1|)) (-15 -2595 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1779 (|#1| |#1| |#2|))) (-324 |#2| |#3|) (-1047) (-787)) (T -323)) +NIL +(-10 -8 (-15 -3250 (|#1| |#1|)) (-15 -3367 (|#2| |#1|)) (-15 -2595 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4171 (|#1| |#1| |#1| (-763))) (-15 -3088 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3842 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1302 ((-634 |#2|) |#1|)) (-15 -2091 (|#2| |#1|)) (-15 -2086 ((-121) |#1|)) (-15 -2595 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1779 (|#1| |#1| |#2|))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) 50 (|has| |#1| (-558)))) (-2227 (($ $) 51 (|has| |#1| (-558)))) (-1573 (((-121) $) 53 (|has| |#1| (-558)))) (-3134 (((-3 $ "failed") $ $) 18)) (-2671 (($) 16 T CONST)) (-3666 (((-3 (-568) "failed") $) 86 (|has| |#1| (-1037 (-568)))) (((-3 (-409 (-568)) "failed") $) 84 (|has| |#1| (-1037 (-409 (-568))))) (((-3 |#1| "failed") $) 83)) (-2854 (((-568) $) 87 (|has| |#1| (-1037 (-568)))) (((-409 (-568)) $) 85 (|has| |#1| (-1037 (-409 (-568))))) ((|#1| $) 82)) (-2114 (($ $) 59)) (-2925 (((-3 $ "failed") $) 33)) (-3250 (($ $) 71 (|has| |#1| (-453)))) (-3088 (($ $ |#1| |#2| $) 75)) (-2735 (((-121) $) 30)) (-4178 (((-763) $) 78)) (-3921 (((-121) $) 61)) (-2047 (($ |#1| |#2|) 60)) (-2144 ((|#2| $) 77)) (-3842 (($ (-1 |#2| |#2|) $) 76)) (-2795 (($ (-1 |#1| |#1|) $) 62)) (-2097 (($ $) 64)) (-2102 ((|#1| $) 65)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-2086 (((-121) $) 81)) (-2091 ((|#1| $) 80)) (-2595 (((-3 $ "failed") $ $) 49 (|has| |#1| (-558))) (((-3 $ "failed") $ |#1|) 73 (|has| |#1| (-558)))) (-3206 ((|#2| $) 63)) (-3367 ((|#1| $) 72 (|has| |#1| (-453)))) (-2745 (((-850) $) 11) (($ (-568)) 27) (($ $) 48 (|has| |#1| (-558))) (($ |#1|) 46) (($ (-409 (-568))) 56 (-2198 (|has| |#1| (-1037 (-409 (-568)))) (|has| |#1| (-43 (-409 (-568))))))) (-1302 (((-634 |#1|) $) 79)) (-2604 ((|#1| $ |#2|) 58)) (-4371 (((-3 $ "failed") $) 47 (|has| |#1| (-148)))) (-4078 (((-763)) 28)) (-4171 (($ $ $ (-763)) 74 (|has| |#1| (-172)))) (-1826 (((-121) $ $) 52 (|has| |#1| (-558)))) (-1887 (($ $ (-917)) 25) (($ $ (-763)) 32)) (-3056 (($) 17 T CONST)) (-1556 (($) 29 T CONST)) (-1717 (((-121) $ $) 6)) (-1779 (($ $ |#1|) 57 (|has| |#1| (-365)))) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 24) (($ $ (-763)) 31)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 23) (($ $ |#1|) 67) (($ |#1| $) 66) (($ (-409 (-568)) $) 55 (|has| |#1| (-43 (-409 (-568))))) (($ $ (-409 (-568))) 54 (|has| |#1| (-43 (-409 (-568))))))) +(((-324 |#1| |#2|) (-1275) (-1047) (-787)) (T -324)) +((-2086 (*1 *2 *1) (-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-787)) (-5 *2 (-121)))) (-2091 (*1 *2 *1) (-12 (-4 *1 (-324 *2 *3)) (-4 *3 (-787)) (-4 *2 (-1047)))) (-1302 (*1 *2 *1) (-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-787)) (-5 *2 (-634 *3)))) (-4178 (*1 *2 *1) (-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-787)) (-5 *2 (-763)))) (-2144 (*1 *2 *1) (-12 (-4 *1 (-324 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-787)))) (-3842 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-324 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-787)))) (-3088 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-324 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-787)))) (-4171 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-763)) (-4 *1 (-324 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-787)) (-4 *3 (-172)))) (-2595 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-324 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-787)) (-4 *2 (-558)))) (-3367 (*1 *2 *1) (-12 (-4 *1 (-324 *2 *3)) (-4 *3 (-787)) (-4 *2 (-1047)) (-4 *2 (-453)))) (-3250 (*1 *1 *1) (-12 (-4 *1 (-324 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-787)) (-4 *2 (-453))))) +(-13 (-52 |t#1| |t#2|) (-413 |t#1|) (-10 -8 (-15 -2086 ((-121) $)) (-15 -2091 (|t#1| $)) (-15 -1302 ((-634 |t#1|) $)) (-15 -4178 ((-763) $)) (-15 -2144 (|t#2| $)) (-15 -3842 ($ (-1 |t#2| |t#2|) $)) (-15 -3088 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-172)) (-15 -4171 ($ $ $ (-763))) |noBranch|) (IF (|has| |t#1| (-558)) (-15 -2595 ((-3 $ "failed") $ |t#1|)) |noBranch|) (IF (|has| |t#1| (-453)) (PROGN (-15 -3367 (|t#1| $)) (-15 -3250 ($ $))) |noBranch|))) +(((-21) . T) ((-23) . T) ((-52 |#1| |#2|) . T) ((-25) . T) ((-43 (-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((-43 |#1|) |has| |#1| (-172)) ((-43 $) |has| |#1| (-558)) ((-105) . T) ((-120 (-409 (-568)) (-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((-120 |#1| |#1|) . T) ((-120 $ $) -2198 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-137) . T) ((-148) |has| |#1| (-148)) ((-150) |has| |#1| (-150)) ((-608 (-850)) . T) ((-172) -2198 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-285) |has| |#1| (-558)) ((-413 |#1|) . T) ((-558) |has| |#1| (-558)) ((-637 (-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((-637 |#1|) . T) ((-637 $) . T) ((-707 (-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((-707 |#1|) |has| |#1| (-172)) ((-707 $) |has| |#1| (-558)) ((-716) . T) ((-1037 (-409 (-568))) |has| |#1| (-1037 (-409 (-568)))) ((-1037 (-568)) |has| |#1| (-1037 (-568))) ((-1037 |#1|) . T) ((-1053 (-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((-1053 |#1|) . T) ((-1053 $) -2198 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-1047) . T) ((-1054) . T) ((-1102) . T) ((-1090) . T)) +((-2447 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-1868 (((-1249) $ (-568) (-568)) NIL (|has| $ (-6 -4520)))) (-2016 (((-121) (-1 (-121) |#1| |#1|) $) NIL) (((-121) $) NIL (|has| |#1| (-842)))) (-3908 (($ (-1 (-121) |#1| |#1|) $) NIL (|has| $ (-6 -4520))) (($ $) NIL (-12 (|has| $ (-6 -4520)) (|has| |#1| (-842))))) (-3644 (($ (-1 (-121) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-842)))) (-2510 (((-121) $ (-763)) NIL)) (-3535 (((-121) (-121)) NIL)) (-2436 ((|#1| $ (-568) |#1|) NIL (|has| $ (-6 -4520))) ((|#1| $ (-1210 (-568)) |#1|) NIL (|has| $ (-6 -4520)))) (-3507 (($ (-1 (-121) |#1|) $) NIL)) (-2801 (($ (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-2671 (($) NIL T CONST)) (-1578 (($ $) NIL (|has| $ (-6 -4520)))) (-3943 (($ $) NIL)) (-3369 (($ $) NIL (|has| |#1| (-1090)))) (-3924 (($ $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-3405 (($ |#1| $) NIL (|has| |#1| (-1090))) (($ (-1 (-121) |#1|) $) NIL)) (-4328 (($ |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090)))) (($ (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-3092 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4519))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4519)))) (-3989 ((|#1| $ (-568) |#1|) NIL (|has| $ (-6 -4520)))) (-2602 ((|#1| $ (-568)) NIL)) (-2764 (((-568) (-1 (-121) |#1|) $) NIL) (((-568) |#1| $) NIL (|has| |#1| (-1090))) (((-568) |#1| $ (-568)) NIL (|has| |#1| (-1090)))) (-3428 (($ $ (-568)) NIL)) (-3575 (((-763) $) NIL)) (-4360 (((-634 |#1|) $) NIL (|has| $ (-6 -4519)))) (-1849 (($ (-763) |#1|) NIL)) (-1737 (((-121) $ (-763)) NIL)) (-1881 (((-568) $) NIL (|has| (-568) (-842)))) (-2521 (($ $ $) NIL (|has| |#1| (-842)))) (-3349 (($ $ $) NIL (|has| |#1| (-842))) (($ (-1 (-121) |#1| |#1|) $ $) NIL)) (-1347 (($ (-1 (-121) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-842)))) (-1979 (((-634 |#1|) $) NIL (|has| $ (-6 -4519)))) (-3109 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-2223 (((-568) $) NIL (|has| (-568) (-842)))) (-3268 (($ $ $) NIL (|has| |#1| (-842)))) (-3674 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2166 (((-121) $ (-763)) NIL)) (-4487 (((-1143) $) NIL (|has| |#1| (-1090)))) (-4450 (($ $ $ (-568)) NIL) (($ |#1| $ (-568)) NIL)) (-4122 (($ |#1| $ (-568)) NIL) (($ $ $ (-568)) NIL)) (-4174 (((-634 (-568)) $) NIL)) (-3578 (((-121) (-568) $) NIL)) (-4022 (((-1108) $) NIL (|has| |#1| (-1090)))) (-3802 (($ (-634 |#1|)) NIL)) (-3876 ((|#1| $) NIL (|has| (-568) (-842)))) (-3775 (((-3 |#1| "failed") (-1 (-121) |#1|) $) NIL)) (-3724 (($ $ |#1|) NIL (|has| $ (-6 -4520)))) (-1387 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-634 |#1|) (-634 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))))) (-3171 (((-121) $ $) NIL)) (-4467 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-2041 (((-634 |#1|) $) NIL)) (-3084 (((-121) $) NIL)) (-3248 (($) NIL)) (-2779 ((|#1| $ (-568) |#1|) NIL) ((|#1| $ (-568)) NIL) (($ $ (-1210 (-568))) NIL)) (-1783 (($ $ (-1210 (-568))) NIL) (($ $ (-568)) NIL)) (-2826 (($ $ (-568)) NIL) (($ $ (-1210 (-568))) NIL)) (-4168 (((-763) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519))) (((-763) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-2256 (($ $ $ (-568)) NIL (|has| $ (-6 -4520)))) (-3863 (($ $) NIL)) (-4278 (((-541) $) NIL (|has| |#1| (-609 (-541))))) (-4287 (($ (-634 |#1|)) NIL)) (-3845 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2768 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-634 $)) NIL)) (-2745 (((-850) $) NIL (|has| |#1| (-1090)))) (-1319 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-1751 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1738 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1717 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-1745 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1732 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1697 (((-763) $) NIL (|has| $ (-6 -4519))))) +(((-325 |#1|) (-13 (-19 |#1|) (-277 |#1|) (-10 -8 (-15 -3802 ($ (-634 |#1|))) (-15 -3575 ((-763) $)) (-15 -3428 ($ $ (-568))) (-15 -3535 ((-121) (-121))))) (-1195)) (T -325)) +((-3802 (*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-1195)) (-5 *1 (-325 *3)))) (-3575 (*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-325 *3)) (-4 *3 (-1195)))) (-3428 (*1 *1 *1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-325 *3)) (-4 *3 (-1195)))) (-3535 (*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-325 *3)) (-4 *3 (-1195))))) +(-13 (-19 |#1|) (-277 |#1|) (-10 -8 (-15 -3802 ($ (-634 |#1|))) (-15 -3575 ((-763) $)) (-15 -3428 ($ $ (-568))) (-15 -3535 ((-121) (-121))))) +((-2615 (((-121) $) 37)) (-1739 (((-763)) 22)) (-1932 ((|#2| $) 41) (($ $ (-917)) 99)) (-3983 (((-763)) 93)) (-3498 (($ (-1244 |#2|)) 20)) (-3917 (((-121) $) 111)) (-2657 ((|#2| $) 43) (($ $ (-917)) 97)) (-2045 (((-1157 |#2|) $) NIL) (((-1157 $) $ (-917)) 88)) (-2035 (((-1157 |#2|) $) 78)) (-1422 (((-1157 |#2|) $) 75) (((-3 (-1157 |#2|) "failed") $ $) 72)) (-2109 (($ $ (-1157 |#2|)) 48)) (-1553 (((-828 (-917))) 91) (((-917)) 38)) (-4321 (((-139)) 25)) (-3206 (((-828 (-917)) $) NIL) (((-917) $) 112)) (-2027 (($) 105)) (-4073 (((-1244 |#2|) $) NIL) (((-679 |#2|) (-1244 $)) 34)) (-4371 (($ $) NIL) (((-3 $ "failed") $) 81)) (-4390 (((-121) $) 36))) +(((-326 |#1| |#2|) (-10 -8 (-15 -4371 ((-3 |#1| "failed") |#1|)) (-15 -3983 ((-763))) (-15 -4371 (|#1| |#1|)) (-15 -1422 ((-3 (-1157 |#2|) "failed") |#1| |#1|)) (-15 -1422 ((-1157 |#2|) |#1|)) (-15 -2035 ((-1157 |#2|) |#1|)) (-15 -2109 (|#1| |#1| (-1157 |#2|))) (-15 -3917 ((-121) |#1|)) (-15 -2027 (|#1|)) (-15 -1932 (|#1| |#1| (-917))) (-15 -2657 (|#1| |#1| (-917))) (-15 -2045 ((-1157 |#1|) |#1| (-917))) (-15 -1932 (|#2| |#1|)) (-15 -2657 (|#2| |#1|)) (-15 -3206 ((-917) |#1|)) (-15 -1553 ((-917))) (-15 -2045 ((-1157 |#2|) |#1|)) (-15 -3498 (|#1| (-1244 |#2|))) (-15 -4073 ((-679 |#2|) (-1244 |#1|))) (-15 -4073 ((-1244 |#2|) |#1|)) (-15 -1739 ((-763))) (-15 -1553 ((-828 (-917)))) (-15 -3206 ((-828 (-917)) |#1|)) (-15 -2615 ((-121) |#1|)) (-15 -4390 ((-121) |#1|)) (-15 -4321 ((-139)))) (-327 |#2|) (-365)) (T -326)) +((-4321 (*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-139)) (-5 *1 (-326 *3 *4)) (-4 *3 (-327 *4)))) (-1553 (*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-828 (-917))) (-5 *1 (-326 *3 *4)) (-4 *3 (-327 *4)))) (-1739 (*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-763)) (-5 *1 (-326 *3 *4)) (-4 *3 (-327 *4)))) (-1553 (*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-917)) (-5 *1 (-326 *3 *4)) (-4 *3 (-327 *4)))) (-3983 (*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-763)) (-5 *1 (-326 *3 *4)) (-4 *3 (-327 *4))))) +(-10 -8 (-15 -4371 ((-3 |#1| "failed") |#1|)) (-15 -3983 ((-763))) (-15 -4371 (|#1| |#1|)) (-15 -1422 ((-3 (-1157 |#2|) "failed") |#1| |#1|)) (-15 -1422 ((-1157 |#2|) |#1|)) (-15 -2035 ((-1157 |#2|) |#1|)) (-15 -2109 (|#1| |#1| (-1157 |#2|))) (-15 -3917 ((-121) |#1|)) (-15 -2027 (|#1|)) (-15 -1932 (|#1| |#1| (-917))) (-15 -2657 (|#1| |#1| (-917))) (-15 -2045 ((-1157 |#1|) |#1| (-917))) (-15 -1932 (|#2| |#1|)) (-15 -2657 (|#2| |#1|)) (-15 -3206 ((-917) |#1|)) (-15 -1553 ((-917))) (-15 -2045 ((-1157 |#2|) |#1|)) (-15 -3498 (|#1| (-1244 |#2|))) (-15 -4073 ((-679 |#2|) (-1244 |#1|))) (-15 -4073 ((-1244 |#2|) |#1|)) (-15 -1739 ((-763))) (-15 -1553 ((-828 (-917)))) (-15 -3206 ((-828 (-917)) |#1|)) (-15 -2615 ((-121) |#1|)) (-15 -4390 ((-121) |#1|)) (-15 -4321 ((-139)))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) 40)) (-2227 (($ $) 39)) (-1573 (((-121) $) 37)) (-2615 (((-121) $) 90)) (-1739 (((-763)) 86)) (-1932 ((|#1| $) 133) (($ $ (-917)) 130 (|has| |#1| (-370)))) (-3211 (((-1169 (-917) (-763)) (-568)) 115 (|has| |#1| (-370)))) (-3134 (((-3 $ "failed") $ $) 18)) (-4305 (($ $) 71)) (-1678 (((-420 $) $) 70)) (-1497 (((-121) $ $) 57)) (-3983 (((-763)) 105 (|has| |#1| (-370)))) (-2671 (($) 16 T CONST)) (-3666 (((-3 |#1| "failed") $) 97)) (-2854 ((|#1| $) 96)) (-3498 (($ (-1244 |#1|)) 139)) (-2022 (((-3 "prime" "polynomial" "normal" "cyclic")) 121 (|has| |#1| (-370)))) (-2401 (($ $ $) 53)) (-2925 (((-3 $ "failed") $) 33)) (-1731 (($) 102 (|has| |#1| (-370)))) (-2412 (($ $ $) 54)) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) 49)) (-4220 (($) 117 (|has| |#1| (-370)))) (-4456 (((-121) $) 118 (|has| |#1| (-370)))) (-3218 (($ $ (-763)) 83 (-2198 (|has| |#1| (-148)) (|has| |#1| (-370)))) (($ $) 82 (-2198 (|has| |#1| (-148)) (|has| |#1| (-370))))) (-3927 (((-121) $) 69)) (-4477 (((-917) $) 120 (|has| |#1| (-370))) (((-828 (-917)) $) 80 (-2198 (|has| |#1| (-148)) (|has| |#1| (-370))))) (-2735 (((-121) $) 30)) (-2883 (($) 128 (|has| |#1| (-370)))) (-3917 (((-121) $) 127 (|has| |#1| (-370)))) (-2657 ((|#1| $) 134) (($ $ (-917)) 131 (|has| |#1| (-370)))) (-3038 (((-3 $ "failed") $) 106 (|has| |#1| (-370)))) (-3562 (((-3 (-634 $) "failed") (-634 $) $) 50)) (-2045 (((-1157 |#1|) $) 138) (((-1157 $) $ (-917)) 132 (|has| |#1| (-370)))) (-3683 (((-917) $) 103 (|has| |#1| (-370)))) (-2035 (((-1157 |#1|) $) 124 (|has| |#1| (-370)))) (-1422 (((-1157 |#1|) $) 123 (|has| |#1| (-370))) (((-3 (-1157 |#1|) "failed") $ $) 122 (|has| |#1| (-370)))) (-2109 (($ $ (-1157 |#1|)) 125 (|has| |#1| (-370)))) (-2495 (($ $ $) 45) (($ (-634 $)) 44)) (-4487 (((-1143) $) 9)) (-2081 (($ $) 68)) (-4434 (($) 107 (|has| |#1| (-370)) CONST)) (-4355 (($ (-917)) 104 (|has| |#1| (-370)))) (-2864 (((-121) $) 89)) (-4022 (((-1108) $) 10)) (-2704 (($) 126 (|has| |#1| (-370)))) (-2155 (((-1157 $) (-1157 $) (-1157 $)) 43)) (-2721 (($ $ $) 47) (($ (-634 $)) 46)) (-1418 (((-634 (-2 (|:| -3848 (-568)) (|:| -3438 (-568))))) 114 (|has| |#1| (-370)))) (-3848 (((-420 $) $) 72)) (-1553 (((-828 (-917))) 87) (((-917)) 136)) (-4497 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2595 (((-3 $ "failed") $ $) 41)) (-2344 (((-3 (-634 $) "failed") (-634 $) $) 48)) (-2709 (((-763) $) 56)) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) 55)) (-3143 (((-763) $) 119 (|has| |#1| (-370))) (((-3 (-763) "failed") $ $) 81 (-2198 (|has| |#1| (-148)) (|has| |#1| (-370))))) (-4321 (((-139)) 95)) (-4189 (($ $) 111 (|has| |#1| (-370))) (($ $ (-763)) 109 (|has| |#1| (-370)))) (-3206 (((-828 (-917)) $) 88) (((-917) $) 135)) (-1626 (((-1157 |#1|)) 137)) (-3065 (($) 116 (|has| |#1| (-370)))) (-2027 (($) 129 (|has| |#1| (-370)))) (-4073 (((-1244 |#1|) $) 141) (((-679 |#1|) (-1244 $)) 140)) (-2979 (((-3 (-1244 $) "failed") (-679 $)) 113 (|has| |#1| (-370)))) (-2745 (((-850) $) 11) (($ (-568)) 27) (($ $) 42) (($ (-409 (-568))) 63) (($ |#1|) 98)) (-4371 (($ $) 112 (|has| |#1| (-370))) (((-3 $ "failed") $) 79 (-2198 (|has| |#1| (-148)) (|has| |#1| (-370))))) (-4078 (((-763)) 28)) (-3746 (((-1244 $)) 143) (((-1244 $) (-917)) 142)) (-1826 (((-121) $ $) 38)) (-4390 (((-121) $) 91)) (-1887 (($ $ (-917)) 25) (($ $ (-763)) 32) (($ $ (-568)) 67)) (-3056 (($) 17 T CONST)) (-1556 (($) 29 T CONST)) (-1316 (($ $) 85 (|has| |#1| (-370))) (($ $ (-763)) 84 (|has| |#1| (-370)))) (-3190 (($ $) 110 (|has| |#1| (-370))) (($ $ (-763)) 108 (|has| |#1| (-370)))) (-1717 (((-121) $ $) 6)) (-1779 (($ $ $) 62) (($ $ |#1|) 94)) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 24) (($ $ (-763)) 31) (($ $ (-568)) 66)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 23) (($ $ (-409 (-568))) 65) (($ (-409 (-568)) $) 64) (($ $ |#1|) 93) (($ |#1| $) 92))) +(((-327 |#1|) (-1275) (-365)) (T -327)) +((-3746 (*1 *2) (-12 (-4 *3 (-365)) (-5 *2 (-1244 *1)) (-4 *1 (-327 *3)))) (-3746 (*1 *2 *3) (-12 (-5 *3 (-917)) (-4 *4 (-365)) (-5 *2 (-1244 *1)) (-4 *1 (-327 *4)))) (-4073 (*1 *2 *1) (-12 (-4 *1 (-327 *3)) (-4 *3 (-365)) (-5 *2 (-1244 *3)))) (-4073 (*1 *2 *3) (-12 (-5 *3 (-1244 *1)) (-4 *1 (-327 *4)) (-4 *4 (-365)) (-5 *2 (-679 *4)))) (-3498 (*1 *1 *2) (-12 (-5 *2 (-1244 *3)) (-4 *3 (-365)) (-4 *1 (-327 *3)))) (-2045 (*1 *2 *1) (-12 (-4 *1 (-327 *3)) (-4 *3 (-365)) (-5 *2 (-1157 *3)))) (-1626 (*1 *2) (-12 (-4 *1 (-327 *3)) (-4 *3 (-365)) (-5 *2 (-1157 *3)))) (-1553 (*1 *2) (-12 (-4 *1 (-327 *3)) (-4 *3 (-365)) (-5 *2 (-917)))) (-3206 (*1 *2 *1) (-12 (-4 *1 (-327 *3)) (-4 *3 (-365)) (-5 *2 (-917)))) (-2657 (*1 *2 *1) (-12 (-4 *1 (-327 *2)) (-4 *2 (-365)))) (-1932 (*1 *2 *1) (-12 (-4 *1 (-327 *2)) (-4 *2 (-365)))) (-2045 (*1 *2 *1 *3) (-12 (-5 *3 (-917)) (-4 *4 (-370)) (-4 *4 (-365)) (-5 *2 (-1157 *1)) (-4 *1 (-327 *4)))) (-2657 (*1 *1 *1 *2) (-12 (-5 *2 (-917)) (-4 *1 (-327 *3)) (-4 *3 (-365)) (-4 *3 (-370)))) (-1932 (*1 *1 *1 *2) (-12 (-5 *2 (-917)) (-4 *1 (-327 *3)) (-4 *3 (-365)) (-4 *3 (-370)))) (-2027 (*1 *1) (-12 (-4 *1 (-327 *2)) (-4 *2 (-370)) (-4 *2 (-365)))) (-2883 (*1 *1) (-12 (-4 *1 (-327 *2)) (-4 *2 (-370)) (-4 *2 (-365)))) (-3917 (*1 *2 *1) (-12 (-4 *1 (-327 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-121)))) (-2704 (*1 *1) (-12 (-4 *1 (-327 *2)) (-4 *2 (-370)) (-4 *2 (-365)))) (-2109 (*1 *1 *1 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-370)) (-4 *1 (-327 *3)) (-4 *3 (-365)))) (-2035 (*1 *2 *1) (-12 (-4 *1 (-327 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-1157 *3)))) (-1422 (*1 *2 *1) (-12 (-4 *1 (-327 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-1157 *3)))) (-1422 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-327 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-1157 *3))))) +(-13 (-1261 |t#1|) (-1037 |t#1|) (-10 -8 (-15 -3746 ((-1244 $))) (-15 -3746 ((-1244 $) (-917))) (-15 -4073 ((-1244 |t#1|) $)) (-15 -4073 ((-679 |t#1|) (-1244 $))) (-15 -3498 ($ (-1244 |t#1|))) (-15 -2045 ((-1157 |t#1|) $)) (-15 -1626 ((-1157 |t#1|))) (-15 -1553 ((-917))) (-15 -3206 ((-917) $)) (-15 -2657 (|t#1| $)) (-15 -1932 (|t#1| $)) (IF (|has| |t#1| (-370)) (PROGN (-6 (-350)) (-15 -2045 ((-1157 $) $ (-917))) (-15 -2657 ($ $ (-917))) (-15 -1932 ($ $ (-917))) (-15 -2027 ($)) (-15 -2883 ($)) (-15 -3917 ((-121) $)) (-15 -2704 ($)) (-15 -2109 ($ $ (-1157 |t#1|))) (-15 -2035 ((-1157 |t#1|) $)) (-15 -1422 ((-1157 |t#1|) $)) (-15 -1422 ((-3 (-1157 |t#1|) "failed") $ $))) |noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-43 (-409 (-568))) . T) ((-43 $) . T) ((-105) . T) ((-120 (-409 (-568)) (-409 (-568))) . T) ((-120 |#1| |#1|) . T) ((-120 $ $) . T) ((-137) . T) ((-148) -2198 (|has| |#1| (-370)) (|has| |#1| (-148))) ((-150) |has| |#1| (-150)) ((-608 (-850)) . T) ((-172) . T) ((-225) |has| |#1| (-370)) ((-238) . T) ((-285) . T) ((-301) . T) ((-1261 |#1|) . T) ((-365) . T) ((-404) -2198 (|has| |#1| (-370)) (|has| |#1| (-148))) ((-370) |has| |#1| (-370)) ((-350) |has| |#1| (-370)) ((-453) . T) ((-558) . T) ((-637 (-409 (-568))) . T) ((-637 |#1|) . T) ((-637 $) . T) ((-707 (-409 (-568))) . T) ((-707 |#1|) . T) ((-707 $) . T) ((-716) . T) ((-916) . T) ((-1037 |#1|) . T) ((-1053 (-409 (-568))) . T) ((-1053 |#1|) . T) ((-1053 $) . T) ((-1047) . T) ((-1054) . T) ((-1102) . T) ((-1090) . T) ((-1136) |has| |#1| (-370)) ((-1199) . T) ((-1251 |#1|) . T)) +((-2447 (((-121) $ $) NIL)) (-1430 (($ (-1160) $) 88)) (-3480 (($) 76)) (-3301 (((-1108) (-1108)) 11)) (-2330 (($) 77)) (-2592 (($) 90) (($ (-310 (-688))) 96) (($ (-310 (-690))) 93) (($ (-310 (-683))) 99) (($ (-310 (-381))) 105) (($ (-310 (-568))) 102) (($ (-310 (-169 (-381)))) 108)) (-4082 (($ (-1160) $) 89)) (-2214 (($ (-634 (-850))) 79)) (-3725 (((-1249) $) 73)) (-3406 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 27)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-3487 (($ (-1108)) 45)) (-1491 (((-1094) $) 25)) (-4465 (($ (-1082 (-953 (-568))) $) 85) (($ (-1082 (-953 (-568))) (-953 (-568)) $) 86)) (-2909 (($ (-1108)) 87)) (-4133 (($ (-1160) $) 110) (($ (-1160) $ $) 111)) (-1921 (($ (-1161) (-634 (-1161))) 75)) (-1707 (($ (-1143)) 82) (($ (-634 (-1143))) 80)) (-2745 (((-850) $) 113)) (-2845 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1161)) (|:| |arrayIndex| (-634 (-953 (-568)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-121)) (|:| -4151 (-850)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1161)) (|:| |rand| (-850)) (|:| |ints2Floats?| (-121)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1160)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3084 (-121)) (|:| -2850 (-2 (|:| |ints2Floats?| (-121)) (|:| -4151 (-850)))))) (|:| |blockBranch| (-634 $)) (|:| |commentBranch| (-634 (-1143))) (|:| |callBranch| (-1143)) (|:| |forBranch| (-2 (|:| -1338 (-1082 (-953 (-568)))) (|:| |span| (-953 (-568))) (|:| |body| $))) (|:| |labelBranch| (-1108)) (|:| |loopBranch| (-2 (|:| |switch| (-1160)) (|:| |body| $))) (|:| |commonBranch| (-2 (|:| -3391 (-1161)) (|:| |contents| (-634 (-1161))))) (|:| |printBranch| (-634 (-850)))) $) 37)) (-2683 (($ (-1143)) 182)) (-2414 (($ (-634 $)) 109)) (-3870 (($ (-1161) (-1143)) 115) (($ (-1161) (-310 (-690))) 155) (($ (-1161) (-310 (-688))) 156) (($ (-1161) (-310 (-683))) 157) (($ (-1161) (-679 (-690))) 118) (($ (-1161) (-679 (-688))) 121) (($ (-1161) (-679 (-683))) 124) (($ (-1161) (-1244 (-690))) 127) (($ (-1161) (-1244 (-688))) 130) (($ (-1161) (-1244 (-683))) 133) (($ (-1161) (-679 (-310 (-690)))) 136) (($ (-1161) (-679 (-310 (-688)))) 139) (($ (-1161) (-679 (-310 (-683)))) 142) (($ (-1161) (-1244 (-310 (-690)))) 145) (($ (-1161) (-1244 (-310 (-688)))) 148) (($ (-1161) (-1244 (-310 (-683)))) 151) (($ (-1161) (-634 (-953 (-568))) (-310 (-690))) 152) (($ (-1161) (-634 (-953 (-568))) (-310 (-688))) 153) (($ (-1161) (-634 (-953 (-568))) (-310 (-683))) 154) (($ (-1161) (-310 (-568))) 179) (($ (-1161) (-310 (-381))) 180) (($ (-1161) (-310 (-169 (-381)))) 181) (($ (-1161) (-679 (-310 (-568)))) 160) (($ (-1161) (-679 (-310 (-381)))) 163) (($ (-1161) (-679 (-310 (-169 (-381))))) 166) (($ (-1161) (-1244 (-310 (-568)))) 169) (($ (-1161) (-1244 (-310 (-381)))) 172) (($ (-1161) (-1244 (-310 (-169 (-381))))) 175) (($ (-1161) (-634 (-953 (-568))) (-310 (-568))) 176) (($ (-1161) (-634 (-953 (-568))) (-310 (-381))) 177) (($ (-1161) (-634 (-953 (-568))) (-310 (-169 (-381)))) 178)) (-1717 (((-121) $ $) NIL))) +(((-328) (-13 (-1090) (-10 -8 (-15 -2745 ((-850) $)) (-15 -4465 ($ (-1082 (-953 (-568))) $)) (-15 -4465 ($ (-1082 (-953 (-568))) (-953 (-568)) $)) (-15 -1430 ($ (-1160) $)) (-15 -4082 ($ (-1160) $)) (-15 -3487 ($ (-1108))) (-15 -2909 ($ (-1108))) (-15 -1707 ($ (-1143))) (-15 -1707 ($ (-634 (-1143)))) (-15 -2683 ($ (-1143))) (-15 -2592 ($)) (-15 -2592 ($ (-310 (-688)))) (-15 -2592 ($ (-310 (-690)))) (-15 -2592 ($ (-310 (-683)))) (-15 -2592 ($ (-310 (-381)))) (-15 -2592 ($ (-310 (-568)))) (-15 -2592 ($ (-310 (-169 (-381))))) (-15 -4133 ($ (-1160) $)) (-15 -4133 ($ (-1160) $ $)) (-15 -3870 ($ (-1161) (-1143))) (-15 -3870 ($ (-1161) (-310 (-690)))) (-15 -3870 ($ (-1161) (-310 (-688)))) (-15 -3870 ($ (-1161) (-310 (-683)))) (-15 -3870 ($ (-1161) (-679 (-690)))) (-15 -3870 ($ (-1161) (-679 (-688)))) (-15 -3870 ($ (-1161) (-679 (-683)))) (-15 -3870 ($ (-1161) (-1244 (-690)))) (-15 -3870 ($ (-1161) (-1244 (-688)))) (-15 -3870 ($ (-1161) (-1244 (-683)))) (-15 -3870 ($ (-1161) (-679 (-310 (-690))))) (-15 -3870 ($ (-1161) (-679 (-310 (-688))))) (-15 -3870 ($ (-1161) (-679 (-310 (-683))))) (-15 -3870 ($ (-1161) (-1244 (-310 (-690))))) (-15 -3870 ($ (-1161) (-1244 (-310 (-688))))) (-15 -3870 ($ (-1161) (-1244 (-310 (-683))))) (-15 -3870 ($ (-1161) (-634 (-953 (-568))) (-310 (-690)))) (-15 -3870 ($ (-1161) (-634 (-953 (-568))) (-310 (-688)))) (-15 -3870 ($ (-1161) (-634 (-953 (-568))) (-310 (-683)))) (-15 -3870 ($ (-1161) (-310 (-568)))) (-15 -3870 ($ (-1161) (-310 (-381)))) (-15 -3870 ($ (-1161) (-310 (-169 (-381))))) (-15 -3870 ($ (-1161) (-679 (-310 (-568))))) (-15 -3870 ($ (-1161) (-679 (-310 (-381))))) (-15 -3870 ($ (-1161) (-679 (-310 (-169 (-381)))))) (-15 -3870 ($ (-1161) (-1244 (-310 (-568))))) (-15 -3870 ($ (-1161) (-1244 (-310 (-381))))) (-15 -3870 ($ (-1161) (-1244 (-310 (-169 (-381)))))) (-15 -3870 ($ (-1161) (-634 (-953 (-568))) (-310 (-568)))) (-15 -3870 ($ (-1161) (-634 (-953 (-568))) (-310 (-381)))) (-15 -3870 ($ (-1161) (-634 (-953 (-568))) (-310 (-169 (-381))))) (-15 -2414 ($ (-634 $))) (-15 -3480 ($)) (-15 -2330 ($)) (-15 -2214 ($ (-634 (-850)))) (-15 -1921 ($ (-1161) (-634 (-1161)))) (-15 -3406 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2845 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1161)) (|:| |arrayIndex| (-634 (-953 (-568)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-121)) (|:| -4151 (-850)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1161)) (|:| |rand| (-850)) (|:| |ints2Floats?| (-121)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1160)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3084 (-121)) (|:| -2850 (-2 (|:| |ints2Floats?| (-121)) (|:| -4151 (-850)))))) (|:| |blockBranch| (-634 $)) (|:| |commentBranch| (-634 (-1143))) (|:| |callBranch| (-1143)) (|:| |forBranch| (-2 (|:| -1338 (-1082 (-953 (-568)))) (|:| |span| (-953 (-568))) (|:| |body| $))) (|:| |labelBranch| (-1108)) (|:| |loopBranch| (-2 (|:| |switch| (-1160)) (|:| |body| $))) (|:| |commonBranch| (-2 (|:| -3391 (-1161)) (|:| |contents| (-634 (-1161))))) (|:| |printBranch| (-634 (-850)))) $)) (-15 -3725 ((-1249) $)) (-15 -1491 ((-1094) $)) (-15 -3301 ((-1108) (-1108)))))) (T -328)) +((-2745 (*1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-328)))) (-4465 (*1 *1 *2 *1) (-12 (-5 *2 (-1082 (-953 (-568)))) (-5 *1 (-328)))) (-4465 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1082 (-953 (-568)))) (-5 *3 (-953 (-568))) (-5 *1 (-328)))) (-1430 (*1 *1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-328)))) (-4082 (*1 *1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-328)))) (-3487 (*1 *1 *2) (-12 (-5 *2 (-1108)) (-5 *1 (-328)))) (-2909 (*1 *1 *2) (-12 (-5 *2 (-1108)) (-5 *1 (-328)))) (-1707 (*1 *1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-328)))) (-1707 (*1 *1 *2) (-12 (-5 *2 (-634 (-1143))) (-5 *1 (-328)))) (-2683 (*1 *1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-328)))) (-2592 (*1 *1) (-5 *1 (-328))) (-2592 (*1 *1 *2) (-12 (-5 *2 (-310 (-688))) (-5 *1 (-328)))) (-2592 (*1 *1 *2) (-12 (-5 *2 (-310 (-690))) (-5 *1 (-328)))) (-2592 (*1 *1 *2) (-12 (-5 *2 (-310 (-683))) (-5 *1 (-328)))) (-2592 (*1 *1 *2) (-12 (-5 *2 (-310 (-381))) (-5 *1 (-328)))) (-2592 (*1 *1 *2) (-12 (-5 *2 (-310 (-568))) (-5 *1 (-328)))) (-2592 (*1 *1 *2) (-12 (-5 *2 (-310 (-169 (-381)))) (-5 *1 (-328)))) (-4133 (*1 *1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-328)))) (-4133 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-328)))) (-3870 (*1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-1143)) (-5 *1 (-328)))) (-3870 (*1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-310 (-690))) (-5 *1 (-328)))) (-3870 (*1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-310 (-688))) (-5 *1 (-328)))) (-3870 (*1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-310 (-683))) (-5 *1 (-328)))) (-3870 (*1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-679 (-690))) (-5 *1 (-328)))) (-3870 (*1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-679 (-688))) (-5 *1 (-328)))) (-3870 (*1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-679 (-683))) (-5 *1 (-328)))) (-3870 (*1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-1244 (-690))) (-5 *1 (-328)))) (-3870 (*1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-1244 (-688))) (-5 *1 (-328)))) (-3870 (*1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-1244 (-683))) (-5 *1 (-328)))) (-3870 (*1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-679 (-310 (-690)))) (-5 *1 (-328)))) (-3870 (*1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-679 (-310 (-688)))) (-5 *1 (-328)))) (-3870 (*1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-679 (-310 (-683)))) (-5 *1 (-328)))) (-3870 (*1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-1244 (-310 (-690)))) (-5 *1 (-328)))) (-3870 (*1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-1244 (-310 (-688)))) (-5 *1 (-328)))) (-3870 (*1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-1244 (-310 (-683)))) (-5 *1 (-328)))) (-3870 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1161)) (-5 *3 (-634 (-953 (-568)))) (-5 *4 (-310 (-690))) (-5 *1 (-328)))) (-3870 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1161)) (-5 *3 (-634 (-953 (-568)))) (-5 *4 (-310 (-688))) (-5 *1 (-328)))) (-3870 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1161)) (-5 *3 (-634 (-953 (-568)))) (-5 *4 (-310 (-683))) (-5 *1 (-328)))) (-3870 (*1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-310 (-568))) (-5 *1 (-328)))) (-3870 (*1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-310 (-381))) (-5 *1 (-328)))) (-3870 (*1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-310 (-169 (-381)))) (-5 *1 (-328)))) (-3870 (*1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-679 (-310 (-568)))) (-5 *1 (-328)))) (-3870 (*1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-679 (-310 (-381)))) (-5 *1 (-328)))) (-3870 (*1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-679 (-310 (-169 (-381))))) (-5 *1 (-328)))) (-3870 (*1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-1244 (-310 (-568)))) (-5 *1 (-328)))) (-3870 (*1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-1244 (-310 (-381)))) (-5 *1 (-328)))) (-3870 (*1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-1244 (-310 (-169 (-381))))) (-5 *1 (-328)))) (-3870 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1161)) (-5 *3 (-634 (-953 (-568)))) (-5 *4 (-310 (-568))) (-5 *1 (-328)))) (-3870 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1161)) (-5 *3 (-634 (-953 (-568)))) (-5 *4 (-310 (-381))) (-5 *1 (-328)))) (-3870 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1161)) (-5 *3 (-634 (-953 (-568)))) (-5 *4 (-310 (-169 (-381)))) (-5 *1 (-328)))) (-2414 (*1 *1 *2) (-12 (-5 *2 (-634 (-328))) (-5 *1 (-328)))) (-3480 (*1 *1) (-5 *1 (-328))) (-2330 (*1 *1) (-5 *1 (-328))) (-2214 (*1 *1 *2) (-12 (-5 *2 (-634 (-850))) (-5 *1 (-328)))) (-1921 (*1 *1 *2 *3) (-12 (-5 *3 (-634 (-1161))) (-5 *2 (-1161)) (-5 *1 (-328)))) (-3406 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-328)))) (-2845 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1161)) (|:| |arrayIndex| (-634 (-953 (-568)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-121)) (|:| -4151 (-850)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1161)) (|:| |rand| (-850)) (|:| |ints2Floats?| (-121)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1160)) (|:| |thenClause| (-328)) (|:| |elseClause| (-328)))) (|:| |returnBranch| (-2 (|:| -3084 (-121)) (|:| -2850 (-2 (|:| |ints2Floats?| (-121)) (|:| -4151 (-850)))))) (|:| |blockBranch| (-634 (-328))) (|:| |commentBranch| (-634 (-1143))) (|:| |callBranch| (-1143)) (|:| |forBranch| (-2 (|:| -1338 (-1082 (-953 (-568)))) (|:| |span| (-953 (-568))) (|:| |body| (-328)))) (|:| |labelBranch| (-1108)) (|:| |loopBranch| (-2 (|:| |switch| (-1160)) (|:| |body| (-328)))) (|:| |commonBranch| (-2 (|:| -3391 (-1161)) (|:| |contents| (-634 (-1161))))) (|:| |printBranch| (-634 (-850))))) (-5 *1 (-328)))) (-3725 (*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-328)))) (-1491 (*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-328)))) (-3301 (*1 *2 *2) (-12 (-5 *2 (-1108)) (-5 *1 (-328))))) +(-13 (-1090) (-10 -8 (-15 -2745 ((-850) $)) (-15 -4465 ($ (-1082 (-953 (-568))) $)) (-15 -4465 ($ (-1082 (-953 (-568))) (-953 (-568)) $)) (-15 -1430 ($ (-1160) $)) (-15 -4082 ($ (-1160) $)) (-15 -3487 ($ (-1108))) (-15 -2909 ($ (-1108))) (-15 -1707 ($ (-1143))) (-15 -1707 ($ (-634 (-1143)))) (-15 -2683 ($ (-1143))) (-15 -2592 ($)) (-15 -2592 ($ (-310 (-688)))) (-15 -2592 ($ (-310 (-690)))) (-15 -2592 ($ (-310 (-683)))) (-15 -2592 ($ (-310 (-381)))) (-15 -2592 ($ (-310 (-568)))) (-15 -2592 ($ (-310 (-169 (-381))))) (-15 -4133 ($ (-1160) $)) (-15 -4133 ($ (-1160) $ $)) (-15 -3870 ($ (-1161) (-1143))) (-15 -3870 ($ (-1161) (-310 (-690)))) (-15 -3870 ($ (-1161) (-310 (-688)))) (-15 -3870 ($ (-1161) (-310 (-683)))) (-15 -3870 ($ (-1161) (-679 (-690)))) (-15 -3870 ($ (-1161) (-679 (-688)))) (-15 -3870 ($ (-1161) (-679 (-683)))) (-15 -3870 ($ (-1161) (-1244 (-690)))) (-15 -3870 ($ (-1161) (-1244 (-688)))) (-15 -3870 ($ (-1161) (-1244 (-683)))) (-15 -3870 ($ (-1161) (-679 (-310 (-690))))) (-15 -3870 ($ (-1161) (-679 (-310 (-688))))) (-15 -3870 ($ (-1161) (-679 (-310 (-683))))) (-15 -3870 ($ (-1161) (-1244 (-310 (-690))))) (-15 -3870 ($ (-1161) (-1244 (-310 (-688))))) (-15 -3870 ($ (-1161) (-1244 (-310 (-683))))) (-15 -3870 ($ (-1161) (-634 (-953 (-568))) (-310 (-690)))) (-15 -3870 ($ (-1161) (-634 (-953 (-568))) (-310 (-688)))) (-15 -3870 ($ (-1161) (-634 (-953 (-568))) (-310 (-683)))) (-15 -3870 ($ (-1161) (-310 (-568)))) (-15 -3870 ($ (-1161) (-310 (-381)))) (-15 -3870 ($ (-1161) (-310 (-169 (-381))))) (-15 -3870 ($ (-1161) (-679 (-310 (-568))))) (-15 -3870 ($ (-1161) (-679 (-310 (-381))))) (-15 -3870 ($ (-1161) (-679 (-310 (-169 (-381)))))) (-15 -3870 ($ (-1161) (-1244 (-310 (-568))))) (-15 -3870 ($ (-1161) (-1244 (-310 (-381))))) (-15 -3870 ($ (-1161) (-1244 (-310 (-169 (-381)))))) (-15 -3870 ($ (-1161) (-634 (-953 (-568))) (-310 (-568)))) (-15 -3870 ($ (-1161) (-634 (-953 (-568))) (-310 (-381)))) (-15 -3870 ($ (-1161) (-634 (-953 (-568))) (-310 (-169 (-381))))) (-15 -2414 ($ (-634 $))) (-15 -3480 ($)) (-15 -2330 ($)) (-15 -2214 ($ (-634 (-850)))) (-15 -1921 ($ (-1161) (-634 (-1161)))) (-15 -3406 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2845 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1161)) (|:| |arrayIndex| (-634 (-953 (-568)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-121)) (|:| -4151 (-850)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1161)) (|:| |rand| (-850)) (|:| |ints2Floats?| (-121)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1160)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3084 (-121)) (|:| -2850 (-2 (|:| |ints2Floats?| (-121)) (|:| -4151 (-850)))))) (|:| |blockBranch| (-634 $)) (|:| |commentBranch| (-634 (-1143))) (|:| |callBranch| (-1143)) (|:| |forBranch| (-2 (|:| -1338 (-1082 (-953 (-568)))) (|:| |span| (-953 (-568))) (|:| |body| $))) (|:| |labelBranch| (-1108)) (|:| |loopBranch| (-2 (|:| |switch| (-1160)) (|:| |body| $))) (|:| |commonBranch| (-2 (|:| -3391 (-1161)) (|:| |contents| (-634 (-1161))))) (|:| |printBranch| (-634 (-850)))) $)) (-15 -3725 ((-1249) $)) (-15 -1491 ((-1094) $)) (-15 -3301 ((-1108) (-1108))))) +((-2447 (((-121) $ $) NIL)) (-4431 (((-121) $) 11)) (-2786 (($ |#1|) 8)) (-2521 (($ $ $) NIL)) (-3268 (($ $ $) NIL)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2790 (($ |#1|) 9)) (-2745 (((-850) $) 17)) (-3256 ((|#1| $) 12)) (-1751 (((-121) $ $) NIL)) (-1738 (((-121) $ $) NIL)) (-1717 (((-121) $ $) NIL)) (-1745 (((-121) $ $) NIL)) (-1732 (((-121) $ $) 19))) +(((-329 |#1|) (-13 (-842) (-10 -8 (-15 -2786 ($ |#1|)) (-15 -2790 ($ |#1|)) (-15 -4431 ((-121) $)) (-15 -3256 (|#1| $)))) (-842)) (T -329)) +((-2786 (*1 *1 *2) (-12 (-5 *1 (-329 *2)) (-4 *2 (-842)))) (-2790 (*1 *1 *2) (-12 (-5 *1 (-329 *2)) (-4 *2 (-842)))) (-4431 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-329 *3)) (-4 *3 (-842)))) (-3256 (*1 *2 *1) (-12 (-5 *1 (-329 *2)) (-4 *2 (-842))))) +(-13 (-842) (-10 -8 (-15 -2786 ($ |#1|)) (-15 -2790 ($ |#1|)) (-15 -4431 ((-121) $)) (-15 -3256 (|#1| $)))) +((-1353 (((-328) (-1161) (-953 (-568))) 22)) (-4249 (((-328) (-1161) (-953 (-568))) 26)) (-2820 (((-328) (-1161) (-1082 (-953 (-568))) (-1082 (-953 (-568)))) 25) (((-328) (-1161) (-953 (-568)) (-953 (-568))) 23)) (-1616 (((-328) (-1161) (-953 (-568))) 30))) +(((-330) (-10 -7 (-15 -1353 ((-328) (-1161) (-953 (-568)))) (-15 -2820 ((-328) (-1161) (-953 (-568)) (-953 (-568)))) (-15 -2820 ((-328) (-1161) (-1082 (-953 (-568))) (-1082 (-953 (-568))))) (-15 -4249 ((-328) (-1161) (-953 (-568)))) (-15 -1616 ((-328) (-1161) (-953 (-568)))))) (T -330)) +((-1616 (*1 *2 *3 *4) (-12 (-5 *3 (-1161)) (-5 *4 (-953 (-568))) (-5 *2 (-328)) (-5 *1 (-330)))) (-4249 (*1 *2 *3 *4) (-12 (-5 *3 (-1161)) (-5 *4 (-953 (-568))) (-5 *2 (-328)) (-5 *1 (-330)))) (-2820 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1161)) (-5 *4 (-1082 (-953 (-568)))) (-5 *2 (-328)) (-5 *1 (-330)))) (-2820 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1161)) (-5 *4 (-953 (-568))) (-5 *2 (-328)) (-5 *1 (-330)))) (-1353 (*1 *2 *3 *4) (-12 (-5 *3 (-1161)) (-5 *4 (-953 (-568))) (-5 *2 (-328)) (-5 *1 (-330))))) +(-10 -7 (-15 -1353 ((-328) (-1161) (-953 (-568)))) (-15 -2820 ((-328) (-1161) (-953 (-568)) (-953 (-568)))) (-15 -2820 ((-328) (-1161) (-1082 (-953 (-568))) (-1082 (-953 (-568))))) (-15 -4249 ((-328) (-1161) (-953 (-568)))) (-15 -1616 ((-328) (-1161) (-953 (-568))))) +((-2795 (((-334 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-334 |#1| |#2| |#3| |#4|)) 31))) +(((-331 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2795 ((-334 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-334 |#1| |#2| |#3| |#4|)))) (-365) (-1219 |#1|) (-1219 (-409 |#2|)) (-340 |#1| |#2| |#3|) (-365) (-1219 |#5|) (-1219 (-409 |#6|)) (-340 |#5| |#6| |#7|)) (T -331)) +((-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-334 *5 *6 *7 *8)) (-4 *5 (-365)) (-4 *6 (-1219 *5)) (-4 *7 (-1219 (-409 *6))) (-4 *8 (-340 *5 *6 *7)) (-4 *9 (-365)) (-4 *10 (-1219 *9)) (-4 *11 (-1219 (-409 *10))) (-5 *2 (-334 *9 *10 *11 *12)) (-5 *1 (-331 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-340 *9 *10 *11))))) +(-10 -7 (-15 -2795 ((-334 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-334 |#1| |#2| |#3| |#4|)))) +((-2886 (((-121) $) 14))) +(((-332 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2886 ((-121) |#1|))) (-333 |#2| |#3| |#4| |#5|) (-365) (-1219 |#2|) (-1219 (-409 |#3|)) (-340 |#2| |#3| |#4|)) (T -332)) +NIL +(-10 -8 (-15 -2886 ((-121) |#1|))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-3134 (((-3 $ "failed") $ $) 18)) (-2671 (($) 16 T CONST)) (-3092 (($ $) 25)) (-2886 (((-121) $) 24)) (-4487 (((-1143) $) 9)) (-1552 (((-415 |#2| (-409 |#2|) |#3| |#4|) $) 31)) (-4022 (((-1108) $) 10)) (-2704 (((-3 |#4| "failed") $) 23)) (-2849 (($ (-415 |#2| (-409 |#2|) |#3| |#4|)) 30) (($ |#4|) 29) (($ |#1| |#1|) 28) (($ |#1| |#1| (-568)) 27) (($ |#4| |#2| |#2| |#2| |#1|) 22)) (-2847 (((-2 (|:| -1713 (-415 |#2| (-409 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 26)) (-2745 (((-850) $) 11)) (-3056 (($) 17 T CONST)) (-1717 (((-121) $ $) 6)) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19))) +(((-333 |#1| |#2| |#3| |#4|) (-1275) (-365) (-1219 |t#1|) (-1219 (-409 |t#2|)) (-340 |t#1| |t#2| |t#3|)) (T -333)) +((-1552 (*1 *2 *1) (-12 (-4 *1 (-333 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 (-409 *4))) (-4 *6 (-340 *3 *4 *5)) (-5 *2 (-415 *4 (-409 *4) *5 *6)))) (-2849 (*1 *1 *2) (-12 (-5 *2 (-415 *4 (-409 *4) *5 *6)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 (-409 *4))) (-4 *6 (-340 *3 *4 *5)) (-4 *3 (-365)) (-4 *1 (-333 *3 *4 *5 *6)))) (-2849 (*1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 (-409 *4))) (-4 *1 (-333 *3 *4 *5 *2)) (-4 *2 (-340 *3 *4 *5)))) (-2849 (*1 *1 *2 *2) (-12 (-4 *2 (-365)) (-4 *3 (-1219 *2)) (-4 *4 (-1219 (-409 *3))) (-4 *1 (-333 *2 *3 *4 *5)) (-4 *5 (-340 *2 *3 *4)))) (-2849 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-568)) (-4 *2 (-365)) (-4 *4 (-1219 *2)) (-4 *5 (-1219 (-409 *4))) (-4 *1 (-333 *2 *4 *5 *6)) (-4 *6 (-340 *2 *4 *5)))) (-2847 (*1 *2 *1) (-12 (-4 *1 (-333 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 (-409 *4))) (-4 *6 (-340 *3 *4 *5)) (-5 *2 (-2 (|:| -1713 (-415 *4 (-409 *4) *5 *6)) (|:| |principalPart| *6))))) (-3092 (*1 *1 *1) (-12 (-4 *1 (-333 *2 *3 *4 *5)) (-4 *2 (-365)) (-4 *3 (-1219 *2)) (-4 *4 (-1219 (-409 *3))) (-4 *5 (-340 *2 *3 *4)))) (-2886 (*1 *2 *1) (-12 (-4 *1 (-333 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 (-409 *4))) (-4 *6 (-340 *3 *4 *5)) (-5 *2 (-121)))) (-2704 (*1 *2 *1) (|partial| -12 (-4 *1 (-333 *3 *4 *5 *2)) (-4 *3 (-365)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 (-409 *4))) (-4 *2 (-340 *3 *4 *5)))) (-2849 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-365)) (-4 *3 (-1219 *4)) (-4 *5 (-1219 (-409 *3))) (-4 *1 (-333 *4 *3 *5 *2)) (-4 *2 (-340 *4 *3 *5))))) +(-13 (-21) (-10 -8 (-15 -1552 ((-415 |t#2| (-409 |t#2|) |t#3| |t#4|) $)) (-15 -2849 ($ (-415 |t#2| (-409 |t#2|) |t#3| |t#4|))) (-15 -2849 ($ |t#4|)) (-15 -2849 ($ |t#1| |t#1|)) (-15 -2849 ($ |t#1| |t#1| (-568))) (-15 -2847 ((-2 (|:| -1713 (-415 |t#2| (-409 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -3092 ($ $)) (-15 -2886 ((-121) $)) (-15 -2704 ((-3 |t#4| "failed") $)) (-15 -2849 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-105) . T) ((-137) . T) ((-608 (-850)) . T) ((-1090) . T)) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-2671 (($) NIL T CONST)) (-3092 (($ $) 32)) (-2886 (((-121) $) NIL)) (-4487 (((-1143) $) NIL)) (-4147 (((-1244 |#4|) $) 124)) (-1552 (((-415 |#2| (-409 |#2|) |#3| |#4|) $) 30)) (-4022 (((-1108) $) NIL)) (-2704 (((-3 |#4| "failed") $) 35)) (-2442 (((-1244 |#4|) $) 117)) (-2849 (($ (-415 |#2| (-409 |#2|) |#3| |#4|)) 40) (($ |#4|) 42) (($ |#1| |#1|) 44) (($ |#1| |#1| (-568)) 46) (($ |#4| |#2| |#2| |#2| |#1|) 48)) (-2847 (((-2 (|:| -1713 (-415 |#2| (-409 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 38)) (-2745 (((-850) $) 17)) (-3056 (($) 14 T CONST)) (-1717 (((-121) $ $) 20)) (-1773 (($ $) 27) (($ $ $) NIL)) (-1767 (($ $ $) 25)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) 23))) +(((-334 |#1| |#2| |#3| |#4|) (-13 (-333 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2442 ((-1244 |#4|) $)) (-15 -4147 ((-1244 |#4|) $)))) (-365) (-1219 |#1|) (-1219 (-409 |#2|)) (-340 |#1| |#2| |#3|)) (T -334)) +((-2442 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 (-409 *4))) (-5 *2 (-1244 *6)) (-5 *1 (-334 *3 *4 *5 *6)) (-4 *6 (-340 *3 *4 *5)))) (-4147 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 (-409 *4))) (-5 *2 (-1244 *6)) (-5 *1 (-334 *3 *4 *5 *6)) (-4 *6 (-340 *3 *4 *5))))) +(-13 (-333 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2442 ((-1244 |#4|) $)) (-15 -4147 ((-1244 |#4|) $)))) +((-1339 (($ $ (-1161) |#2|) NIL) (($ $ (-634 (-1161)) (-634 |#2|)) 18) (($ $ (-634 (-288 |#2|))) 14) (($ $ (-288 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-634 |#2|) (-634 |#2|)) NIL)) (-2779 (($ $ |#2|) 11))) +(((-335 |#1| |#2|) (-10 -8 (-15 -2779 (|#1| |#1| |#2|)) (-15 -1339 (|#1| |#1| (-634 |#2|) (-634 |#2|))) (-15 -1339 (|#1| |#1| |#2| |#2|)) (-15 -1339 (|#1| |#1| (-288 |#2|))) (-15 -1339 (|#1| |#1| (-634 (-288 |#2|)))) (-15 -1339 (|#1| |#1| (-634 (-1161)) (-634 |#2|))) (-15 -1339 (|#1| |#1| (-1161) |#2|))) (-336 |#2|) (-1090)) (T -335)) +NIL +(-10 -8 (-15 -2779 (|#1| |#1| |#2|)) (-15 -1339 (|#1| |#1| (-634 |#2|) (-634 |#2|))) (-15 -1339 (|#1| |#1| |#2| |#2|)) (-15 -1339 (|#1| |#1| (-288 |#2|))) (-15 -1339 (|#1| |#1| (-634 (-288 |#2|)))) (-15 -1339 (|#1| |#1| (-634 (-1161)) (-634 |#2|))) (-15 -1339 (|#1| |#1| (-1161) |#2|))) +((-2795 (($ (-1 |#1| |#1|) $) 6)) (-1339 (($ $ (-1161) |#1|) 16 (|has| |#1| (-523 (-1161) |#1|))) (($ $ (-634 (-1161)) (-634 |#1|)) 15 (|has| |#1| (-523 (-1161) |#1|))) (($ $ (-634 (-288 |#1|))) 14 (|has| |#1| (-303 |#1|))) (($ $ (-288 |#1|)) 13 (|has| |#1| (-303 |#1|))) (($ $ |#1| |#1|) 12 (|has| |#1| (-303 |#1|))) (($ $ (-634 |#1|) (-634 |#1|)) 11 (|has| |#1| (-303 |#1|)))) (-2779 (($ $ |#1|) 10 (|has| |#1| (-281 |#1| |#1|))))) +(((-336 |#1|) (-1275) (-1090)) (T -336)) +((-2795 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-336 *3)) (-4 *3 (-1090))))) +(-13 (-10 -8 (-15 -2795 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-281 |t#1| |t#1|)) (-6 (-281 |t#1| $)) |noBranch|) (IF (|has| |t#1| (-303 |t#1|)) (-6 (-303 |t#1|)) |noBranch|) (IF (|has| |t#1| (-523 (-1161) |t#1|)) (-6 (-523 (-1161) |t#1|)) |noBranch|))) +(((-281 |#1| $) |has| |#1| (-281 |#1| |#1|)) ((-303 |#1|) |has| |#1| (-303 |#1|)) ((-523 (-1161) |#1|) |has| |#1| (-523 (-1161) |#1|)) ((-523 |#1| |#1|) |has| |#1| (-303 |#1|))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-2055 (((-634 (-1161)) $) NIL)) (-3610 (((-121)) 87) (((-121) (-121)) 88)) (-3001 (((-634 (-607 $)) $) NIL)) (-1982 (($ $) NIL)) (-1933 (($ $) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-2366 (($ $ (-288 $)) NIL) (($ $ (-634 (-288 $))) NIL) (($ $ (-634 (-607 $)) (-634 $)) NIL)) (-1902 (($ $) NIL)) (-1974 (($ $) NIL)) (-2786 (($ $) NIL)) (-2671 (($) NIL T CONST)) (-3666 (((-3 (-607 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-310 |#3|)) 69) (((-3 $ "failed") (-1161)) 93) (((-3 $ "failed") (-310 (-568))) 56 (|has| |#3| (-1037 (-568)))) (((-3 $ "failed") (-409 (-953 (-568)))) 62 (|has| |#3| (-1037 (-568)))) (((-3 $ "failed") (-953 (-568))) 57 (|has| |#3| (-1037 (-568)))) (((-3 $ "failed") (-310 (-381))) 74 (|has| |#3| (-1037 (-381)))) (((-3 $ "failed") (-409 (-953 (-381)))) 80 (|has| |#3| (-1037 (-381)))) (((-3 $ "failed") (-953 (-381))) 75 (|has| |#3| (-1037 (-381))))) (-2854 (((-607 $) $) NIL) ((|#3| $) NIL) (($ (-310 |#3|)) 70) (($ (-1161)) 94) (($ (-310 (-568))) 58 (|has| |#3| (-1037 (-568)))) (($ (-409 (-953 (-568)))) 63 (|has| |#3| (-1037 (-568)))) (($ (-953 (-568))) 59 (|has| |#3| (-1037 (-568)))) (($ (-310 (-381))) 76 (|has| |#3| (-1037 (-381)))) (($ (-409 (-953 (-381)))) 81 (|has| |#3| (-1037 (-381)))) (($ (-953 (-381))) 77 (|has| |#3| (-1037 (-381))))) (-2925 (((-3 $ "failed") $) NIL)) (-1897 (($) 10)) (-4499 (($ $) NIL) (($ (-634 $)) NIL)) (-3296 (((-634 (-123)) $) NIL)) (-3488 (((-123) (-123)) NIL)) (-2735 (((-121) $) NIL)) (-1825 (((-121) $) NIL (|has| $ (-1037 (-568))))) (-3007 (((-1157 $) (-607 $)) NIL (|has| $ (-1047)))) (-2521 (($ $ $) NIL)) (-3268 (($ $ $) NIL)) (-2795 (($ (-1 $ $) (-607 $)) NIL)) (-3693 (((-3 (-607 $) "failed") $) NIL)) (-1907 (($ $) 90)) (-4416 (($ $) NIL)) (-4487 (((-1143) $) NIL)) (-3804 (((-634 (-607 $)) $) NIL)) (-3443 (($ (-123) $) 89) (($ (-123) (-634 $)) NIL)) (-2841 (((-121) $ (-123)) NIL) (((-121) $ (-1161)) NIL)) (-2961 (((-763) $) NIL)) (-4022 (((-1108) $) NIL)) (-4059 (((-121) $ $) NIL) (((-121) $ (-1161)) NIL)) (-1892 (($ $) NIL)) (-3277 (((-121) $) NIL (|has| $ (-1037 (-568))))) (-1339 (($ $ (-607 $) $) NIL) (($ $ (-634 (-607 $)) (-634 $)) NIL) (($ $ (-634 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-634 $) (-634 $)) NIL) (($ $ (-634 (-1161)) (-634 (-1 $ $))) NIL) (($ $ (-634 (-1161)) (-634 (-1 $ (-634 $)))) NIL) (($ $ (-1161) (-1 $ (-634 $))) NIL) (($ $ (-1161) (-1 $ $)) NIL) (($ $ (-634 (-123)) (-634 (-1 $ $))) NIL) (($ $ (-634 (-123)) (-634 (-1 $ (-634 $)))) NIL) (($ $ (-123) (-1 $ (-634 $))) NIL) (($ $ (-123) (-1 $ $)) NIL)) (-2779 (($ (-123) $) NIL) (($ (-123) $ $) NIL) (($ (-123) $ $ $) NIL) (($ (-123) $ $ $ $) NIL) (($ (-123) (-634 $)) NIL)) (-3502 (($ $) NIL) (($ $ $) NIL)) (-4189 (($ $ (-634 (-1161)) (-634 (-763))) NIL) (($ $ (-1161) (-763)) NIL) (($ $ (-634 (-1161))) NIL) (($ $ (-1161)) NIL)) (-1626 (($ $) NIL (|has| $ (-1047)))) (-1978 (($ $) NIL)) (-2790 (($ $) NIL)) (-2745 (((-850) $) NIL) (($ (-607 $)) NIL) (($ |#3|) NIL) (($ (-568)) NIL) (((-310 |#3|) $) 92)) (-4078 (((-763)) NIL)) (-2092 (($ $) NIL) (($ (-634 $)) NIL)) (-2887 (((-121) (-123)) NIL)) (-1958 (($ $) NIL)) (-1949 (($ $) NIL)) (-1953 (($ $) NIL)) (-2897 (($ $) NIL)) (-1887 (($ $ (-763)) NIL) (($ $ (-917)) NIL)) (-3056 (($) 91 T CONST)) (-1556 (($) 22 T CONST)) (-3190 (($ $ (-634 (-1161)) (-634 (-763))) NIL) (($ $ (-1161) (-763)) NIL) (($ $ (-634 (-1161))) NIL) (($ $ (-1161)) NIL)) (-1751 (((-121) $ $) NIL)) (-1738 (((-121) $ $) NIL)) (-1717 (((-121) $ $) NIL)) (-1745 (((-121) $ $) NIL)) (-1732 (((-121) $ $) NIL)) (-1773 (($ $ $) NIL) (($ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-763)) NIL) (($ $ (-917)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-568) $) NIL) (($ (-763) $) NIL) (($ (-917) $) NIL))) +(((-337 |#1| |#2| |#3|) (-13 (-296) (-43 |#3|) (-1037 |#3|) (-895 (-1161)) (-10 -8 (-15 -2854 ($ (-310 |#3|))) (-15 -3666 ((-3 $ "failed") (-310 |#3|))) (-15 -2854 ($ (-1161))) (-15 -3666 ((-3 $ "failed") (-1161))) (-15 -2745 ((-310 |#3|) $)) (IF (|has| |#3| (-1037 (-568))) (PROGN (-15 -2854 ($ (-310 (-568)))) (-15 -3666 ((-3 $ "failed") (-310 (-568)))) (-15 -2854 ($ (-409 (-953 (-568))))) (-15 -3666 ((-3 $ "failed") (-409 (-953 (-568))))) (-15 -2854 ($ (-953 (-568)))) (-15 -3666 ((-3 $ "failed") (-953 (-568))))) |noBranch|) (IF (|has| |#3| (-1037 (-381))) (PROGN (-15 -2854 ($ (-310 (-381)))) (-15 -3666 ((-3 $ "failed") (-310 (-381)))) (-15 -2854 ($ (-409 (-953 (-381))))) (-15 -3666 ((-3 $ "failed") (-409 (-953 (-381))))) (-15 -2854 ($ (-953 (-381)))) (-15 -3666 ((-3 $ "failed") (-953 (-381))))) |noBranch|) (-15 -2897 ($ $)) (-15 -1902 ($ $)) (-15 -1892 ($ $)) (-15 -4416 ($ $)) (-15 -1907 ($ $)) (-15 -2786 ($ $)) (-15 -2790 ($ $)) (-15 -1933 ($ $)) (-15 -1949 ($ $)) (-15 -1953 ($ $)) (-15 -1958 ($ $)) (-15 -1974 ($ $)) (-15 -1978 ($ $)) (-15 -1982 ($ $)) (-15 -1897 ($)) (-15 -2055 ((-634 (-1161)) $)) (-15 -3610 ((-121))) (-15 -3610 ((-121) (-121))))) (-634 (-1161)) (-634 (-1161)) (-389)) (T -337)) +((-2854 (*1 *1 *2) (-12 (-5 *2 (-310 *5)) (-4 *5 (-389)) (-5 *1 (-337 *3 *4 *5)) (-14 *3 (-634 (-1161))) (-14 *4 (-634 (-1161))))) (-3666 (*1 *1 *2) (|partial| -12 (-5 *2 (-310 *5)) (-4 *5 (-389)) (-5 *1 (-337 *3 *4 *5)) (-14 *3 (-634 (-1161))) (-14 *4 (-634 (-1161))))) (-2854 (*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-337 *3 *4 *5)) (-14 *3 (-634 *2)) (-14 *4 (-634 *2)) (-4 *5 (-389)))) (-3666 (*1 *1 *2) (|partial| -12 (-5 *2 (-1161)) (-5 *1 (-337 *3 *4 *5)) (-14 *3 (-634 *2)) (-14 *4 (-634 *2)) (-4 *5 (-389)))) (-2745 (*1 *2 *1) (-12 (-5 *2 (-310 *5)) (-5 *1 (-337 *3 *4 *5)) (-14 *3 (-634 (-1161))) (-14 *4 (-634 (-1161))) (-4 *5 (-389)))) (-2854 (*1 *1 *2) (-12 (-5 *2 (-310 (-568))) (-5 *1 (-337 *3 *4 *5)) (-4 *5 (-1037 (-568))) (-14 *3 (-634 (-1161))) (-14 *4 (-634 (-1161))) (-4 *5 (-389)))) (-3666 (*1 *1 *2) (|partial| -12 (-5 *2 (-310 (-568))) (-5 *1 (-337 *3 *4 *5)) (-4 *5 (-1037 (-568))) (-14 *3 (-634 (-1161))) (-14 *4 (-634 (-1161))) (-4 *5 (-389)))) (-2854 (*1 *1 *2) (-12 (-5 *2 (-409 (-953 (-568)))) (-5 *1 (-337 *3 *4 *5)) (-4 *5 (-1037 (-568))) (-14 *3 (-634 (-1161))) (-14 *4 (-634 (-1161))) (-4 *5 (-389)))) (-3666 (*1 *1 *2) (|partial| -12 (-5 *2 (-409 (-953 (-568)))) (-5 *1 (-337 *3 *4 *5)) (-4 *5 (-1037 (-568))) (-14 *3 (-634 (-1161))) (-14 *4 (-634 (-1161))) (-4 *5 (-389)))) (-2854 (*1 *1 *2) (-12 (-5 *2 (-953 (-568))) (-5 *1 (-337 *3 *4 *5)) (-4 *5 (-1037 (-568))) (-14 *3 (-634 (-1161))) (-14 *4 (-634 (-1161))) (-4 *5 (-389)))) (-3666 (*1 *1 *2) (|partial| -12 (-5 *2 (-953 (-568))) (-5 *1 (-337 *3 *4 *5)) (-4 *5 (-1037 (-568))) (-14 *3 (-634 (-1161))) (-14 *4 (-634 (-1161))) (-4 *5 (-389)))) (-2854 (*1 *1 *2) (-12 (-5 *2 (-310 (-381))) (-5 *1 (-337 *3 *4 *5)) (-4 *5 (-1037 (-381))) (-14 *3 (-634 (-1161))) (-14 *4 (-634 (-1161))) (-4 *5 (-389)))) (-3666 (*1 *1 *2) (|partial| -12 (-5 *2 (-310 (-381))) (-5 *1 (-337 *3 *4 *5)) (-4 *5 (-1037 (-381))) (-14 *3 (-634 (-1161))) (-14 *4 (-634 (-1161))) (-4 *5 (-389)))) (-2854 (*1 *1 *2) (-12 (-5 *2 (-409 (-953 (-381)))) (-5 *1 (-337 *3 *4 *5)) (-4 *5 (-1037 (-381))) (-14 *3 (-634 (-1161))) (-14 *4 (-634 (-1161))) (-4 *5 (-389)))) (-3666 (*1 *1 *2) (|partial| -12 (-5 *2 (-409 (-953 (-381)))) (-5 *1 (-337 *3 *4 *5)) (-4 *5 (-1037 (-381))) (-14 *3 (-634 (-1161))) (-14 *4 (-634 (-1161))) (-4 *5 (-389)))) (-2854 (*1 *1 *2) (-12 (-5 *2 (-953 (-381))) (-5 *1 (-337 *3 *4 *5)) (-4 *5 (-1037 (-381))) (-14 *3 (-634 (-1161))) (-14 *4 (-634 (-1161))) (-4 *5 (-389)))) (-3666 (*1 *1 *2) (|partial| -12 (-5 *2 (-953 (-381))) (-5 *1 (-337 *3 *4 *5)) (-4 *5 (-1037 (-381))) (-14 *3 (-634 (-1161))) (-14 *4 (-634 (-1161))) (-4 *5 (-389)))) (-2897 (*1 *1 *1) (-12 (-5 *1 (-337 *2 *3 *4)) (-14 *2 (-634 (-1161))) (-14 *3 (-634 (-1161))) (-4 *4 (-389)))) (-1902 (*1 *1 *1) (-12 (-5 *1 (-337 *2 *3 *4)) (-14 *2 (-634 (-1161))) (-14 *3 (-634 (-1161))) (-4 *4 (-389)))) (-1892 (*1 *1 *1) (-12 (-5 *1 (-337 *2 *3 *4)) (-14 *2 (-634 (-1161))) (-14 *3 (-634 (-1161))) (-4 *4 (-389)))) (-4416 (*1 *1 *1) (-12 (-5 *1 (-337 *2 *3 *4)) (-14 *2 (-634 (-1161))) (-14 *3 (-634 (-1161))) (-4 *4 (-389)))) (-1907 (*1 *1 *1) (-12 (-5 *1 (-337 *2 *3 *4)) (-14 *2 (-634 (-1161))) (-14 *3 (-634 (-1161))) (-4 *4 (-389)))) (-2786 (*1 *1 *1) (-12 (-5 *1 (-337 *2 *3 *4)) (-14 *2 (-634 (-1161))) (-14 *3 (-634 (-1161))) (-4 *4 (-389)))) (-2790 (*1 *1 *1) (-12 (-5 *1 (-337 *2 *3 *4)) (-14 *2 (-634 (-1161))) (-14 *3 (-634 (-1161))) (-4 *4 (-389)))) (-1933 (*1 *1 *1) (-12 (-5 *1 (-337 *2 *3 *4)) (-14 *2 (-634 (-1161))) (-14 *3 (-634 (-1161))) (-4 *4 (-389)))) (-1949 (*1 *1 *1) (-12 (-5 *1 (-337 *2 *3 *4)) (-14 *2 (-634 (-1161))) (-14 *3 (-634 (-1161))) (-4 *4 (-389)))) (-1953 (*1 *1 *1) (-12 (-5 *1 (-337 *2 *3 *4)) (-14 *2 (-634 (-1161))) (-14 *3 (-634 (-1161))) (-4 *4 (-389)))) (-1958 (*1 *1 *1) (-12 (-5 *1 (-337 *2 *3 *4)) (-14 *2 (-634 (-1161))) (-14 *3 (-634 (-1161))) (-4 *4 (-389)))) (-1974 (*1 *1 *1) (-12 (-5 *1 (-337 *2 *3 *4)) (-14 *2 (-634 (-1161))) (-14 *3 (-634 (-1161))) (-4 *4 (-389)))) (-1978 (*1 *1 *1) (-12 (-5 *1 (-337 *2 *3 *4)) (-14 *2 (-634 (-1161))) (-14 *3 (-634 (-1161))) (-4 *4 (-389)))) (-1982 (*1 *1 *1) (-12 (-5 *1 (-337 *2 *3 *4)) (-14 *2 (-634 (-1161))) (-14 *3 (-634 (-1161))) (-4 *4 (-389)))) (-1897 (*1 *1) (-12 (-5 *1 (-337 *2 *3 *4)) (-14 *2 (-634 (-1161))) (-14 *3 (-634 (-1161))) (-4 *4 (-389)))) (-2055 (*1 *2 *1) (-12 (-5 *2 (-634 (-1161))) (-5 *1 (-337 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-389)))) (-3610 (*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-337 *3 *4 *5)) (-14 *3 (-634 (-1161))) (-14 *4 (-634 (-1161))) (-4 *5 (-389)))) (-3610 (*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-337 *3 *4 *5)) (-14 *3 (-634 (-1161))) (-14 *4 (-634 (-1161))) (-4 *5 (-389))))) +(-13 (-296) (-43 |#3|) (-1037 |#3|) (-895 (-1161)) (-10 -8 (-15 -2854 ($ (-310 |#3|))) (-15 -3666 ((-3 $ "failed") (-310 |#3|))) (-15 -2854 ($ (-1161))) (-15 -3666 ((-3 $ "failed") (-1161))) (-15 -2745 ((-310 |#3|) $)) (IF (|has| |#3| (-1037 (-568))) (PROGN (-15 -2854 ($ (-310 (-568)))) (-15 -3666 ((-3 $ "failed") (-310 (-568)))) (-15 -2854 ($ (-409 (-953 (-568))))) (-15 -3666 ((-3 $ "failed") (-409 (-953 (-568))))) (-15 -2854 ($ (-953 (-568)))) (-15 -3666 ((-3 $ "failed") (-953 (-568))))) |noBranch|) (IF (|has| |#3| (-1037 (-381))) (PROGN (-15 -2854 ($ (-310 (-381)))) (-15 -3666 ((-3 $ "failed") (-310 (-381)))) (-15 -2854 ($ (-409 (-953 (-381))))) (-15 -3666 ((-3 $ "failed") (-409 (-953 (-381))))) (-15 -2854 ($ (-953 (-381)))) (-15 -3666 ((-3 $ "failed") (-953 (-381))))) |noBranch|) (-15 -2897 ($ $)) (-15 -1902 ($ $)) (-15 -1892 ($ $)) (-15 -4416 ($ $)) (-15 -1907 ($ $)) (-15 -2786 ($ $)) (-15 -2790 ($ $)) (-15 -1933 ($ $)) (-15 -1949 ($ $)) (-15 -1953 ($ $)) (-15 -1958 ($ $)) (-15 -1974 ($ $)) (-15 -1978 ($ $)) (-15 -1982 ($ $)) (-15 -1897 ($)) (-15 -2055 ((-634 (-1161)) $)) (-15 -3610 ((-121))) (-15 -3610 ((-121) (-121))))) +((-2795 ((|#8| (-1 |#5| |#1|) |#4|) 19))) +(((-338 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2795 (|#8| (-1 |#5| |#1|) |#4|))) (-1199) (-1219 |#1|) (-1219 (-409 |#2|)) (-340 |#1| |#2| |#3|) (-1199) (-1219 |#5|) (-1219 (-409 |#6|)) (-340 |#5| |#6| |#7|)) (T -338)) +((-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1199)) (-4 *8 (-1199)) (-4 *6 (-1219 *5)) (-4 *7 (-1219 (-409 *6))) (-4 *9 (-1219 *8)) (-4 *2 (-340 *8 *9 *10)) (-5 *1 (-338 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-340 *5 *6 *7)) (-4 *10 (-1219 (-409 *9)))))) +(-10 -7 (-15 -2795 (|#8| (-1 |#5| |#1|) |#4|))) +((-2646 (((-2 (|:| |num| (-1244 |#3|)) (|:| |den| |#3|)) $) 37)) (-3498 (($ (-1244 (-409 |#3|)) (-1244 $)) NIL) (($ (-1244 (-409 |#3|))) NIL) (($ (-1244 |#3|) |#3|) 158)) (-3692 (((-1244 $) (-1244 $)) 142)) (-1895 (((-634 (-634 |#2|))) 115)) (-2234 (((-121) |#2| |#2|) 71)) (-3250 (($ $) 136)) (-3900 (((-763)) 30)) (-3017 (((-1244 $) (-1244 $)) 195)) (-1296 (((-634 (-953 |#2|)) (-1161)) 108)) (-3874 (((-121) $) 155)) (-1489 (((-121) $) 24) (((-121) $ |#2|) 28) (((-121) $ |#3|) 199)) (-3541 (((-3 |#3| "failed")) 48)) (-2126 (((-763)) 167)) (-2779 ((|#2| $ |#2| |#2|) 129)) (-3633 (((-3 |#3| "failed")) 66)) (-4189 (($ $ (-1 (-409 |#3|) (-409 |#3|)) (-763)) NIL) (($ $ (-1 (-409 |#3|) (-409 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 203) (($ $ (-634 (-1161)) (-634 (-763))) NIL) (($ $ (-1161) (-763)) NIL) (($ $ (-634 (-1161))) NIL) (($ $ (-1161)) NIL) (($ $ (-763)) NIL) (($ $) NIL)) (-3016 (((-1244 $) (-1244 $)) 148)) (-3223 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 64)) (-2262 (((-121)) 32))) +(((-339 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4189 (|#1| |#1|)) (-15 -4189 (|#1| |#1| (-763))) (-15 -4189 (|#1| |#1| (-1161))) (-15 -4189 (|#1| |#1| (-634 (-1161)))) (-15 -4189 (|#1| |#1| (-1161) (-763))) (-15 -4189 (|#1| |#1| (-634 (-1161)) (-634 (-763)))) (-15 -1895 ((-634 (-634 |#2|)))) (-15 -1296 ((-634 (-953 |#2|)) (-1161))) (-15 -3223 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3541 ((-3 |#3| "failed"))) (-15 -3633 ((-3 |#3| "failed"))) (-15 -2779 (|#2| |#1| |#2| |#2|)) (-15 -3250 (|#1| |#1|)) (-15 -3498 (|#1| (-1244 |#3|) |#3|)) (-15 -4189 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1489 ((-121) |#1| |#3|)) (-15 -1489 ((-121) |#1| |#2|)) (-15 -2646 ((-2 (|:| |num| (-1244 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -3692 ((-1244 |#1|) (-1244 |#1|))) (-15 -3017 ((-1244 |#1|) (-1244 |#1|))) (-15 -3016 ((-1244 |#1|) (-1244 |#1|))) (-15 -1489 ((-121) |#1|)) (-15 -3874 ((-121) |#1|)) (-15 -2234 ((-121) |#2| |#2|)) (-15 -2262 ((-121))) (-15 -2126 ((-763))) (-15 -3900 ((-763))) (-15 -4189 (|#1| |#1| (-1 (-409 |#3|) (-409 |#3|)))) (-15 -4189 (|#1| |#1| (-1 (-409 |#3|) (-409 |#3|)) (-763))) (-15 -3498 (|#1| (-1244 (-409 |#3|)))) (-15 -3498 (|#1| (-1244 (-409 |#3|)) (-1244 |#1|)))) (-340 |#2| |#3| |#4|) (-1199) (-1219 |#2|) (-1219 (-409 |#3|))) (T -339)) +((-3900 (*1 *2) (-12 (-4 *4 (-1199)) (-4 *5 (-1219 *4)) (-4 *6 (-1219 (-409 *5))) (-5 *2 (-763)) (-5 *1 (-339 *3 *4 *5 *6)) (-4 *3 (-340 *4 *5 *6)))) (-2126 (*1 *2) (-12 (-4 *4 (-1199)) (-4 *5 (-1219 *4)) (-4 *6 (-1219 (-409 *5))) (-5 *2 (-763)) (-5 *1 (-339 *3 *4 *5 *6)) (-4 *3 (-340 *4 *5 *6)))) (-2262 (*1 *2) (-12 (-4 *4 (-1199)) (-4 *5 (-1219 *4)) (-4 *6 (-1219 (-409 *5))) (-5 *2 (-121)) (-5 *1 (-339 *3 *4 *5 *6)) (-4 *3 (-340 *4 *5 *6)))) (-2234 (*1 *2 *3 *3) (-12 (-4 *3 (-1199)) (-4 *5 (-1219 *3)) (-4 *6 (-1219 (-409 *5))) (-5 *2 (-121)) (-5 *1 (-339 *4 *3 *5 *6)) (-4 *4 (-340 *3 *5 *6)))) (-3633 (*1 *2) (|partial| -12 (-4 *4 (-1199)) (-4 *5 (-1219 (-409 *2))) (-4 *2 (-1219 *4)) (-5 *1 (-339 *3 *4 *2 *5)) (-4 *3 (-340 *4 *2 *5)))) (-3541 (*1 *2) (|partial| -12 (-4 *4 (-1199)) (-4 *5 (-1219 (-409 *2))) (-4 *2 (-1219 *4)) (-5 *1 (-339 *3 *4 *2 *5)) (-4 *3 (-340 *4 *2 *5)))) (-1296 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-4 *5 (-1199)) (-4 *6 (-1219 *5)) (-4 *7 (-1219 (-409 *6))) (-5 *2 (-634 (-953 *5))) (-5 *1 (-339 *4 *5 *6 *7)) (-4 *4 (-340 *5 *6 *7)))) (-1895 (*1 *2) (-12 (-4 *4 (-1199)) (-4 *5 (-1219 *4)) (-4 *6 (-1219 (-409 *5))) (-5 *2 (-634 (-634 *4))) (-5 *1 (-339 *3 *4 *5 *6)) (-4 *3 (-340 *4 *5 *6))))) +(-10 -8 (-15 -4189 (|#1| |#1|)) (-15 -4189 (|#1| |#1| (-763))) (-15 -4189 (|#1| |#1| (-1161))) (-15 -4189 (|#1| |#1| (-634 (-1161)))) (-15 -4189 (|#1| |#1| (-1161) (-763))) (-15 -4189 (|#1| |#1| (-634 (-1161)) (-634 (-763)))) (-15 -1895 ((-634 (-634 |#2|)))) (-15 -1296 ((-634 (-953 |#2|)) (-1161))) (-15 -3223 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3541 ((-3 |#3| "failed"))) (-15 -3633 ((-3 |#3| "failed"))) (-15 -2779 (|#2| |#1| |#2| |#2|)) (-15 -3250 (|#1| |#1|)) (-15 -3498 (|#1| (-1244 |#3|) |#3|)) (-15 -4189 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1489 ((-121) |#1| |#3|)) (-15 -1489 ((-121) |#1| |#2|)) (-15 -2646 ((-2 (|:| |num| (-1244 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -3692 ((-1244 |#1|) (-1244 |#1|))) (-15 -3017 ((-1244 |#1|) (-1244 |#1|))) (-15 -3016 ((-1244 |#1|) (-1244 |#1|))) (-15 -1489 ((-121) |#1|)) (-15 -3874 ((-121) |#1|)) (-15 -2234 ((-121) |#2| |#2|)) (-15 -2262 ((-121))) (-15 -2126 ((-763))) (-15 -3900 ((-763))) (-15 -4189 (|#1| |#1| (-1 (-409 |#3|) (-409 |#3|)))) (-15 -4189 (|#1| |#1| (-1 (-409 |#3|) (-409 |#3|)) (-763))) (-15 -3498 (|#1| (-1244 (-409 |#3|)))) (-15 -3498 (|#1| (-1244 (-409 |#3|)) (-1244 |#1|)))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-2646 (((-2 (|:| |num| (-1244 |#2|)) (|:| |den| |#2|)) $) 180)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) 87 (|has| (-409 |#2|) (-365)))) (-2227 (($ $) 88 (|has| (-409 |#2|) (-365)))) (-1573 (((-121) $) 90 (|has| (-409 |#2|) (-365)))) (-4255 (((-679 (-409 |#2|)) (-1244 $)) 44) (((-679 (-409 |#2|))) 55)) (-1932 (((-409 |#2|) $) 50)) (-3211 (((-1169 (-917) (-763)) (-568)) 141 (|has| (-409 |#2|) (-350)))) (-3134 (((-3 $ "failed") $ $) 18)) (-4305 (($ $) 107 (|has| (-409 |#2|) (-365)))) (-1678 (((-420 $) $) 108 (|has| (-409 |#2|) (-365)))) (-1497 (((-121) $ $) 98 (|has| (-409 |#2|) (-365)))) (-3983 (((-763)) 81 (|has| (-409 |#2|) (-370)))) (-3926 (((-121)) 197)) (-1965 (((-121) |#1|) 196) (((-121) |#2|) 195)) (-2671 (($) 16 T CONST)) (-3666 (((-3 (-568) "failed") $) 163 (|has| (-409 |#2|) (-1037 (-568)))) (((-3 (-409 (-568)) "failed") $) 161 (|has| (-409 |#2|) (-1037 (-409 (-568))))) (((-3 (-409 |#2|) "failed") $) 160)) (-2854 (((-568) $) 164 (|has| (-409 |#2|) (-1037 (-568)))) (((-409 (-568)) $) 162 (|has| (-409 |#2|) (-1037 (-409 (-568))))) (((-409 |#2|) $) 159)) (-3498 (($ (-1244 (-409 |#2|)) (-1244 $)) 46) (($ (-1244 (-409 |#2|))) 58) (($ (-1244 |#2|) |#2|) 173)) (-2022 (((-3 "prime" "polynomial" "normal" "cyclic")) 147 (|has| (-409 |#2|) (-350)))) (-2401 (($ $ $) 102 (|has| (-409 |#2|) (-365)))) (-1709 (((-679 (-409 |#2|)) $ (-1244 $)) 51) (((-679 (-409 |#2|)) $) 53)) (-3164 (((-679 (-568)) (-679 $)) 158 (|has| (-409 |#2|) (-630 (-568)))) (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) 157 (|has| (-409 |#2|) (-630 (-568)))) (((-2 (|:| -2928 (-679 (-409 |#2|))) (|:| |vec| (-1244 (-409 |#2|)))) (-679 $) (-1244 $)) 156) (((-679 (-409 |#2|)) (-679 $)) 155)) (-3692 (((-1244 $) (-1244 $)) 185)) (-3092 (($ |#3|) 152) (((-3 $ "failed") (-409 |#3|)) 149 (|has| (-409 |#2|) (-365)))) (-2925 (((-3 $ "failed") $) 33)) (-1895 (((-634 (-634 |#1|))) 166 (|has| |#1| (-370)))) (-2234 (((-121) |#1| |#1|) 201)) (-3700 (((-917)) 52)) (-1731 (($) 84 (|has| (-409 |#2|) (-370)))) (-4449 (((-121)) 194)) (-4481 (((-121) |#1|) 193) (((-121) |#2|) 192)) (-2412 (($ $ $) 101 (|has| (-409 |#2|) (-365)))) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) 96 (|has| (-409 |#2|) (-365)))) (-3250 (($ $) 172)) (-4220 (($) 143 (|has| (-409 |#2|) (-350)))) (-4456 (((-121) $) 144 (|has| (-409 |#2|) (-350)))) (-3218 (($ $ (-763)) 135 (|has| (-409 |#2|) (-350))) (($ $) 134 (|has| (-409 |#2|) (-350)))) (-3927 (((-121) $) 109 (|has| (-409 |#2|) (-365)))) (-4477 (((-917) $) 146 (|has| (-409 |#2|) (-350))) (((-828 (-917)) $) 132 (|has| (-409 |#2|) (-350)))) (-2735 (((-121) $) 30)) (-3900 (((-763)) 204)) (-3017 (((-1244 $) (-1244 $)) 186)) (-2657 (((-409 |#2|) $) 49)) (-1296 (((-634 (-953 |#1|)) (-1161)) 167 (|has| |#1| (-365)))) (-3038 (((-3 $ "failed") $) 136 (|has| (-409 |#2|) (-350)))) (-3562 (((-3 (-634 $) "failed") (-634 $) $) 105 (|has| (-409 |#2|) (-365)))) (-2045 ((|#3| $) 42 (|has| (-409 |#2|) (-365)))) (-3683 (((-917) $) 83 (|has| (-409 |#2|) (-370)))) (-3085 ((|#3| $) 150)) (-2495 (($ (-634 $)) 94 (|has| (-409 |#2|) (-365))) (($ $ $) 93 (|has| (-409 |#2|) (-365)))) (-4487 (((-1143) $) 9)) (-1300 (((-679 (-409 |#2|))) 181)) (-4472 (((-679 (-409 |#2|))) 183)) (-2081 (($ $) 110 (|has| (-409 |#2|) (-365)))) (-4368 (($ (-1244 |#2|) |#2|) 178)) (-3036 (((-679 (-409 |#2|))) 182)) (-1630 (((-679 (-409 |#2|))) 184)) (-1557 (((-2 (|:| |num| (-679 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 177)) (-1658 (((-2 (|:| |num| (-1244 |#2|)) (|:| |den| |#2|)) $) 179)) (-1820 (((-1244 $)) 190)) (-3661 (((-1244 $)) 191)) (-3874 (((-121) $) 189)) (-1489 (((-121) $) 188) (((-121) $ |#1|) 176) (((-121) $ |#2|) 175)) (-4434 (($) 137 (|has| (-409 |#2|) (-350)) CONST)) (-4355 (($ (-917)) 82 (|has| (-409 |#2|) (-370)))) (-3541 (((-3 |#2| "failed")) 169)) (-4022 (((-1108) $) 10)) (-2126 (((-763)) 203)) (-2704 (($) 154)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) 95 (|has| (-409 |#2|) (-365)))) (-2721 (($ (-634 $)) 92 (|has| (-409 |#2|) (-365))) (($ $ $) 91 (|has| (-409 |#2|) (-365)))) (-1418 (((-634 (-2 (|:| -3848 (-568)) (|:| -3438 (-568))))) 140 (|has| (-409 |#2|) (-350)))) (-3848 (((-420 $) $) 106 (|has| (-409 |#2|) (-365)))) (-4497 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 104 (|has| (-409 |#2|) (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) 103 (|has| (-409 |#2|) (-365)))) (-2595 (((-3 $ "failed") $ $) 86 (|has| (-409 |#2|) (-365)))) (-2344 (((-3 (-634 $) "failed") (-634 $) $) 97 (|has| (-409 |#2|) (-365)))) (-2709 (((-763) $) 99 (|has| (-409 |#2|) (-365)))) (-2779 ((|#1| $ |#1| |#1|) 171)) (-3633 (((-3 |#2| "failed")) 170)) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) 100 (|has| (-409 |#2|) (-365)))) (-2217 (((-409 |#2|) (-1244 $)) 45) (((-409 |#2|)) 54)) (-3143 (((-763) $) 145 (|has| (-409 |#2|) (-350))) (((-3 (-763) "failed") $ $) 133 (|has| (-409 |#2|) (-350)))) (-4189 (($ $ (-1 (-409 |#2|) (-409 |#2|)) (-763)) 117 (|has| (-409 |#2|) (-365))) (($ $ (-1 (-409 |#2|) (-409 |#2|))) 116 (|has| (-409 |#2|) (-365))) (($ $ (-1 |#2| |#2|)) 174) (($ $ (-634 (-1161)) (-634 (-763))) 124 (-2198 (-2139 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-895 (-1161)))) (-2139 (|has| (-409 |#2|) (-895 (-1161))) (|has| (-409 |#2|) (-365))))) (($ $ (-1161) (-763)) 125 (-2198 (-2139 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-895 (-1161)))) (-2139 (|has| (-409 |#2|) (-895 (-1161))) (|has| (-409 |#2|) (-365))))) (($ $ (-634 (-1161))) 126 (-2198 (-2139 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-895 (-1161)))) (-2139 (|has| (-409 |#2|) (-895 (-1161))) (|has| (-409 |#2|) (-365))))) (($ $ (-1161)) 127 (-2198 (-2139 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-895 (-1161)))) (-2139 (|has| (-409 |#2|) (-895 (-1161))) (|has| (-409 |#2|) (-365))))) (($ $ (-763)) 129 (-2198 (-2139 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-225))) (-2139 (|has| (-409 |#2|) (-225)) (|has| (-409 |#2|) (-365))) (|has| (-409 |#2|) (-350)))) (($ $) 131 (-2198 (-2139 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-225))) (-2139 (|has| (-409 |#2|) (-225)) (|has| (-409 |#2|) (-365))) (|has| (-409 |#2|) (-350))))) (-4387 (((-679 (-409 |#2|)) (-1244 $) (-1 (-409 |#2|) (-409 |#2|))) 148 (|has| (-409 |#2|) (-365)))) (-1626 ((|#3|) 153)) (-3065 (($) 142 (|has| (-409 |#2|) (-350)))) (-4073 (((-1244 (-409 |#2|)) $ (-1244 $)) 48) (((-679 (-409 |#2|)) (-1244 $) (-1244 $)) 47) (((-1244 (-409 |#2|)) $) 60) (((-679 (-409 |#2|)) (-1244 $)) 59)) (-4278 (((-1244 (-409 |#2|)) $) 57) (($ (-1244 (-409 |#2|))) 56) ((|#3| $) 165) (($ |#3|) 151)) (-2979 (((-3 (-1244 $) "failed") (-679 $)) 139 (|has| (-409 |#2|) (-350)))) (-3016 (((-1244 $) (-1244 $)) 187)) (-2745 (((-850) $) 11) (($ (-568)) 27) (($ (-409 |#2|)) 36) (($ (-409 (-568))) 80 (-2198 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-1037 (-409 (-568)))))) (($ $) 85 (|has| (-409 |#2|) (-365)))) (-4371 (($ $) 138 (|has| (-409 |#2|) (-350))) (((-3 $ "failed") $) 41 (|has| (-409 |#2|) (-148)))) (-2678 ((|#3| $) 43)) (-4078 (((-763)) 28)) (-4199 (((-121)) 200)) (-2712 (((-121) |#1|) 199) (((-121) |#2|) 198)) (-3746 (((-1244 $)) 61)) (-1826 (((-121) $ $) 89 (|has| (-409 |#2|) (-365)))) (-3223 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 168)) (-2262 (((-121)) 202)) (-1887 (($ $ (-917)) 25) (($ $ (-763)) 32) (($ $ (-568)) 111 (|has| (-409 |#2|) (-365)))) (-3056 (($) 17 T CONST)) (-1556 (($) 29 T CONST)) (-3190 (($ $ (-1 (-409 |#2|) (-409 |#2|)) (-763)) 119 (|has| (-409 |#2|) (-365))) (($ $ (-1 (-409 |#2|) (-409 |#2|))) 118 (|has| (-409 |#2|) (-365))) (($ $ (-634 (-1161)) (-634 (-763))) 120 (-2198 (-2139 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-895 (-1161)))) (-2139 (|has| (-409 |#2|) (-895 (-1161))) (|has| (-409 |#2|) (-365))))) (($ $ (-1161) (-763)) 121 (-2198 (-2139 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-895 (-1161)))) (-2139 (|has| (-409 |#2|) (-895 (-1161))) (|has| (-409 |#2|) (-365))))) (($ $ (-634 (-1161))) 122 (-2198 (-2139 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-895 (-1161)))) (-2139 (|has| (-409 |#2|) (-895 (-1161))) (|has| (-409 |#2|) (-365))))) (($ $ (-1161)) 123 (-2198 (-2139 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-895 (-1161)))) (-2139 (|has| (-409 |#2|) (-895 (-1161))) (|has| (-409 |#2|) (-365))))) (($ $ (-763)) 128 (-2198 (-2139 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-225))) (-2139 (|has| (-409 |#2|) (-225)) (|has| (-409 |#2|) (-365))) (|has| (-409 |#2|) (-350)))) (($ $) 130 (-2198 (-2139 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-225))) (-2139 (|has| (-409 |#2|) (-225)) (|has| (-409 |#2|) (-365))) (|has| (-409 |#2|) (-350))))) (-1717 (((-121) $ $) 6)) (-1779 (($ $ $) 115 (|has| (-409 |#2|) (-365)))) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 24) (($ $ (-763)) 31) (($ $ (-568)) 112 (|has| (-409 |#2|) (-365)))) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 23) (($ $ (-409 |#2|)) 38) (($ (-409 |#2|) $) 37) (($ (-409 (-568)) $) 114 (|has| (-409 |#2|) (-365))) (($ $ (-409 (-568))) 113 (|has| (-409 |#2|) (-365))))) +(((-340 |#1| |#2| |#3|) (-1275) (-1199) (-1219 |t#1|) (-1219 (-409 |t#2|))) (T -340)) +((-3900 (*1 *2) (-12 (-4 *1 (-340 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 (-409 *4))) (-5 *2 (-763)))) (-2126 (*1 *2) (-12 (-4 *1 (-340 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 (-409 *4))) (-5 *2 (-763)))) (-2262 (*1 *2) (-12 (-4 *1 (-340 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 (-409 *4))) (-5 *2 (-121)))) (-2234 (*1 *2 *3 *3) (-12 (-4 *1 (-340 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 (-409 *4))) (-5 *2 (-121)))) (-4199 (*1 *2) (-12 (-4 *1 (-340 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 (-409 *4))) (-5 *2 (-121)))) (-2712 (*1 *2 *3) (-12 (-4 *1 (-340 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 (-409 *4))) (-5 *2 (-121)))) (-2712 (*1 *2 *3) (-12 (-4 *1 (-340 *4 *3 *5)) (-4 *4 (-1199)) (-4 *3 (-1219 *4)) (-4 *5 (-1219 (-409 *3))) (-5 *2 (-121)))) (-3926 (*1 *2) (-12 (-4 *1 (-340 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 (-409 *4))) (-5 *2 (-121)))) (-1965 (*1 *2 *3) (-12 (-4 *1 (-340 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 (-409 *4))) (-5 *2 (-121)))) (-1965 (*1 *2 *3) (-12 (-4 *1 (-340 *4 *3 *5)) (-4 *4 (-1199)) (-4 *3 (-1219 *4)) (-4 *5 (-1219 (-409 *3))) (-5 *2 (-121)))) (-4449 (*1 *2) (-12 (-4 *1 (-340 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 (-409 *4))) (-5 *2 (-121)))) (-4481 (*1 *2 *3) (-12 (-4 *1 (-340 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 (-409 *4))) (-5 *2 (-121)))) (-4481 (*1 *2 *3) (-12 (-4 *1 (-340 *4 *3 *5)) (-4 *4 (-1199)) (-4 *3 (-1219 *4)) (-4 *5 (-1219 (-409 *3))) (-5 *2 (-121)))) (-3661 (*1 *2) (-12 (-4 *3 (-1199)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 (-409 *4))) (-5 *2 (-1244 *1)) (-4 *1 (-340 *3 *4 *5)))) (-1820 (*1 *2) (-12 (-4 *3 (-1199)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 (-409 *4))) (-5 *2 (-1244 *1)) (-4 *1 (-340 *3 *4 *5)))) (-3874 (*1 *2 *1) (-12 (-4 *1 (-340 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 (-409 *4))) (-5 *2 (-121)))) (-1489 (*1 *2 *1) (-12 (-4 *1 (-340 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 (-409 *4))) (-5 *2 (-121)))) (-3016 (*1 *2 *2) (-12 (-5 *2 (-1244 *1)) (-4 *1 (-340 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 (-409 *4))))) (-3017 (*1 *2 *2) (-12 (-5 *2 (-1244 *1)) (-4 *1 (-340 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 (-409 *4))))) (-3692 (*1 *2 *2) (-12 (-5 *2 (-1244 *1)) (-4 *1 (-340 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 (-409 *4))))) (-1630 (*1 *2) (-12 (-4 *1 (-340 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 (-409 *4))) (-5 *2 (-679 (-409 *4))))) (-4472 (*1 *2) (-12 (-4 *1 (-340 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 (-409 *4))) (-5 *2 (-679 (-409 *4))))) (-3036 (*1 *2) (-12 (-4 *1 (-340 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 (-409 *4))) (-5 *2 (-679 (-409 *4))))) (-1300 (*1 *2) (-12 (-4 *1 (-340 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 (-409 *4))) (-5 *2 (-679 (-409 *4))))) (-2646 (*1 *2 *1) (-12 (-4 *1 (-340 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 (-409 *4))) (-5 *2 (-2 (|:| |num| (-1244 *4)) (|:| |den| *4))))) (-1658 (*1 *2 *1) (-12 (-4 *1 (-340 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 (-409 *4))) (-5 *2 (-2 (|:| |num| (-1244 *4)) (|:| |den| *4))))) (-4368 (*1 *1 *2 *3) (-12 (-5 *2 (-1244 *3)) (-4 *3 (-1219 *4)) (-4 *4 (-1199)) (-4 *1 (-340 *4 *3 *5)) (-4 *5 (-1219 (-409 *3))))) (-1557 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-340 *4 *5 *6)) (-4 *4 (-1199)) (-4 *5 (-1219 *4)) (-4 *6 (-1219 (-409 *5))) (-5 *2 (-2 (|:| |num| (-679 *5)) (|:| |den| *5))))) (-1489 (*1 *2 *1 *3) (-12 (-4 *1 (-340 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 (-409 *4))) (-5 *2 (-121)))) (-1489 (*1 *2 *1 *3) (-12 (-4 *1 (-340 *4 *3 *5)) (-4 *4 (-1199)) (-4 *3 (-1219 *4)) (-4 *5 (-1219 (-409 *3))) (-5 *2 (-121)))) (-4189 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-340 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 (-409 *4))))) (-3498 (*1 *1 *2 *3) (-12 (-5 *2 (-1244 *3)) (-4 *3 (-1219 *4)) (-4 *4 (-1199)) (-4 *1 (-340 *4 *3 *5)) (-4 *5 (-1219 (-409 *3))))) (-3250 (*1 *1 *1) (-12 (-4 *1 (-340 *2 *3 *4)) (-4 *2 (-1199)) (-4 *3 (-1219 *2)) (-4 *4 (-1219 (-409 *3))))) (-2779 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-340 *2 *3 *4)) (-4 *2 (-1199)) (-4 *3 (-1219 *2)) (-4 *4 (-1219 (-409 *3))))) (-3633 (*1 *2) (|partial| -12 (-4 *1 (-340 *3 *2 *4)) (-4 *3 (-1199)) (-4 *4 (-1219 (-409 *2))) (-4 *2 (-1219 *3)))) (-3541 (*1 *2) (|partial| -12 (-4 *1 (-340 *3 *2 *4)) (-4 *3 (-1199)) (-4 *4 (-1219 (-409 *2))) (-4 *2 (-1219 *3)))) (-3223 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1219 *4)) (-4 *4 (-1199)) (-4 *6 (-1219 (-409 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-340 *4 *5 *6)))) (-1296 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-4 *1 (-340 *4 *5 *6)) (-4 *4 (-1199)) (-4 *5 (-1219 *4)) (-4 *6 (-1219 (-409 *5))) (-4 *4 (-365)) (-5 *2 (-634 (-953 *4))))) (-1895 (*1 *2) (-12 (-4 *1 (-340 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 (-409 *4))) (-4 *3 (-370)) (-5 *2 (-634 (-634 *3)))))) +(-13 (-714 (-409 |t#2|) |t#3|) (-10 -8 (-15 -3900 ((-763))) (-15 -2126 ((-763))) (-15 -2262 ((-121))) (-15 -2234 ((-121) |t#1| |t#1|)) (-15 -4199 ((-121))) (-15 -2712 ((-121) |t#1|)) (-15 -2712 ((-121) |t#2|)) (-15 -3926 ((-121))) (-15 -1965 ((-121) |t#1|)) (-15 -1965 ((-121) |t#2|)) (-15 -4449 ((-121))) (-15 -4481 ((-121) |t#1|)) (-15 -4481 ((-121) |t#2|)) (-15 -3661 ((-1244 $))) (-15 -1820 ((-1244 $))) (-15 -3874 ((-121) $)) (-15 -1489 ((-121) $)) (-15 -3016 ((-1244 $) (-1244 $))) (-15 -3017 ((-1244 $) (-1244 $))) (-15 -3692 ((-1244 $) (-1244 $))) (-15 -1630 ((-679 (-409 |t#2|)))) (-15 -4472 ((-679 (-409 |t#2|)))) (-15 -3036 ((-679 (-409 |t#2|)))) (-15 -1300 ((-679 (-409 |t#2|)))) (-15 -2646 ((-2 (|:| |num| (-1244 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -3498 ($ (-1244 |t#2|) |t#2|)) (-15 -1658 ((-2 (|:| |num| (-1244 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -4368 ($ (-1244 |t#2|) |t#2|)) (-15 -1557 ((-2 (|:| |num| (-679 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -1489 ((-121) $ |t#1|)) (-15 -1489 ((-121) $ |t#2|)) (-15 -4189 ($ $ (-1 |t#2| |t#2|))) (-15 -3498 ($ (-1244 |t#2|) |t#2|)) (-15 -3250 ($ $)) (-15 -2779 (|t#1| $ |t#1| |t#1|)) (-15 -3633 ((-3 |t#2| "failed"))) (-15 -3541 ((-3 |t#2| "failed"))) (-15 -3223 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-365)) (-15 -1296 ((-634 (-953 |t#1|)) (-1161))) |noBranch|) (IF (|has| |t#1| (-370)) (-15 -1895 ((-634 (-634 |t#1|)))) |noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-43 (-409 (-568))) -2198 (|has| (-409 |#2|) (-350)) (|has| (-409 |#2|) (-365))) ((-43 (-409 |#2|)) . T) ((-43 $) -2198 (|has| (-409 |#2|) (-350)) (|has| (-409 |#2|) (-365))) ((-105) . T) ((-120 (-409 (-568)) (-409 (-568))) -2198 (|has| (-409 |#2|) (-350)) (|has| (-409 |#2|) (-365))) ((-120 (-409 |#2|) (-409 |#2|)) . T) ((-120 $ $) . T) ((-137) . T) ((-148) -2198 (|has| (-409 |#2|) (-350)) (|has| (-409 |#2|) (-148))) ((-150) |has| (-409 |#2|) (-150)) ((-608 (-850)) . T) ((-172) . T) ((-609 |#3|) . T) ((-223 (-409 |#2|)) |has| (-409 |#2|) (-365)) ((-225) -2198 (|has| (-409 |#2|) (-350)) (-12 (|has| (-409 |#2|) (-225)) (|has| (-409 |#2|) (-365)))) ((-238) -2198 (|has| (-409 |#2|) (-350)) (|has| (-409 |#2|) (-365))) ((-285) -2198 (|has| (-409 |#2|) (-350)) (|has| (-409 |#2|) (-365))) ((-301) -2198 (|has| (-409 |#2|) (-350)) (|has| (-409 |#2|) (-365))) ((-365) -2198 (|has| (-409 |#2|) (-350)) (|has| (-409 |#2|) (-365))) ((-404) |has| (-409 |#2|) (-350)) ((-370) -2198 (|has| (-409 |#2|) (-370)) (|has| (-409 |#2|) (-350))) ((-350) |has| (-409 |#2|) (-350)) ((-372 (-409 |#2|) |#3|) . T) ((-411 (-409 |#2|) |#3|) . T) ((-379 (-409 |#2|)) . T) ((-413 (-409 |#2|)) . T) ((-453) -2198 (|has| (-409 |#2|) (-350)) (|has| (-409 |#2|) (-365))) ((-558) -2198 (|has| (-409 |#2|) (-350)) (|has| (-409 |#2|) (-365))) ((-637 (-409 (-568))) -2198 (|has| (-409 |#2|) (-350)) (|has| (-409 |#2|) (-365))) ((-637 (-409 |#2|)) . T) ((-637 $) . T) ((-630 (-409 |#2|)) . T) ((-630 (-568)) |has| (-409 |#2|) (-630 (-568))) ((-707 (-409 (-568))) -2198 (|has| (-409 |#2|) (-350)) (|has| (-409 |#2|) (-365))) ((-707 (-409 |#2|)) . T) ((-707 $) -2198 (|has| (-409 |#2|) (-350)) (|has| (-409 |#2|) (-365))) ((-714 (-409 |#2|) |#3|) . T) ((-716) . T) ((-895 (-1161)) -12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-895 (-1161)))) ((-916) -2198 (|has| (-409 |#2|) (-350)) (|has| (-409 |#2|) (-365))) ((-1037 (-409 (-568))) |has| (-409 |#2|) (-1037 (-409 (-568)))) ((-1037 (-409 |#2|)) . T) ((-1037 (-568)) |has| (-409 |#2|) (-1037 (-568))) ((-1053 (-409 (-568))) -2198 (|has| (-409 |#2|) (-350)) (|has| (-409 |#2|) (-365))) ((-1053 (-409 |#2|)) . T) ((-1053 $) . T) ((-1047) . T) ((-1054) . T) ((-1102) . T) ((-1090) . T) ((-1136) |has| (-409 |#2|) (-350)) ((-1199) -2198 (|has| (-409 |#2|) (-350)) (|has| (-409 |#2|) (-365)))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL)) (-2227 (($ $) NIL)) (-1573 (((-121) $) NIL)) (-2615 (((-121) $) NIL)) (-1739 (((-763)) NIL)) (-1932 (((-905 |#1|) $) NIL) (($ $ (-917)) NIL (|has| (-905 |#1|) (-370)))) (-3211 (((-1169 (-917) (-763)) (-568)) NIL (|has| (-905 |#1|) (-370)))) (-3134 (((-3 $ "failed") $ $) NIL)) (-4305 (($ $) NIL)) (-1678 (((-420 $) $) NIL)) (-1497 (((-121) $ $) NIL)) (-3983 (((-763)) NIL (|has| (-905 |#1|) (-370)))) (-2671 (($) NIL T CONST)) (-3666 (((-3 (-905 |#1|) "failed") $) NIL)) (-2854 (((-905 |#1|) $) NIL)) (-3498 (($ (-1244 (-905 |#1|))) NIL)) (-2022 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-905 |#1|) (-370)))) (-2401 (($ $ $) NIL)) (-2925 (((-3 $ "failed") $) NIL)) (-1731 (($) NIL (|has| (-905 |#1|) (-370)))) (-2412 (($ $ $) NIL)) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) NIL)) (-4220 (($) NIL (|has| (-905 |#1|) (-370)))) (-4456 (((-121) $) NIL (|has| (-905 |#1|) (-370)))) (-3218 (($ $ (-763)) NIL (-2198 (|has| (-905 |#1|) (-148)) (|has| (-905 |#1|) (-370)))) (($ $) NIL (-2198 (|has| (-905 |#1|) (-148)) (|has| (-905 |#1|) (-370))))) (-3927 (((-121) $) NIL)) (-4477 (((-917) $) NIL (|has| (-905 |#1|) (-370))) (((-828 (-917)) $) NIL (-2198 (|has| (-905 |#1|) (-148)) (|has| (-905 |#1|) (-370))))) (-2735 (((-121) $) NIL)) (-2883 (($) NIL (|has| (-905 |#1|) (-370)))) (-3917 (((-121) $) NIL (|has| (-905 |#1|) (-370)))) (-2657 (((-905 |#1|) $) NIL) (($ $ (-917)) NIL (|has| (-905 |#1|) (-370)))) (-3038 (((-3 $ "failed") $) NIL (|has| (-905 |#1|) (-370)))) (-3562 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-2045 (((-1157 (-905 |#1|)) $) NIL) (((-1157 $) $ (-917)) NIL (|has| (-905 |#1|) (-370)))) (-3683 (((-917) $) NIL (|has| (-905 |#1|) (-370)))) (-2035 (((-1157 (-905 |#1|)) $) NIL (|has| (-905 |#1|) (-370)))) (-1422 (((-1157 (-905 |#1|)) $) NIL (|has| (-905 |#1|) (-370))) (((-3 (-1157 (-905 |#1|)) "failed") $ $) NIL (|has| (-905 |#1|) (-370)))) (-2109 (($ $ (-1157 (-905 |#1|))) NIL (|has| (-905 |#1|) (-370)))) (-2495 (($ $ $) NIL) (($ (-634 $)) NIL)) (-4487 (((-1143) $) NIL)) (-2081 (($ $) NIL)) (-4434 (($) NIL (|has| (-905 |#1|) (-370)) CONST)) (-4355 (($ (-917)) NIL (|has| (-905 |#1|) (-370)))) (-2864 (((-121) $) NIL)) (-4022 (((-1108) $) NIL)) (-1936 (((-958 (-1108))) NIL)) (-2704 (($) NIL (|has| (-905 |#1|) (-370)))) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL)) (-2721 (($ $ $) NIL) (($ (-634 $)) NIL)) (-1418 (((-634 (-2 (|:| -3848 (-568)) (|:| -3438 (-568))))) NIL (|has| (-905 |#1|) (-370)))) (-3848 (((-420 $) $) NIL)) (-1553 (((-828 (-917))) NIL) (((-917)) NIL)) (-4497 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2595 (((-3 $ "failed") $ $) NIL)) (-2344 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-2709 (((-763) $) NIL)) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL)) (-3143 (((-763) $) NIL (|has| (-905 |#1|) (-370))) (((-3 (-763) "failed") $ $) NIL (-2198 (|has| (-905 |#1|) (-148)) (|has| (-905 |#1|) (-370))))) (-4321 (((-139)) NIL)) (-4189 (($ $) NIL (|has| (-905 |#1|) (-370))) (($ $ (-763)) NIL (|has| (-905 |#1|) (-370)))) (-3206 (((-828 (-917)) $) NIL) (((-917) $) NIL)) (-1626 (((-1157 (-905 |#1|))) NIL)) (-3065 (($) NIL (|has| (-905 |#1|) (-370)))) (-2027 (($) NIL (|has| (-905 |#1|) (-370)))) (-4073 (((-1244 (-905 |#1|)) $) NIL) (((-679 (-905 |#1|)) (-1244 $)) NIL)) (-2979 (((-3 (-1244 $) "failed") (-679 $)) NIL (|has| (-905 |#1|) (-370)))) (-2745 (((-850) $) NIL) (($ (-568)) NIL) (($ $) NIL) (($ (-409 (-568))) NIL) (($ (-905 |#1|)) NIL)) (-4371 (($ $) NIL (|has| (-905 |#1|) (-370))) (((-3 $ "failed") $) NIL (-2198 (|has| (-905 |#1|) (-148)) (|has| (-905 |#1|) (-370))))) (-4078 (((-763)) NIL)) (-3746 (((-1244 $)) NIL) (((-1244 $) (-917)) NIL)) (-1826 (((-121) $ $) NIL)) (-4390 (((-121) $) NIL)) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL)) (-3056 (($) NIL T CONST)) (-1556 (($) NIL T CONST)) (-1316 (($ $) NIL (|has| (-905 |#1|) (-370))) (($ $ (-763)) NIL (|has| (-905 |#1|) (-370)))) (-3190 (($ $) NIL (|has| (-905 |#1|) (-370))) (($ $ (-763)) NIL (|has| (-905 |#1|) (-370)))) (-1717 (((-121) $ $) NIL)) (-1779 (($ $ $) NIL) (($ $ (-905 |#1|)) NIL)) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) NIL) (($ $ (-409 (-568))) NIL) (($ (-409 (-568)) $) NIL) (($ $ (-905 |#1|)) NIL) (($ (-905 |#1|) $) NIL))) +(((-341 |#1| |#2|) (-13 (-327 (-905 |#1|)) (-10 -7 (-15 -1936 ((-958 (-1108)))))) (-917) (-917)) (T -341)) +((-1936 (*1 *2) (-12 (-5 *2 (-958 (-1108))) (-5 *1 (-341 *3 *4)) (-14 *3 (-917)) (-14 *4 (-917))))) +(-13 (-327 (-905 |#1|)) (-10 -7 (-15 -1936 ((-958 (-1108)))))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) 46)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL)) (-2227 (($ $) NIL)) (-1573 (((-121) $) NIL)) (-2615 (((-121) $) NIL)) (-1739 (((-763)) NIL)) (-1932 ((|#1| $) NIL) (($ $ (-917)) NIL (|has| |#1| (-370)))) (-3211 (((-1169 (-917) (-763)) (-568)) 43 (|has| |#1| (-370)))) (-3134 (((-3 $ "failed") $ $) NIL)) (-4305 (($ $) NIL)) (-1678 (((-420 $) $) NIL)) (-1497 (((-121) $ $) NIL)) (-3983 (((-763)) NIL (|has| |#1| (-370)))) (-2671 (($) NIL T CONST)) (-3666 (((-3 |#1| "failed") $) 113)) (-2854 ((|#1| $) 84)) (-3498 (($ (-1244 |#1|)) 102)) (-2022 (((-3 "prime" "polynomial" "normal" "cyclic")) 93 (|has| |#1| (-370)))) (-2401 (($ $ $) NIL)) (-2925 (((-3 $ "failed") $) NIL)) (-1731 (($) 96 (|has| |#1| (-370)))) (-2412 (($ $ $) NIL)) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) NIL)) (-4220 (($) 128 (|has| |#1| (-370)))) (-4456 (((-121) $) 49 (|has| |#1| (-370)))) (-3218 (($ $ (-763)) NIL (-2198 (|has| |#1| (-148)) (|has| |#1| (-370)))) (($ $) NIL (-2198 (|has| |#1| (-148)) (|has| |#1| (-370))))) (-3927 (((-121) $) NIL)) (-4477 (((-917) $) 47 (|has| |#1| (-370))) (((-828 (-917)) $) NIL (-2198 (|has| |#1| (-148)) (|has| |#1| (-370))))) (-2735 (((-121) $) NIL)) (-2883 (($) 130 (|has| |#1| (-370)))) (-3917 (((-121) $) NIL (|has| |#1| (-370)))) (-2657 ((|#1| $) NIL) (($ $ (-917)) NIL (|has| |#1| (-370)))) (-3038 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-3562 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-2045 (((-1157 |#1|) $) 88) (((-1157 $) $ (-917)) NIL (|has| |#1| (-370)))) (-3683 (((-917) $) 138 (|has| |#1| (-370)))) (-2035 (((-1157 |#1|) $) NIL (|has| |#1| (-370)))) (-1422 (((-1157 |#1|) $) NIL (|has| |#1| (-370))) (((-3 (-1157 |#1|) "failed") $ $) NIL (|has| |#1| (-370)))) (-2109 (($ $ (-1157 |#1|)) NIL (|has| |#1| (-370)))) (-2495 (($ $ $) NIL) (($ (-634 $)) NIL)) (-4487 (((-1143) $) NIL)) (-2081 (($ $) 145)) (-4434 (($) NIL (|has| |#1| (-370)) CONST)) (-4355 (($ (-917)) 70 (|has| |#1| (-370)))) (-2864 (((-121) $) 116)) (-4022 (((-1108) $) NIL)) (-1936 (((-958 (-1108))) 44)) (-2704 (($) 126 (|has| |#1| (-370)))) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL)) (-2721 (($ $ $) NIL) (($ (-634 $)) NIL)) (-1418 (((-634 (-2 (|:| -3848 (-568)) (|:| -3438 (-568))))) 91 (|has| |#1| (-370)))) (-3848 (((-420 $) $) NIL)) (-1553 (((-828 (-917))) 67) (((-917)) 68)) (-4497 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2595 (((-3 $ "failed") $ $) NIL)) (-2344 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-2709 (((-763) $) NIL)) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL)) (-3143 (((-763) $) 129 (|has| |#1| (-370))) (((-3 (-763) "failed") $ $) 123 (-2198 (|has| |#1| (-148)) (|has| |#1| (-370))))) (-4321 (((-139)) NIL)) (-4189 (($ $) NIL (|has| |#1| (-370))) (($ $ (-763)) NIL (|has| |#1| (-370)))) (-3206 (((-828 (-917)) $) NIL) (((-917) $) NIL)) (-1626 (((-1157 |#1|)) 94)) (-3065 (($) 127 (|has| |#1| (-370)))) (-2027 (($) 135 (|has| |#1| (-370)))) (-4073 (((-1244 |#1|) $) 59) (((-679 |#1|) (-1244 $)) NIL)) (-2979 (((-3 (-1244 $) "failed") (-679 $)) NIL (|has| |#1| (-370)))) (-2745 (((-850) $) 141) (($ (-568)) NIL) (($ $) NIL) (($ (-409 (-568))) NIL) (($ |#1|) 74)) (-4371 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-2198 (|has| |#1| (-148)) (|has| |#1| (-370))))) (-4078 (((-763)) 137)) (-3746 (((-1244 $)) 115) (((-1244 $) (-917)) 72)) (-1826 (((-121) $ $) NIL)) (-4390 (((-121) $) NIL)) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL)) (-3056 (($) 32 T CONST)) (-1556 (($) 19 T CONST)) (-1316 (($ $) 80 (|has| |#1| (-370))) (($ $ (-763)) NIL (|has| |#1| (-370)))) (-3190 (($ $) NIL (|has| |#1| (-370))) (($ $ (-763)) NIL (|has| |#1| (-370)))) (-1717 (((-121) $ $) 48)) (-1779 (($ $ $) 143) (($ $ |#1|) 144)) (-1773 (($ $) 125) (($ $ $) NIL)) (-1767 (($ $ $) 61)) (** (($ $ (-917)) 147) (($ $ (-763)) 148) (($ $ (-568)) 146)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) 76) (($ $ $) 75) (($ $ (-409 (-568))) NIL) (($ (-409 (-568)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 142))) +(((-342 |#1| |#2|) (-13 (-327 |#1|) (-10 -7 (-15 -1936 ((-958 (-1108)))))) (-350) (-1157 |#1|)) (T -342)) +((-1936 (*1 *2) (-12 (-5 *2 (-958 (-1108))) (-5 *1 (-342 *3 *4)) (-4 *3 (-350)) (-14 *4 (-1157 *3))))) +(-13 (-327 |#1|) (-10 -7 (-15 -1936 ((-958 (-1108)))))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL)) (-2227 (($ $) NIL)) (-1573 (((-121) $) NIL)) (-2615 (((-121) $) NIL)) (-1739 (((-763)) NIL)) (-1932 ((|#1| $) NIL) (($ $ (-917)) NIL (|has| |#1| (-370)))) (-3211 (((-1169 (-917) (-763)) (-568)) NIL (|has| |#1| (-370)))) (-3134 (((-3 $ "failed") $ $) NIL)) (-4305 (($ $) NIL)) (-1678 (((-420 $) $) NIL)) (-1497 (((-121) $ $) NIL)) (-3983 (((-763)) NIL (|has| |#1| (-370)))) (-2671 (($) NIL T CONST)) (-3666 (((-3 |#1| "failed") $) NIL)) (-2854 ((|#1| $) NIL)) (-3498 (($ (-1244 |#1|)) NIL)) (-2022 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-370)))) (-2401 (($ $ $) NIL)) (-2925 (((-3 $ "failed") $) NIL)) (-1731 (($) NIL (|has| |#1| (-370)))) (-2412 (($ $ $) NIL)) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) NIL)) (-4220 (($) NIL (|has| |#1| (-370)))) (-4456 (((-121) $) NIL (|has| |#1| (-370)))) (-3218 (($ $ (-763)) NIL (-2198 (|has| |#1| (-148)) (|has| |#1| (-370)))) (($ $) NIL (-2198 (|has| |#1| (-148)) (|has| |#1| (-370))))) (-3927 (((-121) $) NIL)) (-4477 (((-917) $) NIL (|has| |#1| (-370))) (((-828 (-917)) $) NIL (-2198 (|has| |#1| (-148)) (|has| |#1| (-370))))) (-2735 (((-121) $) NIL)) (-2883 (($) NIL (|has| |#1| (-370)))) (-3917 (((-121) $) NIL (|has| |#1| (-370)))) (-2657 ((|#1| $) NIL) (($ $ (-917)) NIL (|has| |#1| (-370)))) (-3038 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-3562 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-2045 (((-1157 |#1|) $) NIL) (((-1157 $) $ (-917)) NIL (|has| |#1| (-370)))) (-3683 (((-917) $) NIL (|has| |#1| (-370)))) (-2035 (((-1157 |#1|) $) NIL (|has| |#1| (-370)))) (-1422 (((-1157 |#1|) $) NIL (|has| |#1| (-370))) (((-3 (-1157 |#1|) "failed") $ $) NIL (|has| |#1| (-370)))) (-2109 (($ $ (-1157 |#1|)) NIL (|has| |#1| (-370)))) (-2495 (($ $ $) NIL) (($ (-634 $)) NIL)) (-4487 (((-1143) $) NIL)) (-2081 (($ $) NIL)) (-4434 (($) NIL (|has| |#1| (-370)) CONST)) (-4355 (($ (-917)) NIL (|has| |#1| (-370)))) (-2864 (((-121) $) NIL)) (-4022 (((-1108) $) NIL)) (-1936 (((-958 (-1108))) NIL)) (-2704 (($) NIL (|has| |#1| (-370)))) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL)) (-2721 (($ $ $) NIL) (($ (-634 $)) NIL)) (-1418 (((-634 (-2 (|:| -3848 (-568)) (|:| -3438 (-568))))) NIL (|has| |#1| (-370)))) (-3848 (((-420 $) $) NIL)) (-1553 (((-828 (-917))) NIL) (((-917)) NIL)) (-4497 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2595 (((-3 $ "failed") $ $) NIL)) (-2344 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-2709 (((-763) $) NIL)) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL)) (-3143 (((-763) $) NIL (|has| |#1| (-370))) (((-3 (-763) "failed") $ $) NIL (-2198 (|has| |#1| (-148)) (|has| |#1| (-370))))) (-4321 (((-139)) NIL)) (-4189 (($ $) NIL (|has| |#1| (-370))) (($ $ (-763)) NIL (|has| |#1| (-370)))) (-3206 (((-828 (-917)) $) NIL) (((-917) $) NIL)) (-1626 (((-1157 |#1|)) NIL)) (-3065 (($) NIL (|has| |#1| (-370)))) (-2027 (($) NIL (|has| |#1| (-370)))) (-4073 (((-1244 |#1|) $) NIL) (((-679 |#1|) (-1244 $)) NIL)) (-2979 (((-3 (-1244 $) "failed") (-679 $)) NIL (|has| |#1| (-370)))) (-2745 (((-850) $) NIL) (($ (-568)) NIL) (($ $) NIL) (($ (-409 (-568))) NIL) (($ |#1|) NIL)) (-4371 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-2198 (|has| |#1| (-148)) (|has| |#1| (-370))))) (-4078 (((-763)) NIL)) (-3746 (((-1244 $)) NIL) (((-1244 $) (-917)) NIL)) (-1826 (((-121) $ $) NIL)) (-4390 (((-121) $) NIL)) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL)) (-3056 (($) NIL T CONST)) (-1556 (($) NIL T CONST)) (-1316 (($ $) NIL (|has| |#1| (-370))) (($ $ (-763)) NIL (|has| |#1| (-370)))) (-3190 (($ $) NIL (|has| |#1| (-370))) (($ $ (-763)) NIL (|has| |#1| (-370)))) (-1717 (((-121) $ $) NIL)) (-1779 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) NIL) (($ $ (-409 (-568))) NIL) (($ (-409 (-568)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-343 |#1| |#2|) (-13 (-327 |#1|) (-10 -7 (-15 -1936 ((-958 (-1108)))))) (-350) (-917)) (T -343)) +((-1936 (*1 *2) (-12 (-5 *2 (-958 (-1108))) (-5 *1 (-343 *3 *4)) (-4 *3 (-350)) (-14 *4 (-917))))) +(-13 (-327 |#1|) (-10 -7 (-15 -1936 ((-958 (-1108)))))) +((-4067 (((-121) |#2|) 68)) (-3593 (((-420 |#2|) |#2|) 56)) (-2477 (((-420 |#2|) |#2|) 58)) (-2630 (((-634 |#2|) |#2|) 61)) (-3161 (((-634 |#2|) |#2| (-763)) 62)) (-3848 (((-420 |#2|) |#2|) 59))) +(((-344 |#1| |#2|) (-10 -7 (-15 -2630 ((-634 |#2|) |#2|)) (-15 -3161 ((-634 |#2|) |#2| (-763))) (-15 -3848 ((-420 |#2|) |#2|)) (-15 -3593 ((-420 |#2|) |#2|)) (-15 -2477 ((-420 |#2|) |#2|)) (-15 -4067 ((-121) |#2|))) (-350) (-1219 |#1|)) (T -344)) +((-4067 (*1 *2 *3) (-12 (-4 *4 (-350)) (-5 *2 (-121)) (-5 *1 (-344 *4 *3)) (-4 *3 (-1219 *4)))) (-2477 (*1 *2 *3) (-12 (-4 *4 (-350)) (-5 *2 (-420 *3)) (-5 *1 (-344 *4 *3)) (-4 *3 (-1219 *4)))) (-3593 (*1 *2 *3) (-12 (-4 *4 (-350)) (-5 *2 (-420 *3)) (-5 *1 (-344 *4 *3)) (-4 *3 (-1219 *4)))) (-3848 (*1 *2 *3) (-12 (-4 *4 (-350)) (-5 *2 (-420 *3)) (-5 *1 (-344 *4 *3)) (-4 *3 (-1219 *4)))) (-3161 (*1 *2 *3 *4) (-12 (-5 *4 (-763)) (-4 *5 (-350)) (-5 *2 (-634 *3)) (-5 *1 (-344 *5 *3)) (-4 *3 (-1219 *5)))) (-2630 (*1 *2 *3) (-12 (-4 *4 (-350)) (-5 *2 (-634 *3)) (-5 *1 (-344 *4 *3)) (-4 *3 (-1219 *4))))) +(-10 -7 (-15 -2630 ((-634 |#2|) |#2|)) (-15 -3161 ((-634 |#2|) |#2| (-763))) (-15 -3848 ((-420 |#2|) |#2|)) (-15 -3593 ((-420 |#2|) |#2|)) (-15 -2477 ((-420 |#2|) |#2|)) (-15 -4067 ((-121) |#2|))) +((-4415 (((-1141 (-679 (-1157 |#1|))) (-634 |#1|) (-1 |#1| (-763) (-763) |#2|) (-1244 |#3|) (-763) (-763)) 54) (((-679 (-1157 |#1|)) (-634 |#1|) (-1 |#1| (-763) (-763) |#2|) (-1244 |#3|) (-634 (-763))) 42))) +(((-345 |#1| |#2| |#3|) (-10 -7 (-15 -4415 ((-679 (-1157 |#1|)) (-634 |#1|) (-1 |#1| (-763) (-763) |#2|) (-1244 |#3|) (-634 (-763)))) (-15 -4415 ((-1141 (-679 (-1157 |#1|))) (-634 |#1|) (-1 |#1| (-763) (-763) |#2|) (-1244 |#3|) (-763) (-763)))) (-13 (-558) (-453)) (-324 |#1| (-763)) (-324 (-409 |#1|) (-763))) (T -345)) +((-4415 (*1 *2 *3 *4 *5 *6 *6) (-12 (-5 *3 (-634 *7)) (-5 *4 (-1 *7 (-763) (-763) *8)) (-5 *5 (-1244 *9)) (-5 *6 (-763)) (-4 *7 (-13 (-558) (-453))) (-4 *8 (-324 *7 *6)) (-4 *9 (-324 (-409 *7) *6)) (-5 *2 (-1141 (-679 (-1157 *7)))) (-5 *1 (-345 *7 *8 *9)))) (-4415 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-634 *7)) (-5 *4 (-1 *7 (-763) (-763) *8)) (-5 *5 (-1244 *9)) (-5 *6 (-634 (-763))) (-4 *7 (-13 (-558) (-453))) (-4 *8 (-324 *7 (-763))) (-4 *9 (-324 (-409 *7) (-763))) (-5 *2 (-679 (-1157 *7))) (-5 *1 (-345 *7 *8 *9))))) +(-10 -7 (-15 -4415 ((-679 (-1157 |#1|)) (-634 |#1|) (-1 |#1| (-763) (-763) |#2|) (-1244 |#3|) (-634 (-763)))) (-15 -4415 ((-1141 (-679 (-1157 |#1|))) (-634 |#1|) (-1 |#1| (-763) (-763) |#2|) (-1244 |#3|) (-763) (-763)))) +((-4197 (((-634 |#1|) |#1| (-763)) 21)) (-4320 ((|#1| |#1| (-763) (-763) |#2|) 20)) (-1919 (((-409 (-1157 |#1|)) (-634 (-409 |#1|)) (-634 (-409 |#1|)) (-763)) 75) (((-409 (-1157 |#1|)) (-634 |#1|) (-634 |#1|) (-763)) 68)) (-4415 (((-1141 (-679 (-1157 |#1|))) (-634 |#1|) (-1 |#1| (-763) (-763) |#2|) (-1244 |#2|) (-763) (-763)) 62) (((-679 (-1157 |#1|)) (-634 |#1|) (-1 |#1| (-763) (-763) |#2|) (-1244 |#2|) (-634 (-763))) 44)) (-1294 ((|#1| (-1 |#1| (-763) (-763) |#2|) (-1244 |#2|) (-763) (-1244 (-1157 |#1|))) 37)) (-1442 (((-679 (-1157 |#1|)) (-634 |#1|) (-1 |#1| (-763) (-1244 (-1157 |#1|))) (-634 (-763))) 43)) (-1564 (((-634 |#1|) (-763)) 17)) (-3325 ((|#1| (-763) (-763) |#2|) 11)) (-3097 (((-634 |#1|) (-763)) 24)) (-3155 ((|#1| (-763) (-763) |#2|) 22))) +(((-346 |#1| |#2|) (-10 -7 (-15 -1442 ((-679 (-1157 |#1|)) (-634 |#1|) (-1 |#1| (-763) (-1244 (-1157 |#1|))) (-634 (-763)))) (-15 -1919 ((-409 (-1157 |#1|)) (-634 |#1|) (-634 |#1|) (-763))) (-15 -1919 ((-409 (-1157 |#1|)) (-634 (-409 |#1|)) (-634 (-409 |#1|)) (-763))) (-15 -4415 ((-679 (-1157 |#1|)) (-634 |#1|) (-1 |#1| (-763) (-763) |#2|) (-1244 |#2|) (-634 (-763)))) (-15 -4415 ((-1141 (-679 (-1157 |#1|))) (-634 |#1|) (-1 |#1| (-763) (-763) |#2|) (-1244 |#2|) (-763) (-763))) (-15 -1294 (|#1| (-1 |#1| (-763) (-763) |#2|) (-1244 |#2|) (-763) (-1244 (-1157 |#1|)))) (-15 -3325 (|#1| (-763) (-763) |#2|)) (-15 -1564 ((-634 |#1|) (-763))) (-15 -3155 (|#1| (-763) (-763) |#2|)) (-15 -3097 ((-634 |#1|) (-763))) (-15 -4320 (|#1| |#1| (-763) (-763) |#2|)) (-15 -4197 ((-634 |#1|) |#1| (-763)))) (-13 (-558) (-453)) (-52 |#1| (-763))) (T -346)) +((-4197 (*1 *2 *3 *4) (-12 (-5 *4 (-763)) (-4 *3 (-13 (-558) (-453))) (-5 *2 (-634 *3)) (-5 *1 (-346 *3 *5)) (-4 *5 (-52 *3 *4)))) (-4320 (*1 *2 *2 *3 *3 *4) (-12 (-5 *3 (-763)) (-4 *2 (-13 (-558) (-453))) (-5 *1 (-346 *2 *4)) (-4 *4 (-52 *2 *3)))) (-3097 (*1 *2 *3) (-12 (-5 *3 (-763)) (-4 *4 (-13 (-558) (-453))) (-5 *2 (-634 *4)) (-5 *1 (-346 *4 *5)) (-4 *5 (-52 *4 *3)))) (-3155 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-763)) (-4 *2 (-13 (-558) (-453))) (-5 *1 (-346 *2 *4)) (-4 *4 (-52 *2 *3)))) (-1564 (*1 *2 *3) (-12 (-5 *3 (-763)) (-4 *4 (-13 (-558) (-453))) (-5 *2 (-634 *4)) (-5 *1 (-346 *4 *5)) (-4 *5 (-52 *4 *3)))) (-3325 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-763)) (-4 *2 (-13 (-558) (-453))) (-5 *1 (-346 *2 *4)) (-4 *4 (-52 *2 *3)))) (-1294 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *2 (-763) (-763) *7)) (-5 *4 (-1244 *7)) (-5 *5 (-763)) (-5 *6 (-1244 (-1157 *2))) (-4 *7 (-52 *2 *5)) (-4 *2 (-13 (-558) (-453))) (-5 *1 (-346 *2 *7)))) (-4415 (*1 *2 *3 *4 *5 *6 *6) (-12 (-5 *3 (-634 *7)) (-5 *4 (-1 *7 (-763) (-763) *8)) (-5 *5 (-1244 *8)) (-5 *6 (-763)) (-4 *7 (-13 (-558) (-453))) (-4 *8 (-52 *7 *6)) (-5 *2 (-1141 (-679 (-1157 *7)))) (-5 *1 (-346 *7 *8)))) (-4415 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-634 *7)) (-5 *4 (-1 *7 (-763) (-763) *8)) (-5 *5 (-1244 *8)) (-5 *6 (-634 (-763))) (-4 *7 (-13 (-558) (-453))) (-4 *8 (-52 *7 (-763))) (-5 *2 (-679 (-1157 *7))) (-5 *1 (-346 *7 *8)))) (-1919 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-634 (-409 *5))) (-4 *5 (-13 (-558) (-453))) (-5 *4 (-763)) (-5 *2 (-409 (-1157 *5))) (-5 *1 (-346 *5 *6)) (-4 *6 (-52 *5 *4)))) (-1919 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-634 *5)) (-4 *5 (-13 (-558) (-453))) (-5 *4 (-763)) (-5 *2 (-409 (-1157 *5))) (-5 *1 (-346 *5 *6)) (-4 *6 (-52 *5 *4)))) (-1442 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-634 *6)) (-5 *4 (-1 *6 (-763) (-1244 (-1157 *6)))) (-5 *5 (-634 (-763))) (-4 *6 (-13 (-558) (-453))) (-5 *2 (-679 (-1157 *6))) (-5 *1 (-346 *6 *7)) (-4 *7 (-52 *6 (-763)))))) +(-10 -7 (-15 -1442 ((-679 (-1157 |#1|)) (-634 |#1|) (-1 |#1| (-763) (-1244 (-1157 |#1|))) (-634 (-763)))) (-15 -1919 ((-409 (-1157 |#1|)) (-634 |#1|) (-634 |#1|) (-763))) (-15 -1919 ((-409 (-1157 |#1|)) (-634 (-409 |#1|)) (-634 (-409 |#1|)) (-763))) (-15 -4415 ((-679 (-1157 |#1|)) (-634 |#1|) (-1 |#1| (-763) (-763) |#2|) (-1244 |#2|) (-634 (-763)))) (-15 -4415 ((-1141 (-679 (-1157 |#1|))) (-634 |#1|) (-1 |#1| (-763) (-763) |#2|) (-1244 |#2|) (-763) (-763))) (-15 -1294 (|#1| (-1 |#1| (-763) (-763) |#2|) (-1244 |#2|) (-763) (-1244 (-1157 |#1|)))) (-15 -3325 (|#1| (-763) (-763) |#2|)) (-15 -1564 ((-634 |#1|) (-763))) (-15 -3155 (|#1| (-763) (-763) |#2|)) (-15 -3097 ((-634 |#1|) (-763))) (-15 -4320 (|#1| |#1| (-763) (-763) |#2|)) (-15 -4197 ((-634 |#1|) |#1| (-763)))) +((-4433 (((-763) (-1244 (-634 (-2 (|:| -2850 |#1|) (|:| -4355 (-1108)))))) 40)) (-1453 (((-958 (-1108)) (-1157 |#1|)) 84)) (-4420 (((-1244 (-634 (-2 (|:| -2850 |#1|) (|:| -4355 (-1108))))) (-1157 |#1|)) 77)) (-2405 (((-679 |#1|) (-1244 (-634 (-2 (|:| -2850 |#1|) (|:| -4355 (-1108)))))) 85)) (-4298 (((-3 (-1244 (-634 (-2 (|:| -2850 |#1|) (|:| -4355 (-1108))))) "failed") (-917)) 10)) (-2001 (((-3 (-1157 |#1|) (-1244 (-634 (-2 (|:| -2850 |#1|) (|:| -4355 (-1108)))))) (-917)) 15))) +(((-347 |#1|) (-10 -7 (-15 -1453 ((-958 (-1108)) (-1157 |#1|))) (-15 -4420 ((-1244 (-634 (-2 (|:| -2850 |#1|) (|:| -4355 (-1108))))) (-1157 |#1|))) (-15 -2405 ((-679 |#1|) (-1244 (-634 (-2 (|:| -2850 |#1|) (|:| -4355 (-1108))))))) (-15 -4433 ((-763) (-1244 (-634 (-2 (|:| -2850 |#1|) (|:| -4355 (-1108))))))) (-15 -4298 ((-3 (-1244 (-634 (-2 (|:| -2850 |#1|) (|:| -4355 (-1108))))) "failed") (-917))) (-15 -2001 ((-3 (-1157 |#1|) (-1244 (-634 (-2 (|:| -2850 |#1|) (|:| -4355 (-1108)))))) (-917)))) (-350)) (T -347)) +((-2001 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-3 (-1157 *4) (-1244 (-634 (-2 (|:| -2850 *4) (|:| -4355 (-1108))))))) (-5 *1 (-347 *4)) (-4 *4 (-350)))) (-4298 (*1 *2 *3) (|partial| -12 (-5 *3 (-917)) (-5 *2 (-1244 (-634 (-2 (|:| -2850 *4) (|:| -4355 (-1108)))))) (-5 *1 (-347 *4)) (-4 *4 (-350)))) (-4433 (*1 *2 *3) (-12 (-5 *3 (-1244 (-634 (-2 (|:| -2850 *4) (|:| -4355 (-1108)))))) (-4 *4 (-350)) (-5 *2 (-763)) (-5 *1 (-347 *4)))) (-2405 (*1 *2 *3) (-12 (-5 *3 (-1244 (-634 (-2 (|:| -2850 *4) (|:| -4355 (-1108)))))) (-4 *4 (-350)) (-5 *2 (-679 *4)) (-5 *1 (-347 *4)))) (-4420 (*1 *2 *3) (-12 (-5 *3 (-1157 *4)) (-4 *4 (-350)) (-5 *2 (-1244 (-634 (-2 (|:| -2850 *4) (|:| -4355 (-1108)))))) (-5 *1 (-347 *4)))) (-1453 (*1 *2 *3) (-12 (-5 *3 (-1157 *4)) (-4 *4 (-350)) (-5 *2 (-958 (-1108))) (-5 *1 (-347 *4))))) +(-10 -7 (-15 -1453 ((-958 (-1108)) (-1157 |#1|))) (-15 -4420 ((-1244 (-634 (-2 (|:| -2850 |#1|) (|:| -4355 (-1108))))) (-1157 |#1|))) (-15 -2405 ((-679 |#1|) (-1244 (-634 (-2 (|:| -2850 |#1|) (|:| -4355 (-1108))))))) (-15 -4433 ((-763) (-1244 (-634 (-2 (|:| -2850 |#1|) (|:| -4355 (-1108))))))) (-15 -4298 ((-3 (-1244 (-634 (-2 (|:| -2850 |#1|) (|:| -4355 (-1108))))) "failed") (-917))) (-15 -2001 ((-3 (-1157 |#1|) (-1244 (-634 (-2 (|:| -2850 |#1|) (|:| -4355 (-1108)))))) (-917)))) +((-2745 ((|#1| |#3|) 84) ((|#3| |#1|) 68))) +(((-348 |#1| |#2| |#3|) (-10 -7 (-15 -2745 (|#3| |#1|)) (-15 -2745 (|#1| |#3|))) (-327 |#2|) (-350) (-327 |#2|)) (T -348)) +((-2745 (*1 *2 *3) (-12 (-4 *4 (-350)) (-4 *2 (-327 *4)) (-5 *1 (-348 *2 *4 *3)) (-4 *3 (-327 *4)))) (-2745 (*1 *2 *3) (-12 (-4 *4 (-350)) (-4 *2 (-327 *4)) (-5 *1 (-348 *3 *4 *2)) (-4 *3 (-327 *4))))) +(-10 -7 (-15 -2745 (|#3| |#1|)) (-15 -2745 (|#1| |#3|))) +((-4456 (((-121) $) 50)) (-4477 (((-828 (-917)) $) 21) (((-917) $) 51)) (-3038 (((-3 $ "failed") $) 16)) (-4434 (($) 9)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) 91)) (-3143 (((-3 (-763) "failed") $ $) 70) (((-763) $) 59)) (-4189 (($ $ (-763)) NIL) (($ $) 8)) (-3065 (($) 44)) (-2979 (((-3 (-1244 $) "failed") (-679 $)) 33)) (-4371 (((-3 $ "failed") $) 39) (($ $) 38))) +(((-349 |#1|) (-10 -8 (-15 -4477 ((-917) |#1|)) (-15 -3143 ((-763) |#1|)) (-15 -4456 ((-121) |#1|)) (-15 -3065 (|#1|)) (-15 -2979 ((-3 (-1244 |#1|) "failed") (-679 |#1|))) (-15 -4371 (|#1| |#1|)) (-15 -4189 (|#1| |#1|)) (-15 -4189 (|#1| |#1| (-763))) (-15 -4434 (|#1|)) (-15 -3038 ((-3 |#1| "failed") |#1|)) (-15 -3143 ((-3 (-763) "failed") |#1| |#1|)) (-15 -4477 ((-828 (-917)) |#1|)) (-15 -4371 ((-3 |#1| "failed") |#1|)) (-15 -2155 ((-1157 |#1|) (-1157 |#1|) (-1157 |#1|)))) (-350)) (T -349)) +NIL +(-10 -8 (-15 -4477 ((-917) |#1|)) (-15 -3143 ((-763) |#1|)) (-15 -4456 ((-121) |#1|)) (-15 -3065 (|#1|)) (-15 -2979 ((-3 (-1244 |#1|) "failed") (-679 |#1|))) (-15 -4371 (|#1| |#1|)) (-15 -4189 (|#1| |#1|)) (-15 -4189 (|#1| |#1| (-763))) (-15 -4434 (|#1|)) (-15 -3038 ((-3 |#1| "failed") |#1|)) (-15 -3143 ((-3 (-763) "failed") |#1| |#1|)) (-15 -4477 ((-828 (-917)) |#1|)) (-15 -4371 ((-3 |#1| "failed") |#1|)) (-15 -2155 ((-1157 |#1|) (-1157 |#1|) (-1157 |#1|)))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) 40)) (-2227 (($ $) 39)) (-1573 (((-121) $) 37)) (-3211 (((-1169 (-917) (-763)) (-568)) 88)) (-3134 (((-3 $ "failed") $ $) 18)) (-4305 (($ $) 71)) (-1678 (((-420 $) $) 70)) (-1497 (((-121) $ $) 57)) (-3983 (((-763)) 98)) (-2671 (($) 16 T CONST)) (-2022 (((-3 "prime" "polynomial" "normal" "cyclic")) 82)) (-2401 (($ $ $) 53)) (-2925 (((-3 $ "failed") $) 33)) (-1731 (($) 101)) (-2412 (($ $ $) 54)) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) 49)) (-4220 (($) 86)) (-4456 (((-121) $) 85)) (-3218 (($ $) 75) (($ $ (-763)) 74)) (-3927 (((-121) $) 69)) (-4477 (((-828 (-917)) $) 77) (((-917) $) 83)) (-2735 (((-121) $) 30)) (-3038 (((-3 $ "failed") $) 97)) (-3562 (((-3 (-634 $) "failed") (-634 $) $) 50)) (-3683 (((-917) $) 100)) (-2495 (($ $ $) 45) (($ (-634 $)) 44)) (-4487 (((-1143) $) 9)) (-2081 (($ $) 68)) (-4434 (($) 96 T CONST)) (-4355 (($ (-917)) 99)) (-4022 (((-1108) $) 10)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) 43)) (-2721 (($ $ $) 47) (($ (-634 $)) 46)) (-1418 (((-634 (-2 (|:| -3848 (-568)) (|:| -3438 (-568))))) 89)) (-3848 (((-420 $) $) 72)) (-4497 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2595 (((-3 $ "failed") $ $) 41)) (-2344 (((-3 (-634 $) "failed") (-634 $) $) 48)) (-2709 (((-763) $) 56)) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) 55)) (-3143 (((-3 (-763) "failed") $ $) 76) (((-763) $) 84)) (-4189 (($ $ (-763)) 94) (($ $) 92)) (-3065 (($) 87)) (-2979 (((-3 (-1244 $) "failed") (-679 $)) 90)) (-2745 (((-850) $) 11) (($ (-568)) 27) (($ $) 42) (($ (-409 (-568))) 63)) (-4371 (((-3 $ "failed") $) 78) (($ $) 91)) (-4078 (((-763)) 28)) (-1826 (((-121) $ $) 38)) (-1887 (($ $ (-917)) 25) (($ $ (-763)) 32) (($ $ (-568)) 67)) (-3056 (($) 17 T CONST)) (-1556 (($) 29 T CONST)) (-3190 (($ $ (-763)) 95) (($ $) 93)) (-1717 (((-121) $ $) 6)) (-1779 (($ $ $) 62)) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 24) (($ $ (-763)) 31) (($ $ (-568)) 66)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 23) (($ $ (-409 (-568))) 65) (($ (-409 (-568)) $) 64))) +(((-350) (-1275)) (T -350)) +((-4371 (*1 *1 *1) (-4 *1 (-350))) (-2979 (*1 *2 *3) (|partial| -12 (-5 *3 (-679 *1)) (-4 *1 (-350)) (-5 *2 (-1244 *1)))) (-1418 (*1 *2) (-12 (-4 *1 (-350)) (-5 *2 (-634 (-2 (|:| -3848 (-568)) (|:| -3438 (-568))))))) (-3211 (*1 *2 *3) (-12 (-4 *1 (-350)) (-5 *3 (-568)) (-5 *2 (-1169 (-917) (-763))))) (-3065 (*1 *1) (-4 *1 (-350))) (-4220 (*1 *1) (-4 *1 (-350))) (-4456 (*1 *2 *1) (-12 (-4 *1 (-350)) (-5 *2 (-121)))) (-3143 (*1 *2 *1) (-12 (-4 *1 (-350)) (-5 *2 (-763)))) (-4477 (*1 *2 *1) (-12 (-4 *1 (-350)) (-5 *2 (-917)))) (-2022 (*1 *2) (-12 (-4 *1 (-350)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(-13 (-404) (-370) (-1136) (-225) (-10 -8 (-15 -4371 ($ $)) (-15 -2979 ((-3 (-1244 $) "failed") (-679 $))) (-15 -1418 ((-634 (-2 (|:| -3848 (-568)) (|:| -3438 (-568)))))) (-15 -3211 ((-1169 (-917) (-763)) (-568))) (-15 -3065 ($)) (-15 -4220 ($)) (-15 -4456 ((-121) $)) (-15 -3143 ((-763) $)) (-15 -4477 ((-917) $)) (-15 -2022 ((-3 "prime" "polynomial" "normal" "cyclic"))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-43 (-409 (-568))) . T) ((-43 $) . T) ((-105) . T) ((-120 (-409 (-568)) (-409 (-568))) . T) ((-120 $ $) . T) ((-137) . T) ((-148) . T) ((-608 (-850)) . T) ((-172) . T) ((-225) . T) ((-238) . T) ((-285) . T) ((-301) . T) ((-365) . T) ((-404) . T) ((-370) . T) ((-453) . T) ((-558) . T) ((-637 (-409 (-568))) . T) ((-637 $) . T) ((-707 (-409 (-568))) . T) ((-707 $) . T) ((-716) . T) ((-916) . T) ((-1053 (-409 (-568))) . T) ((-1053 $) . T) ((-1047) . T) ((-1054) . T) ((-1102) . T) ((-1090) . T) ((-1136) . T) ((-1199) . T)) +((-3714 (((-2 (|:| -3746 (-679 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-679 |#1|))) |#1|) 51)) (-3661 (((-2 (|:| -3746 (-679 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-679 |#1|)))) 49))) +(((-351 |#1| |#2| |#3|) (-10 -7 (-15 -3661 ((-2 (|:| -3746 (-679 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-679 |#1|))))) (-15 -3714 ((-2 (|:| -3746 (-679 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-679 |#1|))) |#1|))) (-13 (-301) (-10 -8 (-15 -1678 ((-420 $) $)))) (-1219 |#1|) (-411 |#1| |#2|)) (T -351)) +((-3714 (*1 *2 *3) (-12 (-4 *3 (-13 (-301) (-10 -8 (-15 -1678 ((-420 $) $))))) (-4 *4 (-1219 *3)) (-5 *2 (-2 (|:| -3746 (-679 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-679 *3)))) (-5 *1 (-351 *3 *4 *5)) (-4 *5 (-411 *3 *4)))) (-3661 (*1 *2) (-12 (-4 *3 (-13 (-301) (-10 -8 (-15 -1678 ((-420 $) $))))) (-4 *4 (-1219 *3)) (-5 *2 (-2 (|:| -3746 (-679 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-679 *3)))) (-5 *1 (-351 *3 *4 *5)) (-4 *5 (-411 *3 *4))))) +(-10 -7 (-15 -3661 ((-2 (|:| -3746 (-679 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-679 |#1|))))) (-15 -3714 ((-2 (|:| -3746 (-679 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-679 |#1|))) |#1|))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL)) (-2227 (($ $) NIL)) (-1573 (((-121) $) NIL)) (-2615 (((-121) $) NIL)) (-1739 (((-763)) NIL)) (-1932 (((-905 |#1|) $) NIL) (($ $ (-917)) NIL (|has| (-905 |#1|) (-370)))) (-3211 (((-1169 (-917) (-763)) (-568)) NIL (|has| (-905 |#1|) (-370)))) (-3134 (((-3 $ "failed") $ $) NIL)) (-4305 (($ $) NIL)) (-1678 (((-420 $) $) NIL)) (-4433 (((-763)) NIL)) (-1497 (((-121) $ $) NIL)) (-3983 (((-763)) NIL (|has| (-905 |#1|) (-370)))) (-2671 (($) NIL T CONST)) (-3666 (((-3 (-905 |#1|) "failed") $) NIL)) (-2854 (((-905 |#1|) $) NIL)) (-3498 (($ (-1244 (-905 |#1|))) NIL)) (-2022 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-905 |#1|) (-370)))) (-2401 (($ $ $) NIL)) (-2925 (((-3 $ "failed") $) NIL)) (-1731 (($) NIL (|has| (-905 |#1|) (-370)))) (-2412 (($ $ $) NIL)) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) NIL)) (-4220 (($) NIL (|has| (-905 |#1|) (-370)))) (-4456 (((-121) $) NIL (|has| (-905 |#1|) (-370)))) (-3218 (($ $ (-763)) NIL (-2198 (|has| (-905 |#1|) (-148)) (|has| (-905 |#1|) (-370)))) (($ $) NIL (-2198 (|has| (-905 |#1|) (-148)) (|has| (-905 |#1|) (-370))))) (-3927 (((-121) $) NIL)) (-4477 (((-917) $) NIL (|has| (-905 |#1|) (-370))) (((-828 (-917)) $) NIL (-2198 (|has| (-905 |#1|) (-148)) (|has| (-905 |#1|) (-370))))) (-2735 (((-121) $) NIL)) (-2883 (($) NIL (|has| (-905 |#1|) (-370)))) (-3917 (((-121) $) NIL (|has| (-905 |#1|) (-370)))) (-2657 (((-905 |#1|) $) NIL) (($ $ (-917)) NIL (|has| (-905 |#1|) (-370)))) (-3038 (((-3 $ "failed") $) NIL (|has| (-905 |#1|) (-370)))) (-3562 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-2045 (((-1157 (-905 |#1|)) $) NIL) (((-1157 $) $ (-917)) NIL (|has| (-905 |#1|) (-370)))) (-3683 (((-917) $) NIL (|has| (-905 |#1|) (-370)))) (-2035 (((-1157 (-905 |#1|)) $) NIL (|has| (-905 |#1|) (-370)))) (-1422 (((-1157 (-905 |#1|)) $) NIL (|has| (-905 |#1|) (-370))) (((-3 (-1157 (-905 |#1|)) "failed") $ $) NIL (|has| (-905 |#1|) (-370)))) (-2109 (($ $ (-1157 (-905 |#1|))) NIL (|has| (-905 |#1|) (-370)))) (-2495 (($ $ $) NIL) (($ (-634 $)) NIL)) (-4487 (((-1143) $) NIL)) (-2081 (($ $) NIL)) (-4434 (($) NIL (|has| (-905 |#1|) (-370)) CONST)) (-4355 (($ (-917)) NIL (|has| (-905 |#1|) (-370)))) (-2864 (((-121) $) NIL)) (-4022 (((-1108) $) NIL)) (-2758 (((-1244 (-634 (-2 (|:| -2850 (-905 |#1|)) (|:| -4355 (-1108)))))) NIL)) (-4181 (((-679 (-905 |#1|))) NIL)) (-2704 (($) NIL (|has| (-905 |#1|) (-370)))) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL)) (-2721 (($ $ $) NIL) (($ (-634 $)) NIL)) (-1418 (((-634 (-2 (|:| -3848 (-568)) (|:| -3438 (-568))))) NIL (|has| (-905 |#1|) (-370)))) (-3848 (((-420 $) $) NIL)) (-1553 (((-828 (-917))) NIL) (((-917)) NIL)) (-4497 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2595 (((-3 $ "failed") $ $) NIL)) (-2344 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-2709 (((-763) $) NIL)) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL)) (-3143 (((-763) $) NIL (|has| (-905 |#1|) (-370))) (((-3 (-763) "failed") $ $) NIL (-2198 (|has| (-905 |#1|) (-148)) (|has| (-905 |#1|) (-370))))) (-4321 (((-139)) NIL)) (-4189 (($ $) NIL (|has| (-905 |#1|) (-370))) (($ $ (-763)) NIL (|has| (-905 |#1|) (-370)))) (-3206 (((-828 (-917)) $) NIL) (((-917) $) NIL)) (-1626 (((-1157 (-905 |#1|))) NIL)) (-3065 (($) NIL (|has| (-905 |#1|) (-370)))) (-2027 (($) NIL (|has| (-905 |#1|) (-370)))) (-4073 (((-1244 (-905 |#1|)) $) NIL) (((-679 (-905 |#1|)) (-1244 $)) NIL)) (-2979 (((-3 (-1244 $) "failed") (-679 $)) NIL (|has| (-905 |#1|) (-370)))) (-2745 (((-850) $) NIL) (($ (-568)) NIL) (($ $) NIL) (($ (-409 (-568))) NIL) (($ (-905 |#1|)) NIL)) (-4371 (($ $) NIL (|has| (-905 |#1|) (-370))) (((-3 $ "failed") $) NIL (-2198 (|has| (-905 |#1|) (-148)) (|has| (-905 |#1|) (-370))))) (-4078 (((-763)) NIL)) (-3746 (((-1244 $)) NIL) (((-1244 $) (-917)) NIL)) (-1826 (((-121) $ $) NIL)) (-4390 (((-121) $) NIL)) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL)) (-3056 (($) NIL T CONST)) (-1556 (($) NIL T CONST)) (-1316 (($ $) NIL (|has| (-905 |#1|) (-370))) (($ $ (-763)) NIL (|has| (-905 |#1|) (-370)))) (-3190 (($ $) NIL (|has| (-905 |#1|) (-370))) (($ $ (-763)) NIL (|has| (-905 |#1|) (-370)))) (-1717 (((-121) $ $) NIL)) (-1779 (($ $ $) NIL) (($ $ (-905 |#1|)) NIL)) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) NIL) (($ $ (-409 (-568))) NIL) (($ (-409 (-568)) $) NIL) (($ $ (-905 |#1|)) NIL) (($ (-905 |#1|) $) NIL))) +(((-352 |#1| |#2|) (-13 (-327 (-905 |#1|)) (-10 -7 (-15 -2758 ((-1244 (-634 (-2 (|:| -2850 (-905 |#1|)) (|:| -4355 (-1108))))))) (-15 -4181 ((-679 (-905 |#1|)))) (-15 -4433 ((-763))))) (-917) (-917)) (T -352)) +((-2758 (*1 *2) (-12 (-5 *2 (-1244 (-634 (-2 (|:| -2850 (-905 *3)) (|:| -4355 (-1108)))))) (-5 *1 (-352 *3 *4)) (-14 *3 (-917)) (-14 *4 (-917)))) (-4181 (*1 *2) (-12 (-5 *2 (-679 (-905 *3))) (-5 *1 (-352 *3 *4)) (-14 *3 (-917)) (-14 *4 (-917)))) (-4433 (*1 *2) (-12 (-5 *2 (-763)) (-5 *1 (-352 *3 *4)) (-14 *3 (-917)) (-14 *4 (-917))))) +(-13 (-327 (-905 |#1|)) (-10 -7 (-15 -2758 ((-1244 (-634 (-2 (|:| -2850 (-905 |#1|)) (|:| -4355 (-1108))))))) (-15 -4181 ((-679 (-905 |#1|)))) (-15 -4433 ((-763))))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) 74)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL)) (-2227 (($ $) NIL)) (-1573 (((-121) $) NIL)) (-2615 (((-121) $) NIL)) (-1739 (((-763)) NIL)) (-1932 ((|#1| $) 92) (($ $ (-917)) 90 (|has| |#1| (-370)))) (-3211 (((-1169 (-917) (-763)) (-568)) 148 (|has| |#1| (-370)))) (-3134 (((-3 $ "failed") $ $) NIL)) (-4305 (($ $) NIL)) (-1678 (((-420 $) $) NIL)) (-4433 (((-763)) 89)) (-1497 (((-121) $ $) NIL)) (-3983 (((-763)) 162 (|has| |#1| (-370)))) (-2671 (($) NIL T CONST)) (-3666 (((-3 |#1| "failed") $) 111)) (-2854 ((|#1| $) 91)) (-3498 (($ (-1244 |#1|)) 57)) (-2022 (((-3 "prime" "polynomial" "normal" "cyclic")) 187 (|has| |#1| (-370)))) (-2401 (($ $ $) NIL)) (-2925 (((-3 $ "failed") $) NIL)) (-1731 (($) 158 (|has| |#1| (-370)))) (-2412 (($ $ $) NIL)) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) NIL)) (-4220 (($) 149 (|has| |#1| (-370)))) (-4456 (((-121) $) NIL (|has| |#1| (-370)))) (-3218 (($ $ (-763)) NIL (-2198 (|has| |#1| (-148)) (|has| |#1| (-370)))) (($ $) NIL (-2198 (|has| |#1| (-148)) (|has| |#1| (-370))))) (-3927 (((-121) $) NIL)) (-4477 (((-917) $) NIL (|has| |#1| (-370))) (((-828 (-917)) $) NIL (-2198 (|has| |#1| (-148)) (|has| |#1| (-370))))) (-2735 (((-121) $) NIL)) (-2883 (($) 97 (|has| |#1| (-370)))) (-3917 (((-121) $) 175 (|has| |#1| (-370)))) (-2657 ((|#1| $) 94) (($ $ (-917)) 93 (|has| |#1| (-370)))) (-3038 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-3562 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-2045 (((-1157 |#1|) $) 188) (((-1157 $) $ (-917)) NIL (|has| |#1| (-370)))) (-3683 (((-917) $) 133 (|has| |#1| (-370)))) (-2035 (((-1157 |#1|) $) 73 (|has| |#1| (-370)))) (-1422 (((-1157 |#1|) $) 70 (|has| |#1| (-370))) (((-3 (-1157 |#1|) "failed") $ $) 82 (|has| |#1| (-370)))) (-2109 (($ $ (-1157 |#1|)) 69 (|has| |#1| (-370)))) (-2495 (($ $ $) NIL) (($ (-634 $)) NIL)) (-4487 (((-1143) $) NIL)) (-2081 (($ $) 191)) (-4434 (($) NIL (|has| |#1| (-370)) CONST)) (-4355 (($ (-917)) 136 (|has| |#1| (-370)))) (-2864 (((-121) $) 107)) (-4022 (((-1108) $) NIL)) (-2758 (((-1244 (-634 (-2 (|:| -2850 |#1|) (|:| -4355 (-1108)))))) 83)) (-4181 (((-679 |#1|)) 87)) (-2704 (($) 96 (|has| |#1| (-370)))) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL)) (-2721 (($ $ $) NIL) (($ (-634 $)) NIL)) (-1418 (((-634 (-2 (|:| -3848 (-568)) (|:| -3438 (-568))))) 150 (|has| |#1| (-370)))) (-3848 (((-420 $) $) NIL)) (-1553 (((-828 (-917))) NIL) (((-917)) 151)) (-4497 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2595 (((-3 $ "failed") $ $) NIL)) (-2344 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-2709 (((-763) $) NIL)) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL)) (-3143 (((-763) $) NIL (|has| |#1| (-370))) (((-3 (-763) "failed") $ $) NIL (-2198 (|has| |#1| (-148)) (|has| |#1| (-370))))) (-4321 (((-139)) NIL)) (-4189 (($ $) NIL (|has| |#1| (-370))) (($ $ (-763)) NIL (|has| |#1| (-370)))) (-3206 (((-828 (-917)) $) NIL) (((-917) $) 62)) (-1626 (((-1157 |#1|)) 152)) (-3065 (($) 132 (|has| |#1| (-370)))) (-2027 (($) NIL (|has| |#1| (-370)))) (-4073 (((-1244 |#1|) $) 105) (((-679 |#1|) (-1244 $)) NIL)) (-2979 (((-3 (-1244 $) "failed") (-679 $)) NIL (|has| |#1| (-370)))) (-2745 (((-850) $) 123) (($ (-568)) NIL) (($ $) NIL) (($ (-409 (-568))) NIL) (($ |#1|) 56)) (-4371 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-2198 (|has| |#1| (-148)) (|has| |#1| (-370))))) (-4078 (((-763)) 156)) (-3746 (((-1244 $)) 172) (((-1244 $) (-917)) 100)) (-1826 (((-121) $ $) NIL)) (-4390 (((-121) $) NIL)) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL)) (-3056 (($) 30 T CONST)) (-1556 (($) 22 T CONST)) (-1316 (($ $) 106 (|has| |#1| (-370))) (($ $ (-763)) 98 (|has| |#1| (-370)))) (-3190 (($ $) NIL (|has| |#1| (-370))) (($ $ (-763)) NIL (|has| |#1| (-370)))) (-1717 (((-121) $ $) 60)) (-1779 (($ $ $) 103) (($ $ |#1|) 104)) (-1773 (($ $) 177) (($ $ $) 181)) (-1767 (($ $ $) 179)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) 137)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) 185) (($ $ $) 142) (($ $ (-409 (-568))) NIL) (($ (-409 (-568)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 102))) +(((-353 |#1| |#2|) (-13 (-327 |#1|) (-10 -7 (-15 -2758 ((-1244 (-634 (-2 (|:| -2850 |#1|) (|:| -4355 (-1108))))))) (-15 -4181 ((-679 |#1|))) (-15 -4433 ((-763))))) (-350) (-3 (-1157 |#1|) (-1244 (-634 (-2 (|:| -2850 |#1|) (|:| -4355 (-1108))))))) (T -353)) +((-2758 (*1 *2) (-12 (-5 *2 (-1244 (-634 (-2 (|:| -2850 *3) (|:| -4355 (-1108)))))) (-5 *1 (-353 *3 *4)) (-4 *3 (-350)) (-14 *4 (-3 (-1157 *3) *2)))) (-4181 (*1 *2) (-12 (-5 *2 (-679 *3)) (-5 *1 (-353 *3 *4)) (-4 *3 (-350)) (-14 *4 (-3 (-1157 *3) (-1244 (-634 (-2 (|:| -2850 *3) (|:| -4355 (-1108))))))))) (-4433 (*1 *2) (-12 (-5 *2 (-763)) (-5 *1 (-353 *3 *4)) (-4 *3 (-350)) (-14 *4 (-3 (-1157 *3) (-1244 (-634 (-2 (|:| -2850 *3) (|:| -4355 (-1108)))))))))) +(-13 (-327 |#1|) (-10 -7 (-15 -2758 ((-1244 (-634 (-2 (|:| -2850 |#1|) (|:| -4355 (-1108))))))) (-15 -4181 ((-679 |#1|))) (-15 -4433 ((-763))))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL)) (-2227 (($ $) NIL)) (-1573 (((-121) $) NIL)) (-2615 (((-121) $) NIL)) (-1739 (((-763)) NIL)) (-1932 ((|#1| $) NIL) (($ $ (-917)) NIL (|has| |#1| (-370)))) (-3211 (((-1169 (-917) (-763)) (-568)) NIL (|has| |#1| (-370)))) (-3134 (((-3 $ "failed") $ $) NIL)) (-4305 (($ $) NIL)) (-1678 (((-420 $) $) NIL)) (-4433 (((-763)) NIL)) (-1497 (((-121) $ $) NIL)) (-3983 (((-763)) NIL (|has| |#1| (-370)))) (-2671 (($) NIL T CONST)) (-3666 (((-3 |#1| "failed") $) NIL)) (-2854 ((|#1| $) NIL)) (-3498 (($ (-1244 |#1|)) NIL)) (-2022 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-370)))) (-2401 (($ $ $) NIL)) (-2925 (((-3 $ "failed") $) NIL)) (-1731 (($) NIL (|has| |#1| (-370)))) (-2412 (($ $ $) NIL)) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) NIL)) (-4220 (($) NIL (|has| |#1| (-370)))) (-4456 (((-121) $) NIL (|has| |#1| (-370)))) (-3218 (($ $ (-763)) NIL (-2198 (|has| |#1| (-148)) (|has| |#1| (-370)))) (($ $) NIL (-2198 (|has| |#1| (-148)) (|has| |#1| (-370))))) (-3927 (((-121) $) NIL)) (-4477 (((-917) $) NIL (|has| |#1| (-370))) (((-828 (-917)) $) NIL (-2198 (|has| |#1| (-148)) (|has| |#1| (-370))))) (-2735 (((-121) $) NIL)) (-2883 (($) NIL (|has| |#1| (-370)))) (-3917 (((-121) $) NIL (|has| |#1| (-370)))) (-2657 ((|#1| $) NIL) (($ $ (-917)) NIL (|has| |#1| (-370)))) (-3038 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-3562 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-2045 (((-1157 |#1|) $) NIL) (((-1157 $) $ (-917)) NIL (|has| |#1| (-370)))) (-3683 (((-917) $) NIL (|has| |#1| (-370)))) (-2035 (((-1157 |#1|) $) NIL (|has| |#1| (-370)))) (-1422 (((-1157 |#1|) $) NIL (|has| |#1| (-370))) (((-3 (-1157 |#1|) "failed") $ $) NIL (|has| |#1| (-370)))) (-2109 (($ $ (-1157 |#1|)) NIL (|has| |#1| (-370)))) (-2495 (($ $ $) NIL) (($ (-634 $)) NIL)) (-4487 (((-1143) $) NIL)) (-2081 (($ $) NIL)) (-4434 (($) NIL (|has| |#1| (-370)) CONST)) (-4355 (($ (-917)) NIL (|has| |#1| (-370)))) (-2864 (((-121) $) NIL)) (-4022 (((-1108) $) NIL)) (-2758 (((-1244 (-634 (-2 (|:| -2850 |#1|) (|:| -4355 (-1108)))))) NIL)) (-4181 (((-679 |#1|)) NIL)) (-2704 (($) NIL (|has| |#1| (-370)))) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL)) (-2721 (($ $ $) NIL) (($ (-634 $)) NIL)) (-1418 (((-634 (-2 (|:| -3848 (-568)) (|:| -3438 (-568))))) NIL (|has| |#1| (-370)))) (-3848 (((-420 $) $) NIL)) (-1553 (((-828 (-917))) NIL) (((-917)) NIL)) (-4497 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2595 (((-3 $ "failed") $ $) NIL)) (-2344 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-2709 (((-763) $) NIL)) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL)) (-3143 (((-763) $) NIL (|has| |#1| (-370))) (((-3 (-763) "failed") $ $) NIL (-2198 (|has| |#1| (-148)) (|has| |#1| (-370))))) (-4321 (((-139)) NIL)) (-4189 (($ $) NIL (|has| |#1| (-370))) (($ $ (-763)) NIL (|has| |#1| (-370)))) (-3206 (((-828 (-917)) $) NIL) (((-917) $) NIL)) (-1626 (((-1157 |#1|)) NIL)) (-3065 (($) NIL (|has| |#1| (-370)))) (-2027 (($) NIL (|has| |#1| (-370)))) (-4073 (((-1244 |#1|) $) NIL) (((-679 |#1|) (-1244 $)) NIL)) (-2979 (((-3 (-1244 $) "failed") (-679 $)) NIL (|has| |#1| (-370)))) (-2745 (((-850) $) NIL) (($ (-568)) NIL) (($ $) NIL) (($ (-409 (-568))) NIL) (($ |#1|) NIL)) (-4371 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-2198 (|has| |#1| (-148)) (|has| |#1| (-370))))) (-4078 (((-763)) NIL)) (-3746 (((-1244 $)) NIL) (((-1244 $) (-917)) NIL)) (-1826 (((-121) $ $) NIL)) (-4390 (((-121) $) NIL)) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL)) (-3056 (($) NIL T CONST)) (-1556 (($) NIL T CONST)) (-1316 (($ $) NIL (|has| |#1| (-370))) (($ $ (-763)) NIL (|has| |#1| (-370)))) (-3190 (($ $) NIL (|has| |#1| (-370))) (($ $ (-763)) NIL (|has| |#1| (-370)))) (-1717 (((-121) $ $) NIL)) (-1779 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) NIL) (($ $ (-409 (-568))) NIL) (($ (-409 (-568)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-354 |#1| |#2|) (-13 (-327 |#1|) (-10 -7 (-15 -2758 ((-1244 (-634 (-2 (|:| -2850 |#1|) (|:| -4355 (-1108))))))) (-15 -4181 ((-679 |#1|))) (-15 -4433 ((-763))))) (-350) (-917)) (T -354)) +((-2758 (*1 *2) (-12 (-5 *2 (-1244 (-634 (-2 (|:| -2850 *3) (|:| -4355 (-1108)))))) (-5 *1 (-354 *3 *4)) (-4 *3 (-350)) (-14 *4 (-917)))) (-4181 (*1 *2) (-12 (-5 *2 (-679 *3)) (-5 *1 (-354 *3 *4)) (-4 *3 (-350)) (-14 *4 (-917)))) (-4433 (*1 *2) (-12 (-5 *2 (-763)) (-5 *1 (-354 *3 *4)) (-4 *3 (-350)) (-14 *4 (-917))))) +(-13 (-327 |#1|) (-10 -7 (-15 -2758 ((-1244 (-634 (-2 (|:| -2850 |#1|) (|:| -4355 (-1108))))))) (-15 -4181 ((-679 |#1|))) (-15 -4433 ((-763))))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL)) (-2227 (($ $) NIL)) (-1573 (((-121) $) NIL)) (-2615 (((-121) $) NIL)) (-1739 (((-763)) NIL)) (-1932 (((-905 |#1|) $) NIL) (($ $ (-917)) NIL (|has| (-905 |#1|) (-370)))) (-3211 (((-1169 (-917) (-763)) (-568)) NIL (|has| (-905 |#1|) (-370)))) (-3134 (((-3 $ "failed") $ $) NIL)) (-4305 (($ $) NIL)) (-1678 (((-420 $) $) NIL)) (-1497 (((-121) $ $) NIL)) (-3983 (((-763)) NIL (|has| (-905 |#1|) (-370)))) (-2671 (($) NIL T CONST)) (-3666 (((-3 (-905 |#1|) "failed") $) NIL)) (-2854 (((-905 |#1|) $) NIL)) (-3498 (($ (-1244 (-905 |#1|))) NIL)) (-2022 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-905 |#1|) (-370)))) (-2401 (($ $ $) NIL)) (-2925 (((-3 $ "failed") $) NIL)) (-1731 (($) NIL (|has| (-905 |#1|) (-370)))) (-2412 (($ $ $) NIL)) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) NIL)) (-4220 (($) NIL (|has| (-905 |#1|) (-370)))) (-4456 (((-121) $) NIL (|has| (-905 |#1|) (-370)))) (-3218 (($ $ (-763)) NIL (-2198 (|has| (-905 |#1|) (-148)) (|has| (-905 |#1|) (-370)))) (($ $) NIL (-2198 (|has| (-905 |#1|) (-148)) (|has| (-905 |#1|) (-370))))) (-3927 (((-121) $) NIL)) (-4477 (((-917) $) NIL (|has| (-905 |#1|) (-370))) (((-828 (-917)) $) NIL (-2198 (|has| (-905 |#1|) (-148)) (|has| (-905 |#1|) (-370))))) (-2735 (((-121) $) NIL)) (-2883 (($) NIL (|has| (-905 |#1|) (-370)))) (-3917 (((-121) $) NIL (|has| (-905 |#1|) (-370)))) (-2657 (((-905 |#1|) $) NIL) (($ $ (-917)) NIL (|has| (-905 |#1|) (-370)))) (-3038 (((-3 $ "failed") $) NIL (|has| (-905 |#1|) (-370)))) (-3562 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-2045 (((-1157 (-905 |#1|)) $) NIL) (((-1157 $) $ (-917)) NIL (|has| (-905 |#1|) (-370)))) (-3683 (((-917) $) NIL (|has| (-905 |#1|) (-370)))) (-2035 (((-1157 (-905 |#1|)) $) NIL (|has| (-905 |#1|) (-370)))) (-1422 (((-1157 (-905 |#1|)) $) NIL (|has| (-905 |#1|) (-370))) (((-3 (-1157 (-905 |#1|)) "failed") $ $) NIL (|has| (-905 |#1|) (-370)))) (-2109 (($ $ (-1157 (-905 |#1|))) NIL (|has| (-905 |#1|) (-370)))) (-2495 (($ $ $) NIL) (($ (-634 $)) NIL)) (-4487 (((-1143) $) NIL)) (-2081 (($ $) NIL)) (-4434 (($) NIL (|has| (-905 |#1|) (-370)) CONST)) (-4355 (($ (-917)) NIL (|has| (-905 |#1|) (-370)))) (-2864 (((-121) $) NIL)) (-4022 (((-1108) $) NIL)) (-2704 (($) NIL (|has| (-905 |#1|) (-370)))) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL)) (-2721 (($ $ $) NIL) (($ (-634 $)) NIL)) (-1418 (((-634 (-2 (|:| -3848 (-568)) (|:| -3438 (-568))))) NIL (|has| (-905 |#1|) (-370)))) (-3848 (((-420 $) $) NIL)) (-1553 (((-828 (-917))) NIL) (((-917)) NIL)) (-4497 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2595 (((-3 $ "failed") $ $) NIL)) (-2344 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-2709 (((-763) $) NIL)) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL)) (-3143 (((-763) $) NIL (|has| (-905 |#1|) (-370))) (((-3 (-763) "failed") $ $) NIL (-2198 (|has| (-905 |#1|) (-148)) (|has| (-905 |#1|) (-370))))) (-4321 (((-139)) NIL)) (-4189 (($ $) NIL (|has| (-905 |#1|) (-370))) (($ $ (-763)) NIL (|has| (-905 |#1|) (-370)))) (-3206 (((-828 (-917)) $) NIL) (((-917) $) NIL)) (-1626 (((-1157 (-905 |#1|))) NIL)) (-3065 (($) NIL (|has| (-905 |#1|) (-370)))) (-2027 (($) NIL (|has| (-905 |#1|) (-370)))) (-4073 (((-1244 (-905 |#1|)) $) NIL) (((-679 (-905 |#1|)) (-1244 $)) NIL)) (-2979 (((-3 (-1244 $) "failed") (-679 $)) NIL (|has| (-905 |#1|) (-370)))) (-2745 (((-850) $) NIL) (($ (-568)) NIL) (($ $) NIL) (($ (-409 (-568))) NIL) (($ (-905 |#1|)) NIL)) (-4371 (($ $) NIL (|has| (-905 |#1|) (-370))) (((-3 $ "failed") $) NIL (-2198 (|has| (-905 |#1|) (-148)) (|has| (-905 |#1|) (-370))))) (-4078 (((-763)) NIL)) (-3746 (((-1244 $)) NIL) (((-1244 $) (-917)) NIL)) (-1826 (((-121) $ $) NIL)) (-4390 (((-121) $) NIL)) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL)) (-3056 (($) NIL T CONST)) (-1556 (($) NIL T CONST)) (-1316 (($ $) NIL (|has| (-905 |#1|) (-370))) (($ $ (-763)) NIL (|has| (-905 |#1|) (-370)))) (-3190 (($ $) NIL (|has| (-905 |#1|) (-370))) (($ $ (-763)) NIL (|has| (-905 |#1|) (-370)))) (-1717 (((-121) $ $) NIL)) (-1779 (($ $ $) NIL) (($ $ (-905 |#1|)) NIL)) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) NIL) (($ $ (-409 (-568))) NIL) (($ (-409 (-568)) $) NIL) (($ $ (-905 |#1|)) NIL) (($ (-905 |#1|) $) NIL))) +(((-355 |#1| |#2|) (-327 (-905 |#1|)) (-917) (-917)) (T -355)) +NIL +(-327 (-905 |#1|)) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL)) (-2227 (($ $) NIL)) (-1573 (((-121) $) NIL)) (-2615 (((-121) $) NIL)) (-1739 (((-763)) NIL)) (-1932 ((|#1| $) NIL) (($ $ (-917)) NIL (|has| |#1| (-370)))) (-3211 (((-1169 (-917) (-763)) (-568)) 119 (|has| |#1| (-370)))) (-3134 (((-3 $ "failed") $ $) NIL)) (-4305 (($ $) NIL)) (-1678 (((-420 $) $) NIL)) (-1497 (((-121) $ $) NIL)) (-3983 (((-763)) 138 (|has| |#1| (-370)))) (-2671 (($) NIL T CONST)) (-3666 (((-3 |#1| "failed") $) 91)) (-2854 ((|#1| $) 88)) (-3498 (($ (-1244 |#1|)) 83)) (-2022 (((-3 "prime" "polynomial" "normal" "cyclic")) 115 (|has| |#1| (-370)))) (-2401 (($ $ $) NIL)) (-2925 (((-3 $ "failed") $) NIL)) (-1731 (($) 80 (|has| |#1| (-370)))) (-2412 (($ $ $) NIL)) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) NIL)) (-4220 (($) 39 (|has| |#1| (-370)))) (-4456 (((-121) $) NIL (|has| |#1| (-370)))) (-3218 (($ $ (-763)) NIL (-2198 (|has| |#1| (-148)) (|has| |#1| (-370)))) (($ $) NIL (-2198 (|has| |#1| (-148)) (|has| |#1| (-370))))) (-3927 (((-121) $) NIL)) (-4477 (((-917) $) NIL (|has| |#1| (-370))) (((-828 (-917)) $) NIL (-2198 (|has| |#1| (-148)) (|has| |#1| (-370))))) (-2735 (((-121) $) NIL)) (-2883 (($) 120 (|has| |#1| (-370)))) (-3917 (((-121) $) 72 (|has| |#1| (-370)))) (-2657 ((|#1| $) 38) (($ $ (-917)) 40 (|has| |#1| (-370)))) (-3038 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-3562 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-2045 (((-1157 |#1|) $) 62) (((-1157 $) $ (-917)) NIL (|has| |#1| (-370)))) (-3683 (((-917) $) 95 (|has| |#1| (-370)))) (-2035 (((-1157 |#1|) $) NIL (|has| |#1| (-370)))) (-1422 (((-1157 |#1|) $) NIL (|has| |#1| (-370))) (((-3 (-1157 |#1|) "failed") $ $) NIL (|has| |#1| (-370)))) (-2109 (($ $ (-1157 |#1|)) NIL (|has| |#1| (-370)))) (-2495 (($ $ $) NIL) (($ (-634 $)) NIL)) (-4487 (((-1143) $) NIL)) (-2081 (($ $) NIL)) (-4434 (($) NIL (|has| |#1| (-370)) CONST)) (-4355 (($ (-917)) 93 (|has| |#1| (-370)))) (-2864 (((-121) $) 140)) (-4022 (((-1108) $) NIL)) (-2704 (($) 35 (|has| |#1| (-370)))) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL)) (-2721 (($ $ $) NIL) (($ (-634 $)) NIL)) (-1418 (((-634 (-2 (|:| -3848 (-568)) (|:| -3438 (-568))))) 113 (|has| |#1| (-370)))) (-3848 (((-420 $) $) NIL)) (-1553 (((-828 (-917))) NIL) (((-917)) 137)) (-4497 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2595 (((-3 $ "failed") $ $) NIL)) (-2344 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-2709 (((-763) $) NIL)) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL)) (-3143 (((-763) $) NIL (|has| |#1| (-370))) (((-3 (-763) "failed") $ $) NIL (-2198 (|has| |#1| (-148)) (|has| |#1| (-370))))) (-4321 (((-139)) NIL)) (-4189 (($ $) NIL (|has| |#1| (-370))) (($ $ (-763)) NIL (|has| |#1| (-370)))) (-3206 (((-828 (-917)) $) NIL) (((-917) $) 56)) (-1626 (((-1157 |#1|)) 86)) (-3065 (($) 125 (|has| |#1| (-370)))) (-2027 (($) NIL (|has| |#1| (-370)))) (-4073 (((-1244 |#1|) $) 50) (((-679 |#1|) (-1244 $)) NIL)) (-2979 (((-3 (-1244 $) "failed") (-679 $)) NIL (|has| |#1| (-370)))) (-2745 (((-850) $) 136) (($ (-568)) NIL) (($ $) NIL) (($ (-409 (-568))) NIL) (($ |#1|) 85)) (-4371 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-2198 (|has| |#1| (-148)) (|has| |#1| (-370))))) (-4078 (((-763)) 142)) (-3746 (((-1244 $)) 107) (((-1244 $) (-917)) 46)) (-1826 (((-121) $ $) NIL)) (-4390 (((-121) $) NIL)) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL)) (-3056 (($) 109 T CONST)) (-1556 (($) 31 T CONST)) (-1316 (($ $) 65 (|has| |#1| (-370))) (($ $ (-763)) NIL (|has| |#1| (-370)))) (-3190 (($ $) NIL (|has| |#1| (-370))) (($ $ (-763)) NIL (|has| |#1| (-370)))) (-1717 (((-121) $ $) 105)) (-1779 (($ $ $) 97) (($ $ |#1|) 98)) (-1773 (($ $) 78) (($ $ $) 103)) (-1767 (($ $ $) 101)) (** (($ $ (-917)) NIL) (($ $ (-763)) 41) (($ $ (-568)) 128)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) 76) (($ $ $) 53) (($ $ (-409 (-568))) NIL) (($ (-409 (-568)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 74))) +(((-356 |#1| |#2|) (-327 |#1|) (-350) (-1157 |#1|)) (T -356)) +NIL +(-327 |#1|) +((-1411 ((|#1| (-1157 |#2|)) 51))) +(((-357 |#1| |#2|) (-10 -7 (-15 -1411 (|#1| (-1157 |#2|)))) (-13 (-404) (-10 -7 (-15 -2745 (|#1| |#2|)) (-15 -3683 ((-917) |#1|)) (-15 -3746 ((-1244 |#1|) (-917))) (-15 -1316 (|#1| |#1|)))) (-350)) (T -357)) +((-1411 (*1 *2 *3) (-12 (-5 *3 (-1157 *4)) (-4 *4 (-350)) (-4 *2 (-13 (-404) (-10 -7 (-15 -2745 (*2 *4)) (-15 -3683 ((-917) *2)) (-15 -3746 ((-1244 *2) (-917))) (-15 -1316 (*2 *2))))) (-5 *1 (-357 *2 *4))))) +(-10 -7 (-15 -1411 (|#1| (-1157 |#2|)))) +((-3671 (((-958 (-1157 |#1|)) (-1157 |#1|)) 36)) (-1731 (((-1157 |#1|) (-917) (-917)) 109) (((-1157 |#1|) (-917)) 108)) (-4456 (((-121) (-1157 |#1|)) 81)) (-1617 (((-917) (-917)) 71)) (-2113 (((-917) (-917)) 73)) (-3520 (((-917) (-917)) 69)) (-3917 (((-121) (-1157 |#1|)) 85)) (-1306 (((-3 (-1157 |#1|) "failed") (-1157 |#1|)) 97)) (-3383 (((-3 (-1157 |#1|) "failed") (-1157 |#1|)) 100)) (-4039 (((-3 (-1157 |#1|) "failed") (-1157 |#1|)) 99)) (-3356 (((-3 (-1157 |#1|) "failed") (-1157 |#1|)) 98)) (-1451 (((-3 (-1157 |#1|) "failed") (-1157 |#1|)) 94)) (-2118 (((-1157 |#1|) (-1157 |#1|)) 62)) (-2454 (((-1157 |#1|) (-917)) 103)) (-2744 (((-1157 |#1|) (-917)) 106)) (-4136 (((-1157 |#1|) (-917)) 105)) (-2441 (((-1157 |#1|) (-917)) 104)) (-3805 (((-1157 |#1|) (-917)) 101))) +(((-358 |#1|) (-10 -7 (-15 -4456 ((-121) (-1157 |#1|))) (-15 -3917 ((-121) (-1157 |#1|))) (-15 -3520 ((-917) (-917))) (-15 -1617 ((-917) (-917))) (-15 -2113 ((-917) (-917))) (-15 -3805 ((-1157 |#1|) (-917))) (-15 -2454 ((-1157 |#1|) (-917))) (-15 -2441 ((-1157 |#1|) (-917))) (-15 -4136 ((-1157 |#1|) (-917))) (-15 -2744 ((-1157 |#1|) (-917))) (-15 -1451 ((-3 (-1157 |#1|) "failed") (-1157 |#1|))) (-15 -1306 ((-3 (-1157 |#1|) "failed") (-1157 |#1|))) (-15 -3356 ((-3 (-1157 |#1|) "failed") (-1157 |#1|))) (-15 -4039 ((-3 (-1157 |#1|) "failed") (-1157 |#1|))) (-15 -3383 ((-3 (-1157 |#1|) "failed") (-1157 |#1|))) (-15 -1731 ((-1157 |#1|) (-917))) (-15 -1731 ((-1157 |#1|) (-917) (-917))) (-15 -2118 ((-1157 |#1|) (-1157 |#1|))) (-15 -3671 ((-958 (-1157 |#1|)) (-1157 |#1|)))) (-350)) (T -358)) +((-3671 (*1 *2 *3) (-12 (-4 *4 (-350)) (-5 *2 (-958 (-1157 *4))) (-5 *1 (-358 *4)) (-5 *3 (-1157 *4)))) (-2118 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-350)) (-5 *1 (-358 *3)))) (-1731 (*1 *2 *3 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1157 *4)) (-5 *1 (-358 *4)) (-4 *4 (-350)))) (-1731 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1157 *4)) (-5 *1 (-358 *4)) (-4 *4 (-350)))) (-3383 (*1 *2 *2) (|partial| -12 (-5 *2 (-1157 *3)) (-4 *3 (-350)) (-5 *1 (-358 *3)))) (-4039 (*1 *2 *2) (|partial| -12 (-5 *2 (-1157 *3)) (-4 *3 (-350)) (-5 *1 (-358 *3)))) (-3356 (*1 *2 *2) (|partial| -12 (-5 *2 (-1157 *3)) (-4 *3 (-350)) (-5 *1 (-358 *3)))) (-1306 (*1 *2 *2) (|partial| -12 (-5 *2 (-1157 *3)) (-4 *3 (-350)) (-5 *1 (-358 *3)))) (-1451 (*1 *2 *2) (|partial| -12 (-5 *2 (-1157 *3)) (-4 *3 (-350)) (-5 *1 (-358 *3)))) (-2744 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1157 *4)) (-5 *1 (-358 *4)) (-4 *4 (-350)))) (-4136 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1157 *4)) (-5 *1 (-358 *4)) (-4 *4 (-350)))) (-2441 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1157 *4)) (-5 *1 (-358 *4)) (-4 *4 (-350)))) (-2454 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1157 *4)) (-5 *1 (-358 *4)) (-4 *4 (-350)))) (-3805 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1157 *4)) (-5 *1 (-358 *4)) (-4 *4 (-350)))) (-2113 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-358 *3)) (-4 *3 (-350)))) (-1617 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-358 *3)) (-4 *3 (-350)))) (-3520 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-358 *3)) (-4 *3 (-350)))) (-3917 (*1 *2 *3) (-12 (-5 *3 (-1157 *4)) (-4 *4 (-350)) (-5 *2 (-121)) (-5 *1 (-358 *4)))) (-4456 (*1 *2 *3) (-12 (-5 *3 (-1157 *4)) (-4 *4 (-350)) (-5 *2 (-121)) (-5 *1 (-358 *4))))) +(-10 -7 (-15 -4456 ((-121) (-1157 |#1|))) (-15 -3917 ((-121) (-1157 |#1|))) (-15 -3520 ((-917) (-917))) (-15 -1617 ((-917) (-917))) (-15 -2113 ((-917) (-917))) (-15 -3805 ((-1157 |#1|) (-917))) (-15 -2454 ((-1157 |#1|) (-917))) (-15 -2441 ((-1157 |#1|) (-917))) (-15 -4136 ((-1157 |#1|) (-917))) (-15 -2744 ((-1157 |#1|) (-917))) (-15 -1451 ((-3 (-1157 |#1|) "failed") (-1157 |#1|))) (-15 -1306 ((-3 (-1157 |#1|) "failed") (-1157 |#1|))) (-15 -3356 ((-3 (-1157 |#1|) "failed") (-1157 |#1|))) (-15 -4039 ((-3 (-1157 |#1|) "failed") (-1157 |#1|))) (-15 -3383 ((-3 (-1157 |#1|) "failed") (-1157 |#1|))) (-15 -1731 ((-1157 |#1|) (-917))) (-15 -1731 ((-1157 |#1|) (-917) (-917))) (-15 -2118 ((-1157 |#1|) (-1157 |#1|))) (-15 -3671 ((-958 (-1157 |#1|)) (-1157 |#1|)))) +((-1858 (((-3 (-634 |#3|) "failed") (-634 |#3|) |#3|) 33))) +(((-359 |#1| |#2| |#3|) (-10 -7 (-15 -1858 ((-3 (-634 |#3|) "failed") (-634 |#3|) |#3|))) (-350) (-1219 |#1|) (-1219 |#2|)) (T -359)) +((-1858 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-634 *3)) (-4 *3 (-1219 *5)) (-4 *5 (-1219 *4)) (-4 *4 (-350)) (-5 *1 (-359 *4 *5 *3))))) +(-10 -7 (-15 -1858 ((-3 (-634 |#3|) "failed") (-634 |#3|) |#3|))) +((-2133 (((-420 |#2|) |#2|) 46)) (-4484 (((-420 |#2|) |#2|) 36))) +(((-360 |#1| |#2|) (-10 -7 (-15 -4484 ((-420 |#2|) |#2|)) (-15 -2133 ((-420 |#2|) |#2|))) (-350) (-1219 |#1|)) (T -360)) +((-2133 (*1 *2 *3) (-12 (-4 *4 (-350)) (-5 *2 (-420 *3)) (-5 *1 (-360 *4 *3)) (-4 *3 (-1219 *4)))) (-4484 (*1 *2 *3) (-12 (-4 *4 (-350)) (-5 *2 (-420 *3)) (-5 *1 (-360 *4 *3)) (-4 *3 (-1219 *4))))) +(-10 -7 (-15 -4484 ((-420 |#2|) |#2|)) (-15 -2133 ((-420 |#2|) |#2|))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL)) (-2227 (($ $) NIL)) (-1573 (((-121) $) NIL)) (-2615 (((-121) $) NIL)) (-1739 (((-763)) NIL)) (-1932 ((|#1| $) NIL) (($ $ (-917)) NIL (|has| |#1| (-370)))) (-3211 (((-1169 (-917) (-763)) (-568)) NIL (|has| |#1| (-370)))) (-3134 (((-3 $ "failed") $ $) NIL)) (-4305 (($ $) NIL)) (-1678 (((-420 $) $) NIL)) (-1497 (((-121) $ $) NIL)) (-3983 (((-763)) NIL (|has| |#1| (-370)))) (-2671 (($) NIL T CONST)) (-3666 (((-3 |#1| "failed") $) NIL)) (-2854 ((|#1| $) NIL)) (-3498 (($ (-1244 |#1|)) NIL)) (-2022 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-370)))) (-2401 (($ $ $) NIL)) (-2925 (((-3 $ "failed") $) NIL)) (-1731 (($) NIL (|has| |#1| (-370)))) (-2412 (($ $ $) NIL)) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) NIL)) (-4220 (($) NIL (|has| |#1| (-370)))) (-4456 (((-121) $) NIL (|has| |#1| (-370)))) (-3218 (($ $ (-763)) NIL (-2198 (|has| |#1| (-148)) (|has| |#1| (-370)))) (($ $) NIL (-2198 (|has| |#1| (-148)) (|has| |#1| (-370))))) (-3927 (((-121) $) NIL)) (-4477 (((-917) $) NIL (|has| |#1| (-370))) (((-828 (-917)) $) NIL (-2198 (|has| |#1| (-148)) (|has| |#1| (-370))))) (-2735 (((-121) $) NIL)) (-2883 (($) NIL (|has| |#1| (-370)))) (-3917 (((-121) $) NIL (|has| |#1| (-370)))) (-2657 ((|#1| $) NIL) (($ $ (-917)) NIL (|has| |#1| (-370)))) (-3038 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-3562 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-2045 (((-1157 |#1|) $) NIL) (((-1157 $) $ (-917)) NIL (|has| |#1| (-370)))) (-3683 (((-917) $) NIL (|has| |#1| (-370)))) (-2035 (((-1157 |#1|) $) NIL (|has| |#1| (-370)))) (-1422 (((-1157 |#1|) $) NIL (|has| |#1| (-370))) (((-3 (-1157 |#1|) "failed") $ $) NIL (|has| |#1| (-370)))) (-2109 (($ $ (-1157 |#1|)) NIL (|has| |#1| (-370)))) (-2495 (($ $ $) NIL) (($ (-634 $)) NIL)) (-4487 (((-1143) $) NIL)) (-2081 (($ $) NIL)) (-4434 (($) NIL (|has| |#1| (-370)) CONST)) (-4355 (($ (-917)) NIL (|has| |#1| (-370)))) (-2864 (((-121) $) NIL)) (-4022 (((-1108) $) NIL)) (-2704 (($) NIL (|has| |#1| (-370)))) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL)) (-2721 (($ $ $) NIL) (($ (-634 $)) NIL)) (-1418 (((-634 (-2 (|:| -3848 (-568)) (|:| -3438 (-568))))) NIL (|has| |#1| (-370)))) (-3848 (((-420 $) $) NIL)) (-1553 (((-828 (-917))) NIL) (((-917)) NIL)) (-4497 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2595 (((-3 $ "failed") $ $) NIL)) (-2344 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-2709 (((-763) $) NIL)) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL)) (-3143 (((-763) $) NIL (|has| |#1| (-370))) (((-3 (-763) "failed") $ $) NIL (-2198 (|has| |#1| (-148)) (|has| |#1| (-370))))) (-4321 (((-139)) NIL)) (-4189 (($ $) NIL (|has| |#1| (-370))) (($ $ (-763)) NIL (|has| |#1| (-370)))) (-3206 (((-828 (-917)) $) NIL) (((-917) $) NIL)) (-1626 (((-1157 |#1|)) NIL)) (-3065 (($) NIL (|has| |#1| (-370)))) (-2027 (($) NIL (|has| |#1| (-370)))) (-4073 (((-1244 |#1|) $) NIL) (((-679 |#1|) (-1244 $)) NIL)) (-2979 (((-3 (-1244 $) "failed") (-679 $)) NIL (|has| |#1| (-370)))) (-2745 (((-850) $) NIL) (($ (-568)) NIL) (($ $) NIL) (($ (-409 (-568))) NIL) (($ |#1|) NIL)) (-4371 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-2198 (|has| |#1| (-148)) (|has| |#1| (-370))))) (-4078 (((-763)) NIL)) (-3746 (((-1244 $)) NIL) (((-1244 $) (-917)) NIL)) (-1826 (((-121) $ $) NIL)) (-4390 (((-121) $) NIL)) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL)) (-3056 (($) NIL T CONST)) (-1556 (($) NIL T CONST)) (-1316 (($ $) NIL (|has| |#1| (-370))) (($ $ (-763)) NIL (|has| |#1| (-370)))) (-3190 (($ $) NIL (|has| |#1| (-370))) (($ $ (-763)) NIL (|has| |#1| (-370)))) (-1717 (((-121) $ $) NIL)) (-1779 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) NIL) (($ $ (-409 (-568))) NIL) (($ (-409 (-568)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-361 |#1| |#2|) (-327 |#1|) (-350) (-917)) (T -361)) +NIL +(-327 |#1|) +((-3624 (((-121) (-634 (-953 |#1|))) 31)) (-2715 (((-634 (-953 |#1|)) (-634 (-953 |#1|))) 42)) (-1560 (((-3 (-634 (-953 |#1|)) "failed") (-634 (-953 |#1|))) 38))) +(((-362 |#1| |#2|) (-10 -7 (-15 -3624 ((-121) (-634 (-953 |#1|)))) (-15 -1560 ((-3 (-634 (-953 |#1|)) "failed") (-634 (-953 |#1|)))) (-15 -2715 ((-634 (-953 |#1|)) (-634 (-953 |#1|))))) (-453) (-634 (-1161))) (T -362)) +((-2715 (*1 *2 *2) (-12 (-5 *2 (-634 (-953 *3))) (-4 *3 (-453)) (-5 *1 (-362 *3 *4)) (-14 *4 (-634 (-1161))))) (-1560 (*1 *2 *2) (|partial| -12 (-5 *2 (-634 (-953 *3))) (-4 *3 (-453)) (-5 *1 (-362 *3 *4)) (-14 *4 (-634 (-1161))))) (-3624 (*1 *2 *3) (-12 (-5 *3 (-634 (-953 *4))) (-4 *4 (-453)) (-5 *2 (-121)) (-5 *1 (-362 *4 *5)) (-14 *5 (-634 (-1161)))))) +(-10 -7 (-15 -3624 ((-121) (-634 (-953 |#1|)))) (-15 -1560 ((-3 (-634 (-953 |#1|)) "failed") (-634 (-953 |#1|)))) (-15 -2715 ((-634 (-953 |#1|)) (-634 (-953 |#1|))))) +((-2447 (((-121) $ $) NIL)) (-3983 (((-763) $) NIL)) (-2671 (($) NIL T CONST)) (-3666 (((-3 |#1| "failed") $) NIL)) (-2854 ((|#1| $) NIL)) (-2925 (((-3 $ "failed") $) NIL)) (-2735 (((-121) $) 14)) (-2882 ((|#1| $ (-568)) NIL)) (-2408 (((-568) $ (-568)) NIL)) (-2096 (($ (-1 |#1| |#1|) $) 32)) (-2505 (($ (-1 (-568) (-568)) $) 24)) (-4487 (((-1143) $) NIL)) (-2081 (($ $) 26)) (-4022 (((-1108) $) NIL)) (-3276 (((-634 (-2 (|:| |gen| |#1|) (|:| -1892 (-568)))) $) 28)) (-1458 (($ $ $) NIL)) (-2353 (($ $ $) NIL)) (-2745 (((-850) $) 38) (($ |#1|) NIL)) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL)) (-1556 (($) 9 T CONST)) (-1717 (((-121) $ $) NIL)) (-1779 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL) (($ |#1| (-568)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19))) +(((-363 |#1|) (-13 (-478) (-1037 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-568))) (-15 -3983 ((-763) $)) (-15 -2408 ((-568) $ (-568))) (-15 -2882 (|#1| $ (-568))) (-15 -2505 ($ (-1 (-568) (-568)) $)) (-15 -2096 ($ (-1 |#1| |#1|) $)) (-15 -3276 ((-634 (-2 (|:| |gen| |#1|) (|:| -1892 (-568)))) $)))) (-1090)) (T -363)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-363 *2)) (-4 *2 (-1090)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-363 *2)) (-4 *2 (-1090)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-568)) (-5 *1 (-363 *2)) (-4 *2 (-1090)))) (-3983 (*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-363 *3)) (-4 *3 (-1090)))) (-2408 (*1 *2 *1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-363 *3)) (-4 *3 (-1090)))) (-2882 (*1 *2 *1 *3) (-12 (-5 *3 (-568)) (-5 *1 (-363 *2)) (-4 *2 (-1090)))) (-2505 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-568) (-568))) (-5 *1 (-363 *3)) (-4 *3 (-1090)))) (-2096 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1090)) (-5 *1 (-363 *3)))) (-3276 (*1 *2 *1) (-12 (-5 *2 (-634 (-2 (|:| |gen| *3) (|:| -1892 (-568))))) (-5 *1 (-363 *3)) (-4 *3 (-1090))))) +(-13 (-478) (-1037 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-568))) (-15 -3983 ((-763) $)) (-15 -2408 ((-568) $ (-568))) (-15 -2882 (|#1| $ (-568))) (-15 -2505 ($ (-1 (-568) (-568)) $)) (-15 -2096 ($ (-1 |#1| |#1|) $)) (-15 -3276 ((-634 (-2 (|:| |gen| |#1|) (|:| -1892 (-568)))) $)))) +((-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) 13)) (-2227 (($ $) 14)) (-1678 (((-420 $) $) 29)) (-3927 (((-121) $) 25)) (-2081 (($ $) 18)) (-2721 (($ $ $) 22) (($ (-634 $)) NIL)) (-3848 (((-420 $) $) 30)) (-2595 (((-3 $ "failed") $ $) 21)) (-2709 (((-763) $) 24)) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) 34)) (-1826 (((-121) $ $) 15)) (-1779 (($ $ $) 32))) +(((-364 |#1|) (-10 -8 (-15 -1779 (|#1| |#1| |#1|)) (-15 -2081 (|#1| |#1|)) (-15 -3927 ((-121) |#1|)) (-15 -1678 ((-420 |#1|) |#1|)) (-15 -3848 ((-420 |#1|) |#1|)) (-15 -3210 ((-2 (|:| -3961 |#1|) (|:| -1500 |#1|)) |#1| |#1|)) (-15 -2709 ((-763) |#1|)) (-15 -2721 (|#1| (-634 |#1|))) (-15 -2721 (|#1| |#1| |#1|)) (-15 -1826 ((-121) |#1| |#1|)) (-15 -2227 (|#1| |#1|)) (-15 -3712 ((-2 (|:| -2295 |#1|) (|:| -4506 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2595 ((-3 |#1| "failed") |#1| |#1|))) (-365)) (T -364)) +NIL +(-10 -8 (-15 -1779 (|#1| |#1| |#1|)) (-15 -2081 (|#1| |#1|)) (-15 -3927 ((-121) |#1|)) (-15 -1678 ((-420 |#1|) |#1|)) (-15 -3848 ((-420 |#1|) |#1|)) (-15 -3210 ((-2 (|:| -3961 |#1|) (|:| -1500 |#1|)) |#1| |#1|)) (-15 -2709 ((-763) |#1|)) (-15 -2721 (|#1| (-634 |#1|))) (-15 -2721 (|#1| |#1| |#1|)) (-15 -1826 ((-121) |#1| |#1|)) (-15 -2227 (|#1| |#1|)) (-15 -3712 ((-2 (|:| -2295 |#1|) (|:| -4506 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2595 ((-3 |#1| "failed") |#1| |#1|))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) 40)) (-2227 (($ $) 39)) (-1573 (((-121) $) 37)) (-3134 (((-3 $ "failed") $ $) 18)) (-4305 (($ $) 71)) (-1678 (((-420 $) $) 70)) (-1497 (((-121) $ $) 57)) (-2671 (($) 16 T CONST)) (-2401 (($ $ $) 53)) (-2925 (((-3 $ "failed") $) 33)) (-2412 (($ $ $) 54)) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) 49)) (-3927 (((-121) $) 69)) (-2735 (((-121) $) 30)) (-3562 (((-3 (-634 $) "failed") (-634 $) $) 50)) (-2495 (($ $ $) 45) (($ (-634 $)) 44)) (-4487 (((-1143) $) 9)) (-2081 (($ $) 68)) (-4022 (((-1108) $) 10)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) 43)) (-2721 (($ $ $) 47) (($ (-634 $)) 46)) (-3848 (((-420 $) $) 72)) (-4497 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2595 (((-3 $ "failed") $ $) 41)) (-2344 (((-3 (-634 $) "failed") (-634 $) $) 48)) (-2709 (((-763) $) 56)) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) 55)) (-2745 (((-850) $) 11) (($ (-568)) 27) (($ $) 42) (($ (-409 (-568))) 63)) (-4078 (((-763)) 28)) (-1826 (((-121) $ $) 38)) (-1887 (($ $ (-917)) 25) (($ $ (-763)) 32) (($ $ (-568)) 67)) (-3056 (($) 17 T CONST)) (-1556 (($) 29 T CONST)) (-1717 (((-121) $ $) 6)) (-1779 (($ $ $) 62)) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 24) (($ $ (-763)) 31) (($ $ (-568)) 66)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 23) (($ $ (-409 (-568))) 65) (($ (-409 (-568)) $) 64))) +(((-365) (-1275)) (T -365)) +((-1779 (*1 *1 *1 *1) (-4 *1 (-365)))) +(-13 (-301) (-1199) (-238) (-10 -8 (-15 -1779 ($ $ $)) (-6 -4517) (-6 -4511))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-43 (-409 (-568))) . T) ((-43 $) . T) ((-105) . T) ((-120 (-409 (-568)) (-409 (-568))) . T) ((-120 $ $) . T) ((-137) . T) ((-608 (-850)) . T) ((-172) . T) ((-238) . T) ((-285) . T) ((-301) . T) ((-453) . T) ((-558) . T) ((-637 (-409 (-568))) . T) ((-637 $) . T) ((-707 (-409 (-568))) . T) ((-707 $) . T) ((-716) . T) ((-916) . T) ((-1053 (-409 (-568))) . T) ((-1053 $) . T) ((-1047) . T) ((-1054) . T) ((-1102) . T) ((-1090) . T) ((-1199) . T)) +((-2447 (((-121) $ $) 7)) (-1705 ((|#2| $ |#2|) 13)) (-2511 (($ $ (-1143)) 18)) (-3327 ((|#2| $) 14)) (-1798 (($ |#1|) 20) (($ |#1| (-1143)) 19)) (-3391 ((|#1| $) 16)) (-4487 (((-1143) $) 9)) (-3305 (((-1143) $) 15)) (-4022 (((-1108) $) 10)) (-4169 (((-1249) $) 12)) (-2745 (((-850) $) 11)) (-3637 (($ $) 17)) (-1717 (((-121) $ $) 6))) +(((-366 |#1| |#2|) (-1275) (-1090) (-1090)) (T -366)) +((-1798 (*1 *1 *2) (-12 (-4 *1 (-366 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-1090)))) (-1798 (*1 *1 *2 *3) (-12 (-5 *3 (-1143)) (-4 *1 (-366 *2 *4)) (-4 *2 (-1090)) (-4 *4 (-1090)))) (-2511 (*1 *1 *1 *2) (-12 (-5 *2 (-1143)) (-4 *1 (-366 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090)))) (-3637 (*1 *1 *1) (-12 (-4 *1 (-366 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-1090)))) (-3391 (*1 *2 *1) (-12 (-4 *1 (-366 *2 *3)) (-4 *3 (-1090)) (-4 *2 (-1090)))) (-3305 (*1 *2 *1) (-12 (-4 *1 (-366 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-5 *2 (-1143)))) (-3327 (*1 *2 *1) (-12 (-4 *1 (-366 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-1090)))) (-1705 (*1 *2 *1 *2) (-12 (-4 *1 (-366 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-1090)))) (-4169 (*1 *2 *1) (-12 (-4 *1 (-366 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-5 *2 (-1249))))) +(-13 (-1090) (-10 -8 (-15 -1798 ($ |t#1|)) (-15 -1798 ($ |t#1| (-1143))) (-15 -2511 ($ $ (-1143))) (-15 -3637 ($ $)) (-15 -3391 (|t#1| $)) (-15 -3305 ((-1143) $)) (-15 -3327 (|t#2| $)) (-15 -1705 (|t#2| $ |t#2|)) (-15 -4169 ((-1249) $)))) +(((-105) . T) ((-608 (-850)) . T) ((-1090) . T)) +((-2447 (((-121) $ $) NIL)) (-1705 ((|#1| $ |#1|) 29)) (-2511 (($ $ (-1143)) 22)) (-3861 (((-3 |#1| "failed") $) 28)) (-3327 ((|#1| $) 26)) (-1798 (($ (-390)) 21) (($ (-390) (-1143)) 20)) (-3391 (((-390) $) 24)) (-4487 (((-1143) $) NIL)) (-3305 (((-1143) $) 25)) (-4022 (((-1108) $) NIL)) (-4169 (((-1249) $) 31)) (-2745 (((-850) $) 19)) (-3637 (($ $) 23)) (-1717 (((-121) $ $) 18))) +(((-367 |#1|) (-13 (-366 (-390) |#1|) (-10 -8 (-15 -3861 ((-3 |#1| "failed") $)))) (-1090)) (T -367)) +((-3861 (*1 *2 *1) (|partial| -12 (-5 *1 (-367 *2)) (-4 *2 (-1090))))) +(-13 (-366 (-390) |#1|) (-10 -8 (-15 -3861 ((-3 |#1| "failed") $)))) +((-2776 (((-1244 (-679 |#2|)) (-1244 $)) 62)) (-1631 (((-679 |#2|) (-1244 $)) 120)) (-1866 ((|#2| $) 32)) (-3042 (((-679 |#2|) $ (-1244 $)) 124)) (-3550 (((-3 $ "failed") $) 76)) (-4409 ((|#2| $) 35)) (-1371 (((-1157 |#2|) $) 84)) (-3569 ((|#2| (-1244 $)) 107)) (-2989 (((-1157 |#2|) $) 28)) (-3384 (((-121)) 101)) (-3498 (($ (-1244 |#2|) (-1244 $)) 114)) (-2925 (((-3 $ "failed") $) 80)) (-1537 (((-121)) 96)) (-1580 (((-121)) 91)) (-1695 (((-121)) 54)) (-4210 (((-679 |#2|) (-1244 $)) 118)) (-2889 ((|#2| $) 31)) (-4333 (((-679 |#2|) $ (-1244 $)) 123)) (-3243 (((-3 $ "failed") $) 74)) (-3329 ((|#2| $) 34)) (-2265 (((-1157 |#2|) $) 83)) (-3898 ((|#2| (-1244 $)) 105)) (-3626 (((-1157 |#2|) $) 26)) (-2767 (((-121)) 100)) (-1804 (((-121)) 93)) (-2919 (((-121)) 52)) (-3840 (((-121)) 88)) (-1346 (((-121)) 102)) (-4073 (((-1244 |#2|) $ (-1244 $)) NIL) (((-679 |#2|) (-1244 $) (-1244 $)) 112)) (-3433 (((-121)) 98)) (-1509 (((-634 (-1244 |#2|))) 87)) (-4177 (((-121)) 99)) (-2433 (((-121)) 97)) (-2189 (((-121)) 46)) (-4107 (((-121)) 103))) +(((-368 |#1| |#2|) (-10 -8 (-15 -1371 ((-1157 |#2|) |#1|)) (-15 -2265 ((-1157 |#2|) |#1|)) (-15 -1509 ((-634 (-1244 |#2|)))) (-15 -3550 ((-3 |#1| "failed") |#1|)) (-15 -3243 ((-3 |#1| "failed") |#1|)) (-15 -2925 ((-3 |#1| "failed") |#1|)) (-15 -1580 ((-121))) (-15 -1804 ((-121))) (-15 -1537 ((-121))) (-15 -2919 ((-121))) (-15 -1695 ((-121))) (-15 -3840 ((-121))) (-15 -4107 ((-121))) (-15 -1346 ((-121))) (-15 -3384 ((-121))) (-15 -2767 ((-121))) (-15 -2189 ((-121))) (-15 -4177 ((-121))) (-15 -2433 ((-121))) (-15 -3433 ((-121))) (-15 -2989 ((-1157 |#2|) |#1|)) (-15 -3626 ((-1157 |#2|) |#1|)) (-15 -1631 ((-679 |#2|) (-1244 |#1|))) (-15 -4210 ((-679 |#2|) (-1244 |#1|))) (-15 -3569 (|#2| (-1244 |#1|))) (-15 -3898 (|#2| (-1244 |#1|))) (-15 -3498 (|#1| (-1244 |#2|) (-1244 |#1|))) (-15 -4073 ((-679 |#2|) (-1244 |#1|) (-1244 |#1|))) (-15 -4073 ((-1244 |#2|) |#1| (-1244 |#1|))) (-15 -4409 (|#2| |#1|)) (-15 -3329 (|#2| |#1|)) (-15 -1866 (|#2| |#1|)) (-15 -2889 (|#2| |#1|)) (-15 -3042 ((-679 |#2|) |#1| (-1244 |#1|))) (-15 -4333 ((-679 |#2|) |#1| (-1244 |#1|))) (-15 -2776 ((-1244 (-679 |#2|)) (-1244 |#1|)))) (-369 |#2|) (-172)) (T -368)) +((-3433 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-121)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-2433 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-121)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-4177 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-121)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-2189 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-121)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-2767 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-121)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-3384 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-121)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-1346 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-121)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-4107 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-121)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-3840 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-121)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-1695 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-121)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-2919 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-121)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-1537 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-121)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-1804 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-121)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-1580 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-121)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-1509 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-634 (-1244 *4))) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4))))) +(-10 -8 (-15 -1371 ((-1157 |#2|) |#1|)) (-15 -2265 ((-1157 |#2|) |#1|)) (-15 -1509 ((-634 (-1244 |#2|)))) (-15 -3550 ((-3 |#1| "failed") |#1|)) (-15 -3243 ((-3 |#1| "failed") |#1|)) (-15 -2925 ((-3 |#1| "failed") |#1|)) (-15 -1580 ((-121))) (-15 -1804 ((-121))) (-15 -1537 ((-121))) (-15 -2919 ((-121))) (-15 -1695 ((-121))) (-15 -3840 ((-121))) (-15 -4107 ((-121))) (-15 -1346 ((-121))) (-15 -3384 ((-121))) (-15 -2767 ((-121))) (-15 -2189 ((-121))) (-15 -4177 ((-121))) (-15 -2433 ((-121))) (-15 -3433 ((-121))) (-15 -2989 ((-1157 |#2|) |#1|)) (-15 -3626 ((-1157 |#2|) |#1|)) (-15 -1631 ((-679 |#2|) (-1244 |#1|))) (-15 -4210 ((-679 |#2|) (-1244 |#1|))) (-15 -3569 (|#2| (-1244 |#1|))) (-15 -3898 (|#2| (-1244 |#1|))) (-15 -3498 (|#1| (-1244 |#2|) (-1244 |#1|))) (-15 -4073 ((-679 |#2|) (-1244 |#1|) (-1244 |#1|))) (-15 -4073 ((-1244 |#2|) |#1| (-1244 |#1|))) (-15 -4409 (|#2| |#1|)) (-15 -3329 (|#2| |#1|)) (-15 -1866 (|#2| |#1|)) (-15 -2889 (|#2| |#1|)) (-15 -3042 ((-679 |#2|) |#1| (-1244 |#1|))) (-15 -4333 ((-679 |#2|) |#1| (-1244 |#1|))) (-15 -2776 ((-1244 (-679 |#2|)) (-1244 |#1|)))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-2295 (((-3 $ "failed")) 35 (|has| |#1| (-558)))) (-3134 (((-3 $ "failed") $ $) 18)) (-2776 (((-1244 (-679 |#1|)) (-1244 $)) 76)) (-1741 (((-1244 $)) 79)) (-2671 (($) 16 T CONST)) (-1309 (((-3 (-2 (|:| |particular| $) (|:| -3746 (-634 $))) "failed")) 38 (|has| |#1| (-558)))) (-2593 (((-3 $ "failed")) 36 (|has| |#1| (-558)))) (-1631 (((-679 |#1|) (-1244 $)) 63)) (-1866 ((|#1| $) 72)) (-3042 (((-679 |#1|) $ (-1244 $)) 74)) (-3550 (((-3 $ "failed") $) 43 (|has| |#1| (-558)))) (-3551 (($ $ (-917)) 27)) (-4409 ((|#1| $) 70)) (-1371 (((-1157 |#1|) $) 40 (|has| |#1| (-558)))) (-3569 ((|#1| (-1244 $)) 65)) (-2989 (((-1157 |#1|) $) 61)) (-3384 (((-121)) 55)) (-3498 (($ (-1244 |#1|) (-1244 $)) 67)) (-2925 (((-3 $ "failed") $) 45 (|has| |#1| (-558)))) (-3700 (((-917)) 78)) (-4370 (((-121)) 52)) (-4373 (($ $ (-917)) 32)) (-1537 (((-121)) 48)) (-1580 (((-121)) 46)) (-1695 (((-121)) 50)) (-3116 (((-3 (-2 (|:| |particular| $) (|:| -3746 (-634 $))) "failed")) 39 (|has| |#1| (-558)))) (-2599 (((-3 $ "failed")) 37 (|has| |#1| (-558)))) (-4210 (((-679 |#1|) (-1244 $)) 64)) (-2889 ((|#1| $) 73)) (-4333 (((-679 |#1|) $ (-1244 $)) 75)) (-3243 (((-3 $ "failed") $) 44 (|has| |#1| (-558)))) (-4222 (($ $ (-917)) 28)) (-3329 ((|#1| $) 71)) (-2265 (((-1157 |#1|) $) 41 (|has| |#1| (-558)))) (-3898 ((|#1| (-1244 $)) 66)) (-3626 (((-1157 |#1|) $) 62)) (-2767 (((-121)) 56)) (-4487 (((-1143) $) 9)) (-1804 (((-121)) 47)) (-2919 (((-121)) 49)) (-3840 (((-121)) 51)) (-4022 (((-1108) $) 10)) (-1346 (((-121)) 54)) (-4073 (((-1244 |#1|) $ (-1244 $)) 69) (((-679 |#1|) (-1244 $) (-1244 $)) 68)) (-3295 (((-634 (-953 |#1|)) (-1244 $)) 77)) (-2353 (($ $ $) 24)) (-3433 (((-121)) 60)) (-2745 (((-850) $) 11)) (-1509 (((-634 (-1244 |#1|))) 42 (|has| |#1| (-558)))) (-3882 (($ $ $ $) 25)) (-4177 (((-121)) 58)) (-3500 (($ $ $) 23)) (-2433 (((-121)) 59)) (-2189 (((-121)) 57)) (-4107 (((-121)) 53)) (-3056 (($) 17 T CONST)) (-1717 (((-121) $ $) 6)) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 29)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 26) (($ $ |#1|) 34) (($ |#1| $) 33))) +(((-369 |#1|) (-1275) (-172)) (T -369)) +((-1741 (*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1244 *1)) (-4 *1 (-369 *3)))) (-3700 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-917)))) (-3295 (*1 *2 *3) (-12 (-5 *3 (-1244 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-634 (-953 *4))))) (-2776 (*1 *2 *3) (-12 (-5 *3 (-1244 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-1244 (-679 *4))))) (-4333 (*1 *2 *1 *3) (-12 (-5 *3 (-1244 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-679 *4)))) (-3042 (*1 *2 *1 *3) (-12 (-5 *3 (-1244 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-679 *4)))) (-2889 (*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-1866 (*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-3329 (*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-4409 (*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-4073 (*1 *2 *1 *3) (-12 (-5 *3 (-1244 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-1244 *4)))) (-4073 (*1 *2 *3 *3) (-12 (-5 *3 (-1244 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-679 *4)))) (-3498 (*1 *1 *2 *3) (-12 (-5 *2 (-1244 *4)) (-5 *3 (-1244 *1)) (-4 *4 (-172)) (-4 *1 (-369 *4)))) (-3898 (*1 *2 *3) (-12 (-5 *3 (-1244 *1)) (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-3569 (*1 *2 *3) (-12 (-5 *3 (-1244 *1)) (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-4210 (*1 *2 *3) (-12 (-5 *3 (-1244 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-679 *4)))) (-1631 (*1 *2 *3) (-12 (-5 *3 (-1244 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-679 *4)))) (-3626 (*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-1157 *3)))) (-2989 (*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-1157 *3)))) (-3433 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-121)))) (-2433 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-121)))) (-4177 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-121)))) (-2189 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-121)))) (-2767 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-121)))) (-3384 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-121)))) (-1346 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-121)))) (-4107 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-121)))) (-4370 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-121)))) (-3840 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-121)))) (-1695 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-121)))) (-2919 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-121)))) (-1537 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-121)))) (-1804 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-121)))) (-1580 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-121)))) (-2925 (*1 *1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-558)))) (-3243 (*1 *1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-558)))) (-3550 (*1 *1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-558)))) (-1509 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-558)) (-5 *2 (-634 (-1244 *3))))) (-2265 (*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-558)) (-5 *2 (-1157 *3)))) (-1371 (*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-558)) (-5 *2 (-1157 *3)))) (-3116 (*1 *2) (|partial| -12 (-4 *3 (-558)) (-4 *3 (-172)) (-5 *2 (-2 (|:| |particular| *1) (|:| -3746 (-634 *1)))) (-4 *1 (-369 *3)))) (-1309 (*1 *2) (|partial| -12 (-4 *3 (-558)) (-4 *3 (-172)) (-5 *2 (-2 (|:| |particular| *1) (|:| -3746 (-634 *1)))) (-4 *1 (-369 *3)))) (-2599 (*1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-558)) (-4 *2 (-172)))) (-2593 (*1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-558)) (-4 *2 (-172)))) (-2295 (*1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-558)) (-4 *2 (-172))))) +(-13 (-736 |t#1|) (-10 -8 (-15 -1741 ((-1244 $))) (-15 -3700 ((-917))) (-15 -3295 ((-634 (-953 |t#1|)) (-1244 $))) (-15 -2776 ((-1244 (-679 |t#1|)) (-1244 $))) (-15 -4333 ((-679 |t#1|) $ (-1244 $))) (-15 -3042 ((-679 |t#1|) $ (-1244 $))) (-15 -2889 (|t#1| $)) (-15 -1866 (|t#1| $)) (-15 -3329 (|t#1| $)) (-15 -4409 (|t#1| $)) (-15 -4073 ((-1244 |t#1|) $ (-1244 $))) (-15 -4073 ((-679 |t#1|) (-1244 $) (-1244 $))) (-15 -3498 ($ (-1244 |t#1|) (-1244 $))) (-15 -3898 (|t#1| (-1244 $))) (-15 -3569 (|t#1| (-1244 $))) (-15 -4210 ((-679 |t#1|) (-1244 $))) (-15 -1631 ((-679 |t#1|) (-1244 $))) (-15 -3626 ((-1157 |t#1|) $)) (-15 -2989 ((-1157 |t#1|) $)) (-15 -3433 ((-121))) (-15 -2433 ((-121))) (-15 -4177 ((-121))) (-15 -2189 ((-121))) (-15 -2767 ((-121))) (-15 -3384 ((-121))) (-15 -1346 ((-121))) (-15 -4107 ((-121))) (-15 -4370 ((-121))) (-15 -3840 ((-121))) (-15 -1695 ((-121))) (-15 -2919 ((-121))) (-15 -1537 ((-121))) (-15 -1804 ((-121))) (-15 -1580 ((-121))) (IF (|has| |t#1| (-558)) (PROGN (-15 -2925 ((-3 $ "failed") $)) (-15 -3243 ((-3 $ "failed") $)) (-15 -3550 ((-3 $ "failed") $)) (-15 -1509 ((-634 (-1244 |t#1|)))) (-15 -2265 ((-1157 |t#1|) $)) (-15 -1371 ((-1157 |t#1|) $)) (-15 -3116 ((-3 (-2 (|:| |particular| $) (|:| -3746 (-634 $))) "failed"))) (-15 -1309 ((-3 (-2 (|:| |particular| $) (|:| -3746 (-634 $))) "failed"))) (-15 -2599 ((-3 $ "failed"))) (-15 -2593 ((-3 $ "failed"))) (-15 -2295 ((-3 $ "failed"))) (-6 -4516)) |noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-105) . T) ((-120 |#1| |#1|) . T) ((-137) . T) ((-608 (-850)) . T) ((-637 |#1|) . T) ((-707 |#1|) . T) ((-710) . T) ((-736 |#1|) . T) ((-753) . T) ((-1053 |#1|) . T) ((-1090) . T)) +((-2447 (((-121) $ $) 7)) (-3983 (((-763)) 15)) (-1731 (($) 12)) (-3683 (((-917) $) 13)) (-4487 (((-1143) $) 9)) (-4355 (($ (-917)) 14)) (-4022 (((-1108) $) 10)) (-2745 (((-850) $) 11)) (-1717 (((-121) $ $) 6))) +(((-370) (-1275)) (T -370)) +((-3983 (*1 *2) (-12 (-4 *1 (-370)) (-5 *2 (-763)))) (-4355 (*1 *1 *2) (-12 (-5 *2 (-917)) (-4 *1 (-370)))) (-3683 (*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-917)))) (-1731 (*1 *1) (-4 *1 (-370)))) +(-13 (-1090) (-10 -8 (-15 -3983 ((-763))) (-15 -4355 ($ (-917))) (-15 -3683 ((-917) $)) (-15 -1731 ($)))) +(((-105) . T) ((-608 (-850)) . T) ((-1090) . T)) +((-4255 (((-679 |#2|) (-1244 $)) 40)) (-3498 (($ (-1244 |#2|) (-1244 $)) 35)) (-1709 (((-679 |#2|) $ (-1244 $)) 43)) (-2217 ((|#2| (-1244 $)) 13)) (-4073 (((-1244 |#2|) $ (-1244 $)) NIL) (((-679 |#2|) (-1244 $) (-1244 $)) 25))) +(((-371 |#1| |#2| |#3|) (-10 -8 (-15 -4255 ((-679 |#2|) (-1244 |#1|))) (-15 -2217 (|#2| (-1244 |#1|))) (-15 -3498 (|#1| (-1244 |#2|) (-1244 |#1|))) (-15 -4073 ((-679 |#2|) (-1244 |#1|) (-1244 |#1|))) (-15 -4073 ((-1244 |#2|) |#1| (-1244 |#1|))) (-15 -1709 ((-679 |#2|) |#1| (-1244 |#1|)))) (-372 |#2| |#3|) (-172) (-1219 |#2|)) (T -371)) +NIL +(-10 -8 (-15 -4255 ((-679 |#2|) (-1244 |#1|))) (-15 -2217 (|#2| (-1244 |#1|))) (-15 -3498 (|#1| (-1244 |#2|) (-1244 |#1|))) (-15 -4073 ((-679 |#2|) (-1244 |#1|) (-1244 |#1|))) (-15 -4073 ((-1244 |#2|) |#1| (-1244 |#1|))) (-15 -1709 ((-679 |#2|) |#1| (-1244 |#1|)))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-4255 (((-679 |#1|) (-1244 $)) 44)) (-1932 ((|#1| $) 50)) (-3134 (((-3 $ "failed") $ $) 18)) (-2671 (($) 16 T CONST)) (-3498 (($ (-1244 |#1|) (-1244 $)) 46)) (-1709 (((-679 |#1|) $ (-1244 $)) 51)) (-2925 (((-3 $ "failed") $) 33)) (-3700 (((-917)) 52)) (-2735 (((-121) $) 30)) (-2657 ((|#1| $) 49)) (-2045 ((|#2| $) 42 (|has| |#1| (-365)))) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-2217 ((|#1| (-1244 $)) 45)) (-4073 (((-1244 |#1|) $ (-1244 $)) 48) (((-679 |#1|) (-1244 $) (-1244 $)) 47)) (-2745 (((-850) $) 11) (($ (-568)) 27) (($ |#1|) 36)) (-4371 (((-3 $ "failed") $) 41 (|has| |#1| (-148)))) (-2678 ((|#2| $) 43)) (-4078 (((-763)) 28)) (-1887 (($ $ (-917)) 25) (($ $ (-763)) 32)) (-3056 (($) 17 T CONST)) (-1556 (($) 29 T CONST)) (-1717 (((-121) $ $) 6)) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 24) (($ $ (-763)) 31)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 23) (($ $ |#1|) 38) (($ |#1| $) 37))) +(((-372 |#1| |#2|) (-1275) (-172) (-1219 |t#1|)) (T -372)) +((-3700 (*1 *2) (-12 (-4 *1 (-372 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1219 *3)) (-5 *2 (-917)))) (-1709 (*1 *2 *1 *3) (-12 (-5 *3 (-1244 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1219 *4)) (-5 *2 (-679 *4)))) (-1932 (*1 *2 *1) (-12 (-4 *1 (-372 *2 *3)) (-4 *3 (-1219 *2)) (-4 *2 (-172)))) (-2657 (*1 *2 *1) (-12 (-4 *1 (-372 *2 *3)) (-4 *3 (-1219 *2)) (-4 *2 (-172)))) (-4073 (*1 *2 *1 *3) (-12 (-5 *3 (-1244 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1219 *4)) (-5 *2 (-1244 *4)))) (-4073 (*1 *2 *3 *3) (-12 (-5 *3 (-1244 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1219 *4)) (-5 *2 (-679 *4)))) (-3498 (*1 *1 *2 *3) (-12 (-5 *2 (-1244 *4)) (-5 *3 (-1244 *1)) (-4 *4 (-172)) (-4 *1 (-372 *4 *5)) (-4 *5 (-1219 *4)))) (-2217 (*1 *2 *3) (-12 (-5 *3 (-1244 *1)) (-4 *1 (-372 *2 *4)) (-4 *4 (-1219 *2)) (-4 *2 (-172)))) (-4255 (*1 *2 *3) (-12 (-5 *3 (-1244 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1219 *4)) (-5 *2 (-679 *4)))) (-2678 (*1 *2 *1) (-12 (-4 *1 (-372 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1219 *3)))) (-2045 (*1 *2 *1) (-12 (-4 *1 (-372 *3 *2)) (-4 *3 (-172)) (-4 *3 (-365)) (-4 *2 (-1219 *3))))) +(-13 (-43 |t#1|) (-10 -8 (-15 -3700 ((-917))) (-15 -1709 ((-679 |t#1|) $ (-1244 $))) (-15 -1932 (|t#1| $)) (-15 -2657 (|t#1| $)) (-15 -4073 ((-1244 |t#1|) $ (-1244 $))) (-15 -4073 ((-679 |t#1|) (-1244 $) (-1244 $))) (-15 -3498 ($ (-1244 |t#1|) (-1244 $))) (-15 -2217 (|t#1| (-1244 $))) (-15 -4255 ((-679 |t#1|) (-1244 $))) (-15 -2678 (|t#2| $)) (IF (|has| |t#1| (-365)) (-15 -2045 (|t#2| $)) |noBranch|) (IF (|has| |t#1| (-150)) (-6 (-150)) |noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-43 |#1|) . T) ((-105) . T) ((-120 |#1| |#1|) . T) ((-137) . T) ((-148) |has| |#1| (-148)) ((-150) |has| |#1| (-150)) ((-608 (-850)) . T) ((-637 |#1|) . T) ((-637 $) . T) ((-707 |#1|) . T) ((-716) . T) ((-1053 |#1|) . T) ((-1047) . T) ((-1054) . T) ((-1102) . T) ((-1090) . T)) +((-2512 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-3092 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-2795 ((|#4| (-1 |#3| |#1|) |#2|) 21))) +(((-373 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2795 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3092 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2512 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1195) (-375 |#1|) (-1195) (-375 |#3|)) (T -373)) +((-2512 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1195)) (-4 *5 (-1195)) (-4 *2 (-375 *5)) (-5 *1 (-373 *6 *4 *5 *2)) (-4 *4 (-375 *6)))) (-3092 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1195)) (-4 *2 (-1195)) (-5 *1 (-373 *5 *4 *2 *6)) (-4 *4 (-375 *5)) (-4 *6 (-375 *2)))) (-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1195)) (-4 *6 (-1195)) (-4 *2 (-375 *6)) (-5 *1 (-373 *5 *4 *6 *2)) (-4 *4 (-375 *5))))) +(-10 -7 (-15 -2795 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3092 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2512 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-2016 (((-121) (-1 (-121) |#2| |#2|) $) NIL) (((-121) $) 18)) (-3908 (($ (-1 (-121) |#2| |#2|) $) NIL) (($ $) 28)) (-3644 (($ (-1 (-121) |#2| |#2|) $) 27) (($ $) 22)) (-3943 (($ $) 25)) (-2764 (((-568) (-1 (-121) |#2|) $) NIL) (((-568) |#2| $) 11) (((-568) |#2| $ (-568)) NIL)) (-1347 (($ (-1 (-121) |#2| |#2|) $ $) NIL) (($ $ $) 20))) +(((-374 |#1| |#2|) (-10 -8 (-15 -3908 (|#1| |#1|)) (-15 -3908 (|#1| (-1 (-121) |#2| |#2|) |#1|)) (-15 -2016 ((-121) |#1|)) (-15 -3644 (|#1| |#1|)) (-15 -1347 (|#1| |#1| |#1|)) (-15 -2764 ((-568) |#2| |#1| (-568))) (-15 -2764 ((-568) |#2| |#1|)) (-15 -2764 ((-568) (-1 (-121) |#2|) |#1|)) (-15 -2016 ((-121) (-1 (-121) |#2| |#2|) |#1|)) (-15 -3644 (|#1| (-1 (-121) |#2| |#2|) |#1|)) (-15 -3943 (|#1| |#1|)) (-15 -1347 (|#1| (-1 (-121) |#2| |#2|) |#1| |#1|))) (-375 |#2|) (-1195)) (T -374)) +NIL +(-10 -8 (-15 -3908 (|#1| |#1|)) (-15 -3908 (|#1| (-1 (-121) |#2| |#2|) |#1|)) (-15 -2016 ((-121) |#1|)) (-15 -3644 (|#1| |#1|)) (-15 -1347 (|#1| |#1| |#1|)) (-15 -2764 ((-568) |#2| |#1| (-568))) (-15 -2764 ((-568) |#2| |#1|)) (-15 -2764 ((-568) (-1 (-121) |#2|) |#1|)) (-15 -2016 ((-121) (-1 (-121) |#2| |#2|) |#1|)) (-15 -3644 (|#1| (-1 (-121) |#2| |#2|) |#1|)) (-15 -3943 (|#1| |#1|)) (-15 -1347 (|#1| (-1 (-121) |#2| |#2|) |#1| |#1|))) +((-2447 (((-121) $ $) 18 (|has| |#1| (-1090)))) (-1868 (((-1249) $ (-568) (-568)) 37 (|has| $ (-6 -4520)))) (-2016 (((-121) (-1 (-121) |#1| |#1|) $) 91) (((-121) $) 85 (|has| |#1| (-842)))) (-3908 (($ (-1 (-121) |#1| |#1|) $) 82 (|has| $ (-6 -4520))) (($ $) 81 (-12 (|has| |#1| (-842)) (|has| $ (-6 -4520))))) (-3644 (($ (-1 (-121) |#1| |#1|) $) 92) (($ $) 86 (|has| |#1| (-842)))) (-2510 (((-121) $ (-763)) 8)) (-2436 ((|#1| $ (-568) |#1|) 49 (|has| $ (-6 -4520))) ((|#1| $ (-1210 (-568)) |#1|) 53 (|has| $ (-6 -4520)))) (-2801 (($ (-1 (-121) |#1|) $) 70 (|has| $ (-6 -4519)))) (-2671 (($) 7 T CONST)) (-1578 (($ $) 83 (|has| $ (-6 -4520)))) (-3943 (($ $) 93)) (-3924 (($ $) 73 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-4328 (($ |#1| $) 72 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519)))) (($ (-1 (-121) |#1|) $) 69 (|has| $ (-6 -4519)))) (-3092 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 71 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 68 (|has| $ (-6 -4519))) ((|#1| (-1 |#1| |#1| |#1|) $) 67 (|has| $ (-6 -4519)))) (-3989 ((|#1| $ (-568) |#1|) 50 (|has| $ (-6 -4520)))) (-2602 ((|#1| $ (-568)) 48)) (-2764 (((-568) (-1 (-121) |#1|) $) 90) (((-568) |#1| $) 89 (|has| |#1| (-1090))) (((-568) |#1| $ (-568)) 88 (|has| |#1| (-1090)))) (-4360 (((-634 |#1|) $) 30 (|has| $ (-6 -4519)))) (-1849 (($ (-763) |#1|) 64)) (-1737 (((-121) $ (-763)) 9)) (-1881 (((-568) $) 40 (|has| (-568) (-842)))) (-2521 (($ $ $) 80 (|has| |#1| (-842)))) (-1347 (($ (-1 (-121) |#1| |#1|) $ $) 94) (($ $ $) 87 (|has| |#1| (-842)))) (-1979 (((-634 |#1|) $) 29 (|has| $ (-6 -4519)))) (-3109 (((-121) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-2223 (((-568) $) 41 (|has| (-568) (-842)))) (-3268 (($ $ $) 79 (|has| |#1| (-842)))) (-3674 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 59)) (-2166 (((-121) $ (-763)) 10)) (-4487 (((-1143) $) 22 (|has| |#1| (-1090)))) (-4122 (($ |#1| $ (-568)) 55) (($ $ $ (-568)) 54)) (-4174 (((-634 (-568)) $) 43)) (-3578 (((-121) (-568) $) 44)) (-4022 (((-1108) $) 21 (|has| |#1| (-1090)))) (-3876 ((|#1| $) 39 (|has| (-568) (-842)))) (-3775 (((-3 |#1| "failed") (-1 (-121) |#1|) $) 66)) (-3724 (($ $ |#1|) 38 (|has| $ (-6 -4520)))) (-1387 (((-121) (-1 (-121) |#1|) $) 32 (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-634 |#1|) (-634 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))))) (-3171 (((-121) $ $) 14)) (-4467 (((-121) |#1| $) 42 (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-2041 (((-634 |#1|) $) 45)) (-3084 (((-121) $) 11)) (-3248 (($) 12)) (-2779 ((|#1| $ (-568) |#1|) 47) ((|#1| $ (-568)) 46) (($ $ (-1210 (-568))) 58)) (-2826 (($ $ (-568)) 57) (($ $ (-1210 (-568))) 56)) (-4168 (((-763) (-1 (-121) |#1|) $) 31 (|has| $ (-6 -4519))) (((-763) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-2256 (($ $ $ (-568)) 84 (|has| $ (-6 -4520)))) (-3863 (($ $) 13)) (-4278 (((-541) $) 74 (|has| |#1| (-609 (-541))))) (-4287 (($ (-634 |#1|)) 65)) (-2768 (($ $ |#1|) 63) (($ |#1| $) 62) (($ $ $) 61) (($ (-634 $)) 60)) (-2745 (((-850) $) 20 (|has| |#1| (-1090)))) (-1319 (((-121) (-1 (-121) |#1|) $) 33 (|has| $ (-6 -4519)))) (-1751 (((-121) $ $) 77 (|has| |#1| (-842)))) (-1738 (((-121) $ $) 76 (|has| |#1| (-842)))) (-1717 (((-121) $ $) 19 (|has| |#1| (-1090)))) (-1745 (((-121) $ $) 78 (|has| |#1| (-842)))) (-1732 (((-121) $ $) 75 (|has| |#1| (-842)))) (-1697 (((-763) $) 6 (|has| $ (-6 -4519))))) +(((-375 |#1|) (-1275) (-1195)) (T -375)) +((-1347 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-121) *3 *3)) (-4 *1 (-375 *3)) (-4 *3 (-1195)))) (-3943 (*1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1195)))) (-3644 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-121) *3 *3)) (-4 *1 (-375 *3)) (-4 *3 (-1195)))) (-2016 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4 *4)) (-4 *1 (-375 *4)) (-4 *4 (-1195)) (-5 *2 (-121)))) (-2764 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (-4 *1 (-375 *4)) (-4 *4 (-1195)) (-5 *2 (-568)))) (-2764 (*1 *2 *3 *1) (-12 (-4 *1 (-375 *3)) (-4 *3 (-1195)) (-4 *3 (-1090)) (-5 *2 (-568)))) (-2764 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-568)) (-4 *1 (-375 *3)) (-4 *3 (-1195)) (-4 *3 (-1090)))) (-1347 (*1 *1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1195)) (-4 *2 (-842)))) (-3644 (*1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1195)) (-4 *2 (-842)))) (-2016 (*1 *2 *1) (-12 (-4 *1 (-375 *3)) (-4 *3 (-1195)) (-4 *3 (-842)) (-5 *2 (-121)))) (-2256 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-568)) (|has| *1 (-6 -4520)) (-4 *1 (-375 *3)) (-4 *3 (-1195)))) (-1578 (*1 *1 *1) (-12 (|has| *1 (-6 -4520)) (-4 *1 (-375 *2)) (-4 *2 (-1195)))) (-3908 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-121) *3 *3)) (|has| *1 (-6 -4520)) (-4 *1 (-375 *3)) (-4 *3 (-1195)))) (-3908 (*1 *1 *1) (-12 (|has| *1 (-6 -4520)) (-4 *1 (-375 *2)) (-4 *2 (-1195)) (-4 *2 (-842))))) +(-13 (-640 |t#1|) (-10 -8 (-6 -4519) (-15 -1347 ($ (-1 (-121) |t#1| |t#1|) $ $)) (-15 -3943 ($ $)) (-15 -3644 ($ (-1 (-121) |t#1| |t#1|) $)) (-15 -2016 ((-121) (-1 (-121) |t#1| |t#1|) $)) (-15 -2764 ((-568) (-1 (-121) |t#1|) $)) (IF (|has| |t#1| (-1090)) (PROGN (-15 -2764 ((-568) |t#1| $)) (-15 -2764 ((-568) |t#1| $ (-568)))) |noBranch|) (IF (|has| |t#1| (-842)) (PROGN (-6 (-842)) (-15 -1347 ($ $ $)) (-15 -3644 ($ $)) (-15 -2016 ((-121) $))) |noBranch|) (IF (|has| $ (-6 -4520)) (PROGN (-15 -2256 ($ $ $ (-568))) (-15 -1578 ($ $)) (-15 -3908 ($ (-1 (-121) |t#1| |t#1|) $)) (IF (|has| |t#1| (-842)) (-15 -3908 ($ $)) |noBranch|)) |noBranch|))) +(((-39) . T) ((-105) -2198 (|has| |#1| (-1090)) (|has| |#1| (-842))) ((-608 (-850)) -2198 (|has| |#1| (-1090)) (|has| |#1| (-842))) ((-154 |#1|) . T) ((-609 (-541)) |has| |#1| (-609 (-541))) ((-281 (-568) |#1|) . T) ((-283 (-568) |#1|) . T) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))) ((-499 |#1|) . T) ((-601 (-568) |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))) ((-640 |#1|) . T) ((-842) |has| |#1| (-842)) ((-1090) -2198 (|has| |#1| (-1090)) (|has| |#1| (-842))) ((-1195) . T)) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-3595 (((-634 |#1|) $) 29)) (-2821 (($ $ (-763)) 30)) (-3134 (((-3 $ "failed") $ $) 18)) (-2671 (($) 16 T CONST)) (-2628 (((-1266 |#1| |#2|) (-1266 |#1| |#2|) $) 33)) (-2407 (($ $) 31)) (-2532 (((-1266 |#1| |#2|) (-1266 |#1| |#2|) $) 34)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-1339 (($ $ |#1| $) 28) (($ $ (-634 |#1|) (-634 $)) 27)) (-3206 (((-763) $) 35)) (-4287 (($ $ $) 26)) (-2745 (((-850) $) 11) (($ |#1|) 38) (((-1257 |#1| |#2|) $) 37) (((-1266 |#1| |#2|) $) 36)) (-2348 ((|#2| (-1266 |#1| |#2|) $) 39)) (-3056 (($) 17 T CONST)) (-3903 (($ (-663 |#1|)) 32)) (-1717 (((-121) $ $) 6)) (-1779 (($ $ |#2|) 25 (|has| |#2| (-365)))) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ |#2| $) 22) (($ $ |#2|) 24))) +(((-376 |#1| |#2|) (-1275) (-842) (-172)) (T -376)) +((-2348 (*1 *2 *3 *1) (-12 (-5 *3 (-1266 *4 *2)) (-4 *1 (-376 *4 *2)) (-4 *4 (-842)) (-4 *2 (-172)))) (-2745 (*1 *1 *2) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-842)) (-4 *3 (-172)))) (-2745 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-842)) (-4 *4 (-172)) (-5 *2 (-1257 *3 *4)))) (-2745 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-842)) (-4 *4 (-172)) (-5 *2 (-1266 *3 *4)))) (-3206 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-842)) (-4 *4 (-172)) (-5 *2 (-763)))) (-2532 (*1 *2 *2 *1) (-12 (-5 *2 (-1266 *3 *4)) (-4 *1 (-376 *3 *4)) (-4 *3 (-842)) (-4 *4 (-172)))) (-2628 (*1 *2 *2 *1) (-12 (-5 *2 (-1266 *3 *4)) (-4 *1 (-376 *3 *4)) (-4 *3 (-842)) (-4 *4 (-172)))) (-3903 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-842)) (-4 *1 (-376 *3 *4)) (-4 *4 (-172)))) (-2407 (*1 *1 *1) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-842)) (-4 *3 (-172)))) (-2821 (*1 *1 *1 *2) (-12 (-5 *2 (-763)) (-4 *1 (-376 *3 *4)) (-4 *3 (-842)) (-4 *4 (-172)))) (-3595 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-842)) (-4 *4 (-172)) (-5 *2 (-634 *3)))) (-1339 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-842)) (-4 *3 (-172)))) (-1339 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-634 *4)) (-5 *3 (-634 *1)) (-4 *1 (-376 *4 *5)) (-4 *4 (-842)) (-4 *5 (-172))))) +(-13 (-625 |t#2|) (-10 -8 (-15 -2348 (|t#2| (-1266 |t#1| |t#2|) $)) (-15 -2745 ($ |t#1|)) (-15 -2745 ((-1257 |t#1| |t#2|) $)) (-15 -2745 ((-1266 |t#1| |t#2|) $)) (-15 -3206 ((-763) $)) (-15 -2532 ((-1266 |t#1| |t#2|) (-1266 |t#1| |t#2|) $)) (-15 -2628 ((-1266 |t#1| |t#2|) (-1266 |t#1| |t#2|) $)) (-15 -3903 ($ (-663 |t#1|))) (-15 -2407 ($ $)) (-15 -2821 ($ $ (-763))) (-15 -3595 ((-634 |t#1|) $)) (-15 -1339 ($ $ |t#1| $)) (-15 -1339 ($ $ (-634 |t#1|) (-634 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-105) . T) ((-120 |#2| |#2|) . T) ((-137) . T) ((-608 (-850)) . T) ((-637 |#2|) . T) ((-625 |#2|) . T) ((-707 |#2|) . T) ((-1053 |#2|) . T) ((-1090) . T)) +((-4001 ((|#2| (-1 (-121) |#1| |#1|) |#2|) 22)) (-3376 ((|#2| (-1 (-121) |#1| |#1|) |#2|) 12)) (-2362 ((|#2| (-1 (-121) |#1| |#1|) |#2|) 21))) +(((-377 |#1| |#2|) (-10 -7 (-15 -3376 (|#2| (-1 (-121) |#1| |#1|) |#2|)) (-15 -2362 (|#2| (-1 (-121) |#1| |#1|) |#2|)) (-15 -4001 (|#2| (-1 (-121) |#1| |#1|) |#2|))) (-1195) (-13 (-375 |#1|) (-10 -7 (-6 -4520)))) (T -377)) +((-4001 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-121) *4 *4)) (-4 *4 (-1195)) (-5 *1 (-377 *4 *2)) (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4520)))))) (-2362 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-121) *4 *4)) (-4 *4 (-1195)) (-5 *1 (-377 *4 *2)) (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4520)))))) (-3376 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-121) *4 *4)) (-4 *4 (-1195)) (-5 *1 (-377 *4 *2)) (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4520))))))) +(-10 -7 (-15 -3376 (|#2| (-1 (-121) |#1| |#1|) |#2|)) (-15 -2362 (|#2| (-1 (-121) |#1| |#1|) |#2|)) (-15 -4001 (|#2| (-1 (-121) |#1| |#1|) |#2|))) +((-3164 (((-679 |#2|) (-679 $)) NIL) (((-2 (|:| -2928 (-679 |#2|)) (|:| |vec| (-1244 |#2|))) (-679 $) (-1244 $)) NIL) (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) 19) (((-679 (-568)) (-679 $)) 13))) +(((-378 |#1| |#2|) (-10 -8 (-15 -3164 ((-679 (-568)) (-679 |#1|))) (-15 -3164 ((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 |#1|) (-1244 |#1|))) (-15 -3164 ((-2 (|:| -2928 (-679 |#2|)) (|:| |vec| (-1244 |#2|))) (-679 |#1|) (-1244 |#1|))) (-15 -3164 ((-679 |#2|) (-679 |#1|)))) (-379 |#2|) (-1047)) (T -378)) +NIL +(-10 -8 (-15 -3164 ((-679 (-568)) (-679 |#1|))) (-15 -3164 ((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 |#1|) (-1244 |#1|))) (-15 -3164 ((-2 (|:| -2928 (-679 |#2|)) (|:| |vec| (-1244 |#2|))) (-679 |#1|) (-1244 |#1|))) (-15 -3164 ((-679 |#2|) (-679 |#1|)))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-3134 (((-3 $ "failed") $ $) 18)) (-2671 (($) 16 T CONST)) (-3164 (((-679 |#1|) (-679 $)) 35) (((-2 (|:| -2928 (-679 |#1|)) (|:| |vec| (-1244 |#1|))) (-679 $) (-1244 $)) 34) (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) 38 (|has| |#1| (-630 (-568)))) (((-679 (-568)) (-679 $)) 37 (|has| |#1| (-630 (-568))))) (-2925 (((-3 $ "failed") $) 33)) (-2735 (((-121) $) 30)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-2745 (((-850) $) 11) (($ (-568)) 27)) (-4078 (((-763)) 28)) (-1887 (($ $ (-917)) 25) (($ $ (-763)) 32)) (-3056 (($) 17 T CONST)) (-1556 (($) 29 T CONST)) (-1717 (((-121) $ $) 6)) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 24) (($ $ (-763)) 31)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 23))) +(((-379 |#1|) (-1275) (-1047)) (T -379)) +NIL +(-13 (-630 |t#1|) (-10 -7 (IF (|has| |t#1| (-630 (-568))) (-6 (-630 (-568))) |noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-105) . T) ((-137) . T) ((-608 (-850)) . T) ((-637 $) . T) ((-630 (-568)) |has| |#1| (-630 (-568))) ((-630 |#1|) . T) ((-716) . T) ((-1047) . T) ((-1054) . T) ((-1102) . T) ((-1090) . T)) +((-3881 (((-634 (-288 (-953 (-169 |#1|)))) (-288 (-409 (-953 (-169 (-568))))) |#1|) 52) (((-634 (-288 (-953 (-169 |#1|)))) (-409 (-953 (-169 (-568)))) |#1|) 51) (((-634 (-634 (-288 (-953 (-169 |#1|))))) (-634 (-288 (-409 (-953 (-169 (-568)))))) |#1|) 47) (((-634 (-634 (-288 (-953 (-169 |#1|))))) (-634 (-409 (-953 (-169 (-568))))) |#1|) 40)) (-3471 (((-634 (-634 (-169 |#1|))) (-634 (-409 (-953 (-169 (-568))))) (-634 (-1161)) |#1|) 28) (((-634 (-169 |#1|)) (-409 (-953 (-169 (-568)))) |#1|) 15))) +(((-380 |#1|) (-10 -7 (-15 -3881 ((-634 (-634 (-288 (-953 (-169 |#1|))))) (-634 (-409 (-953 (-169 (-568))))) |#1|)) (-15 -3881 ((-634 (-634 (-288 (-953 (-169 |#1|))))) (-634 (-288 (-409 (-953 (-169 (-568)))))) |#1|)) (-15 -3881 ((-634 (-288 (-953 (-169 |#1|)))) (-409 (-953 (-169 (-568)))) |#1|)) (-15 -3881 ((-634 (-288 (-953 (-169 |#1|)))) (-288 (-409 (-953 (-169 (-568))))) |#1|)) (-15 -3471 ((-634 (-169 |#1|)) (-409 (-953 (-169 (-568)))) |#1|)) (-15 -3471 ((-634 (-634 (-169 |#1|))) (-634 (-409 (-953 (-169 (-568))))) (-634 (-1161)) |#1|))) (-13 (-365) (-840))) (T -380)) +((-3471 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-634 (-409 (-953 (-169 (-568)))))) (-5 *4 (-634 (-1161))) (-5 *2 (-634 (-634 (-169 *5)))) (-5 *1 (-380 *5)) (-4 *5 (-13 (-365) (-840))))) (-3471 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-953 (-169 (-568))))) (-5 *2 (-634 (-169 *4))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-365) (-840))))) (-3881 (*1 *2 *3 *4) (-12 (-5 *3 (-288 (-409 (-953 (-169 (-568)))))) (-5 *2 (-634 (-288 (-953 (-169 *4))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-365) (-840))))) (-3881 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-953 (-169 (-568))))) (-5 *2 (-634 (-288 (-953 (-169 *4))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-365) (-840))))) (-3881 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-288 (-409 (-953 (-169 (-568))))))) (-5 *2 (-634 (-634 (-288 (-953 (-169 *4)))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-365) (-840))))) (-3881 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-953 (-169 (-568)))))) (-5 *2 (-634 (-634 (-288 (-953 (-169 *4)))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-365) (-840)))))) +(-10 -7 (-15 -3881 ((-634 (-634 (-288 (-953 (-169 |#1|))))) (-634 (-409 (-953 (-169 (-568))))) |#1|)) (-15 -3881 ((-634 (-634 (-288 (-953 (-169 |#1|))))) (-634 (-288 (-409 (-953 (-169 (-568)))))) |#1|)) (-15 -3881 ((-634 (-288 (-953 (-169 |#1|)))) (-409 (-953 (-169 (-568)))) |#1|)) (-15 -3881 ((-634 (-288 (-953 (-169 |#1|)))) (-288 (-409 (-953 (-169 (-568))))) |#1|)) (-15 -3471 ((-634 (-169 |#1|)) (-409 (-953 (-169 (-568)))) |#1|)) (-15 -3471 ((-634 (-634 (-169 |#1|))) (-634 (-409 (-953 (-169 (-568))))) (-634 (-1161)) |#1|))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) 33)) (-1492 (((-568) $) 55)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL)) (-2227 (($ $) NIL)) (-1573 (((-121) $) NIL)) (-2617 (($ $) 109)) (-1982 (($ $) 81)) (-1933 (($ $) 70)) (-3134 (((-3 $ "failed") $ $) NIL)) (-4305 (($ $) NIL)) (-1678 (((-420 $) $) NIL)) (-1902 (($ $) 44)) (-1497 (((-121) $ $) NIL)) (-1974 (($ $) 79)) (-2786 (($ $) 68)) (-3662 (((-568) $) 63)) (-1870 (($ $ (-568)) 62)) (-1990 (($ $) NIL)) (-1941 (($ $) NIL)) (-2671 (($) NIL T CONST)) (-3047 (($ $) 111)) (-3666 (((-3 (-568) "failed") $) 187) (((-3 (-409 (-568)) "failed") $) 183)) (-2854 (((-568) $) 185) (((-409 (-568)) $) 181)) (-2401 (($ $ $) NIL)) (-3670 (((-568) $ $) 101)) (-2925 (((-3 $ "failed") $) 113)) (-4036 (((-409 (-568)) $ (-763)) 188) (((-409 (-568)) $ (-763) (-763)) 180)) (-2412 (($ $ $) NIL)) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) NIL)) (-3927 (((-121) $) NIL)) (-3359 (((-917)) 72) (((-917) (-917)) 97 (|has| $ (-6 -4510)))) (-2033 (((-121) $) 105)) (-1897 (($) 40)) (-4410 (((-884 (-381) $) $ (-887 (-381)) (-884 (-381) $)) NIL)) (-3958 (((-1249) (-763)) 150)) (-2761 (((-1249)) 155) (((-1249) (-763)) 156)) (-2470 (((-1249)) 157) (((-1249) (-763)) 158)) (-1441 (((-1249)) 153) (((-1249) (-763)) 154)) (-4477 (((-568) $) 58)) (-2735 (((-121) $) 103)) (-4044 (($ $ (-568)) NIL)) (-3628 (($ $) 48)) (-2657 (($ $) NIL)) (-2245 (((-121) $) 35)) (-3562 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-2521 (($ $ $) NIL) (($) NIL (-12 (-3044 (|has| $ (-6 -4502))) (-3044 (|has| $ (-6 -4510)))))) (-3268 (($ $ $) NIL) (($) 98 (-12 (-3044 (|has| $ (-6 -4502))) (-3044 (|has| $ (-6 -4510)))))) (-3544 (((-568) $) 17)) (-4299 (($) 86) (($ $) 91)) (-1907 (($) 90) (($ $) 92)) (-4416 (($ $) 82)) (-2495 (($ $ $) NIL) (($ (-634 $)) NIL)) (-4487 (((-1143) $) NIL)) (-2081 (($ $) 115)) (-2719 (((-917) (-568)) 43 (|has| $ (-6 -4510)))) (-4022 (((-1108) $) NIL)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL)) (-2721 (($ $ $) NIL) (($ (-634 $)) NIL)) (-3880 (($ $) 53)) (-1519 (($ $) 108)) (-3768 (($ (-568) (-568)) 106) (($ (-568) (-568) (-917)) 107)) (-3848 (((-420 $) $) NIL)) (-4497 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2595 (((-3 $ "failed") $ $) NIL)) (-2344 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-3438 (((-568) $) 19)) (-2078 (($) 93)) (-1892 (($ $) 78)) (-2709 (((-763) $) NIL)) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL)) (-3396 (((-917)) 99) (((-917) (-917)) 100 (|has| $ (-6 -4510)))) (-4189 (($ $ (-763)) NIL) (($ $) 114)) (-2573 (((-917) (-568)) 47 (|has| $ (-6 -4510)))) (-1994 (($ $) NIL)) (-1945 (($ $) NIL)) (-1986 (($ $) NIL)) (-1937 (($ $) NIL)) (-1978 (($ $) 80)) (-2790 (($ $) 69)) (-4278 (((-381) $) 173) (((-215) $) 175) (((-887 (-381)) $) NIL) (((-1143) $) 160) (((-541) $) 171) (($ (-215)) 179)) (-2745 (((-850) $) 162) (($ (-568)) 184) (($ $) NIL) (($ (-409 (-568))) NIL) (($ (-568)) 184) (($ (-409 (-568))) NIL) (((-215) $) 176)) (-4078 (((-763)) NIL)) (-2285 (($ $) 110)) (-4042 (((-917)) 54) (((-917) (-917)) 65 (|has| $ (-6 -4510)))) (-1461 (((-917)) 102)) (-2006 (($ $) 85)) (-1958 (($ $) 46) (($ $ $) 52)) (-1826 (((-121) $ $) NIL)) (-1998 (($ $) 83)) (-1949 (($ $) 37)) (-2014 (($ $) NIL)) (-1966 (($ $) NIL)) (-4023 (($ $) NIL)) (-1970 (($ $) NIL)) (-2010 (($ $) NIL)) (-1962 (($ $) NIL)) (-2002 (($ $) 84)) (-1953 (($ $) 49)) (-2897 (($ $) 51)) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL)) (-3056 (($) 34 T CONST)) (-1556 (($) 38 T CONST)) (-3754 (((-1143) $) 27) (((-1143) $ (-121)) 29) (((-1249) (-817) $) 30) (((-1249) (-817) $ (-121)) 31)) (-3190 (($ $ (-763)) NIL) (($ $) NIL)) (-1751 (((-121) $ $) NIL)) (-1738 (((-121) $ $) NIL)) (-1717 (((-121) $ $) 39)) (-1745 (((-121) $ $) NIL)) (-1732 (((-121) $ $) 42)) (-1779 (($ $ $) 45) (($ $ (-568)) 41)) (-1773 (($ $) 36) (($ $ $) 50)) (-1767 (($ $ $) 61)) (** (($ $ (-917)) 66) (($ $ (-763)) NIL) (($ $ (-568)) 87) (($ $ (-409 (-568))) 124) (($ $ $) 116)) (* (($ (-917) $) 64) (($ (-763) $) NIL) (($ (-568) $) 67) (($ $ $) 60) (($ $ (-409 (-568))) NIL) (($ (-409 (-568)) $) NIL))) +(((-381) (-13 (-406) (-225) (-609 (-1143)) (-823) (-608 (-215)) (-1181) (-609 (-541)) (-10 -8 (-15 -1779 ($ $ (-568))) (-15 ** ($ $ $)) (-15 -3628 ($ $)) (-15 -3670 ((-568) $ $)) (-15 -1870 ($ $ (-568))) (-15 -4036 ((-409 (-568)) $ (-763))) (-15 -4036 ((-409 (-568)) $ (-763) (-763))) (-15 -4299 ($)) (-15 -1907 ($)) (-15 -2078 ($)) (-15 -1958 ($ $ $)) (-15 -4299 ($ $)) (-15 -1907 ($ $)) (-15 -4278 ($ (-215))) (-15 -2470 ((-1249))) (-15 -2470 ((-1249) (-763))) (-15 -1441 ((-1249))) (-15 -1441 ((-1249) (-763))) (-15 -2761 ((-1249))) (-15 -2761 ((-1249) (-763))) (-15 -3958 ((-1249) (-763))) (-6 -4510) (-6 -4502)))) (T -381)) +((** (*1 *1 *1 *1) (-5 *1 (-381))) (-1779 (*1 *1 *1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-381)))) (-3628 (*1 *1 *1) (-5 *1 (-381))) (-3670 (*1 *2 *1 *1) (-12 (-5 *2 (-568)) (-5 *1 (-381)))) (-1870 (*1 *1 *1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-381)))) (-4036 (*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-5 *2 (-409 (-568))) (-5 *1 (-381)))) (-4036 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-763)) (-5 *2 (-409 (-568))) (-5 *1 (-381)))) (-4299 (*1 *1) (-5 *1 (-381))) (-1907 (*1 *1) (-5 *1 (-381))) (-2078 (*1 *1) (-5 *1 (-381))) (-1958 (*1 *1 *1 *1) (-5 *1 (-381))) (-4299 (*1 *1 *1) (-5 *1 (-381))) (-1907 (*1 *1 *1) (-5 *1 (-381))) (-4278 (*1 *1 *2) (-12 (-5 *2 (-215)) (-5 *1 (-381)))) (-2470 (*1 *2) (-12 (-5 *2 (-1249)) (-5 *1 (-381)))) (-2470 (*1 *2 *3) (-12 (-5 *3 (-763)) (-5 *2 (-1249)) (-5 *1 (-381)))) (-1441 (*1 *2) (-12 (-5 *2 (-1249)) (-5 *1 (-381)))) (-1441 (*1 *2 *3) (-12 (-5 *3 (-763)) (-5 *2 (-1249)) (-5 *1 (-381)))) (-2761 (*1 *2) (-12 (-5 *2 (-1249)) (-5 *1 (-381)))) (-2761 (*1 *2 *3) (-12 (-5 *3 (-763)) (-5 *2 (-1249)) (-5 *1 (-381)))) (-3958 (*1 *2 *3) (-12 (-5 *3 (-763)) (-5 *2 (-1249)) (-5 *1 (-381))))) +(-13 (-406) (-225) (-609 (-1143)) (-823) (-608 (-215)) (-1181) (-609 (-541)) (-10 -8 (-15 -1779 ($ $ (-568))) (-15 ** ($ $ $)) (-15 -3628 ($ $)) (-15 -3670 ((-568) $ $)) (-15 -1870 ($ $ (-568))) (-15 -4036 ((-409 (-568)) $ (-763))) (-15 -4036 ((-409 (-568)) $ (-763) (-763))) (-15 -4299 ($)) (-15 -1907 ($)) (-15 -2078 ($)) (-15 -1958 ($ $ $)) (-15 -4299 ($ $)) (-15 -1907 ($ $)) (-15 -4278 ($ (-215))) (-15 -2470 ((-1249))) (-15 -2470 ((-1249) (-763))) (-15 -1441 ((-1249))) (-15 -1441 ((-1249) (-763))) (-15 -2761 ((-1249))) (-15 -2761 ((-1249) (-763))) (-15 -3958 ((-1249) (-763))) (-6 -4510) (-6 -4502))) +((-4351 (((-634 (-288 (-953 |#1|))) (-288 (-409 (-953 (-568)))) |#1|) 47) (((-634 (-288 (-953 |#1|))) (-409 (-953 (-568))) |#1|) 46) (((-634 (-634 (-288 (-953 |#1|)))) (-634 (-288 (-409 (-953 (-568))))) |#1|) 42) (((-634 (-634 (-288 (-953 |#1|)))) (-634 (-409 (-953 (-568)))) |#1|) 36)) (-4231 (((-634 |#1|) (-409 (-953 (-568))) |#1|) 19) (((-634 (-634 |#1|)) (-634 (-409 (-953 (-568)))) (-634 (-1161)) |#1|) 31))) +(((-382 |#1|) (-10 -7 (-15 -4351 ((-634 (-634 (-288 (-953 |#1|)))) (-634 (-409 (-953 (-568)))) |#1|)) (-15 -4351 ((-634 (-634 (-288 (-953 |#1|)))) (-634 (-288 (-409 (-953 (-568))))) |#1|)) (-15 -4351 ((-634 (-288 (-953 |#1|))) (-409 (-953 (-568))) |#1|)) (-15 -4351 ((-634 (-288 (-953 |#1|))) (-288 (-409 (-953 (-568)))) |#1|)) (-15 -4231 ((-634 (-634 |#1|)) (-634 (-409 (-953 (-568)))) (-634 (-1161)) |#1|)) (-15 -4231 ((-634 |#1|) (-409 (-953 (-568))) |#1|))) (-13 (-840) (-365))) (T -382)) +((-4231 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-953 (-568)))) (-5 *2 (-634 *4)) (-5 *1 (-382 *4)) (-4 *4 (-13 (-840) (-365))))) (-4231 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-634 (-409 (-953 (-568))))) (-5 *4 (-634 (-1161))) (-5 *2 (-634 (-634 *5))) (-5 *1 (-382 *5)) (-4 *5 (-13 (-840) (-365))))) (-4351 (*1 *2 *3 *4) (-12 (-5 *3 (-288 (-409 (-953 (-568))))) (-5 *2 (-634 (-288 (-953 *4)))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-840) (-365))))) (-4351 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-953 (-568)))) (-5 *2 (-634 (-288 (-953 *4)))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-840) (-365))))) (-4351 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-288 (-409 (-953 (-568)))))) (-5 *2 (-634 (-634 (-288 (-953 *4))))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-840) (-365))))) (-4351 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-953 (-568))))) (-5 *2 (-634 (-634 (-288 (-953 *4))))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-840) (-365)))))) +(-10 -7 (-15 -4351 ((-634 (-634 (-288 (-953 |#1|)))) (-634 (-409 (-953 (-568)))) |#1|)) (-15 -4351 ((-634 (-634 (-288 (-953 |#1|)))) (-634 (-288 (-409 (-953 (-568))))) |#1|)) (-15 -4351 ((-634 (-288 (-953 |#1|))) (-409 (-953 (-568))) |#1|)) (-15 -4351 ((-634 (-288 (-953 |#1|))) (-288 (-409 (-953 (-568)))) |#1|)) (-15 -4231 ((-634 (-634 |#1|)) (-634 (-409 (-953 (-568)))) (-634 (-1161)) |#1|)) (-15 -4231 ((-634 |#1|) (-409 (-953 (-568))) |#1|))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-2671 (($) NIL T CONST)) (-3666 (((-3 |#2| "failed") $) 25)) (-2854 ((|#2| $) 27)) (-2114 (($ $) NIL)) (-4178 (((-763) $) 10)) (-2976 (((-634 $) $) 20)) (-3921 (((-121) $) NIL)) (-2354 (($ |#2| |#1|) 18)) (-2795 (($ (-1 |#1| |#1|) $) NIL)) (-4297 (((-634 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-2315 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-2097 ((|#2| $) 15)) (-2102 ((|#1| $) NIL)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2745 (((-850) $) 43) (($ |#2|) 26)) (-1302 (((-634 |#1|) $) 17)) (-2604 ((|#1| $ |#2|) 45)) (-3056 (($) 28 T CONST)) (-1717 (((-121) $ $) NIL)) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ |#1| $) 31) (($ $ |#1|) 32) (($ |#1| |#2|) 33) (($ |#2| |#1|) 34))) +(((-383 |#1| |#2|) (-13 (-384 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1047) (-842)) (T -383)) +((* (*1 *1 *2 *3) (-12 (-5 *1 (-383 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-842))))) +(-13 (-384 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-3134 (((-3 $ "failed") $ $) 18)) (-2671 (($) 16 T CONST)) (-3666 (((-3 |#2| "failed") $) 41)) (-2854 ((|#2| $) 40)) (-2114 (($ $) 27)) (-4178 (((-763) $) 31)) (-2976 (((-634 $) $) 32)) (-3921 (((-121) $) 35)) (-2354 (($ |#2| |#1|) 36)) (-2795 (($ (-1 |#1| |#1|) $) 37)) (-4297 (((-634 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 34)) (-2315 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 28)) (-2097 ((|#2| $) 30)) (-2102 ((|#1| $) 29)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-2745 (((-850) $) 11) (($ |#2|) 42)) (-1302 (((-634 |#1|) $) 33)) (-2604 ((|#1| $ |#2|) 38)) (-3056 (($) 17 T CONST)) (-1717 (((-121) $ $) 6)) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ |#1| $) 22) (($ $ |#1|) 24) (($ |#1| |#2|) 39))) +(((-384 |#1| |#2|) (-1275) (-1047) (-1090)) (T -384)) +((* (*1 *1 *2 *3) (-12 (-4 *1 (-384 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-1090)))) (-2604 (*1 *2 *1 *3) (-12 (-4 *1 (-384 *2 *3)) (-4 *3 (-1090)) (-4 *2 (-1047)))) (-2795 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-384 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-1090)))) (-2354 (*1 *1 *2 *3) (-12 (-4 *1 (-384 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-1090)))) (-3921 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-1090)) (-5 *2 (-121)))) (-4297 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-1090)) (-5 *2 (-634 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1302 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-1090)) (-5 *2 (-634 *3)))) (-2976 (*1 *2 *1) (-12 (-4 *3 (-1047)) (-4 *4 (-1090)) (-5 *2 (-634 *1)) (-4 *1 (-384 *3 *4)))) (-4178 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-1090)) (-5 *2 (-763)))) (-2097 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-1090)))) (-2102 (*1 *2 *1) (-12 (-4 *1 (-384 *2 *3)) (-4 *3 (-1090)) (-4 *2 (-1047)))) (-2315 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-1090)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-2114 (*1 *1 *1) (-12 (-4 *1 (-384 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-1090))))) +(-13 (-120 |t#1| |t#1|) (-1037 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -2604 (|t#1| $ |t#2|)) (-15 -2795 ($ (-1 |t#1| |t#1|) $)) (-15 -2354 ($ |t#2| |t#1|)) (-15 -3921 ((-121) $)) (-15 -4297 ((-634 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1302 ((-634 |t#1|) $)) (-15 -2976 ((-634 $) $)) (-15 -4178 ((-763) $)) (-15 -2097 (|t#2| $)) (-15 -2102 (|t#1| $)) (-15 -2315 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -2114 ($ $)) (IF (|has| |t#1| (-172)) (-6 (-707 |t#1|)) |noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-105) . T) ((-120 |#1| |#1|) . T) ((-137) . T) ((-608 (-850)) . T) ((-637 |#1|) . T) ((-707 |#1|) |has| |#1| (-172)) ((-1037 |#2|) . T) ((-1053 |#1|) . T) ((-1090) . T)) +((-4128 (((-1249) $) 7)) (-2745 (((-850) $) 8) (($ (-679 (-688))) 12) (($ (-634 (-328))) 11) (($ (-328)) 10) (($ (-2 (|:| |localSymbols| (-1165)) (|:| -2845 (-634 (-328))))) 9))) +(((-385) (-1275)) (T -385)) +((-2745 (*1 *1 *2) (-12 (-5 *2 (-679 (-688))) (-4 *1 (-385)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-634 (-328))) (-4 *1 (-385)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-328)) (-4 *1 (-385)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1165)) (|:| -2845 (-634 (-328))))) (-4 *1 (-385))))) +(-13 (-397) (-10 -8 (-15 -2745 ($ (-679 (-688)))) (-15 -2745 ($ (-634 (-328)))) (-15 -2745 ($ (-328))) (-15 -2745 ($ (-2 (|:| |localSymbols| (-1165)) (|:| -2845 (-634 (-328)))))))) +(((-608 (-850)) . T) ((-397) . T) ((-1195) . T)) +((-3666 (((-3 $ "failed") (-679 (-310 (-381)))) 19) (((-3 $ "failed") (-679 (-310 (-568)))) 17) (((-3 $ "failed") (-679 (-953 (-381)))) 15) (((-3 $ "failed") (-679 (-953 (-568)))) 13) (((-3 $ "failed") (-679 (-409 (-953 (-381))))) 11) (((-3 $ "failed") (-679 (-409 (-953 (-568))))) 9)) (-2854 (($ (-679 (-310 (-381)))) 20) (($ (-679 (-310 (-568)))) 18) (($ (-679 (-953 (-381)))) 16) (($ (-679 (-953 (-568)))) 14) (($ (-679 (-409 (-953 (-381))))) 12) (($ (-679 (-409 (-953 (-568))))) 10)) (-4128 (((-1249) $) 7)) (-2745 (((-850) $) 8) (($ (-634 (-328))) 23) (($ (-328)) 22) (($ (-2 (|:| |localSymbols| (-1165)) (|:| -2845 (-634 (-328))))) 21))) +(((-386) (-1275)) (T -386)) +((-2745 (*1 *1 *2) (-12 (-5 *2 (-634 (-328))) (-4 *1 (-386)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-328)) (-4 *1 (-386)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1165)) (|:| -2845 (-634 (-328))))) (-4 *1 (-386)))) (-2854 (*1 *1 *2) (-12 (-5 *2 (-679 (-310 (-381)))) (-4 *1 (-386)))) (-3666 (*1 *1 *2) (|partial| -12 (-5 *2 (-679 (-310 (-381)))) (-4 *1 (-386)))) (-2854 (*1 *1 *2) (-12 (-5 *2 (-679 (-310 (-568)))) (-4 *1 (-386)))) (-3666 (*1 *1 *2) (|partial| -12 (-5 *2 (-679 (-310 (-568)))) (-4 *1 (-386)))) (-2854 (*1 *1 *2) (-12 (-5 *2 (-679 (-953 (-381)))) (-4 *1 (-386)))) (-3666 (*1 *1 *2) (|partial| -12 (-5 *2 (-679 (-953 (-381)))) (-4 *1 (-386)))) (-2854 (*1 *1 *2) (-12 (-5 *2 (-679 (-953 (-568)))) (-4 *1 (-386)))) (-3666 (*1 *1 *2) (|partial| -12 (-5 *2 (-679 (-953 (-568)))) (-4 *1 (-386)))) (-2854 (*1 *1 *2) (-12 (-5 *2 (-679 (-409 (-953 (-381))))) (-4 *1 (-386)))) (-3666 (*1 *1 *2) (|partial| -12 (-5 *2 (-679 (-409 (-953 (-381))))) (-4 *1 (-386)))) (-2854 (*1 *1 *2) (-12 (-5 *2 (-679 (-409 (-953 (-568))))) (-4 *1 (-386)))) (-3666 (*1 *1 *2) (|partial| -12 (-5 *2 (-679 (-409 (-953 (-568))))) (-4 *1 (-386))))) +(-13 (-397) (-10 -8 (-15 -2745 ($ (-634 (-328)))) (-15 -2745 ($ (-328))) (-15 -2745 ($ (-2 (|:| |localSymbols| (-1165)) (|:| -2845 (-634 (-328)))))) (-15 -2854 ($ (-679 (-310 (-381))))) (-15 -3666 ((-3 $ "failed") (-679 (-310 (-381))))) (-15 -2854 ($ (-679 (-310 (-568))))) (-15 -3666 ((-3 $ "failed") (-679 (-310 (-568))))) (-15 -2854 ($ (-679 (-953 (-381))))) (-15 -3666 ((-3 $ "failed") (-679 (-953 (-381))))) (-15 -2854 ($ (-679 (-953 (-568))))) (-15 -3666 ((-3 $ "failed") (-679 (-953 (-568))))) (-15 -2854 ($ (-679 (-409 (-953 (-381)))))) (-15 -3666 ((-3 $ "failed") (-679 (-409 (-953 (-381)))))) (-15 -2854 ($ (-679 (-409 (-953 (-568)))))) (-15 -3666 ((-3 $ "failed") (-679 (-409 (-953 (-568)))))))) +(((-608 (-850)) . T) ((-397) . T) ((-1195) . T)) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-2671 (($) NIL T CONST)) (-2114 (($ $) NIL)) (-2047 (($ |#1| |#2|) NIL)) (-2795 (($ (-1 |#1| |#1|) $) NIL)) (-1311 ((|#2| $) NIL)) (-2102 ((|#1| $) NIL)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2745 (((-850) $) 27)) (-3056 (($) 12 T CONST)) (-1717 (((-121) $ $) NIL)) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 18))) +(((-387 |#1| |#2|) (-13 (-120 |#1| |#1|) (-518 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-172)) (-6 (-707 |#1|)) |noBranch|))) (-1047) (-842)) (T -387)) +NIL +(-13 (-120 |#1| |#1|) (-518 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-172)) (-6 (-707 |#1|)) |noBranch|))) +((-2447 (((-121) $ $) NIL)) (-3983 (((-763) $) 56)) (-2671 (($) NIL T CONST)) (-2628 (((-3 $ "failed") $ $) 58)) (-3666 (((-3 |#1| "failed") $) NIL)) (-2854 ((|#1| $) NIL)) (-2925 (((-3 $ "failed") $) NIL)) (-1715 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 52)) (-2735 (((-121) $) 14)) (-2882 ((|#1| $ (-568)) NIL)) (-2408 (((-763) $ (-568)) NIL)) (-2521 (($ $ $) NIL (|has| |#1| (-842)))) (-3268 (($ $ $) NIL (|has| |#1| (-842)))) (-2096 (($ (-1 |#1| |#1|) $) 37)) (-2505 (($ (-1 (-763) (-763)) $) 34)) (-2532 (((-3 $ "failed") $ $) 49)) (-4487 (((-1143) $) NIL)) (-2403 (($ $ $) 25)) (-3078 (($ $ $) 23)) (-4022 (((-1108) $) NIL)) (-3276 (((-634 (-2 (|:| |gen| |#1|) (|:| -1892 (-763)))) $) 31)) (-3210 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 55)) (-2745 (((-850) $) 21) (($ |#1|) NIL)) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (-1556 (($) 9 T CONST)) (-1751 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1738 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1717 (((-121) $ $) 41)) (-1745 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1732 (((-121) $ $) 60 (|has| |#1| (-842)))) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ |#1| (-763)) 40)) (* (($ $ $) 47) (($ |#1| $) 29) (($ $ |#1|) 27))) +(((-388 |#1|) (-13 (-716) (-1037 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-763))) (-15 -3078 ($ $ $)) (-15 -2403 ($ $ $)) (-15 -2532 ((-3 $ "failed") $ $)) (-15 -2628 ((-3 $ "failed") $ $)) (-15 -3210 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1715 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3983 ((-763) $)) (-15 -3276 ((-634 (-2 (|:| |gen| |#1|) (|:| -1892 (-763)))) $)) (-15 -2408 ((-763) $ (-568))) (-15 -2882 (|#1| $ (-568))) (-15 -2505 ($ (-1 (-763) (-763)) $)) (-15 -2096 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-842)) (-6 (-842)) |noBranch|))) (-1090)) (T -388)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-1090)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-388 *2)) (-4 *2 (-1090)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-763)) (-5 *1 (-388 *2)) (-4 *2 (-1090)))) (-3078 (*1 *1 *1 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-1090)))) (-2403 (*1 *1 *1 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-1090)))) (-2532 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-388 *2)) (-4 *2 (-1090)))) (-2628 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-388 *2)) (-4 *2 (-1090)))) (-3210 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-388 *3)) (|:| |rm| (-388 *3)))) (-5 *1 (-388 *3)) (-4 *3 (-1090)))) (-1715 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-388 *3)) (|:| |mm| (-388 *3)) (|:| |rm| (-388 *3)))) (-5 *1 (-388 *3)) (-4 *3 (-1090)))) (-3983 (*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-388 *3)) (-4 *3 (-1090)))) (-3276 (*1 *2 *1) (-12 (-5 *2 (-634 (-2 (|:| |gen| *3) (|:| -1892 (-763))))) (-5 *1 (-388 *3)) (-4 *3 (-1090)))) (-2408 (*1 *2 *1 *3) (-12 (-5 *3 (-568)) (-5 *2 (-763)) (-5 *1 (-388 *4)) (-4 *4 (-1090)))) (-2882 (*1 *2 *1 *3) (-12 (-5 *3 (-568)) (-5 *1 (-388 *2)) (-4 *2 (-1090)))) (-2505 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-763) (-763))) (-5 *1 (-388 *3)) (-4 *3 (-1090)))) (-2096 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1090)) (-5 *1 (-388 *3))))) +(-13 (-716) (-1037 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-763))) (-15 -3078 ($ $ $)) (-15 -2403 ($ $ $)) (-15 -2532 ((-3 $ "failed") $ $)) (-15 -2628 ((-3 $ "failed") $ $)) (-15 -3210 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1715 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3983 ((-763) $)) (-15 -3276 ((-634 (-2 (|:| |gen| |#1|) (|:| -1892 (-763)))) $)) (-15 -2408 ((-763) $ (-568))) (-15 -2882 (|#1| $ (-568))) (-15 -2505 ($ (-1 (-763) (-763)) $)) (-15 -2096 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-842)) (-6 (-842)) |noBranch|))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) 40)) (-2227 (($ $) 39)) (-1573 (((-121) $) 37)) (-3134 (((-3 $ "failed") $ $) 18)) (-2671 (($) 16 T CONST)) (-3666 (((-3 (-568) "failed") $) 46)) (-2854 (((-568) $) 45)) (-2925 (((-3 $ "failed") $) 33)) (-2735 (((-121) $) 30)) (-2521 (($ $ $) 53)) (-3268 (($ $ $) 52)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-2595 (((-3 $ "failed") $ $) 41)) (-2745 (((-850) $) 11) (($ (-568)) 27) (($ $) 42) (($ (-568)) 47)) (-4078 (((-763)) 28)) (-1826 (((-121) $ $) 38)) (-1887 (($ $ (-917)) 25) (($ $ (-763)) 32)) (-3056 (($) 17 T CONST)) (-1556 (($) 29 T CONST)) (-1751 (((-121) $ $) 50)) (-1738 (((-121) $ $) 49)) (-1717 (((-121) $ $) 6)) (-1745 (((-121) $ $) 51)) (-1732 (((-121) $ $) 48)) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 24) (($ $ (-763)) 31)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 23))) +(((-389) (-1275)) (T -389)) +NIL +(-13 (-558) (-842) (-1037 (-568))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-43 $) . T) ((-105) . T) ((-120 $ $) . T) ((-137) . T) ((-608 (-850)) . T) ((-172) . T) ((-285) . T) ((-558) . T) ((-637 $) . T) ((-707 $) . T) ((-716) . T) ((-842) . T) ((-1037 (-568)) . T) ((-1053 $) . T) ((-1047) . T) ((-1054) . T) ((-1102) . T) ((-1090) . T)) +((-2447 (((-121) $ $) NIL)) (-3377 (((-121) $) 20)) (-3596 (((-121) $) 19)) (-1849 (($ (-1143) (-1143) (-1143)) 21)) (-3391 (((-1143) $) 16)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-4111 (($ (-1143) (-1143) (-1143)) 14)) (-3887 (((-1143) $) 17)) (-2689 (((-121) $) 18)) (-3424 (((-1143) $) 15)) (-2745 (((-850) $) 12) (($ (-1143)) 13) (((-1143) $) 9)) (-1717 (((-121) $ $) 7))) +(((-390) (-391)) (T -390)) +NIL +(-391) +((-2447 (((-121) $ $) 7)) (-3377 (((-121) $) 13)) (-3596 (((-121) $) 14)) (-1849 (($ (-1143) (-1143) (-1143)) 12)) (-3391 (((-1143) $) 17)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-4111 (($ (-1143) (-1143) (-1143)) 19)) (-3887 (((-1143) $) 16)) (-2689 (((-121) $) 15)) (-3424 (((-1143) $) 18)) (-2745 (((-850) $) 11) (($ (-1143)) 21) (((-1143) $) 20)) (-1717 (((-121) $ $) 6))) +(((-391) (-1275)) (T -391)) +((-2745 (*1 *1 *2) (-12 (-5 *2 (-1143)) (-4 *1 (-391)))) (-2745 (*1 *2 *1) (-12 (-4 *1 (-391)) (-5 *2 (-1143)))) (-4111 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1143)) (-4 *1 (-391)))) (-3424 (*1 *2 *1) (-12 (-4 *1 (-391)) (-5 *2 (-1143)))) (-3391 (*1 *2 *1) (-12 (-4 *1 (-391)) (-5 *2 (-1143)))) (-3887 (*1 *2 *1) (-12 (-4 *1 (-391)) (-5 *2 (-1143)))) (-2689 (*1 *2 *1) (-12 (-4 *1 (-391)) (-5 *2 (-121)))) (-3596 (*1 *2 *1) (-12 (-4 *1 (-391)) (-5 *2 (-121)))) (-3377 (*1 *2 *1) (-12 (-4 *1 (-391)) (-5 *2 (-121)))) (-1849 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1143)) (-4 *1 (-391))))) +(-13 (-1090) (-10 -8 (-15 -2745 ($ (-1143))) (-15 -2745 ((-1143) $)) (-15 -4111 ($ (-1143) (-1143) (-1143))) (-15 -3424 ((-1143) $)) (-15 -3391 ((-1143) $)) (-15 -3887 ((-1143) $)) (-15 -2689 ((-121) $)) (-15 -3596 ((-121) $)) (-15 -3377 ((-121) $)) (-15 -1849 ($ (-1143) (-1143) (-1143))))) +(((-105) . T) ((-608 (-850)) . T) ((-1090) . T)) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-2576 (((-850) $) 50)) (-2671 (($) NIL T CONST)) (-3551 (($ $ (-917)) NIL)) (-4373 (($ $ (-917)) NIL)) (-4222 (($ $ (-917)) NIL)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2704 (($ (-763)) 26)) (-4321 (((-763)) 15)) (-2673 (((-850) $) 52)) (-2353 (($ $ $) NIL)) (-2745 (((-850) $) NIL)) (-3882 (($ $ $ $) NIL)) (-3500 (($ $ $) NIL)) (-3056 (($) 20 T CONST)) (-1717 (((-121) $ $) 28)) (-1773 (($ $) 34) (($ $ $) 36)) (-1767 (($ $ $) 37)) (** (($ $ (-917)) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33))) +(((-392 |#1| |#2| |#3|) (-13 (-736 |#3|) (-10 -8 (-15 -4321 ((-763))) (-15 -2673 ((-850) $)) (-15 -2576 ((-850) $)) (-15 -2704 ($ (-763))))) (-763) (-763) (-172)) (T -392)) +((-4321 (*1 *2) (-12 (-5 *2 (-763)) (-5 *1 (-392 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-172)))) (-2673 (*1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-392 *3 *4 *5)) (-14 *3 (-763)) (-14 *4 (-763)) (-4 *5 (-172)))) (-2576 (*1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-392 *3 *4 *5)) (-14 *3 (-763)) (-14 *4 (-763)) (-4 *5 (-172)))) (-2704 (*1 *1 *2) (-12 (-5 *2 (-763)) (-5 *1 (-392 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-172))))) +(-13 (-736 |#3|) (-10 -8 (-15 -4321 ((-763))) (-15 -2673 ((-850) $)) (-15 -2576 ((-850) $)) (-15 -2704 ($ (-763))))) +((-4389 (((-1143)) 10)) (-4066 (((-1132 (-1143))) 28)) (-4104 (((-1249) (-1143)) 25) (((-1249) (-390)) 24)) (-4119 (((-1249)) 26)) (-4437 (((-1132 (-1143))) 27))) +(((-393) (-10 -7 (-15 -4437 ((-1132 (-1143)))) (-15 -4066 ((-1132 (-1143)))) (-15 -4119 ((-1249))) (-15 -4104 ((-1249) (-390))) (-15 -4104 ((-1249) (-1143))) (-15 -4389 ((-1143))))) (T -393)) +((-4389 (*1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-393)))) (-4104 (*1 *2 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-1249)) (-5 *1 (-393)))) (-4104 (*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1249)) (-5 *1 (-393)))) (-4119 (*1 *2) (-12 (-5 *2 (-1249)) (-5 *1 (-393)))) (-4066 (*1 *2) (-12 (-5 *2 (-1132 (-1143))) (-5 *1 (-393)))) (-4437 (*1 *2) (-12 (-5 *2 (-1132 (-1143))) (-5 *1 (-393))))) +(-10 -7 (-15 -4437 ((-1132 (-1143)))) (-15 -4066 ((-1132 (-1143)))) (-15 -4119 ((-1249))) (-15 -4104 ((-1249) (-390))) (-15 -4104 ((-1249) (-1143))) (-15 -4389 ((-1143)))) +((-4477 (((-763) (-334 |#1| |#2| |#3| |#4|)) 16))) +(((-394 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4477 ((-763) (-334 |#1| |#2| |#3| |#4|)))) (-13 (-370) (-365)) (-1219 |#1|) (-1219 (-409 |#2|)) (-340 |#1| |#2| |#3|)) (T -394)) +((-4477 (*1 *2 *3) (-12 (-5 *3 (-334 *4 *5 *6 *7)) (-4 *4 (-13 (-370) (-365))) (-4 *5 (-1219 *4)) (-4 *6 (-1219 (-409 *5))) (-4 *7 (-340 *4 *5 *6)) (-5 *2 (-763)) (-5 *1 (-394 *4 *5 *6 *7))))) +(-10 -7 (-15 -4477 ((-763) (-334 |#1| |#2| |#3| |#4|)))) +((-2745 (((-396) |#1|) 11))) +(((-395 |#1|) (-10 -7 (-15 -2745 ((-396) |#1|))) (-1090)) (T -395)) +((-2745 (*1 *2 *3) (-12 (-5 *2 (-396)) (-5 *1 (-395 *3)) (-4 *3 (-1090))))) +(-10 -7 (-15 -2745 ((-396) |#1|))) +((-2447 (((-121) $ $) NIL)) (-1688 (((-634 (-1143)) $ (-634 (-1143))) 37)) (-1292 (((-634 (-1143)) $ (-634 (-1143))) 38)) (-3371 (((-634 (-1143)) $ (-634 (-1143))) 39)) (-1538 (((-634 (-1143)) $) 34)) (-1849 (($) 23)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-4296 (((-634 (-1143)) $) 35)) (-3224 (((-634 (-1143)) $) 36)) (-4125 (((-1249) $ (-568)) 32) (((-1249) $) 33)) (-4278 (($ (-850) (-568)) 29)) (-2745 (((-850) $) 41) (($ (-850)) 25)) (-1717 (((-121) $ $) NIL))) +(((-396) (-13 (-1090) (-10 -8 (-15 -2745 ($ (-850))) (-15 -4278 ($ (-850) (-568))) (-15 -4125 ((-1249) $ (-568))) (-15 -4125 ((-1249) $)) (-15 -3224 ((-634 (-1143)) $)) (-15 -4296 ((-634 (-1143)) $)) (-15 -1849 ($)) (-15 -1538 ((-634 (-1143)) $)) (-15 -3371 ((-634 (-1143)) $ (-634 (-1143)))) (-15 -1292 ((-634 (-1143)) $ (-634 (-1143)))) (-15 -1688 ((-634 (-1143)) $ (-634 (-1143))))))) (T -396)) +((-2745 (*1 *1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-396)))) (-4278 (*1 *1 *2 *3) (-12 (-5 *2 (-850)) (-5 *3 (-568)) (-5 *1 (-396)))) (-4125 (*1 *2 *1 *3) (-12 (-5 *3 (-568)) (-5 *2 (-1249)) (-5 *1 (-396)))) (-4125 (*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-396)))) (-3224 (*1 *2 *1) (-12 (-5 *2 (-634 (-1143))) (-5 *1 (-396)))) (-4296 (*1 *2 *1) (-12 (-5 *2 (-634 (-1143))) (-5 *1 (-396)))) (-1849 (*1 *1) (-5 *1 (-396))) (-1538 (*1 *2 *1) (-12 (-5 *2 (-634 (-1143))) (-5 *1 (-396)))) (-3371 (*1 *2 *1 *2) (-12 (-5 *2 (-634 (-1143))) (-5 *1 (-396)))) (-1292 (*1 *2 *1 *2) (-12 (-5 *2 (-634 (-1143))) (-5 *1 (-396)))) (-1688 (*1 *2 *1 *2) (-12 (-5 *2 (-634 (-1143))) (-5 *1 (-396))))) +(-13 (-1090) (-10 -8 (-15 -2745 ($ (-850))) (-15 -4278 ($ (-850) (-568))) (-15 -4125 ((-1249) $ (-568))) (-15 -4125 ((-1249) $)) (-15 -3224 ((-634 (-1143)) $)) (-15 -4296 ((-634 (-1143)) $)) (-15 -1849 ($)) (-15 -1538 ((-634 (-1143)) $)) (-15 -3371 ((-634 (-1143)) $ (-634 (-1143)))) (-15 -1292 ((-634 (-1143)) $ (-634 (-1143)))) (-15 -1688 ((-634 (-1143)) $ (-634 (-1143)))))) +((-4128 (((-1249) $) 7)) (-2745 (((-850) $) 8))) +(((-397) (-1275)) (T -397)) +((-4128 (*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-1249))))) +(-13 (-1195) (-608 (-850)) (-10 -8 (-15 -4128 ((-1249) $)))) +(((-608 (-850)) . T) ((-1195) . T)) +((-3666 (((-3 $ "failed") (-310 (-381))) 19) (((-3 $ "failed") (-310 (-568))) 17) (((-3 $ "failed") (-953 (-381))) 15) (((-3 $ "failed") (-953 (-568))) 13) (((-3 $ "failed") (-409 (-953 (-381)))) 11) (((-3 $ "failed") (-409 (-953 (-568)))) 9)) (-2854 (($ (-310 (-381))) 20) (($ (-310 (-568))) 18) (($ (-953 (-381))) 16) (($ (-953 (-568))) 14) (($ (-409 (-953 (-381)))) 12) (($ (-409 (-953 (-568)))) 10)) (-4128 (((-1249) $) 7)) (-2745 (((-850) $) 8) (($ (-634 (-328))) 23) (($ (-328)) 22) (($ (-2 (|:| |localSymbols| (-1165)) (|:| -2845 (-634 (-328))))) 21))) +(((-398) (-1275)) (T -398)) +((-2745 (*1 *1 *2) (-12 (-5 *2 (-634 (-328))) (-4 *1 (-398)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-328)) (-4 *1 (-398)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1165)) (|:| -2845 (-634 (-328))))) (-4 *1 (-398)))) (-2854 (*1 *1 *2) (-12 (-5 *2 (-310 (-381))) (-4 *1 (-398)))) (-3666 (*1 *1 *2) (|partial| -12 (-5 *2 (-310 (-381))) (-4 *1 (-398)))) (-2854 (*1 *1 *2) (-12 (-5 *2 (-310 (-568))) (-4 *1 (-398)))) (-3666 (*1 *1 *2) (|partial| -12 (-5 *2 (-310 (-568))) (-4 *1 (-398)))) (-2854 (*1 *1 *2) (-12 (-5 *2 (-953 (-381))) (-4 *1 (-398)))) (-3666 (*1 *1 *2) (|partial| -12 (-5 *2 (-953 (-381))) (-4 *1 (-398)))) (-2854 (*1 *1 *2) (-12 (-5 *2 (-953 (-568))) (-4 *1 (-398)))) (-3666 (*1 *1 *2) (|partial| -12 (-5 *2 (-953 (-568))) (-4 *1 (-398)))) (-2854 (*1 *1 *2) (-12 (-5 *2 (-409 (-953 (-381)))) (-4 *1 (-398)))) (-3666 (*1 *1 *2) (|partial| -12 (-5 *2 (-409 (-953 (-381)))) (-4 *1 (-398)))) (-2854 (*1 *1 *2) (-12 (-5 *2 (-409 (-953 (-568)))) (-4 *1 (-398)))) (-3666 (*1 *1 *2) (|partial| -12 (-5 *2 (-409 (-953 (-568)))) (-4 *1 (-398))))) +(-13 (-397) (-10 -8 (-15 -2745 ($ (-634 (-328)))) (-15 -2745 ($ (-328))) (-15 -2745 ($ (-2 (|:| |localSymbols| (-1165)) (|:| -2845 (-634 (-328)))))) (-15 -2854 ($ (-310 (-381)))) (-15 -3666 ((-3 $ "failed") (-310 (-381)))) (-15 -2854 ($ (-310 (-568)))) (-15 -3666 ((-3 $ "failed") (-310 (-568)))) (-15 -2854 ($ (-953 (-381)))) (-15 -3666 ((-3 $ "failed") (-953 (-381)))) (-15 -2854 ($ (-953 (-568)))) (-15 -3666 ((-3 $ "failed") (-953 (-568)))) (-15 -2854 ($ (-409 (-953 (-381))))) (-15 -3666 ((-3 $ "failed") (-409 (-953 (-381))))) (-15 -2854 ($ (-409 (-953 (-568))))) (-15 -3666 ((-3 $ "failed") (-409 (-953 (-568))))))) +(((-608 (-850)) . T) ((-397) . T) ((-1195) . T)) +((-2334 (((-634 (-1143)) (-634 (-1143))) 8)) (-4128 (((-1249) (-390)) 27)) (-2949 (((-1094) (-1161) (-634 (-1161)) (-1164) (-634 (-1161))) 59) (((-1094) (-1161) (-634 (-3 (|:| |array| (-634 (-1161))) (|:| |scalar| (-1161)))) (-634 (-634 (-3 (|:| |array| (-634 (-1161))) (|:| |scalar| (-1161))))) (-634 (-1161)) (-1161)) 35) (((-1094) (-1161) (-634 (-3 (|:| |array| (-634 (-1161))) (|:| |scalar| (-1161)))) (-634 (-634 (-3 (|:| |array| (-634 (-1161))) (|:| |scalar| (-1161))))) (-634 (-1161))) 34))) +(((-399) (-10 -7 (-15 -2949 ((-1094) (-1161) (-634 (-3 (|:| |array| (-634 (-1161))) (|:| |scalar| (-1161)))) (-634 (-634 (-3 (|:| |array| (-634 (-1161))) (|:| |scalar| (-1161))))) (-634 (-1161)))) (-15 -2949 ((-1094) (-1161) (-634 (-3 (|:| |array| (-634 (-1161))) (|:| |scalar| (-1161)))) (-634 (-634 (-3 (|:| |array| (-634 (-1161))) (|:| |scalar| (-1161))))) (-634 (-1161)) (-1161))) (-15 -2949 ((-1094) (-1161) (-634 (-1161)) (-1164) (-634 (-1161)))) (-15 -4128 ((-1249) (-390))) (-15 -2334 ((-634 (-1143)) (-634 (-1143)))))) (T -399)) +((-2334 (*1 *2 *2) (-12 (-5 *2 (-634 (-1143))) (-5 *1 (-399)))) (-4128 (*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1249)) (-5 *1 (-399)))) (-2949 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-634 (-1161))) (-5 *5 (-1164)) (-5 *3 (-1161)) (-5 *2 (-1094)) (-5 *1 (-399)))) (-2949 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-634 (-634 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-634 (-3 (|:| |array| (-634 *3)) (|:| |scalar| (-1161))))) (-5 *6 (-634 (-1161))) (-5 *3 (-1161)) (-5 *2 (-1094)) (-5 *1 (-399)))) (-2949 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-634 (-634 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-634 (-3 (|:| |array| (-634 *3)) (|:| |scalar| (-1161))))) (-5 *6 (-634 (-1161))) (-5 *3 (-1161)) (-5 *2 (-1094)) (-5 *1 (-399))))) +(-10 -7 (-15 -2949 ((-1094) (-1161) (-634 (-3 (|:| |array| (-634 (-1161))) (|:| |scalar| (-1161)))) (-634 (-634 (-3 (|:| |array| (-634 (-1161))) (|:| |scalar| (-1161))))) (-634 (-1161)))) (-15 -2949 ((-1094) (-1161) (-634 (-3 (|:| |array| (-634 (-1161))) (|:| |scalar| (-1161)))) (-634 (-634 (-3 (|:| |array| (-634 (-1161))) (|:| |scalar| (-1161))))) (-634 (-1161)) (-1161))) (-15 -2949 ((-1094) (-1161) (-634 (-1161)) (-1164) (-634 (-1161)))) (-15 -4128 ((-1249) (-390))) (-15 -2334 ((-634 (-1143)) (-634 (-1143))))) +((-4128 (((-1249) $) 37)) (-2745 (((-850) $) 89) (($ (-328)) 92) (($ (-634 (-328))) 91) (($ (-2 (|:| |localSymbols| (-1165)) (|:| -2845 (-634 (-328))))) 88) (($ (-310 (-690))) 52) (($ (-310 (-688))) 66) (($ (-310 (-683))) 78) (($ (-288 (-310 (-690)))) 62) (($ (-288 (-310 (-688)))) 74) (($ (-288 (-310 (-683)))) 86) (($ (-310 (-568))) 96) (($ (-310 (-381))) 108) (($ (-310 (-169 (-381)))) 120) (($ (-288 (-310 (-568)))) 104) (($ (-288 (-310 (-381)))) 116) (($ (-288 (-310 (-169 (-381))))) 128))) +(((-400 |#1| |#2| |#3| |#4|) (-13 (-397) (-10 -8 (-15 -2745 ($ (-328))) (-15 -2745 ($ (-634 (-328)))) (-15 -2745 ($ (-2 (|:| |localSymbols| (-1165)) (|:| -2845 (-634 (-328)))))) (-15 -2745 ($ (-310 (-690)))) (-15 -2745 ($ (-310 (-688)))) (-15 -2745 ($ (-310 (-683)))) (-15 -2745 ($ (-288 (-310 (-690))))) (-15 -2745 ($ (-288 (-310 (-688))))) (-15 -2745 ($ (-288 (-310 (-683))))) (-15 -2745 ($ (-310 (-568)))) (-15 -2745 ($ (-310 (-381)))) (-15 -2745 ($ (-310 (-169 (-381))))) (-15 -2745 ($ (-288 (-310 (-568))))) (-15 -2745 ($ (-288 (-310 (-381))))) (-15 -2745 ($ (-288 (-310 (-169 (-381)))))))) (-1161) (-3 (|:| |fst| (-436)) (|:| -3611 "void")) (-634 (-1161)) (-1165)) (T -400)) +((-2745 (*1 *1 *2) (-12 (-5 *2 (-328)) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1161)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -3611 "void"))) (-14 *5 (-634 (-1161))) (-14 *6 (-1165)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-634 (-328))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1161)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -3611 "void"))) (-14 *5 (-634 (-1161))) (-14 *6 (-1165)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1165)) (|:| -2845 (-634 (-328))))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1161)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -3611 "void"))) (-14 *5 (-634 (-1161))) (-14 *6 (-1165)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-310 (-690))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1161)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -3611 "void"))) (-14 *5 (-634 (-1161))) (-14 *6 (-1165)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-310 (-688))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1161)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -3611 "void"))) (-14 *5 (-634 (-1161))) (-14 *6 (-1165)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-310 (-683))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1161)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -3611 "void"))) (-14 *5 (-634 (-1161))) (-14 *6 (-1165)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-288 (-310 (-690)))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1161)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -3611 "void"))) (-14 *5 (-634 (-1161))) (-14 *6 (-1165)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-288 (-310 (-688)))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1161)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -3611 "void"))) (-14 *5 (-634 (-1161))) (-14 *6 (-1165)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-288 (-310 (-683)))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1161)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -3611 "void"))) (-14 *5 (-634 (-1161))) (-14 *6 (-1165)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-310 (-568))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1161)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -3611 "void"))) (-14 *5 (-634 (-1161))) (-14 *6 (-1165)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-310 (-381))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1161)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -3611 "void"))) (-14 *5 (-634 (-1161))) (-14 *6 (-1165)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-310 (-169 (-381)))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1161)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -3611 "void"))) (-14 *5 (-634 (-1161))) (-14 *6 (-1165)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-288 (-310 (-568)))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1161)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -3611 "void"))) (-14 *5 (-634 (-1161))) (-14 *6 (-1165)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-288 (-310 (-381)))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1161)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -3611 "void"))) (-14 *5 (-634 (-1161))) (-14 *6 (-1165)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-288 (-310 (-169 (-381))))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1161)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -3611 "void"))) (-14 *5 (-634 (-1161))) (-14 *6 (-1165))))) +(-13 (-397) (-10 -8 (-15 -2745 ($ (-328))) (-15 -2745 ($ (-634 (-328)))) (-15 -2745 ($ (-2 (|:| |localSymbols| (-1165)) (|:| -2845 (-634 (-328)))))) (-15 -2745 ($ (-310 (-690)))) (-15 -2745 ($ (-310 (-688)))) (-15 -2745 ($ (-310 (-683)))) (-15 -2745 ($ (-288 (-310 (-690))))) (-15 -2745 ($ (-288 (-310 (-688))))) (-15 -2745 ($ (-288 (-310 (-683))))) (-15 -2745 ($ (-310 (-568)))) (-15 -2745 ($ (-310 (-381)))) (-15 -2745 ($ (-310 (-169 (-381))))) (-15 -2745 ($ (-288 (-310 (-568))))) (-15 -2745 ($ (-288 (-310 (-381))))) (-15 -2745 ($ (-288 (-310 (-169 (-381)))))))) +((-2447 (((-121) $ $) NIL)) (-2848 ((|#2| $) 36)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-3425 (($ (-409 |#2|)) 84)) (-4367 (((-634 (-2 (|:| -3438 (-763)) (|:| -1374 |#2|) (|:| |num| |#2|))) $) 37)) (-4189 (($ $) 32) (($ $ (-763)) 34)) (-4278 (((-409 |#2|) $) 46)) (-4287 (($ (-634 (-2 (|:| -3438 (-763)) (|:| -1374 |#2|) (|:| |num| |#2|)))) 31)) (-2745 (((-850) $) 120)) (-3190 (($ $) 33) (($ $ (-763)) 35)) (-1717 (((-121) $ $) NIL)) (-1767 (($ |#2| $) 39))) +(((-401 |#1| |#2|) (-13 (-1090) (-609 (-409 |#2|)) (-10 -8 (-15 -1767 ($ |#2| $)) (-15 -3425 ($ (-409 |#2|))) (-15 -2848 (|#2| $)) (-15 -4367 ((-634 (-2 (|:| -3438 (-763)) (|:| -1374 |#2|) (|:| |num| |#2|))) $)) (-15 -4287 ($ (-634 (-2 (|:| -3438 (-763)) (|:| -1374 |#2|) (|:| |num| |#2|))))) (-15 -4189 ($ $)) (-15 -3190 ($ $)) (-15 -4189 ($ $ (-763))) (-15 -3190 ($ $ (-763))))) (-13 (-365) (-150)) (-1219 |#1|)) (T -401)) +((-1767 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-365) (-150))) (-5 *1 (-401 *3 *2)) (-4 *2 (-1219 *3)))) (-3425 (*1 *1 *2) (-12 (-5 *2 (-409 *4)) (-4 *4 (-1219 *3)) (-4 *3 (-13 (-365) (-150))) (-5 *1 (-401 *3 *4)))) (-2848 (*1 *2 *1) (-12 (-4 *2 (-1219 *3)) (-5 *1 (-401 *3 *2)) (-4 *3 (-13 (-365) (-150))))) (-4367 (*1 *2 *1) (-12 (-4 *3 (-13 (-365) (-150))) (-5 *2 (-634 (-2 (|:| -3438 (-763)) (|:| -1374 *4) (|:| |num| *4)))) (-5 *1 (-401 *3 *4)) (-4 *4 (-1219 *3)))) (-4287 (*1 *1 *2) (-12 (-5 *2 (-634 (-2 (|:| -3438 (-763)) (|:| -1374 *4) (|:| |num| *4)))) (-4 *4 (-1219 *3)) (-4 *3 (-13 (-365) (-150))) (-5 *1 (-401 *3 *4)))) (-4189 (*1 *1 *1) (-12 (-4 *2 (-13 (-365) (-150))) (-5 *1 (-401 *2 *3)) (-4 *3 (-1219 *2)))) (-3190 (*1 *1 *1) (-12 (-4 *2 (-13 (-365) (-150))) (-5 *1 (-401 *2 *3)) (-4 *3 (-1219 *2)))) (-4189 (*1 *1 *1 *2) (-12 (-5 *2 (-763)) (-4 *3 (-13 (-365) (-150))) (-5 *1 (-401 *3 *4)) (-4 *4 (-1219 *3)))) (-3190 (*1 *1 *1 *2) (-12 (-5 *2 (-763)) (-4 *3 (-13 (-365) (-150))) (-5 *1 (-401 *3 *4)) (-4 *4 (-1219 *3))))) +(-13 (-1090) (-609 (-409 |#2|)) (-10 -8 (-15 -1767 ($ |#2| $)) (-15 -3425 ($ (-409 |#2|))) (-15 -2848 (|#2| $)) (-15 -4367 ((-634 (-2 (|:| -3438 (-763)) (|:| -1374 |#2|) (|:| |num| |#2|))) $)) (-15 -4287 ($ (-634 (-2 (|:| -3438 (-763)) (|:| -1374 |#2|) (|:| |num| |#2|))))) (-15 -4189 ($ $)) (-15 -3190 ($ $)) (-15 -4189 ($ $ (-763))) (-15 -3190 ($ $ (-763))))) +((-2447 (((-121) $ $) 9 (-2198 (|has| |#1| (-881 (-568))) (|has| |#1| (-881 (-381)))))) (-4410 (((-884 (-381) $) $ (-887 (-381)) (-884 (-381) $)) 15 (|has| |#1| (-881 (-381)))) (((-884 (-568) $) $ (-887 (-568)) (-884 (-568) $)) 14 (|has| |#1| (-881 (-568))))) (-4487 (((-1143) $) 13 (-2198 (|has| |#1| (-881 (-568))) (|has| |#1| (-881 (-381)))))) (-4022 (((-1108) $) 12 (-2198 (|has| |#1| (-881 (-568))) (|has| |#1| (-881 (-381)))))) (-2745 (((-850) $) 11 (-2198 (|has| |#1| (-881 (-568))) (|has| |#1| (-881 (-381)))))) (-1717 (((-121) $ $) 10 (-2198 (|has| |#1| (-881 (-568))) (|has| |#1| (-881 (-381))))))) +(((-402 |#1|) (-1275) (-1195)) (T -402)) +NIL +(-13 (-1195) (-10 -7 (IF (|has| |t#1| (-881 (-568))) (-6 (-881 (-568))) |noBranch|) (IF (|has| |t#1| (-881 (-381))) (-6 (-881 (-381))) |noBranch|))) +(((-105) -2198 (|has| |#1| (-881 (-568))) (|has| |#1| (-881 (-381)))) ((-608 (-850)) -2198 (|has| |#1| (-881 (-568))) (|has| |#1| (-881 (-381)))) ((-881 (-381)) |has| |#1| (-881 (-381))) ((-881 (-568)) |has| |#1| (-881 (-568))) ((-1090) -2198 (|has| |#1| (-881 (-568))) (|has| |#1| (-881 (-381)))) ((-1195) . T)) +((-3218 (($ $) 10) (($ $ (-763)) 11))) +(((-403 |#1|) (-10 -8 (-15 -3218 (|#1| |#1| (-763))) (-15 -3218 (|#1| |#1|))) (-404)) (T -403)) +NIL +(-10 -8 (-15 -3218 (|#1| |#1| (-763))) (-15 -3218 (|#1| |#1|))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) 40)) (-2227 (($ $) 39)) (-1573 (((-121) $) 37)) (-3134 (((-3 $ "failed") $ $) 18)) (-4305 (($ $) 71)) (-1678 (((-420 $) $) 70)) (-1497 (((-121) $ $) 57)) (-2671 (($) 16 T CONST)) (-2401 (($ $ $) 53)) (-2925 (((-3 $ "failed") $) 33)) (-2412 (($ $ $) 54)) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) 49)) (-3218 (($ $) 75) (($ $ (-763)) 74)) (-3927 (((-121) $) 69)) (-4477 (((-828 (-917)) $) 77)) (-2735 (((-121) $) 30)) (-3562 (((-3 (-634 $) "failed") (-634 $) $) 50)) (-2495 (($ $ $) 45) (($ (-634 $)) 44)) (-4487 (((-1143) $) 9)) (-2081 (($ $) 68)) (-4022 (((-1108) $) 10)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) 43)) (-2721 (($ $ $) 47) (($ (-634 $)) 46)) (-3848 (((-420 $) $) 72)) (-4497 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2595 (((-3 $ "failed") $ $) 41)) (-2344 (((-3 (-634 $) "failed") (-634 $) $) 48)) (-2709 (((-763) $) 56)) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) 55)) (-3143 (((-3 (-763) "failed") $ $) 76)) (-2745 (((-850) $) 11) (($ (-568)) 27) (($ $) 42) (($ (-409 (-568))) 63)) (-4371 (((-3 $ "failed") $) 78)) (-4078 (((-763)) 28)) (-1826 (((-121) $ $) 38)) (-1887 (($ $ (-917)) 25) (($ $ (-763)) 32) (($ $ (-568)) 67)) (-3056 (($) 17 T CONST)) (-1556 (($) 29 T CONST)) (-1717 (((-121) $ $) 6)) (-1779 (($ $ $) 62)) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 24) (($ $ (-763)) 31) (($ $ (-568)) 66)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 23) (($ $ (-409 (-568))) 65) (($ (-409 (-568)) $) 64))) +(((-404) (-1275)) (T -404)) +((-4477 (*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-828 (-917))))) (-3143 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-404)) (-5 *2 (-763)))) (-3218 (*1 *1 *1) (-4 *1 (-404))) (-3218 (*1 *1 *1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-763))))) +(-13 (-365) (-148) (-10 -8 (-15 -4477 ((-828 (-917)) $)) (-15 -3143 ((-3 (-763) "failed") $ $)) (-15 -3218 ($ $)) (-15 -3218 ($ $ (-763))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-43 (-409 (-568))) . T) ((-43 $) . T) ((-105) . T) ((-120 (-409 (-568)) (-409 (-568))) . T) ((-120 $ $) . T) ((-137) . T) ((-148) . T) ((-608 (-850)) . T) ((-172) . T) ((-238) . T) ((-285) . T) ((-301) . T) ((-365) . T) ((-453) . T) ((-558) . T) ((-637 (-409 (-568))) . T) ((-637 $) . T) ((-707 (-409 (-568))) . T) ((-707 $) . T) ((-716) . T) ((-916) . T) ((-1053 (-409 (-568))) . T) ((-1053 $) . T) ((-1047) . T) ((-1054) . T) ((-1102) . T) ((-1090) . T) ((-1199) . T)) +((-3768 (($ (-568) (-568)) 11) (($ (-568) (-568) (-917)) NIL)) (-3396 (((-917)) 16) (((-917) (-917)) NIL))) +(((-405 |#1|) (-10 -8 (-15 -3396 ((-917) (-917))) (-15 -3396 ((-917))) (-15 -3768 (|#1| (-568) (-568) (-917))) (-15 -3768 (|#1| (-568) (-568)))) (-406)) (T -405)) +((-3396 (*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-405 *3)) (-4 *3 (-406)))) (-3396 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-405 *3)) (-4 *3 (-406))))) +(-10 -8 (-15 -3396 ((-917) (-917))) (-15 -3396 ((-917))) (-15 -3768 (|#1| (-568) (-568) (-917))) (-15 -3768 (|#1| (-568) (-568)))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-1492 (((-568) $) 85)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) 40)) (-2227 (($ $) 39)) (-1573 (((-121) $) 37)) (-2617 (($ $) 83)) (-3134 (((-3 $ "failed") $ $) 18)) (-4305 (($ $) 71)) (-1678 (((-420 $) $) 70)) (-1902 (($ $) 93)) (-1497 (((-121) $ $) 57)) (-3662 (((-568) $) 110)) (-2671 (($) 16 T CONST)) (-3047 (($ $) 82)) (-3666 (((-3 (-568) "failed") $) 98) (((-3 (-409 (-568)) "failed") $) 95)) (-2854 (((-568) $) 97) (((-409 (-568)) $) 94)) (-2401 (($ $ $) 53)) (-2925 (((-3 $ "failed") $) 33)) (-2412 (($ $ $) 54)) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) 49)) (-3927 (((-121) $) 69)) (-3359 (((-917)) 119) (((-917) (-917)) 116 (|has| $ (-6 -4510)))) (-2033 (((-121) $) 108)) (-4410 (((-884 (-381) $) $ (-887 (-381)) (-884 (-381) $)) 89)) (-4477 (((-568) $) 125)) (-2735 (((-121) $) 30)) (-4044 (($ $ (-568)) 92)) (-2657 (($ $) 88)) (-2245 (((-121) $) 109)) (-3562 (((-3 (-634 $) "failed") (-634 $) $) 50)) (-2521 (($ $ $) 107) (($) 113 (-12 (-3044 (|has| $ (-6 -4510))) (-3044 (|has| $ (-6 -4502)))))) (-3268 (($ $ $) 106) (($) 112 (-12 (-3044 (|has| $ (-6 -4510))) (-3044 (|has| $ (-6 -4502)))))) (-3544 (((-568) $) 122)) (-2495 (($ $ $) 45) (($ (-634 $)) 44)) (-4487 (((-1143) $) 9)) (-2081 (($ $) 68)) (-2719 (((-917) (-568)) 115 (|has| $ (-6 -4510)))) (-4022 (((-1108) $) 10)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) 43)) (-2721 (($ $ $) 47) (($ (-634 $)) 46)) (-3880 (($ $) 84)) (-1519 (($ $) 86)) (-3768 (($ (-568) (-568)) 127) (($ (-568) (-568) (-917)) 126)) (-3848 (((-420 $) $) 72)) (-4497 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2595 (((-3 $ "failed") $ $) 41)) (-2344 (((-3 (-634 $) "failed") (-634 $) $) 48)) (-3438 (((-568) $) 123)) (-2709 (((-763) $) 56)) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) 55)) (-3396 (((-917)) 120) (((-917) (-917)) 117 (|has| $ (-6 -4510)))) (-2573 (((-917) (-568)) 114 (|has| $ (-6 -4510)))) (-4278 (((-381) $) 101) (((-215) $) 100) (((-887 (-381)) $) 90)) (-2745 (((-850) $) 11) (($ (-568)) 27) (($ $) 42) (($ (-409 (-568))) 63) (($ (-568)) 99) (($ (-409 (-568))) 96)) (-4078 (((-763)) 28)) (-2285 (($ $) 87)) (-4042 (((-917)) 121) (((-917) (-917)) 118 (|has| $ (-6 -4510)))) (-1461 (((-917)) 124)) (-1826 (((-121) $ $) 38)) (-2897 (($ $) 111)) (-1887 (($ $ (-917)) 25) (($ $ (-763)) 32) (($ $ (-568)) 67)) (-3056 (($) 17 T CONST)) (-1556 (($) 29 T CONST)) (-1751 (((-121) $ $) 104)) (-1738 (((-121) $ $) 103)) (-1717 (((-121) $ $) 6)) (-1745 (((-121) $ $) 105)) (-1732 (((-121) $ $) 102)) (-1779 (($ $ $) 62)) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 24) (($ $ (-763)) 31) (($ $ (-568)) 66) (($ $ (-409 (-568))) 91)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 23) (($ $ (-409 (-568))) 65) (($ (-409 (-568)) $) 64))) +(((-406) (-1275)) (T -406)) +((-3768 (*1 *1 *2 *2) (-12 (-5 *2 (-568)) (-4 *1 (-406)))) (-3768 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-568)) (-5 *3 (-917)) (-4 *1 (-406)))) (-4477 (*1 *2 *1) (-12 (-4 *1 (-406)) (-5 *2 (-568)))) (-1461 (*1 *2) (-12 (-4 *1 (-406)) (-5 *2 (-917)))) (-3438 (*1 *2 *1) (-12 (-4 *1 (-406)) (-5 *2 (-568)))) (-3544 (*1 *2 *1) (-12 (-4 *1 (-406)) (-5 *2 (-568)))) (-4042 (*1 *2) (-12 (-4 *1 (-406)) (-5 *2 (-917)))) (-3396 (*1 *2) (-12 (-4 *1 (-406)) (-5 *2 (-917)))) (-3359 (*1 *2) (-12 (-4 *1 (-406)) (-5 *2 (-917)))) (-4042 (*1 *2 *2) (-12 (-5 *2 (-917)) (|has| *1 (-6 -4510)) (-4 *1 (-406)))) (-3396 (*1 *2 *2) (-12 (-5 *2 (-917)) (|has| *1 (-6 -4510)) (-4 *1 (-406)))) (-3359 (*1 *2 *2) (-12 (-5 *2 (-917)) (|has| *1 (-6 -4510)) (-4 *1 (-406)))) (-2719 (*1 *2 *3) (-12 (-5 *3 (-568)) (|has| *1 (-6 -4510)) (-4 *1 (-406)) (-5 *2 (-917)))) (-2573 (*1 *2 *3) (-12 (-5 *3 (-568)) (|has| *1 (-6 -4510)) (-4 *1 (-406)) (-5 *2 (-917)))) (-2521 (*1 *1) (-12 (-4 *1 (-406)) (-3044 (|has| *1 (-6 -4510))) (-3044 (|has| *1 (-6 -4502))))) (-3268 (*1 *1) (-12 (-4 *1 (-406)) (-3044 (|has| *1 (-6 -4510))) (-3044 (|has| *1 (-6 -4502)))))) +(-13 (-1056) (-10 -8 (-6 -3996) (-15 -3768 ($ (-568) (-568))) (-15 -3768 ($ (-568) (-568) (-917))) (-15 -4477 ((-568) $)) (-15 -1461 ((-917))) (-15 -3438 ((-568) $)) (-15 -3544 ((-568) $)) (-15 -4042 ((-917))) (-15 -3396 ((-917))) (-15 -3359 ((-917))) (IF (|has| $ (-6 -4510)) (PROGN (-15 -4042 ((-917) (-917))) (-15 -3396 ((-917) (-917))) (-15 -3359 ((-917) (-917))) (-15 -2719 ((-917) (-568))) (-15 -2573 ((-917) (-568)))) |noBranch|) (IF (|has| $ (-6 -4502)) |noBranch| (IF (|has| $ (-6 -4510)) |noBranch| (PROGN (-15 -2521 ($)) (-15 -3268 ($))))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-43 (-409 (-568))) . T) ((-43 $) . T) ((-105) . T) ((-120 (-409 (-568)) (-409 (-568))) . T) ((-120 $ $) . T) ((-137) . T) ((-150) . T) ((-608 (-850)) . T) ((-172) . T) ((-609 (-215)) . T) ((-609 (-381)) . T) ((-609 (-887 (-381))) . T) ((-238) . T) ((-285) . T) ((-301) . T) ((-365) . T) ((-453) . T) ((-558) . T) ((-637 (-409 (-568))) . T) ((-637 $) . T) ((-707 (-409 (-568))) . T) ((-707 $) . T) ((-716) . T) ((-786) . T) ((-787) . T) ((-789) . T) ((-790) . T) ((-840) . T) ((-842) . T) ((-881 (-381)) . T) ((-916) . T) ((-1002) . T) ((-1021) . T) ((-1056) . T) ((-1037 (-409 (-568))) . T) ((-1037 (-568)) . T) ((-1053 (-409 (-568))) . T) ((-1053 $) . T) ((-1047) . T) ((-1054) . T) ((-1102) . T) ((-1090) . T) ((-1199) . T)) +((-2795 (((-420 |#2|) (-1 |#2| |#1|) (-420 |#1|)) 20))) +(((-407 |#1| |#2|) (-10 -7 (-15 -2795 ((-420 |#2|) (-1 |#2| |#1|) (-420 |#1|)))) (-558) (-558)) (T -407)) +((-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-420 *5)) (-4 *5 (-558)) (-4 *6 (-558)) (-5 *2 (-420 *6)) (-5 *1 (-407 *5 *6))))) +(-10 -7 (-15 -2795 ((-420 |#2|) (-1 |#2| |#1|) (-420 |#1|)))) +((-2795 (((-409 |#2|) (-1 |#2| |#1|) (-409 |#1|)) 13))) +(((-408 |#1| |#2|) (-10 -7 (-15 -2795 ((-409 |#2|) (-1 |#2| |#1|) (-409 |#1|)))) (-558) (-558)) (T -408)) +((-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-409 *5)) (-4 *5 (-558)) (-4 *6 (-558)) (-5 *2 (-409 *6)) (-5 *1 (-408 *5 *6))))) +(-10 -7 (-15 -2795 ((-409 |#2|) (-1 |#2| |#1|) (-409 |#1|)))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) 13)) (-1492 ((|#1| $) 21 (|has| |#1| (-301)))) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL)) (-2227 (($ $) NIL)) (-1573 (((-121) $) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-1750 (((-420 (-1157 $)) (-1157 $)) NIL (|has| |#1| (-904)))) (-4305 (($ $) NIL)) (-1678 (((-420 $) $) NIL)) (-1858 (((-3 (-634 (-1157 $)) "failed") (-634 (-1157 $)) (-1157 $)) NIL (|has| |#1| (-904)))) (-1497 (((-121) $ $) NIL)) (-3662 (((-568) $) NIL (|has| |#1| (-815)))) (-2671 (($) NIL T CONST)) (-3666 (((-3 |#1| "failed") $) 17) (((-3 (-1161) "failed") $) NIL (|has| |#1| (-1037 (-1161)))) (((-3 (-409 (-568)) "failed") $) 70 (|has| |#1| (-1037 (-568)))) (((-3 (-568) "failed") $) NIL (|has| |#1| (-1037 (-568))))) (-2854 ((|#1| $) 15) (((-1161) $) NIL (|has| |#1| (-1037 (-1161)))) (((-409 (-568)) $) 67 (|has| |#1| (-1037 (-568)))) (((-568) $) NIL (|has| |#1| (-1037 (-568))))) (-2401 (($ $ $) NIL)) (-3164 (((-679 (-568)) (-679 $)) NIL (|has| |#1| (-630 (-568)))) (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) NIL (|has| |#1| (-630 (-568)))) (((-2 (|:| -2928 (-679 |#1|)) (|:| |vec| (-1244 |#1|))) (-679 $) (-1244 $)) NIL) (((-679 |#1|) (-679 $)) NIL)) (-2925 (((-3 $ "failed") $) 50)) (-1731 (($) NIL (|has| |#1| (-550)))) (-2412 (($ $ $) NIL)) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) NIL)) (-3927 (((-121) $) NIL)) (-2033 (((-121) $) NIL (|has| |#1| (-815)))) (-4410 (((-884 (-568) $) $ (-887 (-568)) (-884 (-568) $)) NIL (|has| |#1| (-881 (-568)))) (((-884 (-381) $) $ (-887 (-381)) (-884 (-381) $)) NIL (|has| |#1| (-881 (-381))))) (-2735 (((-121) $) 64)) (-1332 (($ $) NIL)) (-2317 ((|#1| $) 71)) (-3038 (((-3 $ "failed") $) NIL (|has| |#1| (-1136)))) (-2245 (((-121) $) NIL (|has| |#1| (-815)))) (-3562 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-2521 (($ $ $) NIL (|has| |#1| (-842)))) (-3268 (($ $ $) NIL (|has| |#1| (-842)))) (-2795 (($ (-1 |#1| |#1|) $) NIL)) (-2495 (($ $ $) NIL) (($ (-634 $)) NIL)) (-4487 (((-1143) $) NIL)) (-2081 (($ $) NIL)) (-4434 (($) NIL (|has| |#1| (-1136)) CONST)) (-4022 (((-1108) $) NIL)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) 97)) (-2721 (($ $ $) NIL) (($ (-634 $)) NIL)) (-3880 (($ $) NIL (|has| |#1| (-301)))) (-1519 ((|#1| $) 28 (|has| |#1| (-550)))) (-2905 (((-420 (-1157 $)) (-1157 $)) 133 (|has| |#1| (-904)))) (-3545 (((-420 (-1157 $)) (-1157 $)) 129 (|has| |#1| (-904)))) (-3848 (((-420 $) $) NIL)) (-4497 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2595 (((-3 $ "failed") $ $) NIL)) (-2344 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-1339 (($ $ (-634 |#1|) (-634 |#1|)) NIL (|has| |#1| (-303 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-303 |#1|))) (($ $ (-288 |#1|)) NIL (|has| |#1| (-303 |#1|))) (($ $ (-634 (-288 |#1|))) NIL (|has| |#1| (-303 |#1|))) (($ $ (-634 (-1161)) (-634 |#1|)) NIL (|has| |#1| (-523 (-1161) |#1|))) (($ $ (-1161) |#1|) NIL (|has| |#1| (-523 (-1161) |#1|)))) (-2709 (((-763) $) NIL)) (-2779 (($ $ |#1|) NIL (|has| |#1| (-281 |#1| |#1|)))) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL)) (-4189 (($ $) NIL (|has| |#1| (-225))) (($ $ (-763)) NIL (|has| |#1| (-225))) (($ $ (-1161)) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-634 (-1161))) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-1161) (-763)) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-634 (-1161)) (-634 (-763))) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-1 |#1| |#1|) (-763)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-3013 (($ $) NIL)) (-2324 ((|#1| $) 73)) (-4278 (((-887 (-568)) $) NIL (|has| |#1| (-609 (-887 (-568))))) (((-887 (-381)) $) NIL (|has| |#1| (-609 (-887 (-381))))) (((-541) $) NIL (|has| |#1| (-609 (-541)))) (((-381) $) NIL (|has| |#1| (-1021))) (((-215) $) NIL (|has| |#1| (-1021)))) (-2979 (((-3 (-1244 $) "failed") (-679 $)) 113 (-12 (|has| $ (-148)) (|has| |#1| (-904))))) (-2745 (((-850) $) NIL) (($ (-568)) NIL) (($ $) NIL) (($ (-409 (-568))) NIL) (($ |#1|) 10) (($ (-1161)) NIL (|has| |#1| (-1037 (-1161))))) (-4371 (((-3 $ "failed") $) 99 (-2198 (-12 (|has| $ (-148)) (|has| |#1| (-904))) (|has| |#1| (-148))))) (-4078 (((-763)) 100)) (-2285 ((|#1| $) 26 (|has| |#1| (-550)))) (-1826 (((-121) $ $) NIL)) (-2897 (($ $) NIL (|has| |#1| (-815)))) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL)) (-3056 (($) 22 T CONST)) (-1556 (($) 8 T CONST)) (-3754 (((-1143) $) 43 (-12 (|has| |#1| (-550)) (|has| |#1| (-823)))) (((-1143) $ (-121)) 44 (-12 (|has| |#1| (-550)) (|has| |#1| (-823)))) (((-1249) (-817) $) 45 (-12 (|has| |#1| (-550)) (|has| |#1| (-823)))) (((-1249) (-817) $ (-121)) 46 (-12 (|has| |#1| (-550)) (|has| |#1| (-823))))) (-3190 (($ $) NIL (|has| |#1| (-225))) (($ $ (-763)) NIL (|has| |#1| (-225))) (($ $ (-1161)) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-634 (-1161))) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-1161) (-763)) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-634 (-1161)) (-634 (-763))) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-1 |#1| |#1|) (-763)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1751 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1738 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1717 (((-121) $ $) 56)) (-1745 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1732 (((-121) $ $) 24 (|has| |#1| (-842)))) (-1779 (($ $ $) 124) (($ |#1| |#1|) 52)) (-1773 (($ $) 25) (($ $ $) 55)) (-1767 (($ $ $) 53)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) 123)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) 60) (($ $ $) 57) (($ $ (-409 (-568))) NIL) (($ (-409 (-568)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85))) +(((-409 |#1|) (-13 (-993 |#1|) (-10 -7 (IF (|has| |#1| (-550)) (IF (|has| |#1| (-823)) (-6 (-823)) |noBranch|) |noBranch|) (IF (|has| |#1| (-6 -4506)) (IF (|has| |#1| (-453)) (IF (|has| |#1| (-6 -4517)) (-6 -4506) |noBranch|) |noBranch|) |noBranch|))) (-558)) (T -409)) +NIL +(-13 (-993 |#1|) (-10 -7 (IF (|has| |#1| (-550)) (IF (|has| |#1| (-823)) (-6 (-823)) |noBranch|) |noBranch|) (IF (|has| |#1| (-6 -4506)) (IF (|has| |#1| (-453)) (IF (|has| |#1| (-6 -4517)) (-6 -4506) |noBranch|) |noBranch|) |noBranch|))) +((-4255 (((-679 |#2|) (-1244 $)) NIL) (((-679 |#2|)) 18)) (-3498 (($ (-1244 |#2|) (-1244 $)) NIL) (($ (-1244 |#2|)) 26)) (-1709 (((-679 |#2|) $ (-1244 $)) NIL) (((-679 |#2|) $) 22)) (-2045 ((|#3| $) 59)) (-2217 ((|#2| (-1244 $)) NIL) ((|#2|) 20)) (-4073 (((-1244 |#2|) $ (-1244 $)) NIL) (((-679 |#2|) (-1244 $) (-1244 $)) NIL) (((-1244 |#2|) $) NIL) (((-679 |#2|) (-1244 $)) 24)) (-4278 (((-1244 |#2|) $) 11) (($ (-1244 |#2|)) 13)) (-2678 ((|#3| $) 51))) +(((-410 |#1| |#2| |#3|) (-10 -8 (-15 -1709 ((-679 |#2|) |#1|)) (-15 -2217 (|#2|)) (-15 -4255 ((-679 |#2|))) (-15 -4278 (|#1| (-1244 |#2|))) (-15 -4278 ((-1244 |#2|) |#1|)) (-15 -3498 (|#1| (-1244 |#2|))) (-15 -4073 ((-679 |#2|) (-1244 |#1|))) (-15 -4073 ((-1244 |#2|) |#1|)) (-15 -2045 (|#3| |#1|)) (-15 -2678 (|#3| |#1|)) (-15 -4255 ((-679 |#2|) (-1244 |#1|))) (-15 -2217 (|#2| (-1244 |#1|))) (-15 -3498 (|#1| (-1244 |#2|) (-1244 |#1|))) (-15 -4073 ((-679 |#2|) (-1244 |#1|) (-1244 |#1|))) (-15 -4073 ((-1244 |#2|) |#1| (-1244 |#1|))) (-15 -1709 ((-679 |#2|) |#1| (-1244 |#1|)))) (-411 |#2| |#3|) (-172) (-1219 |#2|)) (T -410)) +((-4255 (*1 *2) (-12 (-4 *4 (-172)) (-4 *5 (-1219 *4)) (-5 *2 (-679 *4)) (-5 *1 (-410 *3 *4 *5)) (-4 *3 (-411 *4 *5)))) (-2217 (*1 *2) (-12 (-4 *4 (-1219 *2)) (-4 *2 (-172)) (-5 *1 (-410 *3 *2 *4)) (-4 *3 (-411 *2 *4))))) +(-10 -8 (-15 -1709 ((-679 |#2|) |#1|)) (-15 -2217 (|#2|)) (-15 -4255 ((-679 |#2|))) (-15 -4278 (|#1| (-1244 |#2|))) (-15 -4278 ((-1244 |#2|) |#1|)) (-15 -3498 (|#1| (-1244 |#2|))) (-15 -4073 ((-679 |#2|) (-1244 |#1|))) (-15 -4073 ((-1244 |#2|) |#1|)) (-15 -2045 (|#3| |#1|)) (-15 -2678 (|#3| |#1|)) (-15 -4255 ((-679 |#2|) (-1244 |#1|))) (-15 -2217 (|#2| (-1244 |#1|))) (-15 -3498 (|#1| (-1244 |#2|) (-1244 |#1|))) (-15 -4073 ((-679 |#2|) (-1244 |#1|) (-1244 |#1|))) (-15 -4073 ((-1244 |#2|) |#1| (-1244 |#1|))) (-15 -1709 ((-679 |#2|) |#1| (-1244 |#1|)))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-4255 (((-679 |#1|) (-1244 $)) 44) (((-679 |#1|)) 55)) (-1932 ((|#1| $) 50)) (-3134 (((-3 $ "failed") $ $) 18)) (-2671 (($) 16 T CONST)) (-3498 (($ (-1244 |#1|) (-1244 $)) 46) (($ (-1244 |#1|)) 58)) (-1709 (((-679 |#1|) $ (-1244 $)) 51) (((-679 |#1|) $) 53)) (-2925 (((-3 $ "failed") $) 33)) (-3700 (((-917)) 52)) (-2735 (((-121) $) 30)) (-2657 ((|#1| $) 49)) (-2045 ((|#2| $) 42 (|has| |#1| (-365)))) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-2217 ((|#1| (-1244 $)) 45) ((|#1|) 54)) (-4073 (((-1244 |#1|) $ (-1244 $)) 48) (((-679 |#1|) (-1244 $) (-1244 $)) 47) (((-1244 |#1|) $) 60) (((-679 |#1|) (-1244 $)) 59)) (-4278 (((-1244 |#1|) $) 57) (($ (-1244 |#1|)) 56)) (-2745 (((-850) $) 11) (($ (-568)) 27) (($ |#1|) 36)) (-4371 (((-3 $ "failed") $) 41 (|has| |#1| (-148)))) (-2678 ((|#2| $) 43)) (-4078 (((-763)) 28)) (-3746 (((-1244 $)) 61)) (-1887 (($ $ (-917)) 25) (($ $ (-763)) 32)) (-3056 (($) 17 T CONST)) (-1556 (($) 29 T CONST)) (-1717 (((-121) $ $) 6)) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 24) (($ $ (-763)) 31)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 23) (($ $ |#1|) 38) (($ |#1| $) 37))) +(((-411 |#1| |#2|) (-1275) (-172) (-1219 |t#1|)) (T -411)) +((-3746 (*1 *2) (-12 (-4 *3 (-172)) (-4 *4 (-1219 *3)) (-5 *2 (-1244 *1)) (-4 *1 (-411 *3 *4)))) (-4073 (*1 *2 *1) (-12 (-4 *1 (-411 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1219 *3)) (-5 *2 (-1244 *3)))) (-4073 (*1 *2 *3) (-12 (-5 *3 (-1244 *1)) (-4 *1 (-411 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1219 *4)) (-5 *2 (-679 *4)))) (-3498 (*1 *1 *2) (-12 (-5 *2 (-1244 *3)) (-4 *3 (-172)) (-4 *1 (-411 *3 *4)) (-4 *4 (-1219 *3)))) (-4278 (*1 *2 *1) (-12 (-4 *1 (-411 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1219 *3)) (-5 *2 (-1244 *3)))) (-4278 (*1 *1 *2) (-12 (-5 *2 (-1244 *3)) (-4 *3 (-172)) (-4 *1 (-411 *3 *4)) (-4 *4 (-1219 *3)))) (-4255 (*1 *2) (-12 (-4 *1 (-411 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1219 *3)) (-5 *2 (-679 *3)))) (-2217 (*1 *2) (-12 (-4 *1 (-411 *2 *3)) (-4 *3 (-1219 *2)) (-4 *2 (-172)))) (-1709 (*1 *2 *1) (-12 (-4 *1 (-411 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1219 *3)) (-5 *2 (-679 *3))))) +(-13 (-372 |t#1| |t#2|) (-10 -8 (-15 -3746 ((-1244 $))) (-15 -4073 ((-1244 |t#1|) $)) (-15 -4073 ((-679 |t#1|) (-1244 $))) (-15 -3498 ($ (-1244 |t#1|))) (-15 -4278 ((-1244 |t#1|) $)) (-15 -4278 ($ (-1244 |t#1|))) (-15 -4255 ((-679 |t#1|))) (-15 -2217 (|t#1|)) (-15 -1709 ((-679 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-43 |#1|) . T) ((-105) . T) ((-120 |#1| |#1|) . T) ((-137) . T) ((-148) |has| |#1| (-148)) ((-150) |has| |#1| (-150)) ((-608 (-850)) . T) ((-372 |#1| |#2|) . T) ((-637 |#1|) . T) ((-637 $) . T) ((-707 |#1|) . T) ((-716) . T) ((-1053 |#1|) . T) ((-1047) . T) ((-1054) . T) ((-1102) . T) ((-1090) . T)) +((-3666 (((-3 |#2| "failed") $) NIL) (((-3 (-409 (-568)) "failed") $) 27) (((-3 (-568) "failed") $) 19)) (-2854 ((|#2| $) NIL) (((-409 (-568)) $) 24) (((-568) $) 14)) (-2745 (($ |#2|) NIL) (($ (-409 (-568))) 22) (($ (-568)) 11))) +(((-412 |#1| |#2|) (-10 -8 (-15 -2854 ((-568) |#1|)) (-15 -3666 ((-3 (-568) "failed") |#1|)) (-15 -2745 (|#1| (-568))) (-15 -2854 ((-409 (-568)) |#1|)) (-15 -3666 ((-3 (-409 (-568)) "failed") |#1|)) (-15 -2745 (|#1| (-409 (-568)))) (-15 -2745 (|#1| |#2|)) (-15 -3666 ((-3 |#2| "failed") |#1|)) (-15 -2854 (|#2| |#1|))) (-413 |#2|) (-1195)) (T -412)) +NIL +(-10 -8 (-15 -2854 ((-568) |#1|)) (-15 -3666 ((-3 (-568) "failed") |#1|)) (-15 -2745 (|#1| (-568))) (-15 -2854 ((-409 (-568)) |#1|)) (-15 -3666 ((-3 (-409 (-568)) "failed") |#1|)) (-15 -2745 (|#1| (-409 (-568)))) (-15 -2745 (|#1| |#2|)) (-15 -3666 ((-3 |#2| "failed") |#1|)) (-15 -2854 (|#2| |#1|))) +((-3666 (((-3 |#1| "failed") $) 7) (((-3 (-409 (-568)) "failed") $) 15 (|has| |#1| (-1037 (-409 (-568))))) (((-3 (-568) "failed") $) 12 (|has| |#1| (-1037 (-568))))) (-2854 ((|#1| $) 8) (((-409 (-568)) $) 14 (|has| |#1| (-1037 (-409 (-568))))) (((-568) $) 11 (|has| |#1| (-1037 (-568))))) (-2745 (($ |#1|) 6) (($ (-409 (-568))) 16 (|has| |#1| (-1037 (-409 (-568))))) (($ (-568)) 13 (|has| |#1| (-1037 (-568)))))) +(((-413 |#1|) (-1275) (-1195)) (T -413)) +NIL +(-13 (-1037 |t#1|) (-10 -7 (IF (|has| |t#1| (-1037 (-568))) (-6 (-1037 (-568))) |noBranch|) (IF (|has| |t#1| (-1037 (-409 (-568)))) (-6 (-1037 (-409 (-568)))) |noBranch|))) +(((-1037 (-409 (-568))) |has| |#1| (-1037 (-409 (-568)))) ((-1037 (-568)) |has| |#1| (-1037 (-568))) ((-1037 |#1|) . T)) +((-2795 (((-415 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-415 |#1| |#2| |#3| |#4|)) 33))) +(((-414 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2795 ((-415 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-415 |#1| |#2| |#3| |#4|)))) (-301) (-993 |#1|) (-1219 |#2|) (-13 (-411 |#2| |#3|) (-1037 |#2|)) (-301) (-993 |#5|) (-1219 |#6|) (-13 (-411 |#6| |#7|) (-1037 |#6|))) (T -414)) +((-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-415 *5 *6 *7 *8)) (-4 *5 (-301)) (-4 *6 (-993 *5)) (-4 *7 (-1219 *6)) (-4 *8 (-13 (-411 *6 *7) (-1037 *6))) (-4 *9 (-301)) (-4 *10 (-993 *9)) (-4 *11 (-1219 *10)) (-5 *2 (-415 *9 *10 *11 *12)) (-5 *1 (-414 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-411 *10 *11) (-1037 *10)))))) +(-10 -7 (-15 -2795 ((-415 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-415 |#1| |#2| |#3| |#4|)))) +((-2447 (((-121) $ $) NIL)) (-2671 (($) NIL T CONST)) (-2925 (((-3 $ "failed") $) NIL)) (-1770 ((|#4| (-763) (-1244 |#4|)) 55)) (-2735 (((-121) $) NIL)) (-2317 (((-1244 |#4|) $) 17)) (-2657 ((|#2| $) 53)) (-3338 (($ $) 136)) (-4487 (((-1143) $) NIL)) (-2081 (($ $) 98)) (-1552 (($ (-1244 |#4|)) 97)) (-4022 (((-1108) $) NIL)) (-2324 ((|#1| $) 18)) (-1458 (($ $ $) NIL)) (-2353 (($ $ $) NIL)) (-2745 (((-850) $) 131)) (-3746 (((-1244 |#4|) $) 126)) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL)) (-1556 (($) 11 T CONST)) (-1717 (((-121) $ $) 39)) (-1779 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) 119)) (* (($ $ $) 118))) +(((-415 |#1| |#2| |#3| |#4|) (-13 (-478) (-10 -8 (-15 -1552 ($ (-1244 |#4|))) (-15 -3746 ((-1244 |#4|) $)) (-15 -2657 (|#2| $)) (-15 -2317 ((-1244 |#4|) $)) (-15 -2324 (|#1| $)) (-15 -3338 ($ $)) (-15 -1770 (|#4| (-763) (-1244 |#4|))))) (-301) (-993 |#1|) (-1219 |#2|) (-13 (-411 |#2| |#3|) (-1037 |#2|))) (T -415)) +((-1552 (*1 *1 *2) (-12 (-5 *2 (-1244 *6)) (-4 *6 (-13 (-411 *4 *5) (-1037 *4))) (-4 *4 (-993 *3)) (-4 *5 (-1219 *4)) (-4 *3 (-301)) (-5 *1 (-415 *3 *4 *5 *6)))) (-3746 (*1 *2 *1) (-12 (-4 *3 (-301)) (-4 *4 (-993 *3)) (-4 *5 (-1219 *4)) (-5 *2 (-1244 *6)) (-5 *1 (-415 *3 *4 *5 *6)) (-4 *6 (-13 (-411 *4 *5) (-1037 *4))))) (-2657 (*1 *2 *1) (-12 (-4 *4 (-1219 *2)) (-4 *2 (-993 *3)) (-5 *1 (-415 *3 *2 *4 *5)) (-4 *3 (-301)) (-4 *5 (-13 (-411 *2 *4) (-1037 *2))))) (-2317 (*1 *2 *1) (-12 (-4 *3 (-301)) (-4 *4 (-993 *3)) (-4 *5 (-1219 *4)) (-5 *2 (-1244 *6)) (-5 *1 (-415 *3 *4 *5 *6)) (-4 *6 (-13 (-411 *4 *5) (-1037 *4))))) (-2324 (*1 *2 *1) (-12 (-4 *3 (-993 *2)) (-4 *4 (-1219 *3)) (-4 *2 (-301)) (-5 *1 (-415 *2 *3 *4 *5)) (-4 *5 (-13 (-411 *3 *4) (-1037 *3))))) (-3338 (*1 *1 *1) (-12 (-4 *2 (-301)) (-4 *3 (-993 *2)) (-4 *4 (-1219 *3)) (-5 *1 (-415 *2 *3 *4 *5)) (-4 *5 (-13 (-411 *3 *4) (-1037 *3))))) (-1770 (*1 *2 *3 *4) (-12 (-5 *3 (-763)) (-5 *4 (-1244 *2)) (-4 *5 (-301)) (-4 *6 (-993 *5)) (-4 *2 (-13 (-411 *6 *7) (-1037 *6))) (-5 *1 (-415 *5 *6 *7 *2)) (-4 *7 (-1219 *6))))) +(-13 (-478) (-10 -8 (-15 -1552 ($ (-1244 |#4|))) (-15 -3746 ((-1244 |#4|) $)) (-15 -2657 (|#2| $)) (-15 -2317 ((-1244 |#4|) $)) (-15 -2324 (|#1| $)) (-15 -3338 ($ $)) (-15 -1770 (|#4| (-763) (-1244 |#4|))))) +((-2447 (((-121) $ $) NIL)) (-2671 (($) NIL T CONST)) (-2925 (((-3 $ "failed") $) NIL)) (-2735 (((-121) $) NIL)) (-2657 ((|#2| $) 60)) (-1726 (($ (-1244 |#4|)) 25) (($ (-415 |#1| |#2| |#3| |#4|)) 75 (|has| |#4| (-1037 |#2|)))) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2745 (((-850) $) 34)) (-3746 (((-1244 |#4|) $) 26)) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (-1556 (($) 23 T CONST)) (-1717 (((-121) $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (* (($ $ $) 72))) +(((-416 |#1| |#2| |#3| |#4| |#5|) (-13 (-716) (-10 -8 (-15 -3746 ((-1244 |#4|) $)) (-15 -2657 (|#2| $)) (-15 -1726 ($ (-1244 |#4|))) (IF (|has| |#4| (-1037 |#2|)) (-15 -1726 ($ (-415 |#1| |#2| |#3| |#4|))) |noBranch|))) (-301) (-993 |#1|) (-1219 |#2|) (-411 |#2| |#3|) (-1244 |#4|)) (T -416)) +((-3746 (*1 *2 *1) (-12 (-4 *3 (-301)) (-4 *4 (-993 *3)) (-4 *5 (-1219 *4)) (-5 *2 (-1244 *6)) (-5 *1 (-416 *3 *4 *5 *6 *7)) (-4 *6 (-411 *4 *5)) (-14 *7 *2))) (-2657 (*1 *2 *1) (-12 (-4 *4 (-1219 *2)) (-4 *2 (-993 *3)) (-5 *1 (-416 *3 *2 *4 *5 *6)) (-4 *3 (-301)) (-4 *5 (-411 *2 *4)) (-14 *6 (-1244 *5)))) (-1726 (*1 *1 *2) (-12 (-5 *2 (-1244 *6)) (-4 *6 (-411 *4 *5)) (-4 *4 (-993 *3)) (-4 *5 (-1219 *4)) (-4 *3 (-301)) (-5 *1 (-416 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-1726 (*1 *1 *2) (-12 (-5 *2 (-415 *3 *4 *5 *6)) (-4 *6 (-1037 *4)) (-4 *3 (-301)) (-4 *4 (-993 *3)) (-4 *5 (-1219 *4)) (-4 *6 (-411 *4 *5)) (-14 *7 (-1244 *6)) (-5 *1 (-416 *3 *4 *5 *6 *7))))) +(-13 (-716) (-10 -8 (-15 -3746 ((-1244 |#4|) $)) (-15 -2657 (|#2| $)) (-15 -1726 ($ (-1244 |#4|))) (IF (|has| |#4| (-1037 |#2|)) (-15 -1726 ($ (-415 |#1| |#2| |#3| |#4|))) |noBranch|))) +((-2795 ((|#3| (-1 |#4| |#2|) |#1|) 26))) +(((-417 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2795 (|#3| (-1 |#4| |#2|) |#1|))) (-419 |#2|) (-172) (-419 |#4|) (-172)) (T -417)) +((-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-419 *6)) (-5 *1 (-417 *4 *5 *2 *6)) (-4 *4 (-419 *5))))) +(-10 -7 (-15 -2795 (|#3| (-1 |#4| |#2|) |#1|))) +((-2295 (((-3 $ "failed")) 85)) (-2776 (((-1244 (-679 |#2|)) (-1244 $)) NIL) (((-1244 (-679 |#2|))) 90)) (-1309 (((-3 (-2 (|:| |particular| $) (|:| -3746 (-634 $))) "failed")) 84)) (-2593 (((-3 $ "failed")) 83)) (-1631 (((-679 |#2|) (-1244 $)) NIL) (((-679 |#2|)) 101)) (-3042 (((-679 |#2|) $ (-1244 $)) NIL) (((-679 |#2|) $) 109)) (-4408 (((-1157 (-953 |#2|))) 54)) (-3569 ((|#2| (-1244 $)) NIL) ((|#2|) 105)) (-3498 (($ (-1244 |#2|) (-1244 $)) NIL) (($ (-1244 |#2|)) 112)) (-3116 (((-3 (-2 (|:| |particular| $) (|:| -3746 (-634 $))) "failed")) 82)) (-2599 (((-3 $ "failed")) 74)) (-4210 (((-679 |#2|) (-1244 $)) NIL) (((-679 |#2|)) 99)) (-4333 (((-679 |#2|) $ (-1244 $)) NIL) (((-679 |#2|) $) 107)) (-4454 (((-1157 (-953 |#2|))) 53)) (-3898 ((|#2| (-1244 $)) NIL) ((|#2|) 103)) (-4073 (((-1244 |#2|) $ (-1244 $)) NIL) (((-679 |#2|) (-1244 $) (-1244 $)) NIL) (((-1244 |#2|) $) NIL) (((-679 |#2|) (-1244 $)) 111)) (-4278 (((-1244 |#2|) $) 95) (($ (-1244 |#2|)) 97)) (-3295 (((-634 (-953 |#2|)) (-1244 $)) NIL) (((-634 (-953 |#2|))) 93)) (-3823 (($ (-679 |#2|) $) 89))) +(((-418 |#1| |#2|) (-10 -8 (-15 -3823 (|#1| (-679 |#2|) |#1|)) (-15 -4408 ((-1157 (-953 |#2|)))) (-15 -4454 ((-1157 (-953 |#2|)))) (-15 -3042 ((-679 |#2|) |#1|)) (-15 -4333 ((-679 |#2|) |#1|)) (-15 -1631 ((-679 |#2|))) (-15 -4210 ((-679 |#2|))) (-15 -3569 (|#2|)) (-15 -3898 (|#2|)) (-15 -4278 (|#1| (-1244 |#2|))) (-15 -4278 ((-1244 |#2|) |#1|)) (-15 -3498 (|#1| (-1244 |#2|))) (-15 -3295 ((-634 (-953 |#2|)))) (-15 -2776 ((-1244 (-679 |#2|)))) (-15 -4073 ((-679 |#2|) (-1244 |#1|))) (-15 -4073 ((-1244 |#2|) |#1|)) (-15 -2295 ((-3 |#1| "failed"))) (-15 -2593 ((-3 |#1| "failed"))) (-15 -2599 ((-3 |#1| "failed"))) (-15 -1309 ((-3 (-2 (|:| |particular| |#1|) (|:| -3746 (-634 |#1|))) "failed"))) (-15 -3116 ((-3 (-2 (|:| |particular| |#1|) (|:| -3746 (-634 |#1|))) "failed"))) (-15 -1631 ((-679 |#2|) (-1244 |#1|))) (-15 -4210 ((-679 |#2|) (-1244 |#1|))) (-15 -3569 (|#2| (-1244 |#1|))) (-15 -3898 (|#2| (-1244 |#1|))) (-15 -3498 (|#1| (-1244 |#2|) (-1244 |#1|))) (-15 -4073 ((-679 |#2|) (-1244 |#1|) (-1244 |#1|))) (-15 -4073 ((-1244 |#2|) |#1| (-1244 |#1|))) (-15 -3042 ((-679 |#2|) |#1| (-1244 |#1|))) (-15 -4333 ((-679 |#2|) |#1| (-1244 |#1|))) (-15 -2776 ((-1244 (-679 |#2|)) (-1244 |#1|))) (-15 -3295 ((-634 (-953 |#2|)) (-1244 |#1|)))) (-419 |#2|) (-172)) (T -418)) +((-2776 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1244 (-679 *4))) (-5 *1 (-418 *3 *4)) (-4 *3 (-419 *4)))) (-3295 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-634 (-953 *4))) (-5 *1 (-418 *3 *4)) (-4 *3 (-419 *4)))) (-3898 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-418 *3 *2)) (-4 *3 (-419 *2)))) (-3569 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-418 *3 *2)) (-4 *3 (-419 *2)))) (-4210 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-679 *4)) (-5 *1 (-418 *3 *4)) (-4 *3 (-419 *4)))) (-1631 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-679 *4)) (-5 *1 (-418 *3 *4)) (-4 *3 (-419 *4)))) (-4454 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1157 (-953 *4))) (-5 *1 (-418 *3 *4)) (-4 *3 (-419 *4)))) (-4408 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1157 (-953 *4))) (-5 *1 (-418 *3 *4)) (-4 *3 (-419 *4))))) +(-10 -8 (-15 -3823 (|#1| (-679 |#2|) |#1|)) (-15 -4408 ((-1157 (-953 |#2|)))) (-15 -4454 ((-1157 (-953 |#2|)))) (-15 -3042 ((-679 |#2|) |#1|)) (-15 -4333 ((-679 |#2|) |#1|)) (-15 -1631 ((-679 |#2|))) (-15 -4210 ((-679 |#2|))) (-15 -3569 (|#2|)) (-15 -3898 (|#2|)) (-15 -4278 (|#1| (-1244 |#2|))) (-15 -4278 ((-1244 |#2|) |#1|)) (-15 -3498 (|#1| (-1244 |#2|))) (-15 -3295 ((-634 (-953 |#2|)))) (-15 -2776 ((-1244 (-679 |#2|)))) (-15 -4073 ((-679 |#2|) (-1244 |#1|))) (-15 -4073 ((-1244 |#2|) |#1|)) (-15 -2295 ((-3 |#1| "failed"))) (-15 -2593 ((-3 |#1| "failed"))) (-15 -2599 ((-3 |#1| "failed"))) (-15 -1309 ((-3 (-2 (|:| |particular| |#1|) (|:| -3746 (-634 |#1|))) "failed"))) (-15 -3116 ((-3 (-2 (|:| |particular| |#1|) (|:| -3746 (-634 |#1|))) "failed"))) (-15 -1631 ((-679 |#2|) (-1244 |#1|))) (-15 -4210 ((-679 |#2|) (-1244 |#1|))) (-15 -3569 (|#2| (-1244 |#1|))) (-15 -3898 (|#2| (-1244 |#1|))) (-15 -3498 (|#1| (-1244 |#2|) (-1244 |#1|))) (-15 -4073 ((-679 |#2|) (-1244 |#1|) (-1244 |#1|))) (-15 -4073 ((-1244 |#2|) |#1| (-1244 |#1|))) (-15 -3042 ((-679 |#2|) |#1| (-1244 |#1|))) (-15 -4333 ((-679 |#2|) |#1| (-1244 |#1|))) (-15 -2776 ((-1244 (-679 |#2|)) (-1244 |#1|))) (-15 -3295 ((-634 (-953 |#2|)) (-1244 |#1|)))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-2295 (((-3 $ "failed")) 35 (|has| |#1| (-558)))) (-3134 (((-3 $ "failed") $ $) 18)) (-2776 (((-1244 (-679 |#1|)) (-1244 $)) 76) (((-1244 (-679 |#1|))) 93)) (-1741 (((-1244 $)) 79)) (-2671 (($) 16 T CONST)) (-1309 (((-3 (-2 (|:| |particular| $) (|:| -3746 (-634 $))) "failed")) 38 (|has| |#1| (-558)))) (-2593 (((-3 $ "failed")) 36 (|has| |#1| (-558)))) (-1631 (((-679 |#1|) (-1244 $)) 63) (((-679 |#1|)) 85)) (-1866 ((|#1| $) 72)) (-3042 (((-679 |#1|) $ (-1244 $)) 74) (((-679 |#1|) $) 83)) (-3550 (((-3 $ "failed") $) 43 (|has| |#1| (-558)))) (-4408 (((-1157 (-953 |#1|))) 81 (|has| |#1| (-365)))) (-3551 (($ $ (-917)) 27)) (-4409 ((|#1| $) 70)) (-1371 (((-1157 |#1|) $) 40 (|has| |#1| (-558)))) (-3569 ((|#1| (-1244 $)) 65) ((|#1|) 87)) (-2989 (((-1157 |#1|) $) 61)) (-3384 (((-121)) 55)) (-3498 (($ (-1244 |#1|) (-1244 $)) 67) (($ (-1244 |#1|)) 91)) (-2925 (((-3 $ "failed") $) 45 (|has| |#1| (-558)))) (-3700 (((-917)) 78)) (-4370 (((-121)) 52)) (-4373 (($ $ (-917)) 32)) (-1537 (((-121)) 48)) (-1580 (((-121)) 46)) (-1695 (((-121)) 50)) (-3116 (((-3 (-2 (|:| |particular| $) (|:| -3746 (-634 $))) "failed")) 39 (|has| |#1| (-558)))) (-2599 (((-3 $ "failed")) 37 (|has| |#1| (-558)))) (-4210 (((-679 |#1|) (-1244 $)) 64) (((-679 |#1|)) 86)) (-2889 ((|#1| $) 73)) (-4333 (((-679 |#1|) $ (-1244 $)) 75) (((-679 |#1|) $) 84)) (-3243 (((-3 $ "failed") $) 44 (|has| |#1| (-558)))) (-4454 (((-1157 (-953 |#1|))) 82 (|has| |#1| (-365)))) (-4222 (($ $ (-917)) 28)) (-3329 ((|#1| $) 71)) (-2265 (((-1157 |#1|) $) 41 (|has| |#1| (-558)))) (-3898 ((|#1| (-1244 $)) 66) ((|#1|) 88)) (-3626 (((-1157 |#1|) $) 62)) (-2767 (((-121)) 56)) (-4487 (((-1143) $) 9)) (-1804 (((-121)) 47)) (-2919 (((-121)) 49)) (-3840 (((-121)) 51)) (-4022 (((-1108) $) 10)) (-1346 (((-121)) 54)) (-2779 ((|#1| $ (-568)) 94)) (-4073 (((-1244 |#1|) $ (-1244 $)) 69) (((-679 |#1|) (-1244 $) (-1244 $)) 68) (((-1244 |#1|) $) 96) (((-679 |#1|) (-1244 $)) 95)) (-4278 (((-1244 |#1|) $) 90) (($ (-1244 |#1|)) 89)) (-3295 (((-634 (-953 |#1|)) (-1244 $)) 77) (((-634 (-953 |#1|))) 92)) (-2353 (($ $ $) 24)) (-3433 (((-121)) 60)) (-2745 (((-850) $) 11)) (-3746 (((-1244 $)) 97)) (-1509 (((-634 (-1244 |#1|))) 42 (|has| |#1| (-558)))) (-3882 (($ $ $ $) 25)) (-4177 (((-121)) 58)) (-3823 (($ (-679 |#1|) $) 80)) (-3500 (($ $ $) 23)) (-2433 (((-121)) 59)) (-2189 (((-121)) 57)) (-4107 (((-121)) 53)) (-3056 (($) 17 T CONST)) (-1717 (((-121) $ $) 6)) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 29)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 26) (($ $ |#1|) 34) (($ |#1| $) 33))) +(((-419 |#1|) (-1275) (-172)) (T -419)) +((-3746 (*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1244 *1)) (-4 *1 (-419 *3)))) (-4073 (*1 *2 *1) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-1244 *3)))) (-4073 (*1 *2 *3) (-12 (-5 *3 (-1244 *1)) (-4 *1 (-419 *4)) (-4 *4 (-172)) (-5 *2 (-679 *4)))) (-2779 (*1 *2 *1 *3) (-12 (-5 *3 (-568)) (-4 *1 (-419 *2)) (-4 *2 (-172)))) (-2776 (*1 *2) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-1244 (-679 *3))))) (-3295 (*1 *2) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-634 (-953 *3))))) (-3498 (*1 *1 *2) (-12 (-5 *2 (-1244 *3)) (-4 *3 (-172)) (-4 *1 (-419 *3)))) (-4278 (*1 *2 *1) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-1244 *3)))) (-4278 (*1 *1 *2) (-12 (-5 *2 (-1244 *3)) (-4 *3 (-172)) (-4 *1 (-419 *3)))) (-3898 (*1 *2) (-12 (-4 *1 (-419 *2)) (-4 *2 (-172)))) (-3569 (*1 *2) (-12 (-4 *1 (-419 *2)) (-4 *2 (-172)))) (-4210 (*1 *2) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-679 *3)))) (-1631 (*1 *2) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-679 *3)))) (-4333 (*1 *2 *1) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-679 *3)))) (-3042 (*1 *2 *1) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-679 *3)))) (-4454 (*1 *2) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-4 *3 (-365)) (-5 *2 (-1157 (-953 *3))))) (-4408 (*1 *2) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-4 *3 (-365)) (-5 *2 (-1157 (-953 *3))))) (-3823 (*1 *1 *2 *1) (-12 (-5 *2 (-679 *3)) (-4 *1 (-419 *3)) (-4 *3 (-172))))) +(-13 (-369 |t#1|) (-10 -8 (-15 -3746 ((-1244 $))) (-15 -4073 ((-1244 |t#1|) $)) (-15 -4073 ((-679 |t#1|) (-1244 $))) (-15 -2779 (|t#1| $ (-568))) (-15 -2776 ((-1244 (-679 |t#1|)))) (-15 -3295 ((-634 (-953 |t#1|)))) (-15 -3498 ($ (-1244 |t#1|))) (-15 -4278 ((-1244 |t#1|) $)) (-15 -4278 ($ (-1244 |t#1|))) (-15 -3898 (|t#1|)) (-15 -3569 (|t#1|)) (-15 -4210 ((-679 |t#1|))) (-15 -1631 ((-679 |t#1|))) (-15 -4333 ((-679 |t#1|) $)) (-15 -3042 ((-679 |t#1|) $)) (IF (|has| |t#1| (-365)) (PROGN (-15 -4454 ((-1157 (-953 |t#1|)))) (-15 -4408 ((-1157 (-953 |t#1|))))) |noBranch|) (-15 -3823 ($ (-679 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-105) . T) ((-120 |#1| |#1|) . T) ((-137) . T) ((-608 (-850)) . T) ((-369 |#1|) . T) ((-637 |#1|) . T) ((-707 |#1|) . T) ((-710) . T) ((-736 |#1|) . T) ((-753) . T) ((-1053 |#1|) . T) ((-1090) . T)) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) 40)) (-3904 (($ $) 55)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) 142)) (-2227 (($ $) NIL)) (-1573 (((-121) $) 34)) (-2295 ((|#1| $) 12)) (-3134 (((-3 $ "failed") $ $) NIL)) (-4305 (($ $) NIL (|has| |#1| (-1199)))) (-1678 (((-420 $) $) NIL (|has| |#1| (-1199)))) (-2825 (($ |#1| (-568)) 30)) (-2671 (($) NIL T CONST)) (-3666 (((-3 (-568) "failed") $) NIL (|has| |#1| (-1037 (-568)))) (((-3 (-409 (-568)) "failed") $) NIL (|has| |#1| (-1037 (-409 (-568))))) (((-3 |#1| "failed") $) 112)) (-2854 (((-568) $) NIL (|has| |#1| (-1037 (-568)))) (((-409 (-568)) $) NIL (|has| |#1| (-1037 (-409 (-568))))) ((|#1| $) 53)) (-2925 (((-3 $ "failed") $) 127)) (-1642 (((-3 (-409 (-568)) "failed") $) 61 (|has| |#1| (-550)))) (-2688 (((-121) $) 57 (|has| |#1| (-550)))) (-2425 (((-409 (-568)) $) 59 (|has| |#1| (-550)))) (-3779 (($ |#1| (-568)) 32)) (-3927 (((-121) $) 148 (|has| |#1| (-1199)))) (-2735 (((-121) $) 41)) (-3157 (((-763) $) 36)) (-2449 (((-3 "nil" "sqfr" "irred" "prime") $ (-568)) 133)) (-2882 ((|#1| $ (-568)) 132)) (-2660 (((-568) $ (-568)) 131)) (-1543 (($ |#1| (-568)) 29)) (-2795 (($ (-1 |#1| |#1|) $) 139)) (-2936 (($ |#1| (-634 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-568))))) 56)) (-2495 (($ (-634 $)) NIL (|has| |#1| (-453))) (($ $ $) NIL (|has| |#1| (-453)))) (-4487 (((-1143) $) NIL)) (-1824 (($ |#1| (-568)) 31)) (-4022 (((-1108) $) NIL)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL (|has| |#1| (-453)))) (-2721 (($ (-634 $)) NIL (|has| |#1| (-453))) (($ $ $) 143 (|has| |#1| (-453)))) (-1925 (($ |#1| (-568) (-3 "nil" "sqfr" "irred" "prime")) 28)) (-3276 (((-634 (-2 (|:| -3848 |#1|) (|:| -3438 (-568)))) $) 52)) (-1385 (((-634 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-568)))) $) 11)) (-3848 (((-420 $) $) NIL (|has| |#1| (-1199)))) (-2595 (((-3 $ "failed") $ $) 134)) (-3438 (((-568) $) 128)) (-2789 ((|#1| $) 54)) (-1339 (($ $ (-634 |#1|) (-634 |#1|)) NIL (|has| |#1| (-303 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-303 |#1|))) (($ $ (-288 |#1|)) NIL (|has| |#1| (-303 |#1|))) (($ $ (-634 (-288 |#1|))) 76 (|has| |#1| (-303 |#1|))) (($ $ (-634 (-1161)) (-634 |#1|)) 81 (|has| |#1| (-523 (-1161) |#1|))) (($ $ (-1161) |#1|) NIL (|has| |#1| (-523 (-1161) |#1|))) (($ $ (-1161) $) NIL (|has| |#1| (-523 (-1161) $))) (($ $ (-634 (-1161)) (-634 $)) 82 (|has| |#1| (-523 (-1161) $))) (($ $ (-634 (-288 $))) 78 (|has| |#1| (-303 $))) (($ $ (-288 $)) NIL (|has| |#1| (-303 $))) (($ $ $ $) NIL (|has| |#1| (-303 $))) (($ $ (-634 $) (-634 $)) NIL (|has| |#1| (-303 $)))) (-2779 (($ $ |#1|) 68 (|has| |#1| (-281 |#1| |#1|))) (($ $ $) 69 (|has| |#1| (-281 $ $)))) (-4189 (($ $) NIL (|has| |#1| (-225))) (($ $ (-763)) NIL (|has| |#1| (-225))) (($ $ (-1161)) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-634 (-1161))) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-1161) (-763)) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-634 (-1161)) (-634 (-763))) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-1 |#1| |#1|) (-763)) NIL) (($ $ (-1 |#1| |#1|)) 138)) (-4278 (((-541) $) 26 (|has| |#1| (-609 (-541)))) (((-381) $) 88 (|has| |#1| (-1021))) (((-215) $) 91 (|has| |#1| (-1021)))) (-2745 (((-850) $) 110) (($ (-568)) 44) (($ $) NIL) (($ |#1|) 43) (($ (-409 (-568))) NIL (|has| |#1| (-1037 (-409 (-568)))))) (-4078 (((-763)) 46)) (-1826 (((-121) $ $) NIL)) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (-3056 (($) 38 T CONST)) (-1556 (($) 37 T CONST)) (-3190 (($ $) NIL (|has| |#1| (-225))) (($ $ (-763)) NIL (|has| |#1| (-225))) (($ $ (-1161)) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-634 (-1161))) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-1161) (-763)) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-634 (-1161)) (-634 (-763))) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-1 |#1| |#1|) (-763)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1717 (((-121) $ $) 92)) (-1773 (($ $) 124) (($ $ $) NIL)) (-1767 (($ $ $) 136)) (** (($ $ (-917)) NIL) (($ $ (-763)) 98)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) 48) (($ $ $) 47) (($ |#1| $) 49) (($ $ |#1|) NIL))) +(((-420 |#1|) (-13 (-558) (-223 |#1|) (-43 |#1|) (-336 |#1|) (-413 |#1|) (-10 -8 (-15 -2789 (|#1| $)) (-15 -3438 ((-568) $)) (-15 -2936 ($ |#1| (-634 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-568)))))) (-15 -1385 ((-634 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-568)))) $)) (-15 -1543 ($ |#1| (-568))) (-15 -3276 ((-634 (-2 (|:| -3848 |#1|) (|:| -3438 (-568)))) $)) (-15 -1824 ($ |#1| (-568))) (-15 -2660 ((-568) $ (-568))) (-15 -2882 (|#1| $ (-568))) (-15 -2449 ((-3 "nil" "sqfr" "irred" "prime") $ (-568))) (-15 -3157 ((-763) $)) (-15 -3779 ($ |#1| (-568))) (-15 -2825 ($ |#1| (-568))) (-15 -1925 ($ |#1| (-568) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -2295 (|#1| $)) (-15 -3904 ($ $)) (-15 -2795 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-453)) (-6 (-453)) |noBranch|) (IF (|has| |#1| (-1021)) (-6 (-1021)) |noBranch|) (IF (|has| |#1| (-1199)) (-6 (-1199)) |noBranch|) (IF (|has| |#1| (-609 (-541))) (-6 (-609 (-541))) |noBranch|) (IF (|has| |#1| (-550)) (PROGN (-15 -2688 ((-121) $)) (-15 -2425 ((-409 (-568)) $)) (-15 -1642 ((-3 (-409 (-568)) "failed") $))) |noBranch|) (IF (|has| |#1| (-281 $ $)) (-6 (-281 $ $)) |noBranch|) (IF (|has| |#1| (-303 $)) (-6 (-303 $)) |noBranch|) (IF (|has| |#1| (-523 (-1161) $)) (-6 (-523 (-1161) $)) |noBranch|))) (-558)) (T -420)) +((-2795 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-558)) (-5 *1 (-420 *3)))) (-2789 (*1 *2 *1) (-12 (-5 *1 (-420 *2)) (-4 *2 (-558)))) (-3438 (*1 *2 *1) (-12 (-5 *2 (-568)) (-5 *1 (-420 *3)) (-4 *3 (-558)))) (-2936 (*1 *1 *2 *3) (-12 (-5 *3 (-634 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-568))))) (-4 *2 (-558)) (-5 *1 (-420 *2)))) (-1385 (*1 *2 *1) (-12 (-5 *2 (-634 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-568))))) (-5 *1 (-420 *3)) (-4 *3 (-558)))) (-1543 (*1 *1 *2 *3) (-12 (-5 *3 (-568)) (-5 *1 (-420 *2)) (-4 *2 (-558)))) (-3276 (*1 *2 *1) (-12 (-5 *2 (-634 (-2 (|:| -3848 *3) (|:| -3438 (-568))))) (-5 *1 (-420 *3)) (-4 *3 (-558)))) (-1824 (*1 *1 *2 *3) (-12 (-5 *3 (-568)) (-5 *1 (-420 *2)) (-4 *2 (-558)))) (-2660 (*1 *2 *1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-420 *3)) (-4 *3 (-558)))) (-2882 (*1 *2 *1 *3) (-12 (-5 *3 (-568)) (-5 *1 (-420 *2)) (-4 *2 (-558)))) (-2449 (*1 *2 *1 *3) (-12 (-5 *3 (-568)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-420 *4)) (-4 *4 (-558)))) (-3157 (*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-420 *3)) (-4 *3 (-558)))) (-3779 (*1 *1 *2 *3) (-12 (-5 *3 (-568)) (-5 *1 (-420 *2)) (-4 *2 (-558)))) (-2825 (*1 *1 *2 *3) (-12 (-5 *3 (-568)) (-5 *1 (-420 *2)) (-4 *2 (-558)))) (-1925 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-568)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-420 *2)) (-4 *2 (-558)))) (-2295 (*1 *2 *1) (-12 (-5 *1 (-420 *2)) (-4 *2 (-558)))) (-3904 (*1 *1 *1) (-12 (-5 *1 (-420 *2)) (-4 *2 (-558)))) (-2688 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-420 *3)) (-4 *3 (-550)) (-4 *3 (-558)))) (-2425 (*1 *2 *1) (-12 (-5 *2 (-409 (-568))) (-5 *1 (-420 *3)) (-4 *3 (-550)) (-4 *3 (-558)))) (-1642 (*1 *2 *1) (|partial| -12 (-5 *2 (-409 (-568))) (-5 *1 (-420 *3)) (-4 *3 (-550)) (-4 *3 (-558))))) +(-13 (-558) (-223 |#1|) (-43 |#1|) (-336 |#1|) (-413 |#1|) (-10 -8 (-15 -2789 (|#1| $)) (-15 -3438 ((-568) $)) (-15 -2936 ($ |#1| (-634 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-568)))))) (-15 -1385 ((-634 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-568)))) $)) (-15 -1543 ($ |#1| (-568))) (-15 -3276 ((-634 (-2 (|:| -3848 |#1|) (|:| -3438 (-568)))) $)) (-15 -1824 ($ |#1| (-568))) (-15 -2660 ((-568) $ (-568))) (-15 -2882 (|#1| $ (-568))) (-15 -2449 ((-3 "nil" "sqfr" "irred" "prime") $ (-568))) (-15 -3157 ((-763) $)) (-15 -3779 ($ |#1| (-568))) (-15 -2825 ($ |#1| (-568))) (-15 -1925 ($ |#1| (-568) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -2295 (|#1| $)) (-15 -3904 ($ $)) (-15 -2795 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-453)) (-6 (-453)) |noBranch|) (IF (|has| |#1| (-1021)) (-6 (-1021)) |noBranch|) (IF (|has| |#1| (-1199)) (-6 (-1199)) |noBranch|) (IF (|has| |#1| (-609 (-541))) (-6 (-609 (-541))) |noBranch|) (IF (|has| |#1| (-550)) (PROGN (-15 -2688 ((-121) $)) (-15 -2425 ((-409 (-568)) $)) (-15 -1642 ((-3 (-409 (-568)) "failed") $))) |noBranch|) (IF (|has| |#1| (-281 $ $)) (-6 (-281 $ $)) |noBranch|) (IF (|has| |#1| (-303 $)) (-6 (-303 $)) |noBranch|) (IF (|has| |#1| (-523 (-1161) $)) (-6 (-523 (-1161) $)) |noBranch|))) +((-4069 (((-420 |#1|) (-420 |#1|) (-1 (-420 |#1|) |#1|)) 20)) (-4088 (((-420 |#1|) (-420 |#1|) (-420 |#1|)) 15))) +(((-421 |#1|) (-10 -7 (-15 -4069 ((-420 |#1|) (-420 |#1|) (-1 (-420 |#1|) |#1|))) (-15 -4088 ((-420 |#1|) (-420 |#1|) (-420 |#1|)))) (-558)) (T -421)) +((-4088 (*1 *2 *2 *2) (-12 (-5 *2 (-420 *3)) (-4 *3 (-558)) (-5 *1 (-421 *3)))) (-4069 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-420 *4) *4)) (-4 *4 (-558)) (-5 *2 (-420 *4)) (-5 *1 (-421 *4))))) +(-10 -7 (-15 -4069 ((-420 |#1|) (-420 |#1|) (-1 (-420 |#1|) |#1|))) (-15 -4088 ((-420 |#1|) (-420 |#1|) (-420 |#1|)))) +((-3262 ((|#2| |#2|) 160)) (-2487 (((-3 (|:| |%expansion| (-307 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1143)) (|:| |prob| (-1143))))) |#2| (-121)) 55))) +(((-422 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2487 ((-3 (|:| |%expansion| (-307 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1143)) (|:| |prob| (-1143))))) |#2| (-121))) (-15 -3262 (|#2| |#2|))) (-13 (-453) (-842) (-1037 (-568)) (-630 (-568))) (-13 (-27) (-1181) (-432 |#1|)) (-1161) |#2|) (T -422)) +((-3262 (*1 *2 *2) (-12 (-4 *3 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *1 (-422 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1181) (-432 *3))) (-14 *4 (-1161)) (-14 *5 *2))) (-2487 (*1 *2 *3 *4) (-12 (-5 *4 (-121)) (-4 *5 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-3 (|:| |%expansion| (-307 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1143)) (|:| |prob| (-1143)))))) (-5 *1 (-422 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1181) (-432 *5))) (-14 *6 (-1161)) (-14 *7 *3)))) +(-10 -7 (-15 -2487 ((-3 (|:| |%expansion| (-307 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1143)) (|:| |prob| (-1143))))) |#2| (-121))) (-15 -3262 (|#2| |#2|))) +((-2795 ((|#4| (-1 |#3| |#1|) |#2|) 11))) +(((-423 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2795 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-1047) (-842)) (-432 |#1|) (-13 (-1047) (-842)) (-432 |#3|)) (T -423)) +((-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1047) (-842))) (-4 *6 (-13 (-1047) (-842))) (-4 *2 (-432 *6)) (-5 *1 (-423 *5 *4 *6 *2)) (-4 *4 (-432 *5))))) +(-10 -7 (-15 -2795 (|#4| (-1 |#3| |#1|) |#2|))) +((-3262 ((|#2| |#2|) 87)) (-3998 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1143)) (|:| |prob| (-1143))))) |#2| (-121) (-1143)) 46)) (-2757 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1143)) (|:| |prob| (-1143))))) |#2| (-121) (-1143)) 152))) +(((-424 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3998 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1143)) (|:| |prob| (-1143))))) |#2| (-121) (-1143))) (-15 -2757 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1143)) (|:| |prob| (-1143))))) |#2| (-121) (-1143))) (-15 -3262 (|#2| |#2|))) (-13 (-453) (-842) (-1037 (-568)) (-630 (-568))) (-13 (-27) (-1181) (-432 |#1|) (-10 -8 (-15 -2745 ($ |#3|)))) (-840) (-13 (-1221 |#2| |#3|) (-365) (-1181) (-10 -8 (-15 -4189 ($ $)) (-15 -3837 ($ $)))) (-984 |#4|) (-1161)) (T -424)) +((-3262 (*1 *2 *2) (-12 (-4 *3 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-4 *2 (-13 (-27) (-1181) (-432 *3) (-10 -8 (-15 -2745 ($ *4))))) (-4 *4 (-840)) (-4 *5 (-13 (-1221 *2 *4) (-365) (-1181) (-10 -8 (-15 -4189 ($ $)) (-15 -3837 ($ $))))) (-5 *1 (-424 *3 *2 *4 *5 *6 *7)) (-4 *6 (-984 *5)) (-14 *7 (-1161)))) (-2757 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-121)) (-4 *6 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-4 *3 (-13 (-27) (-1181) (-432 *6) (-10 -8 (-15 -2745 ($ *7))))) (-4 *7 (-840)) (-4 *8 (-13 (-1221 *3 *7) (-365) (-1181) (-10 -8 (-15 -4189 ($ $)) (-15 -3837 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1143)) (|:| |prob| (-1143)))))) (-5 *1 (-424 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1143)) (-4 *9 (-984 *8)) (-14 *10 (-1161)))) (-3998 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-121)) (-4 *6 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-4 *3 (-13 (-27) (-1181) (-432 *6) (-10 -8 (-15 -2745 ($ *7))))) (-4 *7 (-840)) (-4 *8 (-13 (-1221 *3 *7) (-365) (-1181) (-10 -8 (-15 -4189 ($ $)) (-15 -3837 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1143)) (|:| |prob| (-1143)))))) (-5 *1 (-424 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1143)) (-4 *9 (-984 *8)) (-14 *10 (-1161))))) +(-10 -7 (-15 -3998 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1143)) (|:| |prob| (-1143))))) |#2| (-121) (-1143))) (-15 -2757 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1143)) (|:| |prob| (-1143))))) |#2| (-121) (-1143))) (-15 -3262 (|#2| |#2|))) +((-2512 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-3092 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-2795 ((|#4| (-1 |#3| |#1|) |#2|) 17))) +(((-425 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2795 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3092 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2512 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1090) (-427 |#1|) (-1090) (-427 |#3|)) (T -425)) +((-2512 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1090)) (-4 *5 (-1090)) (-4 *2 (-427 *5)) (-5 *1 (-425 *6 *4 *5 *2)) (-4 *4 (-427 *6)))) (-3092 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1090)) (-4 *2 (-1090)) (-5 *1 (-425 *5 *4 *2 *6)) (-4 *4 (-427 *5)) (-4 *6 (-427 *2)))) (-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *2 (-427 *6)) (-5 *1 (-425 *5 *4 *6 *2)) (-4 *4 (-427 *5))))) +(-10 -7 (-15 -2795 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3092 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2512 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-3415 (($) 44)) (-1791 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-1536 (($ $ $) 39)) (-2032 (((-121) $ $) 28)) (-3983 (((-763)) 47)) (-2749 (($ (-634 |#2|)) 20) (($) NIL)) (-1731 (($) 53)) (-2521 ((|#2| $) 61)) (-3268 ((|#2| $) 59)) (-3683 (((-917) $) 55)) (-3212 (($ $ $) 35)) (-4355 (($ (-917)) 50)) (-4382 (($ $ |#2|) NIL) (($ $ $) 38)) (-4168 (((-763) (-1 (-121) |#2|) $) NIL) (((-763) |#2| $) 26)) (-4287 (($ (-634 |#2|)) 24)) (-2160 (($ $) 46)) (-2745 (((-850) $) 33)) (-2432 (((-763) $) 21)) (-3844 (($ (-634 |#2|)) 19) (($) NIL)) (-1717 (((-121) $ $) 16)) (-1732 (((-121) $ $) 13))) +(((-426 |#1| |#2|) (-10 -8 (-15 -3983 ((-763))) (-15 -4355 (|#1| (-917))) (-15 -3683 ((-917) |#1|)) (-15 -1731 (|#1|)) (-15 -2521 (|#2| |#1|)) (-15 -3268 (|#2| |#1|)) (-15 -3415 (|#1|)) (-15 -2160 (|#1| |#1|)) (-15 -2432 ((-763) |#1|)) (-15 -1717 ((-121) |#1| |#1|)) (-15 -2745 ((-850) |#1|)) (-15 -1732 ((-121) |#1| |#1|)) (-15 -3844 (|#1|)) (-15 -3844 (|#1| (-634 |#2|))) (-15 -2749 (|#1|)) (-15 -2749 (|#1| (-634 |#2|))) (-15 -3212 (|#1| |#1| |#1|)) (-15 -4382 (|#1| |#1| |#1|)) (-15 -4382 (|#1| |#1| |#2|)) (-15 -1536 (|#1| |#1| |#1|)) (-15 -2032 ((-121) |#1| |#1|)) (-15 -1791 (|#1| |#1| |#1|)) (-15 -1791 (|#1| |#1| |#2|)) (-15 -1791 (|#1| |#2| |#1|)) (-15 -4287 (|#1| (-634 |#2|))) (-15 -4168 ((-763) |#2| |#1|)) (-15 -4168 ((-763) (-1 (-121) |#2|) |#1|))) (-427 |#2|) (-1090)) (T -426)) +((-3983 (*1 *2) (-12 (-4 *4 (-1090)) (-5 *2 (-763)) (-5 *1 (-426 *3 *4)) (-4 *3 (-427 *4))))) +(-10 -8 (-15 -3983 ((-763))) (-15 -4355 (|#1| (-917))) (-15 -3683 ((-917) |#1|)) (-15 -1731 (|#1|)) (-15 -2521 (|#2| |#1|)) (-15 -3268 (|#2| |#1|)) (-15 -3415 (|#1|)) (-15 -2160 (|#1| |#1|)) (-15 -2432 ((-763) |#1|)) (-15 -1717 ((-121) |#1| |#1|)) (-15 -2745 ((-850) |#1|)) (-15 -1732 ((-121) |#1| |#1|)) (-15 -3844 (|#1|)) (-15 -3844 (|#1| (-634 |#2|))) (-15 -2749 (|#1|)) (-15 -2749 (|#1| (-634 |#2|))) (-15 -3212 (|#1| |#1| |#1|)) (-15 -4382 (|#1| |#1| |#1|)) (-15 -4382 (|#1| |#1| |#2|)) (-15 -1536 (|#1| |#1| |#1|)) (-15 -2032 ((-121) |#1| |#1|)) (-15 -1791 (|#1| |#1| |#1|)) (-15 -1791 (|#1| |#1| |#2|)) (-15 -1791 (|#1| |#2| |#1|)) (-15 -4287 (|#1| (-634 |#2|))) (-15 -4168 ((-763) |#2| |#1|)) (-15 -4168 ((-763) (-1 (-121) |#2|) |#1|))) +((-2447 (((-121) $ $) 18)) (-3415 (($) 63 (|has| |#1| (-370)))) (-1791 (($ |#1| $) 78) (($ $ |#1|) 77) (($ $ $) 76)) (-1536 (($ $ $) 74)) (-2032 (((-121) $ $) 75)) (-2510 (((-121) $ (-763)) 8)) (-3983 (((-763)) 57 (|has| |#1| (-370)))) (-2749 (($ (-634 |#1|)) 70) (($) 69)) (-3507 (($ (-1 (-121) |#1|) $) 42 (|has| $ (-6 -4519)))) (-2801 (($ (-1 (-121) |#1|) $) 52 (|has| $ (-6 -4519)))) (-2671 (($) 7 T CONST)) (-3924 (($ $) 55 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-3405 (($ |#1| $) 44 (|has| $ (-6 -4519))) (($ (-1 (-121) |#1|) $) 43 (|has| $ (-6 -4519)))) (-4328 (($ |#1| $) 54 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519)))) (($ (-1 (-121) |#1|) $) 51 (|has| $ (-6 -4519)))) (-3092 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 53 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 50 (|has| $ (-6 -4519))) ((|#1| (-1 |#1| |#1| |#1|) $) 49 (|has| $ (-6 -4519)))) (-1731 (($) 60 (|has| |#1| (-370)))) (-4360 (((-634 |#1|) $) 30 (|has| $ (-6 -4519)))) (-1737 (((-121) $ (-763)) 9)) (-2521 ((|#1| $) 61 (|has| |#1| (-842)))) (-1979 (((-634 |#1|) $) 29 (|has| $ (-6 -4519)))) (-3109 (((-121) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-3268 ((|#1| $) 62 (|has| |#1| (-842)))) (-3674 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#1| |#1|) $) 35)) (-3683 (((-917) $) 59 (|has| |#1| (-370)))) (-2166 (((-121) $ (-763)) 10)) (-4487 (((-1143) $) 22)) (-3212 (($ $ $) 71)) (-1890 ((|#1| $) 36)) (-4450 (($ |#1| $) 37)) (-4355 (($ (-917)) 58 (|has| |#1| (-370)))) (-4022 (((-1108) $) 21)) (-3775 (((-3 |#1| "failed") (-1 (-121) |#1|) $) 48)) (-1315 ((|#1| $) 38)) (-1387 (((-121) (-1 (-121) |#1|) $) 32 (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-634 |#1|) (-634 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))))) (-3171 (((-121) $ $) 14)) (-3084 (((-121) $) 11)) (-3248 (($) 12)) (-4382 (($ $ |#1|) 73) (($ $ $) 72)) (-2085 (($) 46) (($ (-634 |#1|)) 45)) (-4168 (((-763) (-1 (-121) |#1|) $) 31 (|has| $ (-6 -4519))) (((-763) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-3863 (($ $) 13)) (-4278 (((-541) $) 56 (|has| |#1| (-609 (-541))))) (-4287 (($ (-634 |#1|)) 47)) (-2160 (($ $) 64 (|has| |#1| (-370)))) (-2745 (((-850) $) 20)) (-2432 (((-763) $) 65)) (-3844 (($ (-634 |#1|)) 68) (($) 67)) (-2367 (($ (-634 |#1|)) 39)) (-1319 (((-121) (-1 (-121) |#1|) $) 33 (|has| $ (-6 -4519)))) (-1717 (((-121) $ $) 19)) (-1732 (((-121) $ $) 66)) (-1697 (((-763) $) 6 (|has| $ (-6 -4519))))) +(((-427 |#1|) (-1275) (-1090)) (T -427)) +((-2432 (*1 *2 *1) (-12 (-4 *1 (-427 *3)) (-4 *3 (-1090)) (-5 *2 (-763)))) (-2160 (*1 *1 *1) (-12 (-4 *1 (-427 *2)) (-4 *2 (-1090)) (-4 *2 (-370)))) (-3415 (*1 *1) (-12 (-4 *1 (-427 *2)) (-4 *2 (-370)) (-4 *2 (-1090)))) (-3268 (*1 *2 *1) (-12 (-4 *1 (-427 *2)) (-4 *2 (-1090)) (-4 *2 (-842)))) (-2521 (*1 *2 *1) (-12 (-4 *1 (-427 *2)) (-4 *2 (-1090)) (-4 *2 (-842))))) +(-13 (-221 |t#1|) (-1087 |t#1|) (-10 -8 (-6 -4519) (-15 -2432 ((-763) $)) (IF (|has| |t#1| (-370)) (PROGN (-6 (-370)) (-15 -2160 ($ $)) (-15 -3415 ($))) |noBranch|) (IF (|has| |t#1| (-842)) (PROGN (-15 -3268 (|t#1| $)) (-15 -2521 (|t#1| $))) |noBranch|))) +(((-39) . T) ((-111 |#1|) . T) ((-105) . T) ((-608 (-850)) . T) ((-154 |#1|) . T) ((-609 (-541)) |has| |#1| (-609 (-541))) ((-221 |#1|) . T) ((-227 |#1|) . T) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))) ((-370) |has| |#1| (-370)) ((-499 |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))) ((-1087 |#1|) . T) ((-1090) . T) ((-1195) . T)) +((-1323 (((-585 |#2|) |#2| (-1161)) 35)) (-2005 (((-585 |#2|) |#2| (-1161)) 19)) (-2890 ((|#2| |#2| (-1161)) 24))) +(((-428 |#1| |#2|) (-10 -7 (-15 -2005 ((-585 |#2|) |#2| (-1161))) (-15 -1323 ((-585 |#2|) |#2| (-1161))) (-15 -2890 (|#2| |#2| (-1161)))) (-13 (-301) (-842) (-150) (-1037 (-568)) (-630 (-568))) (-13 (-1181) (-29 |#1|))) (T -428)) +((-2890 (*1 *2 *2 *3) (-12 (-5 *3 (-1161)) (-4 *4 (-13 (-301) (-842) (-150) (-1037 (-568)) (-630 (-568)))) (-5 *1 (-428 *4 *2)) (-4 *2 (-13 (-1181) (-29 *4))))) (-1323 (*1 *2 *3 *4) (-12 (-5 *4 (-1161)) (-4 *5 (-13 (-301) (-842) (-150) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-585 *3)) (-5 *1 (-428 *5 *3)) (-4 *3 (-13 (-1181) (-29 *5))))) (-2005 (*1 *2 *3 *4) (-12 (-5 *4 (-1161)) (-4 *5 (-13 (-301) (-842) (-150) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-585 *3)) (-5 *1 (-428 *5 *3)) (-4 *3 (-13 (-1181) (-29 *5)))))) +(-10 -7 (-15 -2005 ((-585 |#2|) |#2| (-1161))) (-15 -1323 ((-585 |#2|) |#2| (-1161))) (-15 -2890 (|#2| |#2| (-1161)))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-2671 (($) NIL T CONST)) (-2925 (((-3 $ "failed") $) NIL)) (-2735 (((-121) $) NIL)) (-4224 (($ |#2| |#1|) 35)) (-2128 (($ |#2| |#1|) 33)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2745 (((-850) $) NIL) (($ (-568)) NIL) (($ |#1|) NIL) (($ (-329 |#2|)) 25)) (-4078 (((-763)) NIL)) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (-3056 (($) 10 T CONST)) (-1556 (($) 16 T CONST)) (-1717 (((-121) $ $) NIL)) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) 34)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-429 |#1| |#2|) (-13 (-43 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4506)) (IF (|has| |#1| (-6 -4506)) (-6 -4506) |noBranch|) |noBranch|) (-15 -2745 ($ |#1|)) (-15 -2745 ($ (-329 |#2|))) (-15 -4224 ($ |#2| |#1|)) (-15 -2128 ($ |#2| |#1|)))) (-13 (-172) (-43 (-409 (-568)))) (-13 (-842) (-21))) (T -429)) +((-2745 (*1 *1 *2) (-12 (-5 *1 (-429 *2 *3)) (-4 *2 (-13 (-172) (-43 (-409 (-568))))) (-4 *3 (-13 (-842) (-21))))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-329 *4)) (-4 *4 (-13 (-842) (-21))) (-5 *1 (-429 *3 *4)) (-4 *3 (-13 (-172) (-43 (-409 (-568))))))) (-4224 (*1 *1 *2 *3) (-12 (-5 *1 (-429 *3 *2)) (-4 *3 (-13 (-172) (-43 (-409 (-568))))) (-4 *2 (-13 (-842) (-21))))) (-2128 (*1 *1 *2 *3) (-12 (-5 *1 (-429 *3 *2)) (-4 *3 (-13 (-172) (-43 (-409 (-568))))) (-4 *2 (-13 (-842) (-21)))))) +(-13 (-43 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4506)) (IF (|has| |#1| (-6 -4506)) (-6 -4506) |noBranch|) |noBranch|) (-15 -2745 ($ |#1|)) (-15 -2745 ($ (-329 |#2|))) (-15 -4224 ($ |#2| |#1|)) (-15 -2128 ($ |#2| |#1|)))) +((-3837 (((-3 |#2| (-634 |#2|)) |#2| (-1161)) 104))) +(((-430 |#1| |#2|) (-10 -7 (-15 -3837 ((-3 |#2| (-634 |#2|)) |#2| (-1161)))) (-13 (-301) (-842) (-150) (-1037 (-568)) (-630 (-568))) (-13 (-1181) (-959) (-29 |#1|))) (T -430)) +((-3837 (*1 *2 *3 *4) (-12 (-5 *4 (-1161)) (-4 *5 (-13 (-301) (-842) (-150) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-3 *3 (-634 *3))) (-5 *1 (-430 *5 *3)) (-4 *3 (-13 (-1181) (-959) (-29 *5)))))) +(-10 -7 (-15 -3837 ((-3 |#2| (-634 |#2|)) |#2| (-1161)))) +((-2055 (((-634 (-1161)) $) 72)) (-3839 (((-409 (-1157 $)) $ (-607 $)) 268)) (-2366 (($ $ (-288 $)) NIL) (($ $ (-634 (-288 $))) NIL) (($ $ (-634 (-607 $)) (-634 $)) 233)) (-3666 (((-3 (-607 $) "failed") $) NIL) (((-3 (-1161) "failed") $) 75) (((-3 (-568) "failed") $) NIL) (((-3 |#2| "failed") $) 229) (((-3 (-409 (-953 |#2|)) "failed") $) 319) (((-3 (-953 |#2|) "failed") $) 231) (((-3 (-409 (-568)) "failed") $) NIL)) (-2854 (((-607 $) $) NIL) (((-1161) $) 30) (((-568) $) NIL) ((|#2| $) 227) (((-409 (-953 |#2|)) $) 300) (((-953 |#2|) $) 228) (((-409 (-568)) $) NIL)) (-3488 (((-123) (-123)) 47)) (-1332 (($ $) 87)) (-3693 (((-3 (-607 $) "failed") $) 224)) (-3804 (((-634 (-607 $)) $) 225)) (-3324 (((-3 (-634 $) "failed") $) 243)) (-2672 (((-3 (-2 (|:| |val| $) (|:| -3438 (-568))) "failed") $) 250)) (-1794 (((-3 (-634 $) "failed") $) 241)) (-2392 (((-3 (-2 (|:| -2348 (-568)) (|:| |var| (-607 $))) "failed") $) 259)) (-3751 (((-3 (-2 (|:| |var| (-607 $)) (|:| -3438 (-568))) "failed") $) 247) (((-3 (-2 (|:| |var| (-607 $)) (|:| -3438 (-568))) "failed") $ (-123)) 214) (((-3 (-2 (|:| |var| (-607 $)) (|:| -3438 (-568))) "failed") $ (-1161)) 216)) (-2086 (((-121) $) 19)) (-2091 ((|#2| $) 21)) (-1339 (($ $ (-607 $) $) NIL) (($ $ (-634 (-607 $)) (-634 $)) 232) (($ $ (-634 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-634 $) (-634 $)) NIL) (($ $ (-634 (-1161)) (-634 (-1 $ $))) NIL) (($ $ (-634 (-1161)) (-634 (-1 $ (-634 $)))) 96) (($ $ (-1161) (-1 $ (-634 $))) NIL) (($ $ (-1161) (-1 $ $)) NIL) (($ $ (-634 (-123)) (-634 (-1 $ $))) NIL) (($ $ (-634 (-123)) (-634 (-1 $ (-634 $)))) NIL) (($ $ (-123) (-1 $ (-634 $))) NIL) (($ $ (-123) (-1 $ $)) NIL) (($ $ (-1161)) 57) (($ $ (-634 (-1161))) 236) (($ $) 237) (($ $ (-123) $ (-1161)) 60) (($ $ (-634 (-123)) (-634 $) (-1161)) 67) (($ $ (-634 (-1161)) (-634 (-763)) (-634 (-1 $ $))) 107) (($ $ (-634 (-1161)) (-634 (-763)) (-634 (-1 $ (-634 $)))) 238) (($ $ (-1161) (-763) (-1 $ (-634 $))) 94) (($ $ (-1161) (-763) (-1 $ $)) 93)) (-2779 (($ (-123) $) NIL) (($ (-123) $ $) NIL) (($ (-123) $ $ $) NIL) (($ (-123) $ $ $ $) NIL) (($ (-123) (-634 $)) 106)) (-4189 (($ $ (-634 (-1161)) (-634 (-763))) NIL) (($ $ (-1161) (-763)) NIL) (($ $ (-634 (-1161))) NIL) (($ $ (-1161)) 234)) (-3013 (($ $) 279)) (-4278 (((-887 (-568)) $) 253) (((-887 (-381)) $) 256) (($ (-420 $)) 315) (((-541) $) NIL)) (-2745 (((-850) $) 235) (($ (-607 $)) 84) (($ (-1161)) 26) (($ |#2|) NIL) (($ (-1113 |#2| (-607 $))) NIL) (($ (-409 |#2|)) 284) (($ (-953 (-409 |#2|))) 324) (($ (-409 (-953 (-409 |#2|)))) 296) (($ (-409 (-953 |#2|))) 290) (($ $) NIL) (($ (-953 |#2|)) 183) (($ (-409 (-568))) 329) (($ (-568)) NIL)) (-4078 (((-763)) 79)) (-2887 (((-121) (-123)) 41)) (-3058 (($ (-1161) $) 33) (($ (-1161) $ $) 34) (($ (-1161) $ $ $) 35) (($ (-1161) $ $ $ $) 36) (($ (-1161) (-634 $)) 39)) (* (($ (-409 (-568)) $) NIL) (($ $ (-409 (-568))) NIL) (($ |#2| $) 261) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-568) $) NIL) (($ (-763) $) NIL) (($ (-917) $) NIL))) +(((-431 |#1| |#2|) (-10 -8 (-15 * (|#1| (-917) |#1|)) (-15 * (|#1| (-763) |#1|)) (-15 * (|#1| (-568) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4078 ((-763))) (-15 -2745 (|#1| (-568))) (-15 -2854 ((-409 (-568)) |#1|)) (-15 -3666 ((-3 (-409 (-568)) "failed") |#1|)) (-15 -2745 (|#1| (-409 (-568)))) (-15 -4278 ((-541) |#1|)) (-15 -2854 ((-953 |#2|) |#1|)) (-15 -3666 ((-3 (-953 |#2|) "failed") |#1|)) (-15 -2745 (|#1| (-953 |#2|))) (-15 -4189 (|#1| |#1| (-1161))) (-15 -4189 (|#1| |#1| (-634 (-1161)))) (-15 -4189 (|#1| |#1| (-1161) (-763))) (-15 -4189 (|#1| |#1| (-634 (-1161)) (-634 (-763)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2745 (|#1| |#1|)) (-15 * (|#1| |#1| (-409 (-568)))) (-15 * (|#1| (-409 (-568)) |#1|)) (-15 -2854 ((-409 (-953 |#2|)) |#1|)) (-15 -3666 ((-3 (-409 (-953 |#2|)) "failed") |#1|)) (-15 -2745 (|#1| (-409 (-953 |#2|)))) (-15 -3839 ((-409 (-1157 |#1|)) |#1| (-607 |#1|))) (-15 -2745 (|#1| (-409 (-953 (-409 |#2|))))) (-15 -2745 (|#1| (-953 (-409 |#2|)))) (-15 -2745 (|#1| (-409 |#2|))) (-15 -3013 (|#1| |#1|)) (-15 -4278 (|#1| (-420 |#1|))) (-15 -1339 (|#1| |#1| (-1161) (-763) (-1 |#1| |#1|))) (-15 -1339 (|#1| |#1| (-1161) (-763) (-1 |#1| (-634 |#1|)))) (-15 -1339 (|#1| |#1| (-634 (-1161)) (-634 (-763)) (-634 (-1 |#1| (-634 |#1|))))) (-15 -1339 (|#1| |#1| (-634 (-1161)) (-634 (-763)) (-634 (-1 |#1| |#1|)))) (-15 -2672 ((-3 (-2 (|:| |val| |#1|) (|:| -3438 (-568))) "failed") |#1|)) (-15 -3751 ((-3 (-2 (|:| |var| (-607 |#1|)) (|:| -3438 (-568))) "failed") |#1| (-1161))) (-15 -3751 ((-3 (-2 (|:| |var| (-607 |#1|)) (|:| -3438 (-568))) "failed") |#1| (-123))) (-15 -1332 (|#1| |#1|)) (-15 -2745 (|#1| (-1113 |#2| (-607 |#1|)))) (-15 -2392 ((-3 (-2 (|:| -2348 (-568)) (|:| |var| (-607 |#1|))) "failed") |#1|)) (-15 -1794 ((-3 (-634 |#1|) "failed") |#1|)) (-15 -3751 ((-3 (-2 (|:| |var| (-607 |#1|)) (|:| -3438 (-568))) "failed") |#1|)) (-15 -3324 ((-3 (-634 |#1|) "failed") |#1|)) (-15 -1339 (|#1| |#1| (-634 (-123)) (-634 |#1|) (-1161))) (-15 -1339 (|#1| |#1| (-123) |#1| (-1161))) (-15 -1339 (|#1| |#1|)) (-15 -1339 (|#1| |#1| (-634 (-1161)))) (-15 -1339 (|#1| |#1| (-1161))) (-15 -3058 (|#1| (-1161) (-634 |#1|))) (-15 -3058 (|#1| (-1161) |#1| |#1| |#1| |#1|)) (-15 -3058 (|#1| (-1161) |#1| |#1| |#1|)) (-15 -3058 (|#1| (-1161) |#1| |#1|)) (-15 -3058 (|#1| (-1161) |#1|)) (-15 -2055 ((-634 (-1161)) |#1|)) (-15 -2091 (|#2| |#1|)) (-15 -2086 ((-121) |#1|)) (-15 -2854 (|#2| |#1|)) (-15 -3666 ((-3 |#2| "failed") |#1|)) (-15 -2745 (|#1| |#2|)) (-15 -3666 ((-3 (-568) "failed") |#1|)) (-15 -2854 ((-568) |#1|)) (-15 -4278 ((-887 (-381)) |#1|)) (-15 -4278 ((-887 (-568)) |#1|)) (-15 -2854 ((-1161) |#1|)) (-15 -3666 ((-3 (-1161) "failed") |#1|)) (-15 -2745 (|#1| (-1161))) (-15 -1339 (|#1| |#1| (-123) (-1 |#1| |#1|))) (-15 -1339 (|#1| |#1| (-123) (-1 |#1| (-634 |#1|)))) (-15 -1339 (|#1| |#1| (-634 (-123)) (-634 (-1 |#1| (-634 |#1|))))) (-15 -1339 (|#1| |#1| (-634 (-123)) (-634 (-1 |#1| |#1|)))) (-15 -1339 (|#1| |#1| (-1161) (-1 |#1| |#1|))) (-15 -1339 (|#1| |#1| (-1161) (-1 |#1| (-634 |#1|)))) (-15 -1339 (|#1| |#1| (-634 (-1161)) (-634 (-1 |#1| (-634 |#1|))))) (-15 -1339 (|#1| |#1| (-634 (-1161)) (-634 (-1 |#1| |#1|)))) (-15 -2887 ((-121) (-123))) (-15 -3488 ((-123) (-123))) (-15 -3804 ((-634 (-607 |#1|)) |#1|)) (-15 -3693 ((-3 (-607 |#1|) "failed") |#1|)) (-15 -2366 (|#1| |#1| (-634 (-607 |#1|)) (-634 |#1|))) (-15 -2366 (|#1| |#1| (-634 (-288 |#1|)))) (-15 -2366 (|#1| |#1| (-288 |#1|))) (-15 -2779 (|#1| (-123) (-634 |#1|))) (-15 -2779 (|#1| (-123) |#1| |#1| |#1| |#1|)) (-15 -2779 (|#1| (-123) |#1| |#1| |#1|)) (-15 -2779 (|#1| (-123) |#1| |#1|)) (-15 -2779 (|#1| (-123) |#1|)) (-15 -1339 (|#1| |#1| (-634 |#1|) (-634 |#1|))) (-15 -1339 (|#1| |#1| |#1| |#1|)) (-15 -1339 (|#1| |#1| (-288 |#1|))) (-15 -1339 (|#1| |#1| (-634 (-288 |#1|)))) (-15 -1339 (|#1| |#1| (-634 (-607 |#1|)) (-634 |#1|))) (-15 -1339 (|#1| |#1| (-607 |#1|) |#1|)) (-15 -2854 ((-607 |#1|) |#1|)) (-15 -3666 ((-3 (-607 |#1|) "failed") |#1|)) (-15 -2745 (|#1| (-607 |#1|))) (-15 -2745 ((-850) |#1|))) (-432 |#2|) (-842)) (T -431)) +((-3488 (*1 *2 *2) (-12 (-5 *2 (-123)) (-4 *4 (-842)) (-5 *1 (-431 *3 *4)) (-4 *3 (-432 *4)))) (-2887 (*1 *2 *3) (-12 (-5 *3 (-123)) (-4 *5 (-842)) (-5 *2 (-121)) (-5 *1 (-431 *4 *5)) (-4 *4 (-432 *5)))) (-4078 (*1 *2) (-12 (-4 *4 (-842)) (-5 *2 (-763)) (-5 *1 (-431 *3 *4)) (-4 *3 (-432 *4))))) +(-10 -8 (-15 * (|#1| (-917) |#1|)) (-15 * (|#1| (-763) |#1|)) (-15 * (|#1| (-568) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4078 ((-763))) (-15 -2745 (|#1| (-568))) (-15 -2854 ((-409 (-568)) |#1|)) (-15 -3666 ((-3 (-409 (-568)) "failed") |#1|)) (-15 -2745 (|#1| (-409 (-568)))) (-15 -4278 ((-541) |#1|)) (-15 -2854 ((-953 |#2|) |#1|)) (-15 -3666 ((-3 (-953 |#2|) "failed") |#1|)) (-15 -2745 (|#1| (-953 |#2|))) (-15 -4189 (|#1| |#1| (-1161))) (-15 -4189 (|#1| |#1| (-634 (-1161)))) (-15 -4189 (|#1| |#1| (-1161) (-763))) (-15 -4189 (|#1| |#1| (-634 (-1161)) (-634 (-763)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2745 (|#1| |#1|)) (-15 * (|#1| |#1| (-409 (-568)))) (-15 * (|#1| (-409 (-568)) |#1|)) (-15 -2854 ((-409 (-953 |#2|)) |#1|)) (-15 -3666 ((-3 (-409 (-953 |#2|)) "failed") |#1|)) (-15 -2745 (|#1| (-409 (-953 |#2|)))) (-15 -3839 ((-409 (-1157 |#1|)) |#1| (-607 |#1|))) (-15 -2745 (|#1| (-409 (-953 (-409 |#2|))))) (-15 -2745 (|#1| (-953 (-409 |#2|)))) (-15 -2745 (|#1| (-409 |#2|))) (-15 -3013 (|#1| |#1|)) (-15 -4278 (|#1| (-420 |#1|))) (-15 -1339 (|#1| |#1| (-1161) (-763) (-1 |#1| |#1|))) (-15 -1339 (|#1| |#1| (-1161) (-763) (-1 |#1| (-634 |#1|)))) (-15 -1339 (|#1| |#1| (-634 (-1161)) (-634 (-763)) (-634 (-1 |#1| (-634 |#1|))))) (-15 -1339 (|#1| |#1| (-634 (-1161)) (-634 (-763)) (-634 (-1 |#1| |#1|)))) (-15 -2672 ((-3 (-2 (|:| |val| |#1|) (|:| -3438 (-568))) "failed") |#1|)) (-15 -3751 ((-3 (-2 (|:| |var| (-607 |#1|)) (|:| -3438 (-568))) "failed") |#1| (-1161))) (-15 -3751 ((-3 (-2 (|:| |var| (-607 |#1|)) (|:| -3438 (-568))) "failed") |#1| (-123))) (-15 -1332 (|#1| |#1|)) (-15 -2745 (|#1| (-1113 |#2| (-607 |#1|)))) (-15 -2392 ((-3 (-2 (|:| -2348 (-568)) (|:| |var| (-607 |#1|))) "failed") |#1|)) (-15 -1794 ((-3 (-634 |#1|) "failed") |#1|)) (-15 -3751 ((-3 (-2 (|:| |var| (-607 |#1|)) (|:| -3438 (-568))) "failed") |#1|)) (-15 -3324 ((-3 (-634 |#1|) "failed") |#1|)) (-15 -1339 (|#1| |#1| (-634 (-123)) (-634 |#1|) (-1161))) (-15 -1339 (|#1| |#1| (-123) |#1| (-1161))) (-15 -1339 (|#1| |#1|)) (-15 -1339 (|#1| |#1| (-634 (-1161)))) (-15 -1339 (|#1| |#1| (-1161))) (-15 -3058 (|#1| (-1161) (-634 |#1|))) (-15 -3058 (|#1| (-1161) |#1| |#1| |#1| |#1|)) (-15 -3058 (|#1| (-1161) |#1| |#1| |#1|)) (-15 -3058 (|#1| (-1161) |#1| |#1|)) (-15 -3058 (|#1| (-1161) |#1|)) (-15 -2055 ((-634 (-1161)) |#1|)) (-15 -2091 (|#2| |#1|)) (-15 -2086 ((-121) |#1|)) (-15 -2854 (|#2| |#1|)) (-15 -3666 ((-3 |#2| "failed") |#1|)) (-15 -2745 (|#1| |#2|)) (-15 -3666 ((-3 (-568) "failed") |#1|)) (-15 -2854 ((-568) |#1|)) (-15 -4278 ((-887 (-381)) |#1|)) (-15 -4278 ((-887 (-568)) |#1|)) (-15 -2854 ((-1161) |#1|)) (-15 -3666 ((-3 (-1161) "failed") |#1|)) (-15 -2745 (|#1| (-1161))) (-15 -1339 (|#1| |#1| (-123) (-1 |#1| |#1|))) (-15 -1339 (|#1| |#1| (-123) (-1 |#1| (-634 |#1|)))) (-15 -1339 (|#1| |#1| (-634 (-123)) (-634 (-1 |#1| (-634 |#1|))))) (-15 -1339 (|#1| |#1| (-634 (-123)) (-634 (-1 |#1| |#1|)))) (-15 -1339 (|#1| |#1| (-1161) (-1 |#1| |#1|))) (-15 -1339 (|#1| |#1| (-1161) (-1 |#1| (-634 |#1|)))) (-15 -1339 (|#1| |#1| (-634 (-1161)) (-634 (-1 |#1| (-634 |#1|))))) (-15 -1339 (|#1| |#1| (-634 (-1161)) (-634 (-1 |#1| |#1|)))) (-15 -2887 ((-121) (-123))) (-15 -3488 ((-123) (-123))) (-15 -3804 ((-634 (-607 |#1|)) |#1|)) (-15 -3693 ((-3 (-607 |#1|) "failed") |#1|)) (-15 -2366 (|#1| |#1| (-634 (-607 |#1|)) (-634 |#1|))) (-15 -2366 (|#1| |#1| (-634 (-288 |#1|)))) (-15 -2366 (|#1| |#1| (-288 |#1|))) (-15 -2779 (|#1| (-123) (-634 |#1|))) (-15 -2779 (|#1| (-123) |#1| |#1| |#1| |#1|)) (-15 -2779 (|#1| (-123) |#1| |#1| |#1|)) (-15 -2779 (|#1| (-123) |#1| |#1|)) (-15 -2779 (|#1| (-123) |#1|)) (-15 -1339 (|#1| |#1| (-634 |#1|) (-634 |#1|))) (-15 -1339 (|#1| |#1| |#1| |#1|)) (-15 -1339 (|#1| |#1| (-288 |#1|))) (-15 -1339 (|#1| |#1| (-634 (-288 |#1|)))) (-15 -1339 (|#1| |#1| (-634 (-607 |#1|)) (-634 |#1|))) (-15 -1339 (|#1| |#1| (-607 |#1|) |#1|)) (-15 -2854 ((-607 |#1|) |#1|)) (-15 -3666 ((-3 (-607 |#1|) "failed") |#1|)) (-15 -2745 (|#1| (-607 |#1|))) (-15 -2745 ((-850) |#1|))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 108 (|has| |#1| (-25)))) (-2055 (((-634 (-1161)) $) 195)) (-3839 (((-409 (-1157 $)) $ (-607 $)) 163 (|has| |#1| (-558)))) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) 135 (|has| |#1| (-558)))) (-2227 (($ $) 136 (|has| |#1| (-558)))) (-1573 (((-121) $) 138 (|has| |#1| (-558)))) (-3001 (((-634 (-607 $)) $) 43)) (-3134 (((-3 $ "failed") $ $) 110 (|has| |#1| (-21)))) (-2366 (($ $ (-288 $)) 55) (($ $ (-634 (-288 $))) 54) (($ $ (-634 (-607 $)) (-634 $)) 53)) (-4305 (($ $) 155 (|has| |#1| (-558)))) (-1678 (((-420 $) $) 156 (|has| |#1| (-558)))) (-1497 (((-121) $ $) 146 (|has| |#1| (-558)))) (-2671 (($) 94 (-2198 (|has| |#1| (-1102)) (|has| |#1| (-25))) CONST)) (-3666 (((-3 (-607 $) "failed") $) 68) (((-3 (-1161) "failed") $) 208) (((-3 (-568) "failed") $) 201 (|has| |#1| (-1037 (-568)))) (((-3 |#1| "failed") $) 199) (((-3 (-409 (-953 |#1|)) "failed") $) 161 (|has| |#1| (-558))) (((-3 (-953 |#1|) "failed") $) 115 (|has| |#1| (-1047))) (((-3 (-409 (-568)) "failed") $) 87 (-2198 (-12 (|has| |#1| (-1037 (-568))) (|has| |#1| (-558))) (|has| |#1| (-1037 (-409 (-568))))))) (-2854 (((-607 $) $) 67) (((-1161) $) 207) (((-568) $) 202 (|has| |#1| (-1037 (-568)))) ((|#1| $) 198) (((-409 (-953 |#1|)) $) 160 (|has| |#1| (-558))) (((-953 |#1|) $) 114 (|has| |#1| (-1047))) (((-409 (-568)) $) 86 (-2198 (-12 (|has| |#1| (-1037 (-568))) (|has| |#1| (-558))) (|has| |#1| (-1037 (-409 (-568))))))) (-2401 (($ $ $) 150 (|has| |#1| (-558)))) (-3164 (((-679 (-568)) (-679 $)) 129 (-2139 (|has| |#1| (-630 (-568))) (|has| |#1| (-1047)))) (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) 128 (-2139 (|has| |#1| (-630 (-568))) (|has| |#1| (-1047)))) (((-2 (|:| -2928 (-679 |#1|)) (|:| |vec| (-1244 |#1|))) (-679 $) (-1244 $)) 127 (|has| |#1| (-1047))) (((-679 |#1|) (-679 $)) 126 (|has| |#1| (-1047)))) (-2925 (((-3 $ "failed") $) 97 (|has| |#1| (-1102)))) (-2412 (($ $ $) 149 (|has| |#1| (-558)))) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) 144 (|has| |#1| (-558)))) (-3927 (((-121) $) 157 (|has| |#1| (-558)))) (-4410 (((-884 (-568) $) $ (-887 (-568)) (-884 (-568) $)) 204 (|has| |#1| (-881 (-568)))) (((-884 (-381) $) $ (-887 (-381)) (-884 (-381) $)) 203 (|has| |#1| (-881 (-381))))) (-4499 (($ $) 50) (($ (-634 $)) 49)) (-3296 (((-634 (-123)) $) 42)) (-3488 (((-123) (-123)) 41)) (-2735 (((-121) $) 95 (|has| |#1| (-1102)))) (-1825 (((-121) $) 21 (|has| $ (-1037 (-568))))) (-1332 (($ $) 178 (|has| |#1| (-1047)))) (-2317 (((-1113 |#1| (-607 $)) $) 179 (|has| |#1| (-1047)))) (-3562 (((-3 (-634 $) "failed") (-634 $) $) 153 (|has| |#1| (-558)))) (-3007 (((-1157 $) (-607 $)) 24 (|has| $ (-1047)))) (-2521 (($ $ $) 12)) (-3268 (($ $ $) 13)) (-2795 (($ (-1 $ $) (-607 $)) 35)) (-3693 (((-3 (-607 $) "failed") $) 45)) (-2495 (($ (-634 $)) 142 (|has| |#1| (-558))) (($ $ $) 141 (|has| |#1| (-558)))) (-4487 (((-1143) $) 9)) (-3804 (((-634 (-607 $)) $) 44)) (-3443 (($ (-123) $) 37) (($ (-123) (-634 $)) 36)) (-3324 (((-3 (-634 $) "failed") $) 184 (|has| |#1| (-1102)))) (-2672 (((-3 (-2 (|:| |val| $) (|:| -3438 (-568))) "failed") $) 175 (|has| |#1| (-1047)))) (-1794 (((-3 (-634 $) "failed") $) 182 (|has| |#1| (-25)))) (-2392 (((-3 (-2 (|:| -2348 (-568)) (|:| |var| (-607 $))) "failed") $) 181 (|has| |#1| (-25)))) (-3751 (((-3 (-2 (|:| |var| (-607 $)) (|:| -3438 (-568))) "failed") $) 183 (|has| |#1| (-1102))) (((-3 (-2 (|:| |var| (-607 $)) (|:| -3438 (-568))) "failed") $ (-123)) 177 (|has| |#1| (-1047))) (((-3 (-2 (|:| |var| (-607 $)) (|:| -3438 (-568))) "failed") $ (-1161)) 176 (|has| |#1| (-1047)))) (-2841 (((-121) $ (-123)) 39) (((-121) $ (-1161)) 38)) (-2081 (($ $) 99 (-2198 (|has| |#1| (-478)) (|has| |#1| (-558))))) (-2961 (((-763) $) 46)) (-4022 (((-1108) $) 10)) (-2086 (((-121) $) 197)) (-2091 ((|#1| $) 196)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) 143 (|has| |#1| (-558)))) (-2721 (($ (-634 $)) 140 (|has| |#1| (-558))) (($ $ $) 139 (|has| |#1| (-558)))) (-4059 (((-121) $ $) 34) (((-121) $ (-1161)) 33)) (-3848 (((-420 $) $) 154 (|has| |#1| (-558)))) (-4497 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 152 (|has| |#1| (-558))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) 151 (|has| |#1| (-558)))) (-2595 (((-3 $ "failed") $ $) 134 (|has| |#1| (-558)))) (-2344 (((-3 (-634 $) "failed") (-634 $) $) 145 (|has| |#1| (-558)))) (-3277 (((-121) $) 22 (|has| $ (-1037 (-568))))) (-1339 (($ $ (-607 $) $) 66) (($ $ (-634 (-607 $)) (-634 $)) 65) (($ $ (-634 (-288 $))) 64) (($ $ (-288 $)) 63) (($ $ $ $) 62) (($ $ (-634 $) (-634 $)) 61) (($ $ (-634 (-1161)) (-634 (-1 $ $))) 32) (($ $ (-634 (-1161)) (-634 (-1 $ (-634 $)))) 31) (($ $ (-1161) (-1 $ (-634 $))) 30) (($ $ (-1161) (-1 $ $)) 29) (($ $ (-634 (-123)) (-634 (-1 $ $))) 28) (($ $ (-634 (-123)) (-634 (-1 $ (-634 $)))) 27) (($ $ (-123) (-1 $ (-634 $))) 26) (($ $ (-123) (-1 $ $)) 25) (($ $ (-1161)) 189 (|has| |#1| (-609 (-541)))) (($ $ (-634 (-1161))) 188 (|has| |#1| (-609 (-541)))) (($ $) 187 (|has| |#1| (-609 (-541)))) (($ $ (-123) $ (-1161)) 186 (|has| |#1| (-609 (-541)))) (($ $ (-634 (-123)) (-634 $) (-1161)) 185 (|has| |#1| (-609 (-541)))) (($ $ (-634 (-1161)) (-634 (-763)) (-634 (-1 $ $))) 174 (|has| |#1| (-1047))) (($ $ (-634 (-1161)) (-634 (-763)) (-634 (-1 $ (-634 $)))) 173 (|has| |#1| (-1047))) (($ $ (-1161) (-763) (-1 $ (-634 $))) 172 (|has| |#1| (-1047))) (($ $ (-1161) (-763) (-1 $ $)) 171 (|has| |#1| (-1047)))) (-2709 (((-763) $) 147 (|has| |#1| (-558)))) (-2779 (($ (-123) $) 60) (($ (-123) $ $) 59) (($ (-123) $ $ $) 58) (($ (-123) $ $ $ $) 57) (($ (-123) (-634 $)) 56)) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) 148 (|has| |#1| (-558)))) (-3502 (($ $) 48) (($ $ $) 47)) (-4189 (($ $ (-634 (-1161)) (-634 (-763))) 120 (|has| |#1| (-1047))) (($ $ (-1161) (-763)) 119 (|has| |#1| (-1047))) (($ $ (-634 (-1161))) 118 (|has| |#1| (-1047))) (($ $ (-1161)) 117 (|has| |#1| (-1047)))) (-3013 (($ $) 168 (|has| |#1| (-558)))) (-2324 (((-1113 |#1| (-607 $)) $) 169 (|has| |#1| (-558)))) (-1626 (($ $) 23 (|has| $ (-1047)))) (-4278 (((-887 (-568)) $) 206 (|has| |#1| (-609 (-887 (-568))))) (((-887 (-381)) $) 205 (|has| |#1| (-609 (-887 (-381))))) (($ (-420 $)) 170 (|has| |#1| (-558))) (((-541) $) 89 (|has| |#1| (-609 (-541))))) (-1458 (($ $ $) 103 (|has| |#1| (-478)))) (-2353 (($ $ $) 104 (|has| |#1| (-478)))) (-2745 (((-850) $) 11) (($ (-607 $)) 69) (($ (-1161)) 209) (($ |#1|) 200) (($ (-1113 |#1| (-607 $))) 180 (|has| |#1| (-1047))) (($ (-409 |#1|)) 166 (|has| |#1| (-558))) (($ (-953 (-409 |#1|))) 165 (|has| |#1| (-558))) (($ (-409 (-953 (-409 |#1|)))) 164 (|has| |#1| (-558))) (($ (-409 (-953 |#1|))) 162 (|has| |#1| (-558))) (($ $) 133 (|has| |#1| (-558))) (($ (-953 |#1|)) 116 (|has| |#1| (-1047))) (($ (-409 (-568))) 88 (-2198 (|has| |#1| (-558)) (-12 (|has| |#1| (-1037 (-568))) (|has| |#1| (-558))) (|has| |#1| (-1037 (-409 (-568)))))) (($ (-568)) 85 (-2198 (|has| |#1| (-1047)) (|has| |#1| (-1037 (-568)))))) (-4371 (((-3 $ "failed") $) 130 (|has| |#1| (-148)))) (-4078 (((-763)) 125 (|has| |#1| (-1047)))) (-2092 (($ $) 52) (($ (-634 $)) 51)) (-2887 (((-121) (-123)) 40)) (-1826 (((-121) $ $) 137 (|has| |#1| (-558)))) (-3058 (($ (-1161) $) 194) (($ (-1161) $ $) 193) (($ (-1161) $ $ $) 192) (($ (-1161) $ $ $ $) 191) (($ (-1161) (-634 $)) 190)) (-1887 (($ $ (-568)) 102 (-2198 (|has| |#1| (-478)) (|has| |#1| (-558)))) (($ $ (-763)) 96 (|has| |#1| (-1102))) (($ $ (-917)) 92 (|has| |#1| (-1102)))) (-3056 (($) 107 (|has| |#1| (-25)) CONST)) (-1556 (($) 93 (|has| |#1| (-1102)) CONST)) (-3190 (($ $ (-634 (-1161)) (-634 (-763))) 124 (|has| |#1| (-1047))) (($ $ (-1161) (-763)) 123 (|has| |#1| (-1047))) (($ $ (-634 (-1161))) 122 (|has| |#1| (-1047))) (($ $ (-1161)) 121 (|has| |#1| (-1047)))) (-1751 (((-121) $ $) 15)) (-1738 (((-121) $ $) 16)) (-1717 (((-121) $ $) 6)) (-1745 (((-121) $ $) 14)) (-1732 (((-121) $ $) 17)) (-1779 (($ (-1113 |#1| (-607 $)) (-1113 |#1| (-607 $))) 167 (|has| |#1| (-558))) (($ $ $) 100 (-2198 (|has| |#1| (-478)) (|has| |#1| (-558))))) (-1773 (($ $ $) 112 (|has| |#1| (-21))) (($ $) 111 (|has| |#1| (-21)))) (-1767 (($ $ $) 105 (|has| |#1| (-25)))) (** (($ $ (-568)) 101 (-2198 (|has| |#1| (-478)) (|has| |#1| (-558)))) (($ $ (-763)) 98 (|has| |#1| (-1102))) (($ $ (-917)) 91 (|has| |#1| (-1102)))) (* (($ (-409 (-568)) $) 159 (|has| |#1| (-558))) (($ $ (-409 (-568))) 158 (|has| |#1| (-558))) (($ |#1| $) 132 (|has| |#1| (-172))) (($ $ |#1|) 131 (|has| |#1| (-172))) (($ (-568) $) 113 (|has| |#1| (-21))) (($ (-763) $) 109 (|has| |#1| (-25))) (($ (-917) $) 106 (|has| |#1| (-25))) (($ $ $) 90 (|has| |#1| (-1102))))) +(((-432 |#1|) (-1275) (-842)) (T -432)) +((-2086 (*1 *2 *1) (-12 (-4 *1 (-432 *3)) (-4 *3 (-842)) (-5 *2 (-121)))) (-2091 (*1 *2 *1) (-12 (-4 *1 (-432 *2)) (-4 *2 (-842)))) (-2055 (*1 *2 *1) (-12 (-4 *1 (-432 *3)) (-4 *3 (-842)) (-5 *2 (-634 (-1161))))) (-3058 (*1 *1 *2 *1) (-12 (-5 *2 (-1161)) (-4 *1 (-432 *3)) (-4 *3 (-842)))) (-3058 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1161)) (-4 *1 (-432 *3)) (-4 *3 (-842)))) (-3058 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1161)) (-4 *1 (-432 *3)) (-4 *3 (-842)))) (-3058 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1161)) (-4 *1 (-432 *3)) (-4 *3 (-842)))) (-3058 (*1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-634 *1)) (-4 *1 (-432 *4)) (-4 *4 (-842)))) (-1339 (*1 *1 *1 *2) (-12 (-5 *2 (-1161)) (-4 *1 (-432 *3)) (-4 *3 (-842)) (-4 *3 (-609 (-541))))) (-1339 (*1 *1 *1 *2) (-12 (-5 *2 (-634 (-1161))) (-4 *1 (-432 *3)) (-4 *3 (-842)) (-4 *3 (-609 (-541))))) (-1339 (*1 *1 *1) (-12 (-4 *1 (-432 *2)) (-4 *2 (-842)) (-4 *2 (-609 (-541))))) (-1339 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-123)) (-5 *3 (-1161)) (-4 *1 (-432 *4)) (-4 *4 (-842)) (-4 *4 (-609 (-541))))) (-1339 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-634 (-123))) (-5 *3 (-634 *1)) (-5 *4 (-1161)) (-4 *1 (-432 *5)) (-4 *5 (-842)) (-4 *5 (-609 (-541))))) (-3324 (*1 *2 *1) (|partial| -12 (-4 *3 (-1102)) (-4 *3 (-842)) (-5 *2 (-634 *1)) (-4 *1 (-432 *3)))) (-3751 (*1 *2 *1) (|partial| -12 (-4 *3 (-1102)) (-4 *3 (-842)) (-5 *2 (-2 (|:| |var| (-607 *1)) (|:| -3438 (-568)))) (-4 *1 (-432 *3)))) (-1794 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-842)) (-5 *2 (-634 *1)) (-4 *1 (-432 *3)))) (-2392 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-842)) (-5 *2 (-2 (|:| -2348 (-568)) (|:| |var| (-607 *1)))) (-4 *1 (-432 *3)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-1113 *3 (-607 *1))) (-4 *3 (-1047)) (-4 *3 (-842)) (-4 *1 (-432 *3)))) (-2317 (*1 *2 *1) (-12 (-4 *3 (-1047)) (-4 *3 (-842)) (-5 *2 (-1113 *3 (-607 *1))) (-4 *1 (-432 *3)))) (-1332 (*1 *1 *1) (-12 (-4 *1 (-432 *2)) (-4 *2 (-842)) (-4 *2 (-1047)))) (-3751 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-123)) (-4 *4 (-1047)) (-4 *4 (-842)) (-5 *2 (-2 (|:| |var| (-607 *1)) (|:| -3438 (-568)))) (-4 *1 (-432 *4)))) (-3751 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1161)) (-4 *4 (-1047)) (-4 *4 (-842)) (-5 *2 (-2 (|:| |var| (-607 *1)) (|:| -3438 (-568)))) (-4 *1 (-432 *4)))) (-2672 (*1 *2 *1) (|partial| -12 (-4 *3 (-1047)) (-4 *3 (-842)) (-5 *2 (-2 (|:| |val| *1) (|:| -3438 (-568)))) (-4 *1 (-432 *3)))) (-1339 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-634 (-1161))) (-5 *3 (-634 (-763))) (-5 *4 (-634 (-1 *1 *1))) (-4 *1 (-432 *5)) (-4 *5 (-842)) (-4 *5 (-1047)))) (-1339 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-634 (-1161))) (-5 *3 (-634 (-763))) (-5 *4 (-634 (-1 *1 (-634 *1)))) (-4 *1 (-432 *5)) (-4 *5 (-842)) (-4 *5 (-1047)))) (-1339 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1161)) (-5 *3 (-763)) (-5 *4 (-1 *1 (-634 *1))) (-4 *1 (-432 *5)) (-4 *5 (-842)) (-4 *5 (-1047)))) (-1339 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1161)) (-5 *3 (-763)) (-5 *4 (-1 *1 *1)) (-4 *1 (-432 *5)) (-4 *5 (-842)) (-4 *5 (-1047)))) (-4278 (*1 *1 *2) (-12 (-5 *2 (-420 *1)) (-4 *1 (-432 *3)) (-4 *3 (-558)) (-4 *3 (-842)))) (-2324 (*1 *2 *1) (-12 (-4 *3 (-558)) (-4 *3 (-842)) (-5 *2 (-1113 *3 (-607 *1))) (-4 *1 (-432 *3)))) (-3013 (*1 *1 *1) (-12 (-4 *1 (-432 *2)) (-4 *2 (-842)) (-4 *2 (-558)))) (-1779 (*1 *1 *2 *2) (-12 (-5 *2 (-1113 *3 (-607 *1))) (-4 *3 (-558)) (-4 *3 (-842)) (-4 *1 (-432 *3)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-409 *3)) (-4 *3 (-558)) (-4 *3 (-842)) (-4 *1 (-432 *3)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-953 (-409 *3))) (-4 *3 (-558)) (-4 *3 (-842)) (-4 *1 (-432 *3)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-409 (-953 (-409 *3)))) (-4 *3 (-558)) (-4 *3 (-842)) (-4 *1 (-432 *3)))) (-3839 (*1 *2 *1 *3) (-12 (-5 *3 (-607 *1)) (-4 *1 (-432 *4)) (-4 *4 (-842)) (-4 *4 (-558)) (-5 *2 (-409 (-1157 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-763)) (-4 *1 (-432 *3)) (-4 *3 (-842)) (-4 *3 (-1102))))) +(-13 (-296) (-1037 (-1161)) (-879 |t#1|) (-402 |t#1|) (-413 |t#1|) (-10 -8 (-15 -2086 ((-121) $)) (-15 -2091 (|t#1| $)) (-15 -2055 ((-634 (-1161)) $)) (-15 -3058 ($ (-1161) $)) (-15 -3058 ($ (-1161) $ $)) (-15 -3058 ($ (-1161) $ $ $)) (-15 -3058 ($ (-1161) $ $ $ $)) (-15 -3058 ($ (-1161) (-634 $))) (IF (|has| |t#1| (-609 (-541))) (PROGN (-6 (-609 (-541))) (-15 -1339 ($ $ (-1161))) (-15 -1339 ($ $ (-634 (-1161)))) (-15 -1339 ($ $)) (-15 -1339 ($ $ (-123) $ (-1161))) (-15 -1339 ($ $ (-634 (-123)) (-634 $) (-1161)))) |noBranch|) (IF (|has| |t#1| (-1102)) (PROGN (-6 (-716)) (-15 ** ($ $ (-763))) (-15 -3324 ((-3 (-634 $) "failed") $)) (-15 -3751 ((-3 (-2 (|:| |var| (-607 $)) (|:| -3438 (-568))) "failed") $))) |noBranch|) (IF (|has| |t#1| (-478)) (-6 (-478)) |noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -1794 ((-3 (-634 $) "failed") $)) (-15 -2392 ((-3 (-2 (|:| -2348 (-568)) (|:| |var| (-607 $))) "failed") $))) |noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |noBranch|) (IF (|has| |t#1| (-1047)) (PROGN (-6 (-1047)) (-6 (-1037 (-953 |t#1|))) (-6 (-895 (-1161))) (-6 (-379 |t#1|)) (-15 -2745 ($ (-1113 |t#1| (-607 $)))) (-15 -2317 ((-1113 |t#1| (-607 $)) $)) (-15 -1332 ($ $)) (-15 -3751 ((-3 (-2 (|:| |var| (-607 $)) (|:| -3438 (-568))) "failed") $ (-123))) (-15 -3751 ((-3 (-2 (|:| |var| (-607 $)) (|:| -3438 (-568))) "failed") $ (-1161))) (-15 -2672 ((-3 (-2 (|:| |val| $) (|:| -3438 (-568))) "failed") $)) (-15 -1339 ($ $ (-634 (-1161)) (-634 (-763)) (-634 (-1 $ $)))) (-15 -1339 ($ $ (-634 (-1161)) (-634 (-763)) (-634 (-1 $ (-634 $))))) (-15 -1339 ($ $ (-1161) (-763) (-1 $ (-634 $)))) (-15 -1339 ($ $ (-1161) (-763) (-1 $ $)))) |noBranch|) (IF (|has| |t#1| (-150)) (-6 (-150)) |noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |noBranch|) (IF (|has| |t#1| (-172)) (-6 (-43 |t#1|)) |noBranch|) (IF (|has| |t#1| (-558)) (PROGN (-6 (-365)) (-6 (-1037 (-409 (-953 |t#1|)))) (-15 -4278 ($ (-420 $))) (-15 -2324 ((-1113 |t#1| (-607 $)) $)) (-15 -3013 ($ $)) (-15 -1779 ($ (-1113 |t#1| (-607 $)) (-1113 |t#1| (-607 $)))) (-15 -2745 ($ (-409 |t#1|))) (-15 -2745 ($ (-953 (-409 |t#1|)))) (-15 -2745 ($ (-409 (-953 (-409 |t#1|))))) (-15 -3839 ((-409 (-1157 $)) $ (-607 $))) (IF (|has| |t#1| (-1037 (-568))) (-6 (-1037 (-409 (-568)))) |noBranch|)) |noBranch|))) +(((-21) -2198 (|has| |#1| (-1047)) (|has| |#1| (-558)) (|has| |#1| (-172)) (|has| |#1| (-150)) (|has| |#1| (-148)) (|has| |#1| (-21))) ((-23) -2198 (|has| |#1| (-1047)) (|has| |#1| (-558)) (|has| |#1| (-172)) (|has| |#1| (-150)) (|has| |#1| (-148)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -2198 (|has| |#1| (-1047)) (|has| |#1| (-558)) (|has| |#1| (-172)) (|has| |#1| (-150)) (|has| |#1| (-148)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-43 (-409 (-568))) |has| |#1| (-558)) ((-43 |#1|) |has| |#1| (-172)) ((-43 $) |has| |#1| (-558)) ((-105) . T) ((-120 (-409 (-568)) (-409 (-568))) |has| |#1| (-558)) ((-120 |#1| |#1|) |has| |#1| (-172)) ((-120 $ $) |has| |#1| (-558)) ((-137) -2198 (|has| |#1| (-1047)) (|has| |#1| (-558)) (|has| |#1| (-172)) (|has| |#1| (-150)) (|has| |#1| (-148)) (|has| |#1| (-21))) ((-148) |has| |#1| (-148)) ((-150) |has| |#1| (-150)) ((-608 (-850)) . T) ((-172) |has| |#1| (-558)) ((-609 (-541)) |has| |#1| (-609 (-541))) ((-609 (-887 (-381))) |has| |#1| (-609 (-887 (-381)))) ((-609 (-887 (-568))) |has| |#1| (-609 (-887 (-568)))) ((-238) |has| |#1| (-558)) ((-285) |has| |#1| (-558)) ((-301) |has| |#1| (-558)) ((-303 $) . T) ((-296) . T) ((-365) |has| |#1| (-558)) ((-379 |#1|) |has| |#1| (-1047)) ((-402 |#1|) . T) ((-413 |#1|) . T) ((-453) |has| |#1| (-558)) ((-478) |has| |#1| (-478)) ((-523 (-607 $) $) . T) ((-523 $ $) . T) ((-558) |has| |#1| (-558)) ((-637 (-409 (-568))) |has| |#1| (-558)) ((-637 |#1|) |has| |#1| (-172)) ((-637 $) -2198 (|has| |#1| (-1047)) (|has| |#1| (-558)) (|has| |#1| (-172)) (|has| |#1| (-150)) (|has| |#1| (-148))) ((-630 (-568)) -12 (|has| |#1| (-630 (-568))) (|has| |#1| (-1047))) ((-630 |#1|) |has| |#1| (-1047)) ((-707 (-409 (-568))) |has| |#1| (-558)) ((-707 |#1|) |has| |#1| (-172)) ((-707 $) |has| |#1| (-558)) ((-716) -2198 (|has| |#1| (-1102)) (|has| |#1| (-1047)) (|has| |#1| (-558)) (|has| |#1| (-478)) (|has| |#1| (-172)) (|has| |#1| (-150)) (|has| |#1| (-148))) ((-842) . T) ((-895 (-1161)) |has| |#1| (-1047)) ((-881 (-381)) |has| |#1| (-881 (-381))) ((-881 (-568)) |has| |#1| (-881 (-568))) ((-879 |#1|) . T) ((-916) |has| |#1| (-558)) ((-1037 (-409 (-568))) -2198 (|has| |#1| (-1037 (-409 (-568)))) (-12 (|has| |#1| (-558)) (|has| |#1| (-1037 (-568))))) ((-1037 (-409 (-953 |#1|))) |has| |#1| (-558)) ((-1037 (-568)) |has| |#1| (-1037 (-568))) ((-1037 (-607 $)) . T) ((-1037 (-953 |#1|)) |has| |#1| (-1047)) ((-1037 (-1161)) . T) ((-1037 |#1|) . T) ((-1053 (-409 (-568))) |has| |#1| (-558)) ((-1053 |#1|) |has| |#1| (-172)) ((-1053 $) |has| |#1| (-558)) ((-1047) -2198 (|has| |#1| (-1047)) (|has| |#1| (-558)) (|has| |#1| (-172)) (|has| |#1| (-150)) (|has| |#1| (-148))) ((-1054) -2198 (|has| |#1| (-1047)) (|has| |#1| (-558)) (|has| |#1| (-172)) (|has| |#1| (-150)) (|has| |#1| (-148))) ((-1102) -2198 (|has| |#1| (-1102)) (|has| |#1| (-1047)) (|has| |#1| (-558)) (|has| |#1| (-478)) (|has| |#1| (-172)) (|has| |#1| (-150)) (|has| |#1| (-148))) ((-1090) . T) ((-1195) . T) ((-1199) |has| |#1| (-558))) +((-1303 ((|#2| |#2| |#2|) 33)) (-3488 (((-123) (-123)) 44)) (-4221 ((|#2| (-634 |#2|)) 79)) (-3162 ((|#2| |#2|) 77)) (-2303 ((|#2| |#2|) 68)) (-2815 ((|#2| |#2|) 71)) (-1324 ((|#2| (-634 |#2|)) 75)) (-3323 ((|#2| (-634 |#2|)) 83)) (-3603 ((|#2| (-634 |#2|)) 87)) (-2631 ((|#2| (-634 |#2|)) 81)) (-1711 ((|#2| (-634 |#2|)) 85)) (-2163 ((|#2| |#2|) 91)) (-2797 ((|#2| |#2|) 89)) (-1847 ((|#2| |#2|) 32)) (-3657 ((|#2| |#2| |#2|) 35)) (-2375 ((|#2| |#2| |#2|) 37)) (-1369 ((|#2| |#2| |#2|) 34)) (-3737 ((|#2| |#2| |#2|) 36)) (-2887 (((-121) (-123)) 42)) (-3828 ((|#2| |#2|) 39)) (-2357 ((|#2| |#2|) 38)) (-2897 ((|#2| |#2|) 27)) (-3929 ((|#2| |#2| |#2|) 30) ((|#2| |#2|) 28)) (-3792 ((|#2| |#2| |#2|) 31))) +(((-433 |#1| |#2|) (-10 -7 (-15 -2887 ((-121) (-123))) (-15 -3488 ((-123) (-123))) (-15 -2897 (|#2| |#2|)) (-15 -3929 (|#2| |#2|)) (-15 -3929 (|#2| |#2| |#2|)) (-15 -3792 (|#2| |#2| |#2|)) (-15 -1847 (|#2| |#2|)) (-15 -1303 (|#2| |#2| |#2|)) (-15 -1369 (|#2| |#2| |#2|)) (-15 -3657 (|#2| |#2| |#2|)) (-15 -3737 (|#2| |#2| |#2|)) (-15 -2375 (|#2| |#2| |#2|)) (-15 -2357 (|#2| |#2|)) (-15 -3828 (|#2| |#2|)) (-15 -2815 (|#2| |#2|)) (-15 -2303 (|#2| |#2|)) (-15 -1324 (|#2| (-634 |#2|))) (-15 -3162 (|#2| |#2|)) (-15 -4221 (|#2| (-634 |#2|))) (-15 -2631 (|#2| (-634 |#2|))) (-15 -3323 (|#2| (-634 |#2|))) (-15 -1711 (|#2| (-634 |#2|))) (-15 -3603 (|#2| (-634 |#2|))) (-15 -2797 (|#2| |#2|)) (-15 -2163 (|#2| |#2|))) (-13 (-842) (-558)) (-432 |#1|)) (T -433)) +((-2163 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-2797 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-3603 (*1 *2 *3) (-12 (-5 *3 (-634 *2)) (-4 *2 (-432 *4)) (-5 *1 (-433 *4 *2)) (-4 *4 (-13 (-842) (-558))))) (-1711 (*1 *2 *3) (-12 (-5 *3 (-634 *2)) (-4 *2 (-432 *4)) (-5 *1 (-433 *4 *2)) (-4 *4 (-13 (-842) (-558))))) (-3323 (*1 *2 *3) (-12 (-5 *3 (-634 *2)) (-4 *2 (-432 *4)) (-5 *1 (-433 *4 *2)) (-4 *4 (-13 (-842) (-558))))) (-2631 (*1 *2 *3) (-12 (-5 *3 (-634 *2)) (-4 *2 (-432 *4)) (-5 *1 (-433 *4 *2)) (-4 *4 (-13 (-842) (-558))))) (-4221 (*1 *2 *3) (-12 (-5 *3 (-634 *2)) (-4 *2 (-432 *4)) (-5 *1 (-433 *4 *2)) (-4 *4 (-13 (-842) (-558))))) (-3162 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-1324 (*1 *2 *3) (-12 (-5 *3 (-634 *2)) (-4 *2 (-432 *4)) (-5 *1 (-433 *4 *2)) (-4 *4 (-13 (-842) (-558))))) (-2303 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-2815 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-3828 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-2357 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-2375 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-3737 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-3657 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-1369 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-1303 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-1847 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-3792 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-3929 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-3929 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-2897 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-3488 (*1 *2 *2) (-12 (-5 *2 (-123)) (-4 *3 (-13 (-842) (-558))) (-5 *1 (-433 *3 *4)) (-4 *4 (-432 *3)))) (-2887 (*1 *2 *3) (-12 (-5 *3 (-123)) (-4 *4 (-13 (-842) (-558))) (-5 *2 (-121)) (-5 *1 (-433 *4 *5)) (-4 *5 (-432 *4))))) +(-10 -7 (-15 -2887 ((-121) (-123))) (-15 -3488 ((-123) (-123))) (-15 -2897 (|#2| |#2|)) (-15 -3929 (|#2| |#2|)) (-15 -3929 (|#2| |#2| |#2|)) (-15 -3792 (|#2| |#2| |#2|)) (-15 -1847 (|#2| |#2|)) (-15 -1303 (|#2| |#2| |#2|)) (-15 -1369 (|#2| |#2| |#2|)) (-15 -3657 (|#2| |#2| |#2|)) (-15 -3737 (|#2| |#2| |#2|)) (-15 -2375 (|#2| |#2| |#2|)) (-15 -2357 (|#2| |#2|)) (-15 -3828 (|#2| |#2|)) (-15 -2815 (|#2| |#2|)) (-15 -2303 (|#2| |#2|)) (-15 -1324 (|#2| (-634 |#2|))) (-15 -3162 (|#2| |#2|)) (-15 -4221 (|#2| (-634 |#2|))) (-15 -2631 (|#2| (-634 |#2|))) (-15 -3323 (|#2| (-634 |#2|))) (-15 -1711 (|#2| (-634 |#2|))) (-15 -3603 (|#2| (-634 |#2|))) (-15 -2797 (|#2| |#2|)) (-15 -2163 (|#2| |#2|))) +((-4220 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1157 |#2|)) (|:| |pol2| (-1157 |#2|)) (|:| |prim| (-1157 |#2|))) |#2| |#2|) 93 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-634 (-1157 |#2|))) (|:| |prim| (-1157 |#2|))) (-634 |#2|)) 58))) +(((-434 |#1| |#2|) (-10 -7 (-15 -4220 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-634 (-1157 |#2|))) (|:| |prim| (-1157 |#2|))) (-634 |#2|))) (IF (|has| |#2| (-27)) (-15 -4220 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1157 |#2|)) (|:| |pol2| (-1157 |#2|)) (|:| |prim| (-1157 |#2|))) |#2| |#2|)) |noBranch|)) (-13 (-558) (-842) (-150)) (-432 |#1|)) (T -434)) +((-4220 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-558) (-842) (-150))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1157 *3)) (|:| |pol2| (-1157 *3)) (|:| |prim| (-1157 *3)))) (-5 *1 (-434 *4 *3)) (-4 *3 (-27)) (-4 *3 (-432 *4)))) (-4220 (*1 *2 *3) (-12 (-5 *3 (-634 *5)) (-4 *5 (-432 *4)) (-4 *4 (-13 (-558) (-842) (-150))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-634 (-1157 *5))) (|:| |prim| (-1157 *5)))) (-5 *1 (-434 *4 *5))))) +(-10 -7 (-15 -4220 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-634 (-1157 |#2|))) (|:| |prim| (-1157 |#2|))) (-634 |#2|))) (IF (|has| |#2| (-27)) (-15 -4220 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1157 |#2|)) (|:| |pol2| (-1157 |#2|)) (|:| |prim| (-1157 |#2|))) |#2| |#2|)) |noBranch|)) +((-1544 (((-1249)) 18)) (-4267 (((-1157 (-409 (-568))) |#2| (-607 |#2|)) 40) (((-409 (-568)) |#2|) 23))) +(((-435 |#1| |#2|) (-10 -7 (-15 -4267 ((-409 (-568)) |#2|)) (-15 -4267 ((-1157 (-409 (-568))) |#2| (-607 |#2|))) (-15 -1544 ((-1249)))) (-13 (-842) (-558) (-1037 (-568))) (-432 |#1|)) (T -435)) +((-1544 (*1 *2) (-12 (-4 *3 (-13 (-842) (-558) (-1037 (-568)))) (-5 *2 (-1249)) (-5 *1 (-435 *3 *4)) (-4 *4 (-432 *3)))) (-4267 (*1 *2 *3 *4) (-12 (-5 *4 (-607 *3)) (-4 *3 (-432 *5)) (-4 *5 (-13 (-842) (-558) (-1037 (-568)))) (-5 *2 (-1157 (-409 (-568)))) (-5 *1 (-435 *5 *3)))) (-4267 (*1 *2 *3) (-12 (-4 *4 (-13 (-842) (-558) (-1037 (-568)))) (-5 *2 (-409 (-568))) (-5 *1 (-435 *4 *3)) (-4 *3 (-432 *4))))) +(-10 -7 (-15 -4267 ((-409 (-568)) |#2|)) (-15 -4267 ((-1157 (-409 (-568))) |#2| (-607 |#2|))) (-15 -1544 ((-1249)))) +((-2636 (((-121) $) 28)) (-2383 (((-121) $) 30)) (-4469 (((-121) $) 31)) (-2645 (((-121) $) 34)) (-2310 (((-121) $) 29)) (-3319 (((-121) $) 33)) (-2745 (((-850) $) 18) (($ (-1143)) 27) (($ (-1161)) 23) (((-1161) $) 22) (((-1094) $) 21)) (-3597 (((-121) $) 32)) (-1717 (((-121) $ $) 15))) +(((-436) (-13 (-608 (-850)) (-10 -8 (-15 -2745 ($ (-1143))) (-15 -2745 ($ (-1161))) (-15 -2745 ((-1161) $)) (-15 -2745 ((-1094) $)) (-15 -2636 ((-121) $)) (-15 -2310 ((-121) $)) (-15 -4469 ((-121) $)) (-15 -3319 ((-121) $)) (-15 -2645 ((-121) $)) (-15 -3597 ((-121) $)) (-15 -2383 ((-121) $)) (-15 -1717 ((-121) $ $))))) (T -436)) +((-2745 (*1 *1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-436)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-436)))) (-2745 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-436)))) (-2745 (*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-436)))) (-2636 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-436)))) (-2310 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-436)))) (-4469 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-436)))) (-3319 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-436)))) (-2645 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-436)))) (-3597 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-436)))) (-2383 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-436)))) (-1717 (*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-436))))) +(-13 (-608 (-850)) (-10 -8 (-15 -2745 ($ (-1143))) (-15 -2745 ($ (-1161))) (-15 -2745 ((-1161) $)) (-15 -2745 ((-1094) $)) (-15 -2636 ((-121) $)) (-15 -2310 ((-121) $)) (-15 -4469 ((-121) $)) (-15 -3319 ((-121) $)) (-15 -2645 ((-121) $)) (-15 -3597 ((-121) $)) (-15 -2383 ((-121) $)) (-15 -1717 ((-121) $ $)))) +((-3025 (((-3 (-420 (-1157 (-409 (-568)))) "failed") |#3|) 68)) (-1992 (((-420 |#3|) |#3|) 33)) (-3332 (((-3 (-420 (-1157 (-53))) "failed") |#3|) 27 (|has| |#2| (-1037 (-53))))) (-2499 (((-3 (|:| |overq| (-1157 (-409 (-568)))) (|:| |overan| (-1157 (-53))) (|:| -3483 (-121))) |#3|) 35))) +(((-437 |#1| |#2| |#3|) (-10 -7 (-15 -1992 ((-420 |#3|) |#3|)) (-15 -3025 ((-3 (-420 (-1157 (-409 (-568)))) "failed") |#3|)) (-15 -2499 ((-3 (|:| |overq| (-1157 (-409 (-568)))) (|:| |overan| (-1157 (-53))) (|:| -3483 (-121))) |#3|)) (IF (|has| |#2| (-1037 (-53))) (-15 -3332 ((-3 (-420 (-1157 (-53))) "failed") |#3|)) |noBranch|)) (-13 (-558) (-842) (-1037 (-568))) (-432 |#1|) (-1219 |#2|)) (T -437)) +((-3332 (*1 *2 *3) (|partial| -12 (-4 *5 (-1037 (-53))) (-4 *4 (-13 (-558) (-842) (-1037 (-568)))) (-4 *5 (-432 *4)) (-5 *2 (-420 (-1157 (-53)))) (-5 *1 (-437 *4 *5 *3)) (-4 *3 (-1219 *5)))) (-2499 (*1 *2 *3) (-12 (-4 *4 (-13 (-558) (-842) (-1037 (-568)))) (-4 *5 (-432 *4)) (-5 *2 (-3 (|:| |overq| (-1157 (-409 (-568)))) (|:| |overan| (-1157 (-53))) (|:| -3483 (-121)))) (-5 *1 (-437 *4 *5 *3)) (-4 *3 (-1219 *5)))) (-3025 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-558) (-842) (-1037 (-568)))) (-4 *5 (-432 *4)) (-5 *2 (-420 (-1157 (-409 (-568))))) (-5 *1 (-437 *4 *5 *3)) (-4 *3 (-1219 *5)))) (-1992 (*1 *2 *3) (-12 (-4 *4 (-13 (-558) (-842) (-1037 (-568)))) (-4 *5 (-432 *4)) (-5 *2 (-420 *3)) (-5 *1 (-437 *4 *5 *3)) (-4 *3 (-1219 *5))))) +(-10 -7 (-15 -1992 ((-420 |#3|) |#3|)) (-15 -3025 ((-3 (-420 (-1157 (-409 (-568)))) "failed") |#3|)) (-15 -2499 ((-3 (|:| |overq| (-1157 (-409 (-568)))) (|:| |overan| (-1157 (-53))) (|:| -3483 (-121))) |#3|)) (IF (|has| |#2| (-1037 (-53))) (-15 -3332 ((-3 (-420 (-1157 (-53))) "failed") |#3|)) |noBranch|)) +((-2447 (((-121) $ $) NIL)) (-1705 (((-1143) $ (-1143)) NIL)) (-2511 (($ $ (-1143)) NIL)) (-3327 (((-1143) $) NIL)) (-3704 (((-390) (-390) (-390)) 17) (((-390) (-390)) 15)) (-1798 (($ (-390)) NIL) (($ (-390) (-1143)) NIL)) (-3391 (((-390) $) NIL)) (-4487 (((-1143) $) NIL)) (-3305 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-3538 (((-1249) (-1143)) 9)) (-3318 (((-1249) (-1143)) 10)) (-2161 (((-1249)) 11)) (-4169 (((-1249) $) NIL)) (-2745 (((-850) $) NIL)) (-3637 (($ $) 34)) (-1717 (((-121) $ $) NIL))) +(((-438) (-13 (-366 (-390) (-1143)) (-10 -7 (-15 -3704 ((-390) (-390) (-390))) (-15 -3704 ((-390) (-390))) (-15 -3538 ((-1249) (-1143))) (-15 -3318 ((-1249) (-1143))) (-15 -2161 ((-1249)))))) (T -438)) +((-3704 (*1 *2 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-438)))) (-3704 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-438)))) (-3538 (*1 *2 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-1249)) (-5 *1 (-438)))) (-3318 (*1 *2 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-1249)) (-5 *1 (-438)))) (-2161 (*1 *2) (-12 (-5 *2 (-1249)) (-5 *1 (-438))))) +(-13 (-366 (-390) (-1143)) (-10 -7 (-15 -3704 ((-390) (-390) (-390))) (-15 -3704 ((-390) (-390))) (-15 -3538 ((-1249) (-1143))) (-15 -3318 ((-1249) (-1143))) (-15 -2161 ((-1249))))) +((-2447 (((-121) $ $) NIL)) (-3918 (((-3 (|:| |fst| (-436)) (|:| -3611 "void")) $) 10)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2337 (($) 31)) (-1360 (($) 37)) (-1380 (($) 33)) (-2851 (($) 35)) (-3892 (($) 32)) (-4101 (($) 34)) (-1922 (($) 36)) (-2753 (((-121) $) 8)) (-3273 (((-634 (-953 (-568))) $) 16)) (-4287 (($ (-3 (|:| |fst| (-436)) (|:| -3611 "void")) (-634 (-1161)) (-121)) 25) (($ (-3 (|:| |fst| (-436)) (|:| -3611 "void")) (-634 (-953 (-568))) (-121)) 26)) (-2745 (((-850) $) 21) (($ (-436)) 28)) (-1717 (((-121) $ $) NIL))) +(((-439) (-13 (-1090) (-10 -8 (-15 -2745 ((-850) $)) (-15 -2745 ($ (-436))) (-15 -3918 ((-3 (|:| |fst| (-436)) (|:| -3611 "void")) $)) (-15 -3273 ((-634 (-953 (-568))) $)) (-15 -2753 ((-121) $)) (-15 -4287 ($ (-3 (|:| |fst| (-436)) (|:| -3611 "void")) (-634 (-1161)) (-121))) (-15 -4287 ($ (-3 (|:| |fst| (-436)) (|:| -3611 "void")) (-634 (-953 (-568))) (-121))) (-15 -2337 ($)) (-15 -3892 ($)) (-15 -1380 ($)) (-15 -1360 ($)) (-15 -4101 ($)) (-15 -2851 ($)) (-15 -1922 ($))))) (T -439)) +((-2745 (*1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-439)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-436)) (-5 *1 (-439)))) (-3918 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-436)) (|:| -3611 "void"))) (-5 *1 (-439)))) (-3273 (*1 *2 *1) (-12 (-5 *2 (-634 (-953 (-568)))) (-5 *1 (-439)))) (-2753 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-439)))) (-4287 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-436)) (|:| -3611 "void"))) (-5 *3 (-634 (-1161))) (-5 *4 (-121)) (-5 *1 (-439)))) (-4287 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-436)) (|:| -3611 "void"))) (-5 *3 (-634 (-953 (-568)))) (-5 *4 (-121)) (-5 *1 (-439)))) (-2337 (*1 *1) (-5 *1 (-439))) (-3892 (*1 *1) (-5 *1 (-439))) (-1380 (*1 *1) (-5 *1 (-439))) (-1360 (*1 *1) (-5 *1 (-439))) (-4101 (*1 *1) (-5 *1 (-439))) (-2851 (*1 *1) (-5 *1 (-439))) (-1922 (*1 *1) (-5 *1 (-439)))) +(-13 (-1090) (-10 -8 (-15 -2745 ((-850) $)) (-15 -2745 ($ (-436))) (-15 -3918 ((-3 (|:| |fst| (-436)) (|:| -3611 "void")) $)) (-15 -3273 ((-634 (-953 (-568))) $)) (-15 -2753 ((-121) $)) (-15 -4287 ($ (-3 (|:| |fst| (-436)) (|:| -3611 "void")) (-634 (-1161)) (-121))) (-15 -4287 ($ (-3 (|:| |fst| (-436)) (|:| -3611 "void")) (-634 (-953 (-568))) (-121))) (-15 -2337 ($)) (-15 -3892 ($)) (-15 -1380 ($)) (-15 -1360 ($)) (-15 -4101 ($)) (-15 -2851 ($)) (-15 -1922 ($)))) +((-2447 (((-121) $ $) NIL)) (-3391 (((-1161) $) 8)) (-4487 (((-1143) $) 16)) (-4022 (((-1108) $) NIL)) (-2745 (((-850) $) 11)) (-1717 (((-121) $ $) 13))) +(((-440 |#1|) (-13 (-1090) (-10 -8 (-15 -3391 ((-1161) $)))) (-1161)) (T -440)) +((-3391 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-440 *3)) (-14 *3 *2)))) +(-13 (-1090) (-10 -8 (-15 -3391 ((-1161) $)))) +((-4128 (((-1249) $) 7)) (-2745 (((-850) $) 8) (($ (-1244 (-688))) 12) (($ (-634 (-328))) 11) (($ (-328)) 10) (($ (-2 (|:| |localSymbols| (-1165)) (|:| -2845 (-634 (-328))))) 9))) +(((-441) (-1275)) (T -441)) +((-2745 (*1 *1 *2) (-12 (-5 *2 (-1244 (-688))) (-4 *1 (-441)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-634 (-328))) (-4 *1 (-441)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-328)) (-4 *1 (-441)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1165)) (|:| -2845 (-634 (-328))))) (-4 *1 (-441))))) +(-13 (-397) (-10 -8 (-15 -2745 ($ (-1244 (-688)))) (-15 -2745 ($ (-634 (-328)))) (-15 -2745 ($ (-328))) (-15 -2745 ($ (-2 (|:| |localSymbols| (-1165)) (|:| -2845 (-634 (-328)))))))) +(((-608 (-850)) . T) ((-397) . T) ((-1195) . T)) +((-3666 (((-3 $ "failed") (-1244 (-310 (-381)))) 19) (((-3 $ "failed") (-1244 (-310 (-568)))) 17) (((-3 $ "failed") (-1244 (-953 (-381)))) 15) (((-3 $ "failed") (-1244 (-953 (-568)))) 13) (((-3 $ "failed") (-1244 (-409 (-953 (-381))))) 11) (((-3 $ "failed") (-1244 (-409 (-953 (-568))))) 9)) (-2854 (($ (-1244 (-310 (-381)))) 20) (($ (-1244 (-310 (-568)))) 18) (($ (-1244 (-953 (-381)))) 16) (($ (-1244 (-953 (-568)))) 14) (($ (-1244 (-409 (-953 (-381))))) 12) (($ (-1244 (-409 (-953 (-568))))) 10)) (-4128 (((-1249) $) 7)) (-2745 (((-850) $) 8) (($ (-634 (-328))) 23) (($ (-328)) 22) (($ (-2 (|:| |localSymbols| (-1165)) (|:| -2845 (-634 (-328))))) 21))) +(((-442) (-1275)) (T -442)) +((-2745 (*1 *1 *2) (-12 (-5 *2 (-634 (-328))) (-4 *1 (-442)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-328)) (-4 *1 (-442)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1165)) (|:| -2845 (-634 (-328))))) (-4 *1 (-442)))) (-2854 (*1 *1 *2) (-12 (-5 *2 (-1244 (-310 (-381)))) (-4 *1 (-442)))) (-3666 (*1 *1 *2) (|partial| -12 (-5 *2 (-1244 (-310 (-381)))) (-4 *1 (-442)))) (-2854 (*1 *1 *2) (-12 (-5 *2 (-1244 (-310 (-568)))) (-4 *1 (-442)))) (-3666 (*1 *1 *2) (|partial| -12 (-5 *2 (-1244 (-310 (-568)))) (-4 *1 (-442)))) (-2854 (*1 *1 *2) (-12 (-5 *2 (-1244 (-953 (-381)))) (-4 *1 (-442)))) (-3666 (*1 *1 *2) (|partial| -12 (-5 *2 (-1244 (-953 (-381)))) (-4 *1 (-442)))) (-2854 (*1 *1 *2) (-12 (-5 *2 (-1244 (-953 (-568)))) (-4 *1 (-442)))) (-3666 (*1 *1 *2) (|partial| -12 (-5 *2 (-1244 (-953 (-568)))) (-4 *1 (-442)))) (-2854 (*1 *1 *2) (-12 (-5 *2 (-1244 (-409 (-953 (-381))))) (-4 *1 (-442)))) (-3666 (*1 *1 *2) (|partial| -12 (-5 *2 (-1244 (-409 (-953 (-381))))) (-4 *1 (-442)))) (-2854 (*1 *1 *2) (-12 (-5 *2 (-1244 (-409 (-953 (-568))))) (-4 *1 (-442)))) (-3666 (*1 *1 *2) (|partial| -12 (-5 *2 (-1244 (-409 (-953 (-568))))) (-4 *1 (-442))))) +(-13 (-397) (-10 -8 (-15 -2745 ($ (-634 (-328)))) (-15 -2745 ($ (-328))) (-15 -2745 ($ (-2 (|:| |localSymbols| (-1165)) (|:| -2845 (-634 (-328)))))) (-15 -2854 ($ (-1244 (-310 (-381))))) (-15 -3666 ((-3 $ "failed") (-1244 (-310 (-381))))) (-15 -2854 ($ (-1244 (-310 (-568))))) (-15 -3666 ((-3 $ "failed") (-1244 (-310 (-568))))) (-15 -2854 ($ (-1244 (-953 (-381))))) (-15 -3666 ((-3 $ "failed") (-1244 (-953 (-381))))) (-15 -2854 ($ (-1244 (-953 (-568))))) (-15 -3666 ((-3 $ "failed") (-1244 (-953 (-568))))) (-15 -2854 ($ (-1244 (-409 (-953 (-381)))))) (-15 -3666 ((-3 $ "failed") (-1244 (-409 (-953 (-381)))))) (-15 -2854 ($ (-1244 (-409 (-953 (-568)))))) (-15 -3666 ((-3 $ "failed") (-1244 (-409 (-953 (-568)))))))) +(((-608 (-850)) . T) ((-397) . T) ((-1195) . T)) +((-3362 (((-121)) 17)) (-2320 (((-121) (-121)) 18)) (-1972 (((-121)) 13)) (-1904 (((-121) (-121)) 14)) (-1833 (((-121)) 15)) (-2556 (((-121) (-121)) 16)) (-4488 (((-917) (-917)) 21) (((-917)) 20)) (-3157 (((-763) (-634 (-2 (|:| -3848 |#1|) (|:| -3206 (-568))))) 41)) (-1588 (((-917) (-917)) 23) (((-917)) 22)) (-3938 (((-2 (|:| -4068 (-568)) (|:| -3276 (-634 |#1|))) |#1|) 61)) (-2936 (((-420 |#1|) (-2 (|:| |contp| (-568)) (|:| -3276 (-634 (-2 (|:| |irr| |#1|) (|:| -3959 (-568))))))) 125)) (-2954 (((-2 (|:| |contp| (-568)) (|:| -3276 (-634 (-2 (|:| |irr| |#1|) (|:| -3959 (-568)))))) |#1| (-121)) 151)) (-2630 (((-420 |#1|) |#1| (-763) (-763)) 164) (((-420 |#1|) |#1| (-634 (-763)) (-763)) 161) (((-420 |#1|) |#1| (-634 (-763))) 163) (((-420 |#1|) |#1| (-763)) 162) (((-420 |#1|) |#1|) 160)) (-4448 (((-3 |#1| "failed") (-917) |#1| (-634 (-763)) (-763) (-121)) 166) (((-3 |#1| "failed") (-917) |#1| (-634 (-763)) (-763)) 167) (((-3 |#1| "failed") (-917) |#1| (-634 (-763))) 169) (((-3 |#1| "failed") (-917) |#1| (-763)) 168) (((-3 |#1| "failed") (-917) |#1|) 170)) (-3848 (((-420 |#1|) |#1| (-763) (-763)) 159) (((-420 |#1|) |#1| (-634 (-763)) (-763)) 155) (((-420 |#1|) |#1| (-634 (-763))) 157) (((-420 |#1|) |#1| (-763)) 156) (((-420 |#1|) |#1|) 154)) (-1645 (((-121) |#1|) 36)) (-2468 (((-727 (-763)) (-634 (-2 (|:| -3848 |#1|) (|:| -3206 (-568))))) 66)) (-2953 (((-2 (|:| |contp| (-568)) (|:| -3276 (-634 (-2 (|:| |irr| |#1|) (|:| -3959 (-568)))))) |#1| (-121) (-1092 (-763)) (-763)) 153))) +(((-443 |#1|) (-10 -7 (-15 -2936 ((-420 |#1|) (-2 (|:| |contp| (-568)) (|:| -3276 (-634 (-2 (|:| |irr| |#1|) (|:| -3959 (-568)))))))) (-15 -2468 ((-727 (-763)) (-634 (-2 (|:| -3848 |#1|) (|:| -3206 (-568)))))) (-15 -1588 ((-917))) (-15 -1588 ((-917) (-917))) (-15 -4488 ((-917))) (-15 -4488 ((-917) (-917))) (-15 -3157 ((-763) (-634 (-2 (|:| -3848 |#1|) (|:| -3206 (-568)))))) (-15 -3938 ((-2 (|:| -4068 (-568)) (|:| -3276 (-634 |#1|))) |#1|)) (-15 -3362 ((-121))) (-15 -2320 ((-121) (-121))) (-15 -1972 ((-121))) (-15 -1904 ((-121) (-121))) (-15 -1645 ((-121) |#1|)) (-15 -1833 ((-121))) (-15 -2556 ((-121) (-121))) (-15 -3848 ((-420 |#1|) |#1|)) (-15 -3848 ((-420 |#1|) |#1| (-763))) (-15 -3848 ((-420 |#1|) |#1| (-634 (-763)))) (-15 -3848 ((-420 |#1|) |#1| (-634 (-763)) (-763))) (-15 -3848 ((-420 |#1|) |#1| (-763) (-763))) (-15 -2630 ((-420 |#1|) |#1|)) (-15 -2630 ((-420 |#1|) |#1| (-763))) (-15 -2630 ((-420 |#1|) |#1| (-634 (-763)))) (-15 -2630 ((-420 |#1|) |#1| (-634 (-763)) (-763))) (-15 -2630 ((-420 |#1|) |#1| (-763) (-763))) (-15 -4448 ((-3 |#1| "failed") (-917) |#1|)) (-15 -4448 ((-3 |#1| "failed") (-917) |#1| (-763))) (-15 -4448 ((-3 |#1| "failed") (-917) |#1| (-634 (-763)))) (-15 -4448 ((-3 |#1| "failed") (-917) |#1| (-634 (-763)) (-763))) (-15 -4448 ((-3 |#1| "failed") (-917) |#1| (-634 (-763)) (-763) (-121))) (-15 -2954 ((-2 (|:| |contp| (-568)) (|:| -3276 (-634 (-2 (|:| |irr| |#1|) (|:| -3959 (-568)))))) |#1| (-121))) (-15 -2953 ((-2 (|:| |contp| (-568)) (|:| -3276 (-634 (-2 (|:| |irr| |#1|) (|:| -3959 (-568)))))) |#1| (-121) (-1092 (-763)) (-763)))) (-1219 (-568))) (T -443)) +((-2953 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-121)) (-5 *5 (-1092 (-763))) (-5 *6 (-763)) (-5 *2 (-2 (|:| |contp| (-568)) (|:| -3276 (-634 (-2 (|:| |irr| *3) (|:| -3959 (-568))))))) (-5 *1 (-443 *3)) (-4 *3 (-1219 (-568))))) (-2954 (*1 *2 *3 *4) (-12 (-5 *4 (-121)) (-5 *2 (-2 (|:| |contp| (-568)) (|:| -3276 (-634 (-2 (|:| |irr| *3) (|:| -3959 (-568))))))) (-5 *1 (-443 *3)) (-4 *3 (-1219 (-568))))) (-4448 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-917)) (-5 *4 (-634 (-763))) (-5 *5 (-763)) (-5 *6 (-121)) (-5 *1 (-443 *2)) (-4 *2 (-1219 (-568))))) (-4448 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-917)) (-5 *4 (-634 (-763))) (-5 *5 (-763)) (-5 *1 (-443 *2)) (-4 *2 (-1219 (-568))))) (-4448 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-917)) (-5 *4 (-634 (-763))) (-5 *1 (-443 *2)) (-4 *2 (-1219 (-568))))) (-4448 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-917)) (-5 *4 (-763)) (-5 *1 (-443 *2)) (-4 *2 (-1219 (-568))))) (-4448 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-917)) (-5 *1 (-443 *2)) (-4 *2 (-1219 (-568))))) (-2630 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-763)) (-5 *2 (-420 *3)) (-5 *1 (-443 *3)) (-4 *3 (-1219 (-568))))) (-2630 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-634 (-763))) (-5 *5 (-763)) (-5 *2 (-420 *3)) (-5 *1 (-443 *3)) (-4 *3 (-1219 (-568))))) (-2630 (*1 *2 *3 *4) (-12 (-5 *4 (-634 (-763))) (-5 *2 (-420 *3)) (-5 *1 (-443 *3)) (-4 *3 (-1219 (-568))))) (-2630 (*1 *2 *3 *4) (-12 (-5 *4 (-763)) (-5 *2 (-420 *3)) (-5 *1 (-443 *3)) (-4 *3 (-1219 (-568))))) (-2630 (*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-443 *3)) (-4 *3 (-1219 (-568))))) (-3848 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-763)) (-5 *2 (-420 *3)) (-5 *1 (-443 *3)) (-4 *3 (-1219 (-568))))) (-3848 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-634 (-763))) (-5 *5 (-763)) (-5 *2 (-420 *3)) (-5 *1 (-443 *3)) (-4 *3 (-1219 (-568))))) (-3848 (*1 *2 *3 *4) (-12 (-5 *4 (-634 (-763))) (-5 *2 (-420 *3)) (-5 *1 (-443 *3)) (-4 *3 (-1219 (-568))))) (-3848 (*1 *2 *3 *4) (-12 (-5 *4 (-763)) (-5 *2 (-420 *3)) (-5 *1 (-443 *3)) (-4 *3 (-1219 (-568))))) (-3848 (*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-443 *3)) (-4 *3 (-1219 (-568))))) (-2556 (*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-443 *3)) (-4 *3 (-1219 (-568))))) (-1833 (*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-443 *3)) (-4 *3 (-1219 (-568))))) (-1645 (*1 *2 *3) (-12 (-5 *2 (-121)) (-5 *1 (-443 *3)) (-4 *3 (-1219 (-568))))) (-1904 (*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-443 *3)) (-4 *3 (-1219 (-568))))) (-1972 (*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-443 *3)) (-4 *3 (-1219 (-568))))) (-2320 (*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-443 *3)) (-4 *3 (-1219 (-568))))) (-3362 (*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-443 *3)) (-4 *3 (-1219 (-568))))) (-3938 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -4068 (-568)) (|:| -3276 (-634 *3)))) (-5 *1 (-443 *3)) (-4 *3 (-1219 (-568))))) (-3157 (*1 *2 *3) (-12 (-5 *3 (-634 (-2 (|:| -3848 *4) (|:| -3206 (-568))))) (-4 *4 (-1219 (-568))) (-5 *2 (-763)) (-5 *1 (-443 *4)))) (-4488 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-443 *3)) (-4 *3 (-1219 (-568))))) (-4488 (*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-443 *3)) (-4 *3 (-1219 (-568))))) (-1588 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-443 *3)) (-4 *3 (-1219 (-568))))) (-1588 (*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-443 *3)) (-4 *3 (-1219 (-568))))) (-2468 (*1 *2 *3) (-12 (-5 *3 (-634 (-2 (|:| -3848 *4) (|:| -3206 (-568))))) (-4 *4 (-1219 (-568))) (-5 *2 (-727 (-763))) (-5 *1 (-443 *4)))) (-2936 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-568)) (|:| -3276 (-634 (-2 (|:| |irr| *4) (|:| -3959 (-568))))))) (-4 *4 (-1219 (-568))) (-5 *2 (-420 *4)) (-5 *1 (-443 *4))))) +(-10 -7 (-15 -2936 ((-420 |#1|) (-2 (|:| |contp| (-568)) (|:| -3276 (-634 (-2 (|:| |irr| |#1|) (|:| -3959 (-568)))))))) (-15 -2468 ((-727 (-763)) (-634 (-2 (|:| -3848 |#1|) (|:| -3206 (-568)))))) (-15 -1588 ((-917))) (-15 -1588 ((-917) (-917))) (-15 -4488 ((-917))) (-15 -4488 ((-917) (-917))) (-15 -3157 ((-763) (-634 (-2 (|:| -3848 |#1|) (|:| -3206 (-568)))))) (-15 -3938 ((-2 (|:| -4068 (-568)) (|:| -3276 (-634 |#1|))) |#1|)) (-15 -3362 ((-121))) (-15 -2320 ((-121) (-121))) (-15 -1972 ((-121))) (-15 -1904 ((-121) (-121))) (-15 -1645 ((-121) |#1|)) (-15 -1833 ((-121))) (-15 -2556 ((-121) (-121))) (-15 -3848 ((-420 |#1|) |#1|)) (-15 -3848 ((-420 |#1|) |#1| (-763))) (-15 -3848 ((-420 |#1|) |#1| (-634 (-763)))) (-15 -3848 ((-420 |#1|) |#1| (-634 (-763)) (-763))) (-15 -3848 ((-420 |#1|) |#1| (-763) (-763))) (-15 -2630 ((-420 |#1|) |#1|)) (-15 -2630 ((-420 |#1|) |#1| (-763))) (-15 -2630 ((-420 |#1|) |#1| (-634 (-763)))) (-15 -2630 ((-420 |#1|) |#1| (-634 (-763)) (-763))) (-15 -2630 ((-420 |#1|) |#1| (-763) (-763))) (-15 -4448 ((-3 |#1| "failed") (-917) |#1|)) (-15 -4448 ((-3 |#1| "failed") (-917) |#1| (-763))) (-15 -4448 ((-3 |#1| "failed") (-917) |#1| (-634 (-763)))) (-15 -4448 ((-3 |#1| "failed") (-917) |#1| (-634 (-763)) (-763))) (-15 -4448 ((-3 |#1| "failed") (-917) |#1| (-634 (-763)) (-763) (-121))) (-15 -2954 ((-2 (|:| |contp| (-568)) (|:| -3276 (-634 (-2 (|:| |irr| |#1|) (|:| -3959 (-568)))))) |#1| (-121))) (-15 -2953 ((-2 (|:| |contp| (-568)) (|:| -3276 (-634 (-2 (|:| |irr| |#1|) (|:| -3959 (-568)))))) |#1| (-121) (-1092 (-763)) (-763)))) +((-2382 (((-568) |#2|) 48) (((-568) |#2| (-763)) 47)) (-3199 (((-568) |#2|) 55)) (-1498 ((|#3| |#2|) 25)) (-2657 ((|#3| |#2| (-917)) 14)) (-3678 ((|#3| |#2|) 15)) (-3849 ((|#3| |#2|) 9)) (-2961 ((|#3| |#2|) 10)) (-1424 ((|#3| |#2| (-917)) 62) ((|#3| |#2|) 30)) (-1577 (((-568) |#2|) 57))) +(((-444 |#1| |#2| |#3|) (-10 -7 (-15 -1577 ((-568) |#2|)) (-15 -1424 (|#3| |#2|)) (-15 -1424 (|#3| |#2| (-917))) (-15 -3199 ((-568) |#2|)) (-15 -2382 ((-568) |#2| (-763))) (-15 -2382 ((-568) |#2|)) (-15 -2657 (|#3| |#2| (-917))) (-15 -1498 (|#3| |#2|)) (-15 -3849 (|#3| |#2|)) (-15 -2961 (|#3| |#2|)) (-15 -3678 (|#3| |#2|))) (-1047) (-1219 |#1|) (-13 (-406) (-1037 |#1|) (-365) (-1181) (-279))) (T -444)) +((-3678 (*1 *2 *3) (-12 (-4 *4 (-1047)) (-4 *2 (-13 (-406) (-1037 *4) (-365) (-1181) (-279))) (-5 *1 (-444 *4 *3 *2)) (-4 *3 (-1219 *4)))) (-2961 (*1 *2 *3) (-12 (-4 *4 (-1047)) (-4 *2 (-13 (-406) (-1037 *4) (-365) (-1181) (-279))) (-5 *1 (-444 *4 *3 *2)) (-4 *3 (-1219 *4)))) (-3849 (*1 *2 *3) (-12 (-4 *4 (-1047)) (-4 *2 (-13 (-406) (-1037 *4) (-365) (-1181) (-279))) (-5 *1 (-444 *4 *3 *2)) (-4 *3 (-1219 *4)))) (-1498 (*1 *2 *3) (-12 (-4 *4 (-1047)) (-4 *2 (-13 (-406) (-1037 *4) (-365) (-1181) (-279))) (-5 *1 (-444 *4 *3 *2)) (-4 *3 (-1219 *4)))) (-2657 (*1 *2 *3 *4) (-12 (-5 *4 (-917)) (-4 *5 (-1047)) (-4 *2 (-13 (-406) (-1037 *5) (-365) (-1181) (-279))) (-5 *1 (-444 *5 *3 *2)) (-4 *3 (-1219 *5)))) (-2382 (*1 *2 *3) (-12 (-4 *4 (-1047)) (-5 *2 (-568)) (-5 *1 (-444 *4 *3 *5)) (-4 *3 (-1219 *4)) (-4 *5 (-13 (-406) (-1037 *4) (-365) (-1181) (-279))))) (-2382 (*1 *2 *3 *4) (-12 (-5 *4 (-763)) (-4 *5 (-1047)) (-5 *2 (-568)) (-5 *1 (-444 *5 *3 *6)) (-4 *3 (-1219 *5)) (-4 *6 (-13 (-406) (-1037 *5) (-365) (-1181) (-279))))) (-3199 (*1 *2 *3) (-12 (-4 *4 (-1047)) (-5 *2 (-568)) (-5 *1 (-444 *4 *3 *5)) (-4 *3 (-1219 *4)) (-4 *5 (-13 (-406) (-1037 *4) (-365) (-1181) (-279))))) (-1424 (*1 *2 *3 *4) (-12 (-5 *4 (-917)) (-4 *5 (-1047)) (-4 *2 (-13 (-406) (-1037 *5) (-365) (-1181) (-279))) (-5 *1 (-444 *5 *3 *2)) (-4 *3 (-1219 *5)))) (-1424 (*1 *2 *3) (-12 (-4 *4 (-1047)) (-4 *2 (-13 (-406) (-1037 *4) (-365) (-1181) (-279))) (-5 *1 (-444 *4 *3 *2)) (-4 *3 (-1219 *4)))) (-1577 (*1 *2 *3) (-12 (-4 *4 (-1047)) (-5 *2 (-568)) (-5 *1 (-444 *4 *3 *5)) (-4 *3 (-1219 *4)) (-4 *5 (-13 (-406) (-1037 *4) (-365) (-1181) (-279)))))) +(-10 -7 (-15 -1577 ((-568) |#2|)) (-15 -1424 (|#3| |#2|)) (-15 -1424 (|#3| |#2| (-917))) (-15 -3199 ((-568) |#2|)) (-15 -2382 ((-568) |#2| (-763))) (-15 -2382 ((-568) |#2|)) (-15 -2657 (|#3| |#2| (-917))) (-15 -1498 (|#3| |#2|)) (-15 -3849 (|#3| |#2|)) (-15 -2961 (|#3| |#2|)) (-15 -3678 (|#3| |#2|))) +((-1654 ((|#2| (-1244 |#1|)) 36)) (-3979 ((|#2| |#2| |#1|) 49)) (-3894 ((|#2| |#2| |#1|) 41)) (-3943 ((|#2| |#2|) 38)) (-2278 (((-121) |#2|) 30)) (-2534 (((-634 |#2|) (-917) (-420 |#2|)) 16)) (-4448 ((|#2| (-917) (-420 |#2|)) 21)) (-2468 (((-727 (-763)) (-420 |#2|)) 25))) +(((-445 |#1| |#2|) (-10 -7 (-15 -2278 ((-121) |#2|)) (-15 -1654 (|#2| (-1244 |#1|))) (-15 -3943 (|#2| |#2|)) (-15 -3894 (|#2| |#2| |#1|)) (-15 -3979 (|#2| |#2| |#1|)) (-15 -2468 ((-727 (-763)) (-420 |#2|))) (-15 -4448 (|#2| (-917) (-420 |#2|))) (-15 -2534 ((-634 |#2|) (-917) (-420 |#2|)))) (-1047) (-1219 |#1|)) (T -445)) +((-2534 (*1 *2 *3 *4) (-12 (-5 *3 (-917)) (-5 *4 (-420 *6)) (-4 *6 (-1219 *5)) (-4 *5 (-1047)) (-5 *2 (-634 *6)) (-5 *1 (-445 *5 *6)))) (-4448 (*1 *2 *3 *4) (-12 (-5 *3 (-917)) (-5 *4 (-420 *2)) (-4 *2 (-1219 *5)) (-5 *1 (-445 *5 *2)) (-4 *5 (-1047)))) (-2468 (*1 *2 *3) (-12 (-5 *3 (-420 *5)) (-4 *5 (-1219 *4)) (-4 *4 (-1047)) (-5 *2 (-727 (-763))) (-5 *1 (-445 *4 *5)))) (-3979 (*1 *2 *2 *3) (-12 (-4 *3 (-1047)) (-5 *1 (-445 *3 *2)) (-4 *2 (-1219 *3)))) (-3894 (*1 *2 *2 *3) (-12 (-4 *3 (-1047)) (-5 *1 (-445 *3 *2)) (-4 *2 (-1219 *3)))) (-3943 (*1 *2 *2) (-12 (-4 *3 (-1047)) (-5 *1 (-445 *3 *2)) (-4 *2 (-1219 *3)))) (-1654 (*1 *2 *3) (-12 (-5 *3 (-1244 *4)) (-4 *4 (-1047)) (-4 *2 (-1219 *4)) (-5 *1 (-445 *4 *2)))) (-2278 (*1 *2 *3) (-12 (-4 *4 (-1047)) (-5 *2 (-121)) (-5 *1 (-445 *4 *3)) (-4 *3 (-1219 *4))))) +(-10 -7 (-15 -2278 ((-121) |#2|)) (-15 -1654 (|#2| (-1244 |#1|))) (-15 -3943 (|#2| |#2|)) (-15 -3894 (|#2| |#2| |#1|)) (-15 -3979 (|#2| |#2| |#1|)) (-15 -2468 ((-727 (-763)) (-420 |#2|))) (-15 -4448 (|#2| (-917) (-420 |#2|))) (-15 -2534 ((-634 |#2|) (-917) (-420 |#2|)))) +((-3532 (((-763)) 41)) (-2024 (((-763)) 23 (|has| |#1| (-406))) (((-763) (-763)) 22 (|has| |#1| (-406)))) (-2488 (((-568) |#1|) 18 (|has| |#1| (-406)))) (-4060 (((-568) |#1|) 20 (|has| |#1| (-406)))) (-3416 (((-763)) 40) (((-763) (-763)) 39)) (-2028 ((|#1| (-763) (-568)) 29)) (-2381 (((-1249)) 43))) +(((-446 |#1|) (-10 -7 (-15 -2028 (|#1| (-763) (-568))) (-15 -3416 ((-763) (-763))) (-15 -3416 ((-763))) (-15 -3532 ((-763))) (-15 -2381 ((-1249))) (IF (|has| |#1| (-406)) (PROGN (-15 -4060 ((-568) |#1|)) (-15 -2488 ((-568) |#1|)) (-15 -2024 ((-763) (-763))) (-15 -2024 ((-763)))) |noBranch|)) (-1047)) (T -446)) +((-2024 (*1 *2) (-12 (-5 *2 (-763)) (-5 *1 (-446 *3)) (-4 *3 (-406)) (-4 *3 (-1047)))) (-2024 (*1 *2 *2) (-12 (-5 *2 (-763)) (-5 *1 (-446 *3)) (-4 *3 (-406)) (-4 *3 (-1047)))) (-2488 (*1 *2 *3) (-12 (-5 *2 (-568)) (-5 *1 (-446 *3)) (-4 *3 (-406)) (-4 *3 (-1047)))) (-4060 (*1 *2 *3) (-12 (-5 *2 (-568)) (-5 *1 (-446 *3)) (-4 *3 (-406)) (-4 *3 (-1047)))) (-2381 (*1 *2) (-12 (-5 *2 (-1249)) (-5 *1 (-446 *3)) (-4 *3 (-1047)))) (-3532 (*1 *2) (-12 (-5 *2 (-763)) (-5 *1 (-446 *3)) (-4 *3 (-1047)))) (-3416 (*1 *2) (-12 (-5 *2 (-763)) (-5 *1 (-446 *3)) (-4 *3 (-1047)))) (-3416 (*1 *2 *2) (-12 (-5 *2 (-763)) (-5 *1 (-446 *3)) (-4 *3 (-1047)))) (-2028 (*1 *2 *3 *4) (-12 (-5 *3 (-763)) (-5 *4 (-568)) (-5 *1 (-446 *2)) (-4 *2 (-1047))))) +(-10 -7 (-15 -2028 (|#1| (-763) (-568))) (-15 -3416 ((-763) (-763))) (-15 -3416 ((-763))) (-15 -3532 ((-763))) (-15 -2381 ((-1249))) (IF (|has| |#1| (-406)) (PROGN (-15 -4060 ((-568) |#1|)) (-15 -2488 ((-568) |#1|)) (-15 -2024 ((-763) (-763))) (-15 -2024 ((-763)))) |noBranch|)) +((-3993 (((-634 (-568)) (-568)) 57)) (-3927 (((-121) (-169 (-568))) 61)) (-3848 (((-420 (-169 (-568))) (-169 (-568))) 56))) +(((-447) (-10 -7 (-15 -3848 ((-420 (-169 (-568))) (-169 (-568)))) (-15 -3993 ((-634 (-568)) (-568))) (-15 -3927 ((-121) (-169 (-568)))))) (T -447)) +((-3927 (*1 *2 *3) (-12 (-5 *3 (-169 (-568))) (-5 *2 (-121)) (-5 *1 (-447)))) (-3993 (*1 *2 *3) (-12 (-5 *2 (-634 (-568))) (-5 *1 (-447)) (-5 *3 (-568)))) (-3848 (*1 *2 *3) (-12 (-5 *2 (-420 (-169 (-568)))) (-5 *1 (-447)) (-5 *3 (-169 (-568)))))) +(-10 -7 (-15 -3848 ((-420 (-169 (-568))) (-169 (-568)))) (-15 -3993 ((-634 (-568)) (-568))) (-15 -3927 ((-121) (-169 (-568))))) +((-4002 ((|#4| |#4| (-634 |#4|)) 57)) (-1328 (((-634 |#4|) (-634 |#4|) (-1143) (-1143)) 17) (((-634 |#4|) (-634 |#4|) (-1143)) 16) (((-634 |#4|) (-634 |#4|)) 11))) +(((-448 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4002 (|#4| |#4| (-634 |#4|))) (-15 -1328 ((-634 |#4|) (-634 |#4|))) (-15 -1328 ((-634 |#4|) (-634 |#4|) (-1143))) (-15 -1328 ((-634 |#4|) (-634 |#4|) (-1143) (-1143)))) (-301) (-788) (-842) (-950 |#1| |#2| |#3|)) (T -448)) +((-1328 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-634 *7)) (-5 *3 (-1143)) (-4 *7 (-950 *4 *5 *6)) (-4 *4 (-301)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *1 (-448 *4 *5 *6 *7)))) (-1328 (*1 *2 *2 *3) (-12 (-5 *2 (-634 *7)) (-5 *3 (-1143)) (-4 *7 (-950 *4 *5 *6)) (-4 *4 (-301)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *1 (-448 *4 *5 *6 *7)))) (-1328 (*1 *2 *2) (-12 (-5 *2 (-634 *6)) (-4 *6 (-950 *3 *4 *5)) (-4 *3 (-301)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *1 (-448 *3 *4 *5 *6)))) (-4002 (*1 *2 *2 *3) (-12 (-5 *3 (-634 *2)) (-4 *2 (-950 *4 *5 *6)) (-4 *4 (-301)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *1 (-448 *4 *5 *6 *2))))) +(-10 -7 (-15 -4002 (|#4| |#4| (-634 |#4|))) (-15 -1328 ((-634 |#4|) (-634 |#4|))) (-15 -1328 ((-634 |#4|) (-634 |#4|) (-1143))) (-15 -1328 ((-634 |#4|) (-634 |#4|) (-1143) (-1143)))) +((-2724 (((-634 (-634 |#4|)) (-634 |#4|) (-121)) 70) (((-634 (-634 |#4|)) (-634 |#4|)) 69) (((-634 (-634 |#4|)) (-634 |#4|) (-634 |#4|) (-121)) 63) (((-634 (-634 |#4|)) (-634 |#4|) (-634 |#4|)) 64)) (-3718 (((-634 (-634 |#4|)) (-634 |#4|) (-121)) 40) (((-634 (-634 |#4|)) (-634 |#4|)) 60))) +(((-449 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3718 ((-634 (-634 |#4|)) (-634 |#4|))) (-15 -3718 ((-634 (-634 |#4|)) (-634 |#4|) (-121))) (-15 -2724 ((-634 (-634 |#4|)) (-634 |#4|) (-634 |#4|))) (-15 -2724 ((-634 (-634 |#4|)) (-634 |#4|) (-634 |#4|) (-121))) (-15 -2724 ((-634 (-634 |#4|)) (-634 |#4|))) (-15 -2724 ((-634 (-634 |#4|)) (-634 |#4|) (-121)))) (-13 (-301) (-150)) (-788) (-842) (-950 |#1| |#2| |#3|)) (T -449)) +((-2724 (*1 *2 *3 *4) (-12 (-5 *4 (-121)) (-4 *5 (-13 (-301) (-150))) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *8 (-950 *5 *6 *7)) (-5 *2 (-634 (-634 *8))) (-5 *1 (-449 *5 *6 *7 *8)) (-5 *3 (-634 *8)))) (-2724 (*1 *2 *3) (-12 (-4 *4 (-13 (-301) (-150))) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *7 (-950 *4 *5 *6)) (-5 *2 (-634 (-634 *7))) (-5 *1 (-449 *4 *5 *6 *7)) (-5 *3 (-634 *7)))) (-2724 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-121)) (-4 *5 (-13 (-301) (-150))) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *8 (-950 *5 *6 *7)) (-5 *2 (-634 (-634 *8))) (-5 *1 (-449 *5 *6 *7 *8)) (-5 *3 (-634 *8)))) (-2724 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-301) (-150))) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *7 (-950 *4 *5 *6)) (-5 *2 (-634 (-634 *7))) (-5 *1 (-449 *4 *5 *6 *7)) (-5 *3 (-634 *7)))) (-3718 (*1 *2 *3 *4) (-12 (-5 *4 (-121)) (-4 *5 (-13 (-301) (-150))) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *8 (-950 *5 *6 *7)) (-5 *2 (-634 (-634 *8))) (-5 *1 (-449 *5 *6 *7 *8)) (-5 *3 (-634 *8)))) (-3718 (*1 *2 *3) (-12 (-4 *4 (-13 (-301) (-150))) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *7 (-950 *4 *5 *6)) (-5 *2 (-634 (-634 *7))) (-5 *1 (-449 *4 *5 *6 *7)) (-5 *3 (-634 *7))))) +(-10 -7 (-15 -3718 ((-634 (-634 |#4|)) (-634 |#4|))) (-15 -3718 ((-634 (-634 |#4|)) (-634 |#4|) (-121))) (-15 -2724 ((-634 (-634 |#4|)) (-634 |#4|) (-634 |#4|))) (-15 -2724 ((-634 (-634 |#4|)) (-634 |#4|) (-634 |#4|) (-121))) (-15 -2724 ((-634 (-634 |#4|)) (-634 |#4|))) (-15 -2724 ((-634 (-634 |#4|)) (-634 |#4|) (-121)))) +((-4258 (((-763) |#4|) 12)) (-1766 (((-634 (-2 (|:| |totdeg| (-763)) (|:| -2700 |#4|))) |#4| (-763) (-634 (-2 (|:| |totdeg| (-763)) (|:| -2700 |#4|)))) 31)) (-2600 (((-634 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-763)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-634 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-763)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-634 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-763)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-2064 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-763)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 38)) (-1447 ((|#4| |#4| (-634 |#4|)) 39)) (-3798 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-634 |#4|)) 68)) (-1499 (((-1249) |#4|) 41)) (-3242 (((-1249) (-634 |#4|)) 50)) (-3217 (((-568) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-763)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-568) (-568) (-568)) 47)) (-1282 (((-1249) (-568)) 75)) (-2861 (((-634 |#4|) (-634 |#4|)) 73)) (-4108 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-763)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-763)) (|:| -2700 |#4|)) |#4| (-763)) 25)) (-2654 (((-568) |#4|) 74)) (-1423 ((|#4| |#4|) 29)) (-1508 (((-634 |#4|) (-634 |#4|) (-568) (-568)) 54)) (-2313 (((-568) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-763)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-568) (-568) (-568) (-568)) 85)) (-2374 (((-121) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-763)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-763)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-2814 (((-121) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-763)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 57)) (-3426 (((-634 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-763)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-634 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-763)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 56)) (-2169 (((-634 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-763)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-634 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-763)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 35)) (-1629 (((-121) |#2| |#2|) 55)) (-1471 (((-634 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-763)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-634 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-763)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-3750 (((-121) |#2| |#2| |#2| |#2|) 58)) (-1477 ((|#4| |#4| (-634 |#4|)) 69))) +(((-450 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1477 (|#4| |#4| (-634 |#4|))) (-15 -1447 (|#4| |#4| (-634 |#4|))) (-15 -1508 ((-634 |#4|) (-634 |#4|) (-568) (-568))) (-15 -2814 ((-121) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-763)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1629 ((-121) |#2| |#2|)) (-15 -3750 ((-121) |#2| |#2| |#2| |#2|)) (-15 -1471 ((-634 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-763)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-634 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-763)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2169 ((-634 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-763)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-634 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-763)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3426 ((-634 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-763)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-634 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-763)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3798 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-634 |#4|))) (-15 -1423 (|#4| |#4|)) (-15 -1766 ((-634 (-2 (|:| |totdeg| (-763)) (|:| -2700 |#4|))) |#4| (-763) (-634 (-2 (|:| |totdeg| (-763)) (|:| -2700 |#4|))))) (-15 -2064 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-763)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2600 ((-634 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-763)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-634 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-763)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-634 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-763)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2861 ((-634 |#4|) (-634 |#4|))) (-15 -2654 ((-568) |#4|)) (-15 -1499 ((-1249) |#4|)) (-15 -3217 ((-568) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-763)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-568) (-568) (-568))) (-15 -2313 ((-568) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-763)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-568) (-568) (-568) (-568))) (-15 -3242 ((-1249) (-634 |#4|))) (-15 -1282 ((-1249) (-568))) (-15 -2374 ((-121) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-763)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-763)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4108 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-763)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-763)) (|:| -2700 |#4|)) |#4| (-763))) (-15 -4258 ((-763) |#4|))) (-453) (-788) (-842) (-950 |#1| |#2| |#3|)) (T -450)) +((-4258 (*1 *2 *3) (-12 (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-763)) (-5 *1 (-450 *4 *5 *6 *3)) (-4 *3 (-950 *4 *5 *6)))) (-4108 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-763)) (|:| -2700 *4))) (-5 *5 (-763)) (-4 *4 (-950 *6 *7 *8)) (-4 *6 (-453)) (-4 *7 (-788)) (-4 *8 (-842)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-450 *6 *7 *8 *4)))) (-2374 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-763)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-788)) (-4 *7 (-950 *4 *5 *6)) (-4 *4 (-453)) (-4 *6 (-842)) (-5 *2 (-121)) (-5 *1 (-450 *4 *5 *6 *7)))) (-1282 (*1 *2 *3) (-12 (-5 *3 (-568)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-1249)) (-5 *1 (-450 *4 *5 *6 *7)) (-4 *7 (-950 *4 *5 *6)))) (-3242 (*1 *2 *3) (-12 (-5 *3 (-634 *7)) (-4 *7 (-950 *4 *5 *6)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-1249)) (-5 *1 (-450 *4 *5 *6 *7)))) (-2313 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-568)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-763)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-788)) (-4 *4 (-950 *5 *6 *7)) (-4 *5 (-453)) (-4 *7 (-842)) (-5 *1 (-450 *5 *6 *7 *4)))) (-3217 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-568)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-763)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-788)) (-4 *4 (-950 *5 *6 *7)) (-4 *5 (-453)) (-4 *7 (-842)) (-5 *1 (-450 *5 *6 *7 *4)))) (-1499 (*1 *2 *3) (-12 (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-1249)) (-5 *1 (-450 *4 *5 *6 *3)) (-4 *3 (-950 *4 *5 *6)))) (-2654 (*1 *2 *3) (-12 (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-568)) (-5 *1 (-450 *4 *5 *6 *3)) (-4 *3 (-950 *4 *5 *6)))) (-2861 (*1 *2 *2) (-12 (-5 *2 (-634 *6)) (-4 *6 (-950 *3 *4 *5)) (-4 *3 (-453)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *1 (-450 *3 *4 *5 *6)))) (-2600 (*1 *2 *2 *2) (-12 (-5 *2 (-634 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-763)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-788)) (-4 *6 (-950 *3 *4 *5)) (-4 *3 (-453)) (-4 *5 (-842)) (-5 *1 (-450 *3 *4 *5 *6)))) (-2064 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-763)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-788)) (-4 *2 (-950 *4 *5 *6)) (-5 *1 (-450 *4 *5 *6 *2)) (-4 *4 (-453)) (-4 *6 (-842)))) (-1766 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-634 (-2 (|:| |totdeg| (-763)) (|:| -2700 *3)))) (-5 *4 (-763)) (-4 *3 (-950 *5 *6 *7)) (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-5 *1 (-450 *5 *6 *7 *3)))) (-1423 (*1 *2 *2) (-12 (-4 *3 (-453)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *1 (-450 *3 *4 *5 *2)) (-4 *2 (-950 *3 *4 *5)))) (-3798 (*1 *2 *3 *4) (-12 (-5 *4 (-634 *3)) (-4 *3 (-950 *5 *6 *7)) (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-450 *5 *6 *7 *3)))) (-3426 (*1 *2 *3 *2) (-12 (-5 *2 (-634 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-763)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-788)) (-4 *6 (-950 *4 *3 *5)) (-4 *4 (-453)) (-4 *5 (-842)) (-5 *1 (-450 *4 *3 *5 *6)))) (-2169 (*1 *2 *2) (-12 (-5 *2 (-634 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-763)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-788)) (-4 *6 (-950 *3 *4 *5)) (-4 *3 (-453)) (-4 *5 (-842)) (-5 *1 (-450 *3 *4 *5 *6)))) (-1471 (*1 *2 *3 *2) (-12 (-5 *2 (-634 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-763)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-788)) (-4 *3 (-950 *4 *5 *6)) (-4 *4 (-453)) (-4 *6 (-842)) (-5 *1 (-450 *4 *5 *6 *3)))) (-3750 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-453)) (-4 *3 (-788)) (-4 *5 (-842)) (-5 *2 (-121)) (-5 *1 (-450 *4 *3 *5 *6)) (-4 *6 (-950 *4 *3 *5)))) (-1629 (*1 *2 *3 *3) (-12 (-4 *4 (-453)) (-4 *3 (-788)) (-4 *5 (-842)) (-5 *2 (-121)) (-5 *1 (-450 *4 *3 *5 *6)) (-4 *6 (-950 *4 *3 *5)))) (-2814 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-763)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-788)) (-4 *7 (-950 *4 *5 *6)) (-4 *4 (-453)) (-4 *6 (-842)) (-5 *2 (-121)) (-5 *1 (-450 *4 *5 *6 *7)))) (-1508 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-634 *7)) (-5 *3 (-568)) (-4 *7 (-950 *4 *5 *6)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *1 (-450 *4 *5 *6 *7)))) (-1447 (*1 *2 *2 *3) (-12 (-5 *3 (-634 *2)) (-4 *2 (-950 *4 *5 *6)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *1 (-450 *4 *5 *6 *2)))) (-1477 (*1 *2 *2 *3) (-12 (-5 *3 (-634 *2)) (-4 *2 (-950 *4 *5 *6)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *1 (-450 *4 *5 *6 *2))))) +(-10 -7 (-15 -1477 (|#4| |#4| (-634 |#4|))) (-15 -1447 (|#4| |#4| (-634 |#4|))) (-15 -1508 ((-634 |#4|) (-634 |#4|) (-568) (-568))) (-15 -2814 ((-121) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-763)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1629 ((-121) |#2| |#2|)) (-15 -3750 ((-121) |#2| |#2| |#2| |#2|)) (-15 -1471 ((-634 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-763)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-634 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-763)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2169 ((-634 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-763)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-634 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-763)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3426 ((-634 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-763)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-634 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-763)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3798 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-634 |#4|))) (-15 -1423 (|#4| |#4|)) (-15 -1766 ((-634 (-2 (|:| |totdeg| (-763)) (|:| -2700 |#4|))) |#4| (-763) (-634 (-2 (|:| |totdeg| (-763)) (|:| -2700 |#4|))))) (-15 -2064 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-763)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2600 ((-634 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-763)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-634 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-763)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-634 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-763)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2861 ((-634 |#4|) (-634 |#4|))) (-15 -2654 ((-568) |#4|)) (-15 -1499 ((-1249) |#4|)) (-15 -3217 ((-568) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-763)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-568) (-568) (-568))) (-15 -2313 ((-568) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-763)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-568) (-568) (-568) (-568))) (-15 -3242 ((-1249) (-634 |#4|))) (-15 -1282 ((-1249) (-568))) (-15 -2374 ((-121) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-763)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-763)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4108 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-763)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-763)) (|:| -2700 |#4|)) |#4| (-763))) (-15 -4258 ((-763) |#4|))) +((-2633 ((|#4| |#4| (-634 |#4|)) 22 (|has| |#1| (-365)))) (-2715 (((-634 |#4|) (-634 |#4|) (-1143) (-1143)) 41) (((-634 |#4|) (-634 |#4|) (-1143)) 40) (((-634 |#4|) (-634 |#4|)) 35))) +(((-451 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2715 ((-634 |#4|) (-634 |#4|))) (-15 -2715 ((-634 |#4|) (-634 |#4|) (-1143))) (-15 -2715 ((-634 |#4|) (-634 |#4|) (-1143) (-1143))) (IF (|has| |#1| (-365)) (-15 -2633 (|#4| |#4| (-634 |#4|))) |noBranch|)) (-453) (-788) (-842) (-950 |#1| |#2| |#3|)) (T -451)) +((-2633 (*1 *2 *2 *3) (-12 (-5 *3 (-634 *2)) (-4 *2 (-950 *4 *5 *6)) (-4 *4 (-365)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *1 (-451 *4 *5 *6 *2)))) (-2715 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-634 *7)) (-5 *3 (-1143)) (-4 *7 (-950 *4 *5 *6)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *1 (-451 *4 *5 *6 *7)))) (-2715 (*1 *2 *2 *3) (-12 (-5 *2 (-634 *7)) (-5 *3 (-1143)) (-4 *7 (-950 *4 *5 *6)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *1 (-451 *4 *5 *6 *7)))) (-2715 (*1 *2 *2) (-12 (-5 *2 (-634 *6)) (-4 *6 (-950 *3 *4 *5)) (-4 *3 (-453)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *1 (-451 *3 *4 *5 *6))))) +(-10 -7 (-15 -2715 ((-634 |#4|) (-634 |#4|))) (-15 -2715 ((-634 |#4|) (-634 |#4|) (-1143))) (-15 -2715 ((-634 |#4|) (-634 |#4|) (-1143) (-1143))) (IF (|has| |#1| (-365)) (-15 -2633 (|#4| |#4| (-634 |#4|))) |noBranch|)) +((-2495 (($ $ $) 14) (($ (-634 $)) 21)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) 41)) (-2721 (($ $ $) NIL) (($ (-634 $)) 22))) +(((-452 |#1|) (-10 -8 (-15 -2155 ((-1157 |#1|) (-1157 |#1|) (-1157 |#1|))) (-15 -2495 (|#1| (-634 |#1|))) (-15 -2495 (|#1| |#1| |#1|)) (-15 -2721 (|#1| (-634 |#1|))) (-15 -2721 (|#1| |#1| |#1|))) (-453)) (T -452)) +NIL +(-10 -8 (-15 -2155 ((-1157 |#1|) (-1157 |#1|) (-1157 |#1|))) (-15 -2495 (|#1| (-634 |#1|))) (-15 -2495 (|#1| |#1| |#1|)) (-15 -2721 (|#1| (-634 |#1|))) (-15 -2721 (|#1| |#1| |#1|))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) 40)) (-2227 (($ $) 39)) (-1573 (((-121) $) 37)) (-3134 (((-3 $ "failed") $ $) 18)) (-2671 (($) 16 T CONST)) (-2925 (((-3 $ "failed") $) 33)) (-2735 (((-121) $) 30)) (-2495 (($ $ $) 45) (($ (-634 $)) 44)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) 43)) (-2721 (($ $ $) 47) (($ (-634 $)) 46)) (-2595 (((-3 $ "failed") $ $) 41)) (-2745 (((-850) $) 11) (($ (-568)) 27) (($ $) 42)) (-4078 (((-763)) 28)) (-1826 (((-121) $ $) 38)) (-1887 (($ $ (-917)) 25) (($ $ (-763)) 32)) (-3056 (($) 17 T CONST)) (-1556 (($) 29 T CONST)) (-1717 (((-121) $ $) 6)) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 24) (($ $ (-763)) 31)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 23))) +(((-453) (-1275)) (T -453)) +((-2721 (*1 *1 *1 *1) (-4 *1 (-453))) (-2721 (*1 *1 *2) (-12 (-5 *2 (-634 *1)) (-4 *1 (-453)))) (-2495 (*1 *1 *1 *1) (-4 *1 (-453))) (-2495 (*1 *1 *2) (-12 (-5 *2 (-634 *1)) (-4 *1 (-453)))) (-2155 (*1 *2 *2 *2) (-12 (-5 *2 (-1157 *1)) (-4 *1 (-453))))) +(-13 (-558) (-10 -8 (-15 -2721 ($ $ $)) (-15 -2721 ($ (-634 $))) (-15 -2495 ($ $ $)) (-15 -2495 ($ (-634 $))) (-15 -2155 ((-1157 $) (-1157 $) (-1157 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-43 $) . T) ((-105) . T) ((-120 $ $) . T) ((-137) . T) ((-608 (-850)) . T) ((-172) . T) ((-285) . T) ((-558) . T) ((-637 $) . T) ((-707 $) . T) ((-716) . T) ((-1053 $) . T) ((-1047) . T) ((-1054) . T) ((-1102) . T) ((-1090) . T)) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-2295 (((-3 $ "failed")) NIL (|has| (-409 (-953 |#1|)) (-558)))) (-3134 (((-3 $ "failed") $ $) NIL)) (-2776 (((-1244 (-679 (-409 (-953 |#1|)))) (-1244 $)) NIL) (((-1244 (-679 (-409 (-953 |#1|))))) NIL)) (-1741 (((-1244 $)) NIL)) (-2671 (($) NIL T CONST)) (-1309 (((-3 (-2 (|:| |particular| $) (|:| -3746 (-634 $))) "failed")) NIL)) (-2593 (((-3 $ "failed")) NIL (|has| (-409 (-953 |#1|)) (-558)))) (-1631 (((-679 (-409 (-953 |#1|))) (-1244 $)) NIL) (((-679 (-409 (-953 |#1|)))) NIL)) (-1866 (((-409 (-953 |#1|)) $) NIL)) (-3042 (((-679 (-409 (-953 |#1|))) $ (-1244 $)) NIL) (((-679 (-409 (-953 |#1|))) $) NIL)) (-3550 (((-3 $ "failed") $) NIL (|has| (-409 (-953 |#1|)) (-558)))) (-4408 (((-1157 (-953 (-409 (-953 |#1|))))) NIL (|has| (-409 (-953 |#1|)) (-365))) (((-1157 (-409 (-953 |#1|)))) 79 (|has| |#1| (-558)))) (-3551 (($ $ (-917)) NIL)) (-4409 (((-409 (-953 |#1|)) $) NIL)) (-1371 (((-1157 (-409 (-953 |#1|))) $) 77 (|has| (-409 (-953 |#1|)) (-558)))) (-3569 (((-409 (-953 |#1|)) (-1244 $)) NIL) (((-409 (-953 |#1|))) NIL)) (-2989 (((-1157 (-409 (-953 |#1|))) $) NIL)) (-3384 (((-121)) NIL)) (-3498 (($ (-1244 (-409 (-953 |#1|))) (-1244 $)) 97) (($ (-1244 (-409 (-953 |#1|)))) NIL)) (-2925 (((-3 $ "failed") $) NIL (|has| (-409 (-953 |#1|)) (-558)))) (-3700 (((-917)) NIL)) (-4370 (((-121)) NIL)) (-4373 (($ $ (-917)) NIL)) (-1537 (((-121)) NIL)) (-1580 (((-121)) NIL)) (-1695 (((-121)) NIL)) (-3116 (((-3 (-2 (|:| |particular| $) (|:| -3746 (-634 $))) "failed")) NIL)) (-2599 (((-3 $ "failed")) NIL (|has| (-409 (-953 |#1|)) (-558)))) (-4210 (((-679 (-409 (-953 |#1|))) (-1244 $)) NIL) (((-679 (-409 (-953 |#1|)))) NIL)) (-2889 (((-409 (-953 |#1|)) $) NIL)) (-4333 (((-679 (-409 (-953 |#1|))) $ (-1244 $)) NIL) (((-679 (-409 (-953 |#1|))) $) NIL)) (-3243 (((-3 $ "failed") $) NIL (|has| (-409 (-953 |#1|)) (-558)))) (-4454 (((-1157 (-953 (-409 (-953 |#1|))))) NIL (|has| (-409 (-953 |#1|)) (-365))) (((-1157 (-409 (-953 |#1|)))) 78 (|has| |#1| (-558)))) (-4222 (($ $ (-917)) NIL)) (-3329 (((-409 (-953 |#1|)) $) NIL)) (-2265 (((-1157 (-409 (-953 |#1|))) $) 72 (|has| (-409 (-953 |#1|)) (-558)))) (-3898 (((-409 (-953 |#1|)) (-1244 $)) NIL) (((-409 (-953 |#1|))) NIL)) (-3626 (((-1157 (-409 (-953 |#1|))) $) NIL)) (-2767 (((-121)) NIL)) (-4487 (((-1143) $) NIL)) (-1804 (((-121)) NIL)) (-2919 (((-121)) NIL)) (-3840 (((-121)) NIL)) (-4022 (((-1108) $) NIL)) (-3604 (((-409 (-953 |#1|)) $ $) 66 (|has| |#1| (-558)))) (-3087 (((-409 (-953 |#1|)) $) 65 (|has| |#1| (-558)))) (-4311 (((-409 (-953 |#1|)) $) 89 (|has| |#1| (-558)))) (-1686 (((-1157 (-409 (-953 |#1|))) $) 83 (|has| |#1| (-558)))) (-1942 (((-409 (-953 |#1|))) 67 (|has| |#1| (-558)))) (-3456 (((-409 (-953 |#1|)) $ $) 54 (|has| |#1| (-558)))) (-3102 (((-409 (-953 |#1|)) $) 53 (|has| |#1| (-558)))) (-1318 (((-409 (-953 |#1|)) $) 88 (|has| |#1| (-558)))) (-2726 (((-1157 (-409 (-953 |#1|))) $) 82 (|has| |#1| (-558)))) (-2267 (((-409 (-953 |#1|))) 64 (|has| |#1| (-558)))) (-1828 (($) 95) (($ (-1161)) 101) (($ (-1244 (-1161))) 100) (($ (-1244 $)) 90) (($ (-1161) (-1244 $)) 99) (($ (-1244 (-1161)) (-1244 $)) 98)) (-1346 (((-121)) NIL)) (-2779 (((-409 (-953 |#1|)) $ (-568)) NIL)) (-4073 (((-1244 (-409 (-953 |#1|))) $ (-1244 $)) 92) (((-679 (-409 (-953 |#1|))) (-1244 $) (-1244 $)) NIL) (((-1244 (-409 (-953 |#1|))) $) 37) (((-679 (-409 (-953 |#1|))) (-1244 $)) NIL)) (-4278 (((-1244 (-409 (-953 |#1|))) $) NIL) (($ (-1244 (-409 (-953 |#1|)))) 34)) (-3295 (((-634 (-953 (-409 (-953 |#1|)))) (-1244 $)) NIL) (((-634 (-953 (-409 (-953 |#1|))))) NIL) (((-634 (-953 |#1|)) (-1244 $)) 93 (|has| |#1| (-558))) (((-634 (-953 |#1|))) 94 (|has| |#1| (-558)))) (-2353 (($ $ $) NIL)) (-3433 (((-121)) NIL)) (-2745 (((-850) $) NIL) (($ (-1244 (-409 (-953 |#1|)))) NIL)) (-3746 (((-1244 $)) 56)) (-1509 (((-634 (-1244 (-409 (-953 |#1|))))) NIL (|has| (-409 (-953 |#1|)) (-558)))) (-3882 (($ $ $ $) NIL)) (-4177 (((-121)) NIL)) (-3823 (($ (-679 (-409 (-953 |#1|))) $) NIL)) (-3500 (($ $ $) NIL)) (-2433 (((-121)) NIL)) (-2189 (((-121)) NIL)) (-4107 (((-121)) NIL)) (-3056 (($) NIL T CONST)) (-1717 (((-121) $ $) NIL)) (-1773 (($ $) NIL) (($ $ $) 91)) (-1767 (($ $ $) NIL)) (** (($ $ (-917)) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) 52) (($ $ (-409 (-953 |#1|))) NIL) (($ (-409 (-953 |#1|)) $) NIL) (($ (-1127 |#2| (-409 (-953 |#1|))) $) NIL))) +(((-454 |#1| |#2| |#3| |#4|) (-13 (-419 (-409 (-953 |#1|))) (-637 (-1127 |#2| (-409 (-953 |#1|)))) (-10 -8 (-15 -2745 ($ (-1244 (-409 (-953 |#1|))))) (-15 -3116 ((-3 (-2 (|:| |particular| $) (|:| -3746 (-634 $))) "failed"))) (-15 -1309 ((-3 (-2 (|:| |particular| $) (|:| -3746 (-634 $))) "failed"))) (-15 -1828 ($)) (-15 -1828 ($ (-1161))) (-15 -1828 ($ (-1244 (-1161)))) (-15 -1828 ($ (-1244 $))) (-15 -1828 ($ (-1161) (-1244 $))) (-15 -1828 ($ (-1244 (-1161)) (-1244 $))) (IF (|has| |#1| (-558)) (PROGN (-15 -4454 ((-1157 (-409 (-953 |#1|))))) (-15 -2726 ((-1157 (-409 (-953 |#1|))) $)) (-15 -3102 ((-409 (-953 |#1|)) $)) (-15 -1318 ((-409 (-953 |#1|)) $)) (-15 -4408 ((-1157 (-409 (-953 |#1|))))) (-15 -1686 ((-1157 (-409 (-953 |#1|))) $)) (-15 -3087 ((-409 (-953 |#1|)) $)) (-15 -4311 ((-409 (-953 |#1|)) $)) (-15 -3456 ((-409 (-953 |#1|)) $ $)) (-15 -2267 ((-409 (-953 |#1|)))) (-15 -3604 ((-409 (-953 |#1|)) $ $)) (-15 -1942 ((-409 (-953 |#1|)))) (-15 -3295 ((-634 (-953 |#1|)) (-1244 $))) (-15 -3295 ((-634 (-953 |#1|))))) |noBranch|))) (-172) (-917) (-634 (-1161)) (-1244 (-679 |#1|))) (T -454)) +((-2745 (*1 *1 *2) (-12 (-5 *2 (-1244 (-409 (-953 *3)))) (-4 *3 (-172)) (-14 *6 (-1244 (-679 *3))) (-5 *1 (-454 *3 *4 *5 *6)) (-14 *4 (-917)) (-14 *5 (-634 (-1161))))) (-3116 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-454 *3 *4 *5 *6)) (|:| -3746 (-634 (-454 *3 *4 *5 *6))))) (-5 *1 (-454 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-634 (-1161))) (-14 *6 (-1244 (-679 *3))))) (-1309 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-454 *3 *4 *5 *6)) (|:| -3746 (-634 (-454 *3 *4 *5 *6))))) (-5 *1 (-454 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-634 (-1161))) (-14 *6 (-1244 (-679 *3))))) (-1828 (*1 *1) (-12 (-5 *1 (-454 *2 *3 *4 *5)) (-4 *2 (-172)) (-14 *3 (-917)) (-14 *4 (-634 (-1161))) (-14 *5 (-1244 (-679 *2))))) (-1828 (*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-454 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-634 *2)) (-14 *6 (-1244 (-679 *3))))) (-1828 (*1 *1 *2) (-12 (-5 *2 (-1244 (-1161))) (-5 *1 (-454 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-634 (-1161))) (-14 *6 (-1244 (-679 *3))))) (-1828 (*1 *1 *2) (-12 (-5 *2 (-1244 (-454 *3 *4 *5 *6))) (-5 *1 (-454 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-634 (-1161))) (-14 *6 (-1244 (-679 *3))))) (-1828 (*1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-1244 (-454 *4 *5 *6 *7))) (-5 *1 (-454 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-917)) (-14 *6 (-634 *2)) (-14 *7 (-1244 (-679 *4))))) (-1828 (*1 *1 *2 *3) (-12 (-5 *2 (-1244 (-1161))) (-5 *3 (-1244 (-454 *4 *5 *6 *7))) (-5 *1 (-454 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-917)) (-14 *6 (-634 (-1161))) (-14 *7 (-1244 (-679 *4))))) (-4454 (*1 *2) (-12 (-5 *2 (-1157 (-409 (-953 *3)))) (-5 *1 (-454 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-634 (-1161))) (-14 *6 (-1244 (-679 *3))))) (-2726 (*1 *2 *1) (-12 (-5 *2 (-1157 (-409 (-953 *3)))) (-5 *1 (-454 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-634 (-1161))) (-14 *6 (-1244 (-679 *3))))) (-3102 (*1 *2 *1) (-12 (-5 *2 (-409 (-953 *3))) (-5 *1 (-454 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-634 (-1161))) (-14 *6 (-1244 (-679 *3))))) (-1318 (*1 *2 *1) (-12 (-5 *2 (-409 (-953 *3))) (-5 *1 (-454 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-634 (-1161))) (-14 *6 (-1244 (-679 *3))))) (-4408 (*1 *2) (-12 (-5 *2 (-1157 (-409 (-953 *3)))) (-5 *1 (-454 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-634 (-1161))) (-14 *6 (-1244 (-679 *3))))) (-1686 (*1 *2 *1) (-12 (-5 *2 (-1157 (-409 (-953 *3)))) (-5 *1 (-454 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-634 (-1161))) (-14 *6 (-1244 (-679 *3))))) (-3087 (*1 *2 *1) (-12 (-5 *2 (-409 (-953 *3))) (-5 *1 (-454 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-634 (-1161))) (-14 *6 (-1244 (-679 *3))))) (-4311 (*1 *2 *1) (-12 (-5 *2 (-409 (-953 *3))) (-5 *1 (-454 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-634 (-1161))) (-14 *6 (-1244 (-679 *3))))) (-3456 (*1 *2 *1 *1) (-12 (-5 *2 (-409 (-953 *3))) (-5 *1 (-454 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-634 (-1161))) (-14 *6 (-1244 (-679 *3))))) (-2267 (*1 *2) (-12 (-5 *2 (-409 (-953 *3))) (-5 *1 (-454 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-634 (-1161))) (-14 *6 (-1244 (-679 *3))))) (-3604 (*1 *2 *1 *1) (-12 (-5 *2 (-409 (-953 *3))) (-5 *1 (-454 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-634 (-1161))) (-14 *6 (-1244 (-679 *3))))) (-1942 (*1 *2) (-12 (-5 *2 (-409 (-953 *3))) (-5 *1 (-454 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-634 (-1161))) (-14 *6 (-1244 (-679 *3))))) (-3295 (*1 *2 *3) (-12 (-5 *3 (-1244 (-454 *4 *5 *6 *7))) (-5 *2 (-634 (-953 *4))) (-5 *1 (-454 *4 *5 *6 *7)) (-4 *4 (-558)) (-4 *4 (-172)) (-14 *5 (-917)) (-14 *6 (-634 (-1161))) (-14 *7 (-1244 (-679 *4))))) (-3295 (*1 *2) (-12 (-5 *2 (-634 (-953 *3))) (-5 *1 (-454 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-634 (-1161))) (-14 *6 (-1244 (-679 *3)))))) +(-13 (-419 (-409 (-953 |#1|))) (-637 (-1127 |#2| (-409 (-953 |#1|)))) (-10 -8 (-15 -2745 ($ (-1244 (-409 (-953 |#1|))))) (-15 -3116 ((-3 (-2 (|:| |particular| $) (|:| -3746 (-634 $))) "failed"))) (-15 -1309 ((-3 (-2 (|:| |particular| $) (|:| -3746 (-634 $))) "failed"))) (-15 -1828 ($)) (-15 -1828 ($ (-1161))) (-15 -1828 ($ (-1244 (-1161)))) (-15 -1828 ($ (-1244 $))) (-15 -1828 ($ (-1161) (-1244 $))) (-15 -1828 ($ (-1244 (-1161)) (-1244 $))) (IF (|has| |#1| (-558)) (PROGN (-15 -4454 ((-1157 (-409 (-953 |#1|))))) (-15 -2726 ((-1157 (-409 (-953 |#1|))) $)) (-15 -3102 ((-409 (-953 |#1|)) $)) (-15 -1318 ((-409 (-953 |#1|)) $)) (-15 -4408 ((-1157 (-409 (-953 |#1|))))) (-15 -1686 ((-1157 (-409 (-953 |#1|))) $)) (-15 -3087 ((-409 (-953 |#1|)) $)) (-15 -4311 ((-409 (-953 |#1|)) $)) (-15 -3456 ((-409 (-953 |#1|)) $ $)) (-15 -2267 ((-409 (-953 |#1|)))) (-15 -3604 ((-409 (-953 |#1|)) $ $)) (-15 -1942 ((-409 (-953 |#1|)))) (-15 -3295 ((-634 (-953 |#1|)) (-1244 $))) (-15 -3295 ((-634 (-953 |#1|))))) |noBranch|))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) 13)) (-2055 (((-634 (-852 |#1|)) $) 73)) (-3839 (((-1157 $) $ (-852 |#1|)) 46) (((-1157 |#2|) $) 115)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL (|has| |#2| (-558)))) (-2227 (($ $) NIL (|has| |#2| (-558)))) (-1573 (((-121) $) NIL (|has| |#2| (-558)))) (-2773 (((-763) $) 21) (((-763) $ (-634 (-852 |#1|))) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-1750 (((-420 (-1157 $)) (-1157 $)) NIL (|has| |#2| (-904)))) (-4305 (($ $) NIL (|has| |#2| (-453)))) (-1678 (((-420 $) $) NIL (|has| |#2| (-453)))) (-1858 (((-3 (-634 (-1157 $)) "failed") (-634 (-1157 $)) (-1157 $)) NIL (|has| |#2| (-904)))) (-2671 (($) NIL T CONST)) (-3666 (((-3 |#2| "failed") $) 44) (((-3 (-409 (-568)) "failed") $) NIL (|has| |#2| (-1037 (-409 (-568))))) (((-3 (-568) "failed") $) NIL (|has| |#2| (-1037 (-568)))) (((-3 (-852 |#1|) "failed") $) NIL)) (-2854 ((|#2| $) 42) (((-409 (-568)) $) NIL (|has| |#2| (-1037 (-409 (-568))))) (((-568) $) NIL (|has| |#2| (-1037 (-568)))) (((-852 |#1|) $) NIL)) (-4265 (($ $ $ (-852 |#1|)) NIL (|has| |#2| (-172)))) (-4425 (($ $ (-634 (-568))) 78)) (-2114 (($ $) 67)) (-3164 (((-679 (-568)) (-679 $)) NIL (|has| |#2| (-630 (-568)))) (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) NIL (|has| |#2| (-630 (-568)))) (((-2 (|:| -2928 (-679 |#2|)) (|:| |vec| (-1244 |#2|))) (-679 $) (-1244 $)) NIL) (((-679 |#2|) (-679 $)) NIL)) (-2925 (((-3 $ "failed") $) NIL)) (-3250 (($ $) NIL (|has| |#2| (-453))) (($ $ (-852 |#1|)) NIL (|has| |#2| (-453)))) (-2108 (((-634 $) $) NIL)) (-3927 (((-121) $) NIL (|has| |#2| (-904)))) (-3088 (($ $ |#2| |#3| $) NIL)) (-4410 (((-884 (-381) $) $ (-887 (-381)) (-884 (-381) $)) NIL (-12 (|has| (-852 |#1|) (-881 (-381))) (|has| |#2| (-881 (-381))))) (((-884 (-568) $) $ (-887 (-568)) (-884 (-568) $)) NIL (-12 (|has| (-852 |#1|) (-881 (-568))) (|has| |#2| (-881 (-568)))))) (-2735 (((-121) $) NIL)) (-4178 (((-763) $) 58)) (-2051 (($ (-1157 |#2|) (-852 |#1|)) 120) (($ (-1157 $) (-852 |#1|)) 52)) (-2976 (((-634 $) $) NIL)) (-3921 (((-121) $) 59)) (-2047 (($ |#2| |#3|) 28) (($ $ (-852 |#1|) (-763)) 30) (($ $ (-634 (-852 |#1|)) (-634 (-763))) NIL)) (-3379 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $ (-852 |#1|)) NIL)) (-2144 ((|#3| $) NIL) (((-763) $ (-852 |#1|)) 50) (((-634 (-763)) $ (-634 (-852 |#1|))) 57)) (-2521 (($ $ $) NIL (|has| |#2| (-842)))) (-3268 (($ $ $) NIL (|has| |#2| (-842)))) (-3842 (($ (-1 |#3| |#3|) $) NIL)) (-2795 (($ (-1 |#2| |#2|) $) NIL)) (-2244 (((-3 (-852 |#1|) "failed") $) 39)) (-2097 (($ $) NIL)) (-2102 ((|#2| $) 41)) (-2495 (($ (-634 $)) NIL (|has| |#2| (-453))) (($ $ $) NIL (|has| |#2| (-453)))) (-4487 (((-1143) $) NIL)) (-3324 (((-3 (-634 $) "failed") $) NIL)) (-1794 (((-3 (-634 $) "failed") $) NIL)) (-3751 (((-3 (-2 (|:| |var| (-852 |#1|)) (|:| -3438 (-763))) "failed") $) NIL)) (-4022 (((-1108) $) NIL)) (-2086 (((-121) $) 40)) (-2091 ((|#2| $) 113)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL (|has| |#2| (-453)))) (-2721 (($ (-634 $)) NIL (|has| |#2| (-453))) (($ $ $) 125 (|has| |#2| (-453)))) (-2905 (((-420 (-1157 $)) (-1157 $)) NIL (|has| |#2| (-904)))) (-3545 (((-420 (-1157 $)) (-1157 $)) NIL (|has| |#2| (-904)))) (-3848 (((-420 $) $) NIL (|has| |#2| (-904)))) (-2595 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-558))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-558)))) (-1339 (($ $ (-634 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-634 $) (-634 $)) NIL) (($ $ (-852 |#1|) |#2|) 85) (($ $ (-634 (-852 |#1|)) (-634 |#2|)) 88) (($ $ (-852 |#1|) $) 83) (($ $ (-634 (-852 |#1|)) (-634 $)) 104)) (-2217 (($ $ (-852 |#1|)) NIL (|has| |#2| (-172)))) (-4189 (($ $ (-852 |#1|)) 53) (($ $ (-634 (-852 |#1|))) NIL) (($ $ (-852 |#1|) (-763)) NIL) (($ $ (-634 (-852 |#1|)) (-634 (-763))) NIL)) (-3206 ((|#3| $) 66) (((-763) $ (-852 |#1|)) 37) (((-634 (-763)) $ (-634 (-852 |#1|))) 56)) (-4278 (((-887 (-381)) $) NIL (-12 (|has| (-852 |#1|) (-609 (-887 (-381)))) (|has| |#2| (-609 (-887 (-381)))))) (((-887 (-568)) $) NIL (-12 (|has| (-852 |#1|) (-609 (-887 (-568)))) (|has| |#2| (-609 (-887 (-568)))))) (((-541) $) NIL (-12 (|has| (-852 |#1|) (-609 (-541))) (|has| |#2| (-609 (-541)))))) (-3367 ((|#2| $) 122 (|has| |#2| (-453))) (($ $ (-852 |#1|)) NIL (|has| |#2| (-453)))) (-2979 (((-3 (-1244 $) "failed") (-679 $)) NIL (-12 (|has| $ (-148)) (|has| |#2| (-904))))) (-2745 (((-850) $) 141) (($ (-568)) NIL) (($ |#2|) 84) (($ (-852 |#1|)) 31) (($ (-409 (-568))) NIL (-2198 (|has| |#2| (-43 (-409 (-568)))) (|has| |#2| (-1037 (-409 (-568)))))) (($ $) NIL (|has| |#2| (-558)))) (-1302 (((-634 |#2|) $) NIL)) (-2604 ((|#2| $ |#3|) NIL) (($ $ (-852 |#1|) (-763)) NIL) (($ $ (-634 (-852 |#1|)) (-634 (-763))) NIL)) (-4371 (((-3 $ "failed") $) NIL (-2198 (-12 (|has| $ (-148)) (|has| |#2| (-904))) (|has| |#2| (-148))))) (-4078 (((-763)) NIL)) (-4171 (($ $ $ (-763)) NIL (|has| |#2| (-172)))) (-1826 (((-121) $ $) NIL (|has| |#2| (-558)))) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (-3056 (($) 16 T CONST)) (-1556 (($) 25 T CONST)) (-3190 (($ $ (-852 |#1|)) NIL) (($ $ (-634 (-852 |#1|))) NIL) (($ $ (-852 |#1|) (-763)) NIL) (($ $ (-634 (-852 |#1|)) (-634 (-763))) NIL)) (-1751 (((-121) $ $) NIL (|has| |#2| (-842)))) (-1738 (((-121) $ $) NIL (|has| |#2| (-842)))) (-1717 (((-121) $ $) NIL)) (-1745 (((-121) $ $) NIL (|has| |#2| (-842)))) (-1732 (((-121) $ $) NIL (|has| |#2| (-842)))) (-1779 (($ $ |#2|) 64 (|has| |#2| (-365)))) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) 109)) (** (($ $ (-917)) NIL) (($ $ (-763)) 107)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) 29) (($ $ (-409 (-568))) NIL (|has| |#2| (-43 (-409 (-568))))) (($ (-409 (-568)) $) NIL (|has| |#2| (-43 (-409 (-568))))) (($ |#2| $) 63) (($ $ |#2|) NIL))) +(((-455 |#1| |#2| |#3|) (-13 (-950 |#2| |#3| (-852 |#1|)) (-10 -8 (-15 -4425 ($ $ (-634 (-568)))))) (-634 (-1161)) (-1047) (-230 (-1697 |#1|) (-763))) (T -455)) +((-4425 (*1 *1 *1 *2) (-12 (-5 *2 (-634 (-568))) (-14 *3 (-634 (-1161))) (-5 *1 (-455 *3 *4 *5)) (-4 *4 (-1047)) (-4 *5 (-230 (-1697 *3) (-763)))))) +(-13 (-950 |#2| |#3| (-852 |#1|)) (-10 -8 (-15 -4425 ($ $ (-634 (-568)))))) +((-4491 (((-1249) (-310 (-381)) (-1082 (-381)) (-1082 (-381)) (-1143)) 49) (((-1249) (-310 (-381)) (-1082 (-381)) (-1082 (-381)) (-1143) (-634 (-256))) 48) (((-1249) (-310 (-381)) (-1082 (-381)) (-1143)) 42) (((-1249) (-310 (-381)) (-1082 (-381)) (-1143) (-634 (-256))) 39))) +(((-456) (-10 -7 (-15 -4491 ((-1249) (-310 (-381)) (-1082 (-381)) (-1143) (-634 (-256)))) (-15 -4491 ((-1249) (-310 (-381)) (-1082 (-381)) (-1143))) (-15 -4491 ((-1249) (-310 (-381)) (-1082 (-381)) (-1082 (-381)) (-1143) (-634 (-256)))) (-15 -4491 ((-1249) (-310 (-381)) (-1082 (-381)) (-1082 (-381)) (-1143))))) (T -456)) +((-4491 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-310 (-381))) (-5 *4 (-1082 (-381))) (-5 *5 (-1143)) (-5 *2 (-1249)) (-5 *1 (-456)))) (-4491 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-310 (-381))) (-5 *4 (-1082 (-381))) (-5 *5 (-1143)) (-5 *6 (-634 (-256))) (-5 *2 (-1249)) (-5 *1 (-456)))) (-4491 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-310 (-381))) (-5 *4 (-1082 (-381))) (-5 *5 (-1143)) (-5 *2 (-1249)) (-5 *1 (-456)))) (-4491 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-310 (-381))) (-5 *4 (-1082 (-381))) (-5 *5 (-1143)) (-5 *6 (-634 (-256))) (-5 *2 (-1249)) (-5 *1 (-456))))) +(-10 -7 (-15 -4491 ((-1249) (-310 (-381)) (-1082 (-381)) (-1143) (-634 (-256)))) (-15 -4491 ((-1249) (-310 (-381)) (-1082 (-381)) (-1143))) (-15 -4491 ((-1249) (-310 (-381)) (-1082 (-381)) (-1082 (-381)) (-1143) (-634 (-256)))) (-15 -4491 ((-1249) (-310 (-381)) (-1082 (-381)) (-1082 (-381)) (-1143)))) +((-1672 (((-121) |#1| (-634 |#2|)) 65)) (-3287 (((-3 (-1244 (-634 |#2|)) "failed") (-763) |#1| (-634 |#2|)) 74)) (-2894 (((-3 (-634 |#2|) "failed") |#2| |#1| (-1244 (-634 |#2|))) 76)) (-3627 ((|#2| |#2| |#1|) 28)) (-4362 (((-763) |#2| (-634 |#2|)) 20))) +(((-457 |#1| |#2|) (-10 -7 (-15 -3627 (|#2| |#2| |#1|)) (-15 -4362 ((-763) |#2| (-634 |#2|))) (-15 -3287 ((-3 (-1244 (-634 |#2|)) "failed") (-763) |#1| (-634 |#2|))) (-15 -2894 ((-3 (-634 |#2|) "failed") |#2| |#1| (-1244 (-634 |#2|)))) (-15 -1672 ((-121) |#1| (-634 |#2|)))) (-301) (-1219 |#1|)) (T -457)) +((-1672 (*1 *2 *3 *4) (-12 (-5 *4 (-634 *5)) (-4 *5 (-1219 *3)) (-4 *3 (-301)) (-5 *2 (-121)) (-5 *1 (-457 *3 *5)))) (-2894 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1244 (-634 *3))) (-4 *4 (-301)) (-5 *2 (-634 *3)) (-5 *1 (-457 *4 *3)) (-4 *3 (-1219 *4)))) (-3287 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-763)) (-4 *4 (-301)) (-4 *6 (-1219 *4)) (-5 *2 (-1244 (-634 *6))) (-5 *1 (-457 *4 *6)) (-5 *5 (-634 *6)))) (-4362 (*1 *2 *3 *4) (-12 (-5 *4 (-634 *3)) (-4 *3 (-1219 *5)) (-4 *5 (-301)) (-5 *2 (-763)) (-5 *1 (-457 *5 *3)))) (-3627 (*1 *2 *2 *3) (-12 (-4 *3 (-301)) (-5 *1 (-457 *3 *2)) (-4 *2 (-1219 *3))))) +(-10 -7 (-15 -3627 (|#2| |#2| |#1|)) (-15 -4362 ((-763) |#2| (-634 |#2|))) (-15 -3287 ((-3 (-1244 (-634 |#2|)) "failed") (-763) |#1| (-634 |#2|))) (-15 -2894 ((-3 (-634 |#2|) "failed") |#2| |#1| (-1244 (-634 |#2|)))) (-15 -1672 ((-121) |#1| (-634 |#2|)))) +((-3848 (((-420 |#5|) |#5|) 24))) +(((-458 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3848 ((-420 |#5|) |#5|))) (-13 (-842) (-10 -8 (-15 -4278 ((-1161) $)) (-15 -1305 ((-3 $ "failed") (-1161))))) (-788) (-558) (-558) (-950 |#4| |#2| |#1|)) (T -458)) +((-3848 (*1 *2 *3) (-12 (-4 *4 (-13 (-842) (-10 -8 (-15 -4278 ((-1161) $)) (-15 -1305 ((-3 $ "failed") (-1161)))))) (-4 *5 (-788)) (-4 *7 (-558)) (-5 *2 (-420 *3)) (-5 *1 (-458 *4 *5 *6 *7 *3)) (-4 *6 (-558)) (-4 *3 (-950 *7 *5 *4))))) +(-10 -7 (-15 -3848 ((-420 |#5|) |#5|))) +((-3629 ((|#3|) 36)) (-2155 (((-1157 |#4|) (-1157 |#4|) (-1157 |#4|)) 32))) +(((-459 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2155 ((-1157 |#4|) (-1157 |#4|) (-1157 |#4|))) (-15 -3629 (|#3|))) (-788) (-842) (-904) (-950 |#3| |#1| |#2|)) (T -459)) +((-3629 (*1 *2) (-12 (-4 *3 (-788)) (-4 *4 (-842)) (-4 *2 (-904)) (-5 *1 (-459 *3 *4 *2 *5)) (-4 *5 (-950 *2 *3 *4)))) (-2155 (*1 *2 *2 *2) (-12 (-5 *2 (-1157 *6)) (-4 *6 (-950 *5 *3 *4)) (-4 *3 (-788)) (-4 *4 (-842)) (-4 *5 (-904)) (-5 *1 (-459 *3 *4 *5 *6))))) +(-10 -7 (-15 -2155 ((-1157 |#4|) (-1157 |#4|) (-1157 |#4|))) (-15 -3629 (|#3|))) +((-3848 (((-420 (-1157 |#1|)) (-1157 |#1|)) 41))) +(((-460 |#1|) (-10 -7 (-15 -3848 ((-420 (-1157 |#1|)) (-1157 |#1|)))) (-301)) (T -460)) +((-3848 (*1 *2 *3) (-12 (-4 *4 (-301)) (-5 *2 (-420 (-1157 *4))) (-5 *1 (-460 *4)) (-5 *3 (-1157 *4))))) +(-10 -7 (-15 -3848 ((-420 (-1157 |#1|)) (-1157 |#1|)))) +((-2065 (((-57) |#2| (-1161) (-288 |#2|) (-1210 (-763))) 42) (((-57) (-1 |#2| (-568)) (-288 |#2|) (-1210 (-763))) 41) (((-57) |#2| (-1161) (-288 |#2|)) 35) (((-57) (-1 |#2| (-568)) (-288 |#2|)) 27)) (-3728 (((-57) |#2| (-1161) (-288 |#2|) (-1210 (-409 (-568))) (-409 (-568))) 80) (((-57) (-1 |#2| (-409 (-568))) (-288 |#2|) (-1210 (-409 (-568))) (-409 (-568))) 79) (((-57) |#2| (-1161) (-288 |#2|) (-1210 (-568))) 78) (((-57) (-1 |#2| (-568)) (-288 |#2|) (-1210 (-568))) 77) (((-57) |#2| (-1161) (-288 |#2|)) 72) (((-57) (-1 |#2| (-568)) (-288 |#2|)) 71)) (-2075 (((-57) |#2| (-1161) (-288 |#2|) (-1210 (-409 (-568))) (-409 (-568))) 66) (((-57) (-1 |#2| (-409 (-568))) (-288 |#2|) (-1210 (-409 (-568))) (-409 (-568))) 64)) (-2070 (((-57) |#2| (-1161) (-288 |#2|) (-1210 (-568))) 48) (((-57) (-1 |#2| (-568)) (-288 |#2|) (-1210 (-568))) 47))) +(((-461 |#1| |#2|) (-10 -7 (-15 -2065 ((-57) (-1 |#2| (-568)) (-288 |#2|))) (-15 -2065 ((-57) |#2| (-1161) (-288 |#2|))) (-15 -2065 ((-57) (-1 |#2| (-568)) (-288 |#2|) (-1210 (-763)))) (-15 -2065 ((-57) |#2| (-1161) (-288 |#2|) (-1210 (-763)))) (-15 -2070 ((-57) (-1 |#2| (-568)) (-288 |#2|) (-1210 (-568)))) (-15 -2070 ((-57) |#2| (-1161) (-288 |#2|) (-1210 (-568)))) (-15 -2075 ((-57) (-1 |#2| (-409 (-568))) (-288 |#2|) (-1210 (-409 (-568))) (-409 (-568)))) (-15 -2075 ((-57) |#2| (-1161) (-288 |#2|) (-1210 (-409 (-568))) (-409 (-568)))) (-15 -3728 ((-57) (-1 |#2| (-568)) (-288 |#2|))) (-15 -3728 ((-57) |#2| (-1161) (-288 |#2|))) (-15 -3728 ((-57) (-1 |#2| (-568)) (-288 |#2|) (-1210 (-568)))) (-15 -3728 ((-57) |#2| (-1161) (-288 |#2|) (-1210 (-568)))) (-15 -3728 ((-57) (-1 |#2| (-409 (-568))) (-288 |#2|) (-1210 (-409 (-568))) (-409 (-568)))) (-15 -3728 ((-57) |#2| (-1161) (-288 |#2|) (-1210 (-409 (-568))) (-409 (-568))))) (-13 (-558) (-842) (-1037 (-568)) (-630 (-568))) (-13 (-27) (-1181) (-432 |#1|))) (T -461)) +((-3728 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1161)) (-5 *5 (-288 *3)) (-5 *6 (-1210 (-409 (-568)))) (-5 *7 (-409 (-568))) (-4 *3 (-13 (-27) (-1181) (-432 *8))) (-4 *8 (-13 (-558) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-57)) (-5 *1 (-461 *8 *3)))) (-3728 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-409 (-568)))) (-5 *4 (-288 *8)) (-5 *5 (-1210 (-409 (-568)))) (-5 *6 (-409 (-568))) (-4 *8 (-13 (-27) (-1181) (-432 *7))) (-4 *7 (-13 (-558) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-57)) (-5 *1 (-461 *7 *8)))) (-3728 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1161)) (-5 *5 (-288 *3)) (-5 *6 (-1210 (-568))) (-4 *3 (-13 (-27) (-1181) (-432 *7))) (-4 *7 (-13 (-558) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-57)) (-5 *1 (-461 *7 *3)))) (-3728 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-568))) (-5 *4 (-288 *7)) (-5 *5 (-1210 (-568))) (-4 *7 (-13 (-27) (-1181) (-432 *6))) (-4 *6 (-13 (-558) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-57)) (-5 *1 (-461 *6 *7)))) (-3728 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1161)) (-5 *5 (-288 *3)) (-4 *3 (-13 (-27) (-1181) (-432 *6))) (-4 *6 (-13 (-558) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-57)) (-5 *1 (-461 *6 *3)))) (-3728 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-568))) (-5 *4 (-288 *6)) (-4 *6 (-13 (-27) (-1181) (-432 *5))) (-4 *5 (-13 (-558) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-57)) (-5 *1 (-461 *5 *6)))) (-2075 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1161)) (-5 *5 (-288 *3)) (-5 *6 (-1210 (-409 (-568)))) (-5 *7 (-409 (-568))) (-4 *3 (-13 (-27) (-1181) (-432 *8))) (-4 *8 (-13 (-558) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-57)) (-5 *1 (-461 *8 *3)))) (-2075 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-409 (-568)))) (-5 *4 (-288 *8)) (-5 *5 (-1210 (-409 (-568)))) (-5 *6 (-409 (-568))) (-4 *8 (-13 (-27) (-1181) (-432 *7))) (-4 *7 (-13 (-558) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-57)) (-5 *1 (-461 *7 *8)))) (-2070 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1161)) (-5 *5 (-288 *3)) (-5 *6 (-1210 (-568))) (-4 *3 (-13 (-27) (-1181) (-432 *7))) (-4 *7 (-13 (-558) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-57)) (-5 *1 (-461 *7 *3)))) (-2070 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-568))) (-5 *4 (-288 *7)) (-5 *5 (-1210 (-568))) (-4 *7 (-13 (-27) (-1181) (-432 *6))) (-4 *6 (-13 (-558) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-57)) (-5 *1 (-461 *6 *7)))) (-2065 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1161)) (-5 *5 (-288 *3)) (-5 *6 (-1210 (-763))) (-4 *3 (-13 (-27) (-1181) (-432 *7))) (-4 *7 (-13 (-558) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-57)) (-5 *1 (-461 *7 *3)))) (-2065 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-568))) (-5 *4 (-288 *7)) (-5 *5 (-1210 (-763))) (-4 *7 (-13 (-27) (-1181) (-432 *6))) (-4 *6 (-13 (-558) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-57)) (-5 *1 (-461 *6 *7)))) (-2065 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1161)) (-5 *5 (-288 *3)) (-4 *3 (-13 (-27) (-1181) (-432 *6))) (-4 *6 (-13 (-558) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-57)) (-5 *1 (-461 *6 *3)))) (-2065 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-568))) (-5 *4 (-288 *6)) (-4 *6 (-13 (-27) (-1181) (-432 *5))) (-4 *5 (-13 (-558) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-57)) (-5 *1 (-461 *5 *6))))) +(-10 -7 (-15 -2065 ((-57) (-1 |#2| (-568)) (-288 |#2|))) (-15 -2065 ((-57) |#2| (-1161) (-288 |#2|))) (-15 -2065 ((-57) (-1 |#2| (-568)) (-288 |#2|) (-1210 (-763)))) (-15 -2065 ((-57) |#2| (-1161) (-288 |#2|) (-1210 (-763)))) (-15 -2070 ((-57) (-1 |#2| (-568)) (-288 |#2|) (-1210 (-568)))) (-15 -2070 ((-57) |#2| (-1161) (-288 |#2|) (-1210 (-568)))) (-15 -2075 ((-57) (-1 |#2| (-409 (-568))) (-288 |#2|) (-1210 (-409 (-568))) (-409 (-568)))) (-15 -2075 ((-57) |#2| (-1161) (-288 |#2|) (-1210 (-409 (-568))) (-409 (-568)))) (-15 -3728 ((-57) (-1 |#2| (-568)) (-288 |#2|))) (-15 -3728 ((-57) |#2| (-1161) (-288 |#2|))) (-15 -3728 ((-57) (-1 |#2| (-568)) (-288 |#2|) (-1210 (-568)))) (-15 -3728 ((-57) |#2| (-1161) (-288 |#2|) (-1210 (-568)))) (-15 -3728 ((-57) (-1 |#2| (-409 (-568))) (-288 |#2|) (-1210 (-409 (-568))) (-409 (-568)))) (-15 -3728 ((-57) |#2| (-1161) (-288 |#2|) (-1210 (-409 (-568))) (-409 (-568))))) +((-3627 ((|#2| |#2| |#1|) 15)) (-1693 (((-634 |#2|) |#2| (-634 |#2|) |#1| (-917)) 65)) (-3782 (((-2 (|:| |plist| (-634 |#2|)) (|:| |modulo| |#1|)) |#2| (-634 |#2|) |#1| (-917)) 58))) +(((-462 |#1| |#2|) (-10 -7 (-15 -3782 ((-2 (|:| |plist| (-634 |#2|)) (|:| |modulo| |#1|)) |#2| (-634 |#2|) |#1| (-917))) (-15 -1693 ((-634 |#2|) |#2| (-634 |#2|) |#1| (-917))) (-15 -3627 (|#2| |#2| |#1|))) (-301) (-1219 |#1|)) (T -462)) +((-3627 (*1 *2 *2 *3) (-12 (-4 *3 (-301)) (-5 *1 (-462 *3 *2)) (-4 *2 (-1219 *3)))) (-1693 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-634 *3)) (-5 *5 (-917)) (-4 *3 (-1219 *4)) (-4 *4 (-301)) (-5 *1 (-462 *4 *3)))) (-3782 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-917)) (-4 *5 (-301)) (-4 *3 (-1219 *5)) (-5 *2 (-2 (|:| |plist| (-634 *3)) (|:| |modulo| *5))) (-5 *1 (-462 *5 *3)) (-5 *4 (-634 *3))))) +(-10 -7 (-15 -3782 ((-2 (|:| |plist| (-634 |#2|)) (|:| |modulo| |#1|)) |#2| (-634 |#2|) |#1| (-917))) (-15 -1693 ((-634 |#2|) |#2| (-634 |#2|) |#1| (-917))) (-15 -3627 (|#2| |#2| |#1|))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) 28)) (-1394 (($ |#3|) 25)) (-3134 (((-3 $ "failed") $ $) NIL)) (-2671 (($) NIL T CONST)) (-2114 (($ $) 32)) (-3947 (($ |#2| |#4| $) 33)) (-2047 (($ |#2| (-703 |#3| |#4| |#5|)) 24)) (-2097 (((-703 |#3| |#4| |#5|) $) 15)) (-1445 ((|#3| $) 19)) (-3401 ((|#4| $) 17)) (-2102 ((|#2| $) 29)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2745 (((-850) $) NIL)) (-1863 (($ |#2| |#3| |#4|) 26)) (-3056 (($) 36 T CONST)) (-1717 (((-121) $ $) NIL)) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) 34)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-463 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-707 |#6|) (-707 |#2|) (-10 -8 (-15 -2102 (|#2| $)) (-15 -2097 ((-703 |#3| |#4| |#5|) $)) (-15 -3401 (|#4| $)) (-15 -1445 (|#3| $)) (-15 -2114 ($ $)) (-15 -2047 ($ |#2| (-703 |#3| |#4| |#5|))) (-15 -1394 ($ |#3|)) (-15 -1863 ($ |#2| |#3| |#4|)) (-15 -3947 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-634 (-1161)) (-172) (-842) (-230 (-1697 |#1|) (-763)) (-1 (-121) (-2 (|:| -4355 |#3|) (|:| -3438 |#4|)) (-2 (|:| -4355 |#3|) (|:| -3438 |#4|))) (-950 |#2| |#4| (-852 |#1|))) (T -463)) +((* (*1 *1 *2 *1) (-12 (-14 *3 (-634 (-1161))) (-4 *4 (-172)) (-4 *6 (-230 (-1697 *3) (-763))) (-14 *7 (-1 (-121) (-2 (|:| -4355 *5) (|:| -3438 *6)) (-2 (|:| -4355 *5) (|:| -3438 *6)))) (-5 *1 (-463 *3 *4 *5 *6 *7 *2)) (-4 *5 (-842)) (-4 *2 (-950 *4 *6 (-852 *3))))) (-2102 (*1 *2 *1) (-12 (-14 *3 (-634 (-1161))) (-4 *5 (-230 (-1697 *3) (-763))) (-14 *6 (-1 (-121) (-2 (|:| -4355 *4) (|:| -3438 *5)) (-2 (|:| -4355 *4) (|:| -3438 *5)))) (-4 *2 (-172)) (-5 *1 (-463 *3 *2 *4 *5 *6 *7)) (-4 *4 (-842)) (-4 *7 (-950 *2 *5 (-852 *3))))) (-2097 (*1 *2 *1) (-12 (-14 *3 (-634 (-1161))) (-4 *4 (-172)) (-4 *6 (-230 (-1697 *3) (-763))) (-14 *7 (-1 (-121) (-2 (|:| -4355 *5) (|:| -3438 *6)) (-2 (|:| -4355 *5) (|:| -3438 *6)))) (-5 *2 (-703 *5 *6 *7)) (-5 *1 (-463 *3 *4 *5 *6 *7 *8)) (-4 *5 (-842)) (-4 *8 (-950 *4 *6 (-852 *3))))) (-3401 (*1 *2 *1) (-12 (-14 *3 (-634 (-1161))) (-4 *4 (-172)) (-14 *6 (-1 (-121) (-2 (|:| -4355 *5) (|:| -3438 *2)) (-2 (|:| -4355 *5) (|:| -3438 *2)))) (-4 *2 (-230 (-1697 *3) (-763))) (-5 *1 (-463 *3 *4 *5 *2 *6 *7)) (-4 *5 (-842)) (-4 *7 (-950 *4 *2 (-852 *3))))) (-1445 (*1 *2 *1) (-12 (-14 *3 (-634 (-1161))) (-4 *4 (-172)) (-4 *5 (-230 (-1697 *3) (-763))) (-14 *6 (-1 (-121) (-2 (|:| -4355 *2) (|:| -3438 *5)) (-2 (|:| -4355 *2) (|:| -3438 *5)))) (-4 *2 (-842)) (-5 *1 (-463 *3 *4 *2 *5 *6 *7)) (-4 *7 (-950 *4 *5 (-852 *3))))) (-2114 (*1 *1 *1) (-12 (-14 *2 (-634 (-1161))) (-4 *3 (-172)) (-4 *5 (-230 (-1697 *2) (-763))) (-14 *6 (-1 (-121) (-2 (|:| -4355 *4) (|:| -3438 *5)) (-2 (|:| -4355 *4) (|:| -3438 *5)))) (-5 *1 (-463 *2 *3 *4 *5 *6 *7)) (-4 *4 (-842)) (-4 *7 (-950 *3 *5 (-852 *2))))) (-2047 (*1 *1 *2 *3) (-12 (-5 *3 (-703 *5 *6 *7)) (-4 *5 (-842)) (-4 *6 (-230 (-1697 *4) (-763))) (-14 *7 (-1 (-121) (-2 (|:| -4355 *5) (|:| -3438 *6)) (-2 (|:| -4355 *5) (|:| -3438 *6)))) (-14 *4 (-634 (-1161))) (-4 *2 (-172)) (-5 *1 (-463 *4 *2 *5 *6 *7 *8)) (-4 *8 (-950 *2 *6 (-852 *4))))) (-1394 (*1 *1 *2) (-12 (-14 *3 (-634 (-1161))) (-4 *4 (-172)) (-4 *5 (-230 (-1697 *3) (-763))) (-14 *6 (-1 (-121) (-2 (|:| -4355 *2) (|:| -3438 *5)) (-2 (|:| -4355 *2) (|:| -3438 *5)))) (-5 *1 (-463 *3 *4 *2 *5 *6 *7)) (-4 *2 (-842)) (-4 *7 (-950 *4 *5 (-852 *3))))) (-1863 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-634 (-1161))) (-4 *2 (-172)) (-4 *4 (-230 (-1697 *5) (-763))) (-14 *6 (-1 (-121) (-2 (|:| -4355 *3) (|:| -3438 *4)) (-2 (|:| -4355 *3) (|:| -3438 *4)))) (-5 *1 (-463 *5 *2 *3 *4 *6 *7)) (-4 *3 (-842)) (-4 *7 (-950 *2 *4 (-852 *5))))) (-3947 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-634 (-1161))) (-4 *2 (-172)) (-4 *3 (-230 (-1697 *4) (-763))) (-14 *6 (-1 (-121) (-2 (|:| -4355 *5) (|:| -3438 *3)) (-2 (|:| -4355 *5) (|:| -3438 *3)))) (-5 *1 (-463 *4 *2 *5 *3 *6 *7)) (-4 *5 (-842)) (-4 *7 (-950 *2 *3 (-852 *4)))))) +(-13 (-707 |#6|) (-707 |#2|) (-10 -8 (-15 -2102 (|#2| $)) (-15 -2097 ((-703 |#3| |#4| |#5|) $)) (-15 -3401 (|#4| $)) (-15 -1445 (|#3| $)) (-15 -2114 ($ $)) (-15 -2047 ($ |#2| (-703 |#3| |#4| |#5|))) (-15 -1394 ($ |#3|)) (-15 -1863 ($ |#2| |#3| |#4|)) (-15 -3947 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) +((-2447 (((-121) $ $) NIL)) (-1402 (((-1161) (-634 (-465))) 34)) (-1581 (((-763) (-634 (-465))) 28)) (-3189 (((-121) (-634 (-465))) 29)) (-3423 (((-568) (-634 (-465))) 20)) (-3521 (((-568) (-634 (-465))) 26)) (-3439 (((-568) (-634 (-465))) 18)) (-3765 (((-568) (-634 (-465))) 19)) (-4080 (((-568) (-634 (-465))) 21)) (-4487 (((-1143) $) NIL)) (-2836 (((-1161) (-634 (-465))) 36)) (-2884 (((-121) (-634 (-465))) 31)) (-4022 (((-1108) $) NIL)) (-3046 (((-1161) (-634 (-465))) 35)) (-3052 (((-121) (-634 (-465))) 37)) (-4019 (((-121) (-634 (-465))) 30)) (-2745 (((-850) $) NIL)) (-1706 (((-121) (-634 (-465))) 25)) (-1717 (((-121) $ $) NIL))) +(((-464) (-13 (-1090) (-10 -7 (-15 -3439 ((-568) (-634 (-465)))) (-15 -3521 ((-568) (-634 (-465)))) (-15 -3765 ((-568) (-634 (-465)))) (-15 -3423 ((-568) (-634 (-465)))) (-15 -4080 ((-568) (-634 (-465)))) (-15 -1706 ((-121) (-634 (-465)))) (-15 -1581 ((-763) (-634 (-465)))) (-15 -3189 ((-121) (-634 (-465)))) (-15 -2884 ((-121) (-634 (-465)))) (-15 -3046 ((-1161) (-634 (-465)))) (-15 -1402 ((-1161) (-634 (-465)))) (-15 -2836 ((-1161) (-634 (-465)))) (-15 -3052 ((-121) (-634 (-465)))) (-15 -4019 ((-121) (-634 (-465))))))) (T -464)) +((-3439 (*1 *2 *3) (-12 (-5 *3 (-634 (-465))) (-5 *2 (-568)) (-5 *1 (-464)))) (-3521 (*1 *2 *3) (-12 (-5 *3 (-634 (-465))) (-5 *2 (-568)) (-5 *1 (-464)))) (-3765 (*1 *2 *3) (-12 (-5 *3 (-634 (-465))) (-5 *2 (-568)) (-5 *1 (-464)))) (-3423 (*1 *2 *3) (-12 (-5 *3 (-634 (-465))) (-5 *2 (-568)) (-5 *1 (-464)))) (-4080 (*1 *2 *3) (-12 (-5 *3 (-634 (-465))) (-5 *2 (-568)) (-5 *1 (-464)))) (-1706 (*1 *2 *3) (-12 (-5 *3 (-634 (-465))) (-5 *2 (-121)) (-5 *1 (-464)))) (-1581 (*1 *2 *3) (-12 (-5 *3 (-634 (-465))) (-5 *2 (-763)) (-5 *1 (-464)))) (-3189 (*1 *2 *3) (-12 (-5 *3 (-634 (-465))) (-5 *2 (-121)) (-5 *1 (-464)))) (-2884 (*1 *2 *3) (-12 (-5 *3 (-634 (-465))) (-5 *2 (-121)) (-5 *1 (-464)))) (-3046 (*1 *2 *3) (-12 (-5 *3 (-634 (-465))) (-5 *2 (-1161)) (-5 *1 (-464)))) (-1402 (*1 *2 *3) (-12 (-5 *3 (-634 (-465))) (-5 *2 (-1161)) (-5 *1 (-464)))) (-2836 (*1 *2 *3) (-12 (-5 *3 (-634 (-465))) (-5 *2 (-1161)) (-5 *1 (-464)))) (-3052 (*1 *2 *3) (-12 (-5 *3 (-634 (-465))) (-5 *2 (-121)) (-5 *1 (-464)))) (-4019 (*1 *2 *3) (-12 (-5 *3 (-634 (-465))) (-5 *2 (-121)) (-5 *1 (-464))))) +(-13 (-1090) (-10 -7 (-15 -3439 ((-568) (-634 (-465)))) (-15 -3521 ((-568) (-634 (-465)))) (-15 -3765 ((-568) (-634 (-465)))) (-15 -3423 ((-568) (-634 (-465)))) (-15 -4080 ((-568) (-634 (-465)))) (-15 -1706 ((-121) (-634 (-465)))) (-15 -1581 ((-763) (-634 (-465)))) (-15 -3189 ((-121) (-634 (-465)))) (-15 -2884 ((-121) (-634 (-465)))) (-15 -3046 ((-1161) (-634 (-465)))) (-15 -1402 ((-1161) (-634 (-465)))) (-15 -2836 ((-1161) (-634 (-465)))) (-15 -3052 ((-121) (-634 (-465)))) (-15 -4019 ((-121) (-634 (-465)))))) +((-2447 (((-121) $ $) NIL)) (-1402 (($ (-1161)) 31)) (-1581 (($ (-763)) 24)) (-1507 (((-121) (-634 $) (-1161)) 42)) (-2960 (((-3 (-57) "failed") (-634 $) (-1161)) 44)) (-3189 (($ (-121)) 27)) (-3423 (($ (-568)) 16)) (-3521 (($ (-568)) 22)) (-3439 (($ (-568)) 14)) (-3765 (($ (-568)) 15)) (-4080 (($ (-568)) 17)) (-4487 (((-1143) $) NIL)) (-2836 (($ (-1161)) 32)) (-2884 (($ (-121)) 25)) (-4022 (((-1108) $) NIL)) (-3046 (($ (-1161)) 30)) (-3052 (($ (-121)) 33)) (-4019 (($ (-121)) 26)) (-2745 (((-850) $) 38)) (-2452 (((-1249) (-634 $)) 54)) (-1706 (($ (-121)) 21)) (-1717 (((-121) $ $) 40))) +(((-465) (-13 (-1090) (-10 -8 (-15 -3765 ($ (-568))) (-15 -3423 ($ (-568))) (-15 -3521 ($ (-568))) (-15 -2884 ($ (-121))) (-15 -3439 ($ (-568))) (-15 -4080 ($ (-568))) (-15 -1706 ($ (-121))) (-15 -1581 ($ (-763))) (-15 -3189 ($ (-121))) (-15 -4019 ($ (-121))) (-15 -3046 ($ (-1161))) (-15 -1402 ($ (-1161))) (-15 -2836 ($ (-1161))) (-15 -3052 ($ (-121))) (-15 -2960 ((-3 (-57) "failed") (-634 $) (-1161))) (-15 -1507 ((-121) (-634 $) (-1161))) (-15 -2452 ((-1249) (-634 $)))))) (T -465)) +((-3765 (*1 *1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-465)))) (-3423 (*1 *1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-465)))) (-3521 (*1 *1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-465)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-465)))) (-3439 (*1 *1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-465)))) (-4080 (*1 *1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-465)))) (-1706 (*1 *1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-465)))) (-1581 (*1 *1 *2) (-12 (-5 *2 (-763)) (-5 *1 (-465)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-465)))) (-4019 (*1 *1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-465)))) (-3046 (*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-465)))) (-1402 (*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-465)))) (-2836 (*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-465)))) (-3052 (*1 *1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-465)))) (-2960 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-634 (-465))) (-5 *4 (-1161)) (-5 *2 (-57)) (-5 *1 (-465)))) (-1507 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-465))) (-5 *4 (-1161)) (-5 *2 (-121)) (-5 *1 (-465)))) (-2452 (*1 *2 *3) (-12 (-5 *3 (-634 (-465))) (-5 *2 (-1249)) (-5 *1 (-465))))) +(-13 (-1090) (-10 -8 (-15 -3765 ($ (-568))) (-15 -3423 ($ (-568))) (-15 -3521 ($ (-568))) (-15 -2884 ($ (-121))) (-15 -3439 ($ (-568))) (-15 -4080 ($ (-568))) (-15 -1706 ($ (-121))) (-15 -1581 ($ (-763))) (-15 -3189 ($ (-121))) (-15 -4019 ($ (-121))) (-15 -3046 ($ (-1161))) (-15 -1402 ($ (-1161))) (-15 -2836 ($ (-1161))) (-15 -3052 ($ (-121))) (-15 -2960 ((-3 (-57) "failed") (-634 $) (-1161))) (-15 -1507 ((-121) (-634 $) (-1161))) (-15 -2452 ((-1249) (-634 $))))) +((-3103 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 35))) +(((-466 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3103 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-788) (-842) (-558) (-950 |#3| |#1| |#2|) (-13 (-1037 (-409 (-568))) (-365) (-10 -8 (-15 -2745 ($ |#4|)) (-15 -2317 (|#4| $)) (-15 -2324 (|#4| $))))) (T -466)) +((-3103 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-842)) (-4 *5 (-788)) (-4 *6 (-558)) (-4 *7 (-950 *6 *5 *3)) (-5 *1 (-466 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1037 (-409 (-568))) (-365) (-10 -8 (-15 -2745 ($ *7)) (-15 -2317 (*7 $)) (-15 -2324 (*7 $)))))))) +(-10 -7 (-15 -3103 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) +((-2606 ((|#3|) 43)) (-1846 (((-634 |#5|)) 47)) (-4149 (((-634 |#5|) (-634 |#5|)) 129)) (-4276 ((|#3| |#3|) 107)) (-2316 (((-1249)) 106)) (-1895 (((-634 |#5|)) 150 (|has| |#1| (-370)))) (-4397 (((-634 |#7|)) 153 (|has| |#1| (-370)))) (-1277 (((-1249) (-634 (-121))) 120)) (-1279 ((|#5| |#7|) 94)) (-1375 (((-634 |#7|) (-917)) 149 (|has| |#1| (-370)))) (-1547 (((-634 |#7|) |#5|) 92)) (-2215 ((|#6| |#3| |#7|) 97)) (-3354 (((-568) (-917)) 194 (|has| |#1| (-370)))) (-3114 (((-568) (-917) (-917)) 193 (|has| |#1| (-370)))) (-3281 (((-568) (-917)) 176 (|has| |#1| (-370)))) (-2246 (((-2 (|:| |num| (-634 |#3|)) (|:| |den| |#3|)) |#8|) 69)) (-2411 ((|#8| |#3|) 50)) (-2525 (((-634 |#3|) |#8| (-634 |#3|)) 136)) (-2664 (((-634 |#3|) |#8| (-763)) 65)) (-3039 ((|#3| |#3| (-568)) 40)) (-1801 (((-568)) 74)) (-2126 (((-763)) 73)) (-1640 (((-2 (|:| -1379 (-568)) (|:| |num| |#3|) (|:| |den| |#3|) (|:| |upTo| (-568))) |#8| (-568) (-568)) 114)) (-3781 (((-3 |#1| "failed") (-409 |#3|) |#7|) 144) (((-3 |#1| "failed") |#3| |#3| |#7|) 139) (((-3 |#1| "failed") |#3| |#7|) 104)) (-1339 ((|#1| (-409 |#3|) |#7|) 145) ((|#1| |#3| |#3| |#7|) 140) ((|#1| |#3| |#7|) 105)) (-4007 (((-634 |#10|)) 70)) (-2176 (((-634 |#10|)) 45)) (-2277 (((-568)) 204 (|has| |#1| (-370)))) (-2480 ((|#8|) 54)) (-2596 (((-1239 (-568) -3492) (-917)) 155 (|has| |#1| (-370))) (((-1239 (-568) -3492)) 156 (|has| |#1| (-370)))) (-1637 (((-1157 (-568)) (-917)) 158 (|has| |#1| (-370))) (((-1157 (-568))) 196 (|has| |#1| (-370))))) +(((-467 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10| |#11|) (-10 -7 (-15 -2316 ((-1249))) (-15 -4276 (|#3| |#3|)) (-15 -3039 (|#3| |#3| (-568))) (-15 -1277 ((-1249) (-634 (-121)))) (-15 -2606 (|#3|)) (-15 -2126 ((-763))) (-15 -1801 ((-568))) (-15 -2176 ((-634 |#10|))) (-15 -4007 ((-634 |#10|))) (-15 -4149 ((-634 |#5|) (-634 |#5|))) (-15 -1846 ((-634 |#5|))) (-15 -2215 (|#6| |#3| |#7|)) (-15 -2246 ((-2 (|:| |num| (-634 |#3|)) (|:| |den| |#3|)) |#8|)) (-15 -1640 ((-2 (|:| -1379 (-568)) (|:| |num| |#3|) (|:| |den| |#3|) (|:| |upTo| (-568))) |#8| (-568) (-568))) (-15 -2664 ((-634 |#3|) |#8| (-763))) (-15 -2525 ((-634 |#3|) |#8| (-634 |#3|))) (-15 -1339 (|#1| |#3| |#7|)) (-15 -1339 (|#1| |#3| |#3| |#7|)) (-15 -1339 (|#1| (-409 |#3|) |#7|)) (-15 -3781 ((-3 |#1| "failed") |#3| |#7|)) (-15 -3781 ((-3 |#1| "failed") |#3| |#3| |#7|)) (-15 -3781 ((-3 |#1| "failed") (-409 |#3|) |#7|)) (-15 -2411 (|#8| |#3|)) (-15 -2480 (|#8|)) (-15 -1547 ((-634 |#7|) |#5|)) (-15 -1279 (|#5| |#7|)) (IF (|has| |#1| (-370)) (PROGN (-15 -4397 ((-634 |#7|))) (-15 -1895 ((-634 |#5|))) (-15 -1637 ((-1157 (-568)))) (-15 -1637 ((-1157 (-568)) (-917))) (-15 -2277 ((-568))) (-15 -1375 ((-634 |#7|) (-917))) (-15 -3281 ((-568) (-917))) (-15 -3354 ((-568) (-917))) (-15 -3114 ((-568) (-917) (-917))) (-15 -2596 ((-1239 (-568) -3492))) (-15 -2596 ((-1239 (-568) -3492) (-917)))) |noBranch|)) (-365) (-634 (-1161)) (-950 |#1| |#4| (-852 |#2|)) (-230 (-1697 |#2|) (-763)) (-971 |#1|) (-641 |#1|) (-920 |#1| |#6|) (-235 |#7|) (-536 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#11|) (-258 |#9|) (-117)) (T -467)) +((-2596 (*1 *2 *3) (-12 (-5 *3 (-917)) (-4 *4 (-370)) (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *6 (-950 *4 *7 (-852 *5))) (-4 *7 (-230 (-1697 *5) (-763))) (-4 *8 (-971 *4)) (-4 *9 (-641 *4)) (-4 *10 (-920 *4 *9)) (-4 *11 (-235 *10)) (-4 *12 (-536 *4 *5 *6 *7 *8 *9 *10 *11 *14)) (-4 *14 (-117)) (-5 *2 (-1239 (-568) -3492)) (-5 *1 (-467 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13 *14)) (-4 *13 (-258 *12)))) (-2596 (*1 *2) (-12 (-4 *3 (-370)) (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *6 (-230 (-1697 *4) (-763))) (-4 *7 (-971 *3)) (-4 *8 (-641 *3)) (-4 *9 (-920 *3 *8)) (-4 *10 (-235 *9)) (-4 *11 (-536 *3 *4 *5 *6 *7 *8 *9 *10 *13)) (-4 *13 (-117)) (-5 *2 (-1239 (-568) -3492)) (-5 *1 (-467 *3 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13)) (-4 *12 (-258 *11)))) (-3114 (*1 *2 *3 *3) (-12 (-5 *3 (-917)) (-4 *4 (-370)) (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *6 (-950 *4 *7 (-852 *5))) (-4 *7 (-230 (-1697 *5) (-763))) (-4 *8 (-971 *4)) (-4 *9 (-641 *4)) (-4 *10 (-920 *4 *9)) (-4 *11 (-235 *10)) (-4 *12 (-536 *4 *5 *6 *7 *8 *9 *10 *11 *14)) (-4 *14 (-117)) (-5 *2 (-568)) (-5 *1 (-467 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13 *14)) (-4 *13 (-258 *12)))) (-3354 (*1 *2 *3) (-12 (-5 *3 (-917)) (-4 *4 (-370)) (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *6 (-950 *4 *7 (-852 *5))) (-4 *7 (-230 (-1697 *5) (-763))) (-4 *8 (-971 *4)) (-4 *9 (-641 *4)) (-4 *10 (-920 *4 *9)) (-4 *11 (-235 *10)) (-4 *12 (-536 *4 *5 *6 *7 *8 *9 *10 *11 *14)) (-4 *14 (-117)) (-5 *2 (-568)) (-5 *1 (-467 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13 *14)) (-4 *13 (-258 *12)))) (-3281 (*1 *2 *3) (-12 (-5 *3 (-917)) (-4 *4 (-370)) (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *6 (-950 *4 *7 (-852 *5))) (-4 *7 (-230 (-1697 *5) (-763))) (-4 *8 (-971 *4)) (-4 *9 (-641 *4)) (-4 *10 (-920 *4 *9)) (-4 *11 (-235 *10)) (-4 *12 (-536 *4 *5 *6 *7 *8 *9 *10 *11 *14)) (-4 *14 (-117)) (-5 *2 (-568)) (-5 *1 (-467 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13 *14)) (-4 *13 (-258 *12)))) (-1375 (*1 *2 *3) (-12 (-5 *3 (-917)) (-4 *4 (-370)) (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *6 (-950 *4 *7 (-852 *5))) (-4 *7 (-230 (-1697 *5) (-763))) (-4 *8 (-971 *4)) (-4 *9 (-641 *4)) (-4 *10 (-920 *4 *9)) (-4 *11 (-235 *10)) (-4 *12 (-536 *4 *5 *6 *7 *8 *9 *10 *11 *14)) (-4 *14 (-117)) (-5 *2 (-634 *10)) (-5 *1 (-467 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13 *14)) (-4 *13 (-258 *12)))) (-2277 (*1 *2) (-12 (-4 *3 (-370)) (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *6 (-230 (-1697 *4) (-763))) (-4 *7 (-971 *3)) (-4 *8 (-641 *3)) (-4 *9 (-920 *3 *8)) (-4 *10 (-235 *9)) (-4 *11 (-536 *3 *4 *5 *6 *7 *8 *9 *10 *13)) (-4 *13 (-117)) (-5 *2 (-568)) (-5 *1 (-467 *3 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13)) (-4 *12 (-258 *11)))) (-1637 (*1 *2 *3) (-12 (-5 *3 (-917)) (-4 *4 (-370)) (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *6 (-950 *4 *7 (-852 *5))) (-4 *7 (-230 (-1697 *5) (-763))) (-4 *8 (-971 *4)) (-4 *9 (-641 *4)) (-4 *10 (-920 *4 *9)) (-4 *11 (-235 *10)) (-4 *12 (-536 *4 *5 *6 *7 *8 *9 *10 *11 *14)) (-4 *14 (-117)) (-5 *2 (-1157 (-568))) (-5 *1 (-467 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13 *14)) (-4 *13 (-258 *12)))) (-1637 (*1 *2) (-12 (-4 *3 (-370)) (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *6 (-230 (-1697 *4) (-763))) (-4 *7 (-971 *3)) (-4 *8 (-641 *3)) (-4 *9 (-920 *3 *8)) (-4 *10 (-235 *9)) (-4 *11 (-536 *3 *4 *5 *6 *7 *8 *9 *10 *13)) (-4 *13 (-117)) (-5 *2 (-1157 (-568))) (-5 *1 (-467 *3 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13)) (-4 *12 (-258 *11)))) (-1895 (*1 *2) (-12 (-4 *3 (-370)) (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *6 (-230 (-1697 *4) (-763))) (-4 *7 (-971 *3)) (-4 *8 (-641 *3)) (-4 *9 (-920 *3 *8)) (-4 *10 (-235 *9)) (-4 *11 (-536 *3 *4 *5 *6 *7 *8 *9 *10 *13)) (-4 *13 (-117)) (-5 *2 (-634 *7)) (-5 *1 (-467 *3 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13)) (-4 *12 (-258 *11)))) (-4397 (*1 *2) (-12 (-4 *3 (-370)) (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *6 (-230 (-1697 *4) (-763))) (-4 *7 (-971 *3)) (-4 *8 (-641 *3)) (-4 *9 (-920 *3 *8)) (-4 *10 (-235 *9)) (-4 *11 (-536 *3 *4 *5 *6 *7 *8 *9 *10 *13)) (-4 *13 (-117)) (-5 *2 (-634 *9)) (-5 *1 (-467 *3 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13)) (-4 *12 (-258 *11)))) (-1279 (*1 *2 *3) (-12 (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *6 (-950 *4 *7 (-852 *5))) (-4 *7 (-230 (-1697 *5) (-763))) (-4 *8 (-641 *4)) (-4 *3 (-920 *4 *8)) (-4 *9 (-235 *3)) (-4 *10 (-536 *4 *5 *6 *7 *2 *8 *3 *9 *12)) (-4 *12 (-117)) (-4 *2 (-971 *4)) (-5 *1 (-467 *4 *5 *6 *7 *2 *8 *3 *9 *10 *11 *12)) (-4 *11 (-258 *10)))) (-1547 (*1 *2 *3) (-12 (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *6 (-950 *4 *7 (-852 *5))) (-4 *7 (-230 (-1697 *5) (-763))) (-4 *3 (-971 *4)) (-4 *8 (-641 *4)) (-4 *9 (-920 *4 *8)) (-4 *10 (-235 *9)) (-4 *11 (-536 *4 *5 *6 *7 *3 *8 *9 *10 *13)) (-4 *13 (-117)) (-5 *2 (-634 *9)) (-5 *1 (-467 *4 *5 *6 *7 *3 *8 *9 *10 *11 *12 *13)) (-4 *12 (-258 *11)))) (-2480 (*1 *2) (-12 (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *6 (-230 (-1697 *4) (-763))) (-4 *7 (-971 *3)) (-4 *8 (-641 *3)) (-4 *9 (-920 *3 *8)) (-4 *10 (-536 *3 *4 *5 *6 *7 *8 *9 *2 *12)) (-4 *12 (-117)) (-4 *2 (-235 *9)) (-5 *1 (-467 *3 *4 *5 *6 *7 *8 *9 *2 *10 *11 *12)) (-4 *11 (-258 *10)))) (-2411 (*1 *2 *3) (-12 (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *3 (-950 *4 *6 (-852 *5))) (-4 *6 (-230 (-1697 *5) (-763))) (-4 *7 (-971 *4)) (-4 *8 (-641 *4)) (-4 *9 (-920 *4 *8)) (-4 *10 (-536 *4 *5 *3 *6 *7 *8 *9 *2 *12)) (-4 *12 (-117)) (-4 *2 (-235 *9)) (-5 *1 (-467 *4 *5 *3 *6 *7 *8 *9 *2 *10 *11 *12)) (-4 *11 (-258 *10)))) (-3781 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-409 *6)) (-4 *6 (-950 *2 *7 (-852 *5))) (-4 *7 (-230 (-1697 *5) (-763))) (-14 *5 (-634 (-1161))) (-4 *8 (-971 *2)) (-4 *9 (-641 *2)) (-4 *4 (-920 *2 *9)) (-4 *10 (-235 *4)) (-4 *11 (-536 *2 *5 *6 *7 *8 *9 *4 *10 *13)) (-4 *13 (-117)) (-4 *2 (-365)) (-5 *1 (-467 *2 *5 *6 *7 *8 *9 *4 *10 *11 *12 *13)) (-4 *12 (-258 *11)))) (-3781 (*1 *2 *3 *3 *4) (|partial| -12 (-14 *5 (-634 (-1161))) (-4 *3 (-950 *2 *6 (-852 *5))) (-4 *6 (-230 (-1697 *5) (-763))) (-4 *7 (-971 *2)) (-4 *8 (-641 *2)) (-4 *4 (-920 *2 *8)) (-4 *9 (-235 *4)) (-4 *10 (-536 *2 *5 *3 *6 *7 *8 *4 *9 *12)) (-4 *12 (-117)) (-4 *2 (-365)) (-5 *1 (-467 *2 *5 *3 *6 *7 *8 *4 *9 *10 *11 *12)) (-4 *11 (-258 *10)))) (-3781 (*1 *2 *3 *4) (|partial| -12 (-14 *5 (-634 (-1161))) (-4 *3 (-950 *2 *6 (-852 *5))) (-4 *6 (-230 (-1697 *5) (-763))) (-4 *7 (-971 *2)) (-4 *8 (-641 *2)) (-4 *4 (-920 *2 *8)) (-4 *9 (-235 *4)) (-4 *10 (-536 *2 *5 *3 *6 *7 *8 *4 *9 *12)) (-4 *12 (-117)) (-4 *2 (-365)) (-5 *1 (-467 *2 *5 *3 *6 *7 *8 *4 *9 *10 *11 *12)) (-4 *11 (-258 *10)))) (-1339 (*1 *2 *3 *4) (-12 (-5 *3 (-409 *6)) (-4 *6 (-950 *2 *7 (-852 *5))) (-4 *7 (-230 (-1697 *5) (-763))) (-14 *5 (-634 (-1161))) (-4 *8 (-971 *2)) (-4 *9 (-641 *2)) (-4 *4 (-920 *2 *9)) (-4 *10 (-235 *4)) (-4 *11 (-536 *2 *5 *6 *7 *8 *9 *4 *10 *13)) (-4 *13 (-117)) (-4 *2 (-365)) (-5 *1 (-467 *2 *5 *6 *7 *8 *9 *4 *10 *11 *12 *13)) (-4 *12 (-258 *11)))) (-1339 (*1 *2 *3 *3 *4) (-12 (-14 *5 (-634 (-1161))) (-4 *3 (-950 *2 *6 (-852 *5))) (-4 *6 (-230 (-1697 *5) (-763))) (-4 *7 (-971 *2)) (-4 *8 (-641 *2)) (-4 *4 (-920 *2 *8)) (-4 *9 (-235 *4)) (-4 *10 (-536 *2 *5 *3 *6 *7 *8 *4 *9 *12)) (-4 *12 (-117)) (-4 *2 (-365)) (-5 *1 (-467 *2 *5 *3 *6 *7 *8 *4 *9 *10 *11 *12)) (-4 *11 (-258 *10)))) (-1339 (*1 *2 *3 *4) (-12 (-14 *5 (-634 (-1161))) (-4 *3 (-950 *2 *6 (-852 *5))) (-4 *6 (-230 (-1697 *5) (-763))) (-4 *7 (-971 *2)) (-4 *8 (-641 *2)) (-4 *4 (-920 *2 *8)) (-4 *9 (-235 *4)) (-4 *10 (-536 *2 *5 *3 *6 *7 *8 *4 *9 *12)) (-4 *12 (-117)) (-4 *2 (-365)) (-5 *1 (-467 *2 *5 *3 *6 *7 *8 *4 *9 *10 *11 *12)) (-4 *11 (-258 *10)))) (-2525 (*1 *2 *3 *2) (-12 (-5 *2 (-634 *6)) (-4 *6 (-950 *4 *7 (-852 *5))) (-4 *7 (-230 (-1697 *5) (-763))) (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *8 (-971 *4)) (-4 *9 (-641 *4)) (-4 *10 (-920 *4 *9)) (-4 *3 (-235 *10)) (-4 *11 (-536 *4 *5 *6 *7 *8 *9 *10 *3 *13)) (-4 *13 (-117)) (-5 *1 (-467 *4 *5 *6 *7 *8 *9 *10 *3 *11 *12 *13)) (-4 *12 (-258 *11)))) (-2664 (*1 *2 *3 *4) (-12 (-5 *4 (-763)) (-4 *5 (-365)) (-14 *6 (-634 (-1161))) (-4 *7 (-950 *5 *8 (-852 *6))) (-4 *8 (-230 (-1697 *6) *4)) (-4 *9 (-971 *5)) (-4 *10 (-641 *5)) (-4 *11 (-920 *5 *10)) (-4 *3 (-235 *11)) (-4 *12 (-536 *5 *6 *7 *8 *9 *10 *11 *3 *14)) (-4 *14 (-117)) (-5 *2 (-634 *7)) (-5 *1 (-467 *5 *6 *7 *8 *9 *10 *11 *3 *12 *13 *14)) (-4 *13 (-258 *12)))) (-1640 (*1 *2 *3 *4 *4) (-12 (-4 *5 (-365)) (-14 *6 (-634 (-1161))) (-4 *7 (-950 *5 *8 (-852 *6))) (-4 *8 (-230 (-1697 *6) (-763))) (-4 *9 (-971 *5)) (-4 *10 (-641 *5)) (-4 *11 (-920 *5 *10)) (-4 *3 (-235 *11)) (-4 *12 (-536 *5 *6 *7 *8 *9 *10 *11 *3 *14)) (-4 *14 (-117)) (-5 *2 (-2 (|:| -1379 (-568)) (|:| |num| *7) (|:| |den| *7) (|:| |upTo| (-568)))) (-5 *1 (-467 *5 *6 *7 *8 *9 *10 *11 *3 *12 *13 *14)) (-5 *4 (-568)) (-4 *13 (-258 *12)))) (-2246 (*1 *2 *3) (-12 (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *6 (-950 *4 *7 (-852 *5))) (-4 *7 (-230 (-1697 *5) (-763))) (-4 *8 (-971 *4)) (-4 *9 (-641 *4)) (-4 *10 (-920 *4 *9)) (-4 *3 (-235 *10)) (-4 *11 (-536 *4 *5 *6 *7 *8 *9 *10 *3 *13)) (-4 *13 (-117)) (-5 *2 (-2 (|:| |num| (-634 *6)) (|:| |den| *6))) (-5 *1 (-467 *4 *5 *6 *7 *8 *9 *10 *3 *11 *12 *13)) (-4 *12 (-258 *11)))) (-2215 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-14 *6 (-634 (-1161))) (-4 *3 (-950 *5 *7 (-852 *6))) (-4 *7 (-230 (-1697 *6) (-763))) (-4 *8 (-971 *5)) (-4 *4 (-920 *5 *2)) (-4 *9 (-235 *4)) (-4 *10 (-536 *5 *6 *3 *7 *8 *2 *4 *9 *12)) (-4 *12 (-117)) (-4 *2 (-641 *5)) (-5 *1 (-467 *5 *6 *3 *7 *8 *2 *4 *9 *10 *11 *12)) (-4 *11 (-258 *10)))) (-1846 (*1 *2) (-12 (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *6 (-230 (-1697 *4) (-763))) (-4 *7 (-971 *3)) (-4 *8 (-641 *3)) (-4 *9 (-920 *3 *8)) (-4 *10 (-235 *9)) (-4 *11 (-536 *3 *4 *5 *6 *7 *8 *9 *10 *13)) (-4 *13 (-117)) (-5 *2 (-634 *7)) (-5 *1 (-467 *3 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13)) (-4 *12 (-258 *11)))) (-4149 (*1 *2 *2) (-12 (-5 *2 (-634 *7)) (-4 *7 (-971 *3)) (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *6 (-230 (-1697 *4) (-763))) (-4 *8 (-641 *3)) (-4 *9 (-920 *3 *8)) (-4 *10 (-235 *9)) (-4 *11 (-536 *3 *4 *5 *6 *7 *8 *9 *10 *13)) (-4 *13 (-117)) (-5 *1 (-467 *3 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13)) (-4 *12 (-258 *11)))) (-4007 (*1 *2) (-12 (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *6 (-230 (-1697 *4) (-763))) (-4 *7 (-971 *3)) (-4 *8 (-641 *3)) (-4 *9 (-920 *3 *8)) (-4 *10 (-235 *9)) (-4 *11 (-536 *3 *4 *5 *6 *7 *8 *9 *10 *13)) (-4 *13 (-117)) (-5 *2 (-634 *12)) (-5 *1 (-467 *3 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13)) (-4 *12 (-258 *11)))) (-2176 (*1 *2) (-12 (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *6 (-230 (-1697 *4) (-763))) (-4 *7 (-971 *3)) (-4 *8 (-641 *3)) (-4 *9 (-920 *3 *8)) (-4 *10 (-235 *9)) (-4 *11 (-536 *3 *4 *5 *6 *7 *8 *9 *10 *13)) (-4 *13 (-117)) (-5 *2 (-634 *12)) (-5 *1 (-467 *3 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13)) (-4 *12 (-258 *11)))) (-1801 (*1 *2) (-12 (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *6 (-230 (-1697 *4) (-763))) (-4 *7 (-971 *3)) (-4 *8 (-641 *3)) (-4 *9 (-920 *3 *8)) (-4 *10 (-235 *9)) (-4 *11 (-536 *3 *4 *5 *6 *7 *8 *9 *10 *13)) (-4 *13 (-117)) (-5 *2 (-568)) (-5 *1 (-467 *3 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13)) (-4 *12 (-258 *11)))) (-2126 (*1 *2) (-12 (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *6 (-230 (-1697 *4) *2)) (-4 *7 (-971 *3)) (-4 *8 (-641 *3)) (-4 *9 (-920 *3 *8)) (-4 *10 (-235 *9)) (-4 *11 (-536 *3 *4 *5 *6 *7 *8 *9 *10 *13)) (-4 *13 (-117)) (-5 *2 (-763)) (-5 *1 (-467 *3 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13)) (-4 *12 (-258 *11)))) (-2606 (*1 *2) (-12 (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *5 (-230 (-1697 *4) (-763))) (-4 *6 (-971 *3)) (-4 *7 (-641 *3)) (-4 *8 (-920 *3 *7)) (-4 *9 (-235 *8)) (-4 *10 (-536 *3 *4 *2 *5 *6 *7 *8 *9 *12)) (-4 *12 (-117)) (-4 *2 (-950 *3 *5 (-852 *4))) (-5 *1 (-467 *3 *4 *2 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *11 (-258 *10)))) (-1277 (*1 *2 *3) (-12 (-5 *3 (-634 (-121))) (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *6 (-950 *4 *7 (-852 *5))) (-4 *7 (-230 (-1697 *5) (-763))) (-4 *8 (-971 *4)) (-4 *9 (-641 *4)) (-4 *10 (-920 *4 *9)) (-4 *11 (-235 *10)) (-4 *12 (-536 *4 *5 *6 *7 *8 *9 *10 *11 *14)) (-4 *14 (-117)) (-5 *2 (-1249)) (-5 *1 (-467 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13 *14)) (-4 *13 (-258 *12)))) (-3039 (*1 *2 *2 *3) (-12 (-5 *3 (-568)) (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *2 (-950 *4 *6 (-852 *5))) (-4 *6 (-230 (-1697 *5) (-763))) (-4 *7 (-971 *4)) (-4 *8 (-641 *4)) (-4 *9 (-920 *4 *8)) (-4 *10 (-235 *9)) (-4 *11 (-536 *4 *5 *2 *6 *7 *8 *9 *10 *13)) (-4 *13 (-117)) (-5 *1 (-467 *4 *5 *2 *6 *7 *8 *9 *10 *11 *12 *13)) (-4 *12 (-258 *11)))) (-4276 (*1 *2 *2) (-12 (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *2 (-950 *3 *5 (-852 *4))) (-4 *5 (-230 (-1697 *4) (-763))) (-4 *6 (-971 *3)) (-4 *7 (-641 *3)) (-4 *8 (-920 *3 *7)) (-4 *9 (-235 *8)) (-4 *10 (-536 *3 *4 *2 *5 *6 *7 *8 *9 *12)) (-4 *12 (-117)) (-5 *1 (-467 *3 *4 *2 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *11 (-258 *10)))) (-2316 (*1 *2) (-12 (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *6 (-230 (-1697 *4) (-763))) (-4 *7 (-971 *3)) (-4 *8 (-641 *3)) (-4 *9 (-920 *3 *8)) (-4 *10 (-235 *9)) (-4 *11 (-536 *3 *4 *5 *6 *7 *8 *9 *10 *13)) (-4 *13 (-117)) (-5 *2 (-1249)) (-5 *1 (-467 *3 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13)) (-4 *12 (-258 *11))))) +(-10 -7 (-15 -2316 ((-1249))) (-15 -4276 (|#3| |#3|)) (-15 -3039 (|#3| |#3| (-568))) (-15 -1277 ((-1249) (-634 (-121)))) (-15 -2606 (|#3|)) (-15 -2126 ((-763))) (-15 -1801 ((-568))) (-15 -2176 ((-634 |#10|))) (-15 -4007 ((-634 |#10|))) (-15 -4149 ((-634 |#5|) (-634 |#5|))) (-15 -1846 ((-634 |#5|))) (-15 -2215 (|#6| |#3| |#7|)) (-15 -2246 ((-2 (|:| |num| (-634 |#3|)) (|:| |den| |#3|)) |#8|)) (-15 -1640 ((-2 (|:| -1379 (-568)) (|:| |num| |#3|) (|:| |den| |#3|) (|:| |upTo| (-568))) |#8| (-568) (-568))) (-15 -2664 ((-634 |#3|) |#8| (-763))) (-15 -2525 ((-634 |#3|) |#8| (-634 |#3|))) (-15 -1339 (|#1| |#3| |#7|)) (-15 -1339 (|#1| |#3| |#3| |#7|)) (-15 -1339 (|#1| (-409 |#3|) |#7|)) (-15 -3781 ((-3 |#1| "failed") |#3| |#7|)) (-15 -3781 ((-3 |#1| "failed") |#3| |#3| |#7|)) (-15 -3781 ((-3 |#1| "failed") (-409 |#3|) |#7|)) (-15 -2411 (|#8| |#3|)) (-15 -2480 (|#8|)) (-15 -1547 ((-634 |#7|) |#5|)) (-15 -1279 (|#5| |#7|)) (IF (|has| |#1| (-370)) (PROGN (-15 -4397 ((-634 |#7|))) (-15 -1895 ((-634 |#5|))) (-15 -1637 ((-1157 (-568)))) (-15 -1637 ((-1157 (-568)) (-917))) (-15 -2277 ((-568))) (-15 -1375 ((-634 |#7|) (-917))) (-15 -3281 ((-568) (-917))) (-15 -3354 ((-568) (-917))) (-15 -3114 ((-568) (-917) (-917))) (-15 -2596 ((-1239 (-568) -3492))) (-15 -2596 ((-1239 (-568) -3492) (-917)))) |noBranch|)) +((-2447 (((-121) $ $) NIL)) (-2055 (((-634 |#3|) $) 41)) (-4211 (((-121) $) NIL)) (-3824 (((-121) $) NIL (|has| |#1| (-558)))) (-3644 (((-2 (|:| |under| $) (|:| -1519 $) (|:| |upper| $)) $ |#3|) NIL)) (-2510 (((-121) $ (-763)) NIL)) (-2801 (($ (-1 (-121) |#4|) $) NIL (|has| $ (-6 -4519)))) (-2671 (($) NIL T CONST)) (-1565 (((-121) $) NIL (|has| |#1| (-558)))) (-3846 (((-121) $ $) NIL (|has| |#1| (-558)))) (-3106 (((-121) $ $) NIL (|has| |#1| (-558)))) (-3695 (((-121) $) NIL (|has| |#1| (-558)))) (-2355 (((-634 |#4|) (-634 |#4|) $) NIL (|has| |#1| (-558)))) (-2492 (((-634 |#4|) (-634 |#4|) $) NIL (|has| |#1| (-558)))) (-3666 (((-3 $ "failed") (-634 |#4|)) 47)) (-2854 (($ (-634 |#4|)) NIL)) (-3924 (($ $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#4| (-1090))))) (-4328 (($ |#4| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#4| (-1090)))) (($ (-1 (-121) |#4|) $) NIL (|has| $ (-6 -4519)))) (-1500 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-558)))) (-3092 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4519)) (|has| |#4| (-1090)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4519))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4519)))) (-4360 (((-634 |#4|) $) 18 (|has| $ (-6 -4519)))) (-2356 ((|#3| $) 45)) (-1737 (((-121) $ (-763)) NIL)) (-1979 (((-634 |#4|) $) 14 (|has| $ (-6 -4519)))) (-3109 (((-121) |#4| $) 26 (-12 (|has| $ (-6 -4519)) (|has| |#4| (-1090))))) (-3674 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#4| |#4|) $) 21)) (-1432 (((-634 |#3|) $) NIL)) (-3392 (((-121) |#3| $) NIL)) (-2166 (((-121) $ (-763)) NIL)) (-4487 (((-1143) $) NIL)) (-2705 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-558)))) (-4022 (((-1108) $) NIL)) (-3775 (((-3 |#4| "failed") (-1 (-121) |#4|) $) NIL)) (-1387 (((-121) (-1 (-121) |#4|) $) NIL (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 |#4|) (-634 |#4|)) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090)))) (($ $ (-288 |#4|)) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090)))) (($ $ (-634 (-288 |#4|))) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090))))) (-3171 (((-121) $ $) NIL)) (-3084 (((-121) $) 39)) (-3248 (($) 17)) (-4168 (((-763) |#4| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#4| (-1090)))) (((-763) (-1 (-121) |#4|) $) NIL (|has| $ (-6 -4519)))) (-3863 (($ $) 16)) (-4278 (((-541) $) NIL (|has| |#4| (-609 (-541)))) (($ (-634 |#4|)) 49)) (-4287 (($ (-634 |#4|)) 13)) (-1290 (($ $ |#3|) NIL)) (-3732 (($ $ |#3|) NIL)) (-3944 (($ $ |#3|) NIL)) (-2745 (((-850) $) 38) (((-634 |#4|) $) 48)) (-1319 (((-121) (-1 (-121) |#4|) $) NIL (|has| $ (-6 -4519)))) (-1717 (((-121) $ $) 30)) (-1697 (((-763) $) NIL (|has| $ (-6 -4519))))) +(((-468 |#1| |#2| |#3| |#4|) (-13 (-977 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4278 ($ (-634 |#4|))) (-6 -4519) (-6 -4520))) (-1047) (-788) (-842) (-1061 |#1| |#2| |#3|)) (T -468)) +((-4278 (*1 *1 *2) (-12 (-5 *2 (-634 *6)) (-4 *6 (-1061 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *1 (-468 *3 *4 *5 *6))))) +(-13 (-977 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4278 ($ (-634 |#4|))) (-6 -4519) (-6 -4520))) +((-3056 (($) 11)) (-1556 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) +(((-469 |#1| |#2| |#3|) (-10 -8 (-15 -1556 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3056 (|#1|))) (-470 |#2| |#3|) (-172) (-23)) (T -469)) +NIL +(-10 -8 (-15 -1556 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3056 (|#1|))) +((-2447 (((-121) $ $) 7)) (-3666 (((-3 |#1| "failed") $) 23)) (-2854 ((|#1| $) 22)) (-3272 (($ $ $) 20)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-3206 ((|#2| $) 18)) (-2745 (((-850) $) 11) (($ |#1|) 24)) (-3056 (($) 17 T CONST)) (-1556 (($) 21 T CONST)) (-1717 (((-121) $ $) 6)) (-1773 (($ $) 14) (($ $ $) 12)) (-1767 (($ $ $) 13)) (* (($ |#1| $) 16) (($ $ |#1|) 15))) +(((-470 |#1| |#2|) (-1275) (-172) (-23)) (T -470)) +((-1556 (*1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-3272 (*1 *1 *1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))) +(-13 (-475 |t#1| |t#2|) (-1037 |t#1|) (-10 -8 (-15 (-1556) ($) -3495) (-15 -3272 ($ $ $)))) +(((-105) . T) ((-608 (-850)) . T) ((-475 |#1| |#2|) . T) ((-1037 |#1|) . T) ((-1090) . T)) +((-1608 (((-1244 (-1244 (-568))) (-1244 (-1244 (-568))) (-917)) 18)) (-1840 (((-1244 (-1244 (-568))) (-917)) 16))) +(((-471) (-10 -7 (-15 -1608 ((-1244 (-1244 (-568))) (-1244 (-1244 (-568))) (-917))) (-15 -1840 ((-1244 (-1244 (-568))) (-917))))) (T -471)) +((-1840 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1244 (-1244 (-568)))) (-5 *1 (-471)))) (-1608 (*1 *2 *2 *3) (-12 (-5 *2 (-1244 (-1244 (-568)))) (-5 *3 (-917)) (-5 *1 (-471))))) +(-10 -7 (-15 -1608 ((-1244 (-1244 (-568))) (-1244 (-1244 (-568))) (-917))) (-15 -1840 ((-1244 (-1244 (-568))) (-917)))) +((-3964 (((-568) (-568)) 30) (((-568)) 22)) (-4035 (((-568) (-568)) 26) (((-568)) 18)) (-3144 (((-568) (-568)) 28) (((-568)) 20)) (-3200 (((-121) (-121)) 12) (((-121)) 10)) (-4117 (((-121) (-121)) 11) (((-121)) 9)) (-3831 (((-121) (-121)) 24) (((-121)) 15))) +(((-472) (-10 -7 (-15 -4117 ((-121))) (-15 -3200 ((-121))) (-15 -4117 ((-121) (-121))) (-15 -3200 ((-121) (-121))) (-15 -3831 ((-121))) (-15 -3144 ((-568))) (-15 -4035 ((-568))) (-15 -3964 ((-568))) (-15 -3831 ((-121) (-121))) (-15 -3144 ((-568) (-568))) (-15 -4035 ((-568) (-568))) (-15 -3964 ((-568) (-568))))) (T -472)) +((-3964 (*1 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-472)))) (-4035 (*1 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-472)))) (-3144 (*1 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-472)))) (-3831 (*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-472)))) (-3964 (*1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-472)))) (-4035 (*1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-472)))) (-3144 (*1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-472)))) (-3831 (*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-472)))) (-3200 (*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-472)))) (-4117 (*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-472)))) (-3200 (*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-472)))) (-4117 (*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-472))))) +(-10 -7 (-15 -4117 ((-121))) (-15 -3200 ((-121))) (-15 -4117 ((-121) (-121))) (-15 -3200 ((-121) (-121))) (-15 -3831 ((-121))) (-15 -3144 ((-568))) (-15 -4035 ((-568))) (-15 -3964 ((-568))) (-15 -3831 ((-121) (-121))) (-15 -3144 ((-568) (-568))) (-15 -4035 ((-568) (-568))) (-15 -3964 ((-568) (-568)))) +((-2447 (((-121) $ $) NIL)) (-2832 (((-634 (-381)) $) 27) (((-634 (-381)) $ (-634 (-381))) 90)) (-3437 (((-634 (-1084 (-381))) $) 14) (((-634 (-1084 (-381))) $ (-634 (-1084 (-381)))) 87)) (-2416 (((-634 (-634 (-944 (-215)))) (-634 (-634 (-944 (-215)))) (-634 (-869))) 42)) (-4201 (((-634 (-634 (-944 (-215)))) $) 83)) (-4203 (((-1249) $ (-944 (-215)) (-869)) 103)) (-1874 (($ $) 82) (($ (-634 (-634 (-944 (-215))))) 93) (($ (-634 (-634 (-944 (-215)))) (-634 (-869)) (-634 (-869)) (-634 (-917))) 92) (($ (-634 (-634 (-944 (-215)))) (-634 (-869)) (-634 (-869)) (-634 (-917)) (-634 (-256))) 94)) (-4487 (((-1143) $) NIL)) (-3649 (((-568) $) 65)) (-4022 (((-1108) $) NIL)) (-4129 (($) 91)) (-1511 (((-634 (-215)) (-634 (-634 (-944 (-215))))) 52)) (-4445 (((-1249) $ (-634 (-944 (-215))) (-869) (-869) (-917)) 97) (((-1249) $ (-944 (-215))) 99) (((-1249) $ (-944 (-215)) (-869) (-869) (-917)) 98)) (-2745 (((-850) $) 109) (($ (-634 (-634 (-944 (-215))))) 104)) (-3054 (((-1249) $ (-944 (-215))) 102)) (-1717 (((-121) $ $) NIL))) +(((-473) (-13 (-1090) (-10 -8 (-15 -4129 ($)) (-15 -1874 ($ $)) (-15 -1874 ($ (-634 (-634 (-944 (-215)))))) (-15 -1874 ($ (-634 (-634 (-944 (-215)))) (-634 (-869)) (-634 (-869)) (-634 (-917)))) (-15 -1874 ($ (-634 (-634 (-944 (-215)))) (-634 (-869)) (-634 (-869)) (-634 (-917)) (-634 (-256)))) (-15 -4201 ((-634 (-634 (-944 (-215)))) $)) (-15 -3649 ((-568) $)) (-15 -3437 ((-634 (-1084 (-381))) $)) (-15 -3437 ((-634 (-1084 (-381))) $ (-634 (-1084 (-381))))) (-15 -2832 ((-634 (-381)) $)) (-15 -2832 ((-634 (-381)) $ (-634 (-381)))) (-15 -4445 ((-1249) $ (-634 (-944 (-215))) (-869) (-869) (-917))) (-15 -4445 ((-1249) $ (-944 (-215)))) (-15 -4445 ((-1249) $ (-944 (-215)) (-869) (-869) (-917))) (-15 -3054 ((-1249) $ (-944 (-215)))) (-15 -4203 ((-1249) $ (-944 (-215)) (-869))) (-15 -2745 ($ (-634 (-634 (-944 (-215)))))) (-15 -2745 ((-850) $)) (-15 -2416 ((-634 (-634 (-944 (-215)))) (-634 (-634 (-944 (-215)))) (-634 (-869)))) (-15 -1511 ((-634 (-215)) (-634 (-634 (-944 (-215))))))))) (T -473)) +((-2745 (*1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-473)))) (-4129 (*1 *1) (-5 *1 (-473))) (-1874 (*1 *1 *1) (-5 *1 (-473))) (-1874 (*1 *1 *2) (-12 (-5 *2 (-634 (-634 (-944 (-215))))) (-5 *1 (-473)))) (-1874 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-634 (-634 (-944 (-215))))) (-5 *3 (-634 (-869))) (-5 *4 (-634 (-917))) (-5 *1 (-473)))) (-1874 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-634 (-634 (-944 (-215))))) (-5 *3 (-634 (-869))) (-5 *4 (-634 (-917))) (-5 *5 (-634 (-256))) (-5 *1 (-473)))) (-4201 (*1 *2 *1) (-12 (-5 *2 (-634 (-634 (-944 (-215))))) (-5 *1 (-473)))) (-3649 (*1 *2 *1) (-12 (-5 *2 (-568)) (-5 *1 (-473)))) (-3437 (*1 *2 *1) (-12 (-5 *2 (-634 (-1084 (-381)))) (-5 *1 (-473)))) (-3437 (*1 *2 *1 *2) (-12 (-5 *2 (-634 (-1084 (-381)))) (-5 *1 (-473)))) (-2832 (*1 *2 *1) (-12 (-5 *2 (-634 (-381))) (-5 *1 (-473)))) (-2832 (*1 *2 *1 *2) (-12 (-5 *2 (-634 (-381))) (-5 *1 (-473)))) (-4445 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-634 (-944 (-215)))) (-5 *4 (-869)) (-5 *5 (-917)) (-5 *2 (-1249)) (-5 *1 (-473)))) (-4445 (*1 *2 *1 *3) (-12 (-5 *3 (-944 (-215))) (-5 *2 (-1249)) (-5 *1 (-473)))) (-4445 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-944 (-215))) (-5 *4 (-869)) (-5 *5 (-917)) (-5 *2 (-1249)) (-5 *1 (-473)))) (-3054 (*1 *2 *1 *3) (-12 (-5 *3 (-944 (-215))) (-5 *2 (-1249)) (-5 *1 (-473)))) (-4203 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-944 (-215))) (-5 *4 (-869)) (-5 *2 (-1249)) (-5 *1 (-473)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-634 (-634 (-944 (-215))))) (-5 *1 (-473)))) (-2416 (*1 *2 *2 *3) (-12 (-5 *2 (-634 (-634 (-944 (-215))))) (-5 *3 (-634 (-869))) (-5 *1 (-473)))) (-1511 (*1 *2 *3) (-12 (-5 *3 (-634 (-634 (-944 (-215))))) (-5 *2 (-634 (-215))) (-5 *1 (-473))))) +(-13 (-1090) (-10 -8 (-15 -4129 ($)) (-15 -1874 ($ $)) (-15 -1874 ($ (-634 (-634 (-944 (-215)))))) (-15 -1874 ($ (-634 (-634 (-944 (-215)))) (-634 (-869)) (-634 (-869)) (-634 (-917)))) (-15 -1874 ($ (-634 (-634 (-944 (-215)))) (-634 (-869)) (-634 (-869)) (-634 (-917)) (-634 (-256)))) (-15 -4201 ((-634 (-634 (-944 (-215)))) $)) (-15 -3649 ((-568) $)) (-15 -3437 ((-634 (-1084 (-381))) $)) (-15 -3437 ((-634 (-1084 (-381))) $ (-634 (-1084 (-381))))) (-15 -2832 ((-634 (-381)) $)) (-15 -2832 ((-634 (-381)) $ (-634 (-381)))) (-15 -4445 ((-1249) $ (-634 (-944 (-215))) (-869) (-869) (-917))) (-15 -4445 ((-1249) $ (-944 (-215)))) (-15 -4445 ((-1249) $ (-944 (-215)) (-869) (-869) (-917))) (-15 -3054 ((-1249) $ (-944 (-215)))) (-15 -4203 ((-1249) $ (-944 (-215)) (-869))) (-15 -2745 ($ (-634 (-634 (-944 (-215)))))) (-15 -2745 ((-850) $)) (-15 -2416 ((-634 (-634 (-944 (-215)))) (-634 (-634 (-944 (-215)))) (-634 (-869)))) (-15 -1511 ((-634 (-215)) (-634 (-634 (-944 (-215)))))))) +((-1773 (($ $) NIL) (($ $ $) 11))) +(((-474 |#1| |#2| |#3|) (-10 -8 (-15 -1773 (|#1| |#1| |#1|)) (-15 -1773 (|#1| |#1|))) (-475 |#2| |#3|) (-172) (-23)) (T -474)) +NIL +(-10 -8 (-15 -1773 (|#1| |#1| |#1|)) (-15 -1773 (|#1| |#1|))) +((-2447 (((-121) $ $) 7)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-3206 ((|#2| $) 18)) (-2745 (((-850) $) 11)) (-3056 (($) 17 T CONST)) (-1717 (((-121) $ $) 6)) (-1773 (($ $) 14) (($ $ $) 12)) (-1767 (($ $ $) 13)) (* (($ |#1| $) 16) (($ $ |#1|) 15))) +(((-475 |#1| |#2|) (-1275) (-172) (-23)) (T -475)) +((-3206 (*1 *2 *1) (-12 (-4 *1 (-475 *3 *2)) (-4 *3 (-172)) (-4 *2 (-23)))) (-3056 (*1 *1) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-1773 (*1 *1 *1) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-1767 (*1 *1 *1 *1) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-1773 (*1 *1 *1 *1) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))) +(-13 (-1090) (-10 -8 (-15 -3206 (|t#2| $)) (-15 (-3056) ($) -3495) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -1773 ($ $)) (-15 -1767 ($ $ $)) (-15 -1773 ($ $ $)))) +(((-105) . T) ((-608 (-850)) . T) ((-1090) . T)) +((-2371 (((-3 (-634 (-492 |#1| |#2|)) "failed") (-634 (-492 |#1| |#2|)) (-634 (-852 |#1|))) 88)) (-2220 (((-634 (-634 (-242 |#1| |#2|))) (-634 (-242 |#1| |#2|)) (-634 (-852 |#1|))) 86)) (-4318 (((-2 (|:| |dpolys| (-634 (-242 |#1| |#2|))) (|:| |coords| (-634 (-568)))) (-634 (-242 |#1| |#2|)) (-634 (-852 |#1|))) 58))) +(((-476 |#1| |#2| |#3|) (-10 -7 (-15 -2220 ((-634 (-634 (-242 |#1| |#2|))) (-634 (-242 |#1| |#2|)) (-634 (-852 |#1|)))) (-15 -2371 ((-3 (-634 (-492 |#1| |#2|)) "failed") (-634 (-492 |#1| |#2|)) (-634 (-852 |#1|)))) (-15 -4318 ((-2 (|:| |dpolys| (-634 (-242 |#1| |#2|))) (|:| |coords| (-634 (-568)))) (-634 (-242 |#1| |#2|)) (-634 (-852 |#1|))))) (-634 (-1161)) (-453) (-453)) (T -476)) +((-4318 (*1 *2 *3 *4) (-12 (-5 *4 (-634 (-852 *5))) (-14 *5 (-634 (-1161))) (-4 *6 (-453)) (-5 *2 (-2 (|:| |dpolys| (-634 (-242 *5 *6))) (|:| |coords| (-634 (-568))))) (-5 *1 (-476 *5 *6 *7)) (-5 *3 (-634 (-242 *5 *6))) (-4 *7 (-453)))) (-2371 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-634 (-492 *4 *5))) (-5 *3 (-634 (-852 *4))) (-14 *4 (-634 (-1161))) (-4 *5 (-453)) (-5 *1 (-476 *4 *5 *6)) (-4 *6 (-453)))) (-2220 (*1 *2 *3 *4) (-12 (-5 *4 (-634 (-852 *5))) (-14 *5 (-634 (-1161))) (-4 *6 (-453)) (-5 *2 (-634 (-634 (-242 *5 *6)))) (-5 *1 (-476 *5 *6 *7)) (-5 *3 (-634 (-242 *5 *6))) (-4 *7 (-453))))) +(-10 -7 (-15 -2220 ((-634 (-634 (-242 |#1| |#2|))) (-634 (-242 |#1| |#2|)) (-634 (-852 |#1|)))) (-15 -2371 ((-3 (-634 (-492 |#1| |#2|)) "failed") (-634 (-492 |#1| |#2|)) (-634 (-852 |#1|)))) (-15 -4318 ((-2 (|:| |dpolys| (-634 (-242 |#1| |#2|))) (|:| |coords| (-634 (-568)))) (-634 (-242 |#1| |#2|)) (-634 (-852 |#1|))))) +((-2925 (((-3 $ "failed") $) 11)) (-1458 (($ $ $) 20)) (-2353 (($ $ $) 21)) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) 14)) (-1779 (($ $ $) 9)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) 19))) +(((-477 |#1|) (-10 -8 (-15 -2353 (|#1| |#1| |#1|)) (-15 -1458 (|#1| |#1| |#1|)) (-15 -1887 (|#1| |#1| (-568))) (-15 ** (|#1| |#1| (-568))) (-15 -1779 (|#1| |#1| |#1|)) (-15 -2925 ((-3 |#1| "failed") |#1|)) (-15 -1887 (|#1| |#1| (-763))) (-15 ** (|#1| |#1| (-763))) (-15 -1887 (|#1| |#1| (-917))) (-15 ** (|#1| |#1| (-917)))) (-478)) (T -477)) +NIL +(-10 -8 (-15 -2353 (|#1| |#1| |#1|)) (-15 -1458 (|#1| |#1| |#1|)) (-15 -1887 (|#1| |#1| (-568))) (-15 ** (|#1| |#1| (-568))) (-15 -1779 (|#1| |#1| |#1|)) (-15 -2925 ((-3 |#1| "failed") |#1|)) (-15 -1887 (|#1| |#1| (-763))) (-15 ** (|#1| |#1| (-763))) (-15 -1887 (|#1| |#1| (-917))) (-15 ** (|#1| |#1| (-917)))) +((-2447 (((-121) $ $) 7)) (-2671 (($) 19 T CONST)) (-2925 (((-3 $ "failed") $) 15)) (-2735 (((-121) $) 18)) (-4487 (((-1143) $) 9)) (-2081 (($ $) 26)) (-4022 (((-1108) $) 10)) (-1458 (($ $ $) 22)) (-2353 (($ $ $) 21)) (-2745 (((-850) $) 11)) (-1887 (($ $ (-917)) 12) (($ $ (-763)) 16) (($ $ (-568)) 23)) (-1556 (($) 20 T CONST)) (-1717 (((-121) $ $) 6)) (-1779 (($ $ $) 25)) (** (($ $ (-917)) 13) (($ $ (-763)) 17) (($ $ (-568)) 24)) (* (($ $ $) 14))) +(((-478) (-1275)) (T -478)) +((-2081 (*1 *1 *1) (-4 *1 (-478))) (-1779 (*1 *1 *1 *1) (-4 *1 (-478))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-478)) (-5 *2 (-568)))) (-1887 (*1 *1 *1 *2) (-12 (-4 *1 (-478)) (-5 *2 (-568)))) (-1458 (*1 *1 *1 *1) (-4 *1 (-478))) (-2353 (*1 *1 *1 *1) (-4 *1 (-478)))) +(-13 (-716) (-10 -8 (-15 -2081 ($ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ (-568))) (-15 -1887 ($ $ (-568))) (-6 -4516) (-15 -1458 ($ $ $)) (-15 -2353 ($ $ $)))) +(((-105) . T) ((-608 (-850)) . T) ((-716) . T) ((-1102) . T) ((-1090) . T)) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-2055 (((-634 (-1075)) $) NIL)) (-1305 (((-1161) $) 17)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-2227 (($ $) NIL (|has| |#1| (-558)))) (-1573 (((-121) $) NIL (|has| |#1| (-558)))) (-2617 (($ $ (-409 (-568))) NIL) (($ $ (-409 (-568)) (-409 (-568))) NIL)) (-2583 (((-1141 (-2 (|:| |k| (-409 (-568))) (|:| |c| |#1|))) $) NIL)) (-1982 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1933 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-3134 (((-3 $ "failed") $ $) NIL)) (-4305 (($ $) NIL (|has| |#1| (-365)))) (-1678 (((-420 $) $) NIL (|has| |#1| (-365)))) (-1902 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1497 (((-121) $ $) NIL (|has| |#1| (-365)))) (-1974 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-2786 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-3728 (($ (-763) (-1141 (-2 (|:| |k| (-409 (-568))) (|:| |c| |#1|)))) NIL)) (-1990 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1941 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-2671 (($) NIL T CONST)) (-2401 (($ $ $) NIL (|has| |#1| (-365)))) (-2114 (($ $) NIL)) (-2925 (((-3 $ "failed") $) NIL)) (-2412 (($ $ $) NIL (|has| |#1| (-365)))) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) NIL (|has| |#1| (-365)))) (-3927 (((-121) $) NIL (|has| |#1| (-365)))) (-3992 (((-121) $) NIL)) (-1897 (($) NIL (|has| |#1| (-43 (-409 (-568)))))) (-4477 (((-409 (-568)) $) NIL) (((-409 (-568)) $ (-409 (-568))) NIL)) (-2735 (((-121) $) NIL)) (-4044 (($ $ (-568)) NIL (|has| |#1| (-43 (-409 (-568)))))) (-3536 (($ $ (-917)) NIL) (($ $ (-409 (-568))) NIL)) (-3562 (((-3 (-634 $) "failed") (-634 $) $) NIL (|has| |#1| (-365)))) (-3921 (((-121) $) NIL)) (-2047 (($ |#1| (-409 (-568))) NIL) (($ $ (-1075) (-409 (-568))) NIL) (($ $ (-634 (-1075)) (-634 (-409 (-568)))) NIL)) (-2795 (($ (-1 |#1| |#1|) $) 22)) (-4416 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-2097 (($ $) NIL)) (-2102 ((|#1| $) NIL)) (-2495 (($ (-634 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-4487 (((-1143) $) NIL)) (-2081 (($ $) NIL (|has| |#1| (-365)))) (-3837 (($ $) 26 (|has| |#1| (-43 (-409 (-568))))) (($ $ (-1161)) 33 (-2198 (-12 (|has| |#1| (-15 -3837 (|#1| |#1| (-1161)))) (|has| |#1| (-15 -2055 ((-634 (-1161)) |#1|))) (|has| |#1| (-43 (-409 (-568))))) (-12 (|has| |#1| (-29 (-568))) (|has| |#1| (-43 (-409 (-568)))) (|has| |#1| (-959)) (|has| |#1| (-1181))))) (($ $ (-1240 |#2|)) 27 (|has| |#1| (-43 (-409 (-568)))))) (-4022 (((-1108) $) NIL)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL (|has| |#1| (-365)))) (-2721 (($ (-634 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3848 (((-420 $) $) NIL (|has| |#1| (-365)))) (-4497 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL (|has| |#1| (-365)))) (-1807 (($ $ (-409 (-568))) NIL)) (-2595 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-2344 (((-3 (-634 $) "failed") (-634 $) $) NIL (|has| |#1| (-365)))) (-1892 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1339 (((-1141 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-409 (-568))))))) (-2709 (((-763) $) NIL (|has| |#1| (-365)))) (-2779 ((|#1| $ (-409 (-568))) NIL) (($ $ $) NIL (|has| (-409 (-568)) (-1102)))) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL (|has| |#1| (-365)))) (-4189 (($ $ (-634 (-1161)) (-634 (-763))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-1161) (-763)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-634 (-1161))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-1161)) 25 (-12 (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-763)) NIL (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|)))) (($ $ (-1240 |#2|)) 15)) (-3206 (((-409 (-568)) $) NIL)) (-1994 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1945 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1986 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1937 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1978 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-2790 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1811 (($ $) NIL)) (-2745 (((-850) $) NIL) (($ (-568)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1240 |#2|)) NIL) (($ (-1228 |#1| |#2| |#3|)) 9) (($ (-409 (-568))) NIL (|has| |#1| (-43 (-409 (-568))))) (($ $) NIL (|has| |#1| (-558)))) (-2604 ((|#1| $ (-409 (-568))) NIL)) (-4371 (((-3 $ "failed") $) NIL (|has| |#1| (-148)))) (-4078 (((-763)) NIL)) (-1374 ((|#1| $) 18)) (-2006 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1958 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1826 (((-121) $ $) NIL (|has| |#1| (-558)))) (-1998 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1949 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-2014 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1966 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-3996 ((|#1| $ (-409 (-568))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-409 (-568))))) (|has| |#1| (-15 -2745 (|#1| (-1161))))))) (-4023 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1970 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-2010 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1962 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-2002 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1953 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL (|has| |#1| (-365)))) (-3056 (($) NIL T CONST)) (-1556 (($) NIL T CONST)) (-3190 (($ $ (-634 (-1161)) (-634 (-763))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-1161) (-763)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-634 (-1161))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-1161)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-763)) NIL (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))))) (-1717 (((-121) $ $) NIL)) (-1779 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-1773 (($ $) NIL) (($ $ $) 24)) (-1767 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-43 (-409 (-568))))) (($ $ (-409 (-568))) NIL (|has| |#1| (-43 (-409 (-568)))))) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-409 (-568)) $) NIL (|has| |#1| (-43 (-409 (-568))))) (($ $ (-409 (-568))) NIL (|has| |#1| (-43 (-409 (-568))))))) +(((-479 |#1| |#2| |#3|) (-13 (-1224 |#1|) (-10 -8 (-15 -2745 ($ (-1240 |#2|))) (-15 -2745 ($ (-1228 |#1| |#2| |#3|))) (-15 -4189 ($ $ (-1240 |#2|))) (IF (|has| |#1| (-43 (-409 (-568)))) (-15 -3837 ($ $ (-1240 |#2|))) |noBranch|))) (-1047) (-1161) |#1|) (T -479)) +((-2745 (*1 *1 *2) (-12 (-5 *2 (-1240 *4)) (-14 *4 (-1161)) (-5 *1 (-479 *3 *4 *5)) (-4 *3 (-1047)) (-14 *5 *3))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-1228 *3 *4 *5)) (-4 *3 (-1047)) (-14 *4 (-1161)) (-14 *5 *3) (-5 *1 (-479 *3 *4 *5)))) (-4189 (*1 *1 *1 *2) (-12 (-5 *2 (-1240 *4)) (-14 *4 (-1161)) (-5 *1 (-479 *3 *4 *5)) (-4 *3 (-1047)) (-14 *5 *3))) (-3837 (*1 *1 *1 *2) (-12 (-5 *2 (-1240 *4)) (-14 *4 (-1161)) (-5 *1 (-479 *3 *4 *5)) (-4 *3 (-43 (-409 (-568)))) (-4 *3 (-1047)) (-14 *5 *3)))) +(-13 (-1224 |#1|) (-10 -8 (-15 -2745 ($ (-1240 |#2|))) (-15 -2745 ($ (-1228 |#1| |#2| |#3|))) (-15 -4189 ($ $ (-1240 |#2|))) (IF (|has| |#1| (-43 (-409 (-568)))) (-15 -3837 ($ $ (-1240 |#2|))) |noBranch|))) +((-2447 (((-121) $ $) NIL (-2198 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-2986 (($) NIL) (($ (-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) NIL)) (-1868 (((-1249) $ |#1| |#1|) NIL (|has| $ (-6 -4520)))) (-2510 (((-121) $ (-763)) NIL)) (-2436 ((|#2| $ |#1| |#2|) 18)) (-3507 (($ (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519)))) (-2801 (($ (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519)))) (-2674 (((-3 |#2| "failed") |#1| $) 19)) (-2671 (($) NIL T CONST)) (-3924 (($ $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090))))) (-3405 (($ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) NIL (|has| $ (-6 -4519))) (($ (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519))) (((-3 |#2| "failed") |#1| $) 16)) (-4328 (($ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (($ (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519)))) (-3092 (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) NIL (|has| $ (-6 -4519))) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519)))) (-3989 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4520)))) (-2602 ((|#2| $ |#1|) NIL)) (-4360 (((-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519))) (((-634 |#2|) $) NIL (|has| $ (-6 -4519)))) (-1737 (((-121) $ (-763)) NIL)) (-1881 ((|#1| $) NIL (|has| |#1| (-842)))) (-1979 (((-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519))) (((-634 |#2|) $) NIL (|has| $ (-6 -4519)))) (-3109 (((-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (((-121) |#2| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#2| (-1090))))) (-2223 ((|#1| $) NIL (|has| |#1| (-842)))) (-3674 (($ (-1 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4520))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4520)))) (-2795 (($ (-1 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2166 (((-121) $ (-763)) NIL)) (-4487 (((-1143) $) NIL (-2198 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-1946 (((-634 |#1|) $) NIL)) (-3548 (((-121) |#1| $) NIL)) (-1890 (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) NIL)) (-4450 (($ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) NIL)) (-4174 (((-634 |#1|) $) NIL)) (-3578 (((-121) |#1| $) NIL)) (-4022 (((-1108) $) NIL (-2198 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-3876 ((|#2| $) NIL (|has| |#1| (-842)))) (-3775 (((-3 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) "failed") (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL)) (-3724 (($ $ |#2|) NIL (|has| $ (-6 -4520)))) (-1315 (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) NIL)) (-1387 (((-121) (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519))) (((-121) (-1 (-121) |#2|) $) NIL (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))))) NIL (-12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (($ $ (-288 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) NIL (-12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (($ $ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) NIL (-12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (($ $ (-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) (-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) NIL (-12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (($ $ (-634 |#2|) (-634 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090)))) (($ $ (-634 (-288 |#2|))) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090))))) (-3171 (((-121) $ $) NIL)) (-4467 (((-121) |#2| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#2| (-1090))))) (-2041 (((-634 |#2|) $) NIL)) (-3084 (((-121) $) NIL)) (-3248 (($) NIL)) (-2779 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-2085 (($) NIL) (($ (-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) NIL)) (-4168 (((-763) (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519))) (((-763) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (((-763) |#2| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#2| (-1090)))) (((-763) (-1 (-121) |#2|) $) NIL (|has| $ (-6 -4519)))) (-3863 (($ $) NIL)) (-4278 (((-541) $) NIL (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-609 (-541))))) (-4287 (($ (-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) NIL)) (-2745 (((-850) $) NIL (-2198 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-2367 (($ (-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) NIL)) (-1319 (((-121) (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519))) (((-121) (-1 (-121) |#2|) $) NIL (|has| $ (-6 -4519)))) (-1717 (((-121) $ $) NIL (-2198 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-1697 (((-763) $) NIL (|has| $ (-6 -4519))))) +(((-480 |#1| |#2| |#3| |#4|) (-1172 |#1| |#2|) (-1090) (-1090) (-1172 |#1| |#2|) |#2|) (T -480)) +NIL +(-1172 |#1| |#2|) +((-2447 (((-121) $ $) NIL)) (-2387 (((-634 (-2 (|:| -4092 $) (|:| -1798 (-634 |#4|)))) (-634 |#4|)) NIL)) (-2415 (((-634 $) (-634 |#4|)) NIL)) (-2055 (((-634 |#3|) $) NIL)) (-4211 (((-121) $) NIL)) (-3824 (((-121) $) NIL (|has| |#1| (-558)))) (-3300 (((-121) |#4| $) NIL) (((-121) $) NIL)) (-2819 ((|#4| |#4| $) NIL)) (-3644 (((-2 (|:| |under| $) (|:| -1519 $) (|:| |upper| $)) $ |#3|) NIL)) (-2510 (((-121) $ (-763)) NIL)) (-2801 (($ (-1 (-121) |#4|) $) NIL (|has| $ (-6 -4519))) (((-3 |#4| "failed") $ |#3|) NIL)) (-2671 (($) NIL T CONST)) (-1565 (((-121) $) 26 (|has| |#1| (-558)))) (-3846 (((-121) $ $) NIL (|has| |#1| (-558)))) (-3106 (((-121) $ $) NIL (|has| |#1| (-558)))) (-3695 (((-121) $) NIL (|has| |#1| (-558)))) (-4275 (((-634 |#4|) (-634 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-121) |#4| |#4|)) NIL)) (-2355 (((-634 |#4|) (-634 |#4|) $) NIL (|has| |#1| (-558)))) (-2492 (((-634 |#4|) (-634 |#4|) $) NIL (|has| |#1| (-558)))) (-3666 (((-3 $ "failed") (-634 |#4|)) NIL)) (-2854 (($ (-634 |#4|)) NIL)) (-3935 (((-3 $ "failed") $) 39)) (-2062 ((|#4| |#4| $) NIL)) (-3924 (($ $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#4| (-1090))))) (-4328 (($ |#4| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#4| (-1090)))) (($ (-1 (-121) |#4|) $) NIL (|has| $ (-6 -4519)))) (-1500 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-558)))) (-1281 (((-121) |#4| $ (-1 (-121) |#4| |#4|)) NIL)) (-4079 ((|#4| |#4| $) NIL)) (-3092 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4519)) (|has| |#4| (-1090)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4519))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4519))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-121) |#4| |#4|)) NIL)) (-3635 (((-2 (|:| -4092 (-634 |#4|)) (|:| -1798 (-634 |#4|))) $) NIL)) (-4360 (((-634 |#4|) $) 16 (|has| $ (-6 -4519)))) (-1362 (((-121) |#4| $) NIL) (((-121) $) NIL)) (-2356 ((|#3| $) 33)) (-1737 (((-121) $ (-763)) NIL)) (-1979 (((-634 |#4|) $) 17 (|has| $ (-6 -4519)))) (-3109 (((-121) |#4| $) 25 (-12 (|has| $ (-6 -4519)) (|has| |#4| (-1090))))) (-3674 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#4| |#4|) $) 21)) (-1432 (((-634 |#3|) $) NIL)) (-3392 (((-121) |#3| $) NIL)) (-2166 (((-121) $ (-763)) NIL)) (-4487 (((-1143) $) NIL)) (-4162 (((-3 |#4| "failed") $) 37)) (-1377 (((-634 |#4|) $) NIL)) (-1415 (((-121) |#4| $) NIL) (((-121) $) NIL)) (-2682 ((|#4| |#4| $) NIL)) (-2644 (((-121) $ $) NIL)) (-2705 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-558)))) (-4347 (((-121) |#4| $) NIL) (((-121) $) NIL)) (-4025 ((|#4| |#4| $) NIL)) (-4022 (((-1108) $) NIL)) (-3876 (((-3 |#4| "failed") $) 35)) (-3775 (((-3 |#4| "failed") (-1 (-121) |#4|) $) NIL)) (-1665 (((-3 $ "failed") $ |#4|) 46)) (-1807 (($ $ |#4|) NIL)) (-1387 (((-121) (-1 (-121) |#4|) $) NIL (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 |#4|) (-634 |#4|)) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090)))) (($ $ (-288 |#4|)) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090)))) (($ $ (-634 (-288 |#4|))) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090))))) (-3171 (((-121) $ $) NIL)) (-3084 (((-121) $) 15)) (-3248 (($) 13)) (-3206 (((-763) $) NIL)) (-4168 (((-763) |#4| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#4| (-1090)))) (((-763) (-1 (-121) |#4|) $) NIL (|has| $ (-6 -4519)))) (-3863 (($ $) 12)) (-4278 (((-541) $) NIL (|has| |#4| (-609 (-541))))) (-4287 (($ (-634 |#4|)) 20)) (-1290 (($ $ |#3|) 42)) (-3732 (($ $ |#3|) 43)) (-1567 (($ $) NIL)) (-3944 (($ $ |#3|) NIL)) (-2745 (((-850) $) 31) (((-634 |#4|) $) 40)) (-1878 (((-763) $) NIL (|has| |#3| (-370)))) (-3556 (((-3 (-2 (|:| |bas| $) (|:| -2616 (-634 |#4|))) "failed") (-634 |#4|) (-1 (-121) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2616 (-634 |#4|))) "failed") (-634 |#4|) (-1 (-121) |#4|) (-1 (-121) |#4| |#4|)) NIL)) (-3292 (((-121) $ (-1 (-121) |#4| (-634 |#4|))) NIL)) (-1319 (((-121) (-1 (-121) |#4|) $) NIL (|has| $ (-6 -4519)))) (-2739 (((-634 |#3|) $) NIL)) (-4390 (((-121) |#3| $) NIL)) (-1717 (((-121) $ $) NIL)) (-1697 (((-763) $) NIL (|has| $ (-6 -4519))))) +(((-481 |#1| |#2| |#3| |#4|) (-1189 |#1| |#2| |#3| |#4|) (-558) (-788) (-842) (-1061 |#1| |#2| |#3|)) (T -481)) +NIL +(-1189 |#1| |#2| |#3| |#4|) +((-4089 (((-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 (-53))) (-1201 (-53)))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-53)))) (-1201 (-1157 (-53))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 (-53) (-763) (-763) (-1157 (-53)))) (|:| AF (-1 (-1157 (-53)) (-763) (-763) (-1201 (-1157 (-53))))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 (-53)) (-763)))) (-634 (-465))) (-1161)) NIL (|has| (-53) (-1037 (-1161)))) (((-2 (|:| |guessStream| (-1 (-1141 (-1201 (-53))) (-1201 (-53)))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-53)))) (-1201 (-1157 (-53))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 (-53) (-763) (-763) (-1157 (-53)))) (|:| AF (-1 (-1157 (-53)) (-763) (-763) (-1201 (-1157 (-53))))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 (-53)) (-763)))) (-634 (-465))) NIL)) (-4329 (((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465))) (-1161)) NIL (|has| (-53) (-1037 (-1161)))) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465))) NIL) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53))) NIL)) (-1414 (((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465))) (-1161)) NIL (|has| (-53) (-1037 (-1161)))) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53))) NIL) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465))) NIL)) (-4102 (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53))) NIL) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465))) NIL)) (-2788 (((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465))) (-1161)) NIL (|has| (-53) (-1037 (-1161)))) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53))) NIL) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465))) NIL)) (-2659 (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465))) NIL) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53))) NIL)) (-1761 (((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465))) (-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 (-53))) (-1201 (-53)))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-53)))) (-1201 (-1157 (-53))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 (-53) (-763) (-763) (-1157 (-53)))) (|:| AF (-1 (-1157 (-53)) (-763) (-763) (-1201 (-1157 (-53))))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 (-53)) (-763)))) (-634 (-465)))) NIL)) (-1829 (((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465))) (-1161)) NIL (|has| (-53) (-1037 (-1161)))) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465))) NIL) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53))) NIL)) (-1961 (((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465))) (-1161)) NIL (|has| (-53) (-1037 (-1161)))) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465))) NIL) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53))) NIL)) (-2017 (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465))) NIL) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53))) NIL)) (-3641 (((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465))) (-1161)) NIL (|has| (-53) (-1037 (-1161)))) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465))) NIL) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53))) NIL)) (-1633 (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465)))) (-634 (-1161)) (-634 (-465))) NIL) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465)))) (-634 (-1161))) NIL) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465))) NIL) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53))) NIL)) (-3430 (((-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 (-53))) (-1201 (-53)))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-53)))) (-1201 (-1157 (-53))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 (-53) (-763) (-763) (-1157 (-53)))) (|:| AF (-1 (-1157 (-53)) (-763) (-763) (-1201 (-1157 (-53))))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 (-53)) (-763)))) (-634 (-465))) (-1161)) NIL (|has| (-53) (-1037 (-1161)))) (((-2 (|:| |guessStream| (-1 (-1141 (-1201 (-53))) (-1201 (-53)))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-53)))) (-1201 (-1157 (-53))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 (-53) (-763) (-763) (-1157 (-53)))) (|:| AF (-1 (-1157 (-53)) (-763) (-763) (-1201 (-1157 (-53))))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 (-53)) (-763)))) (-634 (-465))) NIL))) +(((-482) (-10 -7 (-15 -1633 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)))) (-15 -1633 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465)))) (-15 -1633 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465)))) (-634 (-1161)))) (-15 -1633 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465)))) (-634 (-1161)) (-634 (-465)))) (-15 -1829 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)))) (-15 -1829 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465)))) (-15 -1961 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)))) (-15 -1961 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465)))) (IF (|has| (-53) (-1037 (-1161))) (IF (|has| (-53) (-1037 (-1161))) (PROGN (-15 -1829 ((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465))) (-1161))) (-15 -1961 ((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465))) (-1161)))) |noBranch|) |noBranch|) (-15 -1761 ((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465))) (-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 (-53))) (-1201 (-53)))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-53)))) (-1201 (-1157 (-53))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 (-53) (-763) (-763) (-1157 (-53)))) (|:| AF (-1 (-1157 (-53)) (-763) (-763) (-1201 (-1157 (-53))))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 (-53)) (-763)))) (-634 (-465))))) (-15 -3641 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)))) (-15 -3641 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465)))) (-15 -2017 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)))) (-15 -2017 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465)))) (-15 -2659 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)))) (-15 -2659 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465)))) (-15 -4102 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465)))) (-15 -4102 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)))) (-15 -4329 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)))) (-15 -4329 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465)))) (-15 -2788 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465)))) (-15 -2788 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)))) (-15 -1414 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465)))) (-15 -1414 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)))) (-15 -3430 ((-2 (|:| |guessStream| (-1 (-1141 (-1201 (-53))) (-1201 (-53)))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-53)))) (-1201 (-1157 (-53))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 (-53) (-763) (-763) (-1157 (-53)))) (|:| AF (-1 (-1157 (-53)) (-763) (-763) (-1201 (-1157 (-53))))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 (-53)) (-763)))) (-634 (-465)))) (-15 -4089 ((-2 (|:| |guessStream| (-1 (-1141 (-1201 (-53))) (-1201 (-53)))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-53)))) (-1201 (-1157 (-53))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 (-53) (-763) (-763) (-1157 (-53)))) (|:| AF (-1 (-1157 (-53)) (-763) (-763) (-1201 (-1157 (-53))))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 (-53)) (-763)))) (-634 (-465)))) (IF (|has| (-53) (-1037 (-1161))) (IF (|has| (-53) (-1037 (-1161))) (PROGN (-15 -4089 ((-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 (-53))) (-1201 (-53)))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-53)))) (-1201 (-1157 (-53))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 (-53) (-763) (-763) (-1157 (-53)))) (|:| AF (-1 (-1157 (-53)) (-763) (-763) (-1201 (-1157 (-53))))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 (-53)) (-763)))) (-634 (-465))) (-1161))) (-15 -3430 ((-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 (-53))) (-1201 (-53)))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-53)))) (-1201 (-1157 (-53))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 (-53) (-763) (-763) (-1157 (-53)))) (|:| AF (-1 (-1157 (-53)) (-763) (-763) (-1201 (-1157 (-53))))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 (-53)) (-763)))) (-634 (-465))) (-1161))) (-15 -4329 ((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465))) (-1161))) (-15 -2788 ((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465))) (-1161))) (-15 -1414 ((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465))) (-1161))) (-15 -3641 ((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465))) (-1161)))) |noBranch|) |noBranch|))) (T -482)) +((-3641 (*1 *2 *3) (-12 (-4 (-53) (-1037 *3)) (-5 *3 (-1161)) (-5 *2 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465)))) (-5 *1 (-482)))) (-1414 (*1 *2 *3) (-12 (-4 (-53) (-1037 *3)) (-5 *3 (-1161)) (-5 *2 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465)))) (-5 *1 (-482)))) (-2788 (*1 *2 *3) (-12 (-4 (-53) (-1037 *3)) (-5 *3 (-1161)) (-5 *2 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465)))) (-5 *1 (-482)))) (-4329 (*1 *2 *3) (-12 (-4 (-53) (-1037 *3)) (-5 *3 (-1161)) (-5 *2 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465)))) (-5 *1 (-482)))) (-3430 (*1 *2 *3) (-12 (-4 (-53) (-1037 *3)) (-5 *3 (-1161)) (-5 *2 (-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 (-53))) (-1201 (-53)))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-53)))) (-1201 (-1157 (-53))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) *3)) (|:| A (-1 (-53) (-763) (-763) (-1157 (-53)))) (|:| AF (-1 (-1157 (-53)) (-763) (-763) (-1201 (-1157 (-53))))) (|:| AX (-1 (-310 (-568)) (-763) *3 (-310 (-568)))) (|:| C (-1 (-634 (-53)) (-763)))) (-634 (-465)))) (-5 *1 (-482)))) (-4089 (*1 *2 *3) (-12 (-4 (-53) (-1037 *3)) (-5 *3 (-1161)) (-5 *2 (-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 (-53))) (-1201 (-53)))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-53)))) (-1201 (-1157 (-53))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) *3)) (|:| A (-1 (-53) (-763) (-763) (-1157 (-53)))) (|:| AF (-1 (-1157 (-53)) (-763) (-763) (-1201 (-1157 (-53))))) (|:| AX (-1 (-310 (-568)) (-763) *3 (-310 (-568)))) (|:| C (-1 (-634 (-53)) (-763)))) (-634 (-465)))) (-5 *1 (-482)))) (-4089 (*1 *2 *3) (-12 (-5 *3 (-634 (-465))) (-5 *2 (-2 (|:| |guessStream| (-1 (-1141 (-1201 (-53))) (-1201 (-53)))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-53)))) (-1201 (-1157 (-53))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 (-53) (-763) (-763) (-1157 (-53)))) (|:| AF (-1 (-1157 (-53)) (-763) (-763) (-1201 (-1157 (-53))))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 (-53)) (-763))))) (-5 *1 (-482)))) (-3430 (*1 *2 *3) (-12 (-5 *3 (-634 (-465))) (-5 *2 (-2 (|:| |guessStream| (-1 (-1141 (-1201 (-53))) (-1201 (-53)))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-53)))) (-1201 (-1157 (-53))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 (-53) (-763) (-763) (-1157 (-53)))) (|:| AF (-1 (-1157 (-53)) (-763) (-763) (-1201 (-1157 (-53))))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 (-53)) (-763))))) (-5 *1 (-482)))) (-1414 (*1 *2 *3) (-12 (-5 *3 (-634 (-53))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-482)))) (-1414 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-53))) (-5 *4 (-634 (-465))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-482)))) (-2788 (*1 *2 *3) (-12 (-5 *3 (-634 (-53))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-482)))) (-2788 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-53))) (-5 *4 (-634 (-465))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-482)))) (-4329 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-53))) (-5 *4 (-634 (-465))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-482)))) (-4329 (*1 *2 *3) (-12 (-5 *3 (-634 (-53))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-482)))) (-4102 (*1 *2 *3) (-12 (-5 *3 (-634 (-53))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-482)))) (-4102 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-53))) (-5 *4 (-634 (-465))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-482)))) (-2659 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-53))) (-5 *4 (-634 (-465))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-482)))) (-2659 (*1 *2 *3) (-12 (-5 *3 (-634 (-53))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-482)))) (-2017 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-53))) (-5 *4 (-634 (-465))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-482)))) (-2017 (*1 *2 *3) (-12 (-5 *3 (-634 (-53))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-482)))) (-3641 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-53))) (-5 *4 (-634 (-465))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-482)))) (-3641 (*1 *2 *3) (-12 (-5 *3 (-634 (-53))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-482)))) (-1761 (*1 *2 *3) (-12 (-5 *3 (-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 (-53))) (-1201 (-53)))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-53)))) (-1201 (-1157 (-53))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 (-53) (-763) (-763) (-1157 (-53)))) (|:| AF (-1 (-1157 (-53)) (-763) (-763) (-1201 (-1157 (-53))))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 (-53)) (-763)))) (-634 (-465)))) (-5 *2 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465)))) (-5 *1 (-482)))) (-1961 (*1 *2 *3) (-12 (-4 (-53) (-1037 *3)) (-5 *3 (-1161)) (-5 *2 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465)))) (-5 *1 (-482)))) (-1829 (*1 *2 *3) (-12 (-4 (-53) (-1037 *3)) (-5 *3 (-1161)) (-5 *2 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465)))) (-5 *1 (-482)))) (-1961 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-53))) (-5 *4 (-634 (-465))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-482)))) (-1961 (*1 *2 *3) (-12 (-5 *3 (-634 (-53))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-482)))) (-1829 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-53))) (-5 *4 (-634 (-465))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-482)))) (-1829 (*1 *2 *3) (-12 (-5 *3 (-634 (-53))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-482)))) (-1633 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-634 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465))))) (-5 *5 (-634 (-1161))) (-5 *6 (-634 (-465))) (-5 *3 (-634 (-53))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-482)))) (-1633 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-634 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465))))) (-5 *5 (-634 (-1161))) (-5 *3 (-634 (-53))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-482)))) (-1633 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-53))) (-5 *4 (-634 (-465))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-482)))) (-1633 (*1 *2 *3) (-12 (-5 *3 (-634 (-53))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-482))))) +(-10 -7 (-15 -1633 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)))) (-15 -1633 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465)))) (-15 -1633 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465)))) (-634 (-1161)))) (-15 -1633 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465)))) (-634 (-1161)) (-634 (-465)))) (-15 -1829 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)))) (-15 -1829 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465)))) (-15 -1961 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)))) (-15 -1961 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465)))) (IF (|has| (-53) (-1037 (-1161))) (IF (|has| (-53) (-1037 (-1161))) (PROGN (-15 -1829 ((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465))) (-1161))) (-15 -1961 ((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465))) (-1161)))) |noBranch|) |noBranch|) (-15 -1761 ((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465))) (-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 (-53))) (-1201 (-53)))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-53)))) (-1201 (-1157 (-53))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 (-53) (-763) (-763) (-1157 (-53)))) (|:| AF (-1 (-1157 (-53)) (-763) (-763) (-1201 (-1157 (-53))))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 (-53)) (-763)))) (-634 (-465))))) (-15 -3641 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)))) (-15 -3641 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465)))) (-15 -2017 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)))) (-15 -2017 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465)))) (-15 -2659 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)))) (-15 -2659 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465)))) (-15 -4102 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465)))) (-15 -4102 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)))) (-15 -4329 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)))) (-15 -4329 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465)))) (-15 -2788 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465)))) (-15 -2788 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)))) (-15 -1414 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465)))) (-15 -1414 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)))) (-15 -3430 ((-2 (|:| |guessStream| (-1 (-1141 (-1201 (-53))) (-1201 (-53)))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-53)))) (-1201 (-1157 (-53))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 (-53) (-763) (-763) (-1157 (-53)))) (|:| AF (-1 (-1157 (-53)) (-763) (-763) (-1201 (-1157 (-53))))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 (-53)) (-763)))) (-634 (-465)))) (-15 -4089 ((-2 (|:| |guessStream| (-1 (-1141 (-1201 (-53))) (-1201 (-53)))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-53)))) (-1201 (-1157 (-53))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 (-53) (-763) (-763) (-1157 (-53)))) (|:| AF (-1 (-1157 (-53)) (-763) (-763) (-1201 (-1157 (-53))))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 (-53)) (-763)))) (-634 (-465)))) (IF (|has| (-53) (-1037 (-1161))) (IF (|has| (-53) (-1037 (-1161))) (PROGN (-15 -4089 ((-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 (-53))) (-1201 (-53)))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-53)))) (-1201 (-1157 (-53))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 (-53) (-763) (-763) (-1157 (-53)))) (|:| AF (-1 (-1157 (-53)) (-763) (-763) (-1201 (-1157 (-53))))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 (-53)) (-763)))) (-634 (-465))) (-1161))) (-15 -3430 ((-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 (-53))) (-1201 (-53)))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-53)))) (-1201 (-1157 (-53))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 (-53) (-763) (-763) (-1157 (-53)))) (|:| AF (-1 (-1157 (-53)) (-763) (-763) (-1201 (-1157 (-53))))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 (-53)) (-763)))) (-634 (-465))) (-1161))) (-15 -4329 ((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465))) (-1161))) (-15 -2788 ((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465))) (-1161))) (-15 -1414 ((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465))) (-1161))) (-15 -3641 ((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465))) (-1161)))) |noBranch|) |noBranch|)) +((-4324 (((-310 (-568)) |#1|) 11))) +(((-483 |#1|) (-10 -7 (-15 -4324 ((-310 (-568)) |#1|))) (-13 (-350) (-609 (-568)))) (T -483)) +((-4324 (*1 *2 *3) (-12 (-5 *2 (-310 (-568))) (-5 *1 (-483 *3)) (-4 *3 (-13 (-350) (-609 (-568))))))) +(-10 -7 (-15 -4324 ((-310 (-568)) |#1|))) +((-4089 (((-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 |#1|)) (-1201 |#1|))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 |#1|))) (-1201 (-1157 |#1|)))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 |#1| (-763) (-763) (-1157 |#1|))) (|:| AF (-1 (-1157 |#1|) (-763) (-763) (-1201 (-1157 |#1|)))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 |#1|) (-763)))) (-634 (-465))) (-1161)) NIL (|has| |#1| (-1037 (-1161)))) (((-2 (|:| |guessStream| (-1 (-1141 (-1201 |#1|)) (-1201 |#1|))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 |#1|))) (-1201 (-1157 |#1|)))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 |#1| (-763) (-763) (-1157 |#1|))) (|:| AF (-1 (-1157 |#1|) (-763) (-763) (-1201 (-1157 |#1|)))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 |#1|) (-763)))) (-634 (-465))) NIL)) (-4329 (((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465))) (-1161)) NIL (|has| |#1| (-1037 (-1161)))) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465))) NIL) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|)) NIL)) (-1414 (((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465))) (-1161)) NIL (|has| |#1| (-1037 (-1161)))) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|)) NIL) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465))) NIL)) (-4102 (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|)) NIL) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465))) NIL)) (-2788 (((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465))) (-1161)) NIL (|has| |#1| (-1037 (-1161)))) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|)) NIL) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465))) NIL)) (-2659 (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465))) NIL) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|)) NIL)) (-1761 (((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465))) (-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 |#1|)) (-1201 |#1|))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 |#1|))) (-1201 (-1157 |#1|)))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 |#1| (-763) (-763) (-1157 |#1|))) (|:| AF (-1 (-1157 |#1|) (-763) (-763) (-1201 (-1157 |#1|)))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 |#1|) (-763)))) (-634 (-465)))) NIL)) (-1829 (((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465))) (-1161)) NIL (|has| |#1| (-1037 (-1161)))) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465))) NIL) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|)) NIL)) (-1961 (((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465))) (-1161)) NIL (|has| |#1| (-1037 (-1161)))) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465))) NIL) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|)) NIL)) (-2017 (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465))) NIL) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|)) NIL)) (-3641 (((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465))) (-1161)) NIL (|has| |#1| (-1037 (-1161)))) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465))) NIL) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|)) NIL)) (-1633 (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465)))) (-634 (-1161)) (-634 (-465))) NIL) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465)))) (-634 (-1161))) NIL) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465))) NIL) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|)) NIL)) (-3430 (((-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 |#1|)) (-1201 |#1|))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 |#1|))) (-1201 (-1157 |#1|)))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 |#1| (-763) (-763) (-1157 |#1|))) (|:| AF (-1 (-1157 |#1|) (-763) (-763) (-1201 (-1157 |#1|)))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 |#1|) (-763)))) (-634 (-465))) (-1161)) NIL (|has| |#1| (-1037 (-1161)))) (((-2 (|:| |guessStream| (-1 (-1141 (-1201 |#1|)) (-1201 |#1|))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 |#1|))) (-1201 (-1157 |#1|)))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 |#1| (-763) (-763) (-1157 |#1|))) (|:| AF (-1 (-1157 |#1|) (-763) (-763) (-1201 (-1157 |#1|)))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 |#1|) (-763)))) (-634 (-465))) NIL))) +(((-484 |#1|) (-10 -7 (-15 -1633 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|))) (-15 -1633 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465)))) (-15 -1633 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465)))) (-634 (-1161)))) (-15 -1633 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465)))) (-634 (-1161)) (-634 (-465)))) (-15 -1829 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|))) (-15 -1829 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465)))) (-15 -1961 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|))) (-15 -1961 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465)))) (IF (|has| |#1| (-1037 (-1161))) (IF (|has| |#1| (-1037 (-1161))) (PROGN (-15 -1829 ((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465))) (-1161))) (-15 -1961 ((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465))) (-1161)))) |noBranch|) |noBranch|) (-15 -1761 ((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465))) (-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 |#1|)) (-1201 |#1|))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 |#1|))) (-1201 (-1157 |#1|)))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 |#1| (-763) (-763) (-1157 |#1|))) (|:| AF (-1 (-1157 |#1|) (-763) (-763) (-1201 (-1157 |#1|)))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 |#1|) (-763)))) (-634 (-465))))) (-15 -3641 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|))) (-15 -3641 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465)))) (-15 -2017 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|))) (-15 -2017 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465)))) (-15 -2659 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|))) (-15 -2659 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465)))) (-15 -4102 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465)))) (-15 -4102 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|))) (-15 -4329 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|))) (-15 -4329 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465)))) (-15 -2788 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465)))) (-15 -2788 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|))) (-15 -1414 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465)))) (-15 -1414 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|))) (-15 -3430 ((-2 (|:| |guessStream| (-1 (-1141 (-1201 |#1|)) (-1201 |#1|))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 |#1|))) (-1201 (-1157 |#1|)))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 |#1| (-763) (-763) (-1157 |#1|))) (|:| AF (-1 (-1157 |#1|) (-763) (-763) (-1201 (-1157 |#1|)))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 |#1|) (-763)))) (-634 (-465)))) (-15 -4089 ((-2 (|:| |guessStream| (-1 (-1141 (-1201 |#1|)) (-1201 |#1|))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 |#1|))) (-1201 (-1157 |#1|)))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 |#1| (-763) (-763) (-1157 |#1|))) (|:| AF (-1 (-1157 |#1|) (-763) (-763) (-1201 (-1157 |#1|)))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 |#1|) (-763)))) (-634 (-465)))) (IF (|has| |#1| (-1037 (-1161))) (IF (|has| |#1| (-1037 (-1161))) (PROGN (-15 -4089 ((-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 |#1|)) (-1201 |#1|))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 |#1|))) (-1201 (-1157 |#1|)))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 |#1| (-763) (-763) (-1157 |#1|))) (|:| AF (-1 (-1157 |#1|) (-763) (-763) (-1201 (-1157 |#1|)))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 |#1|) (-763)))) (-634 (-465))) (-1161))) (-15 -3430 ((-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 |#1|)) (-1201 |#1|))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 |#1|))) (-1201 (-1157 |#1|)))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 |#1| (-763) (-763) (-1157 |#1|))) (|:| AF (-1 (-1157 |#1|) (-763) (-763) (-1201 (-1157 |#1|)))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 |#1|) (-763)))) (-634 (-465))) (-1161))) (-15 -4329 ((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465))) (-1161))) (-15 -2788 ((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465))) (-1161))) (-15 -1414 ((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465))) (-1161))) (-15 -3641 ((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465))) (-1161)))) |noBranch|) |noBranch|)) (-13 (-350) (-609 (-568)))) (T -484)) +((-3641 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 *4) (-634 (-465)))) (-5 *1 (-484 *4)) (-4 *4 (-1037 *3)) (-4 *4 (-13 (-350) (-609 (-568)))))) (-1414 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 *4) (-634 (-465)))) (-5 *1 (-484 *4)) (-4 *4 (-1037 *3)) (-4 *4 (-13 (-350) (-609 (-568)))))) (-2788 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 *4) (-634 (-465)))) (-5 *1 (-484 *4)) (-4 *4 (-1037 *3)) (-4 *4 (-13 (-350) (-609 (-568)))))) (-4329 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 *4) (-634 (-465)))) (-5 *1 (-484 *4)) (-4 *4 (-1037 *3)) (-4 *4 (-13 (-350) (-609 (-568)))))) (-3430 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 *4)) (-1201 *4))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 *4))) (-1201 (-1157 *4)))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) *3)) (|:| A (-1 *4 (-763) (-763) (-1157 *4))) (|:| AF (-1 (-1157 *4) (-763) (-763) (-1201 (-1157 *4)))) (|:| AX (-1 (-310 (-568)) (-763) *3 (-310 (-568)))) (|:| C (-1 (-634 *4) (-763)))) (-634 (-465)))) (-5 *1 (-484 *4)) (-4 *4 (-1037 *3)) (-4 *4 (-13 (-350) (-609 (-568)))))) (-4089 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 *4)) (-1201 *4))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 *4))) (-1201 (-1157 *4)))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) *3)) (|:| A (-1 *4 (-763) (-763) (-1157 *4))) (|:| AF (-1 (-1157 *4) (-763) (-763) (-1201 (-1157 *4)))) (|:| AX (-1 (-310 (-568)) (-763) *3 (-310 (-568)))) (|:| C (-1 (-634 *4) (-763)))) (-634 (-465)))) (-5 *1 (-484 *4)) (-4 *4 (-1037 *3)) (-4 *4 (-13 (-350) (-609 (-568)))))) (-4089 (*1 *2 *3) (-12 (-5 *3 (-634 (-465))) (-5 *2 (-2 (|:| |guessStream| (-1 (-1141 (-1201 *4)) (-1201 *4))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 *4))) (-1201 (-1157 *4)))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 *4 (-763) (-763) (-1157 *4))) (|:| AF (-1 (-1157 *4) (-763) (-763) (-1201 (-1157 *4)))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 *4) (-763))))) (-5 *1 (-484 *4)) (-4 *4 (-13 (-350) (-609 (-568)))))) (-3430 (*1 *2 *3) (-12 (-5 *3 (-634 (-465))) (-5 *2 (-2 (|:| |guessStream| (-1 (-1141 (-1201 *4)) (-1201 *4))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 *4))) (-1201 (-1157 *4)))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 *4 (-763) (-763) (-1157 *4))) (|:| AF (-1 (-1157 *4) (-763) (-763) (-1201 (-1157 *4)))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 *4) (-763))))) (-5 *1 (-484 *4)) (-4 *4 (-13 (-350) (-609 (-568)))))) (-1414 (*1 *2 *3) (-12 (-5 *3 (-634 *4)) (-4 *4 (-13 (-350) (-609 (-568)))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-484 *4)))) (-1414 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *5)) (-5 *4 (-634 (-465))) (-4 *5 (-13 (-350) (-609 (-568)))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-484 *5)))) (-2788 (*1 *2 *3) (-12 (-5 *3 (-634 *4)) (-4 *4 (-13 (-350) (-609 (-568)))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-484 *4)))) (-2788 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *5)) (-5 *4 (-634 (-465))) (-4 *5 (-13 (-350) (-609 (-568)))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-484 *5)))) (-4329 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *5)) (-5 *4 (-634 (-465))) (-4 *5 (-13 (-350) (-609 (-568)))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-484 *5)))) (-4329 (*1 *2 *3) (-12 (-5 *3 (-634 *4)) (-4 *4 (-13 (-350) (-609 (-568)))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-484 *4)))) (-4102 (*1 *2 *3) (-12 (-5 *3 (-634 *4)) (-4 *4 (-13 (-350) (-609 (-568)))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-484 *4)))) (-4102 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *5)) (-5 *4 (-634 (-465))) (-4 *5 (-13 (-350) (-609 (-568)))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-484 *5)))) (-2659 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *5)) (-5 *4 (-634 (-465))) (-4 *5 (-13 (-350) (-609 (-568)))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-484 *5)))) (-2659 (*1 *2 *3) (-12 (-5 *3 (-634 *4)) (-4 *4 (-13 (-350) (-609 (-568)))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-484 *4)))) (-2017 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *5)) (-5 *4 (-634 (-465))) (-4 *5 (-13 (-350) (-609 (-568)))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-484 *5)))) (-2017 (*1 *2 *3) (-12 (-5 *3 (-634 *4)) (-4 *4 (-13 (-350) (-609 (-568)))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-484 *4)))) (-3641 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *5)) (-5 *4 (-634 (-465))) (-4 *5 (-13 (-350) (-609 (-568)))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-484 *5)))) (-3641 (*1 *2 *3) (-12 (-5 *3 (-634 *4)) (-4 *4 (-13 (-350) (-609 (-568)))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-484 *4)))) (-1761 (*1 *2 *3) (-12 (-5 *3 (-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 *4)) (-1201 *4))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 *4))) (-1201 (-1157 *4)))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 *4 (-763) (-763) (-1157 *4))) (|:| AF (-1 (-1157 *4) (-763) (-763) (-1201 (-1157 *4)))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 *4) (-763)))) (-634 (-465)))) (-4 *4 (-13 (-350) (-609 (-568)))) (-5 *2 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 *4) (-634 (-465)))) (-5 *1 (-484 *4)))) (-1961 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 *4) (-634 (-465)))) (-5 *1 (-484 *4)) (-4 *4 (-1037 *3)) (-4 *4 (-13 (-350) (-609 (-568)))))) (-1829 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 *4) (-634 (-465)))) (-5 *1 (-484 *4)) (-4 *4 (-1037 *3)) (-4 *4 (-13 (-350) (-609 (-568)))))) (-1961 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *5)) (-5 *4 (-634 (-465))) (-4 *5 (-13 (-350) (-609 (-568)))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-484 *5)))) (-1961 (*1 *2 *3) (-12 (-5 *3 (-634 *4)) (-4 *4 (-13 (-350) (-609 (-568)))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-484 *4)))) (-1829 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *5)) (-5 *4 (-634 (-465))) (-4 *5 (-13 (-350) (-609 (-568)))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-484 *5)))) (-1829 (*1 *2 *3) (-12 (-5 *3 (-634 *4)) (-4 *4 (-13 (-350) (-609 (-568)))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-484 *4)))) (-1633 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-634 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 *7) (-634 (-465))))) (-5 *5 (-634 (-1161))) (-5 *6 (-634 (-465))) (-5 *3 (-634 *7)) (-4 *7 (-13 (-350) (-609 (-568)))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-484 *7)))) (-1633 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-634 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 *6) (-634 (-465))))) (-5 *5 (-634 (-1161))) (-5 *3 (-634 *6)) (-4 *6 (-13 (-350) (-609 (-568)))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-484 *6)))) (-1633 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *5)) (-5 *4 (-634 (-465))) (-4 *5 (-13 (-350) (-609 (-568)))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-484 *5)))) (-1633 (*1 *2 *3) (-12 (-5 *3 (-634 *4)) (-4 *4 (-13 (-350) (-609 (-568)))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-484 *4))))) +(-10 -7 (-15 -1633 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|))) (-15 -1633 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465)))) (-15 -1633 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465)))) (-634 (-1161)))) (-15 -1633 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465)))) (-634 (-1161)) (-634 (-465)))) (-15 -1829 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|))) (-15 -1829 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465)))) (-15 -1961 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|))) (-15 -1961 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465)))) (IF (|has| |#1| (-1037 (-1161))) (IF (|has| |#1| (-1037 (-1161))) (PROGN (-15 -1829 ((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465))) (-1161))) (-15 -1961 ((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465))) (-1161)))) |noBranch|) |noBranch|) (-15 -1761 ((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465))) (-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 |#1|)) (-1201 |#1|))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 |#1|))) (-1201 (-1157 |#1|)))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 |#1| (-763) (-763) (-1157 |#1|))) (|:| AF (-1 (-1157 |#1|) (-763) (-763) (-1201 (-1157 |#1|)))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 |#1|) (-763)))) (-634 (-465))))) (-15 -3641 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|))) (-15 -3641 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465)))) (-15 -2017 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|))) (-15 -2017 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465)))) (-15 -2659 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|))) (-15 -2659 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465)))) (-15 -4102 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465)))) (-15 -4102 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|))) (-15 -4329 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|))) (-15 -4329 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465)))) (-15 -2788 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465)))) (-15 -2788 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|))) (-15 -1414 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465)))) (-15 -1414 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|))) (-15 -3430 ((-2 (|:| |guessStream| (-1 (-1141 (-1201 |#1|)) (-1201 |#1|))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 |#1|))) (-1201 (-1157 |#1|)))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 |#1| (-763) (-763) (-1157 |#1|))) (|:| AF (-1 (-1157 |#1|) (-763) (-763) (-1201 (-1157 |#1|)))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 |#1|) (-763)))) (-634 (-465)))) (-15 -4089 ((-2 (|:| |guessStream| (-1 (-1141 (-1201 |#1|)) (-1201 |#1|))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 |#1|))) (-1201 (-1157 |#1|)))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 |#1| (-763) (-763) (-1157 |#1|))) (|:| AF (-1 (-1157 |#1|) (-763) (-763) (-1201 (-1157 |#1|)))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 |#1|) (-763)))) (-634 (-465)))) (IF (|has| |#1| (-1037 (-1161))) (IF (|has| |#1| (-1037 (-1161))) (PROGN (-15 -4089 ((-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 |#1|)) (-1201 |#1|))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 |#1|))) (-1201 (-1157 |#1|)))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 |#1| (-763) (-763) (-1157 |#1|))) (|:| AF (-1 (-1157 |#1|) (-763) (-763) (-1201 (-1157 |#1|)))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 |#1|) (-763)))) (-634 (-465))) (-1161))) (-15 -3430 ((-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 |#1|)) (-1201 |#1|))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 |#1|))) (-1201 (-1157 |#1|)))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 |#1| (-763) (-763) (-1157 |#1|))) (|:| AF (-1 (-1157 |#1|) (-763) (-763) (-1201 (-1157 |#1|)))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 |#1|) (-763)))) (-634 (-465))) (-1161))) (-15 -4329 ((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465))) (-1161))) (-15 -2788 ((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465))) (-1161))) (-15 -1414 ((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465))) (-1161))) (-15 -3641 ((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465))) (-1161)))) |noBranch|) |noBranch|)) +((-4089 (((-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 (-409 (-568)))) (-1201 (-409 (-568))))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-409 (-568))))) (-1201 (-1157 (-409 (-568)))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 (-568) (-763) (-763) (-1157 (-568)))) (|:| AF (-1 (-1157 (-409 (-568))) (-763) (-763) (-1201 (-1157 (-409 (-568)))))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 (-568)) (-763)))) (-634 (-465))) (-1161)) NIL (-12 (|has| (-409 (-568)) (-1037 (-1161))) (|has| (-568) (-1037 (-1161))))) (((-2 (|:| |guessStream| (-1 (-1141 (-1201 (-409 (-568)))) (-1201 (-409 (-568))))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-409 (-568))))) (-1201 (-1157 (-409 (-568)))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 (-568) (-763) (-763) (-1157 (-568)))) (|:| AF (-1 (-1157 (-409 (-568))) (-763) (-763) (-1201 (-1157 (-409 (-568)))))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 (-568)) (-763)))) (-634 (-465))) NIL)) (-4329 (((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465))) (-1161)) NIL (-12 (|has| (-409 (-568)) (-1037 (-1161))) (|has| (-568) (-1037 (-1161))))) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465))) NIL) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568)))) NIL)) (-1414 (((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465))) (-1161)) NIL (-12 (|has| (-409 (-568)) (-1037 (-1161))) (|has| (-568) (-1037 (-1161))))) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568)))) NIL) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465))) NIL)) (-4102 (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568)))) NIL) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465))) NIL)) (-2788 (((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465))) (-1161)) NIL (-12 (|has| (-409 (-568)) (-1037 (-1161))) (|has| (-568) (-1037 (-1161))))) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568)))) NIL) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465))) NIL)) (-2659 (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465))) NIL) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568)))) NIL)) (-1761 (((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465))) (-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 (-409 (-568)))) (-1201 (-409 (-568))))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-409 (-568))))) (-1201 (-1157 (-409 (-568)))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 (-568) (-763) (-763) (-1157 (-568)))) (|:| AF (-1 (-1157 (-409 (-568))) (-763) (-763) (-1201 (-1157 (-409 (-568)))))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 (-568)) (-763)))) (-634 (-465)))) NIL)) (-1829 (((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465))) (-1161)) NIL (-12 (|has| (-409 (-568)) (-1037 (-1161))) (|has| (-568) (-1037 (-1161))))) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465))) NIL) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568)))) NIL)) (-1961 (((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465))) (-1161)) NIL (-12 (|has| (-409 (-568)) (-1037 (-1161))) (|has| (-568) (-1037 (-1161))))) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465))) NIL) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568)))) NIL)) (-2017 (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465))) NIL) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568)))) NIL)) (-3641 (((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465))) (-1161)) NIL (-12 (|has| (-409 (-568)) (-1037 (-1161))) (|has| (-568) (-1037 (-1161))))) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465))) NIL) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568)))) NIL)) (-1633 (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465)))) (-634 (-1161)) (-634 (-465))) NIL) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465)))) (-634 (-1161))) NIL) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465))) NIL) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568)))) NIL)) (-3430 (((-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 (-409 (-568)))) (-1201 (-409 (-568))))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-409 (-568))))) (-1201 (-1157 (-409 (-568)))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 (-568) (-763) (-763) (-1157 (-568)))) (|:| AF (-1 (-1157 (-409 (-568))) (-763) (-763) (-1201 (-1157 (-409 (-568)))))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 (-568)) (-763)))) (-634 (-465))) (-1161)) NIL (-12 (|has| (-409 (-568)) (-1037 (-1161))) (|has| (-568) (-1037 (-1161))))) (((-2 (|:| |guessStream| (-1 (-1141 (-1201 (-409 (-568)))) (-1201 (-409 (-568))))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-409 (-568))))) (-1201 (-1157 (-409 (-568)))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 (-568) (-763) (-763) (-1157 (-568)))) (|:| AF (-1 (-1157 (-409 (-568))) (-763) (-763) (-1201 (-1157 (-409 (-568)))))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 (-568)) (-763)))) (-634 (-465))) NIL))) +(((-485) (-10 -7 (-15 -1633 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))))) (-15 -1633 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465)))) (-15 -1633 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465)))) (-634 (-1161)))) (-15 -1633 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465)))) (-634 (-1161)) (-634 (-465)))) (-15 -1829 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))))) (-15 -1829 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465)))) (-15 -1961 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))))) (-15 -1961 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465)))) (IF (|has| (-409 (-568)) (-1037 (-1161))) (IF (|has| (-568) (-1037 (-1161))) (PROGN (-15 -1829 ((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465))) (-1161))) (-15 -1961 ((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465))) (-1161)))) |noBranch|) |noBranch|) (-15 -1761 ((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465))) (-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 (-409 (-568)))) (-1201 (-409 (-568))))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-409 (-568))))) (-1201 (-1157 (-409 (-568)))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 (-568) (-763) (-763) (-1157 (-568)))) (|:| AF (-1 (-1157 (-409 (-568))) (-763) (-763) (-1201 (-1157 (-409 (-568)))))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 (-568)) (-763)))) (-634 (-465))))) (-15 -3641 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))))) (-15 -3641 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465)))) (-15 -2017 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))))) (-15 -2017 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465)))) (-15 -2659 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))))) (-15 -2659 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465)))) (-15 -4102 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465)))) (-15 -4102 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))))) (-15 -4329 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))))) (-15 -4329 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465)))) (-15 -2788 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465)))) (-15 -2788 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))))) (-15 -1414 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465)))) (-15 -1414 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))))) (-15 -3430 ((-2 (|:| |guessStream| (-1 (-1141 (-1201 (-409 (-568)))) (-1201 (-409 (-568))))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-409 (-568))))) (-1201 (-1157 (-409 (-568)))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 (-568) (-763) (-763) (-1157 (-568)))) (|:| AF (-1 (-1157 (-409 (-568))) (-763) (-763) (-1201 (-1157 (-409 (-568)))))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 (-568)) (-763)))) (-634 (-465)))) (-15 -4089 ((-2 (|:| |guessStream| (-1 (-1141 (-1201 (-409 (-568)))) (-1201 (-409 (-568))))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-409 (-568))))) (-1201 (-1157 (-409 (-568)))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 (-568) (-763) (-763) (-1157 (-568)))) (|:| AF (-1 (-1157 (-409 (-568))) (-763) (-763) (-1201 (-1157 (-409 (-568)))))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 (-568)) (-763)))) (-634 (-465)))) (IF (|has| (-409 (-568)) (-1037 (-1161))) (IF (|has| (-568) (-1037 (-1161))) (PROGN (-15 -4089 ((-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 (-409 (-568)))) (-1201 (-409 (-568))))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-409 (-568))))) (-1201 (-1157 (-409 (-568)))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 (-568) (-763) (-763) (-1157 (-568)))) (|:| AF (-1 (-1157 (-409 (-568))) (-763) (-763) (-1201 (-1157 (-409 (-568)))))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 (-568)) (-763)))) (-634 (-465))) (-1161))) (-15 -3430 ((-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 (-409 (-568)))) (-1201 (-409 (-568))))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-409 (-568))))) (-1201 (-1157 (-409 (-568)))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 (-568) (-763) (-763) (-1157 (-568)))) (|:| AF (-1 (-1157 (-409 (-568))) (-763) (-763) (-1201 (-1157 (-409 (-568)))))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 (-568)) (-763)))) (-634 (-465))) (-1161))) (-15 -4329 ((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465))) (-1161))) (-15 -2788 ((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465))) (-1161))) (-15 -1414 ((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465))) (-1161))) (-15 -3641 ((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465))) (-1161)))) |noBranch|) |noBranch|))) (T -485)) +((-3641 (*1 *2 *3) (-12 (-4 (-409 (-568)) (-1037 *3)) (-4 (-568) (-1037 *3)) (-5 *3 (-1161)) (-5 *2 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465)))) (-5 *1 (-485)))) (-1414 (*1 *2 *3) (-12 (-4 (-409 (-568)) (-1037 *3)) (-4 (-568) (-1037 *3)) (-5 *3 (-1161)) (-5 *2 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465)))) (-5 *1 (-485)))) (-2788 (*1 *2 *3) (-12 (-4 (-409 (-568)) (-1037 *3)) (-4 (-568) (-1037 *3)) (-5 *3 (-1161)) (-5 *2 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465)))) (-5 *1 (-485)))) (-4329 (*1 *2 *3) (-12 (-4 (-409 (-568)) (-1037 *3)) (-4 (-568) (-1037 *3)) (-5 *3 (-1161)) (-5 *2 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465)))) (-5 *1 (-485)))) (-3430 (*1 *2 *3) (-12 (-4 (-409 (-568)) (-1037 *3)) (-4 (-568) (-1037 *3)) (-5 *3 (-1161)) (-5 *2 (-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 (-409 (-568)))) (-1201 (-409 (-568))))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-409 (-568))))) (-1201 (-1157 (-409 (-568)))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) *3)) (|:| A (-1 (-568) (-763) (-763) (-1157 (-568)))) (|:| AF (-1 (-1157 (-409 (-568))) (-763) (-763) (-1201 (-1157 (-409 (-568)))))) (|:| AX (-1 (-310 (-568)) (-763) *3 (-310 (-568)))) (|:| C (-1 (-634 (-568)) (-763)))) (-634 (-465)))) (-5 *1 (-485)))) (-4089 (*1 *2 *3) (-12 (-4 (-409 (-568)) (-1037 *3)) (-4 (-568) (-1037 *3)) (-5 *3 (-1161)) (-5 *2 (-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 (-409 (-568)))) (-1201 (-409 (-568))))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-409 (-568))))) (-1201 (-1157 (-409 (-568)))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) *3)) (|:| A (-1 (-568) (-763) (-763) (-1157 (-568)))) (|:| AF (-1 (-1157 (-409 (-568))) (-763) (-763) (-1201 (-1157 (-409 (-568)))))) (|:| AX (-1 (-310 (-568)) (-763) *3 (-310 (-568)))) (|:| C (-1 (-634 (-568)) (-763)))) (-634 (-465)))) (-5 *1 (-485)))) (-4089 (*1 *2 *3) (-12 (-5 *3 (-634 (-465))) (-5 *2 (-2 (|:| |guessStream| (-1 (-1141 (-1201 (-409 (-568)))) (-1201 (-409 (-568))))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-409 (-568))))) (-1201 (-1157 (-409 (-568)))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 (-568) (-763) (-763) (-1157 (-568)))) (|:| AF (-1 (-1157 (-409 (-568))) (-763) (-763) (-1201 (-1157 (-409 (-568)))))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 (-568)) (-763))))) (-5 *1 (-485)))) (-3430 (*1 *2 *3) (-12 (-5 *3 (-634 (-465))) (-5 *2 (-2 (|:| |guessStream| (-1 (-1141 (-1201 (-409 (-568)))) (-1201 (-409 (-568))))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-409 (-568))))) (-1201 (-1157 (-409 (-568)))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 (-568) (-763) (-763) (-1157 (-568)))) (|:| AF (-1 (-1157 (-409 (-568))) (-763) (-763) (-1201 (-1157 (-409 (-568)))))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 (-568)) (-763))))) (-5 *1 (-485)))) (-1414 (*1 *2 *3) (-12 (-5 *3 (-634 (-409 (-568)))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-485)))) (-1414 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-568)))) (-5 *4 (-634 (-465))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-485)))) (-2788 (*1 *2 *3) (-12 (-5 *3 (-634 (-409 (-568)))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-485)))) (-2788 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-568)))) (-5 *4 (-634 (-465))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-485)))) (-4329 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-568)))) (-5 *4 (-634 (-465))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-485)))) (-4329 (*1 *2 *3) (-12 (-5 *3 (-634 (-409 (-568)))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-485)))) (-4102 (*1 *2 *3) (-12 (-5 *3 (-634 (-409 (-568)))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-485)))) (-4102 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-568)))) (-5 *4 (-634 (-465))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-485)))) (-2659 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-568)))) (-5 *4 (-634 (-465))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-485)))) (-2659 (*1 *2 *3) (-12 (-5 *3 (-634 (-409 (-568)))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-485)))) (-2017 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-568)))) (-5 *4 (-634 (-465))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-485)))) (-2017 (*1 *2 *3) (-12 (-5 *3 (-634 (-409 (-568)))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-485)))) (-3641 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-568)))) (-5 *4 (-634 (-465))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-485)))) (-3641 (*1 *2 *3) (-12 (-5 *3 (-634 (-409 (-568)))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-485)))) (-1761 (*1 *2 *3) (-12 (-5 *3 (-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 (-409 (-568)))) (-1201 (-409 (-568))))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-409 (-568))))) (-1201 (-1157 (-409 (-568)))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 (-568) (-763) (-763) (-1157 (-568)))) (|:| AF (-1 (-1157 (-409 (-568))) (-763) (-763) (-1201 (-1157 (-409 (-568)))))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 (-568)) (-763)))) (-634 (-465)))) (-5 *2 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465)))) (-5 *1 (-485)))) (-1961 (*1 *2 *3) (-12 (-4 (-409 (-568)) (-1037 *3)) (-4 (-568) (-1037 *3)) (-5 *3 (-1161)) (-5 *2 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465)))) (-5 *1 (-485)))) (-1829 (*1 *2 *3) (-12 (-4 (-409 (-568)) (-1037 *3)) (-4 (-568) (-1037 *3)) (-5 *3 (-1161)) (-5 *2 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465)))) (-5 *1 (-485)))) (-1961 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-568)))) (-5 *4 (-634 (-465))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-485)))) (-1961 (*1 *2 *3) (-12 (-5 *3 (-634 (-409 (-568)))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-485)))) (-1829 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-568)))) (-5 *4 (-634 (-465))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-485)))) (-1829 (*1 *2 *3) (-12 (-5 *3 (-634 (-409 (-568)))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-485)))) (-1633 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-634 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465))))) (-5 *5 (-634 (-1161))) (-5 *6 (-634 (-465))) (-5 *3 (-634 (-409 (-568)))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-485)))) (-1633 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-634 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465))))) (-5 *5 (-634 (-1161))) (-5 *3 (-634 (-409 (-568)))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-485)))) (-1633 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-568)))) (-5 *4 (-634 (-465))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-485)))) (-1633 (*1 *2 *3) (-12 (-5 *3 (-634 (-409 (-568)))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-485))))) +(-10 -7 (-15 -1633 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))))) (-15 -1633 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465)))) (-15 -1633 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465)))) (-634 (-1161)))) (-15 -1633 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465)))) (-634 (-1161)) (-634 (-465)))) (-15 -1829 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))))) (-15 -1829 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465)))) (-15 -1961 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))))) (-15 -1961 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465)))) (IF (|has| (-409 (-568)) (-1037 (-1161))) (IF (|has| (-568) (-1037 (-1161))) (PROGN (-15 -1829 ((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465))) (-1161))) (-15 -1961 ((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465))) (-1161)))) |noBranch|) |noBranch|) (-15 -1761 ((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465))) (-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 (-409 (-568)))) (-1201 (-409 (-568))))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-409 (-568))))) (-1201 (-1157 (-409 (-568)))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 (-568) (-763) (-763) (-1157 (-568)))) (|:| AF (-1 (-1157 (-409 (-568))) (-763) (-763) (-1201 (-1157 (-409 (-568)))))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 (-568)) (-763)))) (-634 (-465))))) (-15 -3641 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))))) (-15 -3641 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465)))) (-15 -2017 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))))) (-15 -2017 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465)))) (-15 -2659 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))))) (-15 -2659 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465)))) (-15 -4102 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465)))) (-15 -4102 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))))) (-15 -4329 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))))) (-15 -4329 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465)))) (-15 -2788 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465)))) (-15 -2788 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))))) (-15 -1414 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465)))) (-15 -1414 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))))) (-15 -3430 ((-2 (|:| |guessStream| (-1 (-1141 (-1201 (-409 (-568)))) (-1201 (-409 (-568))))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-409 (-568))))) (-1201 (-1157 (-409 (-568)))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 (-568) (-763) (-763) (-1157 (-568)))) (|:| AF (-1 (-1157 (-409 (-568))) (-763) (-763) (-1201 (-1157 (-409 (-568)))))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 (-568)) (-763)))) (-634 (-465)))) (-15 -4089 ((-2 (|:| |guessStream| (-1 (-1141 (-1201 (-409 (-568)))) (-1201 (-409 (-568))))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-409 (-568))))) (-1201 (-1157 (-409 (-568)))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 (-568) (-763) (-763) (-1157 (-568)))) (|:| AF (-1 (-1157 (-409 (-568))) (-763) (-763) (-1201 (-1157 (-409 (-568)))))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 (-568)) (-763)))) (-634 (-465)))) (IF (|has| (-409 (-568)) (-1037 (-1161))) (IF (|has| (-568) (-1037 (-1161))) (PROGN (-15 -4089 ((-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 (-409 (-568)))) (-1201 (-409 (-568))))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-409 (-568))))) (-1201 (-1157 (-409 (-568)))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 (-568) (-763) (-763) (-1157 (-568)))) (|:| AF (-1 (-1157 (-409 (-568))) (-763) (-763) (-1201 (-1157 (-409 (-568)))))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 (-568)) (-763)))) (-634 (-465))) (-1161))) (-15 -3430 ((-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 (-409 (-568)))) (-1201 (-409 (-568))))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-409 (-568))))) (-1201 (-1157 (-409 (-568)))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 (-568) (-763) (-763) (-1157 (-568)))) (|:| AF (-1 (-1157 (-409 (-568))) (-763) (-763) (-1201 (-1157 (-409 (-568)))))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 (-568)) (-763)))) (-634 (-465))) (-1161))) (-15 -4329 ((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465))) (-1161))) (-15 -2788 ((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465))) (-1161))) (-15 -1414 ((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465))) (-1161))) (-15 -3641 ((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465))) (-1161)))) |noBranch|) |noBranch|)) +((-4089 (((-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 |#1|)) (-1201 |#1|))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 |#1|))) (-1201 (-1157 |#1|)))) (|:| |exprStream| (-1 (-1141 |#3|) |#3| (-1161))) (|:| A (-1 |#2| (-763) (-763) (-1157 |#2|))) (|:| AF (-1 (-1157 |#1|) (-763) (-763) (-1201 (-1157 |#1|)))) (|:| AX (-1 |#3| (-763) (-1161) |#3|)) (|:| C (-1 (-634 |#2|) (-763)))) (-634 (-465))) (-1161)) 357 (-12 (|has| |#1| (-1037 (-1161))) (|has| |#2| (-1037 (-1161))))) (((-2 (|:| |guessStream| (-1 (-1141 (-1201 |#1|)) (-1201 |#1|))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 |#1|))) (-1201 (-1157 |#1|)))) (|:| |exprStream| (-1 (-1141 |#3|) |#3| (-1161))) (|:| A (-1 |#2| (-763) (-763) (-1157 |#2|))) (|:| AF (-1 (-1157 |#1|) (-763) (-763) (-1201 (-1157 |#1|)))) (|:| AX (-1 |#3| (-763) (-1161) |#3|)) (|:| C (-1 (-634 |#2|) (-763)))) (-634 (-465))) 351)) (-4329 (((-1 (-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465))) (-1161)) 477 (-12 (|has| |#1| (-1037 (-1161))) (|has| |#2| (-1037 (-1161))))) (((-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465))) 470) (((-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|)) 471)) (-1414 (((-1 (-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465))) (-1161)) 480 (-12 (|has| |#1| (-1037 (-1161))) (|has| |#2| (-1037 (-1161))))) (((-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|)) 476) (((-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465))) 475)) (-4102 (((-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|)) 467) (((-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465))) 466)) (-2788 (((-1 (-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465))) (-1161)) 479 (-12 (|has| |#1| (-1037 (-1161))) (|has| |#2| (-1037 (-1161))))) (((-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|)) 473) (((-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465))) 472)) (-2659 (((-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465))) 463) (((-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|)) 464)) (-1761 (((-1 (-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465))) (-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 |#1|)) (-1201 |#1|))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 |#1|))) (-1201 (-1157 |#1|)))) (|:| |exprStream| (-1 (-1141 |#3|) |#3| (-1161))) (|:| A (-1 |#2| (-763) (-763) (-1157 |#2|))) (|:| AF (-1 (-1157 |#1|) (-763) (-763) (-1201 (-1157 |#1|)))) (|:| AX (-1 |#3| (-763) (-1161) |#3|)) (|:| C (-1 (-634 |#2|) (-763)))) (-634 (-465)))) 454)) (-1829 (((-1 (-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465))) (-1161)) 192 (-12 (|has| |#1| (-1037 (-1161))) (|has| |#2| (-1037 (-1161))))) (((-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465))) 190) (((-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|)) 189)) (-1961 (((-1 (-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465))) (-1161)) 218 (-12 (|has| |#1| (-1037 (-1161))) (|has| |#2| (-1037 (-1161))))) (((-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465))) 207) (((-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|)) 206)) (-2017 (((-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465))) 460) (((-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|)) 461)) (-3641 (((-1 (-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465))) (-1161)) 469 (-12 (|has| |#1| (-1037 (-1161))) (|has| |#2| (-1037 (-1161))))) (((-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465))) 457) (((-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|)) 458)) (-1633 (((-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-1 (-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465)))) (-634 (-1161)) (-634 (-465))) 503) (((-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-1 (-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465)))) (-634 (-1161))) 509) (((-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465))) 508) (((-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|)) 507)) (-3430 (((-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 |#1|)) (-1201 |#1|))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 |#1|))) (-1201 (-1157 |#1|)))) (|:| |exprStream| (-1 (-1141 |#3|) |#3| (-1161))) (|:| A (-1 |#2| (-763) (-763) (-1157 |#2|))) (|:| AF (-1 (-1157 |#1|) (-763) (-763) (-1201 (-1157 |#1|)))) (|:| AX (-1 |#3| (-763) (-1161) |#3|)) (|:| C (-1 (-634 |#2|) (-763)))) (-634 (-465))) (-1161)) 327 (-12 (|has| |#1| (-1037 (-1161))) (|has| |#2| (-1037 (-1161))))) (((-2 (|:| |guessStream| (-1 (-1141 (-1201 |#1|)) (-1201 |#1|))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 |#1|))) (-1201 (-1157 |#1|)))) (|:| |exprStream| (-1 (-1141 |#3|) |#3| (-1161))) (|:| A (-1 |#2| (-763) (-763) (-1157 |#2|))) (|:| AF (-1 (-1157 |#1|) (-763) (-763) (-1201 (-1157 |#1|)))) (|:| AX (-1 |#3| (-763) (-1161) |#3|)) (|:| C (-1 (-634 |#2|) (-763)))) (-634 (-465))) 317))) +(((-486 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1633 ((-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|))) (-15 -1633 ((-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465)))) (-15 -1633 ((-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-1 (-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465)))) (-634 (-1161)))) (-15 -1633 ((-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-1 (-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465)))) (-634 (-1161)) (-634 (-465)))) (-15 -1829 ((-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|))) (-15 -1829 ((-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465)))) (-15 -1961 ((-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|))) (-15 -1961 ((-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465)))) (IF (|has| |#1| (-1037 (-1161))) (IF (|has| |#2| (-1037 (-1161))) (PROGN (-15 -1829 ((-1 (-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465))) (-1161))) (-15 -1961 ((-1 (-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465))) (-1161)))) |noBranch|) |noBranch|) (-15 -1761 ((-1 (-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465))) (-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 |#1|)) (-1201 |#1|))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 |#1|))) (-1201 (-1157 |#1|)))) (|:| |exprStream| (-1 (-1141 |#3|) |#3| (-1161))) (|:| A (-1 |#2| (-763) (-763) (-1157 |#2|))) (|:| AF (-1 (-1157 |#1|) (-763) (-763) (-1201 (-1157 |#1|)))) (|:| AX (-1 |#3| (-763) (-1161) |#3|)) (|:| C (-1 (-634 |#2|) (-763)))) (-634 (-465))))) (-15 -3641 ((-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|))) (-15 -3641 ((-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465)))) (-15 -2017 ((-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|))) (-15 -2017 ((-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465)))) (-15 -2659 ((-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|))) (-15 -2659 ((-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465)))) (-15 -4102 ((-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465)))) (-15 -4102 ((-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|))) (-15 -4329 ((-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|))) (-15 -4329 ((-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465)))) (-15 -2788 ((-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465)))) (-15 -2788 ((-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|))) (-15 -1414 ((-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465)))) (-15 -1414 ((-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|))) (-15 -3430 ((-2 (|:| |guessStream| (-1 (-1141 (-1201 |#1|)) (-1201 |#1|))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 |#1|))) (-1201 (-1157 |#1|)))) (|:| |exprStream| (-1 (-1141 |#3|) |#3| (-1161))) (|:| A (-1 |#2| (-763) (-763) (-1157 |#2|))) (|:| AF (-1 (-1157 |#1|) (-763) (-763) (-1201 (-1157 |#1|)))) (|:| AX (-1 |#3| (-763) (-1161) |#3|)) (|:| C (-1 (-634 |#2|) (-763)))) (-634 (-465)))) (-15 -4089 ((-2 (|:| |guessStream| (-1 (-1141 (-1201 |#1|)) (-1201 |#1|))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 |#1|))) (-1201 (-1157 |#1|)))) (|:| |exprStream| (-1 (-1141 |#3|) |#3| (-1161))) (|:| A (-1 |#2| (-763) (-763) (-1157 |#2|))) (|:| AF (-1 (-1157 |#1|) (-763) (-763) (-1201 (-1157 |#1|)))) (|:| AX (-1 |#3| (-763) (-1161) |#3|)) (|:| C (-1 (-634 |#2|) (-763)))) (-634 (-465)))) (IF (|has| |#1| (-1037 (-1161))) (IF (|has| |#2| (-1037 (-1161))) (PROGN (-15 -4089 ((-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 |#1|)) (-1201 |#1|))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 |#1|))) (-1201 (-1157 |#1|)))) (|:| |exprStream| (-1 (-1141 |#3|) |#3| (-1161))) (|:| A (-1 |#2| (-763) (-763) (-1157 |#2|))) (|:| AF (-1 (-1157 |#1|) (-763) (-763) (-1201 (-1157 |#1|)))) (|:| AX (-1 |#3| (-763) (-1161) |#3|)) (|:| C (-1 (-634 |#2|) (-763)))) (-634 (-465))) (-1161))) (-15 -3430 ((-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 |#1|)) (-1201 |#1|))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 |#1|))) (-1201 (-1157 |#1|)))) (|:| |exprStream| (-1 (-1141 |#3|) |#3| (-1161))) (|:| A (-1 |#2| (-763) (-763) (-1157 |#2|))) (|:| AF (-1 (-1157 |#1|) (-763) (-763) (-1201 (-1157 |#1|)))) (|:| AX (-1 |#3| (-763) (-1161) |#3|)) (|:| C (-1 (-634 |#2|) (-763)))) (-634 (-465))) (-1161))) (-15 -4329 ((-1 (-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465))) (-1161))) (-15 -2788 ((-1 (-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465))) (-1161))) (-15 -1414 ((-1 (-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465))) (-1161))) (-15 -3641 ((-1 (-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465))) (-1161)))) |noBranch|) |noBranch|)) (-365) (-453) (-13 (-432 (-568)) (-558) (-1037 |#4|) (-1037 (-1161)) (-1037 (-568)) (-161) (-895 (-1161)) (-10 -8 (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -1332 ($ $)) (-15 -3013 ($ $)) (-15 -2086 ((-121) $)))) (-13 (-842) (-558)) (-1 |#1| |#4|) (-1 |#3| |#1|)) (T -486)) +((-3641 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-4 *7 (-13 (-842) (-558))) (-14 *8 (-1 *4 *7)) (-5 *2 (-1 (-634 (-2 (|:| -1864 *6) (|:| -4477 (-763)))) (-634 *4) (-634 (-465)))) (-5 *1 (-486 *4 *5 *6 *7 *8 *9)) (-4 *4 (-1037 *3)) (-4 *5 (-1037 *3)) (-4 *4 (-365)) (-4 *5 (-453)) (-4 *6 (-13 (-432 (-568)) (-558) (-1037 *7) (-1037 *3) (-1037 (-568)) (-161) (-895 *3) (-10 -8 (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -1332 ($ $)) (-15 -3013 ($ $)) (-15 -2086 ((-121) $))))) (-14 *9 (-1 *6 *4)))) (-1414 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-4 *7 (-13 (-842) (-558))) (-14 *8 (-1 *4 *7)) (-5 *2 (-1 (-634 (-2 (|:| -1864 *6) (|:| -4477 (-763)))) (-634 *4) (-634 (-465)))) (-5 *1 (-486 *4 *5 *6 *7 *8 *9)) (-4 *4 (-1037 *3)) (-4 *5 (-1037 *3)) (-4 *4 (-365)) (-4 *5 (-453)) (-4 *6 (-13 (-432 (-568)) (-558) (-1037 *7) (-1037 *3) (-1037 (-568)) (-161) (-895 *3) (-10 -8 (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -1332 ($ $)) (-15 -3013 ($ $)) (-15 -2086 ((-121) $))))) (-14 *9 (-1 *6 *4)))) (-2788 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-4 *7 (-13 (-842) (-558))) (-14 *8 (-1 *4 *7)) (-5 *2 (-1 (-634 (-2 (|:| -1864 *6) (|:| -4477 (-763)))) (-634 *4) (-634 (-465)))) (-5 *1 (-486 *4 *5 *6 *7 *8 *9)) (-4 *4 (-1037 *3)) (-4 *5 (-1037 *3)) (-4 *4 (-365)) (-4 *5 (-453)) (-4 *6 (-13 (-432 (-568)) (-558) (-1037 *7) (-1037 *3) (-1037 (-568)) (-161) (-895 *3) (-10 -8 (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -1332 ($ $)) (-15 -3013 ($ $)) (-15 -2086 ((-121) $))))) (-14 *9 (-1 *6 *4)))) (-4329 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-4 *7 (-13 (-842) (-558))) (-14 *8 (-1 *4 *7)) (-5 *2 (-1 (-634 (-2 (|:| -1864 *6) (|:| -4477 (-763)))) (-634 *4) (-634 (-465)))) (-5 *1 (-486 *4 *5 *6 *7 *8 *9)) (-4 *4 (-1037 *3)) (-4 *5 (-1037 *3)) (-4 *4 (-365)) (-4 *5 (-453)) (-4 *6 (-13 (-432 (-568)) (-558) (-1037 *7) (-1037 *3) (-1037 (-568)) (-161) (-895 *3) (-10 -8 (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -1332 ($ $)) (-15 -3013 ($ $)) (-15 -2086 ((-121) $))))) (-14 *9 (-1 *6 *4)))) (-3430 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-4 *7 (-13 (-842) (-558))) (-14 *8 (-1 *4 *7)) (-5 *2 (-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 *4)) (-1201 *4))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 *4))) (-1201 (-1157 *4)))) (|:| |exprStream| (-1 (-1141 *6) *6 *3)) (|:| A (-1 *5 (-763) (-763) (-1157 *5))) (|:| AF (-1 (-1157 *4) (-763) (-763) (-1201 (-1157 *4)))) (|:| AX (-1 *6 (-763) *3 *6)) (|:| C (-1 (-634 *5) (-763)))) (-634 (-465)))) (-5 *1 (-486 *4 *5 *6 *7 *8 *9)) (-4 *4 (-1037 *3)) (-4 *5 (-1037 *3)) (-4 *4 (-365)) (-4 *5 (-453)) (-4 *6 (-13 (-432 (-568)) (-558) (-1037 *7) (-1037 *3) (-1037 (-568)) (-161) (-895 *3) (-10 -8 (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -1332 ($ $)) (-15 -3013 ($ $)) (-15 -2086 ((-121) $))))) (-14 *9 (-1 *6 *4)))) (-4089 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-4 *7 (-13 (-842) (-558))) (-14 *8 (-1 *4 *7)) (-5 *2 (-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 *4)) (-1201 *4))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 *4))) (-1201 (-1157 *4)))) (|:| |exprStream| (-1 (-1141 *6) *6 *3)) (|:| A (-1 *5 (-763) (-763) (-1157 *5))) (|:| AF (-1 (-1157 *4) (-763) (-763) (-1201 (-1157 *4)))) (|:| AX (-1 *6 (-763) *3 *6)) (|:| C (-1 (-634 *5) (-763)))) (-634 (-465)))) (-5 *1 (-486 *4 *5 *6 *7 *8 *9)) (-4 *4 (-1037 *3)) (-4 *5 (-1037 *3)) (-4 *4 (-365)) (-4 *5 (-453)) (-4 *6 (-13 (-432 (-568)) (-558) (-1037 *7) (-1037 *3) (-1037 (-568)) (-161) (-895 *3) (-10 -8 (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -1332 ($ $)) (-15 -3013 ($ $)) (-15 -2086 ((-121) $))))) (-14 *9 (-1 *6 *4)))) (-4089 (*1 *2 *3) (-12 (-5 *3 (-634 (-465))) (-4 *7 (-13 (-842) (-558))) (-14 *8 (-1 *4 *7)) (-5 *2 (-2 (|:| |guessStream| (-1 (-1141 (-1201 *4)) (-1201 *4))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 *4))) (-1201 (-1157 *4)))) (|:| |exprStream| (-1 (-1141 *6) *6 (-1161))) (|:| A (-1 *5 (-763) (-763) (-1157 *5))) (|:| AF (-1 (-1157 *4) (-763) (-763) (-1201 (-1157 *4)))) (|:| AX (-1 *6 (-763) (-1161) *6)) (|:| C (-1 (-634 *5) (-763))))) (-5 *1 (-486 *4 *5 *6 *7 *8 *9)) (-4 *4 (-365)) (-4 *5 (-453)) (-4 *6 (-13 (-432 (-568)) (-558) (-1037 *7) (-1037 (-1161)) (-1037 (-568)) (-161) (-895 (-1161)) (-10 -8 (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -1332 ($ $)) (-15 -3013 ($ $)) (-15 -2086 ((-121) $))))) (-14 *9 (-1 *6 *4)))) (-3430 (*1 *2 *3) (-12 (-5 *3 (-634 (-465))) (-4 *7 (-13 (-842) (-558))) (-14 *8 (-1 *4 *7)) (-5 *2 (-2 (|:| |guessStream| (-1 (-1141 (-1201 *4)) (-1201 *4))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 *4))) (-1201 (-1157 *4)))) (|:| |exprStream| (-1 (-1141 *6) *6 (-1161))) (|:| A (-1 *5 (-763) (-763) (-1157 *5))) (|:| AF (-1 (-1157 *4) (-763) (-763) (-1201 (-1157 *4)))) (|:| AX (-1 *6 (-763) (-1161) *6)) (|:| C (-1 (-634 *5) (-763))))) (-5 *1 (-486 *4 *5 *6 *7 *8 *9)) (-4 *4 (-365)) (-4 *5 (-453)) (-4 *6 (-13 (-432 (-568)) (-558) (-1037 *7) (-1037 (-1161)) (-1037 (-568)) (-161) (-895 (-1161)) (-10 -8 (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -1332 ($ $)) (-15 -3013 ($ $)) (-15 -2086 ((-121) $))))) (-14 *9 (-1 *6 *4)))) (-1414 (*1 *2 *3) (-12 (-5 *3 (-634 *4)) (-4 *4 (-365)) (-14 *9 (-1 *6 *4)) (-4 *7 (-13 (-842) (-558))) (-14 *8 (-1 *4 *7)) (-5 *2 (-634 (-2 (|:| -1864 *6) (|:| -4477 (-763))))) (-5 *1 (-486 *4 *5 *6 *7 *8 *9)) (-4 *5 (-453)) (-4 *6 (-13 (-432 (-568)) (-558) (-1037 *7) (-1037 (-1161)) (-1037 (-568)) (-161) (-895 (-1161)) (-10 -8 (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -1332 ($ $)) (-15 -3013 ($ $)) (-15 -2086 ((-121) $))))))) (-1414 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *5)) (-5 *4 (-634 (-465))) (-4 *5 (-365)) (-14 *10 (-1 *7 *5)) (-4 *8 (-13 (-842) (-558))) (-14 *9 (-1 *5 *8)) (-5 *2 (-634 (-2 (|:| -1864 *7) (|:| -4477 (-763))))) (-5 *1 (-486 *5 *6 *7 *8 *9 *10)) (-4 *6 (-453)) (-4 *7 (-13 (-432 (-568)) (-558) (-1037 *8) (-1037 (-1161)) (-1037 (-568)) (-161) (-895 (-1161)) (-10 -8 (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -1332 ($ $)) (-15 -3013 ($ $)) (-15 -2086 ((-121) $))))))) (-2788 (*1 *2 *3) (-12 (-5 *3 (-634 *4)) (-4 *4 (-365)) (-14 *9 (-1 *6 *4)) (-4 *7 (-13 (-842) (-558))) (-14 *8 (-1 *4 *7)) (-5 *2 (-634 (-2 (|:| -1864 *6) (|:| -4477 (-763))))) (-5 *1 (-486 *4 *5 *6 *7 *8 *9)) (-4 *5 (-453)) (-4 *6 (-13 (-432 (-568)) (-558) (-1037 *7) (-1037 (-1161)) (-1037 (-568)) (-161) (-895 (-1161)) (-10 -8 (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -1332 ($ $)) (-15 -3013 ($ $)) (-15 -2086 ((-121) $))))))) (-2788 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *5)) (-5 *4 (-634 (-465))) (-4 *5 (-365)) (-14 *10 (-1 *7 *5)) (-4 *8 (-13 (-842) (-558))) (-14 *9 (-1 *5 *8)) (-5 *2 (-634 (-2 (|:| -1864 *7) (|:| -4477 (-763))))) (-5 *1 (-486 *5 *6 *7 *8 *9 *10)) (-4 *6 (-453)) (-4 *7 (-13 (-432 (-568)) (-558) (-1037 *8) (-1037 (-1161)) (-1037 (-568)) (-161) (-895 (-1161)) (-10 -8 (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -1332 ($ $)) (-15 -3013 ($ $)) (-15 -2086 ((-121) $))))))) (-4329 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *5)) (-5 *4 (-634 (-465))) (-4 *5 (-365)) (-14 *10 (-1 *7 *5)) (-4 *8 (-13 (-842) (-558))) (-14 *9 (-1 *5 *8)) (-5 *2 (-634 (-2 (|:| -1864 *7) (|:| -4477 (-763))))) (-5 *1 (-486 *5 *6 *7 *8 *9 *10)) (-4 *6 (-453)) (-4 *7 (-13 (-432 (-568)) (-558) (-1037 *8) (-1037 (-1161)) (-1037 (-568)) (-161) (-895 (-1161)) (-10 -8 (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -1332 ($ $)) (-15 -3013 ($ $)) (-15 -2086 ((-121) $))))))) (-4329 (*1 *2 *3) (-12 (-5 *3 (-634 *4)) (-4 *4 (-365)) (-14 *9 (-1 *6 *4)) (-4 *7 (-13 (-842) (-558))) (-14 *8 (-1 *4 *7)) (-5 *2 (-634 (-2 (|:| -1864 *6) (|:| -4477 (-763))))) (-5 *1 (-486 *4 *5 *6 *7 *8 *9)) (-4 *5 (-453)) (-4 *6 (-13 (-432 (-568)) (-558) (-1037 *7) (-1037 (-1161)) (-1037 (-568)) (-161) (-895 (-1161)) (-10 -8 (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -1332 ($ $)) (-15 -3013 ($ $)) (-15 -2086 ((-121) $))))))) (-4102 (*1 *2 *3) (-12 (-5 *3 (-634 *4)) (-4 *4 (-365)) (-14 *9 (-1 *6 *4)) (-4 *7 (-13 (-842) (-558))) (-14 *8 (-1 *4 *7)) (-5 *2 (-634 (-2 (|:| -1864 *6) (|:| -4477 (-763))))) (-5 *1 (-486 *4 *5 *6 *7 *8 *9)) (-4 *5 (-453)) (-4 *6 (-13 (-432 (-568)) (-558) (-1037 *7) (-1037 (-1161)) (-1037 (-568)) (-161) (-895 (-1161)) (-10 -8 (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -1332 ($ $)) (-15 -3013 ($ $)) (-15 -2086 ((-121) $))))))) (-4102 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *5)) (-5 *4 (-634 (-465))) (-4 *5 (-365)) (-14 *10 (-1 *7 *5)) (-4 *8 (-13 (-842) (-558))) (-14 *9 (-1 *5 *8)) (-5 *2 (-634 (-2 (|:| -1864 *7) (|:| -4477 (-763))))) (-5 *1 (-486 *5 *6 *7 *8 *9 *10)) (-4 *6 (-453)) (-4 *7 (-13 (-432 (-568)) (-558) (-1037 *8) (-1037 (-1161)) (-1037 (-568)) (-161) (-895 (-1161)) (-10 -8 (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -1332 ($ $)) (-15 -3013 ($ $)) (-15 -2086 ((-121) $))))))) (-2659 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *5)) (-5 *4 (-634 (-465))) (-4 *5 (-365)) (-14 *10 (-1 *7 *5)) (-4 *8 (-13 (-842) (-558))) (-14 *9 (-1 *5 *8)) (-5 *2 (-634 (-2 (|:| -1864 *7) (|:| -4477 (-763))))) (-5 *1 (-486 *5 *6 *7 *8 *9 *10)) (-4 *6 (-453)) (-4 *7 (-13 (-432 (-568)) (-558) (-1037 *8) (-1037 (-1161)) (-1037 (-568)) (-161) (-895 (-1161)) (-10 -8 (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -1332 ($ $)) (-15 -3013 ($ $)) (-15 -2086 ((-121) $))))))) (-2659 (*1 *2 *3) (-12 (-5 *3 (-634 *4)) (-4 *4 (-365)) (-14 *9 (-1 *6 *4)) (-4 *7 (-13 (-842) (-558))) (-14 *8 (-1 *4 *7)) (-5 *2 (-634 (-2 (|:| -1864 *6) (|:| -4477 (-763))))) (-5 *1 (-486 *4 *5 *6 *7 *8 *9)) (-4 *5 (-453)) (-4 *6 (-13 (-432 (-568)) (-558) (-1037 *7) (-1037 (-1161)) (-1037 (-568)) (-161) (-895 (-1161)) (-10 -8 (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -1332 ($ $)) (-15 -3013 ($ $)) (-15 -2086 ((-121) $))))))) (-2017 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *5)) (-5 *4 (-634 (-465))) (-4 *5 (-365)) (-14 *10 (-1 *7 *5)) (-4 *8 (-13 (-842) (-558))) (-14 *9 (-1 *5 *8)) (-5 *2 (-634 (-2 (|:| -1864 *7) (|:| -4477 (-763))))) (-5 *1 (-486 *5 *6 *7 *8 *9 *10)) (-4 *6 (-453)) (-4 *7 (-13 (-432 (-568)) (-558) (-1037 *8) (-1037 (-1161)) (-1037 (-568)) (-161) (-895 (-1161)) (-10 -8 (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -1332 ($ $)) (-15 -3013 ($ $)) (-15 -2086 ((-121) $))))))) (-2017 (*1 *2 *3) (-12 (-5 *3 (-634 *4)) (-4 *4 (-365)) (-14 *9 (-1 *6 *4)) (-4 *7 (-13 (-842) (-558))) (-14 *8 (-1 *4 *7)) (-5 *2 (-634 (-2 (|:| -1864 *6) (|:| -4477 (-763))))) (-5 *1 (-486 *4 *5 *6 *7 *8 *9)) (-4 *5 (-453)) (-4 *6 (-13 (-432 (-568)) (-558) (-1037 *7) (-1037 (-1161)) (-1037 (-568)) (-161) (-895 (-1161)) (-10 -8 (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -1332 ($ $)) (-15 -3013 ($ $)) (-15 -2086 ((-121) $))))))) (-3641 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *5)) (-5 *4 (-634 (-465))) (-4 *5 (-365)) (-14 *10 (-1 *7 *5)) (-4 *8 (-13 (-842) (-558))) (-14 *9 (-1 *5 *8)) (-5 *2 (-634 (-2 (|:| -1864 *7) (|:| -4477 (-763))))) (-5 *1 (-486 *5 *6 *7 *8 *9 *10)) (-4 *6 (-453)) (-4 *7 (-13 (-432 (-568)) (-558) (-1037 *8) (-1037 (-1161)) (-1037 (-568)) (-161) (-895 (-1161)) (-10 -8 (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -1332 ($ $)) (-15 -3013 ($ $)) (-15 -2086 ((-121) $))))))) (-3641 (*1 *2 *3) (-12 (-5 *3 (-634 *4)) (-4 *4 (-365)) (-14 *9 (-1 *6 *4)) (-4 *7 (-13 (-842) (-558))) (-14 *8 (-1 *4 *7)) (-5 *2 (-634 (-2 (|:| -1864 *6) (|:| -4477 (-763))))) (-5 *1 (-486 *4 *5 *6 *7 *8 *9)) (-4 *5 (-453)) (-4 *6 (-13 (-432 (-568)) (-558) (-1037 *7) (-1037 (-1161)) (-1037 (-568)) (-161) (-895 (-1161)) (-10 -8 (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -1332 ($ $)) (-15 -3013 ($ $)) (-15 -2086 ((-121) $))))))) (-1761 (*1 *2 *3) (-12 (-5 *3 (-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 *4)) (-1201 *4))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 *4))) (-1201 (-1157 *4)))) (|:| |exprStream| (-1 (-1141 *6) *6 (-1161))) (|:| A (-1 *5 (-763) (-763) (-1157 *5))) (|:| AF (-1 (-1157 *4) (-763) (-763) (-1201 (-1157 *4)))) (|:| AX (-1 *6 (-763) (-1161) *6)) (|:| C (-1 (-634 *5) (-763)))) (-634 (-465)))) (-4 *4 (-365)) (-4 *5 (-453)) (-4 *6 (-13 (-432 (-568)) (-558) (-1037 *7) (-1037 (-1161)) (-1037 (-568)) (-161) (-895 (-1161)) (-10 -8 (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -1332 ($ $)) (-15 -3013 ($ $)) (-15 -2086 ((-121) $))))) (-4 *7 (-13 (-842) (-558))) (-14 *8 (-1 *4 *7)) (-14 *9 (-1 *6 *4)) (-5 *2 (-1 (-634 (-2 (|:| -1864 *6) (|:| -4477 (-763)))) (-634 *4) (-634 (-465)))) (-5 *1 (-486 *4 *5 *6 *7 *8 *9)))) (-1961 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-4 *7 (-13 (-842) (-558))) (-14 *8 (-1 *4 *7)) (-5 *2 (-1 (-634 (-2 (|:| -1864 *6) (|:| -4477 (-763)))) (-634 *4) (-634 (-465)))) (-5 *1 (-486 *4 *5 *6 *7 *8 *9)) (-4 *4 (-1037 *3)) (-4 *5 (-1037 *3)) (-4 *4 (-365)) (-4 *5 (-453)) (-4 *6 (-13 (-432 (-568)) (-558) (-1037 *7) (-1037 *3) (-1037 (-568)) (-161) (-895 *3) (-10 -8 (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -1332 ($ $)) (-15 -3013 ($ $)) (-15 -2086 ((-121) $))))) (-14 *9 (-1 *6 *4)))) (-1829 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-4 *7 (-13 (-842) (-558))) (-14 *8 (-1 *4 *7)) (-5 *2 (-1 (-634 (-2 (|:| -1864 *6) (|:| -4477 (-763)))) (-634 *4) (-634 (-465)))) (-5 *1 (-486 *4 *5 *6 *7 *8 *9)) (-4 *4 (-1037 *3)) (-4 *5 (-1037 *3)) (-4 *4 (-365)) (-4 *5 (-453)) (-4 *6 (-13 (-432 (-568)) (-558) (-1037 *7) (-1037 *3) (-1037 (-568)) (-161) (-895 *3) (-10 -8 (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -1332 ($ $)) (-15 -3013 ($ $)) (-15 -2086 ((-121) $))))) (-14 *9 (-1 *6 *4)))) (-1961 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *5)) (-5 *4 (-634 (-465))) (-4 *5 (-365)) (-14 *10 (-1 *7 *5)) (-4 *8 (-13 (-842) (-558))) (-14 *9 (-1 *5 *8)) (-5 *2 (-634 (-2 (|:| -1864 *7) (|:| -4477 (-763))))) (-5 *1 (-486 *5 *6 *7 *8 *9 *10)) (-4 *6 (-453)) (-4 *7 (-13 (-432 (-568)) (-558) (-1037 *8) (-1037 (-1161)) (-1037 (-568)) (-161) (-895 (-1161)) (-10 -8 (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -1332 ($ $)) (-15 -3013 ($ $)) (-15 -2086 ((-121) $))))))) (-1961 (*1 *2 *3) (-12 (-5 *3 (-634 *4)) (-4 *4 (-365)) (-14 *9 (-1 *6 *4)) (-4 *7 (-13 (-842) (-558))) (-14 *8 (-1 *4 *7)) (-5 *2 (-634 (-2 (|:| -1864 *6) (|:| -4477 (-763))))) (-5 *1 (-486 *4 *5 *6 *7 *8 *9)) (-4 *5 (-453)) (-4 *6 (-13 (-432 (-568)) (-558) (-1037 *7) (-1037 (-1161)) (-1037 (-568)) (-161) (-895 (-1161)) (-10 -8 (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -1332 ($ $)) (-15 -3013 ($ $)) (-15 -2086 ((-121) $))))))) (-1829 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *5)) (-5 *4 (-634 (-465))) (-4 *5 (-365)) (-14 *10 (-1 *7 *5)) (-4 *8 (-13 (-842) (-558))) (-14 *9 (-1 *5 *8)) (-5 *2 (-634 (-2 (|:| -1864 *7) (|:| -4477 (-763))))) (-5 *1 (-486 *5 *6 *7 *8 *9 *10)) (-4 *6 (-453)) (-4 *7 (-13 (-432 (-568)) (-558) (-1037 *8) (-1037 (-1161)) (-1037 (-568)) (-161) (-895 (-1161)) (-10 -8 (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -1332 ($ $)) (-15 -3013 ($ $)) (-15 -2086 ((-121) $))))))) (-1829 (*1 *2 *3) (-12 (-5 *3 (-634 *4)) (-4 *4 (-365)) (-14 *9 (-1 *6 *4)) (-4 *7 (-13 (-842) (-558))) (-14 *8 (-1 *4 *7)) (-5 *2 (-634 (-2 (|:| -1864 *6) (|:| -4477 (-763))))) (-5 *1 (-486 *4 *5 *6 *7 *8 *9)) (-4 *5 (-453)) (-4 *6 (-13 (-432 (-568)) (-558) (-1037 *7) (-1037 (-1161)) (-1037 (-568)) (-161) (-895 (-1161)) (-10 -8 (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -1332 ($ $)) (-15 -3013 ($ $)) (-15 -2086 ((-121) $))))))) (-1633 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-634 (-1 (-634 (-2 (|:| -1864 *9) (|:| -4477 (-763)))) (-634 *7) (-634 (-465))))) (-5 *5 (-634 (-1161))) (-5 *6 (-634 (-465))) (-5 *3 (-634 *7)) (-4 *7 (-365)) (-14 *12 (-1 *9 *7)) (-4 *10 (-13 (-842) (-558))) (-14 *11 (-1 *7 *10)) (-5 *2 (-634 (-2 (|:| -1864 *9) (|:| -4477 (-763))))) (-5 *1 (-486 *7 *8 *9 *10 *11 *12)) (-4 *8 (-453)) (-4 *9 (-13 (-432 (-568)) (-558) (-1037 *10) (-1037 (-1161)) (-1037 (-568)) (-161) (-895 (-1161)) (-10 -8 (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -1332 ($ $)) (-15 -3013 ($ $)) (-15 -2086 ((-121) $))))))) (-1633 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-634 (-1 (-634 (-2 (|:| -1864 *8) (|:| -4477 (-763)))) (-634 *6) (-634 (-465))))) (-5 *5 (-634 (-1161))) (-5 *3 (-634 *6)) (-4 *6 (-365)) (-14 *11 (-1 *8 *6)) (-4 *9 (-13 (-842) (-558))) (-14 *10 (-1 *6 *9)) (-5 *2 (-634 (-2 (|:| -1864 *8) (|:| -4477 (-763))))) (-5 *1 (-486 *6 *7 *8 *9 *10 *11)) (-4 *7 (-453)) (-4 *8 (-13 (-432 (-568)) (-558) (-1037 *9) (-1037 (-1161)) (-1037 (-568)) (-161) (-895 (-1161)) (-10 -8 (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -1332 ($ $)) (-15 -3013 ($ $)) (-15 -2086 ((-121) $))))))) (-1633 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *5)) (-5 *4 (-634 (-465))) (-4 *5 (-365)) (-14 *10 (-1 *7 *5)) (-4 *8 (-13 (-842) (-558))) (-14 *9 (-1 *5 *8)) (-5 *2 (-634 (-2 (|:| -1864 *7) (|:| -4477 (-763))))) (-5 *1 (-486 *5 *6 *7 *8 *9 *10)) (-4 *6 (-453)) (-4 *7 (-13 (-432 (-568)) (-558) (-1037 *8) (-1037 (-1161)) (-1037 (-568)) (-161) (-895 (-1161)) (-10 -8 (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -1332 ($ $)) (-15 -3013 ($ $)) (-15 -2086 ((-121) $))))))) (-1633 (*1 *2 *3) (-12 (-5 *3 (-634 *4)) (-4 *4 (-365)) (-14 *9 (-1 *6 *4)) (-4 *7 (-13 (-842) (-558))) (-14 *8 (-1 *4 *7)) (-5 *2 (-634 (-2 (|:| -1864 *6) (|:| -4477 (-763))))) (-5 *1 (-486 *4 *5 *6 *7 *8 *9)) (-4 *5 (-453)) (-4 *6 (-13 (-432 (-568)) (-558) (-1037 *7) (-1037 (-1161)) (-1037 (-568)) (-161) (-895 (-1161)) (-10 -8 (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -1332 ($ $)) (-15 -3013 ($ $)) (-15 -2086 ((-121) $)))))))) +(-10 -7 (-15 -1633 ((-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|))) (-15 -1633 ((-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465)))) (-15 -1633 ((-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-1 (-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465)))) (-634 (-1161)))) (-15 -1633 ((-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-1 (-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465)))) (-634 (-1161)) (-634 (-465)))) (-15 -1829 ((-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|))) (-15 -1829 ((-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465)))) (-15 -1961 ((-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|))) (-15 -1961 ((-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465)))) (IF (|has| |#1| (-1037 (-1161))) (IF (|has| |#2| (-1037 (-1161))) (PROGN (-15 -1829 ((-1 (-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465))) (-1161))) (-15 -1961 ((-1 (-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465))) (-1161)))) |noBranch|) |noBranch|) (-15 -1761 ((-1 (-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465))) (-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 |#1|)) (-1201 |#1|))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 |#1|))) (-1201 (-1157 |#1|)))) (|:| |exprStream| (-1 (-1141 |#3|) |#3| (-1161))) (|:| A (-1 |#2| (-763) (-763) (-1157 |#2|))) (|:| AF (-1 (-1157 |#1|) (-763) (-763) (-1201 (-1157 |#1|)))) (|:| AX (-1 |#3| (-763) (-1161) |#3|)) (|:| C (-1 (-634 |#2|) (-763)))) (-634 (-465))))) (-15 -3641 ((-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|))) (-15 -3641 ((-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465)))) (-15 -2017 ((-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|))) (-15 -2017 ((-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465)))) (-15 -2659 ((-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|))) (-15 -2659 ((-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465)))) (-15 -4102 ((-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465)))) (-15 -4102 ((-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|))) (-15 -4329 ((-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|))) (-15 -4329 ((-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465)))) (-15 -2788 ((-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465)))) (-15 -2788 ((-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|))) (-15 -1414 ((-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465)))) (-15 -1414 ((-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|))) (-15 -3430 ((-2 (|:| |guessStream| (-1 (-1141 (-1201 |#1|)) (-1201 |#1|))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 |#1|))) (-1201 (-1157 |#1|)))) (|:| |exprStream| (-1 (-1141 |#3|) |#3| (-1161))) (|:| A (-1 |#2| (-763) (-763) (-1157 |#2|))) (|:| AF (-1 (-1157 |#1|) (-763) (-763) (-1201 (-1157 |#1|)))) (|:| AX (-1 |#3| (-763) (-1161) |#3|)) (|:| C (-1 (-634 |#2|) (-763)))) (-634 (-465)))) (-15 -4089 ((-2 (|:| |guessStream| (-1 (-1141 (-1201 |#1|)) (-1201 |#1|))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 |#1|))) (-1201 (-1157 |#1|)))) (|:| |exprStream| (-1 (-1141 |#3|) |#3| (-1161))) (|:| A (-1 |#2| (-763) (-763) (-1157 |#2|))) (|:| AF (-1 (-1157 |#1|) (-763) (-763) (-1201 (-1157 |#1|)))) (|:| AX (-1 |#3| (-763) (-1161) |#3|)) (|:| C (-1 (-634 |#2|) (-763)))) (-634 (-465)))) (IF (|has| |#1| (-1037 (-1161))) (IF (|has| |#2| (-1037 (-1161))) (PROGN (-15 -4089 ((-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 |#1|)) (-1201 |#1|))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 |#1|))) (-1201 (-1157 |#1|)))) (|:| |exprStream| (-1 (-1141 |#3|) |#3| (-1161))) (|:| A (-1 |#2| (-763) (-763) (-1157 |#2|))) (|:| AF (-1 (-1157 |#1|) (-763) (-763) (-1201 (-1157 |#1|)))) (|:| AX (-1 |#3| (-763) (-1161) |#3|)) (|:| C (-1 (-634 |#2|) (-763)))) (-634 (-465))) (-1161))) (-15 -3430 ((-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 |#1|)) (-1201 |#1|))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 |#1|))) (-1201 (-1157 |#1|)))) (|:| |exprStream| (-1 (-1141 |#3|) |#3| (-1161))) (|:| A (-1 |#2| (-763) (-763) (-1157 |#2|))) (|:| AF (-1 (-1157 |#1|) (-763) (-763) (-1201 (-1157 |#1|)))) (|:| AX (-1 |#3| (-763) (-1161) |#3|)) (|:| C (-1 (-634 |#2|) (-763)))) (-634 (-465))) (-1161))) (-15 -4329 ((-1 (-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465))) (-1161))) (-15 -2788 ((-1 (-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465))) (-1161))) (-15 -1414 ((-1 (-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465))) (-1161))) (-15 -3641 ((-1 (-634 (-2 (|:| -1864 |#3|) (|:| -4477 (-763)))) (-634 |#1|) (-634 (-465))) (-1161)))) |noBranch|) |noBranch|)) +((-4089 (((-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 (-409 (-953 (-568))))) (-1201 (-409 (-953 (-568)))))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-409 (-953 (-568)))))) (-1201 (-1157 (-409 (-953 (-568))))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 (-953 (-568)) (-763) (-763) (-1157 (-953 (-568))))) (|:| AF (-1 (-1157 (-409 (-953 (-568)))) (-763) (-763) (-1201 (-1157 (-409 (-953 (-568))))))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 (-953 (-568))) (-763)))) (-634 (-465))) (-1161)) NIL (-12 (|has| (-409 (-953 (-568))) (-1037 (-1161))) (|has| (-953 (-568)) (-1037 (-1161))))) (((-2 (|:| |guessStream| (-1 (-1141 (-1201 (-409 (-953 (-568))))) (-1201 (-409 (-953 (-568)))))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-409 (-953 (-568)))))) (-1201 (-1157 (-409 (-953 (-568))))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 (-953 (-568)) (-763) (-763) (-1157 (-953 (-568))))) (|:| AF (-1 (-1157 (-409 (-953 (-568)))) (-763) (-763) (-1201 (-1157 (-409 (-953 (-568))))))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 (-953 (-568))) (-763)))) (-634 (-465))) NIL)) (-4329 (((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465))) (-1161)) NIL (-12 (|has| (-409 (-953 (-568))) (-1037 (-1161))) (|has| (-953 (-568)) (-1037 (-1161))))) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465))) NIL) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568))))) NIL)) (-1414 (((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465))) (-1161)) NIL (-12 (|has| (-409 (-953 (-568))) (-1037 (-1161))) (|has| (-953 (-568)) (-1037 (-1161))))) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568))))) NIL) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465))) NIL)) (-4102 (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568))))) NIL) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465))) NIL)) (-2788 (((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465))) (-1161)) NIL (-12 (|has| (-409 (-953 (-568))) (-1037 (-1161))) (|has| (-953 (-568)) (-1037 (-1161))))) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568))))) NIL) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465))) NIL)) (-2659 (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465))) NIL) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568))))) NIL)) (-1761 (((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465))) (-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 (-409 (-953 (-568))))) (-1201 (-409 (-953 (-568)))))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-409 (-953 (-568)))))) (-1201 (-1157 (-409 (-953 (-568))))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 (-953 (-568)) (-763) (-763) (-1157 (-953 (-568))))) (|:| AF (-1 (-1157 (-409 (-953 (-568)))) (-763) (-763) (-1201 (-1157 (-409 (-953 (-568))))))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 (-953 (-568))) (-763)))) (-634 (-465)))) NIL)) (-1829 (((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465))) (-1161)) NIL (-12 (|has| (-409 (-953 (-568))) (-1037 (-1161))) (|has| (-953 (-568)) (-1037 (-1161))))) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465))) NIL) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568))))) NIL)) (-1961 (((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465))) (-1161)) NIL (-12 (|has| (-409 (-953 (-568))) (-1037 (-1161))) (|has| (-953 (-568)) (-1037 (-1161))))) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465))) NIL) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568))))) NIL)) (-2017 (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465))) NIL) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568))))) NIL)) (-3641 (((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465))) (-1161)) NIL (-12 (|has| (-409 (-953 (-568))) (-1037 (-1161))) (|has| (-953 (-568)) (-1037 (-1161))))) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465))) NIL) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568))))) NIL)) (-1633 (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465)))) (-634 (-1161)) (-634 (-465))) NIL) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465)))) (-634 (-1161))) NIL) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465))) NIL) (((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568))))) NIL)) (-3430 (((-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 (-409 (-953 (-568))))) (-1201 (-409 (-953 (-568)))))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-409 (-953 (-568)))))) (-1201 (-1157 (-409 (-953 (-568))))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 (-953 (-568)) (-763) (-763) (-1157 (-953 (-568))))) (|:| AF (-1 (-1157 (-409 (-953 (-568)))) (-763) (-763) (-1201 (-1157 (-409 (-953 (-568))))))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 (-953 (-568))) (-763)))) (-634 (-465))) (-1161)) NIL (-12 (|has| (-409 (-953 (-568))) (-1037 (-1161))) (|has| (-953 (-568)) (-1037 (-1161))))) (((-2 (|:| |guessStream| (-1 (-1141 (-1201 (-409 (-953 (-568))))) (-1201 (-409 (-953 (-568)))))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-409 (-953 (-568)))))) (-1201 (-1157 (-409 (-953 (-568))))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 (-953 (-568)) (-763) (-763) (-1157 (-953 (-568))))) (|:| AF (-1 (-1157 (-409 (-953 (-568)))) (-763) (-763) (-1201 (-1157 (-409 (-953 (-568))))))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 (-953 (-568))) (-763)))) (-634 (-465))) NIL))) +(((-487) (-10 -7 (-15 -1633 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))))) (-15 -1633 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465)))) (-15 -1633 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465)))) (-634 (-1161)))) (-15 -1633 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465)))) (-634 (-1161)) (-634 (-465)))) (-15 -1829 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))))) (-15 -1829 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465)))) (-15 -1961 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))))) (-15 -1961 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465)))) (IF (|has| (-409 (-953 (-568))) (-1037 (-1161))) (IF (|has| (-953 (-568)) (-1037 (-1161))) (PROGN (-15 -1829 ((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465))) (-1161))) (-15 -1961 ((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465))) (-1161)))) |noBranch|) |noBranch|) (-15 -1761 ((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465))) (-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 (-409 (-953 (-568))))) (-1201 (-409 (-953 (-568)))))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-409 (-953 (-568)))))) (-1201 (-1157 (-409 (-953 (-568))))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 (-953 (-568)) (-763) (-763) (-1157 (-953 (-568))))) (|:| AF (-1 (-1157 (-409 (-953 (-568)))) (-763) (-763) (-1201 (-1157 (-409 (-953 (-568))))))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 (-953 (-568))) (-763)))) (-634 (-465))))) (-15 -3641 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))))) (-15 -3641 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465)))) (-15 -2017 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))))) (-15 -2017 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465)))) (-15 -2659 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))))) (-15 -2659 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465)))) (-15 -4102 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465)))) (-15 -4102 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))))) (-15 -4329 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))))) (-15 -4329 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465)))) (-15 -2788 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465)))) (-15 -2788 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))))) (-15 -1414 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465)))) (-15 -1414 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))))) (-15 -3430 ((-2 (|:| |guessStream| (-1 (-1141 (-1201 (-409 (-953 (-568))))) (-1201 (-409 (-953 (-568)))))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-409 (-953 (-568)))))) (-1201 (-1157 (-409 (-953 (-568))))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 (-953 (-568)) (-763) (-763) (-1157 (-953 (-568))))) (|:| AF (-1 (-1157 (-409 (-953 (-568)))) (-763) (-763) (-1201 (-1157 (-409 (-953 (-568))))))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 (-953 (-568))) (-763)))) (-634 (-465)))) (-15 -4089 ((-2 (|:| |guessStream| (-1 (-1141 (-1201 (-409 (-953 (-568))))) (-1201 (-409 (-953 (-568)))))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-409 (-953 (-568)))))) (-1201 (-1157 (-409 (-953 (-568))))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 (-953 (-568)) (-763) (-763) (-1157 (-953 (-568))))) (|:| AF (-1 (-1157 (-409 (-953 (-568)))) (-763) (-763) (-1201 (-1157 (-409 (-953 (-568))))))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 (-953 (-568))) (-763)))) (-634 (-465)))) (IF (|has| (-409 (-953 (-568))) (-1037 (-1161))) (IF (|has| (-953 (-568)) (-1037 (-1161))) (PROGN (-15 -4089 ((-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 (-409 (-953 (-568))))) (-1201 (-409 (-953 (-568)))))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-409 (-953 (-568)))))) (-1201 (-1157 (-409 (-953 (-568))))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 (-953 (-568)) (-763) (-763) (-1157 (-953 (-568))))) (|:| AF (-1 (-1157 (-409 (-953 (-568)))) (-763) (-763) (-1201 (-1157 (-409 (-953 (-568))))))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 (-953 (-568))) (-763)))) (-634 (-465))) (-1161))) (-15 -3430 ((-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 (-409 (-953 (-568))))) (-1201 (-409 (-953 (-568)))))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-409 (-953 (-568)))))) (-1201 (-1157 (-409 (-953 (-568))))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 (-953 (-568)) (-763) (-763) (-1157 (-953 (-568))))) (|:| AF (-1 (-1157 (-409 (-953 (-568)))) (-763) (-763) (-1201 (-1157 (-409 (-953 (-568))))))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 (-953 (-568))) (-763)))) (-634 (-465))) (-1161))) (-15 -4329 ((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465))) (-1161))) (-15 -2788 ((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465))) (-1161))) (-15 -1414 ((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465))) (-1161))) (-15 -3641 ((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465))) (-1161)))) |noBranch|) |noBranch|))) (T -487)) +((-3641 (*1 *2 *3) (-12 (-4 (-409 (-953 (-568))) (-1037 *3)) (-4 (-953 (-568)) (-1037 *3)) (-5 *3 (-1161)) (-5 *2 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465)))) (-5 *1 (-487)))) (-1414 (*1 *2 *3) (-12 (-4 (-409 (-953 (-568))) (-1037 *3)) (-4 (-953 (-568)) (-1037 *3)) (-5 *3 (-1161)) (-5 *2 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465)))) (-5 *1 (-487)))) (-2788 (*1 *2 *3) (-12 (-4 (-409 (-953 (-568))) (-1037 *3)) (-4 (-953 (-568)) (-1037 *3)) (-5 *3 (-1161)) (-5 *2 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465)))) (-5 *1 (-487)))) (-4329 (*1 *2 *3) (-12 (-4 (-409 (-953 (-568))) (-1037 *3)) (-4 (-953 (-568)) (-1037 *3)) (-5 *3 (-1161)) (-5 *2 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465)))) (-5 *1 (-487)))) (-3430 (*1 *2 *3) (-12 (-4 (-409 (-953 (-568))) (-1037 *3)) (-4 (-953 (-568)) (-1037 *3)) (-5 *3 (-1161)) (-5 *2 (-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 (-409 (-953 (-568))))) (-1201 (-409 (-953 (-568)))))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-409 (-953 (-568)))))) (-1201 (-1157 (-409 (-953 (-568))))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) *3)) (|:| A (-1 (-953 (-568)) (-763) (-763) (-1157 (-953 (-568))))) (|:| AF (-1 (-1157 (-409 (-953 (-568)))) (-763) (-763) (-1201 (-1157 (-409 (-953 (-568))))))) (|:| AX (-1 (-310 (-568)) (-763) *3 (-310 (-568)))) (|:| C (-1 (-634 (-953 (-568))) (-763)))) (-634 (-465)))) (-5 *1 (-487)))) (-4089 (*1 *2 *3) (-12 (-4 (-409 (-953 (-568))) (-1037 *3)) (-4 (-953 (-568)) (-1037 *3)) (-5 *3 (-1161)) (-5 *2 (-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 (-409 (-953 (-568))))) (-1201 (-409 (-953 (-568)))))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-409 (-953 (-568)))))) (-1201 (-1157 (-409 (-953 (-568))))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) *3)) (|:| A (-1 (-953 (-568)) (-763) (-763) (-1157 (-953 (-568))))) (|:| AF (-1 (-1157 (-409 (-953 (-568)))) (-763) (-763) (-1201 (-1157 (-409 (-953 (-568))))))) (|:| AX (-1 (-310 (-568)) (-763) *3 (-310 (-568)))) (|:| C (-1 (-634 (-953 (-568))) (-763)))) (-634 (-465)))) (-5 *1 (-487)))) (-4089 (*1 *2 *3) (-12 (-5 *3 (-634 (-465))) (-5 *2 (-2 (|:| |guessStream| (-1 (-1141 (-1201 (-409 (-953 (-568))))) (-1201 (-409 (-953 (-568)))))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-409 (-953 (-568)))))) (-1201 (-1157 (-409 (-953 (-568))))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 (-953 (-568)) (-763) (-763) (-1157 (-953 (-568))))) (|:| AF (-1 (-1157 (-409 (-953 (-568)))) (-763) (-763) (-1201 (-1157 (-409 (-953 (-568))))))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 (-953 (-568))) (-763))))) (-5 *1 (-487)))) (-3430 (*1 *2 *3) (-12 (-5 *3 (-634 (-465))) (-5 *2 (-2 (|:| |guessStream| (-1 (-1141 (-1201 (-409 (-953 (-568))))) (-1201 (-409 (-953 (-568)))))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-409 (-953 (-568)))))) (-1201 (-1157 (-409 (-953 (-568))))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 (-953 (-568)) (-763) (-763) (-1157 (-953 (-568))))) (|:| AF (-1 (-1157 (-409 (-953 (-568)))) (-763) (-763) (-1201 (-1157 (-409 (-953 (-568))))))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 (-953 (-568))) (-763))))) (-5 *1 (-487)))) (-1414 (*1 *2 *3) (-12 (-5 *3 (-634 (-409 (-953 (-568))))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-487)))) (-1414 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-953 (-568))))) (-5 *4 (-634 (-465))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-487)))) (-2788 (*1 *2 *3) (-12 (-5 *3 (-634 (-409 (-953 (-568))))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-487)))) (-2788 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-953 (-568))))) (-5 *4 (-634 (-465))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-487)))) (-4329 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-953 (-568))))) (-5 *4 (-634 (-465))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-487)))) (-4329 (*1 *2 *3) (-12 (-5 *3 (-634 (-409 (-953 (-568))))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-487)))) (-4102 (*1 *2 *3) (-12 (-5 *3 (-634 (-409 (-953 (-568))))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-487)))) (-4102 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-953 (-568))))) (-5 *4 (-634 (-465))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-487)))) (-2659 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-953 (-568))))) (-5 *4 (-634 (-465))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-487)))) (-2659 (*1 *2 *3) (-12 (-5 *3 (-634 (-409 (-953 (-568))))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-487)))) (-2017 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-953 (-568))))) (-5 *4 (-634 (-465))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-487)))) (-2017 (*1 *2 *3) (-12 (-5 *3 (-634 (-409 (-953 (-568))))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-487)))) (-3641 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-953 (-568))))) (-5 *4 (-634 (-465))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-487)))) (-3641 (*1 *2 *3) (-12 (-5 *3 (-634 (-409 (-953 (-568))))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-487)))) (-1761 (*1 *2 *3) (-12 (-5 *3 (-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 (-409 (-953 (-568))))) (-1201 (-409 (-953 (-568)))))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-409 (-953 (-568)))))) (-1201 (-1157 (-409 (-953 (-568))))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 (-953 (-568)) (-763) (-763) (-1157 (-953 (-568))))) (|:| AF (-1 (-1157 (-409 (-953 (-568)))) (-763) (-763) (-1201 (-1157 (-409 (-953 (-568))))))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 (-953 (-568))) (-763)))) (-634 (-465)))) (-5 *2 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465)))) (-5 *1 (-487)))) (-1961 (*1 *2 *3) (-12 (-4 (-409 (-953 (-568))) (-1037 *3)) (-4 (-953 (-568)) (-1037 *3)) (-5 *3 (-1161)) (-5 *2 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465)))) (-5 *1 (-487)))) (-1829 (*1 *2 *3) (-12 (-4 (-409 (-953 (-568))) (-1037 *3)) (-4 (-953 (-568)) (-1037 *3)) (-5 *3 (-1161)) (-5 *2 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465)))) (-5 *1 (-487)))) (-1961 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-953 (-568))))) (-5 *4 (-634 (-465))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-487)))) (-1961 (*1 *2 *3) (-12 (-5 *3 (-634 (-409 (-953 (-568))))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-487)))) (-1829 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-953 (-568))))) (-5 *4 (-634 (-465))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-487)))) (-1829 (*1 *2 *3) (-12 (-5 *3 (-634 (-409 (-953 (-568))))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-487)))) (-1633 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-634 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465))))) (-5 *5 (-634 (-1161))) (-5 *6 (-634 (-465))) (-5 *3 (-634 (-409 (-953 (-568))))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-487)))) (-1633 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-634 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465))))) (-5 *5 (-634 (-1161))) (-5 *3 (-634 (-409 (-953 (-568))))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-487)))) (-1633 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-953 (-568))))) (-5 *4 (-634 (-465))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-487)))) (-1633 (*1 *2 *3) (-12 (-5 *3 (-634 (-409 (-953 (-568))))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-487))))) +(-10 -7 (-15 -1633 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))))) (-15 -1633 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465)))) (-15 -1633 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465)))) (-634 (-1161)))) (-15 -1633 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465)))) (-634 (-1161)) (-634 (-465)))) (-15 -1829 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))))) (-15 -1829 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465)))) (-15 -1961 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))))) (-15 -1961 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465)))) (IF (|has| (-409 (-953 (-568))) (-1037 (-1161))) (IF (|has| (-953 (-568)) (-1037 (-1161))) (PROGN (-15 -1829 ((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465))) (-1161))) (-15 -1961 ((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465))) (-1161)))) |noBranch|) |noBranch|) (-15 -1761 ((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465))) (-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 (-409 (-953 (-568))))) (-1201 (-409 (-953 (-568)))))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-409 (-953 (-568)))))) (-1201 (-1157 (-409 (-953 (-568))))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 (-953 (-568)) (-763) (-763) (-1157 (-953 (-568))))) (|:| AF (-1 (-1157 (-409 (-953 (-568)))) (-763) (-763) (-1201 (-1157 (-409 (-953 (-568))))))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 (-953 (-568))) (-763)))) (-634 (-465))))) (-15 -3641 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))))) (-15 -3641 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465)))) (-15 -2017 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))))) (-15 -2017 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465)))) (-15 -2659 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))))) (-15 -2659 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465)))) (-15 -4102 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465)))) (-15 -4102 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))))) (-15 -4329 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))))) (-15 -4329 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465)))) (-15 -2788 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465)))) (-15 -2788 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))))) (-15 -1414 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465)))) (-15 -1414 ((-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))))) (-15 -3430 ((-2 (|:| |guessStream| (-1 (-1141 (-1201 (-409 (-953 (-568))))) (-1201 (-409 (-953 (-568)))))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-409 (-953 (-568)))))) (-1201 (-1157 (-409 (-953 (-568))))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 (-953 (-568)) (-763) (-763) (-1157 (-953 (-568))))) (|:| AF (-1 (-1157 (-409 (-953 (-568)))) (-763) (-763) (-1201 (-1157 (-409 (-953 (-568))))))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 (-953 (-568))) (-763)))) (-634 (-465)))) (-15 -4089 ((-2 (|:| |guessStream| (-1 (-1141 (-1201 (-409 (-953 (-568))))) (-1201 (-409 (-953 (-568)))))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-409 (-953 (-568)))))) (-1201 (-1157 (-409 (-953 (-568))))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 (-953 (-568)) (-763) (-763) (-1157 (-953 (-568))))) (|:| AF (-1 (-1157 (-409 (-953 (-568)))) (-763) (-763) (-1201 (-1157 (-409 (-953 (-568))))))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 (-953 (-568))) (-763)))) (-634 (-465)))) (IF (|has| (-409 (-953 (-568))) (-1037 (-1161))) (IF (|has| (-953 (-568)) (-1037 (-1161))) (PROGN (-15 -4089 ((-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 (-409 (-953 (-568))))) (-1201 (-409 (-953 (-568)))))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-409 (-953 (-568)))))) (-1201 (-1157 (-409 (-953 (-568))))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 (-953 (-568)) (-763) (-763) (-1157 (-953 (-568))))) (|:| AF (-1 (-1157 (-409 (-953 (-568)))) (-763) (-763) (-1201 (-1157 (-409 (-953 (-568))))))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 (-953 (-568))) (-763)))) (-634 (-465))) (-1161))) (-15 -3430 ((-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 (-409 (-953 (-568))))) (-1201 (-409 (-953 (-568)))))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-409 (-953 (-568)))))) (-1201 (-1157 (-409 (-953 (-568))))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 (-953 (-568)) (-763) (-763) (-1157 (-953 (-568))))) (|:| AF (-1 (-1157 (-409 (-953 (-568)))) (-763) (-763) (-1201 (-1157 (-409 (-953 (-568))))))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 (-953 (-568))) (-763)))) (-634 (-465))) (-1161))) (-15 -4329 ((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465))) (-1161))) (-15 -2788 ((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465))) (-1161))) (-15 -1414 ((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465))) (-1161))) (-15 -3641 ((-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465))) (-1161)))) |noBranch|) |noBranch|)) +((-4089 (((-1 HPSPEC (-634 (-465))) (-1161)) NIL) ((HPSPEC (-634 (-465))) NIL)) (-4329 (((-1 (-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))) (-634 (-465))) (-1161)) NIL) (((-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))) (-634 (-465))) NIL) (((-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568))))) NIL)) (-1414 (((-1 (-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))) (-634 (-465))) (-1161)) NIL) (((-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568))))) NIL) (((-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))) (-634 (-465))) NIL)) (-4102 (((-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568))))) NIL) (((-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))) (-634 (-465))) NIL)) (-2788 (((-1 (-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))) (-634 (-465))) (-1161)) NIL) (((-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568))))) NIL) (((-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))) (-634 (-465))) NIL)) (-2659 (((-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))) (-634 (-465))) NIL) (((-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568))))) NIL)) (-1761 (((-1 (-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))) (-634 (-465))) (-1 HPSPEC (-634 (-465)))) NIL)) (-1829 (((-1 (-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))) (-634 (-465))) (-1161)) NIL) (((-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))) (-634 (-465))) NIL) (((-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568))))) NIL)) (-1961 (((-1 (-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))) (-634 (-465))) (-1161)) NIL) (((-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))) (-634 (-465))) NIL) (((-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568))))) NIL)) (-2017 (((-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))) (-634 (-465))) NIL) (((-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568))))) NIL)) (-3641 (((-1 (-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))) (-634 (-465))) (-1161)) NIL) (((-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))) (-634 (-465))) NIL) (((-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568))))) NIL)) (-1633 (((-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))) (-634 (-1 (-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))) (-634 (-465)))) (-634 (-1161)) (-634 (-465))) NIL) (((-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))) (-634 (-1 (-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))) (-634 (-465)))) (-634 (-1161))) NIL) (((-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))) (-634 (-465))) NIL) (((-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568))))) NIL)) (-3430 (((-1 HPSPEC (-634 (-465))) (-1161)) NIL) ((HPSPEC (-634 (-465))) NIL))) +(((-488 |#1|) (-10 -7 (-15 -1633 ((-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))))) (-15 -1633 ((-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))) (-634 (-465)))) (-15 -1633 ((-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))) (-634 (-1 (-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))) (-634 (-465)))) (-634 (-1161)))) (-15 -1633 ((-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))) (-634 (-1 (-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))) (-634 (-465)))) (-634 (-1161)) (-634 (-465)))) (-15 -1829 ((-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))))) (-15 -1829 ((-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))) (-634 (-465)))) (-15 -1961 ((-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))))) (-15 -1961 ((-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))) (-634 (-465)))) (-15 -1829 ((-1 (-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))) (-634 (-465))) (-1161))) (-15 -1961 ((-1 (-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))) (-634 (-465))) (-1161))) (-15 -1761 ((-1 (-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))) (-634 (-465))) (-1 HPSPEC (-634 (-465))))) (-15 -3641 ((-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))))) (-15 -3641 ((-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))) (-634 (-465)))) (-15 -2017 ((-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))))) (-15 -2017 ((-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))) (-634 (-465)))) (-15 -2659 ((-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))))) (-15 -2659 ((-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))) (-634 (-465)))) (-15 -4102 ((-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))) (-634 (-465)))) (-15 -4102 ((-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))))) (-15 -4329 ((-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))))) (-15 -4329 ((-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))) (-634 (-465)))) (-15 -2788 ((-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))) (-634 (-465)))) (-15 -2788 ((-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))))) (-15 -1414 ((-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))) (-634 (-465)))) (-15 -1414 ((-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))))) (-15 -3430 (HPSPEC (-634 (-465)))) (-15 -4089 (HPSPEC (-634 (-465)))) (-15 -4089 ((-1 HPSPEC (-634 (-465))) (-1161))) (-15 -3430 ((-1 HPSPEC (-634 (-465))) (-1161))) (-15 -4329 ((-1 (-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))) (-634 (-465))) (-1161))) (-15 -2788 ((-1 (-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))) (-634 (-465))) (-1161))) (-15 -1414 ((-1 (-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))) (-634 (-465))) (-1161))) (-15 -3641 ((-1 (-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))) (-634 (-465))) (-1161)))) (-1161)) (T -488)) +((-3641 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1 (-634 (-2 (|:| -1864 (-733 *4 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 *4 (-568)))) (-634 (-465)))) (-5 *1 (-488 *4)) (-14 *4 *3))) (-1414 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1 (-634 (-2 (|:| -1864 (-733 *4 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 *4 (-568)))) (-634 (-465)))) (-5 *1 (-488 *4)) (-14 *4 *3))) (-2788 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1 (-634 (-2 (|:| -1864 (-733 *4 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 *4 (-568)))) (-634 (-465)))) (-5 *1 (-488 *4)) (-14 *4 *3))) (-4329 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1 (-634 (-2 (|:| -1864 (-733 *4 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 *4 (-568)))) (-634 (-465)))) (-5 *1 (-488 *4)) (-14 *4 *3))) (-3430 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1 HPSPEC (-634 (-465)))) (-5 *1 (-488 *4)) (-14 *4 *3))) (-4089 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1 HPSPEC (-634 (-465)))) (-5 *1 (-488 *4)) (-14 *4 *3))) (-4089 (*1 *2 *3) (-12 (-5 *3 (-634 (-465))) (-5 *2 HPSPEC) (-5 *1 (-488 *4)) (-14 *4 (-1161)))) (-3430 (*1 *2 *3) (-12 (-5 *3 (-634 (-465))) (-5 *2 HPSPEC) (-5 *1 (-488 *4)) (-14 *4 (-1161)))) (-1414 (*1 *2 *3) (-12 (-5 *3 (-634 (-409 (-734 *4 (-568))))) (-14 *4 (-1161)) (-5 *2 (-634 (-2 (|:| -1864 (-733 *4 (-568))) (|:| -4477 (-763))))) (-5 *1 (-488 *4)))) (-1414 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-734 *5 (-568))))) (-5 *4 (-634 (-465))) (-14 *5 (-1161)) (-5 *2 (-634 (-2 (|:| -1864 (-733 *5 (-568))) (|:| -4477 (-763))))) (-5 *1 (-488 *5)))) (-2788 (*1 *2 *3) (-12 (-5 *3 (-634 (-409 (-734 *4 (-568))))) (-14 *4 (-1161)) (-5 *2 (-634 (-2 (|:| -1864 (-733 *4 (-568))) (|:| -4477 (-763))))) (-5 *1 (-488 *4)))) (-2788 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-734 *5 (-568))))) (-5 *4 (-634 (-465))) (-14 *5 (-1161)) (-5 *2 (-634 (-2 (|:| -1864 (-733 *5 (-568))) (|:| -4477 (-763))))) (-5 *1 (-488 *5)))) (-4329 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-734 *5 (-568))))) (-5 *4 (-634 (-465))) (-14 *5 (-1161)) (-5 *2 (-634 (-2 (|:| -1864 (-733 *5 (-568))) (|:| -4477 (-763))))) (-5 *1 (-488 *5)))) (-4329 (*1 *2 *3) (-12 (-5 *3 (-634 (-409 (-734 *4 (-568))))) (-14 *4 (-1161)) (-5 *2 (-634 (-2 (|:| -1864 (-733 *4 (-568))) (|:| -4477 (-763))))) (-5 *1 (-488 *4)))) (-4102 (*1 *2 *3) (-12 (-5 *3 (-634 (-409 (-734 *4 (-568))))) (-14 *4 (-1161)) (-5 *2 (-634 (-2 (|:| -1864 (-733 *4 (-568))) (|:| -4477 (-763))))) (-5 *1 (-488 *4)))) (-4102 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-734 *5 (-568))))) (-5 *4 (-634 (-465))) (-14 *5 (-1161)) (-5 *2 (-634 (-2 (|:| -1864 (-733 *5 (-568))) (|:| -4477 (-763))))) (-5 *1 (-488 *5)))) (-2659 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-734 *5 (-568))))) (-5 *4 (-634 (-465))) (-14 *5 (-1161)) (-5 *2 (-634 (-2 (|:| -1864 (-733 *5 (-568))) (|:| -4477 (-763))))) (-5 *1 (-488 *5)))) (-2659 (*1 *2 *3) (-12 (-5 *3 (-634 (-409 (-734 *4 (-568))))) (-14 *4 (-1161)) (-5 *2 (-634 (-2 (|:| -1864 (-733 *4 (-568))) (|:| -4477 (-763))))) (-5 *1 (-488 *4)))) (-2017 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-734 *5 (-568))))) (-5 *4 (-634 (-465))) (-14 *5 (-1161)) (-5 *2 (-634 (-2 (|:| -1864 (-733 *5 (-568))) (|:| -4477 (-763))))) (-5 *1 (-488 *5)))) (-2017 (*1 *2 *3) (-12 (-5 *3 (-634 (-409 (-734 *4 (-568))))) (-14 *4 (-1161)) (-5 *2 (-634 (-2 (|:| -1864 (-733 *4 (-568))) (|:| -4477 (-763))))) (-5 *1 (-488 *4)))) (-3641 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-734 *5 (-568))))) (-5 *4 (-634 (-465))) (-14 *5 (-1161)) (-5 *2 (-634 (-2 (|:| -1864 (-733 *5 (-568))) (|:| -4477 (-763))))) (-5 *1 (-488 *5)))) (-3641 (*1 *2 *3) (-12 (-5 *3 (-634 (-409 (-734 *4 (-568))))) (-14 *4 (-1161)) (-5 *2 (-634 (-2 (|:| -1864 (-733 *4 (-568))) (|:| -4477 (-763))))) (-5 *1 (-488 *4)))) (-1761 (*1 *2 *3) (-12 (-5 *3 (-1 HPSPEC (-634 (-465)))) (-5 *2 (-1 (-634 (-2 (|:| -1864 (-733 *4 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 *4 (-568)))) (-634 (-465)))) (-5 *1 (-488 *4)) (-14 *4 (-1161)))) (-1961 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1 (-634 (-2 (|:| -1864 (-733 *4 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 *4 (-568)))) (-634 (-465)))) (-5 *1 (-488 *4)) (-14 *4 *3))) (-1829 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1 (-634 (-2 (|:| -1864 (-733 *4 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 *4 (-568)))) (-634 (-465)))) (-5 *1 (-488 *4)) (-14 *4 *3))) (-1961 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-734 *5 (-568))))) (-5 *4 (-634 (-465))) (-14 *5 (-1161)) (-5 *2 (-634 (-2 (|:| -1864 (-733 *5 (-568))) (|:| -4477 (-763))))) (-5 *1 (-488 *5)))) (-1961 (*1 *2 *3) (-12 (-5 *3 (-634 (-409 (-734 *4 (-568))))) (-14 *4 (-1161)) (-5 *2 (-634 (-2 (|:| -1864 (-733 *4 (-568))) (|:| -4477 (-763))))) (-5 *1 (-488 *4)))) (-1829 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-734 *5 (-568))))) (-5 *4 (-634 (-465))) (-14 *5 (-1161)) (-5 *2 (-634 (-2 (|:| -1864 (-733 *5 (-568))) (|:| -4477 (-763))))) (-5 *1 (-488 *5)))) (-1829 (*1 *2 *3) (-12 (-5 *3 (-634 (-409 (-734 *4 (-568))))) (-14 *4 (-1161)) (-5 *2 (-634 (-2 (|:| -1864 (-733 *4 (-568))) (|:| -4477 (-763))))) (-5 *1 (-488 *4)))) (-1633 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-634 (-1 (-634 (-2 (|:| -1864 (-733 *7 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 *7 (-568)))) (-634 (-465))))) (-5 *5 (-634 (-1161))) (-5 *6 (-634 (-465))) (-5 *3 (-634 (-409 (-734 *7 (-568))))) (-14 *7 (-1161)) (-5 *2 (-634 (-2 (|:| -1864 (-733 *7 (-568))) (|:| -4477 (-763))))) (-5 *1 (-488 *7)))) (-1633 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-634 (-1 (-634 (-2 (|:| -1864 (-733 *6 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 *6 (-568)))) (-634 (-465))))) (-5 *5 (-634 (-1161))) (-5 *3 (-634 (-409 (-734 *6 (-568))))) (-14 *6 (-1161)) (-5 *2 (-634 (-2 (|:| -1864 (-733 *6 (-568))) (|:| -4477 (-763))))) (-5 *1 (-488 *6)))) (-1633 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-734 *5 (-568))))) (-5 *4 (-634 (-465))) (-14 *5 (-1161)) (-5 *2 (-634 (-2 (|:| -1864 (-733 *5 (-568))) (|:| -4477 (-763))))) (-5 *1 (-488 *5)))) (-1633 (*1 *2 *3) (-12 (-5 *3 (-634 (-409 (-734 *4 (-568))))) (-14 *4 (-1161)) (-5 *2 (-634 (-2 (|:| -1864 (-733 *4 (-568))) (|:| -4477 (-763))))) (-5 *1 (-488 *4))))) +(-10 -7 (-15 -1633 ((-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))))) (-15 -1633 ((-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))) (-634 (-465)))) (-15 -1633 ((-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))) (-634 (-1 (-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))) (-634 (-465)))) (-634 (-1161)))) (-15 -1633 ((-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))) (-634 (-1 (-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))) (-634 (-465)))) (-634 (-1161)) (-634 (-465)))) (-15 -1829 ((-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))))) (-15 -1829 ((-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))) (-634 (-465)))) (-15 -1961 ((-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))))) (-15 -1961 ((-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))) (-634 (-465)))) (-15 -1829 ((-1 (-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))) (-634 (-465))) (-1161))) (-15 -1961 ((-1 (-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))) (-634 (-465))) (-1161))) (-15 -1761 ((-1 (-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))) (-634 (-465))) (-1 HPSPEC (-634 (-465))))) (-15 -3641 ((-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))))) (-15 -3641 ((-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))) (-634 (-465)))) (-15 -2017 ((-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))))) (-15 -2017 ((-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))) (-634 (-465)))) (-15 -2659 ((-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))))) (-15 -2659 ((-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))) (-634 (-465)))) (-15 -4102 ((-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))) (-634 (-465)))) (-15 -4102 ((-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))))) (-15 -4329 ((-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))))) (-15 -4329 ((-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))) (-634 (-465)))) (-15 -2788 ((-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))) (-634 (-465)))) (-15 -2788 ((-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))))) (-15 -1414 ((-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))) (-634 (-465)))) (-15 -1414 ((-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))))) (-15 -3430 (HPSPEC (-634 (-465)))) (-15 -4089 (HPSPEC (-634 (-465)))) (-15 -4089 ((-1 HPSPEC (-634 (-465))) (-1161))) (-15 -3430 ((-1 HPSPEC (-634 (-465))) (-1161))) (-15 -4329 ((-1 (-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))) (-634 (-465))) (-1161))) (-15 -2788 ((-1 (-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))) (-634 (-465))) (-1161))) (-15 -1414 ((-1 (-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))) (-634 (-465))) (-1161))) (-15 -3641 ((-1 (-634 (-2 (|:| -1864 (-733 |#1| (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 |#1| (-568)))) (-634 (-465))) (-1161)))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL)) (-2227 (($ $) NIL)) (-1573 (((-121) $) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-4305 (($ $) NIL)) (-1678 (((-420 $) $) NIL)) (-1497 (((-121) $ $) NIL)) (-2671 (($) NIL T CONST)) (-3666 (((-3 (-568) "failed") $) NIL) (((-3 (-409 (-568)) "failed") $) NIL)) (-2854 (((-568) $) NIL) (((-409 (-568)) $) NIL)) (-2401 (($ $ $) NIL)) (-2925 (((-3 $ "failed") $) NIL)) (-2412 (($ $ $) NIL)) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) NIL)) (-3927 (((-121) $) NIL)) (-1897 (($) 18)) (-2735 (((-121) $) NIL)) (-3562 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-2495 (($ $ $) NIL) (($ (-634 $)) NIL)) (-4487 (((-1143) $) NIL)) (-2081 (($ $) NIL)) (-4022 (((-1108) $) NIL)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL)) (-2721 (($ $ $) NIL) (($ (-634 $)) NIL)) (-3848 (((-420 $) $) NIL)) (-4497 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2595 (((-3 $ "failed") $ $) NIL)) (-2344 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-2709 (((-763) $) NIL)) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL)) (-4278 (((-381) $) 22) (((-215) $) 25) (((-409 (-1157 (-568))) $) 19) (((-541) $) 52)) (-2745 (((-850) $) 50) (($ (-568)) NIL) (($ $) NIL) (($ (-409 (-568))) NIL) (((-215) $) 24) (((-381) $) 21)) (-4078 (((-763)) NIL)) (-1826 (((-121) $ $) NIL)) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL)) (-3056 (($) 36 T CONST)) (-1556 (($) 11 T CONST)) (-1717 (((-121) $ $) NIL)) (-1779 (($ $ $) NIL)) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) NIL) (($ $ (-409 (-568))) NIL) (($ (-409 (-568)) $) NIL))) +(((-489) (-13 (-365) (-150) (-1037 (-568)) (-1037 (-409 (-568))) (-1021) (-608 (-215)) (-608 (-381)) (-609 (-409 (-1157 (-568)))) (-609 (-541)) (-10 -8 (-15 -1897 ($))))) (T -489)) +((-1897 (*1 *1) (-5 *1 (-489)))) +(-13 (-365) (-150) (-1037 (-568)) (-1037 (-409 (-568))) (-1021) (-608 (-215)) (-608 (-381)) (-609 (-409 (-1157 (-568)))) (-609 (-541)) (-10 -8 (-15 -1897 ($)))) +((-2447 (((-121) $ $) NIL (-2198 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-2986 (($) NIL) (($ (-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) NIL)) (-1868 (((-1249) $ |#1| |#1|) NIL (|has| $ (-6 -4520)))) (-2510 (((-121) $ (-763)) NIL)) (-2436 ((|#2| $ |#1| |#2|) 16)) (-3507 (($ (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519)))) (-2801 (($ (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519)))) (-2674 (((-3 |#2| "failed") |#1| $) 20)) (-2671 (($) NIL T CONST)) (-3924 (($ $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090))))) (-3405 (($ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) NIL (|has| $ (-6 -4519))) (($ (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519))) (((-3 |#2| "failed") |#1| $) 18)) (-4328 (($ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (($ (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519)))) (-3092 (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) NIL (|has| $ (-6 -4519))) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519)))) (-3989 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4520)))) (-2602 ((|#2| $ |#1|) NIL)) (-4360 (((-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519))) (((-634 |#2|) $) NIL (|has| $ (-6 -4519)))) (-1737 (((-121) $ (-763)) NIL)) (-1881 ((|#1| $) NIL (|has| |#1| (-842)))) (-1979 (((-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519))) (((-634 |#2|) $) NIL (|has| $ (-6 -4519)))) (-3109 (((-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (((-121) |#2| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#2| (-1090))))) (-2223 ((|#1| $) NIL (|has| |#1| (-842)))) (-3674 (($ (-1 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4520))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4520)))) (-2795 (($ (-1 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2166 (((-121) $ (-763)) NIL)) (-4487 (((-1143) $) NIL (-2198 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-1946 (((-634 |#1|) $) 13)) (-3548 (((-121) |#1| $) NIL)) (-1890 (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) NIL)) (-4450 (($ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) NIL)) (-4174 (((-634 |#1|) $) NIL)) (-3578 (((-121) |#1| $) NIL)) (-4022 (((-1108) $) NIL (-2198 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-3876 ((|#2| $) NIL (|has| |#1| (-842)))) (-3775 (((-3 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) "failed") (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL)) (-3724 (($ $ |#2|) NIL (|has| $ (-6 -4520)))) (-1315 (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) NIL)) (-1387 (((-121) (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519))) (((-121) (-1 (-121) |#2|) $) NIL (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))))) NIL (-12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (($ $ (-288 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) NIL (-12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (($ $ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) NIL (-12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (($ $ (-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) (-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) NIL (-12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (($ $ (-634 |#2|) (-634 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090)))) (($ $ (-634 (-288 |#2|))) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090))))) (-3171 (((-121) $ $) NIL)) (-4467 (((-121) |#2| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#2| (-1090))))) (-2041 (((-634 |#2|) $) NIL)) (-3084 (((-121) $) NIL)) (-3248 (($) 19)) (-2779 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2085 (($) NIL) (($ (-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) NIL)) (-4168 (((-763) (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519))) (((-763) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (((-763) |#2| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#2| (-1090)))) (((-763) (-1 (-121) |#2|) $) NIL (|has| $ (-6 -4519)))) (-3863 (($ $) NIL)) (-4278 (((-541) $) NIL (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-609 (-541))))) (-4287 (($ (-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) NIL)) (-2745 (((-850) $) NIL (-2198 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-2367 (($ (-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) NIL)) (-1319 (((-121) (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519))) (((-121) (-1 (-121) |#2|) $) NIL (|has| $ (-6 -4519)))) (-1717 (((-121) $ $) 11 (-2198 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-1697 (((-763) $) 15 (|has| $ (-6 -4519))))) +(((-490 |#1| |#2| |#3|) (-13 (-1172 |#1| |#2|) (-10 -7 (-6 -4519))) (-1090) (-1090) (-1143)) (T -490)) +NIL +(-13 (-1172 |#1| |#2|) (-10 -7 (-6 -4519))) +((-3735 (((-568) (-568) (-568)) 7)) (-2701 (((-121) (-568) (-568) (-568) (-568)) 11)) (-2781 (((-1244 (-634 (-568))) (-763) (-763)) 22))) +(((-491) (-10 -7 (-15 -3735 ((-568) (-568) (-568))) (-15 -2701 ((-121) (-568) (-568) (-568) (-568))) (-15 -2781 ((-1244 (-634 (-568))) (-763) (-763))))) (T -491)) +((-2781 (*1 *2 *3 *3) (-12 (-5 *3 (-763)) (-5 *2 (-1244 (-634 (-568)))) (-5 *1 (-491)))) (-2701 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-568)) (-5 *2 (-121)) (-5 *1 (-491)))) (-3735 (*1 *2 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-491))))) +(-10 -7 (-15 -3735 ((-568) (-568) (-568))) (-15 -2701 ((-121) (-568) (-568) (-568) (-568))) (-15 -2781 ((-1244 (-634 (-568))) (-763) (-763)))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-2055 (((-634 (-852 |#1|)) $) NIL)) (-3839 (((-1157 $) $ (-852 |#1|)) NIL) (((-1157 |#2|) $) NIL)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL (|has| |#2| (-558)))) (-2227 (($ $) NIL (|has| |#2| (-558)))) (-1573 (((-121) $) NIL (|has| |#2| (-558)))) (-2773 (((-763) $) NIL) (((-763) $ (-634 (-852 |#1|))) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-1750 (((-420 (-1157 $)) (-1157 $)) NIL (|has| |#2| (-904)))) (-4305 (($ $) NIL (|has| |#2| (-453)))) (-1678 (((-420 $) $) NIL (|has| |#2| (-453)))) (-1858 (((-3 (-634 (-1157 $)) "failed") (-634 (-1157 $)) (-1157 $)) NIL (|has| |#2| (-904)))) (-2671 (($) NIL T CONST)) (-3666 (((-3 |#2| "failed") $) NIL) (((-3 (-409 (-568)) "failed") $) NIL (|has| |#2| (-1037 (-409 (-568))))) (((-3 (-568) "failed") $) NIL (|has| |#2| (-1037 (-568)))) (((-3 (-852 |#1|) "failed") $) NIL)) (-2854 ((|#2| $) NIL) (((-409 (-568)) $) NIL (|has| |#2| (-1037 (-409 (-568))))) (((-568) $) NIL (|has| |#2| (-1037 (-568)))) (((-852 |#1|) $) NIL)) (-4265 (($ $ $ (-852 |#1|)) NIL (|has| |#2| (-172)))) (-4425 (($ $ (-634 (-568))) NIL)) (-2114 (($ $) NIL)) (-3164 (((-679 (-568)) (-679 $)) NIL (|has| |#2| (-630 (-568)))) (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) NIL (|has| |#2| (-630 (-568)))) (((-2 (|:| -2928 (-679 |#2|)) (|:| |vec| (-1244 |#2|))) (-679 $) (-1244 $)) NIL) (((-679 |#2|) (-679 $)) NIL)) (-2925 (((-3 $ "failed") $) NIL)) (-3250 (($ $) NIL (|has| |#2| (-453))) (($ $ (-852 |#1|)) NIL (|has| |#2| (-453)))) (-2108 (((-634 $) $) NIL)) (-3927 (((-121) $) NIL (|has| |#2| (-904)))) (-3088 (($ $ |#2| (-493 (-1697 |#1|) (-763)) $) NIL)) (-4410 (((-884 (-381) $) $ (-887 (-381)) (-884 (-381) $)) NIL (-12 (|has| (-852 |#1|) (-881 (-381))) (|has| |#2| (-881 (-381))))) (((-884 (-568) $) $ (-887 (-568)) (-884 (-568) $)) NIL (-12 (|has| (-852 |#1|) (-881 (-568))) (|has| |#2| (-881 (-568)))))) (-2735 (((-121) $) NIL)) (-4178 (((-763) $) NIL)) (-2051 (($ (-1157 |#2|) (-852 |#1|)) NIL) (($ (-1157 $) (-852 |#1|)) NIL)) (-2976 (((-634 $) $) NIL)) (-3921 (((-121) $) NIL)) (-2047 (($ |#2| (-493 (-1697 |#1|) (-763))) NIL) (($ $ (-852 |#1|) (-763)) NIL) (($ $ (-634 (-852 |#1|)) (-634 (-763))) NIL)) (-3379 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $ (-852 |#1|)) NIL)) (-2144 (((-493 (-1697 |#1|) (-763)) $) NIL) (((-763) $ (-852 |#1|)) NIL) (((-634 (-763)) $ (-634 (-852 |#1|))) NIL)) (-2521 (($ $ $) NIL (|has| |#2| (-842)))) (-3268 (($ $ $) NIL (|has| |#2| (-842)))) (-3842 (($ (-1 (-493 (-1697 |#1|) (-763)) (-493 (-1697 |#1|) (-763))) $) NIL)) (-2795 (($ (-1 |#2| |#2|) $) NIL)) (-2244 (((-3 (-852 |#1|) "failed") $) NIL)) (-2097 (($ $) NIL)) (-2102 ((|#2| $) NIL)) (-2495 (($ (-634 $)) NIL (|has| |#2| (-453))) (($ $ $) NIL (|has| |#2| (-453)))) (-4487 (((-1143) $) NIL)) (-3324 (((-3 (-634 $) "failed") $) NIL)) (-1794 (((-3 (-634 $) "failed") $) NIL)) (-3751 (((-3 (-2 (|:| |var| (-852 |#1|)) (|:| -3438 (-763))) "failed") $) NIL)) (-4022 (((-1108) $) NIL)) (-2086 (((-121) $) NIL)) (-2091 ((|#2| $) NIL)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL (|has| |#2| (-453)))) (-2721 (($ (-634 $)) NIL (|has| |#2| (-453))) (($ $ $) NIL (|has| |#2| (-453)))) (-2905 (((-420 (-1157 $)) (-1157 $)) NIL (|has| |#2| (-904)))) (-3545 (((-420 (-1157 $)) (-1157 $)) NIL (|has| |#2| (-904)))) (-3848 (((-420 $) $) NIL (|has| |#2| (-904)))) (-2595 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-558))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-558)))) (-1339 (($ $ (-634 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-634 $) (-634 $)) NIL) (($ $ (-852 |#1|) |#2|) NIL) (($ $ (-634 (-852 |#1|)) (-634 |#2|)) NIL) (($ $ (-852 |#1|) $) NIL) (($ $ (-634 (-852 |#1|)) (-634 $)) NIL)) (-2217 (($ $ (-852 |#1|)) NIL (|has| |#2| (-172)))) (-4189 (($ $ (-852 |#1|)) NIL) (($ $ (-634 (-852 |#1|))) NIL) (($ $ (-852 |#1|) (-763)) NIL) (($ $ (-634 (-852 |#1|)) (-634 (-763))) NIL)) (-3206 (((-493 (-1697 |#1|) (-763)) $) NIL) (((-763) $ (-852 |#1|)) NIL) (((-634 (-763)) $ (-634 (-852 |#1|))) NIL)) (-4278 (((-887 (-381)) $) NIL (-12 (|has| (-852 |#1|) (-609 (-887 (-381)))) (|has| |#2| (-609 (-887 (-381)))))) (((-887 (-568)) $) NIL (-12 (|has| (-852 |#1|) (-609 (-887 (-568)))) (|has| |#2| (-609 (-887 (-568)))))) (((-541) $) NIL (-12 (|has| (-852 |#1|) (-609 (-541))) (|has| |#2| (-609 (-541)))))) (-3367 ((|#2| $) NIL (|has| |#2| (-453))) (($ $ (-852 |#1|)) NIL (|has| |#2| (-453)))) (-2979 (((-3 (-1244 $) "failed") (-679 $)) NIL (-12 (|has| $ (-148)) (|has| |#2| (-904))))) (-2745 (((-850) $) NIL) (($ (-568)) NIL) (($ |#2|) NIL) (($ (-852 |#1|)) NIL) (($ (-409 (-568))) NIL (-2198 (|has| |#2| (-43 (-409 (-568)))) (|has| |#2| (-1037 (-409 (-568)))))) (($ $) NIL (|has| |#2| (-558)))) (-1302 (((-634 |#2|) $) NIL)) (-2604 ((|#2| $ (-493 (-1697 |#1|) (-763))) NIL) (($ $ (-852 |#1|) (-763)) NIL) (($ $ (-634 (-852 |#1|)) (-634 (-763))) NIL)) (-4371 (((-3 $ "failed") $) NIL (-2198 (-12 (|has| $ (-148)) (|has| |#2| (-904))) (|has| |#2| (-148))))) (-4078 (((-763)) NIL)) (-4171 (($ $ $ (-763)) NIL (|has| |#2| (-172)))) (-1826 (((-121) $ $) NIL (|has| |#2| (-558)))) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (-3056 (($) NIL T CONST)) (-1556 (($) NIL T CONST)) (-3190 (($ $ (-852 |#1|)) NIL) (($ $ (-634 (-852 |#1|))) NIL) (($ $ (-852 |#1|) (-763)) NIL) (($ $ (-634 (-852 |#1|)) (-634 (-763))) NIL)) (-1751 (((-121) $ $) NIL (|has| |#2| (-842)))) (-1738 (((-121) $ $) NIL (|has| |#2| (-842)))) (-1717 (((-121) $ $) NIL)) (-1745 (((-121) $ $) NIL (|has| |#2| (-842)))) (-1732 (((-121) $ $) NIL (|has| |#2| (-842)))) (-1779 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) NIL) (($ $ (-409 (-568))) NIL (|has| |#2| (-43 (-409 (-568))))) (($ (-409 (-568)) $) NIL (|has| |#2| (-43 (-409 (-568))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-492 |#1| |#2|) (-13 (-950 |#2| (-493 (-1697 |#1|) (-763)) (-852 |#1|)) (-10 -8 (-15 -4425 ($ $ (-634 (-568)))))) (-634 (-1161)) (-1047)) (T -492)) +((-4425 (*1 *1 *1 *2) (-12 (-5 *2 (-634 (-568))) (-5 *1 (-492 *3 *4)) (-14 *3 (-634 (-1161))) (-4 *4 (-1047))))) +(-13 (-950 |#2| (-493 (-1697 |#1|) (-763)) (-852 |#1|)) (-10 -8 (-15 -4425 ($ $ (-634 (-568)))))) +((-2447 (((-121) $ $) NIL (|has| |#2| (-1090)))) (-2537 (((-121) $) NIL (|has| |#2| (-137)))) (-1394 (($ (-917)) NIL (|has| |#2| (-1047)))) (-1868 (((-1249) $ (-568) (-568)) NIL (|has| $ (-6 -4520)))) (-1462 (($ $ $) NIL (|has| |#2| (-788)))) (-3134 (((-3 $ "failed") $ $) NIL (|has| |#2| (-137)))) (-2510 (((-121) $ (-763)) NIL)) (-3983 (((-763)) NIL (|has| |#2| (-370)))) (-3662 (((-568) $) NIL (|has| |#2| (-840)))) (-2436 ((|#2| $ (-568) |#2|) NIL (|has| $ (-6 -4520)))) (-2671 (($) NIL T CONST)) (-3666 (((-3 (-568) "failed") $) NIL (-12 (|has| |#2| (-1037 (-568))) (|has| |#2| (-1090)))) (((-3 (-409 (-568)) "failed") $) NIL (-12 (|has| |#2| (-1037 (-409 (-568)))) (|has| |#2| (-1090)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1090)))) (-2854 (((-568) $) NIL (-12 (|has| |#2| (-1037 (-568))) (|has| |#2| (-1090)))) (((-409 (-568)) $) NIL (-12 (|has| |#2| (-1037 (-409 (-568)))) (|has| |#2| (-1090)))) ((|#2| $) NIL (|has| |#2| (-1090)))) (-3164 (((-679 (-568)) (-679 $)) NIL (-12 (|has| |#2| (-630 (-568))) (|has| |#2| (-1047)))) (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) NIL (-12 (|has| |#2| (-630 (-568))) (|has| |#2| (-1047)))) (((-2 (|:| -2928 (-679 |#2|)) (|:| |vec| (-1244 |#2|))) (-679 $) (-1244 $)) NIL (|has| |#2| (-1047))) (((-679 |#2|) (-679 $)) NIL (|has| |#2| (-1047)))) (-2925 (((-3 $ "failed") $) NIL (|has| |#2| (-716)))) (-1731 (($) NIL (|has| |#2| (-370)))) (-3989 ((|#2| $ (-568) |#2|) NIL (|has| $ (-6 -4520)))) (-2602 ((|#2| $ (-568)) 11)) (-2033 (((-121) $) NIL (|has| |#2| (-840)))) (-4360 (((-634 |#2|) $) NIL (|has| $ (-6 -4519)))) (-2735 (((-121) $) NIL (|has| |#2| (-716)))) (-2245 (((-121) $) NIL (|has| |#2| (-840)))) (-1737 (((-121) $ (-763)) NIL)) (-1881 (((-568) $) NIL (|has| (-568) (-842)))) (-2521 (($ $ $) NIL (-2198 (|has| |#2| (-788)) (|has| |#2| (-840))))) (-1979 (((-634 |#2|) $) NIL (|has| $ (-6 -4519)))) (-3109 (((-121) |#2| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#2| (-1090))))) (-2223 (((-568) $) NIL (|has| (-568) (-842)))) (-3268 (($ $ $) NIL (-2198 (|has| |#2| (-788)) (|has| |#2| (-840))))) (-3674 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#2| |#2|) $) NIL)) (-3683 (((-917) $) NIL (|has| |#2| (-370)))) (-2166 (((-121) $ (-763)) NIL)) (-4487 (((-1143) $) NIL (|has| |#2| (-1090)))) (-4174 (((-634 (-568)) $) NIL)) (-3578 (((-121) (-568) $) NIL)) (-4355 (($ (-917)) NIL (|has| |#2| (-370)))) (-4022 (((-1108) $) NIL (|has| |#2| (-1090)))) (-3876 ((|#2| $) NIL (|has| (-568) (-842)))) (-3724 (($ $ |#2|) NIL (|has| $ (-6 -4520)))) (-1387 (((-121) (-1 (-121) |#2|) $) NIL (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#2|))) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090)))) (($ $ (-634 |#2|) (-634 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090))))) (-3171 (((-121) $ $) NIL)) (-4467 (((-121) |#2| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#2| (-1090))))) (-2041 (((-634 |#2|) $) NIL)) (-3084 (((-121) $) NIL)) (-3248 (($) NIL)) (-2779 ((|#2| $ (-568) |#2|) NIL) ((|#2| $ (-568)) NIL)) (-3682 ((|#2| $ $) NIL (|has| |#2| (-1047)))) (-2039 (($ (-1244 |#2|)) NIL)) (-4321 (((-139)) NIL (|has| |#2| (-365)))) (-4189 (($ $) NIL (-12 (|has| |#2| (-225)) (|has| |#2| (-1047)))) (($ $ (-763)) NIL (-12 (|has| |#2| (-225)) (|has| |#2| (-1047)))) (($ $ (-1161)) NIL (-12 (|has| |#2| (-895 (-1161))) (|has| |#2| (-1047)))) (($ $ (-634 (-1161))) NIL (-12 (|has| |#2| (-895 (-1161))) (|has| |#2| (-1047)))) (($ $ (-1161) (-763)) NIL (-12 (|has| |#2| (-895 (-1161))) (|has| |#2| (-1047)))) (($ $ (-634 (-1161)) (-634 (-763))) NIL (-12 (|has| |#2| (-895 (-1161))) (|has| |#2| (-1047)))) (($ $ (-1 |#2| |#2|) (-763)) NIL (|has| |#2| (-1047))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1047)))) (-4168 (((-763) (-1 (-121) |#2|) $) NIL (|has| $ (-6 -4519))) (((-763) |#2| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#2| (-1090))))) (-3863 (($ $) NIL)) (-2745 (((-1244 |#2|) $) NIL) (((-850) $) NIL (|has| |#2| (-1090))) (($ (-568)) NIL (-2198 (-12 (|has| |#2| (-1037 (-568))) (|has| |#2| (-1090))) (|has| |#2| (-1047)))) (($ (-409 (-568))) NIL (-12 (|has| |#2| (-1037 (-409 (-568)))) (|has| |#2| (-1090)))) (($ |#2|) NIL (|has| |#2| (-1090)))) (-4078 (((-763)) NIL (|has| |#2| (-1047)))) (-1319 (((-121) (-1 (-121) |#2|) $) NIL (|has| $ (-6 -4519)))) (-2897 (($ $) NIL (|has| |#2| (-840)))) (-1887 (($ $ (-763)) NIL (|has| |#2| (-716))) (($ $ (-917)) NIL (|has| |#2| (-716)))) (-3056 (($) NIL (|has| |#2| (-137)) CONST)) (-1556 (($) NIL (|has| |#2| (-716)) CONST)) (-3190 (($ $) NIL (-12 (|has| |#2| (-225)) (|has| |#2| (-1047)))) (($ $ (-763)) NIL (-12 (|has| |#2| (-225)) (|has| |#2| (-1047)))) (($ $ (-1161)) NIL (-12 (|has| |#2| (-895 (-1161))) (|has| |#2| (-1047)))) (($ $ (-634 (-1161))) NIL (-12 (|has| |#2| (-895 (-1161))) (|has| |#2| (-1047)))) (($ $ (-1161) (-763)) NIL (-12 (|has| |#2| (-895 (-1161))) (|has| |#2| (-1047)))) (($ $ (-634 (-1161)) (-634 (-763))) NIL (-12 (|has| |#2| (-895 (-1161))) (|has| |#2| (-1047)))) (($ $ (-1 |#2| |#2|) (-763)) NIL (|has| |#2| (-1047))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1047)))) (-1751 (((-121) $ $) NIL (-2198 (|has| |#2| (-788)) (|has| |#2| (-840))))) (-1738 (((-121) $ $) NIL (-2198 (|has| |#2| (-788)) (|has| |#2| (-840))))) (-1717 (((-121) $ $) NIL (|has| |#2| (-1090)))) (-1745 (((-121) $ $) NIL (-2198 (|has| |#2| (-788)) (|has| |#2| (-840))))) (-1732 (((-121) $ $) 15 (-2198 (|has| |#2| (-788)) (|has| |#2| (-840))))) (-1779 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-1773 (($ $ $) NIL (|has| |#2| (-1047))) (($ $) NIL (|has| |#2| (-1047)))) (-1767 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-763)) NIL (|has| |#2| (-716))) (($ $ (-917)) NIL (|has| |#2| (-716)))) (* (($ (-568) $) NIL (|has| |#2| (-1047))) (($ $ $) NIL (|has| |#2| (-716))) (($ $ |#2|) NIL (|has| |#2| (-1047))) (($ |#2| $) NIL (|has| |#2| (-1047))) (($ (-763) $) NIL (|has| |#2| (-137))) (($ (-917) $) NIL (|has| |#2| (-25)))) (-1697 (((-763) $) NIL (|has| $ (-6 -4519))))) +(((-493 |#1| |#2|) (-230 |#1| |#2|) (-763) (-788)) (T -493)) +NIL +(-230 |#1| |#2|) +((-2447 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-2510 (((-121) $ (-763)) NIL)) (-2671 (($) NIL T CONST)) (-4360 (((-634 |#1|) $) NIL (|has| $ (-6 -4519)))) (-1737 (((-121) $ (-763)) NIL)) (-3349 (($ $ $) 32)) (-1347 (($ $ $) 31)) (-1979 (((-634 |#1|) $) NIL (|has| $ (-6 -4519)))) (-3109 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-3268 ((|#1| $) 26)) (-3674 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#1| |#1|) $) NIL)) (-2166 (((-121) $ (-763)) NIL)) (-4487 (((-1143) $) NIL (|has| |#1| (-1090)))) (-1890 ((|#1| $) 27)) (-4450 (($ |#1| $) 10)) (-1359 (($ (-634 |#1|)) 12)) (-4022 (((-1108) $) NIL (|has| |#1| (-1090)))) (-1315 ((|#1| $) 23)) (-1387 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-634 |#1|) (-634 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))))) (-3171 (((-121) $ $) NIL)) (-3084 (((-121) $) NIL)) (-3248 (($) 9)) (-4168 (((-763) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519))) (((-763) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-3863 (($ $) NIL)) (-2745 (((-850) $) NIL (|has| |#1| (-1090)))) (-2367 (($ (-634 |#1|)) 29)) (-1319 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-1717 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-1697 (((-763) $) 21 (|has| $ (-6 -4519))))) +(((-494 |#1|) (-13 (-969 |#1|) (-10 -8 (-15 -1359 ($ (-634 |#1|))) (-15 -2367 ($ (-634 |#1|))) (-15 -3863 ($ $)) (-15 -3084 ((-121) $)) (-15 -3248 ($)) (-15 -3171 ((-121) $ $)) (-15 -1315 (|#1| $)) (-15 -4450 ($ |#1| $)) (-15 -1890 (|#1| $)) (-15 -2795 ($ (-1 |#1| |#1|) $)) (-15 -3268 (|#1| $)) (-15 -1347 ($ $ $)) (-15 -3349 ($ $ $)) (-15 -2671 ($)) (-15 -2166 ((-121) $ (-763))) (-15 -1737 ((-121) $ (-763))) (-15 -2510 ((-121) $ (-763))) (IF (|has| $ (-6 -4520)) (-15 -3674 ($ (-1 |#1| |#1|) $)) |noBranch|) (IF (|has| |#1| (-1090)) (PROGN (-15 -4487 ((-1143) $)) (-15 -4022 ((-1108) $)) (-15 -2745 ((-850) $)) (-15 -1717 ((-121) $ $)) (-15 -2447 ((-121) $ $))) |noBranch|) (IF (|has| $ (-6 -4519)) (PROGN (-15 -1387 ((-121) (-1 (-121) |#1|) $)) (-15 -1319 ((-121) (-1 (-121) |#1|) $)) (-15 -4168 ((-763) (-1 (-121) |#1|) $)) (-15 -1697 ((-763) $)) (-15 -4360 ((-634 |#1|) $)) (-15 -1979 ((-634 |#1|) $))) |noBranch|) (IF (|has| $ (-6 -4519)) (IF (|has| |#1| (-1090)) (PROGN (-15 -3109 ((-121) |#1| $)) (-15 -4168 ((-763) |#1| $))) |noBranch|) |noBranch|))) (-842)) (T -494)) +((-3171 (*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-494 *3)) (-4 *3 (-842)))) (-3863 (*1 *1 *1) (-12 (-5 *1 (-494 *2)) (-4 *2 (-842)))) (-3248 (*1 *1) (-12 (-5 *1 (-494 *2)) (-4 *2 (-842)))) (-3084 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-494 *3)) (-4 *3 (-842)))) (-2166 (*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-5 *2 (-121)) (-5 *1 (-494 *4)) (-4 *4 (-842)))) (-1737 (*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-5 *2 (-121)) (-5 *1 (-494 *4)) (-4 *4 (-842)))) (-2510 (*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-5 *2 (-121)) (-5 *1 (-494 *4)) (-4 *4 (-842)))) (-2671 (*1 *1) (-12 (-5 *1 (-494 *2)) (-4 *2 (-842)))) (-1697 (*1 *2 *1) (-12 (|has| $ (-6 -4519)) (-5 *2 (-763)) (-5 *1 (-494 *3)) (-4 *3 (-842)))) (-2795 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-842)) (-5 *1 (-494 *3)))) (-3674 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| $ (-6 -4520)) (-4 *3 (-842)) (-5 *1 (-494 *3)))) (-1319 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| $ (-6 -4519)) (-4 *4 (-842)) (-5 *2 (-121)) (-5 *1 (-494 *4)))) (-1387 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| $ (-6 -4519)) (-4 *4 (-842)) (-5 *2 (-121)) (-5 *1 (-494 *4)))) (-4168 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| $ (-6 -4519)) (-4 *4 (-842)) (-5 *2 (-763)) (-5 *1 (-494 *4)))) (-4360 (*1 *2 *1) (-12 (|has| $ (-6 -4519)) (-5 *2 (-634 *3)) (-5 *1 (-494 *3)) (-4 *3 (-842)))) (-1979 (*1 *2 *1) (-12 (|has| $ (-6 -4519)) (-5 *2 (-634 *3)) (-5 *1 (-494 *3)) (-4 *3 (-842)))) (-4168 (*1 *2 *3 *1) (-12 (|has| $ (-6 -4519)) (-5 *2 (-763)) (-5 *1 (-494 *3)) (-4 *3 (-1090)) (-4 *3 (-842)))) (-3109 (*1 *2 *3 *1) (-12 (|has| $ (-6 -4519)) (-5 *2 (-121)) (-5 *1 (-494 *3)) (-4 *3 (-1090)) (-4 *3 (-842)))) (-4487 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-494 *3)) (-4 *3 (-1090)) (-4 *3 (-842)))) (-4022 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-494 *3)) (-4 *3 (-1090)) (-4 *3 (-842)))) (-2745 (*1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-494 *3)) (-4 *3 (-1090)) (-4 *3 (-842)))) (-1717 (*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-494 *3)) (-4 *3 (-1090)) (-4 *3 (-842)))) (-2447 (*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-494 *3)) (-4 *3 (-1090)) (-4 *3 (-842)))) (-2367 (*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-842)) (-5 *1 (-494 *3)))) (-1315 (*1 *2 *1) (-12 (-5 *1 (-494 *2)) (-4 *2 (-842)))) (-4450 (*1 *1 *2 *1) (-12 (-5 *1 (-494 *2)) (-4 *2 (-842)))) (-1890 (*1 *2 *1) (-12 (-5 *1 (-494 *2)) (-4 *2 (-842)))) (-3268 (*1 *2 *1) (-12 (-5 *1 (-494 *2)) (-4 *2 (-842)))) (-1347 (*1 *1 *1 *1) (-12 (-5 *1 (-494 *2)) (-4 *2 (-842)))) (-3349 (*1 *1 *1 *1) (-12 (-5 *1 (-494 *2)) (-4 *2 (-842)))) (-1359 (*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-842)) (-5 *1 (-494 *3))))) +(-13 (-969 |#1|) (-10 -8 (-15 -1359 ($ (-634 |#1|))) (-15 -2367 ($ (-634 |#1|))) (-15 -3863 ($ $)) (-15 -3084 ((-121) $)) (-15 -3248 ($)) (-15 -3171 ((-121) $ $)) (-15 -1315 (|#1| $)) (-15 -4450 ($ |#1| $)) (-15 -1890 (|#1| $)) (-15 -2795 ($ (-1 |#1| |#1|) $)) (-15 -3268 (|#1| $)) (-15 -1347 ($ $ $)) (-15 -3349 ($ $ $)) (-15 -2671 ($)) (-15 -2166 ((-121) $ (-763))) (-15 -1737 ((-121) $ (-763))) (-15 -2510 ((-121) $ (-763))) (IF (|has| $ (-6 -4520)) (-15 -3674 ($ (-1 |#1| |#1|) $)) |noBranch|) (IF (|has| |#1| (-1090)) (PROGN (-15 -4487 ((-1143) $)) (-15 -4022 ((-1108) $)) (-15 -2745 ((-850) $)) (-15 -1717 ((-121) $ $)) (-15 -2447 ((-121) $ $))) |noBranch|) (IF (|has| $ (-6 -4519)) (PROGN (-15 -1387 ((-121) (-1 (-121) |#1|) $)) (-15 -1319 ((-121) (-1 (-121) |#1|) $)) (-15 -4168 ((-763) (-1 (-121) |#1|) $)) (-15 -1697 ((-763) $)) (-15 -4360 ((-634 |#1|) $)) (-15 -1979 ((-634 |#1|) $))) |noBranch|) (IF (|has| $ (-6 -4519)) (IF (|has| |#1| (-1090)) (PROGN (-15 -3109 ((-121) |#1| $)) (-15 -4168 ((-763) |#1| $))) |noBranch|) |noBranch|))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-2671 (($) NIL T CONST)) (-3092 (($ $) 69)) (-2886 (((-121) $) NIL)) (-4487 (((-1143) $) NIL)) (-1552 (((-415 |#2| (-409 |#2|) |#3| |#4|) $) 43)) (-4022 (((-1108) $) NIL)) (-2704 (((-3 |#4| "failed") $) 105)) (-2849 (($ (-415 |#2| (-409 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 113) (($ |#1| |#1| (-568)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 125)) (-2847 (((-2 (|:| -1713 (-415 |#2| (-409 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 45)) (-2745 (((-850) $) 100)) (-3056 (($) 33 T CONST)) (-1717 (((-121) $ $) 107)) (-1773 (($ $) 72) (($ $ $) NIL)) (-1767 (($ $ $) 70)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) 73))) +(((-495 |#1| |#2| |#3| |#4|) (-333 |#1| |#2| |#3| |#4|) (-365) (-1219 |#1|) (-1219 (-409 |#2|)) (-340 |#1| |#2| |#3|)) (T -495)) +NIL +(-333 |#1| |#2| |#3| |#4|) +((-4375 (((-568) (-634 (-568))) 28)) (-4323 ((|#1| (-634 |#1|)) 56)) (-3279 (((-634 |#1|) (-634 |#1|)) 57)) (-4439 (((-634 |#1|) (-634 |#1|)) 59)) (-2721 ((|#1| (-634 |#1|)) 58)) (-3367 (((-634 (-568)) (-634 |#1|)) 31))) +(((-496 |#1|) (-10 -7 (-15 -2721 (|#1| (-634 |#1|))) (-15 -4323 (|#1| (-634 |#1|))) (-15 -4439 ((-634 |#1|) (-634 |#1|))) (-15 -3279 ((-634 |#1|) (-634 |#1|))) (-15 -3367 ((-634 (-568)) (-634 |#1|))) (-15 -4375 ((-568) (-634 (-568))))) (-1219 (-568))) (T -496)) +((-4375 (*1 *2 *3) (-12 (-5 *3 (-634 (-568))) (-5 *2 (-568)) (-5 *1 (-496 *4)) (-4 *4 (-1219 *2)))) (-3367 (*1 *2 *3) (-12 (-5 *3 (-634 *4)) (-4 *4 (-1219 (-568))) (-5 *2 (-634 (-568))) (-5 *1 (-496 *4)))) (-3279 (*1 *2 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-1219 (-568))) (-5 *1 (-496 *3)))) (-4439 (*1 *2 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-1219 (-568))) (-5 *1 (-496 *3)))) (-4323 (*1 *2 *3) (-12 (-5 *3 (-634 *2)) (-5 *1 (-496 *2)) (-4 *2 (-1219 (-568))))) (-2721 (*1 *2 *3) (-12 (-5 *3 (-634 *2)) (-5 *1 (-496 *2)) (-4 *2 (-1219 (-568)))))) +(-10 -7 (-15 -2721 (|#1| (-634 |#1|))) (-15 -4323 (|#1| (-634 |#1|))) (-15 -4439 ((-634 |#1|) (-634 |#1|))) (-15 -3279 ((-634 |#1|) (-634 |#1|))) (-15 -3367 ((-634 (-568)) (-634 |#1|))) (-15 -4375 ((-568) (-634 (-568))))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-1492 (((-568) $) NIL (|has| (-568) (-301)))) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL)) (-2227 (($ $) NIL)) (-1573 (((-121) $) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-1750 (((-420 (-1157 $)) (-1157 $)) NIL (|has| (-568) (-904)))) (-4305 (($ $) NIL)) (-1678 (((-420 $) $) NIL)) (-1858 (((-3 (-634 (-1157 $)) "failed") (-634 (-1157 $)) (-1157 $)) NIL (|has| (-568) (-904)))) (-1497 (((-121) $ $) NIL)) (-3662 (((-568) $) NIL (|has| (-568) (-815)))) (-2671 (($) NIL T CONST)) (-3666 (((-3 (-568) "failed") $) NIL) (((-3 (-1161) "failed") $) NIL (|has| (-568) (-1037 (-1161)))) (((-3 (-409 (-568)) "failed") $) NIL (|has| (-568) (-1037 (-568)))) (((-3 (-568) "failed") $) NIL (|has| (-568) (-1037 (-568))))) (-2854 (((-568) $) NIL) (((-1161) $) NIL (|has| (-568) (-1037 (-1161)))) (((-409 (-568)) $) NIL (|has| (-568) (-1037 (-568)))) (((-568) $) NIL (|has| (-568) (-1037 (-568))))) (-2401 (($ $ $) NIL)) (-3164 (((-679 (-568)) (-679 $)) NIL (|has| (-568) (-630 (-568)))) (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) NIL (|has| (-568) (-630 (-568)))) (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) NIL) (((-679 (-568)) (-679 $)) NIL)) (-2925 (((-3 $ "failed") $) NIL)) (-1731 (($) NIL (|has| (-568) (-550)))) (-2412 (($ $ $) NIL)) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) NIL)) (-3927 (((-121) $) NIL)) (-2033 (((-121) $) NIL (|has| (-568) (-815)))) (-4410 (((-884 (-568) $) $ (-887 (-568)) (-884 (-568) $)) NIL (|has| (-568) (-881 (-568)))) (((-884 (-381) $) $ (-887 (-381)) (-884 (-381) $)) NIL (|has| (-568) (-881 (-381))))) (-2735 (((-121) $) NIL)) (-1332 (($ $) NIL)) (-2317 (((-568) $) NIL)) (-3038 (((-3 $ "failed") $) NIL (|has| (-568) (-1136)))) (-2245 (((-121) $) NIL (|has| (-568) (-815)))) (-3562 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-2521 (($ $ $) NIL (|has| (-568) (-842)))) (-3268 (($ $ $) NIL (|has| (-568) (-842)))) (-2795 (($ (-1 (-568) (-568)) $) NIL)) (-2495 (($ $ $) NIL) (($ (-634 $)) NIL)) (-4487 (((-1143) $) NIL)) (-2081 (($ $) NIL)) (-4434 (($) NIL (|has| (-568) (-1136)) CONST)) (-2343 (($ (-409 (-568))) 8)) (-4022 (((-1108) $) NIL)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL)) (-2721 (($ $ $) NIL) (($ (-634 $)) NIL)) (-3880 (($ $) NIL (|has| (-568) (-301))) (((-409 (-568)) $) NIL)) (-1519 (((-568) $) NIL (|has| (-568) (-550)))) (-2905 (((-420 (-1157 $)) (-1157 $)) NIL (|has| (-568) (-904)))) (-3545 (((-420 (-1157 $)) (-1157 $)) NIL (|has| (-568) (-904)))) (-3848 (((-420 $) $) NIL)) (-4497 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2595 (((-3 $ "failed") $ $) NIL)) (-2344 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-1339 (($ $ (-634 (-568)) (-634 (-568))) NIL (|has| (-568) (-303 (-568)))) (($ $ (-568) (-568)) NIL (|has| (-568) (-303 (-568)))) (($ $ (-288 (-568))) NIL (|has| (-568) (-303 (-568)))) (($ $ (-634 (-288 (-568)))) NIL (|has| (-568) (-303 (-568)))) (($ $ (-634 (-1161)) (-634 (-568))) NIL (|has| (-568) (-523 (-1161) (-568)))) (($ $ (-1161) (-568)) NIL (|has| (-568) (-523 (-1161) (-568))))) (-2709 (((-763) $) NIL)) (-2779 (($ $ (-568)) NIL (|has| (-568) (-281 (-568) (-568))))) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL)) (-4189 (($ $) NIL (|has| (-568) (-225))) (($ $ (-763)) NIL (|has| (-568) (-225))) (($ $ (-1161)) NIL (|has| (-568) (-895 (-1161)))) (($ $ (-634 (-1161))) NIL (|has| (-568) (-895 (-1161)))) (($ $ (-1161) (-763)) NIL (|has| (-568) (-895 (-1161)))) (($ $ (-634 (-1161)) (-634 (-763))) NIL (|has| (-568) (-895 (-1161)))) (($ $ (-1 (-568) (-568)) (-763)) NIL) (($ $ (-1 (-568) (-568))) NIL)) (-3013 (($ $) NIL)) (-2324 (((-568) $) NIL)) (-4278 (((-887 (-568)) $) NIL (|has| (-568) (-609 (-887 (-568))))) (((-887 (-381)) $) NIL (|has| (-568) (-609 (-887 (-381))))) (((-541) $) NIL (|has| (-568) (-609 (-541)))) (((-381) $) NIL (|has| (-568) (-1021))) (((-215) $) NIL (|has| (-568) (-1021)))) (-2979 (((-3 (-1244 $) "failed") (-679 $)) NIL (-12 (|has| $ (-148)) (|has| (-568) (-904))))) (-2745 (((-850) $) NIL) (($ (-568)) NIL) (($ $) NIL) (($ (-409 (-568))) 7) (($ (-568)) NIL) (($ (-1161)) NIL (|has| (-568) (-1037 (-1161)))) (((-409 (-568)) $) NIL) (((-1004 16) $) 9)) (-4371 (((-3 $ "failed") $) NIL (-2198 (-12 (|has| $ (-148)) (|has| (-568) (-904))) (|has| (-568) (-148))))) (-4078 (((-763)) NIL)) (-2285 (((-568) $) NIL (|has| (-568) (-550)))) (-1826 (((-121) $ $) NIL)) (-2897 (($ $) NIL (|has| (-568) (-815)))) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL)) (-3056 (($) NIL T CONST)) (-1556 (($) NIL T CONST)) (-3190 (($ $) NIL (|has| (-568) (-225))) (($ $ (-763)) NIL (|has| (-568) (-225))) (($ $ (-1161)) NIL (|has| (-568) (-895 (-1161)))) (($ $ (-634 (-1161))) NIL (|has| (-568) (-895 (-1161)))) (($ $ (-1161) (-763)) NIL (|has| (-568) (-895 (-1161)))) (($ $ (-634 (-1161)) (-634 (-763))) NIL (|has| (-568) (-895 (-1161)))) (($ $ (-1 (-568) (-568)) (-763)) NIL) (($ $ (-1 (-568) (-568))) NIL)) (-1751 (((-121) $ $) NIL (|has| (-568) (-842)))) (-1738 (((-121) $ $) NIL (|has| (-568) (-842)))) (-1717 (((-121) $ $) NIL)) (-1745 (((-121) $ $) NIL (|has| (-568) (-842)))) (-1732 (((-121) $ $) NIL (|has| (-568) (-842)))) (-1779 (($ $ $) NIL) (($ (-568) (-568)) NIL)) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) NIL) (($ $ (-409 (-568))) NIL) (($ (-409 (-568)) $) NIL) (($ (-568) $) NIL) (($ $ (-568)) NIL))) +(((-497) (-13 (-993 (-568)) (-10 -8 (-15 -2745 ((-409 (-568)) $)) (-15 -2745 ((-1004 16) $)) (-15 -3880 ((-409 (-568)) $)) (-15 -2343 ($ (-409 (-568))))))) (T -497)) +((-2745 (*1 *2 *1) (-12 (-5 *2 (-409 (-568))) (-5 *1 (-497)))) (-2745 (*1 *2 *1) (-12 (-5 *2 (-1004 16)) (-5 *1 (-497)))) (-3880 (*1 *2 *1) (-12 (-5 *2 (-409 (-568))) (-5 *1 (-497)))) (-2343 (*1 *1 *2) (-12 (-5 *2 (-409 (-568))) (-5 *1 (-497))))) +(-13 (-993 (-568)) (-10 -8 (-15 -2745 ((-409 (-568)) $)) (-15 -2745 ((-1004 16) $)) (-15 -3880 ((-409 (-568)) $)) (-15 -2343 ($ (-409 (-568)))))) +((-1979 (((-634 |#2|) $) 22)) (-3109 (((-121) |#2| $) 27)) (-1387 (((-121) (-1 (-121) |#2|) $) 20)) (-1339 (($ $ (-634 (-288 |#2|))) 12) (($ $ (-288 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-634 |#2|) (-634 |#2|)) NIL)) (-4168 (((-763) (-1 (-121) |#2|) $) 21) (((-763) |#2| $) 25)) (-2745 (((-850) $) 36)) (-1319 (((-121) (-1 (-121) |#2|) $) 19)) (-1717 (((-121) $ $) 30)) (-1697 (((-763) $) 16))) +(((-498 |#1| |#2|) (-10 -8 (-15 -1717 ((-121) |#1| |#1|)) (-15 -2745 ((-850) |#1|)) (-15 -1339 (|#1| |#1| (-634 |#2|) (-634 |#2|))) (-15 -1339 (|#1| |#1| |#2| |#2|)) (-15 -1339 (|#1| |#1| (-288 |#2|))) (-15 -1339 (|#1| |#1| (-634 (-288 |#2|)))) (-15 -3109 ((-121) |#2| |#1|)) (-15 -4168 ((-763) |#2| |#1|)) (-15 -1979 ((-634 |#2|) |#1|)) (-15 -4168 ((-763) (-1 (-121) |#2|) |#1|)) (-15 -1387 ((-121) (-1 (-121) |#2|) |#1|)) (-15 -1319 ((-121) (-1 (-121) |#2|) |#1|)) (-15 -1697 ((-763) |#1|))) (-499 |#2|) (-1195)) (T -498)) +NIL +(-10 -8 (-15 -1717 ((-121) |#1| |#1|)) (-15 -2745 ((-850) |#1|)) (-15 -1339 (|#1| |#1| (-634 |#2|) (-634 |#2|))) (-15 -1339 (|#1| |#1| |#2| |#2|)) (-15 -1339 (|#1| |#1| (-288 |#2|))) (-15 -1339 (|#1| |#1| (-634 (-288 |#2|)))) (-15 -3109 ((-121) |#2| |#1|)) (-15 -4168 ((-763) |#2| |#1|)) (-15 -1979 ((-634 |#2|) |#1|)) (-15 -4168 ((-763) (-1 (-121) |#2|) |#1|)) (-15 -1387 ((-121) (-1 (-121) |#2|) |#1|)) (-15 -1319 ((-121) (-1 (-121) |#2|) |#1|)) (-15 -1697 ((-763) |#1|))) +((-2447 (((-121) $ $) 18 (|has| |#1| (-1090)))) (-2510 (((-121) $ (-763)) 8)) (-2671 (($) 7 T CONST)) (-4360 (((-634 |#1|) $) 30 (|has| $ (-6 -4519)))) (-1737 (((-121) $ (-763)) 9)) (-1979 (((-634 |#1|) $) 29 (|has| $ (-6 -4519)))) (-3109 (((-121) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-3674 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#1| |#1|) $) 35)) (-2166 (((-121) $ (-763)) 10)) (-4487 (((-1143) $) 22 (|has| |#1| (-1090)))) (-4022 (((-1108) $) 21 (|has| |#1| (-1090)))) (-1387 (((-121) (-1 (-121) |#1|) $) 32 (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-634 |#1|) (-634 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))))) (-3171 (((-121) $ $) 14)) (-3084 (((-121) $) 11)) (-3248 (($) 12)) (-4168 (((-763) (-1 (-121) |#1|) $) 31 (|has| $ (-6 -4519))) (((-763) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-3863 (($ $) 13)) (-2745 (((-850) $) 20 (|has| |#1| (-1090)))) (-1319 (((-121) (-1 (-121) |#1|) $) 33 (|has| $ (-6 -4519)))) (-1717 (((-121) $ $) 19 (|has| |#1| (-1090)))) (-1697 (((-763) $) 6 (|has| $ (-6 -4519))))) +(((-499 |#1|) (-1275) (-1195)) (T -499)) +((-2795 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-499 *3)) (-4 *3 (-1195)))) (-3674 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4520)) (-4 *1 (-499 *3)) (-4 *3 (-1195)))) (-1319 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| *1 (-6 -4519)) (-4 *1 (-499 *4)) (-4 *4 (-1195)) (-5 *2 (-121)))) (-1387 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| *1 (-6 -4519)) (-4 *1 (-499 *4)) (-4 *4 (-1195)) (-5 *2 (-121)))) (-4168 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| *1 (-6 -4519)) (-4 *1 (-499 *4)) (-4 *4 (-1195)) (-5 *2 (-763)))) (-4360 (*1 *2 *1) (-12 (|has| *1 (-6 -4519)) (-4 *1 (-499 *3)) (-4 *3 (-1195)) (-5 *2 (-634 *3)))) (-1979 (*1 *2 *1) (-12 (|has| *1 (-6 -4519)) (-4 *1 (-499 *3)) (-4 *3 (-1195)) (-5 *2 (-634 *3)))) (-4168 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4519)) (-4 *1 (-499 *3)) (-4 *3 (-1195)) (-4 *3 (-1090)) (-5 *2 (-763)))) (-3109 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4519)) (-4 *1 (-499 *3)) (-4 *3 (-1195)) (-4 *3 (-1090)) (-5 *2 (-121))))) +(-13 (-39) (-10 -8 (IF (|has| |t#1| (-1090)) (-6 (-1090)) |noBranch|) (IF (|has| |t#1| (-1090)) (IF (|has| |t#1| (-303 |t#1|)) (-6 (-303 |t#1|)) |noBranch|) |noBranch|) (-15 -2795 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4520)) (-15 -3674 ($ (-1 |t#1| |t#1|) $)) |noBranch|) (IF (|has| $ (-6 -4519)) (PROGN (-15 -1319 ((-121) (-1 (-121) |t#1|) $)) (-15 -1387 ((-121) (-1 (-121) |t#1|) $)) (-15 -4168 ((-763) (-1 (-121) |t#1|) $)) (-15 -4360 ((-634 |t#1|) $)) (-15 -1979 ((-634 |t#1|) $)) (IF (|has| |t#1| (-1090)) (PROGN (-15 -4168 ((-763) |t#1| $)) (-15 -3109 ((-121) |t#1| $))) |noBranch|)) |noBranch|))) +(((-39) . T) ((-105) |has| |#1| (-1090)) ((-608 (-850)) |has| |#1| (-1090)) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))) ((-523 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))) ((-1090) |has| |#1| (-1090)) ((-1195) . T)) +((-2447 (((-121) $ $) NIL)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-3253 (((-1143) (-850)) 40)) (-4125 (((-1249) (-1143)) 29)) (-3346 (((-1143) (-850)) 25)) (-2857 (((-1143) (-850)) 26)) (-2745 (((-850) $) NIL) (((-1143) (-850)) 24)) (-1717 (((-121) $ $) NIL))) +(((-500) (-13 (-1090) (-10 -7 (-15 -2745 ((-1143) (-850))) (-15 -3346 ((-1143) (-850))) (-15 -2857 ((-1143) (-850))) (-15 -3253 ((-1143) (-850))) (-15 -4125 ((-1249) (-1143)))))) (T -500)) +((-2745 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1143)) (-5 *1 (-500)))) (-3346 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1143)) (-5 *1 (-500)))) (-2857 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1143)) (-5 *1 (-500)))) (-3253 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1143)) (-5 *1 (-500)))) (-4125 (*1 *2 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-1249)) (-5 *1 (-500))))) +(-13 (-1090) (-10 -7 (-15 -2745 ((-1143) (-850))) (-15 -3346 ((-1143) (-850))) (-15 -2857 ((-1143) (-850))) (-15 -3253 ((-1143) (-850))) (-15 -4125 ((-1249) (-1143))))) +((-1982 (($ $) 15)) (-1974 (($ $) 24)) (-1990 (($ $) 12)) (-1994 (($ $) 10)) (-1986 (($ $) 17)) (-1978 (($ $) 22))) +(((-501 |#1|) (-10 -8 (-15 -1978 (|#1| |#1|)) (-15 -1986 (|#1| |#1|)) (-15 -1994 (|#1| |#1|)) (-15 -1990 (|#1| |#1|)) (-15 -1974 (|#1| |#1|)) (-15 -1982 (|#1| |#1|))) (-502)) (T -501)) +NIL +(-10 -8 (-15 -1978 (|#1| |#1|)) (-15 -1986 (|#1| |#1|)) (-15 -1994 (|#1| |#1|)) (-15 -1990 (|#1| |#1|)) (-15 -1974 (|#1| |#1|)) (-15 -1982 (|#1| |#1|))) +((-1982 (($ $) 11)) (-1974 (($ $) 10)) (-1990 (($ $) 9)) (-1994 (($ $) 8)) (-1986 (($ $) 7)) (-1978 (($ $) 6))) +(((-502) (-1275)) (T -502)) +((-1982 (*1 *1 *1) (-4 *1 (-502))) (-1974 (*1 *1 *1) (-4 *1 (-502))) (-1990 (*1 *1 *1) (-4 *1 (-502))) (-1994 (*1 *1 *1) (-4 *1 (-502))) (-1986 (*1 *1 *1) (-4 *1 (-502))) (-1978 (*1 *1 *1) (-4 *1 (-502)))) +(-13 (-10 -8 (-15 -1978 ($ $)) (-15 -1986 ($ $)) (-15 -1994 ($ $)) (-15 -1990 ($ $)) (-15 -1974 ($ $)) (-15 -1982 ($ $)))) +((-3848 (((-420 |#4|) |#4| (-1 (-420 |#2|) |#2|)) 42))) +(((-503 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3848 ((-420 |#4|) |#4| (-1 (-420 |#2|) |#2|)))) (-365) (-1219 |#1|) (-13 (-365) (-150) (-714 |#1| |#2|)) (-1219 |#3|)) (T -503)) +((-3848 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-420 *6) *6)) (-4 *6 (-1219 *5)) (-4 *5 (-365)) (-4 *7 (-13 (-365) (-150) (-714 *5 *6))) (-5 *2 (-420 *3)) (-5 *1 (-503 *5 *6 *7 *3)) (-4 *3 (-1219 *7))))) +(-10 -7 (-15 -3848 ((-420 |#4|) |#4| (-1 (-420 |#2|) |#2|)))) +((-2447 (((-121) $ $) NIL)) (-2394 (((-634 $) (-1157 $) (-1161)) NIL) (((-634 $) (-1157 $)) NIL) (((-634 $) (-953 $)) NIL)) (-1681 (($ (-1157 $) (-1161)) NIL) (($ (-1157 $)) NIL) (($ (-953 $)) NIL)) (-2537 (((-121) $) 36)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL)) (-2227 (($ $) NIL)) (-1573 (((-121) $) NIL)) (-1836 (((-121) $ $) 62)) (-3001 (((-634 (-607 $)) $) 46)) (-3134 (((-3 $ "failed") $ $) NIL)) (-2366 (($ $ (-288 $)) NIL) (($ $ (-634 (-288 $))) NIL) (($ $ (-634 (-607 $)) (-634 $)) NIL)) (-4305 (($ $) NIL)) (-1678 (((-420 $) $) NIL)) (-1902 (($ $) NIL)) (-1497 (((-121) $ $) NIL)) (-2671 (($) NIL T CONST)) (-3214 (((-634 $) (-1157 $) (-1161)) NIL) (((-634 $) (-1157 $)) NIL) (((-634 $) (-953 $)) NIL)) (-2932 (($ (-1157 $) (-1161)) NIL) (($ (-1157 $)) NIL) (($ (-953 $)) NIL)) (-3666 (((-3 (-607 $) "failed") $) NIL) (((-3 (-568) "failed") $) NIL) (((-3 (-409 (-568)) "failed") $) NIL)) (-2854 (((-607 $) $) NIL) (((-568) $) NIL) (((-409 (-568)) $) 48)) (-2401 (($ $ $) NIL)) (-3164 (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) NIL) (((-679 (-568)) (-679 $)) NIL) (((-2 (|:| -2928 (-679 (-409 (-568)))) (|:| |vec| (-1244 (-409 (-568))))) (-679 $) (-1244 $)) NIL) (((-679 (-409 (-568))) (-679 $)) NIL)) (-3092 (($ $) NIL)) (-2925 (((-3 $ "failed") $) NIL)) (-2412 (($ $ $) NIL)) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) NIL)) (-3927 (((-121) $) NIL)) (-4499 (($ $) NIL) (($ (-634 $)) NIL)) (-3296 (((-634 (-123)) $) NIL)) (-3488 (((-123) (-123)) NIL)) (-2735 (((-121) $) 39)) (-1825 (((-121) $) NIL (|has| $ (-1037 (-568))))) (-2317 (((-1113 (-568) (-607 $)) $) 34)) (-4044 (($ $ (-568)) NIL)) (-2657 (((-1157 $) (-1157 $) (-607 $)) 77) (((-1157 $) (-1157 $) (-634 (-607 $))) 53) (($ $ (-607 $)) 66) (($ $ (-634 (-607 $))) 67)) (-3562 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-3007 (((-1157 $) (-607 $)) 64 (|has| $ (-1047)))) (-2521 (($ $ $) NIL)) (-3268 (($ $ $) NIL)) (-2795 (($ (-1 $ $) (-607 $)) NIL)) (-3693 (((-3 (-607 $) "failed") $) NIL)) (-2495 (($ (-634 $)) NIL) (($ $ $) NIL)) (-4487 (((-1143) $) NIL)) (-3804 (((-634 (-607 $)) $) NIL)) (-3443 (($ (-123) $) NIL) (($ (-123) (-634 $)) NIL)) (-2841 (((-121) $ (-123)) NIL) (((-121) $ (-1161)) NIL)) (-2081 (($ $) NIL)) (-2961 (((-763) $) NIL)) (-4022 (((-1108) $) NIL)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL)) (-2721 (($ (-634 $)) NIL) (($ $ $) NIL)) (-4059 (((-121) $ $) NIL) (((-121) $ (-1161)) NIL)) (-3848 (((-420 $) $) NIL)) (-4497 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL)) (-2595 (((-3 $ "failed") $ $) NIL)) (-2344 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-3277 (((-121) $) NIL (|has| $ (-1037 (-568))))) (-1339 (($ $ (-607 $) $) NIL) (($ $ (-634 (-607 $)) (-634 $)) NIL) (($ $ (-634 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-634 $) (-634 $)) NIL) (($ $ (-634 (-1161)) (-634 (-1 $ $))) NIL) (($ $ (-634 (-1161)) (-634 (-1 $ (-634 $)))) NIL) (($ $ (-1161) (-1 $ (-634 $))) NIL) (($ $ (-1161) (-1 $ $)) NIL) (($ $ (-634 (-123)) (-634 (-1 $ $))) NIL) (($ $ (-634 (-123)) (-634 (-1 $ (-634 $)))) NIL) (($ $ (-123) (-1 $ (-634 $))) NIL) (($ $ (-123) (-1 $ $)) NIL)) (-2709 (((-763) $) NIL)) (-2779 (($ (-123) $) NIL) (($ (-123) $ $) NIL) (($ (-123) $ $ $) NIL) (($ (-123) $ $ $ $) NIL) (($ (-123) (-634 $)) NIL)) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL)) (-3502 (($ $) NIL) (($ $ $) NIL)) (-4189 (($ $ (-763)) NIL) (($ $) 33)) (-2324 (((-1113 (-568) (-607 $)) $) 17)) (-1626 (($ $) NIL (|has| $ (-1047)))) (-4278 (((-381) $) 91) (((-215) $) 99) (((-169 (-381)) $) 107)) (-2745 (((-850) $) NIL) (($ (-607 $)) NIL) (($ (-409 (-568))) NIL) (($ $) NIL) (($ (-568)) NIL) (($ (-1113 (-568) (-607 $))) 18)) (-4078 (((-763)) NIL)) (-2092 (($ $) NIL) (($ (-634 $)) NIL)) (-2887 (((-121) (-123)) 83)) (-1826 (((-121) $ $) NIL)) (-1887 (($ $ (-568)) NIL) (($ $ (-763)) NIL) (($ $ (-917)) NIL)) (-3056 (($) 9 T CONST)) (-1556 (($) 19 T CONST)) (-3190 (($ $ (-763)) NIL) (($ $) NIL)) (-1751 (((-121) $ $) NIL)) (-1738 (((-121) $ $) NIL)) (-1717 (((-121) $ $) 21)) (-1745 (((-121) $ $) NIL)) (-1732 (((-121) $ $) NIL)) (-1779 (($ $ $) 41)) (-1773 (($ $ $) NIL) (($ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-409 (-568))) NIL) (($ $ (-568)) 44) (($ $ (-763)) NIL) (($ $ (-917)) NIL)) (* (($ (-409 (-568)) $) NIL) (($ $ (-409 (-568))) NIL) (($ $ $) 24) (($ (-568) $) NIL) (($ (-763) $) NIL) (($ (-917) $) NIL))) +(((-504) (-13 (-296) (-27) (-1037 (-568)) (-1037 (-409 (-568))) (-630 (-568)) (-1021) (-630 (-409 (-568))) (-150) (-609 (-169 (-381))) (-225) (-10 -8 (-15 -2745 ($ (-1113 (-568) (-607 $)))) (-15 -2317 ((-1113 (-568) (-607 $)) $)) (-15 -2324 ((-1113 (-568) (-607 $)) $)) (-15 -3092 ($ $)) (-15 -1836 ((-121) $ $)) (-15 -2657 ((-1157 $) (-1157 $) (-607 $))) (-15 -2657 ((-1157 $) (-1157 $) (-634 (-607 $)))) (-15 -2657 ($ $ (-607 $))) (-15 -2657 ($ $ (-634 (-607 $))))))) (T -504)) +((-2745 (*1 *1 *2) (-12 (-5 *2 (-1113 (-568) (-607 (-504)))) (-5 *1 (-504)))) (-2317 (*1 *2 *1) (-12 (-5 *2 (-1113 (-568) (-607 (-504)))) (-5 *1 (-504)))) (-2324 (*1 *2 *1) (-12 (-5 *2 (-1113 (-568) (-607 (-504)))) (-5 *1 (-504)))) (-3092 (*1 *1 *1) (-5 *1 (-504))) (-1836 (*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-504)))) (-2657 (*1 *2 *2 *3) (-12 (-5 *2 (-1157 (-504))) (-5 *3 (-607 (-504))) (-5 *1 (-504)))) (-2657 (*1 *2 *2 *3) (-12 (-5 *2 (-1157 (-504))) (-5 *3 (-634 (-607 (-504)))) (-5 *1 (-504)))) (-2657 (*1 *1 *1 *2) (-12 (-5 *2 (-607 (-504))) (-5 *1 (-504)))) (-2657 (*1 *1 *1 *2) (-12 (-5 *2 (-634 (-607 (-504)))) (-5 *1 (-504))))) +(-13 (-296) (-27) (-1037 (-568)) (-1037 (-409 (-568))) (-630 (-568)) (-1021) (-630 (-409 (-568))) (-150) (-609 (-169 (-381))) (-225) (-10 -8 (-15 -2745 ($ (-1113 (-568) (-607 $)))) (-15 -2317 ((-1113 (-568) (-607 $)) $)) (-15 -2324 ((-1113 (-568) (-607 $)) $)) (-15 -3092 ($ $)) (-15 -1836 ((-121) $ $)) (-15 -2657 ((-1157 $) (-1157 $) (-607 $))) (-15 -2657 ((-1157 $) (-1157 $) (-634 (-607 $)))) (-15 -2657 ($ $ (-607 $))) (-15 -2657 ($ $ (-634 (-607 $)))))) +((-2447 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-1868 (((-1249) $ (-568) (-568)) NIL (|has| $ (-6 -4520)))) (-2016 (((-121) (-1 (-121) |#1| |#1|) $) NIL) (((-121) $) NIL (|has| |#1| (-842)))) (-3908 (($ (-1 (-121) |#1| |#1|) $) NIL (|has| $ (-6 -4520))) (($ $) NIL (-12 (|has| $ (-6 -4520)) (|has| |#1| (-842))))) (-3644 (($ (-1 (-121) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-842)))) (-2510 (((-121) $ (-763)) NIL)) (-2436 ((|#1| $ (-568) |#1|) 25 (|has| $ (-6 -4520))) ((|#1| $ (-1210 (-568)) |#1|) NIL (|has| $ (-6 -4520)))) (-2801 (($ (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-2671 (($) NIL T CONST)) (-1578 (($ $) NIL (|has| $ (-6 -4520)))) (-3943 (($ $) NIL)) (-3924 (($ $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-4328 (($ |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090)))) (($ (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-3092 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4519))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4519)))) (-3989 ((|#1| $ (-568) |#1|) 22 (|has| $ (-6 -4520)))) (-2602 ((|#1| $ (-568)) 21)) (-2764 (((-568) (-1 (-121) |#1|) $) NIL) (((-568) |#1| $) NIL (|has| |#1| (-1090))) (((-568) |#1| $ (-568)) NIL (|has| |#1| (-1090)))) (-4360 (((-634 |#1|) $) NIL (|has| $ (-6 -4519)))) (-1849 (($ (-763) |#1|) 14)) (-1737 (((-121) $ (-763)) NIL)) (-1881 (((-568) $) 12 (|has| (-568) (-842)))) (-2521 (($ $ $) NIL (|has| |#1| (-842)))) (-1347 (($ (-1 (-121) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-842)))) (-1979 (((-634 |#1|) $) NIL (|has| $ (-6 -4519)))) (-3109 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-2223 (((-568) $) 23 (|has| (-568) (-842)))) (-3268 (($ $ $) NIL (|has| |#1| (-842)))) (-3674 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-2166 (((-121) $ (-763)) NIL)) (-4487 (((-1143) $) NIL (|has| |#1| (-1090)))) (-4122 (($ |#1| $ (-568)) NIL) (($ $ $ (-568)) NIL)) (-4174 (((-634 (-568)) $) NIL)) (-3578 (((-121) (-568) $) NIL)) (-4022 (((-1108) $) NIL (|has| |#1| (-1090)))) (-3876 ((|#1| $) NIL (|has| (-568) (-842)))) (-3775 (((-3 |#1| "failed") (-1 (-121) |#1|) $) NIL)) (-3724 (($ $ |#1|) 10 (|has| $ (-6 -4520)))) (-1387 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-634 |#1|) (-634 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))))) (-3171 (((-121) $ $) NIL)) (-4467 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-2041 (((-634 |#1|) $) NIL)) (-3084 (((-121) $) NIL)) (-3248 (($) 13)) (-2779 ((|#1| $ (-568) |#1|) NIL) ((|#1| $ (-568)) 24) (($ $ (-1210 (-568))) NIL)) (-2826 (($ $ (-568)) NIL) (($ $ (-1210 (-568))) NIL)) (-4168 (((-763) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519))) (((-763) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-2256 (($ $ $ (-568)) NIL (|has| $ (-6 -4520)))) (-3863 (($ $) NIL)) (-4278 (((-541) $) NIL (|has| |#1| (-609 (-541))))) (-4287 (($ (-634 |#1|)) NIL)) (-2768 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-634 $)) NIL)) (-2745 (((-850) $) NIL (|has| |#1| (-1090)))) (-1319 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-1751 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1738 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1717 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-1745 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1732 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1697 (((-763) $) 9 (|has| $ (-6 -4519))))) +(((-505 |#1| |#2|) (-19 |#1|) (-1195) (-568)) (T -505)) NIL (-19 |#1|) -((-2601 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-3909 (((-121) $ (-755)) NIL)) (-2764 ((|#1| $ (-560) (-560) |#1|) NIL)) (-2013 (($ $ (-560) (-497 |#1| |#3|)) NIL)) (-4079 (($ $ (-560) (-497 |#1| |#2|)) NIL)) (-4236 (($) NIL T CONST)) (-4097 (((-497 |#1| |#3|) $ (-560)) NIL)) (-1746 ((|#1| $ (-560) (-560) |#1|) NIL)) (-1361 ((|#1| $ (-560) (-560)) NIL)) (-1981 (((-626 |#1|) $) NIL)) (-1454 (((-755) $) NIL)) (-1721 (($ (-755) (-755) |#1|) NIL)) (-2634 (((-755) $) NIL)) (-2122 (((-121) $ (-755)) NIL)) (-2984 (((-560) $) NIL)) (-1994 (((-560) $) NIL)) (-2130 (((-626 |#1|) $) NIL (|has| $ (-6 -4505)))) (-2030 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-3755 (((-560) $) NIL)) (-1420 (((-560) $) NIL)) (-3778 (($ (-1 |#1| |#1|) $) NIL)) (-2803 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3441 (((-121) $ (-755)) NIL)) (-1291 (((-1135) $) NIL (|has| |#1| (-1082)))) (-4353 (((-1100) $) NIL (|has| |#1| (-1082)))) (-3038 (($ $ |#1|) NIL)) (-2865 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#1|))) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-283 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-626 |#1|) (-626 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))))) (-2214 (((-121) $ $) NIL)) (-4191 (((-121) $) NIL)) (-3260 (($) NIL)) (-2778 ((|#1| $ (-560) (-560)) NIL) ((|#1| $ (-560) (-560) |#1|) NIL)) (-4035 (((-755) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505))) (((-755) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-2813 (($ $) NIL)) (-3677 (((-497 |#1| |#2|) $ (-560)) NIL)) (-2801 (((-842) $) NIL (|has| |#1| (-1082)))) (-3656 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-1653 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-2271 (((-755) $) NIL (|has| $ (-6 -4505))))) -(((-498 |#1| |#2| |#3|) (-62 |#1| (-497 |#1| |#3|) (-497 |#1| |#2|)) (-1187) (-560) (-560)) (T -498)) -NIL -(-62 |#1| (-497 |#1| |#3|) (-497 |#1| |#2|)) -((-2941 (((-626 (-2 (|:| -4374 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|)))) (-2 (|:| -4374 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|))) (-755) (-755)) 27)) (-1800 (((-626 (-1149 |#1|)) |#1| (-755) (-755) (-755)) 34)) (-3286 (((-2 (|:| -4374 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|))) (-626 |#3|) (-626 (-2 (|:| -4374 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|)))) (-755)) 83))) -(((-499 |#1| |#2| |#3|) (-10 -7 (-15 -1800 ((-626 (-1149 |#1|)) |#1| (-755) (-755) (-755))) (-15 -2941 ((-626 (-2 (|:| -4374 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|)))) (-2 (|:| -4374 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|))) (-755) (-755))) (-15 -3286 ((-2 (|:| -4374 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|))) (-626 |#3|) (-626 (-2 (|:| -4374 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|)))) (-755)))) (-344) (-1211 |#1|) (-1211 |#2|)) (T -499)) -((-3286 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-626 *8)) (-5 *4 (-626 (-2 (|:| -4374 (-671 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-671 *7))))) (-5 *5 (-755)) (-4 *8 (-1211 *7)) (-4 *7 (-1211 *6)) (-4 *6 (-344)) (-5 *2 (-2 (|:| -4374 (-671 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-671 *7)))) (-5 *1 (-499 *6 *7 *8)))) (-2941 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-755)) (-4 *5 (-344)) (-4 *6 (-1211 *5)) (-5 *2 (-626 (-2 (|:| -4374 (-671 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-671 *6))))) (-5 *1 (-499 *5 *6 *7)) (-5 *3 (-2 (|:| -4374 (-671 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-671 *6)))) (-4 *7 (-1211 *6)))) (-1800 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-755)) (-4 *3 (-344)) (-4 *5 (-1211 *3)) (-5 *2 (-626 (-1149 *3))) (-5 *1 (-499 *3 *5 *6)) (-4 *6 (-1211 *5))))) -(-10 -7 (-15 -1800 ((-626 (-1149 |#1|)) |#1| (-755) (-755) (-755))) (-15 -2941 ((-626 (-2 (|:| -4374 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|)))) (-2 (|:| -4374 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|))) (-755) (-755))) (-15 -3286 ((-2 (|:| -4374 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|))) (-626 |#3|) (-626 (-2 (|:| -4374 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|)))) (-755)))) -((-2551 (((-2 (|:| -4374 (-671 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-671 |#1|))) (-2 (|:| -4374 (-671 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-671 |#1|))) (-2 (|:| -4374 (-671 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-671 |#1|)))) 60)) (-2439 ((|#1| (-671 |#1|) |#1| (-755)) 25)) (-3047 (((-755) (-755) (-755)) 30)) (-3442 (((-671 |#1|) (-671 |#1|) (-671 |#1|)) 42)) (-2931 (((-671 |#1|) (-671 |#1|) (-671 |#1|) |#1|) 50) (((-671 |#1|) (-671 |#1|) (-671 |#1|)) 47)) (-1996 ((|#1| (-671 |#1|) (-671 |#1|) |#1| (-560)) 29)) (-1462 ((|#1| (-671 |#1|)) 18))) -(((-500 |#1| |#2| |#3|) (-10 -7 (-15 -1462 (|#1| (-671 |#1|))) (-15 -2439 (|#1| (-671 |#1|) |#1| (-755))) (-15 -1996 (|#1| (-671 |#1|) (-671 |#1|) |#1| (-560))) (-15 -3047 ((-755) (-755) (-755))) (-15 -2931 ((-671 |#1|) (-671 |#1|) (-671 |#1|))) (-15 -2931 ((-671 |#1|) (-671 |#1|) (-671 |#1|) |#1|)) (-15 -3442 ((-671 |#1|) (-671 |#1|) (-671 |#1|))) (-15 -2551 ((-2 (|:| -4374 (-671 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-671 |#1|))) (-2 (|:| -4374 (-671 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-671 |#1|))) (-2 (|:| -4374 (-671 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-671 |#1|)))))) (-13 (-296) (-10 -8 (-15 -2953 ((-414 $) $)))) (-1211 |#1|) (-405 |#1| |#2|)) (T -500)) -((-2551 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -4374 (-671 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-671 *3)))) (-4 *3 (-13 (-296) (-10 -8 (-15 -2953 ((-414 $) $))))) (-4 *4 (-1211 *3)) (-5 *1 (-500 *3 *4 *5)) (-4 *5 (-405 *3 *4)))) (-3442 (*1 *2 *2 *2) (-12 (-5 *2 (-671 *3)) (-4 *3 (-13 (-296) (-10 -8 (-15 -2953 ((-414 $) $))))) (-4 *4 (-1211 *3)) (-5 *1 (-500 *3 *4 *5)) (-4 *5 (-405 *3 *4)))) (-2931 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-671 *3)) (-4 *3 (-13 (-296) (-10 -8 (-15 -2953 ((-414 $) $))))) (-4 *4 (-1211 *3)) (-5 *1 (-500 *3 *4 *5)) (-4 *5 (-405 *3 *4)))) (-2931 (*1 *2 *2 *2) (-12 (-5 *2 (-671 *3)) (-4 *3 (-13 (-296) (-10 -8 (-15 -2953 ((-414 $) $))))) (-4 *4 (-1211 *3)) (-5 *1 (-500 *3 *4 *5)) (-4 *5 (-405 *3 *4)))) (-3047 (*1 *2 *2 *2) (-12 (-5 *2 (-755)) (-4 *3 (-13 (-296) (-10 -8 (-15 -2953 ((-414 $) $))))) (-4 *4 (-1211 *3)) (-5 *1 (-500 *3 *4 *5)) (-4 *5 (-405 *3 *4)))) (-1996 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-671 *2)) (-5 *4 (-560)) (-4 *2 (-13 (-296) (-10 -8 (-15 -2953 ((-414 $) $))))) (-4 *5 (-1211 *2)) (-5 *1 (-500 *2 *5 *6)) (-4 *6 (-405 *2 *5)))) (-2439 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-671 *2)) (-5 *4 (-755)) (-4 *2 (-13 (-296) (-10 -8 (-15 -2953 ((-414 $) $))))) (-4 *5 (-1211 *2)) (-5 *1 (-500 *2 *5 *6)) (-4 *6 (-405 *2 *5)))) (-1462 (*1 *2 *3) (-12 (-5 *3 (-671 *2)) (-4 *4 (-1211 *2)) (-4 *2 (-13 (-296) (-10 -8 (-15 -2953 ((-414 $) $))))) (-5 *1 (-500 *2 *4 *5)) (-4 *5 (-405 *2 *4))))) -(-10 -7 (-15 -1462 (|#1| (-671 |#1|))) (-15 -2439 (|#1| (-671 |#1|) |#1| (-755))) (-15 -1996 (|#1| (-671 |#1|) (-671 |#1|) |#1| (-560))) (-15 -3047 ((-755) (-755) (-755))) (-15 -2931 ((-671 |#1|) (-671 |#1|) (-671 |#1|))) (-15 -2931 ((-671 |#1|) (-671 |#1|) (-671 |#1|) |#1|)) (-15 -3442 ((-671 |#1|) (-671 |#1|) (-671 |#1|))) (-15 -2551 ((-2 (|:| -4374 (-671 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-671 |#1|))) (-2 (|:| -4374 (-671 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-671 |#1|))) (-2 (|:| -4374 (-671 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-671 |#1|)))))) -((-2601 (((-121) $ $) NIL)) (-1434 (($ $) NIL)) (-1564 (($ $ $) 35)) (-2960 (((-1241) $ (-560) (-560)) NIL (|has| $ (-6 -4506)))) (-3189 (((-121) $) NIL (|has| (-121) (-834))) (((-121) (-1 (-121) (-121) (-121)) $) NIL)) (-4410 (($ $) NIL (-12 (|has| $ (-6 -4506)) (|has| (-121) (-834)))) (($ (-1 (-121) (-121) (-121)) $) NIL (|has| $ (-6 -4506)))) (-3743 (($ $) NIL (|has| (-121) (-834))) (($ (-1 (-121) (-121) (-121)) $) NIL)) (-3909 (((-121) $ (-755)) NIL)) (-2764 (((-121) $ (-1202 (-560)) (-121)) NIL (|has| $ (-6 -4506))) (((-121) $ (-560) (-121)) 36 (|has| $ (-6 -4506)))) (-3802 (($ (-1 (-121) (-121)) $) NIL (|has| $ (-6 -4505)))) (-4236 (($) NIL T CONST)) (-4030 (($ $) NIL (|has| $ (-6 -4506)))) (-2883 (($ $) NIL)) (-2868 (($ $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-121) (-1082))))) (-4310 (($ (-1 (-121) (-121)) $) NIL (|has| $ (-6 -4505))) (($ (-121) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-121) (-1082))))) (-2342 (((-121) (-1 (-121) (-121) (-121)) $) NIL (|has| $ (-6 -4505))) (((-121) (-1 (-121) (-121) (-121)) $ (-121)) NIL (|has| $ (-6 -4505))) (((-121) (-1 (-121) (-121) (-121)) $ (-121) (-121)) NIL (-12 (|has| $ (-6 -4505)) (|has| (-121) (-1082))))) (-1746 (((-121) $ (-560) (-121)) NIL (|has| $ (-6 -4506)))) (-1361 (((-121) $ (-560)) NIL)) (-2839 (((-560) (-121) $ (-560)) NIL (|has| (-121) (-1082))) (((-560) (-121) $) NIL (|has| (-121) (-1082))) (((-560) (-1 (-121) (-121)) $) NIL)) (-1981 (((-626 (-121)) $) NIL (|has| $ (-6 -4505)))) (-3367 (($ $ $) 33)) (-3186 (($ $) NIL)) (-3334 (($ $ $) NIL)) (-1721 (($ (-755) (-121)) 23)) (-2881 (($ $ $) NIL)) (-2122 (((-121) $ (-755)) NIL)) (-4099 (((-560) $) 8 (|has| (-560) (-834)))) (-4325 (($ $ $) NIL)) (-2492 (($ $ $) NIL (|has| (-121) (-834))) (($ (-1 (-121) (-121) (-121)) $ $) NIL)) (-2130 (((-626 (-121)) $) NIL (|has| $ (-6 -4505)))) (-2030 (((-121) (-121) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-121) (-1082))))) (-2767 (((-560) $) NIL (|has| (-560) (-834)))) (-2501 (($ $ $) NIL)) (-3778 (($ (-1 (-121) (-121)) $) NIL (|has| $ (-6 -4506)))) (-2803 (($ (-1 (-121) (-121) (-121)) $ $) 30) (($ (-1 (-121) (-121)) $) NIL)) (-3441 (((-121) $ (-755)) NIL)) (-1291 (((-1135) $) NIL)) (-4103 (($ $ $ (-560)) NIL) (($ (-121) $ (-560)) NIL)) (-1529 (((-626 (-560)) $) NIL)) (-1310 (((-121) (-560) $) NIL)) (-4353 (((-1100) $) NIL)) (-2824 (((-121) $) NIL (|has| (-560) (-834)))) (-3786 (((-3 (-121) "failed") (-1 (-121) (-121)) $) NIL)) (-3038 (($ $ (-121)) NIL (|has| $ (-6 -4506)))) (-2865 (((-121) (-1 (-121) (-121)) $) NIL (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-121)) (-626 (-121))) NIL (-12 (|has| (-121) (-298 (-121))) (|has| (-121) (-1082)))) (($ $ (-121) (-121)) NIL (-12 (|has| (-121) (-298 (-121))) (|has| (-121) (-1082)))) (($ $ (-283 (-121))) NIL (-12 (|has| (-121) (-298 (-121))) (|has| (-121) (-1082)))) (($ $ (-626 (-283 (-121)))) NIL (-12 (|has| (-121) (-298 (-121))) (|has| (-121) (-1082))))) (-2214 (((-121) $ $) NIL)) (-1290 (((-121) (-121) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-121) (-1082))))) (-4460 (((-626 (-121)) $) NIL)) (-4191 (((-121) $) NIL)) (-3260 (($) 24)) (-2778 (($ $ (-1202 (-560))) NIL) (((-121) $ (-560)) 18) (((-121) $ (-560) (-121)) NIL)) (-2949 (($ $ (-1202 (-560))) NIL) (($ $ (-560)) NIL)) (-4035 (((-755) (-121) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-121) (-1082)))) (((-755) (-1 (-121) (-121)) $) NIL (|has| $ (-6 -4505)))) (-4072 (($ $ $ (-560)) NIL (|has| $ (-6 -4506)))) (-2813 (($ $) 25)) (-4255 (((-533) $) NIL (|has| (-121) (-601 (-533))))) (-4162 (($ (-626 (-121))) NIL)) (-2849 (($ (-626 $)) NIL) (($ $ $) NIL) (($ (-121) $) NIL) (($ $ (-121)) NIL)) (-2801 (((-842) $) 22)) (-3656 (((-121) (-1 (-121) (-121)) $) NIL (|has| $ (-6 -4505)))) (-2256 (($ $ $) 31)) (-2464 (($ $) NIL)) (-2587 (($ $ $) NIL)) (-3443 (($ $ $) 39)) (-3416 (($ $) 37)) (-3124 (($ $ $) 38)) (-1691 (((-121) $ $) NIL)) (-1675 (((-121) $ $) NIL)) (-1653 (((-121) $ $) 26)) (-1683 (((-121) $ $) NIL)) (-1667 (((-121) $ $) 27)) (-2581 (($ $ $) NIL)) (-2271 (((-755) $) 10 (|has| $ (-6 -4505))))) -(((-501 |#1|) (-13 (-132) (-10 -8 (-15 -3416 ($ $)) (-15 -3443 ($ $ $)) (-15 -3124 ($ $ $)))) (-560)) (T -501)) -((-3416 (*1 *1 *1) (-12 (-5 *1 (-501 *2)) (-14 *2 (-560)))) (-3443 (*1 *1 *1 *1) (-12 (-5 *1 (-501 *2)) (-14 *2 (-560)))) (-3124 (*1 *1 *1 *1) (-12 (-5 *1 (-501 *2)) (-14 *2 (-560))))) -(-13 (-132) (-10 -8 (-15 -3416 ($ $)) (-15 -3443 ($ $ $)) (-15 -3124 ($ $ $)))) -((-2069 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1149 |#4|)) 34)) (-4228 (((-1149 |#4|) (-1 |#4| |#1|) |#2|) 30) ((|#2| (-1 |#1| |#4|) (-1149 |#4|)) 21)) (-3224 (((-3 (-671 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-671 (-1149 |#4|))) 45)) (-4439 (((-1149 (-1149 |#4|)) (-1 |#4| |#1|) |#3|) 54))) -(((-502 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4228 (|#2| (-1 |#1| |#4|) (-1149 |#4|))) (-15 -4228 ((-1149 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2069 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1149 |#4|))) (-15 -3224 ((-3 (-671 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-671 (-1149 |#4|)))) (-15 -4439 ((-1149 (-1149 |#4|)) (-1 |#4| |#1|) |#3|))) (-1039) (-1211 |#1|) (-1211 |#2|) (-1039)) (T -502)) -((-4439 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1039)) (-4 *7 (-1039)) (-4 *6 (-1211 *5)) (-5 *2 (-1149 (-1149 *7))) (-5 *1 (-502 *5 *6 *4 *7)) (-4 *4 (-1211 *6)))) (-3224 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-671 (-1149 *8))) (-4 *5 (-1039)) (-4 *8 (-1039)) (-4 *6 (-1211 *5)) (-5 *2 (-671 *6)) (-5 *1 (-502 *5 *6 *7 *8)) (-4 *7 (-1211 *6)))) (-2069 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1149 *7)) (-4 *5 (-1039)) (-4 *7 (-1039)) (-4 *2 (-1211 *5)) (-5 *1 (-502 *5 *2 *6 *7)) (-4 *6 (-1211 *2)))) (-4228 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1039)) (-4 *7 (-1039)) (-4 *4 (-1211 *5)) (-5 *2 (-1149 *7)) (-5 *1 (-502 *5 *4 *6 *7)) (-4 *6 (-1211 *4)))) (-4228 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1149 *7)) (-4 *5 (-1039)) (-4 *7 (-1039)) (-4 *2 (-1211 *5)) (-5 *1 (-502 *5 *2 *6 *7)) (-4 *6 (-1211 *2))))) -(-10 -7 (-15 -4228 (|#2| (-1 |#1| |#4|) (-1149 |#4|))) (-15 -4228 ((-1149 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2069 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1149 |#4|))) (-15 -3224 ((-3 (-671 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-671 (-1149 |#4|)))) (-15 -4439 ((-1149 (-1149 |#4|)) (-1 |#4| |#1|) |#3|))) -((-2601 (((-121) $ $) NIL)) (-4325 (($ $ $) NIL)) (-2501 (($ $ $) NIL)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-1489 (((-1241) $) 18)) (-2778 (((-1135) $ (-1153)) 22)) (-4106 (((-1241) $) 14)) (-2801 (((-842) $) 20) (($ (-1135)) 19)) (-1691 (((-121) $ $) NIL)) (-1675 (((-121) $ $) NIL)) (-1653 (((-121) $ $) 8)) (-1683 (((-121) $ $) NIL)) (-1667 (((-121) $ $) 7))) -(((-503) (-13 (-834) (-10 -8 (-15 -2778 ((-1135) $ (-1153))) (-15 -4106 ((-1241) $)) (-15 -1489 ((-1241) $)) (-15 -2801 ($ (-1135)))))) (T -503)) -((-2778 (*1 *2 *1 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-1135)) (-5 *1 (-503)))) (-4106 (*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-503)))) (-1489 (*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-503)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-503))))) -(-13 (-834) (-10 -8 (-15 -2778 ((-1135) $ (-1153))) (-15 -4106 ((-1241) $)) (-15 -1489 ((-1241) $)) (-15 -2801 ($ (-1135))))) -((-1347 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-3401 ((|#1| |#4|) 10)) (-4436 ((|#3| |#4|) 17))) -(((-504 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3401 (|#1| |#4|)) (-15 -4436 (|#3| |#4|)) (-15 -1347 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-550) (-985 |#1|) (-369 |#1|) (-369 |#2|)) (T -504)) -((-1347 (*1 *2 *3) (-12 (-4 *4 (-550)) (-4 *5 (-985 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-504 *4 *5 *6 *3)) (-4 *6 (-369 *4)) (-4 *3 (-369 *5)))) (-4436 (*1 *2 *3) (-12 (-4 *4 (-550)) (-4 *5 (-985 *4)) (-4 *2 (-369 *4)) (-5 *1 (-504 *4 *5 *2 *3)) (-4 *3 (-369 *5)))) (-3401 (*1 *2 *3) (-12 (-4 *4 (-985 *2)) (-4 *2 (-550)) (-5 *1 (-504 *2 *4 *5 *3)) (-4 *5 (-369 *2)) (-4 *3 (-369 *4))))) -(-10 -7 (-15 -3401 (|#1| |#4|)) (-15 -4436 (|#3| |#4|)) (-15 -1347 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) -((-2601 (((-121) $ $) NIL)) (-3501 (((-1153) $) NIL)) (-3507 (((-755) $) NIL)) (-3515 (((-1153) $ (-1153)) NIL)) (-3570 (((-755) $ (-755)) NIL)) (-3590 (((-958 |#1|) $ (-958 |#1|)) NIL)) (-3608 (((-755) $ (-755)) NIL)) (-3614 (((-33 |#1|) $ (-33 |#1|)) NIL)) (-3628 (((-626 (-766 |#1|)) $ (-626 (-766 |#1|))) NIL)) (-3653 (((-231 (-913 |#1|)) $ (-231 (-913 |#1|))) NIL)) (-3658 (((-237 (-4162 (QUOTE X) (QUOTE -3095)) |#1|) $ (-237 (-4162 (QUOTE X) (QUOTE -3095)) |#1|)) NIL)) (-3670 ((|#3| $ |#3|) NIL)) (-3674 (((-958 |#1|) $) NIL)) (-3680 (((-755) $) NIL)) (-3686 (((-33 |#1|) $) NIL)) (-3692 (((-626 (-766 |#1|)) $) NIL)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2747 (((-121) (-121)) NIL) (((-121)) NIL)) (-3697 (((-842) $) NIL)) (-3713 (((-231 (-913 |#1|)) $) NIL)) (-3662 (((-909) $) NIL)) (-3719 (((-237 (-4162 (QUOTE X) (QUOTE -3095)) |#1|) $) NIL)) (-2772 (($ (-958 |#1|) (-237 (-4162 (QUOTE X) (QUOTE -3095)) |#1|) (-33 |#1|) (-755) |#3| (-755) (-231 (-913 |#1|)) |#1| (-1153)) NIL) (($ (-958 |#1|) (-237 |#2| |#1|)) NIL)) (-2801 (((-842) $) NIL)) (-3731 ((|#3| $) NIL)) (-1844 ((|#1| $) NIL)) (-1653 (((-121) $ $) NIL))) -(((-505 |#1| |#2| |#3|) (-13 (-528 |#1| |#2| (-237 |#2| |#1|) (-228 (-2271 |#2|) (-755)) (-958 |#1|) (-766 |#1|) (-913 |#1|) (-231 (-913 |#1|)) |#3|) (-10 -8 (-15 -3697 ((-842) $)) (-15 -2747 ((-121) (-121))) (-15 -2747 ((-121))))) (-359) (-626 (-1153)) (-117)) (T -505)) -((-3697 (*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-505 *3 *4 *5)) (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *5 (-117)))) (-2747 (*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-505 *3 *4 *5)) (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *5 (-117)))) (-2747 (*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-505 *3 *4 *5)) (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *5 (-117))))) -(-13 (-528 |#1| |#2| (-237 |#2| |#1|) (-228 (-2271 |#2|) (-755)) (-958 |#1|) (-766 |#1|) (-913 |#1|) (-231 (-913 |#1|)) |#3|) (-10 -8 (-15 -3697 ((-842) $)) (-15 -2747 ((-121) (-121))) (-15 -2747 ((-121))))) -((-2601 (((-121) $ $) NIL)) (-3096 (((-121) $ (-626 |#3|)) 101) (((-121) $) 102)) (-2832 (((-121) $) 144)) (-1359 (($ $ |#4|) 93) (($ $ |#4| (-626 |#3|)) 97)) (-1531 (((-1142 (-626 (-945 |#1|)) (-626 (-283 (-945 |#1|)))) (-626 |#4|)) 137 (|has| |#3| (-601 (-1153))))) (-2583 (($ $ $) 87) (($ $ |#4|) 85)) (-2642 (((-121) $) 143)) (-4446 (($ $) 105)) (-1291 (((-1135) $) NIL)) (-4283 (($ $ $) 79) (($ (-626 $)) 81)) (-3810 (((-121) |#4| $) 104)) (-2065 (((-121) $ $) 68)) (-1303 (($ (-626 |#4|)) 86)) (-4353 (((-1100) $) NIL)) (-1993 (($ (-626 |#4|)) 141)) (-2867 (((-121) $) 142)) (-3341 (($ $) 70)) (-1821 (((-626 |#4|) $) 55)) (-1546 (((-2 (|:| |mval| (-671 |#1|)) (|:| |invmval| (-671 |#1|)) (|:| |genIdeal| $)) $ (-626 |#3|)) NIL)) (-2026 (((-121) |#4| $) 73)) (-4016 (((-560) $ (-626 |#3|)) 106) (((-560) $) 107)) (-2801 (((-842) $) 140) (($ (-626 |#4|)) 82)) (-4019 (($ (-2 (|:| |mval| (-671 |#1|)) (|:| |invmval| (-671 |#1|)) (|:| |genIdeal| $))) NIL)) (-1653 (((-121) $ $) 69)) (-1716 (($ $ $) 89)) (** (($ $ (-755)) 92)) (* (($ $ $) 91))) -(((-506 |#1| |#2| |#3| |#4|) (-13 (-1082) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-755))) (-15 -1716 ($ $ $)) (-15 -2642 ((-121) $)) (-15 -2832 ((-121) $)) (-15 -2026 ((-121) |#4| $)) (-15 -2065 ((-121) $ $)) (-15 -3810 ((-121) |#4| $)) (-15 -3096 ((-121) $ (-626 |#3|))) (-15 -3096 ((-121) $)) (-15 -4283 ($ $ $)) (-15 -4283 ($ (-626 $))) (-15 -2583 ($ $ $)) (-15 -2583 ($ $ |#4|)) (-15 -3341 ($ $)) (-15 -1546 ((-2 (|:| |mval| (-671 |#1|)) (|:| |invmval| (-671 |#1|)) (|:| |genIdeal| $)) $ (-626 |#3|))) (-15 -4019 ($ (-2 (|:| |mval| (-671 |#1|)) (|:| |invmval| (-671 |#1|)) (|:| |genIdeal| $)))) (-15 -4016 ((-560) $ (-626 |#3|))) (-15 -4016 ((-560) $)) (-15 -4446 ($ $)) (-15 -1303 ($ (-626 |#4|))) (-15 -1993 ($ (-626 |#4|))) (-15 -2867 ((-121) $)) (-15 -1821 ((-626 |#4|) $)) (-15 -2801 ($ (-626 |#4|))) (-15 -1359 ($ $ |#4|)) (-15 -1359 ($ $ |#4| (-626 |#3|))) (IF (|has| |#3| (-601 (-1153))) (-15 -1531 ((-1142 (-626 (-945 |#1|)) (-626 (-283 (-945 |#1|)))) (-626 |#4|))) |noBranch|))) (-359) (-780) (-834) (-942 |#1| |#2| |#3|)) (T -506)) -((* (*1 *1 *1 *1) (-12 (-4 *2 (-359)) (-4 *3 (-780)) (-4 *4 (-834)) (-5 *1 (-506 *2 *3 *4 *5)) (-4 *5 (-942 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-755)) (-4 *3 (-359)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-942 *3 *4 *5)))) (-1716 (*1 *1 *1 *1) (-12 (-4 *2 (-359)) (-4 *3 (-780)) (-4 *4 (-834)) (-5 *1 (-506 *2 *3 *4 *5)) (-4 *5 (-942 *2 *3 *4)))) (-2642 (*1 *2 *1) (-12 (-4 *3 (-359)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-121)) (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-942 *3 *4 *5)))) (-2832 (*1 *2 *1) (-12 (-4 *3 (-359)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-121)) (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-942 *3 *4 *5)))) (-2026 (*1 *2 *3 *1) (-12 (-4 *4 (-359)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-121)) (-5 *1 (-506 *4 *5 *6 *3)) (-4 *3 (-942 *4 *5 *6)))) (-2065 (*1 *2 *1 *1) (-12 (-4 *3 (-359)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-121)) (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-942 *3 *4 *5)))) (-3810 (*1 *2 *3 *1) (-12 (-4 *4 (-359)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-121)) (-5 *1 (-506 *4 *5 *6 *3)) (-4 *3 (-942 *4 *5 *6)))) (-3096 (*1 *2 *1 *3) (-12 (-5 *3 (-626 *6)) (-4 *6 (-834)) (-4 *4 (-359)) (-4 *5 (-780)) (-5 *2 (-121)) (-5 *1 (-506 *4 *5 *6 *7)) (-4 *7 (-942 *4 *5 *6)))) (-3096 (*1 *2 *1) (-12 (-4 *3 (-359)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-121)) (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-942 *3 *4 *5)))) (-4283 (*1 *1 *1 *1) (-12 (-4 *2 (-359)) (-4 *3 (-780)) (-4 *4 (-834)) (-5 *1 (-506 *2 *3 *4 *5)) (-4 *5 (-942 *2 *3 *4)))) (-4283 (*1 *1 *2) (-12 (-5 *2 (-626 (-506 *3 *4 *5 *6))) (-4 *3 (-359)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-942 *3 *4 *5)))) (-2583 (*1 *1 *1 *1) (-12 (-4 *2 (-359)) (-4 *3 (-780)) (-4 *4 (-834)) (-5 *1 (-506 *2 *3 *4 *5)) (-4 *5 (-942 *2 *3 *4)))) (-2583 (*1 *1 *1 *2) (-12 (-4 *3 (-359)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *1 (-506 *3 *4 *5 *2)) (-4 *2 (-942 *3 *4 *5)))) (-3341 (*1 *1 *1) (-12 (-4 *2 (-359)) (-4 *3 (-780)) (-4 *4 (-834)) (-5 *1 (-506 *2 *3 *4 *5)) (-4 *5 (-942 *2 *3 *4)))) (-1546 (*1 *2 *1 *3) (-12 (-5 *3 (-626 *6)) (-4 *6 (-834)) (-4 *4 (-359)) (-4 *5 (-780)) (-5 *2 (-2 (|:| |mval| (-671 *4)) (|:| |invmval| (-671 *4)) (|:| |genIdeal| (-506 *4 *5 *6 *7)))) (-5 *1 (-506 *4 *5 *6 *7)) (-4 *7 (-942 *4 *5 *6)))) (-4019 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-671 *3)) (|:| |invmval| (-671 *3)) (|:| |genIdeal| (-506 *3 *4 *5 *6)))) (-4 *3 (-359)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-942 *3 *4 *5)))) (-4016 (*1 *2 *1 *3) (-12 (-5 *3 (-626 *6)) (-4 *6 (-834)) (-4 *4 (-359)) (-4 *5 (-780)) (-5 *2 (-560)) (-5 *1 (-506 *4 *5 *6 *7)) (-4 *7 (-942 *4 *5 *6)))) (-4016 (*1 *2 *1) (-12 (-4 *3 (-359)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-560)) (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-942 *3 *4 *5)))) (-4446 (*1 *1 *1) (-12 (-4 *2 (-359)) (-4 *3 (-780)) (-4 *4 (-834)) (-5 *1 (-506 *2 *3 *4 *5)) (-4 *5 (-942 *2 *3 *4)))) (-1303 (*1 *1 *2) (-12 (-5 *2 (-626 *6)) (-4 *6 (-942 *3 *4 *5)) (-4 *3 (-359)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *1 (-506 *3 *4 *5 *6)))) (-1993 (*1 *1 *2) (-12 (-5 *2 (-626 *6)) (-4 *6 (-942 *3 *4 *5)) (-4 *3 (-359)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *1 (-506 *3 *4 *5 *6)))) (-2867 (*1 *2 *1) (-12 (-4 *3 (-359)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-121)) (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-942 *3 *4 *5)))) (-1821 (*1 *2 *1) (-12 (-4 *3 (-359)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-626 *6)) (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-942 *3 *4 *5)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-626 *6)) (-4 *6 (-942 *3 *4 *5)) (-4 *3 (-359)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *1 (-506 *3 *4 *5 *6)))) (-1359 (*1 *1 *1 *2) (-12 (-4 *3 (-359)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *1 (-506 *3 *4 *5 *2)) (-4 *2 (-942 *3 *4 *5)))) (-1359 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-626 *6)) (-4 *6 (-834)) (-4 *4 (-359)) (-4 *5 (-780)) (-5 *1 (-506 *4 *5 *6 *2)) (-4 *2 (-942 *4 *5 *6)))) (-1531 (*1 *2 *3) (-12 (-5 *3 (-626 *7)) (-4 *7 (-942 *4 *5 *6)) (-4 *6 (-601 (-1153))) (-4 *4 (-359)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-1142 (-626 (-945 *4)) (-626 (-283 (-945 *4))))) (-5 *1 (-506 *4 *5 *6 *7))))) -(-13 (-1082) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-755))) (-15 -1716 ($ $ $)) (-15 -2642 ((-121) $)) (-15 -2832 ((-121) $)) (-15 -2026 ((-121) |#4| $)) (-15 -2065 ((-121) $ $)) (-15 -3810 ((-121) |#4| $)) (-15 -3096 ((-121) $ (-626 |#3|))) (-15 -3096 ((-121) $)) (-15 -4283 ($ $ $)) (-15 -4283 ($ (-626 $))) (-15 -2583 ($ $ $)) (-15 -2583 ($ $ |#4|)) (-15 -3341 ($ $)) (-15 -1546 ((-2 (|:| |mval| (-671 |#1|)) (|:| |invmval| (-671 |#1|)) (|:| |genIdeal| $)) $ (-626 |#3|))) (-15 -4019 ($ (-2 (|:| |mval| (-671 |#1|)) (|:| |invmval| (-671 |#1|)) (|:| |genIdeal| $)))) (-15 -4016 ((-560) $ (-626 |#3|))) (-15 -4016 ((-560) $)) (-15 -4446 ($ $)) (-15 -1303 ($ (-626 |#4|))) (-15 -1993 ($ (-626 |#4|))) (-15 -2867 ((-121) $)) (-15 -1821 ((-626 |#4|) $)) (-15 -2801 ($ (-626 |#4|))) (-15 -1359 ($ $ |#4|)) (-15 -1359 ($ $ |#4| (-626 |#3|))) (IF (|has| |#3| (-601 (-1153))) (-15 -1531 ((-1142 (-626 (-945 |#1|)) (-626 (-283 (-945 |#1|)))) (-626 |#4|))) |noBranch|))) -((-2924 (((-121) (-506 (-403 (-560)) (-228 |#2| (-755)) (-844 |#1|) (-237 |#1| (-403 (-560))))) 144)) (-2906 (((-121) (-506 (-403 (-560)) (-228 |#2| (-755)) (-844 |#1|) (-237 |#1| (-403 (-560))))) 145)) (-1432 (((-506 (-403 (-560)) (-228 |#2| (-755)) (-844 |#1|) (-237 |#1| (-403 (-560)))) (-506 (-403 (-560)) (-228 |#2| (-755)) (-844 |#1|) (-237 |#1| (-403 (-560))))) 103)) (-3319 (((-121) (-506 (-403 (-560)) (-228 |#2| (-755)) (-844 |#1|) (-237 |#1| (-403 (-560))))) NIL)) (-1938 (((-626 (-506 (-403 (-560)) (-228 |#2| (-755)) (-844 |#1|) (-237 |#1| (-403 (-560))))) (-506 (-403 (-560)) (-228 |#2| (-755)) (-844 |#1|) (-237 |#1| (-403 (-560))))) 147)) (-3917 (((-506 (-403 (-560)) (-228 |#2| (-755)) (-844 |#1|) (-237 |#1| (-403 (-560)))) (-506 (-403 (-560)) (-228 |#2| (-755)) (-844 |#1|) (-237 |#1| (-403 (-560)))) (-626 (-844 |#1|))) 159))) -(((-507 |#1| |#2|) (-10 -7 (-15 -2924 ((-121) (-506 (-403 (-560)) (-228 |#2| (-755)) (-844 |#1|) (-237 |#1| (-403 (-560)))))) (-15 -2906 ((-121) (-506 (-403 (-560)) (-228 |#2| (-755)) (-844 |#1|) (-237 |#1| (-403 (-560)))))) (-15 -3319 ((-121) (-506 (-403 (-560)) (-228 |#2| (-755)) (-844 |#1|) (-237 |#1| (-403 (-560)))))) (-15 -1432 ((-506 (-403 (-560)) (-228 |#2| (-755)) (-844 |#1|) (-237 |#1| (-403 (-560)))) (-506 (-403 (-560)) (-228 |#2| (-755)) (-844 |#1|) (-237 |#1| (-403 (-560)))))) (-15 -1938 ((-626 (-506 (-403 (-560)) (-228 |#2| (-755)) (-844 |#1|) (-237 |#1| (-403 (-560))))) (-506 (-403 (-560)) (-228 |#2| (-755)) (-844 |#1|) (-237 |#1| (-403 (-560)))))) (-15 -3917 ((-506 (-403 (-560)) (-228 |#2| (-755)) (-844 |#1|) (-237 |#1| (-403 (-560)))) (-506 (-403 (-560)) (-228 |#2| (-755)) (-844 |#1|) (-237 |#1| (-403 (-560)))) (-626 (-844 |#1|))))) (-626 (-1153)) (-755)) (T -507)) -((-3917 (*1 *2 *2 *3) (-12 (-5 *2 (-506 (-403 (-560)) (-228 *5 (-755)) (-844 *4) (-237 *4 (-403 (-560))))) (-5 *3 (-626 (-844 *4))) (-14 *4 (-626 (-1153))) (-14 *5 (-755)) (-5 *1 (-507 *4 *5)))) (-1938 (*1 *2 *3) (-12 (-14 *4 (-626 (-1153))) (-14 *5 (-755)) (-5 *2 (-626 (-506 (-403 (-560)) (-228 *5 (-755)) (-844 *4) (-237 *4 (-403 (-560)))))) (-5 *1 (-507 *4 *5)) (-5 *3 (-506 (-403 (-560)) (-228 *5 (-755)) (-844 *4) (-237 *4 (-403 (-560))))))) (-1432 (*1 *2 *2) (-12 (-5 *2 (-506 (-403 (-560)) (-228 *4 (-755)) (-844 *3) (-237 *3 (-403 (-560))))) (-14 *3 (-626 (-1153))) (-14 *4 (-755)) (-5 *1 (-507 *3 *4)))) (-3319 (*1 *2 *3) (-12 (-5 *3 (-506 (-403 (-560)) (-228 *5 (-755)) (-844 *4) (-237 *4 (-403 (-560))))) (-14 *4 (-626 (-1153))) (-14 *5 (-755)) (-5 *2 (-121)) (-5 *1 (-507 *4 *5)))) (-2906 (*1 *2 *3) (-12 (-5 *3 (-506 (-403 (-560)) (-228 *5 (-755)) (-844 *4) (-237 *4 (-403 (-560))))) (-14 *4 (-626 (-1153))) (-14 *5 (-755)) (-5 *2 (-121)) (-5 *1 (-507 *4 *5)))) (-2924 (*1 *2 *3) (-12 (-5 *3 (-506 (-403 (-560)) (-228 *5 (-755)) (-844 *4) (-237 *4 (-403 (-560))))) (-14 *4 (-626 (-1153))) (-14 *5 (-755)) (-5 *2 (-121)) (-5 *1 (-507 *4 *5))))) -(-10 -7 (-15 -2924 ((-121) (-506 (-403 (-560)) (-228 |#2| (-755)) (-844 |#1|) (-237 |#1| (-403 (-560)))))) (-15 -2906 ((-121) (-506 (-403 (-560)) (-228 |#2| (-755)) (-844 |#1|) (-237 |#1| (-403 (-560)))))) (-15 -3319 ((-121) (-506 (-403 (-560)) (-228 |#2| (-755)) (-844 |#1|) (-237 |#1| (-403 (-560)))))) (-15 -1432 ((-506 (-403 (-560)) (-228 |#2| (-755)) (-844 |#1|) (-237 |#1| (-403 (-560)))) (-506 (-403 (-560)) (-228 |#2| (-755)) (-844 |#1|) (-237 |#1| (-403 (-560)))))) (-15 -1938 ((-626 (-506 (-403 (-560)) (-228 |#2| (-755)) (-844 |#1|) (-237 |#1| (-403 (-560))))) (-506 (-403 (-560)) (-228 |#2| (-755)) (-844 |#1|) (-237 |#1| (-403 (-560)))))) (-15 -3917 ((-506 (-403 (-560)) (-228 |#2| (-755)) (-844 |#1|) (-237 |#1| (-403 (-560)))) (-506 (-403 (-560)) (-228 |#2| (-755)) (-844 |#1|) (-237 |#1| (-403 (-560)))) (-626 (-844 |#1|))))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-4236 (($) NIL T CONST)) (-1750 (($ $) NIL)) (-1637 (($ |#1| |#2|) NIL)) (-2803 (($ (-1 |#1| |#1|) $) NIL)) (-1591 ((|#2| $) NIL)) (-1735 ((|#1| $) NIL)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2801 (((-842) $) NIL)) (-3304 (($) 12 T CONST)) (-1653 (((-121) $ $) NIL)) (-1725 (($ $) 11) (($ $ $) 23)) (-1716 (($ $ $) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) 18))) -(((-508 |#1| |#2|) (-13 (-21) (-510 |#1| |#2|)) (-21) (-834)) (T -508)) -NIL -(-13 (-21) (-510 |#1| |#2|)) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) 12)) (-4236 (($) NIL T CONST)) (-1750 (($ $) 26)) (-1637 (($ |#1| |#2|) 23)) (-2803 (($ (-1 |#1| |#1|) $) 25)) (-1591 ((|#2| $) NIL)) (-1735 ((|#1| $) 27)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2801 (((-842) $) NIL)) (-3304 (($) 10 T CONST)) (-1653 (((-121) $ $) NIL)) (-1716 (($ $ $) 17)) (* (($ (-909) $) NIL) (($ (-755) $) 22))) -(((-509 |#1| |#2|) (-13 (-23) (-510 |#1| |#2|)) (-23) (-834)) (T -509)) -NIL -(-13 (-23) (-510 |#1| |#2|)) -((-2601 (((-121) $ $) 7)) (-1750 (($ $) 12)) (-1637 (($ |#1| |#2|) 15)) (-2803 (($ (-1 |#1| |#1|) $) 16)) (-1591 ((|#2| $) 13)) (-1735 ((|#1| $) 14)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-2801 (((-842) $) 11)) (-1653 (((-121) $ $) 6))) -(((-510 |#1| |#2|) (-1267) (-1082) (-834)) (T -510)) -((-2803 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-510 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-834)))) (-1637 (*1 *1 *2 *3) (-12 (-4 *1 (-510 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-834)))) (-1735 (*1 *2 *1) (-12 (-4 *1 (-510 *2 *3)) (-4 *3 (-834)) (-4 *2 (-1082)))) (-1591 (*1 *2 *1) (-12 (-4 *1 (-510 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-834)))) (-1750 (*1 *1 *1) (-12 (-4 *1 (-510 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-834))))) -(-13 (-1082) (-10 -8 (-15 -2803 ($ (-1 |t#1| |t#1|) $)) (-15 -1637 ($ |t#1| |t#2|)) (-15 -1735 (|t#1| $)) (-15 -1591 (|t#2| $)) (-15 -1750 ($ $)))) -(((-105) . T) ((-600 (-842)) . T) ((-1082) . T)) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-4236 (($) NIL T CONST)) (-1750 (($ $) NIL)) (-1637 (($ |#1| |#2|) NIL)) (-4325 (($ $ $) NIL)) (-2501 (($ $ $) NIL)) (-2803 (($ (-1 |#1| |#1|) $) NIL)) (-1591 ((|#2| $) NIL)) (-1735 ((|#1| $) NIL)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2801 (((-842) $) NIL)) (-3304 (($) NIL T CONST)) (-1691 (((-121) $ $) NIL)) (-1675 (((-121) $ $) NIL)) (-1653 (((-121) $ $) NIL)) (-1683 (((-121) $ $) NIL)) (-1667 (((-121) $ $) 13)) (-1716 (($ $ $) NIL)) (* (($ (-755) $) NIL) (($ (-909) $) NIL))) -(((-511 |#1| |#2|) (-13 (-779) (-510 |#1| |#2|)) (-779) (-834)) (T -511)) -NIL -(-13 (-779) (-510 |#1| |#2|)) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-2280 (($ $ $) 16)) (-2314 (((-3 $ "failed") $ $) 13)) (-4236 (($) NIL T CONST)) (-1750 (($ $) NIL)) (-1637 (($ |#1| |#2|) NIL)) (-4325 (($ $ $) NIL)) (-2501 (($ $ $) NIL)) (-2803 (($ (-1 |#1| |#1|) $) NIL)) (-1591 ((|#2| $) NIL)) (-1735 ((|#1| $) NIL)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2801 (((-842) $) NIL)) (-3304 (($) NIL T CONST)) (-1691 (((-121) $ $) NIL)) (-1675 (((-121) $ $) NIL)) (-1653 (((-121) $ $) NIL)) (-1683 (((-121) $ $) NIL)) (-1667 (((-121) $ $) NIL)) (-1716 (($ $ $) NIL)) (* (($ (-755) $) NIL) (($ (-909) $) NIL))) -(((-512 |#1| |#2|) (-13 (-780) (-510 |#1| |#2|)) (-780) (-834)) (T -512)) -NIL -(-13 (-780) (-510 |#1| |#2|)) -((-2601 (((-121) $ $) NIL)) (-1750 (($ $) 24)) (-1637 (($ |#1| |#2|) 21)) (-2803 (($ (-1 |#1| |#1|) $) 23)) (-1591 ((|#2| $) 26)) (-1735 ((|#1| $) 25)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2801 (((-842) $) 20)) (-1653 (((-121) $ $) 13))) -(((-513 |#1| |#2|) (-510 |#1| |#2|) (-1082) (-834)) (T -513)) -NIL -(-510 |#1| |#2|) -((-4450 (($ $ (-626 |#2|) (-626 |#3|)) NIL) (($ $ |#2| |#3|) 12))) -(((-514 |#1| |#2| |#3|) (-10 -8 (-15 -4450 (|#1| |#1| |#2| |#3|)) (-15 -4450 (|#1| |#1| (-626 |#2|) (-626 |#3|)))) (-515 |#2| |#3|) (-1082) (-1187)) (T -514)) -NIL -(-10 -8 (-15 -4450 (|#1| |#1| |#2| |#3|)) (-15 -4450 (|#1| |#1| (-626 |#2|) (-626 |#3|)))) -((-4450 (($ $ (-626 |#1|) (-626 |#2|)) 7) (($ $ |#1| |#2|) 6))) -(((-515 |#1| |#2|) (-1267) (-1082) (-1187)) (T -515)) -((-4450 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-626 *4)) (-5 *3 (-626 *5)) (-4 *1 (-515 *4 *5)) (-4 *4 (-1082)) (-4 *5 (-1187)))) (-4450 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-515 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-1187))))) -(-13 (-10 -8 (-15 -4450 ($ $ |t#1| |t#2|)) (-15 -4450 ($ $ (-626 |t#1|) (-626 |t#2|))))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) 16)) (-4138 (((-626 (-2 (|:| |gen| |#1|) (|:| -2469 |#2|))) $) 18)) (-2314 (((-3 $ "failed") $ $) NIL)) (-2912 (((-755) $) NIL)) (-4236 (($) NIL T CONST)) (-1473 (((-3 |#1| "failed") $) NIL)) (-3001 ((|#1| $) NIL)) (-1724 ((|#1| $ (-560)) 23)) (-1595 ((|#2| $ (-560)) 21)) (-2381 (($ (-1 |#1| |#1|) $) 46)) (-2021 (($ (-1 |#2| |#2|) $) 43)) (-1291 (((-1135) $) NIL)) (-2520 (($ $ $) 53 (|has| |#2| (-779)))) (-4353 (((-1100) $) NIL)) (-2801 (((-842) $) 42) (($ |#1|) NIL)) (-2636 ((|#2| |#1| $) 49)) (-3304 (($) 11 T CONST)) (-1653 (((-121) $ $) 29)) (-1716 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-909) $) NIL) (($ (-755) $) 36) (($ |#2| |#1|) 31))) -(((-516 |#1| |#2| |#3|) (-314 |#1| |#2|) (-1082) (-137) |#2|) (T -516)) -NIL -(-314 |#1| |#2|) -((-2601 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-2960 (((-1241) $ (-560) (-560)) NIL (|has| $ (-6 -4506)))) (-3189 (((-121) (-1 (-121) |#1| |#1|) $) NIL) (((-121) $) NIL (|has| |#1| (-834)))) (-4410 (($ (-1 (-121) |#1| |#1|) $) NIL (|has| $ (-6 -4506))) (($ $) NIL (-12 (|has| $ (-6 -4506)) (|has| |#1| (-834))))) (-3743 (($ (-1 (-121) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-834)))) (-3909 (((-121) $ (-755)) NIL)) (-3767 (((-121) (-121)) 24)) (-2764 ((|#1| $ (-560) |#1|) 27 (|has| $ (-6 -4506))) ((|#1| $ (-1202 (-560)) |#1|) NIL (|has| $ (-6 -4506)))) (-3763 (($ (-1 (-121) |#1|) $) 51)) (-3802 (($ (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-4236 (($) NIL T CONST)) (-4030 (($ $) NIL (|has| $ (-6 -4506)))) (-2883 (($ $) NIL)) (-3568 (($ $) 54 (|has| |#1| (-1082)))) (-2868 (($ $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-3561 (($ |#1| $) NIL (|has| |#1| (-1082))) (($ (-1 (-121) |#1|) $) 43)) (-4310 (($ |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082)))) (($ (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-2342 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4505))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4505)))) (-1746 ((|#1| $ (-560) |#1|) NIL (|has| $ (-6 -4506)))) (-1361 ((|#1| $ (-560)) NIL)) (-2839 (((-560) (-1 (-121) |#1|) $) NIL) (((-560) |#1| $) NIL (|has| |#1| (-1082))) (((-560) |#1| $ (-560)) NIL (|has| |#1| (-1082)))) (-2505 (($ $ (-560)) 13)) (-1809 (((-755) $) 11)) (-1981 (((-626 |#1|) $) NIL (|has| $ (-6 -4505)))) (-1721 (($ (-755) |#1|) 22)) (-2122 (((-121) $ (-755)) NIL)) (-4099 (((-560) $) 20 (|has| (-560) (-834)))) (-4325 (($ $ $) NIL (|has| |#1| (-834)))) (-2037 (($ $ $) NIL (|has| |#1| (-834))) (($ (-1 (-121) |#1| |#1|) $ $) 34)) (-2492 (($ (-1 (-121) |#1| |#1|) $ $) 35) (($ $ $) NIL (|has| |#1| (-834)))) (-2130 (((-626 |#1|) $) NIL (|has| $ (-6 -4505)))) (-2030 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-2767 (((-560) $) 19 (|has| (-560) (-834)))) (-2501 (($ $ $) NIL (|has| |#1| (-834)))) (-3778 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3441 (((-121) $ (-755)) NIL)) (-1291 (((-1135) $) NIL (|has| |#1| (-1082)))) (-4345 (($ $ $ (-560)) 50) (($ |#1| $ (-560)) 36)) (-4103 (($ |#1| $ (-560)) NIL) (($ $ $ (-560)) NIL)) (-1529 (((-626 (-560)) $) NIL)) (-1310 (((-121) (-560) $) NIL)) (-4353 (((-1100) $) NIL (|has| |#1| (-1082)))) (-3151 (($ (-626 |#1|)) 28)) (-2824 ((|#1| $) NIL (|has| (-560) (-834)))) (-3786 (((-3 |#1| "failed") (-1 (-121) |#1|) $) NIL)) (-3038 (($ $ |#1|) 18 (|has| $ (-6 -4506)))) (-2865 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#1|))) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-283 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-626 |#1|) (-626 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))))) (-2214 (((-121) $ $) 39)) (-1290 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-4460 (((-626 |#1|) $) NIL)) (-4191 (((-121) $) NIL)) (-3260 (($) 14)) (-2778 ((|#1| $ (-560) |#1|) NIL) ((|#1| $ (-560)) 32) (($ $ (-1202 (-560))) NIL)) (-4094 (($ $ (-1202 (-560))) 49) (($ $ (-560)) 44)) (-2949 (($ $ (-560)) NIL) (($ $ (-1202 (-560))) NIL)) (-4035 (((-755) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505))) (((-755) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-4072 (($ $ $ (-560)) 40 (|has| $ (-6 -4506)))) (-2813 (($ $) 31)) (-4255 (((-533) $) NIL (|has| |#1| (-601 (-533))))) (-4162 (($ (-626 |#1|)) NIL)) (-3602 (($ $ $) 41) (($ $ |#1|) 38)) (-2849 (($ $ |#1|) NIL) (($ |#1| $) 37) (($ $ $) NIL) (($ (-626 $)) NIL)) (-2801 (((-842) $) NIL (|has| |#1| (-1082)))) (-3656 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-1691 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1675 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1653 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-1683 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1667 (((-121) $ $) NIL (|has| |#1| (-834)))) (-2271 (((-755) $) 15 (|has| $ (-6 -4505))))) -(((-517 |#1| |#2|) (-13 (-19 |#1|) (-272 |#1|) (-10 -8 (-15 -3151 ($ (-626 |#1|))) (-15 -1809 ((-755) $)) (-15 -2505 ($ $ (-560))) (-15 -3767 ((-121) (-121))))) (-1187) (-560)) (T -517)) -((-3151 (*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-1187)) (-5 *1 (-517 *3 *4)) (-14 *4 (-560)))) (-1809 (*1 *2 *1) (-12 (-5 *2 (-755)) (-5 *1 (-517 *3 *4)) (-4 *3 (-1187)) (-14 *4 (-560)))) (-2505 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-517 *3 *4)) (-4 *3 (-1187)) (-14 *4 *2))) (-3767 (*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-517 *3 *4)) (-4 *3 (-1187)) (-14 *4 (-560))))) -(-13 (-19 |#1|) (-272 |#1|) (-10 -8 (-15 -3151 ($ (-626 |#1|))) (-15 -1809 ((-755) $)) (-15 -2505 ($ $ (-560))) (-15 -3767 ((-121) (-121))))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL)) (-1350 (($ $) NIL)) (-3376 (((-121) $) NIL)) (-3913 (((-121) $) NIL)) (-1881 (((-755)) NIL)) (-1944 (((-573 |#1|) $) NIL) (($ $ (-909)) NIL (|has| (-573 |#1|) (-364)))) (-4357 (((-1161 (-909) (-755)) (-560)) NIL (|has| (-573 |#1|) (-364)))) (-2314 (((-3 $ "failed") $ $) NIL)) (-3065 (($ $) NIL)) (-2953 (((-414 $) $) NIL)) (-4179 (((-121) $ $) NIL)) (-2912 (((-755)) NIL (|has| (-573 |#1|) (-364)))) (-4236 (($) NIL T CONST)) (-1473 (((-3 (-573 |#1|) "failed") $) NIL)) (-3001 (((-573 |#1|) $) NIL)) (-3380 (($ (-1236 (-573 |#1|))) NIL)) (-4107 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-573 |#1|) (-364)))) (-2563 (($ $ $) NIL)) (-1823 (((-3 $ "failed") $) NIL)) (-1666 (($) NIL (|has| (-573 |#1|) (-364)))) (-2572 (($ $ $) NIL)) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) NIL)) (-2481 (($) NIL (|has| (-573 |#1|) (-364)))) (-1537 (((-121) $) NIL (|has| (-573 |#1|) (-364)))) (-2937 (($ $ (-755)) NIL (-2318 (|has| (-573 |#1|) (-146)) (|has| (-573 |#1|) (-364)))) (($ $) NIL (-2318 (|has| (-573 |#1|) (-146)) (|has| (-573 |#1|) (-364))))) (-3319 (((-121) $) NIL)) (-3504 (((-909) $) NIL (|has| (-573 |#1|) (-364))) (((-820 (-909)) $) NIL (-2318 (|has| (-573 |#1|) (-146)) (|has| (-573 |#1|) (-364))))) (-2642 (((-121) $) NIL)) (-2174 (($) NIL (|has| (-573 |#1|) (-364)))) (-1428 (((-121) $) NIL (|has| (-573 |#1|) (-364)))) (-3339 (((-573 |#1|) $) NIL) (($ $ (-909)) NIL (|has| (-573 |#1|) (-364)))) (-1424 (((-3 $ "failed") $) NIL (|has| (-573 |#1|) (-364)))) (-3856 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-4108 (((-1149 (-573 |#1|)) $) NIL) (((-1149 $) $ (-909)) NIL (|has| (-573 |#1|) (-364)))) (-3142 (((-909) $) NIL (|has| (-573 |#1|) (-364)))) (-3312 (((-1149 (-573 |#1|)) $) NIL (|has| (-573 |#1|) (-364)))) (-4175 (((-1149 (-573 |#1|)) $) NIL (|has| (-573 |#1|) (-364))) (((-3 (-1149 (-573 |#1|)) "failed") $ $) NIL (|has| (-573 |#1|) (-364)))) (-2455 (($ $ (-1149 (-573 |#1|))) NIL (|has| (-573 |#1|) (-364)))) (-2582 (($ $ $) NIL) (($ (-626 $)) NIL)) (-1291 (((-1135) $) NIL)) (-1701 (($ $) NIL)) (-1394 (($) NIL (|has| (-573 |#1|) (-364)) CONST)) (-1330 (($ (-909)) NIL (|has| (-573 |#1|) (-364)))) (-3557 (((-121) $) NIL)) (-4353 (((-1100) $) NIL)) (-4250 (($) NIL (|has| (-573 |#1|) (-364)))) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL)) (-4440 (($ $ $) NIL) (($ (-626 $)) NIL)) (-2385 (((-626 (-2 (|:| -1601 (-560)) (|:| -4034 (-560))))) NIL (|has| (-573 |#1|) (-364)))) (-1601 (((-414 $) $) NIL)) (-1472 (((-820 (-909))) NIL) (((-909)) NIL)) (-3505 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2336 (((-3 $ "failed") $ $) NIL)) (-3456 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-4445 (((-755) $) NIL)) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL)) (-2935 (((-755) $) NIL (|has| (-573 |#1|) (-364))) (((-3 (-755) "failed") $ $) NIL (-2318 (|has| (-573 |#1|) (-146)) (|has| (-573 |#1|) (-364))))) (-4016 (((-139)) NIL)) (-2443 (($ $) NIL (|has| (-573 |#1|) (-364))) (($ $ (-755)) NIL (|has| (-573 |#1|) (-364)))) (-3662 (((-820 (-909)) $) NIL) (((-909) $) NIL)) (-3591 (((-1149 (-573 |#1|))) NIL)) (-2612 (($) NIL (|has| (-573 |#1|) (-364)))) (-1380 (($) NIL (|has| (-573 |#1|) (-364)))) (-3390 (((-1236 (-573 |#1|)) $) NIL) (((-671 (-573 |#1|)) (-1236 $)) NIL)) (-3248 (((-3 (-1236 $) "failed") (-671 $)) NIL (|has| (-573 |#1|) (-364)))) (-2801 (((-842) $) NIL) (($ (-560)) NIL) (($ $) NIL) (($ (-403 (-560))) NIL) (($ (-573 |#1|)) NIL)) (-2272 (($ $) NIL (|has| (-573 |#1|) (-364))) (((-3 $ "failed") $) NIL (-2318 (|has| (-573 |#1|) (-146)) (|has| (-573 |#1|) (-364))))) (-1751 (((-755)) NIL)) (-4374 (((-1236 $)) NIL) (((-1236 $) (-909)) NIL)) (-2328 (((-121) $ $) NIL)) (-1535 (((-121) $) NIL)) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL)) (-3304 (($) NIL T CONST)) (-1459 (($) NIL T CONST)) (-2353 (($ $) NIL (|has| (-573 |#1|) (-364))) (($ $ (-755)) NIL (|has| (-573 |#1|) (-364)))) (-2500 (($ $) NIL (|has| (-573 |#1|) (-364))) (($ $ (-755)) NIL (|has| (-573 |#1|) (-364)))) (-1653 (((-121) $ $) NIL)) (-1733 (($ $ $) NIL) (($ $ (-573 |#1|)) NIL)) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) NIL)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) NIL) (($ $ (-403 (-560))) NIL) (($ (-403 (-560)) $) NIL) (($ $ (-573 |#1|)) NIL) (($ (-573 |#1|) $) NIL))) -(((-518 |#1| |#2|) (-321 (-573 |#1|)) (-909) (-909)) (T -518)) -NIL -(-321 (-573 |#1|)) -((-2601 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-3909 (((-121) $ (-755)) NIL)) (-2764 ((|#1| $ (-560) (-560) |#1|) 33)) (-2013 (($ $ (-560) |#4|) NIL)) (-4079 (($ $ (-560) |#5|) NIL)) (-4236 (($) NIL T CONST)) (-4097 ((|#4| $ (-560)) NIL)) (-1746 ((|#1| $ (-560) (-560) |#1|) 32)) (-1361 ((|#1| $ (-560) (-560)) 30)) (-1981 (((-626 |#1|) $) NIL)) (-1454 (((-755) $) 26)) (-1721 (($ (-755) (-755) |#1|) 23)) (-2634 (((-755) $) 28)) (-2122 (((-121) $ (-755)) NIL)) (-2984 (((-560) $) 24)) (-1994 (((-560) $) 25)) (-2130 (((-626 |#1|) $) NIL (|has| $ (-6 -4505)))) (-2030 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-3755 (((-560) $) 27)) (-1420 (((-560) $) 29)) (-3778 (($ (-1 |#1| |#1|) $) NIL)) (-2803 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3441 (((-121) $ (-755)) NIL)) (-1291 (((-1135) $) 36 (|has| |#1| (-1082)))) (-4353 (((-1100) $) NIL (|has| |#1| (-1082)))) (-3038 (($ $ |#1|) NIL)) (-2865 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#1|))) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-283 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-626 |#1|) (-626 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))))) (-2214 (((-121) $ $) NIL)) (-4191 (((-121) $) 14)) (-3260 (($) 15)) (-2778 ((|#1| $ (-560) (-560)) 31) ((|#1| $ (-560) (-560) |#1|) NIL)) (-4035 (((-755) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505))) (((-755) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-2813 (($ $) NIL)) (-3677 ((|#5| $ (-560)) NIL)) (-2801 (((-842) $) NIL (|has| |#1| (-1082)))) (-3656 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-1653 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-2271 (((-755) $) NIL (|has| $ (-6 -4505))))) -(((-519 |#1| |#2| |#3| |#4| |#5|) (-62 |#1| |#4| |#5|) (-1187) (-560) (-560) (-369 |#1|) (-369 |#1|)) (T -519)) +((-2447 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-2510 (((-121) $ (-763)) NIL)) (-2436 ((|#1| $ (-568) (-568) |#1|) NIL)) (-4159 (($ $ (-568) (-505 |#1| |#3|)) NIL)) (-2451 (($ $ (-568) (-505 |#1| |#2|)) NIL)) (-2671 (($) NIL T CONST)) (-1818 (((-505 |#1| |#3|) $ (-568)) NIL)) (-3989 ((|#1| $ (-568) (-568) |#1|) NIL)) (-2602 ((|#1| $ (-568) (-568)) NIL)) (-4360 (((-634 |#1|) $) NIL)) (-3043 (((-763) $) NIL)) (-1849 (($ (-763) (-763) |#1|) NIL)) (-2555 (((-763) $) NIL)) (-1737 (((-121) $ (-763)) NIL)) (-2087 (((-568) $) NIL)) (-3364 (((-568) $) NIL)) (-1979 (((-634 |#1|) $) NIL (|has| $ (-6 -4519)))) (-3109 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-1663 (((-568) $) NIL)) (-2893 (((-568) $) NIL)) (-3674 (($ (-1 |#1| |#1|) $) NIL)) (-2795 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2166 (((-121) $ (-763)) NIL)) (-4487 (((-1143) $) NIL (|has| |#1| (-1090)))) (-4022 (((-1108) $) NIL (|has| |#1| (-1090)))) (-3724 (($ $ |#1|) NIL)) (-1387 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-634 |#1|) (-634 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))))) (-3171 (((-121) $ $) NIL)) (-3084 (((-121) $) NIL)) (-3248 (($) NIL)) (-2779 ((|#1| $ (-568) (-568)) NIL) ((|#1| $ (-568) (-568) |#1|) NIL)) (-4168 (((-763) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519))) (((-763) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-3863 (($ $) NIL)) (-3731 (((-505 |#1| |#2|) $ (-568)) NIL)) (-2745 (((-850) $) NIL (|has| |#1| (-1090)))) (-1319 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-1717 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-1697 (((-763) $) NIL (|has| $ (-6 -4519))))) +(((-506 |#1| |#2| |#3|) (-62 |#1| (-505 |#1| |#3|) (-505 |#1| |#2|)) (-1195) (-568) (-568)) (T -506)) +NIL +(-62 |#1| (-505 |#1| |#3|) (-505 |#1| |#2|)) +((-3387 (((-634 (-2 (|:| -3746 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|)))) (-2 (|:| -3746 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|))) (-763) (-763)) 27)) (-1385 (((-634 (-1157 |#1|)) |#1| (-763) (-763) (-763)) 34)) (-2769 (((-2 (|:| -3746 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|))) (-634 |#3|) (-634 (-2 (|:| -3746 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|)))) (-763)) 83))) +(((-507 |#1| |#2| |#3|) (-10 -7 (-15 -1385 ((-634 (-1157 |#1|)) |#1| (-763) (-763) (-763))) (-15 -3387 ((-634 (-2 (|:| -3746 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|)))) (-2 (|:| -3746 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|))) (-763) (-763))) (-15 -2769 ((-2 (|:| -3746 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|))) (-634 |#3|) (-634 (-2 (|:| -3746 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|)))) (-763)))) (-350) (-1219 |#1|) (-1219 |#2|)) (T -507)) +((-2769 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-634 *8)) (-5 *4 (-634 (-2 (|:| -3746 (-679 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-679 *7))))) (-5 *5 (-763)) (-4 *8 (-1219 *7)) (-4 *7 (-1219 *6)) (-4 *6 (-350)) (-5 *2 (-2 (|:| -3746 (-679 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-679 *7)))) (-5 *1 (-507 *6 *7 *8)))) (-3387 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-763)) (-4 *5 (-350)) (-4 *6 (-1219 *5)) (-5 *2 (-634 (-2 (|:| -3746 (-679 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-679 *6))))) (-5 *1 (-507 *5 *6 *7)) (-5 *3 (-2 (|:| -3746 (-679 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-679 *6)))) (-4 *7 (-1219 *6)))) (-1385 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-763)) (-4 *3 (-350)) (-4 *5 (-1219 *3)) (-5 *2 (-634 (-1157 *3))) (-5 *1 (-507 *3 *5 *6)) (-4 *6 (-1219 *5))))) +(-10 -7 (-15 -1385 ((-634 (-1157 |#1|)) |#1| (-763) (-763) (-763))) (-15 -3387 ((-634 (-2 (|:| -3746 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|)))) (-2 (|:| -3746 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|))) (-763) (-763))) (-15 -2769 ((-2 (|:| -3746 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|))) (-634 |#3|) (-634 (-2 (|:| -3746 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|)))) (-763)))) +((-1350 (((-2 (|:| -3746 (-679 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-679 |#1|))) (-2 (|:| -3746 (-679 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-679 |#1|))) (-2 (|:| -3746 (-679 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-679 |#1|)))) 60)) (-4096 ((|#1| (-679 |#1|) |#1| (-763)) 25)) (-2061 (((-763) (-763) (-763)) 30)) (-2180 (((-679 |#1|) (-679 |#1|) (-679 |#1|)) 42)) (-3057 (((-679 |#1|) (-679 |#1|) (-679 |#1|) |#1|) 50) (((-679 |#1|) (-679 |#1|) (-679 |#1|)) 47)) (-3463 ((|#1| (-679 |#1|) (-679 |#1|) |#1| (-568)) 29)) (-3241 ((|#1| (-679 |#1|)) 18))) +(((-508 |#1| |#2| |#3|) (-10 -7 (-15 -3241 (|#1| (-679 |#1|))) (-15 -4096 (|#1| (-679 |#1|) |#1| (-763))) (-15 -3463 (|#1| (-679 |#1|) (-679 |#1|) |#1| (-568))) (-15 -2061 ((-763) (-763) (-763))) (-15 -3057 ((-679 |#1|) (-679 |#1|) (-679 |#1|))) (-15 -3057 ((-679 |#1|) (-679 |#1|) (-679 |#1|) |#1|)) (-15 -2180 ((-679 |#1|) (-679 |#1|) (-679 |#1|))) (-15 -1350 ((-2 (|:| -3746 (-679 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-679 |#1|))) (-2 (|:| -3746 (-679 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-679 |#1|))) (-2 (|:| -3746 (-679 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-679 |#1|)))))) (-13 (-301) (-10 -8 (-15 -1678 ((-420 $) $)))) (-1219 |#1|) (-411 |#1| |#2|)) (T -508)) +((-1350 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -3746 (-679 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-679 *3)))) (-4 *3 (-13 (-301) (-10 -8 (-15 -1678 ((-420 $) $))))) (-4 *4 (-1219 *3)) (-5 *1 (-508 *3 *4 *5)) (-4 *5 (-411 *3 *4)))) (-2180 (*1 *2 *2 *2) (-12 (-5 *2 (-679 *3)) (-4 *3 (-13 (-301) (-10 -8 (-15 -1678 ((-420 $) $))))) (-4 *4 (-1219 *3)) (-5 *1 (-508 *3 *4 *5)) (-4 *5 (-411 *3 *4)))) (-3057 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-679 *3)) (-4 *3 (-13 (-301) (-10 -8 (-15 -1678 ((-420 $) $))))) (-4 *4 (-1219 *3)) (-5 *1 (-508 *3 *4 *5)) (-4 *5 (-411 *3 *4)))) (-3057 (*1 *2 *2 *2) (-12 (-5 *2 (-679 *3)) (-4 *3 (-13 (-301) (-10 -8 (-15 -1678 ((-420 $) $))))) (-4 *4 (-1219 *3)) (-5 *1 (-508 *3 *4 *5)) (-4 *5 (-411 *3 *4)))) (-2061 (*1 *2 *2 *2) (-12 (-5 *2 (-763)) (-4 *3 (-13 (-301) (-10 -8 (-15 -1678 ((-420 $) $))))) (-4 *4 (-1219 *3)) (-5 *1 (-508 *3 *4 *5)) (-4 *5 (-411 *3 *4)))) (-3463 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-679 *2)) (-5 *4 (-568)) (-4 *2 (-13 (-301) (-10 -8 (-15 -1678 ((-420 $) $))))) (-4 *5 (-1219 *2)) (-5 *1 (-508 *2 *5 *6)) (-4 *6 (-411 *2 *5)))) (-4096 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-679 *2)) (-5 *4 (-763)) (-4 *2 (-13 (-301) (-10 -8 (-15 -1678 ((-420 $) $))))) (-4 *5 (-1219 *2)) (-5 *1 (-508 *2 *5 *6)) (-4 *6 (-411 *2 *5)))) (-3241 (*1 *2 *3) (-12 (-5 *3 (-679 *2)) (-4 *4 (-1219 *2)) (-4 *2 (-13 (-301) (-10 -8 (-15 -1678 ((-420 $) $))))) (-5 *1 (-508 *2 *4 *5)) (-4 *5 (-411 *2 *4))))) +(-10 -7 (-15 -3241 (|#1| (-679 |#1|))) (-15 -4096 (|#1| (-679 |#1|) |#1| (-763))) (-15 -3463 (|#1| (-679 |#1|) (-679 |#1|) |#1| (-568))) (-15 -2061 ((-763) (-763) (-763))) (-15 -3057 ((-679 |#1|) (-679 |#1|) (-679 |#1|))) (-15 -3057 ((-679 |#1|) (-679 |#1|) (-679 |#1|) |#1|)) (-15 -2180 ((-679 |#1|) (-679 |#1|) (-679 |#1|))) (-15 -1350 ((-2 (|:| -3746 (-679 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-679 |#1|))) (-2 (|:| -3746 (-679 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-679 |#1|))) (-2 (|:| -3746 (-679 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-679 |#1|)))))) +((-2447 (((-121) $ $) NIL)) (-1611 (($ $) NIL)) (-3091 (($ $ $) 35)) (-1868 (((-1249) $ (-568) (-568)) NIL (|has| $ (-6 -4520)))) (-2016 (((-121) $) NIL (|has| (-121) (-842))) (((-121) (-1 (-121) (-121) (-121)) $) NIL)) (-3908 (($ $) NIL (-12 (|has| $ (-6 -4520)) (|has| (-121) (-842)))) (($ (-1 (-121) (-121) (-121)) $) NIL (|has| $ (-6 -4520)))) (-3644 (($ $) NIL (|has| (-121) (-842))) (($ (-1 (-121) (-121) (-121)) $) NIL)) (-2510 (((-121) $ (-763)) NIL)) (-2436 (((-121) $ (-1210 (-568)) (-121)) NIL (|has| $ (-6 -4520))) (((-121) $ (-568) (-121)) 36 (|has| $ (-6 -4520)))) (-2801 (($ (-1 (-121) (-121)) $) NIL (|has| $ (-6 -4519)))) (-2671 (($) NIL T CONST)) (-1578 (($ $) NIL (|has| $ (-6 -4520)))) (-3943 (($ $) NIL)) (-3924 (($ $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-121) (-1090))))) (-4328 (($ (-1 (-121) (-121)) $) NIL (|has| $ (-6 -4519))) (($ (-121) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-121) (-1090))))) (-3092 (((-121) (-1 (-121) (-121) (-121)) $) NIL (|has| $ (-6 -4519))) (((-121) (-1 (-121) (-121) (-121)) $ (-121)) NIL (|has| $ (-6 -4519))) (((-121) (-1 (-121) (-121) (-121)) $ (-121) (-121)) NIL (-12 (|has| $ (-6 -4519)) (|has| (-121) (-1090))))) (-3989 (((-121) $ (-568) (-121)) NIL (|has| $ (-6 -4520)))) (-2602 (((-121) $ (-568)) NIL)) (-2764 (((-568) (-121) $ (-568)) NIL (|has| (-121) (-1090))) (((-568) (-121) $) NIL (|has| (-121) (-1090))) (((-568) (-1 (-121) (-121)) $) NIL)) (-4360 (((-634 (-121)) $) NIL (|has| $ (-6 -4519)))) (-3104 (($ $ $) 33)) (-3044 (($ $) NIL)) (-2460 (($ $ $) NIL)) (-1849 (($ (-763) (-121)) 23)) (-3339 (($ $ $) NIL)) (-1737 (((-121) $ (-763)) NIL)) (-1881 (((-568) $) 8 (|has| (-568) (-842)))) (-2521 (($ $ $) NIL)) (-1347 (($ $ $) NIL (|has| (-121) (-842))) (($ (-1 (-121) (-121) (-121)) $ $) NIL)) (-1979 (((-634 (-121)) $) NIL (|has| $ (-6 -4519)))) (-3109 (((-121) (-121) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-121) (-1090))))) (-2223 (((-568) $) NIL (|has| (-568) (-842)))) (-3268 (($ $ $) NIL)) (-3674 (($ (-1 (-121) (-121)) $) NIL (|has| $ (-6 -4520)))) (-2795 (($ (-1 (-121) (-121) (-121)) $ $) 30) (($ (-1 (-121) (-121)) $) NIL)) (-2166 (((-121) $ (-763)) NIL)) (-4487 (((-1143) $) NIL)) (-4122 (($ $ $ (-568)) NIL) (($ (-121) $ (-568)) NIL)) (-4174 (((-634 (-568)) $) NIL)) (-3578 (((-121) (-568) $) NIL)) (-4022 (((-1108) $) NIL)) (-3876 (((-121) $) NIL (|has| (-568) (-842)))) (-3775 (((-3 (-121) "failed") (-1 (-121) (-121)) $) NIL)) (-3724 (($ $ (-121)) NIL (|has| $ (-6 -4520)))) (-1387 (((-121) (-1 (-121) (-121)) $) NIL (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-121)) (-634 (-121))) NIL (-12 (|has| (-121) (-303 (-121))) (|has| (-121) (-1090)))) (($ $ (-121) (-121)) NIL (-12 (|has| (-121) (-303 (-121))) (|has| (-121) (-1090)))) (($ $ (-288 (-121))) NIL (-12 (|has| (-121) (-303 (-121))) (|has| (-121) (-1090)))) (($ $ (-634 (-288 (-121)))) NIL (-12 (|has| (-121) (-303 (-121))) (|has| (-121) (-1090))))) (-3171 (((-121) $ $) NIL)) (-4467 (((-121) (-121) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-121) (-1090))))) (-2041 (((-634 (-121)) $) NIL)) (-3084 (((-121) $) NIL)) (-3248 (($) 24)) (-2779 (($ $ (-1210 (-568))) NIL) (((-121) $ (-568)) 18) (((-121) $ (-568) (-121)) NIL)) (-2826 (($ $ (-1210 (-568))) NIL) (($ $ (-568)) NIL)) (-4168 (((-763) (-121) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-121) (-1090)))) (((-763) (-1 (-121) (-121)) $) NIL (|has| $ (-6 -4519)))) (-2256 (($ $ $ (-568)) NIL (|has| $ (-6 -4520)))) (-3863 (($ $) 25)) (-4278 (((-541) $) NIL (|has| (-121) (-609 (-541))))) (-4287 (($ (-634 (-121))) NIL)) (-2768 (($ (-634 $)) NIL) (($ $ $) NIL) (($ (-121) $) NIL) (($ $ (-121)) NIL)) (-2745 (((-850) $) 22)) (-1319 (((-121) (-1 (-121) (-121)) $) NIL (|has| $ (-6 -4519)))) (-2139 (($ $ $) 31)) (-1887 (($ $) NIL)) (-2430 (($ $ $) NIL)) (-3293 (($ $ $) 39)) (-3251 (($ $) 37)) (-3005 (($ $ $) 38)) (-1751 (((-121) $ $) NIL)) (-1738 (((-121) $ $) NIL)) (-1717 (((-121) $ $) 26)) (-1745 (((-121) $ $) NIL)) (-1732 (((-121) $ $) 27)) (-2424 (($ $ $) NIL)) (-1697 (((-763) $) 10 (|has| $ (-6 -4519))))) +(((-509 |#1|) (-13 (-132) (-10 -8 (-15 -3251 ($ $)) (-15 -3293 ($ $ $)) (-15 -3005 ($ $ $)))) (-568)) (T -509)) +((-3251 (*1 *1 *1) (-12 (-5 *1 (-509 *2)) (-14 *2 (-568)))) (-3293 (*1 *1 *1 *1) (-12 (-5 *1 (-509 *2)) (-14 *2 (-568)))) (-3005 (*1 *1 *1 *1) (-12 (-5 *1 (-509 *2)) (-14 *2 (-568))))) +(-13 (-132) (-10 -8 (-15 -3251 ($ $)) (-15 -3293 ($ $ $)) (-15 -3005 ($ $ $)))) +((-1891 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1157 |#4|)) 34)) (-1957 (((-1157 |#4|) (-1 |#4| |#1|) |#2|) 30) ((|#2| (-1 |#1| |#4|) (-1157 |#4|)) 21)) (-3808 (((-3 (-679 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-679 (-1157 |#4|))) 45)) (-2569 (((-1157 (-1157 |#4|)) (-1 |#4| |#1|) |#3|) 54))) +(((-510 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1957 (|#2| (-1 |#1| |#4|) (-1157 |#4|))) (-15 -1957 ((-1157 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1891 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1157 |#4|))) (-15 -3808 ((-3 (-679 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-679 (-1157 |#4|)))) (-15 -2569 ((-1157 (-1157 |#4|)) (-1 |#4| |#1|) |#3|))) (-1047) (-1219 |#1|) (-1219 |#2|) (-1047)) (T -510)) +((-2569 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1047)) (-4 *7 (-1047)) (-4 *6 (-1219 *5)) (-5 *2 (-1157 (-1157 *7))) (-5 *1 (-510 *5 *6 *4 *7)) (-4 *4 (-1219 *6)))) (-3808 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-679 (-1157 *8))) (-4 *5 (-1047)) (-4 *8 (-1047)) (-4 *6 (-1219 *5)) (-5 *2 (-679 *6)) (-5 *1 (-510 *5 *6 *7 *8)) (-4 *7 (-1219 *6)))) (-1891 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1157 *7)) (-4 *5 (-1047)) (-4 *7 (-1047)) (-4 *2 (-1219 *5)) (-5 *1 (-510 *5 *2 *6 *7)) (-4 *6 (-1219 *2)))) (-1957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1047)) (-4 *7 (-1047)) (-4 *4 (-1219 *5)) (-5 *2 (-1157 *7)) (-5 *1 (-510 *5 *4 *6 *7)) (-4 *6 (-1219 *4)))) (-1957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1157 *7)) (-4 *5 (-1047)) (-4 *7 (-1047)) (-4 *2 (-1219 *5)) (-5 *1 (-510 *5 *2 *6 *7)) (-4 *6 (-1219 *2))))) +(-10 -7 (-15 -1957 (|#2| (-1 |#1| |#4|) (-1157 |#4|))) (-15 -1957 ((-1157 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1891 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1157 |#4|))) (-15 -3808 ((-3 (-679 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-679 (-1157 |#4|)))) (-15 -2569 ((-1157 (-1157 |#4|)) (-1 |#4| |#1|) |#3|))) +((-2447 (((-121) $ $) NIL)) (-2521 (($ $ $) NIL)) (-3268 (($ $ $) NIL)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-1352 (((-1249) $) 18)) (-2779 (((-1143) $ (-1161)) 22)) (-4125 (((-1249) $) 14)) (-2745 (((-850) $) 20) (($ (-1143)) 19)) (-1751 (((-121) $ $) NIL)) (-1738 (((-121) $ $) NIL)) (-1717 (((-121) $ $) 8)) (-1745 (((-121) $ $) NIL)) (-1732 (((-121) $ $) 7))) +(((-511) (-13 (-842) (-10 -8 (-15 -2779 ((-1143) $ (-1161))) (-15 -4125 ((-1249) $)) (-15 -1352 ((-1249) $)) (-15 -2745 ($ (-1143)))))) (T -511)) +((-2779 (*1 *2 *1 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1143)) (-5 *1 (-511)))) (-4125 (*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-511)))) (-1352 (*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-511)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-511))))) +(-13 (-842) (-10 -8 (-15 -2779 ((-1143) $ (-1161))) (-15 -4125 ((-1249) $)) (-15 -1352 ((-1249) $)) (-15 -2745 ($ (-1143))))) +((-4114 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-3093 ((|#1| |#4|) 10)) (-2469 ((|#3| |#4|) 17))) +(((-512 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3093 (|#1| |#4|)) (-15 -2469 (|#3| |#4|)) (-15 -4114 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-558) (-993 |#1|) (-375 |#1|) (-375 |#2|)) (T -512)) +((-4114 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-993 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-512 *4 *5 *6 *3)) (-4 *6 (-375 *4)) (-4 *3 (-375 *5)))) (-2469 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-993 *4)) (-4 *2 (-375 *4)) (-5 *1 (-512 *4 *5 *2 *3)) (-4 *3 (-375 *5)))) (-3093 (*1 *2 *3) (-12 (-4 *4 (-993 *2)) (-4 *2 (-558)) (-5 *1 (-512 *2 *4 *5 *3)) (-4 *5 (-375 *2)) (-4 *3 (-375 *4))))) +(-10 -7 (-15 -3093 (|#1| |#4|)) (-15 -2469 (|#3| |#4|)) (-15 -4114 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) +((-2447 (((-121) $ $) NIL)) (-4436 (((-1161) $) NIL)) (-1314 (((-763) $) NIL)) (-1467 (((-1161) $ (-1161)) NIL)) (-3470 (((-763) $ (-763)) NIL)) (-1600 (((-966 |#1|) $ (-966 |#1|)) NIL)) (-3393 (((-763) $ (-763)) NIL)) (-3675 (((-33 |#1|) $ (-33 |#1|)) NIL)) (-2247 (((-634 (-774 |#1|)) $ (-634 (-774 |#1|))) NIL)) (-4476 (((-236 (-921 |#1|)) $ (-236 (-921 |#1|))) NIL)) (-1398 (((-242 (-4287 (QUOTE X) (QUOTE -2926)) |#1|) $ (-242 (-4287 (QUOTE X) (QUOTE -2926)) |#1|)) NIL)) (-3524 ((|#3| $ |#3|) NIL)) (-3642 (((-966 |#1|) $) NIL)) (-3807 (((-763) $) NIL)) (-3934 (((-33 |#1|) $) NIL)) (-2134 (((-634 (-774 |#1|)) $) NIL)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-3936 (((-121) (-121)) NIL) (((-121)) NIL)) (-2184 (((-850) $) NIL)) (-4394 (((-236 (-921 |#1|)) $) NIL)) (-3206 (((-917) $) NIL)) (-4459 (((-242 (-4287 (QUOTE X) (QUOTE -2926)) |#1|) $) NIL)) (-2373 (($ (-966 |#1|) (-242 (-4287 (QUOTE X) (QUOTE -2926)) |#1|) (-33 |#1|) (-763) |#3| (-763) (-236 (-921 |#1|)) |#1| (-1161)) NIL) (($ (-966 |#1|) (-242 |#2| |#1|)) NIL)) (-2745 (((-850) $) NIL)) (-1378 ((|#3| $) NIL)) (-4248 ((|#1| $) NIL)) (-1717 (((-121) $ $) NIL))) +(((-513 |#1| |#2| |#3|) (-13 (-536 |#1| |#2| (-242 |#2| |#1|) (-232 (-1697 |#2|) (-763)) (-966 |#1|) (-774 |#1|) (-921 |#1|) (-236 (-921 |#1|)) |#3|) (-10 -8 (-15 -2184 ((-850) $)) (-15 -3936 ((-121) (-121))) (-15 -3936 ((-121))))) (-365) (-634 (-1161)) (-117)) (T -513)) +((-2184 (*1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-513 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *5 (-117)))) (-3936 (*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-513 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *5 (-117)))) (-3936 (*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-513 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *5 (-117))))) +(-13 (-536 |#1| |#2| (-242 |#2| |#1|) (-232 (-1697 |#2|) (-763)) (-966 |#1|) (-774 |#1|) (-921 |#1|) (-236 (-921 |#1|)) |#3|) (-10 -8 (-15 -2184 ((-850) $)) (-15 -3936 ((-121) (-121))) (-15 -3936 ((-121))))) +((-2447 (((-121) $ $) NIL)) (-1396 (((-121) $ (-634 |#3|)) 101) (((-121) $) 102)) (-2537 (((-121) $) 144)) (-2528 (($ $ |#4|) 93) (($ $ |#4| (-634 |#3|)) 97)) (-4243 (((-1150 (-634 (-953 |#1|)) (-634 (-288 (-953 |#1|)))) (-634 |#4|)) 137 (|has| |#3| (-609 (-1161))))) (-3961 (($ $ $) 87) (($ $ |#4|) 85)) (-2735 (((-121) $) 143)) (-2750 (($ $) 105)) (-4487 (((-1143) $) NIL)) (-3212 (($ $ $) 79) (($ (-634 $)) 81)) (-4213 (((-121) |#4| $) 104)) (-1816 (((-121) $ $) 68)) (-1552 (($ (-634 |#4|)) 86)) (-4022 (((-1108) $) NIL)) (-1585 (($ (-634 |#4|)) 141)) (-1412 (((-121) $) 142)) (-2715 (($ $) 70)) (-2865 (((-634 |#4|) $) 55)) (-2321 (((-2 (|:| |mval| (-679 |#1|)) (|:| |invmval| (-679 |#1|)) (|:| |genIdeal| $)) $ (-634 |#3|)) NIL)) (-3018 (((-121) |#4| $) 73)) (-4321 (((-568) $ (-634 |#3|)) 106) (((-568) $) 107)) (-2745 (((-850) $) 140) (($ (-634 |#4|)) 82)) (-4405 (($ (-2 (|:| |mval| (-679 |#1|)) (|:| |invmval| (-679 |#1|)) (|:| |genIdeal| $))) NIL)) (-1717 (((-121) $ $) 69)) (-1767 (($ $ $) 89)) (** (($ $ (-763)) 92)) (* (($ $ $) 91))) +(((-514 |#1| |#2| |#3| |#4|) (-13 (-1090) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-763))) (-15 -1767 ($ $ $)) (-15 -2735 ((-121) $)) (-15 -2537 ((-121) $)) (-15 -3018 ((-121) |#4| $)) (-15 -1816 ((-121) $ $)) (-15 -4213 ((-121) |#4| $)) (-15 -1396 ((-121) $ (-634 |#3|))) (-15 -1396 ((-121) $)) (-15 -3212 ($ $ $)) (-15 -3212 ($ (-634 $))) (-15 -3961 ($ $ $)) (-15 -3961 ($ $ |#4|)) (-15 -2715 ($ $)) (-15 -2321 ((-2 (|:| |mval| (-679 |#1|)) (|:| |invmval| (-679 |#1|)) (|:| |genIdeal| $)) $ (-634 |#3|))) (-15 -4405 ($ (-2 (|:| |mval| (-679 |#1|)) (|:| |invmval| (-679 |#1|)) (|:| |genIdeal| $)))) (-15 -4321 ((-568) $ (-634 |#3|))) (-15 -4321 ((-568) $)) (-15 -2750 ($ $)) (-15 -1552 ($ (-634 |#4|))) (-15 -1585 ($ (-634 |#4|))) (-15 -1412 ((-121) $)) (-15 -2865 ((-634 |#4|) $)) (-15 -2745 ($ (-634 |#4|))) (-15 -2528 ($ $ |#4|)) (-15 -2528 ($ $ |#4| (-634 |#3|))) (IF (|has| |#3| (-609 (-1161))) (-15 -4243 ((-1150 (-634 (-953 |#1|)) (-634 (-288 (-953 |#1|)))) (-634 |#4|))) |noBranch|))) (-365) (-788) (-842) (-950 |#1| |#2| |#3|)) (T -514)) +((* (*1 *1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-788)) (-4 *4 (-842)) (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-950 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-763)) (-4 *3 (-365)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-950 *3 *4 *5)))) (-1767 (*1 *1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-788)) (-4 *4 (-842)) (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-950 *2 *3 *4)))) (-2735 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-121)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-950 *3 *4 *5)))) (-2537 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-121)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-950 *3 *4 *5)))) (-3018 (*1 *2 *3 *1) (-12 (-4 *4 (-365)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-121)) (-5 *1 (-514 *4 *5 *6 *3)) (-4 *3 (-950 *4 *5 *6)))) (-1816 (*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-121)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-950 *3 *4 *5)))) (-4213 (*1 *2 *3 *1) (-12 (-4 *4 (-365)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-121)) (-5 *1 (-514 *4 *5 *6 *3)) (-4 *3 (-950 *4 *5 *6)))) (-1396 (*1 *2 *1 *3) (-12 (-5 *3 (-634 *6)) (-4 *6 (-842)) (-4 *4 (-365)) (-4 *5 (-788)) (-5 *2 (-121)) (-5 *1 (-514 *4 *5 *6 *7)) (-4 *7 (-950 *4 *5 *6)))) (-1396 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-121)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-950 *3 *4 *5)))) (-3212 (*1 *1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-788)) (-4 *4 (-842)) (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-950 *2 *3 *4)))) (-3212 (*1 *1 *2) (-12 (-5 *2 (-634 (-514 *3 *4 *5 *6))) (-4 *3 (-365)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-950 *3 *4 *5)))) (-3961 (*1 *1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-788)) (-4 *4 (-842)) (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-950 *2 *3 *4)))) (-3961 (*1 *1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *1 (-514 *3 *4 *5 *2)) (-4 *2 (-950 *3 *4 *5)))) (-2715 (*1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-788)) (-4 *4 (-842)) (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-950 *2 *3 *4)))) (-2321 (*1 *2 *1 *3) (-12 (-5 *3 (-634 *6)) (-4 *6 (-842)) (-4 *4 (-365)) (-4 *5 (-788)) (-5 *2 (-2 (|:| |mval| (-679 *4)) (|:| |invmval| (-679 *4)) (|:| |genIdeal| (-514 *4 *5 *6 *7)))) (-5 *1 (-514 *4 *5 *6 *7)) (-4 *7 (-950 *4 *5 *6)))) (-4405 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-679 *3)) (|:| |invmval| (-679 *3)) (|:| |genIdeal| (-514 *3 *4 *5 *6)))) (-4 *3 (-365)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-950 *3 *4 *5)))) (-4321 (*1 *2 *1 *3) (-12 (-5 *3 (-634 *6)) (-4 *6 (-842)) (-4 *4 (-365)) (-4 *5 (-788)) (-5 *2 (-568)) (-5 *1 (-514 *4 *5 *6 *7)) (-4 *7 (-950 *4 *5 *6)))) (-4321 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-568)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-950 *3 *4 *5)))) (-2750 (*1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-788)) (-4 *4 (-842)) (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-950 *2 *3 *4)))) (-1552 (*1 *1 *2) (-12 (-5 *2 (-634 *6)) (-4 *6 (-950 *3 *4 *5)) (-4 *3 (-365)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *1 (-514 *3 *4 *5 *6)))) (-1585 (*1 *1 *2) (-12 (-5 *2 (-634 *6)) (-4 *6 (-950 *3 *4 *5)) (-4 *3 (-365)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *1 (-514 *3 *4 *5 *6)))) (-1412 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-121)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-950 *3 *4 *5)))) (-2865 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-634 *6)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-950 *3 *4 *5)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-634 *6)) (-4 *6 (-950 *3 *4 *5)) (-4 *3 (-365)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *1 (-514 *3 *4 *5 *6)))) (-2528 (*1 *1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *1 (-514 *3 *4 *5 *2)) (-4 *2 (-950 *3 *4 *5)))) (-2528 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-634 *6)) (-4 *6 (-842)) (-4 *4 (-365)) (-4 *5 (-788)) (-5 *1 (-514 *4 *5 *6 *2)) (-4 *2 (-950 *4 *5 *6)))) (-4243 (*1 *2 *3) (-12 (-5 *3 (-634 *7)) (-4 *7 (-950 *4 *5 *6)) (-4 *6 (-609 (-1161))) (-4 *4 (-365)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-1150 (-634 (-953 *4)) (-634 (-288 (-953 *4))))) (-5 *1 (-514 *4 *5 *6 *7))))) +(-13 (-1090) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-763))) (-15 -1767 ($ $ $)) (-15 -2735 ((-121) $)) (-15 -2537 ((-121) $)) (-15 -3018 ((-121) |#4| $)) (-15 -1816 ((-121) $ $)) (-15 -4213 ((-121) |#4| $)) (-15 -1396 ((-121) $ (-634 |#3|))) (-15 -1396 ((-121) $)) (-15 -3212 ($ $ $)) (-15 -3212 ($ (-634 $))) (-15 -3961 ($ $ $)) (-15 -3961 ($ $ |#4|)) (-15 -2715 ($ $)) (-15 -2321 ((-2 (|:| |mval| (-679 |#1|)) (|:| |invmval| (-679 |#1|)) (|:| |genIdeal| $)) $ (-634 |#3|))) (-15 -4405 ($ (-2 (|:| |mval| (-679 |#1|)) (|:| |invmval| (-679 |#1|)) (|:| |genIdeal| $)))) (-15 -4321 ((-568) $ (-634 |#3|))) (-15 -4321 ((-568) $)) (-15 -2750 ($ $)) (-15 -1552 ($ (-634 |#4|))) (-15 -1585 ($ (-634 |#4|))) (-15 -1412 ((-121) $)) (-15 -2865 ((-634 |#4|) $)) (-15 -2745 ($ (-634 |#4|))) (-15 -2528 ($ $ |#4|)) (-15 -2528 ($ $ |#4| (-634 |#3|))) (IF (|has| |#3| (-609 (-1161))) (-15 -4243 ((-1150 (-634 (-953 |#1|)) (-634 (-288 (-953 |#1|)))) (-634 |#4|))) |noBranch|))) +((-3447 (((-121) (-514 (-409 (-568)) (-232 |#2| (-763)) (-852 |#1|) (-242 |#1| (-409 (-568))))) 144)) (-3501 (((-121) (-514 (-409 (-568)) (-232 |#2| (-763)) (-852 |#1|) (-242 |#1| (-409 (-568))))) 145)) (-4027 (((-514 (-409 (-568)) (-232 |#2| (-763)) (-852 |#1|) (-242 |#1| (-409 (-568)))) (-514 (-409 (-568)) (-232 |#2| (-763)) (-852 |#1|) (-242 |#1| (-409 (-568))))) 103)) (-3927 (((-121) (-514 (-409 (-568)) (-232 |#2| (-763)) (-852 |#1|) (-242 |#1| (-409 (-568))))) NIL)) (-4429 (((-634 (-514 (-409 (-568)) (-232 |#2| (-763)) (-852 |#1|) (-242 |#1| (-409 (-568))))) (-514 (-409 (-568)) (-232 |#2| (-763)) (-852 |#1|) (-242 |#1| (-409 (-568))))) 147)) (-2722 (((-514 (-409 (-568)) (-232 |#2| (-763)) (-852 |#1|) (-242 |#1| (-409 (-568)))) (-514 (-409 (-568)) (-232 |#2| (-763)) (-852 |#1|) (-242 |#1| (-409 (-568)))) (-634 (-852 |#1|))) 159))) +(((-515 |#1| |#2|) (-10 -7 (-15 -3447 ((-121) (-514 (-409 (-568)) (-232 |#2| (-763)) (-852 |#1|) (-242 |#1| (-409 (-568)))))) (-15 -3501 ((-121) (-514 (-409 (-568)) (-232 |#2| (-763)) (-852 |#1|) (-242 |#1| (-409 (-568)))))) (-15 -3927 ((-121) (-514 (-409 (-568)) (-232 |#2| (-763)) (-852 |#1|) (-242 |#1| (-409 (-568)))))) (-15 -4027 ((-514 (-409 (-568)) (-232 |#2| (-763)) (-852 |#1|) (-242 |#1| (-409 (-568)))) (-514 (-409 (-568)) (-232 |#2| (-763)) (-852 |#1|) (-242 |#1| (-409 (-568)))))) (-15 -4429 ((-634 (-514 (-409 (-568)) (-232 |#2| (-763)) (-852 |#1|) (-242 |#1| (-409 (-568))))) (-514 (-409 (-568)) (-232 |#2| (-763)) (-852 |#1|) (-242 |#1| (-409 (-568)))))) (-15 -2722 ((-514 (-409 (-568)) (-232 |#2| (-763)) (-852 |#1|) (-242 |#1| (-409 (-568)))) (-514 (-409 (-568)) (-232 |#2| (-763)) (-852 |#1|) (-242 |#1| (-409 (-568)))) (-634 (-852 |#1|))))) (-634 (-1161)) (-763)) (T -515)) +((-2722 (*1 *2 *2 *3) (-12 (-5 *2 (-514 (-409 (-568)) (-232 *5 (-763)) (-852 *4) (-242 *4 (-409 (-568))))) (-5 *3 (-634 (-852 *4))) (-14 *4 (-634 (-1161))) (-14 *5 (-763)) (-5 *1 (-515 *4 *5)))) (-4429 (*1 *2 *3) (-12 (-14 *4 (-634 (-1161))) (-14 *5 (-763)) (-5 *2 (-634 (-514 (-409 (-568)) (-232 *5 (-763)) (-852 *4) (-242 *4 (-409 (-568)))))) (-5 *1 (-515 *4 *5)) (-5 *3 (-514 (-409 (-568)) (-232 *5 (-763)) (-852 *4) (-242 *4 (-409 (-568))))))) (-4027 (*1 *2 *2) (-12 (-5 *2 (-514 (-409 (-568)) (-232 *4 (-763)) (-852 *3) (-242 *3 (-409 (-568))))) (-14 *3 (-634 (-1161))) (-14 *4 (-763)) (-5 *1 (-515 *3 *4)))) (-3927 (*1 *2 *3) (-12 (-5 *3 (-514 (-409 (-568)) (-232 *5 (-763)) (-852 *4) (-242 *4 (-409 (-568))))) (-14 *4 (-634 (-1161))) (-14 *5 (-763)) (-5 *2 (-121)) (-5 *1 (-515 *4 *5)))) (-3501 (*1 *2 *3) (-12 (-5 *3 (-514 (-409 (-568)) (-232 *5 (-763)) (-852 *4) (-242 *4 (-409 (-568))))) (-14 *4 (-634 (-1161))) (-14 *5 (-763)) (-5 *2 (-121)) (-5 *1 (-515 *4 *5)))) (-3447 (*1 *2 *3) (-12 (-5 *3 (-514 (-409 (-568)) (-232 *5 (-763)) (-852 *4) (-242 *4 (-409 (-568))))) (-14 *4 (-634 (-1161))) (-14 *5 (-763)) (-5 *2 (-121)) (-5 *1 (-515 *4 *5))))) +(-10 -7 (-15 -3447 ((-121) (-514 (-409 (-568)) (-232 |#2| (-763)) (-852 |#1|) (-242 |#1| (-409 (-568)))))) (-15 -3501 ((-121) (-514 (-409 (-568)) (-232 |#2| (-763)) (-852 |#1|) (-242 |#1| (-409 (-568)))))) (-15 -3927 ((-121) (-514 (-409 (-568)) (-232 |#2| (-763)) (-852 |#1|) (-242 |#1| (-409 (-568)))))) (-15 -4027 ((-514 (-409 (-568)) (-232 |#2| (-763)) (-852 |#1|) (-242 |#1| (-409 (-568)))) (-514 (-409 (-568)) (-232 |#2| (-763)) (-852 |#1|) (-242 |#1| (-409 (-568)))))) (-15 -4429 ((-634 (-514 (-409 (-568)) (-232 |#2| (-763)) (-852 |#1|) (-242 |#1| (-409 (-568))))) (-514 (-409 (-568)) (-232 |#2| (-763)) (-852 |#1|) (-242 |#1| (-409 (-568)))))) (-15 -2722 ((-514 (-409 (-568)) (-232 |#2| (-763)) (-852 |#1|) (-242 |#1| (-409 (-568)))) (-514 (-409 (-568)) (-232 |#2| (-763)) (-852 |#1|) (-242 |#1| (-409 (-568)))) (-634 (-852 |#1|))))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-2671 (($) NIL T CONST)) (-2114 (($ $) NIL)) (-2047 (($ |#1| |#2|) NIL)) (-2795 (($ (-1 |#1| |#1|) $) NIL)) (-1311 ((|#2| $) NIL)) (-2102 ((|#1| $) NIL)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2745 (((-850) $) NIL)) (-3056 (($) 12 T CONST)) (-1717 (((-121) $ $) NIL)) (-1773 (($ $) 11) (($ $ $) 23)) (-1767 (($ $ $) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) 18))) +(((-516 |#1| |#2|) (-13 (-21) (-518 |#1| |#2|)) (-21) (-842)) (T -516)) +NIL +(-13 (-21) (-518 |#1| |#2|)) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) 12)) (-2671 (($) NIL T CONST)) (-2114 (($ $) 26)) (-2047 (($ |#1| |#2|) 23)) (-2795 (($ (-1 |#1| |#1|) $) 25)) (-1311 ((|#2| $) NIL)) (-2102 ((|#1| $) 27)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2745 (((-850) $) NIL)) (-3056 (($) 10 T CONST)) (-1717 (((-121) $ $) NIL)) (-1767 (($ $ $) 17)) (* (($ (-917) $) NIL) (($ (-763) $) 22))) +(((-517 |#1| |#2|) (-13 (-23) (-518 |#1| |#2|)) (-23) (-842)) (T -517)) +NIL +(-13 (-23) (-518 |#1| |#2|)) +((-2447 (((-121) $ $) 7)) (-2114 (($ $) 12)) (-2047 (($ |#1| |#2|) 15)) (-2795 (($ (-1 |#1| |#1|) $) 16)) (-1311 ((|#2| $) 13)) (-2102 ((|#1| $) 14)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-2745 (((-850) $) 11)) (-1717 (((-121) $ $) 6))) +(((-518 |#1| |#2|) (-1275) (-1090) (-842)) (T -518)) +((-2795 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-518 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-842)))) (-2047 (*1 *1 *2 *3) (-12 (-4 *1 (-518 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-842)))) (-2102 (*1 *2 *1) (-12 (-4 *1 (-518 *2 *3)) (-4 *3 (-842)) (-4 *2 (-1090)))) (-1311 (*1 *2 *1) (-12 (-4 *1 (-518 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-842)))) (-2114 (*1 *1 *1) (-12 (-4 *1 (-518 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-842))))) +(-13 (-1090) (-10 -8 (-15 -2795 ($ (-1 |t#1| |t#1|) $)) (-15 -2047 ($ |t#1| |t#2|)) (-15 -2102 (|t#1| $)) (-15 -1311 (|t#2| $)) (-15 -2114 ($ $)))) +(((-105) . T) ((-608 (-850)) . T) ((-1090) . T)) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-2671 (($) NIL T CONST)) (-2114 (($ $) NIL)) (-2047 (($ |#1| |#2|) NIL)) (-2521 (($ $ $) NIL)) (-3268 (($ $ $) NIL)) (-2795 (($ (-1 |#1| |#1|) $) NIL)) (-1311 ((|#2| $) NIL)) (-2102 ((|#1| $) NIL)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2745 (((-850) $) NIL)) (-3056 (($) NIL T CONST)) (-1751 (((-121) $ $) NIL)) (-1738 (((-121) $ $) NIL)) (-1717 (((-121) $ $) NIL)) (-1745 (((-121) $ $) NIL)) (-1732 (((-121) $ $) 13)) (-1767 (($ $ $) NIL)) (* (($ (-763) $) NIL) (($ (-917) $) NIL))) +(((-519 |#1| |#2|) (-13 (-787) (-518 |#1| |#2|)) (-787) (-842)) (T -519)) +NIL +(-13 (-787) (-518 |#1| |#2|)) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-1462 (($ $ $) 16)) (-3134 (((-3 $ "failed") $ $) 13)) (-2671 (($) NIL T CONST)) (-2114 (($ $) NIL)) (-2047 (($ |#1| |#2|) NIL)) (-2521 (($ $ $) NIL)) (-3268 (($ $ $) NIL)) (-2795 (($ (-1 |#1| |#1|) $) NIL)) (-1311 ((|#2| $) NIL)) (-2102 ((|#1| $) NIL)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2745 (((-850) $) NIL)) (-3056 (($) NIL T CONST)) (-1751 (((-121) $ $) NIL)) (-1738 (((-121) $ $) NIL)) (-1717 (((-121) $ $) NIL)) (-1745 (((-121) $ $) NIL)) (-1732 (((-121) $ $) NIL)) (-1767 (($ $ $) NIL)) (* (($ (-763) $) NIL) (($ (-917) $) NIL))) +(((-520 |#1| |#2|) (-13 (-788) (-518 |#1| |#2|)) (-788) (-842)) (T -520)) +NIL +(-13 (-788) (-518 |#1| |#2|)) +((-2447 (((-121) $ $) NIL)) (-2114 (($ $) 24)) (-2047 (($ |#1| |#2|) 21)) (-2795 (($ (-1 |#1| |#1|) $) 23)) (-1311 ((|#2| $) 26)) (-2102 ((|#1| $) 25)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2745 (((-850) $) 20)) (-1717 (((-121) $ $) 13))) +(((-521 |#1| |#2|) (-518 |#1| |#2|) (-1090) (-842)) (T -521)) +NIL +(-518 |#1| |#2|) +((-1339 (($ $ (-634 |#2|) (-634 |#3|)) NIL) (($ $ |#2| |#3|) 12))) +(((-522 |#1| |#2| |#3|) (-10 -8 (-15 -1339 (|#1| |#1| |#2| |#3|)) (-15 -1339 (|#1| |#1| (-634 |#2|) (-634 |#3|)))) (-523 |#2| |#3|) (-1090) (-1195)) (T -522)) +NIL +(-10 -8 (-15 -1339 (|#1| |#1| |#2| |#3|)) (-15 -1339 (|#1| |#1| (-634 |#2|) (-634 |#3|)))) +((-1339 (($ $ (-634 |#1|) (-634 |#2|)) 7) (($ $ |#1| |#2|) 6))) +(((-523 |#1| |#2|) (-1275) (-1090) (-1195)) (T -523)) +((-1339 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-634 *4)) (-5 *3 (-634 *5)) (-4 *1 (-523 *4 *5)) (-4 *4 (-1090)) (-4 *5 (-1195)))) (-1339 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-523 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-1195))))) +(-13 (-10 -8 (-15 -1339 ($ $ |t#1| |t#2|)) (-15 -1339 ($ $ (-634 |t#1|) (-634 |t#2|))))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) 16)) (-2583 (((-634 (-2 (|:| |gen| |#1|) (|:| -1892 |#2|))) $) 18)) (-3134 (((-3 $ "failed") $ $) NIL)) (-3983 (((-763) $) NIL)) (-2671 (($) NIL T CONST)) (-3666 (((-3 |#1| "failed") $) NIL)) (-2854 ((|#1| $) NIL)) (-2882 ((|#1| $ (-568)) 23)) (-1444 ((|#2| $ (-568)) 21)) (-2096 (($ (-1 |#1| |#1|) $) 46)) (-2907 (($ (-1 |#2| |#2|) $) 43)) (-4487 (((-1143) $) NIL)) (-1764 (($ $ $) 53 (|has| |#2| (-787)))) (-4022 (((-1108) $) NIL)) (-2745 (((-850) $) 42) (($ |#1|) NIL)) (-2604 ((|#2| |#1| $) 49)) (-3056 (($) 11 T CONST)) (-1717 (((-121) $ $) 29)) (-1767 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-917) $) NIL) (($ (-763) $) 36) (($ |#2| |#1|) 31))) +(((-524 |#1| |#2| |#3|) (-320 |#1| |#2|) (-1090) (-137) |#2|) (T -524)) +NIL +(-320 |#1| |#2|) +((-2447 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-1868 (((-1249) $ (-568) (-568)) NIL (|has| $ (-6 -4520)))) (-2016 (((-121) (-1 (-121) |#1| |#1|) $) NIL) (((-121) $) NIL (|has| |#1| (-842)))) (-3908 (($ (-1 (-121) |#1| |#1|) $) NIL (|has| $ (-6 -4520))) (($ $) NIL (-12 (|has| $ (-6 -4520)) (|has| |#1| (-842))))) (-3644 (($ (-1 (-121) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-842)))) (-2510 (((-121) $ (-763)) NIL)) (-3535 (((-121) (-121)) 24)) (-2436 ((|#1| $ (-568) |#1|) 27 (|has| $ (-6 -4520))) ((|#1| $ (-1210 (-568)) |#1|) NIL (|has| $ (-6 -4520)))) (-3507 (($ (-1 (-121) |#1|) $) 51)) (-2801 (($ (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-2671 (($) NIL T CONST)) (-1578 (($ $) NIL (|has| $ (-6 -4520)))) (-3943 (($ $) NIL)) (-3369 (($ $) 54 (|has| |#1| (-1090)))) (-3924 (($ $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-3405 (($ |#1| $) NIL (|has| |#1| (-1090))) (($ (-1 (-121) |#1|) $) 43)) (-4328 (($ |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090)))) (($ (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-3092 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4519))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4519)))) (-3989 ((|#1| $ (-568) |#1|) NIL (|has| $ (-6 -4520)))) (-2602 ((|#1| $ (-568)) NIL)) (-2764 (((-568) (-1 (-121) |#1|) $) NIL) (((-568) |#1| $) NIL (|has| |#1| (-1090))) (((-568) |#1| $ (-568)) NIL (|has| |#1| (-1090)))) (-3428 (($ $ (-568)) 13)) (-3575 (((-763) $) 11)) (-4360 (((-634 |#1|) $) NIL (|has| $ (-6 -4519)))) (-1849 (($ (-763) |#1|) 22)) (-1737 (((-121) $ (-763)) NIL)) (-1881 (((-568) $) 20 (|has| (-568) (-842)))) (-2521 (($ $ $) NIL (|has| |#1| (-842)))) (-3349 (($ $ $) NIL (|has| |#1| (-842))) (($ (-1 (-121) |#1| |#1|) $ $) 34)) (-1347 (($ (-1 (-121) |#1| |#1|) $ $) 35) (($ $ $) NIL (|has| |#1| (-842)))) (-1979 (((-634 |#1|) $) NIL (|has| $ (-6 -4519)))) (-3109 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-2223 (((-568) $) 19 (|has| (-568) (-842)))) (-3268 (($ $ $) NIL (|has| |#1| (-842)))) (-3674 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2166 (((-121) $ (-763)) NIL)) (-4487 (((-1143) $) NIL (|has| |#1| (-1090)))) (-4450 (($ $ $ (-568)) 50) (($ |#1| $ (-568)) 36)) (-4122 (($ |#1| $ (-568)) NIL) (($ $ $ (-568)) NIL)) (-4174 (((-634 (-568)) $) NIL)) (-3578 (((-121) (-568) $) NIL)) (-4022 (((-1108) $) NIL (|has| |#1| (-1090)))) (-3802 (($ (-634 |#1|)) 28)) (-3876 ((|#1| $) NIL (|has| (-568) (-842)))) (-3775 (((-3 |#1| "failed") (-1 (-121) |#1|) $) NIL)) (-3724 (($ $ |#1|) 18 (|has| $ (-6 -4520)))) (-1387 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-634 |#1|) (-634 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))))) (-3171 (((-121) $ $) 39)) (-4467 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-2041 (((-634 |#1|) $) NIL)) (-3084 (((-121) $) NIL)) (-3248 (($) 14)) (-2779 ((|#1| $ (-568) |#1|) NIL) ((|#1| $ (-568)) 32) (($ $ (-1210 (-568))) NIL)) (-1783 (($ $ (-1210 (-568))) 49) (($ $ (-568)) 44)) (-2826 (($ $ (-568)) NIL) (($ $ (-1210 (-568))) NIL)) (-4168 (((-763) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519))) (((-763) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-2256 (($ $ $ (-568)) 40 (|has| $ (-6 -4520)))) (-3863 (($ $) 31)) (-4278 (((-541) $) NIL (|has| |#1| (-609 (-541))))) (-4287 (($ (-634 |#1|)) NIL)) (-3845 (($ $ $) 41) (($ $ |#1|) 38)) (-2768 (($ $ |#1|) NIL) (($ |#1| $) 37) (($ $ $) NIL) (($ (-634 $)) NIL)) (-2745 (((-850) $) NIL (|has| |#1| (-1090)))) (-1319 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-1751 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1738 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1717 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-1745 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1732 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1697 (((-763) $) 15 (|has| $ (-6 -4519))))) +(((-525 |#1| |#2|) (-13 (-19 |#1|) (-277 |#1|) (-10 -8 (-15 -3802 ($ (-634 |#1|))) (-15 -3575 ((-763) $)) (-15 -3428 ($ $ (-568))) (-15 -3535 ((-121) (-121))))) (-1195) (-568)) (T -525)) +((-3802 (*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-1195)) (-5 *1 (-525 *3 *4)) (-14 *4 (-568)))) (-3575 (*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-525 *3 *4)) (-4 *3 (-1195)) (-14 *4 (-568)))) (-3428 (*1 *1 *1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-525 *3 *4)) (-4 *3 (-1195)) (-14 *4 *2))) (-3535 (*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-525 *3 *4)) (-4 *3 (-1195)) (-14 *4 (-568))))) +(-13 (-19 |#1|) (-277 |#1|) (-10 -8 (-15 -3802 ($ (-634 |#1|))) (-15 -3575 ((-763) $)) (-15 -3428 ($ $ (-568))) (-15 -3535 ((-121) (-121))))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL)) (-2227 (($ $) NIL)) (-1573 (((-121) $) NIL)) (-2615 (((-121) $) NIL)) (-1739 (((-763)) NIL)) (-1932 (((-581 |#1|) $) NIL) (($ $ (-917)) NIL (|has| (-581 |#1|) (-370)))) (-3211 (((-1169 (-917) (-763)) (-568)) NIL (|has| (-581 |#1|) (-370)))) (-3134 (((-3 $ "failed") $ $) NIL)) (-4305 (($ $) NIL)) (-1678 (((-420 $) $) NIL)) (-1497 (((-121) $ $) NIL)) (-3983 (((-763)) NIL (|has| (-581 |#1|) (-370)))) (-2671 (($) NIL T CONST)) (-3666 (((-3 (-581 |#1|) "failed") $) NIL)) (-2854 (((-581 |#1|) $) NIL)) (-3498 (($ (-1244 (-581 |#1|))) NIL)) (-2022 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-581 |#1|) (-370)))) (-2401 (($ $ $) NIL)) (-2925 (((-3 $ "failed") $) NIL)) (-1731 (($) NIL (|has| (-581 |#1|) (-370)))) (-2412 (($ $ $) NIL)) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) NIL)) (-4220 (($) NIL (|has| (-581 |#1|) (-370)))) (-4456 (((-121) $) NIL (|has| (-581 |#1|) (-370)))) (-3218 (($ $ (-763)) NIL (-2198 (|has| (-581 |#1|) (-148)) (|has| (-581 |#1|) (-370)))) (($ $) NIL (-2198 (|has| (-581 |#1|) (-148)) (|has| (-581 |#1|) (-370))))) (-3927 (((-121) $) NIL)) (-4477 (((-917) $) NIL (|has| (-581 |#1|) (-370))) (((-828 (-917)) $) NIL (-2198 (|has| (-581 |#1|) (-148)) (|has| (-581 |#1|) (-370))))) (-2735 (((-121) $) NIL)) (-2883 (($) NIL (|has| (-581 |#1|) (-370)))) (-3917 (((-121) $) NIL (|has| (-581 |#1|) (-370)))) (-2657 (((-581 |#1|) $) NIL) (($ $ (-917)) NIL (|has| (-581 |#1|) (-370)))) (-3038 (((-3 $ "failed") $) NIL (|has| (-581 |#1|) (-370)))) (-3562 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-2045 (((-1157 (-581 |#1|)) $) NIL) (((-1157 $) $ (-917)) NIL (|has| (-581 |#1|) (-370)))) (-3683 (((-917) $) NIL (|has| (-581 |#1|) (-370)))) (-2035 (((-1157 (-581 |#1|)) $) NIL (|has| (-581 |#1|) (-370)))) (-1422 (((-1157 (-581 |#1|)) $) NIL (|has| (-581 |#1|) (-370))) (((-3 (-1157 (-581 |#1|)) "failed") $ $) NIL (|has| (-581 |#1|) (-370)))) (-2109 (($ $ (-1157 (-581 |#1|))) NIL (|has| (-581 |#1|) (-370)))) (-2495 (($ $ $) NIL) (($ (-634 $)) NIL)) (-4487 (((-1143) $) NIL)) (-2081 (($ $) NIL)) (-4434 (($) NIL (|has| (-581 |#1|) (-370)) CONST)) (-4355 (($ (-917)) NIL (|has| (-581 |#1|) (-370)))) (-2864 (((-121) $) NIL)) (-4022 (((-1108) $) NIL)) (-2704 (($) NIL (|has| (-581 |#1|) (-370)))) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL)) (-2721 (($ $ $) NIL) (($ (-634 $)) NIL)) (-1418 (((-634 (-2 (|:| -3848 (-568)) (|:| -3438 (-568))))) NIL (|has| (-581 |#1|) (-370)))) (-3848 (((-420 $) $) NIL)) (-1553 (((-828 (-917))) NIL) (((-917)) NIL)) (-4497 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2595 (((-3 $ "failed") $ $) NIL)) (-2344 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-2709 (((-763) $) NIL)) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL)) (-3143 (((-763) $) NIL (|has| (-581 |#1|) (-370))) (((-3 (-763) "failed") $ $) NIL (-2198 (|has| (-581 |#1|) (-148)) (|has| (-581 |#1|) (-370))))) (-4321 (((-139)) NIL)) (-4189 (($ $) NIL (|has| (-581 |#1|) (-370))) (($ $ (-763)) NIL (|has| (-581 |#1|) (-370)))) (-3206 (((-828 (-917)) $) NIL) (((-917) $) NIL)) (-1626 (((-1157 (-581 |#1|))) NIL)) (-3065 (($) NIL (|has| (-581 |#1|) (-370)))) (-2027 (($) NIL (|has| (-581 |#1|) (-370)))) (-4073 (((-1244 (-581 |#1|)) $) NIL) (((-679 (-581 |#1|)) (-1244 $)) NIL)) (-2979 (((-3 (-1244 $) "failed") (-679 $)) NIL (|has| (-581 |#1|) (-370)))) (-2745 (((-850) $) NIL) (($ (-568)) NIL) (($ $) NIL) (($ (-409 (-568))) NIL) (($ (-581 |#1|)) NIL)) (-4371 (($ $) NIL (|has| (-581 |#1|) (-370))) (((-3 $ "failed") $) NIL (-2198 (|has| (-581 |#1|) (-148)) (|has| (-581 |#1|) (-370))))) (-4078 (((-763)) NIL)) (-3746 (((-1244 $)) NIL) (((-1244 $) (-917)) NIL)) (-1826 (((-121) $ $) NIL)) (-4390 (((-121) $) NIL)) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL)) (-3056 (($) NIL T CONST)) (-1556 (($) NIL T CONST)) (-1316 (($ $) NIL (|has| (-581 |#1|) (-370))) (($ $ (-763)) NIL (|has| (-581 |#1|) (-370)))) (-3190 (($ $) NIL (|has| (-581 |#1|) (-370))) (($ $ (-763)) NIL (|has| (-581 |#1|) (-370)))) (-1717 (((-121) $ $) NIL)) (-1779 (($ $ $) NIL) (($ $ (-581 |#1|)) NIL)) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) NIL) (($ $ (-409 (-568))) NIL) (($ (-409 (-568)) $) NIL) (($ $ (-581 |#1|)) NIL) (($ (-581 |#1|) $) NIL))) +(((-526 |#1| |#2|) (-327 (-581 |#1|)) (-917) (-917)) (T -526)) +NIL +(-327 (-581 |#1|)) +((-2447 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-2510 (((-121) $ (-763)) NIL)) (-2436 ((|#1| $ (-568) (-568) |#1|) 33)) (-4159 (($ $ (-568) |#4|) NIL)) (-2451 (($ $ (-568) |#5|) NIL)) (-2671 (($) NIL T CONST)) (-1818 ((|#4| $ (-568)) NIL)) (-3989 ((|#1| $ (-568) (-568) |#1|) 32)) (-2602 ((|#1| $ (-568) (-568)) 30)) (-4360 (((-634 |#1|) $) NIL)) (-3043 (((-763) $) 26)) (-1849 (($ (-763) (-763) |#1|) 23)) (-2555 (((-763) $) 28)) (-1737 (((-121) $ (-763)) NIL)) (-2087 (((-568) $) 24)) (-3364 (((-568) $) 25)) (-1979 (((-634 |#1|) $) NIL (|has| $ (-6 -4519)))) (-3109 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-1663 (((-568) $) 27)) (-2893 (((-568) $) 29)) (-3674 (($ (-1 |#1| |#1|) $) NIL)) (-2795 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2166 (((-121) $ (-763)) NIL)) (-4487 (((-1143) $) 36 (|has| |#1| (-1090)))) (-4022 (((-1108) $) NIL (|has| |#1| (-1090)))) (-3724 (($ $ |#1|) NIL)) (-1387 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-634 |#1|) (-634 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))))) (-3171 (((-121) $ $) NIL)) (-3084 (((-121) $) 14)) (-3248 (($) 15)) (-2779 ((|#1| $ (-568) (-568)) 31) ((|#1| $ (-568) (-568) |#1|) NIL)) (-4168 (((-763) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519))) (((-763) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-3863 (($ $) NIL)) (-3731 ((|#5| $ (-568)) NIL)) (-2745 (((-850) $) NIL (|has| |#1| (-1090)))) (-1319 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-1717 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-1697 (((-763) $) NIL (|has| $ (-6 -4519))))) +(((-527 |#1| |#2| |#3| |#4| |#5|) (-62 |#1| |#4| |#5|) (-1195) (-568) (-568) (-375 |#1|) (-375 |#1|)) (T -527)) NIL (-62 |#1| |#4| |#5|) -((-2601 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-2981 ((|#1| $) NIL)) (-1886 ((|#1| $) NIL)) (-1417 (($ $) NIL)) (-2960 (((-1241) $ (-560) (-560)) NIL (|has| $ (-6 -4506)))) (-2435 (($ $ (-560)) 57 (|has| $ (-6 -4506)))) (-3189 (((-121) $) NIL (|has| |#1| (-834))) (((-121) (-1 (-121) |#1| |#1|) $) NIL)) (-4410 (($ $) NIL (-12 (|has| $ (-6 -4506)) (|has| |#1| (-834)))) (($ (-1 (-121) |#1| |#1|) $) 55 (|has| $ (-6 -4506)))) (-3743 (($ $) NIL (|has| |#1| (-834))) (($ (-1 (-121) |#1| |#1|) $) NIL)) (-3909 (((-121) $ (-755)) NIL)) (-3119 ((|#1| $ |#1|) NIL (|has| $ (-6 -4506)))) (-1741 (($ $ $) 23 (|has| $ (-6 -4506)))) (-1920 ((|#1| $ |#1|) NIL (|has| $ (-6 -4506)))) (-4133 ((|#1| $ |#1|) 21 (|has| $ (-6 -4506)))) (-2764 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4506))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4506))) (($ $ "rest" $) 24 (|has| $ (-6 -4506))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4506))) ((|#1| $ (-1202 (-560)) |#1|) NIL (|has| $ (-6 -4506))) ((|#1| $ (-560) |#1|) NIL (|has| $ (-6 -4506)))) (-4043 (($ $ (-626 $)) NIL (|has| $ (-6 -4506)))) (-3763 (($ (-1 (-121) |#1|) $) NIL)) (-3802 (($ (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-1603 ((|#1| $) NIL)) (-4236 (($) NIL T CONST)) (-4030 (($ $) 28 (|has| $ (-6 -4506)))) (-2883 (($ $) 29)) (-2877 (($ $) 18) (($ $ (-755)) 32)) (-3568 (($ $) 53 (|has| |#1| (-1082)))) (-2868 (($ $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-3561 (($ |#1| $) NIL (|has| |#1| (-1082))) (($ (-1 (-121) |#1|) $) NIL)) (-4310 (($ (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-2342 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4505))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4505))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-1746 ((|#1| $ (-560) |#1|) NIL (|has| $ (-6 -4506)))) (-1361 ((|#1| $ (-560)) NIL)) (-2737 (((-121) $) NIL)) (-2839 (((-560) |#1| $ (-560)) NIL (|has| |#1| (-1082))) (((-560) |#1| $) NIL (|has| |#1| (-1082))) (((-560) (-1 (-121) |#1|) $) NIL)) (-1981 (((-626 |#1|) $) 27 (|has| $ (-6 -4505)))) (-3971 (((-626 $) $) NIL)) (-2420 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-1721 (($ (-755) |#1|) NIL)) (-2122 (((-121) $ (-755)) NIL)) (-4099 (((-560) $) 31 (|has| (-560) (-834)))) (-4325 (($ $ $) NIL (|has| |#1| (-834)))) (-2037 (($ $ $) NIL (|has| |#1| (-834))) (($ (-1 (-121) |#1| |#1|) $ $) 56)) (-2492 (($ $ $) NIL (|has| |#1| (-834))) (($ (-1 (-121) |#1| |#1|) $ $) NIL)) (-2130 (((-626 |#1|) $) NIL (|has| $ (-6 -4505)))) (-2030 (((-121) |#1| $) 51 (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-2767 (((-560) $) NIL (|has| (-560) (-834)))) (-2501 (($ $ $) NIL (|has| |#1| (-834)))) (-3778 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2843 (($ |#1|) NIL)) (-3441 (((-121) $ (-755)) NIL)) (-2173 (((-626 |#1|) $) NIL)) (-3992 (((-121) $) NIL)) (-1291 (((-1135) $) 50 (|has| |#1| (-1082)))) (-4139 ((|#1| $) NIL) (($ $ (-755)) NIL)) (-4345 (($ $ $ (-560)) NIL) (($ |#1| $ (-560)) NIL)) (-4103 (($ $ $ (-560)) NIL) (($ |#1| $ (-560)) NIL)) (-1529 (((-626 (-560)) $) NIL)) (-1310 (((-121) (-560) $) NIL)) (-4353 (((-1100) $) NIL (|has| |#1| (-1082)))) (-2824 ((|#1| $) 13) (($ $ (-755)) NIL)) (-3786 (((-3 |#1| "failed") (-1 (-121) |#1|) $) NIL)) (-3038 (($ $ |#1|) NIL (|has| $ (-6 -4506)))) (-2957 (((-121) $) NIL)) (-2865 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#1|))) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-283 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-626 |#1|) (-626 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))))) (-2214 (((-121) $ $) 12)) (-1290 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-4460 (((-626 |#1|) $) NIL)) (-4191 (((-121) $) 17)) (-3260 (($) 16)) (-2778 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1202 (-560))) NIL) ((|#1| $ (-560)) NIL) ((|#1| $ (-560) |#1|) NIL)) (-1435 (((-560) $ $) NIL)) (-4094 (($ $ (-1202 (-560))) NIL) (($ $ (-560)) NIL)) (-2949 (($ $ (-1202 (-560))) NIL) (($ $ (-560)) NIL)) (-3316 (((-121) $) 33)) (-4432 (($ $) NIL)) (-2641 (($ $) NIL (|has| $ (-6 -4506)))) (-2751 (((-755) $) NIL)) (-4208 (($ $) 35)) (-4035 (((-755) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505))) (((-755) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-4072 (($ $ $ (-560)) NIL (|has| $ (-6 -4506)))) (-2813 (($ $) 34)) (-4255 (((-533) $) NIL (|has| |#1| (-601 (-533))))) (-4162 (($ (-626 |#1|)) 26)) (-3602 (($ $ $) 52) (($ $ |#1|) NIL)) (-2849 (($ $ $) NIL) (($ |#1| $) 10) (($ (-626 $)) NIL) (($ $ |#1|) NIL)) (-2801 (((-842) $) 45 (|has| |#1| (-1082)))) (-2853 (((-626 $) $) NIL)) (-3761 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-3656 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-1691 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1675 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1653 (((-121) $ $) 47 (|has| |#1| (-1082)))) (-1683 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1667 (((-121) $ $) NIL (|has| |#1| (-834)))) (-2271 (((-755) $) 9 (|has| $ (-6 -4505))))) -(((-520 |#1| |#2|) (-650 |#1|) (-1187) (-560)) (T -520)) -NIL -(-650 |#1|) -((-1439 ((|#4| |#4|) 26)) (-3143 (((-755) |#4|) 31)) (-3436 (((-755) |#4|) 32)) (-3700 (((-626 |#3|) |#4|) 37 (|has| |#3| (-6 -4506)))) (-3257 (((-3 |#4| "failed") |#4|) 47)) (-2553 ((|#4| |#4|) 40)) (-1708 ((|#1| |#4|) 39))) -(((-521 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1439 (|#4| |#4|)) (-15 -3143 ((-755) |#4|)) (-15 -3436 ((-755) |#4|)) (IF (|has| |#3| (-6 -4506)) (-15 -3700 ((-626 |#3|) |#4|)) |noBranch|) (-15 -1708 (|#1| |#4|)) (-15 -2553 (|#4| |#4|)) (-15 -3257 ((-3 |#4| "failed") |#4|))) (-359) (-369 |#1|) (-369 |#1|) (-669 |#1| |#2| |#3|)) (T -521)) -((-3257 (*1 *2 *2) (|partial| -12 (-4 *3 (-359)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)) (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-669 *3 *4 *5)))) (-2553 (*1 *2 *2) (-12 (-4 *3 (-359)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)) (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-669 *3 *4 *5)))) (-1708 (*1 *2 *3) (-12 (-4 *4 (-369 *2)) (-4 *5 (-369 *2)) (-4 *2 (-359)) (-5 *1 (-521 *2 *4 *5 *3)) (-4 *3 (-669 *2 *4 *5)))) (-3700 (*1 *2 *3) (-12 (|has| *6 (-6 -4506)) (-4 *4 (-359)) (-4 *5 (-369 *4)) (-4 *6 (-369 *4)) (-5 *2 (-626 *6)) (-5 *1 (-521 *4 *5 *6 *3)) (-4 *3 (-669 *4 *5 *6)))) (-3436 (*1 *2 *3) (-12 (-4 *4 (-359)) (-4 *5 (-369 *4)) (-4 *6 (-369 *4)) (-5 *2 (-755)) (-5 *1 (-521 *4 *5 *6 *3)) (-4 *3 (-669 *4 *5 *6)))) (-3143 (*1 *2 *3) (-12 (-4 *4 (-359)) (-4 *5 (-369 *4)) (-4 *6 (-369 *4)) (-5 *2 (-755)) (-5 *1 (-521 *4 *5 *6 *3)) (-4 *3 (-669 *4 *5 *6)))) (-1439 (*1 *2 *2) (-12 (-4 *3 (-359)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)) (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-669 *3 *4 *5))))) -(-10 -7 (-15 -1439 (|#4| |#4|)) (-15 -3143 ((-755) |#4|)) (-15 -3436 ((-755) |#4|)) (IF (|has| |#3| (-6 -4506)) (-15 -3700 ((-626 |#3|) |#4|)) |noBranch|) (-15 -1708 (|#1| |#4|)) (-15 -2553 (|#4| |#4|)) (-15 -3257 ((-3 |#4| "failed") |#4|))) -((-1439 ((|#8| |#4|) 20)) (-3700 (((-626 |#3|) |#4|) 29 (|has| |#7| (-6 -4506)))) (-3257 (((-3 |#8| "failed") |#4|) 23))) -(((-522 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1439 (|#8| |#4|)) (-15 -3257 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4506)) (-15 -3700 ((-626 |#3|) |#4|)) |noBranch|)) (-550) (-369 |#1|) (-369 |#1|) (-669 |#1| |#2| |#3|) (-985 |#1|) (-369 |#5|) (-369 |#5|) (-669 |#5| |#6| |#7|)) (T -522)) -((-3700 (*1 *2 *3) (-12 (|has| *9 (-6 -4506)) (-4 *4 (-550)) (-4 *5 (-369 *4)) (-4 *6 (-369 *4)) (-4 *7 (-985 *4)) (-4 *8 (-369 *7)) (-4 *9 (-369 *7)) (-5 *2 (-626 *6)) (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-669 *4 *5 *6)) (-4 *10 (-669 *7 *8 *9)))) (-3257 (*1 *2 *3) (|partial| -12 (-4 *4 (-550)) (-4 *5 (-369 *4)) (-4 *6 (-369 *4)) (-4 *7 (-985 *4)) (-4 *2 (-669 *7 *8 *9)) (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-669 *4 *5 *6)) (-4 *8 (-369 *7)) (-4 *9 (-369 *7)))) (-1439 (*1 *2 *3) (-12 (-4 *4 (-550)) (-4 *5 (-369 *4)) (-4 *6 (-369 *4)) (-4 *7 (-985 *4)) (-4 *2 (-669 *7 *8 *9)) (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-669 *4 *5 *6)) (-4 *8 (-369 *7)) (-4 *9 (-369 *7))))) -(-10 -7 (-15 -1439 (|#8| |#4|)) (-15 -3257 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4506)) (-15 -3700 ((-626 |#3|) |#4|)) |noBranch|)) -((-2601 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-3382 (($ (-755) (-755)) NIL)) (-2154 (($ $ $) NIL)) (-1638 (($ (-591 |#1| |#3|)) NIL) (($ $) NIL)) (-3839 (((-121) $) NIL)) (-3649 (($ $ (-560) (-560)) 12)) (-1610 (($ $ (-560) (-560)) NIL)) (-3675 (($ $ (-560) (-560) (-560) (-560)) NIL)) (-2296 (($ $) NIL)) (-1915 (((-121) $) NIL)) (-3909 (((-121) $ (-755)) NIL)) (-2649 (($ $ (-560) (-560) $) NIL)) (-2764 ((|#1| $ (-560) (-560) |#1|) NIL) (($ $ (-626 (-560)) (-626 (-560)) $) NIL)) (-2013 (($ $ (-560) (-591 |#1| |#3|)) NIL)) (-4079 (($ $ (-560) (-591 |#1| |#2|)) NIL)) (-2366 (($ (-755) |#1|) NIL)) (-4236 (($) NIL T CONST)) (-1439 (($ $) 19 (|has| |#1| (-296)))) (-4097 (((-591 |#1| |#3|) $ (-560)) NIL)) (-3143 (((-755) $) 22 (|has| |#1| (-550)))) (-1746 ((|#1| $ (-560) (-560) |#1|) NIL)) (-1361 ((|#1| $ (-560) (-560)) NIL)) (-1910 ((|#1| $) NIL (|has| |#1| (-170)))) (-1981 (((-626 |#1|) $) NIL)) (-3436 (((-755) $) 24 (|has| |#1| (-550)))) (-3700 (((-626 (-591 |#1| |#2|)) $) 27 (|has| |#1| (-550)))) (-1454 (((-755) $) NIL)) (-1721 (($ (-755) (-755) |#1|) NIL)) (-2634 (((-755) $) NIL)) (-2122 (((-121) $ (-755)) NIL)) (-3826 ((|#1| $) 17 (|has| |#1| (-6 (-4507 "*"))))) (-2984 (((-560) $) 10)) (-1994 (((-560) $) NIL)) (-2130 (((-626 |#1|) $) NIL (|has| $ (-6 -4505)))) (-2030 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-3755 (((-560) $) 11)) (-1420 (((-560) $) NIL)) (-3851 (($ (-626 (-626 |#1|))) NIL)) (-3778 (($ (-1 |#1| |#1|) $) NIL)) (-2803 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2184 (((-626 (-626 |#1|)) $) NIL)) (-3441 (((-121) $ (-755)) NIL)) (-1291 (((-1135) $) NIL (|has| |#1| (-1082)))) (-3257 (((-3 $ "failed") $) 31 (|has| |#1| (-359)))) (-4417 (($ $ $) NIL)) (-4353 (((-1100) $) NIL (|has| |#1| (-1082)))) (-3038 (($ $ |#1|) NIL)) (-2336 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-550)))) (-2865 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#1|))) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-283 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-626 |#1|) (-626 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))))) (-2214 (((-121) $ $) NIL)) (-4191 (((-121) $) NIL)) (-3260 (($) NIL)) (-2778 ((|#1| $ (-560) (-560)) NIL) ((|#1| $ (-560) (-560) |#1|) NIL) (($ $ (-626 (-560)) (-626 (-560))) NIL)) (-3328 (($ (-626 |#1|)) NIL) (($ (-626 $)) NIL)) (-3185 (((-121) $) NIL)) (-1708 ((|#1| $) 15 (|has| |#1| (-6 (-4507 "*"))))) (-4035 (((-755) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505))) (((-755) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-2813 (($ $) NIL)) (-1919 (((-626 (-591 |#1| |#2|)) $) NIL (|has| |#1| (-296)))) (-3677 (((-591 |#1| |#2|) $ (-560)) NIL)) (-2801 (((-842) $) NIL (|has| |#1| (-1082))) (($ (-591 |#1| |#2|)) NIL)) (-3656 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-3298 (((-121) $) NIL)) (-1653 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-1733 (($ $ |#1|) NIL (|has| |#1| (-359)))) (-1725 (($ $ $) NIL) (($ $) NIL)) (-1716 (($ $ $) NIL)) (** (($ $ (-755)) NIL) (($ $ (-560)) NIL (|has| |#1| (-359)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-560) $) NIL) (((-591 |#1| |#2|) $ (-591 |#1| |#2|)) NIL) (((-591 |#1| |#3|) (-591 |#1| |#3|) $) NIL)) (-2271 (((-755) $) NIL (|has| $ (-6 -4505))))) -(((-523 |#1| |#2| |#3|) (-669 |#1| (-591 |#1| |#3|) (-591 |#1| |#2|)) (-1039) (-560) (-560)) (T -523)) -NIL -(-669 |#1| (-591 |#1| |#3|) (-591 |#1| |#2|)) -((-3458 (((-1149 |#1|) (-755)) 74)) (-1944 (((-1236 |#1|) (-1236 |#1|) (-909)) 67)) (-1984 (((-1241) (-1236 (-626 (-2 (|:| -2981 |#1|) (|:| -1330 (-1100))))) |#1|) 82)) (-2597 (((-1236 |#1|) (-1236 |#1|) (-755)) 36)) (-1666 (((-1236 |#1|) (-909)) 69)) (-4005 (((-1236 |#1|) (-1236 |#1|) (-560)) 24)) (-1558 (((-1149 |#1|) (-1236 |#1|)) 75)) (-2174 (((-1236 |#1|) (-909)) 93)) (-1428 (((-121) (-1236 |#1|)) 78)) (-3339 (((-1236 |#1|) (-1236 |#1|) (-909)) 59)) (-4108 (((-1149 |#1|) (-1236 |#1|)) 87)) (-3142 (((-909) (-1236 |#1|)) 56)) (-1701 (((-1236 |#1|) (-1236 |#1|)) 30)) (-1330 (((-1236 |#1|) (-909) (-909)) 95)) (-3830 (((-1236 |#1|) (-1236 |#1|) (-1100) (-1100)) 23)) (-2625 (((-1236 |#1|) (-1236 |#1|) (-755) (-1100)) 37)) (-4374 (((-1236 (-1236 |#1|)) (-909)) 92)) (-1733 (((-1236 |#1|) (-1236 |#1|) (-1236 |#1|)) 79)) (** (((-1236 |#1|) (-1236 |#1|) (-560)) 43)) (* (((-1236 |#1|) (-1236 |#1|) (-1236 |#1|)) 25))) -(((-524 |#1|) (-10 -7 (-15 -1984 ((-1241) (-1236 (-626 (-2 (|:| -2981 |#1|) (|:| -1330 (-1100))))) |#1|)) (-15 -1666 ((-1236 |#1|) (-909))) (-15 -1330 ((-1236 |#1|) (-909) (-909))) (-15 -1558 ((-1149 |#1|) (-1236 |#1|))) (-15 -3458 ((-1149 |#1|) (-755))) (-15 -2625 ((-1236 |#1|) (-1236 |#1|) (-755) (-1100))) (-15 -2597 ((-1236 |#1|) (-1236 |#1|) (-755))) (-15 -3830 ((-1236 |#1|) (-1236 |#1|) (-1100) (-1100))) (-15 -4005 ((-1236 |#1|) (-1236 |#1|) (-560))) (-15 ** ((-1236 |#1|) (-1236 |#1|) (-560))) (-15 * ((-1236 |#1|) (-1236 |#1|) (-1236 |#1|))) (-15 -1733 ((-1236 |#1|) (-1236 |#1|) (-1236 |#1|))) (-15 -3339 ((-1236 |#1|) (-1236 |#1|) (-909))) (-15 -1944 ((-1236 |#1|) (-1236 |#1|) (-909))) (-15 -1701 ((-1236 |#1|) (-1236 |#1|))) (-15 -3142 ((-909) (-1236 |#1|))) (-15 -1428 ((-121) (-1236 |#1|))) (-15 -4374 ((-1236 (-1236 |#1|)) (-909))) (-15 -2174 ((-1236 |#1|) (-909))) (-15 -4108 ((-1149 |#1|) (-1236 |#1|)))) (-344)) (T -524)) -((-4108 (*1 *2 *3) (-12 (-5 *3 (-1236 *4)) (-4 *4 (-344)) (-5 *2 (-1149 *4)) (-5 *1 (-524 *4)))) (-2174 (*1 *2 *3) (-12 (-5 *3 (-909)) (-5 *2 (-1236 *4)) (-5 *1 (-524 *4)) (-4 *4 (-344)))) (-4374 (*1 *2 *3) (-12 (-5 *3 (-909)) (-5 *2 (-1236 (-1236 *4))) (-5 *1 (-524 *4)) (-4 *4 (-344)))) (-1428 (*1 *2 *3) (-12 (-5 *3 (-1236 *4)) (-4 *4 (-344)) (-5 *2 (-121)) (-5 *1 (-524 *4)))) (-3142 (*1 *2 *3) (-12 (-5 *3 (-1236 *4)) (-4 *4 (-344)) (-5 *2 (-909)) (-5 *1 (-524 *4)))) (-1701 (*1 *2 *2) (-12 (-5 *2 (-1236 *3)) (-4 *3 (-344)) (-5 *1 (-524 *3)))) (-1944 (*1 *2 *2 *3) (-12 (-5 *2 (-1236 *4)) (-5 *3 (-909)) (-4 *4 (-344)) (-5 *1 (-524 *4)))) (-3339 (*1 *2 *2 *3) (-12 (-5 *2 (-1236 *4)) (-5 *3 (-909)) (-4 *4 (-344)) (-5 *1 (-524 *4)))) (-1733 (*1 *2 *2 *2) (-12 (-5 *2 (-1236 *3)) (-4 *3 (-344)) (-5 *1 (-524 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1236 *3)) (-4 *3 (-344)) (-5 *1 (-524 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1236 *4)) (-5 *3 (-560)) (-4 *4 (-344)) (-5 *1 (-524 *4)))) (-4005 (*1 *2 *2 *3) (-12 (-5 *2 (-1236 *4)) (-5 *3 (-560)) (-4 *4 (-344)) (-5 *1 (-524 *4)))) (-3830 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1236 *4)) (-5 *3 (-1100)) (-4 *4 (-344)) (-5 *1 (-524 *4)))) (-2597 (*1 *2 *2 *3) (-12 (-5 *2 (-1236 *4)) (-5 *3 (-755)) (-4 *4 (-344)) (-5 *1 (-524 *4)))) (-2625 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1236 *5)) (-5 *3 (-755)) (-5 *4 (-1100)) (-4 *5 (-344)) (-5 *1 (-524 *5)))) (-3458 (*1 *2 *3) (-12 (-5 *3 (-755)) (-5 *2 (-1149 *4)) (-5 *1 (-524 *4)) (-4 *4 (-344)))) (-1558 (*1 *2 *3) (-12 (-5 *3 (-1236 *4)) (-4 *4 (-344)) (-5 *2 (-1149 *4)) (-5 *1 (-524 *4)))) (-1330 (*1 *2 *3 *3) (-12 (-5 *3 (-909)) (-5 *2 (-1236 *4)) (-5 *1 (-524 *4)) (-4 *4 (-344)))) (-1666 (*1 *2 *3) (-12 (-5 *3 (-909)) (-5 *2 (-1236 *4)) (-5 *1 (-524 *4)) (-4 *4 (-344)))) (-1984 (*1 *2 *3 *4) (-12 (-5 *3 (-1236 (-626 (-2 (|:| -2981 *4) (|:| -1330 (-1100)))))) (-4 *4 (-344)) (-5 *2 (-1241)) (-5 *1 (-524 *4))))) -(-10 -7 (-15 -1984 ((-1241) (-1236 (-626 (-2 (|:| -2981 |#1|) (|:| -1330 (-1100))))) |#1|)) (-15 -1666 ((-1236 |#1|) (-909))) (-15 -1330 ((-1236 |#1|) (-909) (-909))) (-15 -1558 ((-1149 |#1|) (-1236 |#1|))) (-15 -3458 ((-1149 |#1|) (-755))) (-15 -2625 ((-1236 |#1|) (-1236 |#1|) (-755) (-1100))) (-15 -2597 ((-1236 |#1|) (-1236 |#1|) (-755))) (-15 -3830 ((-1236 |#1|) (-1236 |#1|) (-1100) (-1100))) (-15 -4005 ((-1236 |#1|) (-1236 |#1|) (-560))) (-15 ** ((-1236 |#1|) (-1236 |#1|) (-560))) (-15 * ((-1236 |#1|) (-1236 |#1|) (-1236 |#1|))) (-15 -1733 ((-1236 |#1|) (-1236 |#1|) (-1236 |#1|))) (-15 -3339 ((-1236 |#1|) (-1236 |#1|) (-909))) (-15 -1944 ((-1236 |#1|) (-1236 |#1|) (-909))) (-15 -1701 ((-1236 |#1|) (-1236 |#1|))) (-15 -3142 ((-909) (-1236 |#1|))) (-15 -1428 ((-121) (-1236 |#1|))) (-15 -4374 ((-1236 (-1236 |#1|)) (-909))) (-15 -2174 ((-1236 |#1|) (-909))) (-15 -4108 ((-1149 |#1|) (-1236 |#1|)))) -((-3772 (((-1 |#1| |#1|) |#1|) 11)) (-2449 (((-1 |#1| |#1|)) 10))) -(((-525 |#1|) (-10 -7 (-15 -2449 ((-1 |#1| |#1|))) (-15 -3772 ((-1 |#1| |#1|) |#1|))) (-13 (-708) (-25))) (T -525)) -((-3772 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-525 *3)) (-4 *3 (-13 (-708) (-25))))) (-2449 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-525 *3)) (-4 *3 (-13 (-708) (-25)))))) -(-10 -7 (-15 -2449 ((-1 |#1| |#1|))) (-15 -3772 ((-1 |#1| |#1|) |#1|))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-2280 (($ $ $) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-4236 (($) NIL T CONST)) (-1750 (($ $) NIL)) (-1637 (($ (-755) |#1|) NIL)) (-4325 (($ $ $) NIL)) (-2501 (($ $ $) NIL)) (-2803 (($ (-1 (-755) (-755)) $) NIL)) (-1591 ((|#1| $) NIL)) (-1735 (((-755) $) NIL)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2801 (((-842) $) 20)) (-3304 (($) NIL T CONST)) (-1691 (((-121) $ $) NIL)) (-1675 (((-121) $ $) NIL)) (-1653 (((-121) $ $) NIL)) (-1683 (((-121) $ $) NIL)) (-1667 (((-121) $ $) NIL)) (-1716 (($ $ $) NIL)) (* (($ (-755) $) NIL) (($ (-909) $) NIL))) -(((-526 |#1|) (-13 (-780) (-510 (-755) |#1|)) (-834)) (T -526)) -NIL -(-13 (-780) (-510 (-755) |#1|)) -((-3419 (((-626 |#2|) (-1149 |#1|) |#3|) 83)) (-1935 (((-626 (-2 (|:| |outval| |#2|) (|:| |outmult| (-560)) (|:| |outvect| (-626 (-671 |#2|))))) (-671 |#1|) |#3| (-1 (-414 (-1149 |#1|)) (-1149 |#1|))) 99)) (-1848 (((-1149 |#1|) (-671 |#1|)) 95))) -(((-527 |#1| |#2| |#3|) (-10 -7 (-15 -1848 ((-1149 |#1|) (-671 |#1|))) (-15 -3419 ((-626 |#2|) (-1149 |#1|) |#3|)) (-15 -1935 ((-626 (-2 (|:| |outval| |#2|) (|:| |outmult| (-560)) (|:| |outvect| (-626 (-671 |#2|))))) (-671 |#1|) |#3| (-1 (-414 (-1149 |#1|)) (-1149 |#1|))))) (-359) (-359) (-13 (-359) (-832))) (T -527)) -((-1935 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-671 *6)) (-5 *5 (-1 (-414 (-1149 *6)) (-1149 *6))) (-4 *6 (-359)) (-5 *2 (-626 (-2 (|:| |outval| *7) (|:| |outmult| (-560)) (|:| |outvect| (-626 (-671 *7)))))) (-5 *1 (-527 *6 *7 *4)) (-4 *7 (-359)) (-4 *4 (-13 (-359) (-832))))) (-3419 (*1 *2 *3 *4) (-12 (-5 *3 (-1149 *5)) (-4 *5 (-359)) (-5 *2 (-626 *6)) (-5 *1 (-527 *5 *6 *4)) (-4 *6 (-359)) (-4 *4 (-13 (-359) (-832))))) (-1848 (*1 *2 *3) (-12 (-5 *3 (-671 *4)) (-4 *4 (-359)) (-5 *2 (-1149 *4)) (-5 *1 (-527 *4 *5 *6)) (-4 *5 (-359)) (-4 *6 (-13 (-359) (-832)))))) -(-10 -7 (-15 -1848 ((-1149 |#1|) (-671 |#1|))) (-15 -3419 ((-626 |#2|) (-1149 |#1|) |#3|)) (-15 -1935 ((-626 (-2 (|:| |outval| |#2|) (|:| |outmult| (-560)) (|:| |outvect| (-626 (-671 |#2|))))) (-671 |#1|) |#3| (-1 (-414 (-1149 |#1|)) (-1149 |#1|))))) -((-2601 (((-121) $ $) 7)) (-3501 (((-1153) $) 20)) (-3507 (((-755) $) 22)) (-3515 (((-1153) $ (-1153)) 23)) (-3570 (((-755) $ (-755)) 28)) (-3590 ((|#5| $ |#5|) 31)) (-3608 (((-755) $ (-755)) 27)) (-3614 (((-33 |#1|) $ (-33 |#1|)) 29)) (-3628 (((-626 |#6|) $ (-626 |#6|)) 24)) (-3653 ((|#8| $ |#8|) 25)) (-3658 (((-237 (-4162 (QUOTE X) (QUOTE -3095)) |#1|) $ (-237 (-4162 (QUOTE X) (QUOTE -3095)) |#1|)) 30)) (-3670 ((|#9| $ |#9|) 26)) (-3674 ((|#5| $) 19)) (-3680 (((-755) $) 16)) (-3686 (((-33 |#1|) $) 17)) (-3692 (((-626 |#6|) $) 21)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-3713 ((|#8| $) 14)) (-3662 (((-909) $) 12)) (-3719 (((-237 (-4162 (QUOTE X) (QUOTE -3095)) |#1|) $) 18)) (-2772 (($ |#5| (-237 (-4162 (QUOTE X) (QUOTE -3095)) |#1|) (-33 |#1|) (-755) |#9| (-755) |#8| |#1| (-1153)) 33) (($ |#5| |#3|) 32)) (-2801 (((-842) $) 11)) (-3731 ((|#9| $) 15)) (-1844 ((|#1| $) 13)) (-1653 (((-121) $ $) 6))) -(((-528 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9|) (-1267) (-359) (-626 (-1153)) (-942 |t#1| |t#4| (-844 |t#2|)) (-226 (-2271 |t#2|) (-755)) (-963 |t#1|) (-633 |t#1|) (-912 |t#1| |t#6|) (-230 |t#7|) (-117)) (T -528)) -((-2772 (*1 *1 *2 *3 *4 *5 *6 *5 *7 *8 *9) (-12 (-5 *3 (-237 (-4162 (QUOTE X) (QUOTE -3095)) *8)) (-5 *4 (-33 *8)) (-5 *9 (-1153)) (-4 *8 (-359)) (-5 *5 (-755)) (-4 *12 (-226 (-2271 *10) *5)) (-4 *13 (-633 *8)) (-4 *14 (-912 *8 *13)) (-4 *1 (-528 *8 *10 *11 *12 *2 *13 *14 *7 *6)) (-4 *11 (-942 *8 *12 (-844 *10))) (-4 *7 (-230 *14)) (-4 *6 (-117)))) (-2772 (*1 *1 *2 *3) (-12 (-4 *4 (-359)) (-4 *6 (-226 (-2271 *5) (-755))) (-4 *7 (-633 *4)) (-4 *8 (-912 *4 *7)) (-4 *1 (-528 *4 *5 *3 *6 *2 *7 *8 *9 *10)) (-4 *3 (-942 *4 *6 (-844 *5))) (-4 *9 (-230 *8)) (-4 *10 (-117)))) (-3590 (*1 *2 *1 *2) (-12 (-4 *1 (-528 *3 *4 *5 *6 *2 *7 *8 *9 *10)) (-4 *3 (-359)) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *6 (-226 (-2271 *4) (-755))) (-4 *7 (-633 *3)) (-4 *8 (-912 *3 *7)) (-4 *9 (-230 *8)) (-4 *10 (-117)))) (-3658 (*1 *2 *1 *2) (-12 (-5 *2 (-237 (-4162 (QUOTE X) (QUOTE -3095)) *3)) (-4 *1 (-528 *3 *4 *5 *6 *7 *8 *9 *10 *11)) (-4 *3 (-359)) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *6 (-226 (-2271 *4) (-755))) (-4 *8 (-633 *3)) (-4 *9 (-912 *3 *8)) (-4 *10 (-230 *9)) (-4 *11 (-117)))) (-3614 (*1 *2 *1 *2) (-12 (-5 *2 (-33 *3)) (-4 *1 (-528 *3 *4 *5 *6 *7 *8 *9 *10 *11)) (-4 *3 (-359)) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *6 (-226 (-2271 *4) (-755))) (-4 *8 (-633 *3)) (-4 *9 (-912 *3 *8)) (-4 *10 (-230 *9)) (-4 *11 (-117)))) (-3570 (*1 *2 *1 *2) (-12 (-4 *1 (-528 *3 *4 *5 *6 *7 *8 *9 *10 *11)) (-4 *3 (-359)) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *6 (-226 (-2271 *4) *2)) (-4 *8 (-633 *3)) (-4 *9 (-912 *3 *8)) (-4 *10 (-230 *9)) (-4 *11 (-117)) (-5 *2 (-755)))) (-3608 (*1 *2 *1 *2) (-12 (-4 *1 (-528 *3 *4 *5 *6 *7 *8 *9 *10 *11)) (-4 *3 (-359)) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *6 (-226 (-2271 *4) *2)) (-4 *8 (-633 *3)) (-4 *9 (-912 *3 *8)) (-4 *10 (-230 *9)) (-4 *11 (-117)) (-5 *2 (-755)))) (-3670 (*1 *2 *1 *2) (-12 (-4 *1 (-528 *3 *4 *5 *6 *7 *8 *9 *10 *2)) (-4 *3 (-359)) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *6 (-226 (-2271 *4) (-755))) (-4 *8 (-633 *3)) (-4 *9 (-912 *3 *8)) (-4 *10 (-230 *9)) (-4 *2 (-117)))) (-3653 (*1 *2 *1 *2) (-12 (-4 *1 (-528 *3 *4 *5 *6 *7 *8 *9 *2 *10)) (-4 *3 (-359)) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *6 (-226 (-2271 *4) (-755))) (-4 *8 (-633 *3)) (-4 *9 (-912 *3 *8)) (-4 *2 (-230 *9)) (-4 *10 (-117)))) (-3628 (*1 *2 *1 *2) (-12 (-5 *2 (-626 *8)) (-4 *1 (-528 *3 *4 *5 *6 *7 *8 *9 *10 *11)) (-4 *3 (-359)) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *6 (-226 (-2271 *4) (-755))) (-4 *8 (-633 *3)) (-4 *9 (-912 *3 *8)) (-4 *10 (-230 *9)) (-4 *11 (-117)))) (-3515 (*1 *2 *1 *2) (-12 (-5 *2 (-1153)) (-4 *1 (-528 *3 *4 *5 *6 *7 *8 *9 *10 *11)) (-4 *3 (-359)) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *6 (-226 (-2271 *4) (-755))) (-4 *8 (-633 *3)) (-4 *9 (-912 *3 *8)) (-4 *10 (-230 *9)) (-4 *11 (-117)))) (-3507 (*1 *2 *1) (-12 (-4 *1 (-528 *3 *4 *5 *6 *7 *8 *9 *10 *11)) (-4 *3 (-359)) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *6 (-226 (-2271 *4) *2)) (-4 *8 (-633 *3)) (-4 *9 (-912 *3 *8)) (-4 *10 (-230 *9)) (-4 *11 (-117)) (-5 *2 (-755)))) (-3692 (*1 *2 *1) (-12 (-4 *1 (-528 *3 *4 *5 *6 *7 *8 *9 *10 *11)) (-4 *3 (-359)) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *6 (-226 (-2271 *4) (-755))) (-4 *8 (-633 *3)) (-4 *9 (-912 *3 *8)) (-4 *10 (-230 *9)) (-4 *11 (-117)) (-5 *2 (-626 *8)))) (-3501 (*1 *2 *1) (-12 (-4 *1 (-528 *3 *4 *5 *6 *7 *8 *9 *10 *11)) (-4 *3 (-359)) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *6 (-226 (-2271 *4) (-755))) (-4 *8 (-633 *3)) (-4 *9 (-912 *3 *8)) (-4 *10 (-230 *9)) (-4 *11 (-117)) (-5 *2 (-1153)))) (-3674 (*1 *2 *1) (-12 (-4 *1 (-528 *3 *4 *5 *6 *2 *7 *8 *9 *10)) (-4 *3 (-359)) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *6 (-226 (-2271 *4) (-755))) (-4 *7 (-633 *3)) (-4 *8 (-912 *3 *7)) (-4 *9 (-230 *8)) (-4 *10 (-117)))) (-3719 (*1 *2 *1) (-12 (-4 *1 (-528 *3 *4 *5 *6 *7 *8 *9 *10 *11)) (-4 *3 (-359)) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *6 (-226 (-2271 *4) (-755))) (-4 *8 (-633 *3)) (-4 *9 (-912 *3 *8)) (-4 *10 (-230 *9)) (-4 *11 (-117)) (-5 *2 (-237 (-4162 (QUOTE X) (QUOTE -3095)) *3)))) (-3686 (*1 *2 *1) (-12 (-4 *1 (-528 *3 *4 *5 *6 *7 *8 *9 *10 *11)) (-4 *3 (-359)) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *6 (-226 (-2271 *4) (-755))) (-4 *8 (-633 *3)) (-4 *9 (-912 *3 *8)) (-4 *10 (-230 *9)) (-4 *11 (-117)) (-5 *2 (-33 *3)))) (-3680 (*1 *2 *1) (-12 (-4 *1 (-528 *3 *4 *5 *6 *7 *8 *9 *10 *11)) (-4 *3 (-359)) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *6 (-226 (-2271 *4) *2)) (-4 *8 (-633 *3)) (-4 *9 (-912 *3 *8)) (-4 *10 (-230 *9)) (-4 *11 (-117)) (-5 *2 (-755)))) (-3731 (*1 *2 *1) (-12 (-4 *1 (-528 *3 *4 *5 *6 *7 *8 *9 *10 *2)) (-4 *3 (-359)) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *6 (-226 (-2271 *4) (-755))) (-4 *8 (-633 *3)) (-4 *9 (-912 *3 *8)) (-4 *10 (-230 *9)) (-4 *2 (-117)))) (-3713 (*1 *2 *1) (-12 (-4 *1 (-528 *3 *4 *5 *6 *7 *8 *9 *2 *10)) (-4 *3 (-359)) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *6 (-226 (-2271 *4) (-755))) (-4 *8 (-633 *3)) (-4 *9 (-912 *3 *8)) (-4 *10 (-117)) (-4 *2 (-230 *9)))) (-1844 (*1 *2 *1) (-12 (-4 *1 (-528 *2 *3 *4 *5 *6 *7 *8 *9 *10)) (-4 *4 (-942 *2 *5 (-844 *3))) (-4 *5 (-226 (-2271 *3) (-755))) (-4 *7 (-633 *2)) (-4 *8 (-912 *2 *7)) (-4 *9 (-230 *8)) (-4 *10 (-117)) (-4 *2 (-359))))) -(-13 (-1080) (-10 -8 (-15 -2772 ($ |t#5| (-237 (-4162 (QUOTE X) (QUOTE -3095)) |t#1|) (-33 |t#1|) (-755) |t#9| (-755) |t#8| |t#1| (-1153))) (-15 -2772 ($ |t#5| |t#3|)) (-15 -3590 (|t#5| $ |t#5|)) (-15 -3658 ((-237 (-4162 (QUOTE X) (QUOTE -3095)) |t#1|) $ (-237 (-4162 (QUOTE X) (QUOTE -3095)) |t#1|))) (-15 -3614 ((-33 |t#1|) $ (-33 |t#1|))) (-15 -3570 ((-755) $ (-755))) (-15 -3608 ((-755) $ (-755))) (-15 -3670 (|t#9| $ |t#9|)) (-15 -3653 (|t#8| $ |t#8|)) (-15 -3628 ((-626 |t#6|) $ (-626 |t#6|))) (-15 -3515 ((-1153) $ (-1153))) (-15 -3507 ((-755) $)) (-15 -3692 ((-626 |t#6|) $)) (-15 -3501 ((-1153) $)) (-15 -3674 (|t#5| $)) (-15 -3719 ((-237 (-4162 (QUOTE X) (QUOTE -3095)) |t#1|) $)) (-15 -3686 ((-33 |t#1|) $)) (-15 -3680 ((-755) $)) (-15 -3731 (|t#9| $)) (-15 -3713 (|t#8| $)) (-15 -1844 (|t#1| $)))) -(((-105) . T) ((-600 (-842)) . T) ((-1082) . T) ((-1080) . T)) -((-2601 (((-121) $ $) NIL)) (-3501 (((-1153) $) NIL)) (-3507 (((-755) $) NIL)) (-3515 (((-1153) $ (-1153)) NIL)) (-3570 (((-755) $ (-755)) NIL)) (-3590 (((-959 |#1|) $ (-959 |#1|)) NIL)) (-3608 (((-755) $ (-755)) NIL)) (-3614 (((-33 (-849 |#1|)) $ (-33 (-849 |#1|))) NIL)) (-3628 (((-626 (-766 (-849 |#1|))) $ (-626 (-766 (-849 |#1|)))) NIL)) (-3653 (((-231 (-914 |#1|)) $ (-231 (-914 |#1|))) NIL)) (-3658 (((-237 (-4162 (QUOTE X) (QUOTE -3095)) (-849 |#1|)) $ (-237 (-4162 (QUOTE X) (QUOTE -3095)) (-849 |#1|))) NIL)) (-3670 ((|#3| $ |#3|) NIL)) (-3674 (((-959 |#1|) $) NIL)) (-3680 (((-755) $) NIL)) (-3686 (((-33 (-849 |#1|)) $) NIL)) (-3692 (((-626 (-766 (-849 |#1|))) $) NIL)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2747 (((-121) (-121)) NIL) (((-121)) NIL)) (-3697 (((-842) $) NIL)) (-3713 (((-231 (-914 |#1|)) $) NIL)) (-3662 (((-909) $) NIL)) (-3719 (((-237 (-4162 (QUOTE X) (QUOTE -3095)) (-849 |#1|)) $) NIL)) (-2772 (($ (-959 |#1|) (-237 (-4162 (QUOTE X) (QUOTE -3095)) (-849 |#1|)) (-33 (-849 |#1|)) (-755) |#3| (-755) (-231 (-914 |#1|)) (-849 |#1|) (-1153)) NIL) (($ (-959 |#1|) (-237 |#2| (-849 |#1|))) NIL)) (-2801 (((-842) $) NIL)) (-3731 ((|#3| $) NIL)) (-1844 (((-849 |#1|) $) NIL)) (-1653 (((-121) $ $) NIL))) -(((-529 |#1| |#2| |#3|) (-13 (-528 (-849 |#1|) |#2| (-237 |#2| (-849 |#1|)) (-228 (-2271 |#2|) (-755)) (-959 |#1|) (-766 (-849 |#1|)) (-914 |#1|) (-231 (-914 |#1|)) |#3|) (-10 -8 (-15 -3697 ((-842) $)) (-15 -2747 ((-121) (-121))) (-15 -2747 ((-121))))) (-344) (-626 (-1153)) (-117)) (T -529)) -((-3697 (*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-529 *3 *4 *5)) (-4 *3 (-344)) (-14 *4 (-626 (-1153))) (-4 *5 (-117)))) (-2747 (*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-529 *3 *4 *5)) (-4 *3 (-344)) (-14 *4 (-626 (-1153))) (-4 *5 (-117)))) (-2747 (*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-529 *3 *4 *5)) (-4 *3 (-344)) (-14 *4 (-626 (-1153))) (-4 *5 (-117))))) -(-13 (-528 (-849 |#1|) |#2| (-237 |#2| (-849 |#1|)) (-228 (-2271 |#2|) (-755)) (-959 |#1|) (-766 (-849 |#1|)) (-914 |#1|) (-231 (-914 |#1|)) |#3|) (-10 -8 (-15 -3697 ((-842) $)) (-15 -2747 ((-121) (-121))) (-15 -2747 ((-121))))) -((-2601 (((-121) $ $) NIL)) (-3501 (((-1153) $) 42)) (-3507 (((-755) $) 48)) (-3515 (((-1153) $ (-1153)) 81)) (-3570 (((-755) $ (-755)) 71)) (-3590 ((|#5| $ |#5|) 74)) (-3608 (((-755) $ (-755)) 77)) (-3614 (((-33 |#1|) $ (-33 |#1|)) 76)) (-3628 (((-626 |#6|) $ (-626 |#6|)) 79)) (-3653 ((|#8| $ |#8|) 80)) (-3658 (((-237 (-4162 (QUOTE X) (QUOTE -3095)) |#1|) $ (-237 (-4162 (QUOTE X) (QUOTE -3095)) |#1|)) 75)) (-3670 ((|#9| $ |#9|) 78)) (-3674 ((|#5| $) 40)) (-3680 (((-755) $) 43)) (-3686 (((-33 |#1|) $) 45)) (-3692 (((-626 |#6|) $) 73)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2747 (((-121) (-121)) 52) (((-121)) 53)) (-3697 (((-842) $) 50)) (-3713 ((|#8| $) 47)) (-3662 (((-909) $) 58)) (-3719 (((-237 (-4162 (QUOTE X) (QUOTE -3095)) |#1|) $) 44)) (-2772 (($ |#5| (-237 (-4162 (QUOTE X) (QUOTE -3095)) |#1|) (-33 |#1|) (-755) |#9| (-755) |#8| |#1| (-1153)) 59) (($ |#5| |#3|) 70)) (-2801 (((-842) $) 54)) (-3731 ((|#9| $) 46)) (-1844 ((|#1| $) 55)) (-1653 (((-121) $ $) NIL))) -(((-530 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9|) (-13 (-528 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9|) (-10 -8 (-15 -3697 ((-842) $)) (-15 -2747 ((-121) (-121))) (-15 -2747 ((-121))))) (-359) (-626 (-1153)) (-942 |#1| |#4| (-844 |#2|)) (-226 (-2271 |#2|) (-755)) (-963 |#1|) (-633 |#1|) (-912 |#1| |#6|) (-230 |#7|) (-117)) (T -530)) -((-3697 (*1 *2 *1) (-12 (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *6 (-226 (-2271 *4) (-755))) (-4 *8 (-633 *3)) (-4 *9 (-912 *3 *8)) (-5 *2 (-842)) (-5 *1 (-530 *3 *4 *5 *6 *7 *8 *9 *10 *11)) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *7 (-963 *3)) (-4 *10 (-230 *9)) (-4 *11 (-117)))) (-2747 (*1 *2 *2) (-12 (-5 *2 (-121)) (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *6 (-226 (-2271 *4) (-755))) (-4 *8 (-633 *3)) (-4 *9 (-912 *3 *8)) (-5 *1 (-530 *3 *4 *5 *6 *7 *8 *9 *10 *11)) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *7 (-963 *3)) (-4 *10 (-230 *9)) (-4 *11 (-117)))) (-2747 (*1 *2) (-12 (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *6 (-226 (-2271 *4) (-755))) (-4 *8 (-633 *3)) (-4 *9 (-912 *3 *8)) (-5 *2 (-121)) (-5 *1 (-530 *3 *4 *5 *6 *7 *8 *9 *10 *11)) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *7 (-963 *3)) (-4 *10 (-230 *9)) (-4 *11 (-117))))) -(-13 (-528 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9|) (-10 -8 (-15 -3697 ((-842) $)) (-15 -2747 ((-121) (-121))) (-15 -2747 ((-121))))) -((-3712 (((-827 (-560))) 11)) (-3707 (((-827 (-560))) 13)) (-4190 (((-820 (-560))) 8))) -(((-531) (-10 -7 (-15 -4190 ((-820 (-560)))) (-15 -3712 ((-827 (-560)))) (-15 -3707 ((-827 (-560)))))) (T -531)) -((-3707 (*1 *2) (-12 (-5 *2 (-827 (-560))) (-5 *1 (-531)))) (-3712 (*1 *2) (-12 (-5 *2 (-827 (-560))) (-5 *1 (-531)))) (-4190 (*1 *2) (-12 (-5 *2 (-820 (-560))) (-5 *1 (-531))))) -(-10 -7 (-15 -4190 ((-820 (-560)))) (-15 -3712 ((-827 (-560)))) (-15 -3707 ((-827 (-560))))) -((-1774 (((-533) (-1153)) 15)) (-3741 ((|#1| (-533)) 20))) -(((-532 |#1|) (-10 -7 (-15 -1774 ((-533) (-1153))) (-15 -3741 (|#1| (-533)))) (-1187)) (T -532)) -((-3741 (*1 *2 *3) (-12 (-5 *3 (-533)) (-5 *1 (-532 *2)) (-4 *2 (-1187)))) (-1774 (*1 *2 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-533)) (-5 *1 (-532 *4)) (-4 *4 (-1187))))) -(-10 -7 (-15 -1774 ((-533) (-1153))) (-15 -3741 (|#1| (-533)))) -((-2601 (((-121) $ $) NIL)) (-3295 (((-1135) $) 46)) (-2631 (((-121) $) 43)) (-3361 (((-1153) $) 44)) (-3114 (((-121) $) 41)) (-2308 (((-1135) $) 42)) (-3445 (($ (-1135)) 47)) (-3903 (((-121) $) NIL)) (-2829 (((-121) $) NIL)) (-2707 (((-121) $) NIL)) (-1291 (((-1135) $) NIL)) (-1606 (($ $ (-626 (-1153))) 20)) (-3741 (((-57) $) 22)) (-1589 (((-121) $) NIL)) (-2292 (((-560) $) NIL)) (-4353 (((-1100) $) NIL)) (-1843 (($ $ (-626 (-1153)) (-1153)) 59)) (-2872 (((-121) $) NIL)) (-3737 (((-213) $) NIL)) (-4260 (($ $) 38)) (-1846 (((-842) $) NIL)) (-2654 (((-121) $ $) NIL)) (-2778 (($ $ (-560)) NIL) (($ $ (-626 (-560))) NIL)) (-1631 (((-626 $) $) 28)) (-2837 (((-1153) (-626 $)) 48)) (-4255 (($ (-626 $)) 52) (($ (-1135)) NIL) (($ (-1153)) 18) (($ (-560)) 8) (($ (-213)) 25) (($ (-842)) NIL) (((-1086) $) 11) (($ (-1086)) 12)) (-1613 (((-1153) (-1153) (-626 $)) 51)) (-2801 (((-842) $) NIL)) (-1442 (($ $) 50)) (-1437 (($ $) 49)) (-2047 (($ $ (-626 $)) 56)) (-2091 (((-121) $) 27)) (-3304 (($) 9 T CONST)) (-1459 (($) 10 T CONST)) (-1653 (((-121) $ $) 60)) (-1733 (($ $ $) 65)) (-1716 (($ $ $) 61)) (** (($ $ (-755)) 64) (($ $ (-560)) 63)) (* (($ $ $) 62)) (-2271 (((-560) $) NIL))) -(((-533) (-13 (-1085 (-1135) (-1153) (-560) (-213) (-842)) (-601 (-1086)) (-10 -8 (-15 -3741 ((-57) $)) (-15 -4255 ($ (-1086))) (-15 -2047 ($ $ (-626 $))) (-15 -1843 ($ $ (-626 (-1153)) (-1153))) (-15 -1606 ($ $ (-626 (-1153)))) (-15 -1716 ($ $ $)) (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ (-755))) (-15 ** ($ $ (-560))) (-15 0 ($) -3565) (-15 1 ($) -3565) (-15 -4260 ($ $)) (-15 -3295 ((-1135) $)) (-15 -3445 ($ (-1135))) (-15 -2837 ((-1153) (-626 $))) (-15 -1613 ((-1153) (-1153) (-626 $)))))) (T -533)) -((-3741 (*1 *2 *1) (-12 (-5 *2 (-57)) (-5 *1 (-533)))) (-4255 (*1 *1 *2) (-12 (-5 *2 (-1086)) (-5 *1 (-533)))) (-2047 (*1 *1 *1 *2) (-12 (-5 *2 (-626 (-533))) (-5 *1 (-533)))) (-1843 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-626 (-1153))) (-5 *3 (-1153)) (-5 *1 (-533)))) (-1606 (*1 *1 *1 *2) (-12 (-5 *2 (-626 (-1153))) (-5 *1 (-533)))) (-1716 (*1 *1 *1 *1) (-5 *1 (-533))) (* (*1 *1 *1 *1) (-5 *1 (-533))) (-1733 (*1 *1 *1 *1) (-5 *1 (-533))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-755)) (-5 *1 (-533)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-533)))) (-3304 (*1 *1) (-5 *1 (-533))) (-1459 (*1 *1) (-5 *1 (-533))) (-4260 (*1 *1 *1) (-5 *1 (-533))) (-3295 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-533)))) (-3445 (*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-533)))) (-2837 (*1 *2 *3) (-12 (-5 *3 (-626 (-533))) (-5 *2 (-1153)) (-5 *1 (-533)))) (-1613 (*1 *2 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-626 (-533))) (-5 *1 (-533))))) -(-13 (-1085 (-1135) (-1153) (-560) (-213) (-842)) (-601 (-1086)) (-10 -8 (-15 -3741 ((-57) $)) (-15 -4255 ($ (-1086))) (-15 -2047 ($ $ (-626 $))) (-15 -1843 ($ $ (-626 (-1153)) (-1153))) (-15 -1606 ($ $ (-626 (-1153)))) (-15 -1716 ($ $ $)) (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ (-755))) (-15 ** ($ $ (-560))) (-15 (-3304) ($) -3565) (-15 (-1459) ($) -3565) (-15 -4260 ($ $)) (-15 -3295 ((-1135) $)) (-15 -3445 ($ (-1135))) (-15 -2837 ((-1153) (-626 $))) (-15 -1613 ((-1153) (-1153) (-626 $))))) -((-1576 ((|#2| |#2|) 17)) (-2714 ((|#2| |#2|) 13)) (-2847 ((|#2| |#2| (-560) (-560)) 20)) (-2055 ((|#2| |#2|) 15))) -(((-534 |#1| |#2|) (-10 -7 (-15 -2714 (|#2| |#2|)) (-15 -2055 (|#2| |#2|)) (-15 -1576 (|#2| |#2|)) (-15 -2847 (|#2| |#2| (-560) (-560)))) (-13 (-550) (-148)) (-1226 |#1|)) (T -534)) -((-2847 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-560)) (-4 *4 (-13 (-550) (-148))) (-5 *1 (-534 *4 *2)) (-4 *2 (-1226 *4)))) (-1576 (*1 *2 *2) (-12 (-4 *3 (-13 (-550) (-148))) (-5 *1 (-534 *3 *2)) (-4 *2 (-1226 *3)))) (-2055 (*1 *2 *2) (-12 (-4 *3 (-13 (-550) (-148))) (-5 *1 (-534 *3 *2)) (-4 *2 (-1226 *3)))) (-2714 (*1 *2 *2) (-12 (-4 *3 (-13 (-550) (-148))) (-5 *1 (-534 *3 *2)) (-4 *2 (-1226 *3))))) -(-10 -7 (-15 -2714 (|#2| |#2|)) (-15 -2055 (|#2| |#2|)) (-15 -1576 (|#2| |#2|)) (-15 -2847 (|#2| |#2| (-560) (-560)))) -((-2543 (((-626 (-283 (-945 |#2|))) (-626 |#2|) (-626 (-1153))) 32)) (-1752 (((-626 |#2|) (-945 |#1|) |#3|) 53) (((-626 |#2|) (-1149 |#1|) |#3|) 52)) (-2007 (((-626 (-626 |#2|)) (-626 (-945 |#1|)) (-626 (-945 |#1|)) (-626 (-1153)) |#3|) 87))) -(((-535 |#1| |#2| |#3|) (-10 -7 (-15 -1752 ((-626 |#2|) (-1149 |#1|) |#3|)) (-15 -1752 ((-626 |#2|) (-945 |#1|) |#3|)) (-15 -2007 ((-626 (-626 |#2|)) (-626 (-945 |#1|)) (-626 (-945 |#1|)) (-626 (-1153)) |#3|)) (-15 -2543 ((-626 (-283 (-945 |#2|))) (-626 |#2|) (-626 (-1153))))) (-447) (-359) (-13 (-359) (-832))) (T -535)) -((-2543 (*1 *2 *3 *4) (-12 (-5 *3 (-626 *6)) (-5 *4 (-626 (-1153))) (-4 *6 (-359)) (-5 *2 (-626 (-283 (-945 *6)))) (-5 *1 (-535 *5 *6 *7)) (-4 *5 (-447)) (-4 *7 (-13 (-359) (-832))))) (-2007 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-626 (-945 *6))) (-5 *4 (-626 (-1153))) (-4 *6 (-447)) (-5 *2 (-626 (-626 *7))) (-5 *1 (-535 *6 *7 *5)) (-4 *7 (-359)) (-4 *5 (-13 (-359) (-832))))) (-1752 (*1 *2 *3 *4) (-12 (-5 *3 (-945 *5)) (-4 *5 (-447)) (-5 *2 (-626 *6)) (-5 *1 (-535 *5 *6 *4)) (-4 *6 (-359)) (-4 *4 (-13 (-359) (-832))))) (-1752 (*1 *2 *3 *4) (-12 (-5 *3 (-1149 *5)) (-4 *5 (-447)) (-5 *2 (-626 *6)) (-5 *1 (-535 *5 *6 *4)) (-4 *6 (-359)) (-4 *4 (-13 (-359) (-832)))))) -(-10 -7 (-15 -1752 ((-626 |#2|) (-1149 |#1|) |#3|)) (-15 -1752 ((-626 |#2|) (-945 |#1|) |#3|)) (-15 -2007 ((-626 (-626 |#2|)) (-626 (-945 |#1|)) (-626 (-945 |#1|)) (-626 (-1153)) |#3|)) (-15 -2543 ((-626 (-283 (-945 |#2|))) (-626 |#2|) (-626 (-1153))))) -((-2512 ((|#2| |#2| |#1|) 17)) (-3252 ((|#2| (-626 |#2|)) 26)) (-3091 ((|#2| (-626 |#2|)) 45))) -(((-536 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3252 (|#2| (-626 |#2|))) (-15 -3091 (|#2| (-626 |#2|))) (-15 -2512 (|#2| |#2| |#1|))) (-296) (-1211 |#1|) |#1| (-1 |#1| |#1| (-755))) (T -536)) -((-2512 (*1 *2 *2 *3) (-12 (-4 *3 (-296)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-755))) (-5 *1 (-536 *3 *2 *4 *5)) (-4 *2 (-1211 *3)))) (-3091 (*1 *2 *3) (-12 (-5 *3 (-626 *2)) (-4 *2 (-1211 *4)) (-5 *1 (-536 *4 *2 *5 *6)) (-4 *4 (-296)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-755))))) (-3252 (*1 *2 *3) (-12 (-5 *3 (-626 *2)) (-4 *2 (-1211 *4)) (-5 *1 (-536 *4 *2 *5 *6)) (-4 *4 (-296)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-755)))))) -(-10 -7 (-15 -3252 (|#2| (-626 |#2|))) (-15 -3091 (|#2| (-626 |#2|))) (-15 -2512 (|#2| |#2| |#1|))) -((-1601 (((-414 (-1149 |#4|)) (-1149 |#4|) (-1 (-414 (-1149 |#3|)) (-1149 |#3|))) 79) (((-414 |#4|) |#4| (-1 (-414 (-1149 |#3|)) (-1149 |#3|))) 164))) -(((-537 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1601 ((-414 |#4|) |#4| (-1 (-414 (-1149 |#3|)) (-1149 |#3|)))) (-15 -1601 ((-414 (-1149 |#4|)) (-1149 |#4|) (-1 (-414 (-1149 |#3|)) (-1149 |#3|))))) (-834) (-780) (-13 (-296) (-148)) (-942 |#3| |#2| |#1|)) (T -537)) -((-1601 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-414 (-1149 *7)) (-1149 *7))) (-4 *7 (-13 (-296) (-148))) (-4 *5 (-834)) (-4 *6 (-780)) (-4 *8 (-942 *7 *6 *5)) (-5 *2 (-414 (-1149 *8))) (-5 *1 (-537 *5 *6 *7 *8)) (-5 *3 (-1149 *8)))) (-1601 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-414 (-1149 *7)) (-1149 *7))) (-4 *7 (-13 (-296) (-148))) (-4 *5 (-834)) (-4 *6 (-780)) (-5 *2 (-414 *3)) (-5 *1 (-537 *5 *6 *7 *3)) (-4 *3 (-942 *7 *6 *5))))) -(-10 -7 (-15 -1601 ((-414 |#4|) |#4| (-1 (-414 (-1149 |#3|)) (-1149 |#3|)))) (-15 -1601 ((-414 (-1149 |#4|)) (-1149 |#4|) (-1 (-414 (-1149 |#3|)) (-1149 |#3|))))) -((-1576 ((|#4| |#4|) 73)) (-2714 ((|#4| |#4|) 69)) (-2847 ((|#4| |#4| (-560) (-560)) 75)) (-2055 ((|#4| |#4|) 71))) -(((-538 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2714 (|#4| |#4|)) (-15 -2055 (|#4| |#4|)) (-15 -1576 (|#4| |#4|)) (-15 -2847 (|#4| |#4| (-560) (-560)))) (-13 (-359) (-364) (-601 (-560))) (-1211 |#1|) (-706 |#1| |#2|) (-1226 |#3|)) (T -538)) -((-2847 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-560)) (-4 *4 (-13 (-359) (-364) (-601 *3))) (-4 *5 (-1211 *4)) (-4 *6 (-706 *4 *5)) (-5 *1 (-538 *4 *5 *6 *2)) (-4 *2 (-1226 *6)))) (-1576 (*1 *2 *2) (-12 (-4 *3 (-13 (-359) (-364) (-601 (-560)))) (-4 *4 (-1211 *3)) (-4 *5 (-706 *3 *4)) (-5 *1 (-538 *3 *4 *5 *2)) (-4 *2 (-1226 *5)))) (-2055 (*1 *2 *2) (-12 (-4 *3 (-13 (-359) (-364) (-601 (-560)))) (-4 *4 (-1211 *3)) (-4 *5 (-706 *3 *4)) (-5 *1 (-538 *3 *4 *5 *2)) (-4 *2 (-1226 *5)))) (-2714 (*1 *2 *2) (-12 (-4 *3 (-13 (-359) (-364) (-601 (-560)))) (-4 *4 (-1211 *3)) (-4 *5 (-706 *3 *4)) (-5 *1 (-538 *3 *4 *5 *2)) (-4 *2 (-1226 *5))))) -(-10 -7 (-15 -2714 (|#4| |#4|)) (-15 -2055 (|#4| |#4|)) (-15 -1576 (|#4| |#4|)) (-15 -2847 (|#4| |#4| (-560) (-560)))) -((-1576 ((|#2| |#2|) 27)) (-2714 ((|#2| |#2|) 23)) (-2847 ((|#2| |#2| (-560) (-560)) 29)) (-2055 ((|#2| |#2|) 25))) -(((-539 |#1| |#2|) (-10 -7 (-15 -2714 (|#2| |#2|)) (-15 -2055 (|#2| |#2|)) (-15 -1576 (|#2| |#2|)) (-15 -2847 (|#2| |#2| (-560) (-560)))) (-13 (-359) (-364) (-601 (-560))) (-1226 |#1|)) (T -539)) -((-2847 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-560)) (-4 *4 (-13 (-359) (-364) (-601 *3))) (-5 *1 (-539 *4 *2)) (-4 *2 (-1226 *4)))) (-1576 (*1 *2 *2) (-12 (-4 *3 (-13 (-359) (-364) (-601 (-560)))) (-5 *1 (-539 *3 *2)) (-4 *2 (-1226 *3)))) (-2055 (*1 *2 *2) (-12 (-4 *3 (-13 (-359) (-364) (-601 (-560)))) (-5 *1 (-539 *3 *2)) (-4 *2 (-1226 *3)))) (-2714 (*1 *2 *2) (-12 (-4 *3 (-13 (-359) (-364) (-601 (-560)))) (-5 *1 (-539 *3 *2)) (-4 *2 (-1226 *3))))) -(-10 -7 (-15 -2714 (|#2| |#2|)) (-15 -2055 (|#2| |#2|)) (-15 -1576 (|#2| |#2|)) (-15 -2847 (|#2| |#2| (-560) (-560)))) -((-1861 (((-3 (-560) "failed") |#2| |#1| (-1 (-3 (-560) "failed") |#1|)) 14) (((-3 (-560) "failed") |#2| |#1| (-560) (-1 (-3 (-560) "failed") |#1|)) 13) (((-3 (-560) "failed") |#2| (-560) (-1 (-3 (-560) "failed") |#1|)) 26))) -(((-540 |#1| |#2|) (-10 -7 (-15 -1861 ((-3 (-560) "failed") |#2| (-560) (-1 (-3 (-560) "failed") |#1|))) (-15 -1861 ((-3 (-560) "failed") |#2| |#1| (-560) (-1 (-3 (-560) "failed") |#1|))) (-15 -1861 ((-3 (-560) "failed") |#2| |#1| (-1 (-3 (-560) "failed") |#1|)))) (-1039) (-1211 |#1|)) (T -540)) -((-1861 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-560) "failed") *4)) (-4 *4 (-1039)) (-5 *2 (-560)) (-5 *1 (-540 *4 *3)) (-4 *3 (-1211 *4)))) (-1861 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-560) "failed") *4)) (-4 *4 (-1039)) (-5 *2 (-560)) (-5 *1 (-540 *4 *3)) (-4 *3 (-1211 *4)))) (-1861 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-560) "failed") *5)) (-4 *5 (-1039)) (-5 *2 (-560)) (-5 *1 (-540 *5 *3)) (-4 *3 (-1211 *5))))) -(-10 -7 (-15 -1861 ((-3 (-560) "failed") |#2| (-560) (-1 (-3 (-560) "failed") |#1|))) (-15 -1861 ((-3 (-560) "failed") |#2| |#1| (-560) (-1 (-3 (-560) "failed") |#1|))) (-15 -1861 ((-3 (-560) "failed") |#2| |#1| (-1 (-3 (-560) "failed") |#1|)))) -((-3296 (($ $ $) 78)) (-2953 (((-414 $) $) 46)) (-1473 (((-3 (-560) "failed") $) 58)) (-3001 (((-560) $) 36)) (-1367 (((-3 (-403 (-560)) "failed") $) 73)) (-1689 (((-121) $) 23)) (-1519 (((-403 (-560)) $) 71)) (-3319 (((-121) $) 49)) (-2360 (($ $ $ $) 85)) (-1786 (((-121) $) 15)) (-3634 (($ $ $) 56)) (-2399 (((-876 (-560) $) $ (-879 (-560)) (-876 (-560) $)) 68)) (-1424 (((-3 $ "failed") $) 63)) (-4247 (($ $) 22)) (-4389 (($ $ $) 83)) (-1394 (($) 59)) (-2691 (($ $) 52)) (-1601 (((-414 $) $) 44)) (-3522 (((-121) $) 13)) (-4445 (((-755) $) 27)) (-2443 (($ $ (-755)) NIL) (($ $) 10)) (-2813 (($ $) 16)) (-4255 (((-560) $) NIL) (((-533) $) 35) (((-879 (-560)) $) 39) (((-375) $) 30) (((-213) $) 32)) (-1751 (((-755)) 8)) (-4189 (((-121) $ $) 19)) (-2406 (($ $ $) 54))) -(((-541 |#1|) (-10 -8 (-15 -4389 (|#1| |#1| |#1|)) (-15 -2360 (|#1| |#1| |#1| |#1|)) (-15 -4247 (|#1| |#1|)) (-15 -2813 (|#1| |#1|)) (-15 -1367 ((-3 (-403 (-560)) "failed") |#1|)) (-15 -1519 ((-403 (-560)) |#1|)) (-15 -1689 ((-121) |#1|)) (-15 -3296 (|#1| |#1| |#1|)) (-15 -4189 ((-121) |#1| |#1|)) (-15 -3522 ((-121) |#1|)) (-15 -1394 (|#1|)) (-15 -1424 ((-3 |#1| "failed") |#1|)) (-15 -4255 ((-213) |#1|)) (-15 -4255 ((-375) |#1|)) (-15 -3634 (|#1| |#1| |#1|)) (-15 -2691 (|#1| |#1|)) (-15 -2406 (|#1| |#1| |#1|)) (-15 -2399 ((-876 (-560) |#1|) |#1| (-879 (-560)) (-876 (-560) |#1|))) (-15 -4255 ((-879 (-560)) |#1|)) (-15 -4255 ((-533) |#1|)) (-15 -3001 ((-560) |#1|)) (-15 -1473 ((-3 (-560) "failed") |#1|)) (-15 -4255 ((-560) |#1|)) (-15 -2443 (|#1| |#1|)) (-15 -2443 (|#1| |#1| (-755))) (-15 -1786 ((-121) |#1|)) (-15 -4445 ((-755) |#1|)) (-15 -1601 ((-414 |#1|) |#1|)) (-15 -2953 ((-414 |#1|) |#1|)) (-15 -3319 ((-121) |#1|)) (-15 -1751 ((-755)))) (-542)) (T -541)) -((-1751 (*1 *2) (-12 (-5 *2 (-755)) (-5 *1 (-541 *3)) (-4 *3 (-542))))) -(-10 -8 (-15 -4389 (|#1| |#1| |#1|)) (-15 -2360 (|#1| |#1| |#1| |#1|)) (-15 -4247 (|#1| |#1|)) (-15 -2813 (|#1| |#1|)) (-15 -1367 ((-3 (-403 (-560)) "failed") |#1|)) (-15 -1519 ((-403 (-560)) |#1|)) (-15 -1689 ((-121) |#1|)) (-15 -3296 (|#1| |#1| |#1|)) (-15 -4189 ((-121) |#1| |#1|)) (-15 -3522 ((-121) |#1|)) (-15 -1394 (|#1|)) (-15 -1424 ((-3 |#1| "failed") |#1|)) (-15 -4255 ((-213) |#1|)) (-15 -4255 ((-375) |#1|)) (-15 -3634 (|#1| |#1| |#1|)) (-15 -2691 (|#1| |#1|)) (-15 -2406 (|#1| |#1| |#1|)) (-15 -2399 ((-876 (-560) |#1|) |#1| (-879 (-560)) (-876 (-560) |#1|))) (-15 -4255 ((-879 (-560)) |#1|)) (-15 -4255 ((-533) |#1|)) (-15 -3001 ((-560) |#1|)) (-15 -1473 ((-3 (-560) "failed") |#1|)) (-15 -4255 ((-560) |#1|)) (-15 -2443 (|#1| |#1|)) (-15 -2443 (|#1| |#1| (-755))) (-15 -1786 ((-121) |#1|)) (-15 -4445 ((-755) |#1|)) (-15 -1601 ((-414 |#1|) |#1|)) (-15 -2953 ((-414 |#1|) |#1|)) (-15 -3319 ((-121) |#1|)) (-15 -1751 ((-755)))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) 40)) (-1350 (($ $) 39)) (-3376 (((-121) $) 37)) (-3296 (($ $ $) 82)) (-2314 (((-3 $ "failed") $ $) 18)) (-2698 (($ $ $ $) 70)) (-3065 (($ $) 49)) (-2953 (((-414 $) $) 50)) (-4179 (((-121) $ $) 122)) (-4235 (((-560) $) 111)) (-2956 (($ $ $) 85)) (-4236 (($) 16 T CONST)) (-1473 (((-3 (-560) "failed") $) 103)) (-3001 (((-560) $) 102)) (-2563 (($ $ $) 126)) (-2616 (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) 101) (((-671 (-560)) (-671 $)) 100)) (-1823 (((-3 $ "failed") $) 33)) (-1367 (((-3 (-403 (-560)) "failed") $) 79)) (-1689 (((-121) $) 81)) (-1519 (((-403 (-560)) $) 80)) (-1666 (($) 78) (($ $) 77)) (-2572 (($ $ $) 125)) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) 120)) (-3319 (((-121) $) 51)) (-2360 (($ $ $ $) 68)) (-3016 (($ $ $) 83)) (-1786 (((-121) $) 113)) (-3634 (($ $ $) 94)) (-2399 (((-876 (-560) $) $ (-879 (-560)) (-876 (-560) $)) 97)) (-2642 (((-121) $) 30)) (-3348 (((-121) $) 89)) (-1424 (((-3 $ "failed") $) 91)) (-2187 (((-121) $) 112)) (-3856 (((-3 (-626 $) "failed") (-626 $) $) 129)) (-4401 (($ $ $ $) 69)) (-4325 (($ $ $) 114)) (-2501 (($ $ $) 115)) (-4247 (($ $) 72)) (-2349 (($ $) 86)) (-2582 (($ $ $) 45) (($ (-626 $)) 44)) (-1291 (((-1135) $) 9)) (-4389 (($ $ $) 67)) (-1394 (($) 90 T CONST)) (-1813 (($ $) 74)) (-4353 (((-1100) $) 10) (($ $) 76)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) 43)) (-4440 (($ $ $) 47) (($ (-626 $)) 46)) (-2691 (($ $) 95)) (-1601 (((-414 $) $) 48)) (-3505 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 128) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) 127)) (-2336 (((-3 $ "failed") $ $) 41)) (-3456 (((-3 (-626 $) "failed") (-626 $) $) 121)) (-3522 (((-121) $) 88)) (-4445 (((-755) $) 123)) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) 124)) (-2443 (($ $ (-755)) 108) (($ $) 106)) (-2992 (($ $) 73)) (-2813 (($ $) 75)) (-4255 (((-560) $) 105) (((-533) $) 99) (((-879 (-560)) $) 98) (((-375) $) 93) (((-213) $) 92)) (-2801 (((-842) $) 11) (($ (-560)) 27) (($ $) 42) (($ (-560)) 104)) (-1751 (((-755)) 28)) (-4189 (((-121) $ $) 84)) (-2406 (($ $ $) 96)) (-2871 (($) 87)) (-2328 (((-121) $ $) 38)) (-4344 (($ $ $ $) 71)) (-1822 (($ $) 110)) (-2464 (($ $ (-909)) 25) (($ $ (-755)) 32)) (-3304 (($) 17 T CONST)) (-1459 (($) 29 T CONST)) (-2500 (($ $ (-755)) 109) (($ $) 107)) (-1691 (((-121) $ $) 117)) (-1675 (((-121) $ $) 118)) (-1653 (((-121) $ $) 6)) (-1683 (((-121) $ $) 116)) (-1667 (((-121) $ $) 119)) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 24) (($ $ (-755)) 31)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 23))) -(((-542) (-1267)) (T -542)) -((-3348 (*1 *2 *1) (-12 (-4 *1 (-542)) (-5 *2 (-121)))) (-3522 (*1 *2 *1) (-12 (-4 *1 (-542)) (-5 *2 (-121)))) (-2871 (*1 *1) (-4 *1 (-542))) (-2349 (*1 *1 *1) (-4 *1 (-542))) (-2956 (*1 *1 *1 *1) (-4 *1 (-542))) (-4189 (*1 *2 *1 *1) (-12 (-4 *1 (-542)) (-5 *2 (-121)))) (-3016 (*1 *1 *1 *1) (-4 *1 (-542))) (-3296 (*1 *1 *1 *1) (-4 *1 (-542))) (-1689 (*1 *2 *1) (-12 (-4 *1 (-542)) (-5 *2 (-121)))) (-1519 (*1 *2 *1) (-12 (-4 *1 (-542)) (-5 *2 (-403 (-560))))) (-1367 (*1 *2 *1) (|partial| -12 (-4 *1 (-542)) (-5 *2 (-403 (-560))))) (-1666 (*1 *1) (-4 *1 (-542))) (-1666 (*1 *1 *1) (-4 *1 (-542))) (-4353 (*1 *1 *1) (-4 *1 (-542))) (-2813 (*1 *1 *1) (-4 *1 (-542))) (-1813 (*1 *1 *1) (-4 *1 (-542))) (-2992 (*1 *1 *1) (-4 *1 (-542))) (-4247 (*1 *1 *1) (-4 *1 (-542))) (-4344 (*1 *1 *1 *1 *1) (-4 *1 (-542))) (-2698 (*1 *1 *1 *1 *1) (-4 *1 (-542))) (-4401 (*1 *1 *1 *1 *1) (-4 *1 (-542))) (-2360 (*1 *1 *1 *1 *1) (-4 *1 (-542))) (-4389 (*1 *1 *1 *1) (-4 *1 (-542)))) -(-13 (-1191) (-296) (-807) (-221) (-601 (-560)) (-1029 (-560)) (-622 (-560)) (-601 (-533)) (-601 (-879 (-560))) (-873 (-560)) (-144) (-1013) (-148) (-1128) (-10 -8 (-15 -3348 ((-121) $)) (-15 -3522 ((-121) $)) (-6 -4504) (-15 -2871 ($)) (-15 -2349 ($ $)) (-15 -2956 ($ $ $)) (-15 -4189 ((-121) $ $)) (-15 -3016 ($ $ $)) (-15 -3296 ($ $ $)) (-15 -1689 ((-121) $)) (-15 -1519 ((-403 (-560)) $)) (-15 -1367 ((-3 (-403 (-560)) "failed") $)) (-15 -1666 ($)) (-15 -1666 ($ $)) (-15 -4353 ($ $)) (-15 -2813 ($ $)) (-15 -1813 ($ $)) (-15 -2992 ($ $)) (-15 -4247 ($ $)) (-15 -4344 ($ $ $ $)) (-15 -2698 ($ $ $ $)) (-15 -4401 ($ $ $ $)) (-15 -2360 ($ $ $ $)) (-15 -4389 ($ $ $)) (-6 -4503))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-43 $) . T) ((-105) . T) ((-120 $ $) . T) ((-137) . T) ((-148) . T) ((-600 (-842)) . T) ((-144) . T) ((-170) . T) ((-601 (-213)) . T) ((-601 (-375)) . T) ((-601 (-533)) . T) ((-601 (-560)) . T) ((-601 (-879 (-560))) . T) ((-221) . T) ((-280) . T) ((-296) . T) ((-447) . T) ((-550) . T) ((-629 $) . T) ((-622 (-560)) . T) ((-699 $) . T) ((-708) . T) ((-778) . T) ((-779) . T) ((-781) . T) ((-782) . T) ((-807) . T) ((-832) . T) ((-834) . T) ((-873 (-560)) . T) ((-908) . T) ((-1013) . T) ((-1029 (-560)) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1094) . T) ((-1082) . T) ((-1128) . T) ((-1191) . T)) -((-2601 (((-121) $ $) NIL (-2318 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-4050 (($) NIL) (($ (-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) NIL)) (-2960 (((-1241) $ |#1| |#1|) NIL (|has| $ (-6 -4506)))) (-3909 (((-121) $ (-755)) NIL)) (-2764 ((|#2| $ |#1| |#2|) NIL)) (-3763 (($ (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505)))) (-3802 (($ (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505)))) (-2722 (((-3 |#2| "failed") |#1| $) NIL)) (-4236 (($) NIL T CONST)) (-2868 (($ $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082))))) (-3561 (($ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) NIL (|has| $ (-6 -4505))) (($ (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505))) (((-3 |#2| "failed") |#1| $) NIL)) (-4310 (($ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (($ (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505)))) (-2342 (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) NIL (|has| $ (-6 -4505))) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505)))) (-1746 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4506)))) (-1361 ((|#2| $ |#1|) NIL)) (-1981 (((-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505))) (((-626 |#2|) $) NIL (|has| $ (-6 -4505)))) (-2122 (((-121) $ (-755)) NIL)) (-4099 ((|#1| $) NIL (|has| |#1| (-834)))) (-2130 (((-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505))) (((-626 |#2|) $) NIL (|has| $ (-6 -4505)))) (-2030 (((-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (((-121) |#2| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#2| (-1082))))) (-2767 ((|#1| $) NIL (|has| |#1| (-834)))) (-3778 (($ (-1 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4506))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4506)))) (-2803 (($ (-1 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3441 (((-121) $ (-755)) NIL)) (-1291 (((-1135) $) NIL (-2318 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-1377 (((-626 |#1|) $) NIL)) (-3855 (((-121) |#1| $) NIL)) (-2525 (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) NIL)) (-4345 (($ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) NIL)) (-1529 (((-626 |#1|) $) NIL)) (-1310 (((-121) |#1| $) NIL)) (-4353 (((-1100) $) NIL (-2318 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-2824 ((|#2| $) NIL (|has| |#1| (-834)))) (-3786 (((-3 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) "failed") (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL)) (-3038 (($ $ |#2|) NIL (|has| $ (-6 -4506)))) (-2146 (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) NIL)) (-2865 (((-121) (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505))) (((-121) (-1 (-121) |#2|) $) NIL (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))))) NIL (-12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (($ $ (-283 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) NIL (-12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (($ $ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) NIL (-12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (($ $ (-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) (-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) NIL (-12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (($ $ (-626 |#2|) (-626 |#2|)) NIL (-12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082)))) (($ $ (-283 |#2|)) NIL (-12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082)))) (($ $ (-626 (-283 |#2|))) NIL (-12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082))))) (-2214 (((-121) $ $) NIL)) (-1290 (((-121) |#2| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#2| (-1082))))) (-4460 (((-626 |#2|) $) NIL)) (-4191 (((-121) $) NIL)) (-3260 (($) NIL)) (-2778 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3958 (($) NIL) (($ (-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) NIL)) (-4035 (((-755) (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505))) (((-755) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (((-755) |#2| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#2| (-1082)))) (((-755) (-1 (-121) |#2|) $) NIL (|has| $ (-6 -4505)))) (-2813 (($ $) NIL)) (-4255 (((-533) $) NIL (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-601 (-533))))) (-4162 (($ (-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) NIL)) (-2801 (((-842) $) NIL (-2318 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-1354 (($ (-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) NIL)) (-3656 (((-121) (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505))) (((-121) (-1 (-121) |#2|) $) NIL (|has| $ (-6 -4505)))) (-1653 (((-121) $ $) NIL (-2318 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-2271 (((-755) $) NIL (|has| $ (-6 -4505))))) -(((-543 |#1| |#2| |#3|) (-13 (-1164 |#1| |#2|) (-10 -7 (-6 -4505))) (-1082) (-1082) (-13 (-1164 |#1| |#2|) (-10 -7 (-6 -4505)))) (T -543)) -NIL -(-13 (-1164 |#1| |#2|) (-10 -7 (-6 -4505))) -((-4421 (((-577 |#2|) |#2| (-599 |#2|) (-599 |#2|) (-1 (-1149 |#2|) (-1149 |#2|))) 49))) -(((-544 |#1| |#2|) (-10 -7 (-15 -4421 ((-577 |#2|) |#2| (-599 |#2|) (-599 |#2|) (-1 (-1149 |#2|) (-1149 |#2|))))) (-13 (-834) (-550)) (-13 (-27) (-426 |#1|))) (T -544)) -((-4421 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-599 *3)) (-5 *5 (-1 (-1149 *3) (-1149 *3))) (-4 *3 (-13 (-27) (-426 *6))) (-4 *6 (-13 (-834) (-550))) (-5 *2 (-577 *3)) (-5 *1 (-544 *6 *3))))) -(-10 -7 (-15 -4421 ((-577 |#2|) |#2| (-599 |#2|) (-599 |#2|) (-1 (-1149 |#2|) (-1149 |#2|))))) -((-1780 (((-577 |#5|) |#5| (-1 |#3| |#3|)) 195)) (-2093 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 191)) (-2875 (((-577 |#5|) |#5| (-1 |#3| |#3|)) 198))) -(((-545 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2875 ((-577 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1780 ((-577 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2093 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-834) (-550) (-1029 (-560))) (-13 (-27) (-426 |#1|)) (-1211 |#2|) (-1211 (-403 |#3|)) (-334 |#2| |#3| |#4|)) (T -545)) -((-2093 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1211 *5)) (-4 *5 (-13 (-27) (-426 *4))) (-4 *4 (-13 (-834) (-550) (-1029 (-560)))) (-4 *7 (-1211 (-403 *6))) (-5 *1 (-545 *4 *5 *6 *7 *2)) (-4 *2 (-334 *5 *6 *7)))) (-1780 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1211 *6)) (-4 *6 (-13 (-27) (-426 *5))) (-4 *5 (-13 (-834) (-550) (-1029 (-560)))) (-4 *8 (-1211 (-403 *7))) (-5 *2 (-577 *3)) (-5 *1 (-545 *5 *6 *7 *8 *3)) (-4 *3 (-334 *6 *7 *8)))) (-2875 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1211 *6)) (-4 *6 (-13 (-27) (-426 *5))) (-4 *5 (-13 (-834) (-550) (-1029 (-560)))) (-4 *8 (-1211 (-403 *7))) (-5 *2 (-577 *3)) (-5 *1 (-545 *5 *6 *7 *8 *3)) (-4 *3 (-334 *6 *7 *8))))) -(-10 -7 (-15 -2875 ((-577 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1780 ((-577 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2093 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) -((-2904 (((-121) (-560) (-560)) 10)) (-2973 (((-560) (-560)) 7)) (-2761 (((-560) (-560) (-560)) 8))) -(((-546) (-10 -7 (-15 -2973 ((-560) (-560))) (-15 -2761 ((-560) (-560) (-560))) (-15 -2904 ((-121) (-560) (-560))))) (T -546)) -((-2904 (*1 *2 *3 *3) (-12 (-5 *3 (-560)) (-5 *2 (-121)) (-5 *1 (-546)))) (-2761 (*1 *2 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-546)))) (-2973 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-546))))) -(-10 -7 (-15 -2973 ((-560) (-560))) (-15 -2761 ((-560) (-560) (-560))) (-15 -2904 ((-121) (-560) (-560)))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-2163 ((|#1| $) 59)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) 40)) (-1350 (($ $) 39)) (-3376 (((-121) $) 37)) (-2570 (($ $) 89)) (-2514 (($ $) 72)) (-2280 ((|#1| $) 60)) (-2314 (((-3 $ "failed") $ $) 18)) (-2479 (($ $) 71)) (-2561 (($ $) 88)) (-2790 (($ $) 73)) (-2579 (($ $) 87)) (-2523 (($ $) 74)) (-4236 (($) 16 T CONST)) (-1473 (((-3 (-560) "failed") $) 67)) (-3001 (((-560) $) 66)) (-1823 (((-3 $ "failed") $) 33)) (-2979 (($ |#1| |#1|) 64)) (-1786 (((-121) $) 58)) (-2474 (($) 99)) (-2642 (((-121) $) 30)) (-2586 (($ $ (-560)) 70)) (-2187 (((-121) $) 57)) (-4325 (($ $ $) 105)) (-2501 (($ $ $) 104)) (-4399 (($ $) 96)) (-2582 (($ $ $) 45) (($ (-626 $)) 44)) (-1291 (((-1135) $) 9)) (-1959 (($ |#1| |#1|) 65) (($ |#1|) 63) (($ (-403 (-560))) 62)) (-2289 ((|#1| $) 61)) (-4353 (((-1100) $) 10)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) 43)) (-4440 (($ $ $) 47) (($ (-626 $)) 46)) (-2336 (((-3 $ "failed") $ $) 41)) (-2469 (($ $) 97)) (-2585 (($ $) 86)) (-2528 (($ $) 75)) (-2575 (($ $) 85)) (-2519 (($ $) 76)) (-2566 (($ $) 84)) (-2795 (($ $) 77)) (-3116 (((-121) $ |#1|) 56)) (-2801 (((-842) $) 11) (($ (-560)) 27) (($ $) 42) (($ (-560)) 68)) (-1751 (((-755)) 28)) (-2598 (($ $) 95)) (-2541 (($ $) 83)) (-2328 (((-121) $ $) 38)) (-2590 (($ $) 94)) (-2532 (($ $) 82)) (-2608 (($ $) 93)) (-2549 (($ $) 81)) (-3689 (($ $) 92)) (-2554 (($ $) 80)) (-2604 (($ $) 91)) (-2545 (($ $) 79)) (-2594 (($ $) 90)) (-2536 (($ $) 78)) (-2464 (($ $ (-909)) 25) (($ $ (-755)) 32)) (-3304 (($) 17 T CONST)) (-1459 (($) 29 T CONST)) (-1691 (((-121) $ $) 102)) (-1675 (((-121) $ $) 101)) (-1653 (((-121) $ $) 6)) (-1683 (((-121) $ $) 103)) (-1667 (((-121) $ $) 100)) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 24) (($ $ (-755)) 31) (($ $ $) 98) (($ $ (-403 (-560))) 69)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 23))) -(((-547 |#1|) (-1267) (-13 (-400) (-1173))) (T -547)) -((-1959 (*1 *1 *2 *2) (-12 (-4 *1 (-547 *2)) (-4 *2 (-13 (-400) (-1173))))) (-2979 (*1 *1 *2 *2) (-12 (-4 *1 (-547 *2)) (-4 *2 (-13 (-400) (-1173))))) (-1959 (*1 *1 *2) (-12 (-4 *1 (-547 *2)) (-4 *2 (-13 (-400) (-1173))))) (-1959 (*1 *1 *2) (-12 (-5 *2 (-403 (-560))) (-4 *1 (-547 *3)) (-4 *3 (-13 (-400) (-1173))))) (-2289 (*1 *2 *1) (-12 (-4 *1 (-547 *2)) (-4 *2 (-13 (-400) (-1173))))) (-2280 (*1 *2 *1) (-12 (-4 *1 (-547 *2)) (-4 *2 (-13 (-400) (-1173))))) (-2163 (*1 *2 *1) (-12 (-4 *1 (-547 *2)) (-4 *2 (-13 (-400) (-1173))))) (-1786 (*1 *2 *1) (-12 (-4 *1 (-547 *3)) (-4 *3 (-13 (-400) (-1173))) (-5 *2 (-121)))) (-2187 (*1 *2 *1) (-12 (-4 *1 (-547 *3)) (-4 *3 (-13 (-400) (-1173))) (-5 *2 (-121)))) (-3116 (*1 *2 *1 *3) (-12 (-4 *1 (-547 *3)) (-4 *3 (-13 (-400) (-1173))) (-5 *2 (-121))))) -(-13 (-447) (-834) (-1173) (-994) (-1029 (-560)) (-10 -8 (-6 -2550) (-15 -1959 ($ |t#1| |t#1|)) (-15 -2979 ($ |t#1| |t#1|)) (-15 -1959 ($ |t#1|)) (-15 -1959 ($ (-403 (-560)))) (-15 -2289 (|t#1| $)) (-15 -2280 (|t#1| $)) (-15 -2163 (|t#1| $)) (-15 -1786 ((-121) $)) (-15 -2187 ((-121) $)) (-15 -3116 ((-121) $ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-43 $) . T) ((-40) . T) ((-98) . T) ((-105) . T) ((-120 $ $) . T) ((-137) . T) ((-600 (-842)) . T) ((-170) . T) ((-274) . T) ((-280) . T) ((-447) . T) ((-494) . T) ((-550) . T) ((-629 $) . T) ((-699 $) . T) ((-708) . T) ((-834) . T) ((-994) . T) ((-1029 (-560)) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1094) . T) ((-1082) . T) ((-1173) . T) ((-1176) . T)) -((-4173 (((-1241) (-909) |#3| (-626 |#5|)) 55)) (-2628 ((|#8| |#3| |#3| (-626 |#10|) (-626 |#5|)) 52))) -(((-548 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10| |#11|) (-10 -7 (-15 -2628 (|#8| |#3| |#3| (-626 |#10|) (-626 |#5|))) (-15 -4173 ((-1241) (-909) |#3| (-626 |#5|)))) (-359) (-626 (-1153)) (-942 |#1| |#4| (-844 |#2|)) (-226 (-2271 |#2|) (-755)) (-963 |#1|) (-633 |#1|) (-912 |#1| |#6|) (-230 |#7|) (-528 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#11|) (-253 |#9|) (-117)) (T -548)) -((-4173 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-909)) (-5 *5 (-626 *9)) (-4 *9 (-963 *6)) (-4 *6 (-359)) (-14 *7 (-626 (-1153))) (-4 *4 (-942 *6 *8 (-844 *7))) (-4 *8 (-226 (-2271 *7) (-755))) (-4 *10 (-633 *6)) (-4 *11 (-912 *6 *10)) (-4 *12 (-230 *11)) (-4 *13 (-528 *6 *7 *4 *8 *9 *10 *11 *12 *15)) (-4 *15 (-117)) (-5 *2 (-1241)) (-5 *1 (-548 *6 *7 *4 *8 *9 *10 *11 *12 *13 *14 *15)) (-4 *14 (-253 *13)))) (-2628 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-626 *13)) (-5 *5 (-626 *9)) (-4 *9 (-963 *6)) (-4 *13 (-253 *12)) (-4 *6 (-359)) (-4 *12 (-528 *6 *7 *3 *8 *9 *10 *11 *2 *14)) (-4 *14 (-117)) (-14 *7 (-626 (-1153))) (-4 *3 (-942 *6 *8 (-844 *7))) (-4 *8 (-226 (-2271 *7) (-755))) (-4 *10 (-633 *6)) (-4 *11 (-912 *6 *10)) (-4 *2 (-230 *11)) (-5 *1 (-548 *6 *7 *3 *8 *9 *10 *11 *2 *12 *13 *14))))) -(-10 -7 (-15 -2628 (|#8| |#3| |#3| (-626 |#10|) (-626 |#5|))) (-15 -4173 ((-1241) (-909) |#3| (-626 |#5|)))) -((-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) 9)) (-1350 (($ $) 11)) (-3376 (((-121) $) 18)) (-1823 (((-3 $ "failed") $) 16)) (-2328 (((-121) $ $) 20))) -(((-549 |#1|) (-10 -8 (-15 -3376 ((-121) |#1|)) (-15 -2328 ((-121) |#1| |#1|)) (-15 -1350 (|#1| |#1|)) (-15 -2744 ((-2 (|:| -1917 |#1|) (|:| -4492 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1823 ((-3 |#1| "failed") |#1|))) (-550)) (T -549)) -NIL -(-10 -8 (-15 -3376 ((-121) |#1|)) (-15 -2328 ((-121) |#1| |#1|)) (-15 -1350 (|#1| |#1|)) (-15 -2744 ((-2 (|:| -1917 |#1|) (|:| -4492 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1823 ((-3 |#1| "failed") |#1|))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) 40)) (-1350 (($ $) 39)) (-3376 (((-121) $) 37)) (-2314 (((-3 $ "failed") $ $) 18)) (-4236 (($) 16 T CONST)) (-1823 (((-3 $ "failed") $) 33)) (-2642 (((-121) $) 30)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-2336 (((-3 $ "failed") $ $) 41)) (-2801 (((-842) $) 11) (($ (-560)) 27) (($ $) 42)) (-1751 (((-755)) 28)) (-2328 (((-121) $ $) 38)) (-2464 (($ $ (-909)) 25) (($ $ (-755)) 32)) (-3304 (($) 17 T CONST)) (-1459 (($) 29 T CONST)) (-1653 (((-121) $ $) 6)) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 24) (($ $ (-755)) 31)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 23))) -(((-550) (-1267)) (T -550)) -((-2336 (*1 *1 *1 *1) (|partial| -4 *1 (-550))) (-2744 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1917 *1) (|:| -4492 *1) (|:| |associate| *1))) (-4 *1 (-550)))) (-1350 (*1 *1 *1) (-4 *1 (-550))) (-2328 (*1 *2 *1 *1) (-12 (-4 *1 (-550)) (-5 *2 (-121)))) (-3376 (*1 *2 *1) (-12 (-4 *1 (-550)) (-5 *2 (-121))))) -(-13 (-170) (-43 $) (-280) (-10 -8 (-15 -2336 ((-3 $ "failed") $ $)) (-15 -2744 ((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $)) (-15 -1350 ($ $)) (-15 -2328 ((-121) $ $)) (-15 -3376 ((-121) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-43 $) . T) ((-105) . T) ((-120 $ $) . T) ((-137) . T) ((-600 (-842)) . T) ((-170) . T) ((-280) . T) ((-629 $) . T) ((-699 $) . T) ((-708) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1094) . T) ((-1082) . T)) -((-1271 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-626 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1153) (-626 |#2|)) 35)) (-4100 (((-577 |#2|) |#2| (-1153)) 58)) (-3242 (((-3 |#2| "failed") |#2| (-1153)) 147)) (-2277 (((-3 (-2 (|:| -2962 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1153) (-599 |#2|) (-626 (-599 |#2|))) 149)) (-1889 (((-3 (-2 (|:| -2962 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1153) |#2|) 38))) -(((-551 |#1| |#2|) (-10 -7 (-15 -1889 ((-3 (-2 (|:| -2962 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1153) |#2|)) (-15 -1271 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-626 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1153) (-626 |#2|))) (-15 -3242 ((-3 |#2| "failed") |#2| (-1153))) (-15 -4100 ((-577 |#2|) |#2| (-1153))) (-15 -2277 ((-3 (-2 (|:| -2962 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1153) (-599 |#2|) (-626 (-599 |#2|))))) (-13 (-447) (-834) (-148) (-1029 (-560)) (-622 (-560))) (-13 (-27) (-1173) (-426 |#1|))) (T -551)) -((-2277 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1153)) (-5 *6 (-626 (-599 *3))) (-5 *5 (-599 *3)) (-4 *3 (-13 (-27) (-1173) (-426 *7))) (-4 *7 (-13 (-447) (-834) (-148) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-2 (|:| -2962 *3) (|:| |coeff| *3))) (-5 *1 (-551 *7 *3)))) (-4100 (*1 *2 *3 *4) (-12 (-5 *4 (-1153)) (-4 *5 (-13 (-447) (-834) (-148) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-577 *3)) (-5 *1 (-551 *5 *3)) (-4 *3 (-13 (-27) (-1173) (-426 *5))))) (-3242 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1153)) (-4 *4 (-13 (-447) (-834) (-148) (-1029 (-560)) (-622 (-560)))) (-5 *1 (-551 *4 *2)) (-4 *2 (-13 (-27) (-1173) (-426 *4))))) (-1271 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1153)) (-5 *5 (-626 *3)) (-4 *3 (-13 (-27) (-1173) (-426 *6))) (-4 *6 (-13 (-447) (-834) (-148) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-626 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-551 *6 *3)))) (-1889 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1153)) (-4 *5 (-13 (-447) (-834) (-148) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-2 (|:| -2962 *3) (|:| |coeff| *3))) (-5 *1 (-551 *5 *3)) (-4 *3 (-13 (-27) (-1173) (-426 *5)))))) -(-10 -7 (-15 -1889 ((-3 (-2 (|:| -2962 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1153) |#2|)) (-15 -1271 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-626 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1153) (-626 |#2|))) (-15 -3242 ((-3 |#2| "failed") |#2| (-1153))) (-15 -4100 ((-577 |#2|) |#2| (-1153))) (-15 -2277 ((-3 (-2 (|:| -2962 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1153) (-599 |#2|) (-626 (-599 |#2|))))) -((-3341 (((-626 |#5|) (-626 |#5|)) 41))) -(((-552 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3341 ((-626 |#5|) (-626 |#5|)))) (-359) (-626 (-1153)) (-780) (-834) (-942 |#1| |#3| |#4|)) (T -552)) -((-3341 (*1 *2 *2) (-12 (-5 *2 (-626 *7)) (-4 *7 (-942 *3 *5 *6)) (-4 *3 (-359)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *1 (-552 *3 *4 *5 *6 *7)) (-14 *4 (-626 (-1153)))))) -(-10 -7 (-15 -3341 ((-626 |#5|) (-626 |#5|)))) -((-2953 (((-414 |#1|) |#1|) 18)) (-1601 (((-414 |#1|) |#1|) 32)) (-1962 (((-3 |#1| "failed") |#1|) 43)) (-2063 (((-414 |#1|) |#1|) 49))) -(((-553 |#1|) (-10 -7 (-15 -1601 ((-414 |#1|) |#1|)) (-15 -2953 ((-414 |#1|) |#1|)) (-15 -2063 ((-414 |#1|) |#1|)) (-15 -1962 ((-3 |#1| "failed") |#1|))) (-542)) (T -553)) -((-1962 (*1 *2 *2) (|partial| -12 (-5 *1 (-553 *2)) (-4 *2 (-542)))) (-2063 (*1 *2 *3) (-12 (-5 *2 (-414 *3)) (-5 *1 (-553 *3)) (-4 *3 (-542)))) (-2953 (*1 *2 *3) (-12 (-5 *2 (-414 *3)) (-5 *1 (-553 *3)) (-4 *3 (-542)))) (-1601 (*1 *2 *3) (-12 (-5 *2 (-414 *3)) (-5 *1 (-553 *3)) (-4 *3 (-542))))) -(-10 -7 (-15 -1601 ((-414 |#1|) |#1|)) (-15 -2953 ((-414 |#1|) |#1|)) (-15 -2063 ((-414 |#1|) |#1|)) (-15 -1962 ((-3 |#1| "failed") |#1|))) -((-2633 (((-626 |#3|) |#8| (-626 |#3|)) 45)) (-2639 (((-626 |#3|) |#8| (-755) |#3| (-626 |#3|)) 44)) (-2341 (((-626 (-1236 |#1|)) |#8| (-626 |#3|)) 26)) (-2348 (((-626 (-1236 |#1|)) |#8| (-626 |#3|)) 27))) -(((-554 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2348 ((-626 (-1236 |#1|)) |#8| (-626 |#3|))) (-15 -2341 ((-626 (-1236 |#1|)) |#8| (-626 |#3|))) (-15 -2633 ((-626 |#3|) |#8| (-626 |#3|))) (-15 -2639 ((-626 |#3|) |#8| (-755) |#3| (-626 |#3|)))) (-359) (-626 (-1153)) (-942 |#1| |#4| (-844 |#2|)) (-226 (-2271 |#2|) (-755)) (-963 |#1|) (-633 |#1|) (-912 |#1| |#6|) (-230 |#7|)) (T -554)) -((-2639 (*1 *2 *3 *4 *5 *2) (-12 (-5 *2 (-626 *5)) (-4 *5 (-942 *6 *8 (-844 *7))) (-4 *8 (-226 (-2271 *7) *4)) (-5 *4 (-755)) (-4 *6 (-359)) (-14 *7 (-626 (-1153))) (-4 *10 (-633 *6)) (-4 *11 (-912 *6 *10)) (-5 *1 (-554 *6 *7 *5 *8 *9 *10 *11 *3)) (-4 *9 (-963 *6)) (-4 *3 (-230 *11)))) (-2633 (*1 *2 *3 *2) (-12 (-5 *2 (-626 *6)) (-4 *6 (-942 *4 *7 (-844 *5))) (-4 *7 (-226 (-2271 *5) (-755))) (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *9 (-633 *4)) (-4 *10 (-912 *4 *9)) (-5 *1 (-554 *4 *5 *6 *7 *8 *9 *10 *3)) (-4 *8 (-963 *4)) (-4 *3 (-230 *10)))) (-2341 (*1 *2 *3 *4) (-12 (-5 *4 (-626 *7)) (-4 *7 (-942 *5 *8 (-844 *6))) (-4 *8 (-226 (-2271 *6) (-755))) (-4 *5 (-359)) (-14 *6 (-626 (-1153))) (-4 *10 (-633 *5)) (-4 *11 (-912 *5 *10)) (-5 *2 (-626 (-1236 *5))) (-5 *1 (-554 *5 *6 *7 *8 *9 *10 *11 *3)) (-4 *9 (-963 *5)) (-4 *3 (-230 *11)))) (-2348 (*1 *2 *3 *4) (-12 (-5 *4 (-626 *7)) (-4 *7 (-942 *5 *8 (-844 *6))) (-4 *8 (-226 (-2271 *6) (-755))) (-4 *5 (-359)) (-14 *6 (-626 (-1153))) (-4 *10 (-633 *5)) (-4 *11 (-912 *5 *10)) (-5 *2 (-626 (-1236 *5))) (-5 *1 (-554 *5 *6 *7 *8 *9 *10 *11 *3)) (-4 *9 (-963 *5)) (-4 *3 (-230 *11))))) -(-10 -7 (-15 -2348 ((-626 (-1236 |#1|)) |#8| (-626 |#3|))) (-15 -2341 ((-626 (-1236 |#1|)) |#8| (-626 |#3|))) (-15 -2633 ((-626 |#3|) |#8| (-626 |#3|))) (-15 -2639 ((-626 |#3|) |#8| (-755) |#3| (-626 |#3|)))) -((-2901 (($) 9)) (-1599 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1133 (-213))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1396 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) 29)) (-1377 (((-626 (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) $) 26)) (-4345 (($ (-2 (|:| -3655 (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (|:| -2371 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1133 (-213))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1396 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 23)) (-2884 (($ (-626 (-2 (|:| -3655 (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (|:| -2371 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1133 (-213))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1396 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 21)) (-2371 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1133 (-213))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1396 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) 33)) (-4460 (((-626 (-2 (|:| -3655 (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (|:| -2371 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1133 (-213))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1396 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 31)) (-3102 (((-1241)) 12))) -(((-555) (-10 -8 (-15 -2901 ($)) (-15 -3102 ((-1241))) (-15 -1377 ((-626 (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) $)) (-15 -2884 ($ (-626 (-2 (|:| -3655 (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (|:| -2371 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1133 (-213))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1396 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -4345 ($ (-2 (|:| -3655 (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (|:| -2371 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1133 (-213))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1396 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1599 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1133 (-213))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1396 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213))))) (-15 -4460 ((-626 (-2 (|:| -3655 (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (|:| -2371 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1133 (-213))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1396 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2371 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1133 (-213))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1396 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213))))))) (T -555)) -((-2371 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1133 (-213))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1396 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-555)))) (-4460 (*1 *2 *1) (-12 (-5 *2 (-626 (-2 (|:| -3655 (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (|:| -2371 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1133 (-213))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1396 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-555)))) (-1599 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1133 (-213))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1396 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-555)))) (-4345 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3655 (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (|:| -2371 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1133 (-213))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1396 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-555)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-626 (-2 (|:| -3655 (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (|:| -2371 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1133 (-213))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1396 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-555)))) (-1377 (*1 *2 *1) (-12 (-5 *2 (-626 (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213))))) (-5 *1 (-555)))) (-3102 (*1 *2) (-12 (-5 *2 (-1241)) (-5 *1 (-555)))) (-2901 (*1 *1) (-5 *1 (-555)))) -(-10 -8 (-15 -2901 ($)) (-15 -3102 ((-1241))) (-15 -1377 ((-626 (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) $)) (-15 -2884 ($ (-626 (-2 (|:| -3655 (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (|:| -2371 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1133 (-213))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1396 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -4345 ($ (-2 (|:| -3655 (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (|:| -2371 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1133 (-213))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1396 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1599 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1133 (-213))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1396 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213))))) (-15 -4460 ((-626 (-2 (|:| -3655 (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (|:| -2371 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1133 (-213))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1396 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2371 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1133 (-213))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1396 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))))) -((-1593 (((-1149 (-403 (-1149 |#2|))) |#2| (-599 |#2|) (-599 |#2|) (-1149 |#2|)) 28)) (-2927 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-626 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-599 |#2|) (-599 |#2|) (-626 |#2|) (-599 |#2|) |#2| (-403 (-1149 |#2|))) 96) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-626 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-599 |#2|) (-599 |#2|) (-626 |#2|) |#2| (-1149 |#2|)) 106)) (-3698 (((-577 |#2|) |#2| (-599 |#2|) (-599 |#2|) (-599 |#2|) |#2| (-403 (-1149 |#2|))) 78) (((-577 |#2|) |#2| (-599 |#2|) (-599 |#2|) |#2| (-1149 |#2|)) 50)) (-1317 (((-3 (-2 (|:| -2962 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-599 |#2|) (-599 |#2|) |#2| (-599 |#2|) |#2| (-403 (-1149 |#2|))) 85) (((-3 (-2 (|:| -2962 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-599 |#2|) (-599 |#2|) |#2| |#2| (-1149 |#2|)) 105)) (-3464 (((-3 |#2| "failed") |#2| |#2| (-599 |#2|) (-599 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1153)) (-599 |#2|) |#2| (-403 (-1149 |#2|))) 101) (((-3 |#2| "failed") |#2| |#2| (-599 |#2|) (-599 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1153)) |#2| (-1149 |#2|)) 107)) (-3623 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4374 (-626 |#2|))) |#3| |#2| (-599 |#2|) (-599 |#2|) (-599 |#2|) |#2| (-403 (-1149 |#2|))) 124 (|has| |#3| (-638 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4374 (-626 |#2|))) |#3| |#2| (-599 |#2|) (-599 |#2|) |#2| (-1149 |#2|)) 123 (|has| |#3| (-638 |#2|)))) (-1647 ((|#2| (-1149 (-403 (-1149 |#2|))) (-599 |#2|) |#2|) 48)) (-2335 (((-1149 (-403 (-1149 |#2|))) (-1149 |#2|) (-599 |#2|)) 27))) -(((-556 |#1| |#2| |#3|) (-10 -7 (-15 -3698 ((-577 |#2|) |#2| (-599 |#2|) (-599 |#2|) |#2| (-1149 |#2|))) (-15 -3698 ((-577 |#2|) |#2| (-599 |#2|) (-599 |#2|) (-599 |#2|) |#2| (-403 (-1149 |#2|)))) (-15 -1317 ((-3 (-2 (|:| -2962 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-599 |#2|) (-599 |#2|) |#2| |#2| (-1149 |#2|))) (-15 -1317 ((-3 (-2 (|:| -2962 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-599 |#2|) (-599 |#2|) |#2| (-599 |#2|) |#2| (-403 (-1149 |#2|)))) (-15 -2927 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-626 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-599 |#2|) (-599 |#2|) (-626 |#2|) |#2| (-1149 |#2|))) (-15 -2927 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-626 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-599 |#2|) (-599 |#2|) (-626 |#2|) (-599 |#2|) |#2| (-403 (-1149 |#2|)))) (-15 -3464 ((-3 |#2| "failed") |#2| |#2| (-599 |#2|) (-599 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1153)) |#2| (-1149 |#2|))) (-15 -3464 ((-3 |#2| "failed") |#2| |#2| (-599 |#2|) (-599 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1153)) (-599 |#2|) |#2| (-403 (-1149 |#2|)))) (-15 -1593 ((-1149 (-403 (-1149 |#2|))) |#2| (-599 |#2|) (-599 |#2|) (-1149 |#2|))) (-15 -1647 (|#2| (-1149 (-403 (-1149 |#2|))) (-599 |#2|) |#2|)) (-15 -2335 ((-1149 (-403 (-1149 |#2|))) (-1149 |#2|) (-599 |#2|))) (IF (|has| |#3| (-638 |#2|)) (PROGN (-15 -3623 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4374 (-626 |#2|))) |#3| |#2| (-599 |#2|) (-599 |#2|) |#2| (-1149 |#2|))) (-15 -3623 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4374 (-626 |#2|))) |#3| |#2| (-599 |#2|) (-599 |#2|) (-599 |#2|) |#2| (-403 (-1149 |#2|))))) |noBranch|)) (-13 (-447) (-1029 (-560)) (-834) (-148) (-622 (-560))) (-13 (-426 |#1|) (-27) (-1173)) (-1082)) (T -556)) -((-3623 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-599 *4)) (-5 *6 (-403 (-1149 *4))) (-4 *4 (-13 (-426 *7) (-27) (-1173))) (-4 *7 (-13 (-447) (-1029 (-560)) (-834) (-148) (-622 (-560)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4374 (-626 *4)))) (-5 *1 (-556 *7 *4 *3)) (-4 *3 (-638 *4)) (-4 *3 (-1082)))) (-3623 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-599 *4)) (-5 *6 (-1149 *4)) (-4 *4 (-13 (-426 *7) (-27) (-1173))) (-4 *7 (-13 (-447) (-1029 (-560)) (-834) (-148) (-622 (-560)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4374 (-626 *4)))) (-5 *1 (-556 *7 *4 *3)) (-4 *3 (-638 *4)) (-4 *3 (-1082)))) (-2335 (*1 *2 *3 *4) (-12 (-5 *4 (-599 *6)) (-4 *6 (-13 (-426 *5) (-27) (-1173))) (-4 *5 (-13 (-447) (-1029 (-560)) (-834) (-148) (-622 (-560)))) (-5 *2 (-1149 (-403 (-1149 *6)))) (-5 *1 (-556 *5 *6 *7)) (-5 *3 (-1149 *6)) (-4 *7 (-1082)))) (-1647 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1149 (-403 (-1149 *2)))) (-5 *4 (-599 *2)) (-4 *2 (-13 (-426 *5) (-27) (-1173))) (-4 *5 (-13 (-447) (-1029 (-560)) (-834) (-148) (-622 (-560)))) (-5 *1 (-556 *5 *2 *6)) (-4 *6 (-1082)))) (-1593 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-599 *3)) (-4 *3 (-13 (-426 *6) (-27) (-1173))) (-4 *6 (-13 (-447) (-1029 (-560)) (-834) (-148) (-622 (-560)))) (-5 *2 (-1149 (-403 (-1149 *3)))) (-5 *1 (-556 *6 *3 *7)) (-5 *5 (-1149 *3)) (-4 *7 (-1082)))) (-3464 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-599 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1153))) (-5 *5 (-403 (-1149 *2))) (-4 *2 (-13 (-426 *6) (-27) (-1173))) (-4 *6 (-13 (-447) (-1029 (-560)) (-834) (-148) (-622 (-560)))) (-5 *1 (-556 *6 *2 *7)) (-4 *7 (-1082)))) (-3464 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-599 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1153))) (-5 *5 (-1149 *2)) (-4 *2 (-13 (-426 *6) (-27) (-1173))) (-4 *6 (-13 (-447) (-1029 (-560)) (-834) (-148) (-622 (-560)))) (-5 *1 (-556 *6 *2 *7)) (-4 *7 (-1082)))) (-2927 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-599 *3)) (-5 *5 (-626 *3)) (-5 *6 (-403 (-1149 *3))) (-4 *3 (-13 (-426 *7) (-27) (-1173))) (-4 *7 (-13 (-447) (-1029 (-560)) (-834) (-148) (-622 (-560)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-626 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-556 *7 *3 *8)) (-4 *8 (-1082)))) (-2927 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-599 *3)) (-5 *5 (-626 *3)) (-5 *6 (-1149 *3)) (-4 *3 (-13 (-426 *7) (-27) (-1173))) (-4 *7 (-13 (-447) (-1029 (-560)) (-834) (-148) (-622 (-560)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-626 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-556 *7 *3 *8)) (-4 *8 (-1082)))) (-1317 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-599 *3)) (-5 *5 (-403 (-1149 *3))) (-4 *3 (-13 (-426 *6) (-27) (-1173))) (-4 *6 (-13 (-447) (-1029 (-560)) (-834) (-148) (-622 (-560)))) (-5 *2 (-2 (|:| -2962 *3) (|:| |coeff| *3))) (-5 *1 (-556 *6 *3 *7)) (-4 *7 (-1082)))) (-1317 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-599 *3)) (-5 *5 (-1149 *3)) (-4 *3 (-13 (-426 *6) (-27) (-1173))) (-4 *6 (-13 (-447) (-1029 (-560)) (-834) (-148) (-622 (-560)))) (-5 *2 (-2 (|:| -2962 *3) (|:| |coeff| *3))) (-5 *1 (-556 *6 *3 *7)) (-4 *7 (-1082)))) (-3698 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-599 *3)) (-5 *5 (-403 (-1149 *3))) (-4 *3 (-13 (-426 *6) (-27) (-1173))) (-4 *6 (-13 (-447) (-1029 (-560)) (-834) (-148) (-622 (-560)))) (-5 *2 (-577 *3)) (-5 *1 (-556 *6 *3 *7)) (-4 *7 (-1082)))) (-3698 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-599 *3)) (-5 *5 (-1149 *3)) (-4 *3 (-13 (-426 *6) (-27) (-1173))) (-4 *6 (-13 (-447) (-1029 (-560)) (-834) (-148) (-622 (-560)))) (-5 *2 (-577 *3)) (-5 *1 (-556 *6 *3 *7)) (-4 *7 (-1082))))) -(-10 -7 (-15 -3698 ((-577 |#2|) |#2| (-599 |#2|) (-599 |#2|) |#2| (-1149 |#2|))) (-15 -3698 ((-577 |#2|) |#2| (-599 |#2|) (-599 |#2|) (-599 |#2|) |#2| (-403 (-1149 |#2|)))) (-15 -1317 ((-3 (-2 (|:| -2962 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-599 |#2|) (-599 |#2|) |#2| |#2| (-1149 |#2|))) (-15 -1317 ((-3 (-2 (|:| -2962 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-599 |#2|) (-599 |#2|) |#2| (-599 |#2|) |#2| (-403 (-1149 |#2|)))) (-15 -2927 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-626 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-599 |#2|) (-599 |#2|) (-626 |#2|) |#2| (-1149 |#2|))) (-15 -2927 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-626 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-599 |#2|) (-599 |#2|) (-626 |#2|) (-599 |#2|) |#2| (-403 (-1149 |#2|)))) (-15 -3464 ((-3 |#2| "failed") |#2| |#2| (-599 |#2|) (-599 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1153)) |#2| (-1149 |#2|))) (-15 -3464 ((-3 |#2| "failed") |#2| |#2| (-599 |#2|) (-599 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1153)) (-599 |#2|) |#2| (-403 (-1149 |#2|)))) (-15 -1593 ((-1149 (-403 (-1149 |#2|))) |#2| (-599 |#2|) (-599 |#2|) (-1149 |#2|))) (-15 -1647 (|#2| (-1149 (-403 (-1149 |#2|))) (-599 |#2|) |#2|)) (-15 -2335 ((-1149 (-403 (-1149 |#2|))) (-1149 |#2|) (-599 |#2|))) (IF (|has| |#3| (-638 |#2|)) (PROGN (-15 -3623 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4374 (-626 |#2|))) |#3| |#2| (-599 |#2|) (-599 |#2|) |#2| (-1149 |#2|))) (-15 -3623 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4374 (-626 |#2|))) |#3| |#2| (-599 |#2|) (-599 |#2|) (-599 |#2|) |#2| (-403 (-1149 |#2|))))) |noBranch|)) -((-2955 (((-560) (-560) (-755)) 65)) (-3751 (((-560) (-560)) 64)) (-2910 (((-560) (-560)) 63)) (-4457 (((-560) (-560)) 68)) (-2547 (((-560) (-560) (-560)) 48)) (-2546 (((-560) (-560) (-560)) 45)) (-3223 (((-403 (-560)) (-560)) 20)) (-2115 (((-560) (-560)) 21)) (-1831 (((-560) (-560)) 57)) (-3688 (((-560) (-560)) 32)) (-1405 (((-626 (-560)) (-560)) 62)) (-3286 (((-560) (-560) (-560) (-560) (-560)) 43)) (-3472 (((-403 (-560)) (-560)) 41))) -(((-557) (-10 -7 (-15 -3472 ((-403 (-560)) (-560))) (-15 -3286 ((-560) (-560) (-560) (-560) (-560))) (-15 -1405 ((-626 (-560)) (-560))) (-15 -3688 ((-560) (-560))) (-15 -1831 ((-560) (-560))) (-15 -2115 ((-560) (-560))) (-15 -3223 ((-403 (-560)) (-560))) (-15 -2546 ((-560) (-560) (-560))) (-15 -2547 ((-560) (-560) (-560))) (-15 -4457 ((-560) (-560))) (-15 -2910 ((-560) (-560))) (-15 -3751 ((-560) (-560))) (-15 -2955 ((-560) (-560) (-755))))) (T -557)) -((-2955 (*1 *2 *2 *3) (-12 (-5 *2 (-560)) (-5 *3 (-755)) (-5 *1 (-557)))) (-3751 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-557)))) (-2910 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-557)))) (-4457 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-557)))) (-2547 (*1 *2 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-557)))) (-2546 (*1 *2 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-557)))) (-3223 (*1 *2 *3) (-12 (-5 *2 (-403 (-560))) (-5 *1 (-557)) (-5 *3 (-560)))) (-2115 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-557)))) (-1831 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-557)))) (-3688 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-557)))) (-1405 (*1 *2 *3) (-12 (-5 *2 (-626 (-560))) (-5 *1 (-557)) (-5 *3 (-560)))) (-3286 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-557)))) (-3472 (*1 *2 *3) (-12 (-5 *2 (-403 (-560))) (-5 *1 (-557)) (-5 *3 (-560))))) -(-10 -7 (-15 -3472 ((-403 (-560)) (-560))) (-15 -3286 ((-560) (-560) (-560) (-560) (-560))) (-15 -1405 ((-626 (-560)) (-560))) (-15 -3688 ((-560) (-560))) (-15 -1831 ((-560) (-560))) (-15 -2115 ((-560) (-560))) (-15 -3223 ((-403 (-560)) (-560))) (-15 -2546 ((-560) (-560) (-560))) (-15 -2547 ((-560) (-560) (-560))) (-15 -4457 ((-560) (-560))) (-15 -2910 ((-560) (-560))) (-15 -3751 ((-560) (-560))) (-15 -2955 ((-560) (-560) (-755)))) -((-1905 (((-2 (|:| |answer| |#4|) (|:| -3639 |#4|)) |#4| (-1 |#2| |#2|)) 52))) -(((-558 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1905 ((-2 (|:| |answer| |#4|) (|:| -3639 |#4|)) |#4| (-1 |#2| |#2|)))) (-359) (-1211 |#1|) (-1211 (-403 |#2|)) (-334 |#1| |#2| |#3|)) (T -558)) -((-1905 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1211 *5)) (-4 *5 (-359)) (-4 *7 (-1211 (-403 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -3639 *3))) (-5 *1 (-558 *5 *6 *7 *3)) (-4 *3 (-334 *5 *6 *7))))) -(-10 -7 (-15 -1905 ((-2 (|:| |answer| |#4|) (|:| -3639 |#4|)) |#4| (-1 |#2| |#2|)))) -((-1905 (((-2 (|:| |answer| (-403 |#2|)) (|:| -3639 (-403 |#2|)) (|:| |specpart| (-403 |#2|)) (|:| |polypart| |#2|)) (-403 |#2|) (-1 |#2| |#2|)) 18))) -(((-559 |#1| |#2|) (-10 -7 (-15 -1905 ((-2 (|:| |answer| (-403 |#2|)) (|:| -3639 (-403 |#2|)) (|:| |specpart| (-403 |#2|)) (|:| |polypart| |#2|)) (-403 |#2|) (-1 |#2| |#2|)))) (-359) (-1211 |#1|)) (T -559)) -((-1905 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1211 *5)) (-4 *5 (-359)) (-5 *2 (-2 (|:| |answer| (-403 *6)) (|:| -3639 (-403 *6)) (|:| |specpart| (-403 *6)) (|:| |polypart| *6))) (-5 *1 (-559 *5 *6)) (-5 *3 (-403 *6))))) -(-10 -7 (-15 -1905 ((-2 (|:| |answer| (-403 |#2|)) (|:| -3639 (-403 |#2|)) (|:| |specpart| (-403 |#2|)) (|:| |polypart| |#2|)) (-403 |#2|) (-1 |#2| |#2|)))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) 25)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) 86)) (-1350 (($ $) 87)) (-3376 (((-121) $) NIL)) (-3296 (($ $ $) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-2698 (($ $ $ $) 42)) (-3065 (($ $) NIL)) (-2953 (((-414 $) $) NIL)) (-4179 (((-121) $ $) NIL)) (-4235 (((-560) $) NIL)) (-2956 (($ $ $) 80)) (-4236 (($) NIL T CONST)) (-1473 (((-3 (-560) "failed") $) NIL)) (-3001 (((-560) $) NIL)) (-2563 (($ $ $) 79)) (-2616 (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) 60) (((-671 (-560)) (-671 $)) 57)) (-1823 (((-3 $ "failed") $) 83)) (-1367 (((-3 (-403 (-560)) "failed") $) NIL)) (-1689 (((-121) $) NIL)) (-1519 (((-403 (-560)) $) NIL)) (-1666 (($) 62) (($ $) 63)) (-2572 (($ $ $) 78)) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) NIL)) (-3319 (((-121) $) NIL)) (-2360 (($ $ $ $) NIL)) (-3016 (($ $ $) 54)) (-1786 (((-121) $) NIL)) (-3634 (($ $ $) NIL)) (-2399 (((-876 (-560) $) $ (-879 (-560)) (-876 (-560) $)) NIL)) (-2642 (((-121) $) 26)) (-3348 (((-121) $) 73)) (-1424 (((-3 $ "failed") $) NIL)) (-2187 (((-121) $) 34)) (-3856 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-4401 (($ $ $ $) 43)) (-4325 (($ $ $) 75)) (-2501 (($ $ $) 74)) (-4247 (($ $) NIL)) (-2349 (($ $) 40)) (-2582 (($ $ $) NIL) (($ (-626 $)) NIL)) (-1291 (((-1135) $) 53)) (-4389 (($ $ $) NIL)) (-1394 (($) NIL T CONST)) (-1813 (($ $) 31)) (-4353 (((-1100) $) NIL) (($ $) 33)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) 117)) (-4440 (($ $ $) 84) (($ (-626 $)) NIL)) (-2691 (($ $) NIL)) (-1601 (((-414 $) $) 103)) (-3505 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL)) (-2336 (((-3 $ "failed") $ $) 82)) (-3456 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-3522 (((-121) $) NIL)) (-4445 (((-755) $) NIL)) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) 77)) (-2443 (($ $ (-755)) NIL) (($ $) NIL)) (-2992 (($ $) 32)) (-2813 (($ $) 30)) (-4255 (((-560) $) 39) (((-533) $) 51) (((-879 (-560)) $) NIL) (((-375) $) 46) (((-213) $) 48) (((-1135) $) 52)) (-2801 (((-842) $) 37) (($ (-560)) 38) (($ $) NIL) (($ (-560)) 38)) (-1751 (((-755)) NIL)) (-4189 (((-121) $ $) NIL)) (-2406 (($ $ $) NIL)) (-2871 (($) 29)) (-2328 (((-121) $ $) NIL)) (-4344 (($ $ $ $) 41)) (-1822 (($ $) 61)) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (-3304 (($) 27 T CONST)) (-1459 (($) 28 T CONST)) (-3039 (((-1135) $) 20) (((-1135) $ (-121)) 22) (((-1241) (-809) $) 23) (((-1241) (-809) $ (-121)) 24)) (-2500 (($ $ (-755)) NIL) (($ $) NIL)) (-1691 (((-121) $ $) NIL)) (-1675 (((-121) $ $) NIL)) (-1653 (((-121) $ $) 64)) (-1683 (((-121) $ $) NIL)) (-1667 (((-121) $ $) 65)) (-1725 (($ $) 66) (($ $ $) 68)) (-1716 (($ $ $) 67)) (** (($ $ (-909)) NIL) (($ $ (-755)) 72)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) 70) (($ $ $) 69))) -(((-560) (-13 (-542) (-601 (-1135)) (-815) (-10 -8 (-15 -1666 ($ $)) (-6 -4492) (-6 -4497) (-6 -4493) (-6 -4487)))) (T -560)) -((-1666 (*1 *1 *1) (-5 *1 (-560)))) -(-13 (-542) (-601 (-1135)) (-815) (-10 -8 (-15 -1666 ($ $)) (-6 -4492) (-6 -4497) (-6 -4493) (-6 -4487))) -((-3262 (((-2 (|:| -3262 (-375)) (|:| -1337 (-1135)) (|:| |explanations| (-626 (-1135))) (|:| |extra| (-1027))) (-753) (-1051)) 103) (((-2 (|:| -3262 (-375)) (|:| -1337 (-1135)) (|:| |explanations| (-626 (-1135))) (|:| |extra| (-1027))) (-753)) 105)) (-2376 (((-3 (-1027) "failed") (-304 (-375)) (-1074 (-827 (-375))) (-1153)) 168) (((-3 (-1027) "failed") (-304 (-375)) (-1074 (-827 (-375))) (-1135)) 167) (((-1027) (-304 (-375)) (-626 (-1076 (-827 (-375)))) (-375) (-375) (-1051)) 173) (((-1027) (-304 (-375)) (-626 (-1076 (-827 (-375)))) (-375) (-375)) 174) (((-1027) (-304 (-375)) (-626 (-1076 (-827 (-375)))) (-375)) 175) (((-1027) (-304 (-375)) (-626 (-1076 (-827 (-375))))) 176) (((-1027) (-304 (-375)) (-1076 (-827 (-375)))) 163) (((-1027) (-304 (-375)) (-1076 (-827 (-375))) (-375)) 162) (((-1027) (-304 (-375)) (-1076 (-827 (-375))) (-375) (-375)) 158) (((-1027) (-753)) 150) (((-1027) (-304 (-375)) (-1076 (-827 (-375))) (-375) (-375) (-1051)) 157))) -(((-561) (-10 -7 (-15 -2376 ((-1027) (-304 (-375)) (-1076 (-827 (-375))) (-375) (-375) (-1051))) (-15 -2376 ((-1027) (-753))) (-15 -2376 ((-1027) (-304 (-375)) (-1076 (-827 (-375))) (-375) (-375))) (-15 -2376 ((-1027) (-304 (-375)) (-1076 (-827 (-375))) (-375))) (-15 -2376 ((-1027) (-304 (-375)) (-1076 (-827 (-375))))) (-15 -2376 ((-1027) (-304 (-375)) (-626 (-1076 (-827 (-375)))))) (-15 -2376 ((-1027) (-304 (-375)) (-626 (-1076 (-827 (-375)))) (-375))) (-15 -2376 ((-1027) (-304 (-375)) (-626 (-1076 (-827 (-375)))) (-375) (-375))) (-15 -2376 ((-1027) (-304 (-375)) (-626 (-1076 (-827 (-375)))) (-375) (-375) (-1051))) (-15 -3262 ((-2 (|:| -3262 (-375)) (|:| -1337 (-1135)) (|:| |explanations| (-626 (-1135))) (|:| |extra| (-1027))) (-753))) (-15 -3262 ((-2 (|:| -3262 (-375)) (|:| -1337 (-1135)) (|:| |explanations| (-626 (-1135))) (|:| |extra| (-1027))) (-753) (-1051))) (-15 -2376 ((-3 (-1027) "failed") (-304 (-375)) (-1074 (-827 (-375))) (-1135))) (-15 -2376 ((-3 (-1027) "failed") (-304 (-375)) (-1074 (-827 (-375))) (-1153))))) (T -561)) -((-2376 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-304 (-375))) (-5 *4 (-1074 (-827 (-375)))) (-5 *5 (-1153)) (-5 *2 (-1027)) (-5 *1 (-561)))) (-2376 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-304 (-375))) (-5 *4 (-1074 (-827 (-375)))) (-5 *5 (-1135)) (-5 *2 (-1027)) (-5 *1 (-561)))) (-3262 (*1 *2 *3 *4) (-12 (-5 *3 (-753)) (-5 *4 (-1051)) (-5 *2 (-2 (|:| -3262 (-375)) (|:| -1337 (-1135)) (|:| |explanations| (-626 (-1135))) (|:| |extra| (-1027)))) (-5 *1 (-561)))) (-3262 (*1 *2 *3) (-12 (-5 *3 (-753)) (-5 *2 (-2 (|:| -3262 (-375)) (|:| -1337 (-1135)) (|:| |explanations| (-626 (-1135))) (|:| |extra| (-1027)))) (-5 *1 (-561)))) (-2376 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-304 (-375))) (-5 *4 (-626 (-1076 (-827 (-375))))) (-5 *5 (-375)) (-5 *6 (-1051)) (-5 *2 (-1027)) (-5 *1 (-561)))) (-2376 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-304 (-375))) (-5 *4 (-626 (-1076 (-827 (-375))))) (-5 *5 (-375)) (-5 *2 (-1027)) (-5 *1 (-561)))) (-2376 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-304 (-375))) (-5 *4 (-626 (-1076 (-827 (-375))))) (-5 *5 (-375)) (-5 *2 (-1027)) (-5 *1 (-561)))) (-2376 (*1 *2 *3 *4) (-12 (-5 *3 (-304 (-375))) (-5 *4 (-626 (-1076 (-827 (-375))))) (-5 *2 (-1027)) (-5 *1 (-561)))) (-2376 (*1 *2 *3 *4) (-12 (-5 *3 (-304 (-375))) (-5 *4 (-1076 (-827 (-375)))) (-5 *2 (-1027)) (-5 *1 (-561)))) (-2376 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-304 (-375))) (-5 *4 (-1076 (-827 (-375)))) (-5 *5 (-375)) (-5 *2 (-1027)) (-5 *1 (-561)))) (-2376 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-304 (-375))) (-5 *4 (-1076 (-827 (-375)))) (-5 *5 (-375)) (-5 *2 (-1027)) (-5 *1 (-561)))) (-2376 (*1 *2 *3) (-12 (-5 *3 (-753)) (-5 *2 (-1027)) (-5 *1 (-561)))) (-2376 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-304 (-375))) (-5 *4 (-1076 (-827 (-375)))) (-5 *5 (-375)) (-5 *6 (-1051)) (-5 *2 (-1027)) (-5 *1 (-561))))) -(-10 -7 (-15 -2376 ((-1027) (-304 (-375)) (-1076 (-827 (-375))) (-375) (-375) (-1051))) (-15 -2376 ((-1027) (-753))) (-15 -2376 ((-1027) (-304 (-375)) (-1076 (-827 (-375))) (-375) (-375))) (-15 -2376 ((-1027) (-304 (-375)) (-1076 (-827 (-375))) (-375))) (-15 -2376 ((-1027) (-304 (-375)) (-1076 (-827 (-375))))) (-15 -2376 ((-1027) (-304 (-375)) (-626 (-1076 (-827 (-375)))))) (-15 -2376 ((-1027) (-304 (-375)) (-626 (-1076 (-827 (-375)))) (-375))) (-15 -2376 ((-1027) (-304 (-375)) (-626 (-1076 (-827 (-375)))) (-375) (-375))) (-15 -2376 ((-1027) (-304 (-375)) (-626 (-1076 (-827 (-375)))) (-375) (-375) (-1051))) (-15 -3262 ((-2 (|:| -3262 (-375)) (|:| -1337 (-1135)) (|:| |explanations| (-626 (-1135))) (|:| |extra| (-1027))) (-753))) (-15 -3262 ((-2 (|:| -3262 (-375)) (|:| -1337 (-1135)) (|:| |explanations| (-626 (-1135))) (|:| |extra| (-1027))) (-753) (-1051))) (-15 -2376 ((-3 (-1027) "failed") (-304 (-375)) (-1074 (-827 (-375))) (-1135))) (-15 -2376 ((-3 (-1027) "failed") (-304 (-375)) (-1074 (-827 (-375))) (-1153)))) -((-1987 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-626 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-599 |#2|) (-599 |#2|) (-626 |#2|)) 179)) (-1543 (((-577 |#2|) |#2| (-599 |#2|) (-599 |#2|)) 97)) (-4364 (((-3 (-2 (|:| -2962 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-599 |#2|) (-599 |#2|) |#2|) 175)) (-2205 (((-3 |#2| "failed") |#2| |#2| |#2| (-599 |#2|) (-599 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1153))) 184)) (-4386 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4374 (-626 |#2|))) |#3| |#2| (-599 |#2|) (-599 |#2|) (-1153)) 192 (|has| |#3| (-638 |#2|))))) -(((-562 |#1| |#2| |#3|) (-10 -7 (-15 -1543 ((-577 |#2|) |#2| (-599 |#2|) (-599 |#2|))) (-15 -4364 ((-3 (-2 (|:| -2962 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-599 |#2|) (-599 |#2|) |#2|)) (-15 -1987 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-626 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-599 |#2|) (-599 |#2|) (-626 |#2|))) (-15 -2205 ((-3 |#2| "failed") |#2| |#2| |#2| (-599 |#2|) (-599 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1153)))) (IF (|has| |#3| (-638 |#2|)) (-15 -4386 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4374 (-626 |#2|))) |#3| |#2| (-599 |#2|) (-599 |#2|) (-1153))) |noBranch|)) (-13 (-447) (-1029 (-560)) (-834) (-148) (-622 (-560))) (-13 (-426 |#1|) (-27) (-1173)) (-1082)) (T -562)) -((-4386 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-599 *4)) (-5 *6 (-1153)) (-4 *4 (-13 (-426 *7) (-27) (-1173))) (-4 *7 (-13 (-447) (-1029 (-560)) (-834) (-148) (-622 (-560)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4374 (-626 *4)))) (-5 *1 (-562 *7 *4 *3)) (-4 *3 (-638 *4)) (-4 *3 (-1082)))) (-2205 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-599 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1153))) (-4 *2 (-13 (-426 *5) (-27) (-1173))) (-4 *5 (-13 (-447) (-1029 (-560)) (-834) (-148) (-622 (-560)))) (-5 *1 (-562 *5 *2 *6)) (-4 *6 (-1082)))) (-1987 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-599 *3)) (-5 *5 (-626 *3)) (-4 *3 (-13 (-426 *6) (-27) (-1173))) (-4 *6 (-13 (-447) (-1029 (-560)) (-834) (-148) (-622 (-560)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-626 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-562 *6 *3 *7)) (-4 *7 (-1082)))) (-4364 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-599 *3)) (-4 *3 (-13 (-426 *5) (-27) (-1173))) (-4 *5 (-13 (-447) (-1029 (-560)) (-834) (-148) (-622 (-560)))) (-5 *2 (-2 (|:| -2962 *3) (|:| |coeff| *3))) (-5 *1 (-562 *5 *3 *6)) (-4 *6 (-1082)))) (-1543 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-599 *3)) (-4 *3 (-13 (-426 *5) (-27) (-1173))) (-4 *5 (-13 (-447) (-1029 (-560)) (-834) (-148) (-622 (-560)))) (-5 *2 (-577 *3)) (-5 *1 (-562 *5 *3 *6)) (-4 *6 (-1082))))) -(-10 -7 (-15 -1543 ((-577 |#2|) |#2| (-599 |#2|) (-599 |#2|))) (-15 -4364 ((-3 (-2 (|:| -2962 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-599 |#2|) (-599 |#2|) |#2|)) (-15 -1987 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-626 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-599 |#2|) (-599 |#2|) (-626 |#2|))) (-15 -2205 ((-3 |#2| "failed") |#2| |#2| |#2| (-599 |#2|) (-599 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1153)))) (IF (|has| |#3| (-638 |#2|)) (-15 -4386 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4374 (-626 |#2|))) |#3| |#2| (-599 |#2|) (-599 |#2|) (-1153))) |noBranch|)) -((-1585 (((-2 (|:| -1779 |#2|) (|:| |nconst| |#2|)) |#2| (-1153)) 62)) (-4426 (((-3 |#2| "failed") |#2| (-1153) (-827 |#2|) (-827 |#2|)) 159 (-12 (|has| |#2| (-1116)) (|has| |#1| (-601 (-879 (-560)))) (|has| |#1| (-873 (-560))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1153)) 133 (-12 (|has| |#2| (-612)) (|has| |#1| (-601 (-879 (-560)))) (|has| |#1| (-873 (-560)))))) (-3988 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1153)) 142 (-12 (|has| |#2| (-612)) (|has| |#1| (-601 (-879 (-560)))) (|has| |#1| (-873 (-560))))))) -(((-563 |#1| |#2|) (-10 -7 (-15 -1585 ((-2 (|:| -1779 |#2|) (|:| |nconst| |#2|)) |#2| (-1153))) (IF (|has| |#1| (-601 (-879 (-560)))) (IF (|has| |#1| (-873 (-560))) (PROGN (IF (|has| |#2| (-612)) (PROGN (-15 -3988 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1153))) (-15 -4426 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1153)))) |noBranch|) (IF (|has| |#2| (-1116)) (-15 -4426 ((-3 |#2| "failed") |#2| (-1153) (-827 |#2|) (-827 |#2|))) |noBranch|)) |noBranch|) |noBranch|)) (-13 (-834) (-1029 (-560)) (-447) (-622 (-560))) (-13 (-27) (-1173) (-426 |#1|))) (T -563)) -((-4426 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1153)) (-5 *4 (-827 *2)) (-4 *2 (-1116)) (-4 *2 (-13 (-27) (-1173) (-426 *5))) (-4 *5 (-601 (-879 (-560)))) (-4 *5 (-873 (-560))) (-4 *5 (-13 (-834) (-1029 (-560)) (-447) (-622 (-560)))) (-5 *1 (-563 *5 *2)))) (-4426 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1153)) (-4 *5 (-601 (-879 (-560)))) (-4 *5 (-873 (-560))) (-4 *5 (-13 (-834) (-1029 (-560)) (-447) (-622 (-560)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-563 *5 *3)) (-4 *3 (-612)) (-4 *3 (-13 (-27) (-1173) (-426 *5))))) (-3988 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1153)) (-4 *5 (-601 (-879 (-560)))) (-4 *5 (-873 (-560))) (-4 *5 (-13 (-834) (-1029 (-560)) (-447) (-622 (-560)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-563 *5 *3)) (-4 *3 (-612)) (-4 *3 (-13 (-27) (-1173) (-426 *5))))) (-1585 (*1 *2 *3 *4) (-12 (-5 *4 (-1153)) (-4 *5 (-13 (-834) (-1029 (-560)) (-447) (-622 (-560)))) (-5 *2 (-2 (|:| -1779 *3) (|:| |nconst| *3))) (-5 *1 (-563 *5 *3)) (-4 *3 (-13 (-27) (-1173) (-426 *5)))))) -(-10 -7 (-15 -1585 ((-2 (|:| -1779 |#2|) (|:| |nconst| |#2|)) |#2| (-1153))) (IF (|has| |#1| (-601 (-879 (-560)))) (IF (|has| |#1| (-873 (-560))) (PROGN (IF (|has| |#2| (-612)) (PROGN (-15 -3988 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1153))) (-15 -4426 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1153)))) |noBranch|) (IF (|has| |#2| (-1116)) (-15 -4426 ((-3 |#2| "failed") |#2| (-1153) (-827 |#2|) (-827 |#2|))) |noBranch|)) |noBranch|) |noBranch|)) -((-2351 (((-3 (-2 (|:| |mainpart| (-403 |#2|)) (|:| |limitedlogs| (-626 (-2 (|:| |coeff| (-403 |#2|)) (|:| |logand| (-403 |#2|)))))) "failed") (-403 |#2|) (-626 (-403 |#2|))) 39)) (-2376 (((-577 (-403 |#2|)) (-403 |#2|)) 27)) (-1690 (((-3 (-403 |#2|) "failed") (-403 |#2|)) 16)) (-3625 (((-3 (-2 (|:| -2962 (-403 |#2|)) (|:| |coeff| (-403 |#2|))) "failed") (-403 |#2|) (-403 |#2|)) 46))) -(((-564 |#1| |#2|) (-10 -7 (-15 -2376 ((-577 (-403 |#2|)) (-403 |#2|))) (-15 -1690 ((-3 (-403 |#2|) "failed") (-403 |#2|))) (-15 -3625 ((-3 (-2 (|:| -2962 (-403 |#2|)) (|:| |coeff| (-403 |#2|))) "failed") (-403 |#2|) (-403 |#2|))) (-15 -2351 ((-3 (-2 (|:| |mainpart| (-403 |#2|)) (|:| |limitedlogs| (-626 (-2 (|:| |coeff| (-403 |#2|)) (|:| |logand| (-403 |#2|)))))) "failed") (-403 |#2|) (-626 (-403 |#2|))))) (-13 (-359) (-148) (-1029 (-560))) (-1211 |#1|)) (T -564)) -((-2351 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-626 (-403 *6))) (-5 *3 (-403 *6)) (-4 *6 (-1211 *5)) (-4 *5 (-13 (-359) (-148) (-1029 (-560)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-626 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-564 *5 *6)))) (-3625 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-359) (-148) (-1029 (-560)))) (-4 *5 (-1211 *4)) (-5 *2 (-2 (|:| -2962 (-403 *5)) (|:| |coeff| (-403 *5)))) (-5 *1 (-564 *4 *5)) (-5 *3 (-403 *5)))) (-1690 (*1 *2 *2) (|partial| -12 (-5 *2 (-403 *4)) (-4 *4 (-1211 *3)) (-4 *3 (-13 (-359) (-148) (-1029 (-560)))) (-5 *1 (-564 *3 *4)))) (-2376 (*1 *2 *3) (-12 (-4 *4 (-13 (-359) (-148) (-1029 (-560)))) (-4 *5 (-1211 *4)) (-5 *2 (-577 (-403 *5))) (-5 *1 (-564 *4 *5)) (-5 *3 (-403 *5))))) -(-10 -7 (-15 -2376 ((-577 (-403 |#2|)) (-403 |#2|))) (-15 -1690 ((-3 (-403 |#2|) "failed") (-403 |#2|))) (-15 -3625 ((-3 (-2 (|:| -2962 (-403 |#2|)) (|:| |coeff| (-403 |#2|))) "failed") (-403 |#2|) (-403 |#2|))) (-15 -2351 ((-3 (-2 (|:| |mainpart| (-403 |#2|)) (|:| |limitedlogs| (-626 (-2 (|:| |coeff| (-403 |#2|)) (|:| |logand| (-403 |#2|)))))) "failed") (-403 |#2|) (-626 (-403 |#2|))))) -((-1344 (((-3 (-560) "failed") |#1|) 14)) (-1589 (((-121) |#1|) 13)) (-2292 (((-560) |#1|) 9))) -(((-565 |#1|) (-10 -7 (-15 -2292 ((-560) |#1|)) (-15 -1589 ((-121) |#1|)) (-15 -1344 ((-3 (-560) "failed") |#1|))) (-1029 (-560))) (T -565)) -((-1344 (*1 *2 *3) (|partial| -12 (-5 *2 (-560)) (-5 *1 (-565 *3)) (-4 *3 (-1029 *2)))) (-1589 (*1 *2 *3) (-12 (-5 *2 (-121)) (-5 *1 (-565 *3)) (-4 *3 (-1029 (-560))))) (-2292 (*1 *2 *3) (-12 (-5 *2 (-560)) (-5 *1 (-565 *3)) (-4 *3 (-1029 *2))))) -(-10 -7 (-15 -2292 ((-560) |#1|)) (-15 -1589 ((-121) |#1|)) (-15 -1344 ((-3 (-560) "failed") |#1|))) -((-4037 (((-3 (-2 (|:| |mainpart| (-403 (-945 |#1|))) (|:| |limitedlogs| (-626 (-2 (|:| |coeff| (-403 (-945 |#1|))) (|:| |logand| (-403 (-945 |#1|))))))) "failed") (-403 (-945 |#1|)) (-1153) (-626 (-403 (-945 |#1|)))) 43)) (-3942 (((-577 (-403 (-945 |#1|))) (-403 (-945 |#1|)) (-1153)) 25)) (-1356 (((-3 (-403 (-945 |#1|)) "failed") (-403 (-945 |#1|)) (-1153)) 20)) (-2075 (((-3 (-2 (|:| -2962 (-403 (-945 |#1|))) (|:| |coeff| (-403 (-945 |#1|)))) "failed") (-403 (-945 |#1|)) (-1153) (-403 (-945 |#1|))) 32))) -(((-566 |#1|) (-10 -7 (-15 -3942 ((-577 (-403 (-945 |#1|))) (-403 (-945 |#1|)) (-1153))) (-15 -1356 ((-3 (-403 (-945 |#1|)) "failed") (-403 (-945 |#1|)) (-1153))) (-15 -4037 ((-3 (-2 (|:| |mainpart| (-403 (-945 |#1|))) (|:| |limitedlogs| (-626 (-2 (|:| |coeff| (-403 (-945 |#1|))) (|:| |logand| (-403 (-945 |#1|))))))) "failed") (-403 (-945 |#1|)) (-1153) (-626 (-403 (-945 |#1|))))) (-15 -2075 ((-3 (-2 (|:| -2962 (-403 (-945 |#1|))) (|:| |coeff| (-403 (-945 |#1|)))) "failed") (-403 (-945 |#1|)) (-1153) (-403 (-945 |#1|))))) (-13 (-550) (-1029 (-560)) (-148))) (T -566)) -((-2075 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1153)) (-4 *5 (-13 (-550) (-1029 (-560)) (-148))) (-5 *2 (-2 (|:| -2962 (-403 (-945 *5))) (|:| |coeff| (-403 (-945 *5))))) (-5 *1 (-566 *5)) (-5 *3 (-403 (-945 *5))))) (-4037 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1153)) (-5 *5 (-626 (-403 (-945 *6)))) (-5 *3 (-403 (-945 *6))) (-4 *6 (-13 (-550) (-1029 (-560)) (-148))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-626 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-566 *6)))) (-1356 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-403 (-945 *4))) (-5 *3 (-1153)) (-4 *4 (-13 (-550) (-1029 (-560)) (-148))) (-5 *1 (-566 *4)))) (-3942 (*1 *2 *3 *4) (-12 (-5 *4 (-1153)) (-4 *5 (-13 (-550) (-1029 (-560)) (-148))) (-5 *2 (-577 (-403 (-945 *5)))) (-5 *1 (-566 *5)) (-5 *3 (-403 (-945 *5)))))) -(-10 -7 (-15 -3942 ((-577 (-403 (-945 |#1|))) (-403 (-945 |#1|)) (-1153))) (-15 -1356 ((-3 (-403 (-945 |#1|)) "failed") (-403 (-945 |#1|)) (-1153))) (-15 -4037 ((-3 (-2 (|:| |mainpart| (-403 (-945 |#1|))) (|:| |limitedlogs| (-626 (-2 (|:| |coeff| (-403 (-945 |#1|))) (|:| |logand| (-403 (-945 |#1|))))))) "failed") (-403 (-945 |#1|)) (-1153) (-626 (-403 (-945 |#1|))))) (-15 -2075 ((-3 (-2 (|:| -2962 (-403 (-945 |#1|))) (|:| |coeff| (-403 (-945 |#1|)))) "failed") (-403 (-945 |#1|)) (-1153) (-403 (-945 |#1|))))) -((-2601 (((-121) $ $) 59)) (-2832 (((-121) $) 36)) (-2163 ((|#1| $) 30)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL)) (-1350 (($ $) NIL)) (-3376 (((-121) $) 63)) (-2570 (($ $) 123)) (-2514 (($ $) 103)) (-2280 ((|#1| $) 28)) (-2314 (((-3 $ "failed") $ $) NIL)) (-2479 (($ $) NIL)) (-2561 (($ $) 125)) (-2790 (($ $) 99)) (-2579 (($ $) 127)) (-2523 (($ $) 107)) (-4236 (($) NIL T CONST)) (-1473 (((-3 (-560) "failed") $) 78)) (-3001 (((-560) $) 80)) (-1823 (((-3 $ "failed") $) 62)) (-2979 (($ |#1| |#1|) 26)) (-1786 (((-121) $) 33)) (-2474 (($) 89)) (-2642 (((-121) $) 43)) (-2586 (($ $ (-560)) NIL)) (-2187 (((-121) $) 34)) (-4325 (($ $ $) NIL)) (-2501 (($ $ $) NIL)) (-4399 (($ $) 91)) (-2582 (($ $ $) NIL) (($ (-626 $)) NIL)) (-1291 (((-1135) $) NIL)) (-1959 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-403 (-560))) 77)) (-2289 ((|#1| $) 27)) (-4353 (((-1100) $) NIL)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL)) (-4440 (($ $ $) 65) (($ (-626 $)) NIL)) (-2336 (((-3 $ "failed") $ $) 64)) (-2469 (($ $) 93)) (-2585 (($ $) 131)) (-2528 (($ $) 105)) (-2575 (($ $) 133)) (-2519 (($ $) 109)) (-2566 (($ $) 129)) (-2795 (($ $) 101)) (-3116 (((-121) $ |#1|) 31)) (-2801 (((-842) $) 85) (($ (-560)) 67) (($ $) NIL) (($ (-560)) 67)) (-1751 (((-755)) 87)) (-2598 (($ $) 145)) (-2541 (($ $) 115)) (-2328 (((-121) $ $) NIL)) (-2590 (($ $) 143)) (-2532 (($ $) 111)) (-2608 (($ $) 141)) (-2549 (($ $) 121)) (-3689 (($ $) 139)) (-2554 (($ $) 119)) (-2604 (($ $) 137)) (-2545 (($ $) 117)) (-2594 (($ $) 135)) (-2536 (($ $) 113)) (-2464 (($ $ (-909)) 55) (($ $ (-755)) NIL)) (-3304 (($) 21 T CONST)) (-1459 (($) 10 T CONST)) (-1691 (((-121) $ $) NIL)) (-1675 (((-121) $ $) NIL)) (-1653 (((-121) $ $) 37)) (-1683 (((-121) $ $) NIL)) (-1667 (((-121) $ $) 35)) (-1725 (($ $) 41) (($ $ $) 42)) (-1716 (($ $ $) 40)) (** (($ $ (-909)) 54) (($ $ (-755)) NIL) (($ $ $) 95) (($ $ (-403 (-560))) 147)) (* (($ (-909) $) 51) (($ (-755) $) NIL) (($ (-560) $) 50) (($ $ $) 48))) -(((-567 |#1|) (-547 |#1|) (-13 (-400) (-1173))) (T -567)) -NIL -(-547 |#1|) -((-1887 (((-3 (-626 (-1149 (-560))) "failed") (-626 (-1149 (-560))) (-1149 (-560))) 24))) -(((-568) (-10 -7 (-15 -1887 ((-3 (-626 (-1149 (-560))) "failed") (-626 (-1149 (-560))) (-1149 (-560)))))) (T -568)) -((-1887 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-626 (-1149 (-560)))) (-5 *3 (-1149 (-560))) (-5 *1 (-568))))) -(-10 -7 (-15 -1887 ((-3 (-626 (-1149 (-560))) "failed") (-626 (-1149 (-560))) (-1149 (-560))))) -((-2179 (((-626 (-599 |#2|)) (-626 (-599 |#2|)) (-1153)) 18)) (-1487 (((-626 (-599 |#2|)) (-626 |#2|) (-1153)) 23)) (-1749 (((-626 (-599 |#2|)) (-626 (-599 |#2|)) (-626 (-599 |#2|))) 10)) (-1410 ((|#2| |#2| (-1153)) 51 (|has| |#1| (-550)))) (-3045 ((|#2| |#2| (-1153)) 76 (-12 (|has| |#2| (-274)) (|has| |#1| (-447))))) (-1534 (((-599 |#2|) (-599 |#2|) (-626 (-599 |#2|)) (-1153)) 25)) (-2571 (((-599 |#2|) (-626 (-599 |#2|))) 24)) (-3588 (((-577 |#2|) |#2| (-1153) (-1 (-577 |#2|) |#2| (-1153)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1153))) 100 (-12 (|has| |#2| (-274)) (|has| |#2| (-612)) (|has| |#2| (-1029 (-1153))) (|has| |#1| (-601 (-879 (-560)))) (|has| |#1| (-447)) (|has| |#1| (-873 (-560))))))) -(((-569 |#1| |#2|) (-10 -7 (-15 -2179 ((-626 (-599 |#2|)) (-626 (-599 |#2|)) (-1153))) (-15 -2571 ((-599 |#2|) (-626 (-599 |#2|)))) (-15 -1534 ((-599 |#2|) (-599 |#2|) (-626 (-599 |#2|)) (-1153))) (-15 -1749 ((-626 (-599 |#2|)) (-626 (-599 |#2|)) (-626 (-599 |#2|)))) (-15 -1487 ((-626 (-599 |#2|)) (-626 |#2|) (-1153))) (IF (|has| |#1| (-550)) (-15 -1410 (|#2| |#2| (-1153))) |noBranch|) (IF (|has| |#1| (-447)) (IF (|has| |#2| (-274)) (PROGN (-15 -3045 (|#2| |#2| (-1153))) (IF (|has| |#1| (-601 (-879 (-560)))) (IF (|has| |#1| (-873 (-560))) (IF (|has| |#2| (-612)) (IF (|has| |#2| (-1029 (-1153))) (-15 -3588 ((-577 |#2|) |#2| (-1153) (-1 (-577 |#2|) |#2| (-1153)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1153)))) |noBranch|) |noBranch|) |noBranch|) |noBranch|)) |noBranch|) |noBranch|)) (-834) (-426 |#1|)) (T -569)) -((-3588 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-577 *3) *3 (-1153))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1153))) (-4 *3 (-274)) (-4 *3 (-612)) (-4 *3 (-1029 *4)) (-4 *3 (-426 *7)) (-5 *4 (-1153)) (-4 *7 (-601 (-879 (-560)))) (-4 *7 (-447)) (-4 *7 (-873 (-560))) (-4 *7 (-834)) (-5 *2 (-577 *3)) (-5 *1 (-569 *7 *3)))) (-3045 (*1 *2 *2 *3) (-12 (-5 *3 (-1153)) (-4 *4 (-447)) (-4 *4 (-834)) (-5 *1 (-569 *4 *2)) (-4 *2 (-274)) (-4 *2 (-426 *4)))) (-1410 (*1 *2 *2 *3) (-12 (-5 *3 (-1153)) (-4 *4 (-550)) (-4 *4 (-834)) (-5 *1 (-569 *4 *2)) (-4 *2 (-426 *4)))) (-1487 (*1 *2 *3 *4) (-12 (-5 *3 (-626 *6)) (-5 *4 (-1153)) (-4 *6 (-426 *5)) (-4 *5 (-834)) (-5 *2 (-626 (-599 *6))) (-5 *1 (-569 *5 *6)))) (-1749 (*1 *2 *2 *2) (-12 (-5 *2 (-626 (-599 *4))) (-4 *4 (-426 *3)) (-4 *3 (-834)) (-5 *1 (-569 *3 *4)))) (-1534 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-626 (-599 *6))) (-5 *4 (-1153)) (-5 *2 (-599 *6)) (-4 *6 (-426 *5)) (-4 *5 (-834)) (-5 *1 (-569 *5 *6)))) (-2571 (*1 *2 *3) (-12 (-5 *3 (-626 (-599 *5))) (-4 *4 (-834)) (-5 *2 (-599 *5)) (-5 *1 (-569 *4 *5)) (-4 *5 (-426 *4)))) (-2179 (*1 *2 *2 *3) (-12 (-5 *2 (-626 (-599 *5))) (-5 *3 (-1153)) (-4 *5 (-426 *4)) (-4 *4 (-834)) (-5 *1 (-569 *4 *5))))) -(-10 -7 (-15 -2179 ((-626 (-599 |#2|)) (-626 (-599 |#2|)) (-1153))) (-15 -2571 ((-599 |#2|) (-626 (-599 |#2|)))) (-15 -1534 ((-599 |#2|) (-599 |#2|) (-626 (-599 |#2|)) (-1153))) (-15 -1749 ((-626 (-599 |#2|)) (-626 (-599 |#2|)) (-626 (-599 |#2|)))) (-15 -1487 ((-626 (-599 |#2|)) (-626 |#2|) (-1153))) (IF (|has| |#1| (-550)) (-15 -1410 (|#2| |#2| (-1153))) |noBranch|) (IF (|has| |#1| (-447)) (IF (|has| |#2| (-274)) (PROGN (-15 -3045 (|#2| |#2| (-1153))) (IF (|has| |#1| (-601 (-879 (-560)))) (IF (|has| |#1| (-873 (-560))) (IF (|has| |#2| (-612)) (IF (|has| |#2| (-1029 (-1153))) (-15 -3588 ((-577 |#2|) |#2| (-1153) (-1 (-577 |#2|) |#2| (-1153)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1153)))) |noBranch|) |noBranch|) |noBranch|) |noBranch|)) |noBranch|) |noBranch|)) -((-2948 (((-2 (|:| |answer| (-577 (-403 |#2|))) (|:| |a0| |#1|)) (-403 |#2|) (-1 |#2| |#2|) (-1 (-3 (-626 |#1|) "failed") (-560) |#1| |#1|)) 167)) (-2241 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-403 |#2|)) (|:| |limitedlogs| (-626 (-2 (|:| |coeff| (-403 |#2|)) (|:| |logand| (-403 |#2|))))))) (|:| |a0| |#1|)) "failed") (-403 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2962 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-626 (-403 |#2|))) 143)) (-2404 (((-3 (-2 (|:| |mainpart| (-403 |#2|)) (|:| |limitedlogs| (-626 (-2 (|:| |coeff| (-403 |#2|)) (|:| |logand| (-403 |#2|)))))) "failed") (-403 |#2|) (-1 |#2| |#2|) (-626 (-403 |#2|))) 140)) (-2401 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2962 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 129)) (-3941 (((-2 (|:| |answer| (-577 (-403 |#2|))) (|:| |a0| |#1|)) (-403 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2962 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 153)) (-3870 (((-3 (-2 (|:| -2962 (-403 |#2|)) (|:| |coeff| (-403 |#2|))) "failed") (-403 |#2|) (-1 |#2| |#2|) (-403 |#2|)) 170)) (-3018 (((-3 (-2 (|:| |answer| (-403 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2962 (-403 |#2|)) (|:| |coeff| (-403 |#2|))) "failed") (-403 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2962 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-403 |#2|)) 173)) (-3407 (((-2 (|:| |ir| (-577 (-403 |#2|))) (|:| |specpart| (-403 |#2|)) (|:| |polypart| |#2|)) (-403 |#2|) (-1 |#2| |#2|)) 81)) (-4186 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 88)) (-2206 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-403 |#2|)) (|:| |limitedlogs| (-626 (-2 (|:| |coeff| (-403 |#2|)) (|:| |logand| (-403 |#2|))))))) (|:| |a0| |#1|)) "failed") (-403 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3437 |#1|) (|:| |sol?| (-121))) (-560) |#1|) (-626 (-403 |#2|))) 147)) (-2892 (((-3 (-607 |#1| |#2|) "failed") (-607 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3437 |#1|) (|:| |sol?| (-121))) (-560) |#1|)) 133)) (-3057 (((-2 (|:| |answer| (-577 (-403 |#2|))) (|:| |a0| |#1|)) (-403 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3437 |#1|) (|:| |sol?| (-121))) (-560) |#1|)) 157)) (-2095 (((-3 (-2 (|:| |answer| (-403 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2962 (-403 |#2|)) (|:| |coeff| (-403 |#2|))) "failed") (-403 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3437 |#1|) (|:| |sol?| (-121))) (-560) |#1|) (-403 |#2|)) 178))) -(((-570 |#1| |#2|) (-10 -7 (-15 -3941 ((-2 (|:| |answer| (-577 (-403 |#2|))) (|:| |a0| |#1|)) (-403 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2962 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -3057 ((-2 (|:| |answer| (-577 (-403 |#2|))) (|:| |a0| |#1|)) (-403 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3437 |#1|) (|:| |sol?| (-121))) (-560) |#1|))) (-15 -2948 ((-2 (|:| |answer| (-577 (-403 |#2|))) (|:| |a0| |#1|)) (-403 |#2|) (-1 |#2| |#2|) (-1 (-3 (-626 |#1|) "failed") (-560) |#1| |#1|))) (-15 -3018 ((-3 (-2 (|:| |answer| (-403 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2962 (-403 |#2|)) (|:| |coeff| (-403 |#2|))) "failed") (-403 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2962 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-403 |#2|))) (-15 -2095 ((-3 (-2 (|:| |answer| (-403 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2962 (-403 |#2|)) (|:| |coeff| (-403 |#2|))) "failed") (-403 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3437 |#1|) (|:| |sol?| (-121))) (-560) |#1|) (-403 |#2|))) (-15 -2241 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-403 |#2|)) (|:| |limitedlogs| (-626 (-2 (|:| |coeff| (-403 |#2|)) (|:| |logand| (-403 |#2|))))))) (|:| |a0| |#1|)) "failed") (-403 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2962 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-626 (-403 |#2|)))) (-15 -2206 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-403 |#2|)) (|:| |limitedlogs| (-626 (-2 (|:| |coeff| (-403 |#2|)) (|:| |logand| (-403 |#2|))))))) (|:| |a0| |#1|)) "failed") (-403 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3437 |#1|) (|:| |sol?| (-121))) (-560) |#1|) (-626 (-403 |#2|)))) (-15 -3870 ((-3 (-2 (|:| -2962 (-403 |#2|)) (|:| |coeff| (-403 |#2|))) "failed") (-403 |#2|) (-1 |#2| |#2|) (-403 |#2|))) (-15 -2404 ((-3 (-2 (|:| |mainpart| (-403 |#2|)) (|:| |limitedlogs| (-626 (-2 (|:| |coeff| (-403 |#2|)) (|:| |logand| (-403 |#2|)))))) "failed") (-403 |#2|) (-1 |#2| |#2|) (-626 (-403 |#2|)))) (-15 -2401 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2962 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2892 ((-3 (-607 |#1| |#2|) "failed") (-607 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3437 |#1|) (|:| |sol?| (-121))) (-560) |#1|))) (-15 -3407 ((-2 (|:| |ir| (-577 (-403 |#2|))) (|:| |specpart| (-403 |#2|)) (|:| |polypart| |#2|)) (-403 |#2|) (-1 |#2| |#2|))) (-15 -4186 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-359) (-1211 |#1|)) (T -570)) -((-4186 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1211 *5)) (-4 *5 (-359)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-570 *5 *3)))) (-3407 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1211 *5)) (-4 *5 (-359)) (-5 *2 (-2 (|:| |ir| (-577 (-403 *6))) (|:| |specpart| (-403 *6)) (|:| |polypart| *6))) (-5 *1 (-570 *5 *6)) (-5 *3 (-403 *6)))) (-2892 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-607 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3437 *4) (|:| |sol?| (-121))) (-560) *4)) (-4 *4 (-359)) (-4 *5 (-1211 *4)) (-5 *1 (-570 *4 *5)))) (-2401 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2962 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-359)) (-5 *1 (-570 *4 *2)) (-4 *2 (-1211 *4)))) (-2404 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-626 (-403 *7))) (-4 *7 (-1211 *6)) (-5 *3 (-403 *7)) (-4 *6 (-359)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-626 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-570 *6 *7)))) (-3870 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1211 *5)) (-4 *5 (-359)) (-5 *2 (-2 (|:| -2962 (-403 *6)) (|:| |coeff| (-403 *6)))) (-5 *1 (-570 *5 *6)) (-5 *3 (-403 *6)))) (-2206 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3437 *7) (|:| |sol?| (-121))) (-560) *7)) (-5 *6 (-626 (-403 *8))) (-4 *7 (-359)) (-4 *8 (-1211 *7)) (-5 *3 (-403 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-626 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-570 *7 *8)))) (-2241 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2962 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-626 (-403 *8))) (-4 *7 (-359)) (-4 *8 (-1211 *7)) (-5 *3 (-403 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-626 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-570 *7 *8)))) (-2095 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3437 *6) (|:| |sol?| (-121))) (-560) *6)) (-4 *6 (-359)) (-4 *7 (-1211 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-403 *7)) (|:| |a0| *6)) (-2 (|:| -2962 (-403 *7)) (|:| |coeff| (-403 *7))) "failed")) (-5 *1 (-570 *6 *7)) (-5 *3 (-403 *7)))) (-3018 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2962 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-359)) (-4 *7 (-1211 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-403 *7)) (|:| |a0| *6)) (-2 (|:| -2962 (-403 *7)) (|:| |coeff| (-403 *7))) "failed")) (-5 *1 (-570 *6 *7)) (-5 *3 (-403 *7)))) (-2948 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-626 *6) "failed") (-560) *6 *6)) (-4 *6 (-359)) (-4 *7 (-1211 *6)) (-5 *2 (-2 (|:| |answer| (-577 (-403 *7))) (|:| |a0| *6))) (-5 *1 (-570 *6 *7)) (-5 *3 (-403 *7)))) (-3057 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3437 *6) (|:| |sol?| (-121))) (-560) *6)) (-4 *6 (-359)) (-4 *7 (-1211 *6)) (-5 *2 (-2 (|:| |answer| (-577 (-403 *7))) (|:| |a0| *6))) (-5 *1 (-570 *6 *7)) (-5 *3 (-403 *7)))) (-3941 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2962 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-359)) (-4 *7 (-1211 *6)) (-5 *2 (-2 (|:| |answer| (-577 (-403 *7))) (|:| |a0| *6))) (-5 *1 (-570 *6 *7)) (-5 *3 (-403 *7))))) -(-10 -7 (-15 -3941 ((-2 (|:| |answer| (-577 (-403 |#2|))) (|:| |a0| |#1|)) (-403 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2962 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -3057 ((-2 (|:| |answer| (-577 (-403 |#2|))) (|:| |a0| |#1|)) (-403 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3437 |#1|) (|:| |sol?| (-121))) (-560) |#1|))) (-15 -2948 ((-2 (|:| |answer| (-577 (-403 |#2|))) (|:| |a0| |#1|)) (-403 |#2|) (-1 |#2| |#2|) (-1 (-3 (-626 |#1|) "failed") (-560) |#1| |#1|))) (-15 -3018 ((-3 (-2 (|:| |answer| (-403 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2962 (-403 |#2|)) (|:| |coeff| (-403 |#2|))) "failed") (-403 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2962 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-403 |#2|))) (-15 -2095 ((-3 (-2 (|:| |answer| (-403 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2962 (-403 |#2|)) (|:| |coeff| (-403 |#2|))) "failed") (-403 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3437 |#1|) (|:| |sol?| (-121))) (-560) |#1|) (-403 |#2|))) (-15 -2241 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-403 |#2|)) (|:| |limitedlogs| (-626 (-2 (|:| |coeff| (-403 |#2|)) (|:| |logand| (-403 |#2|))))))) (|:| |a0| |#1|)) "failed") (-403 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2962 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-626 (-403 |#2|)))) (-15 -2206 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-403 |#2|)) (|:| |limitedlogs| (-626 (-2 (|:| |coeff| (-403 |#2|)) (|:| |logand| (-403 |#2|))))))) (|:| |a0| |#1|)) "failed") (-403 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3437 |#1|) (|:| |sol?| (-121))) (-560) |#1|) (-626 (-403 |#2|)))) (-15 -3870 ((-3 (-2 (|:| -2962 (-403 |#2|)) (|:| |coeff| (-403 |#2|))) "failed") (-403 |#2|) (-1 |#2| |#2|) (-403 |#2|))) (-15 -2404 ((-3 (-2 (|:| |mainpart| (-403 |#2|)) (|:| |limitedlogs| (-626 (-2 (|:| |coeff| (-403 |#2|)) (|:| |logand| (-403 |#2|)))))) "failed") (-403 |#2|) (-1 |#2| |#2|) (-626 (-403 |#2|)))) (-15 -2401 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2962 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2892 ((-3 (-607 |#1| |#2|) "failed") (-607 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3437 |#1|) (|:| |sol?| (-121))) (-560) |#1|))) (-15 -3407 ((-2 (|:| |ir| (-577 (-403 |#2|))) (|:| |specpart| (-403 |#2|)) (|:| |polypart| |#2|)) (-403 |#2|) (-1 |#2| |#2|))) (-15 -4186 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) -((-3636 (((-3 |#2| "failed") |#2| (-1153) (-1153)) 10))) -(((-571 |#1| |#2|) (-10 -7 (-15 -3636 ((-3 |#2| "failed") |#2| (-1153) (-1153)))) (-13 (-296) (-834) (-148) (-1029 (-560)) (-622 (-560))) (-13 (-1173) (-951) (-1116) (-29 |#1|))) (T -571)) -((-3636 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1153)) (-4 *4 (-13 (-296) (-834) (-148) (-1029 (-560)) (-622 (-560)))) (-5 *1 (-571 *4 *2)) (-4 *2 (-13 (-1173) (-951) (-1116) (-29 *4)))))) -(-10 -7 (-15 -3636 ((-3 |#2| "failed") |#2| (-1153) (-1153)))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL)) (-1350 (($ $) NIL)) (-3376 (((-121) $) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-2479 (($ $ (-560)) 65)) (-4179 (((-121) $ $) NIL)) (-4236 (($) NIL T CONST)) (-4463 (($ (-1149 (-560)) (-560)) 71)) (-2563 (($ $ $) NIL)) (-1823 (((-3 $ "failed") $) 57)) (-2792 (($ $) 33)) (-2572 (($ $ $) NIL)) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) NIL)) (-3504 (((-755) $) 15)) (-2642 (((-121) $) NIL)) (-3856 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-3254 (((-560)) 27)) (-2331 (((-560) $) 31)) (-2582 (($ $ $) NIL) (($ (-626 $)) NIL)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL)) (-4440 (($ $ $) NIL) (($ (-626 $)) NIL)) (-3505 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3292 (($ $ (-560)) 21)) (-2336 (((-3 $ "failed") $ $) 58)) (-3456 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-4445 (((-755) $) 16)) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) 60)) (-1727 (((-1133 (-560)) $) 18)) (-2234 (($ $) 23)) (-2801 (((-842) $) 85) (($ (-560)) 51) (($ $) NIL)) (-1751 (((-755)) 14)) (-2328 (((-121) $ $) NIL)) (-2550 (((-560) $ (-560)) 35)) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (-3304 (($) 34 T CONST)) (-1459 (($) 19 T CONST)) (-1653 (((-121) $ $) 38)) (-1725 (($ $) 50) (($ $ $) 36)) (-1716 (($ $ $) 49)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) 53) (($ $ $) 54))) -(((-572 |#1| |#2|) (-855 |#1|) (-560) (-121)) (T -572)) -NIL -(-855 |#1|) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) 18)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL)) (-1350 (($ $) NIL)) (-3376 (((-121) $) NIL)) (-3913 (((-121) $) NIL)) (-1881 (((-755)) NIL)) (-1944 (($ $ (-909)) NIL (|has| $ (-364))) (($ $) NIL)) (-4357 (((-1161 (-909) (-755)) (-560)) 47)) (-2314 (((-3 $ "failed") $ $) NIL)) (-3065 (($ $) NIL)) (-2953 (((-414 $) $) NIL)) (-4179 (((-121) $ $) NIL)) (-2912 (((-755)) NIL)) (-4236 (($) NIL T CONST)) (-1473 (((-3 $ "failed") $) 75)) (-3001 (($ $) 74)) (-3380 (($ (-1236 $)) 73)) (-4107 (((-3 "prime" "polynomial" "normal" "cyclic")) 42)) (-2563 (($ $ $) NIL)) (-1823 (((-3 $ "failed") $) 30)) (-1666 (($) NIL)) (-2572 (($ $ $) NIL)) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) NIL)) (-2481 (($) 49)) (-1537 (((-121) $) NIL)) (-2937 (($ $) NIL) (($ $ (-755)) NIL)) (-3319 (((-121) $) NIL)) (-3504 (((-820 (-909)) $) NIL) (((-909) $) NIL)) (-2642 (((-121) $) NIL)) (-2174 (($) 35 (|has| $ (-364)))) (-1428 (((-121) $) NIL (|has| $ (-364)))) (-3339 (($ $ (-909)) NIL (|has| $ (-364))) (($ $) NIL)) (-1424 (((-3 $ "failed") $) NIL)) (-3856 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-4108 (((-1149 $) $ (-909)) NIL (|has| $ (-364))) (((-1149 $) $) 83)) (-3142 (((-909) $) 55)) (-3312 (((-1149 $) $) NIL (|has| $ (-364)))) (-4175 (((-3 (-1149 $) "failed") $ $) NIL (|has| $ (-364))) (((-1149 $) $) NIL (|has| $ (-364)))) (-2455 (($ $ (-1149 $)) NIL (|has| $ (-364)))) (-2582 (($ $ $) NIL) (($ (-626 $)) NIL)) (-1291 (((-1135) $) NIL)) (-1701 (($ $) NIL)) (-1394 (($) NIL T CONST)) (-1330 (($ (-909)) 48)) (-3557 (((-121) $) 67)) (-4353 (((-1100) $) NIL)) (-4250 (($) 16 (|has| $ (-364)))) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL)) (-4440 (($ $ $) NIL) (($ (-626 $)) NIL)) (-2385 (((-626 (-2 (|:| -1601 (-560)) (|:| -4034 (-560))))) 40)) (-1601 (((-414 $) $) NIL)) (-1472 (((-909)) 66) (((-820 (-909))) NIL)) (-3505 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2336 (((-3 $ "failed") $ $) NIL)) (-3456 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-4445 (((-755) $) NIL)) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL)) (-2935 (((-3 (-755) "failed") $ $) NIL) (((-755) $) NIL)) (-4016 (((-139)) NIL)) (-2443 (($ $ (-755)) NIL) (($ $) NIL)) (-3662 (((-909) $) 65) (((-820 (-909)) $) NIL)) (-3591 (((-1149 $)) 82)) (-2612 (($) 54)) (-1380 (($) 36 (|has| $ (-364)))) (-3390 (((-671 $) (-1236 $)) NIL) (((-1236 $) $) 71)) (-4255 (((-560) $) 26)) (-3248 (((-3 (-1236 $) "failed") (-671 $)) NIL)) (-2801 (((-842) $) NIL) (($ (-560)) 28) (($ $) NIL) (($ (-403 (-560))) NIL)) (-2272 (((-3 $ "failed") $) NIL) (($ $) 84)) (-1751 (((-755)) 37)) (-4374 (((-1236 $) (-909)) 77) (((-1236 $)) 76)) (-2328 (((-121) $ $) NIL)) (-1535 (((-121) $) NIL)) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL)) (-3304 (($) 19 T CONST)) (-1459 (($) 15 T CONST)) (-2353 (($ $ (-755)) NIL (|has| $ (-364))) (($ $) NIL (|has| $ (-364)))) (-2500 (($ $ (-755)) NIL) (($ $) NIL)) (-1653 (((-121) $ $) NIL)) (-1733 (($ $ $) NIL)) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) NIL)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) 24)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) 61) (($ $ (-403 (-560))) NIL) (($ (-403 (-560)) $) NIL))) -(((-573 |#1|) (-13 (-344) (-321 $) (-601 (-560))) (-909)) (T -573)) -NIL -(-13 (-344) (-321 $) (-601 (-560))) -((-2227 (((-1241) (-1135)) 10))) -(((-574) (-10 -7 (-15 -2227 ((-1241) (-1135))))) (T -574)) -((-2227 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1241)) (-5 *1 (-574))))) -(-10 -7 (-15 -2227 ((-1241) (-1135)))) -((-2437 (((-577 |#2|) (-577 |#2|)) 37)) (-3780 (((-626 |#2|) (-577 |#2|)) 39)) (-3188 ((|#2| (-577 |#2|)) 46))) -(((-575 |#1| |#2|) (-10 -7 (-15 -2437 ((-577 |#2|) (-577 |#2|))) (-15 -3780 ((-626 |#2|) (-577 |#2|))) (-15 -3188 (|#2| (-577 |#2|)))) (-13 (-447) (-1029 (-560)) (-834) (-622 (-560))) (-13 (-29 |#1|) (-1173))) (T -575)) -((-3188 (*1 *2 *3) (-12 (-5 *3 (-577 *2)) (-4 *2 (-13 (-29 *4) (-1173))) (-5 *1 (-575 *4 *2)) (-4 *4 (-13 (-447) (-1029 (-560)) (-834) (-622 (-560)))))) (-3780 (*1 *2 *3) (-12 (-5 *3 (-577 *5)) (-4 *5 (-13 (-29 *4) (-1173))) (-4 *4 (-13 (-447) (-1029 (-560)) (-834) (-622 (-560)))) (-5 *2 (-626 *5)) (-5 *1 (-575 *4 *5)))) (-2437 (*1 *2 *2) (-12 (-5 *2 (-577 *4)) (-4 *4 (-13 (-29 *3) (-1173))) (-4 *3 (-13 (-447) (-1029 (-560)) (-834) (-622 (-560)))) (-5 *1 (-575 *3 *4))))) -(-10 -7 (-15 -2437 ((-577 |#2|) (-577 |#2|))) (-15 -3780 ((-626 |#2|) (-577 |#2|))) (-15 -3188 (|#2| (-577 |#2|)))) -((-2803 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-626 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-626 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 38) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -2962 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2962 |#1|) (|:| |coeff| |#1|)) "failed")) 31) (((-577 |#2|) (-1 |#2| |#1|) (-577 |#1|)) 26))) -(((-576 |#1| |#2|) (-10 -7 (-15 -2803 ((-577 |#2|) (-1 |#2| |#1|) (-577 |#1|))) (-15 -2803 ((-3 (-2 (|:| -2962 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2962 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -2803 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -2803 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-626 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-626 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-359) (-359)) (T -576)) -((-2803 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-626 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-359)) (-4 *6 (-359)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-626 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-576 *5 *6)))) (-2803 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-359)) (-4 *2 (-359)) (-5 *1 (-576 *5 *2)))) (-2803 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2962 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-359)) (-4 *6 (-359)) (-5 *2 (-2 (|:| -2962 *6) (|:| |coeff| *6))) (-5 *1 (-576 *5 *6)))) (-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-577 *5)) (-4 *5 (-359)) (-4 *6 (-359)) (-5 *2 (-577 *6)) (-5 *1 (-576 *5 *6))))) -(-10 -7 (-15 -2803 ((-577 |#2|) (-1 |#2| |#1|) (-577 |#1|))) (-15 -2803 ((-3 (-2 (|:| -2962 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2962 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -2803 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -2803 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-626 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-626 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-4236 (($) NIL T CONST)) (-1473 (((-3 |#1| "failed") $) 68)) (-3001 ((|#1| $) NIL)) (-2962 ((|#1| $) 24)) (-2189 (((-626 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 26)) (-2258 (($ |#1| (-626 (-2 (|:| |scalar| (-403 (-560))) (|:| |coeff| (-1149 |#1|)) (|:| |logand| (-1149 |#1|)))) (-626 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 22)) (-3639 (((-626 (-2 (|:| |scalar| (-403 (-560))) (|:| |coeff| (-1149 |#1|)) (|:| |logand| (-1149 |#1|)))) $) 25)) (-1291 (((-1135) $) NIL)) (-4041 (($ |#1| |#1|) 32) (($ |#1| (-1153)) 43 (|has| |#1| (-1029 (-1153))))) (-4353 (((-1100) $) NIL)) (-1728 (((-121) $) 28)) (-2443 ((|#1| $ (-1 |#1| |#1|)) 80) ((|#1| $ (-1153)) 81 (|has| |#1| (-887 (-1153))))) (-2801 (((-842) $) 95) (($ |#1|) 23)) (-3304 (($) 16 T CONST)) (-1653 (((-121) $ $) NIL)) (-1725 (($ $) 15) (($ $ $) NIL)) (-1716 (($ $ $) 77)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) 14) (($ (-403 (-560)) $) 35) (($ $ (-403 (-560))) NIL))) -(((-577 |#1|) (-13 (-699 (-403 (-560))) (-1029 |#1|) (-10 -8 (-15 -2258 ($ |#1| (-626 (-2 (|:| |scalar| (-403 (-560))) (|:| |coeff| (-1149 |#1|)) (|:| |logand| (-1149 |#1|)))) (-626 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2962 (|#1| $)) (-15 -3639 ((-626 (-2 (|:| |scalar| (-403 (-560))) (|:| |coeff| (-1149 |#1|)) (|:| |logand| (-1149 |#1|)))) $)) (-15 -2189 ((-626 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -1728 ((-121) $)) (-15 -4041 ($ |#1| |#1|)) (-15 -2443 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-887 (-1153))) (-15 -2443 (|#1| $ (-1153))) |noBranch|) (IF (|has| |#1| (-1029 (-1153))) (-15 -4041 ($ |#1| (-1153))) |noBranch|))) (-359)) (T -577)) -((-2258 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-626 (-2 (|:| |scalar| (-403 (-560))) (|:| |coeff| (-1149 *2)) (|:| |logand| (-1149 *2))))) (-5 *4 (-626 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-359)) (-5 *1 (-577 *2)))) (-2962 (*1 *2 *1) (-12 (-5 *1 (-577 *2)) (-4 *2 (-359)))) (-3639 (*1 *2 *1) (-12 (-5 *2 (-626 (-2 (|:| |scalar| (-403 (-560))) (|:| |coeff| (-1149 *3)) (|:| |logand| (-1149 *3))))) (-5 *1 (-577 *3)) (-4 *3 (-359)))) (-2189 (*1 *2 *1) (-12 (-5 *2 (-626 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-577 *3)) (-4 *3 (-359)))) (-1728 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-577 *3)) (-4 *3 (-359)))) (-4041 (*1 *1 *2 *2) (-12 (-5 *1 (-577 *2)) (-4 *2 (-359)))) (-2443 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-577 *2)) (-4 *2 (-359)))) (-2443 (*1 *2 *1 *3) (-12 (-4 *2 (-359)) (-4 *2 (-887 *3)) (-5 *1 (-577 *2)) (-5 *3 (-1153)))) (-4041 (*1 *1 *2 *3) (-12 (-5 *3 (-1153)) (-5 *1 (-577 *2)) (-4 *2 (-1029 *3)) (-4 *2 (-359))))) -(-13 (-699 (-403 (-560))) (-1029 |#1|) (-10 -8 (-15 -2258 ($ |#1| (-626 (-2 (|:| |scalar| (-403 (-560))) (|:| |coeff| (-1149 |#1|)) (|:| |logand| (-1149 |#1|)))) (-626 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2962 (|#1| $)) (-15 -3639 ((-626 (-2 (|:| |scalar| (-403 (-560))) (|:| |coeff| (-1149 |#1|)) (|:| |logand| (-1149 |#1|)))) $)) (-15 -2189 ((-626 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -1728 ((-121) $)) (-15 -4041 ($ |#1| |#1|)) (-15 -2443 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-887 (-1153))) (-15 -2443 (|#1| $ (-1153))) |noBranch|) (IF (|has| |#1| (-1029 (-1153))) (-15 -4041 ($ |#1| (-1153))) |noBranch|))) -((-2544 (((-121) |#1|) 16)) (-3919 (((-3 |#1| "failed") |#1|) 14)) (-3347 (((-2 (|:| -2871 |#1|) (|:| -4034 (-755))) |#1|) 30) (((-3 |#1| "failed") |#1| (-755)) 18)) (-3545 (((-121) |#1| (-755)) 19)) (-1360 ((|#1| |#1|) 31)) (-1980 ((|#1| |#1| (-755)) 33))) -(((-578 |#1|) (-10 -7 (-15 -3545 ((-121) |#1| (-755))) (-15 -3347 ((-3 |#1| "failed") |#1| (-755))) (-15 -3347 ((-2 (|:| -2871 |#1|) (|:| -4034 (-755))) |#1|)) (-15 -1980 (|#1| |#1| (-755))) (-15 -2544 ((-121) |#1|)) (-15 -3919 ((-3 |#1| "failed") |#1|)) (-15 -1360 (|#1| |#1|))) (-542)) (T -578)) -((-1360 (*1 *2 *2) (-12 (-5 *1 (-578 *2)) (-4 *2 (-542)))) (-3919 (*1 *2 *2) (|partial| -12 (-5 *1 (-578 *2)) (-4 *2 (-542)))) (-2544 (*1 *2 *3) (-12 (-5 *2 (-121)) (-5 *1 (-578 *3)) (-4 *3 (-542)))) (-1980 (*1 *2 *2 *3) (-12 (-5 *3 (-755)) (-5 *1 (-578 *2)) (-4 *2 (-542)))) (-3347 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2871 *3) (|:| -4034 (-755)))) (-5 *1 (-578 *3)) (-4 *3 (-542)))) (-3347 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-755)) (-5 *1 (-578 *2)) (-4 *2 (-542)))) (-3545 (*1 *2 *3 *4) (-12 (-5 *4 (-755)) (-5 *2 (-121)) (-5 *1 (-578 *3)) (-4 *3 (-542))))) -(-10 -7 (-15 -3545 ((-121) |#1| (-755))) (-15 -3347 ((-3 |#1| "failed") |#1| (-755))) (-15 -3347 ((-2 (|:| -2871 |#1|) (|:| -4034 (-755))) |#1|)) (-15 -1980 (|#1| |#1| (-755))) (-15 -2544 ((-121) |#1|)) (-15 -3919 ((-3 |#1| "failed") |#1|)) (-15 -1360 (|#1| |#1|))) -((-3728 (((-1149 |#1|) (-909)) 26))) -(((-579 |#1|) (-10 -7 (-15 -3728 ((-1149 |#1|) (-909)))) (-344)) (T -579)) -((-3728 (*1 *2 *3) (-12 (-5 *3 (-909)) (-5 *2 (-1149 *4)) (-5 *1 (-579 *4)) (-4 *4 (-344))))) -(-10 -7 (-15 -3728 ((-1149 |#1|) (-909)))) -((-2437 (((-577 (-403 (-945 |#1|))) (-577 (-403 (-945 |#1|)))) 26)) (-2376 (((-3 (-304 |#1|) (-626 (-304 |#1|))) (-403 (-945 |#1|)) (-1153)) 32 (|has| |#1| (-148)))) (-3780 (((-626 (-304 |#1|)) (-577 (-403 (-945 |#1|)))) 18)) (-2755 (((-304 |#1|) (-403 (-945 |#1|)) (-1153)) 30 (|has| |#1| (-148)))) (-3188 (((-304 |#1|) (-577 (-403 (-945 |#1|)))) 20))) -(((-580 |#1|) (-10 -7 (-15 -2437 ((-577 (-403 (-945 |#1|))) (-577 (-403 (-945 |#1|))))) (-15 -3780 ((-626 (-304 |#1|)) (-577 (-403 (-945 |#1|))))) (-15 -3188 ((-304 |#1|) (-577 (-403 (-945 |#1|))))) (IF (|has| |#1| (-148)) (PROGN (-15 -2376 ((-3 (-304 |#1|) (-626 (-304 |#1|))) (-403 (-945 |#1|)) (-1153))) (-15 -2755 ((-304 |#1|) (-403 (-945 |#1|)) (-1153)))) |noBranch|)) (-13 (-447) (-1029 (-560)) (-834) (-622 (-560)))) (T -580)) -((-2755 (*1 *2 *3 *4) (-12 (-5 *3 (-403 (-945 *5))) (-5 *4 (-1153)) (-4 *5 (-148)) (-4 *5 (-13 (-447) (-1029 (-560)) (-834) (-622 (-560)))) (-5 *2 (-304 *5)) (-5 *1 (-580 *5)))) (-2376 (*1 *2 *3 *4) (-12 (-5 *3 (-403 (-945 *5))) (-5 *4 (-1153)) (-4 *5 (-148)) (-4 *5 (-13 (-447) (-1029 (-560)) (-834) (-622 (-560)))) (-5 *2 (-3 (-304 *5) (-626 (-304 *5)))) (-5 *1 (-580 *5)))) (-3188 (*1 *2 *3) (-12 (-5 *3 (-577 (-403 (-945 *4)))) (-4 *4 (-13 (-447) (-1029 (-560)) (-834) (-622 (-560)))) (-5 *2 (-304 *4)) (-5 *1 (-580 *4)))) (-3780 (*1 *2 *3) (-12 (-5 *3 (-577 (-403 (-945 *4)))) (-4 *4 (-13 (-447) (-1029 (-560)) (-834) (-622 (-560)))) (-5 *2 (-626 (-304 *4))) (-5 *1 (-580 *4)))) (-2437 (*1 *2 *2) (-12 (-5 *2 (-577 (-403 (-945 *3)))) (-4 *3 (-13 (-447) (-1029 (-560)) (-834) (-622 (-560)))) (-5 *1 (-580 *3))))) -(-10 -7 (-15 -2437 ((-577 (-403 (-945 |#1|))) (-577 (-403 (-945 |#1|))))) (-15 -3780 ((-626 (-304 |#1|)) (-577 (-403 (-945 |#1|))))) (-15 -3188 ((-304 |#1|) (-577 (-403 (-945 |#1|))))) (IF (|has| |#1| (-148)) (PROGN (-15 -2376 ((-3 (-304 |#1|) (-626 (-304 |#1|))) (-403 (-945 |#1|)) (-1153))) (-15 -2755 ((-304 |#1|) (-403 (-945 |#1|)) (-1153)))) |noBranch|)) -((-3968 (((-626 (-671 (-560))) (-626 (-560)) (-626 (-892 (-560)))) 45) (((-626 (-671 (-560))) (-626 (-560))) 46) (((-671 (-560)) (-626 (-560)) (-892 (-560))) 41)) (-4170 (((-755) (-626 (-560))) 39))) -(((-581) (-10 -7 (-15 -4170 ((-755) (-626 (-560)))) (-15 -3968 ((-671 (-560)) (-626 (-560)) (-892 (-560)))) (-15 -3968 ((-626 (-671 (-560))) (-626 (-560)))) (-15 -3968 ((-626 (-671 (-560))) (-626 (-560)) (-626 (-892 (-560))))))) (T -581)) -((-3968 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-560))) (-5 *4 (-626 (-892 (-560)))) (-5 *2 (-626 (-671 (-560)))) (-5 *1 (-581)))) (-3968 (*1 *2 *3) (-12 (-5 *3 (-626 (-560))) (-5 *2 (-626 (-671 (-560)))) (-5 *1 (-581)))) (-3968 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-560))) (-5 *4 (-892 (-560))) (-5 *2 (-671 (-560))) (-5 *1 (-581)))) (-4170 (*1 *2 *3) (-12 (-5 *3 (-626 (-560))) (-5 *2 (-755)) (-5 *1 (-581))))) -(-10 -7 (-15 -4170 ((-755) (-626 (-560)))) (-15 -3968 ((-671 (-560)) (-626 (-560)) (-892 (-560)))) (-15 -3968 ((-626 (-671 (-560))) (-626 (-560)))) (-15 -3968 ((-626 (-671 (-560))) (-626 (-560)) (-626 (-892 (-560)))))) -((-3357 (((-626 |#5|) |#5| (-121)) 72)) (-1481 (((-121) |#5| (-626 |#5|)) 30))) -(((-582 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3357 ((-626 |#5|) |#5| (-121))) (-15 -1481 ((-121) |#5| (-626 |#5|)))) (-13 (-296) (-148)) (-780) (-834) (-1053 |#1| |#2| |#3|) (-1091 |#1| |#2| |#3| |#4|)) (T -582)) -((-1481 (*1 *2 *3 *4) (-12 (-5 *4 (-626 *3)) (-4 *3 (-1091 *5 *6 *7 *8)) (-4 *5 (-13 (-296) (-148))) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *8 (-1053 *5 *6 *7)) (-5 *2 (-121)) (-5 *1 (-582 *5 *6 *7 *8 *3)))) (-3357 (*1 *2 *3 *4) (-12 (-5 *4 (-121)) (-4 *5 (-13 (-296) (-148))) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *8 (-1053 *5 *6 *7)) (-5 *2 (-626 *3)) (-5 *1 (-582 *5 *6 *7 *8 *3)) (-4 *3 (-1091 *5 *6 *7 *8))))) -(-10 -7 (-15 -3357 ((-626 |#5|) |#5| (-121))) (-15 -1481 ((-121) |#5| (-626 |#5|)))) -((-2601 (((-121) $ $) NIL (|has| (-145) (-1082)))) (-4454 (($ $) 34)) (-4010 (($ $) NIL)) (-2486 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-2960 (((-1241) $ (-560) (-560)) NIL (|has| $ (-6 -4506)))) (-3762 (((-121) $ $) 51)) (-3842 (((-121) $ $ (-560)) 46)) (-2437 (((-626 $) $ (-145)) 59) (((-626 $) $ (-142)) 60)) (-3189 (((-121) (-1 (-121) (-145) (-145)) $) NIL) (((-121) $) NIL (|has| (-145) (-834)))) (-4410 (($ (-1 (-121) (-145) (-145)) $) NIL (|has| $ (-6 -4506))) (($ $) NIL (-12 (|has| $ (-6 -4506)) (|has| (-145) (-834))))) (-3743 (($ (-1 (-121) (-145) (-145)) $) NIL) (($ $) NIL (|has| (-145) (-834)))) (-3909 (((-121) $ (-755)) NIL)) (-2764 (((-145) $ (-560) (-145)) 45 (|has| $ (-6 -4506))) (((-145) $ (-1202 (-560)) (-145)) NIL (|has| $ (-6 -4506)))) (-3802 (($ (-1 (-121) (-145)) $) NIL (|has| $ (-6 -4505)))) (-4236 (($) NIL T CONST)) (-1851 (($ $ (-145)) 63) (($ $ (-142)) 64)) (-4030 (($ $) NIL (|has| $ (-6 -4506)))) (-2883 (($ $) NIL)) (-2493 (($ $ (-1202 (-560)) $) 44)) (-2868 (($ $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-145) (-1082))))) (-4310 (($ (-145) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-145) (-1082)))) (($ (-1 (-121) (-145)) $) NIL (|has| $ (-6 -4505)))) (-2342 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4505)) (|has| (-145) (-1082)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4505))) (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4505)))) (-1746 (((-145) $ (-560) (-145)) NIL (|has| $ (-6 -4506)))) (-1361 (((-145) $ (-560)) NIL)) (-3848 (((-121) $ $) 70)) (-2839 (((-560) (-1 (-121) (-145)) $) NIL) (((-560) (-145) $) NIL (|has| (-145) (-1082))) (((-560) (-145) $ (-560)) 48 (|has| (-145) (-1082))) (((-560) $ $ (-560)) 47) (((-560) (-142) $ (-560)) 50)) (-1981 (((-626 (-145)) $) NIL (|has| $ (-6 -4505)))) (-1721 (($ (-755) (-145)) 9)) (-2122 (((-121) $ (-755)) NIL)) (-4099 (((-560) $) 28 (|has| (-560) (-834)))) (-4325 (($ $ $) NIL (|has| (-145) (-834)))) (-2492 (($ (-1 (-121) (-145) (-145)) $ $) NIL) (($ $ $) NIL (|has| (-145) (-834)))) (-2130 (((-626 (-145)) $) NIL (|has| $ (-6 -4505)))) (-2030 (((-121) (-145) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-145) (-1082))))) (-2767 (((-560) $) 42 (|has| (-560) (-834)))) (-2501 (($ $ $) NIL (|has| (-145) (-834)))) (-4040 (((-121) $ $ (-145)) 71)) (-2840 (((-755) $ $ (-145)) 69)) (-3778 (($ (-1 (-145) (-145)) $) 33 (|has| $ (-6 -4506)))) (-2803 (($ (-1 (-145) (-145)) $) NIL) (($ (-1 (-145) (-145) (-145)) $ $) NIL)) (-1521 (($ $) 37)) (-1379 (($ $) NIL)) (-3441 (((-121) $ (-755)) NIL)) (-3574 (($ $ (-145)) 61) (($ $ (-142)) 62)) (-1291 (((-1135) $) 38 (|has| (-145) (-1082)))) (-4103 (($ (-145) $ (-560)) NIL) (($ $ $ (-560)) 23)) (-1529 (((-626 (-560)) $) NIL)) (-1310 (((-121) (-560) $) NIL)) (-4353 (((-560) $) 68) (((-1100) $) NIL (|has| (-145) (-1082)))) (-2824 (((-145) $) NIL (|has| (-560) (-834)))) (-3786 (((-3 (-145) "failed") (-1 (-121) (-145)) $) NIL)) (-3038 (($ $ (-145)) NIL (|has| $ (-6 -4506)))) (-2865 (((-121) (-1 (-121) (-145)) $) NIL (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 (-145)))) NIL (-12 (|has| (-145) (-298 (-145))) (|has| (-145) (-1082)))) (($ $ (-283 (-145))) NIL (-12 (|has| (-145) (-298 (-145))) (|has| (-145) (-1082)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-298 (-145))) (|has| (-145) (-1082)))) (($ $ (-626 (-145)) (-626 (-145))) NIL (-12 (|has| (-145) (-298 (-145))) (|has| (-145) (-1082))))) (-2214 (((-121) $ $) NIL)) (-1290 (((-121) (-145) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-145) (-1082))))) (-4460 (((-626 (-145)) $) NIL)) (-4191 (((-121) $) 12)) (-3260 (($) 10)) (-2778 (((-145) $ (-560) (-145)) NIL) (((-145) $ (-560)) 52) (($ $ (-1202 (-560))) 21) (($ $ $) NIL)) (-2949 (($ $ (-560)) NIL) (($ $ (-1202 (-560))) NIL)) (-4035 (((-755) (-1 (-121) (-145)) $) NIL (|has| $ (-6 -4505))) (((-755) (-145) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-145) (-1082))))) (-4072 (($ $ $ (-560)) 65 (|has| $ (-6 -4506)))) (-2813 (($ $) 17)) (-4255 (((-533) $) NIL (|has| (-145) (-601 (-533))))) (-4162 (($ (-626 (-145))) NIL)) (-2849 (($ $ (-145)) NIL) (($ (-145) $) NIL) (($ $ $) 16) (($ (-626 $)) 66)) (-2801 (($ (-145)) NIL) (((-842) $) 27 (|has| (-145) (-1082)))) (-3656 (((-121) (-1 (-121) (-145)) $) NIL (|has| $ (-6 -4505)))) (-1691 (((-121) $ $) NIL (|has| (-145) (-834)))) (-1675 (((-121) $ $) NIL (|has| (-145) (-834)))) (-1653 (((-121) $ $) 14 (|has| (-145) (-1082)))) (-1683 (((-121) $ $) NIL (|has| (-145) (-834)))) (-1667 (((-121) $ $) 15 (|has| (-145) (-834)))) (-2271 (((-755) $) 13 (|has| $ (-6 -4505))))) -(((-583 |#1|) (-13 (-1121) (-10 -8 (-15 -4353 ((-560) $)))) (-560)) (T -583)) -((-4353 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-583 *3)) (-14 *3 *2)))) -(-13 (-1121) (-10 -8 (-15 -4353 ((-560) $)))) -((-2700 (((-2 (|:| |num| |#4|) (|:| |den| (-560))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-560))) |#4| |#2| (-1076 |#4|)) 32))) -(((-584 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2700 ((-2 (|:| |num| |#4|) (|:| |den| (-560))) |#4| |#2| (-1076 |#4|))) (-15 -2700 ((-2 (|:| |num| |#4|) (|:| |den| (-560))) |#4| |#2|))) (-780) (-834) (-550) (-942 |#3| |#1| |#2|)) (T -584)) -((-2700 (*1 *2 *3 *4) (-12 (-4 *5 (-780)) (-4 *4 (-834)) (-4 *6 (-550)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-560)))) (-5 *1 (-584 *5 *4 *6 *3)) (-4 *3 (-942 *6 *5 *4)))) (-2700 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1076 *3)) (-4 *3 (-942 *7 *6 *4)) (-4 *6 (-780)) (-4 *4 (-834)) (-4 *7 (-550)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-560)))) (-5 *1 (-584 *6 *4 *7 *3))))) -(-10 -7 (-15 -2700 ((-2 (|:| |num| |#4|) (|:| |den| (-560))) |#4| |#2| (-1076 |#4|))) (-15 -2700 ((-2 (|:| |num| |#4|) (|:| |den| (-560))) |#4| |#2|))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) 63)) (-1654 (((-626 (-1067)) $) NIL)) (-1395 (((-1153) $) NIL)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL (|has| |#1| (-550)))) (-1350 (($ $) NIL (|has| |#1| (-550)))) (-3376 (((-121) $) NIL (|has| |#1| (-550)))) (-4330 (($ $ (-560)) 54) (($ $ (-560) (-560)) 55)) (-4138 (((-1133 (-2 (|:| |k| (-560)) (|:| |c| |#1|))) $) 60)) (-1995 (($ $) 99)) (-2314 (((-3 $ "failed") $ $) NIL)) (-2907 (((-842) (-1133 (-2 (|:| |k| (-560)) (|:| |c| |#1|))) (-1018 (-827 (-560))) (-1153) |#1| (-403 (-560))) 214)) (-3783 (($ (-1133 (-2 (|:| |k| (-560)) (|:| |c| |#1|)))) 34)) (-4236 (($) NIL T CONST)) (-1750 (($ $) NIL)) (-1823 (((-3 $ "failed") $) NIL)) (-1815 (((-121) $) NIL)) (-3504 (((-560) $) 58) (((-560) $ (-560)) 59)) (-2642 (((-121) $) NIL)) (-3549 (($ $ (-909)) 76)) (-3994 (($ (-1 |#1| (-560)) $) 73)) (-1814 (((-121) $) 25)) (-1637 (($ |#1| (-560)) 22) (($ $ (-1067) (-560)) NIL) (($ $ (-626 (-1067)) (-626 (-560))) NIL)) (-2803 (($ (-1 |#1| |#1|) $) 67)) (-3877 (($ (-1018 (-827 (-560))) (-1133 (-2 (|:| |k| (-560)) (|:| |c| |#1|)))) 11)) (-1726 (($ $) NIL)) (-1735 ((|#1| $) NIL)) (-1291 (((-1135) $) NIL)) (-2376 (($ $) 111 (|has| |#1| (-43 (-403 (-560)))))) (-3037 (((-3 $ "failed") $ $ (-121)) 98)) (-4226 (($ $ $) 107)) (-4353 (((-1100) $) NIL)) (-4278 (((-1133 (-2 (|:| |k| (-560)) (|:| |c| |#1|))) $) 13)) (-2672 (((-1018 (-827 (-560))) $) 12)) (-3292 (($ $ (-560)) 45)) (-2336 (((-3 $ "failed") $ $) NIL (|has| |#1| (-550)))) (-4450 (((-1133 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-560)))))) (-2778 ((|#1| $ (-560)) 57) (($ $ $) NIL (|has| (-560) (-1094)))) (-2443 (($ $ (-626 (-1153)) (-626 (-755))) NIL (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-1153) (-755)) NIL (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-626 (-1153))) NIL (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-1153)) NIL (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-755)) NIL (|has| |#1| (-15 * (|#1| (-560) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-560) |#1|))))) (-3662 (((-560) $) NIL)) (-2234 (($ $) 46)) (-2801 (((-842) $) NIL) (($ (-560)) 28) (($ (-403 (-560))) NIL (|has| |#1| (-43 (-403 (-560))))) (($ $) NIL (|has| |#1| (-550))) (($ |#1|) 27 (|has| |#1| (-170)))) (-2636 ((|#1| $ (-560)) 56)) (-2272 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1751 (((-755)) 37)) (-1341 ((|#1| $) NIL)) (-2332 (($ $) 179 (|has| |#1| (-43 (-403 (-560)))))) (-3007 (($ $) 155 (|has| |#1| (-43 (-403 (-560)))))) (-3123 (($ $) 176 (|has| |#1| (-43 (-403 (-560)))))) (-2237 (($ $) 152 (|has| |#1| (-43 (-403 (-560)))))) (-3027 (($ $) 181 (|has| |#1| (-43 (-403 (-560)))))) (-3311 (($ $) 158 (|has| |#1| (-43 (-403 (-560)))))) (-1650 (($ $ (-403 (-560))) 145 (|has| |#1| (-43 (-403 (-560)))))) (-2398 (($ $ |#1|) 120 (|has| |#1| (-43 (-403 (-560)))))) (-3511 (($ $) 149 (|has| |#1| (-43 (-403 (-560)))))) (-1292 (($ $) 147 (|has| |#1| (-43 (-403 (-560)))))) (-1898 (($ $) 182 (|has| |#1| (-43 (-403 (-560)))))) (-3154 (($ $) 159 (|has| |#1| (-43 (-403 (-560)))))) (-4131 (($ $) 180 (|has| |#1| (-43 (-403 (-560)))))) (-2041 (($ $) 157 (|has| |#1| (-43 (-403 (-560)))))) (-3990 (($ $) 177 (|has| |#1| (-43 (-403 (-560)))))) (-3722 (($ $) 153 (|has| |#1| (-43 (-403 (-560)))))) (-3412 (($ $) 187 (|has| |#1| (-43 (-403 (-560)))))) (-2317 (($ $) 167 (|has| |#1| (-43 (-403 (-560)))))) (-2274 (($ $) 184 (|has| |#1| (-43 (-403 (-560)))))) (-2210 (($ $) 162 (|has| |#1| (-43 (-403 (-560)))))) (-2039 (($ $) 191 (|has| |#1| (-43 (-403 (-560)))))) (-3892 (($ $) 171 (|has| |#1| (-43 (-403 (-560)))))) (-3358 (($ $) 193 (|has| |#1| (-43 (-403 (-560)))))) (-3024 (($ $) 173 (|has| |#1| (-43 (-403 (-560)))))) (-2177 (($ $) 189 (|has| |#1| (-43 (-403 (-560)))))) (-1810 (($ $) 169 (|has| |#1| (-43 (-403 (-560)))))) (-4081 (($ $) 186 (|has| |#1| (-43 (-403 (-560)))))) (-3863 (($ $) 165 (|has| |#1| (-43 (-403 (-560)))))) (-2328 (((-121) $ $) NIL (|has| |#1| (-550)))) (-2550 ((|#1| $ (-560)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-560)))) (|has| |#1| (-15 -2801 (|#1| (-1153))))))) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (-3304 (($) 29 T CONST)) (-1459 (($) 38 T CONST)) (-2500 (($ $ (-626 (-1153)) (-626 (-755))) NIL (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-1153) (-755)) NIL (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-626 (-1153))) NIL (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-1153)) NIL (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-755)) NIL (|has| |#1| (-15 * (|#1| (-560) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-560) |#1|))))) (-1653 (((-121) $ $) 65)) (-1733 (($ $ |#1|) NIL (|has| |#1| (-359)))) (-1725 (($ $) 84) (($ $ $) 64)) (-1716 (($ $ $) 81)) (** (($ $ (-909)) NIL) (($ $ (-755)) 102)) (* (($ (-909) $) 89) (($ (-755) $) 87) (($ (-560) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 114) (($ (-403 (-560)) $) NIL (|has| |#1| (-43 (-403 (-560))))) (($ $ (-403 (-560))) NIL (|has| |#1| (-43 (-403 (-560))))))) -(((-585 |#1|) (-13 (-1213 |#1| (-560)) (-10 -8 (-15 -3877 ($ (-1018 (-827 (-560))) (-1133 (-2 (|:| |k| (-560)) (|:| |c| |#1|))))) (-15 -2672 ((-1018 (-827 (-560))) $)) (-15 -4278 ((-1133 (-2 (|:| |k| (-560)) (|:| |c| |#1|))) $)) (-15 -3783 ($ (-1133 (-2 (|:| |k| (-560)) (|:| |c| |#1|))))) (-15 -1814 ((-121) $)) (-15 -3994 ($ (-1 |#1| (-560)) $)) (-15 -3037 ((-3 $ "failed") $ $ (-121))) (-15 -1995 ($ $)) (-15 -4226 ($ $ $)) (-15 -2907 ((-842) (-1133 (-2 (|:| |k| (-560)) (|:| |c| |#1|))) (-1018 (-827 (-560))) (-1153) |#1| (-403 (-560)))) (IF (|has| |#1| (-43 (-403 (-560)))) (PROGN (-15 -2376 ($ $)) (-15 -2398 ($ $ |#1|)) (-15 -1650 ($ $ (-403 (-560)))) (-15 -1292 ($ $)) (-15 -3511 ($ $)) (-15 -2237 ($ $)) (-15 -3722 ($ $)) (-15 -3007 ($ $)) (-15 -2041 ($ $)) (-15 -3311 ($ $)) (-15 -3154 ($ $)) (-15 -2210 ($ $)) (-15 -3863 ($ $)) (-15 -2317 ($ $)) (-15 -1810 ($ $)) (-15 -3892 ($ $)) (-15 -3024 ($ $)) (-15 -3123 ($ $)) (-15 -3990 ($ $)) (-15 -2332 ($ $)) (-15 -4131 ($ $)) (-15 -3027 ($ $)) (-15 -1898 ($ $)) (-15 -2274 ($ $)) (-15 -4081 ($ $)) (-15 -3412 ($ $)) (-15 -2177 ($ $)) (-15 -2039 ($ $)) (-15 -3358 ($ $))) |noBranch|))) (-1039)) (T -585)) -((-1814 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-585 *3)) (-4 *3 (-1039)))) (-3877 (*1 *1 *2 *3) (-12 (-5 *2 (-1018 (-827 (-560)))) (-5 *3 (-1133 (-2 (|:| |k| (-560)) (|:| |c| *4)))) (-4 *4 (-1039)) (-5 *1 (-585 *4)))) (-2672 (*1 *2 *1) (-12 (-5 *2 (-1018 (-827 (-560)))) (-5 *1 (-585 *3)) (-4 *3 (-1039)))) (-4278 (*1 *2 *1) (-12 (-5 *2 (-1133 (-2 (|:| |k| (-560)) (|:| |c| *3)))) (-5 *1 (-585 *3)) (-4 *3 (-1039)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-1133 (-2 (|:| |k| (-560)) (|:| |c| *3)))) (-4 *3 (-1039)) (-5 *1 (-585 *3)))) (-3994 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-560))) (-4 *3 (-1039)) (-5 *1 (-585 *3)))) (-3037 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-121)) (-5 *1 (-585 *3)) (-4 *3 (-1039)))) (-1995 (*1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-1039)))) (-4226 (*1 *1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-1039)))) (-2907 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1133 (-2 (|:| |k| (-560)) (|:| |c| *6)))) (-5 *4 (-1018 (-827 (-560)))) (-5 *5 (-1153)) (-5 *7 (-403 (-560))) (-4 *6 (-1039)) (-5 *2 (-842)) (-5 *1 (-585 *6)))) (-2376 (*1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-43 (-403 (-560)))) (-4 *2 (-1039)))) (-2398 (*1 *1 *1 *2) (-12 (-5 *1 (-585 *2)) (-4 *2 (-43 (-403 (-560)))) (-4 *2 (-1039)))) (-1650 (*1 *1 *1 *2) (-12 (-5 *2 (-403 (-560))) (-5 *1 (-585 *3)) (-4 *3 (-43 *2)) (-4 *3 (-1039)))) (-1292 (*1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-43 (-403 (-560)))) (-4 *2 (-1039)))) (-3511 (*1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-43 (-403 (-560)))) (-4 *2 (-1039)))) (-2237 (*1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-43 (-403 (-560)))) (-4 *2 (-1039)))) (-3722 (*1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-43 (-403 (-560)))) (-4 *2 (-1039)))) (-3007 (*1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-43 (-403 (-560)))) (-4 *2 (-1039)))) (-2041 (*1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-43 (-403 (-560)))) (-4 *2 (-1039)))) (-3311 (*1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-43 (-403 (-560)))) (-4 *2 (-1039)))) (-3154 (*1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-43 (-403 (-560)))) (-4 *2 (-1039)))) (-2210 (*1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-43 (-403 (-560)))) (-4 *2 (-1039)))) (-3863 (*1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-43 (-403 (-560)))) (-4 *2 (-1039)))) (-2317 (*1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-43 (-403 (-560)))) (-4 *2 (-1039)))) (-1810 (*1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-43 (-403 (-560)))) (-4 *2 (-1039)))) (-3892 (*1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-43 (-403 (-560)))) (-4 *2 (-1039)))) (-3024 (*1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-43 (-403 (-560)))) (-4 *2 (-1039)))) (-3123 (*1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-43 (-403 (-560)))) (-4 *2 (-1039)))) (-3990 (*1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-43 (-403 (-560)))) (-4 *2 (-1039)))) (-2332 (*1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-43 (-403 (-560)))) (-4 *2 (-1039)))) (-4131 (*1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-43 (-403 (-560)))) (-4 *2 (-1039)))) (-3027 (*1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-43 (-403 (-560)))) (-4 *2 (-1039)))) (-1898 (*1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-43 (-403 (-560)))) (-4 *2 (-1039)))) (-2274 (*1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-43 (-403 (-560)))) (-4 *2 (-1039)))) (-4081 (*1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-43 (-403 (-560)))) (-4 *2 (-1039)))) (-3412 (*1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-43 (-403 (-560)))) (-4 *2 (-1039)))) (-2177 (*1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-43 (-403 (-560)))) (-4 *2 (-1039)))) (-2039 (*1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-43 (-403 (-560)))) (-4 *2 (-1039)))) (-3358 (*1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-43 (-403 (-560)))) (-4 *2 (-1039))))) -(-13 (-1213 |#1| (-560)) (-10 -8 (-15 -3877 ($ (-1018 (-827 (-560))) (-1133 (-2 (|:| |k| (-560)) (|:| |c| |#1|))))) (-15 -2672 ((-1018 (-827 (-560))) $)) (-15 -4278 ((-1133 (-2 (|:| |k| (-560)) (|:| |c| |#1|))) $)) (-15 -3783 ($ (-1133 (-2 (|:| |k| (-560)) (|:| |c| |#1|))))) (-15 -1814 ((-121) $)) (-15 -3994 ($ (-1 |#1| (-560)) $)) (-15 -3037 ((-3 $ "failed") $ $ (-121))) (-15 -1995 ($ $)) (-15 -4226 ($ $ $)) (-15 -2907 ((-842) (-1133 (-2 (|:| |k| (-560)) (|:| |c| |#1|))) (-1018 (-827 (-560))) (-1153) |#1| (-403 (-560)))) (IF (|has| |#1| (-43 (-403 (-560)))) (PROGN (-15 -2376 ($ $)) (-15 -2398 ($ $ |#1|)) (-15 -1650 ($ $ (-403 (-560)))) (-15 -1292 ($ $)) (-15 -3511 ($ $)) (-15 -2237 ($ $)) (-15 -3722 ($ $)) (-15 -3007 ($ $)) (-15 -2041 ($ $)) (-15 -3311 ($ $)) (-15 -3154 ($ $)) (-15 -2210 ($ $)) (-15 -3863 ($ $)) (-15 -2317 ($ $)) (-15 -1810 ($ $)) (-15 -3892 ($ $)) (-15 -3024 ($ $)) (-15 -3123 ($ $)) (-15 -3990 ($ $)) (-15 -2332 ($ $)) (-15 -4131 ($ $)) (-15 -3027 ($ $)) (-15 -1898 ($ $)) (-15 -2274 ($ $)) (-15 -4081 ($ $)) (-15 -3412 ($ $)) (-15 -2177 ($ $)) (-15 -2039 ($ $)) (-15 -3358 ($ $))) |noBranch|))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL (|has| |#1| (-550)))) (-1350 (($ $) NIL (|has| |#1| (-550)))) (-3376 (((-121) $) NIL (|has| |#1| (-550)))) (-2314 (((-3 $ "failed") $ $) NIL)) (-3783 (($ (-1133 |#1|)) 9)) (-4236 (($) NIL T CONST)) (-1823 (((-3 $ "failed") $) 42)) (-1815 (((-121) $) 52)) (-3504 (((-755) $) 55) (((-755) $ (-755)) 54)) (-2642 (((-121) $) NIL)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2336 (((-3 $ "failed") $ $) 44 (|has| |#1| (-550)))) (-2801 (((-842) $) NIL) (($ (-560)) NIL) (($ $) NIL (|has| |#1| (-550)))) (-2423 (((-1133 |#1|) $) 23)) (-1751 (((-755)) 51)) (-2328 (((-121) $ $) NIL (|has| |#1| (-550)))) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (-3304 (($) 10 T CONST)) (-1459 (($) 14 T CONST)) (-1653 (((-121) $ $) 22)) (-1725 (($ $) 30) (($ $ $) 16)) (-1716 (($ $ $) 25)) (** (($ $ (-909)) NIL) (($ $ (-755)) 49)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-560)) 36))) -(((-586 |#1|) (-13 (-1039) (-10 -8 (-15 -2423 ((-1133 |#1|) $)) (-15 -3783 ($ (-1133 |#1|))) (-15 -1815 ((-121) $)) (-15 -3504 ((-755) $)) (-15 -3504 ((-755) $ (-755))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-560))) (IF (|has| |#1| (-550)) (-6 (-550)) |noBranch|))) (-1039)) (T -586)) -((-2423 (*1 *2 *1) (-12 (-5 *2 (-1133 *3)) (-5 *1 (-586 *3)) (-4 *3 (-1039)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-1039)) (-5 *1 (-586 *3)))) (-1815 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-586 *3)) (-4 *3 (-1039)))) (-3504 (*1 *2 *1) (-12 (-5 *2 (-755)) (-5 *1 (-586 *3)) (-4 *3 (-1039)))) (-3504 (*1 *2 *1 *2) (-12 (-5 *2 (-755)) (-5 *1 (-586 *3)) (-4 *3 (-1039)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-586 *2)) (-4 *2 (-1039)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-586 *2)) (-4 *2 (-1039)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-586 *3)) (-4 *3 (-1039))))) -(-13 (-1039) (-10 -8 (-15 -2423 ((-1133 |#1|) $)) (-15 -3783 ($ (-1133 |#1|))) (-15 -1815 ((-121) $)) (-15 -3504 ((-755) $)) (-15 -3504 ((-755) $ (-755))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-560))) (IF (|has| |#1| (-550)) (-6 (-550)) |noBranch|))) -((-2803 (((-590 |#2|) (-1 |#2| |#1|) (-590 |#1|)) 15))) -(((-587 |#1| |#2|) (-10 -7 (-15 -2803 ((-590 |#2|) (-1 |#2| |#1|) (-590 |#1|)))) (-1187) (-1187)) (T -587)) -((-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-590 *5)) (-4 *5 (-1187)) (-4 *6 (-1187)) (-5 *2 (-590 *6)) (-5 *1 (-587 *5 *6))))) -(-10 -7 (-15 -2803 ((-590 |#2|) (-1 |#2| |#1|) (-590 |#1|)))) -((-2803 (((-1133 |#3|) (-1 |#3| |#1| |#2|) (-590 |#1|) (-1133 |#2|)) 20) (((-1133 |#3|) (-1 |#3| |#1| |#2|) (-1133 |#1|) (-590 |#2|)) 19) (((-590 |#3|) (-1 |#3| |#1| |#2|) (-590 |#1|) (-590 |#2|)) 18))) -(((-588 |#1| |#2| |#3|) (-10 -7 (-15 -2803 ((-590 |#3|) (-1 |#3| |#1| |#2|) (-590 |#1|) (-590 |#2|))) (-15 -2803 ((-1133 |#3|) (-1 |#3| |#1| |#2|) (-1133 |#1|) (-590 |#2|))) (-15 -2803 ((-1133 |#3|) (-1 |#3| |#1| |#2|) (-590 |#1|) (-1133 |#2|)))) (-1187) (-1187) (-1187)) (T -588)) -((-2803 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-590 *6)) (-5 *5 (-1133 *7)) (-4 *6 (-1187)) (-4 *7 (-1187)) (-4 *8 (-1187)) (-5 *2 (-1133 *8)) (-5 *1 (-588 *6 *7 *8)))) (-2803 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1133 *6)) (-5 *5 (-590 *7)) (-4 *6 (-1187)) (-4 *7 (-1187)) (-4 *8 (-1187)) (-5 *2 (-1133 *8)) (-5 *1 (-588 *6 *7 *8)))) (-2803 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-590 *6)) (-5 *5 (-590 *7)) (-4 *6 (-1187)) (-4 *7 (-1187)) (-4 *8 (-1187)) (-5 *2 (-590 *8)) (-5 *1 (-588 *6 *7 *8))))) -(-10 -7 (-15 -2803 ((-590 |#3|) (-1 |#3| |#1| |#2|) (-590 |#1|) (-590 |#2|))) (-15 -2803 ((-1133 |#3|) (-1 |#3| |#1| |#2|) (-1133 |#1|) (-590 |#2|))) (-15 -2803 ((-1133 |#3|) (-1 |#3| |#1| |#2|) (-590 |#1|) (-1133 |#2|)))) -((-2315 ((|#3| |#3| (-626 (-599 |#3|)) (-626 (-1153))) 55)) (-1840 (((-167 |#2|) |#3|) 116)) (-1698 ((|#3| (-167 |#2|)) 43)) (-2204 ((|#2| |#3|) 19)) (-3360 ((|#3| |#2|) 32))) -(((-589 |#1| |#2| |#3|) (-10 -7 (-15 -1698 (|#3| (-167 |#2|))) (-15 -2204 (|#2| |#3|)) (-15 -3360 (|#3| |#2|)) (-15 -1840 ((-167 |#2|) |#3|)) (-15 -2315 (|#3| |#3| (-626 (-599 |#3|)) (-626 (-1153))))) (-13 (-550) (-834)) (-13 (-426 |#1|) (-994) (-1173)) (-13 (-426 (-167 |#1|)) (-994) (-1173))) (T -589)) -((-2315 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-626 (-599 *2))) (-5 *4 (-626 (-1153))) (-4 *2 (-13 (-426 (-167 *5)) (-994) (-1173))) (-4 *5 (-13 (-550) (-834))) (-5 *1 (-589 *5 *6 *2)) (-4 *6 (-13 (-426 *5) (-994) (-1173))))) (-1840 (*1 *2 *3) (-12 (-4 *4 (-13 (-550) (-834))) (-5 *2 (-167 *5)) (-5 *1 (-589 *4 *5 *3)) (-4 *5 (-13 (-426 *4) (-994) (-1173))) (-4 *3 (-13 (-426 (-167 *4)) (-994) (-1173))))) (-3360 (*1 *2 *3) (-12 (-4 *4 (-13 (-550) (-834))) (-4 *2 (-13 (-426 (-167 *4)) (-994) (-1173))) (-5 *1 (-589 *4 *3 *2)) (-4 *3 (-13 (-426 *4) (-994) (-1173))))) (-2204 (*1 *2 *3) (-12 (-4 *4 (-13 (-550) (-834))) (-4 *2 (-13 (-426 *4) (-994) (-1173))) (-5 *1 (-589 *4 *2 *3)) (-4 *3 (-13 (-426 (-167 *4)) (-994) (-1173))))) (-1698 (*1 *2 *3) (-12 (-5 *3 (-167 *5)) (-4 *5 (-13 (-426 *4) (-994) (-1173))) (-4 *4 (-13 (-550) (-834))) (-4 *2 (-13 (-426 (-167 *4)) (-994) (-1173))) (-5 *1 (-589 *4 *5 *2))))) -(-10 -7 (-15 -1698 (|#3| (-167 |#2|))) (-15 -2204 (|#2| |#3|)) (-15 -3360 (|#3| |#2|)) (-15 -1840 ((-167 |#2|) |#3|)) (-15 -2315 (|#3| |#3| (-626 (-599 |#3|)) (-626 (-1153))))) -((-3802 (($ (-1 (-121) |#1|) $) 16)) (-2803 (($ (-1 |#1| |#1|) $) NIL)) (-3765 (($ (-1 |#1| |#1|) |#1|) 9)) (-3788 (($ (-1 (-121) |#1|) $) 12)) (-3795 (($ (-1 (-121) |#1|) $) 14)) (-4162 (((-1133 |#1|) $) 17)) (-2801 (((-842) $) NIL))) -(((-590 |#1|) (-13 (-600 (-842)) (-10 -8 (-15 -2803 ($ (-1 |#1| |#1|) $)) (-15 -3788 ($ (-1 (-121) |#1|) $)) (-15 -3795 ($ (-1 (-121) |#1|) $)) (-15 -3802 ($ (-1 (-121) |#1|) $)) (-15 -3765 ($ (-1 |#1| |#1|) |#1|)) (-15 -4162 ((-1133 |#1|) $)))) (-1187)) (T -590)) -((-2803 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1187)) (-5 *1 (-590 *3)))) (-3788 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-121) *3)) (-4 *3 (-1187)) (-5 *1 (-590 *3)))) (-3795 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-121) *3)) (-4 *3 (-1187)) (-5 *1 (-590 *3)))) (-3802 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-121) *3)) (-4 *3 (-1187)) (-5 *1 (-590 *3)))) (-3765 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1187)) (-5 *1 (-590 *3)))) (-4162 (*1 *2 *1) (-12 (-5 *2 (-1133 *3)) (-5 *1 (-590 *3)) (-4 *3 (-1187))))) -(-13 (-600 (-842)) (-10 -8 (-15 -2803 ($ (-1 |#1| |#1|) $)) (-15 -3788 ($ (-1 (-121) |#1|) $)) (-15 -3795 ($ (-1 (-121) |#1|) $)) (-15 -3802 ($ (-1 (-121) |#1|) $)) (-15 -3765 ($ (-1 |#1| |#1|) |#1|)) (-15 -4162 ((-1133 |#1|) $)))) -((-2601 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-3382 (($ (-755)) NIL (|has| |#1| (-23)))) (-2960 (((-1241) $ (-560) (-560)) NIL (|has| $ (-6 -4506)))) (-3189 (((-121) (-1 (-121) |#1| |#1|) $) NIL) (((-121) $) NIL (|has| |#1| (-834)))) (-4410 (($ (-1 (-121) |#1| |#1|) $) NIL (|has| $ (-6 -4506))) (($ $) NIL (-12 (|has| $ (-6 -4506)) (|has| |#1| (-834))))) (-3743 (($ (-1 (-121) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-834)))) (-3909 (((-121) $ (-755)) NIL)) (-2764 ((|#1| $ (-560) |#1|) NIL (|has| $ (-6 -4506))) ((|#1| $ (-1202 (-560)) |#1|) NIL (|has| $ (-6 -4506)))) (-3802 (($ (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-4236 (($) NIL T CONST)) (-4030 (($ $) NIL (|has| $ (-6 -4506)))) (-2883 (($ $) NIL)) (-2868 (($ $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-4310 (($ |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082)))) (($ (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-2342 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4505))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4505)))) (-1746 ((|#1| $ (-560) |#1|) NIL (|has| $ (-6 -4506)))) (-1361 ((|#1| $ (-560)) NIL)) (-2839 (((-560) (-1 (-121) |#1|) $) NIL) (((-560) |#1| $) NIL (|has| |#1| (-1082))) (((-560) |#1| $ (-560)) NIL (|has| |#1| (-1082)))) (-1981 (((-626 |#1|) $) NIL (|has| $ (-6 -4505)))) (-1764 (((-671 |#1|) $ $) NIL (|has| |#1| (-1039)))) (-1721 (($ (-755) |#1|) NIL)) (-2122 (((-121) $ (-755)) NIL)) (-4099 (((-560) $) NIL (|has| (-560) (-834)))) (-4325 (($ $ $) NIL (|has| |#1| (-834)))) (-2492 (($ (-1 (-121) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-834)))) (-2130 (((-626 |#1|) $) NIL (|has| $ (-6 -4505)))) (-2030 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-2767 (((-560) $) NIL (|has| (-560) (-834)))) (-2501 (($ $ $) NIL (|has| |#1| (-834)))) (-3778 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2429 ((|#1| $) NIL (-12 (|has| |#1| (-994)) (|has| |#1| (-1039))))) (-3441 (((-121) $ (-755)) NIL)) (-2349 ((|#1| $) NIL (-12 (|has| |#1| (-994)) (|has| |#1| (-1039))))) (-1291 (((-1135) $) NIL (|has| |#1| (-1082)))) (-4103 (($ |#1| $ (-560)) NIL) (($ $ $ (-560)) NIL)) (-1529 (((-626 (-560)) $) NIL)) (-1310 (((-121) (-560) $) NIL)) (-4353 (((-1100) $) NIL (|has| |#1| (-1082)))) (-2824 ((|#1| $) NIL (|has| (-560) (-834)))) (-3786 (((-3 |#1| "failed") (-1 (-121) |#1|) $) NIL)) (-3038 (($ $ |#1|) NIL (|has| $ (-6 -4506)))) (-2865 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#1|))) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-283 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-626 |#1|) (-626 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))))) (-2214 (((-121) $ $) NIL)) (-1290 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-4460 (((-626 |#1|) $) NIL)) (-4191 (((-121) $) NIL)) (-3260 (($) NIL)) (-2778 ((|#1| $ (-560) |#1|) NIL) ((|#1| $ (-560)) NIL) (($ $ (-1202 (-560))) NIL)) (-2372 ((|#1| $ $) NIL (|has| |#1| (-1039)))) (-2949 (($ $ (-560)) NIL) (($ $ (-1202 (-560))) NIL)) (-2078 (($ $ $) NIL (|has| |#1| (-1039)))) (-4035 (((-755) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505))) (((-755) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-4072 (($ $ $ (-560)) NIL (|has| $ (-6 -4506)))) (-2813 (($ $) NIL)) (-4255 (((-533) $) NIL (|has| |#1| (-601 (-533))))) (-4162 (($ (-626 |#1|)) NIL)) (-2849 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-626 $)) NIL)) (-2801 (((-842) $) NIL (|has| |#1| (-1082)))) (-3656 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-1691 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1675 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1653 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-1683 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1667 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1725 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1716 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-560) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-708))) (($ $ |#1|) NIL (|has| |#1| (-708)))) (-2271 (((-755) $) NIL (|has| $ (-6 -4505))))) -(((-591 |#1| |#2|) (-1234 |#1|) (-1187) (-560)) (T -591)) -NIL -(-1234 |#1|) -((-2960 (((-1241) $ |#2| |#2|) 36)) (-4099 ((|#2| $) 23)) (-2767 ((|#2| $) 21)) (-3778 (($ (-1 |#3| |#3|) $) 32)) (-2803 (($ (-1 |#3| |#3|) $) 30)) (-2824 ((|#3| $) 26)) (-3038 (($ $ |#3|) 33)) (-1290 (((-121) |#3| $) 17)) (-4460 (((-626 |#3|) $) 15)) (-2778 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) -(((-592 |#1| |#2| |#3|) (-10 -8 (-15 -2960 ((-1241) |#1| |#2| |#2|)) (-15 -3038 (|#1| |#1| |#3|)) (-15 -2824 (|#3| |#1|)) (-15 -4099 (|#2| |#1|)) (-15 -2767 (|#2| |#1|)) (-15 -1290 ((-121) |#3| |#1|)) (-15 -4460 ((-626 |#3|) |#1|)) (-15 -2778 (|#3| |#1| |#2|)) (-15 -2778 (|#3| |#1| |#2| |#3|)) (-15 -3778 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2803 (|#1| (-1 |#3| |#3|) |#1|))) (-593 |#2| |#3|) (-1082) (-1187)) (T -592)) -NIL -(-10 -8 (-15 -2960 ((-1241) |#1| |#2| |#2|)) (-15 -3038 (|#1| |#1| |#3|)) (-15 -2824 (|#3| |#1|)) (-15 -4099 (|#2| |#1|)) (-15 -2767 (|#2| |#1|)) (-15 -1290 ((-121) |#3| |#1|)) (-15 -4460 ((-626 |#3|) |#1|)) (-15 -2778 (|#3| |#1| |#2|)) (-15 -2778 (|#3| |#1| |#2| |#3|)) (-15 -3778 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2803 (|#1| (-1 |#3| |#3|) |#1|))) -((-2601 (((-121) $ $) 18 (|has| |#2| (-1082)))) (-2960 (((-1241) $ |#1| |#1|) 37 (|has| $ (-6 -4506)))) (-3909 (((-121) $ (-755)) 8)) (-2764 ((|#2| $ |#1| |#2|) 49 (|has| $ (-6 -4506)))) (-4236 (($) 7 T CONST)) (-1746 ((|#2| $ |#1| |#2|) 50 (|has| $ (-6 -4506)))) (-1361 ((|#2| $ |#1|) 48)) (-1981 (((-626 |#2|) $) 30 (|has| $ (-6 -4505)))) (-2122 (((-121) $ (-755)) 9)) (-4099 ((|#1| $) 40 (|has| |#1| (-834)))) (-2130 (((-626 |#2|) $) 29 (|has| $ (-6 -4505)))) (-2030 (((-121) |#2| $) 27 (-12 (|has| |#2| (-1082)) (|has| $ (-6 -4505))))) (-2767 ((|#1| $) 41 (|has| |#1| (-834)))) (-3778 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#2| |#2|) $) 35)) (-3441 (((-121) $ (-755)) 10)) (-1291 (((-1135) $) 22 (|has| |#2| (-1082)))) (-1529 (((-626 |#1|) $) 43)) (-1310 (((-121) |#1| $) 44)) (-4353 (((-1100) $) 21 (|has| |#2| (-1082)))) (-2824 ((|#2| $) 39 (|has| |#1| (-834)))) (-3038 (($ $ |#2|) 38 (|has| $ (-6 -4506)))) (-2865 (((-121) (-1 (-121) |#2|) $) 32 (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#2|))) 26 (-12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082)))) (($ $ (-283 |#2|)) 25 (-12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082)))) (($ $ (-626 |#2|) (-626 |#2|)) 23 (-12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082))))) (-2214 (((-121) $ $) 14)) (-1290 (((-121) |#2| $) 42 (-12 (|has| $ (-6 -4505)) (|has| |#2| (-1082))))) (-4460 (((-626 |#2|) $) 45)) (-4191 (((-121) $) 11)) (-3260 (($) 12)) (-2778 ((|#2| $ |#1| |#2|) 47) ((|#2| $ |#1|) 46)) (-4035 (((-755) (-1 (-121) |#2|) $) 31 (|has| $ (-6 -4505))) (((-755) |#2| $) 28 (-12 (|has| |#2| (-1082)) (|has| $ (-6 -4505))))) (-2813 (($ $) 13)) (-2801 (((-842) $) 20 (|has| |#2| (-1082)))) (-3656 (((-121) (-1 (-121) |#2|) $) 33 (|has| $ (-6 -4505)))) (-1653 (((-121) $ $) 19 (|has| |#2| (-1082)))) (-2271 (((-755) $) 6 (|has| $ (-6 -4505))))) -(((-593 |#1| |#2|) (-1267) (-1082) (-1187)) (T -593)) -((-4460 (*1 *2 *1) (-12 (-4 *1 (-593 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1187)) (-5 *2 (-626 *4)))) (-1310 (*1 *2 *3 *1) (-12 (-4 *1 (-593 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1187)) (-5 *2 (-121)))) (-1529 (*1 *2 *1) (-12 (-4 *1 (-593 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1187)) (-5 *2 (-626 *3)))) (-1290 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4505)) (-4 *1 (-593 *4 *3)) (-4 *4 (-1082)) (-4 *3 (-1187)) (-4 *3 (-1082)) (-5 *2 (-121)))) (-2767 (*1 *2 *1) (-12 (-4 *1 (-593 *2 *3)) (-4 *3 (-1187)) (-4 *2 (-1082)) (-4 *2 (-834)))) (-4099 (*1 *2 *1) (-12 (-4 *1 (-593 *2 *3)) (-4 *3 (-1187)) (-4 *2 (-1082)) (-4 *2 (-834)))) (-2824 (*1 *2 *1) (-12 (-4 *1 (-593 *3 *2)) (-4 *3 (-1082)) (-4 *3 (-834)) (-4 *2 (-1187)))) (-3038 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4506)) (-4 *1 (-593 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-1187)))) (-2960 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4506)) (-4 *1 (-593 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1187)) (-5 *2 (-1241))))) -(-13 (-492 |t#2|) (-278 |t#1| |t#2|) (-10 -8 (-15 -4460 ((-626 |t#2|) $)) (-15 -1310 ((-121) |t#1| $)) (-15 -1529 ((-626 |t#1|) $)) (IF (|has| |t#2| (-1082)) (IF (|has| $ (-6 -4505)) (-15 -1290 ((-121) |t#2| $)) |noBranch|) |noBranch|) (IF (|has| |t#1| (-834)) (PROGN (-15 -2767 (|t#1| $)) (-15 -4099 (|t#1| $)) (-15 -2824 (|t#2| $))) |noBranch|) (IF (|has| $ (-6 -4506)) (PROGN (-15 -3038 ($ $ |t#2|)) (-15 -2960 ((-1241) $ |t#1| |t#1|))) |noBranch|))) -(((-39) . T) ((-105) |has| |#2| (-1082)) ((-600 (-842)) |has| |#2| (-1082)) ((-276 |#1| |#2|) . T) ((-278 |#1| |#2|) . T) ((-298 |#2|) -12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082))) ((-492 |#2|) . T) ((-515 |#2| |#2|) -12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082))) ((-1082) |has| |#2| (-1082)) ((-1187) . T)) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-1917 (((-3 $ "failed")) NIL (-2318 (-12 (|has| |#2| (-363 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-550)))))) (-2314 (((-3 $ "failed") $ $) NIL)) (-2059 (((-1236 (-671 |#1|))) NIL (|has| |#2| (-413 |#1|))) (((-1236 (-671 |#1|)) (-1236 $)) NIL (|has| |#2| (-363 |#1|)))) (-1565 (((-1236 $)) NIL (|has| |#2| (-363 |#1|)))) (-4236 (($) NIL T CONST)) (-2862 (((-3 (-2 (|:| |particular| $) (|:| -4374 (-626 $))) "failed")) NIL (-2318 (-12 (|has| |#2| (-363 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-550)))))) (-2835 (((-3 $ "failed")) NIL (-2318 (-12 (|has| |#2| (-363 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-550)))))) (-3852 (((-671 |#1|)) NIL (|has| |#2| (-413 |#1|))) (((-671 |#1|) (-1236 $)) NIL (|has| |#2| (-363 |#1|)))) (-1374 ((|#1| $) NIL (|has| |#2| (-363 |#1|)))) (-2611 (((-671 |#1|) $) NIL (|has| |#2| (-413 |#1|))) (((-671 |#1|) $ (-1236 $)) NIL (|has| |#2| (-363 |#1|)))) (-1309 (((-3 $ "failed") $) NIL (-2318 (-12 (|has| |#2| (-363 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-550)))))) (-3013 (((-1149 (-945 |#1|))) NIL (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-359))))) (-1498 (($ $ (-909)) NIL)) (-2856 ((|#1| $) NIL (|has| |#2| (-363 |#1|)))) (-3730 (((-1149 |#1|) $) NIL (-2318 (-12 (|has| |#2| (-363 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-550)))))) (-1998 ((|#1|) NIL (|has| |#2| (-413 |#1|))) ((|#1| (-1236 $)) NIL (|has| |#2| (-363 |#1|)))) (-1825 (((-1149 |#1|) $) NIL (|has| |#2| (-363 |#1|)))) (-2969 (((-121)) NIL (|has| |#2| (-363 |#1|)))) (-3380 (($ (-1236 |#1|)) NIL (|has| |#2| (-413 |#1|))) (($ (-1236 |#1|) (-1236 $)) NIL (|has| |#2| (-363 |#1|)))) (-1823 (((-3 $ "failed") $) NIL (-2318 (-12 (|has| |#2| (-363 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-550)))))) (-3143 (((-909)) NIL (|has| |#2| (-363 |#1|)))) (-3497 (((-121)) NIL (|has| |#2| (-363 |#1|)))) (-3710 (($ $ (-909)) NIL)) (-2874 (((-121)) NIL (|has| |#2| (-363 |#1|)))) (-4479 (((-121)) NIL (|has| |#2| (-363 |#1|)))) (-2646 (((-121)) NIL (|has| |#2| (-363 |#1|)))) (-2071 (((-3 (-2 (|:| |particular| $) (|:| -4374 (-626 $))) "failed")) NIL (-2318 (-12 (|has| |#2| (-363 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-550)))))) (-3477 (((-3 $ "failed")) NIL (-2318 (-12 (|has| |#2| (-363 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-550)))))) (-1279 (((-671 |#1|)) NIL (|has| |#2| (-413 |#1|))) (((-671 |#1|) (-1236 $)) NIL (|has| |#2| (-363 |#1|)))) (-2442 ((|#1| $) NIL (|has| |#2| (-363 |#1|)))) (-1284 (((-671 |#1|) $) NIL (|has| |#2| (-413 |#1|))) (((-671 |#1|) $ (-1236 $)) NIL (|has| |#2| (-363 |#1|)))) (-2966 (((-3 $ "failed") $) NIL (-2318 (-12 (|has| |#2| (-363 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-550)))))) (-3081 (((-1149 (-945 |#1|))) NIL (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-359))))) (-2137 (($ $ (-909)) NIL)) (-3542 ((|#1| $) NIL (|has| |#2| (-363 |#1|)))) (-1351 (((-1149 |#1|) $) NIL (-2318 (-12 (|has| |#2| (-363 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-550)))))) (-3158 ((|#1|) NIL (|has| |#2| (-413 |#1|))) ((|#1| (-1236 $)) NIL (|has| |#2| (-363 |#1|)))) (-3613 (((-1149 |#1|) $) NIL (|has| |#2| (-363 |#1|)))) (-1818 (((-121)) NIL (|has| |#2| (-363 |#1|)))) (-1291 (((-1135) $) NIL)) (-2394 (((-121)) NIL (|has| |#2| (-363 |#1|)))) (-2201 (((-121)) NIL (|has| |#2| (-363 |#1|)))) (-4253 (((-121)) NIL (|has| |#2| (-363 |#1|)))) (-4353 (((-1100) $) NIL)) (-4172 (((-121)) NIL (|has| |#2| (-363 |#1|)))) (-2778 ((|#1| $ (-560)) NIL (|has| |#2| (-413 |#1|)))) (-3390 (((-671 |#1|) (-1236 $)) NIL (|has| |#2| (-413 |#1|))) (((-1236 |#1|) $) NIL (|has| |#2| (-413 |#1|))) (((-671 |#1|) (-1236 $) (-1236 $)) NIL (|has| |#2| (-363 |#1|))) (((-1236 |#1|) $ (-1236 $)) NIL (|has| |#2| (-363 |#1|)))) (-4255 (($ (-1236 |#1|)) NIL (|has| |#2| (-413 |#1|))) (((-1236 |#1|) $) NIL (|has| |#2| (-413 |#1|)))) (-2879 (((-626 (-945 |#1|))) NIL (|has| |#2| (-413 |#1|))) (((-626 (-945 |#1|)) (-1236 $)) NIL (|has| |#2| (-363 |#1|)))) (-1671 (($ $ $) NIL)) (-2903 (((-121)) NIL (|has| |#2| (-363 |#1|)))) (-2801 (((-842) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-4374 (((-1236 $)) NIL (|has| |#2| (-413 |#1|)))) (-4263 (((-626 (-1236 |#1|))) NIL (-2318 (-12 (|has| |#2| (-363 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-550)))))) (-2676 (($ $ $ $) NIL)) (-2266 (((-121)) NIL (|has| |#2| (-363 |#1|)))) (-2788 (($ (-671 |#1|) $) NIL (|has| |#2| (-413 |#1|)))) (-3127 (($ $ $) NIL)) (-3333 (((-121)) NIL (|has| |#2| (-363 |#1|)))) (-3060 (((-121)) NIL (|has| |#2| (-363 |#1|)))) (-2682 (((-121)) NIL (|has| |#2| (-363 |#1|)))) (-3304 (($) NIL T CONST)) (-1653 (((-121) $ $) NIL)) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) NIL)) (** (($ $ (-909)) 24)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL))) -(((-594 |#1| |#2|) (-13 (-728 |#1|) (-600 |#2|) (-10 -8 (-15 -2801 ($ |#2|)) (IF (|has| |#2| (-413 |#1|)) (-6 (-413 |#1|)) |noBranch|) (IF (|has| |#2| (-363 |#1|)) (-6 (-363 |#1|)) |noBranch|))) (-170) (-728 |#1|)) (T -594)) -((-2801 (*1 *1 *2) (-12 (-4 *3 (-170)) (-5 *1 (-594 *3 *2)) (-4 *2 (-728 *3))))) -(-13 (-728 |#1|) (-600 |#2|) (-10 -8 (-15 -2801 ($ |#2|)) (IF (|has| |#2| (-413 |#1|)) (-6 (-413 |#1|)) |noBranch|) (IF (|has| |#2| (-363 |#1|)) (-6 (-363 |#1|)) |noBranch|))) -((-2601 (((-121) $ $) NIL)) (-1880 (((-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) $ (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|))) 33)) (-4050 (($ (-626 (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)))) NIL) (($) NIL)) (-2960 (((-1241) $ (-1135) (-1135)) NIL (|has| $ (-6 -4506)))) (-3909 (((-121) $ (-755)) NIL)) (-2764 ((|#1| $ (-1135) |#1|) 43)) (-3763 (($ (-1 (-121) (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|))) $) NIL (|has| $ (-6 -4505)))) (-3802 (($ (-1 (-121) (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|))) $) NIL (|has| $ (-6 -4505)))) (-2722 (((-3 |#1| "failed") (-1135) $) 46)) (-4236 (($) NIL T CONST)) (-2998 (($ $ (-1135)) 25)) (-2868 (($ $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (-1082))))) (-3561 (((-3 |#1| "failed") (-1135) $) 47) (($ (-1 (-121) (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|))) $) NIL (|has| $ (-6 -4505))) (($ (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) $) NIL (|has| $ (-6 -4505)))) (-4310 (($ (-1 (-121) (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|))) $) NIL (|has| $ (-6 -4505))) (($ (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (-1082))))) (-2342 (((-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (-1 (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|))) $) NIL (|has| $ (-6 -4505))) (((-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (-1 (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|))) $ (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|))) NIL (|has| $ (-6 -4505))) (((-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (-1 (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|))) $ (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|))) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (-1082))))) (-1464 (((-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) $) 32)) (-1746 ((|#1| $ (-1135) |#1|) NIL (|has| $ (-6 -4506)))) (-1361 ((|#1| $ (-1135)) NIL)) (-1981 (((-626 |#1|) $) NIL (|has| $ (-6 -4505))) (((-626 (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|))) $) NIL (|has| $ (-6 -4505)))) (-3215 (($ $) 48)) (-3997 (($ (-384)) 23) (($ (-384) (-1135)) 22)) (-1337 (((-384) $) 34)) (-2122 (((-121) $ (-755)) NIL)) (-4099 (((-1135) $) NIL (|has| (-1135) (-834)))) (-2130 (((-626 |#1|) $) NIL (|has| $ (-6 -4505))) (((-626 (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|))) $) NIL (|has| $ (-6 -4505)))) (-2030 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082)))) (((-121) (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (-1082))))) (-2767 (((-1135) $) NIL (|has| (-1135) (-834)))) (-3778 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4506))) (($ (-1 (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|))) $) NIL (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|))) $) NIL)) (-3441 (((-121) $ (-755)) NIL)) (-1291 (((-1135) $) NIL)) (-1377 (((-626 (-1135)) $) 39)) (-3855 (((-121) (-1135) $) NIL)) (-1661 (((-1135) $) 35)) (-2525 (((-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) $) NIL)) (-4345 (($ (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) $) NIL)) (-1529 (((-626 (-1135)) $) NIL)) (-1310 (((-121) (-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-1931 (((-1241) $) NIL)) (-2824 ((|#1| $) NIL (|has| (-1135) (-834)))) (-3786 (((-3 (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) "failed") (-1 (-121) (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|))) $) NIL)) (-3038 (($ $ |#1|) NIL (|has| $ (-6 -4506)))) (-2146 (((-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) $) NIL)) (-2865 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505))) (((-121) (-1 (-121) (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|))) $) NIL (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#1|))) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-283 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-626 |#1|) (-626 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-626 (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|))) (-626 (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)))) NIL (-12 (|has| (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (-298 (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)))) (|has| (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (-1082)))) (($ $ (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|))) NIL (-12 (|has| (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (-298 (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)))) (|has| (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (-1082)))) (($ $ (-283 (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)))) NIL (-12 (|has| (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (-298 (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)))) (|has| (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (-1082)))) (($ $ (-626 (-283 (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|))))) NIL (-12 (|has| (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (-298 (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)))) (|has| (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (-1082))))) (-2214 (((-121) $ $) NIL)) (-1290 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-4460 (((-626 |#1|) $) NIL)) (-4191 (((-121) $) NIL)) (-3260 (($) 37)) (-2778 ((|#1| $ (-1135) |#1|) NIL) ((|#1| $ (-1135)) 42)) (-3958 (($ (-626 (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)))) NIL) (($) NIL)) (-4035 (((-755) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505))) (((-755) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082)))) (((-755) (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (-1082)))) (((-755) (-1 (-121) (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|))) $) NIL (|has| $ (-6 -4505)))) (-2813 (($ $) NIL)) (-4255 (((-533) $) NIL (|has| (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (-601 (-533))))) (-4162 (($ (-626 (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)))) NIL)) (-2801 (((-842) $) 21)) (-2074 (($ $) 26)) (-1354 (($ (-626 (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)))) NIL)) (-3656 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505))) (((-121) (-1 (-121) (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|))) $) NIL (|has| $ (-6 -4505)))) (-1653 (((-121) $ $) 20)) (-2271 (((-755) $) 41 (|has| $ (-6 -4505))))) -(((-595 |#1|) (-13 (-360 (-384) (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|))) (-1164 (-1135) |#1|) (-10 -8 (-6 -4505) (-15 -3215 ($ $)))) (-1082)) (T -595)) -((-3215 (*1 *1 *1) (-12 (-5 *1 (-595 *2)) (-4 *2 (-1082))))) -(-13 (-360 (-384) (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|))) (-1164 (-1135) |#1|) (-10 -8 (-6 -4505) (-15 -3215 ($ $)))) -((-2030 (((-121) (-2 (|:| -3655 |#2|) (|:| -2371 |#3|)) $) 15)) (-1377 (((-626 |#2|) $) 19)) (-3855 (((-121) |#2| $) 12))) -(((-596 |#1| |#2| |#3|) (-10 -8 (-15 -1377 ((-626 |#2|) |#1|)) (-15 -3855 ((-121) |#2| |#1|)) (-15 -2030 ((-121) (-2 (|:| -3655 |#2|) (|:| -2371 |#3|)) |#1|))) (-597 |#2| |#3|) (-1082) (-1082)) (T -596)) -NIL -(-10 -8 (-15 -1377 ((-626 |#2|) |#1|)) (-15 -3855 ((-121) |#2| |#1|)) (-15 -2030 ((-121) (-2 (|:| -3655 |#2|) (|:| -2371 |#3|)) |#1|))) -((-2601 (((-121) $ $) 18 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (-3909 (((-121) $ (-755)) 8)) (-3763 (($ (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) 42 (|has| $ (-6 -4505)))) (-3802 (($ (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) 52 (|has| $ (-6 -4505)))) (-2722 (((-3 |#2| "failed") |#1| $) 57)) (-4236 (($) 7 T CONST)) (-2868 (($ $) 55 (-12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)) (|has| $ (-6 -4505))))) (-3561 (($ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) 44 (|has| $ (-6 -4505))) (($ (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) 43 (|has| $ (-6 -4505))) (((-3 |#2| "failed") |#1| $) 58)) (-4310 (($ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) 54 (-12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)) (|has| $ (-6 -4505)))) (($ (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) 51 (|has| $ (-6 -4505)))) (-2342 (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) 53 (-12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)) (|has| $ (-6 -4505)))) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) 50 (|has| $ (-6 -4505))) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) 49 (|has| $ (-6 -4505)))) (-1981 (((-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) 30 (|has| $ (-6 -4505)))) (-2122 (((-121) $ (-755)) 9)) (-2130 (((-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) 29 (|has| $ (-6 -4505)))) (-2030 (((-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)) (|has| $ (-6 -4505))))) (-3778 (($ (-1 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) 34 (|has| $ (-6 -4506)))) (-2803 (($ (-1 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) 35)) (-3441 (((-121) $ (-755)) 10)) (-1291 (((-1135) $) 22 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (-1377 (((-626 |#1|) $) 59)) (-3855 (((-121) |#1| $) 60)) (-2525 (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) 36)) (-4345 (($ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) 37)) (-4353 (((-1100) $) 21 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (-3786 (((-3 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) "failed") (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) 48)) (-2146 (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) 38)) (-2865 (((-121) (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) 32 (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))))) 26 (-12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (($ $ (-283 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) 25 (-12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (($ $ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) 24 (-12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (($ $ (-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) (-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) 23 (-12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082))))) (-2214 (((-121) $ $) 14)) (-4191 (((-121) $) 11)) (-3260 (($) 12)) (-3958 (($) 46) (($ (-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) 45)) (-4035 (((-755) (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) 31 (|has| $ (-6 -4505))) (((-755) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)) (|has| $ (-6 -4505))))) (-2813 (($ $) 13)) (-4255 (((-533) $) 56 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-601 (-533))))) (-4162 (($ (-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) 47)) (-2801 (((-842) $) 20 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (-1354 (($ (-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) 39)) (-3656 (((-121) (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) 33 (|has| $ (-6 -4505)))) (-1653 (((-121) $ $) 19 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (-2271 (((-755) $) 6 (|has| $ (-6 -4505))))) -(((-597 |#1| |#2|) (-1267) (-1082) (-1082)) (T -597)) -((-3855 (*1 *2 *3 *1) (-12 (-4 *1 (-597 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-5 *2 (-121)))) (-1377 (*1 *2 *1) (-12 (-4 *1 (-597 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-5 *2 (-626 *3)))) (-3561 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-597 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-1082)))) (-2722 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-597 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-1082))))) -(-13 (-217 (-2 (|:| -3655 |t#1|) (|:| -2371 |t#2|))) (-10 -8 (-15 -3855 ((-121) |t#1| $)) (-15 -1377 ((-626 |t#1|) $)) (-15 -3561 ((-3 |t#2| "failed") |t#1| $)) (-15 -2722 ((-3 |t#2| "failed") |t#1| $)))) -(((-39) . T) ((-111 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) . T) ((-105) |has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)) ((-600 (-842)) |has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)) ((-152 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) . T) ((-601 (-533)) |has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-601 (-533))) ((-217 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) . T) ((-223 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) . T) ((-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) -12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082))) ((-492 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) . T) ((-515 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) -12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082))) ((-1082) |has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)) ((-1187) . T)) -((-2043 (((-599 |#2|) |#1|) 15)) (-3550 (((-3 |#1| "failed") (-599 |#2|)) 19))) -(((-598 |#1| |#2|) (-10 -7 (-15 -2043 ((-599 |#2|) |#1|)) (-15 -3550 ((-3 |#1| "failed") (-599 |#2|)))) (-834) (-834)) (T -598)) -((-3550 (*1 *2 *3) (|partial| -12 (-5 *3 (-599 *4)) (-4 *4 (-834)) (-4 *2 (-834)) (-5 *1 (-598 *2 *4)))) (-2043 (*1 *2 *3) (-12 (-5 *2 (-599 *4)) (-5 *1 (-598 *3 *4)) (-4 *3 (-834)) (-4 *4 (-834))))) -(-10 -7 (-15 -2043 ((-599 |#2|) |#1|)) (-15 -3550 ((-3 |#1| "failed") (-599 |#2|)))) -((-2601 (((-121) $ $) NIL)) (-2576 (((-3 (-1153) "failed") $) 36)) (-3534 (((-1241) $ (-755)) 26)) (-2839 (((-755) $) 25)) (-4403 (((-123) $) 12)) (-1337 (((-1153) $) 20)) (-4325 (($ $ $) NIL)) (-2501 (($ $ $) NIL)) (-1291 (((-1135) $) NIL)) (-2181 (($ (-123) (-626 |#1|) (-755)) 30) (($ (-1153)) 31)) (-3178 (((-121) $ (-123)) 18) (((-121) $ (-1153)) 16)) (-3165 (((-755) $) 22)) (-4353 (((-1100) $) NIL)) (-4255 (((-879 (-560)) $) 69 (|has| |#1| (-601 (-879 (-560))))) (((-879 (-375)) $) 75 (|has| |#1| (-601 (-879 (-375))))) (((-533) $) 62 (|has| |#1| (-601 (-533))))) (-2801 (((-842) $) 51)) (-3896 (((-626 |#1|) $) 24)) (-1691 (((-121) $ $) NIL)) (-1675 (((-121) $ $) NIL)) (-1653 (((-121) $ $) 39)) (-1683 (((-121) $ $) NIL)) (-1667 (((-121) $ $) 40))) -(((-599 |#1|) (-13 (-138) (-871 |#1|) (-10 -8 (-15 -1337 ((-1153) $)) (-15 -4403 ((-123) $)) (-15 -3896 ((-626 |#1|) $)) (-15 -3165 ((-755) $)) (-15 -2181 ($ (-123) (-626 |#1|) (-755))) (-15 -2181 ($ (-1153))) (-15 -2576 ((-3 (-1153) "failed") $)) (-15 -3178 ((-121) $ (-123))) (-15 -3178 ((-121) $ (-1153))) (IF (|has| |#1| (-601 (-533))) (-6 (-601 (-533))) |noBranch|))) (-834)) (T -599)) -((-1337 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-599 *3)) (-4 *3 (-834)))) (-4403 (*1 *2 *1) (-12 (-5 *2 (-123)) (-5 *1 (-599 *3)) (-4 *3 (-834)))) (-3896 (*1 *2 *1) (-12 (-5 *2 (-626 *3)) (-5 *1 (-599 *3)) (-4 *3 (-834)))) (-3165 (*1 *2 *1) (-12 (-5 *2 (-755)) (-5 *1 (-599 *3)) (-4 *3 (-834)))) (-2181 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-123)) (-5 *3 (-626 *5)) (-5 *4 (-755)) (-4 *5 (-834)) (-5 *1 (-599 *5)))) (-2181 (*1 *1 *2) (-12 (-5 *2 (-1153)) (-5 *1 (-599 *3)) (-4 *3 (-834)))) (-2576 (*1 *2 *1) (|partial| -12 (-5 *2 (-1153)) (-5 *1 (-599 *3)) (-4 *3 (-834)))) (-3178 (*1 *2 *1 *3) (-12 (-5 *3 (-123)) (-5 *2 (-121)) (-5 *1 (-599 *4)) (-4 *4 (-834)))) (-3178 (*1 *2 *1 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-121)) (-5 *1 (-599 *4)) (-4 *4 (-834))))) -(-13 (-138) (-871 |#1|) (-10 -8 (-15 -1337 ((-1153) $)) (-15 -4403 ((-123) $)) (-15 -3896 ((-626 |#1|) $)) (-15 -3165 ((-755) $)) (-15 -2181 ($ (-123) (-626 |#1|) (-755))) (-15 -2181 ($ (-1153))) (-15 -2576 ((-3 (-1153) "failed") $)) (-15 -3178 ((-121) $ (-123))) (-15 -3178 ((-121) $ (-1153))) (IF (|has| |#1| (-601 (-533))) (-6 (-601 (-533))) |noBranch|))) -((-2801 ((|#1| $) 6))) -(((-600 |#1|) (-1267) (-1187)) (T -600)) -((-2801 (*1 *2 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-1187))))) -(-13 (-10 -8 (-15 -2801 (|t#1| $)))) -((-4255 ((|#1| $) 6))) -(((-601 |#1|) (-1267) (-1187)) (T -601)) -((-4255 (*1 *2 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-1187))))) -(-13 (-10 -8 (-15 -4255 (|t#1| $)))) -((-2762 (((-3 (-1149 (-403 |#2|)) "failed") (-403 |#2|) (-403 |#2|) (-403 |#2|) (-1 (-414 |#2|) |#2|)) 13) (((-3 (-1149 (-403 |#2|)) "failed") (-403 |#2|) (-403 |#2|) (-403 |#2|)) 14))) -(((-602 |#1| |#2|) (-10 -7 (-15 -2762 ((-3 (-1149 (-403 |#2|)) "failed") (-403 |#2|) (-403 |#2|) (-403 |#2|))) (-15 -2762 ((-3 (-1149 (-403 |#2|)) "failed") (-403 |#2|) (-403 |#2|) (-403 |#2|) (-1 (-414 |#2|) |#2|)))) (-13 (-148) (-27) (-1029 (-560)) (-1029 (-403 (-560)))) (-1211 |#1|)) (T -602)) -((-2762 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-414 *6) *6)) (-4 *6 (-1211 *5)) (-4 *5 (-13 (-148) (-27) (-1029 (-560)) (-1029 (-403 (-560))))) (-5 *2 (-1149 (-403 *6))) (-5 *1 (-602 *5 *6)) (-5 *3 (-403 *6)))) (-2762 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-148) (-27) (-1029 (-560)) (-1029 (-403 (-560))))) (-4 *5 (-1211 *4)) (-5 *2 (-1149 (-403 *5))) (-5 *1 (-602 *4 *5)) (-5 *3 (-403 *5))))) -(-10 -7 (-15 -2762 ((-3 (-1149 (-403 |#2|)) "failed") (-403 |#2|) (-403 |#2|) (-403 |#2|))) (-15 -2762 ((-3 (-1149 (-403 |#2|)) "failed") (-403 |#2|) (-403 |#2|) (-403 |#2|) (-1 (-414 |#2|) |#2|)))) -((-2801 (((-842) $) NIL) (($ (-560)) NIL) (($ |#2|) 10))) -(((-603 |#1| |#2|) (-10 -8 (-15 -2801 (|#1| |#2|)) (-15 -2801 (|#1| (-560))) (-15 -2801 ((-842) |#1|))) (-604 |#2|) (-1039)) (T -603)) -NIL -(-10 -8 (-15 -2801 (|#1| |#2|)) (-15 -2801 (|#1| (-560))) (-15 -2801 ((-842) |#1|))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-2314 (((-3 $ "failed") $ $) 18)) (-4236 (($) 16 T CONST)) (-1823 (((-3 $ "failed") $) 33)) (-2642 (((-121) $) 30)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-2801 (((-842) $) 11) (($ (-560)) 27) (($ |#1|) 35)) (-1751 (((-755)) 28)) (-2464 (($ $ (-909)) 25) (($ $ (-755)) 32)) (-3304 (($) 17 T CONST)) (-1459 (($) 29 T CONST)) (-1653 (((-121) $ $) 6)) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 24) (($ $ (-755)) 31)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 23) (($ |#1| $) 36))) -(((-604 |#1|) (-1267) (-1039)) (T -604)) -((-2801 (*1 *1 *2) (-12 (-4 *1 (-604 *2)) (-4 *2 (-1039))))) -(-13 (-1039) (-629 |t#1|) (-10 -8 (-15 -2801 ($ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-105) . T) ((-137) . T) ((-600 (-842)) . T) ((-629 |#1|) . T) ((-629 $) . T) ((-708) . T) ((-1039) . T) ((-1046) . T) ((-1094) . T) ((-1082) . T)) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-4235 (((-560) $) NIL (|has| |#1| (-832)))) (-4236 (($) NIL T CONST)) (-1823 (((-3 $ "failed") $) NIL)) (-1786 (((-121) $) NIL (|has| |#1| (-832)))) (-2642 (((-121) $) NIL)) (-2132 ((|#1| $) 13)) (-2187 (((-121) $) NIL (|has| |#1| (-832)))) (-4325 (($ $ $) NIL (|has| |#1| (-832)))) (-2501 (($ $ $) NIL (|has| |#1| (-832)))) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2139 ((|#3| $) 15)) (-2801 (((-842) $) NIL) (($ (-560)) NIL) (($ |#2|) NIL)) (-1751 (((-755)) 20)) (-1822 (($ $) NIL (|has| |#1| (-832)))) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (-3304 (($) NIL T CONST)) (-1459 (($) 12 T CONST)) (-1691 (((-121) $ $) NIL (|has| |#1| (-832)))) (-1675 (((-121) $ $) NIL (|has| |#1| (-832)))) (-1653 (((-121) $ $) NIL)) (-1683 (((-121) $ $) NIL (|has| |#1| (-832)))) (-1667 (((-121) $ $) NIL (|has| |#1| (-832)))) (-1733 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) NIL)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-605 |#1| |#2| |#3|) (-13 (-43 |#2|) (-10 -8 (IF (|has| |#1| (-832)) (-6 (-832)) |noBranch|) (-15 -1733 ($ $ |#3|)) (-15 -1733 ($ |#1| |#3|)) (-15 -2132 (|#1| $)) (-15 -2139 (|#3| $)))) (-43 |#2|) (-170) (|SubsetCategory| (-708) |#2|)) (T -605)) -((-1733 (*1 *1 *1 *2) (-12 (-4 *4 (-170)) (-5 *1 (-605 *3 *4 *2)) (-4 *3 (-43 *4)) (-4 *2 (|SubsetCategory| (-708) *4)))) (-1733 (*1 *1 *2 *3) (-12 (-4 *4 (-170)) (-5 *1 (-605 *2 *4 *3)) (-4 *2 (-43 *4)) (-4 *3 (|SubsetCategory| (-708) *4)))) (-2132 (*1 *2 *1) (-12 (-4 *3 (-170)) (-4 *2 (-43 *3)) (-5 *1 (-605 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-708) *3)))) (-2139 (*1 *2 *1) (-12 (-4 *4 (-170)) (-4 *2 (|SubsetCategory| (-708) *4)) (-5 *1 (-605 *3 *4 *2)) (-4 *3 (-43 *4))))) -(-13 (-43 |#2|) (-10 -8 (IF (|has| |#1| (-832)) (-6 (-832)) |noBranch|) (-15 -1733 ($ $ |#3|)) (-15 -1733 ($ |#1| |#3|)) (-15 -2132 (|#1| $)) (-15 -2139 (|#3| $)))) -((-4485 ((|#2| |#2| (-1153) (-1153)) 18))) -(((-606 |#1| |#2|) (-10 -7 (-15 -4485 (|#2| |#2| (-1153) (-1153)))) (-13 (-296) (-834) (-148) (-1029 (-560)) (-622 (-560))) (-13 (-1173) (-951) (-29 |#1|))) (T -606)) -((-4485 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1153)) (-4 *4 (-13 (-296) (-834) (-148) (-1029 (-560)) (-622 (-560)))) (-5 *1 (-606 *4 *2)) (-4 *2 (-13 (-1173) (-951) (-29 *4)))))) -(-10 -7 (-15 -4485 (|#2| |#2| (-1153) (-1153)))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) 52)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL)) (-1350 (($ $) NIL)) (-3376 (((-121) $) NIL)) (-2046 ((|#1| $) 49)) (-2314 (((-3 $ "failed") $ $) NIL)) (-4179 (((-121) $ $) NIL (|has| |#1| (-359)))) (-2562 (((-2 (|:| -1445 $) (|:| -3072 (-403 |#2|))) (-403 |#2|)) 95 (|has| |#1| (-359)))) (-4236 (($) NIL T CONST)) (-1473 (((-3 (-560) "failed") $) NIL (|has| |#1| (-1029 (-560)))) (((-3 (-403 (-560)) "failed") $) NIL (|has| |#1| (-1029 (-403 (-560))))) (((-3 |#1| "failed") $) 83) (((-3 |#2| "failed") $) 80)) (-3001 (((-560) $) NIL (|has| |#1| (-1029 (-560)))) (((-403 (-560)) $) NIL (|has| |#1| (-1029 (-403 (-560))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2563 (($ $ $) NIL (|has| |#1| (-359)))) (-1750 (($ $) 24)) (-1823 (((-3 $ "failed") $) 74)) (-2572 (($ $ $) NIL (|has| |#1| (-359)))) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) NIL (|has| |#1| (-359)))) (-3504 (((-560) $) 19)) (-2642 (((-121) $) NIL)) (-3856 (((-3 (-626 $) "failed") (-626 $) $) NIL (|has| |#1| (-359)))) (-1814 (((-121) $) 36)) (-1637 (($ |#1| (-560)) 21)) (-1735 ((|#1| $) 51)) (-2582 (($ (-626 $)) NIL (|has| |#1| (-359))) (($ $ $) NIL (|has| |#1| (-359)))) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL (|has| |#1| (-359)))) (-4440 (($ (-626 $)) NIL (|has| |#1| (-359))) (($ $ $) 85 (|has| |#1| (-359)))) (-3505 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 98 (|has| |#1| (-359))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL (|has| |#1| (-359)))) (-2336 (((-3 $ "failed") $ $) 78)) (-3456 (((-3 (-626 $) "failed") (-626 $) $) NIL (|has| |#1| (-359)))) (-4445 (((-755) $) 97 (|has| |#1| (-359)))) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) 96 (|has| |#1| (-359)))) (-2443 (($ $ (-1 |#2| |#2|)) 65) (($ $ (-1 |#2| |#2|) (-755)) NIL) (($ $ (-626 (-1153)) (-626 (-755))) NIL (|has| |#2| (-887 (-1153)))) (($ $ (-1153) (-755)) NIL (|has| |#2| (-887 (-1153)))) (($ $ (-626 (-1153))) NIL (|has| |#2| (-887 (-1153)))) (($ $ (-1153)) NIL (|has| |#2| (-887 (-1153)))) (($ $ (-755)) NIL (|has| |#2| (-221))) (($ $) NIL (|has| |#2| (-221)))) (-3662 (((-560) $) 34)) (-4255 (((-403 |#2|) $) 42)) (-2801 (((-842) $) 61) (($ (-560)) 32) (($ $) NIL) (($ (-403 (-560))) NIL (|has| |#1| (-1029 (-403 (-560))))) (($ |#1|) 31) (($ |#2|) 22)) (-2636 ((|#1| $ (-560)) 62)) (-2272 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1751 (((-755)) 29)) (-2328 (((-121) $ $) NIL)) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (-3304 (($) 9 T CONST)) (-1459 (($) 12 T CONST)) (-2500 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-755)) NIL) (($ $ (-626 (-1153)) (-626 (-755))) NIL (|has| |#2| (-887 (-1153)))) (($ $ (-1153) (-755)) NIL (|has| |#2| (-887 (-1153)))) (($ $ (-626 (-1153))) NIL (|has| |#2| (-887 (-1153)))) (($ $ (-1153)) NIL (|has| |#2| (-887 (-1153)))) (($ $ (-755)) NIL (|has| |#2| (-221))) (($ $) NIL (|has| |#2| (-221)))) (-1653 (((-121) $ $) 17)) (-1725 (($ $) 46) (($ $ $) NIL)) (-1716 (($ $ $) 75)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) 26) (($ $ $) 44))) -(((-607 |#1| |#2|) (-13 (-219 |#2|) (-550) (-601 (-403 |#2|)) (-407 |#1|) (-1029 |#2|) (-10 -8 (-15 -1814 ((-121) $)) (-15 -3662 ((-560) $)) (-15 -3504 ((-560) $)) (-15 -1750 ($ $)) (-15 -1735 (|#1| $)) (-15 -2046 (|#1| $)) (-15 -2636 (|#1| $ (-560))) (-15 -1637 ($ |#1| (-560))) (IF (|has| |#1| (-148)) (-6 (-148)) |noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |noBranch|) (IF (|has| |#1| (-359)) (PROGN (-6 (-296)) (-15 -2562 ((-2 (|:| -1445 $) (|:| -3072 (-403 |#2|))) (-403 |#2|)))) |noBranch|))) (-550) (-1211 |#1|)) (T -607)) -((-1814 (*1 *2 *1) (-12 (-4 *3 (-550)) (-5 *2 (-121)) (-5 *1 (-607 *3 *4)) (-4 *4 (-1211 *3)))) (-3662 (*1 *2 *1) (-12 (-4 *3 (-550)) (-5 *2 (-560)) (-5 *1 (-607 *3 *4)) (-4 *4 (-1211 *3)))) (-3504 (*1 *2 *1) (-12 (-4 *3 (-550)) (-5 *2 (-560)) (-5 *1 (-607 *3 *4)) (-4 *4 (-1211 *3)))) (-1750 (*1 *1 *1) (-12 (-4 *2 (-550)) (-5 *1 (-607 *2 *3)) (-4 *3 (-1211 *2)))) (-1735 (*1 *2 *1) (-12 (-4 *2 (-550)) (-5 *1 (-607 *2 *3)) (-4 *3 (-1211 *2)))) (-2046 (*1 *2 *1) (-12 (-4 *2 (-550)) (-5 *1 (-607 *2 *3)) (-4 *3 (-1211 *2)))) (-2636 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *2 (-550)) (-5 *1 (-607 *2 *4)) (-4 *4 (-1211 *2)))) (-1637 (*1 *1 *2 *3) (-12 (-5 *3 (-560)) (-4 *2 (-550)) (-5 *1 (-607 *2 *4)) (-4 *4 (-1211 *2)))) (-2562 (*1 *2 *3) (-12 (-4 *4 (-359)) (-4 *4 (-550)) (-4 *5 (-1211 *4)) (-5 *2 (-2 (|:| -1445 (-607 *4 *5)) (|:| -3072 (-403 *5)))) (-5 *1 (-607 *4 *5)) (-5 *3 (-403 *5))))) -(-13 (-219 |#2|) (-550) (-601 (-403 |#2|)) (-407 |#1|) (-1029 |#2|) (-10 -8 (-15 -1814 ((-121) $)) (-15 -3662 ((-560) $)) (-15 -3504 ((-560) $)) (-15 -1750 ($ $)) (-15 -1735 (|#1| $)) (-15 -2046 (|#1| $)) (-15 -2636 (|#1| $ (-560))) (-15 -1637 ($ |#1| (-560))) (IF (|has| |#1| (-148)) (-6 (-148)) |noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |noBranch|) (IF (|has| |#1| (-359)) (PROGN (-6 (-296)) (-15 -2562 ((-2 (|:| -1445 $) (|:| -3072 (-403 |#2|))) (-403 |#2|)))) |noBranch|))) -((-3332 (((-626 |#6|) (-626 |#4|) (-121)) 46)) (-2238 ((|#6| |#6|) 39))) -(((-608 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2238 (|#6| |#6|)) (-15 -3332 ((-626 |#6|) (-626 |#4|) (-121)))) (-447) (-780) (-834) (-1053 |#1| |#2| |#3|) (-1058 |#1| |#2| |#3| |#4|) (-1091 |#1| |#2| |#3| |#4|)) (T -608)) -((-3332 (*1 *2 *3 *4) (-12 (-5 *3 (-626 *8)) (-5 *4 (-121)) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-5 *2 (-626 *10)) (-5 *1 (-608 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1058 *5 *6 *7 *8)) (-4 *10 (-1091 *5 *6 *7 *8)))) (-2238 (*1 *2 *2) (-12 (-4 *3 (-447)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1053 *3 *4 *5)) (-5 *1 (-608 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1058 *3 *4 *5 *6)) (-4 *2 (-1091 *3 *4 *5 *6))))) -(-10 -7 (-15 -2238 (|#6| |#6|)) (-15 -3332 ((-626 |#6|) (-626 |#4|) (-121)))) -((-4089 (((-121) |#3| (-755) (-626 |#3|)) 22)) (-2092 (((-3 (-2 (|:| |polfac| (-626 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-626 (-1149 |#3|)))) "failed") |#3| (-626 (-1149 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3025 (-626 (-2 (|:| |irr| |#4|) (|:| -2678 (-560)))))) (-626 |#3|) (-626 |#1|) (-626 |#3|)) 51))) -(((-609 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4089 ((-121) |#3| (-755) (-626 |#3|))) (-15 -2092 ((-3 (-2 (|:| |polfac| (-626 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-626 (-1149 |#3|)))) "failed") |#3| (-626 (-1149 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3025 (-626 (-2 (|:| |irr| |#4|) (|:| -2678 (-560)))))) (-626 |#3|) (-626 |#1|) (-626 |#3|)))) (-834) (-780) (-296) (-942 |#3| |#2| |#1|)) (T -609)) -((-2092 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -3025 (-626 (-2 (|:| |irr| *10) (|:| -2678 (-560))))))) (-5 *6 (-626 *3)) (-5 *7 (-626 *8)) (-4 *8 (-834)) (-4 *3 (-296)) (-4 *10 (-942 *3 *9 *8)) (-4 *9 (-780)) (-5 *2 (-2 (|:| |polfac| (-626 *10)) (|:| |correct| *3) (|:| |corrfact| (-626 (-1149 *3))))) (-5 *1 (-609 *8 *9 *3 *10)) (-5 *4 (-626 (-1149 *3))))) (-4089 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-755)) (-5 *5 (-626 *3)) (-4 *3 (-296)) (-4 *6 (-834)) (-4 *7 (-780)) (-5 *2 (-121)) (-5 *1 (-609 *6 *7 *3 *8)) (-4 *8 (-942 *3 *7 *6))))) -(-10 -7 (-15 -4089 ((-121) |#3| (-755) (-626 |#3|))) (-15 -2092 ((-3 (-2 (|:| |polfac| (-626 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-626 (-1149 |#3|)))) "failed") |#3| (-626 (-1149 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3025 (-626 (-2 (|:| |irr| |#4|) (|:| -2678 (-560)))))) (-626 |#3|) (-626 |#1|) (-626 |#3|)))) -((-2601 (((-121) $ $) NIL)) (-1499 (((-626 |#1|) $) NIL)) (-4236 (($) NIL T CONST)) (-1823 (((-3 $ "failed") $) NIL)) (-2642 (((-121) $) NIL)) (-2994 (($ $) 67)) (-4399 (((-648 |#1| |#2|) $) 52)) (-1387 (((-626 (-2 (|:| |k| (-880 |#1|)) (|:| |c| |#2|))) $) 36)) (-1291 (((-1135) $) NIL)) (-1701 (($ $) 70)) (-4416 (((-626 (-283 |#2|)) $ $) 33)) (-4353 (((-1100) $) NIL)) (-2469 (($ (-648 |#1| |#2|)) 48)) (-3101 (($ $ $) NIL)) (-1671 (($ $ $) NIL)) (-2801 (((-842) $) 58) (((-1249 |#1| |#2|) $) NIL) (((-1254 |#1| |#2|) $) 66)) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL)) (-1459 (($) 53 T CONST)) (-1382 (((-626 (-2 (|:| |k| (-655 |#1|)) (|:| |c| |#2|))) $) 31)) (-3920 (((-626 (-648 |#1| |#2|)) (-626 |#1|)) 65)) (-1653 (((-121) $ $) 54)) (-1733 (($ $ $) NIL)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL)) (* (($ $ $) 44))) -(((-610 |#1| |#2| |#3|) (-13 (-471) (-10 -8 (-15 -2469 ($ (-648 |#1| |#2|))) (-15 -4399 ((-648 |#1| |#2|) $)) (-15 -1387 ((-626 (-2 (|:| |k| (-880 |#1|)) (|:| |c| |#2|))) $)) (-15 -2801 ((-1249 |#1| |#2|) $)) (-15 -2801 ((-1254 |#1| |#2|) $)) (-15 -2994 ($ $)) (-15 -1499 ((-626 |#1|) $)) (-15 -3920 ((-626 (-648 |#1| |#2|)) (-626 |#1|))) (-15 -1382 ((-626 (-2 (|:| |k| (-655 |#1|)) (|:| |c| |#2|))) $)) (-15 -4416 ((-626 (-283 |#2|)) $ $)))) (-834) (-13 (-170) (-699 (-403 (-560)))) (-909)) (T -610)) -((-2469 (*1 *1 *2) (-12 (-5 *2 (-648 *3 *4)) (-4 *3 (-834)) (-4 *4 (-13 (-170) (-699 (-403 (-560))))) (-5 *1 (-610 *3 *4 *5)) (-14 *5 (-909)))) (-4399 (*1 *2 *1) (-12 (-5 *2 (-648 *3 *4)) (-5 *1 (-610 *3 *4 *5)) (-4 *3 (-834)) (-4 *4 (-13 (-170) (-699 (-403 (-560))))) (-14 *5 (-909)))) (-1387 (*1 *2 *1) (-12 (-5 *2 (-626 (-2 (|:| |k| (-880 *3)) (|:| |c| *4)))) (-5 *1 (-610 *3 *4 *5)) (-4 *3 (-834)) (-4 *4 (-13 (-170) (-699 (-403 (-560))))) (-14 *5 (-909)))) (-2801 (*1 *2 *1) (-12 (-5 *2 (-1249 *3 *4)) (-5 *1 (-610 *3 *4 *5)) (-4 *3 (-834)) (-4 *4 (-13 (-170) (-699 (-403 (-560))))) (-14 *5 (-909)))) (-2801 (*1 *2 *1) (-12 (-5 *2 (-1254 *3 *4)) (-5 *1 (-610 *3 *4 *5)) (-4 *3 (-834)) (-4 *4 (-13 (-170) (-699 (-403 (-560))))) (-14 *5 (-909)))) (-2994 (*1 *1 *1) (-12 (-5 *1 (-610 *2 *3 *4)) (-4 *2 (-834)) (-4 *3 (-13 (-170) (-699 (-403 (-560))))) (-14 *4 (-909)))) (-1499 (*1 *2 *1) (-12 (-5 *2 (-626 *3)) (-5 *1 (-610 *3 *4 *5)) (-4 *3 (-834)) (-4 *4 (-13 (-170) (-699 (-403 (-560))))) (-14 *5 (-909)))) (-3920 (*1 *2 *3) (-12 (-5 *3 (-626 *4)) (-4 *4 (-834)) (-5 *2 (-626 (-648 *4 *5))) (-5 *1 (-610 *4 *5 *6)) (-4 *5 (-13 (-170) (-699 (-403 (-560))))) (-14 *6 (-909)))) (-1382 (*1 *2 *1) (-12 (-5 *2 (-626 (-2 (|:| |k| (-655 *3)) (|:| |c| *4)))) (-5 *1 (-610 *3 *4 *5)) (-4 *3 (-834)) (-4 *4 (-13 (-170) (-699 (-403 (-560))))) (-14 *5 (-909)))) (-4416 (*1 *2 *1 *1) (-12 (-5 *2 (-626 (-283 *4))) (-5 *1 (-610 *3 *4 *5)) (-4 *3 (-834)) (-4 *4 (-13 (-170) (-699 (-403 (-560))))) (-14 *5 (-909))))) -(-13 (-471) (-10 -8 (-15 -2469 ($ (-648 |#1| |#2|))) (-15 -4399 ((-648 |#1| |#2|) $)) (-15 -1387 ((-626 (-2 (|:| |k| (-880 |#1|)) (|:| |c| |#2|))) $)) (-15 -2801 ((-1249 |#1| |#2|) $)) (-15 -2801 ((-1254 |#1| |#2|) $)) (-15 -2994 ($ $)) (-15 -1499 ((-626 |#1|) $)) (-15 -3920 ((-626 (-648 |#1| |#2|)) (-626 |#1|))) (-15 -1382 ((-626 (-2 (|:| |k| (-655 |#1|)) (|:| |c| |#2|))) $)) (-15 -4416 ((-626 (-283 |#2|)) $ $)))) -((-3332 (((-626 (-1123 |#1| (-526 (-844 |#2|)) (-844 |#2|) (-767 |#1| (-844 |#2|)))) (-626 (-767 |#1| (-844 |#2|))) (-121)) 70) (((-626 (-1036 |#1| |#2|)) (-626 (-767 |#1| (-844 |#2|))) (-121)) 56)) (-2911 (((-121) (-626 (-767 |#1| (-844 |#2|)))) 22)) (-1954 (((-626 (-1123 |#1| (-526 (-844 |#2|)) (-844 |#2|) (-767 |#1| (-844 |#2|)))) (-626 (-767 |#1| (-844 |#2|))) (-121)) 69)) (-2044 (((-626 (-1036 |#1| |#2|)) (-626 (-767 |#1| (-844 |#2|))) (-121)) 55)) (-3341 (((-626 (-767 |#1| (-844 |#2|))) (-626 (-767 |#1| (-844 |#2|)))) 26)) (-4478 (((-3 (-626 (-767 |#1| (-844 |#2|))) "failed") (-626 (-767 |#1| (-844 |#2|)))) 25))) -(((-611 |#1| |#2|) (-10 -7 (-15 -2911 ((-121) (-626 (-767 |#1| (-844 |#2|))))) (-15 -4478 ((-3 (-626 (-767 |#1| (-844 |#2|))) "failed") (-626 (-767 |#1| (-844 |#2|))))) (-15 -3341 ((-626 (-767 |#1| (-844 |#2|))) (-626 (-767 |#1| (-844 |#2|))))) (-15 -2044 ((-626 (-1036 |#1| |#2|)) (-626 (-767 |#1| (-844 |#2|))) (-121))) (-15 -1954 ((-626 (-1123 |#1| (-526 (-844 |#2|)) (-844 |#2|) (-767 |#1| (-844 |#2|)))) (-626 (-767 |#1| (-844 |#2|))) (-121))) (-15 -3332 ((-626 (-1036 |#1| |#2|)) (-626 (-767 |#1| (-844 |#2|))) (-121))) (-15 -3332 ((-626 (-1123 |#1| (-526 (-844 |#2|)) (-844 |#2|) (-767 |#1| (-844 |#2|)))) (-626 (-767 |#1| (-844 |#2|))) (-121)))) (-447) (-626 (-1153))) (T -611)) -((-3332 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-767 *5 (-844 *6)))) (-5 *4 (-121)) (-4 *5 (-447)) (-14 *6 (-626 (-1153))) (-5 *2 (-626 (-1123 *5 (-526 (-844 *6)) (-844 *6) (-767 *5 (-844 *6))))) (-5 *1 (-611 *5 *6)))) (-3332 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-767 *5 (-844 *6)))) (-5 *4 (-121)) (-4 *5 (-447)) (-14 *6 (-626 (-1153))) (-5 *2 (-626 (-1036 *5 *6))) (-5 *1 (-611 *5 *6)))) (-1954 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-767 *5 (-844 *6)))) (-5 *4 (-121)) (-4 *5 (-447)) (-14 *6 (-626 (-1153))) (-5 *2 (-626 (-1123 *5 (-526 (-844 *6)) (-844 *6) (-767 *5 (-844 *6))))) (-5 *1 (-611 *5 *6)))) (-2044 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-767 *5 (-844 *6)))) (-5 *4 (-121)) (-4 *5 (-447)) (-14 *6 (-626 (-1153))) (-5 *2 (-626 (-1036 *5 *6))) (-5 *1 (-611 *5 *6)))) (-3341 (*1 *2 *2) (-12 (-5 *2 (-626 (-767 *3 (-844 *4)))) (-4 *3 (-447)) (-14 *4 (-626 (-1153))) (-5 *1 (-611 *3 *4)))) (-4478 (*1 *2 *2) (|partial| -12 (-5 *2 (-626 (-767 *3 (-844 *4)))) (-4 *3 (-447)) (-14 *4 (-626 (-1153))) (-5 *1 (-611 *3 *4)))) (-2911 (*1 *2 *3) (-12 (-5 *3 (-626 (-767 *4 (-844 *5)))) (-4 *4 (-447)) (-14 *5 (-626 (-1153))) (-5 *2 (-121)) (-5 *1 (-611 *4 *5))))) -(-10 -7 (-15 -2911 ((-121) (-626 (-767 |#1| (-844 |#2|))))) (-15 -4478 ((-3 (-626 (-767 |#1| (-844 |#2|))) "failed") (-626 (-767 |#1| (-844 |#2|))))) (-15 -3341 ((-626 (-767 |#1| (-844 |#2|))) (-626 (-767 |#1| (-844 |#2|))))) (-15 -2044 ((-626 (-1036 |#1| |#2|)) (-626 (-767 |#1| (-844 |#2|))) (-121))) (-15 -1954 ((-626 (-1123 |#1| (-526 (-844 |#2|)) (-844 |#2|) (-767 |#1| (-844 |#2|)))) (-626 (-767 |#1| (-844 |#2|))) (-121))) (-15 -3332 ((-626 (-1036 |#1| |#2|)) (-626 (-767 |#1| (-844 |#2|))) (-121))) (-15 -3332 ((-626 (-1123 |#1| (-526 (-844 |#2|)) (-844 |#2|) (-767 |#1| (-844 |#2|)))) (-626 (-767 |#1| (-844 |#2|))) (-121)))) -((-2570 (($ $) 36)) (-2514 (($ $) 19)) (-2561 (($ $) 35)) (-2790 (($ $) 20)) (-2579 (($ $) 34)) (-2523 (($ $) 21)) (-2474 (($) 46)) (-4399 (($ $) 43)) (-2489 (($ $) 15)) (-4041 (($ $ (-1074 $)) 7) (($ $ (-1153)) 6)) (-2469 (($ $) 44)) (-2494 (($ $) 13)) (-2510 (($ $) 14)) (-2585 (($ $) 33)) (-2528 (($ $) 22)) (-2575 (($ $) 32)) (-2519 (($ $) 23)) (-2566 (($ $) 31)) (-2795 (($ $) 24)) (-2598 (($ $) 42)) (-2541 (($ $) 30)) (-2590 (($ $) 41)) (-2532 (($ $) 29)) (-2608 (($ $) 40)) (-2549 (($ $) 28)) (-3689 (($ $) 39)) (-2554 (($ $) 27)) (-2604 (($ $) 38)) (-2545 (($ $) 26)) (-2594 (($ $) 37)) (-2536 (($ $) 25)) (-1488 (($ $) 17)) (-2662 (($ $) 18)) (-3182 (($ $) 16)) (** (($ $ $) 45))) -(((-612) (-1267)) (T -612)) -((-2662 (*1 *1 *1) (-4 *1 (-612))) (-1488 (*1 *1 *1) (-4 *1 (-612))) (-3182 (*1 *1 *1) (-4 *1 (-612))) (-2489 (*1 *1 *1) (-4 *1 (-612))) (-2510 (*1 *1 *1) (-4 *1 (-612))) (-2494 (*1 *1 *1) (-4 *1 (-612)))) -(-13 (-951) (-1173) (-10 -8 (-15 -2662 ($ $)) (-15 -1488 ($ $)) (-15 -3182 ($ $)) (-15 -2489 ($ $)) (-15 -2510 ($ $)) (-15 -2494 ($ $)))) -(((-40) . T) ((-98) . T) ((-274) . T) ((-494) . T) ((-951) . T) ((-1173) . T) ((-1176) . T)) -((-4403 (((-123) (-123)) 83)) (-2489 ((|#2| |#2|) 30)) (-4041 ((|#2| |#2| (-1074 |#2|)) 79) ((|#2| |#2| (-1153)) 52)) (-2494 ((|#2| |#2|) 29)) (-2510 ((|#2| |#2|) 31)) (-2409 (((-121) (-123)) 34)) (-1488 ((|#2| |#2|) 26)) (-2662 ((|#2| |#2|) 28)) (-3182 ((|#2| |#2|) 27))) -(((-613 |#1| |#2|) (-10 -7 (-15 -2409 ((-121) (-123))) (-15 -4403 ((-123) (-123))) (-15 -2662 (|#2| |#2|)) (-15 -1488 (|#2| |#2|)) (-15 -3182 (|#2| |#2|)) (-15 -2489 (|#2| |#2|)) (-15 -2494 (|#2| |#2|)) (-15 -2510 (|#2| |#2|)) (-15 -4041 (|#2| |#2| (-1153))) (-15 -4041 (|#2| |#2| (-1074 |#2|)))) (-13 (-834) (-550)) (-13 (-426 |#1|) (-994) (-1173))) (T -613)) -((-4041 (*1 *2 *2 *3) (-12 (-5 *3 (-1074 *2)) (-4 *2 (-13 (-426 *4) (-994) (-1173))) (-4 *4 (-13 (-834) (-550))) (-5 *1 (-613 *4 *2)))) (-4041 (*1 *2 *2 *3) (-12 (-5 *3 (-1153)) (-4 *4 (-13 (-834) (-550))) (-5 *1 (-613 *4 *2)) (-4 *2 (-13 (-426 *4) (-994) (-1173))))) (-2510 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-613 *3 *2)) (-4 *2 (-13 (-426 *3) (-994) (-1173))))) (-2494 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-613 *3 *2)) (-4 *2 (-13 (-426 *3) (-994) (-1173))))) (-2489 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-613 *3 *2)) (-4 *2 (-13 (-426 *3) (-994) (-1173))))) (-3182 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-613 *3 *2)) (-4 *2 (-13 (-426 *3) (-994) (-1173))))) (-1488 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-613 *3 *2)) (-4 *2 (-13 (-426 *3) (-994) (-1173))))) (-2662 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-613 *3 *2)) (-4 *2 (-13 (-426 *3) (-994) (-1173))))) (-4403 (*1 *2 *2) (-12 (-5 *2 (-123)) (-4 *3 (-13 (-834) (-550))) (-5 *1 (-613 *3 *4)) (-4 *4 (-13 (-426 *3) (-994) (-1173))))) (-2409 (*1 *2 *3) (-12 (-5 *3 (-123)) (-4 *4 (-13 (-834) (-550))) (-5 *2 (-121)) (-5 *1 (-613 *4 *5)) (-4 *5 (-13 (-426 *4) (-994) (-1173)))))) -(-10 -7 (-15 -2409 ((-121) (-123))) (-15 -4403 ((-123) (-123))) (-15 -2662 (|#2| |#2|)) (-15 -1488 (|#2| |#2|)) (-15 -3182 (|#2| |#2|)) (-15 -2489 (|#2| |#2|)) (-15 -2494 (|#2| |#2|)) (-15 -2510 (|#2| |#2|)) (-15 -4041 (|#2| |#2| (-1153))) (-15 -4041 (|#2| |#2| (-1074 |#2|)))) -((-2716 (((-485 |#1| |#2|) (-237 |#1| |#2|)) 52)) (-1914 (((-626 (-237 |#1| |#2|)) (-626 (-485 |#1| |#2|))) 67)) (-1645 (((-485 |#1| |#2|) (-626 (-485 |#1| |#2|)) (-844 |#1|)) 69) (((-485 |#1| |#2|) (-626 (-485 |#1| |#2|)) (-626 (-485 |#1| |#2|)) (-844 |#1|)) 68)) (-3908 (((-2 (|:| |gblist| (-626 (-237 |#1| |#2|))) (|:| |gvlist| (-626 (-560)))) (-626 (-485 |#1| |#2|))) 105)) (-2569 (((-626 (-485 |#1| |#2|)) (-844 |#1|) (-626 (-485 |#1| |#2|)) (-626 (-485 |#1| |#2|))) 82)) (-2010 (((-2 (|:| |glbase| (-626 (-237 |#1| |#2|))) (|:| |glval| (-626 (-560)))) (-626 (-237 |#1| |#2|))) 116)) (-2166 (((-1236 |#2|) (-485 |#1| |#2|) (-626 (-485 |#1| |#2|))) 57)) (-3112 (((-626 (-485 |#1| |#2|)) (-626 (-485 |#1| |#2|))) 39)) (-1460 (((-237 |#1| |#2|) (-237 |#1| |#2|) (-626 (-237 |#1| |#2|))) 49)) (-1419 (((-237 |#1| |#2|) (-626 |#2|) (-237 |#1| |#2|) (-626 (-237 |#1| |#2|))) 89))) -(((-614 |#1| |#2|) (-10 -7 (-15 -3908 ((-2 (|:| |gblist| (-626 (-237 |#1| |#2|))) (|:| |gvlist| (-626 (-560)))) (-626 (-485 |#1| |#2|)))) (-15 -2010 ((-2 (|:| |glbase| (-626 (-237 |#1| |#2|))) (|:| |glval| (-626 (-560)))) (-626 (-237 |#1| |#2|)))) (-15 -1914 ((-626 (-237 |#1| |#2|)) (-626 (-485 |#1| |#2|)))) (-15 -1645 ((-485 |#1| |#2|) (-626 (-485 |#1| |#2|)) (-626 (-485 |#1| |#2|)) (-844 |#1|))) (-15 -1645 ((-485 |#1| |#2|) (-626 (-485 |#1| |#2|)) (-844 |#1|))) (-15 -3112 ((-626 (-485 |#1| |#2|)) (-626 (-485 |#1| |#2|)))) (-15 -2166 ((-1236 |#2|) (-485 |#1| |#2|) (-626 (-485 |#1| |#2|)))) (-15 -1419 ((-237 |#1| |#2|) (-626 |#2|) (-237 |#1| |#2|) (-626 (-237 |#1| |#2|)))) (-15 -2569 ((-626 (-485 |#1| |#2|)) (-844 |#1|) (-626 (-485 |#1| |#2|)) (-626 (-485 |#1| |#2|)))) (-15 -1460 ((-237 |#1| |#2|) (-237 |#1| |#2|) (-626 (-237 |#1| |#2|)))) (-15 -2716 ((-485 |#1| |#2|) (-237 |#1| |#2|)))) (-626 (-1153)) (-447)) (T -614)) -((-2716 (*1 *2 *3) (-12 (-5 *3 (-237 *4 *5)) (-14 *4 (-626 (-1153))) (-4 *5 (-447)) (-5 *2 (-485 *4 *5)) (-5 *1 (-614 *4 *5)))) (-1460 (*1 *2 *2 *3) (-12 (-5 *3 (-626 (-237 *4 *5))) (-5 *2 (-237 *4 *5)) (-14 *4 (-626 (-1153))) (-4 *5 (-447)) (-5 *1 (-614 *4 *5)))) (-2569 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-626 (-485 *4 *5))) (-5 *3 (-844 *4)) (-14 *4 (-626 (-1153))) (-4 *5 (-447)) (-5 *1 (-614 *4 *5)))) (-1419 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-626 *6)) (-5 *4 (-626 (-237 *5 *6))) (-4 *6 (-447)) (-5 *2 (-237 *5 *6)) (-14 *5 (-626 (-1153))) (-5 *1 (-614 *5 *6)))) (-2166 (*1 *2 *3 *4) (-12 (-5 *4 (-626 (-485 *5 *6))) (-5 *3 (-485 *5 *6)) (-14 *5 (-626 (-1153))) (-4 *6 (-447)) (-5 *2 (-1236 *6)) (-5 *1 (-614 *5 *6)))) (-3112 (*1 *2 *2) (-12 (-5 *2 (-626 (-485 *3 *4))) (-14 *3 (-626 (-1153))) (-4 *4 (-447)) (-5 *1 (-614 *3 *4)))) (-1645 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-485 *5 *6))) (-5 *4 (-844 *5)) (-14 *5 (-626 (-1153))) (-5 *2 (-485 *5 *6)) (-5 *1 (-614 *5 *6)) (-4 *6 (-447)))) (-1645 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-626 (-485 *5 *6))) (-5 *4 (-844 *5)) (-14 *5 (-626 (-1153))) (-5 *2 (-485 *5 *6)) (-5 *1 (-614 *5 *6)) (-4 *6 (-447)))) (-1914 (*1 *2 *3) (-12 (-5 *3 (-626 (-485 *4 *5))) (-14 *4 (-626 (-1153))) (-4 *5 (-447)) (-5 *2 (-626 (-237 *4 *5))) (-5 *1 (-614 *4 *5)))) (-2010 (*1 *2 *3) (-12 (-14 *4 (-626 (-1153))) (-4 *5 (-447)) (-5 *2 (-2 (|:| |glbase| (-626 (-237 *4 *5))) (|:| |glval| (-626 (-560))))) (-5 *1 (-614 *4 *5)) (-5 *3 (-626 (-237 *4 *5))))) (-3908 (*1 *2 *3) (-12 (-5 *3 (-626 (-485 *4 *5))) (-14 *4 (-626 (-1153))) (-4 *5 (-447)) (-5 *2 (-2 (|:| |gblist| (-626 (-237 *4 *5))) (|:| |gvlist| (-626 (-560))))) (-5 *1 (-614 *4 *5))))) -(-10 -7 (-15 -3908 ((-2 (|:| |gblist| (-626 (-237 |#1| |#2|))) (|:| |gvlist| (-626 (-560)))) (-626 (-485 |#1| |#2|)))) (-15 -2010 ((-2 (|:| |glbase| (-626 (-237 |#1| |#2|))) (|:| |glval| (-626 (-560)))) (-626 (-237 |#1| |#2|)))) (-15 -1914 ((-626 (-237 |#1| |#2|)) (-626 (-485 |#1| |#2|)))) (-15 -1645 ((-485 |#1| |#2|) (-626 (-485 |#1| |#2|)) (-626 (-485 |#1| |#2|)) (-844 |#1|))) (-15 -1645 ((-485 |#1| |#2|) (-626 (-485 |#1| |#2|)) (-844 |#1|))) (-15 -3112 ((-626 (-485 |#1| |#2|)) (-626 (-485 |#1| |#2|)))) (-15 -2166 ((-1236 |#2|) (-485 |#1| |#2|) (-626 (-485 |#1| |#2|)))) (-15 -1419 ((-237 |#1| |#2|) (-626 |#2|) (-237 |#1| |#2|) (-626 (-237 |#1| |#2|)))) (-15 -2569 ((-626 (-485 |#1| |#2|)) (-844 |#1|) (-626 (-485 |#1| |#2|)) (-626 (-485 |#1| |#2|)))) (-15 -1460 ((-237 |#1| |#2|) (-237 |#1| |#2|) (-626 (-237 |#1| |#2|)))) (-15 -2716 ((-485 |#1| |#2|) (-237 |#1| |#2|)))) -((-2601 (((-121) $ $) NIL (-2318 (|has| (-57) (-1082)) (|has| (-2 (|:| -3655 (-1135)) (|:| -2371 (-57))) (-1082))))) (-4050 (($) NIL) (($ (-626 (-2 (|:| -3655 (-1135)) (|:| -2371 (-57))))) NIL)) (-2960 (((-1241) $ (-1135) (-1135)) NIL (|has| $ (-6 -4506)))) (-3909 (((-121) $ (-755)) NIL)) (-2764 (((-57) $ (-1135) (-57)) 16) (((-57) $ (-1153) (-57)) 17)) (-3763 (($ (-1 (-121) (-2 (|:| -3655 (-1135)) (|:| -2371 (-57)))) $) NIL (|has| $ (-6 -4505)))) (-3802 (($ (-1 (-121) (-2 (|:| -3655 (-1135)) (|:| -2371 (-57)))) $) NIL (|has| $ (-6 -4505)))) (-2722 (((-3 (-57) "failed") (-1135) $) NIL)) (-4236 (($) NIL T CONST)) (-2868 (($ $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| -3655 (-1135)) (|:| -2371 (-57))) (-1082))))) (-3561 (($ (-2 (|:| -3655 (-1135)) (|:| -2371 (-57))) $) NIL (|has| $ (-6 -4505))) (($ (-1 (-121) (-2 (|:| -3655 (-1135)) (|:| -2371 (-57)))) $) NIL (|has| $ (-6 -4505))) (((-3 (-57) "failed") (-1135) $) NIL)) (-4310 (($ (-2 (|:| -3655 (-1135)) (|:| -2371 (-57))) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| -3655 (-1135)) (|:| -2371 (-57))) (-1082)))) (($ (-1 (-121) (-2 (|:| -3655 (-1135)) (|:| -2371 (-57)))) $) NIL (|has| $ (-6 -4505)))) (-2342 (((-2 (|:| -3655 (-1135)) (|:| -2371 (-57))) (-1 (-2 (|:| -3655 (-1135)) (|:| -2371 (-57))) (-2 (|:| -3655 (-1135)) (|:| -2371 (-57))) (-2 (|:| -3655 (-1135)) (|:| -2371 (-57)))) $ (-2 (|:| -3655 (-1135)) (|:| -2371 (-57))) (-2 (|:| -3655 (-1135)) (|:| -2371 (-57)))) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| -3655 (-1135)) (|:| -2371 (-57))) (-1082)))) (((-2 (|:| -3655 (-1135)) (|:| -2371 (-57))) (-1 (-2 (|:| -3655 (-1135)) (|:| -2371 (-57))) (-2 (|:| -3655 (-1135)) (|:| -2371 (-57))) (-2 (|:| -3655 (-1135)) (|:| -2371 (-57)))) $ (-2 (|:| -3655 (-1135)) (|:| -2371 (-57)))) NIL (|has| $ (-6 -4505))) (((-2 (|:| -3655 (-1135)) (|:| -2371 (-57))) (-1 (-2 (|:| -3655 (-1135)) (|:| -2371 (-57))) (-2 (|:| -3655 (-1135)) (|:| -2371 (-57))) (-2 (|:| -3655 (-1135)) (|:| -2371 (-57)))) $) NIL (|has| $ (-6 -4505)))) (-1746 (((-57) $ (-1135) (-57)) NIL (|has| $ (-6 -4506)))) (-1361 (((-57) $ (-1135)) NIL)) (-1981 (((-626 (-2 (|:| -3655 (-1135)) (|:| -2371 (-57)))) $) NIL (|has| $ (-6 -4505))) (((-626 (-57)) $) NIL (|has| $ (-6 -4505)))) (-3215 (($ $) NIL)) (-2122 (((-121) $ (-755)) NIL)) (-4099 (((-1135) $) NIL (|has| (-1135) (-834)))) (-2130 (((-626 (-2 (|:| -3655 (-1135)) (|:| -2371 (-57)))) $) NIL (|has| $ (-6 -4505))) (((-626 (-57)) $) NIL (|has| $ (-6 -4505)))) (-2030 (((-121) (-2 (|:| -3655 (-1135)) (|:| -2371 (-57))) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| -3655 (-1135)) (|:| -2371 (-57))) (-1082)))) (((-121) (-57) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-57) (-1082))))) (-2767 (((-1135) $) NIL (|has| (-1135) (-834)))) (-3778 (($ (-1 (-2 (|:| -3655 (-1135)) (|:| -2371 (-57))) (-2 (|:| -3655 (-1135)) (|:| -2371 (-57)))) $) NIL (|has| $ (-6 -4506))) (($ (-1 (-57) (-57)) $) NIL (|has| $ (-6 -4506)))) (-2803 (($ (-1 (-2 (|:| -3655 (-1135)) (|:| -2371 (-57))) (-2 (|:| -3655 (-1135)) (|:| -2371 (-57)))) $) NIL) (($ (-1 (-57) (-57)) $) NIL) (($ (-1 (-57) (-57) (-57)) $ $) NIL)) (-2516 (($ (-384)) 9)) (-3441 (((-121) $ (-755)) NIL)) (-1291 (((-1135) $) NIL (-2318 (|has| (-57) (-1082)) (|has| (-2 (|:| -3655 (-1135)) (|:| -2371 (-57))) (-1082))))) (-1377 (((-626 (-1135)) $) NIL)) (-3855 (((-121) (-1135) $) NIL)) (-2525 (((-2 (|:| -3655 (-1135)) (|:| -2371 (-57))) $) NIL)) (-4345 (($ (-2 (|:| -3655 (-1135)) (|:| -2371 (-57))) $) NIL)) (-1529 (((-626 (-1135)) $) NIL)) (-1310 (((-121) (-1135) $) NIL)) (-4353 (((-1100) $) NIL (-2318 (|has| (-57) (-1082)) (|has| (-2 (|:| -3655 (-1135)) (|:| -2371 (-57))) (-1082))))) (-2824 (((-57) $) NIL (|has| (-1135) (-834)))) (-3786 (((-3 (-2 (|:| -3655 (-1135)) (|:| -2371 (-57))) "failed") (-1 (-121) (-2 (|:| -3655 (-1135)) (|:| -2371 (-57)))) $) NIL)) (-3038 (($ $ (-57)) NIL (|has| $ (-6 -4506)))) (-2146 (((-2 (|:| -3655 (-1135)) (|:| -2371 (-57))) $) NIL)) (-2865 (((-121) (-1 (-121) (-2 (|:| -3655 (-1135)) (|:| -2371 (-57)))) $) NIL (|has| $ (-6 -4505))) (((-121) (-1 (-121) (-57)) $) NIL (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 (-2 (|:| -3655 (-1135)) (|:| -2371 (-57)))))) NIL (-12 (|has| (-2 (|:| -3655 (-1135)) (|:| -2371 (-57))) (-298 (-2 (|:| -3655 (-1135)) (|:| -2371 (-57))))) (|has| (-2 (|:| -3655 (-1135)) (|:| -2371 (-57))) (-1082)))) (($ $ (-283 (-2 (|:| -3655 (-1135)) (|:| -2371 (-57))))) NIL (-12 (|has| (-2 (|:| -3655 (-1135)) (|:| -2371 (-57))) (-298 (-2 (|:| -3655 (-1135)) (|:| -2371 (-57))))) (|has| (-2 (|:| -3655 (-1135)) (|:| -2371 (-57))) (-1082)))) (($ $ (-2 (|:| -3655 (-1135)) (|:| -2371 (-57))) (-2 (|:| -3655 (-1135)) (|:| -2371 (-57)))) NIL (-12 (|has| (-2 (|:| -3655 (-1135)) (|:| -2371 (-57))) (-298 (-2 (|:| -3655 (-1135)) (|:| -2371 (-57))))) (|has| (-2 (|:| -3655 (-1135)) (|:| -2371 (-57))) (-1082)))) (($ $ (-626 (-2 (|:| -3655 (-1135)) (|:| -2371 (-57)))) (-626 (-2 (|:| -3655 (-1135)) (|:| -2371 (-57))))) NIL (-12 (|has| (-2 (|:| -3655 (-1135)) (|:| -2371 (-57))) (-298 (-2 (|:| -3655 (-1135)) (|:| -2371 (-57))))) (|has| (-2 (|:| -3655 (-1135)) (|:| -2371 (-57))) (-1082)))) (($ $ (-626 (-57)) (-626 (-57))) NIL (-12 (|has| (-57) (-298 (-57))) (|has| (-57) (-1082)))) (($ $ (-57) (-57)) NIL (-12 (|has| (-57) (-298 (-57))) (|has| (-57) (-1082)))) (($ $ (-283 (-57))) NIL (-12 (|has| (-57) (-298 (-57))) (|has| (-57) (-1082)))) (($ $ (-626 (-283 (-57)))) NIL (-12 (|has| (-57) (-298 (-57))) (|has| (-57) (-1082))))) (-2214 (((-121) $ $) NIL)) (-1290 (((-121) (-57) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-57) (-1082))))) (-4460 (((-626 (-57)) $) NIL)) (-4191 (((-121) $) NIL)) (-3260 (($) NIL)) (-2778 (((-57) $ (-1135)) 14) (((-57) $ (-1135) (-57)) NIL) (((-57) $ (-1153)) 15)) (-3958 (($) NIL) (($ (-626 (-2 (|:| -3655 (-1135)) (|:| -2371 (-57))))) NIL)) (-4035 (((-755) (-1 (-121) (-2 (|:| -3655 (-1135)) (|:| -2371 (-57)))) $) NIL (|has| $ (-6 -4505))) (((-755) (-2 (|:| -3655 (-1135)) (|:| -2371 (-57))) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| -3655 (-1135)) (|:| -2371 (-57))) (-1082)))) (((-755) (-57) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-57) (-1082)))) (((-755) (-1 (-121) (-57)) $) NIL (|has| $ (-6 -4505)))) (-2813 (($ $) NIL)) (-4255 (((-533) $) NIL (|has| (-2 (|:| -3655 (-1135)) (|:| -2371 (-57))) (-601 (-533))))) (-4162 (($ (-626 (-2 (|:| -3655 (-1135)) (|:| -2371 (-57))))) NIL)) (-2801 (((-842) $) NIL (-2318 (|has| (-57) (-1082)) (|has| (-2 (|:| -3655 (-1135)) (|:| -2371 (-57))) (-1082))))) (-2074 (($ $) NIL)) (-1354 (($ (-626 (-2 (|:| -3655 (-1135)) (|:| -2371 (-57))))) NIL)) (-3656 (((-121) (-1 (-121) (-2 (|:| -3655 (-1135)) (|:| -2371 (-57)))) $) NIL (|has| $ (-6 -4505))) (((-121) (-1 (-121) (-57)) $) NIL (|has| $ (-6 -4505)))) (-1653 (((-121) $ $) NIL (-2318 (|has| (-57) (-1082)) (|has| (-2 (|:| -3655 (-1135)) (|:| -2371 (-57))) (-1082))))) (-2271 (((-755) $) NIL (|has| $ (-6 -4505))))) -(((-615) (-13 (-1164 (-1135) (-57)) (-10 -8 (-15 -2516 ($ (-384))) (-15 -3215 ($ $)) (-15 -2778 ((-57) $ (-1153))) (-15 -2764 ((-57) $ (-1153) (-57))) (-15 -2074 ($ $))))) (T -615)) -((-2516 (*1 *1 *2) (-12 (-5 *2 (-384)) (-5 *1 (-615)))) (-3215 (*1 *1 *1) (-5 *1 (-615))) (-2778 (*1 *2 *1 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-57)) (-5 *1 (-615)))) (-2764 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-57)) (-5 *3 (-1153)) (-5 *1 (-615)))) (-2074 (*1 *1 *1) (-5 *1 (-615)))) -(-13 (-1164 (-1135) (-57)) (-10 -8 (-15 -2516 ($ (-384))) (-15 -3215 ($ $)) (-15 -2778 ((-57) $ (-1153))) (-15 -2764 ((-57) $ (-1153) (-57))) (-15 -2074 ($ $)))) -((-1733 (($ $ |#2|) 10))) -(((-616 |#1| |#2|) (-10 -8 (-15 -1733 (|#1| |#1| |#2|))) (-617 |#2|) (-170)) (T -616)) -NIL -(-10 -8 (-15 -1733 (|#1| |#1| |#2|))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-2314 (((-3 $ "failed") $ $) 18)) (-4236 (($) 16 T CONST)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-4162 (($ $ $) 26)) (-2801 (((-842) $) 11)) (-3304 (($) 17 T CONST)) (-1653 (((-121) $ $) 6)) (-1733 (($ $ |#1|) 25 (|has| |#1| (-359)))) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ |#1| $) 22) (($ $ |#1|) 24))) -(((-617 |#1|) (-1267) (-170)) (T -617)) -((-4162 (*1 *1 *1 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-170)))) (-1733 (*1 *1 *1 *2) (-12 (-4 *1 (-617 *2)) (-4 *2 (-170)) (-4 *2 (-359))))) -(-13 (-699 |t#1|) (-10 -8 (-15 -4162 ($ $ $)) (-6 |NullSquare|) (-6 |JacobiIdentity|) (IF (|has| |t#1| (-359)) (-15 -1733 ($ $ |t#1|)) |noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-105) . T) ((-120 |#1| |#1|) . T) ((-137) . T) ((-600 (-842)) . T) ((-629 |#1|) . T) ((-699 |#1|) . T) ((-1045 |#1|) . T) ((-1082) . T)) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-1917 (((-3 $ "failed")) NIL (-2318 (-12 (|has| |#2| (-363 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-550)))))) (-2314 (((-3 $ "failed") $ $) NIL)) (-2059 (((-1236 (-671 |#1|))) NIL (|has| |#2| (-413 |#1|))) (((-1236 (-671 |#1|)) (-1236 $)) NIL (|has| |#2| (-363 |#1|)))) (-1565 (((-1236 $)) NIL (|has| |#2| (-363 |#1|)))) (-4236 (($) NIL T CONST)) (-2862 (((-3 (-2 (|:| |particular| $) (|:| -4374 (-626 $))) "failed")) NIL (-2318 (-12 (|has| |#2| (-363 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-550)))))) (-2835 (((-3 $ "failed")) NIL (-2318 (-12 (|has| |#2| (-363 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-550)))))) (-3852 (((-671 |#1|)) NIL (|has| |#2| (-413 |#1|))) (((-671 |#1|) (-1236 $)) NIL (|has| |#2| (-363 |#1|)))) (-1374 ((|#1| $) NIL (|has| |#2| (-363 |#1|)))) (-2611 (((-671 |#1|) $) NIL (|has| |#2| (-413 |#1|))) (((-671 |#1|) $ (-1236 $)) NIL (|has| |#2| (-363 |#1|)))) (-1309 (((-3 $ "failed") $) NIL (-2318 (-12 (|has| |#2| (-363 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-550)))))) (-3013 (((-1149 (-945 |#1|))) NIL (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-359))))) (-1498 (($ $ (-909)) NIL)) (-2856 ((|#1| $) NIL (|has| |#2| (-363 |#1|)))) (-3730 (((-1149 |#1|) $) NIL (-2318 (-12 (|has| |#2| (-363 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-550)))))) (-1998 ((|#1|) NIL (|has| |#2| (-413 |#1|))) ((|#1| (-1236 $)) NIL (|has| |#2| (-363 |#1|)))) (-1825 (((-1149 |#1|) $) NIL (|has| |#2| (-363 |#1|)))) (-2969 (((-121)) NIL (|has| |#2| (-363 |#1|)))) (-3380 (($ (-1236 |#1|)) NIL (|has| |#2| (-413 |#1|))) (($ (-1236 |#1|) (-1236 $)) NIL (|has| |#2| (-363 |#1|)))) (-1823 (((-3 $ "failed") $) NIL (-2318 (-12 (|has| |#2| (-363 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-550)))))) (-3143 (((-909)) NIL (|has| |#2| (-363 |#1|)))) (-3497 (((-121)) NIL (|has| |#2| (-363 |#1|)))) (-3710 (($ $ (-909)) NIL)) (-2874 (((-121)) NIL (|has| |#2| (-363 |#1|)))) (-4479 (((-121)) NIL (|has| |#2| (-363 |#1|)))) (-2646 (((-121)) NIL (|has| |#2| (-363 |#1|)))) (-2071 (((-3 (-2 (|:| |particular| $) (|:| -4374 (-626 $))) "failed")) NIL (-2318 (-12 (|has| |#2| (-363 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-550)))))) (-3477 (((-3 $ "failed")) NIL (-2318 (-12 (|has| |#2| (-363 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-550)))))) (-1279 (((-671 |#1|)) NIL (|has| |#2| (-413 |#1|))) (((-671 |#1|) (-1236 $)) NIL (|has| |#2| (-363 |#1|)))) (-2442 ((|#1| $) NIL (|has| |#2| (-363 |#1|)))) (-1284 (((-671 |#1|) $) NIL (|has| |#2| (-413 |#1|))) (((-671 |#1|) $ (-1236 $)) NIL (|has| |#2| (-363 |#1|)))) (-2966 (((-3 $ "failed") $) NIL (-2318 (-12 (|has| |#2| (-363 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-550)))))) (-3081 (((-1149 (-945 |#1|))) NIL (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-359))))) (-2137 (($ $ (-909)) NIL)) (-3542 ((|#1| $) NIL (|has| |#2| (-363 |#1|)))) (-1351 (((-1149 |#1|) $) NIL (-2318 (-12 (|has| |#2| (-363 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-550)))))) (-3158 ((|#1|) NIL (|has| |#2| (-413 |#1|))) ((|#1| (-1236 $)) NIL (|has| |#2| (-363 |#1|)))) (-3613 (((-1149 |#1|) $) NIL (|has| |#2| (-363 |#1|)))) (-1818 (((-121)) NIL (|has| |#2| (-363 |#1|)))) (-1291 (((-1135) $) NIL)) (-2394 (((-121)) NIL (|has| |#2| (-363 |#1|)))) (-2201 (((-121)) NIL (|has| |#2| (-363 |#1|)))) (-4253 (((-121)) NIL (|has| |#2| (-363 |#1|)))) (-4353 (((-1100) $) NIL)) (-4172 (((-121)) NIL (|has| |#2| (-363 |#1|)))) (-2778 ((|#1| $ (-560)) NIL (|has| |#2| (-413 |#1|)))) (-3390 (((-671 |#1|) (-1236 $)) NIL (|has| |#2| (-413 |#1|))) (((-1236 |#1|) $) NIL (|has| |#2| (-413 |#1|))) (((-671 |#1|) (-1236 $) (-1236 $)) NIL (|has| |#2| (-363 |#1|))) (((-1236 |#1|) $ (-1236 $)) NIL (|has| |#2| (-363 |#1|)))) (-4255 (($ (-1236 |#1|)) NIL (|has| |#2| (-413 |#1|))) (((-1236 |#1|) $) NIL (|has| |#2| (-413 |#1|)))) (-2879 (((-626 (-945 |#1|))) NIL (|has| |#2| (-413 |#1|))) (((-626 (-945 |#1|)) (-1236 $)) NIL (|has| |#2| (-363 |#1|)))) (-1671 (($ $ $) NIL)) (-2903 (((-121)) NIL (|has| |#2| (-363 |#1|)))) (-2801 (((-842) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-4374 (((-1236 $)) NIL (|has| |#2| (-413 |#1|)))) (-4263 (((-626 (-1236 |#1|))) NIL (-2318 (-12 (|has| |#2| (-363 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-550)))))) (-2676 (($ $ $ $) NIL)) (-2266 (((-121)) NIL (|has| |#2| (-363 |#1|)))) (-2788 (($ (-671 |#1|) $) NIL (|has| |#2| (-413 |#1|)))) (-3127 (($ $ $) NIL)) (-3333 (((-121)) NIL (|has| |#2| (-363 |#1|)))) (-3060 (((-121)) NIL (|has| |#2| (-363 |#1|)))) (-2682 (((-121)) NIL (|has| |#2| (-363 |#1|)))) (-3304 (($) 15 T CONST)) (-1653 (((-121) $ $) NIL)) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) NIL)) (** (($ $ (-909)) 17)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-618 |#1| |#2|) (-13 (-728 |#1|) (-600 |#2|) (-10 -8 (-15 -2801 ($ |#2|)) (IF (|has| |#2| (-413 |#1|)) (-6 (-413 |#1|)) |noBranch|) (IF (|has| |#2| (-363 |#1|)) (-6 (-363 |#1|)) |noBranch|))) (-170) (-728 |#1|)) (T -618)) -((-2801 (*1 *1 *2) (-12 (-4 *3 (-170)) (-5 *1 (-618 *3 *2)) (-4 *2 (-728 *3))))) -(-13 (-728 |#1|) (-600 |#2|) (-10 -8 (-15 -2801 ($ |#2|)) (IF (|has| |#2| (-413 |#1|)) (-6 (-413 |#1|)) |noBranch|) (IF (|has| |#2| (-363 |#1|)) (-6 (-363 |#1|)) |noBranch|))) -((-1560 (((-3 (-827 |#2|) "failed") |#2| (-283 |#2|) (-1135)) 77) (((-3 (-827 |#2|) (-2 (|:| |leftHandLimit| (-3 (-827 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-827 |#2|) "failed"))) "failed") |#2| (-283 (-827 |#2|))) 99)) (-2916 (((-3 (-820 |#2|) "failed") |#2| (-283 (-820 |#2|))) 104))) -(((-619 |#1| |#2|) (-10 -7 (-15 -1560 ((-3 (-827 |#2|) (-2 (|:| |leftHandLimit| (-3 (-827 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-827 |#2|) "failed"))) "failed") |#2| (-283 (-827 |#2|)))) (-15 -2916 ((-3 (-820 |#2|) "failed") |#2| (-283 (-820 |#2|)))) (-15 -1560 ((-3 (-827 |#2|) "failed") |#2| (-283 |#2|) (-1135)))) (-13 (-447) (-834) (-1029 (-560)) (-622 (-560))) (-13 (-27) (-1173) (-426 |#1|))) (T -619)) -((-1560 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-283 *3)) (-5 *5 (-1135)) (-4 *3 (-13 (-27) (-1173) (-426 *6))) (-4 *6 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-827 *3)) (-5 *1 (-619 *6 *3)))) (-2916 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-283 (-820 *3))) (-4 *5 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-820 *3)) (-5 *1 (-619 *5 *3)) (-4 *3 (-13 (-27) (-1173) (-426 *5))))) (-1560 (*1 *2 *3 *4) (-12 (-5 *4 (-283 (-827 *3))) (-4 *3 (-13 (-27) (-1173) (-426 *5))) (-4 *5 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-3 (-827 *3) (-2 (|:| |leftHandLimit| (-3 (-827 *3) "failed")) (|:| |rightHandLimit| (-3 (-827 *3) "failed"))) "failed")) (-5 *1 (-619 *5 *3))))) -(-10 -7 (-15 -1560 ((-3 (-827 |#2|) (-2 (|:| |leftHandLimit| (-3 (-827 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-827 |#2|) "failed"))) "failed") |#2| (-283 (-827 |#2|)))) (-15 -2916 ((-3 (-820 |#2|) "failed") |#2| (-283 (-820 |#2|)))) (-15 -1560 ((-3 (-827 |#2|) "failed") |#2| (-283 |#2|) (-1135)))) -((-1560 (((-3 (-827 (-403 (-945 |#1|))) "failed") (-403 (-945 |#1|)) (-283 (-403 (-945 |#1|))) (-1135)) 79) (((-3 (-827 (-403 (-945 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-827 (-403 (-945 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-827 (-403 (-945 |#1|))) "failed"))) "failed") (-403 (-945 |#1|)) (-283 (-403 (-945 |#1|)))) 18) (((-3 (-827 (-403 (-945 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-827 (-403 (-945 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-827 (-403 (-945 |#1|))) "failed"))) "failed") (-403 (-945 |#1|)) (-283 (-827 (-945 |#1|)))) 34)) (-2916 (((-820 (-403 (-945 |#1|))) (-403 (-945 |#1|)) (-283 (-403 (-945 |#1|)))) 21) (((-820 (-403 (-945 |#1|))) (-403 (-945 |#1|)) (-283 (-820 (-945 |#1|)))) 42))) -(((-620 |#1|) (-10 -7 (-15 -1560 ((-3 (-827 (-403 (-945 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-827 (-403 (-945 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-827 (-403 (-945 |#1|))) "failed"))) "failed") (-403 (-945 |#1|)) (-283 (-827 (-945 |#1|))))) (-15 -1560 ((-3 (-827 (-403 (-945 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-827 (-403 (-945 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-827 (-403 (-945 |#1|))) "failed"))) "failed") (-403 (-945 |#1|)) (-283 (-403 (-945 |#1|))))) (-15 -2916 ((-820 (-403 (-945 |#1|))) (-403 (-945 |#1|)) (-283 (-820 (-945 |#1|))))) (-15 -2916 ((-820 (-403 (-945 |#1|))) (-403 (-945 |#1|)) (-283 (-403 (-945 |#1|))))) (-15 -1560 ((-3 (-827 (-403 (-945 |#1|))) "failed") (-403 (-945 |#1|)) (-283 (-403 (-945 |#1|))) (-1135)))) (-447)) (T -620)) -((-1560 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-283 (-403 (-945 *6)))) (-5 *5 (-1135)) (-5 *3 (-403 (-945 *6))) (-4 *6 (-447)) (-5 *2 (-827 *3)) (-5 *1 (-620 *6)))) (-2916 (*1 *2 *3 *4) (-12 (-5 *4 (-283 (-403 (-945 *5)))) (-5 *3 (-403 (-945 *5))) (-4 *5 (-447)) (-5 *2 (-820 *3)) (-5 *1 (-620 *5)))) (-2916 (*1 *2 *3 *4) (-12 (-5 *4 (-283 (-820 (-945 *5)))) (-4 *5 (-447)) (-5 *2 (-820 (-403 (-945 *5)))) (-5 *1 (-620 *5)) (-5 *3 (-403 (-945 *5))))) (-1560 (*1 *2 *3 *4) (-12 (-5 *4 (-283 (-403 (-945 *5)))) (-5 *3 (-403 (-945 *5))) (-4 *5 (-447)) (-5 *2 (-3 (-827 *3) (-2 (|:| |leftHandLimit| (-3 (-827 *3) "failed")) (|:| |rightHandLimit| (-3 (-827 *3) "failed"))) "failed")) (-5 *1 (-620 *5)))) (-1560 (*1 *2 *3 *4) (-12 (-5 *4 (-283 (-827 (-945 *5)))) (-4 *5 (-447)) (-5 *2 (-3 (-827 (-403 (-945 *5))) (-2 (|:| |leftHandLimit| (-3 (-827 (-403 (-945 *5))) "failed")) (|:| |rightHandLimit| (-3 (-827 (-403 (-945 *5))) "failed"))) "failed")) (-5 *1 (-620 *5)) (-5 *3 (-403 (-945 *5)))))) -(-10 -7 (-15 -1560 ((-3 (-827 (-403 (-945 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-827 (-403 (-945 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-827 (-403 (-945 |#1|))) "failed"))) "failed") (-403 (-945 |#1|)) (-283 (-827 (-945 |#1|))))) (-15 -1560 ((-3 (-827 (-403 (-945 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-827 (-403 (-945 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-827 (-403 (-945 |#1|))) "failed"))) "failed") (-403 (-945 |#1|)) (-283 (-403 (-945 |#1|))))) (-15 -2916 ((-820 (-403 (-945 |#1|))) (-403 (-945 |#1|)) (-283 (-820 (-945 |#1|))))) (-15 -2916 ((-820 (-403 (-945 |#1|))) (-403 (-945 |#1|)) (-283 (-403 (-945 |#1|))))) (-15 -1560 ((-3 (-827 (-403 (-945 |#1|))) "failed") (-403 (-945 |#1|)) (-283 (-403 (-945 |#1|))) (-1135)))) -((-1450 (((-3 (-1236 (-403 |#1|)) "failed") (-1236 |#2|) |#2|) 57 (-3186 (|has| |#1| (-359)))) (((-3 (-1236 |#1|) "failed") (-1236 |#2|) |#2|) 42 (|has| |#1| (-359)))) (-3266 (((-121) (-1236 |#2|)) 30)) (-2681 (((-3 (-1236 |#1|) "failed") (-1236 |#2|)) 33))) -(((-621 |#1| |#2|) (-10 -7 (-15 -3266 ((-121) (-1236 |#2|))) (-15 -2681 ((-3 (-1236 |#1|) "failed") (-1236 |#2|))) (IF (|has| |#1| (-359)) (-15 -1450 ((-3 (-1236 |#1|) "failed") (-1236 |#2|) |#2|)) (-15 -1450 ((-3 (-1236 (-403 |#1|)) "failed") (-1236 |#2|) |#2|)))) (-550) (-622 |#1|)) (T -621)) -((-1450 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1236 *4)) (-4 *4 (-622 *5)) (-3186 (-4 *5 (-359))) (-4 *5 (-550)) (-5 *2 (-1236 (-403 *5))) (-5 *1 (-621 *5 *4)))) (-1450 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1236 *4)) (-4 *4 (-622 *5)) (-4 *5 (-359)) (-4 *5 (-550)) (-5 *2 (-1236 *5)) (-5 *1 (-621 *5 *4)))) (-2681 (*1 *2 *3) (|partial| -12 (-5 *3 (-1236 *5)) (-4 *5 (-622 *4)) (-4 *4 (-550)) (-5 *2 (-1236 *4)) (-5 *1 (-621 *4 *5)))) (-3266 (*1 *2 *3) (-12 (-5 *3 (-1236 *5)) (-4 *5 (-622 *4)) (-4 *4 (-550)) (-5 *2 (-121)) (-5 *1 (-621 *4 *5))))) -(-10 -7 (-15 -3266 ((-121) (-1236 |#2|))) (-15 -2681 ((-3 (-1236 |#1|) "failed") (-1236 |#2|))) (IF (|has| |#1| (-359)) (-15 -1450 ((-3 (-1236 |#1|) "failed") (-1236 |#2|) |#2|)) (-15 -1450 ((-3 (-1236 (-403 |#1|)) "failed") (-1236 |#2|) |#2|)))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-2314 (((-3 $ "failed") $ $) 18)) (-4236 (($) 16 T CONST)) (-2616 (((-671 |#1|) (-671 $)) 35) (((-2 (|:| -3818 (-671 |#1|)) (|:| |vec| (-1236 |#1|))) (-671 $) (-1236 $)) 34)) (-1823 (((-3 $ "failed") $) 33)) (-2642 (((-121) $) 30)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-2801 (((-842) $) 11) (($ (-560)) 27)) (-1751 (((-755)) 28)) (-2464 (($ $ (-909)) 25) (($ $ (-755)) 32)) (-3304 (($) 17 T CONST)) (-1459 (($) 29 T CONST)) (-1653 (((-121) $ $) 6)) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 24) (($ $ (-755)) 31)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 23))) -(((-622 |#1|) (-1267) (-1039)) (T -622)) -((-2616 (*1 *2 *3) (-12 (-5 *3 (-671 *1)) (-4 *1 (-622 *4)) (-4 *4 (-1039)) (-5 *2 (-671 *4)))) (-2616 (*1 *2 *3 *4) (-12 (-5 *3 (-671 *1)) (-5 *4 (-1236 *1)) (-4 *1 (-622 *5)) (-4 *5 (-1039)) (-5 *2 (-2 (|:| -3818 (-671 *5)) (|:| |vec| (-1236 *5))))))) -(-13 (-1039) (-10 -8 (-15 -2616 ((-671 |t#1|) (-671 $))) (-15 -2616 ((-2 (|:| -3818 (-671 |t#1|)) (|:| |vec| (-1236 |t#1|))) (-671 $) (-1236 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-105) . T) ((-137) . T) ((-600 (-842)) . T) ((-629 $) . T) ((-708) . T) ((-1039) . T) ((-1046) . T) ((-1094) . T) ((-1082) . T)) -((-2840 ((|#2| (-626 |#1|) (-626 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-626 |#1|) (-626 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-626 |#1|) (-626 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-626 |#1|) (-626 |#2|) |#2|) 17) ((|#2| (-626 |#1|) (-626 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-626 |#1|) (-626 |#2|)) 12))) -(((-623 |#1| |#2|) (-10 -7 (-15 -2840 ((-1 |#2| |#1|) (-626 |#1|) (-626 |#2|))) (-15 -2840 (|#2| (-626 |#1|) (-626 |#2|) |#1|)) (-15 -2840 ((-1 |#2| |#1|) (-626 |#1|) (-626 |#2|) |#2|)) (-15 -2840 (|#2| (-626 |#1|) (-626 |#2|) |#1| |#2|)) (-15 -2840 ((-1 |#2| |#1|) (-626 |#1|) (-626 |#2|) (-1 |#2| |#1|))) (-15 -2840 (|#2| (-626 |#1|) (-626 |#2|) |#1| (-1 |#2| |#1|)))) (-1082) (-1187)) (T -623)) -((-2840 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-626 *5)) (-5 *4 (-626 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1082)) (-4 *2 (-1187)) (-5 *1 (-623 *5 *2)))) (-2840 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-626 *5)) (-5 *4 (-626 *6)) (-4 *5 (-1082)) (-4 *6 (-1187)) (-5 *1 (-623 *5 *6)))) (-2840 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-626 *5)) (-5 *4 (-626 *2)) (-4 *5 (-1082)) (-4 *2 (-1187)) (-5 *1 (-623 *5 *2)))) (-2840 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-626 *6)) (-5 *4 (-626 *5)) (-4 *6 (-1082)) (-4 *5 (-1187)) (-5 *2 (-1 *5 *6)) (-5 *1 (-623 *6 *5)))) (-2840 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-626 *5)) (-5 *4 (-626 *2)) (-4 *5 (-1082)) (-4 *2 (-1187)) (-5 *1 (-623 *5 *2)))) (-2840 (*1 *2 *3 *4) (-12 (-5 *3 (-626 *5)) (-5 *4 (-626 *6)) (-4 *5 (-1082)) (-4 *6 (-1187)) (-5 *2 (-1 *6 *5)) (-5 *1 (-623 *5 *6))))) -(-10 -7 (-15 -2840 ((-1 |#2| |#1|) (-626 |#1|) (-626 |#2|))) (-15 -2840 (|#2| (-626 |#1|) (-626 |#2|) |#1|)) (-15 -2840 ((-1 |#2| |#1|) (-626 |#1|) (-626 |#2|) |#2|)) (-15 -2840 (|#2| (-626 |#1|) (-626 |#2|) |#1| |#2|)) (-15 -2840 ((-1 |#2| |#1|) (-626 |#1|) (-626 |#2|) (-1 |#2| |#1|))) (-15 -2840 (|#2| (-626 |#1|) (-626 |#2|) |#1| (-1 |#2| |#1|)))) -((-3469 (((-626 |#2|) (-1 |#2| |#1| |#2|) (-626 |#1|) |#2|) 16)) (-2342 ((|#2| (-1 |#2| |#1| |#2|) (-626 |#1|) |#2|) 18)) (-2803 (((-626 |#2|) (-1 |#2| |#1|) (-626 |#1|)) 13))) -(((-624 |#1| |#2|) (-10 -7 (-15 -3469 ((-626 |#2|) (-1 |#2| |#1| |#2|) (-626 |#1|) |#2|)) (-15 -2342 (|#2| (-1 |#2| |#1| |#2|) (-626 |#1|) |#2|)) (-15 -2803 ((-626 |#2|) (-1 |#2| |#1|) (-626 |#1|)))) (-1187) (-1187)) (T -624)) -((-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-626 *5)) (-4 *5 (-1187)) (-4 *6 (-1187)) (-5 *2 (-626 *6)) (-5 *1 (-624 *5 *6)))) (-2342 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-626 *5)) (-4 *5 (-1187)) (-4 *2 (-1187)) (-5 *1 (-624 *5 *2)))) (-3469 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-626 *6)) (-4 *6 (-1187)) (-4 *5 (-1187)) (-5 *2 (-626 *5)) (-5 *1 (-624 *6 *5))))) -(-10 -7 (-15 -3469 ((-626 |#2|) (-1 |#2| |#1| |#2|) (-626 |#1|) |#2|)) (-15 -2342 (|#2| (-1 |#2| |#1| |#2|) (-626 |#1|) |#2|)) (-15 -2803 ((-626 |#2|) (-1 |#2| |#1|) (-626 |#1|)))) -((-2803 (((-626 |#3|) (-1 |#3| |#1| |#2|) (-626 |#1|) (-626 |#2|)) 13))) -(((-625 |#1| |#2| |#3|) (-10 -7 (-15 -2803 ((-626 |#3|) (-1 |#3| |#1| |#2|) (-626 |#1|) (-626 |#2|)))) (-1187) (-1187) (-1187)) (T -625)) -((-2803 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-626 *6)) (-5 *5 (-626 *7)) (-4 *6 (-1187)) (-4 *7 (-1187)) (-4 *8 (-1187)) (-5 *2 (-626 *8)) (-5 *1 (-625 *6 *7 *8))))) -(-10 -7 (-15 -2803 ((-626 |#3|) (-1 |#3| |#1| |#2|) (-626 |#1|) (-626 |#2|)))) -((-2601 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-2981 ((|#1| $) NIL)) (-1886 ((|#1| $) NIL)) (-1417 (($ $) NIL)) (-2960 (((-1241) $ (-560) (-560)) NIL (|has| $ (-6 -4506)))) (-2435 (($ $ (-560)) NIL (|has| $ (-6 -4506)))) (-3189 (((-121) $) NIL (|has| |#1| (-834))) (((-121) (-1 (-121) |#1| |#1|) $) NIL)) (-4410 (($ $) NIL (-12 (|has| $ (-6 -4506)) (|has| |#1| (-834)))) (($ (-1 (-121) |#1| |#1|) $) NIL (|has| $ (-6 -4506)))) (-3743 (($ $) NIL (|has| |#1| (-834))) (($ (-1 (-121) |#1| |#1|) $) NIL)) (-3909 (((-121) $ (-755)) NIL)) (-3119 ((|#1| $ |#1|) NIL (|has| $ (-6 -4506)))) (-1741 (($ $ $) NIL (|has| $ (-6 -4506)))) (-1920 ((|#1| $ |#1|) NIL (|has| $ (-6 -4506)))) (-4133 ((|#1| $ |#1|) NIL (|has| $ (-6 -4506)))) (-2764 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4506))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4506))) (($ $ "rest" $) NIL (|has| $ (-6 -4506))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4506))) ((|#1| $ (-1202 (-560)) |#1|) NIL (|has| $ (-6 -4506))) ((|#1| $ (-560) |#1|) NIL (|has| $ (-6 -4506)))) (-4043 (($ $ (-626 $)) NIL (|has| $ (-6 -4506)))) (-2905 (($ $ $) 31 (|has| |#1| (-1082)))) (-2893 (($ $ $) 33 (|has| |#1| (-1082)))) (-2888 (($ $ $) 36 (|has| |#1| (-1082)))) (-3763 (($ (-1 (-121) |#1|) $) NIL)) (-3802 (($ (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-1603 ((|#1| $) NIL)) (-4236 (($) NIL T CONST)) (-4030 (($ $) NIL (|has| $ (-6 -4506)))) (-2883 (($ $) NIL)) (-2877 (($ $) NIL) (($ $ (-755)) NIL)) (-3568 (($ $) NIL (|has| |#1| (-1082)))) (-2868 (($ $) 30 (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-3561 (($ |#1| $) NIL (|has| |#1| (-1082))) (($ (-1 (-121) |#1|) $) NIL)) (-4310 (($ (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-2342 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4505))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4505))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-1746 ((|#1| $ (-560) |#1|) NIL (|has| $ (-6 -4506)))) (-1361 ((|#1| $ (-560)) NIL)) (-2737 (((-121) $) NIL)) (-2839 (((-560) |#1| $ (-560)) NIL (|has| |#1| (-1082))) (((-560) |#1| $) NIL (|has| |#1| (-1082))) (((-560) (-1 (-121) |#1|) $) NIL)) (-1981 (((-626 |#1|) $) NIL (|has| $ (-6 -4505)))) (-4301 (((-121) $) 9)) (-3971 (((-626 $) $) NIL)) (-2420 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-2537 (($) 7)) (-1721 (($ (-755) |#1|) NIL)) (-2122 (((-121) $ (-755)) NIL)) (-4099 (((-560) $) NIL (|has| (-560) (-834)))) (-4325 (($ $ $) NIL (|has| |#1| (-834)))) (-2037 (($ $ $) NIL (|has| |#1| (-834))) (($ (-1 (-121) |#1| |#1|) $ $) NIL)) (-2492 (($ $ $) NIL (|has| |#1| (-834))) (($ (-1 (-121) |#1| |#1|) $ $) NIL)) (-2130 (((-626 |#1|) $) NIL (|has| $ (-6 -4505)))) (-2030 (((-121) |#1| $) 32 (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-2767 (((-560) $) NIL (|has| (-560) (-834)))) (-2501 (($ $ $) NIL (|has| |#1| (-834)))) (-3778 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2843 (($ |#1|) NIL)) (-3441 (((-121) $ (-755)) NIL)) (-2173 (((-626 |#1|) $) NIL)) (-3992 (((-121) $) NIL)) (-1291 (((-1135) $) NIL (|has| |#1| (-1082)))) (-4139 ((|#1| $) NIL) (($ $ (-755)) NIL)) (-4345 (($ $ $ (-560)) NIL) (($ |#1| $ (-560)) NIL)) (-4103 (($ $ $ (-560)) NIL) (($ |#1| $ (-560)) NIL)) (-1529 (((-626 (-560)) $) NIL)) (-1310 (((-121) (-560) $) NIL)) (-4353 (((-1100) $) NIL (|has| |#1| (-1082)))) (-2824 ((|#1| $) NIL) (($ $ (-755)) NIL)) (-3786 (((-3 |#1| "failed") (-1 (-121) |#1|) $) NIL)) (-3038 (($ $ |#1|) NIL (|has| $ (-6 -4506)))) (-2957 (((-121) $) NIL)) (-2865 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#1|))) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-283 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-626 |#1|) (-626 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))))) (-2214 (((-121) $ $) NIL)) (-1290 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-4460 (((-626 |#1|) $) NIL)) (-4191 (((-121) $) NIL)) (-3260 (($) NIL)) (-2778 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1202 (-560))) NIL) ((|#1| $ (-560)) 35) ((|#1| $ (-560) |#1|) NIL)) (-1435 (((-560) $ $) NIL)) (-4094 (($ $ (-1202 (-560))) NIL) (($ $ (-560)) NIL)) (-2949 (($ $ (-1202 (-560))) NIL) (($ $ (-560)) NIL)) (-3316 (((-121) $) NIL)) (-4432 (($ $) NIL)) (-2641 (($ $) NIL (|has| $ (-6 -4506)))) (-2751 (((-755) $) NIL)) (-4208 (($ $) NIL)) (-4035 (((-755) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505))) (((-755) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-4072 (($ $ $ (-560)) NIL (|has| $ (-6 -4506)))) (-2813 (($ $) NIL)) (-4255 (((-533) $) 44 (|has| |#1| (-601 (-533))))) (-4162 (($ (-626 |#1|)) NIL)) (-2807 (($ |#1| $) 10)) (-3602 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2849 (($ $ $) 29) (($ |#1| $) NIL) (($ (-626 $)) NIL) (($ $ |#1|) NIL)) (-2801 (((-842) $) NIL (|has| |#1| (-1082)))) (-2853 (((-626 $) $) NIL)) (-3761 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-1837 (($ $ $) 11)) (-3656 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-3039 (((-1135) $) 25 (|has| |#1| (-815))) (((-1135) $ (-121)) 26 (|has| |#1| (-815))) (((-1241) (-809) $) 27 (|has| |#1| (-815))) (((-1241) (-809) $ (-121)) 28 (|has| |#1| (-815)))) (-1691 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1675 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1653 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-1683 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1667 (((-121) $ $) NIL (|has| |#1| (-834)))) (-2271 (((-755) $) NIL (|has| $ (-6 -4505))))) -(((-626 |#1|) (-13 (-650 |#1|) (-10 -8 (-15 -2537 ($)) (-15 -4301 ((-121) $)) (-15 -2807 ($ |#1| $)) (-15 -1837 ($ $ $)) (IF (|has| |#1| (-1082)) (PROGN (-15 -2905 ($ $ $)) (-15 -2893 ($ $ $)) (-15 -2888 ($ $ $))) |noBranch|) (IF (|has| |#1| (-815)) (-6 (-815)) |noBranch|))) (-1187)) (T -626)) -((-2537 (*1 *1) (-12 (-5 *1 (-626 *2)) (-4 *2 (-1187)))) (-4301 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-626 *3)) (-4 *3 (-1187)))) (-2807 (*1 *1 *2 *1) (-12 (-5 *1 (-626 *2)) (-4 *2 (-1187)))) (-1837 (*1 *1 *1 *1) (-12 (-5 *1 (-626 *2)) (-4 *2 (-1187)))) (-2905 (*1 *1 *1 *1) (-12 (-5 *1 (-626 *2)) (-4 *2 (-1082)) (-4 *2 (-1187)))) (-2893 (*1 *1 *1 *1) (-12 (-5 *1 (-626 *2)) (-4 *2 (-1082)) (-4 *2 (-1187)))) (-2888 (*1 *1 *1 *1) (-12 (-5 *1 (-626 *2)) (-4 *2 (-1082)) (-4 *2 (-1187))))) -(-13 (-650 |#1|) (-10 -8 (-15 -2537 ($)) (-15 -4301 ((-121) $)) (-15 -2807 ($ |#1| $)) (-15 -1837 ($ $ $)) (IF (|has| |#1| (-1082)) (PROGN (-15 -2905 ($ $ $)) (-15 -2893 ($ $ $)) (-15 -2888 ($ $ $))) |noBranch|) (IF (|has| |#1| (-815)) (-6 (-815)) |noBranch|))) -((-2446 (((-626 |#1|) |#2| (-560)) 21)) (-2451 (((-671 |#1|) (-626 |#2|) (-560)) 30)) (-2456 (((-671 |#1|) (-626 |#2|) (-560)) 28))) -(((-627 |#1| |#2|) (-10 -7 (-15 -2451 ((-671 |#1|) (-626 |#2|) (-560))) (-15 -2456 ((-671 |#1|) (-626 |#2|) (-560))) (-15 -2446 ((-626 |#1|) |#2| (-560)))) (-359) (-633 |#1|)) (T -627)) -((-2446 (*1 *2 *3 *4) (-12 (-5 *4 (-560)) (-4 *5 (-359)) (-5 *2 (-626 *5)) (-5 *1 (-627 *5 *3)) (-4 *3 (-633 *5)))) (-2456 (*1 *2 *3 *4) (-12 (-5 *3 (-626 *6)) (-5 *4 (-560)) (-4 *6 (-633 *5)) (-4 *5 (-359)) (-5 *2 (-671 *5)) (-5 *1 (-627 *5 *6)))) (-2451 (*1 *2 *3 *4) (-12 (-5 *3 (-626 *6)) (-5 *4 (-560)) (-4 *6 (-633 *5)) (-4 *5 (-359)) (-5 *2 (-671 *5)) (-5 *1 (-627 *5 *6))))) -(-10 -7 (-15 -2451 ((-671 |#1|) (-626 |#2|) (-560))) (-15 -2456 ((-671 |#1|) (-626 |#2|) (-560))) (-15 -2446 ((-626 |#1|) |#2| (-560)))) -((-2601 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-2918 (($ |#1| |#1| $) 43)) (-3909 (((-121) $ (-755)) NIL)) (-3763 (($ (-1 (-121) |#1|) $) 56 (|has| $ (-6 -4505)))) (-3802 (($ (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-4236 (($) NIL T CONST)) (-3568 (($ $) 45)) (-2868 (($ $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-3561 (($ |#1| $) 51 (|has| $ (-6 -4505))) (($ (-1 (-121) |#1|) $) 53 (|has| $ (-6 -4505)))) (-4310 (($ |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082)))) (($ (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-2342 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4505))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4505)))) (-1981 (((-626 |#1|) $) 9 (|has| $ (-6 -4505)))) (-2122 (((-121) $ (-755)) NIL)) (-2130 (((-626 |#1|) $) NIL (|has| $ (-6 -4505)))) (-2030 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-3778 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#1| |#1|) $) 37)) (-3441 (((-121) $ (-755)) NIL)) (-1291 (((-1135) $) NIL (|has| |#1| (-1082)))) (-2525 ((|#1| $) 46)) (-4345 (($ |#1| $) 26) (($ |#1| $ (-755)) 42)) (-4353 (((-1100) $) NIL (|has| |#1| (-1082)))) (-3786 (((-3 |#1| "failed") (-1 (-121) |#1|) $) NIL)) (-2146 ((|#1| $) 48)) (-2865 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#1|))) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-283 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-626 |#1|) (-626 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))))) (-2214 (((-121) $ $) NIL)) (-4191 (((-121) $) 21)) (-3260 (($) 25)) (-4306 (((-121) $) 49)) (-1483 (((-626 (-2 (|:| -2371 |#1|) (|:| -4035 (-755)))) $) 60)) (-3958 (($) 23) (($ (-626 |#1|)) 18)) (-4035 (((-755) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505))) (((-755) |#1| $) 57 (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-2813 (($ $) 19)) (-4255 (((-533) $) 34 (|has| |#1| (-601 (-533))))) (-4162 (($ (-626 |#1|)) NIL)) (-2801 (((-842) $) 14 (|has| |#1| (-1082)))) (-1354 (($ (-626 |#1|)) 22)) (-3656 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-1653 (((-121) $ $) 62 (|has| |#1| (-1082)))) (-2271 (((-755) $) 16 (|has| $ (-6 -4505))))) -(((-628 |#1|) (-13 (-676 |#1|) (-10 -8 (-6 -4505) (-15 -4306 ((-121) $)) (-15 -2918 ($ |#1| |#1| $)))) (-1082)) (T -628)) -((-4306 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-628 *3)) (-4 *3 (-1082)))) (-2918 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-628 *2)) (-4 *2 (-1082))))) -(-13 (-676 |#1|) (-10 -8 (-6 -4505) (-15 -4306 ((-121) $)) (-15 -2918 ($ |#1| |#1| $)))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-2314 (((-3 $ "failed") $ $) 18)) (-4236 (($) 16 T CONST)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-2801 (((-842) $) 11)) (-3304 (($) 17 T CONST)) (-1653 (((-121) $ $) 6)) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ |#1| $) 22))) -(((-629 |#1|) (-1267) (-1046)) (T -629)) -((* (*1 *1 *2 *1) (-12 (-4 *1 (-629 *2)) (-4 *2 (-1046))))) +((-2447 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-2850 ((|#1| $) NIL)) (-2235 ((|#1| $) NIL)) (-2796 (($ $) NIL)) (-1868 (((-1249) $ (-568) (-568)) NIL (|has| $ (-6 -4520)))) (-3910 (($ $ (-568)) 57 (|has| $ (-6 -4520)))) (-2016 (((-121) $) NIL (|has| |#1| (-842))) (((-121) (-1 (-121) |#1| |#1|) $) NIL)) (-3908 (($ $) NIL (-12 (|has| $ (-6 -4520)) (|has| |#1| (-842)))) (($ (-1 (-121) |#1| |#1|) $) 55 (|has| $ (-6 -4520)))) (-3644 (($ $) NIL (|has| |#1| (-842))) (($ (-1 (-121) |#1| |#1|) $) NIL)) (-2510 (((-121) $ (-763)) NIL)) (-1659 ((|#1| $ |#1|) NIL (|has| $ (-6 -4520)))) (-3869 (($ $ $) 23 (|has| $ (-6 -4520)))) (-2395 ((|#1| $ |#1|) NIL (|has| $ (-6 -4520)))) (-2517 ((|#1| $ |#1|) 21 (|has| $ (-6 -4520)))) (-2436 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4520))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4520))) (($ $ "rest" $) 24 (|has| $ (-6 -4520))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4520))) ((|#1| $ (-1210 (-568)) |#1|) NIL (|has| $ (-6 -4520))) ((|#1| $ (-568) |#1|) NIL (|has| $ (-6 -4520)))) (-3827 (($ $ (-634 $)) NIL (|has| $ (-6 -4520)))) (-3507 (($ (-1 (-121) |#1|) $) NIL)) (-2801 (($ (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-1679 ((|#1| $) NIL)) (-2671 (($) NIL T CONST)) (-1578 (($ $) 28 (|has| $ (-6 -4520)))) (-3943 (($ $) 29)) (-3935 (($ $) 18) (($ $ (-763)) 32)) (-3369 (($ $) 53 (|has| |#1| (-1090)))) (-3924 (($ $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-3405 (($ |#1| $) NIL (|has| |#1| (-1090))) (($ (-1 (-121) |#1|) $) NIL)) (-4328 (($ (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-3092 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4519))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4519))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-3989 ((|#1| $ (-568) |#1|) NIL (|has| $ (-6 -4520)))) (-2602 ((|#1| $ (-568)) NIL)) (-1601 (((-121) $) NIL)) (-2764 (((-568) |#1| $ (-568)) NIL (|has| |#1| (-1090))) (((-568) |#1| $) NIL (|has| |#1| (-1090))) (((-568) (-1 (-121) |#1|) $) NIL)) (-4360 (((-634 |#1|) $) 27 (|has| $ (-6 -4519)))) (-2287 (((-634 $) $) NIL)) (-1700 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-1849 (($ (-763) |#1|) NIL)) (-1737 (((-121) $ (-763)) NIL)) (-1881 (((-568) $) 31 (|has| (-568) (-842)))) (-2521 (($ $ $) NIL (|has| |#1| (-842)))) (-3349 (($ $ $) NIL (|has| |#1| (-842))) (($ (-1 (-121) |#1| |#1|) $ $) 56)) (-1347 (($ $ $) NIL (|has| |#1| (-842))) (($ (-1 (-121) |#1| |#1|) $ $) NIL)) (-1979 (((-634 |#1|) $) NIL (|has| $ (-6 -4519)))) (-3109 (((-121) |#1| $) 51 (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-2223 (((-568) $) NIL (|has| (-568) (-842)))) (-3268 (($ $ $) NIL (|has| |#1| (-842)))) (-3674 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3896 (($ |#1|) NIL)) (-2166 (((-121) $ (-763)) NIL)) (-2869 (((-634 |#1|) $) NIL)) (-1651 (((-121) $) NIL)) (-4487 (((-1143) $) 50 (|has| |#1| (-1090)))) (-4162 ((|#1| $) NIL) (($ $ (-763)) NIL)) (-4450 (($ $ $ (-568)) NIL) (($ |#1| $ (-568)) NIL)) (-4122 (($ $ $ (-568)) NIL) (($ |#1| $ (-568)) NIL)) (-4174 (((-634 (-568)) $) NIL)) (-3578 (((-121) (-568) $) NIL)) (-4022 (((-1108) $) NIL (|has| |#1| (-1090)))) (-3876 ((|#1| $) 13) (($ $ (-763)) NIL)) (-3775 (((-3 |#1| "failed") (-1 (-121) |#1|) $) NIL)) (-3724 (($ $ |#1|) NIL (|has| $ (-6 -4520)))) (-1786 (((-121) $) NIL)) (-1387 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-634 |#1|) (-634 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))))) (-3171 (((-121) $ $) 12)) (-4467 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-2041 (((-634 |#1|) $) NIL)) (-3084 (((-121) $) 17)) (-3248 (($) 16)) (-2779 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1210 (-568))) NIL) ((|#1| $ (-568)) NIL) ((|#1| $ (-568) |#1|) NIL)) (-4075 (((-568) $ $) NIL)) (-1783 (($ $ (-1210 (-568))) NIL) (($ $ (-568)) NIL)) (-2826 (($ $ (-1210 (-568))) NIL) (($ $ (-568)) NIL)) (-3790 (((-121) $) 33)) (-2340 (($ $) NIL)) (-2714 (($ $) NIL (|has| $ (-6 -4520)))) (-2775 (((-763) $) NIL)) (-3335 (($ $) 35)) (-4168 (((-763) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519))) (((-763) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-2256 (($ $ $ (-568)) NIL (|has| $ (-6 -4520)))) (-3863 (($ $) 34)) (-4278 (((-541) $) NIL (|has| |#1| (-609 (-541))))) (-4287 (($ (-634 |#1|)) 26)) (-3845 (($ $ $) 52) (($ $ |#1|) NIL)) (-2768 (($ $ $) NIL) (($ |#1| $) 10) (($ (-634 $)) NIL) (($ $ |#1|) NIL)) (-2745 (((-850) $) 45 (|has| |#1| (-1090)))) (-4339 (((-634 $) $) NIL)) (-3491 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-1319 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-1751 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1738 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1717 (((-121) $ $) 47 (|has| |#1| (-1090)))) (-1745 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1732 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1697 (((-763) $) 9 (|has| $ (-6 -4519))))) +(((-528 |#1| |#2|) (-658 |#1|) (-1195) (-568)) (T -528)) +NIL +(-658 |#1|) +((-4167 ((|#4| |#4|) 26)) (-3700 (((-763) |#4|) 31)) (-2121 (((-763) |#4|) 32)) (-4272 (((-634 |#3|) |#4|) 37 (|has| |#3| (-6 -4520)))) (-3140 (((-3 |#4| "failed") |#4|) 47)) (-1463 ((|#4| |#4|) 40)) (-2465 ((|#1| |#4|) 39))) +(((-529 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4167 (|#4| |#4|)) (-15 -3700 ((-763) |#4|)) (-15 -2121 ((-763) |#4|)) (IF (|has| |#3| (-6 -4520)) (-15 -4272 ((-634 |#3|) |#4|)) |noBranch|) (-15 -2465 (|#1| |#4|)) (-15 -1463 (|#4| |#4|)) (-15 -3140 ((-3 |#4| "failed") |#4|))) (-365) (-375 |#1|) (-375 |#1|) (-677 |#1| |#2| |#3|)) (T -529)) +((-3140 (*1 *2 *2) (|partial| -12 (-4 *3 (-365)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-529 *3 *4 *5 *2)) (-4 *2 (-677 *3 *4 *5)))) (-1463 (*1 *2 *2) (-12 (-4 *3 (-365)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-529 *3 *4 *5 *2)) (-4 *2 (-677 *3 *4 *5)))) (-2465 (*1 *2 *3) (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-365)) (-5 *1 (-529 *2 *4 *5 *3)) (-4 *3 (-677 *2 *4 *5)))) (-4272 (*1 *2 *3) (-12 (|has| *6 (-6 -4520)) (-4 *4 (-365)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-634 *6)) (-5 *1 (-529 *4 *5 *6 *3)) (-4 *3 (-677 *4 *5 *6)))) (-2121 (*1 *2 *3) (-12 (-4 *4 (-365)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-763)) (-5 *1 (-529 *4 *5 *6 *3)) (-4 *3 (-677 *4 *5 *6)))) (-3700 (*1 *2 *3) (-12 (-4 *4 (-365)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-763)) (-5 *1 (-529 *4 *5 *6 *3)) (-4 *3 (-677 *4 *5 *6)))) (-4167 (*1 *2 *2) (-12 (-4 *3 (-365)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-529 *3 *4 *5 *2)) (-4 *2 (-677 *3 *4 *5))))) +(-10 -7 (-15 -4167 (|#4| |#4|)) (-15 -3700 ((-763) |#4|)) (-15 -2121 ((-763) |#4|)) (IF (|has| |#3| (-6 -4520)) (-15 -4272 ((-634 |#3|) |#4|)) |noBranch|) (-15 -2465 (|#1| |#4|)) (-15 -1463 (|#4| |#4|)) (-15 -3140 ((-3 |#4| "failed") |#4|))) +((-4167 ((|#8| |#4|) 20)) (-4272 (((-634 |#3|) |#4|) 29 (|has| |#7| (-6 -4520)))) (-3140 (((-3 |#8| "failed") |#4|) 23))) +(((-530 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4167 (|#8| |#4|)) (-15 -3140 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4520)) (-15 -4272 ((-634 |#3|) |#4|)) |noBranch|)) (-558) (-375 |#1|) (-375 |#1|) (-677 |#1| |#2| |#3|) (-993 |#1|) (-375 |#5|) (-375 |#5|) (-677 |#5| |#6| |#7|)) (T -530)) +((-4272 (*1 *2 *3) (-12 (|has| *9 (-6 -4520)) (-4 *4 (-558)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-4 *7 (-993 *4)) (-4 *8 (-375 *7)) (-4 *9 (-375 *7)) (-5 *2 (-634 *6)) (-5 *1 (-530 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-677 *4 *5 *6)) (-4 *10 (-677 *7 *8 *9)))) (-3140 (*1 *2 *3) (|partial| -12 (-4 *4 (-558)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-4 *7 (-993 *4)) (-4 *2 (-677 *7 *8 *9)) (-5 *1 (-530 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-677 *4 *5 *6)) (-4 *8 (-375 *7)) (-4 *9 (-375 *7)))) (-4167 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-4 *7 (-993 *4)) (-4 *2 (-677 *7 *8 *9)) (-5 *1 (-530 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-677 *4 *5 *6)) (-4 *8 (-375 *7)) (-4 *9 (-375 *7))))) +(-10 -7 (-15 -4167 (|#8| |#4|)) (-15 -3140 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4520)) (-15 -4272 ((-634 |#3|) |#4|)) |noBranch|)) +((-2447 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-3205 (($ (-763) (-763)) NIL)) (-3347 (($ $ $) NIL)) (-2870 (($ (-599 |#1| |#3|)) NIL) (($ $) NIL)) (-1335 (((-121) $) NIL)) (-4343 (($ $ (-568) (-568)) 12)) (-3622 (($ $ (-568) (-568)) NIL)) (-3676 (($ $ (-568) (-568) (-568) (-568)) NIL)) (-3976 (($ $) NIL)) (-2230 (((-121) $) NIL)) (-2510 (((-121) $ (-763)) NIL)) (-1785 (($ $ (-568) (-568) $) NIL)) (-2436 ((|#1| $ (-568) (-568) |#1|) NIL) (($ $ (-634 (-568)) (-634 (-568)) $) NIL)) (-4159 (($ $ (-568) (-599 |#1| |#3|)) NIL)) (-2451 (($ $ (-568) (-599 |#1| |#2|)) NIL)) (-3422 (($ (-763) |#1|) NIL)) (-2671 (($) NIL T CONST)) (-4167 (($ $) 19 (|has| |#1| (-301)))) (-1818 (((-599 |#1| |#3|) $ (-568)) NIL)) (-3700 (((-763) $) 22 (|has| |#1| (-558)))) (-3989 ((|#1| $ (-568) (-568) |#1|) NIL)) (-2602 ((|#1| $ (-568) (-568)) NIL)) (-2076 ((|#1| $) NIL (|has| |#1| (-172)))) (-4360 (((-634 |#1|) $) NIL)) (-2121 (((-763) $) 24 (|has| |#1| (-558)))) (-4272 (((-634 (-599 |#1| |#2|)) $) 27 (|has| |#1| (-558)))) (-3043 (((-763) $) NIL)) (-1849 (($ (-763) (-763) |#1|) NIL)) (-2555 (((-763) $) NIL)) (-1737 (((-121) $ (-763)) NIL)) (-3082 ((|#1| $) 17 (|has| |#1| (-6 (-4521 "*"))))) (-2087 (((-568) $) 10)) (-3364 (((-568) $) NIL)) (-1979 (((-634 |#1|) $) NIL (|has| $ (-6 -4519)))) (-3109 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-1663 (((-568) $) 11)) (-2893 (((-568) $) NIL)) (-2269 (($ (-634 (-634 |#1|))) NIL)) (-3674 (($ (-1 |#1| |#1|) $) NIL)) (-2795 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3208 (((-634 (-634 |#1|)) $) NIL)) (-2166 (((-121) $ (-763)) NIL)) (-4487 (((-1143) $) NIL (|has| |#1| (-1090)))) (-3140 (((-3 $ "failed") $) 31 (|has| |#1| (-365)))) (-2858 (($ $ $) NIL)) (-4022 (((-1108) $) NIL (|has| |#1| (-1090)))) (-3724 (($ $ |#1|) NIL)) (-2595 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558)))) (-1387 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-634 |#1|) (-634 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))))) (-3171 (((-121) $ $) NIL)) (-3084 (((-121) $) NIL)) (-3248 (($) NIL)) (-2779 ((|#1| $ (-568) (-568)) NIL) ((|#1| $ (-568) (-568) |#1|) NIL) (($ $ (-634 (-568)) (-634 (-568))) NIL)) (-2282 (($ (-634 |#1|)) NIL) (($ (-634 $)) NIL)) (-1960 (((-121) $) NIL)) (-2465 ((|#1| $) 15 (|has| |#1| (-6 (-4521 "*"))))) (-4168 (((-763) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519))) (((-763) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-3863 (($ $) NIL)) (-2365 (((-634 (-599 |#1| |#2|)) $) NIL (|has| |#1| (-301)))) (-3731 (((-599 |#1| |#2|) $ (-568)) NIL)) (-2745 (((-850) $) NIL (|has| |#1| (-1090))) (($ (-599 |#1| |#2|)) NIL)) (-1319 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-1910 (((-121) $) NIL)) (-1717 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-1779 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-1773 (($ $ $) NIL) (($ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-763)) NIL) (($ $ (-568)) NIL (|has| |#1| (-365)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-568) $) NIL) (((-599 |#1| |#2|) $ (-599 |#1| |#2|)) NIL) (((-599 |#1| |#3|) (-599 |#1| |#3|) $) NIL)) (-1697 (((-763) $) NIL (|has| $ (-6 -4519))))) +(((-531 |#1| |#2| |#3|) (-677 |#1| (-599 |#1| |#3|) (-599 |#1| |#2|)) (-1047) (-568) (-568)) (T -531)) +NIL +(-677 |#1| (-599 |#1| |#3|) (-599 |#1| |#2|)) +((-2376 (((-1157 |#1|) (-763)) 74)) (-1932 (((-1244 |#1|) (-1244 |#1|) (-917)) 67)) (-4464 (((-1249) (-1244 (-634 (-2 (|:| -2850 |#1|) (|:| -4355 (-1108))))) |#1|) 82)) (-2840 (((-1244 |#1|) (-1244 |#1|) (-763)) 36)) (-1731 (((-1244 |#1|) (-917)) 69)) (-1963 (((-1244 |#1|) (-1244 |#1|) (-568)) 24)) (-2700 (((-1157 |#1|) (-1244 |#1|)) 75)) (-2883 (((-1244 |#1|) (-917)) 93)) (-3917 (((-121) (-1244 |#1|)) 78)) (-2657 (((-1244 |#1|) (-1244 |#1|) (-917)) 59)) (-2045 (((-1157 |#1|) (-1244 |#1|)) 87)) (-3683 (((-917) (-1244 |#1|)) 56)) (-2081 (((-1244 |#1|) (-1244 |#1|)) 30)) (-4355 (((-1244 |#1|) (-917) (-917)) 95)) (-4271 (((-1244 |#1|) (-1244 |#1|) (-1108) (-1108)) 23)) (-2329 (((-1244 |#1|) (-1244 |#1|) (-763) (-1108)) 37)) (-3746 (((-1244 (-1244 |#1|)) (-917)) 92)) (-1779 (((-1244 |#1|) (-1244 |#1|) (-1244 |#1|)) 79)) (** (((-1244 |#1|) (-1244 |#1|) (-568)) 43)) (* (((-1244 |#1|) (-1244 |#1|) (-1244 |#1|)) 25))) +(((-532 |#1|) (-10 -7 (-15 -4464 ((-1249) (-1244 (-634 (-2 (|:| -2850 |#1|) (|:| -4355 (-1108))))) |#1|)) (-15 -1731 ((-1244 |#1|) (-917))) (-15 -4355 ((-1244 |#1|) (-917) (-917))) (-15 -2700 ((-1157 |#1|) (-1244 |#1|))) (-15 -2376 ((-1157 |#1|) (-763))) (-15 -2329 ((-1244 |#1|) (-1244 |#1|) (-763) (-1108))) (-15 -2840 ((-1244 |#1|) (-1244 |#1|) (-763))) (-15 -4271 ((-1244 |#1|) (-1244 |#1|) (-1108) (-1108))) (-15 -1963 ((-1244 |#1|) (-1244 |#1|) (-568))) (-15 ** ((-1244 |#1|) (-1244 |#1|) (-568))) (-15 * ((-1244 |#1|) (-1244 |#1|) (-1244 |#1|))) (-15 -1779 ((-1244 |#1|) (-1244 |#1|) (-1244 |#1|))) (-15 -2657 ((-1244 |#1|) (-1244 |#1|) (-917))) (-15 -1932 ((-1244 |#1|) (-1244 |#1|) (-917))) (-15 -2081 ((-1244 |#1|) (-1244 |#1|))) (-15 -3683 ((-917) (-1244 |#1|))) (-15 -3917 ((-121) (-1244 |#1|))) (-15 -3746 ((-1244 (-1244 |#1|)) (-917))) (-15 -2883 ((-1244 |#1|) (-917))) (-15 -2045 ((-1157 |#1|) (-1244 |#1|)))) (-350)) (T -532)) +((-2045 (*1 *2 *3) (-12 (-5 *3 (-1244 *4)) (-4 *4 (-350)) (-5 *2 (-1157 *4)) (-5 *1 (-532 *4)))) (-2883 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1244 *4)) (-5 *1 (-532 *4)) (-4 *4 (-350)))) (-3746 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1244 (-1244 *4))) (-5 *1 (-532 *4)) (-4 *4 (-350)))) (-3917 (*1 *2 *3) (-12 (-5 *3 (-1244 *4)) (-4 *4 (-350)) (-5 *2 (-121)) (-5 *1 (-532 *4)))) (-3683 (*1 *2 *3) (-12 (-5 *3 (-1244 *4)) (-4 *4 (-350)) (-5 *2 (-917)) (-5 *1 (-532 *4)))) (-2081 (*1 *2 *2) (-12 (-5 *2 (-1244 *3)) (-4 *3 (-350)) (-5 *1 (-532 *3)))) (-1932 (*1 *2 *2 *3) (-12 (-5 *2 (-1244 *4)) (-5 *3 (-917)) (-4 *4 (-350)) (-5 *1 (-532 *4)))) (-2657 (*1 *2 *2 *3) (-12 (-5 *2 (-1244 *4)) (-5 *3 (-917)) (-4 *4 (-350)) (-5 *1 (-532 *4)))) (-1779 (*1 *2 *2 *2) (-12 (-5 *2 (-1244 *3)) (-4 *3 (-350)) (-5 *1 (-532 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1244 *3)) (-4 *3 (-350)) (-5 *1 (-532 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1244 *4)) (-5 *3 (-568)) (-4 *4 (-350)) (-5 *1 (-532 *4)))) (-1963 (*1 *2 *2 *3) (-12 (-5 *2 (-1244 *4)) (-5 *3 (-568)) (-4 *4 (-350)) (-5 *1 (-532 *4)))) (-4271 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1244 *4)) (-5 *3 (-1108)) (-4 *4 (-350)) (-5 *1 (-532 *4)))) (-2840 (*1 *2 *2 *3) (-12 (-5 *2 (-1244 *4)) (-5 *3 (-763)) (-4 *4 (-350)) (-5 *1 (-532 *4)))) (-2329 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1244 *5)) (-5 *3 (-763)) (-5 *4 (-1108)) (-4 *5 (-350)) (-5 *1 (-532 *5)))) (-2376 (*1 *2 *3) (-12 (-5 *3 (-763)) (-5 *2 (-1157 *4)) (-5 *1 (-532 *4)) (-4 *4 (-350)))) (-2700 (*1 *2 *3) (-12 (-5 *3 (-1244 *4)) (-4 *4 (-350)) (-5 *2 (-1157 *4)) (-5 *1 (-532 *4)))) (-4355 (*1 *2 *3 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1244 *4)) (-5 *1 (-532 *4)) (-4 *4 (-350)))) (-1731 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1244 *4)) (-5 *1 (-532 *4)) (-4 *4 (-350)))) (-4464 (*1 *2 *3 *4) (-12 (-5 *3 (-1244 (-634 (-2 (|:| -2850 *4) (|:| -4355 (-1108)))))) (-4 *4 (-350)) (-5 *2 (-1249)) (-5 *1 (-532 *4))))) +(-10 -7 (-15 -4464 ((-1249) (-1244 (-634 (-2 (|:| -2850 |#1|) (|:| -4355 (-1108))))) |#1|)) (-15 -1731 ((-1244 |#1|) (-917))) (-15 -4355 ((-1244 |#1|) (-917) (-917))) (-15 -2700 ((-1157 |#1|) (-1244 |#1|))) (-15 -2376 ((-1157 |#1|) (-763))) (-15 -2329 ((-1244 |#1|) (-1244 |#1|) (-763) (-1108))) (-15 -2840 ((-1244 |#1|) (-1244 |#1|) (-763))) (-15 -4271 ((-1244 |#1|) (-1244 |#1|) (-1108) (-1108))) (-15 -1963 ((-1244 |#1|) (-1244 |#1|) (-568))) (-15 ** ((-1244 |#1|) (-1244 |#1|) (-568))) (-15 * ((-1244 |#1|) (-1244 |#1|) (-1244 |#1|))) (-15 -1779 ((-1244 |#1|) (-1244 |#1|) (-1244 |#1|))) (-15 -2657 ((-1244 |#1|) (-1244 |#1|) (-917))) (-15 -1932 ((-1244 |#1|) (-1244 |#1|) (-917))) (-15 -2081 ((-1244 |#1|) (-1244 |#1|))) (-15 -3683 ((-917) (-1244 |#1|))) (-15 -3917 ((-121) (-1244 |#1|))) (-15 -3746 ((-1244 (-1244 |#1|)) (-917))) (-15 -2883 ((-1244 |#1|) (-917))) (-15 -2045 ((-1157 |#1|) (-1244 |#1|)))) +((-2785 (((-1 |#1| |#1|) |#1|) 11)) (-3806 (((-1 |#1| |#1|)) 10))) +(((-533 |#1|) (-10 -7 (-15 -3806 ((-1 |#1| |#1|))) (-15 -2785 ((-1 |#1| |#1|) |#1|))) (-13 (-716) (-25))) (T -533)) +((-2785 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-533 *3)) (-4 *3 (-13 (-716) (-25))))) (-3806 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-533 *3)) (-4 *3 (-13 (-716) (-25)))))) +(-10 -7 (-15 -3806 ((-1 |#1| |#1|))) (-15 -2785 ((-1 |#1| |#1|) |#1|))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-1462 (($ $ $) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-2671 (($) NIL T CONST)) (-2114 (($ $) NIL)) (-2047 (($ (-763) |#1|) NIL)) (-2521 (($ $ $) NIL)) (-3268 (($ $ $) NIL)) (-2795 (($ (-1 (-763) (-763)) $) NIL)) (-1311 ((|#1| $) NIL)) (-2102 (((-763) $) NIL)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2745 (((-850) $) 20)) (-3056 (($) NIL T CONST)) (-1751 (((-121) $ $) NIL)) (-1738 (((-121) $ $) NIL)) (-1717 (((-121) $ $) NIL)) (-1745 (((-121) $ $) NIL)) (-1732 (((-121) $ $) NIL)) (-1767 (($ $ $) NIL)) (* (($ (-763) $) NIL) (($ (-917) $) NIL))) +(((-534 |#1|) (-13 (-788) (-518 (-763) |#1|)) (-842)) (T -534)) +NIL +(-13 (-788) (-518 (-763) |#1|)) +((-2580 (((-634 |#2|) (-1157 |#1|) |#3|) 83)) (-4325 (((-634 (-2 (|:| |outval| |#2|) (|:| |outmult| (-568)) (|:| |outvect| (-634 (-679 |#2|))))) (-679 |#1|) |#3| (-1 (-420 (-1157 |#1|)) (-1157 |#1|))) 99)) (-2871 (((-1157 |#1|) (-679 |#1|)) 95))) +(((-535 |#1| |#2| |#3|) (-10 -7 (-15 -2871 ((-1157 |#1|) (-679 |#1|))) (-15 -2580 ((-634 |#2|) (-1157 |#1|) |#3|)) (-15 -4325 ((-634 (-2 (|:| |outval| |#2|) (|:| |outmult| (-568)) (|:| |outvect| (-634 (-679 |#2|))))) (-679 |#1|) |#3| (-1 (-420 (-1157 |#1|)) (-1157 |#1|))))) (-365) (-365) (-13 (-365) (-840))) (T -535)) +((-4325 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-679 *6)) (-5 *5 (-1 (-420 (-1157 *6)) (-1157 *6))) (-4 *6 (-365)) (-5 *2 (-634 (-2 (|:| |outval| *7) (|:| |outmult| (-568)) (|:| |outvect| (-634 (-679 *7)))))) (-5 *1 (-535 *6 *7 *4)) (-4 *7 (-365)) (-4 *4 (-13 (-365) (-840))))) (-2580 (*1 *2 *3 *4) (-12 (-5 *3 (-1157 *5)) (-4 *5 (-365)) (-5 *2 (-634 *6)) (-5 *1 (-535 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-840))))) (-2871 (*1 *2 *3) (-12 (-5 *3 (-679 *4)) (-4 *4 (-365)) (-5 *2 (-1157 *4)) (-5 *1 (-535 *4 *5 *6)) (-4 *5 (-365)) (-4 *6 (-13 (-365) (-840)))))) +(-10 -7 (-15 -2871 ((-1157 |#1|) (-679 |#1|))) (-15 -2580 ((-634 |#2|) (-1157 |#1|) |#3|)) (-15 -4325 ((-634 (-2 (|:| |outval| |#2|) (|:| |outmult| (-568)) (|:| |outvect| (-634 (-679 |#2|))))) (-679 |#1|) |#3| (-1 (-420 (-1157 |#1|)) (-1157 |#1|))))) +((-2447 (((-121) $ $) 7)) (-4436 (((-1161) $) 20)) (-1314 (((-763) $) 22)) (-1467 (((-1161) $ (-1161)) 23)) (-3470 (((-763) $ (-763)) 28)) (-1600 ((|#5| $ |#5|) 31)) (-3393 (((-763) $ (-763)) 27)) (-3675 (((-33 |#1|) $ (-33 |#1|)) 29)) (-2247 (((-634 |#6|) $ (-634 |#6|)) 24)) (-4476 ((|#8| $ |#8|) 25)) (-1398 (((-242 (-4287 (QUOTE X) (QUOTE -2926)) |#1|) $ (-242 (-4287 (QUOTE X) (QUOTE -2926)) |#1|)) 30)) (-3524 ((|#9| $ |#9|) 26)) (-3642 ((|#5| $) 19)) (-3807 (((-763) $) 16)) (-3934 (((-33 |#1|) $) 17)) (-2134 (((-634 |#6|) $) 21)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-4394 ((|#8| $) 14)) (-3206 (((-917) $) 12)) (-4459 (((-242 (-4287 (QUOTE X) (QUOTE -2926)) |#1|) $) 18)) (-2373 (($ |#5| (-242 (-4287 (QUOTE X) (QUOTE -2926)) |#1|) (-33 |#1|) (-763) |#9| (-763) |#8| |#1| (-1161)) 33) (($ |#5| |#3|) 32)) (-2745 (((-850) $) 11)) (-1378 ((|#9| $) 15)) (-4248 ((|#1| $) 13)) (-1717 (((-121) $ $) 6))) +(((-536 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9|) (-1275) (-365) (-634 (-1161)) (-950 |t#1| |t#4| (-852 |t#2|)) (-230 (-1697 |t#2|) (-763)) (-971 |t#1|) (-641 |t#1|) (-920 |t#1| |t#6|) (-235 |t#7|) (-117)) (T -536)) +((-2373 (*1 *1 *2 *3 *4 *5 *6 *5 *7 *8 *9) (-12 (-5 *3 (-242 (-4287 (QUOTE X) (QUOTE -2926)) *8)) (-5 *4 (-33 *8)) (-5 *9 (-1161)) (-4 *8 (-365)) (-5 *5 (-763)) (-4 *12 (-230 (-1697 *10) *5)) (-4 *13 (-641 *8)) (-4 *14 (-920 *8 *13)) (-4 *1 (-536 *8 *10 *11 *12 *2 *13 *14 *7 *6)) (-4 *11 (-950 *8 *12 (-852 *10))) (-4 *2 (-971 *8)) (-4 *7 (-235 *14)) (-4 *6 (-117)))) (-2373 (*1 *1 *2 *3) (-12 (-4 *4 (-365)) (-4 *6 (-230 (-1697 *5) (-763))) (-4 *7 (-641 *4)) (-4 *8 (-920 *4 *7)) (-4 *1 (-536 *4 *5 *3 *6 *2 *7 *8 *9 *10)) (-4 *3 (-950 *4 *6 (-852 *5))) (-4 *2 (-971 *4)) (-4 *9 (-235 *8)) (-4 *10 (-117)))) (-1600 (*1 *2 *1 *2) (-12 (-4 *1 (-536 *3 *4 *5 *6 *2 *7 *8 *9 *10)) (-4 *3 (-365)) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *6 (-230 (-1697 *4) (-763))) (-4 *2 (-971 *3)) (-4 *7 (-641 *3)) (-4 *8 (-920 *3 *7)) (-4 *9 (-235 *8)) (-4 *10 (-117)))) (-1398 (*1 *2 *1 *2) (-12 (-5 *2 (-242 (-4287 (QUOTE X) (QUOTE -2926)) *3)) (-4 *1 (-536 *3 *4 *5 *6 *7 *8 *9 *10 *11)) (-4 *3 (-365)) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *6 (-230 (-1697 *4) (-763))) (-4 *7 (-971 *3)) (-4 *8 (-641 *3)) (-4 *9 (-920 *3 *8)) (-4 *10 (-235 *9)) (-4 *11 (-117)))) (-3675 (*1 *2 *1 *2) (-12 (-5 *2 (-33 *3)) (-4 *1 (-536 *3 *4 *5 *6 *7 *8 *9 *10 *11)) (-4 *3 (-365)) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *6 (-230 (-1697 *4) (-763))) (-4 *7 (-971 *3)) (-4 *8 (-641 *3)) (-4 *9 (-920 *3 *8)) (-4 *10 (-235 *9)) (-4 *11 (-117)))) (-3470 (*1 *2 *1 *2) (-12 (-4 *1 (-536 *3 *4 *5 *6 *7 *8 *9 *10 *11)) (-4 *3 (-365)) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *6 (-230 (-1697 *4) *2)) (-4 *7 (-971 *3)) (-4 *8 (-641 *3)) (-4 *9 (-920 *3 *8)) (-4 *10 (-235 *9)) (-4 *11 (-117)) (-5 *2 (-763)))) (-3393 (*1 *2 *1 *2) (-12 (-4 *1 (-536 *3 *4 *5 *6 *7 *8 *9 *10 *11)) (-4 *3 (-365)) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *6 (-230 (-1697 *4) *2)) (-4 *7 (-971 *3)) (-4 *8 (-641 *3)) (-4 *9 (-920 *3 *8)) (-4 *10 (-235 *9)) (-4 *11 (-117)) (-5 *2 (-763)))) (-3524 (*1 *2 *1 *2) (-12 (-4 *1 (-536 *3 *4 *5 *6 *7 *8 *9 *10 *2)) (-4 *3 (-365)) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *6 (-230 (-1697 *4) (-763))) (-4 *7 (-971 *3)) (-4 *8 (-641 *3)) (-4 *9 (-920 *3 *8)) (-4 *10 (-235 *9)) (-4 *2 (-117)))) (-4476 (*1 *2 *1 *2) (-12 (-4 *1 (-536 *3 *4 *5 *6 *7 *8 *9 *2 *10)) (-4 *3 (-365)) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *6 (-230 (-1697 *4) (-763))) (-4 *7 (-971 *3)) (-4 *8 (-641 *3)) (-4 *9 (-920 *3 *8)) (-4 *2 (-235 *9)) (-4 *10 (-117)))) (-2247 (*1 *2 *1 *2) (-12 (-5 *2 (-634 *8)) (-4 *1 (-536 *3 *4 *5 *6 *7 *8 *9 *10 *11)) (-4 *3 (-365)) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *6 (-230 (-1697 *4) (-763))) (-4 *7 (-971 *3)) (-4 *8 (-641 *3)) (-4 *9 (-920 *3 *8)) (-4 *10 (-235 *9)) (-4 *11 (-117)))) (-1467 (*1 *2 *1 *2) (-12 (-5 *2 (-1161)) (-4 *1 (-536 *3 *4 *5 *6 *7 *8 *9 *10 *11)) (-4 *3 (-365)) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *6 (-230 (-1697 *4) (-763))) (-4 *7 (-971 *3)) (-4 *8 (-641 *3)) (-4 *9 (-920 *3 *8)) (-4 *10 (-235 *9)) (-4 *11 (-117)))) (-1314 (*1 *2 *1) (-12 (-4 *1 (-536 *3 *4 *5 *6 *7 *8 *9 *10 *11)) (-4 *3 (-365)) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *6 (-230 (-1697 *4) *2)) (-4 *7 (-971 *3)) (-4 *8 (-641 *3)) (-4 *9 (-920 *3 *8)) (-4 *10 (-235 *9)) (-4 *11 (-117)) (-5 *2 (-763)))) (-2134 (*1 *2 *1) (-12 (-4 *1 (-536 *3 *4 *5 *6 *7 *8 *9 *10 *11)) (-4 *3 (-365)) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *6 (-230 (-1697 *4) (-763))) (-4 *7 (-971 *3)) (-4 *8 (-641 *3)) (-4 *9 (-920 *3 *8)) (-4 *10 (-235 *9)) (-4 *11 (-117)) (-5 *2 (-634 *8)))) (-4436 (*1 *2 *1) (-12 (-4 *1 (-536 *3 *4 *5 *6 *7 *8 *9 *10 *11)) (-4 *3 (-365)) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *6 (-230 (-1697 *4) (-763))) (-4 *7 (-971 *3)) (-4 *8 (-641 *3)) (-4 *9 (-920 *3 *8)) (-4 *10 (-235 *9)) (-4 *11 (-117)) (-5 *2 (-1161)))) (-3642 (*1 *2 *1) (-12 (-4 *1 (-536 *3 *4 *5 *6 *2 *7 *8 *9 *10)) (-4 *3 (-365)) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *6 (-230 (-1697 *4) (-763))) (-4 *7 (-641 *3)) (-4 *8 (-920 *3 *7)) (-4 *9 (-235 *8)) (-4 *10 (-117)) (-4 *2 (-971 *3)))) (-4459 (*1 *2 *1) (-12 (-4 *1 (-536 *3 *4 *5 *6 *7 *8 *9 *10 *11)) (-4 *3 (-365)) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *6 (-230 (-1697 *4) (-763))) (-4 *7 (-971 *3)) (-4 *8 (-641 *3)) (-4 *9 (-920 *3 *8)) (-4 *10 (-235 *9)) (-4 *11 (-117)) (-5 *2 (-242 (-4287 (QUOTE X) (QUOTE -2926)) *3)))) (-3934 (*1 *2 *1) (-12 (-4 *1 (-536 *3 *4 *5 *6 *7 *8 *9 *10 *11)) (-4 *3 (-365)) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *6 (-230 (-1697 *4) (-763))) (-4 *7 (-971 *3)) (-4 *8 (-641 *3)) (-4 *9 (-920 *3 *8)) (-4 *10 (-235 *9)) (-4 *11 (-117)) (-5 *2 (-33 *3)))) (-3807 (*1 *2 *1) (-12 (-4 *1 (-536 *3 *4 *5 *6 *7 *8 *9 *10 *11)) (-4 *3 (-365)) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *6 (-230 (-1697 *4) *2)) (-4 *7 (-971 *3)) (-4 *8 (-641 *3)) (-4 *9 (-920 *3 *8)) (-4 *10 (-235 *9)) (-4 *11 (-117)) (-5 *2 (-763)))) (-1378 (*1 *2 *1) (-12 (-4 *1 (-536 *3 *4 *5 *6 *7 *8 *9 *10 *2)) (-4 *3 (-365)) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *6 (-230 (-1697 *4) (-763))) (-4 *7 (-971 *3)) (-4 *8 (-641 *3)) (-4 *9 (-920 *3 *8)) (-4 *10 (-235 *9)) (-4 *2 (-117)))) (-4394 (*1 *2 *1) (-12 (-4 *1 (-536 *3 *4 *5 *6 *7 *8 *9 *2 *10)) (-4 *3 (-365)) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *6 (-230 (-1697 *4) (-763))) (-4 *7 (-971 *3)) (-4 *8 (-641 *3)) (-4 *9 (-920 *3 *8)) (-4 *10 (-117)) (-4 *2 (-235 *9)))) (-4248 (*1 *2 *1) (-12 (-4 *1 (-536 *2 *3 *4 *5 *6 *7 *8 *9 *10)) (-4 *4 (-950 *2 *5 (-852 *3))) (-4 *5 (-230 (-1697 *3) (-763))) (-4 *6 (-971 *2)) (-4 *7 (-641 *2)) (-4 *8 (-920 *2 *7)) (-4 *9 (-235 *8)) (-4 *10 (-117)) (-4 *2 (-365))))) +(-13 (-1088) (-10 -8 (-15 -2373 ($ |t#5| (-242 (-4287 (QUOTE X) (QUOTE -2926)) |t#1|) (-33 |t#1|) (-763) |t#9| (-763) |t#8| |t#1| (-1161))) (-15 -2373 ($ |t#5| |t#3|)) (-15 -1600 (|t#5| $ |t#5|)) (-15 -1398 ((-242 (-4287 (QUOTE X) (QUOTE -2926)) |t#1|) $ (-242 (-4287 (QUOTE X) (QUOTE -2926)) |t#1|))) (-15 -3675 ((-33 |t#1|) $ (-33 |t#1|))) (-15 -3470 ((-763) $ (-763))) (-15 -3393 ((-763) $ (-763))) (-15 -3524 (|t#9| $ |t#9|)) (-15 -4476 (|t#8| $ |t#8|)) (-15 -2247 ((-634 |t#6|) $ (-634 |t#6|))) (-15 -1467 ((-1161) $ (-1161))) (-15 -1314 ((-763) $)) (-15 -2134 ((-634 |t#6|) $)) (-15 -4436 ((-1161) $)) (-15 -3642 (|t#5| $)) (-15 -4459 ((-242 (-4287 (QUOTE X) (QUOTE -2926)) |t#1|) $)) (-15 -3934 ((-33 |t#1|) $)) (-15 -3807 ((-763) $)) (-15 -1378 (|t#9| $)) (-15 -4394 (|t#8| $)) (-15 -4248 (|t#1| $)))) +(((-105) . T) ((-608 (-850)) . T) ((-1090) . T) ((-1088) . T)) +((-2447 (((-121) $ $) NIL)) (-4436 (((-1161) $) NIL)) (-1314 (((-763) $) NIL)) (-1467 (((-1161) $ (-1161)) NIL)) (-3470 (((-763) $ (-763)) NIL)) (-1600 (((-967 |#1|) $ (-967 |#1|)) NIL)) (-3393 (((-763) $ (-763)) NIL)) (-3675 (((-33 (-857 |#1|)) $ (-33 (-857 |#1|))) NIL)) (-2247 (((-634 (-774 (-857 |#1|))) $ (-634 (-774 (-857 |#1|)))) NIL)) (-4476 (((-236 (-922 |#1|)) $ (-236 (-922 |#1|))) NIL)) (-1398 (((-242 (-4287 (QUOTE X) (QUOTE -2926)) (-857 |#1|)) $ (-242 (-4287 (QUOTE X) (QUOTE -2926)) (-857 |#1|))) NIL)) (-3524 ((|#3| $ |#3|) NIL)) (-3642 (((-967 |#1|) $) NIL)) (-3807 (((-763) $) NIL)) (-3934 (((-33 (-857 |#1|)) $) NIL)) (-2134 (((-634 (-774 (-857 |#1|))) $) NIL)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-3936 (((-121) (-121)) NIL) (((-121)) NIL)) (-2184 (((-850) $) NIL)) (-4394 (((-236 (-922 |#1|)) $) NIL)) (-3206 (((-917) $) NIL)) (-4459 (((-242 (-4287 (QUOTE X) (QUOTE -2926)) (-857 |#1|)) $) NIL)) (-2373 (($ (-967 |#1|) (-242 (-4287 (QUOTE X) (QUOTE -2926)) (-857 |#1|)) (-33 (-857 |#1|)) (-763) |#3| (-763) (-236 (-922 |#1|)) (-857 |#1|) (-1161)) NIL) (($ (-967 |#1|) (-242 |#2| (-857 |#1|))) NIL)) (-2745 (((-850) $) NIL)) (-1378 ((|#3| $) NIL)) (-4248 (((-857 |#1|) $) NIL)) (-1717 (((-121) $ $) NIL))) +(((-537 |#1| |#2| |#3|) (-13 (-536 (-857 |#1|) |#2| (-242 |#2| (-857 |#1|)) (-232 (-1697 |#2|) (-763)) (-967 |#1|) (-774 (-857 |#1|)) (-922 |#1|) (-236 (-922 |#1|)) |#3|) (-10 -8 (-15 -2184 ((-850) $)) (-15 -3936 ((-121) (-121))) (-15 -3936 ((-121))))) (-350) (-634 (-1161)) (-117)) (T -537)) +((-2184 (*1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-537 *3 *4 *5)) (-4 *3 (-350)) (-14 *4 (-634 (-1161))) (-4 *5 (-117)))) (-3936 (*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-537 *3 *4 *5)) (-4 *3 (-350)) (-14 *4 (-634 (-1161))) (-4 *5 (-117)))) (-3936 (*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-537 *3 *4 *5)) (-4 *3 (-350)) (-14 *4 (-634 (-1161))) (-4 *5 (-117))))) +(-13 (-536 (-857 |#1|) |#2| (-242 |#2| (-857 |#1|)) (-232 (-1697 |#2|) (-763)) (-967 |#1|) (-774 (-857 |#1|)) (-922 |#1|) (-236 (-922 |#1|)) |#3|) (-10 -8 (-15 -2184 ((-850) $)) (-15 -3936 ((-121) (-121))) (-15 -3936 ((-121))))) +((-2447 (((-121) $ $) NIL)) (-4436 (((-1161) $) 42)) (-1314 (((-763) $) 48)) (-1467 (((-1161) $ (-1161)) 81)) (-3470 (((-763) $ (-763)) 71)) (-1600 ((|#5| $ |#5|) 74)) (-3393 (((-763) $ (-763)) 77)) (-3675 (((-33 |#1|) $ (-33 |#1|)) 76)) (-2247 (((-634 |#6|) $ (-634 |#6|)) 79)) (-4476 ((|#8| $ |#8|) 80)) (-1398 (((-242 (-4287 (QUOTE X) (QUOTE -2926)) |#1|) $ (-242 (-4287 (QUOTE X) (QUOTE -2926)) |#1|)) 75)) (-3524 ((|#9| $ |#9|) 78)) (-3642 ((|#5| $) 40)) (-3807 (((-763) $) 43)) (-3934 (((-33 |#1|) $) 45)) (-2134 (((-634 |#6|) $) 73)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-3936 (((-121) (-121)) 52) (((-121)) 53)) (-2184 (((-850) $) 50)) (-4394 ((|#8| $) 47)) (-3206 (((-917) $) 58)) (-4459 (((-242 (-4287 (QUOTE X) (QUOTE -2926)) |#1|) $) 44)) (-2373 (($ |#5| (-242 (-4287 (QUOTE X) (QUOTE -2926)) |#1|) (-33 |#1|) (-763) |#9| (-763) |#8| |#1| (-1161)) 59) (($ |#5| |#3|) 70)) (-2745 (((-850) $) 54)) (-1378 ((|#9| $) 46)) (-4248 ((|#1| $) 55)) (-1717 (((-121) $ $) NIL))) +(((-538 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9|) (-13 (-536 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9|) (-10 -8 (-15 -2184 ((-850) $)) (-15 -3936 ((-121) (-121))) (-15 -3936 ((-121))))) (-365) (-634 (-1161)) (-950 |#1| |#4| (-852 |#2|)) (-230 (-1697 |#2|) (-763)) (-971 |#1|) (-641 |#1|) (-920 |#1| |#6|) (-235 |#7|) (-117)) (T -538)) +((-2184 (*1 *2 *1) (-12 (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *6 (-230 (-1697 *4) (-763))) (-4 *8 (-641 *3)) (-4 *9 (-920 *3 *8)) (-5 *2 (-850)) (-5 *1 (-538 *3 *4 *5 *6 *7 *8 *9 *10 *11)) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *7 (-971 *3)) (-4 *10 (-235 *9)) (-4 *11 (-117)))) (-3936 (*1 *2 *2) (-12 (-5 *2 (-121)) (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *6 (-230 (-1697 *4) (-763))) (-4 *8 (-641 *3)) (-4 *9 (-920 *3 *8)) (-5 *1 (-538 *3 *4 *5 *6 *7 *8 *9 *10 *11)) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *7 (-971 *3)) (-4 *10 (-235 *9)) (-4 *11 (-117)))) (-3936 (*1 *2) (-12 (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *6 (-230 (-1697 *4) (-763))) (-4 *8 (-641 *3)) (-4 *9 (-920 *3 *8)) (-5 *2 (-121)) (-5 *1 (-538 *3 *4 *5 *6 *7 *8 *9 *10 *11)) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *7 (-971 *3)) (-4 *10 (-235 *9)) (-4 *11 (-117))))) +(-13 (-536 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9|) (-10 -8 (-15 -2184 ((-850) $)) (-15 -3936 ((-121) (-121))) (-15 -3936 ((-121))))) +((-3602 (((-835 (-568))) 11)) (-3594 (((-835 (-568))) 13)) (-3059 (((-828 (-568))) 8))) +(((-539) (-10 -7 (-15 -3059 ((-828 (-568)))) (-15 -3602 ((-835 (-568)))) (-15 -3594 ((-835 (-568)))))) (T -539)) +((-3594 (*1 *2) (-12 (-5 *2 (-835 (-568))) (-5 *1 (-539)))) (-3602 (*1 *2) (-12 (-5 *2 (-835 (-568))) (-5 *1 (-539)))) (-3059 (*1 *2) (-12 (-5 *2 (-828 (-568))) (-5 *1 (-539))))) +(-10 -7 (-15 -3059 ((-828 (-568)))) (-15 -3602 ((-835 (-568)))) (-15 -3594 ((-835 (-568))))) +((-1656 (((-541) (-1161)) 15)) (-3643 ((|#1| (-541)) 20))) +(((-540 |#1|) (-10 -7 (-15 -1656 ((-541) (-1161))) (-15 -3643 (|#1| (-541)))) (-1195)) (T -540)) +((-3643 (*1 *2 *3) (-12 (-5 *3 (-541)) (-5 *1 (-540 *2)) (-4 *2 (-1195)))) (-1656 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-541)) (-5 *1 (-540 *4)) (-4 *4 (-1195))))) +(-10 -7 (-15 -1656 ((-541) (-1161))) (-15 -3643 (|#1| (-541)))) +((-2447 (((-121) $ $) NIL)) (-1854 (((-1143) $) 46)) (-2500 (((-121) $) 43)) (-3180 (((-1161) $) 44)) (-1620 (((-121) $) 41)) (-1742 (((-1143) $) 42)) (-2196 (($ (-1143)) 47)) (-2341 (((-121) $) NIL)) (-2491 (((-121) $) NIL)) (-1795 (((-121) $) NIL)) (-4487 (((-1143) $) NIL)) (-3472 (($ $ (-634 (-1161))) 20)) (-3643 (((-57) $) 22)) (-4469 (((-121) $) NIL)) (-1721 (((-568) $) NIL)) (-4022 (((-1108) $) NIL)) (-1864 (($ $ (-634 (-1161)) (-1161)) 59)) (-1487 (((-121) $) NIL)) (-3768 (((-215) $) NIL)) (-4284 (($ $) 38)) (-4151 (((-850) $) NIL)) (-1853 (((-121) $ $) NIL)) (-2779 (($ $ (-568)) NIL) (($ $ (-634 (-568))) NIL)) (-2043 (((-634 $) $) 28)) (-2762 (((-1161) (-634 $)) 48)) (-4278 (($ (-634 $)) 52) (($ (-1143)) NIL) (($ (-1161)) 18) (($ (-568)) 8) (($ (-215)) 25) (($ (-850)) NIL) (((-1094) $) 11) (($ (-1094)) 12)) (-1687 (((-1161) (-1161) (-634 $)) 51)) (-2745 (((-850) $) NIL)) (-1527 (($ $) 50)) (-1520 (($ $) 49)) (-2494 (($ $ (-634 $)) 56)) (-3826 (((-121) $) 27)) (-3056 (($) 9 T CONST)) (-1556 (($) 10 T CONST)) (-1717 (((-121) $ $) 60)) (-1779 (($ $ $) 65)) (-1767 (($ $ $) 61)) (** (($ $ (-763)) 64) (($ $ (-568)) 63)) (* (($ $ $) 62)) (-1697 (((-568) $) NIL))) +(((-541) (-13 (-1093 (-1143) (-1161) (-568) (-215) (-850)) (-609 (-1094)) (-10 -8 (-15 -3643 ((-57) $)) (-15 -4278 ($ (-1094))) (-15 -2494 ($ $ (-634 $))) (-15 -1864 ($ $ (-634 (-1161)) (-1161))) (-15 -3472 ($ $ (-634 (-1161)))) (-15 -1767 ($ $ $)) (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ (-763))) (-15 ** ($ $ (-568))) (-15 0 ($) -3495) (-15 1 ($) -3495) (-15 -4284 ($ $)) (-15 -1854 ((-1143) $)) (-15 -2196 ($ (-1143))) (-15 -2762 ((-1161) (-634 $))) (-15 -1687 ((-1161) (-1161) (-634 $)))))) (T -541)) +((-3643 (*1 *2 *1) (-12 (-5 *2 (-57)) (-5 *1 (-541)))) (-4278 (*1 *1 *2) (-12 (-5 *2 (-1094)) (-5 *1 (-541)))) (-2494 (*1 *1 *1 *2) (-12 (-5 *2 (-634 (-541))) (-5 *1 (-541)))) (-1864 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-634 (-1161))) (-5 *3 (-1161)) (-5 *1 (-541)))) (-3472 (*1 *1 *1 *2) (-12 (-5 *2 (-634 (-1161))) (-5 *1 (-541)))) (-1767 (*1 *1 *1 *1) (-5 *1 (-541))) (* (*1 *1 *1 *1) (-5 *1 (-541))) (-1779 (*1 *1 *1 *1) (-5 *1 (-541))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-763)) (-5 *1 (-541)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-541)))) (-3056 (*1 *1) (-5 *1 (-541))) (-1556 (*1 *1) (-5 *1 (-541))) (-4284 (*1 *1 *1) (-5 *1 (-541))) (-1854 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-541)))) (-2196 (*1 *1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-541)))) (-2762 (*1 *2 *3) (-12 (-5 *3 (-634 (-541))) (-5 *2 (-1161)) (-5 *1 (-541)))) (-1687 (*1 *2 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-634 (-541))) (-5 *1 (-541))))) +(-13 (-1093 (-1143) (-1161) (-568) (-215) (-850)) (-609 (-1094)) (-10 -8 (-15 -3643 ((-57) $)) (-15 -4278 ($ (-1094))) (-15 -2494 ($ $ (-634 $))) (-15 -1864 ($ $ (-634 (-1161)) (-1161))) (-15 -3472 ($ $ (-634 (-1161)))) (-15 -1767 ($ $ $)) (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ (-763))) (-15 ** ($ $ (-568))) (-15 (-3056) ($) -3495) (-15 (-1556) ($) -3495) (-15 -4284 ($ $)) (-15 -1854 ((-1143) $)) (-15 -2196 ($ (-1143))) (-15 -2762 ((-1161) (-634 $))) (-15 -1687 ((-1161) (-1161) (-634 $))))) +((-2049 ((|#2| |#2|) 17)) (-1975 ((|#2| |#2|) 13)) (-4216 ((|#2| |#2| (-568) (-568)) 20)) (-2710 ((|#2| |#2|) 15))) +(((-542 |#1| |#2|) (-10 -7 (-15 -1975 (|#2| |#2|)) (-15 -2710 (|#2| |#2|)) (-15 -2049 (|#2| |#2|)) (-15 -4216 (|#2| |#2| (-568) (-568)))) (-13 (-558) (-150)) (-1234 |#1|)) (T -542)) +((-4216 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-568)) (-4 *4 (-13 (-558) (-150))) (-5 *1 (-542 *4 *2)) (-4 *2 (-1234 *4)))) (-2049 (*1 *2 *2) (-12 (-4 *3 (-13 (-558) (-150))) (-5 *1 (-542 *3 *2)) (-4 *2 (-1234 *3)))) (-2710 (*1 *2 *2) (-12 (-4 *3 (-13 (-558) (-150))) (-5 *1 (-542 *3 *2)) (-4 *2 (-1234 *3)))) (-1975 (*1 *2 *2) (-12 (-4 *3 (-13 (-558) (-150))) (-5 *1 (-542 *3 *2)) (-4 *2 (-1234 *3))))) +(-10 -7 (-15 -1975 (|#2| |#2|)) (-15 -2710 (|#2| |#2|)) (-15 -2049 (|#2| |#2|)) (-15 -4216 (|#2| |#2| (-568) (-568)))) +((-4406 (((-634 (-288 (-953 |#2|))) (-634 |#2|) (-634 (-1161))) 32)) (-2142 (((-634 |#2|) (-953 |#1|) |#3|) 53) (((-634 |#2|) (-1157 |#1|) |#3|) 52)) (-3953 (((-634 (-634 |#2|)) (-634 (-953 |#1|)) (-634 (-953 |#1|)) (-634 (-1161)) |#3|) 87))) +(((-543 |#1| |#2| |#3|) (-10 -7 (-15 -2142 ((-634 |#2|) (-1157 |#1|) |#3|)) (-15 -2142 ((-634 |#2|) (-953 |#1|) |#3|)) (-15 -3953 ((-634 (-634 |#2|)) (-634 (-953 |#1|)) (-634 (-953 |#1|)) (-634 (-1161)) |#3|)) (-15 -4406 ((-634 (-288 (-953 |#2|))) (-634 |#2|) (-634 (-1161))))) (-453) (-365) (-13 (-365) (-840))) (T -543)) +((-4406 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *6)) (-5 *4 (-634 (-1161))) (-4 *6 (-365)) (-5 *2 (-634 (-288 (-953 *6)))) (-5 *1 (-543 *5 *6 *7)) (-4 *5 (-453)) (-4 *7 (-13 (-365) (-840))))) (-3953 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-634 (-953 *6))) (-5 *4 (-634 (-1161))) (-4 *6 (-453)) (-5 *2 (-634 (-634 *7))) (-5 *1 (-543 *6 *7 *5)) (-4 *7 (-365)) (-4 *5 (-13 (-365) (-840))))) (-2142 (*1 *2 *3 *4) (-12 (-5 *3 (-953 *5)) (-4 *5 (-453)) (-5 *2 (-634 *6)) (-5 *1 (-543 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-840))))) (-2142 (*1 *2 *3 *4) (-12 (-5 *3 (-1157 *5)) (-4 *5 (-453)) (-5 *2 (-634 *6)) (-5 *1 (-543 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-840)))))) +(-10 -7 (-15 -2142 ((-634 |#2|) (-1157 |#1|) |#3|)) (-15 -2142 ((-634 |#2|) (-953 |#1|) |#3|)) (-15 -3953 ((-634 (-634 |#2|)) (-634 (-953 |#1|)) (-634 (-953 |#1|)) (-634 (-1161)) |#3|)) (-15 -4406 ((-634 (-288 (-953 |#2|))) (-634 |#2|) (-634 (-1161))))) +((-3627 ((|#2| |#2| |#1|) 17)) (-3048 ((|#2| (-634 |#2|)) 26)) (-1336 ((|#2| (-634 |#2|)) 45))) +(((-544 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3048 (|#2| (-634 |#2|))) (-15 -1336 (|#2| (-634 |#2|))) (-15 -3627 (|#2| |#2| |#1|))) (-301) (-1219 |#1|) |#1| (-1 |#1| |#1| (-763))) (T -544)) +((-3627 (*1 *2 *2 *3) (-12 (-4 *3 (-301)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-763))) (-5 *1 (-544 *3 *2 *4 *5)) (-4 *2 (-1219 *3)))) (-1336 (*1 *2 *3) (-12 (-5 *3 (-634 *2)) (-4 *2 (-1219 *4)) (-5 *1 (-544 *4 *2 *5 *6)) (-4 *4 (-301)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-763))))) (-3048 (*1 *2 *3) (-12 (-5 *3 (-634 *2)) (-4 *2 (-1219 *4)) (-5 *1 (-544 *4 *2 *5 *6)) (-4 *4 (-301)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-763)))))) +(-10 -7 (-15 -3048 (|#2| (-634 |#2|))) (-15 -1336 (|#2| (-634 |#2|))) (-15 -3627 (|#2| |#2| |#1|))) +((-3848 (((-420 (-1157 |#4|)) (-1157 |#4|) (-1 (-420 (-1157 |#3|)) (-1157 |#3|))) 79) (((-420 |#4|) |#4| (-1 (-420 (-1157 |#3|)) (-1157 |#3|))) 164))) +(((-545 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3848 ((-420 |#4|) |#4| (-1 (-420 (-1157 |#3|)) (-1157 |#3|)))) (-15 -3848 ((-420 (-1157 |#4|)) (-1157 |#4|) (-1 (-420 (-1157 |#3|)) (-1157 |#3|))))) (-842) (-788) (-13 (-301) (-150)) (-950 |#3| |#2| |#1|)) (T -545)) +((-3848 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-420 (-1157 *7)) (-1157 *7))) (-4 *7 (-13 (-301) (-150))) (-4 *5 (-842)) (-4 *6 (-788)) (-4 *8 (-950 *7 *6 *5)) (-5 *2 (-420 (-1157 *8))) (-5 *1 (-545 *5 *6 *7 *8)) (-5 *3 (-1157 *8)))) (-3848 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-420 (-1157 *7)) (-1157 *7))) (-4 *7 (-13 (-301) (-150))) (-4 *5 (-842)) (-4 *6 (-788)) (-5 *2 (-420 *3)) (-5 *1 (-545 *5 *6 *7 *3)) (-4 *3 (-950 *7 *6 *5))))) +(-10 -7 (-15 -3848 ((-420 |#4|) |#4| (-1 (-420 (-1157 |#3|)) (-1157 |#3|)))) (-15 -3848 ((-420 (-1157 |#4|)) (-1157 |#4|) (-1 (-420 (-1157 |#3|)) (-1157 |#3|))))) +((-2049 ((|#4| |#4|) 73)) (-1975 ((|#4| |#4|) 69)) (-4216 ((|#4| |#4| (-568) (-568)) 75)) (-2710 ((|#4| |#4|) 71))) +(((-546 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1975 (|#4| |#4|)) (-15 -2710 (|#4| |#4|)) (-15 -2049 (|#4| |#4|)) (-15 -4216 (|#4| |#4| (-568) (-568)))) (-13 (-365) (-370) (-609 (-568))) (-1219 |#1|) (-714 |#1| |#2|) (-1234 |#3|)) (T -546)) +((-4216 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-568)) (-4 *4 (-13 (-365) (-370) (-609 *3))) (-4 *5 (-1219 *4)) (-4 *6 (-714 *4 *5)) (-5 *1 (-546 *4 *5 *6 *2)) (-4 *2 (-1234 *6)))) (-2049 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-609 (-568)))) (-4 *4 (-1219 *3)) (-4 *5 (-714 *3 *4)) (-5 *1 (-546 *3 *4 *5 *2)) (-4 *2 (-1234 *5)))) (-2710 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-609 (-568)))) (-4 *4 (-1219 *3)) (-4 *5 (-714 *3 *4)) (-5 *1 (-546 *3 *4 *5 *2)) (-4 *2 (-1234 *5)))) (-1975 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-609 (-568)))) (-4 *4 (-1219 *3)) (-4 *5 (-714 *3 *4)) (-5 *1 (-546 *3 *4 *5 *2)) (-4 *2 (-1234 *5))))) +(-10 -7 (-15 -1975 (|#4| |#4|)) (-15 -2710 (|#4| |#4|)) (-15 -2049 (|#4| |#4|)) (-15 -4216 (|#4| |#4| (-568) (-568)))) +((-2049 ((|#2| |#2|) 27)) (-1975 ((|#2| |#2|) 23)) (-4216 ((|#2| |#2| (-568) (-568)) 29)) (-2710 ((|#2| |#2|) 25))) +(((-547 |#1| |#2|) (-10 -7 (-15 -1975 (|#2| |#2|)) (-15 -2710 (|#2| |#2|)) (-15 -2049 (|#2| |#2|)) (-15 -4216 (|#2| |#2| (-568) (-568)))) (-13 (-365) (-370) (-609 (-568))) (-1234 |#1|)) (T -547)) +((-4216 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-568)) (-4 *4 (-13 (-365) (-370) (-609 *3))) (-5 *1 (-547 *4 *2)) (-4 *2 (-1234 *4)))) (-2049 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-609 (-568)))) (-5 *1 (-547 *3 *2)) (-4 *2 (-1234 *3)))) (-2710 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-609 (-568)))) (-5 *1 (-547 *3 *2)) (-4 *2 (-1234 *3)))) (-1975 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-609 (-568)))) (-5 *1 (-547 *3 *2)) (-4 *2 (-1234 *3))))) +(-10 -7 (-15 -1975 (|#2| |#2|)) (-15 -2710 (|#2| |#2|)) (-15 -2049 (|#2| |#2|)) (-15 -4216 (|#2| |#2| (-568) (-568)))) +((-3112 (((-3 (-568) "failed") |#2| |#1| (-1 (-3 (-568) "failed") |#1|)) 14) (((-3 (-568) "failed") |#2| |#1| (-568) (-1 (-3 (-568) "failed") |#1|)) 13) (((-3 (-568) "failed") |#2| (-568) (-1 (-3 (-568) "failed") |#1|)) 26))) +(((-548 |#1| |#2|) (-10 -7 (-15 -3112 ((-3 (-568) "failed") |#2| (-568) (-1 (-3 (-568) "failed") |#1|))) (-15 -3112 ((-3 (-568) "failed") |#2| |#1| (-568) (-1 (-3 (-568) "failed") |#1|))) (-15 -3112 ((-3 (-568) "failed") |#2| |#1| (-1 (-3 (-568) "failed") |#1|)))) (-1047) (-1219 |#1|)) (T -548)) +((-3112 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-568) "failed") *4)) (-4 *4 (-1047)) (-5 *2 (-568)) (-5 *1 (-548 *4 *3)) (-4 *3 (-1219 *4)))) (-3112 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-568) "failed") *4)) (-4 *4 (-1047)) (-5 *2 (-568)) (-5 *1 (-548 *4 *3)) (-4 *3 (-1219 *4)))) (-3112 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-568) "failed") *5)) (-4 *5 (-1047)) (-5 *2 (-568)) (-5 *1 (-548 *5 *3)) (-4 *3 (-1219 *5))))) +(-10 -7 (-15 -3112 ((-3 (-568) "failed") |#2| (-568) (-1 (-3 (-568) "failed") |#1|))) (-15 -3112 ((-3 (-568) "failed") |#2| |#1| (-568) (-1 (-3 (-568) "failed") |#1|))) (-15 -3112 ((-3 (-568) "failed") |#2| |#1| (-1 (-3 (-568) "failed") |#1|)))) +((-1877 (($ $ $) 78)) (-1678 (((-420 $) $) 46)) (-3666 (((-3 (-568) "failed") $) 58)) (-2854 (((-568) $) 36)) (-1642 (((-3 (-409 (-568)) "failed") $) 73)) (-2688 (((-121) $) 23)) (-2425 (((-409 (-568)) $) 71)) (-3927 (((-121) $) 49)) (-1457 (($ $ $ $) 85)) (-2033 (((-121) $) 15)) (-2413 (($ $ $) 56)) (-4410 (((-884 (-568) $) $ (-887 (-568)) (-884 (-568) $)) 68)) (-3038 (((-3 $ "failed") $) 63)) (-3651 (($ $) 22)) (-2110 (($ $ $) 83)) (-4434 (($) 59)) (-2427 (($ $) 52)) (-3848 (((-420 $) $) 44)) (-3277 (((-121) $) 13)) (-2709 (((-763) $) 27)) (-4189 (($ $ (-763)) NIL) (($ $) 10)) (-3863 (($ $) 16)) (-4278 (((-568) $) NIL) (((-541) $) 35) (((-887 (-568)) $) 39) (((-381) $) 30) (((-215) $) 32)) (-4078 (((-763)) 8)) (-2791 (((-121) $ $) 19)) (-2787 (($ $ $) 54))) +(((-549 |#1|) (-10 -8 (-15 -2110 (|#1| |#1| |#1|)) (-15 -1457 (|#1| |#1| |#1| |#1|)) (-15 -3651 (|#1| |#1|)) (-15 -3863 (|#1| |#1|)) (-15 -1642 ((-3 (-409 (-568)) "failed") |#1|)) (-15 -2425 ((-409 (-568)) |#1|)) (-15 -2688 ((-121) |#1|)) (-15 -1877 (|#1| |#1| |#1|)) (-15 -2791 ((-121) |#1| |#1|)) (-15 -3277 ((-121) |#1|)) (-15 -4434 (|#1|)) (-15 -3038 ((-3 |#1| "failed") |#1|)) (-15 -4278 ((-215) |#1|)) (-15 -4278 ((-381) |#1|)) (-15 -2413 (|#1| |#1| |#1|)) (-15 -2427 (|#1| |#1|)) (-15 -2787 (|#1| |#1| |#1|)) (-15 -4410 ((-884 (-568) |#1|) |#1| (-887 (-568)) (-884 (-568) |#1|))) (-15 -4278 ((-887 (-568)) |#1|)) (-15 -4278 ((-541) |#1|)) (-15 -2854 ((-568) |#1|)) (-15 -3666 ((-3 (-568) "failed") |#1|)) (-15 -4278 ((-568) |#1|)) (-15 -4189 (|#1| |#1|)) (-15 -4189 (|#1| |#1| (-763))) (-15 -2033 ((-121) |#1|)) (-15 -2709 ((-763) |#1|)) (-15 -3848 ((-420 |#1|) |#1|)) (-15 -1678 ((-420 |#1|) |#1|)) (-15 -3927 ((-121) |#1|)) (-15 -4078 ((-763)))) (-550)) (T -549)) +((-4078 (*1 *2) (-12 (-5 *2 (-763)) (-5 *1 (-549 *3)) (-4 *3 (-550))))) +(-10 -8 (-15 -2110 (|#1| |#1| |#1|)) (-15 -1457 (|#1| |#1| |#1| |#1|)) (-15 -3651 (|#1| |#1|)) (-15 -3863 (|#1| |#1|)) (-15 -1642 ((-3 (-409 (-568)) "failed") |#1|)) (-15 -2425 ((-409 (-568)) |#1|)) (-15 -2688 ((-121) |#1|)) (-15 -1877 (|#1| |#1| |#1|)) (-15 -2791 ((-121) |#1| |#1|)) (-15 -3277 ((-121) |#1|)) (-15 -4434 (|#1|)) (-15 -3038 ((-3 |#1| "failed") |#1|)) (-15 -4278 ((-215) |#1|)) (-15 -4278 ((-381) |#1|)) (-15 -2413 (|#1| |#1| |#1|)) (-15 -2427 (|#1| |#1|)) (-15 -2787 (|#1| |#1| |#1|)) (-15 -4410 ((-884 (-568) |#1|) |#1| (-887 (-568)) (-884 (-568) |#1|))) (-15 -4278 ((-887 (-568)) |#1|)) (-15 -4278 ((-541) |#1|)) (-15 -2854 ((-568) |#1|)) (-15 -3666 ((-3 (-568) "failed") |#1|)) (-15 -4278 ((-568) |#1|)) (-15 -4189 (|#1| |#1|)) (-15 -4189 (|#1| |#1| (-763))) (-15 -2033 ((-121) |#1|)) (-15 -2709 ((-763) |#1|)) (-15 -3848 ((-420 |#1|) |#1|)) (-15 -1678 ((-420 |#1|) |#1|)) (-15 -3927 ((-121) |#1|)) (-15 -4078 ((-763)))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) 40)) (-2227 (($ $) 39)) (-1573 (((-121) $) 37)) (-1877 (($ $ $) 82)) (-3134 (((-3 $ "failed") $ $) 18)) (-2690 (($ $ $ $) 70)) (-4305 (($ $) 49)) (-1678 (((-420 $) $) 50)) (-1497 (((-121) $ $) 122)) (-3662 (((-568) $) 111)) (-1870 (($ $ $) 85)) (-2671 (($) 16 T CONST)) (-3666 (((-3 (-568) "failed") $) 103)) (-2854 (((-568) $) 102)) (-2401 (($ $ $) 126)) (-3164 (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) 101) (((-679 (-568)) (-679 $)) 100)) (-2925 (((-3 $ "failed") $) 33)) (-1642 (((-3 (-409 (-568)) "failed") $) 79)) (-2688 (((-121) $) 81)) (-2425 (((-409 (-568)) $) 80)) (-1731 (($) 78) (($ $) 77)) (-2412 (($ $ $) 125)) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) 120)) (-3927 (((-121) $) 51)) (-1457 (($ $ $ $) 68)) (-1283 (($ $ $) 83)) (-2033 (((-121) $) 113)) (-2413 (($ $ $) 94)) (-4410 (((-884 (-568) $) $ (-887 (-568)) (-884 (-568) $)) 97)) (-2735 (((-121) $) 30)) (-1825 (((-121) $) 89)) (-3038 (((-3 $ "failed") $) 91)) (-2245 (((-121) $) 112)) (-3562 (((-3 (-634 $) "failed") (-634 $) $) 129)) (-3326 (($ $ $ $) 69)) (-2521 (($ $ $) 114)) (-3268 (($ $ $) 115)) (-3651 (($ $) 72)) (-3678 (($ $) 86)) (-2495 (($ $ $) 45) (($ (-634 $)) 44)) (-4487 (((-1143) $) 9)) (-2110 (($ $ $) 67)) (-4434 (($) 90 T CONST)) (-3850 (($ $) 74)) (-4022 (((-1108) $) 10) (($ $) 76)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) 43)) (-2721 (($ $ $) 47) (($ (-634 $)) 46)) (-2427 (($ $) 95)) (-3848 (((-420 $) $) 48)) (-4497 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 128) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) 127)) (-2595 (((-3 $ "failed") $ $) 41)) (-2344 (((-3 (-634 $) "failed") (-634 $) $) 121)) (-3277 (((-121) $) 88)) (-2709 (((-763) $) 123)) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) 124)) (-4189 (($ $ (-763)) 108) (($ $) 106)) (-2349 (($ $) 73)) (-3863 (($ $) 75)) (-4278 (((-568) $) 105) (((-541) $) 99) (((-887 (-568)) $) 98) (((-381) $) 93) (((-215) $) 92)) (-2745 (((-850) $) 11) (($ (-568)) 27) (($ $) 42) (($ (-568)) 104)) (-4078 (((-763)) 28)) (-2791 (((-121) $ $) 84)) (-2787 (($ $ $) 96)) (-1461 (($) 87)) (-1826 (((-121) $ $) 38)) (-4419 (($ $ $ $) 71)) (-2897 (($ $) 110)) (-1887 (($ $ (-917)) 25) (($ $ (-763)) 32)) (-3056 (($) 17 T CONST)) (-1556 (($) 29 T CONST)) (-3190 (($ $ (-763)) 109) (($ $) 107)) (-1751 (((-121) $ $) 117)) (-1738 (((-121) $ $) 118)) (-1717 (((-121) $ $) 6)) (-1745 (((-121) $ $) 116)) (-1732 (((-121) $ $) 119)) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 24) (($ $ (-763)) 31)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 23))) +(((-550) (-1275)) (T -550)) +((-1825 (*1 *2 *1) (-12 (-4 *1 (-550)) (-5 *2 (-121)))) (-3277 (*1 *2 *1) (-12 (-4 *1 (-550)) (-5 *2 (-121)))) (-1461 (*1 *1) (-4 *1 (-550))) (-3678 (*1 *1 *1) (-4 *1 (-550))) (-1870 (*1 *1 *1 *1) (-4 *1 (-550))) (-2791 (*1 *2 *1 *1) (-12 (-4 *1 (-550)) (-5 *2 (-121)))) (-1283 (*1 *1 *1 *1) (-4 *1 (-550))) (-1877 (*1 *1 *1 *1) (-4 *1 (-550))) (-2688 (*1 *2 *1) (-12 (-4 *1 (-550)) (-5 *2 (-121)))) (-2425 (*1 *2 *1) (-12 (-4 *1 (-550)) (-5 *2 (-409 (-568))))) (-1642 (*1 *2 *1) (|partial| -12 (-4 *1 (-550)) (-5 *2 (-409 (-568))))) (-1731 (*1 *1) (-4 *1 (-550))) (-1731 (*1 *1 *1) (-4 *1 (-550))) (-4022 (*1 *1 *1) (-4 *1 (-550))) (-3863 (*1 *1 *1) (-4 *1 (-550))) (-3850 (*1 *1 *1) (-4 *1 (-550))) (-2349 (*1 *1 *1) (-4 *1 (-550))) (-3651 (*1 *1 *1) (-4 *1 (-550))) (-4419 (*1 *1 *1 *1 *1) (-4 *1 (-550))) (-2690 (*1 *1 *1 *1 *1) (-4 *1 (-550))) (-3326 (*1 *1 *1 *1 *1) (-4 *1 (-550))) (-1457 (*1 *1 *1 *1 *1) (-4 *1 (-550))) (-2110 (*1 *1 *1 *1) (-4 *1 (-550)))) +(-13 (-1199) (-301) (-815) (-225) (-609 (-568)) (-1037 (-568)) (-630 (-568)) (-609 (-541)) (-609 (-887 (-568))) (-881 (-568)) (-146) (-1021) (-150) (-1136) (-10 -8 (-15 -1825 ((-121) $)) (-15 -3277 ((-121) $)) (-6 -4518) (-15 -1461 ($)) (-15 -3678 ($ $)) (-15 -1870 ($ $ $)) (-15 -2791 ((-121) $ $)) (-15 -1283 ($ $ $)) (-15 -1877 ($ $ $)) (-15 -2688 ((-121) $)) (-15 -2425 ((-409 (-568)) $)) (-15 -1642 ((-3 (-409 (-568)) "failed") $)) (-15 -1731 ($)) (-15 -1731 ($ $)) (-15 -4022 ($ $)) (-15 -3863 ($ $)) (-15 -3850 ($ $)) (-15 -2349 ($ $)) (-15 -3651 ($ $)) (-15 -4419 ($ $ $ $)) (-15 -2690 ($ $ $ $)) (-15 -3326 ($ $ $ $)) (-15 -1457 ($ $ $ $)) (-15 -2110 ($ $ $)) (-6 -4517))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-43 $) . T) ((-105) . T) ((-120 $ $) . T) ((-137) . T) ((-150) . T) ((-608 (-850)) . T) ((-146) . T) ((-172) . T) ((-609 (-215)) . T) ((-609 (-381)) . T) ((-609 (-541)) . T) ((-609 (-568)) . T) ((-609 (-887 (-568))) . T) ((-225) . T) ((-285) . T) ((-301) . T) ((-453) . T) ((-558) . T) ((-637 $) . T) ((-630 (-568)) . T) ((-707 $) . T) ((-716) . T) ((-786) . T) ((-787) . T) ((-789) . T) ((-790) . T) ((-815) . T) ((-840) . T) ((-842) . T) ((-881 (-568)) . T) ((-916) . T) ((-1021) . T) ((-1037 (-568)) . T) ((-1053 $) . T) ((-1047) . T) ((-1054) . T) ((-1102) . T) ((-1090) . T) ((-1136) . T) ((-1199) . T)) +((-2447 (((-121) $ $) NIL (-2198 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-2986 (($) NIL) (($ (-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) NIL)) (-1868 (((-1249) $ |#1| |#1|) NIL (|has| $ (-6 -4520)))) (-2510 (((-121) $ (-763)) NIL)) (-2436 ((|#2| $ |#1| |#2|) NIL)) (-3507 (($ (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519)))) (-2801 (($ (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519)))) (-2674 (((-3 |#2| "failed") |#1| $) NIL)) (-2671 (($) NIL T CONST)) (-3924 (($ $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090))))) (-3405 (($ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) NIL (|has| $ (-6 -4519))) (($ (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519))) (((-3 |#2| "failed") |#1| $) NIL)) (-4328 (($ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (($ (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519)))) (-3092 (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) NIL (|has| $ (-6 -4519))) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519)))) (-3989 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4520)))) (-2602 ((|#2| $ |#1|) NIL)) (-4360 (((-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519))) (((-634 |#2|) $) NIL (|has| $ (-6 -4519)))) (-1737 (((-121) $ (-763)) NIL)) (-1881 ((|#1| $) NIL (|has| |#1| (-842)))) (-1979 (((-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519))) (((-634 |#2|) $) NIL (|has| $ (-6 -4519)))) (-3109 (((-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (((-121) |#2| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#2| (-1090))))) (-2223 ((|#1| $) NIL (|has| |#1| (-842)))) (-3674 (($ (-1 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4520))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4520)))) (-2795 (($ (-1 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2166 (((-121) $ (-763)) NIL)) (-4487 (((-1143) $) NIL (-2198 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-1946 (((-634 |#1|) $) NIL)) (-3548 (((-121) |#1| $) NIL)) (-1890 (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) NIL)) (-4450 (($ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) NIL)) (-4174 (((-634 |#1|) $) NIL)) (-3578 (((-121) |#1| $) NIL)) (-4022 (((-1108) $) NIL (-2198 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-3876 ((|#2| $) NIL (|has| |#1| (-842)))) (-3775 (((-3 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) "failed") (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL)) (-3724 (($ $ |#2|) NIL (|has| $ (-6 -4520)))) (-1315 (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) NIL)) (-1387 (((-121) (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519))) (((-121) (-1 (-121) |#2|) $) NIL (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))))) NIL (-12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (($ $ (-288 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) NIL (-12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (($ $ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) NIL (-12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (($ $ (-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) (-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) NIL (-12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (($ $ (-634 |#2|) (-634 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090)))) (($ $ (-634 (-288 |#2|))) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090))))) (-3171 (((-121) $ $) NIL)) (-4467 (((-121) |#2| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#2| (-1090))))) (-2041 (((-634 |#2|) $) NIL)) (-3084 (((-121) $) NIL)) (-3248 (($) NIL)) (-2779 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2085 (($) NIL) (($ (-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) NIL)) (-4168 (((-763) (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519))) (((-763) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (((-763) |#2| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#2| (-1090)))) (((-763) (-1 (-121) |#2|) $) NIL (|has| $ (-6 -4519)))) (-3863 (($ $) NIL)) (-4278 (((-541) $) NIL (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-609 (-541))))) (-4287 (($ (-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) NIL)) (-2745 (((-850) $) NIL (-2198 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-2367 (($ (-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) NIL)) (-1319 (((-121) (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519))) (((-121) (-1 (-121) |#2|) $) NIL (|has| $ (-6 -4519)))) (-1717 (((-121) $ $) NIL (-2198 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-1697 (((-763) $) NIL (|has| $ (-6 -4519))))) +(((-551 |#1| |#2| |#3|) (-13 (-1172 |#1| |#2|) (-10 -7 (-6 -4519))) (-1090) (-1090) (-13 (-1172 |#1| |#2|) (-10 -7 (-6 -4519)))) (T -551)) +NIL +(-13 (-1172 |#1| |#2|) (-10 -7 (-6 -4519))) +((-2994 (((-585 |#2|) |#2| (-607 |#2|) (-607 |#2|) (-1 (-1157 |#2|) (-1157 |#2|))) 49))) +(((-552 |#1| |#2|) (-10 -7 (-15 -2994 ((-585 |#2|) |#2| (-607 |#2|) (-607 |#2|) (-1 (-1157 |#2|) (-1157 |#2|))))) (-13 (-842) (-558)) (-13 (-27) (-432 |#1|))) (T -552)) +((-2994 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-607 *3)) (-5 *5 (-1 (-1157 *3) (-1157 *3))) (-4 *3 (-13 (-27) (-432 *6))) (-4 *6 (-13 (-842) (-558))) (-5 *2 (-585 *3)) (-5 *1 (-552 *6 *3))))) +(-10 -7 (-15 -2994 ((-585 |#2|) |#2| (-607 |#2|) (-607 |#2|) (-1 (-1157 |#2|) (-1157 |#2|))))) +((-1872 (((-585 |#5|) |#5| (-1 |#3| |#3|)) 195)) (-3914 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 191)) (-1558 (((-585 |#5|) |#5| (-1 |#3| |#3|)) 198))) +(((-553 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1558 ((-585 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1872 ((-585 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3914 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-842) (-558) (-1037 (-568))) (-13 (-27) (-432 |#1|)) (-1219 |#2|) (-1219 (-409 |#3|)) (-340 |#2| |#3| |#4|)) (T -553)) +((-3914 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1219 *5)) (-4 *5 (-13 (-27) (-432 *4))) (-4 *4 (-13 (-842) (-558) (-1037 (-568)))) (-4 *7 (-1219 (-409 *6))) (-5 *1 (-553 *4 *5 *6 *7 *2)) (-4 *2 (-340 *5 *6 *7)))) (-1872 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1219 *6)) (-4 *6 (-13 (-27) (-432 *5))) (-4 *5 (-13 (-842) (-558) (-1037 (-568)))) (-4 *8 (-1219 (-409 *7))) (-5 *2 (-585 *3)) (-5 *1 (-553 *5 *6 *7 *8 *3)) (-4 *3 (-340 *6 *7 *8)))) (-1558 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1219 *6)) (-4 *6 (-13 (-27) (-432 *5))) (-4 *5 (-13 (-842) (-558) (-1037 (-568)))) (-4 *8 (-1219 (-409 *7))) (-5 *2 (-585 *3)) (-5 *1 (-553 *5 *6 *7 *8 *3)) (-4 *3 (-340 *6 *7 *8))))) +(-10 -7 (-15 -1558 ((-585 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1872 ((-585 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3914 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) +((-3466 (((-121) (-568) (-568)) 10)) (-3572 (((-568) (-568)) 7)) (-3123 (((-568) (-568) (-568)) 8))) +(((-554) (-10 -7 (-15 -3572 ((-568) (-568))) (-15 -3123 ((-568) (-568) (-568))) (-15 -3466 ((-121) (-568) (-568))))) (T -554)) +((-3466 (*1 *2 *3 *3) (-12 (-5 *3 (-568)) (-5 *2 (-121)) (-5 *1 (-554)))) (-3123 (*1 *2 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-554)))) (-3572 (*1 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-554))))) +(-10 -7 (-15 -3572 ((-568) (-568))) (-15 -3123 ((-568) (-568) (-568))) (-15 -3466 ((-121) (-568) (-568)))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-3877 ((|#1| $) 59)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) 40)) (-2227 (($ $) 39)) (-1573 (((-121) $) 37)) (-1982 (($ $) 89)) (-1933 (($ $) 72)) (-1462 ((|#1| $) 60)) (-3134 (((-3 $ "failed") $ $) 18)) (-1902 (($ $) 71)) (-1974 (($ $) 88)) (-2786 (($ $) 73)) (-1990 (($ $) 87)) (-1941 (($ $) 74)) (-2671 (($) 16 T CONST)) (-3666 (((-3 (-568) "failed") $) 67)) (-2854 (((-568) $) 66)) (-2925 (((-3 $ "failed") $) 33)) (-3867 (($ |#1| |#1|) 64)) (-2033 (((-121) $) 58)) (-1897 (($) 99)) (-2735 (((-121) $) 30)) (-4044 (($ $ (-568)) 70)) (-2245 (((-121) $) 57)) (-2521 (($ $ $) 105)) (-3268 (($ $ $) 104)) (-4416 (($ $) 96)) (-2495 (($ $ $) 45) (($ (-634 $)) 44)) (-4487 (((-1143) $) 9)) (-2668 (($ |#1| |#1|) 65) (($ |#1|) 63) (($ (-409 (-568))) 62)) (-3582 ((|#1| $) 61)) (-4022 (((-1108) $) 10)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) 43)) (-2721 (($ $ $) 47) (($ (-634 $)) 46)) (-2595 (((-3 $ "failed") $ $) 41)) (-1892 (($ $) 97)) (-1994 (($ $) 86)) (-1945 (($ $) 75)) (-1986 (($ $) 85)) (-1937 (($ $) 76)) (-1978 (($ $) 84)) (-2790 (($ $) 77)) (-1639 (((-121) $ |#1|) 56)) (-2745 (((-850) $) 11) (($ (-568)) 27) (($ $) 42) (($ (-568)) 68)) (-4078 (((-763)) 28)) (-2006 (($ $) 95)) (-1958 (($ $) 83)) (-1826 (((-121) $ $) 38)) (-1998 (($ $) 94)) (-1949 (($ $) 82)) (-2014 (($ $) 93)) (-1966 (($ $) 81)) (-4023 (($ $) 92)) (-1970 (($ $) 80)) (-2010 (($ $) 91)) (-1962 (($ $) 79)) (-2002 (($ $) 90)) (-1953 (($ $) 78)) (-1887 (($ $ (-917)) 25) (($ $ (-763)) 32)) (-3056 (($) 17 T CONST)) (-1556 (($) 29 T CONST)) (-1751 (((-121) $ $) 102)) (-1738 (((-121) $ $) 101)) (-1717 (((-121) $ $) 6)) (-1745 (((-121) $ $) 103)) (-1732 (((-121) $ $) 100)) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 24) (($ $ (-763)) 31) (($ $ $) 98) (($ $ (-409 (-568))) 69)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 23))) +(((-555 |#1|) (-1275) (-13 (-406) (-1181))) (T -555)) +((-2668 (*1 *1 *2 *2) (-12 (-4 *1 (-555 *2)) (-4 *2 (-13 (-406) (-1181))))) (-3867 (*1 *1 *2 *2) (-12 (-4 *1 (-555 *2)) (-4 *2 (-13 (-406) (-1181))))) (-2668 (*1 *1 *2) (-12 (-4 *1 (-555 *2)) (-4 *2 (-13 (-406) (-1181))))) (-2668 (*1 *1 *2) (-12 (-5 *2 (-409 (-568))) (-4 *1 (-555 *3)) (-4 *3 (-13 (-406) (-1181))))) (-3582 (*1 *2 *1) (-12 (-4 *1 (-555 *2)) (-4 *2 (-13 (-406) (-1181))))) (-1462 (*1 *2 *1) (-12 (-4 *1 (-555 *2)) (-4 *2 (-13 (-406) (-1181))))) (-3877 (*1 *2 *1) (-12 (-4 *1 (-555 *2)) (-4 *2 (-13 (-406) (-1181))))) (-2033 (*1 *2 *1) (-12 (-4 *1 (-555 *3)) (-4 *3 (-13 (-406) (-1181))) (-5 *2 (-121)))) (-2245 (*1 *2 *1) (-12 (-4 *1 (-555 *3)) (-4 *3 (-13 (-406) (-1181))) (-5 *2 (-121)))) (-1639 (*1 *2 *1 *3) (-12 (-4 *1 (-555 *3)) (-4 *3 (-13 (-406) (-1181))) (-5 *2 (-121))))) +(-13 (-453) (-842) (-1181) (-1002) (-1037 (-568)) (-10 -8 (-6 -3996) (-15 -2668 ($ |t#1| |t#1|)) (-15 -3867 ($ |t#1| |t#1|)) (-15 -2668 ($ |t#1|)) (-15 -2668 ($ (-409 (-568)))) (-15 -3582 (|t#1| $)) (-15 -1462 (|t#1| $)) (-15 -3877 (|t#1| $)) (-15 -2033 ((-121) $)) (-15 -2245 ((-121) $)) (-15 -1639 ((-121) $ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-43 $) . T) ((-40) . T) ((-98) . T) ((-105) . T) ((-120 $ $) . T) ((-137) . T) ((-608 (-850)) . T) ((-172) . T) ((-279) . T) ((-285) . T) ((-453) . T) ((-502) . T) ((-558) . T) ((-637 $) . T) ((-707 $) . T) ((-716) . T) ((-842) . T) ((-1002) . T) ((-1037 (-568)) . T) ((-1053 $) . T) ((-1047) . T) ((-1054) . T) ((-1102) . T) ((-1090) . T) ((-1181) . T) ((-1184) . T)) +((-1375 (((-1249) (-917) |#3| (-634 |#5|)) 55)) (-2411 ((|#8| |#3| |#3| (-634 |#10|) (-634 |#5|)) 52))) +(((-556 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10| |#11|) (-10 -7 (-15 -2411 (|#8| |#3| |#3| (-634 |#10|) (-634 |#5|))) (-15 -1375 ((-1249) (-917) |#3| (-634 |#5|)))) (-365) (-634 (-1161)) (-950 |#1| |#4| (-852 |#2|)) (-230 (-1697 |#2|) (-763)) (-971 |#1|) (-641 |#1|) (-920 |#1| |#6|) (-235 |#7|) (-536 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#11|) (-258 |#9|) (-117)) (T -556)) +((-1375 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-917)) (-5 *5 (-634 *9)) (-4 *9 (-971 *6)) (-4 *6 (-365)) (-14 *7 (-634 (-1161))) (-4 *4 (-950 *6 *8 (-852 *7))) (-4 *8 (-230 (-1697 *7) (-763))) (-4 *10 (-641 *6)) (-4 *11 (-920 *6 *10)) (-4 *12 (-235 *11)) (-4 *13 (-536 *6 *7 *4 *8 *9 *10 *11 *12 *15)) (-4 *15 (-117)) (-5 *2 (-1249)) (-5 *1 (-556 *6 *7 *4 *8 *9 *10 *11 *12 *13 *14 *15)) (-4 *14 (-258 *13)))) (-2411 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-634 *13)) (-5 *5 (-634 *9)) (-4 *9 (-971 *6)) (-4 *13 (-258 *12)) (-4 *6 (-365)) (-4 *12 (-536 *6 *7 *3 *8 *9 *10 *11 *2 *14)) (-4 *14 (-117)) (-14 *7 (-634 (-1161))) (-4 *3 (-950 *6 *8 (-852 *7))) (-4 *8 (-230 (-1697 *7) (-763))) (-4 *10 (-641 *6)) (-4 *11 (-920 *6 *10)) (-4 *2 (-235 *11)) (-5 *1 (-556 *6 *7 *3 *8 *9 *10 *11 *2 *12 *13 *14))))) +(-10 -7 (-15 -2411 (|#8| |#3| |#3| (-634 |#10|) (-634 |#5|))) (-15 -1375 ((-1249) (-917) |#3| (-634 |#5|)))) +((-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) 9)) (-2227 (($ $) 11)) (-1573 (((-121) $) 18)) (-2925 (((-3 $ "failed") $) 16)) (-1826 (((-121) $ $) 20))) +(((-557 |#1|) (-10 -8 (-15 -1573 ((-121) |#1|)) (-15 -1826 ((-121) |#1| |#1|)) (-15 -2227 (|#1| |#1|)) (-15 -3712 ((-2 (|:| -2295 |#1|) (|:| -4506 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2925 ((-3 |#1| "failed") |#1|))) (-558)) (T -557)) +NIL +(-10 -8 (-15 -1573 ((-121) |#1|)) (-15 -1826 ((-121) |#1| |#1|)) (-15 -2227 (|#1| |#1|)) (-15 -3712 ((-2 (|:| -2295 |#1|) (|:| -4506 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2925 ((-3 |#1| "failed") |#1|))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) 40)) (-2227 (($ $) 39)) (-1573 (((-121) $) 37)) (-3134 (((-3 $ "failed") $ $) 18)) (-2671 (($) 16 T CONST)) (-2925 (((-3 $ "failed") $) 33)) (-2735 (((-121) $) 30)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-2595 (((-3 $ "failed") $ $) 41)) (-2745 (((-850) $) 11) (($ (-568)) 27) (($ $) 42)) (-4078 (((-763)) 28)) (-1826 (((-121) $ $) 38)) (-1887 (($ $ (-917)) 25) (($ $ (-763)) 32)) (-3056 (($) 17 T CONST)) (-1556 (($) 29 T CONST)) (-1717 (((-121) $ $) 6)) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 24) (($ $ (-763)) 31)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 23))) +(((-558) (-1275)) (T -558)) +((-2595 (*1 *1 *1 *1) (|partial| -4 *1 (-558))) (-3712 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2295 *1) (|:| -4506 *1) (|:| |associate| *1))) (-4 *1 (-558)))) (-2227 (*1 *1 *1) (-4 *1 (-558))) (-1826 (*1 *2 *1 *1) (-12 (-4 *1 (-558)) (-5 *2 (-121)))) (-1573 (*1 *2 *1) (-12 (-4 *1 (-558)) (-5 *2 (-121))))) +(-13 (-172) (-43 $) (-285) (-10 -8 (-15 -2595 ((-3 $ "failed") $ $)) (-15 -3712 ((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $)) (-15 -2227 ($ $)) (-15 -1826 ((-121) $ $)) (-15 -1573 ((-121) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-43 $) . T) ((-105) . T) ((-120 $ $) . T) ((-137) . T) ((-608 (-850)) . T) ((-172) . T) ((-285) . T) ((-637 $) . T) ((-707 $) . T) ((-716) . T) ((-1053 $) . T) ((-1047) . T) ((-1054) . T) ((-1102) . T) ((-1090) . T)) +((-2611 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-634 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1161) (-634 |#2|)) 35)) (-1908 (((-585 |#2|) |#2| (-1161)) 58)) (-2880 (((-3 |#2| "failed") |#2| (-1161)) 147)) (-1348 (((-3 (-2 (|:| -1924 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1161) (-607 |#2|) (-634 (-607 |#2|))) 149)) (-1913 (((-3 (-2 (|:| -1924 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1161) |#2|) 38))) +(((-559 |#1| |#2|) (-10 -7 (-15 -1913 ((-3 (-2 (|:| -1924 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1161) |#2|)) (-15 -2611 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-634 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1161) (-634 |#2|))) (-15 -2880 ((-3 |#2| "failed") |#2| (-1161))) (-15 -1908 ((-585 |#2|) |#2| (-1161))) (-15 -1348 ((-3 (-2 (|:| -1924 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1161) (-607 |#2|) (-634 (-607 |#2|))))) (-13 (-453) (-842) (-150) (-1037 (-568)) (-630 (-568))) (-13 (-27) (-1181) (-432 |#1|))) (T -559)) +((-1348 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1161)) (-5 *6 (-634 (-607 *3))) (-5 *5 (-607 *3)) (-4 *3 (-13 (-27) (-1181) (-432 *7))) (-4 *7 (-13 (-453) (-842) (-150) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-2 (|:| -1924 *3) (|:| |coeff| *3))) (-5 *1 (-559 *7 *3)))) (-1908 (*1 *2 *3 *4) (-12 (-5 *4 (-1161)) (-4 *5 (-13 (-453) (-842) (-150) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-585 *3)) (-5 *1 (-559 *5 *3)) (-4 *3 (-13 (-27) (-1181) (-432 *5))))) (-2880 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1161)) (-4 *4 (-13 (-453) (-842) (-150) (-1037 (-568)) (-630 (-568)))) (-5 *1 (-559 *4 *2)) (-4 *2 (-13 (-27) (-1181) (-432 *4))))) (-2611 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1161)) (-5 *5 (-634 *3)) (-4 *3 (-13 (-27) (-1181) (-432 *6))) (-4 *6 (-13 (-453) (-842) (-150) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-634 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-559 *6 *3)))) (-1913 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1161)) (-4 *5 (-13 (-453) (-842) (-150) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-2 (|:| -1924 *3) (|:| |coeff| *3))) (-5 *1 (-559 *5 *3)) (-4 *3 (-13 (-27) (-1181) (-432 *5)))))) +(-10 -7 (-15 -1913 ((-3 (-2 (|:| -1924 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1161) |#2|)) (-15 -2611 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-634 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1161) (-634 |#2|))) (-15 -2880 ((-3 |#2| "failed") |#2| (-1161))) (-15 -1908 ((-585 |#2|) |#2| (-1161))) (-15 -1348 ((-3 (-2 (|:| -1924 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1161) (-607 |#2|) (-634 (-607 |#2|))))) +((-2715 (((-634 |#5|) (-634 |#5|)) 41))) +(((-560 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2715 ((-634 |#5|) (-634 |#5|)))) (-365) (-634 (-1161)) (-788) (-842) (-950 |#1| |#3| |#4|)) (T -560)) +((-2715 (*1 *2 *2) (-12 (-5 *2 (-634 *7)) (-4 *7 (-950 *3 *5 *6)) (-4 *3 (-365)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *1 (-560 *3 *4 *5 *6 *7)) (-14 *4 (-634 (-1161)))))) +(-10 -7 (-15 -2715 ((-634 |#5|) (-634 |#5|)))) +((-1678 (((-420 |#1|) |#1|) 18)) (-3848 (((-420 |#1|) |#1|) 32)) (-2760 (((-3 |#1| "failed") |#1|) 43)) (-1781 (((-420 |#1|) |#1|) 49))) +(((-561 |#1|) (-10 -7 (-15 -3848 ((-420 |#1|) |#1|)) (-15 -1678 ((-420 |#1|) |#1|)) (-15 -1781 ((-420 |#1|) |#1|)) (-15 -2760 ((-3 |#1| "failed") |#1|))) (-550)) (T -561)) +((-2760 (*1 *2 *2) (|partial| -12 (-5 *1 (-561 *2)) (-4 *2 (-550)))) (-1781 (*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-561 *3)) (-4 *3 (-550)))) (-1678 (*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-561 *3)) (-4 *3 (-550)))) (-3848 (*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-561 *3)) (-4 *3 (-550))))) +(-10 -7 (-15 -3848 ((-420 |#1|) |#1|)) (-15 -1678 ((-420 |#1|) |#1|)) (-15 -1781 ((-420 |#1|) |#1|)) (-15 -2760 ((-3 |#1| "failed") |#1|))) +((-2525 (((-634 |#3|) |#8| (-634 |#3|)) 45)) (-2664 (((-634 |#3|) |#8| (-763) |#3| (-634 |#3|)) 44)) (-2168 (((-634 (-1244 |#1|)) |#8| (-634 |#3|)) 26)) (-4388 (((-634 (-1244 |#1|)) |#8| (-634 |#3|)) 27))) +(((-562 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4388 ((-634 (-1244 |#1|)) |#8| (-634 |#3|))) (-15 -2168 ((-634 (-1244 |#1|)) |#8| (-634 |#3|))) (-15 -2525 ((-634 |#3|) |#8| (-634 |#3|))) (-15 -2664 ((-634 |#3|) |#8| (-763) |#3| (-634 |#3|)))) (-365) (-634 (-1161)) (-950 |#1| |#4| (-852 |#2|)) (-230 (-1697 |#2|) (-763)) (-971 |#1|) (-641 |#1|) (-920 |#1| |#6|) (-235 |#7|)) (T -562)) +((-2664 (*1 *2 *3 *4 *5 *2) (-12 (-5 *2 (-634 *5)) (-4 *5 (-950 *6 *8 (-852 *7))) (-4 *8 (-230 (-1697 *7) *4)) (-5 *4 (-763)) (-4 *6 (-365)) (-14 *7 (-634 (-1161))) (-4 *10 (-641 *6)) (-4 *11 (-920 *6 *10)) (-5 *1 (-562 *6 *7 *5 *8 *9 *10 *11 *3)) (-4 *9 (-971 *6)) (-4 *3 (-235 *11)))) (-2525 (*1 *2 *3 *2) (-12 (-5 *2 (-634 *6)) (-4 *6 (-950 *4 *7 (-852 *5))) (-4 *7 (-230 (-1697 *5) (-763))) (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *9 (-641 *4)) (-4 *10 (-920 *4 *9)) (-5 *1 (-562 *4 *5 *6 *7 *8 *9 *10 *3)) (-4 *8 (-971 *4)) (-4 *3 (-235 *10)))) (-2168 (*1 *2 *3 *4) (-12 (-5 *4 (-634 *7)) (-4 *7 (-950 *5 *8 (-852 *6))) (-4 *8 (-230 (-1697 *6) (-763))) (-4 *5 (-365)) (-14 *6 (-634 (-1161))) (-4 *10 (-641 *5)) (-4 *11 (-920 *5 *10)) (-5 *2 (-634 (-1244 *5))) (-5 *1 (-562 *5 *6 *7 *8 *9 *10 *11 *3)) (-4 *9 (-971 *5)) (-4 *3 (-235 *11)))) (-4388 (*1 *2 *3 *4) (-12 (-5 *4 (-634 *7)) (-4 *7 (-950 *5 *8 (-852 *6))) (-4 *8 (-230 (-1697 *6) (-763))) (-4 *5 (-365)) (-14 *6 (-634 (-1161))) (-4 *10 (-641 *5)) (-4 *11 (-920 *5 *10)) (-5 *2 (-634 (-1244 *5))) (-5 *1 (-562 *5 *6 *7 *8 *9 *10 *11 *3)) (-4 *9 (-971 *5)) (-4 *3 (-235 *11))))) +(-10 -7 (-15 -4388 ((-634 (-1244 |#1|)) |#8| (-634 |#3|))) (-15 -2168 ((-634 (-1244 |#1|)) |#8| (-634 |#3|))) (-15 -2525 ((-634 |#3|) |#8| (-634 |#3|))) (-15 -2664 ((-634 |#3|) |#8| (-763) |#3| (-634 |#3|)))) +((-3365 (($) 9)) (-1675 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1141 (-215))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1338 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) 29)) (-1946 (((-634 (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) $) 26)) (-4450 (($ (-2 (|:| -3649 (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (|:| -4083 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1141 (-215))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1338 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 23)) (-2803 (($ (-634 (-2 (|:| -3649 (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (|:| -4083 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1141 (-215))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1338 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 21)) (-4083 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1141 (-215))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1338 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) 33)) (-2041 (((-634 (-2 (|:| -3649 (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (|:| -4083 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1141 (-215))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1338 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 31)) (-1470 (((-1249)) 12))) +(((-563) (-10 -8 (-15 -3365 ($)) (-15 -1470 ((-1249))) (-15 -1946 ((-634 (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) $)) (-15 -2803 ($ (-634 (-2 (|:| -3649 (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (|:| -4083 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1141 (-215))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1338 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -4450 ($ (-2 (|:| -3649 (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (|:| -4083 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1141 (-215))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1338 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1675 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1141 (-215))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1338 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215))))) (-15 -2041 ((-634 (-2 (|:| -3649 (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (|:| -4083 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1141 (-215))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1338 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -4083 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1141 (-215))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1338 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215))))))) (T -563)) +((-4083 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1141 (-215))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1338 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-563)))) (-2041 (*1 *2 *1) (-12 (-5 *2 (-634 (-2 (|:| -3649 (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (|:| -4083 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1141 (-215))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1338 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-563)))) (-1675 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1141 (-215))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1338 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-563)))) (-4450 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3649 (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (|:| -4083 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1141 (-215))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1338 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-563)))) (-2803 (*1 *1 *2) (-12 (-5 *2 (-634 (-2 (|:| -3649 (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (|:| -4083 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1141 (-215))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1338 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-563)))) (-1946 (*1 *2 *1) (-12 (-5 *2 (-634 (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215))))) (-5 *1 (-563)))) (-1470 (*1 *2) (-12 (-5 *2 (-1249)) (-5 *1 (-563)))) (-3365 (*1 *1) (-5 *1 (-563)))) +(-10 -8 (-15 -3365 ($)) (-15 -1470 ((-1249))) (-15 -1946 ((-634 (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) $)) (-15 -2803 ($ (-634 (-2 (|:| -3649 (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (|:| -4083 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1141 (-215))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1338 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -4450 ($ (-2 (|:| -3649 (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (|:| -4083 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1141 (-215))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1338 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1675 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1141 (-215))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1338 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215))))) (-15 -2041 ((-634 (-2 (|:| -3649 (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (|:| -4083 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1141 (-215))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1338 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -4083 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1141 (-215))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1338 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))))) +((-3839 (((-1157 (-409 (-1157 |#2|))) |#2| (-607 |#2|) (-607 |#2|) (-1157 |#2|)) 28)) (-2959 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-634 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-607 |#2|) (-607 |#2|) (-634 |#2|) (-607 |#2|) |#2| (-409 (-1157 |#2|))) 96) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-634 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-607 |#2|) (-607 |#2|) (-634 |#2|) |#2| (-1157 |#2|)) 106)) (-2195 (((-585 |#2|) |#2| (-607 |#2|) (-607 |#2|) (-607 |#2|) |#2| (-409 (-1157 |#2|))) 78) (((-585 |#2|) |#2| (-607 |#2|) (-607 |#2|) |#2| (-1157 |#2|)) 50)) (-2968 (((-3 (-2 (|:| -1924 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-607 |#2|) (-607 |#2|) |#2| (-607 |#2|) |#2| (-409 (-1157 |#2|))) 85) (((-3 (-2 (|:| -1924 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-607 |#2|) (-607 |#2|) |#2| |#2| (-1157 |#2|)) 105)) (-2443 (((-3 |#2| "failed") |#2| |#2| (-607 |#2|) (-607 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1161)) (-607 |#2|) |#2| (-409 (-1157 |#2|))) 101) (((-3 |#2| "failed") |#2| |#2| (-607 |#2|) (-607 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1161)) |#2| (-1157 |#2|)) 107)) (-2071 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3746 (-634 |#2|))) |#3| |#2| (-607 |#2|) (-607 |#2|) (-607 |#2|) |#2| (-409 (-1157 |#2|))) 124 (|has| |#3| (-646 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3746 (-634 |#2|))) |#3| |#2| (-607 |#2|) (-607 |#2|) |#2| (-1157 |#2|)) 123 (|has| |#3| (-646 |#2|)))) (-2051 ((|#2| (-1157 (-409 (-1157 |#2|))) (-607 |#2|) |#2|) 48)) (-3085 (((-1157 (-409 (-1157 |#2|))) (-1157 |#2|) (-607 |#2|)) 27))) +(((-564 |#1| |#2| |#3|) (-10 -7 (-15 -2195 ((-585 |#2|) |#2| (-607 |#2|) (-607 |#2|) |#2| (-1157 |#2|))) (-15 -2195 ((-585 |#2|) |#2| (-607 |#2|) (-607 |#2|) (-607 |#2|) |#2| (-409 (-1157 |#2|)))) (-15 -2968 ((-3 (-2 (|:| -1924 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-607 |#2|) (-607 |#2|) |#2| |#2| (-1157 |#2|))) (-15 -2968 ((-3 (-2 (|:| -1924 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-607 |#2|) (-607 |#2|) |#2| (-607 |#2|) |#2| (-409 (-1157 |#2|)))) (-15 -2959 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-634 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-607 |#2|) (-607 |#2|) (-634 |#2|) |#2| (-1157 |#2|))) (-15 -2959 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-634 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-607 |#2|) (-607 |#2|) (-634 |#2|) (-607 |#2|) |#2| (-409 (-1157 |#2|)))) (-15 -2443 ((-3 |#2| "failed") |#2| |#2| (-607 |#2|) (-607 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1161)) |#2| (-1157 |#2|))) (-15 -2443 ((-3 |#2| "failed") |#2| |#2| (-607 |#2|) (-607 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1161)) (-607 |#2|) |#2| (-409 (-1157 |#2|)))) (-15 -3839 ((-1157 (-409 (-1157 |#2|))) |#2| (-607 |#2|) (-607 |#2|) (-1157 |#2|))) (-15 -2051 (|#2| (-1157 (-409 (-1157 |#2|))) (-607 |#2|) |#2|)) (-15 -3085 ((-1157 (-409 (-1157 |#2|))) (-1157 |#2|) (-607 |#2|))) (IF (|has| |#3| (-646 |#2|)) (PROGN (-15 -2071 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3746 (-634 |#2|))) |#3| |#2| (-607 |#2|) (-607 |#2|) |#2| (-1157 |#2|))) (-15 -2071 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3746 (-634 |#2|))) |#3| |#2| (-607 |#2|) (-607 |#2|) (-607 |#2|) |#2| (-409 (-1157 |#2|))))) |noBranch|)) (-13 (-453) (-1037 (-568)) (-842) (-150) (-630 (-568))) (-13 (-432 |#1|) (-27) (-1181)) (-1090)) (T -564)) +((-2071 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-607 *4)) (-5 *6 (-409 (-1157 *4))) (-4 *4 (-13 (-432 *7) (-27) (-1181))) (-4 *7 (-13 (-453) (-1037 (-568)) (-842) (-150) (-630 (-568)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3746 (-634 *4)))) (-5 *1 (-564 *7 *4 *3)) (-4 *3 (-646 *4)) (-4 *3 (-1090)))) (-2071 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-607 *4)) (-5 *6 (-1157 *4)) (-4 *4 (-13 (-432 *7) (-27) (-1181))) (-4 *7 (-13 (-453) (-1037 (-568)) (-842) (-150) (-630 (-568)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3746 (-634 *4)))) (-5 *1 (-564 *7 *4 *3)) (-4 *3 (-646 *4)) (-4 *3 (-1090)))) (-3085 (*1 *2 *3 *4) (-12 (-5 *4 (-607 *6)) (-4 *6 (-13 (-432 *5) (-27) (-1181))) (-4 *5 (-13 (-453) (-1037 (-568)) (-842) (-150) (-630 (-568)))) (-5 *2 (-1157 (-409 (-1157 *6)))) (-5 *1 (-564 *5 *6 *7)) (-5 *3 (-1157 *6)) (-4 *7 (-1090)))) (-2051 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1157 (-409 (-1157 *2)))) (-5 *4 (-607 *2)) (-4 *2 (-13 (-432 *5) (-27) (-1181))) (-4 *5 (-13 (-453) (-1037 (-568)) (-842) (-150) (-630 (-568)))) (-5 *1 (-564 *5 *2 *6)) (-4 *6 (-1090)))) (-3839 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-607 *3)) (-4 *3 (-13 (-432 *6) (-27) (-1181))) (-4 *6 (-13 (-453) (-1037 (-568)) (-842) (-150) (-630 (-568)))) (-5 *2 (-1157 (-409 (-1157 *3)))) (-5 *1 (-564 *6 *3 *7)) (-5 *5 (-1157 *3)) (-4 *7 (-1090)))) (-2443 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-607 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1161))) (-5 *5 (-409 (-1157 *2))) (-4 *2 (-13 (-432 *6) (-27) (-1181))) (-4 *6 (-13 (-453) (-1037 (-568)) (-842) (-150) (-630 (-568)))) (-5 *1 (-564 *6 *2 *7)) (-4 *7 (-1090)))) (-2443 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-607 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1161))) (-5 *5 (-1157 *2)) (-4 *2 (-13 (-432 *6) (-27) (-1181))) (-4 *6 (-13 (-453) (-1037 (-568)) (-842) (-150) (-630 (-568)))) (-5 *1 (-564 *6 *2 *7)) (-4 *7 (-1090)))) (-2959 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-607 *3)) (-5 *5 (-634 *3)) (-5 *6 (-409 (-1157 *3))) (-4 *3 (-13 (-432 *7) (-27) (-1181))) (-4 *7 (-13 (-453) (-1037 (-568)) (-842) (-150) (-630 (-568)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-634 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-564 *7 *3 *8)) (-4 *8 (-1090)))) (-2959 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-607 *3)) (-5 *5 (-634 *3)) (-5 *6 (-1157 *3)) (-4 *3 (-13 (-432 *7) (-27) (-1181))) (-4 *7 (-13 (-453) (-1037 (-568)) (-842) (-150) (-630 (-568)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-634 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-564 *7 *3 *8)) (-4 *8 (-1090)))) (-2968 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-607 *3)) (-5 *5 (-409 (-1157 *3))) (-4 *3 (-13 (-432 *6) (-27) (-1181))) (-4 *6 (-13 (-453) (-1037 (-568)) (-842) (-150) (-630 (-568)))) (-5 *2 (-2 (|:| -1924 *3) (|:| |coeff| *3))) (-5 *1 (-564 *6 *3 *7)) (-4 *7 (-1090)))) (-2968 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-607 *3)) (-5 *5 (-1157 *3)) (-4 *3 (-13 (-432 *6) (-27) (-1181))) (-4 *6 (-13 (-453) (-1037 (-568)) (-842) (-150) (-630 (-568)))) (-5 *2 (-2 (|:| -1924 *3) (|:| |coeff| *3))) (-5 *1 (-564 *6 *3 *7)) (-4 *7 (-1090)))) (-2195 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-607 *3)) (-5 *5 (-409 (-1157 *3))) (-4 *3 (-13 (-432 *6) (-27) (-1181))) (-4 *6 (-13 (-453) (-1037 (-568)) (-842) (-150) (-630 (-568)))) (-5 *2 (-585 *3)) (-5 *1 (-564 *6 *3 *7)) (-4 *7 (-1090)))) (-2195 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-607 *3)) (-5 *5 (-1157 *3)) (-4 *3 (-13 (-432 *6) (-27) (-1181))) (-4 *6 (-13 (-453) (-1037 (-568)) (-842) (-150) (-630 (-568)))) (-5 *2 (-585 *3)) (-5 *1 (-564 *6 *3 *7)) (-4 *7 (-1090))))) +(-10 -7 (-15 -2195 ((-585 |#2|) |#2| (-607 |#2|) (-607 |#2|) |#2| (-1157 |#2|))) (-15 -2195 ((-585 |#2|) |#2| (-607 |#2|) (-607 |#2|) (-607 |#2|) |#2| (-409 (-1157 |#2|)))) (-15 -2968 ((-3 (-2 (|:| -1924 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-607 |#2|) (-607 |#2|) |#2| |#2| (-1157 |#2|))) (-15 -2968 ((-3 (-2 (|:| -1924 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-607 |#2|) (-607 |#2|) |#2| (-607 |#2|) |#2| (-409 (-1157 |#2|)))) (-15 -2959 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-634 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-607 |#2|) (-607 |#2|) (-634 |#2|) |#2| (-1157 |#2|))) (-15 -2959 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-634 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-607 |#2|) (-607 |#2|) (-634 |#2|) (-607 |#2|) |#2| (-409 (-1157 |#2|)))) (-15 -2443 ((-3 |#2| "failed") |#2| |#2| (-607 |#2|) (-607 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1161)) |#2| (-1157 |#2|))) (-15 -2443 ((-3 |#2| "failed") |#2| |#2| (-607 |#2|) (-607 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1161)) (-607 |#2|) |#2| (-409 (-1157 |#2|)))) (-15 -3839 ((-1157 (-409 (-1157 |#2|))) |#2| (-607 |#2|) (-607 |#2|) (-1157 |#2|))) (-15 -2051 (|#2| (-1157 (-409 (-1157 |#2|))) (-607 |#2|) |#2|)) (-15 -3085 ((-1157 (-409 (-1157 |#2|))) (-1157 |#2|) (-607 |#2|))) (IF (|has| |#3| (-646 |#2|)) (PROGN (-15 -2071 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3746 (-634 |#2|))) |#3| |#2| (-607 |#2|) (-607 |#2|) |#2| (-1157 |#2|))) (-15 -2071 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3746 (-634 |#2|))) |#3| |#2| (-607 |#2|) (-607 |#2|) (-607 |#2|) |#2| (-409 (-1157 |#2|))))) |noBranch|)) +((-1753 (((-568) (-568) (-763)) 65)) (-1624 (((-568) (-568)) 64)) (-3585 (((-568) (-568)) 63)) (-1964 (((-568) (-568)) 68)) (-1291 (((-568) (-568) (-568)) 48)) (-4479 (((-568) (-568) (-568)) 45)) (-3720 (((-409 (-568)) (-568)) 20)) (-2635 (((-568) (-568)) 21)) (-3247 (((-568) (-568)) 57)) (-3982 (((-568) (-568)) 32)) (-3526 (((-634 (-568)) (-568)) 62)) (-2769 (((-568) (-568) (-568) (-568) (-568)) 43)) (-2542 (((-409 (-568)) (-568)) 41))) +(((-565) (-10 -7 (-15 -2542 ((-409 (-568)) (-568))) (-15 -2769 ((-568) (-568) (-568) (-568) (-568))) (-15 -3526 ((-634 (-568)) (-568))) (-15 -3982 ((-568) (-568))) (-15 -3247 ((-568) (-568))) (-15 -2635 ((-568) (-568))) (-15 -3720 ((-409 (-568)) (-568))) (-15 -4479 ((-568) (-568) (-568))) (-15 -1291 ((-568) (-568) (-568))) (-15 -1964 ((-568) (-568))) (-15 -3585 ((-568) (-568))) (-15 -1624 ((-568) (-568))) (-15 -1753 ((-568) (-568) (-763))))) (T -565)) +((-1753 (*1 *2 *2 *3) (-12 (-5 *2 (-568)) (-5 *3 (-763)) (-5 *1 (-565)))) (-1624 (*1 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-565)))) (-3585 (*1 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-565)))) (-1964 (*1 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-565)))) (-1291 (*1 *2 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-565)))) (-4479 (*1 *2 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-565)))) (-3720 (*1 *2 *3) (-12 (-5 *2 (-409 (-568))) (-5 *1 (-565)) (-5 *3 (-568)))) (-2635 (*1 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-565)))) (-3247 (*1 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-565)))) (-3982 (*1 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-565)))) (-3526 (*1 *2 *3) (-12 (-5 *2 (-634 (-568))) (-5 *1 (-565)) (-5 *3 (-568)))) (-2769 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-565)))) (-2542 (*1 *2 *3) (-12 (-5 *2 (-409 (-568))) (-5 *1 (-565)) (-5 *3 (-568))))) +(-10 -7 (-15 -2542 ((-409 (-568)) (-568))) (-15 -2769 ((-568) (-568) (-568) (-568) (-568))) (-15 -3526 ((-634 (-568)) (-568))) (-15 -3982 ((-568) (-568))) (-15 -3247 ((-568) (-568))) (-15 -2635 ((-568) (-568))) (-15 -3720 ((-409 (-568)) (-568))) (-15 -4479 ((-568) (-568) (-568))) (-15 -1291 ((-568) (-568) (-568))) (-15 -1964 ((-568) (-568))) (-15 -3585 ((-568) (-568))) (-15 -1624 ((-568) (-568))) (-15 -1753 ((-568) (-568) (-763)))) +((-3797 (((-2 (|:| |answer| |#4|) (|:| -2577 |#4|)) |#4| (-1 |#2| |#2|)) 52))) +(((-566 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3797 ((-2 (|:| |answer| |#4|) (|:| -2577 |#4|)) |#4| (-1 |#2| |#2|)))) (-365) (-1219 |#1|) (-1219 (-409 |#2|)) (-340 |#1| |#2| |#3|)) (T -566)) +((-3797 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1219 *5)) (-4 *5 (-365)) (-4 *7 (-1219 (-409 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2577 *3))) (-5 *1 (-566 *5 *6 *7 *3)) (-4 *3 (-340 *5 *6 *7))))) +(-10 -7 (-15 -3797 ((-2 (|:| |answer| |#4|) (|:| -2577 |#4|)) |#4| (-1 |#2| |#2|)))) +((-3797 (((-2 (|:| |answer| (-409 |#2|)) (|:| -2577 (-409 |#2|)) (|:| |specpart| (-409 |#2|)) (|:| |polypart| |#2|)) (-409 |#2|) (-1 |#2| |#2|)) 18))) +(((-567 |#1| |#2|) (-10 -7 (-15 -3797 ((-2 (|:| |answer| (-409 |#2|)) (|:| -2577 (-409 |#2|)) (|:| |specpart| (-409 |#2|)) (|:| |polypart| |#2|)) (-409 |#2|) (-1 |#2| |#2|)))) (-365) (-1219 |#1|)) (T -567)) +((-3797 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1219 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |answer| (-409 *6)) (|:| -2577 (-409 *6)) (|:| |specpart| (-409 *6)) (|:| |polypart| *6))) (-5 *1 (-567 *5 *6)) (-5 *3 (-409 *6))))) +(-10 -7 (-15 -3797 ((-2 (|:| |answer| (-409 |#2|)) (|:| -2577 (-409 |#2|)) (|:| |specpart| (-409 |#2|)) (|:| |polypart| |#2|)) (-409 |#2|) (-1 |#2| |#2|)))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) 25)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) 86)) (-2227 (($ $) 87)) (-1573 (((-121) $) NIL)) (-1877 (($ $ $) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-2690 (($ $ $ $) 42)) (-4305 (($ $) NIL)) (-1678 (((-420 $) $) NIL)) (-1497 (((-121) $ $) NIL)) (-3662 (((-568) $) NIL)) (-1870 (($ $ $) 80)) (-2671 (($) NIL T CONST)) (-3666 (((-3 (-568) "failed") $) NIL)) (-2854 (((-568) $) NIL)) (-2401 (($ $ $) 79)) (-3164 (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) 60) (((-679 (-568)) (-679 $)) 57)) (-2925 (((-3 $ "failed") $) 83)) (-1642 (((-3 (-409 (-568)) "failed") $) NIL)) (-2688 (((-121) $) NIL)) (-2425 (((-409 (-568)) $) NIL)) (-1731 (($) 62) (($ $) 63)) (-2412 (($ $ $) 78)) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) NIL)) (-3927 (((-121) $) NIL)) (-1457 (($ $ $ $) NIL)) (-1283 (($ $ $) 54)) (-2033 (((-121) $) NIL)) (-2413 (($ $ $) NIL)) (-4410 (((-884 (-568) $) $ (-887 (-568)) (-884 (-568) $)) NIL)) (-2735 (((-121) $) 26)) (-1825 (((-121) $) 73)) (-3038 (((-3 $ "failed") $) NIL)) (-2245 (((-121) $) 34)) (-3562 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-3326 (($ $ $ $) 43)) (-2521 (($ $ $) 75)) (-3268 (($ $ $) 74)) (-3651 (($ $) NIL)) (-3678 (($ $) 40)) (-2495 (($ $ $) NIL) (($ (-634 $)) NIL)) (-4487 (((-1143) $) 53)) (-2110 (($ $ $) NIL)) (-4434 (($) NIL T CONST)) (-3850 (($ $) 31)) (-4022 (((-1108) $) NIL) (($ $) 33)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) 117)) (-2721 (($ $ $) 84) (($ (-634 $)) NIL)) (-2427 (($ $) NIL)) (-3848 (((-420 $) $) 103)) (-4497 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL)) (-2595 (((-3 $ "failed") $ $) 82)) (-2344 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-3277 (((-121) $) NIL)) (-2709 (((-763) $) NIL)) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) 77)) (-4189 (($ $ (-763)) NIL) (($ $) NIL)) (-2349 (($ $) 32)) (-3863 (($ $) 30)) (-4278 (((-568) $) 39) (((-541) $) 51) (((-887 (-568)) $) NIL) (((-381) $) 46) (((-215) $) 48) (((-1143) $) 52)) (-2745 (((-850) $) 37) (($ (-568)) 38) (($ $) NIL) (($ (-568)) 38)) (-4078 (((-763)) NIL)) (-2791 (((-121) $ $) NIL)) (-2787 (($ $ $) NIL)) (-1461 (($) 29)) (-1826 (((-121) $ $) NIL)) (-4419 (($ $ $ $) 41)) (-2897 (($ $) 61)) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (-3056 (($) 27 T CONST)) (-1556 (($) 28 T CONST)) (-3754 (((-1143) $) 20) (((-1143) $ (-121)) 22) (((-1249) (-817) $) 23) (((-1249) (-817) $ (-121)) 24)) (-3190 (($ $ (-763)) NIL) (($ $) NIL)) (-1751 (((-121) $ $) NIL)) (-1738 (((-121) $ $) NIL)) (-1717 (((-121) $ $) 64)) (-1745 (((-121) $ $) NIL)) (-1732 (((-121) $ $) 65)) (-1773 (($ $) 66) (($ $ $) 68)) (-1767 (($ $ $) 67)) (** (($ $ (-917)) NIL) (($ $ (-763)) 72)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) 70) (($ $ $) 69))) +(((-568) (-13 (-550) (-609 (-1143)) (-823) (-10 -8 (-15 -1731 ($ $)) (-6 -4506) (-6 -4511) (-6 -4507) (-6 -4501)))) (T -568)) +((-1731 (*1 *1 *1) (-5 *1 (-568)))) +(-13 (-550) (-609 (-1143)) (-823) (-10 -8 (-15 -1731 ($ $)) (-6 -4506) (-6 -4511) (-6 -4507) (-6 -4501))) +((-3029 (((-2 (|:| -3029 (-381)) (|:| -3391 (-1143)) (|:| |explanations| (-634 (-1143))) (|:| |extra| (-1035))) (-761) (-1059)) 103) (((-2 (|:| -3029 (-381)) (|:| -3391 (-1143)) (|:| |explanations| (-634 (-1143))) (|:| |extra| (-1035))) (-761)) 105)) (-3837 (((-3 (-1035) "failed") (-310 (-381)) (-1082 (-835 (-381))) (-1161)) 168) (((-3 (-1035) "failed") (-310 (-381)) (-1082 (-835 (-381))) (-1143)) 167) (((-1035) (-310 (-381)) (-634 (-1084 (-835 (-381)))) (-381) (-381) (-1059)) 173) (((-1035) (-310 (-381)) (-634 (-1084 (-835 (-381)))) (-381) (-381)) 174) (((-1035) (-310 (-381)) (-634 (-1084 (-835 (-381)))) (-381)) 175) (((-1035) (-310 (-381)) (-634 (-1084 (-835 (-381))))) 176) (((-1035) (-310 (-381)) (-1084 (-835 (-381)))) 163) (((-1035) (-310 (-381)) (-1084 (-835 (-381))) (-381)) 162) (((-1035) (-310 (-381)) (-1084 (-835 (-381))) (-381) (-381)) 158) (((-1035) (-761)) 150) (((-1035) (-310 (-381)) (-1084 (-835 (-381))) (-381) (-381) (-1059)) 157))) +(((-569) (-10 -7 (-15 -3837 ((-1035) (-310 (-381)) (-1084 (-835 (-381))) (-381) (-381) (-1059))) (-15 -3837 ((-1035) (-761))) (-15 -3837 ((-1035) (-310 (-381)) (-1084 (-835 (-381))) (-381) (-381))) (-15 -3837 ((-1035) (-310 (-381)) (-1084 (-835 (-381))) (-381))) (-15 -3837 ((-1035) (-310 (-381)) (-1084 (-835 (-381))))) (-15 -3837 ((-1035) (-310 (-381)) (-634 (-1084 (-835 (-381)))))) (-15 -3837 ((-1035) (-310 (-381)) (-634 (-1084 (-835 (-381)))) (-381))) (-15 -3837 ((-1035) (-310 (-381)) (-634 (-1084 (-835 (-381)))) (-381) (-381))) (-15 -3837 ((-1035) (-310 (-381)) (-634 (-1084 (-835 (-381)))) (-381) (-381) (-1059))) (-15 -3029 ((-2 (|:| -3029 (-381)) (|:| -3391 (-1143)) (|:| |explanations| (-634 (-1143))) (|:| |extra| (-1035))) (-761))) (-15 -3029 ((-2 (|:| -3029 (-381)) (|:| -3391 (-1143)) (|:| |explanations| (-634 (-1143))) (|:| |extra| (-1035))) (-761) (-1059))) (-15 -3837 ((-3 (-1035) "failed") (-310 (-381)) (-1082 (-835 (-381))) (-1143))) (-15 -3837 ((-3 (-1035) "failed") (-310 (-381)) (-1082 (-835 (-381))) (-1161))))) (T -569)) +((-3837 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-310 (-381))) (-5 *4 (-1082 (-835 (-381)))) (-5 *5 (-1161)) (-5 *2 (-1035)) (-5 *1 (-569)))) (-3837 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-310 (-381))) (-5 *4 (-1082 (-835 (-381)))) (-5 *5 (-1143)) (-5 *2 (-1035)) (-5 *1 (-569)))) (-3029 (*1 *2 *3 *4) (-12 (-5 *3 (-761)) (-5 *4 (-1059)) (-5 *2 (-2 (|:| -3029 (-381)) (|:| -3391 (-1143)) (|:| |explanations| (-634 (-1143))) (|:| |extra| (-1035)))) (-5 *1 (-569)))) (-3029 (*1 *2 *3) (-12 (-5 *3 (-761)) (-5 *2 (-2 (|:| -3029 (-381)) (|:| -3391 (-1143)) (|:| |explanations| (-634 (-1143))) (|:| |extra| (-1035)))) (-5 *1 (-569)))) (-3837 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-310 (-381))) (-5 *4 (-634 (-1084 (-835 (-381))))) (-5 *5 (-381)) (-5 *6 (-1059)) (-5 *2 (-1035)) (-5 *1 (-569)))) (-3837 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-310 (-381))) (-5 *4 (-634 (-1084 (-835 (-381))))) (-5 *5 (-381)) (-5 *2 (-1035)) (-5 *1 (-569)))) (-3837 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-310 (-381))) (-5 *4 (-634 (-1084 (-835 (-381))))) (-5 *5 (-381)) (-5 *2 (-1035)) (-5 *1 (-569)))) (-3837 (*1 *2 *3 *4) (-12 (-5 *3 (-310 (-381))) (-5 *4 (-634 (-1084 (-835 (-381))))) (-5 *2 (-1035)) (-5 *1 (-569)))) (-3837 (*1 *2 *3 *4) (-12 (-5 *3 (-310 (-381))) (-5 *4 (-1084 (-835 (-381)))) (-5 *2 (-1035)) (-5 *1 (-569)))) (-3837 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-310 (-381))) (-5 *4 (-1084 (-835 (-381)))) (-5 *5 (-381)) (-5 *2 (-1035)) (-5 *1 (-569)))) (-3837 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-310 (-381))) (-5 *4 (-1084 (-835 (-381)))) (-5 *5 (-381)) (-5 *2 (-1035)) (-5 *1 (-569)))) (-3837 (*1 *2 *3) (-12 (-5 *3 (-761)) (-5 *2 (-1035)) (-5 *1 (-569)))) (-3837 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-310 (-381))) (-5 *4 (-1084 (-835 (-381)))) (-5 *5 (-381)) (-5 *6 (-1059)) (-5 *2 (-1035)) (-5 *1 (-569))))) +(-10 -7 (-15 -3837 ((-1035) (-310 (-381)) (-1084 (-835 (-381))) (-381) (-381) (-1059))) (-15 -3837 ((-1035) (-761))) (-15 -3837 ((-1035) (-310 (-381)) (-1084 (-835 (-381))) (-381) (-381))) (-15 -3837 ((-1035) (-310 (-381)) (-1084 (-835 (-381))) (-381))) (-15 -3837 ((-1035) (-310 (-381)) (-1084 (-835 (-381))))) (-15 -3837 ((-1035) (-310 (-381)) (-634 (-1084 (-835 (-381)))))) (-15 -3837 ((-1035) (-310 (-381)) (-634 (-1084 (-835 (-381)))) (-381))) (-15 -3837 ((-1035) (-310 (-381)) (-634 (-1084 (-835 (-381)))) (-381) (-381))) (-15 -3837 ((-1035) (-310 (-381)) (-634 (-1084 (-835 (-381)))) (-381) (-381) (-1059))) (-15 -3029 ((-2 (|:| -3029 (-381)) (|:| -3391 (-1143)) (|:| |explanations| (-634 (-1143))) (|:| |extra| (-1035))) (-761))) (-15 -3029 ((-2 (|:| -3029 (-381)) (|:| -3391 (-1143)) (|:| |explanations| (-634 (-1143))) (|:| |extra| (-1035))) (-761) (-1059))) (-15 -3837 ((-3 (-1035) "failed") (-310 (-381)) (-1082 (-835 (-381))) (-1143))) (-15 -3837 ((-3 (-1035) "failed") (-310 (-381)) (-1082 (-835 (-381))) (-1161)))) +((-1357 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-634 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-607 |#2|) (-607 |#2|) (-634 |#2|)) 179)) (-1448 (((-585 |#2|) |#2| (-607 |#2|) (-607 |#2|)) 97)) (-3496 (((-3 (-2 (|:| -1924 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-607 |#2|) (-607 |#2|) |#2|) 175)) (-3003 (((-3 |#2| "failed") |#2| |#2| |#2| (-607 |#2|) (-607 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1161))) 184)) (-4041 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3746 (-634 |#2|))) |#3| |#2| (-607 |#2|) (-607 |#2|) (-1161)) 192 (|has| |#3| (-646 |#2|))))) +(((-570 |#1| |#2| |#3|) (-10 -7 (-15 -1448 ((-585 |#2|) |#2| (-607 |#2|) (-607 |#2|))) (-15 -3496 ((-3 (-2 (|:| -1924 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-607 |#2|) (-607 |#2|) |#2|)) (-15 -1357 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-634 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-607 |#2|) (-607 |#2|) (-634 |#2|))) (-15 -3003 ((-3 |#2| "failed") |#2| |#2| |#2| (-607 |#2|) (-607 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1161)))) (IF (|has| |#3| (-646 |#2|)) (-15 -4041 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3746 (-634 |#2|))) |#3| |#2| (-607 |#2|) (-607 |#2|) (-1161))) |noBranch|)) (-13 (-453) (-1037 (-568)) (-842) (-150) (-630 (-568))) (-13 (-432 |#1|) (-27) (-1181)) (-1090)) (T -570)) +((-4041 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-607 *4)) (-5 *6 (-1161)) (-4 *4 (-13 (-432 *7) (-27) (-1181))) (-4 *7 (-13 (-453) (-1037 (-568)) (-842) (-150) (-630 (-568)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3746 (-634 *4)))) (-5 *1 (-570 *7 *4 *3)) (-4 *3 (-646 *4)) (-4 *3 (-1090)))) (-3003 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-607 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1161))) (-4 *2 (-13 (-432 *5) (-27) (-1181))) (-4 *5 (-13 (-453) (-1037 (-568)) (-842) (-150) (-630 (-568)))) (-5 *1 (-570 *5 *2 *6)) (-4 *6 (-1090)))) (-1357 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-607 *3)) (-5 *5 (-634 *3)) (-4 *3 (-13 (-432 *6) (-27) (-1181))) (-4 *6 (-13 (-453) (-1037 (-568)) (-842) (-150) (-630 (-568)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-634 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-570 *6 *3 *7)) (-4 *7 (-1090)))) (-3496 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-607 *3)) (-4 *3 (-13 (-432 *5) (-27) (-1181))) (-4 *5 (-13 (-453) (-1037 (-568)) (-842) (-150) (-630 (-568)))) (-5 *2 (-2 (|:| -1924 *3) (|:| |coeff| *3))) (-5 *1 (-570 *5 *3 *6)) (-4 *6 (-1090)))) (-1448 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-607 *3)) (-4 *3 (-13 (-432 *5) (-27) (-1181))) (-4 *5 (-13 (-453) (-1037 (-568)) (-842) (-150) (-630 (-568)))) (-5 *2 (-585 *3)) (-5 *1 (-570 *5 *3 *6)) (-4 *6 (-1090))))) +(-10 -7 (-15 -1448 ((-585 |#2|) |#2| (-607 |#2|) (-607 |#2|))) (-15 -3496 ((-3 (-2 (|:| -1924 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-607 |#2|) (-607 |#2|) |#2|)) (-15 -1357 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-634 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-607 |#2|) (-607 |#2|) (-634 |#2|))) (-15 -3003 ((-3 |#2| "failed") |#2| |#2| |#2| (-607 |#2|) (-607 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1161)))) (IF (|has| |#3| (-646 |#2|)) (-15 -4041 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3746 (-634 |#2|))) |#3| |#2| (-607 |#2|) (-607 |#2|) (-1161))) |noBranch|)) +((-4393 (((-2 (|:| -1841 |#2|) (|:| |nconst| |#2|)) |#2| (-1161)) 62)) (-3191 (((-3 |#2| "failed") |#2| (-1161) (-835 |#2|) (-835 |#2|)) 159 (-12 (|has| |#2| (-1124)) (|has| |#1| (-609 (-887 (-568)))) (|has| |#1| (-881 (-568))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1161)) 133 (-12 (|has| |#2| (-620)) (|has| |#1| (-609 (-887 (-568)))) (|has| |#1| (-881 (-568)))))) (-2729 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1161)) 142 (-12 (|has| |#2| (-620)) (|has| |#1| (-609 (-887 (-568)))) (|has| |#1| (-881 (-568))))))) +(((-571 |#1| |#2|) (-10 -7 (-15 -4393 ((-2 (|:| -1841 |#2|) (|:| |nconst| |#2|)) |#2| (-1161))) (IF (|has| |#1| (-609 (-887 (-568)))) (IF (|has| |#1| (-881 (-568))) (PROGN (IF (|has| |#2| (-620)) (PROGN (-15 -2729 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1161))) (-15 -3191 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1161)))) |noBranch|) (IF (|has| |#2| (-1124)) (-15 -3191 ((-3 |#2| "failed") |#2| (-1161) (-835 |#2|) (-835 |#2|))) |noBranch|)) |noBranch|) |noBranch|)) (-13 (-842) (-1037 (-568)) (-453) (-630 (-568))) (-13 (-27) (-1181) (-432 |#1|))) (T -571)) +((-3191 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1161)) (-5 *4 (-835 *2)) (-4 *2 (-1124)) (-4 *2 (-13 (-27) (-1181) (-432 *5))) (-4 *5 (-609 (-887 (-568)))) (-4 *5 (-881 (-568))) (-4 *5 (-13 (-842) (-1037 (-568)) (-453) (-630 (-568)))) (-5 *1 (-571 *5 *2)))) (-3191 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1161)) (-4 *5 (-609 (-887 (-568)))) (-4 *5 (-881 (-568))) (-4 *5 (-13 (-842) (-1037 (-568)) (-453) (-630 (-568)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-571 *5 *3)) (-4 *3 (-620)) (-4 *3 (-13 (-27) (-1181) (-432 *5))))) (-2729 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1161)) (-4 *5 (-609 (-887 (-568)))) (-4 *5 (-881 (-568))) (-4 *5 (-13 (-842) (-1037 (-568)) (-453) (-630 (-568)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-571 *5 *3)) (-4 *3 (-620)) (-4 *3 (-13 (-27) (-1181) (-432 *5))))) (-4393 (*1 *2 *3 *4) (-12 (-5 *4 (-1161)) (-4 *5 (-13 (-842) (-1037 (-568)) (-453) (-630 (-568)))) (-5 *2 (-2 (|:| -1841 *3) (|:| |nconst| *3))) (-5 *1 (-571 *5 *3)) (-4 *3 (-13 (-27) (-1181) (-432 *5)))))) +(-10 -7 (-15 -4393 ((-2 (|:| -1841 |#2|) (|:| |nconst| |#2|)) |#2| (-1161))) (IF (|has| |#1| (-609 (-887 (-568)))) (IF (|has| |#1| (-881 (-568))) (PROGN (IF (|has| |#2| (-620)) (PROGN (-15 -2729 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1161))) (-15 -3191 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1161)))) |noBranch|) (IF (|has| |#2| (-1124)) (-15 -3191 ((-3 |#2| "failed") |#2| (-1161) (-835 |#2|) (-835 |#2|))) |noBranch|)) |noBranch|) |noBranch|)) +((-4474 (((-3 (-2 (|:| |mainpart| (-409 |#2|)) (|:| |limitedlogs| (-634 (-2 (|:| |coeff| (-409 |#2|)) (|:| |logand| (-409 |#2|)))))) "failed") (-409 |#2|) (-634 (-409 |#2|))) 39)) (-3837 (((-585 (-409 |#2|)) (-409 |#2|)) 27)) (-2706 (((-3 (-409 |#2|) "failed") (-409 |#2|)) 16)) (-2150 (((-3 (-2 (|:| -1924 (-409 |#2|)) (|:| |coeff| (-409 |#2|))) "failed") (-409 |#2|) (-409 |#2|)) 46))) +(((-572 |#1| |#2|) (-10 -7 (-15 -3837 ((-585 (-409 |#2|)) (-409 |#2|))) (-15 -2706 ((-3 (-409 |#2|) "failed") (-409 |#2|))) (-15 -2150 ((-3 (-2 (|:| -1924 (-409 |#2|)) (|:| |coeff| (-409 |#2|))) "failed") (-409 |#2|) (-409 |#2|))) (-15 -4474 ((-3 (-2 (|:| |mainpart| (-409 |#2|)) (|:| |limitedlogs| (-634 (-2 (|:| |coeff| (-409 |#2|)) (|:| |logand| (-409 |#2|)))))) "failed") (-409 |#2|) (-634 (-409 |#2|))))) (-13 (-365) (-150) (-1037 (-568))) (-1219 |#1|)) (T -572)) +((-4474 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-634 (-409 *6))) (-5 *3 (-409 *6)) (-4 *6 (-1219 *5)) (-4 *5 (-13 (-365) (-150) (-1037 (-568)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-634 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-572 *5 *6)))) (-2150 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-365) (-150) (-1037 (-568)))) (-4 *5 (-1219 *4)) (-5 *2 (-2 (|:| -1924 (-409 *5)) (|:| |coeff| (-409 *5)))) (-5 *1 (-572 *4 *5)) (-5 *3 (-409 *5)))) (-2706 (*1 *2 *2) (|partial| -12 (-5 *2 (-409 *4)) (-4 *4 (-1219 *3)) (-4 *3 (-13 (-365) (-150) (-1037 (-568)))) (-5 *1 (-572 *3 *4)))) (-3837 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-150) (-1037 (-568)))) (-4 *5 (-1219 *4)) (-5 *2 (-585 (-409 *5))) (-5 *1 (-572 *4 *5)) (-5 *3 (-409 *5))))) +(-10 -7 (-15 -3837 ((-585 (-409 |#2|)) (-409 |#2|))) (-15 -2706 ((-3 (-409 |#2|) "failed") (-409 |#2|))) (-15 -2150 ((-3 (-2 (|:| -1924 (-409 |#2|)) (|:| |coeff| (-409 |#2|))) "failed") (-409 |#2|) (-409 |#2|))) (-15 -4474 ((-3 (-2 (|:| |mainpart| (-409 |#2|)) (|:| |limitedlogs| (-634 (-2 (|:| |coeff| (-409 |#2|)) (|:| |logand| (-409 |#2|)))))) "failed") (-409 |#2|) (-634 (-409 |#2|))))) +((-3981 (((-3 (-568) "failed") |#1|) 14)) (-4469 (((-121) |#1|) 13)) (-1721 (((-568) |#1|) 9))) +(((-573 |#1|) (-10 -7 (-15 -1721 ((-568) |#1|)) (-15 -4469 ((-121) |#1|)) (-15 -3981 ((-3 (-568) "failed") |#1|))) (-1037 (-568))) (T -573)) +((-3981 (*1 *2 *3) (|partial| -12 (-5 *2 (-568)) (-5 *1 (-573 *3)) (-4 *3 (-1037 *2)))) (-4469 (*1 *2 *3) (-12 (-5 *2 (-121)) (-5 *1 (-573 *3)) (-4 *3 (-1037 (-568))))) (-1721 (*1 *2 *3) (-12 (-5 *2 (-568)) (-5 *1 (-573 *3)) (-4 *3 (-1037 *2))))) +(-10 -7 (-15 -1721 ((-568) |#1|)) (-15 -4469 ((-121) |#1|)) (-15 -3981 ((-3 (-568) "failed") |#1|))) +((-3561 (((-3 (-2 (|:| |mainpart| (-409 (-953 |#1|))) (|:| |limitedlogs| (-634 (-2 (|:| |coeff| (-409 (-953 |#1|))) (|:| |logand| (-409 (-953 |#1|))))))) "failed") (-409 (-953 |#1|)) (-1161) (-634 (-409 (-953 |#1|)))) 43)) (-2005 (((-585 (-409 (-953 |#1|))) (-409 (-953 |#1|)) (-1161)) 25)) (-2439 (((-3 (-409 (-953 |#1|)) "failed") (-409 (-953 |#1|)) (-1161)) 20)) (-3684 (((-3 (-2 (|:| -1924 (-409 (-953 |#1|))) (|:| |coeff| (-409 (-953 |#1|)))) "failed") (-409 (-953 |#1|)) (-1161) (-409 (-953 |#1|))) 32))) +(((-574 |#1|) (-10 -7 (-15 -2005 ((-585 (-409 (-953 |#1|))) (-409 (-953 |#1|)) (-1161))) (-15 -2439 ((-3 (-409 (-953 |#1|)) "failed") (-409 (-953 |#1|)) (-1161))) (-15 -3561 ((-3 (-2 (|:| |mainpart| (-409 (-953 |#1|))) (|:| |limitedlogs| (-634 (-2 (|:| |coeff| (-409 (-953 |#1|))) (|:| |logand| (-409 (-953 |#1|))))))) "failed") (-409 (-953 |#1|)) (-1161) (-634 (-409 (-953 |#1|))))) (-15 -3684 ((-3 (-2 (|:| -1924 (-409 (-953 |#1|))) (|:| |coeff| (-409 (-953 |#1|)))) "failed") (-409 (-953 |#1|)) (-1161) (-409 (-953 |#1|))))) (-13 (-558) (-1037 (-568)) (-150))) (T -574)) +((-3684 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1161)) (-4 *5 (-13 (-558) (-1037 (-568)) (-150))) (-5 *2 (-2 (|:| -1924 (-409 (-953 *5))) (|:| |coeff| (-409 (-953 *5))))) (-5 *1 (-574 *5)) (-5 *3 (-409 (-953 *5))))) (-3561 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1161)) (-5 *5 (-634 (-409 (-953 *6)))) (-5 *3 (-409 (-953 *6))) (-4 *6 (-13 (-558) (-1037 (-568)) (-150))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-634 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-574 *6)))) (-2439 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-409 (-953 *4))) (-5 *3 (-1161)) (-4 *4 (-13 (-558) (-1037 (-568)) (-150))) (-5 *1 (-574 *4)))) (-2005 (*1 *2 *3 *4) (-12 (-5 *4 (-1161)) (-4 *5 (-13 (-558) (-1037 (-568)) (-150))) (-5 *2 (-585 (-409 (-953 *5)))) (-5 *1 (-574 *5)) (-5 *3 (-409 (-953 *5)))))) +(-10 -7 (-15 -2005 ((-585 (-409 (-953 |#1|))) (-409 (-953 |#1|)) (-1161))) (-15 -2439 ((-3 (-409 (-953 |#1|)) "failed") (-409 (-953 |#1|)) (-1161))) (-15 -3561 ((-3 (-2 (|:| |mainpart| (-409 (-953 |#1|))) (|:| |limitedlogs| (-634 (-2 (|:| |coeff| (-409 (-953 |#1|))) (|:| |logand| (-409 (-953 |#1|))))))) "failed") (-409 (-953 |#1|)) (-1161) (-634 (-409 (-953 |#1|))))) (-15 -3684 ((-3 (-2 (|:| -1924 (-409 (-953 |#1|))) (|:| |coeff| (-409 (-953 |#1|)))) "failed") (-409 (-953 |#1|)) (-1161) (-409 (-953 |#1|))))) +((-2447 (((-121) $ $) 59)) (-2537 (((-121) $) 36)) (-3877 ((|#1| $) 30)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL)) (-2227 (($ $) NIL)) (-1573 (((-121) $) 63)) (-1982 (($ $) 123)) (-1933 (($ $) 103)) (-1462 ((|#1| $) 28)) (-3134 (((-3 $ "failed") $ $) NIL)) (-1902 (($ $) NIL)) (-1974 (($ $) 125)) (-2786 (($ $) 99)) (-1990 (($ $) 127)) (-1941 (($ $) 107)) (-2671 (($) NIL T CONST)) (-3666 (((-3 (-568) "failed") $) 78)) (-2854 (((-568) $) 80)) (-2925 (((-3 $ "failed") $) 62)) (-3867 (($ |#1| |#1|) 26)) (-2033 (((-121) $) 33)) (-1897 (($) 89)) (-2735 (((-121) $) 43)) (-4044 (($ $ (-568)) NIL)) (-2245 (((-121) $) 34)) (-2521 (($ $ $) NIL)) (-3268 (($ $ $) NIL)) (-4416 (($ $) 91)) (-2495 (($ $ $) NIL) (($ (-634 $)) NIL)) (-4487 (((-1143) $) NIL)) (-2668 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-409 (-568))) 77)) (-3582 ((|#1| $) 27)) (-4022 (((-1108) $) NIL)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL)) (-2721 (($ $ $) 65) (($ (-634 $)) NIL)) (-2595 (((-3 $ "failed") $ $) 64)) (-1892 (($ $) 93)) (-1994 (($ $) 131)) (-1945 (($ $) 105)) (-1986 (($ $) 133)) (-1937 (($ $) 109)) (-1978 (($ $) 129)) (-2790 (($ $) 101)) (-1639 (((-121) $ |#1|) 31)) (-2745 (((-850) $) 85) (($ (-568)) 67) (($ $) NIL) (($ (-568)) 67)) (-4078 (((-763)) 87)) (-2006 (($ $) 145)) (-1958 (($ $) 115)) (-1826 (((-121) $ $) NIL)) (-1998 (($ $) 143)) (-1949 (($ $) 111)) (-2014 (($ $) 141)) (-1966 (($ $) 121)) (-4023 (($ $) 139)) (-1970 (($ $) 119)) (-2010 (($ $) 137)) (-1962 (($ $) 117)) (-2002 (($ $) 135)) (-1953 (($ $) 113)) (-1887 (($ $ (-917)) 55) (($ $ (-763)) NIL)) (-3056 (($) 21 T CONST)) (-1556 (($) 10 T CONST)) (-1751 (((-121) $ $) NIL)) (-1738 (((-121) $ $) NIL)) (-1717 (((-121) $ $) 37)) (-1745 (((-121) $ $) NIL)) (-1732 (((-121) $ $) 35)) (-1773 (($ $) 41) (($ $ $) 42)) (-1767 (($ $ $) 40)) (** (($ $ (-917)) 54) (($ $ (-763)) NIL) (($ $ $) 95) (($ $ (-409 (-568))) 147)) (* (($ (-917) $) 51) (($ (-763) $) NIL) (($ (-568) $) 50) (($ $ $) 48))) +(((-575 |#1|) (-555 |#1|) (-13 (-406) (-1181))) (T -575)) +NIL +(-555 |#1|) +((-1858 (((-3 (-634 (-1157 (-568))) "failed") (-634 (-1157 (-568))) (-1157 (-568))) 24))) +(((-576) (-10 -7 (-15 -1858 ((-3 (-634 (-1157 (-568))) "failed") (-634 (-1157 (-568))) (-1157 (-568)))))) (T -576)) +((-1858 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-634 (-1157 (-568)))) (-5 *3 (-1157 (-568))) (-5 *1 (-576))))) +(-10 -7 (-15 -1858 ((-3 (-634 (-1157 (-568))) "failed") (-634 (-1157 (-568))) (-1157 (-568))))) +((-3030 (((-634 (-607 |#2|)) (-634 (-607 |#2|)) (-1161)) 18)) (-1909 (((-634 (-607 |#2|)) (-634 |#2|) (-1161)) 23)) (-1791 (((-634 (-607 |#2|)) (-634 (-607 |#2|)) (-634 (-607 |#2|))) 10)) (-3791 ((|#2| |#2| (-1161)) 51 (|has| |#1| (-558)))) (-2046 ((|#2| |#2| (-1161)) 76 (-12 (|has| |#2| (-279)) (|has| |#1| (-453))))) (-4356 (((-607 |#2|) (-607 |#2|) (-634 (-607 |#2|)) (-1161)) 25)) (-3647 (((-607 |#2|) (-634 (-607 |#2|))) 24)) (-1575 (((-585 |#2|) |#2| (-1161) (-1 (-585 |#2|) |#2| (-1161)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1161))) 100 (-12 (|has| |#2| (-279)) (|has| |#2| (-620)) (|has| |#2| (-1037 (-1161))) (|has| |#1| (-609 (-887 (-568)))) (|has| |#1| (-453)) (|has| |#1| (-881 (-568))))))) +(((-577 |#1| |#2|) (-10 -7 (-15 -3030 ((-634 (-607 |#2|)) (-634 (-607 |#2|)) (-1161))) (-15 -3647 ((-607 |#2|) (-634 (-607 |#2|)))) (-15 -4356 ((-607 |#2|) (-607 |#2|) (-634 (-607 |#2|)) (-1161))) (-15 -1791 ((-634 (-607 |#2|)) (-634 (-607 |#2|)) (-634 (-607 |#2|)))) (-15 -1909 ((-634 (-607 |#2|)) (-634 |#2|) (-1161))) (IF (|has| |#1| (-558)) (-15 -3791 (|#2| |#2| (-1161))) |noBranch|) (IF (|has| |#1| (-453)) (IF (|has| |#2| (-279)) (PROGN (-15 -2046 (|#2| |#2| (-1161))) (IF (|has| |#1| (-609 (-887 (-568)))) (IF (|has| |#1| (-881 (-568))) (IF (|has| |#2| (-620)) (IF (|has| |#2| (-1037 (-1161))) (-15 -1575 ((-585 |#2|) |#2| (-1161) (-1 (-585 |#2|) |#2| (-1161)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1161)))) |noBranch|) |noBranch|) |noBranch|) |noBranch|)) |noBranch|) |noBranch|)) (-842) (-432 |#1|)) (T -577)) +((-1575 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-585 *3) *3 (-1161))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1161))) (-4 *3 (-279)) (-4 *3 (-620)) (-4 *3 (-1037 *4)) (-4 *3 (-432 *7)) (-5 *4 (-1161)) (-4 *7 (-609 (-887 (-568)))) (-4 *7 (-453)) (-4 *7 (-881 (-568))) (-4 *7 (-842)) (-5 *2 (-585 *3)) (-5 *1 (-577 *7 *3)))) (-2046 (*1 *2 *2 *3) (-12 (-5 *3 (-1161)) (-4 *4 (-453)) (-4 *4 (-842)) (-5 *1 (-577 *4 *2)) (-4 *2 (-279)) (-4 *2 (-432 *4)))) (-3791 (*1 *2 *2 *3) (-12 (-5 *3 (-1161)) (-4 *4 (-558)) (-4 *4 (-842)) (-5 *1 (-577 *4 *2)) (-4 *2 (-432 *4)))) (-1909 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *6)) (-5 *4 (-1161)) (-4 *6 (-432 *5)) (-4 *5 (-842)) (-5 *2 (-634 (-607 *6))) (-5 *1 (-577 *5 *6)))) (-1791 (*1 *2 *2 *2) (-12 (-5 *2 (-634 (-607 *4))) (-4 *4 (-432 *3)) (-4 *3 (-842)) (-5 *1 (-577 *3 *4)))) (-4356 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-634 (-607 *6))) (-5 *4 (-1161)) (-5 *2 (-607 *6)) (-4 *6 (-432 *5)) (-4 *5 (-842)) (-5 *1 (-577 *5 *6)))) (-3647 (*1 *2 *3) (-12 (-5 *3 (-634 (-607 *5))) (-4 *4 (-842)) (-5 *2 (-607 *5)) (-5 *1 (-577 *4 *5)) (-4 *5 (-432 *4)))) (-3030 (*1 *2 *2 *3) (-12 (-5 *2 (-634 (-607 *5))) (-5 *3 (-1161)) (-4 *5 (-432 *4)) (-4 *4 (-842)) (-5 *1 (-577 *4 *5))))) +(-10 -7 (-15 -3030 ((-634 (-607 |#2|)) (-634 (-607 |#2|)) (-1161))) (-15 -3647 ((-607 |#2|) (-634 (-607 |#2|)))) (-15 -4356 ((-607 |#2|) (-607 |#2|) (-634 (-607 |#2|)) (-1161))) (-15 -1791 ((-634 (-607 |#2|)) (-634 (-607 |#2|)) (-634 (-607 |#2|)))) (-15 -1909 ((-634 (-607 |#2|)) (-634 |#2|) (-1161))) (IF (|has| |#1| (-558)) (-15 -3791 (|#2| |#2| (-1161))) |noBranch|) (IF (|has| |#1| (-453)) (IF (|has| |#2| (-279)) (PROGN (-15 -2046 (|#2| |#2| (-1161))) (IF (|has| |#1| (-609 (-887 (-568)))) (IF (|has| |#1| (-881 (-568))) (IF (|has| |#2| (-620)) (IF (|has| |#2| (-1037 (-1161))) (-15 -1575 ((-585 |#2|) |#2| (-1161) (-1 (-585 |#2|) |#2| (-1161)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1161)))) |noBranch|) |noBranch|) |noBranch|) |noBranch|)) |noBranch|) |noBranch|)) +((-1569 (((-2 (|:| |answer| (-585 (-409 |#2|))) (|:| |a0| |#1|)) (-409 |#2|) (-1 |#2| |#2|) (-1 (-3 (-634 |#1|) "failed") (-568) |#1| |#1|)) 167)) (-3187 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-409 |#2|)) (|:| |limitedlogs| (-634 (-2 (|:| |coeff| (-409 |#2|)) (|:| |logand| (-409 |#2|))))))) (|:| |a0| |#1|)) "failed") (-409 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1924 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-634 (-409 |#2|))) 143)) (-4158 (((-3 (-2 (|:| |mainpart| (-409 |#2|)) (|:| |limitedlogs| (-634 (-2 (|:| |coeff| (-409 |#2|)) (|:| |logand| (-409 |#2|)))))) "failed") (-409 |#2|) (-1 |#2| |#2|) (-634 (-409 |#2|))) 140)) (-3705 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1924 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 129)) (-1997 (((-2 (|:| |answer| (-585 (-409 |#2|))) (|:| |a0| |#1|)) (-409 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1924 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 153)) (-4116 (((-3 (-2 (|:| -1924 (-409 |#2|)) (|:| |coeff| (-409 |#2|))) "failed") (-409 |#2|) (-1 |#2| |#2|) (-409 |#2|)) 170)) (-1354 (((-3 (-2 (|:| |answer| (-409 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1924 (-409 |#2|)) (|:| |coeff| (-409 |#2|))) "failed") (-409 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1924 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-409 |#2|)) 173)) (-2250 (((-2 (|:| |ir| (-585 (-409 |#2|))) (|:| |specpart| (-409 |#2|)) (|:| |polypart| |#2|)) (-409 |#2|) (-1 |#2| |#2|)) 81)) (-3311 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 88)) (-3027 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-409 |#2|)) (|:| |limitedlogs| (-634 (-2 (|:| |coeff| (-409 |#2|)) (|:| |logand| (-409 |#2|))))))) (|:| |a0| |#1|)) "failed") (-409 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3284 |#1|) (|:| |sol?| (-121))) (-568) |#1|) (-634 (-409 |#2|))) 147)) (-3168 (((-3 (-615 |#1| |#2|) "failed") (-615 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3284 |#1|) (|:| |sol?| (-121))) (-568) |#1|)) 133)) (-2159 (((-2 (|:| |answer| (-585 (-409 |#2|))) (|:| |a0| |#1|)) (-409 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3284 |#1|) (|:| |sol?| (-121))) (-568) |#1|)) 157)) (-3999 (((-3 (-2 (|:| |answer| (-409 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1924 (-409 |#2|)) (|:| |coeff| (-409 |#2|))) "failed") (-409 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3284 |#1|) (|:| |sol?| (-121))) (-568) |#1|) (-409 |#2|)) 178))) +(((-578 |#1| |#2|) (-10 -7 (-15 -1997 ((-2 (|:| |answer| (-585 (-409 |#2|))) (|:| |a0| |#1|)) (-409 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1924 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2159 ((-2 (|:| |answer| (-585 (-409 |#2|))) (|:| |a0| |#1|)) (-409 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3284 |#1|) (|:| |sol?| (-121))) (-568) |#1|))) (-15 -1569 ((-2 (|:| |answer| (-585 (-409 |#2|))) (|:| |a0| |#1|)) (-409 |#2|) (-1 |#2| |#2|) (-1 (-3 (-634 |#1|) "failed") (-568) |#1| |#1|))) (-15 -1354 ((-3 (-2 (|:| |answer| (-409 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1924 (-409 |#2|)) (|:| |coeff| (-409 |#2|))) "failed") (-409 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1924 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-409 |#2|))) (-15 -3999 ((-3 (-2 (|:| |answer| (-409 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1924 (-409 |#2|)) (|:| |coeff| (-409 |#2|))) "failed") (-409 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3284 |#1|) (|:| |sol?| (-121))) (-568) |#1|) (-409 |#2|))) (-15 -3187 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-409 |#2|)) (|:| |limitedlogs| (-634 (-2 (|:| |coeff| (-409 |#2|)) (|:| |logand| (-409 |#2|))))))) (|:| |a0| |#1|)) "failed") (-409 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1924 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-634 (-409 |#2|)))) (-15 -3027 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-409 |#2|)) (|:| |limitedlogs| (-634 (-2 (|:| |coeff| (-409 |#2|)) (|:| |logand| (-409 |#2|))))))) (|:| |a0| |#1|)) "failed") (-409 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3284 |#1|) (|:| |sol?| (-121))) (-568) |#1|) (-634 (-409 |#2|)))) (-15 -4116 ((-3 (-2 (|:| -1924 (-409 |#2|)) (|:| |coeff| (-409 |#2|))) "failed") (-409 |#2|) (-1 |#2| |#2|) (-409 |#2|))) (-15 -4158 ((-3 (-2 (|:| |mainpart| (-409 |#2|)) (|:| |limitedlogs| (-634 (-2 (|:| |coeff| (-409 |#2|)) (|:| |logand| (-409 |#2|)))))) "failed") (-409 |#2|) (-1 |#2| |#2|) (-634 (-409 |#2|)))) (-15 -3705 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1924 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3168 ((-3 (-615 |#1| |#2|) "failed") (-615 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3284 |#1|) (|:| |sol?| (-121))) (-568) |#1|))) (-15 -2250 ((-2 (|:| |ir| (-585 (-409 |#2|))) (|:| |specpart| (-409 |#2|)) (|:| |polypart| |#2|)) (-409 |#2|) (-1 |#2| |#2|))) (-15 -3311 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-365) (-1219 |#1|)) (T -578)) +((-3311 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1219 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-578 *5 *3)))) (-2250 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1219 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |ir| (-585 (-409 *6))) (|:| |specpart| (-409 *6)) (|:| |polypart| *6))) (-5 *1 (-578 *5 *6)) (-5 *3 (-409 *6)))) (-3168 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-615 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3284 *4) (|:| |sol?| (-121))) (-568) *4)) (-4 *4 (-365)) (-4 *5 (-1219 *4)) (-5 *1 (-578 *4 *5)))) (-3705 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -1924 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-365)) (-5 *1 (-578 *4 *2)) (-4 *2 (-1219 *4)))) (-4158 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-634 (-409 *7))) (-4 *7 (-1219 *6)) (-5 *3 (-409 *7)) (-4 *6 (-365)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-634 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-578 *6 *7)))) (-4116 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1219 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| -1924 (-409 *6)) (|:| |coeff| (-409 *6)))) (-5 *1 (-578 *5 *6)) (-5 *3 (-409 *6)))) (-3027 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3284 *7) (|:| |sol?| (-121))) (-568) *7)) (-5 *6 (-634 (-409 *8))) (-4 *7 (-365)) (-4 *8 (-1219 *7)) (-5 *3 (-409 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-634 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-578 *7 *8)))) (-3187 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -1924 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-634 (-409 *8))) (-4 *7 (-365)) (-4 *8 (-1219 *7)) (-5 *3 (-409 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-634 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-578 *7 *8)))) (-3999 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3284 *6) (|:| |sol?| (-121))) (-568) *6)) (-4 *6 (-365)) (-4 *7 (-1219 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-409 *7)) (|:| |a0| *6)) (-2 (|:| -1924 (-409 *7)) (|:| |coeff| (-409 *7))) "failed")) (-5 *1 (-578 *6 *7)) (-5 *3 (-409 *7)))) (-1354 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -1924 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-365)) (-4 *7 (-1219 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-409 *7)) (|:| |a0| *6)) (-2 (|:| -1924 (-409 *7)) (|:| |coeff| (-409 *7))) "failed")) (-5 *1 (-578 *6 *7)) (-5 *3 (-409 *7)))) (-1569 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-634 *6) "failed") (-568) *6 *6)) (-4 *6 (-365)) (-4 *7 (-1219 *6)) (-5 *2 (-2 (|:| |answer| (-585 (-409 *7))) (|:| |a0| *6))) (-5 *1 (-578 *6 *7)) (-5 *3 (-409 *7)))) (-2159 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3284 *6) (|:| |sol?| (-121))) (-568) *6)) (-4 *6 (-365)) (-4 *7 (-1219 *6)) (-5 *2 (-2 (|:| |answer| (-585 (-409 *7))) (|:| |a0| *6))) (-5 *1 (-578 *6 *7)) (-5 *3 (-409 *7)))) (-1997 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -1924 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-365)) (-4 *7 (-1219 *6)) (-5 *2 (-2 (|:| |answer| (-585 (-409 *7))) (|:| |a0| *6))) (-5 *1 (-578 *6 *7)) (-5 *3 (-409 *7))))) +(-10 -7 (-15 -1997 ((-2 (|:| |answer| (-585 (-409 |#2|))) (|:| |a0| |#1|)) (-409 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1924 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2159 ((-2 (|:| |answer| (-585 (-409 |#2|))) (|:| |a0| |#1|)) (-409 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3284 |#1|) (|:| |sol?| (-121))) (-568) |#1|))) (-15 -1569 ((-2 (|:| |answer| (-585 (-409 |#2|))) (|:| |a0| |#1|)) (-409 |#2|) (-1 |#2| |#2|) (-1 (-3 (-634 |#1|) "failed") (-568) |#1| |#1|))) (-15 -1354 ((-3 (-2 (|:| |answer| (-409 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1924 (-409 |#2|)) (|:| |coeff| (-409 |#2|))) "failed") (-409 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1924 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-409 |#2|))) (-15 -3999 ((-3 (-2 (|:| |answer| (-409 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1924 (-409 |#2|)) (|:| |coeff| (-409 |#2|))) "failed") (-409 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3284 |#1|) (|:| |sol?| (-121))) (-568) |#1|) (-409 |#2|))) (-15 -3187 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-409 |#2|)) (|:| |limitedlogs| (-634 (-2 (|:| |coeff| (-409 |#2|)) (|:| |logand| (-409 |#2|))))))) (|:| |a0| |#1|)) "failed") (-409 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1924 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-634 (-409 |#2|)))) (-15 -3027 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-409 |#2|)) (|:| |limitedlogs| (-634 (-2 (|:| |coeff| (-409 |#2|)) (|:| |logand| (-409 |#2|))))))) (|:| |a0| |#1|)) "failed") (-409 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3284 |#1|) (|:| |sol?| (-121))) (-568) |#1|) (-634 (-409 |#2|)))) (-15 -4116 ((-3 (-2 (|:| -1924 (-409 |#2|)) (|:| |coeff| (-409 |#2|))) "failed") (-409 |#2|) (-1 |#2| |#2|) (-409 |#2|))) (-15 -4158 ((-3 (-2 (|:| |mainpart| (-409 |#2|)) (|:| |limitedlogs| (-634 (-2 (|:| |coeff| (-409 |#2|)) (|:| |logand| (-409 |#2|)))))) "failed") (-409 |#2|) (-1 |#2| |#2|) (-634 (-409 |#2|)))) (-15 -3705 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1924 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3168 ((-3 (-615 |#1| |#2|) "failed") (-615 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3284 |#1|) (|:| |sol?| (-121))) (-568) |#1|))) (-15 -2250 ((-2 (|:| |ir| (-585 (-409 |#2|))) (|:| |specpart| (-409 |#2|)) (|:| |polypart| |#2|)) (-409 |#2|) (-1 |#2| |#2|))) (-15 -3311 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) +((-2484 (((-3 |#2| "failed") |#2| (-1161) (-1161)) 10))) +(((-579 |#1| |#2|) (-10 -7 (-15 -2484 ((-3 |#2| "failed") |#2| (-1161) (-1161)))) (-13 (-301) (-842) (-150) (-1037 (-568)) (-630 (-568))) (-13 (-1181) (-959) (-1124) (-29 |#1|))) (T -579)) +((-2484 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1161)) (-4 *4 (-13 (-301) (-842) (-150) (-1037 (-568)) (-630 (-568)))) (-5 *1 (-579 *4 *2)) (-4 *2 (-13 (-1181) (-959) (-1124) (-29 *4)))))) +(-10 -7 (-15 -2484 ((-3 |#2| "failed") |#2| (-1161) (-1161)))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL)) (-2227 (($ $) NIL)) (-1573 (((-121) $) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-1902 (($ $ (-568)) 65)) (-1497 (((-121) $ $) NIL)) (-2671 (($) NIL T CONST)) (-2143 (($ (-1157 (-568)) (-568)) 71)) (-2401 (($ $ $) NIL)) (-2925 (((-3 $ "failed") $) 57)) (-3974 (($ $) 33)) (-2412 (($ $ $) NIL)) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) NIL)) (-4477 (((-763) $) 15)) (-2735 (((-121) $) NIL)) (-3562 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-3094 (((-568)) 27)) (-1914 (((-568) $) 31)) (-2495 (($ $ $) NIL) (($ (-634 $)) NIL)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL)) (-2721 (($ $ $) NIL) (($ (-634 $)) NIL)) (-4497 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1807 (($ $ (-568)) 21)) (-2595 (((-3 $ "failed") $ $) 58)) (-2344 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-2709 (((-763) $) 16)) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) 60)) (-3396 (((-1141 (-568)) $) 18)) (-1811 (($ $) 23)) (-2745 (((-850) $) 85) (($ (-568)) 51) (($ $) NIL)) (-4078 (((-763)) 14)) (-1826 (((-121) $ $) NIL)) (-3996 (((-568) $ (-568)) 35)) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (-3056 (($) 34 T CONST)) (-1556 (($) 19 T CONST)) (-1717 (((-121) $ $) 38)) (-1773 (($ $) 50) (($ $ $) 36)) (-1767 (($ $ $) 49)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) 53) (($ $ $) 54))) +(((-580 |#1| |#2|) (-863 |#1|) (-568) (-121)) (T -580)) +NIL +(-863 |#1|) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) 18)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL)) (-2227 (($ $) NIL)) (-1573 (((-121) $) NIL)) (-2615 (((-121) $) NIL)) (-1739 (((-763)) NIL)) (-1932 (($ $ (-917)) NIL (|has| $ (-370))) (($ $) NIL)) (-3211 (((-1169 (-917) (-763)) (-568)) 47)) (-3134 (((-3 $ "failed") $ $) NIL)) (-4305 (($ $) NIL)) (-1678 (((-420 $) $) NIL)) (-1497 (((-121) $ $) NIL)) (-3983 (((-763)) NIL)) (-2671 (($) NIL T CONST)) (-3666 (((-3 $ "failed") $) 75)) (-2854 (($ $) 74)) (-3498 (($ (-1244 $)) 73)) (-2022 (((-3 "prime" "polynomial" "normal" "cyclic")) 42)) (-2401 (($ $ $) NIL)) (-2925 (((-3 $ "failed") $) 30)) (-1731 (($) NIL)) (-2412 (($ $ $) NIL)) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) NIL)) (-4220 (($) 49)) (-4456 (((-121) $) NIL)) (-3218 (($ $) NIL) (($ $ (-763)) NIL)) (-3927 (((-121) $) NIL)) (-4477 (((-828 (-917)) $) NIL) (((-917) $) NIL)) (-2735 (((-121) $) NIL)) (-2883 (($) 35 (|has| $ (-370)))) (-3917 (((-121) $) NIL (|has| $ (-370)))) (-2657 (($ $ (-917)) NIL (|has| $ (-370))) (($ $) NIL)) (-3038 (((-3 $ "failed") $) NIL)) (-3562 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-2045 (((-1157 $) $ (-917)) NIL (|has| $ (-370))) (((-1157 $) $) 83)) (-3683 (((-917) $) 55)) (-2035 (((-1157 $) $) NIL (|has| $ (-370)))) (-1422 (((-3 (-1157 $) "failed") $ $) NIL (|has| $ (-370))) (((-1157 $) $) NIL (|has| $ (-370)))) (-2109 (($ $ (-1157 $)) NIL (|has| $ (-370)))) (-2495 (($ $ $) NIL) (($ (-634 $)) NIL)) (-4487 (((-1143) $) NIL)) (-2081 (($ $) NIL)) (-4434 (($) NIL T CONST)) (-4355 (($ (-917)) 48)) (-2864 (((-121) $) 67)) (-4022 (((-1108) $) NIL)) (-2704 (($) 16 (|has| $ (-370)))) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL)) (-2721 (($ $ $) NIL) (($ (-634 $)) NIL)) (-1418 (((-634 (-2 (|:| -3848 (-568)) (|:| -3438 (-568))))) 40)) (-3848 (((-420 $) $) NIL)) (-1553 (((-917)) 66) (((-828 (-917))) NIL)) (-4497 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2595 (((-3 $ "failed") $ $) NIL)) (-2344 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-2709 (((-763) $) NIL)) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL)) (-3143 (((-3 (-763) "failed") $ $) NIL) (((-763) $) NIL)) (-4321 (((-139)) NIL)) (-4189 (($ $ (-763)) NIL) (($ $) NIL)) (-3206 (((-917) $) 65) (((-828 (-917)) $) NIL)) (-1626 (((-1157 $)) 82)) (-3065 (($) 54)) (-2027 (($) 36 (|has| $ (-370)))) (-4073 (((-679 $) (-1244 $)) NIL) (((-1244 $) $) 71)) (-4278 (((-568) $) 26)) (-2979 (((-3 (-1244 $) "failed") (-679 $)) NIL)) (-2745 (((-850) $) NIL) (($ (-568)) 28) (($ $) NIL) (($ (-409 (-568))) NIL)) (-4371 (((-3 $ "failed") $) NIL) (($ $) 84)) (-4078 (((-763)) 37)) (-3746 (((-1244 $) (-917)) 77) (((-1244 $)) 76)) (-1826 (((-121) $ $) NIL)) (-4390 (((-121) $) NIL)) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL)) (-3056 (($) 19 T CONST)) (-1556 (($) 15 T CONST)) (-1316 (($ $ (-763)) NIL (|has| $ (-370))) (($ $) NIL (|has| $ (-370)))) (-3190 (($ $ (-763)) NIL) (($ $) NIL)) (-1717 (((-121) $ $) NIL)) (-1779 (($ $ $) NIL)) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) 24)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) 61) (($ $ (-409 (-568))) NIL) (($ (-409 (-568)) $) NIL))) +(((-581 |#1|) (-13 (-350) (-327 $) (-609 (-568))) (-917)) (T -581)) +NIL +(-13 (-350) (-327 $) (-609 (-568))) +((-1592 (((-1249) (-1143)) 10))) +(((-582) (-10 -7 (-15 -1592 ((-1249) (-1143))))) (T -582)) +((-1592 (*1 *2 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-1249)) (-5 *1 (-582))))) +(-10 -7 (-15 -1592 ((-1249) (-1143)))) +((-3969 (((-585 |#2|) (-585 |#2|)) 37)) (-2789 (((-634 |#2|) (-585 |#2|)) 39)) (-1988 ((|#2| (-585 |#2|)) 46))) +(((-583 |#1| |#2|) (-10 -7 (-15 -3969 ((-585 |#2|) (-585 |#2|))) (-15 -2789 ((-634 |#2|) (-585 |#2|))) (-15 -1988 (|#2| (-585 |#2|)))) (-13 (-453) (-1037 (-568)) (-842) (-630 (-568))) (-13 (-29 |#1|) (-1181))) (T -583)) +((-1988 (*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-13 (-29 *4) (-1181))) (-5 *1 (-583 *4 *2)) (-4 *4 (-13 (-453) (-1037 (-568)) (-842) (-630 (-568)))))) (-2789 (*1 *2 *3) (-12 (-5 *3 (-585 *5)) (-4 *5 (-13 (-29 *4) (-1181))) (-4 *4 (-13 (-453) (-1037 (-568)) (-842) (-630 (-568)))) (-5 *2 (-634 *5)) (-5 *1 (-583 *4 *5)))) (-3969 (*1 *2 *2) (-12 (-5 *2 (-585 *4)) (-4 *4 (-13 (-29 *3) (-1181))) (-4 *3 (-13 (-453) (-1037 (-568)) (-842) (-630 (-568)))) (-5 *1 (-583 *3 *4))))) +(-10 -7 (-15 -3969 ((-585 |#2|) (-585 |#2|))) (-15 -2789 ((-634 |#2|) (-585 |#2|))) (-15 -1988 (|#2| (-585 |#2|)))) +((-2795 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-634 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-634 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 38) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -1924 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1924 |#1|) (|:| |coeff| |#1|)) "failed")) 31) (((-585 |#2|) (-1 |#2| |#1|) (-585 |#1|)) 26))) +(((-584 |#1| |#2|) (-10 -7 (-15 -2795 ((-585 |#2|) (-1 |#2| |#1|) (-585 |#1|))) (-15 -2795 ((-3 (-2 (|:| -1924 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1924 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -2795 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -2795 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-634 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-634 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-365) (-365)) (T -584)) +((-2795 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-634 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-365)) (-4 *6 (-365)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-634 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-584 *5 *6)))) (-2795 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-365)) (-4 *2 (-365)) (-5 *1 (-584 *5 *2)))) (-2795 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -1924 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-365)) (-4 *6 (-365)) (-5 *2 (-2 (|:| -1924 *6) (|:| |coeff| *6))) (-5 *1 (-584 *5 *6)))) (-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-585 *5)) (-4 *5 (-365)) (-4 *6 (-365)) (-5 *2 (-585 *6)) (-5 *1 (-584 *5 *6))))) +(-10 -7 (-15 -2795 ((-585 |#2|) (-1 |#2| |#1|) (-585 |#1|))) (-15 -2795 ((-3 (-2 (|:| -1924 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1924 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -2795 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -2795 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-634 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-634 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-2671 (($) NIL T CONST)) (-3666 (((-3 |#1| "failed") $) 68)) (-2854 ((|#1| $) NIL)) (-1924 ((|#1| $) 24)) (-2293 (((-634 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 26)) (-3893 (($ |#1| (-634 (-2 (|:| |scalar| (-409 (-568))) (|:| |coeff| (-1157 |#1|)) (|:| |logand| (-1157 |#1|)))) (-634 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 22)) (-2577 (((-634 (-2 (|:| |scalar| (-409 (-568))) (|:| |coeff| (-1157 |#1|)) (|:| |logand| (-1157 |#1|)))) $) 25)) (-4487 (((-1143) $) NIL)) (-3690 (($ |#1| |#1|) 32) (($ |#1| (-1161)) 43 (|has| |#1| (-1037 (-1161))))) (-4022 (((-1108) $) NIL)) (-3446 (((-121) $) 28)) (-4189 ((|#1| $ (-1 |#1| |#1|)) 80) ((|#1| $ (-1161)) 81 (|has| |#1| (-895 (-1161))))) (-2745 (((-850) $) 95) (($ |#1|) 23)) (-3056 (($) 16 T CONST)) (-1717 (((-121) $ $) NIL)) (-1773 (($ $) 15) (($ $ $) NIL)) (-1767 (($ $ $) 77)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) 14) (($ (-409 (-568)) $) 35) (($ $ (-409 (-568))) NIL))) +(((-585 |#1|) (-13 (-707 (-409 (-568))) (-1037 |#1|) (-10 -8 (-15 -3893 ($ |#1| (-634 (-2 (|:| |scalar| (-409 (-568))) (|:| |coeff| (-1157 |#1|)) (|:| |logand| (-1157 |#1|)))) (-634 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -1924 (|#1| $)) (-15 -2577 ((-634 (-2 (|:| |scalar| (-409 (-568))) (|:| |coeff| (-1157 |#1|)) (|:| |logand| (-1157 |#1|)))) $)) (-15 -2293 ((-634 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3446 ((-121) $)) (-15 -3690 ($ |#1| |#1|)) (-15 -4189 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-895 (-1161))) (-15 -4189 (|#1| $ (-1161))) |noBranch|) (IF (|has| |#1| (-1037 (-1161))) (-15 -3690 ($ |#1| (-1161))) |noBranch|))) (-365)) (T -585)) +((-3893 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-634 (-2 (|:| |scalar| (-409 (-568))) (|:| |coeff| (-1157 *2)) (|:| |logand| (-1157 *2))))) (-5 *4 (-634 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-365)) (-5 *1 (-585 *2)))) (-1924 (*1 *2 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-365)))) (-2577 (*1 *2 *1) (-12 (-5 *2 (-634 (-2 (|:| |scalar| (-409 (-568))) (|:| |coeff| (-1157 *3)) (|:| |logand| (-1157 *3))))) (-5 *1 (-585 *3)) (-4 *3 (-365)))) (-2293 (*1 *2 *1) (-12 (-5 *2 (-634 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-585 *3)) (-4 *3 (-365)))) (-3446 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-585 *3)) (-4 *3 (-365)))) (-3690 (*1 *1 *2 *2) (-12 (-5 *1 (-585 *2)) (-4 *2 (-365)))) (-4189 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-585 *2)) (-4 *2 (-365)))) (-4189 (*1 *2 *1 *3) (-12 (-4 *2 (-365)) (-4 *2 (-895 *3)) (-5 *1 (-585 *2)) (-5 *3 (-1161)))) (-3690 (*1 *1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *1 (-585 *2)) (-4 *2 (-1037 *3)) (-4 *2 (-365))))) +(-13 (-707 (-409 (-568))) (-1037 |#1|) (-10 -8 (-15 -3893 ($ |#1| (-634 (-2 (|:| |scalar| (-409 (-568))) (|:| |coeff| (-1157 |#1|)) (|:| |logand| (-1157 |#1|)))) (-634 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -1924 (|#1| $)) (-15 -2577 ((-634 (-2 (|:| |scalar| (-409 (-568))) (|:| |coeff| (-1157 |#1|)) (|:| |logand| (-1157 |#1|)))) $)) (-15 -2293 ((-634 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3446 ((-121) $)) (-15 -3690 ($ |#1| |#1|)) (-15 -4189 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-895 (-1161))) (-15 -4189 (|#1| $ (-1161))) |noBranch|) (IF (|has| |#1| (-1037 (-1161))) (-15 -3690 ($ |#1| (-1161))) |noBranch|))) +((-4443 (((-121) |#1|) 16)) (-2742 (((-3 |#1| "failed") |#1|) 14)) (-1789 (((-2 (|:| -1461 |#1|) (|:| -3438 (-763))) |#1|) 30) (((-3 |#1| "failed") |#1| (-763)) 18)) (-3407 (((-121) |#1| (-763)) 19)) (-2558 ((|#1| |#1|) 31)) (-4304 ((|#1| |#1| (-763)) 33))) +(((-586 |#1|) (-10 -7 (-15 -3407 ((-121) |#1| (-763))) (-15 -1789 ((-3 |#1| "failed") |#1| (-763))) (-15 -1789 ((-2 (|:| -1461 |#1|) (|:| -3438 (-763))) |#1|)) (-15 -4304 (|#1| |#1| (-763))) (-15 -4443 ((-121) |#1|)) (-15 -2742 ((-3 |#1| "failed") |#1|)) (-15 -2558 (|#1| |#1|))) (-550)) (T -586)) +((-2558 (*1 *2 *2) (-12 (-5 *1 (-586 *2)) (-4 *2 (-550)))) (-2742 (*1 *2 *2) (|partial| -12 (-5 *1 (-586 *2)) (-4 *2 (-550)))) (-4443 (*1 *2 *3) (-12 (-5 *2 (-121)) (-5 *1 (-586 *3)) (-4 *3 (-550)))) (-4304 (*1 *2 *2 *3) (-12 (-5 *3 (-763)) (-5 *1 (-586 *2)) (-4 *2 (-550)))) (-1789 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -1461 *3) (|:| -3438 (-763)))) (-5 *1 (-586 *3)) (-4 *3 (-550)))) (-1789 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-763)) (-5 *1 (-586 *2)) (-4 *2 (-550)))) (-3407 (*1 *2 *3 *4) (-12 (-5 *4 (-763)) (-5 *2 (-121)) (-5 *1 (-586 *3)) (-4 *3 (-550))))) +(-10 -7 (-15 -3407 ((-121) |#1| (-763))) (-15 -1789 ((-3 |#1| "failed") |#1| (-763))) (-15 -1789 ((-2 (|:| -1461 |#1|) (|:| -3438 (-763))) |#1|)) (-15 -4304 (|#1| |#1| (-763))) (-15 -4443 ((-121) |#1|)) (-15 -2742 ((-3 |#1| "failed") |#1|)) (-15 -2558 (|#1| |#1|))) +((-1344 (((-1157 |#1|) (-917)) 26))) +(((-587 |#1|) (-10 -7 (-15 -1344 ((-1157 |#1|) (-917)))) (-350)) (T -587)) +((-1344 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1157 *4)) (-5 *1 (-587 *4)) (-4 *4 (-350))))) +(-10 -7 (-15 -1344 ((-1157 |#1|) (-917)))) +((-3969 (((-585 (-409 (-953 |#1|))) (-585 (-409 (-953 |#1|)))) 26)) (-3837 (((-3 (-310 |#1|) (-634 (-310 |#1|))) (-409 (-953 |#1|)) (-1161)) 32 (|has| |#1| (-150)))) (-2789 (((-634 (-310 |#1|)) (-585 (-409 (-953 |#1|)))) 18)) (-2890 (((-310 |#1|) (-409 (-953 |#1|)) (-1161)) 30 (|has| |#1| (-150)))) (-1988 (((-310 |#1|) (-585 (-409 (-953 |#1|)))) 20))) +(((-588 |#1|) (-10 -7 (-15 -3969 ((-585 (-409 (-953 |#1|))) (-585 (-409 (-953 |#1|))))) (-15 -2789 ((-634 (-310 |#1|)) (-585 (-409 (-953 |#1|))))) (-15 -1988 ((-310 |#1|) (-585 (-409 (-953 |#1|))))) (IF (|has| |#1| (-150)) (PROGN (-15 -3837 ((-3 (-310 |#1|) (-634 (-310 |#1|))) (-409 (-953 |#1|)) (-1161))) (-15 -2890 ((-310 |#1|) (-409 (-953 |#1|)) (-1161)))) |noBranch|)) (-13 (-453) (-1037 (-568)) (-842) (-630 (-568)))) (T -588)) +((-2890 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-953 *5))) (-5 *4 (-1161)) (-4 *5 (-150)) (-4 *5 (-13 (-453) (-1037 (-568)) (-842) (-630 (-568)))) (-5 *2 (-310 *5)) (-5 *1 (-588 *5)))) (-3837 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-953 *5))) (-5 *4 (-1161)) (-4 *5 (-150)) (-4 *5 (-13 (-453) (-1037 (-568)) (-842) (-630 (-568)))) (-5 *2 (-3 (-310 *5) (-634 (-310 *5)))) (-5 *1 (-588 *5)))) (-1988 (*1 *2 *3) (-12 (-5 *3 (-585 (-409 (-953 *4)))) (-4 *4 (-13 (-453) (-1037 (-568)) (-842) (-630 (-568)))) (-5 *2 (-310 *4)) (-5 *1 (-588 *4)))) (-2789 (*1 *2 *3) (-12 (-5 *3 (-585 (-409 (-953 *4)))) (-4 *4 (-13 (-453) (-1037 (-568)) (-842) (-630 (-568)))) (-5 *2 (-634 (-310 *4))) (-5 *1 (-588 *4)))) (-3969 (*1 *2 *2) (-12 (-5 *2 (-585 (-409 (-953 *3)))) (-4 *3 (-13 (-453) (-1037 (-568)) (-842) (-630 (-568)))) (-5 *1 (-588 *3))))) +(-10 -7 (-15 -3969 ((-585 (-409 (-953 |#1|))) (-585 (-409 (-953 |#1|))))) (-15 -2789 ((-634 (-310 |#1|)) (-585 (-409 (-953 |#1|))))) (-15 -1988 ((-310 |#1|) (-585 (-409 (-953 |#1|))))) (IF (|has| |#1| (-150)) (PROGN (-15 -3837 ((-3 (-310 |#1|) (-634 (-310 |#1|))) (-409 (-953 |#1|)) (-1161))) (-15 -2890 ((-310 |#1|) (-409 (-953 |#1|)) (-1161)))) |noBranch|)) +((-2187 (((-634 (-679 (-568))) (-634 (-568)) (-634 (-900 (-568)))) 45) (((-634 (-679 (-568))) (-634 (-568))) 46) (((-679 (-568)) (-634 (-568)) (-900 (-568))) 41)) (-1320 (((-763) (-634 (-568))) 39))) +(((-589) (-10 -7 (-15 -1320 ((-763) (-634 (-568)))) (-15 -2187 ((-679 (-568)) (-634 (-568)) (-900 (-568)))) (-15 -2187 ((-634 (-679 (-568))) (-634 (-568)))) (-15 -2187 ((-634 (-679 (-568))) (-634 (-568)) (-634 (-900 (-568))))))) (T -589)) +((-2187 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-568))) (-5 *4 (-634 (-900 (-568)))) (-5 *2 (-634 (-679 (-568)))) (-5 *1 (-589)))) (-2187 (*1 *2 *3) (-12 (-5 *3 (-634 (-568))) (-5 *2 (-634 (-679 (-568)))) (-5 *1 (-589)))) (-2187 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-568))) (-5 *4 (-900 (-568))) (-5 *2 (-679 (-568))) (-5 *1 (-589)))) (-1320 (*1 *2 *3) (-12 (-5 *3 (-634 (-568))) (-5 *2 (-763)) (-5 *1 (-589))))) +(-10 -7 (-15 -1320 ((-763) (-634 (-568)))) (-15 -2187 ((-679 (-568)) (-634 (-568)) (-900 (-568)))) (-15 -2187 ((-634 (-679 (-568))) (-634 (-568)))) (-15 -2187 ((-634 (-679 (-568))) (-634 (-568)) (-634 (-900 (-568)))))) +((-2067 (((-634 |#5|) |#5| (-121)) 72)) (-1768 (((-121) |#5| (-634 |#5|)) 30))) +(((-590 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2067 ((-634 |#5|) |#5| (-121))) (-15 -1768 ((-121) |#5| (-634 |#5|)))) (-13 (-301) (-150)) (-788) (-842) (-1061 |#1| |#2| |#3|) (-1099 |#1| |#2| |#3| |#4|)) (T -590)) +((-1768 (*1 *2 *3 *4) (-12 (-5 *4 (-634 *3)) (-4 *3 (-1099 *5 *6 *7 *8)) (-4 *5 (-13 (-301) (-150))) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *8 (-1061 *5 *6 *7)) (-5 *2 (-121)) (-5 *1 (-590 *5 *6 *7 *8 *3)))) (-2067 (*1 *2 *3 *4) (-12 (-5 *4 (-121)) (-4 *5 (-13 (-301) (-150))) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *8 (-1061 *5 *6 *7)) (-5 *2 (-634 *3)) (-5 *1 (-590 *5 *6 *7 *8 *3)) (-4 *3 (-1099 *5 *6 *7 *8))))) +(-10 -7 (-15 -2067 ((-634 |#5|) |#5| (-121))) (-15 -1768 ((-121) |#5| (-634 |#5|)))) +((-2447 (((-121) $ $) NIL (|has| (-147) (-1090)))) (-1873 (($ $) 34)) (-2072 (($ $) NIL)) (-4403 (($ $ (-147)) NIL) (($ $ (-142)) NIL)) (-1868 (((-1249) $ (-568) (-568)) NIL (|has| $ (-6 -4520)))) (-3673 (((-121) $ $) 51)) (-3760 (((-121) $ $ (-568)) 46)) (-3969 (((-634 $) $ (-147)) 59) (((-634 $) $ (-142)) 60)) (-2016 (((-121) (-1 (-121) (-147) (-147)) $) NIL) (((-121) $) NIL (|has| (-147) (-842)))) (-3908 (($ (-1 (-121) (-147) (-147)) $) NIL (|has| $ (-6 -4520))) (($ $) NIL (-12 (|has| $ (-6 -4520)) (|has| (-147) (-842))))) (-3644 (($ (-1 (-121) (-147) (-147)) $) NIL) (($ $) NIL (|has| (-147) (-842)))) (-2510 (((-121) $ (-763)) NIL)) (-2436 (((-147) $ (-568) (-147)) 45 (|has| $ (-6 -4520))) (((-147) $ (-1210 (-568)) (-147)) NIL (|has| $ (-6 -4520)))) (-2801 (($ (-1 (-121) (-147)) $) NIL (|has| $ (-6 -4519)))) (-2671 (($) NIL T CONST)) (-1869 (($ $ (-147)) 63) (($ $ (-142)) 64)) (-1578 (($ $) NIL (|has| $ (-6 -4520)))) (-3943 (($ $) NIL)) (-1386 (($ $ (-1210 (-568)) $) 44)) (-3924 (($ $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-147) (-1090))))) (-4328 (($ (-147) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-147) (-1090)))) (($ (-1 (-121) (-147)) $) NIL (|has| $ (-6 -4519)))) (-3092 (((-147) (-1 (-147) (-147) (-147)) $ (-147) (-147)) NIL (-12 (|has| $ (-6 -4519)) (|has| (-147) (-1090)))) (((-147) (-1 (-147) (-147) (-147)) $ (-147)) NIL (|has| $ (-6 -4519))) (((-147) (-1 (-147) (-147) (-147)) $) NIL (|has| $ (-6 -4519)))) (-3989 (((-147) $ (-568) (-147)) NIL (|has| $ (-6 -4520)))) (-2602 (((-147) $ (-568)) NIL)) (-3766 (((-121) $ $) 70)) (-2764 (((-568) (-1 (-121) (-147)) $) NIL) (((-568) (-147) $) NIL (|has| (-147) (-1090))) (((-568) (-147) $ (-568)) 48 (|has| (-147) (-1090))) (((-568) $ $ (-568)) 47) (((-568) (-142) $ (-568)) 50)) (-4360 (((-634 (-147)) $) NIL (|has| $ (-6 -4519)))) (-1849 (($ (-763) (-147)) 9)) (-1737 (((-121) $ (-763)) NIL)) (-1881 (((-568) $) 28 (|has| (-568) (-842)))) (-2521 (($ $ $) NIL (|has| (-147) (-842)))) (-1347 (($ (-1 (-121) (-147) (-147)) $ $) NIL) (($ $ $) NIL (|has| (-147) (-842)))) (-1979 (((-634 (-147)) $) NIL (|has| $ (-6 -4519)))) (-3109 (((-121) (-147) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-147) (-1090))))) (-2223 (((-568) $) 42 (|has| (-568) (-842)))) (-3268 (($ $ $) NIL (|has| (-147) (-842)))) (-4062 (((-121) $ $ (-147)) 71)) (-2661 (((-763) $ $ (-147)) 69)) (-3674 (($ (-1 (-147) (-147)) $) 33 (|has| $ (-6 -4520)))) (-2795 (($ (-1 (-147) (-147)) $) NIL) (($ (-1 (-147) (-147) (-147)) $ $) NIL)) (-2496 (($ $) 37)) (-2003 (($ $) NIL)) (-2166 (((-121) $ (-763)) NIL)) (-3382 (($ $ (-147)) 61) (($ $ (-142)) 62)) (-4487 (((-1143) $) 38 (|has| (-147) (-1090)))) (-4122 (($ (-147) $ (-568)) NIL) (($ $ $ (-568)) 23)) (-4174 (((-634 (-568)) $) NIL)) (-3578 (((-121) (-568) $) NIL)) (-4022 (((-568) $) 68) (((-1108) $) NIL (|has| (-147) (-1090)))) (-3876 (((-147) $) NIL (|has| (-568) (-842)))) (-3775 (((-3 (-147) "failed") (-1 (-121) (-147)) $) NIL)) (-3724 (($ $ (-147)) NIL (|has| $ (-6 -4520)))) (-1387 (((-121) (-1 (-121) (-147)) $) NIL (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 (-147)))) NIL (-12 (|has| (-147) (-303 (-147))) (|has| (-147) (-1090)))) (($ $ (-288 (-147))) NIL (-12 (|has| (-147) (-303 (-147))) (|has| (-147) (-1090)))) (($ $ (-147) (-147)) NIL (-12 (|has| (-147) (-303 (-147))) (|has| (-147) (-1090)))) (($ $ (-634 (-147)) (-634 (-147))) NIL (-12 (|has| (-147) (-303 (-147))) (|has| (-147) (-1090))))) (-3171 (((-121) $ $) NIL)) (-4467 (((-121) (-147) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-147) (-1090))))) (-2041 (((-634 (-147)) $) NIL)) (-3084 (((-121) $) 12)) (-3248 (($) 10)) (-2779 (((-147) $ (-568) (-147)) NIL) (((-147) $ (-568)) 52) (($ $ (-1210 (-568))) 21) (($ $ $) NIL)) (-2826 (($ $ (-568)) NIL) (($ $ (-1210 (-568))) NIL)) (-4168 (((-763) (-1 (-121) (-147)) $) NIL (|has| $ (-6 -4519))) (((-763) (-147) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-147) (-1090))))) (-2256 (($ $ $ (-568)) 65 (|has| $ (-6 -4520)))) (-3863 (($ $) 17)) (-4278 (((-541) $) NIL (|has| (-147) (-609 (-541))))) (-4287 (($ (-634 (-147))) NIL)) (-2768 (($ $ (-147)) NIL) (($ (-147) $) NIL) (($ $ $) 16) (($ (-634 $)) 66)) (-2745 (($ (-147)) NIL) (((-850) $) 27 (|has| (-147) (-1090)))) (-1319 (((-121) (-1 (-121) (-147)) $) NIL (|has| $ (-6 -4519)))) (-1751 (((-121) $ $) NIL (|has| (-147) (-842)))) (-1738 (((-121) $ $) NIL (|has| (-147) (-842)))) (-1717 (((-121) $ $) 14 (|has| (-147) (-1090)))) (-1745 (((-121) $ $) NIL (|has| (-147) (-842)))) (-1732 (((-121) $ $) 15 (|has| (-147) (-842)))) (-1697 (((-763) $) 13 (|has| $ (-6 -4519))))) +(((-591 |#1|) (-13 (-1129) (-10 -8 (-15 -4022 ((-568) $)))) (-568)) (T -591)) +((-4022 (*1 *2 *1) (-12 (-5 *2 (-568)) (-5 *1 (-591 *3)) (-14 *3 *2)))) +(-13 (-1129) (-10 -8 (-15 -4022 ((-568) $)))) +((-2627 (((-2 (|:| |num| |#4|) (|:| |den| (-568))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-568))) |#4| |#2| (-1084 |#4|)) 32))) +(((-592 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2627 ((-2 (|:| |num| |#4|) (|:| |den| (-568))) |#4| |#2| (-1084 |#4|))) (-15 -2627 ((-2 (|:| |num| |#4|) (|:| |den| (-568))) |#4| |#2|))) (-788) (-842) (-558) (-950 |#3| |#1| |#2|)) (T -592)) +((-2627 (*1 *2 *3 *4) (-12 (-4 *5 (-788)) (-4 *4 (-842)) (-4 *6 (-558)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-568)))) (-5 *1 (-592 *5 *4 *6 *3)) (-4 *3 (-950 *6 *5 *4)))) (-2627 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1084 *3)) (-4 *3 (-950 *7 *6 *4)) (-4 *6 (-788)) (-4 *4 (-842)) (-4 *7 (-558)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-568)))) (-5 *1 (-592 *6 *4 *7 *3))))) +(-10 -7 (-15 -2627 ((-2 (|:| |num| |#4|) (|:| |den| (-568))) |#4| |#2| (-1084 |#4|))) (-15 -2627 ((-2 (|:| |num| |#4|) (|:| |den| (-568))) |#4| |#2|))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) 63)) (-2055 (((-634 (-1075)) $) NIL)) (-1305 (((-1161) $) NIL)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-2227 (($ $) NIL (|has| |#1| (-558)))) (-1573 (((-121) $) NIL (|has| |#1| (-558)))) (-2617 (($ $ (-568)) 54) (($ $ (-568) (-568)) 55)) (-2583 (((-1141 (-2 (|:| |k| (-568)) (|:| |c| |#1|))) $) 60)) (-3414 (($ $) 99)) (-3134 (((-3 $ "failed") $ $) NIL)) (-3529 (((-850) (-1141 (-2 (|:| |k| (-568)) (|:| |c| |#1|))) (-1026 (-835 (-568))) (-1161) |#1| (-409 (-568))) 214)) (-3728 (($ (-1141 (-2 (|:| |k| (-568)) (|:| |c| |#1|)))) 34)) (-2671 (($) NIL T CONST)) (-2114 (($ $) NIL)) (-2925 (((-3 $ "failed") $) NIL)) (-3992 (((-121) $) NIL)) (-4477 (((-568) $) 58) (((-568) $ (-568)) 59)) (-2735 (((-121) $) NIL)) (-3536 (($ $ (-917)) 76)) (-1716 (($ (-1 |#1| (-568)) $) 73)) (-3921 (((-121) $) 25)) (-2047 (($ |#1| (-568)) 22) (($ $ (-1075) (-568)) NIL) (($ $ (-634 (-1075)) (-634 (-568))) NIL)) (-2795 (($ (-1 |#1| |#1|) $) 67)) (-2866 (($ (-1026 (-835 (-568))) (-1141 (-2 (|:| |k| (-568)) (|:| |c| |#1|)))) 11)) (-2097 (($ $) NIL)) (-2102 ((|#1| $) NIL)) (-4487 (((-1143) $) NIL)) (-3837 (($ $) 111 (|has| |#1| (-43 (-409 (-568)))))) (-3696 (((-3 $ "failed") $ $ (-121)) 98)) (-2483 (($ $ $) 107)) (-4022 (((-1108) $) NIL)) (-1898 (((-1141 (-2 (|:| |k| (-568)) (|:| |c| |#1|))) $) 13)) (-3689 (((-1026 (-835 (-568))) $) 12)) (-1807 (($ $ (-568)) 45)) (-2595 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-1339 (((-1141 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-568)))))) (-2779 ((|#1| $ (-568)) 57) (($ $ $) NIL (|has| (-568) (-1102)))) (-4189 (($ $ (-634 (-1161)) (-634 (-763))) NIL (-12 (|has| |#1| (-15 * (|#1| (-568) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-1161) (-763)) NIL (-12 (|has| |#1| (-15 * (|#1| (-568) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-634 (-1161))) NIL (-12 (|has| |#1| (-15 * (|#1| (-568) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-1161)) NIL (-12 (|has| |#1| (-15 * (|#1| (-568) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-763)) NIL (|has| |#1| (-15 * (|#1| (-568) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-568) |#1|))))) (-3206 (((-568) $) NIL)) (-1811 (($ $) 46)) (-2745 (((-850) $) NIL) (($ (-568)) 28) (($ (-409 (-568))) NIL (|has| |#1| (-43 (-409 (-568))))) (($ $) NIL (|has| |#1| (-558))) (($ |#1|) 27 (|has| |#1| (-172)))) (-2604 ((|#1| $ (-568)) 56)) (-4371 (((-3 $ "failed") $) NIL (|has| |#1| (-148)))) (-4078 (((-763)) 37)) (-1374 ((|#1| $) NIL)) (-1951 (($ $) 179 (|has| |#1| (-43 (-409 (-568)))))) (-4187 (($ $) 155 (|has| |#1| (-43 (-409 (-568)))))) (-3464 (($ $) 176 (|has| |#1| (-43 (-409 (-568)))))) (-1893 (($ $) 152 (|has| |#1| (-43 (-409 (-568)))))) (-3353 (($ $) 181 (|has| |#1| (-43 (-409 (-568)))))) (-2029 (($ $) 158 (|has| |#1| (-43 (-409 (-568)))))) (-3077 (($ $ (-409 (-568))) 145 (|has| |#1| (-43 (-409 (-568)))))) (-4240 (($ $ |#1|) 120 (|has| |#1| (-43 (-409 (-568)))))) (-1391 (($ $) 149 (|has| |#1| (-43 (-409 (-568)))))) (-1284 (($ $) 147 (|has| |#1| (-43 (-409 (-568)))))) (-3468 (($ $) 182 (|has| |#1| (-43 (-409 (-568)))))) (-3852 (($ $) 159 (|has| |#1| (-43 (-409 (-568)))))) (-2485 (($ $) 180 (|has| |#1| (-43 (-409 (-568)))))) (-2322 (($ $) 157 (|has| |#1| (-43 (-409 (-568)))))) (-1625 (($ $) 177 (|has| |#1| (-43 (-409 (-568)))))) (-4490 (($ $) 153 (|has| |#1| (-43 (-409 (-568)))))) (-2410 (($ $) 187 (|has| |#1| (-43 (-409 (-568)))))) (-2188 (($ $) 167 (|has| |#1| (-43 (-409 (-568)))))) (-4463 (($ $) 184 (|has| |#1| (-43 (-409 (-568)))))) (-3100 (($ $) 162 (|has| |#1| (-43 (-409 (-568)))))) (-2268 (($ $) 191 (|has| |#1| (-43 (-409 (-568)))))) (-3124 (($ $) 171 (|has| |#1| (-43 (-409 (-568)))))) (-2083 (($ $) 193 (|has| |#1| (-43 (-409 (-568)))))) (-3235 (($ $) 173 (|has| |#1| (-43 (-409 (-568)))))) (-2957 (($ $) 189 (|has| |#1| (-43 (-409 (-568)))))) (-3654 (($ $) 169 (|has| |#1| (-43 (-409 (-568)))))) (-2524 (($ $) 186 (|has| |#1| (-43 (-409 (-568)))))) (-3810 (($ $) 165 (|has| |#1| (-43 (-409 (-568)))))) (-1826 (((-121) $ $) NIL (|has| |#1| (-558)))) (-3996 ((|#1| $ (-568)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-568)))) (|has| |#1| (-15 -2745 (|#1| (-1161))))))) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (-3056 (($) 29 T CONST)) (-1556 (($) 38 T CONST)) (-3190 (($ $ (-634 (-1161)) (-634 (-763))) NIL (-12 (|has| |#1| (-15 * (|#1| (-568) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-1161) (-763)) NIL (-12 (|has| |#1| (-15 * (|#1| (-568) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-634 (-1161))) NIL (-12 (|has| |#1| (-15 * (|#1| (-568) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-1161)) NIL (-12 (|has| |#1| (-15 * (|#1| (-568) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-763)) NIL (|has| |#1| (-15 * (|#1| (-568) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-568) |#1|))))) (-1717 (((-121) $ $) 65)) (-1779 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-1773 (($ $) 84) (($ $ $) 64)) (-1767 (($ $ $) 81)) (** (($ $ (-917)) NIL) (($ $ (-763)) 102)) (* (($ (-917) $) 89) (($ (-763) $) 87) (($ (-568) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 114) (($ (-409 (-568)) $) NIL (|has| |#1| (-43 (-409 (-568))))) (($ $ (-409 (-568))) NIL (|has| |#1| (-43 (-409 (-568))))))) +(((-593 |#1|) (-13 (-1221 |#1| (-568)) (-10 -8 (-15 -2866 ($ (-1026 (-835 (-568))) (-1141 (-2 (|:| |k| (-568)) (|:| |c| |#1|))))) (-15 -3689 ((-1026 (-835 (-568))) $)) (-15 -1898 ((-1141 (-2 (|:| |k| (-568)) (|:| |c| |#1|))) $)) (-15 -3728 ($ (-1141 (-2 (|:| |k| (-568)) (|:| |c| |#1|))))) (-15 -3921 ((-121) $)) (-15 -1716 ($ (-1 |#1| (-568)) $)) (-15 -3696 ((-3 $ "failed") $ $ (-121))) (-15 -3414 ($ $)) (-15 -2483 ($ $ $)) (-15 -3529 ((-850) (-1141 (-2 (|:| |k| (-568)) (|:| |c| |#1|))) (-1026 (-835 (-568))) (-1161) |#1| (-409 (-568)))) (IF (|has| |#1| (-43 (-409 (-568)))) (PROGN (-15 -3837 ($ $)) (-15 -4240 ($ $ |#1|)) (-15 -3077 ($ $ (-409 (-568)))) (-15 -1284 ($ $)) (-15 -1391 ($ $)) (-15 -1893 ($ $)) (-15 -4490 ($ $)) (-15 -4187 ($ $)) (-15 -2322 ($ $)) (-15 -2029 ($ $)) (-15 -3852 ($ $)) (-15 -3100 ($ $)) (-15 -3810 ($ $)) (-15 -2188 ($ $)) (-15 -3654 ($ $)) (-15 -3124 ($ $)) (-15 -3235 ($ $)) (-15 -3464 ($ $)) (-15 -1625 ($ $)) (-15 -1951 ($ $)) (-15 -2485 ($ $)) (-15 -3353 ($ $)) (-15 -3468 ($ $)) (-15 -4463 ($ $)) (-15 -2524 ($ $)) (-15 -2410 ($ $)) (-15 -2957 ($ $)) (-15 -2268 ($ $)) (-15 -2083 ($ $))) |noBranch|))) (-1047)) (T -593)) +((-3921 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-593 *3)) (-4 *3 (-1047)))) (-2866 (*1 *1 *2 *3) (-12 (-5 *2 (-1026 (-835 (-568)))) (-5 *3 (-1141 (-2 (|:| |k| (-568)) (|:| |c| *4)))) (-4 *4 (-1047)) (-5 *1 (-593 *4)))) (-3689 (*1 *2 *1) (-12 (-5 *2 (-1026 (-835 (-568)))) (-5 *1 (-593 *3)) (-4 *3 (-1047)))) (-1898 (*1 *2 *1) (-12 (-5 *2 (-1141 (-2 (|:| |k| (-568)) (|:| |c| *3)))) (-5 *1 (-593 *3)) (-4 *3 (-1047)))) (-3728 (*1 *1 *2) (-12 (-5 *2 (-1141 (-2 (|:| |k| (-568)) (|:| |c| *3)))) (-4 *3 (-1047)) (-5 *1 (-593 *3)))) (-1716 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-568))) (-4 *3 (-1047)) (-5 *1 (-593 *3)))) (-3696 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-121)) (-5 *1 (-593 *3)) (-4 *3 (-1047)))) (-3414 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-1047)))) (-2483 (*1 *1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-1047)))) (-3529 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1141 (-2 (|:| |k| (-568)) (|:| |c| *6)))) (-5 *4 (-1026 (-835 (-568)))) (-5 *5 (-1161)) (-5 *7 (-409 (-568))) (-4 *6 (-1047)) (-5 *2 (-850)) (-5 *1 (-593 *6)))) (-3837 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-43 (-409 (-568)))) (-4 *2 (-1047)))) (-4240 (*1 *1 *1 *2) (-12 (-5 *1 (-593 *2)) (-4 *2 (-43 (-409 (-568)))) (-4 *2 (-1047)))) (-3077 (*1 *1 *1 *2) (-12 (-5 *2 (-409 (-568))) (-5 *1 (-593 *3)) (-4 *3 (-43 *2)) (-4 *3 (-1047)))) (-1284 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-43 (-409 (-568)))) (-4 *2 (-1047)))) (-1391 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-43 (-409 (-568)))) (-4 *2 (-1047)))) (-1893 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-43 (-409 (-568)))) (-4 *2 (-1047)))) (-4490 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-43 (-409 (-568)))) (-4 *2 (-1047)))) (-4187 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-43 (-409 (-568)))) (-4 *2 (-1047)))) (-2322 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-43 (-409 (-568)))) (-4 *2 (-1047)))) (-2029 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-43 (-409 (-568)))) (-4 *2 (-1047)))) (-3852 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-43 (-409 (-568)))) (-4 *2 (-1047)))) (-3100 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-43 (-409 (-568)))) (-4 *2 (-1047)))) (-3810 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-43 (-409 (-568)))) (-4 *2 (-1047)))) (-2188 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-43 (-409 (-568)))) (-4 *2 (-1047)))) (-3654 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-43 (-409 (-568)))) (-4 *2 (-1047)))) (-3124 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-43 (-409 (-568)))) (-4 *2 (-1047)))) (-3235 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-43 (-409 (-568)))) (-4 *2 (-1047)))) (-3464 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-43 (-409 (-568)))) (-4 *2 (-1047)))) (-1625 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-43 (-409 (-568)))) (-4 *2 (-1047)))) (-1951 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-43 (-409 (-568)))) (-4 *2 (-1047)))) (-2485 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-43 (-409 (-568)))) (-4 *2 (-1047)))) (-3353 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-43 (-409 (-568)))) (-4 *2 (-1047)))) (-3468 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-43 (-409 (-568)))) (-4 *2 (-1047)))) (-4463 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-43 (-409 (-568)))) (-4 *2 (-1047)))) (-2524 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-43 (-409 (-568)))) (-4 *2 (-1047)))) (-2410 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-43 (-409 (-568)))) (-4 *2 (-1047)))) (-2957 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-43 (-409 (-568)))) (-4 *2 (-1047)))) (-2268 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-43 (-409 (-568)))) (-4 *2 (-1047)))) (-2083 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-43 (-409 (-568)))) (-4 *2 (-1047))))) +(-13 (-1221 |#1| (-568)) (-10 -8 (-15 -2866 ($ (-1026 (-835 (-568))) (-1141 (-2 (|:| |k| (-568)) (|:| |c| |#1|))))) (-15 -3689 ((-1026 (-835 (-568))) $)) (-15 -1898 ((-1141 (-2 (|:| |k| (-568)) (|:| |c| |#1|))) $)) (-15 -3728 ($ (-1141 (-2 (|:| |k| (-568)) (|:| |c| |#1|))))) (-15 -3921 ((-121) $)) (-15 -1716 ($ (-1 |#1| (-568)) $)) (-15 -3696 ((-3 $ "failed") $ $ (-121))) (-15 -3414 ($ $)) (-15 -2483 ($ $ $)) (-15 -3529 ((-850) (-1141 (-2 (|:| |k| (-568)) (|:| |c| |#1|))) (-1026 (-835 (-568))) (-1161) |#1| (-409 (-568)))) (IF (|has| |#1| (-43 (-409 (-568)))) (PROGN (-15 -3837 ($ $)) (-15 -4240 ($ $ |#1|)) (-15 -3077 ($ $ (-409 (-568)))) (-15 -1284 ($ $)) (-15 -1391 ($ $)) (-15 -1893 ($ $)) (-15 -4490 ($ $)) (-15 -4187 ($ $)) (-15 -2322 ($ $)) (-15 -2029 ($ $)) (-15 -3852 ($ $)) (-15 -3100 ($ $)) (-15 -3810 ($ $)) (-15 -2188 ($ $)) (-15 -3654 ($ $)) (-15 -3124 ($ $)) (-15 -3235 ($ $)) (-15 -3464 ($ $)) (-15 -1625 ($ $)) (-15 -1951 ($ $)) (-15 -2485 ($ $)) (-15 -3353 ($ $)) (-15 -3468 ($ $)) (-15 -4463 ($ $)) (-15 -2524 ($ $)) (-15 -2410 ($ $)) (-15 -2957 ($ $)) (-15 -2268 ($ $)) (-15 -2083 ($ $))) |noBranch|))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-2227 (($ $) NIL (|has| |#1| (-558)))) (-1573 (((-121) $) NIL (|has| |#1| (-558)))) (-3134 (((-3 $ "failed") $ $) NIL)) (-3728 (($ (-1141 |#1|)) 9)) (-2671 (($) NIL T CONST)) (-2925 (((-3 $ "failed") $) 42)) (-3992 (((-121) $) 52)) (-4477 (((-763) $) 55) (((-763) $ (-763)) 54)) (-2735 (((-121) $) NIL)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2595 (((-3 $ "failed") $ $) 44 (|has| |#1| (-558)))) (-2745 (((-850) $) NIL) (($ (-568)) NIL) (($ $) NIL (|has| |#1| (-558)))) (-1302 (((-1141 |#1|) $) 23)) (-4078 (((-763)) 51)) (-1826 (((-121) $ $) NIL (|has| |#1| (-558)))) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (-3056 (($) 10 T CONST)) (-1556 (($) 14 T CONST)) (-1717 (((-121) $ $) 22)) (-1773 (($ $) 30) (($ $ $) 16)) (-1767 (($ $ $) 25)) (** (($ $ (-917)) NIL) (($ $ (-763)) 49)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-568)) 36))) +(((-594 |#1|) (-13 (-1047) (-10 -8 (-15 -1302 ((-1141 |#1|) $)) (-15 -3728 ($ (-1141 |#1|))) (-15 -3992 ((-121) $)) (-15 -4477 ((-763) $)) (-15 -4477 ((-763) $ (-763))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-568))) (IF (|has| |#1| (-558)) (-6 (-558)) |noBranch|))) (-1047)) (T -594)) +((-1302 (*1 *2 *1) (-12 (-5 *2 (-1141 *3)) (-5 *1 (-594 *3)) (-4 *3 (-1047)))) (-3728 (*1 *1 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-1047)) (-5 *1 (-594 *3)))) (-3992 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-594 *3)) (-4 *3 (-1047)))) (-4477 (*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-594 *3)) (-4 *3 (-1047)))) (-4477 (*1 *2 *1 *2) (-12 (-5 *2 (-763)) (-5 *1 (-594 *3)) (-4 *3 (-1047)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-1047)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-594 *2)) (-4 *2 (-1047)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-594 *3)) (-4 *3 (-1047))))) +(-13 (-1047) (-10 -8 (-15 -1302 ((-1141 |#1|) $)) (-15 -3728 ($ (-1141 |#1|))) (-15 -3992 ((-121) $)) (-15 -4477 ((-763) $)) (-15 -4477 ((-763) $ (-763))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-568))) (IF (|has| |#1| (-558)) (-6 (-558)) |noBranch|))) +((-2795 (((-598 |#2|) (-1 |#2| |#1|) (-598 |#1|)) 15))) +(((-595 |#1| |#2|) (-10 -7 (-15 -2795 ((-598 |#2|) (-1 |#2| |#1|) (-598 |#1|)))) (-1195) (-1195)) (T -595)) +((-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-598 *5)) (-4 *5 (-1195)) (-4 *6 (-1195)) (-5 *2 (-598 *6)) (-5 *1 (-595 *5 *6))))) +(-10 -7 (-15 -2795 ((-598 |#2|) (-1 |#2| |#1|) (-598 |#1|)))) +((-2795 (((-1141 |#3|) (-1 |#3| |#1| |#2|) (-598 |#1|) (-1141 |#2|)) 20) (((-1141 |#3|) (-1 |#3| |#1| |#2|) (-1141 |#1|) (-598 |#2|)) 19) (((-598 |#3|) (-1 |#3| |#1| |#2|) (-598 |#1|) (-598 |#2|)) 18))) +(((-596 |#1| |#2| |#3|) (-10 -7 (-15 -2795 ((-598 |#3|) (-1 |#3| |#1| |#2|) (-598 |#1|) (-598 |#2|))) (-15 -2795 ((-1141 |#3|) (-1 |#3| |#1| |#2|) (-1141 |#1|) (-598 |#2|))) (-15 -2795 ((-1141 |#3|) (-1 |#3| |#1| |#2|) (-598 |#1|) (-1141 |#2|)))) (-1195) (-1195) (-1195)) (T -596)) +((-2795 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-598 *6)) (-5 *5 (-1141 *7)) (-4 *6 (-1195)) (-4 *7 (-1195)) (-4 *8 (-1195)) (-5 *2 (-1141 *8)) (-5 *1 (-596 *6 *7 *8)))) (-2795 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1141 *6)) (-5 *5 (-598 *7)) (-4 *6 (-1195)) (-4 *7 (-1195)) (-4 *8 (-1195)) (-5 *2 (-1141 *8)) (-5 *1 (-596 *6 *7 *8)))) (-2795 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-598 *6)) (-5 *5 (-598 *7)) (-4 *6 (-1195)) (-4 *7 (-1195)) (-4 *8 (-1195)) (-5 *2 (-598 *8)) (-5 *1 (-596 *6 *7 *8))))) +(-10 -7 (-15 -2795 ((-598 |#3|) (-1 |#3| |#1| |#2|) (-598 |#1|) (-598 |#2|))) (-15 -2795 ((-1141 |#3|) (-1 |#3| |#1| |#2|) (-1141 |#1|) (-598 |#2|))) (-15 -2795 ((-1141 |#3|) (-1 |#3| |#1| |#2|) (-598 |#1|) (-1141 |#2|)))) +((-3201 ((|#3| |#3| (-634 (-607 |#3|)) (-634 (-1161))) 55)) (-4173 (((-169 |#2|) |#3|) 116)) (-1683 ((|#3| (-169 |#2|)) 43)) (-2980 ((|#2| |#3|) 19)) (-4217 ((|#3| |#2|) 32))) +(((-597 |#1| |#2| |#3|) (-10 -7 (-15 -1683 (|#3| (-169 |#2|))) (-15 -2980 (|#2| |#3|)) (-15 -4217 (|#3| |#2|)) (-15 -4173 ((-169 |#2|) |#3|)) (-15 -3201 (|#3| |#3| (-634 (-607 |#3|)) (-634 (-1161))))) (-13 (-558) (-842)) (-13 (-432 |#1|) (-1002) (-1181)) (-13 (-432 (-169 |#1|)) (-1002) (-1181))) (T -597)) +((-3201 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-634 (-607 *2))) (-5 *4 (-634 (-1161))) (-4 *2 (-13 (-432 (-169 *5)) (-1002) (-1181))) (-4 *5 (-13 (-558) (-842))) (-5 *1 (-597 *5 *6 *2)) (-4 *6 (-13 (-432 *5) (-1002) (-1181))))) (-4173 (*1 *2 *3) (-12 (-4 *4 (-13 (-558) (-842))) (-5 *2 (-169 *5)) (-5 *1 (-597 *4 *5 *3)) (-4 *5 (-13 (-432 *4) (-1002) (-1181))) (-4 *3 (-13 (-432 (-169 *4)) (-1002) (-1181))))) (-4217 (*1 *2 *3) (-12 (-4 *4 (-13 (-558) (-842))) (-4 *2 (-13 (-432 (-169 *4)) (-1002) (-1181))) (-5 *1 (-597 *4 *3 *2)) (-4 *3 (-13 (-432 *4) (-1002) (-1181))))) (-2980 (*1 *2 *3) (-12 (-4 *4 (-13 (-558) (-842))) (-4 *2 (-13 (-432 *4) (-1002) (-1181))) (-5 *1 (-597 *4 *2 *3)) (-4 *3 (-13 (-432 (-169 *4)) (-1002) (-1181))))) (-1683 (*1 *2 *3) (-12 (-5 *3 (-169 *5)) (-4 *5 (-13 (-432 *4) (-1002) (-1181))) (-4 *4 (-13 (-558) (-842))) (-4 *2 (-13 (-432 (-169 *4)) (-1002) (-1181))) (-5 *1 (-597 *4 *5 *2))))) +(-10 -7 (-15 -1683 (|#3| (-169 |#2|))) (-15 -2980 (|#2| |#3|)) (-15 -4217 (|#3| |#2|)) (-15 -4173 ((-169 |#2|) |#3|)) (-15 -3201 (|#3| |#3| (-634 (-607 |#3|)) (-634 (-1161))))) +((-2801 (($ (-1 (-121) |#1|) $) 16)) (-2795 (($ (-1 |#1| |#1|) $) NIL)) (-2781 (($ (-1 |#1| |#1|) |#1|) 9)) (-2794 (($ (-1 (-121) |#1|) $) 12)) (-2798 (($ (-1 (-121) |#1|) $) 14)) (-4287 (((-1141 |#1|) $) 17)) (-2745 (((-850) $) NIL))) +(((-598 |#1|) (-13 (-608 (-850)) (-10 -8 (-15 -2795 ($ (-1 |#1| |#1|) $)) (-15 -2794 ($ (-1 (-121) |#1|) $)) (-15 -2798 ($ (-1 (-121) |#1|) $)) (-15 -2801 ($ (-1 (-121) |#1|) $)) (-15 -2781 ($ (-1 |#1| |#1|) |#1|)) (-15 -4287 ((-1141 |#1|) $)))) (-1195)) (T -598)) +((-2795 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1195)) (-5 *1 (-598 *3)))) (-2794 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-121) *3)) (-4 *3 (-1195)) (-5 *1 (-598 *3)))) (-2798 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-121) *3)) (-4 *3 (-1195)) (-5 *1 (-598 *3)))) (-2801 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-121) *3)) (-4 *3 (-1195)) (-5 *1 (-598 *3)))) (-2781 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1195)) (-5 *1 (-598 *3)))) (-4287 (*1 *2 *1) (-12 (-5 *2 (-1141 *3)) (-5 *1 (-598 *3)) (-4 *3 (-1195))))) +(-13 (-608 (-850)) (-10 -8 (-15 -2795 ($ (-1 |#1| |#1|) $)) (-15 -2794 ($ (-1 (-121) |#1|) $)) (-15 -2798 ($ (-1 (-121) |#1|) $)) (-15 -2801 ($ (-1 (-121) |#1|) $)) (-15 -2781 ($ (-1 |#1| |#1|) |#1|)) (-15 -4287 ((-1141 |#1|) $)))) +((-2447 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-3205 (($ (-763)) NIL (|has| |#1| (-23)))) (-1868 (((-1249) $ (-568) (-568)) NIL (|has| $ (-6 -4520)))) (-2016 (((-121) (-1 (-121) |#1| |#1|) $) NIL) (((-121) $) NIL (|has| |#1| (-842)))) (-3908 (($ (-1 (-121) |#1| |#1|) $) NIL (|has| $ (-6 -4520))) (($ $) NIL (-12 (|has| $ (-6 -4520)) (|has| |#1| (-842))))) (-3644 (($ (-1 (-121) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-842)))) (-2510 (((-121) $ (-763)) NIL)) (-2436 ((|#1| $ (-568) |#1|) NIL (|has| $ (-6 -4520))) ((|#1| $ (-1210 (-568)) |#1|) NIL (|has| $ (-6 -4520)))) (-2801 (($ (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-2671 (($) NIL T CONST)) (-1578 (($ $) NIL (|has| $ (-6 -4520)))) (-3943 (($ $) NIL)) (-3924 (($ $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-4328 (($ |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090)))) (($ (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-3092 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4519))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4519)))) (-3989 ((|#1| $ (-568) |#1|) NIL (|has| $ (-6 -4520)))) (-2602 ((|#1| $ (-568)) NIL)) (-2764 (((-568) (-1 (-121) |#1|) $) NIL) (((-568) |#1| $) NIL (|has| |#1| (-1090))) (((-568) |#1| $ (-568)) NIL (|has| |#1| (-1090)))) (-4360 (((-634 |#1|) $) NIL (|has| $ (-6 -4519)))) (-1802 (((-679 |#1|) $ $) NIL (|has| |#1| (-1047)))) (-1849 (($ (-763) |#1|) NIL)) (-1737 (((-121) $ (-763)) NIL)) (-1881 (((-568) $) NIL (|has| (-568) (-842)))) (-2521 (($ $ $) NIL (|has| |#1| (-842)))) (-1347 (($ (-1 (-121) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-842)))) (-1979 (((-634 |#1|) $) NIL (|has| $ (-6 -4519)))) (-3109 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-2223 (((-568) $) NIL (|has| (-568) (-842)))) (-3268 (($ $ $) NIL (|has| |#1| (-842)))) (-3674 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1550 ((|#1| $) NIL (-12 (|has| |#1| (-1002)) (|has| |#1| (-1047))))) (-2166 (((-121) $ (-763)) NIL)) (-3678 ((|#1| $) NIL (-12 (|has| |#1| (-1002)) (|has| |#1| (-1047))))) (-4487 (((-1143) $) NIL (|has| |#1| (-1090)))) (-4122 (($ |#1| $ (-568)) NIL) (($ $ $ (-568)) NIL)) (-4174 (((-634 (-568)) $) NIL)) (-3578 (((-121) (-568) $) NIL)) (-4022 (((-1108) $) NIL (|has| |#1| (-1090)))) (-3876 ((|#1| $) NIL (|has| (-568) (-842)))) (-3775 (((-3 |#1| "failed") (-1 (-121) |#1|) $) NIL)) (-3724 (($ $ |#1|) NIL (|has| $ (-6 -4520)))) (-1387 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-634 |#1|) (-634 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))))) (-3171 (((-121) $ $) NIL)) (-4467 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-2041 (((-634 |#1|) $) NIL)) (-3084 (((-121) $) NIL)) (-3248 (($) NIL)) (-2779 ((|#1| $ (-568) |#1|) NIL) ((|#1| $ (-568)) NIL) (($ $ (-1210 (-568))) NIL)) (-3682 ((|#1| $ $) NIL (|has| |#1| (-1047)))) (-2826 (($ $ (-568)) NIL) (($ $ (-1210 (-568))) NIL)) (-2748 (($ $ $) NIL (|has| |#1| (-1047)))) (-4168 (((-763) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519))) (((-763) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-2256 (($ $ $ (-568)) NIL (|has| $ (-6 -4520)))) (-3863 (($ $) NIL)) (-4278 (((-541) $) NIL (|has| |#1| (-609 (-541))))) (-4287 (($ (-634 |#1|)) NIL)) (-2768 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-634 $)) NIL)) (-2745 (((-850) $) NIL (|has| |#1| (-1090)))) (-1319 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-1751 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1738 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1717 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-1745 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1732 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1773 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1767 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-568) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-716))) (($ $ |#1|) NIL (|has| |#1| (-716)))) (-1697 (((-763) $) NIL (|has| $ (-6 -4519))))) +(((-599 |#1| |#2|) (-1242 |#1|) (-1195) (-568)) (T -599)) +NIL +(-1242 |#1|) +((-1868 (((-1249) $ |#2| |#2|) 36)) (-1881 ((|#2| $) 23)) (-2223 ((|#2| $) 21)) (-3674 (($ (-1 |#3| |#3|) $) 32)) (-2795 (($ (-1 |#3| |#3|) $) 30)) (-3876 ((|#3| $) 26)) (-3724 (($ $ |#3|) 33)) (-4467 (((-121) |#3| $) 17)) (-2041 (((-634 |#3|) $) 15)) (-2779 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) +(((-600 |#1| |#2| |#3|) (-10 -8 (-15 -1868 ((-1249) |#1| |#2| |#2|)) (-15 -3724 (|#1| |#1| |#3|)) (-15 -3876 (|#3| |#1|)) (-15 -1881 (|#2| |#1|)) (-15 -2223 (|#2| |#1|)) (-15 -4467 ((-121) |#3| |#1|)) (-15 -2041 ((-634 |#3|) |#1|)) (-15 -2779 (|#3| |#1| |#2|)) (-15 -2779 (|#3| |#1| |#2| |#3|)) (-15 -3674 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2795 (|#1| (-1 |#3| |#3|) |#1|))) (-601 |#2| |#3|) (-1090) (-1195)) (T -600)) +NIL +(-10 -8 (-15 -1868 ((-1249) |#1| |#2| |#2|)) (-15 -3724 (|#1| |#1| |#3|)) (-15 -3876 (|#3| |#1|)) (-15 -1881 (|#2| |#1|)) (-15 -2223 (|#2| |#1|)) (-15 -4467 ((-121) |#3| |#1|)) (-15 -2041 ((-634 |#3|) |#1|)) (-15 -2779 (|#3| |#1| |#2|)) (-15 -2779 (|#3| |#1| |#2| |#3|)) (-15 -3674 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2795 (|#1| (-1 |#3| |#3|) |#1|))) +((-2447 (((-121) $ $) 18 (|has| |#2| (-1090)))) (-1868 (((-1249) $ |#1| |#1|) 37 (|has| $ (-6 -4520)))) (-2510 (((-121) $ (-763)) 8)) (-2436 ((|#2| $ |#1| |#2|) 49 (|has| $ (-6 -4520)))) (-2671 (($) 7 T CONST)) (-3989 ((|#2| $ |#1| |#2|) 50 (|has| $ (-6 -4520)))) (-2602 ((|#2| $ |#1|) 48)) (-4360 (((-634 |#2|) $) 30 (|has| $ (-6 -4519)))) (-1737 (((-121) $ (-763)) 9)) (-1881 ((|#1| $) 40 (|has| |#1| (-842)))) (-1979 (((-634 |#2|) $) 29 (|has| $ (-6 -4519)))) (-3109 (((-121) |#2| $) 27 (-12 (|has| |#2| (-1090)) (|has| $ (-6 -4519))))) (-2223 ((|#1| $) 41 (|has| |#1| (-842)))) (-3674 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#2| |#2|) $) 35)) (-2166 (((-121) $ (-763)) 10)) (-4487 (((-1143) $) 22 (|has| |#2| (-1090)))) (-4174 (((-634 |#1|) $) 43)) (-3578 (((-121) |#1| $) 44)) (-4022 (((-1108) $) 21 (|has| |#2| (-1090)))) (-3876 ((|#2| $) 39 (|has| |#1| (-842)))) (-3724 (($ $ |#2|) 38 (|has| $ (-6 -4520)))) (-1387 (((-121) (-1 (-121) |#2|) $) 32 (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#2|))) 26 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090)))) (($ $ (-288 |#2|)) 25 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090)))) (($ $ (-634 |#2|) (-634 |#2|)) 23 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090))))) (-3171 (((-121) $ $) 14)) (-4467 (((-121) |#2| $) 42 (-12 (|has| $ (-6 -4519)) (|has| |#2| (-1090))))) (-2041 (((-634 |#2|) $) 45)) (-3084 (((-121) $) 11)) (-3248 (($) 12)) (-2779 ((|#2| $ |#1| |#2|) 47) ((|#2| $ |#1|) 46)) (-4168 (((-763) (-1 (-121) |#2|) $) 31 (|has| $ (-6 -4519))) (((-763) |#2| $) 28 (-12 (|has| |#2| (-1090)) (|has| $ (-6 -4519))))) (-3863 (($ $) 13)) (-2745 (((-850) $) 20 (|has| |#2| (-1090)))) (-1319 (((-121) (-1 (-121) |#2|) $) 33 (|has| $ (-6 -4519)))) (-1717 (((-121) $ $) 19 (|has| |#2| (-1090)))) (-1697 (((-763) $) 6 (|has| $ (-6 -4519))))) +(((-601 |#1| |#2|) (-1275) (-1090) (-1195)) (T -601)) +((-2041 (*1 *2 *1) (-12 (-4 *1 (-601 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1195)) (-5 *2 (-634 *4)))) (-3578 (*1 *2 *3 *1) (-12 (-4 *1 (-601 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1195)) (-5 *2 (-121)))) (-4174 (*1 *2 *1) (-12 (-4 *1 (-601 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1195)) (-5 *2 (-634 *3)))) (-4467 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4519)) (-4 *1 (-601 *4 *3)) (-4 *4 (-1090)) (-4 *3 (-1195)) (-4 *3 (-1090)) (-5 *2 (-121)))) (-2223 (*1 *2 *1) (-12 (-4 *1 (-601 *2 *3)) (-4 *3 (-1195)) (-4 *2 (-1090)) (-4 *2 (-842)))) (-1881 (*1 *2 *1) (-12 (-4 *1 (-601 *2 *3)) (-4 *3 (-1195)) (-4 *2 (-1090)) (-4 *2 (-842)))) (-3876 (*1 *2 *1) (-12 (-4 *1 (-601 *3 *2)) (-4 *3 (-1090)) (-4 *3 (-842)) (-4 *2 (-1195)))) (-3724 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4520)) (-4 *1 (-601 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-1195)))) (-1868 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4520)) (-4 *1 (-601 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1195)) (-5 *2 (-1249))))) +(-13 (-499 |t#2|) (-283 |t#1| |t#2|) (-10 -8 (-15 -2041 ((-634 |t#2|) $)) (-15 -3578 ((-121) |t#1| $)) (-15 -4174 ((-634 |t#1|) $)) (IF (|has| |t#2| (-1090)) (IF (|has| $ (-6 -4519)) (-15 -4467 ((-121) |t#2| $)) |noBranch|) |noBranch|) (IF (|has| |t#1| (-842)) (PROGN (-15 -2223 (|t#1| $)) (-15 -1881 (|t#1| $)) (-15 -3876 (|t#2| $))) |noBranch|) (IF (|has| $ (-6 -4520)) (PROGN (-15 -3724 ($ $ |t#2|)) (-15 -1868 ((-1249) $ |t#1| |t#1|))) |noBranch|))) +(((-39) . T) ((-105) |has| |#2| (-1090)) ((-608 (-850)) |has| |#2| (-1090)) ((-281 |#1| |#2|) . T) ((-283 |#1| |#2|) . T) ((-303 |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090))) ((-499 |#2|) . T) ((-523 |#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090))) ((-1090) |has| |#2| (-1090)) ((-1195) . T)) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-2295 (((-3 $ "failed")) NIL (-2198 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-3134 (((-3 $ "failed") $ $) NIL)) (-2776 (((-1244 (-679 |#1|))) NIL (|has| |#2| (-419 |#1|))) (((-1244 (-679 |#1|)) (-1244 $)) NIL (|has| |#2| (-369 |#1|)))) (-1741 (((-1244 $)) NIL (|has| |#2| (-369 |#1|)))) (-2671 (($) NIL T CONST)) (-1309 (((-3 (-2 (|:| |particular| $) (|:| -3746 (-634 $))) "failed")) NIL (-2198 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-2593 (((-3 $ "failed")) NIL (-2198 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-1631 (((-679 |#1|)) NIL (|has| |#2| (-419 |#1|))) (((-679 |#1|) (-1244 $)) NIL (|has| |#2| (-369 |#1|)))) (-1866 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-3042 (((-679 |#1|) $) NIL (|has| |#2| (-419 |#1|))) (((-679 |#1|) $ (-1244 $)) NIL (|has| |#2| (-369 |#1|)))) (-3550 (((-3 $ "failed") $) NIL (-2198 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-4408 (((-1157 (-953 |#1|))) NIL (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-365))))) (-3551 (($ $ (-917)) NIL)) (-4409 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-1371 (((-1157 |#1|) $) NIL (-2198 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-3569 ((|#1|) NIL (|has| |#2| (-419 |#1|))) ((|#1| (-1244 $)) NIL (|has| |#2| (-369 |#1|)))) (-2989 (((-1157 |#1|) $) NIL (|has| |#2| (-369 |#1|)))) (-3384 (((-121)) NIL (|has| |#2| (-369 |#1|)))) (-3498 (($ (-1244 |#1|)) NIL (|has| |#2| (-419 |#1|))) (($ (-1244 |#1|) (-1244 $)) NIL (|has| |#2| (-369 |#1|)))) (-2925 (((-3 $ "failed") $) NIL (-2198 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-3700 (((-917)) NIL (|has| |#2| (-369 |#1|)))) (-4370 (((-121)) NIL (|has| |#2| (-369 |#1|)))) (-4373 (($ $ (-917)) NIL)) (-1537 (((-121)) NIL (|has| |#2| (-369 |#1|)))) (-1580 (((-121)) NIL (|has| |#2| (-369 |#1|)))) (-1695 (((-121)) NIL (|has| |#2| (-369 |#1|)))) (-3116 (((-3 (-2 (|:| |particular| $) (|:| -3746 (-634 $))) "failed")) NIL (-2198 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-2599 (((-3 $ "failed")) NIL (-2198 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-4210 (((-679 |#1|)) NIL (|has| |#2| (-419 |#1|))) (((-679 |#1|) (-1244 $)) NIL (|has| |#2| (-369 |#1|)))) (-2889 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-4333 (((-679 |#1|) $) NIL (|has| |#2| (-419 |#1|))) (((-679 |#1|) $ (-1244 $)) NIL (|has| |#2| (-369 |#1|)))) (-3243 (((-3 $ "failed") $) NIL (-2198 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-4454 (((-1157 (-953 |#1|))) NIL (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-365))))) (-4222 (($ $ (-917)) NIL)) (-3329 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-2265 (((-1157 |#1|) $) NIL (-2198 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-3898 ((|#1|) NIL (|has| |#2| (-419 |#1|))) ((|#1| (-1244 $)) NIL (|has| |#2| (-369 |#1|)))) (-3626 (((-1157 |#1|) $) NIL (|has| |#2| (-369 |#1|)))) (-2767 (((-121)) NIL (|has| |#2| (-369 |#1|)))) (-4487 (((-1143) $) NIL)) (-1804 (((-121)) NIL (|has| |#2| (-369 |#1|)))) (-2919 (((-121)) NIL (|has| |#2| (-369 |#1|)))) (-3840 (((-121)) NIL (|has| |#2| (-369 |#1|)))) (-4022 (((-1108) $) NIL)) (-1346 (((-121)) NIL (|has| |#2| (-369 |#1|)))) (-2779 ((|#1| $ (-568)) NIL (|has| |#2| (-419 |#1|)))) (-4073 (((-679 |#1|) (-1244 $)) NIL (|has| |#2| (-419 |#1|))) (((-1244 |#1|) $) NIL (|has| |#2| (-419 |#1|))) (((-679 |#1|) (-1244 $) (-1244 $)) NIL (|has| |#2| (-369 |#1|))) (((-1244 |#1|) $ (-1244 $)) NIL (|has| |#2| (-369 |#1|)))) (-4278 (($ (-1244 |#1|)) NIL (|has| |#2| (-419 |#1|))) (((-1244 |#1|) $) NIL (|has| |#2| (-419 |#1|)))) (-3295 (((-634 (-953 |#1|))) NIL (|has| |#2| (-419 |#1|))) (((-634 (-953 |#1|)) (-1244 $)) NIL (|has| |#2| (-369 |#1|)))) (-2353 (($ $ $) NIL)) (-3433 (((-121)) NIL (|has| |#2| (-369 |#1|)))) (-2745 (((-850) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-3746 (((-1244 $)) NIL (|has| |#2| (-419 |#1|)))) (-1509 (((-634 (-1244 |#1|))) NIL (-2198 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-3882 (($ $ $ $) NIL)) (-4177 (((-121)) NIL (|has| |#2| (-369 |#1|)))) (-3823 (($ (-679 |#1|) $) NIL (|has| |#2| (-419 |#1|)))) (-3500 (($ $ $) NIL)) (-2433 (((-121)) NIL (|has| |#2| (-369 |#1|)))) (-2189 (((-121)) NIL (|has| |#2| (-369 |#1|)))) (-4107 (((-121)) NIL (|has| |#2| (-369 |#1|)))) (-3056 (($) NIL T CONST)) (-1717 (((-121) $ $) NIL)) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-917)) 24)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL))) +(((-602 |#1| |#2|) (-13 (-736 |#1|) (-608 |#2|) (-10 -8 (-15 -2745 ($ |#2|)) (IF (|has| |#2| (-419 |#1|)) (-6 (-419 |#1|)) |noBranch|) (IF (|has| |#2| (-369 |#1|)) (-6 (-369 |#1|)) |noBranch|))) (-172) (-736 |#1|)) (T -602)) +((-2745 (*1 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-602 *3 *2)) (-4 *2 (-736 *3))))) +(-13 (-736 |#1|) (-608 |#2|) (-10 -8 (-15 -2745 ($ |#2|)) (IF (|has| |#2| (-419 |#1|)) (-6 (-419 |#1|)) |noBranch|) (IF (|has| |#2| (-369 |#1|)) (-6 (-369 |#1|)) |noBranch|))) +((-2447 (((-121) $ $) NIL)) (-1705 (((-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) $ (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|))) 33)) (-2986 (($ (-634 (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)))) NIL) (($) NIL)) (-1868 (((-1249) $ (-1143) (-1143)) NIL (|has| $ (-6 -4520)))) (-2510 (((-121) $ (-763)) NIL)) (-2436 ((|#1| $ (-1143) |#1|) 43)) (-3507 (($ (-1 (-121) (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|))) $) NIL (|has| $ (-6 -4519)))) (-2801 (($ (-1 (-121) (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|))) $) NIL (|has| $ (-6 -4519)))) (-2674 (((-3 |#1| "failed") (-1143) $) 46)) (-2671 (($) NIL T CONST)) (-2511 (($ $ (-1143)) 25)) (-3924 (($ $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (-1090))))) (-3405 (((-3 |#1| "failed") (-1143) $) 47) (($ (-1 (-121) (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|))) $) NIL (|has| $ (-6 -4519))) (($ (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) $) NIL (|has| $ (-6 -4519)))) (-4328 (($ (-1 (-121) (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|))) $) NIL (|has| $ (-6 -4519))) (($ (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (-1090))))) (-3092 (((-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (-1 (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|))) $) NIL (|has| $ (-6 -4519))) (((-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (-1 (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|))) $ (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|))) NIL (|has| $ (-6 -4519))) (((-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (-1 (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|))) $ (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|))) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (-1090))))) (-3327 (((-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) $) 32)) (-3989 ((|#1| $ (-1143) |#1|) NIL (|has| $ (-6 -4520)))) (-2602 ((|#1| $ (-1143)) NIL)) (-4360 (((-634 |#1|) $) NIL (|has| $ (-6 -4519))) (((-634 (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|))) $) NIL (|has| $ (-6 -4519)))) (-3380 (($ $) 48)) (-1798 (($ (-390)) 23) (($ (-390) (-1143)) 22)) (-3391 (((-390) $) 34)) (-1737 (((-121) $ (-763)) NIL)) (-1881 (((-1143) $) NIL (|has| (-1143) (-842)))) (-1979 (((-634 |#1|) $) NIL (|has| $ (-6 -4519))) (((-634 (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|))) $) NIL (|has| $ (-6 -4519)))) (-3109 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090)))) (((-121) (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (-1090))))) (-2223 (((-1143) $) NIL (|has| (-1143) (-842)))) (-3674 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4520))) (($ (-1 (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|))) $) NIL (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|))) $) NIL)) (-2166 (((-121) $ (-763)) NIL)) (-4487 (((-1143) $) NIL)) (-1946 (((-634 (-1143)) $) 39)) (-3548 (((-121) (-1143) $) NIL)) (-3305 (((-1143) $) 35)) (-1890 (((-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) $) NIL)) (-4450 (($ (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) $) NIL)) (-4174 (((-634 (-1143)) $) NIL)) (-3578 (((-121) (-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-4169 (((-1249) $) NIL)) (-3876 ((|#1| $) NIL (|has| (-1143) (-842)))) (-3775 (((-3 (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) "failed") (-1 (-121) (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|))) $) NIL)) (-3724 (($ $ |#1|) NIL (|has| $ (-6 -4520)))) (-1315 (((-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) $) NIL)) (-1387 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519))) (((-121) (-1 (-121) (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|))) $) NIL (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-634 |#1|) (-634 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-634 (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|))) (-634 (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)))) NIL (-12 (|has| (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (-303 (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)))) (|has| (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (-1090)))) (($ $ (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|))) NIL (-12 (|has| (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (-303 (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)))) (|has| (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (-1090)))) (($ $ (-288 (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)))) NIL (-12 (|has| (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (-303 (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)))) (|has| (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (-1090)))) (($ $ (-634 (-288 (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|))))) NIL (-12 (|has| (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (-303 (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)))) (|has| (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (-1090))))) (-3171 (((-121) $ $) NIL)) (-4467 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-2041 (((-634 |#1|) $) NIL)) (-3084 (((-121) $) NIL)) (-3248 (($) 37)) (-2779 ((|#1| $ (-1143) |#1|) NIL) ((|#1| $ (-1143)) 42)) (-2085 (($ (-634 (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)))) NIL) (($) NIL)) (-4168 (((-763) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519))) (((-763) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090)))) (((-763) (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (-1090)))) (((-763) (-1 (-121) (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|))) $) NIL (|has| $ (-6 -4519)))) (-3863 (($ $) NIL)) (-4278 (((-541) $) NIL (|has| (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (-609 (-541))))) (-4287 (($ (-634 (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)))) NIL)) (-2745 (((-850) $) 21)) (-3637 (($ $) 26)) (-2367 (($ (-634 (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)))) NIL)) (-1319 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519))) (((-121) (-1 (-121) (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|))) $) NIL (|has| $ (-6 -4519)))) (-1717 (((-121) $ $) 20)) (-1697 (((-763) $) 41 (|has| $ (-6 -4519))))) +(((-603 |#1|) (-13 (-366 (-390) (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|))) (-1172 (-1143) |#1|) (-10 -8 (-6 -4519) (-15 -3380 ($ $)))) (-1090)) (T -603)) +((-3380 (*1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-1090))))) +(-13 (-366 (-390) (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|))) (-1172 (-1143) |#1|) (-10 -8 (-6 -4519) (-15 -3380 ($ $)))) +((-3109 (((-121) (-2 (|:| -3649 |#2|) (|:| -4083 |#3|)) $) 15)) (-1946 (((-634 |#2|) $) 19)) (-3548 (((-121) |#2| $) 12))) +(((-604 |#1| |#2| |#3|) (-10 -8 (-15 -1946 ((-634 |#2|) |#1|)) (-15 -3548 ((-121) |#2| |#1|)) (-15 -3109 ((-121) (-2 (|:| -3649 |#2|) (|:| -4083 |#3|)) |#1|))) (-605 |#2| |#3|) (-1090) (-1090)) (T -604)) +NIL +(-10 -8 (-15 -1946 ((-634 |#2|) |#1|)) (-15 -3548 ((-121) |#2| |#1|)) (-15 -3109 ((-121) (-2 (|:| -3649 |#2|) (|:| -4083 |#3|)) |#1|))) +((-2447 (((-121) $ $) 18 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (-2510 (((-121) $ (-763)) 8)) (-3507 (($ (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) 42 (|has| $ (-6 -4519)))) (-2801 (($ (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) 52 (|has| $ (-6 -4519)))) (-2674 (((-3 |#2| "failed") |#1| $) 57)) (-2671 (($) 7 T CONST)) (-3924 (($ $) 55 (-12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)) (|has| $ (-6 -4519))))) (-3405 (($ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) 44 (|has| $ (-6 -4519))) (($ (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) 43 (|has| $ (-6 -4519))) (((-3 |#2| "failed") |#1| $) 58)) (-4328 (($ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) 54 (-12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)) (|has| $ (-6 -4519)))) (($ (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) 51 (|has| $ (-6 -4519)))) (-3092 (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) 53 (-12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)) (|has| $ (-6 -4519)))) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) 50 (|has| $ (-6 -4519))) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) 49 (|has| $ (-6 -4519)))) (-4360 (((-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) 30 (|has| $ (-6 -4519)))) (-1737 (((-121) $ (-763)) 9)) (-1979 (((-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) 29 (|has| $ (-6 -4519)))) (-3109 (((-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)) (|has| $ (-6 -4519))))) (-3674 (($ (-1 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) 34 (|has| $ (-6 -4520)))) (-2795 (($ (-1 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) 35)) (-2166 (((-121) $ (-763)) 10)) (-4487 (((-1143) $) 22 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (-1946 (((-634 |#1|) $) 59)) (-3548 (((-121) |#1| $) 60)) (-1890 (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) 36)) (-4450 (($ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) 37)) (-4022 (((-1108) $) 21 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (-3775 (((-3 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) "failed") (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) 48)) (-1315 (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) 38)) (-1387 (((-121) (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) 32 (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))))) 26 (-12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (($ $ (-288 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) 25 (-12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (($ $ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) 24 (-12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (($ $ (-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) (-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) 23 (-12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090))))) (-3171 (((-121) $ $) 14)) (-3084 (((-121) $) 11)) (-3248 (($) 12)) (-2085 (($) 46) (($ (-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) 45)) (-4168 (((-763) (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) 31 (|has| $ (-6 -4519))) (((-763) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)) (|has| $ (-6 -4519))))) (-3863 (($ $) 13)) (-4278 (((-541) $) 56 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-609 (-541))))) (-4287 (($ (-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) 47)) (-2745 (((-850) $) 20 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (-2367 (($ (-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) 39)) (-1319 (((-121) (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) 33 (|has| $ (-6 -4519)))) (-1717 (((-121) $ $) 19 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (-1697 (((-763) $) 6 (|has| $ (-6 -4519))))) +(((-605 |#1| |#2|) (-1275) (-1090) (-1090)) (T -605)) +((-3548 (*1 *2 *3 *1) (-12 (-4 *1 (-605 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-5 *2 (-121)))) (-1946 (*1 *2 *1) (-12 (-4 *1 (-605 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-5 *2 (-634 *3)))) (-3405 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-605 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-1090)))) (-2674 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-605 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-1090))))) +(-13 (-221 (-2 (|:| -3649 |t#1|) (|:| -4083 |t#2|))) (-10 -8 (-15 -3548 ((-121) |t#1| $)) (-15 -1946 ((-634 |t#1|) $)) (-15 -3405 ((-3 |t#2| "failed") |t#1| $)) (-15 -2674 ((-3 |t#2| "failed") |t#1| $)))) +(((-39) . T) ((-111 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) . T) ((-105) |has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)) ((-608 (-850)) |has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)) ((-154 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) . T) ((-609 (-541)) |has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-609 (-541))) ((-221 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) . T) ((-227 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) . T) ((-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) -12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090))) ((-499 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) . T) ((-523 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) -12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090))) ((-1090) |has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)) ((-1195) . T)) +((-2384 (((-607 |#2|) |#1|) 15)) (-3564 (((-3 |#1| "failed") (-607 |#2|)) 19))) +(((-606 |#1| |#2|) (-10 -7 (-15 -2384 ((-607 |#2|) |#1|)) (-15 -3564 ((-3 |#1| "failed") (-607 |#2|)))) (-842) (-842)) (T -606)) +((-3564 (*1 *2 *3) (|partial| -12 (-5 *3 (-607 *4)) (-4 *4 (-842)) (-4 *2 (-842)) (-5 *1 (-606 *2 *4)))) (-2384 (*1 *2 *3) (-12 (-5 *2 (-607 *4)) (-5 *1 (-606 *3 *4)) (-4 *3 (-842)) (-4 *4 (-842))))) +(-10 -7 (-15 -2384 ((-607 |#2|) |#1|)) (-15 -3564 ((-3 |#1| "failed") (-607 |#2|)))) +((-2447 (((-121) $ $) NIL)) (-3801 (((-3 (-1161) "failed") $) 36)) (-3138 (((-1249) $ (-763)) 26)) (-2764 (((-763) $) 25)) (-3488 (((-123) $) 12)) (-3391 (((-1161) $) 20)) (-2521 (($ $ $) NIL)) (-3268 (($ $ $) NIL)) (-4487 (((-1143) $) NIL)) (-3443 (($ (-123) (-634 |#1|) (-763)) 30) (($ (-1161)) 31)) (-2841 (((-121) $ (-123)) 18) (((-121) $ (-1161)) 16)) (-2961 (((-763) $) 22)) (-4022 (((-1108) $) NIL)) (-4278 (((-887 (-568)) $) 69 (|has| |#1| (-609 (-887 (-568))))) (((-887 (-381)) $) 75 (|has| |#1| (-609 (-887 (-381))))) (((-541) $) 62 (|has| |#1| (-609 (-541))))) (-2745 (((-850) $) 51)) (-3256 (((-634 |#1|) $) 24)) (-1751 (((-121) $ $) NIL)) (-1738 (((-121) $ $) NIL)) (-1717 (((-121) $ $) 39)) (-1745 (((-121) $ $) NIL)) (-1732 (((-121) $ $) 40))) +(((-607 |#1|) (-13 (-138) (-879 |#1|) (-10 -8 (-15 -3391 ((-1161) $)) (-15 -3488 ((-123) $)) (-15 -3256 ((-634 |#1|) $)) (-15 -2961 ((-763) $)) (-15 -3443 ($ (-123) (-634 |#1|) (-763))) (-15 -3443 ($ (-1161))) (-15 -3801 ((-3 (-1161) "failed") $)) (-15 -2841 ((-121) $ (-123))) (-15 -2841 ((-121) $ (-1161))) (IF (|has| |#1| (-609 (-541))) (-6 (-609 (-541))) |noBranch|))) (-842)) (T -607)) +((-3391 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-607 *3)) (-4 *3 (-842)))) (-3488 (*1 *2 *1) (-12 (-5 *2 (-123)) (-5 *1 (-607 *3)) (-4 *3 (-842)))) (-3256 (*1 *2 *1) (-12 (-5 *2 (-634 *3)) (-5 *1 (-607 *3)) (-4 *3 (-842)))) (-2961 (*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-607 *3)) (-4 *3 (-842)))) (-3443 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-123)) (-5 *3 (-634 *5)) (-5 *4 (-763)) (-4 *5 (-842)) (-5 *1 (-607 *5)))) (-3443 (*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-607 *3)) (-4 *3 (-842)))) (-3801 (*1 *2 *1) (|partial| -12 (-5 *2 (-1161)) (-5 *1 (-607 *3)) (-4 *3 (-842)))) (-2841 (*1 *2 *1 *3) (-12 (-5 *3 (-123)) (-5 *2 (-121)) (-5 *1 (-607 *4)) (-4 *4 (-842)))) (-2841 (*1 *2 *1 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-121)) (-5 *1 (-607 *4)) (-4 *4 (-842))))) +(-13 (-138) (-879 |#1|) (-10 -8 (-15 -3391 ((-1161) $)) (-15 -3488 ((-123) $)) (-15 -3256 ((-634 |#1|) $)) (-15 -2961 ((-763) $)) (-15 -3443 ($ (-123) (-634 |#1|) (-763))) (-15 -3443 ($ (-1161))) (-15 -3801 ((-3 (-1161) "failed") $)) (-15 -2841 ((-121) $ (-123))) (-15 -2841 ((-121) $ (-1161))) (IF (|has| |#1| (-609 (-541))) (-6 (-609 (-541))) |noBranch|))) +((-2745 ((|#1| $) 6))) +(((-608 |#1|) (-1275) (-1195)) (T -608)) +((-2745 (*1 *2 *1) (-12 (-4 *1 (-608 *2)) (-4 *2 (-1195))))) +(-13 (-10 -8 (-15 -2745 (|t#1| $)))) +((-4278 ((|#1| $) 6))) +(((-609 |#1|) (-1275) (-1195)) (T -609)) +((-4278 (*1 *2 *1) (-12 (-4 *1 (-609 *2)) (-4 *2 (-1195))))) +(-13 (-10 -8 (-15 -4278 (|t#1| $)))) +((-3156 (((-3 (-1157 (-409 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-409 |#2|) (-1 (-420 |#2|) |#2|)) 13) (((-3 (-1157 (-409 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-409 |#2|)) 14))) +(((-610 |#1| |#2|) (-10 -7 (-15 -3156 ((-3 (-1157 (-409 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-409 |#2|))) (-15 -3156 ((-3 (-1157 (-409 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-409 |#2|) (-1 (-420 |#2|) |#2|)))) (-13 (-150) (-27) (-1037 (-568)) (-1037 (-409 (-568)))) (-1219 |#1|)) (T -610)) +((-3156 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-420 *6) *6)) (-4 *6 (-1219 *5)) (-4 *5 (-13 (-150) (-27) (-1037 (-568)) (-1037 (-409 (-568))))) (-5 *2 (-1157 (-409 *6))) (-5 *1 (-610 *5 *6)) (-5 *3 (-409 *6)))) (-3156 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-150) (-27) (-1037 (-568)) (-1037 (-409 (-568))))) (-4 *5 (-1219 *4)) (-5 *2 (-1157 (-409 *5))) (-5 *1 (-610 *4 *5)) (-5 *3 (-409 *5))))) +(-10 -7 (-15 -3156 ((-3 (-1157 (-409 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-409 |#2|))) (-15 -3156 ((-3 (-1157 (-409 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-409 |#2|) (-1 (-420 |#2|) |#2|)))) +((-2745 (((-850) $) NIL) (($ (-568)) NIL) (($ |#2|) 10))) +(((-611 |#1| |#2|) (-10 -8 (-15 -2745 (|#1| |#2|)) (-15 -2745 (|#1| (-568))) (-15 -2745 ((-850) |#1|))) (-612 |#2|) (-1047)) (T -611)) +NIL +(-10 -8 (-15 -2745 (|#1| |#2|)) (-15 -2745 (|#1| (-568))) (-15 -2745 ((-850) |#1|))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-3134 (((-3 $ "failed") $ $) 18)) (-2671 (($) 16 T CONST)) (-2925 (((-3 $ "failed") $) 33)) (-2735 (((-121) $) 30)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-2745 (((-850) $) 11) (($ (-568)) 27) (($ |#1|) 35)) (-4078 (((-763)) 28)) (-1887 (($ $ (-917)) 25) (($ $ (-763)) 32)) (-3056 (($) 17 T CONST)) (-1556 (($) 29 T CONST)) (-1717 (((-121) $ $) 6)) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 24) (($ $ (-763)) 31)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 23) (($ |#1| $) 36))) +(((-612 |#1|) (-1275) (-1047)) (T -612)) +((-2745 (*1 *1 *2) (-12 (-4 *1 (-612 *2)) (-4 *2 (-1047))))) +(-13 (-1047) (-637 |t#1|) (-10 -8 (-15 -2745 ($ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-105) . T) ((-137) . T) ((-608 (-850)) . T) ((-637 |#1|) . T) ((-637 $) . T) ((-716) . T) ((-1047) . T) ((-1054) . T) ((-1102) . T) ((-1090) . T)) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-3662 (((-568) $) NIL (|has| |#1| (-840)))) (-2671 (($) NIL T CONST)) (-2925 (((-3 $ "failed") $) NIL)) (-2033 (((-121) $) NIL (|has| |#1| (-840)))) (-2735 (((-121) $) NIL)) (-2317 ((|#1| $) 13)) (-2245 (((-121) $) NIL (|has| |#1| (-840)))) (-2521 (($ $ $) NIL (|has| |#1| (-840)))) (-3268 (($ $ $) NIL (|has| |#1| (-840)))) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2324 ((|#3| $) 15)) (-2745 (((-850) $) NIL) (($ (-568)) NIL) (($ |#2|) NIL)) (-4078 (((-763)) 20)) (-2897 (($ $) NIL (|has| |#1| (-840)))) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (-3056 (($) NIL T CONST)) (-1556 (($) 12 T CONST)) (-1751 (((-121) $ $) NIL (|has| |#1| (-840)))) (-1738 (((-121) $ $) NIL (|has| |#1| (-840)))) (-1717 (((-121) $ $) NIL)) (-1745 (((-121) $ $) NIL (|has| |#1| (-840)))) (-1732 (((-121) $ $) NIL (|has| |#1| (-840)))) (-1779 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-613 |#1| |#2| |#3|) (-13 (-43 |#2|) (-10 -8 (IF (|has| |#1| (-840)) (-6 (-840)) |noBranch|) (-15 -1779 ($ $ |#3|)) (-15 -1779 ($ |#1| |#3|)) (-15 -2317 (|#1| $)) (-15 -2324 (|#3| $)))) (-43 |#2|) (-172) (|SubsetCategory| (-716) |#2|)) (T -613)) +((-1779 (*1 *1 *1 *2) (-12 (-4 *4 (-172)) (-5 *1 (-613 *3 *4 *2)) (-4 *3 (-43 *4)) (-4 *2 (|SubsetCategory| (-716) *4)))) (-1779 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-613 *2 *4 *3)) (-4 *2 (-43 *4)) (-4 *3 (|SubsetCategory| (-716) *4)))) (-2317 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-43 *3)) (-5 *1 (-613 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-716) *3)))) (-2324 (*1 *2 *1) (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-716) *4)) (-5 *1 (-613 *3 *4 *2)) (-4 *3 (-43 *4))))) +(-13 (-43 |#2|) (-10 -8 (IF (|has| |#1| (-840)) (-6 (-840)) |noBranch|) (-15 -1779 ($ $ |#3|)) (-15 -1779 ($ |#1| |#3|)) (-15 -2317 (|#1| $)) (-15 -2324 (|#3| $)))) +((-3607 ((|#2| |#2| (-1161) (-1161)) 18))) +(((-614 |#1| |#2|) (-10 -7 (-15 -3607 (|#2| |#2| (-1161) (-1161)))) (-13 (-301) (-842) (-150) (-1037 (-568)) (-630 (-568))) (-13 (-1181) (-959) (-29 |#1|))) (T -614)) +((-3607 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1161)) (-4 *4 (-13 (-301) (-842) (-150) (-1037 (-568)) (-630 (-568)))) (-5 *1 (-614 *4 *2)) (-4 *2 (-13 (-1181) (-959) (-29 *4)))))) +(-10 -7 (-15 -3607 (|#2| |#2| (-1161) (-1161)))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) 52)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL)) (-2227 (($ $) NIL)) (-1573 (((-121) $) NIL)) (-2462 ((|#1| $) 49)) (-3134 (((-3 $ "failed") $ $) NIL)) (-1497 (((-121) $ $) NIL (|has| |#1| (-365)))) (-1619 (((-2 (|:| -2848 $) (|:| -4367 (-409 |#2|))) (-409 |#2|)) 95 (|has| |#1| (-365)))) (-2671 (($) NIL T CONST)) (-3666 (((-3 (-568) "failed") $) NIL (|has| |#1| (-1037 (-568)))) (((-3 (-409 (-568)) "failed") $) NIL (|has| |#1| (-1037 (-409 (-568))))) (((-3 |#1| "failed") $) 83) (((-3 |#2| "failed") $) 80)) (-2854 (((-568) $) NIL (|has| |#1| (-1037 (-568)))) (((-409 (-568)) $) NIL (|has| |#1| (-1037 (-409 (-568))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2401 (($ $ $) NIL (|has| |#1| (-365)))) (-2114 (($ $) 24)) (-2925 (((-3 $ "failed") $) 74)) (-2412 (($ $ $) NIL (|has| |#1| (-365)))) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) NIL (|has| |#1| (-365)))) (-4477 (((-568) $) 19)) (-2735 (((-121) $) NIL)) (-3562 (((-3 (-634 $) "failed") (-634 $) $) NIL (|has| |#1| (-365)))) (-3921 (((-121) $) 36)) (-2047 (($ |#1| (-568)) 21)) (-2102 ((|#1| $) 51)) (-2495 (($ (-634 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL (|has| |#1| (-365)))) (-2721 (($ (-634 $)) NIL (|has| |#1| (-365))) (($ $ $) 85 (|has| |#1| (-365)))) (-4497 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 98 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL (|has| |#1| (-365)))) (-2595 (((-3 $ "failed") $ $) 78)) (-2344 (((-3 (-634 $) "failed") (-634 $) $) NIL (|has| |#1| (-365)))) (-2709 (((-763) $) 97 (|has| |#1| (-365)))) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) 96 (|has| |#1| (-365)))) (-4189 (($ $ (-1 |#2| |#2|)) 65) (($ $ (-1 |#2| |#2|) (-763)) NIL) (($ $ (-634 (-1161)) (-634 (-763))) NIL (|has| |#2| (-895 (-1161)))) (($ $ (-1161) (-763)) NIL (|has| |#2| (-895 (-1161)))) (($ $ (-634 (-1161))) NIL (|has| |#2| (-895 (-1161)))) (($ $ (-1161)) NIL (|has| |#2| (-895 (-1161)))) (($ $ (-763)) NIL (|has| |#2| (-225))) (($ $) NIL (|has| |#2| (-225)))) (-3206 (((-568) $) 34)) (-4278 (((-409 |#2|) $) 42)) (-2745 (((-850) $) 61) (($ (-568)) 32) (($ $) NIL) (($ (-409 (-568))) NIL (|has| |#1| (-1037 (-409 (-568))))) (($ |#1|) 31) (($ |#2|) 22)) (-2604 ((|#1| $ (-568)) 62)) (-4371 (((-3 $ "failed") $) NIL (|has| |#1| (-148)))) (-4078 (((-763)) 29)) (-1826 (((-121) $ $) NIL)) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (-3056 (($) 9 T CONST)) (-1556 (($) 12 T CONST)) (-3190 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-763)) NIL) (($ $ (-634 (-1161)) (-634 (-763))) NIL (|has| |#2| (-895 (-1161)))) (($ $ (-1161) (-763)) NIL (|has| |#2| (-895 (-1161)))) (($ $ (-634 (-1161))) NIL (|has| |#2| (-895 (-1161)))) (($ $ (-1161)) NIL (|has| |#2| (-895 (-1161)))) (($ $ (-763)) NIL (|has| |#2| (-225))) (($ $) NIL (|has| |#2| (-225)))) (-1717 (((-121) $ $) 17)) (-1773 (($ $) 46) (($ $ $) NIL)) (-1767 (($ $ $) 75)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) 26) (($ $ $) 44))) +(((-615 |#1| |#2|) (-13 (-223 |#2|) (-558) (-609 (-409 |#2|)) (-413 |#1|) (-1037 |#2|) (-10 -8 (-15 -3921 ((-121) $)) (-15 -3206 ((-568) $)) (-15 -4477 ((-568) $)) (-15 -2114 ($ $)) (-15 -2102 (|#1| $)) (-15 -2462 (|#1| $)) (-15 -2604 (|#1| $ (-568))) (-15 -2047 ($ |#1| (-568))) (IF (|has| |#1| (-150)) (-6 (-150)) |noBranch|) (IF (|has| |#1| (-148)) (-6 (-148)) |noBranch|) (IF (|has| |#1| (-365)) (PROGN (-6 (-301)) (-15 -1619 ((-2 (|:| -2848 $) (|:| -4367 (-409 |#2|))) (-409 |#2|)))) |noBranch|))) (-558) (-1219 |#1|)) (T -615)) +((-3921 (*1 *2 *1) (-12 (-4 *3 (-558)) (-5 *2 (-121)) (-5 *1 (-615 *3 *4)) (-4 *4 (-1219 *3)))) (-3206 (*1 *2 *1) (-12 (-4 *3 (-558)) (-5 *2 (-568)) (-5 *1 (-615 *3 *4)) (-4 *4 (-1219 *3)))) (-4477 (*1 *2 *1) (-12 (-4 *3 (-558)) (-5 *2 (-568)) (-5 *1 (-615 *3 *4)) (-4 *4 (-1219 *3)))) (-2114 (*1 *1 *1) (-12 (-4 *2 (-558)) (-5 *1 (-615 *2 *3)) (-4 *3 (-1219 *2)))) (-2102 (*1 *2 *1) (-12 (-4 *2 (-558)) (-5 *1 (-615 *2 *3)) (-4 *3 (-1219 *2)))) (-2462 (*1 *2 *1) (-12 (-4 *2 (-558)) (-5 *1 (-615 *2 *3)) (-4 *3 (-1219 *2)))) (-2604 (*1 *2 *1 *3) (-12 (-5 *3 (-568)) (-4 *2 (-558)) (-5 *1 (-615 *2 *4)) (-4 *4 (-1219 *2)))) (-2047 (*1 *1 *2 *3) (-12 (-5 *3 (-568)) (-4 *2 (-558)) (-5 *1 (-615 *2 *4)) (-4 *4 (-1219 *2)))) (-1619 (*1 *2 *3) (-12 (-4 *4 (-365)) (-4 *4 (-558)) (-4 *5 (-1219 *4)) (-5 *2 (-2 (|:| -2848 (-615 *4 *5)) (|:| -4367 (-409 *5)))) (-5 *1 (-615 *4 *5)) (-5 *3 (-409 *5))))) +(-13 (-223 |#2|) (-558) (-609 (-409 |#2|)) (-413 |#1|) (-1037 |#2|) (-10 -8 (-15 -3921 ((-121) $)) (-15 -3206 ((-568) $)) (-15 -4477 ((-568) $)) (-15 -2114 ($ $)) (-15 -2102 (|#1| $)) (-15 -2462 (|#1| $)) (-15 -2604 (|#1| $ (-568))) (-15 -2047 ($ |#1| (-568))) (IF (|has| |#1| (-150)) (-6 (-150)) |noBranch|) (IF (|has| |#1| (-148)) (-6 (-148)) |noBranch|) (IF (|has| |#1| (-365)) (PROGN (-6 (-301)) (-15 -1619 ((-2 (|:| -2848 $) (|:| -4367 (-409 |#2|))) (-409 |#2|)))) |noBranch|))) +((-2415 (((-634 |#6|) (-634 |#4|) (-121)) 46)) (-1918 ((|#6| |#6|) 39))) +(((-616 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1918 (|#6| |#6|)) (-15 -2415 ((-634 |#6|) (-634 |#4|) (-121)))) (-453) (-788) (-842) (-1061 |#1| |#2| |#3|) (-1066 |#1| |#2| |#3| |#4|) (-1099 |#1| |#2| |#3| |#4|)) (T -616)) +((-2415 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *8)) (-5 *4 (-121)) (-4 *8 (-1061 *5 *6 *7)) (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-5 *2 (-634 *10)) (-5 *1 (-616 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1066 *5 *6 *7 *8)) (-4 *10 (-1099 *5 *6 *7 *8)))) (-1918 (*1 *2 *2) (-12 (-4 *3 (-453)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1061 *3 *4 *5)) (-5 *1 (-616 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1066 *3 *4 *5 *6)) (-4 *2 (-1099 *3 *4 *5 *6))))) +(-10 -7 (-15 -1918 (|#6| |#6|)) (-15 -2415 ((-634 |#6|) (-634 |#4|) (-121)))) +((-2756 (((-121) |#3| (-763) (-634 |#3|)) 22)) (-3875 (((-3 (-2 (|:| |polfac| (-634 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-634 (-1157 |#3|)))) "failed") |#3| (-634 (-1157 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3276 (-634 (-2 (|:| |irr| |#4|) (|:| -3959 (-568)))))) (-634 |#3|) (-634 |#1|) (-634 |#3|)) 51))) +(((-617 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2756 ((-121) |#3| (-763) (-634 |#3|))) (-15 -3875 ((-3 (-2 (|:| |polfac| (-634 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-634 (-1157 |#3|)))) "failed") |#3| (-634 (-1157 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3276 (-634 (-2 (|:| |irr| |#4|) (|:| -3959 (-568)))))) (-634 |#3|) (-634 |#1|) (-634 |#3|)))) (-842) (-788) (-301) (-950 |#3| |#2| |#1|)) (T -617)) +((-3875 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -3276 (-634 (-2 (|:| |irr| *10) (|:| -3959 (-568))))))) (-5 *6 (-634 *3)) (-5 *7 (-634 *8)) (-4 *8 (-842)) (-4 *3 (-301)) (-4 *10 (-950 *3 *9 *8)) (-4 *9 (-788)) (-5 *2 (-2 (|:| |polfac| (-634 *10)) (|:| |correct| *3) (|:| |corrfact| (-634 (-1157 *3))))) (-5 *1 (-617 *8 *9 *3 *10)) (-5 *4 (-634 (-1157 *3))))) (-2756 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-763)) (-5 *5 (-634 *3)) (-4 *3 (-301)) (-4 *6 (-842)) (-4 *7 (-788)) (-5 *2 (-121)) (-5 *1 (-617 *6 *7 *3 *8)) (-4 *8 (-950 *3 *7 *6))))) +(-10 -7 (-15 -2756 ((-121) |#3| (-763) (-634 |#3|))) (-15 -3875 ((-3 (-2 (|:| |polfac| (-634 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-634 (-1157 |#3|)))) "failed") |#3| (-634 (-1157 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3276 (-634 (-2 (|:| |irr| |#4|) (|:| -3959 (-568)))))) (-634 |#3|) (-634 |#1|) (-634 |#3|)))) +((-2447 (((-121) $ $) NIL)) (-3595 (((-634 |#1|) $) NIL)) (-2671 (($) NIL T CONST)) (-2925 (((-3 $ "failed") $) NIL)) (-2735 (((-121) $) NIL)) (-2407 (($ $) 67)) (-4416 (((-656 |#1| |#2|) $) 52)) (-4297 (((-634 (-2 (|:| |k| (-888 |#1|)) (|:| |c| |#2|))) $) 36)) (-4487 (((-1143) $) NIL)) (-2081 (($ $) 70)) (-2831 (((-634 (-288 |#2|)) $ $) 33)) (-4022 (((-1108) $) NIL)) (-1892 (($ (-656 |#1| |#2|)) 48)) (-1458 (($ $ $) NIL)) (-2353 (($ $ $) NIL)) (-2745 (((-850) $) 58) (((-1257 |#1| |#2|) $) NIL) (((-1262 |#1| |#2|) $) 66)) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL)) (-1556 (($) 53 T CONST)) (-2088 (((-634 (-2 (|:| |k| (-663 |#1|)) (|:| |c| |#2|))) $) 31)) (-2759 (((-634 (-656 |#1| |#2|)) (-634 |#1|)) 65)) (-1717 (((-121) $ $) 54)) (-1779 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL)) (* (($ $ $) 44))) +(((-618 |#1| |#2| |#3|) (-13 (-478) (-10 -8 (-15 -1892 ($ (-656 |#1| |#2|))) (-15 -4416 ((-656 |#1| |#2|) $)) (-15 -4297 ((-634 (-2 (|:| |k| (-888 |#1|)) (|:| |c| |#2|))) $)) (-15 -2745 ((-1257 |#1| |#2|) $)) (-15 -2745 ((-1262 |#1| |#2|) $)) (-15 -2407 ($ $)) (-15 -3595 ((-634 |#1|) $)) (-15 -2759 ((-634 (-656 |#1| |#2|)) (-634 |#1|))) (-15 -2088 ((-634 (-2 (|:| |k| (-663 |#1|)) (|:| |c| |#2|))) $)) (-15 -2831 ((-634 (-288 |#2|)) $ $)))) (-842) (-13 (-172) (-707 (-409 (-568)))) (-917)) (T -618)) +((-1892 (*1 *1 *2) (-12 (-5 *2 (-656 *3 *4)) (-4 *3 (-842)) (-4 *4 (-13 (-172) (-707 (-409 (-568))))) (-5 *1 (-618 *3 *4 *5)) (-14 *5 (-917)))) (-4416 (*1 *2 *1) (-12 (-5 *2 (-656 *3 *4)) (-5 *1 (-618 *3 *4 *5)) (-4 *3 (-842)) (-4 *4 (-13 (-172) (-707 (-409 (-568))))) (-14 *5 (-917)))) (-4297 (*1 *2 *1) (-12 (-5 *2 (-634 (-2 (|:| |k| (-888 *3)) (|:| |c| *4)))) (-5 *1 (-618 *3 *4 *5)) (-4 *3 (-842)) (-4 *4 (-13 (-172) (-707 (-409 (-568))))) (-14 *5 (-917)))) (-2745 (*1 *2 *1) (-12 (-5 *2 (-1257 *3 *4)) (-5 *1 (-618 *3 *4 *5)) (-4 *3 (-842)) (-4 *4 (-13 (-172) (-707 (-409 (-568))))) (-14 *5 (-917)))) (-2745 (*1 *2 *1) (-12 (-5 *2 (-1262 *3 *4)) (-5 *1 (-618 *3 *4 *5)) (-4 *3 (-842)) (-4 *4 (-13 (-172) (-707 (-409 (-568))))) (-14 *5 (-917)))) (-2407 (*1 *1 *1) (-12 (-5 *1 (-618 *2 *3 *4)) (-4 *2 (-842)) (-4 *3 (-13 (-172) (-707 (-409 (-568))))) (-14 *4 (-917)))) (-3595 (*1 *2 *1) (-12 (-5 *2 (-634 *3)) (-5 *1 (-618 *3 *4 *5)) (-4 *3 (-842)) (-4 *4 (-13 (-172) (-707 (-409 (-568))))) (-14 *5 (-917)))) (-2759 (*1 *2 *3) (-12 (-5 *3 (-634 *4)) (-4 *4 (-842)) (-5 *2 (-634 (-656 *4 *5))) (-5 *1 (-618 *4 *5 *6)) (-4 *5 (-13 (-172) (-707 (-409 (-568))))) (-14 *6 (-917)))) (-2088 (*1 *2 *1) (-12 (-5 *2 (-634 (-2 (|:| |k| (-663 *3)) (|:| |c| *4)))) (-5 *1 (-618 *3 *4 *5)) (-4 *3 (-842)) (-4 *4 (-13 (-172) (-707 (-409 (-568))))) (-14 *5 (-917)))) (-2831 (*1 *2 *1 *1) (-12 (-5 *2 (-634 (-288 *4))) (-5 *1 (-618 *3 *4 *5)) (-4 *3 (-842)) (-4 *4 (-13 (-172) (-707 (-409 (-568))))) (-14 *5 (-917))))) +(-13 (-478) (-10 -8 (-15 -1892 ($ (-656 |#1| |#2|))) (-15 -4416 ((-656 |#1| |#2|) $)) (-15 -4297 ((-634 (-2 (|:| |k| (-888 |#1|)) (|:| |c| |#2|))) $)) (-15 -2745 ((-1257 |#1| |#2|) $)) (-15 -2745 ((-1262 |#1| |#2|) $)) (-15 -2407 ($ $)) (-15 -3595 ((-634 |#1|) $)) (-15 -2759 ((-634 (-656 |#1| |#2|)) (-634 |#1|))) (-15 -2088 ((-634 (-2 (|:| |k| (-663 |#1|)) (|:| |c| |#2|))) $)) (-15 -2831 ((-634 (-288 |#2|)) $ $)))) +((-2415 (((-634 (-1131 |#1| (-534 (-852 |#2|)) (-852 |#2|) (-775 |#1| (-852 |#2|)))) (-634 (-775 |#1| (-852 |#2|))) (-121)) 70) (((-634 (-1044 |#1| |#2|)) (-634 (-775 |#1| (-852 |#2|))) (-121)) 56)) (-3624 (((-121) (-634 (-775 |#1| (-852 |#2|)))) 22)) (-3419 (((-634 (-1131 |#1| (-534 (-852 |#2|)) (-852 |#2|) (-775 |#1| (-852 |#2|)))) (-634 (-775 |#1| (-852 |#2|))) (-121)) 69)) (-2406 (((-634 (-1044 |#1| |#2|)) (-634 (-775 |#1| (-852 |#2|))) (-121)) 55)) (-2715 (((-634 (-775 |#1| (-852 |#2|))) (-634 (-775 |#1| (-852 |#2|)))) 26)) (-1560 (((-3 (-634 (-775 |#1| (-852 |#2|))) "failed") (-634 (-775 |#1| (-852 |#2|)))) 25))) +(((-619 |#1| |#2|) (-10 -7 (-15 -3624 ((-121) (-634 (-775 |#1| (-852 |#2|))))) (-15 -1560 ((-3 (-634 (-775 |#1| (-852 |#2|))) "failed") (-634 (-775 |#1| (-852 |#2|))))) (-15 -2715 ((-634 (-775 |#1| (-852 |#2|))) (-634 (-775 |#1| (-852 |#2|))))) (-15 -2406 ((-634 (-1044 |#1| |#2|)) (-634 (-775 |#1| (-852 |#2|))) (-121))) (-15 -3419 ((-634 (-1131 |#1| (-534 (-852 |#2|)) (-852 |#2|) (-775 |#1| (-852 |#2|)))) (-634 (-775 |#1| (-852 |#2|))) (-121))) (-15 -2415 ((-634 (-1044 |#1| |#2|)) (-634 (-775 |#1| (-852 |#2|))) (-121))) (-15 -2415 ((-634 (-1131 |#1| (-534 (-852 |#2|)) (-852 |#2|) (-775 |#1| (-852 |#2|)))) (-634 (-775 |#1| (-852 |#2|))) (-121)))) (-453) (-634 (-1161))) (T -619)) +((-2415 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-775 *5 (-852 *6)))) (-5 *4 (-121)) (-4 *5 (-453)) (-14 *6 (-634 (-1161))) (-5 *2 (-634 (-1131 *5 (-534 (-852 *6)) (-852 *6) (-775 *5 (-852 *6))))) (-5 *1 (-619 *5 *6)))) (-2415 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-775 *5 (-852 *6)))) (-5 *4 (-121)) (-4 *5 (-453)) (-14 *6 (-634 (-1161))) (-5 *2 (-634 (-1044 *5 *6))) (-5 *1 (-619 *5 *6)))) (-3419 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-775 *5 (-852 *6)))) (-5 *4 (-121)) (-4 *5 (-453)) (-14 *6 (-634 (-1161))) (-5 *2 (-634 (-1131 *5 (-534 (-852 *6)) (-852 *6) (-775 *5 (-852 *6))))) (-5 *1 (-619 *5 *6)))) (-2406 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-775 *5 (-852 *6)))) (-5 *4 (-121)) (-4 *5 (-453)) (-14 *6 (-634 (-1161))) (-5 *2 (-634 (-1044 *5 *6))) (-5 *1 (-619 *5 *6)))) (-2715 (*1 *2 *2) (-12 (-5 *2 (-634 (-775 *3 (-852 *4)))) (-4 *3 (-453)) (-14 *4 (-634 (-1161))) (-5 *1 (-619 *3 *4)))) (-1560 (*1 *2 *2) (|partial| -12 (-5 *2 (-634 (-775 *3 (-852 *4)))) (-4 *3 (-453)) (-14 *4 (-634 (-1161))) (-5 *1 (-619 *3 *4)))) (-3624 (*1 *2 *3) (-12 (-5 *3 (-634 (-775 *4 (-852 *5)))) (-4 *4 (-453)) (-14 *5 (-634 (-1161))) (-5 *2 (-121)) (-5 *1 (-619 *4 *5))))) +(-10 -7 (-15 -3624 ((-121) (-634 (-775 |#1| (-852 |#2|))))) (-15 -1560 ((-3 (-634 (-775 |#1| (-852 |#2|))) "failed") (-634 (-775 |#1| (-852 |#2|))))) (-15 -2715 ((-634 (-775 |#1| (-852 |#2|))) (-634 (-775 |#1| (-852 |#2|))))) (-15 -2406 ((-634 (-1044 |#1| |#2|)) (-634 (-775 |#1| (-852 |#2|))) (-121))) (-15 -3419 ((-634 (-1131 |#1| (-534 (-852 |#2|)) (-852 |#2|) (-775 |#1| (-852 |#2|)))) (-634 (-775 |#1| (-852 |#2|))) (-121))) (-15 -2415 ((-634 (-1044 |#1| |#2|)) (-634 (-775 |#1| (-852 |#2|))) (-121))) (-15 -2415 ((-634 (-1131 |#1| (-534 (-852 |#2|)) (-852 |#2|) (-775 |#1| (-852 |#2|)))) (-634 (-775 |#1| (-852 |#2|))) (-121)))) +((-1982 (($ $) 36)) (-1933 (($ $) 19)) (-1974 (($ $) 35)) (-2786 (($ $) 20)) (-1990 (($ $) 34)) (-1941 (($ $) 21)) (-1897 (($) 46)) (-4416 (($ $) 43)) (-1911 (($ $) 15)) (-3690 (($ $ (-1082 $)) 7) (($ $ (-1161)) 6)) (-1892 (($ $) 44)) (-1916 (($ $) 13)) (-1928 (($ $) 14)) (-1994 (($ $) 33)) (-1945 (($ $) 22)) (-1986 (($ $) 32)) (-1937 (($ $) 23)) (-1978 (($ $) 31)) (-2790 (($ $) 24)) (-2006 (($ $) 42)) (-1958 (($ $) 30)) (-1998 (($ $) 41)) (-1949 (($ $) 29)) (-2014 (($ $) 40)) (-1966 (($ $) 28)) (-4023 (($ $) 39)) (-1970 (($ $) 27)) (-2010 (($ $) 38)) (-1962 (($ $) 26)) (-2002 (($ $) 37)) (-1953 (($ $) 25)) (-3833 (($ $) 17)) (-1969 (($ $) 18)) (-2902 (($ $) 16)) (** (($ $ $) 45))) +(((-620) (-1275)) (T -620)) +((-1969 (*1 *1 *1) (-4 *1 (-620))) (-3833 (*1 *1 *1) (-4 *1 (-620))) (-2902 (*1 *1 *1) (-4 *1 (-620))) (-1911 (*1 *1 *1) (-4 *1 (-620))) (-1928 (*1 *1 *1) (-4 *1 (-620))) (-1916 (*1 *1 *1) (-4 *1 (-620)))) +(-13 (-959) (-1181) (-10 -8 (-15 -1969 ($ $)) (-15 -3833 ($ $)) (-15 -2902 ($ $)) (-15 -1911 ($ $)) (-15 -1928 ($ $)) (-15 -1916 ($ $)))) +(((-40) . T) ((-98) . T) ((-279) . T) ((-502) . T) ((-959) . T) ((-1181) . T) ((-1184) . T)) +((-3488 (((-123) (-123)) 83)) (-1911 ((|#2| |#2|) 30)) (-3690 ((|#2| |#2| (-1082 |#2|)) 79) ((|#2| |#2| (-1161)) 52)) (-1916 ((|#2| |#2|) 29)) (-1928 ((|#2| |#2|) 31)) (-2887 (((-121) (-123)) 34)) (-3833 ((|#2| |#2|) 26)) (-1969 ((|#2| |#2|) 28)) (-2902 ((|#2| |#2|) 27))) +(((-621 |#1| |#2|) (-10 -7 (-15 -2887 ((-121) (-123))) (-15 -3488 ((-123) (-123))) (-15 -1969 (|#2| |#2|)) (-15 -3833 (|#2| |#2|)) (-15 -2902 (|#2| |#2|)) (-15 -1911 (|#2| |#2|)) (-15 -1916 (|#2| |#2|)) (-15 -1928 (|#2| |#2|)) (-15 -3690 (|#2| |#2| (-1161))) (-15 -3690 (|#2| |#2| (-1082 |#2|)))) (-13 (-842) (-558)) (-13 (-432 |#1|) (-1002) (-1181))) (T -621)) +((-3690 (*1 *2 *2 *3) (-12 (-5 *3 (-1082 *2)) (-4 *2 (-13 (-432 *4) (-1002) (-1181))) (-4 *4 (-13 (-842) (-558))) (-5 *1 (-621 *4 *2)))) (-3690 (*1 *2 *2 *3) (-12 (-5 *3 (-1161)) (-4 *4 (-13 (-842) (-558))) (-5 *1 (-621 *4 *2)) (-4 *2 (-13 (-432 *4) (-1002) (-1181))))) (-1928 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-621 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002) (-1181))))) (-1916 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-621 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002) (-1181))))) (-1911 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-621 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002) (-1181))))) (-2902 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-621 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002) (-1181))))) (-3833 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-621 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002) (-1181))))) (-1969 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-621 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002) (-1181))))) (-3488 (*1 *2 *2) (-12 (-5 *2 (-123)) (-4 *3 (-13 (-842) (-558))) (-5 *1 (-621 *3 *4)) (-4 *4 (-13 (-432 *3) (-1002) (-1181))))) (-2887 (*1 *2 *3) (-12 (-5 *3 (-123)) (-4 *4 (-13 (-842) (-558))) (-5 *2 (-121)) (-5 *1 (-621 *4 *5)) (-4 *5 (-13 (-432 *4) (-1002) (-1181)))))) +(-10 -7 (-15 -2887 ((-121) (-123))) (-15 -3488 ((-123) (-123))) (-15 -1969 (|#2| |#2|)) (-15 -3833 (|#2| |#2|)) (-15 -2902 (|#2| |#2|)) (-15 -1911 (|#2| |#2|)) (-15 -1916 (|#2| |#2|)) (-15 -1928 (|#2| |#2|)) (-15 -3690 (|#2| |#2| (-1161))) (-15 -3690 (|#2| |#2| (-1082 |#2|)))) +((-2030 (((-492 |#1| |#2|) (-242 |#1| |#2|)) 52)) (-2197 (((-634 (-242 |#1| |#2|)) (-634 (-492 |#1| |#2|))) 67)) (-2990 (((-492 |#1| |#2|) (-634 (-492 |#1| |#2|)) (-852 |#1|)) 69) (((-492 |#1| |#2|) (-634 (-492 |#1| |#2|)) (-634 (-492 |#1| |#2|)) (-852 |#1|)) 68)) (-2482 (((-2 (|:| |gblist| (-634 (-242 |#1| |#2|))) (|:| |gvlist| (-634 (-568)))) (-634 (-492 |#1| |#2|))) 105)) (-3591 (((-634 (-492 |#1| |#2|)) (-852 |#1|) (-634 (-492 |#1| |#2|)) (-634 (-492 |#1| |#2|))) 82)) (-4056 (((-2 (|:| |glbase| (-634 (-242 |#1| |#2|))) (|:| |glval| (-634 (-568)))) (-634 (-242 |#1| |#2|))) 116)) (-4061 (((-1244 |#2|) (-492 |#1| |#2|) (-634 (-492 |#1| |#2|))) 57)) (-1586 (((-634 (-492 |#1| |#2|)) (-634 (-492 |#1| |#2|))) 39)) (-3158 (((-242 |#1| |#2|) (-242 |#1| |#2|) (-634 (-242 |#1| |#2|))) 49)) (-2853 (((-242 |#1| |#2|) (-634 |#2|) (-242 |#1| |#2|) (-634 (-242 |#1| |#2|))) 89))) +(((-622 |#1| |#2|) (-10 -7 (-15 -2482 ((-2 (|:| |gblist| (-634 (-242 |#1| |#2|))) (|:| |gvlist| (-634 (-568)))) (-634 (-492 |#1| |#2|)))) (-15 -4056 ((-2 (|:| |glbase| (-634 (-242 |#1| |#2|))) (|:| |glval| (-634 (-568)))) (-634 (-242 |#1| |#2|)))) (-15 -2197 ((-634 (-242 |#1| |#2|)) (-634 (-492 |#1| |#2|)))) (-15 -2990 ((-492 |#1| |#2|) (-634 (-492 |#1| |#2|)) (-634 (-492 |#1| |#2|)) (-852 |#1|))) (-15 -2990 ((-492 |#1| |#2|) (-634 (-492 |#1| |#2|)) (-852 |#1|))) (-15 -1586 ((-634 (-492 |#1| |#2|)) (-634 (-492 |#1| |#2|)))) (-15 -4061 ((-1244 |#2|) (-492 |#1| |#2|) (-634 (-492 |#1| |#2|)))) (-15 -2853 ((-242 |#1| |#2|) (-634 |#2|) (-242 |#1| |#2|) (-634 (-242 |#1| |#2|)))) (-15 -3591 ((-634 (-492 |#1| |#2|)) (-852 |#1|) (-634 (-492 |#1| |#2|)) (-634 (-492 |#1| |#2|)))) (-15 -3158 ((-242 |#1| |#2|) (-242 |#1| |#2|) (-634 (-242 |#1| |#2|)))) (-15 -2030 ((-492 |#1| |#2|) (-242 |#1| |#2|)))) (-634 (-1161)) (-453)) (T -622)) +((-2030 (*1 *2 *3) (-12 (-5 *3 (-242 *4 *5)) (-14 *4 (-634 (-1161))) (-4 *5 (-453)) (-5 *2 (-492 *4 *5)) (-5 *1 (-622 *4 *5)))) (-3158 (*1 *2 *2 *3) (-12 (-5 *3 (-634 (-242 *4 *5))) (-5 *2 (-242 *4 *5)) (-14 *4 (-634 (-1161))) (-4 *5 (-453)) (-5 *1 (-622 *4 *5)))) (-3591 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-634 (-492 *4 *5))) (-5 *3 (-852 *4)) (-14 *4 (-634 (-1161))) (-4 *5 (-453)) (-5 *1 (-622 *4 *5)))) (-2853 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-634 *6)) (-5 *4 (-634 (-242 *5 *6))) (-4 *6 (-453)) (-5 *2 (-242 *5 *6)) (-14 *5 (-634 (-1161))) (-5 *1 (-622 *5 *6)))) (-4061 (*1 *2 *3 *4) (-12 (-5 *4 (-634 (-492 *5 *6))) (-5 *3 (-492 *5 *6)) (-14 *5 (-634 (-1161))) (-4 *6 (-453)) (-5 *2 (-1244 *6)) (-5 *1 (-622 *5 *6)))) (-1586 (*1 *2 *2) (-12 (-5 *2 (-634 (-492 *3 *4))) (-14 *3 (-634 (-1161))) (-4 *4 (-453)) (-5 *1 (-622 *3 *4)))) (-2990 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-492 *5 *6))) (-5 *4 (-852 *5)) (-14 *5 (-634 (-1161))) (-5 *2 (-492 *5 *6)) (-5 *1 (-622 *5 *6)) (-4 *6 (-453)))) (-2990 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-634 (-492 *5 *6))) (-5 *4 (-852 *5)) (-14 *5 (-634 (-1161))) (-5 *2 (-492 *5 *6)) (-5 *1 (-622 *5 *6)) (-4 *6 (-453)))) (-2197 (*1 *2 *3) (-12 (-5 *3 (-634 (-492 *4 *5))) (-14 *4 (-634 (-1161))) (-4 *5 (-453)) (-5 *2 (-634 (-242 *4 *5))) (-5 *1 (-622 *4 *5)))) (-4056 (*1 *2 *3) (-12 (-14 *4 (-634 (-1161))) (-4 *5 (-453)) (-5 *2 (-2 (|:| |glbase| (-634 (-242 *4 *5))) (|:| |glval| (-634 (-568))))) (-5 *1 (-622 *4 *5)) (-5 *3 (-634 (-242 *4 *5))))) (-2482 (*1 *2 *3) (-12 (-5 *3 (-634 (-492 *4 *5))) (-14 *4 (-634 (-1161))) (-4 *5 (-453)) (-5 *2 (-2 (|:| |gblist| (-634 (-242 *4 *5))) (|:| |gvlist| (-634 (-568))))) (-5 *1 (-622 *4 *5))))) +(-10 -7 (-15 -2482 ((-2 (|:| |gblist| (-634 (-242 |#1| |#2|))) (|:| |gvlist| (-634 (-568)))) (-634 (-492 |#1| |#2|)))) (-15 -4056 ((-2 (|:| |glbase| (-634 (-242 |#1| |#2|))) (|:| |glval| (-634 (-568)))) (-634 (-242 |#1| |#2|)))) (-15 -2197 ((-634 (-242 |#1| |#2|)) (-634 (-492 |#1| |#2|)))) (-15 -2990 ((-492 |#1| |#2|) (-634 (-492 |#1| |#2|)) (-634 (-492 |#1| |#2|)) (-852 |#1|))) (-15 -2990 ((-492 |#1| |#2|) (-634 (-492 |#1| |#2|)) (-852 |#1|))) (-15 -1586 ((-634 (-492 |#1| |#2|)) (-634 (-492 |#1| |#2|)))) (-15 -4061 ((-1244 |#2|) (-492 |#1| |#2|) (-634 (-492 |#1| |#2|)))) (-15 -2853 ((-242 |#1| |#2|) (-634 |#2|) (-242 |#1| |#2|) (-634 (-242 |#1| |#2|)))) (-15 -3591 ((-634 (-492 |#1| |#2|)) (-852 |#1|) (-634 (-492 |#1| |#2|)) (-634 (-492 |#1| |#2|)))) (-15 -3158 ((-242 |#1| |#2|) (-242 |#1| |#2|) (-634 (-242 |#1| |#2|)))) (-15 -2030 ((-492 |#1| |#2|) (-242 |#1| |#2|)))) +((-2447 (((-121) $ $) NIL (-2198 (|has| (-57) (-1090)) (|has| (-2 (|:| -3649 (-1143)) (|:| -4083 (-57))) (-1090))))) (-2986 (($) NIL) (($ (-634 (-2 (|:| -3649 (-1143)) (|:| -4083 (-57))))) NIL)) (-1868 (((-1249) $ (-1143) (-1143)) NIL (|has| $ (-6 -4520)))) (-2510 (((-121) $ (-763)) NIL)) (-2436 (((-57) $ (-1143) (-57)) 16) (((-57) $ (-1161) (-57)) 17)) (-3507 (($ (-1 (-121) (-2 (|:| -3649 (-1143)) (|:| -4083 (-57)))) $) NIL (|has| $ (-6 -4519)))) (-2801 (($ (-1 (-121) (-2 (|:| -3649 (-1143)) (|:| -4083 (-57)))) $) NIL (|has| $ (-6 -4519)))) (-2674 (((-3 (-57) "failed") (-1143) $) NIL)) (-2671 (($) NIL T CONST)) (-3924 (($ $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| -3649 (-1143)) (|:| -4083 (-57))) (-1090))))) (-3405 (($ (-2 (|:| -3649 (-1143)) (|:| -4083 (-57))) $) NIL (|has| $ (-6 -4519))) (($ (-1 (-121) (-2 (|:| -3649 (-1143)) (|:| -4083 (-57)))) $) NIL (|has| $ (-6 -4519))) (((-3 (-57) "failed") (-1143) $) NIL)) (-4328 (($ (-2 (|:| -3649 (-1143)) (|:| -4083 (-57))) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| -3649 (-1143)) (|:| -4083 (-57))) (-1090)))) (($ (-1 (-121) (-2 (|:| -3649 (-1143)) (|:| -4083 (-57)))) $) NIL (|has| $ (-6 -4519)))) (-3092 (((-2 (|:| -3649 (-1143)) (|:| -4083 (-57))) (-1 (-2 (|:| -3649 (-1143)) (|:| -4083 (-57))) (-2 (|:| -3649 (-1143)) (|:| -4083 (-57))) (-2 (|:| -3649 (-1143)) (|:| -4083 (-57)))) $ (-2 (|:| -3649 (-1143)) (|:| -4083 (-57))) (-2 (|:| -3649 (-1143)) (|:| -4083 (-57)))) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| -3649 (-1143)) (|:| -4083 (-57))) (-1090)))) (((-2 (|:| -3649 (-1143)) (|:| -4083 (-57))) (-1 (-2 (|:| -3649 (-1143)) (|:| -4083 (-57))) (-2 (|:| -3649 (-1143)) (|:| -4083 (-57))) (-2 (|:| -3649 (-1143)) (|:| -4083 (-57)))) $ (-2 (|:| -3649 (-1143)) (|:| -4083 (-57)))) NIL (|has| $ (-6 -4519))) (((-2 (|:| -3649 (-1143)) (|:| -4083 (-57))) (-1 (-2 (|:| -3649 (-1143)) (|:| -4083 (-57))) (-2 (|:| -3649 (-1143)) (|:| -4083 (-57))) (-2 (|:| -3649 (-1143)) (|:| -4083 (-57)))) $) NIL (|has| $ (-6 -4519)))) (-3989 (((-57) $ (-1143) (-57)) NIL (|has| $ (-6 -4520)))) (-2602 (((-57) $ (-1143)) NIL)) (-4360 (((-634 (-2 (|:| -3649 (-1143)) (|:| -4083 (-57)))) $) NIL (|has| $ (-6 -4519))) (((-634 (-57)) $) NIL (|has| $ (-6 -4519)))) (-3380 (($ $) NIL)) (-1737 (((-121) $ (-763)) NIL)) (-1881 (((-1143) $) NIL (|has| (-1143) (-842)))) (-1979 (((-634 (-2 (|:| -3649 (-1143)) (|:| -4083 (-57)))) $) NIL (|has| $ (-6 -4519))) (((-634 (-57)) $) NIL (|has| $ (-6 -4519)))) (-3109 (((-121) (-2 (|:| -3649 (-1143)) (|:| -4083 (-57))) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| -3649 (-1143)) (|:| -4083 (-57))) (-1090)))) (((-121) (-57) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-57) (-1090))))) (-2223 (((-1143) $) NIL (|has| (-1143) (-842)))) (-3674 (($ (-1 (-2 (|:| -3649 (-1143)) (|:| -4083 (-57))) (-2 (|:| -3649 (-1143)) (|:| -4083 (-57)))) $) NIL (|has| $ (-6 -4520))) (($ (-1 (-57) (-57)) $) NIL (|has| $ (-6 -4520)))) (-2795 (($ (-1 (-2 (|:| -3649 (-1143)) (|:| -4083 (-57))) (-2 (|:| -3649 (-1143)) (|:| -4083 (-57)))) $) NIL) (($ (-1 (-57) (-57)) $) NIL) (($ (-1 (-57) (-57) (-57)) $ $) NIL)) (-2418 (($ (-390)) 9)) (-2166 (((-121) $ (-763)) NIL)) (-4487 (((-1143) $) NIL (-2198 (|has| (-57) (-1090)) (|has| (-2 (|:| -3649 (-1143)) (|:| -4083 (-57))) (-1090))))) (-1946 (((-634 (-1143)) $) NIL)) (-3548 (((-121) (-1143) $) NIL)) (-1890 (((-2 (|:| -3649 (-1143)) (|:| -4083 (-57))) $) NIL)) (-4450 (($ (-2 (|:| -3649 (-1143)) (|:| -4083 (-57))) $) NIL)) (-4174 (((-634 (-1143)) $) NIL)) (-3578 (((-121) (-1143) $) NIL)) (-4022 (((-1108) $) NIL (-2198 (|has| (-57) (-1090)) (|has| (-2 (|:| -3649 (-1143)) (|:| -4083 (-57))) (-1090))))) (-3876 (((-57) $) NIL (|has| (-1143) (-842)))) (-3775 (((-3 (-2 (|:| -3649 (-1143)) (|:| -4083 (-57))) "failed") (-1 (-121) (-2 (|:| -3649 (-1143)) (|:| -4083 (-57)))) $) NIL)) (-3724 (($ $ (-57)) NIL (|has| $ (-6 -4520)))) (-1315 (((-2 (|:| -3649 (-1143)) (|:| -4083 (-57))) $) NIL)) (-1387 (((-121) (-1 (-121) (-2 (|:| -3649 (-1143)) (|:| -4083 (-57)))) $) NIL (|has| $ (-6 -4519))) (((-121) (-1 (-121) (-57)) $) NIL (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 (-2 (|:| -3649 (-1143)) (|:| -4083 (-57)))))) NIL (-12 (|has| (-2 (|:| -3649 (-1143)) (|:| -4083 (-57))) (-303 (-2 (|:| -3649 (-1143)) (|:| -4083 (-57))))) (|has| (-2 (|:| -3649 (-1143)) (|:| -4083 (-57))) (-1090)))) (($ $ (-288 (-2 (|:| -3649 (-1143)) (|:| -4083 (-57))))) NIL (-12 (|has| (-2 (|:| -3649 (-1143)) (|:| -4083 (-57))) (-303 (-2 (|:| -3649 (-1143)) (|:| -4083 (-57))))) (|has| (-2 (|:| -3649 (-1143)) (|:| -4083 (-57))) (-1090)))) (($ $ (-2 (|:| -3649 (-1143)) (|:| -4083 (-57))) (-2 (|:| -3649 (-1143)) (|:| -4083 (-57)))) NIL (-12 (|has| (-2 (|:| -3649 (-1143)) (|:| -4083 (-57))) (-303 (-2 (|:| -3649 (-1143)) (|:| -4083 (-57))))) (|has| (-2 (|:| -3649 (-1143)) (|:| -4083 (-57))) (-1090)))) (($ $ (-634 (-2 (|:| -3649 (-1143)) (|:| -4083 (-57)))) (-634 (-2 (|:| -3649 (-1143)) (|:| -4083 (-57))))) NIL (-12 (|has| (-2 (|:| -3649 (-1143)) (|:| -4083 (-57))) (-303 (-2 (|:| -3649 (-1143)) (|:| -4083 (-57))))) (|has| (-2 (|:| -3649 (-1143)) (|:| -4083 (-57))) (-1090)))) (($ $ (-634 (-57)) (-634 (-57))) NIL (-12 (|has| (-57) (-303 (-57))) (|has| (-57) (-1090)))) (($ $ (-57) (-57)) NIL (-12 (|has| (-57) (-303 (-57))) (|has| (-57) (-1090)))) (($ $ (-288 (-57))) NIL (-12 (|has| (-57) (-303 (-57))) (|has| (-57) (-1090)))) (($ $ (-634 (-288 (-57)))) NIL (-12 (|has| (-57) (-303 (-57))) (|has| (-57) (-1090))))) (-3171 (((-121) $ $) NIL)) (-4467 (((-121) (-57) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-57) (-1090))))) (-2041 (((-634 (-57)) $) NIL)) (-3084 (((-121) $) NIL)) (-3248 (($) NIL)) (-2779 (((-57) $ (-1143)) 14) (((-57) $ (-1143) (-57)) NIL) (((-57) $ (-1161)) 15)) (-2085 (($) NIL) (($ (-634 (-2 (|:| -3649 (-1143)) (|:| -4083 (-57))))) NIL)) (-4168 (((-763) (-1 (-121) (-2 (|:| -3649 (-1143)) (|:| -4083 (-57)))) $) NIL (|has| $ (-6 -4519))) (((-763) (-2 (|:| -3649 (-1143)) (|:| -4083 (-57))) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| -3649 (-1143)) (|:| -4083 (-57))) (-1090)))) (((-763) (-57) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-57) (-1090)))) (((-763) (-1 (-121) (-57)) $) NIL (|has| $ (-6 -4519)))) (-3863 (($ $) NIL)) (-4278 (((-541) $) NIL (|has| (-2 (|:| -3649 (-1143)) (|:| -4083 (-57))) (-609 (-541))))) (-4287 (($ (-634 (-2 (|:| -3649 (-1143)) (|:| -4083 (-57))))) NIL)) (-2745 (((-850) $) NIL (-2198 (|has| (-57) (-1090)) (|has| (-2 (|:| -3649 (-1143)) (|:| -4083 (-57))) (-1090))))) (-3637 (($ $) NIL)) (-2367 (($ (-634 (-2 (|:| -3649 (-1143)) (|:| -4083 (-57))))) NIL)) (-1319 (((-121) (-1 (-121) (-2 (|:| -3649 (-1143)) (|:| -4083 (-57)))) $) NIL (|has| $ (-6 -4519))) (((-121) (-1 (-121) (-57)) $) NIL (|has| $ (-6 -4519)))) (-1717 (((-121) $ $) NIL (-2198 (|has| (-57) (-1090)) (|has| (-2 (|:| -3649 (-1143)) (|:| -4083 (-57))) (-1090))))) (-1697 (((-763) $) NIL (|has| $ (-6 -4519))))) +(((-623) (-13 (-1172 (-1143) (-57)) (-10 -8 (-15 -2418 ($ (-390))) (-15 -3380 ($ $)) (-15 -2779 ((-57) $ (-1161))) (-15 -2436 ((-57) $ (-1161) (-57))) (-15 -3637 ($ $))))) (T -623)) +((-2418 (*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-623)))) (-3380 (*1 *1 *1) (-5 *1 (-623))) (-2779 (*1 *2 *1 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-57)) (-5 *1 (-623)))) (-2436 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-57)) (-5 *3 (-1161)) (-5 *1 (-623)))) (-3637 (*1 *1 *1) (-5 *1 (-623)))) +(-13 (-1172 (-1143) (-57)) (-10 -8 (-15 -2418 ($ (-390))) (-15 -3380 ($ $)) (-15 -2779 ((-57) $ (-1161))) (-15 -2436 ((-57) $ (-1161) (-57))) (-15 -3637 ($ $)))) +((-1779 (($ $ |#2|) 10))) +(((-624 |#1| |#2|) (-10 -8 (-15 -1779 (|#1| |#1| |#2|))) (-625 |#2|) (-172)) (T -624)) +NIL +(-10 -8 (-15 -1779 (|#1| |#1| |#2|))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-3134 (((-3 $ "failed") $ $) 18)) (-2671 (($) 16 T CONST)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-4287 (($ $ $) 26)) (-2745 (((-850) $) 11)) (-3056 (($) 17 T CONST)) (-1717 (((-121) $ $) 6)) (-1779 (($ $ |#1|) 25 (|has| |#1| (-365)))) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ |#1| $) 22) (($ $ |#1|) 24))) +(((-625 |#1|) (-1275) (-172)) (T -625)) +((-4287 (*1 *1 *1 *1) (-12 (-4 *1 (-625 *2)) (-4 *2 (-172)))) (-1779 (*1 *1 *1 *2) (-12 (-4 *1 (-625 *2)) (-4 *2 (-172)) (-4 *2 (-365))))) +(-13 (-707 |t#1|) (-10 -8 (-15 -4287 ($ $ $)) (-6 |NullSquare|) (-6 |JacobiIdentity|) (IF (|has| |t#1| (-365)) (-15 -1779 ($ $ |t#1|)) |noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-105) . T) ((-120 |#1| |#1|) . T) ((-137) . T) ((-608 (-850)) . T) ((-637 |#1|) . T) ((-707 |#1|) . T) ((-1053 |#1|) . T) ((-1090) . T)) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-2295 (((-3 $ "failed")) NIL (-2198 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-3134 (((-3 $ "failed") $ $) NIL)) (-2776 (((-1244 (-679 |#1|))) NIL (|has| |#2| (-419 |#1|))) (((-1244 (-679 |#1|)) (-1244 $)) NIL (|has| |#2| (-369 |#1|)))) (-1741 (((-1244 $)) NIL (|has| |#2| (-369 |#1|)))) (-2671 (($) NIL T CONST)) (-1309 (((-3 (-2 (|:| |particular| $) (|:| -3746 (-634 $))) "failed")) NIL (-2198 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-2593 (((-3 $ "failed")) NIL (-2198 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-1631 (((-679 |#1|)) NIL (|has| |#2| (-419 |#1|))) (((-679 |#1|) (-1244 $)) NIL (|has| |#2| (-369 |#1|)))) (-1866 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-3042 (((-679 |#1|) $) NIL (|has| |#2| (-419 |#1|))) (((-679 |#1|) $ (-1244 $)) NIL (|has| |#2| (-369 |#1|)))) (-3550 (((-3 $ "failed") $) NIL (-2198 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-4408 (((-1157 (-953 |#1|))) NIL (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-365))))) (-3551 (($ $ (-917)) NIL)) (-4409 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-1371 (((-1157 |#1|) $) NIL (-2198 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-3569 ((|#1|) NIL (|has| |#2| (-419 |#1|))) ((|#1| (-1244 $)) NIL (|has| |#2| (-369 |#1|)))) (-2989 (((-1157 |#1|) $) NIL (|has| |#2| (-369 |#1|)))) (-3384 (((-121)) NIL (|has| |#2| (-369 |#1|)))) (-3498 (($ (-1244 |#1|)) NIL (|has| |#2| (-419 |#1|))) (($ (-1244 |#1|) (-1244 $)) NIL (|has| |#2| (-369 |#1|)))) (-2925 (((-3 $ "failed") $) NIL (-2198 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-3700 (((-917)) NIL (|has| |#2| (-369 |#1|)))) (-4370 (((-121)) NIL (|has| |#2| (-369 |#1|)))) (-4373 (($ $ (-917)) NIL)) (-1537 (((-121)) NIL (|has| |#2| (-369 |#1|)))) (-1580 (((-121)) NIL (|has| |#2| (-369 |#1|)))) (-1695 (((-121)) NIL (|has| |#2| (-369 |#1|)))) (-3116 (((-3 (-2 (|:| |particular| $) (|:| -3746 (-634 $))) "failed")) NIL (-2198 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-2599 (((-3 $ "failed")) NIL (-2198 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-4210 (((-679 |#1|)) NIL (|has| |#2| (-419 |#1|))) (((-679 |#1|) (-1244 $)) NIL (|has| |#2| (-369 |#1|)))) (-2889 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-4333 (((-679 |#1|) $) NIL (|has| |#2| (-419 |#1|))) (((-679 |#1|) $ (-1244 $)) NIL (|has| |#2| (-369 |#1|)))) (-3243 (((-3 $ "failed") $) NIL (-2198 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-4454 (((-1157 (-953 |#1|))) NIL (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-365))))) (-4222 (($ $ (-917)) NIL)) (-3329 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-2265 (((-1157 |#1|) $) NIL (-2198 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-3898 ((|#1|) NIL (|has| |#2| (-419 |#1|))) ((|#1| (-1244 $)) NIL (|has| |#2| (-369 |#1|)))) (-3626 (((-1157 |#1|) $) NIL (|has| |#2| (-369 |#1|)))) (-2767 (((-121)) NIL (|has| |#2| (-369 |#1|)))) (-4487 (((-1143) $) NIL)) (-1804 (((-121)) NIL (|has| |#2| (-369 |#1|)))) (-2919 (((-121)) NIL (|has| |#2| (-369 |#1|)))) (-3840 (((-121)) NIL (|has| |#2| (-369 |#1|)))) (-4022 (((-1108) $) NIL)) (-1346 (((-121)) NIL (|has| |#2| (-369 |#1|)))) (-2779 ((|#1| $ (-568)) NIL (|has| |#2| (-419 |#1|)))) (-4073 (((-679 |#1|) (-1244 $)) NIL (|has| |#2| (-419 |#1|))) (((-1244 |#1|) $) NIL (|has| |#2| (-419 |#1|))) (((-679 |#1|) (-1244 $) (-1244 $)) NIL (|has| |#2| (-369 |#1|))) (((-1244 |#1|) $ (-1244 $)) NIL (|has| |#2| (-369 |#1|)))) (-4278 (($ (-1244 |#1|)) NIL (|has| |#2| (-419 |#1|))) (((-1244 |#1|) $) NIL (|has| |#2| (-419 |#1|)))) (-3295 (((-634 (-953 |#1|))) NIL (|has| |#2| (-419 |#1|))) (((-634 (-953 |#1|)) (-1244 $)) NIL (|has| |#2| (-369 |#1|)))) (-2353 (($ $ $) NIL)) (-3433 (((-121)) NIL (|has| |#2| (-369 |#1|)))) (-2745 (((-850) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-3746 (((-1244 $)) NIL (|has| |#2| (-419 |#1|)))) (-1509 (((-634 (-1244 |#1|))) NIL (-2198 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-3882 (($ $ $ $) NIL)) (-4177 (((-121)) NIL (|has| |#2| (-369 |#1|)))) (-3823 (($ (-679 |#1|) $) NIL (|has| |#2| (-419 |#1|)))) (-3500 (($ $ $) NIL)) (-2433 (((-121)) NIL (|has| |#2| (-369 |#1|)))) (-2189 (((-121)) NIL (|has| |#2| (-369 |#1|)))) (-4107 (((-121)) NIL (|has| |#2| (-369 |#1|)))) (-3056 (($) 15 T CONST)) (-1717 (((-121) $ $) NIL)) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-917)) 17)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-626 |#1| |#2|) (-13 (-736 |#1|) (-608 |#2|) (-10 -8 (-15 -2745 ($ |#2|)) (IF (|has| |#2| (-419 |#1|)) (-6 (-419 |#1|)) |noBranch|) (IF (|has| |#2| (-369 |#1|)) (-6 (-369 |#1|)) |noBranch|))) (-172) (-736 |#1|)) (T -626)) +((-2745 (*1 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-626 *3 *2)) (-4 *2 (-736 *3))))) +(-13 (-736 |#1|) (-608 |#2|) (-10 -8 (-15 -2745 ($ |#2|)) (IF (|has| |#2| (-419 |#1|)) (-6 (-419 |#1|)) |noBranch|) (IF (|has| |#2| (-369 |#1|)) (-6 (-369 |#1|)) |noBranch|))) +((-2763 (((-3 (-835 |#2|) "failed") |#2| (-288 |#2|) (-1143)) 77) (((-3 (-835 |#2|) (-2 (|:| |leftHandLimit| (-3 (-835 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-835 |#2|) "failed"))) "failed") |#2| (-288 (-835 |#2|))) 99)) (-2471 (((-3 (-828 |#2|) "failed") |#2| (-288 (-828 |#2|))) 104))) +(((-627 |#1| |#2|) (-10 -7 (-15 -2763 ((-3 (-835 |#2|) (-2 (|:| |leftHandLimit| (-3 (-835 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-835 |#2|) "failed"))) "failed") |#2| (-288 (-835 |#2|)))) (-15 -2471 ((-3 (-828 |#2|) "failed") |#2| (-288 (-828 |#2|)))) (-15 -2763 ((-3 (-835 |#2|) "failed") |#2| (-288 |#2|) (-1143)))) (-13 (-453) (-842) (-1037 (-568)) (-630 (-568))) (-13 (-27) (-1181) (-432 |#1|))) (T -627)) +((-2763 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-288 *3)) (-5 *5 (-1143)) (-4 *3 (-13 (-27) (-1181) (-432 *6))) (-4 *6 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-835 *3)) (-5 *1 (-627 *6 *3)))) (-2471 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-288 (-828 *3))) (-4 *5 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-828 *3)) (-5 *1 (-627 *5 *3)) (-4 *3 (-13 (-27) (-1181) (-432 *5))))) (-2763 (*1 *2 *3 *4) (-12 (-5 *4 (-288 (-835 *3))) (-4 *3 (-13 (-27) (-1181) (-432 *5))) (-4 *5 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-3 (-835 *3) (-2 (|:| |leftHandLimit| (-3 (-835 *3) "failed")) (|:| |rightHandLimit| (-3 (-835 *3) "failed"))) "failed")) (-5 *1 (-627 *5 *3))))) +(-10 -7 (-15 -2763 ((-3 (-835 |#2|) (-2 (|:| |leftHandLimit| (-3 (-835 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-835 |#2|) "failed"))) "failed") |#2| (-288 (-835 |#2|)))) (-15 -2471 ((-3 (-828 |#2|) "failed") |#2| (-288 (-828 |#2|)))) (-15 -2763 ((-3 (-835 |#2|) "failed") |#2| (-288 |#2|) (-1143)))) +((-2763 (((-3 (-835 (-409 (-953 |#1|))) "failed") (-409 (-953 |#1|)) (-288 (-409 (-953 |#1|))) (-1143)) 79) (((-3 (-835 (-409 (-953 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-835 (-409 (-953 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-835 (-409 (-953 |#1|))) "failed"))) "failed") (-409 (-953 |#1|)) (-288 (-409 (-953 |#1|)))) 18) (((-3 (-835 (-409 (-953 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-835 (-409 (-953 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-835 (-409 (-953 |#1|))) "failed"))) "failed") (-409 (-953 |#1|)) (-288 (-835 (-953 |#1|)))) 34)) (-2471 (((-828 (-409 (-953 |#1|))) (-409 (-953 |#1|)) (-288 (-409 (-953 |#1|)))) 21) (((-828 (-409 (-953 |#1|))) (-409 (-953 |#1|)) (-288 (-828 (-953 |#1|)))) 42))) +(((-628 |#1|) (-10 -7 (-15 -2763 ((-3 (-835 (-409 (-953 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-835 (-409 (-953 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-835 (-409 (-953 |#1|))) "failed"))) "failed") (-409 (-953 |#1|)) (-288 (-835 (-953 |#1|))))) (-15 -2763 ((-3 (-835 (-409 (-953 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-835 (-409 (-953 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-835 (-409 (-953 |#1|))) "failed"))) "failed") (-409 (-953 |#1|)) (-288 (-409 (-953 |#1|))))) (-15 -2471 ((-828 (-409 (-953 |#1|))) (-409 (-953 |#1|)) (-288 (-828 (-953 |#1|))))) (-15 -2471 ((-828 (-409 (-953 |#1|))) (-409 (-953 |#1|)) (-288 (-409 (-953 |#1|))))) (-15 -2763 ((-3 (-835 (-409 (-953 |#1|))) "failed") (-409 (-953 |#1|)) (-288 (-409 (-953 |#1|))) (-1143)))) (-453)) (T -628)) +((-2763 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-288 (-409 (-953 *6)))) (-5 *5 (-1143)) (-5 *3 (-409 (-953 *6))) (-4 *6 (-453)) (-5 *2 (-835 *3)) (-5 *1 (-628 *6)))) (-2471 (*1 *2 *3 *4) (-12 (-5 *4 (-288 (-409 (-953 *5)))) (-5 *3 (-409 (-953 *5))) (-4 *5 (-453)) (-5 *2 (-828 *3)) (-5 *1 (-628 *5)))) (-2471 (*1 *2 *3 *4) (-12 (-5 *4 (-288 (-828 (-953 *5)))) (-4 *5 (-453)) (-5 *2 (-828 (-409 (-953 *5)))) (-5 *1 (-628 *5)) (-5 *3 (-409 (-953 *5))))) (-2763 (*1 *2 *3 *4) (-12 (-5 *4 (-288 (-409 (-953 *5)))) (-5 *3 (-409 (-953 *5))) (-4 *5 (-453)) (-5 *2 (-3 (-835 *3) (-2 (|:| |leftHandLimit| (-3 (-835 *3) "failed")) (|:| |rightHandLimit| (-3 (-835 *3) "failed"))) "failed")) (-5 *1 (-628 *5)))) (-2763 (*1 *2 *3 *4) (-12 (-5 *4 (-288 (-835 (-953 *5)))) (-4 *5 (-453)) (-5 *2 (-3 (-835 (-409 (-953 *5))) (-2 (|:| |leftHandLimit| (-3 (-835 (-409 (-953 *5))) "failed")) (|:| |rightHandLimit| (-3 (-835 (-409 (-953 *5))) "failed"))) "failed")) (-5 *1 (-628 *5)) (-5 *3 (-409 (-953 *5)))))) +(-10 -7 (-15 -2763 ((-3 (-835 (-409 (-953 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-835 (-409 (-953 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-835 (-409 (-953 |#1|))) "failed"))) "failed") (-409 (-953 |#1|)) (-288 (-835 (-953 |#1|))))) (-15 -2763 ((-3 (-835 (-409 (-953 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-835 (-409 (-953 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-835 (-409 (-953 |#1|))) "failed"))) "failed") (-409 (-953 |#1|)) (-288 (-409 (-953 |#1|))))) (-15 -2471 ((-828 (-409 (-953 |#1|))) (-409 (-953 |#1|)) (-288 (-828 (-953 |#1|))))) (-15 -2471 ((-828 (-409 (-953 |#1|))) (-409 (-953 |#1|)) (-288 (-409 (-953 |#1|))))) (-15 -2763 ((-3 (-835 (-409 (-953 |#1|))) "failed") (-409 (-953 |#1|)) (-288 (-409 (-953 |#1|))) (-1143)))) +((-2947 (((-3 (-1244 (-409 |#1|)) "failed") (-1244 |#2|) |#2|) 57 (-3044 (|has| |#1| (-365)))) (((-3 (-1244 |#1|) "failed") (-1244 |#2|) |#2|) 42 (|has| |#1| (-365)))) (-2279 (((-121) (-1244 |#2|)) 30)) (-4085 (((-3 (-1244 |#1|) "failed") (-1244 |#2|)) 33))) +(((-629 |#1| |#2|) (-10 -7 (-15 -2279 ((-121) (-1244 |#2|))) (-15 -4085 ((-3 (-1244 |#1|) "failed") (-1244 |#2|))) (IF (|has| |#1| (-365)) (-15 -2947 ((-3 (-1244 |#1|) "failed") (-1244 |#2|) |#2|)) (-15 -2947 ((-3 (-1244 (-409 |#1|)) "failed") (-1244 |#2|) |#2|)))) (-558) (-630 |#1|)) (T -629)) +((-2947 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1244 *4)) (-4 *4 (-630 *5)) (-3044 (-4 *5 (-365))) (-4 *5 (-558)) (-5 *2 (-1244 (-409 *5))) (-5 *1 (-629 *5 *4)))) (-2947 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1244 *4)) (-4 *4 (-630 *5)) (-4 *5 (-365)) (-4 *5 (-558)) (-5 *2 (-1244 *5)) (-5 *1 (-629 *5 *4)))) (-4085 (*1 *2 *3) (|partial| -12 (-5 *3 (-1244 *5)) (-4 *5 (-630 *4)) (-4 *4 (-558)) (-5 *2 (-1244 *4)) (-5 *1 (-629 *4 *5)))) (-2279 (*1 *2 *3) (-12 (-5 *3 (-1244 *5)) (-4 *5 (-630 *4)) (-4 *4 (-558)) (-5 *2 (-121)) (-5 *1 (-629 *4 *5))))) +(-10 -7 (-15 -2279 ((-121) (-1244 |#2|))) (-15 -4085 ((-3 (-1244 |#1|) "failed") (-1244 |#2|))) (IF (|has| |#1| (-365)) (-15 -2947 ((-3 (-1244 |#1|) "failed") (-1244 |#2|) |#2|)) (-15 -2947 ((-3 (-1244 (-409 |#1|)) "failed") (-1244 |#2|) |#2|)))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-3134 (((-3 $ "failed") $ $) 18)) (-2671 (($) 16 T CONST)) (-3164 (((-679 |#1|) (-679 $)) 35) (((-2 (|:| -2928 (-679 |#1|)) (|:| |vec| (-1244 |#1|))) (-679 $) (-1244 $)) 34)) (-2925 (((-3 $ "failed") $) 33)) (-2735 (((-121) $) 30)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-2745 (((-850) $) 11) (($ (-568)) 27)) (-4078 (((-763)) 28)) (-1887 (($ $ (-917)) 25) (($ $ (-763)) 32)) (-3056 (($) 17 T CONST)) (-1556 (($) 29 T CONST)) (-1717 (((-121) $ $) 6)) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 24) (($ $ (-763)) 31)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 23))) +(((-630 |#1|) (-1275) (-1047)) (T -630)) +((-3164 (*1 *2 *3) (-12 (-5 *3 (-679 *1)) (-4 *1 (-630 *4)) (-4 *4 (-1047)) (-5 *2 (-679 *4)))) (-3164 (*1 *2 *3 *4) (-12 (-5 *3 (-679 *1)) (-5 *4 (-1244 *1)) (-4 *1 (-630 *5)) (-4 *5 (-1047)) (-5 *2 (-2 (|:| -2928 (-679 *5)) (|:| |vec| (-1244 *5))))))) +(-13 (-1047) (-10 -8 (-15 -3164 ((-679 |t#1|) (-679 $))) (-15 -3164 ((-2 (|:| -2928 (-679 |t#1|)) (|:| |vec| (-1244 |t#1|))) (-679 $) (-1244 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-105) . T) ((-137) . T) ((-608 (-850)) . T) ((-637 $) . T) ((-716) . T) ((-1047) . T) ((-1054) . T) ((-1102) . T) ((-1090) . T)) +((-2661 ((|#2| (-634 |#1|) (-634 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-634 |#1|) (-634 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-634 |#1|) (-634 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-634 |#1|) (-634 |#2|) |#2|) 17) ((|#2| (-634 |#1|) (-634 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-634 |#1|) (-634 |#2|)) 12))) +(((-631 |#1| |#2|) (-10 -7 (-15 -2661 ((-1 |#2| |#1|) (-634 |#1|) (-634 |#2|))) (-15 -2661 (|#2| (-634 |#1|) (-634 |#2|) |#1|)) (-15 -2661 ((-1 |#2| |#1|) (-634 |#1|) (-634 |#2|) |#2|)) (-15 -2661 (|#2| (-634 |#1|) (-634 |#2|) |#1| |#2|)) (-15 -2661 ((-1 |#2| |#1|) (-634 |#1|) (-634 |#2|) (-1 |#2| |#1|))) (-15 -2661 (|#2| (-634 |#1|) (-634 |#2|) |#1| (-1 |#2| |#1|)))) (-1090) (-1195)) (T -631)) +((-2661 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-634 *5)) (-5 *4 (-634 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1090)) (-4 *2 (-1195)) (-5 *1 (-631 *5 *2)))) (-2661 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-634 *5)) (-5 *4 (-634 *6)) (-4 *5 (-1090)) (-4 *6 (-1195)) (-5 *1 (-631 *5 *6)))) (-2661 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-634 *5)) (-5 *4 (-634 *2)) (-4 *5 (-1090)) (-4 *2 (-1195)) (-5 *1 (-631 *5 *2)))) (-2661 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-634 *6)) (-5 *4 (-634 *5)) (-4 *6 (-1090)) (-4 *5 (-1195)) (-5 *2 (-1 *5 *6)) (-5 *1 (-631 *6 *5)))) (-2661 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-634 *5)) (-5 *4 (-634 *2)) (-4 *5 (-1090)) (-4 *2 (-1195)) (-5 *1 (-631 *5 *2)))) (-2661 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *5)) (-5 *4 (-634 *6)) (-4 *5 (-1090)) (-4 *6 (-1195)) (-5 *2 (-1 *6 *5)) (-5 *1 (-631 *5 *6))))) +(-10 -7 (-15 -2661 ((-1 |#2| |#1|) (-634 |#1|) (-634 |#2|))) (-15 -2661 (|#2| (-634 |#1|) (-634 |#2|) |#1|)) (-15 -2661 ((-1 |#2| |#1|) (-634 |#1|) (-634 |#2|) |#2|)) (-15 -2661 (|#2| (-634 |#1|) (-634 |#2|) |#1| |#2|)) (-15 -2661 ((-1 |#2| |#1|) (-634 |#1|) (-634 |#2|) (-1 |#2| |#1|))) (-15 -2661 (|#2| (-634 |#1|) (-634 |#2|) |#1| (-1 |#2| |#1|)))) +((-2512 (((-634 |#2|) (-1 |#2| |#1| |#2|) (-634 |#1|) |#2|) 16)) (-3092 ((|#2| (-1 |#2| |#1| |#2|) (-634 |#1|) |#2|) 18)) (-2795 (((-634 |#2|) (-1 |#2| |#1|) (-634 |#1|)) 13))) +(((-632 |#1| |#2|) (-10 -7 (-15 -2512 ((-634 |#2|) (-1 |#2| |#1| |#2|) (-634 |#1|) |#2|)) (-15 -3092 (|#2| (-1 |#2| |#1| |#2|) (-634 |#1|) |#2|)) (-15 -2795 ((-634 |#2|) (-1 |#2| |#1|) (-634 |#1|)))) (-1195) (-1195)) (T -632)) +((-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-634 *5)) (-4 *5 (-1195)) (-4 *6 (-1195)) (-5 *2 (-634 *6)) (-5 *1 (-632 *5 *6)))) (-3092 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-634 *5)) (-4 *5 (-1195)) (-4 *2 (-1195)) (-5 *1 (-632 *5 *2)))) (-2512 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-634 *6)) (-4 *6 (-1195)) (-4 *5 (-1195)) (-5 *2 (-634 *5)) (-5 *1 (-632 *6 *5))))) +(-10 -7 (-15 -2512 ((-634 |#2|) (-1 |#2| |#1| |#2|) (-634 |#1|) |#2|)) (-15 -3092 (|#2| (-1 |#2| |#1| |#2|) (-634 |#1|) |#2|)) (-15 -2795 ((-634 |#2|) (-1 |#2| |#1|) (-634 |#1|)))) +((-2795 (((-634 |#3|) (-1 |#3| |#1| |#2|) (-634 |#1|) (-634 |#2|)) 13))) +(((-633 |#1| |#2| |#3|) (-10 -7 (-15 -2795 ((-634 |#3|) (-1 |#3| |#1| |#2|) (-634 |#1|) (-634 |#2|)))) (-1195) (-1195) (-1195)) (T -633)) +((-2795 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-634 *6)) (-5 *5 (-634 *7)) (-4 *6 (-1195)) (-4 *7 (-1195)) (-4 *8 (-1195)) (-5 *2 (-634 *8)) (-5 *1 (-633 *6 *7 *8))))) +(-10 -7 (-15 -2795 ((-634 |#3|) (-1 |#3| |#1| |#2|) (-634 |#1|) (-634 |#2|)))) +((-2447 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-2850 ((|#1| $) NIL)) (-2235 ((|#1| $) NIL)) (-2796 (($ $) NIL)) (-1868 (((-1249) $ (-568) (-568)) NIL (|has| $ (-6 -4520)))) (-3910 (($ $ (-568)) NIL (|has| $ (-6 -4520)))) (-2016 (((-121) $) NIL (|has| |#1| (-842))) (((-121) (-1 (-121) |#1| |#1|) $) NIL)) (-3908 (($ $) NIL (-12 (|has| $ (-6 -4520)) (|has| |#1| (-842)))) (($ (-1 (-121) |#1| |#1|) $) NIL (|has| $ (-6 -4520)))) (-3644 (($ $) NIL (|has| |#1| (-842))) (($ (-1 (-121) |#1| |#1|) $) NIL)) (-2510 (((-121) $ (-763)) NIL)) (-1659 ((|#1| $ |#1|) NIL (|has| $ (-6 -4520)))) (-3869 (($ $ $) NIL (|has| $ (-6 -4520)))) (-2395 ((|#1| $ |#1|) NIL (|has| $ (-6 -4520)))) (-2517 ((|#1| $ |#1|) NIL (|has| $ (-6 -4520)))) (-2436 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4520))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4520))) (($ $ "rest" $) NIL (|has| $ (-6 -4520))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4520))) ((|#1| $ (-1210 (-568)) |#1|) NIL (|has| $ (-6 -4520))) ((|#1| $ (-568) |#1|) NIL (|has| $ (-6 -4520)))) (-3827 (($ $ (-634 $)) NIL (|has| $ (-6 -4520)))) (-3971 (($ $ $) 31 (|has| |#1| (-1090)))) (-3960 (($ $ $) 33 (|has| |#1| (-1090)))) (-3951 (($ $ $) 36 (|has| |#1| (-1090)))) (-3507 (($ (-1 (-121) |#1|) $) NIL)) (-2801 (($ (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-1679 ((|#1| $) NIL)) (-2671 (($) NIL T CONST)) (-1578 (($ $) NIL (|has| $ (-6 -4520)))) (-3943 (($ $) NIL)) (-3935 (($ $) NIL) (($ $ (-763)) NIL)) (-3369 (($ $) NIL (|has| |#1| (-1090)))) (-3924 (($ $) 30 (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-3405 (($ |#1| $) NIL (|has| |#1| (-1090))) (($ (-1 (-121) |#1|) $) NIL)) (-4328 (($ (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-3092 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4519))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4519))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-3989 ((|#1| $ (-568) |#1|) NIL (|has| $ (-6 -4520)))) (-2602 ((|#1| $ (-568)) NIL)) (-1601 (((-121) $) NIL)) (-2764 (((-568) |#1| $ (-568)) NIL (|has| |#1| (-1090))) (((-568) |#1| $) NIL (|has| |#1| (-1090))) (((-568) (-1 (-121) |#1|) $) NIL)) (-4360 (((-634 |#1|) $) NIL (|has| $ (-6 -4519)))) (-2597 (((-121) $) 9)) (-2287 (((-634 $) $) NIL)) (-1700 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-3973 (($) 7)) (-1849 (($ (-763) |#1|) NIL)) (-1737 (((-121) $ (-763)) NIL)) (-1881 (((-568) $) NIL (|has| (-568) (-842)))) (-2521 (($ $ $) NIL (|has| |#1| (-842)))) (-3349 (($ $ $) NIL (|has| |#1| (-842))) (($ (-1 (-121) |#1| |#1|) $ $) NIL)) (-1347 (($ $ $) NIL (|has| |#1| (-842))) (($ (-1 (-121) |#1| |#1|) $ $) NIL)) (-1979 (((-634 |#1|) $) NIL (|has| $ (-6 -4519)))) (-3109 (((-121) |#1| $) 32 (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-2223 (((-568) $) NIL (|has| (-568) (-842)))) (-3268 (($ $ $) NIL (|has| |#1| (-842)))) (-3674 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3896 (($ |#1|) NIL)) (-2166 (((-121) $ (-763)) NIL)) (-2869 (((-634 |#1|) $) NIL)) (-1651 (((-121) $) NIL)) (-4487 (((-1143) $) NIL (|has| |#1| (-1090)))) (-4162 ((|#1| $) NIL) (($ $ (-763)) NIL)) (-4450 (($ $ $ (-568)) NIL) (($ |#1| $ (-568)) NIL)) (-4122 (($ $ $ (-568)) NIL) (($ |#1| $ (-568)) NIL)) (-4174 (((-634 (-568)) $) NIL)) (-3578 (((-121) (-568) $) NIL)) (-4022 (((-1108) $) NIL (|has| |#1| (-1090)))) (-3876 ((|#1| $) NIL) (($ $ (-763)) NIL)) (-3775 (((-3 |#1| "failed") (-1 (-121) |#1|) $) NIL)) (-3724 (($ $ |#1|) NIL (|has| $ (-6 -4520)))) (-1786 (((-121) $) NIL)) (-1387 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-634 |#1|) (-634 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))))) (-3171 (((-121) $ $) NIL)) (-4467 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-2041 (((-634 |#1|) $) NIL)) (-3084 (((-121) $) NIL)) (-3248 (($) NIL)) (-2779 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1210 (-568))) NIL) ((|#1| $ (-568)) 35) ((|#1| $ (-568) |#1|) NIL)) (-4075 (((-568) $ $) NIL)) (-1783 (($ $ (-1210 (-568))) NIL) (($ $ (-568)) NIL)) (-2826 (($ $ (-1210 (-568))) NIL) (($ $ (-568)) NIL)) (-3790 (((-121) $) NIL)) (-2340 (($ $) NIL)) (-2714 (($ $) NIL (|has| $ (-6 -4520)))) (-2775 (((-763) $) NIL)) (-3335 (($ $) NIL)) (-4168 (((-763) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519))) (((-763) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-2256 (($ $ $ (-568)) NIL (|has| $ (-6 -4520)))) (-3863 (($ $) NIL)) (-4278 (((-541) $) 44 (|has| |#1| (-609 (-541))))) (-4287 (($ (-634 |#1|)) NIL)) (-3853 (($ |#1| $) 10)) (-3845 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2768 (($ $ $) 29) (($ |#1| $) NIL) (($ (-634 $)) NIL) (($ $ |#1|) NIL)) (-2745 (((-850) $) NIL (|has| |#1| (-1090)))) (-4339 (((-634 $) $) NIL)) (-3491 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-1855 (($ $ $) 11)) (-1319 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-3754 (((-1143) $) 25 (|has| |#1| (-823))) (((-1143) $ (-121)) 26 (|has| |#1| (-823))) (((-1249) (-817) $) 27 (|has| |#1| (-823))) (((-1249) (-817) $ (-121)) 28 (|has| |#1| (-823)))) (-1751 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1738 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1717 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-1745 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1732 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1697 (((-763) $) NIL (|has| $ (-6 -4519))))) +(((-634 |#1|) (-13 (-658 |#1|) (-10 -8 (-15 -3973 ($)) (-15 -2597 ((-121) $)) (-15 -3853 ($ |#1| $)) (-15 -1855 ($ $ $)) (IF (|has| |#1| (-1090)) (PROGN (-15 -3971 ($ $ $)) (-15 -3960 ($ $ $)) (-15 -3951 ($ $ $))) |noBranch|) (IF (|has| |#1| (-823)) (-6 (-823)) |noBranch|))) (-1195)) (T -634)) +((-3973 (*1 *1) (-12 (-5 *1 (-634 *2)) (-4 *2 (-1195)))) (-2597 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-634 *3)) (-4 *3 (-1195)))) (-3853 (*1 *1 *2 *1) (-12 (-5 *1 (-634 *2)) (-4 *2 (-1195)))) (-1855 (*1 *1 *1 *1) (-12 (-5 *1 (-634 *2)) (-4 *2 (-1195)))) (-3971 (*1 *1 *1 *1) (-12 (-5 *1 (-634 *2)) (-4 *2 (-1090)) (-4 *2 (-1195)))) (-3960 (*1 *1 *1 *1) (-12 (-5 *1 (-634 *2)) (-4 *2 (-1090)) (-4 *2 (-1195)))) (-3951 (*1 *1 *1 *1) (-12 (-5 *1 (-634 *2)) (-4 *2 (-1090)) (-4 *2 (-1195))))) +(-13 (-658 |#1|) (-10 -8 (-15 -3973 ($)) (-15 -2597 ((-121) $)) (-15 -3853 ($ |#1| $)) (-15 -1855 ($ $ $)) (IF (|has| |#1| (-1090)) (PROGN (-15 -3971 ($ $ $)) (-15 -3960 ($ $ $)) (-15 -3951 ($ $ $))) |noBranch|) (IF (|has| |#1| (-823)) (-6 (-823)) |noBranch|))) +((-3232 (((-634 |#1|) |#2| (-568)) 21)) (-3905 (((-679 |#1|) (-634 |#2|) (-568)) 30)) (-2145 (((-679 |#1|) (-634 |#2|) (-568)) 28))) +(((-635 |#1| |#2|) (-10 -7 (-15 -3905 ((-679 |#1|) (-634 |#2|) (-568))) (-15 -2145 ((-679 |#1|) (-634 |#2|) (-568))) (-15 -3232 ((-634 |#1|) |#2| (-568)))) (-365) (-641 |#1|)) (T -635)) +((-3232 (*1 *2 *3 *4) (-12 (-5 *4 (-568)) (-4 *5 (-365)) (-5 *2 (-634 *5)) (-5 *1 (-635 *5 *3)) (-4 *3 (-641 *5)))) (-2145 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *6)) (-5 *4 (-568)) (-4 *6 (-641 *5)) (-4 *5 (-365)) (-5 *2 (-679 *5)) (-5 *1 (-635 *5 *6)))) (-3905 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *6)) (-5 *4 (-568)) (-4 *6 (-641 *5)) (-4 *5 (-365)) (-5 *2 (-679 *5)) (-5 *1 (-635 *5 *6))))) +(-10 -7 (-15 -3905 ((-679 |#1|) (-634 |#2|) (-568))) (-15 -2145 ((-679 |#1|) (-634 |#2|) (-568))) (-15 -3232 ((-634 |#1|) |#2| (-568)))) +((-2447 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-3991 (($ |#1| |#1| $) 43)) (-2510 (((-121) $ (-763)) NIL)) (-3507 (($ (-1 (-121) |#1|) $) 56 (|has| $ (-6 -4519)))) (-2801 (($ (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-2671 (($) NIL T CONST)) (-3369 (($ $) 45)) (-3924 (($ $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-3405 (($ |#1| $) 51 (|has| $ (-6 -4519))) (($ (-1 (-121) |#1|) $) 53 (|has| $ (-6 -4519)))) (-4328 (($ |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090)))) (($ (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-3092 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4519))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4519)))) (-4360 (((-634 |#1|) $) 9 (|has| $ (-6 -4519)))) (-1737 (((-121) $ (-763)) NIL)) (-1979 (((-634 |#1|) $) NIL (|has| $ (-6 -4519)))) (-3109 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-3674 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#1| |#1|) $) 37)) (-2166 (((-121) $ (-763)) NIL)) (-4487 (((-1143) $) NIL (|has| |#1| (-1090)))) (-1890 ((|#1| $) 46)) (-4450 (($ |#1| $) 26) (($ |#1| $ (-763)) 42)) (-4022 (((-1108) $) NIL (|has| |#1| (-1090)))) (-3775 (((-3 |#1| "failed") (-1 (-121) |#1|) $) NIL)) (-1315 ((|#1| $) 48)) (-1387 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-634 |#1|) (-634 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))))) (-3171 (((-121) $ $) NIL)) (-3084 (((-121) $) 21)) (-3248 (($) 25)) (-4020 (((-121) $) 49)) (-1799 (((-634 (-2 (|:| -4083 |#1|) (|:| -4168 (-763)))) $) 60)) (-2085 (($) 23) (($ (-634 |#1|)) 18)) (-4168 (((-763) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519))) (((-763) |#1| $) 57 (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-3863 (($ $) 19)) (-4278 (((-541) $) 34 (|has| |#1| (-609 (-541))))) (-4287 (($ (-634 |#1|)) NIL)) (-2745 (((-850) $) 14 (|has| |#1| (-1090)))) (-2367 (($ (-634 |#1|)) 22)) (-1319 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-1717 (((-121) $ $) 62 (|has| |#1| (-1090)))) (-1697 (((-763) $) 16 (|has| $ (-6 -4519))))) +(((-636 |#1|) (-13 (-684 |#1|) (-10 -8 (-6 -4519) (-15 -4020 ((-121) $)) (-15 -3991 ($ |#1| |#1| $)))) (-1090)) (T -636)) +((-4020 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-636 *3)) (-4 *3 (-1090)))) (-3991 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-636 *2)) (-4 *2 (-1090))))) +(-13 (-684 |#1|) (-10 -8 (-6 -4519) (-15 -4020 ((-121) $)) (-15 -3991 ($ |#1| |#1| $)))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-3134 (((-3 $ "failed") $ $) 18)) (-2671 (($) 16 T CONST)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-2745 (((-850) $) 11)) (-3056 (($) 17 T CONST)) (-1717 (((-121) $ $) 6)) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ |#1| $) 22))) +(((-637 |#1|) (-1275) (-1054)) (T -637)) +((* (*1 *1 *2 *1) (-12 (-4 *1 (-637 *2)) (-4 *2 (-1054))))) (-13 (-21) (-10 -8 (-15 * ($ |t#1| $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-105) . T) ((-137) . T) ((-600 (-842)) . T) ((-1082) . T)) -((-2601 (((-121) $ $) NIL)) (-2912 (((-755) $) 15)) (-2694 (($ $ |#1|) 55)) (-4030 (($ $) 32)) (-2883 (($ $) 31)) (-1473 (((-3 |#1| "failed") $) 47)) (-3001 ((|#1| $) NIL)) (-4264 (($ |#1| |#2| $) 60) (($ $ $) 61)) (-1720 (((-842) $ (-1 (-842) (-842) (-842)) (-1 (-842) (-842) (-842)) (-560)) 45)) (-1724 ((|#1| $ (-560)) 30)) (-3461 ((|#2| $ (-560)) 29)) (-2381 (($ (-1 |#1| |#1|) $) 34)) (-3275 (($ (-1 |#2| |#2|) $) 38)) (-2838 (($) 10)) (-2203 (($ |#1| |#2|) 22)) (-2833 (($ (-626 (-2 (|:| |gen| |#1|) (|:| -2469 |#2|)))) 23)) (-2693 (((-626 (-2 (|:| |gen| |#1|) (|:| -2469 |#2|))) $) 13)) (-2403 (($ |#1| $) 56)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-1386 (((-121) $ $) 58)) (-2801 (((-842) $) 19) (($ |#1|) 16)) (-1653 (((-121) $ $) 25))) -(((-630 |#1| |#2| |#3|) (-13 (-1082) (-1029 |#1|) (-10 -8 (-15 -1720 ((-842) $ (-1 (-842) (-842) (-842)) (-1 (-842) (-842) (-842)) (-560))) (-15 -2693 ((-626 (-2 (|:| |gen| |#1|) (|:| -2469 |#2|))) $)) (-15 -2203 ($ |#1| |#2|)) (-15 -2833 ($ (-626 (-2 (|:| |gen| |#1|) (|:| -2469 |#2|))))) (-15 -3461 (|#2| $ (-560))) (-15 -1724 (|#1| $ (-560))) (-15 -2883 ($ $)) (-15 -4030 ($ $)) (-15 -2912 ((-755) $)) (-15 -2838 ($)) (-15 -2694 ($ $ |#1|)) (-15 -2403 ($ |#1| $)) (-15 -4264 ($ |#1| |#2| $)) (-15 -4264 ($ $ $)) (-15 -1386 ((-121) $ $)) (-15 -3275 ($ (-1 |#2| |#2|) $)) (-15 -2381 ($ (-1 |#1| |#1|) $)))) (-1082) (-23) |#2|) (T -630)) -((-1720 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-842) (-842) (-842))) (-5 *4 (-560)) (-5 *2 (-842)) (-5 *1 (-630 *5 *6 *7)) (-4 *5 (-1082)) (-4 *6 (-23)) (-14 *7 *6))) (-2693 (*1 *2 *1) (-12 (-5 *2 (-626 (-2 (|:| |gen| *3) (|:| -2469 *4)))) (-5 *1 (-630 *3 *4 *5)) (-4 *3 (-1082)) (-4 *4 (-23)) (-14 *5 *4))) (-2203 (*1 *1 *2 *3) (-12 (-5 *1 (-630 *2 *3 *4)) (-4 *2 (-1082)) (-4 *3 (-23)) (-14 *4 *3))) (-2833 (*1 *1 *2) (-12 (-5 *2 (-626 (-2 (|:| |gen| *3) (|:| -2469 *4)))) (-4 *3 (-1082)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-630 *3 *4 *5)))) (-3461 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *2 (-23)) (-5 *1 (-630 *4 *2 *5)) (-4 *4 (-1082)) (-14 *5 *2))) (-1724 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *2 (-1082)) (-5 *1 (-630 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-2883 (*1 *1 *1) (-12 (-5 *1 (-630 *2 *3 *4)) (-4 *2 (-1082)) (-4 *3 (-23)) (-14 *4 *3))) (-4030 (*1 *1 *1) (-12 (-5 *1 (-630 *2 *3 *4)) (-4 *2 (-1082)) (-4 *3 (-23)) (-14 *4 *3))) (-2912 (*1 *2 *1) (-12 (-5 *2 (-755)) (-5 *1 (-630 *3 *4 *5)) (-4 *3 (-1082)) (-4 *4 (-23)) (-14 *5 *4))) (-2838 (*1 *1) (-12 (-5 *1 (-630 *2 *3 *4)) (-4 *2 (-1082)) (-4 *3 (-23)) (-14 *4 *3))) (-2694 (*1 *1 *1 *2) (-12 (-5 *1 (-630 *2 *3 *4)) (-4 *2 (-1082)) (-4 *3 (-23)) (-14 *4 *3))) (-2403 (*1 *1 *2 *1) (-12 (-5 *1 (-630 *2 *3 *4)) (-4 *2 (-1082)) (-4 *3 (-23)) (-14 *4 *3))) (-4264 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-630 *2 *3 *4)) (-4 *2 (-1082)) (-4 *3 (-23)) (-14 *4 *3))) (-4264 (*1 *1 *1 *1) (-12 (-5 *1 (-630 *2 *3 *4)) (-4 *2 (-1082)) (-4 *3 (-23)) (-14 *4 *3))) (-1386 (*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-630 *3 *4 *5)) (-4 *3 (-1082)) (-4 *4 (-23)) (-14 *5 *4))) (-3275 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-630 *3 *4 *5)) (-4 *3 (-1082)))) (-2381 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1082)) (-5 *1 (-630 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -(-13 (-1082) (-1029 |#1|) (-10 -8 (-15 -1720 ((-842) $ (-1 (-842) (-842) (-842)) (-1 (-842) (-842) (-842)) (-560))) (-15 -2693 ((-626 (-2 (|:| |gen| |#1|) (|:| -2469 |#2|))) $)) (-15 -2203 ($ |#1| |#2|)) (-15 -2833 ($ (-626 (-2 (|:| |gen| |#1|) (|:| -2469 |#2|))))) (-15 -3461 (|#2| $ (-560))) (-15 -1724 (|#1| $ (-560))) (-15 -2883 ($ $)) (-15 -4030 ($ $)) (-15 -2912 ((-755) $)) (-15 -2838 ($)) (-15 -2694 ($ $ |#1|)) (-15 -2403 ($ |#1| $)) (-15 -4264 ($ |#1| |#2| $)) (-15 -4264 ($ $ $)) (-15 -1386 ((-121) $ $)) (-15 -3275 ($ (-1 |#2| |#2|) $)) (-15 -2381 ($ (-1 |#1| |#1|) $)))) -((-2767 (((-560) $) 23)) (-4103 (($ |#2| $ (-560)) 21) (($ $ $ (-560)) NIL)) (-1529 (((-626 (-560)) $) 12)) (-1310 (((-121) (-560) $) 14)) (-2849 (($ $ |#2|) 18) (($ |#2| $) 19) (($ $ $) NIL) (($ (-626 $)) NIL))) -(((-631 |#1| |#2|) (-10 -8 (-15 -4103 (|#1| |#1| |#1| (-560))) (-15 -4103 (|#1| |#2| |#1| (-560))) (-15 -2849 (|#1| (-626 |#1|))) (-15 -2849 (|#1| |#1| |#1|)) (-15 -2849 (|#1| |#2| |#1|)) (-15 -2849 (|#1| |#1| |#2|)) (-15 -2767 ((-560) |#1|)) (-15 -1529 ((-626 (-560)) |#1|)) (-15 -1310 ((-121) (-560) |#1|))) (-632 |#2|) (-1187)) (T -631)) -NIL -(-10 -8 (-15 -4103 (|#1| |#1| |#1| (-560))) (-15 -4103 (|#1| |#2| |#1| (-560))) (-15 -2849 (|#1| (-626 |#1|))) (-15 -2849 (|#1| |#1| |#1|)) (-15 -2849 (|#1| |#2| |#1|)) (-15 -2849 (|#1| |#1| |#2|)) (-15 -2767 ((-560) |#1|)) (-15 -1529 ((-626 (-560)) |#1|)) (-15 -1310 ((-121) (-560) |#1|))) -((-2601 (((-121) $ $) 18 (|has| |#1| (-1082)))) (-2960 (((-1241) $ (-560) (-560)) 37 (|has| $ (-6 -4506)))) (-3909 (((-121) $ (-755)) 8)) (-2764 ((|#1| $ (-560) |#1|) 49 (|has| $ (-6 -4506))) ((|#1| $ (-1202 (-560)) |#1|) 53 (|has| $ (-6 -4506)))) (-3802 (($ (-1 (-121) |#1|) $) 70 (|has| $ (-6 -4505)))) (-4236 (($) 7 T CONST)) (-2868 (($ $) 73 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-4310 (($ |#1| $) 72 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505)))) (($ (-1 (-121) |#1|) $) 69 (|has| $ (-6 -4505)))) (-2342 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 71 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 68 (|has| $ (-6 -4505))) ((|#1| (-1 |#1| |#1| |#1|) $) 67 (|has| $ (-6 -4505)))) (-1746 ((|#1| $ (-560) |#1|) 50 (|has| $ (-6 -4506)))) (-1361 ((|#1| $ (-560)) 48)) (-1981 (((-626 |#1|) $) 30 (|has| $ (-6 -4505)))) (-1721 (($ (-755) |#1|) 64)) (-2122 (((-121) $ (-755)) 9)) (-4099 (((-560) $) 40 (|has| (-560) (-834)))) (-2130 (((-626 |#1|) $) 29 (|has| $ (-6 -4505)))) (-2030 (((-121) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-2767 (((-560) $) 41 (|has| (-560) (-834)))) (-3778 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 59)) (-3441 (((-121) $ (-755)) 10)) (-1291 (((-1135) $) 22 (|has| |#1| (-1082)))) (-4103 (($ |#1| $ (-560)) 55) (($ $ $ (-560)) 54)) (-1529 (((-626 (-560)) $) 43)) (-1310 (((-121) (-560) $) 44)) (-4353 (((-1100) $) 21 (|has| |#1| (-1082)))) (-2824 ((|#1| $) 39 (|has| (-560) (-834)))) (-3786 (((-3 |#1| "failed") (-1 (-121) |#1|) $) 66)) (-3038 (($ $ |#1|) 38 (|has| $ (-6 -4506)))) (-2865 (((-121) (-1 (-121) |#1|) $) 32 (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#1|))) 26 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-283 |#1|)) 25 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-626 |#1|) (-626 |#1|)) 23 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))))) (-2214 (((-121) $ $) 14)) (-1290 (((-121) |#1| $) 42 (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-4460 (((-626 |#1|) $) 45)) (-4191 (((-121) $) 11)) (-3260 (($) 12)) (-2778 ((|#1| $ (-560) |#1|) 47) ((|#1| $ (-560)) 46) (($ $ (-1202 (-560))) 58)) (-2949 (($ $ (-560)) 57) (($ $ (-1202 (-560))) 56)) (-4035 (((-755) (-1 (-121) |#1|) $) 31 (|has| $ (-6 -4505))) (((-755) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-2813 (($ $) 13)) (-4255 (((-533) $) 74 (|has| |#1| (-601 (-533))))) (-4162 (($ (-626 |#1|)) 65)) (-2849 (($ $ |#1|) 63) (($ |#1| $) 62) (($ $ $) 61) (($ (-626 $)) 60)) (-2801 (((-842) $) 20 (|has| |#1| (-1082)))) (-3656 (((-121) (-1 (-121) |#1|) $) 33 (|has| $ (-6 -4505)))) (-1653 (((-121) $ $) 19 (|has| |#1| (-1082)))) (-2271 (((-755) $) 6 (|has| $ (-6 -4505))))) -(((-632 |#1|) (-1267) (-1187)) (T -632)) -((-1721 (*1 *1 *2 *3) (-12 (-5 *2 (-755)) (-4 *1 (-632 *3)) (-4 *3 (-1187)))) (-2849 (*1 *1 *1 *2) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1187)))) (-2849 (*1 *1 *2 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1187)))) (-2849 (*1 *1 *1 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1187)))) (-2849 (*1 *1 *2) (-12 (-5 *2 (-626 *1)) (-4 *1 (-632 *3)) (-4 *3 (-1187)))) (-2803 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-632 *3)) (-4 *3 (-1187)))) (-2778 (*1 *1 *1 *2) (-12 (-5 *2 (-1202 (-560))) (-4 *1 (-632 *3)) (-4 *3 (-1187)))) (-2949 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-632 *3)) (-4 *3 (-1187)))) (-2949 (*1 *1 *1 *2) (-12 (-5 *2 (-1202 (-560))) (-4 *1 (-632 *3)) (-4 *3 (-1187)))) (-4103 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *1 (-632 *2)) (-4 *2 (-1187)))) (-4103 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-632 *3)) (-4 *3 (-1187)))) (-2764 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1202 (-560))) (|has| *1 (-6 -4506)) (-4 *1 (-632 *2)) (-4 *2 (-1187))))) -(-13 (-593 (-560) |t#1|) (-152 |t#1|) (-10 -8 (-15 -1721 ($ (-755) |t#1|)) (-15 -2849 ($ $ |t#1|)) (-15 -2849 ($ |t#1| $)) (-15 -2849 ($ $ $)) (-15 -2849 ($ (-626 $))) (-15 -2803 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2778 ($ $ (-1202 (-560)))) (-15 -2949 ($ $ (-560))) (-15 -2949 ($ $ (-1202 (-560)))) (-15 -4103 ($ |t#1| $ (-560))) (-15 -4103 ($ $ $ (-560))) (IF (|has| $ (-6 -4506)) (-15 -2764 (|t#1| $ (-1202 (-560)) |t#1|)) |noBranch|))) -(((-39) . T) ((-105) |has| |#1| (-1082)) ((-600 (-842)) |has| |#1| (-1082)) ((-152 |#1|) . T) ((-601 (-533)) |has| |#1| (-601 (-533))) ((-276 (-560) |#1|) . T) ((-278 (-560) |#1|) . T) ((-298 |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))) ((-492 |#1|) . T) ((-593 (-560) |#1|) . T) ((-515 |#1| |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))) ((-1082) |has| |#1| (-1082)) ((-1187) . T)) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-1654 (((-626 (-1067)) $) 115)) (-1395 (((-1153) $) 120)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) 40)) (-1350 (($ $) 39)) (-3376 (((-121) $) 37)) (-4330 (($ $ (-560) (-560)) 126) (($ $ (-560)) 125)) (-4138 (((-1133 (-2 (|:| |k| (-560)) (|:| |c| |#1|))) $) 118)) (-2314 (((-3 $ "failed") $ $) 18)) (-3065 (($ $) 71)) (-2953 (((-414 $) $) 70)) (-4179 (((-121) $ $) 57)) (-2956 (($ $ (-560)) 86)) (-3783 (($ (-560) |#1| $) 87)) (-3960 (($ $ $) 92)) (-4236 (($) 16 T CONST)) (-3020 (($ (-560) $) 89) (($ $) 88)) (-3970 (($ $) 93)) (-2563 (($ $ $) 53)) (-1750 (($ $) 108)) (-1823 (((-3 $ "failed") $) 33)) (-2572 (($ $ $) 54)) (-1269 (((-121) (-121)) 83) (((-121)) 82)) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) 49)) (-3319 (((-121) $) 69)) (-3976 (($ $) 95)) (-1815 (((-121) $) 116)) (-3978 (((-3 (-560) "failed") $) 94)) (-3504 (((-560) $ (-560)) 124) (((-560) $) 123) (((-560) $) 99)) (-2642 (((-121) $) 30)) (-3549 (($ $ (-909)) 122)) (-3856 (((-3 (-626 $) "failed") (-626 $) $) 50)) (-1814 (((-121) $) 106)) (-3986 (($ (-626 $) (-626 (-755)) (-560)) 90)) (-1637 (($ $ (-626 (-1067)) (-626 (-560))) 114) (($ $ (-1067) (-560)) 113) (($ |#1| (-560)) 107)) (-2803 (($ (-1 |#1| |#1|) $) 105)) (-1726 (($ $) 103)) (-1735 ((|#1| $) 102)) (-2582 (($ $ $) 45) (($ (-626 $)) 44)) (-1291 (((-1135) $) 9)) (-1701 (($ $) 68)) (-4353 (((-1100) $) 10)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) 43)) (-4440 (($ $ $) 47) (($ (-626 $)) 46)) (-4007 ((|#1| $ (-560)) 98)) (-4015 (($ $ (-560)) 85)) (-1601 (((-414 $) $) 72)) (-3505 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3292 (($ $ (-560)) 128)) (-2336 (((-3 $ "failed") $ $) 41)) (-3456 (((-3 (-626 $) "failed") (-626 $) $) 48)) (-4450 (((-1133 |#1|) $ |#1|) 129 (|has| |#1| (-15 ** (|#1| |#1| (-560)))))) (-4445 (((-755) $) 56)) (-2778 (($ $ $) 142 (|has| (-560) (-1094))) ((|#1| $ (-560)) 119)) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) 55)) (-2443 (($ $) 141 (|has| |#1| (-15 * (|#1| (-560) |#1|)))) (($ $ (-755)) 139 (|has| |#1| (-15 * (|#1| (-560) |#1|)))) (($ $ (-1153)) 137 (-12 (|has| |#1| (-887 (-1153))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) (($ $ (-626 (-1153))) 136 (-12 (|has| |#1| (-887 (-1153))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) (($ $ (-1153) (-755)) 135 (-12 (|has| |#1| (-887 (-1153))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) (($ $ (-626 (-1153)) (-626 (-755))) 134 (-12 (|has| |#1| (-887 (-1153))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))))) (-2275 (($ (-1 $)) 91)) (-3662 (((-560) $) 104)) (-2234 (($ $) 117)) (-2801 (((-842) $) 11) (($ (-560)) 27) (($ $) 42) (($ (-403 (-560))) 63) (($ |#1|) 112 (|has| |#1| (-170))) (($ (-1133 (-2 (|:| |k| (-560)) (|:| |c| |#1|)))) 97) (((-1133 (-2 (|:| |k| (-560)) (|:| |c| |#1|))) $) 96)) (-2636 ((|#1| $ (-560)) 109)) (-4020 ((|#1| $) 84)) (-2272 (((-3 $ "failed") $) 111 (|has| |#1| (-146)))) (-1751 (((-755)) 28)) (-1341 ((|#1| $) 121)) (-2328 (((-121) $ $) 38)) (-2550 ((|#1| $ (-560)) 127 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-560)))) (|has| |#1| (-15 -2801 (|#1| (-1153))))))) (-2464 (($ $ (-909)) 25) (($ $ (-755)) 32) (($ $ (-560)) 67)) (-3304 (($) 17 T CONST)) (-1459 (($) 29 T CONST)) (-2500 (($ $) 140 (|has| |#1| (-15 * (|#1| (-560) |#1|)))) (($ $ (-755)) 138 (|has| |#1| (-15 * (|#1| (-560) |#1|)))) (($ $ (-1153)) 133 (-12 (|has| |#1| (-887 (-1153))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) (($ $ (-626 (-1153))) 132 (-12 (|has| |#1| (-887 (-1153))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) (($ $ (-1153) (-755)) 131 (-12 (|has| |#1| (-887 (-1153))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) (($ $ (-626 (-1153)) (-626 (-755))) 130 (-12 (|has| |#1| (-887 (-1153))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))))) (-1653 (((-121) $ $) 6)) (-1733 (($ $ $) 62) (($ $ |#1|) 110 (|has| |#1| (-359)))) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 24) (($ $ (-755)) 31) (($ $ (-560)) 66)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 23) (($ $ (-403 (-560))) 65) (($ (-403 (-560)) $) 64) (($ |#1| $) 101) (($ $ |#1|) 100))) -(((-633 |#1|) (-1267) (-359)) (T -633)) -((-3504 (*1 *2 *1) (-12 (-4 *1 (-633 *3)) (-4 *3 (-359)) (-5 *2 (-560)))) (-3504 (*1 *2 *1) (-12 (-4 *1 (-633 *3)) (-4 *3 (-359)) (-5 *2 (-560)))) (-4007 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *1 (-633 *2)) (-4 *2 (-359)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-1133 (-2 (|:| |k| (-560)) (|:| |c| *3)))) (-4 *3 (-359)) (-4 *1 (-633 *3)))) (-2801 (*1 *2 *1) (-12 (-4 *1 (-633 *3)) (-4 *3 (-359)) (-5 *2 (-1133 (-2 (|:| |k| (-560)) (|:| |c| *3)))))) (-3976 (*1 *1 *1) (-12 (-4 *1 (-633 *2)) (-4 *2 (-359)))) (-3978 (*1 *2 *1) (|partial| -12 (-4 *1 (-633 *3)) (-4 *3 (-359)) (-5 *2 (-560)))) (-3970 (*1 *1 *1) (-12 (-4 *1 (-633 *2)) (-4 *2 (-359)))) (-3960 (*1 *1 *1 *1) (-12 (-4 *1 (-633 *2)) (-4 *2 (-359)))) (-2275 (*1 *1 *2) (-12 (-5 *2 (-1 *1)) (-4 *1 (-633 *3)) (-4 *3 (-359)))) (-3986 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-626 *1)) (-5 *3 (-626 (-755))) (-5 *4 (-560)) (-4 *1 (-633 *5)) (-4 *5 (-359)))) (-3020 (*1 *1 *2 *1) (-12 (-5 *2 (-560)) (-4 *1 (-633 *3)) (-4 *3 (-359)))) (-3020 (*1 *1 *1) (-12 (-4 *1 (-633 *2)) (-4 *2 (-359)))) (-3783 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-560)) (-4 *1 (-633 *3)) (-4 *3 (-359)))) (-2956 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-633 *3)) (-4 *3 (-359)))) (-4015 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-633 *3)) (-4 *3 (-359)))) (-4020 (*1 *2 *1) (-12 (-4 *1 (-633 *2)) (-4 *2 (-359)))) (-1269 (*1 *2 *2) (-12 (-5 *2 (-121)) (-4 *1 (-633 *3)) (-4 *3 (-359)))) (-1269 (*1 *2) (-12 (-4 *1 (-633 *3)) (-4 *3 (-359)) (-5 *2 (-121))))) -(-13 (-359) (-1213 |t#1| (-560)) (-10 -8 (-15 -3504 ((-560) $)) (-15 -4007 (|t#1| $ (-560))) (-15 -2801 ($ (-1133 (-2 (|:| |k| (-560)) (|:| |c| |t#1|))))) (-15 -2801 ((-1133 (-2 (|:| |k| (-560)) (|:| |c| |t#1|))) $)) (-15 -3976 ($ $)) (-15 -3978 ((-3 (-560) "failed") $)) (-15 -3970 ($ $)) (-15 -3960 ($ $ $)) (-15 -2275 ($ (-1 $))) (-15 -3986 ($ (-626 $) (-626 (-755)) (-560))) (-15 -3020 ($ (-560) $)) (-15 -3020 ($ $)) (-15 -3783 ($ (-560) |t#1| $)) (-15 -2956 ($ $ (-560))) (-15 -4015 ($ $ (-560))) (-15 -4020 (|t#1| $)) (-15 -1269 ((-121) (-121))) (-15 -1269 ((-121))))) -(((-21) . T) ((-23) . T) ((-52 |#1| (-560)) . T) ((-25) . T) ((-43 (-403 (-560))) . T) ((-43 |#1|) |has| |#1| (-170)) ((-43 $) . T) ((-105) . T) ((-120 (-403 (-560)) (-403 (-560))) . T) ((-120 |#1| |#1|) . T) ((-120 $ $) . T) ((-137) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-600 (-842)) . T) ((-170) . T) ((-221) |has| |#1| (-15 * (|#1| (-560) |#1|))) ((-233) . T) ((-276 $ $) |has| (-560) (-1094)) ((-280) . T) ((-296) . T) ((-359) . T) ((-447) . T) ((-550) . T) ((-629 (-403 (-560))) . T) ((-629 |#1|) . T) ((-629 $) . T) ((-699 (-403 (-560))) . T) ((-699 |#1|) |has| |#1| (-170)) ((-699 $) . T) ((-708) . T) ((-887 (-1153)) -12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-887 (-1153)))) ((-966 |#1| (-560) (-1067)) . T) ((-908) . T) ((-1045 (-403 (-560))) . T) ((-1045 |#1|) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1094) . T) ((-1082) . T) ((-1191) . T) ((-1213 |#1| (-560)) . T)) -((-4159 (((-3 |#2| "failed") |#3| |#2| (-1153) |#2| (-626 |#2|)) 159) (((-3 (-2 (|:| |particular| |#2|) (|:| -4374 (-626 |#2|))) "failed") |#3| |#2| (-1153)) 43))) -(((-634 |#1| |#2| |#3|) (-10 -7 (-15 -4159 ((-3 (-2 (|:| |particular| |#2|) (|:| -4374 (-626 |#2|))) "failed") |#3| |#2| (-1153))) (-15 -4159 ((-3 |#2| "failed") |#3| |#2| (-1153) |#2| (-626 |#2|)))) (-13 (-834) (-296) (-1029 (-560)) (-622 (-560)) (-148)) (-13 (-29 |#1|) (-1173) (-951)) (-638 |#2|)) (T -634)) -((-4159 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1153)) (-5 *5 (-626 *2)) (-4 *2 (-13 (-29 *6) (-1173) (-951))) (-4 *6 (-13 (-834) (-296) (-1029 (-560)) (-622 (-560)) (-148))) (-5 *1 (-634 *6 *2 *3)) (-4 *3 (-638 *2)))) (-4159 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1153)) (-4 *6 (-13 (-834) (-296) (-1029 (-560)) (-622 (-560)) (-148))) (-4 *4 (-13 (-29 *6) (-1173) (-951))) (-5 *2 (-2 (|:| |particular| *4) (|:| -4374 (-626 *4)))) (-5 *1 (-634 *6 *4 *3)) (-4 *3 (-638 *4))))) -(-10 -7 (-15 -4159 ((-3 (-2 (|:| |particular| |#2|) (|:| -4374 (-626 |#2|))) "failed") |#3| |#2| (-1153))) (-15 -4159 ((-3 |#2| "failed") |#3| |#2| (-1153) |#2| (-626 |#2|)))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-2431 (($ $) NIL (|has| |#1| (-359)))) (-2066 (($ $ $) NIL (|has| |#1| (-359)))) (-3987 (($ $ (-755)) NIL (|has| |#1| (-359)))) (-2314 (((-3 $ "failed") $ $) NIL)) (-4236 (($) NIL T CONST)) (-2530 (($ $ $) NIL (|has| |#1| (-359)))) (-1768 (($ $ $) NIL (|has| |#1| (-359)))) (-2823 (($ $ $) NIL (|has| |#1| (-359)))) (-2783 (($ $ $) NIL (|has| |#1| (-359)))) (-2734 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL (|has| |#1| (-359)))) (-4000 (((-3 $ "failed") $ $) NIL (|has| |#1| (-359)))) (-3592 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL (|has| |#1| (-359)))) (-1473 (((-3 (-560) "failed") $) NIL (|has| |#1| (-1029 (-560)))) (((-3 (-403 (-560)) "failed") $) NIL (|has| |#1| (-1029 (-403 (-560))))) (((-3 |#1| "failed") $) NIL)) (-3001 (((-560) $) NIL (|has| |#1| (-1029 (-560)))) (((-403 (-560)) $) NIL (|has| |#1| (-1029 (-403 (-560))))) ((|#1| $) NIL)) (-1750 (($ $) NIL)) (-1823 (((-3 $ "failed") $) NIL)) (-3605 (($ $) NIL (|has| |#1| (-447)))) (-2642 (((-121) $) NIL)) (-1637 (($ |#1| (-755)) NIL)) (-2168 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL (|has| |#1| (-550)))) (-3865 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL (|has| |#1| (-550)))) (-3693 (((-755) $) NIL)) (-3385 (($ $ $) NIL (|has| |#1| (-359)))) (-4025 (($ $ $) NIL (|has| |#1| (-359)))) (-4180 (($ $ $) NIL (|has| |#1| (-359)))) (-2107 (($ $ $) NIL (|has| |#1| (-359)))) (-3785 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL (|has| |#1| (-359)))) (-3449 (((-3 $ "failed") $ $) NIL (|has| |#1| (-359)))) (-4348 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL (|has| |#1| (-359)))) (-1735 ((|#1| $) NIL)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2336 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-550)))) (-2778 ((|#1| $ |#1|) NIL)) (-4209 (($ $ $) NIL (|has| |#1| (-359)))) (-3662 (((-755) $) NIL)) (-1896 ((|#1| $) NIL (|has| |#1| (-447)))) (-2801 (((-842) $) NIL) (($ (-560)) NIL) (($ (-403 (-560))) NIL (|has| |#1| (-1029 (-403 (-560))))) (($ |#1|) NIL)) (-2423 (((-626 |#1|) $) NIL)) (-2636 ((|#1| $ (-755)) NIL)) (-1751 (((-755)) NIL)) (-2788 ((|#1| $ |#1| |#1|) NIL)) (-3498 (($ $) NIL)) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (-3304 (($) NIL T CONST)) (-1459 (($) NIL T CONST)) (-2500 (($) NIL)) (-1653 (((-121) $ $) NIL)) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) NIL)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-635 |#1|) (-638 |#1|) (-221)) (T -635)) -NIL -(-638 |#1|) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-2431 (($ $) NIL (|has| |#1| (-359)))) (-2066 (($ $ $) NIL (|has| |#1| (-359)))) (-3987 (($ $ (-755)) NIL (|has| |#1| (-359)))) (-2314 (((-3 $ "failed") $ $) NIL)) (-4236 (($) NIL T CONST)) (-2530 (($ $ $) NIL (|has| |#1| (-359)))) (-1768 (($ $ $) NIL (|has| |#1| (-359)))) (-2823 (($ $ $) NIL (|has| |#1| (-359)))) (-2783 (($ $ $) NIL (|has| |#1| (-359)))) (-2734 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL (|has| |#1| (-359)))) (-4000 (((-3 $ "failed") $ $) NIL (|has| |#1| (-359)))) (-3592 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL (|has| |#1| (-359)))) (-1473 (((-3 (-560) "failed") $) NIL (|has| |#1| (-1029 (-560)))) (((-3 (-403 (-560)) "failed") $) NIL (|has| |#1| (-1029 (-403 (-560))))) (((-3 |#1| "failed") $) NIL)) (-3001 (((-560) $) NIL (|has| |#1| (-1029 (-560)))) (((-403 (-560)) $) NIL (|has| |#1| (-1029 (-403 (-560))))) ((|#1| $) NIL)) (-1750 (($ $) NIL)) (-1823 (((-3 $ "failed") $) NIL)) (-3605 (($ $) NIL (|has| |#1| (-447)))) (-2642 (((-121) $) NIL)) (-1637 (($ |#1| (-755)) NIL)) (-2168 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL (|has| |#1| (-550)))) (-3865 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL (|has| |#1| (-550)))) (-3693 (((-755) $) NIL)) (-3385 (($ $ $) NIL (|has| |#1| (-359)))) (-4025 (($ $ $) NIL (|has| |#1| (-359)))) (-4180 (($ $ $) NIL (|has| |#1| (-359)))) (-2107 (($ $ $) NIL (|has| |#1| (-359)))) (-3785 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL (|has| |#1| (-359)))) (-3449 (((-3 $ "failed") $ $) NIL (|has| |#1| (-359)))) (-4348 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL (|has| |#1| (-359)))) (-1735 ((|#1| $) NIL)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2336 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-550)))) (-2778 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-4209 (($ $ $) NIL (|has| |#1| (-359)))) (-3662 (((-755) $) NIL)) (-1896 ((|#1| $) NIL (|has| |#1| (-447)))) (-2801 (((-842) $) NIL) (($ (-560)) NIL) (($ (-403 (-560))) NIL (|has| |#1| (-1029 (-403 (-560))))) (($ |#1|) NIL)) (-2423 (((-626 |#1|) $) NIL)) (-2636 ((|#1| $ (-755)) NIL)) (-1751 (((-755)) NIL)) (-2788 ((|#1| $ |#1| |#1|) NIL)) (-3498 (($ $) NIL)) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (-3304 (($) NIL T CONST)) (-1459 (($) NIL T CONST)) (-2500 (($) NIL)) (-1653 (((-121) $ $) NIL)) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) NIL)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-636 |#1| |#2|) (-13 (-638 |#1|) (-276 |#2| |#2|)) (-221) (-13 (-629 |#1|) (-10 -8 (-15 -2443 ($ $))))) (T -636)) -NIL -(-13 (-638 |#1|) (-276 |#2| |#2|)) -((-2431 (($ $) 26)) (-3498 (($ $) 24)) (-2500 (($) 12))) -(((-637 |#1| |#2|) (-10 -8 (-15 -2431 (|#1| |#1|)) (-15 -3498 (|#1| |#1|)) (-15 -2500 (|#1|))) (-638 |#2|) (-1039)) (T -637)) -NIL -(-10 -8 (-15 -2431 (|#1| |#1|)) (-15 -3498 (|#1| |#1|)) (-15 -2500 (|#1|))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-2431 (($ $) 79 (|has| |#1| (-359)))) (-2066 (($ $ $) 81 (|has| |#1| (-359)))) (-3987 (($ $ (-755)) 80 (|has| |#1| (-359)))) (-2314 (((-3 $ "failed") $ $) 18)) (-4236 (($) 16 T CONST)) (-2530 (($ $ $) 44 (|has| |#1| (-359)))) (-1768 (($ $ $) 45 (|has| |#1| (-359)))) (-2823 (($ $ $) 47 (|has| |#1| (-359)))) (-2783 (($ $ $) 42 (|has| |#1| (-359)))) (-2734 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) 41 (|has| |#1| (-359)))) (-4000 (((-3 $ "failed") $ $) 43 (|has| |#1| (-359)))) (-3592 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) 46 (|has| |#1| (-359)))) (-1473 (((-3 (-560) "failed") $) 73 (|has| |#1| (-1029 (-560)))) (((-3 (-403 (-560)) "failed") $) 71 (|has| |#1| (-1029 (-403 (-560))))) (((-3 |#1| "failed") $) 68)) (-3001 (((-560) $) 74 (|has| |#1| (-1029 (-560)))) (((-403 (-560)) $) 72 (|has| |#1| (-1029 (-403 (-560))))) ((|#1| $) 67)) (-1750 (($ $) 63)) (-1823 (((-3 $ "failed") $) 33)) (-3605 (($ $) 54 (|has| |#1| (-447)))) (-2642 (((-121) $) 30)) (-1637 (($ |#1| (-755)) 61)) (-2168 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) 56 (|has| |#1| (-550)))) (-3865 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) 57 (|has| |#1| (-550)))) (-3693 (((-755) $) 65)) (-3385 (($ $ $) 51 (|has| |#1| (-359)))) (-4025 (($ $ $) 52 (|has| |#1| (-359)))) (-4180 (($ $ $) 40 (|has| |#1| (-359)))) (-2107 (($ $ $) 49 (|has| |#1| (-359)))) (-3785 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) 48 (|has| |#1| (-359)))) (-3449 (((-3 $ "failed") $ $) 50 (|has| |#1| (-359)))) (-4348 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) 53 (|has| |#1| (-359)))) (-1735 ((|#1| $) 64)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-2336 (((-3 $ "failed") $ |#1|) 58 (|has| |#1| (-550)))) (-2778 ((|#1| $ |#1|) 84)) (-4209 (($ $ $) 78 (|has| |#1| (-359)))) (-3662 (((-755) $) 66)) (-1896 ((|#1| $) 55 (|has| |#1| (-447)))) (-2801 (((-842) $) 11) (($ (-560)) 27) (($ (-403 (-560))) 70 (|has| |#1| (-1029 (-403 (-560))))) (($ |#1|) 69)) (-2423 (((-626 |#1|) $) 60)) (-2636 ((|#1| $ (-755)) 62)) (-1751 (((-755)) 28)) (-2788 ((|#1| $ |#1| |#1|) 59)) (-3498 (($ $) 82)) (-2464 (($ $ (-909)) 25) (($ $ (-755)) 32)) (-3304 (($) 17 T CONST)) (-1459 (($) 29 T CONST)) (-2500 (($) 83)) (-1653 (((-121) $ $) 6)) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 24) (($ $ (-755)) 31)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 23) (($ $ |#1|) 76) (($ |#1| $) 75))) -(((-638 |#1|) (-1267) (-1039)) (T -638)) -((-2500 (*1 *1) (-12 (-4 *1 (-638 *2)) (-4 *2 (-1039)))) (-3498 (*1 *1 *1) (-12 (-4 *1 (-638 *2)) (-4 *2 (-1039)))) (-2066 (*1 *1 *1 *1) (-12 (-4 *1 (-638 *2)) (-4 *2 (-1039)) (-4 *2 (-359)))) (-3987 (*1 *1 *1 *2) (-12 (-5 *2 (-755)) (-4 *1 (-638 *3)) (-4 *3 (-1039)) (-4 *3 (-359)))) (-2431 (*1 *1 *1) (-12 (-4 *1 (-638 *2)) (-4 *2 (-1039)) (-4 *2 (-359)))) (-4209 (*1 *1 *1 *1) (-12 (-4 *1 (-638 *2)) (-4 *2 (-1039)) (-4 *2 (-359))))) -(-13 (-836 |t#1|) (-276 |t#1| |t#1|) (-10 -8 (-15 -2500 ($)) (-15 -3498 ($ $)) (IF (|has| |t#1| (-359)) (PROGN (-15 -2066 ($ $ $)) (-15 -3987 ($ $ (-755))) (-15 -2431 ($ $)) (-15 -4209 ($ $ $))) |noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-43 |#1|) |has| |#1| (-170)) ((-105) . T) ((-120 |#1| |#1|) . T) ((-137) . T) ((-600 (-842)) . T) ((-276 |#1| |#1|) . T) ((-407 |#1|) . T) ((-629 |#1|) . T) ((-629 $) . T) ((-699 |#1|) |has| |#1| (-170)) ((-708) . T) ((-1029 (-403 (-560))) |has| |#1| (-1029 (-403 (-560)))) ((-1029 (-560)) |has| |#1| (-1029 (-560))) ((-1029 |#1|) . T) ((-1045 |#1|) . T) ((-1039) . T) ((-1046) . T) ((-1094) . T) ((-1082) . T) ((-836 |#1|) . T)) -((-3415 (((-626 (-635 (-403 |#2|))) (-635 (-403 |#2|))) 72 (|has| |#1| (-27)))) (-1601 (((-626 (-635 (-403 |#2|))) (-635 (-403 |#2|))) 71 (|has| |#1| (-27))) (((-626 (-635 (-403 |#2|))) (-635 (-403 |#2|)) (-1 (-626 |#1|) |#2|)) 15))) -(((-639 |#1| |#2|) (-10 -7 (-15 -1601 ((-626 (-635 (-403 |#2|))) (-635 (-403 |#2|)) (-1 (-626 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1601 ((-626 (-635 (-403 |#2|))) (-635 (-403 |#2|)))) (-15 -3415 ((-626 (-635 (-403 |#2|))) (-635 (-403 |#2|))))) |noBranch|)) (-13 (-359) (-148) (-1029 (-560)) (-1029 (-403 (-560)))) (-1211 |#1|)) (T -639)) -((-3415 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-359) (-148) (-1029 (-560)) (-1029 (-403 (-560))))) (-4 *5 (-1211 *4)) (-5 *2 (-626 (-635 (-403 *5)))) (-5 *1 (-639 *4 *5)) (-5 *3 (-635 (-403 *5))))) (-1601 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-359) (-148) (-1029 (-560)) (-1029 (-403 (-560))))) (-4 *5 (-1211 *4)) (-5 *2 (-626 (-635 (-403 *5)))) (-5 *1 (-639 *4 *5)) (-5 *3 (-635 (-403 *5))))) (-1601 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-626 *5) *6)) (-4 *5 (-13 (-359) (-148) (-1029 (-560)) (-1029 (-403 (-560))))) (-4 *6 (-1211 *5)) (-5 *2 (-626 (-635 (-403 *6)))) (-5 *1 (-639 *5 *6)) (-5 *3 (-635 (-403 *6)))))) -(-10 -7 (-15 -1601 ((-626 (-635 (-403 |#2|))) (-635 (-403 |#2|)) (-1 (-626 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1601 ((-626 (-635 (-403 |#2|))) (-635 (-403 |#2|)))) (-15 -3415 ((-626 (-635 (-403 |#2|))) (-635 (-403 |#2|))))) |noBranch|)) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-2431 (($ $) NIL (|has| |#1| (-359)))) (-2066 (($ $ $) 28 (|has| |#1| (-359)))) (-3987 (($ $ (-755)) 31 (|has| |#1| (-359)))) (-2314 (((-3 $ "failed") $ $) NIL)) (-4236 (($) NIL T CONST)) (-2530 (($ $ $) NIL (|has| |#1| (-359)))) (-1768 (($ $ $) NIL (|has| |#1| (-359)))) (-2823 (($ $ $) NIL (|has| |#1| (-359)))) (-2783 (($ $ $) NIL (|has| |#1| (-359)))) (-2734 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL (|has| |#1| (-359)))) (-4000 (((-3 $ "failed") $ $) NIL (|has| |#1| (-359)))) (-3592 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL (|has| |#1| (-359)))) (-1473 (((-3 (-560) "failed") $) NIL (|has| |#1| (-1029 (-560)))) (((-3 (-403 (-560)) "failed") $) NIL (|has| |#1| (-1029 (-403 (-560))))) (((-3 |#1| "failed") $) NIL)) (-3001 (((-560) $) NIL (|has| |#1| (-1029 (-560)))) (((-403 (-560)) $) NIL (|has| |#1| (-1029 (-403 (-560))))) ((|#1| $) NIL)) (-1750 (($ $) NIL)) (-1823 (((-3 $ "failed") $) NIL)) (-3605 (($ $) NIL (|has| |#1| (-447)))) (-2642 (((-121) $) NIL)) (-1637 (($ |#1| (-755)) NIL)) (-2168 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL (|has| |#1| (-550)))) (-3865 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL (|has| |#1| (-550)))) (-3693 (((-755) $) NIL)) (-3385 (($ $ $) NIL (|has| |#1| (-359)))) (-4025 (($ $ $) NIL (|has| |#1| (-359)))) (-4180 (($ $ $) NIL (|has| |#1| (-359)))) (-2107 (($ $ $) NIL (|has| |#1| (-359)))) (-3785 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL (|has| |#1| (-359)))) (-3449 (((-3 $ "failed") $ $) NIL (|has| |#1| (-359)))) (-4348 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL (|has| |#1| (-359)))) (-1735 ((|#1| $) NIL)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2336 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-550)))) (-2778 ((|#1| $ |#1|) 24)) (-4209 (($ $ $) 33 (|has| |#1| (-359)))) (-3662 (((-755) $) NIL)) (-1896 ((|#1| $) NIL (|has| |#1| (-447)))) (-2801 (((-842) $) 20) (($ (-560)) NIL) (($ (-403 (-560))) NIL (|has| |#1| (-1029 (-403 (-560))))) (($ |#1|) NIL)) (-2423 (((-626 |#1|) $) NIL)) (-2636 ((|#1| $ (-755)) NIL)) (-1751 (((-755)) NIL)) (-2788 ((|#1| $ |#1| |#1|) 23)) (-3498 (($ $) NIL)) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (-3304 (($) 21 T CONST)) (-1459 (($) 8 T CONST)) (-2500 (($) NIL)) (-1653 (((-121) $ $) NIL)) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) NIL)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-640 |#1| |#2|) (-638 |#1|) (-1039) (-1 |#1| |#1|)) (T -640)) -NIL -(-638 |#1|) -((-2066 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 61)) (-3987 ((|#2| |#2| (-755) (-1 |#1| |#1|)) 42)) (-4209 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 63))) -(((-641 |#1| |#2|) (-10 -7 (-15 -2066 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3987 (|#2| |#2| (-755) (-1 |#1| |#1|))) (-15 -4209 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-359) (-638 |#1|)) (T -641)) -((-4209 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-359)) (-5 *1 (-641 *4 *2)) (-4 *2 (-638 *4)))) (-3987 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-755)) (-5 *4 (-1 *5 *5)) (-4 *5 (-359)) (-5 *1 (-641 *5 *2)) (-4 *2 (-638 *5)))) (-2066 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-359)) (-5 *1 (-641 *4 *2)) (-4 *2 (-638 *4))))) -(-10 -7 (-15 -2066 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3987 (|#2| |#2| (-755) (-1 |#1| |#1|))) (-15 -4209 (|#2| |#2| |#2| (-1 |#1| |#1|)))) -((-2587 (($ $ $) 9))) -(((-642 |#1|) (-10 -8 (-15 -2587 (|#1| |#1| |#1|))) (-643)) (T -642)) -NIL -(-10 -8 (-15 -2587 (|#1| |#1| |#1|))) -((-2601 (((-121) $ $) 7)) (-1434 (($ $) 10)) (-2587 (($ $ $) 8)) (-1653 (((-121) $ $) 6)) (-2581 (($ $ $) 9))) -(((-643) (-1267)) (T -643)) -((-1434 (*1 *1 *1) (-4 *1 (-643))) (-2581 (*1 *1 *1 *1) (-4 *1 (-643))) (-2587 (*1 *1 *1 *1) (-4 *1 (-643)))) -(-13 (-105) (-10 -8 (-15 -1434 ($ $)) (-15 -2581 ($ $ $)) (-15 -2587 ($ $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-105) . T) ((-137) . T) ((-608 (-850)) . T) ((-1090) . T)) +((-2447 (((-121) $ $) NIL)) (-3983 (((-763) $) 15)) (-2543 (($ $ |#1|) 55)) (-1578 (($ $) 32)) (-3943 (($ $) 31)) (-3666 (((-3 |#1| "failed") $) 47)) (-2854 ((|#1| $) NIL)) (-1548 (($ |#1| |#2| $) 60) (($ $ $) 61)) (-3680 (((-850) $ (-1 (-850) (-850) (-850)) (-1 (-850) (-850) (-850)) (-568)) 45)) (-2882 ((|#1| $ (-568)) 30)) (-2408 ((|#2| $ (-568)) 29)) (-2096 (($ (-1 |#1| |#1|) $) 34)) (-2505 (($ (-1 |#2| |#2|) $) 38)) (-2640 (($) 10)) (-2955 (($ |#1| |#2|) 22)) (-2552 (($ (-634 (-2 (|:| |gen| |#1|) (|:| -1892 |#2|)))) 23)) (-2513 (((-634 (-2 (|:| |gen| |#1|) (|:| -1892 |#2|))) $) 13)) (-4094 (($ |#1| $) 56)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-4246 (((-121) $ $) 58)) (-2745 (((-850) $) 19) (($ |#1|) 16)) (-1717 (((-121) $ $) 25))) +(((-638 |#1| |#2| |#3|) (-13 (-1090) (-1037 |#1|) (-10 -8 (-15 -3680 ((-850) $ (-1 (-850) (-850) (-850)) (-1 (-850) (-850) (-850)) (-568))) (-15 -2513 ((-634 (-2 (|:| |gen| |#1|) (|:| -1892 |#2|))) $)) (-15 -2955 ($ |#1| |#2|)) (-15 -2552 ($ (-634 (-2 (|:| |gen| |#1|) (|:| -1892 |#2|))))) (-15 -2408 (|#2| $ (-568))) (-15 -2882 (|#1| $ (-568))) (-15 -3943 ($ $)) (-15 -1578 ($ $)) (-15 -3983 ((-763) $)) (-15 -2640 ($)) (-15 -2543 ($ $ |#1|)) (-15 -4094 ($ |#1| $)) (-15 -1548 ($ |#1| |#2| $)) (-15 -1548 ($ $ $)) (-15 -4246 ((-121) $ $)) (-15 -2505 ($ (-1 |#2| |#2|) $)) (-15 -2096 ($ (-1 |#1| |#1|) $)))) (-1090) (-23) |#2|) (T -638)) +((-3680 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-850) (-850) (-850))) (-5 *4 (-568)) (-5 *2 (-850)) (-5 *1 (-638 *5 *6 *7)) (-4 *5 (-1090)) (-4 *6 (-23)) (-14 *7 *6))) (-2513 (*1 *2 *1) (-12 (-5 *2 (-634 (-2 (|:| |gen| *3) (|:| -1892 *4)))) (-5 *1 (-638 *3 *4 *5)) (-4 *3 (-1090)) (-4 *4 (-23)) (-14 *5 *4))) (-2955 (*1 *1 *2 *3) (-12 (-5 *1 (-638 *2 *3 *4)) (-4 *2 (-1090)) (-4 *3 (-23)) (-14 *4 *3))) (-2552 (*1 *1 *2) (-12 (-5 *2 (-634 (-2 (|:| |gen| *3) (|:| -1892 *4)))) (-4 *3 (-1090)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-638 *3 *4 *5)))) (-2408 (*1 *2 *1 *3) (-12 (-5 *3 (-568)) (-4 *2 (-23)) (-5 *1 (-638 *4 *2 *5)) (-4 *4 (-1090)) (-14 *5 *2))) (-2882 (*1 *2 *1 *3) (-12 (-5 *3 (-568)) (-4 *2 (-1090)) (-5 *1 (-638 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-3943 (*1 *1 *1) (-12 (-5 *1 (-638 *2 *3 *4)) (-4 *2 (-1090)) (-4 *3 (-23)) (-14 *4 *3))) (-1578 (*1 *1 *1) (-12 (-5 *1 (-638 *2 *3 *4)) (-4 *2 (-1090)) (-4 *3 (-23)) (-14 *4 *3))) (-3983 (*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-638 *3 *4 *5)) (-4 *3 (-1090)) (-4 *4 (-23)) (-14 *5 *4))) (-2640 (*1 *1) (-12 (-5 *1 (-638 *2 *3 *4)) (-4 *2 (-1090)) (-4 *3 (-23)) (-14 *4 *3))) (-2543 (*1 *1 *1 *2) (-12 (-5 *1 (-638 *2 *3 *4)) (-4 *2 (-1090)) (-4 *3 (-23)) (-14 *4 *3))) (-4094 (*1 *1 *2 *1) (-12 (-5 *1 (-638 *2 *3 *4)) (-4 *2 (-1090)) (-4 *3 (-23)) (-14 *4 *3))) (-1548 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-638 *2 *3 *4)) (-4 *2 (-1090)) (-4 *3 (-23)) (-14 *4 *3))) (-1548 (*1 *1 *1 *1) (-12 (-5 *1 (-638 *2 *3 *4)) (-4 *2 (-1090)) (-4 *3 (-23)) (-14 *4 *3))) (-4246 (*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-638 *3 *4 *5)) (-4 *3 (-1090)) (-4 *4 (-23)) (-14 *5 *4))) (-2505 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-638 *3 *4 *5)) (-4 *3 (-1090)))) (-2096 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1090)) (-5 *1 (-638 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) +(-13 (-1090) (-1037 |#1|) (-10 -8 (-15 -3680 ((-850) $ (-1 (-850) (-850) (-850)) (-1 (-850) (-850) (-850)) (-568))) (-15 -2513 ((-634 (-2 (|:| |gen| |#1|) (|:| -1892 |#2|))) $)) (-15 -2955 ($ |#1| |#2|)) (-15 -2552 ($ (-634 (-2 (|:| |gen| |#1|) (|:| -1892 |#2|))))) (-15 -2408 (|#2| $ (-568))) (-15 -2882 (|#1| $ (-568))) (-15 -3943 ($ $)) (-15 -1578 ($ $)) (-15 -3983 ((-763) $)) (-15 -2640 ($)) (-15 -2543 ($ $ |#1|)) (-15 -4094 ($ |#1| $)) (-15 -1548 ($ |#1| |#2| $)) (-15 -1548 ($ $ $)) (-15 -4246 ((-121) $ $)) (-15 -2505 ($ (-1 |#2| |#2|) $)) (-15 -2096 ($ (-1 |#1| |#1|) $)))) +((-2223 (((-568) $) 23)) (-4122 (($ |#2| $ (-568)) 21) (($ $ $ (-568)) NIL)) (-4174 (((-634 (-568)) $) 12)) (-3578 (((-121) (-568) $) 14)) (-2768 (($ $ |#2|) 18) (($ |#2| $) 19) (($ $ $) NIL) (($ (-634 $)) NIL))) +(((-639 |#1| |#2|) (-10 -8 (-15 -4122 (|#1| |#1| |#1| (-568))) (-15 -4122 (|#1| |#2| |#1| (-568))) (-15 -2768 (|#1| (-634 |#1|))) (-15 -2768 (|#1| |#1| |#1|)) (-15 -2768 (|#1| |#2| |#1|)) (-15 -2768 (|#1| |#1| |#2|)) (-15 -2223 ((-568) |#1|)) (-15 -4174 ((-634 (-568)) |#1|)) (-15 -3578 ((-121) (-568) |#1|))) (-640 |#2|) (-1195)) (T -639)) +NIL +(-10 -8 (-15 -4122 (|#1| |#1| |#1| (-568))) (-15 -4122 (|#1| |#2| |#1| (-568))) (-15 -2768 (|#1| (-634 |#1|))) (-15 -2768 (|#1| |#1| |#1|)) (-15 -2768 (|#1| |#2| |#1|)) (-15 -2768 (|#1| |#1| |#2|)) (-15 -2223 ((-568) |#1|)) (-15 -4174 ((-634 (-568)) |#1|)) (-15 -3578 ((-121) (-568) |#1|))) +((-2447 (((-121) $ $) 18 (|has| |#1| (-1090)))) (-1868 (((-1249) $ (-568) (-568)) 37 (|has| $ (-6 -4520)))) (-2510 (((-121) $ (-763)) 8)) (-2436 ((|#1| $ (-568) |#1|) 49 (|has| $ (-6 -4520))) ((|#1| $ (-1210 (-568)) |#1|) 53 (|has| $ (-6 -4520)))) (-2801 (($ (-1 (-121) |#1|) $) 70 (|has| $ (-6 -4519)))) (-2671 (($) 7 T CONST)) (-3924 (($ $) 73 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-4328 (($ |#1| $) 72 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519)))) (($ (-1 (-121) |#1|) $) 69 (|has| $ (-6 -4519)))) (-3092 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 71 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 68 (|has| $ (-6 -4519))) ((|#1| (-1 |#1| |#1| |#1|) $) 67 (|has| $ (-6 -4519)))) (-3989 ((|#1| $ (-568) |#1|) 50 (|has| $ (-6 -4520)))) (-2602 ((|#1| $ (-568)) 48)) (-4360 (((-634 |#1|) $) 30 (|has| $ (-6 -4519)))) (-1849 (($ (-763) |#1|) 64)) (-1737 (((-121) $ (-763)) 9)) (-1881 (((-568) $) 40 (|has| (-568) (-842)))) (-1979 (((-634 |#1|) $) 29 (|has| $ (-6 -4519)))) (-3109 (((-121) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-2223 (((-568) $) 41 (|has| (-568) (-842)))) (-3674 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 59)) (-2166 (((-121) $ (-763)) 10)) (-4487 (((-1143) $) 22 (|has| |#1| (-1090)))) (-4122 (($ |#1| $ (-568)) 55) (($ $ $ (-568)) 54)) (-4174 (((-634 (-568)) $) 43)) (-3578 (((-121) (-568) $) 44)) (-4022 (((-1108) $) 21 (|has| |#1| (-1090)))) (-3876 ((|#1| $) 39 (|has| (-568) (-842)))) (-3775 (((-3 |#1| "failed") (-1 (-121) |#1|) $) 66)) (-3724 (($ $ |#1|) 38 (|has| $ (-6 -4520)))) (-1387 (((-121) (-1 (-121) |#1|) $) 32 (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-634 |#1|) (-634 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))))) (-3171 (((-121) $ $) 14)) (-4467 (((-121) |#1| $) 42 (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-2041 (((-634 |#1|) $) 45)) (-3084 (((-121) $) 11)) (-3248 (($) 12)) (-2779 ((|#1| $ (-568) |#1|) 47) ((|#1| $ (-568)) 46) (($ $ (-1210 (-568))) 58)) (-2826 (($ $ (-568)) 57) (($ $ (-1210 (-568))) 56)) (-4168 (((-763) (-1 (-121) |#1|) $) 31 (|has| $ (-6 -4519))) (((-763) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-3863 (($ $) 13)) (-4278 (((-541) $) 74 (|has| |#1| (-609 (-541))))) (-4287 (($ (-634 |#1|)) 65)) (-2768 (($ $ |#1|) 63) (($ |#1| $) 62) (($ $ $) 61) (($ (-634 $)) 60)) (-2745 (((-850) $) 20 (|has| |#1| (-1090)))) (-1319 (((-121) (-1 (-121) |#1|) $) 33 (|has| $ (-6 -4519)))) (-1717 (((-121) $ $) 19 (|has| |#1| (-1090)))) (-1697 (((-763) $) 6 (|has| $ (-6 -4519))))) +(((-640 |#1|) (-1275) (-1195)) (T -640)) +((-1849 (*1 *1 *2 *3) (-12 (-5 *2 (-763)) (-4 *1 (-640 *3)) (-4 *3 (-1195)))) (-2768 (*1 *1 *1 *2) (-12 (-4 *1 (-640 *2)) (-4 *2 (-1195)))) (-2768 (*1 *1 *2 *1) (-12 (-4 *1 (-640 *2)) (-4 *2 (-1195)))) (-2768 (*1 *1 *1 *1) (-12 (-4 *1 (-640 *2)) (-4 *2 (-1195)))) (-2768 (*1 *1 *2) (-12 (-5 *2 (-634 *1)) (-4 *1 (-640 *3)) (-4 *3 (-1195)))) (-2795 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-640 *3)) (-4 *3 (-1195)))) (-2779 (*1 *1 *1 *2) (-12 (-5 *2 (-1210 (-568))) (-4 *1 (-640 *3)) (-4 *3 (-1195)))) (-2826 (*1 *1 *1 *2) (-12 (-5 *2 (-568)) (-4 *1 (-640 *3)) (-4 *3 (-1195)))) (-2826 (*1 *1 *1 *2) (-12 (-5 *2 (-1210 (-568))) (-4 *1 (-640 *3)) (-4 *3 (-1195)))) (-4122 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-568)) (-4 *1 (-640 *2)) (-4 *2 (-1195)))) (-4122 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-568)) (-4 *1 (-640 *3)) (-4 *3 (-1195)))) (-2436 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1210 (-568))) (|has| *1 (-6 -4520)) (-4 *1 (-640 *2)) (-4 *2 (-1195))))) +(-13 (-601 (-568) |t#1|) (-154 |t#1|) (-10 -8 (-15 -1849 ($ (-763) |t#1|)) (-15 -2768 ($ $ |t#1|)) (-15 -2768 ($ |t#1| $)) (-15 -2768 ($ $ $)) (-15 -2768 ($ (-634 $))) (-15 -2795 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2779 ($ $ (-1210 (-568)))) (-15 -2826 ($ $ (-568))) (-15 -2826 ($ $ (-1210 (-568)))) (-15 -4122 ($ |t#1| $ (-568))) (-15 -4122 ($ $ $ (-568))) (IF (|has| $ (-6 -4520)) (-15 -2436 (|t#1| $ (-1210 (-568)) |t#1|)) |noBranch|))) +(((-39) . T) ((-105) |has| |#1| (-1090)) ((-608 (-850)) |has| |#1| (-1090)) ((-154 |#1|) . T) ((-609 (-541)) |has| |#1| (-609 (-541))) ((-281 (-568) |#1|) . T) ((-283 (-568) |#1|) . T) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))) ((-499 |#1|) . T) ((-601 (-568) |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))) ((-1090) |has| |#1| (-1090)) ((-1195) . T)) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-2055 (((-634 (-1075)) $) 115)) (-1305 (((-1161) $) 120)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) 40)) (-2227 (($ $) 39)) (-1573 (((-121) $) 37)) (-2617 (($ $ (-568) (-568)) 126) (($ $ (-568)) 125)) (-2583 (((-1141 (-2 (|:| |k| (-568)) (|:| |c| |#1|))) $) 118)) (-3134 (((-3 $ "failed") $ $) 18)) (-4305 (($ $) 71)) (-1678 (((-420 $) $) 70)) (-1497 (((-121) $ $) 57)) (-1870 (($ $ (-568)) 86)) (-3728 (($ (-568) |#1| $) 87)) (-3975 (($ $ $) 92)) (-2671 (($) 16 T CONST)) (-1429 (($ (-568) $) 89) (($ $) 88)) (-2255 (($ $) 93)) (-2401 (($ $ $) 53)) (-2114 (($ $) 108)) (-2925 (((-3 $ "failed") $) 33)) (-2412 (($ $ $) 54)) (-1277 (((-121) (-121)) 83) (((-121)) 82)) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) 49)) (-3927 (((-121) $) 69)) (-2421 (($ $) 95)) (-3992 (((-121) $) 116)) (-2455 (((-3 (-568) "failed") $) 94)) (-4477 (((-568) $ (-568)) 124) (((-568) $) 123) (((-568) $) 99)) (-2735 (((-121) $) 30)) (-3536 (($ $ (-917)) 122)) (-3562 (((-3 (-634 $) "failed") (-634 $) $) 50)) (-3921 (((-121) $) 106)) (-2662 (($ (-634 $) (-634 (-763)) (-568)) 90)) (-2047 (($ $ (-634 (-1075)) (-634 (-568))) 114) (($ $ (-1075) (-568)) 113) (($ |#1| (-568)) 107)) (-2795 (($ (-1 |#1| |#1|) $) 105)) (-2097 (($ $) 103)) (-2102 ((|#1| $) 102)) (-2495 (($ $ $) 45) (($ (-634 $)) 44)) (-4487 (((-1143) $) 9)) (-2081 (($ $) 68)) (-4022 (((-1108) $) 10)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) 43)) (-2721 (($ $ $) 47) (($ (-634 $)) 46)) (-1987 ((|#1| $ (-568)) 98)) (-4273 (($ $ (-568)) 85)) (-3848 (((-420 $) $) 72)) (-4497 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-1807 (($ $ (-568)) 128)) (-2595 (((-3 $ "failed") $ $) 41)) (-2344 (((-3 (-634 $) "failed") (-634 $) $) 48)) (-1339 (((-1141 |#1|) $ |#1|) 129 (|has| |#1| (-15 ** (|#1| |#1| (-568)))))) (-2709 (((-763) $) 56)) (-2779 (($ $ $) 142 (|has| (-568) (-1102))) ((|#1| $ (-568)) 119)) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) 55)) (-4189 (($ $) 141 (|has| |#1| (-15 * (|#1| (-568) |#1|)))) (($ $ (-763)) 139 (|has| |#1| (-15 * (|#1| (-568) |#1|)))) (($ $ (-1161)) 137 (-12 (|has| |#1| (-895 (-1161))) (|has| |#1| (-15 * (|#1| (-568) |#1|))))) (($ $ (-634 (-1161))) 136 (-12 (|has| |#1| (-895 (-1161))) (|has| |#1| (-15 * (|#1| (-568) |#1|))))) (($ $ (-1161) (-763)) 135 (-12 (|has| |#1| (-895 (-1161))) (|has| |#1| (-15 * (|#1| (-568) |#1|))))) (($ $ (-634 (-1161)) (-634 (-763))) 134 (-12 (|has| |#1| (-895 (-1161))) (|has| |#1| (-15 * (|#1| (-568) |#1|)))))) (-4493 (($ (-1 $)) 91)) (-3206 (((-568) $) 104)) (-1811 (($ $) 117)) (-2745 (((-850) $) 11) (($ (-568)) 27) (($ $) 42) (($ (-409 (-568))) 63) (($ |#1|) 112 (|has| |#1| (-172))) (($ (-1141 (-2 (|:| |k| (-568)) (|:| |c| |#1|)))) 97) (((-1141 (-2 (|:| |k| (-568)) (|:| |c| |#1|))) $) 96)) (-2604 ((|#1| $ (-568)) 109)) (-4447 ((|#1| $) 84)) (-4371 (((-3 $ "failed") $) 111 (|has| |#1| (-148)))) (-4078 (((-763)) 28)) (-1374 ((|#1| $) 121)) (-1826 (((-121) $ $) 38)) (-3996 ((|#1| $ (-568)) 127 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-568)))) (|has| |#1| (-15 -2745 (|#1| (-1161))))))) (-1887 (($ $ (-917)) 25) (($ $ (-763)) 32) (($ $ (-568)) 67)) (-3056 (($) 17 T CONST)) (-1556 (($) 29 T CONST)) (-3190 (($ $) 140 (|has| |#1| (-15 * (|#1| (-568) |#1|)))) (($ $ (-763)) 138 (|has| |#1| (-15 * (|#1| (-568) |#1|)))) (($ $ (-1161)) 133 (-12 (|has| |#1| (-895 (-1161))) (|has| |#1| (-15 * (|#1| (-568) |#1|))))) (($ $ (-634 (-1161))) 132 (-12 (|has| |#1| (-895 (-1161))) (|has| |#1| (-15 * (|#1| (-568) |#1|))))) (($ $ (-1161) (-763)) 131 (-12 (|has| |#1| (-895 (-1161))) (|has| |#1| (-15 * (|#1| (-568) |#1|))))) (($ $ (-634 (-1161)) (-634 (-763))) 130 (-12 (|has| |#1| (-895 (-1161))) (|has| |#1| (-15 * (|#1| (-568) |#1|)))))) (-1717 (((-121) $ $) 6)) (-1779 (($ $ $) 62) (($ $ |#1|) 110 (|has| |#1| (-365)))) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 24) (($ $ (-763)) 31) (($ $ (-568)) 66)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 23) (($ $ (-409 (-568))) 65) (($ (-409 (-568)) $) 64) (($ |#1| $) 101) (($ $ |#1|) 100))) +(((-641 |#1|) (-1275) (-365)) (T -641)) +((-4477 (*1 *2 *1) (-12 (-4 *1 (-641 *3)) (-4 *3 (-365)) (-5 *2 (-568)))) (-4477 (*1 *2 *1) (-12 (-4 *1 (-641 *3)) (-4 *3 (-365)) (-5 *2 (-568)))) (-1987 (*1 *2 *1 *3) (-12 (-5 *3 (-568)) (-4 *1 (-641 *2)) (-4 *2 (-365)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-1141 (-2 (|:| |k| (-568)) (|:| |c| *3)))) (-4 *3 (-365)) (-4 *1 (-641 *3)))) (-2745 (*1 *2 *1) (-12 (-4 *1 (-641 *3)) (-4 *3 (-365)) (-5 *2 (-1141 (-2 (|:| |k| (-568)) (|:| |c| *3)))))) (-2421 (*1 *1 *1) (-12 (-4 *1 (-641 *2)) (-4 *2 (-365)))) (-2455 (*1 *2 *1) (|partial| -12 (-4 *1 (-641 *3)) (-4 *3 (-365)) (-5 *2 (-568)))) (-2255 (*1 *1 *1) (-12 (-4 *1 (-641 *2)) (-4 *2 (-365)))) (-3975 (*1 *1 *1 *1) (-12 (-4 *1 (-641 *2)) (-4 *2 (-365)))) (-4493 (*1 *1 *2) (-12 (-5 *2 (-1 *1)) (-4 *1 (-641 *3)) (-4 *3 (-365)))) (-2662 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-634 *1)) (-5 *3 (-634 (-763))) (-5 *4 (-568)) (-4 *1 (-641 *5)) (-4 *5 (-365)))) (-1429 (*1 *1 *2 *1) (-12 (-5 *2 (-568)) (-4 *1 (-641 *3)) (-4 *3 (-365)))) (-1429 (*1 *1 *1) (-12 (-4 *1 (-641 *2)) (-4 *2 (-365)))) (-3728 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-568)) (-4 *1 (-641 *3)) (-4 *3 (-365)))) (-1870 (*1 *1 *1 *2) (-12 (-5 *2 (-568)) (-4 *1 (-641 *3)) (-4 *3 (-365)))) (-4273 (*1 *1 *1 *2) (-12 (-5 *2 (-568)) (-4 *1 (-641 *3)) (-4 *3 (-365)))) (-4447 (*1 *2 *1) (-12 (-4 *1 (-641 *2)) (-4 *2 (-365)))) (-1277 (*1 *2 *2) (-12 (-5 *2 (-121)) (-4 *1 (-641 *3)) (-4 *3 (-365)))) (-1277 (*1 *2) (-12 (-4 *1 (-641 *3)) (-4 *3 (-365)) (-5 *2 (-121))))) +(-13 (-365) (-1221 |t#1| (-568)) (-10 -8 (-15 -4477 ((-568) $)) (-15 -1987 (|t#1| $ (-568))) (-15 -2745 ($ (-1141 (-2 (|:| |k| (-568)) (|:| |c| |t#1|))))) (-15 -2745 ((-1141 (-2 (|:| |k| (-568)) (|:| |c| |t#1|))) $)) (-15 -2421 ($ $)) (-15 -2455 ((-3 (-568) "failed") $)) (-15 -2255 ($ $)) (-15 -3975 ($ $ $)) (-15 -4493 ($ (-1 $))) (-15 -2662 ($ (-634 $) (-634 (-763)) (-568))) (-15 -1429 ($ (-568) $)) (-15 -1429 ($ $)) (-15 -3728 ($ (-568) |t#1| $)) (-15 -1870 ($ $ (-568))) (-15 -4273 ($ $ (-568))) (-15 -4447 (|t#1| $)) (-15 -1277 ((-121) (-121))) (-15 -1277 ((-121))))) +(((-21) . T) ((-23) . T) ((-52 |#1| (-568)) . T) ((-25) . T) ((-43 (-409 (-568))) . T) ((-43 |#1|) |has| |#1| (-172)) ((-43 $) . T) ((-105) . T) ((-120 (-409 (-568)) (-409 (-568))) . T) ((-120 |#1| |#1|) . T) ((-120 $ $) . T) ((-137) . T) ((-148) |has| |#1| (-148)) ((-150) |has| |#1| (-150)) ((-608 (-850)) . T) ((-172) . T) ((-225) |has| |#1| (-15 * (|#1| (-568) |#1|))) ((-238) . T) ((-281 $ $) |has| (-568) (-1102)) ((-285) . T) ((-301) . T) ((-365) . T) ((-453) . T) ((-558) . T) ((-637 (-409 (-568))) . T) ((-637 |#1|) . T) ((-637 $) . T) ((-707 (-409 (-568))) . T) ((-707 |#1|) |has| |#1| (-172)) ((-707 $) . T) ((-716) . T) ((-895 (-1161)) -12 (|has| |#1| (-15 * (|#1| (-568) |#1|))) (|has| |#1| (-895 (-1161)))) ((-974 |#1| (-568) (-1075)) . T) ((-916) . T) ((-1053 (-409 (-568))) . T) ((-1053 |#1|) . T) ((-1053 $) . T) ((-1047) . T) ((-1054) . T) ((-1102) . T) ((-1090) . T) ((-1199) . T) ((-1221 |#1| (-568)) . T)) +((-4351 (((-3 |#2| "failed") |#3| |#2| (-1161) |#2| (-634 |#2|)) 159) (((-3 (-2 (|:| |particular| |#2|) (|:| -3746 (-634 |#2|))) "failed") |#3| |#2| (-1161)) 43))) +(((-642 |#1| |#2| |#3|) (-10 -7 (-15 -4351 ((-3 (-2 (|:| |particular| |#2|) (|:| -3746 (-634 |#2|))) "failed") |#3| |#2| (-1161))) (-15 -4351 ((-3 |#2| "failed") |#3| |#2| (-1161) |#2| (-634 |#2|)))) (-13 (-842) (-301) (-1037 (-568)) (-630 (-568)) (-150)) (-13 (-29 |#1|) (-1181) (-959)) (-646 |#2|)) (T -642)) +((-4351 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1161)) (-5 *5 (-634 *2)) (-4 *2 (-13 (-29 *6) (-1181) (-959))) (-4 *6 (-13 (-842) (-301) (-1037 (-568)) (-630 (-568)) (-150))) (-5 *1 (-642 *6 *2 *3)) (-4 *3 (-646 *2)))) (-4351 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1161)) (-4 *6 (-13 (-842) (-301) (-1037 (-568)) (-630 (-568)) (-150))) (-4 *4 (-13 (-29 *6) (-1181) (-959))) (-5 *2 (-2 (|:| |particular| *4) (|:| -3746 (-634 *4)))) (-5 *1 (-642 *6 *4 *3)) (-4 *3 (-646 *4))))) +(-10 -7 (-15 -4351 ((-3 (-2 (|:| |particular| |#2|) (|:| -3746 (-634 |#2|))) "failed") |#3| |#2| (-1161))) (-15 -4351 ((-3 |#2| "failed") |#3| |#2| (-1161) |#2| (-634 |#2|)))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-1591 (($ $) NIL (|has| |#1| (-365)))) (-1834 (($ $ $) NIL (|has| |#1| (-365)))) (-2699 (($ $ (-763)) NIL (|has| |#1| (-365)))) (-3134 (((-3 $ "failed") $ $) NIL)) (-2671 (($) NIL T CONST)) (-2012 (($ $ $) NIL (|has| |#1| (-365)))) (-2607 (($ $ $) NIL (|has| |#1| (-365)))) (-2420 (($ $ $) NIL (|has| |#1| (-365)))) (-2681 (($ $ $) NIL (|has| |#1| (-365)))) (-1523 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL (|has| |#1| (-365)))) (-1884 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-1653 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL (|has| |#1| (-365)))) (-3666 (((-3 (-568) "failed") $) NIL (|has| |#1| (-1037 (-568)))) (((-3 (-409 (-568)) "failed") $) NIL (|has| |#1| (-1037 (-409 (-568))))) (((-3 |#1| "failed") $) NIL)) (-2854 (((-568) $) NIL (|has| |#1| (-1037 (-568)))) (((-409 (-568)) $) NIL (|has| |#1| (-1037 (-409 (-568))))) ((|#1| $) NIL)) (-2114 (($ $) NIL)) (-2925 (((-3 $ "failed") $) NIL)) (-3250 (($ $) NIL (|has| |#1| (-453)))) (-2735 (((-121) $) NIL)) (-2047 (($ |#1| (-763)) NIL)) (-4123 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL (|has| |#1| (-558)))) (-3937 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL (|has| |#1| (-558)))) (-2144 (((-763) $) NIL)) (-3748 (($ $ $) NIL (|has| |#1| (-365)))) (-1382 (($ $ $) NIL (|has| |#1| (-365)))) (-1525 (($ $ $) NIL (|has| |#1| (-365)))) (-2450 (($ $ $) NIL (|has| |#1| (-365)))) (-3758 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL (|has| |#1| (-365)))) (-2260 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-1293 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL (|has| |#1| (-365)))) (-2102 ((|#1| $) NIL)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2595 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558)))) (-2779 ((|#1| $ |#1|) NIL)) (-3357 (($ $ $) NIL (|has| |#1| (-365)))) (-3206 (((-763) $) NIL)) (-3367 ((|#1| $) NIL (|has| |#1| (-453)))) (-2745 (((-850) $) NIL) (($ (-568)) NIL) (($ (-409 (-568))) NIL (|has| |#1| (-1037 (-409 (-568))))) (($ |#1|) NIL)) (-1302 (((-634 |#1|) $) NIL)) (-2604 ((|#1| $ (-763)) NIL)) (-4078 (((-763)) NIL)) (-3823 ((|#1| $ |#1| |#1|) NIL)) (-4391 (($ $) NIL)) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (-3056 (($) NIL T CONST)) (-1556 (($) NIL T CONST)) (-3190 (($) NIL)) (-1717 (((-121) $ $) NIL)) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-643 |#1|) (-646 |#1|) (-225)) (T -643)) +NIL +(-646 |#1|) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-1591 (($ $) NIL (|has| |#1| (-365)))) (-1834 (($ $ $) NIL (|has| |#1| (-365)))) (-2699 (($ $ (-763)) NIL (|has| |#1| (-365)))) (-3134 (((-3 $ "failed") $ $) NIL)) (-2671 (($) NIL T CONST)) (-2012 (($ $ $) NIL (|has| |#1| (-365)))) (-2607 (($ $ $) NIL (|has| |#1| (-365)))) (-2420 (($ $ $) NIL (|has| |#1| (-365)))) (-2681 (($ $ $) NIL (|has| |#1| (-365)))) (-1523 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL (|has| |#1| (-365)))) (-1884 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-1653 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL (|has| |#1| (-365)))) (-3666 (((-3 (-568) "failed") $) NIL (|has| |#1| (-1037 (-568)))) (((-3 (-409 (-568)) "failed") $) NIL (|has| |#1| (-1037 (-409 (-568))))) (((-3 |#1| "failed") $) NIL)) (-2854 (((-568) $) NIL (|has| |#1| (-1037 (-568)))) (((-409 (-568)) $) NIL (|has| |#1| (-1037 (-409 (-568))))) ((|#1| $) NIL)) (-2114 (($ $) NIL)) (-2925 (((-3 $ "failed") $) NIL)) (-3250 (($ $) NIL (|has| |#1| (-453)))) (-2735 (((-121) $) NIL)) (-2047 (($ |#1| (-763)) NIL)) (-4123 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL (|has| |#1| (-558)))) (-3937 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL (|has| |#1| (-558)))) (-2144 (((-763) $) NIL)) (-3748 (($ $ $) NIL (|has| |#1| (-365)))) (-1382 (($ $ $) NIL (|has| |#1| (-365)))) (-1525 (($ $ $) NIL (|has| |#1| (-365)))) (-2450 (($ $ $) NIL (|has| |#1| (-365)))) (-3758 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL (|has| |#1| (-365)))) (-2260 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-1293 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL (|has| |#1| (-365)))) (-2102 ((|#1| $) NIL)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2595 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558)))) (-2779 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-3357 (($ $ $) NIL (|has| |#1| (-365)))) (-3206 (((-763) $) NIL)) (-3367 ((|#1| $) NIL (|has| |#1| (-453)))) (-2745 (((-850) $) NIL) (($ (-568)) NIL) (($ (-409 (-568))) NIL (|has| |#1| (-1037 (-409 (-568))))) (($ |#1|) NIL)) (-1302 (((-634 |#1|) $) NIL)) (-2604 ((|#1| $ (-763)) NIL)) (-4078 (((-763)) NIL)) (-3823 ((|#1| $ |#1| |#1|) NIL)) (-4391 (($ $) NIL)) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (-3056 (($) NIL T CONST)) (-1556 (($) NIL T CONST)) (-3190 (($) NIL)) (-1717 (((-121) $ $) NIL)) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-644 |#1| |#2|) (-13 (-646 |#1|) (-281 |#2| |#2|)) (-225) (-13 (-637 |#1|) (-10 -8 (-15 -4189 ($ $))))) (T -644)) +NIL +(-13 (-646 |#1|) (-281 |#2| |#2|)) +((-1591 (($ $) 26)) (-4391 (($ $) 24)) (-3190 (($) 12))) +(((-645 |#1| |#2|) (-10 -8 (-15 -1591 (|#1| |#1|)) (-15 -4391 (|#1| |#1|)) (-15 -3190 (|#1|))) (-646 |#2|) (-1047)) (T -645)) +NIL +(-10 -8 (-15 -1591 (|#1| |#1|)) (-15 -4391 (|#1| |#1|)) (-15 -3190 (|#1|))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-1591 (($ $) 79 (|has| |#1| (-365)))) (-1834 (($ $ $) 81 (|has| |#1| (-365)))) (-2699 (($ $ (-763)) 80 (|has| |#1| (-365)))) (-3134 (((-3 $ "failed") $ $) 18)) (-2671 (($) 16 T CONST)) (-2012 (($ $ $) 44 (|has| |#1| (-365)))) (-2607 (($ $ $) 45 (|has| |#1| (-365)))) (-2420 (($ $ $) 47 (|has| |#1| (-365)))) (-2681 (($ $ $) 42 (|has| |#1| (-365)))) (-1523 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) 41 (|has| |#1| (-365)))) (-1884 (((-3 $ "failed") $ $) 43 (|has| |#1| (-365)))) (-1653 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) 46 (|has| |#1| (-365)))) (-3666 (((-3 (-568) "failed") $) 73 (|has| |#1| (-1037 (-568)))) (((-3 (-409 (-568)) "failed") $) 71 (|has| |#1| (-1037 (-409 (-568))))) (((-3 |#1| "failed") $) 68)) (-2854 (((-568) $) 74 (|has| |#1| (-1037 (-568)))) (((-409 (-568)) $) 72 (|has| |#1| (-1037 (-409 (-568))))) ((|#1| $) 67)) (-2114 (($ $) 63)) (-2925 (((-3 $ "failed") $) 33)) (-3250 (($ $) 54 (|has| |#1| (-453)))) (-2735 (((-121) $) 30)) (-2047 (($ |#1| (-763)) 61)) (-4123 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) 56 (|has| |#1| (-558)))) (-3937 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) 57 (|has| |#1| (-558)))) (-2144 (((-763) $) 65)) (-3748 (($ $ $) 51 (|has| |#1| (-365)))) (-1382 (($ $ $) 52 (|has| |#1| (-365)))) (-1525 (($ $ $) 40 (|has| |#1| (-365)))) (-2450 (($ $ $) 49 (|has| |#1| (-365)))) (-3758 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) 48 (|has| |#1| (-365)))) (-2260 (((-3 $ "failed") $ $) 50 (|has| |#1| (-365)))) (-1293 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) 53 (|has| |#1| (-365)))) (-2102 ((|#1| $) 64)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-2595 (((-3 $ "failed") $ |#1|) 58 (|has| |#1| (-558)))) (-2779 ((|#1| $ |#1|) 84)) (-3357 (($ $ $) 78 (|has| |#1| (-365)))) (-3206 (((-763) $) 66)) (-3367 ((|#1| $) 55 (|has| |#1| (-453)))) (-2745 (((-850) $) 11) (($ (-568)) 27) (($ (-409 (-568))) 70 (|has| |#1| (-1037 (-409 (-568))))) (($ |#1|) 69)) (-1302 (((-634 |#1|) $) 60)) (-2604 ((|#1| $ (-763)) 62)) (-4078 (((-763)) 28)) (-3823 ((|#1| $ |#1| |#1|) 59)) (-4391 (($ $) 82)) (-1887 (($ $ (-917)) 25) (($ $ (-763)) 32)) (-3056 (($) 17 T CONST)) (-1556 (($) 29 T CONST)) (-3190 (($) 83)) (-1717 (((-121) $ $) 6)) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 24) (($ $ (-763)) 31)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 23) (($ $ |#1|) 76) (($ |#1| $) 75))) +(((-646 |#1|) (-1275) (-1047)) (T -646)) +((-3190 (*1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1047)))) (-4391 (*1 *1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1047)))) (-1834 (*1 *1 *1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1047)) (-4 *2 (-365)))) (-2699 (*1 *1 *1 *2) (-12 (-5 *2 (-763)) (-4 *1 (-646 *3)) (-4 *3 (-1047)) (-4 *3 (-365)))) (-1591 (*1 *1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1047)) (-4 *2 (-365)))) (-3357 (*1 *1 *1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1047)) (-4 *2 (-365))))) +(-13 (-844 |t#1|) (-281 |t#1| |t#1|) (-10 -8 (-15 -3190 ($)) (-15 -4391 ($ $)) (IF (|has| |t#1| (-365)) (PROGN (-15 -1834 ($ $ $)) (-15 -2699 ($ $ (-763))) (-15 -1591 ($ $)) (-15 -3357 ($ $ $))) |noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-43 |#1|) |has| |#1| (-172)) ((-105) . T) ((-120 |#1| |#1|) . T) ((-137) . T) ((-608 (-850)) . T) ((-281 |#1| |#1|) . T) ((-413 |#1|) . T) ((-637 |#1|) . T) ((-637 $) . T) ((-707 |#1|) |has| |#1| (-172)) ((-716) . T) ((-1037 (-409 (-568))) |has| |#1| (-1037 (-409 (-568)))) ((-1037 (-568)) |has| |#1| (-1037 (-568))) ((-1037 |#1|) . T) ((-1053 |#1|) . T) ((-1047) . T) ((-1054) . T) ((-1102) . T) ((-1090) . T) ((-844 |#1|) . T)) +((-2519 (((-634 (-643 (-409 |#2|))) (-643 (-409 |#2|))) 72 (|has| |#1| (-27)))) (-3848 (((-634 (-643 (-409 |#2|))) (-643 (-409 |#2|))) 71 (|has| |#1| (-27))) (((-634 (-643 (-409 |#2|))) (-643 (-409 |#2|)) (-1 (-634 |#1|) |#2|)) 15))) +(((-647 |#1| |#2|) (-10 -7 (-15 -3848 ((-634 (-643 (-409 |#2|))) (-643 (-409 |#2|)) (-1 (-634 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3848 ((-634 (-643 (-409 |#2|))) (-643 (-409 |#2|)))) (-15 -2519 ((-634 (-643 (-409 |#2|))) (-643 (-409 |#2|))))) |noBranch|)) (-13 (-365) (-150) (-1037 (-568)) (-1037 (-409 (-568)))) (-1219 |#1|)) (T -647)) +((-2519 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-365) (-150) (-1037 (-568)) (-1037 (-409 (-568))))) (-4 *5 (-1219 *4)) (-5 *2 (-634 (-643 (-409 *5)))) (-5 *1 (-647 *4 *5)) (-5 *3 (-643 (-409 *5))))) (-3848 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-365) (-150) (-1037 (-568)) (-1037 (-409 (-568))))) (-4 *5 (-1219 *4)) (-5 *2 (-634 (-643 (-409 *5)))) (-5 *1 (-647 *4 *5)) (-5 *3 (-643 (-409 *5))))) (-3848 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-634 *5) *6)) (-4 *5 (-13 (-365) (-150) (-1037 (-568)) (-1037 (-409 (-568))))) (-4 *6 (-1219 *5)) (-5 *2 (-634 (-643 (-409 *6)))) (-5 *1 (-647 *5 *6)) (-5 *3 (-643 (-409 *6)))))) +(-10 -7 (-15 -3848 ((-634 (-643 (-409 |#2|))) (-643 (-409 |#2|)) (-1 (-634 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3848 ((-634 (-643 (-409 |#2|))) (-643 (-409 |#2|)))) (-15 -2519 ((-634 (-643 (-409 |#2|))) (-643 (-409 |#2|))))) |noBranch|)) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-1591 (($ $) NIL (|has| |#1| (-365)))) (-1834 (($ $ $) 28 (|has| |#1| (-365)))) (-2699 (($ $ (-763)) 31 (|has| |#1| (-365)))) (-3134 (((-3 $ "failed") $ $) NIL)) (-2671 (($) NIL T CONST)) (-2012 (($ $ $) NIL (|has| |#1| (-365)))) (-2607 (($ $ $) NIL (|has| |#1| (-365)))) (-2420 (($ $ $) NIL (|has| |#1| (-365)))) (-2681 (($ $ $) NIL (|has| |#1| (-365)))) (-1523 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL (|has| |#1| (-365)))) (-1884 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-1653 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL (|has| |#1| (-365)))) (-3666 (((-3 (-568) "failed") $) NIL (|has| |#1| (-1037 (-568)))) (((-3 (-409 (-568)) "failed") $) NIL (|has| |#1| (-1037 (-409 (-568))))) (((-3 |#1| "failed") $) NIL)) (-2854 (((-568) $) NIL (|has| |#1| (-1037 (-568)))) (((-409 (-568)) $) NIL (|has| |#1| (-1037 (-409 (-568))))) ((|#1| $) NIL)) (-2114 (($ $) NIL)) (-2925 (((-3 $ "failed") $) NIL)) (-3250 (($ $) NIL (|has| |#1| (-453)))) (-2735 (((-121) $) NIL)) (-2047 (($ |#1| (-763)) NIL)) (-4123 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL (|has| |#1| (-558)))) (-3937 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL (|has| |#1| (-558)))) (-2144 (((-763) $) NIL)) (-3748 (($ $ $) NIL (|has| |#1| (-365)))) (-1382 (($ $ $) NIL (|has| |#1| (-365)))) (-1525 (($ $ $) NIL (|has| |#1| (-365)))) (-2450 (($ $ $) NIL (|has| |#1| (-365)))) (-3758 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL (|has| |#1| (-365)))) (-2260 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-1293 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL (|has| |#1| (-365)))) (-2102 ((|#1| $) NIL)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2595 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558)))) (-2779 ((|#1| $ |#1|) 24)) (-3357 (($ $ $) 33 (|has| |#1| (-365)))) (-3206 (((-763) $) NIL)) (-3367 ((|#1| $) NIL (|has| |#1| (-453)))) (-2745 (((-850) $) 20) (($ (-568)) NIL) (($ (-409 (-568))) NIL (|has| |#1| (-1037 (-409 (-568))))) (($ |#1|) NIL)) (-1302 (((-634 |#1|) $) NIL)) (-2604 ((|#1| $ (-763)) NIL)) (-4078 (((-763)) NIL)) (-3823 ((|#1| $ |#1| |#1|) 23)) (-4391 (($ $) NIL)) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (-3056 (($) 21 T CONST)) (-1556 (($) 8 T CONST)) (-3190 (($) NIL)) (-1717 (((-121) $ $) NIL)) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-648 |#1| |#2|) (-646 |#1|) (-1047) (-1 |#1| |#1|)) (T -648)) +NIL +(-646 |#1|) +((-1834 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 61)) (-2699 ((|#2| |#2| (-763) (-1 |#1| |#1|)) 42)) (-3357 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 63))) +(((-649 |#1| |#2|) (-10 -7 (-15 -1834 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2699 (|#2| |#2| (-763) (-1 |#1| |#1|))) (-15 -3357 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-365) (-646 |#1|)) (T -649)) +((-3357 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-365)) (-5 *1 (-649 *4 *2)) (-4 *2 (-646 *4)))) (-2699 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-763)) (-5 *4 (-1 *5 *5)) (-4 *5 (-365)) (-5 *1 (-649 *5 *2)) (-4 *2 (-646 *5)))) (-1834 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-365)) (-5 *1 (-649 *4 *2)) (-4 *2 (-646 *4))))) +(-10 -7 (-15 -1834 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2699 (|#2| |#2| (-763) (-1 |#1| |#1|))) (-15 -3357 (|#2| |#2| |#2| (-1 |#1| |#1|)))) +((-2430 (($ $ $) 9))) +(((-650 |#1|) (-10 -8 (-15 -2430 (|#1| |#1| |#1|))) (-651)) (T -650)) +NIL +(-10 -8 (-15 -2430 (|#1| |#1| |#1|))) +((-2447 (((-121) $ $) 7)) (-1611 (($ $) 10)) (-2430 (($ $ $) 8)) (-1717 (((-121) $ $) 6)) (-2424 (($ $ $) 9))) +(((-651) (-1275)) (T -651)) +((-1611 (*1 *1 *1) (-4 *1 (-651))) (-2424 (*1 *1 *1 *1) (-4 *1 (-651))) (-2430 (*1 *1 *1 *1) (-4 *1 (-651)))) +(-13 (-105) (-10 -8 (-15 -1611 ($ $)) (-15 -2424 ($ $ $)) (-15 -2430 ($ $ $)))) (((-105) . T)) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) 15)) (-2314 (((-3 $ "failed") $ $) NIL)) (-4236 (($) NIL T CONST)) (-2132 ((|#1| $) 21)) (-4325 (($ $ $) NIL (|has| |#1| (-778)))) (-2501 (($ $ $) NIL (|has| |#1| (-778)))) (-1291 (((-1135) $) 46)) (-4353 (((-1100) $) NIL)) (-2139 ((|#3| $) 22)) (-2801 (((-842) $) 42)) (-3304 (($) 10 T CONST)) (-1691 (((-121) $ $) NIL (|has| |#1| (-778)))) (-1675 (((-121) $ $) NIL (|has| |#1| (-778)))) (-1653 (((-121) $ $) 20)) (-1683 (((-121) $ $) NIL (|has| |#1| (-778)))) (-1667 (((-121) $ $) 24 (|has| |#1| (-778)))) (-1733 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-1725 (($ $) 17) (($ $ $) NIL)) (-1716 (($ $ $) 27)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL))) -(((-644 |#1| |#2| |#3|) (-13 (-699 |#2|) (-10 -8 (IF (|has| |#1| (-778)) (-6 (-778)) |noBranch|) (-15 -1733 ($ $ |#3|)) (-15 -1733 ($ |#1| |#3|)) (-15 -2132 (|#1| $)) (-15 -2139 (|#3| $)))) (-699 |#2|) (-170) (|SubsetCategory| (-708) |#2|)) (T -644)) -((-1733 (*1 *1 *1 *2) (-12 (-4 *4 (-170)) (-5 *1 (-644 *3 *4 *2)) (-4 *3 (-699 *4)) (-4 *2 (|SubsetCategory| (-708) *4)))) (-1733 (*1 *1 *2 *3) (-12 (-4 *4 (-170)) (-5 *1 (-644 *2 *4 *3)) (-4 *2 (-699 *4)) (-4 *3 (|SubsetCategory| (-708) *4)))) (-2132 (*1 *2 *1) (-12 (-4 *3 (-170)) (-4 *2 (-699 *3)) (-5 *1 (-644 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-708) *3)))) (-2139 (*1 *2 *1) (-12 (-4 *4 (-170)) (-4 *2 (|SubsetCategory| (-708) *4)) (-5 *1 (-644 *3 *4 *2)) (-4 *3 (-699 *4))))) -(-13 (-699 |#2|) (-10 -8 (IF (|has| |#1| (-778)) (-6 (-778)) |noBranch|) (-15 -1733 ($ $ |#3|)) (-15 -1733 ($ |#1| |#3|)) (-15 -2132 (|#1| $)) (-15 -2139 (|#3| $)))) -((-2278 (((-671 |#1|) (-671 |#1|)) 27)) (-2283 (((-671 |#1|) (-671 |#1|)) 26)) (-2291 (((-626 (-626 |#1|)) (-626 |#1|) (-626 (-626 |#1|))) 44)) (-2306 (((-626 (-626 |#1|)) (-626 (-626 |#1|))) 29)) (-2313 (((-626 |#1|) (-626 |#1|) (-626 |#1|) |#1|) 43)) (-2319 (((-626 (-626 |#1|)) (-626 (-626 |#1|)) (-626 (-626 |#1|))) 34))) -(((-645 |#1|) (-10 -7 (-15 -2278 ((-671 |#1|) (-671 |#1|))) (-15 -2283 ((-671 |#1|) (-671 |#1|))) (-15 -2306 ((-626 (-626 |#1|)) (-626 (-626 |#1|)))) (-15 -2319 ((-626 (-626 |#1|)) (-626 (-626 |#1|)) (-626 (-626 |#1|)))) (-15 -2313 ((-626 |#1|) (-626 |#1|) (-626 |#1|) |#1|)) (-15 -2291 ((-626 (-626 |#1|)) (-626 |#1|) (-626 (-626 |#1|))))) (-359)) (T -645)) -((-2291 (*1 *2 *3 *2) (-12 (-5 *2 (-626 (-626 *4))) (-5 *3 (-626 *4)) (-4 *4 (-359)) (-5 *1 (-645 *4)))) (-2313 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-626 *3)) (-4 *3 (-359)) (-5 *1 (-645 *3)))) (-2319 (*1 *2 *2 *2) (-12 (-5 *2 (-626 (-626 *3))) (-4 *3 (-359)) (-5 *1 (-645 *3)))) (-2306 (*1 *2 *2) (-12 (-5 *2 (-626 (-626 *3))) (-4 *3 (-359)) (-5 *1 (-645 *3)))) (-2283 (*1 *2 *2) (-12 (-5 *2 (-671 *3)) (-4 *3 (-359)) (-5 *1 (-645 *3)))) (-2278 (*1 *2 *2) (-12 (-5 *2 (-671 *3)) (-4 *3 (-359)) (-5 *1 (-645 *3))))) -(-10 -7 (-15 -2278 ((-671 |#1|) (-671 |#1|))) (-15 -2283 ((-671 |#1|) (-671 |#1|))) (-15 -2306 ((-626 (-626 |#1|)) (-626 (-626 |#1|)))) (-15 -2319 ((-626 (-626 |#1|)) (-626 (-626 |#1|)) (-626 (-626 |#1|)))) (-15 -2313 ((-626 |#1|) (-626 |#1|) (-626 |#1|) |#1|)) (-15 -2291 ((-626 (-626 |#1|)) (-626 |#1|) (-626 (-626 |#1|))))) -((-1269 (((-121)) 46) (((-121) (-121)) 47)) (-2247 ((|#7| |#5| |#3|) 44)) (-4168 ((|#5| |#7|) 29)) (-3231 (((-2 (|:| |fnc| |#3|) (|:| |crv| |#3|) (|:| |chart| (-626 (-560)))) |#3| |#5| |#3| (-560)) 99)) (-2268 (((-626 |#6|) |#5| |#3| (-560)) 35))) -(((-646 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1269 ((-121) (-121))) (-15 -1269 ((-121))) (-15 -2247 (|#7| |#5| |#3|)) (-15 -2268 ((-626 |#6|) |#5| |#3| (-560))) (-15 -4168 (|#5| |#7|)) (-15 -3231 ((-2 (|:| |fnc| |#3|) (|:| |crv| |#3|) (|:| |chart| (-626 (-560)))) |#3| |#5| |#3| (-560)))) (-359) (-626 (-1153)) (-942 |#1| |#4| (-844 |#2|)) (-226 (-2271 |#2|) (-755)) (-963 |#1|) (-633 |#1|) (-912 |#1| |#6|)) (T -646)) -((-3231 (*1 *2 *3 *4 *3 *5) (-12 (-4 *6 (-359)) (-14 *7 (-626 (-1153))) (-4 *8 (-226 (-2271 *7) (-755))) (-4 *9 (-633 *6)) (-5 *2 (-2 (|:| |fnc| *3) (|:| |crv| *3) (|:| |chart| (-626 (-560))))) (-5 *1 (-646 *6 *7 *3 *8 *4 *9 *10)) (-5 *5 (-560)) (-4 *3 (-942 *6 *8 (-844 *7))) (-4 *4 (-963 *6)) (-4 *10 (-912 *6 *9)))) (-4168 (*1 *2 *3) (-12 (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *7 (-226 (-2271 *5) (-755))) (-4 *8 (-633 *4)) (-4 *2 (-963 *4)) (-5 *1 (-646 *4 *5 *6 *7 *2 *8 *3)) (-4 *6 (-942 *4 *7 (-844 *5))) (-4 *3 (-912 *4 *8)))) (-2268 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-560)) (-4 *6 (-359)) (-14 *7 (-626 (-1153))) (-4 *8 (-226 (-2271 *7) (-755))) (-4 *9 (-633 *6)) (-5 *2 (-626 *9)) (-5 *1 (-646 *6 *7 *4 *8 *3 *9 *10)) (-4 *4 (-942 *6 *8 (-844 *7))) (-4 *3 (-963 *6)) (-4 *10 (-912 *6 *9)))) (-2247 (*1 *2 *3 *4) (-12 (-4 *5 (-359)) (-14 *6 (-626 (-1153))) (-4 *7 (-226 (-2271 *6) (-755))) (-4 *2 (-912 *5 *8)) (-5 *1 (-646 *5 *6 *4 *7 *3 *8 *2)) (-4 *4 (-942 *5 *7 (-844 *6))) (-4 *3 (-963 *5)) (-4 *8 (-633 *5)))) (-1269 (*1 *2) (-12 (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *6 (-226 (-2271 *4) (-755))) (-4 *8 (-633 *3)) (-5 *2 (-121)) (-5 *1 (-646 *3 *4 *5 *6 *7 *8 *9)) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *7 (-963 *3)) (-4 *9 (-912 *3 *8)))) (-1269 (*1 *2 *2) (-12 (-5 *2 (-121)) (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *6 (-226 (-2271 *4) (-755))) (-4 *8 (-633 *3)) (-5 *1 (-646 *3 *4 *5 *6 *7 *8 *9)) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *7 (-963 *3)) (-4 *9 (-912 *3 *8))))) -(-10 -7 (-15 -1269 ((-121) (-121))) (-15 -1269 ((-121))) (-15 -2247 (|#7| |#5| |#3|)) (-15 -2268 ((-626 |#6|) |#5| |#3| (-560))) (-15 -4168 (|#5| |#7|)) (-15 -3231 ((-2 (|:| |fnc| |#3|) (|:| |crv| |#3|) (|:| |chart| (-626 (-560)))) |#3| |#5| |#3| (-560)))) -((-4368 (((-3 (-626 (-1149 |#1|)) "failed") (-626 (-1149 |#1|)) (-1149 |#1|)) 33))) -(((-647 |#1|) (-10 -7 (-15 -4368 ((-3 (-626 (-1149 |#1|)) "failed") (-626 (-1149 |#1|)) (-1149 |#1|)))) (-896)) (T -647)) -((-4368 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-626 (-1149 *4))) (-5 *3 (-1149 *4)) (-4 *4 (-896)) (-5 *1 (-647 *4))))) -(-10 -7 (-15 -4368 ((-3 (-626 (-1149 |#1|)) "failed") (-626 (-1149 |#1|)) (-1149 |#1|)))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-1499 (((-626 |#1|) $) 82)) (-3239 (($ $ (-755)) 90)) (-2314 (((-3 $ "failed") $ $) NIL)) (-4236 (($) NIL T CONST)) (-1927 (((-1258 |#1| |#2|) (-1258 |#1| |#2|) $) 48)) (-1473 (((-3 (-655 |#1|) "failed") $) NIL)) (-3001 (((-655 |#1|) $) NIL)) (-1750 (($ $) 89)) (-3235 (((-755) $) NIL)) (-1854 (((-626 $) $) NIL)) (-1814 (((-121) $) NIL)) (-2175 (($ (-655 |#1|) |#2|) 68)) (-2994 (($ $) 86)) (-2803 (($ (-1 |#2| |#2|) $) NIL)) (-4135 (((-1258 |#1| |#2|) (-1258 |#1| |#2|) $) 47)) (-1387 (((-626 (-2 (|:| |k| (-655 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1669 (((-2 (|:| |k| (-655 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1726 (((-655 |#1|) $) NIL)) (-1735 ((|#2| $) NIL)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-4450 (($ $ |#1| $) 30) (($ $ (-626 |#1|) (-626 $)) 32)) (-3662 (((-755) $) 88)) (-4162 (($ $ $) 20) (($ (-655 |#1|) (-655 |#1|)) 77) (($ (-655 |#1|) $) 75) (($ $ (-655 |#1|)) 76)) (-2801 (((-842) $) NIL) (($ |#1|) 74) (((-1249 |#1| |#2|) $) 58) (((-1258 |#1| |#2|) $) 41) (($ (-655 |#1|)) 25)) (-2423 (((-626 |#2|) $) NIL)) (-2636 ((|#2| $ (-655 |#1|)) NIL)) (-2169 ((|#2| (-1258 |#1| |#2|) $) 43)) (-3304 (($) 23 T CONST)) (-4315 (((-3 $ "failed") (-1249 |#1| |#2|)) 60)) (-3226 (($ (-655 |#1|)) 14)) (-1653 (((-121) $ $) 44)) (-1733 (($ $ |#2|) NIL (|has| |#2| (-359)))) (-1725 (($ $) 66) (($ $ $) NIL)) (-1716 (($ $ $) 29)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-655 |#1|)) NIL))) -(((-648 |#1| |#2|) (-13 (-370 |#1| |#2|) (-378 |#2| (-655 |#1|)) (-10 -8 (-15 -4315 ((-3 $ "failed") (-1249 |#1| |#2|))) (-15 -4162 ($ (-655 |#1|) (-655 |#1|))) (-15 -4162 ($ (-655 |#1|) $)) (-15 -4162 ($ $ (-655 |#1|))))) (-834) (-170)) (T -648)) -((-4315 (*1 *1 *2) (|partial| -12 (-5 *2 (-1249 *3 *4)) (-4 *3 (-834)) (-4 *4 (-170)) (-5 *1 (-648 *3 *4)))) (-4162 (*1 *1 *2 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-834)) (-5 *1 (-648 *3 *4)) (-4 *4 (-170)))) (-4162 (*1 *1 *2 *1) (-12 (-5 *2 (-655 *3)) (-4 *3 (-834)) (-5 *1 (-648 *3 *4)) (-4 *4 (-170)))) (-4162 (*1 *1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-834)) (-5 *1 (-648 *3 *4)) (-4 *4 (-170))))) -(-13 (-370 |#1| |#2|) (-378 |#2| (-655 |#1|)) (-10 -8 (-15 -4315 ((-3 $ "failed") (-1249 |#1| |#2|))) (-15 -4162 ($ (-655 |#1|) (-655 |#1|))) (-15 -4162 ($ (-655 |#1|) $)) (-15 -4162 ($ $ (-655 |#1|))))) -((-3189 (((-121) $) NIL) (((-121) (-1 (-121) |#2| |#2|) $) 49)) (-4410 (($ $) NIL) (($ (-1 (-121) |#2| |#2|) $) 11)) (-3763 (($ (-1 (-121) |#2|) $) 27)) (-4030 (($ $) 55)) (-3568 (($ $) 62)) (-3561 (($ |#2| $) NIL) (($ (-1 (-121) |#2|) $) 36)) (-2342 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52)) (-2839 (((-560) |#2| $ (-560)) 60) (((-560) |#2| $) NIL) (((-560) (-1 (-121) |#2|) $) 46)) (-1721 (($ (-755) |#2|) 53)) (-2037 (($ $ $) NIL) (($ (-1 (-121) |#2| |#2|) $ $) 29)) (-2492 (($ $ $) NIL) (($ (-1 (-121) |#2| |#2|) $ $) 24)) (-2803 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 54)) (-2843 (($ |#2|) 14)) (-4345 (($ $ $ (-560)) 35) (($ |#2| $ (-560)) 33)) (-3786 (((-3 |#2| "failed") (-1 (-121) |#2|) $) 45)) (-4094 (($ $ (-1202 (-560))) 43) (($ $ (-560)) 37)) (-4072 (($ $ $ (-560)) 59)) (-2813 (($ $) 57)) (-1667 (((-121) $ $) 64))) -(((-649 |#1| |#2|) (-10 -8 (-15 -2843 (|#1| |#2|)) (-15 -4094 (|#1| |#1| (-560))) (-15 -4094 (|#1| |#1| (-1202 (-560)))) (-15 -3561 (|#1| (-1 (-121) |#2|) |#1|)) (-15 -4345 (|#1| |#2| |#1| (-560))) (-15 -4345 (|#1| |#1| |#1| (-560))) (-15 -2037 (|#1| (-1 (-121) |#2| |#2|) |#1| |#1|)) (-15 -3763 (|#1| (-1 (-121) |#2|) |#1|)) (-15 -3561 (|#1| |#2| |#1|)) (-15 -3568 (|#1| |#1|)) (-15 -2037 (|#1| |#1| |#1|)) (-15 -2492 (|#1| (-1 (-121) |#2| |#2|) |#1| |#1|)) (-15 -3189 ((-121) (-1 (-121) |#2| |#2|) |#1|)) (-15 -2839 ((-560) (-1 (-121) |#2|) |#1|)) (-15 -2839 ((-560) |#2| |#1|)) (-15 -2839 ((-560) |#2| |#1| (-560))) (-15 -2492 (|#1| |#1| |#1|)) (-15 -3189 ((-121) |#1|)) (-15 -4072 (|#1| |#1| |#1| (-560))) (-15 -4030 (|#1| |#1|)) (-15 -4410 (|#1| (-1 (-121) |#2| |#2|) |#1|)) (-15 -4410 (|#1| |#1|)) (-15 -1667 ((-121) |#1| |#1|)) (-15 -2342 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2342 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2342 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3786 ((-3 |#2| "failed") (-1 (-121) |#2|) |#1|)) (-15 -1721 (|#1| (-755) |#2|)) (-15 -2803 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2803 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2813 (|#1| |#1|))) (-650 |#2|) (-1187)) (T -649)) -NIL -(-10 -8 (-15 -2843 (|#1| |#2|)) (-15 -4094 (|#1| |#1| (-560))) (-15 -4094 (|#1| |#1| (-1202 (-560)))) (-15 -3561 (|#1| (-1 (-121) |#2|) |#1|)) (-15 -4345 (|#1| |#2| |#1| (-560))) (-15 -4345 (|#1| |#1| |#1| (-560))) (-15 -2037 (|#1| (-1 (-121) |#2| |#2|) |#1| |#1|)) (-15 -3763 (|#1| (-1 (-121) |#2|) |#1|)) (-15 -3561 (|#1| |#2| |#1|)) (-15 -3568 (|#1| |#1|)) (-15 -2037 (|#1| |#1| |#1|)) (-15 -2492 (|#1| (-1 (-121) |#2| |#2|) |#1| |#1|)) (-15 -3189 ((-121) (-1 (-121) |#2| |#2|) |#1|)) (-15 -2839 ((-560) (-1 (-121) |#2|) |#1|)) (-15 -2839 ((-560) |#2| |#1|)) (-15 -2839 ((-560) |#2| |#1| (-560))) (-15 -2492 (|#1| |#1| |#1|)) (-15 -3189 ((-121) |#1|)) (-15 -4072 (|#1| |#1| |#1| (-560))) (-15 -4030 (|#1| |#1|)) (-15 -4410 (|#1| (-1 (-121) |#2| |#2|) |#1|)) (-15 -4410 (|#1| |#1|)) (-15 -1667 ((-121) |#1| |#1|)) (-15 -2342 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2342 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2342 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3786 ((-3 |#2| "failed") (-1 (-121) |#2|) |#1|)) (-15 -1721 (|#1| (-755) |#2|)) (-15 -2803 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2803 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2813 (|#1| |#1|))) -((-2601 (((-121) $ $) 18 (|has| |#1| (-1082)))) (-2981 ((|#1| $) 45)) (-1886 ((|#1| $) 62)) (-1417 (($ $) 64)) (-2960 (((-1241) $ (-560) (-560)) 94 (|has| $ (-6 -4506)))) (-2435 (($ $ (-560)) 49 (|has| $ (-6 -4506)))) (-3189 (((-121) $) 136 (|has| |#1| (-834))) (((-121) (-1 (-121) |#1| |#1|) $) 130)) (-4410 (($ $) 140 (-12 (|has| |#1| (-834)) (|has| $ (-6 -4506)))) (($ (-1 (-121) |#1| |#1|) $) 139 (|has| $ (-6 -4506)))) (-3743 (($ $) 135 (|has| |#1| (-834))) (($ (-1 (-121) |#1| |#1|) $) 129)) (-3909 (((-121) $ (-755)) 8)) (-3119 ((|#1| $ |#1|) 36 (|has| $ (-6 -4506)))) (-1741 (($ $ $) 53 (|has| $ (-6 -4506)))) (-1920 ((|#1| $ |#1|) 51 (|has| $ (-6 -4506)))) (-4133 ((|#1| $ |#1|) 55 (|has| $ (-6 -4506)))) (-2764 ((|#1| $ "value" |#1|) 37 (|has| $ (-6 -4506))) ((|#1| $ "first" |#1|) 54 (|has| $ (-6 -4506))) (($ $ "rest" $) 52 (|has| $ (-6 -4506))) ((|#1| $ "last" |#1|) 50 (|has| $ (-6 -4506))) ((|#1| $ (-1202 (-560)) |#1|) 114 (|has| $ (-6 -4506))) ((|#1| $ (-560) |#1|) 83 (|has| $ (-6 -4506)))) (-4043 (($ $ (-626 $)) 38 (|has| $ (-6 -4506)))) (-3763 (($ (-1 (-121) |#1|) $) 123)) (-3802 (($ (-1 (-121) |#1|) $) 99 (|has| $ (-6 -4505)))) (-1603 ((|#1| $) 63)) (-4236 (($) 7 T CONST)) (-4030 (($ $) 138 (|has| $ (-6 -4506)))) (-2883 (($ $) 128)) (-2877 (($ $) 70) (($ $ (-755)) 68)) (-3568 (($ $) 125 (|has| |#1| (-1082)))) (-2868 (($ $) 96 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-3561 (($ |#1| $) 124 (|has| |#1| (-1082))) (($ (-1 (-121) |#1|) $) 119)) (-4310 (($ (-1 (-121) |#1|) $) 100 (|has| $ (-6 -4505))) (($ |#1| $) 97 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-2342 ((|#1| (-1 |#1| |#1| |#1|) $) 102 (|has| $ (-6 -4505))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 101 (|has| $ (-6 -4505))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 98 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-1746 ((|#1| $ (-560) |#1|) 82 (|has| $ (-6 -4506)))) (-1361 ((|#1| $ (-560)) 84)) (-2737 (((-121) $) 80)) (-2839 (((-560) |#1| $ (-560)) 133 (|has| |#1| (-1082))) (((-560) |#1| $) 132 (|has| |#1| (-1082))) (((-560) (-1 (-121) |#1|) $) 131)) (-1981 (((-626 |#1|) $) 30 (|has| $ (-6 -4505)))) (-3971 (((-626 $) $) 47)) (-2420 (((-121) $ $) 39 (|has| |#1| (-1082)))) (-1721 (($ (-755) |#1|) 105)) (-2122 (((-121) $ (-755)) 9)) (-4099 (((-560) $) 92 (|has| (-560) (-834)))) (-4325 (($ $ $) 141 (|has| |#1| (-834)))) (-2037 (($ $ $) 126 (|has| |#1| (-834))) (($ (-1 (-121) |#1| |#1|) $ $) 122)) (-2492 (($ $ $) 134 (|has| |#1| (-834))) (($ (-1 (-121) |#1| |#1|) $ $) 127)) (-2130 (((-626 |#1|) $) 29 (|has| $ (-6 -4505)))) (-2030 (((-121) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-2767 (((-560) $) 91 (|has| (-560) (-834)))) (-2501 (($ $ $) 142 (|has| |#1| (-834)))) (-3778 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 108)) (-2843 (($ |#1|) 116)) (-3441 (((-121) $ (-755)) 10)) (-2173 (((-626 |#1|) $) 42)) (-3992 (((-121) $) 46)) (-1291 (((-1135) $) 22 (|has| |#1| (-1082)))) (-4139 ((|#1| $) 67) (($ $ (-755)) 65)) (-4345 (($ $ $ (-560)) 121) (($ |#1| $ (-560)) 120)) (-4103 (($ $ $ (-560)) 113) (($ |#1| $ (-560)) 112)) (-1529 (((-626 (-560)) $) 89)) (-1310 (((-121) (-560) $) 88)) (-4353 (((-1100) $) 21 (|has| |#1| (-1082)))) (-2824 ((|#1| $) 73) (($ $ (-755)) 71)) (-3786 (((-3 |#1| "failed") (-1 (-121) |#1|) $) 103)) (-3038 (($ $ |#1|) 93 (|has| $ (-6 -4506)))) (-2957 (((-121) $) 81)) (-2865 (((-121) (-1 (-121) |#1|) $) 32 (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#1|))) 26 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-283 |#1|)) 25 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-626 |#1|) (-626 |#1|)) 23 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))))) (-2214 (((-121) $ $) 14)) (-1290 (((-121) |#1| $) 90 (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-4460 (((-626 |#1|) $) 87)) (-4191 (((-121) $) 11)) (-3260 (($) 12)) (-2778 ((|#1| $ "value") 44) ((|#1| $ "first") 72) (($ $ "rest") 69) ((|#1| $ "last") 66) (($ $ (-1202 (-560))) 109) ((|#1| $ (-560)) 86) ((|#1| $ (-560) |#1|) 85)) (-1435 (((-560) $ $) 41)) (-4094 (($ $ (-1202 (-560))) 118) (($ $ (-560)) 117)) (-2949 (($ $ (-1202 (-560))) 111) (($ $ (-560)) 110)) (-3316 (((-121) $) 43)) (-4432 (($ $) 59)) (-2641 (($ $) 56 (|has| $ (-6 -4506)))) (-2751 (((-755) $) 60)) (-4208 (($ $) 61)) (-4035 (((-755) (-1 (-121) |#1|) $) 31 (|has| $ (-6 -4505))) (((-755) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-4072 (($ $ $ (-560)) 137 (|has| $ (-6 -4506)))) (-2813 (($ $) 13)) (-4255 (((-533) $) 95 (|has| |#1| (-601 (-533))))) (-4162 (($ (-626 |#1|)) 104)) (-3602 (($ $ $) 58) (($ $ |#1|) 57)) (-2849 (($ $ $) 75) (($ |#1| $) 74) (($ (-626 $)) 107) (($ $ |#1|) 106)) (-2801 (((-842) $) 20 (|has| |#1| (-1082)))) (-2853 (((-626 $) $) 48)) (-3761 (((-121) $ $) 40 (|has| |#1| (-1082)))) (-3656 (((-121) (-1 (-121) |#1|) $) 33 (|has| $ (-6 -4505)))) (-1691 (((-121) $ $) 144 (|has| |#1| (-834)))) (-1675 (((-121) $ $) 145 (|has| |#1| (-834)))) (-1653 (((-121) $ $) 19 (|has| |#1| (-1082)))) (-1683 (((-121) $ $) 143 (|has| |#1| (-834)))) (-1667 (((-121) $ $) 146 (|has| |#1| (-834)))) (-2271 (((-755) $) 6 (|has| $ (-6 -4505))))) -(((-650 |#1|) (-1267) (-1187)) (T -650)) -((-2843 (*1 *1 *2) (-12 (-4 *1 (-650 *2)) (-4 *2 (-1187))))) -(-13 (-1126 |t#1|) (-369 |t#1|) (-272 |t#1|) (-10 -8 (-15 -2843 ($ |t#1|)))) -(((-39) . T) ((-105) -2318 (|has| |#1| (-1082)) (|has| |#1| (-834))) ((-600 (-842)) -2318 (|has| |#1| (-1082)) (|has| |#1| (-834))) ((-152 |#1|) . T) ((-601 (-533)) |has| |#1| (-601 (-533))) ((-276 (-560) |#1|) . T) ((-278 (-560) |#1|) . T) ((-298 |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))) ((-272 |#1|) . T) ((-369 |#1|) . T) ((-492 |#1|) . T) ((-593 (-560) |#1|) . T) ((-515 |#1| |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))) ((-632 |#1|) . T) ((-834) |has| |#1| (-834)) ((-1002 |#1|) . T) ((-1082) -2318 (|has| |#1| (-1082)) (|has| |#1| (-834))) ((-1126 |#1|) . T) ((-1187) . T) ((-1223 |#1|) . T)) -((-4159 (((-626 (-2 (|:| |particular| (-3 (-1236 |#1|) "failed")) (|:| -4374 (-626 (-1236 |#1|))))) (-626 (-626 |#1|)) (-626 (-1236 |#1|))) 21) (((-626 (-2 (|:| |particular| (-3 (-1236 |#1|) "failed")) (|:| -4374 (-626 (-1236 |#1|))))) (-671 |#1|) (-626 (-1236 |#1|))) 20) (((-2 (|:| |particular| (-3 (-1236 |#1|) "failed")) (|:| -4374 (-626 (-1236 |#1|)))) (-626 (-626 |#1|)) (-1236 |#1|)) 16) (((-2 (|:| |particular| (-3 (-1236 |#1|) "failed")) (|:| -4374 (-626 (-1236 |#1|)))) (-671 |#1|) (-1236 |#1|)) 13)) (-3143 (((-755) (-671 |#1|) (-1236 |#1|)) 29)) (-2852 (((-3 (-1236 |#1|) "failed") (-671 |#1|) (-1236 |#1|)) 23)) (-3084 (((-121) (-671 |#1|) (-1236 |#1|)) 26))) -(((-651 |#1|) (-10 -7 (-15 -4159 ((-2 (|:| |particular| (-3 (-1236 |#1|) "failed")) (|:| -4374 (-626 (-1236 |#1|)))) (-671 |#1|) (-1236 |#1|))) (-15 -4159 ((-2 (|:| |particular| (-3 (-1236 |#1|) "failed")) (|:| -4374 (-626 (-1236 |#1|)))) (-626 (-626 |#1|)) (-1236 |#1|))) (-15 -4159 ((-626 (-2 (|:| |particular| (-3 (-1236 |#1|) "failed")) (|:| -4374 (-626 (-1236 |#1|))))) (-671 |#1|) (-626 (-1236 |#1|)))) (-15 -4159 ((-626 (-2 (|:| |particular| (-3 (-1236 |#1|) "failed")) (|:| -4374 (-626 (-1236 |#1|))))) (-626 (-626 |#1|)) (-626 (-1236 |#1|)))) (-15 -2852 ((-3 (-1236 |#1|) "failed") (-671 |#1|) (-1236 |#1|))) (-15 -3084 ((-121) (-671 |#1|) (-1236 |#1|))) (-15 -3143 ((-755) (-671 |#1|) (-1236 |#1|)))) (-359)) (T -651)) -((-3143 (*1 *2 *3 *4) (-12 (-5 *3 (-671 *5)) (-5 *4 (-1236 *5)) (-4 *5 (-359)) (-5 *2 (-755)) (-5 *1 (-651 *5)))) (-3084 (*1 *2 *3 *4) (-12 (-5 *3 (-671 *5)) (-5 *4 (-1236 *5)) (-4 *5 (-359)) (-5 *2 (-121)) (-5 *1 (-651 *5)))) (-2852 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1236 *4)) (-5 *3 (-671 *4)) (-4 *4 (-359)) (-5 *1 (-651 *4)))) (-4159 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-626 *5))) (-4 *5 (-359)) (-5 *2 (-626 (-2 (|:| |particular| (-3 (-1236 *5) "failed")) (|:| -4374 (-626 (-1236 *5)))))) (-5 *1 (-651 *5)) (-5 *4 (-626 (-1236 *5))))) (-4159 (*1 *2 *3 *4) (-12 (-5 *3 (-671 *5)) (-4 *5 (-359)) (-5 *2 (-626 (-2 (|:| |particular| (-3 (-1236 *5) "failed")) (|:| -4374 (-626 (-1236 *5)))))) (-5 *1 (-651 *5)) (-5 *4 (-626 (-1236 *5))))) (-4159 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-626 *5))) (-4 *5 (-359)) (-5 *2 (-2 (|:| |particular| (-3 (-1236 *5) "failed")) (|:| -4374 (-626 (-1236 *5))))) (-5 *1 (-651 *5)) (-5 *4 (-1236 *5)))) (-4159 (*1 *2 *3 *4) (-12 (-5 *3 (-671 *5)) (-4 *5 (-359)) (-5 *2 (-2 (|:| |particular| (-3 (-1236 *5) "failed")) (|:| -4374 (-626 (-1236 *5))))) (-5 *1 (-651 *5)) (-5 *4 (-1236 *5))))) -(-10 -7 (-15 -4159 ((-2 (|:| |particular| (-3 (-1236 |#1|) "failed")) (|:| -4374 (-626 (-1236 |#1|)))) (-671 |#1|) (-1236 |#1|))) (-15 -4159 ((-2 (|:| |particular| (-3 (-1236 |#1|) "failed")) (|:| -4374 (-626 (-1236 |#1|)))) (-626 (-626 |#1|)) (-1236 |#1|))) (-15 -4159 ((-626 (-2 (|:| |particular| (-3 (-1236 |#1|) "failed")) (|:| -4374 (-626 (-1236 |#1|))))) (-671 |#1|) (-626 (-1236 |#1|)))) (-15 -4159 ((-626 (-2 (|:| |particular| (-3 (-1236 |#1|) "failed")) (|:| -4374 (-626 (-1236 |#1|))))) (-626 (-626 |#1|)) (-626 (-1236 |#1|)))) (-15 -2852 ((-3 (-1236 |#1|) "failed") (-671 |#1|) (-1236 |#1|))) (-15 -3084 ((-121) (-671 |#1|) (-1236 |#1|))) (-15 -3143 ((-755) (-671 |#1|) (-1236 |#1|)))) -((-4159 (((-626 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4374 (-626 |#3|)))) |#4| (-626 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4374 (-626 |#3|))) |#4| |#3|) 45)) (-3143 (((-755) |#4| |#3|) 17)) (-2852 (((-3 |#3| "failed") |#4| |#3|) 20)) (-3084 (((-121) |#4| |#3|) 13))) -(((-652 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4159 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4374 (-626 |#3|))) |#4| |#3|)) (-15 -4159 ((-626 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4374 (-626 |#3|)))) |#4| (-626 |#3|))) (-15 -2852 ((-3 |#3| "failed") |#4| |#3|)) (-15 -3084 ((-121) |#4| |#3|)) (-15 -3143 ((-755) |#4| |#3|))) (-359) (-13 (-369 |#1|) (-10 -7 (-6 -4506))) (-13 (-369 |#1|) (-10 -7 (-6 -4506))) (-669 |#1| |#2| |#3|)) (T -652)) -((-3143 (*1 *2 *3 *4) (-12 (-4 *5 (-359)) (-4 *6 (-13 (-369 *5) (-10 -7 (-6 -4506)))) (-4 *4 (-13 (-369 *5) (-10 -7 (-6 -4506)))) (-5 *2 (-755)) (-5 *1 (-652 *5 *6 *4 *3)) (-4 *3 (-669 *5 *6 *4)))) (-3084 (*1 *2 *3 *4) (-12 (-4 *5 (-359)) (-4 *6 (-13 (-369 *5) (-10 -7 (-6 -4506)))) (-4 *4 (-13 (-369 *5) (-10 -7 (-6 -4506)))) (-5 *2 (-121)) (-5 *1 (-652 *5 *6 *4 *3)) (-4 *3 (-669 *5 *6 *4)))) (-2852 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-359)) (-4 *5 (-13 (-369 *4) (-10 -7 (-6 -4506)))) (-4 *2 (-13 (-369 *4) (-10 -7 (-6 -4506)))) (-5 *1 (-652 *4 *5 *2 *3)) (-4 *3 (-669 *4 *5 *2)))) (-4159 (*1 *2 *3 *4) (-12 (-4 *5 (-359)) (-4 *6 (-13 (-369 *5) (-10 -7 (-6 -4506)))) (-4 *7 (-13 (-369 *5) (-10 -7 (-6 -4506)))) (-5 *2 (-626 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -4374 (-626 *7))))) (-5 *1 (-652 *5 *6 *7 *3)) (-5 *4 (-626 *7)) (-4 *3 (-669 *5 *6 *7)))) (-4159 (*1 *2 *3 *4) (-12 (-4 *5 (-359)) (-4 *6 (-13 (-369 *5) (-10 -7 (-6 -4506)))) (-4 *4 (-13 (-369 *5) (-10 -7 (-6 -4506)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4374 (-626 *4)))) (-5 *1 (-652 *5 *6 *4 *3)) (-4 *3 (-669 *5 *6 *4))))) -(-10 -7 (-15 -4159 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4374 (-626 |#3|))) |#4| |#3|)) (-15 -4159 ((-626 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4374 (-626 |#3|)))) |#4| (-626 |#3|))) (-15 -2852 ((-3 |#3| "failed") |#4| |#3|)) (-15 -3084 ((-121) |#4| |#3|)) (-15 -3143 ((-755) |#4| |#3|))) -((-3880 (((-2 (|:| |particular| (-3 (-1236 (-403 |#4|)) "failed")) (|:| -4374 (-626 (-1236 (-403 |#4|))))) (-626 |#4|) (-626 |#3|)) 44))) -(((-653 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3880 ((-2 (|:| |particular| (-3 (-1236 (-403 |#4|)) "failed")) (|:| -4374 (-626 (-1236 (-403 |#4|))))) (-626 |#4|) (-626 |#3|)))) (-550) (-780) (-834) (-942 |#1| |#2| |#3|)) (T -653)) -((-3880 (*1 *2 *3 *4) (-12 (-5 *3 (-626 *8)) (-5 *4 (-626 *7)) (-4 *7 (-834)) (-4 *8 (-942 *5 *6 *7)) (-4 *5 (-550)) (-4 *6 (-780)) (-5 *2 (-2 (|:| |particular| (-3 (-1236 (-403 *8)) "failed")) (|:| -4374 (-626 (-1236 (-403 *8)))))) (-5 *1 (-653 *5 *6 *7 *8))))) -(-10 -7 (-15 -3880 ((-2 (|:| |particular| (-3 (-1236 (-403 |#4|)) "failed")) (|:| -4374 (-626 (-1236 (-403 |#4|))))) (-626 |#4|) (-626 |#3|)))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-1917 (((-3 $ "failed")) NIL (|has| |#2| (-550)))) (-1944 ((|#2| $) NIL)) (-3839 (((-121) $) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-2059 (((-1236 (-671 |#2|))) NIL) (((-1236 (-671 |#2|)) (-1236 $)) NIL)) (-1915 (((-121) $) NIL)) (-1565 (((-1236 $)) 37)) (-3909 (((-121) $ (-755)) NIL)) (-2366 (($ |#2|) NIL)) (-4236 (($) NIL T CONST)) (-1439 (($ $) NIL (|has| |#2| (-296)))) (-4097 (((-228 |#1| |#2|) $ (-560)) NIL)) (-2862 (((-3 (-2 (|:| |particular| $) (|:| -4374 (-626 $))) "failed")) NIL (|has| |#2| (-550)))) (-2835 (((-3 $ "failed")) NIL (|has| |#2| (-550)))) (-3852 (((-671 |#2|)) NIL) (((-671 |#2|) (-1236 $)) NIL)) (-1374 ((|#2| $) NIL)) (-2611 (((-671 |#2|) $) NIL) (((-671 |#2|) $ (-1236 $)) NIL)) (-1309 (((-3 $ "failed") $) NIL (|has| |#2| (-550)))) (-3013 (((-1149 (-945 |#2|))) NIL (|has| |#2| (-359)))) (-1498 (($ $ (-909)) NIL)) (-2856 ((|#2| $) NIL)) (-3730 (((-1149 |#2|) $) NIL (|has| |#2| (-550)))) (-1998 ((|#2|) NIL) ((|#2| (-1236 $)) NIL)) (-1825 (((-1149 |#2|) $) NIL)) (-2969 (((-121)) NIL)) (-1473 (((-3 (-560) "failed") $) NIL (|has| |#2| (-1029 (-560)))) (((-3 (-403 (-560)) "failed") $) NIL (|has| |#2| (-1029 (-403 (-560))))) (((-3 |#2| "failed") $) NIL)) (-3001 (((-560) $) NIL (|has| |#2| (-1029 (-560)))) (((-403 (-560)) $) NIL (|has| |#2| (-1029 (-403 (-560))))) ((|#2| $) NIL)) (-3380 (($ (-1236 |#2|)) NIL) (($ (-1236 |#2|) (-1236 $)) NIL)) (-2616 (((-671 (-560)) (-671 $)) NIL (|has| |#2| (-622 (-560)))) (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) NIL (|has| |#2| (-622 (-560)))) (((-2 (|:| -3818 (-671 |#2|)) (|:| |vec| (-1236 |#2|))) (-671 $) (-1236 $)) NIL) (((-671 |#2|) (-671 $)) NIL)) (-1823 (((-3 $ "failed") $) NIL)) (-3143 (((-755) $) NIL (|has| |#2| (-550))) (((-909)) 38)) (-1361 ((|#2| $ (-560) (-560)) NIL)) (-3497 (((-121)) NIL)) (-3710 (($ $ (-909)) NIL)) (-1981 (((-626 |#2|) $) NIL (|has| $ (-6 -4505)))) (-2642 (((-121) $) NIL)) (-3436 (((-755) $) NIL (|has| |#2| (-550)))) (-3700 (((-626 (-228 |#1| |#2|)) $) NIL (|has| |#2| (-550)))) (-1454 (((-755) $) NIL)) (-2874 (((-121)) NIL)) (-2634 (((-755) $) NIL)) (-2122 (((-121) $ (-755)) NIL)) (-3826 ((|#2| $) NIL (|has| |#2| (-6 (-4507 "*"))))) (-2984 (((-560) $) NIL)) (-1994 (((-560) $) NIL)) (-2130 (((-626 |#2|) $) NIL (|has| $ (-6 -4505)))) (-2030 (((-121) |#2| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#2| (-1082))))) (-3755 (((-560) $) NIL)) (-1420 (((-560) $) NIL)) (-3851 (($ (-626 (-626 |#2|))) NIL)) (-3778 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-2184 (((-626 (-626 |#2|)) $) NIL)) (-4479 (((-121)) NIL)) (-2646 (((-121)) NIL)) (-3441 (((-121) $ (-755)) NIL)) (-2071 (((-3 (-2 (|:| |particular| $) (|:| -4374 (-626 $))) "failed")) NIL (|has| |#2| (-550)))) (-3477 (((-3 $ "failed")) NIL (|has| |#2| (-550)))) (-1279 (((-671 |#2|)) NIL) (((-671 |#2|) (-1236 $)) NIL)) (-2442 ((|#2| $) NIL)) (-1284 (((-671 |#2|) $) NIL) (((-671 |#2|) $ (-1236 $)) NIL)) (-2966 (((-3 $ "failed") $) NIL (|has| |#2| (-550)))) (-3081 (((-1149 (-945 |#2|))) NIL (|has| |#2| (-359)))) (-2137 (($ $ (-909)) NIL)) (-3542 ((|#2| $) NIL)) (-1351 (((-1149 |#2|) $) NIL (|has| |#2| (-550)))) (-3158 ((|#2|) NIL) ((|#2| (-1236 $)) NIL)) (-3613 (((-1149 |#2|) $) NIL)) (-1818 (((-121)) NIL)) (-1291 (((-1135) $) NIL)) (-2394 (((-121)) NIL)) (-2201 (((-121)) NIL)) (-4253 (((-121)) NIL)) (-3257 (((-3 $ "failed") $) NIL (|has| |#2| (-359)))) (-4353 (((-1100) $) NIL)) (-4172 (((-121)) NIL)) (-2336 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-550)))) (-2865 (((-121) (-1 (-121) |#2|) $) NIL (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#2|))) NIL (-12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082)))) (($ $ (-283 |#2|)) NIL (-12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082)))) (($ $ (-626 |#2|) (-626 |#2|)) NIL (-12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082))))) (-2214 (((-121) $ $) NIL)) (-4191 (((-121) $) NIL)) (-3260 (($) NIL)) (-2778 ((|#2| $ (-560) (-560) |#2|) NIL) ((|#2| $ (-560) (-560)) 22) ((|#2| $ (-560)) NIL)) (-2443 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-755)) NIL) (($ $ (-626 (-1153)) (-626 (-755))) NIL (|has| |#2| (-887 (-1153)))) (($ $ (-1153) (-755)) NIL (|has| |#2| (-887 (-1153)))) (($ $ (-626 (-1153))) NIL (|has| |#2| (-887 (-1153)))) (($ $ (-1153)) NIL (|has| |#2| (-887 (-1153)))) (($ $ (-755)) NIL (|has| |#2| (-221))) (($ $) NIL (|has| |#2| (-221)))) (-1462 ((|#2| $) NIL)) (-3328 (($ (-626 |#2|)) NIL)) (-3185 (((-121) $) NIL)) (-2978 (((-228 |#1| |#2|) $) NIL)) (-1708 ((|#2| $) NIL (|has| |#2| (-6 (-4507 "*"))))) (-4035 (((-755) (-1 (-121) |#2|) $) NIL (|has| $ (-6 -4505))) (((-755) |#2| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#2| (-1082))))) (-2813 (($ $) NIL)) (-3390 (((-671 |#2|) (-1236 $)) NIL) (((-1236 |#2|) $) NIL) (((-671 |#2|) (-1236 $) (-1236 $)) NIL) (((-1236 |#2|) $ (-1236 $)) 25)) (-4255 (($ (-1236 |#2|)) NIL) (((-1236 |#2|) $) NIL)) (-2879 (((-626 (-945 |#2|))) NIL) (((-626 (-945 |#2|)) (-1236 $)) NIL)) (-1671 (($ $ $) NIL)) (-2903 (((-121)) NIL)) (-3677 (((-228 |#1| |#2|) $ (-560)) NIL)) (-2801 (((-842) $) NIL) (($ (-560)) NIL) (($ (-403 (-560))) NIL (|has| |#2| (-1029 (-403 (-560))))) (($ |#2|) NIL) (((-671 |#2|) $) NIL)) (-1751 (((-755)) NIL)) (-4374 (((-1236 $)) 36)) (-4263 (((-626 (-1236 |#2|))) NIL (|has| |#2| (-550)))) (-2676 (($ $ $ $) NIL)) (-2266 (((-121)) NIL)) (-2788 (($ (-671 |#2|) $) NIL)) (-3656 (((-121) (-1 (-121) |#2|) $) NIL (|has| $ (-6 -4505)))) (-3298 (((-121) $) NIL)) (-3127 (($ $ $) NIL)) (-3333 (((-121)) NIL)) (-3060 (((-121)) NIL)) (-2682 (((-121)) NIL)) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (-3304 (($) NIL T CONST)) (-1459 (($) NIL T CONST)) (-2500 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-755)) NIL) (($ $ (-626 (-1153)) (-626 (-755))) NIL (|has| |#2| (-887 (-1153)))) (($ $ (-1153) (-755)) NIL (|has| |#2| (-887 (-1153)))) (($ $ (-626 (-1153))) NIL (|has| |#2| (-887 (-1153)))) (($ $ (-1153)) NIL (|has| |#2| (-887 (-1153)))) (($ $ (-755)) NIL (|has| |#2| (-221))) (($ $) NIL (|has| |#2| (-221)))) (-1653 (((-121) $ $) NIL)) (-1733 (($ $ |#2|) NIL (|has| |#2| (-359)))) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) NIL)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL (|has| |#2| (-359)))) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-228 |#1| |#2|) $ (-228 |#1| |#2|)) NIL) (((-228 |#1| |#2|) (-228 |#1| |#2|) $) NIL)) (-2271 (((-755) $) NIL (|has| $ (-6 -4505))))) -(((-654 |#1| |#2|) (-13 (-1103 |#1| |#2| (-228 |#1| |#2|) (-228 |#1| |#2|)) (-600 (-671 |#2|)) (-413 |#2|)) (-909) (-170)) (T -654)) -NIL -(-13 (-1103 |#1| |#2| (-228 |#1| |#2|) (-228 |#1| |#2|)) (-600 (-671 |#2|)) (-413 |#2|)) -((-2601 (((-121) $ $) NIL)) (-1499 (((-626 |#1|) $) NIL)) (-3437 (($ $) 50)) (-1868 (((-121) $) NIL)) (-1473 (((-3 |#1| "failed") $) NIL)) (-3001 ((|#1| $) NIL)) (-4325 (($ $ $) NIL)) (-2501 (($ $ $) NIL)) (-1555 (((-3 $ "failed") (-806 |#1|)) 22)) (-1349 (((-121) (-806 |#1|)) 14)) (-2759 (($ (-806 |#1|)) 23)) (-1836 (((-121) $ $) 28)) (-2349 (((-909) $) 35)) (-3156 (($ $) NIL)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-1601 (((-626 $) (-806 |#1|)) 16)) (-2801 (((-842) $) 41) (($ |#1|) 32) (((-806 |#1|) $) 37) (((-659 |#1|) $) 42)) (-4249 (((-64 (-626 $)) (-626 |#1|) (-909)) 55)) (-1443 (((-626 $) (-626 |#1|) (-909)) 57)) (-1691 (((-121) $ $) NIL)) (-1675 (((-121) $ $) NIL)) (-1653 (((-121) $ $) 51)) (-1683 (((-121) $ $) NIL)) (-1667 (((-121) $ $) 36))) -(((-655 |#1|) (-13 (-834) (-1029 |#1|) (-10 -8 (-15 -1868 ((-121) $)) (-15 -3156 ($ $)) (-15 -3437 ($ $)) (-15 -2349 ((-909) $)) (-15 -1836 ((-121) $ $)) (-15 -2801 ((-806 |#1|) $)) (-15 -2801 ((-659 |#1|) $)) (-15 -1601 ((-626 $) (-806 |#1|))) (-15 -1349 ((-121) (-806 |#1|))) (-15 -2759 ($ (-806 |#1|))) (-15 -1555 ((-3 $ "failed") (-806 |#1|))) (-15 -1499 ((-626 |#1|) $)) (-15 -4249 ((-64 (-626 $)) (-626 |#1|) (-909))) (-15 -1443 ((-626 $) (-626 |#1|) (-909))))) (-834)) (T -655)) -((-1868 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-655 *3)) (-4 *3 (-834)))) (-3156 (*1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-834)))) (-3437 (*1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-834)))) (-2349 (*1 *2 *1) (-12 (-5 *2 (-909)) (-5 *1 (-655 *3)) (-4 *3 (-834)))) (-1836 (*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-655 *3)) (-4 *3 (-834)))) (-2801 (*1 *2 *1) (-12 (-5 *2 (-806 *3)) (-5 *1 (-655 *3)) (-4 *3 (-834)))) (-2801 (*1 *2 *1) (-12 (-5 *2 (-659 *3)) (-5 *1 (-655 *3)) (-4 *3 (-834)))) (-1601 (*1 *2 *3) (-12 (-5 *3 (-806 *4)) (-4 *4 (-834)) (-5 *2 (-626 (-655 *4))) (-5 *1 (-655 *4)))) (-1349 (*1 *2 *3) (-12 (-5 *3 (-806 *4)) (-4 *4 (-834)) (-5 *2 (-121)) (-5 *1 (-655 *4)))) (-2759 (*1 *1 *2) (-12 (-5 *2 (-806 *3)) (-4 *3 (-834)) (-5 *1 (-655 *3)))) (-1555 (*1 *1 *2) (|partial| -12 (-5 *2 (-806 *3)) (-4 *3 (-834)) (-5 *1 (-655 *3)))) (-1499 (*1 *2 *1) (-12 (-5 *2 (-626 *3)) (-5 *1 (-655 *3)) (-4 *3 (-834)))) (-4249 (*1 *2 *3 *4) (-12 (-5 *3 (-626 *5)) (-5 *4 (-909)) (-4 *5 (-834)) (-5 *2 (-64 (-626 (-655 *5)))) (-5 *1 (-655 *5)))) (-1443 (*1 *2 *3 *4) (-12 (-5 *3 (-626 *5)) (-5 *4 (-909)) (-4 *5 (-834)) (-5 *2 (-626 (-655 *5))) (-5 *1 (-655 *5))))) -(-13 (-834) (-1029 |#1|) (-10 -8 (-15 -1868 ((-121) $)) (-15 -3156 ($ $)) (-15 -3437 ($ $)) (-15 -2349 ((-909) $)) (-15 -1836 ((-121) $ $)) (-15 -2801 ((-806 |#1|) $)) (-15 -2801 ((-659 |#1|) $)) (-15 -1601 ((-626 $) (-806 |#1|))) (-15 -1349 ((-121) (-806 |#1|))) (-15 -2759 ($ (-806 |#1|))) (-15 -1555 ((-3 $ "failed") (-806 |#1|))) (-15 -1499 ((-626 |#1|) $)) (-15 -4249 ((-64 (-626 $)) (-626 |#1|) (-909))) (-15 -1443 ((-626 $) (-626 |#1|) (-909))))) -((-2981 ((|#2| $) 76)) (-1417 (($ $) 96)) (-3909 (((-121) $ (-755)) 26)) (-2877 (($ $) 85) (($ $ (-755)) 88)) (-2737 (((-121) $) 97)) (-3971 (((-626 $) $) 72)) (-2420 (((-121) $ $) 71)) (-2122 (((-121) $ (-755)) 24)) (-4099 (((-560) $) 46)) (-2767 (((-560) $) 45)) (-3441 (((-121) $ (-755)) 22)) (-3992 (((-121) $) 74)) (-4139 ((|#2| $) 89) (($ $ (-755)) 92)) (-4103 (($ $ $ (-560)) 62) (($ |#2| $ (-560)) 61)) (-1529 (((-626 (-560)) $) 44)) (-1310 (((-121) (-560) $) 42)) (-2824 ((|#2| $) NIL) (($ $ (-755)) 84)) (-3292 (($ $ (-560)) 99)) (-2957 (((-121) $) 98)) (-2865 (((-121) (-1 (-121) |#2|) $) 32)) (-4460 (((-626 |#2|) $) 33)) (-2778 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1202 (-560))) 58) ((|#2| $ (-560)) 40) ((|#2| $ (-560) |#2|) 41)) (-1435 (((-560) $ $) 70)) (-2949 (($ $ (-1202 (-560))) 57) (($ $ (-560)) 51)) (-3316 (((-121) $) 66)) (-4432 (($ $) 81)) (-2751 (((-755) $) 80)) (-4208 (($ $) 79)) (-4162 (($ (-626 |#2|)) 37)) (-2234 (($ $) 100)) (-2853 (((-626 $) $) 69)) (-3761 (((-121) $ $) 68)) (-3656 (((-121) (-1 (-121) |#2|) $) 31)) (-1653 (((-121) $ $) 18)) (-2271 (((-755) $) 29))) -(((-656 |#1| |#2|) (-10 -8 (-15 -2234 (|#1| |#1|)) (-15 -3292 (|#1| |#1| (-560))) (-15 -2737 ((-121) |#1|)) (-15 -2957 ((-121) |#1|)) (-15 -2778 (|#2| |#1| (-560) |#2|)) (-15 -2778 (|#2| |#1| (-560))) (-15 -4460 ((-626 |#2|) |#1|)) (-15 -1310 ((-121) (-560) |#1|)) (-15 -1529 ((-626 (-560)) |#1|)) (-15 -2767 ((-560) |#1|)) (-15 -4099 ((-560) |#1|)) (-15 -4162 (|#1| (-626 |#2|))) (-15 -2778 (|#1| |#1| (-1202 (-560)))) (-15 -2949 (|#1| |#1| (-560))) (-15 -2949 (|#1| |#1| (-1202 (-560)))) (-15 -4103 (|#1| |#2| |#1| (-560))) (-15 -4103 (|#1| |#1| |#1| (-560))) (-15 -4432 (|#1| |#1|)) (-15 -2751 ((-755) |#1|)) (-15 -4208 (|#1| |#1|)) (-15 -1417 (|#1| |#1|)) (-15 -4139 (|#1| |#1| (-755))) (-15 -2778 (|#2| |#1| "last")) (-15 -4139 (|#2| |#1|)) (-15 -2877 (|#1| |#1| (-755))) (-15 -2778 (|#1| |#1| "rest")) (-15 -2877 (|#1| |#1|)) (-15 -2824 (|#1| |#1| (-755))) (-15 -2778 (|#2| |#1| "first")) (-15 -2824 (|#2| |#1|)) (-15 -2420 ((-121) |#1| |#1|)) (-15 -3761 ((-121) |#1| |#1|)) (-15 -1435 ((-560) |#1| |#1|)) (-15 -3316 ((-121) |#1|)) (-15 -2778 (|#2| |#1| "value")) (-15 -2981 (|#2| |#1|)) (-15 -3992 ((-121) |#1|)) (-15 -3971 ((-626 |#1|) |#1|)) (-15 -2853 ((-626 |#1|) |#1|)) (-15 -1653 ((-121) |#1| |#1|)) (-15 -2865 ((-121) (-1 (-121) |#2|) |#1|)) (-15 -3656 ((-121) (-1 (-121) |#2|) |#1|)) (-15 -2271 ((-755) |#1|)) (-15 -3909 ((-121) |#1| (-755))) (-15 -2122 ((-121) |#1| (-755))) (-15 -3441 ((-121) |#1| (-755)))) (-657 |#2|) (-1187)) (T -656)) -NIL -(-10 -8 (-15 -2234 (|#1| |#1|)) (-15 -3292 (|#1| |#1| (-560))) (-15 -2737 ((-121) |#1|)) (-15 -2957 ((-121) |#1|)) (-15 -2778 (|#2| |#1| (-560) |#2|)) (-15 -2778 (|#2| |#1| (-560))) (-15 -4460 ((-626 |#2|) |#1|)) (-15 -1310 ((-121) (-560) |#1|)) (-15 -1529 ((-626 (-560)) |#1|)) (-15 -2767 ((-560) |#1|)) (-15 -4099 ((-560) |#1|)) (-15 -4162 (|#1| (-626 |#2|))) (-15 -2778 (|#1| |#1| (-1202 (-560)))) (-15 -2949 (|#1| |#1| (-560))) (-15 -2949 (|#1| |#1| (-1202 (-560)))) (-15 -4103 (|#1| |#2| |#1| (-560))) (-15 -4103 (|#1| |#1| |#1| (-560))) (-15 -4432 (|#1| |#1|)) (-15 -2751 ((-755) |#1|)) (-15 -4208 (|#1| |#1|)) (-15 -1417 (|#1| |#1|)) (-15 -4139 (|#1| |#1| (-755))) (-15 -2778 (|#2| |#1| "last")) (-15 -4139 (|#2| |#1|)) (-15 -2877 (|#1| |#1| (-755))) (-15 -2778 (|#1| |#1| "rest")) (-15 -2877 (|#1| |#1|)) (-15 -2824 (|#1| |#1| (-755))) (-15 -2778 (|#2| |#1| "first")) (-15 -2824 (|#2| |#1|)) (-15 -2420 ((-121) |#1| |#1|)) (-15 -3761 ((-121) |#1| |#1|)) (-15 -1435 ((-560) |#1| |#1|)) (-15 -3316 ((-121) |#1|)) (-15 -2778 (|#2| |#1| "value")) (-15 -2981 (|#2| |#1|)) (-15 -3992 ((-121) |#1|)) (-15 -3971 ((-626 |#1|) |#1|)) (-15 -2853 ((-626 |#1|) |#1|)) (-15 -1653 ((-121) |#1| |#1|)) (-15 -2865 ((-121) (-1 (-121) |#2|) |#1|)) (-15 -3656 ((-121) (-1 (-121) |#2|) |#1|)) (-15 -2271 ((-755) |#1|)) (-15 -3909 ((-121) |#1| (-755))) (-15 -2122 ((-121) |#1| (-755))) (-15 -3441 ((-121) |#1| (-755)))) -((-2601 (((-121) $ $) 18 (|has| |#1| (-1082)))) (-2981 ((|#1| $) 45)) (-1886 ((|#1| $) 62)) (-1417 (($ $) 64)) (-2960 (((-1241) $ (-560) (-560)) 94 (|has| $ (-6 -4506)))) (-2435 (($ $ (-560)) 49 (|has| $ (-6 -4506)))) (-3909 (((-121) $ (-755)) 8)) (-3119 ((|#1| $ |#1|) 36 (|has| $ (-6 -4506)))) (-1741 (($ $ $) 53 (|has| $ (-6 -4506)))) (-1920 ((|#1| $ |#1|) 51 (|has| $ (-6 -4506)))) (-4133 ((|#1| $ |#1|) 55 (|has| $ (-6 -4506)))) (-2764 ((|#1| $ "value" |#1|) 37 (|has| $ (-6 -4506))) ((|#1| $ "first" |#1|) 54 (|has| $ (-6 -4506))) (($ $ "rest" $) 52 (|has| $ (-6 -4506))) ((|#1| $ "last" |#1|) 50 (|has| $ (-6 -4506))) ((|#1| $ (-1202 (-560)) |#1|) 114 (|has| $ (-6 -4506))) ((|#1| $ (-560) |#1|) 83 (|has| $ (-6 -4506)))) (-4043 (($ $ (-626 $)) 38 (|has| $ (-6 -4506)))) (-3802 (($ (-1 (-121) |#1|) $) 99)) (-1603 ((|#1| $) 63)) (-4236 (($) 7 T CONST)) (-3105 (($ $) 118)) (-2877 (($ $) 70) (($ $ (-755)) 68)) (-2868 (($ $) 96 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-4310 (($ |#1| $) 97 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505)))) (($ (-1 (-121) |#1|) $) 100)) (-2342 ((|#1| (-1 |#1| |#1| |#1|) $) 102 (|has| $ (-6 -4505))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 101 (|has| $ (-6 -4505))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 98 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-1746 ((|#1| $ (-560) |#1|) 82 (|has| $ (-6 -4506)))) (-1361 ((|#1| $ (-560)) 84)) (-2737 (((-121) $) 80)) (-1981 (((-626 |#1|) $) 30 (|has| $ (-6 -4505)))) (-1314 (((-755) $) 117)) (-3971 (((-626 $) $) 47)) (-2420 (((-121) $ $) 39 (|has| |#1| (-1082)))) (-1721 (($ (-755) |#1|) 105)) (-2122 (((-121) $ (-755)) 9)) (-4099 (((-560) $) 92 (|has| (-560) (-834)))) (-2130 (((-626 |#1|) $) 29 (|has| $ (-6 -4505)))) (-2030 (((-121) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-2767 (((-560) $) 91 (|has| (-560) (-834)))) (-3778 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 108)) (-3441 (((-121) $ (-755)) 10)) (-2173 (((-626 |#1|) $) 42)) (-3992 (((-121) $) 46)) (-1447 (($ $) 120)) (-1906 (((-121) $) 121)) (-1291 (((-1135) $) 22 (|has| |#1| (-1082)))) (-4139 ((|#1| $) 67) (($ $ (-755)) 65)) (-4103 (($ $ $ (-560)) 113) (($ |#1| $ (-560)) 112)) (-1529 (((-626 (-560)) $) 89)) (-1310 (((-121) (-560) $) 88)) (-4353 (((-1100) $) 21 (|has| |#1| (-1082)))) (-2921 ((|#1| $) 119)) (-2824 ((|#1| $) 73) (($ $ (-755)) 71)) (-3786 (((-3 |#1| "failed") (-1 (-121) |#1|) $) 103)) (-3038 (($ $ |#1|) 93 (|has| $ (-6 -4506)))) (-3292 (($ $ (-560)) 116)) (-2957 (((-121) $) 81)) (-3510 (((-121) $) 122)) (-3671 (((-121) $) 123)) (-2865 (((-121) (-1 (-121) |#1|) $) 32 (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#1|))) 26 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-283 |#1|)) 25 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-626 |#1|) (-626 |#1|)) 23 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))))) (-2214 (((-121) $ $) 14)) (-1290 (((-121) |#1| $) 90 (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-4460 (((-626 |#1|) $) 87)) (-4191 (((-121) $) 11)) (-3260 (($) 12)) (-2778 ((|#1| $ "value") 44) ((|#1| $ "first") 72) (($ $ "rest") 69) ((|#1| $ "last") 66) (($ $ (-1202 (-560))) 109) ((|#1| $ (-560)) 86) ((|#1| $ (-560) |#1|) 85)) (-1435 (((-560) $ $) 41)) (-2949 (($ $ (-1202 (-560))) 111) (($ $ (-560)) 110)) (-3316 (((-121) $) 43)) (-4432 (($ $) 59)) (-2641 (($ $) 56 (|has| $ (-6 -4506)))) (-2751 (((-755) $) 60)) (-4208 (($ $) 61)) (-4035 (((-755) (-1 (-121) |#1|) $) 31 (|has| $ (-6 -4505))) (((-755) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-2813 (($ $) 13)) (-4255 (((-533) $) 95 (|has| |#1| (-601 (-533))))) (-4162 (($ (-626 |#1|)) 104)) (-3602 (($ $ $) 58 (|has| $ (-6 -4506))) (($ $ |#1|) 57 (|has| $ (-6 -4506)))) (-2849 (($ $ $) 75) (($ |#1| $) 74) (($ (-626 $)) 107) (($ $ |#1|) 106)) (-2234 (($ $) 115)) (-2801 (((-842) $) 20 (|has| |#1| (-1082)))) (-2853 (((-626 $) $) 48)) (-3761 (((-121) $ $) 40 (|has| |#1| (-1082)))) (-3656 (((-121) (-1 (-121) |#1|) $) 33 (|has| $ (-6 -4505)))) (-1653 (((-121) $ $) 19 (|has| |#1| (-1082)))) (-2271 (((-755) $) 6 (|has| $ (-6 -4505))))) -(((-657 |#1|) (-1267) (-1187)) (T -657)) -((-4310 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-121) *3)) (-4 *1 (-657 *3)) (-4 *3 (-1187)))) (-3802 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-121) *3)) (-4 *1 (-657 *3)) (-4 *3 (-1187)))) (-3671 (*1 *2 *1) (-12 (-4 *1 (-657 *3)) (-4 *3 (-1187)) (-5 *2 (-121)))) (-3510 (*1 *2 *1) (-12 (-4 *1 (-657 *3)) (-4 *3 (-1187)) (-5 *2 (-121)))) (-1906 (*1 *2 *1) (-12 (-4 *1 (-657 *3)) (-4 *3 (-1187)) (-5 *2 (-121)))) (-1447 (*1 *1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1187)))) (-2921 (*1 *2 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1187)))) (-3105 (*1 *1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1187)))) (-1314 (*1 *2 *1) (-12 (-4 *1 (-657 *3)) (-4 *3 (-1187)) (-5 *2 (-755)))) (-3292 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-657 *3)) (-4 *3 (-1187)))) (-2234 (*1 *1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1187))))) -(-13 (-1126 |t#1|) (-10 -8 (-15 -4310 ($ (-1 (-121) |t#1|) $)) (-15 -3802 ($ (-1 (-121) |t#1|) $)) (-15 -3671 ((-121) $)) (-15 -3510 ((-121) $)) (-15 -1906 ((-121) $)) (-15 -1447 ($ $)) (-15 -2921 (|t#1| $)) (-15 -3105 ($ $)) (-15 -1314 ((-755) $)) (-15 -3292 ($ $ (-560))) (-15 -2234 ($ $)))) -(((-39) . T) ((-105) |has| |#1| (-1082)) ((-600 (-842)) |has| |#1| (-1082)) ((-152 |#1|) . T) ((-601 (-533)) |has| |#1| (-601 (-533))) ((-276 (-560) |#1|) . T) ((-278 (-560) |#1|) . T) ((-298 |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))) ((-492 |#1|) . T) ((-593 (-560) |#1|) . T) ((-515 |#1| |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))) ((-632 |#1|) . T) ((-1002 |#1|) . T) ((-1082) |has| |#1| (-1082)) ((-1126 |#1|) . T) ((-1187) . T) ((-1223 |#1|) . T)) -((-2601 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-2407 (($ (-755) (-755) (-755)) 32 (|has| |#1| (-1039)))) (-3909 (((-121) $ (-755)) NIL)) (-3679 ((|#1| $ (-755) (-755) (-755) |#1|) 27)) (-4236 (($) NIL T CONST)) (-4264 (($ $ $) 36 (|has| |#1| (-1039)))) (-1981 (((-626 |#1|) $) NIL (|has| $ (-6 -4505)))) (-2122 (((-121) $ (-755)) NIL)) (-2130 (((-626 |#1|) $) NIL (|has| $ (-6 -4505)))) (-2030 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-1467 (((-1236 (-755)) $) 8)) (-3533 (($ (-1153) $ $) 22)) (-3778 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#1| |#1|) $) NIL)) (-3441 (((-121) $ (-755)) NIL)) (-1291 (((-1135) $) NIL (|has| |#1| (-1082)))) (-3325 (($ (-755)) 34 (|has| |#1| (-1039)))) (-4353 (((-1100) $) NIL (|has| |#1| (-1082)))) (-2865 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#1|))) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-283 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-626 |#1|) (-626 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))))) (-2214 (((-121) $ $) NIL)) (-4191 (((-121) $) NIL)) (-3260 (($) NIL)) (-2778 ((|#1| $ (-755) (-755) (-755)) 25)) (-4035 (((-755) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505))) (((-755) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-2813 (($ $) NIL)) (-4162 (($ (-626 (-626 (-626 |#1|)))) 43)) (-2801 (((-842) $) NIL (|has| |#1| (-1082))) (($ (-950 (-950 (-950 |#1|)))) 15) (((-950 (-950 (-950 |#1|))) $) 12)) (-3656 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-1653 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-2271 (((-755) $) NIL (|has| $ (-6 -4505))))) -(((-658 |#1|) (-13 (-492 |#1|) (-10 -8 (IF (|has| |#1| (-1039)) (PROGN (-15 -2407 ($ (-755) (-755) (-755))) (-15 -3325 ($ (-755))) (-15 -4264 ($ $ $))) |noBranch|) (-15 -4162 ($ (-626 (-626 (-626 |#1|))))) (-15 -2778 (|#1| $ (-755) (-755) (-755))) (-15 -3679 (|#1| $ (-755) (-755) (-755) |#1|)) (-15 -2801 ($ (-950 (-950 (-950 |#1|))))) (-15 -2801 ((-950 (-950 (-950 |#1|))) $)) (-15 -3533 ($ (-1153) $ $)) (-15 -1467 ((-1236 (-755)) $)))) (-1082)) (T -658)) -((-2407 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-755)) (-5 *1 (-658 *3)) (-4 *3 (-1039)) (-4 *3 (-1082)))) (-3325 (*1 *1 *2) (-12 (-5 *2 (-755)) (-5 *1 (-658 *3)) (-4 *3 (-1039)) (-4 *3 (-1082)))) (-4264 (*1 *1 *1 *1) (-12 (-5 *1 (-658 *2)) (-4 *2 (-1039)) (-4 *2 (-1082)))) (-4162 (*1 *1 *2) (-12 (-5 *2 (-626 (-626 (-626 *3)))) (-4 *3 (-1082)) (-5 *1 (-658 *3)))) (-2778 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-755)) (-5 *1 (-658 *2)) (-4 *2 (-1082)))) (-3679 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-755)) (-5 *1 (-658 *2)) (-4 *2 (-1082)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-950 (-950 (-950 *3)))) (-4 *3 (-1082)) (-5 *1 (-658 *3)))) (-2801 (*1 *2 *1) (-12 (-5 *2 (-950 (-950 (-950 *3)))) (-5 *1 (-658 *3)) (-4 *3 (-1082)))) (-3533 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-658 *3)) (-4 *3 (-1082)))) (-1467 (*1 *2 *1) (-12 (-5 *2 (-1236 (-755))) (-5 *1 (-658 *3)) (-4 *3 (-1082))))) -(-13 (-492 |#1|) (-10 -8 (IF (|has| |#1| (-1039)) (PROGN (-15 -2407 ($ (-755) (-755) (-755))) (-15 -3325 ($ (-755))) (-15 -4264 ($ $ $))) |noBranch|) (-15 -4162 ($ (-626 (-626 (-626 |#1|))))) (-15 -2778 (|#1| $ (-755) (-755) (-755))) (-15 -3679 (|#1| $ (-755) (-755) (-755) |#1|)) (-15 -2801 ($ (-950 (-950 (-950 |#1|))))) (-15 -2801 ((-950 (-950 (-950 |#1|))) $)) (-15 -3533 ($ (-1153) $ $)) (-15 -1467 ((-1236 (-755)) $)))) -((-2601 (((-121) $ $) NIL)) (-1499 (((-626 |#1|) $) 14)) (-3437 (($ $) 18)) (-1868 (((-121) $) 19)) (-1473 (((-3 |#1| "failed") $) 22)) (-3001 ((|#1| $) 20)) (-2877 (($ $) 36)) (-2994 (($ $) 24)) (-4325 (($ $ $) NIL)) (-2501 (($ $ $) NIL)) (-1836 (((-121) $ $) 41)) (-2349 (((-909) $) 38)) (-3156 (($ $) 17)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2824 ((|#1| $) 35)) (-2801 (((-842) $) 31) (($ |#1|) 23) (((-806 |#1|) $) 27)) (-1691 (((-121) $ $) NIL)) (-1675 (((-121) $ $) NIL)) (-1653 (((-121) $ $) 12)) (-1683 (((-121) $ $) NIL)) (-1667 (((-121) $ $) 40)) (* (($ $ $) 34))) -(((-659 |#1|) (-13 (-834) (-1029 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2801 ((-806 |#1|) $)) (-15 -2824 (|#1| $)) (-15 -3156 ($ $)) (-15 -2349 ((-909) $)) (-15 -1836 ((-121) $ $)) (-15 -2994 ($ $)) (-15 -2877 ($ $)) (-15 -1868 ((-121) $)) (-15 -3437 ($ $)) (-15 -1499 ((-626 |#1|) $)))) (-834)) (T -659)) -((* (*1 *1 *1 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-834)))) (-2801 (*1 *2 *1) (-12 (-5 *2 (-806 *3)) (-5 *1 (-659 *3)) (-4 *3 (-834)))) (-2824 (*1 *2 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-834)))) (-3156 (*1 *1 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-834)))) (-2349 (*1 *2 *1) (-12 (-5 *2 (-909)) (-5 *1 (-659 *3)) (-4 *3 (-834)))) (-1836 (*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-659 *3)) (-4 *3 (-834)))) (-2994 (*1 *1 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-834)))) (-2877 (*1 *1 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-834)))) (-1868 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-659 *3)) (-4 *3 (-834)))) (-3437 (*1 *1 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-834)))) (-1499 (*1 *2 *1) (-12 (-5 *2 (-626 *3)) (-5 *1 (-659 *3)) (-4 *3 (-834))))) -(-13 (-834) (-1029 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2801 ((-806 |#1|) $)) (-15 -2824 (|#1| $)) (-15 -3156 ($ $)) (-15 -2349 ((-909) $)) (-15 -1836 ((-121) $ $)) (-15 -2994 ($ $)) (-15 -2877 ($ $)) (-15 -1868 ((-121) $)) (-15 -3437 ($ $)) (-15 -1499 ((-626 |#1|) $)))) -((-2968 ((|#1| (-1 |#1| (-755) |#1|) (-755) |#1|) 11)) (-3724 ((|#1| (-1 |#1| |#1|) (-755) |#1|) 9))) -(((-660 |#1|) (-10 -7 (-15 -3724 (|#1| (-1 |#1| |#1|) (-755) |#1|)) (-15 -2968 (|#1| (-1 |#1| (-755) |#1|) (-755) |#1|))) (-1082)) (T -660)) -((-2968 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-755) *2)) (-5 *4 (-755)) (-4 *2 (-1082)) (-5 *1 (-660 *2)))) (-3724 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-755)) (-4 *2 (-1082)) (-5 *1 (-660 *2))))) -(-10 -7 (-15 -3724 (|#1| (-1 |#1| |#1|) (-755) |#1|)) (-15 -2968 (|#1| (-1 |#1| (-755) |#1|) (-755) |#1|))) -((-3131 ((|#2| |#1| |#2|) 9)) (-3125 ((|#1| |#1| |#2|) 8))) -(((-661 |#1| |#2|) (-10 -7 (-15 -3125 (|#1| |#1| |#2|)) (-15 -3131 (|#2| |#1| |#2|))) (-1082) (-1082)) (T -661)) -((-3131 (*1 *2 *3 *2) (-12 (-5 *1 (-661 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-1082)))) (-3125 (*1 *2 *2 *3) (-12 (-5 *1 (-661 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-1082))))) -(-10 -7 (-15 -3125 (|#1| |#1| |#2|)) (-15 -3131 (|#2| |#1| |#2|))) -((-1390 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11))) -(((-662 |#1| |#2| |#3|) (-10 -7 (-15 -1390 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1082) (-1082) (-1082)) (T -662)) -((-1390 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *2 (-1082)) (-5 *1 (-662 *5 *6 *2))))) -(-10 -7 (-15 -1390 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) -((-2968 (((-1 |#1| (-755) |#1|) (-1 |#1| (-755) |#1|)) 23)) (-2723 (((-1 |#1|) |#1|) 8)) (-2287 ((|#1| |#1|) 16)) (-1411 (((-626 |#1|) (-1 (-626 |#1|) (-626 |#1|)) (-560)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-2801 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-755)) 20))) -(((-663 |#1|) (-10 -7 (-15 -2723 ((-1 |#1|) |#1|)) (-15 -2801 ((-1 |#1|) |#1|)) (-15 -1411 (|#1| (-1 |#1| |#1|))) (-15 -1411 ((-626 |#1|) (-1 (-626 |#1|) (-626 |#1|)) (-560))) (-15 -2287 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-755))) (-15 -2968 ((-1 |#1| (-755) |#1|) (-1 |#1| (-755) |#1|)))) (-1082)) (T -663)) -((-2968 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-755) *3)) (-4 *3 (-1082)) (-5 *1 (-663 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-755)) (-4 *4 (-1082)) (-5 *1 (-663 *4)))) (-2287 (*1 *2 *2) (-12 (-5 *1 (-663 *2)) (-4 *2 (-1082)))) (-1411 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-626 *5) (-626 *5))) (-5 *4 (-560)) (-5 *2 (-626 *5)) (-5 *1 (-663 *5)) (-4 *5 (-1082)))) (-1411 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-663 *2)) (-4 *2 (-1082)))) (-2801 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-663 *3)) (-4 *3 (-1082)))) (-2723 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-663 *3)) (-4 *3 (-1082))))) -(-10 -7 (-15 -2723 ((-1 |#1|) |#1|)) (-15 -2801 ((-1 |#1|) |#1|)) (-15 -1411 (|#1| (-1 |#1| |#1|))) (-15 -1411 ((-626 |#1|) (-1 (-626 |#1|) (-626 |#1|)) (-560))) (-15 -2287 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-755))) (-15 -2968 ((-1 |#1| (-755) |#1|) (-1 |#1| (-755) |#1|)))) -((-2816 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-3446 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-3565 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-1779 (((-1 |#2| |#1|) |#2|) 11))) -(((-664 |#1| |#2|) (-10 -7 (-15 -1779 ((-1 |#2| |#1|) |#2|)) (-15 -3446 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3565 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2816 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1082) (-1082)) (T -664)) -((-2816 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-5 *2 (-1 *5 *4)) (-5 *1 (-664 *4 *5)))) (-3565 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1082)) (-5 *2 (-1 *5 *4)) (-5 *1 (-664 *4 *5)) (-4 *4 (-1082)))) (-3446 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-5 *2 (-1 *5)) (-5 *1 (-664 *4 *5)))) (-1779 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-664 *4 *3)) (-4 *4 (-1082)) (-4 *3 (-1082))))) -(-10 -7 (-15 -1779 ((-1 |#2| |#1|) |#2|)) (-15 -3446 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3565 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2816 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) -((-4407 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-3883 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-2324 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-2466 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-2223 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21))) -(((-665 |#1| |#2| |#3|) (-10 -7 (-15 -3883 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2324 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2466 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2223 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -4407 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1082) (-1082) (-1082)) (T -665)) -((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-1 *7 *5)) (-5 *1 (-665 *5 *6 *7)))) (-4407 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-665 *4 *5 *6)))) (-2223 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-665 *4 *5 *6)) (-4 *4 (-1082)))) (-2466 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1082)) (-4 *6 (-1082)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-665 *4 *5 *6)) (-4 *5 (-1082)))) (-2324 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-5 *2 (-1 *6 *5)) (-5 *1 (-665 *4 *5 *6)))) (-3883 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1082)) (-4 *4 (-1082)) (-4 *6 (-1082)) (-5 *2 (-1 *6 *5)) (-5 *1 (-665 *5 *4 *6))))) -(-10 -7 (-15 -3883 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2324 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2466 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2223 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -4407 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) -((-1733 (((-1 (-304 (-560)) |#1|) (-1 (-304 (-560)) |#1|) (-1 (-304 (-560)) |#1|)) 18)) (-1725 (((-1 |#2| |#1|) (-1 |#2| |#1|) (-1 |#2| |#1|)) 12)) (-1716 (((-1 |#2| |#1|) (-1 |#2| |#1|) (-1 |#2| |#1|)) 10)) (* (((-1 |#2| |#1|) (-1 |#2| |#1|) (-1 |#2| |#1|)) 14))) -(((-666 |#1| |#2|) (-10 -7 (-15 -1716 ((-1 |#2| |#1|) (-1 |#2| |#1|) (-1 |#2| |#1|))) (-15 -1725 ((-1 |#2| |#1|) (-1 |#2| |#1|) (-1 |#2| |#1|))) (-15 * ((-1 |#2| |#1|) (-1 |#2| |#1|) (-1 |#2| |#1|))) (-15 -1733 ((-1 (-304 (-560)) |#1|) (-1 (-304 (-560)) |#1|) (-1 (-304 (-560)) |#1|)))) (-1082) (-1039)) (T -666)) -((-1733 (*1 *2 *2 *2) (-12 (-5 *2 (-1 (-304 (-560)) *3)) (-4 *3 (-1082)) (-5 *1 (-666 *3 *4)) (-4 *4 (-1039)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1 *4 *3)) (-4 *3 (-1082)) (-4 *4 (-1039)) (-5 *1 (-666 *3 *4)))) (-1725 (*1 *2 *2 *2) (-12 (-5 *2 (-1 *4 *3)) (-4 *3 (-1082)) (-4 *4 (-1039)) (-5 *1 (-666 *3 *4)))) (-1716 (*1 *2 *2 *2) (-12 (-5 *2 (-1 *4 *3)) (-4 *3 (-1082)) (-4 *4 (-1039)) (-5 *1 (-666 *3 *4))))) -(-10 -7 (-15 -1716 ((-1 |#2| |#1|) (-1 |#2| |#1|) (-1 |#2| |#1|))) (-15 -1725 ((-1 |#2| |#1|) (-1 |#2| |#1|) (-1 |#2| |#1|))) (-15 * ((-1 |#2| |#1|) (-1 |#2| |#1|) (-1 |#2| |#1|))) (-15 -1733 ((-1 (-304 (-560)) |#1|) (-1 (-304 (-560)) |#1|) (-1 (-304 (-560)) |#1|)))) -((-2342 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-2803 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31))) -(((-667 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2803 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -2803 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2342 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1039) (-369 |#1|) (-369 |#1|) (-669 |#1| |#2| |#3|) (-1039) (-369 |#5|) (-369 |#5|) (-669 |#5| |#6| |#7|)) (T -667)) -((-2342 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1039)) (-4 *2 (-1039)) (-4 *6 (-369 *5)) (-4 *7 (-369 *5)) (-4 *8 (-369 *2)) (-4 *9 (-369 *2)) (-5 *1 (-667 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-669 *5 *6 *7)) (-4 *10 (-669 *2 *8 *9)))) (-2803 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1039)) (-4 *8 (-1039)) (-4 *6 (-369 *5)) (-4 *7 (-369 *5)) (-4 *2 (-669 *8 *9 *10)) (-5 *1 (-667 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-669 *5 *6 *7)) (-4 *9 (-369 *8)) (-4 *10 (-369 *8)))) (-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1039)) (-4 *8 (-1039)) (-4 *6 (-369 *5)) (-4 *7 (-369 *5)) (-4 *2 (-669 *8 *9 *10)) (-5 *1 (-667 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-669 *5 *6 *7)) (-4 *9 (-369 *8)) (-4 *10 (-369 *8))))) -(-10 -7 (-15 -2803 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -2803 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2342 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) -((-3382 (($ (-755) (-755)) 31)) (-2154 (($ $ $) 54)) (-1638 (($ |#3|) 50) (($ $) 51)) (-3839 (((-121) $) 26)) (-3649 (($ $ (-560) (-560)) 56)) (-1610 (($ $ (-560) (-560)) 57)) (-3675 (($ $ (-560) (-560) (-560) (-560)) 61)) (-2296 (($ $) 52)) (-1915 (((-121) $) 14)) (-2649 (($ $ (-560) (-560) $) 62)) (-2764 ((|#2| $ (-560) (-560) |#2|) NIL) (($ $ (-626 (-560)) (-626 (-560)) $) 60)) (-2366 (($ (-755) |#2|) 36)) (-1910 ((|#2| $) 105)) (-3851 (($ (-626 (-626 |#2|))) 34)) (-2184 (((-626 (-626 |#2|)) $) 55)) (-4417 (($ $ $) 53)) (-2336 (((-3 $ "failed") $ |#2|) 108)) (-2778 ((|#2| $ (-560) (-560)) NIL) ((|#2| $ (-560) (-560) |#2|) NIL) (($ $ (-626 (-560)) (-626 (-560))) 59)) (-3328 (($ (-626 |#2|)) 38) (($ (-626 $)) 40)) (-3185 (((-121) $) 23)) (-1919 (((-626 |#4|) $) 91)) (-2801 (((-842) $) NIL) (($ |#4|) 45)) (-3298 (((-121) $) 28)) (-1733 (($ $ |#2|) 110)) (-1725 (($ $ $) 66) (($ $) 69)) (-1716 (($ $ $) 64)) (** (($ $ (-755)) 78) (($ $ (-560)) 113)) (* (($ $ $) 75) (($ |#2| $) 71) (($ $ |#2|) 72) (($ (-560) $) 74) ((|#4| $ |#4|) 82) ((|#3| |#3| $) 86))) -(((-668 |#1| |#2| |#3| |#4|) (-10 -8 (-15 ** (|#1| |#1| (-560))) (-15 -1910 (|#2| |#1|)) (-15 -1919 ((-626 |#4|) |#1|)) (-15 -1733 (|#1| |#1| |#2|)) (-15 -2336 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-755))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-560) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1725 (|#1| |#1|)) (-15 -1725 (|#1| |#1| |#1|)) (-15 -1716 (|#1| |#1| |#1|)) (-15 -2649 (|#1| |#1| (-560) (-560) |#1|)) (-15 -3675 (|#1| |#1| (-560) (-560) (-560) (-560))) (-15 -1610 (|#1| |#1| (-560) (-560))) (-15 -3649 (|#1| |#1| (-560) (-560))) (-15 -2764 (|#1| |#1| (-626 (-560)) (-626 (-560)) |#1|)) (-15 -2778 (|#1| |#1| (-626 (-560)) (-626 (-560)))) (-15 -2184 ((-626 (-626 |#2|)) |#1|)) (-15 -2154 (|#1| |#1| |#1|)) (-15 -4417 (|#1| |#1| |#1|)) (-15 -2296 (|#1| |#1|)) (-15 -1638 (|#1| |#1|)) (-15 -1638 (|#1| |#3|)) (-15 -2801 (|#1| |#4|)) (-15 -3328 (|#1| (-626 |#1|))) (-15 -3328 (|#1| (-626 |#2|))) (-15 -2366 (|#1| (-755) |#2|)) (-15 -3851 (|#1| (-626 (-626 |#2|)))) (-15 -3382 (|#1| (-755) (-755))) (-15 -3298 ((-121) |#1|)) (-15 -3839 ((-121) |#1|)) (-15 -3185 ((-121) |#1|)) (-15 -1915 ((-121) |#1|)) (-15 -2764 (|#2| |#1| (-560) (-560) |#2|)) (-15 -2778 (|#2| |#1| (-560) (-560) |#2|)) (-15 -2778 (|#2| |#1| (-560) (-560))) (-15 -2801 ((-842) |#1|))) (-669 |#2| |#3| |#4|) (-1039) (-369 |#2|) (-369 |#2|)) (T -668)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-560))) (-15 -1910 (|#2| |#1|)) (-15 -1919 ((-626 |#4|) |#1|)) (-15 -1733 (|#1| |#1| |#2|)) (-15 -2336 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-755))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-560) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1725 (|#1| |#1|)) (-15 -1725 (|#1| |#1| |#1|)) (-15 -1716 (|#1| |#1| |#1|)) (-15 -2649 (|#1| |#1| (-560) (-560) |#1|)) (-15 -3675 (|#1| |#1| (-560) (-560) (-560) (-560))) (-15 -1610 (|#1| |#1| (-560) (-560))) (-15 -3649 (|#1| |#1| (-560) (-560))) (-15 -2764 (|#1| |#1| (-626 (-560)) (-626 (-560)) |#1|)) (-15 -2778 (|#1| |#1| (-626 (-560)) (-626 (-560)))) (-15 -2184 ((-626 (-626 |#2|)) |#1|)) (-15 -2154 (|#1| |#1| |#1|)) (-15 -4417 (|#1| |#1| |#1|)) (-15 -2296 (|#1| |#1|)) (-15 -1638 (|#1| |#1|)) (-15 -1638 (|#1| |#3|)) (-15 -2801 (|#1| |#4|)) (-15 -3328 (|#1| (-626 |#1|))) (-15 -3328 (|#1| (-626 |#2|))) (-15 -2366 (|#1| (-755) |#2|)) (-15 -3851 (|#1| (-626 (-626 |#2|)))) (-15 -3382 (|#1| (-755) (-755))) (-15 -3298 ((-121) |#1|)) (-15 -3839 ((-121) |#1|)) (-15 -3185 ((-121) |#1|)) (-15 -1915 ((-121) |#1|)) (-15 -2764 (|#2| |#1| (-560) (-560) |#2|)) (-15 -2778 (|#2| |#1| (-560) (-560) |#2|)) (-15 -2778 (|#2| |#1| (-560) (-560))) (-15 -2801 ((-842) |#1|))) -((-2601 (((-121) $ $) 18 (|has| |#1| (-1082)))) (-3382 (($ (-755) (-755)) 94)) (-2154 (($ $ $) 84)) (-1638 (($ |#2|) 88) (($ $) 87)) (-3839 (((-121) $) 96)) (-3649 (($ $ (-560) (-560)) 80)) (-1610 (($ $ (-560) (-560)) 79)) (-3675 (($ $ (-560) (-560) (-560) (-560)) 78)) (-2296 (($ $) 86)) (-1915 (((-121) $) 98)) (-3909 (((-121) $ (-755)) 8)) (-2649 (($ $ (-560) (-560) $) 77)) (-2764 ((|#1| $ (-560) (-560) |#1|) 41) (($ $ (-626 (-560)) (-626 (-560)) $) 81)) (-2013 (($ $ (-560) |#2|) 39)) (-4079 (($ $ (-560) |#3|) 38)) (-2366 (($ (-755) |#1|) 92)) (-4236 (($) 7 T CONST)) (-1439 (($ $) 64 (|has| |#1| (-296)))) (-4097 ((|#2| $ (-560)) 43)) (-3143 (((-755) $) 62 (|has| |#1| (-550)))) (-1746 ((|#1| $ (-560) (-560) |#1|) 40)) (-1361 ((|#1| $ (-560) (-560)) 45)) (-1910 ((|#1| $) 57 (|has| |#1| (-170)))) (-1981 (((-626 |#1|) $) 30)) (-3436 (((-755) $) 61 (|has| |#1| (-550)))) (-3700 (((-626 |#3|) $) 60 (|has| |#1| (-550)))) (-1454 (((-755) $) 48)) (-1721 (($ (-755) (-755) |#1|) 54)) (-2634 (((-755) $) 47)) (-2122 (((-121) $ (-755)) 9)) (-3826 ((|#1| $) 58 (|has| |#1| (-6 (-4507 "*"))))) (-2984 (((-560) $) 52)) (-1994 (((-560) $) 50)) (-2130 (((-626 |#1|) $) 29 (|has| $ (-6 -4505)))) (-2030 (((-121) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-3755 (((-560) $) 51)) (-1420 (((-560) $) 49)) (-3851 (($ (-626 (-626 |#1|))) 93)) (-3778 (($ (-1 |#1| |#1|) $) 34)) (-2803 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 37) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 36)) (-2184 (((-626 (-626 |#1|)) $) 83)) (-3441 (((-121) $ (-755)) 10)) (-1291 (((-1135) $) 22 (|has| |#1| (-1082)))) (-3257 (((-3 $ "failed") $) 56 (|has| |#1| (-359)))) (-4417 (($ $ $) 85)) (-4353 (((-1100) $) 21 (|has| |#1| (-1082)))) (-3038 (($ $ |#1|) 53)) (-2336 (((-3 $ "failed") $ |#1|) 66 (|has| |#1| (-550)))) (-2865 (((-121) (-1 (-121) |#1|) $) 32 (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#1|))) 26 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-283 |#1|)) 25 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-626 |#1|) (-626 |#1|)) 23 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))))) (-2214 (((-121) $ $) 14)) (-4191 (((-121) $) 11)) (-3260 (($) 12)) (-2778 ((|#1| $ (-560) (-560)) 46) ((|#1| $ (-560) (-560) |#1|) 44) (($ $ (-626 (-560)) (-626 (-560))) 82)) (-3328 (($ (-626 |#1|)) 91) (($ (-626 $)) 90)) (-3185 (((-121) $) 97)) (-1708 ((|#1| $) 59 (|has| |#1| (-6 (-4507 "*"))))) (-4035 (((-755) (-1 (-121) |#1|) $) 31 (|has| $ (-6 -4505))) (((-755) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-2813 (($ $) 13)) (-1919 (((-626 |#3|) $) 63 (|has| |#1| (-296)))) (-3677 ((|#3| $ (-560)) 42)) (-2801 (((-842) $) 20 (|has| |#1| (-1082))) (($ |#3|) 89)) (-3656 (((-121) (-1 (-121) |#1|) $) 33 (|has| $ (-6 -4505)))) (-3298 (((-121) $) 95)) (-1653 (((-121) $ $) 19 (|has| |#1| (-1082)))) (-1733 (($ $ |#1|) 65 (|has| |#1| (-359)))) (-1725 (($ $ $) 75) (($ $) 74)) (-1716 (($ $ $) 76)) (** (($ $ (-755)) 67) (($ $ (-560)) 55 (|has| |#1| (-359)))) (* (($ $ $) 73) (($ |#1| $) 72) (($ $ |#1|) 71) (($ (-560) $) 70) ((|#3| $ |#3|) 69) ((|#2| |#2| $) 68)) (-2271 (((-755) $) 6 (|has| $ (-6 -4505))))) -(((-669 |#1| |#2| |#3|) (-1267) (-1039) (-369 |t#1|) (-369 |t#1|)) (T -669)) -((-1915 (*1 *2 *1) (-12 (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)) (-5 *2 (-121)))) (-3185 (*1 *2 *1) (-12 (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)) (-5 *2 (-121)))) (-3839 (*1 *2 *1) (-12 (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)) (-5 *2 (-121)))) (-3298 (*1 *2 *1) (-12 (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)) (-5 *2 (-121)))) (-3382 (*1 *1 *2 *2) (-12 (-5 *2 (-755)) (-4 *3 (-1039)) (-4 *1 (-669 *3 *4 *5)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)))) (-3851 (*1 *1 *2) (-12 (-5 *2 (-626 (-626 *3))) (-4 *3 (-1039)) (-4 *1 (-669 *3 *4 *5)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)))) (-2366 (*1 *1 *2 *3) (-12 (-5 *2 (-755)) (-4 *3 (-1039)) (-4 *1 (-669 *3 *4 *5)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)))) (-3328 (*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-1039)) (-4 *1 (-669 *3 *4 *5)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)))) (-3328 (*1 *1 *2) (-12 (-5 *2 (-626 *1)) (-4 *3 (-1039)) (-4 *1 (-669 *3 *4 *5)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)))) (-2801 (*1 *1 *2) (-12 (-4 *3 (-1039)) (-4 *1 (-669 *3 *4 *2)) (-4 *4 (-369 *3)) (-4 *2 (-369 *3)))) (-1638 (*1 *1 *2) (-12 (-4 *3 (-1039)) (-4 *1 (-669 *3 *2 *4)) (-4 *2 (-369 *3)) (-4 *4 (-369 *3)))) (-1638 (*1 *1 *1) (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-369 *2)) (-4 *4 (-369 *2)))) (-2296 (*1 *1 *1) (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-369 *2)) (-4 *4 (-369 *2)))) (-4417 (*1 *1 *1 *1) (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-369 *2)) (-4 *4 (-369 *2)))) (-2154 (*1 *1 *1 *1) (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-369 *2)) (-4 *4 (-369 *2)))) (-2184 (*1 *2 *1) (-12 (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)) (-5 *2 (-626 (-626 *3))))) (-2778 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-626 (-560))) (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)))) (-2764 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-626 (-560))) (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)))) (-3649 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-560)) (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)))) (-1610 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-560)) (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)))) (-3675 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-560)) (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)))) (-2649 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-560)) (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)))) (-1716 (*1 *1 *1 *1) (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-369 *2)) (-4 *4 (-369 *2)))) (-1725 (*1 *1 *1 *1) (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-369 *2)) (-4 *4 (-369 *2)))) (-1725 (*1 *1 *1) (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-369 *2)) (-4 *4 (-369 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-369 *2)) (-4 *4 (-369 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-369 *2)) (-4 *4 (-369 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-369 *2)) (-4 *4 (-369 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-560)) (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-669 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-369 *3)) (-4 *2 (-369 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-669 *3 *2 *4)) (-4 *3 (-1039)) (-4 *2 (-369 *3)) (-4 *4 (-369 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-755)) (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)))) (-2336 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-369 *2)) (-4 *4 (-369 *2)) (-4 *2 (-550)))) (-1733 (*1 *1 *1 *2) (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-369 *2)) (-4 *4 (-369 *2)) (-4 *2 (-359)))) (-1439 (*1 *1 *1) (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-369 *2)) (-4 *4 (-369 *2)) (-4 *2 (-296)))) (-1919 (*1 *2 *1) (-12 (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)) (-4 *3 (-296)) (-5 *2 (-626 *5)))) (-3143 (*1 *2 *1) (-12 (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)) (-4 *3 (-550)) (-5 *2 (-755)))) (-3436 (*1 *2 *1) (-12 (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)) (-4 *3 (-550)) (-5 *2 (-755)))) (-3700 (*1 *2 *1) (-12 (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)) (-4 *3 (-550)) (-5 *2 (-626 *5)))) (-1708 (*1 *2 *1) (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *3 (-369 *2)) (-4 *4 (-369 *2)) (|has| *2 (-6 (-4507 "*"))) (-4 *2 (-1039)))) (-3826 (*1 *2 *1) (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *3 (-369 *2)) (-4 *4 (-369 *2)) (|has| *2 (-6 (-4507 "*"))) (-4 *2 (-1039)))) (-1910 (*1 *2 *1) (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *3 (-369 *2)) (-4 *4 (-369 *2)) (-4 *2 (-1039)) (-4 *2 (-170)))) (-3257 (*1 *1 *1) (|partial| -12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-369 *2)) (-4 *4 (-369 *2)) (-4 *2 (-359)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)) (-4 *3 (-359))))) -(-13 (-62 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4506) (-6 -4505) (-15 -1915 ((-121) $)) (-15 -3185 ((-121) $)) (-15 -3839 ((-121) $)) (-15 -3298 ((-121) $)) (-15 -3382 ($ (-755) (-755))) (-15 -3851 ($ (-626 (-626 |t#1|)))) (-15 -2366 ($ (-755) |t#1|)) (-15 -3328 ($ (-626 |t#1|))) (-15 -3328 ($ (-626 $))) (-15 -2801 ($ |t#3|)) (-15 -1638 ($ |t#2|)) (-15 -1638 ($ $)) (-15 -2296 ($ $)) (-15 -4417 ($ $ $)) (-15 -2154 ($ $ $)) (-15 -2184 ((-626 (-626 |t#1|)) $)) (-15 -2778 ($ $ (-626 (-560)) (-626 (-560)))) (-15 -2764 ($ $ (-626 (-560)) (-626 (-560)) $)) (-15 -3649 ($ $ (-560) (-560))) (-15 -1610 ($ $ (-560) (-560))) (-15 -3675 ($ $ (-560) (-560) (-560) (-560))) (-15 -2649 ($ $ (-560) (-560) $)) (-15 -1716 ($ $ $)) (-15 -1725 ($ $ $)) (-15 -1725 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-560) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-755))) (IF (|has| |t#1| (-550)) (-15 -2336 ((-3 $ "failed") $ |t#1|)) |noBranch|) (IF (|has| |t#1| (-359)) (-15 -1733 ($ $ |t#1|)) |noBranch|) (IF (|has| |t#1| (-296)) (PROGN (-15 -1439 ($ $)) (-15 -1919 ((-626 |t#3|) $))) |noBranch|) (IF (|has| |t#1| (-550)) (PROGN (-15 -3143 ((-755) $)) (-15 -3436 ((-755) $)) (-15 -3700 ((-626 |t#3|) $))) |noBranch|) (IF (|has| |t#1| (-6 (-4507 "*"))) (PROGN (-15 -1708 (|t#1| $)) (-15 -3826 (|t#1| $))) |noBranch|) (IF (|has| |t#1| (-170)) (-15 -1910 (|t#1| $)) |noBranch|) (IF (|has| |t#1| (-359)) (PROGN (-15 -3257 ((-3 $ "failed") $)) (-15 ** ($ $ (-560)))) |noBranch|))) -(((-39) . T) ((-105) |has| |#1| (-1082)) ((-600 (-842)) |has| |#1| (-1082)) ((-298 |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))) ((-492 |#1|) . T) ((-515 |#1| |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))) ((-1082) |has| |#1| (-1082)) ((-62 |#1| |#2| |#3|) . T) ((-1187) . T)) -((-1439 ((|#4| |#4|) 67 (|has| |#1| (-296)))) (-3143 (((-755) |#4|) 69 (|has| |#1| (-550)))) (-3436 (((-755) |#4|) 71 (|has| |#1| (-550)))) (-3700 (((-626 |#3|) |#4|) 78 (|has| |#1| (-550)))) (-1433 (((-2 (|:| -2583 |#1|) (|:| -4397 |#1|)) |#1| |#1|) 95 (|has| |#1| (-296)))) (-3826 ((|#1| |#4|) 33)) (-2765 (((-3 |#4| "failed") |#4|) 61 (|has| |#1| (-550)))) (-3257 (((-3 |#4| "failed") |#4|) 75 (|has| |#1| (-359)))) (-3115 ((|#4| |#4|) 54 (|has| |#1| (-550)))) (-3337 ((|#4| |#4| |#1| (-560) (-560)) 41)) (-2658 ((|#4| |#4| (-560) (-560)) 36)) (-3744 ((|#4| |#4| |#1| (-560) (-560)) 46)) (-1708 ((|#1| |#4|) 73)) (-3498 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 57 (|has| |#1| (-550))))) -(((-670 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1708 (|#1| |#4|)) (-15 -3826 (|#1| |#4|)) (-15 -2658 (|#4| |#4| (-560) (-560))) (-15 -3337 (|#4| |#4| |#1| (-560) (-560))) (-15 -3744 (|#4| |#4| |#1| (-560) (-560))) (IF (|has| |#1| (-550)) (PROGN (-15 -3143 ((-755) |#4|)) (-15 -3436 ((-755) |#4|)) (-15 -3700 ((-626 |#3|) |#4|)) (-15 -3115 (|#4| |#4|)) (-15 -2765 ((-3 |#4| "failed") |#4|)) (-15 -3498 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |noBranch|) (IF (|has| |#1| (-296)) (PROGN (-15 -1439 (|#4| |#4|)) (-15 -1433 ((-2 (|:| -2583 |#1|) (|:| -4397 |#1|)) |#1| |#1|))) |noBranch|) (IF (|has| |#1| (-359)) (-15 -3257 ((-3 |#4| "failed") |#4|)) |noBranch|)) (-170) (-369 |#1|) (-369 |#1|) (-669 |#1| |#2| |#3|)) (T -670)) -((-3257 (*1 *2 *2) (|partial| -12 (-4 *3 (-359)) (-4 *3 (-170)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)) (-5 *1 (-670 *3 *4 *5 *2)) (-4 *2 (-669 *3 *4 *5)))) (-1433 (*1 *2 *3 *3) (-12 (-4 *3 (-296)) (-4 *3 (-170)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)) (-5 *2 (-2 (|:| -2583 *3) (|:| -4397 *3))) (-5 *1 (-670 *3 *4 *5 *6)) (-4 *6 (-669 *3 *4 *5)))) (-1439 (*1 *2 *2) (-12 (-4 *3 (-296)) (-4 *3 (-170)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)) (-5 *1 (-670 *3 *4 *5 *2)) (-4 *2 (-669 *3 *4 *5)))) (-3498 (*1 *2 *3) (-12 (-4 *4 (-550)) (-4 *4 (-170)) (-4 *5 (-369 *4)) (-4 *6 (-369 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-670 *4 *5 *6 *3)) (-4 *3 (-669 *4 *5 *6)))) (-2765 (*1 *2 *2) (|partial| -12 (-4 *3 (-550)) (-4 *3 (-170)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)) (-5 *1 (-670 *3 *4 *5 *2)) (-4 *2 (-669 *3 *4 *5)))) (-3115 (*1 *2 *2) (-12 (-4 *3 (-550)) (-4 *3 (-170)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)) (-5 *1 (-670 *3 *4 *5 *2)) (-4 *2 (-669 *3 *4 *5)))) (-3700 (*1 *2 *3) (-12 (-4 *4 (-550)) (-4 *4 (-170)) (-4 *5 (-369 *4)) (-4 *6 (-369 *4)) (-5 *2 (-626 *6)) (-5 *1 (-670 *4 *5 *6 *3)) (-4 *3 (-669 *4 *5 *6)))) (-3436 (*1 *2 *3) (-12 (-4 *4 (-550)) (-4 *4 (-170)) (-4 *5 (-369 *4)) (-4 *6 (-369 *4)) (-5 *2 (-755)) (-5 *1 (-670 *4 *5 *6 *3)) (-4 *3 (-669 *4 *5 *6)))) (-3143 (*1 *2 *3) (-12 (-4 *4 (-550)) (-4 *4 (-170)) (-4 *5 (-369 *4)) (-4 *6 (-369 *4)) (-5 *2 (-755)) (-5 *1 (-670 *4 *5 *6 *3)) (-4 *3 (-669 *4 *5 *6)))) (-3744 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-560)) (-4 *3 (-170)) (-4 *5 (-369 *3)) (-4 *6 (-369 *3)) (-5 *1 (-670 *3 *5 *6 *2)) (-4 *2 (-669 *3 *5 *6)))) (-3337 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-560)) (-4 *3 (-170)) (-4 *5 (-369 *3)) (-4 *6 (-369 *3)) (-5 *1 (-670 *3 *5 *6 *2)) (-4 *2 (-669 *3 *5 *6)))) (-2658 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-560)) (-4 *4 (-170)) (-4 *5 (-369 *4)) (-4 *6 (-369 *4)) (-5 *1 (-670 *4 *5 *6 *2)) (-4 *2 (-669 *4 *5 *6)))) (-3826 (*1 *2 *3) (-12 (-4 *4 (-369 *2)) (-4 *5 (-369 *2)) (-4 *2 (-170)) (-5 *1 (-670 *2 *4 *5 *3)) (-4 *3 (-669 *2 *4 *5)))) (-1708 (*1 *2 *3) (-12 (-4 *4 (-369 *2)) (-4 *5 (-369 *2)) (-4 *2 (-170)) (-5 *1 (-670 *2 *4 *5 *3)) (-4 *3 (-669 *2 *4 *5))))) -(-10 -7 (-15 -1708 (|#1| |#4|)) (-15 -3826 (|#1| |#4|)) (-15 -2658 (|#4| |#4| (-560) (-560))) (-15 -3337 (|#4| |#4| |#1| (-560) (-560))) (-15 -3744 (|#4| |#4| |#1| (-560) (-560))) (IF (|has| |#1| (-550)) (PROGN (-15 -3143 ((-755) |#4|)) (-15 -3436 ((-755) |#4|)) (-15 -3700 ((-626 |#3|) |#4|)) (-15 -3115 (|#4| |#4|)) (-15 -2765 ((-3 |#4| "failed") |#4|)) (-15 -3498 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |noBranch|) (IF (|has| |#1| (-296)) (PROGN (-15 -1439 (|#4| |#4|)) (-15 -1433 ((-2 (|:| -2583 |#1|) (|:| -4397 |#1|)) |#1| |#1|))) |noBranch|) (IF (|has| |#1| (-359)) (-15 -3257 ((-3 |#4| "failed") |#4|)) |noBranch|)) -((-2601 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-3382 (($ (-755) (-755)) 45)) (-2154 (($ $ $) NIL)) (-1638 (($ (-1236 |#1|)) NIL) (($ $) NIL)) (-3839 (((-121) $) NIL)) (-3649 (($ $ (-560) (-560)) 12)) (-1610 (($ $ (-560) (-560)) NIL)) (-3675 (($ $ (-560) (-560) (-560) (-560)) NIL)) (-2296 (($ $) NIL)) (-1915 (((-121) $) NIL)) (-3909 (((-121) $ (-755)) NIL)) (-2649 (($ $ (-560) (-560) $) NIL)) (-2764 ((|#1| $ (-560) (-560) |#1|) NIL) (($ $ (-626 (-560)) (-626 (-560)) $) NIL)) (-2013 (($ $ (-560) (-1236 |#1|)) NIL)) (-4079 (($ $ (-560) (-1236 |#1|)) NIL)) (-2366 (($ (-755) |#1|) 22)) (-4236 (($) NIL T CONST)) (-1439 (($ $) 30 (|has| |#1| (-296)))) (-4097 (((-1236 |#1|) $ (-560)) NIL)) (-3143 (((-755) $) 32 (|has| |#1| (-550)))) (-1746 ((|#1| $ (-560) (-560) |#1|) 50)) (-1361 ((|#1| $ (-560) (-560)) NIL)) (-1910 ((|#1| $) NIL (|has| |#1| (-170)))) (-1981 (((-626 |#1|) $) NIL)) (-3436 (((-755) $) 34 (|has| |#1| (-550)))) (-3700 (((-626 (-1236 |#1|)) $) 37 (|has| |#1| (-550)))) (-1454 (((-755) $) 20)) (-1721 (($ (-755) (-755) |#1|) NIL)) (-2634 (((-755) $) 21)) (-2122 (((-121) $ (-755)) NIL)) (-3826 ((|#1| $) 28 (|has| |#1| (-6 (-4507 "*"))))) (-2984 (((-560) $) 9)) (-1994 (((-560) $) 10)) (-2130 (((-626 |#1|) $) NIL (|has| $ (-6 -4505)))) (-2030 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-3755 (((-560) $) 11)) (-1420 (((-560) $) 46)) (-3851 (($ (-626 (-626 |#1|))) NIL)) (-3778 (($ (-1 |#1| |#1|) $) NIL)) (-2803 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2184 (((-626 (-626 |#1|)) $) 58)) (-3441 (((-121) $ (-755)) NIL)) (-1291 (((-1135) $) NIL (|has| |#1| (-1082)))) (-3257 (((-3 $ "failed") $) 41 (|has| |#1| (-359)))) (-4417 (($ $ $) NIL)) (-4353 (((-1100) $) NIL (|has| |#1| (-1082)))) (-3038 (($ $ |#1|) NIL)) (-2336 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-550)))) (-2865 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#1|))) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-283 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-626 |#1|) (-626 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))))) (-2214 (((-121) $ $) NIL)) (-4191 (((-121) $) NIL)) (-3260 (($) NIL)) (-2778 ((|#1| $ (-560) (-560)) NIL) ((|#1| $ (-560) (-560) |#1|) NIL) (($ $ (-626 (-560)) (-626 (-560))) NIL)) (-3328 (($ (-626 |#1|)) NIL) (($ (-626 $)) NIL) (($ (-1236 |#1|)) 51)) (-3185 (((-121) $) NIL)) (-1708 ((|#1| $) 26 (|has| |#1| (-6 (-4507 "*"))))) (-4035 (((-755) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505))) (((-755) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-2813 (($ $) NIL)) (-4255 (((-533) $) 62 (|has| |#1| (-601 (-533))))) (-1919 (((-626 (-1236 |#1|)) $) NIL (|has| |#1| (-296)))) (-3677 (((-1236 |#1|) $ (-560)) NIL)) (-2801 (((-842) $) NIL (|has| |#1| (-1082))) (($ (-1236 |#1|)) NIL)) (-3656 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-3298 (((-121) $) NIL)) (-1653 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-1733 (($ $ |#1|) NIL (|has| |#1| (-359)))) (-1725 (($ $ $) NIL) (($ $) NIL)) (-1716 (($ $ $) NIL)) (** (($ $ (-755)) 23) (($ $ (-560)) 44 (|has| |#1| (-359)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-560) $) NIL) (((-1236 |#1|) $ (-1236 |#1|)) NIL) (((-1236 |#1|) (-1236 |#1|) $) NIL)) (-2271 (((-755) $) NIL (|has| $ (-6 -4505))))) -(((-671 |#1|) (-13 (-669 |#1| (-1236 |#1|) (-1236 |#1|)) (-10 -8 (-15 -3328 ($ (-1236 |#1|))) (IF (|has| |#1| (-601 (-533))) (-6 (-601 (-533))) |noBranch|) (IF (|has| |#1| (-359)) (-15 -3257 ((-3 $ "failed") $)) |noBranch|))) (-1039)) (T -671)) -((-3257 (*1 *1 *1) (|partial| -12 (-5 *1 (-671 *2)) (-4 *2 (-359)) (-4 *2 (-1039)))) (-3328 (*1 *1 *2) (-12 (-5 *2 (-1236 *3)) (-4 *3 (-1039)) (-5 *1 (-671 *3))))) -(-13 (-669 |#1| (-1236 |#1|) (-1236 |#1|)) (-10 -8 (-15 -3328 ($ (-1236 |#1|))) (IF (|has| |#1| (-601 (-533))) (-6 (-601 (-533))) |noBranch|) (IF (|has| |#1| (-359)) (-15 -3257 ((-3 $ "failed") $)) |noBranch|))) -((-1423 (((-671 |#1|) (-671 |#1|) (-671 |#1|) (-671 |#1|)) 25)) (-4233 (((-671 |#1|) (-671 |#1|) (-671 |#1|) |#1|) 21)) (-4021 (((-671 |#1|) (-671 |#1|) (-671 |#1|) (-671 |#1|) (-671 |#1|) (-755)) 26)) (-3440 (((-671 |#1|) (-671 |#1|) (-671 |#1|) (-671 |#1|)) 14)) (-2675 (((-671 |#1|) (-671 |#1|) (-671 |#1|) (-671 |#1|)) 18) (((-671 |#1|) (-671 |#1|) (-671 |#1|)) 16)) (-2413 (((-671 |#1|) (-671 |#1|) |#1| (-671 |#1|)) 20)) (-1322 (((-671 |#1|) (-671 |#1|) (-671 |#1|)) 12)) (** (((-671 |#1|) (-671 |#1|) (-755)) 30))) -(((-672 |#1|) (-10 -7 (-15 -1322 ((-671 |#1|) (-671 |#1|) (-671 |#1|))) (-15 -3440 ((-671 |#1|) (-671 |#1|) (-671 |#1|) (-671 |#1|))) (-15 -2675 ((-671 |#1|) (-671 |#1|) (-671 |#1|))) (-15 -2675 ((-671 |#1|) (-671 |#1|) (-671 |#1|) (-671 |#1|))) (-15 -2413 ((-671 |#1|) (-671 |#1|) |#1| (-671 |#1|))) (-15 -4233 ((-671 |#1|) (-671 |#1|) (-671 |#1|) |#1|)) (-15 -1423 ((-671 |#1|) (-671 |#1|) (-671 |#1|) (-671 |#1|))) (-15 -4021 ((-671 |#1|) (-671 |#1|) (-671 |#1|) (-671 |#1|) (-671 |#1|) (-755))) (-15 ** ((-671 |#1|) (-671 |#1|) (-755)))) (-1039)) (T -672)) -((** (*1 *2 *2 *3) (-12 (-5 *2 (-671 *4)) (-5 *3 (-755)) (-4 *4 (-1039)) (-5 *1 (-672 *4)))) (-4021 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-671 *4)) (-5 *3 (-755)) (-4 *4 (-1039)) (-5 *1 (-672 *4)))) (-1423 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-671 *3)) (-4 *3 (-1039)) (-5 *1 (-672 *3)))) (-4233 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-671 *3)) (-4 *3 (-1039)) (-5 *1 (-672 *3)))) (-2413 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-671 *3)) (-4 *3 (-1039)) (-5 *1 (-672 *3)))) (-2675 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-671 *3)) (-4 *3 (-1039)) (-5 *1 (-672 *3)))) (-2675 (*1 *2 *2 *2) (-12 (-5 *2 (-671 *3)) (-4 *3 (-1039)) (-5 *1 (-672 *3)))) (-3440 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-671 *3)) (-4 *3 (-1039)) (-5 *1 (-672 *3)))) (-1322 (*1 *2 *2 *2) (-12 (-5 *2 (-671 *3)) (-4 *3 (-1039)) (-5 *1 (-672 *3))))) -(-10 -7 (-15 -1322 ((-671 |#1|) (-671 |#1|) (-671 |#1|))) (-15 -3440 ((-671 |#1|) (-671 |#1|) (-671 |#1|) (-671 |#1|))) (-15 -2675 ((-671 |#1|) (-671 |#1|) (-671 |#1|))) (-15 -2675 ((-671 |#1|) (-671 |#1|) (-671 |#1|) (-671 |#1|))) (-15 -2413 ((-671 |#1|) (-671 |#1|) |#1| (-671 |#1|))) (-15 -4233 ((-671 |#1|) (-671 |#1|) (-671 |#1|) |#1|)) (-15 -1423 ((-671 |#1|) (-671 |#1|) (-671 |#1|) (-671 |#1|))) (-15 -4021 ((-671 |#1|) (-671 |#1|) (-671 |#1|) (-671 |#1|) (-671 |#1|) (-755))) (-15 ** ((-671 |#1|) (-671 |#1|) (-755)))) -((-3841 ((|#2| |#2| |#4|) 25)) (-2240 (((-671 |#2|) |#3| |#4|) 31)) (-3486 (((-671 |#2|) |#2| |#4|) 30)) (-3433 (((-1236 |#2|) |#2| |#4|) 16)) (-2919 ((|#2| |#3| |#4|) 24)) (-2725 (((-671 |#2|) |#3| |#4| (-755) (-755)) 38)) (-3871 (((-671 |#2|) |#2| |#4| (-755)) 37))) -(((-673 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3433 ((-1236 |#2|) |#2| |#4|)) (-15 -2919 (|#2| |#3| |#4|)) (-15 -3841 (|#2| |#2| |#4|)) (-15 -3486 ((-671 |#2|) |#2| |#4|)) (-15 -3871 ((-671 |#2|) |#2| |#4| (-755))) (-15 -2240 ((-671 |#2|) |#3| |#4|)) (-15 -2725 ((-671 |#2|) |#3| |#4| (-755) (-755)))) (-1082) (-887 |#1|) (-369 |#2|) (-13 (-369 |#1|) (-10 -7 (-6 -4505)))) (T -673)) -((-2725 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-755)) (-4 *6 (-1082)) (-4 *7 (-887 *6)) (-5 *2 (-671 *7)) (-5 *1 (-673 *6 *7 *3 *4)) (-4 *3 (-369 *7)) (-4 *4 (-13 (-369 *6) (-10 -7 (-6 -4505)))))) (-2240 (*1 *2 *3 *4) (-12 (-4 *5 (-1082)) (-4 *6 (-887 *5)) (-5 *2 (-671 *6)) (-5 *1 (-673 *5 *6 *3 *4)) (-4 *3 (-369 *6)) (-4 *4 (-13 (-369 *5) (-10 -7 (-6 -4505)))))) (-3871 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-755)) (-4 *6 (-1082)) (-4 *3 (-887 *6)) (-5 *2 (-671 *3)) (-5 *1 (-673 *6 *3 *7 *4)) (-4 *7 (-369 *3)) (-4 *4 (-13 (-369 *6) (-10 -7 (-6 -4505)))))) (-3486 (*1 *2 *3 *4) (-12 (-4 *5 (-1082)) (-4 *3 (-887 *5)) (-5 *2 (-671 *3)) (-5 *1 (-673 *5 *3 *6 *4)) (-4 *6 (-369 *3)) (-4 *4 (-13 (-369 *5) (-10 -7 (-6 -4505)))))) (-3841 (*1 *2 *2 *3) (-12 (-4 *4 (-1082)) (-4 *2 (-887 *4)) (-5 *1 (-673 *4 *2 *5 *3)) (-4 *5 (-369 *2)) (-4 *3 (-13 (-369 *4) (-10 -7 (-6 -4505)))))) (-2919 (*1 *2 *3 *4) (-12 (-4 *5 (-1082)) (-4 *2 (-887 *5)) (-5 *1 (-673 *5 *2 *3 *4)) (-4 *3 (-369 *2)) (-4 *4 (-13 (-369 *5) (-10 -7 (-6 -4505)))))) (-3433 (*1 *2 *3 *4) (-12 (-4 *5 (-1082)) (-4 *3 (-887 *5)) (-5 *2 (-1236 *3)) (-5 *1 (-673 *5 *3 *6 *4)) (-4 *6 (-369 *3)) (-4 *4 (-13 (-369 *5) (-10 -7 (-6 -4505))))))) -(-10 -7 (-15 -3433 ((-1236 |#2|) |#2| |#4|)) (-15 -2919 (|#2| |#3| |#4|)) (-15 -3841 (|#2| |#2| |#4|)) (-15 -3486 ((-671 |#2|) |#2| |#4|)) (-15 -3871 ((-671 |#2|) |#2| |#4| (-755))) (-15 -2240 ((-671 |#2|) |#3| |#4|)) (-15 -2725 ((-671 |#2|) |#3| |#4| (-755) (-755)))) -((-1347 (((-2 (|:| |num| (-671 |#1|)) (|:| |den| |#1|)) (-671 |#2|)) 18)) (-3401 ((|#1| (-671 |#2|)) 9)) (-4436 (((-671 |#1|) (-671 |#2|)) 16))) -(((-674 |#1| |#2|) (-10 -7 (-15 -3401 (|#1| (-671 |#2|))) (-15 -4436 ((-671 |#1|) (-671 |#2|))) (-15 -1347 ((-2 (|:| |num| (-671 |#1|)) (|:| |den| |#1|)) (-671 |#2|)))) (-550) (-985 |#1|)) (T -674)) -((-1347 (*1 *2 *3) (-12 (-5 *3 (-671 *5)) (-4 *5 (-985 *4)) (-4 *4 (-550)) (-5 *2 (-2 (|:| |num| (-671 *4)) (|:| |den| *4))) (-5 *1 (-674 *4 *5)))) (-4436 (*1 *2 *3) (-12 (-5 *3 (-671 *5)) (-4 *5 (-985 *4)) (-4 *4 (-550)) (-5 *2 (-671 *4)) (-5 *1 (-674 *4 *5)))) (-3401 (*1 *2 *3) (-12 (-5 *3 (-671 *4)) (-4 *4 (-985 *2)) (-4 *2 (-550)) (-5 *1 (-674 *2 *4))))) -(-10 -7 (-15 -3401 (|#1| (-671 |#2|))) (-15 -4436 ((-671 |#1|) (-671 |#2|))) (-15 -1347 ((-2 (|:| |num| (-671 |#1|)) (|:| |den| |#1|)) (-671 |#2|)))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL)) (-1350 (($ $) NIL)) (-3376 (((-121) $) NIL)) (-2196 (((-671 (-680))) NIL) (((-671 (-680)) (-1236 $)) NIL)) (-1944 (((-680) $) NIL)) (-2570 (($ $) NIL (|has| (-680) (-1173)))) (-2514 (($ $) NIL (|has| (-680) (-1173)))) (-4357 (((-1161 (-909) (-755)) (-560)) NIL (|has| (-680) (-344)))) (-2314 (((-3 $ "failed") $ $) NIL)) (-1776 (((-414 (-1149 $)) (-1149 $)) NIL (-12 (|has| (-680) (-296)) (|has| (-680) (-896))))) (-3065 (($ $) NIL (-2318 (-12 (|has| (-680) (-296)) (|has| (-680) (-896))) (|has| (-680) (-359))))) (-2953 (((-414 $) $) NIL (-2318 (-12 (|has| (-680) (-296)) (|has| (-680) (-896))) (|has| (-680) (-359))))) (-2479 (($ $) NIL (-12 (|has| (-680) (-994)) (|has| (-680) (-1173))))) (-1887 (((-3 (-626 (-1149 $)) "failed") (-626 (-1149 $)) (-1149 $)) NIL (-12 (|has| (-680) (-296)) (|has| (-680) (-896))))) (-4179 (((-121) $ $) NIL (|has| (-680) (-296)))) (-2912 (((-755)) NIL (|has| (-680) (-364)))) (-2561 (($ $) NIL (|has| (-680) (-1173)))) (-2790 (($ $) NIL (|has| (-680) (-1173)))) (-2579 (($ $) NIL (|has| (-680) (-1173)))) (-2523 (($ $) NIL (|has| (-680) (-1173)))) (-4236 (($) NIL T CONST)) (-1473 (((-3 (-560) "failed") $) NIL) (((-3 (-680) "failed") $) NIL) (((-3 (-403 (-560)) "failed") $) NIL (|has| (-680) (-1029 (-403 (-560)))))) (-3001 (((-560) $) NIL) (((-680) $) NIL) (((-403 (-560)) $) NIL (|has| (-680) (-1029 (-403 (-560)))))) (-3380 (($ (-1236 (-680))) NIL) (($ (-1236 (-680)) (-1236 $)) NIL)) (-4107 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-680) (-344)))) (-2563 (($ $ $) NIL (|has| (-680) (-296)))) (-2954 (((-671 (-680)) $) NIL) (((-671 (-680)) $ (-1236 $)) NIL)) (-2616 (((-671 (-680)) (-671 $)) NIL) (((-2 (|:| -3818 (-671 (-680))) (|:| |vec| (-1236 (-680)))) (-671 $) (-1236 $)) NIL) (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) NIL (|has| (-680) (-622 (-560)))) (((-671 (-560)) (-671 $)) NIL (|has| (-680) (-622 (-560))))) (-2342 (((-3 $ "failed") (-403 (-1149 (-680)))) NIL (|has| (-680) (-359))) (($ (-1149 (-680))) NIL)) (-1823 (((-3 $ "failed") $) NIL)) (-1611 (((-680) $) 29)) (-1367 (((-3 (-403 (-560)) "failed") $) NIL (|has| (-680) (-542)))) (-1689 (((-121) $) NIL (|has| (-680) (-542)))) (-1519 (((-403 (-560)) $) NIL (|has| (-680) (-542)))) (-3143 (((-909)) NIL)) (-1666 (($) NIL (|has| (-680) (-364)))) (-2572 (($ $ $) NIL (|has| (-680) (-296)))) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) NIL (|has| (-680) (-296)))) (-2481 (($) NIL (|has| (-680) (-344)))) (-1537 (((-121) $) NIL (|has| (-680) (-344)))) (-2937 (($ $) NIL (|has| (-680) (-344))) (($ $ (-755)) NIL (|has| (-680) (-344)))) (-3319 (((-121) $) NIL (-2318 (-12 (|has| (-680) (-296)) (|has| (-680) (-896))) (|has| (-680) (-359))))) (-2285 (((-2 (|:| |r| (-680)) (|:| |phi| (-680))) $) NIL (-12 (|has| (-680) (-1048)) (|has| (-680) (-1173))))) (-2474 (($) NIL (|has| (-680) (-1173)))) (-2399 (((-876 (-375) $) $ (-879 (-375)) (-876 (-375) $)) NIL (|has| (-680) (-873 (-375)))) (((-876 (-560) $) $ (-879 (-560)) (-876 (-560) $)) NIL (|has| (-680) (-873 (-560))))) (-3504 (((-820 (-909)) $) NIL (|has| (-680) (-344))) (((-909) $) NIL (|has| (-680) (-344)))) (-2642 (((-121) $) NIL)) (-2586 (($ $ (-560)) NIL (-12 (|has| (-680) (-994)) (|has| (-680) (-1173))))) (-3339 (((-680) $) NIL)) (-1424 (((-3 $ "failed") $) NIL (|has| (-680) (-344)))) (-3856 (((-3 (-626 $) "failed") (-626 $) $) NIL (|has| (-680) (-296)))) (-4108 (((-1149 (-680)) $) NIL (|has| (-680) (-359)))) (-4325 (($ $ $) NIL)) (-2501 (($ $ $) NIL)) (-2803 (($ (-1 (-680) (-680)) $) NIL)) (-3142 (((-909) $) NIL (|has| (-680) (-364)))) (-4399 (($ $) NIL (|has| (-680) (-1173)))) (-2335 (((-1149 (-680)) $) NIL)) (-2582 (($ (-626 $)) NIL (|has| (-680) (-296))) (($ $ $) NIL (|has| (-680) (-296)))) (-1291 (((-1135) $) NIL)) (-1701 (($ $) NIL (|has| (-680) (-359)))) (-1394 (($) NIL (|has| (-680) (-344)) CONST)) (-1330 (($ (-909)) NIL (|has| (-680) (-364)))) (-3042 (($) NIL)) (-1618 (((-680) $) 31)) (-4353 (((-1100) $) NIL)) (-4250 (($) NIL)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL (|has| (-680) (-296)))) (-4440 (($ (-626 $)) NIL (|has| (-680) (-296))) (($ $ $) NIL (|has| (-680) (-296)))) (-2385 (((-626 (-2 (|:| -1601 (-560)) (|:| -4034 (-560))))) NIL (|has| (-680) (-344)))) (-3817 (((-414 (-1149 $)) (-1149 $)) NIL (-12 (|has| (-680) (-296)) (|has| (-680) (-896))))) (-3032 (((-414 (-1149 $)) (-1149 $)) NIL (-12 (|has| (-680) (-296)) (|has| (-680) (-896))))) (-1601 (((-414 $) $) NIL (-2318 (-12 (|has| (-680) (-296)) (|has| (-680) (-896))) (|has| (-680) (-359))))) (-3505 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-680) (-296))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL (|has| (-680) (-296)))) (-2336 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-680)) NIL (|has| (-680) (-550)))) (-3456 (((-3 (-626 $) "failed") (-626 $) $) NIL (|has| (-680) (-296)))) (-2469 (($ $) NIL (|has| (-680) (-1173)))) (-4450 (($ $ (-1153) (-680)) NIL (|has| (-680) (-515 (-1153) (-680)))) (($ $ (-626 (-1153)) (-626 (-680))) NIL (|has| (-680) (-515 (-1153) (-680)))) (($ $ (-626 (-283 (-680)))) NIL (|has| (-680) (-298 (-680)))) (($ $ (-283 (-680))) NIL (|has| (-680) (-298 (-680)))) (($ $ (-680) (-680)) NIL (|has| (-680) (-298 (-680)))) (($ $ (-626 (-680)) (-626 (-680))) NIL (|has| (-680) (-298 (-680))))) (-4445 (((-755) $) NIL (|has| (-680) (-296)))) (-2778 (($ $ (-680)) NIL (|has| (-680) (-276 (-680) (-680))))) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL (|has| (-680) (-296)))) (-4069 (((-680)) NIL) (((-680) (-1236 $)) NIL)) (-2935 (((-3 (-755) "failed") $ $) NIL (|has| (-680) (-344))) (((-755) $) NIL (|has| (-680) (-344)))) (-2443 (($ $ (-1 (-680) (-680))) NIL) (($ $ (-1 (-680) (-680)) (-755)) NIL) (($ $ (-626 (-1153)) (-626 (-755))) NIL (|has| (-680) (-887 (-1153)))) (($ $ (-1153) (-755)) NIL (|has| (-680) (-887 (-1153)))) (($ $ (-626 (-1153))) NIL (|has| (-680) (-887 (-1153)))) (($ $ (-1153)) NIL (|has| (-680) (-887 (-1153)))) (($ $ (-755)) NIL (|has| (-680) (-221))) (($ $) NIL (|has| (-680) (-221)))) (-2142 (((-671 (-680)) (-1236 $) (-1 (-680) (-680))) NIL (|has| (-680) (-359)))) (-3591 (((-1149 (-680))) NIL)) (-2585 (($ $) NIL (|has| (-680) (-1173)))) (-2528 (($ $) NIL (|has| (-680) (-1173)))) (-2612 (($) NIL (|has| (-680) (-344)))) (-2575 (($ $) NIL (|has| (-680) (-1173)))) (-2519 (($ $) NIL (|has| (-680) (-1173)))) (-2566 (($ $) NIL (|has| (-680) (-1173)))) (-2795 (($ $) NIL (|has| (-680) (-1173)))) (-3390 (((-671 (-680)) (-1236 $)) NIL) (((-1236 (-680)) $) NIL) (((-671 (-680)) (-1236 $) (-1236 $)) NIL) (((-1236 (-680)) $ (-1236 $)) NIL)) (-4255 (((-533) $) NIL (|has| (-680) (-601 (-533)))) (((-167 (-213)) $) NIL (|has| (-680) (-1013))) (((-167 (-375)) $) NIL (|has| (-680) (-1013))) (((-879 (-375)) $) NIL (|has| (-680) (-601 (-879 (-375))))) (((-879 (-560)) $) NIL (|has| (-680) (-601 (-879 (-560))))) (($ (-1149 (-680))) NIL) (((-1149 (-680)) $) NIL) (($ (-1236 (-680))) NIL) (((-1236 (-680)) $) NIL)) (-3101 (($ $) NIL)) (-3248 (((-3 (-1236 $) "failed") (-671 $)) NIL (-2318 (-12 (|has| $ (-146)) (|has| (-680) (-296)) (|has| (-680) (-896))) (|has| (-680) (-344))))) (-2556 (($ (-680) (-680)) 12)) (-2801 (((-842) $) NIL) (($ (-560)) NIL) (($ $) NIL) (($ (-560)) NIL) (($ (-680)) NIL) (($ (-167 (-375))) 13) (($ (-167 (-560))) 19) (($ (-167 (-680))) 28) (($ (-167 (-682))) 25) (((-167 (-375)) $) 33) (($ (-403 (-560))) NIL (-2318 (|has| (-680) (-359)) (|has| (-680) (-1029 (-403 (-560))))))) (-2272 (($ $) NIL (|has| (-680) (-344))) (((-3 $ "failed") $) NIL (-2318 (-12 (|has| $ (-146)) (|has| (-680) (-296)) (|has| (-680) (-896))) (|has| (-680) (-146))))) (-3642 (((-1149 (-680)) $) NIL)) (-1751 (((-755)) NIL)) (-4374 (((-1236 $)) NIL)) (-2598 (($ $) NIL (|has| (-680) (-1173)))) (-2541 (($ $) NIL (|has| (-680) (-1173)))) (-2328 (((-121) $ $) NIL)) (-2590 (($ $) NIL (|has| (-680) (-1173)))) (-2532 (($ $) NIL (|has| (-680) (-1173)))) (-2608 (($ $) NIL (|has| (-680) (-1173)))) (-2549 (($ $) NIL (|has| (-680) (-1173)))) (-3896 (((-680) $) NIL (|has| (-680) (-1173)))) (-3689 (($ $) NIL (|has| (-680) (-1173)))) (-2554 (($ $) NIL (|has| (-680) (-1173)))) (-2604 (($ $) NIL (|has| (-680) (-1173)))) (-2545 (($ $) NIL (|has| (-680) (-1173)))) (-2594 (($ $) NIL (|has| (-680) (-1173)))) (-2536 (($ $) NIL (|has| (-680) (-1173)))) (-1822 (($ $) NIL (|has| (-680) (-1048)))) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL (|has| (-680) (-359)))) (-3304 (($) NIL T CONST)) (-1459 (($) NIL T CONST)) (-2500 (($ $ (-1 (-680) (-680))) NIL) (($ $ (-1 (-680) (-680)) (-755)) NIL) (($ $ (-626 (-1153)) (-626 (-755))) NIL (|has| (-680) (-887 (-1153)))) (($ $ (-1153) (-755)) NIL (|has| (-680) (-887 (-1153)))) (($ $ (-626 (-1153))) NIL (|has| (-680) (-887 (-1153)))) (($ $ (-1153)) NIL (|has| (-680) (-887 (-1153)))) (($ $ (-755)) NIL (|has| (-680) (-221))) (($ $) NIL (|has| (-680) (-221)))) (-1691 (((-121) $ $) NIL)) (-1675 (((-121) $ $) NIL)) (-1653 (((-121) $ $) NIL)) (-1683 (((-121) $ $) NIL)) (-1667 (((-121) $ $) NIL)) (-1733 (($ $ $) NIL (|has| (-680) (-359)))) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) NIL)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ $) NIL (|has| (-680) (-1173))) (($ $ (-403 (-560))) NIL (-12 (|has| (-680) (-994)) (|has| (-680) (-1173)))) (($ $ (-560)) NIL (|has| (-680) (-359)))) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) NIL) (($ (-680) $) NIL) (($ $ (-680)) NIL) (($ (-403 (-560)) $) NIL (|has| (-680) (-359))) (($ $ (-403 (-560))) NIL (|has| (-680) (-359))))) -(((-675) (-13 (-383) (-164 (-680)) (-10 -8 (-15 -2801 ($ (-167 (-375)))) (-15 -2801 ($ (-167 (-560)))) (-15 -2801 ($ (-167 (-680)))) (-15 -2801 ($ (-167 (-682)))) (-15 -2801 ((-167 (-375)) $))))) (T -675)) -((-2801 (*1 *1 *2) (-12 (-5 *2 (-167 (-375))) (-5 *1 (-675)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-167 (-560))) (-5 *1 (-675)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-167 (-680))) (-5 *1 (-675)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-167 (-682))) (-5 *1 (-675)))) (-2801 (*1 *2 *1) (-12 (-5 *2 (-167 (-375))) (-5 *1 (-675))))) -(-13 (-383) (-164 (-680)) (-10 -8 (-15 -2801 ($ (-167 (-375)))) (-15 -2801 ($ (-167 (-560)))) (-15 -2801 ($ (-167 (-680)))) (-15 -2801 ($ (-167 (-682)))) (-15 -2801 ((-167 (-375)) $)))) -((-2601 (((-121) $ $) 18 (|has| |#1| (-1082)))) (-3909 (((-121) $ (-755)) 8)) (-3763 (($ (-1 (-121) |#1|) $) 42 (|has| $ (-6 -4505)))) (-3802 (($ (-1 (-121) |#1|) $) 52 (|has| $ (-6 -4505)))) (-4236 (($) 7 T CONST)) (-3568 (($ $) 58)) (-2868 (($ $) 55 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-3561 (($ |#1| $) 44 (|has| $ (-6 -4505))) (($ (-1 (-121) |#1|) $) 43 (|has| $ (-6 -4505)))) (-4310 (($ |#1| $) 54 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505)))) (($ (-1 (-121) |#1|) $) 51 (|has| $ (-6 -4505)))) (-2342 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 53 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 50 (|has| $ (-6 -4505))) ((|#1| (-1 |#1| |#1| |#1|) $) 49 (|has| $ (-6 -4505)))) (-1981 (((-626 |#1|) $) 30 (|has| $ (-6 -4505)))) (-2122 (((-121) $ (-755)) 9)) (-2130 (((-626 |#1|) $) 29 (|has| $ (-6 -4505)))) (-2030 (((-121) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-3778 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#1| |#1|) $) 35)) (-3441 (((-121) $ (-755)) 10)) (-1291 (((-1135) $) 22 (|has| |#1| (-1082)))) (-2525 ((|#1| $) 36)) (-4345 (($ |#1| $) 37) (($ |#1| $ (-755)) 59)) (-4353 (((-1100) $) 21 (|has| |#1| (-1082)))) (-3786 (((-3 |#1| "failed") (-1 (-121) |#1|) $) 48)) (-2146 ((|#1| $) 38)) (-2865 (((-121) (-1 (-121) |#1|) $) 32 (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#1|))) 26 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-283 |#1|)) 25 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-626 |#1|) (-626 |#1|)) 23 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))))) (-2214 (((-121) $ $) 14)) (-4191 (((-121) $) 11)) (-3260 (($) 12)) (-1483 (((-626 (-2 (|:| -2371 |#1|) (|:| -4035 (-755)))) $) 57)) (-3958 (($) 46) (($ (-626 |#1|)) 45)) (-4035 (((-755) (-1 (-121) |#1|) $) 31 (|has| $ (-6 -4505))) (((-755) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-2813 (($ $) 13)) (-4255 (((-533) $) 56 (|has| |#1| (-601 (-533))))) (-4162 (($ (-626 |#1|)) 47)) (-2801 (((-842) $) 20 (|has| |#1| (-1082)))) (-1354 (($ (-626 |#1|)) 39)) (-3656 (((-121) (-1 (-121) |#1|) $) 33 (|has| $ (-6 -4505)))) (-1653 (((-121) $ $) 19 (|has| |#1| (-1082)))) (-2271 (((-755) $) 6 (|has| $ (-6 -4505))))) -(((-676 |#1|) (-1267) (-1082)) (T -676)) -((-4345 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-755)) (-4 *1 (-676 *2)) (-4 *2 (-1082)))) (-3568 (*1 *1 *1) (-12 (-4 *1 (-676 *2)) (-4 *2 (-1082)))) (-1483 (*1 *2 *1) (-12 (-4 *1 (-676 *3)) (-4 *3 (-1082)) (-5 *2 (-626 (-2 (|:| -2371 *3) (|:| -4035 (-755)))))))) -(-13 (-223 |t#1|) (-10 -8 (-15 -4345 ($ |t#1| $ (-755))) (-15 -3568 ($ $)) (-15 -1483 ((-626 (-2 (|:| -2371 |t#1|) (|:| -4035 (-755)))) $)))) -(((-39) . T) ((-111 |#1|) . T) ((-105) |has| |#1| (-1082)) ((-600 (-842)) |has| |#1| (-1082)) ((-152 |#1|) . T) ((-601 (-533)) |has| |#1| (-601 (-533))) ((-223 |#1|) . T) ((-298 |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))) ((-492 |#1|) . T) ((-515 |#1| |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))) ((-1082) |has| |#1| (-1082)) ((-1187) . T)) -((-4011 (((-626 |#1|) (-626 (-2 (|:| -1601 |#1|) (|:| -3662 (-560)))) (-560)) 46)) (-2388 ((|#1| |#1| (-560)) 45)) (-4440 ((|#1| |#1| |#1| (-560)) 35)) (-1601 (((-626 |#1|) |#1| (-560)) 38)) (-2284 ((|#1| |#1| (-560) |#1| (-560)) 32)) (-1968 (((-626 (-2 (|:| -1601 |#1|) (|:| -3662 (-560)))) |#1| (-560)) 44))) -(((-677 |#1|) (-10 -7 (-15 -4440 (|#1| |#1| |#1| (-560))) (-15 -2388 (|#1| |#1| (-560))) (-15 -1601 ((-626 |#1|) |#1| (-560))) (-15 -1968 ((-626 (-2 (|:| -1601 |#1|) (|:| -3662 (-560)))) |#1| (-560))) (-15 -4011 ((-626 |#1|) (-626 (-2 (|:| -1601 |#1|) (|:| -3662 (-560)))) (-560))) (-15 -2284 (|#1| |#1| (-560) |#1| (-560)))) (-1211 (-560))) (T -677)) -((-2284 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-560)) (-5 *1 (-677 *2)) (-4 *2 (-1211 *3)))) (-4011 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-2 (|:| -1601 *5) (|:| -3662 (-560))))) (-5 *4 (-560)) (-4 *5 (-1211 *4)) (-5 *2 (-626 *5)) (-5 *1 (-677 *5)))) (-1968 (*1 *2 *3 *4) (-12 (-5 *4 (-560)) (-5 *2 (-626 (-2 (|:| -1601 *3) (|:| -3662 *4)))) (-5 *1 (-677 *3)) (-4 *3 (-1211 *4)))) (-1601 (*1 *2 *3 *4) (-12 (-5 *4 (-560)) (-5 *2 (-626 *3)) (-5 *1 (-677 *3)) (-4 *3 (-1211 *4)))) (-2388 (*1 *2 *2 *3) (-12 (-5 *3 (-560)) (-5 *1 (-677 *2)) (-4 *2 (-1211 *3)))) (-4440 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-560)) (-5 *1 (-677 *2)) (-4 *2 (-1211 *3))))) -(-10 -7 (-15 -4440 (|#1| |#1| |#1| (-560))) (-15 -2388 (|#1| |#1| (-560))) (-15 -1601 ((-626 |#1|) |#1| (-560))) (-15 -1968 ((-626 (-2 (|:| -1601 |#1|) (|:| -3662 (-560)))) |#1| (-560))) (-15 -4011 ((-626 |#1|) (-626 (-2 (|:| -1601 |#1|) (|:| -3662 (-560)))) (-560))) (-15 -2284 (|#1| |#1| (-560) |#1| (-560)))) -((-3612 (((-1 (-936 (-213)) (-213) (-213)) (-1 (-213) (-213) (-213)) (-1 (-213) (-213) (-213)) (-1 (-213) (-213) (-213)) (-1 (-213) (-213) (-213) (-213))) 17)) (-3169 (((-1113 (-213)) (-1113 (-213)) (-1 (-936 (-213)) (-213) (-213)) (-1076 (-213)) (-1076 (-213)) (-626 (-251))) 38) (((-1113 (-213)) (-1 (-936 (-213)) (-213) (-213)) (-1076 (-213)) (-1076 (-213)) (-626 (-251))) 40) (((-1113 (-213)) (-1 (-213) (-213) (-213)) (-1 (-213) (-213) (-213)) (-1 (-213) (-213) (-213)) (-3 (-1 (-213) (-213) (-213) (-213)) "undefined") (-1076 (-213)) (-1076 (-213)) (-626 (-251))) 42)) (-3900 (((-1113 (-213)) (-304 (-560)) (-304 (-560)) (-304 (-560)) (-1 (-213) (-213)) (-1076 (-213)) (-626 (-251))) NIL)) (-4371 (((-1113 (-213)) (-1 (-213) (-213) (-213)) (-3 (-1 (-213) (-213) (-213) (-213)) "undefined") (-1076 (-213)) (-1076 (-213)) (-626 (-251))) 43))) -(((-678) (-10 -7 (-15 -3169 ((-1113 (-213)) (-1 (-213) (-213) (-213)) (-1 (-213) (-213) (-213)) (-1 (-213) (-213) (-213)) (-3 (-1 (-213) (-213) (-213) (-213)) "undefined") (-1076 (-213)) (-1076 (-213)) (-626 (-251)))) (-15 -3169 ((-1113 (-213)) (-1 (-936 (-213)) (-213) (-213)) (-1076 (-213)) (-1076 (-213)) (-626 (-251)))) (-15 -3169 ((-1113 (-213)) (-1113 (-213)) (-1 (-936 (-213)) (-213) (-213)) (-1076 (-213)) (-1076 (-213)) (-626 (-251)))) (-15 -4371 ((-1113 (-213)) (-1 (-213) (-213) (-213)) (-3 (-1 (-213) (-213) (-213) (-213)) "undefined") (-1076 (-213)) (-1076 (-213)) (-626 (-251)))) (-15 -3900 ((-1113 (-213)) (-304 (-560)) (-304 (-560)) (-304 (-560)) (-1 (-213) (-213)) (-1076 (-213)) (-626 (-251)))) (-15 -3612 ((-1 (-936 (-213)) (-213) (-213)) (-1 (-213) (-213) (-213)) (-1 (-213) (-213) (-213)) (-1 (-213) (-213) (-213)) (-1 (-213) (-213) (-213) (-213)))))) (T -678)) -((-3612 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-213) (-213) (-213))) (-5 *4 (-1 (-213) (-213) (-213) (-213))) (-5 *2 (-1 (-936 (-213)) (-213) (-213))) (-5 *1 (-678)))) (-3900 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-304 (-560))) (-5 *4 (-1 (-213) (-213))) (-5 *5 (-1076 (-213))) (-5 *6 (-626 (-251))) (-5 *2 (-1113 (-213))) (-5 *1 (-678)))) (-4371 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-213) (-213) (-213))) (-5 *4 (-3 (-1 (-213) (-213) (-213) (-213)) "undefined")) (-5 *5 (-1076 (-213))) (-5 *6 (-626 (-251))) (-5 *2 (-1113 (-213))) (-5 *1 (-678)))) (-3169 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1113 (-213))) (-5 *3 (-1 (-936 (-213)) (-213) (-213))) (-5 *4 (-1076 (-213))) (-5 *5 (-626 (-251))) (-5 *1 (-678)))) (-3169 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-936 (-213)) (-213) (-213))) (-5 *4 (-1076 (-213))) (-5 *5 (-626 (-251))) (-5 *2 (-1113 (-213))) (-5 *1 (-678)))) (-3169 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-213) (-213) (-213))) (-5 *4 (-3 (-1 (-213) (-213) (-213) (-213)) "undefined")) (-5 *5 (-1076 (-213))) (-5 *6 (-626 (-251))) (-5 *2 (-1113 (-213))) (-5 *1 (-678))))) -(-10 -7 (-15 -3169 ((-1113 (-213)) (-1 (-213) (-213) (-213)) (-1 (-213) (-213) (-213)) (-1 (-213) (-213) (-213)) (-3 (-1 (-213) (-213) (-213) (-213)) "undefined") (-1076 (-213)) (-1076 (-213)) (-626 (-251)))) (-15 -3169 ((-1113 (-213)) (-1 (-936 (-213)) (-213) (-213)) (-1076 (-213)) (-1076 (-213)) (-626 (-251)))) (-15 -3169 ((-1113 (-213)) (-1113 (-213)) (-1 (-936 (-213)) (-213) (-213)) (-1076 (-213)) (-1076 (-213)) (-626 (-251)))) (-15 -4371 ((-1113 (-213)) (-1 (-213) (-213) (-213)) (-3 (-1 (-213) (-213) (-213) (-213)) "undefined") (-1076 (-213)) (-1076 (-213)) (-626 (-251)))) (-15 -3900 ((-1113 (-213)) (-304 (-560)) (-304 (-560)) (-304 (-560)) (-1 (-213) (-213)) (-1076 (-213)) (-626 (-251)))) (-15 -3612 ((-1 (-936 (-213)) (-213) (-213)) (-1 (-213) (-213) (-213)) (-1 (-213) (-213) (-213)) (-1 (-213) (-213) (-213)) (-1 (-213) (-213) (-213) (-213))))) -((-1601 (((-414 (-1149 |#4|)) (-1149 |#4|)) 73) (((-414 |#4|) |#4|) 215))) -(((-679 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1601 ((-414 |#4|) |#4|)) (-15 -1601 ((-414 (-1149 |#4|)) (-1149 |#4|)))) (-834) (-780) (-344) (-942 |#3| |#2| |#1|)) (T -679)) -((-1601 (*1 *2 *3) (-12 (-4 *4 (-834)) (-4 *5 (-780)) (-4 *6 (-344)) (-4 *7 (-942 *6 *5 *4)) (-5 *2 (-414 (-1149 *7))) (-5 *1 (-679 *4 *5 *6 *7)) (-5 *3 (-1149 *7)))) (-1601 (*1 *2 *3) (-12 (-4 *4 (-834)) (-4 *5 (-780)) (-4 *6 (-344)) (-5 *2 (-414 *3)) (-5 *1 (-679 *4 *5 *6 *3)) (-4 *3 (-942 *6 *5 *4))))) -(-10 -7 (-15 -1601 ((-414 |#4|) |#4|)) (-15 -1601 ((-414 (-1149 |#4|)) (-1149 |#4|)))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) 84)) (-1947 (((-560) $) 30)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL)) (-1350 (($ $) NIL)) (-3376 (((-121) $) NIL)) (-4330 (($ $) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-3065 (($ $) NIL)) (-2953 (((-414 $) $) NIL)) (-2479 (($ $) NIL)) (-4179 (((-121) $ $) NIL)) (-4235 (((-560) $) NIL)) (-4236 (($) NIL T CONST)) (-4422 (($ $) NIL)) (-1473 (((-3 (-560) "failed") $) 73) (((-3 (-403 (-560)) "failed") $) 26) (((-3 (-375) "failed") $) 70)) (-3001 (((-560) $) 75) (((-403 (-560)) $) 67) (((-375) $) 68)) (-2563 (($ $ $) 96)) (-1823 (((-3 $ "failed") $) 87)) (-2572 (($ $ $) 95)) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) NIL)) (-3319 (((-121) $) NIL)) (-2110 (((-909)) 77) (((-909) (-909)) 76)) (-1786 (((-121) $) NIL)) (-2399 (((-876 (-375) $) $ (-879 (-375)) (-876 (-375) $)) NIL)) (-3504 (((-560) $) NIL)) (-2642 (((-121) $) NIL)) (-2586 (($ $ (-560)) NIL)) (-3339 (($ $) NIL)) (-2187 (((-121) $) NIL)) (-3856 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-1783 (((-560) (-560)) 81) (((-560)) 82)) (-4325 (($ $ $) NIL) (($) NIL (-12 (-3186 (|has| $ (-6 -4488))) (-3186 (|has| $ (-6 -4496)))))) (-1902 (((-560) (-560)) 79) (((-560)) 80)) (-2501 (($ $ $) NIL) (($) NIL (-12 (-3186 (|has| $ (-6 -4488))) (-3186 (|has| $ (-6 -4496)))))) (-4292 (((-560) $) 16)) (-2582 (($ $ $) NIL) (($ (-626 $)) NIL)) (-1291 (((-1135) $) NIL)) (-1701 (($ $) 91)) (-4088 (((-909) (-560)) NIL (|has| $ (-6 -4496)))) (-4353 (((-1100) $) NIL)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL)) (-4440 (($ $ $) NIL) (($ (-626 $)) NIL)) (-4302 (($ $) NIL)) (-2150 (($ $) NIL)) (-3737 (($ (-560) (-560)) NIL) (($ (-560) (-560) (-909)) NIL)) (-1601 (((-414 $) $) NIL)) (-3505 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2336 (((-3 $ "failed") $ $) 92)) (-3456 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-4034 (((-560) $) 22)) (-4445 (((-755) $) NIL)) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) 94)) (-1727 (((-909)) NIL) (((-909) (-909)) NIL (|has| $ (-6 -4496)))) (-2834 (((-909) (-560)) NIL (|has| $ (-6 -4496)))) (-4255 (((-375) $) NIL) (((-213) $) NIL) (((-879 (-375)) $) NIL)) (-2801 (((-842) $) 52) (($ (-560)) 63) (($ $) NIL) (($ (-403 (-560))) 66) (($ (-560)) 63) (($ (-403 (-560))) 66) (($ (-375)) 60) (((-375) $) 50) (($ (-682)) 55)) (-1751 (((-755)) 103)) (-4252 (($ (-560) (-560) (-909)) 44)) (-4316 (($ $) NIL)) (-2096 (((-909)) NIL) (((-909) (-909)) NIL (|has| $ (-6 -4496)))) (-2871 (((-909)) 35) (((-909) (-909)) 78)) (-2328 (((-121) $ $) NIL)) (-1822 (($ $) NIL)) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL)) (-3304 (($) 32 T CONST)) (-1459 (($) 17 T CONST)) (-1691 (((-121) $ $) NIL)) (-1675 (((-121) $ $) NIL)) (-1653 (((-121) $ $) 83)) (-1683 (((-121) $ $) NIL)) (-1667 (((-121) $ $) 101)) (-1733 (($ $ $) 65)) (-1725 (($ $) 99) (($ $ $) 100)) (-1716 (($ $ $) 98)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL) (($ $ (-403 (-560))) 90)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) 97) (($ $ $) 88) (($ $ (-403 (-560))) NIL) (($ (-403 (-560)) $) NIL))) -(((-680) (-13 (-400) (-383) (-359) (-1029 (-375)) (-1029 (-403 (-560))) (-148) (-10 -8 (-15 -2110 ((-909) (-909))) (-15 -2110 ((-909))) (-15 -2871 ((-909) (-909))) (-15 -2871 ((-909))) (-15 -1902 ((-560) (-560))) (-15 -1902 ((-560))) (-15 -1783 ((-560) (-560))) (-15 -1783 ((-560))) (-15 -2801 ((-375) $)) (-15 -2801 ($ (-682))) (-15 -4292 ((-560) $)) (-15 -4034 ((-560) $)) (-15 -4252 ($ (-560) (-560) (-909)))))) (T -680)) -((-2871 (*1 *2) (-12 (-5 *2 (-909)) (-5 *1 (-680)))) (-4034 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-680)))) (-4292 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-680)))) (-2110 (*1 *2) (-12 (-5 *2 (-909)) (-5 *1 (-680)))) (-2110 (*1 *2 *2) (-12 (-5 *2 (-909)) (-5 *1 (-680)))) (-2871 (*1 *2 *2) (-12 (-5 *2 (-909)) (-5 *1 (-680)))) (-1902 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-680)))) (-1902 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-680)))) (-1783 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-680)))) (-1783 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-680)))) (-2801 (*1 *2 *1) (-12 (-5 *2 (-375)) (-5 *1 (-680)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-682)) (-5 *1 (-680)))) (-4252 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-560)) (-5 *3 (-909)) (-5 *1 (-680))))) -(-13 (-400) (-383) (-359) (-1029 (-375)) (-1029 (-403 (-560))) (-148) (-10 -8 (-15 -2110 ((-909) (-909))) (-15 -2110 ((-909))) (-15 -2871 ((-909) (-909))) (-15 -2871 ((-909))) (-15 -1902 ((-560) (-560))) (-15 -1902 ((-560))) (-15 -1783 ((-560) (-560))) (-15 -1783 ((-560))) (-15 -2801 ((-375) $)) (-15 -2801 ($ (-682))) (-15 -4292 ((-560) $)) (-15 -4034 ((-560) $)) (-15 -4252 ($ (-560) (-560) (-909))))) -((-1614 (((-671 |#1|) (-671 |#1|) |#1| |#1|) 66)) (-1439 (((-671 |#1|) (-671 |#1|) |#1|) 49)) (-3866 (((-671 |#1|) (-671 |#1|) |#1|) 67)) (-3107 (((-671 |#1|) (-671 |#1|)) 50)) (-1433 (((-2 (|:| -2583 |#1|) (|:| -4397 |#1|)) |#1| |#1|) 65))) -(((-681 |#1|) (-10 -7 (-15 -3107 ((-671 |#1|) (-671 |#1|))) (-15 -1439 ((-671 |#1|) (-671 |#1|) |#1|)) (-15 -3866 ((-671 |#1|) (-671 |#1|) |#1|)) (-15 -1614 ((-671 |#1|) (-671 |#1|) |#1| |#1|)) (-15 -1433 ((-2 (|:| -2583 |#1|) (|:| -4397 |#1|)) |#1| |#1|))) (-296)) (T -681)) -((-1433 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -2583 *3) (|:| -4397 *3))) (-5 *1 (-681 *3)) (-4 *3 (-296)))) (-1614 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-671 *3)) (-4 *3 (-296)) (-5 *1 (-681 *3)))) (-3866 (*1 *2 *2 *3) (-12 (-5 *2 (-671 *3)) (-4 *3 (-296)) (-5 *1 (-681 *3)))) (-1439 (*1 *2 *2 *3) (-12 (-5 *2 (-671 *3)) (-4 *3 (-296)) (-5 *1 (-681 *3)))) (-3107 (*1 *2 *2) (-12 (-5 *2 (-671 *3)) (-4 *3 (-296)) (-5 *1 (-681 *3))))) -(-10 -7 (-15 -3107 ((-671 |#1|) (-671 |#1|))) (-15 -1439 ((-671 |#1|) (-671 |#1|) |#1|)) (-15 -3866 ((-671 |#1|) (-671 |#1|) |#1|)) (-15 -1614 ((-671 |#1|) (-671 |#1|) |#1| |#1|)) (-15 -1433 ((-2 (|:| -2583 |#1|) (|:| -4397 |#1|)) |#1| |#1|))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL)) (-1350 (($ $) NIL)) (-3376 (((-121) $) NIL)) (-3296 (($ $ $) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-2698 (($ $ $ $) NIL)) (-3065 (($ $) NIL)) (-2953 (((-414 $) $) NIL)) (-4179 (((-121) $ $) NIL)) (-4235 (((-560) $) NIL)) (-2956 (($ $ $) NIL)) (-4236 (($) NIL T CONST)) (-1473 (((-3 (-560) "failed") $) 27)) (-3001 (((-560) $) 25)) (-2563 (($ $ $) NIL)) (-2616 (((-671 (-560)) (-671 $)) NIL) (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) NIL)) (-1823 (((-3 $ "failed") $) NIL)) (-1367 (((-3 (-403 (-560)) "failed") $) NIL)) (-1689 (((-121) $) NIL)) (-1519 (((-403 (-560)) $) NIL)) (-1666 (($ $) NIL) (($) NIL)) (-2572 (($ $ $) NIL)) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) NIL)) (-3319 (((-121) $) NIL)) (-2360 (($ $ $ $) NIL)) (-3016 (($ $ $) NIL)) (-1786 (((-121) $) NIL)) (-3634 (($ $ $) NIL)) (-2399 (((-876 (-560) $) $ (-879 (-560)) (-876 (-560) $)) NIL)) (-2642 (((-121) $) NIL)) (-3348 (((-121) $) NIL)) (-1424 (((-3 $ "failed") $) NIL)) (-2187 (((-121) $) NIL)) (-3856 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-4401 (($ $ $ $) NIL)) (-4325 (($ $ $) NIL)) (-2426 (((-909) (-909)) 10) (((-909)) 9)) (-2501 (($ $ $) NIL)) (-4247 (($ $) NIL)) (-2349 (($ $) NIL)) (-2582 (($ (-626 $)) NIL) (($ $ $) NIL)) (-1291 (((-1135) $) NIL)) (-4389 (($ $ $) NIL)) (-1394 (($) NIL T CONST)) (-1813 (($ $) NIL)) (-4353 (((-1100) $) NIL) (($ $) NIL)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL)) (-4440 (($ (-626 $)) NIL) (($ $ $) NIL)) (-2691 (($ $) NIL)) (-1601 (((-414 $) $) NIL)) (-3505 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2336 (((-3 $ "failed") $ $) NIL)) (-3456 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-3522 (((-121) $) NIL)) (-4445 (((-755) $) NIL)) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL)) (-2443 (($ $) NIL) (($ $ (-755)) NIL)) (-2992 (($ $) NIL)) (-2813 (($ $) NIL)) (-4255 (((-213) $) NIL) (((-375) $) NIL) (((-879 (-560)) $) NIL) (((-533) $) NIL) (((-560) $) NIL)) (-2801 (((-842) $) NIL) (($ (-560)) 24) (($ $) NIL) (($ (-560)) 24) (((-304 $) (-304 (-560))) 18)) (-1751 (((-755)) NIL)) (-4189 (((-121) $ $) NIL)) (-2406 (($ $ $) NIL)) (-2871 (($) NIL)) (-2328 (((-121) $ $) NIL)) (-4344 (($ $ $ $) NIL)) (-1822 (($ $) NIL)) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (-3304 (($) NIL T CONST)) (-1459 (($) NIL T CONST)) (-2500 (($ $) NIL) (($ $ (-755)) NIL)) (-1691 (((-121) $ $) NIL)) (-1675 (((-121) $ $) NIL)) (-1653 (((-121) $ $) NIL)) (-1683 (((-121) $ $) NIL)) (-1667 (((-121) $ $) NIL)) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) NIL)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) NIL))) -(((-682) (-13 (-383) (-542) (-10 -8 (-15 -2426 ((-909) (-909))) (-15 -2426 ((-909))) (-15 -2801 ((-304 $) (-304 (-560))))))) (T -682)) -((-2426 (*1 *2 *2) (-12 (-5 *2 (-909)) (-5 *1 (-682)))) (-2426 (*1 *2) (-12 (-5 *2 (-909)) (-5 *1 (-682)))) (-2801 (*1 *2 *3) (-12 (-5 *3 (-304 (-560))) (-5 *2 (-304 (-682))) (-5 *1 (-682))))) -(-13 (-383) (-542) (-10 -8 (-15 -2426 ((-909) (-909))) (-15 -2426 ((-909))) (-15 -2801 ((-304 $) (-304 (-560)))))) -((-1965 (((-1 |#4| |#2| |#3|) |#1| (-1153) (-1153)) 19)) (-1940 (((-1 |#4| |#2| |#3|) (-1153)) 12))) -(((-683 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1940 ((-1 |#4| |#2| |#3|) (-1153))) (-15 -1965 ((-1 |#4| |#2| |#3|) |#1| (-1153) (-1153)))) (-601 (-533)) (-1187) (-1187) (-1187)) (T -683)) -((-1965 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1153)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-683 *3 *5 *6 *7)) (-4 *3 (-601 (-533))) (-4 *5 (-1187)) (-4 *6 (-1187)) (-4 *7 (-1187)))) (-1940 (*1 *2 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-683 *4 *5 *6 *7)) (-4 *4 (-601 (-533))) (-4 *5 (-1187)) (-4 *6 (-1187)) (-4 *7 (-1187))))) -(-10 -7 (-15 -1940 ((-1 |#4| |#2| |#3|) (-1153))) (-15 -1965 ((-1 |#4| |#2| |#3|) |#1| (-1153) (-1153)))) -((-2601 (((-121) $ $) NIL)) (-3534 (((-1241) $ (-755)) 14)) (-2839 (((-755) $) 12)) (-4325 (($ $ $) NIL)) (-2501 (($ $ $) NIL)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2801 (((-842) $) 18) ((|#1| $) 15) (($ |#1|) 23)) (-1691 (((-121) $ $) NIL)) (-1675 (((-121) $ $) NIL)) (-1653 (((-121) $ $) 25)) (-1683 (((-121) $ $) NIL)) (-1667 (((-121) $ $) 24))) -(((-684 |#1|) (-13 (-138) (-600 |#1|) (-10 -8 (-15 -2801 ($ |#1|)))) (-1082)) (T -684)) -((-2801 (*1 *1 *2) (-12 (-5 *1 (-684 *2)) (-4 *2 (-1082))))) -(-13 (-138) (-600 |#1|) (-10 -8 (-15 -2801 ($ |#1|)))) -((-1392 (((-1 (-213) (-213) (-213)) |#1| (-1153) (-1153)) 33) (((-1 (-213) (-213)) |#1| (-1153)) 38))) -(((-685 |#1|) (-10 -7 (-15 -1392 ((-1 (-213) (-213)) |#1| (-1153))) (-15 -1392 ((-1 (-213) (-213) (-213)) |#1| (-1153) (-1153)))) (-601 (-533))) (T -685)) -((-1392 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1153)) (-5 *2 (-1 (-213) (-213) (-213))) (-5 *1 (-685 *3)) (-4 *3 (-601 (-533))))) (-1392 (*1 *2 *3 *4) (-12 (-5 *4 (-1153)) (-5 *2 (-1 (-213) (-213))) (-5 *1 (-685 *3)) (-4 *3 (-601 (-533)))))) -(-10 -7 (-15 -1392 ((-1 (-213) (-213)) |#1| (-1153))) (-15 -1392 ((-1 (-213) (-213) (-213)) |#1| (-1153) (-1153)))) -((-1843 (((-1153) |#1| (-1153) (-626 (-1153))) 9) (((-1153) |#1| (-1153) (-1153) (-1153)) 12) (((-1153) |#1| (-1153) (-1153)) 11) (((-1153) |#1| (-1153)) 10))) -(((-686 |#1|) (-10 -7 (-15 -1843 ((-1153) |#1| (-1153))) (-15 -1843 ((-1153) |#1| (-1153) (-1153))) (-15 -1843 ((-1153) |#1| (-1153) (-1153) (-1153))) (-15 -1843 ((-1153) |#1| (-1153) (-626 (-1153))))) (-601 (-533))) (T -686)) -((-1843 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-626 (-1153))) (-5 *2 (-1153)) (-5 *1 (-686 *3)) (-4 *3 (-601 (-533))))) (-1843 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1153)) (-5 *1 (-686 *3)) (-4 *3 (-601 (-533))))) (-1843 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1153)) (-5 *1 (-686 *3)) (-4 *3 (-601 (-533))))) (-1843 (*1 *2 *3 *2) (-12 (-5 *2 (-1153)) (-5 *1 (-686 *3)) (-4 *3 (-601 (-533)))))) -(-10 -7 (-15 -1843 ((-1153) |#1| (-1153))) (-15 -1843 ((-1153) |#1| (-1153) (-1153))) (-15 -1843 ((-1153) |#1| (-1153) (-1153) (-1153))) (-15 -1843 ((-1153) |#1| (-1153) (-626 (-1153))))) -((-3836 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) -(((-687 |#1| |#2|) (-10 -7 (-15 -3836 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1187) (-1187)) (T -687)) -((-3836 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-687 *3 *4)) (-4 *3 (-1187)) (-4 *4 (-1187))))) -(-10 -7 (-15 -3836 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) -((-2805 (((-1 |#3| |#2|) (-1153)) 11)) (-1965 (((-1 |#3| |#2|) |#1| (-1153)) 21))) -(((-688 |#1| |#2| |#3|) (-10 -7 (-15 -2805 ((-1 |#3| |#2|) (-1153))) (-15 -1965 ((-1 |#3| |#2|) |#1| (-1153)))) (-601 (-533)) (-1187) (-1187)) (T -688)) -((-1965 (*1 *2 *3 *4) (-12 (-5 *4 (-1153)) (-5 *2 (-1 *6 *5)) (-5 *1 (-688 *3 *5 *6)) (-4 *3 (-601 (-533))) (-4 *5 (-1187)) (-4 *6 (-1187)))) (-2805 (*1 *2 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-1 *6 *5)) (-5 *1 (-688 *4 *5 *6)) (-4 *4 (-601 (-533))) (-4 *5 (-1187)) (-4 *6 (-1187))))) -(-10 -7 (-15 -2805 ((-1 |#3| |#2|) (-1153))) (-15 -1965 ((-1 |#3| |#2|) |#1| (-1153)))) -((-3261 (((-3 (-626 (-1149 |#4|)) "failed") (-1149 |#4|) (-626 |#2|) (-626 (-1149 |#4|)) (-626 |#3|) (-626 |#4|) (-626 (-626 (-2 (|:| -2710 (-755)) (|:| |pcoef| |#4|)))) (-626 (-755)) (-1236 (-626 (-1149 |#3|))) |#3|) 58)) (-3966 (((-3 (-626 (-1149 |#4|)) "failed") (-1149 |#4|) (-626 |#2|) (-626 (-1149 |#3|)) (-626 |#3|) (-626 |#4|) (-626 (-755)) |#3|) 71)) (-3491 (((-3 (-626 (-1149 |#4|)) "failed") (-1149 |#4|) (-626 |#2|) (-626 |#3|) (-626 (-755)) (-626 (-1149 |#4|)) (-1236 (-626 (-1149 |#3|))) |#3|) 32))) -(((-689 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3491 ((-3 (-626 (-1149 |#4|)) "failed") (-1149 |#4|) (-626 |#2|) (-626 |#3|) (-626 (-755)) (-626 (-1149 |#4|)) (-1236 (-626 (-1149 |#3|))) |#3|)) (-15 -3966 ((-3 (-626 (-1149 |#4|)) "failed") (-1149 |#4|) (-626 |#2|) (-626 (-1149 |#3|)) (-626 |#3|) (-626 |#4|) (-626 (-755)) |#3|)) (-15 -3261 ((-3 (-626 (-1149 |#4|)) "failed") (-1149 |#4|) (-626 |#2|) (-626 (-1149 |#4|)) (-626 |#3|) (-626 |#4|) (-626 (-626 (-2 (|:| -2710 (-755)) (|:| |pcoef| |#4|)))) (-626 (-755)) (-1236 (-626 (-1149 |#3|))) |#3|))) (-780) (-834) (-296) (-942 |#3| |#1| |#2|)) (T -689)) -((-3261 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-626 (-1149 *13))) (-5 *3 (-1149 *13)) (-5 *4 (-626 *12)) (-5 *5 (-626 *10)) (-5 *6 (-626 *13)) (-5 *7 (-626 (-626 (-2 (|:| -2710 (-755)) (|:| |pcoef| *13))))) (-5 *8 (-626 (-755))) (-5 *9 (-1236 (-626 (-1149 *10)))) (-4 *12 (-834)) (-4 *10 (-296)) (-4 *13 (-942 *10 *11 *12)) (-4 *11 (-780)) (-5 *1 (-689 *11 *12 *10 *13)))) (-3966 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-626 *11)) (-5 *5 (-626 (-1149 *9))) (-5 *6 (-626 *9)) (-5 *7 (-626 *12)) (-5 *8 (-626 (-755))) (-4 *11 (-834)) (-4 *9 (-296)) (-4 *12 (-942 *9 *10 *11)) (-4 *10 (-780)) (-5 *2 (-626 (-1149 *12))) (-5 *1 (-689 *10 *11 *9 *12)) (-5 *3 (-1149 *12)))) (-3491 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-626 (-1149 *11))) (-5 *3 (-1149 *11)) (-5 *4 (-626 *10)) (-5 *5 (-626 *8)) (-5 *6 (-626 (-755))) (-5 *7 (-1236 (-626 (-1149 *8)))) (-4 *10 (-834)) (-4 *8 (-296)) (-4 *11 (-942 *8 *9 *10)) (-4 *9 (-780)) (-5 *1 (-689 *9 *10 *8 *11))))) -(-10 -7 (-15 -3491 ((-3 (-626 (-1149 |#4|)) "failed") (-1149 |#4|) (-626 |#2|) (-626 |#3|) (-626 (-755)) (-626 (-1149 |#4|)) (-1236 (-626 (-1149 |#3|))) |#3|)) (-15 -3966 ((-3 (-626 (-1149 |#4|)) "failed") (-1149 |#4|) (-626 |#2|) (-626 (-1149 |#3|)) (-626 |#3|) (-626 |#4|) (-626 (-755)) |#3|)) (-15 -3261 ((-3 (-626 (-1149 |#4|)) "failed") (-1149 |#4|) (-626 |#2|) (-626 (-1149 |#4|)) (-626 |#3|) (-626 |#4|) (-626 (-626 (-2 (|:| -2710 (-755)) (|:| |pcoef| |#4|)))) (-626 (-755)) (-1236 (-626 (-1149 |#3|))) |#3|))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-2314 (((-3 $ "failed") $ $) 18)) (-4236 (($) 16 T CONST)) (-1750 (($ $) 40)) (-1823 (((-3 $ "failed") $) 33)) (-2642 (((-121) $) 30)) (-1637 (($ |#1| (-755)) 38)) (-3693 (((-755) $) 42)) (-1735 ((|#1| $) 41)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-3662 (((-755) $) 43)) (-2801 (((-842) $) 11) (($ (-560)) 27) (($ |#1|) 37 (|has| |#1| (-170)))) (-2636 ((|#1| $ (-755)) 39)) (-1751 (((-755)) 28)) (-2464 (($ $ (-909)) 25) (($ $ (-755)) 32)) (-3304 (($) 17 T CONST)) (-1459 (($) 29 T CONST)) (-1653 (((-121) $ $) 6)) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 24) (($ $ (-755)) 31)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 23) (($ $ |#1|) 45) (($ |#1| $) 44))) -(((-690 |#1|) (-1267) (-1039)) (T -690)) -((-3662 (*1 *2 *1) (-12 (-4 *1 (-690 *3)) (-4 *3 (-1039)) (-5 *2 (-755)))) (-3693 (*1 *2 *1) (-12 (-4 *1 (-690 *3)) (-4 *3 (-1039)) (-5 *2 (-755)))) (-1735 (*1 *2 *1) (-12 (-4 *1 (-690 *2)) (-4 *2 (-1039)))) (-1750 (*1 *1 *1) (-12 (-4 *1 (-690 *2)) (-4 *2 (-1039)))) (-2636 (*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-4 *1 (-690 *2)) (-4 *2 (-1039)))) (-1637 (*1 *1 *2 *3) (-12 (-5 *3 (-755)) (-4 *1 (-690 *2)) (-4 *2 (-1039))))) -(-13 (-1039) (-120 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-170)) (-6 (-43 |t#1|)) |noBranch|) (-15 -3662 ((-755) $)) (-15 -3693 ((-755) $)) (-15 -1735 (|t#1| $)) (-15 -1750 ($ $)) (-15 -2636 (|t#1| $ (-755))) (-15 -1637 ($ |t#1| (-755))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-43 |#1|) |has| |#1| (-170)) ((-105) . T) ((-120 |#1| |#1|) . T) ((-137) . T) ((-600 (-842)) . T) ((-629 |#1|) . T) ((-629 $) . T) ((-699 |#1|) |has| |#1| (-170)) ((-708) . T) ((-1045 |#1|) . T) ((-1039) . T) ((-1046) . T) ((-1094) . T) ((-1082) . T)) -((-2803 ((|#6| (-1 |#4| |#1|) |#3|) 23))) -(((-691 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2803 (|#6| (-1 |#4| |#1|) |#3|))) (-550) (-1211 |#1|) (-1211 (-403 |#2|)) (-550) (-1211 |#4|) (-1211 (-403 |#5|))) (T -691)) -((-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-550)) (-4 *7 (-550)) (-4 *6 (-1211 *5)) (-4 *2 (-1211 (-403 *8))) (-5 *1 (-691 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1211 (-403 *6))) (-4 *8 (-1211 *7))))) -(-10 -7 (-15 -2803 (|#6| (-1 |#4| |#1|) |#3|))) -((-2601 (((-121) $ $) NIL)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-3521 (((-1135) (-842)) 31)) (-4106 (((-1241) (-1135)) 28)) (-3525 (((-1135) (-842)) 24)) (-3567 (((-1135) (-842)) 25)) (-2801 (((-842) $) NIL) (((-1135) (-842)) 23)) (-1653 (((-121) $ $) NIL))) -(((-692) (-13 (-1082) (-10 -7 (-15 -2801 ((-1135) (-842))) (-15 -3525 ((-1135) (-842))) (-15 -3567 ((-1135) (-842))) (-15 -3521 ((-1135) (-842))) (-15 -4106 ((-1241) (-1135)))))) (T -692)) -((-2801 (*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1135)) (-5 *1 (-692)))) (-3525 (*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1135)) (-5 *1 (-692)))) (-3567 (*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1135)) (-5 *1 (-692)))) (-3521 (*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1135)) (-5 *1 (-692)))) (-4106 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1241)) (-5 *1 (-692))))) -(-13 (-1082) (-10 -7 (-15 -2801 ((-1135) (-842))) (-15 -3525 ((-1135) (-842))) (-15 -3567 ((-1135) (-842))) (-15 -3521 ((-1135) (-842))) (-15 -4106 ((-1241) (-1135))))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL)) (-1350 (($ $) NIL)) (-3376 (((-121) $) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-3065 (($ $) NIL)) (-2953 (((-414 $) $) NIL)) (-4179 (((-121) $ $) NIL)) (-4236 (($) NIL T CONST)) (-2563 (($ $ $) NIL)) (-2342 (($ |#1| |#2|) NIL)) (-1823 (((-3 $ "failed") $) NIL)) (-2572 (($ $ $) NIL)) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) NIL)) (-3319 (((-121) $) NIL)) (-2642 (((-121) $) NIL)) (-3856 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-3254 ((|#2| $) NIL)) (-2582 (($ $ $) NIL) (($ (-626 $)) NIL)) (-1291 (((-1135) $) NIL)) (-1701 (($ $) NIL)) (-4353 (((-1100) $) NIL)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL)) (-4440 (($ $ $) NIL) (($ (-626 $)) NIL)) (-1601 (((-414 $) $) NIL)) (-3505 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2336 (((-3 $ "failed") $ $) NIL)) (-3456 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-3314 (((-3 $ "failed") $ $) NIL)) (-4445 (((-755) $) NIL)) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL)) (-2801 (((-842) $) NIL) (($ (-560)) NIL) (($ $) NIL) (($ (-403 (-560))) NIL) ((|#1| $) NIL)) (-1751 (((-755)) NIL)) (-2328 (((-121) $ $) NIL)) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL)) (-3304 (($) NIL T CONST)) (-1459 (($) NIL T CONST)) (-1653 (((-121) $ $) NIL)) (-1733 (($ $ $) NIL)) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) NIL)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) NIL) (($ $ (-403 (-560))) NIL) (($ (-403 (-560)) $) NIL))) -(((-693 |#1| |#2| |#3| |#4| |#5|) (-13 (-359) (-10 -8 (-15 -3254 (|#2| $)) (-15 -2801 (|#1| $)) (-15 -2342 ($ |#1| |#2|)) (-15 -3314 ((-3 $ "failed") $ $)))) (-170) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -693)) -((-3254 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-693 *3 *2 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2801 (*1 *2 *1) (-12 (-4 *2 (-170)) (-5 *1 (-693 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2342 (*1 *1 *2 *3) (-12 (-5 *1 (-693 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3314 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-693 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(-13 (-359) (-10 -8 (-15 -3254 (|#2| $)) (-15 -2801 (|#1| $)) (-15 -2342 ($ |#1| |#2|)) (-15 -3314 ((-3 $ "failed") $ $)))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) 30)) (-3000 (((-1236 |#1|) $ (-755)) NIL)) (-1654 (((-626 (-1067)) $) NIL)) (-3023 (($ (-1149 |#1|)) NIL)) (-1593 (((-1149 $) $ (-1067)) NIL) (((-1149 |#1|) $) NIL)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL (|has| |#1| (-550)))) (-1350 (($ $) NIL (|has| |#1| (-550)))) (-3376 (((-121) $) NIL (|has| |#1| (-550)))) (-1697 (((-755) $) NIL) (((-755) $ (-626 (-1067))) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-4408 (($ $ $) NIL (|has| |#1| (-550)))) (-1776 (((-414 (-1149 $)) (-1149 $)) NIL (|has| |#1| (-896)))) (-3065 (($ $) NIL (|has| |#1| (-447)))) (-2953 (((-414 $) $) NIL (|has| |#1| (-447)))) (-1887 (((-3 (-626 (-1149 $)) "failed") (-626 (-1149 $)) (-1149 $)) NIL (|has| |#1| (-896)))) (-4179 (((-121) $ $) NIL (|has| |#1| (-359)))) (-2912 (((-755)) 46 (|has| |#1| (-364)))) (-2891 (($ $ (-755)) NIL)) (-2090 (($ $ (-755)) NIL)) (-1315 ((|#2| |#2|) 43)) (-2562 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-447)))) (-4236 (($) NIL T CONST)) (-1473 (((-3 |#1| "failed") $) NIL) (((-3 (-403 (-560)) "failed") $) NIL (|has| |#1| (-1029 (-403 (-560))))) (((-3 (-560) "failed") $) NIL (|has| |#1| (-1029 (-560)))) (((-3 (-1067) "failed") $) NIL)) (-3001 ((|#1| $) NIL) (((-403 (-560)) $) NIL (|has| |#1| (-1029 (-403 (-560))))) (((-560) $) NIL (|has| |#1| (-1029 (-560)))) (((-1067) $) NIL)) (-1979 (($ $ $ (-1067)) NIL (|has| |#1| (-170))) ((|#1| $ $) NIL (|has| |#1| (-170)))) (-2563 (($ $ $) NIL (|has| |#1| (-359)))) (-1750 (($ $) 33)) (-2616 (((-671 (-560)) (-671 $)) NIL (|has| |#1| (-622 (-560)))) (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) NIL (|has| |#1| (-622 (-560)))) (((-2 (|:| -3818 (-671 |#1|)) (|:| |vec| (-1236 |#1|))) (-671 $) (-1236 $)) NIL) (((-671 |#1|) (-671 $)) NIL)) (-2342 (($ |#2|) 41)) (-1823 (((-3 $ "failed") $) 84)) (-1666 (($) 50 (|has| |#1| (-364)))) (-2572 (($ $ $) NIL (|has| |#1| (-359)))) (-2309 (($ $ $) NIL)) (-1332 (($ $ $) NIL (|has| |#1| (-550)))) (-4051 (((-2 (|:| -2169 |#1|) (|:| -2583 $) (|:| -4397 $)) $ $) NIL (|has| |#1| (-550)))) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) NIL (|has| |#1| (-359)))) (-3605 (($ $) NIL (|has| |#1| (-447))) (($ $ (-1067)) NIL (|has| |#1| (-447)))) (-1743 (((-626 $) $) NIL)) (-3319 (((-121) $) NIL (|has| |#1| (-896)))) (-2678 (((-950 $)) 78)) (-1456 (($ $ |#1| (-755) $) NIL)) (-2399 (((-876 (-375) $) $ (-879 (-375)) (-876 (-375) $)) NIL (-12 (|has| (-1067) (-873 (-375))) (|has| |#1| (-873 (-375))))) (((-876 (-560) $) $ (-879 (-560)) (-876 (-560) $)) NIL (-12 (|has| (-1067) (-873 (-560))) (|has| |#1| (-873 (-560)))))) (-3504 (((-755) $ $) NIL (|has| |#1| (-550)))) (-2642 (((-121) $) NIL)) (-3235 (((-755) $) NIL)) (-1424 (((-3 $ "failed") $) NIL (|has| |#1| (-1128)))) (-1647 (($ (-1149 |#1|) (-1067)) NIL) (($ (-1149 $) (-1067)) NIL)) (-3549 (($ $ (-755)) NIL)) (-3856 (((-3 (-626 $) "failed") (-626 $) $) NIL (|has| |#1| (-359)))) (-1854 (((-626 $) $) NIL)) (-1814 (((-121) $) NIL)) (-1637 (($ |#1| (-755)) 76) (($ $ (-1067) (-755)) NIL) (($ $ (-626 (-1067)) (-626 (-755))) NIL)) (-2923 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $ (-1067)) NIL) (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL)) (-3254 ((|#2|) 44)) (-3693 (((-755) $) NIL) (((-755) $ (-1067)) NIL) (((-626 (-755)) $ (-626 (-1067))) NIL)) (-4325 (($ $ $) NIL (|has| |#1| (-834)))) (-2501 (($ $ $) NIL (|has| |#1| (-834)))) (-1504 (($ (-1 (-755) (-755)) $) NIL)) (-2803 (($ (-1 |#1| |#1|) $) NIL)) (-1739 (((-1149 |#1|) $) NIL)) (-2101 (((-3 (-1067) "failed") $) NIL)) (-3142 (((-909) $) NIL (|has| |#1| (-364)))) (-2335 ((|#2| $) 40)) (-1726 (($ $) NIL)) (-1735 ((|#1| $) 28)) (-2582 (($ (-626 $)) NIL (|has| |#1| (-447))) (($ $ $) NIL (|has| |#1| (-447)))) (-1291 (((-1135) $) NIL)) (-2325 (((-2 (|:| -2583 $) (|:| -4397 $)) $ (-755)) NIL)) (-3665 (((-3 (-626 $) "failed") $) NIL)) (-2327 (((-3 (-626 $) "failed") $) NIL)) (-2913 (((-3 (-2 (|:| |var| (-1067)) (|:| -4034 (-755))) "failed") $) NIL)) (-2376 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-1394 (($) NIL (|has| |#1| (-1128)) CONST)) (-1330 (($ (-909)) NIL (|has| |#1| (-364)))) (-4353 (((-1100) $) NIL)) (-1704 (((-121) $) NIL)) (-1711 ((|#1| $) NIL)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL (|has| |#1| (-447)))) (-4440 (($ (-626 $)) NIL (|has| |#1| (-447))) (($ $ $) NIL (|has| |#1| (-447)))) (-4198 (($ $) 77 (|has| |#1| (-344)))) (-3817 (((-414 (-1149 $)) (-1149 $)) NIL (|has| |#1| (-896)))) (-3032 (((-414 (-1149 $)) (-1149 $)) NIL (|has| |#1| (-896)))) (-1601 (((-414 $) $) NIL (|has| |#1| (-896)))) (-3505 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-359))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL (|has| |#1| (-359)))) (-2336 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-550))) (((-3 $ "failed") $ $) 83 (|has| |#1| (-550)))) (-3456 (((-3 (-626 $) "failed") (-626 $) $) NIL (|has| |#1| (-359)))) (-4450 (($ $ (-626 (-283 $))) NIL) (($ $ (-283 $)) NIL) (($ $ $ $) NIL) (($ $ (-626 $) (-626 $)) NIL) (($ $ (-1067) |#1|) NIL) (($ $ (-626 (-1067)) (-626 |#1|)) NIL) (($ $ (-1067) $) NIL) (($ $ (-626 (-1067)) (-626 $)) NIL)) (-4445 (((-755) $) NIL (|has| |#1| (-359)))) (-2778 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-403 $) (-403 $) (-403 $)) NIL (|has| |#1| (-550))) ((|#1| (-403 $) |#1|) NIL (|has| |#1| (-359))) (((-403 $) $ (-403 $)) NIL (|has| |#1| (-550)))) (-1754 (((-3 $ "failed") $ (-755)) NIL)) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) 85 (|has| |#1| (-359)))) (-4069 (($ $ (-1067)) NIL (|has| |#1| (-170))) ((|#1| $) NIL (|has| |#1| (-170)))) (-2443 (($ $ (-1067)) NIL) (($ $ (-626 (-1067))) NIL) (($ $ (-1067) (-755)) NIL) (($ $ (-626 (-1067)) (-626 (-755))) NIL) (($ $ (-755)) NIL) (($ $) NIL) (($ $ (-1153)) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-626 (-1153))) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-1153) (-755)) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-626 (-1153)) (-626 (-755))) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-1 |#1| |#1|) (-755)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3662 (((-755) $) 31) (((-755) $ (-1067)) NIL) (((-626 (-755)) $ (-626 (-1067))) NIL)) (-4255 (((-879 (-375)) $) NIL (-12 (|has| (-1067) (-601 (-879 (-375)))) (|has| |#1| (-601 (-879 (-375)))))) (((-879 (-560)) $) NIL (-12 (|has| (-1067) (-601 (-879 (-560)))) (|has| |#1| (-601 (-879 (-560)))))) (((-533) $) NIL (-12 (|has| (-1067) (-601 (-533))) (|has| |#1| (-601 (-533)))))) (-1896 ((|#1| $) NIL (|has| |#1| (-447))) (($ $ (-1067)) NIL (|has| |#1| (-447)))) (-3248 (((-3 (-1236 $) "failed") (-671 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-896))))) (-4396 (((-950 $)) 35)) (-2791 (((-3 $ "failed") $ $) NIL (|has| |#1| (-550))) (((-3 (-403 $) "failed") (-403 $) $) NIL (|has| |#1| (-550)))) (-2801 (((-842) $) 60) (($ (-560)) NIL) (($ |#1|) 57) (($ (-1067)) NIL) (($ |#2|) 67) (($ (-403 (-560))) NIL (-2318 (|has| |#1| (-43 (-403 (-560)))) (|has| |#1| (-1029 (-403 (-560)))))) (($ $) NIL (|has| |#1| (-550)))) (-2423 (((-626 |#1|) $) NIL)) (-2636 ((|#1| $ (-755)) 62) (($ $ (-1067) (-755)) NIL) (($ $ (-626 (-1067)) (-626 (-755))) NIL)) (-2272 (((-3 $ "failed") $) NIL (-2318 (-12 (|has| $ (-146)) (|has| |#1| (-896))) (|has| |#1| (-146))))) (-1751 (((-755)) NIL)) (-3487 (($ $ $ (-755)) NIL (|has| |#1| (-170)))) (-2328 (((-121) $ $) NIL (|has| |#1| (-550)))) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (-3304 (($) 20 T CONST)) (-3939 (((-1236 |#1|) $) 74)) (-2592 (($ (-1236 |#1|)) 49)) (-1459 (($) 8 T CONST)) (-2500 (($ $ (-1067)) NIL) (($ $ (-626 (-1067))) NIL) (($ $ (-1067) (-755)) NIL) (($ $ (-626 (-1067)) (-626 (-755))) NIL) (($ $ (-755)) NIL) (($ $) NIL) (($ $ (-1153)) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-626 (-1153))) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-1153) (-755)) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-626 (-1153)) (-626 (-755))) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-1 |#1| |#1|) (-755)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4119 (((-1236 |#1|) $) NIL)) (-1691 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1675 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1653 (((-121) $ $) 68)) (-1683 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1667 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1733 (($ $ |#1|) NIL (|has| |#1| (-359)))) (-1725 (($ $) 71) (($ $ $) NIL)) (-1716 (($ $ $) 32)) (** (($ $ (-909)) NIL) (($ $ (-755)) 79)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) 56) (($ $ $) 73) (($ $ (-403 (-560))) NIL (|has| |#1| (-43 (-403 (-560))))) (($ (-403 (-560)) $) NIL (|has| |#1| (-43 (-403 (-560))))) (($ |#1| $) 54) (($ $ |#1|) NIL))) -(((-694 |#1| |#2|) (-13 (-1211 |#1|) (-10 -8 (-15 -1315 (|#2| |#2|)) (-15 -3254 (|#2|)) (-15 -2342 ($ |#2|)) (-15 -2335 (|#2| $)) (-15 -2801 ($ |#2|)) (-15 -3939 ((-1236 |#1|) $)) (-15 -2592 ($ (-1236 |#1|))) (-15 -4119 ((-1236 |#1|) $)) (-15 -2678 ((-950 $))) (-15 -4396 ((-950 $))) (IF (|has| |#1| (-344)) (-15 -4198 ($ $)) |noBranch|) (IF (|has| |#1| (-364)) (-6 (-364)) |noBranch|))) (-1039) (-1211 |#1|)) (T -694)) -((-1315 (*1 *2 *2) (-12 (-4 *3 (-1039)) (-5 *1 (-694 *3 *2)) (-4 *2 (-1211 *3)))) (-3254 (*1 *2) (-12 (-4 *2 (-1211 *3)) (-5 *1 (-694 *3 *2)) (-4 *3 (-1039)))) (-2342 (*1 *1 *2) (-12 (-4 *3 (-1039)) (-5 *1 (-694 *3 *2)) (-4 *2 (-1211 *3)))) (-2335 (*1 *2 *1) (-12 (-4 *2 (-1211 *3)) (-5 *1 (-694 *3 *2)) (-4 *3 (-1039)))) (-2801 (*1 *1 *2) (-12 (-4 *3 (-1039)) (-5 *1 (-694 *3 *2)) (-4 *2 (-1211 *3)))) (-3939 (*1 *2 *1) (-12 (-4 *3 (-1039)) (-5 *2 (-1236 *3)) (-5 *1 (-694 *3 *4)) (-4 *4 (-1211 *3)))) (-2592 (*1 *1 *2) (-12 (-5 *2 (-1236 *3)) (-4 *3 (-1039)) (-5 *1 (-694 *3 *4)) (-4 *4 (-1211 *3)))) (-4119 (*1 *2 *1) (-12 (-4 *3 (-1039)) (-5 *2 (-1236 *3)) (-5 *1 (-694 *3 *4)) (-4 *4 (-1211 *3)))) (-2678 (*1 *2) (-12 (-4 *3 (-1039)) (-5 *2 (-950 (-694 *3 *4))) (-5 *1 (-694 *3 *4)) (-4 *4 (-1211 *3)))) (-4396 (*1 *2) (-12 (-4 *3 (-1039)) (-5 *2 (-950 (-694 *3 *4))) (-5 *1 (-694 *3 *4)) (-4 *4 (-1211 *3)))) (-4198 (*1 *1 *1) (-12 (-4 *2 (-344)) (-4 *2 (-1039)) (-5 *1 (-694 *2 *3)) (-4 *3 (-1211 *2))))) -(-13 (-1211 |#1|) (-10 -8 (-15 -1315 (|#2| |#2|)) (-15 -3254 (|#2|)) (-15 -2342 ($ |#2|)) (-15 -2335 (|#2| $)) (-15 -2801 ($ |#2|)) (-15 -3939 ((-1236 |#1|) $)) (-15 -2592 ($ (-1236 |#1|))) (-15 -4119 ((-1236 |#1|) $)) (-15 -2678 ((-950 $))) (-15 -4396 ((-950 $))) (IF (|has| |#1| (-344)) (-15 -4198 ($ $)) |noBranch|) (IF (|has| |#1| (-364)) (-6 (-364)) |noBranch|))) -((-2601 (((-121) $ $) NIL)) (-4325 (($ $ $) NIL)) (-2501 (($ $ $) NIL)) (-1291 (((-1135) $) NIL)) (-1330 ((|#1| $) 13)) (-4353 (((-1100) $) NIL)) (-4034 ((|#2| $) 12)) (-4162 (($ |#1| |#2|) 16)) (-2801 (((-842) $) NIL) (($ (-2 (|:| -1330 |#1|) (|:| -4034 |#2|))) 15) (((-2 (|:| -1330 |#1|) (|:| -4034 |#2|)) $) 14)) (-1691 (((-121) $ $) NIL)) (-1675 (((-121) $ $) NIL)) (-1653 (((-121) $ $) NIL)) (-1683 (((-121) $ $) NIL)) (-1667 (((-121) $ $) 11))) -(((-695 |#1| |#2| |#3|) (-13 (-834) (-10 -8 (-15 -4034 (|#2| $)) (-15 -1330 (|#1| $)) (-15 -2801 ($ (-2 (|:| -1330 |#1|) (|:| -4034 |#2|)))) (-15 -2801 ((-2 (|:| -1330 |#1|) (|:| -4034 |#2|)) $)) (-15 -4162 ($ |#1| |#2|)))) (-834) (-1082) (-1 (-121) (-2 (|:| -1330 |#1|) (|:| -4034 |#2|)) (-2 (|:| -1330 |#1|) (|:| -4034 |#2|)))) (T -695)) -((-4034 (*1 *2 *1) (-12 (-4 *2 (-1082)) (-5 *1 (-695 *3 *2 *4)) (-4 *3 (-834)) (-14 *4 (-1 (-121) (-2 (|:| -1330 *3) (|:| -4034 *2)) (-2 (|:| -1330 *3) (|:| -4034 *2)))))) (-1330 (*1 *2 *1) (-12 (-4 *2 (-834)) (-5 *1 (-695 *2 *3 *4)) (-4 *3 (-1082)) (-14 *4 (-1 (-121) (-2 (|:| -1330 *2) (|:| -4034 *3)) (-2 (|:| -1330 *2) (|:| -4034 *3)))))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -1330 *3) (|:| -4034 *4))) (-4 *3 (-834)) (-4 *4 (-1082)) (-5 *1 (-695 *3 *4 *5)) (-14 *5 (-1 (-121) *2 *2)))) (-2801 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1330 *3) (|:| -4034 *4))) (-5 *1 (-695 *3 *4 *5)) (-4 *3 (-834)) (-4 *4 (-1082)) (-14 *5 (-1 (-121) *2 *2)))) (-4162 (*1 *1 *2 *3) (-12 (-5 *1 (-695 *2 *3 *4)) (-4 *2 (-834)) (-4 *3 (-1082)) (-14 *4 (-1 (-121) (-2 (|:| -1330 *2) (|:| -4034 *3)) (-2 (|:| -1330 *2) (|:| -4034 *3))))))) -(-13 (-834) (-10 -8 (-15 -4034 (|#2| $)) (-15 -1330 (|#1| $)) (-15 -2801 ($ (-2 (|:| -1330 |#1|) (|:| -4034 |#2|)))) (-15 -2801 ((-2 (|:| -1330 |#1|) (|:| -4034 |#2|)) $)) (-15 -4162 ($ |#1| |#2|)))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) 59)) (-2314 (((-3 $ "failed") $ $) NIL)) (-4236 (($) NIL T CONST)) (-1473 (((-3 |#1| "failed") $) 89) (((-3 (-123) "failed") $) 95)) (-3001 ((|#1| $) NIL) (((-123) $) 39)) (-1823 (((-3 $ "failed") $) 90)) (-2350 ((|#2| (-123) |#2|) 82)) (-2642 (((-121) $) NIL)) (-3451 (($ |#1| (-357 (-123))) 13)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2454 (($ $ (-1 |#2| |#2|)) 58)) (-1470 (($ $ (-1 |#2| |#2|)) 44)) (-2778 ((|#2| $ |#2|) 32)) (-2392 ((|#1| |#1|) 100 (|has| |#1| (-170)))) (-2801 (((-842) $) 66) (($ (-560)) 17) (($ |#1|) 16) (($ (-123)) 23)) (-2272 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1751 (((-755)) 36)) (-3498 (($ $) 99 (|has| |#1| (-170))) (($ $ $) 103 (|has| |#1| (-170)))) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (-3304 (($) 20 T CONST)) (-1459 (($) 9 T CONST)) (-1653 (((-121) $ $) NIL)) (-1725 (($ $) 48) (($ $ $) NIL)) (-1716 (($ $ $) 73)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ (-123) (-560)) NIL) (($ $ (-560)) 57)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-170))) (($ $ |#1|) 97 (|has| |#1| (-170))))) -(((-696 |#1| |#2|) (-13 (-1039) (-1029 |#1|) (-1029 (-123)) (-276 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |noBranch|) (IF (|has| |#1| (-170)) (PROGN (-6 (-43 |#1|)) (-15 -3498 ($ $)) (-15 -3498 ($ $ $)) (-15 -2392 (|#1| |#1|))) |noBranch|) (-15 -1470 ($ $ (-1 |#2| |#2|))) (-15 -2454 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-123) (-560))) (-15 ** ($ $ (-560))) (-15 -2350 (|#2| (-123) |#2|)) (-15 -3451 ($ |#1| (-357 (-123)))))) (-1039) (-629 |#1|)) (T -696)) -((-3498 (*1 *1 *1) (-12 (-4 *2 (-170)) (-4 *2 (-1039)) (-5 *1 (-696 *2 *3)) (-4 *3 (-629 *2)))) (-3498 (*1 *1 *1 *1) (-12 (-4 *2 (-170)) (-4 *2 (-1039)) (-5 *1 (-696 *2 *3)) (-4 *3 (-629 *2)))) (-2392 (*1 *2 *2) (-12 (-4 *2 (-170)) (-4 *2 (-1039)) (-5 *1 (-696 *2 *3)) (-4 *3 (-629 *2)))) (-1470 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-629 *3)) (-4 *3 (-1039)) (-5 *1 (-696 *3 *4)))) (-2454 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-629 *3)) (-4 *3 (-1039)) (-5 *1 (-696 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-123)) (-5 *3 (-560)) (-4 *4 (-1039)) (-5 *1 (-696 *4 *5)) (-4 *5 (-629 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-4 *3 (-1039)) (-5 *1 (-696 *3 *4)) (-4 *4 (-629 *3)))) (-2350 (*1 *2 *3 *2) (-12 (-5 *3 (-123)) (-4 *4 (-1039)) (-5 *1 (-696 *4 *2)) (-4 *2 (-629 *4)))) (-3451 (*1 *1 *2 *3) (-12 (-5 *3 (-357 (-123))) (-4 *2 (-1039)) (-5 *1 (-696 *2 *4)) (-4 *4 (-629 *2))))) -(-13 (-1039) (-1029 |#1|) (-1029 (-123)) (-276 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |noBranch|) (IF (|has| |#1| (-170)) (PROGN (-6 (-43 |#1|)) (-15 -3498 ($ $)) (-15 -3498 ($ $ $)) (-15 -2392 (|#1| |#1|))) |noBranch|) (-15 -1470 ($ $ (-1 |#2| |#2|))) (-15 -2454 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-123) (-560))) (-15 ** ($ $ (-560))) (-15 -2350 (|#2| (-123) |#2|)) (-15 -3451 ($ |#1| (-357 (-123)))))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) 33)) (-2314 (((-3 $ "failed") $ $) NIL)) (-4236 (($) NIL T CONST)) (-2342 (($ |#1| |#2|) 25)) (-1823 (((-3 $ "failed") $) 47)) (-2642 (((-121) $) 35)) (-3254 ((|#2| $) 12)) (-1291 (((-1135) $) NIL)) (-1701 (($ $) 48)) (-4353 (((-1100) $) NIL)) (-3314 (((-3 $ "failed") $ $) 46)) (-2801 (((-842) $) 24) (($ (-560)) 19) ((|#1| $) 13)) (-1751 (((-755)) 28)) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (-3304 (($) 16 T CONST)) (-1459 (($) 30 T CONST)) (-1653 (((-121) $ $) 38)) (-1725 (($ $) 43) (($ $ $) 37)) (-1716 (($ $ $) 40)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) 21) (($ $ $) 20))) -(((-697 |#1| |#2| |#3| |#4| |#5|) (-13 (-1039) (-10 -8 (-15 -3254 (|#2| $)) (-15 -2801 (|#1| $)) (-15 -2342 ($ |#1| |#2|)) (-15 -3314 ((-3 $ "failed") $ $)) (-15 -1823 ((-3 $ "failed") $)) (-15 -1701 ($ $)))) (-170) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -697)) -((-1823 (*1 *1 *1) (|partial| -12 (-5 *1 (-697 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3254 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-697 *3 *2 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2801 (*1 *2 *1) (-12 (-4 *2 (-170)) (-5 *1 (-697 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2342 (*1 *1 *2 *3) (-12 (-5 *1 (-697 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3314 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-697 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1701 (*1 *1 *1) (-12 (-5 *1 (-697 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(-13 (-1039) (-10 -8 (-15 -3254 (|#2| $)) (-15 -2801 (|#1| $)) (-15 -2342 ($ |#1| |#2|)) (-15 -3314 ((-3 $ "failed") $ $)) (-15 -1823 ((-3 $ "failed") $)) (-15 -1701 ($ $)))) -((* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9))) -(((-698 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 * (|#1| (-755) |#1|)) (-15 * (|#1| (-909) |#1|))) (-699 |#2|) (-170)) (T -698)) -NIL -(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 * (|#1| (-755) |#1|)) (-15 * (|#1| (-909) |#1|))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-2314 (((-3 $ "failed") $ $) 18)) (-4236 (($) 16 T CONST)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-2801 (((-842) $) 11)) (-3304 (($) 17 T CONST)) (-1653 (((-121) $ $) 6)) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ |#1| $) 22) (($ $ |#1|) 24))) -(((-699 |#1|) (-1267) (-170)) (T -699)) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) 15)) (-3134 (((-3 $ "failed") $ $) NIL)) (-2671 (($) NIL T CONST)) (-2317 ((|#1| $) 21)) (-2521 (($ $ $) NIL (|has| |#1| (-786)))) (-3268 (($ $ $) NIL (|has| |#1| (-786)))) (-4487 (((-1143) $) 46)) (-4022 (((-1108) $) NIL)) (-2324 ((|#3| $) 22)) (-2745 (((-850) $) 42)) (-3056 (($) 10 T CONST)) (-1751 (((-121) $ $) NIL (|has| |#1| (-786)))) (-1738 (((-121) $ $) NIL (|has| |#1| (-786)))) (-1717 (((-121) $ $) 20)) (-1745 (((-121) $ $) NIL (|has| |#1| (-786)))) (-1732 (((-121) $ $) 24 (|has| |#1| (-786)))) (-1779 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-1773 (($ $) 17) (($ $ $) NIL)) (-1767 (($ $ $) 27)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL))) +(((-652 |#1| |#2| |#3|) (-13 (-707 |#2|) (-10 -8 (IF (|has| |#1| (-786)) (-6 (-786)) |noBranch|) (-15 -1779 ($ $ |#3|)) (-15 -1779 ($ |#1| |#3|)) (-15 -2317 (|#1| $)) (-15 -2324 (|#3| $)))) (-707 |#2|) (-172) (|SubsetCategory| (-716) |#2|)) (T -652)) +((-1779 (*1 *1 *1 *2) (-12 (-4 *4 (-172)) (-5 *1 (-652 *3 *4 *2)) (-4 *3 (-707 *4)) (-4 *2 (|SubsetCategory| (-716) *4)))) (-1779 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-652 *2 *4 *3)) (-4 *2 (-707 *4)) (-4 *3 (|SubsetCategory| (-716) *4)))) (-2317 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-707 *3)) (-5 *1 (-652 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-716) *3)))) (-2324 (*1 *2 *1) (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-716) *4)) (-5 *1 (-652 *3 *4 *2)) (-4 *3 (-707 *4))))) +(-13 (-707 |#2|) (-10 -8 (IF (|has| |#1| (-786)) (-6 (-786)) |noBranch|) (-15 -1779 ($ $ |#3|)) (-15 -1779 ($ |#1| |#3|)) (-15 -2317 (|#1| $)) (-15 -2324 (|#3| $)))) +((-1393 (((-679 |#1|) (-679 |#1|)) 27)) (-1582 (((-679 |#1|) (-679 |#1|)) 26)) (-3726 (((-634 (-634 |#1|)) (-634 |#1|) (-634 (-634 |#1|))) 44)) (-2910 (((-634 (-634 |#1|)) (-634 (-634 |#1|))) 29)) (-3108 (((-634 |#1|) (-634 |#1|) (-634 |#1|) |#1|) 43)) (-2228 (((-634 (-634 |#1|)) (-634 (-634 |#1|)) (-634 (-634 |#1|))) 34))) +(((-653 |#1|) (-10 -7 (-15 -1393 ((-679 |#1|) (-679 |#1|))) (-15 -1582 ((-679 |#1|) (-679 |#1|))) (-15 -2910 ((-634 (-634 |#1|)) (-634 (-634 |#1|)))) (-15 -2228 ((-634 (-634 |#1|)) (-634 (-634 |#1|)) (-634 (-634 |#1|)))) (-15 -3108 ((-634 |#1|) (-634 |#1|) (-634 |#1|) |#1|)) (-15 -3726 ((-634 (-634 |#1|)) (-634 |#1|) (-634 (-634 |#1|))))) (-365)) (T -653)) +((-3726 (*1 *2 *3 *2) (-12 (-5 *2 (-634 (-634 *4))) (-5 *3 (-634 *4)) (-4 *4 (-365)) (-5 *1 (-653 *4)))) (-3108 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-634 *3)) (-4 *3 (-365)) (-5 *1 (-653 *3)))) (-2228 (*1 *2 *2 *2) (-12 (-5 *2 (-634 (-634 *3))) (-4 *3 (-365)) (-5 *1 (-653 *3)))) (-2910 (*1 *2 *2) (-12 (-5 *2 (-634 (-634 *3))) (-4 *3 (-365)) (-5 *1 (-653 *3)))) (-1582 (*1 *2 *2) (-12 (-5 *2 (-679 *3)) (-4 *3 (-365)) (-5 *1 (-653 *3)))) (-1393 (*1 *2 *2) (-12 (-5 *2 (-679 *3)) (-4 *3 (-365)) (-5 *1 (-653 *3))))) +(-10 -7 (-15 -1393 ((-679 |#1|) (-679 |#1|))) (-15 -1582 ((-679 |#1|) (-679 |#1|))) (-15 -2910 ((-634 (-634 |#1|)) (-634 (-634 |#1|)))) (-15 -2228 ((-634 (-634 |#1|)) (-634 (-634 |#1|)) (-634 (-634 |#1|)))) (-15 -3108 ((-634 |#1|) (-634 |#1|) (-634 |#1|) |#1|)) (-15 -3726 ((-634 (-634 |#1|)) (-634 |#1|) (-634 (-634 |#1|))))) +((-1277 (((-121)) 46) (((-121) (-121)) 47)) (-3427 ((|#7| |#5| |#3|) 44)) (-1279 ((|#5| |#7|) 29)) (-4026 (((-2 (|:| |fnc| |#3|) (|:| |crv| |#3|) (|:| |chart| (-634 (-568)))) |#3| |#5| |#3| (-568)) 99)) (-4252 (((-634 |#6|) |#5| |#3| (-568)) 35))) +(((-654 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1277 ((-121) (-121))) (-15 -1277 ((-121))) (-15 -3427 (|#7| |#5| |#3|)) (-15 -4252 ((-634 |#6|) |#5| |#3| (-568))) (-15 -1279 (|#5| |#7|)) (-15 -4026 ((-2 (|:| |fnc| |#3|) (|:| |crv| |#3|) (|:| |chart| (-634 (-568)))) |#3| |#5| |#3| (-568)))) (-365) (-634 (-1161)) (-950 |#1| |#4| (-852 |#2|)) (-230 (-1697 |#2|) (-763)) (-971 |#1|) (-641 |#1|) (-920 |#1| |#6|)) (T -654)) +((-4026 (*1 *2 *3 *4 *3 *5) (-12 (-4 *6 (-365)) (-14 *7 (-634 (-1161))) (-4 *8 (-230 (-1697 *7) (-763))) (-4 *9 (-641 *6)) (-5 *2 (-2 (|:| |fnc| *3) (|:| |crv| *3) (|:| |chart| (-634 (-568))))) (-5 *1 (-654 *6 *7 *3 *8 *4 *9 *10)) (-5 *5 (-568)) (-4 *3 (-950 *6 *8 (-852 *7))) (-4 *4 (-971 *6)) (-4 *10 (-920 *6 *9)))) (-1279 (*1 *2 *3) (-12 (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *7 (-230 (-1697 *5) (-763))) (-4 *8 (-641 *4)) (-4 *2 (-971 *4)) (-5 *1 (-654 *4 *5 *6 *7 *2 *8 *3)) (-4 *6 (-950 *4 *7 (-852 *5))) (-4 *3 (-920 *4 *8)))) (-4252 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-568)) (-4 *6 (-365)) (-14 *7 (-634 (-1161))) (-4 *8 (-230 (-1697 *7) (-763))) (-4 *9 (-641 *6)) (-5 *2 (-634 *9)) (-5 *1 (-654 *6 *7 *4 *8 *3 *9 *10)) (-4 *4 (-950 *6 *8 (-852 *7))) (-4 *3 (-971 *6)) (-4 *10 (-920 *6 *9)))) (-3427 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-14 *6 (-634 (-1161))) (-4 *7 (-230 (-1697 *6) (-763))) (-4 *2 (-920 *5 *8)) (-5 *1 (-654 *5 *6 *4 *7 *3 *8 *2)) (-4 *4 (-950 *5 *7 (-852 *6))) (-4 *3 (-971 *5)) (-4 *8 (-641 *5)))) (-1277 (*1 *2) (-12 (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *6 (-230 (-1697 *4) (-763))) (-4 *8 (-641 *3)) (-5 *2 (-121)) (-5 *1 (-654 *3 *4 *5 *6 *7 *8 *9)) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *7 (-971 *3)) (-4 *9 (-920 *3 *8)))) (-1277 (*1 *2 *2) (-12 (-5 *2 (-121)) (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *6 (-230 (-1697 *4) (-763))) (-4 *8 (-641 *3)) (-5 *1 (-654 *3 *4 *5 *6 *7 *8 *9)) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *7 (-971 *3)) (-4 *9 (-920 *3 *8))))) +(-10 -7 (-15 -1277 ((-121) (-121))) (-15 -1277 ((-121))) (-15 -3427 (|#7| |#5| |#3|)) (-15 -4252 ((-634 |#6|) |#5| |#3| (-568))) (-15 -1279 (|#5| |#7|)) (-15 -4026 ((-2 (|:| |fnc| |#3|) (|:| |crv| |#3|) (|:| |chart| (-634 (-568)))) |#3| |#5| |#3| (-568)))) +((-3588 (((-3 (-634 (-1157 |#1|)) "failed") (-634 (-1157 |#1|)) (-1157 |#1|)) 33))) +(((-655 |#1|) (-10 -7 (-15 -3588 ((-3 (-634 (-1157 |#1|)) "failed") (-634 (-1157 |#1|)) (-1157 |#1|)))) (-904)) (T -655)) +((-3588 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-634 (-1157 *4))) (-5 *3 (-1157 *4)) (-4 *4 (-904)) (-5 *1 (-655 *4))))) +(-10 -7 (-15 -3588 ((-3 (-634 (-1157 |#1|)) "failed") (-634 (-1157 |#1|)) (-1157 |#1|)))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-3595 (((-634 |#1|) $) 82)) (-2821 (($ $ (-763)) 90)) (-3134 (((-3 $ "failed") $ $) NIL)) (-2671 (($) NIL T CONST)) (-2628 (((-1266 |#1| |#2|) (-1266 |#1| |#2|) $) 48)) (-3666 (((-3 (-663 |#1|) "failed") $) NIL)) (-2854 (((-663 |#1|) $) NIL)) (-2114 (($ $) 89)) (-4178 (((-763) $) NIL)) (-2976 (((-634 $) $) NIL)) (-3921 (((-121) $) NIL)) (-2354 (($ (-663 |#1|) |#2|) 68)) (-2407 (($ $) 86)) (-2795 (($ (-1 |#2| |#2|) $) NIL)) (-2532 (((-1266 |#1| |#2|) (-1266 |#1| |#2|) $) 47)) (-4297 (((-634 (-2 (|:| |k| (-663 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2315 (((-2 (|:| |k| (-663 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2097 (((-663 |#1|) $) NIL)) (-2102 ((|#2| $) NIL)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-1339 (($ $ |#1| $) 30) (($ $ (-634 |#1|) (-634 $)) 32)) (-3206 (((-763) $) 88)) (-4287 (($ $ $) 20) (($ (-663 |#1|) (-663 |#1|)) 77) (($ (-663 |#1|) $) 75) (($ $ (-663 |#1|)) 76)) (-2745 (((-850) $) NIL) (($ |#1|) 74) (((-1257 |#1| |#2|) $) 58) (((-1266 |#1| |#2|) $) 41) (($ (-663 |#1|)) 25)) (-1302 (((-634 |#2|) $) NIL)) (-2604 ((|#2| $ (-663 |#1|)) NIL)) (-2348 ((|#2| (-1266 |#1| |#2|) $) 43)) (-3056 (($) 23 T CONST)) (-2253 (((-3 $ "failed") (-1257 |#1| |#2|)) 60)) (-3903 (($ (-663 |#1|)) 14)) (-1717 (((-121) $ $) 44)) (-1779 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-1773 (($ $) 66) (($ $ $) NIL)) (-1767 (($ $ $) 29)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-663 |#1|)) NIL))) +(((-656 |#1| |#2|) (-13 (-376 |#1| |#2|) (-384 |#2| (-663 |#1|)) (-10 -8 (-15 -2253 ((-3 $ "failed") (-1257 |#1| |#2|))) (-15 -4287 ($ (-663 |#1|) (-663 |#1|))) (-15 -4287 ($ (-663 |#1|) $)) (-15 -4287 ($ $ (-663 |#1|))))) (-842) (-172)) (T -656)) +((-2253 (*1 *1 *2) (|partial| -12 (-5 *2 (-1257 *3 *4)) (-4 *3 (-842)) (-4 *4 (-172)) (-5 *1 (-656 *3 *4)))) (-4287 (*1 *1 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-842)) (-5 *1 (-656 *3 *4)) (-4 *4 (-172)))) (-4287 (*1 *1 *2 *1) (-12 (-5 *2 (-663 *3)) (-4 *3 (-842)) (-5 *1 (-656 *3 *4)) (-4 *4 (-172)))) (-4287 (*1 *1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-842)) (-5 *1 (-656 *3 *4)) (-4 *4 (-172))))) +(-13 (-376 |#1| |#2|) (-384 |#2| (-663 |#1|)) (-10 -8 (-15 -2253 ((-3 $ "failed") (-1257 |#1| |#2|))) (-15 -4287 ($ (-663 |#1|) (-663 |#1|))) (-15 -4287 ($ (-663 |#1|) $)) (-15 -4287 ($ $ (-663 |#1|))))) +((-2016 (((-121) $) NIL) (((-121) (-1 (-121) |#2| |#2|) $) 49)) (-3908 (($ $) NIL) (($ (-1 (-121) |#2| |#2|) $) 11)) (-3507 (($ (-1 (-121) |#2|) $) 27)) (-1578 (($ $) 55)) (-3369 (($ $) 62)) (-3405 (($ |#2| $) NIL) (($ (-1 (-121) |#2|) $) 36)) (-3092 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52)) (-2764 (((-568) |#2| $ (-568)) 60) (((-568) |#2| $) NIL) (((-568) (-1 (-121) |#2|) $) 46)) (-1849 (($ (-763) |#2|) 53)) (-3349 (($ $ $) NIL) (($ (-1 (-121) |#2| |#2|) $ $) 29)) (-1347 (($ $ $) NIL) (($ (-1 (-121) |#2| |#2|) $ $) 24)) (-2795 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 54)) (-3896 (($ |#2|) 14)) (-4450 (($ $ $ (-568)) 35) (($ |#2| $ (-568)) 33)) (-3775 (((-3 |#2| "failed") (-1 (-121) |#2|) $) 45)) (-1783 (($ $ (-1210 (-568))) 43) (($ $ (-568)) 37)) (-2256 (($ $ $ (-568)) 59)) (-3863 (($ $) 57)) (-1732 (((-121) $ $) 64))) +(((-657 |#1| |#2|) (-10 -8 (-15 -3896 (|#1| |#2|)) (-15 -1783 (|#1| |#1| (-568))) (-15 -1783 (|#1| |#1| (-1210 (-568)))) (-15 -3405 (|#1| (-1 (-121) |#2|) |#1|)) (-15 -4450 (|#1| |#2| |#1| (-568))) (-15 -4450 (|#1| |#1| |#1| (-568))) (-15 -3349 (|#1| (-1 (-121) |#2| |#2|) |#1| |#1|)) (-15 -3507 (|#1| (-1 (-121) |#2|) |#1|)) (-15 -3405 (|#1| |#2| |#1|)) (-15 -3369 (|#1| |#1|)) (-15 -3349 (|#1| |#1| |#1|)) (-15 -1347 (|#1| (-1 (-121) |#2| |#2|) |#1| |#1|)) (-15 -2016 ((-121) (-1 (-121) |#2| |#2|) |#1|)) (-15 -2764 ((-568) (-1 (-121) |#2|) |#1|)) (-15 -2764 ((-568) |#2| |#1|)) (-15 -2764 ((-568) |#2| |#1| (-568))) (-15 -1347 (|#1| |#1| |#1|)) (-15 -2016 ((-121) |#1|)) (-15 -2256 (|#1| |#1| |#1| (-568))) (-15 -1578 (|#1| |#1|)) (-15 -3908 (|#1| (-1 (-121) |#2| |#2|) |#1|)) (-15 -3908 (|#1| |#1|)) (-15 -1732 ((-121) |#1| |#1|)) (-15 -3092 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3092 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3092 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3775 ((-3 |#2| "failed") (-1 (-121) |#2|) |#1|)) (-15 -1849 (|#1| (-763) |#2|)) (-15 -2795 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2795 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3863 (|#1| |#1|))) (-658 |#2|) (-1195)) (T -657)) +NIL +(-10 -8 (-15 -3896 (|#1| |#2|)) (-15 -1783 (|#1| |#1| (-568))) (-15 -1783 (|#1| |#1| (-1210 (-568)))) (-15 -3405 (|#1| (-1 (-121) |#2|) |#1|)) (-15 -4450 (|#1| |#2| |#1| (-568))) (-15 -4450 (|#1| |#1| |#1| (-568))) (-15 -3349 (|#1| (-1 (-121) |#2| |#2|) |#1| |#1|)) (-15 -3507 (|#1| (-1 (-121) |#2|) |#1|)) (-15 -3405 (|#1| |#2| |#1|)) (-15 -3369 (|#1| |#1|)) (-15 -3349 (|#1| |#1| |#1|)) (-15 -1347 (|#1| (-1 (-121) |#2| |#2|) |#1| |#1|)) (-15 -2016 ((-121) (-1 (-121) |#2| |#2|) |#1|)) (-15 -2764 ((-568) (-1 (-121) |#2|) |#1|)) (-15 -2764 ((-568) |#2| |#1|)) (-15 -2764 ((-568) |#2| |#1| (-568))) (-15 -1347 (|#1| |#1| |#1|)) (-15 -2016 ((-121) |#1|)) (-15 -2256 (|#1| |#1| |#1| (-568))) (-15 -1578 (|#1| |#1|)) (-15 -3908 (|#1| (-1 (-121) |#2| |#2|) |#1|)) (-15 -3908 (|#1| |#1|)) (-15 -1732 ((-121) |#1| |#1|)) (-15 -3092 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3092 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3092 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3775 ((-3 |#2| "failed") (-1 (-121) |#2|) |#1|)) (-15 -1849 (|#1| (-763) |#2|)) (-15 -2795 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2795 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3863 (|#1| |#1|))) +((-2447 (((-121) $ $) 18 (|has| |#1| (-1090)))) (-2850 ((|#1| $) 45)) (-2235 ((|#1| $) 62)) (-2796 (($ $) 64)) (-1868 (((-1249) $ (-568) (-568)) 94 (|has| $ (-6 -4520)))) (-3910 (($ $ (-568)) 49 (|has| $ (-6 -4520)))) (-2016 (((-121) $) 136 (|has| |#1| (-842))) (((-121) (-1 (-121) |#1| |#1|) $) 130)) (-3908 (($ $) 140 (-12 (|has| |#1| (-842)) (|has| $ (-6 -4520)))) (($ (-1 (-121) |#1| |#1|) $) 139 (|has| $ (-6 -4520)))) (-3644 (($ $) 135 (|has| |#1| (-842))) (($ (-1 (-121) |#1| |#1|) $) 129)) (-2510 (((-121) $ (-763)) 8)) (-1659 ((|#1| $ |#1|) 36 (|has| $ (-6 -4520)))) (-3869 (($ $ $) 53 (|has| $ (-6 -4520)))) (-2395 ((|#1| $ |#1|) 51 (|has| $ (-6 -4520)))) (-2517 ((|#1| $ |#1|) 55 (|has| $ (-6 -4520)))) (-2436 ((|#1| $ "value" |#1|) 37 (|has| $ (-6 -4520))) ((|#1| $ "first" |#1|) 54 (|has| $ (-6 -4520))) (($ $ "rest" $) 52 (|has| $ (-6 -4520))) ((|#1| $ "last" |#1|) 50 (|has| $ (-6 -4520))) ((|#1| $ (-1210 (-568)) |#1|) 114 (|has| $ (-6 -4520))) ((|#1| $ (-568) |#1|) 83 (|has| $ (-6 -4520)))) (-3827 (($ $ (-634 $)) 38 (|has| $ (-6 -4520)))) (-3507 (($ (-1 (-121) |#1|) $) 123)) (-2801 (($ (-1 (-121) |#1|) $) 99 (|has| $ (-6 -4519)))) (-1679 ((|#1| $) 63)) (-2671 (($) 7 T CONST)) (-1578 (($ $) 138 (|has| $ (-6 -4520)))) (-3943 (($ $) 128)) (-3935 (($ $) 70) (($ $ (-763)) 68)) (-3369 (($ $) 125 (|has| |#1| (-1090)))) (-3924 (($ $) 96 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-3405 (($ |#1| $) 124 (|has| |#1| (-1090))) (($ (-1 (-121) |#1|) $) 119)) (-4328 (($ (-1 (-121) |#1|) $) 100 (|has| $ (-6 -4519))) (($ |#1| $) 97 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-3092 ((|#1| (-1 |#1| |#1| |#1|) $) 102 (|has| $ (-6 -4519))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 101 (|has| $ (-6 -4519))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 98 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-3989 ((|#1| $ (-568) |#1|) 82 (|has| $ (-6 -4520)))) (-2602 ((|#1| $ (-568)) 84)) (-1601 (((-121) $) 80)) (-2764 (((-568) |#1| $ (-568)) 133 (|has| |#1| (-1090))) (((-568) |#1| $) 132 (|has| |#1| (-1090))) (((-568) (-1 (-121) |#1|) $) 131)) (-4360 (((-634 |#1|) $) 30 (|has| $ (-6 -4519)))) (-2287 (((-634 $) $) 47)) (-1700 (((-121) $ $) 39 (|has| |#1| (-1090)))) (-1849 (($ (-763) |#1|) 105)) (-1737 (((-121) $ (-763)) 9)) (-1881 (((-568) $) 92 (|has| (-568) (-842)))) (-2521 (($ $ $) 141 (|has| |#1| (-842)))) (-3349 (($ $ $) 126 (|has| |#1| (-842))) (($ (-1 (-121) |#1| |#1|) $ $) 122)) (-1347 (($ $ $) 134 (|has| |#1| (-842))) (($ (-1 (-121) |#1| |#1|) $ $) 127)) (-1979 (((-634 |#1|) $) 29 (|has| $ (-6 -4519)))) (-3109 (((-121) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-2223 (((-568) $) 91 (|has| (-568) (-842)))) (-3268 (($ $ $) 142 (|has| |#1| (-842)))) (-3674 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 108)) (-3896 (($ |#1|) 116)) (-2166 (((-121) $ (-763)) 10)) (-2869 (((-634 |#1|) $) 42)) (-1651 (((-121) $) 46)) (-4487 (((-1143) $) 22 (|has| |#1| (-1090)))) (-4162 ((|#1| $) 67) (($ $ (-763)) 65)) (-4450 (($ $ $ (-568)) 121) (($ |#1| $ (-568)) 120)) (-4122 (($ $ $ (-568)) 113) (($ |#1| $ (-568)) 112)) (-4174 (((-634 (-568)) $) 89)) (-3578 (((-121) (-568) $) 88)) (-4022 (((-1108) $) 21 (|has| |#1| (-1090)))) (-3876 ((|#1| $) 73) (($ $ (-763)) 71)) (-3775 (((-3 |#1| "failed") (-1 (-121) |#1|) $) 103)) (-3724 (($ $ |#1|) 93 (|has| $ (-6 -4520)))) (-1786 (((-121) $) 81)) (-1387 (((-121) (-1 (-121) |#1|) $) 32 (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-634 |#1|) (-634 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))))) (-3171 (((-121) $ $) 14)) (-4467 (((-121) |#1| $) 90 (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-2041 (((-634 |#1|) $) 87)) (-3084 (((-121) $) 11)) (-3248 (($) 12)) (-2779 ((|#1| $ "value") 44) ((|#1| $ "first") 72) (($ $ "rest") 69) ((|#1| $ "last") 66) (($ $ (-1210 (-568))) 109) ((|#1| $ (-568)) 86) ((|#1| $ (-568) |#1|) 85)) (-4075 (((-568) $ $) 41)) (-1783 (($ $ (-1210 (-568))) 118) (($ $ (-568)) 117)) (-2826 (($ $ (-1210 (-568))) 111) (($ $ (-568)) 110)) (-3790 (((-121) $) 43)) (-2340 (($ $) 59)) (-2714 (($ $) 56 (|has| $ (-6 -4520)))) (-2775 (((-763) $) 60)) (-3335 (($ $) 61)) (-4168 (((-763) (-1 (-121) |#1|) $) 31 (|has| $ (-6 -4519))) (((-763) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-2256 (($ $ $ (-568)) 137 (|has| $ (-6 -4520)))) (-3863 (($ $) 13)) (-4278 (((-541) $) 95 (|has| |#1| (-609 (-541))))) (-4287 (($ (-634 |#1|)) 104)) (-3845 (($ $ $) 58) (($ $ |#1|) 57)) (-2768 (($ $ $) 75) (($ |#1| $) 74) (($ (-634 $)) 107) (($ $ |#1|) 106)) (-2745 (((-850) $) 20 (|has| |#1| (-1090)))) (-4339 (((-634 $) $) 48)) (-3491 (((-121) $ $) 40 (|has| |#1| (-1090)))) (-1319 (((-121) (-1 (-121) |#1|) $) 33 (|has| $ (-6 -4519)))) (-1751 (((-121) $ $) 144 (|has| |#1| (-842)))) (-1738 (((-121) $ $) 145 (|has| |#1| (-842)))) (-1717 (((-121) $ $) 19 (|has| |#1| (-1090)))) (-1745 (((-121) $ $) 143 (|has| |#1| (-842)))) (-1732 (((-121) $ $) 146 (|has| |#1| (-842)))) (-1697 (((-763) $) 6 (|has| $ (-6 -4519))))) +(((-658 |#1|) (-1275) (-1195)) (T -658)) +((-3896 (*1 *1 *2) (-12 (-4 *1 (-658 *2)) (-4 *2 (-1195))))) +(-13 (-1134 |t#1|) (-375 |t#1|) (-277 |t#1|) (-10 -8 (-15 -3896 ($ |t#1|)))) +(((-39) . T) ((-105) -2198 (|has| |#1| (-1090)) (|has| |#1| (-842))) ((-608 (-850)) -2198 (|has| |#1| (-1090)) (|has| |#1| (-842))) ((-154 |#1|) . T) ((-609 (-541)) |has| |#1| (-609 (-541))) ((-281 (-568) |#1|) . T) ((-283 (-568) |#1|) . T) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))) ((-277 |#1|) . T) ((-375 |#1|) . T) ((-499 |#1|) . T) ((-601 (-568) |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))) ((-640 |#1|) . T) ((-842) |has| |#1| (-842)) ((-1010 |#1|) . T) ((-1090) -2198 (|has| |#1| (-1090)) (|has| |#1| (-842))) ((-1134 |#1|) . T) ((-1195) . T) ((-1231 |#1|) . T)) +((-4351 (((-634 (-2 (|:| |particular| (-3 (-1244 |#1|) "failed")) (|:| -3746 (-634 (-1244 |#1|))))) (-634 (-634 |#1|)) (-634 (-1244 |#1|))) 21) (((-634 (-2 (|:| |particular| (-3 (-1244 |#1|) "failed")) (|:| -3746 (-634 (-1244 |#1|))))) (-679 |#1|) (-634 (-1244 |#1|))) 20) (((-2 (|:| |particular| (-3 (-1244 |#1|) "failed")) (|:| -3746 (-634 (-1244 |#1|)))) (-634 (-634 |#1|)) (-1244 |#1|)) 16) (((-2 (|:| |particular| (-3 (-1244 |#1|) "failed")) (|:| -3746 (-634 (-1244 |#1|)))) (-679 |#1|) (-1244 |#1|)) 13)) (-3700 (((-763) (-679 |#1|) (-1244 |#1|)) 29)) (-4314 (((-3 (-1244 |#1|) "failed") (-679 |#1|) (-1244 |#1|)) 23)) (-4485 (((-121) (-679 |#1|) (-1244 |#1|)) 26))) +(((-659 |#1|) (-10 -7 (-15 -4351 ((-2 (|:| |particular| (-3 (-1244 |#1|) "failed")) (|:| -3746 (-634 (-1244 |#1|)))) (-679 |#1|) (-1244 |#1|))) (-15 -4351 ((-2 (|:| |particular| (-3 (-1244 |#1|) "failed")) (|:| -3746 (-634 (-1244 |#1|)))) (-634 (-634 |#1|)) (-1244 |#1|))) (-15 -4351 ((-634 (-2 (|:| |particular| (-3 (-1244 |#1|) "failed")) (|:| -3746 (-634 (-1244 |#1|))))) (-679 |#1|) (-634 (-1244 |#1|)))) (-15 -4351 ((-634 (-2 (|:| |particular| (-3 (-1244 |#1|) "failed")) (|:| -3746 (-634 (-1244 |#1|))))) (-634 (-634 |#1|)) (-634 (-1244 |#1|)))) (-15 -4314 ((-3 (-1244 |#1|) "failed") (-679 |#1|) (-1244 |#1|))) (-15 -4485 ((-121) (-679 |#1|) (-1244 |#1|))) (-15 -3700 ((-763) (-679 |#1|) (-1244 |#1|)))) (-365)) (T -659)) +((-3700 (*1 *2 *3 *4) (-12 (-5 *3 (-679 *5)) (-5 *4 (-1244 *5)) (-4 *5 (-365)) (-5 *2 (-763)) (-5 *1 (-659 *5)))) (-4485 (*1 *2 *3 *4) (-12 (-5 *3 (-679 *5)) (-5 *4 (-1244 *5)) (-4 *5 (-365)) (-5 *2 (-121)) (-5 *1 (-659 *5)))) (-4314 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1244 *4)) (-5 *3 (-679 *4)) (-4 *4 (-365)) (-5 *1 (-659 *4)))) (-4351 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-634 *5))) (-4 *5 (-365)) (-5 *2 (-634 (-2 (|:| |particular| (-3 (-1244 *5) "failed")) (|:| -3746 (-634 (-1244 *5)))))) (-5 *1 (-659 *5)) (-5 *4 (-634 (-1244 *5))))) (-4351 (*1 *2 *3 *4) (-12 (-5 *3 (-679 *5)) (-4 *5 (-365)) (-5 *2 (-634 (-2 (|:| |particular| (-3 (-1244 *5) "failed")) (|:| -3746 (-634 (-1244 *5)))))) (-5 *1 (-659 *5)) (-5 *4 (-634 (-1244 *5))))) (-4351 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-634 *5))) (-4 *5 (-365)) (-5 *2 (-2 (|:| |particular| (-3 (-1244 *5) "failed")) (|:| -3746 (-634 (-1244 *5))))) (-5 *1 (-659 *5)) (-5 *4 (-1244 *5)))) (-4351 (*1 *2 *3 *4) (-12 (-5 *3 (-679 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |particular| (-3 (-1244 *5) "failed")) (|:| -3746 (-634 (-1244 *5))))) (-5 *1 (-659 *5)) (-5 *4 (-1244 *5))))) +(-10 -7 (-15 -4351 ((-2 (|:| |particular| (-3 (-1244 |#1|) "failed")) (|:| -3746 (-634 (-1244 |#1|)))) (-679 |#1|) (-1244 |#1|))) (-15 -4351 ((-2 (|:| |particular| (-3 (-1244 |#1|) "failed")) (|:| -3746 (-634 (-1244 |#1|)))) (-634 (-634 |#1|)) (-1244 |#1|))) (-15 -4351 ((-634 (-2 (|:| |particular| (-3 (-1244 |#1|) "failed")) (|:| -3746 (-634 (-1244 |#1|))))) (-679 |#1|) (-634 (-1244 |#1|)))) (-15 -4351 ((-634 (-2 (|:| |particular| (-3 (-1244 |#1|) "failed")) (|:| -3746 (-634 (-1244 |#1|))))) (-634 (-634 |#1|)) (-634 (-1244 |#1|)))) (-15 -4314 ((-3 (-1244 |#1|) "failed") (-679 |#1|) (-1244 |#1|))) (-15 -4485 ((-121) (-679 |#1|) (-1244 |#1|))) (-15 -3700 ((-763) (-679 |#1|) (-1244 |#1|)))) +((-4351 (((-634 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3746 (-634 |#3|)))) |#4| (-634 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3746 (-634 |#3|))) |#4| |#3|) 45)) (-3700 (((-763) |#4| |#3|) 17)) (-4314 (((-3 |#3| "failed") |#4| |#3|) 20)) (-4485 (((-121) |#4| |#3|) 13))) +(((-660 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4351 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3746 (-634 |#3|))) |#4| |#3|)) (-15 -4351 ((-634 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3746 (-634 |#3|)))) |#4| (-634 |#3|))) (-15 -4314 ((-3 |#3| "failed") |#4| |#3|)) (-15 -4485 ((-121) |#4| |#3|)) (-15 -3700 ((-763) |#4| |#3|))) (-365) (-13 (-375 |#1|) (-10 -7 (-6 -4520))) (-13 (-375 |#1|) (-10 -7 (-6 -4520))) (-677 |#1| |#2| |#3|)) (T -660)) +((-3700 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4520)))) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4520)))) (-5 *2 (-763)) (-5 *1 (-660 *5 *6 *4 *3)) (-4 *3 (-677 *5 *6 *4)))) (-4485 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4520)))) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4520)))) (-5 *2 (-121)) (-5 *1 (-660 *5 *6 *4 *3)) (-4 *3 (-677 *5 *6 *4)))) (-4314 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-365)) (-4 *5 (-13 (-375 *4) (-10 -7 (-6 -4520)))) (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4520)))) (-5 *1 (-660 *4 *5 *2 *3)) (-4 *3 (-677 *4 *5 *2)))) (-4351 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4520)))) (-4 *7 (-13 (-375 *5) (-10 -7 (-6 -4520)))) (-5 *2 (-634 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -3746 (-634 *7))))) (-5 *1 (-660 *5 *6 *7 *3)) (-5 *4 (-634 *7)) (-4 *3 (-677 *5 *6 *7)))) (-4351 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4520)))) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4520)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3746 (-634 *4)))) (-5 *1 (-660 *5 *6 *4 *3)) (-4 *3 (-677 *5 *6 *4))))) +(-10 -7 (-15 -4351 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3746 (-634 |#3|))) |#4| |#3|)) (-15 -4351 ((-634 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3746 (-634 |#3|)))) |#4| (-634 |#3|))) (-15 -4314 ((-3 |#3| "failed") |#4| |#3|)) (-15 -4485 ((-121) |#4| |#3|)) (-15 -3700 ((-763) |#4| |#3|))) +((-2901 (((-2 (|:| |particular| (-3 (-1244 (-409 |#4|)) "failed")) (|:| -3746 (-634 (-1244 (-409 |#4|))))) (-634 |#4|) (-634 |#3|)) 44))) +(((-661 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2901 ((-2 (|:| |particular| (-3 (-1244 (-409 |#4|)) "failed")) (|:| -3746 (-634 (-1244 (-409 |#4|))))) (-634 |#4|) (-634 |#3|)))) (-558) (-788) (-842) (-950 |#1| |#2| |#3|)) (T -661)) +((-2901 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *8)) (-5 *4 (-634 *7)) (-4 *7 (-842)) (-4 *8 (-950 *5 *6 *7)) (-4 *5 (-558)) (-4 *6 (-788)) (-5 *2 (-2 (|:| |particular| (-3 (-1244 (-409 *8)) "failed")) (|:| -3746 (-634 (-1244 (-409 *8)))))) (-5 *1 (-661 *5 *6 *7 *8))))) +(-10 -7 (-15 -2901 ((-2 (|:| |particular| (-3 (-1244 (-409 |#4|)) "failed")) (|:| -3746 (-634 (-1244 (-409 |#4|))))) (-634 |#4|) (-634 |#3|)))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-2295 (((-3 $ "failed")) NIL (|has| |#2| (-558)))) (-1932 ((|#2| $) NIL)) (-1335 (((-121) $) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-2776 (((-1244 (-679 |#2|))) NIL) (((-1244 (-679 |#2|)) (-1244 $)) NIL)) (-2230 (((-121) $) NIL)) (-1741 (((-1244 $)) 37)) (-2510 (((-121) $ (-763)) NIL)) (-3422 (($ |#2|) NIL)) (-2671 (($) NIL T CONST)) (-4167 (($ $) NIL (|has| |#2| (-301)))) (-1818 (((-232 |#1| |#2|) $ (-568)) NIL)) (-1309 (((-3 (-2 (|:| |particular| $) (|:| -3746 (-634 $))) "failed")) NIL (|has| |#2| (-558)))) (-2593 (((-3 $ "failed")) NIL (|has| |#2| (-558)))) (-1631 (((-679 |#2|)) NIL) (((-679 |#2|) (-1244 $)) NIL)) (-1866 ((|#2| $) NIL)) (-3042 (((-679 |#2|) $) NIL) (((-679 |#2|) $ (-1244 $)) NIL)) (-3550 (((-3 $ "failed") $) NIL (|has| |#2| (-558)))) (-4408 (((-1157 (-953 |#2|))) NIL (|has| |#2| (-365)))) (-3551 (($ $ (-917)) NIL)) (-4409 ((|#2| $) NIL)) (-1371 (((-1157 |#2|) $) NIL (|has| |#2| (-558)))) (-3569 ((|#2|) NIL) ((|#2| (-1244 $)) NIL)) (-2989 (((-1157 |#2|) $) NIL)) (-3384 (((-121)) NIL)) (-3666 (((-3 (-568) "failed") $) NIL (|has| |#2| (-1037 (-568)))) (((-3 (-409 (-568)) "failed") $) NIL (|has| |#2| (-1037 (-409 (-568))))) (((-3 |#2| "failed") $) NIL)) (-2854 (((-568) $) NIL (|has| |#2| (-1037 (-568)))) (((-409 (-568)) $) NIL (|has| |#2| (-1037 (-409 (-568))))) ((|#2| $) NIL)) (-3498 (($ (-1244 |#2|)) NIL) (($ (-1244 |#2|) (-1244 $)) NIL)) (-3164 (((-679 (-568)) (-679 $)) NIL (|has| |#2| (-630 (-568)))) (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) NIL (|has| |#2| (-630 (-568)))) (((-2 (|:| -2928 (-679 |#2|)) (|:| |vec| (-1244 |#2|))) (-679 $) (-1244 $)) NIL) (((-679 |#2|) (-679 $)) NIL)) (-2925 (((-3 $ "failed") $) NIL)) (-3700 (((-763) $) NIL (|has| |#2| (-558))) (((-917)) 38)) (-2602 ((|#2| $ (-568) (-568)) NIL)) (-4370 (((-121)) NIL)) (-4373 (($ $ (-917)) NIL)) (-4360 (((-634 |#2|) $) NIL (|has| $ (-6 -4519)))) (-2735 (((-121) $) NIL)) (-2121 (((-763) $) NIL (|has| |#2| (-558)))) (-4272 (((-634 (-232 |#1| |#2|)) $) NIL (|has| |#2| (-558)))) (-3043 (((-763) $) NIL)) (-1537 (((-121)) NIL)) (-2555 (((-763) $) NIL)) (-1737 (((-121) $ (-763)) NIL)) (-3082 ((|#2| $) NIL (|has| |#2| (-6 (-4521 "*"))))) (-2087 (((-568) $) NIL)) (-3364 (((-568) $) NIL)) (-1979 (((-634 |#2|) $) NIL (|has| $ (-6 -4519)))) (-3109 (((-121) |#2| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#2| (-1090))))) (-1663 (((-568) $) NIL)) (-2893 (((-568) $) NIL)) (-2269 (($ (-634 (-634 |#2|))) NIL)) (-3674 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3208 (((-634 (-634 |#2|)) $) NIL)) (-1580 (((-121)) NIL)) (-1695 (((-121)) NIL)) (-2166 (((-121) $ (-763)) NIL)) (-3116 (((-3 (-2 (|:| |particular| $) (|:| -3746 (-634 $))) "failed")) NIL (|has| |#2| (-558)))) (-2599 (((-3 $ "failed")) NIL (|has| |#2| (-558)))) (-4210 (((-679 |#2|)) NIL) (((-679 |#2|) (-1244 $)) NIL)) (-2889 ((|#2| $) NIL)) (-4333 (((-679 |#2|) $) NIL) (((-679 |#2|) $ (-1244 $)) NIL)) (-3243 (((-3 $ "failed") $) NIL (|has| |#2| (-558)))) (-4454 (((-1157 (-953 |#2|))) NIL (|has| |#2| (-365)))) (-4222 (($ $ (-917)) NIL)) (-3329 ((|#2| $) NIL)) (-2265 (((-1157 |#2|) $) NIL (|has| |#2| (-558)))) (-3898 ((|#2|) NIL) ((|#2| (-1244 $)) NIL)) (-3626 (((-1157 |#2|) $) NIL)) (-2767 (((-121)) NIL)) (-4487 (((-1143) $) NIL)) (-1804 (((-121)) NIL)) (-2919 (((-121)) NIL)) (-3840 (((-121)) NIL)) (-3140 (((-3 $ "failed") $) NIL (|has| |#2| (-365)))) (-4022 (((-1108) $) NIL)) (-1346 (((-121)) NIL)) (-2595 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-558)))) (-1387 (((-121) (-1 (-121) |#2|) $) NIL (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#2|))) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090)))) (($ $ (-634 |#2|) (-634 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090))))) (-3171 (((-121) $ $) NIL)) (-3084 (((-121) $) NIL)) (-3248 (($) NIL)) (-2779 ((|#2| $ (-568) (-568) |#2|) NIL) ((|#2| $ (-568) (-568)) 22) ((|#2| $ (-568)) NIL)) (-4189 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-763)) NIL) (($ $ (-634 (-1161)) (-634 (-763))) NIL (|has| |#2| (-895 (-1161)))) (($ $ (-1161) (-763)) NIL (|has| |#2| (-895 (-1161)))) (($ $ (-634 (-1161))) NIL (|has| |#2| (-895 (-1161)))) (($ $ (-1161)) NIL (|has| |#2| (-895 (-1161)))) (($ $ (-763)) NIL (|has| |#2| (-225))) (($ $) NIL (|has| |#2| (-225)))) (-3241 ((|#2| $) NIL)) (-2282 (($ (-634 |#2|)) NIL)) (-1960 (((-121) $) NIL)) (-3815 (((-232 |#1| |#2|) $) NIL)) (-2465 ((|#2| $) NIL (|has| |#2| (-6 (-4521 "*"))))) (-4168 (((-763) (-1 (-121) |#2|) $) NIL (|has| $ (-6 -4519))) (((-763) |#2| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#2| (-1090))))) (-3863 (($ $) NIL)) (-4073 (((-679 |#2|) (-1244 $)) NIL) (((-1244 |#2|) $) NIL) (((-679 |#2|) (-1244 $) (-1244 $)) NIL) (((-1244 |#2|) $ (-1244 $)) 25)) (-4278 (($ (-1244 |#2|)) NIL) (((-1244 |#2|) $) NIL)) (-3295 (((-634 (-953 |#2|))) NIL) (((-634 (-953 |#2|)) (-1244 $)) NIL)) (-2353 (($ $ $) NIL)) (-3433 (((-121)) NIL)) (-3731 (((-232 |#1| |#2|) $ (-568)) NIL)) (-2745 (((-850) $) NIL) (($ (-568)) NIL) (($ (-409 (-568))) NIL (|has| |#2| (-1037 (-409 (-568))))) (($ |#2|) NIL) (((-679 |#2|) $) NIL)) (-4078 (((-763)) NIL)) (-3746 (((-1244 $)) 36)) (-1509 (((-634 (-1244 |#2|))) NIL (|has| |#2| (-558)))) (-3882 (($ $ $ $) NIL)) (-4177 (((-121)) NIL)) (-3823 (($ (-679 |#2|) $) NIL)) (-1319 (((-121) (-1 (-121) |#2|) $) NIL (|has| $ (-6 -4519)))) (-1910 (((-121) $) NIL)) (-3500 (($ $ $) NIL)) (-2433 (((-121)) NIL)) (-2189 (((-121)) NIL)) (-4107 (((-121)) NIL)) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (-3056 (($) NIL T CONST)) (-1556 (($) NIL T CONST)) (-3190 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-763)) NIL) (($ $ (-634 (-1161)) (-634 (-763))) NIL (|has| |#2| (-895 (-1161)))) (($ $ (-1161) (-763)) NIL (|has| |#2| (-895 (-1161)))) (($ $ (-634 (-1161))) NIL (|has| |#2| (-895 (-1161)))) (($ $ (-1161)) NIL (|has| |#2| (-895 (-1161)))) (($ $ (-763)) NIL (|has| |#2| (-225))) (($ $) NIL (|has| |#2| (-225)))) (-1717 (((-121) $ $) NIL)) (-1779 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL (|has| |#2| (-365)))) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-232 |#1| |#2|) $ (-232 |#1| |#2|)) NIL) (((-232 |#1| |#2|) (-232 |#1| |#2|) $) NIL)) (-1697 (((-763) $) NIL (|has| $ (-6 -4519))))) +(((-662 |#1| |#2|) (-13 (-1111 |#1| |#2| (-232 |#1| |#2|) (-232 |#1| |#2|)) (-608 (-679 |#2|)) (-419 |#2|)) (-917) (-172)) (T -662)) +NIL +(-13 (-1111 |#1| |#2| (-232 |#1| |#2|) (-232 |#1| |#2|)) (-608 (-679 |#2|)) (-419 |#2|)) +((-2447 (((-121) $ $) NIL)) (-3595 (((-634 |#1|) $) NIL)) (-3284 (($ $) 50)) (-3374 (((-121) $) NIL)) (-3666 (((-3 |#1| "failed") $) NIL)) (-2854 ((|#1| $) NIL)) (-2521 (($ $ $) NIL)) (-3268 (($ $ $) NIL)) (-2590 (((-3 $ "failed") (-814 |#1|)) 22)) (-2193 (((-121) (-814 |#1|)) 14)) (-3034 (($ (-814 |#1|)) 23)) (-4081 (((-121) $ $) 28)) (-3678 (((-917) $) 35)) (-3028 (($ $) NIL)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-3848 (((-634 $) (-814 |#1|)) 16)) (-2745 (((-850) $) 41) (($ |#1|) 32) (((-814 |#1|) $) 37) (((-667 |#1|) $) 42)) (-3747 (((-64 (-634 $)) (-634 |#1|) (-917)) 55)) (-4242 (((-634 $) (-634 |#1|) (-917)) 57)) (-1751 (((-121) $ $) NIL)) (-1738 (((-121) $ $) NIL)) (-1717 (((-121) $ $) 51)) (-1745 (((-121) $ $) NIL)) (-1732 (((-121) $ $) 36))) +(((-663 |#1|) (-13 (-842) (-1037 |#1|) (-10 -8 (-15 -3374 ((-121) $)) (-15 -3028 ($ $)) (-15 -3284 ($ $)) (-15 -3678 ((-917) $)) (-15 -4081 ((-121) $ $)) (-15 -2745 ((-814 |#1|) $)) (-15 -2745 ((-667 |#1|) $)) (-15 -3848 ((-634 $) (-814 |#1|))) (-15 -2193 ((-121) (-814 |#1|))) (-15 -3034 ($ (-814 |#1|))) (-15 -2590 ((-3 $ "failed") (-814 |#1|))) (-15 -3595 ((-634 |#1|) $)) (-15 -3747 ((-64 (-634 $)) (-634 |#1|) (-917))) (-15 -4242 ((-634 $) (-634 |#1|) (-917))))) (-842)) (T -663)) +((-3374 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-663 *3)) (-4 *3 (-842)))) (-3028 (*1 *1 *1) (-12 (-5 *1 (-663 *2)) (-4 *2 (-842)))) (-3284 (*1 *1 *1) (-12 (-5 *1 (-663 *2)) (-4 *2 (-842)))) (-3678 (*1 *2 *1) (-12 (-5 *2 (-917)) (-5 *1 (-663 *3)) (-4 *3 (-842)))) (-4081 (*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-663 *3)) (-4 *3 (-842)))) (-2745 (*1 *2 *1) (-12 (-5 *2 (-814 *3)) (-5 *1 (-663 *3)) (-4 *3 (-842)))) (-2745 (*1 *2 *1) (-12 (-5 *2 (-667 *3)) (-5 *1 (-663 *3)) (-4 *3 (-842)))) (-3848 (*1 *2 *3) (-12 (-5 *3 (-814 *4)) (-4 *4 (-842)) (-5 *2 (-634 (-663 *4))) (-5 *1 (-663 *4)))) (-2193 (*1 *2 *3) (-12 (-5 *3 (-814 *4)) (-4 *4 (-842)) (-5 *2 (-121)) (-5 *1 (-663 *4)))) (-3034 (*1 *1 *2) (-12 (-5 *2 (-814 *3)) (-4 *3 (-842)) (-5 *1 (-663 *3)))) (-2590 (*1 *1 *2) (|partial| -12 (-5 *2 (-814 *3)) (-4 *3 (-842)) (-5 *1 (-663 *3)))) (-3595 (*1 *2 *1) (-12 (-5 *2 (-634 *3)) (-5 *1 (-663 *3)) (-4 *3 (-842)))) (-3747 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *5)) (-5 *4 (-917)) (-4 *5 (-842)) (-5 *2 (-64 (-634 (-663 *5)))) (-5 *1 (-663 *5)))) (-4242 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *5)) (-5 *4 (-917)) (-4 *5 (-842)) (-5 *2 (-634 (-663 *5))) (-5 *1 (-663 *5))))) +(-13 (-842) (-1037 |#1|) (-10 -8 (-15 -3374 ((-121) $)) (-15 -3028 ($ $)) (-15 -3284 ($ $)) (-15 -3678 ((-917) $)) (-15 -4081 ((-121) $ $)) (-15 -2745 ((-814 |#1|) $)) (-15 -2745 ((-667 |#1|) $)) (-15 -3848 ((-634 $) (-814 |#1|))) (-15 -2193 ((-121) (-814 |#1|))) (-15 -3034 ($ (-814 |#1|))) (-15 -2590 ((-3 $ "failed") (-814 |#1|))) (-15 -3595 ((-634 |#1|) $)) (-15 -3747 ((-64 (-634 $)) (-634 |#1|) (-917))) (-15 -4242 ((-634 $) (-634 |#1|) (-917))))) +((-2850 ((|#2| $) 76)) (-2796 (($ $) 96)) (-2510 (((-121) $ (-763)) 26)) (-3935 (($ $) 85) (($ $ (-763)) 88)) (-1601 (((-121) $) 97)) (-2287 (((-634 $) $) 72)) (-1700 (((-121) $ $) 71)) (-1737 (((-121) $ (-763)) 24)) (-1881 (((-568) $) 46)) (-2223 (((-568) $) 45)) (-2166 (((-121) $ (-763)) 22)) (-1651 (((-121) $) 74)) (-4162 ((|#2| $) 89) (($ $ (-763)) 92)) (-4122 (($ $ $ (-568)) 62) (($ |#2| $ (-568)) 61)) (-4174 (((-634 (-568)) $) 44)) (-3578 (((-121) (-568) $) 42)) (-3876 ((|#2| $) NIL) (($ $ (-763)) 84)) (-1807 (($ $ (-568)) 99)) (-1786 (((-121) $) 98)) (-1387 (((-121) (-1 (-121) |#2|) $) 32)) (-2041 (((-634 |#2|) $) 33)) (-2779 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1210 (-568))) 58) ((|#2| $ (-568)) 40) ((|#2| $ (-568) |#2|) 41)) (-4075 (((-568) $ $) 70)) (-2826 (($ $ (-1210 (-568))) 57) (($ $ (-568)) 51)) (-3790 (((-121) $) 66)) (-2340 (($ $) 81)) (-2775 (((-763) $) 80)) (-3335 (($ $) 79)) (-4287 (($ (-634 |#2|)) 37)) (-1811 (($ $) 100)) (-4339 (((-634 $) $) 69)) (-3491 (((-121) $ $) 68)) (-1319 (((-121) (-1 (-121) |#2|) $) 31)) (-1717 (((-121) $ $) 18)) (-1697 (((-763) $) 29))) +(((-664 |#1| |#2|) (-10 -8 (-15 -1811 (|#1| |#1|)) (-15 -1807 (|#1| |#1| (-568))) (-15 -1601 ((-121) |#1|)) (-15 -1786 ((-121) |#1|)) (-15 -2779 (|#2| |#1| (-568) |#2|)) (-15 -2779 (|#2| |#1| (-568))) (-15 -2041 ((-634 |#2|) |#1|)) (-15 -3578 ((-121) (-568) |#1|)) (-15 -4174 ((-634 (-568)) |#1|)) (-15 -2223 ((-568) |#1|)) (-15 -1881 ((-568) |#1|)) (-15 -4287 (|#1| (-634 |#2|))) (-15 -2779 (|#1| |#1| (-1210 (-568)))) (-15 -2826 (|#1| |#1| (-568))) (-15 -2826 (|#1| |#1| (-1210 (-568)))) (-15 -4122 (|#1| |#2| |#1| (-568))) (-15 -4122 (|#1| |#1| |#1| (-568))) (-15 -2340 (|#1| |#1|)) (-15 -2775 ((-763) |#1|)) (-15 -3335 (|#1| |#1|)) (-15 -2796 (|#1| |#1|)) (-15 -4162 (|#1| |#1| (-763))) (-15 -2779 (|#2| |#1| "last")) (-15 -4162 (|#2| |#1|)) (-15 -3935 (|#1| |#1| (-763))) (-15 -2779 (|#1| |#1| "rest")) (-15 -3935 (|#1| |#1|)) (-15 -3876 (|#1| |#1| (-763))) (-15 -2779 (|#2| |#1| "first")) (-15 -3876 (|#2| |#1|)) (-15 -1700 ((-121) |#1| |#1|)) (-15 -3491 ((-121) |#1| |#1|)) (-15 -4075 ((-568) |#1| |#1|)) (-15 -3790 ((-121) |#1|)) (-15 -2779 (|#2| |#1| "value")) (-15 -2850 (|#2| |#1|)) (-15 -1651 ((-121) |#1|)) (-15 -2287 ((-634 |#1|) |#1|)) (-15 -4339 ((-634 |#1|) |#1|)) (-15 -1717 ((-121) |#1| |#1|)) (-15 -1387 ((-121) (-1 (-121) |#2|) |#1|)) (-15 -1319 ((-121) (-1 (-121) |#2|) |#1|)) (-15 -1697 ((-763) |#1|)) (-15 -2510 ((-121) |#1| (-763))) (-15 -1737 ((-121) |#1| (-763))) (-15 -2166 ((-121) |#1| (-763)))) (-665 |#2|) (-1195)) (T -664)) +NIL +(-10 -8 (-15 -1811 (|#1| |#1|)) (-15 -1807 (|#1| |#1| (-568))) (-15 -1601 ((-121) |#1|)) (-15 -1786 ((-121) |#1|)) (-15 -2779 (|#2| |#1| (-568) |#2|)) (-15 -2779 (|#2| |#1| (-568))) (-15 -2041 ((-634 |#2|) |#1|)) (-15 -3578 ((-121) (-568) |#1|)) (-15 -4174 ((-634 (-568)) |#1|)) (-15 -2223 ((-568) |#1|)) (-15 -1881 ((-568) |#1|)) (-15 -4287 (|#1| (-634 |#2|))) (-15 -2779 (|#1| |#1| (-1210 (-568)))) (-15 -2826 (|#1| |#1| (-568))) (-15 -2826 (|#1| |#1| (-1210 (-568)))) (-15 -4122 (|#1| |#2| |#1| (-568))) (-15 -4122 (|#1| |#1| |#1| (-568))) (-15 -2340 (|#1| |#1|)) (-15 -2775 ((-763) |#1|)) (-15 -3335 (|#1| |#1|)) (-15 -2796 (|#1| |#1|)) (-15 -4162 (|#1| |#1| (-763))) (-15 -2779 (|#2| |#1| "last")) (-15 -4162 (|#2| |#1|)) (-15 -3935 (|#1| |#1| (-763))) (-15 -2779 (|#1| |#1| "rest")) (-15 -3935 (|#1| |#1|)) (-15 -3876 (|#1| |#1| (-763))) (-15 -2779 (|#2| |#1| "first")) (-15 -3876 (|#2| |#1|)) (-15 -1700 ((-121) |#1| |#1|)) (-15 -3491 ((-121) |#1| |#1|)) (-15 -4075 ((-568) |#1| |#1|)) (-15 -3790 ((-121) |#1|)) (-15 -2779 (|#2| |#1| "value")) (-15 -2850 (|#2| |#1|)) (-15 -1651 ((-121) |#1|)) (-15 -2287 ((-634 |#1|) |#1|)) (-15 -4339 ((-634 |#1|) |#1|)) (-15 -1717 ((-121) |#1| |#1|)) (-15 -1387 ((-121) (-1 (-121) |#2|) |#1|)) (-15 -1319 ((-121) (-1 (-121) |#2|) |#1|)) (-15 -1697 ((-763) |#1|)) (-15 -2510 ((-121) |#1| (-763))) (-15 -1737 ((-121) |#1| (-763))) (-15 -2166 ((-121) |#1| (-763)))) +((-2447 (((-121) $ $) 18 (|has| |#1| (-1090)))) (-2850 ((|#1| $) 45)) (-2235 ((|#1| $) 62)) (-2796 (($ $) 64)) (-1868 (((-1249) $ (-568) (-568)) 94 (|has| $ (-6 -4520)))) (-3910 (($ $ (-568)) 49 (|has| $ (-6 -4520)))) (-2510 (((-121) $ (-763)) 8)) (-1659 ((|#1| $ |#1|) 36 (|has| $ (-6 -4520)))) (-3869 (($ $ $) 53 (|has| $ (-6 -4520)))) (-2395 ((|#1| $ |#1|) 51 (|has| $ (-6 -4520)))) (-2517 ((|#1| $ |#1|) 55 (|has| $ (-6 -4520)))) (-2436 ((|#1| $ "value" |#1|) 37 (|has| $ (-6 -4520))) ((|#1| $ "first" |#1|) 54 (|has| $ (-6 -4520))) (($ $ "rest" $) 52 (|has| $ (-6 -4520))) ((|#1| $ "last" |#1|) 50 (|has| $ (-6 -4520))) ((|#1| $ (-1210 (-568)) |#1|) 114 (|has| $ (-6 -4520))) ((|#1| $ (-568) |#1|) 83 (|has| $ (-6 -4520)))) (-3827 (($ $ (-634 $)) 38 (|has| $ (-6 -4520)))) (-2801 (($ (-1 (-121) |#1|) $) 99)) (-1679 ((|#1| $) 63)) (-2671 (($) 7 T CONST)) (-1496 (($ $) 118)) (-3935 (($ $) 70) (($ $ (-763)) 68)) (-3924 (($ $) 96 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-4328 (($ |#1| $) 97 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519)))) (($ (-1 (-121) |#1|) $) 100)) (-3092 ((|#1| (-1 |#1| |#1| |#1|) $) 102 (|has| $ (-6 -4519))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 101 (|has| $ (-6 -4519))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 98 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-3989 ((|#1| $ (-568) |#1|) 82 (|has| $ (-6 -4520)))) (-2602 ((|#1| $ (-568)) 84)) (-1601 (((-121) $) 80)) (-4360 (((-634 |#1|) $) 30 (|has| $ (-6 -4519)))) (-3836 (((-763) $) 117)) (-2287 (((-634 $) $) 47)) (-1700 (((-121) $ $) 39 (|has| |#1| (-1090)))) (-1849 (($ (-763) |#1|) 105)) (-1737 (((-121) $ (-763)) 9)) (-1881 (((-568) $) 92 (|has| (-568) (-842)))) (-1979 (((-634 |#1|) $) 29 (|has| $ (-6 -4519)))) (-3109 (((-121) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-2223 (((-568) $) 91 (|has| (-568) (-842)))) (-3674 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 108)) (-2166 (((-121) $ (-763)) 10)) (-2869 (((-634 |#1|) $) 42)) (-1651 (((-121) $) 46)) (-2892 (($ $) 120)) (-3851 (((-121) $) 121)) (-4487 (((-1143) $) 22 (|has| |#1| (-1090)))) (-4162 ((|#1| $) 67) (($ $ (-763)) 65)) (-4122 (($ $ $ (-568)) 113) (($ |#1| $ (-568)) 112)) (-4174 (((-634 (-568)) $) 89)) (-3578 (((-121) (-568) $) 88)) (-4022 (((-1108) $) 21 (|has| |#1| (-1090)))) (-3121 ((|#1| $) 119)) (-3876 ((|#1| $) 73) (($ $ (-763)) 71)) (-3775 (((-3 |#1| "failed") (-1 (-121) |#1|) $) 103)) (-3724 (($ $ |#1|) 93 (|has| $ (-6 -4520)))) (-1807 (($ $ (-568)) 116)) (-1786 (((-121) $) 81)) (-1368 (((-121) $) 122)) (-3552 (((-121) $) 123)) (-1387 (((-121) (-1 (-121) |#1|) $) 32 (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-634 |#1|) (-634 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))))) (-3171 (((-121) $ $) 14)) (-4467 (((-121) |#1| $) 90 (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-2041 (((-634 |#1|) $) 87)) (-3084 (((-121) $) 11)) (-3248 (($) 12)) (-2779 ((|#1| $ "value") 44) ((|#1| $ "first") 72) (($ $ "rest") 69) ((|#1| $ "last") 66) (($ $ (-1210 (-568))) 109) ((|#1| $ (-568)) 86) ((|#1| $ (-568) |#1|) 85)) (-4075 (((-568) $ $) 41)) (-2826 (($ $ (-1210 (-568))) 111) (($ $ (-568)) 110)) (-3790 (((-121) $) 43)) (-2340 (($ $) 59)) (-2714 (($ $) 56 (|has| $ (-6 -4520)))) (-2775 (((-763) $) 60)) (-3335 (($ $) 61)) (-4168 (((-763) (-1 (-121) |#1|) $) 31 (|has| $ (-6 -4519))) (((-763) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-3863 (($ $) 13)) (-4278 (((-541) $) 95 (|has| |#1| (-609 (-541))))) (-4287 (($ (-634 |#1|)) 104)) (-3845 (($ $ $) 58 (|has| $ (-6 -4520))) (($ $ |#1|) 57 (|has| $ (-6 -4520)))) (-2768 (($ $ $) 75) (($ |#1| $) 74) (($ (-634 $)) 107) (($ $ |#1|) 106)) (-1811 (($ $) 115)) (-2745 (((-850) $) 20 (|has| |#1| (-1090)))) (-4339 (((-634 $) $) 48)) (-3491 (((-121) $ $) 40 (|has| |#1| (-1090)))) (-1319 (((-121) (-1 (-121) |#1|) $) 33 (|has| $ (-6 -4519)))) (-1717 (((-121) $ $) 19 (|has| |#1| (-1090)))) (-1697 (((-763) $) 6 (|has| $ (-6 -4519))))) +(((-665 |#1|) (-1275) (-1195)) (T -665)) +((-4328 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-121) *3)) (-4 *1 (-665 *3)) (-4 *3 (-1195)))) (-2801 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-121) *3)) (-4 *1 (-665 *3)) (-4 *3 (-1195)))) (-3552 (*1 *2 *1) (-12 (-4 *1 (-665 *3)) (-4 *3 (-1195)) (-5 *2 (-121)))) (-1368 (*1 *2 *1) (-12 (-4 *1 (-665 *3)) (-4 *3 (-1195)) (-5 *2 (-121)))) (-3851 (*1 *2 *1) (-12 (-4 *1 (-665 *3)) (-4 *3 (-1195)) (-5 *2 (-121)))) (-2892 (*1 *1 *1) (-12 (-4 *1 (-665 *2)) (-4 *2 (-1195)))) (-3121 (*1 *2 *1) (-12 (-4 *1 (-665 *2)) (-4 *2 (-1195)))) (-1496 (*1 *1 *1) (-12 (-4 *1 (-665 *2)) (-4 *2 (-1195)))) (-3836 (*1 *2 *1) (-12 (-4 *1 (-665 *3)) (-4 *3 (-1195)) (-5 *2 (-763)))) (-1807 (*1 *1 *1 *2) (-12 (-5 *2 (-568)) (-4 *1 (-665 *3)) (-4 *3 (-1195)))) (-1811 (*1 *1 *1) (-12 (-4 *1 (-665 *2)) (-4 *2 (-1195))))) +(-13 (-1134 |t#1|) (-10 -8 (-15 -4328 ($ (-1 (-121) |t#1|) $)) (-15 -2801 ($ (-1 (-121) |t#1|) $)) (-15 -3552 ((-121) $)) (-15 -1368 ((-121) $)) (-15 -3851 ((-121) $)) (-15 -2892 ($ $)) (-15 -3121 (|t#1| $)) (-15 -1496 ($ $)) (-15 -3836 ((-763) $)) (-15 -1807 ($ $ (-568))) (-15 -1811 ($ $)))) +(((-39) . T) ((-105) |has| |#1| (-1090)) ((-608 (-850)) |has| |#1| (-1090)) ((-154 |#1|) . T) ((-609 (-541)) |has| |#1| (-609 (-541))) ((-281 (-568) |#1|) . T) ((-283 (-568) |#1|) . T) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))) ((-499 |#1|) . T) ((-601 (-568) |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))) ((-640 |#1|) . T) ((-1010 |#1|) . T) ((-1090) |has| |#1| (-1090)) ((-1134 |#1|) . T) ((-1195) . T) ((-1231 |#1|) . T)) +((-2447 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-2820 (($ (-763) (-763) (-763)) 32 (|has| |#1| (-1047)))) (-2510 (((-121) $ (-763)) NIL)) (-3780 ((|#1| $ (-763) (-763) (-763) |#1|) 27)) (-2671 (($) NIL T CONST)) (-1548 (($ $ $) 36 (|has| |#1| (-1047)))) (-4360 (((-634 |#1|) $) NIL (|has| $ (-6 -4519)))) (-1737 (((-121) $ (-763)) NIL)) (-1979 (((-634 |#1|) $) NIL (|has| $ (-6 -4519)))) (-3109 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-1361 (((-1244 (-763)) $) 8)) (-3127 (($ (-1161) $ $) 22)) (-3674 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#1| |#1|) $) NIL)) (-2166 (((-121) $ (-763)) NIL)) (-4487 (((-1143) $) NIL (|has| |#1| (-1090)))) (-2181 (($ (-763)) 34 (|has| |#1| (-1047)))) (-4022 (((-1108) $) NIL (|has| |#1| (-1090)))) (-1387 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-634 |#1|) (-634 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))))) (-3171 (((-121) $ $) NIL)) (-3084 (((-121) $) NIL)) (-3248 (($) NIL)) (-2779 ((|#1| $ (-763) (-763) (-763)) 25)) (-4168 (((-763) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519))) (((-763) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-3863 (($ $) NIL)) (-4287 (($ (-634 (-634 (-634 |#1|)))) 43)) (-2745 (((-850) $) NIL (|has| |#1| (-1090))) (($ (-958 (-958 (-958 |#1|)))) 15) (((-958 (-958 (-958 |#1|))) $) 12)) (-1319 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-1717 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-1697 (((-763) $) NIL (|has| $ (-6 -4519))))) +(((-666 |#1|) (-13 (-499 |#1|) (-10 -8 (IF (|has| |#1| (-1047)) (PROGN (-15 -2820 ($ (-763) (-763) (-763))) (-15 -2181 ($ (-763))) (-15 -1548 ($ $ $))) |noBranch|) (-15 -4287 ($ (-634 (-634 (-634 |#1|))))) (-15 -2779 (|#1| $ (-763) (-763) (-763))) (-15 -3780 (|#1| $ (-763) (-763) (-763) |#1|)) (-15 -2745 ($ (-958 (-958 (-958 |#1|))))) (-15 -2745 ((-958 (-958 (-958 |#1|))) $)) (-15 -3127 ($ (-1161) $ $)) (-15 -1361 ((-1244 (-763)) $)))) (-1090)) (T -666)) +((-2820 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-763)) (-5 *1 (-666 *3)) (-4 *3 (-1047)) (-4 *3 (-1090)))) (-2181 (*1 *1 *2) (-12 (-5 *2 (-763)) (-5 *1 (-666 *3)) (-4 *3 (-1047)) (-4 *3 (-1090)))) (-1548 (*1 *1 *1 *1) (-12 (-5 *1 (-666 *2)) (-4 *2 (-1047)) (-4 *2 (-1090)))) (-4287 (*1 *1 *2) (-12 (-5 *2 (-634 (-634 (-634 *3)))) (-4 *3 (-1090)) (-5 *1 (-666 *3)))) (-2779 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-763)) (-5 *1 (-666 *2)) (-4 *2 (-1090)))) (-3780 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-763)) (-5 *1 (-666 *2)) (-4 *2 (-1090)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-958 (-958 (-958 *3)))) (-4 *3 (-1090)) (-5 *1 (-666 *3)))) (-2745 (*1 *2 *1) (-12 (-5 *2 (-958 (-958 (-958 *3)))) (-5 *1 (-666 *3)) (-4 *3 (-1090)))) (-3127 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-666 *3)) (-4 *3 (-1090)))) (-1361 (*1 *2 *1) (-12 (-5 *2 (-1244 (-763))) (-5 *1 (-666 *3)) (-4 *3 (-1090))))) +(-13 (-499 |#1|) (-10 -8 (IF (|has| |#1| (-1047)) (PROGN (-15 -2820 ($ (-763) (-763) (-763))) (-15 -2181 ($ (-763))) (-15 -1548 ($ $ $))) |noBranch|) (-15 -4287 ($ (-634 (-634 (-634 |#1|))))) (-15 -2779 (|#1| $ (-763) (-763) (-763))) (-15 -3780 (|#1| $ (-763) (-763) (-763) |#1|)) (-15 -2745 ($ (-958 (-958 (-958 |#1|))))) (-15 -2745 ((-958 (-958 (-958 |#1|))) $)) (-15 -3127 ($ (-1161) $ $)) (-15 -1361 ((-1244 (-763)) $)))) +((-2447 (((-121) $ $) NIL)) (-3595 (((-634 |#1|) $) 14)) (-3284 (($ $) 18)) (-3374 (((-121) $) 19)) (-3666 (((-3 |#1| "failed") $) 22)) (-2854 ((|#1| $) 20)) (-3935 (($ $) 36)) (-2407 (($ $) 24)) (-2521 (($ $ $) NIL)) (-3268 (($ $ $) NIL)) (-4081 (((-121) $ $) 41)) (-3678 (((-917) $) 38)) (-3028 (($ $) 17)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-3876 ((|#1| $) 35)) (-2745 (((-850) $) 31) (($ |#1|) 23) (((-814 |#1|) $) 27)) (-1751 (((-121) $ $) NIL)) (-1738 (((-121) $ $) NIL)) (-1717 (((-121) $ $) 12)) (-1745 (((-121) $ $) NIL)) (-1732 (((-121) $ $) 40)) (* (($ $ $) 34))) +(((-667 |#1|) (-13 (-842) (-1037 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2745 ((-814 |#1|) $)) (-15 -3876 (|#1| $)) (-15 -3028 ($ $)) (-15 -3678 ((-917) $)) (-15 -4081 ((-121) $ $)) (-15 -2407 ($ $)) (-15 -3935 ($ $)) (-15 -3374 ((-121) $)) (-15 -3284 ($ $)) (-15 -3595 ((-634 |#1|) $)))) (-842)) (T -667)) +((* (*1 *1 *1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-842)))) (-2745 (*1 *2 *1) (-12 (-5 *2 (-814 *3)) (-5 *1 (-667 *3)) (-4 *3 (-842)))) (-3876 (*1 *2 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-842)))) (-3028 (*1 *1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-842)))) (-3678 (*1 *2 *1) (-12 (-5 *2 (-917)) (-5 *1 (-667 *3)) (-4 *3 (-842)))) (-4081 (*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-667 *3)) (-4 *3 (-842)))) (-2407 (*1 *1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-842)))) (-3935 (*1 *1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-842)))) (-3374 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-667 *3)) (-4 *3 (-842)))) (-3284 (*1 *1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-842)))) (-3595 (*1 *2 *1) (-12 (-5 *2 (-634 *3)) (-5 *1 (-667 *3)) (-4 *3 (-842))))) +(-13 (-842) (-1037 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2745 ((-814 |#1|) $)) (-15 -3876 (|#1| $)) (-15 -3028 ($ $)) (-15 -3678 ((-917) $)) (-15 -4081 ((-121) $ $)) (-15 -2407 ($ $)) (-15 -3935 ($ $)) (-15 -3374 ((-121) $)) (-15 -3284 ($ $)) (-15 -3595 ((-634 |#1|) $)))) +((-3337 ((|#1| (-1 |#1| (-763) |#1|) (-763) |#1|) 11)) (-1287 ((|#1| (-1 |#1| |#1|) (-763) |#1|) 9))) +(((-668 |#1|) (-10 -7 (-15 -1287 (|#1| (-1 |#1| |#1|) (-763) |#1|)) (-15 -3337 (|#1| (-1 |#1| (-763) |#1|) (-763) |#1|))) (-1090)) (T -668)) +((-3337 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-763) *2)) (-5 *4 (-763)) (-4 *2 (-1090)) (-5 *1 (-668 *2)))) (-1287 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-763)) (-4 *2 (-1090)) (-5 *1 (-668 *2))))) +(-10 -7 (-15 -1287 (|#1| (-1 |#1| |#1|) (-763) |#1|)) (-15 -3337 (|#1| (-1 |#1| (-763) |#1|) (-763) |#1|))) +((-1727 ((|#2| |#1| |#2|) 9)) (-1720 ((|#1| |#1| |#2|) 8))) +(((-669 |#1| |#2|) (-10 -7 (-15 -1720 (|#1| |#1| |#2|)) (-15 -1727 (|#2| |#1| |#2|))) (-1090) (-1090)) (T -669)) +((-1727 (*1 *2 *3 *2) (-12 (-5 *1 (-669 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-1090)))) (-1720 (*1 *2 *2 *3) (-12 (-5 *1 (-669 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-1090))))) +(-10 -7 (-15 -1720 (|#1| |#1| |#2|)) (-15 -1727 (|#2| |#1| |#2|))) +((-1446 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11))) +(((-670 |#1| |#2| |#3|) (-10 -7 (-15 -1446 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1090) (-1090) (-1090)) (T -670)) +((-1446 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *2 (-1090)) (-5 *1 (-670 *5 *6 *2))))) +(-10 -7 (-15 -1446 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) +((-3337 (((-1 |#1| (-763) |#1|) (-1 |#1| (-763) |#1|)) 23)) (-4315 (((-1 |#1|) |#1|) 8)) (-1713 ((|#1| |#1|) 16)) (-3859 (((-634 |#1|) (-1 (-634 |#1|) (-634 |#1|)) (-568)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-2745 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-763)) 20))) +(((-671 |#1|) (-10 -7 (-15 -4315 ((-1 |#1|) |#1|)) (-15 -2745 ((-1 |#1|) |#1|)) (-15 -3859 (|#1| (-1 |#1| |#1|))) (-15 -3859 ((-634 |#1|) (-1 (-634 |#1|) (-634 |#1|)) (-568))) (-15 -1713 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-763))) (-15 -3337 ((-1 |#1| (-763) |#1|) (-1 |#1| (-763) |#1|)))) (-1090)) (T -671)) +((-3337 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-763) *3)) (-4 *3 (-1090)) (-5 *1 (-671 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-763)) (-4 *4 (-1090)) (-5 *1 (-671 *4)))) (-1713 (*1 *2 *2) (-12 (-5 *1 (-671 *2)) (-4 *2 (-1090)))) (-3859 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-634 *5) (-634 *5))) (-5 *4 (-568)) (-5 *2 (-634 *5)) (-5 *1 (-671 *5)) (-4 *5 (-1090)))) (-3859 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-671 *2)) (-4 *2 (-1090)))) (-2745 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-671 *3)) (-4 *3 (-1090)))) (-4315 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-671 *3)) (-4 *3 (-1090))))) +(-10 -7 (-15 -4315 ((-1 |#1|) |#1|)) (-15 -2745 ((-1 |#1|) |#1|)) (-15 -3859 (|#1| (-1 |#1| |#1|))) (-15 -3859 ((-634 |#1|) (-1 (-634 |#1|) (-634 |#1|)) (-568))) (-15 -1713 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-763))) (-15 -3337 ((-1 |#1| (-763) |#1|) (-1 |#1| (-763) |#1|)))) +((-2302 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-2210 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-3495 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-1841 (((-1 |#2| |#1|) |#2|) 11))) +(((-672 |#1| |#2|) (-10 -7 (-15 -1841 ((-1 |#2| |#1|) |#2|)) (-15 -2210 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3495 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2302 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1090) (-1090)) (T -672)) +((-2302 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-5 *2 (-1 *5 *4)) (-5 *1 (-672 *4 *5)))) (-3495 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1090)) (-5 *2 (-1 *5 *4)) (-5 *1 (-672 *4 *5)) (-4 *4 (-1090)))) (-2210 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-5 *2 (-1 *5)) (-5 *1 (-672 *4 *5)))) (-1841 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-672 *4 *3)) (-4 *4 (-1090)) (-4 *3 (-1090))))) +(-10 -7 (-15 -1841 ((-1 |#2| |#1|) |#2|)) (-15 -2210 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3495 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2302 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) +((-3740 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-2958 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-2738 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-2402 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-1455 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21))) +(((-673 |#1| |#2| |#3|) (-10 -7 (-15 -2958 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2738 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2402 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -1455 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3740 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1090) (-1090) (-1090)) (T -673)) +((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-1 *7 *5)) (-5 *1 (-673 *5 *6 *7)))) (-3740 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-673 *4 *5 *6)))) (-1455 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-673 *4 *5 *6)) (-4 *4 (-1090)))) (-2402 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1090)) (-4 *6 (-1090)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-673 *4 *5 *6)) (-4 *5 (-1090)))) (-2738 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-5 *2 (-1 *6 *5)) (-5 *1 (-673 *4 *5 *6)))) (-2958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1090)) (-4 *4 (-1090)) (-4 *6 (-1090)) (-5 *2 (-1 *6 *5)) (-5 *1 (-673 *5 *4 *6))))) +(-10 -7 (-15 -2958 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2738 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2402 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -1455 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3740 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) +((-1779 (((-1 (-310 (-568)) |#1|) (-1 (-310 (-568)) |#1|) (-1 (-310 (-568)) |#1|)) 18)) (-1773 (((-1 |#2| |#1|) (-1 |#2| |#1|) (-1 |#2| |#1|)) 12)) (-1767 (((-1 |#2| |#1|) (-1 |#2| |#1|) (-1 |#2| |#1|)) 10)) (* (((-1 |#2| |#1|) (-1 |#2| |#1|) (-1 |#2| |#1|)) 14))) +(((-674 |#1| |#2|) (-10 -7 (-15 -1767 ((-1 |#2| |#1|) (-1 |#2| |#1|) (-1 |#2| |#1|))) (-15 -1773 ((-1 |#2| |#1|) (-1 |#2| |#1|) (-1 |#2| |#1|))) (-15 * ((-1 |#2| |#1|) (-1 |#2| |#1|) (-1 |#2| |#1|))) (-15 -1779 ((-1 (-310 (-568)) |#1|) (-1 (-310 (-568)) |#1|) (-1 (-310 (-568)) |#1|)))) (-1090) (-1047)) (T -674)) +((-1779 (*1 *2 *2 *2) (-12 (-5 *2 (-1 (-310 (-568)) *3)) (-4 *3 (-1090)) (-5 *1 (-674 *3 *4)) (-4 *4 (-1047)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1 *4 *3)) (-4 *3 (-1090)) (-4 *4 (-1047)) (-5 *1 (-674 *3 *4)))) (-1773 (*1 *2 *2 *2) (-12 (-5 *2 (-1 *4 *3)) (-4 *3 (-1090)) (-4 *4 (-1047)) (-5 *1 (-674 *3 *4)))) (-1767 (*1 *2 *2 *2) (-12 (-5 *2 (-1 *4 *3)) (-4 *3 (-1090)) (-4 *4 (-1047)) (-5 *1 (-674 *3 *4))))) +(-10 -7 (-15 -1767 ((-1 |#2| |#1|) (-1 |#2| |#1|) (-1 |#2| |#1|))) (-15 -1773 ((-1 |#2| |#1|) (-1 |#2| |#1|) (-1 |#2| |#1|))) (-15 * ((-1 |#2| |#1|) (-1 |#2| |#1|) (-1 |#2| |#1|))) (-15 -1779 ((-1 (-310 (-568)) |#1|) (-1 (-310 (-568)) |#1|) (-1 (-310 (-568)) |#1|)))) +((-3092 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-2795 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31))) +(((-675 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2795 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -2795 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3092 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1047) (-375 |#1|) (-375 |#1|) (-677 |#1| |#2| |#3|) (-1047) (-375 |#5|) (-375 |#5|) (-677 |#5| |#6| |#7|)) (T -675)) +((-3092 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1047)) (-4 *2 (-1047)) (-4 *6 (-375 *5)) (-4 *7 (-375 *5)) (-4 *8 (-375 *2)) (-4 *9 (-375 *2)) (-5 *1 (-675 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-677 *5 *6 *7)) (-4 *10 (-677 *2 *8 *9)))) (-2795 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1047)) (-4 *8 (-1047)) (-4 *6 (-375 *5)) (-4 *7 (-375 *5)) (-4 *2 (-677 *8 *9 *10)) (-5 *1 (-675 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-677 *5 *6 *7)) (-4 *9 (-375 *8)) (-4 *10 (-375 *8)))) (-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1047)) (-4 *8 (-1047)) (-4 *6 (-375 *5)) (-4 *7 (-375 *5)) (-4 *2 (-677 *8 *9 *10)) (-5 *1 (-675 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-677 *5 *6 *7)) (-4 *9 (-375 *8)) (-4 *10 (-375 *8))))) +(-10 -7 (-15 -2795 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -2795 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3092 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) +((-3205 (($ (-763) (-763)) 31)) (-3347 (($ $ $) 54)) (-2870 (($ |#3|) 50) (($ $) 51)) (-1335 (((-121) $) 26)) (-4343 (($ $ (-568) (-568)) 56)) (-3622 (($ $ (-568) (-568)) 57)) (-3676 (($ $ (-568) (-568) (-568) (-568)) 61)) (-3976 (($ $) 52)) (-2230 (((-121) $) 14)) (-1785 (($ $ (-568) (-568) $) 62)) (-2436 ((|#2| $ (-568) (-568) |#2|) NIL) (($ $ (-634 (-568)) (-634 (-568)) $) 60)) (-3422 (($ (-763) |#2|) 36)) (-2076 ((|#2| $) 105)) (-2269 (($ (-634 (-634 |#2|))) 34)) (-3208 (((-634 (-634 |#2|)) $) 55)) (-2858 (($ $ $) 53)) (-2595 (((-3 $ "failed") $ |#2|) 108)) (-2779 ((|#2| $ (-568) (-568)) NIL) ((|#2| $ (-568) (-568) |#2|) NIL) (($ $ (-634 (-568)) (-634 (-568))) 59)) (-2282 (($ (-634 |#2|)) 38) (($ (-634 $)) 40)) (-1960 (((-121) $) 23)) (-2365 (((-634 |#4|) $) 91)) (-2745 (((-850) $) NIL) (($ |#4|) 45)) (-1910 (((-121) $) 28)) (-1779 (($ $ |#2|) 110)) (-1773 (($ $ $) 66) (($ $) 69)) (-1767 (($ $ $) 64)) (** (($ $ (-763)) 78) (($ $ (-568)) 113)) (* (($ $ $) 75) (($ |#2| $) 71) (($ $ |#2|) 72) (($ (-568) $) 74) ((|#4| $ |#4|) 82) ((|#3| |#3| $) 86))) +(((-676 |#1| |#2| |#3| |#4|) (-10 -8 (-15 ** (|#1| |#1| (-568))) (-15 -2076 (|#2| |#1|)) (-15 -2365 ((-634 |#4|) |#1|)) (-15 -1779 (|#1| |#1| |#2|)) (-15 -2595 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-763))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-568) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1773 (|#1| |#1|)) (-15 -1773 (|#1| |#1| |#1|)) (-15 -1767 (|#1| |#1| |#1|)) (-15 -1785 (|#1| |#1| (-568) (-568) |#1|)) (-15 -3676 (|#1| |#1| (-568) (-568) (-568) (-568))) (-15 -3622 (|#1| |#1| (-568) (-568))) (-15 -4343 (|#1| |#1| (-568) (-568))) (-15 -2436 (|#1| |#1| (-634 (-568)) (-634 (-568)) |#1|)) (-15 -2779 (|#1| |#1| (-634 (-568)) (-634 (-568)))) (-15 -3208 ((-634 (-634 |#2|)) |#1|)) (-15 -3347 (|#1| |#1| |#1|)) (-15 -2858 (|#1| |#1| |#1|)) (-15 -3976 (|#1| |#1|)) (-15 -2870 (|#1| |#1|)) (-15 -2870 (|#1| |#3|)) (-15 -2745 (|#1| |#4|)) (-15 -2282 (|#1| (-634 |#1|))) (-15 -2282 (|#1| (-634 |#2|))) (-15 -3422 (|#1| (-763) |#2|)) (-15 -2269 (|#1| (-634 (-634 |#2|)))) (-15 -3205 (|#1| (-763) (-763))) (-15 -1910 ((-121) |#1|)) (-15 -1335 ((-121) |#1|)) (-15 -1960 ((-121) |#1|)) (-15 -2230 ((-121) |#1|)) (-15 -2436 (|#2| |#1| (-568) (-568) |#2|)) (-15 -2779 (|#2| |#1| (-568) (-568) |#2|)) (-15 -2779 (|#2| |#1| (-568) (-568))) (-15 -2745 ((-850) |#1|))) (-677 |#2| |#3| |#4|) (-1047) (-375 |#2|) (-375 |#2|)) (T -676)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-568))) (-15 -2076 (|#2| |#1|)) (-15 -2365 ((-634 |#4|) |#1|)) (-15 -1779 (|#1| |#1| |#2|)) (-15 -2595 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-763))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-568) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1773 (|#1| |#1|)) (-15 -1773 (|#1| |#1| |#1|)) (-15 -1767 (|#1| |#1| |#1|)) (-15 -1785 (|#1| |#1| (-568) (-568) |#1|)) (-15 -3676 (|#1| |#1| (-568) (-568) (-568) (-568))) (-15 -3622 (|#1| |#1| (-568) (-568))) (-15 -4343 (|#1| |#1| (-568) (-568))) (-15 -2436 (|#1| |#1| (-634 (-568)) (-634 (-568)) |#1|)) (-15 -2779 (|#1| |#1| (-634 (-568)) (-634 (-568)))) (-15 -3208 ((-634 (-634 |#2|)) |#1|)) (-15 -3347 (|#1| |#1| |#1|)) (-15 -2858 (|#1| |#1| |#1|)) (-15 -3976 (|#1| |#1|)) (-15 -2870 (|#1| |#1|)) (-15 -2870 (|#1| |#3|)) (-15 -2745 (|#1| |#4|)) (-15 -2282 (|#1| (-634 |#1|))) (-15 -2282 (|#1| (-634 |#2|))) (-15 -3422 (|#1| (-763) |#2|)) (-15 -2269 (|#1| (-634 (-634 |#2|)))) (-15 -3205 (|#1| (-763) (-763))) (-15 -1910 ((-121) |#1|)) (-15 -1335 ((-121) |#1|)) (-15 -1960 ((-121) |#1|)) (-15 -2230 ((-121) |#1|)) (-15 -2436 (|#2| |#1| (-568) (-568) |#2|)) (-15 -2779 (|#2| |#1| (-568) (-568) |#2|)) (-15 -2779 (|#2| |#1| (-568) (-568))) (-15 -2745 ((-850) |#1|))) +((-2447 (((-121) $ $) 18 (|has| |#1| (-1090)))) (-3205 (($ (-763) (-763)) 94)) (-3347 (($ $ $) 84)) (-2870 (($ |#2|) 88) (($ $) 87)) (-1335 (((-121) $) 96)) (-4343 (($ $ (-568) (-568)) 80)) (-3622 (($ $ (-568) (-568)) 79)) (-3676 (($ $ (-568) (-568) (-568) (-568)) 78)) (-3976 (($ $) 86)) (-2230 (((-121) $) 98)) (-2510 (((-121) $ (-763)) 8)) (-1785 (($ $ (-568) (-568) $) 77)) (-2436 ((|#1| $ (-568) (-568) |#1|) 41) (($ $ (-634 (-568)) (-634 (-568)) $) 81)) (-4159 (($ $ (-568) |#2|) 39)) (-2451 (($ $ (-568) |#3|) 38)) (-3422 (($ (-763) |#1|) 92)) (-2671 (($) 7 T CONST)) (-4167 (($ $) 64 (|has| |#1| (-301)))) (-1818 ((|#2| $ (-568)) 43)) (-3700 (((-763) $) 62 (|has| |#1| (-558)))) (-3989 ((|#1| $ (-568) (-568) |#1|) 40)) (-2602 ((|#1| $ (-568) (-568)) 45)) (-2076 ((|#1| $) 57 (|has| |#1| (-172)))) (-4360 (((-634 |#1|) $) 30)) (-2121 (((-763) $) 61 (|has| |#1| (-558)))) (-4272 (((-634 |#3|) $) 60 (|has| |#1| (-558)))) (-3043 (((-763) $) 48)) (-1849 (($ (-763) (-763) |#1|) 54)) (-2555 (((-763) $) 47)) (-1737 (((-121) $ (-763)) 9)) (-3082 ((|#1| $) 58 (|has| |#1| (-6 (-4521 "*"))))) (-2087 (((-568) $) 52)) (-3364 (((-568) $) 50)) (-1979 (((-634 |#1|) $) 29 (|has| $ (-6 -4519)))) (-3109 (((-121) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-1663 (((-568) $) 51)) (-2893 (((-568) $) 49)) (-2269 (($ (-634 (-634 |#1|))) 93)) (-3674 (($ (-1 |#1| |#1|) $) 34)) (-2795 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 37) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 36)) (-3208 (((-634 (-634 |#1|)) $) 83)) (-2166 (((-121) $ (-763)) 10)) (-4487 (((-1143) $) 22 (|has| |#1| (-1090)))) (-3140 (((-3 $ "failed") $) 56 (|has| |#1| (-365)))) (-2858 (($ $ $) 85)) (-4022 (((-1108) $) 21 (|has| |#1| (-1090)))) (-3724 (($ $ |#1|) 53)) (-2595 (((-3 $ "failed") $ |#1|) 66 (|has| |#1| (-558)))) (-1387 (((-121) (-1 (-121) |#1|) $) 32 (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-634 |#1|) (-634 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))))) (-3171 (((-121) $ $) 14)) (-3084 (((-121) $) 11)) (-3248 (($) 12)) (-2779 ((|#1| $ (-568) (-568)) 46) ((|#1| $ (-568) (-568) |#1|) 44) (($ $ (-634 (-568)) (-634 (-568))) 82)) (-2282 (($ (-634 |#1|)) 91) (($ (-634 $)) 90)) (-1960 (((-121) $) 97)) (-2465 ((|#1| $) 59 (|has| |#1| (-6 (-4521 "*"))))) (-4168 (((-763) (-1 (-121) |#1|) $) 31 (|has| $ (-6 -4519))) (((-763) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-3863 (($ $) 13)) (-2365 (((-634 |#3|) $) 63 (|has| |#1| (-301)))) (-3731 ((|#3| $ (-568)) 42)) (-2745 (((-850) $) 20 (|has| |#1| (-1090))) (($ |#3|) 89)) (-1319 (((-121) (-1 (-121) |#1|) $) 33 (|has| $ (-6 -4519)))) (-1910 (((-121) $) 95)) (-1717 (((-121) $ $) 19 (|has| |#1| (-1090)))) (-1779 (($ $ |#1|) 65 (|has| |#1| (-365)))) (-1773 (($ $ $) 75) (($ $) 74)) (-1767 (($ $ $) 76)) (** (($ $ (-763)) 67) (($ $ (-568)) 55 (|has| |#1| (-365)))) (* (($ $ $) 73) (($ |#1| $) 72) (($ $ |#1|) 71) (($ (-568) $) 70) ((|#3| $ |#3|) 69) ((|#2| |#2| $) 68)) (-1697 (((-763) $) 6 (|has| $ (-6 -4519))))) +(((-677 |#1| |#2| |#3|) (-1275) (-1047) (-375 |t#1|) (-375 |t#1|)) (T -677)) +((-2230 (*1 *2 *1) (-12 (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-121)))) (-1960 (*1 *2 *1) (-12 (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-121)))) (-1335 (*1 *2 *1) (-12 (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-121)))) (-1910 (*1 *2 *1) (-12 (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-121)))) (-3205 (*1 *1 *2 *2) (-12 (-5 *2 (-763)) (-4 *3 (-1047)) (-4 *1 (-677 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-634 (-634 *3))) (-4 *3 (-1047)) (-4 *1 (-677 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-3422 (*1 *1 *2 *3) (-12 (-5 *2 (-763)) (-4 *3 (-1047)) (-4 *1 (-677 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-2282 (*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-1047)) (-4 *1 (-677 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-2282 (*1 *1 *2) (-12 (-5 *2 (-634 *1)) (-4 *3 (-1047)) (-4 *1 (-677 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-2745 (*1 *1 *2) (-12 (-4 *3 (-1047)) (-4 *1 (-677 *3 *4 *2)) (-4 *4 (-375 *3)) (-4 *2 (-375 *3)))) (-2870 (*1 *1 *2) (-12 (-4 *3 (-1047)) (-4 *1 (-677 *3 *2 *4)) (-4 *2 (-375 *3)) (-4 *4 (-375 *3)))) (-2870 (*1 *1 *1) (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-3976 (*1 *1 *1) (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-2858 (*1 *1 *1 *1) (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-3347 (*1 *1 *1 *1) (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-3208 (*1 *2 *1) (-12 (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-634 (-634 *3))))) (-2779 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-634 (-568))) (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-2436 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-634 (-568))) (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-4343 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-568)) (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-3622 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-568)) (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-3676 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-568)) (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-1785 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-568)) (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-1767 (*1 *1 *1 *1) (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-1773 (*1 *1 *1 *1) (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-1773 (*1 *1 *1) (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-568)) (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-677 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-375 *3)) (-4 *2 (-375 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-677 *3 *2 *4)) (-4 *3 (-1047)) (-4 *2 (-375 *3)) (-4 *4 (-375 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-763)) (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-2595 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (-4 *2 (-558)))) (-1779 (*1 *1 *1 *2) (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (-4 *2 (-365)))) (-4167 (*1 *1 *1) (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (-4 *2 (-301)))) (-2365 (*1 *2 *1) (-12 (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-4 *3 (-301)) (-5 *2 (-634 *5)))) (-3700 (*1 *2 *1) (-12 (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-4 *3 (-558)) (-5 *2 (-763)))) (-2121 (*1 *2 *1) (-12 (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-4 *3 (-558)) (-5 *2 (-763)))) (-4272 (*1 *2 *1) (-12 (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-4 *3 (-558)) (-5 *2 (-634 *5)))) (-2465 (*1 *2 *1) (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (|has| *2 (-6 (-4521 "*"))) (-4 *2 (-1047)))) (-3082 (*1 *2 *1) (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (|has| *2 (-6 (-4521 "*"))) (-4 *2 (-1047)))) (-2076 (*1 *2 *1) (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (-4 *2 (-1047)) (-4 *2 (-172)))) (-3140 (*1 *1 *1) (|partial| -12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (-4 *2 (-365)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-568)) (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-4 *3 (-365))))) +(-13 (-62 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4520) (-6 -4519) (-15 -2230 ((-121) $)) (-15 -1960 ((-121) $)) (-15 -1335 ((-121) $)) (-15 -1910 ((-121) $)) (-15 -3205 ($ (-763) (-763))) (-15 -2269 ($ (-634 (-634 |t#1|)))) (-15 -3422 ($ (-763) |t#1|)) (-15 -2282 ($ (-634 |t#1|))) (-15 -2282 ($ (-634 $))) (-15 -2745 ($ |t#3|)) (-15 -2870 ($ |t#2|)) (-15 -2870 ($ $)) (-15 -3976 ($ $)) (-15 -2858 ($ $ $)) (-15 -3347 ($ $ $)) (-15 -3208 ((-634 (-634 |t#1|)) $)) (-15 -2779 ($ $ (-634 (-568)) (-634 (-568)))) (-15 -2436 ($ $ (-634 (-568)) (-634 (-568)) $)) (-15 -4343 ($ $ (-568) (-568))) (-15 -3622 ($ $ (-568) (-568))) (-15 -3676 ($ $ (-568) (-568) (-568) (-568))) (-15 -1785 ($ $ (-568) (-568) $)) (-15 -1767 ($ $ $)) (-15 -1773 ($ $ $)) (-15 -1773 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-568) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-763))) (IF (|has| |t#1| (-558)) (-15 -2595 ((-3 $ "failed") $ |t#1|)) |noBranch|) (IF (|has| |t#1| (-365)) (-15 -1779 ($ $ |t#1|)) |noBranch|) (IF (|has| |t#1| (-301)) (PROGN (-15 -4167 ($ $)) (-15 -2365 ((-634 |t#3|) $))) |noBranch|) (IF (|has| |t#1| (-558)) (PROGN (-15 -3700 ((-763) $)) (-15 -2121 ((-763) $)) (-15 -4272 ((-634 |t#3|) $))) |noBranch|) (IF (|has| |t#1| (-6 (-4521 "*"))) (PROGN (-15 -2465 (|t#1| $)) (-15 -3082 (|t#1| $))) |noBranch|) (IF (|has| |t#1| (-172)) (-15 -2076 (|t#1| $)) |noBranch|) (IF (|has| |t#1| (-365)) (PROGN (-15 -3140 ((-3 $ "failed") $)) (-15 ** ($ $ (-568)))) |noBranch|))) +(((-39) . T) ((-105) |has| |#1| (-1090)) ((-608 (-850)) |has| |#1| (-1090)) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))) ((-499 |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))) ((-1090) |has| |#1| (-1090)) ((-62 |#1| |#2| |#3|) . T) ((-1195) . T)) +((-4167 ((|#4| |#4|) 67 (|has| |#1| (-301)))) (-3700 (((-763) |#4|) 69 (|has| |#1| (-558)))) (-2121 (((-763) |#4|) 71 (|has| |#1| (-558)))) (-4272 (((-634 |#3|) |#4|) 78 (|has| |#1| (-558)))) (-4045 (((-2 (|:| -3961 |#1|) (|:| -1500 |#1|)) |#1| |#1|) 95 (|has| |#1| (-301)))) (-3082 ((|#1| |#4|) 33)) (-3255 (((-3 |#4| "failed") |#4|) 61 (|has| |#1| (-558)))) (-3140 (((-3 |#4| "failed") |#4|) 75 (|has| |#1| (-365)))) (-1628 ((|#4| |#4|) 54 (|has| |#1| (-558)))) (-2584 ((|#4| |#4| |#1| (-568) (-568)) 41)) (-1920 ((|#4| |#4| (-568) (-568)) 36)) (-1528 ((|#4| |#4| |#1| (-568) (-568)) 46)) (-2465 ((|#1| |#4|) 73)) (-4391 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 57 (|has| |#1| (-558))))) +(((-678 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2465 (|#1| |#4|)) (-15 -3082 (|#1| |#4|)) (-15 -1920 (|#4| |#4| (-568) (-568))) (-15 -2584 (|#4| |#4| |#1| (-568) (-568))) (-15 -1528 (|#4| |#4| |#1| (-568) (-568))) (IF (|has| |#1| (-558)) (PROGN (-15 -3700 ((-763) |#4|)) (-15 -2121 ((-763) |#4|)) (-15 -4272 ((-634 |#3|) |#4|)) (-15 -1628 (|#4| |#4|)) (-15 -3255 ((-3 |#4| "failed") |#4|)) (-15 -4391 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |noBranch|) (IF (|has| |#1| (-301)) (PROGN (-15 -4167 (|#4| |#4|)) (-15 -4045 ((-2 (|:| -3961 |#1|) (|:| -1500 |#1|)) |#1| |#1|))) |noBranch|) (IF (|has| |#1| (-365)) (-15 -3140 ((-3 |#4| "failed") |#4|)) |noBranch|)) (-172) (-375 |#1|) (-375 |#1|) (-677 |#1| |#2| |#3|)) (T -678)) +((-3140 (*1 *2 *2) (|partial| -12 (-4 *3 (-365)) (-4 *3 (-172)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-678 *3 *4 *5 *2)) (-4 *2 (-677 *3 *4 *5)))) (-4045 (*1 *2 *3 *3) (-12 (-4 *3 (-301)) (-4 *3 (-172)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-2 (|:| -3961 *3) (|:| -1500 *3))) (-5 *1 (-678 *3 *4 *5 *6)) (-4 *6 (-677 *3 *4 *5)))) (-4167 (*1 *2 *2) (-12 (-4 *3 (-301)) (-4 *3 (-172)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-678 *3 *4 *5 *2)) (-4 *2 (-677 *3 *4 *5)))) (-4391 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *4 (-172)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-678 *4 *5 *6 *3)) (-4 *3 (-677 *4 *5 *6)))) (-3255 (*1 *2 *2) (|partial| -12 (-4 *3 (-558)) (-4 *3 (-172)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-678 *3 *4 *5 *2)) (-4 *2 (-677 *3 *4 *5)))) (-1628 (*1 *2 *2) (-12 (-4 *3 (-558)) (-4 *3 (-172)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-678 *3 *4 *5 *2)) (-4 *2 (-677 *3 *4 *5)))) (-4272 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *4 (-172)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-634 *6)) (-5 *1 (-678 *4 *5 *6 *3)) (-4 *3 (-677 *4 *5 *6)))) (-2121 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *4 (-172)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-763)) (-5 *1 (-678 *4 *5 *6 *3)) (-4 *3 (-677 *4 *5 *6)))) (-3700 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *4 (-172)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-763)) (-5 *1 (-678 *4 *5 *6 *3)) (-4 *3 (-677 *4 *5 *6)))) (-1528 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-568)) (-4 *3 (-172)) (-4 *5 (-375 *3)) (-4 *6 (-375 *3)) (-5 *1 (-678 *3 *5 *6 *2)) (-4 *2 (-677 *3 *5 *6)))) (-2584 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-568)) (-4 *3 (-172)) (-4 *5 (-375 *3)) (-4 *6 (-375 *3)) (-5 *1 (-678 *3 *5 *6 *2)) (-4 *2 (-677 *3 *5 *6)))) (-1920 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-568)) (-4 *4 (-172)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *1 (-678 *4 *5 *6 *2)) (-4 *2 (-677 *4 *5 *6)))) (-3082 (*1 *2 *3) (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-172)) (-5 *1 (-678 *2 *4 *5 *3)) (-4 *3 (-677 *2 *4 *5)))) (-2465 (*1 *2 *3) (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-172)) (-5 *1 (-678 *2 *4 *5 *3)) (-4 *3 (-677 *2 *4 *5))))) +(-10 -7 (-15 -2465 (|#1| |#4|)) (-15 -3082 (|#1| |#4|)) (-15 -1920 (|#4| |#4| (-568) (-568))) (-15 -2584 (|#4| |#4| |#1| (-568) (-568))) (-15 -1528 (|#4| |#4| |#1| (-568) (-568))) (IF (|has| |#1| (-558)) (PROGN (-15 -3700 ((-763) |#4|)) (-15 -2121 ((-763) |#4|)) (-15 -4272 ((-634 |#3|) |#4|)) (-15 -1628 (|#4| |#4|)) (-15 -3255 ((-3 |#4| "failed") |#4|)) (-15 -4391 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |noBranch|) (IF (|has| |#1| (-301)) (PROGN (-15 -4167 (|#4| |#4|)) (-15 -4045 ((-2 (|:| -3961 |#1|) (|:| -1500 |#1|)) |#1| |#1|))) |noBranch|) (IF (|has| |#1| (-365)) (-15 -3140 ((-3 |#4| "failed") |#4|)) |noBranch|)) +((-2447 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-3205 (($ (-763) (-763)) 45)) (-3347 (($ $ $) NIL)) (-2870 (($ (-1244 |#1|)) NIL) (($ $) NIL)) (-1335 (((-121) $) NIL)) (-4343 (($ $ (-568) (-568)) 12)) (-3622 (($ $ (-568) (-568)) NIL)) (-3676 (($ $ (-568) (-568) (-568) (-568)) NIL)) (-3976 (($ $) NIL)) (-2230 (((-121) $) NIL)) (-2510 (((-121) $ (-763)) NIL)) (-1785 (($ $ (-568) (-568) $) NIL)) (-2436 ((|#1| $ (-568) (-568) |#1|) NIL) (($ $ (-634 (-568)) (-634 (-568)) $) NIL)) (-4159 (($ $ (-568) (-1244 |#1|)) NIL)) (-2451 (($ $ (-568) (-1244 |#1|)) NIL)) (-3422 (($ (-763) |#1|) 22)) (-2671 (($) NIL T CONST)) (-4167 (($ $) 30 (|has| |#1| (-301)))) (-1818 (((-1244 |#1|) $ (-568)) NIL)) (-3700 (((-763) $) 32 (|has| |#1| (-558)))) (-3989 ((|#1| $ (-568) (-568) |#1|) 50)) (-2602 ((|#1| $ (-568) (-568)) NIL)) (-2076 ((|#1| $) NIL (|has| |#1| (-172)))) (-4360 (((-634 |#1|) $) NIL)) (-2121 (((-763) $) 34 (|has| |#1| (-558)))) (-4272 (((-634 (-1244 |#1|)) $) 37 (|has| |#1| (-558)))) (-3043 (((-763) $) 20)) (-1849 (($ (-763) (-763) |#1|) NIL)) (-2555 (((-763) $) 21)) (-1737 (((-121) $ (-763)) NIL)) (-3082 ((|#1| $) 28 (|has| |#1| (-6 (-4521 "*"))))) (-2087 (((-568) $) 9)) (-3364 (((-568) $) 10)) (-1979 (((-634 |#1|) $) NIL (|has| $ (-6 -4519)))) (-3109 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-1663 (((-568) $) 11)) (-2893 (((-568) $) 46)) (-2269 (($ (-634 (-634 |#1|))) NIL)) (-3674 (($ (-1 |#1| |#1|) $) NIL)) (-2795 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3208 (((-634 (-634 |#1|)) $) 58)) (-2166 (((-121) $ (-763)) NIL)) (-4487 (((-1143) $) NIL (|has| |#1| (-1090)))) (-3140 (((-3 $ "failed") $) 41 (|has| |#1| (-365)))) (-2858 (($ $ $) NIL)) (-4022 (((-1108) $) NIL (|has| |#1| (-1090)))) (-3724 (($ $ |#1|) NIL)) (-2595 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558)))) (-1387 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-634 |#1|) (-634 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))))) (-3171 (((-121) $ $) NIL)) (-3084 (((-121) $) NIL)) (-3248 (($) NIL)) (-2779 ((|#1| $ (-568) (-568)) NIL) ((|#1| $ (-568) (-568) |#1|) NIL) (($ $ (-634 (-568)) (-634 (-568))) NIL)) (-2282 (($ (-634 |#1|)) NIL) (($ (-634 $)) NIL) (($ (-1244 |#1|)) 51)) (-1960 (((-121) $) NIL)) (-2465 ((|#1| $) 26 (|has| |#1| (-6 (-4521 "*"))))) (-4168 (((-763) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519))) (((-763) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-3863 (($ $) NIL)) (-4278 (((-541) $) 62 (|has| |#1| (-609 (-541))))) (-2365 (((-634 (-1244 |#1|)) $) NIL (|has| |#1| (-301)))) (-3731 (((-1244 |#1|) $ (-568)) NIL)) (-2745 (((-850) $) NIL (|has| |#1| (-1090))) (($ (-1244 |#1|)) NIL)) (-1319 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-1910 (((-121) $) NIL)) (-1717 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-1779 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-1773 (($ $ $) NIL) (($ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-763)) 23) (($ $ (-568)) 44 (|has| |#1| (-365)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-568) $) NIL) (((-1244 |#1|) $ (-1244 |#1|)) NIL) (((-1244 |#1|) (-1244 |#1|) $) NIL)) (-1697 (((-763) $) NIL (|has| $ (-6 -4519))))) +(((-679 |#1|) (-13 (-677 |#1| (-1244 |#1|) (-1244 |#1|)) (-10 -8 (-15 -2282 ($ (-1244 |#1|))) (IF (|has| |#1| (-609 (-541))) (-6 (-609 (-541))) |noBranch|) (IF (|has| |#1| (-365)) (-15 -3140 ((-3 $ "failed") $)) |noBranch|))) (-1047)) (T -679)) +((-3140 (*1 *1 *1) (|partial| -12 (-5 *1 (-679 *2)) (-4 *2 (-365)) (-4 *2 (-1047)))) (-2282 (*1 *1 *2) (-12 (-5 *2 (-1244 *3)) (-4 *3 (-1047)) (-5 *1 (-679 *3))))) +(-13 (-677 |#1| (-1244 |#1|) (-1244 |#1|)) (-10 -8 (-15 -2282 ($ (-1244 |#1|))) (IF (|has| |#1| (-609 (-541))) (-6 (-609 (-541))) |noBranch|) (IF (|has| |#1| (-365)) (-15 -3140 ((-3 $ "failed") $)) |noBranch|))) +((-2998 (((-679 |#1|) (-679 |#1|) (-679 |#1|) (-679 |#1|)) 25)) (-3410 (((-679 |#1|) (-679 |#1|) (-679 |#1|) |#1|) 21)) (-4483 (((-679 |#1|) (-679 |#1|) (-679 |#1|) (-679 |#1|) (-679 |#1|) (-763)) 26)) (-2151 (((-679 |#1|) (-679 |#1|) (-679 |#1|) (-679 |#1|)) 14)) (-3835 (((-679 |#1|) (-679 |#1|) (-679 |#1|) (-679 |#1|)) 18) (((-679 |#1|) (-679 |#1|) (-679 |#1|)) 16)) (-3184 (((-679 |#1|) (-679 |#1|) |#1| (-679 |#1|)) 20)) (-3489 (((-679 |#1|) (-679 |#1|) (-679 |#1|)) 12)) (** (((-679 |#1|) (-679 |#1|) (-763)) 30))) +(((-680 |#1|) (-10 -7 (-15 -3489 ((-679 |#1|) (-679 |#1|) (-679 |#1|))) (-15 -2151 ((-679 |#1|) (-679 |#1|) (-679 |#1|) (-679 |#1|))) (-15 -3835 ((-679 |#1|) (-679 |#1|) (-679 |#1|))) (-15 -3835 ((-679 |#1|) (-679 |#1|) (-679 |#1|) (-679 |#1|))) (-15 -3184 ((-679 |#1|) (-679 |#1|) |#1| (-679 |#1|))) (-15 -3410 ((-679 |#1|) (-679 |#1|) (-679 |#1|) |#1|)) (-15 -2998 ((-679 |#1|) (-679 |#1|) (-679 |#1|) (-679 |#1|))) (-15 -4483 ((-679 |#1|) (-679 |#1|) (-679 |#1|) (-679 |#1|) (-679 |#1|) (-763))) (-15 ** ((-679 |#1|) (-679 |#1|) (-763)))) (-1047)) (T -680)) +((** (*1 *2 *2 *3) (-12 (-5 *2 (-679 *4)) (-5 *3 (-763)) (-4 *4 (-1047)) (-5 *1 (-680 *4)))) (-4483 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-679 *4)) (-5 *3 (-763)) (-4 *4 (-1047)) (-5 *1 (-680 *4)))) (-2998 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-679 *3)) (-4 *3 (-1047)) (-5 *1 (-680 *3)))) (-3410 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-679 *3)) (-4 *3 (-1047)) (-5 *1 (-680 *3)))) (-3184 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-679 *3)) (-4 *3 (-1047)) (-5 *1 (-680 *3)))) (-3835 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-679 *3)) (-4 *3 (-1047)) (-5 *1 (-680 *3)))) (-3835 (*1 *2 *2 *2) (-12 (-5 *2 (-679 *3)) (-4 *3 (-1047)) (-5 *1 (-680 *3)))) (-2151 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-679 *3)) (-4 *3 (-1047)) (-5 *1 (-680 *3)))) (-3489 (*1 *2 *2 *2) (-12 (-5 *2 (-679 *3)) (-4 *3 (-1047)) (-5 *1 (-680 *3))))) +(-10 -7 (-15 -3489 ((-679 |#1|) (-679 |#1|) (-679 |#1|))) (-15 -2151 ((-679 |#1|) (-679 |#1|) (-679 |#1|) (-679 |#1|))) (-15 -3835 ((-679 |#1|) (-679 |#1|) (-679 |#1|))) (-15 -3835 ((-679 |#1|) (-679 |#1|) (-679 |#1|) (-679 |#1|))) (-15 -3184 ((-679 |#1|) (-679 |#1|) |#1| (-679 |#1|))) (-15 -3410 ((-679 |#1|) (-679 |#1|) (-679 |#1|) |#1|)) (-15 -2998 ((-679 |#1|) (-679 |#1|) (-679 |#1|) (-679 |#1|))) (-15 -4483 ((-679 |#1|) (-679 |#1|) (-679 |#1|) (-679 |#1|) (-679 |#1|) (-763))) (-15 ** ((-679 |#1|) (-679 |#1|) (-763)))) +((-1426 ((|#2| |#2| |#4|) 25)) (-3147 (((-679 |#2|) |#3| |#4|) 31)) (-4142 (((-679 |#2|) |#2| |#4|) 30)) (-1842 (((-1244 |#2|) |#2| |#4|) 16)) (-2982 ((|#2| |#3| |#4|) 24)) (-4392 (((-679 |#2|) |#3| |#4| (-763) (-763)) 38)) (-4152 (((-679 |#2|) |#2| |#4| (-763)) 37))) +(((-681 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1842 ((-1244 |#2|) |#2| |#4|)) (-15 -2982 (|#2| |#3| |#4|)) (-15 -1426 (|#2| |#2| |#4|)) (-15 -4142 ((-679 |#2|) |#2| |#4|)) (-15 -4152 ((-679 |#2|) |#2| |#4| (-763))) (-15 -3147 ((-679 |#2|) |#3| |#4|)) (-15 -4392 ((-679 |#2|) |#3| |#4| (-763) (-763)))) (-1090) (-895 |#1|) (-375 |#2|) (-13 (-375 |#1|) (-10 -7 (-6 -4519)))) (T -681)) +((-4392 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-763)) (-4 *6 (-1090)) (-4 *7 (-895 *6)) (-5 *2 (-679 *7)) (-5 *1 (-681 *6 *7 *3 *4)) (-4 *3 (-375 *7)) (-4 *4 (-13 (-375 *6) (-10 -7 (-6 -4519)))))) (-3147 (*1 *2 *3 *4) (-12 (-4 *5 (-1090)) (-4 *6 (-895 *5)) (-5 *2 (-679 *6)) (-5 *1 (-681 *5 *6 *3 *4)) (-4 *3 (-375 *6)) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4519)))))) (-4152 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-763)) (-4 *6 (-1090)) (-4 *3 (-895 *6)) (-5 *2 (-679 *3)) (-5 *1 (-681 *6 *3 *7 *4)) (-4 *7 (-375 *3)) (-4 *4 (-13 (-375 *6) (-10 -7 (-6 -4519)))))) (-4142 (*1 *2 *3 *4) (-12 (-4 *5 (-1090)) (-4 *3 (-895 *5)) (-5 *2 (-679 *3)) (-5 *1 (-681 *5 *3 *6 *4)) (-4 *6 (-375 *3)) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4519)))))) (-1426 (*1 *2 *2 *3) (-12 (-4 *4 (-1090)) (-4 *2 (-895 *4)) (-5 *1 (-681 *4 *2 *5 *3)) (-4 *5 (-375 *2)) (-4 *3 (-13 (-375 *4) (-10 -7 (-6 -4519)))))) (-2982 (*1 *2 *3 *4) (-12 (-4 *5 (-1090)) (-4 *2 (-895 *5)) (-5 *1 (-681 *5 *2 *3 *4)) (-4 *3 (-375 *2)) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4519)))))) (-1842 (*1 *2 *3 *4) (-12 (-4 *5 (-1090)) (-4 *3 (-895 *5)) (-5 *2 (-1244 *3)) (-5 *1 (-681 *5 *3 *6 *4)) (-4 *6 (-375 *3)) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4519))))))) +(-10 -7 (-15 -1842 ((-1244 |#2|) |#2| |#4|)) (-15 -2982 (|#2| |#3| |#4|)) (-15 -1426 (|#2| |#2| |#4|)) (-15 -4142 ((-679 |#2|) |#2| |#4|)) (-15 -4152 ((-679 |#2|) |#2| |#4| (-763))) (-15 -3147 ((-679 |#2|) |#3| |#4|)) (-15 -4392 ((-679 |#2|) |#3| |#4| (-763) (-763)))) +((-4114 (((-2 (|:| |num| (-679 |#1|)) (|:| |den| |#1|)) (-679 |#2|)) 18)) (-3093 ((|#1| (-679 |#2|)) 9)) (-2469 (((-679 |#1|) (-679 |#2|)) 16))) +(((-682 |#1| |#2|) (-10 -7 (-15 -3093 (|#1| (-679 |#2|))) (-15 -2469 ((-679 |#1|) (-679 |#2|))) (-15 -4114 ((-2 (|:| |num| (-679 |#1|)) (|:| |den| |#1|)) (-679 |#2|)))) (-558) (-993 |#1|)) (T -682)) +((-4114 (*1 *2 *3) (-12 (-5 *3 (-679 *5)) (-4 *5 (-993 *4)) (-4 *4 (-558)) (-5 *2 (-2 (|:| |num| (-679 *4)) (|:| |den| *4))) (-5 *1 (-682 *4 *5)))) (-2469 (*1 *2 *3) (-12 (-5 *3 (-679 *5)) (-4 *5 (-993 *4)) (-4 *4 (-558)) (-5 *2 (-679 *4)) (-5 *1 (-682 *4 *5)))) (-3093 (*1 *2 *3) (-12 (-5 *3 (-679 *4)) (-4 *4 (-993 *2)) (-4 *2 (-558)) (-5 *1 (-682 *2 *4))))) +(-10 -7 (-15 -3093 (|#1| (-679 |#2|))) (-15 -2469 ((-679 |#1|) (-679 |#2|))) (-15 -4114 ((-2 (|:| |num| (-679 |#1|)) (|:| |den| |#1|)) (-679 |#2|)))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL)) (-2227 (($ $) NIL)) (-1573 (((-121) $) NIL)) (-4255 (((-679 (-688))) NIL) (((-679 (-688)) (-1244 $)) NIL)) (-1932 (((-688) $) NIL)) (-1982 (($ $) NIL (|has| (-688) (-1181)))) (-1933 (($ $) NIL (|has| (-688) (-1181)))) (-3211 (((-1169 (-917) (-763)) (-568)) NIL (|has| (-688) (-350)))) (-3134 (((-3 $ "failed") $ $) NIL)) (-1750 (((-420 (-1157 $)) (-1157 $)) NIL (-12 (|has| (-688) (-301)) (|has| (-688) (-904))))) (-4305 (($ $) NIL (-2198 (-12 (|has| (-688) (-301)) (|has| (-688) (-904))) (|has| (-688) (-365))))) (-1678 (((-420 $) $) NIL (-2198 (-12 (|has| (-688) (-301)) (|has| (-688) (-904))) (|has| (-688) (-365))))) (-1902 (($ $) NIL (-12 (|has| (-688) (-1002)) (|has| (-688) (-1181))))) (-1858 (((-3 (-634 (-1157 $)) "failed") (-634 (-1157 $)) (-1157 $)) NIL (-12 (|has| (-688) (-301)) (|has| (-688) (-904))))) (-1497 (((-121) $ $) NIL (|has| (-688) (-301)))) (-3983 (((-763)) NIL (|has| (-688) (-370)))) (-1974 (($ $) NIL (|has| (-688) (-1181)))) (-2786 (($ $) NIL (|has| (-688) (-1181)))) (-1990 (($ $) NIL (|has| (-688) (-1181)))) (-1941 (($ $) NIL (|has| (-688) (-1181)))) (-2671 (($) NIL T CONST)) (-3666 (((-3 (-568) "failed") $) NIL) (((-3 (-688) "failed") $) NIL) (((-3 (-409 (-568)) "failed") $) NIL (|has| (-688) (-1037 (-409 (-568)))))) (-2854 (((-568) $) NIL) (((-688) $) NIL) (((-409 (-568)) $) NIL (|has| (-688) (-1037 (-409 (-568)))))) (-3498 (($ (-1244 (-688))) NIL) (($ (-1244 (-688)) (-1244 $)) NIL)) (-2022 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-688) (-350)))) (-2401 (($ $ $) NIL (|has| (-688) (-301)))) (-1709 (((-679 (-688)) $) NIL) (((-679 (-688)) $ (-1244 $)) NIL)) (-3164 (((-679 (-688)) (-679 $)) NIL) (((-2 (|:| -2928 (-679 (-688))) (|:| |vec| (-1244 (-688)))) (-679 $) (-1244 $)) NIL) (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) NIL (|has| (-688) (-630 (-568)))) (((-679 (-568)) (-679 $)) NIL (|has| (-688) (-630 (-568))))) (-3092 (((-3 $ "failed") (-409 (-1157 (-688)))) NIL (|has| (-688) (-365))) (($ (-1157 (-688))) NIL)) (-2925 (((-3 $ "failed") $) NIL)) (-3857 (((-688) $) 29)) (-1642 (((-3 (-409 (-568)) "failed") $) NIL (|has| (-688) (-550)))) (-2688 (((-121) $) NIL (|has| (-688) (-550)))) (-2425 (((-409 (-568)) $) NIL (|has| (-688) (-550)))) (-3700 (((-917)) NIL)) (-1731 (($) NIL (|has| (-688) (-370)))) (-2412 (($ $ $) NIL (|has| (-688) (-301)))) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) NIL (|has| (-688) (-301)))) (-4220 (($) NIL (|has| (-688) (-350)))) (-4456 (((-121) $) NIL (|has| (-688) (-350)))) (-3218 (($ $) NIL (|has| (-688) (-350))) (($ $ (-763)) NIL (|has| (-688) (-350)))) (-3927 (((-121) $) NIL (-2198 (-12 (|has| (-688) (-301)) (|has| (-688) (-904))) (|has| (-688) (-365))))) (-3378 (((-2 (|:| |r| (-688)) (|:| |phi| (-688))) $) NIL (-12 (|has| (-688) (-1056)) (|has| (-688) (-1181))))) (-1897 (($) NIL (|has| (-688) (-1181)))) (-4410 (((-884 (-381) $) $ (-887 (-381)) (-884 (-381) $)) NIL (|has| (-688) (-881 (-381)))) (((-884 (-568) $) $ (-887 (-568)) (-884 (-568) $)) NIL (|has| (-688) (-881 (-568))))) (-4477 (((-828 (-917)) $) NIL (|has| (-688) (-350))) (((-917) $) NIL (|has| (-688) (-350)))) (-2735 (((-121) $) NIL)) (-4044 (($ $ (-568)) NIL (-12 (|has| (-688) (-1002)) (|has| (-688) (-1181))))) (-2657 (((-688) $) NIL)) (-3038 (((-3 $ "failed") $) NIL (|has| (-688) (-350)))) (-3562 (((-3 (-634 $) "failed") (-634 $) $) NIL (|has| (-688) (-301)))) (-2045 (((-1157 (-688)) $) NIL (|has| (-688) (-365)))) (-2521 (($ $ $) NIL)) (-3268 (($ $ $) NIL)) (-2795 (($ (-1 (-688) (-688)) $) NIL)) (-3683 (((-917) $) NIL (|has| (-688) (-370)))) (-4416 (($ $) NIL (|has| (-688) (-1181)))) (-3085 (((-1157 (-688)) $) NIL)) (-2495 (($ (-634 $)) NIL (|has| (-688) (-301))) (($ $ $) NIL (|has| (-688) (-301)))) (-4487 (((-1143) $) NIL)) (-2081 (($ $) NIL (|has| (-688) (-365)))) (-4434 (($) NIL (|has| (-688) (-350)) CONST)) (-4355 (($ (-917)) NIL (|has| (-688) (-370)))) (-3777 (($) NIL)) (-3866 (((-688) $) 31)) (-4022 (((-1108) $) NIL)) (-2704 (($) NIL)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL (|has| (-688) (-301)))) (-2721 (($ (-634 $)) NIL (|has| (-688) (-301))) (($ $ $) NIL (|has| (-688) (-301)))) (-1418 (((-634 (-2 (|:| -3848 (-568)) (|:| -3438 (-568))))) NIL (|has| (-688) (-350)))) (-2905 (((-420 (-1157 $)) (-1157 $)) NIL (-12 (|has| (-688) (-301)) (|has| (-688) (-904))))) (-3545 (((-420 (-1157 $)) (-1157 $)) NIL (-12 (|has| (-688) (-301)) (|has| (-688) (-904))))) (-3848 (((-420 $) $) NIL (-2198 (-12 (|has| (-688) (-301)) (|has| (-688) (-904))) (|has| (-688) (-365))))) (-4497 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-688) (-301))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL (|has| (-688) (-301)))) (-2595 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-688)) NIL (|has| (-688) (-558)))) (-2344 (((-3 (-634 $) "failed") (-634 $) $) NIL (|has| (-688) (-301)))) (-1892 (($ $) NIL (|has| (-688) (-1181)))) (-1339 (($ $ (-1161) (-688)) NIL (|has| (-688) (-523 (-1161) (-688)))) (($ $ (-634 (-1161)) (-634 (-688))) NIL (|has| (-688) (-523 (-1161) (-688)))) (($ $ (-634 (-288 (-688)))) NIL (|has| (-688) (-303 (-688)))) (($ $ (-288 (-688))) NIL (|has| (-688) (-303 (-688)))) (($ $ (-688) (-688)) NIL (|has| (-688) (-303 (-688)))) (($ $ (-634 (-688)) (-634 (-688))) NIL (|has| (-688) (-303 (-688))))) (-2709 (((-763) $) NIL (|has| (-688) (-301)))) (-2779 (($ $ (-688)) NIL (|has| (-688) (-281 (-688) (-688))))) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL (|has| (-688) (-301)))) (-2217 (((-688)) NIL) (((-688) (-1244 $)) NIL)) (-3143 (((-3 (-763) "failed") $ $) NIL (|has| (-688) (-350))) (((-763) $) NIL (|has| (-688) (-350)))) (-4189 (($ $ (-1 (-688) (-688))) NIL) (($ $ (-1 (-688) (-688)) (-763)) NIL) (($ $ (-634 (-1161)) (-634 (-763))) NIL (|has| (-688) (-895 (-1161)))) (($ $ (-1161) (-763)) NIL (|has| (-688) (-895 (-1161)))) (($ $ (-634 (-1161))) NIL (|has| (-688) (-895 (-1161)))) (($ $ (-1161)) NIL (|has| (-688) (-895 (-1161)))) (($ $ (-763)) NIL (|has| (-688) (-225))) (($ $) NIL (|has| (-688) (-225)))) (-4387 (((-679 (-688)) (-1244 $) (-1 (-688) (-688))) NIL (|has| (-688) (-365)))) (-1626 (((-1157 (-688))) NIL)) (-1994 (($ $) NIL (|has| (-688) (-1181)))) (-1945 (($ $) NIL (|has| (-688) (-1181)))) (-3065 (($) NIL (|has| (-688) (-350)))) (-1986 (($ $) NIL (|has| (-688) (-1181)))) (-1937 (($ $) NIL (|has| (-688) (-1181)))) (-1978 (($ $) NIL (|has| (-688) (-1181)))) (-2790 (($ $) NIL (|has| (-688) (-1181)))) (-4073 (((-679 (-688)) (-1244 $)) NIL) (((-1244 (-688)) $) NIL) (((-679 (-688)) (-1244 $) (-1244 $)) NIL) (((-1244 (-688)) $ (-1244 $)) NIL)) (-4278 (((-541) $) NIL (|has| (-688) (-609 (-541)))) (((-169 (-215)) $) NIL (|has| (-688) (-1021))) (((-169 (-381)) $) NIL (|has| (-688) (-1021))) (((-887 (-381)) $) NIL (|has| (-688) (-609 (-887 (-381))))) (((-887 (-568)) $) NIL (|has| (-688) (-609 (-887 (-568))))) (($ (-1157 (-688))) NIL) (((-1157 (-688)) $) NIL) (($ (-1244 (-688))) NIL) (((-1244 (-688)) $) NIL)) (-1458 (($ $) NIL)) (-2979 (((-3 (-1244 $) "failed") (-679 $)) NIL (-2198 (-12 (|has| $ (-148)) (|has| (-688) (-301)) (|has| (-688) (-904))) (|has| (-688) (-350))))) (-4003 (($ (-688) (-688)) 12)) (-2745 (((-850) $) NIL) (($ (-568)) NIL) (($ $) NIL) (($ (-568)) NIL) (($ (-688)) NIL) (($ (-169 (-381))) 13) (($ (-169 (-568))) 19) (($ (-169 (-688))) 28) (($ (-169 (-690))) 25) (((-169 (-381)) $) 33) (($ (-409 (-568))) NIL (-2198 (|has| (-688) (-365)) (|has| (-688) (-1037 (-409 (-568))))))) (-4371 (($ $) NIL (|has| (-688) (-350))) (((-3 $ "failed") $) NIL (-2198 (-12 (|has| $ (-148)) (|has| (-688) (-301)) (|has| (-688) (-904))) (|has| (-688) (-148))))) (-2678 (((-1157 (-688)) $) NIL)) (-4078 (((-763)) NIL)) (-3746 (((-1244 $)) NIL)) (-2006 (($ $) NIL (|has| (-688) (-1181)))) (-1958 (($ $) NIL (|has| (-688) (-1181)))) (-1826 (((-121) $ $) NIL)) (-1998 (($ $) NIL (|has| (-688) (-1181)))) (-1949 (($ $) NIL (|has| (-688) (-1181)))) (-2014 (($ $) NIL (|has| (-688) (-1181)))) (-1966 (($ $) NIL (|has| (-688) (-1181)))) (-3256 (((-688) $) NIL (|has| (-688) (-1181)))) (-4023 (($ $) NIL (|has| (-688) (-1181)))) (-1970 (($ $) NIL (|has| (-688) (-1181)))) (-2010 (($ $) NIL (|has| (-688) (-1181)))) (-1962 (($ $) NIL (|has| (-688) (-1181)))) (-2002 (($ $) NIL (|has| (-688) (-1181)))) (-1953 (($ $) NIL (|has| (-688) (-1181)))) (-2897 (($ $) NIL (|has| (-688) (-1056)))) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL (|has| (-688) (-365)))) (-3056 (($) NIL T CONST)) (-1556 (($) NIL T CONST)) (-3190 (($ $ (-1 (-688) (-688))) NIL) (($ $ (-1 (-688) (-688)) (-763)) NIL) (($ $ (-634 (-1161)) (-634 (-763))) NIL (|has| (-688) (-895 (-1161)))) (($ $ (-1161) (-763)) NIL (|has| (-688) (-895 (-1161)))) (($ $ (-634 (-1161))) NIL (|has| (-688) (-895 (-1161)))) (($ $ (-1161)) NIL (|has| (-688) (-895 (-1161)))) (($ $ (-763)) NIL (|has| (-688) (-225))) (($ $) NIL (|has| (-688) (-225)))) (-1751 (((-121) $ $) NIL)) (-1738 (((-121) $ $) NIL)) (-1717 (((-121) $ $) NIL)) (-1745 (((-121) $ $) NIL)) (-1732 (((-121) $ $) NIL)) (-1779 (($ $ $) NIL (|has| (-688) (-365)))) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ $) NIL (|has| (-688) (-1181))) (($ $ (-409 (-568))) NIL (-12 (|has| (-688) (-1002)) (|has| (-688) (-1181)))) (($ $ (-568)) NIL (|has| (-688) (-365)))) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) NIL) (($ (-688) $) NIL) (($ $ (-688)) NIL) (($ (-409 (-568)) $) NIL (|has| (-688) (-365))) (($ $ (-409 (-568))) NIL (|has| (-688) (-365))))) +(((-683) (-13 (-389) (-166 (-688)) (-10 -8 (-15 -2745 ($ (-169 (-381)))) (-15 -2745 ($ (-169 (-568)))) (-15 -2745 ($ (-169 (-688)))) (-15 -2745 ($ (-169 (-690)))) (-15 -2745 ((-169 (-381)) $))))) (T -683)) +((-2745 (*1 *1 *2) (-12 (-5 *2 (-169 (-381))) (-5 *1 (-683)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-169 (-568))) (-5 *1 (-683)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-169 (-688))) (-5 *1 (-683)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-169 (-690))) (-5 *1 (-683)))) (-2745 (*1 *2 *1) (-12 (-5 *2 (-169 (-381))) (-5 *1 (-683))))) +(-13 (-389) (-166 (-688)) (-10 -8 (-15 -2745 ($ (-169 (-381)))) (-15 -2745 ($ (-169 (-568)))) (-15 -2745 ($ (-169 (-688)))) (-15 -2745 ($ (-169 (-690)))) (-15 -2745 ((-169 (-381)) $)))) +((-2447 (((-121) $ $) 18 (|has| |#1| (-1090)))) (-2510 (((-121) $ (-763)) 8)) (-3507 (($ (-1 (-121) |#1|) $) 42 (|has| $ (-6 -4519)))) (-2801 (($ (-1 (-121) |#1|) $) 52 (|has| $ (-6 -4519)))) (-2671 (($) 7 T CONST)) (-3369 (($ $) 58)) (-3924 (($ $) 55 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-3405 (($ |#1| $) 44 (|has| $ (-6 -4519))) (($ (-1 (-121) |#1|) $) 43 (|has| $ (-6 -4519)))) (-4328 (($ |#1| $) 54 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519)))) (($ (-1 (-121) |#1|) $) 51 (|has| $ (-6 -4519)))) (-3092 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 53 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 50 (|has| $ (-6 -4519))) ((|#1| (-1 |#1| |#1| |#1|) $) 49 (|has| $ (-6 -4519)))) (-4360 (((-634 |#1|) $) 30 (|has| $ (-6 -4519)))) (-1737 (((-121) $ (-763)) 9)) (-1979 (((-634 |#1|) $) 29 (|has| $ (-6 -4519)))) (-3109 (((-121) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-3674 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#1| |#1|) $) 35)) (-2166 (((-121) $ (-763)) 10)) (-4487 (((-1143) $) 22 (|has| |#1| (-1090)))) (-1890 ((|#1| $) 36)) (-4450 (($ |#1| $) 37) (($ |#1| $ (-763)) 59)) (-4022 (((-1108) $) 21 (|has| |#1| (-1090)))) (-3775 (((-3 |#1| "failed") (-1 (-121) |#1|) $) 48)) (-1315 ((|#1| $) 38)) (-1387 (((-121) (-1 (-121) |#1|) $) 32 (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-634 |#1|) (-634 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))))) (-3171 (((-121) $ $) 14)) (-3084 (((-121) $) 11)) (-3248 (($) 12)) (-1799 (((-634 (-2 (|:| -4083 |#1|) (|:| -4168 (-763)))) $) 57)) (-2085 (($) 46) (($ (-634 |#1|)) 45)) (-4168 (((-763) (-1 (-121) |#1|) $) 31 (|has| $ (-6 -4519))) (((-763) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-3863 (($ $) 13)) (-4278 (((-541) $) 56 (|has| |#1| (-609 (-541))))) (-4287 (($ (-634 |#1|)) 47)) (-2745 (((-850) $) 20 (|has| |#1| (-1090)))) (-2367 (($ (-634 |#1|)) 39)) (-1319 (((-121) (-1 (-121) |#1|) $) 33 (|has| $ (-6 -4519)))) (-1717 (((-121) $ $) 19 (|has| |#1| (-1090)))) (-1697 (((-763) $) 6 (|has| $ (-6 -4519))))) +(((-684 |#1|) (-1275) (-1090)) (T -684)) +((-4450 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-763)) (-4 *1 (-684 *2)) (-4 *2 (-1090)))) (-3369 (*1 *1 *1) (-12 (-4 *1 (-684 *2)) (-4 *2 (-1090)))) (-1799 (*1 *2 *1) (-12 (-4 *1 (-684 *3)) (-4 *3 (-1090)) (-5 *2 (-634 (-2 (|:| -4083 *3) (|:| -4168 (-763)))))))) +(-13 (-227 |t#1|) (-10 -8 (-15 -4450 ($ |t#1| $ (-763))) (-15 -3369 ($ $)) (-15 -1799 ((-634 (-2 (|:| -4083 |t#1|) (|:| -4168 (-763)))) $)))) +(((-39) . T) ((-111 |#1|) . T) ((-105) |has| |#1| (-1090)) ((-608 (-850)) |has| |#1| (-1090)) ((-154 |#1|) . T) ((-609 (-541)) |has| |#1| (-609 (-541))) ((-227 |#1|) . T) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))) ((-499 |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))) ((-1090) |has| |#1| (-1090)) ((-1195) . T)) +((-2117 (((-634 |#1|) (-634 (-2 (|:| -3848 |#1|) (|:| -3206 (-568)))) (-568)) 46)) (-2737 ((|#1| |#1| (-568)) 45)) (-2721 ((|#1| |#1| |#1| (-568)) 35)) (-3848 (((-634 |#1|) |#1| (-568)) 38)) (-3333 ((|#1| |#1| (-568) |#1| (-568)) 32)) (-1857 (((-634 (-2 (|:| -3848 |#1|) (|:| -3206 (-568)))) |#1| (-568)) 44))) +(((-685 |#1|) (-10 -7 (-15 -2721 (|#1| |#1| |#1| (-568))) (-15 -2737 (|#1| |#1| (-568))) (-15 -3848 ((-634 |#1|) |#1| (-568))) (-15 -1857 ((-634 (-2 (|:| -3848 |#1|) (|:| -3206 (-568)))) |#1| (-568))) (-15 -2117 ((-634 |#1|) (-634 (-2 (|:| -3848 |#1|) (|:| -3206 (-568)))) (-568))) (-15 -3333 (|#1| |#1| (-568) |#1| (-568)))) (-1219 (-568))) (T -685)) +((-3333 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-568)) (-5 *1 (-685 *2)) (-4 *2 (-1219 *3)))) (-2117 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-2 (|:| -3848 *5) (|:| -3206 (-568))))) (-5 *4 (-568)) (-4 *5 (-1219 *4)) (-5 *2 (-634 *5)) (-5 *1 (-685 *5)))) (-1857 (*1 *2 *3 *4) (-12 (-5 *4 (-568)) (-5 *2 (-634 (-2 (|:| -3848 *3) (|:| -3206 *4)))) (-5 *1 (-685 *3)) (-4 *3 (-1219 *4)))) (-3848 (*1 *2 *3 *4) (-12 (-5 *4 (-568)) (-5 *2 (-634 *3)) (-5 *1 (-685 *3)) (-4 *3 (-1219 *4)))) (-2737 (*1 *2 *2 *3) (-12 (-5 *3 (-568)) (-5 *1 (-685 *2)) (-4 *2 (-1219 *3)))) (-2721 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-568)) (-5 *1 (-685 *2)) (-4 *2 (-1219 *3))))) +(-10 -7 (-15 -2721 (|#1| |#1| |#1| (-568))) (-15 -2737 (|#1| |#1| (-568))) (-15 -3848 ((-634 |#1|) |#1| (-568))) (-15 -1857 ((-634 (-2 (|:| -3848 |#1|) (|:| -3206 (-568)))) |#1| (-568))) (-15 -2117 ((-634 |#1|) (-634 (-2 (|:| -3848 |#1|) (|:| -3206 (-568)))) (-568))) (-15 -3333 (|#1| |#1| (-568) |#1| (-568)))) +((-3579 (((-1 (-944 (-215)) (-215) (-215)) (-1 (-215) (-215) (-215)) (-1 (-215) (-215) (-215)) (-1 (-215) (-215) (-215)) (-1 (-215) (-215) (-215) (-215))) 17)) (-4124 (((-1121 (-215)) (-1121 (-215)) (-1 (-944 (-215)) (-215) (-215)) (-1084 (-215)) (-1084 (-215)) (-634 (-256))) 38) (((-1121 (-215)) (-1 (-944 (-215)) (-215) (-215)) (-1084 (-215)) (-1084 (-215)) (-634 (-256))) 40) (((-1121 (-215)) (-1 (-215) (-215) (-215)) (-1 (-215) (-215) (-215)) (-1 (-215) (-215) (-215)) (-3 (-1 (-215) (-215) (-215) (-215)) "undefined") (-1084 (-215)) (-1084 (-215)) (-634 (-256))) 42)) (-2257 (((-1121 (-215)) (-310 (-568)) (-310 (-568)) (-310 (-568)) (-1 (-215) (-215)) (-1084 (-215)) (-634 (-256))) NIL)) (-3688 (((-1121 (-215)) (-1 (-215) (-215) (-215)) (-3 (-1 (-215) (-215) (-215) (-215)) "undefined") (-1084 (-215)) (-1084 (-215)) (-634 (-256))) 43))) +(((-686) (-10 -7 (-15 -4124 ((-1121 (-215)) (-1 (-215) (-215) (-215)) (-1 (-215) (-215) (-215)) (-1 (-215) (-215) (-215)) (-3 (-1 (-215) (-215) (-215) (-215)) "undefined") (-1084 (-215)) (-1084 (-215)) (-634 (-256)))) (-15 -4124 ((-1121 (-215)) (-1 (-944 (-215)) (-215) (-215)) (-1084 (-215)) (-1084 (-215)) (-634 (-256)))) (-15 -4124 ((-1121 (-215)) (-1121 (-215)) (-1 (-944 (-215)) (-215) (-215)) (-1084 (-215)) (-1084 (-215)) (-634 (-256)))) (-15 -3688 ((-1121 (-215)) (-1 (-215) (-215) (-215)) (-3 (-1 (-215) (-215) (-215) (-215)) "undefined") (-1084 (-215)) (-1084 (-215)) (-634 (-256)))) (-15 -2257 ((-1121 (-215)) (-310 (-568)) (-310 (-568)) (-310 (-568)) (-1 (-215) (-215)) (-1084 (-215)) (-634 (-256)))) (-15 -3579 ((-1 (-944 (-215)) (-215) (-215)) (-1 (-215) (-215) (-215)) (-1 (-215) (-215) (-215)) (-1 (-215) (-215) (-215)) (-1 (-215) (-215) (-215) (-215)))))) (T -686)) +((-3579 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-215) (-215) (-215))) (-5 *4 (-1 (-215) (-215) (-215) (-215))) (-5 *2 (-1 (-944 (-215)) (-215) (-215))) (-5 *1 (-686)))) (-2257 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-310 (-568))) (-5 *4 (-1 (-215) (-215))) (-5 *5 (-1084 (-215))) (-5 *6 (-634 (-256))) (-5 *2 (-1121 (-215))) (-5 *1 (-686)))) (-3688 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-215) (-215) (-215))) (-5 *4 (-3 (-1 (-215) (-215) (-215) (-215)) "undefined")) (-5 *5 (-1084 (-215))) (-5 *6 (-634 (-256))) (-5 *2 (-1121 (-215))) (-5 *1 (-686)))) (-4124 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1121 (-215))) (-5 *3 (-1 (-944 (-215)) (-215) (-215))) (-5 *4 (-1084 (-215))) (-5 *5 (-634 (-256))) (-5 *1 (-686)))) (-4124 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-944 (-215)) (-215) (-215))) (-5 *4 (-1084 (-215))) (-5 *5 (-634 (-256))) (-5 *2 (-1121 (-215))) (-5 *1 (-686)))) (-4124 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-215) (-215) (-215))) (-5 *4 (-3 (-1 (-215) (-215) (-215) (-215)) "undefined")) (-5 *5 (-1084 (-215))) (-5 *6 (-634 (-256))) (-5 *2 (-1121 (-215))) (-5 *1 (-686))))) +(-10 -7 (-15 -4124 ((-1121 (-215)) (-1 (-215) (-215) (-215)) (-1 (-215) (-215) (-215)) (-1 (-215) (-215) (-215)) (-3 (-1 (-215) (-215) (-215) (-215)) "undefined") (-1084 (-215)) (-1084 (-215)) (-634 (-256)))) (-15 -4124 ((-1121 (-215)) (-1 (-944 (-215)) (-215) (-215)) (-1084 (-215)) (-1084 (-215)) (-634 (-256)))) (-15 -4124 ((-1121 (-215)) (-1121 (-215)) (-1 (-944 (-215)) (-215) (-215)) (-1084 (-215)) (-1084 (-215)) (-634 (-256)))) (-15 -3688 ((-1121 (-215)) (-1 (-215) (-215) (-215)) (-3 (-1 (-215) (-215) (-215) (-215)) "undefined") (-1084 (-215)) (-1084 (-215)) (-634 (-256)))) (-15 -2257 ((-1121 (-215)) (-310 (-568)) (-310 (-568)) (-310 (-568)) (-1 (-215) (-215)) (-1084 (-215)) (-634 (-256)))) (-15 -3579 ((-1 (-944 (-215)) (-215) (-215)) (-1 (-215) (-215) (-215)) (-1 (-215) (-215) (-215)) (-1 (-215) (-215) (-215)) (-1 (-215) (-215) (-215) (-215))))) +((-3848 (((-420 (-1157 |#4|)) (-1157 |#4|)) 73) (((-420 |#4|) |#4|) 215))) +(((-687 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3848 ((-420 |#4|) |#4|)) (-15 -3848 ((-420 (-1157 |#4|)) (-1157 |#4|)))) (-842) (-788) (-350) (-950 |#3| |#2| |#1|)) (T -687)) +((-3848 (*1 *2 *3) (-12 (-4 *4 (-842)) (-4 *5 (-788)) (-4 *6 (-350)) (-4 *7 (-950 *6 *5 *4)) (-5 *2 (-420 (-1157 *7))) (-5 *1 (-687 *4 *5 *6 *7)) (-5 *3 (-1157 *7)))) (-3848 (*1 *2 *3) (-12 (-4 *4 (-842)) (-4 *5 (-788)) (-4 *6 (-350)) (-5 *2 (-420 *3)) (-5 *1 (-687 *4 *5 *6 *3)) (-4 *3 (-950 *6 *5 *4))))) +(-10 -7 (-15 -3848 ((-420 |#4|) |#4|)) (-15 -3848 ((-420 (-1157 |#4|)) (-1157 |#4|)))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) 84)) (-1492 (((-568) $) 30)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL)) (-2227 (($ $) NIL)) (-1573 (((-121) $) NIL)) (-2617 (($ $) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-4305 (($ $) NIL)) (-1678 (((-420 $) $) NIL)) (-1902 (($ $) NIL)) (-1497 (((-121) $ $) NIL)) (-3662 (((-568) $) NIL)) (-2671 (($) NIL T CONST)) (-3047 (($ $) NIL)) (-3666 (((-3 (-568) "failed") $) 73) (((-3 (-409 (-568)) "failed") $) 26) (((-3 (-381) "failed") $) 70)) (-2854 (((-568) $) 75) (((-409 (-568)) $) 67) (((-381) $) 68)) (-2401 (($ $ $) 96)) (-2925 (((-3 $ "failed") $) 87)) (-2412 (($ $ $) 95)) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) NIL)) (-3927 (((-121) $) NIL)) (-3359 (((-917)) 77) (((-917) (-917)) 76)) (-2033 (((-121) $) NIL)) (-4410 (((-884 (-381) $) $ (-887 (-381)) (-884 (-381) $)) NIL)) (-4477 (((-568) $) NIL)) (-2735 (((-121) $) NIL)) (-4044 (($ $ (-568)) NIL)) (-2657 (($ $) NIL)) (-2245 (((-121) $) NIL)) (-3562 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-1950 (((-568) (-568)) 81) (((-568)) 82)) (-2521 (($ $ $) NIL) (($) NIL (-12 (-3044 (|has| $ (-6 -4502))) (-3044 (|has| $ (-6 -4510)))))) (-3652 (((-568) (-568)) 79) (((-568)) 80)) (-3268 (($ $ $) NIL) (($) NIL (-12 (-3044 (|has| $ (-6 -4502))) (-3044 (|has| $ (-6 -4510)))))) (-3544 (((-568) $) 16)) (-2495 (($ $ $) NIL) (($ (-634 $)) NIL)) (-4487 (((-1143) $) NIL)) (-2081 (($ $) 91)) (-2719 (((-917) (-568)) NIL (|has| $ (-6 -4510)))) (-4022 (((-1108) $) NIL)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL)) (-2721 (($ $ $) NIL) (($ (-634 $)) NIL)) (-3880 (($ $) NIL)) (-1519 (($ $) NIL)) (-3768 (($ (-568) (-568)) NIL) (($ (-568) (-568) (-917)) NIL)) (-3848 (((-420 $) $) NIL)) (-4497 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2595 (((-3 $ "failed") $ $) 92)) (-2344 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-3438 (((-568) $) 22)) (-2709 (((-763) $) NIL)) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) 94)) (-3396 (((-917)) NIL) (((-917) (-917)) NIL (|has| $ (-6 -4510)))) (-2573 (((-917) (-568)) NIL (|has| $ (-6 -4510)))) (-4278 (((-381) $) NIL) (((-215) $) NIL) (((-887 (-381)) $) NIL)) (-2745 (((-850) $) 52) (($ (-568)) 63) (($ $) NIL) (($ (-409 (-568))) 66) (($ (-568)) 63) (($ (-409 (-568))) 66) (($ (-381)) 60) (((-381) $) 50) (($ (-690)) 55)) (-4078 (((-763)) 103)) (-3799 (($ (-568) (-568) (-917)) 44)) (-2285 (($ $) NIL)) (-4042 (((-917)) NIL) (((-917) (-917)) NIL (|has| $ (-6 -4510)))) (-1461 (((-917)) 35) (((-917) (-917)) 78)) (-1826 (((-121) $ $) NIL)) (-2897 (($ $) NIL)) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL)) (-3056 (($) 32 T CONST)) (-1556 (($) 17 T CONST)) (-1751 (((-121) $ $) NIL)) (-1738 (((-121) $ $) NIL)) (-1717 (((-121) $ $) 83)) (-1745 (((-121) $ $) NIL)) (-1732 (((-121) $ $) 101)) (-1779 (($ $ $) 65)) (-1773 (($ $) 99) (($ $ $) 100)) (-1767 (($ $ $) 98)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL) (($ $ (-409 (-568))) 90)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) 97) (($ $ $) 88) (($ $ (-409 (-568))) NIL) (($ (-409 (-568)) $) NIL))) +(((-688) (-13 (-406) (-389) (-365) (-1037 (-381)) (-1037 (-409 (-568))) (-150) (-10 -8 (-15 -3359 ((-917) (-917))) (-15 -3359 ((-917))) (-15 -1461 ((-917) (-917))) (-15 -1461 ((-917))) (-15 -3652 ((-568) (-568))) (-15 -3652 ((-568))) (-15 -1950 ((-568) (-568))) (-15 -1950 ((-568))) (-15 -2745 ((-381) $)) (-15 -2745 ($ (-690))) (-15 -3544 ((-568) $)) (-15 -3438 ((-568) $)) (-15 -3799 ($ (-568) (-568) (-917)))))) (T -688)) +((-1461 (*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-688)))) (-3438 (*1 *2 *1) (-12 (-5 *2 (-568)) (-5 *1 (-688)))) (-3544 (*1 *2 *1) (-12 (-5 *2 (-568)) (-5 *1 (-688)))) (-3359 (*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-688)))) (-3359 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-688)))) (-1461 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-688)))) (-3652 (*1 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-688)))) (-3652 (*1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-688)))) (-1950 (*1 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-688)))) (-1950 (*1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-688)))) (-2745 (*1 *2 *1) (-12 (-5 *2 (-381)) (-5 *1 (-688)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-690)) (-5 *1 (-688)))) (-3799 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-568)) (-5 *3 (-917)) (-5 *1 (-688))))) +(-13 (-406) (-389) (-365) (-1037 (-381)) (-1037 (-409 (-568))) (-150) (-10 -8 (-15 -3359 ((-917) (-917))) (-15 -3359 ((-917))) (-15 -1461 ((-917) (-917))) (-15 -1461 ((-917))) (-15 -3652 ((-568) (-568))) (-15 -3652 ((-568))) (-15 -1950 ((-568) (-568))) (-15 -1950 ((-568))) (-15 -2745 ((-381) $)) (-15 -2745 ($ (-690))) (-15 -3544 ((-568) $)) (-15 -3438 ((-568) $)) (-15 -3799 ($ (-568) (-568) (-917))))) +((-3727 (((-679 |#1|) (-679 |#1|) |#1| |#1|) 66)) (-4167 (((-679 |#1|) (-679 |#1|) |#1|) 49)) (-3977 (((-679 |#1|) (-679 |#1|) |#1|) 67)) (-1521 (((-679 |#1|) (-679 |#1|)) 50)) (-4045 (((-2 (|:| -3961 |#1|) (|:| -1500 |#1|)) |#1| |#1|) 65))) +(((-689 |#1|) (-10 -7 (-15 -1521 ((-679 |#1|) (-679 |#1|))) (-15 -4167 ((-679 |#1|) (-679 |#1|) |#1|)) (-15 -3977 ((-679 |#1|) (-679 |#1|) |#1|)) (-15 -3727 ((-679 |#1|) (-679 |#1|) |#1| |#1|)) (-15 -4045 ((-2 (|:| -3961 |#1|) (|:| -1500 |#1|)) |#1| |#1|))) (-301)) (T -689)) +((-4045 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -3961 *3) (|:| -1500 *3))) (-5 *1 (-689 *3)) (-4 *3 (-301)))) (-3727 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-679 *3)) (-4 *3 (-301)) (-5 *1 (-689 *3)))) (-3977 (*1 *2 *2 *3) (-12 (-5 *2 (-679 *3)) (-4 *3 (-301)) (-5 *1 (-689 *3)))) (-4167 (*1 *2 *2 *3) (-12 (-5 *2 (-679 *3)) (-4 *3 (-301)) (-5 *1 (-689 *3)))) (-1521 (*1 *2 *2) (-12 (-5 *2 (-679 *3)) (-4 *3 (-301)) (-5 *1 (-689 *3))))) +(-10 -7 (-15 -1521 ((-679 |#1|) (-679 |#1|))) (-15 -4167 ((-679 |#1|) (-679 |#1|) |#1|)) (-15 -3977 ((-679 |#1|) (-679 |#1|) |#1|)) (-15 -3727 ((-679 |#1|) (-679 |#1|) |#1| |#1|)) (-15 -4045 ((-2 (|:| -3961 |#1|) (|:| -1500 |#1|)) |#1| |#1|))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL)) (-2227 (($ $) NIL)) (-1573 (((-121) $) NIL)) (-1877 (($ $ $) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-2690 (($ $ $ $) NIL)) (-4305 (($ $) NIL)) (-1678 (((-420 $) $) NIL)) (-1497 (((-121) $ $) NIL)) (-3662 (((-568) $) NIL)) (-1870 (($ $ $) NIL)) (-2671 (($) NIL T CONST)) (-3666 (((-3 (-568) "failed") $) 27)) (-2854 (((-568) $) 25)) (-2401 (($ $ $) NIL)) (-3164 (((-679 (-568)) (-679 $)) NIL) (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) NIL)) (-2925 (((-3 $ "failed") $) NIL)) (-1642 (((-3 (-409 (-568)) "failed") $) NIL)) (-2688 (((-121) $) NIL)) (-2425 (((-409 (-568)) $) NIL)) (-1731 (($ $) NIL) (($) NIL)) (-2412 (($ $ $) NIL)) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) NIL)) (-3927 (((-121) $) NIL)) (-1457 (($ $ $ $) NIL)) (-1283 (($ $ $) NIL)) (-2033 (((-121) $) NIL)) (-2413 (($ $ $) NIL)) (-4410 (((-884 (-568) $) $ (-887 (-568)) (-884 (-568) $)) NIL)) (-2735 (((-121) $) NIL)) (-1825 (((-121) $) NIL)) (-3038 (((-3 $ "failed") $) NIL)) (-2245 (((-121) $) NIL)) (-3562 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-3326 (($ $ $ $) NIL)) (-2521 (($ $ $) NIL)) (-1408 (((-917) (-917)) 10) (((-917)) 9)) (-3268 (($ $ $) NIL)) (-3651 (($ $) NIL)) (-3678 (($ $) NIL)) (-2495 (($ (-634 $)) NIL) (($ $ $) NIL)) (-4487 (((-1143) $) NIL)) (-2110 (($ $ $) NIL)) (-4434 (($) NIL T CONST)) (-3850 (($ $) NIL)) (-4022 (((-1108) $) NIL) (($ $) NIL)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL)) (-2721 (($ (-634 $)) NIL) (($ $ $) NIL)) (-2427 (($ $) NIL)) (-3848 (((-420 $) $) NIL)) (-4497 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2595 (((-3 $ "failed") $ $) NIL)) (-2344 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-3277 (((-121) $) NIL)) (-2709 (((-763) $) NIL)) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL)) (-4189 (($ $) NIL) (($ $ (-763)) NIL)) (-2349 (($ $) NIL)) (-3863 (($ $) NIL)) (-4278 (((-215) $) NIL) (((-381) $) NIL) (((-887 (-568)) $) NIL) (((-541) $) NIL) (((-568) $) NIL)) (-2745 (((-850) $) NIL) (($ (-568)) 24) (($ $) NIL) (($ (-568)) 24) (((-310 $) (-310 (-568))) 18)) (-4078 (((-763)) NIL)) (-2791 (((-121) $ $) NIL)) (-2787 (($ $ $) NIL)) (-1461 (($) NIL)) (-1826 (((-121) $ $) NIL)) (-4419 (($ $ $ $) NIL)) (-2897 (($ $) NIL)) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (-3056 (($) NIL T CONST)) (-1556 (($) NIL T CONST)) (-3190 (($ $) NIL) (($ $ (-763)) NIL)) (-1751 (((-121) $ $) NIL)) (-1738 (((-121) $ $) NIL)) (-1717 (((-121) $ $) NIL)) (-1745 (((-121) $ $) NIL)) (-1732 (((-121) $ $) NIL)) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) NIL))) +(((-690) (-13 (-389) (-550) (-10 -8 (-15 -1408 ((-917) (-917))) (-15 -1408 ((-917))) (-15 -2745 ((-310 $) (-310 (-568))))))) (T -690)) +((-1408 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-690)))) (-1408 (*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-690)))) (-2745 (*1 *2 *3) (-12 (-5 *3 (-310 (-568))) (-5 *2 (-310 (-690))) (-5 *1 (-690))))) +(-13 (-389) (-550) (-10 -8 (-15 -1408 ((-917) (-917))) (-15 -1408 ((-917))) (-15 -2745 ((-310 $) (-310 (-568)))))) +((-1755 (((-1 |#4| |#2| |#3|) |#1| (-1161) (-1161)) 19)) (-4496 (((-1 |#4| |#2| |#3|) (-1161)) 12))) +(((-691 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4496 ((-1 |#4| |#2| |#3|) (-1161))) (-15 -1755 ((-1 |#4| |#2| |#3|) |#1| (-1161) (-1161)))) (-609 (-541)) (-1195) (-1195) (-1195)) (T -691)) +((-1755 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1161)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-691 *3 *5 *6 *7)) (-4 *3 (-609 (-541))) (-4 *5 (-1195)) (-4 *6 (-1195)) (-4 *7 (-1195)))) (-4496 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-691 *4 *5 *6 *7)) (-4 *4 (-609 (-541))) (-4 *5 (-1195)) (-4 *6 (-1195)) (-4 *7 (-1195))))) +(-10 -7 (-15 -4496 ((-1 |#4| |#2| |#3|) (-1161))) (-15 -1755 ((-1 |#4| |#2| |#3|) |#1| (-1161) (-1161)))) +((-2447 (((-121) $ $) NIL)) (-3138 (((-1249) $ (-763)) 14)) (-2764 (((-763) $) 12)) (-2521 (($ $ $) NIL)) (-3268 (($ $ $) NIL)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2745 (((-850) $) 18) ((|#1| $) 15) (($ |#1|) 23)) (-1751 (((-121) $ $) NIL)) (-1738 (((-121) $ $) NIL)) (-1717 (((-121) $ $) 25)) (-1745 (((-121) $ $) NIL)) (-1732 (((-121) $ $) 24))) +(((-692 |#1|) (-13 (-138) (-608 |#1|) (-10 -8 (-15 -2745 ($ |#1|)))) (-1090)) (T -692)) +((-2745 (*1 *1 *2) (-12 (-5 *1 (-692 *2)) (-4 *2 (-1090))))) +(-13 (-138) (-608 |#1|) (-10 -8 (-15 -2745 ($ |#1|)))) +((-4458 (((-1 (-215) (-215) (-215)) |#1| (-1161) (-1161)) 33) (((-1 (-215) (-215)) |#1| (-1161)) 38))) +(((-693 |#1|) (-10 -7 (-15 -4458 ((-1 (-215) (-215)) |#1| (-1161))) (-15 -4458 ((-1 (-215) (-215) (-215)) |#1| (-1161) (-1161)))) (-609 (-541))) (T -693)) +((-4458 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1161)) (-5 *2 (-1 (-215) (-215) (-215))) (-5 *1 (-693 *3)) (-4 *3 (-609 (-541))))) (-4458 (*1 *2 *3 *4) (-12 (-5 *4 (-1161)) (-5 *2 (-1 (-215) (-215))) (-5 *1 (-693 *3)) (-4 *3 (-609 (-541)))))) +(-10 -7 (-15 -4458 ((-1 (-215) (-215)) |#1| (-1161))) (-15 -4458 ((-1 (-215) (-215) (-215)) |#1| (-1161) (-1161)))) +((-1864 (((-1161) |#1| (-1161) (-634 (-1161))) 9) (((-1161) |#1| (-1161) (-1161) (-1161)) 12) (((-1161) |#1| (-1161) (-1161)) 11) (((-1161) |#1| (-1161)) 10))) +(((-694 |#1|) (-10 -7 (-15 -1864 ((-1161) |#1| (-1161))) (-15 -1864 ((-1161) |#1| (-1161) (-1161))) (-15 -1864 ((-1161) |#1| (-1161) (-1161) (-1161))) (-15 -1864 ((-1161) |#1| (-1161) (-634 (-1161))))) (-609 (-541))) (T -694)) +((-1864 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-634 (-1161))) (-5 *2 (-1161)) (-5 *1 (-694 *3)) (-4 *3 (-609 (-541))))) (-1864 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-694 *3)) (-4 *3 (-609 (-541))))) (-1864 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-694 *3)) (-4 *3 (-609 (-541))))) (-1864 (*1 *2 *3 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-694 *3)) (-4 *3 (-609 (-541)))))) +(-10 -7 (-15 -1864 ((-1161) |#1| (-1161))) (-15 -1864 ((-1161) |#1| (-1161) (-1161))) (-15 -1864 ((-1161) |#1| (-1161) (-1161) (-1161))) (-15 -1864 ((-1161) |#1| (-1161) (-634 (-1161))))) +((-2817 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) +(((-695 |#1| |#2|) (-10 -7 (-15 -2817 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1195) (-1195)) (T -695)) +((-2817 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-695 *3 *4)) (-4 *3 (-1195)) (-4 *4 (-1195))))) +(-10 -7 (-15 -2817 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) +((-2175 (((-1 |#3| |#2|) (-1161)) 11)) (-1755 (((-1 |#3| |#2|) |#1| (-1161)) 21))) +(((-696 |#1| |#2| |#3|) (-10 -7 (-15 -2175 ((-1 |#3| |#2|) (-1161))) (-15 -1755 ((-1 |#3| |#2|) |#1| (-1161)))) (-609 (-541)) (-1195) (-1195)) (T -696)) +((-1755 (*1 *2 *3 *4) (-12 (-5 *4 (-1161)) (-5 *2 (-1 *6 *5)) (-5 *1 (-696 *3 *5 *6)) (-4 *3 (-609 (-541))) (-4 *5 (-1195)) (-4 *6 (-1195)))) (-2175 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1 *6 *5)) (-5 *1 (-696 *4 *5 *6)) (-4 *4 (-609 (-541))) (-4 *5 (-1195)) (-4 *6 (-1195))))) +(-10 -7 (-15 -2175 ((-1 |#3| |#2|) (-1161))) (-15 -1755 ((-1 |#3| |#2|) |#1| (-1161)))) +((-3288 (((-3 (-634 (-1157 |#4|)) "failed") (-1157 |#4|) (-634 |#2|) (-634 (-1157 |#4|)) (-634 |#3|) (-634 |#4|) (-634 (-634 (-2 (|:| -1876 (-763)) (|:| |pcoef| |#4|)))) (-634 (-763)) (-1244 (-634 (-1157 |#3|))) |#3|) 58)) (-2157 (((-3 (-634 (-1157 |#4|)) "failed") (-1157 |#4|) (-634 |#2|) (-634 (-1157 |#3|)) (-634 |#3|) (-634 |#4|) (-634 (-763)) |#3|) 71)) (-4245 (((-3 (-634 (-1157 |#4|)) "failed") (-1157 |#4|) (-634 |#2|) (-634 |#3|) (-634 (-763)) (-634 (-1157 |#4|)) (-1244 (-634 (-1157 |#3|))) |#3|) 32))) +(((-697 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4245 ((-3 (-634 (-1157 |#4|)) "failed") (-1157 |#4|) (-634 |#2|) (-634 |#3|) (-634 (-763)) (-634 (-1157 |#4|)) (-1244 (-634 (-1157 |#3|))) |#3|)) (-15 -2157 ((-3 (-634 (-1157 |#4|)) "failed") (-1157 |#4|) (-634 |#2|) (-634 (-1157 |#3|)) (-634 |#3|) (-634 |#4|) (-634 (-763)) |#3|)) (-15 -3288 ((-3 (-634 (-1157 |#4|)) "failed") (-1157 |#4|) (-634 |#2|) (-634 (-1157 |#4|)) (-634 |#3|) (-634 |#4|) (-634 (-634 (-2 (|:| -1876 (-763)) (|:| |pcoef| |#4|)))) (-634 (-763)) (-1244 (-634 (-1157 |#3|))) |#3|))) (-788) (-842) (-301) (-950 |#3| |#1| |#2|)) (T -697)) +((-3288 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-634 (-1157 *13))) (-5 *3 (-1157 *13)) (-5 *4 (-634 *12)) (-5 *5 (-634 *10)) (-5 *6 (-634 *13)) (-5 *7 (-634 (-634 (-2 (|:| -1876 (-763)) (|:| |pcoef| *13))))) (-5 *8 (-634 (-763))) (-5 *9 (-1244 (-634 (-1157 *10)))) (-4 *12 (-842)) (-4 *10 (-301)) (-4 *13 (-950 *10 *11 *12)) (-4 *11 (-788)) (-5 *1 (-697 *11 *12 *10 *13)))) (-2157 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-634 *11)) (-5 *5 (-634 (-1157 *9))) (-5 *6 (-634 *9)) (-5 *7 (-634 *12)) (-5 *8 (-634 (-763))) (-4 *11 (-842)) (-4 *9 (-301)) (-4 *12 (-950 *9 *10 *11)) (-4 *10 (-788)) (-5 *2 (-634 (-1157 *12))) (-5 *1 (-697 *10 *11 *9 *12)) (-5 *3 (-1157 *12)))) (-4245 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-634 (-1157 *11))) (-5 *3 (-1157 *11)) (-5 *4 (-634 *10)) (-5 *5 (-634 *8)) (-5 *6 (-634 (-763))) (-5 *7 (-1244 (-634 (-1157 *8)))) (-4 *10 (-842)) (-4 *8 (-301)) (-4 *11 (-950 *8 *9 *10)) (-4 *9 (-788)) (-5 *1 (-697 *9 *10 *8 *11))))) +(-10 -7 (-15 -4245 ((-3 (-634 (-1157 |#4|)) "failed") (-1157 |#4|) (-634 |#2|) (-634 |#3|) (-634 (-763)) (-634 (-1157 |#4|)) (-1244 (-634 (-1157 |#3|))) |#3|)) (-15 -2157 ((-3 (-634 (-1157 |#4|)) "failed") (-1157 |#4|) (-634 |#2|) (-634 (-1157 |#3|)) (-634 |#3|) (-634 |#4|) (-634 (-763)) |#3|)) (-15 -3288 ((-3 (-634 (-1157 |#4|)) "failed") (-1157 |#4|) (-634 |#2|) (-634 (-1157 |#4|)) (-634 |#3|) (-634 |#4|) (-634 (-634 (-2 (|:| -1876 (-763)) (|:| |pcoef| |#4|)))) (-634 (-763)) (-1244 (-634 (-1157 |#3|))) |#3|))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-3134 (((-3 $ "failed") $ $) 18)) (-2671 (($) 16 T CONST)) (-2114 (($ $) 40)) (-2925 (((-3 $ "failed") $) 33)) (-2735 (((-121) $) 30)) (-2047 (($ |#1| (-763)) 38)) (-2144 (((-763) $) 42)) (-2102 ((|#1| $) 41)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-3206 (((-763) $) 43)) (-2745 (((-850) $) 11) (($ (-568)) 27) (($ |#1|) 37 (|has| |#1| (-172)))) (-2604 ((|#1| $ (-763)) 39)) (-4078 (((-763)) 28)) (-1887 (($ $ (-917)) 25) (($ $ (-763)) 32)) (-3056 (($) 17 T CONST)) (-1556 (($) 29 T CONST)) (-1717 (((-121) $ $) 6)) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 24) (($ $ (-763)) 31)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 23) (($ $ |#1|) 45) (($ |#1| $) 44))) +(((-698 |#1|) (-1275) (-1047)) (T -698)) +((-3206 (*1 *2 *1) (-12 (-4 *1 (-698 *3)) (-4 *3 (-1047)) (-5 *2 (-763)))) (-2144 (*1 *2 *1) (-12 (-4 *1 (-698 *3)) (-4 *3 (-1047)) (-5 *2 (-763)))) (-2102 (*1 *2 *1) (-12 (-4 *1 (-698 *2)) (-4 *2 (-1047)))) (-2114 (*1 *1 *1) (-12 (-4 *1 (-698 *2)) (-4 *2 (-1047)))) (-2604 (*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-4 *1 (-698 *2)) (-4 *2 (-1047)))) (-2047 (*1 *1 *2 *3) (-12 (-5 *3 (-763)) (-4 *1 (-698 *2)) (-4 *2 (-1047))))) +(-13 (-1047) (-120 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-172)) (-6 (-43 |t#1|)) |noBranch|) (-15 -3206 ((-763) $)) (-15 -2144 ((-763) $)) (-15 -2102 (|t#1| $)) (-15 -2114 ($ $)) (-15 -2604 (|t#1| $ (-763))) (-15 -2047 ($ |t#1| (-763))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-43 |#1|) |has| |#1| (-172)) ((-105) . T) ((-120 |#1| |#1|) . T) ((-137) . T) ((-608 (-850)) . T) ((-637 |#1|) . T) ((-637 $) . T) ((-707 |#1|) |has| |#1| (-172)) ((-716) . T) ((-1053 |#1|) . T) ((-1047) . T) ((-1054) . T) ((-1102) . T) ((-1090) . T)) +((-2795 ((|#6| (-1 |#4| |#1|) |#3|) 23))) +(((-699 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2795 (|#6| (-1 |#4| |#1|) |#3|))) (-558) (-1219 |#1|) (-1219 (-409 |#2|)) (-558) (-1219 |#4|) (-1219 (-409 |#5|))) (T -699)) +((-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-558)) (-4 *7 (-558)) (-4 *6 (-1219 *5)) (-4 *2 (-1219 (-409 *8))) (-5 *1 (-699 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1219 (-409 *6))) (-4 *8 (-1219 *7))))) +(-10 -7 (-15 -2795 (|#6| (-1 |#4| |#1|) |#3|))) +((-2447 (((-121) $ $) NIL)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-3253 (((-1143) (-850)) 31)) (-4125 (((-1249) (-1143)) 28)) (-3346 (((-1143) (-850)) 24)) (-2857 (((-1143) (-850)) 25)) (-2745 (((-850) $) NIL) (((-1143) (-850)) 23)) (-1717 (((-121) $ $) NIL))) +(((-700) (-13 (-1090) (-10 -7 (-15 -2745 ((-1143) (-850))) (-15 -3346 ((-1143) (-850))) (-15 -2857 ((-1143) (-850))) (-15 -3253 ((-1143) (-850))) (-15 -4125 ((-1249) (-1143)))))) (T -700)) +((-2745 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1143)) (-5 *1 (-700)))) (-3346 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1143)) (-5 *1 (-700)))) (-2857 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1143)) (-5 *1 (-700)))) (-3253 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1143)) (-5 *1 (-700)))) (-4125 (*1 *2 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-1249)) (-5 *1 (-700))))) +(-13 (-1090) (-10 -7 (-15 -2745 ((-1143) (-850))) (-15 -3346 ((-1143) (-850))) (-15 -2857 ((-1143) (-850))) (-15 -3253 ((-1143) (-850))) (-15 -4125 ((-1249) (-1143))))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL)) (-2227 (($ $) NIL)) (-1573 (((-121) $) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-4305 (($ $) NIL)) (-1678 (((-420 $) $) NIL)) (-1497 (((-121) $ $) NIL)) (-2671 (($) NIL T CONST)) (-2401 (($ $ $) NIL)) (-3092 (($ |#1| |#2|) NIL)) (-2925 (((-3 $ "failed") $) NIL)) (-2412 (($ $ $) NIL)) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) NIL)) (-3927 (((-121) $) NIL)) (-2735 (((-121) $) NIL)) (-3562 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-3094 ((|#2| $) NIL)) (-2495 (($ $ $) NIL) (($ (-634 $)) NIL)) (-4487 (((-1143) $) NIL)) (-2081 (($ $) NIL)) (-4022 (((-1108) $) NIL)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL)) (-2721 (($ $ $) NIL) (($ (-634 $)) NIL)) (-3848 (((-420 $) $) NIL)) (-4497 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2595 (((-3 $ "failed") $ $) NIL)) (-2344 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-3697 (((-3 $ "failed") $ $) NIL)) (-2709 (((-763) $) NIL)) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL)) (-2745 (((-850) $) NIL) (($ (-568)) NIL) (($ $) NIL) (($ (-409 (-568))) NIL) ((|#1| $) NIL)) (-4078 (((-763)) NIL)) (-1826 (((-121) $ $) NIL)) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL)) (-3056 (($) NIL T CONST)) (-1556 (($) NIL T CONST)) (-1717 (((-121) $ $) NIL)) (-1779 (($ $ $) NIL)) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) NIL) (($ $ (-409 (-568))) NIL) (($ (-409 (-568)) $) NIL))) +(((-701 |#1| |#2| |#3| |#4| |#5|) (-13 (-365) (-10 -8 (-15 -3094 (|#2| $)) (-15 -2745 (|#1| $)) (-15 -3092 ($ |#1| |#2|)) (-15 -3697 ((-3 $ "failed") $ $)))) (-172) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -701)) +((-3094 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-701 *3 *2 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2745 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-701 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3092 (*1 *1 *2 *3) (-12 (-5 *1 (-701 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3697 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-701 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(-13 (-365) (-10 -8 (-15 -3094 (|#2| $)) (-15 -2745 (|#1| $)) (-15 -3092 ($ |#1| |#2|)) (-15 -3697 ((-3 $ "failed") $ $)))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) 30)) (-2572 (((-1244 |#1|) $ (-763)) NIL)) (-2055 (((-634 (-1075)) $) NIL)) (-3197 (($ (-1157 |#1|)) NIL)) (-3839 (((-1157 $) $ (-1075)) NIL) (((-1157 |#1|) $) NIL)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-2227 (($ $) NIL (|has| |#1| (-558)))) (-1573 (((-121) $) NIL (|has| |#1| (-558)))) (-2773 (((-763) $) NIL) (((-763) $ (-634 (-1075))) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-3809 (($ $ $) NIL (|has| |#1| (-558)))) (-1750 (((-420 (-1157 $)) (-1157 $)) NIL (|has| |#1| (-904)))) (-4305 (($ $) NIL (|has| |#1| (-453)))) (-1678 (((-420 $) $) NIL (|has| |#1| (-453)))) (-1858 (((-3 (-634 (-1157 $)) "failed") (-634 (-1157 $)) (-1157 $)) NIL (|has| |#1| (-904)))) (-1497 (((-121) $ $) NIL (|has| |#1| (-365)))) (-3983 (((-763)) 46 (|has| |#1| (-370)))) (-3151 (($ $ (-763)) NIL)) (-3772 (($ $ (-763)) NIL)) (-3010 ((|#2| |#2|) 43)) (-1619 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-453)))) (-2671 (($) NIL T CONST)) (-3666 (((-3 |#1| "failed") $) NIL) (((-3 (-409 (-568)) "failed") $) NIL (|has| |#1| (-1037 (-409 (-568))))) (((-3 (-568) "failed") $) NIL (|has| |#1| (-1037 (-568)))) (((-3 (-1075) "failed") $) NIL)) (-2854 ((|#1| $) NIL) (((-409 (-568)) $) NIL (|has| |#1| (-1037 (-409 (-568))))) (((-568) $) NIL (|has| |#1| (-1037 (-568)))) (((-1075) $) NIL)) (-4265 (($ $ $ (-1075)) NIL (|has| |#1| (-172))) ((|#1| $ $) NIL (|has| |#1| (-172)))) (-2401 (($ $ $) NIL (|has| |#1| (-365)))) (-2114 (($ $) 33)) (-3164 (((-679 (-568)) (-679 $)) NIL (|has| |#1| (-630 (-568)))) (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) NIL (|has| |#1| (-630 (-568)))) (((-2 (|:| -2928 (-679 |#1|)) (|:| |vec| (-1244 |#1|))) (-679 $) (-1244 $)) NIL) (((-679 |#1|) (-679 $)) NIL)) (-3092 (($ |#2|) 41)) (-2925 (((-3 $ "failed") $) 84)) (-1731 (($) 50 (|has| |#1| (-370)))) (-2412 (($ $ $) NIL (|has| |#1| (-365)))) (-3002 (($ $ $) NIL)) (-3581 (($ $ $) NIL (|has| |#1| (-558)))) (-4144 (((-2 (|:| -2348 |#1|) (|:| -3961 $) (|:| -1500 $)) $ $) NIL (|has| |#1| (-558)))) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) NIL (|has| |#1| (-365)))) (-3250 (($ $) NIL (|has| |#1| (-453))) (($ $ (-1075)) NIL (|has| |#1| (-453)))) (-2108 (((-634 $) $) NIL)) (-3927 (((-121) $) NIL (|has| |#1| (-904)))) (-3959 (((-958 $)) 78)) (-3088 (($ $ |#1| (-763) $) NIL)) (-4410 (((-884 (-381) $) $ (-887 (-381)) (-884 (-381) $)) NIL (-12 (|has| (-1075) (-881 (-381))) (|has| |#1| (-881 (-381))))) (((-884 (-568) $) $ (-887 (-568)) (-884 (-568) $)) NIL (-12 (|has| (-1075) (-881 (-568))) (|has| |#1| (-881 (-568)))))) (-4477 (((-763) $ $) NIL (|has| |#1| (-558)))) (-2735 (((-121) $) NIL)) (-4178 (((-763) $) NIL)) (-3038 (((-3 $ "failed") $) NIL (|has| |#1| (-1136)))) (-2051 (($ (-1157 |#1|) (-1075)) NIL) (($ (-1157 $) (-1075)) NIL)) (-3536 (($ $ (-763)) NIL)) (-3562 (((-3 (-634 $) "failed") (-634 $) $) NIL (|has| |#1| (-365)))) (-2976 (((-634 $) $) NIL)) (-3921 (((-121) $) NIL)) (-2047 (($ |#1| (-763)) 76) (($ $ (-1075) (-763)) NIL) (($ $ (-634 (-1075)) (-634 (-763))) NIL)) (-3379 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $ (-1075)) NIL) (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL)) (-3094 ((|#2|) 44)) (-2144 (((-763) $) NIL) (((-763) $ (-1075)) NIL) (((-634 (-763)) $ (-634 (-1075))) NIL)) (-2521 (($ $ $) NIL (|has| |#1| (-842)))) (-3268 (($ $ $) NIL (|has| |#1| (-842)))) (-3842 (($ (-1 (-763) (-763)) $) NIL)) (-2795 (($ (-1 |#1| |#1|) $) NIL)) (-3764 (((-1157 |#1|) $) NIL)) (-2244 (((-3 (-1075) "failed") $) NIL)) (-3683 (((-917) $) NIL (|has| |#1| (-370)))) (-3085 ((|#2| $) 40)) (-2097 (($ $) NIL)) (-2102 ((|#1| $) 28)) (-2495 (($ (-634 $)) NIL (|has| |#1| (-453))) (($ $ $) NIL (|has| |#1| (-453)))) (-4487 (((-1143) $) NIL)) (-1643 (((-2 (|:| -3961 $) (|:| -1500 $)) $ (-763)) NIL)) (-3324 (((-3 (-634 $) "failed") $) NIL)) (-1794 (((-3 (-634 $) "failed") $) NIL)) (-3751 (((-3 (-2 (|:| |var| (-1075)) (|:| -3438 (-763))) "failed") $) NIL)) (-3837 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-4434 (($) NIL (|has| |#1| (-1136)) CONST)) (-4355 (($ (-917)) NIL (|has| |#1| (-370)))) (-4022 (((-1108) $) NIL)) (-2086 (((-121) $) NIL)) (-2091 ((|#1| $) NIL)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL (|has| |#1| (-453)))) (-2721 (($ (-634 $)) NIL (|has| |#1| (-453))) (($ $ $) NIL (|has| |#1| (-453)))) (-3146 (($ $) 77 (|has| |#1| (-350)))) (-2905 (((-420 (-1157 $)) (-1157 $)) NIL (|has| |#1| (-904)))) (-3545 (((-420 (-1157 $)) (-1157 $)) NIL (|has| |#1| (-904)))) (-3848 (((-420 $) $) NIL (|has| |#1| (-904)))) (-4497 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL (|has| |#1| (-365)))) (-2595 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558))) (((-3 $ "failed") $ $) 83 (|has| |#1| (-558)))) (-2344 (((-3 (-634 $) "failed") (-634 $) $) NIL (|has| |#1| (-365)))) (-1339 (($ $ (-634 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-634 $) (-634 $)) NIL) (($ $ (-1075) |#1|) NIL) (($ $ (-634 (-1075)) (-634 |#1|)) NIL) (($ $ (-1075) $) NIL) (($ $ (-634 (-1075)) (-634 $)) NIL)) (-2709 (((-763) $) NIL (|has| |#1| (-365)))) (-2779 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-409 $) (-409 $) (-409 $)) NIL (|has| |#1| (-558))) ((|#1| (-409 $) |#1|) NIL (|has| |#1| (-365))) (((-409 $) $ (-409 $)) NIL (|has| |#1| (-558)))) (-2167 (((-3 $ "failed") $ (-763)) NIL)) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) 85 (|has| |#1| (-365)))) (-2217 (($ $ (-1075)) NIL (|has| |#1| (-172))) ((|#1| $) NIL (|has| |#1| (-172)))) (-4189 (($ $ (-1075)) NIL) (($ $ (-634 (-1075))) NIL) (($ $ (-1075) (-763)) NIL) (($ $ (-634 (-1075)) (-634 (-763))) NIL) (($ $ (-763)) NIL) (($ $) NIL) (($ $ (-1161)) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-634 (-1161))) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-1161) (-763)) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-634 (-1161)) (-634 (-763))) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-1 |#1| |#1|) (-763)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3206 (((-763) $) 31) (((-763) $ (-1075)) NIL) (((-634 (-763)) $ (-634 (-1075))) NIL)) (-4278 (((-887 (-381)) $) NIL (-12 (|has| (-1075) (-609 (-887 (-381)))) (|has| |#1| (-609 (-887 (-381)))))) (((-887 (-568)) $) NIL (-12 (|has| (-1075) (-609 (-887 (-568)))) (|has| |#1| (-609 (-887 (-568)))))) (((-541) $) NIL (-12 (|has| (-1075) (-609 (-541))) (|has| |#1| (-609 (-541)))))) (-3367 ((|#1| $) NIL (|has| |#1| (-453))) (($ $ (-1075)) NIL (|has| |#1| (-453)))) (-2979 (((-3 (-1244 $) "failed") (-679 $)) NIL (-12 (|has| $ (-148)) (|has| |#1| (-904))))) (-1449 (((-958 $)) 35)) (-3950 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558))) (((-3 (-409 $) "failed") (-409 $) $) NIL (|has| |#1| (-558)))) (-2745 (((-850) $) 60) (($ (-568)) NIL) (($ |#1|) 57) (($ (-1075)) NIL) (($ |#2|) 67) (($ (-409 (-568))) NIL (-2198 (|has| |#1| (-43 (-409 (-568)))) (|has| |#1| (-1037 (-409 (-568)))))) (($ $) NIL (|has| |#1| (-558)))) (-1302 (((-634 |#1|) $) NIL)) (-2604 ((|#1| $ (-763)) 62) (($ $ (-1075) (-763)) NIL) (($ $ (-634 (-1075)) (-634 (-763))) NIL)) (-4371 (((-3 $ "failed") $) NIL (-2198 (-12 (|has| $ (-148)) (|has| |#1| (-904))) (|has| |#1| (-148))))) (-4078 (((-763)) NIL)) (-4171 (($ $ $ (-763)) NIL (|has| |#1| (-172)))) (-1826 (((-121) $ $) NIL (|has| |#1| (-558)))) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (-3056 (($) 20 T CONST)) (-1977 (((-1244 |#1|) $) 74)) (-4172 (($ (-1244 |#1|)) 49)) (-1556 (($) 8 T CONST)) (-3190 (($ $ (-1075)) NIL) (($ $ (-634 (-1075))) NIL) (($ $ (-1075) (-763)) NIL) (($ $ (-634 (-1075)) (-634 (-763))) NIL) (($ $ (-763)) NIL) (($ $) NIL) (($ $ (-1161)) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-634 (-1161))) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-1161) (-763)) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-634 (-1161)) (-634 (-763))) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-1 |#1| |#1|) (-763)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2332 (((-1244 |#1|) $) NIL)) (-1751 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1738 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1717 (((-121) $ $) 68)) (-1745 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1732 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1779 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-1773 (($ $) 71) (($ $ $) NIL)) (-1767 (($ $ $) 32)) (** (($ $ (-917)) NIL) (($ $ (-763)) 79)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) 56) (($ $ $) 73) (($ $ (-409 (-568))) NIL (|has| |#1| (-43 (-409 (-568))))) (($ (-409 (-568)) $) NIL (|has| |#1| (-43 (-409 (-568))))) (($ |#1| $) 54) (($ $ |#1|) NIL))) +(((-702 |#1| |#2|) (-13 (-1219 |#1|) (-10 -8 (-15 -3010 (|#2| |#2|)) (-15 -3094 (|#2|)) (-15 -3092 ($ |#2|)) (-15 -3085 (|#2| $)) (-15 -2745 ($ |#2|)) (-15 -1977 ((-1244 |#1|) $)) (-15 -4172 ($ (-1244 |#1|))) (-15 -2332 ((-1244 |#1|) $)) (-15 -3959 ((-958 $))) (-15 -1449 ((-958 $))) (IF (|has| |#1| (-350)) (-15 -3146 ($ $)) |noBranch|) (IF (|has| |#1| (-370)) (-6 (-370)) |noBranch|))) (-1047) (-1219 |#1|)) (T -702)) +((-3010 (*1 *2 *2) (-12 (-4 *3 (-1047)) (-5 *1 (-702 *3 *2)) (-4 *2 (-1219 *3)))) (-3094 (*1 *2) (-12 (-4 *2 (-1219 *3)) (-5 *1 (-702 *3 *2)) (-4 *3 (-1047)))) (-3092 (*1 *1 *2) (-12 (-4 *3 (-1047)) (-5 *1 (-702 *3 *2)) (-4 *2 (-1219 *3)))) (-3085 (*1 *2 *1) (-12 (-4 *2 (-1219 *3)) (-5 *1 (-702 *3 *2)) (-4 *3 (-1047)))) (-2745 (*1 *1 *2) (-12 (-4 *3 (-1047)) (-5 *1 (-702 *3 *2)) (-4 *2 (-1219 *3)))) (-1977 (*1 *2 *1) (-12 (-4 *3 (-1047)) (-5 *2 (-1244 *3)) (-5 *1 (-702 *3 *4)) (-4 *4 (-1219 *3)))) (-4172 (*1 *1 *2) (-12 (-5 *2 (-1244 *3)) (-4 *3 (-1047)) (-5 *1 (-702 *3 *4)) (-4 *4 (-1219 *3)))) (-2332 (*1 *2 *1) (-12 (-4 *3 (-1047)) (-5 *2 (-1244 *3)) (-5 *1 (-702 *3 *4)) (-4 *4 (-1219 *3)))) (-3959 (*1 *2) (-12 (-4 *3 (-1047)) (-5 *2 (-958 (-702 *3 *4))) (-5 *1 (-702 *3 *4)) (-4 *4 (-1219 *3)))) (-1449 (*1 *2) (-12 (-4 *3 (-1047)) (-5 *2 (-958 (-702 *3 *4))) (-5 *1 (-702 *3 *4)) (-4 *4 (-1219 *3)))) (-3146 (*1 *1 *1) (-12 (-4 *2 (-350)) (-4 *2 (-1047)) (-5 *1 (-702 *2 *3)) (-4 *3 (-1219 *2))))) +(-13 (-1219 |#1|) (-10 -8 (-15 -3010 (|#2| |#2|)) (-15 -3094 (|#2|)) (-15 -3092 ($ |#2|)) (-15 -3085 (|#2| $)) (-15 -2745 ($ |#2|)) (-15 -1977 ((-1244 |#1|) $)) (-15 -4172 ($ (-1244 |#1|))) (-15 -2332 ((-1244 |#1|) $)) (-15 -3959 ((-958 $))) (-15 -1449 ((-958 $))) (IF (|has| |#1| (-350)) (-15 -3146 ($ $)) |noBranch|) (IF (|has| |#1| (-370)) (-6 (-370)) |noBranch|))) +((-2447 (((-121) $ $) NIL)) (-2521 (($ $ $) NIL)) (-3268 (($ $ $) NIL)) (-4487 (((-1143) $) NIL)) (-4355 ((|#1| $) 13)) (-4022 (((-1108) $) NIL)) (-3438 ((|#2| $) 12)) (-4287 (($ |#1| |#2|) 16)) (-2745 (((-850) $) NIL) (($ (-2 (|:| -4355 |#1|) (|:| -3438 |#2|))) 15) (((-2 (|:| -4355 |#1|) (|:| -3438 |#2|)) $) 14)) (-1751 (((-121) $ $) NIL)) (-1738 (((-121) $ $) NIL)) (-1717 (((-121) $ $) NIL)) (-1745 (((-121) $ $) NIL)) (-1732 (((-121) $ $) 11))) +(((-703 |#1| |#2| |#3|) (-13 (-842) (-10 -8 (-15 -3438 (|#2| $)) (-15 -4355 (|#1| $)) (-15 -2745 ($ (-2 (|:| -4355 |#1|) (|:| -3438 |#2|)))) (-15 -2745 ((-2 (|:| -4355 |#1|) (|:| -3438 |#2|)) $)) (-15 -4287 ($ |#1| |#2|)))) (-842) (-1090) (-1 (-121) (-2 (|:| -4355 |#1|) (|:| -3438 |#2|)) (-2 (|:| -4355 |#1|) (|:| -3438 |#2|)))) (T -703)) +((-3438 (*1 *2 *1) (-12 (-4 *2 (-1090)) (-5 *1 (-703 *3 *2 *4)) (-4 *3 (-842)) (-14 *4 (-1 (-121) (-2 (|:| -4355 *3) (|:| -3438 *2)) (-2 (|:| -4355 *3) (|:| -3438 *2)))))) (-4355 (*1 *2 *1) (-12 (-4 *2 (-842)) (-5 *1 (-703 *2 *3 *4)) (-4 *3 (-1090)) (-14 *4 (-1 (-121) (-2 (|:| -4355 *2) (|:| -3438 *3)) (-2 (|:| -4355 *2) (|:| -3438 *3)))))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4355 *3) (|:| -3438 *4))) (-4 *3 (-842)) (-4 *4 (-1090)) (-5 *1 (-703 *3 *4 *5)) (-14 *5 (-1 (-121) *2 *2)))) (-2745 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -4355 *3) (|:| -3438 *4))) (-5 *1 (-703 *3 *4 *5)) (-4 *3 (-842)) (-4 *4 (-1090)) (-14 *5 (-1 (-121) *2 *2)))) (-4287 (*1 *1 *2 *3) (-12 (-5 *1 (-703 *2 *3 *4)) (-4 *2 (-842)) (-4 *3 (-1090)) (-14 *4 (-1 (-121) (-2 (|:| -4355 *2) (|:| -3438 *3)) (-2 (|:| -4355 *2) (|:| -3438 *3))))))) +(-13 (-842) (-10 -8 (-15 -3438 (|#2| $)) (-15 -4355 (|#1| $)) (-15 -2745 ($ (-2 (|:| -4355 |#1|) (|:| -3438 |#2|)))) (-15 -2745 ((-2 (|:| -4355 |#1|) (|:| -3438 |#2|)) $)) (-15 -4287 ($ |#1| |#2|)))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) 59)) (-3134 (((-3 $ "failed") $ $) NIL)) (-2671 (($) NIL T CONST)) (-3666 (((-3 |#1| "failed") $) 89) (((-3 (-123) "failed") $) 95)) (-2854 ((|#1| $) NIL) (((-123) $) 39)) (-2925 (((-3 $ "failed") $) 90)) (-4432 ((|#2| (-123) |#2|) 82)) (-2735 (((-121) $) NIL)) (-2276 (($ |#1| (-363 (-123))) 13)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2082 (($ $ (-1 |#2| |#2|)) 58)) (-1481 (($ $ (-1 |#2| |#2|)) 44)) (-2779 ((|#2| $ |#2|) 32)) (-1730 ((|#1| |#1|) 100 (|has| |#1| (-172)))) (-2745 (((-850) $) 66) (($ (-568)) 17) (($ |#1|) 16) (($ (-123)) 23)) (-4371 (((-3 $ "failed") $) NIL (|has| |#1| (-148)))) (-4078 (((-763)) 36)) (-4391 (($ $) 99 (|has| |#1| (-172))) (($ $ $) 103 (|has| |#1| (-172)))) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (-3056 (($) 20 T CONST)) (-1556 (($) 9 T CONST)) (-1717 (((-121) $ $) NIL)) (-1773 (($ $) 48) (($ $ $) NIL)) (-1767 (($ $ $) 73)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ (-123) (-568)) NIL) (($ $ (-568)) 57)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-172))) (($ $ |#1|) 97 (|has| |#1| (-172))))) +(((-704 |#1| |#2|) (-13 (-1047) (-1037 |#1|) (-1037 (-123)) (-281 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-150)) (-6 (-150)) |noBranch|) (IF (|has| |#1| (-148)) (-6 (-148)) |noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-43 |#1|)) (-15 -4391 ($ $)) (-15 -4391 ($ $ $)) (-15 -1730 (|#1| |#1|))) |noBranch|) (-15 -1481 ($ $ (-1 |#2| |#2|))) (-15 -2082 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-123) (-568))) (-15 ** ($ $ (-568))) (-15 -4432 (|#2| (-123) |#2|)) (-15 -2276 ($ |#1| (-363 (-123)))))) (-1047) (-637 |#1|)) (T -704)) +((-4391 (*1 *1 *1) (-12 (-4 *2 (-172)) (-4 *2 (-1047)) (-5 *1 (-704 *2 *3)) (-4 *3 (-637 *2)))) (-4391 (*1 *1 *1 *1) (-12 (-4 *2 (-172)) (-4 *2 (-1047)) (-5 *1 (-704 *2 *3)) (-4 *3 (-637 *2)))) (-1730 (*1 *2 *2) (-12 (-4 *2 (-172)) (-4 *2 (-1047)) (-5 *1 (-704 *2 *3)) (-4 *3 (-637 *2)))) (-1481 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-637 *3)) (-4 *3 (-1047)) (-5 *1 (-704 *3 *4)))) (-2082 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-637 *3)) (-4 *3 (-1047)) (-5 *1 (-704 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-123)) (-5 *3 (-568)) (-4 *4 (-1047)) (-5 *1 (-704 *4 *5)) (-4 *5 (-637 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-568)) (-4 *3 (-1047)) (-5 *1 (-704 *3 *4)) (-4 *4 (-637 *3)))) (-4432 (*1 *2 *3 *2) (-12 (-5 *3 (-123)) (-4 *4 (-1047)) (-5 *1 (-704 *4 *2)) (-4 *2 (-637 *4)))) (-2276 (*1 *1 *2 *3) (-12 (-5 *3 (-363 (-123))) (-4 *2 (-1047)) (-5 *1 (-704 *2 *4)) (-4 *4 (-637 *2))))) +(-13 (-1047) (-1037 |#1|) (-1037 (-123)) (-281 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-150)) (-6 (-150)) |noBranch|) (IF (|has| |#1| (-148)) (-6 (-148)) |noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-43 |#1|)) (-15 -4391 ($ $)) (-15 -4391 ($ $ $)) (-15 -1730 (|#1| |#1|))) |noBranch|) (-15 -1481 ($ $ (-1 |#2| |#2|))) (-15 -2082 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-123) (-568))) (-15 ** ($ $ (-568))) (-15 -4432 (|#2| (-123) |#2|)) (-15 -2276 ($ |#1| (-363 (-123)))))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) 33)) (-3134 (((-3 $ "failed") $ $) NIL)) (-2671 (($) NIL T CONST)) (-3092 (($ |#1| |#2|) 25)) (-2925 (((-3 $ "failed") $) 47)) (-2735 (((-121) $) 35)) (-3094 ((|#2| $) 12)) (-4487 (((-1143) $) NIL)) (-2081 (($ $) 48)) (-4022 (((-1108) $) NIL)) (-3697 (((-3 $ "failed") $ $) 46)) (-2745 (((-850) $) 24) (($ (-568)) 19) ((|#1| $) 13)) (-4078 (((-763)) 28)) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (-3056 (($) 16 T CONST)) (-1556 (($) 30 T CONST)) (-1717 (((-121) $ $) 38)) (-1773 (($ $) 43) (($ $ $) 37)) (-1767 (($ $ $) 40)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) 21) (($ $ $) 20))) +(((-705 |#1| |#2| |#3| |#4| |#5|) (-13 (-1047) (-10 -8 (-15 -3094 (|#2| $)) (-15 -2745 (|#1| $)) (-15 -3092 ($ |#1| |#2|)) (-15 -3697 ((-3 $ "failed") $ $)) (-15 -2925 ((-3 $ "failed") $)) (-15 -2081 ($ $)))) (-172) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -705)) +((-2925 (*1 *1 *1) (|partial| -12 (-5 *1 (-705 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3094 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-705 *3 *2 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2745 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-705 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3092 (*1 *1 *2 *3) (-12 (-5 *1 (-705 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3697 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-705 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2081 (*1 *1 *1) (-12 (-5 *1 (-705 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(-13 (-1047) (-10 -8 (-15 -3094 (|#2| $)) (-15 -2745 (|#1| $)) (-15 -3092 ($ |#1| |#2|)) (-15 -3697 ((-3 $ "failed") $ $)) (-15 -2925 ((-3 $ "failed") $)) (-15 -2081 ($ $)))) +((* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9))) +(((-706 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-568) |#1|)) (-15 * (|#1| (-763) |#1|)) (-15 * (|#1| (-917) |#1|))) (-707 |#2|) (-172)) (T -706)) +NIL +(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-568) |#1|)) (-15 * (|#1| (-763) |#1|)) (-15 * (|#1| (-917) |#1|))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-3134 (((-3 $ "failed") $ $) 18)) (-2671 (($) 16 T CONST)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-2745 (((-850) $) 11)) (-3056 (($) 17 T CONST)) (-1717 (((-121) $ $) 6)) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ |#1| $) 22) (($ $ |#1|) 24))) +(((-707 |#1|) (-1275) (-172)) (T -707)) NIL (-13 (-120 |t#1| |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-105) . T) ((-120 |#1| |#1|) . T) ((-137) . T) ((-600 (-842)) . T) ((-629 |#1|) . T) ((-1045 |#1|) . T) ((-1082) . T)) -((-2601 (((-121) $ $) NIL)) (-2956 (($ |#1|) 17) (($ $ |#1|) 20)) (-1407 (($ |#1|) 18) (($ $ |#1|) 21)) (-4236 (($) NIL T CONST)) (-1823 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-2642 (((-121) $) NIL)) (-1660 (($ |#1| |#1| |#1| |#1|) 8)) (-1291 (((-1135) $) NIL)) (-1701 (($ $) 16)) (-4353 (((-1100) $) NIL)) (-4450 ((|#1| $ |#1|) 24) (((-820 |#1|) $ (-820 |#1|)) 32)) (-3101 (($ $ $) NIL)) (-1671 (($ $ $) NIL)) (-2801 (((-842) $) 39)) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL)) (-1459 (($) 9 T CONST)) (-1653 (((-121) $ $) 44)) (-1733 (($ $ $) NIL)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL)) (* (($ $ $) 14))) -(((-700 |#1|) (-13 (-471) (-10 -8 (-15 -1660 ($ |#1| |#1| |#1| |#1|)) (-15 -2956 ($ |#1|)) (-15 -1407 ($ |#1|)) (-15 -1823 ($)) (-15 -2956 ($ $ |#1|)) (-15 -1407 ($ $ |#1|)) (-15 -1823 ($ $)) (-15 -4450 (|#1| $ |#1|)) (-15 -4450 ((-820 |#1|) $ (-820 |#1|))))) (-359)) (T -700)) -((-1660 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-700 *2)) (-4 *2 (-359)))) (-2956 (*1 *1 *2) (-12 (-5 *1 (-700 *2)) (-4 *2 (-359)))) (-1407 (*1 *1 *2) (-12 (-5 *1 (-700 *2)) (-4 *2 (-359)))) (-1823 (*1 *1) (-12 (-5 *1 (-700 *2)) (-4 *2 (-359)))) (-2956 (*1 *1 *1 *2) (-12 (-5 *1 (-700 *2)) (-4 *2 (-359)))) (-1407 (*1 *1 *1 *2) (-12 (-5 *1 (-700 *2)) (-4 *2 (-359)))) (-1823 (*1 *1 *1) (-12 (-5 *1 (-700 *2)) (-4 *2 (-359)))) (-4450 (*1 *2 *1 *2) (-12 (-5 *1 (-700 *2)) (-4 *2 (-359)))) (-4450 (*1 *2 *1 *2) (-12 (-5 *2 (-820 *3)) (-4 *3 (-359)) (-5 *1 (-700 *3))))) -(-13 (-471) (-10 -8 (-15 -1660 ($ |#1| |#1| |#1| |#1|)) (-15 -2956 ($ |#1|)) (-15 -1407 ($ |#1|)) (-15 -1823 ($)) (-15 -2956 ($ $ |#1|)) (-15 -1407 ($ $ |#1|)) (-15 -1823 ($ $)) (-15 -4450 (|#1| $ |#1|)) (-15 -4450 ((-820 |#1|) $ (-820 |#1|))))) -((-1498 (($ $ (-909)) 12)) (-2137 (($ $ (-909)) 13)) (** (($ $ (-909)) 10))) -(((-701 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-909))) (-15 -2137 (|#1| |#1| (-909))) (-15 -1498 (|#1| |#1| (-909)))) (-702)) (T -701)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-909))) (-15 -2137 (|#1| |#1| (-909))) (-15 -1498 (|#1| |#1| (-909)))) -((-2601 (((-121) $ $) 7)) (-1498 (($ $ (-909)) 14)) (-2137 (($ $ (-909)) 13)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-2801 (((-842) $) 11)) (-1653 (((-121) $ $) 6)) (** (($ $ (-909)) 12)) (* (($ $ $) 15))) -(((-702) (-1267)) (T -702)) -((* (*1 *1 *1 *1) (-4 *1 (-702))) (-1498 (*1 *1 *1 *2) (-12 (-4 *1 (-702)) (-5 *2 (-909)))) (-2137 (*1 *1 *1 *2) (-12 (-4 *1 (-702)) (-5 *2 (-909)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-702)) (-5 *2 (-909))))) -(-13 (-1082) (-10 -8 (-15 * ($ $ $)) (-15 -1498 ($ $ (-909))) (-15 -2137 ($ $ (-909))) (-15 ** ($ $ (-909))))) -(((-105) . T) ((-600 (-842)) . T) ((-1082) . T)) -((-1498 (($ $ (-909)) NIL) (($ $ (-755)) 17)) (-2642 (((-121) $) 10)) (-2137 (($ $ (-909)) NIL) (($ $ (-755)) 18)) (** (($ $ (-909)) NIL) (($ $ (-755)) 15))) -(((-703 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-755))) (-15 -2137 (|#1| |#1| (-755))) (-15 -1498 (|#1| |#1| (-755))) (-15 -2642 ((-121) |#1|)) (-15 ** (|#1| |#1| (-909))) (-15 -2137 (|#1| |#1| (-909))) (-15 -1498 (|#1| |#1| (-909)))) (-704)) (T -703)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-755))) (-15 -2137 (|#1| |#1| (-755))) (-15 -1498 (|#1| |#1| (-755))) (-15 -2642 ((-121) |#1|)) (-15 ** (|#1| |#1| (-909))) (-15 -2137 (|#1| |#1| (-909))) (-15 -1498 (|#1| |#1| (-909)))) -((-2601 (((-121) $ $) 7)) (-1309 (((-3 $ "failed") $) 16)) (-1498 (($ $ (-909)) 14) (($ $ (-755)) 21)) (-1823 (((-3 $ "failed") $) 18)) (-2642 (((-121) $) 22)) (-2966 (((-3 $ "failed") $) 17)) (-2137 (($ $ (-909)) 13) (($ $ (-755)) 20)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-2801 (((-842) $) 11)) (-1459 (($) 23 T CONST)) (-1653 (((-121) $ $) 6)) (** (($ $ (-909)) 12) (($ $ (-755)) 19)) (* (($ $ $) 15))) -(((-704) (-1267)) (T -704)) -((-1459 (*1 *1) (-4 *1 (-704))) (-2642 (*1 *2 *1) (-12 (-4 *1 (-704)) (-5 *2 (-121)))) (-1498 (*1 *1 *1 *2) (-12 (-4 *1 (-704)) (-5 *2 (-755)))) (-2137 (*1 *1 *1 *2) (-12 (-4 *1 (-704)) (-5 *2 (-755)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-704)) (-5 *2 (-755)))) (-1823 (*1 *1 *1) (|partial| -4 *1 (-704))) (-2966 (*1 *1 *1) (|partial| -4 *1 (-704))) (-1309 (*1 *1 *1) (|partial| -4 *1 (-704)))) -(-13 (-702) (-10 -8 (-15 (-1459) ($) -3565) (-15 -2642 ((-121) $)) (-15 -1498 ($ $ (-755))) (-15 -2137 ($ $ (-755))) (-15 ** ($ $ (-755))) (-15 -1823 ((-3 $ "failed") $)) (-15 -2966 ((-3 $ "failed") $)) (-15 -1309 ((-3 $ "failed") $)))) -(((-105) . T) ((-600 (-842)) . T) ((-702) . T) ((-1082) . T)) -((-2912 (((-755)) 35)) (-1473 (((-3 (-560) "failed") $) NIL) (((-3 (-403 (-560)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-3001 (((-560) $) NIL) (((-403 (-560)) $) NIL) ((|#2| $) 22)) (-2342 (($ |#3|) NIL) (((-3 $ "failed") (-403 |#3|)) 45)) (-1823 (((-3 $ "failed") $) 65)) (-1666 (($) 39)) (-3339 ((|#2| $) 20)) (-4250 (($) 17)) (-2443 (($ $ (-1 |#2| |#2|) (-755)) NIL) (($ $ (-1 |#2| |#2|)) 53) (($ $ (-626 (-1153)) (-626 (-755))) NIL) (($ $ (-1153) (-755)) NIL) (($ $ (-626 (-1153))) NIL) (($ $ (-1153)) NIL) (($ $ (-755)) NIL) (($ $) NIL)) (-2142 (((-671 |#2|) (-1236 $) (-1 |#2| |#2|)) 60)) (-4255 (((-1236 |#2|) $) NIL) (($ (-1236 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-3642 ((|#3| $) 32)) (-4374 (((-1236 $)) 29))) -(((-705 |#1| |#2| |#3|) (-10 -8 (-15 -2443 (|#1| |#1|)) (-15 -2443 (|#1| |#1| (-755))) (-15 -2443 (|#1| |#1| (-1153))) (-15 -2443 (|#1| |#1| (-626 (-1153)))) (-15 -2443 (|#1| |#1| (-1153) (-755))) (-15 -2443 (|#1| |#1| (-626 (-1153)) (-626 (-755)))) (-15 -1666 (|#1|)) (-15 -2912 ((-755))) (-15 -2443 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2443 (|#1| |#1| (-1 |#2| |#2|) (-755))) (-15 -2142 ((-671 |#2|) (-1236 |#1|) (-1 |#2| |#2|))) (-15 -2342 ((-3 |#1| "failed") (-403 |#3|))) (-15 -4255 (|#1| |#3|)) (-15 -2342 (|#1| |#3|)) (-15 -4250 (|#1|)) (-15 -3001 (|#2| |#1|)) (-15 -1473 ((-3 |#2| "failed") |#1|)) (-15 -1473 ((-3 (-403 (-560)) "failed") |#1|)) (-15 -3001 ((-403 (-560)) |#1|)) (-15 -1473 ((-3 (-560) "failed") |#1|)) (-15 -3001 ((-560) |#1|)) (-15 -4255 (|#3| |#1|)) (-15 -4255 (|#1| (-1236 |#2|))) (-15 -4255 ((-1236 |#2|) |#1|)) (-15 -4374 ((-1236 |#1|))) (-15 -3642 (|#3| |#1|)) (-15 -3339 (|#2| |#1|)) (-15 -1823 ((-3 |#1| "failed") |#1|))) (-706 |#2| |#3|) (-170) (-1211 |#2|)) (T -705)) -((-2912 (*1 *2) (-12 (-4 *4 (-170)) (-4 *5 (-1211 *4)) (-5 *2 (-755)) (-5 *1 (-705 *3 *4 *5)) (-4 *3 (-706 *4 *5))))) -(-10 -8 (-15 -2443 (|#1| |#1|)) (-15 -2443 (|#1| |#1| (-755))) (-15 -2443 (|#1| |#1| (-1153))) (-15 -2443 (|#1| |#1| (-626 (-1153)))) (-15 -2443 (|#1| |#1| (-1153) (-755))) (-15 -2443 (|#1| |#1| (-626 (-1153)) (-626 (-755)))) (-15 -1666 (|#1|)) (-15 -2912 ((-755))) (-15 -2443 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2443 (|#1| |#1| (-1 |#2| |#2|) (-755))) (-15 -2142 ((-671 |#2|) (-1236 |#1|) (-1 |#2| |#2|))) (-15 -2342 ((-3 |#1| "failed") (-403 |#3|))) (-15 -4255 (|#1| |#3|)) (-15 -2342 (|#1| |#3|)) (-15 -4250 (|#1|)) (-15 -3001 (|#2| |#1|)) (-15 -1473 ((-3 |#2| "failed") |#1|)) (-15 -1473 ((-3 (-403 (-560)) "failed") |#1|)) (-15 -3001 ((-403 (-560)) |#1|)) (-15 -1473 ((-3 (-560) "failed") |#1|)) (-15 -3001 ((-560) |#1|)) (-15 -4255 (|#3| |#1|)) (-15 -4255 (|#1| (-1236 |#2|))) (-15 -4255 ((-1236 |#2|) |#1|)) (-15 -4374 ((-1236 |#1|))) (-15 -3642 (|#3| |#1|)) (-15 -3339 (|#2| |#1|)) (-15 -1823 ((-3 |#1| "failed") |#1|))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) 87 (|has| |#1| (-359)))) (-1350 (($ $) 88 (|has| |#1| (-359)))) (-3376 (((-121) $) 90 (|has| |#1| (-359)))) (-2196 (((-671 |#1|) (-1236 $)) 44) (((-671 |#1|)) 55)) (-1944 ((|#1| $) 50)) (-4357 (((-1161 (-909) (-755)) (-560)) 141 (|has| |#1| (-344)))) (-2314 (((-3 $ "failed") $ $) 18)) (-3065 (($ $) 107 (|has| |#1| (-359)))) (-2953 (((-414 $) $) 108 (|has| |#1| (-359)))) (-4179 (((-121) $ $) 98 (|has| |#1| (-359)))) (-2912 (((-755)) 81 (|has| |#1| (-364)))) (-4236 (($) 16 T CONST)) (-1473 (((-3 (-560) "failed") $) 163 (|has| |#1| (-1029 (-560)))) (((-3 (-403 (-560)) "failed") $) 161 (|has| |#1| (-1029 (-403 (-560))))) (((-3 |#1| "failed") $) 160)) (-3001 (((-560) $) 164 (|has| |#1| (-1029 (-560)))) (((-403 (-560)) $) 162 (|has| |#1| (-1029 (-403 (-560))))) ((|#1| $) 159)) (-3380 (($ (-1236 |#1|) (-1236 $)) 46) (($ (-1236 |#1|)) 58)) (-4107 (((-3 "prime" "polynomial" "normal" "cyclic")) 147 (|has| |#1| (-344)))) (-2563 (($ $ $) 102 (|has| |#1| (-359)))) (-2954 (((-671 |#1|) $ (-1236 $)) 51) (((-671 |#1|) $) 53)) (-2616 (((-671 (-560)) (-671 $)) 158 (|has| |#1| (-622 (-560)))) (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) 157 (|has| |#1| (-622 (-560)))) (((-2 (|:| -3818 (-671 |#1|)) (|:| |vec| (-1236 |#1|))) (-671 $) (-1236 $)) 156) (((-671 |#1|) (-671 $)) 155)) (-2342 (($ |#2|) 152) (((-3 $ "failed") (-403 |#2|)) 149 (|has| |#1| (-359)))) (-1823 (((-3 $ "failed") $) 33)) (-3143 (((-909)) 52)) (-1666 (($) 84 (|has| |#1| (-364)))) (-2572 (($ $ $) 101 (|has| |#1| (-359)))) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) 96 (|has| |#1| (-359)))) (-2481 (($) 143 (|has| |#1| (-344)))) (-1537 (((-121) $) 144 (|has| |#1| (-344)))) (-2937 (($ $ (-755)) 135 (|has| |#1| (-344))) (($ $) 134 (|has| |#1| (-344)))) (-3319 (((-121) $) 109 (|has| |#1| (-359)))) (-3504 (((-909) $) 146 (|has| |#1| (-344))) (((-820 (-909)) $) 132 (|has| |#1| (-344)))) (-2642 (((-121) $) 30)) (-3339 ((|#1| $) 49)) (-1424 (((-3 $ "failed") $) 136 (|has| |#1| (-344)))) (-3856 (((-3 (-626 $) "failed") (-626 $) $) 105 (|has| |#1| (-359)))) (-4108 ((|#2| $) 42 (|has| |#1| (-359)))) (-3142 (((-909) $) 83 (|has| |#1| (-364)))) (-2335 ((|#2| $) 150)) (-2582 (($ (-626 $)) 94 (|has| |#1| (-359))) (($ $ $) 93 (|has| |#1| (-359)))) (-1291 (((-1135) $) 9)) (-1701 (($ $) 110 (|has| |#1| (-359)))) (-1394 (($) 137 (|has| |#1| (-344)) CONST)) (-1330 (($ (-909)) 82 (|has| |#1| (-364)))) (-4353 (((-1100) $) 10)) (-4250 (($) 154)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) 95 (|has| |#1| (-359)))) (-4440 (($ (-626 $)) 92 (|has| |#1| (-359))) (($ $ $) 91 (|has| |#1| (-359)))) (-2385 (((-626 (-2 (|:| -1601 (-560)) (|:| -4034 (-560))))) 140 (|has| |#1| (-344)))) (-1601 (((-414 $) $) 106 (|has| |#1| (-359)))) (-3505 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 104 (|has| |#1| (-359))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) 103 (|has| |#1| (-359)))) (-2336 (((-3 $ "failed") $ $) 86 (|has| |#1| (-359)))) (-3456 (((-3 (-626 $) "failed") (-626 $) $) 97 (|has| |#1| (-359)))) (-4445 (((-755) $) 99 (|has| |#1| (-359)))) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) 100 (|has| |#1| (-359)))) (-4069 ((|#1| (-1236 $)) 45) ((|#1|) 54)) (-2935 (((-755) $) 145 (|has| |#1| (-344))) (((-3 (-755) "failed") $ $) 133 (|has| |#1| (-344)))) (-2443 (($ $) 131 (-2318 (-2256 (|has| |#1| (-221)) (|has| |#1| (-359))) (|has| |#1| (-344)))) (($ $ (-755)) 129 (-2318 (-2256 (|has| |#1| (-221)) (|has| |#1| (-359))) (|has| |#1| (-344)))) (($ $ (-1153)) 127 (-2256 (|has| |#1| (-887 (-1153))) (|has| |#1| (-359)))) (($ $ (-626 (-1153))) 126 (-2256 (|has| |#1| (-887 (-1153))) (|has| |#1| (-359)))) (($ $ (-1153) (-755)) 125 (-2256 (|has| |#1| (-887 (-1153))) (|has| |#1| (-359)))) (($ $ (-626 (-1153)) (-626 (-755))) 124 (-2256 (|has| |#1| (-887 (-1153))) (|has| |#1| (-359)))) (($ $ (-1 |#1| |#1|) (-755)) 117 (|has| |#1| (-359))) (($ $ (-1 |#1| |#1|)) 116 (|has| |#1| (-359)))) (-2142 (((-671 |#1|) (-1236 $) (-1 |#1| |#1|)) 148 (|has| |#1| (-359)))) (-3591 ((|#2|) 153)) (-2612 (($) 142 (|has| |#1| (-344)))) (-3390 (((-1236 |#1|) $ (-1236 $)) 48) (((-671 |#1|) (-1236 $) (-1236 $)) 47) (((-1236 |#1|) $) 60) (((-671 |#1|) (-1236 $)) 59)) (-4255 (((-1236 |#1|) $) 57) (($ (-1236 |#1|)) 56) ((|#2| $) 165) (($ |#2|) 151)) (-3248 (((-3 (-1236 $) "failed") (-671 $)) 139 (|has| |#1| (-344)))) (-2801 (((-842) $) 11) (($ (-560)) 27) (($ |#1|) 36) (($ $) 85 (|has| |#1| (-359))) (($ (-403 (-560))) 80 (-2318 (|has| |#1| (-359)) (|has| |#1| (-1029 (-403 (-560))))))) (-2272 (($ $) 138 (|has| |#1| (-344))) (((-3 $ "failed") $) 41 (|has| |#1| (-146)))) (-3642 ((|#2| $) 43)) (-1751 (((-755)) 28)) (-4374 (((-1236 $)) 61)) (-2328 (((-121) $ $) 89 (|has| |#1| (-359)))) (-2464 (($ $ (-909)) 25) (($ $ (-755)) 32) (($ $ (-560)) 111 (|has| |#1| (-359)))) (-3304 (($) 17 T CONST)) (-1459 (($) 29 T CONST)) (-2500 (($ $) 130 (-2318 (-2256 (|has| |#1| (-221)) (|has| |#1| (-359))) (|has| |#1| (-344)))) (($ $ (-755)) 128 (-2318 (-2256 (|has| |#1| (-221)) (|has| |#1| (-359))) (|has| |#1| (-344)))) (($ $ (-1153)) 123 (-2256 (|has| |#1| (-887 (-1153))) (|has| |#1| (-359)))) (($ $ (-626 (-1153))) 122 (-2256 (|has| |#1| (-887 (-1153))) (|has| |#1| (-359)))) (($ $ (-1153) (-755)) 121 (-2256 (|has| |#1| (-887 (-1153))) (|has| |#1| (-359)))) (($ $ (-626 (-1153)) (-626 (-755))) 120 (-2256 (|has| |#1| (-887 (-1153))) (|has| |#1| (-359)))) (($ $ (-1 |#1| |#1|) (-755)) 119 (|has| |#1| (-359))) (($ $ (-1 |#1| |#1|)) 118 (|has| |#1| (-359)))) (-1653 (((-121) $ $) 6)) (-1733 (($ $ $) 115 (|has| |#1| (-359)))) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 24) (($ $ (-755)) 31) (($ $ (-560)) 112 (|has| |#1| (-359)))) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 23) (($ $ |#1|) 38) (($ |#1| $) 37) (($ (-403 (-560)) $) 114 (|has| |#1| (-359))) (($ $ (-403 (-560))) 113 (|has| |#1| (-359))))) -(((-706 |#1| |#2|) (-1267) (-170) (-1211 |t#1|)) (T -706)) -((-4250 (*1 *1) (-12 (-4 *2 (-170)) (-4 *1 (-706 *2 *3)) (-4 *3 (-1211 *2)))) (-3591 (*1 *2) (-12 (-4 *1 (-706 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1211 *3)))) (-2342 (*1 *1 *2) (-12 (-4 *3 (-170)) (-4 *1 (-706 *3 *2)) (-4 *2 (-1211 *3)))) (-4255 (*1 *1 *2) (-12 (-4 *3 (-170)) (-4 *1 (-706 *3 *2)) (-4 *2 (-1211 *3)))) (-2335 (*1 *2 *1) (-12 (-4 *1 (-706 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1211 *3)))) (-2342 (*1 *1 *2) (|partial| -12 (-5 *2 (-403 *4)) (-4 *4 (-1211 *3)) (-4 *3 (-359)) (-4 *3 (-170)) (-4 *1 (-706 *3 *4)))) (-2142 (*1 *2 *3 *4) (-12 (-5 *3 (-1236 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-359)) (-4 *1 (-706 *5 *6)) (-4 *5 (-170)) (-4 *6 (-1211 *5)) (-5 *2 (-671 *5))))) -(-13 (-405 |t#1| |t#2|) (-170) (-601 |t#2|) (-407 |t#1|) (-373 |t#1|) (-10 -8 (-15 -4250 ($)) (-15 -3591 (|t#2|)) (-15 -2342 ($ |t#2|)) (-15 -4255 ($ |t#2|)) (-15 -2335 (|t#2| $)) (IF (|has| |t#1| (-364)) (-6 (-364)) |noBranch|) (IF (|has| |t#1| (-359)) (PROGN (-6 (-359)) (-6 (-219 |t#1|)) (-15 -2342 ((-3 $ "failed") (-403 |t#2|))) (-15 -2142 ((-671 |t#1|) (-1236 $) (-1 |t#1| |t#1|)))) |noBranch|) (IF (|has| |t#1| (-344)) (-6 (-344)) |noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-43 (-403 (-560))) -2318 (|has| |#1| (-344)) (|has| |#1| (-359))) ((-43 |#1|) . T) ((-43 $) -2318 (|has| |#1| (-344)) (|has| |#1| (-359))) ((-105) . T) ((-120 (-403 (-560)) (-403 (-560))) -2318 (|has| |#1| (-344)) (|has| |#1| (-359))) ((-120 |#1| |#1|) . T) ((-120 $ $) . T) ((-137) . T) ((-146) -2318 (|has| |#1| (-344)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-600 (-842)) . T) ((-170) . T) ((-601 |#2|) . T) ((-219 |#1|) |has| |#1| (-359)) ((-221) -2318 (|has| |#1| (-344)) (-12 (|has| |#1| (-221)) (|has| |#1| (-359)))) ((-233) -2318 (|has| |#1| (-344)) (|has| |#1| (-359))) ((-280) -2318 (|has| |#1| (-344)) (|has| |#1| (-359))) ((-296) -2318 (|has| |#1| (-344)) (|has| |#1| (-359))) ((-359) -2318 (|has| |#1| (-344)) (|has| |#1| (-359))) ((-398) |has| |#1| (-344)) ((-364) -2318 (|has| |#1| (-364)) (|has| |#1| (-344))) ((-344) |has| |#1| (-344)) ((-366 |#1| |#2|) . T) ((-405 |#1| |#2|) . T) ((-373 |#1|) . T) ((-407 |#1|) . T) ((-447) -2318 (|has| |#1| (-344)) (|has| |#1| (-359))) ((-550) -2318 (|has| |#1| (-344)) (|has| |#1| (-359))) ((-629 (-403 (-560))) -2318 (|has| |#1| (-344)) (|has| |#1| (-359))) ((-629 |#1|) . T) ((-629 $) . T) ((-622 (-560)) |has| |#1| (-622 (-560))) ((-622 |#1|) . T) ((-699 (-403 (-560))) -2318 (|has| |#1| (-344)) (|has| |#1| (-359))) ((-699 |#1|) . T) ((-699 $) -2318 (|has| |#1| (-344)) (|has| |#1| (-359))) ((-708) . T) ((-887 (-1153)) -12 (|has| |#1| (-359)) (|has| |#1| (-887 (-1153)))) ((-908) -2318 (|has| |#1| (-344)) (|has| |#1| (-359))) ((-1029 (-403 (-560))) |has| |#1| (-1029 (-403 (-560)))) ((-1029 (-560)) |has| |#1| (-1029 (-560))) ((-1029 |#1|) . T) ((-1045 (-403 (-560))) -2318 (|has| |#1| (-344)) (|has| |#1| (-359))) ((-1045 |#1|) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1094) . T) ((-1082) . T) ((-1128) |has| |#1| (-344)) ((-1191) -2318 (|has| |#1| (-344)) (|has| |#1| (-359)))) -((-4236 (($) 14)) (-1823 (((-3 $ "failed") $) 16)) (-2642 (((-121) $) 13)) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) 9)) (** (($ $ (-909)) NIL) (($ $ (-755)) 20))) -(((-707 |#1|) (-10 -8 (-15 -1823 ((-3 |#1| "failed") |#1|)) (-15 -2464 (|#1| |#1| (-755))) (-15 ** (|#1| |#1| (-755))) (-15 -2642 ((-121) |#1|)) (-15 -4236 (|#1|)) (-15 -2464 (|#1| |#1| (-909))) (-15 ** (|#1| |#1| (-909)))) (-708)) (T -707)) -NIL -(-10 -8 (-15 -1823 ((-3 |#1| "failed") |#1|)) (-15 -2464 (|#1| |#1| (-755))) (-15 ** (|#1| |#1| (-755))) (-15 -2642 ((-121) |#1|)) (-15 -4236 (|#1|)) (-15 -2464 (|#1| |#1| (-909))) (-15 ** (|#1| |#1| (-909)))) -((-2601 (((-121) $ $) 7)) (-4236 (($) 19 T CONST)) (-1823 (((-3 $ "failed") $) 15)) (-2642 (((-121) $) 18)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-2801 (((-842) $) 11)) (-2464 (($ $ (-909)) 12) (($ $ (-755)) 16)) (-1459 (($) 20 T CONST)) (-1653 (((-121) $ $) 6)) (** (($ $ (-909)) 13) (($ $ (-755)) 17)) (* (($ $ $) 14))) -(((-708) (-1267)) (T -708)) -((-1459 (*1 *1) (-4 *1 (-708))) (-4236 (*1 *1) (-4 *1 (-708))) (-2642 (*1 *2 *1) (-12 (-4 *1 (-708)) (-5 *2 (-121)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-708)) (-5 *2 (-755)))) (-2464 (*1 *1 *1 *2) (-12 (-4 *1 (-708)) (-5 *2 (-755)))) (-1823 (*1 *1 *1) (|partial| -4 *1 (-708)))) -(-13 (-1094) (-10 -8 (-15 (-1459) ($) -3565) (-15 -4236 ($) -3565) (-15 -2642 ((-121) $)) (-15 ** ($ $ (-755))) (-15 -2464 ($ $ (-755))) (-15 -1823 ((-3 $ "failed") $)))) -(((-105) . T) ((-600 (-842)) . T) ((-1094) . T) ((-1082) . T)) -((-3630 (((-2 (|:| -2828 (-414 |#2|)) (|:| |special| (-414 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-2437 (((-2 (|:| -2828 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-2806 ((|#2| (-403 |#2|) (-1 |#2| |#2|)) 13)) (-1636 (((-2 (|:| |poly| |#2|) (|:| -2828 (-403 |#2|)) (|:| |special| (-403 |#2|))) (-403 |#2|) (-1 |#2| |#2|)) 47))) -(((-709 |#1| |#2|) (-10 -7 (-15 -2437 ((-2 (|:| -2828 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3630 ((-2 (|:| -2828 (-414 |#2|)) (|:| |special| (-414 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2806 (|#2| (-403 |#2|) (-1 |#2| |#2|))) (-15 -1636 ((-2 (|:| |poly| |#2|) (|:| -2828 (-403 |#2|)) (|:| |special| (-403 |#2|))) (-403 |#2|) (-1 |#2| |#2|)))) (-359) (-1211 |#1|)) (T -709)) -((-1636 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1211 *5)) (-4 *5 (-359)) (-5 *2 (-2 (|:| |poly| *6) (|:| -2828 (-403 *6)) (|:| |special| (-403 *6)))) (-5 *1 (-709 *5 *6)) (-5 *3 (-403 *6)))) (-2806 (*1 *2 *3 *4) (-12 (-5 *3 (-403 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1211 *5)) (-5 *1 (-709 *5 *2)) (-4 *5 (-359)))) (-3630 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1211 *5)) (-4 *5 (-359)) (-5 *2 (-2 (|:| -2828 (-414 *3)) (|:| |special| (-414 *3)))) (-5 *1 (-709 *5 *3)))) (-2437 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1211 *5)) (-4 *5 (-359)) (-5 *2 (-2 (|:| -2828 *3) (|:| |special| *3))) (-5 *1 (-709 *5 *3))))) -(-10 -7 (-15 -2437 ((-2 (|:| -2828 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3630 ((-2 (|:| -2828 (-414 |#2|)) (|:| |special| (-414 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2806 (|#2| (-403 |#2|) (-1 |#2| |#2|))) (-15 -1636 ((-2 (|:| |poly| |#2|) (|:| -2828 (-403 |#2|)) (|:| |special| (-403 |#2|))) (-403 |#2|) (-1 |#2| |#2|)))) -((-4158 ((|#7| (-626 |#5|) |#6|) NIL)) (-2803 ((|#7| (-1 |#5| |#4|) |#6|) 26))) -(((-710 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -2803 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -4158 (|#7| (-626 |#5|) |#6|))) (-834) (-780) (-780) (-1039) (-1039) (-942 |#4| |#2| |#1|) (-942 |#5| |#3| |#1|)) (T -710)) -((-4158 (*1 *2 *3 *4) (-12 (-5 *3 (-626 *9)) (-4 *9 (-1039)) (-4 *5 (-834)) (-4 *6 (-780)) (-4 *8 (-1039)) (-4 *2 (-942 *9 *7 *5)) (-5 *1 (-710 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-780)) (-4 *4 (-942 *8 *6 *5)))) (-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1039)) (-4 *9 (-1039)) (-4 *5 (-834)) (-4 *6 (-780)) (-4 *2 (-942 *9 *7 *5)) (-5 *1 (-710 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-780)) (-4 *4 (-942 *8 *6 *5))))) -(-10 -7 (-15 -2803 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -4158 (|#7| (-626 |#5|) |#6|))) -((-2803 ((|#7| (-1 |#2| |#1|) |#6|) 28))) -(((-711 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -2803 (|#7| (-1 |#2| |#1|) |#6|))) (-834) (-834) (-780) (-780) (-1039) (-942 |#5| |#3| |#1|) (-942 |#5| |#4| |#2|)) (T -711)) -((-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-834)) (-4 *6 (-834)) (-4 *7 (-780)) (-4 *9 (-1039)) (-4 *2 (-942 *9 *8 *6)) (-5 *1 (-711 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-780)) (-4 *4 (-942 *9 *7 *5))))) -(-10 -7 (-15 -2803 (|#7| (-1 |#2| |#1|) |#6|))) -((-1601 (((-414 |#4|) |#4|) 39))) -(((-712 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1601 ((-414 |#4|) |#4|))) (-780) (-13 (-834) (-10 -8 (-15 -4255 ((-1153) $)) (-15 -1395 ((-3 $ "failed") (-1153))))) (-296) (-942 (-945 |#3|) |#1| |#2|)) (T -712)) -((-1601 (*1 *2 *3) (-12 (-4 *4 (-780)) (-4 *5 (-13 (-834) (-10 -8 (-15 -4255 ((-1153) $)) (-15 -1395 ((-3 $ "failed") (-1153)))))) (-4 *6 (-296)) (-5 *2 (-414 *3)) (-5 *1 (-712 *4 *5 *6 *3)) (-4 *3 (-942 (-945 *6) *4 *5))))) -(-10 -7 (-15 -1601 ((-414 |#4|) |#4|))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-1654 (((-626 (-844 |#1|)) $) NIL)) (-1593 (((-1149 $) $ (-844 |#1|)) NIL) (((-1149 |#2|) $) NIL)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL (|has| |#2| (-550)))) (-1350 (($ $) NIL (|has| |#2| (-550)))) (-3376 (((-121) $) NIL (|has| |#2| (-550)))) (-1697 (((-755) $) NIL) (((-755) $ (-626 (-844 |#1|))) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-1776 (((-414 (-1149 $)) (-1149 $)) NIL (|has| |#2| (-896)))) (-3065 (($ $) NIL (|has| |#2| (-447)))) (-2953 (((-414 $) $) NIL (|has| |#2| (-447)))) (-1887 (((-3 (-626 (-1149 $)) "failed") (-626 (-1149 $)) (-1149 $)) NIL (|has| |#2| (-896)))) (-4236 (($) NIL T CONST)) (-1473 (((-3 |#2| "failed") $) NIL) (((-3 (-403 (-560)) "failed") $) NIL (|has| |#2| (-1029 (-403 (-560))))) (((-3 (-560) "failed") $) NIL (|has| |#2| (-1029 (-560)))) (((-3 (-844 |#1|) "failed") $) NIL)) (-3001 ((|#2| $) NIL) (((-403 (-560)) $) NIL (|has| |#2| (-1029 (-403 (-560))))) (((-560) $) NIL (|has| |#2| (-1029 (-560)))) (((-844 |#1|) $) NIL)) (-1979 (($ $ $ (-844 |#1|)) NIL (|has| |#2| (-170)))) (-1750 (($ $) NIL)) (-2616 (((-671 (-560)) (-671 $)) NIL (|has| |#2| (-622 (-560)))) (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) NIL (|has| |#2| (-622 (-560)))) (((-2 (|:| -3818 (-671 |#2|)) (|:| |vec| (-1236 |#2|))) (-671 $) (-1236 $)) NIL) (((-671 |#2|) (-671 $)) NIL)) (-1823 (((-3 $ "failed") $) NIL)) (-3605 (($ $) NIL (|has| |#2| (-447))) (($ $ (-844 |#1|)) NIL (|has| |#2| (-447)))) (-1743 (((-626 $) $) NIL)) (-3319 (((-121) $) NIL (|has| |#2| (-896)))) (-1456 (($ $ |#2| (-526 (-844 |#1|)) $) NIL)) (-2399 (((-876 (-375) $) $ (-879 (-375)) (-876 (-375) $)) NIL (-12 (|has| (-844 |#1|) (-873 (-375))) (|has| |#2| (-873 (-375))))) (((-876 (-560) $) $ (-879 (-560)) (-876 (-560) $)) NIL (-12 (|has| (-844 |#1|) (-873 (-560))) (|has| |#2| (-873 (-560)))))) (-2642 (((-121) $) NIL)) (-3235 (((-755) $) NIL)) (-1647 (($ (-1149 |#2|) (-844 |#1|)) NIL) (($ (-1149 $) (-844 |#1|)) NIL)) (-1854 (((-626 $) $) NIL)) (-1814 (((-121) $) NIL)) (-1637 (($ |#2| (-526 (-844 |#1|))) NIL) (($ $ (-844 |#1|) (-755)) NIL) (($ $ (-626 (-844 |#1|)) (-626 (-755))) NIL)) (-2923 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $ (-844 |#1|)) NIL)) (-3693 (((-526 (-844 |#1|)) $) NIL) (((-755) $ (-844 |#1|)) NIL) (((-626 (-755)) $ (-626 (-844 |#1|))) NIL)) (-4325 (($ $ $) NIL (|has| |#2| (-834)))) (-2501 (($ $ $) NIL (|has| |#2| (-834)))) (-1504 (($ (-1 (-526 (-844 |#1|)) (-526 (-844 |#1|))) $) NIL)) (-2803 (($ (-1 |#2| |#2|) $) NIL)) (-2101 (((-3 (-844 |#1|) "failed") $) NIL)) (-1726 (($ $) NIL)) (-1735 ((|#2| $) NIL)) (-2582 (($ (-626 $)) NIL (|has| |#2| (-447))) (($ $ $) NIL (|has| |#2| (-447)))) (-1291 (((-1135) $) NIL)) (-3665 (((-3 (-626 $) "failed") $) NIL)) (-2327 (((-3 (-626 $) "failed") $) NIL)) (-2913 (((-3 (-2 (|:| |var| (-844 |#1|)) (|:| -4034 (-755))) "failed") $) NIL)) (-4353 (((-1100) $) NIL)) (-1704 (((-121) $) NIL)) (-1711 ((|#2| $) NIL)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL (|has| |#2| (-447)))) (-4440 (($ (-626 $)) NIL (|has| |#2| (-447))) (($ $ $) NIL (|has| |#2| (-447)))) (-3817 (((-414 (-1149 $)) (-1149 $)) NIL (|has| |#2| (-896)))) (-3032 (((-414 (-1149 $)) (-1149 $)) NIL (|has| |#2| (-896)))) (-1601 (((-414 $) $) NIL (|has| |#2| (-896)))) (-2336 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-550))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-550)))) (-4450 (($ $ (-626 (-283 $))) NIL) (($ $ (-283 $)) NIL) (($ $ $ $) NIL) (($ $ (-626 $) (-626 $)) NIL) (($ $ (-844 |#1|) |#2|) NIL) (($ $ (-626 (-844 |#1|)) (-626 |#2|)) NIL) (($ $ (-844 |#1|) $) NIL) (($ $ (-626 (-844 |#1|)) (-626 $)) NIL)) (-4069 (($ $ (-844 |#1|)) NIL (|has| |#2| (-170)))) (-2443 (($ $ (-844 |#1|)) NIL) (($ $ (-626 (-844 |#1|))) NIL) (($ $ (-844 |#1|) (-755)) NIL) (($ $ (-626 (-844 |#1|)) (-626 (-755))) NIL)) (-3662 (((-526 (-844 |#1|)) $) NIL) (((-755) $ (-844 |#1|)) NIL) (((-626 (-755)) $ (-626 (-844 |#1|))) NIL)) (-4255 (((-879 (-375)) $) NIL (-12 (|has| (-844 |#1|) (-601 (-879 (-375)))) (|has| |#2| (-601 (-879 (-375)))))) (((-879 (-560)) $) NIL (-12 (|has| (-844 |#1|) (-601 (-879 (-560)))) (|has| |#2| (-601 (-879 (-560)))))) (((-533) $) NIL (-12 (|has| (-844 |#1|) (-601 (-533))) (|has| |#2| (-601 (-533)))))) (-1896 ((|#2| $) NIL (|has| |#2| (-447))) (($ $ (-844 |#1|)) NIL (|has| |#2| (-447)))) (-3248 (((-3 (-1236 $) "failed") (-671 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-896))))) (-2801 (((-842) $) NIL) (($ (-560)) NIL) (($ |#2|) NIL) (($ (-844 |#1|)) NIL) (($ $) NIL (|has| |#2| (-550))) (($ (-403 (-560))) NIL (-2318 (|has| |#2| (-43 (-403 (-560)))) (|has| |#2| (-1029 (-403 (-560))))))) (-2423 (((-626 |#2|) $) NIL)) (-2636 ((|#2| $ (-526 (-844 |#1|))) NIL) (($ $ (-844 |#1|) (-755)) NIL) (($ $ (-626 (-844 |#1|)) (-626 (-755))) NIL)) (-2272 (((-3 $ "failed") $) NIL (-2318 (-12 (|has| $ (-146)) (|has| |#2| (-896))) (|has| |#2| (-146))))) (-1751 (((-755)) NIL)) (-3487 (($ $ $ (-755)) NIL (|has| |#2| (-170)))) (-2328 (((-121) $ $) NIL (|has| |#2| (-550)))) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (-3304 (($) NIL T CONST)) (-1459 (($) NIL T CONST)) (-2500 (($ $ (-844 |#1|)) NIL) (($ $ (-626 (-844 |#1|))) NIL) (($ $ (-844 |#1|) (-755)) NIL) (($ $ (-626 (-844 |#1|)) (-626 (-755))) NIL)) (-1691 (((-121) $ $) NIL (|has| |#2| (-834)))) (-1675 (((-121) $ $) NIL (|has| |#2| (-834)))) (-1653 (((-121) $ $) NIL)) (-1683 (((-121) $ $) NIL (|has| |#2| (-834)))) (-1667 (((-121) $ $) NIL (|has| |#2| (-834)))) (-1733 (($ $ |#2|) NIL (|has| |#2| (-359)))) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) NIL)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) NIL) (($ $ (-403 (-560))) NIL (|has| |#2| (-43 (-403 (-560))))) (($ (-403 (-560)) $) NIL (|has| |#2| (-43 (-403 (-560))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-713 |#1| |#2|) (-942 |#2| (-526 (-844 |#1|)) (-844 |#1|)) (-626 (-1153)) (-1039)) (T -713)) -NIL -(-942 |#2| (-526 (-844 |#1|)) (-844 |#1|)) -((-3635 (((-2 (|:| -2280 (-945 |#3|)) (|:| -2289 (-945 |#3|))) |#4|) 13)) (-1421 ((|#4| |#4| |#2|) 30)) (-3583 ((|#4| (-403 (-945 |#3|)) |#2|) 63)) (-3949 ((|#4| (-1149 (-945 |#3|)) |#2|) 76)) (-3452 ((|#4| (-1149 |#4|) |#2|) 49)) (-4287 ((|#4| |#4| |#2|) 52)) (-1601 (((-414 |#4|) |#4|) 38))) -(((-714 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3635 ((-2 (|:| -2280 (-945 |#3|)) (|:| -2289 (-945 |#3|))) |#4|)) (-15 -4287 (|#4| |#4| |#2|)) (-15 -3452 (|#4| (-1149 |#4|) |#2|)) (-15 -1421 (|#4| |#4| |#2|)) (-15 -3949 (|#4| (-1149 (-945 |#3|)) |#2|)) (-15 -3583 (|#4| (-403 (-945 |#3|)) |#2|)) (-15 -1601 ((-414 |#4|) |#4|))) (-780) (-13 (-834) (-10 -8 (-15 -4255 ((-1153) $)))) (-550) (-942 (-403 (-945 |#3|)) |#1| |#2|)) (T -714)) -((-1601 (*1 *2 *3) (-12 (-4 *4 (-780)) (-4 *5 (-13 (-834) (-10 -8 (-15 -4255 ((-1153) $))))) (-4 *6 (-550)) (-5 *2 (-414 *3)) (-5 *1 (-714 *4 *5 *6 *3)) (-4 *3 (-942 (-403 (-945 *6)) *4 *5)))) (-3583 (*1 *2 *3 *4) (-12 (-4 *6 (-550)) (-4 *2 (-942 *3 *5 *4)) (-5 *1 (-714 *5 *4 *6 *2)) (-5 *3 (-403 (-945 *6))) (-4 *5 (-780)) (-4 *4 (-13 (-834) (-10 -8 (-15 -4255 ((-1153) $))))))) (-3949 (*1 *2 *3 *4) (-12 (-5 *3 (-1149 (-945 *6))) (-4 *6 (-550)) (-4 *2 (-942 (-403 (-945 *6)) *5 *4)) (-5 *1 (-714 *5 *4 *6 *2)) (-4 *5 (-780)) (-4 *4 (-13 (-834) (-10 -8 (-15 -4255 ((-1153) $))))))) (-1421 (*1 *2 *2 *3) (-12 (-4 *4 (-780)) (-4 *3 (-13 (-834) (-10 -8 (-15 -4255 ((-1153) $))))) (-4 *5 (-550)) (-5 *1 (-714 *4 *3 *5 *2)) (-4 *2 (-942 (-403 (-945 *5)) *4 *3)))) (-3452 (*1 *2 *3 *4) (-12 (-5 *3 (-1149 *2)) (-4 *2 (-942 (-403 (-945 *6)) *5 *4)) (-5 *1 (-714 *5 *4 *6 *2)) (-4 *5 (-780)) (-4 *4 (-13 (-834) (-10 -8 (-15 -4255 ((-1153) $))))) (-4 *6 (-550)))) (-4287 (*1 *2 *2 *3) (-12 (-4 *4 (-780)) (-4 *3 (-13 (-834) (-10 -8 (-15 -4255 ((-1153) $))))) (-4 *5 (-550)) (-5 *1 (-714 *4 *3 *5 *2)) (-4 *2 (-942 (-403 (-945 *5)) *4 *3)))) (-3635 (*1 *2 *3) (-12 (-4 *4 (-780)) (-4 *5 (-13 (-834) (-10 -8 (-15 -4255 ((-1153) $))))) (-4 *6 (-550)) (-5 *2 (-2 (|:| -2280 (-945 *6)) (|:| -2289 (-945 *6)))) (-5 *1 (-714 *4 *5 *6 *3)) (-4 *3 (-942 (-403 (-945 *6)) *4 *5))))) -(-10 -7 (-15 -3635 ((-2 (|:| -2280 (-945 |#3|)) (|:| -2289 (-945 |#3|))) |#4|)) (-15 -4287 (|#4| |#4| |#2|)) (-15 -3452 (|#4| (-1149 |#4|) |#2|)) (-15 -1421 (|#4| |#4| |#2|)) (-15 -3949 (|#4| (-1149 (-945 |#3|)) |#2|)) (-15 -3583 (|#4| (-403 (-945 |#3|)) |#2|)) (-15 -1601 ((-414 |#4|) |#4|))) -((-1601 (((-414 |#4|) |#4|) 51))) -(((-715 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1601 ((-414 |#4|) |#4|))) (-780) (-834) (-13 (-296) (-148)) (-942 (-403 |#3|) |#1| |#2|)) (T -715)) -((-1601 (*1 *2 *3) (-12 (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-13 (-296) (-148))) (-5 *2 (-414 *3)) (-5 *1 (-715 *4 *5 *6 *3)) (-4 *3 (-942 (-403 *6) *4 *5))))) -(-10 -7 (-15 -1601 ((-414 |#4|) |#4|))) -((-2803 (((-717 |#2| |#3|) (-1 |#2| |#1|) (-717 |#1| |#3|)) 18))) -(((-716 |#1| |#2| |#3|) (-10 -7 (-15 -2803 ((-717 |#2| |#3|) (-1 |#2| |#1|) (-717 |#1| |#3|)))) (-1039) (-1039) (-708)) (T -716)) -((-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-717 *5 *7)) (-4 *5 (-1039)) (-4 *6 (-1039)) (-4 *7 (-708)) (-5 *2 (-717 *6 *7)) (-5 *1 (-716 *5 *6 *7))))) -(-10 -7 (-15 -2803 ((-717 |#2| |#3|) (-1 |#2| |#1|) (-717 |#1| |#3|)))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) 26)) (-4138 (((-626 (-2 (|:| -2169 |#1|) (|:| -2175 |#2|))) $) 27)) (-2314 (((-3 $ "failed") $ $) NIL)) (-2912 (((-755)) 20 (-12 (|has| |#2| (-364)) (|has| |#1| (-364))))) (-4236 (($) NIL T CONST)) (-1473 (((-3 |#2| "failed") $) 55) (((-3 |#1| "failed") $) 58)) (-3001 ((|#2| $) NIL) ((|#1| $) NIL)) (-1750 (($ $) 75 (|has| |#2| (-834)))) (-1823 (((-3 $ "failed") $) 62)) (-1666 (($) 33 (-12 (|has| |#2| (-364)) (|has| |#1| (-364))))) (-2642 (((-121) $) NIL)) (-3235 (((-755) $) 53)) (-1854 (((-626 $) $) 37)) (-1814 (((-121) $) NIL)) (-1637 (($ |#1| |#2|) 16)) (-2803 (($ (-1 |#1| |#1|) $) 52)) (-3142 (((-909) $) 30 (-12 (|has| |#2| (-364)) (|has| |#1| (-364))))) (-1726 ((|#2| $) 74 (|has| |#2| (-834)))) (-1735 ((|#1| $) 73 (|has| |#2| (-834)))) (-1291 (((-1135) $) NIL)) (-1330 (($ (-909)) 25 (-12 (|has| |#2| (-364)) (|has| |#1| (-364))))) (-4353 (((-1100) $) NIL)) (-2801 (((-842) $) 72) (($ (-560)) 44) (($ |#2|) 40) (($ |#1|) 41) (($ (-626 (-2 (|:| -2169 |#1|) (|:| -2175 |#2|)))) 11)) (-2423 (((-626 |#1|) $) 39)) (-2636 ((|#1| $ |#2|) 83)) (-2272 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1751 (((-755)) NIL)) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (-3304 (($) 12 T CONST)) (-1459 (($) 31 T CONST)) (-1653 (((-121) $ $) 76)) (-1725 (($ $) 46) (($ $ $) NIL)) (-1716 (($ $ $) 24)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) 50) (($ $ $) 85) (($ |#1| $) 48 (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170))))) -(((-717 |#1| |#2|) (-13 (-1039) (-1029 |#2|) (-1029 |#1|) (-10 -8 (-15 -1637 ($ |#1| |#2|)) (-15 -2636 (|#1| $ |#2|)) (-15 -2801 ($ (-626 (-2 (|:| -2169 |#1|) (|:| -2175 |#2|))))) (-15 -4138 ((-626 (-2 (|:| -2169 |#1|) (|:| -2175 |#2|))) $)) (-15 -2803 ($ (-1 |#1| |#1|) $)) (-15 -1814 ((-121) $)) (-15 -2423 ((-626 |#1|) $)) (-15 -1854 ((-626 $) $)) (-15 -3235 ((-755) $)) (IF (|has| |#1| (-148)) (-6 (-148)) |noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |noBranch|) (IF (|has| |#1| (-170)) (-6 (-43 |#1|)) |noBranch|) (IF (|has| |#1| (-364)) (IF (|has| |#2| (-364)) (-6 (-364)) |noBranch|) |noBranch|) (IF (|has| |#2| (-834)) (PROGN (-15 -1726 (|#2| $)) (-15 -1735 (|#1| $)) (-15 -1750 ($ $))) |noBranch|))) (-1039) (-708)) (T -717)) -((-1637 (*1 *1 *2 *3) (-12 (-5 *1 (-717 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-708)))) (-2636 (*1 *2 *1 *3) (-12 (-4 *2 (-1039)) (-5 *1 (-717 *2 *3)) (-4 *3 (-708)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-626 (-2 (|:| -2169 *3) (|:| -2175 *4)))) (-4 *3 (-1039)) (-4 *4 (-708)) (-5 *1 (-717 *3 *4)))) (-4138 (*1 *2 *1) (-12 (-5 *2 (-626 (-2 (|:| -2169 *3) (|:| -2175 *4)))) (-5 *1 (-717 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-708)))) (-2803 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1039)) (-5 *1 (-717 *3 *4)) (-4 *4 (-708)))) (-1814 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-717 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-708)))) (-2423 (*1 *2 *1) (-12 (-5 *2 (-626 *3)) (-5 *1 (-717 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-708)))) (-1854 (*1 *2 *1) (-12 (-5 *2 (-626 (-717 *3 *4))) (-5 *1 (-717 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-708)))) (-3235 (*1 *2 *1) (-12 (-5 *2 (-755)) (-5 *1 (-717 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-708)))) (-1726 (*1 *2 *1) (-12 (-4 *2 (-708)) (-4 *2 (-834)) (-5 *1 (-717 *3 *2)) (-4 *3 (-1039)))) (-1735 (*1 *2 *1) (-12 (-4 *2 (-1039)) (-5 *1 (-717 *2 *3)) (-4 *3 (-834)) (-4 *3 (-708)))) (-1750 (*1 *1 *1) (-12 (-5 *1 (-717 *2 *3)) (-4 *3 (-834)) (-4 *2 (-1039)) (-4 *3 (-708))))) -(-13 (-1039) (-1029 |#2|) (-1029 |#1|) (-10 -8 (-15 -1637 ($ |#1| |#2|)) (-15 -2636 (|#1| $ |#2|)) (-15 -2801 ($ (-626 (-2 (|:| -2169 |#1|) (|:| -2175 |#2|))))) (-15 -4138 ((-626 (-2 (|:| -2169 |#1|) (|:| -2175 |#2|))) $)) (-15 -2803 ($ (-1 |#1| |#1|) $)) (-15 -1814 ((-121) $)) (-15 -2423 ((-626 |#1|) $)) (-15 -1854 ((-626 $) $)) (-15 -3235 ((-755) $)) (IF (|has| |#1| (-148)) (-6 (-148)) |noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |noBranch|) (IF (|has| |#1| (-170)) (-6 (-43 |#1|)) |noBranch|) (IF (|has| |#1| (-364)) (IF (|has| |#2| (-364)) (-6 (-364)) |noBranch|) |noBranch|) (IF (|has| |#2| (-834)) (PROGN (-15 -1726 (|#2| $)) (-15 -1735 (|#1| $)) (-15 -1750 ($ $))) |noBranch|))) -((-2601 (((-121) $ $) 18)) (-1749 (($ |#1| $) 72) (($ $ |#1|) 71) (($ $ $) 70)) (-2498 (($ $ $) 68)) (-3947 (((-121) $ $) 69)) (-3909 (((-121) $ (-755)) 8)) (-2808 (($ (-626 |#1|)) 64) (($) 63)) (-3763 (($ (-1 (-121) |#1|) $) 42 (|has| $ (-6 -4505)))) (-3802 (($ (-1 (-121) |#1|) $) 52 (|has| $ (-6 -4505)))) (-4236 (($) 7 T CONST)) (-3568 (($ $) 58)) (-2868 (($ $) 55 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-3561 (($ |#1| $) 44 (|has| $ (-6 -4505))) (($ (-1 (-121) |#1|) $) 43 (|has| $ (-6 -4505)))) (-4310 (($ |#1| $) 54 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505)))) (($ (-1 (-121) |#1|) $) 51 (|has| $ (-6 -4505)))) (-2342 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 53 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 50 (|has| $ (-6 -4505))) ((|#1| (-1 |#1| |#1| |#1|) $) 49 (|has| $ (-6 -4505)))) (-1981 (((-626 |#1|) $) 30 (|has| $ (-6 -4505)))) (-2122 (((-121) $ (-755)) 9)) (-2130 (((-626 |#1|) $) 29 (|has| $ (-6 -4505)))) (-2030 (((-121) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-3778 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#1| |#1|) $) 35)) (-3441 (((-121) $ (-755)) 10)) (-1291 (((-1135) $) 22)) (-4283 (($ $ $) 65)) (-2525 ((|#1| $) 36)) (-4345 (($ |#1| $) 37) (($ |#1| $ (-755)) 59)) (-4353 (((-1100) $) 21)) (-3786 (((-3 |#1| "failed") (-1 (-121) |#1|) $) 48)) (-2146 ((|#1| $) 38)) (-2865 (((-121) (-1 (-121) |#1|) $) 32 (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#1|))) 26 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-283 |#1|)) 25 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-626 |#1|) (-626 |#1|)) 23 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))))) (-2214 (((-121) $ $) 14)) (-4191 (((-121) $) 11)) (-3260 (($) 12)) (-1483 (((-626 (-2 (|:| -2371 |#1|) (|:| -4035 (-755)))) $) 57)) (-1794 (($ $ |#1|) 67) (($ $ $) 66)) (-3958 (($) 46) (($ (-626 |#1|)) 45)) (-4035 (((-755) (-1 (-121) |#1|) $) 31 (|has| $ (-6 -4505))) (((-755) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-2813 (($ $) 13)) (-4255 (((-533) $) 56 (|has| |#1| (-601 (-533))))) (-4162 (($ (-626 |#1|)) 47)) (-2801 (((-842) $) 20)) (-2799 (($ (-626 |#1|)) 62) (($) 61)) (-1354 (($ (-626 |#1|)) 39)) (-3656 (((-121) (-1 (-121) |#1|) $) 33 (|has| $ (-6 -4505)))) (-1653 (((-121) $ $) 19)) (-1667 (((-121) $ $) 60)) (-2271 (((-755) $) 6 (|has| $ (-6 -4505))))) -(((-718 |#1|) (-1267) (-1082)) (T -718)) -NIL -(-13 (-676 |t#1|) (-1079 |t#1|)) -(((-39) . T) ((-111 |#1|) . T) ((-105) . T) ((-600 (-842)) . T) ((-152 |#1|) . T) ((-601 (-533)) |has| |#1| (-601 (-533))) ((-223 |#1|) . T) ((-298 |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))) ((-492 |#1|) . T) ((-515 |#1| |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))) ((-676 |#1|) . T) ((-1079 |#1|) . T) ((-1082) . T) ((-1187) . T)) -((-2601 (((-121) $ $) NIL)) (-1749 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 77)) (-2498 (($ $ $) 80)) (-3947 (((-121) $ $) 83)) (-3909 (((-121) $ (-755)) NIL)) (-2808 (($ (-626 |#1|)) 24) (($) 15)) (-3763 (($ (-1 (-121) |#1|) $) 71 (|has| $ (-6 -4505)))) (-3802 (($ (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-4236 (($) NIL T CONST)) (-3568 (($ $) 72)) (-2868 (($ $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-3561 (($ |#1| $) 61 (|has| $ (-6 -4505))) (($ (-1 (-121) |#1|) $) 64 (|has| $ (-6 -4505))) (($ |#1| $ (-560)) 62) (($ (-1 (-121) |#1|) $ (-560)) 65)) (-4310 (($ |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082)))) (($ (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505))) (($ |#1| $ (-560)) 67) (($ (-1 (-121) |#1|) $ (-560)) 68)) (-2342 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4505))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4505)))) (-1981 (((-626 |#1|) $) 32 (|has| $ (-6 -4505)))) (-4320 (($) 13) (($ |#1|) 26) (($ (-626 |#1|)) 21)) (-2122 (((-121) $ (-755)) NIL)) (-2130 (((-626 |#1|) $) 38)) (-2030 (((-121) |#1| $) 57 (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-3778 (($ (-1 |#1| |#1|) $) 75 (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#1| |#1|) $) 76)) (-3441 (((-121) $ (-755)) NIL)) (-1291 (((-1135) $) NIL)) (-4283 (($ $ $) 78)) (-2525 ((|#1| $) 54)) (-4345 (($ |#1| $) 55) (($ |#1| $ (-755)) 73)) (-4353 (((-1100) $) NIL)) (-3786 (((-3 |#1| "failed") (-1 (-121) |#1|) $) NIL)) (-2146 ((|#1| $) 53)) (-2865 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#1|))) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-283 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-626 |#1|) (-626 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))))) (-2214 (((-121) $ $) NIL)) (-4191 (((-121) $) 49)) (-3260 (($) 12)) (-1483 (((-626 (-2 (|:| -2371 |#1|) (|:| -4035 (-755)))) $) 47)) (-1794 (($ $ |#1|) NIL) (($ $ $) 79)) (-3958 (($) 14) (($ (-626 |#1|)) 23)) (-4035 (((-755) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505))) (((-755) |#1| $) 60 (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-2813 (($ $) 66)) (-4255 (((-533) $) 36 (|has| |#1| (-601 (-533))))) (-4162 (($ (-626 |#1|)) 20)) (-2801 (((-842) $) 44)) (-2799 (($ (-626 |#1|)) 25) (($) 16)) (-1354 (($ (-626 |#1|)) 22)) (-3656 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-1653 (((-121) $ $) 81)) (-1667 (((-121) $ $) 82)) (-2271 (((-755) $) 59 (|has| $ (-6 -4505))))) -(((-719 |#1|) (-13 (-718 |#1|) (-10 -8 (-6 -4505) (-6 -4506) (-15 -4320 ($)) (-15 -4320 ($ |#1|)) (-15 -4320 ($ (-626 |#1|))) (-15 -2130 ((-626 |#1|) $)) (-15 -4310 ($ |#1| $ (-560))) (-15 -4310 ($ (-1 (-121) |#1|) $ (-560))) (-15 -3561 ($ |#1| $ (-560))) (-15 -3561 ($ (-1 (-121) |#1|) $ (-560))))) (-1082)) (T -719)) -((-4320 (*1 *1) (-12 (-5 *1 (-719 *2)) (-4 *2 (-1082)))) (-4320 (*1 *1 *2) (-12 (-5 *1 (-719 *2)) (-4 *2 (-1082)))) (-4320 (*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-1082)) (-5 *1 (-719 *3)))) (-2130 (*1 *2 *1) (-12 (-5 *2 (-626 *3)) (-5 *1 (-719 *3)) (-4 *3 (-1082)))) (-4310 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-560)) (-5 *1 (-719 *2)) (-4 *2 (-1082)))) (-4310 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-121) *4)) (-5 *3 (-560)) (-4 *4 (-1082)) (-5 *1 (-719 *4)))) (-3561 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-560)) (-5 *1 (-719 *2)) (-4 *2 (-1082)))) (-3561 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-121) *4)) (-5 *3 (-560)) (-4 *4 (-1082)) (-5 *1 (-719 *4))))) -(-13 (-718 |#1|) (-10 -8 (-6 -4505) (-6 -4506) (-15 -4320 ($)) (-15 -4320 ($ |#1|)) (-15 -4320 ($ (-626 |#1|))) (-15 -2130 ((-626 |#1|) $)) (-15 -4310 ($ |#1| $ (-560))) (-15 -4310 ($ (-1 (-121) |#1|) $ (-560))) (-15 -3561 ($ |#1| $ (-560))) (-15 -3561 ($ (-1 (-121) |#1|) $ (-560))))) -((-3476 (((-1241) (-1135)) 8))) -(((-720) (-10 -7 (-15 -3476 ((-1241) (-1135))))) (T -720)) -((-3476 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1241)) (-5 *1 (-720))))) -(-10 -7 (-15 -3476 ((-1241) (-1135)))) -((-3245 (((-626 |#1|) (-626 |#1|) (-626 |#1|)) 10))) -(((-721 |#1|) (-10 -7 (-15 -3245 ((-626 |#1|) (-626 |#1|) (-626 |#1|)))) (-834)) (T -721)) -((-3245 (*1 *2 *2 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-834)) (-5 *1 (-721 *3))))) -(-10 -7 (-15 -3245 ((-626 |#1|) (-626 |#1|) (-626 |#1|)))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-1654 (((-626 |#2|) $) 134)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) 127 (|has| |#1| (-550)))) (-1350 (($ $) 126 (|has| |#1| (-550)))) (-3376 (((-121) $) 124 (|has| |#1| (-550)))) (-2570 (($ $) 83 (|has| |#1| (-43 (-403 (-560)))))) (-2514 (($ $) 66 (|has| |#1| (-43 (-403 (-560)))))) (-2314 (((-3 $ "failed") $ $) 18)) (-2479 (($ $) 65 (|has| |#1| (-43 (-403 (-560)))))) (-2561 (($ $) 82 (|has| |#1| (-43 (-403 (-560)))))) (-2790 (($ $) 67 (|has| |#1| (-43 (-403 (-560)))))) (-2579 (($ $) 81 (|has| |#1| (-43 (-403 (-560)))))) (-2523 (($ $) 68 (|has| |#1| (-43 (-403 (-560)))))) (-4236 (($) 16 T CONST)) (-1750 (($ $) 118)) (-1823 (((-3 $ "failed") $) 33)) (-4350 (((-945 |#1|) $ (-755)) 96) (((-945 |#1|) $ (-755) (-755)) 95)) (-1815 (((-121) $) 135)) (-2474 (($) 93 (|has| |#1| (-43 (-403 (-560)))))) (-3504 (((-755) $ |#2|) 98) (((-755) $ |#2| (-755)) 97)) (-2642 (((-121) $) 30)) (-2586 (($ $ (-560)) 64 (|has| |#1| (-43 (-403 (-560)))))) (-1814 (((-121) $) 116)) (-1637 (($ $ (-626 |#2|) (-626 (-526 |#2|))) 133) (($ $ |#2| (-526 |#2|)) 132) (($ |#1| (-526 |#2|)) 117) (($ $ |#2| (-755)) 100) (($ $ (-626 |#2|) (-626 (-755))) 99)) (-2803 (($ (-1 |#1| |#1|) $) 115)) (-4399 (($ $) 90 (|has| |#1| (-43 (-403 (-560)))))) (-1726 (($ $) 113)) (-1735 ((|#1| $) 112)) (-1291 (((-1135) $) 9)) (-2376 (($ $ |#2|) 94 (|has| |#1| (-43 (-403 (-560)))))) (-4353 (((-1100) $) 10)) (-3292 (($ $ (-755)) 101)) (-2336 (((-3 $ "failed") $ $) 128 (|has| |#1| (-550)))) (-2469 (($ $) 91 (|has| |#1| (-43 (-403 (-560)))))) (-4450 (($ $ |#2| $) 109) (($ $ (-626 |#2|) (-626 $)) 108) (($ $ (-626 (-283 $))) 107) (($ $ (-283 $)) 106) (($ $ $ $) 105) (($ $ (-626 $) (-626 $)) 104)) (-2443 (($ $ |#2|) 41) (($ $ (-626 |#2|)) 40) (($ $ |#2| (-755)) 39) (($ $ (-626 |#2|) (-626 (-755))) 38)) (-3662 (((-526 |#2|) $) 114)) (-2585 (($ $) 80 (|has| |#1| (-43 (-403 (-560)))))) (-2528 (($ $) 69 (|has| |#1| (-43 (-403 (-560)))))) (-2575 (($ $) 79 (|has| |#1| (-43 (-403 (-560)))))) (-2519 (($ $) 70 (|has| |#1| (-43 (-403 (-560)))))) (-2566 (($ $) 78 (|has| |#1| (-43 (-403 (-560)))))) (-2795 (($ $) 71 (|has| |#1| (-43 (-403 (-560)))))) (-2234 (($ $) 136)) (-2801 (((-842) $) 11) (($ (-560)) 27) (($ |#1|) 131 (|has| |#1| (-170))) (($ $) 129 (|has| |#1| (-550))) (($ (-403 (-560))) 121 (|has| |#1| (-43 (-403 (-560)))))) (-2636 ((|#1| $ (-526 |#2|)) 119) (($ $ |#2| (-755)) 103) (($ $ (-626 |#2|) (-626 (-755))) 102)) (-2272 (((-3 $ "failed") $) 130 (|has| |#1| (-146)))) (-1751 (((-755)) 28)) (-2598 (($ $) 89 (|has| |#1| (-43 (-403 (-560)))))) (-2541 (($ $) 77 (|has| |#1| (-43 (-403 (-560)))))) (-2328 (((-121) $ $) 125 (|has| |#1| (-550)))) (-2590 (($ $) 88 (|has| |#1| (-43 (-403 (-560)))))) (-2532 (($ $) 76 (|has| |#1| (-43 (-403 (-560)))))) (-2608 (($ $) 87 (|has| |#1| (-43 (-403 (-560)))))) (-2549 (($ $) 75 (|has| |#1| (-43 (-403 (-560)))))) (-3689 (($ $) 86 (|has| |#1| (-43 (-403 (-560)))))) (-2554 (($ $) 74 (|has| |#1| (-43 (-403 (-560)))))) (-2604 (($ $) 85 (|has| |#1| (-43 (-403 (-560)))))) (-2545 (($ $) 73 (|has| |#1| (-43 (-403 (-560)))))) (-2594 (($ $) 84 (|has| |#1| (-43 (-403 (-560)))))) (-2536 (($ $) 72 (|has| |#1| (-43 (-403 (-560)))))) (-2464 (($ $ (-909)) 25) (($ $ (-755)) 32)) (-3304 (($) 17 T CONST)) (-1459 (($) 29 T CONST)) (-2500 (($ $ |#2|) 37) (($ $ (-626 |#2|)) 36) (($ $ |#2| (-755)) 35) (($ $ (-626 |#2|) (-626 (-755))) 34)) (-1653 (((-121) $ $) 6)) (-1733 (($ $ |#1|) 120 (|has| |#1| (-359)))) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 24) (($ $ (-755)) 31) (($ $ $) 92 (|has| |#1| (-43 (-403 (-560))))) (($ $ (-403 (-560))) 63 (|has| |#1| (-43 (-403 (-560)))))) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 23) (($ $ (-403 (-560))) 123 (|has| |#1| (-43 (-403 (-560))))) (($ (-403 (-560)) $) 122 (|has| |#1| (-43 (-403 (-560))))) (($ |#1| $) 111) (($ $ |#1|) 110))) -(((-722 |#1| |#2|) (-1267) (-1039) (-834)) (T -722)) -((-2636 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-755)) (-4 *1 (-722 *4 *2)) (-4 *4 (-1039)) (-4 *2 (-834)))) (-2636 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-626 *5)) (-5 *3 (-626 (-755))) (-4 *1 (-722 *4 *5)) (-4 *4 (-1039)) (-4 *5 (-834)))) (-3292 (*1 *1 *1 *2) (-12 (-5 *2 (-755)) (-4 *1 (-722 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-834)))) (-1637 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-755)) (-4 *1 (-722 *4 *2)) (-4 *4 (-1039)) (-4 *2 (-834)))) (-1637 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-626 *5)) (-5 *3 (-626 (-755))) (-4 *1 (-722 *4 *5)) (-4 *4 (-1039)) (-4 *5 (-834)))) (-3504 (*1 *2 *1 *3) (-12 (-4 *1 (-722 *4 *3)) (-4 *4 (-1039)) (-4 *3 (-834)) (-5 *2 (-755)))) (-3504 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-755)) (-4 *1 (-722 *4 *3)) (-4 *4 (-1039)) (-4 *3 (-834)))) (-4350 (*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-4 *1 (-722 *4 *5)) (-4 *4 (-1039)) (-4 *5 (-834)) (-5 *2 (-945 *4)))) (-4350 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-755)) (-4 *1 (-722 *4 *5)) (-4 *4 (-1039)) (-4 *5 (-834)) (-5 *2 (-945 *4)))) (-2376 (*1 *1 *1 *2) (-12 (-4 *1 (-722 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-834)) (-4 *3 (-43 (-403 (-560))))))) -(-13 (-887 |t#2|) (-966 |t#1| (-526 |t#2|) |t#2|) (-515 |t#2| $) (-298 $) (-10 -8 (-15 -2636 ($ $ |t#2| (-755))) (-15 -2636 ($ $ (-626 |t#2|) (-626 (-755)))) (-15 -3292 ($ $ (-755))) (-15 -1637 ($ $ |t#2| (-755))) (-15 -1637 ($ $ (-626 |t#2|) (-626 (-755)))) (-15 -3504 ((-755) $ |t#2|)) (-15 -3504 ((-755) $ |t#2| (-755))) (-15 -4350 ((-945 |t#1|) $ (-755))) (-15 -4350 ((-945 |t#1|) $ (-755) (-755))) (IF (|has| |t#1| (-43 (-403 (-560)))) (PROGN (-15 -2376 ($ $ |t#2|)) (-6 (-994)) (-6 (-1173))) |noBranch|))) -(((-21) . T) ((-23) . T) ((-52 |#1| (-526 |#2|)) . T) ((-25) . T) ((-43 (-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((-43 |#1|) |has| |#1| (-170)) ((-43 $) |has| |#1| (-550)) ((-40) |has| |#1| (-43 (-403 (-560)))) ((-98) |has| |#1| (-43 (-403 (-560)))) ((-105) . T) ((-120 (-403 (-560)) (-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((-120 |#1| |#1|) . T) ((-120 $ $) -2318 (|has| |#1| (-550)) (|has| |#1| (-170))) ((-137) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-600 (-842)) . T) ((-170) -2318 (|has| |#1| (-550)) (|has| |#1| (-170))) ((-274) |has| |#1| (-43 (-403 (-560)))) ((-280) |has| |#1| (-550)) ((-298 $) . T) ((-494) |has| |#1| (-43 (-403 (-560)))) ((-515 |#2| $) . T) ((-515 $ $) . T) ((-550) |has| |#1| (-550)) ((-629 (-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((-629 |#1|) . T) ((-629 $) . T) ((-699 (-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((-699 |#1|) |has| |#1| (-170)) ((-699 $) |has| |#1| (-550)) ((-708) . T) ((-887 |#2|) . T) ((-966 |#1| (-526 |#2|) |#2|) . T) ((-994) |has| |#1| (-43 (-403 (-560)))) ((-1045 (-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((-1045 |#1|) . T) ((-1045 $) -2318 (|has| |#1| (-550)) (|has| |#1| (-170))) ((-1039) . T) ((-1046) . T) ((-1094) . T) ((-1082) . T) ((-1173) |has| |#1| (-43 (-403 (-560)))) ((-1176) |has| |#1| (-43 (-403 (-560))))) -((-1601 (((-414 (-1149 |#4|)) (-1149 |#4|)) 28) (((-414 |#4|) |#4|) 24))) -(((-723 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1601 ((-414 |#4|) |#4|)) (-15 -1601 ((-414 (-1149 |#4|)) (-1149 |#4|)))) (-834) (-780) (-13 (-296) (-148)) (-942 |#3| |#2| |#1|)) (T -723)) -((-1601 (*1 *2 *3) (-12 (-4 *4 (-834)) (-4 *5 (-780)) (-4 *6 (-13 (-296) (-148))) (-4 *7 (-942 *6 *5 *4)) (-5 *2 (-414 (-1149 *7))) (-5 *1 (-723 *4 *5 *6 *7)) (-5 *3 (-1149 *7)))) (-1601 (*1 *2 *3) (-12 (-4 *4 (-834)) (-4 *5 (-780)) (-4 *6 (-13 (-296) (-148))) (-5 *2 (-414 *3)) (-5 *1 (-723 *4 *5 *6 *3)) (-4 *3 (-942 *6 *5 *4))))) -(-10 -7 (-15 -1601 ((-414 |#4|) |#4|)) (-15 -1601 ((-414 (-1149 |#4|)) (-1149 |#4|)))) -((-1401 (((-414 |#4|) |#4| |#2|) 116)) (-2627 (((-414 |#4|) |#4|) NIL)) (-2953 (((-414 (-1149 |#4|)) (-1149 |#4|)) 107) (((-414 |#4|) |#4|) 38)) (-2441 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-626 (-2 (|:| -1601 (-1149 |#4|)) (|:| -4034 (-560)))))) (-1149 |#4|) (-626 |#2|) (-626 (-626 |#3|))) 65)) (-3320 (((-1149 |#3|) (-1149 |#3|) (-560)) 133)) (-4482 (((-626 (-755)) (-1149 |#4|) (-626 |#2|) (-755)) 58)) (-2335 (((-3 (-626 (-1149 |#4|)) "failed") (-1149 |#4|) (-1149 |#3|) (-1149 |#3|) |#4| (-626 |#2|) (-626 (-755)) (-626 |#3|)) 62)) (-4427 (((-2 (|:| |upol| (-1149 |#3|)) (|:| |Lval| (-626 |#3|)) (|:| |Lfact| (-626 (-2 (|:| -1601 (-1149 |#3|)) (|:| -4034 (-560))))) (|:| |ctpol| |#3|)) (-1149 |#4|) (-626 |#2|) (-626 (-626 |#3|))) 22)) (-2706 (((-2 (|:| -1558 (-1149 |#4|)) (|:| |polval| (-1149 |#3|))) (-1149 |#4|) (-1149 |#3|) (-560)) 54)) (-3598 (((-560) (-626 (-2 (|:| -1601 (-1149 |#3|)) (|:| -4034 (-560))))) 130)) (-1516 ((|#4| (-560) (-414 |#4|)) 55)) (-2229 (((-121) (-626 (-2 (|:| -1601 (-1149 |#3|)) (|:| -4034 (-560)))) (-626 (-2 (|:| -1601 (-1149 |#3|)) (|:| -4034 (-560))))) NIL))) -(((-724 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2953 ((-414 |#4|) |#4|)) (-15 -2953 ((-414 (-1149 |#4|)) (-1149 |#4|))) (-15 -2627 ((-414 |#4|) |#4|)) (-15 -3598 ((-560) (-626 (-2 (|:| -1601 (-1149 |#3|)) (|:| -4034 (-560)))))) (-15 -1401 ((-414 |#4|) |#4| |#2|)) (-15 -2706 ((-2 (|:| -1558 (-1149 |#4|)) (|:| |polval| (-1149 |#3|))) (-1149 |#4|) (-1149 |#3|) (-560))) (-15 -2441 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-626 (-2 (|:| -1601 (-1149 |#4|)) (|:| -4034 (-560)))))) (-1149 |#4|) (-626 |#2|) (-626 (-626 |#3|)))) (-15 -4427 ((-2 (|:| |upol| (-1149 |#3|)) (|:| |Lval| (-626 |#3|)) (|:| |Lfact| (-626 (-2 (|:| -1601 (-1149 |#3|)) (|:| -4034 (-560))))) (|:| |ctpol| |#3|)) (-1149 |#4|) (-626 |#2|) (-626 (-626 |#3|)))) (-15 -1516 (|#4| (-560) (-414 |#4|))) (-15 -2229 ((-121) (-626 (-2 (|:| -1601 (-1149 |#3|)) (|:| -4034 (-560)))) (-626 (-2 (|:| -1601 (-1149 |#3|)) (|:| -4034 (-560)))))) (-15 -2335 ((-3 (-626 (-1149 |#4|)) "failed") (-1149 |#4|) (-1149 |#3|) (-1149 |#3|) |#4| (-626 |#2|) (-626 (-755)) (-626 |#3|))) (-15 -4482 ((-626 (-755)) (-1149 |#4|) (-626 |#2|) (-755))) (-15 -3320 ((-1149 |#3|) (-1149 |#3|) (-560)))) (-780) (-834) (-296) (-942 |#3| |#1| |#2|)) (T -724)) -((-3320 (*1 *2 *2 *3) (-12 (-5 *2 (-1149 *6)) (-5 *3 (-560)) (-4 *6 (-296)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *1 (-724 *4 *5 *6 *7)) (-4 *7 (-942 *6 *4 *5)))) (-4482 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1149 *9)) (-5 *4 (-626 *7)) (-4 *7 (-834)) (-4 *9 (-942 *8 *6 *7)) (-4 *6 (-780)) (-4 *8 (-296)) (-5 *2 (-626 (-755))) (-5 *1 (-724 *6 *7 *8 *9)) (-5 *5 (-755)))) (-2335 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1149 *11)) (-5 *6 (-626 *10)) (-5 *7 (-626 (-755))) (-5 *8 (-626 *11)) (-4 *10 (-834)) (-4 *11 (-296)) (-4 *9 (-780)) (-4 *5 (-942 *11 *9 *10)) (-5 *2 (-626 (-1149 *5))) (-5 *1 (-724 *9 *10 *11 *5)) (-5 *3 (-1149 *5)))) (-2229 (*1 *2 *3 *3) (-12 (-5 *3 (-626 (-2 (|:| -1601 (-1149 *6)) (|:| -4034 (-560))))) (-4 *6 (-296)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-121)) (-5 *1 (-724 *4 *5 *6 *7)) (-4 *7 (-942 *6 *4 *5)))) (-1516 (*1 *2 *3 *4) (-12 (-5 *3 (-560)) (-5 *4 (-414 *2)) (-4 *2 (-942 *7 *5 *6)) (-5 *1 (-724 *5 *6 *7 *2)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *7 (-296)))) (-4427 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1149 *9)) (-5 *4 (-626 *7)) (-5 *5 (-626 (-626 *8))) (-4 *7 (-834)) (-4 *8 (-296)) (-4 *9 (-942 *8 *6 *7)) (-4 *6 (-780)) (-5 *2 (-2 (|:| |upol| (-1149 *8)) (|:| |Lval| (-626 *8)) (|:| |Lfact| (-626 (-2 (|:| -1601 (-1149 *8)) (|:| -4034 (-560))))) (|:| |ctpol| *8))) (-5 *1 (-724 *6 *7 *8 *9)))) (-2441 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-626 *7)) (-5 *5 (-626 (-626 *8))) (-4 *7 (-834)) (-4 *8 (-296)) (-4 *6 (-780)) (-4 *9 (-942 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-626 (-2 (|:| -1601 (-1149 *9)) (|:| -4034 (-560))))))) (-5 *1 (-724 *6 *7 *8 *9)) (-5 *3 (-1149 *9)))) (-2706 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-560)) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *8 (-296)) (-4 *9 (-942 *8 *6 *7)) (-5 *2 (-2 (|:| -1558 (-1149 *9)) (|:| |polval| (-1149 *8)))) (-5 *1 (-724 *6 *7 *8 *9)) (-5 *3 (-1149 *9)) (-5 *4 (-1149 *8)))) (-1401 (*1 *2 *3 *4) (-12 (-4 *5 (-780)) (-4 *4 (-834)) (-4 *6 (-296)) (-5 *2 (-414 *3)) (-5 *1 (-724 *5 *4 *6 *3)) (-4 *3 (-942 *6 *5 *4)))) (-3598 (*1 *2 *3) (-12 (-5 *3 (-626 (-2 (|:| -1601 (-1149 *6)) (|:| -4034 (-560))))) (-4 *6 (-296)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-560)) (-5 *1 (-724 *4 *5 *6 *7)) (-4 *7 (-942 *6 *4 *5)))) (-2627 (*1 *2 *3) (-12 (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-296)) (-5 *2 (-414 *3)) (-5 *1 (-724 *4 *5 *6 *3)) (-4 *3 (-942 *6 *4 *5)))) (-2953 (*1 *2 *3) (-12 (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-296)) (-4 *7 (-942 *6 *4 *5)) (-5 *2 (-414 (-1149 *7))) (-5 *1 (-724 *4 *5 *6 *7)) (-5 *3 (-1149 *7)))) (-2953 (*1 *2 *3) (-12 (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-296)) (-5 *2 (-414 *3)) (-5 *1 (-724 *4 *5 *6 *3)) (-4 *3 (-942 *6 *4 *5))))) -(-10 -7 (-15 -2953 ((-414 |#4|) |#4|)) (-15 -2953 ((-414 (-1149 |#4|)) (-1149 |#4|))) (-15 -2627 ((-414 |#4|) |#4|)) (-15 -3598 ((-560) (-626 (-2 (|:| -1601 (-1149 |#3|)) (|:| -4034 (-560)))))) (-15 -1401 ((-414 |#4|) |#4| |#2|)) (-15 -2706 ((-2 (|:| -1558 (-1149 |#4|)) (|:| |polval| (-1149 |#3|))) (-1149 |#4|) (-1149 |#3|) (-560))) (-15 -2441 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-626 (-2 (|:| -1601 (-1149 |#4|)) (|:| -4034 (-560)))))) (-1149 |#4|) (-626 |#2|) (-626 (-626 |#3|)))) (-15 -4427 ((-2 (|:| |upol| (-1149 |#3|)) (|:| |Lval| (-626 |#3|)) (|:| |Lfact| (-626 (-2 (|:| -1601 (-1149 |#3|)) (|:| -4034 (-560))))) (|:| |ctpol| |#3|)) (-1149 |#4|) (-626 |#2|) (-626 (-626 |#3|)))) (-15 -1516 (|#4| (-560) (-414 |#4|))) (-15 -2229 ((-121) (-626 (-2 (|:| -1601 (-1149 |#3|)) (|:| -4034 (-560)))) (-626 (-2 (|:| -1601 (-1149 |#3|)) (|:| -4034 (-560)))))) (-15 -2335 ((-3 (-626 (-1149 |#4|)) "failed") (-1149 |#4|) (-1149 |#3|) (-1149 |#3|) |#4| (-626 |#2|) (-626 (-755)) (-626 |#3|))) (-15 -4482 ((-626 (-755)) (-1149 |#4|) (-626 |#2|) (-755))) (-15 -3320 ((-1149 |#3|) (-1149 |#3|) (-560)))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-1654 (((-626 (-1153)) $) NIL)) (-1593 (((-403 (-1149 $)) $ (-599 $)) NIL (|has| |#2| (-550)))) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL)) (-1350 (($ $) NIL)) (-3376 (((-121) $) NIL)) (-3249 (((-626 (-599 $)) $) NIL)) (-1796 (($ $ (-1074 $)) NIL) (($ $ (-1153)) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-4122 (($ $ (-283 $)) NIL) (($ $ (-626 (-283 $))) NIL) (($ $ (-626 (-599 $)) (-626 $)) NIL)) (-3065 (($ $) NIL (|has| |#2| (-550)))) (-2953 (((-414 $) $) NIL (|has| |#2| (-550)))) (-4179 (((-121) $ $) NIL (|has| |#2| (-550)))) (-4236 (($) NIL T CONST)) (-1473 (((-3 (-599 $) "failed") $) NIL) (((-3 (-1153) "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-403 (-945 |#2|)) "failed") $) NIL (|has| |#2| (-550))) (((-3 (-945 |#2|) "failed") $) NIL (|has| |#2| (-1039))) (((-3 (-726 |#1| |#2|) "failed") $) NIL) (((-3 (-560) "failed") $) NIL) (((-3 (-403 (-560)) "failed") $) NIL (-2318 (-12 (|has| |#2| (-550)) (|has| |#2| (-1029 (-560)))) (|has| |#2| (-1029 (-403 (-560))))))) (-3001 (((-599 $) $) NIL) (((-1153) $) NIL) ((|#2| $) NIL) (((-403 (-945 |#2|)) $) 20 (|has| |#2| (-550))) (((-945 |#2|) $) 26 (|has| |#2| (-1039))) (((-726 |#1| |#2|) $) 27) (((-560) $) NIL) (((-403 (-726 |#1| |#2|)) $) 25) (((-403 (-560)) $) NIL (-2318 (-12 (|has| |#2| (-550)) (|has| |#2| (-1029 (-560)))) (|has| |#2| (-1029 (-403 (-560))))))) (-2563 (($ $ $) NIL (|has| |#2| (-550)))) (-2616 (((-2 (|:| -3818 (-671 |#2|)) (|:| |vec| (-1236 |#2|))) (-671 $) (-1236 $)) NIL (|has| |#2| (-1039))) (((-671 |#2|) (-671 $)) NIL (|has| |#2| (-1039))) (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) NIL (-12 (|has| |#2| (-622 (-560))) (|has| |#2| (-1039)))) (((-671 (-560)) (-671 $)) NIL (-12 (|has| |#2| (-622 (-560))) (|has| |#2| (-1039))))) (-1823 (((-3 $ "failed") $) NIL)) (-2572 (($ $ $) NIL (|has| |#2| (-550)))) (-2035 (($ $ (-1074 $)) NIL) (($ $ (-1153)) NIL)) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) NIL (|has| |#2| (-550)))) (-3319 (((-121) $) NIL (|has| |#2| (-550)))) (-3634 (($ $ $) NIL)) (-2399 (((-876 (-560) $) $ (-879 (-560)) (-876 (-560) $)) NIL (|has| |#2| (-873 (-560)))) (((-876 (-375) $) $ (-879 (-375)) (-876 (-375) $)) NIL (|has| |#2| (-873 (-375))))) (-2352 (($ $) NIL) (($ (-626 $)) NIL)) (-1951 (((-626 (-123)) $) NIL)) (-4403 (((-123) (-123)) NIL)) (-2642 (((-121) $) NIL)) (-3348 (((-121) $) NIL (|has| $ (-1029 (-560))))) (-1540 (($ $) NIL)) (-2132 (((-1105 |#2| (-599 $)) $) NIL (|has| |#2| (-1039)))) (-3856 (((-3 (-626 $) "failed") (-626 $) $) NIL (|has| |#2| (-550)))) (-2929 (((-1149 $) (-599 $)) NIL (|has| $ (-1039)))) (-4325 (($ $ $) NIL)) (-2501 (($ $ $) NIL)) (-2803 (($ (-1 $ $) (-599 $)) NIL)) (-4220 (((-3 (-599 $) "failed") $) NIL)) (-2582 (($ (-626 $)) NIL (|has| |#2| (-550))) (($ $ $) NIL (|has| |#2| (-550)))) (-1291 (((-1135) $) NIL)) (-1586 (((-626 (-599 $)) $) NIL)) (-2181 (($ (-123) $) NIL) (($ (-123) (-626 $)) NIL)) (-3665 (((-3 (-626 $) "failed") $) NIL (|has| |#2| (-1094)))) (-3004 (((-3 (-2 (|:| |val| $) (|:| -4034 (-560))) "failed") $) NIL (|has| |#2| (-1039)))) (-2327 (((-3 (-626 $) "failed") $) NIL (|has| |#2| (-25)))) (-1355 (((-3 (-2 (|:| -2169 (-560)) (|:| |var| (-599 $))) "failed") $) NIL (|has| |#2| (-25)))) (-2913 (((-3 (-2 (|:| |var| (-599 $)) (|:| -4034 (-560))) "failed") $) NIL (|has| |#2| (-1094))) (((-3 (-2 (|:| |var| (-599 $)) (|:| -4034 (-560))) "failed") $ (-123)) NIL (|has| |#2| (-1039))) (((-3 (-2 (|:| |var| (-599 $)) (|:| -4034 (-560))) "failed") $ (-1153)) NIL (|has| |#2| (-1039)))) (-3178 (((-121) $ (-123)) NIL) (((-121) $ (-1153)) NIL)) (-1701 (($ $) NIL (-2318 (|has| |#2| (-471)) (|has| |#2| (-550))))) (-3165 (((-755) $) NIL)) (-4353 (((-1100) $) NIL)) (-1704 (((-121) $) NIL)) (-1711 ((|#2| $) NIL)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL (|has| |#2| (-550)))) (-4440 (($ (-626 $)) NIL (|has| |#2| (-550))) (($ $ $) NIL (|has| |#2| (-550)))) (-4388 (((-121) $ $) NIL) (((-121) $ (-1153)) NIL)) (-1820 (($ $ (-1153)) NIL) (($ $) NIL)) (-2691 (($ $) NIL)) (-1601 (((-414 $) $) NIL (|has| |#2| (-550)))) (-3505 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-550))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL (|has| |#2| (-550)))) (-2336 (((-3 $ "failed") $ $) NIL)) (-3456 (((-3 (-626 $) "failed") (-626 $) $) NIL (|has| |#2| (-550)))) (-3522 (((-121) $) NIL (|has| $ (-1029 (-560))))) (-4450 (($ $ (-599 $) $) NIL) (($ $ (-626 (-599 $)) (-626 $)) NIL) (($ $ (-626 (-283 $))) NIL) (($ $ (-283 $)) NIL) (($ $ $ $) NIL) (($ $ (-626 $) (-626 $)) NIL) (($ $ (-626 (-1153)) (-626 (-1 $ $))) NIL) (($ $ (-626 (-1153)) (-626 (-1 $ (-626 $)))) NIL) (($ $ (-1153) (-1 $ (-626 $))) NIL) (($ $ (-1153) (-1 $ $)) NIL) (($ $ (-626 (-123)) (-626 (-1 $ $))) NIL) (($ $ (-626 (-123)) (-626 (-1 $ (-626 $)))) NIL) (($ $ (-123) (-1 $ (-626 $))) NIL) (($ $ (-123) (-1 $ $)) NIL) (($ $ (-1153)) NIL (|has| |#2| (-601 (-533)))) (($ $ (-626 (-1153))) NIL (|has| |#2| (-601 (-533)))) (($ $) NIL (|has| |#2| (-601 (-533)))) (($ $ (-123) $ (-1153)) NIL (|has| |#2| (-601 (-533)))) (($ $ (-626 (-123)) (-626 $) (-1153)) NIL (|has| |#2| (-601 (-533)))) (($ $ (-626 (-1153)) (-626 (-755)) (-626 (-1 $ $))) NIL (|has| |#2| (-1039))) (($ $ (-626 (-1153)) (-626 (-755)) (-626 (-1 $ (-626 $)))) NIL (|has| |#2| (-1039))) (($ $ (-1153) (-755) (-1 $ (-626 $))) NIL (|has| |#2| (-1039))) (($ $ (-1153) (-755) (-1 $ $)) NIL (|has| |#2| (-1039)))) (-4445 (((-755) $) NIL (|has| |#2| (-550)))) (-2778 (($ (-123) $) NIL) (($ (-123) $ $) NIL) (($ (-123) $ $ $) NIL) (($ (-123) $ $ $ $) NIL) (($ (-123) (-626 $)) NIL)) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL (|has| |#2| (-550)))) (-4290 (($ $) NIL) (($ $ $) NIL)) (-2443 (($ $ (-626 (-1153)) (-626 (-755))) NIL) (($ $ (-1153) (-755)) NIL) (($ $ (-626 (-1153))) NIL) (($ $ (-1153)) NIL)) (-1646 (($ $) NIL)) (-2139 (((-1105 |#2| (-599 $)) $) NIL (|has| |#2| (-550)))) (-3591 (($ $) NIL (|has| $ (-1039)))) (-4255 (((-879 (-560)) $) NIL (|has| |#2| (-601 (-879 (-560))))) (((-879 (-375)) $) NIL (|has| |#2| (-601 (-879 (-375))))) (($ (-414 $)) NIL (|has| |#2| (-550))) (((-533) $) NIL (|has| |#2| (-601 (-533))))) (-3101 (($ $ $) NIL (|has| |#2| (-471)))) (-1671 (($ $ $) NIL (|has| |#2| (-471)))) (-2801 (((-842) $) NIL) (($ (-599 $)) NIL) (($ (-1153)) NIL) (($ |#2|) NIL) (($ (-1105 |#2| (-599 $))) NIL (|has| |#2| (-1039))) (($ (-403 |#2|)) NIL (|has| |#2| (-550))) (($ (-945 (-403 |#2|))) NIL (|has| |#2| (-550))) (($ (-403 (-945 (-403 |#2|)))) NIL (|has| |#2| (-550))) (($ (-403 (-945 |#2|))) NIL (|has| |#2| (-550))) (($ (-945 |#2|)) NIL (|has| |#2| (-1039))) (($ $) NIL) (($ (-560)) NIL) (($ (-726 |#1| |#2|)) NIL) (($ (-403 (-726 |#1| |#2|))) 35) (($ (-403 (-560))) NIL (-2318 (|has| |#2| (-550)) (|has| |#2| (-1029 (-403 (-560))))))) (-2272 (((-3 $ "failed") $) NIL (|has| |#2| (-146)))) (-1751 (((-755)) NIL)) (-4308 (($ $) NIL) (($ (-626 $)) NIL)) (-2406 (($ $ $) NIL)) (-2409 (((-121) (-123)) NIL)) (-2328 (((-121) $ $) NIL)) (-3209 (($ (-1153) $) NIL) (($ (-1153) $ $) NIL) (($ (-1153) $ $ $) NIL) (($ (-1153) $ $ $ $) NIL) (($ (-1153) (-626 $)) NIL)) (-2464 (($ $ (-755)) NIL) (($ $ (-909)) NIL) (($ $ (-560)) NIL (-2318 (|has| |#2| (-471)) (|has| |#2| (-550))))) (-3304 (($) NIL T CONST)) (-1459 (($) NIL T CONST)) (-2500 (($ $ (-626 (-1153)) (-626 (-755))) NIL) (($ $ (-1153) (-755)) NIL) (($ $ (-626 (-1153))) NIL) (($ $ (-1153)) NIL)) (-1691 (((-121) $ $) NIL)) (-1675 (((-121) $ $) NIL)) (-1653 (((-121) $ $) NIL)) (-1683 (((-121) $ $) NIL)) (-1667 (((-121) $ $) NIL)) (-1733 (($ (-1105 |#2| (-599 $)) (-1105 |#2| (-599 $))) NIL (|has| |#2| (-550))) (($ $ $) NIL)) (-1725 (($ $ $) NIL) (($ $) NIL)) (-1716 (($ $ $) NIL)) (** (($ $ (-755)) NIL) (($ $ (-909)) NIL) (($ $ $) NIL) (($ $ (-560)) NIL (-2318 (|has| |#2| (-471)) (|has| |#2| (-550))))) (* (($ (-403 (-560)) $) NIL (|has| |#2| (-550))) (($ $ (-403 (-560))) NIL (|has| |#2| (-550))) (($ |#2| $) NIL (|has| |#2| (-170))) (($ $ |#2|) NIL (|has| |#2| (-170))) (($ $ $) NIL) (($ (-560) $) NIL) (($ (-755) $) NIL) (($ (-909) $) NIL))) -(((-725 |#1| |#2|) (-13 (-426 |#2|) (-550) (-1029 (-726 |#1| |#2|)) (-1029 (-1153)) (-1029 (-560)) (-159) (-887 (-1153)) (-10 -8 (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -1540 ($ $)) (-15 -1646 ($ $)) (-15 -1704 ((-121) $)) (-15 -2801 ($ (-403 (-726 |#1| |#2|)))) (-15 -3001 ((-403 (-726 |#1| |#2|)) $)))) (-1153) (-13 (-1039) (-834) (-550))) (T -725)) -((-1704 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-725 *3 *4)) (-14 *3 (-1153)) (-4 *4 (-13 (-1039) (-834) (-550))))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-725 *2 *3)) (-14 *2 (-1153)) (-4 *3 (-13 (-1039) (-834) (-550))))) (-1733 (*1 *1 *1 *1) (-12 (-5 *1 (-725 *2 *3)) (-14 *2 (-1153)) (-4 *3 (-13 (-1039) (-834) (-550))))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-725 *2 *3)) (-14 *2 (-1153)) (-4 *3 (-13 (-1039) (-834) (-550))))) (-1540 (*1 *1 *1) (-12 (-5 *1 (-725 *2 *3)) (-14 *2 (-1153)) (-4 *3 (-13 (-1039) (-834) (-550))))) (-1646 (*1 *1 *1) (-12 (-5 *1 (-725 *2 *3)) (-14 *2 (-1153)) (-4 *3 (-13 (-1039) (-834) (-550))))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-403 (-726 *3 *4))) (-14 *3 (-1153)) (-4 *4 (-13 (-1039) (-834) (-550))) (-5 *1 (-725 *3 *4)))) (-3001 (*1 *2 *1) (-12 (-5 *2 (-403 (-726 *3 *4))) (-5 *1 (-725 *3 *4)) (-14 *3 (-1153)) (-4 *4 (-13 (-1039) (-834) (-550)))))) -(-13 (-426 |#2|) (-550) (-1029 (-726 |#1| |#2|)) (-1029 (-1153)) (-1029 (-560)) (-159) (-887 (-1153)) (-10 -8 (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -1540 ($ $)) (-15 -1646 ($ $)) (-15 -1704 ((-121) $)) (-15 -2801 ($ (-403 (-726 |#1| |#2|)))) (-15 -3001 ((-403 (-726 |#1| |#2|)) $)))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-3000 (((-1236 |#2|) $ (-755)) NIL)) (-1654 (((-626 (-1067)) $) NIL)) (-3023 (($ (-1149 |#2|)) NIL)) (-1593 (((-1149 $) $ (-1067)) NIL) (((-1149 |#2|) $) NIL)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL (|has| |#2| (-550)))) (-1350 (($ $) NIL (|has| |#2| (-550)))) (-3376 (((-121) $) NIL (|has| |#2| (-550)))) (-1697 (((-755) $) NIL) (((-755) $ (-626 (-1067))) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-4408 (($ $ $) NIL (|has| |#2| (-550)))) (-1776 (((-414 (-1149 $)) (-1149 $)) NIL (|has| |#2| (-896)))) (-3065 (($ $) NIL (|has| |#2| (-447)))) (-2953 (((-414 $) $) NIL (|has| |#2| (-447)))) (-1887 (((-3 (-626 (-1149 $)) "failed") (-626 (-1149 $)) (-1149 $)) NIL (|has| |#2| (-896)))) (-4179 (((-121) $ $) NIL (|has| |#2| (-359)))) (-2891 (($ $ (-755)) NIL)) (-2090 (($ $ (-755)) NIL)) (-2562 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-447)))) (-4236 (($) NIL T CONST)) (-1473 (((-3 |#2| "failed") $) NIL) (((-3 (-403 (-560)) "failed") $) NIL (|has| |#2| (-1029 (-403 (-560))))) (((-3 (-560) "failed") $) NIL (|has| |#2| (-1029 (-560)))) (((-3 (-1067) "failed") $) NIL) (((-3 (-1153) "failed") $) NIL)) (-3001 ((|#2| $) NIL) (((-403 (-560)) $) NIL (|has| |#2| (-1029 (-403 (-560))))) (((-560) $) NIL (|has| |#2| (-1029 (-560)))) (((-1067) $) 22) (((-1153) $) 23)) (-1979 (($ $ $ (-1067)) NIL (|has| |#2| (-170))) ((|#2| $ $) NIL (|has| |#2| (-170)))) (-2563 (($ $ $) NIL (|has| |#2| (-359)))) (-1750 (($ $) NIL)) (-2616 (((-671 (-560)) (-671 $)) NIL (|has| |#2| (-622 (-560)))) (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) NIL (|has| |#2| (-622 (-560)))) (((-2 (|:| -3818 (-671 |#2|)) (|:| |vec| (-1236 |#2|))) (-671 $) (-1236 $)) NIL) (((-671 |#2|) (-671 $)) NIL)) (-1823 (((-3 $ "failed") $) NIL)) (-2572 (($ $ $) NIL (|has| |#2| (-359)))) (-2309 (($ $ $) NIL)) (-1332 (($ $ $) NIL (|has| |#2| (-550)))) (-4051 (((-2 (|:| -2169 |#2|) (|:| -2583 $) (|:| -4397 $)) $ $) NIL (|has| |#2| (-550)))) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) NIL (|has| |#2| (-359)))) (-3605 (($ $) NIL (|has| |#2| (-447))) (($ $ (-1067)) NIL (|has| |#2| (-447)))) (-1743 (((-626 $) $) NIL)) (-3319 (((-121) $) NIL (|has| |#2| (-896)))) (-1456 (($ $ |#2| (-755) $) NIL)) (-2399 (((-876 (-375) $) $ (-879 (-375)) (-876 (-375) $)) NIL (-12 (|has| (-1067) (-873 (-375))) (|has| |#2| (-873 (-375))))) (((-876 (-560) $) $ (-879 (-560)) (-876 (-560) $)) NIL (-12 (|has| (-1067) (-873 (-560))) (|has| |#2| (-873 (-560)))))) (-3504 (((-755) $ $) NIL (|has| |#2| (-550)))) (-2642 (((-121) $) NIL)) (-3235 (((-755) $) NIL)) (-1424 (((-3 $ "failed") $) NIL (|has| |#2| (-1128)))) (-1647 (($ (-1149 |#2|) (-1067)) NIL) (($ (-1149 $) (-1067)) NIL)) (-3549 (($ $ (-755)) NIL)) (-3856 (((-3 (-626 $) "failed") (-626 $) $) NIL (|has| |#2| (-359)))) (-1854 (((-626 $) $) NIL)) (-1814 (((-121) $) NIL)) (-1637 (($ |#2| (-755)) 17) (($ $ (-1067) (-755)) NIL) (($ $ (-626 (-1067)) (-626 (-755))) NIL)) (-2923 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $ (-1067)) NIL) (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL)) (-3693 (((-755) $) NIL) (((-755) $ (-1067)) NIL) (((-626 (-755)) $ (-626 (-1067))) NIL)) (-4325 (($ $ $) NIL (|has| |#2| (-834)))) (-2501 (($ $ $) NIL (|has| |#2| (-834)))) (-1504 (($ (-1 (-755) (-755)) $) NIL)) (-2803 (($ (-1 |#2| |#2|) $) NIL)) (-1739 (((-1149 |#2|) $) NIL)) (-2101 (((-3 (-1067) "failed") $) NIL)) (-1726 (($ $) NIL)) (-1735 ((|#2| $) NIL)) (-2582 (($ (-626 $)) NIL (|has| |#2| (-447))) (($ $ $) NIL (|has| |#2| (-447)))) (-1291 (((-1135) $) NIL)) (-2325 (((-2 (|:| -2583 $) (|:| -4397 $)) $ (-755)) NIL)) (-3665 (((-3 (-626 $) "failed") $) NIL)) (-2327 (((-3 (-626 $) "failed") $) NIL)) (-2913 (((-3 (-2 (|:| |var| (-1067)) (|:| -4034 (-755))) "failed") $) NIL)) (-2376 (($ $) NIL (|has| |#2| (-43 (-403 (-560)))))) (-1394 (($) NIL (|has| |#2| (-1128)) CONST)) (-4353 (((-1100) $) NIL)) (-1704 (((-121) $) NIL)) (-1711 ((|#2| $) NIL)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL (|has| |#2| (-447)))) (-4440 (($ (-626 $)) NIL (|has| |#2| (-447))) (($ $ $) NIL (|has| |#2| (-447)))) (-4465 (($ $ (-755) |#2| $) NIL)) (-3817 (((-414 (-1149 $)) (-1149 $)) NIL (|has| |#2| (-896)))) (-3032 (((-414 (-1149 $)) (-1149 $)) NIL (|has| |#2| (-896)))) (-1601 (((-414 $) $) NIL (|has| |#2| (-896)))) (-3505 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-359))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL (|has| |#2| (-359)))) (-2336 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-550))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-550)))) (-3456 (((-3 (-626 $) "failed") (-626 $) $) NIL (|has| |#2| (-359)))) (-4450 (($ $ (-626 (-283 $))) NIL) (($ $ (-283 $)) NIL) (($ $ $ $) NIL) (($ $ (-626 $) (-626 $)) NIL) (($ $ (-1067) |#2|) NIL) (($ $ (-626 (-1067)) (-626 |#2|)) NIL) (($ $ (-1067) $) NIL) (($ $ (-626 (-1067)) (-626 $)) NIL)) (-4445 (((-755) $) NIL (|has| |#2| (-359)))) (-2778 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-403 $) (-403 $) (-403 $)) NIL (|has| |#2| (-550))) ((|#2| (-403 $) |#2|) NIL (|has| |#2| (-359))) (((-403 $) $ (-403 $)) NIL (|has| |#2| (-550)))) (-1754 (((-3 $ "failed") $ (-755)) NIL)) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL (|has| |#2| (-359)))) (-4069 (($ $ (-1067)) NIL (|has| |#2| (-170))) ((|#2| $) NIL (|has| |#2| (-170)))) (-2443 (($ $ (-1067)) NIL) (($ $ (-626 (-1067))) NIL) (($ $ (-1067) (-755)) NIL) (($ $ (-626 (-1067)) (-626 (-755))) NIL) (($ $ (-755)) NIL) (($ $) NIL) (($ $ (-1153)) NIL (|has| |#2| (-887 (-1153)))) (($ $ (-626 (-1153))) NIL (|has| |#2| (-887 (-1153)))) (($ $ (-1153) (-755)) NIL (|has| |#2| (-887 (-1153)))) (($ $ (-626 (-1153)) (-626 (-755))) NIL (|has| |#2| (-887 (-1153)))) (($ $ (-1 |#2| |#2|) (-755)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-3662 (((-755) $) NIL) (((-755) $ (-1067)) NIL) (((-626 (-755)) $ (-626 (-1067))) NIL)) (-4255 (((-879 (-375)) $) NIL (-12 (|has| (-1067) (-601 (-879 (-375)))) (|has| |#2| (-601 (-879 (-375)))))) (((-879 (-560)) $) NIL (-12 (|has| (-1067) (-601 (-879 (-560)))) (|has| |#2| (-601 (-879 (-560)))))) (((-533) $) NIL (-12 (|has| (-1067) (-601 (-533))) (|has| |#2| (-601 (-533)))))) (-1896 ((|#2| $) NIL (|has| |#2| (-447))) (($ $ (-1067)) NIL (|has| |#2| (-447)))) (-3248 (((-3 (-1236 $) "failed") (-671 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-896))))) (-2791 (((-3 $ "failed") $ $) NIL (|has| |#2| (-550))) (((-3 (-403 $) "failed") (-403 $) $) NIL (|has| |#2| (-550)))) (-2801 (((-842) $) 13) (($ (-560)) NIL) (($ |#2|) 26) (($ (-1067)) NIL) (($ (-1232 |#1|)) 20) (($ (-945 |#2|)) 34) (($ (-1153)) 18) (($ (-403 (-560))) NIL (-2318 (|has| |#2| (-43 (-403 (-560)))) (|has| |#2| (-1029 (-403 (-560)))))) (($ $) NIL (|has| |#2| (-550)))) (-2423 (((-626 |#2|) $) NIL)) (-2636 ((|#2| $ (-755)) NIL) (($ $ (-1067) (-755)) NIL) (($ $ (-626 (-1067)) (-626 (-755))) NIL)) (-2272 (((-3 $ "failed") $) NIL (-2318 (-12 (|has| $ (-146)) (|has| |#2| (-896))) (|has| |#2| (-146))))) (-1751 (((-755)) NIL)) (-3487 (($ $ $ (-755)) NIL (|has| |#2| (-170)))) (-2328 (((-121) $ $) NIL (|has| |#2| (-550)))) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (-3304 (($) NIL T CONST)) (-1459 (($) 14 T CONST)) (-2500 (($ $ (-1067)) NIL) (($ $ (-626 (-1067))) NIL) (($ $ (-1067) (-755)) NIL) (($ $ (-626 (-1067)) (-626 (-755))) NIL) (($ $ (-755)) NIL) (($ $) NIL) (($ $ (-1153)) NIL (|has| |#2| (-887 (-1153)))) (($ $ (-626 (-1153))) NIL (|has| |#2| (-887 (-1153)))) (($ $ (-1153) (-755)) NIL (|has| |#2| (-887 (-1153)))) (($ $ (-626 (-1153)) (-626 (-755))) NIL (|has| |#2| (-887 (-1153)))) (($ $ (-1 |#2| |#2|) (-755)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1691 (((-121) $ $) NIL (|has| |#2| (-834)))) (-1675 (((-121) $ $) NIL (|has| |#2| (-834)))) (-1653 (((-121) $ $) NIL)) (-1683 (((-121) $ $) NIL (|has| |#2| (-834)))) (-1667 (((-121) $ $) NIL (|has| |#2| (-834)))) (-1733 (($ $ |#2|) NIL (|has| |#2| (-359)))) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) NIL)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) NIL) (($ $ (-403 (-560))) NIL (|has| |#2| (-43 (-403 (-560))))) (($ (-403 (-560)) $) NIL (|has| |#2| (-43 (-403 (-560))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-726 |#1| |#2|) (-13 (-1211 |#2|) (-10 -8 (-6 (-1029 (-1153))) (-15 -2801 ($ (-1232 |#1|))) (-15 -4465 ($ $ (-755) |#2| $)) (IF (|has| |#2| (-15 -1593 ((-1149 |#2|) |#2| (-1153)))) (-15 -2801 ($ |#2|)) |noBranch|) (-15 -2801 ($ (-945 |#2|))))) (-1153) (-1039)) (T -726)) -((-2801 (*1 *1 *2) (-12 (-5 *1 (-726 *3 *2)) (-14 *3 (-1153)) (-4 *2 (-1039)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-1232 *3)) (-14 *3 (-1153)) (-5 *1 (-726 *3 *4)) (-4 *4 (-1039)))) (-4465 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-755)) (-5 *1 (-726 *4 *3)) (-14 *4 (-1153)) (-4 *3 (-1039)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-945 *4)) (-4 *4 (-1039)) (-5 *1 (-726 *3 *4)) (-14 *3 (-1153))))) -(-13 (-1211 |#2|) (-10 -8 (-6 (-1029 (-1153))) (-15 -2801 ($ (-1232 |#1|))) (-15 -4465 ($ $ (-755) |#2| $)) (IF (|has| |#2| (-15 -1593 ((-1149 |#2|) |#2| (-1153)))) (-15 -2801 ($ |#2|)) |noBranch|) (-15 -2801 ($ (-945 |#2|))))) -((-3710 (($ $ (-909)) 12))) -(((-727 |#1| |#2|) (-10 -8 (-15 -3710 (|#1| |#1| (-909)))) (-728 |#2|) (-170)) (T -727)) -NIL -(-10 -8 (-15 -3710 (|#1| |#1| (-909)))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-2314 (((-3 $ "failed") $ $) 18)) (-4236 (($) 16 T CONST)) (-1498 (($ $ (-909)) 27)) (-3710 (($ $ (-909)) 32)) (-2137 (($ $ (-909)) 28)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-1671 (($ $ $) 24)) (-2801 (((-842) $) 11)) (-2676 (($ $ $ $) 25)) (-3127 (($ $ $) 23)) (-3304 (($) 17 T CONST)) (-1653 (((-121) $ $) 6)) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 29)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 26) (($ $ |#1|) 34) (($ |#1| $) 33))) -(((-728 |#1|) (-1267) (-170)) (T -728)) -((-3710 (*1 *1 *1 *2) (-12 (-5 *2 (-909)) (-4 *1 (-728 *3)) (-4 *3 (-170))))) -(-13 (-745) (-699 |t#1|) (-10 -8 (-15 -3710 ($ $ (-909))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-105) . T) ((-120 |#1| |#1|) . T) ((-137) . T) ((-600 (-842)) . T) ((-629 |#1|) . T) ((-699 |#1|) . T) ((-702) . T) ((-745) . T) ((-1045 |#1|) . T) ((-1082) . T)) -((-1581 (((-1027) (-671 (-213)) (-560) (-121) (-560)) 24)) (-1588 (((-1027) (-671 (-213)) (-560) (-121) (-560)) 23))) -(((-729) (-10 -7 (-15 -1588 ((-1027) (-671 (-213)) (-560) (-121) (-560))) (-15 -1581 ((-1027) (-671 (-213)) (-560) (-121) (-560))))) (T -729)) -((-1581 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-671 (-213))) (-5 *4 (-560)) (-5 *5 (-121)) (-5 *2 (-1027)) (-5 *1 (-729)))) (-1588 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-671 (-213))) (-5 *4 (-560)) (-5 *5 (-121)) (-5 *2 (-1027)) (-5 *1 (-729))))) -(-10 -7 (-15 -1588 ((-1027) (-671 (-213)) (-560) (-121) (-560))) (-15 -1581 ((-1027) (-671 (-213)) (-560) (-121) (-560)))) -((-1607 (((-1027) (-560) (-560) (-560) (-671 (-213)) (-213) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-79 FCN)))) 43)) (-3944 (((-1027) (-560) (-560) (-671 (-213)) (-213) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-86 FCN)))) 39)) (-3948 (((-1027) (-213) (-213) (-213) (-213) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-69 -1333)))) 32))) -(((-730) (-10 -7 (-15 -3948 ((-1027) (-213) (-213) (-213) (-213) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-69 -1333))))) (-15 -3944 ((-1027) (-560) (-560) (-671 (-213)) (-213) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-86 FCN))))) (-15 -1607 ((-1027) (-560) (-560) (-560) (-671 (-213)) (-213) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-79 FCN))))))) (T -730)) -((-1607 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *5 (-213)) (-5 *6 (-3 (|:| |fn| (-384)) (|:| |fp| (-79 FCN)))) (-5 *2 (-1027)) (-5 *1 (-730)))) (-3944 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *5 (-213)) (-5 *6 (-3 (|:| |fn| (-384)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1027)) (-5 *1 (-730)))) (-3948 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *5 (-3 (|:| |fn| (-384)) (|:| |fp| (-69 -1333)))) (-5 *2 (-1027)) (-5 *1 (-730))))) -(-10 -7 (-15 -3948 ((-1027) (-213) (-213) (-213) (-213) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-69 -1333))))) (-15 -3944 ((-1027) (-560) (-560) (-671 (-213)) (-213) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-86 FCN))))) (-15 -1607 ((-1027) (-560) (-560) (-560) (-671 (-213)) (-213) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-79 FCN)))))) -((-3953 (((-1027) (-560) (-560) (-671 (-213)) (-560)) 33)) (-3957 (((-1027) (-560) (-560) (-671 (-213)) (-560)) 32)) (-3963 (((-1027) (-560) (-671 (-213)) (-560)) 31)) (-3967 (((-1027) (-560) (-671 (-213)) (-560)) 30)) (-3972 (((-1027) (-560) (-560) (-1135) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-560)) 29)) (-3977 (((-1027) (-560) (-560) (-1135) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-560)) 28)) (-3983 (((-1027) (-560) (-560) (-1135) (-671 (-213)) (-671 (-213)) (-560)) 27)) (-3989 (((-1027) (-560) (-560) (-1135) (-671 (-213)) (-671 (-213)) (-560)) 26)) (-3996 (((-1027) (-560) (-560) (-671 (-213)) (-671 (-213)) (-560)) 23)) (-4001 (((-1027) (-560) (-671 (-213)) (-671 (-213)) (-560)) 22)) (-4006 (((-1027) (-560) (-671 (-213)) (-560)) 21)) (-4012 (((-1027) (-560) (-671 (-213)) (-560)) 20))) -(((-731) (-10 -7 (-15 -4012 ((-1027) (-560) (-671 (-213)) (-560))) (-15 -4006 ((-1027) (-560) (-671 (-213)) (-560))) (-15 -4001 ((-1027) (-560) (-671 (-213)) (-671 (-213)) (-560))) (-15 -3996 ((-1027) (-560) (-560) (-671 (-213)) (-671 (-213)) (-560))) (-15 -3989 ((-1027) (-560) (-560) (-1135) (-671 (-213)) (-671 (-213)) (-560))) (-15 -3983 ((-1027) (-560) (-560) (-1135) (-671 (-213)) (-671 (-213)) (-560))) (-15 -3977 ((-1027) (-560) (-560) (-1135) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-560))) (-15 -3972 ((-1027) (-560) (-560) (-1135) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-560))) (-15 -3967 ((-1027) (-560) (-671 (-213)) (-560))) (-15 -3963 ((-1027) (-560) (-671 (-213)) (-560))) (-15 -3957 ((-1027) (-560) (-560) (-671 (-213)) (-560))) (-15 -3953 ((-1027) (-560) (-560) (-671 (-213)) (-560))))) (T -731)) -((-3953 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-731)))) (-3957 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-731)))) (-3963 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-731)))) (-3967 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-731)))) (-3972 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-560)) (-5 *4 (-1135)) (-5 *5 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-731)))) (-3977 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-560)) (-5 *4 (-1135)) (-5 *5 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-731)))) (-3983 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-560)) (-5 *4 (-1135)) (-5 *5 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-731)))) (-3989 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-560)) (-5 *4 (-1135)) (-5 *5 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-731)))) (-3996 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-731)))) (-4001 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-731)))) (-4006 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-731)))) (-4012 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-731))))) -(-10 -7 (-15 -4012 ((-1027) (-560) (-671 (-213)) (-560))) (-15 -4006 ((-1027) (-560) (-671 (-213)) (-560))) (-15 -4001 ((-1027) (-560) (-671 (-213)) (-671 (-213)) (-560))) (-15 -3996 ((-1027) (-560) (-560) (-671 (-213)) (-671 (-213)) (-560))) (-15 -3989 ((-1027) (-560) (-560) (-1135) (-671 (-213)) (-671 (-213)) (-560))) (-15 -3983 ((-1027) (-560) (-560) (-1135) (-671 (-213)) (-671 (-213)) (-560))) (-15 -3977 ((-1027) (-560) (-560) (-1135) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-560))) (-15 -3972 ((-1027) (-560) (-560) (-1135) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-560))) (-15 -3967 ((-1027) (-560) (-671 (-213)) (-560))) (-15 -3963 ((-1027) (-560) (-671 (-213)) (-560))) (-15 -3957 ((-1027) (-560) (-560) (-671 (-213)) (-560))) (-15 -3953 ((-1027) (-560) (-560) (-671 (-213)) (-560)))) -((-3758 (((-1027) (-560) (-671 (-213)) (-671 (-213)) (-560) (-213) (-560) (-560) (-671 (-213)) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-83 FUNCTN)))) 52)) (-3764 (((-1027) (-671 (-213)) (-671 (-213)) (-560) (-560)) 51)) (-3771 (((-1027) (-560) (-671 (-213)) (-671 (-213)) (-560) (-213) (-560) (-560) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-83 FUNCTN)))) 50)) (-3779 (((-1027) (-213) (-213) (-560) (-560) (-560) (-560)) 46)) (-3787 (((-1027) (-213) (-213) (-560) (-213) (-560) (-560) (-560) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-69 G)))) 45)) (-4192 (((-1027) (-213) (-213) (-213) (-213) (-213) (-560) (-560) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-69 G)))) 44)) (-4199 (((-1027) (-213) (-213) (-213) (-213) (-560) (-213) (-213) (-560) (-560) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-69 G)))) 43)) (-4212 (((-1027) (-213) (-213) (-213) (-560) (-213) (-213) (-560) (-560) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-69 G)))) 42)) (-4218 (((-1027) (-213) (-560) (-213) (-213) (-560) (-560) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-69 -1333)))) 38)) (-4222 (((-1027) (-213) (-213) (-560) (-671 (-213)) (-213) (-213) (-560) (-560) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-69 -1333)))) 37)) (-4237 (((-1027) (-213) (-213) (-213) (-213) (-560) (-560) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-69 -1333)))) 33)) (-4251 (((-1027) (-213) (-213) (-213) (-213) (-560) (-560) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-69 -1333)))) 32))) -(((-732) (-10 -7 (-15 -4251 ((-1027) (-213) (-213) (-213) (-213) (-560) (-560) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-69 -1333))))) (-15 -4237 ((-1027) (-213) (-213) (-213) (-213) (-560) (-560) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-69 -1333))))) (-15 -4222 ((-1027) (-213) (-213) (-560) (-671 (-213)) (-213) (-213) (-560) (-560) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-69 -1333))))) (-15 -4218 ((-1027) (-213) (-560) (-213) (-213) (-560) (-560) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-69 -1333))))) (-15 -4212 ((-1027) (-213) (-213) (-213) (-560) (-213) (-213) (-560) (-560) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-69 G))))) (-15 -4199 ((-1027) (-213) (-213) (-213) (-213) (-560) (-213) (-213) (-560) (-560) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-69 G))))) (-15 -4192 ((-1027) (-213) (-213) (-213) (-213) (-213) (-560) (-560) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-69 G))))) (-15 -3787 ((-1027) (-213) (-213) (-560) (-213) (-560) (-560) (-560) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-69 G))))) (-15 -3779 ((-1027) (-213) (-213) (-560) (-560) (-560) (-560))) (-15 -3771 ((-1027) (-560) (-671 (-213)) (-671 (-213)) (-560) (-213) (-560) (-560) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-83 FUNCTN))))) (-15 -3764 ((-1027) (-671 (-213)) (-671 (-213)) (-560) (-560))) (-15 -3758 ((-1027) (-560) (-671 (-213)) (-671 (-213)) (-560) (-213) (-560) (-560) (-671 (-213)) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-83 FUNCTN))))))) (T -732)) -((-3758 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *5 (-213)) (-5 *6 (-3 (|:| |fn| (-384)) (|:| |fp| (-83 FUNCTN)))) (-5 *2 (-1027)) (-5 *1 (-732)))) (-3764 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-671 (-213))) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-732)))) (-3771 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *5 (-213)) (-5 *6 (-3 (|:| |fn| (-384)) (|:| |fp| (-83 FUNCTN)))) (-5 *2 (-1027)) (-5 *1 (-732)))) (-3779 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-732)))) (-3787 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *5 (-3 (|:| |fn| (-384)) (|:| |fp| (-69 G)))) (-5 *2 (-1027)) (-5 *1 (-732)))) (-4192 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *5 (-3 (|:| |fn| (-384)) (|:| |fp| (-69 G)))) (-5 *2 (-1027)) (-5 *1 (-732)))) (-4199 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *5 (-3 (|:| |fn| (-384)) (|:| |fp| (-69 G)))) (-5 *2 (-1027)) (-5 *1 (-732)))) (-4212 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *5 (-3 (|:| |fn| (-384)) (|:| |fp| (-69 G)))) (-5 *2 (-1027)) (-5 *1 (-732)))) (-4218 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *5 (-3 (|:| |fn| (-384)) (|:| |fp| (-69 -1333)))) (-5 *2 (-1027)) (-5 *1 (-732)))) (-4222 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-560)) (-5 *5 (-671 (-213))) (-5 *6 (-3 (|:| |fn| (-384)) (|:| |fp| (-69 -1333)))) (-5 *3 (-213)) (-5 *2 (-1027)) (-5 *1 (-732)))) (-4237 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *5 (-3 (|:| |fn| (-384)) (|:| |fp| (-69 -1333)))) (-5 *2 (-1027)) (-5 *1 (-732)))) (-4251 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *5 (-3 (|:| |fn| (-384)) (|:| |fp| (-69 -1333)))) (-5 *2 (-1027)) (-5 *1 (-732))))) -(-10 -7 (-15 -4251 ((-1027) (-213) (-213) (-213) (-213) (-560) (-560) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-69 -1333))))) (-15 -4237 ((-1027) (-213) (-213) (-213) (-213) (-560) (-560) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-69 -1333))))) (-15 -4222 ((-1027) (-213) (-213) (-560) (-671 (-213)) (-213) (-213) (-560) (-560) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-69 -1333))))) (-15 -4218 ((-1027) (-213) (-560) (-213) (-213) (-560) (-560) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-69 -1333))))) (-15 -4212 ((-1027) (-213) (-213) (-213) (-560) (-213) (-213) (-560) (-560) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-69 G))))) (-15 -4199 ((-1027) (-213) (-213) (-213) (-213) (-560) (-213) (-213) (-560) (-560) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-69 G))))) (-15 -4192 ((-1027) (-213) (-213) (-213) (-213) (-213) (-560) (-560) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-69 G))))) (-15 -3787 ((-1027) (-213) (-213) (-560) (-213) (-560) (-560) (-560) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-69 G))))) (-15 -3779 ((-1027) (-213) (-213) (-560) (-560) (-560) (-560))) (-15 -3771 ((-1027) (-560) (-671 (-213)) (-671 (-213)) (-560) (-213) (-560) (-560) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-83 FUNCTN))))) (-15 -3764 ((-1027) (-671 (-213)) (-671 (-213)) (-560) (-560))) (-15 -3758 ((-1027) (-560) (-671 (-213)) (-671 (-213)) (-560) (-213) (-560) (-560) (-671 (-213)) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-83 FUNCTN)))))) -((-3801 (((-1027) (-560) (-560) (-560) (-560) (-213) (-560) (-560) (-560) (-560) (-560) (-560) (-671 (-213)) (-671 (-213)) (-213) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-80 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-384)) (|:| |fp| (-81 G JACOBG JACGEP)))) 76)) (-3809 (((-1027) (-671 (-213)) (-560) (-560) (-213) (-560) (-560) (-213) (-213) (-671 (-213)) (-560) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-66 COEFFN))) (-3 (|:| |fn| (-384)) (|:| |fp| (-92 BDYVAL))) (-384) (-384)) 69) (((-1027) (-671 (-213)) (-560) (-560) (-213) (-560) (-560) (-213) (-213) (-671 (-213)) (-560) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-66 COEFFN))) (-3 (|:| |fn| (-384)) (|:| |fp| (-92 BDYVAL)))) 68)) (-3815 (((-1027) (-213) (-213) (-560) (-213) (-560) (-560) (-560) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-560) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-89 FCNF))) (-3 (|:| |fn| (-384)) (|:| |fp| (-90 FCNG)))) 57)) (-3822 (((-1027) (-671 (-213)) (-671 (-213)) (-560) (-213) (-213) (-213) (-560) (-560) (-560) (-671 (-213)) (-560) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-91 FCN)))) 50)) (-3829 (((-1027) (-213) (-560) (-560) (-1135) (-560) (-213) (-671 (-213)) (-213) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-94 G))) (-3 (|:| |fn| (-384)) (|:| |fp| (-91 FCN))) (-3 (|:| |fn| (-384)) (|:| |fp| (-76 PEDERV))) (-3 (|:| |fn| (-384)) (|:| |fp| (-93 OUTPUT)))) 49)) (-3835 (((-1027) (-213) (-560) (-560) (-213) (-1135) (-213) (-671 (-213)) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-94 G))) (-3 (|:| |fn| (-384)) (|:| |fp| (-91 FCN))) (-3 (|:| |fn| (-384)) (|:| |fp| (-93 OUTPUT)))) 45)) (-3843 (((-1027) (-213) (-560) (-560) (-213) (-213) (-671 (-213)) (-213) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-94 G))) (-3 (|:| |fn| (-384)) (|:| |fp| (-91 FCN)))) 42)) (-3850 (((-1027) (-213) (-560) (-560) (-560) (-213) (-671 (-213)) (-213) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-91 FCN))) (-3 (|:| |fn| (-384)) (|:| |fp| (-93 OUTPUT)))) 38))) -(((-733) (-10 -7 (-15 -3850 ((-1027) (-213) (-560) (-560) (-560) (-213) (-671 (-213)) (-213) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-91 FCN))) (-3 (|:| |fn| (-384)) (|:| |fp| (-93 OUTPUT))))) (-15 -3843 ((-1027) (-213) (-560) (-560) (-213) (-213) (-671 (-213)) (-213) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-94 G))) (-3 (|:| |fn| (-384)) (|:| |fp| (-91 FCN))))) (-15 -3835 ((-1027) (-213) (-560) (-560) (-213) (-1135) (-213) (-671 (-213)) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-94 G))) (-3 (|:| |fn| (-384)) (|:| |fp| (-91 FCN))) (-3 (|:| |fn| (-384)) (|:| |fp| (-93 OUTPUT))))) (-15 -3829 ((-1027) (-213) (-560) (-560) (-1135) (-560) (-213) (-671 (-213)) (-213) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-94 G))) (-3 (|:| |fn| (-384)) (|:| |fp| (-91 FCN))) (-3 (|:| |fn| (-384)) (|:| |fp| (-76 PEDERV))) (-3 (|:| |fn| (-384)) (|:| |fp| (-93 OUTPUT))))) (-15 -3822 ((-1027) (-671 (-213)) (-671 (-213)) (-560) (-213) (-213) (-213) (-560) (-560) (-560) (-671 (-213)) (-560) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-91 FCN))))) (-15 -3815 ((-1027) (-213) (-213) (-560) (-213) (-560) (-560) (-560) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-560) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-89 FCNF))) (-3 (|:| |fn| (-384)) (|:| |fp| (-90 FCNG))))) (-15 -3809 ((-1027) (-671 (-213)) (-560) (-560) (-213) (-560) (-560) (-213) (-213) (-671 (-213)) (-560) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-66 COEFFN))) (-3 (|:| |fn| (-384)) (|:| |fp| (-92 BDYVAL))))) (-15 -3809 ((-1027) (-671 (-213)) (-560) (-560) (-213) (-560) (-560) (-213) (-213) (-671 (-213)) (-560) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-66 COEFFN))) (-3 (|:| |fn| (-384)) (|:| |fp| (-92 BDYVAL))) (-384) (-384))) (-15 -3801 ((-1027) (-560) (-560) (-560) (-560) (-213) (-560) (-560) (-560) (-560) (-560) (-560) (-671 (-213)) (-671 (-213)) (-213) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-80 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-384)) (|:| |fp| (-81 G JACOBG JACGEP))))))) (T -733)) -((-3801 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-560)) (-5 *5 (-671 (-213))) (-5 *6 (-3 (|:| |fn| (-384)) (|:| |fp| (-80 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-384)) (|:| |fp| (-81 G JACOBG JACGEP)))) (-5 *4 (-213)) (-5 *2 (-1027)) (-5 *1 (-733)))) (-3809 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-671 (-213))) (-5 *4 (-560)) (-5 *5 (-213)) (-5 *6 (-3 (|:| |fn| (-384)) (|:| |fp| (-66 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-384)) (|:| |fp| (-92 BDYVAL)))) (-5 *8 (-384)) (-5 *2 (-1027)) (-5 *1 (-733)))) (-3809 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-671 (-213))) (-5 *4 (-560)) (-5 *5 (-213)) (-5 *6 (-3 (|:| |fn| (-384)) (|:| |fp| (-66 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-384)) (|:| |fp| (-92 BDYVAL)))) (-5 *2 (-1027)) (-5 *1 (-733)))) (-3815 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-560)) (-5 *5 (-671 (-213))) (-5 *6 (-3 (|:| |fn| (-384)) (|:| |fp| (-89 FCNF)))) (-5 *7 (-3 (|:| |fn| (-384)) (|:| |fp| (-90 FCNG)))) (-5 *3 (-213)) (-5 *2 (-1027)) (-5 *1 (-733)))) (-3822 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-671 (-213))) (-5 *4 (-560)) (-5 *5 (-213)) (-5 *6 (-3 (|:| |fn| (-384)) (|:| |fp| (-91 FCN)))) (-5 *2 (-1027)) (-5 *1 (-733)))) (-3829 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-560)) (-5 *5 (-1135)) (-5 *6 (-671 (-213))) (-5 *7 (-3 (|:| |fn| (-384)) (|:| |fp| (-94 G)))) (-5 *8 (-3 (|:| |fn| (-384)) (|:| |fp| (-91 FCN)))) (-5 *9 (-3 (|:| |fn| (-384)) (|:| |fp| (-76 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-384)) (|:| |fp| (-93 OUTPUT)))) (-5 *3 (-213)) (-5 *2 (-1027)) (-5 *1 (-733)))) (-3835 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-560)) (-5 *5 (-1135)) (-5 *6 (-671 (-213))) (-5 *7 (-3 (|:| |fn| (-384)) (|:| |fp| (-94 G)))) (-5 *8 (-3 (|:| |fn| (-384)) (|:| |fp| (-91 FCN)))) (-5 *9 (-3 (|:| |fn| (-384)) (|:| |fp| (-93 OUTPUT)))) (-5 *3 (-213)) (-5 *2 (-1027)) (-5 *1 (-733)))) (-3843 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-560)) (-5 *5 (-671 (-213))) (-5 *6 (-3 (|:| |fn| (-384)) (|:| |fp| (-94 G)))) (-5 *7 (-3 (|:| |fn| (-384)) (|:| |fp| (-91 FCN)))) (-5 *3 (-213)) (-5 *2 (-1027)) (-5 *1 (-733)))) (-3850 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-560)) (-5 *5 (-671 (-213))) (-5 *6 (-3 (|:| |fn| (-384)) (|:| |fp| (-91 FCN)))) (-5 *7 (-3 (|:| |fn| (-384)) (|:| |fp| (-93 OUTPUT)))) (-5 *3 (-213)) (-5 *2 (-1027)) (-5 *1 (-733))))) -(-10 -7 (-15 -3850 ((-1027) (-213) (-560) (-560) (-560) (-213) (-671 (-213)) (-213) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-91 FCN))) (-3 (|:| |fn| (-384)) (|:| |fp| (-93 OUTPUT))))) (-15 -3843 ((-1027) (-213) (-560) (-560) (-213) (-213) (-671 (-213)) (-213) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-94 G))) (-3 (|:| |fn| (-384)) (|:| |fp| (-91 FCN))))) (-15 -3835 ((-1027) (-213) (-560) (-560) (-213) (-1135) (-213) (-671 (-213)) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-94 G))) (-3 (|:| |fn| (-384)) (|:| |fp| (-91 FCN))) (-3 (|:| |fn| (-384)) (|:| |fp| (-93 OUTPUT))))) (-15 -3829 ((-1027) (-213) (-560) (-560) (-1135) (-560) (-213) (-671 (-213)) (-213) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-94 G))) (-3 (|:| |fn| (-384)) (|:| |fp| (-91 FCN))) (-3 (|:| |fn| (-384)) (|:| |fp| (-76 PEDERV))) (-3 (|:| |fn| (-384)) (|:| |fp| (-93 OUTPUT))))) (-15 -3822 ((-1027) (-671 (-213)) (-671 (-213)) (-560) (-213) (-213) (-213) (-560) (-560) (-560) (-671 (-213)) (-560) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-91 FCN))))) (-15 -3815 ((-1027) (-213) (-213) (-560) (-213) (-560) (-560) (-560) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-560) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-89 FCNF))) (-3 (|:| |fn| (-384)) (|:| |fp| (-90 FCNG))))) (-15 -3809 ((-1027) (-671 (-213)) (-560) (-560) (-213) (-560) (-560) (-213) (-213) (-671 (-213)) (-560) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-66 COEFFN))) (-3 (|:| |fn| (-384)) (|:| |fp| (-92 BDYVAL))))) (-15 -3809 ((-1027) (-671 (-213)) (-560) (-560) (-213) (-560) (-560) (-213) (-213) (-671 (-213)) (-560) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-66 COEFFN))) (-3 (|:| |fn| (-384)) (|:| |fp| (-92 BDYVAL))) (-384) (-384))) (-15 -3801 ((-1027) (-560) (-560) (-560) (-560) (-213) (-560) (-560) (-560) (-560) (-560) (-560) (-671 (-213)) (-671 (-213)) (-213) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-80 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-384)) (|:| |fp| (-81 G JACOBG JACGEP)))))) -((-3878 (((-1027) (-213) (-213) (-560) (-560) (-671 (-213)) (-671 (-213)) (-213) (-213) (-560) (-560) (-671 (-213)) (-671 (-213)) (-213) (-213) (-560) (-560) (-671 (-213)) (-671 (-213)) (-213) (-560) (-560) (-560) (-658 (-213)) (-560)) 45)) (-3884 (((-1027) (-213) (-213) (-213) (-213) (-560) (-560) (-560) (-1135) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-87 PDEF))) (-3 (|:| |fn| (-384)) (|:| |fp| (-88 BNDY)))) 41)) (-3890 (((-1027) (-560) (-560) (-560) (-560) (-213) (-560) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-560)) 23))) -(((-734) (-10 -7 (-15 -3890 ((-1027) (-560) (-560) (-560) (-560) (-213) (-560) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-560))) (-15 -3884 ((-1027) (-213) (-213) (-213) (-213) (-560) (-560) (-560) (-1135) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-87 PDEF))) (-3 (|:| |fn| (-384)) (|:| |fp| (-88 BNDY))))) (-15 -3878 ((-1027) (-213) (-213) (-560) (-560) (-671 (-213)) (-671 (-213)) (-213) (-213) (-560) (-560) (-671 (-213)) (-671 (-213)) (-213) (-213) (-560) (-560) (-671 (-213)) (-671 (-213)) (-213) (-560) (-560) (-560) (-658 (-213)) (-560))))) (T -734)) -((-3878 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-560)) (-5 *5 (-671 (-213))) (-5 *6 (-658 (-213))) (-5 *3 (-213)) (-5 *2 (-1027)) (-5 *1 (-734)))) (-3884 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *5 (-1135)) (-5 *6 (-3 (|:| |fn| (-384)) (|:| |fp| (-87 PDEF)))) (-5 *7 (-3 (|:| |fn| (-384)) (|:| |fp| (-88 BNDY)))) (-5 *2 (-1027)) (-5 *1 (-734)))) (-3890 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-560)) (-5 *5 (-671 (-213))) (-5 *4 (-213)) (-5 *2 (-1027)) (-5 *1 (-734))))) -(-10 -7 (-15 -3890 ((-1027) (-560) (-560) (-560) (-560) (-213) (-560) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-560))) (-15 -3884 ((-1027) (-213) (-213) (-213) (-213) (-560) (-560) (-560) (-1135) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-87 PDEF))) (-3 (|:| |fn| (-384)) (|:| |fp| (-88 BNDY))))) (-15 -3878 ((-1027) (-213) (-213) (-560) (-560) (-671 (-213)) (-671 (-213)) (-213) (-213) (-560) (-560) (-671 (-213)) (-671 (-213)) (-213) (-213) (-560) (-560) (-671 (-213)) (-671 (-213)) (-213) (-560) (-560) (-560) (-658 (-213)) (-560)))) -((-1946 (((-1027) (-560) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-213) (-671 (-213)) (-213) (-213) (-560)) 35)) (-1635 (((-1027) (-560) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-560) (-560) (-213) (-213) (-560)) 34)) (-3991 (((-1027) (-560) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-671 (-560)) (-671 (-213)) (-213) (-213) (-560)) 33)) (-1642 (((-1027) (-560) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-560)) 29)) (-1651 (((-1027) (-560) (-560) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-560)) 28)) (-1656 (((-1027) (-560) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-213) (-213) (-560)) 27)) (-1664 (((-1027) (-560) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-560) (-671 (-213)) (-560)) 23)) (-1670 (((-1027) (-560) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-560) (-671 (-213)) (-560)) 22)) (-1679 (((-1027) (-560) (-671 (-213)) (-671 (-213)) (-560)) 21)) (-1688 (((-1027) (-560) (-671 (-213)) (-671 (-213)) (-560) (-560) (-560)) 20))) -(((-735) (-10 -7 (-15 -1688 ((-1027) (-560) (-671 (-213)) (-671 (-213)) (-560) (-560) (-560))) (-15 -1679 ((-1027) (-560) (-671 (-213)) (-671 (-213)) (-560))) (-15 -1670 ((-1027) (-560) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-560) (-671 (-213)) (-560))) (-15 -1664 ((-1027) (-560) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-560) (-671 (-213)) (-560))) (-15 -1656 ((-1027) (-560) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-213) (-213) (-560))) (-15 -1651 ((-1027) (-560) (-560) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-560))) (-15 -1642 ((-1027) (-560) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-560))) (-15 -3991 ((-1027) (-560) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-671 (-560)) (-671 (-213)) (-213) (-213) (-560))) (-15 -1635 ((-1027) (-560) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-560) (-560) (-213) (-213) (-560))) (-15 -1946 ((-1027) (-560) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-213) (-671 (-213)) (-213) (-213) (-560))))) (T -735)) -((-1946 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *5 (-213)) (-5 *2 (-1027)) (-5 *1 (-735)))) (-1635 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *5 (-213)) (-5 *2 (-1027)) (-5 *1 (-735)))) (-3991 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-671 (-213))) (-5 *5 (-671 (-560))) (-5 *6 (-213)) (-5 *3 (-560)) (-5 *2 (-1027)) (-5 *1 (-735)))) (-1642 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-735)))) (-1651 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-735)))) (-1656 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *5 (-213)) (-5 *2 (-1027)) (-5 *1 (-735)))) (-1664 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-735)))) (-1670 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-735)))) (-1679 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-735)))) (-1688 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-735))))) -(-10 -7 (-15 -1688 ((-1027) (-560) (-671 (-213)) (-671 (-213)) (-560) (-560) (-560))) (-15 -1679 ((-1027) (-560) (-671 (-213)) (-671 (-213)) (-560))) (-15 -1670 ((-1027) (-560) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-560) (-671 (-213)) (-560))) (-15 -1664 ((-1027) (-560) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-560) (-671 (-213)) (-560))) (-15 -1656 ((-1027) (-560) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-213) (-213) (-560))) (-15 -1651 ((-1027) (-560) (-560) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-560))) (-15 -1642 ((-1027) (-560) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-560))) (-15 -3991 ((-1027) (-560) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-671 (-560)) (-671 (-213)) (-213) (-213) (-560))) (-15 -1635 ((-1027) (-560) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-560) (-560) (-213) (-213) (-560))) (-15 -1946 ((-1027) (-560) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-213) (-671 (-213)) (-213) (-213) (-560)))) -((-1696 (((-1027) (-560) (-560) (-671 (-213)) (-671 (-213)) (-560) (-671 (-213)) (-671 (-213)) (-560) (-560) (-560)) 45)) (-1703 (((-1027) (-560) (-560) (-560) (-213) (-671 (-213)) (-671 (-213)) (-560)) 44)) (-1712 (((-1027) (-560) (-560) (-560) (-560) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-560) (-560) (-560)) 43)) (-1719 (((-1027) (-560) (-560) (-560) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-560)) 42)) (-1729 (((-1027) (-1135) (-560) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-213) (-560) (-560) (-560) (-560) (-560) (-671 (-213)) (-560) (-671 (-213)) (-671 (-213)) (-560)) 41)) (-1738 (((-1027) (-1135) (-560) (-671 (-213)) (-560) (-671 (-213)) (-671 (-213)) (-213) (-560) (-560) (-560) (-560) (-560) (-671 (-213)) (-560) (-671 (-213)) (-671 (-213)) (-671 (-560)) (-560)) 40)) (-1747 (((-1027) (-560) (-560) (-560) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-671 (-560)) (-560) (-560) (-560) (-213) (-671 (-213)) (-560)) 39)) (-1753 (((-1027) (-1135) (-560) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-213) (-560) (-560) (-560) (-671 (-213)) (-560) (-671 (-213)) (-671 (-560))) 38)) (-3702 (((-1027) (-560) (-671 (-213)) (-671 (-213)) (-560)) 35)) (-3417 (((-1027) (-560) (-671 (-213)) (-671 (-213)) (-213) (-560) (-560)) 34)) (-3422 (((-1027) (-560) (-671 (-213)) (-671 (-213)) (-213) (-560)) 33)) (-3427 (((-1027) (-560) (-560) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-560)) 32)) (-3432 (((-1027) (-560) (-213) (-213) (-671 (-213)) (-560) (-560) (-213) (-560)) 31)) (-3438 (((-1027) (-560) (-213) (-213) (-671 (-213)) (-560) (-560) (-213) (-560) (-560) (-560)) 30)) (-3857 (((-1027) (-560) (-213) (-213) (-671 (-213)) (-560) (-560) (-560) (-560) (-560)) 29)) (-4178 (((-1027) (-560) (-560) (-560) (-213) (-213) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-560) (-671 (-213)) (-671 (-213)) (-560) (-671 (-560)) (-560) (-560) (-560)) 28)) (-1570 (((-1027) (-560) (-671 (-213)) (-213) (-560)) 24)) (-1597 (((-1027) (-560) (-560) (-560) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-560)) 20))) -(((-736) (-10 -7 (-15 -1597 ((-1027) (-560) (-560) (-560) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-560))) (-15 -1570 ((-1027) (-560) (-671 (-213)) (-213) (-560))) (-15 -4178 ((-1027) (-560) (-560) (-560) (-213) (-213) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-560) (-671 (-213)) (-671 (-213)) (-560) (-671 (-560)) (-560) (-560) (-560))) (-15 -3857 ((-1027) (-560) (-213) (-213) (-671 (-213)) (-560) (-560) (-560) (-560) (-560))) (-15 -3438 ((-1027) (-560) (-213) (-213) (-671 (-213)) (-560) (-560) (-213) (-560) (-560) (-560))) (-15 -3432 ((-1027) (-560) (-213) (-213) (-671 (-213)) (-560) (-560) (-213) (-560))) (-15 -3427 ((-1027) (-560) (-560) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-560))) (-15 -3422 ((-1027) (-560) (-671 (-213)) (-671 (-213)) (-213) (-560))) (-15 -3417 ((-1027) (-560) (-671 (-213)) (-671 (-213)) (-213) (-560) (-560))) (-15 -3702 ((-1027) (-560) (-671 (-213)) (-671 (-213)) (-560))) (-15 -1753 ((-1027) (-1135) (-560) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-213) (-560) (-560) (-560) (-671 (-213)) (-560) (-671 (-213)) (-671 (-560)))) (-15 -1747 ((-1027) (-560) (-560) (-560) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-671 (-560)) (-560) (-560) (-560) (-213) (-671 (-213)) (-560))) (-15 -1738 ((-1027) (-1135) (-560) (-671 (-213)) (-560) (-671 (-213)) (-671 (-213)) (-213) (-560) (-560) (-560) (-560) (-560) (-671 (-213)) (-560) (-671 (-213)) (-671 (-213)) (-671 (-560)) (-560))) (-15 -1729 ((-1027) (-1135) (-560) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-213) (-560) (-560) (-560) (-560) (-560) (-671 (-213)) (-560) (-671 (-213)) (-671 (-213)) (-560))) (-15 -1719 ((-1027) (-560) (-560) (-560) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-560))) (-15 -1712 ((-1027) (-560) (-560) (-560) (-560) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-560) (-560) (-560))) (-15 -1703 ((-1027) (-560) (-560) (-560) (-213) (-671 (-213)) (-671 (-213)) (-560))) (-15 -1696 ((-1027) (-560) (-560) (-671 (-213)) (-671 (-213)) (-560) (-671 (-213)) (-671 (-213)) (-560) (-560) (-560))))) (T -736)) -((-1696 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-736)))) (-1703 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-560)) (-5 *5 (-671 (-213))) (-5 *4 (-213)) (-5 *2 (-1027)) (-5 *1 (-736)))) (-1712 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-736)))) (-1719 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-736)))) (-1729 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1135)) (-5 *4 (-560)) (-5 *5 (-671 (-213))) (-5 *6 (-213)) (-5 *2 (-1027)) (-5 *1 (-736)))) (-1738 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1135)) (-5 *5 (-671 (-213))) (-5 *6 (-213)) (-5 *7 (-671 (-560))) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-736)))) (-1747 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-671 (-213))) (-5 *5 (-671 (-560))) (-5 *6 (-213)) (-5 *3 (-560)) (-5 *2 (-1027)) (-5 *1 (-736)))) (-1753 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1135)) (-5 *5 (-671 (-213))) (-5 *6 (-213)) (-5 *7 (-671 (-560))) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-736)))) (-3702 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-736)))) (-3417 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *5 (-213)) (-5 *2 (-1027)) (-5 *1 (-736)))) (-3422 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *5 (-213)) (-5 *2 (-1027)) (-5 *1 (-736)))) (-3427 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-736)))) (-3432 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *5 (-671 (-213))) (-5 *4 (-213)) (-5 *2 (-1027)) (-5 *1 (-736)))) (-3438 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-560)) (-5 *5 (-671 (-213))) (-5 *4 (-213)) (-5 *2 (-1027)) (-5 *1 (-736)))) (-3857 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-560)) (-5 *5 (-671 (-213))) (-5 *4 (-213)) (-5 *2 (-1027)) (-5 *1 (-736)))) (-4178 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-671 (-213))) (-5 *6 (-671 (-560))) (-5 *3 (-560)) (-5 *4 (-213)) (-5 *2 (-1027)) (-5 *1 (-736)))) (-1570 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *5 (-213)) (-5 *2 (-1027)) (-5 *1 (-736)))) (-1597 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-736))))) -(-10 -7 (-15 -1597 ((-1027) (-560) (-560) (-560) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-560))) (-15 -1570 ((-1027) (-560) (-671 (-213)) (-213) (-560))) (-15 -4178 ((-1027) (-560) (-560) (-560) (-213) (-213) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-560) (-671 (-213)) (-671 (-213)) (-560) (-671 (-560)) (-560) (-560) (-560))) (-15 -3857 ((-1027) (-560) (-213) (-213) (-671 (-213)) (-560) (-560) (-560) (-560) (-560))) (-15 -3438 ((-1027) (-560) (-213) (-213) (-671 (-213)) (-560) (-560) (-213) (-560) (-560) (-560))) (-15 -3432 ((-1027) (-560) (-213) (-213) (-671 (-213)) (-560) (-560) (-213) (-560))) (-15 -3427 ((-1027) (-560) (-560) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-560))) (-15 -3422 ((-1027) (-560) (-671 (-213)) (-671 (-213)) (-213) (-560))) (-15 -3417 ((-1027) (-560) (-671 (-213)) (-671 (-213)) (-213) (-560) (-560))) (-15 -3702 ((-1027) (-560) (-671 (-213)) (-671 (-213)) (-560))) (-15 -1753 ((-1027) (-1135) (-560) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-213) (-560) (-560) (-560) (-671 (-213)) (-560) (-671 (-213)) (-671 (-560)))) (-15 -1747 ((-1027) (-560) (-560) (-560) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-671 (-560)) (-560) (-560) (-560) (-213) (-671 (-213)) (-560))) (-15 -1738 ((-1027) (-1135) (-560) (-671 (-213)) (-560) (-671 (-213)) (-671 (-213)) (-213) (-560) (-560) (-560) (-560) (-560) (-671 (-213)) (-560) (-671 (-213)) (-671 (-213)) (-671 (-560)) (-560))) (-15 -1729 ((-1027) (-1135) (-560) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-213) (-560) (-560) (-560) (-560) (-560) (-671 (-213)) (-560) (-671 (-213)) (-671 (-213)) (-560))) (-15 -1719 ((-1027) (-560) (-560) (-560) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-560))) (-15 -1712 ((-1027) (-560) (-560) (-560) (-560) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-560) (-560) (-560))) (-15 -1703 ((-1027) (-560) (-560) (-560) (-213) (-671 (-213)) (-671 (-213)) (-560))) (-15 -1696 ((-1027) (-560) (-560) (-671 (-213)) (-671 (-213)) (-560) (-671 (-213)) (-671 (-213)) (-560) (-560) (-560)))) -((-3444 (((-1027) (-560) (-560) (-560) (-213) (-671 (-213)) (-560) (-671 (-213)) (-560)) 63)) (-3450 (((-1027) (-560) (-560) (-560) (-560) (-560) (-560) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-560) (-560) (-121) (-213) (-560) (-213) (-213) (-121) (-213) (-213) (-213) (-213) (-121) (-560) (-560) (-560) (-560) (-560) (-213) (-213) (-213) (-560) (-560) (-560) (-560) (-560) (-671 (-560)) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-85 CONFUN))) (-3 (|:| |fn| (-384)) (|:| |fp| (-82 OBJFUN)))) 62)) (-3455 (((-1027) (-560) (-560) (-560) (-560) (-560) (-560) (-560) (-560) (-213) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-121) (-121) (-121) (-560) (-560) (-671 (-213)) (-671 (-560)) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-70 QPHESS)))) 58)) (-3459 (((-1027) (-560) (-560) (-560) (-560) (-560) (-560) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-121) (-560) (-560) (-671 (-213)) (-560)) 51)) (-3463 (((-1027) (-560) (-560) (-560) (-560) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-71 FUNCT1)))) 50)) (-3467 (((-1027) (-560) (-560) (-560) (-560) (-671 (-213)) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-68 LSFUN2)))) 46)) (-3471 (((-1027) (-560) (-560) (-560) (-560) (-671 (-213)) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-84 LSFUN1)))) 42)) (-3475 (((-1027) (-560) (-213) (-213) (-560) (-213) (-121) (-213) (-213) (-560) (-560) (-560) (-560) (-671 (-213)) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-82 OBJFUN)))) 38))) -(((-737) (-10 -7 (-15 -3475 ((-1027) (-560) (-213) (-213) (-560) (-213) (-121) (-213) (-213) (-560) (-560) (-560) (-560) (-671 (-213)) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-82 OBJFUN))))) (-15 -3471 ((-1027) (-560) (-560) (-560) (-560) (-671 (-213)) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-84 LSFUN1))))) (-15 -3467 ((-1027) (-560) (-560) (-560) (-560) (-671 (-213)) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-68 LSFUN2))))) (-15 -3463 ((-1027) (-560) (-560) (-560) (-560) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-71 FUNCT1))))) (-15 -3459 ((-1027) (-560) (-560) (-560) (-560) (-560) (-560) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-121) (-560) (-560) (-671 (-213)) (-560))) (-15 -3455 ((-1027) (-560) (-560) (-560) (-560) (-560) (-560) (-560) (-560) (-213) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-121) (-121) (-121) (-560) (-560) (-671 (-213)) (-671 (-560)) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-70 QPHESS))))) (-15 -3450 ((-1027) (-560) (-560) (-560) (-560) (-560) (-560) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-560) (-560) (-121) (-213) (-560) (-213) (-213) (-121) (-213) (-213) (-213) (-213) (-121) (-560) (-560) (-560) (-560) (-560) (-213) (-213) (-213) (-560) (-560) (-560) (-560) (-560) (-671 (-560)) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-85 CONFUN))) (-3 (|:| |fn| (-384)) (|:| |fp| (-82 OBJFUN))))) (-15 -3444 ((-1027) (-560) (-560) (-560) (-213) (-671 (-213)) (-560) (-671 (-213)) (-560))))) (T -737)) -((-3444 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-560)) (-5 *5 (-671 (-213))) (-5 *4 (-213)) (-5 *2 (-1027)) (-5 *1 (-737)))) (-3450 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-671 (-213))) (-5 *5 (-121)) (-5 *6 (-213)) (-5 *7 (-671 (-560))) (-5 *8 (-3 (|:| |fn| (-384)) (|:| |fp| (-85 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-384)) (|:| |fp| (-82 OBJFUN)))) (-5 *3 (-560)) (-5 *2 (-1027)) (-5 *1 (-737)))) (-3455 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-671 (-213))) (-5 *6 (-121)) (-5 *7 (-671 (-560))) (-5 *8 (-3 (|:| |fn| (-384)) (|:| |fp| (-70 QPHESS)))) (-5 *3 (-560)) (-5 *4 (-213)) (-5 *2 (-1027)) (-5 *1 (-737)))) (-3459 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *5 (-121)) (-5 *2 (-1027)) (-5 *1 (-737)))) (-3463 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *5 (-3 (|:| |fn| (-384)) (|:| |fp| (-71 FUNCT1)))) (-5 *2 (-1027)) (-5 *1 (-737)))) (-3467 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *5 (-3 (|:| |fn| (-384)) (|:| |fp| (-68 LSFUN2)))) (-5 *2 (-1027)) (-5 *1 (-737)))) (-3471 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *5 (-3 (|:| |fn| (-384)) (|:| |fp| (-84 LSFUN1)))) (-5 *2 (-1027)) (-5 *1 (-737)))) (-3475 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-560)) (-5 *5 (-121)) (-5 *6 (-671 (-213))) (-5 *7 (-3 (|:| |fn| (-384)) (|:| |fp| (-82 OBJFUN)))) (-5 *4 (-213)) (-5 *2 (-1027)) (-5 *1 (-737))))) -(-10 -7 (-15 -3475 ((-1027) (-560) (-213) (-213) (-560) (-213) (-121) (-213) (-213) (-560) (-560) (-560) (-560) (-671 (-213)) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-82 OBJFUN))))) (-15 -3471 ((-1027) (-560) (-560) (-560) (-560) (-671 (-213)) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-84 LSFUN1))))) (-15 -3467 ((-1027) (-560) (-560) (-560) (-560) (-671 (-213)) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-68 LSFUN2))))) (-15 -3463 ((-1027) (-560) (-560) (-560) (-560) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-71 FUNCT1))))) (-15 -3459 ((-1027) (-560) (-560) (-560) (-560) (-560) (-560) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-121) (-560) (-560) (-671 (-213)) (-560))) (-15 -3455 ((-1027) (-560) (-560) (-560) (-560) (-560) (-560) (-560) (-560) (-213) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-121) (-121) (-121) (-560) (-560) (-671 (-213)) (-671 (-560)) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-70 QPHESS))))) (-15 -3450 ((-1027) (-560) (-560) (-560) (-560) (-560) (-560) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-560) (-560) (-121) (-213) (-560) (-213) (-213) (-121) (-213) (-213) (-213) (-213) (-121) (-560) (-560) (-560) (-560) (-560) (-213) (-213) (-213) (-560) (-560) (-560) (-560) (-560) (-671 (-560)) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-85 CONFUN))) (-3 (|:| |fn| (-384)) (|:| |fp| (-82 OBJFUN))))) (-15 -3444 ((-1027) (-560) (-560) (-560) (-213) (-671 (-213)) (-560) (-671 (-213)) (-560)))) -((-3480 (((-1027) (-1135) (-560) (-560) (-560) (-560) (-671 (-167 (-213))) (-671 (-167 (-213))) (-560)) 46)) (-3485 (((-1027) (-1135) (-1135) (-560) (-560) (-671 (-167 (-213))) (-560) (-671 (-167 (-213))) (-560) (-560) (-671 (-167 (-213))) (-560)) 45)) (-3490 (((-1027) (-560) (-560) (-560) (-671 (-167 (-213))) (-560)) 44)) (-3495 (((-1027) (-1135) (-560) (-560) (-560) (-560) (-671 (-213)) (-671 (-213)) (-560)) 40)) (-3502 (((-1027) (-1135) (-1135) (-560) (-560) (-671 (-213)) (-560) (-671 (-213)) (-560) (-560) (-671 (-213)) (-560)) 39)) (-3508 (((-1027) (-560) (-560) (-560) (-671 (-213)) (-560)) 36)) (-3514 (((-1027) (-560) (-671 (-213)) (-560) (-671 (-560)) (-560)) 35)) (-3520 (((-1027) (-560) (-560) (-560) (-560) (-626 (-121)) (-671 (-213)) (-671 (-560)) (-671 (-560)) (-213) (-213) (-560)) 34)) (-3526 (((-1027) (-560) (-560) (-560) (-671 (-560)) (-671 (-560)) (-671 (-560)) (-671 (-560)) (-121) (-213) (-121) (-671 (-560)) (-671 (-213)) (-560)) 33)) (-3531 (((-1027) (-560) (-560) (-560) (-560) (-213) (-121) (-121) (-626 (-121)) (-671 (-213)) (-671 (-560)) (-671 (-560)) (-560)) 32))) -(((-738) (-10 -7 (-15 -3531 ((-1027) (-560) (-560) (-560) (-560) (-213) (-121) (-121) (-626 (-121)) (-671 (-213)) (-671 (-560)) (-671 (-560)) (-560))) (-15 -3526 ((-1027) (-560) (-560) (-560) (-671 (-560)) (-671 (-560)) (-671 (-560)) (-671 (-560)) (-121) (-213) (-121) (-671 (-560)) (-671 (-213)) (-560))) (-15 -3520 ((-1027) (-560) (-560) (-560) (-560) (-626 (-121)) (-671 (-213)) (-671 (-560)) (-671 (-560)) (-213) (-213) (-560))) (-15 -3514 ((-1027) (-560) (-671 (-213)) (-560) (-671 (-560)) (-560))) (-15 -3508 ((-1027) (-560) (-560) (-560) (-671 (-213)) (-560))) (-15 -3502 ((-1027) (-1135) (-1135) (-560) (-560) (-671 (-213)) (-560) (-671 (-213)) (-560) (-560) (-671 (-213)) (-560))) (-15 -3495 ((-1027) (-1135) (-560) (-560) (-560) (-560) (-671 (-213)) (-671 (-213)) (-560))) (-15 -3490 ((-1027) (-560) (-560) (-560) (-671 (-167 (-213))) (-560))) (-15 -3485 ((-1027) (-1135) (-1135) (-560) (-560) (-671 (-167 (-213))) (-560) (-671 (-167 (-213))) (-560) (-560) (-671 (-167 (-213))) (-560))) (-15 -3480 ((-1027) (-1135) (-560) (-560) (-560) (-560) (-671 (-167 (-213))) (-671 (-167 (-213))) (-560))))) (T -738)) -((-3480 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1135)) (-5 *4 (-560)) (-5 *5 (-671 (-167 (-213)))) (-5 *2 (-1027)) (-5 *1 (-738)))) (-3485 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1135)) (-5 *4 (-560)) (-5 *5 (-671 (-167 (-213)))) (-5 *2 (-1027)) (-5 *1 (-738)))) (-3490 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-167 (-213)))) (-5 *2 (-1027)) (-5 *1 (-738)))) (-3495 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1135)) (-5 *4 (-560)) (-5 *5 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-738)))) (-3502 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1135)) (-5 *4 (-560)) (-5 *5 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-738)))) (-3508 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-738)))) (-3514 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-671 (-213))) (-5 *5 (-671 (-560))) (-5 *3 (-560)) (-5 *2 (-1027)) (-5 *1 (-738)))) (-3520 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-626 (-121))) (-5 *5 (-671 (-213))) (-5 *6 (-671 (-560))) (-5 *7 (-213)) (-5 *3 (-560)) (-5 *2 (-1027)) (-5 *1 (-738)))) (-3526 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-671 (-560))) (-5 *5 (-121)) (-5 *7 (-671 (-213))) (-5 *3 (-560)) (-5 *6 (-213)) (-5 *2 (-1027)) (-5 *1 (-738)))) (-3531 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-626 (-121))) (-5 *7 (-671 (-213))) (-5 *8 (-671 (-560))) (-5 *3 (-560)) (-5 *4 (-213)) (-5 *5 (-121)) (-5 *2 (-1027)) (-5 *1 (-738))))) -(-10 -7 (-15 -3531 ((-1027) (-560) (-560) (-560) (-560) (-213) (-121) (-121) (-626 (-121)) (-671 (-213)) (-671 (-560)) (-671 (-560)) (-560))) (-15 -3526 ((-1027) (-560) (-560) (-560) (-671 (-560)) (-671 (-560)) (-671 (-560)) (-671 (-560)) (-121) (-213) (-121) (-671 (-560)) (-671 (-213)) (-560))) (-15 -3520 ((-1027) (-560) (-560) (-560) (-560) (-626 (-121)) (-671 (-213)) (-671 (-560)) (-671 (-560)) (-213) (-213) (-560))) (-15 -3514 ((-1027) (-560) (-671 (-213)) (-560) (-671 (-560)) (-560))) (-15 -3508 ((-1027) (-560) (-560) (-560) (-671 (-213)) (-560))) (-15 -3502 ((-1027) (-1135) (-1135) (-560) (-560) (-671 (-213)) (-560) (-671 (-213)) (-560) (-560) (-671 (-213)) (-560))) (-15 -3495 ((-1027) (-1135) (-560) (-560) (-560) (-560) (-671 (-213)) (-671 (-213)) (-560))) (-15 -3490 ((-1027) (-560) (-560) (-560) (-671 (-167 (-213))) (-560))) (-15 -3485 ((-1027) (-1135) (-1135) (-560) (-560) (-671 (-167 (-213))) (-560) (-671 (-167 (-213))) (-560) (-560) (-671 (-167 (-213))) (-560))) (-15 -3480 ((-1027) (-1135) (-560) (-560) (-560) (-560) (-671 (-167 (-213))) (-671 (-167 (-213))) (-560)))) -((-3150 (((-1027) (-560) (-560) (-560) (-560) (-560) (-121) (-560) (-121) (-560) (-671 (-167 (-213))) (-671 (-167 (-213))) (-560)) 64)) (-3157 (((-1027) (-560) (-560) (-560) (-560) (-560) (-121) (-560) (-121) (-560) (-671 (-213)) (-671 (-213)) (-560)) 60)) (-3166 (((-1027) (-560) (-560) (-213) (-560) (-560) (-560) (-560) (-560) (-560) (-560) (-671 (-213)) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-72 DOT))) (-3 (|:| |fn| (-384)) (|:| |fp| (-73 IMAGE))) (-384)) 56) (((-1027) (-560) (-560) (-213) (-560) (-560) (-560) (-560) (-560) (-560) (-560) (-671 (-213)) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-72 DOT))) (-3 (|:| |fn| (-384)) (|:| |fp| (-73 IMAGE)))) 55)) (-3173 (((-1027) (-560) (-560) (-560) (-213) (-121) (-560) (-671 (-213)) (-671 (-213)) (-560)) 37)) (-3180 (((-1027) (-560) (-560) (-213) (-213) (-560) (-560) (-671 (-213)) (-560)) 33)) (-3187 (((-1027) (-671 (-213)) (-560) (-671 (-213)) (-560) (-560) (-560) (-560) (-560)) 29)) (-3195 (((-1027) (-560) (-560) (-560) (-671 (-213)) (-671 (-213)) (-560)) 28)) (-3203 (((-1027) (-560) (-560) (-560) (-560) (-560) (-671 (-213)) (-671 (-213)) (-560)) 27)) (-3210 (((-1027) (-560) (-560) (-560) (-671 (-213)) (-671 (-213)) (-560)) 26)) (-3217 (((-1027) (-560) (-560) (-560) (-560) (-671 (-213)) (-560)) 25)) (-3230 (((-1027) (-560) (-560) (-671 (-213)) (-560)) 24)) (-3237 (((-1027) (-560) (-560) (-560) (-560) (-671 (-213)) (-671 (-213)) (-560)) 23)) (-3244 (((-1027) (-560) (-560) (-560) (-671 (-213)) (-671 (-213)) (-560)) 22)) (-3250 (((-1027) (-671 (-213)) (-560) (-560) (-560) (-560)) 21)) (-3256 (((-1027) (-560) (-560) (-671 (-213)) (-560)) 20))) -(((-739) (-10 -7 (-15 -3256 ((-1027) (-560) (-560) (-671 (-213)) (-560))) (-15 -3250 ((-1027) (-671 (-213)) (-560) (-560) (-560) (-560))) (-15 -3244 ((-1027) (-560) (-560) (-560) (-671 (-213)) (-671 (-213)) (-560))) (-15 -3237 ((-1027) (-560) (-560) (-560) (-560) (-671 (-213)) (-671 (-213)) (-560))) (-15 -3230 ((-1027) (-560) (-560) (-671 (-213)) (-560))) (-15 -3217 ((-1027) (-560) (-560) (-560) (-560) (-671 (-213)) (-560))) (-15 -3210 ((-1027) (-560) (-560) (-560) (-671 (-213)) (-671 (-213)) (-560))) (-15 -3203 ((-1027) (-560) (-560) (-560) (-560) (-560) (-671 (-213)) (-671 (-213)) (-560))) (-15 -3195 ((-1027) (-560) (-560) (-560) (-671 (-213)) (-671 (-213)) (-560))) (-15 -3187 ((-1027) (-671 (-213)) (-560) (-671 (-213)) (-560) (-560) (-560) (-560) (-560))) (-15 -3180 ((-1027) (-560) (-560) (-213) (-213) (-560) (-560) (-671 (-213)) (-560))) (-15 -3173 ((-1027) (-560) (-560) (-560) (-213) (-121) (-560) (-671 (-213)) (-671 (-213)) (-560))) (-15 -3166 ((-1027) (-560) (-560) (-213) (-560) (-560) (-560) (-560) (-560) (-560) (-560) (-671 (-213)) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-72 DOT))) (-3 (|:| |fn| (-384)) (|:| |fp| (-73 IMAGE))))) (-15 -3166 ((-1027) (-560) (-560) (-213) (-560) (-560) (-560) (-560) (-560) (-560) (-560) (-671 (-213)) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-72 DOT))) (-3 (|:| |fn| (-384)) (|:| |fp| (-73 IMAGE))) (-384))) (-15 -3157 ((-1027) (-560) (-560) (-560) (-560) (-560) (-121) (-560) (-121) (-560) (-671 (-213)) (-671 (-213)) (-560))) (-15 -3150 ((-1027) (-560) (-560) (-560) (-560) (-560) (-121) (-560) (-121) (-560) (-671 (-167 (-213))) (-671 (-167 (-213))) (-560))))) (T -739)) -((-3150 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-560)) (-5 *4 (-121)) (-5 *5 (-671 (-167 (-213)))) (-5 *2 (-1027)) (-5 *1 (-739)))) (-3157 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-560)) (-5 *4 (-121)) (-5 *5 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-739)))) (-3166 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-560)) (-5 *5 (-671 (-213))) (-5 *6 (-3 (|:| |fn| (-384)) (|:| |fp| (-72 DOT)))) (-5 *7 (-3 (|:| |fn| (-384)) (|:| |fp| (-73 IMAGE)))) (-5 *8 (-384)) (-5 *4 (-213)) (-5 *2 (-1027)) (-5 *1 (-739)))) (-3166 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-560)) (-5 *5 (-671 (-213))) (-5 *6 (-3 (|:| |fn| (-384)) (|:| |fp| (-72 DOT)))) (-5 *7 (-3 (|:| |fn| (-384)) (|:| |fp| (-73 IMAGE)))) (-5 *4 (-213)) (-5 *2 (-1027)) (-5 *1 (-739)))) (-3173 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-560)) (-5 *5 (-121)) (-5 *6 (-671 (-213))) (-5 *4 (-213)) (-5 *2 (-1027)) (-5 *1 (-739)))) (-3180 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-560)) (-5 *5 (-671 (-213))) (-5 *4 (-213)) (-5 *2 (-1027)) (-5 *1 (-739)))) (-3187 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-671 (-213))) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-739)))) (-3195 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-739)))) (-3203 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-739)))) (-3210 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-739)))) (-3217 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-739)))) (-3230 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-739)))) (-3237 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-739)))) (-3244 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-739)))) (-3250 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-671 (-213))) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-739)))) (-3256 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-739))))) -(-10 -7 (-15 -3256 ((-1027) (-560) (-560) (-671 (-213)) (-560))) (-15 -3250 ((-1027) (-671 (-213)) (-560) (-560) (-560) (-560))) (-15 -3244 ((-1027) (-560) (-560) (-560) (-671 (-213)) (-671 (-213)) (-560))) (-15 -3237 ((-1027) (-560) (-560) (-560) (-560) (-671 (-213)) (-671 (-213)) (-560))) (-15 -3230 ((-1027) (-560) (-560) (-671 (-213)) (-560))) (-15 -3217 ((-1027) (-560) (-560) (-560) (-560) (-671 (-213)) (-560))) (-15 -3210 ((-1027) (-560) (-560) (-560) (-671 (-213)) (-671 (-213)) (-560))) (-15 -3203 ((-1027) (-560) (-560) (-560) (-560) (-560) (-671 (-213)) (-671 (-213)) (-560))) (-15 -3195 ((-1027) (-560) (-560) (-560) (-671 (-213)) (-671 (-213)) (-560))) (-15 -3187 ((-1027) (-671 (-213)) (-560) (-671 (-213)) (-560) (-560) (-560) (-560) (-560))) (-15 -3180 ((-1027) (-560) (-560) (-213) (-213) (-560) (-560) (-671 (-213)) (-560))) (-15 -3173 ((-1027) (-560) (-560) (-560) (-213) (-121) (-560) (-671 (-213)) (-671 (-213)) (-560))) (-15 -3166 ((-1027) (-560) (-560) (-213) (-560) (-560) (-560) (-560) (-560) (-560) (-560) (-671 (-213)) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-72 DOT))) (-3 (|:| |fn| (-384)) (|:| |fp| (-73 IMAGE))))) (-15 -3166 ((-1027) (-560) (-560) (-213) (-560) (-560) (-560) (-560) (-560) (-560) (-560) (-671 (-213)) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-72 DOT))) (-3 (|:| |fn| (-384)) (|:| |fp| (-73 IMAGE))) (-384))) (-15 -3157 ((-1027) (-560) (-560) (-560) (-560) (-560) (-121) (-560) (-121) (-560) (-671 (-213)) (-671 (-213)) (-560))) (-15 -3150 ((-1027) (-560) (-560) (-560) (-560) (-560) (-121) (-560) (-121) (-560) (-671 (-167 (-213))) (-671 (-167 (-213))) (-560)))) -((-4300 (((-1027) (-560) (-560) (-213) (-213) (-213) (-213) (-560) (-560) (-560) (-560) (-671 (-213)) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-75 APROD)))) 60)) (-4307 (((-1027) (-560) (-671 (-213)) (-560) (-671 (-213)) (-671 (-560)) (-560) (-671 (-213)) (-560) (-560) (-560) (-560)) 56)) (-4314 (((-1027) (-560) (-671 (-213)) (-121) (-213) (-560) (-560) (-560) (-560) (-213) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-73 APROD))) (-3 (|:| |fn| (-384)) (|:| |fp| (-78 MSOLVE)))) 55)) (-4321 (((-1027) (-560) (-560) (-671 (-213)) (-560) (-671 (-560)) (-560) (-671 (-560)) (-671 (-213)) (-671 (-560)) (-671 (-560)) (-671 (-213)) (-671 (-213)) (-671 (-560)) (-560)) 36)) (-4326 (((-1027) (-560) (-560) (-560) (-213) (-560) (-671 (-213)) (-671 (-213)) (-560)) 35)) (-4334 (((-1027) (-560) (-560) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-560)) 31)) (-4341 (((-1027) (-560) (-671 (-213)) (-560) (-671 (-560)) (-671 (-560)) (-560) (-671 (-560)) (-671 (-213))) 30)) (-4347 (((-1027) (-671 (-213)) (-560) (-671 (-213)) (-560) (-560) (-560)) 26)) (-4354 (((-1027) (-560) (-671 (-213)) (-560) (-671 (-213)) (-560)) 25)) (-4366 (((-1027) (-560) (-671 (-213)) (-560) (-671 (-213)) (-560)) 24)) (-3055 (((-1027) (-560) (-671 (-167 (-213))) (-560) (-560) (-560) (-560) (-671 (-167 (-213))) (-560)) 20))) -(((-740) (-10 -7 (-15 -3055 ((-1027) (-560) (-671 (-167 (-213))) (-560) (-560) (-560) (-560) (-671 (-167 (-213))) (-560))) (-15 -4366 ((-1027) (-560) (-671 (-213)) (-560) (-671 (-213)) (-560))) (-15 -4354 ((-1027) (-560) (-671 (-213)) (-560) (-671 (-213)) (-560))) (-15 -4347 ((-1027) (-671 (-213)) (-560) (-671 (-213)) (-560) (-560) (-560))) (-15 -4341 ((-1027) (-560) (-671 (-213)) (-560) (-671 (-560)) (-671 (-560)) (-560) (-671 (-560)) (-671 (-213)))) (-15 -4334 ((-1027) (-560) (-560) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-560))) (-15 -4326 ((-1027) (-560) (-560) (-560) (-213) (-560) (-671 (-213)) (-671 (-213)) (-560))) (-15 -4321 ((-1027) (-560) (-560) (-671 (-213)) (-560) (-671 (-560)) (-560) (-671 (-560)) (-671 (-213)) (-671 (-560)) (-671 (-560)) (-671 (-213)) (-671 (-213)) (-671 (-560)) (-560))) (-15 -4314 ((-1027) (-560) (-671 (-213)) (-121) (-213) (-560) (-560) (-560) (-560) (-213) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-73 APROD))) (-3 (|:| |fn| (-384)) (|:| |fp| (-78 MSOLVE))))) (-15 -4307 ((-1027) (-560) (-671 (-213)) (-560) (-671 (-213)) (-671 (-560)) (-560) (-671 (-213)) (-560) (-560) (-560) (-560))) (-15 -4300 ((-1027) (-560) (-560) (-213) (-213) (-213) (-213) (-560) (-560) (-560) (-560) (-671 (-213)) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-75 APROD))))))) (T -740)) -((-4300 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-560)) (-5 *5 (-671 (-213))) (-5 *6 (-3 (|:| |fn| (-384)) (|:| |fp| (-75 APROD)))) (-5 *4 (-213)) (-5 *2 (-1027)) (-5 *1 (-740)))) (-4307 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-671 (-213))) (-5 *5 (-671 (-560))) (-5 *3 (-560)) (-5 *2 (-1027)) (-5 *1 (-740)))) (-4314 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *5 (-121)) (-5 *6 (-213)) (-5 *7 (-3 (|:| |fn| (-384)) (|:| |fp| (-73 APROD)))) (-5 *8 (-3 (|:| |fn| (-384)) (|:| |fp| (-78 MSOLVE)))) (-5 *2 (-1027)) (-5 *1 (-740)))) (-4321 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-671 (-213))) (-5 *5 (-671 (-560))) (-5 *3 (-560)) (-5 *2 (-1027)) (-5 *1 (-740)))) (-4326 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-560)) (-5 *5 (-671 (-213))) (-5 *4 (-213)) (-5 *2 (-1027)) (-5 *1 (-740)))) (-4334 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-740)))) (-4341 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-671 (-213))) (-5 *5 (-671 (-560))) (-5 *3 (-560)) (-5 *2 (-1027)) (-5 *1 (-740)))) (-4347 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-671 (-213))) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-740)))) (-4354 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-740)))) (-4366 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-740)))) (-3055 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-167 (-213)))) (-5 *2 (-1027)) (-5 *1 (-740))))) -(-10 -7 (-15 -3055 ((-1027) (-560) (-671 (-167 (-213))) (-560) (-560) (-560) (-560) (-671 (-167 (-213))) (-560))) (-15 -4366 ((-1027) (-560) (-671 (-213)) (-560) (-671 (-213)) (-560))) (-15 -4354 ((-1027) (-560) (-671 (-213)) (-560) (-671 (-213)) (-560))) (-15 -4347 ((-1027) (-671 (-213)) (-560) (-671 (-213)) (-560) (-560) (-560))) (-15 -4341 ((-1027) (-560) (-671 (-213)) (-560) (-671 (-560)) (-671 (-560)) (-560) (-671 (-560)) (-671 (-213)))) (-15 -4334 ((-1027) (-560) (-560) (-671 (-213)) (-671 (-213)) (-671 (-213)) (-560))) (-15 -4326 ((-1027) (-560) (-560) (-560) (-213) (-560) (-671 (-213)) (-671 (-213)) (-560))) (-15 -4321 ((-1027) (-560) (-560) (-671 (-213)) (-560) (-671 (-560)) (-560) (-671 (-560)) (-671 (-213)) (-671 (-560)) (-671 (-560)) (-671 (-213)) (-671 (-213)) (-671 (-560)) (-560))) (-15 -4314 ((-1027) (-560) (-671 (-213)) (-121) (-213) (-560) (-560) (-560) (-560) (-213) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-73 APROD))) (-3 (|:| |fn| (-384)) (|:| |fp| (-78 MSOLVE))))) (-15 -4307 ((-1027) (-560) (-671 (-213)) (-560) (-671 (-213)) (-671 (-560)) (-560) (-671 (-213)) (-560) (-560) (-560) (-560))) (-15 -4300 ((-1027) (-560) (-560) (-213) (-213) (-213) (-213) (-560) (-560) (-560) (-560) (-671 (-213)) (-560) (-3 (|:| |fn| (-384)) (|:| |fp| (-75 APROD)))))) -((-3097 (((-1027) (-1135) (-560) (-560) (-671 (-213)) (-560) (-560) (-671 (-213))) 28)) (-3104 (((-1027) (-1135) (-560) (-560) (-671 (-213))) 27)) (-3111 (((-1027) (-1135) (-560) (-560) (-671 (-213)) (-560) (-671 (-560)) (-560) (-671 (-213))) 26)) (-3118 (((-1027) (-560) (-560) (-560) (-671 (-213))) 20))) -(((-741) (-10 -7 (-15 -3118 ((-1027) (-560) (-560) (-560) (-671 (-213)))) (-15 -3111 ((-1027) (-1135) (-560) (-560) (-671 (-213)) (-560) (-671 (-560)) (-560) (-671 (-213)))) (-15 -3104 ((-1027) (-1135) (-560) (-560) (-671 (-213)))) (-15 -3097 ((-1027) (-1135) (-560) (-560) (-671 (-213)) (-560) (-560) (-671 (-213)))))) (T -741)) -((-3097 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1135)) (-5 *4 (-560)) (-5 *5 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-741)))) (-3104 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1135)) (-5 *4 (-560)) (-5 *5 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-741)))) (-3111 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1135)) (-5 *5 (-671 (-213))) (-5 *6 (-671 (-560))) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-741)))) (-3118 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-741))))) -(-10 -7 (-15 -3118 ((-1027) (-560) (-560) (-560) (-671 (-213)))) (-15 -3111 ((-1027) (-1135) (-560) (-560) (-671 (-213)) (-560) (-671 (-560)) (-560) (-671 (-213)))) (-15 -3104 ((-1027) (-1135) (-560) (-560) (-671 (-213)))) (-15 -3097 ((-1027) (-1135) (-560) (-560) (-671 (-213)) (-560) (-560) (-671 (-213))))) -((-4145 (((-1027) (-213) (-213) (-213) (-213) (-560)) 62)) (-4149 (((-1027) (-213) (-213) (-213) (-560)) 61)) (-4155 (((-1027) (-213) (-213) (-213) (-560)) 60)) (-4165 (((-1027) (-213) (-213) (-560)) 59)) (-4171 (((-1027) (-213) (-560)) 58)) (-4185 (((-1027) (-213) (-560)) 57)) (-4194 (((-1027) (-213) (-560)) 56)) (-4205 (((-1027) (-213) (-560)) 55)) (-4230 (((-1027) (-213) (-560)) 54)) (-4241 (((-1027) (-213) (-560)) 53)) (-4258 (((-1027) (-213) (-167 (-213)) (-560) (-1135) (-560)) 52)) (-4265 (((-1027) (-213) (-167 (-213)) (-560) (-1135) (-560)) 51)) (-4272 (((-1027) (-213) (-560)) 50)) (-4281 (((-1027) (-213) (-560)) 49)) (-4285 (((-1027) (-213) (-560)) 48)) (-4294 (((-1027) (-213) (-560)) 47)) (-3132 (((-1027) (-560) (-213) (-167 (-213)) (-560) (-1135) (-560)) 46)) (-3138 (((-1027) (-1135) (-167 (-213)) (-1135) (-560)) 45)) (-3144 (((-1027) (-1135) (-167 (-213)) (-1135) (-560)) 44)) (-4018 (((-1027) (-213) (-167 (-213)) (-560) (-1135) (-560)) 43)) (-4026 (((-1027) (-213) (-167 (-213)) (-560) (-1135) (-560)) 42)) (-4032 (((-1027) (-213) (-560)) 39)) (-4038 (((-1027) (-213) (-560)) 38)) (-4044 (((-1027) (-213) (-560)) 37)) (-4049 (((-1027) (-213) (-560)) 36)) (-4054 (((-1027) (-213) (-560)) 35)) (-4061 (((-1027) (-213) (-560)) 34)) (-4070 (((-1027) (-213) (-560)) 33)) (-4077 (((-1027) (-213) (-560)) 32)) (-4084 (((-1027) (-213) (-560)) 31)) (-4095 (((-1027) (-213) (-560)) 30)) (-4102 (((-1027) (-213) (-213) (-213) (-560)) 29)) (-4109 (((-1027) (-213) (-560)) 28)) (-4113 (((-1027) (-213) (-560)) 27)) (-4120 (((-1027) (-213) (-560)) 26)) (-4128 (((-1027) (-213) (-560)) 25)) (-4134 (((-1027) (-213) (-560)) 24)) (-4140 (((-1027) (-167 (-213)) (-560)) 20))) -(((-742) (-10 -7 (-15 -4140 ((-1027) (-167 (-213)) (-560))) (-15 -4134 ((-1027) (-213) (-560))) (-15 -4128 ((-1027) (-213) (-560))) (-15 -4120 ((-1027) (-213) (-560))) (-15 -4113 ((-1027) (-213) (-560))) (-15 -4109 ((-1027) (-213) (-560))) (-15 -4102 ((-1027) (-213) (-213) (-213) (-560))) (-15 -4095 ((-1027) (-213) (-560))) (-15 -4084 ((-1027) (-213) (-560))) (-15 -4077 ((-1027) (-213) (-560))) (-15 -4070 ((-1027) (-213) (-560))) (-15 -4061 ((-1027) (-213) (-560))) (-15 -4054 ((-1027) (-213) (-560))) (-15 -4049 ((-1027) (-213) (-560))) (-15 -4044 ((-1027) (-213) (-560))) (-15 -4038 ((-1027) (-213) (-560))) (-15 -4032 ((-1027) (-213) (-560))) (-15 -4026 ((-1027) (-213) (-167 (-213)) (-560) (-1135) (-560))) (-15 -4018 ((-1027) (-213) (-167 (-213)) (-560) (-1135) (-560))) (-15 -3144 ((-1027) (-1135) (-167 (-213)) (-1135) (-560))) (-15 -3138 ((-1027) (-1135) (-167 (-213)) (-1135) (-560))) (-15 -3132 ((-1027) (-560) (-213) (-167 (-213)) (-560) (-1135) (-560))) (-15 -4294 ((-1027) (-213) (-560))) (-15 -4285 ((-1027) (-213) (-560))) (-15 -4281 ((-1027) (-213) (-560))) (-15 -4272 ((-1027) (-213) (-560))) (-15 -4265 ((-1027) (-213) (-167 (-213)) (-560) (-1135) (-560))) (-15 -4258 ((-1027) (-213) (-167 (-213)) (-560) (-1135) (-560))) (-15 -4241 ((-1027) (-213) (-560))) (-15 -4230 ((-1027) (-213) (-560))) (-15 -4205 ((-1027) (-213) (-560))) (-15 -4194 ((-1027) (-213) (-560))) (-15 -4185 ((-1027) (-213) (-560))) (-15 -4171 ((-1027) (-213) (-560))) (-15 -4165 ((-1027) (-213) (-213) (-560))) (-15 -4155 ((-1027) (-213) (-213) (-213) (-560))) (-15 -4149 ((-1027) (-213) (-213) (-213) (-560))) (-15 -4145 ((-1027) (-213) (-213) (-213) (-213) (-560))))) (T -742)) -((-4145 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-742)))) (-4149 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-742)))) (-4155 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-742)))) (-4165 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-742)))) (-4171 (*1 *2 *3 *4) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-742)))) (-4185 (*1 *2 *3 *4) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-742)))) (-4194 (*1 *2 *3 *4) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-742)))) (-4205 (*1 *2 *3 *4) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-742)))) (-4230 (*1 *2 *3 *4) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-742)))) (-4241 (*1 *2 *3 *4) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-742)))) (-4258 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-167 (-213))) (-5 *5 (-560)) (-5 *6 (-1135)) (-5 *3 (-213)) (-5 *2 (-1027)) (-5 *1 (-742)))) (-4265 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-167 (-213))) (-5 *5 (-560)) (-5 *6 (-1135)) (-5 *3 (-213)) (-5 *2 (-1027)) (-5 *1 (-742)))) (-4272 (*1 *2 *3 *4) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-742)))) (-4281 (*1 *2 *3 *4) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-742)))) (-4285 (*1 *2 *3 *4) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-742)))) (-4294 (*1 *2 *3 *4) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-742)))) (-3132 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-560)) (-5 *5 (-167 (-213))) (-5 *6 (-1135)) (-5 *4 (-213)) (-5 *2 (-1027)) (-5 *1 (-742)))) (-3138 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1135)) (-5 *4 (-167 (-213))) (-5 *5 (-560)) (-5 *2 (-1027)) (-5 *1 (-742)))) (-3144 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1135)) (-5 *4 (-167 (-213))) (-5 *5 (-560)) (-5 *2 (-1027)) (-5 *1 (-742)))) (-4018 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-167 (-213))) (-5 *5 (-560)) (-5 *6 (-1135)) (-5 *3 (-213)) (-5 *2 (-1027)) (-5 *1 (-742)))) (-4026 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-167 (-213))) (-5 *5 (-560)) (-5 *6 (-1135)) (-5 *3 (-213)) (-5 *2 (-1027)) (-5 *1 (-742)))) (-4032 (*1 *2 *3 *4) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-742)))) (-4038 (*1 *2 *3 *4) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-742)))) (-4044 (*1 *2 *3 *4) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-742)))) (-4049 (*1 *2 *3 *4) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-742)))) (-4054 (*1 *2 *3 *4) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-742)))) (-4061 (*1 *2 *3 *4) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-742)))) (-4070 (*1 *2 *3 *4) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-742)))) (-4077 (*1 *2 *3 *4) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-742)))) (-4084 (*1 *2 *3 *4) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-742)))) (-4095 (*1 *2 *3 *4) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-742)))) (-4102 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-742)))) (-4109 (*1 *2 *3 *4) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-742)))) (-4113 (*1 *2 *3 *4) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-742)))) (-4120 (*1 *2 *3 *4) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-742)))) (-4128 (*1 *2 *3 *4) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-742)))) (-4134 (*1 *2 *3 *4) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-742)))) (-4140 (*1 *2 *3 *4) (-12 (-5 *3 (-167 (-213))) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-742))))) -(-10 -7 (-15 -4140 ((-1027) (-167 (-213)) (-560))) (-15 -4134 ((-1027) (-213) (-560))) (-15 -4128 ((-1027) (-213) (-560))) (-15 -4120 ((-1027) (-213) (-560))) (-15 -4113 ((-1027) (-213) (-560))) (-15 -4109 ((-1027) (-213) (-560))) (-15 -4102 ((-1027) (-213) (-213) (-213) (-560))) (-15 -4095 ((-1027) (-213) (-560))) (-15 -4084 ((-1027) (-213) (-560))) (-15 -4077 ((-1027) (-213) (-560))) (-15 -4070 ((-1027) (-213) (-560))) (-15 -4061 ((-1027) (-213) (-560))) (-15 -4054 ((-1027) (-213) (-560))) (-15 -4049 ((-1027) (-213) (-560))) (-15 -4044 ((-1027) (-213) (-560))) (-15 -4038 ((-1027) (-213) (-560))) (-15 -4032 ((-1027) (-213) (-560))) (-15 -4026 ((-1027) (-213) (-167 (-213)) (-560) (-1135) (-560))) (-15 -4018 ((-1027) (-213) (-167 (-213)) (-560) (-1135) (-560))) (-15 -3144 ((-1027) (-1135) (-167 (-213)) (-1135) (-560))) (-15 -3138 ((-1027) (-1135) (-167 (-213)) (-1135) (-560))) (-15 -3132 ((-1027) (-560) (-213) (-167 (-213)) (-560) (-1135) (-560))) (-15 -4294 ((-1027) (-213) (-560))) (-15 -4285 ((-1027) (-213) (-560))) (-15 -4281 ((-1027) (-213) (-560))) (-15 -4272 ((-1027) (-213) (-560))) (-15 -4265 ((-1027) (-213) (-167 (-213)) (-560) (-1135) (-560))) (-15 -4258 ((-1027) (-213) (-167 (-213)) (-560) (-1135) (-560))) (-15 -4241 ((-1027) (-213) (-560))) (-15 -4230 ((-1027) (-213) (-560))) (-15 -4205 ((-1027) (-213) (-560))) (-15 -4194 ((-1027) (-213) (-560))) (-15 -4185 ((-1027) (-213) (-560))) (-15 -4171 ((-1027) (-213) (-560))) (-15 -4165 ((-1027) (-213) (-213) (-560))) (-15 -4155 ((-1027) (-213) (-213) (-213) (-560))) (-15 -4149 ((-1027) (-213) (-213) (-213) (-560))) (-15 -4145 ((-1027) (-213) (-213) (-213) (-213) (-560)))) -((-4441 (((-1241)) 18)) (-1872 (((-1135)) 22)) (-2444 (((-1135)) 21)) (-3578 (((-1086) (-1153) (-671 (-560))) 35) (((-1086) (-1153) (-671 (-213))) 31)) (-1482 (((-121)) 16)) (-3886 (((-1135) (-1135)) 25))) -(((-743) (-10 -7 (-15 -2444 ((-1135))) (-15 -1872 ((-1135))) (-15 -3886 ((-1135) (-1135))) (-15 -3578 ((-1086) (-1153) (-671 (-213)))) (-15 -3578 ((-1086) (-1153) (-671 (-560)))) (-15 -1482 ((-121))) (-15 -4441 ((-1241))))) (T -743)) -((-4441 (*1 *2) (-12 (-5 *2 (-1241)) (-5 *1 (-743)))) (-1482 (*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-743)))) (-3578 (*1 *2 *3 *4) (-12 (-5 *3 (-1153)) (-5 *4 (-671 (-560))) (-5 *2 (-1086)) (-5 *1 (-743)))) (-3578 (*1 *2 *3 *4) (-12 (-5 *3 (-1153)) (-5 *4 (-671 (-213))) (-5 *2 (-1086)) (-5 *1 (-743)))) (-3886 (*1 *2 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-743)))) (-1872 (*1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-743)))) (-2444 (*1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-743))))) -(-10 -7 (-15 -2444 ((-1135))) (-15 -1872 ((-1135))) (-15 -3886 ((-1135) (-1135))) (-15 -3578 ((-1086) (-1153) (-671 (-213)))) (-15 -3578 ((-1086) (-1153) (-671 (-560)))) (-15 -1482 ((-121))) (-15 -4441 ((-1241)))) -((-1671 (($ $ $) 10)) (-2676 (($ $ $ $) 9)) (-3127 (($ $ $) 12))) -(((-744 |#1|) (-10 -8 (-15 -3127 (|#1| |#1| |#1|)) (-15 -1671 (|#1| |#1| |#1|)) (-15 -2676 (|#1| |#1| |#1| |#1|))) (-745)) (T -744)) -NIL -(-10 -8 (-15 -3127 (|#1| |#1| |#1|)) (-15 -1671 (|#1| |#1| |#1|)) (-15 -2676 (|#1| |#1| |#1| |#1|))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-2314 (((-3 $ "failed") $ $) 18)) (-4236 (($) 16 T CONST)) (-1498 (($ $ (-909)) 27)) (-2137 (($ $ (-909)) 28)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-1671 (($ $ $) 24)) (-2801 (((-842) $) 11)) (-2676 (($ $ $ $) 25)) (-3127 (($ $ $) 23)) (-3304 (($) 17 T CONST)) (-1653 (((-121) $ $) 6)) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 29)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 26))) -(((-745) (-1267)) (T -745)) -((-2676 (*1 *1 *1 *1 *1) (-4 *1 (-745))) (-1671 (*1 *1 *1 *1) (-4 *1 (-745))) (-3127 (*1 *1 *1 *1) (-4 *1 (-745)))) -(-13 (-21) (-702) (-10 -8 (-15 -2676 ($ $ $ $)) (-15 -1671 ($ $ $)) (-15 -3127 ($ $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-105) . T) ((-137) . T) ((-600 (-842)) . T) ((-702) . T) ((-1082) . T)) -((-2801 (((-842) $) NIL) (($ (-560)) 10))) -(((-746 |#1|) (-10 -8 (-15 -2801 (|#1| (-560))) (-15 -2801 ((-842) |#1|))) (-747)) (T -746)) -NIL -(-10 -8 (-15 -2801 (|#1| (-560))) (-15 -2801 ((-842) |#1|))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-2314 (((-3 $ "failed") $ $) 18)) (-4236 (($) 16 T CONST)) (-1309 (((-3 $ "failed") $) 39)) (-1498 (($ $ (-909)) 27) (($ $ (-755)) 34)) (-1823 (((-3 $ "failed") $) 37)) (-2642 (((-121) $) 33)) (-2966 (((-3 $ "failed") $) 38)) (-2137 (($ $ (-909)) 28) (($ $ (-755)) 35)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-1671 (($ $ $) 24)) (-2801 (((-842) $) 11) (($ (-560)) 30)) (-1751 (((-755)) 31)) (-2676 (($ $ $ $) 25)) (-3127 (($ $ $) 23)) (-3304 (($) 17 T CONST)) (-1459 (($) 32 T CONST)) (-1653 (((-121) $ $) 6)) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 29) (($ $ (-755)) 36)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 26))) -(((-747) (-1267)) (T -747)) -((-1751 (*1 *2) (-12 (-4 *1 (-747)) (-5 *2 (-755)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-747))))) -(-13 (-745) (-704) (-10 -8 (-15 -1751 ((-755))) (-15 -2801 ($ (-560))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-105) . T) ((-137) . T) ((-600 (-842)) . T) ((-702) . T) ((-704) . T) ((-745) . T) ((-1082) . T)) -((-4266 (((-626 (-2 (|:| |outval| (-167 |#1|)) (|:| |outmult| (-560)) (|:| |outvect| (-626 (-671 (-167 |#1|)))))) (-671 (-167 (-403 (-560)))) |#1|) 27)) (-2438 (((-626 (-167 |#1|)) (-671 (-167 (-403 (-560)))) |#1|) 19)) (-3642 (((-945 (-167 (-403 (-560)))) (-671 (-167 (-403 (-560)))) (-1153)) 16) (((-945 (-167 (-403 (-560)))) (-671 (-167 (-403 (-560))))) 15))) -(((-748 |#1|) (-10 -7 (-15 -3642 ((-945 (-167 (-403 (-560)))) (-671 (-167 (-403 (-560)))))) (-15 -3642 ((-945 (-167 (-403 (-560)))) (-671 (-167 (-403 (-560)))) (-1153))) (-15 -2438 ((-626 (-167 |#1|)) (-671 (-167 (-403 (-560)))) |#1|)) (-15 -4266 ((-626 (-2 (|:| |outval| (-167 |#1|)) (|:| |outmult| (-560)) (|:| |outvect| (-626 (-671 (-167 |#1|)))))) (-671 (-167 (-403 (-560)))) |#1|))) (-13 (-359) (-832))) (T -748)) -((-4266 (*1 *2 *3 *4) (-12 (-5 *3 (-671 (-167 (-403 (-560))))) (-5 *2 (-626 (-2 (|:| |outval| (-167 *4)) (|:| |outmult| (-560)) (|:| |outvect| (-626 (-671 (-167 *4))))))) (-5 *1 (-748 *4)) (-4 *4 (-13 (-359) (-832))))) (-2438 (*1 *2 *3 *4) (-12 (-5 *3 (-671 (-167 (-403 (-560))))) (-5 *2 (-626 (-167 *4))) (-5 *1 (-748 *4)) (-4 *4 (-13 (-359) (-832))))) (-3642 (*1 *2 *3 *4) (-12 (-5 *3 (-671 (-167 (-403 (-560))))) (-5 *4 (-1153)) (-5 *2 (-945 (-167 (-403 (-560))))) (-5 *1 (-748 *5)) (-4 *5 (-13 (-359) (-832))))) (-3642 (*1 *2 *3) (-12 (-5 *3 (-671 (-167 (-403 (-560))))) (-5 *2 (-945 (-167 (-403 (-560))))) (-5 *1 (-748 *4)) (-4 *4 (-13 (-359) (-832)))))) -(-10 -7 (-15 -3642 ((-945 (-167 (-403 (-560)))) (-671 (-167 (-403 (-560)))))) (-15 -3642 ((-945 (-167 (-403 (-560)))) (-671 (-167 (-403 (-560)))) (-1153))) (-15 -2438 ((-626 (-167 |#1|)) (-671 (-167 (-403 (-560)))) |#1|)) (-15 -4266 ((-626 (-2 (|:| |outval| (-167 |#1|)) (|:| |outmult| (-560)) (|:| |outvect| (-626 (-671 (-167 |#1|)))))) (-671 (-167 (-403 (-560)))) |#1|))) -((-1617 (((-171 (-560)) |#1|) 25))) -(((-749 |#1|) (-10 -7 (-15 -1617 ((-171 (-560)) |#1|))) (-400)) (T -749)) -((-1617 (*1 *2 *3) (-12 (-5 *2 (-171 (-560))) (-5 *1 (-749 *3)) (-4 *3 (-400))))) -(-10 -7 (-15 -1617 ((-171 (-560)) |#1|))) -((-3385 ((|#1| |#1| |#1|) 24)) (-4025 ((|#1| |#1| |#1|) 23)) (-4180 ((|#1| |#1| |#1|) 31)) (-2107 ((|#1| |#1| |#1|) 27)) (-3449 (((-3 |#1| "failed") |#1| |#1|) 26)) (-4348 (((-2 (|:| -2583 |#1|) (|:| -4397 |#1|)) |#1| |#1|) 22))) -(((-750 |#1| |#2|) (-10 -7 (-15 -4348 ((-2 (|:| -2583 |#1|) (|:| -4397 |#1|)) |#1| |#1|)) (-15 -4025 (|#1| |#1| |#1|)) (-15 -3385 (|#1| |#1| |#1|)) (-15 -3449 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2107 (|#1| |#1| |#1|)) (-15 -4180 (|#1| |#1| |#1|))) (-690 |#2|) (-359)) (T -750)) -((-4180 (*1 *2 *2 *2) (-12 (-4 *3 (-359)) (-5 *1 (-750 *2 *3)) (-4 *2 (-690 *3)))) (-2107 (*1 *2 *2 *2) (-12 (-4 *3 (-359)) (-5 *1 (-750 *2 *3)) (-4 *2 (-690 *3)))) (-3449 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-359)) (-5 *1 (-750 *2 *3)) (-4 *2 (-690 *3)))) (-3385 (*1 *2 *2 *2) (-12 (-4 *3 (-359)) (-5 *1 (-750 *2 *3)) (-4 *2 (-690 *3)))) (-4025 (*1 *2 *2 *2) (-12 (-4 *3 (-359)) (-5 *1 (-750 *2 *3)) (-4 *2 (-690 *3)))) (-4348 (*1 *2 *3 *3) (-12 (-4 *4 (-359)) (-5 *2 (-2 (|:| -2583 *3) (|:| -4397 *3))) (-5 *1 (-750 *3 *4)) (-4 *3 (-690 *4))))) -(-10 -7 (-15 -4348 ((-2 (|:| -2583 |#1|) (|:| -4397 |#1|)) |#1| |#1|)) (-15 -4025 (|#1| |#1| |#1|)) (-15 -3385 (|#1| |#1| |#1|)) (-15 -3449 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2107 (|#1| |#1| |#1|)) (-15 -4180 (|#1| |#1| |#1|))) -((-1908 (((-1149 |#1|) (-626 |#1|)) 25))) -(((-751 |#1|) (-10 -7 (-15 -1908 ((-1149 |#1|) (-626 |#1|)))) (-550)) (T -751)) -((-1908 (*1 *2 *3) (-12 (-5 *3 (-626 *4)) (-4 *4 (-550)) (-5 *2 (-1149 *4)) (-5 *1 (-751 *4))))) -(-10 -7 (-15 -1908 ((-1149 |#1|) (-626 |#1|)))) -((-2434 (((-2 (|:| -4374 (-671 (-560))) (|:| |basisDen| (-560)) (|:| |basisInv| (-671 (-560)))) (-560)) 58)) (-1335 (((-2 (|:| -4374 (-671 (-560))) (|:| |basisDen| (-560)) (|:| |basisInv| (-671 (-560))))) 56)) (-4069 (((-560)) 68))) -(((-752 |#1| |#2|) (-10 -7 (-15 -4069 ((-560))) (-15 -1335 ((-2 (|:| -4374 (-671 (-560))) (|:| |basisDen| (-560)) (|:| |basisInv| (-671 (-560)))))) (-15 -2434 ((-2 (|:| -4374 (-671 (-560))) (|:| |basisDen| (-560)) (|:| |basisInv| (-671 (-560)))) (-560)))) (-1211 (-560)) (-405 (-560) |#1|)) (T -752)) -((-2434 (*1 *2 *3) (-12 (-5 *3 (-560)) (-4 *4 (-1211 *3)) (-5 *2 (-2 (|:| -4374 (-671 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-671 *3)))) (-5 *1 (-752 *4 *5)) (-4 *5 (-405 *3 *4)))) (-1335 (*1 *2) (-12 (-4 *3 (-1211 (-560))) (-5 *2 (-2 (|:| -4374 (-671 (-560))) (|:| |basisDen| (-560)) (|:| |basisInv| (-671 (-560))))) (-5 *1 (-752 *3 *4)) (-4 *4 (-405 (-560) *3)))) (-4069 (*1 *2) (-12 (-4 *3 (-1211 *2)) (-5 *2 (-560)) (-5 *1 (-752 *3 *4)) (-4 *4 (-405 *2 *3))))) -(-10 -7 (-15 -4069 ((-560))) (-15 -1335 ((-2 (|:| -4374 (-671 (-560))) (|:| |basisDen| (-560)) (|:| |basisInv| (-671 (-560)))))) (-15 -2434 ((-2 (|:| -4374 (-671 (-560))) (|:| |basisDen| (-560)) (|:| |basisInv| (-671 (-560)))) (-560)))) -((-2601 (((-121) $ $) NIL)) (-3001 (((-3 (|:| |nia| (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (|:| |mdnia| (-2 (|:| |fn| (-304 (-213))) (|:| -1396 (-626 (-1076 (-827 (-213))))) (|:| |abserr| (-213)) (|:| |relerr| (-213))))) $) 15)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2801 (((-842) $) 14) (($ (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) 8) (($ (-2 (|:| |fn| (-304 (-213))) (|:| -1396 (-626 (-1076 (-827 (-213))))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) 10) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (|:| |mdnia| (-2 (|:| |fn| (-304 (-213))) (|:| -1396 (-626 (-1076 (-827 (-213))))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))))) 12)) (-1653 (((-121) $ $) NIL))) -(((-753) (-13 (-1082) (-10 -8 (-15 -2801 ($ (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213))))) (-15 -2801 ($ (-2 (|:| |fn| (-304 (-213))) (|:| -1396 (-626 (-1076 (-827 (-213))))) (|:| |abserr| (-213)) (|:| |relerr| (-213))))) (-15 -2801 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (|:| |mdnia| (-2 (|:| |fn| (-304 (-213))) (|:| -1396 (-626 (-1076 (-827 (-213))))) (|:| |abserr| (-213)) (|:| |relerr| (-213))))))) (-15 -2801 ((-842) $)) (-15 -3001 ((-3 (|:| |nia| (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (|:| |mdnia| (-2 (|:| |fn| (-304 (-213))) (|:| -1396 (-626 (-1076 (-827 (-213))))) (|:| |abserr| (-213)) (|:| |relerr| (-213))))) $))))) (T -753)) -((-2801 (*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-753)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (-5 *1 (-753)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-304 (-213))) (|:| -1396 (-626 (-1076 (-827 (-213))))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (-5 *1 (-753)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (|:| |mdnia| (-2 (|:| |fn| (-304 (-213))) (|:| -1396 (-626 (-1076 (-827 (-213))))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))))) (-5 *1 (-753)))) (-3001 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (|:| |mdnia| (-2 (|:| |fn| (-304 (-213))) (|:| -1396 (-626 (-1076 (-827 (-213))))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))))) (-5 *1 (-753))))) -(-13 (-1082) (-10 -8 (-15 -2801 ($ (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213))))) (-15 -2801 ($ (-2 (|:| |fn| (-304 (-213))) (|:| -1396 (-626 (-1076 (-827 (-213))))) (|:| |abserr| (-213)) (|:| |relerr| (-213))))) (-15 -2801 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (|:| |mdnia| (-2 (|:| |fn| (-304 (-213))) (|:| -1396 (-626 (-1076 (-827 (-213))))) (|:| |abserr| (-213)) (|:| |relerr| (-213))))))) (-15 -2801 ((-842) $)) (-15 -3001 ((-3 (|:| |nia| (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (|:| |mdnia| (-2 (|:| |fn| (-304 (-213))) (|:| -1396 (-626 (-1076 (-827 (-213))))) (|:| |abserr| (-213)) (|:| |relerr| (-213))))) $)))) -((-3474 (((-626 (-626 (-283 (-403 (-945 |#1|))))) (-626 (-945 |#1|))) 14) (((-626 (-626 (-283 (-403 (-945 |#1|))))) (-626 (-945 |#1|)) (-626 (-1153))) 13)) (-4159 (((-626 (-626 (-283 (-403 (-945 |#1|))))) (-626 (-945 |#1|))) 16) (((-626 (-626 (-283 (-403 (-945 |#1|))))) (-626 (-945 |#1|)) (-626 (-1153))) 15))) -(((-754 |#1|) (-10 -7 (-15 -3474 ((-626 (-626 (-283 (-403 (-945 |#1|))))) (-626 (-945 |#1|)) (-626 (-1153)))) (-15 -3474 ((-626 (-626 (-283 (-403 (-945 |#1|))))) (-626 (-945 |#1|)))) (-15 -4159 ((-626 (-626 (-283 (-403 (-945 |#1|))))) (-626 (-945 |#1|)) (-626 (-1153)))) (-15 -4159 ((-626 (-626 (-283 (-403 (-945 |#1|))))) (-626 (-945 |#1|))))) (-550)) (T -754)) -((-4159 (*1 *2 *3) (-12 (-5 *3 (-626 (-945 *4))) (-4 *4 (-550)) (-5 *2 (-626 (-626 (-283 (-403 (-945 *4)))))) (-5 *1 (-754 *4)))) (-4159 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-945 *5))) (-5 *4 (-626 (-1153))) (-4 *5 (-550)) (-5 *2 (-626 (-626 (-283 (-403 (-945 *5)))))) (-5 *1 (-754 *5)))) (-3474 (*1 *2 *3) (-12 (-5 *3 (-626 (-945 *4))) (-4 *4 (-550)) (-5 *2 (-626 (-626 (-283 (-403 (-945 *4)))))) (-5 *1 (-754 *4)))) (-3474 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-945 *5))) (-5 *4 (-626 (-1153))) (-4 *5 (-550)) (-5 *2 (-626 (-626 (-283 (-403 (-945 *5)))))) (-5 *1 (-754 *5))))) -(-10 -7 (-15 -3474 ((-626 (-626 (-283 (-403 (-945 |#1|))))) (-626 (-945 |#1|)) (-626 (-1153)))) (-15 -3474 ((-626 (-626 (-283 (-403 (-945 |#1|))))) (-626 (-945 |#1|)))) (-15 -4159 ((-626 (-626 (-283 (-403 (-945 |#1|))))) (-626 (-945 |#1|)) (-626 (-1153)))) (-15 -4159 ((-626 (-626 (-283 (-403 (-945 |#1|))))) (-626 (-945 |#1|))))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-2280 (($ $ $) 6)) (-2314 (((-3 $ "failed") $ $) 9)) (-2956 (($ $ (-560)) 7)) (-4236 (($) NIL T CONST)) (-2563 (($ $ $) NIL)) (-1823 (((-3 $ "failed") $) NIL)) (-1666 (($ $) NIL)) (-2572 (($ $ $) NIL)) (-2642 (((-121) $) NIL)) (-4325 (($ $ $) NIL)) (-2501 (($ $ $) NIL)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-4440 (($ $ $) NIL)) (-2336 (((-3 $ "failed") $ $) NIL)) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL)) (-2801 (((-842) $) NIL)) (-2464 (($ $ (-755)) NIL) (($ $ (-909)) NIL)) (-3304 (($) NIL T CONST)) (-1459 (($) NIL T CONST)) (-1691 (((-121) $ $) NIL)) (-1675 (((-121) $ $) NIL)) (-1653 (((-121) $ $) NIL)) (-1683 (((-121) $ $) NIL)) (-1667 (((-121) $ $) NIL)) (-1716 (($ $ $) NIL)) (** (($ $ (-755)) NIL) (($ $ (-909)) NIL)) (* (($ (-755) $) NIL) (($ (-909) $) NIL) (($ $ $) NIL))) -(((-755) (-13 (-780) (-708) (-10 -8 (-15 -2572 ($ $ $)) (-15 -2563 ($ $ $)) (-15 -4440 ($ $ $)) (-15 -2215 ((-2 (|:| -2583 $) (|:| -4397 $)) $ $)) (-15 -2336 ((-3 $ "failed") $ $)) (-15 -2956 ($ $ (-560))) (-15 -1666 ($ $)) (-6 (-4507 "*"))))) (T -755)) -((-2572 (*1 *1 *1 *1) (-5 *1 (-755))) (-2563 (*1 *1 *1 *1) (-5 *1 (-755))) (-4440 (*1 *1 *1 *1) (-5 *1 (-755))) (-2215 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2583 (-755)) (|:| -4397 (-755)))) (-5 *1 (-755)))) (-2336 (*1 *1 *1 *1) (|partial| -5 *1 (-755))) (-2956 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-755)))) (-1666 (*1 *1 *1) (-5 *1 (-755)))) -(-13 (-780) (-708) (-10 -8 (-15 -2572 ($ $ $)) (-15 -2563 ($ $ $)) (-15 -4440 ($ $ $)) (-15 -2215 ((-2 (|:| -2583 $) (|:| -4397 $)) $ $)) (-15 -2336 ((-3 $ "failed") $ $)) (-15 -2956 ($ $ (-560))) (-15 -1666 ($ $)) (-6 (-4507 "*")))) -((-4159 (((-3 |#2| "failed") |#2| |#2| (-123) (-1153)) 35))) -(((-756 |#1| |#2|) (-10 -7 (-15 -4159 ((-3 |#2| "failed") |#2| |#2| (-123) (-1153)))) (-13 (-834) (-296) (-1029 (-560)) (-622 (-560)) (-148)) (-13 (-29 |#1|) (-1173) (-951))) (T -756)) -((-4159 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-123)) (-5 *4 (-1153)) (-4 *5 (-13 (-834) (-296) (-1029 (-560)) (-622 (-560)) (-148))) (-5 *1 (-756 *5 *2)) (-4 *2 (-13 (-29 *5) (-1173) (-951)))))) -(-10 -7 (-15 -4159 ((-3 |#2| "failed") |#2| |#2| (-123) (-1153)))) -((-2801 (((-758) |#1|) 8))) -(((-757 |#1|) (-10 -7 (-15 -2801 ((-758) |#1|))) (-1187)) (T -757)) -((-2801 (*1 *2 *3) (-12 (-5 *2 (-758)) (-5 *1 (-757 *3)) (-4 *3 (-1187))))) -(-10 -7 (-15 -2801 ((-758) |#1|))) -((-2601 (((-121) $ $) NIL)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2801 (((-842) $) 7)) (-1653 (((-121) $ $) 9))) -(((-758) (-1082)) (T -758)) -NIL -(-1082) -((-3339 ((|#2| |#4|) 35))) -(((-759 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3339 (|#2| |#4|))) (-447) (-1211 |#1|) (-706 |#1| |#2|) (-1211 |#3|)) (T -759)) -((-3339 (*1 *2 *3) (-12 (-4 *4 (-447)) (-4 *5 (-706 *4 *2)) (-4 *2 (-1211 *4)) (-5 *1 (-759 *4 *2 *5 *3)) (-4 *3 (-1211 *5))))) -(-10 -7 (-15 -3339 (|#2| |#4|))) -((-1823 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-1286 (((-1241) (-1135) (-1135) |#4| |#5|) 33)) (-3478 ((|#4| |#4| |#5|) 72)) (-2086 (((-626 (-2 (|:| |val| |#4|) (|:| -3249 |#5|))) |#4| |#5|) 76)) (-2265 (((-626 (-2 (|:| |val| (-121)) (|:| -3249 |#5|))) |#4| |#5|) 15))) -(((-760 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1823 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3478 (|#4| |#4| |#5|)) (-15 -2086 ((-626 (-2 (|:| |val| |#4|) (|:| -3249 |#5|))) |#4| |#5|)) (-15 -1286 ((-1241) (-1135) (-1135) |#4| |#5|)) (-15 -2265 ((-626 (-2 (|:| |val| (-121)) (|:| -3249 |#5|))) |#4| |#5|))) (-447) (-780) (-834) (-1053 |#1| |#2| |#3|) (-1058 |#1| |#2| |#3| |#4|)) (T -760)) -((-2265 (*1 *2 *3 *4) (-12 (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-626 (-2 (|:| |val| (-121)) (|:| -3249 *4)))) (-5 *1 (-760 *5 *6 *7 *3 *4)) (-4 *4 (-1058 *5 *6 *7 *3)))) (-1286 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1135)) (-4 *6 (-447)) (-4 *7 (-780)) (-4 *8 (-834)) (-4 *4 (-1053 *6 *7 *8)) (-5 *2 (-1241)) (-5 *1 (-760 *6 *7 *8 *4 *5)) (-4 *5 (-1058 *6 *7 *8 *4)))) (-2086 (*1 *2 *3 *4) (-12 (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-626 (-2 (|:| |val| *3) (|:| -3249 *4)))) (-5 *1 (-760 *5 *6 *7 *3 *4)) (-4 *4 (-1058 *5 *6 *7 *3)))) (-3478 (*1 *2 *2 *3) (-12 (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *2 (-1053 *4 *5 *6)) (-5 *1 (-760 *4 *5 *6 *2 *3)) (-4 *3 (-1058 *4 *5 *6 *2)))) (-1823 (*1 *2 *3 *4) (-12 (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-760 *5 *6 *7 *3 *4)) (-4 *4 (-1058 *5 *6 *7 *3))))) -(-10 -7 (-15 -1823 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3478 (|#4| |#4| |#5|)) (-15 -2086 ((-626 (-2 (|:| |val| |#4|) (|:| -3249 |#5|))) |#4| |#5|)) (-15 -1286 ((-1241) (-1135) (-1135) |#4| |#5|)) (-15 -2265 ((-626 (-2 (|:| |val| (-121)) (|:| -3249 |#5|))) |#4| |#5|))) -((-1473 (((-3 (-1149 (-1149 |#1|)) "failed") |#4|) 43)) (-2815 (((-626 |#4|) |#4|) 15)) (-2353 ((|#4| |#4|) 11))) -(((-761 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2815 ((-626 |#4|) |#4|)) (-15 -1473 ((-3 (-1149 (-1149 |#1|)) "failed") |#4|)) (-15 -2353 (|#4| |#4|))) (-344) (-321 |#1|) (-1211 |#2|) (-1211 |#3|) (-909)) (T -761)) -((-2353 (*1 *2 *2) (-12 (-4 *3 (-344)) (-4 *4 (-321 *3)) (-4 *5 (-1211 *4)) (-5 *1 (-761 *3 *4 *5 *2 *6)) (-4 *2 (-1211 *5)) (-14 *6 (-909)))) (-1473 (*1 *2 *3) (|partial| -12 (-4 *4 (-344)) (-4 *5 (-321 *4)) (-4 *6 (-1211 *5)) (-5 *2 (-1149 (-1149 *4))) (-5 *1 (-761 *4 *5 *6 *3 *7)) (-4 *3 (-1211 *6)) (-14 *7 (-909)))) (-2815 (*1 *2 *3) (-12 (-4 *4 (-344)) (-4 *5 (-321 *4)) (-4 *6 (-1211 *5)) (-5 *2 (-626 *3)) (-5 *1 (-761 *4 *5 *6 *3 *7)) (-4 *3 (-1211 *6)) (-14 *7 (-909))))) -(-10 -7 (-15 -2815 ((-626 |#4|) |#4|)) (-15 -1473 ((-3 (-1149 (-1149 |#1|)) "failed") |#4|)) (-15 -2353 (|#4| |#4|))) -((-2601 (((-121) $ $) NIL)) (-4236 (($) NIL T CONST)) (-3001 (($ (-1193 |#1|)) 21)) (-1823 (((-3 $ "failed") $) NIL)) (-2642 (((-121) $) NIL)) (-1291 (((-1135) $) NIL)) (-1701 (($ $) 26)) (-4353 (((-1100) $) NIL)) (-3101 (($ $ $) NIL)) (-1671 (($ $ $) NIL)) (-2801 (((-842) $) 11)) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL)) (-1459 (($) 18 T CONST)) (-1653 (((-121) $ $) NIL)) (-1733 (($ $ $) NIL)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL)) (* (($ $ $) 24))) -(((-762 |#1|) (-13 (-471) (-10 -8 (-15 -3001 ($ (-1193 |#1|))))) (-344)) (T -762)) -((-3001 (*1 *1 *2) (-12 (-5 *2 (-1193 *3)) (-4 *3 (-344)) (-5 *1 (-762 *3))))) -(-13 (-471) (-10 -8 (-15 -3001 ($ (-1193 |#1|))))) -((-1819 (((-2 (|:| |deter| (-626 (-1149 |#5|))) (|:| |dterm| (-626 (-626 (-2 (|:| -2710 (-755)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-626 |#1|)) (|:| |nlead| (-626 |#5|))) (-1149 |#5|) (-626 |#1|) (-626 |#5|)) 51)) (-2690 (((-626 (-755)) |#1|) 12))) -(((-763 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1819 ((-2 (|:| |deter| (-626 (-1149 |#5|))) (|:| |dterm| (-626 (-626 (-2 (|:| -2710 (-755)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-626 |#1|)) (|:| |nlead| (-626 |#5|))) (-1149 |#5|) (-626 |#1|) (-626 |#5|))) (-15 -2690 ((-626 (-755)) |#1|))) (-1211 |#4|) (-780) (-834) (-296) (-942 |#4| |#2| |#3|)) (T -763)) -((-2690 (*1 *2 *3) (-12 (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-296)) (-5 *2 (-626 (-755))) (-5 *1 (-763 *3 *4 *5 *6 *7)) (-4 *3 (-1211 *6)) (-4 *7 (-942 *6 *4 *5)))) (-1819 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1211 *9)) (-4 *7 (-780)) (-4 *8 (-834)) (-4 *9 (-296)) (-4 *10 (-942 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-626 (-1149 *10))) (|:| |dterm| (-626 (-626 (-2 (|:| -2710 (-755)) (|:| |pcoef| *10))))) (|:| |nfacts| (-626 *6)) (|:| |nlead| (-626 *10)))) (-5 *1 (-763 *6 *7 *8 *9 *10)) (-5 *3 (-1149 *10)) (-5 *4 (-626 *6)) (-5 *5 (-626 *10))))) -(-10 -7 (-15 -1819 ((-2 (|:| |deter| (-626 (-1149 |#5|))) (|:| |dterm| (-626 (-626 (-2 (|:| -2710 (-755)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-626 |#1|)) (|:| |nlead| (-626 |#5|))) (-1149 |#5|) (-626 |#1|) (-626 |#5|))) (-15 -2690 ((-626 (-755)) |#1|))) -((-4090 (((-2 (|:| -3165 (-560)) (|:| -2871 (-560)) (|:| -2583 (-560)) (|:| |reste| (-560)) (|:| -2248 (-3 "left" "center" "right" "vertical" "horizontal"))) (-626 |#2|)) 18) (((-2 (|:| -3165 (-560)) (|:| -2871 (-560)) (|:| -2583 (-560)) (|:| |reste| (-560)) (|:| -2248 (-3 "left" "center" "right" "vertical" "horizontal"))) |#2| |#2|) 16)) (-4118 (((-626 (-626 |#2|)) |#2| (-560) (-560) (-3 "left" "center" "right" "vertical" "horizontal")) 32)) (-4125 (((-626 (-626 |#2|)) |#2| (-626 (-626 |#2|))) 24)) (-2380 (((-755) (-626 (-626 |#2|))) 27))) -(((-764 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4118 ((-626 (-626 |#2|)) |#2| (-560) (-560) (-3 "left" "center" "right" "vertical" "horizontal"))) (-15 -2380 ((-755) (-626 (-626 |#2|)))) (-15 -4125 ((-626 (-626 |#2|)) |#2| (-626 (-626 |#2|)))) (-15 -4090 ((-2 (|:| -3165 (-560)) (|:| -2871 (-560)) (|:| -2583 (-560)) (|:| |reste| (-560)) (|:| -2248 (-3 "left" "center" "right" "vertical" "horizontal"))) |#2| |#2|)) (-15 -4090 ((-2 (|:| -3165 (-560)) (|:| -2871 (-560)) (|:| -2583 (-560)) (|:| |reste| (-560)) (|:| -2248 (-3 "left" "center" "right" "vertical" "horizontal"))) (-626 |#2|)))) (-1039) (-318 |#1| |#3|) (-226 |#4| (-755)) (-755)) (T -764)) -((-4090 (*1 *2 *3) (-12 (-5 *3 (-626 *5)) (-4 *5 (-318 *4 *6)) (-4 *6 (-226 *7 (-755))) (-14 *7 (-755)) (-4 *4 (-1039)) (-5 *2 (-2 (|:| -3165 (-560)) (|:| -2871 (-560)) (|:| -2583 (-560)) (|:| |reste| (-560)) (|:| -2248 (-3 "left" "center" "right" "vertical" "horizontal")))) (-5 *1 (-764 *4 *5 *6 *7)))) (-4090 (*1 *2 *3 *3) (-12 (-4 *4 (-1039)) (-4 *5 (-226 *6 (-755))) (-14 *6 (-755)) (-5 *2 (-2 (|:| -3165 (-560)) (|:| -2871 (-560)) (|:| -2583 (-560)) (|:| |reste| (-560)) (|:| -2248 (-3 "left" "center" "right" "vertical" "horizontal")))) (-5 *1 (-764 *4 *3 *5 *6)) (-4 *3 (-318 *4 *5)))) (-4125 (*1 *2 *3 *2) (-12 (-5 *2 (-626 (-626 *3))) (-4 *3 (-318 *4 *5)) (-4 *5 (-226 *6 (-755))) (-14 *6 (-755)) (-4 *4 (-1039)) (-5 *1 (-764 *4 *3 *5 *6)))) (-2380 (*1 *2 *3) (-12 (-5 *3 (-626 (-626 *5))) (-4 *5 (-318 *4 *6)) (-4 *6 (-226 *7 *2)) (-14 *7 *2) (-4 *4 (-1039)) (-5 *2 (-755)) (-5 *1 (-764 *4 *5 *6 *7)))) (-4118 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-560)) (-5 *5 (-3 "left" "center" "right" "vertical" "horizontal")) (-4 *6 (-1039)) (-4 *7 (-226 *8 (-755))) (-14 *8 (-755)) (-5 *2 (-626 (-626 *3))) (-5 *1 (-764 *6 *3 *7 *8)) (-4 *3 (-318 *6 *7))))) -(-10 -7 (-15 -4118 ((-626 (-626 |#2|)) |#2| (-560) (-560) (-3 "left" "center" "right" "vertical" "horizontal"))) (-15 -2380 ((-755) (-626 (-626 |#2|)))) (-15 -4125 ((-626 (-626 |#2|)) |#2| (-626 (-626 |#2|)))) (-15 -4090 ((-2 (|:| -3165 (-560)) (|:| -2871 (-560)) (|:| -2583 (-560)) (|:| |reste| (-560)) (|:| -2248 (-3 "left" "center" "right" "vertical" "horizontal"))) |#2| |#2|)) (-15 -4090 ((-2 (|:| -3165 (-560)) (|:| -2871 (-560)) (|:| -2583 (-560)) (|:| |reste| (-560)) (|:| -2248 (-3 "left" "center" "right" "vertical" "horizontal"))) (-626 |#2|)))) -((-3595 (((-626 (-2 (|:| |outval| |#1|) (|:| |outmult| (-560)) (|:| |outvect| (-626 (-671 |#1|))))) (-671 (-403 (-560))) |#1|) 27)) (-3626 (((-626 |#1|) (-671 (-403 (-560))) |#1|) 19)) (-3642 (((-945 (-403 (-560))) (-671 (-403 (-560))) (-1153)) 16) (((-945 (-403 (-560))) (-671 (-403 (-560)))) 15))) -(((-765 |#1|) (-10 -7 (-15 -3642 ((-945 (-403 (-560))) (-671 (-403 (-560))))) (-15 -3642 ((-945 (-403 (-560))) (-671 (-403 (-560))) (-1153))) (-15 -3626 ((-626 |#1|) (-671 (-403 (-560))) |#1|)) (-15 -3595 ((-626 (-2 (|:| |outval| |#1|) (|:| |outmult| (-560)) (|:| |outvect| (-626 (-671 |#1|))))) (-671 (-403 (-560))) |#1|))) (-13 (-359) (-832))) (T -765)) -((-3595 (*1 *2 *3 *4) (-12 (-5 *3 (-671 (-403 (-560)))) (-5 *2 (-626 (-2 (|:| |outval| *4) (|:| |outmult| (-560)) (|:| |outvect| (-626 (-671 *4)))))) (-5 *1 (-765 *4)) (-4 *4 (-13 (-359) (-832))))) (-3626 (*1 *2 *3 *4) (-12 (-5 *3 (-671 (-403 (-560)))) (-5 *2 (-626 *4)) (-5 *1 (-765 *4)) (-4 *4 (-13 (-359) (-832))))) (-3642 (*1 *2 *3 *4) (-12 (-5 *3 (-671 (-403 (-560)))) (-5 *4 (-1153)) (-5 *2 (-945 (-403 (-560)))) (-5 *1 (-765 *5)) (-4 *5 (-13 (-359) (-832))))) (-3642 (*1 *2 *3) (-12 (-5 *3 (-671 (-403 (-560)))) (-5 *2 (-945 (-403 (-560)))) (-5 *1 (-765 *4)) (-4 *4 (-13 (-359) (-832)))))) -(-10 -7 (-15 -3642 ((-945 (-403 (-560))) (-671 (-403 (-560))))) (-15 -3642 ((-945 (-403 (-560))) (-671 (-403 (-560))) (-1153))) (-15 -3626 ((-626 |#1|) (-671 (-403 (-560))) |#1|)) (-15 -3595 ((-626 (-2 (|:| |outval| |#1|) (|:| |outmult| (-560)) (|:| |outvect| (-626 (-671 |#1|))))) (-671 (-403 (-560))) |#1|))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) 10)) (-1654 (((-626 (-1067)) $) NIL)) (-1395 (((-1153) $) NIL)) (-2981 (((-2 (|:| |k| (-560)) (|:| |c| |#1|)) $) NIL)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL)) (-1350 (($ $) NIL)) (-3376 (((-121) $) NIL)) (-4330 (($ $ (-560) (-560)) NIL) (($ $ (-560)) NIL)) (-1886 (((-2 (|:| |k| (-560)) (|:| |c| |#1|)) $) NIL)) (-4138 (((-1133 (-2 (|:| |k| (-560)) (|:| |c| |#1|))) $) NIL)) (-1417 (($ $) NIL)) (-2960 (((-1241) $ (-560) (-560)) NIL (|has| $ (-6 -4506)))) (-2314 (((-3 $ "failed") $ $) NIL)) (-3065 (($ $) NIL)) (-2953 (((-414 $) $) NIL)) (-2435 (($ $ (-560)) NIL (|has| $ (-6 -4506)))) (-4179 (((-121) $ $) NIL)) (-3909 (((-121) $ (-755)) NIL)) (-2956 (($ $ (-560)) 36)) (-3119 (((-2 (|:| |k| (-560)) (|:| |c| |#1|)) $ (-2 (|:| |k| (-560)) (|:| |c| |#1|))) NIL (|has| $ (-6 -4506)))) (-1741 (($ $ $) NIL (|has| $ (-6 -4506)))) (-1920 (((-2 (|:| |k| (-560)) (|:| |c| |#1|)) $ (-2 (|:| |k| (-560)) (|:| |c| |#1|))) NIL (|has| $ (-6 -4506)))) (-4133 (((-2 (|:| |k| (-560)) (|:| |c| |#1|)) $ (-2 (|:| |k| (-560)) (|:| |c| |#1|))) NIL (|has| $ (-6 -4506)))) (-2764 (((-2 (|:| |k| (-560)) (|:| |c| |#1|)) $ (-560) (-2 (|:| |k| (-560)) (|:| |c| |#1|))) NIL (|has| $ (-6 -4506))) (((-2 (|:| |k| (-560)) (|:| |c| |#1|)) $ (-1202 (-560)) (-2 (|:| |k| (-560)) (|:| |c| |#1|))) NIL (|has| $ (-6 -4506))) (((-2 (|:| |k| (-560)) (|:| |c| |#1|)) $ "last" (-2 (|:| |k| (-560)) (|:| |c| |#1|))) NIL (|has| $ (-6 -4506))) (($ $ "rest" $) NIL (|has| $ (-6 -4506))) (((-2 (|:| |k| (-560)) (|:| |c| |#1|)) $ "first" (-2 (|:| |k| (-560)) (|:| |c| |#1|))) NIL (|has| $ (-6 -4506))) (((-2 (|:| |k| (-560)) (|:| |c| |#1|)) $ "value" (-2 (|:| |k| (-560)) (|:| |c| |#1|))) NIL (|has| $ (-6 -4506)))) (-4043 (($ $ (-626 $)) NIL (|has| $ (-6 -4506)))) (-3783 (($ (-560) |#1| $) 41)) (-3802 (($ (-1 (-121) (-2 (|:| |k| (-560)) (|:| |c| |#1|))) $) NIL)) (-1603 (((-2 (|:| |k| (-560)) (|:| |c| |#1|)) $) NIL)) (-3960 (($ $ $) 51)) (-4236 (($) NIL T CONST)) (-3105 (($ $) 21)) (-2877 (($ $ (-755)) NIL) (($ $) 14)) (-3020 (($ (-560) $) 78) (($ $) 31)) (-3970 (($ $) 35)) (-2868 (($ $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| |k| (-560)) (|:| |c| |#1|)) (-1082))))) (-4310 (($ (-1 (-121) (-2 (|:| |k| (-560)) (|:| |c| |#1|))) $) NIL) (($ (-2 (|:| |k| (-560)) (|:| |c| |#1|)) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| |k| (-560)) (|:| |c| |#1|)) (-1082))))) (-2563 (($ $ $) NIL)) (-1750 (($ $) NIL)) (-2342 (((-2 (|:| |k| (-560)) (|:| |c| |#1|)) (-1 (-2 (|:| |k| (-560)) (|:| |c| |#1|)) (-2 (|:| |k| (-560)) (|:| |c| |#1|)) (-2 (|:| |k| (-560)) (|:| |c| |#1|))) $ (-2 (|:| |k| (-560)) (|:| |c| |#1|)) (-2 (|:| |k| (-560)) (|:| |c| |#1|))) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| |k| (-560)) (|:| |c| |#1|)) (-1082)))) (((-2 (|:| |k| (-560)) (|:| |c| |#1|)) (-1 (-2 (|:| |k| (-560)) (|:| |c| |#1|)) (-2 (|:| |k| (-560)) (|:| |c| |#1|)) (-2 (|:| |k| (-560)) (|:| |c| |#1|))) $ (-2 (|:| |k| (-560)) (|:| |c| |#1|))) NIL (|has| $ (-6 -4505))) (((-2 (|:| |k| (-560)) (|:| |c| |#1|)) (-1 (-2 (|:| |k| (-560)) (|:| |c| |#1|)) (-2 (|:| |k| (-560)) (|:| |c| |#1|)) (-2 (|:| |k| (-560)) (|:| |c| |#1|))) $) NIL (|has| $ (-6 -4505)))) (-1823 (((-3 $ "failed") $) 38)) (-2572 (($ $ $) NIL)) (-1746 (((-2 (|:| |k| (-560)) (|:| |c| |#1|)) $ (-560) (-2 (|:| |k| (-560)) (|:| |c| |#1|))) NIL (|has| $ (-6 -4506)))) (-1361 (((-2 (|:| |k| (-560)) (|:| |c| |#1|)) $ (-560)) NIL)) (-1269 (((-121) (-121)) 30) (((-121)) 29)) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) NIL)) (-3319 (((-121) $) NIL)) (-2737 (((-121) $) NIL)) (-3976 (($ $) 22)) (-1815 (((-121) $) NIL)) (-1981 (((-626 (-2 (|:| |k| (-560)) (|:| |c| |#1|))) $) NIL (|has| $ (-6 -4505)))) (-3978 (((-3 (-560) "failed") $) 16)) (-3504 (((-560) $ (-560)) NIL) (((-560) $) 19) (((-560) $) 19)) (-2642 (((-121) $) NIL)) (-1314 (((-755) $) NIL)) (-3971 (((-626 $) $) NIL)) (-2420 (((-121) $ $) NIL (|has| (-2 (|:| |k| (-560)) (|:| |c| |#1|)) (-1082)))) (-1721 (($ (-755) (-2 (|:| |k| (-560)) (|:| |c| |#1|))) NIL)) (-3549 (($ $ (-909)) NIL)) (-3856 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-2122 (((-121) $ (-755)) NIL)) (-1814 (((-121) $) NIL)) (-3986 (($ (-626 $) (-626 (-755)) (-560)) 85)) (-1637 (($ $ (-626 (-1067)) (-626 (-560))) NIL) (($ $ (-1067) (-560)) NIL) (($ |#1| (-560)) NIL)) (-4099 (((-560) $) NIL (|has| (-560) (-834)))) (-2130 (((-626 (-2 (|:| |k| (-560)) (|:| |c| |#1|))) $) NIL (|has| $ (-6 -4505)))) (-2030 (((-121) (-2 (|:| |k| (-560)) (|:| |c| |#1|)) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| |k| (-560)) (|:| |c| |#1|)) (-1082))))) (-2767 (((-560) $) NIL (|has| (-560) (-834)))) (-3778 (($ (-1 (-2 (|:| |k| (-560)) (|:| |c| |#1|)) (-2 (|:| |k| (-560)) (|:| |c| |#1|))) $) NIL (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| |k| (-560)) (|:| |c| |#1|)) (-2 (|:| |k| (-560)) (|:| |c| |#1|)) (-2 (|:| |k| (-560)) (|:| |c| |#1|))) $ $) NIL) (($ (-1 (-2 (|:| |k| (-560)) (|:| |c| |#1|)) (-2 (|:| |k| (-560)) (|:| |c| |#1|))) $) NIL)) (-3441 (((-121) $ (-755)) NIL)) (-2173 (((-626 (-2 (|:| |k| (-560)) (|:| |c| |#1|))) $) NIL)) (-3992 (((-121) $) NIL)) (-1726 (($ $) NIL)) (-1735 ((|#1| $) NIL)) (-2582 (($ $ $) NIL) (($ (-626 $)) NIL)) (-1447 (($ $) NIL)) (-1906 (((-121) $) NIL)) (-1291 (((-1135) $) NIL)) (-4139 (($ $ (-755)) NIL) (((-2 (|:| |k| (-560)) (|:| |c| |#1|)) $) NIL)) (-1701 (($ $) 39)) (-4103 (($ (-2 (|:| |k| (-560)) (|:| |c| |#1|)) $ (-560)) NIL) (($ $ $ (-560)) NIL)) (-1529 (((-626 (-560)) $) NIL)) (-1310 (((-121) (-560) $) NIL)) (-4353 (((-1100) $) NIL)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL)) (-4440 (($ $ $) NIL) (($ (-626 $)) NIL)) (-2921 (((-2 (|:| |k| (-560)) (|:| |c| |#1|)) $) 12)) (-2824 (($ $ (-755)) NIL) (((-2 (|:| |k| (-560)) (|:| |c| |#1|)) $) NIL)) (-3993 (((-2 (|:| |k| (-560)) (|:| |c| |#1|)) $ (-560)) 24)) (-4007 ((|#1| $ (-560)) 25)) (-3786 (((-3 (-2 (|:| |k| (-560)) (|:| |c| |#1|)) "failed") (-1 (-121) (-2 (|:| |k| (-560)) (|:| |c| |#1|))) $) NIL)) (-4015 (($ $ (-560)) 89)) (-3038 (($ $ (-2 (|:| |k| (-560)) (|:| |c| |#1|))) NIL (|has| $ (-6 -4506)))) (-1601 (((-414 $) $) NIL)) (-3505 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3292 (($ $ (-560)) NIL)) (-2336 (((-3 $ "failed") $ $) NIL)) (-3456 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-2957 (((-121) $) NIL)) (-3510 (((-121) $) NIL)) (-3671 (((-121) $) NIL)) (-2865 (((-121) (-1 (-121) (-2 (|:| |k| (-560)) (|:| |c| |#1|))) $) NIL (|has| $ (-6 -4505)))) (-4450 (((-1133 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-560))))) (($ $ (-626 (-2 (|:| |k| (-560)) (|:| |c| |#1|))) (-626 (-2 (|:| |k| (-560)) (|:| |c| |#1|)))) NIL (-12 (|has| (-2 (|:| |k| (-560)) (|:| |c| |#1|)) (-298 (-2 (|:| |k| (-560)) (|:| |c| |#1|)))) (|has| (-2 (|:| |k| (-560)) (|:| |c| |#1|)) (-1082)))) (($ $ (-2 (|:| |k| (-560)) (|:| |c| |#1|)) (-2 (|:| |k| (-560)) (|:| |c| |#1|))) NIL (-12 (|has| (-2 (|:| |k| (-560)) (|:| |c| |#1|)) (-298 (-2 (|:| |k| (-560)) (|:| |c| |#1|)))) (|has| (-2 (|:| |k| (-560)) (|:| |c| |#1|)) (-1082)))) (($ $ (-283 (-2 (|:| |k| (-560)) (|:| |c| |#1|)))) NIL (-12 (|has| (-2 (|:| |k| (-560)) (|:| |c| |#1|)) (-298 (-2 (|:| |k| (-560)) (|:| |c| |#1|)))) (|has| (-2 (|:| |k| (-560)) (|:| |c| |#1|)) (-1082)))) (($ $ (-626 (-283 (-2 (|:| |k| (-560)) (|:| |c| |#1|))))) NIL (-12 (|has| (-2 (|:| |k| (-560)) (|:| |c| |#1|)) (-298 (-2 (|:| |k| (-560)) (|:| |c| |#1|)))) (|has| (-2 (|:| |k| (-560)) (|:| |c| |#1|)) (-1082))))) (-4445 (((-755) $) NIL)) (-2214 (((-121) $ $) NIL)) (-1290 (((-121) (-2 (|:| |k| (-560)) (|:| |c| |#1|)) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| |k| (-560)) (|:| |c| |#1|)) (-1082))))) (-4460 (((-626 (-2 (|:| |k| (-560)) (|:| |c| |#1|))) $) NIL)) (-4191 (((-121) $) 23)) (-3260 (($) 94)) (-2778 (($ $ $) NIL (|has| (-560) (-1094))) ((|#1| $ (-560)) NIL) (((-2 (|:| |k| (-560)) (|:| |c| |#1|)) $ (-560) (-2 (|:| |k| (-560)) (|:| |c| |#1|))) NIL) (((-2 (|:| |k| (-560)) (|:| |c| |#1|)) $ (-560)) NIL) (($ $ (-1202 (-560))) NIL) (((-2 (|:| |k| (-560)) (|:| |c| |#1|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| |k| (-560)) (|:| |c| |#1|)) $ "first") NIL) (((-2 (|:| |k| (-560)) (|:| |c| |#1|)) $ "value") NIL)) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL)) (-1435 (((-560) $ $) NIL)) (-2443 (($ $) NIL (|has| |#1| (-15 * (|#1| (-560) |#1|)))) (($ $ (-755)) NIL (|has| |#1| (-15 * (|#1| (-560) |#1|)))) (($ $ (-1153)) NIL (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-626 (-1153))) NIL (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-1153) (-755)) NIL (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-626 (-1153)) (-626 (-755))) NIL (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-887 (-1153)))))) (-2949 (($ $ (-560)) NIL) (($ $ (-1202 (-560))) NIL)) (-2275 (($ (-1 $)) 34)) (-3662 (((-560) $) NIL)) (-3316 (((-121) $) NIL)) (-4432 (($ $) NIL)) (-2641 (($ $) NIL (|has| $ (-6 -4506)))) (-2751 (((-755) $) NIL)) (-4208 (($ $) NIL)) (-4035 (((-755) (-2 (|:| |k| (-560)) (|:| |c| |#1|)) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| |k| (-560)) (|:| |c| |#1|)) (-1082)))) (((-755) (-1 (-121) (-2 (|:| |k| (-560)) (|:| |c| |#1|))) $) NIL (|has| $ (-6 -4505)))) (-2813 (($ $) NIL)) (-4255 (((-533) $) NIL (|has| (-2 (|:| |k| (-560)) (|:| |c| |#1|)) (-601 (-533))))) (-4162 (($ (-626 (-2 (|:| |k| (-560)) (|:| |c| |#1|)))) 95)) (-3602 (($ $ (-2 (|:| |k| (-560)) (|:| |c| |#1|))) NIL (|has| $ (-6 -4506))) (($ $ $) NIL (|has| $ (-6 -4506)))) (-2849 (($ $ (-2 (|:| |k| (-560)) (|:| |c| |#1|))) NIL) (($ (-626 $)) NIL) (($ (-2 (|:| |k| (-560)) (|:| |c| |#1|)) $) 32) (($ $ $) NIL)) (-2234 (($ $) NIL)) (-2801 (((-842) $) 65) (($ (-560)) NIL) (($ $) NIL) (($ (-403 (-560))) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1133 (-2 (|:| |k| (-560)) (|:| |c| |#1|)))) 27) (((-1133 (-2 (|:| |k| (-560)) (|:| |c| |#1|))) $) 26)) (-2636 ((|#1| $ (-560)) NIL)) (-4020 ((|#1| $) 86)) (-2853 (((-626 $) $) NIL)) (-3761 (((-121) $ $) NIL (|has| (-2 (|:| |k| (-560)) (|:| |c| |#1|)) (-1082)))) (-2272 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1751 (((-755)) NIL)) (-1341 ((|#1| $) NIL)) (-2328 (((-121) $ $) NIL)) (-2550 ((|#1| $ (-560)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-560)))) (|has| |#1| (-15 -2801 (|#1| (-1153))))))) (-3656 (((-121) (-1 (-121) (-2 (|:| |k| (-560)) (|:| |c| |#1|))) $) NIL (|has| $ (-6 -4505)))) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL)) (-3304 (($) 17 T CONST)) (-1459 (($) 74 T CONST)) (-2500 (($ $) NIL (|has| |#1| (-15 * (|#1| (-560) |#1|)))) (($ $ (-755)) NIL (|has| |#1| (-15 * (|#1| (-560) |#1|)))) (($ $ (-1153)) NIL (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-626 (-1153))) NIL (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-1153) (-755)) NIL (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-626 (-1153)) (-626 (-755))) NIL (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-887 (-1153)))))) (-1653 (((-121) $ $) NIL)) (-1733 (($ $ $) NIL) (($ $ |#1|) NIL (|has| |#1| (-359)))) (-1725 (($ $) 47) (($ $ $) 43)) (-1716 (($ $ $) 53)) (** (($ $ (-909)) NIL) (($ $ (-755)) 79) (($ $ (-560)) 52)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) 42) (($ $ (-403 (-560))) NIL) (($ (-403 (-560)) $) NIL) (($ |#1| $) 46) (($ $ |#1|) 100)) (-2271 (((-755) $) NIL (|has| $ (-6 -4505))))) -(((-766 |#1|) (-13 (-633 |#1|) (-657 (-2 (|:| |k| (-560)) (|:| |c| |#1|))) (-10 -8 (-15 -3993 ((-2 (|:| |k| (-560)) (|:| |c| |#1|)) $ (-560))))) (-359)) (T -766)) -((-3993 (*1 *2 *1 *3) (-12 (-5 *2 (-2 (|:| |k| (-560)) (|:| |c| *4))) (-5 *1 (-766 *4)) (-4 *4 (-359)) (-5 *3 (-560))))) -(-13 (-633 |#1|) (-657 (-2 (|:| |k| (-560)) (|:| |c| |#1|))) (-10 -8 (-15 -3993 ((-2 (|:| |k| (-560)) (|:| |c| |#1|)) $ (-560))))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) 34)) (-1654 (((-626 |#2|) $) NIL)) (-1593 (((-1149 $) $ |#2|) NIL) (((-1149 |#1|) $) NIL)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL (|has| |#1| (-550)))) (-1350 (($ $) NIL (|has| |#1| (-550)))) (-3376 (((-121) $) NIL (|has| |#1| (-550)))) (-1697 (((-755) $) NIL) (((-755) $ (-626 |#2|)) NIL)) (-1417 (($ $) 28)) (-4370 (((-121) $ $) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-4408 (($ $ $) 92 (|has| |#1| (-550)))) (-1619 (((-626 $) $ $) 105 (|has| |#1| (-550)))) (-1776 (((-414 (-1149 $)) (-1149 $)) NIL (|has| |#1| (-896)))) (-3065 (($ $) NIL (|has| |#1| (-447)))) (-2953 (((-414 $) $) NIL (|has| |#1| (-447)))) (-1887 (((-3 (-626 (-1149 $)) "failed") (-626 (-1149 $)) (-1149 $)) NIL (|has| |#1| (-896)))) (-4236 (($) NIL T CONST)) (-1473 (((-3 |#1| "failed") $) NIL) (((-3 (-403 (-560)) "failed") $) NIL (|has| |#1| (-1029 (-403 (-560))))) (((-3 (-560) "failed") $) NIL (|has| |#1| (-1029 (-560)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-945 (-403 (-560)))) NIL (-12 (|has| |#1| (-43 (-403 (-560)))) (|has| |#2| (-601 (-1153))))) (((-3 $ "failed") (-945 (-560))) NIL (-2318 (-12 (|has| |#1| (-43 (-560))) (|has| |#2| (-601 (-1153))) (-3186 (|has| |#1| (-43 (-403 (-560)))))) (-12 (|has| |#1| (-43 (-403 (-560)))) (|has| |#2| (-601 (-1153)))))) (((-3 $ "failed") (-945 |#1|)) NIL (-2318 (-12 (|has| |#2| (-601 (-1153))) (-3186 (|has| |#1| (-43 (-403 (-560))))) (-3186 (|has| |#1| (-43 (-560))))) (-12 (|has| |#1| (-43 (-560))) (|has| |#2| (-601 (-1153))) (-3186 (|has| |#1| (-43 (-403 (-560))))) (-3186 (|has| |#1| (-542)))) (-12 (|has| |#1| (-43 (-403 (-560)))) (|has| |#2| (-601 (-1153))) (-3186 (|has| |#1| (-985 (-560))))))) (((-3 (-1105 |#1| |#2|) "failed") $) 18)) (-3001 ((|#1| $) NIL) (((-403 (-560)) $) NIL (|has| |#1| (-1029 (-403 (-560))))) (((-560) $) NIL (|has| |#1| (-1029 (-560)))) ((|#2| $) NIL) (($ (-945 (-403 (-560)))) NIL (-12 (|has| |#1| (-43 (-403 (-560)))) (|has| |#2| (-601 (-1153))))) (($ (-945 (-560))) NIL (-2318 (-12 (|has| |#1| (-43 (-560))) (|has| |#2| (-601 (-1153))) (-3186 (|has| |#1| (-43 (-403 (-560)))))) (-12 (|has| |#1| (-43 (-403 (-560)))) (|has| |#2| (-601 (-1153)))))) (($ (-945 |#1|)) NIL (-2318 (-12 (|has| |#2| (-601 (-1153))) (-3186 (|has| |#1| (-43 (-403 (-560))))) (-3186 (|has| |#1| (-43 (-560))))) (-12 (|has| |#1| (-43 (-560))) (|has| |#2| (-601 (-1153))) (-3186 (|has| |#1| (-43 (-403 (-560))))) (-3186 (|has| |#1| (-542)))) (-12 (|has| |#1| (-43 (-403 (-560)))) (|has| |#2| (-601 (-1153))) (-3186 (|has| |#1| (-985 (-560))))))) (((-1105 |#1| |#2|) $) NIL)) (-1979 (($ $ $ |#2|) NIL (|has| |#1| (-170))) (($ $ $) 103 (|has| |#1| (-550)))) (-1750 (($ $) NIL) (($ $ |#2|) NIL)) (-2616 (((-671 (-560)) (-671 $)) NIL (|has| |#1| (-622 (-560)))) (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) NIL (|has| |#1| (-622 (-560)))) (((-2 (|:| -3818 (-671 |#1|)) (|:| |vec| (-1236 |#1|))) (-671 $) (-1236 $)) NIL) (((-671 |#1|) (-671 $)) NIL)) (-1590 (((-121) $ $) NIL) (((-121) $ (-626 $)) NIL)) (-1823 (((-3 $ "failed") $) NIL)) (-3322 (((-121) $) NIL)) (-4051 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) 69)) (-2338 (($ $) 118 (|has| |#1| (-447)))) (-3605 (($ $) NIL (|has| |#1| (-447))) (($ $ |#2|) NIL (|has| |#1| (-447)))) (-1743 (((-626 $) $) NIL)) (-3319 (((-121) $) NIL (|has| |#1| (-896)))) (-3253 (($ $) NIL (|has| |#1| (-550)))) (-2565 (($ $) NIL (|has| |#1| (-550)))) (-3064 (($ $ $) 64) (($ $ $ |#2|) NIL)) (-1446 (($ $ $) 67) (($ $ $ |#2|) NIL)) (-1456 (($ $ |#1| (-526 |#2|) $) NIL)) (-2399 (((-876 (-375) $) $ (-879 (-375)) (-876 (-375) $)) NIL (-12 (|has| |#1| (-873 (-375))) (|has| |#2| (-873 (-375))))) (((-876 (-560) $) $ (-879 (-560)) (-876 (-560) $)) NIL (-12 (|has| |#1| (-873 (-560))) (|has| |#2| (-873 (-560)))))) (-2642 (((-121) $) NIL)) (-3235 (((-755) $) NIL)) (-2864 (((-121) $ $) NIL) (((-121) $ (-626 $)) NIL)) (-1937 (($ $ $ $ $) 89 (|has| |#1| (-550)))) (-2819 ((|#2| $) 19)) (-1647 (($ (-1149 |#1|) |#2|) NIL) (($ (-1149 $) |#2|) NIL)) (-1854 (((-626 $) $) NIL)) (-1814 (((-121) $) NIL)) (-1637 (($ |#1| (-526 |#2|)) NIL) (($ $ |#2| (-755)) 36) (($ $ (-626 |#2|) (-626 (-755))) NIL)) (-2830 (($ $ $) 60)) (-2923 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $ |#2|) NIL)) (-2188 (((-121) $) NIL)) (-3693 (((-526 |#2|) $) NIL) (((-755) $ |#2|) NIL) (((-626 (-755)) $ (-626 |#2|)) NIL)) (-4325 (($ $ $) NIL (|has| |#1| (-834)))) (-3153 (((-755) $) 20)) (-2501 (($ $ $) NIL (|has| |#1| (-834)))) (-1504 (($ (-1 (-526 |#2|) (-526 |#2|)) $) NIL)) (-2803 (($ (-1 |#1| |#1|) $) NIL)) (-2101 (((-3 |#2| "failed") $) NIL)) (-4206 (($ $) NIL (|has| |#1| (-447)))) (-1352 (($ $) NIL (|has| |#1| (-447)))) (-3323 (((-626 $) $) NIL)) (-1674 (($ $) 37)) (-2718 (($ $) NIL (|has| |#1| (-447)))) (-3633 (((-626 $) $) 41)) (-3435 (($ $) 39)) (-1726 (($ $) NIL)) (-1735 ((|#1| $) NIL) (($ $ |#2|) 45)) (-2582 (($ (-626 $)) NIL (|has| |#1| (-447))) (($ $ $) NIL (|has| |#1| (-447)))) (-3629 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2001 (-755))) $ $) 81)) (-2741 (((-2 (|:| -2169 $) (|:| |gap| (-755)) (|:| -2583 $) (|:| -4397 $)) $ $) 66) (((-2 (|:| -2169 $) (|:| |gap| (-755)) (|:| -2583 $) (|:| -4397 $)) $ $ |#2|) NIL)) (-2106 (((-2 (|:| -2169 $) (|:| |gap| (-755)) (|:| -4397 $)) $ $) NIL) (((-2 (|:| -2169 $) (|:| |gap| (-755)) (|:| -4397 $)) $ $ |#2|) NIL)) (-2155 (($ $ $) 71) (($ $ $ |#2|) NIL)) (-1615 (($ $ $) 74) (($ $ $ |#2|) NIL)) (-1291 (((-1135) $) NIL)) (-3069 (($ $ $) 107 (|has| |#1| (-550)))) (-3933 (((-626 $) $) 30)) (-3665 (((-3 (-626 $) "failed") $) NIL)) (-2327 (((-3 (-626 $) "failed") $) NIL)) (-2913 (((-3 (-2 (|:| |var| |#2|) (|:| -4034 (-755))) "failed") $) NIL)) (-3098 (((-121) $ $) NIL) (((-121) $ (-626 $)) NIL)) (-2054 (($ $ $) NIL)) (-1394 (($ $) 21)) (-3564 (((-121) $ $) NIL)) (-1584 (((-121) $ $) NIL) (((-121) $ (-626 $)) NIL)) (-4047 (($ $ $) NIL)) (-1480 (($ $) 23)) (-4353 (((-1100) $) NIL)) (-4056 (((-2 (|:| -4440 $) (|:| |coef2| $)) $ $) 98 (|has| |#1| (-550)))) (-1864 (((-2 (|:| -4440 $) (|:| |coef1| $)) $ $) 95 (|has| |#1| (-550)))) (-1704 (((-121) $) 52)) (-1711 ((|#1| $) 55)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL (|has| |#1| (-447)))) (-4440 ((|#1| |#1| $) 115 (|has| |#1| (-447))) (($ (-626 $)) NIL (|has| |#1| (-447))) (($ $ $) NIL (|has| |#1| (-447)))) (-3817 (((-414 (-1149 $)) (-1149 $)) NIL (|has| |#1| (-896)))) (-3032 (((-414 (-1149 $)) (-1149 $)) NIL (|has| |#1| (-896)))) (-1601 (((-414 $) $) NIL (|has| |#1| (-896)))) (-3087 (((-2 (|:| -4440 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 101 (|has| |#1| (-550)))) (-2336 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-550))) (((-3 $ "failed") $ $) 83 (|has| |#1| (-550)))) (-4062 (($ $ |#1|) 111 (|has| |#1| (-550))) (($ $ $) NIL (|has| |#1| (-550)))) (-1816 (($ $ |#1|) 110 (|has| |#1| (-550))) (($ $ $) NIL (|has| |#1| (-550)))) (-4450 (($ $ (-626 (-283 $))) NIL) (($ $ (-283 $)) NIL) (($ $ $ $) NIL) (($ $ (-626 $) (-626 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-626 |#2|) (-626 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-626 |#2|) (-626 $)) NIL)) (-4069 (($ $ |#2|) NIL (|has| |#1| (-170)))) (-2443 (($ $ |#2|) NIL) (($ $ (-626 |#2|)) NIL) (($ $ |#2| (-755)) NIL) (($ $ (-626 |#2|) (-626 (-755))) NIL)) (-3662 (((-526 |#2|) $) NIL) (((-755) $ |#2|) 43) (((-626 (-755)) $ (-626 |#2|)) NIL)) (-3749 (($ $) NIL)) (-1559 (($ $) 33)) (-4255 (((-879 (-375)) $) NIL (-12 (|has| |#1| (-601 (-879 (-375)))) (|has| |#2| (-601 (-879 (-375)))))) (((-879 (-560)) $) NIL (-12 (|has| |#1| (-601 (-879 (-560)))) (|has| |#2| (-601 (-879 (-560)))))) (((-533) $) NIL (-12 (|has| |#1| (-601 (-533))) (|has| |#2| (-601 (-533))))) (($ (-945 (-403 (-560)))) NIL (-12 (|has| |#1| (-43 (-403 (-560)))) (|has| |#2| (-601 (-1153))))) (($ (-945 (-560))) NIL (-2318 (-12 (|has| |#1| (-43 (-560))) (|has| |#2| (-601 (-1153))) (-3186 (|has| |#1| (-43 (-403 (-560)))))) (-12 (|has| |#1| (-43 (-403 (-560)))) (|has| |#2| (-601 (-1153)))))) (($ (-945 |#1|)) NIL (|has| |#2| (-601 (-1153)))) (((-1135) $) NIL (-12 (|has| |#1| (-1029 (-560))) (|has| |#2| (-601 (-1153))))) (((-945 |#1|) $) NIL (|has| |#2| (-601 (-1153))))) (-1896 ((|#1| $) 114 (|has| |#1| (-447))) (($ $ |#2|) NIL (|has| |#1| (-447)))) (-3248 (((-3 (-1236 $) "failed") (-671 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-896))))) (-2801 (((-842) $) NIL) (($ (-560)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-945 |#1|) $) NIL (|has| |#2| (-601 (-1153)))) (((-1105 |#1| |#2|) $) 15) (($ (-1105 |#1| |#2|)) 16) (($ (-403 (-560))) NIL (-2318 (|has| |#1| (-43 (-403 (-560)))) (|has| |#1| (-1029 (-403 (-560)))))) (($ $) NIL (|has| |#1| (-550)))) (-2423 (((-626 |#1|) $) NIL)) (-2636 ((|#1| $ (-526 |#2|)) NIL) (($ $ |#2| (-755)) 44) (($ $ (-626 |#2|) (-626 (-755))) NIL)) (-2272 (((-3 $ "failed") $) NIL (-2318 (-12 (|has| $ (-146)) (|has| |#1| (-896))) (|has| |#1| (-146))))) (-1751 (((-755)) NIL)) (-3487 (($ $ $ (-755)) NIL (|has| |#1| (-170)))) (-2328 (((-121) $ $) NIL (|has| |#1| (-550)))) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (-3304 (($) 13 T CONST)) (-4219 (((-3 (-121) "failed") $ $) NIL)) (-1459 (($) 35 T CONST)) (-3457 (($ $ $ $ (-755)) 87 (|has| |#1| (-550)))) (-4392 (($ $ $ (-755)) 86 (|has| |#1| (-550)))) (-2500 (($ $ |#2|) NIL) (($ $ (-626 |#2|)) NIL) (($ $ |#2| (-755)) NIL) (($ $ (-626 |#2|) (-626 (-755))) NIL)) (-1691 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1675 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1653 (((-121) $ $) 54)) (-1683 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1667 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1733 (($ $ |#1|) NIL (|has| |#1| (-359)))) (-1725 (($ $) NIL) (($ $ $) 63)) (-1716 (($ $ $) 73)) (** (($ $ (-909)) NIL) (($ $ (-755)) 61)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) 59) (($ $ (-403 (-560))) NIL (|has| |#1| (-43 (-403 (-560))))) (($ (-403 (-560)) $) NIL (|has| |#1| (-43 (-403 (-560))))) (($ |#1| $) 58) (($ $ |#1|) NIL))) -(((-767 |#1| |#2|) (-13 (-1053 |#1| (-526 |#2|) |#2|) (-600 (-1105 |#1| |#2|)) (-1029 (-1105 |#1| |#2|))) (-1039) (-834)) (T -767)) -NIL -(-13 (-1053 |#1| (-526 |#2|) |#2|) (-600 (-1105 |#1| |#2|)) (-1029 (-1105 |#1| |#2|))) -((-2803 (((-769 |#2|) (-1 |#2| |#1|) (-769 |#1|)) 13))) -(((-768 |#1| |#2|) (-10 -7 (-15 -2803 ((-769 |#2|) (-1 |#2| |#1|) (-769 |#1|)))) (-1039) (-1039)) (T -768)) -((-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-769 *5)) (-4 *5 (-1039)) (-4 *6 (-1039)) (-5 *2 (-769 *6)) (-5 *1 (-768 *5 *6))))) -(-10 -7 (-15 -2803 ((-769 |#2|) (-1 |#2| |#1|) (-769 |#1|)))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) 12)) (-3000 (((-1236 |#1|) $ (-755)) NIL)) (-1654 (((-626 (-1067)) $) NIL)) (-3023 (($ (-1149 |#1|)) NIL)) (-1593 (((-1149 $) $ (-1067)) NIL) (((-1149 |#1|) $) NIL)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL (|has| |#1| (-550)))) (-1350 (($ $) NIL (|has| |#1| (-550)))) (-3376 (((-121) $) NIL (|has| |#1| (-550)))) (-1697 (((-755) $) NIL) (((-755) $ (-626 (-1067))) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-3327 (((-626 $) $ $) 39 (|has| |#1| (-550)))) (-4408 (($ $ $) 35 (|has| |#1| (-550)))) (-1776 (((-414 (-1149 $)) (-1149 $)) NIL (|has| |#1| (-896)))) (-3065 (($ $) NIL (|has| |#1| (-447)))) (-2953 (((-414 $) $) NIL (|has| |#1| (-447)))) (-1887 (((-3 (-626 (-1149 $)) "failed") (-626 (-1149 $)) (-1149 $)) NIL (|has| |#1| (-896)))) (-4179 (((-121) $ $) NIL (|has| |#1| (-359)))) (-2891 (($ $ (-755)) NIL)) (-2090 (($ $ (-755)) NIL)) (-2562 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-447)))) (-4236 (($) NIL T CONST)) (-1473 (((-3 |#1| "failed") $) NIL) (((-3 (-403 (-560)) "failed") $) NIL (|has| |#1| (-1029 (-403 (-560))))) (((-3 (-560) "failed") $) NIL (|has| |#1| (-1029 (-560)))) (((-3 (-1067) "failed") $) NIL) (((-3 (-1149 |#1|) "failed") $) 10)) (-3001 ((|#1| $) NIL) (((-403 (-560)) $) NIL (|has| |#1| (-1029 (-403 (-560))))) (((-560) $) NIL (|has| |#1| (-1029 (-560)))) (((-1067) $) NIL) (((-1149 |#1|) $) NIL)) (-1979 (($ $ $ (-1067)) NIL (|has| |#1| (-170))) ((|#1| $ $) 43 (|has| |#1| (-170)))) (-2563 (($ $ $) NIL (|has| |#1| (-359)))) (-1750 (($ $) NIL)) (-2616 (((-671 (-560)) (-671 $)) NIL (|has| |#1| (-622 (-560)))) (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) NIL (|has| |#1| (-622 (-560)))) (((-2 (|:| -3818 (-671 |#1|)) (|:| |vec| (-1236 |#1|))) (-671 $) (-1236 $)) NIL) (((-671 |#1|) (-671 $)) NIL)) (-1823 (((-3 $ "failed") $) NIL)) (-2572 (($ $ $) NIL (|has| |#1| (-359)))) (-2309 (($ $ $) NIL)) (-1332 (($ $ $) 71 (|has| |#1| (-550)))) (-4051 (((-2 (|:| -2169 |#1|) (|:| -2583 $) (|:| -4397 $)) $ $) 70 (|has| |#1| (-550)))) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) NIL (|has| |#1| (-359)))) (-3605 (($ $) NIL (|has| |#1| (-447))) (($ $ (-1067)) NIL (|has| |#1| (-447)))) (-1743 (((-626 $) $) NIL)) (-3319 (((-121) $) NIL (|has| |#1| (-896)))) (-1456 (($ $ |#1| (-755) $) NIL)) (-2399 (((-876 (-375) $) $ (-879 (-375)) (-876 (-375) $)) NIL (-12 (|has| (-1067) (-873 (-375))) (|has| |#1| (-873 (-375))))) (((-876 (-560) $) $ (-879 (-560)) (-876 (-560) $)) NIL (-12 (|has| (-1067) (-873 (-560))) (|has| |#1| (-873 (-560)))))) (-3504 (((-755) $ $) NIL (|has| |#1| (-550)))) (-2642 (((-121) $) NIL)) (-3235 (((-755) $) NIL)) (-1424 (((-3 $ "failed") $) NIL (|has| |#1| (-1128)))) (-1647 (($ (-1149 |#1|) (-1067)) NIL) (($ (-1149 $) (-1067)) NIL)) (-3549 (($ $ (-755)) NIL)) (-3856 (((-3 (-626 $) "failed") (-626 $) $) NIL (|has| |#1| (-359)))) (-1854 (((-626 $) $) NIL)) (-1814 (((-121) $) NIL)) (-1637 (($ |#1| (-755)) NIL) (($ $ (-1067) (-755)) NIL) (($ $ (-626 (-1067)) (-626 (-755))) NIL)) (-2830 (($ $ $) 20)) (-2923 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $ (-1067)) NIL) (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL)) (-3693 (((-755) $) NIL) (((-755) $ (-1067)) NIL) (((-626 (-755)) $ (-626 (-1067))) NIL)) (-4325 (($ $ $) NIL (|has| |#1| (-834)))) (-2501 (($ $ $) NIL (|has| |#1| (-834)))) (-1504 (($ (-1 (-755) (-755)) $) NIL)) (-2803 (($ (-1 |#1| |#1|) $) NIL)) (-1739 (((-1149 |#1|) $) NIL)) (-2101 (((-3 (-1067) "failed") $) NIL)) (-1726 (($ $) NIL)) (-1735 ((|#1| $) NIL)) (-2582 (($ (-626 $)) NIL (|has| |#1| (-447))) (($ $ $) NIL (|has| |#1| (-447)))) (-3629 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2001 (-755))) $ $) 26)) (-3715 (($ $ $) 29)) (-3301 (($ $ $) 32)) (-2741 (((-2 (|:| -2169 |#1|) (|:| |gap| (-755)) (|:| -2583 $) (|:| -4397 $)) $ $) 31)) (-1291 (((-1135) $) NIL)) (-3069 (($ $ $) 41 (|has| |#1| (-550)))) (-2325 (((-2 (|:| -2583 $) (|:| -4397 $)) $ (-755)) NIL)) (-3665 (((-3 (-626 $) "failed") $) NIL)) (-2327 (((-3 (-626 $) "failed") $) NIL)) (-2913 (((-3 (-2 (|:| |var| (-1067)) (|:| -4034 (-755))) "failed") $) NIL)) (-2376 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-1394 (($) NIL (|has| |#1| (-1128)) CONST)) (-4353 (((-1100) $) NIL)) (-4056 (((-2 (|:| -4440 $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (-550)))) (-1864 (((-2 (|:| -4440 $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (-550)))) (-1734 (((-2 (|:| -1979 |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (-550)))) (-2260 (((-2 (|:| -1979 |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (-550)))) (-1704 (((-121) $) 13)) (-1711 ((|#1| $) NIL)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL (|has| |#1| (-447)))) (-4440 (($ (-626 $)) NIL (|has| |#1| (-447))) (($ $ $) NIL (|has| |#1| (-447)))) (-4465 (($ $ (-755) |#1| $) 19)) (-3817 (((-414 (-1149 $)) (-1149 $)) NIL (|has| |#1| (-896)))) (-3032 (((-414 (-1149 $)) (-1149 $)) NIL (|has| |#1| (-896)))) (-1601 (((-414 $) $) NIL (|has| |#1| (-896)))) (-3087 (((-2 (|:| -4440 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (-550)))) (-1672 (((-2 (|:| -1979 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (-550)))) (-3505 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-359))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL (|has| |#1| (-359)))) (-2336 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-550))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-550)))) (-3456 (((-3 (-626 $) "failed") (-626 $) $) NIL (|has| |#1| (-359)))) (-4450 (($ $ (-626 (-283 $))) NIL) (($ $ (-283 $)) NIL) (($ $ $ $) NIL) (($ $ (-626 $) (-626 $)) NIL) (($ $ (-1067) |#1|) NIL) (($ $ (-626 (-1067)) (-626 |#1|)) NIL) (($ $ (-1067) $) NIL) (($ $ (-626 (-1067)) (-626 $)) NIL)) (-4445 (((-755) $) NIL (|has| |#1| (-359)))) (-2778 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-403 $) (-403 $) (-403 $)) NIL (|has| |#1| (-550))) ((|#1| (-403 $) |#1|) NIL (|has| |#1| (-359))) (((-403 $) $ (-403 $)) NIL (|has| |#1| (-550)))) (-1754 (((-3 $ "failed") $ (-755)) NIL)) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL (|has| |#1| (-359)))) (-4069 (($ $ (-1067)) NIL (|has| |#1| (-170))) ((|#1| $) NIL (|has| |#1| (-170)))) (-2443 (($ $ (-1067)) NIL) (($ $ (-626 (-1067))) NIL) (($ $ (-1067) (-755)) NIL) (($ $ (-626 (-1067)) (-626 (-755))) NIL) (($ $ (-755)) NIL) (($ $) NIL) (($ $ (-1153)) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-626 (-1153))) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-1153) (-755)) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-626 (-1153)) (-626 (-755))) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-1 |#1| |#1|) (-755)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3662 (((-755) $) NIL) (((-755) $ (-1067)) NIL) (((-626 (-755)) $ (-626 (-1067))) NIL)) (-4255 (((-879 (-375)) $) NIL (-12 (|has| (-1067) (-601 (-879 (-375)))) (|has| |#1| (-601 (-879 (-375)))))) (((-879 (-560)) $) NIL (-12 (|has| (-1067) (-601 (-879 (-560)))) (|has| |#1| (-601 (-879 (-560)))))) (((-533) $) NIL (-12 (|has| (-1067) (-601 (-533))) (|has| |#1| (-601 (-533)))))) (-1896 ((|#1| $) NIL (|has| |#1| (-447))) (($ $ (-1067)) NIL (|has| |#1| (-447)))) (-3248 (((-3 (-1236 $) "failed") (-671 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-896))))) (-2791 (((-3 $ "failed") $ $) NIL (|has| |#1| (-550))) (((-3 (-403 $) "failed") (-403 $) $) NIL (|has| |#1| (-550)))) (-2801 (((-842) $) NIL) (($ (-560)) NIL) (($ |#1|) NIL) (($ (-1067)) NIL) (((-1149 |#1|) $) 7) (($ (-1149 |#1|)) 8) (($ (-403 (-560))) NIL (-2318 (|has| |#1| (-43 (-403 (-560)))) (|has| |#1| (-1029 (-403 (-560)))))) (($ $) NIL (|has| |#1| (-550)))) (-2423 (((-626 |#1|) $) NIL)) (-2636 ((|#1| $ (-755)) NIL) (($ $ (-1067) (-755)) NIL) (($ $ (-626 (-1067)) (-626 (-755))) NIL)) (-2272 (((-3 $ "failed") $) NIL (-2318 (-12 (|has| $ (-146)) (|has| |#1| (-896))) (|has| |#1| (-146))))) (-1751 (((-755)) NIL)) (-3487 (($ $ $ (-755)) NIL (|has| |#1| (-170)))) (-2328 (((-121) $ $) NIL (|has| |#1| (-550)))) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (-3304 (($) 21 T CONST)) (-1459 (($) 24 T CONST)) (-2500 (($ $ (-1067)) NIL) (($ $ (-626 (-1067))) NIL) (($ $ (-1067) (-755)) NIL) (($ $ (-626 (-1067)) (-626 (-755))) NIL) (($ $ (-755)) NIL) (($ $) NIL) (($ $ (-1153)) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-626 (-1153))) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-1153) (-755)) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-626 (-1153)) (-626 (-755))) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-1 |#1| |#1|) (-755)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1691 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1675 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1653 (((-121) $ $) NIL)) (-1683 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1667 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1733 (($ $ |#1|) NIL (|has| |#1| (-359)))) (-1725 (($ $) 28) (($ $ $) NIL)) (-1716 (($ $ $) NIL)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) NIL) (($ $ (-403 (-560))) NIL (|has| |#1| (-43 (-403 (-560))))) (($ (-403 (-560)) $) NIL (|has| |#1| (-43 (-403 (-560))))) (($ |#1| $) 23) (($ $ |#1|) NIL))) -(((-769 |#1|) (-13 (-1211 |#1|) (-600 (-1149 |#1|)) (-1029 (-1149 |#1|)) (-10 -8 (-15 -4465 ($ $ (-755) |#1| $)) (-15 -2830 ($ $ $)) (-15 -3629 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2001 (-755))) $ $)) (-15 -3715 ($ $ $)) (-15 -2741 ((-2 (|:| -2169 |#1|) (|:| |gap| (-755)) (|:| -2583 $) (|:| -4397 $)) $ $)) (-15 -3301 ($ $ $)) (IF (|has| |#1| (-550)) (PROGN (-15 -3327 ((-626 $) $ $)) (-15 -3069 ($ $ $)) (-15 -3087 ((-2 (|:| -4440 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1864 ((-2 (|:| -4440 $) (|:| |coef1| $)) $ $)) (-15 -4056 ((-2 (|:| -4440 $) (|:| |coef2| $)) $ $)) (-15 -1672 ((-2 (|:| -1979 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2260 ((-2 (|:| -1979 |#1|) (|:| |coef1| $)) $ $)) (-15 -1734 ((-2 (|:| -1979 |#1|) (|:| |coef2| $)) $ $))) |noBranch|))) (-1039)) (T -769)) -((-4465 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-755)) (-5 *1 (-769 *3)) (-4 *3 (-1039)))) (-2830 (*1 *1 *1 *1) (-12 (-5 *1 (-769 *2)) (-4 *2 (-1039)))) (-3629 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-769 *3)) (|:| |polden| *3) (|:| -2001 (-755)))) (-5 *1 (-769 *3)) (-4 *3 (-1039)))) (-3715 (*1 *1 *1 *1) (-12 (-5 *1 (-769 *2)) (-4 *2 (-1039)))) (-2741 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2169 *3) (|:| |gap| (-755)) (|:| -2583 (-769 *3)) (|:| -4397 (-769 *3)))) (-5 *1 (-769 *3)) (-4 *3 (-1039)))) (-3301 (*1 *1 *1 *1) (-12 (-5 *1 (-769 *2)) (-4 *2 (-1039)))) (-3327 (*1 *2 *1 *1) (-12 (-5 *2 (-626 (-769 *3))) (-5 *1 (-769 *3)) (-4 *3 (-550)) (-4 *3 (-1039)))) (-3069 (*1 *1 *1 *1) (-12 (-5 *1 (-769 *2)) (-4 *2 (-550)) (-4 *2 (-1039)))) (-3087 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4440 (-769 *3)) (|:| |coef1| (-769 *3)) (|:| |coef2| (-769 *3)))) (-5 *1 (-769 *3)) (-4 *3 (-550)) (-4 *3 (-1039)))) (-1864 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4440 (-769 *3)) (|:| |coef1| (-769 *3)))) (-5 *1 (-769 *3)) (-4 *3 (-550)) (-4 *3 (-1039)))) (-4056 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4440 (-769 *3)) (|:| |coef2| (-769 *3)))) (-5 *1 (-769 *3)) (-4 *3 (-550)) (-4 *3 (-1039)))) (-1672 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1979 *3) (|:| |coef1| (-769 *3)) (|:| |coef2| (-769 *3)))) (-5 *1 (-769 *3)) (-4 *3 (-550)) (-4 *3 (-1039)))) (-2260 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1979 *3) (|:| |coef1| (-769 *3)))) (-5 *1 (-769 *3)) (-4 *3 (-550)) (-4 *3 (-1039)))) (-1734 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1979 *3) (|:| |coef2| (-769 *3)))) (-5 *1 (-769 *3)) (-4 *3 (-550)) (-4 *3 (-1039))))) -(-13 (-1211 |#1|) (-600 (-1149 |#1|)) (-1029 (-1149 |#1|)) (-10 -8 (-15 -4465 ($ $ (-755) |#1| $)) (-15 -2830 ($ $ $)) (-15 -3629 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2001 (-755))) $ $)) (-15 -3715 ($ $ $)) (-15 -2741 ((-2 (|:| -2169 |#1|) (|:| |gap| (-755)) (|:| -2583 $) (|:| -4397 $)) $ $)) (-15 -3301 ($ $ $)) (IF (|has| |#1| (-550)) (PROGN (-15 -3327 ((-626 $) $ $)) (-15 -3069 ($ $ $)) (-15 -3087 ((-2 (|:| -4440 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1864 ((-2 (|:| -4440 $) (|:| |coef1| $)) $ $)) (-15 -4056 ((-2 (|:| -4440 $) (|:| |coef2| $)) $ $)) (-15 -1672 ((-2 (|:| -1979 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2260 ((-2 (|:| -1979 |#1|) (|:| |coef1| $)) $ $)) (-15 -1734 ((-2 (|:| -1979 |#1|) (|:| |coef2| $)) $ $))) |noBranch|))) -((-2999 ((|#1| (-755) |#1|) 32 (|has| |#1| (-43 (-403 (-560)))))) (-3833 ((|#1| (-755) |#1|) 22)) (-3068 ((|#1| (-755) |#1|) 34 (|has| |#1| (-43 (-403 (-560))))))) -(((-770 |#1|) (-10 -7 (-15 -3833 (|#1| (-755) |#1|)) (IF (|has| |#1| (-43 (-403 (-560)))) (PROGN (-15 -3068 (|#1| (-755) |#1|)) (-15 -2999 (|#1| (-755) |#1|))) |noBranch|)) (-170)) (T -770)) -((-2999 (*1 *2 *3 *2) (-12 (-5 *3 (-755)) (-5 *1 (-770 *2)) (-4 *2 (-43 (-403 (-560)))) (-4 *2 (-170)))) (-3068 (*1 *2 *3 *2) (-12 (-5 *3 (-755)) (-5 *1 (-770 *2)) (-4 *2 (-43 (-403 (-560)))) (-4 *2 (-170)))) (-3833 (*1 *2 *3 *2) (-12 (-5 *3 (-755)) (-5 *1 (-770 *2)) (-4 *2 (-170))))) -(-10 -7 (-15 -3833 (|#1| (-755) |#1|)) (IF (|has| |#1| (-43 (-403 (-560)))) (PROGN (-15 -3068 (|#1| (-755) |#1|)) (-15 -2999 (|#1| (-755) |#1|))) |noBranch|)) -((-2601 (((-121) $ $) 7)) (-3975 (((-626 (-2 (|:| -4071 $) (|:| -3997 (-626 |#4|)))) (-626 |#4|)) 78)) (-3332 (((-626 $) (-626 |#4|)) 79) (((-626 $) (-626 |#4|) (-121)) 104)) (-1654 (((-626 |#3|) $) 32)) (-1385 (((-121) $) 25)) (-3617 (((-121) $) 16 (|has| |#1| (-550)))) (-2898 (((-121) |#4| $) 94) (((-121) $) 90)) (-3177 ((|#4| |#4| $) 85)) (-3065 (((-626 (-2 (|:| |val| |#4|) (|:| -3249 $))) |#4| $) 119)) (-3743 (((-2 (|:| |under| $) (|:| -2150 $) (|:| |upper| $)) $ |#3|) 26)) (-3909 (((-121) $ (-755)) 43)) (-3802 (($ (-1 (-121) |#4|) $) 64 (|has| $ (-6 -4505))) (((-3 |#4| "failed") $ |#3|) 72)) (-4236 (($) 44 T CONST)) (-2226 (((-121) $) 21 (|has| |#1| (-550)))) (-3225 (((-121) $ $) 23 (|has| |#1| (-550)))) (-4195 (((-121) $ $) 22 (|has| |#1| (-550)))) (-1501 (((-121) $) 24 (|has| |#1| (-550)))) (-4339 (((-626 |#4|) (-626 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-121) |#4| |#4|)) 86)) (-4318 (((-626 |#4|) (-626 |#4|) $) 17 (|has| |#1| (-550)))) (-3979 (((-626 |#4|) (-626 |#4|) $) 18 (|has| |#1| (-550)))) (-1473 (((-3 $ "failed") (-626 |#4|)) 35)) (-3001 (($ (-626 |#4|)) 34)) (-2877 (((-3 $ "failed") $) 75)) (-2134 ((|#4| |#4| $) 82)) (-2868 (($ $) 67 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4505))))) (-4310 (($ |#4| $) 66 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4505)))) (($ (-1 (-121) |#4|) $) 63 (|has| $ (-6 -4505)))) (-4397 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 19 (|has| |#1| (-550)))) (-1590 (((-121) |#4| $ (-1 (-121) |#4| |#4|)) 95)) (-4048 ((|#4| |#4| $) 80)) (-2342 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 65 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4505)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 62 (|has| $ (-6 -4505))) ((|#4| (-1 |#4| |#4| |#4|) $) 61 (|has| $ (-6 -4505))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-121) |#4| |#4|)) 87)) (-3035 (((-2 (|:| -4071 (-626 |#4|)) (|:| -3997 (-626 |#4|))) $) 98)) (-2329 (((-121) |#4| $) 129)) (-3701 (((-121) |#4| $) 126)) (-2894 (((-121) |#4| $) 130) (((-121) $) 127)) (-1981 (((-626 |#4|) $) 51 (|has| $ (-6 -4505)))) (-2864 (((-121) |#4| $) 97) (((-121) $) 96)) (-2819 ((|#3| $) 33)) (-2122 (((-121) $ (-755)) 42)) (-2130 (((-626 |#4|) $) 52 (|has| $ (-6 -4505)))) (-2030 (((-121) |#4| $) 54 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4505))))) (-3778 (($ (-1 |#4| |#4|) $) 47 (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#4| |#4|) $) 46)) (-4475 (((-626 |#3|) $) 31)) (-1304 (((-121) |#3| $) 30)) (-3441 (((-121) $ (-755)) 41)) (-1291 (((-1135) $) 9)) (-3283 (((-3 |#4| (-626 $)) |#4| |#4| $) 121)) (-3069 (((-626 (-2 (|:| |val| |#4|) (|:| -3249 $))) |#4| |#4| $) 120)) (-4139 (((-3 |#4| "failed") $) 76)) (-3269 (((-626 $) |#4| $) 122)) (-2061 (((-3 (-121) (-626 $)) |#4| $) 125)) (-2638 (((-626 (-2 (|:| |val| (-121)) (|:| -3249 $))) |#4| $) 124) (((-121) |#4| $) 123)) (-4283 (((-626 $) |#4| $) 118) (((-626 $) (-626 |#4|) $) 117) (((-626 $) (-626 |#4|) (-626 $)) 116) (((-626 $) |#4| (-626 $)) 115)) (-3760 (($ |#4| $) 110) (($ (-626 |#4|) $) 109)) (-3840 (((-626 |#4|) $) 100)) (-3098 (((-121) |#4| $) 92) (((-121) $) 88)) (-2054 ((|#4| |#4| $) 83)) (-3564 (((-121) $ $) 103)) (-1960 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-550)))) (-1584 (((-121) |#4| $) 93) (((-121) $) 89)) (-4047 ((|#4| |#4| $) 84)) (-4353 (((-1100) $) 10)) (-2824 (((-3 |#4| "failed") $) 77)) (-3786 (((-3 |#4| "failed") (-1 (-121) |#4|) $) 60)) (-1368 (((-3 $ "failed") $ |#4|) 71)) (-3292 (($ $ |#4|) 70) (((-626 $) |#4| $) 108) (((-626 $) |#4| (-626 $)) 107) (((-626 $) (-626 |#4|) $) 106) (((-626 $) (-626 |#4|) (-626 $)) 105)) (-2865 (((-121) (-1 (-121) |#4|) $) 49 (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 |#4|) (-626 |#4|)) 58 (-12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082)))) (($ $ |#4| |#4|) 57 (-12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082)))) (($ $ (-283 |#4|)) 56 (-12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082)))) (($ $ (-626 (-283 |#4|))) 55 (-12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082))))) (-2214 (((-121) $ $) 37)) (-4191 (((-121) $) 40)) (-3260 (($) 39)) (-3662 (((-755) $) 99)) (-4035 (((-755) |#4| $) 53 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4505)))) (((-755) (-1 (-121) |#4|) $) 50 (|has| $ (-6 -4505)))) (-2813 (($ $) 38)) (-4255 (((-533) $) 68 (|has| |#4| (-601 (-533))))) (-4162 (($ (-626 |#4|)) 59)) (-3369 (($ $ |#3|) 27)) (-2673 (($ $ |#3|) 29)) (-3746 (($ $) 81)) (-3388 (($ $ |#3|) 28)) (-2801 (((-842) $) 11) (((-626 |#4|) $) 36)) (-4277 (((-755) $) 69 (|has| |#3| (-364)))) (-3133 (((-3 (-2 (|:| |bas| $) (|:| -4224 (-626 |#4|))) "failed") (-626 |#4|) (-1 (-121) |#4| |#4|)) 102) (((-3 (-2 (|:| |bas| $) (|:| -4224 (-626 |#4|))) "failed") (-626 |#4|) (-1 (-121) |#4|) (-1 (-121) |#4| |#4|)) 101)) (-2967 (((-121) $ (-1 (-121) |#4| (-626 |#4|))) 91)) (-1767 (((-626 $) |#4| $) 114) (((-626 $) |#4| (-626 $)) 113) (((-626 $) (-626 |#4|) $) 112) (((-626 $) (-626 |#4|) (-626 $)) 111)) (-3656 (((-121) (-1 (-121) |#4|) $) 48 (|has| $ (-6 -4505)))) (-3284 (((-626 |#3|) $) 74)) (-4073 (((-121) |#4| $) 128)) (-1535 (((-121) |#3| $) 73)) (-1653 (((-121) $ $) 6)) (-2271 (((-755) $) 45 (|has| $ (-6 -4505))))) -(((-771 |#1| |#2| |#3| |#4|) (-1267) (-447) (-780) (-834) (-1053 |t#1| |t#2| |t#3|)) (T -771)) -NIL -(-13 (-1058 |t#1| |t#2| |t#3| |t#4|)) -(((-39) . T) ((-105) . T) ((-600 (-626 |#4|)) . T) ((-600 (-842)) . T) ((-152 |#4|) . T) ((-601 (-533)) |has| |#4| (-601 (-533))) ((-298 |#4|) -12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082))) ((-492 |#4|) . T) ((-515 |#4| |#4|) -12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082))) ((-969 |#1| |#2| |#3| |#4|) . T) ((-1058 |#1| |#2| |#3| |#4|) . T) ((-1082) . T) ((-1181 |#1| |#2| |#3| |#4|) . T) ((-1187) . T)) -((-4372 (((-3 (-375) "failed") (-304 |#1|) (-909)) 60 (-12 (|has| |#1| (-550)) (|has| |#1| (-834)))) (((-3 (-375) "failed") (-304 |#1|)) 52 (-12 (|has| |#1| (-550)) (|has| |#1| (-834)))) (((-3 (-375) "failed") (-403 (-945 |#1|)) (-909)) 39 (|has| |#1| (-550))) (((-3 (-375) "failed") (-403 (-945 |#1|))) 35 (|has| |#1| (-550))) (((-3 (-375) "failed") (-945 |#1|) (-909)) 30 (|has| |#1| (-1039))) (((-3 (-375) "failed") (-945 |#1|)) 24 (|has| |#1| (-1039)))) (-2606 (((-375) (-304 |#1|) (-909)) 92 (-12 (|has| |#1| (-550)) (|has| |#1| (-834)))) (((-375) (-304 |#1|)) 87 (-12 (|has| |#1| (-550)) (|has| |#1| (-834)))) (((-375) (-403 (-945 |#1|)) (-909)) 84 (|has| |#1| (-550))) (((-375) (-403 (-945 |#1|))) 81 (|has| |#1| (-550))) (((-375) (-945 |#1|) (-909)) 80 (|has| |#1| (-1039))) (((-375) (-945 |#1|)) 77 (|has| |#1| (-1039))) (((-375) |#1| (-909)) 73) (((-375) |#1|) 22)) (-1866 (((-3 (-167 (-375)) "failed") (-304 (-167 |#1|)) (-909)) 68 (-12 (|has| |#1| (-550)) (|has| |#1| (-834)))) (((-3 (-167 (-375)) "failed") (-304 (-167 |#1|))) 58 (-12 (|has| |#1| (-550)) (|has| |#1| (-834)))) (((-3 (-167 (-375)) "failed") (-304 |#1|) (-909)) 61 (-12 (|has| |#1| (-550)) (|has| |#1| (-834)))) (((-3 (-167 (-375)) "failed") (-304 |#1|)) 59 (-12 (|has| |#1| (-550)) (|has| |#1| (-834)))) (((-3 (-167 (-375)) "failed") (-403 (-945 (-167 |#1|))) (-909)) 44 (|has| |#1| (-550))) (((-3 (-167 (-375)) "failed") (-403 (-945 (-167 |#1|)))) 43 (|has| |#1| (-550))) (((-3 (-167 (-375)) "failed") (-403 (-945 |#1|)) (-909)) 38 (|has| |#1| (-550))) (((-3 (-167 (-375)) "failed") (-403 (-945 |#1|))) 37 (|has| |#1| (-550))) (((-3 (-167 (-375)) "failed") (-945 |#1|) (-909)) 28 (|has| |#1| (-1039))) (((-3 (-167 (-375)) "failed") (-945 |#1|)) 26 (|has| |#1| (-1039))) (((-3 (-167 (-375)) "failed") (-945 (-167 |#1|)) (-909)) 17 (|has| |#1| (-170))) (((-3 (-167 (-375)) "failed") (-945 (-167 |#1|))) 14 (|has| |#1| (-170)))) (-1580 (((-167 (-375)) (-304 (-167 |#1|)) (-909)) 95 (-12 (|has| |#1| (-550)) (|has| |#1| (-834)))) (((-167 (-375)) (-304 (-167 |#1|))) 94 (-12 (|has| |#1| (-550)) (|has| |#1| (-834)))) (((-167 (-375)) (-304 |#1|) (-909)) 93 (-12 (|has| |#1| (-550)) (|has| |#1| (-834)))) (((-167 (-375)) (-304 |#1|)) 91 (-12 (|has| |#1| (-550)) (|has| |#1| (-834)))) (((-167 (-375)) (-403 (-945 (-167 |#1|))) (-909)) 86 (|has| |#1| (-550))) (((-167 (-375)) (-403 (-945 (-167 |#1|)))) 85 (|has| |#1| (-550))) (((-167 (-375)) (-403 (-945 |#1|)) (-909)) 83 (|has| |#1| (-550))) (((-167 (-375)) (-403 (-945 |#1|))) 82 (|has| |#1| (-550))) (((-167 (-375)) (-945 |#1|) (-909)) 79 (|has| |#1| (-1039))) (((-167 (-375)) (-945 |#1|)) 78 (|has| |#1| (-1039))) (((-167 (-375)) (-945 (-167 |#1|)) (-909)) 75 (|has| |#1| (-170))) (((-167 (-375)) (-945 (-167 |#1|))) 74 (|has| |#1| (-170))) (((-167 (-375)) (-167 |#1|) (-909)) 16 (|has| |#1| (-170))) (((-167 (-375)) (-167 |#1|)) 12 (|has| |#1| (-170))) (((-167 (-375)) |#1| (-909)) 27) (((-167 (-375)) |#1|) 25))) -(((-772 |#1|) (-10 -7 (-15 -2606 ((-375) |#1|)) (-15 -2606 ((-375) |#1| (-909))) (-15 -1580 ((-167 (-375)) |#1|)) (-15 -1580 ((-167 (-375)) |#1| (-909))) (IF (|has| |#1| (-170)) (PROGN (-15 -1580 ((-167 (-375)) (-167 |#1|))) (-15 -1580 ((-167 (-375)) (-167 |#1|) (-909))) (-15 -1580 ((-167 (-375)) (-945 (-167 |#1|)))) (-15 -1580 ((-167 (-375)) (-945 (-167 |#1|)) (-909)))) |noBranch|) (IF (|has| |#1| (-1039)) (PROGN (-15 -2606 ((-375) (-945 |#1|))) (-15 -2606 ((-375) (-945 |#1|) (-909))) (-15 -1580 ((-167 (-375)) (-945 |#1|))) (-15 -1580 ((-167 (-375)) (-945 |#1|) (-909)))) |noBranch|) (IF (|has| |#1| (-550)) (PROGN (-15 -2606 ((-375) (-403 (-945 |#1|)))) (-15 -2606 ((-375) (-403 (-945 |#1|)) (-909))) (-15 -1580 ((-167 (-375)) (-403 (-945 |#1|)))) (-15 -1580 ((-167 (-375)) (-403 (-945 |#1|)) (-909))) (-15 -1580 ((-167 (-375)) (-403 (-945 (-167 |#1|))))) (-15 -1580 ((-167 (-375)) (-403 (-945 (-167 |#1|))) (-909))) (IF (|has| |#1| (-834)) (PROGN (-15 -2606 ((-375) (-304 |#1|))) (-15 -2606 ((-375) (-304 |#1|) (-909))) (-15 -1580 ((-167 (-375)) (-304 |#1|))) (-15 -1580 ((-167 (-375)) (-304 |#1|) (-909))) (-15 -1580 ((-167 (-375)) (-304 (-167 |#1|)))) (-15 -1580 ((-167 (-375)) (-304 (-167 |#1|)) (-909)))) |noBranch|)) |noBranch|) (IF (|has| |#1| (-170)) (PROGN (-15 -1866 ((-3 (-167 (-375)) "failed") (-945 (-167 |#1|)))) (-15 -1866 ((-3 (-167 (-375)) "failed") (-945 (-167 |#1|)) (-909)))) |noBranch|) (IF (|has| |#1| (-1039)) (PROGN (-15 -4372 ((-3 (-375) "failed") (-945 |#1|))) (-15 -4372 ((-3 (-375) "failed") (-945 |#1|) (-909))) (-15 -1866 ((-3 (-167 (-375)) "failed") (-945 |#1|))) (-15 -1866 ((-3 (-167 (-375)) "failed") (-945 |#1|) (-909)))) |noBranch|) (IF (|has| |#1| (-550)) (PROGN (-15 -4372 ((-3 (-375) "failed") (-403 (-945 |#1|)))) (-15 -4372 ((-3 (-375) "failed") (-403 (-945 |#1|)) (-909))) (-15 -1866 ((-3 (-167 (-375)) "failed") (-403 (-945 |#1|)))) (-15 -1866 ((-3 (-167 (-375)) "failed") (-403 (-945 |#1|)) (-909))) (-15 -1866 ((-3 (-167 (-375)) "failed") (-403 (-945 (-167 |#1|))))) (-15 -1866 ((-3 (-167 (-375)) "failed") (-403 (-945 (-167 |#1|))) (-909))) (IF (|has| |#1| (-834)) (PROGN (-15 -4372 ((-3 (-375) "failed") (-304 |#1|))) (-15 -4372 ((-3 (-375) "failed") (-304 |#1|) (-909))) (-15 -1866 ((-3 (-167 (-375)) "failed") (-304 |#1|))) (-15 -1866 ((-3 (-167 (-375)) "failed") (-304 |#1|) (-909))) (-15 -1866 ((-3 (-167 (-375)) "failed") (-304 (-167 |#1|)))) (-15 -1866 ((-3 (-167 (-375)) "failed") (-304 (-167 |#1|)) (-909)))) |noBranch|)) |noBranch|)) (-601 (-375))) (T -772)) -((-1866 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-304 (-167 *5))) (-5 *4 (-909)) (-4 *5 (-550)) (-4 *5 (-834)) (-4 *5 (-601 (-375))) (-5 *2 (-167 (-375))) (-5 *1 (-772 *5)))) (-1866 (*1 *2 *3) (|partial| -12 (-5 *3 (-304 (-167 *4))) (-4 *4 (-550)) (-4 *4 (-834)) (-4 *4 (-601 (-375))) (-5 *2 (-167 (-375))) (-5 *1 (-772 *4)))) (-1866 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-304 *5)) (-5 *4 (-909)) (-4 *5 (-550)) (-4 *5 (-834)) (-4 *5 (-601 (-375))) (-5 *2 (-167 (-375))) (-5 *1 (-772 *5)))) (-1866 (*1 *2 *3) (|partial| -12 (-5 *3 (-304 *4)) (-4 *4 (-550)) (-4 *4 (-834)) (-4 *4 (-601 (-375))) (-5 *2 (-167 (-375))) (-5 *1 (-772 *4)))) (-4372 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-304 *5)) (-5 *4 (-909)) (-4 *5 (-550)) (-4 *5 (-834)) (-4 *5 (-601 *2)) (-5 *2 (-375)) (-5 *1 (-772 *5)))) (-4372 (*1 *2 *3) (|partial| -12 (-5 *3 (-304 *4)) (-4 *4 (-550)) (-4 *4 (-834)) (-4 *4 (-601 *2)) (-5 *2 (-375)) (-5 *1 (-772 *4)))) (-1866 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-403 (-945 (-167 *5)))) (-5 *4 (-909)) (-4 *5 (-550)) (-4 *5 (-601 (-375))) (-5 *2 (-167 (-375))) (-5 *1 (-772 *5)))) (-1866 (*1 *2 *3) (|partial| -12 (-5 *3 (-403 (-945 (-167 *4)))) (-4 *4 (-550)) (-4 *4 (-601 (-375))) (-5 *2 (-167 (-375))) (-5 *1 (-772 *4)))) (-1866 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-403 (-945 *5))) (-5 *4 (-909)) (-4 *5 (-550)) (-4 *5 (-601 (-375))) (-5 *2 (-167 (-375))) (-5 *1 (-772 *5)))) (-1866 (*1 *2 *3) (|partial| -12 (-5 *3 (-403 (-945 *4))) (-4 *4 (-550)) (-4 *4 (-601 (-375))) (-5 *2 (-167 (-375))) (-5 *1 (-772 *4)))) (-4372 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-403 (-945 *5))) (-5 *4 (-909)) (-4 *5 (-550)) (-4 *5 (-601 *2)) (-5 *2 (-375)) (-5 *1 (-772 *5)))) (-4372 (*1 *2 *3) (|partial| -12 (-5 *3 (-403 (-945 *4))) (-4 *4 (-550)) (-4 *4 (-601 *2)) (-5 *2 (-375)) (-5 *1 (-772 *4)))) (-1866 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-945 *5)) (-5 *4 (-909)) (-4 *5 (-1039)) (-4 *5 (-601 (-375))) (-5 *2 (-167 (-375))) (-5 *1 (-772 *5)))) (-1866 (*1 *2 *3) (|partial| -12 (-5 *3 (-945 *4)) (-4 *4 (-1039)) (-4 *4 (-601 (-375))) (-5 *2 (-167 (-375))) (-5 *1 (-772 *4)))) (-4372 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-945 *5)) (-5 *4 (-909)) (-4 *5 (-1039)) (-4 *5 (-601 *2)) (-5 *2 (-375)) (-5 *1 (-772 *5)))) (-4372 (*1 *2 *3) (|partial| -12 (-5 *3 (-945 *4)) (-4 *4 (-1039)) (-4 *4 (-601 *2)) (-5 *2 (-375)) (-5 *1 (-772 *4)))) (-1866 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-945 (-167 *5))) (-5 *4 (-909)) (-4 *5 (-170)) (-4 *5 (-601 (-375))) (-5 *2 (-167 (-375))) (-5 *1 (-772 *5)))) (-1866 (*1 *2 *3) (|partial| -12 (-5 *3 (-945 (-167 *4))) (-4 *4 (-170)) (-4 *4 (-601 (-375))) (-5 *2 (-167 (-375))) (-5 *1 (-772 *4)))) (-1580 (*1 *2 *3 *4) (-12 (-5 *3 (-304 (-167 *5))) (-5 *4 (-909)) (-4 *5 (-550)) (-4 *5 (-834)) (-4 *5 (-601 (-375))) (-5 *2 (-167 (-375))) (-5 *1 (-772 *5)))) (-1580 (*1 *2 *3) (-12 (-5 *3 (-304 (-167 *4))) (-4 *4 (-550)) (-4 *4 (-834)) (-4 *4 (-601 (-375))) (-5 *2 (-167 (-375))) (-5 *1 (-772 *4)))) (-1580 (*1 *2 *3 *4) (-12 (-5 *3 (-304 *5)) (-5 *4 (-909)) (-4 *5 (-550)) (-4 *5 (-834)) (-4 *5 (-601 (-375))) (-5 *2 (-167 (-375))) (-5 *1 (-772 *5)))) (-1580 (*1 *2 *3) (-12 (-5 *3 (-304 *4)) (-4 *4 (-550)) (-4 *4 (-834)) (-4 *4 (-601 (-375))) (-5 *2 (-167 (-375))) (-5 *1 (-772 *4)))) (-2606 (*1 *2 *3 *4) (-12 (-5 *3 (-304 *5)) (-5 *4 (-909)) (-4 *5 (-550)) (-4 *5 (-834)) (-4 *5 (-601 *2)) (-5 *2 (-375)) (-5 *1 (-772 *5)))) (-2606 (*1 *2 *3) (-12 (-5 *3 (-304 *4)) (-4 *4 (-550)) (-4 *4 (-834)) (-4 *4 (-601 *2)) (-5 *2 (-375)) (-5 *1 (-772 *4)))) (-1580 (*1 *2 *3 *4) (-12 (-5 *3 (-403 (-945 (-167 *5)))) (-5 *4 (-909)) (-4 *5 (-550)) (-4 *5 (-601 (-375))) (-5 *2 (-167 (-375))) (-5 *1 (-772 *5)))) (-1580 (*1 *2 *3) (-12 (-5 *3 (-403 (-945 (-167 *4)))) (-4 *4 (-550)) (-4 *4 (-601 (-375))) (-5 *2 (-167 (-375))) (-5 *1 (-772 *4)))) (-1580 (*1 *2 *3 *4) (-12 (-5 *3 (-403 (-945 *5))) (-5 *4 (-909)) (-4 *5 (-550)) (-4 *5 (-601 (-375))) (-5 *2 (-167 (-375))) (-5 *1 (-772 *5)))) (-1580 (*1 *2 *3) (-12 (-5 *3 (-403 (-945 *4))) (-4 *4 (-550)) (-4 *4 (-601 (-375))) (-5 *2 (-167 (-375))) (-5 *1 (-772 *4)))) (-2606 (*1 *2 *3 *4) (-12 (-5 *3 (-403 (-945 *5))) (-5 *4 (-909)) (-4 *5 (-550)) (-4 *5 (-601 *2)) (-5 *2 (-375)) (-5 *1 (-772 *5)))) (-2606 (*1 *2 *3) (-12 (-5 *3 (-403 (-945 *4))) (-4 *4 (-550)) (-4 *4 (-601 *2)) (-5 *2 (-375)) (-5 *1 (-772 *4)))) (-1580 (*1 *2 *3 *4) (-12 (-5 *3 (-945 *5)) (-5 *4 (-909)) (-4 *5 (-1039)) (-4 *5 (-601 (-375))) (-5 *2 (-167 (-375))) (-5 *1 (-772 *5)))) (-1580 (*1 *2 *3) (-12 (-5 *3 (-945 *4)) (-4 *4 (-1039)) (-4 *4 (-601 (-375))) (-5 *2 (-167 (-375))) (-5 *1 (-772 *4)))) (-2606 (*1 *2 *3 *4) (-12 (-5 *3 (-945 *5)) (-5 *4 (-909)) (-4 *5 (-1039)) (-4 *5 (-601 *2)) (-5 *2 (-375)) (-5 *1 (-772 *5)))) (-2606 (*1 *2 *3) (-12 (-5 *3 (-945 *4)) (-4 *4 (-1039)) (-4 *4 (-601 *2)) (-5 *2 (-375)) (-5 *1 (-772 *4)))) (-1580 (*1 *2 *3 *4) (-12 (-5 *3 (-945 (-167 *5))) (-5 *4 (-909)) (-4 *5 (-170)) (-4 *5 (-601 (-375))) (-5 *2 (-167 (-375))) (-5 *1 (-772 *5)))) (-1580 (*1 *2 *3) (-12 (-5 *3 (-945 (-167 *4))) (-4 *4 (-170)) (-4 *4 (-601 (-375))) (-5 *2 (-167 (-375))) (-5 *1 (-772 *4)))) (-1580 (*1 *2 *3 *4) (-12 (-5 *3 (-167 *5)) (-5 *4 (-909)) (-4 *5 (-170)) (-4 *5 (-601 (-375))) (-5 *2 (-167 (-375))) (-5 *1 (-772 *5)))) (-1580 (*1 *2 *3) (-12 (-5 *3 (-167 *4)) (-4 *4 (-170)) (-4 *4 (-601 (-375))) (-5 *2 (-167 (-375))) (-5 *1 (-772 *4)))) (-1580 (*1 *2 *3 *4) (-12 (-5 *4 (-909)) (-5 *2 (-167 (-375))) (-5 *1 (-772 *3)) (-4 *3 (-601 (-375))))) (-1580 (*1 *2 *3) (-12 (-5 *2 (-167 (-375))) (-5 *1 (-772 *3)) (-4 *3 (-601 (-375))))) (-2606 (*1 *2 *3 *4) (-12 (-5 *4 (-909)) (-5 *2 (-375)) (-5 *1 (-772 *3)) (-4 *3 (-601 *2)))) (-2606 (*1 *2 *3) (-12 (-5 *2 (-375)) (-5 *1 (-772 *3)) (-4 *3 (-601 *2))))) -(-10 -7 (-15 -2606 ((-375) |#1|)) (-15 -2606 ((-375) |#1| (-909))) (-15 -1580 ((-167 (-375)) |#1|)) (-15 -1580 ((-167 (-375)) |#1| (-909))) (IF (|has| |#1| (-170)) (PROGN (-15 -1580 ((-167 (-375)) (-167 |#1|))) (-15 -1580 ((-167 (-375)) (-167 |#1|) (-909))) (-15 -1580 ((-167 (-375)) (-945 (-167 |#1|)))) (-15 -1580 ((-167 (-375)) (-945 (-167 |#1|)) (-909)))) |noBranch|) (IF (|has| |#1| (-1039)) (PROGN (-15 -2606 ((-375) (-945 |#1|))) (-15 -2606 ((-375) (-945 |#1|) (-909))) (-15 -1580 ((-167 (-375)) (-945 |#1|))) (-15 -1580 ((-167 (-375)) (-945 |#1|) (-909)))) |noBranch|) (IF (|has| |#1| (-550)) (PROGN (-15 -2606 ((-375) (-403 (-945 |#1|)))) (-15 -2606 ((-375) (-403 (-945 |#1|)) (-909))) (-15 -1580 ((-167 (-375)) (-403 (-945 |#1|)))) (-15 -1580 ((-167 (-375)) (-403 (-945 |#1|)) (-909))) (-15 -1580 ((-167 (-375)) (-403 (-945 (-167 |#1|))))) (-15 -1580 ((-167 (-375)) (-403 (-945 (-167 |#1|))) (-909))) (IF (|has| |#1| (-834)) (PROGN (-15 -2606 ((-375) (-304 |#1|))) (-15 -2606 ((-375) (-304 |#1|) (-909))) (-15 -1580 ((-167 (-375)) (-304 |#1|))) (-15 -1580 ((-167 (-375)) (-304 |#1|) (-909))) (-15 -1580 ((-167 (-375)) (-304 (-167 |#1|)))) (-15 -1580 ((-167 (-375)) (-304 (-167 |#1|)) (-909)))) |noBranch|)) |noBranch|) (IF (|has| |#1| (-170)) (PROGN (-15 -1866 ((-3 (-167 (-375)) "failed") (-945 (-167 |#1|)))) (-15 -1866 ((-3 (-167 (-375)) "failed") (-945 (-167 |#1|)) (-909)))) |noBranch|) (IF (|has| |#1| (-1039)) (PROGN (-15 -4372 ((-3 (-375) "failed") (-945 |#1|))) (-15 -4372 ((-3 (-375) "failed") (-945 |#1|) (-909))) (-15 -1866 ((-3 (-167 (-375)) "failed") (-945 |#1|))) (-15 -1866 ((-3 (-167 (-375)) "failed") (-945 |#1|) (-909)))) |noBranch|) (IF (|has| |#1| (-550)) (PROGN (-15 -4372 ((-3 (-375) "failed") (-403 (-945 |#1|)))) (-15 -4372 ((-3 (-375) "failed") (-403 (-945 |#1|)) (-909))) (-15 -1866 ((-3 (-167 (-375)) "failed") (-403 (-945 |#1|)))) (-15 -1866 ((-3 (-167 (-375)) "failed") (-403 (-945 |#1|)) (-909))) (-15 -1866 ((-3 (-167 (-375)) "failed") (-403 (-945 (-167 |#1|))))) (-15 -1866 ((-3 (-167 (-375)) "failed") (-403 (-945 (-167 |#1|))) (-909))) (IF (|has| |#1| (-834)) (PROGN (-15 -4372 ((-3 (-375) "failed") (-304 |#1|))) (-15 -4372 ((-3 (-375) "failed") (-304 |#1|) (-909))) (-15 -1866 ((-3 (-167 (-375)) "failed") (-304 |#1|))) (-15 -1866 ((-3 (-167 (-375)) "failed") (-304 |#1|) (-909))) (-15 -1866 ((-3 (-167 (-375)) "failed") (-304 (-167 |#1|)))) (-15 -1866 ((-3 (-167 (-375)) "failed") (-304 (-167 |#1|)) (-909)))) |noBranch|)) |noBranch|)) -((-3517 (((-909) (-1135)) 63)) (-4057 (((-3 (-375) "failed") (-1135)) 32)) (-1623 (((-375) (-1135)) 30)) (-2991 (((-909) (-1135)) 53)) (-3773 (((-1135) (-909)) 54)) (-4003 (((-1135) (-909)) 52))) -(((-773) (-10 -7 (-15 -4003 ((-1135) (-909))) (-15 -2991 ((-909) (-1135))) (-15 -3773 ((-1135) (-909))) (-15 -3517 ((-909) (-1135))) (-15 -1623 ((-375) (-1135))) (-15 -4057 ((-3 (-375) "failed") (-1135))))) (T -773)) -((-4057 (*1 *2 *3) (|partial| -12 (-5 *3 (-1135)) (-5 *2 (-375)) (-5 *1 (-773)))) (-1623 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-375)) (-5 *1 (-773)))) (-3517 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-909)) (-5 *1 (-773)))) (-3773 (*1 *2 *3) (-12 (-5 *3 (-909)) (-5 *2 (-1135)) (-5 *1 (-773)))) (-2991 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-909)) (-5 *1 (-773)))) (-4003 (*1 *2 *3) (-12 (-5 *3 (-909)) (-5 *2 (-1135)) (-5 *1 (-773))))) -(-10 -7 (-15 -4003 ((-1135) (-909))) (-15 -2991 ((-909) (-1135))) (-15 -3773 ((-1135) (-909))) (-15 -3517 ((-909) (-1135))) (-15 -1623 ((-375) (-1135))) (-15 -4057 ((-3 (-375) "failed") (-1135)))) -((-2601 (((-121) $ $) 7)) (-1293 (((-1027) (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213))) (-1027)) 14) (((-1027) (-2 (|:| |fn| (-304 (-213))) (|:| -1396 (-626 (-1076 (-827 (-213))))) (|:| |abserr| (-213)) (|:| |relerr| (-213))) (-1027)) 12)) (-3262 (((-2 (|:| -3262 (-375)) (|:| |explanations| (-1135)) (|:| |extra| (-1027))) (-1051) (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) 15) (((-2 (|:| -3262 (-375)) (|:| |explanations| (-1135)) (|:| |extra| (-1027))) (-1051) (-2 (|:| |fn| (-304 (-213))) (|:| -1396 (-626 (-1076 (-827 (-213))))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) 13)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-2801 (((-842) $) 11)) (-1653 (((-121) $ $) 6))) -(((-774) (-1267)) (T -774)) -((-3262 (*1 *2 *3 *4) (-12 (-4 *1 (-774)) (-5 *3 (-1051)) (-5 *4 (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (-5 *2 (-2 (|:| -3262 (-375)) (|:| |explanations| (-1135)) (|:| |extra| (-1027)))))) (-1293 (*1 *2 *3 *2) (-12 (-4 *1 (-774)) (-5 *2 (-1027)) (-5 *3 (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))))) (-3262 (*1 *2 *3 *4) (-12 (-4 *1 (-774)) (-5 *3 (-1051)) (-5 *4 (-2 (|:| |fn| (-304 (-213))) (|:| -1396 (-626 (-1076 (-827 (-213))))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (-5 *2 (-2 (|:| -3262 (-375)) (|:| |explanations| (-1135)) (|:| |extra| (-1027)))))) (-1293 (*1 *2 *3 *2) (-12 (-4 *1 (-774)) (-5 *2 (-1027)) (-5 *3 (-2 (|:| |fn| (-304 (-213))) (|:| -1396 (-626 (-1076 (-827 (-213))))) (|:| |abserr| (-213)) (|:| |relerr| (-213))))))) -(-13 (-1082) (-10 -7 (-15 -3262 ((-2 (|:| -3262 (-375)) (|:| |explanations| (-1135)) (|:| |extra| (-1027))) (-1051) (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213))))) (-15 -1293 ((-1027) (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213))) (-1027))) (-15 -3262 ((-2 (|:| -3262 (-375)) (|:| |explanations| (-1135)) (|:| |extra| (-1027))) (-1051) (-2 (|:| |fn| (-304 (-213))) (|:| -1396 (-626 (-1076 (-827 (-213))))) (|:| |abserr| (-213)) (|:| |relerr| (-213))))) (-15 -1293 ((-1027) (-2 (|:| |fn| (-304 (-213))) (|:| -1396 (-626 (-1076 (-827 (-213))))) (|:| |abserr| (-213)) (|:| |relerr| (-213))) (-1027))))) -(((-105) . T) ((-600 (-842)) . T) ((-1082) . T)) -((-3528 (((-1241) (-1236 (-375)) (-560) (-375) (-2 (|:| |try| (-375)) (|:| |did| (-375)) (|:| -3747 (-375))) (-375) (-1236 (-375)) (-1 (-1241) (-1236 (-375)) (-1236 (-375)) (-375)) (-1236 (-375)) (-1236 (-375)) (-1236 (-375)) (-1236 (-375)) (-1236 (-375)) (-1236 (-375)) (-1236 (-375))) 44) (((-1241) (-1236 (-375)) (-560) (-375) (-2 (|:| |try| (-375)) (|:| |did| (-375)) (|:| -3747 (-375))) (-375) (-1236 (-375)) (-1 (-1241) (-1236 (-375)) (-1236 (-375)) (-375))) 43)) (-3088 (((-1241) (-1236 (-375)) (-560) (-375) (-375) (-560) (-1 (-1241) (-1236 (-375)) (-1236 (-375)) (-375))) 50)) (-3624 (((-1241) (-1236 (-375)) (-560) (-375) (-375) (-375) (-375) (-560) (-1 (-1241) (-1236 (-375)) (-1236 (-375)) (-375))) 41)) (-2244 (((-1241) (-1236 (-375)) (-560) (-375) (-375) (-1 (-1241) (-1236 (-375)) (-1236 (-375)) (-375)) (-1236 (-375)) (-1236 (-375)) (-1236 (-375)) (-1236 (-375))) 52) (((-1241) (-1236 (-375)) (-560) (-375) (-375) (-1 (-1241) (-1236 (-375)) (-1236 (-375)) (-375))) 51))) -(((-775) (-10 -7 (-15 -2244 ((-1241) (-1236 (-375)) (-560) (-375) (-375) (-1 (-1241) (-1236 (-375)) (-1236 (-375)) (-375)))) (-15 -2244 ((-1241) (-1236 (-375)) (-560) (-375) (-375) (-1 (-1241) (-1236 (-375)) (-1236 (-375)) (-375)) (-1236 (-375)) (-1236 (-375)) (-1236 (-375)) (-1236 (-375)))) (-15 -3624 ((-1241) (-1236 (-375)) (-560) (-375) (-375) (-375) (-375) (-560) (-1 (-1241) (-1236 (-375)) (-1236 (-375)) (-375)))) (-15 -3528 ((-1241) (-1236 (-375)) (-560) (-375) (-2 (|:| |try| (-375)) (|:| |did| (-375)) (|:| -3747 (-375))) (-375) (-1236 (-375)) (-1 (-1241) (-1236 (-375)) (-1236 (-375)) (-375)))) (-15 -3528 ((-1241) (-1236 (-375)) (-560) (-375) (-2 (|:| |try| (-375)) (|:| |did| (-375)) (|:| -3747 (-375))) (-375) (-1236 (-375)) (-1 (-1241) (-1236 (-375)) (-1236 (-375)) (-375)) (-1236 (-375)) (-1236 (-375)) (-1236 (-375)) (-1236 (-375)) (-1236 (-375)) (-1236 (-375)) (-1236 (-375)))) (-15 -3088 ((-1241) (-1236 (-375)) (-560) (-375) (-375) (-560) (-1 (-1241) (-1236 (-375)) (-1236 (-375)) (-375)))))) (T -775)) -((-3088 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-560)) (-5 *6 (-1 (-1241) (-1236 *5) (-1236 *5) (-375))) (-5 *3 (-1236 (-375))) (-5 *5 (-375)) (-5 *2 (-1241)) (-5 *1 (-775)))) (-3528 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-560)) (-5 *6 (-2 (|:| |try| (-375)) (|:| |did| (-375)) (|:| -3747 (-375)))) (-5 *7 (-1 (-1241) (-1236 *5) (-1236 *5) (-375))) (-5 *3 (-1236 (-375))) (-5 *5 (-375)) (-5 *2 (-1241)) (-5 *1 (-775)))) (-3528 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-560)) (-5 *6 (-2 (|:| |try| (-375)) (|:| |did| (-375)) (|:| -3747 (-375)))) (-5 *7 (-1 (-1241) (-1236 *5) (-1236 *5) (-375))) (-5 *3 (-1236 (-375))) (-5 *5 (-375)) (-5 *2 (-1241)) (-5 *1 (-775)))) (-3624 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-560)) (-5 *6 (-1 (-1241) (-1236 *5) (-1236 *5) (-375))) (-5 *3 (-1236 (-375))) (-5 *5 (-375)) (-5 *2 (-1241)) (-5 *1 (-775)))) (-2244 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-560)) (-5 *6 (-1 (-1241) (-1236 *5) (-1236 *5) (-375))) (-5 *3 (-1236 (-375))) (-5 *5 (-375)) (-5 *2 (-1241)) (-5 *1 (-775)))) (-2244 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-560)) (-5 *6 (-1 (-1241) (-1236 *5) (-1236 *5) (-375))) (-5 *3 (-1236 (-375))) (-5 *5 (-375)) (-5 *2 (-1241)) (-5 *1 (-775))))) -(-10 -7 (-15 -2244 ((-1241) (-1236 (-375)) (-560) (-375) (-375) (-1 (-1241) (-1236 (-375)) (-1236 (-375)) (-375)))) (-15 -2244 ((-1241) (-1236 (-375)) (-560) (-375) (-375) (-1 (-1241) (-1236 (-375)) (-1236 (-375)) (-375)) (-1236 (-375)) (-1236 (-375)) (-1236 (-375)) (-1236 (-375)))) (-15 -3624 ((-1241) (-1236 (-375)) (-560) (-375) (-375) (-375) (-375) (-560) (-1 (-1241) (-1236 (-375)) (-1236 (-375)) (-375)))) (-15 -3528 ((-1241) (-1236 (-375)) (-560) (-375) (-2 (|:| |try| (-375)) (|:| |did| (-375)) (|:| -3747 (-375))) (-375) (-1236 (-375)) (-1 (-1241) (-1236 (-375)) (-1236 (-375)) (-375)))) (-15 -3528 ((-1241) (-1236 (-375)) (-560) (-375) (-2 (|:| |try| (-375)) (|:| |did| (-375)) (|:| -3747 (-375))) (-375) (-1236 (-375)) (-1 (-1241) (-1236 (-375)) (-1236 (-375)) (-375)) (-1236 (-375)) (-1236 (-375)) (-1236 (-375)) (-1236 (-375)) (-1236 (-375)) (-1236 (-375)) (-1236 (-375)))) (-15 -3088 ((-1241) (-1236 (-375)) (-560) (-375) (-375) (-560) (-1 (-1241) (-1236 (-375)) (-1236 (-375)) (-375))))) -((-3811 (((-2 (|:| -2981 (-375)) (|:| -2301 (-375)) (|:| |totalpts| (-560)) (|:| |success| (-121))) (-1 (-375) (-375)) (-375) (-375) (-375) (-375) (-560) (-560)) 53)) (-4359 (((-2 (|:| -2981 (-375)) (|:| -2301 (-375)) (|:| |totalpts| (-560)) (|:| |success| (-121))) (-1 (-375) (-375)) (-375) (-375) (-375) (-375) (-560) (-560)) 30)) (-3523 (((-2 (|:| -2981 (-375)) (|:| -2301 (-375)) (|:| |totalpts| (-560)) (|:| |success| (-121))) (-1 (-375) (-375)) (-375) (-375) (-375) (-375) (-560) (-560)) 52)) (-1982 (((-2 (|:| -2981 (-375)) (|:| -2301 (-375)) (|:| |totalpts| (-560)) (|:| |success| (-121))) (-1 (-375) (-375)) (-375) (-375) (-375) (-375) (-560) (-560)) 28)) (-4288 (((-2 (|:| -2981 (-375)) (|:| -2301 (-375)) (|:| |totalpts| (-560)) (|:| |success| (-121))) (-1 (-375) (-375)) (-375) (-375) (-375) (-375) (-560) (-560)) 51)) (-2427 (((-2 (|:| -2981 (-375)) (|:| -2301 (-375)) (|:| |totalpts| (-560)) (|:| |success| (-121))) (-1 (-375) (-375)) (-375) (-375) (-375) (-375) (-560) (-560)) 18)) (-3276 (((-2 (|:| -2981 (-375)) (|:| -2301 (-375)) (|:| |totalpts| (-560)) (|:| |success| (-121))) (-1 (-375) (-375)) (-375) (-375) (-375) (-375) (-560) (-560) (-560)) 31)) (-1598 (((-2 (|:| -2981 (-375)) (|:| -2301 (-375)) (|:| |totalpts| (-560)) (|:| |success| (-121))) (-1 (-375) (-375)) (-375) (-375) (-375) (-375) (-560) (-560) (-560)) 29)) (-1907 (((-2 (|:| -2981 (-375)) (|:| -2301 (-375)) (|:| |totalpts| (-560)) (|:| |success| (-121))) (-1 (-375) (-375)) (-375) (-375) (-375) (-375) (-560) (-560) (-560)) 27))) -(((-776) (-10 -7 (-15 -1907 ((-2 (|:| -2981 (-375)) (|:| -2301 (-375)) (|:| |totalpts| (-560)) (|:| |success| (-121))) (-1 (-375) (-375)) (-375) (-375) (-375) (-375) (-560) (-560) (-560))) (-15 -1598 ((-2 (|:| -2981 (-375)) (|:| -2301 (-375)) (|:| |totalpts| (-560)) (|:| |success| (-121))) (-1 (-375) (-375)) (-375) (-375) (-375) (-375) (-560) (-560) (-560))) (-15 -3276 ((-2 (|:| -2981 (-375)) (|:| -2301 (-375)) (|:| |totalpts| (-560)) (|:| |success| (-121))) (-1 (-375) (-375)) (-375) (-375) (-375) (-375) (-560) (-560) (-560))) (-15 -2427 ((-2 (|:| -2981 (-375)) (|:| -2301 (-375)) (|:| |totalpts| (-560)) (|:| |success| (-121))) (-1 (-375) (-375)) (-375) (-375) (-375) (-375) (-560) (-560))) (-15 -1982 ((-2 (|:| -2981 (-375)) (|:| -2301 (-375)) (|:| |totalpts| (-560)) (|:| |success| (-121))) (-1 (-375) (-375)) (-375) (-375) (-375) (-375) (-560) (-560))) (-15 -4359 ((-2 (|:| -2981 (-375)) (|:| -2301 (-375)) (|:| |totalpts| (-560)) (|:| |success| (-121))) (-1 (-375) (-375)) (-375) (-375) (-375) (-375) (-560) (-560))) (-15 -4288 ((-2 (|:| -2981 (-375)) (|:| -2301 (-375)) (|:| |totalpts| (-560)) (|:| |success| (-121))) (-1 (-375) (-375)) (-375) (-375) (-375) (-375) (-560) (-560))) (-15 -3523 ((-2 (|:| -2981 (-375)) (|:| -2301 (-375)) (|:| |totalpts| (-560)) (|:| |success| (-121))) (-1 (-375) (-375)) (-375) (-375) (-375) (-375) (-560) (-560))) (-15 -3811 ((-2 (|:| -2981 (-375)) (|:| -2301 (-375)) (|:| |totalpts| (-560)) (|:| |success| (-121))) (-1 (-375) (-375)) (-375) (-375) (-375) (-375) (-560) (-560))))) (T -776)) -((-3811 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-375) (-375))) (-5 *4 (-375)) (-5 *2 (-2 (|:| -2981 *4) (|:| -2301 *4) (|:| |totalpts| (-560)) (|:| |success| (-121)))) (-5 *1 (-776)) (-5 *5 (-560)))) (-3523 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-375) (-375))) (-5 *4 (-375)) (-5 *2 (-2 (|:| -2981 *4) (|:| -2301 *4) (|:| |totalpts| (-560)) (|:| |success| (-121)))) (-5 *1 (-776)) (-5 *5 (-560)))) (-4288 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-375) (-375))) (-5 *4 (-375)) (-5 *2 (-2 (|:| -2981 *4) (|:| -2301 *4) (|:| |totalpts| (-560)) (|:| |success| (-121)))) (-5 *1 (-776)) (-5 *5 (-560)))) (-4359 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-375) (-375))) (-5 *4 (-375)) (-5 *2 (-2 (|:| -2981 *4) (|:| -2301 *4) (|:| |totalpts| (-560)) (|:| |success| (-121)))) (-5 *1 (-776)) (-5 *5 (-560)))) (-1982 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-375) (-375))) (-5 *4 (-375)) (-5 *2 (-2 (|:| -2981 *4) (|:| -2301 *4) (|:| |totalpts| (-560)) (|:| |success| (-121)))) (-5 *1 (-776)) (-5 *5 (-560)))) (-2427 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-375) (-375))) (-5 *4 (-375)) (-5 *2 (-2 (|:| -2981 *4) (|:| -2301 *4) (|:| |totalpts| (-560)) (|:| |success| (-121)))) (-5 *1 (-776)) (-5 *5 (-560)))) (-3276 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-375) (-375))) (-5 *4 (-375)) (-5 *2 (-2 (|:| -2981 *4) (|:| -2301 *4) (|:| |totalpts| (-560)) (|:| |success| (-121)))) (-5 *1 (-776)) (-5 *5 (-560)))) (-1598 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-375) (-375))) (-5 *4 (-375)) (-5 *2 (-2 (|:| -2981 *4) (|:| -2301 *4) (|:| |totalpts| (-560)) (|:| |success| (-121)))) (-5 *1 (-776)) (-5 *5 (-560)))) (-1907 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-375) (-375))) (-5 *4 (-375)) (-5 *2 (-2 (|:| -2981 *4) (|:| -2301 *4) (|:| |totalpts| (-560)) (|:| |success| (-121)))) (-5 *1 (-776)) (-5 *5 (-560))))) -(-10 -7 (-15 -1907 ((-2 (|:| -2981 (-375)) (|:| -2301 (-375)) (|:| |totalpts| (-560)) (|:| |success| (-121))) (-1 (-375) (-375)) (-375) (-375) (-375) (-375) (-560) (-560) (-560))) (-15 -1598 ((-2 (|:| -2981 (-375)) (|:| -2301 (-375)) (|:| |totalpts| (-560)) (|:| |success| (-121))) (-1 (-375) (-375)) (-375) (-375) (-375) (-375) (-560) (-560) (-560))) (-15 -3276 ((-2 (|:| -2981 (-375)) (|:| -2301 (-375)) (|:| |totalpts| (-560)) (|:| |success| (-121))) (-1 (-375) (-375)) (-375) (-375) (-375) (-375) (-560) (-560) (-560))) (-15 -2427 ((-2 (|:| -2981 (-375)) (|:| -2301 (-375)) (|:| |totalpts| (-560)) (|:| |success| (-121))) (-1 (-375) (-375)) (-375) (-375) (-375) (-375) (-560) (-560))) (-15 -1982 ((-2 (|:| -2981 (-375)) (|:| -2301 (-375)) (|:| |totalpts| (-560)) (|:| |success| (-121))) (-1 (-375) (-375)) (-375) (-375) (-375) (-375) (-560) (-560))) (-15 -4359 ((-2 (|:| -2981 (-375)) (|:| -2301 (-375)) (|:| |totalpts| (-560)) (|:| |success| (-121))) (-1 (-375) (-375)) (-375) (-375) (-375) (-375) (-560) (-560))) (-15 -4288 ((-2 (|:| -2981 (-375)) (|:| -2301 (-375)) (|:| |totalpts| (-560)) (|:| |success| (-121))) (-1 (-375) (-375)) (-375) (-375) (-375) (-375) (-560) (-560))) (-15 -3523 ((-2 (|:| -2981 (-375)) (|:| -2301 (-375)) (|:| |totalpts| (-560)) (|:| |success| (-121))) (-1 (-375) (-375)) (-375) (-375) (-375) (-375) (-560) (-560))) (-15 -3811 ((-2 (|:| -2981 (-375)) (|:| -2301 (-375)) (|:| |totalpts| (-560)) (|:| |success| (-121))) (-1 (-375) (-375)) (-375) (-375) (-375) (-375) (-560) (-560)))) -((-4361 (((-1183 |#1|) |#1| (-213) (-560)) 45))) -(((-777 |#1|) (-10 -7 (-15 -4361 ((-1183 |#1|) |#1| (-213) (-560)))) (-967)) (T -777)) -((-4361 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-213)) (-5 *5 (-560)) (-5 *2 (-1183 *3)) (-5 *1 (-777 *3)) (-4 *3 (-967))))) -(-10 -7 (-15 -4361 ((-1183 |#1|) |#1| (-213) (-560)))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 23)) (-2314 (((-3 $ "failed") $ $) 25)) (-4236 (($) 22 T CONST)) (-4325 (($ $ $) 12)) (-2501 (($ $ $) 13)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-2801 (((-842) $) 11)) (-3304 (($) 21 T CONST)) (-1691 (((-121) $ $) 15)) (-1675 (((-121) $ $) 16)) (-1653 (((-121) $ $) 6)) (-1683 (((-121) $ $) 14)) (-1667 (((-121) $ $) 17)) (-1725 (($ $ $) 27) (($ $) 26)) (-1716 (($ $ $) 19)) (* (($ (-755) $) 24) (($ (-909) $) 20) (($ (-560) $) 28))) -(((-778) (-1267)) (T -778)) -NIL -(-13 (-782) (-21)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-105) . T) ((-137) . T) ((-600 (-842)) . T) ((-779) . T) ((-781) . T) ((-782) . T) ((-834) . T) ((-1082) . T)) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 23)) (-4236 (($) 22 T CONST)) (-4325 (($ $ $) 12)) (-2501 (($ $ $) 13)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-2801 (((-842) $) 11)) (-3304 (($) 21 T CONST)) (-1691 (((-121) $ $) 15)) (-1675 (((-121) $ $) 16)) (-1653 (((-121) $ $) 6)) (-1683 (((-121) $ $) 14)) (-1667 (((-121) $ $) 17)) (-1716 (($ $ $) 19)) (* (($ (-755) $) 24) (($ (-909) $) 20))) -(((-779) (-1267)) (T -779)) -NIL -(-13 (-781) (-23)) -(((-23) . T) ((-25) . T) ((-105) . T) ((-600 (-842)) . T) ((-781) . T) ((-834) . T) ((-1082) . T)) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 23)) (-2280 (($ $ $) 26)) (-2314 (((-3 $ "failed") $ $) 25)) (-4236 (($) 22 T CONST)) (-4325 (($ $ $) 12)) (-2501 (($ $ $) 13)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-2801 (((-842) $) 11)) (-3304 (($) 21 T CONST)) (-1691 (((-121) $ $) 15)) (-1675 (((-121) $ $) 16)) (-1653 (((-121) $ $) 6)) (-1683 (((-121) $ $) 14)) (-1667 (((-121) $ $) 17)) (-1716 (($ $ $) 19)) (* (($ (-755) $) 24) (($ (-909) $) 20))) -(((-780) (-1267)) (T -780)) -((-2280 (*1 *1 *1 *1) (-4 *1 (-780)))) -(-13 (-782) (-10 -8 (-15 -2280 ($ $ $)))) -(((-23) . T) ((-25) . T) ((-105) . T) ((-137) . T) ((-600 (-842)) . T) ((-779) . T) ((-781) . T) ((-782) . T) ((-834) . T) ((-1082) . T)) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 23)) (-4236 (($) 22 T CONST)) (-4325 (($ $ $) 12)) (-2501 (($ $ $) 13)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-2801 (((-842) $) 11)) (-3304 (($) 21 T CONST)) (-1691 (((-121) $ $) 15)) (-1675 (((-121) $ $) 16)) (-1653 (((-121) $ $) 6)) (-1683 (((-121) $ $) 14)) (-1667 (((-121) $ $) 17)) (-1716 (($ $ $) 19)) (* (($ (-755) $) 24) (($ (-909) $) 20))) -(((-781) (-1267)) (T -781)) -NIL -(-13 (-834) (-23)) -(((-23) . T) ((-25) . T) ((-105) . T) ((-600 (-842)) . T) ((-834) . T) ((-1082) . T)) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 23)) (-2314 (((-3 $ "failed") $ $) 25)) (-4236 (($) 22 T CONST)) (-4325 (($ $ $) 12)) (-2501 (($ $ $) 13)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-2801 (((-842) $) 11)) (-3304 (($) 21 T CONST)) (-1691 (((-121) $ $) 15)) (-1675 (((-121) $ $) 16)) (-1653 (((-121) $ $) 6)) (-1683 (((-121) $ $) 14)) (-1667 (((-121) $ $) 17)) (-1716 (($ $ $) 19)) (* (($ (-755) $) 24) (($ (-909) $) 20))) -(((-782) (-1267)) (T -782)) -NIL -(-13 (-779) (-137)) -(((-23) . T) ((-25) . T) ((-105) . T) ((-137) . T) ((-600 (-842)) . T) ((-779) . T) ((-781) . T) ((-834) . T) ((-1082) . T)) -((-2832 (((-121) $) 41)) (-1473 (((-3 (-560) "failed") $) NIL) (((-3 (-403 (-560)) "failed") $) NIL) (((-3 |#2| "failed") $) 44)) (-3001 (((-560) $) NIL) (((-403 (-560)) $) NIL) ((|#2| $) 42)) (-1367 (((-3 (-403 (-560)) "failed") $) 78)) (-1689 (((-121) $) 72)) (-1519 (((-403 (-560)) $) 76)) (-3339 ((|#2| $) 26)) (-2803 (($ (-1 |#2| |#2|) $) 23)) (-1701 (($ $) 61)) (-4255 (((-533) $) 67)) (-3101 (($ $) 21)) (-2801 (((-842) $) 56) (($ (-560)) 39) (($ |#2|) 37) (($ (-403 (-560))) NIL)) (-1751 (((-755)) 10)) (-1822 ((|#2| $) 71)) (-1653 (((-121) $ $) 29)) (-1667 (((-121) $ $) 69)) (-1725 (($ $) 31) (($ $ $) NIL)) (-1716 (($ $ $) 30)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32))) -(((-783 |#1| |#2|) (-10 -8 (-15 -1667 ((-121) |#1| |#1|)) (-15 -4255 ((-533) |#1|)) (-15 -1701 (|#1| |#1|)) (-15 -1367 ((-3 (-403 (-560)) "failed") |#1|)) (-15 -1519 ((-403 (-560)) |#1|)) (-15 -1689 ((-121) |#1|)) (-15 -1822 (|#2| |#1|)) (-15 -3339 (|#2| |#1|)) (-15 -3101 (|#1| |#1|)) (-15 -2803 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3001 (|#2| |#1|)) (-15 -1473 ((-3 |#2| "failed") |#1|)) (-15 -2801 (|#1| (-403 (-560)))) (-15 -1473 ((-3 (-403 (-560)) "failed") |#1|)) (-15 -3001 ((-403 (-560)) |#1|)) (-15 -1473 ((-3 (-560) "failed") |#1|)) (-15 -3001 ((-560) |#1|)) (-15 -2801 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2801 (|#1| (-560))) (-15 -1751 ((-755))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 -1725 (|#1| |#1| |#1|)) (-15 -1725 (|#1| |#1|)) (-15 * (|#1| (-755) |#1|)) (-15 -2832 ((-121) |#1|)) (-15 * (|#1| (-909) |#1|)) (-15 -1716 (|#1| |#1| |#1|)) (-15 -2801 ((-842) |#1|)) (-15 -1653 ((-121) |#1| |#1|))) (-784 |#2|) (-170)) (T -783)) -((-1751 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-755)) (-5 *1 (-783 *3 *4)) (-4 *3 (-784 *4))))) -(-10 -8 (-15 -1667 ((-121) |#1| |#1|)) (-15 -4255 ((-533) |#1|)) (-15 -1701 (|#1| |#1|)) (-15 -1367 ((-3 (-403 (-560)) "failed") |#1|)) (-15 -1519 ((-403 (-560)) |#1|)) (-15 -1689 ((-121) |#1|)) (-15 -1822 (|#2| |#1|)) (-15 -3339 (|#2| |#1|)) (-15 -3101 (|#1| |#1|)) (-15 -2803 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3001 (|#2| |#1|)) (-15 -1473 ((-3 |#2| "failed") |#1|)) (-15 -2801 (|#1| (-403 (-560)))) (-15 -1473 ((-3 (-403 (-560)) "failed") |#1|)) (-15 -3001 ((-403 (-560)) |#1|)) (-15 -1473 ((-3 (-560) "failed") |#1|)) (-15 -3001 ((-560) |#1|)) (-15 -2801 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2801 (|#1| (-560))) (-15 -1751 ((-755))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 -1725 (|#1| |#1| |#1|)) (-15 -1725 (|#1| |#1|)) (-15 * (|#1| (-755) |#1|)) (-15 -2832 ((-121) |#1|)) (-15 * (|#1| (-909) |#1|)) (-15 -1716 (|#1| |#1| |#1|)) (-15 -2801 ((-842) |#1|)) (-15 -1653 ((-121) |#1| |#1|))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-2314 (((-3 $ "failed") $ $) 18)) (-2912 (((-755)) 51 (|has| |#1| (-364)))) (-4236 (($) 16 T CONST)) (-1473 (((-3 (-560) "failed") $) 92 (|has| |#1| (-1029 (-560)))) (((-3 (-403 (-560)) "failed") $) 90 (|has| |#1| (-1029 (-403 (-560))))) (((-3 |#1| "failed") $) 88)) (-3001 (((-560) $) 93 (|has| |#1| (-1029 (-560)))) (((-403 (-560)) $) 91 (|has| |#1| (-1029 (-403 (-560))))) ((|#1| $) 87)) (-1823 (((-3 $ "failed") $) 33)) (-1611 ((|#1| $) 77)) (-1367 (((-3 (-403 (-560)) "failed") $) 64 (|has| |#1| (-542)))) (-1689 (((-121) $) 66 (|has| |#1| (-542)))) (-1519 (((-403 (-560)) $) 65 (|has| |#1| (-542)))) (-1666 (($) 54 (|has| |#1| (-364)))) (-2642 (((-121) $) 30)) (-3315 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 68)) (-3339 ((|#1| $) 69)) (-4325 (($ $ $) 60 (|has| |#1| (-834)))) (-2501 (($ $ $) 59 (|has| |#1| (-834)))) (-2803 (($ (-1 |#1| |#1|) $) 79)) (-3142 (((-909) $) 53 (|has| |#1| (-364)))) (-1291 (((-1135) $) 9)) (-1701 (($ $) 63 (|has| |#1| (-359)))) (-1330 (($ (-909)) 52 (|has| |#1| (-364)))) (-2182 ((|#1| $) 74)) (-1412 ((|#1| $) 75)) (-4468 ((|#1| $) 76)) (-3935 ((|#1| $) 70)) (-4031 ((|#1| $) 71)) (-2136 ((|#1| $) 72)) (-1740 ((|#1| $) 73)) (-4353 (((-1100) $) 10)) (-4450 (($ $ (-626 |#1|) (-626 |#1|)) 85 (|has| |#1| (-298 |#1|))) (($ $ |#1| |#1|) 84 (|has| |#1| (-298 |#1|))) (($ $ (-283 |#1|)) 83 (|has| |#1| (-298 |#1|))) (($ $ (-626 (-283 |#1|))) 82 (|has| |#1| (-298 |#1|))) (($ $ (-626 (-1153)) (-626 |#1|)) 81 (|has| |#1| (-515 (-1153) |#1|))) (($ $ (-1153) |#1|) 80 (|has| |#1| (-515 (-1153) |#1|)))) (-2778 (($ $ |#1|) 86 (|has| |#1| (-276 |#1| |#1|)))) (-4255 (((-533) $) 61 (|has| |#1| (-601 (-533))))) (-3101 (($ $) 78)) (-2801 (((-842) $) 11) (($ (-560)) 27) (($ |#1|) 36) (($ (-403 (-560))) 89 (|has| |#1| (-1029 (-403 (-560)))))) (-2272 (((-3 $ "failed") $) 62 (|has| |#1| (-146)))) (-1751 (((-755)) 28)) (-1822 ((|#1| $) 67 (|has| |#1| (-1048)))) (-2464 (($ $ (-909)) 25) (($ $ (-755)) 32)) (-3304 (($) 17 T CONST)) (-1459 (($) 29 T CONST)) (-1691 (((-121) $ $) 57 (|has| |#1| (-834)))) (-1675 (((-121) $ $) 56 (|has| |#1| (-834)))) (-1653 (((-121) $ $) 6)) (-1683 (((-121) $ $) 58 (|has| |#1| (-834)))) (-1667 (((-121) $ $) 55 (|has| |#1| (-834)))) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 24) (($ $ (-755)) 31)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 23) (($ $ |#1|) 38) (($ |#1| $) 37))) -(((-784 |#1|) (-1267) (-170)) (T -784)) -((-3101 (*1 *1 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170)))) (-1611 (*1 *2 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170)))) (-4468 (*1 *2 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170)))) (-1412 (*1 *2 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170)))) (-2182 (*1 *2 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170)))) (-1740 (*1 *2 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170)))) (-2136 (*1 *2 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170)))) (-4031 (*1 *2 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170)))) (-3339 (*1 *2 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170)))) (-3315 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170)))) (-1822 (*1 *2 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170)) (-4 *2 (-1048)))) (-1689 (*1 *2 *1) (-12 (-4 *1 (-784 *3)) (-4 *3 (-170)) (-4 *3 (-542)) (-5 *2 (-121)))) (-1519 (*1 *2 *1) (-12 (-4 *1 (-784 *3)) (-4 *3 (-170)) (-4 *3 (-542)) (-5 *2 (-403 (-560))))) (-1367 (*1 *2 *1) (|partial| -12 (-4 *1 (-784 *3)) (-4 *3 (-170)) (-4 *3 (-542)) (-5 *2 (-403 (-560))))) (-1701 (*1 *1 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170)) (-4 *2 (-359))))) -(-13 (-43 |t#1|) (-407 |t#1|) (-330 |t#1|) (-10 -8 (-15 -3101 ($ $)) (-15 -1611 (|t#1| $)) (-15 -4468 (|t#1| $)) (-15 -1412 (|t#1| $)) (-15 -2182 (|t#1| $)) (-15 -1740 (|t#1| $)) (-15 -2136 (|t#1| $)) (-15 -4031 (|t#1| $)) (-15 -3935 (|t#1| $)) (-15 -3339 (|t#1| $)) (-15 -3315 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-364)) (-6 (-364)) |noBranch|) (IF (|has| |t#1| (-834)) (-6 (-834)) |noBranch|) (IF (|has| |t#1| (-601 (-533))) (-6 (-601 (-533))) |noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |noBranch|) (IF (|has| |t#1| (-1048)) (-15 -1822 (|t#1| $)) |noBranch|) (IF (|has| |t#1| (-542)) (PROGN (-15 -1689 ((-121) $)) (-15 -1519 ((-403 (-560)) $)) (-15 -1367 ((-3 (-403 (-560)) "failed") $))) |noBranch|) (IF (|has| |t#1| (-359)) (-15 -1701 ($ $)) |noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-43 |#1|) . T) ((-105) . T) ((-120 |#1| |#1|) . T) ((-137) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-600 (-842)) . T) ((-601 (-533)) |has| |#1| (-601 (-533))) ((-276 |#1| $) |has| |#1| (-276 |#1| |#1|)) ((-298 |#1|) |has| |#1| (-298 |#1|)) ((-364) |has| |#1| (-364)) ((-330 |#1|) . T) ((-407 |#1|) . T) ((-515 (-1153) |#1|) |has| |#1| (-515 (-1153) |#1|)) ((-515 |#1| |#1|) |has| |#1| (-298 |#1|)) ((-629 |#1|) . T) ((-629 $) . T) ((-699 |#1|) . T) ((-708) . T) ((-834) |has| |#1| (-834)) ((-1029 (-403 (-560))) |has| |#1| (-1029 (-403 (-560)))) ((-1029 (-560)) |has| |#1| (-1029 (-560))) ((-1029 |#1|) . T) ((-1045 |#1|) . T) ((-1039) . T) ((-1046) . T) ((-1094) . T) ((-1082) . T)) -((-2803 ((|#3| (-1 |#4| |#2|) |#1|) 20))) -(((-785 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2803 (|#3| (-1 |#4| |#2|) |#1|))) (-784 |#2|) (-170) (-784 |#4|) (-170)) (T -785)) -((-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-4 *2 (-784 *6)) (-5 *1 (-785 *4 *5 *2 *6)) (-4 *4 (-784 *5))))) -(-10 -7 (-15 -2803 (|#3| (-1 |#4| |#2|) |#1|))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-2912 (((-755)) NIL (|has| |#1| (-364)))) (-4236 (($) NIL T CONST)) (-1473 (((-3 |#1| "failed") $) NIL) (((-3 (-991 |#1|) "failed") $) 35) (((-3 (-560) "failed") $) NIL (-2318 (|has| (-991 |#1|) (-1029 (-560))) (|has| |#1| (-1029 (-560))))) (((-3 (-403 (-560)) "failed") $) NIL (-2318 (|has| (-991 |#1|) (-1029 (-403 (-560)))) (|has| |#1| (-1029 (-403 (-560))))))) (-3001 ((|#1| $) NIL) (((-991 |#1|) $) 33) (((-560) $) NIL (-2318 (|has| (-991 |#1|) (-1029 (-560))) (|has| |#1| (-1029 (-560))))) (((-403 (-560)) $) NIL (-2318 (|has| (-991 |#1|) (-1029 (-403 (-560)))) (|has| |#1| (-1029 (-403 (-560))))))) (-1823 (((-3 $ "failed") $) NIL)) (-1611 ((|#1| $) 16)) (-1367 (((-3 (-403 (-560)) "failed") $) NIL (|has| |#1| (-542)))) (-1689 (((-121) $) NIL (|has| |#1| (-542)))) (-1519 (((-403 (-560)) $) NIL (|has| |#1| (-542)))) (-1666 (($) NIL (|has| |#1| (-364)))) (-2642 (((-121) $) NIL)) (-3315 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-991 |#1|) (-991 |#1|)) 29)) (-3339 ((|#1| $) NIL)) (-4325 (($ $ $) NIL (|has| |#1| (-834)))) (-2501 (($ $ $) NIL (|has| |#1| (-834)))) (-2803 (($ (-1 |#1| |#1|) $) NIL)) (-3142 (((-909) $) NIL (|has| |#1| (-364)))) (-1291 (((-1135) $) NIL)) (-1701 (($ $) NIL (|has| |#1| (-359)))) (-1330 (($ (-909)) NIL (|has| |#1| (-364)))) (-2182 ((|#1| $) 22)) (-1412 ((|#1| $) 20)) (-4468 ((|#1| $) 18)) (-3935 ((|#1| $) 26)) (-4031 ((|#1| $) 25)) (-2136 ((|#1| $) 24)) (-1740 ((|#1| $) 23)) (-4353 (((-1100) $) NIL)) (-4450 (($ $ (-626 |#1|) (-626 |#1|)) NIL (|has| |#1| (-298 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-298 |#1|))) (($ $ (-283 |#1|)) NIL (|has| |#1| (-298 |#1|))) (($ $ (-626 (-283 |#1|))) NIL (|has| |#1| (-298 |#1|))) (($ $ (-626 (-1153)) (-626 |#1|)) NIL (|has| |#1| (-515 (-1153) |#1|))) (($ $ (-1153) |#1|) NIL (|has| |#1| (-515 (-1153) |#1|)))) (-2778 (($ $ |#1|) NIL (|has| |#1| (-276 |#1| |#1|)))) (-4255 (((-533) $) NIL (|has| |#1| (-601 (-533))))) (-3101 (($ $) NIL)) (-2801 (((-842) $) NIL) (($ (-560)) NIL) (($ |#1|) NIL) (($ (-991 |#1|)) 30) (($ (-403 (-560))) NIL (-2318 (|has| (-991 |#1|) (-1029 (-403 (-560)))) (|has| |#1| (-1029 (-403 (-560))))))) (-2272 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1751 (((-755)) NIL)) (-1822 ((|#1| $) NIL (|has| |#1| (-1048)))) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (-3304 (($) 8 T CONST)) (-1459 (($) 12 T CONST)) (-1691 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1675 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1653 (((-121) $ $) NIL)) (-1683 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1667 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) NIL)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-786 |#1|) (-13 (-784 |#1|) (-407 (-991 |#1|)) (-10 -8 (-15 -3315 ($ (-991 |#1|) (-991 |#1|))))) (-170)) (T -786)) -((-3315 (*1 *1 *2 *2) (-12 (-5 *2 (-991 *3)) (-4 *3 (-170)) (-5 *1 (-786 *3))))) -(-13 (-784 |#1|) (-407 (-991 |#1|)) (-10 -8 (-15 -3315 ($ (-991 |#1|) (-991 |#1|))))) -((-2601 (((-121) $ $) 7)) (-3262 (((-2 (|:| -3262 (-375)) (|:| |explanations| (-1135))) (-1051) (-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) 13)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-2801 (((-842) $) 11)) (-1436 (((-1027) (-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) 12)) (-1653 (((-121) $ $) 6))) -(((-787) (-1267)) (T -787)) -((-3262 (*1 *2 *3 *4) (-12 (-4 *1 (-787)) (-5 *3 (-1051)) (-5 *4 (-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (-5 *2 (-2 (|:| -3262 (-375)) (|:| |explanations| (-1135)))))) (-1436 (*1 *2 *3) (-12 (-4 *1 (-787)) (-5 *3 (-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (-5 *2 (-1027))))) -(-13 (-1082) (-10 -7 (-15 -3262 ((-2 (|:| -3262 (-375)) (|:| |explanations| (-1135))) (-1051) (-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213))))) (-15 -1436 ((-1027) (-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213))))))) -(((-105) . T) ((-600 (-842)) . T) ((-1082) . T)) -((-1839 (((-2 (|:| |particular| |#2|) (|:| -4374 (-626 |#2|))) |#3| |#2| (-1153)) 19))) -(((-788 |#1| |#2| |#3|) (-10 -7 (-15 -1839 ((-2 (|:| |particular| |#2|) (|:| -4374 (-626 |#2|))) |#3| |#2| (-1153)))) (-13 (-834) (-296) (-1029 (-560)) (-622 (-560)) (-148)) (-13 (-29 |#1|) (-1173) (-951)) (-638 |#2|)) (T -788)) -((-1839 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1153)) (-4 *6 (-13 (-834) (-296) (-1029 (-560)) (-622 (-560)) (-148))) (-4 *4 (-13 (-29 *6) (-1173) (-951))) (-5 *2 (-2 (|:| |particular| *4) (|:| -4374 (-626 *4)))) (-5 *1 (-788 *6 *4 *3)) (-4 *3 (-638 *4))))) -(-10 -7 (-15 -1839 ((-2 (|:| |particular| |#2|) (|:| -4374 (-626 |#2|))) |#3| |#2| (-1153)))) -((-4159 (((-3 |#2| "failed") |#2| (-123) (-283 |#2|) (-626 |#2|)) 26) (((-3 |#2| "failed") (-283 |#2|) (-123) (-283 |#2|) (-626 |#2|)) 27) (((-3 (-2 (|:| |particular| |#2|) (|:| -4374 (-626 |#2|))) |#2| "failed") |#2| (-123) (-1153)) 16) (((-3 (-2 (|:| |particular| |#2|) (|:| -4374 (-626 |#2|))) |#2| "failed") (-283 |#2|) (-123) (-1153)) 17) (((-3 (-2 (|:| |particular| (-1236 |#2|)) (|:| -4374 (-626 (-1236 |#2|)))) "failed") (-626 |#2|) (-626 (-123)) (-1153)) 22) (((-3 (-2 (|:| |particular| (-1236 |#2|)) (|:| -4374 (-626 (-1236 |#2|)))) "failed") (-626 (-283 |#2|)) (-626 (-123)) (-1153)) 24) (((-3 (-626 (-1236 |#2|)) "failed") (-671 |#2|) (-1153)) 36) (((-3 (-2 (|:| |particular| (-1236 |#2|)) (|:| -4374 (-626 (-1236 |#2|)))) "failed") (-671 |#2|) (-1236 |#2|) (-1153)) 34))) -(((-789 |#1| |#2|) (-10 -7 (-15 -4159 ((-3 (-2 (|:| |particular| (-1236 |#2|)) (|:| -4374 (-626 (-1236 |#2|)))) "failed") (-671 |#2|) (-1236 |#2|) (-1153))) (-15 -4159 ((-3 (-626 (-1236 |#2|)) "failed") (-671 |#2|) (-1153))) (-15 -4159 ((-3 (-2 (|:| |particular| (-1236 |#2|)) (|:| -4374 (-626 (-1236 |#2|)))) "failed") (-626 (-283 |#2|)) (-626 (-123)) (-1153))) (-15 -4159 ((-3 (-2 (|:| |particular| (-1236 |#2|)) (|:| -4374 (-626 (-1236 |#2|)))) "failed") (-626 |#2|) (-626 (-123)) (-1153))) (-15 -4159 ((-3 (-2 (|:| |particular| |#2|) (|:| -4374 (-626 |#2|))) |#2| "failed") (-283 |#2|) (-123) (-1153))) (-15 -4159 ((-3 (-2 (|:| |particular| |#2|) (|:| -4374 (-626 |#2|))) |#2| "failed") |#2| (-123) (-1153))) (-15 -4159 ((-3 |#2| "failed") (-283 |#2|) (-123) (-283 |#2|) (-626 |#2|))) (-15 -4159 ((-3 |#2| "failed") |#2| (-123) (-283 |#2|) (-626 |#2|)))) (-13 (-834) (-296) (-1029 (-560)) (-622 (-560)) (-148)) (-13 (-29 |#1|) (-1173) (-951))) (T -789)) -((-4159 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-123)) (-5 *4 (-283 *2)) (-5 *5 (-626 *2)) (-4 *2 (-13 (-29 *6) (-1173) (-951))) (-4 *6 (-13 (-834) (-296) (-1029 (-560)) (-622 (-560)) (-148))) (-5 *1 (-789 *6 *2)))) (-4159 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-283 *2)) (-5 *4 (-123)) (-5 *5 (-626 *2)) (-4 *2 (-13 (-29 *6) (-1173) (-951))) (-5 *1 (-789 *6 *2)) (-4 *6 (-13 (-834) (-296) (-1029 (-560)) (-622 (-560)) (-148))))) (-4159 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-123)) (-5 *5 (-1153)) (-4 *6 (-13 (-834) (-296) (-1029 (-560)) (-622 (-560)) (-148))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -4374 (-626 *3))) *3 "failed")) (-5 *1 (-789 *6 *3)) (-4 *3 (-13 (-29 *6) (-1173) (-951))))) (-4159 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-283 *7)) (-5 *4 (-123)) (-5 *5 (-1153)) (-4 *7 (-13 (-29 *6) (-1173) (-951))) (-4 *6 (-13 (-834) (-296) (-1029 (-560)) (-622 (-560)) (-148))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -4374 (-626 *7))) *7 "failed")) (-5 *1 (-789 *6 *7)))) (-4159 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-626 *7)) (-5 *4 (-626 (-123))) (-5 *5 (-1153)) (-4 *7 (-13 (-29 *6) (-1173) (-951))) (-4 *6 (-13 (-834) (-296) (-1029 (-560)) (-622 (-560)) (-148))) (-5 *2 (-2 (|:| |particular| (-1236 *7)) (|:| -4374 (-626 (-1236 *7))))) (-5 *1 (-789 *6 *7)))) (-4159 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-626 (-283 *7))) (-5 *4 (-626 (-123))) (-5 *5 (-1153)) (-4 *7 (-13 (-29 *6) (-1173) (-951))) (-4 *6 (-13 (-834) (-296) (-1029 (-560)) (-622 (-560)) (-148))) (-5 *2 (-2 (|:| |particular| (-1236 *7)) (|:| -4374 (-626 (-1236 *7))))) (-5 *1 (-789 *6 *7)))) (-4159 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-671 *6)) (-5 *4 (-1153)) (-4 *6 (-13 (-29 *5) (-1173) (-951))) (-4 *5 (-13 (-834) (-296) (-1029 (-560)) (-622 (-560)) (-148))) (-5 *2 (-626 (-1236 *6))) (-5 *1 (-789 *5 *6)))) (-4159 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-671 *7)) (-5 *5 (-1153)) (-4 *7 (-13 (-29 *6) (-1173) (-951))) (-4 *6 (-13 (-834) (-296) (-1029 (-560)) (-622 (-560)) (-148))) (-5 *2 (-2 (|:| |particular| (-1236 *7)) (|:| -4374 (-626 (-1236 *7))))) (-5 *1 (-789 *6 *7)) (-5 *4 (-1236 *7))))) -(-10 -7 (-15 -4159 ((-3 (-2 (|:| |particular| (-1236 |#2|)) (|:| -4374 (-626 (-1236 |#2|)))) "failed") (-671 |#2|) (-1236 |#2|) (-1153))) (-15 -4159 ((-3 (-626 (-1236 |#2|)) "failed") (-671 |#2|) (-1153))) (-15 -4159 ((-3 (-2 (|:| |particular| (-1236 |#2|)) (|:| -4374 (-626 (-1236 |#2|)))) "failed") (-626 (-283 |#2|)) (-626 (-123)) (-1153))) (-15 -4159 ((-3 (-2 (|:| |particular| (-1236 |#2|)) (|:| -4374 (-626 (-1236 |#2|)))) "failed") (-626 |#2|) (-626 (-123)) (-1153))) (-15 -4159 ((-3 (-2 (|:| |particular| |#2|) (|:| -4374 (-626 |#2|))) |#2| "failed") (-283 |#2|) (-123) (-1153))) (-15 -4159 ((-3 (-2 (|:| |particular| |#2|) (|:| -4374 (-626 |#2|))) |#2| "failed") |#2| (-123) (-1153))) (-15 -4159 ((-3 |#2| "failed") (-283 |#2|) (-123) (-283 |#2|) (-626 |#2|))) (-15 -4159 ((-3 |#2| "failed") |#2| (-123) (-283 |#2|) (-626 |#2|)))) -((-1362 (($) 9)) (-1692 (((-3 (-2 (|:| |stiffness| (-375)) (|:| |stability| (-375)) (|:| |expense| (-375)) (|:| |accuracy| (-375)) (|:| |intermediateResults| (-375))) "failed") (-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) 26)) (-1377 (((-626 (-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) $) 23)) (-4345 (($ (-2 (|:| -3655 (-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (|:| -2371 (-2 (|:| |stiffness| (-375)) (|:| |stability| (-375)) (|:| |expense| (-375)) (|:| |accuracy| (-375)) (|:| |intermediateResults| (-375)))))) 20)) (-4150 (($ (-626 (-2 (|:| -3655 (-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (|:| -2371 (-2 (|:| |stiffness| (-375)) (|:| |stability| (-375)) (|:| |expense| (-375)) (|:| |accuracy| (-375)) (|:| |intermediateResults| (-375))))))) 18)) (-1353 (((-1241)) 12))) -(((-790) (-10 -8 (-15 -1362 ($)) (-15 -1353 ((-1241))) (-15 -1377 ((-626 (-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) $)) (-15 -4150 ($ (-626 (-2 (|:| -3655 (-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (|:| -2371 (-2 (|:| |stiffness| (-375)) (|:| |stability| (-375)) (|:| |expense| (-375)) (|:| |accuracy| (-375)) (|:| |intermediateResults| (-375)))))))) (-15 -4345 ($ (-2 (|:| -3655 (-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (|:| -2371 (-2 (|:| |stiffness| (-375)) (|:| |stability| (-375)) (|:| |expense| (-375)) (|:| |accuracy| (-375)) (|:| |intermediateResults| (-375))))))) (-15 -1692 ((-3 (-2 (|:| |stiffness| (-375)) (|:| |stability| (-375)) (|:| |expense| (-375)) (|:| |accuracy| (-375)) (|:| |intermediateResults| (-375))) "failed") (-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213))))))) (T -790)) -((-1692 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (-5 *2 (-2 (|:| |stiffness| (-375)) (|:| |stability| (-375)) (|:| |expense| (-375)) (|:| |accuracy| (-375)) (|:| |intermediateResults| (-375)))) (-5 *1 (-790)))) (-4345 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3655 (-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (|:| -2371 (-2 (|:| |stiffness| (-375)) (|:| |stability| (-375)) (|:| |expense| (-375)) (|:| |accuracy| (-375)) (|:| |intermediateResults| (-375)))))) (-5 *1 (-790)))) (-4150 (*1 *1 *2) (-12 (-5 *2 (-626 (-2 (|:| -3655 (-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (|:| -2371 (-2 (|:| |stiffness| (-375)) (|:| |stability| (-375)) (|:| |expense| (-375)) (|:| |accuracy| (-375)) (|:| |intermediateResults| (-375))))))) (-5 *1 (-790)))) (-1377 (*1 *2 *1) (-12 (-5 *2 (-626 (-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213))))) (-5 *1 (-790)))) (-1353 (*1 *2) (-12 (-5 *2 (-1241)) (-5 *1 (-790)))) (-1362 (*1 *1) (-5 *1 (-790)))) -(-10 -8 (-15 -1362 ($)) (-15 -1353 ((-1241))) (-15 -1377 ((-626 (-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) $)) (-15 -4150 ($ (-626 (-2 (|:| -3655 (-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (|:| -2371 (-2 (|:| |stiffness| (-375)) (|:| |stability| (-375)) (|:| |expense| (-375)) (|:| |accuracy| (-375)) (|:| |intermediateResults| (-375)))))))) (-15 -4345 ($ (-2 (|:| -3655 (-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (|:| -2371 (-2 (|:| |stiffness| (-375)) (|:| |stability| (-375)) (|:| |expense| (-375)) (|:| |accuracy| (-375)) (|:| |intermediateResults| (-375))))))) (-15 -1692 ((-3 (-2 (|:| |stiffness| (-375)) (|:| |stability| (-375)) (|:| |expense| (-375)) (|:| |accuracy| (-375)) (|:| |intermediateResults| (-375))) "failed") (-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))))) -((-3059 ((|#2| |#2| (-1153)) 15)) (-4444 ((|#2| |#2| (-1153)) 47)) (-2533 (((-1 |#2| |#2|) (-1153)) 11))) -(((-791 |#1| |#2|) (-10 -7 (-15 -3059 (|#2| |#2| (-1153))) (-15 -4444 (|#2| |#2| (-1153))) (-15 -2533 ((-1 |#2| |#2|) (-1153)))) (-13 (-834) (-296) (-1029 (-560)) (-622 (-560)) (-148)) (-13 (-29 |#1|) (-1173) (-951))) (T -791)) -((-2533 (*1 *2 *3) (-12 (-5 *3 (-1153)) (-4 *4 (-13 (-834) (-296) (-1029 (-560)) (-622 (-560)) (-148))) (-5 *2 (-1 *5 *5)) (-5 *1 (-791 *4 *5)) (-4 *5 (-13 (-29 *4) (-1173) (-951))))) (-4444 (*1 *2 *2 *3) (-12 (-5 *3 (-1153)) (-4 *4 (-13 (-834) (-296) (-1029 (-560)) (-622 (-560)) (-148))) (-5 *1 (-791 *4 *2)) (-4 *2 (-13 (-29 *4) (-1173) (-951))))) (-3059 (*1 *2 *2 *3) (-12 (-5 *3 (-1153)) (-4 *4 (-13 (-834) (-296) (-1029 (-560)) (-622 (-560)) (-148))) (-5 *1 (-791 *4 *2)) (-4 *2 (-13 (-29 *4) (-1173) (-951)))))) -(-10 -7 (-15 -3059 (|#2| |#2| (-1153))) (-15 -4444 (|#2| |#2| (-1153))) (-15 -2533 ((-1 |#2| |#2|) (-1153)))) -((-4159 (((-1027) (-1236 (-304 (-375))) (-375) (-375) (-626 (-375)) (-304 (-375)) (-626 (-375)) (-375) (-375)) 114) (((-1027) (-1236 (-304 (-375))) (-375) (-375) (-626 (-375)) (-304 (-375)) (-626 (-375)) (-375)) 115) (((-1027) (-1236 (-304 (-375))) (-375) (-375) (-626 (-375)) (-626 (-375)) (-375)) 117) (((-1027) (-1236 (-304 (-375))) (-375) (-375) (-626 (-375)) (-304 (-375)) (-375)) 118) (((-1027) (-1236 (-304 (-375))) (-375) (-375) (-626 (-375)) (-375)) 119) (((-1027) (-1236 (-304 (-375))) (-375) (-375) (-626 (-375))) 120) (((-1027) (-795) (-1051)) 105) (((-1027) (-795)) 106)) (-3262 (((-2 (|:| -3262 (-375)) (|:| -1337 (-1135)) (|:| |explanations| (-626 (-1135)))) (-795) (-1051)) 71) (((-2 (|:| -3262 (-375)) (|:| -1337 (-1135)) (|:| |explanations| (-626 (-1135)))) (-795)) 73))) -(((-792) (-10 -7 (-15 -4159 ((-1027) (-795))) (-15 -4159 ((-1027) (-795) (-1051))) (-15 -4159 ((-1027) (-1236 (-304 (-375))) (-375) (-375) (-626 (-375)))) (-15 -4159 ((-1027) (-1236 (-304 (-375))) (-375) (-375) (-626 (-375)) (-375))) (-15 -4159 ((-1027) (-1236 (-304 (-375))) (-375) (-375) (-626 (-375)) (-304 (-375)) (-375))) (-15 -4159 ((-1027) (-1236 (-304 (-375))) (-375) (-375) (-626 (-375)) (-626 (-375)) (-375))) (-15 -4159 ((-1027) (-1236 (-304 (-375))) (-375) (-375) (-626 (-375)) (-304 (-375)) (-626 (-375)) (-375))) (-15 -4159 ((-1027) (-1236 (-304 (-375))) (-375) (-375) (-626 (-375)) (-304 (-375)) (-626 (-375)) (-375) (-375))) (-15 -3262 ((-2 (|:| -3262 (-375)) (|:| -1337 (-1135)) (|:| |explanations| (-626 (-1135)))) (-795))) (-15 -3262 ((-2 (|:| -3262 (-375)) (|:| -1337 (-1135)) (|:| |explanations| (-626 (-1135)))) (-795) (-1051))))) (T -792)) -((-3262 (*1 *2 *3 *4) (-12 (-5 *3 (-795)) (-5 *4 (-1051)) (-5 *2 (-2 (|:| -3262 (-375)) (|:| -1337 (-1135)) (|:| |explanations| (-626 (-1135))))) (-5 *1 (-792)))) (-3262 (*1 *2 *3) (-12 (-5 *3 (-795)) (-5 *2 (-2 (|:| -3262 (-375)) (|:| -1337 (-1135)) (|:| |explanations| (-626 (-1135))))) (-5 *1 (-792)))) (-4159 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1236 (-304 *4))) (-5 *5 (-626 (-375))) (-5 *6 (-304 (-375))) (-5 *4 (-375)) (-5 *2 (-1027)) (-5 *1 (-792)))) (-4159 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1236 (-304 *4))) (-5 *5 (-626 (-375))) (-5 *6 (-304 (-375))) (-5 *4 (-375)) (-5 *2 (-1027)) (-5 *1 (-792)))) (-4159 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1236 (-304 (-375)))) (-5 *4 (-375)) (-5 *5 (-626 *4)) (-5 *2 (-1027)) (-5 *1 (-792)))) (-4159 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1236 (-304 *4))) (-5 *5 (-626 (-375))) (-5 *6 (-304 (-375))) (-5 *4 (-375)) (-5 *2 (-1027)) (-5 *1 (-792)))) (-4159 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1236 (-304 (-375)))) (-5 *4 (-375)) (-5 *5 (-626 *4)) (-5 *2 (-1027)) (-5 *1 (-792)))) (-4159 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1236 (-304 (-375)))) (-5 *4 (-375)) (-5 *5 (-626 *4)) (-5 *2 (-1027)) (-5 *1 (-792)))) (-4159 (*1 *2 *3 *4) (-12 (-5 *3 (-795)) (-5 *4 (-1051)) (-5 *2 (-1027)) (-5 *1 (-792)))) (-4159 (*1 *2 *3) (-12 (-5 *3 (-795)) (-5 *2 (-1027)) (-5 *1 (-792))))) -(-10 -7 (-15 -4159 ((-1027) (-795))) (-15 -4159 ((-1027) (-795) (-1051))) (-15 -4159 ((-1027) (-1236 (-304 (-375))) (-375) (-375) (-626 (-375)))) (-15 -4159 ((-1027) (-1236 (-304 (-375))) (-375) (-375) (-626 (-375)) (-375))) (-15 -4159 ((-1027) (-1236 (-304 (-375))) (-375) (-375) (-626 (-375)) (-304 (-375)) (-375))) (-15 -4159 ((-1027) (-1236 (-304 (-375))) (-375) (-375) (-626 (-375)) (-626 (-375)) (-375))) (-15 -4159 ((-1027) (-1236 (-304 (-375))) (-375) (-375) (-626 (-375)) (-304 (-375)) (-626 (-375)) (-375))) (-15 -4159 ((-1027) (-1236 (-304 (-375))) (-375) (-375) (-626 (-375)) (-304 (-375)) (-626 (-375)) (-375) (-375))) (-15 -3262 ((-2 (|:| -3262 (-375)) (|:| -1337 (-1135)) (|:| |explanations| (-626 (-1135)))) (-795))) (-15 -3262 ((-2 (|:| -3262 (-375)) (|:| -1337 (-1135)) (|:| |explanations| (-626 (-1135)))) (-795) (-1051)))) -((-3582 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -4374 (-626 |#4|))) (-635 |#4|) |#4|) 32))) -(((-793 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3582 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -4374 (-626 |#4|))) (-635 |#4|) |#4|))) (-13 (-359) (-148) (-1029 (-560)) (-1029 (-403 (-560)))) (-1211 |#1|) (-1211 (-403 |#2|)) (-334 |#1| |#2| |#3|)) (T -793)) -((-3582 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *4)) (-4 *4 (-334 *5 *6 *7)) (-4 *5 (-13 (-359) (-148) (-1029 (-560)) (-1029 (-403 (-560))))) (-4 *6 (-1211 *5)) (-4 *7 (-1211 (-403 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4374 (-626 *4)))) (-5 *1 (-793 *5 *6 *7 *4))))) -(-10 -7 (-15 -3582 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -4374 (-626 |#4|))) (-635 |#4|) |#4|))) -((-1347 (((-2 (|:| -2654 |#3|) (|:| |rh| (-626 (-403 |#2|)))) |#4| (-626 (-403 |#2|))) 51)) (-1277 (((-626 (-2 (|:| -1341 |#2|) (|:| -2785 |#2|))) |#4| |#2|) 59) (((-626 (-2 (|:| -1341 |#2|) (|:| -2785 |#2|))) |#4|) 58) (((-626 (-2 (|:| -1341 |#2|) (|:| -2785 |#2|))) |#3| |#2|) 20) (((-626 (-2 (|:| -1341 |#2|) (|:| -2785 |#2|))) |#3|) 21)) (-2757 ((|#2| |#4| |#1|) 60) ((|#2| |#3| |#1|) 27)) (-2831 ((|#2| |#3| (-626 (-403 |#2|))) 93) (((-3 |#2| "failed") |#3| (-403 |#2|)) 90))) -(((-794 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2831 ((-3 |#2| "failed") |#3| (-403 |#2|))) (-15 -2831 (|#2| |#3| (-626 (-403 |#2|)))) (-15 -1277 ((-626 (-2 (|:| -1341 |#2|) (|:| -2785 |#2|))) |#3|)) (-15 -1277 ((-626 (-2 (|:| -1341 |#2|) (|:| -2785 |#2|))) |#3| |#2|)) (-15 -2757 (|#2| |#3| |#1|)) (-15 -1277 ((-626 (-2 (|:| -1341 |#2|) (|:| -2785 |#2|))) |#4|)) (-15 -1277 ((-626 (-2 (|:| -1341 |#2|) (|:| -2785 |#2|))) |#4| |#2|)) (-15 -2757 (|#2| |#4| |#1|)) (-15 -1347 ((-2 (|:| -2654 |#3|) (|:| |rh| (-626 (-403 |#2|)))) |#4| (-626 (-403 |#2|))))) (-13 (-359) (-148) (-1029 (-403 (-560)))) (-1211 |#1|) (-638 |#2|) (-638 (-403 |#2|))) (T -794)) -((-1347 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-359) (-148) (-1029 (-403 (-560))))) (-4 *6 (-1211 *5)) (-5 *2 (-2 (|:| -2654 *7) (|:| |rh| (-626 (-403 *6))))) (-5 *1 (-794 *5 *6 *7 *3)) (-5 *4 (-626 (-403 *6))) (-4 *7 (-638 *6)) (-4 *3 (-638 (-403 *6))))) (-2757 (*1 *2 *3 *4) (-12 (-4 *2 (-1211 *4)) (-5 *1 (-794 *4 *2 *5 *3)) (-4 *4 (-13 (-359) (-148) (-1029 (-403 (-560))))) (-4 *5 (-638 *2)) (-4 *3 (-638 (-403 *2))))) (-1277 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-359) (-148) (-1029 (-403 (-560))))) (-4 *4 (-1211 *5)) (-5 *2 (-626 (-2 (|:| -1341 *4) (|:| -2785 *4)))) (-5 *1 (-794 *5 *4 *6 *3)) (-4 *6 (-638 *4)) (-4 *3 (-638 (-403 *4))))) (-1277 (*1 *2 *3) (-12 (-4 *4 (-13 (-359) (-148) (-1029 (-403 (-560))))) (-4 *5 (-1211 *4)) (-5 *2 (-626 (-2 (|:| -1341 *5) (|:| -2785 *5)))) (-5 *1 (-794 *4 *5 *6 *3)) (-4 *6 (-638 *5)) (-4 *3 (-638 (-403 *5))))) (-2757 (*1 *2 *3 *4) (-12 (-4 *2 (-1211 *4)) (-5 *1 (-794 *4 *2 *3 *5)) (-4 *4 (-13 (-359) (-148) (-1029 (-403 (-560))))) (-4 *3 (-638 *2)) (-4 *5 (-638 (-403 *2))))) (-1277 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-359) (-148) (-1029 (-403 (-560))))) (-4 *4 (-1211 *5)) (-5 *2 (-626 (-2 (|:| -1341 *4) (|:| -2785 *4)))) (-5 *1 (-794 *5 *4 *3 *6)) (-4 *3 (-638 *4)) (-4 *6 (-638 (-403 *4))))) (-1277 (*1 *2 *3) (-12 (-4 *4 (-13 (-359) (-148) (-1029 (-403 (-560))))) (-4 *5 (-1211 *4)) (-5 *2 (-626 (-2 (|:| -1341 *5) (|:| -2785 *5)))) (-5 *1 (-794 *4 *5 *3 *6)) (-4 *3 (-638 *5)) (-4 *6 (-638 (-403 *5))))) (-2831 (*1 *2 *3 *4) (-12 (-5 *4 (-626 (-403 *2))) (-4 *2 (-1211 *5)) (-5 *1 (-794 *5 *2 *3 *6)) (-4 *5 (-13 (-359) (-148) (-1029 (-403 (-560))))) (-4 *3 (-638 *2)) (-4 *6 (-638 (-403 *2))))) (-2831 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-403 *2)) (-4 *2 (-1211 *5)) (-5 *1 (-794 *5 *2 *3 *6)) (-4 *5 (-13 (-359) (-148) (-1029 (-403 (-560))))) (-4 *3 (-638 *2)) (-4 *6 (-638 *4))))) -(-10 -7 (-15 -2831 ((-3 |#2| "failed") |#3| (-403 |#2|))) (-15 -2831 (|#2| |#3| (-626 (-403 |#2|)))) (-15 -1277 ((-626 (-2 (|:| -1341 |#2|) (|:| -2785 |#2|))) |#3|)) (-15 -1277 ((-626 (-2 (|:| -1341 |#2|) (|:| -2785 |#2|))) |#3| |#2|)) (-15 -2757 (|#2| |#3| |#1|)) (-15 -1277 ((-626 (-2 (|:| -1341 |#2|) (|:| -2785 |#2|))) |#4|)) (-15 -1277 ((-626 (-2 (|:| -1341 |#2|) (|:| -2785 |#2|))) |#4| |#2|)) (-15 -2757 (|#2| |#4| |#1|)) (-15 -1347 ((-2 (|:| -2654 |#3|) (|:| |rh| (-626 (-403 |#2|)))) |#4| (-626 (-403 |#2|))))) -((-2601 (((-121) $ $) NIL)) (-3001 (((-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213))) $) 9)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2801 (((-842) $) 11) (($ (-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) 8)) (-1653 (((-121) $ $) NIL))) -(((-795) (-13 (-1082) (-10 -8 (-15 -2801 ($ (-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213))))) (-15 -2801 ((-842) $)) (-15 -3001 ((-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213))) $))))) (T -795)) -((-2801 (*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-795)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (-5 *1 (-795)))) (-3001 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (-5 *1 (-795))))) -(-13 (-1082) (-10 -8 (-15 -2801 ($ (-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213))))) (-15 -2801 ((-842) $)) (-15 -3001 ((-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213))) $)))) -((-3861 (((-626 (-2 (|:| |frac| (-403 |#2|)) (|:| -2654 |#3|))) |#3| (-1 (-626 |#2|) |#2| (-1149 |#2|)) (-1 (-414 |#2|) |#2|)) 118)) (-4167 (((-626 (-2 (|:| |poly| |#2|) (|:| -2654 |#3|))) |#3| (-1 (-626 |#1|) |#2|)) 45)) (-3387 (((-626 (-2 (|:| |deg| (-755)) (|:| -2654 |#2|))) |#3|) 95)) (-3034 ((|#2| |#3|) 37)) (-1873 (((-626 (-2 (|:| -3565 |#1|) (|:| -2654 |#3|))) |#3| (-1 (-626 |#1|) |#2|)) 82)) (-1841 ((|#3| |#3| (-403 |#2|)) 63) ((|#3| |#3| |#2|) 79))) -(((-796 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3034 (|#2| |#3|)) (-15 -3387 ((-626 (-2 (|:| |deg| (-755)) (|:| -2654 |#2|))) |#3|)) (-15 -1873 ((-626 (-2 (|:| -3565 |#1|) (|:| -2654 |#3|))) |#3| (-1 (-626 |#1|) |#2|))) (-15 -4167 ((-626 (-2 (|:| |poly| |#2|) (|:| -2654 |#3|))) |#3| (-1 (-626 |#1|) |#2|))) (-15 -3861 ((-626 (-2 (|:| |frac| (-403 |#2|)) (|:| -2654 |#3|))) |#3| (-1 (-626 |#2|) |#2| (-1149 |#2|)) (-1 (-414 |#2|) |#2|))) (-15 -1841 (|#3| |#3| |#2|)) (-15 -1841 (|#3| |#3| (-403 |#2|)))) (-13 (-359) (-148) (-1029 (-403 (-560)))) (-1211 |#1|) (-638 |#2|) (-638 (-403 |#2|))) (T -796)) -((-1841 (*1 *2 *2 *3) (-12 (-5 *3 (-403 *5)) (-4 *4 (-13 (-359) (-148) (-1029 (-403 (-560))))) (-4 *5 (-1211 *4)) (-5 *1 (-796 *4 *5 *2 *6)) (-4 *2 (-638 *5)) (-4 *6 (-638 *3)))) (-1841 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-359) (-148) (-1029 (-403 (-560))))) (-4 *3 (-1211 *4)) (-5 *1 (-796 *4 *3 *2 *5)) (-4 *2 (-638 *3)) (-4 *5 (-638 (-403 *3))))) (-3861 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-626 *7) *7 (-1149 *7))) (-5 *5 (-1 (-414 *7) *7)) (-4 *7 (-1211 *6)) (-4 *6 (-13 (-359) (-148) (-1029 (-403 (-560))))) (-5 *2 (-626 (-2 (|:| |frac| (-403 *7)) (|:| -2654 *3)))) (-5 *1 (-796 *6 *7 *3 *8)) (-4 *3 (-638 *7)) (-4 *8 (-638 (-403 *7))))) (-4167 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-626 *5) *6)) (-4 *5 (-13 (-359) (-148) (-1029 (-403 (-560))))) (-4 *6 (-1211 *5)) (-5 *2 (-626 (-2 (|:| |poly| *6) (|:| -2654 *3)))) (-5 *1 (-796 *5 *6 *3 *7)) (-4 *3 (-638 *6)) (-4 *7 (-638 (-403 *6))))) (-1873 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-626 *5) *6)) (-4 *5 (-13 (-359) (-148) (-1029 (-403 (-560))))) (-4 *6 (-1211 *5)) (-5 *2 (-626 (-2 (|:| -3565 *5) (|:| -2654 *3)))) (-5 *1 (-796 *5 *6 *3 *7)) (-4 *3 (-638 *6)) (-4 *7 (-638 (-403 *6))))) (-3387 (*1 *2 *3) (-12 (-4 *4 (-13 (-359) (-148) (-1029 (-403 (-560))))) (-4 *5 (-1211 *4)) (-5 *2 (-626 (-2 (|:| |deg| (-755)) (|:| -2654 *5)))) (-5 *1 (-796 *4 *5 *3 *6)) (-4 *3 (-638 *5)) (-4 *6 (-638 (-403 *5))))) (-3034 (*1 *2 *3) (-12 (-4 *2 (-1211 *4)) (-5 *1 (-796 *4 *2 *3 *5)) (-4 *4 (-13 (-359) (-148) (-1029 (-403 (-560))))) (-4 *3 (-638 *2)) (-4 *5 (-638 (-403 *2)))))) -(-10 -7 (-15 -3034 (|#2| |#3|)) (-15 -3387 ((-626 (-2 (|:| |deg| (-755)) (|:| -2654 |#2|))) |#3|)) (-15 -1873 ((-626 (-2 (|:| -3565 |#1|) (|:| -2654 |#3|))) |#3| (-1 (-626 |#1|) |#2|))) (-15 -4167 ((-626 (-2 (|:| |poly| |#2|) (|:| -2654 |#3|))) |#3| (-1 (-626 |#1|) |#2|))) (-15 -3861 ((-626 (-2 (|:| |frac| (-403 |#2|)) (|:| -2654 |#3|))) |#3| (-1 (-626 |#2|) |#2| (-1149 |#2|)) (-1 (-414 |#2|) |#2|))) (-15 -1841 (|#3| |#3| |#2|)) (-15 -1841 (|#3| |#3| (-403 |#2|)))) -((-1600 (((-2 (|:| -4374 (-626 (-403 |#2|))) (|:| -3818 (-671 |#1|))) (-636 |#2| (-403 |#2|)) (-626 (-403 |#2|))) 117) (((-2 (|:| |particular| (-3 (-403 |#2|) "failed")) (|:| -4374 (-626 (-403 |#2|)))) (-636 |#2| (-403 |#2|)) (-403 |#2|)) 116) (((-2 (|:| -4374 (-626 (-403 |#2|))) (|:| -3818 (-671 |#1|))) (-635 (-403 |#2|)) (-626 (-403 |#2|))) 111) (((-2 (|:| |particular| (-3 (-403 |#2|) "failed")) (|:| -4374 (-626 (-403 |#2|)))) (-635 (-403 |#2|)) (-403 |#2|)) 109)) (-3011 ((|#2| (-636 |#2| (-403 |#2|))) 77) ((|#2| (-635 (-403 |#2|))) 81))) -(((-797 |#1| |#2|) (-10 -7 (-15 -1600 ((-2 (|:| |particular| (-3 (-403 |#2|) "failed")) (|:| -4374 (-626 (-403 |#2|)))) (-635 (-403 |#2|)) (-403 |#2|))) (-15 -1600 ((-2 (|:| -4374 (-626 (-403 |#2|))) (|:| -3818 (-671 |#1|))) (-635 (-403 |#2|)) (-626 (-403 |#2|)))) (-15 -1600 ((-2 (|:| |particular| (-3 (-403 |#2|) "failed")) (|:| -4374 (-626 (-403 |#2|)))) (-636 |#2| (-403 |#2|)) (-403 |#2|))) (-15 -1600 ((-2 (|:| -4374 (-626 (-403 |#2|))) (|:| -3818 (-671 |#1|))) (-636 |#2| (-403 |#2|)) (-626 (-403 |#2|)))) (-15 -3011 (|#2| (-635 (-403 |#2|)))) (-15 -3011 (|#2| (-636 |#2| (-403 |#2|))))) (-13 (-359) (-148) (-1029 (-560)) (-1029 (-403 (-560)))) (-1211 |#1|)) (T -797)) -((-3011 (*1 *2 *3) (-12 (-5 *3 (-636 *2 (-403 *2))) (-4 *2 (-1211 *4)) (-5 *1 (-797 *4 *2)) (-4 *4 (-13 (-359) (-148) (-1029 (-560)) (-1029 (-403 (-560))))))) (-3011 (*1 *2 *3) (-12 (-5 *3 (-635 (-403 *2))) (-4 *2 (-1211 *4)) (-5 *1 (-797 *4 *2)) (-4 *4 (-13 (-359) (-148) (-1029 (-560)) (-1029 (-403 (-560))))))) (-1600 (*1 *2 *3 *4) (-12 (-5 *3 (-636 *6 (-403 *6))) (-4 *6 (-1211 *5)) (-4 *5 (-13 (-359) (-148) (-1029 (-560)) (-1029 (-403 (-560))))) (-5 *2 (-2 (|:| -4374 (-626 (-403 *6))) (|:| -3818 (-671 *5)))) (-5 *1 (-797 *5 *6)) (-5 *4 (-626 (-403 *6))))) (-1600 (*1 *2 *3 *4) (-12 (-5 *3 (-636 *6 (-403 *6))) (-5 *4 (-403 *6)) (-4 *6 (-1211 *5)) (-4 *5 (-13 (-359) (-148) (-1029 (-560)) (-1029 (-403 (-560))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4374 (-626 *4)))) (-5 *1 (-797 *5 *6)))) (-1600 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-403 *6))) (-4 *6 (-1211 *5)) (-4 *5 (-13 (-359) (-148) (-1029 (-560)) (-1029 (-403 (-560))))) (-5 *2 (-2 (|:| -4374 (-626 (-403 *6))) (|:| -3818 (-671 *5)))) (-5 *1 (-797 *5 *6)) (-5 *4 (-626 (-403 *6))))) (-1600 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-403 *6))) (-5 *4 (-403 *6)) (-4 *6 (-1211 *5)) (-4 *5 (-13 (-359) (-148) (-1029 (-560)) (-1029 (-403 (-560))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4374 (-626 *4)))) (-5 *1 (-797 *5 *6))))) -(-10 -7 (-15 -1600 ((-2 (|:| |particular| (-3 (-403 |#2|) "failed")) (|:| -4374 (-626 (-403 |#2|)))) (-635 (-403 |#2|)) (-403 |#2|))) (-15 -1600 ((-2 (|:| -4374 (-626 (-403 |#2|))) (|:| -3818 (-671 |#1|))) (-635 (-403 |#2|)) (-626 (-403 |#2|)))) (-15 -1600 ((-2 (|:| |particular| (-3 (-403 |#2|) "failed")) (|:| -4374 (-626 (-403 |#2|)))) (-636 |#2| (-403 |#2|)) (-403 |#2|))) (-15 -1600 ((-2 (|:| -4374 (-626 (-403 |#2|))) (|:| -3818 (-671 |#1|))) (-636 |#2| (-403 |#2|)) (-626 (-403 |#2|)))) (-15 -3011 (|#2| (-635 (-403 |#2|)))) (-15 -3011 (|#2| (-636 |#2| (-403 |#2|))))) -((-1321 (((-2 (|:| -3818 (-671 |#2|)) (|:| |vec| (-1236 |#1|))) |#5| |#4|) 47))) -(((-798 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1321 ((-2 (|:| -3818 (-671 |#2|)) (|:| |vec| (-1236 |#1|))) |#5| |#4|))) (-359) (-638 |#1|) (-1211 |#1|) (-706 |#1| |#3|) (-638 |#4|)) (T -798)) -((-1321 (*1 *2 *3 *4) (-12 (-4 *5 (-359)) (-4 *7 (-1211 *5)) (-4 *4 (-706 *5 *7)) (-5 *2 (-2 (|:| -3818 (-671 *6)) (|:| |vec| (-1236 *5)))) (-5 *1 (-798 *5 *6 *7 *4 *3)) (-4 *6 (-638 *5)) (-4 *3 (-638 *4))))) -(-10 -7 (-15 -1321 ((-2 (|:| -3818 (-671 |#2|)) (|:| |vec| (-1236 |#1|))) |#5| |#4|))) -((-3861 (((-626 (-2 (|:| |frac| (-403 |#2|)) (|:| -2654 (-636 |#2| (-403 |#2|))))) (-636 |#2| (-403 |#2|)) (-1 (-414 |#2|) |#2|)) 43)) (-3076 (((-626 (-403 |#2|)) (-636 |#2| (-403 |#2|)) (-1 (-414 |#2|) |#2|)) 133 (|has| |#1| (-27))) (((-626 (-403 |#2|)) (-636 |#2| (-403 |#2|))) 134 (|has| |#1| (-27))) (((-626 (-403 |#2|)) (-635 (-403 |#2|)) (-1 (-414 |#2|) |#2|)) 135 (|has| |#1| (-27))) (((-626 (-403 |#2|)) (-635 (-403 |#2|))) 136 (|has| |#1| (-27))) (((-626 (-403 |#2|)) (-636 |#2| (-403 |#2|)) (-1 (-626 |#1|) |#2|) (-1 (-414 |#2|) |#2|)) 36) (((-626 (-403 |#2|)) (-636 |#2| (-403 |#2|)) (-1 (-626 |#1|) |#2|)) 37) (((-626 (-403 |#2|)) (-635 (-403 |#2|)) (-1 (-626 |#1|) |#2|) (-1 (-414 |#2|) |#2|)) 34) (((-626 (-403 |#2|)) (-635 (-403 |#2|)) (-1 (-626 |#1|) |#2|)) 35)) (-4167 (((-626 (-2 (|:| |poly| |#2|) (|:| -2654 (-636 |#2| (-403 |#2|))))) (-636 |#2| (-403 |#2|)) (-1 (-626 |#1|) |#2|)) 80))) -(((-799 |#1| |#2|) (-10 -7 (-15 -3076 ((-626 (-403 |#2|)) (-635 (-403 |#2|)) (-1 (-626 |#1|) |#2|))) (-15 -3076 ((-626 (-403 |#2|)) (-635 (-403 |#2|)) (-1 (-626 |#1|) |#2|) (-1 (-414 |#2|) |#2|))) (-15 -3076 ((-626 (-403 |#2|)) (-636 |#2| (-403 |#2|)) (-1 (-626 |#1|) |#2|))) (-15 -3076 ((-626 (-403 |#2|)) (-636 |#2| (-403 |#2|)) (-1 (-626 |#1|) |#2|) (-1 (-414 |#2|) |#2|))) (-15 -3861 ((-626 (-2 (|:| |frac| (-403 |#2|)) (|:| -2654 (-636 |#2| (-403 |#2|))))) (-636 |#2| (-403 |#2|)) (-1 (-414 |#2|) |#2|))) (-15 -4167 ((-626 (-2 (|:| |poly| |#2|) (|:| -2654 (-636 |#2| (-403 |#2|))))) (-636 |#2| (-403 |#2|)) (-1 (-626 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3076 ((-626 (-403 |#2|)) (-635 (-403 |#2|)))) (-15 -3076 ((-626 (-403 |#2|)) (-635 (-403 |#2|)) (-1 (-414 |#2|) |#2|))) (-15 -3076 ((-626 (-403 |#2|)) (-636 |#2| (-403 |#2|)))) (-15 -3076 ((-626 (-403 |#2|)) (-636 |#2| (-403 |#2|)) (-1 (-414 |#2|) |#2|)))) |noBranch|)) (-13 (-359) (-148) (-1029 (-560)) (-1029 (-403 (-560)))) (-1211 |#1|)) (T -799)) -((-3076 (*1 *2 *3 *4) (-12 (-5 *3 (-636 *6 (-403 *6))) (-5 *4 (-1 (-414 *6) *6)) (-4 *6 (-1211 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-359) (-148) (-1029 (-560)) (-1029 (-403 (-560))))) (-5 *2 (-626 (-403 *6))) (-5 *1 (-799 *5 *6)))) (-3076 (*1 *2 *3) (-12 (-5 *3 (-636 *5 (-403 *5))) (-4 *5 (-1211 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-359) (-148) (-1029 (-560)) (-1029 (-403 (-560))))) (-5 *2 (-626 (-403 *5))) (-5 *1 (-799 *4 *5)))) (-3076 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-403 *6))) (-5 *4 (-1 (-414 *6) *6)) (-4 *6 (-1211 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-359) (-148) (-1029 (-560)) (-1029 (-403 (-560))))) (-5 *2 (-626 (-403 *6))) (-5 *1 (-799 *5 *6)))) (-3076 (*1 *2 *3) (-12 (-5 *3 (-635 (-403 *5))) (-4 *5 (-1211 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-359) (-148) (-1029 (-560)) (-1029 (-403 (-560))))) (-5 *2 (-626 (-403 *5))) (-5 *1 (-799 *4 *5)))) (-4167 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-626 *5) *6)) (-4 *5 (-13 (-359) (-148) (-1029 (-560)) (-1029 (-403 (-560))))) (-4 *6 (-1211 *5)) (-5 *2 (-626 (-2 (|:| |poly| *6) (|:| -2654 (-636 *6 (-403 *6)))))) (-5 *1 (-799 *5 *6)) (-5 *3 (-636 *6 (-403 *6))))) (-3861 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-414 *6) *6)) (-4 *6 (-1211 *5)) (-4 *5 (-13 (-359) (-148) (-1029 (-560)) (-1029 (-403 (-560))))) (-5 *2 (-626 (-2 (|:| |frac| (-403 *6)) (|:| -2654 (-636 *6 (-403 *6)))))) (-5 *1 (-799 *5 *6)) (-5 *3 (-636 *6 (-403 *6))))) (-3076 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-636 *7 (-403 *7))) (-5 *4 (-1 (-626 *6) *7)) (-5 *5 (-1 (-414 *7) *7)) (-4 *6 (-13 (-359) (-148) (-1029 (-560)) (-1029 (-403 (-560))))) (-4 *7 (-1211 *6)) (-5 *2 (-626 (-403 *7))) (-5 *1 (-799 *6 *7)))) (-3076 (*1 *2 *3 *4) (-12 (-5 *3 (-636 *6 (-403 *6))) (-5 *4 (-1 (-626 *5) *6)) (-4 *5 (-13 (-359) (-148) (-1029 (-560)) (-1029 (-403 (-560))))) (-4 *6 (-1211 *5)) (-5 *2 (-626 (-403 *6))) (-5 *1 (-799 *5 *6)))) (-3076 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-635 (-403 *7))) (-5 *4 (-1 (-626 *6) *7)) (-5 *5 (-1 (-414 *7) *7)) (-4 *6 (-13 (-359) (-148) (-1029 (-560)) (-1029 (-403 (-560))))) (-4 *7 (-1211 *6)) (-5 *2 (-626 (-403 *7))) (-5 *1 (-799 *6 *7)))) (-3076 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-403 *6))) (-5 *4 (-1 (-626 *5) *6)) (-4 *5 (-13 (-359) (-148) (-1029 (-560)) (-1029 (-403 (-560))))) (-4 *6 (-1211 *5)) (-5 *2 (-626 (-403 *6))) (-5 *1 (-799 *5 *6))))) -(-10 -7 (-15 -3076 ((-626 (-403 |#2|)) (-635 (-403 |#2|)) (-1 (-626 |#1|) |#2|))) (-15 -3076 ((-626 (-403 |#2|)) (-635 (-403 |#2|)) (-1 (-626 |#1|) |#2|) (-1 (-414 |#2|) |#2|))) (-15 -3076 ((-626 (-403 |#2|)) (-636 |#2| (-403 |#2|)) (-1 (-626 |#1|) |#2|))) (-15 -3076 ((-626 (-403 |#2|)) (-636 |#2| (-403 |#2|)) (-1 (-626 |#1|) |#2|) (-1 (-414 |#2|) |#2|))) (-15 -3861 ((-626 (-2 (|:| |frac| (-403 |#2|)) (|:| -2654 (-636 |#2| (-403 |#2|))))) (-636 |#2| (-403 |#2|)) (-1 (-414 |#2|) |#2|))) (-15 -4167 ((-626 (-2 (|:| |poly| |#2|) (|:| -2654 (-636 |#2| (-403 |#2|))))) (-636 |#2| (-403 |#2|)) (-1 (-626 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3076 ((-626 (-403 |#2|)) (-635 (-403 |#2|)))) (-15 -3076 ((-626 (-403 |#2|)) (-635 (-403 |#2|)) (-1 (-414 |#2|) |#2|))) (-15 -3076 ((-626 (-403 |#2|)) (-636 |#2| (-403 |#2|)))) (-15 -3076 ((-626 (-403 |#2|)) (-636 |#2| (-403 |#2|)) (-1 (-414 |#2|) |#2|)))) |noBranch|)) -((-4384 (((-2 (|:| -3818 (-671 |#2|)) (|:| |vec| (-1236 |#1|))) (-671 |#2|) (-1236 |#1|)) 86) (((-2 (|:| A (-671 |#1|)) (|:| |eqs| (-626 (-2 (|:| C (-671 |#1|)) (|:| |g| (-1236 |#1|)) (|:| -2654 |#2|) (|:| |rh| |#1|))))) (-671 |#1|) (-1236 |#1|)) 14)) (-3474 (((-2 (|:| |particular| (-3 (-1236 |#1|) "failed")) (|:| -4374 (-626 (-1236 |#1|)))) (-671 |#2|) (-1236 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -4374 (-626 |#1|))) |#2| |#1|)) 92)) (-4159 (((-3 (-2 (|:| |particular| (-1236 |#1|)) (|:| -4374 (-671 |#1|))) "failed") (-671 |#1|) (-1236 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -4374 (-626 |#1|))) "failed") |#2| |#1|)) 45))) -(((-800 |#1| |#2|) (-10 -7 (-15 -4384 ((-2 (|:| A (-671 |#1|)) (|:| |eqs| (-626 (-2 (|:| C (-671 |#1|)) (|:| |g| (-1236 |#1|)) (|:| -2654 |#2|) (|:| |rh| |#1|))))) (-671 |#1|) (-1236 |#1|))) (-15 -4384 ((-2 (|:| -3818 (-671 |#2|)) (|:| |vec| (-1236 |#1|))) (-671 |#2|) (-1236 |#1|))) (-15 -4159 ((-3 (-2 (|:| |particular| (-1236 |#1|)) (|:| -4374 (-671 |#1|))) "failed") (-671 |#1|) (-1236 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -4374 (-626 |#1|))) "failed") |#2| |#1|))) (-15 -3474 ((-2 (|:| |particular| (-3 (-1236 |#1|) "failed")) (|:| -4374 (-626 (-1236 |#1|)))) (-671 |#2|) (-1236 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -4374 (-626 |#1|))) |#2| |#1|)))) (-359) (-638 |#1|)) (T -800)) -((-3474 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-671 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -4374 (-626 *6))) *7 *6)) (-4 *6 (-359)) (-4 *7 (-638 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1236 *6) "failed")) (|:| -4374 (-626 (-1236 *6))))) (-5 *1 (-800 *6 *7)) (-5 *4 (-1236 *6)))) (-4159 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -4374 (-626 *6))) "failed") *7 *6)) (-4 *6 (-359)) (-4 *7 (-638 *6)) (-5 *2 (-2 (|:| |particular| (-1236 *6)) (|:| -4374 (-671 *6)))) (-5 *1 (-800 *6 *7)) (-5 *3 (-671 *6)) (-5 *4 (-1236 *6)))) (-4384 (*1 *2 *3 *4) (-12 (-4 *5 (-359)) (-4 *6 (-638 *5)) (-5 *2 (-2 (|:| -3818 (-671 *6)) (|:| |vec| (-1236 *5)))) (-5 *1 (-800 *5 *6)) (-5 *3 (-671 *6)) (-5 *4 (-1236 *5)))) (-4384 (*1 *2 *3 *4) (-12 (-4 *5 (-359)) (-5 *2 (-2 (|:| A (-671 *5)) (|:| |eqs| (-626 (-2 (|:| C (-671 *5)) (|:| |g| (-1236 *5)) (|:| -2654 *6) (|:| |rh| *5)))))) (-5 *1 (-800 *5 *6)) (-5 *3 (-671 *5)) (-5 *4 (-1236 *5)) (-4 *6 (-638 *5))))) -(-10 -7 (-15 -4384 ((-2 (|:| A (-671 |#1|)) (|:| |eqs| (-626 (-2 (|:| C (-671 |#1|)) (|:| |g| (-1236 |#1|)) (|:| -2654 |#2|) (|:| |rh| |#1|))))) (-671 |#1|) (-1236 |#1|))) (-15 -4384 ((-2 (|:| -3818 (-671 |#2|)) (|:| |vec| (-1236 |#1|))) (-671 |#2|) (-1236 |#1|))) (-15 -4159 ((-3 (-2 (|:| |particular| (-1236 |#1|)) (|:| -4374 (-671 |#1|))) "failed") (-671 |#1|) (-1236 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -4374 (-626 |#1|))) "failed") |#2| |#1|))) (-15 -3474 ((-2 (|:| |particular| (-3 (-1236 |#1|) "failed")) (|:| -4374 (-626 (-1236 |#1|)))) (-671 |#2|) (-1236 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -4374 (-626 |#1|))) |#2| |#1|)))) -((-3136 (((-671 |#1|) (-626 |#1|) (-755)) 13) (((-671 |#1|) (-626 |#1|)) 14)) (-1975 (((-3 (-1236 |#1|) "failed") |#2| |#1| (-626 |#1|)) 34)) (-2852 (((-3 |#1| "failed") |#2| |#1| (-626 |#1|) (-1 |#1| |#1|)) 42))) -(((-801 |#1| |#2|) (-10 -7 (-15 -3136 ((-671 |#1|) (-626 |#1|))) (-15 -3136 ((-671 |#1|) (-626 |#1|) (-755))) (-15 -1975 ((-3 (-1236 |#1|) "failed") |#2| |#1| (-626 |#1|))) (-15 -2852 ((-3 |#1| "failed") |#2| |#1| (-626 |#1|) (-1 |#1| |#1|)))) (-359) (-638 |#1|)) (T -801)) -((-2852 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-626 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-359)) (-5 *1 (-801 *2 *3)) (-4 *3 (-638 *2)))) (-1975 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-626 *4)) (-4 *4 (-359)) (-5 *2 (-1236 *4)) (-5 *1 (-801 *4 *3)) (-4 *3 (-638 *4)))) (-3136 (*1 *2 *3 *4) (-12 (-5 *3 (-626 *5)) (-5 *4 (-755)) (-4 *5 (-359)) (-5 *2 (-671 *5)) (-5 *1 (-801 *5 *6)) (-4 *6 (-638 *5)))) (-3136 (*1 *2 *3) (-12 (-5 *3 (-626 *4)) (-4 *4 (-359)) (-5 *2 (-671 *4)) (-5 *1 (-801 *4 *5)) (-4 *5 (-638 *4))))) -(-10 -7 (-15 -3136 ((-671 |#1|) (-626 |#1|))) (-15 -3136 ((-671 |#1|) (-626 |#1|) (-755))) (-15 -1975 ((-3 (-1236 |#1|) "failed") |#2| |#1| (-626 |#1|))) (-15 -2852 ((-3 |#1| "failed") |#2| |#1| (-626 |#1|) (-1 |#1| |#1|)))) -((-2601 (((-121) $ $) NIL (|has| |#2| (-1082)))) (-2832 (((-121) $) NIL (|has| |#2| (-137)))) (-4259 (($ (-909)) NIL (|has| |#2| (-1039)))) (-2960 (((-1241) $ (-560) (-560)) NIL (|has| $ (-6 -4506)))) (-2280 (($ $ $) NIL (|has| |#2| (-780)))) (-2314 (((-3 $ "failed") $ $) NIL (|has| |#2| (-137)))) (-3909 (((-121) $ (-755)) NIL)) (-2912 (((-755)) NIL (|has| |#2| (-364)))) (-4235 (((-560) $) NIL (|has| |#2| (-832)))) (-2764 ((|#2| $ (-560) |#2|) NIL (|has| $ (-6 -4506)))) (-4236 (($) NIL T CONST)) (-1473 (((-3 (-560) "failed") $) NIL (-12 (|has| |#2| (-1029 (-560))) (|has| |#2| (-1082)))) (((-3 (-403 (-560)) "failed") $) NIL (-12 (|has| |#2| (-1029 (-403 (-560)))) (|has| |#2| (-1082)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1082)))) (-3001 (((-560) $) NIL (-12 (|has| |#2| (-1029 (-560))) (|has| |#2| (-1082)))) (((-403 (-560)) $) NIL (-12 (|has| |#2| (-1029 (-403 (-560)))) (|has| |#2| (-1082)))) ((|#2| $) NIL (|has| |#2| (-1082)))) (-2616 (((-671 (-560)) (-671 $)) NIL (-12 (|has| |#2| (-622 (-560))) (|has| |#2| (-1039)))) (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) NIL (-12 (|has| |#2| (-622 (-560))) (|has| |#2| (-1039)))) (((-2 (|:| -3818 (-671 |#2|)) (|:| |vec| (-1236 |#2|))) (-671 $) (-1236 $)) NIL (|has| |#2| (-1039))) (((-671 |#2|) (-671 $)) NIL (|has| |#2| (-1039)))) (-1823 (((-3 $ "failed") $) NIL (|has| |#2| (-708)))) (-1666 (($) NIL (|has| |#2| (-364)))) (-1746 ((|#2| $ (-560) |#2|) NIL (|has| $ (-6 -4506)))) (-1361 ((|#2| $ (-560)) NIL)) (-1786 (((-121) $) NIL (|has| |#2| (-832)))) (-1981 (((-626 |#2|) $) NIL (|has| $ (-6 -4505)))) (-2642 (((-121) $) NIL (|has| |#2| (-708)))) (-2187 (((-121) $) NIL (|has| |#2| (-832)))) (-2122 (((-121) $ (-755)) NIL)) (-4099 (((-560) $) NIL (|has| (-560) (-834)))) (-4325 (($ $ $) NIL (-2318 (|has| |#2| (-780)) (|has| |#2| (-832))))) (-2130 (((-626 |#2|) $) NIL (|has| $ (-6 -4505)))) (-2030 (((-121) |#2| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#2| (-1082))))) (-2767 (((-560) $) NIL (|has| (-560) (-834)))) (-2501 (($ $ $) NIL (-2318 (|has| |#2| (-780)) (|has| |#2| (-832))))) (-3778 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#2| |#2|) $) NIL)) (-3142 (((-909) $) NIL (|has| |#2| (-364)))) (-3441 (((-121) $ (-755)) NIL)) (-1291 (((-1135) $) NIL (|has| |#2| (-1082)))) (-1529 (((-626 (-560)) $) NIL)) (-1310 (((-121) (-560) $) NIL)) (-1330 (($ (-909)) NIL (|has| |#2| (-364)))) (-4353 (((-1100) $) NIL (|has| |#2| (-1082)))) (-2824 ((|#2| $) NIL (|has| (-560) (-834)))) (-3038 (($ $ |#2|) NIL (|has| $ (-6 -4506)))) (-2865 (((-121) (-1 (-121) |#2|) $) NIL (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#2|))) NIL (-12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082)))) (($ $ (-283 |#2|)) NIL (-12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082)))) (($ $ (-626 |#2|) (-626 |#2|)) NIL (-12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082))))) (-2214 (((-121) $ $) NIL)) (-1290 (((-121) |#2| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#2| (-1082))))) (-4460 (((-626 |#2|) $) NIL)) (-4191 (((-121) $) NIL)) (-3260 (($) NIL)) (-2778 ((|#2| $ (-560) |#2|) NIL) ((|#2| $ (-560)) NIL)) (-2372 ((|#2| $ $) NIL (|has| |#2| (-1039)))) (-1621 (($ (-1236 |#2|)) NIL)) (-4016 (((-139)) NIL (|has| |#2| (-359)))) (-2443 (($ $) NIL (-12 (|has| |#2| (-221)) (|has| |#2| (-1039)))) (($ $ (-755)) NIL (-12 (|has| |#2| (-221)) (|has| |#2| (-1039)))) (($ $ (-1153)) NIL (-12 (|has| |#2| (-887 (-1153))) (|has| |#2| (-1039)))) (($ $ (-626 (-1153))) NIL (-12 (|has| |#2| (-887 (-1153))) (|has| |#2| (-1039)))) (($ $ (-1153) (-755)) NIL (-12 (|has| |#2| (-887 (-1153))) (|has| |#2| (-1039)))) (($ $ (-626 (-1153)) (-626 (-755))) NIL (-12 (|has| |#2| (-887 (-1153))) (|has| |#2| (-1039)))) (($ $ (-1 |#2| |#2|) (-755)) NIL (|has| |#2| (-1039))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1039)))) (-4035 (((-755) (-1 (-121) |#2|) $) NIL (|has| $ (-6 -4505))) (((-755) |#2| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#2| (-1082))))) (-2813 (($ $) NIL)) (-2801 (((-1236 |#2|) $) NIL) (((-842) $) NIL (|has| |#2| (-1082))) (($ (-560)) NIL (-2318 (-12 (|has| |#2| (-1029 (-560))) (|has| |#2| (-1082))) (|has| |#2| (-1039)))) (($ (-403 (-560))) NIL (-12 (|has| |#2| (-1029 (-403 (-560)))) (|has| |#2| (-1082)))) (($ |#2|) NIL (|has| |#2| (-1082)))) (-1751 (((-755)) NIL (|has| |#2| (-1039)))) (-3656 (((-121) (-1 (-121) |#2|) $) NIL (|has| $ (-6 -4505)))) (-1822 (($ $) NIL (|has| |#2| (-832)))) (-2464 (($ $ (-755)) NIL (|has| |#2| (-708))) (($ $ (-909)) NIL (|has| |#2| (-708)))) (-3304 (($) NIL (|has| |#2| (-137)) CONST)) (-1459 (($) NIL (|has| |#2| (-708)) CONST)) (-2500 (($ $) NIL (-12 (|has| |#2| (-221)) (|has| |#2| (-1039)))) (($ $ (-755)) NIL (-12 (|has| |#2| (-221)) (|has| |#2| (-1039)))) (($ $ (-1153)) NIL (-12 (|has| |#2| (-887 (-1153))) (|has| |#2| (-1039)))) (($ $ (-626 (-1153))) NIL (-12 (|has| |#2| (-887 (-1153))) (|has| |#2| (-1039)))) (($ $ (-1153) (-755)) NIL (-12 (|has| |#2| (-887 (-1153))) (|has| |#2| (-1039)))) (($ $ (-626 (-1153)) (-626 (-755))) NIL (-12 (|has| |#2| (-887 (-1153))) (|has| |#2| (-1039)))) (($ $ (-1 |#2| |#2|) (-755)) NIL (|has| |#2| (-1039))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1039)))) (-1691 (((-121) $ $) NIL (-2318 (|has| |#2| (-780)) (|has| |#2| (-832))))) (-1675 (((-121) $ $) NIL (-2318 (|has| |#2| (-780)) (|has| |#2| (-832))))) (-1653 (((-121) $ $) NIL (|has| |#2| (-1082)))) (-1683 (((-121) $ $) NIL (-2318 (|has| |#2| (-780)) (|has| |#2| (-832))))) (-1667 (((-121) $ $) 11 (-2318 (|has| |#2| (-780)) (|has| |#2| (-832))))) (-1733 (($ $ |#2|) NIL (|has| |#2| (-359)))) (-1725 (($ $ $) NIL (|has| |#2| (-1039))) (($ $) NIL (|has| |#2| (-1039)))) (-1716 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-755)) NIL (|has| |#2| (-708))) (($ $ (-909)) NIL (|has| |#2| (-708)))) (* (($ (-560) $) NIL (|has| |#2| (-1039))) (($ $ $) NIL (|has| |#2| (-708))) (($ $ |#2|) NIL (|has| |#2| (-1039))) (($ |#2| $) NIL (|has| |#2| (-1039))) (($ (-755) $) NIL (|has| |#2| (-137))) (($ (-909) $) NIL (|has| |#2| (-25)))) (-2271 (((-755) $) NIL (|has| $ (-6 -4505))))) -(((-802 |#1| |#2| |#3|) (-226 |#1| |#2|) (-755) (-780) (-1 (-121) (-1236 |#2|) (-1236 |#2|))) (T -802)) -NIL -(-226 |#1| |#2|) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-2402 (((-626 (-755)) $) NIL) (((-626 (-755)) $ (-1153)) NIL)) (-1400 (((-755) $) NIL) (((-755) $ (-1153)) NIL)) (-1654 (((-626 (-805 (-1153))) $) NIL)) (-1593 (((-1149 $) $ (-805 (-1153))) NIL) (((-1149 |#1|) $) NIL)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL (|has| |#1| (-550)))) (-1350 (($ $) NIL (|has| |#1| (-550)))) (-3376 (((-121) $) NIL (|has| |#1| (-550)))) (-1697 (((-755) $) NIL) (((-755) $ (-626 (-805 (-1153)))) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-1776 (((-414 (-1149 $)) (-1149 $)) NIL (|has| |#1| (-896)))) (-3065 (($ $) NIL (|has| |#1| (-447)))) (-2953 (((-414 $) $) NIL (|has| |#1| (-447)))) (-1887 (((-3 (-626 (-1149 $)) "failed") (-626 (-1149 $)) (-1149 $)) NIL (|has| |#1| (-896)))) (-1278 (($ $) NIL)) (-4236 (($) NIL T CONST)) (-1473 (((-3 |#1| "failed") $) NIL) (((-3 (-403 (-560)) "failed") $) NIL (|has| |#1| (-1029 (-403 (-560))))) (((-3 (-560) "failed") $) NIL (|has| |#1| (-1029 (-560)))) (((-3 (-805 (-1153)) "failed") $) NIL) (((-3 (-1153) "failed") $) NIL) (((-3 (-1105 |#1| (-1153)) "failed") $) NIL)) (-3001 ((|#1| $) NIL) (((-403 (-560)) $) NIL (|has| |#1| (-1029 (-403 (-560))))) (((-560) $) NIL (|has| |#1| (-1029 (-560)))) (((-805 (-1153)) $) NIL) (((-1153) $) NIL) (((-1105 |#1| (-1153)) $) NIL)) (-1979 (($ $ $ (-805 (-1153))) NIL (|has| |#1| (-170)))) (-1750 (($ $) NIL)) (-2616 (((-671 (-560)) (-671 $)) NIL (|has| |#1| (-622 (-560)))) (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) NIL (|has| |#1| (-622 (-560)))) (((-2 (|:| -3818 (-671 |#1|)) (|:| |vec| (-1236 |#1|))) (-671 $) (-1236 $)) NIL) (((-671 |#1|) (-671 $)) NIL)) (-1823 (((-3 $ "failed") $) NIL)) (-3605 (($ $) NIL (|has| |#1| (-447))) (($ $ (-805 (-1153))) NIL (|has| |#1| (-447)))) (-1743 (((-626 $) $) NIL)) (-3319 (((-121) $) NIL (|has| |#1| (-896)))) (-1456 (($ $ |#1| (-526 (-805 (-1153))) $) NIL)) (-2399 (((-876 (-375) $) $ (-879 (-375)) (-876 (-375) $)) NIL (-12 (|has| (-805 (-1153)) (-873 (-375))) (|has| |#1| (-873 (-375))))) (((-876 (-560) $) $ (-879 (-560)) (-876 (-560) $)) NIL (-12 (|has| (-805 (-1153)) (-873 (-560))) (|has| |#1| (-873 (-560)))))) (-3504 (((-755) $ (-1153)) NIL) (((-755) $) NIL)) (-2642 (((-121) $) NIL)) (-3235 (((-755) $) NIL)) (-1647 (($ (-1149 |#1|) (-805 (-1153))) NIL) (($ (-1149 $) (-805 (-1153))) NIL)) (-1854 (((-626 $) $) NIL)) (-1814 (((-121) $) NIL)) (-1637 (($ |#1| (-526 (-805 (-1153)))) NIL) (($ $ (-805 (-1153)) (-755)) NIL) (($ $ (-626 (-805 (-1153))) (-626 (-755))) NIL)) (-2923 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $ (-805 (-1153))) NIL)) (-3693 (((-526 (-805 (-1153))) $) NIL) (((-755) $ (-805 (-1153))) NIL) (((-626 (-755)) $ (-626 (-805 (-1153)))) NIL)) (-4325 (($ $ $) NIL (|has| |#1| (-834)))) (-2501 (($ $ $) NIL (|has| |#1| (-834)))) (-1504 (($ (-1 (-526 (-805 (-1153))) (-526 (-805 (-1153)))) $) NIL)) (-2803 (($ (-1 |#1| |#1|) $) NIL)) (-4340 (((-1 $ (-755)) (-1153)) NIL) (((-1 $ (-755)) $) NIL (|has| |#1| (-221)))) (-2101 (((-3 (-805 (-1153)) "failed") $) NIL)) (-1726 (($ $) NIL)) (-1735 ((|#1| $) NIL)) (-2263 (((-805 (-1153)) $) NIL)) (-2582 (($ (-626 $)) NIL (|has| |#1| (-447))) (($ $ $) NIL (|has| |#1| (-447)))) (-1291 (((-1135) $) NIL)) (-3940 (((-121) $) NIL)) (-3665 (((-3 (-626 $) "failed") $) NIL)) (-2327 (((-3 (-626 $) "failed") $) NIL)) (-2913 (((-3 (-2 (|:| |var| (-805 (-1153))) (|:| -4034 (-755))) "failed") $) NIL)) (-2006 (($ $) NIL)) (-4353 (((-1100) $) NIL)) (-1704 (((-121) $) NIL)) (-1711 ((|#1| $) NIL)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL (|has| |#1| (-447)))) (-4440 (($ (-626 $)) NIL (|has| |#1| (-447))) (($ $ $) NIL (|has| |#1| (-447)))) (-3817 (((-414 (-1149 $)) (-1149 $)) NIL (|has| |#1| (-896)))) (-3032 (((-414 (-1149 $)) (-1149 $)) NIL (|has| |#1| (-896)))) (-1601 (((-414 $) $) NIL (|has| |#1| (-896)))) (-2336 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-550))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-550)))) (-4450 (($ $ (-626 (-283 $))) NIL) (($ $ (-283 $)) NIL) (($ $ $ $) NIL) (($ $ (-626 $) (-626 $)) NIL) (($ $ (-805 (-1153)) |#1|) NIL) (($ $ (-626 (-805 (-1153))) (-626 |#1|)) NIL) (($ $ (-805 (-1153)) $) NIL) (($ $ (-626 (-805 (-1153))) (-626 $)) NIL) (($ $ (-1153) $) NIL (|has| |#1| (-221))) (($ $ (-626 (-1153)) (-626 $)) NIL (|has| |#1| (-221))) (($ $ (-1153) |#1|) NIL (|has| |#1| (-221))) (($ $ (-626 (-1153)) (-626 |#1|)) NIL (|has| |#1| (-221)))) (-4069 (($ $ (-805 (-1153))) NIL (|has| |#1| (-170)))) (-2443 (($ $ (-805 (-1153))) NIL) (($ $ (-626 (-805 (-1153)))) NIL) (($ $ (-805 (-1153)) (-755)) NIL) (($ $ (-626 (-805 (-1153))) (-626 (-755))) NIL) (($ $) NIL (|has| |#1| (-221))) (($ $ (-755)) NIL (|has| |#1| (-221))) (($ $ (-1153)) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-626 (-1153))) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-1153) (-755)) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-626 (-1153)) (-626 (-755))) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-1 |#1| |#1|) (-755)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1339 (((-626 (-1153)) $) NIL)) (-3662 (((-526 (-805 (-1153))) $) NIL) (((-755) $ (-805 (-1153))) NIL) (((-626 (-755)) $ (-626 (-805 (-1153)))) NIL) (((-755) $ (-1153)) NIL)) (-4255 (((-879 (-375)) $) NIL (-12 (|has| (-805 (-1153)) (-601 (-879 (-375)))) (|has| |#1| (-601 (-879 (-375)))))) (((-879 (-560)) $) NIL (-12 (|has| (-805 (-1153)) (-601 (-879 (-560)))) (|has| |#1| (-601 (-879 (-560)))))) (((-533) $) NIL (-12 (|has| (-805 (-1153)) (-601 (-533))) (|has| |#1| (-601 (-533)))))) (-1896 ((|#1| $) NIL (|has| |#1| (-447))) (($ $ (-805 (-1153))) NIL (|has| |#1| (-447)))) (-3248 (((-3 (-1236 $) "failed") (-671 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-896))))) (-2801 (((-842) $) NIL) (($ (-560)) NIL) (($ |#1|) NIL) (($ (-805 (-1153))) NIL) (($ (-1153)) NIL) (($ (-1105 |#1| (-1153))) NIL) (($ (-403 (-560))) NIL (-2318 (|has| |#1| (-43 (-403 (-560)))) (|has| |#1| (-1029 (-403 (-560)))))) (($ $) NIL (|has| |#1| (-550)))) (-2423 (((-626 |#1|) $) NIL)) (-2636 ((|#1| $ (-526 (-805 (-1153)))) NIL) (($ $ (-805 (-1153)) (-755)) NIL) (($ $ (-626 (-805 (-1153))) (-626 (-755))) NIL)) (-2272 (((-3 $ "failed") $) NIL (-2318 (-12 (|has| $ (-146)) (|has| |#1| (-896))) (|has| |#1| (-146))))) (-1751 (((-755)) NIL)) (-3487 (($ $ $ (-755)) NIL (|has| |#1| (-170)))) (-2328 (((-121) $ $) NIL (|has| |#1| (-550)))) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (-3304 (($) NIL T CONST)) (-1459 (($) NIL T CONST)) (-2500 (($ $ (-805 (-1153))) NIL) (($ $ (-626 (-805 (-1153)))) NIL) (($ $ (-805 (-1153)) (-755)) NIL) (($ $ (-626 (-805 (-1153))) (-626 (-755))) NIL) (($ $) NIL (|has| |#1| (-221))) (($ $ (-755)) NIL (|has| |#1| (-221))) (($ $ (-1153)) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-626 (-1153))) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-1153) (-755)) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-626 (-1153)) (-626 (-755))) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-1 |#1| |#1|) (-755)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1691 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1675 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1653 (((-121) $ $) NIL)) (-1683 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1667 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1733 (($ $ |#1|) NIL (|has| |#1| (-359)))) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) NIL)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) NIL) (($ $ (-403 (-560))) NIL (|has| |#1| (-43 (-403 (-560))))) (($ (-403 (-560)) $) NIL (|has| |#1| (-43 (-403 (-560))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-803 |#1|) (-13 (-241 |#1| (-1153) (-805 (-1153)) (-526 (-805 (-1153)))) (-1029 (-1105 |#1| (-1153)))) (-1039)) (T -803)) -NIL -(-13 (-241 |#1| (-1153) (-805 (-1153)) (-526 (-805 (-1153)))) (-1029 (-1105 |#1| (-1153)))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL (|has| |#2| (-359)))) (-1350 (($ $) NIL (|has| |#2| (-359)))) (-3376 (((-121) $) NIL (|has| |#2| (-359)))) (-2314 (((-3 $ "failed") $ $) NIL)) (-3065 (($ $) NIL (|has| |#2| (-359)))) (-2953 (((-414 $) $) NIL (|has| |#2| (-359)))) (-4179 (((-121) $ $) NIL (|has| |#2| (-359)))) (-4236 (($) NIL T CONST)) (-2563 (($ $ $) NIL (|has| |#2| (-359)))) (-1823 (((-3 $ "failed") $) NIL)) (-2572 (($ $ $) NIL (|has| |#2| (-359)))) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) NIL (|has| |#2| (-359)))) (-3319 (((-121) $) NIL (|has| |#2| (-359)))) (-2642 (((-121) $) NIL)) (-3856 (((-3 (-626 $) "failed") (-626 $) $) NIL (|has| |#2| (-359)))) (-2582 (($ (-626 $)) NIL (|has| |#2| (-359))) (($ $ $) NIL (|has| |#2| (-359)))) (-1291 (((-1135) $) NIL)) (-1701 (($ $) 20 (|has| |#2| (-359)))) (-4353 (((-1100) $) NIL)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL (|has| |#2| (-359)))) (-4440 (($ (-626 $)) NIL (|has| |#2| (-359))) (($ $ $) NIL (|has| |#2| (-359)))) (-1601 (((-414 $) $) NIL (|has| |#2| (-359)))) (-3505 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-359))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL (|has| |#2| (-359)))) (-2336 (((-3 $ "failed") $ $) NIL (|has| |#2| (-359)))) (-3456 (((-3 (-626 $) "failed") (-626 $) $) NIL (|has| |#2| (-359)))) (-4445 (((-755) $) NIL (|has| |#2| (-359)))) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL (|has| |#2| (-359)))) (-2443 (($ $ (-755)) NIL) (($ $) 13)) (-2801 (((-842) $) NIL) (($ (-560)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-403 (-560))) NIL (|has| |#2| (-359))) (($ $) NIL (|has| |#2| (-359)))) (-1751 (((-755)) NIL)) (-2328 (((-121) $ $) NIL (|has| |#2| (-359)))) (-2464 (($ $ (-755)) NIL) (($ $ (-909)) NIL) (($ $ (-560)) NIL (|has| |#2| (-359)))) (-3304 (($) NIL T CONST)) (-1459 (($) NIL T CONST)) (-2500 (($ $ (-755)) NIL) (($ $) NIL)) (-1653 (((-121) $ $) NIL)) (-1733 (($ $ $) 15 (|has| |#2| (-359)))) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) NIL)) (** (($ $ (-755)) NIL) (($ $ (-909)) NIL) (($ $ (-560)) 18 (|has| |#2| (-359)))) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-403 (-560)) $) NIL (|has| |#2| (-359))) (($ $ (-403 (-560))) NIL (|has| |#2| (-359))))) -(((-804 |#1| |#2| |#3|) (-13 (-120 $ $) (-221) (-10 -8 (IF (|has| |#2| (-359)) (-6 (-359)) |noBranch|) (-15 -2801 ($ |#2|)) (-15 -2801 (|#2| $)))) (-1082) (-887 |#1|) |#1|) (T -804)) -((-2801 (*1 *1 *2) (-12 (-4 *3 (-1082)) (-14 *4 *3) (-5 *1 (-804 *3 *2 *4)) (-4 *2 (-887 *3)))) (-2801 (*1 *2 *1) (-12 (-4 *2 (-887 *3)) (-5 *1 (-804 *3 *2 *4)) (-4 *3 (-1082)) (-14 *4 *3)))) -(-13 (-120 $ $) (-221) (-10 -8 (IF (|has| |#2| (-359)) (-6 (-359)) |noBranch|) (-15 -2801 ($ |#2|)) (-15 -2801 (|#2| $)))) -((-2601 (((-121) $ $) NIL)) (-1400 (((-755) $) NIL)) (-1395 ((|#1| $) 10)) (-1473 (((-3 |#1| "failed") $) NIL)) (-3001 ((|#1| $) NIL)) (-3504 (((-755) $) 11)) (-4325 (($ $ $) NIL)) (-2501 (($ $ $) NIL)) (-4340 (($ |#1| (-755)) 9)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2443 (($ $) NIL) (($ $ (-755)) NIL)) (-2801 (((-842) $) NIL) (($ |#1|) NIL)) (-1691 (((-121) $ $) NIL)) (-1675 (((-121) $ $) NIL)) (-1653 (((-121) $ $) NIL)) (-1683 (((-121) $ $) NIL)) (-1667 (((-121) $ $) NIL))) -(((-805 |#1|) (-257 |#1|) (-834)) (T -805)) -NIL -(-257 |#1|) -((-2601 (((-121) $ $) NIL)) (-1499 (((-626 |#1|) $) 34)) (-2912 (((-755) $) NIL)) (-4236 (($) NIL T CONST)) (-1927 (((-3 $ "failed") $ $) 21) (((-3 $ "failed") $ |#1|) 19)) (-1473 (((-3 |#1| "failed") $) NIL)) (-3001 ((|#1| $) NIL)) (-2877 (($ $) 36)) (-1823 (((-3 $ "failed") $) NIL)) (-2518 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-2642 (((-121) $) NIL)) (-1724 ((|#1| $ (-560)) NIL)) (-3461 (((-755) $ (-560)) NIL)) (-2994 (($ $) 40)) (-4325 (($ $ $) NIL)) (-2501 (($ $ $) NIL)) (-4135 (((-3 $ "failed") $ $) 20) (((-3 $ "failed") $ |#1|) 16)) (-1836 (((-121) $ $) 38)) (-2349 (((-755) $) 30)) (-1291 (((-1135) $) NIL)) (-2822 (($ $ $) NIL)) (-2932 (($ $ $) NIL)) (-4353 (((-1100) $) NIL)) (-2824 ((|#1| $) 35)) (-3025 (((-626 (-2 (|:| |gen| |#1|) (|:| -2469 (-755)))) $) NIL)) (-2215 (((-3 (-2 (|:| |lm| (-3 $ "failed")) (|:| |rm| (-3 $ "failed"))) "failed") $ $) 24)) (-2801 (((-842) $) NIL) (($ |#1|) NIL)) (-2464 (($ $ (-755)) NIL) (($ $ (-909)) NIL)) (-1459 (($) 14 T CONST)) (-1691 (((-121) $ $) NIL)) (-1675 (((-121) $ $) NIL)) (-1653 (((-121) $ $) NIL)) (-1683 (((-121) $ $) NIL)) (-1667 (((-121) $ $) 39)) (** (($ $ (-755)) NIL) (($ $ (-909)) NIL) (($ |#1| (-755)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-806 |#1|) (-13 (-830) (-1029 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-755))) (-15 -2824 (|#1| $)) (-15 -2877 ($ $)) (-15 -2994 ($ $)) (-15 -1836 ((-121) $ $)) (-15 -2932 ($ $ $)) (-15 -2822 ($ $ $)) (-15 -4135 ((-3 $ "failed") $ $)) (-15 -1927 ((-3 $ "failed") $ $)) (-15 -4135 ((-3 $ "failed") $ |#1|)) (-15 -1927 ((-3 $ "failed") $ |#1|)) (-15 -2215 ((-3 (-2 (|:| |lm| (-3 $ "failed")) (|:| |rm| (-3 $ "failed"))) "failed") $ $)) (-15 -2518 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2912 ((-755) $)) (-15 -3461 ((-755) $ (-560))) (-15 -1724 (|#1| $ (-560))) (-15 -3025 ((-626 (-2 (|:| |gen| |#1|) (|:| -2469 (-755)))) $)) (-15 -2349 ((-755) $)) (-15 -1499 ((-626 |#1|) $)))) (-834)) (T -806)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-806 *2)) (-4 *2 (-834)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-806 *2)) (-4 *2 (-834)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-755)) (-5 *1 (-806 *2)) (-4 *2 (-834)))) (-2824 (*1 *2 *1) (-12 (-5 *1 (-806 *2)) (-4 *2 (-834)))) (-2877 (*1 *1 *1) (-12 (-5 *1 (-806 *2)) (-4 *2 (-834)))) (-2994 (*1 *1 *1) (-12 (-5 *1 (-806 *2)) (-4 *2 (-834)))) (-1836 (*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-806 *3)) (-4 *3 (-834)))) (-2932 (*1 *1 *1 *1) (-12 (-5 *1 (-806 *2)) (-4 *2 (-834)))) (-2822 (*1 *1 *1 *1) (-12 (-5 *1 (-806 *2)) (-4 *2 (-834)))) (-4135 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-806 *2)) (-4 *2 (-834)))) (-1927 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-806 *2)) (-4 *2 (-834)))) (-4135 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-806 *2)) (-4 *2 (-834)))) (-1927 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-806 *2)) (-4 *2 (-834)))) (-2215 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-3 (-806 *3) "failed")) (|:| |rm| (-3 (-806 *3) "failed")))) (-5 *1 (-806 *3)) (-4 *3 (-834)))) (-2518 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-806 *3)) (|:| |mm| (-806 *3)) (|:| |rm| (-806 *3)))) (-5 *1 (-806 *3)) (-4 *3 (-834)))) (-2912 (*1 *2 *1) (-12 (-5 *2 (-755)) (-5 *1 (-806 *3)) (-4 *3 (-834)))) (-3461 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-5 *2 (-755)) (-5 *1 (-806 *4)) (-4 *4 (-834)))) (-1724 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-5 *1 (-806 *2)) (-4 *2 (-834)))) (-3025 (*1 *2 *1) (-12 (-5 *2 (-626 (-2 (|:| |gen| *3) (|:| -2469 (-755))))) (-5 *1 (-806 *3)) (-4 *3 (-834)))) (-2349 (*1 *2 *1) (-12 (-5 *2 (-755)) (-5 *1 (-806 *3)) (-4 *3 (-834)))) (-1499 (*1 *2 *1) (-12 (-5 *2 (-626 *3)) (-5 *1 (-806 *3)) (-4 *3 (-834))))) -(-13 (-830) (-1029 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-755))) (-15 -2824 (|#1| $)) (-15 -2877 ($ $)) (-15 -2994 ($ $)) (-15 -1836 ((-121) $ $)) (-15 -2932 ($ $ $)) (-15 -2822 ($ $ $)) (-15 -4135 ((-3 $ "failed") $ $)) (-15 -1927 ((-3 $ "failed") $ $)) (-15 -4135 ((-3 $ "failed") $ |#1|)) (-15 -1927 ((-3 $ "failed") $ |#1|)) (-15 -2215 ((-3 (-2 (|:| |lm| (-3 $ "failed")) (|:| |rm| (-3 $ "failed"))) "failed") $ $)) (-15 -2518 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2912 ((-755) $)) (-15 -3461 ((-755) $ (-560))) (-15 -1724 (|#1| $ (-560))) (-15 -3025 ((-626 (-2 (|:| |gen| |#1|) (|:| -2469 (-755)))) $)) (-15 -2349 ((-755) $)) (-15 -1499 ((-626 |#1|) $)))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) 40)) (-1350 (($ $) 39)) (-3376 (((-121) $) 37)) (-2314 (((-3 $ "failed") $ $) 18)) (-4235 (((-560) $) 52)) (-4236 (($) 16 T CONST)) (-1823 (((-3 $ "failed") $) 33)) (-1786 (((-121) $) 50)) (-2642 (((-121) $) 30)) (-2187 (((-121) $) 51)) (-4325 (($ $ $) 49)) (-2501 (($ $ $) 48)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-2336 (((-3 $ "failed") $ $) 41)) (-2801 (((-842) $) 11) (($ (-560)) 27) (($ $) 42)) (-1751 (((-755)) 28)) (-2328 (((-121) $ $) 38)) (-1822 (($ $) 53)) (-2464 (($ $ (-909)) 25) (($ $ (-755)) 32)) (-3304 (($) 17 T CONST)) (-1459 (($) 29 T CONST)) (-1691 (((-121) $ $) 46)) (-1675 (((-121) $ $) 45)) (-1653 (((-121) $ $) 6)) (-1683 (((-121) $ $) 47)) (-1667 (((-121) $ $) 44)) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 24) (($ $ (-755)) 31)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 23))) -(((-807) (-1267)) (T -807)) -NIL -(-13 (-550) (-832)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-43 $) . T) ((-105) . T) ((-120 $ $) . T) ((-137) . T) ((-600 (-842)) . T) ((-170) . T) ((-280) . T) ((-550) . T) ((-629 $) . T) ((-699 $) . T) ((-708) . T) ((-778) . T) ((-779) . T) ((-781) . T) ((-782) . T) ((-832) . T) ((-834) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1094) . T) ((-1082) . T)) -((-4058 (($ (-1100)) 7)) (-1665 (((-121) $ (-1135) (-1100)) 15)) (-3414 (((-809) $) 12)) (-4238 (((-809) $) 11)) (-3181 (((-1241) $) 9)) (-2496 (((-121) $ (-1100)) 16))) -(((-808) (-10 -8 (-15 -4058 ($ (-1100))) (-15 -3181 ((-1241) $)) (-15 -4238 ((-809) $)) (-15 -3414 ((-809) $)) (-15 -1665 ((-121) $ (-1135) (-1100))) (-15 -2496 ((-121) $ (-1100))))) (T -808)) -((-2496 (*1 *2 *1 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-121)) (-5 *1 (-808)))) (-1665 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1135)) (-5 *4 (-1100)) (-5 *2 (-121)) (-5 *1 (-808)))) (-3414 (*1 *2 *1) (-12 (-5 *2 (-809)) (-5 *1 (-808)))) (-4238 (*1 *2 *1) (-12 (-5 *2 (-809)) (-5 *1 (-808)))) (-3181 (*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-808)))) (-4058 (*1 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-808))))) -(-10 -8 (-15 -4058 ($ (-1100))) (-15 -3181 ((-1241) $)) (-15 -4238 ((-809) $)) (-15 -3414 ((-809) $)) (-15 -1665 ((-121) $ (-1135) (-1100))) (-15 -2496 ((-121) $ (-1100)))) -((-2643 (((-1241) $ (-810)) 12)) (-2157 (((-1241) $ (-1153)) 32)) (-2593 (((-1241) $ (-1135) (-1135)) 34)) (-1930 (((-1241) $ (-1135)) 33)) (-1795 (((-1241) $) 19)) (-1296 (((-1241) $ (-560)) 28)) (-3160 (((-1241) $ (-213)) 30)) (-2465 (((-1241) $) 18)) (-1578 (((-1241) $) 26)) (-2917 (((-1241) $) 25)) (-4196 (((-1241) $) 23)) (-3736 (((-1241) $) 24)) (-2863 (((-1241) $) 22)) (-3943 (((-1241) $) 21)) (-2506 (((-1241) $) 20)) (-4293 (((-1241) $) 16)) (-1769 (((-1241) $) 17)) (-4063 (((-1241) $) 15)) (-3638 (((-1241) $) 14)) (-4121 (((-1241) $) 13)) (-1336 (($ (-1135) (-810)) 9)) (-1673 (($ (-1135) (-1135) (-810)) 8)) (-2779 (((-1153) $) 51)) (-1577 (((-1153) $) 55)) (-3149 (((-2 (|:| |cd| (-1135)) (|:| -1337 (-1135))) $) 54)) (-1318 (((-1135) $) 52)) (-1976 (((-1241) $) 41)) (-1644 (((-560) $) 49)) (-1983 (((-213) $) 50)) (-3889 (((-1241) $) 40)) (-1859 (((-1241) $) 48)) (-4428 (((-1241) $) 47)) (-1409 (((-1241) $) 45)) (-2687 (((-1241) $) 46)) (-1509 (((-1241) $) 44)) (-4267 (((-1241) $) 43)) (-4215 (((-1241) $) 42)) (-1582 (((-1241) $) 38)) (-2624 (((-1241) $) 39)) (-4243 (((-1241) $) 37)) (-4207 (((-1241) $) 36)) (-3600 (((-1241) $) 35)) (-3951 (((-1241) $) 11))) -(((-809) (-10 -8 (-15 -1673 ($ (-1135) (-1135) (-810))) (-15 -1336 ($ (-1135) (-810))) (-15 -3951 ((-1241) $)) (-15 -2643 ((-1241) $ (-810))) (-15 -4121 ((-1241) $)) (-15 -3638 ((-1241) $)) (-15 -4063 ((-1241) $)) (-15 -4293 ((-1241) $)) (-15 -1769 ((-1241) $)) (-15 -2465 ((-1241) $)) (-15 -1795 ((-1241) $)) (-15 -2506 ((-1241) $)) (-15 -3943 ((-1241) $)) (-15 -2863 ((-1241) $)) (-15 -4196 ((-1241) $)) (-15 -3736 ((-1241) $)) (-15 -2917 ((-1241) $)) (-15 -1578 ((-1241) $)) (-15 -1296 ((-1241) $ (-560))) (-15 -3160 ((-1241) $ (-213))) (-15 -2157 ((-1241) $ (-1153))) (-15 -1930 ((-1241) $ (-1135))) (-15 -2593 ((-1241) $ (-1135) (-1135))) (-15 -3600 ((-1241) $)) (-15 -4207 ((-1241) $)) (-15 -4243 ((-1241) $)) (-15 -1582 ((-1241) $)) (-15 -2624 ((-1241) $)) (-15 -3889 ((-1241) $)) (-15 -1976 ((-1241) $)) (-15 -4215 ((-1241) $)) (-15 -4267 ((-1241) $)) (-15 -1509 ((-1241) $)) (-15 -1409 ((-1241) $)) (-15 -2687 ((-1241) $)) (-15 -4428 ((-1241) $)) (-15 -1859 ((-1241) $)) (-15 -1644 ((-560) $)) (-15 -1983 ((-213) $)) (-15 -2779 ((-1153) $)) (-15 -1318 ((-1135) $)) (-15 -3149 ((-2 (|:| |cd| (-1135)) (|:| -1337 (-1135))) $)) (-15 -1577 ((-1153) $)))) (T -809)) -((-1577 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-809)))) (-3149 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1135)) (|:| -1337 (-1135)))) (-5 *1 (-809)))) (-1318 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-809)))) (-2779 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-809)))) (-1983 (*1 *2 *1) (-12 (-5 *2 (-213)) (-5 *1 (-809)))) (-1644 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-809)))) (-1859 (*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-809)))) (-4428 (*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-809)))) (-2687 (*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-809)))) (-1409 (*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-809)))) (-1509 (*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-809)))) (-4267 (*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-809)))) (-4215 (*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-809)))) (-1976 (*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-809)))) (-3889 (*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-809)))) (-2624 (*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-809)))) (-1582 (*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-809)))) (-4243 (*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-809)))) (-4207 (*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-809)))) (-3600 (*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-809)))) (-2593 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1241)) (-5 *1 (-809)))) (-1930 (*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1241)) (-5 *1 (-809)))) (-2157 (*1 *2 *1 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-1241)) (-5 *1 (-809)))) (-3160 (*1 *2 *1 *3) (-12 (-5 *3 (-213)) (-5 *2 (-1241)) (-5 *1 (-809)))) (-1296 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-5 *2 (-1241)) (-5 *1 (-809)))) (-1578 (*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-809)))) (-2917 (*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-809)))) (-3736 (*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-809)))) (-4196 (*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-809)))) (-2863 (*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-809)))) (-3943 (*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-809)))) (-2506 (*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-809)))) (-1795 (*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-809)))) (-2465 (*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-809)))) (-1769 (*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-809)))) (-4293 (*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-809)))) (-4063 (*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-809)))) (-3638 (*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-809)))) (-4121 (*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-809)))) (-2643 (*1 *2 *1 *3) (-12 (-5 *3 (-810)) (-5 *2 (-1241)) (-5 *1 (-809)))) (-3951 (*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-809)))) (-1336 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-810)) (-5 *1 (-809)))) (-1673 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-810)) (-5 *1 (-809))))) -(-10 -8 (-15 -1673 ($ (-1135) (-1135) (-810))) (-15 -1336 ($ (-1135) (-810))) (-15 -3951 ((-1241) $)) (-15 -2643 ((-1241) $ (-810))) (-15 -4121 ((-1241) $)) (-15 -3638 ((-1241) $)) (-15 -4063 ((-1241) $)) (-15 -4293 ((-1241) $)) (-15 -1769 ((-1241) $)) (-15 -2465 ((-1241) $)) (-15 -1795 ((-1241) $)) (-15 -2506 ((-1241) $)) (-15 -3943 ((-1241) $)) (-15 -2863 ((-1241) $)) (-15 -4196 ((-1241) $)) (-15 -3736 ((-1241) $)) (-15 -2917 ((-1241) $)) (-15 -1578 ((-1241) $)) (-15 -1296 ((-1241) $ (-560))) (-15 -3160 ((-1241) $ (-213))) (-15 -2157 ((-1241) $ (-1153))) (-15 -1930 ((-1241) $ (-1135))) (-15 -2593 ((-1241) $ (-1135) (-1135))) (-15 -3600 ((-1241) $)) (-15 -4207 ((-1241) $)) (-15 -4243 ((-1241) $)) (-15 -1582 ((-1241) $)) (-15 -2624 ((-1241) $)) (-15 -3889 ((-1241) $)) (-15 -1976 ((-1241) $)) (-15 -4215 ((-1241) $)) (-15 -4267 ((-1241) $)) (-15 -1509 ((-1241) $)) (-15 -1409 ((-1241) $)) (-15 -2687 ((-1241) $)) (-15 -4428 ((-1241) $)) (-15 -1859 ((-1241) $)) (-15 -1644 ((-560) $)) (-15 -1983 ((-213) $)) (-15 -2779 ((-1153) $)) (-15 -1318 ((-1135) $)) (-15 -3149 ((-2 (|:| |cd| (-1135)) (|:| -1337 (-1135))) $)) (-15 -1577 ((-1153) $))) -((-2601 (((-121) $ $) NIL)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2801 (((-842) $) 12)) (-1799 (($) 15)) (-2129 (($) 13)) (-4398 (($) 16)) (-2534 (($) 14)) (-1653 (((-121) $ $) 8))) -(((-810) (-13 (-1082) (-10 -8 (-15 -2129 ($)) (-15 -1799 ($)) (-15 -4398 ($)) (-15 -2534 ($))))) (T -810)) -((-2129 (*1 *1) (-5 *1 (-810))) (-1799 (*1 *1) (-5 *1 (-810))) (-4398 (*1 *1) (-5 *1 (-810))) (-2534 (*1 *1) (-5 *1 (-810)))) -(-13 (-1082) (-10 -8 (-15 -2129 ($)) (-15 -1799 ($)) (-15 -4398 ($)) (-15 -2534 ($)))) -((-2601 (((-121) $ $) NIL)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2801 (((-842) $) 21) (($ (-1153)) 17)) (-3726 (((-121) $) 10)) (-2326 (((-121) $) 9)) (-4201 (((-121) $) 11)) (-4471 (((-121) $) 8)) (-1653 (((-121) $ $) 19))) -(((-811) (-13 (-1082) (-10 -8 (-15 -2801 ($ (-1153))) (-15 -4471 ((-121) $)) (-15 -2326 ((-121) $)) (-15 -3726 ((-121) $)) (-15 -4201 ((-121) $))))) (T -811)) -((-2801 (*1 *1 *2) (-12 (-5 *2 (-1153)) (-5 *1 (-811)))) (-4471 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-811)))) (-2326 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-811)))) (-3726 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-811)))) (-4201 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-811))))) -(-13 (-1082) (-10 -8 (-15 -2801 ($ (-1153))) (-15 -4471 ((-121) $)) (-15 -2326 ((-121) $)) (-15 -3726 ((-121) $)) (-15 -4201 ((-121) $)))) -((-2601 (((-121) $ $) NIL)) (-1856 (($ (-811) (-626 (-1153))) 24)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2876 (((-811) $) 25)) (-3012 (((-626 (-1153)) $) 26)) (-2801 (((-842) $) 23)) (-1653 (((-121) $ $) NIL))) -(((-812) (-13 (-1082) (-10 -8 (-15 -2876 ((-811) $)) (-15 -3012 ((-626 (-1153)) $)) (-15 -1856 ($ (-811) (-626 (-1153))))))) (T -812)) -((-2876 (*1 *2 *1) (-12 (-5 *2 (-811)) (-5 *1 (-812)))) (-3012 (*1 *2 *1) (-12 (-5 *2 (-626 (-1153))) (-5 *1 (-812)))) (-1856 (*1 *1 *2 *3) (-12 (-5 *2 (-811)) (-5 *3 (-626 (-1153))) (-5 *1 (-812))))) -(-13 (-1082) (-10 -8 (-15 -2876 ((-811) $)) (-15 -3012 ((-626 (-1153)) $)) (-15 -1856 ($ (-811) (-626 (-1153)))))) -((-3039 (((-1241) (-809) (-304 |#1|) (-121)) 22) (((-1241) (-809) (-304 |#1|)) 76) (((-1135) (-304 |#1|) (-121)) 75) (((-1135) (-304 |#1|)) 74))) -(((-813 |#1|) (-10 -7 (-15 -3039 ((-1135) (-304 |#1|))) (-15 -3039 ((-1135) (-304 |#1|) (-121))) (-15 -3039 ((-1241) (-809) (-304 |#1|))) (-15 -3039 ((-1241) (-809) (-304 |#1|) (-121)))) (-13 (-815) (-834) (-1039))) (T -813)) -((-3039 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-809)) (-5 *4 (-304 *6)) (-5 *5 (-121)) (-4 *6 (-13 (-815) (-834) (-1039))) (-5 *2 (-1241)) (-5 *1 (-813 *6)))) (-3039 (*1 *2 *3 *4) (-12 (-5 *3 (-809)) (-5 *4 (-304 *5)) (-4 *5 (-13 (-815) (-834) (-1039))) (-5 *2 (-1241)) (-5 *1 (-813 *5)))) (-3039 (*1 *2 *3 *4) (-12 (-5 *3 (-304 *5)) (-5 *4 (-121)) (-4 *5 (-13 (-815) (-834) (-1039))) (-5 *2 (-1135)) (-5 *1 (-813 *5)))) (-3039 (*1 *2 *3) (-12 (-5 *3 (-304 *4)) (-4 *4 (-13 (-815) (-834) (-1039))) (-5 *2 (-1135)) (-5 *1 (-813 *4))))) -(-10 -7 (-15 -3039 ((-1135) (-304 |#1|))) (-15 -3039 ((-1135) (-304 |#1|) (-121))) (-15 -3039 ((-1241) (-809) (-304 |#1|))) (-15 -3039 ((-1241) (-809) (-304 |#1|) (-121)))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-4236 (($) NIL T CONST)) (-1750 (($ $) NIL)) (-1823 (((-3 $ "failed") $) NIL)) (-3854 ((|#1| $) 10)) (-1882 (($ |#1|) 9)) (-2642 (((-121) $) NIL)) (-1637 (($ |#2| (-755)) NIL)) (-3693 (((-755) $) NIL)) (-1735 ((|#2| $) NIL)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2443 (($ $ (-755)) NIL (|has| |#1| (-221))) (($ $) NIL (|has| |#1| (-221)))) (-3662 (((-755) $) NIL)) (-2801 (((-842) $) 17) (($ (-560)) NIL) (($ |#2|) NIL (|has| |#2| (-170)))) (-2636 ((|#2| $ (-755)) NIL)) (-1751 (((-755)) NIL)) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (-3304 (($) NIL T CONST)) (-1459 (($) NIL T CONST)) (-2500 (($ $ (-755)) NIL (|has| |#1| (-221))) (($ $) NIL (|has| |#1| (-221)))) (-1653 (((-121) $ $) NIL)) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) NIL)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-814 |#1| |#2|) (-13 (-690 |#2|) (-10 -8 (IF (|has| |#1| (-221)) (-6 (-221)) |noBranch|) (-15 -1882 ($ |#1|)) (-15 -3854 (|#1| $)))) (-690 |#2|) (-1039)) (T -814)) -((-1882 (*1 *1 *2) (-12 (-4 *3 (-1039)) (-5 *1 (-814 *2 *3)) (-4 *2 (-690 *3)))) (-3854 (*1 *2 *1) (-12 (-4 *2 (-690 *3)) (-5 *1 (-814 *2 *3)) (-4 *3 (-1039))))) -(-13 (-690 |#2|) (-10 -8 (IF (|has| |#1| (-221)) (-6 (-221)) |noBranch|) (-15 -1882 ($ |#1|)) (-15 -3854 (|#1| $)))) -((-3039 (((-1241) (-809) $ (-121)) 9) (((-1241) (-809) $) 8) (((-1135) $ (-121)) 7) (((-1135) $) 6))) -(((-815) (-1267)) (T -815)) -((-3039 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-815)) (-5 *3 (-809)) (-5 *4 (-121)) (-5 *2 (-1241)))) (-3039 (*1 *2 *3 *1) (-12 (-4 *1 (-815)) (-5 *3 (-809)) (-5 *2 (-1241)))) (-3039 (*1 *2 *1 *3) (-12 (-4 *1 (-815)) (-5 *3 (-121)) (-5 *2 (-1135)))) (-3039 (*1 *2 *1) (-12 (-4 *1 (-815)) (-5 *2 (-1135))))) -(-13 (-10 -8 (-15 -3039 ((-1135) $)) (-15 -3039 ((-1135) $ (-121))) (-15 -3039 ((-1241) (-809) $)) (-15 -3039 ((-1241) (-809) $ (-121))))) -((-2410 (((-300) (-1135) (-1135)) 12)) (-1757 (((-121) (-1135) (-1135)) 33)) (-3420 (((-121) (-1135)) 32)) (-3481 (((-57) (-1135)) 25)) (-2316 (((-57) (-1135)) 23)) (-2850 (((-57) (-809)) 17)) (-2036 (((-626 (-1135)) (-1135)) 28)) (-3052 (((-626 (-1135))) 27))) -(((-816) (-10 -7 (-15 -2850 ((-57) (-809))) (-15 -2316 ((-57) (-1135))) (-15 -3481 ((-57) (-1135))) (-15 -3052 ((-626 (-1135)))) (-15 -2036 ((-626 (-1135)) (-1135))) (-15 -3420 ((-121) (-1135))) (-15 -1757 ((-121) (-1135) (-1135))) (-15 -2410 ((-300) (-1135) (-1135))))) (T -816)) -((-2410 (*1 *2 *3 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-300)) (-5 *1 (-816)))) (-1757 (*1 *2 *3 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-121)) (-5 *1 (-816)))) (-3420 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-121)) (-5 *1 (-816)))) (-2036 (*1 *2 *3) (-12 (-5 *2 (-626 (-1135))) (-5 *1 (-816)) (-5 *3 (-1135)))) (-3052 (*1 *2) (-12 (-5 *2 (-626 (-1135))) (-5 *1 (-816)))) (-3481 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-57)) (-5 *1 (-816)))) (-2316 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-57)) (-5 *1 (-816)))) (-2850 (*1 *2 *3) (-12 (-5 *3 (-809)) (-5 *2 (-57)) (-5 *1 (-816))))) -(-10 -7 (-15 -2850 ((-57) (-809))) (-15 -2316 ((-57) (-1135))) (-15 -3481 ((-57) (-1135))) (-15 -3052 ((-626 (-1135)))) (-15 -2036 ((-626 (-1135)) (-1135))) (-15 -3420 ((-121) (-1135))) (-15 -1757 ((-121) (-1135) (-1135))) (-15 -2410 ((-300) (-1135) (-1135)))) -((-2601 (((-121) $ $) 18)) (-1749 (($ |#1| $) 72) (($ $ |#1|) 71) (($ $ $) 70)) (-2498 (($ $ $) 68)) (-3947 (((-121) $ $) 69)) (-3909 (((-121) $ (-755)) 8)) (-2808 (($ (-626 |#1|)) 64) (($) 63)) (-3763 (($ (-1 (-121) |#1|) $) 42 (|has| $ (-6 -4505)))) (-3802 (($ (-1 (-121) |#1|) $) 52 (|has| $ (-6 -4505)))) (-4236 (($) 7 T CONST)) (-3568 (($ $) 58)) (-2868 (($ $) 55 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-3561 (($ |#1| $) 44 (|has| $ (-6 -4505))) (($ (-1 (-121) |#1|) $) 43 (|has| $ (-6 -4505)))) (-4310 (($ |#1| $) 54 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505)))) (($ (-1 (-121) |#1|) $) 51 (|has| $ (-6 -4505)))) (-2342 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 53 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 50 (|has| $ (-6 -4505))) ((|#1| (-1 |#1| |#1| |#1|) $) 49 (|has| $ (-6 -4505)))) (-1981 (((-626 |#1|) $) 30 (|has| $ (-6 -4505)))) (-2122 (((-121) $ (-755)) 9)) (-4325 ((|#1| $) 74)) (-2037 (($ $ $) 77)) (-2492 (($ $ $) 76)) (-2130 (((-626 |#1|) $) 29 (|has| $ (-6 -4505)))) (-2030 (((-121) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-2501 ((|#1| $) 75)) (-3778 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#1| |#1|) $) 35)) (-3441 (((-121) $ (-755)) 10)) (-1291 (((-1135) $) 22)) (-4283 (($ $ $) 65)) (-2525 ((|#1| $) 36)) (-4345 (($ |#1| $) 37) (($ |#1| $ (-755)) 59)) (-4353 (((-1100) $) 21)) (-3786 (((-3 |#1| "failed") (-1 (-121) |#1|) $) 48)) (-2146 ((|#1| $) 38)) (-2865 (((-121) (-1 (-121) |#1|) $) 32 (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#1|))) 26 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-283 |#1|)) 25 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-626 |#1|) (-626 |#1|)) 23 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))))) (-2214 (((-121) $ $) 14)) (-4191 (((-121) $) 11)) (-3260 (($) 12)) (-1483 (((-626 (-2 (|:| -2371 |#1|) (|:| -4035 (-755)))) $) 57)) (-1794 (($ $ |#1|) 67) (($ $ $) 66)) (-3958 (($) 46) (($ (-626 |#1|)) 45)) (-4035 (((-755) (-1 (-121) |#1|) $) 31 (|has| $ (-6 -4505))) (((-755) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-2813 (($ $) 13)) (-4255 (((-533) $) 56 (|has| |#1| (-601 (-533))))) (-4162 (($ (-626 |#1|)) 47)) (-2801 (((-842) $) 20)) (-2799 (($ (-626 |#1|)) 62) (($) 61)) (-1354 (($ (-626 |#1|)) 39)) (-3656 (((-121) (-1 (-121) |#1|) $) 33 (|has| $ (-6 -4505)))) (-1653 (((-121) $ $) 19)) (-1667 (((-121) $ $) 60)) (-2271 (((-755) $) 6 (|has| $ (-6 -4505))))) -(((-817 |#1|) (-1267) (-834)) (T -817)) -((-4325 (*1 *2 *1) (-12 (-4 *1 (-817 *2)) (-4 *2 (-834))))) -(-13 (-718 |t#1|) (-961 |t#1|) (-10 -8 (-15 -4325 (|t#1| $)))) -(((-39) . T) ((-111 |#1|) . T) ((-105) . T) ((-600 (-842)) . T) ((-152 |#1|) . T) ((-601 (-533)) |has| |#1| (-601 (-533))) ((-223 |#1|) . T) ((-298 |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))) ((-492 |#1|) . T) ((-515 |#1| |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))) ((-676 |#1|) . T) ((-718 |#1|) . T) ((-961 |#1|) . T) ((-1079 |#1|) . T) ((-1082) . T) ((-1187) . T)) -((-1510 (((-1241) (-1100) (-1100)) 47)) (-3543 (((-1241) (-808) (-57)) 44)) (-2232 (((-57) (-808)) 16))) -(((-818) (-10 -7 (-15 -2232 ((-57) (-808))) (-15 -3543 ((-1241) (-808) (-57))) (-15 -1510 ((-1241) (-1100) (-1100))))) (T -818)) -((-1510 (*1 *2 *3 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1241)) (-5 *1 (-818)))) (-3543 (*1 *2 *3 *4) (-12 (-5 *3 (-808)) (-5 *4 (-57)) (-5 *2 (-1241)) (-5 *1 (-818)))) (-2232 (*1 *2 *3) (-12 (-5 *3 (-808)) (-5 *2 (-57)) (-5 *1 (-818))))) -(-10 -7 (-15 -2232 ((-57) (-808))) (-15 -3543 ((-1241) (-808) (-57))) (-15 -1510 ((-1241) (-1100) (-1100)))) -((-2803 (((-820 |#2|) (-1 |#2| |#1|) (-820 |#1|) (-820 |#2|)) 12) (((-820 |#2|) (-1 |#2| |#1|) (-820 |#1|)) 13))) -(((-819 |#1| |#2|) (-10 -7 (-15 -2803 ((-820 |#2|) (-1 |#2| |#1|) (-820 |#1|))) (-15 -2803 ((-820 |#2|) (-1 |#2| |#1|) (-820 |#1|) (-820 |#2|)))) (-1082) (-1082)) (T -819)) -((-2803 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-820 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-820 *5)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-5 *1 (-819 *5 *6)))) (-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-820 *5)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-5 *2 (-820 *6)) (-5 *1 (-819 *5 *6))))) -(-10 -7 (-15 -2803 ((-820 |#2|) (-1 |#2| |#1|) (-820 |#1|))) (-15 -2803 ((-820 |#2|) (-1 |#2| |#1|) (-820 |#1|) (-820 |#2|)))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL (|has| |#1| (-21)))) (-2314 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-4235 (((-560) $) NIL (|has| |#1| (-832)))) (-4236 (($) NIL (|has| |#1| (-21)) CONST)) (-1473 (((-3 (-560) "failed") $) NIL (|has| |#1| (-1029 (-560)))) (((-3 (-403 (-560)) "failed") $) NIL (|has| |#1| (-1029 (-403 (-560))))) (((-3 |#1| "failed") $) 15)) (-3001 (((-560) $) NIL (|has| |#1| (-1029 (-560)))) (((-403 (-560)) $) NIL (|has| |#1| (-1029 (-403 (-560))))) ((|#1| $) 9)) (-1823 (((-3 $ "failed") $) 40 (|has| |#1| (-832)))) (-1367 (((-3 (-403 (-560)) "failed") $) 48 (|has| |#1| (-542)))) (-1689 (((-121) $) 43 (|has| |#1| (-542)))) (-1519 (((-403 (-560)) $) 45 (|has| |#1| (-542)))) (-1786 (((-121) $) NIL (|has| |#1| (-832)))) (-2642 (((-121) $) NIL (|has| |#1| (-832)))) (-2187 (((-121) $) NIL (|has| |#1| (-832)))) (-4325 (($ $ $) NIL (|has| |#1| (-832)))) (-2501 (($ $ $) NIL (|has| |#1| (-832)))) (-1291 (((-1135) $) NIL)) (-4190 (($) 13)) (-1313 (((-121) $) 12)) (-4353 (((-1100) $) NIL)) (-3122 (((-121) $) 11)) (-2801 (((-842) $) 18) (($ (-403 (-560))) NIL (|has| |#1| (-1029 (-403 (-560))))) (($ |#1|) 8) (($ (-560)) NIL (-2318 (|has| |#1| (-832)) (|has| |#1| (-1029 (-560)))))) (-1751 (((-755)) 34 (|has| |#1| (-832)))) (-1822 (($ $) NIL (|has| |#1| (-832)))) (-2464 (($ $ (-909)) NIL (|has| |#1| (-832))) (($ $ (-755)) NIL (|has| |#1| (-832)))) (-3304 (($) 22 (|has| |#1| (-21)) CONST)) (-1459 (($) 31 (|has| |#1| (-832)) CONST)) (-1691 (((-121) $ $) NIL (|has| |#1| (-832)))) (-1675 (((-121) $ $) NIL (|has| |#1| (-832)))) (-1653 (((-121) $ $) 20)) (-1683 (((-121) $ $) NIL (|has| |#1| (-832)))) (-1667 (((-121) $ $) 42 (|has| |#1| (-832)))) (-1725 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-1716 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-909)) NIL (|has| |#1| (-832))) (($ $ (-755)) NIL (|has| |#1| (-832)))) (* (($ $ $) 37 (|has| |#1| (-832))) (($ (-560) $) 25 (|has| |#1| (-21))) (($ (-755) $) NIL (|has| |#1| (-21))) (($ (-909) $) NIL (|has| |#1| (-21))))) -(((-820 |#1|) (-13 (-1082) (-407 |#1|) (-10 -8 (-15 -4190 ($)) (-15 -3122 ((-121) $)) (-15 -1313 ((-121) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |noBranch|) (IF (|has| |#1| (-832)) (-6 (-832)) |noBranch|) (IF (|has| |#1| (-542)) (PROGN (-15 -1689 ((-121) $)) (-15 -1519 ((-403 (-560)) $)) (-15 -1367 ((-3 (-403 (-560)) "failed") $))) |noBranch|))) (-1082)) (T -820)) -((-4190 (*1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-1082)))) (-3122 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-820 *3)) (-4 *3 (-1082)))) (-1313 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-820 *3)) (-4 *3 (-1082)))) (-1689 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-820 *3)) (-4 *3 (-542)) (-4 *3 (-1082)))) (-1519 (*1 *2 *1) (-12 (-5 *2 (-403 (-560))) (-5 *1 (-820 *3)) (-4 *3 (-542)) (-4 *3 (-1082)))) (-1367 (*1 *2 *1) (|partial| -12 (-5 *2 (-403 (-560))) (-5 *1 (-820 *3)) (-4 *3 (-542)) (-4 *3 (-1082))))) -(-13 (-1082) (-407 |#1|) (-10 -8 (-15 -4190 ($)) (-15 -3122 ((-121) $)) (-15 -1313 ((-121) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |noBranch|) (IF (|has| |#1| (-832)) (-6 (-832)) |noBranch|) (IF (|has| |#1| (-542)) (PROGN (-15 -1689 ((-121) $)) (-15 -1519 ((-403 (-560)) $)) (-15 -1367 ((-3 (-403 (-560)) "failed") $))) |noBranch|))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-4236 (($) NIL T CONST)) (-1473 (((-3 |#1| "failed") $) NIL) (((-3 (-123) "failed") $) NIL)) (-3001 ((|#1| $) NIL) (((-123) $) NIL)) (-1823 (((-3 $ "failed") $) NIL)) (-2350 ((|#1| (-123) |#1|) NIL)) (-2642 (((-121) $) NIL)) (-3451 (($ |#1| (-357 (-123))) NIL)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2454 (($ $ (-1 |#1| |#1|)) NIL)) (-1470 (($ $ (-1 |#1| |#1|)) NIL)) (-2778 ((|#1| $ |#1|) NIL)) (-2392 ((|#1| |#1|) NIL (|has| |#1| (-170)))) (-2801 (((-842) $) NIL) (($ (-560)) NIL) (($ |#1|) NIL) (($ (-123)) NIL)) (-2272 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1751 (((-755)) NIL)) (-3498 (($ $) NIL (|has| |#1| (-170))) (($ $ $) NIL (|has| |#1| (-170)))) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (-3304 (($) NIL T CONST)) (-1459 (($) NIL T CONST)) (-1653 (((-121) $ $) NIL)) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) NIL)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ (-123) (-560)) NIL) (($ $ (-560)) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170))))) -(((-821 |#1|) (-13 (-1039) (-1029 |#1|) (-1029 (-123)) (-276 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |noBranch|) (IF (|has| |#1| (-170)) (PROGN (-6 (-43 |#1|)) (-15 -3498 ($ $)) (-15 -3498 ($ $ $)) (-15 -2392 (|#1| |#1|))) |noBranch|) (-15 -1470 ($ $ (-1 |#1| |#1|))) (-15 -2454 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-123) (-560))) (-15 ** ($ $ (-560))) (-15 -2350 (|#1| (-123) |#1|)) (-15 -3451 ($ |#1| (-357 (-123)))))) (-1039)) (T -821)) -((-3498 (*1 *1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-170)) (-4 *2 (-1039)))) (-3498 (*1 *1 *1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-170)) (-4 *2 (-1039)))) (-2392 (*1 *2 *2) (-12 (-5 *1 (-821 *2)) (-4 *2 (-170)) (-4 *2 (-1039)))) (-1470 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1039)) (-5 *1 (-821 *3)))) (-2454 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1039)) (-5 *1 (-821 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-123)) (-5 *3 (-560)) (-5 *1 (-821 *4)) (-4 *4 (-1039)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-821 *3)) (-4 *3 (-1039)))) (-2350 (*1 *2 *3 *2) (-12 (-5 *3 (-123)) (-5 *1 (-821 *2)) (-4 *2 (-1039)))) (-3451 (*1 *1 *2 *3) (-12 (-5 *3 (-357 (-123))) (-5 *1 (-821 *2)) (-4 *2 (-1039))))) -(-13 (-1039) (-1029 |#1|) (-1029 (-123)) (-276 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |noBranch|) (IF (|has| |#1| (-170)) (PROGN (-6 (-43 |#1|)) (-15 -3498 ($ $)) (-15 -3498 ($ $ $)) (-15 -2392 (|#1| |#1|))) |noBranch|) (-15 -1470 ($ $ (-1 |#1| |#1|))) (-15 -2454 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-123) (-560))) (-15 ** ($ $ (-560))) (-15 -2350 (|#1| (-123) |#1|)) (-15 -3451 ($ |#1| (-357 (-123)))))) -((-3759 (((-203 (-503)) (-1135)) 8))) -(((-822) (-10 -7 (-15 -3759 ((-203 (-503)) (-1135))))) (T -822)) -((-3759 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-203 (-503))) (-5 *1 (-822))))) -(-10 -7 (-15 -3759 ((-203 (-503)) (-1135)))) -((-2601 (((-121) $ $) 7)) (-2599 (((-1027) (-2 (|:| |lfn| (-626 (-304 (-213)))) (|:| -1394 (-626 (-213))))) 13) (((-1027) (-2 (|:| |fn| (-304 (-213))) (|:| -1394 (-626 (-213))) (|:| |lb| (-626 (-827 (-213)))) (|:| |cf| (-626 (-304 (-213)))) (|:| |ub| (-626 (-827 (-213)))))) 12)) (-3262 (((-2 (|:| -3262 (-375)) (|:| |explanations| (-1135))) (-1051) (-2 (|:| |fn| (-304 (-213))) (|:| -1394 (-626 (-213))) (|:| |lb| (-626 (-827 (-213)))) (|:| |cf| (-626 (-304 (-213)))) (|:| |ub| (-626 (-827 (-213)))))) 15) (((-2 (|:| -3262 (-375)) (|:| |explanations| (-1135))) (-1051) (-2 (|:| |lfn| (-626 (-304 (-213)))) (|:| -1394 (-626 (-213))))) 14)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-2801 (((-842) $) 11)) (-1653 (((-121) $ $) 6))) -(((-823) (-1267)) (T -823)) -((-3262 (*1 *2 *3 *4) (-12 (-4 *1 (-823)) (-5 *3 (-1051)) (-5 *4 (-2 (|:| |fn| (-304 (-213))) (|:| -1394 (-626 (-213))) (|:| |lb| (-626 (-827 (-213)))) (|:| |cf| (-626 (-304 (-213)))) (|:| |ub| (-626 (-827 (-213)))))) (-5 *2 (-2 (|:| -3262 (-375)) (|:| |explanations| (-1135)))))) (-3262 (*1 *2 *3 *4) (-12 (-4 *1 (-823)) (-5 *3 (-1051)) (-5 *4 (-2 (|:| |lfn| (-626 (-304 (-213)))) (|:| -1394 (-626 (-213))))) (-5 *2 (-2 (|:| -3262 (-375)) (|:| |explanations| (-1135)))))) (-2599 (*1 *2 *3) (-12 (-4 *1 (-823)) (-5 *3 (-2 (|:| |lfn| (-626 (-304 (-213)))) (|:| -1394 (-626 (-213))))) (-5 *2 (-1027)))) (-2599 (*1 *2 *3) (-12 (-4 *1 (-823)) (-5 *3 (-2 (|:| |fn| (-304 (-213))) (|:| -1394 (-626 (-213))) (|:| |lb| (-626 (-827 (-213)))) (|:| |cf| (-626 (-304 (-213)))) (|:| |ub| (-626 (-827 (-213)))))) (-5 *2 (-1027))))) -(-13 (-1082) (-10 -7 (-15 -3262 ((-2 (|:| -3262 (-375)) (|:| |explanations| (-1135))) (-1051) (-2 (|:| |fn| (-304 (-213))) (|:| -1394 (-626 (-213))) (|:| |lb| (-626 (-827 (-213)))) (|:| |cf| (-626 (-304 (-213)))) (|:| |ub| (-626 (-827 (-213))))))) (-15 -3262 ((-2 (|:| -3262 (-375)) (|:| |explanations| (-1135))) (-1051) (-2 (|:| |lfn| (-626 (-304 (-213)))) (|:| -1394 (-626 (-213)))))) (-15 -2599 ((-1027) (-2 (|:| |lfn| (-626 (-304 (-213)))) (|:| -1394 (-626 (-213)))))) (-15 -2599 ((-1027) (-2 (|:| |fn| (-304 (-213))) (|:| -1394 (-626 (-213))) (|:| |lb| (-626 (-827 (-213)))) (|:| |cf| (-626 (-304 (-213)))) (|:| |ub| (-626 (-827 (-213))))))))) -(((-105) . T) ((-600 (-842)) . T) ((-1082) . T)) -((-4064 (((-1027) (-626 (-304 (-375))) (-626 (-375))) 143) (((-1027) (-304 (-375)) (-626 (-375))) 141) (((-1027) (-304 (-375)) (-626 (-375)) (-626 (-827 (-375))) (-626 (-827 (-375)))) 140) (((-1027) (-304 (-375)) (-626 (-375)) (-626 (-827 (-375))) (-626 (-304 (-375))) (-626 (-827 (-375)))) 139) (((-1027) (-825)) 112) (((-1027) (-825) (-1051)) 111)) (-3262 (((-2 (|:| -3262 (-375)) (|:| -1337 (-1135)) (|:| |explanations| (-626 (-1135)))) (-825) (-1051)) 76) (((-2 (|:| -3262 (-375)) (|:| -1337 (-1135)) (|:| |explanations| (-626 (-1135)))) (-825)) 78)) (-2782 (((-1027) (-626 (-304 (-375))) (-626 (-375))) 144) (((-1027) (-825)) 128))) -(((-824) (-10 -7 (-15 -3262 ((-2 (|:| -3262 (-375)) (|:| -1337 (-1135)) (|:| |explanations| (-626 (-1135)))) (-825))) (-15 -3262 ((-2 (|:| -3262 (-375)) (|:| -1337 (-1135)) (|:| |explanations| (-626 (-1135)))) (-825) (-1051))) (-15 -4064 ((-1027) (-825) (-1051))) (-15 -4064 ((-1027) (-825))) (-15 -2782 ((-1027) (-825))) (-15 -4064 ((-1027) (-304 (-375)) (-626 (-375)) (-626 (-827 (-375))) (-626 (-304 (-375))) (-626 (-827 (-375))))) (-15 -4064 ((-1027) (-304 (-375)) (-626 (-375)) (-626 (-827 (-375))) (-626 (-827 (-375))))) (-15 -4064 ((-1027) (-304 (-375)) (-626 (-375)))) (-15 -4064 ((-1027) (-626 (-304 (-375))) (-626 (-375)))) (-15 -2782 ((-1027) (-626 (-304 (-375))) (-626 (-375)))))) (T -824)) -((-2782 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-304 (-375)))) (-5 *4 (-626 (-375))) (-5 *2 (-1027)) (-5 *1 (-824)))) (-4064 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-304 (-375)))) (-5 *4 (-626 (-375))) (-5 *2 (-1027)) (-5 *1 (-824)))) (-4064 (*1 *2 *3 *4) (-12 (-5 *3 (-304 (-375))) (-5 *4 (-626 (-375))) (-5 *2 (-1027)) (-5 *1 (-824)))) (-4064 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-304 (-375))) (-5 *4 (-626 (-375))) (-5 *5 (-626 (-827 (-375)))) (-5 *2 (-1027)) (-5 *1 (-824)))) (-4064 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-626 (-375))) (-5 *5 (-626 (-827 (-375)))) (-5 *6 (-626 (-304 (-375)))) (-5 *3 (-304 (-375))) (-5 *2 (-1027)) (-5 *1 (-824)))) (-2782 (*1 *2 *3) (-12 (-5 *3 (-825)) (-5 *2 (-1027)) (-5 *1 (-824)))) (-4064 (*1 *2 *3) (-12 (-5 *3 (-825)) (-5 *2 (-1027)) (-5 *1 (-824)))) (-4064 (*1 *2 *3 *4) (-12 (-5 *3 (-825)) (-5 *4 (-1051)) (-5 *2 (-1027)) (-5 *1 (-824)))) (-3262 (*1 *2 *3 *4) (-12 (-5 *3 (-825)) (-5 *4 (-1051)) (-5 *2 (-2 (|:| -3262 (-375)) (|:| -1337 (-1135)) (|:| |explanations| (-626 (-1135))))) (-5 *1 (-824)))) (-3262 (*1 *2 *3) (-12 (-5 *3 (-825)) (-5 *2 (-2 (|:| -3262 (-375)) (|:| -1337 (-1135)) (|:| |explanations| (-626 (-1135))))) (-5 *1 (-824))))) -(-10 -7 (-15 -3262 ((-2 (|:| -3262 (-375)) (|:| -1337 (-1135)) (|:| |explanations| (-626 (-1135)))) (-825))) (-15 -3262 ((-2 (|:| -3262 (-375)) (|:| -1337 (-1135)) (|:| |explanations| (-626 (-1135)))) (-825) (-1051))) (-15 -4064 ((-1027) (-825) (-1051))) (-15 -4064 ((-1027) (-825))) (-15 -2782 ((-1027) (-825))) (-15 -4064 ((-1027) (-304 (-375)) (-626 (-375)) (-626 (-827 (-375))) (-626 (-304 (-375))) (-626 (-827 (-375))))) (-15 -4064 ((-1027) (-304 (-375)) (-626 (-375)) (-626 (-827 (-375))) (-626 (-827 (-375))))) (-15 -4064 ((-1027) (-304 (-375)) (-626 (-375)))) (-15 -4064 ((-1027) (-626 (-304 (-375))) (-626 (-375)))) (-15 -2782 ((-1027) (-626 (-304 (-375))) (-626 (-375))))) -((-2601 (((-121) $ $) NIL)) (-3001 (((-3 (|:| |noa| (-2 (|:| |fn| (-304 (-213))) (|:| -1394 (-626 (-213))) (|:| |lb| (-626 (-827 (-213)))) (|:| |cf| (-626 (-304 (-213)))) (|:| |ub| (-626 (-827 (-213)))))) (|:| |lsa| (-2 (|:| |lfn| (-626 (-304 (-213)))) (|:| -1394 (-626 (-213)))))) $) 15)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2801 (((-842) $) 14) (($ (-2 (|:| |fn| (-304 (-213))) (|:| -1394 (-626 (-213))) (|:| |lb| (-626 (-827 (-213)))) (|:| |cf| (-626 (-304 (-213)))) (|:| |ub| (-626 (-827 (-213)))))) 8) (($ (-2 (|:| |lfn| (-626 (-304 (-213)))) (|:| -1394 (-626 (-213))))) 10) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-304 (-213))) (|:| -1394 (-626 (-213))) (|:| |lb| (-626 (-827 (-213)))) (|:| |cf| (-626 (-304 (-213)))) (|:| |ub| (-626 (-827 (-213)))))) (|:| |lsa| (-2 (|:| |lfn| (-626 (-304 (-213)))) (|:| -1394 (-626 (-213))))))) 12)) (-1653 (((-121) $ $) NIL))) -(((-825) (-13 (-1082) (-10 -8 (-15 -2801 ($ (-2 (|:| |fn| (-304 (-213))) (|:| -1394 (-626 (-213))) (|:| |lb| (-626 (-827 (-213)))) (|:| |cf| (-626 (-304 (-213)))) (|:| |ub| (-626 (-827 (-213))))))) (-15 -2801 ($ (-2 (|:| |lfn| (-626 (-304 (-213)))) (|:| -1394 (-626 (-213)))))) (-15 -2801 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-304 (-213))) (|:| -1394 (-626 (-213))) (|:| |lb| (-626 (-827 (-213)))) (|:| |cf| (-626 (-304 (-213)))) (|:| |ub| (-626 (-827 (-213)))))) (|:| |lsa| (-2 (|:| |lfn| (-626 (-304 (-213)))) (|:| -1394 (-626 (-213)))))))) (-15 -2801 ((-842) $)) (-15 -3001 ((-3 (|:| |noa| (-2 (|:| |fn| (-304 (-213))) (|:| -1394 (-626 (-213))) (|:| |lb| (-626 (-827 (-213)))) (|:| |cf| (-626 (-304 (-213)))) (|:| |ub| (-626 (-827 (-213)))))) (|:| |lsa| (-2 (|:| |lfn| (-626 (-304 (-213)))) (|:| -1394 (-626 (-213)))))) $))))) (T -825)) -((-2801 (*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-825)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-304 (-213))) (|:| -1394 (-626 (-213))) (|:| |lb| (-626 (-827 (-213)))) (|:| |cf| (-626 (-304 (-213)))) (|:| |ub| (-626 (-827 (-213)))))) (-5 *1 (-825)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-626 (-304 (-213)))) (|:| -1394 (-626 (-213))))) (-5 *1 (-825)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-304 (-213))) (|:| -1394 (-626 (-213))) (|:| |lb| (-626 (-827 (-213)))) (|:| |cf| (-626 (-304 (-213)))) (|:| |ub| (-626 (-827 (-213)))))) (|:| |lsa| (-2 (|:| |lfn| (-626 (-304 (-213)))) (|:| -1394 (-626 (-213))))))) (-5 *1 (-825)))) (-3001 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-304 (-213))) (|:| -1394 (-626 (-213))) (|:| |lb| (-626 (-827 (-213)))) (|:| |cf| (-626 (-304 (-213)))) (|:| |ub| (-626 (-827 (-213)))))) (|:| |lsa| (-2 (|:| |lfn| (-626 (-304 (-213)))) (|:| -1394 (-626 (-213))))))) (-5 *1 (-825))))) -(-13 (-1082) (-10 -8 (-15 -2801 ($ (-2 (|:| |fn| (-304 (-213))) (|:| -1394 (-626 (-213))) (|:| |lb| (-626 (-827 (-213)))) (|:| |cf| (-626 (-304 (-213)))) (|:| |ub| (-626 (-827 (-213))))))) (-15 -2801 ($ (-2 (|:| |lfn| (-626 (-304 (-213)))) (|:| -1394 (-626 (-213)))))) (-15 -2801 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-304 (-213))) (|:| -1394 (-626 (-213))) (|:| |lb| (-626 (-827 (-213)))) (|:| |cf| (-626 (-304 (-213)))) (|:| |ub| (-626 (-827 (-213)))))) (|:| |lsa| (-2 (|:| |lfn| (-626 (-304 (-213)))) (|:| -1394 (-626 (-213)))))))) (-15 -2801 ((-842) $)) (-15 -3001 ((-3 (|:| |noa| (-2 (|:| |fn| (-304 (-213))) (|:| -1394 (-626 (-213))) (|:| |lb| (-626 (-827 (-213)))) (|:| |cf| (-626 (-304 (-213)))) (|:| |ub| (-626 (-827 (-213)))))) (|:| |lsa| (-2 (|:| |lfn| (-626 (-304 (-213)))) (|:| -1394 (-626 (-213)))))) $)))) -((-2803 (((-827 |#2|) (-1 |#2| |#1|) (-827 |#1|) (-827 |#2|) (-827 |#2|)) 13) (((-827 |#2|) (-1 |#2| |#1|) (-827 |#1|)) 14))) -(((-826 |#1| |#2|) (-10 -7 (-15 -2803 ((-827 |#2|) (-1 |#2| |#1|) (-827 |#1|))) (-15 -2803 ((-827 |#2|) (-1 |#2| |#1|) (-827 |#1|) (-827 |#2|) (-827 |#2|)))) (-1082) (-1082)) (T -826)) -((-2803 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-827 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-827 *5)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-5 *1 (-826 *5 *6)))) (-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-827 *5)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-5 *2 (-827 *6)) (-5 *1 (-826 *5 *6))))) -(-10 -7 (-15 -2803 ((-827 |#2|) (-1 |#2| |#1|) (-827 |#1|))) (-15 -2803 ((-827 |#2|) (-1 |#2| |#1|) (-827 |#1|) (-827 |#2|) (-827 |#2|)))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL (|has| |#1| (-21)))) (-1275 (((-1100) $) 24)) (-2314 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-4235 (((-560) $) NIL (|has| |#1| (-832)))) (-4236 (($) NIL (|has| |#1| (-21)) CONST)) (-1473 (((-3 (-560) "failed") $) NIL (|has| |#1| (-1029 (-560)))) (((-3 (-403 (-560)) "failed") $) NIL (|has| |#1| (-1029 (-403 (-560))))) (((-3 |#1| "failed") $) 16)) (-3001 (((-560) $) NIL (|has| |#1| (-1029 (-560)))) (((-403 (-560)) $) NIL (|has| |#1| (-1029 (-403 (-560))))) ((|#1| $) 9)) (-1823 (((-3 $ "failed") $) 46 (|has| |#1| (-832)))) (-1367 (((-3 (-403 (-560)) "failed") $) 53 (|has| |#1| (-542)))) (-1689 (((-121) $) 48 (|has| |#1| (-542)))) (-1519 (((-403 (-560)) $) 51 (|has| |#1| (-542)))) (-1786 (((-121) $) NIL (|has| |#1| (-832)))) (-3712 (($) 13)) (-2642 (((-121) $) NIL (|has| |#1| (-832)))) (-2187 (((-121) $) NIL (|has| |#1| (-832)))) (-3707 (($) 14)) (-4325 (($ $ $) NIL (|has| |#1| (-832)))) (-2501 (($ $ $) NIL (|has| |#1| (-832)))) (-1291 (((-1135) $) NIL)) (-1313 (((-121) $) 12)) (-4353 (((-1100) $) NIL)) (-3122 (((-121) $) 11)) (-2801 (((-842) $) 22) (($ (-403 (-560))) NIL (|has| |#1| (-1029 (-403 (-560))))) (($ |#1|) 8) (($ (-560)) NIL (-2318 (|has| |#1| (-832)) (|has| |#1| (-1029 (-560)))))) (-1751 (((-755)) 40 (|has| |#1| (-832)))) (-1822 (($ $) NIL (|has| |#1| (-832)))) (-2464 (($ $ (-909)) NIL (|has| |#1| (-832))) (($ $ (-755)) NIL (|has| |#1| (-832)))) (-3304 (($) 28 (|has| |#1| (-21)) CONST)) (-1459 (($) 37 (|has| |#1| (-832)) CONST)) (-1691 (((-121) $ $) NIL (|has| |#1| (-832)))) (-1675 (((-121) $ $) NIL (|has| |#1| (-832)))) (-1653 (((-121) $ $) 26)) (-1683 (((-121) $ $) NIL (|has| |#1| (-832)))) (-1667 (((-121) $ $) 47 (|has| |#1| (-832)))) (-1725 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 33 (|has| |#1| (-21)))) (-1716 (($ $ $) 35 (|has| |#1| (-21)))) (** (($ $ (-909)) NIL (|has| |#1| (-832))) (($ $ (-755)) NIL (|has| |#1| (-832)))) (* (($ $ $) 43 (|has| |#1| (-832))) (($ (-560) $) 31 (|has| |#1| (-21))) (($ (-755) $) NIL (|has| |#1| (-21))) (($ (-909) $) NIL (|has| |#1| (-21))))) -(((-827 |#1|) (-13 (-1082) (-407 |#1|) (-10 -8 (-15 -3712 ($)) (-15 -3707 ($)) (-15 -3122 ((-121) $)) (-15 -1313 ((-121) $)) (-15 -1275 ((-1100) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |noBranch|) (IF (|has| |#1| (-832)) (-6 (-832)) |noBranch|) (IF (|has| |#1| (-542)) (PROGN (-15 -1689 ((-121) $)) (-15 -1519 ((-403 (-560)) $)) (-15 -1367 ((-3 (-403 (-560)) "failed") $))) |noBranch|))) (-1082)) (T -827)) -((-3712 (*1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-1082)))) (-3707 (*1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-1082)))) (-3122 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-827 *3)) (-4 *3 (-1082)))) (-1313 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-827 *3)) (-4 *3 (-1082)))) (-1275 (*1 *2 *1) (-12 (-5 *2 (-1100)) (-5 *1 (-827 *3)) (-4 *3 (-1082)))) (-1689 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-827 *3)) (-4 *3 (-542)) (-4 *3 (-1082)))) (-1519 (*1 *2 *1) (-12 (-5 *2 (-403 (-560))) (-5 *1 (-827 *3)) (-4 *3 (-542)) (-4 *3 (-1082)))) (-1367 (*1 *2 *1) (|partial| -12 (-5 *2 (-403 (-560))) (-5 *1 (-827 *3)) (-4 *3 (-542)) (-4 *3 (-1082))))) -(-13 (-1082) (-407 |#1|) (-10 -8 (-15 -3712 ($)) (-15 -3707 ($)) (-15 -3122 ((-121) $)) (-15 -1313 ((-121) $)) (-15 -1275 ((-1100) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |noBranch|) (IF (|has| |#1| (-832)) (-6 (-832)) |noBranch|) (IF (|has| |#1| (-542)) (PROGN (-15 -1689 ((-121) $)) (-15 -1519 ((-403 (-560)) $)) (-15 -1367 ((-3 (-403 (-560)) "failed") $))) |noBranch|))) -((-2601 (((-121) $ $) 7)) (-2912 (((-755)) 19)) (-1666 (($) 22)) (-4325 (($ $ $) 12)) (-2501 (($ $ $) 13)) (-3142 (((-909) $) 21)) (-1291 (((-1135) $) 9)) (-1330 (($ (-909)) 20)) (-4353 (((-1100) $) 10)) (-2801 (((-842) $) 11)) (-1691 (((-121) $ $) 15)) (-1675 (((-121) $ $) 16)) (-1653 (((-121) $ $) 6)) (-1683 (((-121) $ $) 14)) (-1667 (((-121) $ $) 17))) -(((-828) (-1267)) (T -828)) -NIL -(-13 (-834) (-364)) -(((-105) . T) ((-600 (-842)) . T) ((-364) . T) ((-834) . T) ((-1082) . T)) -((-1655 (((-121) (-1236 |#2|) (-1236 |#2|)) 17)) (-4452 (((-121) (-1236 |#2|) (-1236 |#2|)) 18)) (-1885 (((-121) (-1236 |#2|) (-1236 |#2|)) 14))) -(((-829 |#1| |#2|) (-10 -7 (-15 -1885 ((-121) (-1236 |#2|) (-1236 |#2|))) (-15 -1655 ((-121) (-1236 |#2|) (-1236 |#2|))) (-15 -4452 ((-121) (-1236 |#2|) (-1236 |#2|)))) (-755) (-779)) (T -829)) -((-4452 (*1 *2 *3 *3) (-12 (-5 *3 (-1236 *5)) (-4 *5 (-779)) (-5 *2 (-121)) (-5 *1 (-829 *4 *5)) (-14 *4 (-755)))) (-1655 (*1 *2 *3 *3) (-12 (-5 *3 (-1236 *5)) (-4 *5 (-779)) (-5 *2 (-121)) (-5 *1 (-829 *4 *5)) (-14 *4 (-755)))) (-1885 (*1 *2 *3 *3) (-12 (-5 *3 (-1236 *5)) (-4 *5 (-779)) (-5 *2 (-121)) (-5 *1 (-829 *4 *5)) (-14 *4 (-755))))) -(-10 -7 (-15 -1885 ((-121) (-1236 |#2|) (-1236 |#2|))) (-15 -1655 ((-121) (-1236 |#2|) (-1236 |#2|))) (-15 -4452 ((-121) (-1236 |#2|) (-1236 |#2|)))) -((-2601 (((-121) $ $) 7)) (-4236 (($) 23 T CONST)) (-1823 (((-3 $ "failed") $) 27)) (-2642 (((-121) $) 24)) (-4325 (($ $ $) 12)) (-2501 (($ $ $) 13)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-2801 (((-842) $) 11)) (-2464 (($ $ (-755)) 26) (($ $ (-909)) 21)) (-1459 (($) 22 T CONST)) (-1691 (((-121) $ $) 15)) (-1675 (((-121) $ $) 16)) (-1653 (((-121) $ $) 6)) (-1683 (((-121) $ $) 14)) (-1667 (((-121) $ $) 17)) (** (($ $ (-755)) 25) (($ $ (-909)) 20)) (* (($ $ $) 19))) -(((-830) (-1267)) (T -830)) -NIL -(-13 (-834) (-708)) -(((-105) . T) ((-600 (-842)) . T) ((-708) . T) ((-834) . T) ((-1094) . T) ((-1082) . T)) -((-4235 (((-560) $) 17)) (-1786 (((-121) $) 10)) (-2187 (((-121) $) 11)) (-1822 (($ $) 19))) -(((-831 |#1|) (-10 -8 (-15 -1822 (|#1| |#1|)) (-15 -4235 ((-560) |#1|)) (-15 -2187 ((-121) |#1|)) (-15 -1786 ((-121) |#1|))) (-832)) (T -831)) -NIL -(-10 -8 (-15 -1822 (|#1| |#1|)) (-15 -4235 ((-560) |#1|)) (-15 -2187 ((-121) |#1|)) (-15 -1786 ((-121) |#1|))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 23)) (-2314 (((-3 $ "failed") $ $) 25)) (-4235 (((-560) $) 32)) (-4236 (($) 22 T CONST)) (-1823 (((-3 $ "failed") $) 38)) (-1786 (((-121) $) 34)) (-2642 (((-121) $) 41)) (-2187 (((-121) $) 33)) (-4325 (($ $ $) 12)) (-2501 (($ $ $) 13)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-2801 (((-842) $) 11) (($ (-560)) 44)) (-1751 (((-755)) 43)) (-1822 (($ $) 31)) (-2464 (($ $ (-755)) 39) (($ $ (-909)) 35)) (-3304 (($) 21 T CONST)) (-1459 (($) 42 T CONST)) (-1691 (((-121) $ $) 15)) (-1675 (((-121) $ $) 16)) (-1653 (((-121) $ $) 6)) (-1683 (((-121) $ $) 14)) (-1667 (((-121) $ $) 17)) (-1725 (($ $ $) 27) (($ $) 26)) (-1716 (($ $ $) 19)) (** (($ $ (-755)) 40) (($ $ (-909)) 36)) (* (($ (-755) $) 24) (($ (-909) $) 20) (($ (-560) $) 28) (($ $ $) 37))) -(((-832) (-1267)) (T -832)) -((-1786 (*1 *2 *1) (-12 (-4 *1 (-832)) (-5 *2 (-121)))) (-2187 (*1 *2 *1) (-12 (-4 *1 (-832)) (-5 *2 (-121)))) (-4235 (*1 *2 *1) (-12 (-4 *1 (-832)) (-5 *2 (-560)))) (-1822 (*1 *1 *1) (-4 *1 (-832)))) -(-13 (-778) (-1039) (-708) (-10 -8 (-15 -1786 ((-121) $)) (-15 -2187 ((-121) $)) (-15 -4235 ((-560) $)) (-15 -1822 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-105) . T) ((-137) . T) ((-600 (-842)) . T) ((-629 $) . T) ((-708) . T) ((-778) . T) ((-779) . T) ((-781) . T) ((-782) . T) ((-834) . T) ((-1039) . T) ((-1046) . T) ((-1094) . T) ((-1082) . T)) -((-4325 (($ $ $) 10)) (-2501 (($ $ $) 9)) (-1691 (((-121) $ $) 12)) (-1675 (((-121) $ $) 11)) (-1683 (((-121) $ $) 13))) -(((-833 |#1|) (-10 -8 (-15 -4325 (|#1| |#1| |#1|)) (-15 -2501 (|#1| |#1| |#1|)) (-15 -1683 ((-121) |#1| |#1|)) (-15 -1691 ((-121) |#1| |#1|)) (-15 -1675 ((-121) |#1| |#1|))) (-834)) (T -833)) -NIL -(-10 -8 (-15 -4325 (|#1| |#1| |#1|)) (-15 -2501 (|#1| |#1| |#1|)) (-15 -1683 ((-121) |#1| |#1|)) (-15 -1691 ((-121) |#1| |#1|)) (-15 -1675 ((-121) |#1| |#1|))) -((-2601 (((-121) $ $) 7)) (-4325 (($ $ $) 12)) (-2501 (($ $ $) 13)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-2801 (((-842) $) 11)) (-1691 (((-121) $ $) 15)) (-1675 (((-121) $ $) 16)) (-1653 (((-121) $ $) 6)) (-1683 (((-121) $ $) 14)) (-1667 (((-121) $ $) 17))) -(((-834) (-1267)) (T -834)) -((-1667 (*1 *2 *1 *1) (-12 (-4 *1 (-834)) (-5 *2 (-121)))) (-1675 (*1 *2 *1 *1) (-12 (-4 *1 (-834)) (-5 *2 (-121)))) (-1691 (*1 *2 *1 *1) (-12 (-4 *1 (-834)) (-5 *2 (-121)))) (-1683 (*1 *2 *1 *1) (-12 (-4 *1 (-834)) (-5 *2 (-121)))) (-2501 (*1 *1 *1 *1) (-4 *1 (-834))) (-4325 (*1 *1 *1 *1) (-4 *1 (-834)))) -(-13 (-1082) (-10 -8 (-15 -1667 ((-121) $ $)) (-15 -1675 ((-121) $ $)) (-15 -1691 ((-121) $ $)) (-15 -1683 ((-121) $ $)) (-15 -2501 ($ $ $)) (-15 -4325 ($ $ $)))) -(((-105) . T) ((-600 (-842)) . T) ((-1082) . T)) -((-2530 (($ $ $) 45)) (-1768 (($ $ $) 44)) (-2823 (($ $ $) 42)) (-2783 (($ $ $) 51)) (-2734 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) 46)) (-4000 (((-3 $ "failed") $ $) 49)) (-1473 (((-3 (-560) "failed") $) NIL) (((-3 (-403 (-560)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-3605 (($ $) 35)) (-3385 (($ $ $) 39)) (-4025 (($ $ $) 38)) (-4180 (($ $ $) 47)) (-2107 (($ $ $) 53)) (-3785 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) 41)) (-3449 (((-3 $ "failed") $ $) 48)) (-2336 (((-3 $ "failed") $ |#2|) 28)) (-1896 ((|#2| $) 32)) (-2801 (((-842) $) NIL) (($ (-560)) NIL) (($ (-403 (-560))) NIL) (($ |#2|) 12)) (-2423 (((-626 |#2|) $) 18)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 22))) -(((-835 |#1| |#2|) (-10 -8 (-15 -4180 (|#1| |#1| |#1|)) (-15 -2734 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4250 |#1|)) |#1| |#1|)) (-15 -2783 (|#1| |#1| |#1|)) (-15 -4000 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2530 (|#1| |#1| |#1|)) (-15 -1768 (|#1| |#1| |#1|)) (-15 -2823 (|#1| |#1| |#1|)) (-15 -3785 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4250 |#1|)) |#1| |#1|)) (-15 -2107 (|#1| |#1| |#1|)) (-15 -3449 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3385 (|#1| |#1| |#1|)) (-15 -4025 (|#1| |#1| |#1|)) (-15 -3605 (|#1| |#1|)) (-15 -1896 (|#2| |#1|)) (-15 -2336 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2423 ((-626 |#2|) |#1|)) (-15 -1473 ((-3 |#2| "failed") |#1|)) (-15 -2801 (|#1| |#2|)) (-15 -2801 (|#1| (-403 (-560)))) (-15 -1473 ((-3 (-403 (-560)) "failed") |#1|)) (-15 -1473 ((-3 (-560) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2801 (|#1| (-560))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 * (|#1| (-755) |#1|)) (-15 * (|#1| (-909) |#1|)) (-15 -2801 ((-842) |#1|))) (-836 |#2|) (-1039)) (T -835)) -NIL -(-10 -8 (-15 -4180 (|#1| |#1| |#1|)) (-15 -2734 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4250 |#1|)) |#1| |#1|)) (-15 -2783 (|#1| |#1| |#1|)) (-15 -4000 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2530 (|#1| |#1| |#1|)) (-15 -1768 (|#1| |#1| |#1|)) (-15 -2823 (|#1| |#1| |#1|)) (-15 -3785 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4250 |#1|)) |#1| |#1|)) (-15 -2107 (|#1| |#1| |#1|)) (-15 -3449 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3385 (|#1| |#1| |#1|)) (-15 -4025 (|#1| |#1| |#1|)) (-15 -3605 (|#1| |#1|)) (-15 -1896 (|#2| |#1|)) (-15 -2336 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2423 ((-626 |#2|) |#1|)) (-15 -1473 ((-3 |#2| "failed") |#1|)) (-15 -2801 (|#1| |#2|)) (-15 -2801 (|#1| (-403 (-560)))) (-15 -1473 ((-3 (-403 (-560)) "failed") |#1|)) (-15 -1473 ((-3 (-560) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2801 (|#1| (-560))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 * (|#1| (-755) |#1|)) (-15 * (|#1| (-909) |#1|)) (-15 -2801 ((-842) |#1|))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-2314 (((-3 $ "failed") $ $) 18)) (-4236 (($) 16 T CONST)) (-2530 (($ $ $) 44 (|has| |#1| (-359)))) (-1768 (($ $ $) 45 (|has| |#1| (-359)))) (-2823 (($ $ $) 47 (|has| |#1| (-359)))) (-2783 (($ $ $) 42 (|has| |#1| (-359)))) (-2734 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) 41 (|has| |#1| (-359)))) (-4000 (((-3 $ "failed") $ $) 43 (|has| |#1| (-359)))) (-3592 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) 46 (|has| |#1| (-359)))) (-1473 (((-3 (-560) "failed") $) 73 (|has| |#1| (-1029 (-560)))) (((-3 (-403 (-560)) "failed") $) 71 (|has| |#1| (-1029 (-403 (-560))))) (((-3 |#1| "failed") $) 68)) (-3001 (((-560) $) 74 (|has| |#1| (-1029 (-560)))) (((-403 (-560)) $) 72 (|has| |#1| (-1029 (-403 (-560))))) ((|#1| $) 67)) (-1750 (($ $) 63)) (-1823 (((-3 $ "failed") $) 33)) (-3605 (($ $) 54 (|has| |#1| (-447)))) (-2642 (((-121) $) 30)) (-1637 (($ |#1| (-755)) 61)) (-2168 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) 56 (|has| |#1| (-550)))) (-3865 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) 57 (|has| |#1| (-550)))) (-3693 (((-755) $) 65)) (-3385 (($ $ $) 51 (|has| |#1| (-359)))) (-4025 (($ $ $) 52 (|has| |#1| (-359)))) (-4180 (($ $ $) 40 (|has| |#1| (-359)))) (-2107 (($ $ $) 49 (|has| |#1| (-359)))) (-3785 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) 48 (|has| |#1| (-359)))) (-3449 (((-3 $ "failed") $ $) 50 (|has| |#1| (-359)))) (-4348 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) 53 (|has| |#1| (-359)))) (-1735 ((|#1| $) 64)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-2336 (((-3 $ "failed") $ |#1|) 58 (|has| |#1| (-550)))) (-3662 (((-755) $) 66)) (-1896 ((|#1| $) 55 (|has| |#1| (-447)))) (-2801 (((-842) $) 11) (($ (-560)) 27) (($ (-403 (-560))) 70 (|has| |#1| (-1029 (-403 (-560))))) (($ |#1|) 69)) (-2423 (((-626 |#1|) $) 60)) (-2636 ((|#1| $ (-755)) 62)) (-1751 (((-755)) 28)) (-2788 ((|#1| $ |#1| |#1|) 59)) (-2464 (($ $ (-909)) 25) (($ $ (-755)) 32)) (-3304 (($) 17 T CONST)) (-1459 (($) 29 T CONST)) (-1653 (((-121) $ $) 6)) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 24) (($ $ (-755)) 31)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 23) (($ $ |#1|) 76) (($ |#1| $) 75))) -(((-836 |#1|) (-1267) (-1039)) (T -836)) -((-3662 (*1 *2 *1) (-12 (-4 *1 (-836 *3)) (-4 *3 (-1039)) (-5 *2 (-755)))) (-3693 (*1 *2 *1) (-12 (-4 *1 (-836 *3)) (-4 *3 (-1039)) (-5 *2 (-755)))) (-1735 (*1 *2 *1) (-12 (-4 *1 (-836 *2)) (-4 *2 (-1039)))) (-1750 (*1 *1 *1) (-12 (-4 *1 (-836 *2)) (-4 *2 (-1039)))) (-2636 (*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-4 *1 (-836 *2)) (-4 *2 (-1039)))) (-1637 (*1 *1 *2 *3) (-12 (-5 *3 (-755)) (-4 *1 (-836 *2)) (-4 *2 (-1039)))) (-2423 (*1 *2 *1) (-12 (-4 *1 (-836 *3)) (-4 *3 (-1039)) (-5 *2 (-626 *3)))) (-2788 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-836 *2)) (-4 *2 (-1039)))) (-2336 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-836 *2)) (-4 *2 (-1039)) (-4 *2 (-550)))) (-3865 (*1 *2 *1 *1) (-12 (-4 *3 (-550)) (-4 *3 (-1039)) (-5 *2 (-2 (|:| -2583 *1) (|:| -4397 *1))) (-4 *1 (-836 *3)))) (-2168 (*1 *2 *1 *1) (-12 (-4 *3 (-550)) (-4 *3 (-1039)) (-5 *2 (-2 (|:| -2583 *1) (|:| -4397 *1))) (-4 *1 (-836 *3)))) (-1896 (*1 *2 *1) (-12 (-4 *1 (-836 *2)) (-4 *2 (-1039)) (-4 *2 (-447)))) (-3605 (*1 *1 *1) (-12 (-4 *1 (-836 *2)) (-4 *2 (-1039)) (-4 *2 (-447)))) (-4348 (*1 *2 *1 *1) (-12 (-4 *3 (-359)) (-4 *3 (-1039)) (-5 *2 (-2 (|:| -2583 *1) (|:| -4397 *1))) (-4 *1 (-836 *3)))) (-4025 (*1 *1 *1 *1) (-12 (-4 *1 (-836 *2)) (-4 *2 (-1039)) (-4 *2 (-359)))) (-3385 (*1 *1 *1 *1) (-12 (-4 *1 (-836 *2)) (-4 *2 (-1039)) (-4 *2 (-359)))) (-3449 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-836 *2)) (-4 *2 (-1039)) (-4 *2 (-359)))) (-2107 (*1 *1 *1 *1) (-12 (-4 *1 (-836 *2)) (-4 *2 (-1039)) (-4 *2 (-359)))) (-3785 (*1 *2 *1 *1) (-12 (-4 *3 (-359)) (-4 *3 (-1039)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4250 *1))) (-4 *1 (-836 *3)))) (-2823 (*1 *1 *1 *1) (-12 (-4 *1 (-836 *2)) (-4 *2 (-1039)) (-4 *2 (-359)))) (-3592 (*1 *2 *1 *1) (-12 (-4 *3 (-359)) (-4 *3 (-1039)) (-5 *2 (-2 (|:| -2583 *1) (|:| -4397 *1))) (-4 *1 (-836 *3)))) (-1768 (*1 *1 *1 *1) (-12 (-4 *1 (-836 *2)) (-4 *2 (-1039)) (-4 *2 (-359)))) (-2530 (*1 *1 *1 *1) (-12 (-4 *1 (-836 *2)) (-4 *2 (-1039)) (-4 *2 (-359)))) (-4000 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-836 *2)) (-4 *2 (-1039)) (-4 *2 (-359)))) (-2783 (*1 *1 *1 *1) (-12 (-4 *1 (-836 *2)) (-4 *2 (-1039)) (-4 *2 (-359)))) (-2734 (*1 *2 *1 *1) (-12 (-4 *3 (-359)) (-4 *3 (-1039)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4250 *1))) (-4 *1 (-836 *3)))) (-4180 (*1 *1 *1 *1) (-12 (-4 *1 (-836 *2)) (-4 *2 (-1039)) (-4 *2 (-359))))) -(-13 (-1039) (-120 |t#1| |t#1|) (-407 |t#1|) (-10 -8 (-15 -3662 ((-755) $)) (-15 -3693 ((-755) $)) (-15 -1735 (|t#1| $)) (-15 -1750 ($ $)) (-15 -2636 (|t#1| $ (-755))) (-15 -1637 ($ |t#1| (-755))) (-15 -2423 ((-626 |t#1|) $)) (-15 -2788 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-170)) (-6 (-43 |t#1|)) |noBranch|) (IF (|has| |t#1| (-550)) (PROGN (-15 -2336 ((-3 $ "failed") $ |t#1|)) (-15 -3865 ((-2 (|:| -2583 $) (|:| -4397 $)) $ $)) (-15 -2168 ((-2 (|:| -2583 $) (|:| -4397 $)) $ $))) |noBranch|) (IF (|has| |t#1| (-447)) (PROGN (-15 -1896 (|t#1| $)) (-15 -3605 ($ $))) |noBranch|) (IF (|has| |t#1| (-359)) (PROGN (-15 -4348 ((-2 (|:| -2583 $) (|:| -4397 $)) $ $)) (-15 -4025 ($ $ $)) (-15 -3385 ($ $ $)) (-15 -3449 ((-3 $ "failed") $ $)) (-15 -2107 ($ $ $)) (-15 -3785 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $)) (-15 -2823 ($ $ $)) (-15 -3592 ((-2 (|:| -2583 $) (|:| -4397 $)) $ $)) (-15 -1768 ($ $ $)) (-15 -2530 ($ $ $)) (-15 -4000 ((-3 $ "failed") $ $)) (-15 -2783 ($ $ $)) (-15 -2734 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $)) (-15 -4180 ($ $ $))) |noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-43 |#1|) |has| |#1| (-170)) ((-105) . T) ((-120 |#1| |#1|) . T) ((-137) . T) ((-600 (-842)) . T) ((-407 |#1|) . T) ((-629 |#1|) . T) ((-629 $) . T) ((-699 |#1|) |has| |#1| (-170)) ((-708) . T) ((-1029 (-403 (-560))) |has| |#1| (-1029 (-403 (-560)))) ((-1029 (-560)) |has| |#1| (-1029 (-560))) ((-1029 |#1|) . T) ((-1045 |#1|) . T) ((-1039) . T) ((-1046) . T) ((-1094) . T) ((-1082) . T)) -((-3094 ((|#2| |#2| |#2| (-101 |#1|) (-1 |#1| |#1|)) 20)) (-3592 (((-2 (|:| -2583 |#2|) (|:| -4397 |#2|)) |#2| |#2| (-101 |#1|)) 43 (|has| |#1| (-359)))) (-2168 (((-2 (|:| -2583 |#2|) (|:| -4397 |#2|)) |#2| |#2| (-101 |#1|)) 40 (|has| |#1| (-550)))) (-3865 (((-2 (|:| -2583 |#2|) (|:| -4397 |#2|)) |#2| |#2| (-101 |#1|)) 39 (|has| |#1| (-550)))) (-4348 (((-2 (|:| -2583 |#2|) (|:| -4397 |#2|)) |#2| |#2| (-101 |#1|)) 42 (|has| |#1| (-359)))) (-2788 ((|#1| |#2| |#1| |#1| (-101 |#1|) (-1 |#1| |#1|)) 31))) -(((-837 |#1| |#2|) (-10 -7 (-15 -3094 (|#2| |#2| |#2| (-101 |#1|) (-1 |#1| |#1|))) (-15 -2788 (|#1| |#2| |#1| |#1| (-101 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-550)) (PROGN (-15 -3865 ((-2 (|:| -2583 |#2|) (|:| -4397 |#2|)) |#2| |#2| (-101 |#1|))) (-15 -2168 ((-2 (|:| -2583 |#2|) (|:| -4397 |#2|)) |#2| |#2| (-101 |#1|)))) |noBranch|) (IF (|has| |#1| (-359)) (PROGN (-15 -4348 ((-2 (|:| -2583 |#2|) (|:| -4397 |#2|)) |#2| |#2| (-101 |#1|))) (-15 -3592 ((-2 (|:| -2583 |#2|) (|:| -4397 |#2|)) |#2| |#2| (-101 |#1|)))) |noBranch|)) (-1039) (-836 |#1|)) (T -837)) -((-3592 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-101 *5)) (-4 *5 (-359)) (-4 *5 (-1039)) (-5 *2 (-2 (|:| -2583 *3) (|:| -4397 *3))) (-5 *1 (-837 *5 *3)) (-4 *3 (-836 *5)))) (-4348 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-101 *5)) (-4 *5 (-359)) (-4 *5 (-1039)) (-5 *2 (-2 (|:| -2583 *3) (|:| -4397 *3))) (-5 *1 (-837 *5 *3)) (-4 *3 (-836 *5)))) (-2168 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-101 *5)) (-4 *5 (-550)) (-4 *5 (-1039)) (-5 *2 (-2 (|:| -2583 *3) (|:| -4397 *3))) (-5 *1 (-837 *5 *3)) (-4 *3 (-836 *5)))) (-3865 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-101 *5)) (-4 *5 (-550)) (-4 *5 (-1039)) (-5 *2 (-2 (|:| -2583 *3) (|:| -4397 *3))) (-5 *1 (-837 *5 *3)) (-4 *3 (-836 *5)))) (-2788 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-101 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1039)) (-5 *1 (-837 *2 *3)) (-4 *3 (-836 *2)))) (-3094 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-101 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1039)) (-5 *1 (-837 *5 *2)) (-4 *2 (-836 *5))))) -(-10 -7 (-15 -3094 (|#2| |#2| |#2| (-101 |#1|) (-1 |#1| |#1|))) (-15 -2788 (|#1| |#2| |#1| |#1| (-101 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-550)) (PROGN (-15 -3865 ((-2 (|:| -2583 |#2|) (|:| -4397 |#2|)) |#2| |#2| (-101 |#1|))) (-15 -2168 ((-2 (|:| -2583 |#2|) (|:| -4397 |#2|)) |#2| |#2| (-101 |#1|)))) |noBranch|) (IF (|has| |#1| (-359)) (PROGN (-15 -4348 ((-2 (|:| -2583 |#2|) (|:| -4397 |#2|)) |#2| |#2| (-101 |#1|))) (-15 -3592 ((-2 (|:| -2583 |#2|) (|:| -4397 |#2|)) |#2| |#2| (-101 |#1|)))) |noBranch|)) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-4236 (($) NIL T CONST)) (-2530 (($ $ $) NIL (|has| |#1| (-359)))) (-1768 (($ $ $) NIL (|has| |#1| (-359)))) (-2823 (($ $ $) NIL (|has| |#1| (-359)))) (-2783 (($ $ $) NIL (|has| |#1| (-359)))) (-2734 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL (|has| |#1| (-359)))) (-4000 (((-3 $ "failed") $ $) NIL (|has| |#1| (-359)))) (-3592 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) 25 (|has| |#1| (-359)))) (-1473 (((-3 (-560) "failed") $) NIL (|has| |#1| (-1029 (-560)))) (((-3 (-403 (-560)) "failed") $) NIL (|has| |#1| (-1029 (-403 (-560))))) (((-3 |#1| "failed") $) NIL)) (-3001 (((-560) $) NIL (|has| |#1| (-1029 (-560)))) (((-403 (-560)) $) NIL (|has| |#1| (-1029 (-403 (-560))))) ((|#1| $) NIL)) (-1750 (($ $) NIL)) (-1823 (((-3 $ "failed") $) NIL)) (-3605 (($ $) NIL (|has| |#1| (-447)))) (-1720 (((-842) $ (-842)) NIL)) (-2642 (((-121) $) NIL)) (-1637 (($ |#1| (-755)) NIL)) (-2168 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) 21 (|has| |#1| (-550)))) (-3865 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) 19 (|has| |#1| (-550)))) (-3693 (((-755) $) NIL)) (-3385 (($ $ $) NIL (|has| |#1| (-359)))) (-4025 (($ $ $) NIL (|has| |#1| (-359)))) (-4180 (($ $ $) NIL (|has| |#1| (-359)))) (-2107 (($ $ $) NIL (|has| |#1| (-359)))) (-3785 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL (|has| |#1| (-359)))) (-3449 (((-3 $ "failed") $ $) NIL (|has| |#1| (-359)))) (-4348 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) 23 (|has| |#1| (-359)))) (-1735 ((|#1| $) NIL)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2336 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-550)))) (-3662 (((-755) $) NIL)) (-1896 ((|#1| $) NIL (|has| |#1| (-447)))) (-2801 (((-842) $) NIL) (($ (-560)) NIL) (($ (-403 (-560))) NIL (|has| |#1| (-1029 (-403 (-560))))) (($ |#1|) NIL)) (-2423 (((-626 |#1|) $) NIL)) (-2636 ((|#1| $ (-755)) NIL)) (-1751 (((-755)) NIL)) (-2788 ((|#1| $ |#1| |#1|) 15)) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (-3304 (($) NIL T CONST)) (-1459 (($) NIL T CONST)) (-1653 (((-121) $ $) NIL)) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) NIL)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-838 |#1| |#2| |#3|) (-13 (-836 |#1|) (-10 -8 (-15 -1720 ((-842) $ (-842))))) (-1039) (-101 |#1|) (-1 |#1| |#1|)) (T -838)) -((-1720 (*1 *2 *1 *2) (-12 (-5 *2 (-842)) (-5 *1 (-838 *3 *4 *5)) (-4 *3 (-1039)) (-14 *4 (-101 *3)) (-14 *5 (-1 *3 *3))))) -(-13 (-836 |#1|) (-10 -8 (-15 -1720 ((-842) $ (-842))))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-4236 (($) NIL T CONST)) (-2530 (($ $ $) NIL (|has| |#2| (-359)))) (-1768 (($ $ $) NIL (|has| |#2| (-359)))) (-2823 (($ $ $) NIL (|has| |#2| (-359)))) (-2783 (($ $ $) NIL (|has| |#2| (-359)))) (-2734 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL (|has| |#2| (-359)))) (-4000 (((-3 $ "failed") $ $) NIL (|has| |#2| (-359)))) (-3592 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL (|has| |#2| (-359)))) (-1473 (((-3 (-560) "failed") $) NIL (|has| |#2| (-1029 (-560)))) (((-3 (-403 (-560)) "failed") $) NIL (|has| |#2| (-1029 (-403 (-560))))) (((-3 |#2| "failed") $) NIL)) (-3001 (((-560) $) NIL (|has| |#2| (-1029 (-560)))) (((-403 (-560)) $) NIL (|has| |#2| (-1029 (-403 (-560))))) ((|#2| $) NIL)) (-1750 (($ $) NIL)) (-1823 (((-3 $ "failed") $) NIL)) (-3605 (($ $) NIL (|has| |#2| (-447)))) (-2642 (((-121) $) NIL)) (-1637 (($ |#2| (-755)) 16)) (-2168 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL (|has| |#2| (-550)))) (-3865 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL (|has| |#2| (-550)))) (-3693 (((-755) $) NIL)) (-3385 (($ $ $) NIL (|has| |#2| (-359)))) (-4025 (($ $ $) NIL (|has| |#2| (-359)))) (-4180 (($ $ $) NIL (|has| |#2| (-359)))) (-2107 (($ $ $) NIL (|has| |#2| (-359)))) (-3785 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL (|has| |#2| (-359)))) (-3449 (((-3 $ "failed") $ $) NIL (|has| |#2| (-359)))) (-4348 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL (|has| |#2| (-359)))) (-1735 ((|#2| $) NIL)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2336 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-550)))) (-3662 (((-755) $) NIL)) (-1896 ((|#2| $) NIL (|has| |#2| (-447)))) (-2801 (((-842) $) 23) (($ (-560)) NIL) (($ (-403 (-560))) NIL (|has| |#2| (-1029 (-403 (-560))))) (($ |#2|) NIL) (($ (-1232 |#1|)) 18)) (-2423 (((-626 |#2|) $) NIL)) (-2636 ((|#2| $ (-755)) NIL)) (-1751 (((-755)) NIL)) (-2788 ((|#2| $ |#2| |#2|) NIL)) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (-3304 (($) NIL T CONST)) (-1459 (($) 13 T CONST)) (-1653 (((-121) $ $) NIL)) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) NIL)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-839 |#1| |#2| |#3| |#4|) (-13 (-836 |#2|) (-10 -8 (-15 -2801 ($ (-1232 |#1|))))) (-1153) (-1039) (-101 |#2|) (-1 |#2| |#2|)) (T -839)) -((-2801 (*1 *1 *2) (-12 (-5 *2 (-1232 *3)) (-14 *3 (-1153)) (-5 *1 (-839 *3 *4 *5 *6)) (-4 *4 (-1039)) (-14 *5 (-101 *4)) (-14 *6 (-1 *4 *4))))) -(-13 (-836 |#2|) (-10 -8 (-15 -2801 ($ (-1232 |#1|))))) -((-1414 ((|#1| (-755) |#1|) 35 (|has| |#1| (-43 (-403 (-560)))))) (-2472 ((|#1| (-755) (-755) |#1|) 27) ((|#1| (-755) |#1|) 20)) (-3874 ((|#1| (-755) |#1|) 31)) (-2255 ((|#1| (-755) |#1|) 29)) (-1430 ((|#1| (-755) |#1|) 28))) -(((-840 |#1|) (-10 -7 (-15 -1430 (|#1| (-755) |#1|)) (-15 -2255 (|#1| (-755) |#1|)) (-15 -3874 (|#1| (-755) |#1|)) (-15 -2472 (|#1| (-755) |#1|)) (-15 -2472 (|#1| (-755) (-755) |#1|)) (IF (|has| |#1| (-43 (-403 (-560)))) (-15 -1414 (|#1| (-755) |#1|)) |noBranch|)) (-170)) (T -840)) -((-1414 (*1 *2 *3 *2) (-12 (-5 *3 (-755)) (-5 *1 (-840 *2)) (-4 *2 (-43 (-403 (-560)))) (-4 *2 (-170)))) (-2472 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-755)) (-5 *1 (-840 *2)) (-4 *2 (-170)))) (-2472 (*1 *2 *3 *2) (-12 (-5 *3 (-755)) (-5 *1 (-840 *2)) (-4 *2 (-170)))) (-3874 (*1 *2 *3 *2) (-12 (-5 *3 (-755)) (-5 *1 (-840 *2)) (-4 *2 (-170)))) (-2255 (*1 *2 *3 *2) (-12 (-5 *3 (-755)) (-5 *1 (-840 *2)) (-4 *2 (-170)))) (-1430 (*1 *2 *3 *2) (-12 (-5 *3 (-755)) (-5 *1 (-840 *2)) (-4 *2 (-170))))) -(-10 -7 (-15 -1430 (|#1| (-755) |#1|)) (-15 -2255 (|#1| (-755) |#1|)) (-15 -3874 (|#1| (-755) |#1|)) (-15 -2472 (|#1| (-755) |#1|)) (-15 -2472 (|#1| (-755) (-755) |#1|)) (IF (|has| |#1| (-43 (-403 (-560)))) (-15 -1414 (|#1| (-755) |#1|)) |noBranch|)) -((-2601 (((-121) $ $) NIL)) (-2981 (((-560) $) 12)) (-4325 (($ $ $) NIL)) (-2501 (($ $ $) NIL)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2801 (((-842) $) 18) (($ (-560)) 11)) (-1691 (((-121) $ $) NIL)) (-1675 (((-121) $ $) NIL)) (-1653 (((-121) $ $) 8)) (-1683 (((-121) $ $) NIL)) (-1667 (((-121) $ $) 9))) -(((-841) (-13 (-834) (-10 -8 (-15 -2801 ($ (-560))) (-15 -2981 ((-560) $))))) (T -841)) -((-2801 (*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-841)))) (-2981 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-841))))) -(-13 (-834) (-10 -8 (-15 -2801 ($ (-560))) (-15 -2981 ((-560) $)))) -((-2601 (((-121) $ $) NIL)) (-4449 (($ $ $) 115)) (-2163 (((-560) $) 30) (((-560)) 35)) (-4052 (($ (-560)) 44)) (-2827 (($ $ $) 45) (($ (-626 $)) 76)) (-2609 (($ $ (-626 $)) 74)) (-1956 (((-560) $) 33)) (-1608 (($ $ $) 63)) (-2700 (($ $) 128) (($ $ $) 129) (($ $ $ $) 130)) (-3213 (((-560) $) 32)) (-3981 (($ $ $) 62)) (-2308 (($ $) 105)) (-1731 (($ $ $) 119)) (-2361 (($ (-626 $)) 52)) (-2355 (($ $ (-626 $)) 69)) (-2120 (($ (-560) (-560)) 46)) (-4463 (($ $) 116) (($ $ $) 117)) (-3437 (($ $ (-560)) 40) (($ $) 43)) (-2563 (($ $ $) 89)) (-3396 (($ $ $) 122)) (-2777 (($ $) 106)) (-2572 (($ $ $) 90)) (-2487 (($ $) 131) (($ $ $) 132) (($ $ $ $) 133)) (-3589 (((-1241) $) 8)) (-4412 (($ $) 109) (($ $ (-755)) 112)) (-2914 (($ $ $) 65)) (-4221 (($ $ $) 64)) (-1858 (($ $ (-626 $)) 100)) (-1912 (($ $ $) 104)) (-1966 (($ (-626 $)) 50)) (-2352 (($ $) 60) (($ (-626 $)) 61)) (-3690 (($ $ $) 113)) (-1373 (($ $) 107)) (-2009 (($ $ $) 118)) (-1720 (($ (-560)) 20) (($ (-1153)) 22) (($ (-1135)) 29) (($ (-213)) 24)) (-3367 (($ $ $) 93)) (-3186 (($ $) 94)) (-1554 (((-1241) (-1135)) 14)) (-3616 (($ (-1135)) 13)) (-3851 (($ (-626 (-626 $))) 48)) (-3156 (($ $ (-560)) 39) (($ $) 42)) (-1291 (((-1135) $) NIL)) (-3541 (($ $ $) 121)) (-3059 (($ $) 134) (($ $ $) 135) (($ $ $ $) 136)) (-1628 (((-121) $) 98)) (-3267 (($ $ (-626 $)) 102) (($ $ $ $) 103)) (-3791 (($ (-560)) 36)) (-3165 (((-560) $) 31) (((-560)) 34)) (-4453 (($ $ $) 37) (($ (-626 $)) 75)) (-4353 (((-1100) $) NIL)) (-2336 (($ $ $) 91)) (-3260 (($) 12)) (-2778 (($ $ (-626 $)) 99)) (-2372 (($ $) 108) (($ $ (-755)) 111)) (-2343 (($ $ $) 88)) (-2443 (($ $ (-755)) 127)) (-2684 (($ (-626 $)) 51)) (-2801 (((-842) $) 18)) (-1341 (($ $ (-560)) 38) (($ $) 41)) (-1922 (($ $) 58) (($ (-626 $)) 59)) (-2799 (($ $) 56) (($ (-626 $)) 57)) (-4308 (($ $) 114)) (-2029 (($ (-626 $)) 55)) (-2406 (($ $ $) 97)) (-2294 (($ $ $) 120)) (-2256 (($ $ $) 92)) (-2357 (($ $ $) 77)) (-4227 (($ $ $) 95) (($ $) 96)) (-1691 (($ $ $) 81)) (-1675 (($ $ $) 79)) (-1653 (((-121) $ $) 15) (($ $ $) 16)) (-1683 (($ $ $) 80)) (-1667 (($ $ $) 78)) (-1733 (($ $ $) 86)) (-1725 (($ $ $) 83) (($ $) 84)) (-1716 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85))) -(((-842) (-13 (-1082) (-10 -8 (-15 -3589 ((-1241) $)) (-15 -3616 ($ (-1135))) (-15 -1554 ((-1241) (-1135))) (-15 -1720 ($ (-560))) (-15 -1720 ($ (-1153))) (-15 -1720 ($ (-1135))) (-15 -1720 ($ (-213))) (-15 -3260 ($)) (-15 -2163 ((-560) $)) (-15 -3165 ((-560) $)) (-15 -2163 ((-560))) (-15 -3165 ((-560))) (-15 -3213 ((-560) $)) (-15 -1956 ((-560) $)) (-15 -3791 ($ (-560))) (-15 -4052 ($ (-560))) (-15 -2120 ($ (-560) (-560))) (-15 -3156 ($ $ (-560))) (-15 -3437 ($ $ (-560))) (-15 -1341 ($ $ (-560))) (-15 -3156 ($ $)) (-15 -3437 ($ $)) (-15 -1341 ($ $)) (-15 -4453 ($ $ $)) (-15 -2827 ($ $ $)) (-15 -4453 ($ (-626 $))) (-15 -2827 ($ (-626 $))) (-15 -1858 ($ $ (-626 $))) (-15 -3267 ($ $ (-626 $))) (-15 -3267 ($ $ $ $)) (-15 -1912 ($ $ $)) (-15 -1628 ((-121) $)) (-15 -2778 ($ $ (-626 $))) (-15 -2308 ($ $)) (-15 -3541 ($ $ $)) (-15 -4308 ($ $)) (-15 -3851 ($ (-626 (-626 $)))) (-15 -4449 ($ $ $)) (-15 -4463 ($ $)) (-15 -4463 ($ $ $)) (-15 -2009 ($ $ $)) (-15 -1731 ($ $ $)) (-15 -2294 ($ $ $)) (-15 -3396 ($ $ $)) (-15 -2443 ($ $ (-755))) (-15 -2406 ($ $ $)) (-15 -3981 ($ $ $)) (-15 -1608 ($ $ $)) (-15 -4221 ($ $ $)) (-15 -2914 ($ $ $)) (-15 -2355 ($ $ (-626 $))) (-15 -2609 ($ $ (-626 $))) (-15 -2777 ($ $)) (-15 -2372 ($ $)) (-15 -2372 ($ $ (-755))) (-15 -4412 ($ $)) (-15 -4412 ($ $ (-755))) (-15 -1373 ($ $)) (-15 -3690 ($ $ $)) (-15 -2700 ($ $)) (-15 -2700 ($ $ $)) (-15 -2700 ($ $ $ $)) (-15 -2487 ($ $)) (-15 -2487 ($ $ $)) (-15 -2487 ($ $ $ $)) (-15 -3059 ($ $)) (-15 -3059 ($ $ $)) (-15 -3059 ($ $ $ $)) (-15 -2799 ($ $)) (-15 -2799 ($ (-626 $))) (-15 -1922 ($ $)) (-15 -1922 ($ (-626 $))) (-15 -2352 ($ $)) (-15 -2352 ($ (-626 $))) (-15 -1966 ($ (-626 $))) (-15 -2684 ($ (-626 $))) (-15 -2361 ($ (-626 $))) (-15 -2029 ($ (-626 $))) (-15 -1653 ($ $ $)) (-15 -2357 ($ $ $)) (-15 -1667 ($ $ $)) (-15 -1675 ($ $ $)) (-15 -1683 ($ $ $)) (-15 -1691 ($ $ $)) (-15 -1716 ($ $ $)) (-15 -1725 ($ $ $)) (-15 -1725 ($ $)) (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -2343 ($ $ $)) (-15 -2563 ($ $ $)) (-15 -2572 ($ $ $)) (-15 -2336 ($ $ $)) (-15 -2256 ($ $ $)) (-15 -3367 ($ $ $)) (-15 -3186 ($ $)) (-15 -4227 ($ $ $)) (-15 -4227 ($ $))))) (T -842)) -((-3589 (*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-842)))) (-3616 (*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-842)))) (-1554 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1241)) (-5 *1 (-842)))) (-1720 (*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-842)))) (-1720 (*1 *1 *2) (-12 (-5 *2 (-1153)) (-5 *1 (-842)))) (-1720 (*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-842)))) (-1720 (*1 *1 *2) (-12 (-5 *2 (-213)) (-5 *1 (-842)))) (-3260 (*1 *1) (-5 *1 (-842))) (-2163 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-842)))) (-3165 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-842)))) (-2163 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-842)))) (-3165 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-842)))) (-3213 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-842)))) (-1956 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-842)))) (-3791 (*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-842)))) (-4052 (*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-842)))) (-2120 (*1 *1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-842)))) (-3156 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-842)))) (-3437 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-842)))) (-1341 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-842)))) (-3156 (*1 *1 *1) (-5 *1 (-842))) (-3437 (*1 *1 *1) (-5 *1 (-842))) (-1341 (*1 *1 *1) (-5 *1 (-842))) (-4453 (*1 *1 *1 *1) (-5 *1 (-842))) (-2827 (*1 *1 *1 *1) (-5 *1 (-842))) (-4453 (*1 *1 *2) (-12 (-5 *2 (-626 (-842))) (-5 *1 (-842)))) (-2827 (*1 *1 *2) (-12 (-5 *2 (-626 (-842))) (-5 *1 (-842)))) (-1858 (*1 *1 *1 *2) (-12 (-5 *2 (-626 (-842))) (-5 *1 (-842)))) (-3267 (*1 *1 *1 *2) (-12 (-5 *2 (-626 (-842))) (-5 *1 (-842)))) (-3267 (*1 *1 *1 *1 *1) (-5 *1 (-842))) (-1912 (*1 *1 *1 *1) (-5 *1 (-842))) (-1628 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-842)))) (-2778 (*1 *1 *1 *2) (-12 (-5 *2 (-626 (-842))) (-5 *1 (-842)))) (-2308 (*1 *1 *1) (-5 *1 (-842))) (-3541 (*1 *1 *1 *1) (-5 *1 (-842))) (-4308 (*1 *1 *1) (-5 *1 (-842))) (-3851 (*1 *1 *2) (-12 (-5 *2 (-626 (-626 (-842)))) (-5 *1 (-842)))) (-4449 (*1 *1 *1 *1) (-5 *1 (-842))) (-4463 (*1 *1 *1) (-5 *1 (-842))) (-4463 (*1 *1 *1 *1) (-5 *1 (-842))) (-2009 (*1 *1 *1 *1) (-5 *1 (-842))) (-1731 (*1 *1 *1 *1) (-5 *1 (-842))) (-2294 (*1 *1 *1 *1) (-5 *1 (-842))) (-3396 (*1 *1 *1 *1) (-5 *1 (-842))) (-2443 (*1 *1 *1 *2) (-12 (-5 *2 (-755)) (-5 *1 (-842)))) (-2406 (*1 *1 *1 *1) (-5 *1 (-842))) (-3981 (*1 *1 *1 *1) (-5 *1 (-842))) (-1608 (*1 *1 *1 *1) (-5 *1 (-842))) (-4221 (*1 *1 *1 *1) (-5 *1 (-842))) (-2914 (*1 *1 *1 *1) (-5 *1 (-842))) (-2355 (*1 *1 *1 *2) (-12 (-5 *2 (-626 (-842))) (-5 *1 (-842)))) (-2609 (*1 *1 *1 *2) (-12 (-5 *2 (-626 (-842))) (-5 *1 (-842)))) (-2777 (*1 *1 *1) (-5 *1 (-842))) (-2372 (*1 *1 *1) (-5 *1 (-842))) (-2372 (*1 *1 *1 *2) (-12 (-5 *2 (-755)) (-5 *1 (-842)))) (-4412 (*1 *1 *1) (-5 *1 (-842))) (-4412 (*1 *1 *1 *2) (-12 (-5 *2 (-755)) (-5 *1 (-842)))) (-1373 (*1 *1 *1) (-5 *1 (-842))) (-3690 (*1 *1 *1 *1) (-5 *1 (-842))) (-2700 (*1 *1 *1) (-5 *1 (-842))) (-2700 (*1 *1 *1 *1) (-5 *1 (-842))) (-2700 (*1 *1 *1 *1 *1) (-5 *1 (-842))) (-2487 (*1 *1 *1) (-5 *1 (-842))) (-2487 (*1 *1 *1 *1) (-5 *1 (-842))) (-2487 (*1 *1 *1 *1 *1) (-5 *1 (-842))) (-3059 (*1 *1 *1) (-5 *1 (-842))) (-3059 (*1 *1 *1 *1) (-5 *1 (-842))) (-3059 (*1 *1 *1 *1 *1) (-5 *1 (-842))) (-2799 (*1 *1 *1) (-5 *1 (-842))) (-2799 (*1 *1 *2) (-12 (-5 *2 (-626 (-842))) (-5 *1 (-842)))) (-1922 (*1 *1 *1) (-5 *1 (-842))) (-1922 (*1 *1 *2) (-12 (-5 *2 (-626 (-842))) (-5 *1 (-842)))) (-2352 (*1 *1 *1) (-5 *1 (-842))) (-2352 (*1 *1 *2) (-12 (-5 *2 (-626 (-842))) (-5 *1 (-842)))) (-1966 (*1 *1 *2) (-12 (-5 *2 (-626 (-842))) (-5 *1 (-842)))) (-2684 (*1 *1 *2) (-12 (-5 *2 (-626 (-842))) (-5 *1 (-842)))) (-2361 (*1 *1 *2) (-12 (-5 *2 (-626 (-842))) (-5 *1 (-842)))) (-2029 (*1 *1 *2) (-12 (-5 *2 (-626 (-842))) (-5 *1 (-842)))) (-1653 (*1 *1 *1 *1) (-5 *1 (-842))) (-2357 (*1 *1 *1 *1) (-5 *1 (-842))) (-1667 (*1 *1 *1 *1) (-5 *1 (-842))) (-1675 (*1 *1 *1 *1) (-5 *1 (-842))) (-1683 (*1 *1 *1 *1) (-5 *1 (-842))) (-1691 (*1 *1 *1 *1) (-5 *1 (-842))) (-1716 (*1 *1 *1 *1) (-5 *1 (-842))) (-1725 (*1 *1 *1 *1) (-5 *1 (-842))) (-1725 (*1 *1 *1) (-5 *1 (-842))) (* (*1 *1 *1 *1) (-5 *1 (-842))) (-1733 (*1 *1 *1 *1) (-5 *1 (-842))) (** (*1 *1 *1 *1) (-5 *1 (-842))) (-2343 (*1 *1 *1 *1) (-5 *1 (-842))) (-2563 (*1 *1 *1 *1) (-5 *1 (-842))) (-2572 (*1 *1 *1 *1) (-5 *1 (-842))) (-2336 (*1 *1 *1 *1) (-5 *1 (-842))) (-2256 (*1 *1 *1 *1) (-5 *1 (-842))) (-3367 (*1 *1 *1 *1) (-5 *1 (-842))) (-3186 (*1 *1 *1) (-5 *1 (-842))) (-4227 (*1 *1 *1 *1) (-5 *1 (-842))) (-4227 (*1 *1 *1) (-5 *1 (-842)))) -(-13 (-1082) (-10 -8 (-15 -3589 ((-1241) $)) (-15 -3616 ($ (-1135))) (-15 -1554 ((-1241) (-1135))) (-15 -1720 ($ (-560))) (-15 -1720 ($ (-1153))) (-15 -1720 ($ (-1135))) (-15 -1720 ($ (-213))) (-15 -3260 ($)) (-15 -2163 ((-560) $)) (-15 -3165 ((-560) $)) (-15 -2163 ((-560))) (-15 -3165 ((-560))) (-15 -3213 ((-560) $)) (-15 -1956 ((-560) $)) (-15 -3791 ($ (-560))) (-15 -4052 ($ (-560))) (-15 -2120 ($ (-560) (-560))) (-15 -3156 ($ $ (-560))) (-15 -3437 ($ $ (-560))) (-15 -1341 ($ $ (-560))) (-15 -3156 ($ $)) (-15 -3437 ($ $)) (-15 -1341 ($ $)) (-15 -4453 ($ $ $)) (-15 -2827 ($ $ $)) (-15 -4453 ($ (-626 $))) (-15 -2827 ($ (-626 $))) (-15 -1858 ($ $ (-626 $))) (-15 -3267 ($ $ (-626 $))) (-15 -3267 ($ $ $ $)) (-15 -1912 ($ $ $)) (-15 -1628 ((-121) $)) (-15 -2778 ($ $ (-626 $))) (-15 -2308 ($ $)) (-15 -3541 ($ $ $)) (-15 -4308 ($ $)) (-15 -3851 ($ (-626 (-626 $)))) (-15 -4449 ($ $ $)) (-15 -4463 ($ $)) (-15 -4463 ($ $ $)) (-15 -2009 ($ $ $)) (-15 -1731 ($ $ $)) (-15 -2294 ($ $ $)) (-15 -3396 ($ $ $)) (-15 -2443 ($ $ (-755))) (-15 -2406 ($ $ $)) (-15 -3981 ($ $ $)) (-15 -1608 ($ $ $)) (-15 -4221 ($ $ $)) (-15 -2914 ($ $ $)) (-15 -2355 ($ $ (-626 $))) (-15 -2609 ($ $ (-626 $))) (-15 -2777 ($ $)) (-15 -2372 ($ $)) (-15 -2372 ($ $ (-755))) (-15 -4412 ($ $)) (-15 -4412 ($ $ (-755))) (-15 -1373 ($ $)) (-15 -3690 ($ $ $)) (-15 -2700 ($ $)) (-15 -2700 ($ $ $)) (-15 -2700 ($ $ $ $)) (-15 -2487 ($ $)) (-15 -2487 ($ $ $)) (-15 -2487 ($ $ $ $)) (-15 -3059 ($ $)) (-15 -3059 ($ $ $)) (-15 -3059 ($ $ $ $)) (-15 -2799 ($ $)) (-15 -2799 ($ (-626 $))) (-15 -1922 ($ $)) (-15 -1922 ($ (-626 $))) (-15 -2352 ($ $)) (-15 -2352 ($ (-626 $))) (-15 -1966 ($ (-626 $))) (-15 -2684 ($ (-626 $))) (-15 -2361 ($ (-626 $))) (-15 -2029 ($ (-626 $))) (-15 -1653 ($ $ $)) (-15 -2357 ($ $ $)) (-15 -1667 ($ $ $)) (-15 -1675 ($ $ $)) (-15 -1683 ($ $ $)) (-15 -1691 ($ $ $)) (-15 -1716 ($ $ $)) (-15 -1725 ($ $ $)) (-15 -1725 ($ $)) (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -2343 ($ $ $)) (-15 -2563 ($ $ $)) (-15 -2572 ($ $ $)) (-15 -2336 ($ $ $)) (-15 -2256 ($ $ $)) (-15 -3367 ($ $ $)) (-15 -3186 ($ $)) (-15 -4227 ($ $ $)) (-15 -4227 ($ $)))) -((-2138 (((-1241) (-626 (-57))) 24)) (-3632 (((-1241) (-1135) (-842)) 14) (((-1241) (-842)) 9) (((-1241) (-1135)) 11))) -(((-843) (-10 -7 (-15 -3632 ((-1241) (-1135))) (-15 -3632 ((-1241) (-842))) (-15 -3632 ((-1241) (-1135) (-842))) (-15 -2138 ((-1241) (-626 (-57)))))) (T -843)) -((-2138 (*1 *2 *3) (-12 (-5 *3 (-626 (-57))) (-5 *2 (-1241)) (-5 *1 (-843)))) (-3632 (*1 *2 *3 *4) (-12 (-5 *3 (-1135)) (-5 *4 (-842)) (-5 *2 (-1241)) (-5 *1 (-843)))) (-3632 (*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1241)) (-5 *1 (-843)))) (-3632 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1241)) (-5 *1 (-843))))) -(-10 -7 (-15 -3632 ((-1241) (-1135))) (-15 -3632 ((-1241) (-842))) (-15 -3632 ((-1241) (-1135) (-842))) (-15 -2138 ((-1241) (-626 (-57))))) -((-2601 (((-121) $ $) NIL)) (-1395 (((-3 $ "failed") (-1153)) 32)) (-2912 (((-755)) 30)) (-1666 (($) NIL)) (-4325 (($ $ $) NIL)) (-2501 (($ $ $) NIL)) (-3142 (((-909) $) 28)) (-1291 (((-1135) $) 38)) (-1330 (($ (-909)) 27)) (-4353 (((-1100) $) NIL)) (-4255 (((-1153) $) 13) (((-533) $) 19) (((-879 (-375)) $) 25) (((-879 (-560)) $) 22)) (-2801 (((-842) $) 16)) (-1691 (((-121) $ $) NIL)) (-1675 (((-121) $ $) NIL)) (-1653 (((-121) $ $) 35)) (-1683 (((-121) $ $) NIL)) (-1667 (((-121) $ $) 34))) -(((-844 |#1|) (-13 (-828) (-601 (-1153)) (-601 (-533)) (-601 (-879 (-375))) (-601 (-879 (-560))) (-10 -8 (-15 -1395 ((-3 $ "failed") (-1153))))) (-626 (-1153))) (T -844)) -((-1395 (*1 *1 *2) (|partial| -12 (-5 *2 (-1153)) (-5 *1 (-844 *3)) (-14 *3 (-626 *2))))) -(-13 (-828) (-601 (-1153)) (-601 (-533)) (-601 (-879 (-375))) (-601 (-879 (-560))) (-10 -8 (-15 -1395 ((-3 $ "failed") (-1153))))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-4236 (($) NIL T CONST)) (-1823 (((-3 $ "failed") $) NIL)) (-2642 (((-121) $) NIL)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2801 (((-842) $) NIL) (($ (-560)) NIL) (((-945 |#1|) $) NIL) (($ (-945 |#1|)) NIL) (($ |#1|) NIL (|has| |#1| (-170)))) (-1751 (((-755)) NIL)) (-2542 (((-1241) (-755)) NIL)) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (-3304 (($) NIL T CONST)) (-1459 (($) NIL T CONST)) (-1653 (((-121) $ $) NIL)) (-1733 (((-3 $ "failed") $ $) NIL (|has| |#1| (-359)))) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) NIL)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170))))) -(((-845 |#1| |#2| |#3| |#4|) (-13 (-1039) (-10 -8 (IF (|has| |#1| (-170)) (-6 (-43 |#1|)) |noBranch|) (-15 -2801 ((-945 |#1|) $)) (-15 -2801 ($ (-945 |#1|))) (IF (|has| |#1| (-359)) (-15 -1733 ((-3 $ "failed") $ $)) |noBranch|) (-15 -2542 ((-1241) (-755))))) (-1039) (-626 (-1153)) (-626 (-755)) (-755)) (T -845)) -((-2801 (*1 *2 *1) (-12 (-5 *2 (-945 *3)) (-5 *1 (-845 *3 *4 *5 *6)) (-4 *3 (-1039)) (-14 *4 (-626 (-1153))) (-14 *5 (-626 (-755))) (-14 *6 (-755)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-945 *3)) (-4 *3 (-1039)) (-5 *1 (-845 *3 *4 *5 *6)) (-14 *4 (-626 (-1153))) (-14 *5 (-626 (-755))) (-14 *6 (-755)))) (-1733 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-845 *2 *3 *4 *5)) (-4 *2 (-359)) (-4 *2 (-1039)) (-14 *3 (-626 (-1153))) (-14 *4 (-626 (-755))) (-14 *5 (-755)))) (-2542 (*1 *2 *3) (-12 (-5 *3 (-755)) (-5 *2 (-1241)) (-5 *1 (-845 *4 *5 *6 *7)) (-4 *4 (-1039)) (-14 *5 (-626 (-1153))) (-14 *6 (-626 *3)) (-14 *7 *3)))) -(-13 (-1039) (-10 -8 (IF (|has| |#1| (-170)) (-6 (-43 |#1|)) |noBranch|) (-15 -2801 ((-945 |#1|) $)) (-15 -2801 ($ (-945 |#1|))) (IF (|has| |#1| (-359)) (-15 -1733 ((-3 $ "failed") $ $)) |noBranch|) (-15 -2542 ((-1241) (-755))))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-3000 (((-1236 $) $ $) 78)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) 40)) (-1350 (($ $) 39)) (-3376 (((-121) $) 37)) (-3913 (((-121) $) 111)) (-1881 (((-755)) 115)) (-2314 (((-3 $ "failed") $ $) 18)) (-3065 (($ $) 71)) (-2953 (((-414 $) $) 70)) (-4179 (((-121) $ $) 57)) (-2729 (((-1241) $) 74)) (-4236 (($) 16 T CONST)) (-1473 (((-3 (-560) "failed") $) 122) (((-3 (-403 (-560)) "failed") $) 119) (((-3 (-403 (-560)) "failed") $) 104) (((-3 (-852) "failed") $) 136) (((-3 (-852) "failed") $) 130)) (-3001 (((-560) $) 121) (((-403 (-560)) $) 118) (((-403 (-560)) $) 105) (((-852) $) 135) (((-852) $) 131)) (-2563 (($ $ $) 53)) (-2342 (($ (-1149 $)) 84)) (-1823 (((-3 $ "failed") $) 33)) (-2572 (($ $ $) 54)) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) 49)) (-2937 (($ $ (-755)) 102 (-2318 (|has| (-852) (-146)) (|has| (-852) (-364)) (|has| (-403 (-560)) (-146)) (|has| (-403 (-560)) (-364)))) (($ $) 101 (-2318 (|has| (-852) (-146)) (|has| (-852) (-364)) (|has| (-403 (-560)) (-146)) (|has| (-403 (-560)) (-364))))) (-3319 (((-121) $) 69)) (-2733 (($ $) 79)) (-3504 (((-820 (-909)) $) 99 (-2318 (|has| (-852) (-146)) (|has| (-852) (-364)) (|has| (-403 (-560)) (-146)) (|has| (-403 (-560)) (-364))))) (-2642 (((-121) $) 30)) (-2738 (($ (-1149 $) $ (-1153)) 76) (($ (-1149 $) (-1153)) 75)) (-3856 (((-3 (-626 $) "failed") (-626 $) $) 50)) (-2742 (($ (-626 $)) 81)) (-2335 (((-1149 $) $) 86) (((-1149 $) $ $) 85)) (-2582 (($ $ $) 45) (($ (-626 $)) 44)) (-1291 (((-1135) $) 9)) (-1701 (($ $) 68)) (-3557 (((-121) $) 112)) (-4353 (((-1100) $) 10)) (-1704 (((-121) $) 82)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) 43)) (-4440 (($ $ $) 47) (($ (-626 $)) 46)) (-2747 (((-842) $) 73)) (-1601 (((-414 $) $) 72)) (-1472 (((-820 (-909))) 114)) (-3505 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3394 (((-909) $) 80)) (-2336 (((-3 $ "failed") $ $) 41)) (-3456 (((-3 (-626 $) "failed") (-626 $) $) 48)) (-4445 (((-755) $) 56)) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) 55)) (-3383 (((-626 $) (-1149 $) $) 83)) (-2935 (((-3 (-755) "failed") $ $) 100 (-2318 (|has| (-852) (-146)) (|has| (-852) (-364)) (|has| (-403 (-560)) (-146)) (|has| (-403 (-560)) (-364))))) (-4016 (((-139)) 106)) (-3662 (((-820 (-909)) $) 113)) (-3591 (((-1149 $)) 88) (((-1149 $) $) 87)) (-3101 (($ $) 77)) (-2801 (((-842) $) 11) (($ (-560)) 27) (($ $) 42) (($ (-403 (-560))) 63) (($ (-560)) 123) (($ (-403 (-560))) 120) (($ (-403 (-560))) 103) (($ (-852)) 137) (($ (-852)) 129)) (-2272 (((-3 $ "failed") $) 98 (-2318 (|has| (-852) (-146)) (|has| (-852) (-364)) (|has| (-403 (-560)) (-146)) (|has| (-403 (-560)) (-364))))) (-1751 (((-755)) 28)) (-2328 (((-121) $ $) 38)) (-1535 (((-121) $) 110)) (-2464 (($ $ (-909)) 25) (($ $ (-755)) 32) (($ $ (-560)) 67)) (-3304 (($) 17 T CONST)) (-1459 (($) 29 T CONST)) (-2353 (($ $ (-755)) 117 (-2318 (|has| (-852) (-364)) (|has| (-403 (-560)) (-364)))) (($ $) 116 (-2318 (|has| (-852) (-364)) (|has| (-403 (-560)) (-364))))) (-1653 (((-121) $ $) 6)) (-1733 (($ $ $) 62) (($ $ (-403 (-560))) 107) (($ $ (-852)) 132)) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 24) (($ $ (-755)) 31) (($ $ (-560)) 66)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 23) (($ $ (-403 (-560))) 65) (($ (-403 (-560)) $) 64) (($ (-403 (-560)) $) 109) (($ $ (-403 (-560))) 108) (($ (-852) $) 134) (($ $ (-852)) 133))) -(((-846) (-1267)) (T -846)) -NIL -(-13 (-851) (-1029 (-852)) (-1253 (-852))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-43 (-403 (-560))) . T) ((-43 $) . T) ((-105) . T) ((-120 (-403 (-560)) (-403 (-560))) . T) ((-120 (-852) (-852)) . T) ((-120 $ $) . T) ((-137) . T) ((-146) -2318 (|has| (-852) (-364)) (|has| (-852) (-146)) (|has| (-403 (-560)) (-364)) (|has| (-403 (-560)) (-146))) ((-148) . T) ((-600 (-842)) . T) ((-170) . T) ((-233) . T) ((-280) . T) ((-296) . T) ((-1253 (-403 (-560))) . T) ((-1253 (-852)) . T) ((-359) . T) ((-398) -2318 (|has| (-852) (-364)) (|has| (-852) (-146)) (|has| (-403 (-560)) (-364)) (|has| (-403 (-560)) (-146))) ((-447) . T) ((-550) . T) ((-629 (-403 (-560))) . T) ((-629 (-852)) . T) ((-629 $) . T) ((-699 (-403 (-560))) . T) ((-699 (-852)) . T) ((-699 $) . T) ((-708) . T) ((-908) . T) ((-850) . T) ((-851) . T) ((-1029 (-403 (-560))) . T) ((-1029 (-560)) . T) ((-1029 (-852)) . T) ((-1045 (-403 (-560))) . T) ((-1045 (-852)) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1094) . T) ((-1082) . T) ((-1191) . T) ((-1243 (-403 (-560))) . T) ((-1243 (-852)) . T)) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) 47)) (-3000 (((-1236 $) $ $) 69)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL)) (-1350 (($ $) NIL)) (-3376 (((-121) $) NIL)) (-3913 (((-121) $) NIL)) (-1881 (((-755)) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-3065 (($ $) NIL)) (-2953 (((-414 $) $) NIL)) (-4179 (((-121) $ $) NIL)) (-2729 (((-1241) $) 78)) (-4236 (($) NIL T CONST)) (-2784 (((-852) $) 17)) (-1473 (((-3 (-560) "failed") $) 75) (((-3 (-403 (-560)) "failed") $) NIL) (((-3 (-403 (-560)) "failed") $) NIL) (((-3 (-852) "failed") $) 72) (((-3 (-852) "failed") $) 72)) (-3001 (((-560) $) NIL) (((-403 (-560)) $) NIL) (((-403 (-560)) $) NIL) (((-852) $) 111) (((-852) $) 111)) (-2563 (($ $ $) NIL)) (-2342 (($ (-1149 $)) 59)) (-1823 (((-3 $ "failed") $) NIL)) (-2572 (($ $ $) NIL)) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) NIL)) (-2937 (($ $ (-755)) NIL (-2318 (|has| (-403 (-560)) (-146)) (|has| (-403 (-560)) (-364)) (|has| (-852) (-146)) (|has| (-852) (-364)))) (($ $) NIL (-2318 (|has| (-403 (-560)) (-146)) (|has| (-403 (-560)) (-364)) (|has| (-852) (-146)) (|has| (-852) (-364))))) (-3319 (((-121) $) NIL)) (-2733 (($ $) 63)) (-3504 (((-820 (-909)) $) NIL (-2318 (|has| (-403 (-560)) (-146)) (|has| (-403 (-560)) (-364)) (|has| (-852) (-146)) (|has| (-852) (-364))))) (-2642 (((-121) $) 117)) (-2738 (($ (-1149 $) $ (-1153)) 41) (($ (-1149 $) (-1153)) 94)) (-3856 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-2742 (($ (-626 $)) 61)) (-2335 (((-1149 $) $) 55) (((-1149 $) $ $) 56)) (-2582 (($ $ $) NIL) (($ (-626 $)) NIL)) (-1291 (((-1135) $) NIL)) (-1701 (($ $) 101)) (-3557 (((-121) $) NIL)) (-4353 (((-1100) $) NIL)) (-1704 (((-121) $) 62)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL)) (-4440 (($ $ $) NIL) (($ (-626 $)) NIL)) (-2747 (((-842) $) 124)) (-1601 (((-414 $) $) NIL)) (-1472 (((-820 (-909))) NIL)) (-3505 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3394 (((-909) $) 37)) (-2336 (((-3 $ "failed") $ $) NIL)) (-3456 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-4445 (((-755) $) NIL)) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL)) (-3383 (((-626 $) (-1149 $) $) 96)) (-2935 (((-3 (-755) "failed") $ $) NIL (-2318 (|has| (-403 (-560)) (-146)) (|has| (-403 (-560)) (-364)) (|has| (-852) (-146)) (|has| (-852) (-364))))) (-4016 (((-139)) NIL)) (-3662 (((-820 (-909)) $) NIL)) (-3591 (((-1149 $)) 79) (((-1149 $) $) 64)) (-3101 (($ $) NIL)) (-2801 (((-842) $) 123) (($ (-560)) 44) (($ $) NIL) (($ (-403 (-560))) NIL) (($ (-560)) 44) (($ (-403 (-560))) NIL) (($ (-403 (-560))) NIL) (($ (-852)) 118) (($ (-852)) 118)) (-2272 (((-3 $ "failed") $) NIL (-2318 (|has| (-403 (-560)) (-146)) (|has| (-403 (-560)) (-364)) (|has| (-852) (-146)) (|has| (-852) (-364))))) (-1751 (((-755)) 126)) (-2328 (((-121) $ $) NIL)) (-1535 (((-121) $) NIL)) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL)) (-3304 (($) 48 T CONST)) (-1459 (($) 38 T CONST)) (-2353 (($ $ (-755)) NIL (-2318 (|has| (-403 (-560)) (-364)) (|has| (-852) (-364)))) (($ $) NIL (-2318 (|has| (-403 (-560)) (-364)) (|has| (-852) (-364))))) (-1653 (((-121) $ $) 114)) (-1733 (($ $ $) 102) (($ $ (-403 (-560))) NIL) (($ $ (-852)) NIL)) (-1725 (($ $) 35) (($ $ $) 105)) (-1716 (($ $ $) 81)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) 53) (($ $ $) 31) (($ $ (-403 (-560))) 109) (($ (-403 (-560)) $) NIL) (($ (-403 (-560)) $) NIL) (($ $ (-403 (-560))) 109) (($ (-852) $) 103) (($ $ (-852)) 104))) -(((-847 |#1|) (-13 (-846) (-10 -8 (-15 -2747 ((-842) $)) (-15 -2784 ((-852) $)))) (-852)) (T -847)) -((-2747 (*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-847 *3)) (-14 *3 (-852)))) (-2784 (*1 *2 *1) (-12 (-5 *2 (-852)) (-5 *1 (-847 *3)) (-14 *3 *2)))) -(-13 (-846) (-10 -8 (-15 -2747 ((-842) $)) (-15 -2784 ((-852) $)))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-3000 (((-1236 $) $ $) 113)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) 40)) (-1350 (($ $) 39)) (-3376 (((-121) $) 37)) (-4357 (((-1161 (-909) (-755)) (-560)) 88)) (-2314 (((-3 $ "failed") $ $) 18)) (-3065 (($ $) 71)) (-2953 (((-414 $) $) 70)) (-4179 (((-121) $ $) 57)) (-2912 (((-755)) 98)) (-2729 (((-1241) $) 117)) (-4236 (($) 16 T CONST)) (-4107 (((-3 "prime" "polynomial" "normal" "cyclic")) 82)) (-2563 (($ $ $) 53)) (-2342 (($ (-1149 $)) 107)) (-1823 (((-3 $ "failed") $) 33)) (-1666 (($) 101)) (-2572 (($ $ $) 54)) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) 49)) (-2481 (($) 86)) (-1537 (((-121) $) 85)) (-2937 (($ $) 75) (($ $ (-755)) 74)) (-3319 (((-121) $) 69)) (-2733 (($ $) 112)) (-3504 (((-820 (-909)) $) 77) (((-909) $) 83)) (-2642 (((-121) $) 30)) (-1424 (((-3 $ "failed") $) 97)) (-2738 (($ (-1149 $) (-1153)) 116) (($ (-1149 $) $ (-1153)) 115)) (-3856 (((-3 (-626 $) "failed") (-626 $) $) 50)) (-2742 (($ (-626 $)) 110)) (-3142 (((-909) $) 100)) (-2335 (((-1149 $) $ $) 106) (((-1149 $) $) 105)) (-2582 (($ $ $) 45) (($ (-626 $)) 44)) (-1291 (((-1135) $) 9)) (-1701 (($ $) 68)) (-1394 (($) 96 T CONST)) (-1330 (($ (-909)) 99)) (-4353 (((-1100) $) 10)) (-1704 (((-121) $) 109)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) 43)) (-4440 (($ $ $) 47) (($ (-626 $)) 46)) (-2747 (((-842) $) 118)) (-2385 (((-626 (-2 (|:| -1601 (-560)) (|:| -4034 (-560))))) 89)) (-1601 (((-414 $) $) 72)) (-3505 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3394 (((-909) $) 111)) (-2336 (((-3 $ "failed") $ $) 41)) (-3456 (((-3 (-626 $) "failed") (-626 $) $) 48)) (-4445 (((-755) $) 56)) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) 55)) (-3383 (((-626 $) (-1149 $) $) 108)) (-2935 (((-3 (-755) "failed") $ $) 76) (((-755) $) 84)) (-2443 (($ $ (-755)) 94) (($ $) 92)) (-3591 (((-1149 $) $) 104) (((-1149 $)) 103)) (-2612 (($) 87)) (-3101 (($ $) 114)) (-3248 (((-3 (-1236 $) "failed") (-671 $)) 90)) (-2801 (((-842) $) 11) (($ (-560)) 27) (($ $) 42) (($ (-403 (-560))) 63)) (-2272 (((-3 $ "failed") $) 78) (($ $) 91)) (-1751 (((-755)) 28)) (-2328 (((-121) $ $) 38)) (-2464 (($ $ (-909)) 25) (($ $ (-755)) 32) (($ $ (-560)) 67)) (-3304 (($) 17 T CONST)) (-1459 (($) 29 T CONST)) (-2500 (($ $ (-755)) 95) (($ $) 93)) (-1653 (((-121) $ $) 6)) (-1733 (($ $ $) 62)) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 24) (($ $ (-755)) 31) (($ $ (-560)) 66)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 23) (($ $ (-403 (-560))) 65) (($ (-403 (-560)) $) 64))) -(((-848) (-1267)) (T -848)) -NIL -(-13 (-344) (-850)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-43 (-403 (-560))) . T) ((-43 $) . T) ((-105) . T) ((-120 (-403 (-560)) (-403 (-560))) . T) ((-120 $ $) . T) ((-137) . T) ((-146) . T) ((-600 (-842)) . T) ((-170) . T) ((-221) . T) ((-233) . T) ((-280) . T) ((-296) . T) ((-359) . T) ((-398) . T) ((-364) . T) ((-344) . T) ((-447) . T) ((-550) . T) ((-629 (-403 (-560))) . T) ((-629 $) . T) ((-699 (-403 (-560))) . T) ((-699 $) . T) ((-708) . T) ((-908) . T) ((-850) . T) ((-1045 (-403 (-560))) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1094) . T) ((-1082) . T) ((-1128) . T) ((-1191) . T)) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) 29)) (-3000 (((-1236 $) $ $) 48)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) 39)) (-1350 (($ $) NIL)) (-3376 (((-121) $) NIL)) (-3913 (((-121) $) NIL)) (-1881 (((-755)) NIL)) (-4357 (((-1161 (-909) (-755)) (-560)) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-3065 (($ $) NIL)) (-2953 (((-414 $) $) NIL)) (-4179 (((-121) $ $) NIL)) (-2912 (((-755)) 52)) (-2729 (((-1241) $) 56)) (-4236 (($) NIL T CONST)) (-1473 (((-3 |#1| "failed") $) 126)) (-3001 ((|#1| $) 85)) (-4107 (((-3 "prime" "polynomial" "normal" "cyclic")) 139)) (-2563 (($ $ $) NIL)) (-2342 (($ (-1149 $)) NIL)) (-1823 (((-3 $ "failed") $) NIL)) (-1666 (($) 82)) (-2572 (($ $ $) NIL)) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) NIL)) (-2481 (($) NIL)) (-1537 (((-121) $) NIL)) (-2937 (($ $) NIL) (($ $ (-755)) NIL)) (-3319 (((-121) $) NIL)) (-2733 (($ $) 41)) (-3504 (((-820 (-909)) $) NIL) (((-909) $) NIL)) (-2642 (((-121) $) 123)) (-1424 (((-3 $ "failed") $) NIL)) (-2738 (($ (-1149 $) (-1153)) 79) (($ (-1149 $) $ (-1153)) 99)) (-3856 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-2742 (($ (-626 $)) 104)) (-3142 (((-909) $) 134)) (-2335 (((-1149 $) $ $) NIL) (((-1149 $) $) NIL)) (-2582 (($ $ $) NIL) (($ (-626 $)) NIL)) (-1291 (((-1135) $) NIL)) (-1701 (($ $) 27)) (-1394 (($) NIL T CONST)) (-1330 (($ (-909)) 136)) (-3557 (((-121) $) NIL)) (-4353 (((-1100) $) NIL)) (-1704 (((-121) $) 40)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL)) (-4440 (($ $ $) NIL) (($ (-626 $)) NIL)) (-2747 (((-842) $) 132)) (-2385 (((-626 (-2 (|:| -1601 (-560)) (|:| -4034 (-560))))) NIL)) (-1601 (((-414 $) $) NIL)) (-1472 (((-820 (-909))) NIL)) (-3505 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3394 (((-909) $) 14)) (-2336 (((-3 $ "failed") $ $) NIL)) (-3456 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-4445 (((-755) $) NIL)) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL)) (-3383 (((-626 $) (-1149 $) $) 81)) (-2935 (((-3 (-755) "failed") $ $) NIL) (((-755) $) NIL)) (-4016 (((-139)) NIL)) (-2443 (($ $ (-755)) NIL) (($ $) NIL)) (-3662 (((-820 (-909)) $) 17)) (-3591 (((-1149 $) $) 20) (((-1149 $)) NIL)) (-2612 (($) NIL)) (-3101 (($ $) 90)) (-3248 (((-3 (-1236 $) "failed") (-671 $)) NIL)) (-2801 (((-842) $) 131) (($ (-560)) NIL) (($ $) NIL) (($ (-403 (-560))) NIL) (($ |#1|) 124)) (-2272 (((-3 $ "failed") $) NIL) (($ $) 89)) (-1751 (((-755)) 140)) (-2328 (((-121) $ $) NIL)) (-1535 (((-121) $) NIL)) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL)) (-3304 (($) 30 T CONST)) (-1459 (($) 21 T CONST)) (-2353 (($ $ (-755)) NIL (|has| |#1| (-364))) (($ $) NIL (|has| |#1| (-364)))) (-2500 (($ $ (-755)) NIL) (($ $) NIL)) (-1653 (((-121) $ $) 120)) (-1733 (($ $ $) 96) (($ $ |#1|) NIL)) (-1725 (($ $) 97) (($ $ $) 107)) (-1716 (($ $ $) 63)) (** (($ $ (-909)) 33) (($ $ (-755)) 34) (($ $ (-560)) 37)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) 111) (($ $ $) 65) (($ $ (-403 (-560))) 112) (($ (-403 (-560)) $) NIL) (($ |#1| $) 105) (($ $ |#1|) 106))) -(((-849 |#1|) (-13 (-848) (-1253 |#1|) (-10 -8 (-15 -2747 ((-842) $)))) (-344)) (T -849)) -((-2747 (*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-849 *3)) (-4 *3 (-344))))) -(-13 (-848) (-1253 |#1|) (-10 -8 (-15 -2747 ((-842) $)))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-3000 (((-1236 $) $ $) 78)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) 40)) (-1350 (($ $) 39)) (-3376 (((-121) $) 37)) (-2314 (((-3 $ "failed") $ $) 18)) (-3065 (($ $) 71)) (-2953 (((-414 $) $) 70)) (-4179 (((-121) $ $) 57)) (-2729 (((-1241) $) 74)) (-4236 (($) 16 T CONST)) (-2563 (($ $ $) 53)) (-2342 (($ (-1149 $)) 84)) (-1823 (((-3 $ "failed") $) 33)) (-2572 (($ $ $) 54)) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) 49)) (-3319 (((-121) $) 69)) (-2733 (($ $) 79)) (-2642 (((-121) $) 30)) (-2738 (($ (-1149 $) $ (-1153)) 76) (($ (-1149 $) (-1153)) 75)) (-3856 (((-3 (-626 $) "failed") (-626 $) $) 50)) (-2742 (($ (-626 $)) 81)) (-2335 (((-1149 $) $) 86) (((-1149 $) $ $) 85)) (-2582 (($ $ $) 45) (($ (-626 $)) 44)) (-1291 (((-1135) $) 9)) (-1701 (($ $) 68)) (-4353 (((-1100) $) 10)) (-1704 (((-121) $) 82)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) 43)) (-4440 (($ $ $) 47) (($ (-626 $)) 46)) (-2747 (((-842) $) 73)) (-1601 (((-414 $) $) 72)) (-3505 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3394 (((-909) $) 80)) (-2336 (((-3 $ "failed") $ $) 41)) (-3456 (((-3 (-626 $) "failed") (-626 $) $) 48)) (-4445 (((-755) $) 56)) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) 55)) (-3383 (((-626 $) (-1149 $) $) 83)) (-3591 (((-1149 $)) 88) (((-1149 $) $) 87)) (-3101 (($ $) 77)) (-2801 (((-842) $) 11) (($ (-560)) 27) (($ $) 42) (($ (-403 (-560))) 63)) (-1751 (((-755)) 28)) (-2328 (((-121) $ $) 38)) (-2464 (($ $ (-909)) 25) (($ $ (-755)) 32) (($ $ (-560)) 67)) (-3304 (($) 17 T CONST)) (-1459 (($) 29 T CONST)) (-1653 (((-121) $ $) 6)) (-1733 (($ $ $) 62)) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 24) (($ $ (-755)) 31) (($ $ (-560)) 66)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 23) (($ $ (-403 (-560))) 65) (($ (-403 (-560)) $) 64))) -(((-850) (-1267)) (T -850)) -((-3591 (*1 *2) (-12 (-5 *2 (-1149 *1)) (-4 *1 (-850)))) (-3591 (*1 *2 *1) (-12 (-5 *2 (-1149 *1)) (-4 *1 (-850)))) (-2335 (*1 *2 *1) (-12 (-5 *2 (-1149 *1)) (-4 *1 (-850)))) (-2335 (*1 *2 *1 *1) (-12 (-5 *2 (-1149 *1)) (-4 *1 (-850)))) (-2342 (*1 *1 *2) (-12 (-5 *2 (-1149 *1)) (-4 *1 (-850)))) (-3383 (*1 *2 *3 *1) (-12 (-5 *3 (-1149 *1)) (-4 *1 (-850)) (-5 *2 (-626 *1)))) (-1704 (*1 *2 *1) (-12 (-4 *1 (-850)) (-5 *2 (-121)))) (-2742 (*1 *1 *2) (-12 (-5 *2 (-626 *1)) (-4 *1 (-850)))) (-3394 (*1 *2 *1) (-12 (-4 *1 (-850)) (-5 *2 (-909)))) (-2733 (*1 *1 *1) (-4 *1 (-850))) (-3000 (*1 *2 *1 *1) (-12 (-5 *2 (-1236 *1)) (-4 *1 (-850)))) (-3101 (*1 *1 *1) (-4 *1 (-850))) (-2738 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1149 *1)) (-5 *3 (-1153)) (-4 *1 (-850)))) (-2738 (*1 *1 *2 *3) (-12 (-5 *2 (-1149 *1)) (-5 *3 (-1153)) (-4 *1 (-850)))) (-2729 (*1 *2 *1) (-12 (-4 *1 (-850)) (-5 *2 (-1241)))) (-2747 (*1 *2 *1) (-12 (-4 *1 (-850)) (-5 *2 (-842))))) -(-13 (-359) (-10 -8 (-15 -3591 ((-1149 $))) (-15 -3591 ((-1149 $) $)) (-15 -2335 ((-1149 $) $)) (-15 -2335 ((-1149 $) $ $)) (-15 -2342 ($ (-1149 $))) (-15 -3383 ((-626 $) (-1149 $) $)) (-15 -1704 ((-121) $)) (-15 -2742 ($ (-626 $))) (-15 -3394 ((-909) $)) (-15 -2733 ($ $)) (-15 -3000 ((-1236 $) $ $)) (-15 -3101 ($ $)) (-15 -2738 ($ (-1149 $) $ (-1153))) (-15 -2738 ($ (-1149 $) (-1153))) (-15 -2729 ((-1241) $)) (-15 -2747 ((-842) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-43 (-403 (-560))) . T) ((-43 $) . T) ((-105) . T) ((-120 (-403 (-560)) (-403 (-560))) . T) ((-120 $ $) . T) ((-137) . T) ((-600 (-842)) . T) ((-170) . T) ((-233) . T) ((-280) . T) ((-296) . T) ((-359) . T) ((-447) . T) ((-550) . T) ((-629 (-403 (-560))) . T) ((-629 $) . T) ((-699 (-403 (-560))) . T) ((-699 $) . T) ((-708) . T) ((-908) . T) ((-1045 (-403 (-560))) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1094) . T) ((-1082) . T) ((-1191) . T)) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-3000 (((-1236 $) $ $) 78)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) 40)) (-1350 (($ $) 39)) (-3376 (((-121) $) 37)) (-3913 (((-121) $) 111)) (-1881 (((-755)) 115)) (-2314 (((-3 $ "failed") $ $) 18)) (-3065 (($ $) 71)) (-2953 (((-414 $) $) 70)) (-4179 (((-121) $ $) 57)) (-2729 (((-1241) $) 74)) (-4236 (($) 16 T CONST)) (-1473 (((-3 (-560) "failed") $) 122) (((-3 (-403 (-560)) "failed") $) 119) (((-3 (-403 (-560)) "failed") $) 104)) (-3001 (((-560) $) 121) (((-403 (-560)) $) 118) (((-403 (-560)) $) 105)) (-2563 (($ $ $) 53)) (-2342 (($ (-1149 $)) 84)) (-1823 (((-3 $ "failed") $) 33)) (-2572 (($ $ $) 54)) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) 49)) (-2937 (($ $ (-755)) 102 (-2318 (|has| (-403 (-560)) (-146)) (|has| (-403 (-560)) (-364)))) (($ $) 101 (-2318 (|has| (-403 (-560)) (-146)) (|has| (-403 (-560)) (-364))))) (-3319 (((-121) $) 69)) (-2733 (($ $) 79)) (-3504 (((-820 (-909)) $) 99 (-2318 (|has| (-403 (-560)) (-146)) (|has| (-403 (-560)) (-364))))) (-2642 (((-121) $) 30)) (-2738 (($ (-1149 $) $ (-1153)) 76) (($ (-1149 $) (-1153)) 75)) (-3856 (((-3 (-626 $) "failed") (-626 $) $) 50)) (-2742 (($ (-626 $)) 81)) (-2335 (((-1149 $) $) 86) (((-1149 $) $ $) 85)) (-2582 (($ $ $) 45) (($ (-626 $)) 44)) (-1291 (((-1135) $) 9)) (-1701 (($ $) 68)) (-3557 (((-121) $) 112)) (-4353 (((-1100) $) 10)) (-1704 (((-121) $) 82)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) 43)) (-4440 (($ $ $) 47) (($ (-626 $)) 46)) (-2747 (((-842) $) 73)) (-1601 (((-414 $) $) 72)) (-1472 (((-820 (-909))) 114)) (-3505 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3394 (((-909) $) 80)) (-2336 (((-3 $ "failed") $ $) 41)) (-3456 (((-3 (-626 $) "failed") (-626 $) $) 48)) (-4445 (((-755) $) 56)) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) 55)) (-3383 (((-626 $) (-1149 $) $) 83)) (-2935 (((-3 (-755) "failed") $ $) 100 (-2318 (|has| (-403 (-560)) (-146)) (|has| (-403 (-560)) (-364))))) (-4016 (((-139)) 106)) (-3662 (((-820 (-909)) $) 113)) (-3591 (((-1149 $)) 88) (((-1149 $) $) 87)) (-3101 (($ $) 77)) (-2801 (((-842) $) 11) (($ (-560)) 27) (($ $) 42) (($ (-403 (-560))) 63) (($ (-560)) 123) (($ (-403 (-560))) 120) (($ (-403 (-560))) 103)) (-2272 (((-3 $ "failed") $) 98 (-2318 (|has| (-403 (-560)) (-146)) (|has| (-403 (-560)) (-364))))) (-1751 (((-755)) 28)) (-2328 (((-121) $ $) 38)) (-1535 (((-121) $) 110)) (-2464 (($ $ (-909)) 25) (($ $ (-755)) 32) (($ $ (-560)) 67)) (-3304 (($) 17 T CONST)) (-1459 (($) 29 T CONST)) (-2353 (($ $ (-755)) 117 (|has| (-403 (-560)) (-364))) (($ $) 116 (|has| (-403 (-560)) (-364)))) (-1653 (((-121) $ $) 6)) (-1733 (($ $ $) 62) (($ $ (-403 (-560))) 107)) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 24) (($ $ (-755)) 31) (($ $ (-560)) 66)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 23) (($ $ (-403 (-560))) 65) (($ (-403 (-560)) $) 64) (($ (-403 (-560)) $) 109) (($ $ (-403 (-560))) 108))) -(((-851) (-1267)) (T -851)) -NIL -(-13 (-850) (-148) (-1029 (-560)) (-1029 (-403 (-560))) (-1253 (-403 (-560)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-43 (-403 (-560))) . T) ((-43 $) . T) ((-105) . T) ((-120 (-403 (-560)) (-403 (-560))) . T) ((-120 $ $) . T) ((-137) . T) ((-146) -2318 (|has| (-403 (-560)) (-364)) (|has| (-403 (-560)) (-146))) ((-148) . T) ((-600 (-842)) . T) ((-170) . T) ((-233) . T) ((-280) . T) ((-296) . T) ((-1253 (-403 (-560))) . T) ((-359) . T) ((-398) -2318 (|has| (-403 (-560)) (-364)) (|has| (-403 (-560)) (-146))) ((-447) . T) ((-550) . T) ((-629 (-403 (-560))) . T) ((-629 $) . T) ((-699 (-403 (-560))) . T) ((-699 $) . T) ((-708) . T) ((-908) . T) ((-850) . T) ((-1029 (-403 (-560))) . T) ((-1029 (-560)) . T) ((-1045 (-403 (-560))) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1094) . T) ((-1082) . T) ((-1191) . T) ((-1243 (-403 (-560))) . T)) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) 16)) (-3000 (((-1236 $) $ $) 47)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL)) (-1350 (($ $) NIL)) (-3376 (((-121) $) NIL)) (-3913 (((-121) $) NIL)) (-1881 (((-755)) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-3065 (($ $) NIL)) (-2953 (((-414 $) $) NIL)) (-4179 (((-121) $ $) NIL)) (-2729 (((-1241) $) 51)) (-4236 (($) NIL T CONST)) (-1473 (((-3 (-560) "failed") $) 104) (((-3 (-403 (-560)) "failed") $) 106) (((-3 (-403 (-560)) "failed") $) 106)) (-3001 (((-560) $) NIL) (((-403 (-560)) $) 94) (((-403 (-560)) $) 94)) (-2563 (($ $ $) NIL)) (-2342 (($ (-1149 $)) 34)) (-1823 (((-3 $ "failed") $) NIL)) (-2572 (($ $ $) NIL)) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) NIL)) (-2937 (($ $ (-755)) NIL (-2318 (|has| (-403 (-560)) (-146)) (|has| (-403 (-560)) (-364)))) (($ $) NIL (-2318 (|has| (-403 (-560)) (-146)) (|has| (-403 (-560)) (-364))))) (-3319 (((-121) $) NIL)) (-2733 (($ $) 40)) (-3504 (((-820 (-909)) $) NIL (-2318 (|has| (-403 (-560)) (-146)) (|has| (-403 (-560)) (-364))))) (-2642 (((-121) $) 100)) (-2738 (($ (-1149 $) $ (-1153)) 79) (($ (-1149 $) (-1153)) 70) (($ (-1149 $) (-1149 $) (-909) $ (-1153)) 80)) (-3856 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-2742 (($ (-626 $)) 38)) (-2335 (((-1149 $) $) 29) (((-1149 $) $ $) 31)) (-2582 (($ $ $) NIL) (($ (-626 $)) NIL)) (-1291 (((-1135) $) NIL)) (-1701 (($ $) 86)) (-3557 (((-121) $) NIL)) (-4353 (((-1100) $) NIL)) (-1704 (((-121) $) 39)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL)) (-4440 (($ $ $) NIL) (($ (-626 $)) NIL)) (-2747 (((-842) $) 112)) (-1601 (((-414 $) $) NIL)) (-1472 (((-820 (-909))) NIL)) (-3505 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3394 (((-909) $) 30)) (-2336 (((-3 $ "failed") $ $) NIL)) (-3456 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-4445 (((-755) $) NIL)) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL)) (-3383 (((-626 $) (-1149 $) $) 72)) (-2935 (((-3 (-755) "failed") $ $) NIL (-2318 (|has| (-403 (-560)) (-146)) (|has| (-403 (-560)) (-364))))) (-4016 (((-139)) NIL)) (-3662 (((-820 (-909)) $) NIL)) (-3591 (((-1149 $)) 52) (((-1149 $) $) 41)) (-3101 (($ $) NIL)) (-2801 (((-842) $) 111) (($ (-560)) 14) (($ $) NIL) (($ (-403 (-560))) 101) (($ (-560)) 14) (($ (-403 (-560))) 101) (($ (-403 (-560))) 101)) (-2272 (((-3 $ "failed") $) NIL (-2318 (|has| (-403 (-560)) (-146)) (|has| (-403 (-560)) (-364))))) (-1751 (((-755)) 114)) (-2328 (((-121) $ $) NIL)) (-1535 (((-121) $) NIL)) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL)) (-3304 (($) 17 T CONST)) (-1459 (($) 73 T CONST)) (-2353 (($ $ (-755)) NIL (|has| (-403 (-560)) (-364))) (($ $) NIL (|has| (-403 (-560)) (-364)))) (-1653 (((-121) $ $) 97)) (-1733 (($ $ $) 78) (($ $ (-403 (-560))) NIL)) (-1725 (($ $) 19) (($ $ $) 89)) (-1716 (($ $ $) 54)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) 18) (($ $ $) 57) (($ $ (-403 (-560))) 88) (($ (-403 (-560)) $) 87) (($ (-403 (-560)) $) 87) (($ $ (-403 (-560))) 88))) -(((-852) (-13 (-851) (-10 -8 (-15 -2747 ((-842) $)) (-15 -2738 ($ (-1149 $) (-1149 $) (-909) $ (-1153)))))) (T -852)) -((-2747 (*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-852)))) (-2738 (*1 *1 *2 *2 *3 *1 *4) (-12 (-5 *2 (-1149 (-852))) (-5 *3 (-909)) (-5 *4 (-1153)) (-5 *1 (-852))))) -(-13 (-851) (-10 -8 (-15 -2747 ((-842) $)) (-15 -2738 ($ (-1149 $) (-1149 $) (-909) $ (-1153))))) -((-1999 (((-3 (-171 |#3|) "failed") (-755) (-755) |#2| |#2|) 31)) (-4275 (((-3 (-403 |#3|) "failed") (-755) (-755) |#2| |#2|) 24))) -(((-853 |#1| |#2| |#3|) (-10 -7 (-15 -4275 ((-3 (-403 |#3|) "failed") (-755) (-755) |#2| |#2|)) (-15 -1999 ((-3 (-171 |#3|) "failed") (-755) (-755) |#2| |#2|))) (-359) (-1226 |#1|) (-1211 |#1|)) (T -853)) -((-1999 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-755)) (-4 *5 (-359)) (-5 *2 (-171 *6)) (-5 *1 (-853 *5 *4 *6)) (-4 *4 (-1226 *5)) (-4 *6 (-1211 *5)))) (-4275 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-755)) (-4 *5 (-359)) (-5 *2 (-403 *6)) (-5 *1 (-853 *5 *4 *6)) (-4 *4 (-1226 *5)) (-4 *6 (-1211 *5))))) -(-10 -7 (-15 -4275 ((-3 (-403 |#3|) "failed") (-755) (-755) |#2| |#2|)) (-15 -1999 ((-3 (-171 |#3|) "failed") (-755) (-755) |#2| |#2|))) -((-4275 (((-3 (-403 (-1208 |#2| |#1|)) "failed") (-755) (-755) (-1227 |#1| |#2| |#3|)) 28) (((-3 (-403 (-1208 |#2| |#1|)) "failed") (-755) (-755) (-1227 |#1| |#2| |#3|) (-1227 |#1| |#2| |#3|)) 26))) -(((-854 |#1| |#2| |#3|) (-10 -7 (-15 -4275 ((-3 (-403 (-1208 |#2| |#1|)) "failed") (-755) (-755) (-1227 |#1| |#2| |#3|) (-1227 |#1| |#2| |#3|))) (-15 -4275 ((-3 (-403 (-1208 |#2| |#1|)) "failed") (-755) (-755) (-1227 |#1| |#2| |#3|)))) (-359) (-1153) |#1|) (T -854)) -((-4275 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-755)) (-5 *4 (-1227 *5 *6 *7)) (-4 *5 (-359)) (-14 *6 (-1153)) (-14 *7 *5) (-5 *2 (-403 (-1208 *6 *5))) (-5 *1 (-854 *5 *6 *7)))) (-4275 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-755)) (-5 *4 (-1227 *5 *6 *7)) (-4 *5 (-359)) (-14 *6 (-1153)) (-14 *7 *5) (-5 *2 (-403 (-1208 *6 *5))) (-5 *1 (-854 *5 *6 *7))))) -(-10 -7 (-15 -4275 ((-3 (-403 (-1208 |#2| |#1|)) "failed") (-755) (-755) (-1227 |#1| |#2| |#3|) (-1227 |#1| |#2| |#3|))) (-15 -4275 ((-3 (-403 (-1208 |#2| |#1|)) "failed") (-755) (-755) (-1227 |#1| |#2| |#3|)))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) 40)) (-1350 (($ $) 39)) (-3376 (((-121) $) 37)) (-2314 (((-3 $ "failed") $ $) 18)) (-2479 (($ $ (-560)) 60)) (-4179 (((-121) $ $) 57)) (-4236 (($) 16 T CONST)) (-4463 (($ (-1149 (-560)) (-560)) 59)) (-2563 (($ $ $) 53)) (-1823 (((-3 $ "failed") $) 33)) (-2792 (($ $) 62)) (-2572 (($ $ $) 54)) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) 49)) (-3504 (((-755) $) 67)) (-2642 (((-121) $) 30)) (-3856 (((-3 (-626 $) "failed") (-626 $) $) 50)) (-3254 (((-560)) 64)) (-2331 (((-560) $) 63)) (-2582 (($ $ $) 45) (($ (-626 $)) 44)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) 43)) (-4440 (($ $ $) 47) (($ (-626 $)) 46)) (-3505 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3292 (($ $ (-560)) 66)) (-2336 (((-3 $ "failed") $ $) 41)) (-3456 (((-3 (-626 $) "failed") (-626 $) $) 48)) (-4445 (((-755) $) 56)) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) 55)) (-1727 (((-1133 (-560)) $) 68)) (-2234 (($ $) 65)) (-2801 (((-842) $) 11) (($ (-560)) 27) (($ $) 42)) (-1751 (((-755)) 28)) (-2328 (((-121) $ $) 38)) (-2550 (((-560) $ (-560)) 61)) (-2464 (($ $ (-909)) 25) (($ $ (-755)) 32)) (-3304 (($) 17 T CONST)) (-1459 (($) 29 T CONST)) (-1653 (((-121) $ $) 6)) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 24) (($ $ (-755)) 31)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 23))) -(((-855 |#1|) (-1267) (-560)) (T -855)) -((-1727 (*1 *2 *1) (-12 (-4 *1 (-855 *3)) (-5 *2 (-1133 (-560))))) (-3504 (*1 *2 *1) (-12 (-4 *1 (-855 *3)) (-5 *2 (-755)))) (-3292 (*1 *1 *1 *2) (-12 (-4 *1 (-855 *3)) (-5 *2 (-560)))) (-2234 (*1 *1 *1) (-4 *1 (-855 *2))) (-3254 (*1 *2) (-12 (-4 *1 (-855 *3)) (-5 *2 (-560)))) (-2331 (*1 *2 *1) (-12 (-4 *1 (-855 *3)) (-5 *2 (-560)))) (-2792 (*1 *1 *1) (-4 *1 (-855 *2))) (-2550 (*1 *2 *1 *2) (-12 (-4 *1 (-855 *3)) (-5 *2 (-560)))) (-2479 (*1 *1 *1 *2) (-12 (-4 *1 (-855 *3)) (-5 *2 (-560)))) (-4463 (*1 *1 *2 *3) (-12 (-5 *2 (-1149 (-560))) (-5 *3 (-560)) (-4 *1 (-855 *4))))) -(-13 (-296) (-148) (-10 -8 (-15 -1727 ((-1133 (-560)) $)) (-15 -3504 ((-755) $)) (-15 -3292 ($ $ (-560))) (-15 -2234 ($ $)) (-15 -3254 ((-560))) (-15 -2331 ((-560) $)) (-15 -2792 ($ $)) (-15 -2550 ((-560) $ (-560))) (-15 -2479 ($ $ (-560))) (-15 -4463 ($ (-1149 (-560)) (-560))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-43 $) . T) ((-105) . T) ((-120 $ $) . T) ((-137) . T) ((-148) . T) ((-600 (-842)) . T) ((-170) . T) ((-280) . T) ((-296) . T) ((-447) . T) ((-550) . T) ((-629 $) . T) ((-699 $) . T) ((-708) . T) ((-908) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1094) . T) ((-1082) . T)) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL)) (-1350 (($ $) NIL)) (-3376 (((-121) $) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-2479 (($ $ (-560)) NIL)) (-4179 (((-121) $ $) NIL)) (-4236 (($) NIL T CONST)) (-4463 (($ (-1149 (-560)) (-560)) NIL)) (-2563 (($ $ $) NIL)) (-1823 (((-3 $ "failed") $) NIL)) (-2792 (($ $) NIL)) (-2572 (($ $ $) NIL)) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) NIL)) (-3504 (((-755) $) NIL)) (-2642 (((-121) $) NIL)) (-3856 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-3254 (((-560)) NIL)) (-2331 (((-560) $) NIL)) (-2582 (($ $ $) NIL) (($ (-626 $)) NIL)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL)) (-4440 (($ $ $) NIL) (($ (-626 $)) NIL)) (-3505 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3292 (($ $ (-560)) NIL)) (-2336 (((-3 $ "failed") $ $) NIL)) (-3456 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-4445 (((-755) $) NIL)) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL)) (-1727 (((-1133 (-560)) $) NIL)) (-2234 (($ $) NIL)) (-2801 (((-842) $) NIL) (($ (-560)) NIL) (($ $) NIL)) (-1751 (((-755)) NIL)) (-2328 (((-121) $ $) NIL)) (-2550 (((-560) $ (-560)) NIL)) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (-3304 (($) NIL T CONST)) (-1459 (($) NIL T CONST)) (-1653 (((-121) $ $) NIL)) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) NIL)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) NIL))) -(((-856 |#1|) (-855 |#1|) (-560)) (T -856)) -NIL -(-855 |#1|) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-1947 (((-856 |#1|) $) NIL (|has| (-856 |#1|) (-296)))) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL)) (-1350 (($ $) NIL)) (-3376 (((-121) $) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-1776 (((-414 (-1149 $)) (-1149 $)) NIL (|has| (-856 |#1|) (-896)))) (-3065 (($ $) NIL)) (-2953 (((-414 $) $) NIL)) (-1887 (((-3 (-626 (-1149 $)) "failed") (-626 (-1149 $)) (-1149 $)) NIL (|has| (-856 |#1|) (-896)))) (-4179 (((-121) $ $) NIL)) (-4235 (((-560) $) NIL (|has| (-856 |#1|) (-807)))) (-4236 (($) NIL T CONST)) (-1473 (((-3 (-856 |#1|) "failed") $) NIL) (((-3 (-1153) "failed") $) NIL (|has| (-856 |#1|) (-1029 (-1153)))) (((-3 (-403 (-560)) "failed") $) NIL (|has| (-856 |#1|) (-1029 (-560)))) (((-3 (-560) "failed") $) NIL (|has| (-856 |#1|) (-1029 (-560))))) (-3001 (((-856 |#1|) $) NIL) (((-1153) $) NIL (|has| (-856 |#1|) (-1029 (-1153)))) (((-403 (-560)) $) NIL (|has| (-856 |#1|) (-1029 (-560)))) (((-560) $) NIL (|has| (-856 |#1|) (-1029 (-560))))) (-3020 (($ $) NIL) (($ (-560) $) NIL)) (-2563 (($ $ $) NIL)) (-2616 (((-671 (-560)) (-671 $)) NIL (|has| (-856 |#1|) (-622 (-560)))) (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) NIL (|has| (-856 |#1|) (-622 (-560)))) (((-2 (|:| -3818 (-671 (-856 |#1|))) (|:| |vec| (-1236 (-856 |#1|)))) (-671 $) (-1236 $)) NIL) (((-671 (-856 |#1|)) (-671 $)) NIL)) (-1823 (((-3 $ "failed") $) NIL)) (-1666 (($) NIL (|has| (-856 |#1|) (-542)))) (-2572 (($ $ $) NIL)) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) NIL)) (-3319 (((-121) $) NIL)) (-1786 (((-121) $) NIL (|has| (-856 |#1|) (-807)))) (-2399 (((-876 (-560) $) $ (-879 (-560)) (-876 (-560) $)) NIL (|has| (-856 |#1|) (-873 (-560)))) (((-876 (-375) $) $ (-879 (-375)) (-876 (-375) $)) NIL (|has| (-856 |#1|) (-873 (-375))))) (-2642 (((-121) $) NIL)) (-1540 (($ $) NIL)) (-2132 (((-856 |#1|) $) NIL)) (-1424 (((-3 $ "failed") $) NIL (|has| (-856 |#1|) (-1128)))) (-2187 (((-121) $) NIL (|has| (-856 |#1|) (-807)))) (-3856 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-4325 (($ $ $) NIL (|has| (-856 |#1|) (-834)))) (-2501 (($ $ $) NIL (|has| (-856 |#1|) (-834)))) (-2803 (($ (-1 (-856 |#1|) (-856 |#1|)) $) NIL)) (-2582 (($ $ $) NIL) (($ (-626 $)) NIL)) (-1291 (((-1135) $) NIL)) (-1701 (($ $) NIL)) (-1394 (($) NIL (|has| (-856 |#1|) (-1128)) CONST)) (-4353 (((-1100) $) NIL)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL)) (-4440 (($ $ $) NIL) (($ (-626 $)) NIL)) (-4302 (($ $) NIL (|has| (-856 |#1|) (-296)))) (-2150 (((-856 |#1|) $) NIL (|has| (-856 |#1|) (-542)))) (-3817 (((-414 (-1149 $)) (-1149 $)) NIL (|has| (-856 |#1|) (-896)))) (-3032 (((-414 (-1149 $)) (-1149 $)) NIL (|has| (-856 |#1|) (-896)))) (-1601 (((-414 $) $) NIL)) (-3505 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2336 (((-3 $ "failed") $ $) NIL)) (-3456 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-4450 (($ $ (-626 (-856 |#1|)) (-626 (-856 |#1|))) NIL (|has| (-856 |#1|) (-298 (-856 |#1|)))) (($ $ (-856 |#1|) (-856 |#1|)) NIL (|has| (-856 |#1|) (-298 (-856 |#1|)))) (($ $ (-283 (-856 |#1|))) NIL (|has| (-856 |#1|) (-298 (-856 |#1|)))) (($ $ (-626 (-283 (-856 |#1|)))) NIL (|has| (-856 |#1|) (-298 (-856 |#1|)))) (($ $ (-626 (-1153)) (-626 (-856 |#1|))) NIL (|has| (-856 |#1|) (-515 (-1153) (-856 |#1|)))) (($ $ (-1153) (-856 |#1|)) NIL (|has| (-856 |#1|) (-515 (-1153) (-856 |#1|))))) (-4445 (((-755) $) NIL)) (-2778 (($ $ (-856 |#1|)) NIL (|has| (-856 |#1|) (-276 (-856 |#1|) (-856 |#1|))))) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL)) (-2443 (($ $) NIL (|has| (-856 |#1|) (-221))) (($ $ (-755)) NIL (|has| (-856 |#1|) (-221))) (($ $ (-1153)) NIL (|has| (-856 |#1|) (-887 (-1153)))) (($ $ (-626 (-1153))) NIL (|has| (-856 |#1|) (-887 (-1153)))) (($ $ (-1153) (-755)) NIL (|has| (-856 |#1|) (-887 (-1153)))) (($ $ (-626 (-1153)) (-626 (-755))) NIL (|has| (-856 |#1|) (-887 (-1153)))) (($ $ (-1 (-856 |#1|) (-856 |#1|)) (-755)) NIL) (($ $ (-1 (-856 |#1|) (-856 |#1|))) NIL)) (-1646 (($ $) NIL)) (-2139 (((-856 |#1|) $) NIL)) (-4255 (((-879 (-560)) $) NIL (|has| (-856 |#1|) (-601 (-879 (-560))))) (((-879 (-375)) $) NIL (|has| (-856 |#1|) (-601 (-879 (-375))))) (((-533) $) NIL (|has| (-856 |#1|) (-601 (-533)))) (((-375) $) NIL (|has| (-856 |#1|) (-1013))) (((-213) $) NIL (|has| (-856 |#1|) (-1013)))) (-1617 (((-171 (-403 (-560))) $) NIL)) (-3248 (((-3 (-1236 $) "failed") (-671 $)) NIL (-12 (|has| $ (-146)) (|has| (-856 |#1|) (-896))))) (-2801 (((-842) $) NIL) (($ (-560)) NIL) (($ $) NIL) (($ (-403 (-560))) NIL) (($ (-856 |#1|)) NIL) (($ (-1153)) NIL (|has| (-856 |#1|) (-1029 (-1153))))) (-2272 (((-3 $ "failed") $) NIL (-2318 (-12 (|has| $ (-146)) (|has| (-856 |#1|) (-896))) (|has| (-856 |#1|) (-146))))) (-1751 (((-755)) NIL)) (-4316 (((-856 |#1|) $) NIL (|has| (-856 |#1|) (-542)))) (-2328 (((-121) $ $) NIL)) (-2550 (((-403 (-560)) $ (-560)) NIL)) (-1822 (($ $) NIL (|has| (-856 |#1|) (-807)))) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL)) (-3304 (($) NIL T CONST)) (-1459 (($) NIL T CONST)) (-2500 (($ $) NIL (|has| (-856 |#1|) (-221))) (($ $ (-755)) NIL (|has| (-856 |#1|) (-221))) (($ $ (-1153)) NIL (|has| (-856 |#1|) (-887 (-1153)))) (($ $ (-626 (-1153))) NIL (|has| (-856 |#1|) (-887 (-1153)))) (($ $ (-1153) (-755)) NIL (|has| (-856 |#1|) (-887 (-1153)))) (($ $ (-626 (-1153)) (-626 (-755))) NIL (|has| (-856 |#1|) (-887 (-1153)))) (($ $ (-1 (-856 |#1|) (-856 |#1|)) (-755)) NIL) (($ $ (-1 (-856 |#1|) (-856 |#1|))) NIL)) (-1691 (((-121) $ $) NIL (|has| (-856 |#1|) (-834)))) (-1675 (((-121) $ $) NIL (|has| (-856 |#1|) (-834)))) (-1653 (((-121) $ $) NIL)) (-1683 (((-121) $ $) NIL (|has| (-856 |#1|) (-834)))) (-1667 (((-121) $ $) NIL (|has| (-856 |#1|) (-834)))) (-1733 (($ $ $) NIL) (($ (-856 |#1|) (-856 |#1|)) NIL)) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) NIL)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) NIL) (($ $ (-403 (-560))) NIL) (($ (-403 (-560)) $) NIL) (($ (-856 |#1|) $) NIL) (($ $ (-856 |#1|)) NIL))) -(((-857 |#1|) (-13 (-985 (-856 |#1|)) (-10 -8 (-15 -2550 ((-403 (-560)) $ (-560))) (-15 -1617 ((-171 (-403 (-560))) $)) (-15 -3020 ($ $)) (-15 -3020 ($ (-560) $)))) (-560)) (T -857)) -((-2550 (*1 *2 *1 *3) (-12 (-5 *2 (-403 (-560))) (-5 *1 (-857 *4)) (-14 *4 *3) (-5 *3 (-560)))) (-1617 (*1 *2 *1) (-12 (-5 *2 (-171 (-403 (-560)))) (-5 *1 (-857 *3)) (-14 *3 (-560)))) (-3020 (*1 *1 *1) (-12 (-5 *1 (-857 *2)) (-14 *2 (-560)))) (-3020 (*1 *1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-857 *3)) (-14 *3 *2)))) -(-13 (-985 (-856 |#1|)) (-10 -8 (-15 -2550 ((-403 (-560)) $ (-560))) (-15 -1617 ((-171 (-403 (-560))) $)) (-15 -3020 ($ $)) (-15 -3020 ($ (-560) $)))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-1947 ((|#2| $) NIL (|has| |#2| (-296)))) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL)) (-1350 (($ $) NIL)) (-3376 (((-121) $) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-1776 (((-414 (-1149 $)) (-1149 $)) NIL (|has| |#2| (-896)))) (-3065 (($ $) NIL)) (-2953 (((-414 $) $) NIL)) (-1887 (((-3 (-626 (-1149 $)) "failed") (-626 (-1149 $)) (-1149 $)) NIL (|has| |#2| (-896)))) (-4179 (((-121) $ $) NIL)) (-4235 (((-560) $) NIL (|has| |#2| (-807)))) (-4236 (($) NIL T CONST)) (-1473 (((-3 |#2| "failed") $) NIL) (((-3 (-1153) "failed") $) NIL (|has| |#2| (-1029 (-1153)))) (((-3 (-403 (-560)) "failed") $) NIL (|has| |#2| (-1029 (-560)))) (((-3 (-560) "failed") $) NIL (|has| |#2| (-1029 (-560))))) (-3001 ((|#2| $) NIL) (((-1153) $) NIL (|has| |#2| (-1029 (-1153)))) (((-403 (-560)) $) NIL (|has| |#2| (-1029 (-560)))) (((-560) $) NIL (|has| |#2| (-1029 (-560))))) (-3020 (($ $) 31) (($ (-560) $) 32)) (-2563 (($ $ $) NIL)) (-2616 (((-671 (-560)) (-671 $)) NIL (|has| |#2| (-622 (-560)))) (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) NIL (|has| |#2| (-622 (-560)))) (((-2 (|:| -3818 (-671 |#2|)) (|:| |vec| (-1236 |#2|))) (-671 $) (-1236 $)) NIL) (((-671 |#2|) (-671 $)) NIL)) (-1823 (((-3 $ "failed") $) 53)) (-1666 (($) NIL (|has| |#2| (-542)))) (-2572 (($ $ $) NIL)) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) NIL)) (-3319 (((-121) $) NIL)) (-1786 (((-121) $) NIL (|has| |#2| (-807)))) (-2399 (((-876 (-560) $) $ (-879 (-560)) (-876 (-560) $)) NIL (|has| |#2| (-873 (-560)))) (((-876 (-375) $) $ (-879 (-375)) (-876 (-375) $)) NIL (|has| |#2| (-873 (-375))))) (-2642 (((-121) $) NIL)) (-1540 (($ $) NIL)) (-2132 ((|#2| $) NIL)) (-1424 (((-3 $ "failed") $) NIL (|has| |#2| (-1128)))) (-2187 (((-121) $) NIL (|has| |#2| (-807)))) (-3856 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-4325 (($ $ $) NIL (|has| |#2| (-834)))) (-2501 (($ $ $) NIL (|has| |#2| (-834)))) (-2803 (($ (-1 |#2| |#2|) $) NIL)) (-2582 (($ $ $) NIL) (($ (-626 $)) NIL)) (-1291 (((-1135) $) NIL)) (-1701 (($ $) 49)) (-1394 (($) NIL (|has| |#2| (-1128)) CONST)) (-4353 (((-1100) $) NIL)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL)) (-4440 (($ $ $) NIL) (($ (-626 $)) NIL)) (-4302 (($ $) NIL (|has| |#2| (-296)))) (-2150 ((|#2| $) NIL (|has| |#2| (-542)))) (-3817 (((-414 (-1149 $)) (-1149 $)) NIL (|has| |#2| (-896)))) (-3032 (((-414 (-1149 $)) (-1149 $)) NIL (|has| |#2| (-896)))) (-1601 (((-414 $) $) NIL)) (-3505 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2336 (((-3 $ "failed") $ $) NIL)) (-3456 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-4450 (($ $ (-626 |#2|) (-626 |#2|)) NIL (|has| |#2| (-298 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-298 |#2|))) (($ $ (-283 |#2|)) NIL (|has| |#2| (-298 |#2|))) (($ $ (-626 (-283 |#2|))) NIL (|has| |#2| (-298 |#2|))) (($ $ (-626 (-1153)) (-626 |#2|)) NIL (|has| |#2| (-515 (-1153) |#2|))) (($ $ (-1153) |#2|) NIL (|has| |#2| (-515 (-1153) |#2|)))) (-4445 (((-755) $) NIL)) (-2778 (($ $ |#2|) NIL (|has| |#2| (-276 |#2| |#2|)))) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL)) (-2443 (($ $) NIL (|has| |#2| (-221))) (($ $ (-755)) NIL (|has| |#2| (-221))) (($ $ (-1153)) NIL (|has| |#2| (-887 (-1153)))) (($ $ (-626 (-1153))) NIL (|has| |#2| (-887 (-1153)))) (($ $ (-1153) (-755)) NIL (|has| |#2| (-887 (-1153)))) (($ $ (-626 (-1153)) (-626 (-755))) NIL (|has| |#2| (-887 (-1153)))) (($ $ (-1 |#2| |#2|) (-755)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1646 (($ $) NIL)) (-2139 ((|#2| $) NIL)) (-4255 (((-879 (-560)) $) NIL (|has| |#2| (-601 (-879 (-560))))) (((-879 (-375)) $) NIL (|has| |#2| (-601 (-879 (-375))))) (((-533) $) NIL (|has| |#2| (-601 (-533)))) (((-375) $) NIL (|has| |#2| (-1013))) (((-213) $) NIL (|has| |#2| (-1013)))) (-1617 (((-171 (-403 (-560))) $) 68)) (-3248 (((-3 (-1236 $) "failed") (-671 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-896))))) (-2801 (((-842) $) 85) (($ (-560)) 19) (($ $) NIL) (($ (-403 (-560))) 24) (($ |#2|) 18) (($ (-1153)) NIL (|has| |#2| (-1029 (-1153))))) (-2272 (((-3 $ "failed") $) NIL (-2318 (-12 (|has| $ (-146)) (|has| |#2| (-896))) (|has| |#2| (-146))))) (-1751 (((-755)) NIL)) (-4316 ((|#2| $) NIL (|has| |#2| (-542)))) (-2328 (((-121) $ $) NIL)) (-2550 (((-403 (-560)) $ (-560)) 60)) (-1822 (($ $) NIL (|has| |#2| (-807)))) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL)) (-3304 (($) 14 T CONST)) (-1459 (($) 16 T CONST)) (-2500 (($ $) NIL (|has| |#2| (-221))) (($ $ (-755)) NIL (|has| |#2| (-221))) (($ $ (-1153)) NIL (|has| |#2| (-887 (-1153)))) (($ $ (-626 (-1153))) NIL (|has| |#2| (-887 (-1153)))) (($ $ (-1153) (-755)) NIL (|has| |#2| (-887 (-1153)))) (($ $ (-626 (-1153)) (-626 (-755))) NIL (|has| |#2| (-887 (-1153)))) (($ $ (-1 |#2| |#2|) (-755)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1691 (((-121) $ $) NIL (|has| |#2| (-834)))) (-1675 (((-121) $ $) NIL (|has| |#2| (-834)))) (-1653 (((-121) $ $) 35)) (-1683 (((-121) $ $) NIL (|has| |#2| (-834)))) (-1667 (((-121) $ $) NIL (|has| |#2| (-834)))) (-1733 (($ $ $) 23) (($ |#2| |#2|) 54)) (-1725 (($ $) 39) (($ $ $) 41)) (-1716 (($ $ $) 37)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) 50)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) 42) (($ $ $) 44) (($ $ (-403 (-560))) NIL) (($ (-403 (-560)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL))) -(((-858 |#1| |#2|) (-13 (-985 |#2|) (-10 -8 (-15 -2550 ((-403 (-560)) $ (-560))) (-15 -1617 ((-171 (-403 (-560))) $)) (-15 -3020 ($ $)) (-15 -3020 ($ (-560) $)))) (-560) (-855 |#1|)) (T -858)) -((-2550 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-403 (-560))) (-5 *1 (-858 *4 *5)) (-5 *3 (-560)) (-4 *5 (-855 *4)))) (-1617 (*1 *2 *1) (-12 (-14 *3 (-560)) (-5 *2 (-171 (-403 (-560)))) (-5 *1 (-858 *3 *4)) (-4 *4 (-855 *3)))) (-3020 (*1 *1 *1) (-12 (-14 *2 (-560)) (-5 *1 (-858 *2 *3)) (-4 *3 (-855 *2)))) (-3020 (*1 *1 *2 *1) (-12 (-5 *2 (-560)) (-14 *3 *2) (-5 *1 (-858 *3 *4)) (-4 *4 (-855 *3))))) -(-13 (-985 |#2|) (-10 -8 (-15 -2550 ((-403 (-560)) $ (-560))) (-15 -1617 ((-171 (-403 (-560))) $)) (-15 -3020 ($ $)) (-15 -3020 ($ (-560) $)))) -((-2367 (((-237 |#2| (-849 |#1|)) (-237 |#2| |#1|) (-959 |#1|)) NIL)) (-4141 (((-237 |#2| |#1|)) 107)) (-2125 (((-626 (-959 |#1|))) 116)) (-4148 (((-626 (-959 |#1|)) (-626 (-959 |#1|))) 27)) (-4154 (((-237 |#2| |#1|) (-237 |#2| |#1|)) 35)) (-2330 (((-626 (-959 |#1|))) 60)) (-4161 (((-626 (-914 |#1|))) 58)) (-1997 (((-959 |#1|) (-626 (-849 |#1|))) 17)) (-4168 (((-959 |#1|) (-914 |#1|)) 21)) (-4173 (((-626 (-914 |#1|)) (-909)) 45 (|has| (-849 |#1|) (-364)))) (-4181 (((-626 (-914 |#1|)) (-959 |#1|)) 24)) (-4111 (((-766 (-849 |#1|)) (-237 |#2| |#1|) (-914 |#1|)) 119)) (-4188 (((-560) (-909)) 47 (|has| (-849 |#1|) (-364)))) (-2614 (((-560) (-909) (-909)) 49 (|has| (-849 |#1|) (-364)))) (-2619 (((-560) (-909)) 43 (|has| (-849 |#1|) (-364)))) (-2622 (((-2 (|:| |num| (-626 (-237 |#2| |#1|))) (|:| |den| (-237 |#2| |#1|))) (-231 (-914 |#1|))) 62) (((-626 (-403 (-237 |#2| |#1|))) (-231 (-914 |#1|)) (-755)) NIL)) (-2628 (((-231 (-914 |#1|)) (-237 |#2| |#1|)) 135)) (-2633 (((-626 (-237 |#2| (-849 |#1|))) (-231 (-914 |#1|)) (-626 (-237 |#2| |#1|))) 125)) (-2639 (((-626 (-237 |#2| |#1|)) (-231 (-914 |#1|)) (-755)) 123)) (-2027 (((-237 |#2| |#1|) (-237 |#2| |#1|) (-560)) 13)) (-2644 (((-671 |#1|) (-231 (-914 |#1|)) (-626 (-914 |#1|))) 67) (((-671 |#1|) (-231 (-914 |#1|)) (-231 (-914 |#1|))) 69)) (-2650 (((-560)) 105)) (-4390 (((-755)) 103)) (-2656 (((-1241)) 144)) (-2660 (((-1241)) 140)) (-2665 (((-2 (|:| -1943 (-560)) (|:| |num| (-237 |#2| |#1|)) (|:| |den| (-237 |#2| |#1|)) (|:| |upTo| (-560))) (-231 (-914 |#1|)) (-560) (-560)) 32)) (-2674 (((-3 |#1| "failed") (-403 (-237 |#2| |#1|)) (-914 |#1|)) 132) (((-3 |#1| "failed") (-237 |#2| |#1|) (-237 |#2| |#1|) (-914 |#1|)) 127) (((-3 |#1| "failed") (-237 |#2| |#1|) (-914 |#1|)) 96)) (-4450 ((|#1| (-403 (-237 |#2| |#1|)) (-914 |#1|)) 133) ((|#1| (-237 |#2| |#1|) (-237 |#2| |#1|) (-914 |#1|)) 63) ((|#1| (-237 |#2| |#1|) (-914 |#1|)) 98)) (-2679 (((-626 (-254 (-529 |#1| |#2| |#3|)))) 112)) (-2683 (((-626 (-254 (-529 |#1| |#2| |#3|)))) 110)) (-2686 (((-560)) 56 (|has| (-849 |#1|) (-364)))) (-2692 (((-231 (-914 |#1|))) 114)) (-2696 (((-1231 (-560) -3962) (-909)) 41 (|has| (-849 |#1|) (-364))) (((-1231 (-560) -3962)) 38 (|has| (-849 |#1|) (-364)))) (-2702 (((-1149 (-560)) (-909)) 54 (|has| (-849 |#1|) (-364))) (((-1149 (-560))) 52 (|has| (-849 |#1|) (-364))))) -(((-859 |#1| |#2| |#3|) (-10 -7 (-15 -2027 ((-237 |#2| |#1|) (-237 |#2| |#1|) (-560))) (-15 -2660 ((-1241))) (-15 -2656 ((-1241))) (-15 -4154 ((-237 |#2| |#1|) (-237 |#2| |#1|))) (-15 -2367 ((-237 |#2| (-849 |#1|)) (-237 |#2| |#1|) (-959 |#1|))) (-15 -2644 ((-671 |#1|) (-231 (-914 |#1|)) (-231 (-914 |#1|)))) (-15 -2644 ((-671 |#1|) (-231 (-914 |#1|)) (-626 (-914 |#1|)))) (-15 -4168 ((-959 |#1|) (-914 |#1|))) (-15 -4181 ((-626 (-914 |#1|)) (-959 |#1|))) (-15 -1997 ((-959 |#1|) (-626 (-849 |#1|)))) (-15 -4148 ((-626 (-959 |#1|)) (-626 (-959 |#1|)))) (-15 -4161 ((-626 (-914 |#1|)))) (-15 -4141 ((-237 |#2| |#1|))) (-15 -4390 ((-755))) (-15 -2650 ((-560))) (-15 -2679 ((-626 (-254 (-529 |#1| |#2| |#3|))))) (-15 -2683 ((-626 (-254 (-529 |#1| |#2| |#3|))))) (-15 -2330 ((-626 (-959 |#1|)))) (-15 -2125 ((-626 (-959 |#1|)))) (-15 -4111 ((-766 (-849 |#1|)) (-237 |#2| |#1|) (-914 |#1|))) (-15 -2622 ((-626 (-403 (-237 |#2| |#1|))) (-231 (-914 |#1|)) (-755))) (-15 -2622 ((-2 (|:| |num| (-626 (-237 |#2| |#1|))) (|:| |den| (-237 |#2| |#1|))) (-231 (-914 |#1|)))) (-15 -2665 ((-2 (|:| -1943 (-560)) (|:| |num| (-237 |#2| |#1|)) (|:| |den| (-237 |#2| |#1|)) (|:| |upTo| (-560))) (-231 (-914 |#1|)) (-560) (-560))) (-15 -2633 ((-626 (-237 |#2| (-849 |#1|))) (-231 (-914 |#1|)) (-626 (-237 |#2| |#1|)))) (-15 -2639 ((-626 (-237 |#2| |#1|)) (-231 (-914 |#1|)) (-755))) (-15 -4450 (|#1| (-237 |#2| |#1|) (-914 |#1|))) (-15 -4450 (|#1| (-237 |#2| |#1|) (-237 |#2| |#1|) (-914 |#1|))) (-15 -4450 (|#1| (-403 (-237 |#2| |#1|)) (-914 |#1|))) (-15 -2674 ((-3 |#1| "failed") (-237 |#2| |#1|) (-914 |#1|))) (-15 -2674 ((-3 |#1| "failed") (-237 |#2| |#1|) (-237 |#2| |#1|) (-914 |#1|))) (-15 -2674 ((-3 |#1| "failed") (-403 (-237 |#2| |#1|)) (-914 |#1|))) (-15 -2628 ((-231 (-914 |#1|)) (-237 |#2| |#1|))) (-15 -2692 ((-231 (-914 |#1|)))) (IF (|has| (-849 |#1|) (-364)) (PROGN (-15 -2702 ((-1149 (-560)))) (-15 -2702 ((-1149 (-560)) (-909))) (-15 -2686 ((-560))) (-15 -4173 ((-626 (-914 |#1|)) (-909))) (-15 -2619 ((-560) (-909))) (-15 -4188 ((-560) (-909))) (-15 -2614 ((-560) (-909) (-909))) (-15 -2696 ((-1231 (-560) -3962))) (-15 -2696 ((-1231 (-560) -3962) (-909)))) |noBranch|)) (-344) (-626 (-1153)) (-117)) (T -859)) -((-2696 (*1 *2 *3) (-12 (-5 *3 (-909)) (-5 *2 (-1231 (-560) -3962)) (-5 *1 (-859 *4 *5 *6)) (-4 (-849 *4) (-364)) (-4 *4 (-344)) (-14 *5 (-626 (-1153))) (-4 *6 (-117)))) (-2696 (*1 *2) (-12 (-5 *2 (-1231 (-560) -3962)) (-5 *1 (-859 *3 *4 *5)) (-4 (-849 *3) (-364)) (-4 *3 (-344)) (-14 *4 (-626 (-1153))) (-4 *5 (-117)))) (-2614 (*1 *2 *3 *3) (-12 (-5 *3 (-909)) (-5 *2 (-560)) (-5 *1 (-859 *4 *5 *6)) (-4 (-849 *4) (-364)) (-4 *4 (-344)) (-14 *5 (-626 (-1153))) (-4 *6 (-117)))) (-4188 (*1 *2 *3) (-12 (-5 *3 (-909)) (-5 *2 (-560)) (-5 *1 (-859 *4 *5 *6)) (-4 (-849 *4) (-364)) (-4 *4 (-344)) (-14 *5 (-626 (-1153))) (-4 *6 (-117)))) (-2619 (*1 *2 *3) (-12 (-5 *3 (-909)) (-5 *2 (-560)) (-5 *1 (-859 *4 *5 *6)) (-4 (-849 *4) (-364)) (-4 *4 (-344)) (-14 *5 (-626 (-1153))) (-4 *6 (-117)))) (-4173 (*1 *2 *3) (-12 (-5 *3 (-909)) (-5 *2 (-626 (-914 *4))) (-5 *1 (-859 *4 *5 *6)) (-4 (-849 *4) (-364)) (-4 *4 (-344)) (-14 *5 (-626 (-1153))) (-4 *6 (-117)))) (-2686 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-859 *3 *4 *5)) (-4 (-849 *3) (-364)) (-4 *3 (-344)) (-14 *4 (-626 (-1153))) (-4 *5 (-117)))) (-2702 (*1 *2 *3) (-12 (-5 *3 (-909)) (-5 *2 (-1149 (-560))) (-5 *1 (-859 *4 *5 *6)) (-4 (-849 *4) (-364)) (-4 *4 (-344)) (-14 *5 (-626 (-1153))) (-4 *6 (-117)))) (-2702 (*1 *2) (-12 (-5 *2 (-1149 (-560))) (-5 *1 (-859 *3 *4 *5)) (-4 (-849 *3) (-364)) (-4 *3 (-344)) (-14 *4 (-626 (-1153))) (-4 *5 (-117)))) (-2692 (*1 *2) (-12 (-5 *2 (-231 (-914 *3))) (-5 *1 (-859 *3 *4 *5)) (-4 *3 (-344)) (-14 *4 (-626 (-1153))) (-4 *5 (-117)))) (-2628 (*1 *2 *3) (-12 (-5 *3 (-237 *5 *4)) (-4 *4 (-344)) (-14 *5 (-626 (-1153))) (-5 *2 (-231 (-914 *4))) (-5 *1 (-859 *4 *5 *6)) (-4 *6 (-117)))) (-2674 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-403 (-237 *5 *2))) (-5 *4 (-914 *2)) (-14 *5 (-626 (-1153))) (-4 *2 (-344)) (-5 *1 (-859 *2 *5 *6)) (-4 *6 (-117)))) (-2674 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-237 *5 *2)) (-5 *4 (-914 *2)) (-14 *5 (-626 (-1153))) (-4 *2 (-344)) (-5 *1 (-859 *2 *5 *6)) (-4 *6 (-117)))) (-2674 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-237 *5 *2)) (-5 *4 (-914 *2)) (-14 *5 (-626 (-1153))) (-4 *2 (-344)) (-5 *1 (-859 *2 *5 *6)) (-4 *6 (-117)))) (-4450 (*1 *2 *3 *4) (-12 (-5 *3 (-403 (-237 *5 *2))) (-5 *4 (-914 *2)) (-14 *5 (-626 (-1153))) (-4 *2 (-344)) (-5 *1 (-859 *2 *5 *6)) (-4 *6 (-117)))) (-4450 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-237 *5 *2)) (-5 *4 (-914 *2)) (-14 *5 (-626 (-1153))) (-4 *2 (-344)) (-5 *1 (-859 *2 *5 *6)) (-4 *6 (-117)))) (-4450 (*1 *2 *3 *4) (-12 (-5 *3 (-237 *5 *2)) (-5 *4 (-914 *2)) (-14 *5 (-626 (-1153))) (-4 *2 (-344)) (-5 *1 (-859 *2 *5 *6)) (-4 *6 (-117)))) (-2639 (*1 *2 *3 *4) (-12 (-5 *3 (-231 (-914 *5))) (-5 *4 (-755)) (-4 *5 (-344)) (-5 *2 (-626 (-237 *6 *5))) (-5 *1 (-859 *5 *6 *7)) (-14 *6 (-626 (-1153))) (-4 *7 (-117)))) (-2633 (*1 *2 *3 *4) (-12 (-5 *3 (-231 (-914 *5))) (-5 *4 (-626 (-237 *6 *5))) (-4 *5 (-344)) (-14 *6 (-626 (-1153))) (-5 *2 (-626 (-237 *6 (-849 *5)))) (-5 *1 (-859 *5 *6 *7)) (-4 *7 (-117)))) (-2665 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-231 (-914 *5))) (-4 *5 (-344)) (-5 *2 (-2 (|:| -1943 (-560)) (|:| |num| (-237 *6 *5)) (|:| |den| (-237 *6 *5)) (|:| |upTo| (-560)))) (-5 *1 (-859 *5 *6 *7)) (-5 *4 (-560)) (-14 *6 (-626 (-1153))) (-4 *7 (-117)))) (-2622 (*1 *2 *3) (-12 (-5 *3 (-231 (-914 *4))) (-4 *4 (-344)) (-5 *2 (-2 (|:| |num| (-626 (-237 *5 *4))) (|:| |den| (-237 *5 *4)))) (-5 *1 (-859 *4 *5 *6)) (-14 *5 (-626 (-1153))) (-4 *6 (-117)))) (-2622 (*1 *2 *3 *4) (-12 (-5 *3 (-231 (-914 *5))) (-5 *4 (-755)) (-4 *5 (-344)) (-5 *2 (-626 (-403 (-237 *6 *5)))) (-5 *1 (-859 *5 *6 *7)) (-14 *6 (-626 (-1153))) (-4 *7 (-117)))) (-4111 (*1 *2 *3 *4) (-12 (-5 *3 (-237 *6 *5)) (-5 *4 (-914 *5)) (-4 *5 (-344)) (-14 *6 (-626 (-1153))) (-5 *2 (-766 (-849 *5))) (-5 *1 (-859 *5 *6 *7)) (-4 *7 (-117)))) (-2125 (*1 *2) (-12 (-5 *2 (-626 (-959 *3))) (-5 *1 (-859 *3 *4 *5)) (-4 *3 (-344)) (-14 *4 (-626 (-1153))) (-4 *5 (-117)))) (-2330 (*1 *2) (-12 (-5 *2 (-626 (-959 *3))) (-5 *1 (-859 *3 *4 *5)) (-4 *3 (-344)) (-14 *4 (-626 (-1153))) (-4 *5 (-117)))) (-2683 (*1 *2) (-12 (-5 *2 (-626 (-254 (-529 *3 *4 *5)))) (-5 *1 (-859 *3 *4 *5)) (-4 *3 (-344)) (-14 *4 (-626 (-1153))) (-4 *5 (-117)))) (-2679 (*1 *2) (-12 (-5 *2 (-626 (-254 (-529 *3 *4 *5)))) (-5 *1 (-859 *3 *4 *5)) (-4 *3 (-344)) (-14 *4 (-626 (-1153))) (-4 *5 (-117)))) (-2650 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-859 *3 *4 *5)) (-4 *3 (-344)) (-14 *4 (-626 (-1153))) (-4 *5 (-117)))) (-4390 (*1 *2) (-12 (-5 *2 (-755)) (-5 *1 (-859 *3 *4 *5)) (-4 *3 (-344)) (-14 *4 (-626 (-1153))) (-4 *5 (-117)))) (-4141 (*1 *2) (-12 (-5 *2 (-237 *4 *3)) (-5 *1 (-859 *3 *4 *5)) (-4 *3 (-344)) (-14 *4 (-626 (-1153))) (-4 *5 (-117)))) (-4161 (*1 *2) (-12 (-5 *2 (-626 (-914 *3))) (-5 *1 (-859 *3 *4 *5)) (-4 *3 (-344)) (-14 *4 (-626 (-1153))) (-4 *5 (-117)))) (-4148 (*1 *2 *2) (-12 (-5 *2 (-626 (-959 *3))) (-4 *3 (-344)) (-5 *1 (-859 *3 *4 *5)) (-14 *4 (-626 (-1153))) (-4 *5 (-117)))) (-1997 (*1 *2 *3) (-12 (-5 *3 (-626 (-849 *4))) (-4 *4 (-344)) (-5 *2 (-959 *4)) (-5 *1 (-859 *4 *5 *6)) (-14 *5 (-626 (-1153))) (-4 *6 (-117)))) (-4181 (*1 *2 *3) (-12 (-5 *3 (-959 *4)) (-4 *4 (-344)) (-5 *2 (-626 (-914 *4))) (-5 *1 (-859 *4 *5 *6)) (-14 *5 (-626 (-1153))) (-4 *6 (-117)))) (-4168 (*1 *2 *3) (-12 (-5 *3 (-914 *4)) (-4 *4 (-344)) (-5 *2 (-959 *4)) (-5 *1 (-859 *4 *5 *6)) (-14 *5 (-626 (-1153))) (-4 *6 (-117)))) (-2644 (*1 *2 *3 *4) (-12 (-5 *3 (-231 (-914 *5))) (-5 *4 (-626 (-914 *5))) (-4 *5 (-344)) (-5 *2 (-671 *5)) (-5 *1 (-859 *5 *6 *7)) (-14 *6 (-626 (-1153))) (-4 *7 (-117)))) (-2644 (*1 *2 *3 *3) (-12 (-5 *3 (-231 (-914 *4))) (-4 *4 (-344)) (-5 *2 (-671 *4)) (-5 *1 (-859 *4 *5 *6)) (-14 *5 (-626 (-1153))) (-4 *6 (-117)))) (-2367 (*1 *2 *3 *4) (-12 (-5 *3 (-237 *6 *5)) (-5 *4 (-959 *5)) (-4 *5 (-344)) (-14 *6 (-626 (-1153))) (-5 *2 (-237 *6 (-849 *5))) (-5 *1 (-859 *5 *6 *7)) (-4 *7 (-117)))) (-4154 (*1 *2 *2) (-12 (-5 *2 (-237 *4 *3)) (-4 *3 (-344)) (-14 *4 (-626 (-1153))) (-5 *1 (-859 *3 *4 *5)) (-4 *5 (-117)))) (-2656 (*1 *2) (-12 (-5 *2 (-1241)) (-5 *1 (-859 *3 *4 *5)) (-4 *3 (-344)) (-14 *4 (-626 (-1153))) (-4 *5 (-117)))) (-2660 (*1 *2) (-12 (-5 *2 (-1241)) (-5 *1 (-859 *3 *4 *5)) (-4 *3 (-344)) (-14 *4 (-626 (-1153))) (-4 *5 (-117)))) (-2027 (*1 *2 *2 *3) (-12 (-5 *2 (-237 *5 *4)) (-5 *3 (-560)) (-4 *4 (-344)) (-14 *5 (-626 (-1153))) (-5 *1 (-859 *4 *5 *6)) (-4 *6 (-117))))) -(-10 -7 (-15 -2027 ((-237 |#2| |#1|) (-237 |#2| |#1|) (-560))) (-15 -2660 ((-1241))) (-15 -2656 ((-1241))) (-15 -4154 ((-237 |#2| |#1|) (-237 |#2| |#1|))) (-15 -2367 ((-237 |#2| (-849 |#1|)) (-237 |#2| |#1|) (-959 |#1|))) (-15 -2644 ((-671 |#1|) (-231 (-914 |#1|)) (-231 (-914 |#1|)))) (-15 -2644 ((-671 |#1|) (-231 (-914 |#1|)) (-626 (-914 |#1|)))) (-15 -4168 ((-959 |#1|) (-914 |#1|))) (-15 -4181 ((-626 (-914 |#1|)) (-959 |#1|))) (-15 -1997 ((-959 |#1|) (-626 (-849 |#1|)))) (-15 -4148 ((-626 (-959 |#1|)) (-626 (-959 |#1|)))) (-15 -4161 ((-626 (-914 |#1|)))) (-15 -4141 ((-237 |#2| |#1|))) (-15 -4390 ((-755))) (-15 -2650 ((-560))) (-15 -2679 ((-626 (-254 (-529 |#1| |#2| |#3|))))) (-15 -2683 ((-626 (-254 (-529 |#1| |#2| |#3|))))) (-15 -2330 ((-626 (-959 |#1|)))) (-15 -2125 ((-626 (-959 |#1|)))) (-15 -4111 ((-766 (-849 |#1|)) (-237 |#2| |#1|) (-914 |#1|))) (-15 -2622 ((-626 (-403 (-237 |#2| |#1|))) (-231 (-914 |#1|)) (-755))) (-15 -2622 ((-2 (|:| |num| (-626 (-237 |#2| |#1|))) (|:| |den| (-237 |#2| |#1|))) (-231 (-914 |#1|)))) (-15 -2665 ((-2 (|:| -1943 (-560)) (|:| |num| (-237 |#2| |#1|)) (|:| |den| (-237 |#2| |#1|)) (|:| |upTo| (-560))) (-231 (-914 |#1|)) (-560) (-560))) (-15 -2633 ((-626 (-237 |#2| (-849 |#1|))) (-231 (-914 |#1|)) (-626 (-237 |#2| |#1|)))) (-15 -2639 ((-626 (-237 |#2| |#1|)) (-231 (-914 |#1|)) (-755))) (-15 -4450 (|#1| (-237 |#2| |#1|) (-914 |#1|))) (-15 -4450 (|#1| (-237 |#2| |#1|) (-237 |#2| |#1|) (-914 |#1|))) (-15 -4450 (|#1| (-403 (-237 |#2| |#1|)) (-914 |#1|))) (-15 -2674 ((-3 |#1| "failed") (-237 |#2| |#1|) (-914 |#1|))) (-15 -2674 ((-3 |#1| "failed") (-237 |#2| |#1|) (-237 |#2| |#1|) (-914 |#1|))) (-15 -2674 ((-3 |#1| "failed") (-403 (-237 |#2| |#1|)) (-914 |#1|))) (-15 -2628 ((-231 (-914 |#1|)) (-237 |#2| |#1|))) (-15 -2692 ((-231 (-914 |#1|)))) (IF (|has| (-849 |#1|) (-364)) (PROGN (-15 -2702 ((-1149 (-560)))) (-15 -2702 ((-1149 (-560)) (-909))) (-15 -2686 ((-560))) (-15 -4173 ((-626 (-914 |#1|)) (-909))) (-15 -2619 ((-560) (-909))) (-15 -4188 ((-560) (-909))) (-15 -2614 ((-560) (-909) (-909))) (-15 -2696 ((-1231 (-560) -3962))) (-15 -2696 ((-1231 (-560) -3962) (-909)))) |noBranch|)) -((-4141 (((-237 |#2| |#1|)) 83)) (-2125 (((-626 (-958 |#1|))) 92)) (-4148 (((-626 (-958 |#1|)) (-626 (-958 |#1|))) 24)) (-4154 (((-237 |#2| |#1|) (-237 |#2| |#1|)) 75)) (-2330 (((-626 (-958 |#1|))) 65)) (-4161 (((-626 (-913 |#1|))) 63)) (-1997 (((-958 |#1|) (-626 |#1|)) 27)) (-4168 (((-958 |#1|) (-913 |#1|)) 18)) (-4173 (((-626 (-913 |#1|)) (-909)) 50 (|has| |#1| (-364)))) (-4181 (((-626 (-913 |#1|)) (-958 |#1|)) 21)) (-4111 (((-766 |#1|) (-237 |#2| |#1|) (-913 |#1|)) 95)) (-4188 (((-560) (-909)) 52 (|has| |#1| (-364)))) (-2614 (((-560) (-909) (-909)) 54 (|has| |#1| (-364)))) (-2619 (((-560) (-909)) 48 (|has| |#1| (-364)))) (-2622 (((-2 (|:| |num| (-626 (-237 |#2| |#1|))) (|:| |den| (-237 |#2| |#1|))) (-231 (-913 |#1|))) 33) (((-626 (-403 (-237 |#2| |#1|))) (-231 (-913 |#1|)) (-755)) NIL)) (-2628 (((-231 (-913 |#1|)) (-237 |#2| |#1|)) 107)) (-2633 (((-626 (-237 |#2| |#1|)) (-231 (-913 |#1|)) (-626 (-237 |#2| |#1|))) 31)) (-2639 (((-626 (-237 |#2| |#1|)) (-231 (-913 |#1|)) (-755)) 97)) (-2027 (((-237 |#2| |#1|) (-237 |#2| |#1|) (-560)) 13)) (-2644 (((-671 |#1|) (-231 (-913 |#1|)) (-626 (-913 |#1|))) 38) (((-671 |#1|) (-231 (-913 |#1|)) (-231 (-913 |#1|))) 40)) (-2650 (((-560)) 81)) (-4390 (((-755)) 79)) (-2656 (((-1241)) 116)) (-2660 (((-1241)) 112)) (-2665 (((-2 (|:| -1943 (-560)) (|:| |num| (-237 |#2| |#1|)) (|:| |den| (-237 |#2| |#1|)) (|:| |upTo| (-560))) (-231 (-913 |#1|)) (-560) (-560)) NIL)) (-2674 (((-3 |#1| "failed") (-403 (-237 |#2| |#1|)) (-913 |#1|)) 105) (((-3 |#1| "failed") (-237 |#2| |#1|) (-237 |#2| |#1|) (-913 |#1|)) 104) (((-3 |#1| "failed") (-237 |#2| |#1|) (-913 |#1|)) 73)) (-4450 ((|#1| (-403 (-237 |#2| |#1|)) (-913 |#1|)) 102) ((|#1| (-237 |#2| |#1|) (-237 |#2| |#1|) (-913 |#1|)) 34) ((|#1| (-237 |#2| |#1|) (-913 |#1|)) 70)) (-2679 (((-626 (-254 (-505 |#1| |#2| |#3|)))) 88)) (-2683 (((-626 (-254 (-505 |#1| |#2| |#3|)))) 86)) (-2686 (((-560)) 61 (|has| |#1| (-364)))) (-2692 (((-231 (-913 |#1|))) 90)) (-2696 (((-1231 (-560) -3962) (-909)) 46 (|has| |#1| (-364))) (((-1231 (-560) -3962)) 43 (|has| |#1| (-364)))) (-2702 (((-1149 (-560)) (-909)) 59 (|has| |#1| (-364))) (((-1149 (-560))) 57 (|has| |#1| (-364))))) -(((-860 |#1| |#2| |#3|) (-10 -7 (-15 -2027 ((-237 |#2| |#1|) (-237 |#2| |#1|) (-560))) (-15 -2633 ((-626 (-237 |#2| |#1|)) (-231 (-913 |#1|)) (-626 (-237 |#2| |#1|)))) (-15 -2660 ((-1241))) (-15 -2656 ((-1241))) (-15 -4154 ((-237 |#2| |#1|) (-237 |#2| |#1|))) (-15 -1997 ((-958 |#1|) (-626 |#1|))) (-15 -4168 ((-958 |#1|) (-913 |#1|))) (-15 -4181 ((-626 (-913 |#1|)) (-958 |#1|))) (-15 -4148 ((-626 (-958 |#1|)) (-626 (-958 |#1|)))) (-15 -2644 ((-671 |#1|) (-231 (-913 |#1|)) (-231 (-913 |#1|)))) (-15 -2644 ((-671 |#1|) (-231 (-913 |#1|)) (-626 (-913 |#1|)))) (-15 -4161 ((-626 (-913 |#1|)))) (-15 -4141 ((-237 |#2| |#1|))) (-15 -4390 ((-755))) (-15 -2650 ((-560))) (-15 -2679 ((-626 (-254 (-505 |#1| |#2| |#3|))))) (-15 -2683 ((-626 (-254 (-505 |#1| |#2| |#3|))))) (-15 -2330 ((-626 (-958 |#1|)))) (-15 -2125 ((-626 (-958 |#1|)))) (-15 -4111 ((-766 |#1|) (-237 |#2| |#1|) (-913 |#1|))) (-15 -2622 ((-626 (-403 (-237 |#2| |#1|))) (-231 (-913 |#1|)) (-755))) (-15 -2622 ((-2 (|:| |num| (-626 (-237 |#2| |#1|))) (|:| |den| (-237 |#2| |#1|))) (-231 (-913 |#1|)))) (-15 -2665 ((-2 (|:| -1943 (-560)) (|:| |num| (-237 |#2| |#1|)) (|:| |den| (-237 |#2| |#1|)) (|:| |upTo| (-560))) (-231 (-913 |#1|)) (-560) (-560))) (-15 -2639 ((-626 (-237 |#2| |#1|)) (-231 (-913 |#1|)) (-755))) (-15 -4450 (|#1| (-237 |#2| |#1|) (-913 |#1|))) (-15 -4450 (|#1| (-237 |#2| |#1|) (-237 |#2| |#1|) (-913 |#1|))) (-15 -4450 (|#1| (-403 (-237 |#2| |#1|)) (-913 |#1|))) (-15 -2674 ((-3 |#1| "failed") (-237 |#2| |#1|) (-913 |#1|))) (-15 -2674 ((-3 |#1| "failed") (-237 |#2| |#1|) (-237 |#2| |#1|) (-913 |#1|))) (-15 -2674 ((-3 |#1| "failed") (-403 (-237 |#2| |#1|)) (-913 |#1|))) (-15 -2628 ((-231 (-913 |#1|)) (-237 |#2| |#1|))) (-15 -2692 ((-231 (-913 |#1|)))) (IF (|has| |#1| (-364)) (PROGN (-15 -2702 ((-1149 (-560)))) (-15 -2702 ((-1149 (-560)) (-909))) (-15 -2686 ((-560))) (-15 -4173 ((-626 (-913 |#1|)) (-909))) (-15 -2619 ((-560) (-909))) (-15 -4188 ((-560) (-909))) (-15 -2614 ((-560) (-909) (-909))) (-15 -2696 ((-1231 (-560) -3962))) (-15 -2696 ((-1231 (-560) -3962) (-909)))) |noBranch|)) (-359) (-626 (-1153)) (-117)) (T -860)) -((-2696 (*1 *2 *3) (-12 (-5 *3 (-909)) (-5 *2 (-1231 (-560) -3962)) (-5 *1 (-860 *4 *5 *6)) (-4 *4 (-364)) (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *6 (-117)))) (-2696 (*1 *2) (-12 (-5 *2 (-1231 (-560) -3962)) (-5 *1 (-860 *3 *4 *5)) (-4 *3 (-364)) (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *5 (-117)))) (-2614 (*1 *2 *3 *3) (-12 (-5 *3 (-909)) (-5 *2 (-560)) (-5 *1 (-860 *4 *5 *6)) (-4 *4 (-364)) (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *6 (-117)))) (-4188 (*1 *2 *3) (-12 (-5 *3 (-909)) (-5 *2 (-560)) (-5 *1 (-860 *4 *5 *6)) (-4 *4 (-364)) (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *6 (-117)))) (-2619 (*1 *2 *3) (-12 (-5 *3 (-909)) (-5 *2 (-560)) (-5 *1 (-860 *4 *5 *6)) (-4 *4 (-364)) (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *6 (-117)))) (-4173 (*1 *2 *3) (-12 (-5 *3 (-909)) (-5 *2 (-626 (-913 *4))) (-5 *1 (-860 *4 *5 *6)) (-4 *4 (-364)) (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *6 (-117)))) (-2686 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-860 *3 *4 *5)) (-4 *3 (-364)) (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *5 (-117)))) (-2702 (*1 *2 *3) (-12 (-5 *3 (-909)) (-5 *2 (-1149 (-560))) (-5 *1 (-860 *4 *5 *6)) (-4 *4 (-364)) (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *6 (-117)))) (-2702 (*1 *2) (-12 (-5 *2 (-1149 (-560))) (-5 *1 (-860 *3 *4 *5)) (-4 *3 (-364)) (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *5 (-117)))) (-2692 (*1 *2) (-12 (-5 *2 (-231 (-913 *3))) (-5 *1 (-860 *3 *4 *5)) (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *5 (-117)))) (-2628 (*1 *2 *3) (-12 (-5 *3 (-237 *5 *4)) (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-5 *2 (-231 (-913 *4))) (-5 *1 (-860 *4 *5 *6)) (-4 *6 (-117)))) (-2674 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-403 (-237 *5 *2))) (-5 *4 (-913 *2)) (-14 *5 (-626 (-1153))) (-4 *2 (-359)) (-5 *1 (-860 *2 *5 *6)) (-4 *6 (-117)))) (-2674 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-237 *5 *2)) (-5 *4 (-913 *2)) (-14 *5 (-626 (-1153))) (-4 *2 (-359)) (-5 *1 (-860 *2 *5 *6)) (-4 *6 (-117)))) (-2674 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-237 *5 *2)) (-5 *4 (-913 *2)) (-14 *5 (-626 (-1153))) (-4 *2 (-359)) (-5 *1 (-860 *2 *5 *6)) (-4 *6 (-117)))) (-4450 (*1 *2 *3 *4) (-12 (-5 *3 (-403 (-237 *5 *2))) (-5 *4 (-913 *2)) (-14 *5 (-626 (-1153))) (-4 *2 (-359)) (-5 *1 (-860 *2 *5 *6)) (-4 *6 (-117)))) (-4450 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-237 *5 *2)) (-5 *4 (-913 *2)) (-14 *5 (-626 (-1153))) (-4 *2 (-359)) (-5 *1 (-860 *2 *5 *6)) (-4 *6 (-117)))) (-4450 (*1 *2 *3 *4) (-12 (-5 *3 (-237 *5 *2)) (-5 *4 (-913 *2)) (-14 *5 (-626 (-1153))) (-4 *2 (-359)) (-5 *1 (-860 *2 *5 *6)) (-4 *6 (-117)))) (-2639 (*1 *2 *3 *4) (-12 (-5 *3 (-231 (-913 *5))) (-5 *4 (-755)) (-4 *5 (-359)) (-5 *2 (-626 (-237 *6 *5))) (-5 *1 (-860 *5 *6 *7)) (-14 *6 (-626 (-1153))) (-4 *7 (-117)))) (-2665 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-231 (-913 *5))) (-4 *5 (-359)) (-5 *2 (-2 (|:| -1943 (-560)) (|:| |num| (-237 *6 *5)) (|:| |den| (-237 *6 *5)) (|:| |upTo| (-560)))) (-5 *1 (-860 *5 *6 *7)) (-5 *4 (-560)) (-14 *6 (-626 (-1153))) (-4 *7 (-117)))) (-2622 (*1 *2 *3) (-12 (-5 *3 (-231 (-913 *4))) (-4 *4 (-359)) (-5 *2 (-2 (|:| |num| (-626 (-237 *5 *4))) (|:| |den| (-237 *5 *4)))) (-5 *1 (-860 *4 *5 *6)) (-14 *5 (-626 (-1153))) (-4 *6 (-117)))) (-2622 (*1 *2 *3 *4) (-12 (-5 *3 (-231 (-913 *5))) (-5 *4 (-755)) (-4 *5 (-359)) (-5 *2 (-626 (-403 (-237 *6 *5)))) (-5 *1 (-860 *5 *6 *7)) (-14 *6 (-626 (-1153))) (-4 *7 (-117)))) (-4111 (*1 *2 *3 *4) (-12 (-5 *3 (-237 *6 *5)) (-5 *4 (-913 *5)) (-4 *5 (-359)) (-14 *6 (-626 (-1153))) (-5 *2 (-766 *5)) (-5 *1 (-860 *5 *6 *7)) (-4 *7 (-117)))) (-2125 (*1 *2) (-12 (-5 *2 (-626 (-958 *3))) (-5 *1 (-860 *3 *4 *5)) (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *5 (-117)))) (-2330 (*1 *2) (-12 (-5 *2 (-626 (-958 *3))) (-5 *1 (-860 *3 *4 *5)) (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *5 (-117)))) (-2683 (*1 *2) (-12 (-5 *2 (-626 (-254 (-505 *3 *4 *5)))) (-5 *1 (-860 *3 *4 *5)) (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *5 (-117)))) (-2679 (*1 *2) (-12 (-5 *2 (-626 (-254 (-505 *3 *4 *5)))) (-5 *1 (-860 *3 *4 *5)) (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *5 (-117)))) (-2650 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-860 *3 *4 *5)) (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *5 (-117)))) (-4390 (*1 *2) (-12 (-5 *2 (-755)) (-5 *1 (-860 *3 *4 *5)) (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *5 (-117)))) (-4141 (*1 *2) (-12 (-5 *2 (-237 *4 *3)) (-5 *1 (-860 *3 *4 *5)) (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *5 (-117)))) (-4161 (*1 *2) (-12 (-5 *2 (-626 (-913 *3))) (-5 *1 (-860 *3 *4 *5)) (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *5 (-117)))) (-2644 (*1 *2 *3 *4) (-12 (-5 *3 (-231 (-913 *5))) (-5 *4 (-626 (-913 *5))) (-4 *5 (-359)) (-5 *2 (-671 *5)) (-5 *1 (-860 *5 *6 *7)) (-14 *6 (-626 (-1153))) (-4 *7 (-117)))) (-2644 (*1 *2 *3 *3) (-12 (-5 *3 (-231 (-913 *4))) (-4 *4 (-359)) (-5 *2 (-671 *4)) (-5 *1 (-860 *4 *5 *6)) (-14 *5 (-626 (-1153))) (-4 *6 (-117)))) (-4148 (*1 *2 *2) (-12 (-5 *2 (-626 (-958 *3))) (-4 *3 (-359)) (-5 *1 (-860 *3 *4 *5)) (-14 *4 (-626 (-1153))) (-4 *5 (-117)))) (-4181 (*1 *2 *3) (-12 (-5 *3 (-958 *4)) (-4 *4 (-359)) (-5 *2 (-626 (-913 *4))) (-5 *1 (-860 *4 *5 *6)) (-14 *5 (-626 (-1153))) (-4 *6 (-117)))) (-4168 (*1 *2 *3) (-12 (-5 *3 (-913 *4)) (-4 *4 (-359)) (-5 *2 (-958 *4)) (-5 *1 (-860 *4 *5 *6)) (-14 *5 (-626 (-1153))) (-4 *6 (-117)))) (-1997 (*1 *2 *3) (-12 (-5 *3 (-626 *4)) (-4 *4 (-359)) (-5 *2 (-958 *4)) (-5 *1 (-860 *4 *5 *6)) (-14 *5 (-626 (-1153))) (-4 *6 (-117)))) (-4154 (*1 *2 *2) (-12 (-5 *2 (-237 *4 *3)) (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-5 *1 (-860 *3 *4 *5)) (-4 *5 (-117)))) (-2656 (*1 *2) (-12 (-5 *2 (-1241)) (-5 *1 (-860 *3 *4 *5)) (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *5 (-117)))) (-2660 (*1 *2) (-12 (-5 *2 (-1241)) (-5 *1 (-860 *3 *4 *5)) (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *5 (-117)))) (-2633 (*1 *2 *3 *2) (-12 (-5 *2 (-626 (-237 *5 *4))) (-5 *3 (-231 (-913 *4))) (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-5 *1 (-860 *4 *5 *6)) (-4 *6 (-117)))) (-2027 (*1 *2 *2 *3) (-12 (-5 *2 (-237 *5 *4)) (-5 *3 (-560)) (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-5 *1 (-860 *4 *5 *6)) (-4 *6 (-117))))) -(-10 -7 (-15 -2027 ((-237 |#2| |#1|) (-237 |#2| |#1|) (-560))) (-15 -2633 ((-626 (-237 |#2| |#1|)) (-231 (-913 |#1|)) (-626 (-237 |#2| |#1|)))) (-15 -2660 ((-1241))) (-15 -2656 ((-1241))) (-15 -4154 ((-237 |#2| |#1|) (-237 |#2| |#1|))) (-15 -1997 ((-958 |#1|) (-626 |#1|))) (-15 -4168 ((-958 |#1|) (-913 |#1|))) (-15 -4181 ((-626 (-913 |#1|)) (-958 |#1|))) (-15 -4148 ((-626 (-958 |#1|)) (-626 (-958 |#1|)))) (-15 -2644 ((-671 |#1|) (-231 (-913 |#1|)) (-231 (-913 |#1|)))) (-15 -2644 ((-671 |#1|) (-231 (-913 |#1|)) (-626 (-913 |#1|)))) (-15 -4161 ((-626 (-913 |#1|)))) (-15 -4141 ((-237 |#2| |#1|))) (-15 -4390 ((-755))) (-15 -2650 ((-560))) (-15 -2679 ((-626 (-254 (-505 |#1| |#2| |#3|))))) (-15 -2683 ((-626 (-254 (-505 |#1| |#2| |#3|))))) (-15 -2330 ((-626 (-958 |#1|)))) (-15 -2125 ((-626 (-958 |#1|)))) (-15 -4111 ((-766 |#1|) (-237 |#2| |#1|) (-913 |#1|))) (-15 -2622 ((-626 (-403 (-237 |#2| |#1|))) (-231 (-913 |#1|)) (-755))) (-15 -2622 ((-2 (|:| |num| (-626 (-237 |#2| |#1|))) (|:| |den| (-237 |#2| |#1|))) (-231 (-913 |#1|)))) (-15 -2665 ((-2 (|:| -1943 (-560)) (|:| |num| (-237 |#2| |#1|)) (|:| |den| (-237 |#2| |#1|)) (|:| |upTo| (-560))) (-231 (-913 |#1|)) (-560) (-560))) (-15 -2639 ((-626 (-237 |#2| |#1|)) (-231 (-913 |#1|)) (-755))) (-15 -4450 (|#1| (-237 |#2| |#1|) (-913 |#1|))) (-15 -4450 (|#1| (-237 |#2| |#1|) (-237 |#2| |#1|) (-913 |#1|))) (-15 -4450 (|#1| (-403 (-237 |#2| |#1|)) (-913 |#1|))) (-15 -2674 ((-3 |#1| "failed") (-237 |#2| |#1|) (-913 |#1|))) (-15 -2674 ((-3 |#1| "failed") (-237 |#2| |#1|) (-237 |#2| |#1|) (-913 |#1|))) (-15 -2674 ((-3 |#1| "failed") (-403 (-237 |#2| |#1|)) (-913 |#1|))) (-15 -2628 ((-231 (-913 |#1|)) (-237 |#2| |#1|))) (-15 -2692 ((-231 (-913 |#1|)))) (IF (|has| |#1| (-364)) (PROGN (-15 -2702 ((-1149 (-560)))) (-15 -2702 ((-1149 (-560)) (-909))) (-15 -2686 ((-560))) (-15 -4173 ((-626 (-913 |#1|)) (-909))) (-15 -2619 ((-560) (-909))) (-15 -4188 ((-560) (-909))) (-15 -2614 ((-560) (-909) (-909))) (-15 -2696 ((-1231 (-560) -3962))) (-15 -2696 ((-1231 (-560) -3962) (-909)))) |noBranch|)) -((-2601 (((-121) $ $) NIL)) (-2855 (((-560) $) 15)) (-3070 (($ (-156)) 11)) (-2752 (($ (-156)) 12)) (-1291 (((-1135) $) NIL)) (-3597 (((-156) $) 13)) (-4353 (((-1100) $) NIL)) (-2050 (($ (-156)) 9)) (-4130 (($ (-156)) 8)) (-2801 (((-842) $) 23) (($ (-156)) 16)) (-3622 (($ (-156)) 10)) (-1653 (((-121) $ $) NIL))) -(((-861) (-13 (-1082) (-10 -8 (-15 -4130 ($ (-156))) (-15 -2050 ($ (-156))) (-15 -3622 ($ (-156))) (-15 -3070 ($ (-156))) (-15 -2752 ($ (-156))) (-15 -3597 ((-156) $)) (-15 -2855 ((-560) $)) (-15 -2801 ($ (-156)))))) (T -861)) -((-4130 (*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-861)))) (-2050 (*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-861)))) (-3622 (*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-861)))) (-3070 (*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-861)))) (-2752 (*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-861)))) (-3597 (*1 *2 *1) (-12 (-5 *2 (-156)) (-5 *1 (-861)))) (-2855 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-861)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-861))))) -(-13 (-1082) (-10 -8 (-15 -4130 ($ (-156))) (-15 -2050 ($ (-156))) (-15 -3622 ($ (-156))) (-15 -3070 ($ (-156))) (-15 -2752 ($ (-156))) (-15 -3597 ((-156) $)) (-15 -2855 ((-560) $)) (-15 -2801 ($ (-156))))) -((-2801 (((-304 (-560)) (-403 (-945 (-53)))) 21) (((-304 (-560)) (-945 (-53))) 16))) -(((-862) (-10 -7 (-15 -2801 ((-304 (-560)) (-945 (-53)))) (-15 -2801 ((-304 (-560)) (-403 (-945 (-53))))))) (T -862)) -((-2801 (*1 *2 *3) (-12 (-5 *3 (-403 (-945 (-53)))) (-5 *2 (-304 (-560))) (-5 *1 (-862)))) (-2801 (*1 *2 *3) (-12 (-5 *3 (-945 (-53))) (-5 *2 (-304 (-560))) (-5 *1 (-862))))) -(-10 -7 (-15 -2801 ((-304 (-560)) (-945 (-53)))) (-15 -2801 ((-304 (-560)) (-403 (-945 (-53)))))) -((-4111 ((|#6| |#3| |#7| (-560)) 36) ((|#6| |#3| |#3| |#7|) 33) ((|#6| |#3| |#7|) 31) ((|#6| |#3| (-626 |#6|)) 28))) -(((-863 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4111 (|#6| |#3| (-626 |#6|))) (-15 -4111 (|#6| |#3| |#7|)) (-15 -4111 (|#6| |#3| |#3| |#7|)) (-15 -4111 (|#6| |#3| |#7| (-560)))) (-359) (-626 (-1153)) (-942 |#1| |#4| (-844 |#2|)) (-226 (-2271 |#2|) (-755)) (-963 |#1|) (-633 |#1|) (-912 |#1| |#6|)) (T -863)) -((-4111 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-560)) (-4 *6 (-359)) (-14 *7 (-626 (-1153))) (-4 *8 (-226 (-2271 *7) (-755))) (-4 *2 (-633 *6)) (-5 *1 (-863 *6 *7 *3 *8 *9 *2 *4)) (-4 *3 (-942 *6 *8 (-844 *7))) (-4 *9 (-963 *6)) (-4 *4 (-912 *6 *2)))) (-4111 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-359)) (-14 *6 (-626 (-1153))) (-4 *7 (-226 (-2271 *6) (-755))) (-4 *2 (-633 *5)) (-5 *1 (-863 *5 *6 *3 *7 *8 *2 *4)) (-4 *3 (-942 *5 *7 (-844 *6))) (-4 *8 (-963 *5)) (-4 *4 (-912 *5 *2)))) (-4111 (*1 *2 *3 *4) (-12 (-4 *5 (-359)) (-14 *6 (-626 (-1153))) (-4 *7 (-226 (-2271 *6) (-755))) (-4 *2 (-633 *5)) (-5 *1 (-863 *5 *6 *3 *7 *8 *2 *4)) (-4 *3 (-942 *5 *7 (-844 *6))) (-4 *8 (-963 *5)) (-4 *4 (-912 *5 *2)))) (-4111 (*1 *2 *3 *4) (-12 (-5 *4 (-626 *2)) (-4 *5 (-359)) (-14 *6 (-626 (-1153))) (-4 *7 (-226 (-2271 *6) (-755))) (-4 *2 (-633 *5)) (-5 *1 (-863 *5 *6 *3 *7 *8 *2 *9)) (-4 *3 (-942 *5 *7 (-844 *6))) (-4 *8 (-963 *5)) (-4 *9 (-912 *5 *2))))) -(-10 -7 (-15 -4111 (|#6| |#3| (-626 |#6|))) (-15 -4111 (|#6| |#3| |#7|)) (-15 -4111 (|#6| |#3| |#3| |#7|)) (-15 -4111 (|#6| |#3| |#7| (-560)))) -((-2803 (((-865 |#2|) (-1 |#2| |#1|) (-865 |#1|)) 14))) -(((-864 |#1| |#2|) (-10 -7 (-15 -2803 ((-865 |#2|) (-1 |#2| |#1|) (-865 |#1|)))) (-1187) (-1187)) (T -864)) -((-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-865 *5)) (-4 *5 (-1187)) (-4 *6 (-1187)) (-5 *2 (-865 *6)) (-5 *1 (-864 *5 *6))))) -(-10 -7 (-15 -2803 ((-865 |#2|) (-1 |#2| |#1|) (-865 |#1|)))) -((-2857 (($ |#1| |#1|) 8)) (-3192 ((|#1| $ (-755)) 10))) -(((-865 |#1|) (-10 -8 (-15 -2857 ($ |#1| |#1|)) (-15 -3192 (|#1| $ (-755)))) (-1187)) (T -865)) -((-3192 (*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *1 (-865 *2)) (-4 *2 (-1187)))) (-2857 (*1 *1 *2 *2) (-12 (-5 *1 (-865 *2)) (-4 *2 (-1187))))) -(-10 -8 (-15 -2857 ($ |#1| |#1|)) (-15 -3192 (|#1| $ (-755)))) -((-2803 (((-867 |#2|) (-1 |#2| |#1|) (-867 |#1|)) 14))) -(((-866 |#1| |#2|) (-10 -7 (-15 -2803 ((-867 |#2|) (-1 |#2| |#1|) (-867 |#1|)))) (-1187) (-1187)) (T -866)) -((-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-867 *5)) (-4 *5 (-1187)) (-4 *6 (-1187)) (-5 *2 (-867 *6)) (-5 *1 (-866 *5 *6))))) -(-10 -7 (-15 -2803 ((-867 |#2|) (-1 |#2| |#1|) (-867 |#1|)))) -((-2857 (($ |#1| |#1| |#1|) 8)) (-3192 ((|#1| $ (-755)) 10))) -(((-867 |#1|) (-10 -8 (-15 -2857 ($ |#1| |#1| |#1|)) (-15 -3192 (|#1| $ (-755)))) (-1187)) (T -867)) -((-3192 (*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *1 (-867 *2)) (-4 *2 (-1187)))) (-2857 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-867 *2)) (-4 *2 (-1187))))) -(-10 -8 (-15 -2857 ($ |#1| |#1| |#1|)) (-15 -3192 (|#1| $ (-755)))) -((-2803 (((-869 |#2|) (-1 |#2| |#1|) (-869 |#1|)) 14))) -(((-868 |#1| |#2|) (-10 -7 (-15 -2803 ((-869 |#2|) (-1 |#2| |#1|) (-869 |#1|)))) (-1187) (-1187)) (T -868)) -((-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-869 *5)) (-4 *5 (-1187)) (-4 *6 (-1187)) (-5 *2 (-869 *6)) (-5 *1 (-868 *5 *6))))) -(-10 -7 (-15 -2803 ((-869 |#2|) (-1 |#2| |#1|) (-869 |#1|)))) -((-4261 (($ |#1| |#1| |#1|) 8)) (-3192 ((|#1| $ (-755)) 10))) -(((-869 |#1|) (-10 -8 (-15 -4261 ($ |#1| |#1| |#1|)) (-15 -3192 (|#1| $ (-755)))) (-1187)) (T -869)) -((-3192 (*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *1 (-869 *2)) (-4 *2 (-1187)))) (-4261 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-869 *2)) (-4 *2 (-1187))))) -(-10 -8 (-15 -4261 ($ |#1| |#1| |#1|)) (-15 -3192 (|#1| $ (-755)))) -((-1640 (((-1133 (-626 (-560))) (-626 (-560)) (-1133 (-626 (-560)))) 30)) (-4246 (((-1133 (-626 (-560))) (-626 (-560)) (-626 (-560))) 26)) (-4309 (((-1133 (-626 (-560))) (-626 (-560))) 39) (((-1133 (-626 (-560))) (-626 (-560)) (-626 (-560))) 38)) (-2217 (((-1133 (-626 (-560))) (-560)) 40)) (-2712 (((-1133 (-626 (-560))) (-560) (-560)) 22) (((-1133 (-626 (-560))) (-560)) 16) (((-1133 (-626 (-560))) (-560) (-560) (-560)) 12)) (-3184 (((-1133 (-626 (-560))) (-1133 (-626 (-560)))) 24)) (-3101 (((-626 (-560)) (-626 (-560))) 23))) -(((-870) (-10 -7 (-15 -2712 ((-1133 (-626 (-560))) (-560) (-560) (-560))) (-15 -2712 ((-1133 (-626 (-560))) (-560))) (-15 -2712 ((-1133 (-626 (-560))) (-560) (-560))) (-15 -3101 ((-626 (-560)) (-626 (-560)))) (-15 -3184 ((-1133 (-626 (-560))) (-1133 (-626 (-560))))) (-15 -4246 ((-1133 (-626 (-560))) (-626 (-560)) (-626 (-560)))) (-15 -1640 ((-1133 (-626 (-560))) (-626 (-560)) (-1133 (-626 (-560))))) (-15 -4309 ((-1133 (-626 (-560))) (-626 (-560)) (-626 (-560)))) (-15 -4309 ((-1133 (-626 (-560))) (-626 (-560)))) (-15 -2217 ((-1133 (-626 (-560))) (-560))))) (T -870)) -((-2217 (*1 *2 *3) (-12 (-5 *2 (-1133 (-626 (-560)))) (-5 *1 (-870)) (-5 *3 (-560)))) (-4309 (*1 *2 *3) (-12 (-5 *2 (-1133 (-626 (-560)))) (-5 *1 (-870)) (-5 *3 (-626 (-560))))) (-4309 (*1 *2 *3 *3) (-12 (-5 *2 (-1133 (-626 (-560)))) (-5 *1 (-870)) (-5 *3 (-626 (-560))))) (-1640 (*1 *2 *3 *2) (-12 (-5 *2 (-1133 (-626 (-560)))) (-5 *3 (-626 (-560))) (-5 *1 (-870)))) (-4246 (*1 *2 *3 *3) (-12 (-5 *2 (-1133 (-626 (-560)))) (-5 *1 (-870)) (-5 *3 (-626 (-560))))) (-3184 (*1 *2 *2) (-12 (-5 *2 (-1133 (-626 (-560)))) (-5 *1 (-870)))) (-3101 (*1 *2 *2) (-12 (-5 *2 (-626 (-560))) (-5 *1 (-870)))) (-2712 (*1 *2 *3 *3) (-12 (-5 *2 (-1133 (-626 (-560)))) (-5 *1 (-870)) (-5 *3 (-560)))) (-2712 (*1 *2 *3) (-12 (-5 *2 (-1133 (-626 (-560)))) (-5 *1 (-870)) (-5 *3 (-560)))) (-2712 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1133 (-626 (-560)))) (-5 *1 (-870)) (-5 *3 (-560))))) -(-10 -7 (-15 -2712 ((-1133 (-626 (-560))) (-560) (-560) (-560))) (-15 -2712 ((-1133 (-626 (-560))) (-560))) (-15 -2712 ((-1133 (-626 (-560))) (-560) (-560))) (-15 -3101 ((-626 (-560)) (-626 (-560)))) (-15 -3184 ((-1133 (-626 (-560))) (-1133 (-626 (-560))))) (-15 -4246 ((-1133 (-626 (-560))) (-626 (-560)) (-626 (-560)))) (-15 -1640 ((-1133 (-626 (-560))) (-626 (-560)) (-1133 (-626 (-560))))) (-15 -4309 ((-1133 (-626 (-560))) (-626 (-560)) (-626 (-560)))) (-15 -4309 ((-1133 (-626 (-560))) (-626 (-560)))) (-15 -2217 ((-1133 (-626 (-560))) (-560)))) -((-4255 (((-879 (-375)) $) 9 (|has| |#1| (-601 (-879 (-375))))) (((-879 (-560)) $) 8 (|has| |#1| (-601 (-879 (-560))))))) -(((-871 |#1|) (-1267) (-1187)) (T -871)) -NIL -(-13 (-10 -7 (IF (|has| |t#1| (-601 (-879 (-560)))) (-6 (-601 (-879 (-560)))) |noBranch|) (IF (|has| |t#1| (-601 (-879 (-375)))) (-6 (-601 (-879 (-375)))) |noBranch|))) -(((-601 (-879 (-375))) |has| |#1| (-601 (-879 (-375)))) ((-601 (-879 (-560))) |has| |#1| (-601 (-879 (-560))))) -((-2601 (((-121) $ $) NIL)) (-1721 (($) 14)) (-2753 (($ (-876 |#1| |#2|) (-876 |#1| |#3|)) 27)) (-4429 (((-876 |#1| |#3|) $) 16)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-3936 (((-121) $) 22)) (-1384 (($) 19)) (-2801 (((-842) $) 30)) (-2756 (((-876 |#1| |#2|) $) 15)) (-1653 (((-121) $ $) 25))) -(((-872 |#1| |#2| |#3|) (-13 (-1082) (-10 -8 (-15 -3936 ((-121) $)) (-15 -1384 ($)) (-15 -1721 ($)) (-15 -2753 ($ (-876 |#1| |#2|) (-876 |#1| |#3|))) (-15 -2756 ((-876 |#1| |#2|) $)) (-15 -4429 ((-876 |#1| |#3|) $)))) (-1082) (-1082) (-650 |#2|)) (T -872)) -((-3936 (*1 *2 *1) (-12 (-4 *4 (-1082)) (-5 *2 (-121)) (-5 *1 (-872 *3 *4 *5)) (-4 *3 (-1082)) (-4 *5 (-650 *4)))) (-1384 (*1 *1) (-12 (-4 *3 (-1082)) (-5 *1 (-872 *2 *3 *4)) (-4 *2 (-1082)) (-4 *4 (-650 *3)))) (-1721 (*1 *1) (-12 (-4 *3 (-1082)) (-5 *1 (-872 *2 *3 *4)) (-4 *2 (-1082)) (-4 *4 (-650 *3)))) (-2753 (*1 *1 *2 *3) (-12 (-5 *2 (-876 *4 *5)) (-5 *3 (-876 *4 *6)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-650 *5)) (-5 *1 (-872 *4 *5 *6)))) (-2756 (*1 *2 *1) (-12 (-4 *4 (-1082)) (-5 *2 (-876 *3 *4)) (-5 *1 (-872 *3 *4 *5)) (-4 *3 (-1082)) (-4 *5 (-650 *4)))) (-4429 (*1 *2 *1) (-12 (-4 *4 (-1082)) (-5 *2 (-876 *3 *5)) (-5 *1 (-872 *3 *4 *5)) (-4 *3 (-1082)) (-4 *5 (-650 *4))))) -(-13 (-1082) (-10 -8 (-15 -3936 ((-121) $)) (-15 -1384 ($)) (-15 -1721 ($)) (-15 -2753 ($ (-876 |#1| |#2|) (-876 |#1| |#3|))) (-15 -2756 ((-876 |#1| |#2|) $)) (-15 -4429 ((-876 |#1| |#3|) $)))) -((-2601 (((-121) $ $) 7)) (-2399 (((-876 |#1| $) $ (-879 |#1|) (-876 |#1| $)) 12)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-2801 (((-842) $) 11)) (-1653 (((-121) $ $) 6))) -(((-873 |#1|) (-1267) (-1082)) (T -873)) -((-2399 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-876 *4 *1)) (-5 *3 (-879 *4)) (-4 *1 (-873 *4)) (-4 *4 (-1082))))) -(-13 (-1082) (-10 -8 (-15 -2399 ((-876 |t#1| $) $ (-879 |t#1|) (-876 |t#1| $))))) -(((-105) . T) ((-600 (-842)) . T) ((-1082) . T)) -((-3178 (((-121) (-626 |#2|) |#3|) 22) (((-121) |#2| |#3|) 17)) (-4256 (((-876 |#1| |#2|) |#2| |#3|) 42 (-12 (-3186 (|has| |#2| (-1029 (-1153)))) (-3186 (|has| |#2| (-1039))))) (((-626 (-283 (-945 |#2|))) |#2| |#3|) 41 (-12 (|has| |#2| (-1039)) (-3186 (|has| |#2| (-1029 (-1153)))))) (((-626 (-283 |#2|)) |#2| |#3|) 34 (|has| |#2| (-1029 (-1153)))) (((-872 |#1| |#2| (-626 |#2|)) (-626 |#2|) |#3|) 20))) -(((-874 |#1| |#2| |#3|) (-10 -7 (-15 -3178 ((-121) |#2| |#3|)) (-15 -3178 ((-121) (-626 |#2|) |#3|)) (-15 -4256 ((-872 |#1| |#2| (-626 |#2|)) (-626 |#2|) |#3|)) (IF (|has| |#2| (-1029 (-1153))) (-15 -4256 ((-626 (-283 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1039)) (-15 -4256 ((-626 (-283 (-945 |#2|))) |#2| |#3|)) (-15 -4256 ((-876 |#1| |#2|) |#2| |#3|))))) (-1082) (-873 |#1|) (-601 (-879 |#1|))) (T -874)) -((-4256 (*1 *2 *3 *4) (-12 (-4 *5 (-1082)) (-5 *2 (-876 *5 *3)) (-5 *1 (-874 *5 *3 *4)) (-3186 (-4 *3 (-1029 (-1153)))) (-3186 (-4 *3 (-1039))) (-4 *3 (-873 *5)) (-4 *4 (-601 (-879 *5))))) (-4256 (*1 *2 *3 *4) (-12 (-4 *5 (-1082)) (-5 *2 (-626 (-283 (-945 *3)))) (-5 *1 (-874 *5 *3 *4)) (-4 *3 (-1039)) (-3186 (-4 *3 (-1029 (-1153)))) (-4 *3 (-873 *5)) (-4 *4 (-601 (-879 *5))))) (-4256 (*1 *2 *3 *4) (-12 (-4 *5 (-1082)) (-5 *2 (-626 (-283 *3))) (-5 *1 (-874 *5 *3 *4)) (-4 *3 (-1029 (-1153))) (-4 *3 (-873 *5)) (-4 *4 (-601 (-879 *5))))) (-4256 (*1 *2 *3 *4) (-12 (-4 *5 (-1082)) (-4 *6 (-873 *5)) (-5 *2 (-872 *5 *6 (-626 *6))) (-5 *1 (-874 *5 *6 *4)) (-5 *3 (-626 *6)) (-4 *4 (-601 (-879 *5))))) (-3178 (*1 *2 *3 *4) (-12 (-5 *3 (-626 *6)) (-4 *6 (-873 *5)) (-4 *5 (-1082)) (-5 *2 (-121)) (-5 *1 (-874 *5 *6 *4)) (-4 *4 (-601 (-879 *5))))) (-3178 (*1 *2 *3 *4) (-12 (-4 *5 (-1082)) (-5 *2 (-121)) (-5 *1 (-874 *5 *3 *4)) (-4 *3 (-873 *5)) (-4 *4 (-601 (-879 *5)))))) -(-10 -7 (-15 -3178 ((-121) |#2| |#3|)) (-15 -3178 ((-121) (-626 |#2|) |#3|)) (-15 -4256 ((-872 |#1| |#2| (-626 |#2|)) (-626 |#2|) |#3|)) (IF (|has| |#2| (-1029 (-1153))) (-15 -4256 ((-626 (-283 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1039)) (-15 -4256 ((-626 (-283 (-945 |#2|))) |#2| |#3|)) (-15 -4256 ((-876 |#1| |#2|) |#2| |#3|))))) -((-2803 (((-876 |#1| |#3|) (-1 |#3| |#2|) (-876 |#1| |#2|)) 21))) -(((-875 |#1| |#2| |#3|) (-10 -7 (-15 -2803 ((-876 |#1| |#3|) (-1 |#3| |#2|) (-876 |#1| |#2|)))) (-1082) (-1082) (-1082)) (T -875)) -((-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-876 *5 *6)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-876 *5 *7)) (-5 *1 (-875 *5 *6 *7))))) -(-10 -7 (-15 -2803 ((-876 |#1| |#3|) (-1 |#3| |#2|) (-876 |#1| |#2|)))) -((-2601 (((-121) $ $) NIL)) (-1749 (($ $ $) 37)) (-2067 (((-3 (-121) "failed") $ (-879 |#1|)) 34)) (-1721 (($) 11)) (-1291 (((-1135) $) NIL)) (-3421 (($ (-879 |#1|) |#2| $) 20)) (-4353 (((-1100) $) NIL)) (-3798 (((-3 |#2| "failed") (-879 |#1|) $) 48)) (-3936 (((-121) $) 14)) (-1384 (($) 12)) (-1631 (((-626 (-2 (|:| -3655 (-1153)) (|:| -2371 |#2|))) $) 25)) (-4162 (($ (-626 (-2 (|:| -3655 (-1153)) (|:| -2371 |#2|)))) 23)) (-2801 (((-842) $) 42)) (-2040 (($ (-879 |#1|) |#2| $ |#2|) 46)) (-3391 (($ (-879 |#1|) |#2| $) 45)) (-1653 (((-121) $ $) 39))) -(((-876 |#1| |#2|) (-13 (-1082) (-10 -8 (-15 -3936 ((-121) $)) (-15 -1384 ($)) (-15 -1721 ($)) (-15 -1749 ($ $ $)) (-15 -3798 ((-3 |#2| "failed") (-879 |#1|) $)) (-15 -3391 ($ (-879 |#1|) |#2| $)) (-15 -3421 ($ (-879 |#1|) |#2| $)) (-15 -2040 ($ (-879 |#1|) |#2| $ |#2|)) (-15 -1631 ((-626 (-2 (|:| -3655 (-1153)) (|:| -2371 |#2|))) $)) (-15 -4162 ($ (-626 (-2 (|:| -3655 (-1153)) (|:| -2371 |#2|))))) (-15 -2067 ((-3 (-121) "failed") $ (-879 |#1|))))) (-1082) (-1082)) (T -876)) -((-3936 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-876 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082)))) (-1384 (*1 *1) (-12 (-5 *1 (-876 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-1082)))) (-1721 (*1 *1) (-12 (-5 *1 (-876 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-1082)))) (-1749 (*1 *1 *1 *1) (-12 (-5 *1 (-876 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-1082)))) (-3798 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-879 *4)) (-4 *4 (-1082)) (-4 *2 (-1082)) (-5 *1 (-876 *4 *2)))) (-3391 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-879 *4)) (-4 *4 (-1082)) (-5 *1 (-876 *4 *3)) (-4 *3 (-1082)))) (-3421 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-879 *4)) (-4 *4 (-1082)) (-5 *1 (-876 *4 *3)) (-4 *3 (-1082)))) (-2040 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-879 *4)) (-4 *4 (-1082)) (-5 *1 (-876 *4 *3)) (-4 *3 (-1082)))) (-1631 (*1 *2 *1) (-12 (-5 *2 (-626 (-2 (|:| -3655 (-1153)) (|:| -2371 *4)))) (-5 *1 (-876 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082)))) (-4162 (*1 *1 *2) (-12 (-5 *2 (-626 (-2 (|:| -3655 (-1153)) (|:| -2371 *4)))) (-4 *4 (-1082)) (-5 *1 (-876 *3 *4)) (-4 *3 (-1082)))) (-2067 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-879 *4)) (-4 *4 (-1082)) (-5 *2 (-121)) (-5 *1 (-876 *4 *5)) (-4 *5 (-1082))))) -(-13 (-1082) (-10 -8 (-15 -3936 ((-121) $)) (-15 -1384 ($)) (-15 -1721 ($)) (-15 -1749 ($ $ $)) (-15 -3798 ((-3 |#2| "failed") (-879 |#1|) $)) (-15 -3391 ($ (-879 |#1|) |#2| $)) (-15 -3421 ($ (-879 |#1|) |#2| $)) (-15 -2040 ($ (-879 |#1|) |#2| $ |#2|)) (-15 -1631 ((-626 (-2 (|:| -3655 (-1153)) (|:| -2371 |#2|))) $)) (-15 -4162 ($ (-626 (-2 (|:| -3655 (-1153)) (|:| -2371 |#2|))))) (-15 -2067 ((-3 (-121) "failed") $ (-879 |#1|))))) -((-1408 (((-879 |#1|) (-879 |#1|) (-626 (-1153)) (-1 (-121) (-626 |#2|))) 30) (((-879 |#1|) (-879 |#1|) (-626 (-1 (-121) |#2|))) 42) (((-879 |#1|) (-879 |#1|) (-1 (-121) |#2|)) 33)) (-2067 (((-121) (-626 |#2|) (-879 |#1|)) 39) (((-121) |#2| (-879 |#1|)) 35)) (-3019 (((-1 (-121) |#2|) (-879 |#1|)) 14)) (-3828 (((-626 |#2|) (-879 |#1|)) 23)) (-1522 (((-879 |#1|) (-879 |#1|) |#2|) 19))) -(((-877 |#1| |#2|) (-10 -7 (-15 -1408 ((-879 |#1|) (-879 |#1|) (-1 (-121) |#2|))) (-15 -1408 ((-879 |#1|) (-879 |#1|) (-626 (-1 (-121) |#2|)))) (-15 -1408 ((-879 |#1|) (-879 |#1|) (-626 (-1153)) (-1 (-121) (-626 |#2|)))) (-15 -3019 ((-1 (-121) |#2|) (-879 |#1|))) (-15 -2067 ((-121) |#2| (-879 |#1|))) (-15 -2067 ((-121) (-626 |#2|) (-879 |#1|))) (-15 -1522 ((-879 |#1|) (-879 |#1|) |#2|)) (-15 -3828 ((-626 |#2|) (-879 |#1|)))) (-1082) (-1187)) (T -877)) -((-3828 (*1 *2 *3) (-12 (-5 *3 (-879 *4)) (-4 *4 (-1082)) (-5 *2 (-626 *5)) (-5 *1 (-877 *4 *5)) (-4 *5 (-1187)))) (-1522 (*1 *2 *2 *3) (-12 (-5 *2 (-879 *4)) (-4 *4 (-1082)) (-5 *1 (-877 *4 *3)) (-4 *3 (-1187)))) (-2067 (*1 *2 *3 *4) (-12 (-5 *3 (-626 *6)) (-5 *4 (-879 *5)) (-4 *5 (-1082)) (-4 *6 (-1187)) (-5 *2 (-121)) (-5 *1 (-877 *5 *6)))) (-2067 (*1 *2 *3 *4) (-12 (-5 *4 (-879 *5)) (-4 *5 (-1082)) (-5 *2 (-121)) (-5 *1 (-877 *5 *3)) (-4 *3 (-1187)))) (-3019 (*1 *2 *3) (-12 (-5 *3 (-879 *4)) (-4 *4 (-1082)) (-5 *2 (-1 (-121) *5)) (-5 *1 (-877 *4 *5)) (-4 *5 (-1187)))) (-1408 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-879 *5)) (-5 *3 (-626 (-1153))) (-5 *4 (-1 (-121) (-626 *6))) (-4 *5 (-1082)) (-4 *6 (-1187)) (-5 *1 (-877 *5 *6)))) (-1408 (*1 *2 *2 *3) (-12 (-5 *2 (-879 *4)) (-5 *3 (-626 (-1 (-121) *5))) (-4 *4 (-1082)) (-4 *5 (-1187)) (-5 *1 (-877 *4 *5)))) (-1408 (*1 *2 *2 *3) (-12 (-5 *2 (-879 *4)) (-5 *3 (-1 (-121) *5)) (-4 *4 (-1082)) (-4 *5 (-1187)) (-5 *1 (-877 *4 *5))))) -(-10 -7 (-15 -1408 ((-879 |#1|) (-879 |#1|) (-1 (-121) |#2|))) (-15 -1408 ((-879 |#1|) (-879 |#1|) (-626 (-1 (-121) |#2|)))) (-15 -1408 ((-879 |#1|) (-879 |#1|) (-626 (-1153)) (-1 (-121) (-626 |#2|)))) (-15 -3019 ((-1 (-121) |#2|) (-879 |#1|))) (-15 -2067 ((-121) |#2| (-879 |#1|))) (-15 -2067 ((-121) (-626 |#2|) (-879 |#1|))) (-15 -1522 ((-879 |#1|) (-879 |#1|) |#2|)) (-15 -3828 ((-626 |#2|) (-879 |#1|)))) -((-2803 (((-879 |#2|) (-1 |#2| |#1|) (-879 |#1|)) 17))) -(((-878 |#1| |#2|) (-10 -7 (-15 -2803 ((-879 |#2|) (-1 |#2| |#1|) (-879 |#1|)))) (-1082) (-1082)) (T -878)) -((-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-879 *5)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-5 *2 (-879 *6)) (-5 *1 (-878 *5 *6))))) -(-10 -7 (-15 -2803 ((-879 |#2|) (-1 |#2| |#1|) (-879 |#1|)))) -((-2601 (((-121) $ $) NIL)) (-2848 (($ $ (-626 (-57))) 62)) (-1654 (((-626 $) $) 116)) (-1893 (((-2 (|:| |var| (-626 (-1153))) (|:| |pred| (-57))) $) 22)) (-2631 (((-121) $) 29)) (-3985 (($ $ (-626 (-1153)) (-57)) 24)) (-3321 (($ $ (-626 (-57))) 61)) (-1473 (((-3 |#1| "failed") $) 59) (((-3 (-1153) "failed") $) 138)) (-3001 ((|#1| $) 55) (((-1153) $) NIL)) (-2915 (($ $) 106)) (-3033 (((-121) $) 45)) (-4074 (((-626 (-57)) $) 43)) (-1714 (($ (-1153) (-121) (-121) (-121)) 63)) (-1370 (((-3 (-626 $) "failed") (-626 $)) 70)) (-4166 (((-121) $) 48)) (-3496 (((-121) $) 47)) (-1291 (((-1135) $) NIL)) (-3665 (((-3 (-626 $) "failed") $) 34)) (-2379 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 41)) (-3004 (((-3 (-2 (|:| |val| $) (|:| -4034 $)) "failed") $) 81)) (-2327 (((-3 (-626 $) "failed") $) 31)) (-4225 (((-3 (-626 $) "failed") $ (-123)) 105) (((-3 (-2 (|:| -1882 (-123)) (|:| |arg| (-626 $))) "failed") $) 93)) (-3403 (((-3 (-626 $) "failed") $) 35)) (-2913 (((-3 (-2 (|:| |val| $) (|:| -4034 (-755))) "failed") $) 38)) (-3265 (((-121) $) 28)) (-4353 (((-1100) $) NIL)) (-3061 (((-121) $) 20)) (-2158 (((-121) $) 44)) (-3218 (((-626 (-57)) $) 109)) (-2787 (((-121) $) 46)) (-2778 (($ (-123) (-626 $)) 90)) (-4023 (((-755) $) 27)) (-2813 (($ $) 60)) (-4255 (($ (-626 $)) 57)) (-2524 (((-121) $) 25)) (-2801 (((-842) $) 50) (($ |#1|) 18) (($ (-1153)) 64)) (-1522 (($ $ (-57)) 108)) (-3304 (($) 89 T CONST)) (-1459 (($) 71 T CONST)) (-1653 (((-121) $ $) 77)) (-1733 (($ $ $) 98)) (-1716 (($ $ $) 102)) (** (($ $ (-755)) 97) (($ $ $) 51)) (* (($ $ $) 103))) -(((-879 |#1|) (-13 (-1082) (-1029 |#1|) (-1029 (-1153)) (-10 -8 (-15 0 ($) -3565) (-15 1 ($) -3565) (-15 -2327 ((-3 (-626 $) "failed") $)) (-15 -3665 ((-3 (-626 $) "failed") $)) (-15 -4225 ((-3 (-626 $) "failed") $ (-123))) (-15 -4225 ((-3 (-2 (|:| -1882 (-123)) (|:| |arg| (-626 $))) "failed") $)) (-15 -2913 ((-3 (-2 (|:| |val| $) (|:| -4034 (-755))) "failed") $)) (-15 -2379 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3403 ((-3 (-626 $) "failed") $)) (-15 -3004 ((-3 (-2 (|:| |val| $) (|:| -4034 $)) "failed") $)) (-15 -2778 ($ (-123) (-626 $))) (-15 -1716 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-755))) (-15 ** ($ $ $)) (-15 -1733 ($ $ $)) (-15 -4023 ((-755) $)) (-15 -4255 ($ (-626 $))) (-15 -2813 ($ $)) (-15 -3265 ((-121) $)) (-15 -3033 ((-121) $)) (-15 -2631 ((-121) $)) (-15 -2524 ((-121) $)) (-15 -2787 ((-121) $)) (-15 -3496 ((-121) $)) (-15 -4166 ((-121) $)) (-15 -2158 ((-121) $)) (-15 -4074 ((-626 (-57)) $)) (-15 -3321 ($ $ (-626 (-57)))) (-15 -2848 ($ $ (-626 (-57)))) (-15 -1714 ($ (-1153) (-121) (-121) (-121))) (-15 -3985 ($ $ (-626 (-1153)) (-57))) (-15 -1893 ((-2 (|:| |var| (-626 (-1153))) (|:| |pred| (-57))) $)) (-15 -3061 ((-121) $)) (-15 -2915 ($ $)) (-15 -1522 ($ $ (-57))) (-15 -3218 ((-626 (-57)) $)) (-15 -1654 ((-626 $) $)) (-15 -1370 ((-3 (-626 $) "failed") (-626 $))))) (-1082)) (T -879)) -((-3304 (*1 *1) (-12 (-5 *1 (-879 *2)) (-4 *2 (-1082)))) (-1459 (*1 *1) (-12 (-5 *1 (-879 *2)) (-4 *2 (-1082)))) (-2327 (*1 *2 *1) (|partial| -12 (-5 *2 (-626 (-879 *3))) (-5 *1 (-879 *3)) (-4 *3 (-1082)))) (-3665 (*1 *2 *1) (|partial| -12 (-5 *2 (-626 (-879 *3))) (-5 *1 (-879 *3)) (-4 *3 (-1082)))) (-4225 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-123)) (-5 *2 (-626 (-879 *4))) (-5 *1 (-879 *4)) (-4 *4 (-1082)))) (-4225 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -1882 (-123)) (|:| |arg| (-626 (-879 *3))))) (-5 *1 (-879 *3)) (-4 *3 (-1082)))) (-2913 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-879 *3)) (|:| -4034 (-755)))) (-5 *1 (-879 *3)) (-4 *3 (-1082)))) (-2379 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-879 *3)) (|:| |den| (-879 *3)))) (-5 *1 (-879 *3)) (-4 *3 (-1082)))) (-3403 (*1 *2 *1) (|partial| -12 (-5 *2 (-626 (-879 *3))) (-5 *1 (-879 *3)) (-4 *3 (-1082)))) (-3004 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-879 *3)) (|:| -4034 (-879 *3)))) (-5 *1 (-879 *3)) (-4 *3 (-1082)))) (-2778 (*1 *1 *2 *3) (-12 (-5 *2 (-123)) (-5 *3 (-626 (-879 *4))) (-5 *1 (-879 *4)) (-4 *4 (-1082)))) (-1716 (*1 *1 *1 *1) (-12 (-5 *1 (-879 *2)) (-4 *2 (-1082)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-879 *2)) (-4 *2 (-1082)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-755)) (-5 *1 (-879 *3)) (-4 *3 (-1082)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-879 *2)) (-4 *2 (-1082)))) (-1733 (*1 *1 *1 *1) (-12 (-5 *1 (-879 *2)) (-4 *2 (-1082)))) (-4023 (*1 *2 *1) (-12 (-5 *2 (-755)) (-5 *1 (-879 *3)) (-4 *3 (-1082)))) (-4255 (*1 *1 *2) (-12 (-5 *2 (-626 (-879 *3))) (-5 *1 (-879 *3)) (-4 *3 (-1082)))) (-2813 (*1 *1 *1) (-12 (-5 *1 (-879 *2)) (-4 *2 (-1082)))) (-3265 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-879 *3)) (-4 *3 (-1082)))) (-3033 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-879 *3)) (-4 *3 (-1082)))) (-2631 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-879 *3)) (-4 *3 (-1082)))) (-2524 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-879 *3)) (-4 *3 (-1082)))) (-2787 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-879 *3)) (-4 *3 (-1082)))) (-3496 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-879 *3)) (-4 *3 (-1082)))) (-4166 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-879 *3)) (-4 *3 (-1082)))) (-2158 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-879 *3)) (-4 *3 (-1082)))) (-4074 (*1 *2 *1) (-12 (-5 *2 (-626 (-57))) (-5 *1 (-879 *3)) (-4 *3 (-1082)))) (-3321 (*1 *1 *1 *2) (-12 (-5 *2 (-626 (-57))) (-5 *1 (-879 *3)) (-4 *3 (-1082)))) (-2848 (*1 *1 *1 *2) (-12 (-5 *2 (-626 (-57))) (-5 *1 (-879 *3)) (-4 *3 (-1082)))) (-1714 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-121)) (-5 *1 (-879 *4)) (-4 *4 (-1082)))) (-3985 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-626 (-1153))) (-5 *3 (-57)) (-5 *1 (-879 *4)) (-4 *4 (-1082)))) (-1893 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-626 (-1153))) (|:| |pred| (-57)))) (-5 *1 (-879 *3)) (-4 *3 (-1082)))) (-3061 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-879 *3)) (-4 *3 (-1082)))) (-2915 (*1 *1 *1) (-12 (-5 *1 (-879 *2)) (-4 *2 (-1082)))) (-1522 (*1 *1 *1 *2) (-12 (-5 *2 (-57)) (-5 *1 (-879 *3)) (-4 *3 (-1082)))) (-3218 (*1 *2 *1) (-12 (-5 *2 (-626 (-57))) (-5 *1 (-879 *3)) (-4 *3 (-1082)))) (-1654 (*1 *2 *1) (-12 (-5 *2 (-626 (-879 *3))) (-5 *1 (-879 *3)) (-4 *3 (-1082)))) (-1370 (*1 *2 *2) (|partial| -12 (-5 *2 (-626 (-879 *3))) (-5 *1 (-879 *3)) (-4 *3 (-1082))))) -(-13 (-1082) (-1029 |#1|) (-1029 (-1153)) (-10 -8 (-15 (-3304) ($) -3565) (-15 (-1459) ($) -3565) (-15 -2327 ((-3 (-626 $) "failed") $)) (-15 -3665 ((-3 (-626 $) "failed") $)) (-15 -4225 ((-3 (-626 $) "failed") $ (-123))) (-15 -4225 ((-3 (-2 (|:| -1882 (-123)) (|:| |arg| (-626 $))) "failed") $)) (-15 -2913 ((-3 (-2 (|:| |val| $) (|:| -4034 (-755))) "failed") $)) (-15 -2379 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3403 ((-3 (-626 $) "failed") $)) (-15 -3004 ((-3 (-2 (|:| |val| $) (|:| -4034 $)) "failed") $)) (-15 -2778 ($ (-123) (-626 $))) (-15 -1716 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-755))) (-15 ** ($ $ $)) (-15 -1733 ($ $ $)) (-15 -4023 ((-755) $)) (-15 -4255 ($ (-626 $))) (-15 -2813 ($ $)) (-15 -3265 ((-121) $)) (-15 -3033 ((-121) $)) (-15 -2631 ((-121) $)) (-15 -2524 ((-121) $)) (-15 -2787 ((-121) $)) (-15 -3496 ((-121) $)) (-15 -4166 ((-121) $)) (-15 -2158 ((-121) $)) (-15 -4074 ((-626 (-57)) $)) (-15 -3321 ($ $ (-626 (-57)))) (-15 -2848 ($ $ (-626 (-57)))) (-15 -1714 ($ (-1153) (-121) (-121) (-121))) (-15 -3985 ($ $ (-626 (-1153)) (-57))) (-15 -1893 ((-2 (|:| |var| (-626 (-1153))) (|:| |pred| (-57))) $)) (-15 -3061 ((-121) $)) (-15 -2915 ($ $)) (-15 -1522 ($ $ (-57))) (-15 -3218 ((-626 (-57)) $)) (-15 -1654 ((-626 $) $)) (-15 -1370 ((-3 (-626 $) "failed") (-626 $))))) -((-2601 (((-121) $ $) NIL)) (-1499 (((-626 |#1|) $) 16)) (-1868 (((-121) $) 38)) (-1473 (((-3 (-655 |#1|) "failed") $) 41)) (-3001 (((-655 |#1|) $) 39)) (-2877 (($ $) 18)) (-4325 (($ $ $) NIL)) (-2501 (($ $ $) NIL)) (-1387 (((-626 (-655 |#1|)) $) 23)) (-2349 (((-755) $) 45)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2824 (((-655 |#1|) $) 17)) (-2801 (((-842) $) 37) (($ (-655 |#1|)) 21) (((-806 |#1|) $) 27) (($ |#1|) 20)) (-1459 (($) 8 T CONST)) (-1691 (((-121) $ $) NIL)) (-1675 (((-121) $ $) NIL)) (-1653 (((-121) $ $) 11)) (-1683 (((-121) $ $) NIL)) (-1667 (((-121) $ $) 48))) -(((-880 |#1|) (-13 (-834) (-1029 (-655 |#1|)) (-10 -8 (-15 1 ($) -3565) (-15 -2801 ((-806 |#1|) $)) (-15 -2801 ($ |#1|)) (-15 -2824 ((-655 |#1|) $)) (-15 -2349 ((-755) $)) (-15 -1387 ((-626 (-655 |#1|)) $)) (-15 -2877 ($ $)) (-15 -1868 ((-121) $)) (-15 -1499 ((-626 |#1|) $)))) (-834)) (T -880)) -((-1459 (*1 *1) (-12 (-5 *1 (-880 *2)) (-4 *2 (-834)))) (-2801 (*1 *2 *1) (-12 (-5 *2 (-806 *3)) (-5 *1 (-880 *3)) (-4 *3 (-834)))) (-2801 (*1 *1 *2) (-12 (-5 *1 (-880 *2)) (-4 *2 (-834)))) (-2824 (*1 *2 *1) (-12 (-5 *2 (-655 *3)) (-5 *1 (-880 *3)) (-4 *3 (-834)))) (-2349 (*1 *2 *1) (-12 (-5 *2 (-755)) (-5 *1 (-880 *3)) (-4 *3 (-834)))) (-1387 (*1 *2 *1) (-12 (-5 *2 (-626 (-655 *3))) (-5 *1 (-880 *3)) (-4 *3 (-834)))) (-2877 (*1 *1 *1) (-12 (-5 *1 (-880 *2)) (-4 *2 (-834)))) (-1868 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-880 *3)) (-4 *3 (-834)))) (-1499 (*1 *2 *1) (-12 (-5 *2 (-626 *3)) (-5 *1 (-880 *3)) (-4 *3 (-834))))) -(-13 (-834) (-1029 (-655 |#1|)) (-10 -8 (-15 (-1459) ($) -3565) (-15 -2801 ((-806 |#1|) $)) (-15 -2801 ($ |#1|)) (-15 -2824 ((-655 |#1|) $)) (-15 -2349 ((-755) $)) (-15 -1387 ((-626 (-655 |#1|)) $)) (-15 -2877 ($ $)) (-15 -1868 ((-121) $)) (-15 -1499 ((-626 |#1|) $)))) -((-4262 ((|#1| |#1| |#1|) 19))) -(((-881 |#1| |#2|) (-10 -7 (-15 -4262 (|#1| |#1| |#1|))) (-1211 |#2|) (-1039)) (T -881)) -((-4262 (*1 *2 *2 *2) (-12 (-4 *3 (-1039)) (-5 *1 (-881 *2 *3)) (-4 *2 (-1211 *3))))) -(-10 -7 (-15 -4262 (|#1| |#1| |#1|))) -((-2601 (((-121) $ $) 7)) (-3262 (((-2 (|:| -3262 (-375)) (|:| |explanations| (-1135))) (-1051) (-2 (|:| |pde| (-626 (-304 (-213)))) (|:| |constraints| (-626 (-2 (|:| |start| (-213)) (|:| |finish| (-213)) (|:| |grid| (-755)) (|:| |boundaryType| (-560)) (|:| |dStart| (-671 (-213))) (|:| |dFinish| (-671 (-213)))))) (|:| |f| (-626 (-626 (-304 (-213))))) (|:| |st| (-1135)) (|:| |tol| (-213)))) 13)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-2801 (((-842) $) 11)) (-1345 (((-1027) (-2 (|:| |pde| (-626 (-304 (-213)))) (|:| |constraints| (-626 (-2 (|:| |start| (-213)) (|:| |finish| (-213)) (|:| |grid| (-755)) (|:| |boundaryType| (-560)) (|:| |dStart| (-671 (-213))) (|:| |dFinish| (-671 (-213)))))) (|:| |f| (-626 (-626 (-304 (-213))))) (|:| |st| (-1135)) (|:| |tol| (-213)))) 12)) (-1653 (((-121) $ $) 6))) -(((-882) (-1267)) (T -882)) -((-3262 (*1 *2 *3 *4) (-12 (-4 *1 (-882)) (-5 *3 (-1051)) (-5 *4 (-2 (|:| |pde| (-626 (-304 (-213)))) (|:| |constraints| (-626 (-2 (|:| |start| (-213)) (|:| |finish| (-213)) (|:| |grid| (-755)) (|:| |boundaryType| (-560)) (|:| |dStart| (-671 (-213))) (|:| |dFinish| (-671 (-213)))))) (|:| |f| (-626 (-626 (-304 (-213))))) (|:| |st| (-1135)) (|:| |tol| (-213)))) (-5 *2 (-2 (|:| -3262 (-375)) (|:| |explanations| (-1135)))))) (-1345 (*1 *2 *3) (-12 (-4 *1 (-882)) (-5 *3 (-2 (|:| |pde| (-626 (-304 (-213)))) (|:| |constraints| (-626 (-2 (|:| |start| (-213)) (|:| |finish| (-213)) (|:| |grid| (-755)) (|:| |boundaryType| (-560)) (|:| |dStart| (-671 (-213))) (|:| |dFinish| (-671 (-213)))))) (|:| |f| (-626 (-626 (-304 (-213))))) (|:| |st| (-1135)) (|:| |tol| (-213)))) (-5 *2 (-1027))))) -(-13 (-1082) (-10 -7 (-15 -3262 ((-2 (|:| -3262 (-375)) (|:| |explanations| (-1135))) (-1051) (-2 (|:| |pde| (-626 (-304 (-213)))) (|:| |constraints| (-626 (-2 (|:| |start| (-213)) (|:| |finish| (-213)) (|:| |grid| (-755)) (|:| |boundaryType| (-560)) (|:| |dStart| (-671 (-213))) (|:| |dFinish| (-671 (-213)))))) (|:| |f| (-626 (-626 (-304 (-213))))) (|:| |st| (-1135)) (|:| |tol| (-213))))) (-15 -1345 ((-1027) (-2 (|:| |pde| (-626 (-304 (-213)))) (|:| |constraints| (-626 (-2 (|:| |start| (-213)) (|:| |finish| (-213)) (|:| |grid| (-755)) (|:| |boundaryType| (-560)) (|:| |dStart| (-671 (-213))) (|:| |dFinish| (-671 (-213)))))) (|:| |f| (-626 (-626 (-304 (-213))))) (|:| |st| (-1135)) (|:| |tol| (-213))))))) -(((-105) . T) ((-600 (-842)) . T) ((-1082) . T)) -((-1792 ((|#1| |#1| (-755)) 23)) (-2504 (((-3 |#1| "failed") |#1| |#1|) 22)) (-1636 (((-3 (-2 (|:| -3156 |#1|) (|:| -3437 |#1|)) "failed") |#1| (-755) (-755)) 26) (((-626 |#1|) |#1|) 28))) -(((-883 |#1| |#2|) (-10 -7 (-15 -1636 ((-626 |#1|) |#1|)) (-15 -1636 ((-3 (-2 (|:| -3156 |#1|) (|:| -3437 |#1|)) "failed") |#1| (-755) (-755))) (-15 -2504 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1792 (|#1| |#1| (-755)))) (-1211 |#2|) (-359)) (T -883)) -((-1792 (*1 *2 *2 *3) (-12 (-5 *3 (-755)) (-4 *4 (-359)) (-5 *1 (-883 *2 *4)) (-4 *2 (-1211 *4)))) (-2504 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-359)) (-5 *1 (-883 *2 *3)) (-4 *2 (-1211 *3)))) (-1636 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-755)) (-4 *5 (-359)) (-5 *2 (-2 (|:| -3156 *3) (|:| -3437 *3))) (-5 *1 (-883 *3 *5)) (-4 *3 (-1211 *5)))) (-1636 (*1 *2 *3) (-12 (-4 *4 (-359)) (-5 *2 (-626 *3)) (-5 *1 (-883 *3 *4)) (-4 *3 (-1211 *4))))) -(-10 -7 (-15 -1636 ((-626 |#1|) |#1|)) (-15 -1636 ((-3 (-2 (|:| -3156 |#1|) (|:| -3437 |#1|)) "failed") |#1| (-755) (-755))) (-15 -2504 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1792 (|#1| |#1| (-755)))) -((-4159 (((-1027) (-375) (-375) (-375) (-375) (-755) (-755) (-626 (-304 (-375))) (-626 (-626 (-304 (-375)))) (-1135)) 92) (((-1027) (-375) (-375) (-375) (-375) (-755) (-755) (-626 (-304 (-375))) (-626 (-626 (-304 (-375)))) (-1135) (-213)) 87) (((-1027) (-885) (-1051)) 76) (((-1027) (-885)) 77)) (-3262 (((-2 (|:| -3262 (-375)) (|:| -1337 (-1135)) (|:| |explanations| (-626 (-1135)))) (-885) (-1051)) 50) (((-2 (|:| -3262 (-375)) (|:| -1337 (-1135)) (|:| |explanations| (-626 (-1135)))) (-885)) 52))) -(((-884) (-10 -7 (-15 -4159 ((-1027) (-885))) (-15 -4159 ((-1027) (-885) (-1051))) (-15 -4159 ((-1027) (-375) (-375) (-375) (-375) (-755) (-755) (-626 (-304 (-375))) (-626 (-626 (-304 (-375)))) (-1135) (-213))) (-15 -4159 ((-1027) (-375) (-375) (-375) (-375) (-755) (-755) (-626 (-304 (-375))) (-626 (-626 (-304 (-375)))) (-1135))) (-15 -3262 ((-2 (|:| -3262 (-375)) (|:| -1337 (-1135)) (|:| |explanations| (-626 (-1135)))) (-885))) (-15 -3262 ((-2 (|:| -3262 (-375)) (|:| -1337 (-1135)) (|:| |explanations| (-626 (-1135)))) (-885) (-1051))))) (T -884)) -((-3262 (*1 *2 *3 *4) (-12 (-5 *3 (-885)) (-5 *4 (-1051)) (-5 *2 (-2 (|:| -3262 (-375)) (|:| -1337 (-1135)) (|:| |explanations| (-626 (-1135))))) (-5 *1 (-884)))) (-3262 (*1 *2 *3) (-12 (-5 *3 (-885)) (-5 *2 (-2 (|:| -3262 (-375)) (|:| -1337 (-1135)) (|:| |explanations| (-626 (-1135))))) (-5 *1 (-884)))) (-4159 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-755)) (-5 *6 (-626 (-626 (-304 *3)))) (-5 *7 (-1135)) (-5 *5 (-626 (-304 (-375)))) (-5 *3 (-375)) (-5 *2 (-1027)) (-5 *1 (-884)))) (-4159 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-755)) (-5 *6 (-626 (-626 (-304 *3)))) (-5 *7 (-1135)) (-5 *8 (-213)) (-5 *5 (-626 (-304 (-375)))) (-5 *3 (-375)) (-5 *2 (-1027)) (-5 *1 (-884)))) (-4159 (*1 *2 *3 *4) (-12 (-5 *3 (-885)) (-5 *4 (-1051)) (-5 *2 (-1027)) (-5 *1 (-884)))) (-4159 (*1 *2 *3) (-12 (-5 *3 (-885)) (-5 *2 (-1027)) (-5 *1 (-884))))) -(-10 -7 (-15 -4159 ((-1027) (-885))) (-15 -4159 ((-1027) (-885) (-1051))) (-15 -4159 ((-1027) (-375) (-375) (-375) (-375) (-755) (-755) (-626 (-304 (-375))) (-626 (-626 (-304 (-375)))) (-1135) (-213))) (-15 -4159 ((-1027) (-375) (-375) (-375) (-375) (-755) (-755) (-626 (-304 (-375))) (-626 (-626 (-304 (-375)))) (-1135))) (-15 -3262 ((-2 (|:| -3262 (-375)) (|:| -1337 (-1135)) (|:| |explanations| (-626 (-1135)))) (-885))) (-15 -3262 ((-2 (|:| -3262 (-375)) (|:| -1337 (-1135)) (|:| |explanations| (-626 (-1135)))) (-885) (-1051)))) -((-2601 (((-121) $ $) NIL)) (-3001 (((-2 (|:| |pde| (-626 (-304 (-213)))) (|:| |constraints| (-626 (-2 (|:| |start| (-213)) (|:| |finish| (-213)) (|:| |grid| (-755)) (|:| |boundaryType| (-560)) (|:| |dStart| (-671 (-213))) (|:| |dFinish| (-671 (-213)))))) (|:| |f| (-626 (-626 (-304 (-213))))) (|:| |st| (-1135)) (|:| |tol| (-213))) $) 10)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2801 (((-842) $) 12) (($ (-2 (|:| |pde| (-626 (-304 (-213)))) (|:| |constraints| (-626 (-2 (|:| |start| (-213)) (|:| |finish| (-213)) (|:| |grid| (-755)) (|:| |boundaryType| (-560)) (|:| |dStart| (-671 (-213))) (|:| |dFinish| (-671 (-213)))))) (|:| |f| (-626 (-626 (-304 (-213))))) (|:| |st| (-1135)) (|:| |tol| (-213)))) 9)) (-1653 (((-121) $ $) NIL))) -(((-885) (-13 (-1082) (-10 -8 (-15 -2801 ($ (-2 (|:| |pde| (-626 (-304 (-213)))) (|:| |constraints| (-626 (-2 (|:| |start| (-213)) (|:| |finish| (-213)) (|:| |grid| (-755)) (|:| |boundaryType| (-560)) (|:| |dStart| (-671 (-213))) (|:| |dFinish| (-671 (-213)))))) (|:| |f| (-626 (-626 (-304 (-213))))) (|:| |st| (-1135)) (|:| |tol| (-213))))) (-15 -2801 ((-842) $)) (-15 -3001 ((-2 (|:| |pde| (-626 (-304 (-213)))) (|:| |constraints| (-626 (-2 (|:| |start| (-213)) (|:| |finish| (-213)) (|:| |grid| (-755)) (|:| |boundaryType| (-560)) (|:| |dStart| (-671 (-213))) (|:| |dFinish| (-671 (-213)))))) (|:| |f| (-626 (-626 (-304 (-213))))) (|:| |st| (-1135)) (|:| |tol| (-213))) $))))) (T -885)) -((-2801 (*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-885)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-626 (-304 (-213)))) (|:| |constraints| (-626 (-2 (|:| |start| (-213)) (|:| |finish| (-213)) (|:| |grid| (-755)) (|:| |boundaryType| (-560)) (|:| |dStart| (-671 (-213))) (|:| |dFinish| (-671 (-213)))))) (|:| |f| (-626 (-626 (-304 (-213))))) (|:| |st| (-1135)) (|:| |tol| (-213)))) (-5 *1 (-885)))) (-3001 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-626 (-304 (-213)))) (|:| |constraints| (-626 (-2 (|:| |start| (-213)) (|:| |finish| (-213)) (|:| |grid| (-755)) (|:| |boundaryType| (-560)) (|:| |dStart| (-671 (-213))) (|:| |dFinish| (-671 (-213)))))) (|:| |f| (-626 (-626 (-304 (-213))))) (|:| |st| (-1135)) (|:| |tol| (-213)))) (-5 *1 (-885))))) -(-13 (-1082) (-10 -8 (-15 -2801 ($ (-2 (|:| |pde| (-626 (-304 (-213)))) (|:| |constraints| (-626 (-2 (|:| |start| (-213)) (|:| |finish| (-213)) (|:| |grid| (-755)) (|:| |boundaryType| (-560)) (|:| |dStart| (-671 (-213))) (|:| |dFinish| (-671 (-213)))))) (|:| |f| (-626 (-626 (-304 (-213))))) (|:| |st| (-1135)) (|:| |tol| (-213))))) (-15 -2801 ((-842) $)) (-15 -3001 ((-2 (|:| |pde| (-626 (-304 (-213)))) (|:| |constraints| (-626 (-2 (|:| |start| (-213)) (|:| |finish| (-213)) (|:| |grid| (-755)) (|:| |boundaryType| (-560)) (|:| |dStart| (-671 (-213))) (|:| |dFinish| (-671 (-213)))))) (|:| |f| (-626 (-626 (-304 (-213))))) (|:| |st| (-1135)) (|:| |tol| (-213))) $)))) -((-2443 (($ $ |#2|) NIL) (($ $ (-626 |#2|)) 10) (($ $ |#2| (-755)) 12) (($ $ (-626 |#2|) (-626 (-755))) 15)) (-2500 (($ $ |#2|) 16) (($ $ (-626 |#2|)) 18) (($ $ |#2| (-755)) 19) (($ $ (-626 |#2|) (-626 (-755))) 21))) -(((-886 |#1| |#2|) (-10 -8 (-15 -2500 (|#1| |#1| (-626 |#2|) (-626 (-755)))) (-15 -2500 (|#1| |#1| |#2| (-755))) (-15 -2500 (|#1| |#1| (-626 |#2|))) (-15 -2500 (|#1| |#1| |#2|)) (-15 -2443 (|#1| |#1| (-626 |#2|) (-626 (-755)))) (-15 -2443 (|#1| |#1| |#2| (-755))) (-15 -2443 (|#1| |#1| (-626 |#2|))) (-15 -2443 (|#1| |#1| |#2|))) (-887 |#2|) (-1082)) (T -886)) -NIL -(-10 -8 (-15 -2500 (|#1| |#1| (-626 |#2|) (-626 (-755)))) (-15 -2500 (|#1| |#1| |#2| (-755))) (-15 -2500 (|#1| |#1| (-626 |#2|))) (-15 -2500 (|#1| |#1| |#2|)) (-15 -2443 (|#1| |#1| (-626 |#2|) (-626 (-755)))) (-15 -2443 (|#1| |#1| |#2| (-755))) (-15 -2443 (|#1| |#1| (-626 |#2|))) (-15 -2443 (|#1| |#1| |#2|))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-2314 (((-3 $ "failed") $ $) 18)) (-4236 (($) 16 T CONST)) (-1823 (((-3 $ "failed") $) 33)) (-2642 (((-121) $) 30)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-2443 (($ $ |#1|) 41) (($ $ (-626 |#1|)) 40) (($ $ |#1| (-755)) 39) (($ $ (-626 |#1|) (-626 (-755))) 38)) (-2801 (((-842) $) 11) (($ (-560)) 27)) (-1751 (((-755)) 28)) (-2464 (($ $ (-909)) 25) (($ $ (-755)) 32)) (-3304 (($) 17 T CONST)) (-1459 (($) 29 T CONST)) (-2500 (($ $ |#1|) 37) (($ $ (-626 |#1|)) 36) (($ $ |#1| (-755)) 35) (($ $ (-626 |#1|) (-626 (-755))) 34)) (-1653 (((-121) $ $) 6)) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 24) (($ $ (-755)) 31)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 23))) -(((-887 |#1|) (-1267) (-1082)) (T -887)) -((-2443 (*1 *1 *1 *2) (-12 (-4 *1 (-887 *2)) (-4 *2 (-1082)))) (-2443 (*1 *1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *1 (-887 *3)) (-4 *3 (-1082)))) (-2443 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-755)) (-4 *1 (-887 *2)) (-4 *2 (-1082)))) (-2443 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-626 *4)) (-5 *3 (-626 (-755))) (-4 *1 (-887 *4)) (-4 *4 (-1082)))) (-2500 (*1 *1 *1 *2) (-12 (-4 *1 (-887 *2)) (-4 *2 (-1082)))) (-2500 (*1 *1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *1 (-887 *3)) (-4 *3 (-1082)))) (-2500 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-755)) (-4 *1 (-887 *2)) (-4 *2 (-1082)))) (-2500 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-626 *4)) (-5 *3 (-626 (-755))) (-4 *1 (-887 *4)) (-4 *4 (-1082))))) -(-13 (-1039) (-10 -8 (-15 -2443 ($ $ |t#1|)) (-15 -2443 ($ $ (-626 |t#1|))) (-15 -2443 ($ $ |t#1| (-755))) (-15 -2443 ($ $ (-626 |t#1|) (-626 (-755)))) (-15 -2500 ($ $ |t#1|)) (-15 -2500 ($ $ (-626 |t#1|))) (-15 -2500 ($ $ |t#1| (-755))) (-15 -2500 ($ $ (-626 |t#1|) (-626 (-755)))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-105) . T) ((-137) . T) ((-600 (-842)) . T) ((-629 $) . T) ((-708) . T) ((-1039) . T) ((-1046) . T) ((-1094) . T) ((-1082) . T)) -((-2601 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-2981 ((|#1| $) 26)) (-3909 (((-121) $ (-755)) NIL)) (-3119 ((|#1| $ |#1|) NIL (|has| $ (-6 -4506)))) (-1329 (($ $ $) NIL (|has| $ (-6 -4506)))) (-3559 (($ $ $) NIL (|has| $ (-6 -4506)))) (-2764 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4506))) (($ $ "left" $) NIL (|has| $ (-6 -4506))) (($ $ "right" $) NIL (|has| $ (-6 -4506)))) (-4043 (($ $ (-626 $)) NIL (|has| $ (-6 -4506)))) (-4236 (($) NIL T CONST)) (-3437 (($ $) 25)) (-2422 (($ |#1|) 12) (($ $ $) 17)) (-1981 (((-626 |#1|) $) NIL (|has| $ (-6 -4505)))) (-3971 (((-626 $) $) NIL)) (-2420 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-2122 (((-121) $ (-755)) NIL)) (-2130 (((-626 |#1|) $) NIL (|has| $ (-6 -4505)))) (-2030 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-3778 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#1| |#1|) $) NIL)) (-3441 (((-121) $ (-755)) NIL)) (-3156 (($ $) 23)) (-2173 (((-626 |#1|) $) NIL)) (-3992 (((-121) $) 20)) (-1291 (((-1135) $) NIL (|has| |#1| (-1082)))) (-4353 (((-1100) $) NIL (|has| |#1| (-1082)))) (-2865 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#1|))) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-283 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-626 |#1|) (-626 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))))) (-2214 (((-121) $ $) NIL)) (-4191 (((-121) $) NIL)) (-3260 (($) NIL)) (-2778 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1435 (((-560) $ $) NIL)) (-3316 (((-121) $) NIL)) (-4035 (((-755) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505))) (((-755) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-2813 (($ $) NIL)) (-2801 (((-842) $) 29 (|has| |#1| (-1082))) (((-1174 |#1|) $) 9)) (-2853 (((-626 $) $) NIL)) (-3761 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-3656 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-1653 (((-121) $ $) 21 (|has| |#1| (-1082)))) (-2271 (((-755) $) NIL (|has| $ (-6 -4505))))) -(((-888 |#1|) (-13 (-128 |#1|) (-10 -8 (-15 -2422 ($ |#1|)) (-15 -2422 ($ $ $)) (-15 -2801 ((-1174 |#1|) $)))) (-1082)) (T -888)) -((-2422 (*1 *1 *2) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1082)))) (-2422 (*1 *1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1082)))) (-2801 (*1 *2 *1) (-12 (-5 *2 (-1174 *3)) (-5 *1 (-888 *3)) (-4 *3 (-1082))))) -(-13 (-128 |#1|) (-10 -8 (-15 -2422 ($ |#1|)) (-15 -2422 ($ $ $)) (-15 -2801 ((-1174 |#1|) $)))) -((-2185 ((|#2| (-1119 |#1| |#2|)) 39))) -(((-889 |#1| |#2|) (-10 -7 (-15 -2185 (|#2| (-1119 |#1| |#2|)))) (-909) (-13 (-1039) (-10 -7 (-6 (-4507 "*"))))) (T -889)) -((-2185 (*1 *2 *3) (-12 (-5 *3 (-1119 *4 *2)) (-14 *4 (-909)) (-4 *2 (-13 (-1039) (-10 -7 (-6 (-4507 "*"))))) (-5 *1 (-889 *4 *2))))) -(-10 -7 (-15 -2185 (|#2| (-1119 |#1| |#2|)))) -((-2601 (((-121) $ $) 7)) (-4236 (($) 19 T CONST)) (-1823 (((-3 $ "failed") $) 15)) (-1805 (((-1084 |#1|) $ |#1|) 34)) (-2642 (((-121) $) 18)) (-4325 (($ $ $) 32 (-2318 (|has| |#1| (-834)) (|has| |#1| (-364))))) (-2501 (($ $ $) 31 (-2318 (|has| |#1| (-834)) (|has| |#1| (-364))))) (-1291 (((-1135) $) 9)) (-1701 (($ $) 26)) (-4353 (((-1100) $) 10)) (-4450 ((|#1| $ |#1|) 36)) (-2778 ((|#1| $ |#1|) 35)) (-4419 (($ (-626 (-626 |#1|))) 37)) (-2448 (($ (-626 |#1|)) 38)) (-3101 (($ $ $) 22)) (-1671 (($ $ $) 21)) (-2801 (((-842) $) 11)) (-2464 (($ $ (-909)) 12) (($ $ (-755)) 16) (($ $ (-560)) 23)) (-1459 (($) 20 T CONST)) (-1691 (((-121) $ $) 29 (-2318 (|has| |#1| (-834)) (|has| |#1| (-364))))) (-1675 (((-121) $ $) 28 (-2318 (|has| |#1| (-834)) (|has| |#1| (-364))))) (-1653 (((-121) $ $) 6)) (-1683 (((-121) $ $) 30 (-2318 (|has| |#1| (-834)) (|has| |#1| (-364))))) (-1667 (((-121) $ $) 33)) (-1733 (($ $ $) 25)) (** (($ $ (-909)) 13) (($ $ (-755)) 17) (($ $ (-560)) 24)) (* (($ $ $) 14))) -(((-890 |#1|) (-1267) (-1082)) (T -890)) -((-2448 (*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-1082)) (-4 *1 (-890 *3)))) (-4419 (*1 *1 *2) (-12 (-5 *2 (-626 (-626 *3))) (-4 *3 (-1082)) (-4 *1 (-890 *3)))) (-4450 (*1 *2 *1 *2) (-12 (-4 *1 (-890 *2)) (-4 *2 (-1082)))) (-2778 (*1 *2 *1 *2) (-12 (-4 *1 (-890 *2)) (-4 *2 (-1082)))) (-1805 (*1 *2 *1 *3) (-12 (-4 *1 (-890 *3)) (-4 *3 (-1082)) (-5 *2 (-1084 *3)))) (-1667 (*1 *2 *1 *1) (-12 (-4 *1 (-890 *3)) (-4 *3 (-1082)) (-5 *2 (-121))))) -(-13 (-471) (-10 -8 (-15 -2448 ($ (-626 |t#1|))) (-15 -4419 ($ (-626 (-626 |t#1|)))) (-15 -4450 (|t#1| $ |t#1|)) (-15 -2778 (|t#1| $ |t#1|)) (-15 -1805 ((-1084 |t#1|) $ |t#1|)) (-15 -1667 ((-121) $ $)) (IF (|has| |t#1| (-834)) (-6 (-834)) |noBranch|) (IF (|has| |t#1| (-364)) (-6 (-834)) |noBranch|))) -(((-105) . T) ((-600 (-842)) . T) ((-471) . T) ((-708) . T) ((-834) -2318 (|has| |#1| (-834)) (|has| |#1| (-364))) ((-1094) . T) ((-1082) . T)) -((-2601 (((-121) $ $) NIL)) (-3003 (((-626 (-626 (-755))) $) 106)) (-2170 (((-626 (-755)) (-892 |#1|) $) 128)) (-2540 (((-626 (-755)) (-892 |#1|) $) 129)) (-4068 (((-626 (-892 |#1|)) $) 96)) (-1666 (((-892 |#1|) $ (-560)) 101) (((-892 |#1|) $) 102)) (-1342 (($ (-626 (-892 |#1|))) 108)) (-3504 (((-755) $) 103)) (-4481 (((-1084 (-1084 |#1|)) $) 126)) (-1805 (((-1084 |#1|) $ |#1|) 119) (((-1084 (-1084 |#1|)) $ (-1084 |#1|)) 137) (((-1084 (-626 |#1|)) $ (-626 |#1|)) 140)) (-2033 (((-1084 |#1|) $) 99)) (-2030 (((-121) (-892 |#1|) $) 90)) (-1291 (((-1135) $) NIL)) (-1992 (((-1241) $) 93) (((-1241) $ (-560) (-560)) 141)) (-4353 (((-1100) $) NIL)) (-1821 (((-626 (-892 |#1|)) $) 94)) (-2778 (((-892 |#1|) $ (-755)) 97)) (-3662 (((-755) $) 104)) (-2801 (((-842) $) 117) (((-626 (-892 |#1|)) $) 22) (($ (-626 (-892 |#1|))) 107)) (-2871 (((-626 |#1|) $) 105)) (-1653 (((-121) $ $) 134)) (-1683 (((-121) $ $) 132)) (-1667 (((-121) $ $) 131))) -(((-891 |#1|) (-13 (-1082) (-10 -8 (-15 -2801 ((-626 (-892 |#1|)) $)) (-15 -1821 ((-626 (-892 |#1|)) $)) (-15 -2778 ((-892 |#1|) $ (-755))) (-15 -1666 ((-892 |#1|) $ (-560))) (-15 -1666 ((-892 |#1|) $)) (-15 -3504 ((-755) $)) (-15 -3662 ((-755) $)) (-15 -2871 ((-626 |#1|) $)) (-15 -4068 ((-626 (-892 |#1|)) $)) (-15 -3003 ((-626 (-626 (-755))) $)) (-15 -2801 ($ (-626 (-892 |#1|)))) (-15 -1342 ($ (-626 (-892 |#1|)))) (-15 -1805 ((-1084 |#1|) $ |#1|)) (-15 -4481 ((-1084 (-1084 |#1|)) $)) (-15 -1805 ((-1084 (-1084 |#1|)) $ (-1084 |#1|))) (-15 -1805 ((-1084 (-626 |#1|)) $ (-626 |#1|))) (-15 -2030 ((-121) (-892 |#1|) $)) (-15 -2170 ((-626 (-755)) (-892 |#1|) $)) (-15 -2540 ((-626 (-755)) (-892 |#1|) $)) (-15 -2033 ((-1084 |#1|) $)) (-15 -1667 ((-121) $ $)) (-15 -1683 ((-121) $ $)) (-15 -1992 ((-1241) $)) (-15 -1992 ((-1241) $ (-560) (-560))))) (-1082)) (T -891)) -((-2801 (*1 *2 *1) (-12 (-5 *2 (-626 (-892 *3))) (-5 *1 (-891 *3)) (-4 *3 (-1082)))) (-1821 (*1 *2 *1) (-12 (-5 *2 (-626 (-892 *3))) (-5 *1 (-891 *3)) (-4 *3 (-1082)))) (-2778 (*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *2 (-892 *4)) (-5 *1 (-891 *4)) (-4 *4 (-1082)))) (-1666 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-5 *2 (-892 *4)) (-5 *1 (-891 *4)) (-4 *4 (-1082)))) (-1666 (*1 *2 *1) (-12 (-5 *2 (-892 *3)) (-5 *1 (-891 *3)) (-4 *3 (-1082)))) (-3504 (*1 *2 *1) (-12 (-5 *2 (-755)) (-5 *1 (-891 *3)) (-4 *3 (-1082)))) (-3662 (*1 *2 *1) (-12 (-5 *2 (-755)) (-5 *1 (-891 *3)) (-4 *3 (-1082)))) (-2871 (*1 *2 *1) (-12 (-5 *2 (-626 *3)) (-5 *1 (-891 *3)) (-4 *3 (-1082)))) (-4068 (*1 *2 *1) (-12 (-5 *2 (-626 (-892 *3))) (-5 *1 (-891 *3)) (-4 *3 (-1082)))) (-3003 (*1 *2 *1) (-12 (-5 *2 (-626 (-626 (-755)))) (-5 *1 (-891 *3)) (-4 *3 (-1082)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-626 (-892 *3))) (-4 *3 (-1082)) (-5 *1 (-891 *3)))) (-1342 (*1 *1 *2) (-12 (-5 *2 (-626 (-892 *3))) (-4 *3 (-1082)) (-5 *1 (-891 *3)))) (-1805 (*1 *2 *1 *3) (-12 (-5 *2 (-1084 *3)) (-5 *1 (-891 *3)) (-4 *3 (-1082)))) (-4481 (*1 *2 *1) (-12 (-5 *2 (-1084 (-1084 *3))) (-5 *1 (-891 *3)) (-4 *3 (-1082)))) (-1805 (*1 *2 *1 *3) (-12 (-4 *4 (-1082)) (-5 *2 (-1084 (-1084 *4))) (-5 *1 (-891 *4)) (-5 *3 (-1084 *4)))) (-1805 (*1 *2 *1 *3) (-12 (-4 *4 (-1082)) (-5 *2 (-1084 (-626 *4))) (-5 *1 (-891 *4)) (-5 *3 (-626 *4)))) (-2030 (*1 *2 *3 *1) (-12 (-5 *3 (-892 *4)) (-4 *4 (-1082)) (-5 *2 (-121)) (-5 *1 (-891 *4)))) (-2170 (*1 *2 *3 *1) (-12 (-5 *3 (-892 *4)) (-4 *4 (-1082)) (-5 *2 (-626 (-755))) (-5 *1 (-891 *4)))) (-2540 (*1 *2 *3 *1) (-12 (-5 *3 (-892 *4)) (-4 *4 (-1082)) (-5 *2 (-626 (-755))) (-5 *1 (-891 *4)))) (-2033 (*1 *2 *1) (-12 (-5 *2 (-1084 *3)) (-5 *1 (-891 *3)) (-4 *3 (-1082)))) (-1667 (*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-891 *3)) (-4 *3 (-1082)))) (-1683 (*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-891 *3)) (-4 *3 (-1082)))) (-1992 (*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-891 *3)) (-4 *3 (-1082)))) (-1992 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-560)) (-5 *2 (-1241)) (-5 *1 (-891 *4)) (-4 *4 (-1082))))) -(-13 (-1082) (-10 -8 (-15 -2801 ((-626 (-892 |#1|)) $)) (-15 -1821 ((-626 (-892 |#1|)) $)) (-15 -2778 ((-892 |#1|) $ (-755))) (-15 -1666 ((-892 |#1|) $ (-560))) (-15 -1666 ((-892 |#1|) $)) (-15 -3504 ((-755) $)) (-15 -3662 ((-755) $)) (-15 -2871 ((-626 |#1|) $)) (-15 -4068 ((-626 (-892 |#1|)) $)) (-15 -3003 ((-626 (-626 (-755))) $)) (-15 -2801 ($ (-626 (-892 |#1|)))) (-15 -1342 ($ (-626 (-892 |#1|)))) (-15 -1805 ((-1084 |#1|) $ |#1|)) (-15 -4481 ((-1084 (-1084 |#1|)) $)) (-15 -1805 ((-1084 (-1084 |#1|)) $ (-1084 |#1|))) (-15 -1805 ((-1084 (-626 |#1|)) $ (-626 |#1|))) (-15 -2030 ((-121) (-892 |#1|) $)) (-15 -2170 ((-626 (-755)) (-892 |#1|) $)) (-15 -2540 ((-626 (-755)) (-892 |#1|) $)) (-15 -2033 ((-1084 |#1|) $)) (-15 -1667 ((-121) $ $)) (-15 -1683 ((-121) $ $)) (-15 -1992 ((-1241) $)) (-15 -1992 ((-1241) $ (-560) (-560))))) -((-2601 (((-121) $ $) NIL)) (-3743 (((-626 $) (-626 $)) 76)) (-4235 (((-560) $) 59)) (-4236 (($) NIL T CONST)) (-1823 (((-3 $ "failed") $) NIL)) (-3504 (((-755) $) 57)) (-1805 (((-1084 |#1|) $ |#1|) 48)) (-2642 (((-121) $) NIL)) (-3348 (((-121) $) 62)) (-1833 (((-755) $) 60)) (-2033 (((-1084 |#1|) $) 41)) (-4325 (($ $ $) NIL (-2318 (|has| |#1| (-364)) (|has| |#1| (-834))))) (-2501 (($ $ $) NIL (-2318 (|has| |#1| (-364)) (|has| |#1| (-834))))) (-1713 (((-2 (|:| |preimage| (-626 |#1|)) (|:| |image| (-626 |#1|))) $) 35)) (-1291 (((-1135) $) NIL)) (-1701 (($ $) 92)) (-4353 (((-1100) $) NIL)) (-4065 (((-1084 |#1|) $) 98 (|has| |#1| (-364)))) (-3522 (((-121) $) 58)) (-4450 ((|#1| $ |#1|) 46)) (-2778 ((|#1| $ |#1|) 93)) (-3662 (((-755) $) 43)) (-4419 (($ (-626 (-626 |#1|))) 84)) (-2299 (((-964) $) 52)) (-2448 (($ (-626 |#1|)) 21)) (-3101 (($ $ $) NIL)) (-1671 (($ $ $) NIL)) (-1633 (($ (-626 (-626 |#1|))) 38)) (-4365 (($ (-626 (-626 |#1|))) 87)) (-3820 (($ (-626 |#1|)) 95)) (-2801 (((-842) $) 83) (($ (-626 (-626 |#1|))) 65) (($ (-626 |#1|)) 66)) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL)) (-1459 (($) 16 T CONST)) (-1691 (((-121) $ $) NIL (-2318 (|has| |#1| (-364)) (|has| |#1| (-834))))) (-1675 (((-121) $ $) NIL (-2318 (|has| |#1| (-364)) (|has| |#1| (-834))))) (-1653 (((-121) $ $) 44)) (-1683 (((-121) $ $) NIL (-2318 (|has| |#1| (-364)) (|has| |#1| (-834))))) (-1667 (((-121) $ $) 64)) (-1733 (($ $ $) NIL)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL)) (* (($ $ $) 22))) -(((-892 |#1|) (-13 (-890 |#1|) (-10 -8 (-15 -1713 ((-2 (|:| |preimage| (-626 |#1|)) (|:| |image| (-626 |#1|))) $)) (-15 -1633 ($ (-626 (-626 |#1|)))) (-15 -2801 ($ (-626 (-626 |#1|)))) (-15 -2801 ($ (-626 |#1|))) (-15 -4365 ($ (-626 (-626 |#1|)))) (-15 -3662 ((-755) $)) (-15 -2033 ((-1084 |#1|) $)) (-15 -2299 ((-964) $)) (-15 -3504 ((-755) $)) (-15 -1833 ((-755) $)) (-15 -4235 ((-560) $)) (-15 -3522 ((-121) $)) (-15 -3348 ((-121) $)) (-15 -3743 ((-626 $) (-626 $))) (IF (|has| |#1| (-364)) (-15 -4065 ((-1084 |#1|) $)) |noBranch|) (IF (|has| |#1| (-542)) (-15 -3820 ($ (-626 |#1|))) (IF (|has| |#1| (-364)) (-15 -3820 ($ (-626 |#1|))) |noBranch|)))) (-1082)) (T -892)) -((-1713 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-626 *3)) (|:| |image| (-626 *3)))) (-5 *1 (-892 *3)) (-4 *3 (-1082)))) (-1633 (*1 *1 *2) (-12 (-5 *2 (-626 (-626 *3))) (-4 *3 (-1082)) (-5 *1 (-892 *3)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-626 (-626 *3))) (-4 *3 (-1082)) (-5 *1 (-892 *3)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-1082)) (-5 *1 (-892 *3)))) (-4365 (*1 *1 *2) (-12 (-5 *2 (-626 (-626 *3))) (-4 *3 (-1082)) (-5 *1 (-892 *3)))) (-3662 (*1 *2 *1) (-12 (-5 *2 (-755)) (-5 *1 (-892 *3)) (-4 *3 (-1082)))) (-2033 (*1 *2 *1) (-12 (-5 *2 (-1084 *3)) (-5 *1 (-892 *3)) (-4 *3 (-1082)))) (-2299 (*1 *2 *1) (-12 (-5 *2 (-964)) (-5 *1 (-892 *3)) (-4 *3 (-1082)))) (-3504 (*1 *2 *1) (-12 (-5 *2 (-755)) (-5 *1 (-892 *3)) (-4 *3 (-1082)))) (-1833 (*1 *2 *1) (-12 (-5 *2 (-755)) (-5 *1 (-892 *3)) (-4 *3 (-1082)))) (-4235 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-892 *3)) (-4 *3 (-1082)))) (-3522 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-892 *3)) (-4 *3 (-1082)))) (-3348 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-892 *3)) (-4 *3 (-1082)))) (-3743 (*1 *2 *2) (-12 (-5 *2 (-626 (-892 *3))) (-5 *1 (-892 *3)) (-4 *3 (-1082)))) (-4065 (*1 *2 *1) (-12 (-5 *2 (-1084 *3)) (-5 *1 (-892 *3)) (-4 *3 (-364)) (-4 *3 (-1082)))) (-3820 (*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-1082)) (-5 *1 (-892 *3))))) -(-13 (-890 |#1|) (-10 -8 (-15 -1713 ((-2 (|:| |preimage| (-626 |#1|)) (|:| |image| (-626 |#1|))) $)) (-15 -1633 ($ (-626 (-626 |#1|)))) (-15 -2801 ($ (-626 (-626 |#1|)))) (-15 -2801 ($ (-626 |#1|))) (-15 -4365 ($ (-626 (-626 |#1|)))) (-15 -3662 ((-755) $)) (-15 -2033 ((-1084 |#1|) $)) (-15 -2299 ((-964) $)) (-15 -3504 ((-755) $)) (-15 -1833 ((-755) $)) (-15 -4235 ((-560) $)) (-15 -3522 ((-121) $)) (-15 -3348 ((-121) $)) (-15 -3743 ((-626 $) (-626 $))) (IF (|has| |#1| (-364)) (-15 -4065 ((-1084 |#1|) $)) |noBranch|) (IF (|has| |#1| (-542)) (-15 -3820 ($ (-626 |#1|))) (IF (|has| |#1| (-364)) (-15 -3820 ($ (-626 |#1|))) |noBranch|)))) -((-1295 (((-3 (-626 (-1149 |#4|)) "failed") (-626 (-1149 |#4|)) (-1149 |#4|)) 127)) (-1718 ((|#1|) 75)) (-4086 (((-414 (-1149 |#4|)) (-1149 |#4|)) 136)) (-3340 (((-414 (-1149 |#4|)) (-626 |#3|) (-1149 |#4|)) 67)) (-2739 (((-414 (-1149 |#4|)) (-1149 |#4|)) 146)) (-2081 (((-3 (-626 (-1149 |#4|)) "failed") (-626 (-1149 |#4|)) (-1149 |#4|) |#3|) 91))) -(((-893 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1295 ((-3 (-626 (-1149 |#4|)) "failed") (-626 (-1149 |#4|)) (-1149 |#4|))) (-15 -2739 ((-414 (-1149 |#4|)) (-1149 |#4|))) (-15 -4086 ((-414 (-1149 |#4|)) (-1149 |#4|))) (-15 -1718 (|#1|)) (-15 -2081 ((-3 (-626 (-1149 |#4|)) "failed") (-626 (-1149 |#4|)) (-1149 |#4|) |#3|)) (-15 -3340 ((-414 (-1149 |#4|)) (-626 |#3|) (-1149 |#4|)))) (-896) (-780) (-834) (-942 |#1| |#2| |#3|)) (T -893)) -((-3340 (*1 *2 *3 *4) (-12 (-5 *3 (-626 *7)) (-4 *7 (-834)) (-4 *5 (-896)) (-4 *6 (-780)) (-4 *8 (-942 *5 *6 *7)) (-5 *2 (-414 (-1149 *8))) (-5 *1 (-893 *5 *6 *7 *8)) (-5 *4 (-1149 *8)))) (-2081 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-626 (-1149 *7))) (-5 *3 (-1149 *7)) (-4 *7 (-942 *5 *6 *4)) (-4 *5 (-896)) (-4 *6 (-780)) (-4 *4 (-834)) (-5 *1 (-893 *5 *6 *4 *7)))) (-1718 (*1 *2) (-12 (-4 *3 (-780)) (-4 *4 (-834)) (-4 *2 (-896)) (-5 *1 (-893 *2 *3 *4 *5)) (-4 *5 (-942 *2 *3 *4)))) (-4086 (*1 *2 *3) (-12 (-4 *4 (-896)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *7 (-942 *4 *5 *6)) (-5 *2 (-414 (-1149 *7))) (-5 *1 (-893 *4 *5 *6 *7)) (-5 *3 (-1149 *7)))) (-2739 (*1 *2 *3) (-12 (-4 *4 (-896)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *7 (-942 *4 *5 *6)) (-5 *2 (-414 (-1149 *7))) (-5 *1 (-893 *4 *5 *6 *7)) (-5 *3 (-1149 *7)))) (-1295 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-626 (-1149 *7))) (-5 *3 (-1149 *7)) (-4 *7 (-942 *4 *5 *6)) (-4 *4 (-896)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *1 (-893 *4 *5 *6 *7))))) -(-10 -7 (-15 -1295 ((-3 (-626 (-1149 |#4|)) "failed") (-626 (-1149 |#4|)) (-1149 |#4|))) (-15 -2739 ((-414 (-1149 |#4|)) (-1149 |#4|))) (-15 -4086 ((-414 (-1149 |#4|)) (-1149 |#4|))) (-15 -1718 (|#1|)) (-15 -2081 ((-3 (-626 (-1149 |#4|)) "failed") (-626 (-1149 |#4|)) (-1149 |#4|) |#3|)) (-15 -3340 ((-414 (-1149 |#4|)) (-626 |#3|) (-1149 |#4|)))) -((-1295 (((-3 (-626 (-1149 |#2|)) "failed") (-626 (-1149 |#2|)) (-1149 |#2|)) 36)) (-1718 ((|#1|) 53)) (-4086 (((-414 (-1149 |#2|)) (-1149 |#2|)) 101)) (-3340 (((-414 (-1149 |#2|)) (-1149 |#2|)) 88)) (-2739 (((-414 (-1149 |#2|)) (-1149 |#2|)) 112))) -(((-894 |#1| |#2|) (-10 -7 (-15 -1295 ((-3 (-626 (-1149 |#2|)) "failed") (-626 (-1149 |#2|)) (-1149 |#2|))) (-15 -2739 ((-414 (-1149 |#2|)) (-1149 |#2|))) (-15 -4086 ((-414 (-1149 |#2|)) (-1149 |#2|))) (-15 -1718 (|#1|)) (-15 -3340 ((-414 (-1149 |#2|)) (-1149 |#2|)))) (-896) (-1211 |#1|)) (T -894)) -((-3340 (*1 *2 *3) (-12 (-4 *4 (-896)) (-4 *5 (-1211 *4)) (-5 *2 (-414 (-1149 *5))) (-5 *1 (-894 *4 *5)) (-5 *3 (-1149 *5)))) (-1718 (*1 *2) (-12 (-4 *2 (-896)) (-5 *1 (-894 *2 *3)) (-4 *3 (-1211 *2)))) (-4086 (*1 *2 *3) (-12 (-4 *4 (-896)) (-4 *5 (-1211 *4)) (-5 *2 (-414 (-1149 *5))) (-5 *1 (-894 *4 *5)) (-5 *3 (-1149 *5)))) (-2739 (*1 *2 *3) (-12 (-4 *4 (-896)) (-4 *5 (-1211 *4)) (-5 *2 (-414 (-1149 *5))) (-5 *1 (-894 *4 *5)) (-5 *3 (-1149 *5)))) (-1295 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-626 (-1149 *5))) (-5 *3 (-1149 *5)) (-4 *5 (-1211 *4)) (-4 *4 (-896)) (-5 *1 (-894 *4 *5))))) -(-10 -7 (-15 -1295 ((-3 (-626 (-1149 |#2|)) "failed") (-626 (-1149 |#2|)) (-1149 |#2|))) (-15 -2739 ((-414 (-1149 |#2|)) (-1149 |#2|))) (-15 -4086 ((-414 (-1149 |#2|)) (-1149 |#2|))) (-15 -1718 (|#1|)) (-15 -3340 ((-414 (-1149 |#2|)) (-1149 |#2|)))) -((-1887 (((-3 (-626 (-1149 $)) "failed") (-626 (-1149 $)) (-1149 $)) 39)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) 18)) (-2272 (((-3 $ "failed") $) 33))) -(((-895 |#1|) (-10 -8 (-15 -2272 ((-3 |#1| "failed") |#1|)) (-15 -1887 ((-3 (-626 (-1149 |#1|)) "failed") (-626 (-1149 |#1|)) (-1149 |#1|))) (-15 -4311 ((-1149 |#1|) (-1149 |#1|) (-1149 |#1|)))) (-896)) (T -895)) -NIL -(-10 -8 (-15 -2272 ((-3 |#1| "failed") |#1|)) (-15 -1887 ((-3 (-626 (-1149 |#1|)) "failed") (-626 (-1149 |#1|)) (-1149 |#1|))) (-15 -4311 ((-1149 |#1|) (-1149 |#1|) (-1149 |#1|)))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) 40)) (-1350 (($ $) 39)) (-3376 (((-121) $) 37)) (-2314 (((-3 $ "failed") $ $) 18)) (-1776 (((-414 (-1149 $)) (-1149 $)) 57)) (-3065 (($ $) 49)) (-2953 (((-414 $) $) 50)) (-1887 (((-3 (-626 (-1149 $)) "failed") (-626 (-1149 $)) (-1149 $)) 54)) (-4236 (($) 16 T CONST)) (-1823 (((-3 $ "failed") $) 33)) (-3319 (((-121) $) 51)) (-2642 (((-121) $) 30)) (-2582 (($ $ $) 45) (($ (-626 $)) 44)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) 43)) (-4440 (($ $ $) 47) (($ (-626 $)) 46)) (-3817 (((-414 (-1149 $)) (-1149 $)) 55)) (-3032 (((-414 (-1149 $)) (-1149 $)) 56)) (-1601 (((-414 $) $) 48)) (-2336 (((-3 $ "failed") $ $) 41)) (-3248 (((-3 (-1236 $) "failed") (-671 $)) 53 (|has| $ (-146)))) (-2801 (((-842) $) 11) (($ (-560)) 27) (($ $) 42)) (-2272 (((-3 $ "failed") $) 52 (|has| $ (-146)))) (-1751 (((-755)) 28)) (-2328 (((-121) $ $) 38)) (-2464 (($ $ (-909)) 25) (($ $ (-755)) 32)) (-3304 (($) 17 T CONST)) (-1459 (($) 29 T CONST)) (-1653 (((-121) $ $) 6)) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 24) (($ $ (-755)) 31)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 23))) -(((-896) (-1267)) (T -896)) -((-4311 (*1 *2 *2 *2) (-12 (-5 *2 (-1149 *1)) (-4 *1 (-896)))) (-1776 (*1 *2 *3) (-12 (-4 *1 (-896)) (-5 *2 (-414 (-1149 *1))) (-5 *3 (-1149 *1)))) (-3032 (*1 *2 *3) (-12 (-4 *1 (-896)) (-5 *2 (-414 (-1149 *1))) (-5 *3 (-1149 *1)))) (-3817 (*1 *2 *3) (-12 (-4 *1 (-896)) (-5 *2 (-414 (-1149 *1))) (-5 *3 (-1149 *1)))) (-1887 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-626 (-1149 *1))) (-5 *3 (-1149 *1)) (-4 *1 (-896)))) (-3248 (*1 *2 *3) (|partial| -12 (-5 *3 (-671 *1)) (-4 *1 (-146)) (-4 *1 (-896)) (-5 *2 (-1236 *1)))) (-2272 (*1 *1 *1) (|partial| -12 (-4 *1 (-146)) (-4 *1 (-896))))) -(-13 (-1191) (-10 -8 (-15 -1776 ((-414 (-1149 $)) (-1149 $))) (-15 -3032 ((-414 (-1149 $)) (-1149 $))) (-15 -3817 ((-414 (-1149 $)) (-1149 $))) (-15 -4311 ((-1149 $) (-1149 $) (-1149 $))) (-15 -1887 ((-3 (-626 (-1149 $)) "failed") (-626 (-1149 $)) (-1149 $))) (IF (|has| $ (-146)) (PROGN (-15 -3248 ((-3 (-1236 $) "failed") (-671 $))) (-15 -2272 ((-3 $ "failed") $))) |noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-43 $) . T) ((-105) . T) ((-120 $ $) . T) ((-137) . T) ((-600 (-842)) . T) ((-170) . T) ((-280) . T) ((-447) . T) ((-550) . T) ((-629 $) . T) ((-699 $) . T) ((-708) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1094) . T) ((-1082) . T) ((-1191) . T)) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL)) (-1350 (($ $) NIL)) (-3376 (((-121) $) NIL)) (-3913 (((-121) $) NIL)) (-1881 (((-755)) NIL)) (-1944 (($ $ (-909)) NIL (|has| $ (-364))) (($ $) NIL)) (-4357 (((-1161 (-909) (-755)) (-560)) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-3065 (($ $) NIL)) (-2953 (((-414 $) $) NIL)) (-4179 (((-121) $ $) NIL)) (-2912 (((-755)) NIL)) (-4236 (($) NIL T CONST)) (-1473 (((-3 $ "failed") $) NIL)) (-3001 (($ $) NIL)) (-3380 (($ (-1236 $)) NIL)) (-4107 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2563 (($ $ $) NIL)) (-1823 (((-3 $ "failed") $) NIL)) (-1666 (($) NIL)) (-2572 (($ $ $) NIL)) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) NIL)) (-2481 (($) NIL)) (-1537 (((-121) $) NIL)) (-2937 (($ $) NIL) (($ $ (-755)) NIL)) (-3319 (((-121) $) NIL)) (-3504 (((-820 (-909)) $) NIL) (((-909) $) NIL)) (-2642 (((-121) $) NIL)) (-2174 (($) NIL (|has| $ (-364)))) (-1428 (((-121) $) NIL (|has| $ (-364)))) (-3339 (($ $ (-909)) NIL (|has| $ (-364))) (($ $) NIL)) (-1424 (((-3 $ "failed") $) NIL)) (-3856 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-4108 (((-1149 $) $ (-909)) NIL (|has| $ (-364))) (((-1149 $) $) NIL)) (-3142 (((-909) $) NIL)) (-3312 (((-1149 $) $) NIL (|has| $ (-364)))) (-4175 (((-3 (-1149 $) "failed") $ $) NIL (|has| $ (-364))) (((-1149 $) $) NIL (|has| $ (-364)))) (-2455 (($ $ (-1149 $)) NIL (|has| $ (-364)))) (-2582 (($ $ $) NIL) (($ (-626 $)) NIL)) (-1291 (((-1135) $) NIL)) (-1701 (($ $) NIL)) (-1394 (($) NIL T CONST)) (-1330 (($ (-909)) NIL)) (-3557 (((-121) $) NIL)) (-4353 (((-1100) $) NIL)) (-4250 (($) NIL (|has| $ (-364)))) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL)) (-4440 (($ $ $) NIL) (($ (-626 $)) NIL)) (-2385 (((-626 (-2 (|:| -1601 (-560)) (|:| -4034 (-560))))) NIL)) (-1601 (((-414 $) $) NIL)) (-1472 (((-909)) NIL) (((-820 (-909))) NIL)) (-3505 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2336 (((-3 $ "failed") $ $) NIL)) (-3456 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-4445 (((-755) $) NIL)) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL)) (-2935 (((-3 (-755) "failed") $ $) NIL) (((-755) $) NIL)) (-4016 (((-139)) NIL)) (-2443 (($ $ (-755)) NIL) (($ $) NIL)) (-3662 (((-909) $) NIL) (((-820 (-909)) $) NIL)) (-3591 (((-1149 $)) NIL)) (-2612 (($) NIL)) (-1380 (($) NIL (|has| $ (-364)))) (-3390 (((-671 $) (-1236 $)) NIL) (((-1236 $) $) NIL)) (-4255 (((-560) $) NIL)) (-3248 (((-3 (-1236 $) "failed") (-671 $)) NIL)) (-2801 (((-842) $) NIL) (($ (-560)) NIL) (($ $) NIL) (($ (-403 (-560))) NIL)) (-2272 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-1751 (((-755)) NIL)) (-4374 (((-1236 $) (-909)) NIL) (((-1236 $)) NIL)) (-2328 (((-121) $ $) NIL)) (-1535 (((-121) $) NIL)) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL)) (-3304 (($) NIL T CONST)) (-1459 (($) NIL T CONST)) (-2353 (($ $ (-755)) NIL (|has| $ (-364))) (($ $) NIL (|has| $ (-364)))) (-2500 (($ $ (-755)) NIL) (($ $) NIL)) (-1653 (((-121) $ $) NIL)) (-1733 (($ $ $) NIL)) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) NIL)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) NIL) (($ $ (-403 (-560))) NIL) (($ (-403 (-560)) $) NIL))) -(((-897 |#1|) (-13 (-344) (-321 $) (-601 (-560))) (-909)) (T -897)) -NIL -(-13 (-344) (-321 $) (-601 (-560))) -((-1700 (((-3 (-2 (|:| -3504 (-755)) (|:| -1843 |#5|)) "failed") (-328 |#2| |#3| |#4| |#5|)) 76)) (-4381 (((-121) (-328 |#2| |#3| |#4| |#5|)) 16)) (-3504 (((-3 (-755) "failed") (-328 |#2| |#3| |#4| |#5|)) 14))) -(((-898 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3504 ((-3 (-755) "failed") (-328 |#2| |#3| |#4| |#5|))) (-15 -4381 ((-121) (-328 |#2| |#3| |#4| |#5|))) (-15 -1700 ((-3 (-2 (|:| -3504 (-755)) (|:| -1843 |#5|)) "failed") (-328 |#2| |#3| |#4| |#5|)))) (-13 (-834) (-550) (-1029 (-560))) (-426 |#1|) (-1211 |#2|) (-1211 (-403 |#3|)) (-334 |#2| |#3| |#4|)) (T -898)) -((-1700 (*1 *2 *3) (|partial| -12 (-5 *3 (-328 *5 *6 *7 *8)) (-4 *5 (-426 *4)) (-4 *6 (-1211 *5)) (-4 *7 (-1211 (-403 *6))) (-4 *8 (-334 *5 *6 *7)) (-4 *4 (-13 (-834) (-550) (-1029 (-560)))) (-5 *2 (-2 (|:| -3504 (-755)) (|:| -1843 *8))) (-5 *1 (-898 *4 *5 *6 *7 *8)))) (-4381 (*1 *2 *3) (-12 (-5 *3 (-328 *5 *6 *7 *8)) (-4 *5 (-426 *4)) (-4 *6 (-1211 *5)) (-4 *7 (-1211 (-403 *6))) (-4 *8 (-334 *5 *6 *7)) (-4 *4 (-13 (-834) (-550) (-1029 (-560)))) (-5 *2 (-121)) (-5 *1 (-898 *4 *5 *6 *7 *8)))) (-3504 (*1 *2 *3) (|partial| -12 (-5 *3 (-328 *5 *6 *7 *8)) (-4 *5 (-426 *4)) (-4 *6 (-1211 *5)) (-4 *7 (-1211 (-403 *6))) (-4 *8 (-334 *5 *6 *7)) (-4 *4 (-13 (-834) (-550) (-1029 (-560)))) (-5 *2 (-755)) (-5 *1 (-898 *4 *5 *6 *7 *8))))) -(-10 -7 (-15 -3504 ((-3 (-755) "failed") (-328 |#2| |#3| |#4| |#5|))) (-15 -4381 ((-121) (-328 |#2| |#3| |#4| |#5|))) (-15 -1700 ((-3 (-2 (|:| -3504 (-755)) (|:| -1843 |#5|)) "failed") (-328 |#2| |#3| |#4| |#5|)))) -((-1700 (((-3 (-2 (|:| -3504 (-755)) (|:| -1843 |#3|)) "failed") (-328 (-403 (-560)) |#1| |#2| |#3|)) 56)) (-4381 (((-121) (-328 (-403 (-560)) |#1| |#2| |#3|)) 13)) (-3504 (((-3 (-755) "failed") (-328 (-403 (-560)) |#1| |#2| |#3|)) 11))) -(((-899 |#1| |#2| |#3|) (-10 -7 (-15 -3504 ((-3 (-755) "failed") (-328 (-403 (-560)) |#1| |#2| |#3|))) (-15 -4381 ((-121) (-328 (-403 (-560)) |#1| |#2| |#3|))) (-15 -1700 ((-3 (-2 (|:| -3504 (-755)) (|:| -1843 |#3|)) "failed") (-328 (-403 (-560)) |#1| |#2| |#3|)))) (-1211 (-403 (-560))) (-1211 (-403 |#1|)) (-334 (-403 (-560)) |#1| |#2|)) (T -899)) -((-1700 (*1 *2 *3) (|partial| -12 (-5 *3 (-328 (-403 (-560)) *4 *5 *6)) (-4 *4 (-1211 (-403 (-560)))) (-4 *5 (-1211 (-403 *4))) (-4 *6 (-334 (-403 (-560)) *4 *5)) (-5 *2 (-2 (|:| -3504 (-755)) (|:| -1843 *6))) (-5 *1 (-899 *4 *5 *6)))) (-4381 (*1 *2 *3) (-12 (-5 *3 (-328 (-403 (-560)) *4 *5 *6)) (-4 *4 (-1211 (-403 (-560)))) (-4 *5 (-1211 (-403 *4))) (-4 *6 (-334 (-403 (-560)) *4 *5)) (-5 *2 (-121)) (-5 *1 (-899 *4 *5 *6)))) (-3504 (*1 *2 *3) (|partial| -12 (-5 *3 (-328 (-403 (-560)) *4 *5 *6)) (-4 *4 (-1211 (-403 (-560)))) (-4 *5 (-1211 (-403 *4))) (-4 *6 (-334 (-403 (-560)) *4 *5)) (-5 *2 (-755)) (-5 *1 (-899 *4 *5 *6))))) -(-10 -7 (-15 -3504 ((-3 (-755) "failed") (-328 (-403 (-560)) |#1| |#2| |#3|))) (-15 -4381 ((-121) (-328 (-403 (-560)) |#1| |#2| |#3|))) (-15 -1700 ((-3 (-2 (|:| -3504 (-755)) (|:| -1843 |#3|)) "failed") (-328 (-403 (-560)) |#1| |#2| |#3|)))) -((-1593 (((-1149 |#1|) |#2|) 36)) (-1742 ((|#2| |#2| (-626 |#1|)) 59) ((|#2| |#2| (-626 |#1|) (-560)) 61)) (-1697 (((-755) |#2|) 70)) (-3776 ((|#2| |#2| |#2| (-560)) 51)) (-3784 ((|#2| |#2| |#2|) 49)) (-3792 ((|#2| |#2| |#2|) 48)) (-3799 ((|#2| |#2| (-560)) 64)) (-3804 ((|#2| |#2| (-560)) 60)) (-1854 (((-626 |#2|) |#2|) 15)) (-2386 ((|#2| |#2|) 82)) (-1504 ((|#2| (-1 |#3| |#3|) |#2|) 40)) (-3813 (((-626 |#2|)) 26)) (-3819 (((-626 |#3|) (-560)) 92)) (-3825 (((-626 |#2|) (-755)) 93)) (-2027 ((|#2| |#2| (-560)) 71)) (-3831 ((|#3| |#2|) NIL)) (-3838 (((-755) |#2|) 83)) (-3662 (((-755) |#2| (-560)) 67)) (-3847 ((|#1| |#2| (-909)) 80)) (-3565 ((|#1| |#2|) 81))) -(((-900 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1504 (|#2| (-1 |#3| |#3|) |#2|)) (-15 -3662 ((-755) |#2| (-560))) (-15 -1593 ((-1149 |#1|) |#2|)) (-15 -1697 ((-755) |#2|)) (-15 -3792 (|#2| |#2| |#2|)) (-15 -3784 (|#2| |#2| |#2|)) (-15 -3776 (|#2| |#2| |#2| (-560))) (-15 -2386 (|#2| |#2|)) (-15 -3831 (|#3| |#2|)) (-15 -3799 (|#2| |#2| (-560))) (-15 -3804 (|#2| |#2| (-560))) (-15 -1742 (|#2| |#2| (-626 |#1|) (-560))) (-15 -1742 (|#2| |#2| (-626 |#1|))) (-15 -3847 (|#1| |#2| (-909))) (-15 -3565 (|#1| |#2|)) (-15 -2027 (|#2| |#2| (-560))) (-15 -3819 ((-626 |#3|) (-560))) (-15 -3825 ((-626 |#2|) (-755))) (-15 -3838 ((-755) |#2|)) (-15 -3813 ((-626 |#2|))) (-15 -1854 ((-626 |#2|) |#2|))) (-1039) (-318 |#1| |#3|) (-226 |#4| (-755)) (-755)) (T -900)) -((-1854 (*1 *2 *3) (-12 (-4 *4 (-1039)) (-4 *5 (-226 *6 (-755))) (-14 *6 (-755)) (-5 *2 (-626 *3)) (-5 *1 (-900 *4 *3 *5 *6)) (-4 *3 (-318 *4 *5)))) (-3813 (*1 *2) (-12 (-4 *3 (-1039)) (-4 *5 (-226 *6 (-755))) (-14 *6 (-755)) (-5 *2 (-626 *4)) (-5 *1 (-900 *3 *4 *5 *6)) (-4 *4 (-318 *3 *5)))) (-3838 (*1 *2 *3) (-12 (-4 *4 (-1039)) (-4 *5 (-226 *6 *2)) (-14 *6 *2) (-5 *2 (-755)) (-5 *1 (-900 *4 *3 *5 *6)) (-4 *3 (-318 *4 *5)))) (-3825 (*1 *2 *3) (-12 (-5 *3 (-755)) (-4 *4 (-1039)) (-4 *6 (-226 *7 *3)) (-14 *7 *3) (-5 *2 (-626 *5)) (-5 *1 (-900 *4 *5 *6 *7)) (-4 *5 (-318 *4 *6)))) (-3819 (*1 *2 *3) (-12 (-5 *3 (-560)) (-4 *4 (-1039)) (-4 *6 (-226 *7 (-755))) (-14 *7 (-755)) (-5 *2 (-626 *6)) (-5 *1 (-900 *4 *5 *6 *7)) (-4 *5 (-318 *4 *6)))) (-2027 (*1 *2 *2 *3) (-12 (-5 *3 (-560)) (-4 *4 (-1039)) (-4 *5 (-226 *6 (-755))) (-14 *6 (-755)) (-5 *1 (-900 *4 *2 *5 *6)) (-4 *2 (-318 *4 *5)))) (-3565 (*1 *2 *3) (-12 (-4 *4 (-226 *5 (-755))) (-14 *5 (-755)) (-4 *2 (-1039)) (-5 *1 (-900 *2 *3 *4 *5)) (-4 *3 (-318 *2 *4)))) (-3847 (*1 *2 *3 *4) (-12 (-5 *4 (-909)) (-4 *5 (-226 *6 (-755))) (-14 *6 (-755)) (-4 *2 (-1039)) (-5 *1 (-900 *2 *3 *5 *6)) (-4 *3 (-318 *2 *5)))) (-1742 (*1 *2 *2 *3) (-12 (-5 *3 (-626 *4)) (-4 *4 (-1039)) (-4 *5 (-226 *6 (-755))) (-14 *6 (-755)) (-5 *1 (-900 *4 *2 *5 *6)) (-4 *2 (-318 *4 *5)))) (-1742 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-626 *5)) (-5 *4 (-560)) (-4 *5 (-1039)) (-4 *6 (-226 *7 (-755))) (-14 *7 (-755)) (-5 *1 (-900 *5 *2 *6 *7)) (-4 *2 (-318 *5 *6)))) (-3804 (*1 *2 *2 *3) (-12 (-5 *3 (-560)) (-4 *4 (-1039)) (-4 *5 (-226 *6 (-755))) (-14 *6 (-755)) (-5 *1 (-900 *4 *2 *5 *6)) (-4 *2 (-318 *4 *5)))) (-3799 (*1 *2 *2 *3) (-12 (-5 *3 (-560)) (-4 *4 (-1039)) (-4 *5 (-226 *6 (-755))) (-14 *6 (-755)) (-5 *1 (-900 *4 *2 *5 *6)) (-4 *2 (-318 *4 *5)))) (-3831 (*1 *2 *3) (-12 (-4 *4 (-1039)) (-4 *2 (-226 *5 (-755))) (-5 *1 (-900 *4 *3 *2 *5)) (-4 *3 (-318 *4 *2)) (-14 *5 (-755)))) (-2386 (*1 *2 *2) (-12 (-4 *3 (-1039)) (-4 *4 (-226 *5 (-755))) (-14 *5 (-755)) (-5 *1 (-900 *3 *2 *4 *5)) (-4 *2 (-318 *3 *4)))) (-3776 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-560)) (-4 *4 (-1039)) (-4 *5 (-226 *6 (-755))) (-14 *6 (-755)) (-5 *1 (-900 *4 *2 *5 *6)) (-4 *2 (-318 *4 *5)))) (-3784 (*1 *2 *2 *2) (-12 (-4 *3 (-1039)) (-4 *4 (-226 *5 (-755))) (-14 *5 (-755)) (-5 *1 (-900 *3 *2 *4 *5)) (-4 *2 (-318 *3 *4)))) (-3792 (*1 *2 *2 *2) (-12 (-4 *3 (-1039)) (-4 *4 (-226 *5 (-755))) (-14 *5 (-755)) (-5 *1 (-900 *3 *2 *4 *5)) (-4 *2 (-318 *3 *4)))) (-1697 (*1 *2 *3) (-12 (-4 *4 (-1039)) (-4 *5 (-226 *6 *2)) (-14 *6 *2) (-5 *2 (-755)) (-5 *1 (-900 *4 *3 *5 *6)) (-4 *3 (-318 *4 *5)))) (-1593 (*1 *2 *3) (-12 (-4 *4 (-1039)) (-4 *5 (-226 *6 (-755))) (-14 *6 (-755)) (-5 *2 (-1149 *4)) (-5 *1 (-900 *4 *3 *5 *6)) (-4 *3 (-318 *4 *5)))) (-3662 (*1 *2 *3 *4) (-12 (-5 *4 (-560)) (-4 *5 (-1039)) (-4 *6 (-226 *7 *2)) (-14 *7 *2) (-5 *2 (-755)) (-5 *1 (-900 *5 *3 *6 *7)) (-4 *3 (-318 *5 *6)))) (-1504 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-226 *6 (-755))) (-14 *6 (-755)) (-4 *4 (-1039)) (-5 *1 (-900 *4 *2 *5 *6)) (-4 *2 (-318 *4 *5))))) -(-10 -7 (-15 -1504 (|#2| (-1 |#3| |#3|) |#2|)) (-15 -3662 ((-755) |#2| (-560))) (-15 -1593 ((-1149 |#1|) |#2|)) (-15 -1697 ((-755) |#2|)) (-15 -3792 (|#2| |#2| |#2|)) (-15 -3784 (|#2| |#2| |#2|)) (-15 -3776 (|#2| |#2| |#2| (-560))) (-15 -2386 (|#2| |#2|)) (-15 -3831 (|#3| |#2|)) (-15 -3799 (|#2| |#2| (-560))) (-15 -3804 (|#2| |#2| (-560))) (-15 -1742 (|#2| |#2| (-626 |#1|) (-560))) (-15 -1742 (|#2| |#2| (-626 |#1|))) (-15 -3847 (|#1| |#2| (-909))) (-15 -3565 (|#1| |#2|)) (-15 -2027 (|#2| |#2| (-560))) (-15 -3819 ((-626 |#3|) (-560))) (-15 -3825 ((-626 |#2|) (-755))) (-15 -3838 ((-755) |#2|)) (-15 -3813 ((-626 |#2|))) (-15 -1854 ((-626 |#2|) |#2|))) -((-3681 ((|#2| |#2|) 25)) (-2488 (((-560) (-626 (-2 (|:| |den| (-560)) (|:| |gcdnum| (-560))))) 15)) (-1680 (((-909) (-560)) 35)) (-2224 (((-560) |#2|) 42)) (-4373 (((-560) |#2|) 21) (((-2 (|:| |den| (-560)) (|:| |gcdnum| (-560))) |#1|) 20))) -(((-901 |#1| |#2|) (-10 -7 (-15 -1680 ((-909) (-560))) (-15 -4373 ((-2 (|:| |den| (-560)) (|:| |gcdnum| (-560))) |#1|)) (-15 -4373 ((-560) |#2|)) (-15 -2488 ((-560) (-626 (-2 (|:| |den| (-560)) (|:| |gcdnum| (-560)))))) (-15 -2224 ((-560) |#2|)) (-15 -3681 (|#2| |#2|))) (-1211 (-403 (-560))) (-1211 (-403 |#1|))) (T -901)) -((-3681 (*1 *2 *2) (-12 (-4 *3 (-1211 (-403 (-560)))) (-5 *1 (-901 *3 *2)) (-4 *2 (-1211 (-403 *3))))) (-2224 (*1 *2 *3) (-12 (-4 *4 (-1211 (-403 *2))) (-5 *2 (-560)) (-5 *1 (-901 *4 *3)) (-4 *3 (-1211 (-403 *4))))) (-2488 (*1 *2 *3) (-12 (-5 *3 (-626 (-2 (|:| |den| (-560)) (|:| |gcdnum| (-560))))) (-4 *4 (-1211 (-403 *2))) (-5 *2 (-560)) (-5 *1 (-901 *4 *5)) (-4 *5 (-1211 (-403 *4))))) (-4373 (*1 *2 *3) (-12 (-4 *4 (-1211 (-403 *2))) (-5 *2 (-560)) (-5 *1 (-901 *4 *3)) (-4 *3 (-1211 (-403 *4))))) (-4373 (*1 *2 *3) (-12 (-4 *3 (-1211 (-403 (-560)))) (-5 *2 (-2 (|:| |den| (-560)) (|:| |gcdnum| (-560)))) (-5 *1 (-901 *3 *4)) (-4 *4 (-1211 (-403 *3))))) (-1680 (*1 *2 *3) (-12 (-5 *3 (-560)) (-4 *4 (-1211 (-403 *3))) (-5 *2 (-909)) (-5 *1 (-901 *4 *5)) (-4 *5 (-1211 (-403 *4)))))) -(-10 -7 (-15 -1680 ((-909) (-560))) (-15 -4373 ((-2 (|:| |den| (-560)) (|:| |gcdnum| (-560))) |#1|)) (-15 -4373 ((-560) |#2|)) (-15 -2488 ((-560) (-626 (-2 (|:| |den| (-560)) (|:| |gcdnum| (-560)))))) (-15 -2224 ((-560) |#2|)) (-15 -3681 (|#2| |#2|))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-1947 ((|#1| $) 80)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL)) (-1350 (($ $) NIL)) (-3376 (((-121) $) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-3065 (($ $) NIL)) (-2953 (((-414 $) $) NIL)) (-4179 (((-121) $ $) NIL)) (-4236 (($) NIL T CONST)) (-2563 (($ $ $) NIL)) (-1823 (((-3 $ "failed") $) 74)) (-2572 (($ $ $) NIL)) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) NIL)) (-3319 (((-121) $) NIL)) (-4112 (($ |#1| (-414 |#1|)) 72)) (-3305 (((-1149 |#1|) |#1| |#1|) 40)) (-4394 (($ $) 48)) (-2642 (((-121) $) NIL)) (-3099 (((-560) $) 77)) (-3465 (($ $ (-560)) 79)) (-3856 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-2582 (($ $ $) NIL) (($ (-626 $)) NIL)) (-1291 (((-1135) $) NIL)) (-1701 (($ $) NIL)) (-4353 (((-1100) $) NIL)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL)) (-4440 (($ $ $) NIL) (($ (-626 $)) NIL)) (-1340 ((|#1| $) 76)) (-1517 (((-414 |#1|) $) 75)) (-1601 (((-414 $) $) NIL)) (-3505 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2336 (((-3 $ "failed") $ $) 73)) (-3456 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-4445 (((-755) $) NIL)) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL)) (-2699 (($ $) 38)) (-2801 (((-842) $) 98) (($ (-560)) 53) (($ $) NIL) (($ (-403 (-560))) NIL) (($ |#1|) 30) (((-403 |#1|) $) 58) (($ (-403 (-414 |#1|))) 66)) (-1751 (((-755)) 51)) (-2328 (((-121) $ $) NIL)) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL)) (-3304 (($) 23 T CONST)) (-1459 (($) 11 T CONST)) (-1653 (((-121) $ $) 67)) (-1733 (($ $ $) NIL)) (-1725 (($ $) 87) (($ $ $) NIL)) (-1716 (($ $ $) 37)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) 89) (($ $ $) 36) (($ $ (-403 (-560))) NIL) (($ (-403 (-560)) $) NIL) (($ |#1| $) 88) (($ $ |#1|) NIL))) -(((-902 |#1|) (-13 (-359) (-43 |#1|) (-10 -8 (-15 -2801 ((-403 |#1|) $)) (-15 -2801 ($ (-403 (-414 |#1|)))) (-15 -2699 ($ $)) (-15 -1517 ((-414 |#1|) $)) (-15 -1340 (|#1| $)) (-15 -3465 ($ $ (-560))) (-15 -3099 ((-560) $)) (-15 -3305 ((-1149 |#1|) |#1| |#1|)) (-15 -4394 ($ $)) (-15 -4112 ($ |#1| (-414 |#1|))) (-15 -1947 (|#1| $)))) (-296)) (T -902)) -((-2801 (*1 *2 *1) (-12 (-5 *2 (-403 *3)) (-5 *1 (-902 *3)) (-4 *3 (-296)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-403 (-414 *3))) (-4 *3 (-296)) (-5 *1 (-902 *3)))) (-2699 (*1 *1 *1) (-12 (-5 *1 (-902 *2)) (-4 *2 (-296)))) (-1517 (*1 *2 *1) (-12 (-5 *2 (-414 *3)) (-5 *1 (-902 *3)) (-4 *3 (-296)))) (-1340 (*1 *2 *1) (-12 (-5 *1 (-902 *2)) (-4 *2 (-296)))) (-3465 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-902 *3)) (-4 *3 (-296)))) (-3099 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-902 *3)) (-4 *3 (-296)))) (-3305 (*1 *2 *3 *3) (-12 (-5 *2 (-1149 *3)) (-5 *1 (-902 *3)) (-4 *3 (-296)))) (-4394 (*1 *1 *1) (-12 (-5 *1 (-902 *2)) (-4 *2 (-296)))) (-4112 (*1 *1 *2 *3) (-12 (-5 *3 (-414 *2)) (-4 *2 (-296)) (-5 *1 (-902 *2)))) (-1947 (*1 *2 *1) (-12 (-5 *1 (-902 *2)) (-4 *2 (-296))))) -(-13 (-359) (-43 |#1|) (-10 -8 (-15 -2801 ((-403 |#1|) $)) (-15 -2801 ($ (-403 (-414 |#1|)))) (-15 -2699 ($ $)) (-15 -1517 ((-414 |#1|) $)) (-15 -1340 (|#1| $)) (-15 -3465 ($ $ (-560))) (-15 -3099 ((-560) $)) (-15 -3305 ((-1149 |#1|) |#1| |#1|)) (-15 -4394 ($ $)) (-15 -4112 ($ |#1| (-414 |#1|))) (-15 -1947 (|#1| $)))) -((-4112 (((-57) (-945 |#1|) (-414 (-945 |#1|)) (-1153)) 16) (((-57) (-403 (-945 |#1|)) (-1153)) 17))) -(((-903 |#1|) (-10 -7 (-15 -4112 ((-57) (-403 (-945 |#1|)) (-1153))) (-15 -4112 ((-57) (-945 |#1|) (-414 (-945 |#1|)) (-1153)))) (-13 (-296) (-148))) (T -903)) -((-4112 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-414 (-945 *6))) (-5 *5 (-1153)) (-5 *3 (-945 *6)) (-4 *6 (-13 (-296) (-148))) (-5 *2 (-57)) (-5 *1 (-903 *6)))) (-4112 (*1 *2 *3 *4) (-12 (-5 *3 (-403 (-945 *5))) (-5 *4 (-1153)) (-4 *5 (-13 (-296) (-148))) (-5 *2 (-57)) (-5 *1 (-903 *5))))) -(-10 -7 (-15 -4112 ((-57) (-403 (-945 |#1|)) (-1153))) (-15 -4112 ((-57) (-945 |#1|) (-414 (-945 |#1|)) (-1153)))) -((-3581 ((|#4| (-626 |#4|)) 118) (((-1149 |#4|) (-1149 |#4|) (-1149 |#4|)) 65) ((|#4| |#4| |#4|) 117)) (-4440 (((-1149 |#4|) (-626 (-1149 |#4|))) 111) (((-1149 |#4|) (-1149 |#4|) (-1149 |#4|)) 48) ((|#4| (-626 |#4|)) 53) ((|#4| |#4| |#4|) 82))) -(((-904 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4440 (|#4| |#4| |#4|)) (-15 -4440 (|#4| (-626 |#4|))) (-15 -4440 ((-1149 |#4|) (-1149 |#4|) (-1149 |#4|))) (-15 -4440 ((-1149 |#4|) (-626 (-1149 |#4|)))) (-15 -3581 (|#4| |#4| |#4|)) (-15 -3581 ((-1149 |#4|) (-1149 |#4|) (-1149 |#4|))) (-15 -3581 (|#4| (-626 |#4|)))) (-780) (-834) (-296) (-942 |#3| |#1| |#2|)) (T -904)) -((-3581 (*1 *2 *3) (-12 (-5 *3 (-626 *2)) (-4 *2 (-942 *6 *4 *5)) (-5 *1 (-904 *4 *5 *6 *2)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-296)))) (-3581 (*1 *2 *2 *2) (-12 (-5 *2 (-1149 *6)) (-4 *6 (-942 *5 *3 *4)) (-4 *3 (-780)) (-4 *4 (-834)) (-4 *5 (-296)) (-5 *1 (-904 *3 *4 *5 *6)))) (-3581 (*1 *2 *2 *2) (-12 (-4 *3 (-780)) (-4 *4 (-834)) (-4 *5 (-296)) (-5 *1 (-904 *3 *4 *5 *2)) (-4 *2 (-942 *5 *3 *4)))) (-4440 (*1 *2 *3) (-12 (-5 *3 (-626 (-1149 *7))) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-296)) (-5 *2 (-1149 *7)) (-5 *1 (-904 *4 *5 *6 *7)) (-4 *7 (-942 *6 *4 *5)))) (-4440 (*1 *2 *2 *2) (-12 (-5 *2 (-1149 *6)) (-4 *6 (-942 *5 *3 *4)) (-4 *3 (-780)) (-4 *4 (-834)) (-4 *5 (-296)) (-5 *1 (-904 *3 *4 *5 *6)))) (-4440 (*1 *2 *3) (-12 (-5 *3 (-626 *2)) (-4 *2 (-942 *6 *4 *5)) (-5 *1 (-904 *4 *5 *6 *2)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-296)))) (-4440 (*1 *2 *2 *2) (-12 (-4 *3 (-780)) (-4 *4 (-834)) (-4 *5 (-296)) (-5 *1 (-904 *3 *4 *5 *2)) (-4 *2 (-942 *5 *3 *4))))) -(-10 -7 (-15 -4440 (|#4| |#4| |#4|)) (-15 -4440 (|#4| (-626 |#4|))) (-15 -4440 ((-1149 |#4|) (-1149 |#4|) (-1149 |#4|))) (-15 -4440 ((-1149 |#4|) (-626 (-1149 |#4|)))) (-15 -3581 (|#4| |#4| |#4|)) (-15 -3581 ((-1149 |#4|) (-1149 |#4|) (-1149 |#4|))) (-15 -3581 (|#4| (-626 |#4|)))) -((-4273 (((-891 (-560)) (-964)) 22) (((-891 (-560)) (-626 (-560))) 19)) (-2209 (((-891 (-560)) (-626 (-560))) 46) (((-891 (-560)) (-909)) 47)) (-2817 (((-891 (-560))) 23)) (-3849 (((-891 (-560))) 36) (((-891 (-560)) (-626 (-560))) 35)) (-1903 (((-891 (-560))) 34) (((-891 (-560)) (-626 (-560))) 33)) (-1985 (((-891 (-560))) 32) (((-891 (-560)) (-626 (-560))) 31)) (-3139 (((-891 (-560))) 30) (((-891 (-560)) (-626 (-560))) 29)) (-3426 (((-891 (-560))) 28) (((-891 (-560)) (-626 (-560))) 27)) (-2760 (((-891 (-560))) 38) (((-891 (-560)) (-626 (-560))) 37)) (-2212 (((-891 (-560)) (-626 (-560))) 50) (((-891 (-560)) (-909)) 51)) (-3687 (((-891 (-560)) (-626 (-560))) 48) (((-891 (-560)) (-909)) 49)) (-2605 (((-891 (-560)) (-626 (-560))) 43) (((-891 (-560)) (-909)) 45)) (-1706 (((-891 (-560)) (-626 (-909))) 40))) -(((-905) (-10 -7 (-15 -2209 ((-891 (-560)) (-909))) (-15 -2209 ((-891 (-560)) (-626 (-560)))) (-15 -2605 ((-891 (-560)) (-909))) (-15 -2605 ((-891 (-560)) (-626 (-560)))) (-15 -1706 ((-891 (-560)) (-626 (-909)))) (-15 -3687 ((-891 (-560)) (-909))) (-15 -3687 ((-891 (-560)) (-626 (-560)))) (-15 -2212 ((-891 (-560)) (-909))) (-15 -2212 ((-891 (-560)) (-626 (-560)))) (-15 -3426 ((-891 (-560)) (-626 (-560)))) (-15 -3426 ((-891 (-560)))) (-15 -3139 ((-891 (-560)) (-626 (-560)))) (-15 -3139 ((-891 (-560)))) (-15 -1985 ((-891 (-560)) (-626 (-560)))) (-15 -1985 ((-891 (-560)))) (-15 -1903 ((-891 (-560)) (-626 (-560)))) (-15 -1903 ((-891 (-560)))) (-15 -3849 ((-891 (-560)) (-626 (-560)))) (-15 -3849 ((-891 (-560)))) (-15 -2760 ((-891 (-560)) (-626 (-560)))) (-15 -2760 ((-891 (-560)))) (-15 -2817 ((-891 (-560)))) (-15 -4273 ((-891 (-560)) (-626 (-560)))) (-15 -4273 ((-891 (-560)) (-964))))) (T -905)) -((-4273 (*1 *2 *3) (-12 (-5 *3 (-964)) (-5 *2 (-891 (-560))) (-5 *1 (-905)))) (-4273 (*1 *2 *3) (-12 (-5 *3 (-626 (-560))) (-5 *2 (-891 (-560))) (-5 *1 (-905)))) (-2817 (*1 *2) (-12 (-5 *2 (-891 (-560))) (-5 *1 (-905)))) (-2760 (*1 *2) (-12 (-5 *2 (-891 (-560))) (-5 *1 (-905)))) (-2760 (*1 *2 *3) (-12 (-5 *3 (-626 (-560))) (-5 *2 (-891 (-560))) (-5 *1 (-905)))) (-3849 (*1 *2) (-12 (-5 *2 (-891 (-560))) (-5 *1 (-905)))) (-3849 (*1 *2 *3) (-12 (-5 *3 (-626 (-560))) (-5 *2 (-891 (-560))) (-5 *1 (-905)))) (-1903 (*1 *2) (-12 (-5 *2 (-891 (-560))) (-5 *1 (-905)))) (-1903 (*1 *2 *3) (-12 (-5 *3 (-626 (-560))) (-5 *2 (-891 (-560))) (-5 *1 (-905)))) (-1985 (*1 *2) (-12 (-5 *2 (-891 (-560))) (-5 *1 (-905)))) (-1985 (*1 *2 *3) (-12 (-5 *3 (-626 (-560))) (-5 *2 (-891 (-560))) (-5 *1 (-905)))) (-3139 (*1 *2) (-12 (-5 *2 (-891 (-560))) (-5 *1 (-905)))) (-3139 (*1 *2 *3) (-12 (-5 *3 (-626 (-560))) (-5 *2 (-891 (-560))) (-5 *1 (-905)))) (-3426 (*1 *2) (-12 (-5 *2 (-891 (-560))) (-5 *1 (-905)))) (-3426 (*1 *2 *3) (-12 (-5 *3 (-626 (-560))) (-5 *2 (-891 (-560))) (-5 *1 (-905)))) (-2212 (*1 *2 *3) (-12 (-5 *3 (-626 (-560))) (-5 *2 (-891 (-560))) (-5 *1 (-905)))) (-2212 (*1 *2 *3) (-12 (-5 *3 (-909)) (-5 *2 (-891 (-560))) (-5 *1 (-905)))) (-3687 (*1 *2 *3) (-12 (-5 *3 (-626 (-560))) (-5 *2 (-891 (-560))) (-5 *1 (-905)))) (-3687 (*1 *2 *3) (-12 (-5 *3 (-909)) (-5 *2 (-891 (-560))) (-5 *1 (-905)))) (-1706 (*1 *2 *3) (-12 (-5 *3 (-626 (-909))) (-5 *2 (-891 (-560))) (-5 *1 (-905)))) (-2605 (*1 *2 *3) (-12 (-5 *3 (-626 (-560))) (-5 *2 (-891 (-560))) (-5 *1 (-905)))) (-2605 (*1 *2 *3) (-12 (-5 *3 (-909)) (-5 *2 (-891 (-560))) (-5 *1 (-905)))) (-2209 (*1 *2 *3) (-12 (-5 *3 (-626 (-560))) (-5 *2 (-891 (-560))) (-5 *1 (-905)))) (-2209 (*1 *2 *3) (-12 (-5 *3 (-909)) (-5 *2 (-891 (-560))) (-5 *1 (-905))))) -(-10 -7 (-15 -2209 ((-891 (-560)) (-909))) (-15 -2209 ((-891 (-560)) (-626 (-560)))) (-15 -2605 ((-891 (-560)) (-909))) (-15 -2605 ((-891 (-560)) (-626 (-560)))) (-15 -1706 ((-891 (-560)) (-626 (-909)))) (-15 -3687 ((-891 (-560)) (-909))) (-15 -3687 ((-891 (-560)) (-626 (-560)))) (-15 -2212 ((-891 (-560)) (-909))) (-15 -2212 ((-891 (-560)) (-626 (-560)))) (-15 -3426 ((-891 (-560)) (-626 (-560)))) (-15 -3426 ((-891 (-560)))) (-15 -3139 ((-891 (-560)) (-626 (-560)))) (-15 -3139 ((-891 (-560)))) (-15 -1985 ((-891 (-560)) (-626 (-560)))) (-15 -1985 ((-891 (-560)))) (-15 -1903 ((-891 (-560)) (-626 (-560)))) (-15 -1903 ((-891 (-560)))) (-15 -3849 ((-891 (-560)) (-626 (-560)))) (-15 -3849 ((-891 (-560)))) (-15 -2760 ((-891 (-560)) (-626 (-560)))) (-15 -2760 ((-891 (-560)))) (-15 -2817 ((-891 (-560)))) (-15 -4273 ((-891 (-560)) (-626 (-560)))) (-15 -4273 ((-891 (-560)) (-964)))) -((-2591 (((-626 (-945 |#1|)) (-626 (-945 |#1|)) (-626 (-1153))) 10)) (-1874 (((-626 (-945 |#1|)) (-626 (-945 |#1|)) (-626 (-1153))) 9))) -(((-906 |#1|) (-10 -7 (-15 -1874 ((-626 (-945 |#1|)) (-626 (-945 |#1|)) (-626 (-1153)))) (-15 -2591 ((-626 (-945 |#1|)) (-626 (-945 |#1|)) (-626 (-1153))))) (-447)) (T -906)) -((-2591 (*1 *2 *2 *3) (-12 (-5 *2 (-626 (-945 *4))) (-5 *3 (-626 (-1153))) (-4 *4 (-447)) (-5 *1 (-906 *4)))) (-1874 (*1 *2 *2 *3) (-12 (-5 *2 (-626 (-945 *4))) (-5 *3 (-626 (-1153))) (-4 *4 (-447)) (-5 *1 (-906 *4))))) -(-10 -7 (-15 -1874 ((-626 (-945 |#1|)) (-626 (-945 |#1|)) (-626 (-1153)))) (-15 -2591 ((-626 (-945 |#1|)) (-626 (-945 |#1|)) (-626 (-1153))))) -((-2801 (((-304 |#1|) (-482)) 15))) -(((-907 |#1|) (-10 -7 (-15 -2801 ((-304 |#1|) (-482)))) (-13 (-834) (-550))) (T -907)) -((-2801 (*1 *2 *3) (-12 (-5 *3 (-482)) (-5 *2 (-304 *4)) (-5 *1 (-907 *4)) (-4 *4 (-13 (-834) (-550)))))) -(-10 -7 (-15 -2801 ((-304 |#1|) (-482)))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) 40)) (-1350 (($ $) 39)) (-3376 (((-121) $) 37)) (-2314 (((-3 $ "failed") $ $) 18)) (-4236 (($) 16 T CONST)) (-1823 (((-3 $ "failed") $) 33)) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) 49)) (-2642 (((-121) $) 30)) (-2582 (($ $ $) 45) (($ (-626 $)) 44)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) 43)) (-4440 (($ $ $) 47) (($ (-626 $)) 46)) (-2336 (((-3 $ "failed") $ $) 41)) (-3456 (((-3 (-626 $) "failed") (-626 $) $) 48)) (-2801 (((-842) $) 11) (($ (-560)) 27) (($ $) 42)) (-1751 (((-755)) 28)) (-2328 (((-121) $ $) 38)) (-2464 (($ $ (-909)) 25) (($ $ (-755)) 32)) (-3304 (($) 17 T CONST)) (-1459 (($) 29 T CONST)) (-1653 (((-121) $ $) 6)) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 24) (($ $ (-755)) 31)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 23))) -(((-908) (-1267)) (T -908)) -((-3354 (*1 *2 *3) (-12 (-4 *1 (-908)) (-5 *2 (-2 (|:| -2169 (-626 *1)) (|:| -4250 *1))) (-5 *3 (-626 *1)))) (-3456 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-626 *1)) (-4 *1 (-908))))) -(-13 (-447) (-10 -8 (-15 -3354 ((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $))) (-15 -3456 ((-3 (-626 $) "failed") (-626 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-43 $) . T) ((-105) . T) ((-120 $ $) . T) ((-137) . T) ((-600 (-842)) . T) ((-170) . T) ((-280) . T) ((-447) . T) ((-550) . T) ((-629 $) . T) ((-699 $) . T) ((-708) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1094) . T) ((-1082) . T)) -((-2601 (((-121) $ $) NIL)) (-4236 (($) NIL T CONST)) (-1823 (((-3 $ "failed") $) NIL)) (-2642 (((-121) $) NIL)) (-4325 (($ $ $) NIL)) (-2501 (($ $ $) NIL)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-4440 (($ $ $) NIL)) (-2801 (((-842) $) NIL)) (-2464 (($ $ (-755)) NIL) (($ $ (-909)) NIL)) (-1459 (($) NIL T CONST)) (-1691 (((-121) $ $) NIL)) (-1675 (((-121) $ $) NIL)) (-1653 (((-121) $ $) NIL)) (-1683 (((-121) $ $) NIL)) (-1667 (((-121) $ $) NIL)) (-1716 (($ $ $) NIL)) (** (($ $ (-755)) NIL) (($ $ (-909)) NIL)) (* (($ (-909) $) NIL) (($ $ $) NIL))) -(((-909) (-13 (-25) (-834) (-708) (-10 -8 (-15 -4440 ($ $ $)) (-6 (-4507 "*"))))) (T -909)) -((-4440 (*1 *1 *1 *1) (-5 *1 (-909)))) -(-13 (-25) (-834) (-708) (-10 -8 (-15 -4440 ($ $ $)) (-6 (-4507 "*")))) -((-3370 ((|#2| (-626 |#1|) (-626 |#1|)) 22))) -(((-910 |#1| |#2|) (-10 -7 (-15 -3370 (|#2| (-626 |#1|) (-626 |#1|)))) (-359) (-1211 |#1|)) (T -910)) -((-3370 (*1 *2 *3 *3) (-12 (-5 *3 (-626 *4)) (-4 *4 (-359)) (-4 *2 (-1211 *4)) (-5 *1 (-910 *4 *2))))) -(-10 -7 (-15 -3370 (|#2| (-626 |#1|) (-626 |#1|)))) -((-1571 (((-1149 |#2|) (-626 |#2|) (-626 |#2|)) 17) (((-1208 |#1| |#2|) (-1208 |#1| |#2|) (-626 |#2|) (-626 |#2|)) 13))) -(((-911 |#1| |#2|) (-10 -7 (-15 -1571 ((-1208 |#1| |#2|) (-1208 |#1| |#2|) (-626 |#2|) (-626 |#2|))) (-15 -1571 ((-1149 |#2|) (-626 |#2|) (-626 |#2|)))) (-1153) (-359)) (T -911)) -((-1571 (*1 *2 *3 *3) (-12 (-5 *3 (-626 *5)) (-4 *5 (-359)) (-5 *2 (-1149 *5)) (-5 *1 (-911 *4 *5)) (-14 *4 (-1153)))) (-1571 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1208 *4 *5)) (-5 *3 (-626 *5)) (-14 *4 (-1153)) (-4 *5 (-359)) (-5 *1 (-911 *4 *5))))) -(-10 -7 (-15 -1571 ((-1208 |#1| |#2|) (-1208 |#1| |#2|) (-626 |#2|) (-626 |#2|))) (-15 -1571 ((-1149 |#2|) (-626 |#2|) (-626 |#2|)))) -((-2601 (((-121) $ $) 7)) (-3648 (((-1241) $ (-626 |#2|)) 19)) (-3654 (((-626 $)) 14)) (-3661 (((-1241) $ (-909)) 18)) (-2342 (((-231 $) (-626 $)) 23)) (-3666 (((-626 |#2|) $) 20)) (-3992 (((-121) $) 17)) (-1291 (((-1135) $) 9)) (-3672 (((-1241) $) 16)) (-4353 (((-1100) $) 10)) (-3678 (((-626 $)) 15)) (-2778 ((|#1| $ (-560)) 13)) (-3662 (((-909) $) 12)) (-2772 (($ (-626 |#1|)) 22) (($ (-1153)) 21)) (-2801 (((-842) $) 11)) (-1653 (((-121) $ $) 6)) (-1725 (((-231 $) $ $) 28) (((-231 $) (-231 $) $) 27) (((-231 $) $ (-231 $)) 26) (((-231 $) $) 25)) (-1716 (((-231 $) $ $) 31) (((-231 $) (-231 $) $) 30) (((-231 $) $ (-231 $)) 29)) (* (((-231 $) (-560) $) 24))) -(((-912 |#1| |#2|) (-1267) (-359) (-633 |t#1|)) (T -912)) -((-1716 (*1 *2 *1 *1) (-12 (-4 *3 (-359)) (-5 *2 (-231 *1)) (-4 *1 (-912 *3 *4)))) (-1716 (*1 *2 *2 *1) (-12 (-5 *2 (-231 *1)) (-4 *1 (-912 *3 *4)) (-4 *3 (-359)))) (-1716 (*1 *2 *1 *2) (-12 (-5 *2 (-231 *1)) (-4 *1 (-912 *3 *4)) (-4 *3 (-359)))) (-1725 (*1 *2 *1 *1) (-12 (-4 *3 (-359)) (-5 *2 (-231 *1)) (-4 *1 (-912 *3 *4)))) (-1725 (*1 *2 *2 *1) (-12 (-5 *2 (-231 *1)) (-4 *1 (-912 *3 *4)) (-4 *3 (-359)))) (-1725 (*1 *2 *1 *2) (-12 (-5 *2 (-231 *1)) (-4 *1 (-912 *3 *4)) (-4 *3 (-359)))) (-1725 (*1 *2 *1) (-12 (-4 *3 (-359)) (-5 *2 (-231 *1)) (-4 *1 (-912 *3 *4)))) (* (*1 *2 *3 *1) (-12 (-5 *3 (-560)) (-4 *4 (-359)) (-5 *2 (-231 *1)) (-4 *1 (-912 *4 *5)))) (-2342 (*1 *2 *3) (-12 (-5 *3 (-626 *1)) (-4 *1 (-912 *4 *5)) (-4 *4 (-359)) (-5 *2 (-231 *1)))) (-2772 (*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-359)) (-4 *1 (-912 *3 *4)))) (-2772 (*1 *1 *2) (-12 (-5 *2 (-1153)) (-4 *1 (-912 *3 *4)) (-4 *3 (-359)))) (-3666 (*1 *2 *1) (-12 (-4 *1 (-912 *3 *4)) (-4 *3 (-359)) (-5 *2 (-626 *4)))) (-3648 (*1 *2 *1 *3) (-12 (-5 *3 (-626 *5)) (-4 *1 (-912 *4 *5)) (-4 *4 (-359)) (-5 *2 (-1241)))) (-3661 (*1 *2 *1 *3) (-12 (-5 *3 (-909)) (-4 *1 (-912 *4 *5)) (-4 *4 (-359)) (-5 *2 (-1241)))) (-3992 (*1 *2 *1) (-12 (-4 *1 (-912 *3 *4)) (-4 *3 (-359)) (-5 *2 (-121)))) (-3672 (*1 *2 *1) (-12 (-4 *1 (-912 *3 *4)) (-4 *3 (-359)) (-5 *2 (-1241)))) (-3678 (*1 *2) (-12 (-4 *3 (-359)) (-5 *2 (-626 *1)) (-4 *1 (-912 *3 *4)))) (-3654 (*1 *2) (-12 (-4 *3 (-359)) (-5 *2 (-626 *1)) (-4 *1 (-912 *3 *4)))) (-2778 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *1 (-912 *2 *4)) (-4 *2 (-359))))) -(-13 (-1080) (-10 -8 (-15 -1716 ((-231 $) $ $)) (-15 -1716 ((-231 $) (-231 $) $)) (-15 -1716 ((-231 $) $ (-231 $))) (-15 -1725 ((-231 $) $ $)) (-15 -1725 ((-231 $) (-231 $) $)) (-15 -1725 ((-231 $) $ (-231 $))) (-15 -1725 ((-231 $) $)) (-15 * ((-231 $) (-560) $)) (-15 -2342 ((-231 $) (-626 $))) (-15 -2772 ($ (-626 |t#1|))) (-15 -2772 ($ (-1153))) (-15 -3666 ((-626 |t#2|) $)) (-15 -3648 ((-1241) $ (-626 |t#2|))) (-15 -3661 ((-1241) $ (-909))) (-15 -3992 ((-121) $)) (-15 -3672 ((-1241) $)) (-15 -3678 ((-626 $))) (-15 -3654 ((-626 $))) (-15 -2778 (|t#1| $ (-560))))) -(((-105) . T) ((-600 (-842)) . T) ((-1082) . T) ((-1080) . T)) -((-2601 (((-121) $ $) NIL)) (-3648 (((-1241) $ (-626 (-766 |#1|))) NIL)) (-3654 (((-626 $)) NIL)) (-3661 (((-1241) $ (-909)) NIL)) (-2342 (((-231 $) (-626 $)) NIL)) (-3666 (((-626 (-766 |#1|)) $) NIL)) (-3992 (((-121) $) NIL)) (-1291 (((-1135) $) NIL)) (-3672 (((-1241) $) NIL)) (-4353 (((-1100) $) NIL)) (-3678 (((-626 $)) NIL)) (-2778 ((|#1| $ (-560)) NIL)) (-3662 (((-909) $) NIL)) (-2772 (($ (-626 |#1|)) NIL) (($ (-1153)) NIL)) (-2801 (((-842) $) NIL)) (-1653 (((-121) $ $) NIL)) (-1725 (((-231 $) $ $) NIL) (((-231 $) (-231 $) $) NIL) (((-231 $) $ (-231 $)) NIL) (((-231 $) $) NIL)) (-1716 (((-231 $) $ $) NIL) (((-231 $) (-231 $) $) NIL) (((-231 $) $ (-231 $)) NIL)) (* (((-231 $) (-560) $) NIL))) -(((-913 |#1|) (-912 |#1| (-766 |#1|)) (-359)) (T -913)) -NIL -(-912 |#1| (-766 |#1|)) -((-2601 (((-121) $ $) NIL)) (-3648 (((-1241) $ (-626 (-766 (-849 |#1|)))) NIL)) (-3654 (((-626 $)) NIL)) (-3661 (((-1241) $ (-909)) NIL)) (-2342 (((-231 $) (-626 $)) NIL)) (-3666 (((-626 (-766 (-849 |#1|))) $) NIL)) (-3992 (((-121) $) NIL)) (-1291 (((-1135) $) NIL)) (-3672 (((-1241) $) NIL)) (-4353 (((-1100) $) NIL)) (-3678 (((-626 $)) NIL)) (-2778 (((-849 |#1|) $ (-560)) NIL)) (-3662 (((-909) $) NIL)) (-2772 (($ (-626 (-849 |#1|))) NIL) (($ (-1153)) NIL)) (-2801 (((-842) $) NIL)) (-1653 (((-121) $ $) NIL)) (-1725 (((-231 $) $ $) NIL) (((-231 $) (-231 $) $) NIL) (((-231 $) $ (-231 $)) NIL) (((-231 $) $) NIL)) (-1716 (((-231 $) $ $) NIL) (((-231 $) (-231 $) $) NIL) (((-231 $) $ (-231 $)) NIL)) (* (((-231 $) (-560) $) NIL))) -(((-914 |#1|) (-912 (-849 |#1|) (-766 (-849 |#1|))) (-344)) (T -914)) -NIL -(-912 (-849 |#1|) (-766 (-849 |#1|))) -((-2601 (((-121) $ $) NIL)) (-3648 (((-1241) $ (-626 |#2|)) 73)) (-3654 (((-626 $)) 62)) (-3661 (((-1241) $ (-909)) 71)) (-2342 (((-231 $) (-626 $)) 27)) (-3666 (((-626 |#2|) $) 74)) (-3992 (((-121) $) 54)) (-1291 (((-1135) $) NIL)) (-3672 (((-1241) $) 57)) (-4353 (((-1100) $) NIL)) (-3678 (((-626 $)) 59)) (-2778 ((|#1| $ (-560)) 53)) (-3662 (((-909) $) 42)) (-2772 (($ (-626 |#1|)) 69) (($ (-1153)) 70)) (-2801 (((-842) $) 45)) (-1653 (((-121) $ $) 50)) (-1725 (((-231 $) $ $) 18) (((-231 $) (-231 $) $) 30) (((-231 $) $ (-231 $)) 31) (((-231 $) $) 33)) (-1716 (((-231 $) $ $) 16) (((-231 $) (-231 $) $) 28) (((-231 $) $ (-231 $)) 29)) (* (((-231 $) (-560) $) 21))) -(((-915 |#1| |#2|) (-912 |#1| |#2|) (-359) (-633 |#1|)) (T -915)) -NIL -(-912 |#1| |#2|) -((-4022 (((-560) (-626 (-2 (|:| |eqzro| (-626 |#4|)) (|:| |neqzro| (-626 |#4|)) (|:| |wcond| (-626 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1236 (-403 (-945 |#1|)))) (|:| -4374 (-626 (-1236 (-403 (-945 |#1|))))))))) (-1135)) 137)) (-1426 ((|#4| |#4|) 153)) (-4276 (((-626 (-403 (-945 |#1|))) (-626 (-1153))) 116)) (-3860 (((-2 (|:| |eqzro| (-626 |#4|)) (|:| |neqzro| (-626 |#4|)) (|:| |wcond| (-626 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1236 (-403 (-945 |#1|)))) (|:| -4374 (-626 (-1236 (-403 (-945 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-626 (-560))) (|:| |cols| (-626 (-560)))) (-671 |#4|) (-626 (-403 (-945 |#1|))) (-626 (-626 |#4|)) (-755) (-755) (-560)) 73)) (-3727 (((-2 (|:| |partsol| (-1236 (-403 (-945 |#1|)))) (|:| -4374 (-626 (-1236 (-403 (-945 |#1|)))))) (-2 (|:| |partsol| (-1236 (-403 (-945 |#1|)))) (|:| -4374 (-626 (-1236 (-403 (-945 |#1|)))))) (-626 |#4|)) 57)) (-2685 (((-671 |#4|) (-671 |#4|) (-626 |#4|)) 53)) (-2356 (((-626 (-2 (|:| |eqzro| (-626 |#4|)) (|:| |neqzro| (-626 |#4|)) (|:| |wcond| (-626 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1236 (-403 (-945 |#1|)))) (|:| -4374 (-626 (-1236 (-403 (-945 |#1|))))))))) (-1135)) 149)) (-1389 (((-560) (-671 |#4|) (-909) (-1135)) 130) (((-560) (-671 |#4|) (-626 (-1153)) (-909) (-1135)) 129) (((-560) (-671 |#4|) (-626 |#4|) (-909) (-1135)) 128) (((-560) (-671 |#4|) (-1135)) 125) (((-560) (-671 |#4|) (-626 (-1153)) (-1135)) 124) (((-560) (-671 |#4|) (-626 |#4|) (-1135)) 123) (((-626 (-2 (|:| |eqzro| (-626 |#4|)) (|:| |neqzro| (-626 |#4|)) (|:| |wcond| (-626 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1236 (-403 (-945 |#1|)))) (|:| -4374 (-626 (-1236 (-403 (-945 |#1|))))))))) (-671 |#4|) (-909)) 122) (((-626 (-2 (|:| |eqzro| (-626 |#4|)) (|:| |neqzro| (-626 |#4|)) (|:| |wcond| (-626 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1236 (-403 (-945 |#1|)))) (|:| -4374 (-626 (-1236 (-403 (-945 |#1|))))))))) (-671 |#4|) (-626 (-1153)) (-909)) 121) (((-626 (-2 (|:| |eqzro| (-626 |#4|)) (|:| |neqzro| (-626 |#4|)) (|:| |wcond| (-626 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1236 (-403 (-945 |#1|)))) (|:| -4374 (-626 (-1236 (-403 (-945 |#1|))))))))) (-671 |#4|) (-626 |#4|) (-909)) 120) (((-626 (-2 (|:| |eqzro| (-626 |#4|)) (|:| |neqzro| (-626 |#4|)) (|:| |wcond| (-626 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1236 (-403 (-945 |#1|)))) (|:| -4374 (-626 (-1236 (-403 (-945 |#1|))))))))) (-671 |#4|)) 118) (((-626 (-2 (|:| |eqzro| (-626 |#4|)) (|:| |neqzro| (-626 |#4|)) (|:| |wcond| (-626 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1236 (-403 (-945 |#1|)))) (|:| -4374 (-626 (-1236 (-403 (-945 |#1|))))))))) (-671 |#4|) (-626 (-1153))) 117) (((-626 (-2 (|:| |eqzro| (-626 |#4|)) (|:| |neqzro| (-626 |#4|)) (|:| |wcond| (-626 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1236 (-403 (-945 |#1|)))) (|:| -4374 (-626 (-1236 (-403 (-945 |#1|))))))))) (-671 |#4|) (-626 |#4|)) 114)) (-1492 ((|#4| (-945 |#1|)) 66)) (-3372 (((-121) (-626 |#4|) (-626 (-626 |#4|))) 150)) (-2180 (((-626 (-626 (-560))) (-560) (-560)) 127)) (-3716 (((-626 (-626 |#4|)) (-626 (-626 |#4|))) 85)) (-2531 (((-755) (-626 (-2 (|:| -3143 (-755)) (|:| |eqns| (-626 (-2 (|:| |det| |#4|) (|:| |rows| (-626 (-560))) (|:| |cols| (-626 (-560)))))) (|:| |fgb| (-626 |#4|))))) 83)) (-3240 (((-755) (-626 (-2 (|:| -3143 (-755)) (|:| |eqns| (-626 (-2 (|:| |det| |#4|) (|:| |rows| (-626 (-560))) (|:| |cols| (-626 (-560)))))) (|:| |fgb| (-626 |#4|))))) 82)) (-3611 (((-121) (-626 (-945 |#1|))) 17) (((-121) (-626 |#4|)) 13)) (-3745 (((-2 (|:| |sysok| (-121)) (|:| |z0| (-626 |#4|)) (|:| |n0| (-626 |#4|))) (-626 |#4|) (-626 |#4|)) 69)) (-3742 (((-626 |#4|) |#4|) 47)) (-1875 (((-626 (-403 (-945 |#1|))) (-626 |#4|)) 112) (((-671 (-403 (-945 |#1|))) (-671 |#4|)) 54) (((-403 (-945 |#1|)) |#4|) 109)) (-3768 (((-2 (|:| |rgl| (-626 (-2 (|:| |eqzro| (-626 |#4|)) (|:| |neqzro| (-626 |#4|)) (|:| |wcond| (-626 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1236 (-403 (-945 |#1|)))) (|:| -4374 (-626 (-1236 (-403 (-945 |#1|)))))))))) (|:| |rgsz| (-560))) (-671 |#4|) (-626 (-403 (-945 |#1|))) (-755) (-1135) (-560)) 89)) (-2417 (((-626 (-2 (|:| -3143 (-755)) (|:| |eqns| (-626 (-2 (|:| |det| |#4|) (|:| |rows| (-626 (-560))) (|:| |cols| (-626 (-560)))))) (|:| |fgb| (-626 |#4|)))) (-671 |#4|) (-755)) 81)) (-1732 (((-626 (-2 (|:| |det| |#4|) (|:| |rows| (-626 (-560))) (|:| |cols| (-626 (-560))))) (-671 |#4|) (-755)) 98)) (-1622 (((-2 (|:| |partsol| (-1236 (-403 (-945 |#1|)))) (|:| -4374 (-626 (-1236 (-403 (-945 |#1|)))))) (-2 (|:| -3818 (-671 (-403 (-945 |#1|)))) (|:| |vec| (-626 (-403 (-945 |#1|)))) (|:| -3143 (-755)) (|:| |rows| (-626 (-560))) (|:| |cols| (-626 (-560))))) 46))) -(((-916 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1389 ((-626 (-2 (|:| |eqzro| (-626 |#4|)) (|:| |neqzro| (-626 |#4|)) (|:| |wcond| (-626 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1236 (-403 (-945 |#1|)))) (|:| -4374 (-626 (-1236 (-403 (-945 |#1|))))))))) (-671 |#4|) (-626 |#4|))) (-15 -1389 ((-626 (-2 (|:| |eqzro| (-626 |#4|)) (|:| |neqzro| (-626 |#4|)) (|:| |wcond| (-626 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1236 (-403 (-945 |#1|)))) (|:| -4374 (-626 (-1236 (-403 (-945 |#1|))))))))) (-671 |#4|) (-626 (-1153)))) (-15 -1389 ((-626 (-2 (|:| |eqzro| (-626 |#4|)) (|:| |neqzro| (-626 |#4|)) (|:| |wcond| (-626 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1236 (-403 (-945 |#1|)))) (|:| -4374 (-626 (-1236 (-403 (-945 |#1|))))))))) (-671 |#4|))) (-15 -1389 ((-626 (-2 (|:| |eqzro| (-626 |#4|)) (|:| |neqzro| (-626 |#4|)) (|:| |wcond| (-626 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1236 (-403 (-945 |#1|)))) (|:| -4374 (-626 (-1236 (-403 (-945 |#1|))))))))) (-671 |#4|) (-626 |#4|) (-909))) (-15 -1389 ((-626 (-2 (|:| |eqzro| (-626 |#4|)) (|:| |neqzro| (-626 |#4|)) (|:| |wcond| (-626 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1236 (-403 (-945 |#1|)))) (|:| -4374 (-626 (-1236 (-403 (-945 |#1|))))))))) (-671 |#4|) (-626 (-1153)) (-909))) (-15 -1389 ((-626 (-2 (|:| |eqzro| (-626 |#4|)) (|:| |neqzro| (-626 |#4|)) (|:| |wcond| (-626 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1236 (-403 (-945 |#1|)))) (|:| -4374 (-626 (-1236 (-403 (-945 |#1|))))))))) (-671 |#4|) (-909))) (-15 -1389 ((-560) (-671 |#4|) (-626 |#4|) (-1135))) (-15 -1389 ((-560) (-671 |#4|) (-626 (-1153)) (-1135))) (-15 -1389 ((-560) (-671 |#4|) (-1135))) (-15 -1389 ((-560) (-671 |#4|) (-626 |#4|) (-909) (-1135))) (-15 -1389 ((-560) (-671 |#4|) (-626 (-1153)) (-909) (-1135))) (-15 -1389 ((-560) (-671 |#4|) (-909) (-1135))) (-15 -4022 ((-560) (-626 (-2 (|:| |eqzro| (-626 |#4|)) (|:| |neqzro| (-626 |#4|)) (|:| |wcond| (-626 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1236 (-403 (-945 |#1|)))) (|:| -4374 (-626 (-1236 (-403 (-945 |#1|))))))))) (-1135))) (-15 -2356 ((-626 (-2 (|:| |eqzro| (-626 |#4|)) (|:| |neqzro| (-626 |#4|)) (|:| |wcond| (-626 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1236 (-403 (-945 |#1|)))) (|:| -4374 (-626 (-1236 (-403 (-945 |#1|))))))))) (-1135))) (-15 -3768 ((-2 (|:| |rgl| (-626 (-2 (|:| |eqzro| (-626 |#4|)) (|:| |neqzro| (-626 |#4|)) (|:| |wcond| (-626 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1236 (-403 (-945 |#1|)))) (|:| -4374 (-626 (-1236 (-403 (-945 |#1|)))))))))) (|:| |rgsz| (-560))) (-671 |#4|) (-626 (-403 (-945 |#1|))) (-755) (-1135) (-560))) (-15 -1875 ((-403 (-945 |#1|)) |#4|)) (-15 -1875 ((-671 (-403 (-945 |#1|))) (-671 |#4|))) (-15 -1875 ((-626 (-403 (-945 |#1|))) (-626 |#4|))) (-15 -4276 ((-626 (-403 (-945 |#1|))) (-626 (-1153)))) (-15 -1492 (|#4| (-945 |#1|))) (-15 -3745 ((-2 (|:| |sysok| (-121)) (|:| |z0| (-626 |#4|)) (|:| |n0| (-626 |#4|))) (-626 |#4|) (-626 |#4|))) (-15 -2417 ((-626 (-2 (|:| -3143 (-755)) (|:| |eqns| (-626 (-2 (|:| |det| |#4|) (|:| |rows| (-626 (-560))) (|:| |cols| (-626 (-560)))))) (|:| |fgb| (-626 |#4|)))) (-671 |#4|) (-755))) (-15 -3727 ((-2 (|:| |partsol| (-1236 (-403 (-945 |#1|)))) (|:| -4374 (-626 (-1236 (-403 (-945 |#1|)))))) (-2 (|:| |partsol| (-1236 (-403 (-945 |#1|)))) (|:| -4374 (-626 (-1236 (-403 (-945 |#1|)))))) (-626 |#4|))) (-15 -1622 ((-2 (|:| |partsol| (-1236 (-403 (-945 |#1|)))) (|:| -4374 (-626 (-1236 (-403 (-945 |#1|)))))) (-2 (|:| -3818 (-671 (-403 (-945 |#1|)))) (|:| |vec| (-626 (-403 (-945 |#1|)))) (|:| -3143 (-755)) (|:| |rows| (-626 (-560))) (|:| |cols| (-626 (-560)))))) (-15 -3742 ((-626 |#4|) |#4|)) (-15 -3240 ((-755) (-626 (-2 (|:| -3143 (-755)) (|:| |eqns| (-626 (-2 (|:| |det| |#4|) (|:| |rows| (-626 (-560))) (|:| |cols| (-626 (-560)))))) (|:| |fgb| (-626 |#4|)))))) (-15 -2531 ((-755) (-626 (-2 (|:| -3143 (-755)) (|:| |eqns| (-626 (-2 (|:| |det| |#4|) (|:| |rows| (-626 (-560))) (|:| |cols| (-626 (-560)))))) (|:| |fgb| (-626 |#4|)))))) (-15 -3716 ((-626 (-626 |#4|)) (-626 (-626 |#4|)))) (-15 -2180 ((-626 (-626 (-560))) (-560) (-560))) (-15 -3372 ((-121) (-626 |#4|) (-626 (-626 |#4|)))) (-15 -1732 ((-626 (-2 (|:| |det| |#4|) (|:| |rows| (-626 (-560))) (|:| |cols| (-626 (-560))))) (-671 |#4|) (-755))) (-15 -2685 ((-671 |#4|) (-671 |#4|) (-626 |#4|))) (-15 -3860 ((-2 (|:| |eqzro| (-626 |#4|)) (|:| |neqzro| (-626 |#4|)) (|:| |wcond| (-626 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1236 (-403 (-945 |#1|)))) (|:| -4374 (-626 (-1236 (-403 (-945 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-626 (-560))) (|:| |cols| (-626 (-560)))) (-671 |#4|) (-626 (-403 (-945 |#1|))) (-626 (-626 |#4|)) (-755) (-755) (-560))) (-15 -1426 (|#4| |#4|)) (-15 -3611 ((-121) (-626 |#4|))) (-15 -3611 ((-121) (-626 (-945 |#1|))))) (-13 (-296) (-148)) (-13 (-834) (-601 (-1153))) (-780) (-942 |#1| |#3| |#2|)) (T -916)) -((-3611 (*1 *2 *3) (-12 (-5 *3 (-626 (-945 *4))) (-4 *4 (-13 (-296) (-148))) (-4 *5 (-13 (-834) (-601 (-1153)))) (-4 *6 (-780)) (-5 *2 (-121)) (-5 *1 (-916 *4 *5 *6 *7)) (-4 *7 (-942 *4 *6 *5)))) (-3611 (*1 *2 *3) (-12 (-5 *3 (-626 *7)) (-4 *7 (-942 *4 *6 *5)) (-4 *4 (-13 (-296) (-148))) (-4 *5 (-13 (-834) (-601 (-1153)))) (-4 *6 (-780)) (-5 *2 (-121)) (-5 *1 (-916 *4 *5 *6 *7)))) (-1426 (*1 *2 *2) (-12 (-4 *3 (-13 (-296) (-148))) (-4 *4 (-13 (-834) (-601 (-1153)))) (-4 *5 (-780)) (-5 *1 (-916 *3 *4 *5 *2)) (-4 *2 (-942 *3 *5 *4)))) (-3860 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-626 (-560))) (|:| |cols| (-626 (-560))))) (-5 *4 (-671 *12)) (-5 *5 (-626 (-403 (-945 *9)))) (-5 *6 (-626 (-626 *12))) (-5 *7 (-755)) (-5 *8 (-560)) (-4 *9 (-13 (-296) (-148))) (-4 *12 (-942 *9 *11 *10)) (-4 *10 (-13 (-834) (-601 (-1153)))) (-4 *11 (-780)) (-5 *2 (-2 (|:| |eqzro| (-626 *12)) (|:| |neqzro| (-626 *12)) (|:| |wcond| (-626 (-945 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1236 (-403 (-945 *9)))) (|:| -4374 (-626 (-1236 (-403 (-945 *9))))))))) (-5 *1 (-916 *9 *10 *11 *12)))) (-2685 (*1 *2 *2 *3) (-12 (-5 *2 (-671 *7)) (-5 *3 (-626 *7)) (-4 *7 (-942 *4 *6 *5)) (-4 *4 (-13 (-296) (-148))) (-4 *5 (-13 (-834) (-601 (-1153)))) (-4 *6 (-780)) (-5 *1 (-916 *4 *5 *6 *7)))) (-1732 (*1 *2 *3 *4) (-12 (-5 *3 (-671 *8)) (-5 *4 (-755)) (-4 *8 (-942 *5 *7 *6)) (-4 *5 (-13 (-296) (-148))) (-4 *6 (-13 (-834) (-601 (-1153)))) (-4 *7 (-780)) (-5 *2 (-626 (-2 (|:| |det| *8) (|:| |rows| (-626 (-560))) (|:| |cols| (-626 (-560)))))) (-5 *1 (-916 *5 *6 *7 *8)))) (-3372 (*1 *2 *3 *4) (-12 (-5 *4 (-626 (-626 *8))) (-5 *3 (-626 *8)) (-4 *8 (-942 *5 *7 *6)) (-4 *5 (-13 (-296) (-148))) (-4 *6 (-13 (-834) (-601 (-1153)))) (-4 *7 (-780)) (-5 *2 (-121)) (-5 *1 (-916 *5 *6 *7 *8)))) (-2180 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-296) (-148))) (-4 *5 (-13 (-834) (-601 (-1153)))) (-4 *6 (-780)) (-5 *2 (-626 (-626 (-560)))) (-5 *1 (-916 *4 *5 *6 *7)) (-5 *3 (-560)) (-4 *7 (-942 *4 *6 *5)))) (-3716 (*1 *2 *2) (-12 (-5 *2 (-626 (-626 *6))) (-4 *6 (-942 *3 *5 *4)) (-4 *3 (-13 (-296) (-148))) (-4 *4 (-13 (-834) (-601 (-1153)))) (-4 *5 (-780)) (-5 *1 (-916 *3 *4 *5 *6)))) (-2531 (*1 *2 *3) (-12 (-5 *3 (-626 (-2 (|:| -3143 (-755)) (|:| |eqns| (-626 (-2 (|:| |det| *7) (|:| |rows| (-626 (-560))) (|:| |cols| (-626 (-560)))))) (|:| |fgb| (-626 *7))))) (-4 *7 (-942 *4 *6 *5)) (-4 *4 (-13 (-296) (-148))) (-4 *5 (-13 (-834) (-601 (-1153)))) (-4 *6 (-780)) (-5 *2 (-755)) (-5 *1 (-916 *4 *5 *6 *7)))) (-3240 (*1 *2 *3) (-12 (-5 *3 (-626 (-2 (|:| -3143 (-755)) (|:| |eqns| (-626 (-2 (|:| |det| *7) (|:| |rows| (-626 (-560))) (|:| |cols| (-626 (-560)))))) (|:| |fgb| (-626 *7))))) (-4 *7 (-942 *4 *6 *5)) (-4 *4 (-13 (-296) (-148))) (-4 *5 (-13 (-834) (-601 (-1153)))) (-4 *6 (-780)) (-5 *2 (-755)) (-5 *1 (-916 *4 *5 *6 *7)))) (-3742 (*1 *2 *3) (-12 (-4 *4 (-13 (-296) (-148))) (-4 *5 (-13 (-834) (-601 (-1153)))) (-4 *6 (-780)) (-5 *2 (-626 *3)) (-5 *1 (-916 *4 *5 *6 *3)) (-4 *3 (-942 *4 *6 *5)))) (-1622 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3818 (-671 (-403 (-945 *4)))) (|:| |vec| (-626 (-403 (-945 *4)))) (|:| -3143 (-755)) (|:| |rows| (-626 (-560))) (|:| |cols| (-626 (-560))))) (-4 *4 (-13 (-296) (-148))) (-4 *5 (-13 (-834) (-601 (-1153)))) (-4 *6 (-780)) (-5 *2 (-2 (|:| |partsol| (-1236 (-403 (-945 *4)))) (|:| -4374 (-626 (-1236 (-403 (-945 *4))))))) (-5 *1 (-916 *4 *5 *6 *7)) (-4 *7 (-942 *4 *6 *5)))) (-3727 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1236 (-403 (-945 *4)))) (|:| -4374 (-626 (-1236 (-403 (-945 *4))))))) (-5 *3 (-626 *7)) (-4 *4 (-13 (-296) (-148))) (-4 *7 (-942 *4 *6 *5)) (-4 *5 (-13 (-834) (-601 (-1153)))) (-4 *6 (-780)) (-5 *1 (-916 *4 *5 *6 *7)))) (-2417 (*1 *2 *3 *4) (-12 (-5 *3 (-671 *8)) (-4 *8 (-942 *5 *7 *6)) (-4 *5 (-13 (-296) (-148))) (-4 *6 (-13 (-834) (-601 (-1153)))) (-4 *7 (-780)) (-5 *2 (-626 (-2 (|:| -3143 (-755)) (|:| |eqns| (-626 (-2 (|:| |det| *8) (|:| |rows| (-626 (-560))) (|:| |cols| (-626 (-560)))))) (|:| |fgb| (-626 *8))))) (-5 *1 (-916 *5 *6 *7 *8)) (-5 *4 (-755)))) (-3745 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-296) (-148))) (-4 *5 (-13 (-834) (-601 (-1153)))) (-4 *6 (-780)) (-4 *7 (-942 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-121)) (|:| |z0| (-626 *7)) (|:| |n0| (-626 *7)))) (-5 *1 (-916 *4 *5 *6 *7)) (-5 *3 (-626 *7)))) (-1492 (*1 *2 *3) (-12 (-5 *3 (-945 *4)) (-4 *4 (-13 (-296) (-148))) (-4 *2 (-942 *4 *6 *5)) (-5 *1 (-916 *4 *5 *6 *2)) (-4 *5 (-13 (-834) (-601 (-1153)))) (-4 *6 (-780)))) (-4276 (*1 *2 *3) (-12 (-5 *3 (-626 (-1153))) (-4 *4 (-13 (-296) (-148))) (-4 *5 (-13 (-834) (-601 (-1153)))) (-4 *6 (-780)) (-5 *2 (-626 (-403 (-945 *4)))) (-5 *1 (-916 *4 *5 *6 *7)) (-4 *7 (-942 *4 *6 *5)))) (-1875 (*1 *2 *3) (-12 (-5 *3 (-626 *7)) (-4 *7 (-942 *4 *6 *5)) (-4 *4 (-13 (-296) (-148))) (-4 *5 (-13 (-834) (-601 (-1153)))) (-4 *6 (-780)) (-5 *2 (-626 (-403 (-945 *4)))) (-5 *1 (-916 *4 *5 *6 *7)))) (-1875 (*1 *2 *3) (-12 (-5 *3 (-671 *7)) (-4 *7 (-942 *4 *6 *5)) (-4 *4 (-13 (-296) (-148))) (-4 *5 (-13 (-834) (-601 (-1153)))) (-4 *6 (-780)) (-5 *2 (-671 (-403 (-945 *4)))) (-5 *1 (-916 *4 *5 *6 *7)))) (-1875 (*1 *2 *3) (-12 (-4 *4 (-13 (-296) (-148))) (-4 *5 (-13 (-834) (-601 (-1153)))) (-4 *6 (-780)) (-5 *2 (-403 (-945 *4))) (-5 *1 (-916 *4 *5 *6 *3)) (-4 *3 (-942 *4 *6 *5)))) (-3768 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-671 *11)) (-5 *4 (-626 (-403 (-945 *8)))) (-5 *5 (-755)) (-5 *6 (-1135)) (-4 *8 (-13 (-296) (-148))) (-4 *11 (-942 *8 *10 *9)) (-4 *9 (-13 (-834) (-601 (-1153)))) (-4 *10 (-780)) (-5 *2 (-2 (|:| |rgl| (-626 (-2 (|:| |eqzro| (-626 *11)) (|:| |neqzro| (-626 *11)) (|:| |wcond| (-626 (-945 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1236 (-403 (-945 *8)))) (|:| -4374 (-626 (-1236 (-403 (-945 *8)))))))))) (|:| |rgsz| (-560)))) (-5 *1 (-916 *8 *9 *10 *11)) (-5 *7 (-560)))) (-2356 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-296) (-148))) (-4 *5 (-13 (-834) (-601 (-1153)))) (-4 *6 (-780)) (-5 *2 (-626 (-2 (|:| |eqzro| (-626 *7)) (|:| |neqzro| (-626 *7)) (|:| |wcond| (-626 (-945 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1236 (-403 (-945 *4)))) (|:| -4374 (-626 (-1236 (-403 (-945 *4)))))))))) (-5 *1 (-916 *4 *5 *6 *7)) (-4 *7 (-942 *4 *6 *5)))) (-4022 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-2 (|:| |eqzro| (-626 *8)) (|:| |neqzro| (-626 *8)) (|:| |wcond| (-626 (-945 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1236 (-403 (-945 *5)))) (|:| -4374 (-626 (-1236 (-403 (-945 *5)))))))))) (-5 *4 (-1135)) (-4 *5 (-13 (-296) (-148))) (-4 *8 (-942 *5 *7 *6)) (-4 *6 (-13 (-834) (-601 (-1153)))) (-4 *7 (-780)) (-5 *2 (-560)) (-5 *1 (-916 *5 *6 *7 *8)))) (-1389 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-671 *9)) (-5 *4 (-909)) (-5 *5 (-1135)) (-4 *9 (-942 *6 *8 *7)) (-4 *6 (-13 (-296) (-148))) (-4 *7 (-13 (-834) (-601 (-1153)))) (-4 *8 (-780)) (-5 *2 (-560)) (-5 *1 (-916 *6 *7 *8 *9)))) (-1389 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-671 *10)) (-5 *4 (-626 (-1153))) (-5 *5 (-909)) (-5 *6 (-1135)) (-4 *10 (-942 *7 *9 *8)) (-4 *7 (-13 (-296) (-148))) (-4 *8 (-13 (-834) (-601 (-1153)))) (-4 *9 (-780)) (-5 *2 (-560)) (-5 *1 (-916 *7 *8 *9 *10)))) (-1389 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-671 *10)) (-5 *4 (-626 *10)) (-5 *5 (-909)) (-5 *6 (-1135)) (-4 *10 (-942 *7 *9 *8)) (-4 *7 (-13 (-296) (-148))) (-4 *8 (-13 (-834) (-601 (-1153)))) (-4 *9 (-780)) (-5 *2 (-560)) (-5 *1 (-916 *7 *8 *9 *10)))) (-1389 (*1 *2 *3 *4) (-12 (-5 *3 (-671 *8)) (-5 *4 (-1135)) (-4 *8 (-942 *5 *7 *6)) (-4 *5 (-13 (-296) (-148))) (-4 *6 (-13 (-834) (-601 (-1153)))) (-4 *7 (-780)) (-5 *2 (-560)) (-5 *1 (-916 *5 *6 *7 *8)))) (-1389 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-671 *9)) (-5 *4 (-626 (-1153))) (-5 *5 (-1135)) (-4 *9 (-942 *6 *8 *7)) (-4 *6 (-13 (-296) (-148))) (-4 *7 (-13 (-834) (-601 (-1153)))) (-4 *8 (-780)) (-5 *2 (-560)) (-5 *1 (-916 *6 *7 *8 *9)))) (-1389 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-671 *9)) (-5 *4 (-626 *9)) (-5 *5 (-1135)) (-4 *9 (-942 *6 *8 *7)) (-4 *6 (-13 (-296) (-148))) (-4 *7 (-13 (-834) (-601 (-1153)))) (-4 *8 (-780)) (-5 *2 (-560)) (-5 *1 (-916 *6 *7 *8 *9)))) (-1389 (*1 *2 *3 *4) (-12 (-5 *3 (-671 *8)) (-5 *4 (-909)) (-4 *8 (-942 *5 *7 *6)) (-4 *5 (-13 (-296) (-148))) (-4 *6 (-13 (-834) (-601 (-1153)))) (-4 *7 (-780)) (-5 *2 (-626 (-2 (|:| |eqzro| (-626 *8)) (|:| |neqzro| (-626 *8)) (|:| |wcond| (-626 (-945 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1236 (-403 (-945 *5)))) (|:| -4374 (-626 (-1236 (-403 (-945 *5)))))))))) (-5 *1 (-916 *5 *6 *7 *8)))) (-1389 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-671 *9)) (-5 *4 (-626 (-1153))) (-5 *5 (-909)) (-4 *9 (-942 *6 *8 *7)) (-4 *6 (-13 (-296) (-148))) (-4 *7 (-13 (-834) (-601 (-1153)))) (-4 *8 (-780)) (-5 *2 (-626 (-2 (|:| |eqzro| (-626 *9)) (|:| |neqzro| (-626 *9)) (|:| |wcond| (-626 (-945 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1236 (-403 (-945 *6)))) (|:| -4374 (-626 (-1236 (-403 (-945 *6)))))))))) (-5 *1 (-916 *6 *7 *8 *9)))) (-1389 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-671 *9)) (-5 *5 (-909)) (-4 *9 (-942 *6 *8 *7)) (-4 *6 (-13 (-296) (-148))) (-4 *7 (-13 (-834) (-601 (-1153)))) (-4 *8 (-780)) (-5 *2 (-626 (-2 (|:| |eqzro| (-626 *9)) (|:| |neqzro| (-626 *9)) (|:| |wcond| (-626 (-945 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1236 (-403 (-945 *6)))) (|:| -4374 (-626 (-1236 (-403 (-945 *6)))))))))) (-5 *1 (-916 *6 *7 *8 *9)) (-5 *4 (-626 *9)))) (-1389 (*1 *2 *3) (-12 (-5 *3 (-671 *7)) (-4 *7 (-942 *4 *6 *5)) (-4 *4 (-13 (-296) (-148))) (-4 *5 (-13 (-834) (-601 (-1153)))) (-4 *6 (-780)) (-5 *2 (-626 (-2 (|:| |eqzro| (-626 *7)) (|:| |neqzro| (-626 *7)) (|:| |wcond| (-626 (-945 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1236 (-403 (-945 *4)))) (|:| -4374 (-626 (-1236 (-403 (-945 *4)))))))))) (-5 *1 (-916 *4 *5 *6 *7)))) (-1389 (*1 *2 *3 *4) (-12 (-5 *3 (-671 *8)) (-5 *4 (-626 (-1153))) (-4 *8 (-942 *5 *7 *6)) (-4 *5 (-13 (-296) (-148))) (-4 *6 (-13 (-834) (-601 (-1153)))) (-4 *7 (-780)) (-5 *2 (-626 (-2 (|:| |eqzro| (-626 *8)) (|:| |neqzro| (-626 *8)) (|:| |wcond| (-626 (-945 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1236 (-403 (-945 *5)))) (|:| -4374 (-626 (-1236 (-403 (-945 *5)))))))))) (-5 *1 (-916 *5 *6 *7 *8)))) (-1389 (*1 *2 *3 *4) (-12 (-5 *3 (-671 *8)) (-4 *8 (-942 *5 *7 *6)) (-4 *5 (-13 (-296) (-148))) (-4 *6 (-13 (-834) (-601 (-1153)))) (-4 *7 (-780)) (-5 *2 (-626 (-2 (|:| |eqzro| (-626 *8)) (|:| |neqzro| (-626 *8)) (|:| |wcond| (-626 (-945 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1236 (-403 (-945 *5)))) (|:| -4374 (-626 (-1236 (-403 (-945 *5)))))))))) (-5 *1 (-916 *5 *6 *7 *8)) (-5 *4 (-626 *8))))) -(-10 -7 (-15 -1389 ((-626 (-2 (|:| |eqzro| (-626 |#4|)) (|:| |neqzro| (-626 |#4|)) (|:| |wcond| (-626 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1236 (-403 (-945 |#1|)))) (|:| -4374 (-626 (-1236 (-403 (-945 |#1|))))))))) (-671 |#4|) (-626 |#4|))) (-15 -1389 ((-626 (-2 (|:| |eqzro| (-626 |#4|)) (|:| |neqzro| (-626 |#4|)) (|:| |wcond| (-626 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1236 (-403 (-945 |#1|)))) (|:| -4374 (-626 (-1236 (-403 (-945 |#1|))))))))) (-671 |#4|) (-626 (-1153)))) (-15 -1389 ((-626 (-2 (|:| |eqzro| (-626 |#4|)) (|:| |neqzro| (-626 |#4|)) (|:| |wcond| (-626 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1236 (-403 (-945 |#1|)))) (|:| -4374 (-626 (-1236 (-403 (-945 |#1|))))))))) (-671 |#4|))) (-15 -1389 ((-626 (-2 (|:| |eqzro| (-626 |#4|)) (|:| |neqzro| (-626 |#4|)) (|:| |wcond| (-626 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1236 (-403 (-945 |#1|)))) (|:| -4374 (-626 (-1236 (-403 (-945 |#1|))))))))) (-671 |#4|) (-626 |#4|) (-909))) (-15 -1389 ((-626 (-2 (|:| |eqzro| (-626 |#4|)) (|:| |neqzro| (-626 |#4|)) (|:| |wcond| (-626 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1236 (-403 (-945 |#1|)))) (|:| -4374 (-626 (-1236 (-403 (-945 |#1|))))))))) (-671 |#4|) (-626 (-1153)) (-909))) (-15 -1389 ((-626 (-2 (|:| |eqzro| (-626 |#4|)) (|:| |neqzro| (-626 |#4|)) (|:| |wcond| (-626 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1236 (-403 (-945 |#1|)))) (|:| -4374 (-626 (-1236 (-403 (-945 |#1|))))))))) (-671 |#4|) (-909))) (-15 -1389 ((-560) (-671 |#4|) (-626 |#4|) (-1135))) (-15 -1389 ((-560) (-671 |#4|) (-626 (-1153)) (-1135))) (-15 -1389 ((-560) (-671 |#4|) (-1135))) (-15 -1389 ((-560) (-671 |#4|) (-626 |#4|) (-909) (-1135))) (-15 -1389 ((-560) (-671 |#4|) (-626 (-1153)) (-909) (-1135))) (-15 -1389 ((-560) (-671 |#4|) (-909) (-1135))) (-15 -4022 ((-560) (-626 (-2 (|:| |eqzro| (-626 |#4|)) (|:| |neqzro| (-626 |#4|)) (|:| |wcond| (-626 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1236 (-403 (-945 |#1|)))) (|:| -4374 (-626 (-1236 (-403 (-945 |#1|))))))))) (-1135))) (-15 -2356 ((-626 (-2 (|:| |eqzro| (-626 |#4|)) (|:| |neqzro| (-626 |#4|)) (|:| |wcond| (-626 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1236 (-403 (-945 |#1|)))) (|:| -4374 (-626 (-1236 (-403 (-945 |#1|))))))))) (-1135))) (-15 -3768 ((-2 (|:| |rgl| (-626 (-2 (|:| |eqzro| (-626 |#4|)) (|:| |neqzro| (-626 |#4|)) (|:| |wcond| (-626 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1236 (-403 (-945 |#1|)))) (|:| -4374 (-626 (-1236 (-403 (-945 |#1|)))))))))) (|:| |rgsz| (-560))) (-671 |#4|) (-626 (-403 (-945 |#1|))) (-755) (-1135) (-560))) (-15 -1875 ((-403 (-945 |#1|)) |#4|)) (-15 -1875 ((-671 (-403 (-945 |#1|))) (-671 |#4|))) (-15 -1875 ((-626 (-403 (-945 |#1|))) (-626 |#4|))) (-15 -4276 ((-626 (-403 (-945 |#1|))) (-626 (-1153)))) (-15 -1492 (|#4| (-945 |#1|))) (-15 -3745 ((-2 (|:| |sysok| (-121)) (|:| |z0| (-626 |#4|)) (|:| |n0| (-626 |#4|))) (-626 |#4|) (-626 |#4|))) (-15 -2417 ((-626 (-2 (|:| -3143 (-755)) (|:| |eqns| (-626 (-2 (|:| |det| |#4|) (|:| |rows| (-626 (-560))) (|:| |cols| (-626 (-560)))))) (|:| |fgb| (-626 |#4|)))) (-671 |#4|) (-755))) (-15 -3727 ((-2 (|:| |partsol| (-1236 (-403 (-945 |#1|)))) (|:| -4374 (-626 (-1236 (-403 (-945 |#1|)))))) (-2 (|:| |partsol| (-1236 (-403 (-945 |#1|)))) (|:| -4374 (-626 (-1236 (-403 (-945 |#1|)))))) (-626 |#4|))) (-15 -1622 ((-2 (|:| |partsol| (-1236 (-403 (-945 |#1|)))) (|:| -4374 (-626 (-1236 (-403 (-945 |#1|)))))) (-2 (|:| -3818 (-671 (-403 (-945 |#1|)))) (|:| |vec| (-626 (-403 (-945 |#1|)))) (|:| -3143 (-755)) (|:| |rows| (-626 (-560))) (|:| |cols| (-626 (-560)))))) (-15 -3742 ((-626 |#4|) |#4|)) (-15 -3240 ((-755) (-626 (-2 (|:| -3143 (-755)) (|:| |eqns| (-626 (-2 (|:| |det| |#4|) (|:| |rows| (-626 (-560))) (|:| |cols| (-626 (-560)))))) (|:| |fgb| (-626 |#4|)))))) (-15 -2531 ((-755) (-626 (-2 (|:| -3143 (-755)) (|:| |eqns| (-626 (-2 (|:| |det| |#4|) (|:| |rows| (-626 (-560))) (|:| |cols| (-626 (-560)))))) (|:| |fgb| (-626 |#4|)))))) (-15 -3716 ((-626 (-626 |#4|)) (-626 (-626 |#4|)))) (-15 -2180 ((-626 (-626 (-560))) (-560) (-560))) (-15 -3372 ((-121) (-626 |#4|) (-626 (-626 |#4|)))) (-15 -1732 ((-626 (-2 (|:| |det| |#4|) (|:| |rows| (-626 (-560))) (|:| |cols| (-626 (-560))))) (-671 |#4|) (-755))) (-15 -2685 ((-671 |#4|) (-671 |#4|) (-626 |#4|))) (-15 -3860 ((-2 (|:| |eqzro| (-626 |#4|)) (|:| |neqzro| (-626 |#4|)) (|:| |wcond| (-626 (-945 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1236 (-403 (-945 |#1|)))) (|:| -4374 (-626 (-1236 (-403 (-945 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-626 (-560))) (|:| |cols| (-626 (-560)))) (-671 |#4|) (-626 (-403 (-945 |#1|))) (-626 (-626 |#4|)) (-755) (-755) (-560))) (-15 -1426 (|#4| |#4|)) (-15 -3611 ((-121) (-626 |#4|))) (-15 -3611 ((-121) (-626 (-945 |#1|))))) -((-4473 (((-919) |#1| (-1153)) 16) (((-919) |#1| (-1153) (-1076 (-213))) 20)) (-1787 (((-919) |#1| |#1| (-1153) (-1076 (-213))) 18) (((-919) |#1| (-1153) (-1076 (-213))) 14))) -(((-917 |#1|) (-10 -7 (-15 -1787 ((-919) |#1| (-1153) (-1076 (-213)))) (-15 -1787 ((-919) |#1| |#1| (-1153) (-1076 (-213)))) (-15 -4473 ((-919) |#1| (-1153) (-1076 (-213)))) (-15 -4473 ((-919) |#1| (-1153)))) (-601 (-533))) (T -917)) -((-4473 (*1 *2 *3 *4) (-12 (-5 *4 (-1153)) (-5 *2 (-919)) (-5 *1 (-917 *3)) (-4 *3 (-601 (-533))))) (-4473 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1153)) (-5 *5 (-1076 (-213))) (-5 *2 (-919)) (-5 *1 (-917 *3)) (-4 *3 (-601 (-533))))) (-1787 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1153)) (-5 *5 (-1076 (-213))) (-5 *2 (-919)) (-5 *1 (-917 *3)) (-4 *3 (-601 (-533))))) (-1787 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1153)) (-5 *5 (-1076 (-213))) (-5 *2 (-919)) (-5 *1 (-917 *3)) (-4 *3 (-601 (-533)))))) -(-10 -7 (-15 -1787 ((-919) |#1| (-1153) (-1076 (-213)))) (-15 -1787 ((-919) |#1| |#1| (-1153) (-1076 (-213)))) (-15 -4473 ((-919) |#1| (-1153) (-1076 (-213)))) (-15 -4473 ((-919) |#1| (-1153)))) -((-1326 (($ $ (-1076 (-213)) (-1076 (-213)) (-1076 (-213))) 68)) (-2776 (((-1076 (-213)) $) 40)) (-3867 (((-1076 (-213)) $) 39)) (-3092 (((-1076 (-213)) $) 38)) (-2720 (((-626 (-626 (-213))) $) 43)) (-3911 (((-1076 (-213)) $) 41)) (-2235 (((-560) (-560)) 32)) (-1375 (((-560) (-560)) 28)) (-1388 (((-560) (-560)) 30)) (-1294 (((-121) (-121)) 35)) (-4136 (((-560)) 31)) (-2588 (($ $ (-1076 (-213))) 71) (($ $) 72)) (-2651 (($ (-1 (-936 (-213)) (-213)) (-1076 (-213))) 76) (($ (-1 (-936 (-213)) (-213)) (-1076 (-213)) (-1076 (-213)) (-1076 (-213)) (-1076 (-213))) 77)) (-1787 (($ (-1 (-213) (-213)) (-1 (-213) (-213)) (-1 (-213) (-213)) (-1 (-213) (-213)) (-1076 (-213))) 79) (($ (-1 (-213) (-213)) (-1 (-213) (-213)) (-1 (-213) (-213)) (-1 (-213) (-213)) (-1076 (-213)) (-1076 (-213)) (-1076 (-213)) (-1076 (-213))) 80) (($ $ (-1076 (-213))) 74)) (-1781 (((-560)) 36)) (-2344 (((-560)) 27)) (-2774 (((-560)) 29)) (-3277 (((-626 (-626 (-936 (-213)))) $) 92)) (-1455 (((-121) (-121)) 37)) (-2801 (((-842) $) 91)) (-4142 (((-121)) 34))) -(((-918) (-13 (-967) (-10 -8 (-15 -2651 ($ (-1 (-936 (-213)) (-213)) (-1076 (-213)))) (-15 -2651 ($ (-1 (-936 (-213)) (-213)) (-1076 (-213)) (-1076 (-213)) (-1076 (-213)) (-1076 (-213)))) (-15 -1787 ($ (-1 (-213) (-213)) (-1 (-213) (-213)) (-1 (-213) (-213)) (-1 (-213) (-213)) (-1076 (-213)))) (-15 -1787 ($ (-1 (-213) (-213)) (-1 (-213) (-213)) (-1 (-213) (-213)) (-1 (-213) (-213)) (-1076 (-213)) (-1076 (-213)) (-1076 (-213)) (-1076 (-213)))) (-15 -1787 ($ $ (-1076 (-213)))) (-15 -1326 ($ $ (-1076 (-213)) (-1076 (-213)) (-1076 (-213)))) (-15 -2588 ($ $ (-1076 (-213)))) (-15 -2588 ($ $)) (-15 -3911 ((-1076 (-213)) $)) (-15 -2720 ((-626 (-626 (-213))) $)) (-15 -2344 ((-560))) (-15 -1375 ((-560) (-560))) (-15 -2774 ((-560))) (-15 -1388 ((-560) (-560))) (-15 -4136 ((-560))) (-15 -2235 ((-560) (-560))) (-15 -4142 ((-121))) (-15 -1294 ((-121) (-121))) (-15 -1781 ((-560))) (-15 -1455 ((-121) (-121)))))) (T -918)) -((-2651 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-936 (-213)) (-213))) (-5 *3 (-1076 (-213))) (-5 *1 (-918)))) (-2651 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-936 (-213)) (-213))) (-5 *3 (-1076 (-213))) (-5 *1 (-918)))) (-1787 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-213) (-213))) (-5 *3 (-1076 (-213))) (-5 *1 (-918)))) (-1787 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-213) (-213))) (-5 *3 (-1076 (-213))) (-5 *1 (-918)))) (-1787 (*1 *1 *1 *2) (-12 (-5 *2 (-1076 (-213))) (-5 *1 (-918)))) (-1326 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1076 (-213))) (-5 *1 (-918)))) (-2588 (*1 *1 *1 *2) (-12 (-5 *2 (-1076 (-213))) (-5 *1 (-918)))) (-2588 (*1 *1 *1) (-5 *1 (-918))) (-3911 (*1 *2 *1) (-12 (-5 *2 (-1076 (-213))) (-5 *1 (-918)))) (-2720 (*1 *2 *1) (-12 (-5 *2 (-626 (-626 (-213)))) (-5 *1 (-918)))) (-2344 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-918)))) (-1375 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-918)))) (-2774 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-918)))) (-1388 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-918)))) (-4136 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-918)))) (-2235 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-918)))) (-4142 (*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-918)))) (-1294 (*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-918)))) (-1781 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-918)))) (-1455 (*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-918))))) -(-13 (-967) (-10 -8 (-15 -2651 ($ (-1 (-936 (-213)) (-213)) (-1076 (-213)))) (-15 -2651 ($ (-1 (-936 (-213)) (-213)) (-1076 (-213)) (-1076 (-213)) (-1076 (-213)) (-1076 (-213)))) (-15 -1787 ($ (-1 (-213) (-213)) (-1 (-213) (-213)) (-1 (-213) (-213)) (-1 (-213) (-213)) (-1076 (-213)))) (-15 -1787 ($ (-1 (-213) (-213)) (-1 (-213) (-213)) (-1 (-213) (-213)) (-1 (-213) (-213)) (-1076 (-213)) (-1076 (-213)) (-1076 (-213)) (-1076 (-213)))) (-15 -1787 ($ $ (-1076 (-213)))) (-15 -1326 ($ $ (-1076 (-213)) (-1076 (-213)) (-1076 (-213)))) (-15 -2588 ($ $ (-1076 (-213)))) (-15 -2588 ($ $)) (-15 -3911 ((-1076 (-213)) $)) (-15 -2720 ((-626 (-626 (-213))) $)) (-15 -2344 ((-560))) (-15 -1375 ((-560) (-560))) (-15 -2774 ((-560))) (-15 -1388 ((-560) (-560))) (-15 -4136 ((-560))) (-15 -2235 ((-560) (-560))) (-15 -4142 ((-121))) (-15 -1294 ((-121) (-121))) (-15 -1781 ((-560))) (-15 -1455 ((-121) (-121))))) -((-1326 (($ $ (-1076 (-213))) 69) (($ $ (-1076 (-213)) (-1076 (-213))) 70)) (-3867 (((-1076 (-213)) $) 43)) (-3092 (((-1076 (-213)) $) 42)) (-3911 (((-1076 (-213)) $) 44)) (-3162 (((-560) (-560)) 36)) (-1429 (((-560) (-560)) 32)) (-3954 (((-560) (-560)) 34)) (-3198 (((-121) (-121)) 38)) (-3620 (((-560)) 35)) (-2588 (($ $ (-1076 (-213))) 73) (($ $) 74)) (-2651 (($ (-1 (-936 (-213)) (-213)) (-1076 (-213))) 83) (($ (-1 (-936 (-213)) (-213)) (-1076 (-213)) (-1076 (-213)) (-1076 (-213))) 84)) (-4473 (($ (-1 (-213) (-213)) (-1076 (-213))) 91) (($ (-1 (-213) (-213))) 94)) (-1787 (($ (-1 (-213) (-213)) (-1076 (-213))) 78) (($ (-1 (-213) (-213)) (-1076 (-213)) (-1076 (-213))) 79) (($ (-626 (-1 (-213) (-213))) (-1076 (-213))) 86) (($ (-626 (-1 (-213) (-213))) (-1076 (-213)) (-1076 (-213))) 87) (($ (-1 (-213) (-213)) (-1 (-213) (-213)) (-1076 (-213))) 80) (($ (-1 (-213) (-213)) (-1 (-213) (-213)) (-1076 (-213)) (-1076 (-213)) (-1076 (-213))) 81) (($ $ (-1076 (-213))) 75)) (-3571 (((-121) $) 39)) (-4105 (((-560)) 40)) (-2794 (((-560)) 31)) (-1829 (((-560)) 33)) (-3277 (((-626 (-626 (-936 (-213)))) $) 22)) (-3925 (((-121) (-121)) 41)) (-2801 (((-842) $) 105)) (-1626 (((-121)) 37))) -(((-919) (-13 (-947) (-10 -8 (-15 -1787 ($ (-1 (-213) (-213)) (-1076 (-213)))) (-15 -1787 ($ (-1 (-213) (-213)) (-1076 (-213)) (-1076 (-213)))) (-15 -1787 ($ (-626 (-1 (-213) (-213))) (-1076 (-213)))) (-15 -1787 ($ (-626 (-1 (-213) (-213))) (-1076 (-213)) (-1076 (-213)))) (-15 -1787 ($ (-1 (-213) (-213)) (-1 (-213) (-213)) (-1076 (-213)))) (-15 -1787 ($ (-1 (-213) (-213)) (-1 (-213) (-213)) (-1076 (-213)) (-1076 (-213)) (-1076 (-213)))) (-15 -2651 ($ (-1 (-936 (-213)) (-213)) (-1076 (-213)))) (-15 -2651 ($ (-1 (-936 (-213)) (-213)) (-1076 (-213)) (-1076 (-213)) (-1076 (-213)))) (-15 -4473 ($ (-1 (-213) (-213)) (-1076 (-213)))) (-15 -4473 ($ (-1 (-213) (-213)))) (-15 -1787 ($ $ (-1076 (-213)))) (-15 -3571 ((-121) $)) (-15 -1326 ($ $ (-1076 (-213)))) (-15 -1326 ($ $ (-1076 (-213)) (-1076 (-213)))) (-15 -2588 ($ $ (-1076 (-213)))) (-15 -2588 ($ $)) (-15 -3911 ((-1076 (-213)) $)) (-15 -2794 ((-560))) (-15 -1429 ((-560) (-560))) (-15 -1829 ((-560))) (-15 -3954 ((-560) (-560))) (-15 -3620 ((-560))) (-15 -3162 ((-560) (-560))) (-15 -1626 ((-121))) (-15 -3198 ((-121) (-121))) (-15 -4105 ((-560))) (-15 -3925 ((-121) (-121)))))) (T -919)) -((-1787 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-213) (-213))) (-5 *3 (-1076 (-213))) (-5 *1 (-919)))) (-1787 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-213) (-213))) (-5 *3 (-1076 (-213))) (-5 *1 (-919)))) (-1787 (*1 *1 *2 *3) (-12 (-5 *2 (-626 (-1 (-213) (-213)))) (-5 *3 (-1076 (-213))) (-5 *1 (-919)))) (-1787 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-626 (-1 (-213) (-213)))) (-5 *3 (-1076 (-213))) (-5 *1 (-919)))) (-1787 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-213) (-213))) (-5 *3 (-1076 (-213))) (-5 *1 (-919)))) (-1787 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-213) (-213))) (-5 *3 (-1076 (-213))) (-5 *1 (-919)))) (-2651 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-936 (-213)) (-213))) (-5 *3 (-1076 (-213))) (-5 *1 (-919)))) (-2651 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-936 (-213)) (-213))) (-5 *3 (-1076 (-213))) (-5 *1 (-919)))) (-4473 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-213) (-213))) (-5 *3 (-1076 (-213))) (-5 *1 (-919)))) (-4473 (*1 *1 *2) (-12 (-5 *2 (-1 (-213) (-213))) (-5 *1 (-919)))) (-1787 (*1 *1 *1 *2) (-12 (-5 *2 (-1076 (-213))) (-5 *1 (-919)))) (-3571 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-919)))) (-1326 (*1 *1 *1 *2) (-12 (-5 *2 (-1076 (-213))) (-5 *1 (-919)))) (-1326 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1076 (-213))) (-5 *1 (-919)))) (-2588 (*1 *1 *1 *2) (-12 (-5 *2 (-1076 (-213))) (-5 *1 (-919)))) (-2588 (*1 *1 *1) (-5 *1 (-919))) (-3911 (*1 *2 *1) (-12 (-5 *2 (-1076 (-213))) (-5 *1 (-919)))) (-2794 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-919)))) (-1429 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-919)))) (-1829 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-919)))) (-3954 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-919)))) (-3620 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-919)))) (-3162 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-919)))) (-1626 (*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-919)))) (-3198 (*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-919)))) (-4105 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-919)))) (-3925 (*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-919))))) -(-13 (-947) (-10 -8 (-15 -1787 ($ (-1 (-213) (-213)) (-1076 (-213)))) (-15 -1787 ($ (-1 (-213) (-213)) (-1076 (-213)) (-1076 (-213)))) (-15 -1787 ($ (-626 (-1 (-213) (-213))) (-1076 (-213)))) (-15 -1787 ($ (-626 (-1 (-213) (-213))) (-1076 (-213)) (-1076 (-213)))) (-15 -1787 ($ (-1 (-213) (-213)) (-1 (-213) (-213)) (-1076 (-213)))) (-15 -1787 ($ (-1 (-213) (-213)) (-1 (-213) (-213)) (-1076 (-213)) (-1076 (-213)) (-1076 (-213)))) (-15 -2651 ($ (-1 (-936 (-213)) (-213)) (-1076 (-213)))) (-15 -2651 ($ (-1 (-936 (-213)) (-213)) (-1076 (-213)) (-1076 (-213)) (-1076 (-213)))) (-15 -4473 ($ (-1 (-213) (-213)) (-1076 (-213)))) (-15 -4473 ($ (-1 (-213) (-213)))) (-15 -1787 ($ $ (-1076 (-213)))) (-15 -3571 ((-121) $)) (-15 -1326 ($ $ (-1076 (-213)))) (-15 -1326 ($ $ (-1076 (-213)) (-1076 (-213)))) (-15 -2588 ($ $ (-1076 (-213)))) (-15 -2588 ($ $)) (-15 -3911 ((-1076 (-213)) $)) (-15 -2794 ((-560))) (-15 -1429 ((-560) (-560))) (-15 -1829 ((-560))) (-15 -3954 ((-560) (-560))) (-15 -3620 ((-560))) (-15 -3162 ((-560) (-560))) (-15 -1626 ((-121))) (-15 -3198 ((-121) (-121))) (-15 -4105 ((-560))) (-15 -3925 ((-121) (-121))))) -((-1566 (((-626 (-1076 (-213))) (-626 (-626 (-936 (-213))))) 23))) -(((-920) (-10 -7 (-15 -1566 ((-626 (-1076 (-213))) (-626 (-626 (-936 (-213)))))))) (T -920)) -((-1566 (*1 *2 *3) (-12 (-5 *3 (-626 (-626 (-936 (-213))))) (-5 *2 (-626 (-1076 (-213)))) (-5 *1 (-920))))) -(-10 -7 (-15 -1566 ((-626 (-1076 (-213))) (-626 (-626 (-936 (-213))))))) -((-2367 ((|#2| |#2| |#5|) 39) ((|#2| |#2| |#5| (-560)) 20)) (-2373 (((-121) (-626 |#2|) |#5|) 23)) (-2380 (((-755) |#2| |#5| (-560)) 42) (((-755) |#2| |#5|) 41)) (-2386 ((|#2| |#2| |#5| (-560)) 45) ((|#2| |#2| |#5|) 44)) (-4450 ((|#1| |#2| |#5|) 21))) -(((-921 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2373 ((-121) (-626 |#2|) |#5|)) (-15 -4450 (|#1| |#2| |#5|)) (-15 -2367 (|#2| |#2| |#5| (-560))) (-15 -2367 (|#2| |#2| |#5|)) (-15 -2386 (|#2| |#2| |#5|)) (-15 -2386 (|#2| |#2| |#5| (-560))) (-15 -2380 ((-755) |#2| |#5|)) (-15 -2380 ((-755) |#2| |#5| (-560)))) (-359) (-318 |#1| |#3|) (-226 |#4| (-755)) (-755) (-963 |#1|)) (T -921)) -((-2380 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-560)) (-4 *6 (-359)) (-4 *7 (-226 *8 *2)) (-14 *8 *2) (-5 *2 (-755)) (-5 *1 (-921 *6 *3 *7 *8 *4)) (-4 *3 (-318 *6 *7)) (-4 *4 (-963 *6)))) (-2380 (*1 *2 *3 *4) (-12 (-4 *5 (-359)) (-4 *6 (-226 *7 *2)) (-14 *7 *2) (-5 *2 (-755)) (-5 *1 (-921 *5 *3 *6 *7 *4)) (-4 *3 (-318 *5 *6)) (-4 *4 (-963 *5)))) (-2386 (*1 *2 *2 *3 *4) (-12 (-5 *4 (-560)) (-4 *5 (-359)) (-4 *6 (-226 *7 (-755))) (-14 *7 (-755)) (-5 *1 (-921 *5 *2 *6 *7 *3)) (-4 *2 (-318 *5 *6)) (-4 *3 (-963 *5)))) (-2386 (*1 *2 *2 *3) (-12 (-4 *4 (-359)) (-4 *5 (-226 *6 (-755))) (-14 *6 (-755)) (-5 *1 (-921 *4 *2 *5 *6 *3)) (-4 *2 (-318 *4 *5)) (-4 *3 (-963 *4)))) (-2367 (*1 *2 *2 *3) (-12 (-4 *4 (-359)) (-4 *5 (-226 *6 (-755))) (-14 *6 (-755)) (-5 *1 (-921 *4 *2 *5 *6 *3)) (-4 *2 (-318 *4 *5)) (-4 *3 (-963 *4)))) (-2367 (*1 *2 *2 *3 *4) (-12 (-5 *4 (-560)) (-4 *5 (-359)) (-4 *6 (-226 *7 (-755))) (-14 *7 (-755)) (-5 *1 (-921 *5 *2 *6 *7 *3)) (-4 *2 (-318 *5 *6)) (-4 *3 (-963 *5)))) (-4450 (*1 *2 *3 *4) (-12 (-4 *5 (-226 *6 (-755))) (-14 *6 (-755)) (-4 *2 (-359)) (-5 *1 (-921 *2 *3 *5 *6 *4)) (-4 *3 (-318 *2 *5)) (-4 *4 (-963 *2)))) (-2373 (*1 *2 *3 *4) (-12 (-5 *3 (-626 *6)) (-4 *6 (-318 *5 *7)) (-4 *7 (-226 *8 (-755))) (-14 *8 (-755)) (-4 *5 (-359)) (-5 *2 (-121)) (-5 *1 (-921 *5 *6 *7 *8 *4)) (-4 *4 (-963 *5))))) -(-10 -7 (-15 -2373 ((-121) (-626 |#2|) |#5|)) (-15 -4450 (|#1| |#2| |#5|)) (-15 -2367 (|#2| |#2| |#5| (-560))) (-15 -2367 (|#2| |#2| |#5|)) (-15 -2386 (|#2| |#2| |#5|)) (-15 -2386 (|#2| |#2| |#5| (-560))) (-15 -2380 ((-755) |#2| |#5|)) (-15 -2380 ((-755) |#2| |#5| (-560)))) -((-3172 ((|#2| |#2|) 25)) (-3163 ((|#2| |#2|) 26)) (-3565 ((|#2| |#2|) 24)) (-4466 ((|#2| |#2| (-1135)) 23))) -(((-922 |#1| |#2|) (-10 -7 (-15 -4466 (|#2| |#2| (-1135))) (-15 -3565 (|#2| |#2|)) (-15 -3172 (|#2| |#2|)) (-15 -3163 (|#2| |#2|))) (-834) (-426 |#1|)) (T -922)) -((-3163 (*1 *2 *2) (-12 (-4 *3 (-834)) (-5 *1 (-922 *3 *2)) (-4 *2 (-426 *3)))) (-3172 (*1 *2 *2) (-12 (-4 *3 (-834)) (-5 *1 (-922 *3 *2)) (-4 *2 (-426 *3)))) (-3565 (*1 *2 *2) (-12 (-4 *3 (-834)) (-5 *1 (-922 *3 *2)) (-4 *2 (-426 *3)))) (-4466 (*1 *2 *2 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-834)) (-5 *1 (-922 *4 *2)) (-4 *2 (-426 *4))))) -(-10 -7 (-15 -4466 (|#2| |#2| (-1135))) (-15 -3565 (|#2| |#2|)) (-15 -3172 (|#2| |#2|)) (-15 -3163 (|#2| |#2|))) -((-3172 (((-304 (-560)) (-1153)) 15)) (-3163 (((-304 (-560)) (-1153)) 13)) (-3565 (((-304 (-560)) (-1153)) 11)) (-4466 (((-304 (-560)) (-1153) (-1135)) 18))) -(((-923) (-10 -7 (-15 -4466 ((-304 (-560)) (-1153) (-1135))) (-15 -3565 ((-304 (-560)) (-1153))) (-15 -3172 ((-304 (-560)) (-1153))) (-15 -3163 ((-304 (-560)) (-1153))))) (T -923)) -((-3163 (*1 *2 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-304 (-560))) (-5 *1 (-923)))) (-3172 (*1 *2 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-304 (-560))) (-5 *1 (-923)))) (-3565 (*1 *2 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-304 (-560))) (-5 *1 (-923)))) (-4466 (*1 *2 *3 *4) (-12 (-5 *3 (-1153)) (-5 *4 (-1135)) (-5 *2 (-304 (-560))) (-5 *1 (-923))))) -(-10 -7 (-15 -4466 ((-304 (-560)) (-1153) (-1135))) (-15 -3565 ((-304 (-560)) (-1153))) (-15 -3172 ((-304 (-560)) (-1153))) (-15 -3163 ((-304 (-560)) (-1153)))) -((-2399 (((-876 |#1| |#3|) |#2| (-879 |#1|) (-876 |#1| |#3|)) 24)) (-2105 (((-1 (-121) |#2|) (-1 (-121) |#3|)) 12))) -(((-924 |#1| |#2| |#3|) (-10 -7 (-15 -2105 ((-1 (-121) |#2|) (-1 (-121) |#3|))) (-15 -2399 ((-876 |#1| |#3|) |#2| (-879 |#1|) (-876 |#1| |#3|)))) (-1082) (-873 |#1|) (-13 (-1082) (-1029 |#2|))) (T -924)) -((-2399 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-876 *5 *6)) (-5 *4 (-879 *5)) (-4 *5 (-1082)) (-4 *6 (-13 (-1082) (-1029 *3))) (-4 *3 (-873 *5)) (-5 *1 (-924 *5 *3 *6)))) (-2105 (*1 *2 *3) (-12 (-5 *3 (-1 (-121) *6)) (-4 *6 (-13 (-1082) (-1029 *5))) (-4 *5 (-873 *4)) (-4 *4 (-1082)) (-5 *2 (-1 (-121) *5)) (-5 *1 (-924 *4 *5 *6))))) -(-10 -7 (-15 -2105 ((-1 (-121) |#2|) (-1 (-121) |#3|))) (-15 -2399 ((-876 |#1| |#3|) |#2| (-879 |#1|) (-876 |#1| |#3|)))) -((-2399 (((-876 |#1| |#3|) |#3| (-879 |#1|) (-876 |#1| |#3|)) 29))) -(((-925 |#1| |#2| |#3|) (-10 -7 (-15 -2399 ((-876 |#1| |#3|) |#3| (-879 |#1|) (-876 |#1| |#3|)))) (-1082) (-13 (-550) (-834) (-873 |#1|)) (-13 (-426 |#2|) (-601 (-879 |#1|)) (-873 |#1|) (-1029 (-599 $)))) (T -925)) -((-2399 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-876 *5 *3)) (-4 *5 (-1082)) (-4 *3 (-13 (-426 *6) (-601 *4) (-873 *5) (-1029 (-599 $)))) (-5 *4 (-879 *5)) (-4 *6 (-13 (-550) (-834) (-873 *5))) (-5 *1 (-925 *5 *6 *3))))) -(-10 -7 (-15 -2399 ((-876 |#1| |#3|) |#3| (-879 |#1|) (-876 |#1| |#3|)))) -((-2399 (((-876 (-560) |#1|) |#1| (-879 (-560)) (-876 (-560) |#1|)) 12))) -(((-926 |#1|) (-10 -7 (-15 -2399 ((-876 (-560) |#1|) |#1| (-879 (-560)) (-876 (-560) |#1|)))) (-542)) (T -926)) -((-2399 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-876 (-560) *3)) (-5 *4 (-879 (-560))) (-4 *3 (-542)) (-5 *1 (-926 *3))))) -(-10 -7 (-15 -2399 ((-876 (-560) |#1|) |#1| (-879 (-560)) (-876 (-560) |#1|)))) -((-2399 (((-876 |#1| |#2|) (-599 |#2|) (-879 |#1|) (-876 |#1| |#2|)) 52))) -(((-927 |#1| |#2|) (-10 -7 (-15 -2399 ((-876 |#1| |#2|) (-599 |#2|) (-879 |#1|) (-876 |#1| |#2|)))) (-1082) (-13 (-834) (-1029 (-599 $)) (-601 (-879 |#1|)) (-873 |#1|))) (T -927)) -((-2399 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-876 *5 *6)) (-5 *3 (-599 *6)) (-4 *5 (-1082)) (-4 *6 (-13 (-834) (-1029 (-599 $)) (-601 *4) (-873 *5))) (-5 *4 (-879 *5)) (-5 *1 (-927 *5 *6))))) -(-10 -7 (-15 -2399 ((-876 |#1| |#2|) (-599 |#2|) (-879 |#1|) (-876 |#1| |#2|)))) -((-2399 (((-872 |#1| |#2| |#3|) |#3| (-879 |#1|) (-872 |#1| |#2| |#3|)) 14))) -(((-928 |#1| |#2| |#3|) (-10 -7 (-15 -2399 ((-872 |#1| |#2| |#3|) |#3| (-879 |#1|) (-872 |#1| |#2| |#3|)))) (-1082) (-873 |#1|) (-650 |#2|)) (T -928)) -((-2399 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-872 *5 *6 *3)) (-5 *4 (-879 *5)) (-4 *5 (-1082)) (-4 *6 (-873 *5)) (-4 *3 (-650 *6)) (-5 *1 (-928 *5 *6 *3))))) -(-10 -7 (-15 -2399 ((-872 |#1| |#2| |#3|) |#3| (-879 |#1|) (-872 |#1| |#2| |#3|)))) -((-2399 (((-876 |#1| |#5|) |#5| (-879 |#1|) (-876 |#1| |#5|)) 17 (|has| |#3| (-873 |#1|))) (((-876 |#1| |#5|) |#5| (-879 |#1|) (-876 |#1| |#5|) (-1 (-876 |#1| |#5|) |#3| (-879 |#1|) (-876 |#1| |#5|))) 16))) -(((-929 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2399 ((-876 |#1| |#5|) |#5| (-879 |#1|) (-876 |#1| |#5|) (-1 (-876 |#1| |#5|) |#3| (-879 |#1|) (-876 |#1| |#5|)))) (IF (|has| |#3| (-873 |#1|)) (-15 -2399 ((-876 |#1| |#5|) |#5| (-879 |#1|) (-876 |#1| |#5|))) |noBranch|)) (-1082) (-780) (-834) (-13 (-1039) (-834) (-873 |#1|)) (-13 (-942 |#4| |#2| |#3|) (-601 (-879 |#1|)))) (T -929)) -((-2399 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-876 *5 *3)) (-4 *5 (-1082)) (-4 *3 (-13 (-942 *8 *6 *7) (-601 *4))) (-5 *4 (-879 *5)) (-4 *7 (-873 *5)) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *8 (-13 (-1039) (-834) (-873 *5))) (-5 *1 (-929 *5 *6 *7 *8 *3)))) (-2399 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-876 *6 *3) *8 (-879 *6) (-876 *6 *3))) (-4 *8 (-834)) (-5 *2 (-876 *6 *3)) (-5 *4 (-879 *6)) (-4 *6 (-1082)) (-4 *3 (-13 (-942 *9 *7 *8) (-601 *4))) (-4 *7 (-780)) (-4 *9 (-13 (-1039) (-834) (-873 *6))) (-5 *1 (-929 *6 *7 *8 *9 *3))))) -(-10 -7 (-15 -2399 ((-876 |#1| |#5|) |#5| (-879 |#1|) (-876 |#1| |#5|) (-1 (-876 |#1| |#5|) |#3| (-879 |#1|) (-876 |#1| |#5|)))) (IF (|has| |#3| (-873 |#1|)) (-15 -2399 ((-876 |#1| |#5|) |#5| (-879 |#1|) (-876 |#1| |#5|))) |noBranch|)) -((-1408 ((|#2| |#2| (-626 (-1 (-121) |#3|))) 11) ((|#2| |#2| (-1 (-121) |#3|)) 12))) -(((-930 |#1| |#2| |#3|) (-10 -7 (-15 -1408 (|#2| |#2| (-1 (-121) |#3|))) (-15 -1408 (|#2| |#2| (-626 (-1 (-121) |#3|))))) (-834) (-426 |#1|) (-1187)) (T -930)) -((-1408 (*1 *2 *2 *3) (-12 (-5 *3 (-626 (-1 (-121) *5))) (-4 *5 (-1187)) (-4 *4 (-834)) (-5 *1 (-930 *4 *2 *5)) (-4 *2 (-426 *4)))) (-1408 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-121) *5)) (-4 *5 (-1187)) (-4 *4 (-834)) (-5 *1 (-930 *4 *2 *5)) (-4 *2 (-426 *4))))) -(-10 -7 (-15 -1408 (|#2| |#2| (-1 (-121) |#3|))) (-15 -1408 (|#2| |#2| (-626 (-1 (-121) |#3|))))) -((-1408 (((-304 (-560)) (-1153) (-626 (-1 (-121) |#1|))) 16) (((-304 (-560)) (-1153) (-1 (-121) |#1|)) 13))) -(((-931 |#1|) (-10 -7 (-15 -1408 ((-304 (-560)) (-1153) (-1 (-121) |#1|))) (-15 -1408 ((-304 (-560)) (-1153) (-626 (-1 (-121) |#1|))))) (-1187)) (T -931)) -((-1408 (*1 *2 *3 *4) (-12 (-5 *3 (-1153)) (-5 *4 (-626 (-1 (-121) *5))) (-4 *5 (-1187)) (-5 *2 (-304 (-560))) (-5 *1 (-931 *5)))) (-1408 (*1 *2 *3 *4) (-12 (-5 *3 (-1153)) (-5 *4 (-1 (-121) *5)) (-4 *5 (-1187)) (-5 *2 (-304 (-560))) (-5 *1 (-931 *5))))) -(-10 -7 (-15 -1408 ((-304 (-560)) (-1153) (-1 (-121) |#1|))) (-15 -1408 ((-304 (-560)) (-1153) (-626 (-1 (-121) |#1|))))) -((-2399 (((-876 |#1| |#3|) |#3| (-879 |#1|) (-876 |#1| |#3|)) 25))) -(((-932 |#1| |#2| |#3|) (-10 -7 (-15 -2399 ((-876 |#1| |#3|) |#3| (-879 |#1|) (-876 |#1| |#3|)))) (-1082) (-13 (-550) (-873 |#1|) (-601 (-879 |#1|))) (-985 |#2|)) (T -932)) -((-2399 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-876 *5 *3)) (-4 *5 (-1082)) (-4 *3 (-985 *6)) (-4 *6 (-13 (-550) (-873 *5) (-601 *4))) (-5 *4 (-879 *5)) (-5 *1 (-932 *5 *6 *3))))) -(-10 -7 (-15 -2399 ((-876 |#1| |#3|) |#3| (-879 |#1|) (-876 |#1| |#3|)))) -((-2399 (((-876 |#1| (-1153)) (-1153) (-879 |#1|) (-876 |#1| (-1153))) 17))) -(((-933 |#1|) (-10 -7 (-15 -2399 ((-876 |#1| (-1153)) (-1153) (-879 |#1|) (-876 |#1| (-1153))))) (-1082)) (T -933)) -((-2399 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-876 *5 (-1153))) (-5 *3 (-1153)) (-5 *4 (-879 *5)) (-4 *5 (-1082)) (-5 *1 (-933 *5))))) -(-10 -7 (-15 -2399 ((-876 |#1| (-1153)) (-1153) (-879 |#1|) (-876 |#1| (-1153))))) -((-1722 (((-876 |#1| |#3|) (-626 |#3|) (-626 (-879 |#1|)) (-876 |#1| |#3|) (-1 (-876 |#1| |#3|) |#3| (-879 |#1|) (-876 |#1| |#3|))) 33)) (-2399 (((-876 |#1| |#3|) (-626 |#3|) (-626 (-879 |#1|)) (-1 |#3| (-626 |#3|)) (-876 |#1| |#3|) (-1 (-876 |#1| |#3|) |#3| (-879 |#1|) (-876 |#1| |#3|))) 32))) -(((-934 |#1| |#2| |#3|) (-10 -7 (-15 -2399 ((-876 |#1| |#3|) (-626 |#3|) (-626 (-879 |#1|)) (-1 |#3| (-626 |#3|)) (-876 |#1| |#3|) (-1 (-876 |#1| |#3|) |#3| (-879 |#1|) (-876 |#1| |#3|)))) (-15 -1722 ((-876 |#1| |#3|) (-626 |#3|) (-626 (-879 |#1|)) (-876 |#1| |#3|) (-1 (-876 |#1| |#3|) |#3| (-879 |#1|) (-876 |#1| |#3|))))) (-1082) (-13 (-1039) (-834)) (-13 (-1039) (-601 (-879 |#1|)) (-1029 |#2|))) (T -934)) -((-1722 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-626 *8)) (-5 *4 (-626 (-879 *6))) (-5 *5 (-1 (-876 *6 *8) *8 (-879 *6) (-876 *6 *8))) (-4 *6 (-1082)) (-4 *8 (-13 (-1039) (-601 (-879 *6)) (-1029 *7))) (-5 *2 (-876 *6 *8)) (-4 *7 (-13 (-1039) (-834))) (-5 *1 (-934 *6 *7 *8)))) (-2399 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-626 (-879 *7))) (-5 *5 (-1 *9 (-626 *9))) (-5 *6 (-1 (-876 *7 *9) *9 (-879 *7) (-876 *7 *9))) (-4 *7 (-1082)) (-4 *9 (-13 (-1039) (-601 (-879 *7)) (-1029 *8))) (-5 *2 (-876 *7 *9)) (-5 *3 (-626 *9)) (-4 *8 (-13 (-1039) (-834))) (-5 *1 (-934 *7 *8 *9))))) -(-10 -7 (-15 -2399 ((-876 |#1| |#3|) (-626 |#3|) (-626 (-879 |#1|)) (-1 |#3| (-626 |#3|)) (-876 |#1| |#3|) (-1 (-876 |#1| |#3|) |#3| (-879 |#1|) (-876 |#1| |#3|)))) (-15 -1722 ((-876 |#1| |#3|) (-626 |#3|) (-626 (-879 |#1|)) (-876 |#1| |#3|) (-1 (-876 |#1| |#3|) |#3| (-879 |#1|) (-876 |#1| |#3|))))) -((-2547 (((-1149 (-403 (-560))) (-560)) 61)) (-3752 (((-1149 (-560)) (-560)) 64)) (-2491 (((-1149 (-560)) (-560)) 58)) (-2310 (((-560) (-1149 (-560))) 53)) (-3688 (((-1149 (-403 (-560))) (-560)) 47)) (-3833 (((-1149 (-560)) (-560)) 36)) (-2255 (((-1149 (-560)) (-560)) 66)) (-1430 (((-1149 (-560)) (-560)) 65)) (-3472 (((-1149 (-403 (-560))) (-560)) 49))) -(((-935) (-10 -7 (-15 -3472 ((-1149 (-403 (-560))) (-560))) (-15 -1430 ((-1149 (-560)) (-560))) (-15 -2255 ((-1149 (-560)) (-560))) (-15 -3833 ((-1149 (-560)) (-560))) (-15 -3688 ((-1149 (-403 (-560))) (-560))) (-15 -2310 ((-560) (-1149 (-560)))) (-15 -2491 ((-1149 (-560)) (-560))) (-15 -3752 ((-1149 (-560)) (-560))) (-15 -2547 ((-1149 (-403 (-560))) (-560))))) (T -935)) -((-2547 (*1 *2 *3) (-12 (-5 *2 (-1149 (-403 (-560)))) (-5 *1 (-935)) (-5 *3 (-560)))) (-3752 (*1 *2 *3) (-12 (-5 *2 (-1149 (-560))) (-5 *1 (-935)) (-5 *3 (-560)))) (-2491 (*1 *2 *3) (-12 (-5 *2 (-1149 (-560))) (-5 *1 (-935)) (-5 *3 (-560)))) (-2310 (*1 *2 *3) (-12 (-5 *3 (-1149 (-560))) (-5 *2 (-560)) (-5 *1 (-935)))) (-3688 (*1 *2 *3) (-12 (-5 *2 (-1149 (-403 (-560)))) (-5 *1 (-935)) (-5 *3 (-560)))) (-3833 (*1 *2 *3) (-12 (-5 *2 (-1149 (-560))) (-5 *1 (-935)) (-5 *3 (-560)))) (-2255 (*1 *2 *3) (-12 (-5 *2 (-1149 (-560))) (-5 *1 (-935)) (-5 *3 (-560)))) (-1430 (*1 *2 *3) (-12 (-5 *2 (-1149 (-560))) (-5 *1 (-935)) (-5 *3 (-560)))) (-3472 (*1 *2 *3) (-12 (-5 *2 (-1149 (-403 (-560)))) (-5 *1 (-935)) (-5 *3 (-560))))) -(-10 -7 (-15 -3472 ((-1149 (-403 (-560))) (-560))) (-15 -1430 ((-1149 (-560)) (-560))) (-15 -2255 ((-1149 (-560)) (-560))) (-15 -3833 ((-1149 (-560)) (-560))) (-15 -3688 ((-1149 (-403 (-560))) (-560))) (-15 -2310 ((-560) (-1149 (-560)))) (-15 -2491 ((-1149 (-560)) (-560))) (-15 -3752 ((-1149 (-560)) (-560))) (-15 -2547 ((-1149 (-403 (-560))) (-560)))) -((-2601 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-3382 (($ (-755)) NIL (|has| |#1| (-23)))) (-2960 (((-1241) $ (-560) (-560)) NIL (|has| $ (-6 -4506)))) (-3189 (((-121) (-1 (-121) |#1| |#1|) $) NIL) (((-121) $) NIL (|has| |#1| (-834)))) (-4410 (($ (-1 (-121) |#1| |#1|) $) NIL (|has| $ (-6 -4506))) (($ $) NIL (-12 (|has| $ (-6 -4506)) (|has| |#1| (-834))))) (-3743 (($ (-1 (-121) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-834)))) (-3909 (((-121) $ (-755)) NIL)) (-2764 ((|#1| $ (-560) |#1|) 11 (|has| $ (-6 -4506))) ((|#1| $ (-1202 (-560)) |#1|) NIL (|has| $ (-6 -4506)))) (-3802 (($ (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-4236 (($) NIL T CONST)) (-4030 (($ $) NIL (|has| $ (-6 -4506)))) (-2883 (($ $) NIL)) (-2868 (($ $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-4310 (($ |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082)))) (($ (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-2342 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4505))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4505)))) (-1746 ((|#1| $ (-560) |#1|) NIL (|has| $ (-6 -4506)))) (-1361 ((|#1| $ (-560)) NIL)) (-2839 (((-560) (-1 (-121) |#1|) $) NIL) (((-560) |#1| $) NIL (|has| |#1| (-1082))) (((-560) |#1| $ (-560)) NIL (|has| |#1| (-1082)))) (-4151 (($ (-626 |#1|)) 13)) (-1981 (((-626 |#1|) $) NIL (|has| $ (-6 -4505)))) (-1764 (((-671 |#1|) $ $) NIL (|has| |#1| (-1039)))) (-1721 (($ (-755) |#1|) 8)) (-2122 (((-121) $ (-755)) NIL)) (-4099 (((-560) $) 10 (|has| (-560) (-834)))) (-4325 (($ $ $) NIL (|has| |#1| (-834)))) (-2492 (($ (-1 (-121) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-834)))) (-2130 (((-626 |#1|) $) NIL (|has| $ (-6 -4505)))) (-2030 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-2767 (((-560) $) NIL (|has| (-560) (-834)))) (-2501 (($ $ $) NIL (|has| |#1| (-834)))) (-3778 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2429 ((|#1| $) NIL (-12 (|has| |#1| (-994)) (|has| |#1| (-1039))))) (-3441 (((-121) $ (-755)) NIL)) (-2349 ((|#1| $) NIL (-12 (|has| |#1| (-994)) (|has| |#1| (-1039))))) (-1291 (((-1135) $) NIL (|has| |#1| (-1082)))) (-4103 (($ |#1| $ (-560)) NIL) (($ $ $ (-560)) NIL)) (-1529 (((-626 (-560)) $) NIL)) (-1310 (((-121) (-560) $) NIL)) (-4353 (((-1100) $) NIL (|has| |#1| (-1082)))) (-2824 ((|#1| $) NIL (|has| (-560) (-834)))) (-3786 (((-3 |#1| "failed") (-1 (-121) |#1|) $) NIL)) (-3038 (($ $ |#1|) NIL (|has| $ (-6 -4506)))) (-3292 (($ $ (-626 |#1|)) 24)) (-2865 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#1|))) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-283 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-626 |#1|) (-626 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))))) (-2214 (((-121) $ $) NIL)) (-1290 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-4460 (((-626 |#1|) $) NIL)) (-4191 (((-121) $) NIL)) (-3260 (($) NIL)) (-2778 ((|#1| $ (-560) |#1|) NIL) ((|#1| $ (-560)) 18) (($ $ (-1202 (-560))) NIL)) (-2372 ((|#1| $ $) NIL (|has| |#1| (-1039)))) (-4016 (((-909) $) 16)) (-2949 (($ $ (-560)) NIL) (($ $ (-1202 (-560))) NIL)) (-2078 (($ $ $) 22)) (-4035 (((-755) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505))) (((-755) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-4072 (($ $ $ (-560)) NIL (|has| $ (-6 -4506)))) (-2813 (($ $) NIL)) (-4255 (((-533) $) NIL (|has| |#1| (-601 (-533)))) (($ (-626 |#1|)) 17)) (-4162 (($ (-626 |#1|)) NIL)) (-2849 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 23) (($ (-626 $)) NIL)) (-2801 (((-842) $) NIL (|has| |#1| (-1082)))) (-3656 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-1691 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1675 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1653 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-1683 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1667 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1725 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1716 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-560) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-708))) (($ $ |#1|) NIL (|has| |#1| (-708)))) (-2271 (((-755) $) 14 (|has| $ (-6 -4505))))) -(((-936 |#1|) (-973 |#1|) (-1039)) (T -936)) -NIL -(-973 |#1|) -((-2000 (((-485 |#1| |#2|) (-945 |#2|)) 17)) (-1307 (((-237 |#1| |#2|) (-945 |#2|)) 29)) (-2900 (((-945 |#2|) (-485 |#1| |#2|)) 22)) (-1441 (((-237 |#1| |#2|) (-485 |#1| |#2|)) 53)) (-1950 (((-945 |#2|) (-237 |#1| |#2|)) 26)) (-2421 (((-485 |#1| |#2|) (-237 |#1| |#2|)) 44))) -(((-937 |#1| |#2|) (-10 -7 (-15 -2421 ((-485 |#1| |#2|) (-237 |#1| |#2|))) (-15 -1441 ((-237 |#1| |#2|) (-485 |#1| |#2|))) (-15 -2000 ((-485 |#1| |#2|) (-945 |#2|))) (-15 -2900 ((-945 |#2|) (-485 |#1| |#2|))) (-15 -1950 ((-945 |#2|) (-237 |#1| |#2|))) (-15 -1307 ((-237 |#1| |#2|) (-945 |#2|)))) (-626 (-1153)) (-1039)) (T -937)) -((-1307 (*1 *2 *3) (-12 (-5 *3 (-945 *5)) (-4 *5 (-1039)) (-5 *2 (-237 *4 *5)) (-5 *1 (-937 *4 *5)) (-14 *4 (-626 (-1153))))) (-1950 (*1 *2 *3) (-12 (-5 *3 (-237 *4 *5)) (-14 *4 (-626 (-1153))) (-4 *5 (-1039)) (-5 *2 (-945 *5)) (-5 *1 (-937 *4 *5)))) (-2900 (*1 *2 *3) (-12 (-5 *3 (-485 *4 *5)) (-14 *4 (-626 (-1153))) (-4 *5 (-1039)) (-5 *2 (-945 *5)) (-5 *1 (-937 *4 *5)))) (-2000 (*1 *2 *3) (-12 (-5 *3 (-945 *5)) (-4 *5 (-1039)) (-5 *2 (-485 *4 *5)) (-5 *1 (-937 *4 *5)) (-14 *4 (-626 (-1153))))) (-1441 (*1 *2 *3) (-12 (-5 *3 (-485 *4 *5)) (-14 *4 (-626 (-1153))) (-4 *5 (-1039)) (-5 *2 (-237 *4 *5)) (-5 *1 (-937 *4 *5)))) (-2421 (*1 *2 *3) (-12 (-5 *3 (-237 *4 *5)) (-14 *4 (-626 (-1153))) (-4 *5 (-1039)) (-5 *2 (-485 *4 *5)) (-5 *1 (-937 *4 *5))))) -(-10 -7 (-15 -2421 ((-485 |#1| |#2|) (-237 |#1| |#2|))) (-15 -1441 ((-237 |#1| |#2|) (-485 |#1| |#2|))) (-15 -2000 ((-485 |#1| |#2|) (-945 |#2|))) (-15 -2900 ((-945 |#2|) (-485 |#1| |#2|))) (-15 -1950 ((-945 |#2|) (-237 |#1| |#2|))) (-15 -1307 ((-237 |#1| |#2|) (-945 |#2|)))) -((-3120 (((-626 |#2|) |#2| |#2|) 10)) (-1948 (((-755) (-626 |#1|)) 37 (|has| |#1| (-832)))) (-1272 (((-626 |#2|) |#2|) 11)) (-3470 (((-755) (-626 |#1|) (-560) (-560)) 36 (|has| |#1| (-832)))) (-2042 ((|#1| |#2|) 32 (|has| |#1| (-832))))) -(((-938 |#1| |#2|) (-10 -7 (-15 -3120 ((-626 |#2|) |#2| |#2|)) (-15 -1272 ((-626 |#2|) |#2|)) (IF (|has| |#1| (-832)) (PROGN (-15 -2042 (|#1| |#2|)) (-15 -1948 ((-755) (-626 |#1|))) (-15 -3470 ((-755) (-626 |#1|) (-560) (-560)))) |noBranch|)) (-359) (-1211 |#1|)) (T -938)) -((-3470 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-626 *5)) (-5 *4 (-560)) (-4 *5 (-832)) (-4 *5 (-359)) (-5 *2 (-755)) (-5 *1 (-938 *5 *6)) (-4 *6 (-1211 *5)))) (-1948 (*1 *2 *3) (-12 (-5 *3 (-626 *4)) (-4 *4 (-832)) (-4 *4 (-359)) (-5 *2 (-755)) (-5 *1 (-938 *4 *5)) (-4 *5 (-1211 *4)))) (-2042 (*1 *2 *3) (-12 (-4 *2 (-359)) (-4 *2 (-832)) (-5 *1 (-938 *2 *3)) (-4 *3 (-1211 *2)))) (-1272 (*1 *2 *3) (-12 (-4 *4 (-359)) (-5 *2 (-626 *3)) (-5 *1 (-938 *4 *3)) (-4 *3 (-1211 *4)))) (-3120 (*1 *2 *3 *3) (-12 (-4 *4 (-359)) (-5 *2 (-626 *3)) (-5 *1 (-938 *4 *3)) (-4 *3 (-1211 *4))))) -(-10 -7 (-15 -3120 ((-626 |#2|) |#2| |#2|)) (-15 -1272 ((-626 |#2|) |#2|)) (IF (|has| |#1| (-832)) (PROGN (-15 -2042 (|#1| |#2|)) (-15 -1948 ((-755) (-626 |#1|))) (-15 -3470 ((-755) (-626 |#1|) (-560) (-560)))) |noBranch|)) -((-2803 (((-945 |#2|) (-1 |#2| |#1|) (-945 |#1|)) 18))) -(((-939 |#1| |#2|) (-10 -7 (-15 -2803 ((-945 |#2|) (-1 |#2| |#1|) (-945 |#1|)))) (-1039) (-1039)) (T -939)) -((-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-945 *5)) (-4 *5 (-1039)) (-4 *6 (-1039)) (-5 *2 (-945 *6)) (-5 *1 (-939 *5 *6))))) -(-10 -7 (-15 -2803 ((-945 |#2|) (-1 |#2| |#1|) (-945 |#1|)))) -((-1593 (((-1208 |#1| (-945 |#2|)) (-945 |#2|) (-1232 |#1|)) 18))) -(((-940 |#1| |#2|) (-10 -7 (-15 -1593 ((-1208 |#1| (-945 |#2|)) (-945 |#2|) (-1232 |#1|)))) (-1153) (-1039)) (T -940)) -((-1593 (*1 *2 *3 *4) (-12 (-5 *4 (-1232 *5)) (-14 *5 (-1153)) (-4 *6 (-1039)) (-5 *2 (-1208 *5 (-945 *6))) (-5 *1 (-940 *5 *6)) (-5 *3 (-945 *6))))) -(-10 -7 (-15 -1593 ((-1208 |#1| (-945 |#2|)) (-945 |#2|) (-1232 |#1|)))) -((-1697 (((-755) $) 69) (((-755) $ (-626 |#4|)) 72)) (-3065 (($ $) 169)) (-2953 (((-414 $) $) 161)) (-1887 (((-3 (-626 (-1149 $)) "failed") (-626 (-1149 $)) (-1149 $)) 112)) (-1473 (((-3 |#2| "failed") $) NIL) (((-3 (-403 (-560)) "failed") $) NIL) (((-3 (-560) "failed") $) NIL) (((-3 |#4| "failed") $) 58)) (-3001 ((|#2| $) NIL) (((-403 (-560)) $) NIL) (((-560) $) NIL) ((|#4| $) 57)) (-1979 (($ $ $ |#4|) 74)) (-2616 (((-671 (-560)) (-671 $)) NIL) (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) NIL) (((-2 (|:| -3818 (-671 |#2|)) (|:| |vec| (-1236 |#2|))) (-671 $) (-1236 $)) 102) (((-671 |#2|) (-671 $)) 95)) (-3605 (($ $) 177) (($ $ |#4|) 180)) (-1743 (((-626 $) $) 61)) (-2399 (((-876 (-375) $) $ (-879 (-375)) (-876 (-375) $)) 195) (((-876 (-560) $) $ (-879 (-560)) (-876 (-560) $)) 189)) (-1854 (((-626 $) $) 27)) (-1637 (($ |#2| |#3|) NIL) (($ $ |#4| (-755)) NIL) (($ $ (-626 |#4|) (-626 (-755))) 55)) (-2923 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $ |#4|) 158)) (-3665 (((-3 (-626 $) "failed") $) 41)) (-2327 (((-3 (-626 $) "failed") $) 30)) (-2913 (((-3 (-2 (|:| |var| |#4|) (|:| -4034 (-755))) "failed") $) 45)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) 105)) (-3817 (((-414 (-1149 $)) (-1149 $)) 118)) (-3032 (((-414 (-1149 $)) (-1149 $)) 116)) (-1601 (((-414 $) $) 136)) (-4450 (($ $ (-626 (-283 $))) 20) (($ $ (-283 $)) NIL) (($ $ $ $) NIL) (($ $ (-626 $) (-626 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-626 |#4|) (-626 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-626 |#4|) (-626 $)) NIL)) (-4069 (($ $ |#4|) 76)) (-4255 (((-879 (-375)) $) 209) (((-879 (-560)) $) 202) (((-533) $) 217)) (-1896 ((|#2| $) NIL) (($ $ |#4|) 171)) (-3248 (((-3 (-1236 $) "failed") (-671 $)) 150)) (-2636 ((|#2| $ |#3|) NIL) (($ $ |#4| (-755)) 50) (($ $ (-626 |#4|) (-626 (-755))) 53)) (-2272 (((-3 $ "failed") $) 152)) (-1667 (((-121) $ $) 183))) -(((-941 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4311 ((-1149 |#1|) (-1149 |#1|) (-1149 |#1|))) (-15 -2953 ((-414 |#1|) |#1|)) (-15 -3065 (|#1| |#1|)) (-15 -2272 ((-3 |#1| "failed") |#1|)) (-15 -1667 ((-121) |#1| |#1|)) (-15 -4255 ((-533) |#1|)) (-15 -4255 ((-879 (-560)) |#1|)) (-15 -4255 ((-879 (-375)) |#1|)) (-15 -2399 ((-876 (-560) |#1|) |#1| (-879 (-560)) (-876 (-560) |#1|))) (-15 -2399 ((-876 (-375) |#1|) |#1| (-879 (-375)) (-876 (-375) |#1|))) (-15 -1601 ((-414 |#1|) |#1|)) (-15 -3032 ((-414 (-1149 |#1|)) (-1149 |#1|))) (-15 -3817 ((-414 (-1149 |#1|)) (-1149 |#1|))) (-15 -1887 ((-3 (-626 (-1149 |#1|)) "failed") (-626 (-1149 |#1|)) (-1149 |#1|))) (-15 -3248 ((-3 (-1236 |#1|) "failed") (-671 |#1|))) (-15 -3605 (|#1| |#1| |#4|)) (-15 -1896 (|#1| |#1| |#4|)) (-15 -4069 (|#1| |#1| |#4|)) (-15 -1979 (|#1| |#1| |#1| |#4|)) (-15 -1743 ((-626 |#1|) |#1|)) (-15 -1697 ((-755) |#1| (-626 |#4|))) (-15 -1697 ((-755) |#1|)) (-15 -2913 ((-3 (-2 (|:| |var| |#4|) (|:| -4034 (-755))) "failed") |#1|)) (-15 -3665 ((-3 (-626 |#1|) "failed") |#1|)) (-15 -2327 ((-3 (-626 |#1|) "failed") |#1|)) (-15 -1637 (|#1| |#1| (-626 |#4|) (-626 (-755)))) (-15 -1637 (|#1| |#1| |#4| (-755))) (-15 -2923 ((-2 (|:| -2583 |#1|) (|:| -4397 |#1|)) |#1| |#1| |#4|)) (-15 -1854 ((-626 |#1|) |#1|)) (-15 -2636 (|#1| |#1| (-626 |#4|) (-626 (-755)))) (-15 -2636 (|#1| |#1| |#4| (-755))) (-15 -2616 ((-671 |#2|) (-671 |#1|))) (-15 -2616 ((-2 (|:| -3818 (-671 |#2|)) (|:| |vec| (-1236 |#2|))) (-671 |#1|) (-1236 |#1|))) (-15 -2616 ((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 |#1|) (-1236 |#1|))) (-15 -2616 ((-671 (-560)) (-671 |#1|))) (-15 -3001 (|#4| |#1|)) (-15 -1473 ((-3 |#4| "failed") |#1|)) (-15 -4450 (|#1| |#1| (-626 |#4|) (-626 |#1|))) (-15 -4450 (|#1| |#1| |#4| |#1|)) (-15 -4450 (|#1| |#1| (-626 |#4|) (-626 |#2|))) (-15 -4450 (|#1| |#1| |#4| |#2|)) (-15 -4450 (|#1| |#1| (-626 |#1|) (-626 |#1|))) (-15 -4450 (|#1| |#1| |#1| |#1|)) (-15 -4450 (|#1| |#1| (-283 |#1|))) (-15 -4450 (|#1| |#1| (-626 (-283 |#1|)))) (-15 -1637 (|#1| |#2| |#3|)) (-15 -2636 (|#2| |#1| |#3|)) (-15 -3001 ((-560) |#1|)) (-15 -1473 ((-3 (-560) "failed") |#1|)) (-15 -3001 ((-403 (-560)) |#1|)) (-15 -1473 ((-3 (-403 (-560)) "failed") |#1|)) (-15 -1473 ((-3 |#2| "failed") |#1|)) (-15 -3001 (|#2| |#1|)) (-15 -1896 (|#2| |#1|)) (-15 -3605 (|#1| |#1|))) (-942 |#2| |#3| |#4|) (-1039) (-780) (-834)) (T -941)) -NIL -(-10 -8 (-15 -4311 ((-1149 |#1|) (-1149 |#1|) (-1149 |#1|))) (-15 -2953 ((-414 |#1|) |#1|)) (-15 -3065 (|#1| |#1|)) (-15 -2272 ((-3 |#1| "failed") |#1|)) (-15 -1667 ((-121) |#1| |#1|)) (-15 -4255 ((-533) |#1|)) (-15 -4255 ((-879 (-560)) |#1|)) (-15 -4255 ((-879 (-375)) |#1|)) (-15 -2399 ((-876 (-560) |#1|) |#1| (-879 (-560)) (-876 (-560) |#1|))) (-15 -2399 ((-876 (-375) |#1|) |#1| (-879 (-375)) (-876 (-375) |#1|))) (-15 -1601 ((-414 |#1|) |#1|)) (-15 -3032 ((-414 (-1149 |#1|)) (-1149 |#1|))) (-15 -3817 ((-414 (-1149 |#1|)) (-1149 |#1|))) (-15 -1887 ((-3 (-626 (-1149 |#1|)) "failed") (-626 (-1149 |#1|)) (-1149 |#1|))) (-15 -3248 ((-3 (-1236 |#1|) "failed") (-671 |#1|))) (-15 -3605 (|#1| |#1| |#4|)) (-15 -1896 (|#1| |#1| |#4|)) (-15 -4069 (|#1| |#1| |#4|)) (-15 -1979 (|#1| |#1| |#1| |#4|)) (-15 -1743 ((-626 |#1|) |#1|)) (-15 -1697 ((-755) |#1| (-626 |#4|))) (-15 -1697 ((-755) |#1|)) (-15 -2913 ((-3 (-2 (|:| |var| |#4|) (|:| -4034 (-755))) "failed") |#1|)) (-15 -3665 ((-3 (-626 |#1|) "failed") |#1|)) (-15 -2327 ((-3 (-626 |#1|) "failed") |#1|)) (-15 -1637 (|#1| |#1| (-626 |#4|) (-626 (-755)))) (-15 -1637 (|#1| |#1| |#4| (-755))) (-15 -2923 ((-2 (|:| -2583 |#1|) (|:| -4397 |#1|)) |#1| |#1| |#4|)) (-15 -1854 ((-626 |#1|) |#1|)) (-15 -2636 (|#1| |#1| (-626 |#4|) (-626 (-755)))) (-15 -2636 (|#1| |#1| |#4| (-755))) (-15 -2616 ((-671 |#2|) (-671 |#1|))) (-15 -2616 ((-2 (|:| -3818 (-671 |#2|)) (|:| |vec| (-1236 |#2|))) (-671 |#1|) (-1236 |#1|))) (-15 -2616 ((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 |#1|) (-1236 |#1|))) (-15 -2616 ((-671 (-560)) (-671 |#1|))) (-15 -3001 (|#4| |#1|)) (-15 -1473 ((-3 |#4| "failed") |#1|)) (-15 -4450 (|#1| |#1| (-626 |#4|) (-626 |#1|))) (-15 -4450 (|#1| |#1| |#4| |#1|)) (-15 -4450 (|#1| |#1| (-626 |#4|) (-626 |#2|))) (-15 -4450 (|#1| |#1| |#4| |#2|)) (-15 -4450 (|#1| |#1| (-626 |#1|) (-626 |#1|))) (-15 -4450 (|#1| |#1| |#1| |#1|)) (-15 -4450 (|#1| |#1| (-283 |#1|))) (-15 -4450 (|#1| |#1| (-626 (-283 |#1|)))) (-15 -1637 (|#1| |#2| |#3|)) (-15 -2636 (|#2| |#1| |#3|)) (-15 -3001 ((-560) |#1|)) (-15 -1473 ((-3 (-560) "failed") |#1|)) (-15 -3001 ((-403 (-560)) |#1|)) (-15 -1473 ((-3 (-403 (-560)) "failed") |#1|)) (-15 -1473 ((-3 |#2| "failed") |#1|)) (-15 -3001 (|#2| |#1|)) (-15 -1896 (|#2| |#1|)) (-15 -3605 (|#1| |#1|))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-1654 (((-626 |#3|) $) 108)) (-1593 (((-1149 $) $ |#3|) 123) (((-1149 |#1|) $) 122)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) 85 (|has| |#1| (-550)))) (-1350 (($ $) 86 (|has| |#1| (-550)))) (-3376 (((-121) $) 88 (|has| |#1| (-550)))) (-1697 (((-755) $) 110) (((-755) $ (-626 |#3|)) 109)) (-2314 (((-3 $ "failed") $ $) 18)) (-1776 (((-414 (-1149 $)) (-1149 $)) 98 (|has| |#1| (-896)))) (-3065 (($ $) 96 (|has| |#1| (-447)))) (-2953 (((-414 $) $) 95 (|has| |#1| (-447)))) (-1887 (((-3 (-626 (-1149 $)) "failed") (-626 (-1149 $)) (-1149 $)) 101 (|has| |#1| (-896)))) (-4236 (($) 16 T CONST)) (-1473 (((-3 |#1| "failed") $) 162) (((-3 (-403 (-560)) "failed") $) 160 (|has| |#1| (-1029 (-403 (-560))))) (((-3 (-560) "failed") $) 158 (|has| |#1| (-1029 (-560)))) (((-3 |#3| "failed") $) 134)) (-3001 ((|#1| $) 163) (((-403 (-560)) $) 159 (|has| |#1| (-1029 (-403 (-560))))) (((-560) $) 157 (|has| |#1| (-1029 (-560)))) ((|#3| $) 133)) (-1979 (($ $ $ |#3|) 106 (|has| |#1| (-170)))) (-1750 (($ $) 152)) (-2616 (((-671 (-560)) (-671 $)) 132 (|has| |#1| (-622 (-560)))) (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) 131 (|has| |#1| (-622 (-560)))) (((-2 (|:| -3818 (-671 |#1|)) (|:| |vec| (-1236 |#1|))) (-671 $) (-1236 $)) 130) (((-671 |#1|) (-671 $)) 129)) (-1823 (((-3 $ "failed") $) 33)) (-3605 (($ $) 174 (|has| |#1| (-447))) (($ $ |#3|) 103 (|has| |#1| (-447)))) (-1743 (((-626 $) $) 107)) (-3319 (((-121) $) 94 (|has| |#1| (-896)))) (-1456 (($ $ |#1| |#2| $) 170)) (-2399 (((-876 (-375) $) $ (-879 (-375)) (-876 (-375) $)) 82 (-12 (|has| |#3| (-873 (-375))) (|has| |#1| (-873 (-375))))) (((-876 (-560) $) $ (-879 (-560)) (-876 (-560) $)) 81 (-12 (|has| |#3| (-873 (-560))) (|has| |#1| (-873 (-560)))))) (-2642 (((-121) $) 30)) (-3235 (((-755) $) 167)) (-1647 (($ (-1149 |#1|) |#3|) 115) (($ (-1149 $) |#3|) 114)) (-1854 (((-626 $) $) 124)) (-1814 (((-121) $) 150)) (-1637 (($ |#1| |#2|) 151) (($ $ |#3| (-755)) 117) (($ $ (-626 |#3|) (-626 (-755))) 116)) (-2923 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $ |#3|) 118)) (-3693 ((|#2| $) 168) (((-755) $ |#3|) 120) (((-626 (-755)) $ (-626 |#3|)) 119)) (-4325 (($ $ $) 77 (|has| |#1| (-834)))) (-2501 (($ $ $) 76 (|has| |#1| (-834)))) (-1504 (($ (-1 |#2| |#2|) $) 169)) (-2803 (($ (-1 |#1| |#1|) $) 149)) (-2101 (((-3 |#3| "failed") $) 121)) (-1726 (($ $) 147)) (-1735 ((|#1| $) 146)) (-2582 (($ (-626 $)) 92 (|has| |#1| (-447))) (($ $ $) 91 (|has| |#1| (-447)))) (-1291 (((-1135) $) 9)) (-3665 (((-3 (-626 $) "failed") $) 112)) (-2327 (((-3 (-626 $) "failed") $) 113)) (-2913 (((-3 (-2 (|:| |var| |#3|) (|:| -4034 (-755))) "failed") $) 111)) (-4353 (((-1100) $) 10)) (-1704 (((-121) $) 164)) (-1711 ((|#1| $) 165)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) 93 (|has| |#1| (-447)))) (-4440 (($ (-626 $)) 90 (|has| |#1| (-447))) (($ $ $) 89 (|has| |#1| (-447)))) (-3817 (((-414 (-1149 $)) (-1149 $)) 100 (|has| |#1| (-896)))) (-3032 (((-414 (-1149 $)) (-1149 $)) 99 (|has| |#1| (-896)))) (-1601 (((-414 $) $) 97 (|has| |#1| (-896)))) (-2336 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-550))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-550)))) (-4450 (($ $ (-626 (-283 $))) 143) (($ $ (-283 $)) 142) (($ $ $ $) 141) (($ $ (-626 $) (-626 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-626 |#3|) (-626 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-626 |#3|) (-626 $)) 136)) (-4069 (($ $ |#3|) 105 (|has| |#1| (-170)))) (-2443 (($ $ |#3|) 41) (($ $ (-626 |#3|)) 40) (($ $ |#3| (-755)) 39) (($ $ (-626 |#3|) (-626 (-755))) 38)) (-3662 ((|#2| $) 148) (((-755) $ |#3|) 128) (((-626 (-755)) $ (-626 |#3|)) 127)) (-4255 (((-879 (-375)) $) 80 (-12 (|has| |#3| (-601 (-879 (-375)))) (|has| |#1| (-601 (-879 (-375)))))) (((-879 (-560)) $) 79 (-12 (|has| |#3| (-601 (-879 (-560)))) (|has| |#1| (-601 (-879 (-560)))))) (((-533) $) 78 (-12 (|has| |#3| (-601 (-533))) (|has| |#1| (-601 (-533)))))) (-1896 ((|#1| $) 173 (|has| |#1| (-447))) (($ $ |#3|) 104 (|has| |#1| (-447)))) (-3248 (((-3 (-1236 $) "failed") (-671 $)) 102 (-2256 (|has| $ (-146)) (|has| |#1| (-896))))) (-2801 (((-842) $) 11) (($ (-560)) 27) (($ |#1|) 161) (($ |#3|) 135) (($ $) 83 (|has| |#1| (-550))) (($ (-403 (-560))) 70 (-2318 (|has| |#1| (-1029 (-403 (-560)))) (|has| |#1| (-43 (-403 (-560))))))) (-2423 (((-626 |#1|) $) 166)) (-2636 ((|#1| $ |#2|) 153) (($ $ |#3| (-755)) 126) (($ $ (-626 |#3|) (-626 (-755))) 125)) (-2272 (((-3 $ "failed") $) 71 (-2318 (-2256 (|has| $ (-146)) (|has| |#1| (-896))) (|has| |#1| (-146))))) (-1751 (((-755)) 28)) (-3487 (($ $ $ (-755)) 171 (|has| |#1| (-170)))) (-2328 (((-121) $ $) 87 (|has| |#1| (-550)))) (-2464 (($ $ (-909)) 25) (($ $ (-755)) 32)) (-3304 (($) 17 T CONST)) (-1459 (($) 29 T CONST)) (-2500 (($ $ |#3|) 37) (($ $ (-626 |#3|)) 36) (($ $ |#3| (-755)) 35) (($ $ (-626 |#3|) (-626 (-755))) 34)) (-1691 (((-121) $ $) 74 (|has| |#1| (-834)))) (-1675 (((-121) $ $) 73 (|has| |#1| (-834)))) (-1653 (((-121) $ $) 6)) (-1683 (((-121) $ $) 75 (|has| |#1| (-834)))) (-1667 (((-121) $ $) 72 (|has| |#1| (-834)))) (-1733 (($ $ |#1|) 154 (|has| |#1| (-359)))) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 24) (($ $ (-755)) 31)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 23) (($ $ (-403 (-560))) 156 (|has| |#1| (-43 (-403 (-560))))) (($ (-403 (-560)) $) 155 (|has| |#1| (-43 (-403 (-560))))) (($ |#1| $) 145) (($ $ |#1|) 144))) -(((-942 |#1| |#2| |#3|) (-1267) (-1039) (-780) (-834)) (T -942)) -((-3605 (*1 *1 *1) (-12 (-4 *1 (-942 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-780)) (-4 *4 (-834)) (-4 *2 (-447)))) (-3662 (*1 *2 *1 *3) (-12 (-4 *1 (-942 *4 *5 *3)) (-4 *4 (-1039)) (-4 *5 (-780)) (-4 *3 (-834)) (-5 *2 (-755)))) (-3662 (*1 *2 *1 *3) (-12 (-5 *3 (-626 *6)) (-4 *1 (-942 *4 *5 *6)) (-4 *4 (-1039)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-626 (-755))))) (-2636 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-755)) (-4 *1 (-942 *4 *5 *2)) (-4 *4 (-1039)) (-4 *5 (-780)) (-4 *2 (-834)))) (-2636 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-626 *6)) (-5 *3 (-626 (-755))) (-4 *1 (-942 *4 *5 *6)) (-4 *4 (-1039)) (-4 *5 (-780)) (-4 *6 (-834)))) (-1854 (*1 *2 *1) (-12 (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-626 *1)) (-4 *1 (-942 *3 *4 *5)))) (-1593 (*1 *2 *1 *3) (-12 (-4 *4 (-1039)) (-4 *5 (-780)) (-4 *3 (-834)) (-5 *2 (-1149 *1)) (-4 *1 (-942 *4 *5 *3)))) (-1593 (*1 *2 *1) (-12 (-4 *1 (-942 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-1149 *3)))) (-2101 (*1 *2 *1) (|partial| -12 (-4 *1 (-942 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *2 (-834)))) (-3693 (*1 *2 *1 *3) (-12 (-4 *1 (-942 *4 *5 *3)) (-4 *4 (-1039)) (-4 *5 (-780)) (-4 *3 (-834)) (-5 *2 (-755)))) (-3693 (*1 *2 *1 *3) (-12 (-5 *3 (-626 *6)) (-4 *1 (-942 *4 *5 *6)) (-4 *4 (-1039)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-626 (-755))))) (-2923 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1039)) (-4 *5 (-780)) (-4 *3 (-834)) (-5 *2 (-2 (|:| -2583 *1) (|:| -4397 *1))) (-4 *1 (-942 *4 *5 *3)))) (-1637 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-755)) (-4 *1 (-942 *4 *5 *2)) (-4 *4 (-1039)) (-4 *5 (-780)) (-4 *2 (-834)))) (-1637 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-626 *6)) (-5 *3 (-626 (-755))) (-4 *1 (-942 *4 *5 *6)) (-4 *4 (-1039)) (-4 *5 (-780)) (-4 *6 (-834)))) (-1647 (*1 *1 *2 *3) (-12 (-5 *2 (-1149 *4)) (-4 *4 (-1039)) (-4 *1 (-942 *4 *5 *3)) (-4 *5 (-780)) (-4 *3 (-834)))) (-1647 (*1 *1 *2 *3) (-12 (-5 *2 (-1149 *1)) (-4 *1 (-942 *4 *5 *3)) (-4 *4 (-1039)) (-4 *5 (-780)) (-4 *3 (-834)))) (-2327 (*1 *2 *1) (|partial| -12 (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-626 *1)) (-4 *1 (-942 *3 *4 *5)))) (-3665 (*1 *2 *1) (|partial| -12 (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-626 *1)) (-4 *1 (-942 *3 *4 *5)))) (-2913 (*1 *2 *1) (|partial| -12 (-4 *1 (-942 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-2 (|:| |var| *5) (|:| -4034 (-755)))))) (-1697 (*1 *2 *1) (-12 (-4 *1 (-942 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-755)))) (-1697 (*1 *2 *1 *3) (-12 (-5 *3 (-626 *6)) (-4 *1 (-942 *4 *5 *6)) (-4 *4 (-1039)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-755)))) (-1654 (*1 *2 *1) (-12 (-4 *1 (-942 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-626 *5)))) (-1743 (*1 *2 *1) (-12 (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-626 *1)) (-4 *1 (-942 *3 *4 *5)))) (-1979 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-942 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *2 (-834)) (-4 *3 (-170)))) (-4069 (*1 *1 *1 *2) (-12 (-4 *1 (-942 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *2 (-834)) (-4 *3 (-170)))) (-1896 (*1 *1 *1 *2) (-12 (-4 *1 (-942 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *2 (-834)) (-4 *3 (-447)))) (-3605 (*1 *1 *1 *2) (-12 (-4 *1 (-942 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *2 (-834)) (-4 *3 (-447)))) (-3065 (*1 *1 *1) (-12 (-4 *1 (-942 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-780)) (-4 *4 (-834)) (-4 *2 (-447)))) (-2953 (*1 *2 *1) (-12 (-4 *3 (-447)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-414 *1)) (-4 *1 (-942 *3 *4 *5))))) -(-13 (-887 |t#3|) (-318 |t#1| |t#2|) (-298 $) (-515 |t#3| |t#1|) (-515 |t#3| $) (-1029 |t#3|) (-373 |t#1|) (-10 -8 (-15 -3662 ((-755) $ |t#3|)) (-15 -3662 ((-626 (-755)) $ (-626 |t#3|))) (-15 -2636 ($ $ |t#3| (-755))) (-15 -2636 ($ $ (-626 |t#3|) (-626 (-755)))) (-15 -1854 ((-626 $) $)) (-15 -1593 ((-1149 $) $ |t#3|)) (-15 -1593 ((-1149 |t#1|) $)) (-15 -2101 ((-3 |t#3| "failed") $)) (-15 -3693 ((-755) $ |t#3|)) (-15 -3693 ((-626 (-755)) $ (-626 |t#3|))) (-15 -2923 ((-2 (|:| -2583 $) (|:| -4397 $)) $ $ |t#3|)) (-15 -1637 ($ $ |t#3| (-755))) (-15 -1637 ($ $ (-626 |t#3|) (-626 (-755)))) (-15 -1647 ($ (-1149 |t#1|) |t#3|)) (-15 -1647 ($ (-1149 $) |t#3|)) (-15 -2327 ((-3 (-626 $) "failed") $)) (-15 -3665 ((-3 (-626 $) "failed") $)) (-15 -2913 ((-3 (-2 (|:| |var| |t#3|) (|:| -4034 (-755))) "failed") $)) (-15 -1697 ((-755) $)) (-15 -1697 ((-755) $ (-626 |t#3|))) (-15 -1654 ((-626 |t#3|) $)) (-15 -1743 ((-626 $) $)) (IF (|has| |t#1| (-834)) (-6 (-834)) |noBranch|) (IF (|has| |t#1| (-601 (-533))) (IF (|has| |t#3| (-601 (-533))) (-6 (-601 (-533))) |noBranch|) |noBranch|) (IF (|has| |t#1| (-601 (-879 (-560)))) (IF (|has| |t#3| (-601 (-879 (-560)))) (-6 (-601 (-879 (-560)))) |noBranch|) |noBranch|) (IF (|has| |t#1| (-601 (-879 (-375)))) (IF (|has| |t#3| (-601 (-879 (-375)))) (-6 (-601 (-879 (-375)))) |noBranch|) |noBranch|) (IF (|has| |t#1| (-873 (-560))) (IF (|has| |t#3| (-873 (-560))) (-6 (-873 (-560))) |noBranch|) |noBranch|) (IF (|has| |t#1| (-873 (-375))) (IF (|has| |t#3| (-873 (-375))) (-6 (-873 (-375))) |noBranch|) |noBranch|) (IF (|has| |t#1| (-170)) (PROGN (-15 -1979 ($ $ $ |t#3|)) (-15 -4069 ($ $ |t#3|))) |noBranch|) (IF (|has| |t#1| (-447)) (PROGN (-6 (-447)) (-15 -1896 ($ $ |t#3|)) (-15 -3605 ($ $)) (-15 -3605 ($ $ |t#3|)) (-15 -2953 ((-414 $) $)) (-15 -3065 ($ $))) |noBranch|) (IF (|has| |t#1| (-6 -4503)) (-6 -4503) |noBranch|) (IF (|has| |t#1| (-896)) (-6 (-896)) |noBranch|))) -(((-21) . T) ((-23) . T) ((-52 |#1| |#2|) . T) ((-25) . T) ((-43 (-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((-43 |#1|) |has| |#1| (-170)) ((-43 $) -2318 (|has| |#1| (-896)) (|has| |#1| (-550)) (|has| |#1| (-447))) ((-105) . T) ((-120 (-403 (-560)) (-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((-120 |#1| |#1|) . T) ((-120 $ $) -2318 (|has| |#1| (-896)) (|has| |#1| (-550)) (|has| |#1| (-447)) (|has| |#1| (-170))) ((-137) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-600 (-842)) . T) ((-170) -2318 (|has| |#1| (-896)) (|has| |#1| (-550)) (|has| |#1| (-447)) (|has| |#1| (-170))) ((-601 (-533)) -12 (|has| |#1| (-601 (-533))) (|has| |#3| (-601 (-533)))) ((-601 (-879 (-375))) -12 (|has| |#1| (-601 (-879 (-375)))) (|has| |#3| (-601 (-879 (-375))))) ((-601 (-879 (-560))) -12 (|has| |#1| (-601 (-879 (-560)))) (|has| |#3| (-601 (-879 (-560))))) ((-280) -2318 (|has| |#1| (-896)) (|has| |#1| (-550)) (|has| |#1| (-447))) ((-298 $) . T) ((-318 |#1| |#2|) . T) ((-373 |#1|) . T) ((-407 |#1|) . T) ((-447) -2318 (|has| |#1| (-896)) (|has| |#1| (-447))) ((-515 |#3| |#1|) . T) ((-515 |#3| $) . T) ((-515 $ $) . T) ((-550) -2318 (|has| |#1| (-896)) (|has| |#1| (-550)) (|has| |#1| (-447))) ((-629 (-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((-629 |#1|) . T) ((-629 $) . T) ((-622 (-560)) |has| |#1| (-622 (-560))) ((-622 |#1|) . T) ((-699 (-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((-699 |#1|) |has| |#1| (-170)) ((-699 $) -2318 (|has| |#1| (-896)) (|has| |#1| (-550)) (|has| |#1| (-447))) ((-708) . T) ((-834) |has| |#1| (-834)) ((-887 |#3|) . T) ((-873 (-375)) -12 (|has| |#1| (-873 (-375))) (|has| |#3| (-873 (-375)))) ((-873 (-560)) -12 (|has| |#1| (-873 (-560))) (|has| |#3| (-873 (-560)))) ((-896) |has| |#1| (-896)) ((-1029 (-403 (-560))) |has| |#1| (-1029 (-403 (-560)))) ((-1029 (-560)) |has| |#1| (-1029 (-560))) ((-1029 |#1|) . T) ((-1029 |#3|) . T) ((-1045 (-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((-1045 |#1|) . T) ((-1045 $) -2318 (|has| |#1| (-896)) (|has| |#1| (-550)) (|has| |#1| (-447)) (|has| |#1| (-170))) ((-1039) . T) ((-1046) . T) ((-1094) . T) ((-1082) . T) ((-1191) |has| |#1| (-896))) -((-1654 (((-626 |#2|) |#5|) 36)) (-1593 (((-1149 |#5|) |#5| |#2| (-1149 |#5|)) 23) (((-403 (-1149 |#5|)) |#5| |#2|) 16)) (-1647 ((|#5| (-403 (-1149 |#5|)) |#2|) 30)) (-2101 (((-3 |#2| "failed") |#5|) 61)) (-3665 (((-3 (-626 |#5|) "failed") |#5|) 55)) (-3004 (((-3 (-2 (|:| |val| |#5|) (|:| -4034 (-560))) "failed") |#5|) 45)) (-2327 (((-3 (-626 |#5|) "failed") |#5|) 57)) (-2913 (((-3 (-2 (|:| |var| |#2|) (|:| -4034 (-560))) "failed") |#5|) 48))) -(((-943 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1654 ((-626 |#2|) |#5|)) (-15 -2101 ((-3 |#2| "failed") |#5|)) (-15 -1593 ((-403 (-1149 |#5|)) |#5| |#2|)) (-15 -1647 (|#5| (-403 (-1149 |#5|)) |#2|)) (-15 -1593 ((-1149 |#5|) |#5| |#2| (-1149 |#5|))) (-15 -2327 ((-3 (-626 |#5|) "failed") |#5|)) (-15 -3665 ((-3 (-626 |#5|) "failed") |#5|)) (-15 -2913 ((-3 (-2 (|:| |var| |#2|) (|:| -4034 (-560))) "failed") |#5|)) (-15 -3004 ((-3 (-2 (|:| |val| |#5|) (|:| -4034 (-560))) "failed") |#5|))) (-780) (-834) (-1039) (-942 |#3| |#1| |#2|) (-13 (-359) (-10 -8 (-15 -2801 ($ |#4|)) (-15 -2132 (|#4| $)) (-15 -2139 (|#4| $))))) (T -943)) -((-3004 (*1 *2 *3) (|partial| -12 (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1039)) (-4 *7 (-942 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -4034 (-560)))) (-5 *1 (-943 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-359) (-10 -8 (-15 -2801 ($ *7)) (-15 -2132 (*7 $)) (-15 -2139 (*7 $))))))) (-2913 (*1 *2 *3) (|partial| -12 (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1039)) (-4 *7 (-942 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -4034 (-560)))) (-5 *1 (-943 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-359) (-10 -8 (-15 -2801 ($ *7)) (-15 -2132 (*7 $)) (-15 -2139 (*7 $))))))) (-3665 (*1 *2 *3) (|partial| -12 (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1039)) (-4 *7 (-942 *6 *4 *5)) (-5 *2 (-626 *3)) (-5 *1 (-943 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-359) (-10 -8 (-15 -2801 ($ *7)) (-15 -2132 (*7 $)) (-15 -2139 (*7 $))))))) (-2327 (*1 *2 *3) (|partial| -12 (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1039)) (-4 *7 (-942 *6 *4 *5)) (-5 *2 (-626 *3)) (-5 *1 (-943 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-359) (-10 -8 (-15 -2801 ($ *7)) (-15 -2132 (*7 $)) (-15 -2139 (*7 $))))))) (-1593 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-13 (-359) (-10 -8 (-15 -2801 ($ *7)) (-15 -2132 (*7 $)) (-15 -2139 (*7 $))))) (-4 *7 (-942 *6 *5 *4)) (-4 *5 (-780)) (-4 *4 (-834)) (-4 *6 (-1039)) (-5 *1 (-943 *5 *4 *6 *7 *3)))) (-1647 (*1 *2 *3 *4) (-12 (-5 *3 (-403 (-1149 *2))) (-4 *5 (-780)) (-4 *4 (-834)) (-4 *6 (-1039)) (-4 *2 (-13 (-359) (-10 -8 (-15 -2801 ($ *7)) (-15 -2132 (*7 $)) (-15 -2139 (*7 $))))) (-5 *1 (-943 *5 *4 *6 *7 *2)) (-4 *7 (-942 *6 *5 *4)))) (-1593 (*1 *2 *3 *4) (-12 (-4 *5 (-780)) (-4 *4 (-834)) (-4 *6 (-1039)) (-4 *7 (-942 *6 *5 *4)) (-5 *2 (-403 (-1149 *3))) (-5 *1 (-943 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-359) (-10 -8 (-15 -2801 ($ *7)) (-15 -2132 (*7 $)) (-15 -2139 (*7 $))))))) (-2101 (*1 *2 *3) (|partial| -12 (-4 *4 (-780)) (-4 *5 (-1039)) (-4 *6 (-942 *5 *4 *2)) (-4 *2 (-834)) (-5 *1 (-943 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-359) (-10 -8 (-15 -2801 ($ *6)) (-15 -2132 (*6 $)) (-15 -2139 (*6 $))))))) (-1654 (*1 *2 *3) (-12 (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1039)) (-4 *7 (-942 *6 *4 *5)) (-5 *2 (-626 *5)) (-5 *1 (-943 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-359) (-10 -8 (-15 -2801 ($ *7)) (-15 -2132 (*7 $)) (-15 -2139 (*7 $)))))))) -(-10 -7 (-15 -1654 ((-626 |#2|) |#5|)) (-15 -2101 ((-3 |#2| "failed") |#5|)) (-15 -1593 ((-403 (-1149 |#5|)) |#5| |#2|)) (-15 -1647 (|#5| (-403 (-1149 |#5|)) |#2|)) (-15 -1593 ((-1149 |#5|) |#5| |#2| (-1149 |#5|))) (-15 -2327 ((-3 (-626 |#5|) "failed") |#5|)) (-15 -3665 ((-3 (-626 |#5|) "failed") |#5|)) (-15 -2913 ((-3 (-2 (|:| |var| |#2|) (|:| -4034 (-560))) "failed") |#5|)) (-15 -3004 ((-3 (-2 (|:| |val| |#5|) (|:| -4034 (-560))) "failed") |#5|))) -((-2803 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 23))) -(((-944 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2803 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-780) (-834) (-1039) (-942 |#3| |#1| |#2|) (-13 (-1082) (-10 -8 (-15 -1716 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-755)))))) (T -944)) -((-2803 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-834)) (-4 *8 (-1039)) (-4 *6 (-780)) (-4 *2 (-13 (-1082) (-10 -8 (-15 -1716 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-755)))))) (-5 *1 (-944 *6 *7 *8 *5 *2)) (-4 *5 (-942 *8 *6 *7))))) -(-10 -7 (-15 -2803 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-1654 (((-626 (-1153)) $) 15)) (-1593 (((-1149 $) $ (-1153)) 21) (((-1149 |#1|) $) NIL)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL (|has| |#1| (-550)))) (-1350 (($ $) NIL (|has| |#1| (-550)))) (-3376 (((-121) $) NIL (|has| |#1| (-550)))) (-1697 (((-755) $) NIL) (((-755) $ (-626 (-1153))) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-1776 (((-414 (-1149 $)) (-1149 $)) NIL (|has| |#1| (-896)))) (-3065 (($ $) NIL (|has| |#1| (-447)))) (-2953 (((-414 $) $) NIL (|has| |#1| (-447)))) (-1887 (((-3 (-626 (-1149 $)) "failed") (-626 (-1149 $)) (-1149 $)) NIL (|has| |#1| (-896)))) (-4236 (($) NIL T CONST)) (-1473 (((-3 |#1| "failed") $) 8) (((-3 (-403 (-560)) "failed") $) NIL (|has| |#1| (-1029 (-403 (-560))))) (((-3 (-560) "failed") $) NIL (|has| |#1| (-1029 (-560)))) (((-3 (-1153) "failed") $) NIL)) (-3001 ((|#1| $) NIL) (((-403 (-560)) $) NIL (|has| |#1| (-1029 (-403 (-560))))) (((-560) $) NIL (|has| |#1| (-1029 (-560)))) (((-1153) $) NIL)) (-1979 (($ $ $ (-1153)) NIL (|has| |#1| (-170)))) (-1750 (($ $) NIL)) (-2616 (((-671 (-560)) (-671 $)) NIL (|has| |#1| (-622 (-560)))) (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) NIL (|has| |#1| (-622 (-560)))) (((-2 (|:| -3818 (-671 |#1|)) (|:| |vec| (-1236 |#1|))) (-671 $) (-1236 $)) NIL) (((-671 |#1|) (-671 $)) NIL)) (-1823 (((-3 $ "failed") $) NIL)) (-3605 (($ $) NIL (|has| |#1| (-447))) (($ $ (-1153)) NIL (|has| |#1| (-447)))) (-1743 (((-626 $) $) NIL)) (-3319 (((-121) $) NIL (|has| |#1| (-896)))) (-1456 (($ $ |#1| (-526 (-1153)) $) NIL)) (-2399 (((-876 (-375) $) $ (-879 (-375)) (-876 (-375) $)) NIL (-12 (|has| (-1153) (-873 (-375))) (|has| |#1| (-873 (-375))))) (((-876 (-560) $) $ (-879 (-560)) (-876 (-560) $)) NIL (-12 (|has| (-1153) (-873 (-560))) (|has| |#1| (-873 (-560)))))) (-2642 (((-121) $) NIL)) (-3235 (((-755) $) NIL)) (-1647 (($ (-1149 |#1|) (-1153)) NIL) (($ (-1149 $) (-1153)) NIL)) (-1854 (((-626 $) $) NIL)) (-1814 (((-121) $) NIL)) (-1637 (($ |#1| (-526 (-1153))) NIL) (($ $ (-1153) (-755)) NIL) (($ $ (-626 (-1153)) (-626 (-755))) NIL)) (-2923 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $ (-1153)) NIL)) (-3693 (((-526 (-1153)) $) NIL) (((-755) $ (-1153)) NIL) (((-626 (-755)) $ (-626 (-1153))) NIL)) (-4325 (($ $ $) NIL (|has| |#1| (-834)))) (-2501 (($ $ $) NIL (|has| |#1| (-834)))) (-1504 (($ (-1 (-526 (-1153)) (-526 (-1153))) $) NIL)) (-2803 (($ (-1 |#1| |#1|) $) NIL)) (-2101 (((-3 (-1153) "failed") $) 19)) (-1726 (($ $) NIL)) (-1735 ((|#1| $) NIL)) (-2582 (($ (-626 $)) NIL (|has| |#1| (-447))) (($ $ $) NIL (|has| |#1| (-447)))) (-1291 (((-1135) $) NIL)) (-3665 (((-3 (-626 $) "failed") $) NIL)) (-2327 (((-3 (-626 $) "failed") $) NIL)) (-2913 (((-3 (-2 (|:| |var| (-1153)) (|:| -4034 (-755))) "failed") $) NIL)) (-2376 (($ $ (-1153)) 29 (|has| |#1| (-43 (-403 (-560)))))) (-4353 (((-1100) $) NIL)) (-1704 (((-121) $) NIL)) (-1711 ((|#1| $) NIL)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL (|has| |#1| (-447)))) (-4440 (($ (-626 $)) NIL (|has| |#1| (-447))) (($ $ $) NIL (|has| |#1| (-447)))) (-3817 (((-414 (-1149 $)) (-1149 $)) NIL (|has| |#1| (-896)))) (-3032 (((-414 (-1149 $)) (-1149 $)) NIL (|has| |#1| (-896)))) (-1601 (((-414 $) $) NIL (|has| |#1| (-896)))) (-2336 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-550))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-550)))) (-4450 (($ $ (-626 (-283 $))) NIL) (($ $ (-283 $)) NIL) (($ $ $ $) NIL) (($ $ (-626 $) (-626 $)) NIL) (($ $ (-1153) |#1|) NIL) (($ $ (-626 (-1153)) (-626 |#1|)) NIL) (($ $ (-1153) $) NIL) (($ $ (-626 (-1153)) (-626 $)) NIL)) (-4069 (($ $ (-1153)) NIL (|has| |#1| (-170)))) (-2443 (($ $ (-1153)) NIL) (($ $ (-626 (-1153))) NIL) (($ $ (-1153) (-755)) NIL) (($ $ (-626 (-1153)) (-626 (-755))) NIL)) (-3662 (((-526 (-1153)) $) NIL) (((-755) $ (-1153)) NIL) (((-626 (-755)) $ (-626 (-1153))) NIL)) (-4255 (((-879 (-375)) $) NIL (-12 (|has| (-1153) (-601 (-879 (-375)))) (|has| |#1| (-601 (-879 (-375)))))) (((-879 (-560)) $) NIL (-12 (|has| (-1153) (-601 (-879 (-560)))) (|has| |#1| (-601 (-879 (-560)))))) (((-533) $) NIL (-12 (|has| (-1153) (-601 (-533))) (|has| |#1| (-601 (-533)))))) (-1896 ((|#1| $) NIL (|has| |#1| (-447))) (($ $ (-1153)) NIL (|has| |#1| (-447)))) (-3248 (((-3 (-1236 $) "failed") (-671 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-896))))) (-2801 (((-842) $) 25) (($ (-560)) NIL) (($ |#1|) NIL) (($ (-1153)) 27) (($ (-403 (-560))) NIL (-2318 (|has| |#1| (-43 (-403 (-560)))) (|has| |#1| (-1029 (-403 (-560)))))) (($ $) NIL (|has| |#1| (-550)))) (-2423 (((-626 |#1|) $) NIL)) (-2636 ((|#1| $ (-526 (-1153))) NIL) (($ $ (-1153) (-755)) NIL) (($ $ (-626 (-1153)) (-626 (-755))) NIL)) (-2272 (((-3 $ "failed") $) NIL (-2318 (-12 (|has| $ (-146)) (|has| |#1| (-896))) (|has| |#1| (-146))))) (-1751 (((-755)) NIL)) (-3487 (($ $ $ (-755)) NIL (|has| |#1| (-170)))) (-2328 (((-121) $ $) NIL (|has| |#1| (-550)))) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (-3304 (($) NIL T CONST)) (-1459 (($) NIL T CONST)) (-2500 (($ $ (-1153)) NIL) (($ $ (-626 (-1153))) NIL) (($ $ (-1153) (-755)) NIL) (($ $ (-626 (-1153)) (-626 (-755))) NIL)) (-1691 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1675 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1653 (((-121) $ $) NIL)) (-1683 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1667 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1733 (($ $ |#1|) NIL (|has| |#1| (-359)))) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) NIL)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) NIL) (($ $ (-403 (-560))) NIL (|has| |#1| (-43 (-403 (-560))))) (($ (-403 (-560)) $) NIL (|has| |#1| (-43 (-403 (-560))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-945 |#1|) (-13 (-942 |#1| (-526 (-1153)) (-1153)) (-10 -8 (IF (|has| |#1| (-43 (-403 (-560)))) (-15 -2376 ($ $ (-1153))) |noBranch|))) (-1039)) (T -945)) -((-2376 (*1 *1 *1 *2) (-12 (-5 *2 (-1153)) (-5 *1 (-945 *3)) (-4 *3 (-43 (-403 (-560)))) (-4 *3 (-1039))))) -(-13 (-942 |#1| (-526 (-1153)) (-1153)) (-10 -8 (IF (|has| |#1| (-43 (-403 (-560)))) (-15 -2376 ($ $ (-1153))) |noBranch|))) -((-2114 (((-2 (|:| -4034 (-755)) (|:| -2169 |#5|) (|:| |radicand| |#5|)) |#3| (-755)) 37)) (-3676 (((-2 (|:| -4034 (-755)) (|:| -2169 |#5|) (|:| |radicand| |#5|)) (-403 (-560)) (-755)) 33)) (-3921 (((-2 (|:| -4034 (-755)) (|:| -2169 |#4|) (|:| |radicand| (-626 |#4|))) |#4| (-755)) 52)) (-3769 (((-2 (|:| -4034 (-755)) (|:| -2169 |#5|) (|:| |radicand| |#5|)) |#5| (-755)) 62 (|has| |#3| (-447))))) -(((-946 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2114 ((-2 (|:| -4034 (-755)) (|:| -2169 |#5|) (|:| |radicand| |#5|)) |#3| (-755))) (-15 -3676 ((-2 (|:| -4034 (-755)) (|:| -2169 |#5|) (|:| |radicand| |#5|)) (-403 (-560)) (-755))) (IF (|has| |#3| (-447)) (-15 -3769 ((-2 (|:| -4034 (-755)) (|:| -2169 |#5|) (|:| |radicand| |#5|)) |#5| (-755))) |noBranch|) (-15 -3921 ((-2 (|:| -4034 (-755)) (|:| -2169 |#4|) (|:| |radicand| (-626 |#4|))) |#4| (-755)))) (-780) (-834) (-550) (-942 |#3| |#1| |#2|) (-13 (-359) (-10 -8 (-15 -2132 (|#4| $)) (-15 -2139 (|#4| $)) (-15 -2801 ($ |#4|))))) (T -946)) -((-3921 (*1 *2 *3 *4) (-12 (-4 *5 (-780)) (-4 *6 (-834)) (-4 *7 (-550)) (-4 *3 (-942 *7 *5 *6)) (-5 *2 (-2 (|:| -4034 (-755)) (|:| -2169 *3) (|:| |radicand| (-626 *3)))) (-5 *1 (-946 *5 *6 *7 *3 *8)) (-5 *4 (-755)) (-4 *8 (-13 (-359) (-10 -8 (-15 -2132 (*3 $)) (-15 -2139 (*3 $)) (-15 -2801 ($ *3))))))) (-3769 (*1 *2 *3 *4) (-12 (-4 *7 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *7 (-550)) (-4 *8 (-942 *7 *5 *6)) (-5 *2 (-2 (|:| -4034 (-755)) (|:| -2169 *3) (|:| |radicand| *3))) (-5 *1 (-946 *5 *6 *7 *8 *3)) (-5 *4 (-755)) (-4 *3 (-13 (-359) (-10 -8 (-15 -2132 (*8 $)) (-15 -2139 (*8 $)) (-15 -2801 ($ *8))))))) (-3676 (*1 *2 *3 *4) (-12 (-5 *3 (-403 (-560))) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *7 (-550)) (-4 *8 (-942 *7 *5 *6)) (-5 *2 (-2 (|:| -4034 (-755)) (|:| -2169 *9) (|:| |radicand| *9))) (-5 *1 (-946 *5 *6 *7 *8 *9)) (-5 *4 (-755)) (-4 *9 (-13 (-359) (-10 -8 (-15 -2132 (*8 $)) (-15 -2139 (*8 $)) (-15 -2801 ($ *8))))))) (-2114 (*1 *2 *3 *4) (-12 (-4 *5 (-780)) (-4 *6 (-834)) (-4 *3 (-550)) (-4 *7 (-942 *3 *5 *6)) (-5 *2 (-2 (|:| -4034 (-755)) (|:| -2169 *8) (|:| |radicand| *8))) (-5 *1 (-946 *5 *6 *3 *7 *8)) (-5 *4 (-755)) (-4 *8 (-13 (-359) (-10 -8 (-15 -2132 (*7 $)) (-15 -2139 (*7 $)) (-15 -2801 ($ *7)))))))) -(-10 -7 (-15 -2114 ((-2 (|:| -4034 (-755)) (|:| -2169 |#5|) (|:| |radicand| |#5|)) |#3| (-755))) (-15 -3676 ((-2 (|:| -4034 (-755)) (|:| -2169 |#5|) (|:| |radicand| |#5|)) (-403 (-560)) (-755))) (IF (|has| |#3| (-447)) (-15 -3769 ((-2 (|:| -4034 (-755)) (|:| -2169 |#5|) (|:| |radicand| |#5|)) |#5| (-755))) |noBranch|) (-15 -3921 ((-2 (|:| -4034 (-755)) (|:| -2169 |#4|) (|:| |radicand| (-626 |#4|))) |#4| (-755)))) -((-3867 (((-1076 (-213)) $) 7)) (-3092 (((-1076 (-213)) $) 8)) (-3277 (((-626 (-626 (-936 (-213)))) $) 9)) (-2801 (((-842) $) 6))) -(((-947) (-1267)) (T -947)) -((-3277 (*1 *2 *1) (-12 (-4 *1 (-947)) (-5 *2 (-626 (-626 (-936 (-213))))))) (-3092 (*1 *2 *1) (-12 (-4 *1 (-947)) (-5 *2 (-1076 (-213))))) (-3867 (*1 *2 *1) (-12 (-4 *1 (-947)) (-5 *2 (-1076 (-213)))))) -(-13 (-600 (-842)) (-10 -8 (-15 -3277 ((-626 (-626 (-936 (-213)))) $)) (-15 -3092 ((-1076 (-213)) $)) (-15 -3867 ((-1076 (-213)) $)))) -(((-600 (-842)) . T)) -((-2930 (((-3 (-671 |#1|) "failed") |#2| (-909)) 14))) -(((-948 |#1| |#2|) (-10 -7 (-15 -2930 ((-3 (-671 |#1|) "failed") |#2| (-909)))) (-550) (-638 |#1|)) (T -948)) -((-2930 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-909)) (-4 *5 (-550)) (-5 *2 (-671 *5)) (-5 *1 (-948 *5 *3)) (-4 *3 (-638 *5))))) -(-10 -7 (-15 -2930 ((-3 (-671 |#1|) "failed") |#2| (-909)))) -((-3469 (((-950 |#2|) (-1 |#2| |#1| |#2|) (-950 |#1|) |#2|) 16)) (-2342 ((|#2| (-1 |#2| |#1| |#2|) (-950 |#1|) |#2|) 18)) (-2803 (((-950 |#2|) (-1 |#2| |#1|) (-950 |#1|)) 13))) -(((-949 |#1| |#2|) (-10 -7 (-15 -3469 ((-950 |#2|) (-1 |#2| |#1| |#2|) (-950 |#1|) |#2|)) (-15 -2342 (|#2| (-1 |#2| |#1| |#2|) (-950 |#1|) |#2|)) (-15 -2803 ((-950 |#2|) (-1 |#2| |#1|) (-950 |#1|)))) (-1187) (-1187)) (T -949)) -((-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-950 *5)) (-4 *5 (-1187)) (-4 *6 (-1187)) (-5 *2 (-950 *6)) (-5 *1 (-949 *5 *6)))) (-2342 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-950 *5)) (-4 *5 (-1187)) (-4 *2 (-1187)) (-5 *1 (-949 *5 *2)))) (-3469 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-950 *6)) (-4 *6 (-1187)) (-4 *5 (-1187)) (-5 *2 (-950 *5)) (-5 *1 (-949 *6 *5))))) -(-10 -7 (-15 -3469 ((-950 |#2|) (-1 |#2| |#1| |#2|) (-950 |#1|) |#2|)) (-15 -2342 (|#2| (-1 |#2| |#1| |#2|) (-950 |#1|) |#2|)) (-15 -2803 ((-950 |#2|) (-1 |#2| |#1|) (-950 |#1|)))) -((-2601 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-2960 (((-1241) $ (-560) (-560)) NIL (|has| $ (-6 -4506)))) (-3189 (((-121) (-1 (-121) |#1| |#1|) $) NIL) (((-121) $) NIL (|has| |#1| (-834)))) (-4410 (($ (-1 (-121) |#1| |#1|) $) NIL (|has| $ (-6 -4506))) (($ $) NIL (-12 (|has| $ (-6 -4506)) (|has| |#1| (-834))))) (-3743 (($ (-1 (-121) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-834)))) (-3909 (((-121) $ (-755)) NIL)) (-2764 ((|#1| $ (-560) |#1|) 17 (|has| $ (-6 -4506))) ((|#1| $ (-1202 (-560)) |#1|) NIL (|has| $ (-6 -4506)))) (-3802 (($ (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-4236 (($) NIL T CONST)) (-4030 (($ $) NIL (|has| $ (-6 -4506)))) (-2883 (($ $) NIL)) (-2868 (($ $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-4310 (($ |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082)))) (($ (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-2342 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4505))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4505)))) (-1746 ((|#1| $ (-560) |#1|) 16 (|has| $ (-6 -4506)))) (-1361 ((|#1| $ (-560)) 14)) (-2839 (((-560) (-1 (-121) |#1|) $) NIL) (((-560) |#1| $) NIL (|has| |#1| (-1082))) (((-560) |#1| $ (-560)) NIL (|has| |#1| (-1082)))) (-1981 (((-626 |#1|) $) NIL (|has| $ (-6 -4505)))) (-1721 (($ (-755) |#1|) 13)) (-2122 (((-121) $ (-755)) NIL)) (-4099 (((-560) $) 10 (|has| (-560) (-834)))) (-4325 (($ $ $) NIL (|has| |#1| (-834)))) (-2492 (($ (-1 (-121) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-834)))) (-2130 (((-626 |#1|) $) NIL (|has| $ (-6 -4505)))) (-2030 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-2767 (((-560) $) NIL (|has| (-560) (-834)))) (-2501 (($ $ $) NIL (|has| |#1| (-834)))) (-3778 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3441 (((-121) $ (-755)) NIL)) (-1291 (((-1135) $) NIL (|has| |#1| (-1082)))) (-4103 (($ |#1| $ (-560)) NIL) (($ $ $ (-560)) NIL)) (-1529 (((-626 (-560)) $) NIL)) (-1310 (((-121) (-560) $) NIL)) (-4353 (((-1100) $) NIL (|has| |#1| (-1082)))) (-2824 ((|#1| $) NIL (|has| (-560) (-834)))) (-3786 (((-3 |#1| "failed") (-1 (-121) |#1|) $) NIL)) (-3038 (($ $ |#1|) 12 (|has| $ (-6 -4506)))) (-2865 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#1|))) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-283 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-626 |#1|) (-626 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))))) (-2214 (((-121) $ $) NIL)) (-1290 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-4460 (((-626 |#1|) $) NIL)) (-4191 (((-121) $) NIL)) (-3260 (($) 11)) (-2778 ((|#1| $ (-560) |#1|) NIL) ((|#1| $ (-560)) 15) (($ $ (-1202 (-560))) NIL)) (-2949 (($ $ (-560)) NIL) (($ $ (-1202 (-560))) NIL)) (-4035 (((-755) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505))) (((-755) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-4072 (($ $ $ (-560)) NIL (|has| $ (-6 -4506)))) (-2813 (($ $) NIL)) (-4255 (((-533) $) NIL (|has| |#1| (-601 (-533))))) (-4162 (($ (-626 |#1|)) NIL)) (-2849 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-626 $)) NIL)) (-2801 (((-842) $) NIL (|has| |#1| (-1082)))) (-3656 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-1691 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1675 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1653 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-1683 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1667 (((-121) $ $) NIL (|has| |#1| (-834)))) (-2271 (((-755) $) 8 (|has| $ (-6 -4505))))) -(((-950 |#1|) (-19 |#1|) (-1187)) (T -950)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-105) . T) ((-120 |#1| |#1|) . T) ((-137) . T) ((-608 (-850)) . T) ((-637 |#1|) . T) ((-1053 |#1|) . T) ((-1090) . T)) +((-2447 (((-121) $ $) NIL)) (-1870 (($ |#1|) 17) (($ $ |#1|) 20)) (-3646 (($ |#1|) 18) (($ $ |#1|) 21)) (-2671 (($) NIL T CONST)) (-2925 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-2735 (((-121) $) NIL)) (-3264 (($ |#1| |#1| |#1| |#1|) 8)) (-4487 (((-1143) $) NIL)) (-2081 (($ $) 16)) (-4022 (((-1108) $) NIL)) (-1339 ((|#1| $ |#1|) 24) (((-828 |#1|) $ (-828 |#1|)) 32)) (-1458 (($ $ $) NIL)) (-2353 (($ $ $) NIL)) (-2745 (((-850) $) 39)) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL)) (-1556 (($) 9 T CONST)) (-1717 (((-121) $ $) 44)) (-1779 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL)) (* (($ $ $) 14))) +(((-708 |#1|) (-13 (-478) (-10 -8 (-15 -3264 ($ |#1| |#1| |#1| |#1|)) (-15 -1870 ($ |#1|)) (-15 -3646 ($ |#1|)) (-15 -2925 ($)) (-15 -1870 ($ $ |#1|)) (-15 -3646 ($ $ |#1|)) (-15 -2925 ($ $)) (-15 -1339 (|#1| $ |#1|)) (-15 -1339 ((-828 |#1|) $ (-828 |#1|))))) (-365)) (T -708)) +((-3264 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-708 *2)) (-4 *2 (-365)))) (-1870 (*1 *1 *2) (-12 (-5 *1 (-708 *2)) (-4 *2 (-365)))) (-3646 (*1 *1 *2) (-12 (-5 *1 (-708 *2)) (-4 *2 (-365)))) (-2925 (*1 *1) (-12 (-5 *1 (-708 *2)) (-4 *2 (-365)))) (-1870 (*1 *1 *1 *2) (-12 (-5 *1 (-708 *2)) (-4 *2 (-365)))) (-3646 (*1 *1 *1 *2) (-12 (-5 *1 (-708 *2)) (-4 *2 (-365)))) (-2925 (*1 *1 *1) (-12 (-5 *1 (-708 *2)) (-4 *2 (-365)))) (-1339 (*1 *2 *1 *2) (-12 (-5 *1 (-708 *2)) (-4 *2 (-365)))) (-1339 (*1 *2 *1 *2) (-12 (-5 *2 (-828 *3)) (-4 *3 (-365)) (-5 *1 (-708 *3))))) +(-13 (-478) (-10 -8 (-15 -3264 ($ |#1| |#1| |#1| |#1|)) (-15 -1870 ($ |#1|)) (-15 -3646 ($ |#1|)) (-15 -2925 ($)) (-15 -1870 ($ $ |#1|)) (-15 -3646 ($ $ |#1|)) (-15 -2925 ($ $)) (-15 -1339 (|#1| $ |#1|)) (-15 -1339 ((-828 |#1|) $ (-828 |#1|))))) +((-3551 (($ $ (-917)) 12)) (-4222 (($ $ (-917)) 13)) (** (($ $ (-917)) 10))) +(((-709 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-917))) (-15 -4222 (|#1| |#1| (-917))) (-15 -3551 (|#1| |#1| (-917)))) (-710)) (T -709)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-917))) (-15 -4222 (|#1| |#1| (-917))) (-15 -3551 (|#1| |#1| (-917)))) +((-2447 (((-121) $ $) 7)) (-3551 (($ $ (-917)) 14)) (-4222 (($ $ (-917)) 13)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-2745 (((-850) $) 11)) (-1717 (((-121) $ $) 6)) (** (($ $ (-917)) 12)) (* (($ $ $) 15))) +(((-710) (-1275)) (T -710)) +((* (*1 *1 *1 *1) (-4 *1 (-710))) (-3551 (*1 *1 *1 *2) (-12 (-4 *1 (-710)) (-5 *2 (-917)))) (-4222 (*1 *1 *1 *2) (-12 (-4 *1 (-710)) (-5 *2 (-917)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-710)) (-5 *2 (-917))))) +(-13 (-1090) (-10 -8 (-15 * ($ $ $)) (-15 -3551 ($ $ (-917))) (-15 -4222 ($ $ (-917))) (-15 ** ($ $ (-917))))) +(((-105) . T) ((-608 (-850)) . T) ((-1090) . T)) +((-3551 (($ $ (-917)) NIL) (($ $ (-763)) 17)) (-2735 (((-121) $) 10)) (-4222 (($ $ (-917)) NIL) (($ $ (-763)) 18)) (** (($ $ (-917)) NIL) (($ $ (-763)) 15))) +(((-711 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-763))) (-15 -4222 (|#1| |#1| (-763))) (-15 -3551 (|#1| |#1| (-763))) (-15 -2735 ((-121) |#1|)) (-15 ** (|#1| |#1| (-917))) (-15 -4222 (|#1| |#1| (-917))) (-15 -3551 (|#1| |#1| (-917)))) (-712)) (T -711)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-763))) (-15 -4222 (|#1| |#1| (-763))) (-15 -3551 (|#1| |#1| (-763))) (-15 -2735 ((-121) |#1|)) (-15 ** (|#1| |#1| (-917))) (-15 -4222 (|#1| |#1| (-917))) (-15 -3551 (|#1| |#1| (-917)))) +((-2447 (((-121) $ $) 7)) (-3550 (((-3 $ "failed") $) 16)) (-3551 (($ $ (-917)) 14) (($ $ (-763)) 21)) (-2925 (((-3 $ "failed") $) 18)) (-2735 (((-121) $) 22)) (-3243 (((-3 $ "failed") $) 17)) (-4222 (($ $ (-917)) 13) (($ $ (-763)) 20)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-2745 (((-850) $) 11)) (-1556 (($) 23 T CONST)) (-1717 (((-121) $ $) 6)) (** (($ $ (-917)) 12) (($ $ (-763)) 19)) (* (($ $ $) 15))) +(((-712) (-1275)) (T -712)) +((-1556 (*1 *1) (-4 *1 (-712))) (-2735 (*1 *2 *1) (-12 (-4 *1 (-712)) (-5 *2 (-121)))) (-3551 (*1 *1 *1 *2) (-12 (-4 *1 (-712)) (-5 *2 (-763)))) (-4222 (*1 *1 *1 *2) (-12 (-4 *1 (-712)) (-5 *2 (-763)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-712)) (-5 *2 (-763)))) (-2925 (*1 *1 *1) (|partial| -4 *1 (-712))) (-3243 (*1 *1 *1) (|partial| -4 *1 (-712))) (-3550 (*1 *1 *1) (|partial| -4 *1 (-712)))) +(-13 (-710) (-10 -8 (-15 (-1556) ($) -3495) (-15 -2735 ((-121) $)) (-15 -3551 ($ $ (-763))) (-15 -4222 ($ $ (-763))) (-15 ** ($ $ (-763))) (-15 -2925 ((-3 $ "failed") $)) (-15 -3243 ((-3 $ "failed") $)) (-15 -3550 ((-3 $ "failed") $)))) +(((-105) . T) ((-608 (-850)) . T) ((-710) . T) ((-1090) . T)) +((-3983 (((-763)) 35)) (-3666 (((-3 (-568) "failed") $) NIL) (((-3 (-409 (-568)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-2854 (((-568) $) NIL) (((-409 (-568)) $) NIL) ((|#2| $) 22)) (-3092 (($ |#3|) NIL) (((-3 $ "failed") (-409 |#3|)) 45)) (-2925 (((-3 $ "failed") $) 65)) (-1731 (($) 39)) (-2657 ((|#2| $) 20)) (-2704 (($) 17)) (-4189 (($ $ (-1 |#2| |#2|) (-763)) NIL) (($ $ (-1 |#2| |#2|)) 53) (($ $ (-634 (-1161)) (-634 (-763))) NIL) (($ $ (-1161) (-763)) NIL) (($ $ (-634 (-1161))) NIL) (($ $ (-1161)) NIL) (($ $ (-763)) NIL) (($ $) NIL)) (-4387 (((-679 |#2|) (-1244 $) (-1 |#2| |#2|)) 60)) (-4278 (((-1244 |#2|) $) NIL) (($ (-1244 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-2678 ((|#3| $) 32)) (-3746 (((-1244 $)) 29))) +(((-713 |#1| |#2| |#3|) (-10 -8 (-15 -4189 (|#1| |#1|)) (-15 -4189 (|#1| |#1| (-763))) (-15 -4189 (|#1| |#1| (-1161))) (-15 -4189 (|#1| |#1| (-634 (-1161)))) (-15 -4189 (|#1| |#1| (-1161) (-763))) (-15 -4189 (|#1| |#1| (-634 (-1161)) (-634 (-763)))) (-15 -1731 (|#1|)) (-15 -3983 ((-763))) (-15 -4189 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4189 (|#1| |#1| (-1 |#2| |#2|) (-763))) (-15 -4387 ((-679 |#2|) (-1244 |#1|) (-1 |#2| |#2|))) (-15 -3092 ((-3 |#1| "failed") (-409 |#3|))) (-15 -4278 (|#1| |#3|)) (-15 -3092 (|#1| |#3|)) (-15 -2704 (|#1|)) (-15 -2854 (|#2| |#1|)) (-15 -3666 ((-3 |#2| "failed") |#1|)) (-15 -3666 ((-3 (-409 (-568)) "failed") |#1|)) (-15 -2854 ((-409 (-568)) |#1|)) (-15 -3666 ((-3 (-568) "failed") |#1|)) (-15 -2854 ((-568) |#1|)) (-15 -4278 (|#3| |#1|)) (-15 -4278 (|#1| (-1244 |#2|))) (-15 -4278 ((-1244 |#2|) |#1|)) (-15 -3746 ((-1244 |#1|))) (-15 -2678 (|#3| |#1|)) (-15 -2657 (|#2| |#1|)) (-15 -2925 ((-3 |#1| "failed") |#1|))) (-714 |#2| |#3|) (-172) (-1219 |#2|)) (T -713)) +((-3983 (*1 *2) (-12 (-4 *4 (-172)) (-4 *5 (-1219 *4)) (-5 *2 (-763)) (-5 *1 (-713 *3 *4 *5)) (-4 *3 (-714 *4 *5))))) +(-10 -8 (-15 -4189 (|#1| |#1|)) (-15 -4189 (|#1| |#1| (-763))) (-15 -4189 (|#1| |#1| (-1161))) (-15 -4189 (|#1| |#1| (-634 (-1161)))) (-15 -4189 (|#1| |#1| (-1161) (-763))) (-15 -4189 (|#1| |#1| (-634 (-1161)) (-634 (-763)))) (-15 -1731 (|#1|)) (-15 -3983 ((-763))) (-15 -4189 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4189 (|#1| |#1| (-1 |#2| |#2|) (-763))) (-15 -4387 ((-679 |#2|) (-1244 |#1|) (-1 |#2| |#2|))) (-15 -3092 ((-3 |#1| "failed") (-409 |#3|))) (-15 -4278 (|#1| |#3|)) (-15 -3092 (|#1| |#3|)) (-15 -2704 (|#1|)) (-15 -2854 (|#2| |#1|)) (-15 -3666 ((-3 |#2| "failed") |#1|)) (-15 -3666 ((-3 (-409 (-568)) "failed") |#1|)) (-15 -2854 ((-409 (-568)) |#1|)) (-15 -3666 ((-3 (-568) "failed") |#1|)) (-15 -2854 ((-568) |#1|)) (-15 -4278 (|#3| |#1|)) (-15 -4278 (|#1| (-1244 |#2|))) (-15 -4278 ((-1244 |#2|) |#1|)) (-15 -3746 ((-1244 |#1|))) (-15 -2678 (|#3| |#1|)) (-15 -2657 (|#2| |#1|)) (-15 -2925 ((-3 |#1| "failed") |#1|))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) 87 (|has| |#1| (-365)))) (-2227 (($ $) 88 (|has| |#1| (-365)))) (-1573 (((-121) $) 90 (|has| |#1| (-365)))) (-4255 (((-679 |#1|) (-1244 $)) 44) (((-679 |#1|)) 55)) (-1932 ((|#1| $) 50)) (-3211 (((-1169 (-917) (-763)) (-568)) 141 (|has| |#1| (-350)))) (-3134 (((-3 $ "failed") $ $) 18)) (-4305 (($ $) 107 (|has| |#1| (-365)))) (-1678 (((-420 $) $) 108 (|has| |#1| (-365)))) (-1497 (((-121) $ $) 98 (|has| |#1| (-365)))) (-3983 (((-763)) 81 (|has| |#1| (-370)))) (-2671 (($) 16 T CONST)) (-3666 (((-3 (-568) "failed") $) 163 (|has| |#1| (-1037 (-568)))) (((-3 (-409 (-568)) "failed") $) 161 (|has| |#1| (-1037 (-409 (-568))))) (((-3 |#1| "failed") $) 160)) (-2854 (((-568) $) 164 (|has| |#1| (-1037 (-568)))) (((-409 (-568)) $) 162 (|has| |#1| (-1037 (-409 (-568))))) ((|#1| $) 159)) (-3498 (($ (-1244 |#1|) (-1244 $)) 46) (($ (-1244 |#1|)) 58)) (-2022 (((-3 "prime" "polynomial" "normal" "cyclic")) 147 (|has| |#1| (-350)))) (-2401 (($ $ $) 102 (|has| |#1| (-365)))) (-1709 (((-679 |#1|) $ (-1244 $)) 51) (((-679 |#1|) $) 53)) (-3164 (((-679 (-568)) (-679 $)) 158 (|has| |#1| (-630 (-568)))) (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) 157 (|has| |#1| (-630 (-568)))) (((-2 (|:| -2928 (-679 |#1|)) (|:| |vec| (-1244 |#1|))) (-679 $) (-1244 $)) 156) (((-679 |#1|) (-679 $)) 155)) (-3092 (($ |#2|) 152) (((-3 $ "failed") (-409 |#2|)) 149 (|has| |#1| (-365)))) (-2925 (((-3 $ "failed") $) 33)) (-3700 (((-917)) 52)) (-1731 (($) 84 (|has| |#1| (-370)))) (-2412 (($ $ $) 101 (|has| |#1| (-365)))) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) 96 (|has| |#1| (-365)))) (-4220 (($) 143 (|has| |#1| (-350)))) (-4456 (((-121) $) 144 (|has| |#1| (-350)))) (-3218 (($ $ (-763)) 135 (|has| |#1| (-350))) (($ $) 134 (|has| |#1| (-350)))) (-3927 (((-121) $) 109 (|has| |#1| (-365)))) (-4477 (((-917) $) 146 (|has| |#1| (-350))) (((-828 (-917)) $) 132 (|has| |#1| (-350)))) (-2735 (((-121) $) 30)) (-2657 ((|#1| $) 49)) (-3038 (((-3 $ "failed") $) 136 (|has| |#1| (-350)))) (-3562 (((-3 (-634 $) "failed") (-634 $) $) 105 (|has| |#1| (-365)))) (-2045 ((|#2| $) 42 (|has| |#1| (-365)))) (-3683 (((-917) $) 83 (|has| |#1| (-370)))) (-3085 ((|#2| $) 150)) (-2495 (($ (-634 $)) 94 (|has| |#1| (-365))) (($ $ $) 93 (|has| |#1| (-365)))) (-4487 (((-1143) $) 9)) (-2081 (($ $) 110 (|has| |#1| (-365)))) (-4434 (($) 137 (|has| |#1| (-350)) CONST)) (-4355 (($ (-917)) 82 (|has| |#1| (-370)))) (-4022 (((-1108) $) 10)) (-2704 (($) 154)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) 95 (|has| |#1| (-365)))) (-2721 (($ (-634 $)) 92 (|has| |#1| (-365))) (($ $ $) 91 (|has| |#1| (-365)))) (-1418 (((-634 (-2 (|:| -3848 (-568)) (|:| -3438 (-568))))) 140 (|has| |#1| (-350)))) (-3848 (((-420 $) $) 106 (|has| |#1| (-365)))) (-4497 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 104 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) 103 (|has| |#1| (-365)))) (-2595 (((-3 $ "failed") $ $) 86 (|has| |#1| (-365)))) (-2344 (((-3 (-634 $) "failed") (-634 $) $) 97 (|has| |#1| (-365)))) (-2709 (((-763) $) 99 (|has| |#1| (-365)))) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) 100 (|has| |#1| (-365)))) (-2217 ((|#1| (-1244 $)) 45) ((|#1|) 54)) (-3143 (((-763) $) 145 (|has| |#1| (-350))) (((-3 (-763) "failed") $ $) 133 (|has| |#1| (-350)))) (-4189 (($ $) 131 (-2198 (-2139 (|has| |#1| (-225)) (|has| |#1| (-365))) (|has| |#1| (-350)))) (($ $ (-763)) 129 (-2198 (-2139 (|has| |#1| (-225)) (|has| |#1| (-365))) (|has| |#1| (-350)))) (($ $ (-1161)) 127 (-2139 (|has| |#1| (-895 (-1161))) (|has| |#1| (-365)))) (($ $ (-634 (-1161))) 126 (-2139 (|has| |#1| (-895 (-1161))) (|has| |#1| (-365)))) (($ $ (-1161) (-763)) 125 (-2139 (|has| |#1| (-895 (-1161))) (|has| |#1| (-365)))) (($ $ (-634 (-1161)) (-634 (-763))) 124 (-2139 (|has| |#1| (-895 (-1161))) (|has| |#1| (-365)))) (($ $ (-1 |#1| |#1|) (-763)) 117 (|has| |#1| (-365))) (($ $ (-1 |#1| |#1|)) 116 (|has| |#1| (-365)))) (-4387 (((-679 |#1|) (-1244 $) (-1 |#1| |#1|)) 148 (|has| |#1| (-365)))) (-1626 ((|#2|) 153)) (-3065 (($) 142 (|has| |#1| (-350)))) (-4073 (((-1244 |#1|) $ (-1244 $)) 48) (((-679 |#1|) (-1244 $) (-1244 $)) 47) (((-1244 |#1|) $) 60) (((-679 |#1|) (-1244 $)) 59)) (-4278 (((-1244 |#1|) $) 57) (($ (-1244 |#1|)) 56) ((|#2| $) 165) (($ |#2|) 151)) (-2979 (((-3 (-1244 $) "failed") (-679 $)) 139 (|has| |#1| (-350)))) (-2745 (((-850) $) 11) (($ (-568)) 27) (($ |#1|) 36) (($ $) 85 (|has| |#1| (-365))) (($ (-409 (-568))) 80 (-2198 (|has| |#1| (-365)) (|has| |#1| (-1037 (-409 (-568))))))) (-4371 (($ $) 138 (|has| |#1| (-350))) (((-3 $ "failed") $) 41 (|has| |#1| (-148)))) (-2678 ((|#2| $) 43)) (-4078 (((-763)) 28)) (-3746 (((-1244 $)) 61)) (-1826 (((-121) $ $) 89 (|has| |#1| (-365)))) (-1887 (($ $ (-917)) 25) (($ $ (-763)) 32) (($ $ (-568)) 111 (|has| |#1| (-365)))) (-3056 (($) 17 T CONST)) (-1556 (($) 29 T CONST)) (-3190 (($ $) 130 (-2198 (-2139 (|has| |#1| (-225)) (|has| |#1| (-365))) (|has| |#1| (-350)))) (($ $ (-763)) 128 (-2198 (-2139 (|has| |#1| (-225)) (|has| |#1| (-365))) (|has| |#1| (-350)))) (($ $ (-1161)) 123 (-2139 (|has| |#1| (-895 (-1161))) (|has| |#1| (-365)))) (($ $ (-634 (-1161))) 122 (-2139 (|has| |#1| (-895 (-1161))) (|has| |#1| (-365)))) (($ $ (-1161) (-763)) 121 (-2139 (|has| |#1| (-895 (-1161))) (|has| |#1| (-365)))) (($ $ (-634 (-1161)) (-634 (-763))) 120 (-2139 (|has| |#1| (-895 (-1161))) (|has| |#1| (-365)))) (($ $ (-1 |#1| |#1|) (-763)) 119 (|has| |#1| (-365))) (($ $ (-1 |#1| |#1|)) 118 (|has| |#1| (-365)))) (-1717 (((-121) $ $) 6)) (-1779 (($ $ $) 115 (|has| |#1| (-365)))) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 24) (($ $ (-763)) 31) (($ $ (-568)) 112 (|has| |#1| (-365)))) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 23) (($ $ |#1|) 38) (($ |#1| $) 37) (($ (-409 (-568)) $) 114 (|has| |#1| (-365))) (($ $ (-409 (-568))) 113 (|has| |#1| (-365))))) +(((-714 |#1| |#2|) (-1275) (-172) (-1219 |t#1|)) (T -714)) +((-2704 (*1 *1) (-12 (-4 *2 (-172)) (-4 *1 (-714 *2 *3)) (-4 *3 (-1219 *2)))) (-1626 (*1 *2) (-12 (-4 *1 (-714 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1219 *3)))) (-3092 (*1 *1 *2) (-12 (-4 *3 (-172)) (-4 *1 (-714 *3 *2)) (-4 *2 (-1219 *3)))) (-4278 (*1 *1 *2) (-12 (-4 *3 (-172)) (-4 *1 (-714 *3 *2)) (-4 *2 (-1219 *3)))) (-3085 (*1 *2 *1) (-12 (-4 *1 (-714 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1219 *3)))) (-3092 (*1 *1 *2) (|partial| -12 (-5 *2 (-409 *4)) (-4 *4 (-1219 *3)) (-4 *3 (-365)) (-4 *3 (-172)) (-4 *1 (-714 *3 *4)))) (-4387 (*1 *2 *3 *4) (-12 (-5 *3 (-1244 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-365)) (-4 *1 (-714 *5 *6)) (-4 *5 (-172)) (-4 *6 (-1219 *5)) (-5 *2 (-679 *5))))) +(-13 (-411 |t#1| |t#2|) (-172) (-609 |t#2|) (-413 |t#1|) (-379 |t#1|) (-10 -8 (-15 -2704 ($)) (-15 -1626 (|t#2|)) (-15 -3092 ($ |t#2|)) (-15 -4278 ($ |t#2|)) (-15 -3085 (|t#2| $)) (IF (|has| |t#1| (-370)) (-6 (-370)) |noBranch|) (IF (|has| |t#1| (-365)) (PROGN (-6 (-365)) (-6 (-223 |t#1|)) (-15 -3092 ((-3 $ "failed") (-409 |t#2|))) (-15 -4387 ((-679 |t#1|) (-1244 $) (-1 |t#1| |t#1|)))) |noBranch|) (IF (|has| |t#1| (-350)) (-6 (-350)) |noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-43 (-409 (-568))) -2198 (|has| |#1| (-350)) (|has| |#1| (-365))) ((-43 |#1|) . T) ((-43 $) -2198 (|has| |#1| (-350)) (|has| |#1| (-365))) ((-105) . T) ((-120 (-409 (-568)) (-409 (-568))) -2198 (|has| |#1| (-350)) (|has| |#1| (-365))) ((-120 |#1| |#1|) . T) ((-120 $ $) . T) ((-137) . T) ((-148) -2198 (|has| |#1| (-350)) (|has| |#1| (-148))) ((-150) |has| |#1| (-150)) ((-608 (-850)) . T) ((-172) . T) ((-609 |#2|) . T) ((-223 |#1|) |has| |#1| (-365)) ((-225) -2198 (|has| |#1| (-350)) (-12 (|has| |#1| (-225)) (|has| |#1| (-365)))) ((-238) -2198 (|has| |#1| (-350)) (|has| |#1| (-365))) ((-285) -2198 (|has| |#1| (-350)) (|has| |#1| (-365))) ((-301) -2198 (|has| |#1| (-350)) (|has| |#1| (-365))) ((-365) -2198 (|has| |#1| (-350)) (|has| |#1| (-365))) ((-404) |has| |#1| (-350)) ((-370) -2198 (|has| |#1| (-370)) (|has| |#1| (-350))) ((-350) |has| |#1| (-350)) ((-372 |#1| |#2|) . T) ((-411 |#1| |#2|) . T) ((-379 |#1|) . T) ((-413 |#1|) . T) ((-453) -2198 (|has| |#1| (-350)) (|has| |#1| (-365))) ((-558) -2198 (|has| |#1| (-350)) (|has| |#1| (-365))) ((-637 (-409 (-568))) -2198 (|has| |#1| (-350)) (|has| |#1| (-365))) ((-637 |#1|) . T) ((-637 $) . T) ((-630 (-568)) |has| |#1| (-630 (-568))) ((-630 |#1|) . T) ((-707 (-409 (-568))) -2198 (|has| |#1| (-350)) (|has| |#1| (-365))) ((-707 |#1|) . T) ((-707 $) -2198 (|has| |#1| (-350)) (|has| |#1| (-365))) ((-716) . T) ((-895 (-1161)) -12 (|has| |#1| (-365)) (|has| |#1| (-895 (-1161)))) ((-916) -2198 (|has| |#1| (-350)) (|has| |#1| (-365))) ((-1037 (-409 (-568))) |has| |#1| (-1037 (-409 (-568)))) ((-1037 (-568)) |has| |#1| (-1037 (-568))) ((-1037 |#1|) . T) ((-1053 (-409 (-568))) -2198 (|has| |#1| (-350)) (|has| |#1| (-365))) ((-1053 |#1|) . T) ((-1053 $) . T) ((-1047) . T) ((-1054) . T) ((-1102) . T) ((-1090) . T) ((-1136) |has| |#1| (-350)) ((-1199) -2198 (|has| |#1| (-350)) (|has| |#1| (-365)))) +((-2671 (($) 14)) (-2925 (((-3 $ "failed") $) 16)) (-2735 (((-121) $) 13)) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) 9)) (** (($ $ (-917)) NIL) (($ $ (-763)) 20))) +(((-715 |#1|) (-10 -8 (-15 -2925 ((-3 |#1| "failed") |#1|)) (-15 -1887 (|#1| |#1| (-763))) (-15 ** (|#1| |#1| (-763))) (-15 -2735 ((-121) |#1|)) (-15 -2671 (|#1|)) (-15 -1887 (|#1| |#1| (-917))) (-15 ** (|#1| |#1| (-917)))) (-716)) (T -715)) +NIL +(-10 -8 (-15 -2925 ((-3 |#1| "failed") |#1|)) (-15 -1887 (|#1| |#1| (-763))) (-15 ** (|#1| |#1| (-763))) (-15 -2735 ((-121) |#1|)) (-15 -2671 (|#1|)) (-15 -1887 (|#1| |#1| (-917))) (-15 ** (|#1| |#1| (-917)))) +((-2447 (((-121) $ $) 7)) (-2671 (($) 19 T CONST)) (-2925 (((-3 $ "failed") $) 15)) (-2735 (((-121) $) 18)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-2745 (((-850) $) 11)) (-1887 (($ $ (-917)) 12) (($ $ (-763)) 16)) (-1556 (($) 20 T CONST)) (-1717 (((-121) $ $) 6)) (** (($ $ (-917)) 13) (($ $ (-763)) 17)) (* (($ $ $) 14))) +(((-716) (-1275)) (T -716)) +((-1556 (*1 *1) (-4 *1 (-716))) (-2671 (*1 *1) (-4 *1 (-716))) (-2735 (*1 *2 *1) (-12 (-4 *1 (-716)) (-5 *2 (-121)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-716)) (-5 *2 (-763)))) (-1887 (*1 *1 *1 *2) (-12 (-4 *1 (-716)) (-5 *2 (-763)))) (-2925 (*1 *1 *1) (|partial| -4 *1 (-716)))) +(-13 (-1102) (-10 -8 (-15 (-1556) ($) -3495) (-15 -2671 ($) -3495) (-15 -2735 ((-121) $)) (-15 ** ($ $ (-763))) (-15 -1887 ($ $ (-763))) (-15 -2925 ((-3 $ "failed") $)))) +(((-105) . T) ((-608 (-850)) . T) ((-1102) . T) ((-1090) . T)) +((-2311 (((-2 (|:| -2242 (-420 |#2|)) (|:| |special| (-420 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-3969 (((-2 (|:| -2242 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-2191 ((|#2| (-409 |#2|) (-1 |#2| |#2|)) 13)) (-2847 (((-2 (|:| |poly| |#2|) (|:| -2242 (-409 |#2|)) (|:| |special| (-409 |#2|))) (-409 |#2|) (-1 |#2| |#2|)) 47))) +(((-717 |#1| |#2|) (-10 -7 (-15 -3969 ((-2 (|:| -2242 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2311 ((-2 (|:| -2242 (-420 |#2|)) (|:| |special| (-420 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2191 (|#2| (-409 |#2|) (-1 |#2| |#2|))) (-15 -2847 ((-2 (|:| |poly| |#2|) (|:| -2242 (-409 |#2|)) (|:| |special| (-409 |#2|))) (-409 |#2|) (-1 |#2| |#2|)))) (-365) (-1219 |#1|)) (T -717)) +((-2847 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1219 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |poly| *6) (|:| -2242 (-409 *6)) (|:| |special| (-409 *6)))) (-5 *1 (-717 *5 *6)) (-5 *3 (-409 *6)))) (-2191 (*1 *2 *3 *4) (-12 (-5 *3 (-409 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1219 *5)) (-5 *1 (-717 *5 *2)) (-4 *5 (-365)))) (-2311 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1219 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| -2242 (-420 *3)) (|:| |special| (-420 *3)))) (-5 *1 (-717 *5 *3)))) (-3969 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1219 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| -2242 *3) (|:| |special| *3))) (-5 *1 (-717 *5 *3))))) +(-10 -7 (-15 -3969 ((-2 (|:| -2242 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2311 ((-2 (|:| -2242 (-420 |#2|)) (|:| |special| (-420 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2191 (|#2| (-409 |#2|) (-1 |#2| |#2|))) (-15 -2847 ((-2 (|:| |poly| |#2|) (|:| -2242 (-409 |#2|)) (|:| |special| (-409 |#2|))) (-409 |#2|) (-1 |#2| |#2|)))) +((-4183 ((|#7| (-634 |#5|) |#6|) NIL)) (-2795 ((|#7| (-1 |#5| |#4|) |#6|) 26))) +(((-718 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -2795 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -4183 (|#7| (-634 |#5|) |#6|))) (-842) (-788) (-788) (-1047) (-1047) (-950 |#4| |#2| |#1|) (-950 |#5| |#3| |#1|)) (T -718)) +((-4183 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *9)) (-4 *9 (-1047)) (-4 *5 (-842)) (-4 *6 (-788)) (-4 *8 (-1047)) (-4 *2 (-950 *9 *7 *5)) (-5 *1 (-718 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-788)) (-4 *4 (-950 *8 *6 *5)))) (-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1047)) (-4 *9 (-1047)) (-4 *5 (-842)) (-4 *6 (-788)) (-4 *2 (-950 *9 *7 *5)) (-5 *1 (-718 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-788)) (-4 *4 (-950 *8 *6 *5))))) +(-10 -7 (-15 -2795 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -4183 (|#7| (-634 |#5|) |#6|))) +((-2795 ((|#7| (-1 |#2| |#1|) |#6|) 28))) +(((-719 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -2795 (|#7| (-1 |#2| |#1|) |#6|))) (-842) (-842) (-788) (-788) (-1047) (-950 |#5| |#3| |#1|) (-950 |#5| |#4| |#2|)) (T -719)) +((-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-842)) (-4 *6 (-842)) (-4 *7 (-788)) (-4 *9 (-1047)) (-4 *2 (-950 *9 *8 *6)) (-5 *1 (-719 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-788)) (-4 *4 (-950 *9 *7 *5))))) +(-10 -7 (-15 -2795 (|#7| (-1 |#2| |#1|) |#6|))) +((-3848 (((-420 |#4|) |#4|) 39))) +(((-720 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3848 ((-420 |#4|) |#4|))) (-788) (-13 (-842) (-10 -8 (-15 -4278 ((-1161) $)) (-15 -1305 ((-3 $ "failed") (-1161))))) (-301) (-950 (-953 |#3|) |#1| |#2|)) (T -720)) +((-3848 (*1 *2 *3) (-12 (-4 *4 (-788)) (-4 *5 (-13 (-842) (-10 -8 (-15 -4278 ((-1161) $)) (-15 -1305 ((-3 $ "failed") (-1161)))))) (-4 *6 (-301)) (-5 *2 (-420 *3)) (-5 *1 (-720 *4 *5 *6 *3)) (-4 *3 (-950 (-953 *6) *4 *5))))) +(-10 -7 (-15 -3848 ((-420 |#4|) |#4|))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-2055 (((-634 (-852 |#1|)) $) NIL)) (-3839 (((-1157 $) $ (-852 |#1|)) NIL) (((-1157 |#2|) $) NIL)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL (|has| |#2| (-558)))) (-2227 (($ $) NIL (|has| |#2| (-558)))) (-1573 (((-121) $) NIL (|has| |#2| (-558)))) (-2773 (((-763) $) NIL) (((-763) $ (-634 (-852 |#1|))) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-1750 (((-420 (-1157 $)) (-1157 $)) NIL (|has| |#2| (-904)))) (-4305 (($ $) NIL (|has| |#2| (-453)))) (-1678 (((-420 $) $) NIL (|has| |#2| (-453)))) (-1858 (((-3 (-634 (-1157 $)) "failed") (-634 (-1157 $)) (-1157 $)) NIL (|has| |#2| (-904)))) (-2671 (($) NIL T CONST)) (-3666 (((-3 |#2| "failed") $) NIL) (((-3 (-409 (-568)) "failed") $) NIL (|has| |#2| (-1037 (-409 (-568))))) (((-3 (-568) "failed") $) NIL (|has| |#2| (-1037 (-568)))) (((-3 (-852 |#1|) "failed") $) NIL)) (-2854 ((|#2| $) NIL) (((-409 (-568)) $) NIL (|has| |#2| (-1037 (-409 (-568))))) (((-568) $) NIL (|has| |#2| (-1037 (-568)))) (((-852 |#1|) $) NIL)) (-4265 (($ $ $ (-852 |#1|)) NIL (|has| |#2| (-172)))) (-2114 (($ $) NIL)) (-3164 (((-679 (-568)) (-679 $)) NIL (|has| |#2| (-630 (-568)))) (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) NIL (|has| |#2| (-630 (-568)))) (((-2 (|:| -2928 (-679 |#2|)) (|:| |vec| (-1244 |#2|))) (-679 $) (-1244 $)) NIL) (((-679 |#2|) (-679 $)) NIL)) (-2925 (((-3 $ "failed") $) NIL)) (-3250 (($ $) NIL (|has| |#2| (-453))) (($ $ (-852 |#1|)) NIL (|has| |#2| (-453)))) (-2108 (((-634 $) $) NIL)) (-3927 (((-121) $) NIL (|has| |#2| (-904)))) (-3088 (($ $ |#2| (-534 (-852 |#1|)) $) NIL)) (-4410 (((-884 (-381) $) $ (-887 (-381)) (-884 (-381) $)) NIL (-12 (|has| (-852 |#1|) (-881 (-381))) (|has| |#2| (-881 (-381))))) (((-884 (-568) $) $ (-887 (-568)) (-884 (-568) $)) NIL (-12 (|has| (-852 |#1|) (-881 (-568))) (|has| |#2| (-881 (-568)))))) (-2735 (((-121) $) NIL)) (-4178 (((-763) $) NIL)) (-2051 (($ (-1157 |#2|) (-852 |#1|)) NIL) (($ (-1157 $) (-852 |#1|)) NIL)) (-2976 (((-634 $) $) NIL)) (-3921 (((-121) $) NIL)) (-2047 (($ |#2| (-534 (-852 |#1|))) NIL) (($ $ (-852 |#1|) (-763)) NIL) (($ $ (-634 (-852 |#1|)) (-634 (-763))) NIL)) (-3379 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $ (-852 |#1|)) NIL)) (-2144 (((-534 (-852 |#1|)) $) NIL) (((-763) $ (-852 |#1|)) NIL) (((-634 (-763)) $ (-634 (-852 |#1|))) NIL)) (-2521 (($ $ $) NIL (|has| |#2| (-842)))) (-3268 (($ $ $) NIL (|has| |#2| (-842)))) (-3842 (($ (-1 (-534 (-852 |#1|)) (-534 (-852 |#1|))) $) NIL)) (-2795 (($ (-1 |#2| |#2|) $) NIL)) (-2244 (((-3 (-852 |#1|) "failed") $) NIL)) (-2097 (($ $) NIL)) (-2102 ((|#2| $) NIL)) (-2495 (($ (-634 $)) NIL (|has| |#2| (-453))) (($ $ $) NIL (|has| |#2| (-453)))) (-4487 (((-1143) $) NIL)) (-3324 (((-3 (-634 $) "failed") $) NIL)) (-1794 (((-3 (-634 $) "failed") $) NIL)) (-3751 (((-3 (-2 (|:| |var| (-852 |#1|)) (|:| -3438 (-763))) "failed") $) NIL)) (-4022 (((-1108) $) NIL)) (-2086 (((-121) $) NIL)) (-2091 ((|#2| $) NIL)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL (|has| |#2| (-453)))) (-2721 (($ (-634 $)) NIL (|has| |#2| (-453))) (($ $ $) NIL (|has| |#2| (-453)))) (-2905 (((-420 (-1157 $)) (-1157 $)) NIL (|has| |#2| (-904)))) (-3545 (((-420 (-1157 $)) (-1157 $)) NIL (|has| |#2| (-904)))) (-3848 (((-420 $) $) NIL (|has| |#2| (-904)))) (-2595 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-558))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-558)))) (-1339 (($ $ (-634 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-634 $) (-634 $)) NIL) (($ $ (-852 |#1|) |#2|) NIL) (($ $ (-634 (-852 |#1|)) (-634 |#2|)) NIL) (($ $ (-852 |#1|) $) NIL) (($ $ (-634 (-852 |#1|)) (-634 $)) NIL)) (-2217 (($ $ (-852 |#1|)) NIL (|has| |#2| (-172)))) (-4189 (($ $ (-852 |#1|)) NIL) (($ $ (-634 (-852 |#1|))) NIL) (($ $ (-852 |#1|) (-763)) NIL) (($ $ (-634 (-852 |#1|)) (-634 (-763))) NIL)) (-3206 (((-534 (-852 |#1|)) $) NIL) (((-763) $ (-852 |#1|)) NIL) (((-634 (-763)) $ (-634 (-852 |#1|))) NIL)) (-4278 (((-887 (-381)) $) NIL (-12 (|has| (-852 |#1|) (-609 (-887 (-381)))) (|has| |#2| (-609 (-887 (-381)))))) (((-887 (-568)) $) NIL (-12 (|has| (-852 |#1|) (-609 (-887 (-568)))) (|has| |#2| (-609 (-887 (-568)))))) (((-541) $) NIL (-12 (|has| (-852 |#1|) (-609 (-541))) (|has| |#2| (-609 (-541)))))) (-3367 ((|#2| $) NIL (|has| |#2| (-453))) (($ $ (-852 |#1|)) NIL (|has| |#2| (-453)))) (-2979 (((-3 (-1244 $) "failed") (-679 $)) NIL (-12 (|has| $ (-148)) (|has| |#2| (-904))))) (-2745 (((-850) $) NIL) (($ (-568)) NIL) (($ |#2|) NIL) (($ (-852 |#1|)) NIL) (($ $) NIL (|has| |#2| (-558))) (($ (-409 (-568))) NIL (-2198 (|has| |#2| (-43 (-409 (-568)))) (|has| |#2| (-1037 (-409 (-568))))))) (-1302 (((-634 |#2|) $) NIL)) (-2604 ((|#2| $ (-534 (-852 |#1|))) NIL) (($ $ (-852 |#1|) (-763)) NIL) (($ $ (-634 (-852 |#1|)) (-634 (-763))) NIL)) (-4371 (((-3 $ "failed") $) NIL (-2198 (-12 (|has| $ (-148)) (|has| |#2| (-904))) (|has| |#2| (-148))))) (-4078 (((-763)) NIL)) (-4171 (($ $ $ (-763)) NIL (|has| |#2| (-172)))) (-1826 (((-121) $ $) NIL (|has| |#2| (-558)))) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (-3056 (($) NIL T CONST)) (-1556 (($) NIL T CONST)) (-3190 (($ $ (-852 |#1|)) NIL) (($ $ (-634 (-852 |#1|))) NIL) (($ $ (-852 |#1|) (-763)) NIL) (($ $ (-634 (-852 |#1|)) (-634 (-763))) NIL)) (-1751 (((-121) $ $) NIL (|has| |#2| (-842)))) (-1738 (((-121) $ $) NIL (|has| |#2| (-842)))) (-1717 (((-121) $ $) NIL)) (-1745 (((-121) $ $) NIL (|has| |#2| (-842)))) (-1732 (((-121) $ $) NIL (|has| |#2| (-842)))) (-1779 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) NIL) (($ $ (-409 (-568))) NIL (|has| |#2| (-43 (-409 (-568))))) (($ (-409 (-568)) $) NIL (|has| |#2| (-43 (-409 (-568))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-721 |#1| |#2|) (-950 |#2| (-534 (-852 |#1|)) (-852 |#1|)) (-634 (-1161)) (-1047)) (T -721)) +NIL +(-950 |#2| (-534 (-852 |#1|)) (-852 |#1|)) +((-2448 (((-2 (|:| -1462 (-953 |#3|)) (|:| -3582 (-953 |#3|))) |#4|) 13)) (-2917 ((|#4| |#4| |#2|) 30)) (-1388 ((|#4| (-409 (-953 |#3|)) |#2|) 63)) (-2038 ((|#4| (-1157 (-953 |#3|)) |#2|) 76)) (-2291 ((|#4| (-1157 |#4|) |#2|) 49)) (-3352 ((|#4| |#4| |#2|) 52)) (-3848 (((-420 |#4|) |#4|) 38))) +(((-722 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2448 ((-2 (|:| -1462 (-953 |#3|)) (|:| -3582 (-953 |#3|))) |#4|)) (-15 -3352 (|#4| |#4| |#2|)) (-15 -2291 (|#4| (-1157 |#4|) |#2|)) (-15 -2917 (|#4| |#4| |#2|)) (-15 -2038 (|#4| (-1157 (-953 |#3|)) |#2|)) (-15 -1388 (|#4| (-409 (-953 |#3|)) |#2|)) (-15 -3848 ((-420 |#4|) |#4|))) (-788) (-13 (-842) (-10 -8 (-15 -4278 ((-1161) $)))) (-558) (-950 (-409 (-953 |#3|)) |#1| |#2|)) (T -722)) +((-3848 (*1 *2 *3) (-12 (-4 *4 (-788)) (-4 *5 (-13 (-842) (-10 -8 (-15 -4278 ((-1161) $))))) (-4 *6 (-558)) (-5 *2 (-420 *3)) (-5 *1 (-722 *4 *5 *6 *3)) (-4 *3 (-950 (-409 (-953 *6)) *4 *5)))) (-1388 (*1 *2 *3 *4) (-12 (-4 *6 (-558)) (-4 *2 (-950 *3 *5 *4)) (-5 *1 (-722 *5 *4 *6 *2)) (-5 *3 (-409 (-953 *6))) (-4 *5 (-788)) (-4 *4 (-13 (-842) (-10 -8 (-15 -4278 ((-1161) $))))))) (-2038 (*1 *2 *3 *4) (-12 (-5 *3 (-1157 (-953 *6))) (-4 *6 (-558)) (-4 *2 (-950 (-409 (-953 *6)) *5 *4)) (-5 *1 (-722 *5 *4 *6 *2)) (-4 *5 (-788)) (-4 *4 (-13 (-842) (-10 -8 (-15 -4278 ((-1161) $))))))) (-2917 (*1 *2 *2 *3) (-12 (-4 *4 (-788)) (-4 *3 (-13 (-842) (-10 -8 (-15 -4278 ((-1161) $))))) (-4 *5 (-558)) (-5 *1 (-722 *4 *3 *5 *2)) (-4 *2 (-950 (-409 (-953 *5)) *4 *3)))) (-2291 (*1 *2 *3 *4) (-12 (-5 *3 (-1157 *2)) (-4 *2 (-950 (-409 (-953 *6)) *5 *4)) (-5 *1 (-722 *5 *4 *6 *2)) (-4 *5 (-788)) (-4 *4 (-13 (-842) (-10 -8 (-15 -4278 ((-1161) $))))) (-4 *6 (-558)))) (-3352 (*1 *2 *2 *3) (-12 (-4 *4 (-788)) (-4 *3 (-13 (-842) (-10 -8 (-15 -4278 ((-1161) $))))) (-4 *5 (-558)) (-5 *1 (-722 *4 *3 *5 *2)) (-4 *2 (-950 (-409 (-953 *5)) *4 *3)))) (-2448 (*1 *2 *3) (-12 (-4 *4 (-788)) (-4 *5 (-13 (-842) (-10 -8 (-15 -4278 ((-1161) $))))) (-4 *6 (-558)) (-5 *2 (-2 (|:| -1462 (-953 *6)) (|:| -3582 (-953 *6)))) (-5 *1 (-722 *4 *5 *6 *3)) (-4 *3 (-950 (-409 (-953 *6)) *4 *5))))) +(-10 -7 (-15 -2448 ((-2 (|:| -1462 (-953 |#3|)) (|:| -3582 (-953 |#3|))) |#4|)) (-15 -3352 (|#4| |#4| |#2|)) (-15 -2291 (|#4| (-1157 |#4|) |#2|)) (-15 -2917 (|#4| |#4| |#2|)) (-15 -2038 (|#4| (-1157 (-953 |#3|)) |#2|)) (-15 -1388 (|#4| (-409 (-953 |#3|)) |#2|)) (-15 -3848 ((-420 |#4|) |#4|))) +((-3848 (((-420 |#4|) |#4|) 51))) +(((-723 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3848 ((-420 |#4|) |#4|))) (-788) (-842) (-13 (-301) (-150)) (-950 (-409 |#3|) |#1| |#2|)) (T -723)) +((-3848 (*1 *2 *3) (-12 (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-13 (-301) (-150))) (-5 *2 (-420 *3)) (-5 *1 (-723 *4 *5 *6 *3)) (-4 *3 (-950 (-409 *6) *4 *5))))) +(-10 -7 (-15 -3848 ((-420 |#4|) |#4|))) +((-2795 (((-725 |#2| |#3|) (-1 |#2| |#1|) (-725 |#1| |#3|)) 18))) +(((-724 |#1| |#2| |#3|) (-10 -7 (-15 -2795 ((-725 |#2| |#3|) (-1 |#2| |#1|) (-725 |#1| |#3|)))) (-1047) (-1047) (-716)) (T -724)) +((-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-725 *5 *7)) (-4 *5 (-1047)) (-4 *6 (-1047)) (-4 *7 (-716)) (-5 *2 (-725 *6 *7)) (-5 *1 (-724 *5 *6 *7))))) +(-10 -7 (-15 -2795 ((-725 |#2| |#3|) (-1 |#2| |#1|) (-725 |#1| |#3|)))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) 26)) (-2583 (((-634 (-2 (|:| -2348 |#1|) (|:| -2354 |#2|))) $) 27)) (-3134 (((-3 $ "failed") $ $) NIL)) (-3983 (((-763)) 20 (-12 (|has| |#2| (-370)) (|has| |#1| (-370))))) (-2671 (($) NIL T CONST)) (-3666 (((-3 |#2| "failed") $) 55) (((-3 |#1| "failed") $) 58)) (-2854 ((|#2| $) NIL) ((|#1| $) NIL)) (-2114 (($ $) 75 (|has| |#2| (-842)))) (-2925 (((-3 $ "failed") $) 62)) (-1731 (($) 33 (-12 (|has| |#2| (-370)) (|has| |#1| (-370))))) (-2735 (((-121) $) NIL)) (-4178 (((-763) $) 53)) (-2976 (((-634 $) $) 37)) (-3921 (((-121) $) NIL)) (-2047 (($ |#1| |#2|) 16)) (-2795 (($ (-1 |#1| |#1|) $) 52)) (-3683 (((-917) $) 30 (-12 (|has| |#2| (-370)) (|has| |#1| (-370))))) (-2097 ((|#2| $) 74 (|has| |#2| (-842)))) (-2102 ((|#1| $) 73 (|has| |#2| (-842)))) (-4487 (((-1143) $) NIL)) (-4355 (($ (-917)) 25 (-12 (|has| |#2| (-370)) (|has| |#1| (-370))))) (-4022 (((-1108) $) NIL)) (-2745 (((-850) $) 72) (($ (-568)) 44) (($ |#2|) 40) (($ |#1|) 41) (($ (-634 (-2 (|:| -2348 |#1|) (|:| -2354 |#2|)))) 11)) (-1302 (((-634 |#1|) $) 39)) (-2604 ((|#1| $ |#2|) 83)) (-4371 (((-3 $ "failed") $) NIL (|has| |#1| (-148)))) (-4078 (((-763)) NIL)) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (-3056 (($) 12 T CONST)) (-1556 (($) 31 T CONST)) (-1717 (((-121) $ $) 76)) (-1773 (($ $) 46) (($ $ $) NIL)) (-1767 (($ $ $) 24)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) 50) (($ $ $) 85) (($ |#1| $) 48 (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))))) +(((-725 |#1| |#2|) (-13 (-1047) (-1037 |#2|) (-1037 |#1|) (-10 -8 (-15 -2047 ($ |#1| |#2|)) (-15 -2604 (|#1| $ |#2|)) (-15 -2745 ($ (-634 (-2 (|:| -2348 |#1|) (|:| -2354 |#2|))))) (-15 -2583 ((-634 (-2 (|:| -2348 |#1|) (|:| -2354 |#2|))) $)) (-15 -2795 ($ (-1 |#1| |#1|) $)) (-15 -3921 ((-121) $)) (-15 -1302 ((-634 |#1|) $)) (-15 -2976 ((-634 $) $)) (-15 -4178 ((-763) $)) (IF (|has| |#1| (-150)) (-6 (-150)) |noBranch|) (IF (|has| |#1| (-148)) (-6 (-148)) |noBranch|) (IF (|has| |#1| (-172)) (-6 (-43 |#1|)) |noBranch|) (IF (|has| |#1| (-370)) (IF (|has| |#2| (-370)) (-6 (-370)) |noBranch|) |noBranch|) (IF (|has| |#2| (-842)) (PROGN (-15 -2097 (|#2| $)) (-15 -2102 (|#1| $)) (-15 -2114 ($ $))) |noBranch|))) (-1047) (-716)) (T -725)) +((-2047 (*1 *1 *2 *3) (-12 (-5 *1 (-725 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-716)))) (-2604 (*1 *2 *1 *3) (-12 (-4 *2 (-1047)) (-5 *1 (-725 *2 *3)) (-4 *3 (-716)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-634 (-2 (|:| -2348 *3) (|:| -2354 *4)))) (-4 *3 (-1047)) (-4 *4 (-716)) (-5 *1 (-725 *3 *4)))) (-2583 (*1 *2 *1) (-12 (-5 *2 (-634 (-2 (|:| -2348 *3) (|:| -2354 *4)))) (-5 *1 (-725 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-716)))) (-2795 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1047)) (-5 *1 (-725 *3 *4)) (-4 *4 (-716)))) (-3921 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-725 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-716)))) (-1302 (*1 *2 *1) (-12 (-5 *2 (-634 *3)) (-5 *1 (-725 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-716)))) (-2976 (*1 *2 *1) (-12 (-5 *2 (-634 (-725 *3 *4))) (-5 *1 (-725 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-716)))) (-4178 (*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-725 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-716)))) (-2097 (*1 *2 *1) (-12 (-4 *2 (-716)) (-4 *2 (-842)) (-5 *1 (-725 *3 *2)) (-4 *3 (-1047)))) (-2102 (*1 *2 *1) (-12 (-4 *2 (-1047)) (-5 *1 (-725 *2 *3)) (-4 *3 (-842)) (-4 *3 (-716)))) (-2114 (*1 *1 *1) (-12 (-5 *1 (-725 *2 *3)) (-4 *3 (-842)) (-4 *2 (-1047)) (-4 *3 (-716))))) +(-13 (-1047) (-1037 |#2|) (-1037 |#1|) (-10 -8 (-15 -2047 ($ |#1| |#2|)) (-15 -2604 (|#1| $ |#2|)) (-15 -2745 ($ (-634 (-2 (|:| -2348 |#1|) (|:| -2354 |#2|))))) (-15 -2583 ((-634 (-2 (|:| -2348 |#1|) (|:| -2354 |#2|))) $)) (-15 -2795 ($ (-1 |#1| |#1|) $)) (-15 -3921 ((-121) $)) (-15 -1302 ((-634 |#1|) $)) (-15 -2976 ((-634 $) $)) (-15 -4178 ((-763) $)) (IF (|has| |#1| (-150)) (-6 (-150)) |noBranch|) (IF (|has| |#1| (-148)) (-6 (-148)) |noBranch|) (IF (|has| |#1| (-172)) (-6 (-43 |#1|)) |noBranch|) (IF (|has| |#1| (-370)) (IF (|has| |#2| (-370)) (-6 (-370)) |noBranch|) |noBranch|) (IF (|has| |#2| (-842)) (PROGN (-15 -2097 (|#2| $)) (-15 -2102 (|#1| $)) (-15 -2114 ($ $))) |noBranch|))) +((-2447 (((-121) $ $) 18)) (-1791 (($ |#1| $) 72) (($ $ |#1|) 71) (($ $ $) 70)) (-1536 (($ $ $) 68)) (-2032 (((-121) $ $) 69)) (-2510 (((-121) $ (-763)) 8)) (-2749 (($ (-634 |#1|)) 64) (($) 63)) (-3507 (($ (-1 (-121) |#1|) $) 42 (|has| $ (-6 -4519)))) (-2801 (($ (-1 (-121) |#1|) $) 52 (|has| $ (-6 -4519)))) (-2671 (($) 7 T CONST)) (-3369 (($ $) 58)) (-3924 (($ $) 55 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-3405 (($ |#1| $) 44 (|has| $ (-6 -4519))) (($ (-1 (-121) |#1|) $) 43 (|has| $ (-6 -4519)))) (-4328 (($ |#1| $) 54 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519)))) (($ (-1 (-121) |#1|) $) 51 (|has| $ (-6 -4519)))) (-3092 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 53 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 50 (|has| $ (-6 -4519))) ((|#1| (-1 |#1| |#1| |#1|) $) 49 (|has| $ (-6 -4519)))) (-4360 (((-634 |#1|) $) 30 (|has| $ (-6 -4519)))) (-1737 (((-121) $ (-763)) 9)) (-1979 (((-634 |#1|) $) 29 (|has| $ (-6 -4519)))) (-3109 (((-121) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-3674 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#1| |#1|) $) 35)) (-2166 (((-121) $ (-763)) 10)) (-4487 (((-1143) $) 22)) (-3212 (($ $ $) 65)) (-1890 ((|#1| $) 36)) (-4450 (($ |#1| $) 37) (($ |#1| $ (-763)) 59)) (-4022 (((-1108) $) 21)) (-3775 (((-3 |#1| "failed") (-1 (-121) |#1|) $) 48)) (-1315 ((|#1| $) 38)) (-1387 (((-121) (-1 (-121) |#1|) $) 32 (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-634 |#1|) (-634 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))))) (-3171 (((-121) $ $) 14)) (-3084 (((-121) $) 11)) (-3248 (($) 12)) (-1799 (((-634 (-2 (|:| -4083 |#1|) (|:| -4168 (-763)))) $) 57)) (-4382 (($ $ |#1|) 67) (($ $ $) 66)) (-2085 (($) 46) (($ (-634 |#1|)) 45)) (-4168 (((-763) (-1 (-121) |#1|) $) 31 (|has| $ (-6 -4519))) (((-763) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-3863 (($ $) 13)) (-4278 (((-541) $) 56 (|has| |#1| (-609 (-541))))) (-4287 (($ (-634 |#1|)) 47)) (-2745 (((-850) $) 20)) (-3844 (($ (-634 |#1|)) 62) (($) 61)) (-2367 (($ (-634 |#1|)) 39)) (-1319 (((-121) (-1 (-121) |#1|) $) 33 (|has| $ (-6 -4519)))) (-1717 (((-121) $ $) 19)) (-1732 (((-121) $ $) 60)) (-1697 (((-763) $) 6 (|has| $ (-6 -4519))))) +(((-726 |#1|) (-1275) (-1090)) (T -726)) +NIL +(-13 (-684 |t#1|) (-1087 |t#1|)) +(((-39) . T) ((-111 |#1|) . T) ((-105) . T) ((-608 (-850)) . T) ((-154 |#1|) . T) ((-609 (-541)) |has| |#1| (-609 (-541))) ((-227 |#1|) . T) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))) ((-499 |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))) ((-684 |#1|) . T) ((-1087 |#1|) . T) ((-1090) . T) ((-1195) . T)) +((-2447 (((-121) $ $) NIL)) (-1791 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 77)) (-1536 (($ $ $) 80)) (-2032 (((-121) $ $) 83)) (-2510 (((-121) $ (-763)) NIL)) (-2749 (($ (-634 |#1|)) 24) (($) 15)) (-3507 (($ (-1 (-121) |#1|) $) 71 (|has| $ (-6 -4519)))) (-2801 (($ (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-2671 (($) NIL T CONST)) (-3369 (($ $) 72)) (-3924 (($ $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-3405 (($ |#1| $) 61 (|has| $ (-6 -4519))) (($ (-1 (-121) |#1|) $) 64 (|has| $ (-6 -4519))) (($ |#1| $ (-568)) 62) (($ (-1 (-121) |#1|) $ (-568)) 65)) (-4328 (($ |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090)))) (($ (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519))) (($ |#1| $ (-568)) 67) (($ (-1 (-121) |#1|) $ (-568)) 68)) (-3092 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4519))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4519)))) (-4360 (((-634 |#1|) $) 32 (|has| $ (-6 -4519)))) (-2419 (($) 13) (($ |#1|) 26) (($ (-634 |#1|)) 21)) (-1737 (((-121) $ (-763)) NIL)) (-1979 (((-634 |#1|) $) 38)) (-3109 (((-121) |#1| $) 57 (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-3674 (($ (-1 |#1| |#1|) $) 75 (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#1| |#1|) $) 76)) (-2166 (((-121) $ (-763)) NIL)) (-4487 (((-1143) $) NIL)) (-3212 (($ $ $) 78)) (-1890 ((|#1| $) 54)) (-4450 (($ |#1| $) 55) (($ |#1| $ (-763)) 73)) (-4022 (((-1108) $) NIL)) (-3775 (((-3 |#1| "failed") (-1 (-121) |#1|) $) NIL)) (-1315 ((|#1| $) 53)) (-1387 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-634 |#1|) (-634 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))))) (-3171 (((-121) $ $) NIL)) (-3084 (((-121) $) 49)) (-3248 (($) 12)) (-1799 (((-634 (-2 (|:| -4083 |#1|) (|:| -4168 (-763)))) $) 47)) (-4382 (($ $ |#1|) NIL) (($ $ $) 79)) (-2085 (($) 14) (($ (-634 |#1|)) 23)) (-4168 (((-763) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519))) (((-763) |#1| $) 60 (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-3863 (($ $) 66)) (-4278 (((-541) $) 36 (|has| |#1| (-609 (-541))))) (-4287 (($ (-634 |#1|)) 20)) (-2745 (((-850) $) 44)) (-3844 (($ (-634 |#1|)) 25) (($) 16)) (-2367 (($ (-634 |#1|)) 22)) (-1319 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-1717 (((-121) $ $) 81)) (-1732 (((-121) $ $) 82)) (-1697 (((-763) $) 59 (|has| $ (-6 -4519))))) +(((-727 |#1|) (-13 (-726 |#1|) (-10 -8 (-6 -4519) (-6 -4520) (-15 -2419 ($)) (-15 -2419 ($ |#1|)) (-15 -2419 ($ (-634 |#1|))) (-15 -1979 ((-634 |#1|) $)) (-15 -4328 ($ |#1| $ (-568))) (-15 -4328 ($ (-1 (-121) |#1|) $ (-568))) (-15 -3405 ($ |#1| $ (-568))) (-15 -3405 ($ (-1 (-121) |#1|) $ (-568))))) (-1090)) (T -727)) +((-2419 (*1 *1) (-12 (-5 *1 (-727 *2)) (-4 *2 (-1090)))) (-2419 (*1 *1 *2) (-12 (-5 *1 (-727 *2)) (-4 *2 (-1090)))) (-2419 (*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-1090)) (-5 *1 (-727 *3)))) (-1979 (*1 *2 *1) (-12 (-5 *2 (-634 *3)) (-5 *1 (-727 *3)) (-4 *3 (-1090)))) (-4328 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-568)) (-5 *1 (-727 *2)) (-4 *2 (-1090)))) (-4328 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-121) *4)) (-5 *3 (-568)) (-4 *4 (-1090)) (-5 *1 (-727 *4)))) (-3405 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-568)) (-5 *1 (-727 *2)) (-4 *2 (-1090)))) (-3405 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-121) *4)) (-5 *3 (-568)) (-4 *4 (-1090)) (-5 *1 (-727 *4))))) +(-13 (-726 |#1|) (-10 -8 (-6 -4519) (-6 -4520) (-15 -2419 ($)) (-15 -2419 ($ |#1|)) (-15 -2419 ($ (-634 |#1|))) (-15 -1979 ((-634 |#1|) $)) (-15 -4328 ($ |#1| $ (-568))) (-15 -4328 ($ (-1 (-121) |#1|) $ (-568))) (-15 -3405 ($ |#1| $ (-568))) (-15 -3405 ($ (-1 (-121) |#1|) $ (-568))))) +((-3229 (((-1249) (-1143)) 8))) +(((-728) (-10 -7 (-15 -3229 ((-1249) (-1143))))) (T -728)) +((-3229 (*1 *2 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-1249)) (-5 *1 (-728))))) +(-10 -7 (-15 -3229 ((-1249) (-1143)))) +((-2914 (((-634 |#1|) (-634 |#1|) (-634 |#1|)) 10))) +(((-729 |#1|) (-10 -7 (-15 -2914 ((-634 |#1|) (-634 |#1|) (-634 |#1|)))) (-842)) (T -729)) +((-2914 (*1 *2 *2 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-842)) (-5 *1 (-729 *3))))) +(-10 -7 (-15 -2914 ((-634 |#1|) (-634 |#1|) (-634 |#1|)))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-2055 (((-634 |#2|) $) 134)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) 127 (|has| |#1| (-558)))) (-2227 (($ $) 126 (|has| |#1| (-558)))) (-1573 (((-121) $) 124 (|has| |#1| (-558)))) (-1982 (($ $) 83 (|has| |#1| (-43 (-409 (-568)))))) (-1933 (($ $) 66 (|has| |#1| (-43 (-409 (-568)))))) (-3134 (((-3 $ "failed") $ $) 18)) (-1902 (($ $) 65 (|has| |#1| (-43 (-409 (-568)))))) (-1974 (($ $) 82 (|has| |#1| (-43 (-409 (-568)))))) (-2786 (($ $) 67 (|has| |#1| (-43 (-409 (-568)))))) (-1990 (($ $) 81 (|has| |#1| (-43 (-409 (-568)))))) (-1941 (($ $) 68 (|has| |#1| (-43 (-409 (-568)))))) (-2671 (($) 16 T CONST)) (-2114 (($ $) 118)) (-2925 (((-3 $ "failed") $) 33)) (-1367 (((-953 |#1|) $ (-763)) 96) (((-953 |#1|) $ (-763) (-763)) 95)) (-3992 (((-121) $) 135)) (-1897 (($) 93 (|has| |#1| (-43 (-409 (-568)))))) (-4477 (((-763) $ |#2|) 98) (((-763) $ |#2| (-763)) 97)) (-2735 (((-121) $) 30)) (-4044 (($ $ (-568)) 64 (|has| |#1| (-43 (-409 (-568)))))) (-3921 (((-121) $) 116)) (-2047 (($ $ (-634 |#2|) (-634 (-534 |#2|))) 133) (($ $ |#2| (-534 |#2|)) 132) (($ |#1| (-534 |#2|)) 117) (($ $ |#2| (-763)) 100) (($ $ (-634 |#2|) (-634 (-763))) 99)) (-2795 (($ (-1 |#1| |#1|) $) 115)) (-4416 (($ $) 90 (|has| |#1| (-43 (-409 (-568)))))) (-2097 (($ $) 113)) (-2102 ((|#1| $) 112)) (-4487 (((-1143) $) 9)) (-3837 (($ $ |#2|) 94 (|has| |#1| (-43 (-409 (-568)))))) (-4022 (((-1108) $) 10)) (-1807 (($ $ (-763)) 101)) (-2595 (((-3 $ "failed") $ $) 128 (|has| |#1| (-558)))) (-1892 (($ $) 91 (|has| |#1| (-43 (-409 (-568)))))) (-1339 (($ $ |#2| $) 109) (($ $ (-634 |#2|) (-634 $)) 108) (($ $ (-634 (-288 $))) 107) (($ $ (-288 $)) 106) (($ $ $ $) 105) (($ $ (-634 $) (-634 $)) 104)) (-4189 (($ $ |#2|) 41) (($ $ (-634 |#2|)) 40) (($ $ |#2| (-763)) 39) (($ $ (-634 |#2|) (-634 (-763))) 38)) (-3206 (((-534 |#2|) $) 114)) (-1994 (($ $) 80 (|has| |#1| (-43 (-409 (-568)))))) (-1945 (($ $) 69 (|has| |#1| (-43 (-409 (-568)))))) (-1986 (($ $) 79 (|has| |#1| (-43 (-409 (-568)))))) (-1937 (($ $) 70 (|has| |#1| (-43 (-409 (-568)))))) (-1978 (($ $) 78 (|has| |#1| (-43 (-409 (-568)))))) (-2790 (($ $) 71 (|has| |#1| (-43 (-409 (-568)))))) (-1811 (($ $) 136)) (-2745 (((-850) $) 11) (($ (-568)) 27) (($ |#1|) 131 (|has| |#1| (-172))) (($ $) 129 (|has| |#1| (-558))) (($ (-409 (-568))) 121 (|has| |#1| (-43 (-409 (-568)))))) (-2604 ((|#1| $ (-534 |#2|)) 119) (($ $ |#2| (-763)) 103) (($ $ (-634 |#2|) (-634 (-763))) 102)) (-4371 (((-3 $ "failed") $) 130 (|has| |#1| (-148)))) (-4078 (((-763)) 28)) (-2006 (($ $) 89 (|has| |#1| (-43 (-409 (-568)))))) (-1958 (($ $) 77 (|has| |#1| (-43 (-409 (-568)))))) (-1826 (((-121) $ $) 125 (|has| |#1| (-558)))) (-1998 (($ $) 88 (|has| |#1| (-43 (-409 (-568)))))) (-1949 (($ $) 76 (|has| |#1| (-43 (-409 (-568)))))) (-2014 (($ $) 87 (|has| |#1| (-43 (-409 (-568)))))) (-1966 (($ $) 75 (|has| |#1| (-43 (-409 (-568)))))) (-4023 (($ $) 86 (|has| |#1| (-43 (-409 (-568)))))) (-1970 (($ $) 74 (|has| |#1| (-43 (-409 (-568)))))) (-2010 (($ $) 85 (|has| |#1| (-43 (-409 (-568)))))) (-1962 (($ $) 73 (|has| |#1| (-43 (-409 (-568)))))) (-2002 (($ $) 84 (|has| |#1| (-43 (-409 (-568)))))) (-1953 (($ $) 72 (|has| |#1| (-43 (-409 (-568)))))) (-1887 (($ $ (-917)) 25) (($ $ (-763)) 32)) (-3056 (($) 17 T CONST)) (-1556 (($) 29 T CONST)) (-3190 (($ $ |#2|) 37) (($ $ (-634 |#2|)) 36) (($ $ |#2| (-763)) 35) (($ $ (-634 |#2|) (-634 (-763))) 34)) (-1717 (((-121) $ $) 6)) (-1779 (($ $ |#1|) 120 (|has| |#1| (-365)))) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 24) (($ $ (-763)) 31) (($ $ $) 92 (|has| |#1| (-43 (-409 (-568))))) (($ $ (-409 (-568))) 63 (|has| |#1| (-43 (-409 (-568)))))) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 23) (($ $ (-409 (-568))) 123 (|has| |#1| (-43 (-409 (-568))))) (($ (-409 (-568)) $) 122 (|has| |#1| (-43 (-409 (-568))))) (($ |#1| $) 111) (($ $ |#1|) 110))) +(((-730 |#1| |#2|) (-1275) (-1047) (-842)) (T -730)) +((-2604 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-763)) (-4 *1 (-730 *4 *2)) (-4 *4 (-1047)) (-4 *2 (-842)))) (-2604 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-634 *5)) (-5 *3 (-634 (-763))) (-4 *1 (-730 *4 *5)) (-4 *4 (-1047)) (-4 *5 (-842)))) (-1807 (*1 *1 *1 *2) (-12 (-5 *2 (-763)) (-4 *1 (-730 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-842)))) (-2047 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-763)) (-4 *1 (-730 *4 *2)) (-4 *4 (-1047)) (-4 *2 (-842)))) (-2047 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-634 *5)) (-5 *3 (-634 (-763))) (-4 *1 (-730 *4 *5)) (-4 *4 (-1047)) (-4 *5 (-842)))) (-4477 (*1 *2 *1 *3) (-12 (-4 *1 (-730 *4 *3)) (-4 *4 (-1047)) (-4 *3 (-842)) (-5 *2 (-763)))) (-4477 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-763)) (-4 *1 (-730 *4 *3)) (-4 *4 (-1047)) (-4 *3 (-842)))) (-1367 (*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-4 *1 (-730 *4 *5)) (-4 *4 (-1047)) (-4 *5 (-842)) (-5 *2 (-953 *4)))) (-1367 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-763)) (-4 *1 (-730 *4 *5)) (-4 *4 (-1047)) (-4 *5 (-842)) (-5 *2 (-953 *4)))) (-3837 (*1 *1 *1 *2) (-12 (-4 *1 (-730 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-842)) (-4 *3 (-43 (-409 (-568))))))) +(-13 (-895 |t#2|) (-974 |t#1| (-534 |t#2|) |t#2|) (-523 |t#2| $) (-303 $) (-10 -8 (-15 -2604 ($ $ |t#2| (-763))) (-15 -2604 ($ $ (-634 |t#2|) (-634 (-763)))) (-15 -1807 ($ $ (-763))) (-15 -2047 ($ $ |t#2| (-763))) (-15 -2047 ($ $ (-634 |t#2|) (-634 (-763)))) (-15 -4477 ((-763) $ |t#2|)) (-15 -4477 ((-763) $ |t#2| (-763))) (-15 -1367 ((-953 |t#1|) $ (-763))) (-15 -1367 ((-953 |t#1|) $ (-763) (-763))) (IF (|has| |t#1| (-43 (-409 (-568)))) (PROGN (-15 -3837 ($ $ |t#2|)) (-6 (-1002)) (-6 (-1181))) |noBranch|))) +(((-21) . T) ((-23) . T) ((-52 |#1| (-534 |#2|)) . T) ((-25) . T) ((-43 (-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((-43 |#1|) |has| |#1| (-172)) ((-43 $) |has| |#1| (-558)) ((-40) |has| |#1| (-43 (-409 (-568)))) ((-98) |has| |#1| (-43 (-409 (-568)))) ((-105) . T) ((-120 (-409 (-568)) (-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((-120 |#1| |#1|) . T) ((-120 $ $) -2198 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-137) . T) ((-148) |has| |#1| (-148)) ((-150) |has| |#1| (-150)) ((-608 (-850)) . T) ((-172) -2198 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-279) |has| |#1| (-43 (-409 (-568)))) ((-285) |has| |#1| (-558)) ((-303 $) . T) ((-502) |has| |#1| (-43 (-409 (-568)))) ((-523 |#2| $) . T) ((-523 $ $) . T) ((-558) |has| |#1| (-558)) ((-637 (-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((-637 |#1|) . T) ((-637 $) . T) ((-707 (-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((-707 |#1|) |has| |#1| (-172)) ((-707 $) |has| |#1| (-558)) ((-716) . T) ((-895 |#2|) . T) ((-974 |#1| (-534 |#2|) |#2|) . T) ((-1002) |has| |#1| (-43 (-409 (-568)))) ((-1053 (-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((-1053 |#1|) . T) ((-1053 $) -2198 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-1047) . T) ((-1054) . T) ((-1102) . T) ((-1090) . T) ((-1181) |has| |#1| (-43 (-409 (-568)))) ((-1184) |has| |#1| (-43 (-409 (-568))))) +((-3848 (((-420 (-1157 |#4|)) (-1157 |#4|)) 28) (((-420 |#4|) |#4|) 24))) +(((-731 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3848 ((-420 |#4|) |#4|)) (-15 -3848 ((-420 (-1157 |#4|)) (-1157 |#4|)))) (-842) (-788) (-13 (-301) (-150)) (-950 |#3| |#2| |#1|)) (T -731)) +((-3848 (*1 *2 *3) (-12 (-4 *4 (-842)) (-4 *5 (-788)) (-4 *6 (-13 (-301) (-150))) (-4 *7 (-950 *6 *5 *4)) (-5 *2 (-420 (-1157 *7))) (-5 *1 (-731 *4 *5 *6 *7)) (-5 *3 (-1157 *7)))) (-3848 (*1 *2 *3) (-12 (-4 *4 (-842)) (-4 *5 (-788)) (-4 *6 (-13 (-301) (-150))) (-5 *2 (-420 *3)) (-5 *1 (-731 *4 *5 *6 *3)) (-4 *3 (-950 *6 *5 *4))))) +(-10 -7 (-15 -3848 ((-420 |#4|) |#4|)) (-15 -3848 ((-420 (-1157 |#4|)) (-1157 |#4|)))) +((-1589 (((-420 |#4|) |#4| |#2|) 116)) (-2389 (((-420 |#4|) |#4|) NIL)) (-1678 (((-420 (-1157 |#4|)) (-1157 |#4|)) 107) (((-420 |#4|) |#4|) 38)) (-2837 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-634 (-2 (|:| -3848 (-1157 |#4|)) (|:| -3438 (-568)))))) (-1157 |#4|) (-634 |#2|) (-634 (-634 |#3|))) 65)) (-3966 (((-1157 |#3|) (-1157 |#3|) (-568)) 133)) (-3448 (((-634 (-763)) (-1157 |#4|) (-634 |#2|) (-763)) 58)) (-3085 (((-3 (-634 (-1157 |#4|)) "failed") (-1157 |#4|) (-1157 |#3|) (-1157 |#3|) |#4| (-634 |#2|) (-634 (-763)) (-634 |#3|)) 62)) (-3280 (((-2 (|:| |upol| (-1157 |#3|)) (|:| |Lval| (-634 |#3|)) (|:| |Lfact| (-634 (-2 (|:| -3848 (-1157 |#3|)) (|:| -3438 (-568))))) (|:| |ctpol| |#3|)) (-1157 |#4|) (-634 |#2|) (-634 (-634 |#3|))) 22)) (-1724 (((-2 (|:| -2700 (-1157 |#4|)) (|:| |polval| (-1157 |#3|))) (-1157 |#4|) (-1157 |#3|) (-568)) 54)) (-1843 (((-568) (-634 (-2 (|:| -3848 (-1157 |#3|)) (|:| -3438 (-568))))) 130)) (-2331 ((|#4| (-568) (-420 |#4|)) 55)) (-1644 (((-121) (-634 (-2 (|:| -3848 (-1157 |#3|)) (|:| -3438 (-568)))) (-634 (-2 (|:| -3848 (-1157 |#3|)) (|:| -3438 (-568))))) NIL))) +(((-732 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1678 ((-420 |#4|) |#4|)) (-15 -1678 ((-420 (-1157 |#4|)) (-1157 |#4|))) (-15 -2389 ((-420 |#4|) |#4|)) (-15 -1843 ((-568) (-634 (-2 (|:| -3848 (-1157 |#3|)) (|:| -3438 (-568)))))) (-15 -1589 ((-420 |#4|) |#4| |#2|)) (-15 -1724 ((-2 (|:| -2700 (-1157 |#4|)) (|:| |polval| (-1157 |#3|))) (-1157 |#4|) (-1157 |#3|) (-568))) (-15 -2837 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-634 (-2 (|:| -3848 (-1157 |#4|)) (|:| -3438 (-568)))))) (-1157 |#4|) (-634 |#2|) (-634 (-634 |#3|)))) (-15 -3280 ((-2 (|:| |upol| (-1157 |#3|)) (|:| |Lval| (-634 |#3|)) (|:| |Lfact| (-634 (-2 (|:| -3848 (-1157 |#3|)) (|:| -3438 (-568))))) (|:| |ctpol| |#3|)) (-1157 |#4|) (-634 |#2|) (-634 (-634 |#3|)))) (-15 -2331 (|#4| (-568) (-420 |#4|))) (-15 -1644 ((-121) (-634 (-2 (|:| -3848 (-1157 |#3|)) (|:| -3438 (-568)))) (-634 (-2 (|:| -3848 (-1157 |#3|)) (|:| -3438 (-568)))))) (-15 -3085 ((-3 (-634 (-1157 |#4|)) "failed") (-1157 |#4|) (-1157 |#3|) (-1157 |#3|) |#4| (-634 |#2|) (-634 (-763)) (-634 |#3|))) (-15 -3448 ((-634 (-763)) (-1157 |#4|) (-634 |#2|) (-763))) (-15 -3966 ((-1157 |#3|) (-1157 |#3|) (-568)))) (-788) (-842) (-301) (-950 |#3| |#1| |#2|)) (T -732)) +((-3966 (*1 *2 *2 *3) (-12 (-5 *2 (-1157 *6)) (-5 *3 (-568)) (-4 *6 (-301)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *1 (-732 *4 *5 *6 *7)) (-4 *7 (-950 *6 *4 *5)))) (-3448 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1157 *9)) (-5 *4 (-634 *7)) (-4 *7 (-842)) (-4 *9 (-950 *8 *6 *7)) (-4 *6 (-788)) (-4 *8 (-301)) (-5 *2 (-634 (-763))) (-5 *1 (-732 *6 *7 *8 *9)) (-5 *5 (-763)))) (-3085 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1157 *11)) (-5 *6 (-634 *10)) (-5 *7 (-634 (-763))) (-5 *8 (-634 *11)) (-4 *10 (-842)) (-4 *11 (-301)) (-4 *9 (-788)) (-4 *5 (-950 *11 *9 *10)) (-5 *2 (-634 (-1157 *5))) (-5 *1 (-732 *9 *10 *11 *5)) (-5 *3 (-1157 *5)))) (-1644 (*1 *2 *3 *3) (-12 (-5 *3 (-634 (-2 (|:| -3848 (-1157 *6)) (|:| -3438 (-568))))) (-4 *6 (-301)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-121)) (-5 *1 (-732 *4 *5 *6 *7)) (-4 *7 (-950 *6 *4 *5)))) (-2331 (*1 *2 *3 *4) (-12 (-5 *3 (-568)) (-5 *4 (-420 *2)) (-4 *2 (-950 *7 *5 *6)) (-5 *1 (-732 *5 *6 *7 *2)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *7 (-301)))) (-3280 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1157 *9)) (-5 *4 (-634 *7)) (-5 *5 (-634 (-634 *8))) (-4 *7 (-842)) (-4 *8 (-301)) (-4 *9 (-950 *8 *6 *7)) (-4 *6 (-788)) (-5 *2 (-2 (|:| |upol| (-1157 *8)) (|:| |Lval| (-634 *8)) (|:| |Lfact| (-634 (-2 (|:| -3848 (-1157 *8)) (|:| -3438 (-568))))) (|:| |ctpol| *8))) (-5 *1 (-732 *6 *7 *8 *9)))) (-2837 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-634 *7)) (-5 *5 (-634 (-634 *8))) (-4 *7 (-842)) (-4 *8 (-301)) (-4 *6 (-788)) (-4 *9 (-950 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-634 (-2 (|:| -3848 (-1157 *9)) (|:| -3438 (-568))))))) (-5 *1 (-732 *6 *7 *8 *9)) (-5 *3 (-1157 *9)))) (-1724 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-568)) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *8 (-301)) (-4 *9 (-950 *8 *6 *7)) (-5 *2 (-2 (|:| -2700 (-1157 *9)) (|:| |polval| (-1157 *8)))) (-5 *1 (-732 *6 *7 *8 *9)) (-5 *3 (-1157 *9)) (-5 *4 (-1157 *8)))) (-1589 (*1 *2 *3 *4) (-12 (-4 *5 (-788)) (-4 *4 (-842)) (-4 *6 (-301)) (-5 *2 (-420 *3)) (-5 *1 (-732 *5 *4 *6 *3)) (-4 *3 (-950 *6 *5 *4)))) (-1843 (*1 *2 *3) (-12 (-5 *3 (-634 (-2 (|:| -3848 (-1157 *6)) (|:| -3438 (-568))))) (-4 *6 (-301)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-568)) (-5 *1 (-732 *4 *5 *6 *7)) (-4 *7 (-950 *6 *4 *5)))) (-2389 (*1 *2 *3) (-12 (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-301)) (-5 *2 (-420 *3)) (-5 *1 (-732 *4 *5 *6 *3)) (-4 *3 (-950 *6 *4 *5)))) (-1678 (*1 *2 *3) (-12 (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-301)) (-4 *7 (-950 *6 *4 *5)) (-5 *2 (-420 (-1157 *7))) (-5 *1 (-732 *4 *5 *6 *7)) (-5 *3 (-1157 *7)))) (-1678 (*1 *2 *3) (-12 (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-301)) (-5 *2 (-420 *3)) (-5 *1 (-732 *4 *5 *6 *3)) (-4 *3 (-950 *6 *4 *5))))) +(-10 -7 (-15 -1678 ((-420 |#4|) |#4|)) (-15 -1678 ((-420 (-1157 |#4|)) (-1157 |#4|))) (-15 -2389 ((-420 |#4|) |#4|)) (-15 -1843 ((-568) (-634 (-2 (|:| -3848 (-1157 |#3|)) (|:| -3438 (-568)))))) (-15 -1589 ((-420 |#4|) |#4| |#2|)) (-15 -1724 ((-2 (|:| -2700 (-1157 |#4|)) (|:| |polval| (-1157 |#3|))) (-1157 |#4|) (-1157 |#3|) (-568))) (-15 -2837 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-634 (-2 (|:| -3848 (-1157 |#4|)) (|:| -3438 (-568)))))) (-1157 |#4|) (-634 |#2|) (-634 (-634 |#3|)))) (-15 -3280 ((-2 (|:| |upol| (-1157 |#3|)) (|:| |Lval| (-634 |#3|)) (|:| |Lfact| (-634 (-2 (|:| -3848 (-1157 |#3|)) (|:| -3438 (-568))))) (|:| |ctpol| |#3|)) (-1157 |#4|) (-634 |#2|) (-634 (-634 |#3|)))) (-15 -2331 (|#4| (-568) (-420 |#4|))) (-15 -1644 ((-121) (-634 (-2 (|:| -3848 (-1157 |#3|)) (|:| -3438 (-568)))) (-634 (-2 (|:| -3848 (-1157 |#3|)) (|:| -3438 (-568)))))) (-15 -3085 ((-3 (-634 (-1157 |#4|)) "failed") (-1157 |#4|) (-1157 |#3|) (-1157 |#3|) |#4| (-634 |#2|) (-634 (-763)) (-634 |#3|))) (-15 -3448 ((-634 (-763)) (-1157 |#4|) (-634 |#2|) (-763))) (-15 -3966 ((-1157 |#3|) (-1157 |#3|) (-568)))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-2055 (((-634 (-1161)) $) NIL)) (-3839 (((-409 (-1157 $)) $ (-607 $)) NIL (|has| |#2| (-558)))) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL)) (-2227 (($ $) NIL)) (-1573 (((-121) $) NIL)) (-3001 (((-634 (-607 $)) $) NIL)) (-4452 (($ $ (-1082 $)) NIL) (($ $ (-1161)) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-2366 (($ $ (-288 $)) NIL) (($ $ (-634 (-288 $))) NIL) (($ $ (-634 (-607 $)) (-634 $)) NIL)) (-4305 (($ $) NIL (|has| |#2| (-558)))) (-1678 (((-420 $) $) NIL (|has| |#2| (-558)))) (-1497 (((-121) $ $) NIL (|has| |#2| (-558)))) (-2671 (($) NIL T CONST)) (-3666 (((-3 (-607 $) "failed") $) NIL) (((-3 (-1161) "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-409 (-953 |#2|)) "failed") $) NIL (|has| |#2| (-558))) (((-3 (-953 |#2|) "failed") $) NIL (|has| |#2| (-1047))) (((-3 (-734 |#1| |#2|) "failed") $) NIL) (((-3 (-568) "failed") $) NIL) (((-3 (-409 (-568)) "failed") $) NIL (-2198 (-12 (|has| |#2| (-558)) (|has| |#2| (-1037 (-568)))) (|has| |#2| (-1037 (-409 (-568))))))) (-2854 (((-607 $) $) NIL) (((-1161) $) NIL) ((|#2| $) NIL) (((-409 (-953 |#2|)) $) 20 (|has| |#2| (-558))) (((-953 |#2|) $) 26 (|has| |#2| (-1047))) (((-734 |#1| |#2|) $) 27) (((-568) $) NIL) (((-409 (-734 |#1| |#2|)) $) 25) (((-409 (-568)) $) NIL (-2198 (-12 (|has| |#2| (-558)) (|has| |#2| (-1037 (-568)))) (|has| |#2| (-1037 (-409 (-568))))))) (-2401 (($ $ $) NIL (|has| |#2| (-558)))) (-3164 (((-2 (|:| -2928 (-679 |#2|)) (|:| |vec| (-1244 |#2|))) (-679 $) (-1244 $)) NIL (|has| |#2| (-1047))) (((-679 |#2|) (-679 $)) NIL (|has| |#2| (-1047))) (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) NIL (-12 (|has| |#2| (-630 (-568))) (|has| |#2| (-1047)))) (((-679 (-568)) (-679 $)) NIL (-12 (|has| |#2| (-630 (-568))) (|has| |#2| (-1047))))) (-2925 (((-3 $ "failed") $) NIL)) (-2412 (($ $ $) NIL (|has| |#2| (-558)))) (-3272 (($ $ (-1082 $)) NIL) (($ $ (-1161)) NIL)) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) NIL (|has| |#2| (-558)))) (-3927 (((-121) $) NIL (|has| |#2| (-558)))) (-2413 (($ $ $) NIL)) (-4410 (((-884 (-568) $) $ (-887 (-568)) (-884 (-568) $)) NIL (|has| |#2| (-881 (-568)))) (((-884 (-381) $) $ (-887 (-381)) (-884 (-381) $)) NIL (|has| |#2| (-881 (-381))))) (-4499 (($ $) NIL) (($ (-634 $)) NIL)) (-3296 (((-634 (-123)) $) NIL)) (-3488 (((-123) (-123)) NIL)) (-2735 (((-121) $) NIL)) (-1825 (((-121) $) NIL (|has| $ (-1037 (-568))))) (-1332 (($ $) NIL)) (-2317 (((-1113 |#2| (-607 $)) $) NIL (|has| |#2| (-1047)))) (-3562 (((-3 (-634 $) "failed") (-634 $) $) NIL (|has| |#2| (-558)))) (-3007 (((-1157 $) (-607 $)) NIL (|has| $ (-1047)))) (-2521 (($ $ $) NIL)) (-3268 (($ $ $) NIL)) (-2795 (($ (-1 $ $) (-607 $)) NIL)) (-3693 (((-3 (-607 $) "failed") $) NIL)) (-2495 (($ (-634 $)) NIL (|has| |#2| (-558))) (($ $ $) NIL (|has| |#2| (-558)))) (-4487 (((-1143) $) NIL)) (-3804 (((-634 (-607 $)) $) NIL)) (-3443 (($ (-123) $) NIL) (($ (-123) (-634 $)) NIL)) (-3324 (((-3 (-634 $) "failed") $) NIL (|has| |#2| (-1102)))) (-2672 (((-3 (-2 (|:| |val| $) (|:| -3438 (-568))) "failed") $) NIL (|has| |#2| (-1047)))) (-1794 (((-3 (-634 $) "failed") $) NIL (|has| |#2| (-25)))) (-2392 (((-3 (-2 (|:| -2348 (-568)) (|:| |var| (-607 $))) "failed") $) NIL (|has| |#2| (-25)))) (-3751 (((-3 (-2 (|:| |var| (-607 $)) (|:| -3438 (-568))) "failed") $) NIL (|has| |#2| (-1102))) (((-3 (-2 (|:| |var| (-607 $)) (|:| -3438 (-568))) "failed") $ (-123)) NIL (|has| |#2| (-1047))) (((-3 (-2 (|:| |var| (-607 $)) (|:| -3438 (-568))) "failed") $ (-1161)) NIL (|has| |#2| (-1047)))) (-2841 (((-121) $ (-123)) NIL) (((-121) $ (-1161)) NIL)) (-2081 (($ $) NIL (-2198 (|has| |#2| (-478)) (|has| |#2| (-558))))) (-2961 (((-763) $) NIL)) (-4022 (((-1108) $) NIL)) (-2086 (((-121) $) NIL)) (-2091 ((|#2| $) NIL)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL (|has| |#2| (-558)))) (-2721 (($ (-634 $)) NIL (|has| |#2| (-558))) (($ $ $) NIL (|has| |#2| (-558)))) (-4059 (((-121) $ $) NIL) (((-121) $ (-1161)) NIL)) (-2784 (($ $ (-1161)) NIL) (($ $) NIL)) (-2427 (($ $) NIL)) (-3848 (((-420 $) $) NIL (|has| |#2| (-558)))) (-4497 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-558))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL (|has| |#2| (-558)))) (-2595 (((-3 $ "failed") $ $) NIL)) (-2344 (((-3 (-634 $) "failed") (-634 $) $) NIL (|has| |#2| (-558)))) (-3277 (((-121) $) NIL (|has| $ (-1037 (-568))))) (-1339 (($ $ (-607 $) $) NIL) (($ $ (-634 (-607 $)) (-634 $)) NIL) (($ $ (-634 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-634 $) (-634 $)) NIL) (($ $ (-634 (-1161)) (-634 (-1 $ $))) NIL) (($ $ (-634 (-1161)) (-634 (-1 $ (-634 $)))) NIL) (($ $ (-1161) (-1 $ (-634 $))) NIL) (($ $ (-1161) (-1 $ $)) NIL) (($ $ (-634 (-123)) (-634 (-1 $ $))) NIL) (($ $ (-634 (-123)) (-634 (-1 $ (-634 $)))) NIL) (($ $ (-123) (-1 $ (-634 $))) NIL) (($ $ (-123) (-1 $ $)) NIL) (($ $ (-1161)) NIL (|has| |#2| (-609 (-541)))) (($ $ (-634 (-1161))) NIL (|has| |#2| (-609 (-541)))) (($ $) NIL (|has| |#2| (-609 (-541)))) (($ $ (-123) $ (-1161)) NIL (|has| |#2| (-609 (-541)))) (($ $ (-634 (-123)) (-634 $) (-1161)) NIL (|has| |#2| (-609 (-541)))) (($ $ (-634 (-1161)) (-634 (-763)) (-634 (-1 $ $))) NIL (|has| |#2| (-1047))) (($ $ (-634 (-1161)) (-634 (-763)) (-634 (-1 $ (-634 $)))) NIL (|has| |#2| (-1047))) (($ $ (-1161) (-763) (-1 $ (-634 $))) NIL (|has| |#2| (-1047))) (($ $ (-1161) (-763) (-1 $ $)) NIL (|has| |#2| (-1047)))) (-2709 (((-763) $) NIL (|has| |#2| (-558)))) (-2779 (($ (-123) $) NIL) (($ (-123) $ $) NIL) (($ (-123) $ $ $) NIL) (($ (-123) $ $ $ $) NIL) (($ (-123) (-634 $)) NIL)) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL (|has| |#2| (-558)))) (-3502 (($ $) NIL) (($ $ $) NIL)) (-4189 (($ $ (-634 (-1161)) (-634 (-763))) NIL) (($ $ (-1161) (-763)) NIL) (($ $ (-634 (-1161))) NIL) (($ $ (-1161)) NIL)) (-3013 (($ $) NIL)) (-2324 (((-1113 |#2| (-607 $)) $) NIL (|has| |#2| (-558)))) (-1626 (($ $) NIL (|has| $ (-1047)))) (-4278 (((-887 (-568)) $) NIL (|has| |#2| (-609 (-887 (-568))))) (((-887 (-381)) $) NIL (|has| |#2| (-609 (-887 (-381))))) (($ (-420 $)) NIL (|has| |#2| (-558))) (((-541) $) NIL (|has| |#2| (-609 (-541))))) (-1458 (($ $ $) NIL (|has| |#2| (-478)))) (-2353 (($ $ $) NIL (|has| |#2| (-478)))) (-2745 (((-850) $) NIL) (($ (-607 $)) NIL) (($ (-1161)) NIL) (($ |#2|) NIL) (($ (-1113 |#2| (-607 $))) NIL (|has| |#2| (-1047))) (($ (-409 |#2|)) NIL (|has| |#2| (-558))) (($ (-953 (-409 |#2|))) NIL (|has| |#2| (-558))) (($ (-409 (-953 (-409 |#2|)))) NIL (|has| |#2| (-558))) (($ (-409 (-953 |#2|))) NIL (|has| |#2| (-558))) (($ (-953 |#2|)) NIL (|has| |#2| (-1047))) (($ $) NIL) (($ (-568)) NIL) (($ (-734 |#1| |#2|)) NIL) (($ (-409 (-734 |#1| |#2|))) 35) (($ (-409 (-568))) NIL (-2198 (|has| |#2| (-558)) (|has| |#2| (-1037 (-409 (-568))))))) (-4371 (((-3 $ "failed") $) NIL (|has| |#2| (-148)))) (-4078 (((-763)) NIL)) (-2092 (($ $) NIL) (($ (-634 $)) NIL)) (-2787 (($ $ $) NIL)) (-2887 (((-121) (-123)) NIL)) (-1826 (((-121) $ $) NIL)) (-3058 (($ (-1161) $) NIL) (($ (-1161) $ $) NIL) (($ (-1161) $ $ $) NIL) (($ (-1161) $ $ $ $) NIL) (($ (-1161) (-634 $)) NIL)) (-1887 (($ $ (-763)) NIL) (($ $ (-917)) NIL) (($ $ (-568)) NIL (-2198 (|has| |#2| (-478)) (|has| |#2| (-558))))) (-3056 (($) NIL T CONST)) (-1556 (($) NIL T CONST)) (-3190 (($ $ (-634 (-1161)) (-634 (-763))) NIL) (($ $ (-1161) (-763)) NIL) (($ $ (-634 (-1161))) NIL) (($ $ (-1161)) NIL)) (-1751 (((-121) $ $) NIL)) (-1738 (((-121) $ $) NIL)) (-1717 (((-121) $ $) NIL)) (-1745 (((-121) $ $) NIL)) (-1732 (((-121) $ $) NIL)) (-1779 (($ (-1113 |#2| (-607 $)) (-1113 |#2| (-607 $))) NIL (|has| |#2| (-558))) (($ $ $) NIL)) (-1773 (($ $ $) NIL) (($ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-763)) NIL) (($ $ (-917)) NIL) (($ $ $) NIL) (($ $ (-568)) NIL (-2198 (|has| |#2| (-478)) (|has| |#2| (-558))))) (* (($ (-409 (-568)) $) NIL (|has| |#2| (-558))) (($ $ (-409 (-568))) NIL (|has| |#2| (-558))) (($ |#2| $) NIL (|has| |#2| (-172))) (($ $ |#2|) NIL (|has| |#2| (-172))) (($ $ $) NIL) (($ (-568) $) NIL) (($ (-763) $) NIL) (($ (-917) $) NIL))) +(((-733 |#1| |#2|) (-13 (-432 |#2|) (-558) (-1037 (-734 |#1| |#2|)) (-1037 (-1161)) (-1037 (-568)) (-161) (-895 (-1161)) (-10 -8 (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -1332 ($ $)) (-15 -3013 ($ $)) (-15 -2086 ((-121) $)) (-15 -2745 ($ (-409 (-734 |#1| |#2|)))) (-15 -2854 ((-409 (-734 |#1| |#2|)) $)))) (-1161) (-13 (-1047) (-842) (-558))) (T -733)) +((-2086 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-733 *3 *4)) (-14 *3 (-1161)) (-4 *4 (-13 (-1047) (-842) (-558))))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-733 *2 *3)) (-14 *2 (-1161)) (-4 *3 (-13 (-1047) (-842) (-558))))) (-1779 (*1 *1 *1 *1) (-12 (-5 *1 (-733 *2 *3)) (-14 *2 (-1161)) (-4 *3 (-13 (-1047) (-842) (-558))))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-733 *2 *3)) (-14 *2 (-1161)) (-4 *3 (-13 (-1047) (-842) (-558))))) (-1332 (*1 *1 *1) (-12 (-5 *1 (-733 *2 *3)) (-14 *2 (-1161)) (-4 *3 (-13 (-1047) (-842) (-558))))) (-3013 (*1 *1 *1) (-12 (-5 *1 (-733 *2 *3)) (-14 *2 (-1161)) (-4 *3 (-13 (-1047) (-842) (-558))))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-409 (-734 *3 *4))) (-14 *3 (-1161)) (-4 *4 (-13 (-1047) (-842) (-558))) (-5 *1 (-733 *3 *4)))) (-2854 (*1 *2 *1) (-12 (-5 *2 (-409 (-734 *3 *4))) (-5 *1 (-733 *3 *4)) (-14 *3 (-1161)) (-4 *4 (-13 (-1047) (-842) (-558)))))) +(-13 (-432 |#2|) (-558) (-1037 (-734 |#1| |#2|)) (-1037 (-1161)) (-1037 (-568)) (-161) (-895 (-1161)) (-10 -8 (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -1332 ($ $)) (-15 -3013 ($ $)) (-15 -2086 ((-121) $)) (-15 -2745 ($ (-409 (-734 |#1| |#2|)))) (-15 -2854 ((-409 (-734 |#1| |#2|)) $)))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-2572 (((-1244 |#2|) $ (-763)) NIL)) (-2055 (((-634 (-1075)) $) NIL)) (-3197 (($ (-1157 |#2|)) NIL)) (-3839 (((-1157 $) $ (-1075)) NIL) (((-1157 |#2|) $) NIL)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL (|has| |#2| (-558)))) (-2227 (($ $) NIL (|has| |#2| (-558)))) (-1573 (((-121) $) NIL (|has| |#2| (-558)))) (-2773 (((-763) $) NIL) (((-763) $ (-634 (-1075))) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-3809 (($ $ $) NIL (|has| |#2| (-558)))) (-1750 (((-420 (-1157 $)) (-1157 $)) NIL (|has| |#2| (-904)))) (-4305 (($ $) NIL (|has| |#2| (-453)))) (-1678 (((-420 $) $) NIL (|has| |#2| (-453)))) (-1858 (((-3 (-634 (-1157 $)) "failed") (-634 (-1157 $)) (-1157 $)) NIL (|has| |#2| (-904)))) (-1497 (((-121) $ $) NIL (|has| |#2| (-365)))) (-3151 (($ $ (-763)) NIL)) (-3772 (($ $ (-763)) NIL)) (-1619 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-453)))) (-2671 (($) NIL T CONST)) (-3666 (((-3 |#2| "failed") $) NIL) (((-3 (-409 (-568)) "failed") $) NIL (|has| |#2| (-1037 (-409 (-568))))) (((-3 (-568) "failed") $) NIL (|has| |#2| (-1037 (-568)))) (((-3 (-1075) "failed") $) NIL) (((-3 (-1161) "failed") $) NIL)) (-2854 ((|#2| $) NIL) (((-409 (-568)) $) NIL (|has| |#2| (-1037 (-409 (-568))))) (((-568) $) NIL (|has| |#2| (-1037 (-568)))) (((-1075) $) 22) (((-1161) $) 23)) (-4265 (($ $ $ (-1075)) NIL (|has| |#2| (-172))) ((|#2| $ $) NIL (|has| |#2| (-172)))) (-2401 (($ $ $) NIL (|has| |#2| (-365)))) (-2114 (($ $) NIL)) (-3164 (((-679 (-568)) (-679 $)) NIL (|has| |#2| (-630 (-568)))) (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) NIL (|has| |#2| (-630 (-568)))) (((-2 (|:| -2928 (-679 |#2|)) (|:| |vec| (-1244 |#2|))) (-679 $) (-1244 $)) NIL) (((-679 |#2|) (-679 $)) NIL)) (-2925 (((-3 $ "failed") $) NIL)) (-2412 (($ $ $) NIL (|has| |#2| (-365)))) (-3002 (($ $ $) NIL)) (-3581 (($ $ $) NIL (|has| |#2| (-558)))) (-4144 (((-2 (|:| -2348 |#2|) (|:| -3961 $) (|:| -1500 $)) $ $) NIL (|has| |#2| (-558)))) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) NIL (|has| |#2| (-365)))) (-3250 (($ $) NIL (|has| |#2| (-453))) (($ $ (-1075)) NIL (|has| |#2| (-453)))) (-2108 (((-634 $) $) NIL)) (-3927 (((-121) $) NIL (|has| |#2| (-904)))) (-3088 (($ $ |#2| (-763) $) NIL)) (-4410 (((-884 (-381) $) $ (-887 (-381)) (-884 (-381) $)) NIL (-12 (|has| (-1075) (-881 (-381))) (|has| |#2| (-881 (-381))))) (((-884 (-568) $) $ (-887 (-568)) (-884 (-568) $)) NIL (-12 (|has| (-1075) (-881 (-568))) (|has| |#2| (-881 (-568)))))) (-4477 (((-763) $ $) NIL (|has| |#2| (-558)))) (-2735 (((-121) $) NIL)) (-4178 (((-763) $) NIL)) (-3038 (((-3 $ "failed") $) NIL (|has| |#2| (-1136)))) (-2051 (($ (-1157 |#2|) (-1075)) NIL) (($ (-1157 $) (-1075)) NIL)) (-3536 (($ $ (-763)) NIL)) (-3562 (((-3 (-634 $) "failed") (-634 $) $) NIL (|has| |#2| (-365)))) (-2976 (((-634 $) $) NIL)) (-3921 (((-121) $) NIL)) (-2047 (($ |#2| (-763)) 17) (($ $ (-1075) (-763)) NIL) (($ $ (-634 (-1075)) (-634 (-763))) NIL)) (-3379 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $ (-1075)) NIL) (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL)) (-2144 (((-763) $) NIL) (((-763) $ (-1075)) NIL) (((-634 (-763)) $ (-634 (-1075))) NIL)) (-2521 (($ $ $) NIL (|has| |#2| (-842)))) (-3268 (($ $ $) NIL (|has| |#2| (-842)))) (-3842 (($ (-1 (-763) (-763)) $) NIL)) (-2795 (($ (-1 |#2| |#2|) $) NIL)) (-3764 (((-1157 |#2|) $) NIL)) (-2244 (((-3 (-1075) "failed") $) NIL)) (-2097 (($ $) NIL)) (-2102 ((|#2| $) NIL)) (-2495 (($ (-634 $)) NIL (|has| |#2| (-453))) (($ $ $) NIL (|has| |#2| (-453)))) (-4487 (((-1143) $) NIL)) (-1643 (((-2 (|:| -3961 $) (|:| -1500 $)) $ (-763)) NIL)) (-3324 (((-3 (-634 $) "failed") $) NIL)) (-1794 (((-3 (-634 $) "failed") $) NIL)) (-3751 (((-3 (-2 (|:| |var| (-1075)) (|:| -3438 (-763))) "failed") $) NIL)) (-3837 (($ $) NIL (|has| |#2| (-43 (-409 (-568)))))) (-4434 (($) NIL (|has| |#2| (-1136)) CONST)) (-4022 (((-1108) $) NIL)) (-2086 (((-121) $) NIL)) (-2091 ((|#2| $) NIL)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL (|has| |#2| (-453)))) (-2721 (($ (-634 $)) NIL (|has| |#2| (-453))) (($ $ $) NIL (|has| |#2| (-453)))) (-4285 (($ $ (-763) |#2| $) NIL)) (-2905 (((-420 (-1157 $)) (-1157 $)) NIL (|has| |#2| (-904)))) (-3545 (((-420 (-1157 $)) (-1157 $)) NIL (|has| |#2| (-904)))) (-3848 (((-420 $) $) NIL (|has| |#2| (-904)))) (-4497 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL (|has| |#2| (-365)))) (-2595 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-558))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-558)))) (-2344 (((-3 (-634 $) "failed") (-634 $) $) NIL (|has| |#2| (-365)))) (-1339 (($ $ (-634 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-634 $) (-634 $)) NIL) (($ $ (-1075) |#2|) NIL) (($ $ (-634 (-1075)) (-634 |#2|)) NIL) (($ $ (-1075) $) NIL) (($ $ (-634 (-1075)) (-634 $)) NIL)) (-2709 (((-763) $) NIL (|has| |#2| (-365)))) (-2779 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-409 $) (-409 $) (-409 $)) NIL (|has| |#2| (-558))) ((|#2| (-409 $) |#2|) NIL (|has| |#2| (-365))) (((-409 $) $ (-409 $)) NIL (|has| |#2| (-558)))) (-2167 (((-3 $ "failed") $ (-763)) NIL)) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL (|has| |#2| (-365)))) (-2217 (($ $ (-1075)) NIL (|has| |#2| (-172))) ((|#2| $) NIL (|has| |#2| (-172)))) (-4189 (($ $ (-1075)) NIL) (($ $ (-634 (-1075))) NIL) (($ $ (-1075) (-763)) NIL) (($ $ (-634 (-1075)) (-634 (-763))) NIL) (($ $ (-763)) NIL) (($ $) NIL) (($ $ (-1161)) NIL (|has| |#2| (-895 (-1161)))) (($ $ (-634 (-1161))) NIL (|has| |#2| (-895 (-1161)))) (($ $ (-1161) (-763)) NIL (|has| |#2| (-895 (-1161)))) (($ $ (-634 (-1161)) (-634 (-763))) NIL (|has| |#2| (-895 (-1161)))) (($ $ (-1 |#2| |#2|) (-763)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-3206 (((-763) $) NIL) (((-763) $ (-1075)) NIL) (((-634 (-763)) $ (-634 (-1075))) NIL)) (-4278 (((-887 (-381)) $) NIL (-12 (|has| (-1075) (-609 (-887 (-381)))) (|has| |#2| (-609 (-887 (-381)))))) (((-887 (-568)) $) NIL (-12 (|has| (-1075) (-609 (-887 (-568)))) (|has| |#2| (-609 (-887 (-568)))))) (((-541) $) NIL (-12 (|has| (-1075) (-609 (-541))) (|has| |#2| (-609 (-541)))))) (-3367 ((|#2| $) NIL (|has| |#2| (-453))) (($ $ (-1075)) NIL (|has| |#2| (-453)))) (-2979 (((-3 (-1244 $) "failed") (-679 $)) NIL (-12 (|has| $ (-148)) (|has| |#2| (-904))))) (-3950 (((-3 $ "failed") $ $) NIL (|has| |#2| (-558))) (((-3 (-409 $) "failed") (-409 $) $) NIL (|has| |#2| (-558)))) (-2745 (((-850) $) 13) (($ (-568)) NIL) (($ |#2|) 26) (($ (-1075)) NIL) (($ (-1240 |#1|)) 20) (($ (-953 |#2|)) 34) (($ (-1161)) 18) (($ (-409 (-568))) NIL (-2198 (|has| |#2| (-43 (-409 (-568)))) (|has| |#2| (-1037 (-409 (-568)))))) (($ $) NIL (|has| |#2| (-558)))) (-1302 (((-634 |#2|) $) NIL)) (-2604 ((|#2| $ (-763)) NIL) (($ $ (-1075) (-763)) NIL) (($ $ (-634 (-1075)) (-634 (-763))) NIL)) (-4371 (((-3 $ "failed") $) NIL (-2198 (-12 (|has| $ (-148)) (|has| |#2| (-904))) (|has| |#2| (-148))))) (-4078 (((-763)) NIL)) (-4171 (($ $ $ (-763)) NIL (|has| |#2| (-172)))) (-1826 (((-121) $ $) NIL (|has| |#2| (-558)))) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (-3056 (($) NIL T CONST)) (-1556 (($) 14 T CONST)) (-3190 (($ $ (-1075)) NIL) (($ $ (-634 (-1075))) NIL) (($ $ (-1075) (-763)) NIL) (($ $ (-634 (-1075)) (-634 (-763))) NIL) (($ $ (-763)) NIL) (($ $) NIL) (($ $ (-1161)) NIL (|has| |#2| (-895 (-1161)))) (($ $ (-634 (-1161))) NIL (|has| |#2| (-895 (-1161)))) (($ $ (-1161) (-763)) NIL (|has| |#2| (-895 (-1161)))) (($ $ (-634 (-1161)) (-634 (-763))) NIL (|has| |#2| (-895 (-1161)))) (($ $ (-1 |#2| |#2|) (-763)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1751 (((-121) $ $) NIL (|has| |#2| (-842)))) (-1738 (((-121) $ $) NIL (|has| |#2| (-842)))) (-1717 (((-121) $ $) NIL)) (-1745 (((-121) $ $) NIL (|has| |#2| (-842)))) (-1732 (((-121) $ $) NIL (|has| |#2| (-842)))) (-1779 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) NIL) (($ $ (-409 (-568))) NIL (|has| |#2| (-43 (-409 (-568))))) (($ (-409 (-568)) $) NIL (|has| |#2| (-43 (-409 (-568))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-734 |#1| |#2|) (-13 (-1219 |#2|) (-10 -8 (-6 (-1037 (-1161))) (-15 -2745 ($ (-1240 |#1|))) (-15 -4285 ($ $ (-763) |#2| $)) (IF (|has| |#2| (-15 -3839 ((-1157 |#2|) |#2| (-1161)))) (-15 -2745 ($ |#2|)) |noBranch|) (-15 -2745 ($ (-953 |#2|))))) (-1161) (-1047)) (T -734)) +((-2745 (*1 *1 *2) (-12 (-5 *1 (-734 *3 *2)) (-14 *3 (-1161)) (-4 *2 (-1047)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-1240 *3)) (-14 *3 (-1161)) (-5 *1 (-734 *3 *4)) (-4 *4 (-1047)))) (-4285 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-763)) (-5 *1 (-734 *4 *3)) (-14 *4 (-1161)) (-4 *3 (-1047)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-953 *4)) (-4 *4 (-1047)) (-5 *1 (-734 *3 *4)) (-14 *3 (-1161))))) +(-13 (-1219 |#2|) (-10 -8 (-6 (-1037 (-1161))) (-15 -2745 ($ (-1240 |#1|))) (-15 -4285 ($ $ (-763) |#2| $)) (IF (|has| |#2| (-15 -3839 ((-1157 |#2|) |#2| (-1161)))) (-15 -2745 ($ |#2|)) |noBranch|) (-15 -2745 ($ (-953 |#2|))))) +((-4373 (($ $ (-917)) 12))) +(((-735 |#1| |#2|) (-10 -8 (-15 -4373 (|#1| |#1| (-917)))) (-736 |#2|) (-172)) (T -735)) +NIL +(-10 -8 (-15 -4373 (|#1| |#1| (-917)))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-3134 (((-3 $ "failed") $ $) 18)) (-2671 (($) 16 T CONST)) (-3551 (($ $ (-917)) 27)) (-4373 (($ $ (-917)) 32)) (-4222 (($ $ (-917)) 28)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-2353 (($ $ $) 24)) (-2745 (((-850) $) 11)) (-3882 (($ $ $ $) 25)) (-3500 (($ $ $) 23)) (-3056 (($) 17 T CONST)) (-1717 (((-121) $ $) 6)) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 29)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 26) (($ $ |#1|) 34) (($ |#1| $) 33))) +(((-736 |#1|) (-1275) (-172)) (T -736)) +((-4373 (*1 *1 *1 *2) (-12 (-5 *2 (-917)) (-4 *1 (-736 *3)) (-4 *3 (-172))))) +(-13 (-753) (-707 |t#1|) (-10 -8 (-15 -4373 ($ $ (-917))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-105) . T) ((-120 |#1| |#1|) . T) ((-137) . T) ((-608 (-850)) . T) ((-637 |#1|) . T) ((-707 |#1|) . T) ((-710) . T) ((-753) . T) ((-1053 |#1|) . T) ((-1090) . T)) +((-1664 (((-1035) (-679 (-215)) (-568) (-121) (-568)) 24)) (-1669 (((-1035) (-679 (-215)) (-568) (-121) (-568)) 23))) +(((-737) (-10 -7 (-15 -1669 ((-1035) (-679 (-215)) (-568) (-121) (-568))) (-15 -1664 ((-1035) (-679 (-215)) (-568) (-121) (-568))))) (T -737)) +((-1664 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-679 (-215))) (-5 *4 (-568)) (-5 *5 (-121)) (-5 *2 (-1035)) (-5 *1 (-737)))) (-1669 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-679 (-215))) (-5 *4 (-568)) (-5 *5 (-121)) (-5 *2 (-1035)) (-5 *1 (-737))))) +(-10 -7 (-15 -1669 ((-1035) (-679 (-215)) (-568) (-121) (-568))) (-15 -1664 ((-1035) (-679 (-215)) (-568) (-121) (-568)))) +((-1680 (((-1035) (-568) (-568) (-568) (-679 (-215)) (-215) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-79 FCN)))) 43)) (-3932 (((-1035) (-568) (-568) (-679 (-215)) (-215) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN)))) 39)) (-3940 (((-1035) (-215) (-215) (-215) (-215) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-69 -1478)))) 32))) +(((-738) (-10 -7 (-15 -3940 ((-1035) (-215) (-215) (-215) (-215) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-69 -1478))))) (-15 -3932 ((-1035) (-568) (-568) (-679 (-215)) (-215) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN))))) (-15 -1680 ((-1035) (-568) (-568) (-568) (-679 (-215)) (-215) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-79 FCN))))))) (T -738)) +((-1680 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *5 (-215)) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-79 FCN)))) (-5 *2 (-1035)) (-5 *1 (-738)))) (-3932 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *5 (-215)) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1035)) (-5 *1 (-738)))) (-3940 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-69 -1478)))) (-5 *2 (-1035)) (-5 *1 (-738))))) +(-10 -7 (-15 -3940 ((-1035) (-215) (-215) (-215) (-215) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-69 -1478))))) (-15 -3932 ((-1035) (-568) (-568) (-679 (-215)) (-215) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN))))) (-15 -1680 ((-1035) (-568) (-568) (-568) (-679 (-215)) (-215) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-79 FCN)))))) +((-3948 (((-1035) (-568) (-568) (-679 (-215)) (-568)) 33)) (-3956 (((-1035) (-568) (-568) (-679 (-215)) (-568)) 32)) (-3963 (((-1035) (-568) (-679 (-215)) (-568)) 31)) (-3972 (((-1035) (-568) (-679 (-215)) (-568)) 30)) (-3980 (((-1035) (-568) (-568) (-1143) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-568)) 29)) (-3988 (((-1035) (-568) (-568) (-1143) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-568)) 28)) (-3995 (((-1035) (-568) (-568) (-1143) (-679 (-215)) (-679 (-215)) (-568)) 27)) (-4004 (((-1035) (-568) (-568) (-1143) (-679 (-215)) (-679 (-215)) (-568)) 26)) (-4012 (((-1035) (-568) (-568) (-679 (-215)) (-679 (-215)) (-568)) 23)) (-4021 (((-1035) (-568) (-679 (-215)) (-679 (-215)) (-568)) 22)) (-4028 (((-1035) (-568) (-679 (-215)) (-568)) 21)) (-4034 (((-1035) (-568) (-679 (-215)) (-568)) 20))) +(((-739) (-10 -7 (-15 -4034 ((-1035) (-568) (-679 (-215)) (-568))) (-15 -4028 ((-1035) (-568) (-679 (-215)) (-568))) (-15 -4021 ((-1035) (-568) (-679 (-215)) (-679 (-215)) (-568))) (-15 -4012 ((-1035) (-568) (-568) (-679 (-215)) (-679 (-215)) (-568))) (-15 -4004 ((-1035) (-568) (-568) (-1143) (-679 (-215)) (-679 (-215)) (-568))) (-15 -3995 ((-1035) (-568) (-568) (-1143) (-679 (-215)) (-679 (-215)) (-568))) (-15 -3988 ((-1035) (-568) (-568) (-1143) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-568))) (-15 -3980 ((-1035) (-568) (-568) (-1143) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-568))) (-15 -3972 ((-1035) (-568) (-679 (-215)) (-568))) (-15 -3963 ((-1035) (-568) (-679 (-215)) (-568))) (-15 -3956 ((-1035) (-568) (-568) (-679 (-215)) (-568))) (-15 -3948 ((-1035) (-568) (-568) (-679 (-215)) (-568))))) (T -739)) +((-3948 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-739)))) (-3956 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-739)))) (-3963 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-739)))) (-3972 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-739)))) (-3980 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-568)) (-5 *4 (-1143)) (-5 *5 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-739)))) (-3988 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-568)) (-5 *4 (-1143)) (-5 *5 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-739)))) (-3995 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-568)) (-5 *4 (-1143)) (-5 *5 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-739)))) (-4004 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-568)) (-5 *4 (-1143)) (-5 *5 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-739)))) (-4012 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-739)))) (-4021 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-739)))) (-4028 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-739)))) (-4034 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-739))))) +(-10 -7 (-15 -4034 ((-1035) (-568) (-679 (-215)) (-568))) (-15 -4028 ((-1035) (-568) (-679 (-215)) (-568))) (-15 -4021 ((-1035) (-568) (-679 (-215)) (-679 (-215)) (-568))) (-15 -4012 ((-1035) (-568) (-568) (-679 (-215)) (-679 (-215)) (-568))) (-15 -4004 ((-1035) (-568) (-568) (-1143) (-679 (-215)) (-679 (-215)) (-568))) (-15 -3995 ((-1035) (-568) (-568) (-1143) (-679 (-215)) (-679 (-215)) (-568))) (-15 -3988 ((-1035) (-568) (-568) (-1143) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-568))) (-15 -3980 ((-1035) (-568) (-568) (-1143) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-568))) (-15 -3972 ((-1035) (-568) (-679 (-215)) (-568))) (-15 -3963 ((-1035) (-568) (-679 (-215)) (-568))) (-15 -3956 ((-1035) (-568) (-568) (-679 (-215)) (-568))) (-15 -3948 ((-1035) (-568) (-568) (-679 (-215)) (-568)))) +((-3668 (((-1035) (-568) (-679 (-215)) (-679 (-215)) (-568) (-215) (-568) (-568) (-679 (-215)) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-83 FUNCTN)))) 52)) (-3677 (((-1035) (-679 (-215)) (-679 (-215)) (-568) (-568)) 51)) (-3685 (((-1035) (-568) (-679 (-215)) (-679 (-215)) (-568) (-215) (-568) (-568) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-83 FUNCTN)))) 50)) (-3694 (((-1035) (-215) (-215) (-568) (-568) (-568) (-568)) 46)) (-3701 (((-1035) (-215) (-215) (-568) (-215) (-568) (-568) (-568) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-69 G)))) 45)) (-4214 (((-1035) (-215) (-215) (-215) (-215) (-215) (-568) (-568) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-69 G)))) 44)) (-4226 (((-1035) (-215) (-215) (-215) (-215) (-568) (-215) (-215) (-568) (-568) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-69 G)))) 43)) (-4238 (((-1035) (-215) (-215) (-215) (-568) (-215) (-215) (-568) (-568) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-69 G)))) 42)) (-4244 (((-1035) (-215) (-568) (-215) (-215) (-568) (-568) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-69 -1478)))) 38)) (-4250 (((-1035) (-215) (-215) (-568) (-679 (-215)) (-215) (-215) (-568) (-568) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-69 -1478)))) 37)) (-4262 (((-1035) (-215) (-215) (-215) (-215) (-568) (-568) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-69 -1478)))) 33)) (-4274 (((-1035) (-215) (-215) (-215) (-215) (-568) (-568) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-69 -1478)))) 32))) +(((-740) (-10 -7 (-15 -4274 ((-1035) (-215) (-215) (-215) (-215) (-568) (-568) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-69 -1478))))) (-15 -4262 ((-1035) (-215) (-215) (-215) (-215) (-568) (-568) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-69 -1478))))) (-15 -4250 ((-1035) (-215) (-215) (-568) (-679 (-215)) (-215) (-215) (-568) (-568) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-69 -1478))))) (-15 -4244 ((-1035) (-215) (-568) (-215) (-215) (-568) (-568) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-69 -1478))))) (-15 -4238 ((-1035) (-215) (-215) (-215) (-568) (-215) (-215) (-568) (-568) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-69 G))))) (-15 -4226 ((-1035) (-215) (-215) (-215) (-215) (-568) (-215) (-215) (-568) (-568) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-69 G))))) (-15 -4214 ((-1035) (-215) (-215) (-215) (-215) (-215) (-568) (-568) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-69 G))))) (-15 -3701 ((-1035) (-215) (-215) (-568) (-215) (-568) (-568) (-568) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-69 G))))) (-15 -3694 ((-1035) (-215) (-215) (-568) (-568) (-568) (-568))) (-15 -3685 ((-1035) (-568) (-679 (-215)) (-679 (-215)) (-568) (-215) (-568) (-568) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-83 FUNCTN))))) (-15 -3677 ((-1035) (-679 (-215)) (-679 (-215)) (-568) (-568))) (-15 -3668 ((-1035) (-568) (-679 (-215)) (-679 (-215)) (-568) (-215) (-568) (-568) (-679 (-215)) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-83 FUNCTN))))))) (T -740)) +((-3668 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *5 (-215)) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-83 FUNCTN)))) (-5 *2 (-1035)) (-5 *1 (-740)))) (-3677 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-679 (-215))) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-740)))) (-3685 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *5 (-215)) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-83 FUNCTN)))) (-5 *2 (-1035)) (-5 *1 (-740)))) (-3694 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-740)))) (-3701 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-69 G)))) (-5 *2 (-1035)) (-5 *1 (-740)))) (-4214 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-69 G)))) (-5 *2 (-1035)) (-5 *1 (-740)))) (-4226 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-69 G)))) (-5 *2 (-1035)) (-5 *1 (-740)))) (-4238 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-69 G)))) (-5 *2 (-1035)) (-5 *1 (-740)))) (-4244 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-69 -1478)))) (-5 *2 (-1035)) (-5 *1 (-740)))) (-4250 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-568)) (-5 *5 (-679 (-215))) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-69 -1478)))) (-5 *3 (-215)) (-5 *2 (-1035)) (-5 *1 (-740)))) (-4262 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-69 -1478)))) (-5 *2 (-1035)) (-5 *1 (-740)))) (-4274 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-69 -1478)))) (-5 *2 (-1035)) (-5 *1 (-740))))) +(-10 -7 (-15 -4274 ((-1035) (-215) (-215) (-215) (-215) (-568) (-568) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-69 -1478))))) (-15 -4262 ((-1035) (-215) (-215) (-215) (-215) (-568) (-568) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-69 -1478))))) (-15 -4250 ((-1035) (-215) (-215) (-568) (-679 (-215)) (-215) (-215) (-568) (-568) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-69 -1478))))) (-15 -4244 ((-1035) (-215) (-568) (-215) (-215) (-568) (-568) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-69 -1478))))) (-15 -4238 ((-1035) (-215) (-215) (-215) (-568) (-215) (-215) (-568) (-568) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-69 G))))) (-15 -4226 ((-1035) (-215) (-215) (-215) (-215) (-568) (-215) (-215) (-568) (-568) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-69 G))))) (-15 -4214 ((-1035) (-215) (-215) (-215) (-215) (-215) (-568) (-568) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-69 G))))) (-15 -3701 ((-1035) (-215) (-215) (-568) (-215) (-568) (-568) (-568) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-69 G))))) (-15 -3694 ((-1035) (-215) (-215) (-568) (-568) (-568) (-568))) (-15 -3685 ((-1035) (-568) (-679 (-215)) (-679 (-215)) (-568) (-215) (-568) (-568) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-83 FUNCTN))))) (-15 -3677 ((-1035) (-679 (-215)) (-679 (-215)) (-568) (-568))) (-15 -3668 ((-1035) (-568) (-679 (-215)) (-679 (-215)) (-568) (-215) (-568) (-568) (-679 (-215)) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-83 FUNCTN)))))) +((-3715 (((-1035) (-568) (-568) (-568) (-568) (-215) (-568) (-568) (-568) (-568) (-568) (-568) (-679 (-215)) (-679 (-215)) (-215) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-80 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-390)) (|:| |fp| (-81 G JACOBG JACGEP)))) 76)) (-3722 (((-1035) (-679 (-215)) (-568) (-568) (-215) (-568) (-568) (-215) (-215) (-679 (-215)) (-568) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-66 COEFFN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-92 BDYVAL))) (-390) (-390)) 69) (((-1035) (-679 (-215)) (-568) (-568) (-215) (-568) (-568) (-215) (-215) (-679 (-215)) (-568) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-66 COEFFN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-92 BDYVAL)))) 68)) (-3729 (((-1035) (-215) (-215) (-568) (-215) (-568) (-568) (-568) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-568) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-89 FCNF))) (-3 (|:| |fn| (-390)) (|:| |fp| (-90 FCNG)))) 57)) (-3736 (((-1035) (-679 (-215)) (-679 (-215)) (-568) (-215) (-215) (-215) (-568) (-568) (-568) (-679 (-215)) (-568) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-91 FCN)))) 50)) (-3744 (((-1035) (-215) (-568) (-568) (-1143) (-568) (-215) (-679 (-215)) (-215) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-94 G))) (-3 (|:| |fn| (-390)) (|:| |fp| (-91 FCN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-76 PEDERV))) (-3 (|:| |fn| (-390)) (|:| |fp| (-93 OUTPUT)))) 49)) (-3752 (((-1035) (-215) (-568) (-568) (-215) (-1143) (-215) (-679 (-215)) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-94 G))) (-3 (|:| |fn| (-390)) (|:| |fp| (-91 FCN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-93 OUTPUT)))) 45)) (-3761 (((-1035) (-215) (-568) (-568) (-215) (-215) (-679 (-215)) (-215) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-94 G))) (-3 (|:| |fn| (-390)) (|:| |fp| (-91 FCN)))) 42)) (-3769 (((-1035) (-215) (-568) (-568) (-568) (-215) (-679 (-215)) (-215) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-91 FCN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-93 OUTPUT)))) 38))) +(((-741) (-10 -7 (-15 -3769 ((-1035) (-215) (-568) (-568) (-568) (-215) (-679 (-215)) (-215) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-91 FCN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-93 OUTPUT))))) (-15 -3761 ((-1035) (-215) (-568) (-568) (-215) (-215) (-679 (-215)) (-215) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-94 G))) (-3 (|:| |fn| (-390)) (|:| |fp| (-91 FCN))))) (-15 -3752 ((-1035) (-215) (-568) (-568) (-215) (-1143) (-215) (-679 (-215)) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-94 G))) (-3 (|:| |fn| (-390)) (|:| |fp| (-91 FCN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-93 OUTPUT))))) (-15 -3744 ((-1035) (-215) (-568) (-568) (-1143) (-568) (-215) (-679 (-215)) (-215) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-94 G))) (-3 (|:| |fn| (-390)) (|:| |fp| (-91 FCN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-76 PEDERV))) (-3 (|:| |fn| (-390)) (|:| |fp| (-93 OUTPUT))))) (-15 -3736 ((-1035) (-679 (-215)) (-679 (-215)) (-568) (-215) (-215) (-215) (-568) (-568) (-568) (-679 (-215)) (-568) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-91 FCN))))) (-15 -3729 ((-1035) (-215) (-215) (-568) (-215) (-568) (-568) (-568) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-568) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-89 FCNF))) (-3 (|:| |fn| (-390)) (|:| |fp| (-90 FCNG))))) (-15 -3722 ((-1035) (-679 (-215)) (-568) (-568) (-215) (-568) (-568) (-215) (-215) (-679 (-215)) (-568) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-66 COEFFN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-92 BDYVAL))))) (-15 -3722 ((-1035) (-679 (-215)) (-568) (-568) (-215) (-568) (-568) (-215) (-215) (-679 (-215)) (-568) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-66 COEFFN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-92 BDYVAL))) (-390) (-390))) (-15 -3715 ((-1035) (-568) (-568) (-568) (-568) (-215) (-568) (-568) (-568) (-568) (-568) (-568) (-679 (-215)) (-679 (-215)) (-215) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-80 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-390)) (|:| |fp| (-81 G JACOBG JACGEP))))))) (T -741)) +((-3715 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-568)) (-5 *5 (-679 (-215))) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-80 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-81 G JACOBG JACGEP)))) (-5 *4 (-215)) (-5 *2 (-1035)) (-5 *1 (-741)))) (-3722 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-679 (-215))) (-5 *4 (-568)) (-5 *5 (-215)) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-66 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-92 BDYVAL)))) (-5 *8 (-390)) (-5 *2 (-1035)) (-5 *1 (-741)))) (-3722 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-679 (-215))) (-5 *4 (-568)) (-5 *5 (-215)) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-66 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-92 BDYVAL)))) (-5 *2 (-1035)) (-5 *1 (-741)))) (-3729 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-568)) (-5 *5 (-679 (-215))) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-89 FCNF)))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-90 FCNG)))) (-5 *3 (-215)) (-5 *2 (-1035)) (-5 *1 (-741)))) (-3736 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-679 (-215))) (-5 *4 (-568)) (-5 *5 (-215)) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-91 FCN)))) (-5 *2 (-1035)) (-5 *1 (-741)))) (-3744 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-568)) (-5 *5 (-1143)) (-5 *6 (-679 (-215))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-94 G)))) (-5 *8 (-3 (|:| |fn| (-390)) (|:| |fp| (-91 FCN)))) (-5 *9 (-3 (|:| |fn| (-390)) (|:| |fp| (-76 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-390)) (|:| |fp| (-93 OUTPUT)))) (-5 *3 (-215)) (-5 *2 (-1035)) (-5 *1 (-741)))) (-3752 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-568)) (-5 *5 (-1143)) (-5 *6 (-679 (-215))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-94 G)))) (-5 *8 (-3 (|:| |fn| (-390)) (|:| |fp| (-91 FCN)))) (-5 *9 (-3 (|:| |fn| (-390)) (|:| |fp| (-93 OUTPUT)))) (-5 *3 (-215)) (-5 *2 (-1035)) (-5 *1 (-741)))) (-3761 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-568)) (-5 *5 (-679 (-215))) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-94 G)))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-91 FCN)))) (-5 *3 (-215)) (-5 *2 (-1035)) (-5 *1 (-741)))) (-3769 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-568)) (-5 *5 (-679 (-215))) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-91 FCN)))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-93 OUTPUT)))) (-5 *3 (-215)) (-5 *2 (-1035)) (-5 *1 (-741))))) +(-10 -7 (-15 -3769 ((-1035) (-215) (-568) (-568) (-568) (-215) (-679 (-215)) (-215) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-91 FCN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-93 OUTPUT))))) (-15 -3761 ((-1035) (-215) (-568) (-568) (-215) (-215) (-679 (-215)) (-215) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-94 G))) (-3 (|:| |fn| (-390)) (|:| |fp| (-91 FCN))))) (-15 -3752 ((-1035) (-215) (-568) (-568) (-215) (-1143) (-215) (-679 (-215)) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-94 G))) (-3 (|:| |fn| (-390)) (|:| |fp| (-91 FCN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-93 OUTPUT))))) (-15 -3744 ((-1035) (-215) (-568) (-568) (-1143) (-568) (-215) (-679 (-215)) (-215) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-94 G))) (-3 (|:| |fn| (-390)) (|:| |fp| (-91 FCN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-76 PEDERV))) (-3 (|:| |fn| (-390)) (|:| |fp| (-93 OUTPUT))))) (-15 -3736 ((-1035) (-679 (-215)) (-679 (-215)) (-568) (-215) (-215) (-215) (-568) (-568) (-568) (-679 (-215)) (-568) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-91 FCN))))) (-15 -3729 ((-1035) (-215) (-215) (-568) (-215) (-568) (-568) (-568) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-568) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-89 FCNF))) (-3 (|:| |fn| (-390)) (|:| |fp| (-90 FCNG))))) (-15 -3722 ((-1035) (-679 (-215)) (-568) (-568) (-215) (-568) (-568) (-215) (-215) (-679 (-215)) (-568) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-66 COEFFN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-92 BDYVAL))))) (-15 -3722 ((-1035) (-679 (-215)) (-568) (-568) (-215) (-568) (-568) (-215) (-215) (-679 (-215)) (-568) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-66 COEFFN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-92 BDYVAL))) (-390) (-390))) (-15 -3715 ((-1035) (-568) (-568) (-568) (-568) (-215) (-568) (-568) (-568) (-568) (-568) (-568) (-679 (-215)) (-679 (-215)) (-215) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-80 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-390)) (|:| |fp| (-81 G JACOBG JACGEP)))))) +((-3814 (((-1035) (-215) (-215) (-568) (-568) (-679 (-215)) (-679 (-215)) (-215) (-215) (-568) (-568) (-679 (-215)) (-679 (-215)) (-215) (-215) (-568) (-568) (-679 (-215)) (-679 (-215)) (-215) (-568) (-568) (-568) (-666 (-215)) (-568)) 45)) (-3822 (((-1035) (-215) (-215) (-215) (-215) (-568) (-568) (-568) (-1143) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-87 PDEF))) (-3 (|:| |fn| (-390)) (|:| |fp| (-88 BNDY)))) 41)) (-3832 (((-1035) (-568) (-568) (-568) (-568) (-215) (-568) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-568)) 23))) +(((-742) (-10 -7 (-15 -3832 ((-1035) (-568) (-568) (-568) (-568) (-215) (-568) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-568))) (-15 -3822 ((-1035) (-215) (-215) (-215) (-215) (-568) (-568) (-568) (-1143) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-87 PDEF))) (-3 (|:| |fn| (-390)) (|:| |fp| (-88 BNDY))))) (-15 -3814 ((-1035) (-215) (-215) (-568) (-568) (-679 (-215)) (-679 (-215)) (-215) (-215) (-568) (-568) (-679 (-215)) (-679 (-215)) (-215) (-215) (-568) (-568) (-679 (-215)) (-679 (-215)) (-215) (-568) (-568) (-568) (-666 (-215)) (-568))))) (T -742)) +((-3814 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-568)) (-5 *5 (-679 (-215))) (-5 *6 (-666 (-215))) (-5 *3 (-215)) (-5 *2 (-1035)) (-5 *1 (-742)))) (-3822 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *5 (-1143)) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-87 PDEF)))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-88 BNDY)))) (-5 *2 (-1035)) (-5 *1 (-742)))) (-3832 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-568)) (-5 *5 (-679 (-215))) (-5 *4 (-215)) (-5 *2 (-1035)) (-5 *1 (-742))))) +(-10 -7 (-15 -3832 ((-1035) (-568) (-568) (-568) (-568) (-215) (-568) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-568))) (-15 -3822 ((-1035) (-215) (-215) (-215) (-215) (-568) (-568) (-568) (-1143) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-87 PDEF))) (-3 (|:| |fn| (-390)) (|:| |fp| (-88 BNDY))))) (-15 -3814 ((-1035) (-215) (-215) (-568) (-568) (-679 (-215)) (-679 (-215)) (-215) (-215) (-568) (-568) (-679 (-215)) (-679 (-215)) (-215) (-215) (-568) (-568) (-679 (-215)) (-679 (-215)) (-215) (-568) (-568) (-568) (-666 (-215)) (-568)))) +((-1454 (((-1035) (-568) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-215) (-679 (-215)) (-215) (-215) (-568)) 35)) (-1702 (((-1035) (-568) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-568) (-568) (-215) (-215) (-568)) 34)) (-1803 (((-1035) (-568) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-679 (-568)) (-679 (-215)) (-215) (-215) (-568)) 33)) (-1708 (((-1035) (-568) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-568)) 29)) (-1714 (((-1035) (-568) (-568) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-568)) 28)) (-1722 (((-1035) (-568) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-215) (-215) (-568)) 27)) (-1729 (((-1035) (-568) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-568) (-679 (-215)) (-568)) 23)) (-1736 (((-1035) (-568) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-568) (-679 (-215)) (-568)) 22)) (-1743 (((-1035) (-568) (-679 (-215)) (-679 (-215)) (-568)) 21)) (-1749 (((-1035) (-568) (-679 (-215)) (-679 (-215)) (-568) (-568) (-568)) 20))) +(((-743) (-10 -7 (-15 -1749 ((-1035) (-568) (-679 (-215)) (-679 (-215)) (-568) (-568) (-568))) (-15 -1743 ((-1035) (-568) (-679 (-215)) (-679 (-215)) (-568))) (-15 -1736 ((-1035) (-568) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-568) (-679 (-215)) (-568))) (-15 -1729 ((-1035) (-568) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-568) (-679 (-215)) (-568))) (-15 -1722 ((-1035) (-568) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-215) (-215) (-568))) (-15 -1714 ((-1035) (-568) (-568) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-568))) (-15 -1708 ((-1035) (-568) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-568))) (-15 -1803 ((-1035) (-568) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-679 (-568)) (-679 (-215)) (-215) (-215) (-568))) (-15 -1702 ((-1035) (-568) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-568) (-568) (-215) (-215) (-568))) (-15 -1454 ((-1035) (-568) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-215) (-679 (-215)) (-215) (-215) (-568))))) (T -743)) +((-1454 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *5 (-215)) (-5 *2 (-1035)) (-5 *1 (-743)))) (-1702 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *5 (-215)) (-5 *2 (-1035)) (-5 *1 (-743)))) (-1803 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-679 (-215))) (-5 *5 (-679 (-568))) (-5 *6 (-215)) (-5 *3 (-568)) (-5 *2 (-1035)) (-5 *1 (-743)))) (-1708 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-743)))) (-1714 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-743)))) (-1722 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *5 (-215)) (-5 *2 (-1035)) (-5 *1 (-743)))) (-1729 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-743)))) (-1736 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-743)))) (-1743 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-743)))) (-1749 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-743))))) +(-10 -7 (-15 -1749 ((-1035) (-568) (-679 (-215)) (-679 (-215)) (-568) (-568) (-568))) (-15 -1743 ((-1035) (-568) (-679 (-215)) (-679 (-215)) (-568))) (-15 -1736 ((-1035) (-568) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-568) (-679 (-215)) (-568))) (-15 -1729 ((-1035) (-568) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-568) (-679 (-215)) (-568))) (-15 -1722 ((-1035) (-568) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-215) (-215) (-568))) (-15 -1714 ((-1035) (-568) (-568) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-568))) (-15 -1708 ((-1035) (-568) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-568))) (-15 -1803 ((-1035) (-568) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-679 (-568)) (-679 (-215)) (-215) (-215) (-568))) (-15 -1702 ((-1035) (-568) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-568) (-568) (-215) (-215) (-568))) (-15 -1454 ((-1035) (-568) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-215) (-679 (-215)) (-215) (-215) (-568)))) +((-1754 (((-1035) (-568) (-568) (-679 (-215)) (-679 (-215)) (-568) (-679 (-215)) (-679 (-215)) (-568) (-568) (-568)) 45)) (-1759 (((-1035) (-568) (-568) (-568) (-215) (-679 (-215)) (-679 (-215)) (-568)) 44)) (-1765 (((-1035) (-568) (-568) (-568) (-568) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-568) (-568) (-568)) 43)) (-1771 (((-1035) (-568) (-568) (-568) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-568)) 42)) (-1777 (((-1035) (-1143) (-568) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-215) (-568) (-568) (-568) (-568) (-568) (-679 (-215)) (-568) (-679 (-215)) (-679 (-215)) (-568)) 41)) (-1782 (((-1035) (-1143) (-568) (-679 (-215)) (-568) (-679 (-215)) (-679 (-215)) (-215) (-568) (-568) (-568) (-568) (-568) (-679 (-215)) (-568) (-679 (-215)) (-679 (-215)) (-679 (-568)) (-568)) 40)) (-1788 (((-1035) (-568) (-568) (-568) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-679 (-568)) (-568) (-568) (-568) (-215) (-679 (-215)) (-568)) 39)) (-1793 (((-1035) (-1143) (-568) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-215) (-568) (-568) (-568) (-679 (-215)) (-568) (-679 (-215)) (-679 (-568))) 38)) (-3586 (((-1035) (-568) (-679 (-215)) (-679 (-215)) (-568)) 35)) (-3142 (((-1035) (-568) (-679 (-215)) (-679 (-215)) (-215) (-568) (-568)) 34)) (-3148 (((-1035) (-568) (-679 (-215)) (-679 (-215)) (-215) (-568)) 33)) (-3154 (((-1035) (-568) (-568) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-568)) 32)) (-3160 (((-1035) (-568) (-215) (-215) (-679 (-215)) (-568) (-568) (-215) (-568)) 31)) (-3167 (((-1035) (-568) (-215) (-215) (-679 (-215)) (-568) (-568) (-215) (-568) (-568) (-568)) 30)) (-3778 (((-1035) (-568) (-215) (-215) (-679 (-215)) (-568) (-568) (-568) (-568) (-568)) 29)) (-4202 (((-1035) (-568) (-568) (-568) (-215) (-215) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-568) (-679 (-215)) (-679 (-215)) (-568) (-679 (-568)) (-568) (-568) (-568)) 28)) (-1655 (((-1035) (-568) (-679 (-215)) (-215) (-568)) 24)) (-1674 (((-1035) (-568) (-568) (-568) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-568)) 20))) +(((-744) (-10 -7 (-15 -1674 ((-1035) (-568) (-568) (-568) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-568))) (-15 -1655 ((-1035) (-568) (-679 (-215)) (-215) (-568))) (-15 -4202 ((-1035) (-568) (-568) (-568) (-215) (-215) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-568) (-679 (-215)) (-679 (-215)) (-568) (-679 (-568)) (-568) (-568) (-568))) (-15 -3778 ((-1035) (-568) (-215) (-215) (-679 (-215)) (-568) (-568) (-568) (-568) (-568))) (-15 -3167 ((-1035) (-568) (-215) (-215) (-679 (-215)) (-568) (-568) (-215) (-568) (-568) (-568))) (-15 -3160 ((-1035) (-568) (-215) (-215) (-679 (-215)) (-568) (-568) (-215) (-568))) (-15 -3154 ((-1035) (-568) (-568) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-568))) (-15 -3148 ((-1035) (-568) (-679 (-215)) (-679 (-215)) (-215) (-568))) (-15 -3142 ((-1035) (-568) (-679 (-215)) (-679 (-215)) (-215) (-568) (-568))) (-15 -3586 ((-1035) (-568) (-679 (-215)) (-679 (-215)) (-568))) (-15 -1793 ((-1035) (-1143) (-568) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-215) (-568) (-568) (-568) (-679 (-215)) (-568) (-679 (-215)) (-679 (-568)))) (-15 -1788 ((-1035) (-568) (-568) (-568) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-679 (-568)) (-568) (-568) (-568) (-215) (-679 (-215)) (-568))) (-15 -1782 ((-1035) (-1143) (-568) (-679 (-215)) (-568) (-679 (-215)) (-679 (-215)) (-215) (-568) (-568) (-568) (-568) (-568) (-679 (-215)) (-568) (-679 (-215)) (-679 (-215)) (-679 (-568)) (-568))) (-15 -1777 ((-1035) (-1143) (-568) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-215) (-568) (-568) (-568) (-568) (-568) (-679 (-215)) (-568) (-679 (-215)) (-679 (-215)) (-568))) (-15 -1771 ((-1035) (-568) (-568) (-568) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-568))) (-15 -1765 ((-1035) (-568) (-568) (-568) (-568) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-568) (-568) (-568))) (-15 -1759 ((-1035) (-568) (-568) (-568) (-215) (-679 (-215)) (-679 (-215)) (-568))) (-15 -1754 ((-1035) (-568) (-568) (-679 (-215)) (-679 (-215)) (-568) (-679 (-215)) (-679 (-215)) (-568) (-568) (-568))))) (T -744)) +((-1754 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-744)))) (-1759 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-568)) (-5 *5 (-679 (-215))) (-5 *4 (-215)) (-5 *2 (-1035)) (-5 *1 (-744)))) (-1765 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-744)))) (-1771 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-744)))) (-1777 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1143)) (-5 *4 (-568)) (-5 *5 (-679 (-215))) (-5 *6 (-215)) (-5 *2 (-1035)) (-5 *1 (-744)))) (-1782 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1143)) (-5 *5 (-679 (-215))) (-5 *6 (-215)) (-5 *7 (-679 (-568))) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-744)))) (-1788 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-679 (-215))) (-5 *5 (-679 (-568))) (-5 *6 (-215)) (-5 *3 (-568)) (-5 *2 (-1035)) (-5 *1 (-744)))) (-1793 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1143)) (-5 *5 (-679 (-215))) (-5 *6 (-215)) (-5 *7 (-679 (-568))) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-744)))) (-3586 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-744)))) (-3142 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *5 (-215)) (-5 *2 (-1035)) (-5 *1 (-744)))) (-3148 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *5 (-215)) (-5 *2 (-1035)) (-5 *1 (-744)))) (-3154 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-744)))) (-3160 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-568)) (-5 *5 (-679 (-215))) (-5 *4 (-215)) (-5 *2 (-1035)) (-5 *1 (-744)))) (-3167 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-568)) (-5 *5 (-679 (-215))) (-5 *4 (-215)) (-5 *2 (-1035)) (-5 *1 (-744)))) (-3778 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-568)) (-5 *5 (-679 (-215))) (-5 *4 (-215)) (-5 *2 (-1035)) (-5 *1 (-744)))) (-4202 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-679 (-215))) (-5 *6 (-679 (-568))) (-5 *3 (-568)) (-5 *4 (-215)) (-5 *2 (-1035)) (-5 *1 (-744)))) (-1655 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *5 (-215)) (-5 *2 (-1035)) (-5 *1 (-744)))) (-1674 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-744))))) +(-10 -7 (-15 -1674 ((-1035) (-568) (-568) (-568) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-568))) (-15 -1655 ((-1035) (-568) (-679 (-215)) (-215) (-568))) (-15 -4202 ((-1035) (-568) (-568) (-568) (-215) (-215) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-568) (-679 (-215)) (-679 (-215)) (-568) (-679 (-568)) (-568) (-568) (-568))) (-15 -3778 ((-1035) (-568) (-215) (-215) (-679 (-215)) (-568) (-568) (-568) (-568) (-568))) (-15 -3167 ((-1035) (-568) (-215) (-215) (-679 (-215)) (-568) (-568) (-215) (-568) (-568) (-568))) (-15 -3160 ((-1035) (-568) (-215) (-215) (-679 (-215)) (-568) (-568) (-215) (-568))) (-15 -3154 ((-1035) (-568) (-568) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-568))) (-15 -3148 ((-1035) (-568) (-679 (-215)) (-679 (-215)) (-215) (-568))) (-15 -3142 ((-1035) (-568) (-679 (-215)) (-679 (-215)) (-215) (-568) (-568))) (-15 -3586 ((-1035) (-568) (-679 (-215)) (-679 (-215)) (-568))) (-15 -1793 ((-1035) (-1143) (-568) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-215) (-568) (-568) (-568) (-679 (-215)) (-568) (-679 (-215)) (-679 (-568)))) (-15 -1788 ((-1035) (-568) (-568) (-568) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-679 (-568)) (-568) (-568) (-568) (-215) (-679 (-215)) (-568))) (-15 -1782 ((-1035) (-1143) (-568) (-679 (-215)) (-568) (-679 (-215)) (-679 (-215)) (-215) (-568) (-568) (-568) (-568) (-568) (-679 (-215)) (-568) (-679 (-215)) (-679 (-215)) (-679 (-568)) (-568))) (-15 -1777 ((-1035) (-1143) (-568) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-215) (-568) (-568) (-568) (-568) (-568) (-679 (-215)) (-568) (-679 (-215)) (-679 (-215)) (-568))) (-15 -1771 ((-1035) (-568) (-568) (-568) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-568))) (-15 -1765 ((-1035) (-568) (-568) (-568) (-568) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-568) (-568) (-568))) (-15 -1759 ((-1035) (-568) (-568) (-568) (-215) (-679 (-215)) (-679 (-215)) (-568))) (-15 -1754 ((-1035) (-568) (-568) (-679 (-215)) (-679 (-215)) (-568) (-679 (-215)) (-679 (-215)) (-568) (-568) (-568)))) +((-3173 (((-1035) (-568) (-568) (-568) (-215) (-679 (-215)) (-568) (-679 (-215)) (-568)) 63)) (-3181 (((-1035) (-568) (-568) (-568) (-568) (-568) (-568) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-568) (-568) (-121) (-215) (-568) (-215) (-215) (-121) (-215) (-215) (-215) (-215) (-121) (-568) (-568) (-568) (-568) (-568) (-215) (-215) (-215) (-568) (-568) (-568) (-568) (-568) (-679 (-568)) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-85 CONFUN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-82 OBJFUN)))) 62)) (-3188 (((-1035) (-568) (-568) (-568) (-568) (-568) (-568) (-568) (-568) (-215) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-121) (-121) (-121) (-568) (-568) (-679 (-215)) (-679 (-568)) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-70 QPHESS)))) 58)) (-3195 (((-1035) (-568) (-568) (-568) (-568) (-568) (-568) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-121) (-568) (-568) (-679 (-215)) (-568)) 51)) (-3204 (((-1035) (-568) (-568) (-568) (-568) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-71 FUNCT1)))) 50)) (-3213 (((-1035) (-568) (-568) (-568) (-568) (-679 (-215)) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-68 LSFUN2)))) 46)) (-3219 (((-1035) (-568) (-568) (-568) (-568) (-679 (-215)) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-84 LSFUN1)))) 42)) (-3228 (((-1035) (-568) (-215) (-215) (-568) (-215) (-121) (-215) (-215) (-568) (-568) (-568) (-568) (-679 (-215)) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-82 OBJFUN)))) 38))) +(((-745) (-10 -7 (-15 -3228 ((-1035) (-568) (-215) (-215) (-568) (-215) (-121) (-215) (-215) (-568) (-568) (-568) (-568) (-679 (-215)) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-82 OBJFUN))))) (-15 -3219 ((-1035) (-568) (-568) (-568) (-568) (-679 (-215)) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-84 LSFUN1))))) (-15 -3213 ((-1035) (-568) (-568) (-568) (-568) (-679 (-215)) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-68 LSFUN2))))) (-15 -3204 ((-1035) (-568) (-568) (-568) (-568) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-71 FUNCT1))))) (-15 -3195 ((-1035) (-568) (-568) (-568) (-568) (-568) (-568) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-121) (-568) (-568) (-679 (-215)) (-568))) (-15 -3188 ((-1035) (-568) (-568) (-568) (-568) (-568) (-568) (-568) (-568) (-215) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-121) (-121) (-121) (-568) (-568) (-679 (-215)) (-679 (-568)) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-70 QPHESS))))) (-15 -3181 ((-1035) (-568) (-568) (-568) (-568) (-568) (-568) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-568) (-568) (-121) (-215) (-568) (-215) (-215) (-121) (-215) (-215) (-215) (-215) (-121) (-568) (-568) (-568) (-568) (-568) (-215) (-215) (-215) (-568) (-568) (-568) (-568) (-568) (-679 (-568)) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-85 CONFUN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-82 OBJFUN))))) (-15 -3173 ((-1035) (-568) (-568) (-568) (-215) (-679 (-215)) (-568) (-679 (-215)) (-568))))) (T -745)) +((-3173 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-568)) (-5 *5 (-679 (-215))) (-5 *4 (-215)) (-5 *2 (-1035)) (-5 *1 (-745)))) (-3181 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-679 (-215))) (-5 *5 (-121)) (-5 *6 (-215)) (-5 *7 (-679 (-568))) (-5 *8 (-3 (|:| |fn| (-390)) (|:| |fp| (-85 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-390)) (|:| |fp| (-82 OBJFUN)))) (-5 *3 (-568)) (-5 *2 (-1035)) (-5 *1 (-745)))) (-3188 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-679 (-215))) (-5 *6 (-121)) (-5 *7 (-679 (-568))) (-5 *8 (-3 (|:| |fn| (-390)) (|:| |fp| (-70 QPHESS)))) (-5 *3 (-568)) (-5 *4 (-215)) (-5 *2 (-1035)) (-5 *1 (-745)))) (-3195 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *5 (-121)) (-5 *2 (-1035)) (-5 *1 (-745)))) (-3204 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-71 FUNCT1)))) (-5 *2 (-1035)) (-5 *1 (-745)))) (-3213 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-68 LSFUN2)))) (-5 *2 (-1035)) (-5 *1 (-745)))) (-3219 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-84 LSFUN1)))) (-5 *2 (-1035)) (-5 *1 (-745)))) (-3228 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-568)) (-5 *5 (-121)) (-5 *6 (-679 (-215))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-82 OBJFUN)))) (-5 *4 (-215)) (-5 *2 (-1035)) (-5 *1 (-745))))) +(-10 -7 (-15 -3228 ((-1035) (-568) (-215) (-215) (-568) (-215) (-121) (-215) (-215) (-568) (-568) (-568) (-568) (-679 (-215)) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-82 OBJFUN))))) (-15 -3219 ((-1035) (-568) (-568) (-568) (-568) (-679 (-215)) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-84 LSFUN1))))) (-15 -3213 ((-1035) (-568) (-568) (-568) (-568) (-679 (-215)) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-68 LSFUN2))))) (-15 -3204 ((-1035) (-568) (-568) (-568) (-568) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-71 FUNCT1))))) (-15 -3195 ((-1035) (-568) (-568) (-568) (-568) (-568) (-568) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-121) (-568) (-568) (-679 (-215)) (-568))) (-15 -3188 ((-1035) (-568) (-568) (-568) (-568) (-568) (-568) (-568) (-568) (-215) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-121) (-121) (-121) (-568) (-568) (-679 (-215)) (-679 (-568)) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-70 QPHESS))))) (-15 -3181 ((-1035) (-568) (-568) (-568) (-568) (-568) (-568) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-568) (-568) (-121) (-215) (-568) (-215) (-215) (-121) (-215) (-215) (-215) (-215) (-121) (-568) (-568) (-568) (-568) (-568) (-215) (-215) (-215) (-568) (-568) (-568) (-568) (-568) (-679 (-568)) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-85 CONFUN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-82 OBJFUN))))) (-15 -3173 ((-1035) (-568) (-568) (-568) (-215) (-679 (-215)) (-568) (-679 (-215)) (-568)))) +((-3237 (((-1035) (-1143) (-568) (-568) (-568) (-568) (-679 (-169 (-215))) (-679 (-169 (-215))) (-568)) 46)) (-3244 (((-1035) (-1143) (-1143) (-568) (-568) (-679 (-169 (-215))) (-568) (-679 (-169 (-215))) (-568) (-568) (-679 (-169 (-215))) (-568)) 45)) (-3252 (((-1035) (-568) (-568) (-568) (-679 (-169 (-215))) (-568)) 44)) (-3258 (((-1035) (-1143) (-568) (-568) (-568) (-568) (-679 (-215)) (-679 (-215)) (-568)) 40)) (-3266 (((-1035) (-1143) (-1143) (-568) (-568) (-679 (-215)) (-568) (-679 (-215)) (-568) (-568) (-679 (-215)) (-568)) 39)) (-3275 (((-1035) (-568) (-568) (-568) (-679 (-215)) (-568)) 36)) (-3285 (((-1035) (-568) (-679 (-215)) (-568) (-679 (-568)) (-568)) 35)) (-3289 (((-1035) (-568) (-568) (-568) (-568) (-634 (-121)) (-679 (-215)) (-679 (-568)) (-679 (-568)) (-215) (-215) (-568)) 34)) (-3303 (((-1035) (-568) (-568) (-568) (-679 (-568)) (-679 (-568)) (-679 (-568)) (-679 (-568)) (-121) (-215) (-121) (-679 (-568)) (-679 (-215)) (-568)) 33)) (-3308 (((-1035) (-568) (-568) (-568) (-568) (-215) (-121) (-121) (-634 (-121)) (-679 (-215)) (-679 (-568)) (-679 (-568)) (-568)) 32))) +(((-746) (-10 -7 (-15 -3308 ((-1035) (-568) (-568) (-568) (-568) (-215) (-121) (-121) (-634 (-121)) (-679 (-215)) (-679 (-568)) (-679 (-568)) (-568))) (-15 -3303 ((-1035) (-568) (-568) (-568) (-679 (-568)) (-679 (-568)) (-679 (-568)) (-679 (-568)) (-121) (-215) (-121) (-679 (-568)) (-679 (-215)) (-568))) (-15 -3289 ((-1035) (-568) (-568) (-568) (-568) (-634 (-121)) (-679 (-215)) (-679 (-568)) (-679 (-568)) (-215) (-215) (-568))) (-15 -3285 ((-1035) (-568) (-679 (-215)) (-568) (-679 (-568)) (-568))) (-15 -3275 ((-1035) (-568) (-568) (-568) (-679 (-215)) (-568))) (-15 -3266 ((-1035) (-1143) (-1143) (-568) (-568) (-679 (-215)) (-568) (-679 (-215)) (-568) (-568) (-679 (-215)) (-568))) (-15 -3258 ((-1035) (-1143) (-568) (-568) (-568) (-568) (-679 (-215)) (-679 (-215)) (-568))) (-15 -3252 ((-1035) (-568) (-568) (-568) (-679 (-169 (-215))) (-568))) (-15 -3244 ((-1035) (-1143) (-1143) (-568) (-568) (-679 (-169 (-215))) (-568) (-679 (-169 (-215))) (-568) (-568) (-679 (-169 (-215))) (-568))) (-15 -3237 ((-1035) (-1143) (-568) (-568) (-568) (-568) (-679 (-169 (-215))) (-679 (-169 (-215))) (-568))))) (T -746)) +((-3237 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1143)) (-5 *4 (-568)) (-5 *5 (-679 (-169 (-215)))) (-5 *2 (-1035)) (-5 *1 (-746)))) (-3244 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1143)) (-5 *4 (-568)) (-5 *5 (-679 (-169 (-215)))) (-5 *2 (-1035)) (-5 *1 (-746)))) (-3252 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-169 (-215)))) (-5 *2 (-1035)) (-5 *1 (-746)))) (-3258 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1143)) (-5 *4 (-568)) (-5 *5 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-746)))) (-3266 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1143)) (-5 *4 (-568)) (-5 *5 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-746)))) (-3275 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-746)))) (-3285 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-679 (-215))) (-5 *5 (-679 (-568))) (-5 *3 (-568)) (-5 *2 (-1035)) (-5 *1 (-746)))) (-3289 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-634 (-121))) (-5 *5 (-679 (-215))) (-5 *6 (-679 (-568))) (-5 *7 (-215)) (-5 *3 (-568)) (-5 *2 (-1035)) (-5 *1 (-746)))) (-3303 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-679 (-568))) (-5 *5 (-121)) (-5 *7 (-679 (-215))) (-5 *3 (-568)) (-5 *6 (-215)) (-5 *2 (-1035)) (-5 *1 (-746)))) (-3308 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-634 (-121))) (-5 *7 (-679 (-215))) (-5 *8 (-679 (-568))) (-5 *3 (-568)) (-5 *4 (-215)) (-5 *5 (-121)) (-5 *2 (-1035)) (-5 *1 (-746))))) +(-10 -7 (-15 -3308 ((-1035) (-568) (-568) (-568) (-568) (-215) (-121) (-121) (-634 (-121)) (-679 (-215)) (-679 (-568)) (-679 (-568)) (-568))) (-15 -3303 ((-1035) (-568) (-568) (-568) (-679 (-568)) (-679 (-568)) (-679 (-568)) (-679 (-568)) (-121) (-215) (-121) (-679 (-568)) (-679 (-215)) (-568))) (-15 -3289 ((-1035) (-568) (-568) (-568) (-568) (-634 (-121)) (-679 (-215)) (-679 (-568)) (-679 (-568)) (-215) (-215) (-568))) (-15 -3285 ((-1035) (-568) (-679 (-215)) (-568) (-679 (-568)) (-568))) (-15 -3275 ((-1035) (-568) (-568) (-568) (-679 (-215)) (-568))) (-15 -3266 ((-1035) (-1143) (-1143) (-568) (-568) (-679 (-215)) (-568) (-679 (-215)) (-568) (-568) (-679 (-215)) (-568))) (-15 -3258 ((-1035) (-1143) (-568) (-568) (-568) (-568) (-679 (-215)) (-679 (-215)) (-568))) (-15 -3252 ((-1035) (-568) (-568) (-568) (-679 (-169 (-215))) (-568))) (-15 -3244 ((-1035) (-1143) (-1143) (-568) (-568) (-679 (-169 (-215))) (-568) (-679 (-169 (-215))) (-568) (-568) (-679 (-169 (-215))) (-568))) (-15 -3237 ((-1035) (-1143) (-568) (-568) (-568) (-568) (-679 (-169 (-215))) (-679 (-169 (-215))) (-568)))) +((-2952 (((-1035) (-568) (-568) (-568) (-568) (-568) (-121) (-568) (-121) (-568) (-679 (-169 (-215))) (-679 (-169 (-215))) (-568)) 64)) (-2956 (((-1035) (-568) (-568) (-568) (-568) (-568) (-121) (-568) (-121) (-568) (-679 (-215)) (-679 (-215)) (-568)) 60)) (-2962 (((-1035) (-568) (-568) (-215) (-568) (-568) (-568) (-568) (-568) (-568) (-568) (-679 (-215)) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-72 DOT))) (-3 (|:| |fn| (-390)) (|:| |fp| (-73 IMAGE))) (-390)) 56) (((-1035) (-568) (-568) (-215) (-568) (-568) (-568) (-568) (-568) (-568) (-568) (-679 (-215)) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-72 DOT))) (-3 (|:| |fn| (-390)) (|:| |fp| (-73 IMAGE)))) 55)) (-2966 (((-1035) (-568) (-568) (-568) (-215) (-121) (-568) (-679 (-215)) (-679 (-215)) (-568)) 37)) (-2972 (((-1035) (-568) (-568) (-215) (-215) (-568) (-568) (-679 (-215)) (-568)) 33)) (-2977 (((-1035) (-679 (-215)) (-568) (-679 (-215)) (-568) (-568) (-568) (-568) (-568)) 29)) (-2981 (((-1035) (-568) (-568) (-568) (-679 (-215)) (-679 (-215)) (-568)) 28)) (-2987 (((-1035) (-568) (-568) (-568) (-568) (-568) (-679 (-215)) (-679 (-215)) (-568)) 27)) (-2992 (((-1035) (-568) (-568) (-568) (-679 (-215)) (-679 (-215)) (-568)) 26)) (-2997 (((-1035) (-568) (-568) (-568) (-568) (-679 (-215)) (-568)) 25)) (-3006 (((-1035) (-568) (-568) (-679 (-215)) (-568)) 24)) (-3011 (((-1035) (-568) (-568) (-568) (-568) (-679 (-215)) (-679 (-215)) (-568)) 23)) (-3015 (((-1035) (-568) (-568) (-568) (-679 (-215)) (-679 (-215)) (-568)) 22)) (-3020 (((-1035) (-679 (-215)) (-568) (-568) (-568) (-568)) 21)) (-3024 (((-1035) (-568) (-568) (-679 (-215)) (-568)) 20))) +(((-747) (-10 -7 (-15 -3024 ((-1035) (-568) (-568) (-679 (-215)) (-568))) (-15 -3020 ((-1035) (-679 (-215)) (-568) (-568) (-568) (-568))) (-15 -3015 ((-1035) (-568) (-568) (-568) (-679 (-215)) (-679 (-215)) (-568))) (-15 -3011 ((-1035) (-568) (-568) (-568) (-568) (-679 (-215)) (-679 (-215)) (-568))) (-15 -3006 ((-1035) (-568) (-568) (-679 (-215)) (-568))) (-15 -2997 ((-1035) (-568) (-568) (-568) (-568) (-679 (-215)) (-568))) (-15 -2992 ((-1035) (-568) (-568) (-568) (-679 (-215)) (-679 (-215)) (-568))) (-15 -2987 ((-1035) (-568) (-568) (-568) (-568) (-568) (-679 (-215)) (-679 (-215)) (-568))) (-15 -2981 ((-1035) (-568) (-568) (-568) (-679 (-215)) (-679 (-215)) (-568))) (-15 -2977 ((-1035) (-679 (-215)) (-568) (-679 (-215)) (-568) (-568) (-568) (-568) (-568))) (-15 -2972 ((-1035) (-568) (-568) (-215) (-215) (-568) (-568) (-679 (-215)) (-568))) (-15 -2966 ((-1035) (-568) (-568) (-568) (-215) (-121) (-568) (-679 (-215)) (-679 (-215)) (-568))) (-15 -2962 ((-1035) (-568) (-568) (-215) (-568) (-568) (-568) (-568) (-568) (-568) (-568) (-679 (-215)) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-72 DOT))) (-3 (|:| |fn| (-390)) (|:| |fp| (-73 IMAGE))))) (-15 -2962 ((-1035) (-568) (-568) (-215) (-568) (-568) (-568) (-568) (-568) (-568) (-568) (-679 (-215)) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-72 DOT))) (-3 (|:| |fn| (-390)) (|:| |fp| (-73 IMAGE))) (-390))) (-15 -2956 ((-1035) (-568) (-568) (-568) (-568) (-568) (-121) (-568) (-121) (-568) (-679 (-215)) (-679 (-215)) (-568))) (-15 -2952 ((-1035) (-568) (-568) (-568) (-568) (-568) (-121) (-568) (-121) (-568) (-679 (-169 (-215))) (-679 (-169 (-215))) (-568))))) (T -747)) +((-2952 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-568)) (-5 *4 (-121)) (-5 *5 (-679 (-169 (-215)))) (-5 *2 (-1035)) (-5 *1 (-747)))) (-2956 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-568)) (-5 *4 (-121)) (-5 *5 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-747)))) (-2962 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-568)) (-5 *5 (-679 (-215))) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-72 DOT)))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-73 IMAGE)))) (-5 *8 (-390)) (-5 *4 (-215)) (-5 *2 (-1035)) (-5 *1 (-747)))) (-2962 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-568)) (-5 *5 (-679 (-215))) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-72 DOT)))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-73 IMAGE)))) (-5 *4 (-215)) (-5 *2 (-1035)) (-5 *1 (-747)))) (-2966 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-568)) (-5 *5 (-121)) (-5 *6 (-679 (-215))) (-5 *4 (-215)) (-5 *2 (-1035)) (-5 *1 (-747)))) (-2972 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-568)) (-5 *5 (-679 (-215))) (-5 *4 (-215)) (-5 *2 (-1035)) (-5 *1 (-747)))) (-2977 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-679 (-215))) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-747)))) (-2981 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-747)))) (-2987 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-747)))) (-2992 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-747)))) (-2997 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-747)))) (-3006 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-747)))) (-3011 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-747)))) (-3015 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-747)))) (-3020 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-679 (-215))) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-747)))) (-3024 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-747))))) +(-10 -7 (-15 -3024 ((-1035) (-568) (-568) (-679 (-215)) (-568))) (-15 -3020 ((-1035) (-679 (-215)) (-568) (-568) (-568) (-568))) (-15 -3015 ((-1035) (-568) (-568) (-568) (-679 (-215)) (-679 (-215)) (-568))) (-15 -3011 ((-1035) (-568) (-568) (-568) (-568) (-679 (-215)) (-679 (-215)) (-568))) (-15 -3006 ((-1035) (-568) (-568) (-679 (-215)) (-568))) (-15 -2997 ((-1035) (-568) (-568) (-568) (-568) (-679 (-215)) (-568))) (-15 -2992 ((-1035) (-568) (-568) (-568) (-679 (-215)) (-679 (-215)) (-568))) (-15 -2987 ((-1035) (-568) (-568) (-568) (-568) (-568) (-679 (-215)) (-679 (-215)) (-568))) (-15 -2981 ((-1035) (-568) (-568) (-568) (-679 (-215)) (-679 (-215)) (-568))) (-15 -2977 ((-1035) (-679 (-215)) (-568) (-679 (-215)) (-568) (-568) (-568) (-568) (-568))) (-15 -2972 ((-1035) (-568) (-568) (-215) (-215) (-568) (-568) (-679 (-215)) (-568))) (-15 -2966 ((-1035) (-568) (-568) (-568) (-215) (-121) (-568) (-679 (-215)) (-679 (-215)) (-568))) (-15 -2962 ((-1035) (-568) (-568) (-215) (-568) (-568) (-568) (-568) (-568) (-568) (-568) (-679 (-215)) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-72 DOT))) (-3 (|:| |fn| (-390)) (|:| |fp| (-73 IMAGE))))) (-15 -2962 ((-1035) (-568) (-568) (-215) (-568) (-568) (-568) (-568) (-568) (-568) (-568) (-679 (-215)) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-72 DOT))) (-3 (|:| |fn| (-390)) (|:| |fp| (-73 IMAGE))) (-390))) (-15 -2956 ((-1035) (-568) (-568) (-568) (-568) (-568) (-121) (-568) (-121) (-568) (-679 (-215)) (-679 (-215)) (-568))) (-15 -2952 ((-1035) (-568) (-568) (-568) (-568) (-568) (-121) (-568) (-121) (-568) (-679 (-169 (-215))) (-679 (-169 (-215))) (-568)))) +((-4319 (((-1035) (-568) (-568) (-215) (-215) (-215) (-215) (-568) (-568) (-568) (-568) (-679 (-215)) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-75 APROD)))) 60)) (-4326 (((-1035) (-568) (-679 (-215)) (-568) (-679 (-215)) (-679 (-568)) (-568) (-679 (-215)) (-568) (-568) (-568) (-568)) 56)) (-4331 (((-1035) (-568) (-679 (-215)) (-121) (-215) (-568) (-568) (-568) (-568) (-215) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-73 APROD))) (-3 (|:| |fn| (-390)) (|:| |fp| (-78 MSOLVE)))) 55)) (-4337 (((-1035) (-568) (-568) (-679 (-215)) (-568) (-679 (-568)) (-568) (-679 (-568)) (-679 (-215)) (-679 (-568)) (-679 (-568)) (-679 (-215)) (-679 (-215)) (-679 (-568)) (-568)) 36)) (-4344 (((-1035) (-568) (-568) (-568) (-215) (-568) (-679 (-215)) (-679 (-215)) (-568)) 35)) (-4349 (((-1035) (-568) (-568) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-568)) 31)) (-4357 (((-1035) (-568) (-679 (-215)) (-568) (-679 (-568)) (-679 (-568)) (-568) (-679 (-568)) (-679 (-215))) 30)) (-4363 (((-1035) (-679 (-215)) (-568) (-679 (-215)) (-568) (-568) (-568)) 26)) (-4369 (((-1035) (-568) (-679 (-215)) (-568) (-679 (-215)) (-568)) 25)) (-4380 (((-1035) (-568) (-679 (-215)) (-568) (-679 (-215)) (-568)) 24)) (-2896 (((-1035) (-568) (-679 (-169 (-215))) (-568) (-568) (-568) (-568) (-679 (-169 (-215))) (-568)) 20))) +(((-748) (-10 -7 (-15 -2896 ((-1035) (-568) (-679 (-169 (-215))) (-568) (-568) (-568) (-568) (-679 (-169 (-215))) (-568))) (-15 -4380 ((-1035) (-568) (-679 (-215)) (-568) (-679 (-215)) (-568))) (-15 -4369 ((-1035) (-568) (-679 (-215)) (-568) (-679 (-215)) (-568))) (-15 -4363 ((-1035) (-679 (-215)) (-568) (-679 (-215)) (-568) (-568) (-568))) (-15 -4357 ((-1035) (-568) (-679 (-215)) (-568) (-679 (-568)) (-679 (-568)) (-568) (-679 (-568)) (-679 (-215)))) (-15 -4349 ((-1035) (-568) (-568) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-568))) (-15 -4344 ((-1035) (-568) (-568) (-568) (-215) (-568) (-679 (-215)) (-679 (-215)) (-568))) (-15 -4337 ((-1035) (-568) (-568) (-679 (-215)) (-568) (-679 (-568)) (-568) (-679 (-568)) (-679 (-215)) (-679 (-568)) (-679 (-568)) (-679 (-215)) (-679 (-215)) (-679 (-568)) (-568))) (-15 -4331 ((-1035) (-568) (-679 (-215)) (-121) (-215) (-568) (-568) (-568) (-568) (-215) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-73 APROD))) (-3 (|:| |fn| (-390)) (|:| |fp| (-78 MSOLVE))))) (-15 -4326 ((-1035) (-568) (-679 (-215)) (-568) (-679 (-215)) (-679 (-568)) (-568) (-679 (-215)) (-568) (-568) (-568) (-568))) (-15 -4319 ((-1035) (-568) (-568) (-215) (-215) (-215) (-215) (-568) (-568) (-568) (-568) (-679 (-215)) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-75 APROD))))))) (T -748)) +((-4319 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-568)) (-5 *5 (-679 (-215))) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-75 APROD)))) (-5 *4 (-215)) (-5 *2 (-1035)) (-5 *1 (-748)))) (-4326 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-679 (-215))) (-5 *5 (-679 (-568))) (-5 *3 (-568)) (-5 *2 (-1035)) (-5 *1 (-748)))) (-4331 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *5 (-121)) (-5 *6 (-215)) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-73 APROD)))) (-5 *8 (-3 (|:| |fn| (-390)) (|:| |fp| (-78 MSOLVE)))) (-5 *2 (-1035)) (-5 *1 (-748)))) (-4337 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-679 (-215))) (-5 *5 (-679 (-568))) (-5 *3 (-568)) (-5 *2 (-1035)) (-5 *1 (-748)))) (-4344 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-568)) (-5 *5 (-679 (-215))) (-5 *4 (-215)) (-5 *2 (-1035)) (-5 *1 (-748)))) (-4349 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-748)))) (-4357 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-679 (-215))) (-5 *5 (-679 (-568))) (-5 *3 (-568)) (-5 *2 (-1035)) (-5 *1 (-748)))) (-4363 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-679 (-215))) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-748)))) (-4369 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-748)))) (-4380 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-748)))) (-2896 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-169 (-215)))) (-5 *2 (-1035)) (-5 *1 (-748))))) +(-10 -7 (-15 -2896 ((-1035) (-568) (-679 (-169 (-215))) (-568) (-568) (-568) (-568) (-679 (-169 (-215))) (-568))) (-15 -4380 ((-1035) (-568) (-679 (-215)) (-568) (-679 (-215)) (-568))) (-15 -4369 ((-1035) (-568) (-679 (-215)) (-568) (-679 (-215)) (-568))) (-15 -4363 ((-1035) (-679 (-215)) (-568) (-679 (-215)) (-568) (-568) (-568))) (-15 -4357 ((-1035) (-568) (-679 (-215)) (-568) (-679 (-568)) (-679 (-568)) (-568) (-679 (-568)) (-679 (-215)))) (-15 -4349 ((-1035) (-568) (-568) (-679 (-215)) (-679 (-215)) (-679 (-215)) (-568))) (-15 -4344 ((-1035) (-568) (-568) (-568) (-215) (-568) (-679 (-215)) (-679 (-215)) (-568))) (-15 -4337 ((-1035) (-568) (-568) (-679 (-215)) (-568) (-679 (-568)) (-568) (-679 (-568)) (-679 (-215)) (-679 (-568)) (-679 (-568)) (-679 (-215)) (-679 (-215)) (-679 (-568)) (-568))) (-15 -4331 ((-1035) (-568) (-679 (-215)) (-121) (-215) (-568) (-568) (-568) (-568) (-215) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-73 APROD))) (-3 (|:| |fn| (-390)) (|:| |fp| (-78 MSOLVE))))) (-15 -4326 ((-1035) (-568) (-679 (-215)) (-568) (-679 (-215)) (-679 (-568)) (-568) (-679 (-215)) (-568) (-568) (-568) (-568))) (-15 -4319 ((-1035) (-568) (-568) (-215) (-215) (-215) (-215) (-568) (-568) (-568) (-568) (-679 (-215)) (-568) (-3 (|:| |fn| (-390)) (|:| |fp| (-75 APROD)))))) +((-2920 (((-1035) (-1143) (-568) (-568) (-679 (-215)) (-568) (-568) (-679 (-215))) 28)) (-2924 (((-1035) (-1143) (-568) (-568) (-679 (-215))) 27)) (-2929 (((-1035) (-1143) (-568) (-568) (-679 (-215)) (-568) (-679 (-568)) (-568) (-679 (-215))) 26)) (-2933 (((-1035) (-568) (-568) (-568) (-679 (-215))) 20))) +(((-749) (-10 -7 (-15 -2933 ((-1035) (-568) (-568) (-568) (-679 (-215)))) (-15 -2929 ((-1035) (-1143) (-568) (-568) (-679 (-215)) (-568) (-679 (-568)) (-568) (-679 (-215)))) (-15 -2924 ((-1035) (-1143) (-568) (-568) (-679 (-215)))) (-15 -2920 ((-1035) (-1143) (-568) (-568) (-679 (-215)) (-568) (-568) (-679 (-215)))))) (T -749)) +((-2920 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1143)) (-5 *4 (-568)) (-5 *5 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-749)))) (-2924 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1143)) (-5 *4 (-568)) (-5 *5 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-749)))) (-2929 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1143)) (-5 *5 (-679 (-215))) (-5 *6 (-679 (-568))) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-749)))) (-2933 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-749))))) +(-10 -7 (-15 -2933 ((-1035) (-568) (-568) (-568) (-679 (-215)))) (-15 -2929 ((-1035) (-1143) (-568) (-568) (-679 (-215)) (-568) (-679 (-568)) (-568) (-679 (-215)))) (-15 -2924 ((-1035) (-1143) (-568) (-568) (-679 (-215)))) (-15 -2920 ((-1035) (-1143) (-568) (-568) (-679 (-215)) (-568) (-568) (-679 (-215))))) +((-4170 (((-1035) (-215) (-215) (-215) (-215) (-568)) 62)) (-4175 (((-1035) (-215) (-215) (-215) (-568)) 61)) (-4182 (((-1035) (-215) (-215) (-215) (-568)) 60)) (-4188 (((-1035) (-215) (-215) (-568)) 59)) (-4196 (((-1035) (-215) (-568)) 58)) (-4208 (((-1035) (-215) (-568)) 57)) (-4219 (((-1035) (-215) (-568)) 56)) (-4232 (((-1035) (-215) (-568)) 55)) (-4256 (((-1035) (-215) (-568)) 54)) (-4268 (((-1035) (-215) (-568)) 53)) (-4282 (((-1035) (-215) (-169 (-215)) (-568) (-1143) (-568)) 52)) (-4289 (((-1035) (-215) (-169 (-215)) (-568) (-1143) (-568)) 51)) (-4294 (((-1035) (-215) (-568)) 50)) (-4301 (((-1035) (-215) (-568)) 49)) (-4307 (((-1035) (-215) (-568)) 48)) (-4312 (((-1035) (-215) (-568)) 47)) (-2940 (((-1035) (-568) (-215) (-169 (-215)) (-568) (-1143) (-568)) 46)) (-2944 (((-1035) (-1143) (-169 (-215)) (-1143) (-568)) 45)) (-2948 (((-1035) (-1143) (-169 (-215)) (-1143) (-568)) 44)) (-4040 (((-1035) (-215) (-169 (-215)) (-568) (-1143) (-568)) 43)) (-4046 (((-1035) (-215) (-169 (-215)) (-568) (-1143) (-568)) 42)) (-4052 (((-1035) (-215) (-568)) 39)) (-4058 (((-1035) (-215) (-568)) 38)) (-4065 (((-1035) (-215) (-568)) 37)) (-4071 (((-1035) (-215) (-568)) 36)) (-4076 (((-1035) (-215) (-568)) 35)) (-4084 (((-1035) (-215) (-568)) 34)) (-4090 (((-1035) (-215) (-568)) 33)) (-4098 (((-1035) (-215) (-568)) 32)) (-4105 (((-1035) (-215) (-568)) 31)) (-4112 (((-1035) (-215) (-568)) 30)) (-4120 (((-1035) (-215) (-215) (-215) (-568)) 29)) (-4127 (((-1035) (-215) (-568)) 28)) (-4135 (((-1035) (-215) (-568)) 27)) (-4140 (((-1035) (-215) (-568)) 26)) (-4148 (((-1035) (-215) (-568)) 25)) (-4155 (((-1035) (-215) (-568)) 24)) (-4161 (((-1035) (-169 (-215)) (-568)) 20))) +(((-750) (-10 -7 (-15 -4161 ((-1035) (-169 (-215)) (-568))) (-15 -4155 ((-1035) (-215) (-568))) (-15 -4148 ((-1035) (-215) (-568))) (-15 -4140 ((-1035) (-215) (-568))) (-15 -4135 ((-1035) (-215) (-568))) (-15 -4127 ((-1035) (-215) (-568))) (-15 -4120 ((-1035) (-215) (-215) (-215) (-568))) (-15 -4112 ((-1035) (-215) (-568))) (-15 -4105 ((-1035) (-215) (-568))) (-15 -4098 ((-1035) (-215) (-568))) (-15 -4090 ((-1035) (-215) (-568))) (-15 -4084 ((-1035) (-215) (-568))) (-15 -4076 ((-1035) (-215) (-568))) (-15 -4071 ((-1035) (-215) (-568))) (-15 -4065 ((-1035) (-215) (-568))) (-15 -4058 ((-1035) (-215) (-568))) (-15 -4052 ((-1035) (-215) (-568))) (-15 -4046 ((-1035) (-215) (-169 (-215)) (-568) (-1143) (-568))) (-15 -4040 ((-1035) (-215) (-169 (-215)) (-568) (-1143) (-568))) (-15 -2948 ((-1035) (-1143) (-169 (-215)) (-1143) (-568))) (-15 -2944 ((-1035) (-1143) (-169 (-215)) (-1143) (-568))) (-15 -2940 ((-1035) (-568) (-215) (-169 (-215)) (-568) (-1143) (-568))) (-15 -4312 ((-1035) (-215) (-568))) (-15 -4307 ((-1035) (-215) (-568))) (-15 -4301 ((-1035) (-215) (-568))) (-15 -4294 ((-1035) (-215) (-568))) (-15 -4289 ((-1035) (-215) (-169 (-215)) (-568) (-1143) (-568))) (-15 -4282 ((-1035) (-215) (-169 (-215)) (-568) (-1143) (-568))) (-15 -4268 ((-1035) (-215) (-568))) (-15 -4256 ((-1035) (-215) (-568))) (-15 -4232 ((-1035) (-215) (-568))) (-15 -4219 ((-1035) (-215) (-568))) (-15 -4208 ((-1035) (-215) (-568))) (-15 -4196 ((-1035) (-215) (-568))) (-15 -4188 ((-1035) (-215) (-215) (-568))) (-15 -4182 ((-1035) (-215) (-215) (-215) (-568))) (-15 -4175 ((-1035) (-215) (-215) (-215) (-568))) (-15 -4170 ((-1035) (-215) (-215) (-215) (-215) (-568))))) (T -750)) +((-4170 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-750)))) (-4175 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-750)))) (-4182 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-750)))) (-4188 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-750)))) (-4196 (*1 *2 *3 *4) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-750)))) (-4208 (*1 *2 *3 *4) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-750)))) (-4219 (*1 *2 *3 *4) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-750)))) (-4232 (*1 *2 *3 *4) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-750)))) (-4256 (*1 *2 *3 *4) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-750)))) (-4268 (*1 *2 *3 *4) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-750)))) (-4282 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-215))) (-5 *5 (-568)) (-5 *6 (-1143)) (-5 *3 (-215)) (-5 *2 (-1035)) (-5 *1 (-750)))) (-4289 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-215))) (-5 *5 (-568)) (-5 *6 (-1143)) (-5 *3 (-215)) (-5 *2 (-1035)) (-5 *1 (-750)))) (-4294 (*1 *2 *3 *4) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-750)))) (-4301 (*1 *2 *3 *4) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-750)))) (-4307 (*1 *2 *3 *4) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-750)))) (-4312 (*1 *2 *3 *4) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-750)))) (-2940 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-568)) (-5 *5 (-169 (-215))) (-5 *6 (-1143)) (-5 *4 (-215)) (-5 *2 (-1035)) (-5 *1 (-750)))) (-2944 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1143)) (-5 *4 (-169 (-215))) (-5 *5 (-568)) (-5 *2 (-1035)) (-5 *1 (-750)))) (-2948 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1143)) (-5 *4 (-169 (-215))) (-5 *5 (-568)) (-5 *2 (-1035)) (-5 *1 (-750)))) (-4040 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-215))) (-5 *5 (-568)) (-5 *6 (-1143)) (-5 *3 (-215)) (-5 *2 (-1035)) (-5 *1 (-750)))) (-4046 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-215))) (-5 *5 (-568)) (-5 *6 (-1143)) (-5 *3 (-215)) (-5 *2 (-1035)) (-5 *1 (-750)))) (-4052 (*1 *2 *3 *4) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-750)))) (-4058 (*1 *2 *3 *4) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-750)))) (-4065 (*1 *2 *3 *4) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-750)))) (-4071 (*1 *2 *3 *4) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-750)))) (-4076 (*1 *2 *3 *4) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-750)))) (-4084 (*1 *2 *3 *4) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-750)))) (-4090 (*1 *2 *3 *4) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-750)))) (-4098 (*1 *2 *3 *4) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-750)))) (-4105 (*1 *2 *3 *4) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-750)))) (-4112 (*1 *2 *3 *4) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-750)))) (-4120 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-750)))) (-4127 (*1 *2 *3 *4) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-750)))) (-4135 (*1 *2 *3 *4) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-750)))) (-4140 (*1 *2 *3 *4) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-750)))) (-4148 (*1 *2 *3 *4) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-750)))) (-4155 (*1 *2 *3 *4) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-750)))) (-4161 (*1 *2 *3 *4) (-12 (-5 *3 (-169 (-215))) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-750))))) +(-10 -7 (-15 -4161 ((-1035) (-169 (-215)) (-568))) (-15 -4155 ((-1035) (-215) (-568))) (-15 -4148 ((-1035) (-215) (-568))) (-15 -4140 ((-1035) (-215) (-568))) (-15 -4135 ((-1035) (-215) (-568))) (-15 -4127 ((-1035) (-215) (-568))) (-15 -4120 ((-1035) (-215) (-215) (-215) (-568))) (-15 -4112 ((-1035) (-215) (-568))) (-15 -4105 ((-1035) (-215) (-568))) (-15 -4098 ((-1035) (-215) (-568))) (-15 -4090 ((-1035) (-215) (-568))) (-15 -4084 ((-1035) (-215) (-568))) (-15 -4076 ((-1035) (-215) (-568))) (-15 -4071 ((-1035) (-215) (-568))) (-15 -4065 ((-1035) (-215) (-568))) (-15 -4058 ((-1035) (-215) (-568))) (-15 -4052 ((-1035) (-215) (-568))) (-15 -4046 ((-1035) (-215) (-169 (-215)) (-568) (-1143) (-568))) (-15 -4040 ((-1035) (-215) (-169 (-215)) (-568) (-1143) (-568))) (-15 -2948 ((-1035) (-1143) (-169 (-215)) (-1143) (-568))) (-15 -2944 ((-1035) (-1143) (-169 (-215)) (-1143) (-568))) (-15 -2940 ((-1035) (-568) (-215) (-169 (-215)) (-568) (-1143) (-568))) (-15 -4312 ((-1035) (-215) (-568))) (-15 -4307 ((-1035) (-215) (-568))) (-15 -4301 ((-1035) (-215) (-568))) (-15 -4294 ((-1035) (-215) (-568))) (-15 -4289 ((-1035) (-215) (-169 (-215)) (-568) (-1143) (-568))) (-15 -4282 ((-1035) (-215) (-169 (-215)) (-568) (-1143) (-568))) (-15 -4268 ((-1035) (-215) (-568))) (-15 -4256 ((-1035) (-215) (-568))) (-15 -4232 ((-1035) (-215) (-568))) (-15 -4219 ((-1035) (-215) (-568))) (-15 -4208 ((-1035) (-215) (-568))) (-15 -4196 ((-1035) (-215) (-568))) (-15 -4188 ((-1035) (-215) (-215) (-568))) (-15 -4182 ((-1035) (-215) (-215) (-215) (-568))) (-15 -4175 ((-1035) (-215) (-215) (-215) (-568))) (-15 -4170 ((-1035) (-215) (-215) (-215) (-215) (-568)))) +((-2603 (((-1249)) 18)) (-1450 (((-1143)) 22)) (-2908 (((-1143)) 21)) (-3273 (((-1094) (-1161) (-679 (-568))) 35) (((-1094) (-1161) (-679 (-215))) 31)) (-1587 (((-121)) 16)) (-3009 (((-1143) (-1143)) 25))) +(((-751) (-10 -7 (-15 -2908 ((-1143))) (-15 -1450 ((-1143))) (-15 -3009 ((-1143) (-1143))) (-15 -3273 ((-1094) (-1161) (-679 (-215)))) (-15 -3273 ((-1094) (-1161) (-679 (-568)))) (-15 -1587 ((-121))) (-15 -2603 ((-1249))))) (T -751)) +((-2603 (*1 *2) (-12 (-5 *2 (-1249)) (-5 *1 (-751)))) (-1587 (*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-751)))) (-3273 (*1 *2 *3 *4) (-12 (-5 *3 (-1161)) (-5 *4 (-679 (-568))) (-5 *2 (-1094)) (-5 *1 (-751)))) (-3273 (*1 *2 *3 *4) (-12 (-5 *3 (-1161)) (-5 *4 (-679 (-215))) (-5 *2 (-1094)) (-5 *1 (-751)))) (-3009 (*1 *2 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-751)))) (-1450 (*1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-751)))) (-2908 (*1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-751))))) +(-10 -7 (-15 -2908 ((-1143))) (-15 -1450 ((-1143))) (-15 -3009 ((-1143) (-1143))) (-15 -3273 ((-1094) (-1161) (-679 (-215)))) (-15 -3273 ((-1094) (-1161) (-679 (-568)))) (-15 -1587 ((-121))) (-15 -2603 ((-1249)))) +((-2353 (($ $ $) 10)) (-3882 (($ $ $ $) 9)) (-3500 (($ $ $) 12))) +(((-752 |#1|) (-10 -8 (-15 -3500 (|#1| |#1| |#1|)) (-15 -2353 (|#1| |#1| |#1|)) (-15 -3882 (|#1| |#1| |#1| |#1|))) (-753)) (T -752)) +NIL +(-10 -8 (-15 -3500 (|#1| |#1| |#1|)) (-15 -2353 (|#1| |#1| |#1|)) (-15 -3882 (|#1| |#1| |#1| |#1|))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-3134 (((-3 $ "failed") $ $) 18)) (-2671 (($) 16 T CONST)) (-3551 (($ $ (-917)) 27)) (-4222 (($ $ (-917)) 28)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-2353 (($ $ $) 24)) (-2745 (((-850) $) 11)) (-3882 (($ $ $ $) 25)) (-3500 (($ $ $) 23)) (-3056 (($) 17 T CONST)) (-1717 (((-121) $ $) 6)) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 29)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 26))) +(((-753) (-1275)) (T -753)) +((-3882 (*1 *1 *1 *1 *1) (-4 *1 (-753))) (-2353 (*1 *1 *1 *1) (-4 *1 (-753))) (-3500 (*1 *1 *1 *1) (-4 *1 (-753)))) +(-13 (-21) (-710) (-10 -8 (-15 -3882 ($ $ $ $)) (-15 -2353 ($ $ $)) (-15 -3500 ($ $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-105) . T) ((-137) . T) ((-608 (-850)) . T) ((-710) . T) ((-1090) . T)) +((-2745 (((-850) $) NIL) (($ (-568)) 10))) +(((-754 |#1|) (-10 -8 (-15 -2745 (|#1| (-568))) (-15 -2745 ((-850) |#1|))) (-755)) (T -754)) +NIL +(-10 -8 (-15 -2745 (|#1| (-568))) (-15 -2745 ((-850) |#1|))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-3134 (((-3 $ "failed") $ $) 18)) (-2671 (($) 16 T CONST)) (-3550 (((-3 $ "failed") $) 39)) (-3551 (($ $ (-917)) 27) (($ $ (-763)) 34)) (-2925 (((-3 $ "failed") $) 37)) (-2735 (((-121) $) 33)) (-3243 (((-3 $ "failed") $) 38)) (-4222 (($ $ (-917)) 28) (($ $ (-763)) 35)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-2353 (($ $ $) 24)) (-2745 (((-850) $) 11) (($ (-568)) 30)) (-4078 (((-763)) 31)) (-3882 (($ $ $ $) 25)) (-3500 (($ $ $) 23)) (-3056 (($) 17 T CONST)) (-1556 (($) 32 T CONST)) (-1717 (((-121) $ $) 6)) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 29) (($ $ (-763)) 36)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 26))) +(((-755) (-1275)) (T -755)) +((-4078 (*1 *2) (-12 (-4 *1 (-755)) (-5 *2 (-763)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-568)) (-4 *1 (-755))))) +(-13 (-753) (-712) (-10 -8 (-15 -4078 ((-763))) (-15 -2745 ($ (-568))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-105) . T) ((-137) . T) ((-608 (-850)) . T) ((-710) . T) ((-712) . T) ((-753) . T) ((-1090) . T)) +((-1579 (((-634 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-568)) (|:| |outvect| (-634 (-679 (-169 |#1|)))))) (-679 (-169 (-409 (-568)))) |#1|) 27)) (-4070 (((-634 (-169 |#1|)) (-679 (-169 (-409 (-568)))) |#1|) 19)) (-2678 (((-953 (-169 (-409 (-568)))) (-679 (-169 (-409 (-568)))) (-1161)) 16) (((-953 (-169 (-409 (-568)))) (-679 (-169 (-409 (-568))))) 15))) +(((-756 |#1|) (-10 -7 (-15 -2678 ((-953 (-169 (-409 (-568)))) (-679 (-169 (-409 (-568)))))) (-15 -2678 ((-953 (-169 (-409 (-568)))) (-679 (-169 (-409 (-568)))) (-1161))) (-15 -4070 ((-634 (-169 |#1|)) (-679 (-169 (-409 (-568)))) |#1|)) (-15 -1579 ((-634 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-568)) (|:| |outvect| (-634 (-679 (-169 |#1|)))))) (-679 (-169 (-409 (-568)))) |#1|))) (-13 (-365) (-840))) (T -756)) +((-1579 (*1 *2 *3 *4) (-12 (-5 *3 (-679 (-169 (-409 (-568))))) (-5 *2 (-634 (-2 (|:| |outval| (-169 *4)) (|:| |outmult| (-568)) (|:| |outvect| (-634 (-679 (-169 *4))))))) (-5 *1 (-756 *4)) (-4 *4 (-13 (-365) (-840))))) (-4070 (*1 *2 *3 *4) (-12 (-5 *3 (-679 (-169 (-409 (-568))))) (-5 *2 (-634 (-169 *4))) (-5 *1 (-756 *4)) (-4 *4 (-13 (-365) (-840))))) (-2678 (*1 *2 *3 *4) (-12 (-5 *3 (-679 (-169 (-409 (-568))))) (-5 *4 (-1161)) (-5 *2 (-953 (-169 (-409 (-568))))) (-5 *1 (-756 *5)) (-4 *5 (-13 (-365) (-840))))) (-2678 (*1 *2 *3) (-12 (-5 *3 (-679 (-169 (-409 (-568))))) (-5 *2 (-953 (-169 (-409 (-568))))) (-5 *1 (-756 *4)) (-4 *4 (-13 (-365) (-840)))))) +(-10 -7 (-15 -2678 ((-953 (-169 (-409 (-568)))) (-679 (-169 (-409 (-568)))))) (-15 -2678 ((-953 (-169 (-409 (-568)))) (-679 (-169 (-409 (-568)))) (-1161))) (-15 -4070 ((-634 (-169 |#1|)) (-679 (-169 (-409 (-568)))) |#1|)) (-15 -1579 ((-634 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-568)) (|:| |outvect| (-634 (-679 (-169 |#1|)))))) (-679 (-169 (-409 (-568)))) |#1|))) +((-3878 (((-173 (-568)) |#1|) 25))) +(((-757 |#1|) (-10 -7 (-15 -3878 ((-173 (-568)) |#1|))) (-406)) (T -757)) +((-3878 (*1 *2 *3) (-12 (-5 *2 (-173 (-568))) (-5 *1 (-757 *3)) (-4 *3 (-406))))) +(-10 -7 (-15 -3878 ((-173 (-568)) |#1|))) +((-3748 ((|#1| |#1| |#1|) 24)) (-1382 ((|#1| |#1| |#1|) 23)) (-1525 ((|#1| |#1| |#1|) 31)) (-2450 ((|#1| |#1| |#1|) 27)) (-2260 (((-3 |#1| "failed") |#1| |#1|) 26)) (-1293 (((-2 (|:| -3961 |#1|) (|:| -1500 |#1|)) |#1| |#1|) 22))) +(((-758 |#1| |#2|) (-10 -7 (-15 -1293 ((-2 (|:| -3961 |#1|) (|:| -1500 |#1|)) |#1| |#1|)) (-15 -1382 (|#1| |#1| |#1|)) (-15 -3748 (|#1| |#1| |#1|)) (-15 -2260 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2450 (|#1| |#1| |#1|)) (-15 -1525 (|#1| |#1| |#1|))) (-698 |#2|) (-365)) (T -758)) +((-1525 (*1 *2 *2 *2) (-12 (-4 *3 (-365)) (-5 *1 (-758 *2 *3)) (-4 *2 (-698 *3)))) (-2450 (*1 *2 *2 *2) (-12 (-4 *3 (-365)) (-5 *1 (-758 *2 *3)) (-4 *2 (-698 *3)))) (-2260 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-365)) (-5 *1 (-758 *2 *3)) (-4 *2 (-698 *3)))) (-3748 (*1 *2 *2 *2) (-12 (-4 *3 (-365)) (-5 *1 (-758 *2 *3)) (-4 *2 (-698 *3)))) (-1382 (*1 *2 *2 *2) (-12 (-4 *3 (-365)) (-5 *1 (-758 *2 *3)) (-4 *2 (-698 *3)))) (-1293 (*1 *2 *3 *3) (-12 (-4 *4 (-365)) (-5 *2 (-2 (|:| -3961 *3) (|:| -1500 *3))) (-5 *1 (-758 *3 *4)) (-4 *3 (-698 *4))))) +(-10 -7 (-15 -1293 ((-2 (|:| -3961 |#1|) (|:| -1500 |#1|)) |#1| |#1|)) (-15 -1382 (|#1| |#1| |#1|)) (-15 -3748 (|#1| |#1| |#1|)) (-15 -2260 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2450 (|#1| |#1| |#1|)) (-15 -1525 (|#1| |#1| |#1|))) +((-3933 (((-1157 |#1|) (-634 |#1|)) 25))) +(((-759 |#1|) (-10 -7 (-15 -3933 ((-1157 |#1|) (-634 |#1|)))) (-558)) (T -759)) +((-3933 (*1 *2 *3) (-12 (-5 *3 (-634 *4)) (-4 *4 (-558)) (-5 *2 (-1157 *4)) (-5 *1 (-759 *4))))) +(-10 -7 (-15 -3933 ((-1157 |#1|) (-634 |#1|)))) +((-3714 (((-2 (|:| -3746 (-679 (-568))) (|:| |basisDen| (-568)) (|:| |basisInv| (-679 (-568)))) (-568)) 58)) (-3661 (((-2 (|:| -3746 (-679 (-568))) (|:| |basisDen| (-568)) (|:| |basisInv| (-679 (-568))))) 56)) (-2217 (((-568)) 68))) +(((-760 |#1| |#2|) (-10 -7 (-15 -2217 ((-568))) (-15 -3661 ((-2 (|:| -3746 (-679 (-568))) (|:| |basisDen| (-568)) (|:| |basisInv| (-679 (-568)))))) (-15 -3714 ((-2 (|:| -3746 (-679 (-568))) (|:| |basisDen| (-568)) (|:| |basisInv| (-679 (-568)))) (-568)))) (-1219 (-568)) (-411 (-568) |#1|)) (T -760)) +((-3714 (*1 *2 *3) (-12 (-5 *3 (-568)) (-4 *4 (-1219 *3)) (-5 *2 (-2 (|:| -3746 (-679 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-679 *3)))) (-5 *1 (-760 *4 *5)) (-4 *5 (-411 *3 *4)))) (-3661 (*1 *2) (-12 (-4 *3 (-1219 (-568))) (-5 *2 (-2 (|:| -3746 (-679 (-568))) (|:| |basisDen| (-568)) (|:| |basisInv| (-679 (-568))))) (-5 *1 (-760 *3 *4)) (-4 *4 (-411 (-568) *3)))) (-2217 (*1 *2) (-12 (-4 *3 (-1219 *2)) (-5 *2 (-568)) (-5 *1 (-760 *3 *4)) (-4 *4 (-411 *2 *3))))) +(-10 -7 (-15 -2217 ((-568))) (-15 -3661 ((-2 (|:| -3746 (-679 (-568))) (|:| |basisDen| (-568)) (|:| |basisInv| (-679 (-568)))))) (-15 -3714 ((-2 (|:| -3746 (-679 (-568))) (|:| |basisDen| (-568)) (|:| |basisInv| (-679 (-568)))) (-568)))) +((-2447 (((-121) $ $) NIL)) (-2854 (((-3 (|:| |nia| (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (|:| |mdnia| (-2 (|:| |fn| (-310 (-215))) (|:| -1338 (-634 (-1084 (-835 (-215))))) (|:| |abserr| (-215)) (|:| |relerr| (-215))))) $) 15)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2745 (((-850) $) 14) (($ (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) 8) (($ (-2 (|:| |fn| (-310 (-215))) (|:| -1338 (-634 (-1084 (-835 (-215))))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) 10) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (|:| |mdnia| (-2 (|:| |fn| (-310 (-215))) (|:| -1338 (-634 (-1084 (-835 (-215))))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))))) 12)) (-1717 (((-121) $ $) NIL))) +(((-761) (-13 (-1090) (-10 -8 (-15 -2745 ($ (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215))))) (-15 -2745 ($ (-2 (|:| |fn| (-310 (-215))) (|:| -1338 (-634 (-1084 (-835 (-215))))) (|:| |abserr| (-215)) (|:| |relerr| (-215))))) (-15 -2745 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (|:| |mdnia| (-2 (|:| |fn| (-310 (-215))) (|:| -1338 (-634 (-1084 (-835 (-215))))) (|:| |abserr| (-215)) (|:| |relerr| (-215))))))) (-15 -2745 ((-850) $)) (-15 -2854 ((-3 (|:| |nia| (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (|:| |mdnia| (-2 (|:| |fn| (-310 (-215))) (|:| -1338 (-634 (-1084 (-835 (-215))))) (|:| |abserr| (-215)) (|:| |relerr| (-215))))) $))))) (T -761)) +((-2745 (*1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-761)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (-5 *1 (-761)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-310 (-215))) (|:| -1338 (-634 (-1084 (-835 (-215))))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (-5 *1 (-761)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (|:| |mdnia| (-2 (|:| |fn| (-310 (-215))) (|:| -1338 (-634 (-1084 (-835 (-215))))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))))) (-5 *1 (-761)))) (-2854 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (|:| |mdnia| (-2 (|:| |fn| (-310 (-215))) (|:| -1338 (-634 (-1084 (-835 (-215))))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))))) (-5 *1 (-761))))) +(-13 (-1090) (-10 -8 (-15 -2745 ($ (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215))))) (-15 -2745 ($ (-2 (|:| |fn| (-310 (-215))) (|:| -1338 (-634 (-1084 (-835 (-215))))) (|:| |abserr| (-215)) (|:| |relerr| (-215))))) (-15 -2745 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (|:| |mdnia| (-2 (|:| |fn| (-310 (-215))) (|:| -1338 (-634 (-1084 (-835 (-215))))) (|:| |abserr| (-215)) (|:| |relerr| (-215))))))) (-15 -2745 ((-850) $)) (-15 -2854 ((-3 (|:| |nia| (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (|:| |mdnia| (-2 (|:| |fn| (-310 (-215))) (|:| -1338 (-634 (-1084 (-835 (-215))))) (|:| |abserr| (-215)) (|:| |relerr| (-215))))) $)))) +((-2578 (((-634 (-634 (-288 (-409 (-953 |#1|))))) (-634 (-953 |#1|))) 14) (((-634 (-634 (-288 (-409 (-953 |#1|))))) (-634 (-953 |#1|)) (-634 (-1161))) 13)) (-4351 (((-634 (-634 (-288 (-409 (-953 |#1|))))) (-634 (-953 |#1|))) 16) (((-634 (-634 (-288 (-409 (-953 |#1|))))) (-634 (-953 |#1|)) (-634 (-1161))) 15))) +(((-762 |#1|) (-10 -7 (-15 -2578 ((-634 (-634 (-288 (-409 (-953 |#1|))))) (-634 (-953 |#1|)) (-634 (-1161)))) (-15 -2578 ((-634 (-634 (-288 (-409 (-953 |#1|))))) (-634 (-953 |#1|)))) (-15 -4351 ((-634 (-634 (-288 (-409 (-953 |#1|))))) (-634 (-953 |#1|)) (-634 (-1161)))) (-15 -4351 ((-634 (-634 (-288 (-409 (-953 |#1|))))) (-634 (-953 |#1|))))) (-558)) (T -762)) +((-4351 (*1 *2 *3) (-12 (-5 *3 (-634 (-953 *4))) (-4 *4 (-558)) (-5 *2 (-634 (-634 (-288 (-409 (-953 *4)))))) (-5 *1 (-762 *4)))) (-4351 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-953 *5))) (-5 *4 (-634 (-1161))) (-4 *5 (-558)) (-5 *2 (-634 (-634 (-288 (-409 (-953 *5)))))) (-5 *1 (-762 *5)))) (-2578 (*1 *2 *3) (-12 (-5 *3 (-634 (-953 *4))) (-4 *4 (-558)) (-5 *2 (-634 (-634 (-288 (-409 (-953 *4)))))) (-5 *1 (-762 *4)))) (-2578 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-953 *5))) (-5 *4 (-634 (-1161))) (-4 *5 (-558)) (-5 *2 (-634 (-634 (-288 (-409 (-953 *5)))))) (-5 *1 (-762 *5))))) +(-10 -7 (-15 -2578 ((-634 (-634 (-288 (-409 (-953 |#1|))))) (-634 (-953 |#1|)) (-634 (-1161)))) (-15 -2578 ((-634 (-634 (-288 (-409 (-953 |#1|))))) (-634 (-953 |#1|)))) (-15 -4351 ((-634 (-634 (-288 (-409 (-953 |#1|))))) (-634 (-953 |#1|)) (-634 (-1161)))) (-15 -4351 ((-634 (-634 (-288 (-409 (-953 |#1|))))) (-634 (-953 |#1|))))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-1462 (($ $ $) 6)) (-3134 (((-3 $ "failed") $ $) 9)) (-1870 (($ $ (-568)) 7)) (-2671 (($) NIL T CONST)) (-2401 (($ $ $) NIL)) (-2925 (((-3 $ "failed") $) NIL)) (-1731 (($ $) NIL)) (-2412 (($ $ $) NIL)) (-2735 (((-121) $) NIL)) (-2521 (($ $ $) NIL)) (-3268 (($ $ $) NIL)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2721 (($ $ $) NIL)) (-2595 (((-3 $ "failed") $ $) NIL)) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL)) (-2745 (((-850) $) NIL)) (-1887 (($ $ (-763)) NIL) (($ $ (-917)) NIL)) (-3056 (($) NIL T CONST)) (-1556 (($) NIL T CONST)) (-1751 (((-121) $ $) NIL)) (-1738 (((-121) $ $) NIL)) (-1717 (((-121) $ $) NIL)) (-1745 (((-121) $ $) NIL)) (-1732 (((-121) $ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-763)) NIL) (($ $ (-917)) NIL)) (* (($ (-763) $) NIL) (($ (-917) $) NIL) (($ $ $) NIL))) +(((-763) (-13 (-788) (-716) (-10 -8 (-15 -2412 ($ $ $)) (-15 -2401 ($ $ $)) (-15 -2721 ($ $ $)) (-15 -3210 ((-2 (|:| -3961 $) (|:| -1500 $)) $ $)) (-15 -2595 ((-3 $ "failed") $ $)) (-15 -1870 ($ $ (-568))) (-15 -1731 ($ $)) (-6 (-4521 "*"))))) (T -763)) +((-2412 (*1 *1 *1 *1) (-5 *1 (-763))) (-2401 (*1 *1 *1 *1) (-5 *1 (-763))) (-2721 (*1 *1 *1 *1) (-5 *1 (-763))) (-3210 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3961 (-763)) (|:| -1500 (-763)))) (-5 *1 (-763)))) (-2595 (*1 *1 *1 *1) (|partial| -5 *1 (-763))) (-1870 (*1 *1 *1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-763)))) (-1731 (*1 *1 *1) (-5 *1 (-763)))) +(-13 (-788) (-716) (-10 -8 (-15 -2412 ($ $ $)) (-15 -2401 ($ $ $)) (-15 -2721 ($ $ $)) (-15 -3210 ((-2 (|:| -3961 $) (|:| -1500 $)) $ $)) (-15 -2595 ((-3 $ "failed") $ $)) (-15 -1870 ($ $ (-568))) (-15 -1731 ($ $)) (-6 (-4521 "*")))) +((-4351 (((-3 |#2| "failed") |#2| |#2| (-123) (-1161)) 35))) +(((-764 |#1| |#2|) (-10 -7 (-15 -4351 ((-3 |#2| "failed") |#2| |#2| (-123) (-1161)))) (-13 (-842) (-301) (-1037 (-568)) (-630 (-568)) (-150)) (-13 (-29 |#1|) (-1181) (-959))) (T -764)) +((-4351 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-123)) (-5 *4 (-1161)) (-4 *5 (-13 (-842) (-301) (-1037 (-568)) (-630 (-568)) (-150))) (-5 *1 (-764 *5 *2)) (-4 *2 (-13 (-29 *5) (-1181) (-959)))))) +(-10 -7 (-15 -4351 ((-3 |#2| "failed") |#2| |#2| (-123) (-1161)))) +((-2745 (((-766) |#1|) 8))) +(((-765 |#1|) (-10 -7 (-15 -2745 ((-766) |#1|))) (-1195)) (T -765)) +((-2745 (*1 *2 *3) (-12 (-5 *2 (-766)) (-5 *1 (-765 *3)) (-4 *3 (-1195))))) +(-10 -7 (-15 -2745 ((-766) |#1|))) +((-2447 (((-121) $ $) NIL)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2745 (((-850) $) 7)) (-1717 (((-121) $ $) 9))) +(((-766) (-1090)) (T -766)) +NIL +(-1090) +((-2657 ((|#2| |#4|) 35))) +(((-767 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2657 (|#2| |#4|))) (-453) (-1219 |#1|) (-714 |#1| |#2|) (-1219 |#3|)) (T -767)) +((-2657 (*1 *2 *3) (-12 (-4 *4 (-453)) (-4 *5 (-714 *4 *2)) (-4 *2 (-1219 *4)) (-5 *1 (-767 *4 *2 *5 *3)) (-4 *3 (-1219 *5))))) +(-10 -7 (-15 -2657 (|#2| |#4|))) +((-2925 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-4381 (((-1249) (-1143) (-1143) |#4| |#5|) 33)) (-2623 ((|#4| |#4| |#5|) 72)) (-3628 (((-634 (-2 (|:| |val| |#4|) (|:| -3001 |#5|))) |#4| |#5|) 76)) (-2093 (((-634 (-2 (|:| |val| (-121)) (|:| -3001 |#5|))) |#4| |#5|) 15))) +(((-768 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2925 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2623 (|#4| |#4| |#5|)) (-15 -3628 ((-634 (-2 (|:| |val| |#4|) (|:| -3001 |#5|))) |#4| |#5|)) (-15 -4381 ((-1249) (-1143) (-1143) |#4| |#5|)) (-15 -2093 ((-634 (-2 (|:| |val| (-121)) (|:| -3001 |#5|))) |#4| |#5|))) (-453) (-788) (-842) (-1061 |#1| |#2| |#3|) (-1066 |#1| |#2| |#3| |#4|)) (T -768)) +((-2093 (*1 *2 *3 *4) (-12 (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *3 (-1061 *5 *6 *7)) (-5 *2 (-634 (-2 (|:| |val| (-121)) (|:| -3001 *4)))) (-5 *1 (-768 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-4381 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1143)) (-4 *6 (-453)) (-4 *7 (-788)) (-4 *8 (-842)) (-4 *4 (-1061 *6 *7 *8)) (-5 *2 (-1249)) (-5 *1 (-768 *6 *7 *8 *4 *5)) (-4 *5 (-1066 *6 *7 *8 *4)))) (-3628 (*1 *2 *3 *4) (-12 (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *3 (-1061 *5 *6 *7)) (-5 *2 (-634 (-2 (|:| |val| *3) (|:| -3001 *4)))) (-5 *1 (-768 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-2623 (*1 *2 *2 *3) (-12 (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *2 (-1061 *4 *5 *6)) (-5 *1 (-768 *4 *5 *6 *2 *3)) (-4 *3 (-1066 *4 *5 *6 *2)))) (-2925 (*1 *2 *3 *4) (-12 (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *3 (-1061 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-768 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3))))) +(-10 -7 (-15 -2925 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2623 (|#4| |#4| |#5|)) (-15 -3628 ((-634 (-2 (|:| |val| |#4|) (|:| -3001 |#5|))) |#4| |#5|)) (-15 -4381 ((-1249) (-1143) (-1143) |#4| |#5|)) (-15 -2093 ((-634 (-2 (|:| |val| (-121)) (|:| -3001 |#5|))) |#4| |#5|))) +((-3666 (((-3 (-1157 (-1157 |#1|)) "failed") |#4|) 43)) (-2286 (((-634 |#4|) |#4|) 15)) (-1316 ((|#4| |#4|) 11))) +(((-769 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2286 ((-634 |#4|) |#4|)) (-15 -3666 ((-3 (-1157 (-1157 |#1|)) "failed") |#4|)) (-15 -1316 (|#4| |#4|))) (-350) (-327 |#1|) (-1219 |#2|) (-1219 |#3|) (-917)) (T -769)) +((-1316 (*1 *2 *2) (-12 (-4 *3 (-350)) (-4 *4 (-327 *3)) (-4 *5 (-1219 *4)) (-5 *1 (-769 *3 *4 *5 *2 *6)) (-4 *2 (-1219 *5)) (-14 *6 (-917)))) (-3666 (*1 *2 *3) (|partial| -12 (-4 *4 (-350)) (-4 *5 (-327 *4)) (-4 *6 (-1219 *5)) (-5 *2 (-1157 (-1157 *4))) (-5 *1 (-769 *4 *5 *6 *3 *7)) (-4 *3 (-1219 *6)) (-14 *7 (-917)))) (-2286 (*1 *2 *3) (-12 (-4 *4 (-350)) (-4 *5 (-327 *4)) (-4 *6 (-1219 *5)) (-5 *2 (-634 *3)) (-5 *1 (-769 *4 *5 *6 *3 *7)) (-4 *3 (-1219 *6)) (-14 *7 (-917))))) +(-10 -7 (-15 -2286 ((-634 |#4|) |#4|)) (-15 -3666 ((-3 (-1157 (-1157 |#1|)) "failed") |#4|)) (-15 -1316 (|#4| |#4|))) +((-2447 (((-121) $ $) NIL)) (-2671 (($) NIL T CONST)) (-2854 (($ (-1201 |#1|)) 21)) (-2925 (((-3 $ "failed") $) NIL)) (-2735 (((-121) $) NIL)) (-4487 (((-1143) $) NIL)) (-2081 (($ $) 26)) (-4022 (((-1108) $) NIL)) (-1458 (($ $ $) NIL)) (-2353 (($ $ $) NIL)) (-2745 (((-850) $) 11)) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL)) (-1556 (($) 18 T CONST)) (-1717 (((-121) $ $) NIL)) (-1779 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL)) (* (($ $ $) 24))) +(((-770 |#1|) (-13 (-478) (-10 -8 (-15 -2854 ($ (-1201 |#1|))))) (-350)) (T -770)) +((-2854 (*1 *1 *2) (-12 (-5 *2 (-1201 *3)) (-4 *3 (-350)) (-5 *1 (-770 *3))))) +(-13 (-478) (-10 -8 (-15 -2854 ($ (-1201 |#1|))))) +((-2792 (((-2 (|:| |deter| (-634 (-1157 |#5|))) (|:| |dterm| (-634 (-634 (-2 (|:| -1876 (-763)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-634 |#1|)) (|:| |nlead| (-634 |#5|))) (-1157 |#5|) (-634 |#1|) (-634 |#5|)) 51)) (-2397 (((-634 (-763)) |#1|) 12))) +(((-771 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2792 ((-2 (|:| |deter| (-634 (-1157 |#5|))) (|:| |dterm| (-634 (-634 (-2 (|:| -1876 (-763)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-634 |#1|)) (|:| |nlead| (-634 |#5|))) (-1157 |#5|) (-634 |#1|) (-634 |#5|))) (-15 -2397 ((-634 (-763)) |#1|))) (-1219 |#4|) (-788) (-842) (-301) (-950 |#4| |#2| |#3|)) (T -771)) +((-2397 (*1 *2 *3) (-12 (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-301)) (-5 *2 (-634 (-763))) (-5 *1 (-771 *3 *4 *5 *6 *7)) (-4 *3 (-1219 *6)) (-4 *7 (-950 *6 *4 *5)))) (-2792 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1219 *9)) (-4 *7 (-788)) (-4 *8 (-842)) (-4 *9 (-301)) (-4 *10 (-950 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-634 (-1157 *10))) (|:| |dterm| (-634 (-634 (-2 (|:| -1876 (-763)) (|:| |pcoef| *10))))) (|:| |nfacts| (-634 *6)) (|:| |nlead| (-634 *10)))) (-5 *1 (-771 *6 *7 *8 *9 *10)) (-5 *3 (-1157 *10)) (-5 *4 (-634 *6)) (-5 *5 (-634 *10))))) +(-10 -7 (-15 -2792 ((-2 (|:| |deter| (-634 (-1157 |#5|))) (|:| |dterm| (-634 (-634 (-2 (|:| -1876 (-763)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-634 |#1|)) (|:| |nlead| (-634 |#5|))) (-1157 |#5|) (-634 |#1|) (-634 |#5|))) (-15 -2397 ((-634 (-763)) |#1|))) +((-1657 (((-2 (|:| -2961 (-568)) (|:| -1461 (-568)) (|:| -3961 (-568)) (|:| |reste| (-568)) (|:| -2219 (-3 "left" "center" "right" "vertical" "horizontal"))) (-634 |#2|)) 18) (((-2 (|:| -2961 (-568)) (|:| -1461 (-568)) (|:| -3961 (-568)) (|:| |reste| (-568)) (|:| -2219 (-3 "left" "center" "right" "vertical" "horizontal"))) |#2| |#2|) 16)) (-2312 (((-634 (-634 |#2|)) |#2| (-568) (-568) (-3 "left" "center" "right" "vertical" "horizontal")) 32)) (-2396 (((-634 (-634 |#2|)) |#2| (-634 (-634 |#2|))) 24)) (-4029 (((-763) (-634 (-634 |#2|))) 27))) +(((-772 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2312 ((-634 (-634 |#2|)) |#2| (-568) (-568) (-3 "left" "center" "right" "vertical" "horizontal"))) (-15 -4029 ((-763) (-634 (-634 |#2|)))) (-15 -2396 ((-634 (-634 |#2|)) |#2| (-634 (-634 |#2|)))) (-15 -1657 ((-2 (|:| -2961 (-568)) (|:| -1461 (-568)) (|:| -3961 (-568)) (|:| |reste| (-568)) (|:| -2219 (-3 "left" "center" "right" "vertical" "horizontal"))) |#2| |#2|)) (-15 -1657 ((-2 (|:| -2961 (-568)) (|:| -1461 (-568)) (|:| -3961 (-568)) (|:| |reste| (-568)) (|:| -2219 (-3 "left" "center" "right" "vertical" "horizontal"))) (-634 |#2|)))) (-1047) (-324 |#1| |#3|) (-230 |#4| (-763)) (-763)) (T -772)) +((-1657 (*1 *2 *3) (-12 (-5 *3 (-634 *5)) (-4 *5 (-324 *4 *6)) (-4 *6 (-230 *7 (-763))) (-14 *7 (-763)) (-4 *4 (-1047)) (-5 *2 (-2 (|:| -2961 (-568)) (|:| -1461 (-568)) (|:| -3961 (-568)) (|:| |reste| (-568)) (|:| -2219 (-3 "left" "center" "right" "vertical" "horizontal")))) (-5 *1 (-772 *4 *5 *6 *7)))) (-1657 (*1 *2 *3 *3) (-12 (-4 *4 (-1047)) (-4 *5 (-230 *6 (-763))) (-14 *6 (-763)) (-5 *2 (-2 (|:| -2961 (-568)) (|:| -1461 (-568)) (|:| -3961 (-568)) (|:| |reste| (-568)) (|:| -2219 (-3 "left" "center" "right" "vertical" "horizontal")))) (-5 *1 (-772 *4 *3 *5 *6)) (-4 *3 (-324 *4 *5)))) (-2396 (*1 *2 *3 *2) (-12 (-5 *2 (-634 (-634 *3))) (-4 *3 (-324 *4 *5)) (-4 *5 (-230 *6 (-763))) (-14 *6 (-763)) (-4 *4 (-1047)) (-5 *1 (-772 *4 *3 *5 *6)))) (-4029 (*1 *2 *3) (-12 (-5 *3 (-634 (-634 *5))) (-4 *5 (-324 *4 *6)) (-4 *6 (-230 *7 *2)) (-14 *7 *2) (-4 *4 (-1047)) (-5 *2 (-763)) (-5 *1 (-772 *4 *5 *6 *7)))) (-2312 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-568)) (-5 *5 (-3 "left" "center" "right" "vertical" "horizontal")) (-4 *6 (-1047)) (-4 *7 (-230 *8 (-763))) (-14 *8 (-763)) (-5 *2 (-634 (-634 *3))) (-5 *1 (-772 *6 *3 *7 *8)) (-4 *3 (-324 *6 *7))))) +(-10 -7 (-15 -2312 ((-634 (-634 |#2|)) |#2| (-568) (-568) (-3 "left" "center" "right" "vertical" "horizontal"))) (-15 -4029 ((-763) (-634 (-634 |#2|)))) (-15 -2396 ((-634 (-634 |#2|)) |#2| (-634 (-634 |#2|)))) (-15 -1657 ((-2 (|:| -2961 (-568)) (|:| -1461 (-568)) (|:| -3961 (-568)) (|:| |reste| (-568)) (|:| -2219 (-3 "left" "center" "right" "vertical" "horizontal"))) |#2| |#2|)) (-15 -1657 ((-2 (|:| -2961 (-568)) (|:| -1461 (-568)) (|:| -3961 (-568)) (|:| |reste| (-568)) (|:| -2219 (-3 "left" "center" "right" "vertical" "horizontal"))) (-634 |#2|)))) +((-1757 (((-634 (-2 (|:| |outval| |#1|) (|:| |outmult| (-568)) (|:| |outvect| (-634 (-679 |#1|))))) (-679 (-409 (-568))) |#1|) 27)) (-2179 (((-634 |#1|) (-679 (-409 (-568))) |#1|) 19)) (-2678 (((-953 (-409 (-568))) (-679 (-409 (-568))) (-1161)) 16) (((-953 (-409 (-568))) (-679 (-409 (-568)))) 15))) +(((-773 |#1|) (-10 -7 (-15 -2678 ((-953 (-409 (-568))) (-679 (-409 (-568))))) (-15 -2678 ((-953 (-409 (-568))) (-679 (-409 (-568))) (-1161))) (-15 -2179 ((-634 |#1|) (-679 (-409 (-568))) |#1|)) (-15 -1757 ((-634 (-2 (|:| |outval| |#1|) (|:| |outmult| (-568)) (|:| |outvect| (-634 (-679 |#1|))))) (-679 (-409 (-568))) |#1|))) (-13 (-365) (-840))) (T -773)) +((-1757 (*1 *2 *3 *4) (-12 (-5 *3 (-679 (-409 (-568)))) (-5 *2 (-634 (-2 (|:| |outval| *4) (|:| |outmult| (-568)) (|:| |outvect| (-634 (-679 *4)))))) (-5 *1 (-773 *4)) (-4 *4 (-13 (-365) (-840))))) (-2179 (*1 *2 *3 *4) (-12 (-5 *3 (-679 (-409 (-568)))) (-5 *2 (-634 *4)) (-5 *1 (-773 *4)) (-4 *4 (-13 (-365) (-840))))) (-2678 (*1 *2 *3 *4) (-12 (-5 *3 (-679 (-409 (-568)))) (-5 *4 (-1161)) (-5 *2 (-953 (-409 (-568)))) (-5 *1 (-773 *5)) (-4 *5 (-13 (-365) (-840))))) (-2678 (*1 *2 *3) (-12 (-5 *3 (-679 (-409 (-568)))) (-5 *2 (-953 (-409 (-568)))) (-5 *1 (-773 *4)) (-4 *4 (-13 (-365) (-840)))))) +(-10 -7 (-15 -2678 ((-953 (-409 (-568))) (-679 (-409 (-568))))) (-15 -2678 ((-953 (-409 (-568))) (-679 (-409 (-568))) (-1161))) (-15 -2179 ((-634 |#1|) (-679 (-409 (-568))) |#1|)) (-15 -1757 ((-634 (-2 (|:| |outval| |#1|) (|:| |outmult| (-568)) (|:| |outvect| (-634 (-679 |#1|))))) (-679 (-409 (-568))) |#1|))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) 10)) (-2055 (((-634 (-1075)) $) NIL)) (-1305 (((-1161) $) NIL)) (-2850 (((-2 (|:| |k| (-568)) (|:| |c| |#1|)) $) NIL)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL)) (-2227 (($ $) NIL)) (-1573 (((-121) $) NIL)) (-2617 (($ $ (-568) (-568)) NIL) (($ $ (-568)) NIL)) (-2235 (((-2 (|:| |k| (-568)) (|:| |c| |#1|)) $) NIL)) (-2583 (((-1141 (-2 (|:| |k| (-568)) (|:| |c| |#1|))) $) NIL)) (-2796 (($ $) NIL)) (-1868 (((-1249) $ (-568) (-568)) NIL (|has| $ (-6 -4520)))) (-3134 (((-3 $ "failed") $ $) NIL)) (-4305 (($ $) NIL)) (-1678 (((-420 $) $) NIL)) (-3910 (($ $ (-568)) NIL (|has| $ (-6 -4520)))) (-1497 (((-121) $ $) NIL)) (-2510 (((-121) $ (-763)) NIL)) (-1870 (($ $ (-568)) 36)) (-1659 (((-2 (|:| |k| (-568)) (|:| |c| |#1|)) $ (-2 (|:| |k| (-568)) (|:| |c| |#1|))) NIL (|has| $ (-6 -4520)))) (-3869 (($ $ $) NIL (|has| $ (-6 -4520)))) (-2395 (((-2 (|:| |k| (-568)) (|:| |c| |#1|)) $ (-2 (|:| |k| (-568)) (|:| |c| |#1|))) NIL (|has| $ (-6 -4520)))) (-2517 (((-2 (|:| |k| (-568)) (|:| |c| |#1|)) $ (-2 (|:| |k| (-568)) (|:| |c| |#1|))) NIL (|has| $ (-6 -4520)))) (-2436 (((-2 (|:| |k| (-568)) (|:| |c| |#1|)) $ (-568) (-2 (|:| |k| (-568)) (|:| |c| |#1|))) NIL (|has| $ (-6 -4520))) (((-2 (|:| |k| (-568)) (|:| |c| |#1|)) $ (-1210 (-568)) (-2 (|:| |k| (-568)) (|:| |c| |#1|))) NIL (|has| $ (-6 -4520))) (((-2 (|:| |k| (-568)) (|:| |c| |#1|)) $ "last" (-2 (|:| |k| (-568)) (|:| |c| |#1|))) NIL (|has| $ (-6 -4520))) (($ $ "rest" $) NIL (|has| $ (-6 -4520))) (((-2 (|:| |k| (-568)) (|:| |c| |#1|)) $ "first" (-2 (|:| |k| (-568)) (|:| |c| |#1|))) NIL (|has| $ (-6 -4520))) (((-2 (|:| |k| (-568)) (|:| |c| |#1|)) $ "value" (-2 (|:| |k| (-568)) (|:| |c| |#1|))) NIL (|has| $ (-6 -4520)))) (-3827 (($ $ (-634 $)) NIL (|has| $ (-6 -4520)))) (-3728 (($ (-568) |#1| $) 41)) (-2801 (($ (-1 (-121) (-2 (|:| |k| (-568)) (|:| |c| |#1|))) $) NIL)) (-1679 (((-2 (|:| |k| (-568)) (|:| |c| |#1|)) $) NIL)) (-3975 (($ $ $) 51)) (-2671 (($) NIL T CONST)) (-1496 (($ $) 21)) (-3935 (($ $ (-763)) NIL) (($ $) 14)) (-1429 (($ (-568) $) 78) (($ $) 31)) (-2255 (($ $) 35)) (-3924 (($ $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| |k| (-568)) (|:| |c| |#1|)) (-1090))))) (-4328 (($ (-1 (-121) (-2 (|:| |k| (-568)) (|:| |c| |#1|))) $) NIL) (($ (-2 (|:| |k| (-568)) (|:| |c| |#1|)) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| |k| (-568)) (|:| |c| |#1|)) (-1090))))) (-2401 (($ $ $) NIL)) (-2114 (($ $) NIL)) (-3092 (((-2 (|:| |k| (-568)) (|:| |c| |#1|)) (-1 (-2 (|:| |k| (-568)) (|:| |c| |#1|)) (-2 (|:| |k| (-568)) (|:| |c| |#1|)) (-2 (|:| |k| (-568)) (|:| |c| |#1|))) $ (-2 (|:| |k| (-568)) (|:| |c| |#1|)) (-2 (|:| |k| (-568)) (|:| |c| |#1|))) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| |k| (-568)) (|:| |c| |#1|)) (-1090)))) (((-2 (|:| |k| (-568)) (|:| |c| |#1|)) (-1 (-2 (|:| |k| (-568)) (|:| |c| |#1|)) (-2 (|:| |k| (-568)) (|:| |c| |#1|)) (-2 (|:| |k| (-568)) (|:| |c| |#1|))) $ (-2 (|:| |k| (-568)) (|:| |c| |#1|))) NIL (|has| $ (-6 -4519))) (((-2 (|:| |k| (-568)) (|:| |c| |#1|)) (-1 (-2 (|:| |k| (-568)) (|:| |c| |#1|)) (-2 (|:| |k| (-568)) (|:| |c| |#1|)) (-2 (|:| |k| (-568)) (|:| |c| |#1|))) $) NIL (|has| $ (-6 -4519)))) (-2925 (((-3 $ "failed") $) 38)) (-2412 (($ $ $) NIL)) (-3989 (((-2 (|:| |k| (-568)) (|:| |c| |#1|)) $ (-568) (-2 (|:| |k| (-568)) (|:| |c| |#1|))) NIL (|has| $ (-6 -4520)))) (-2602 (((-2 (|:| |k| (-568)) (|:| |c| |#1|)) $ (-568)) NIL)) (-1277 (((-121) (-121)) 30) (((-121)) 29)) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) NIL)) (-3927 (((-121) $) NIL)) (-1601 (((-121) $) NIL)) (-2421 (($ $) 22)) (-3992 (((-121) $) NIL)) (-4360 (((-634 (-2 (|:| |k| (-568)) (|:| |c| |#1|))) $) NIL (|has| $ (-6 -4519)))) (-2455 (((-3 (-568) "failed") $) 16)) (-4477 (((-568) $ (-568)) NIL) (((-568) $) 19) (((-568) $) 19)) (-2735 (((-121) $) NIL)) (-3836 (((-763) $) NIL)) (-2287 (((-634 $) $) NIL)) (-1700 (((-121) $ $) NIL (|has| (-2 (|:| |k| (-568)) (|:| |c| |#1|)) (-1090)))) (-1849 (($ (-763) (-2 (|:| |k| (-568)) (|:| |c| |#1|))) NIL)) (-3536 (($ $ (-917)) NIL)) (-3562 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-1737 (((-121) $ (-763)) NIL)) (-3921 (((-121) $) NIL)) (-2662 (($ (-634 $) (-634 (-763)) (-568)) 85)) (-2047 (($ $ (-634 (-1075)) (-634 (-568))) NIL) (($ $ (-1075) (-568)) NIL) (($ |#1| (-568)) NIL)) (-1881 (((-568) $) NIL (|has| (-568) (-842)))) (-1979 (((-634 (-2 (|:| |k| (-568)) (|:| |c| |#1|))) $) NIL (|has| $ (-6 -4519)))) (-3109 (((-121) (-2 (|:| |k| (-568)) (|:| |c| |#1|)) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| |k| (-568)) (|:| |c| |#1|)) (-1090))))) (-2223 (((-568) $) NIL (|has| (-568) (-842)))) (-3674 (($ (-1 (-2 (|:| |k| (-568)) (|:| |c| |#1|)) (-2 (|:| |k| (-568)) (|:| |c| |#1|))) $) NIL (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| |k| (-568)) (|:| |c| |#1|)) (-2 (|:| |k| (-568)) (|:| |c| |#1|)) (-2 (|:| |k| (-568)) (|:| |c| |#1|))) $ $) NIL) (($ (-1 (-2 (|:| |k| (-568)) (|:| |c| |#1|)) (-2 (|:| |k| (-568)) (|:| |c| |#1|))) $) NIL)) (-2166 (((-121) $ (-763)) NIL)) (-2869 (((-634 (-2 (|:| |k| (-568)) (|:| |c| |#1|))) $) NIL)) (-1651 (((-121) $) NIL)) (-2097 (($ $) NIL)) (-2102 ((|#1| $) NIL)) (-2495 (($ $ $) NIL) (($ (-634 $)) NIL)) (-2892 (($ $) NIL)) (-3851 (((-121) $) NIL)) (-4487 (((-1143) $) NIL)) (-4162 (($ $ (-763)) NIL) (((-2 (|:| |k| (-568)) (|:| |c| |#1|)) $) NIL)) (-2081 (($ $) 39)) (-4122 (($ (-2 (|:| |k| (-568)) (|:| |c| |#1|)) $ (-568)) NIL) (($ $ $ (-568)) NIL)) (-4174 (((-634 (-568)) $) NIL)) (-3578 (((-121) (-568) $) NIL)) (-4022 (((-1108) $) NIL)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL)) (-2721 (($ $ $) NIL) (($ (-634 $)) NIL)) (-3121 (((-2 (|:| |k| (-568)) (|:| |c| |#1|)) $) 12)) (-3876 (($ $ (-763)) NIL) (((-2 (|:| |k| (-568)) (|:| |c| |#1|)) $) NIL)) (-1682 (((-2 (|:| |k| (-568)) (|:| |c| |#1|)) $ (-568)) 24)) (-1987 ((|#1| $ (-568)) 25)) (-3775 (((-3 (-2 (|:| |k| (-568)) (|:| |c| |#1|)) "failed") (-1 (-121) (-2 (|:| |k| (-568)) (|:| |c| |#1|))) $) NIL)) (-4273 (($ $ (-568)) 89)) (-3724 (($ $ (-2 (|:| |k| (-568)) (|:| |c| |#1|))) NIL (|has| $ (-6 -4520)))) (-3848 (((-420 $) $) NIL)) (-4497 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1807 (($ $ (-568)) NIL)) (-2595 (((-3 $ "failed") $ $) NIL)) (-2344 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-1786 (((-121) $) NIL)) (-1368 (((-121) $) NIL)) (-3552 (((-121) $) NIL)) (-1387 (((-121) (-1 (-121) (-2 (|:| |k| (-568)) (|:| |c| |#1|))) $) NIL (|has| $ (-6 -4519)))) (-1339 (((-1141 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-568))))) (($ $ (-634 (-2 (|:| |k| (-568)) (|:| |c| |#1|))) (-634 (-2 (|:| |k| (-568)) (|:| |c| |#1|)))) NIL (-12 (|has| (-2 (|:| |k| (-568)) (|:| |c| |#1|)) (-303 (-2 (|:| |k| (-568)) (|:| |c| |#1|)))) (|has| (-2 (|:| |k| (-568)) (|:| |c| |#1|)) (-1090)))) (($ $ (-2 (|:| |k| (-568)) (|:| |c| |#1|)) (-2 (|:| |k| (-568)) (|:| |c| |#1|))) NIL (-12 (|has| (-2 (|:| |k| (-568)) (|:| |c| |#1|)) (-303 (-2 (|:| |k| (-568)) (|:| |c| |#1|)))) (|has| (-2 (|:| |k| (-568)) (|:| |c| |#1|)) (-1090)))) (($ $ (-288 (-2 (|:| |k| (-568)) (|:| |c| |#1|)))) NIL (-12 (|has| (-2 (|:| |k| (-568)) (|:| |c| |#1|)) (-303 (-2 (|:| |k| (-568)) (|:| |c| |#1|)))) (|has| (-2 (|:| |k| (-568)) (|:| |c| |#1|)) (-1090)))) (($ $ (-634 (-288 (-2 (|:| |k| (-568)) (|:| |c| |#1|))))) NIL (-12 (|has| (-2 (|:| |k| (-568)) (|:| |c| |#1|)) (-303 (-2 (|:| |k| (-568)) (|:| |c| |#1|)))) (|has| (-2 (|:| |k| (-568)) (|:| |c| |#1|)) (-1090))))) (-2709 (((-763) $) NIL)) (-3171 (((-121) $ $) NIL)) (-4467 (((-121) (-2 (|:| |k| (-568)) (|:| |c| |#1|)) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| |k| (-568)) (|:| |c| |#1|)) (-1090))))) (-2041 (((-634 (-2 (|:| |k| (-568)) (|:| |c| |#1|))) $) NIL)) (-3084 (((-121) $) 23)) (-3248 (($) 94)) (-2779 (($ $ $) NIL (|has| (-568) (-1102))) ((|#1| $ (-568)) NIL) (((-2 (|:| |k| (-568)) (|:| |c| |#1|)) $ (-568) (-2 (|:| |k| (-568)) (|:| |c| |#1|))) NIL) (((-2 (|:| |k| (-568)) (|:| |c| |#1|)) $ (-568)) NIL) (($ $ (-1210 (-568))) NIL) (((-2 (|:| |k| (-568)) (|:| |c| |#1|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| |k| (-568)) (|:| |c| |#1|)) $ "first") NIL) (((-2 (|:| |k| (-568)) (|:| |c| |#1|)) $ "value") NIL)) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL)) (-4075 (((-568) $ $) NIL)) (-4189 (($ $) NIL (|has| |#1| (-15 * (|#1| (-568) |#1|)))) (($ $ (-763)) NIL (|has| |#1| (-15 * (|#1| (-568) |#1|)))) (($ $ (-1161)) NIL (-12 (|has| |#1| (-15 * (|#1| (-568) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-634 (-1161))) NIL (-12 (|has| |#1| (-15 * (|#1| (-568) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-1161) (-763)) NIL (-12 (|has| |#1| (-15 * (|#1| (-568) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-634 (-1161)) (-634 (-763))) NIL (-12 (|has| |#1| (-15 * (|#1| (-568) |#1|))) (|has| |#1| (-895 (-1161)))))) (-2826 (($ $ (-568)) NIL) (($ $ (-1210 (-568))) NIL)) (-4493 (($ (-1 $)) 34)) (-3206 (((-568) $) NIL)) (-3790 (((-121) $) NIL)) (-2340 (($ $) NIL)) (-2714 (($ $) NIL (|has| $ (-6 -4520)))) (-2775 (((-763) $) NIL)) (-3335 (($ $) NIL)) (-4168 (((-763) (-2 (|:| |k| (-568)) (|:| |c| |#1|)) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| |k| (-568)) (|:| |c| |#1|)) (-1090)))) (((-763) (-1 (-121) (-2 (|:| |k| (-568)) (|:| |c| |#1|))) $) NIL (|has| $ (-6 -4519)))) (-3863 (($ $) NIL)) (-4278 (((-541) $) NIL (|has| (-2 (|:| |k| (-568)) (|:| |c| |#1|)) (-609 (-541))))) (-4287 (($ (-634 (-2 (|:| |k| (-568)) (|:| |c| |#1|)))) 95)) (-3845 (($ $ (-2 (|:| |k| (-568)) (|:| |c| |#1|))) NIL (|has| $ (-6 -4520))) (($ $ $) NIL (|has| $ (-6 -4520)))) (-2768 (($ $ (-2 (|:| |k| (-568)) (|:| |c| |#1|))) NIL) (($ (-634 $)) NIL) (($ (-2 (|:| |k| (-568)) (|:| |c| |#1|)) $) 32) (($ $ $) NIL)) (-1811 (($ $) NIL)) (-2745 (((-850) $) 65) (($ (-568)) NIL) (($ $) NIL) (($ (-409 (-568))) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1141 (-2 (|:| |k| (-568)) (|:| |c| |#1|)))) 27) (((-1141 (-2 (|:| |k| (-568)) (|:| |c| |#1|))) $) 26)) (-2604 ((|#1| $ (-568)) NIL)) (-4447 ((|#1| $) 86)) (-4339 (((-634 $) $) NIL)) (-3491 (((-121) $ $) NIL (|has| (-2 (|:| |k| (-568)) (|:| |c| |#1|)) (-1090)))) (-4371 (((-3 $ "failed") $) NIL (|has| |#1| (-148)))) (-4078 (((-763)) NIL)) (-1374 ((|#1| $) NIL)) (-1826 (((-121) $ $) NIL)) (-3996 ((|#1| $ (-568)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-568)))) (|has| |#1| (-15 -2745 (|#1| (-1161))))))) (-1319 (((-121) (-1 (-121) (-2 (|:| |k| (-568)) (|:| |c| |#1|))) $) NIL (|has| $ (-6 -4519)))) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL)) (-3056 (($) 17 T CONST)) (-1556 (($) 74 T CONST)) (-3190 (($ $) NIL (|has| |#1| (-15 * (|#1| (-568) |#1|)))) (($ $ (-763)) NIL (|has| |#1| (-15 * (|#1| (-568) |#1|)))) (($ $ (-1161)) NIL (-12 (|has| |#1| (-15 * (|#1| (-568) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-634 (-1161))) NIL (-12 (|has| |#1| (-15 * (|#1| (-568) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-1161) (-763)) NIL (-12 (|has| |#1| (-15 * (|#1| (-568) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-634 (-1161)) (-634 (-763))) NIL (-12 (|has| |#1| (-15 * (|#1| (-568) |#1|))) (|has| |#1| (-895 (-1161)))))) (-1717 (((-121) $ $) NIL)) (-1779 (($ $ $) NIL) (($ $ |#1|) NIL (|has| |#1| (-365)))) (-1773 (($ $) 47) (($ $ $) 43)) (-1767 (($ $ $) 53)) (** (($ $ (-917)) NIL) (($ $ (-763)) 79) (($ $ (-568)) 52)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) 42) (($ $ (-409 (-568))) NIL) (($ (-409 (-568)) $) NIL) (($ |#1| $) 46) (($ $ |#1|) 100)) (-1697 (((-763) $) NIL (|has| $ (-6 -4519))))) +(((-774 |#1|) (-13 (-641 |#1|) (-665 (-2 (|:| |k| (-568)) (|:| |c| |#1|))) (-10 -8 (-15 -1682 ((-2 (|:| |k| (-568)) (|:| |c| |#1|)) $ (-568))))) (-365)) (T -774)) +((-1682 (*1 *2 *1 *3) (-12 (-5 *2 (-2 (|:| |k| (-568)) (|:| |c| *4))) (-5 *1 (-774 *4)) (-4 *4 (-365)) (-5 *3 (-568))))) +(-13 (-641 |#1|) (-665 (-2 (|:| |k| (-568)) (|:| |c| |#1|))) (-10 -8 (-15 -1682 ((-2 (|:| |k| (-568)) (|:| |c| |#1|)) $ (-568))))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) 34)) (-2055 (((-634 |#2|) $) NIL)) (-3839 (((-1157 $) $ |#2|) NIL) (((-1157 |#1|) $) NIL)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-2227 (($ $) NIL (|has| |#1| (-558)))) (-1573 (((-121) $) NIL (|has| |#1| (-558)))) (-2773 (((-763) $) NIL) (((-763) $ (-634 |#2|)) NIL)) (-2796 (($ $) 28)) (-3653 (((-121) $ $) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-3809 (($ $ $) 92 (|has| |#1| (-558)))) (-3909 (((-634 $) $ $) 105 (|has| |#1| (-558)))) (-1750 (((-420 (-1157 $)) (-1157 $)) NIL (|has| |#1| (-904)))) (-4305 (($ $) NIL (|has| |#1| (-453)))) (-1678 (((-420 $) $) NIL (|has| |#1| (-453)))) (-1858 (((-3 (-634 (-1157 $)) "failed") (-634 (-1157 $)) (-1157 $)) NIL (|has| |#1| (-904)))) (-2671 (($) NIL T CONST)) (-3666 (((-3 |#1| "failed") $) NIL) (((-3 (-409 (-568)) "failed") $) NIL (|has| |#1| (-1037 (-409 (-568))))) (((-3 (-568) "failed") $) NIL (|has| |#1| (-1037 (-568)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-953 (-409 (-568)))) NIL (-12 (|has| |#1| (-43 (-409 (-568)))) (|has| |#2| (-609 (-1161))))) (((-3 $ "failed") (-953 (-568))) NIL (-2198 (-12 (|has| |#1| (-43 (-568))) (|has| |#2| (-609 (-1161))) (-3044 (|has| |#1| (-43 (-409 (-568)))))) (-12 (|has| |#1| (-43 (-409 (-568)))) (|has| |#2| (-609 (-1161)))))) (((-3 $ "failed") (-953 |#1|)) NIL (-2198 (-12 (|has| |#2| (-609 (-1161))) (-3044 (|has| |#1| (-43 (-409 (-568))))) (-3044 (|has| |#1| (-43 (-568))))) (-12 (|has| |#1| (-43 (-568))) (|has| |#2| (-609 (-1161))) (-3044 (|has| |#1| (-43 (-409 (-568))))) (-3044 (|has| |#1| (-550)))) (-12 (|has| |#1| (-43 (-409 (-568)))) (|has| |#2| (-609 (-1161))) (-3044 (|has| |#1| (-993 (-568))))))) (((-3 (-1113 |#1| |#2|) "failed") $) 18)) (-2854 ((|#1| $) NIL) (((-409 (-568)) $) NIL (|has| |#1| (-1037 (-409 (-568))))) (((-568) $) NIL (|has| |#1| (-1037 (-568)))) ((|#2| $) NIL) (($ (-953 (-409 (-568)))) NIL (-12 (|has| |#1| (-43 (-409 (-568)))) (|has| |#2| (-609 (-1161))))) (($ (-953 (-568))) NIL (-2198 (-12 (|has| |#1| (-43 (-568))) (|has| |#2| (-609 (-1161))) (-3044 (|has| |#1| (-43 (-409 (-568)))))) (-12 (|has| |#1| (-43 (-409 (-568)))) (|has| |#2| (-609 (-1161)))))) (($ (-953 |#1|)) NIL (-2198 (-12 (|has| |#2| (-609 (-1161))) (-3044 (|has| |#1| (-43 (-409 (-568))))) (-3044 (|has| |#1| (-43 (-568))))) (-12 (|has| |#1| (-43 (-568))) (|has| |#2| (-609 (-1161))) (-3044 (|has| |#1| (-43 (-409 (-568))))) (-3044 (|has| |#1| (-550)))) (-12 (|has| |#1| (-43 (-409 (-568)))) (|has| |#2| (-609 (-1161))) (-3044 (|has| |#1| (-993 (-568))))))) (((-1113 |#1| |#2|) $) NIL)) (-4265 (($ $ $ |#2|) NIL (|has| |#1| (-172))) (($ $ $) 103 (|has| |#1| (-558)))) (-2114 (($ $) NIL) (($ $ |#2|) NIL)) (-3164 (((-679 (-568)) (-679 $)) NIL (|has| |#1| (-630 (-568)))) (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) NIL (|has| |#1| (-630 (-568)))) (((-2 (|:| -2928 (-679 |#1|)) (|:| |vec| (-1244 |#1|))) (-679 $) (-1244 $)) NIL) (((-679 |#1|) (-679 $)) NIL)) (-1281 (((-121) $ $) NIL) (((-121) $ (-634 $)) NIL)) (-2925 (((-3 $ "failed") $) NIL)) (-4054 (((-121) $) NIL)) (-4144 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) 69)) (-2053 (($ $) 118 (|has| |#1| (-453)))) (-3250 (($ $) NIL (|has| |#1| (-453))) (($ $ |#2|) NIL (|has| |#1| (-453)))) (-2108 (((-634 $) $) NIL)) (-3927 (((-121) $) NIL (|has| |#1| (-904)))) (-3069 (($ $) NIL (|has| |#1| (-558)))) (-3431 (($ $) NIL (|has| |#1| (-558)))) (-4293 (($ $ $) 64) (($ $ $ |#2|) NIL)) (-2875 (($ $ $) 67) (($ $ $ |#2|) NIL)) (-3088 (($ $ |#1| (-534 |#2|) $) NIL)) (-4410 (((-884 (-381) $) $ (-887 (-381)) (-884 (-381) $)) NIL (-12 (|has| |#1| (-881 (-381))) (|has| |#2| (-881 (-381))))) (((-884 (-568) $) $ (-887 (-568)) (-884 (-568) $)) NIL (-12 (|has| |#1| (-881 (-568))) (|has| |#2| (-881 (-568)))))) (-2735 (((-121) $) NIL)) (-4178 (((-763) $) NIL)) (-1362 (((-121) $ $) NIL) (((-121) $ (-634 $)) NIL)) (-4396 (($ $ $ $ $) 89 (|has| |#1| (-558)))) (-2356 ((|#2| $) 19)) (-2051 (($ (-1157 |#1|) |#2|) NIL) (($ (-1157 $) |#2|) NIL)) (-2976 (((-634 $) $) NIL)) (-3921 (((-121) $) NIL)) (-2047 (($ |#1| (-534 |#2|)) NIL) (($ $ |#2| (-763)) 36) (($ $ (-634 |#2|) (-634 (-763))) NIL)) (-2507 (($ $ $) 60)) (-3379 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $ |#2|) NIL)) (-2278 (((-121) $) NIL)) (-2144 (((-534 |#2|) $) NIL) (((-763) $ |#2|) NIL) (((-634 (-763)) $ (-634 |#2|)) NIL)) (-2521 (($ $ $) NIL (|has| |#1| (-842)))) (-3838 (((-763) $) 20)) (-3268 (($ $ $) NIL (|has| |#1| (-842)))) (-3842 (($ (-1 (-534 |#2|) (-534 |#2|)) $) NIL)) (-2795 (($ (-1 |#1| |#1|) $) NIL)) (-2244 (((-3 |#2| "failed") $) NIL)) (-3290 (($ $) NIL (|has| |#1| (-453)))) (-2297 (($ $) NIL (|has| |#1| (-453)))) (-4093 (((-634 $) $) NIL)) (-2429 (($ $) 37)) (-2111 (($ $) NIL (|has| |#1| (-453)))) (-2380 (((-634 $) $) 41)) (-2104 (($ $) 39)) (-2097 (($ $) NIL)) (-2102 ((|#1| $) NIL) (($ $ |#2|) 45)) (-2495 (($ (-634 $)) NIL (|has| |#1| (-453))) (($ $ $) NIL (|has| |#1| (-453)))) (-2280 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3741 (-763))) $ $) 81)) (-3547 (((-2 (|:| -2348 $) (|:| |gap| (-763)) (|:| -3961 $) (|:| -1500 $)) $ $) 66) (((-2 (|:| -2348 $) (|:| |gap| (-763)) (|:| -3961 $) (|:| -1500 $)) $ $ |#2|) NIL)) (-2409 (((-2 (|:| -2348 $) (|:| |gap| (-763)) (|:| -1500 $)) $ $) NIL) (((-2 (|:| -2348 $) (|:| |gap| (-763)) (|:| -1500 $)) $ $ |#2|) NIL)) (-3413 (($ $ $) 71) (($ $ $ |#2|) NIL)) (-3774 (($ $ $) 74) (($ $ $ |#2|) NIL)) (-4487 (((-1143) $) NIL)) (-4330 (($ $ $) 107 (|has| |#1| (-558)))) (-1901 (((-634 $) $) 30)) (-3324 (((-3 (-634 $) "failed") $) NIL)) (-1794 (((-3 (-634 $) "failed") $) NIL)) (-3751 (((-3 (-2 (|:| |var| |#2|) (|:| -3438 (-763))) "failed") $) NIL)) (-1415 (((-121) $ $) NIL) (((-121) $ (-634 $)) NIL)) (-2682 (($ $ $) NIL)) (-4434 (($ $) 21)) (-2644 (((-121) $ $) NIL)) (-4347 (((-121) $ $) NIL) (((-121) $ (-634 $)) NIL)) (-4025 (($ $ $) NIL)) (-1733 (($ $) 23)) (-4022 (((-1108) $) NIL)) (-2879 (((-2 (|:| -2721 $) (|:| |coef2| $)) $ $) 98 (|has| |#1| (-558)))) (-3203 (((-2 (|:| -2721 $) (|:| |coef1| $)) $ $) 95 (|has| |#1| (-558)))) (-2086 (((-121) $) 52)) (-2091 ((|#1| $) 55)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL (|has| |#1| (-453)))) (-2721 ((|#1| |#1| $) 115 (|has| |#1| (-453))) (($ (-634 $)) NIL (|has| |#1| (-453))) (($ $ $) NIL (|has| |#1| (-453)))) (-2905 (((-420 (-1157 $)) (-1157 $)) NIL (|has| |#1| (-904)))) (-3545 (((-420 (-1157 $)) (-1157 $)) NIL (|has| |#1| (-904)))) (-3848 (((-420 $) $) NIL (|has| |#1| (-904)))) (-1297 (((-2 (|:| -2721 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 101 (|has| |#1| (-558)))) (-2595 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558))) (((-3 $ "failed") $ $) 83 (|has| |#1| (-558)))) (-3055 (($ $ |#1|) 111 (|has| |#1| (-558))) (($ $ $) NIL (|has| |#1| (-558)))) (-4049 (($ $ |#1|) 110 (|has| |#1| (-558))) (($ $ $) NIL (|has| |#1| (-558)))) (-1339 (($ $ (-634 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-634 $) (-634 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-634 |#2|) (-634 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-634 |#2|) (-634 $)) NIL)) (-2217 (($ $ |#2|) NIL (|has| |#1| (-172)))) (-4189 (($ $ |#2|) NIL) (($ $ (-634 |#2|)) NIL) (($ $ |#2| (-763)) NIL) (($ $ (-634 |#2|) (-634 (-763))) NIL)) (-3206 (((-534 |#2|) $) NIL) (((-763) $ |#2|) 43) (((-634 (-763)) $ (-634 |#2|)) NIL)) (-1595 (($ $) NIL)) (-2734 (($ $) 33)) (-4278 (((-887 (-381)) $) NIL (-12 (|has| |#1| (-609 (-887 (-381)))) (|has| |#2| (-609 (-887 (-381)))))) (((-887 (-568)) $) NIL (-12 (|has| |#1| (-609 (-887 (-568)))) (|has| |#2| (-609 (-887 (-568)))))) (((-541) $) NIL (-12 (|has| |#1| (-609 (-541))) (|has| |#2| (-609 (-541))))) (($ (-953 (-409 (-568)))) NIL (-12 (|has| |#1| (-43 (-409 (-568)))) (|has| |#2| (-609 (-1161))))) (($ (-953 (-568))) NIL (-2198 (-12 (|has| |#1| (-43 (-568))) (|has| |#2| (-609 (-1161))) (-3044 (|has| |#1| (-43 (-409 (-568)))))) (-12 (|has| |#1| (-43 (-409 (-568)))) (|has| |#2| (-609 (-1161)))))) (($ (-953 |#1|)) NIL (|has| |#2| (-609 (-1161)))) (((-1143) $) NIL (-12 (|has| |#1| (-1037 (-568))) (|has| |#2| (-609 (-1161))))) (((-953 |#1|) $) NIL (|has| |#2| (-609 (-1161))))) (-3367 ((|#1| $) 114 (|has| |#1| (-453))) (($ $ |#2|) NIL (|has| |#1| (-453)))) (-2979 (((-3 (-1244 $) "failed") (-679 $)) NIL (-12 (|has| $ (-148)) (|has| |#1| (-904))))) (-2745 (((-850) $) NIL) (($ (-568)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-953 |#1|) $) NIL (|has| |#2| (-609 (-1161)))) (((-1113 |#1| |#2|) $) 15) (($ (-1113 |#1| |#2|)) 16) (($ (-409 (-568))) NIL (-2198 (|has| |#1| (-43 (-409 (-568)))) (|has| |#1| (-1037 (-409 (-568)))))) (($ $) NIL (|has| |#1| (-558)))) (-1302 (((-634 |#1|) $) NIL)) (-2604 ((|#1| $ (-534 |#2|)) NIL) (($ $ |#2| (-763)) 44) (($ $ (-634 |#2|) (-634 (-763))) NIL)) (-4371 (((-3 $ "failed") $) NIL (-2198 (-12 (|has| $ (-148)) (|has| |#1| (-904))) (|has| |#1| (-148))))) (-4078 (((-763)) NIL)) (-4171 (($ $ $ (-763)) NIL (|has| |#1| (-172)))) (-1826 (((-121) $ $) NIL (|has| |#1| (-558)))) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (-3056 (($) 13 T CONST)) (-3601 (((-3 (-121) "failed") $ $) NIL)) (-1556 (($) 35 T CONST)) (-2361 (($ $ $ $ (-763)) 87 (|has| |#1| (-558)))) (-2156 (($ $ $ (-763)) 86 (|has| |#1| (-558)))) (-3190 (($ $ |#2|) NIL) (($ $ (-634 |#2|)) NIL) (($ $ |#2| (-763)) NIL) (($ $ (-634 |#2|) (-634 (-763))) NIL)) (-1751 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1738 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1717 (((-121) $ $) 54)) (-1745 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1732 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1779 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-1773 (($ $) NIL) (($ $ $) 63)) (-1767 (($ $ $) 73)) (** (($ $ (-917)) NIL) (($ $ (-763)) 61)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) 59) (($ $ (-409 (-568))) NIL (|has| |#1| (-43 (-409 (-568))))) (($ (-409 (-568)) $) NIL (|has| |#1| (-43 (-409 (-568))))) (($ |#1| $) 58) (($ $ |#1|) NIL))) +(((-775 |#1| |#2|) (-13 (-1061 |#1| (-534 |#2|) |#2|) (-608 (-1113 |#1| |#2|)) (-1037 (-1113 |#1| |#2|))) (-1047) (-842)) (T -775)) +NIL +(-13 (-1061 |#1| (-534 |#2|) |#2|) (-608 (-1113 |#1| |#2|)) (-1037 (-1113 |#1| |#2|))) +((-2795 (((-777 |#2|) (-1 |#2| |#1|) (-777 |#1|)) 13))) +(((-776 |#1| |#2|) (-10 -7 (-15 -2795 ((-777 |#2|) (-1 |#2| |#1|) (-777 |#1|)))) (-1047) (-1047)) (T -776)) +((-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-777 *5)) (-4 *5 (-1047)) (-4 *6 (-1047)) (-5 *2 (-777 *6)) (-5 *1 (-776 *5 *6))))) +(-10 -7 (-15 -2795 ((-777 |#2|) (-1 |#2| |#1|) (-777 |#1|)))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) 12)) (-2572 (((-1244 |#1|) $ (-763)) NIL)) (-2055 (((-634 (-1075)) $) NIL)) (-3197 (($ (-1157 |#1|)) NIL)) (-3839 (((-1157 $) $ (-1075)) NIL) (((-1157 |#1|) $) NIL)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-2227 (($ $) NIL (|has| |#1| (-558)))) (-1573 (((-121) $) NIL (|has| |#1| (-558)))) (-2773 (((-763) $) NIL) (((-763) $ (-634 (-1075))) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-2249 (((-634 $) $ $) 39 (|has| |#1| (-558)))) (-3809 (($ $ $) 35 (|has| |#1| (-558)))) (-1750 (((-420 (-1157 $)) (-1157 $)) NIL (|has| |#1| (-904)))) (-4305 (($ $) NIL (|has| |#1| (-453)))) (-1678 (((-420 $) $) NIL (|has| |#1| (-453)))) (-1858 (((-3 (-634 (-1157 $)) "failed") (-634 (-1157 $)) (-1157 $)) NIL (|has| |#1| (-904)))) (-1497 (((-121) $ $) NIL (|has| |#1| (-365)))) (-3151 (($ $ (-763)) NIL)) (-3772 (($ $ (-763)) NIL)) (-1619 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-453)))) (-2671 (($) NIL T CONST)) (-3666 (((-3 |#1| "failed") $) NIL) (((-3 (-409 (-568)) "failed") $) NIL (|has| |#1| (-1037 (-409 (-568))))) (((-3 (-568) "failed") $) NIL (|has| |#1| (-1037 (-568)))) (((-3 (-1075) "failed") $) NIL) (((-3 (-1157 |#1|) "failed") $) 10)) (-2854 ((|#1| $) NIL) (((-409 (-568)) $) NIL (|has| |#1| (-1037 (-409 (-568))))) (((-568) $) NIL (|has| |#1| (-1037 (-568)))) (((-1075) $) NIL) (((-1157 |#1|) $) NIL)) (-4265 (($ $ $ (-1075)) NIL (|has| |#1| (-172))) ((|#1| $ $) 43 (|has| |#1| (-172)))) (-2401 (($ $ $) NIL (|has| |#1| (-365)))) (-2114 (($ $) NIL)) (-3164 (((-679 (-568)) (-679 $)) NIL (|has| |#1| (-630 (-568)))) (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) NIL (|has| |#1| (-630 (-568)))) (((-2 (|:| -2928 (-679 |#1|)) (|:| |vec| (-1244 |#1|))) (-679 $) (-1244 $)) NIL) (((-679 |#1|) (-679 $)) NIL)) (-2925 (((-3 $ "failed") $) NIL)) (-2412 (($ $ $) NIL (|has| |#1| (-365)))) (-3002 (($ $ $) NIL)) (-3581 (($ $ $) 71 (|has| |#1| (-558)))) (-4144 (((-2 (|:| -2348 |#1|) (|:| -3961 $) (|:| -1500 $)) $ $) 70 (|has| |#1| (-558)))) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) NIL (|has| |#1| (-365)))) (-3250 (($ $) NIL (|has| |#1| (-453))) (($ $ (-1075)) NIL (|has| |#1| (-453)))) (-2108 (((-634 $) $) NIL)) (-3927 (((-121) $) NIL (|has| |#1| (-904)))) (-3088 (($ $ |#1| (-763) $) NIL)) (-4410 (((-884 (-381) $) $ (-887 (-381)) (-884 (-381) $)) NIL (-12 (|has| (-1075) (-881 (-381))) (|has| |#1| (-881 (-381))))) (((-884 (-568) $) $ (-887 (-568)) (-884 (-568) $)) NIL (-12 (|has| (-1075) (-881 (-568))) (|has| |#1| (-881 (-568)))))) (-4477 (((-763) $ $) NIL (|has| |#1| (-558)))) (-2735 (((-121) $) NIL)) (-4178 (((-763) $) NIL)) (-3038 (((-3 $ "failed") $) NIL (|has| |#1| (-1136)))) (-2051 (($ (-1157 |#1|) (-1075)) NIL) (($ (-1157 $) (-1075)) NIL)) (-3536 (($ $ (-763)) NIL)) (-3562 (((-3 (-634 $) "failed") (-634 $) $) NIL (|has| |#1| (-365)))) (-2976 (((-634 $) $) NIL)) (-3921 (((-121) $) NIL)) (-2047 (($ |#1| (-763)) NIL) (($ $ (-1075) (-763)) NIL) (($ $ (-634 (-1075)) (-634 (-763))) NIL)) (-2507 (($ $ $) 20)) (-3379 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $ (-1075)) NIL) (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL)) (-2144 (((-763) $) NIL) (((-763) $ (-1075)) NIL) (((-634 (-763)) $ (-634 (-1075))) NIL)) (-2521 (($ $ $) NIL (|has| |#1| (-842)))) (-3268 (($ $ $) NIL (|has| |#1| (-842)))) (-3842 (($ (-1 (-763) (-763)) $) NIL)) (-2795 (($ (-1 |#1| |#1|) $) NIL)) (-3764 (((-1157 |#1|) $) NIL)) (-2244 (((-3 (-1075) "failed") $) NIL)) (-2097 (($ $) NIL)) (-2102 ((|#1| $) NIL)) (-2495 (($ (-634 $)) NIL (|has| |#1| (-453))) (($ $ $) NIL (|has| |#1| (-453)))) (-2280 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3741 (-763))) $ $) 26)) (-4418 (($ $ $) 29)) (-1948 (($ $ $) 32)) (-3547 (((-2 (|:| -2348 |#1|) (|:| |gap| (-763)) (|:| -3961 $) (|:| -1500 $)) $ $) 31)) (-4487 (((-1143) $) NIL)) (-4330 (($ $ $) 41 (|has| |#1| (-558)))) (-1643 (((-2 (|:| -3961 $) (|:| -1500 $)) $ (-763)) NIL)) (-3324 (((-3 (-634 $) "failed") $) NIL)) (-1794 (((-3 (-634 $) "failed") $) NIL)) (-3751 (((-3 (-2 (|:| |var| (-1075)) (|:| -3438 (-763))) "failed") $) NIL)) (-3837 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-4434 (($) NIL (|has| |#1| (-1136)) CONST)) (-4022 (((-1108) $) NIL)) (-2879 (((-2 (|:| -2721 $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (-558)))) (-3203 (((-2 (|:| -2721 $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (-558)))) (-3620 (((-2 (|:| -4265 |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (-558)))) (-1607 (((-2 (|:| -4265 |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (-558)))) (-2086 (((-121) $) 13)) (-2091 ((|#1| $) NIL)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL (|has| |#1| (-453)))) (-2721 (($ (-634 $)) NIL (|has| |#1| (-453))) (($ $ $) NIL (|has| |#1| (-453)))) (-4285 (($ $ (-763) |#1| $) 19)) (-2905 (((-420 (-1157 $)) (-1157 $)) NIL (|has| |#1| (-904)))) (-3545 (((-420 (-1157 $)) (-1157 $)) NIL (|has| |#1| (-904)))) (-3848 (((-420 $) $) NIL (|has| |#1| (-904)))) (-1297 (((-2 (|:| -2721 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (-558)))) (-2379 (((-2 (|:| -4265 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (-558)))) (-4497 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL (|has| |#1| (-365)))) (-2595 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-2344 (((-3 (-634 $) "failed") (-634 $) $) NIL (|has| |#1| (-365)))) (-1339 (($ $ (-634 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-634 $) (-634 $)) NIL) (($ $ (-1075) |#1|) NIL) (($ $ (-634 (-1075)) (-634 |#1|)) NIL) (($ $ (-1075) $) NIL) (($ $ (-634 (-1075)) (-634 $)) NIL)) (-2709 (((-763) $) NIL (|has| |#1| (-365)))) (-2779 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-409 $) (-409 $) (-409 $)) NIL (|has| |#1| (-558))) ((|#1| (-409 $) |#1|) NIL (|has| |#1| (-365))) (((-409 $) $ (-409 $)) NIL (|has| |#1| (-558)))) (-2167 (((-3 $ "failed") $ (-763)) NIL)) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL (|has| |#1| (-365)))) (-2217 (($ $ (-1075)) NIL (|has| |#1| (-172))) ((|#1| $) NIL (|has| |#1| (-172)))) (-4189 (($ $ (-1075)) NIL) (($ $ (-634 (-1075))) NIL) (($ $ (-1075) (-763)) NIL) (($ $ (-634 (-1075)) (-634 (-763))) NIL) (($ $ (-763)) NIL) (($ $) NIL) (($ $ (-1161)) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-634 (-1161))) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-1161) (-763)) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-634 (-1161)) (-634 (-763))) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-1 |#1| |#1|) (-763)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3206 (((-763) $) NIL) (((-763) $ (-1075)) NIL) (((-634 (-763)) $ (-634 (-1075))) NIL)) (-4278 (((-887 (-381)) $) NIL (-12 (|has| (-1075) (-609 (-887 (-381)))) (|has| |#1| (-609 (-887 (-381)))))) (((-887 (-568)) $) NIL (-12 (|has| (-1075) (-609 (-887 (-568)))) (|has| |#1| (-609 (-887 (-568)))))) (((-541) $) NIL (-12 (|has| (-1075) (-609 (-541))) (|has| |#1| (-609 (-541)))))) (-3367 ((|#1| $) NIL (|has| |#1| (-453))) (($ $ (-1075)) NIL (|has| |#1| (-453)))) (-2979 (((-3 (-1244 $) "failed") (-679 $)) NIL (-12 (|has| $ (-148)) (|has| |#1| (-904))))) (-3950 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558))) (((-3 (-409 $) "failed") (-409 $) $) NIL (|has| |#1| (-558)))) (-2745 (((-850) $) NIL) (($ (-568)) NIL) (($ |#1|) NIL) (($ (-1075)) NIL) (((-1157 |#1|) $) 7) (($ (-1157 |#1|)) 8) (($ (-409 (-568))) NIL (-2198 (|has| |#1| (-43 (-409 (-568)))) (|has| |#1| (-1037 (-409 (-568)))))) (($ $) NIL (|has| |#1| (-558)))) (-1302 (((-634 |#1|) $) NIL)) (-2604 ((|#1| $ (-763)) NIL) (($ $ (-1075) (-763)) NIL) (($ $ (-634 (-1075)) (-634 (-763))) NIL)) (-4371 (((-3 $ "failed") $) NIL (-2198 (-12 (|has| $ (-148)) (|has| |#1| (-904))) (|has| |#1| (-148))))) (-4078 (((-763)) NIL)) (-4171 (($ $ $ (-763)) NIL (|has| |#1| (-172)))) (-1826 (((-121) $ $) NIL (|has| |#1| (-558)))) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (-3056 (($) 21 T CONST)) (-1556 (($) 24 T CONST)) (-3190 (($ $ (-1075)) NIL) (($ $ (-634 (-1075))) NIL) (($ $ (-1075) (-763)) NIL) (($ $ (-634 (-1075)) (-634 (-763))) NIL) (($ $ (-763)) NIL) (($ $) NIL) (($ $ (-1161)) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-634 (-1161))) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-1161) (-763)) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-634 (-1161)) (-634 (-763))) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-1 |#1| |#1|) (-763)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1751 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1738 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1717 (((-121) $ $) NIL)) (-1745 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1732 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1779 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-1773 (($ $) 28) (($ $ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) NIL) (($ $ (-409 (-568))) NIL (|has| |#1| (-43 (-409 (-568))))) (($ (-409 (-568)) $) NIL (|has| |#1| (-43 (-409 (-568))))) (($ |#1| $) 23) (($ $ |#1|) NIL))) +(((-777 |#1|) (-13 (-1219 |#1|) (-608 (-1157 |#1|)) (-1037 (-1157 |#1|)) (-10 -8 (-15 -4285 ($ $ (-763) |#1| $)) (-15 -2507 ($ $ $)) (-15 -2280 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3741 (-763))) $ $)) (-15 -4418 ($ $ $)) (-15 -3547 ((-2 (|:| -2348 |#1|) (|:| |gap| (-763)) (|:| -3961 $) (|:| -1500 $)) $ $)) (-15 -1948 ($ $ $)) (IF (|has| |#1| (-558)) (PROGN (-15 -2249 ((-634 $) $ $)) (-15 -4330 ($ $ $)) (-15 -1297 ((-2 (|:| -2721 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3203 ((-2 (|:| -2721 $) (|:| |coef1| $)) $ $)) (-15 -2879 ((-2 (|:| -2721 $) (|:| |coef2| $)) $ $)) (-15 -2379 ((-2 (|:| -4265 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1607 ((-2 (|:| -4265 |#1|) (|:| |coef1| $)) $ $)) (-15 -3620 ((-2 (|:| -4265 |#1|) (|:| |coef2| $)) $ $))) |noBranch|))) (-1047)) (T -777)) +((-4285 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-763)) (-5 *1 (-777 *3)) (-4 *3 (-1047)))) (-2507 (*1 *1 *1 *1) (-12 (-5 *1 (-777 *2)) (-4 *2 (-1047)))) (-2280 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-777 *3)) (|:| |polden| *3) (|:| -3741 (-763)))) (-5 *1 (-777 *3)) (-4 *3 (-1047)))) (-4418 (*1 *1 *1 *1) (-12 (-5 *1 (-777 *2)) (-4 *2 (-1047)))) (-3547 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2348 *3) (|:| |gap| (-763)) (|:| -3961 (-777 *3)) (|:| -1500 (-777 *3)))) (-5 *1 (-777 *3)) (-4 *3 (-1047)))) (-1948 (*1 *1 *1 *1) (-12 (-5 *1 (-777 *2)) (-4 *2 (-1047)))) (-2249 (*1 *2 *1 *1) (-12 (-5 *2 (-634 (-777 *3))) (-5 *1 (-777 *3)) (-4 *3 (-558)) (-4 *3 (-1047)))) (-4330 (*1 *1 *1 *1) (-12 (-5 *1 (-777 *2)) (-4 *2 (-558)) (-4 *2 (-1047)))) (-1297 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2721 (-777 *3)) (|:| |coef1| (-777 *3)) (|:| |coef2| (-777 *3)))) (-5 *1 (-777 *3)) (-4 *3 (-558)) (-4 *3 (-1047)))) (-3203 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2721 (-777 *3)) (|:| |coef1| (-777 *3)))) (-5 *1 (-777 *3)) (-4 *3 (-558)) (-4 *3 (-1047)))) (-2879 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2721 (-777 *3)) (|:| |coef2| (-777 *3)))) (-5 *1 (-777 *3)) (-4 *3 (-558)) (-4 *3 (-1047)))) (-2379 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4265 *3) (|:| |coef1| (-777 *3)) (|:| |coef2| (-777 *3)))) (-5 *1 (-777 *3)) (-4 *3 (-558)) (-4 *3 (-1047)))) (-1607 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4265 *3) (|:| |coef1| (-777 *3)))) (-5 *1 (-777 *3)) (-4 *3 (-558)) (-4 *3 (-1047)))) (-3620 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4265 *3) (|:| |coef2| (-777 *3)))) (-5 *1 (-777 *3)) (-4 *3 (-558)) (-4 *3 (-1047))))) +(-13 (-1219 |#1|) (-608 (-1157 |#1|)) (-1037 (-1157 |#1|)) (-10 -8 (-15 -4285 ($ $ (-763) |#1| $)) (-15 -2507 ($ $ $)) (-15 -2280 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3741 (-763))) $ $)) (-15 -4418 ($ $ $)) (-15 -3547 ((-2 (|:| -2348 |#1|) (|:| |gap| (-763)) (|:| -3961 $) (|:| -1500 $)) $ $)) (-15 -1948 ($ $ $)) (IF (|has| |#1| (-558)) (PROGN (-15 -2249 ((-634 $) $ $)) (-15 -4330 ($ $ $)) (-15 -1297 ((-2 (|:| -2721 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3203 ((-2 (|:| -2721 $) (|:| |coef1| $)) $ $)) (-15 -2879 ((-2 (|:| -2721 $) (|:| |coef2| $)) $ $)) (-15 -2379 ((-2 (|:| -4265 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1607 ((-2 (|:| -4265 |#1|) (|:| |coef1| $)) $ $)) (-15 -3620 ((-2 (|:| -4265 |#1|) (|:| |coef2| $)) $ $))) |noBranch|))) +((-2541 ((|#1| (-763) |#1|) 32 (|has| |#1| (-43 (-409 (-568)))))) (-4411 ((|#1| (-763) |#1|) 22)) (-4317 ((|#1| (-763) |#1|) 34 (|has| |#1| (-43 (-409 (-568))))))) +(((-778 |#1|) (-10 -7 (-15 -4411 (|#1| (-763) |#1|)) (IF (|has| |#1| (-43 (-409 (-568)))) (PROGN (-15 -4317 (|#1| (-763) |#1|)) (-15 -2541 (|#1| (-763) |#1|))) |noBranch|)) (-172)) (T -778)) +((-2541 (*1 *2 *3 *2) (-12 (-5 *3 (-763)) (-5 *1 (-778 *2)) (-4 *2 (-43 (-409 (-568)))) (-4 *2 (-172)))) (-4317 (*1 *2 *3 *2) (-12 (-5 *3 (-763)) (-5 *1 (-778 *2)) (-4 *2 (-43 (-409 (-568)))) (-4 *2 (-172)))) (-4411 (*1 *2 *3 *2) (-12 (-5 *3 (-763)) (-5 *1 (-778 *2)) (-4 *2 (-172))))) +(-10 -7 (-15 -4411 (|#1| (-763) |#1|)) (IF (|has| |#1| (-43 (-409 (-568)))) (PROGN (-15 -4317 (|#1| (-763) |#1|)) (-15 -2541 (|#1| (-763) |#1|))) |noBranch|)) +((-2447 (((-121) $ $) 7)) (-2387 (((-634 (-2 (|:| -4092 $) (|:| -1798 (-634 |#4|)))) (-634 |#4|)) 78)) (-2415 (((-634 $) (-634 |#4|)) 79) (((-634 $) (-634 |#4|) (-121)) 104)) (-2055 (((-634 |#3|) $) 32)) (-4211 (((-121) $) 25)) (-3824 (((-121) $) 16 (|has| |#1| (-558)))) (-3300 (((-121) |#4| $) 94) (((-121) $) 90)) (-2819 ((|#4| |#4| $) 85)) (-4305 (((-634 (-2 (|:| |val| |#4|) (|:| -3001 $))) |#4| $) 119)) (-3644 (((-2 (|:| |under| $) (|:| -1519 $) (|:| |upper| $)) $ |#3|) 26)) (-2510 (((-121) $ (-763)) 43)) (-2801 (($ (-1 (-121) |#4|) $) 64 (|has| $ (-6 -4519))) (((-3 |#4| "failed") $ |#3|) 72)) (-2671 (($) 44 T CONST)) (-1565 (((-121) $) 21 (|has| |#1| (-558)))) (-3846 (((-121) $ $) 23 (|has| |#1| (-558)))) (-3106 (((-121) $ $) 22 (|has| |#1| (-558)))) (-3695 (((-121) $) 24 (|has| |#1| (-558)))) (-4275 (((-634 |#4|) (-634 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-121) |#4| |#4|)) 86)) (-2355 (((-634 |#4|) (-634 |#4|) $) 17 (|has| |#1| (-558)))) (-2492 (((-634 |#4|) (-634 |#4|) $) 18 (|has| |#1| (-558)))) (-3666 (((-3 $ "failed") (-634 |#4|)) 35)) (-2854 (($ (-634 |#4|)) 34)) (-3935 (((-3 $ "failed") $) 75)) (-2062 ((|#4| |#4| $) 82)) (-3924 (($ $) 67 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4519))))) (-4328 (($ |#4| $) 66 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4519)))) (($ (-1 (-121) |#4|) $) 63 (|has| $ (-6 -4519)))) (-1500 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 19 (|has| |#1| (-558)))) (-1281 (((-121) |#4| $ (-1 (-121) |#4| |#4|)) 95)) (-4079 ((|#4| |#4| $) 80)) (-3092 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 65 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4519)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 62 (|has| $ (-6 -4519))) ((|#4| (-1 |#4| |#4| |#4|) $) 61 (|has| $ (-6 -4519))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-121) |#4| |#4|)) 87)) (-3635 (((-2 (|:| -4092 (-634 |#4|)) (|:| -1798 (-634 |#4|))) $) 98)) (-1862 (((-121) |#4| $) 129)) (-4286 (((-121) |#4| $) 126)) (-3193 (((-121) |#4| $) 130) (((-121) $) 127)) (-4360 (((-634 |#4|) $) 51 (|has| $ (-6 -4519)))) (-1362 (((-121) |#4| $) 97) (((-121) $) 96)) (-2356 ((|#3| $) 33)) (-1737 (((-121) $ (-763)) 42)) (-1979 (((-634 |#4|) $) 52 (|has| $ (-6 -4519)))) (-3109 (((-121) |#4| $) 54 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4519))))) (-3674 (($ (-1 |#4| |#4|) $) 47 (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#4| |#4|) $) 46)) (-1432 (((-634 |#3|) $) 31)) (-3392 (((-121) |#3| $) 30)) (-2166 (((-121) $ (-763)) 41)) (-4487 (((-1143) $) 9)) (-2717 (((-3 |#4| (-634 $)) |#4| |#4| $) 121)) (-4330 (((-634 (-2 (|:| |val| |#4|) (|:| -3001 $))) |#4| |#4| $) 120)) (-4162 (((-3 |#4| "failed") $) 76)) (-2335 (((-634 $) |#4| $) 122)) (-1719 (((-3 (-121) (-634 $)) |#4| $) 125)) (-2632 (((-634 (-2 (|:| |val| (-121)) (|:| -3001 $))) |#4| $) 124) (((-121) |#4| $) 123)) (-3212 (((-634 $) |#4| $) 118) (((-634 $) (-634 |#4|) $) 117) (((-634 $) (-634 |#4|) (-634 $)) 116) (((-634 $) |#4| (-634 $)) 115)) (-3473 (($ |#4| $) 110) (($ (-634 |#4|) $) 109)) (-1377 (((-634 |#4|) $) 100)) (-1415 (((-121) |#4| $) 92) (((-121) $) 88)) (-2682 ((|#4| |#4| $) 83)) (-2644 (((-121) $ $) 103)) (-2705 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-558)))) (-4347 (((-121) |#4| $) 93) (((-121) $) 89)) (-4025 ((|#4| |#4| $) 84)) (-4022 (((-1108) $) 10)) (-3876 (((-3 |#4| "failed") $) 77)) (-3775 (((-3 |#4| "failed") (-1 (-121) |#4|) $) 60)) (-1665 (((-3 $ "failed") $ |#4|) 71)) (-1807 (($ $ |#4|) 70) (((-634 $) |#4| $) 108) (((-634 $) |#4| (-634 $)) 107) (((-634 $) (-634 |#4|) $) 106) (((-634 $) (-634 |#4|) (-634 $)) 105)) (-1387 (((-121) (-1 (-121) |#4|) $) 49 (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 |#4|) (-634 |#4|)) 58 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090)))) (($ $ |#4| |#4|) 57 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090)))) (($ $ (-288 |#4|)) 56 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090)))) (($ $ (-634 (-288 |#4|))) 55 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090))))) (-3171 (((-121) $ $) 37)) (-3084 (((-121) $) 40)) (-3248 (($) 39)) (-3206 (((-763) $) 99)) (-4168 (((-763) |#4| $) 53 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4519)))) (((-763) (-1 (-121) |#4|) $) 50 (|has| $ (-6 -4519)))) (-3863 (($ $) 38)) (-4278 (((-541) $) 68 (|has| |#4| (-609 (-541))))) (-4287 (($ (-634 |#4|)) 59)) (-1290 (($ $ |#3|) 27)) (-3732 (($ $ |#3|) 29)) (-1567 (($ $) 81)) (-3944 (($ $ |#3|) 28)) (-2745 (((-850) $) 11) (((-634 |#4|) $) 36)) (-1878 (((-763) $) 69 (|has| |#3| (-370)))) (-3556 (((-3 (-2 (|:| |bas| $) (|:| -2616 (-634 |#4|))) "failed") (-634 |#4|) (-1 (-121) |#4| |#4|)) 102) (((-3 (-2 (|:| |bas| $) (|:| -2616 (-634 |#4|))) "failed") (-634 |#4|) (-1 (-121) |#4|) (-1 (-121) |#4| |#4|)) 101)) (-3292 (((-121) $ (-1 (-121) |#4| (-634 |#4|))) 91)) (-2574 (((-634 $) |#4| $) 114) (((-634 $) |#4| (-634 $)) 113) (((-634 $) (-634 |#4|) $) 112) (((-634 $) (-634 |#4|) (-634 $)) 111)) (-1319 (((-121) (-1 (-121) |#4|) $) 48 (|has| $ (-6 -4519)))) (-2739 (((-634 |#3|) $) 74)) (-2288 (((-121) |#4| $) 128)) (-4390 (((-121) |#3| $) 73)) (-1717 (((-121) $ $) 6)) (-1697 (((-763) $) 45 (|has| $ (-6 -4519))))) +(((-779 |#1| |#2| |#3| |#4|) (-1275) (-453) (-788) (-842) (-1061 |t#1| |t#2| |t#3|)) (T -779)) +NIL +(-13 (-1066 |t#1| |t#2| |t#3| |t#4|)) +(((-39) . T) ((-105) . T) ((-608 (-634 |#4|)) . T) ((-608 (-850)) . T) ((-154 |#4|) . T) ((-609 (-541)) |has| |#4| (-609 (-541))) ((-303 |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090))) ((-499 |#4|) . T) ((-523 |#4| |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090))) ((-977 |#1| |#2| |#3| |#4|) . T) ((-1066 |#1| |#2| |#3| |#4|) . T) ((-1090) . T) ((-1189 |#1| |#2| |#3| |#4|) . T) ((-1195) . T)) +((-3717 (((-3 (-381) "failed") (-310 |#1|) (-917)) 60 (-12 (|has| |#1| (-558)) (|has| |#1| (-842)))) (((-3 (-381) "failed") (-310 |#1|)) 52 (-12 (|has| |#1| (-558)) (|has| |#1| (-842)))) (((-3 (-381) "failed") (-409 (-953 |#1|)) (-917)) 39 (|has| |#1| (-558))) (((-3 (-381) "failed") (-409 (-953 |#1|))) 35 (|has| |#1| (-558))) (((-3 (-381) "failed") (-953 |#1|) (-917)) 30 (|has| |#1| (-1047))) (((-3 (-381) "failed") (-953 |#1|)) 24 (|has| |#1| (-1047)))) (-2942 (((-381) (-310 |#1|) (-917)) 92 (-12 (|has| |#1| (-558)) (|has| |#1| (-842)))) (((-381) (-310 |#1|)) 87 (-12 (|has| |#1| (-558)) (|has| |#1| (-842)))) (((-381) (-409 (-953 |#1|)) (-917)) 84 (|has| |#1| (-558))) (((-381) (-409 (-953 |#1|))) 81 (|has| |#1| (-558))) (((-381) (-953 |#1|) (-917)) 80 (|has| |#1| (-1047))) (((-381) (-953 |#1|)) 77 (|has| |#1| (-1047))) (((-381) |#1| (-917)) 73) (((-381) |#1|) 22)) (-3297 (((-3 (-169 (-381)) "failed") (-310 (-169 |#1|)) (-917)) 68 (-12 (|has| |#1| (-558)) (|has| |#1| (-842)))) (((-3 (-169 (-381)) "failed") (-310 (-169 |#1|))) 58 (-12 (|has| |#1| (-558)) (|has| |#1| (-842)))) (((-3 (-169 (-381)) "failed") (-310 |#1|) (-917)) 61 (-12 (|has| |#1| (-558)) (|has| |#1| (-842)))) (((-3 (-169 (-381)) "failed") (-310 |#1|)) 59 (-12 (|has| |#1| (-558)) (|has| |#1| (-842)))) (((-3 (-169 (-381)) "failed") (-409 (-953 (-169 |#1|))) (-917)) 44 (|has| |#1| (-558))) (((-3 (-169 (-381)) "failed") (-409 (-953 (-169 |#1|)))) 43 (|has| |#1| (-558))) (((-3 (-169 (-381)) "failed") (-409 (-953 |#1|)) (-917)) 38 (|has| |#1| (-558))) (((-3 (-169 (-381)) "failed") (-409 (-953 |#1|))) 37 (|has| |#1| (-558))) (((-3 (-169 (-381)) "failed") (-953 |#1|) (-917)) 28 (|has| |#1| (-1047))) (((-3 (-169 (-381)) "failed") (-953 |#1|)) 26 (|has| |#1| (-1047))) (((-3 (-169 (-381)) "failed") (-953 (-169 |#1|)) (-917)) 17 (|has| |#1| (-172))) (((-3 (-169 (-381)) "failed") (-953 (-169 |#1|))) 14 (|has| |#1| (-172)))) (-3819 (((-169 (-381)) (-310 (-169 |#1|)) (-917)) 95 (-12 (|has| |#1| (-558)) (|has| |#1| (-842)))) (((-169 (-381)) (-310 (-169 |#1|))) 94 (-12 (|has| |#1| (-558)) (|has| |#1| (-842)))) (((-169 (-381)) (-310 |#1|) (-917)) 93 (-12 (|has| |#1| (-558)) (|has| |#1| (-842)))) (((-169 (-381)) (-310 |#1|)) 91 (-12 (|has| |#1| (-558)) (|has| |#1| (-842)))) (((-169 (-381)) (-409 (-953 (-169 |#1|))) (-917)) 86 (|has| |#1| (-558))) (((-169 (-381)) (-409 (-953 (-169 |#1|)))) 85 (|has| |#1| (-558))) (((-169 (-381)) (-409 (-953 |#1|)) (-917)) 83 (|has| |#1| (-558))) (((-169 (-381)) (-409 (-953 |#1|))) 82 (|has| |#1| (-558))) (((-169 (-381)) (-953 |#1|) (-917)) 79 (|has| |#1| (-1047))) (((-169 (-381)) (-953 |#1|)) 78 (|has| |#1| (-1047))) (((-169 (-381)) (-953 (-169 |#1|)) (-917)) 75 (|has| |#1| (-172))) (((-169 (-381)) (-953 (-169 |#1|))) 74 (|has| |#1| (-172))) (((-169 (-381)) (-169 |#1|) (-917)) 16 (|has| |#1| (-172))) (((-169 (-381)) (-169 |#1|)) 12 (|has| |#1| (-172))) (((-169 (-381)) |#1| (-917)) 27) (((-169 (-381)) |#1|) 25))) +(((-780 |#1|) (-10 -7 (-15 -2942 ((-381) |#1|)) (-15 -2942 ((-381) |#1| (-917))) (-15 -3819 ((-169 (-381)) |#1|)) (-15 -3819 ((-169 (-381)) |#1| (-917))) (IF (|has| |#1| (-172)) (PROGN (-15 -3819 ((-169 (-381)) (-169 |#1|))) (-15 -3819 ((-169 (-381)) (-169 |#1|) (-917))) (-15 -3819 ((-169 (-381)) (-953 (-169 |#1|)))) (-15 -3819 ((-169 (-381)) (-953 (-169 |#1|)) (-917)))) |noBranch|) (IF (|has| |#1| (-1047)) (PROGN (-15 -2942 ((-381) (-953 |#1|))) (-15 -2942 ((-381) (-953 |#1|) (-917))) (-15 -3819 ((-169 (-381)) (-953 |#1|))) (-15 -3819 ((-169 (-381)) (-953 |#1|) (-917)))) |noBranch|) (IF (|has| |#1| (-558)) (PROGN (-15 -2942 ((-381) (-409 (-953 |#1|)))) (-15 -2942 ((-381) (-409 (-953 |#1|)) (-917))) (-15 -3819 ((-169 (-381)) (-409 (-953 |#1|)))) (-15 -3819 ((-169 (-381)) (-409 (-953 |#1|)) (-917))) (-15 -3819 ((-169 (-381)) (-409 (-953 (-169 |#1|))))) (-15 -3819 ((-169 (-381)) (-409 (-953 (-169 |#1|))) (-917))) (IF (|has| |#1| (-842)) (PROGN (-15 -2942 ((-381) (-310 |#1|))) (-15 -2942 ((-381) (-310 |#1|) (-917))) (-15 -3819 ((-169 (-381)) (-310 |#1|))) (-15 -3819 ((-169 (-381)) (-310 |#1|) (-917))) (-15 -3819 ((-169 (-381)) (-310 (-169 |#1|)))) (-15 -3819 ((-169 (-381)) (-310 (-169 |#1|)) (-917)))) |noBranch|)) |noBranch|) (IF (|has| |#1| (-172)) (PROGN (-15 -3297 ((-3 (-169 (-381)) "failed") (-953 (-169 |#1|)))) (-15 -3297 ((-3 (-169 (-381)) "failed") (-953 (-169 |#1|)) (-917)))) |noBranch|) (IF (|has| |#1| (-1047)) (PROGN (-15 -3717 ((-3 (-381) "failed") (-953 |#1|))) (-15 -3717 ((-3 (-381) "failed") (-953 |#1|) (-917))) (-15 -3297 ((-3 (-169 (-381)) "failed") (-953 |#1|))) (-15 -3297 ((-3 (-169 (-381)) "failed") (-953 |#1|) (-917)))) |noBranch|) (IF (|has| |#1| (-558)) (PROGN (-15 -3717 ((-3 (-381) "failed") (-409 (-953 |#1|)))) (-15 -3717 ((-3 (-381) "failed") (-409 (-953 |#1|)) (-917))) (-15 -3297 ((-3 (-169 (-381)) "failed") (-409 (-953 |#1|)))) (-15 -3297 ((-3 (-169 (-381)) "failed") (-409 (-953 |#1|)) (-917))) (-15 -3297 ((-3 (-169 (-381)) "failed") (-409 (-953 (-169 |#1|))))) (-15 -3297 ((-3 (-169 (-381)) "failed") (-409 (-953 (-169 |#1|))) (-917))) (IF (|has| |#1| (-842)) (PROGN (-15 -3717 ((-3 (-381) "failed") (-310 |#1|))) (-15 -3717 ((-3 (-381) "failed") (-310 |#1|) (-917))) (-15 -3297 ((-3 (-169 (-381)) "failed") (-310 |#1|))) (-15 -3297 ((-3 (-169 (-381)) "failed") (-310 |#1|) (-917))) (-15 -3297 ((-3 (-169 (-381)) "failed") (-310 (-169 |#1|)))) (-15 -3297 ((-3 (-169 (-381)) "failed") (-310 (-169 |#1|)) (-917)))) |noBranch|)) |noBranch|)) (-609 (-381))) (T -780)) +((-3297 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-310 (-169 *5))) (-5 *4 (-917)) (-4 *5 (-558)) (-4 *5 (-842)) (-4 *5 (-609 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-780 *5)))) (-3297 (*1 *2 *3) (|partial| -12 (-5 *3 (-310 (-169 *4))) (-4 *4 (-558)) (-4 *4 (-842)) (-4 *4 (-609 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-780 *4)))) (-3297 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-310 *5)) (-5 *4 (-917)) (-4 *5 (-558)) (-4 *5 (-842)) (-4 *5 (-609 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-780 *5)))) (-3297 (*1 *2 *3) (|partial| -12 (-5 *3 (-310 *4)) (-4 *4 (-558)) (-4 *4 (-842)) (-4 *4 (-609 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-780 *4)))) (-3717 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-310 *5)) (-5 *4 (-917)) (-4 *5 (-558)) (-4 *5 (-842)) (-4 *5 (-609 *2)) (-5 *2 (-381)) (-5 *1 (-780 *5)))) (-3717 (*1 *2 *3) (|partial| -12 (-5 *3 (-310 *4)) (-4 *4 (-558)) (-4 *4 (-842)) (-4 *4 (-609 *2)) (-5 *2 (-381)) (-5 *1 (-780 *4)))) (-3297 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-409 (-953 (-169 *5)))) (-5 *4 (-917)) (-4 *5 (-558)) (-4 *5 (-609 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-780 *5)))) (-3297 (*1 *2 *3) (|partial| -12 (-5 *3 (-409 (-953 (-169 *4)))) (-4 *4 (-558)) (-4 *4 (-609 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-780 *4)))) (-3297 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-409 (-953 *5))) (-5 *4 (-917)) (-4 *5 (-558)) (-4 *5 (-609 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-780 *5)))) (-3297 (*1 *2 *3) (|partial| -12 (-5 *3 (-409 (-953 *4))) (-4 *4 (-558)) (-4 *4 (-609 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-780 *4)))) (-3717 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-409 (-953 *5))) (-5 *4 (-917)) (-4 *5 (-558)) (-4 *5 (-609 *2)) (-5 *2 (-381)) (-5 *1 (-780 *5)))) (-3717 (*1 *2 *3) (|partial| -12 (-5 *3 (-409 (-953 *4))) (-4 *4 (-558)) (-4 *4 (-609 *2)) (-5 *2 (-381)) (-5 *1 (-780 *4)))) (-3297 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-953 *5)) (-5 *4 (-917)) (-4 *5 (-1047)) (-4 *5 (-609 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-780 *5)))) (-3297 (*1 *2 *3) (|partial| -12 (-5 *3 (-953 *4)) (-4 *4 (-1047)) (-4 *4 (-609 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-780 *4)))) (-3717 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-953 *5)) (-5 *4 (-917)) (-4 *5 (-1047)) (-4 *5 (-609 *2)) (-5 *2 (-381)) (-5 *1 (-780 *5)))) (-3717 (*1 *2 *3) (|partial| -12 (-5 *3 (-953 *4)) (-4 *4 (-1047)) (-4 *4 (-609 *2)) (-5 *2 (-381)) (-5 *1 (-780 *4)))) (-3297 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-953 (-169 *5))) (-5 *4 (-917)) (-4 *5 (-172)) (-4 *5 (-609 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-780 *5)))) (-3297 (*1 *2 *3) (|partial| -12 (-5 *3 (-953 (-169 *4))) (-4 *4 (-172)) (-4 *4 (-609 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-780 *4)))) (-3819 (*1 *2 *3 *4) (-12 (-5 *3 (-310 (-169 *5))) (-5 *4 (-917)) (-4 *5 (-558)) (-4 *5 (-842)) (-4 *5 (-609 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-780 *5)))) (-3819 (*1 *2 *3) (-12 (-5 *3 (-310 (-169 *4))) (-4 *4 (-558)) (-4 *4 (-842)) (-4 *4 (-609 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-780 *4)))) (-3819 (*1 *2 *3 *4) (-12 (-5 *3 (-310 *5)) (-5 *4 (-917)) (-4 *5 (-558)) (-4 *5 (-842)) (-4 *5 (-609 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-780 *5)))) (-3819 (*1 *2 *3) (-12 (-5 *3 (-310 *4)) (-4 *4 (-558)) (-4 *4 (-842)) (-4 *4 (-609 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-780 *4)))) (-2942 (*1 *2 *3 *4) (-12 (-5 *3 (-310 *5)) (-5 *4 (-917)) (-4 *5 (-558)) (-4 *5 (-842)) (-4 *5 (-609 *2)) (-5 *2 (-381)) (-5 *1 (-780 *5)))) (-2942 (*1 *2 *3) (-12 (-5 *3 (-310 *4)) (-4 *4 (-558)) (-4 *4 (-842)) (-4 *4 (-609 *2)) (-5 *2 (-381)) (-5 *1 (-780 *4)))) (-3819 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-953 (-169 *5)))) (-5 *4 (-917)) (-4 *5 (-558)) (-4 *5 (-609 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-780 *5)))) (-3819 (*1 *2 *3) (-12 (-5 *3 (-409 (-953 (-169 *4)))) (-4 *4 (-558)) (-4 *4 (-609 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-780 *4)))) (-3819 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-953 *5))) (-5 *4 (-917)) (-4 *5 (-558)) (-4 *5 (-609 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-780 *5)))) (-3819 (*1 *2 *3) (-12 (-5 *3 (-409 (-953 *4))) (-4 *4 (-558)) (-4 *4 (-609 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-780 *4)))) (-2942 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-953 *5))) (-5 *4 (-917)) (-4 *5 (-558)) (-4 *5 (-609 *2)) (-5 *2 (-381)) (-5 *1 (-780 *5)))) (-2942 (*1 *2 *3) (-12 (-5 *3 (-409 (-953 *4))) (-4 *4 (-558)) (-4 *4 (-609 *2)) (-5 *2 (-381)) (-5 *1 (-780 *4)))) (-3819 (*1 *2 *3 *4) (-12 (-5 *3 (-953 *5)) (-5 *4 (-917)) (-4 *5 (-1047)) (-4 *5 (-609 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-780 *5)))) (-3819 (*1 *2 *3) (-12 (-5 *3 (-953 *4)) (-4 *4 (-1047)) (-4 *4 (-609 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-780 *4)))) (-2942 (*1 *2 *3 *4) (-12 (-5 *3 (-953 *5)) (-5 *4 (-917)) (-4 *5 (-1047)) (-4 *5 (-609 *2)) (-5 *2 (-381)) (-5 *1 (-780 *5)))) (-2942 (*1 *2 *3) (-12 (-5 *3 (-953 *4)) (-4 *4 (-1047)) (-4 *4 (-609 *2)) (-5 *2 (-381)) (-5 *1 (-780 *4)))) (-3819 (*1 *2 *3 *4) (-12 (-5 *3 (-953 (-169 *5))) (-5 *4 (-917)) (-4 *5 (-172)) (-4 *5 (-609 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-780 *5)))) (-3819 (*1 *2 *3) (-12 (-5 *3 (-953 (-169 *4))) (-4 *4 (-172)) (-4 *4 (-609 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-780 *4)))) (-3819 (*1 *2 *3 *4) (-12 (-5 *3 (-169 *5)) (-5 *4 (-917)) (-4 *5 (-172)) (-4 *5 (-609 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-780 *5)))) (-3819 (*1 *2 *3) (-12 (-5 *3 (-169 *4)) (-4 *4 (-172)) (-4 *4 (-609 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-780 *4)))) (-3819 (*1 *2 *3 *4) (-12 (-5 *4 (-917)) (-5 *2 (-169 (-381))) (-5 *1 (-780 *3)) (-4 *3 (-609 (-381))))) (-3819 (*1 *2 *3) (-12 (-5 *2 (-169 (-381))) (-5 *1 (-780 *3)) (-4 *3 (-609 (-381))))) (-2942 (*1 *2 *3 *4) (-12 (-5 *4 (-917)) (-5 *2 (-381)) (-5 *1 (-780 *3)) (-4 *3 (-609 *2)))) (-2942 (*1 *2 *3) (-12 (-5 *2 (-381)) (-5 *1 (-780 *3)) (-4 *3 (-609 *2))))) +(-10 -7 (-15 -2942 ((-381) |#1|)) (-15 -2942 ((-381) |#1| (-917))) (-15 -3819 ((-169 (-381)) |#1|)) (-15 -3819 ((-169 (-381)) |#1| (-917))) (IF (|has| |#1| (-172)) (PROGN (-15 -3819 ((-169 (-381)) (-169 |#1|))) (-15 -3819 ((-169 (-381)) (-169 |#1|) (-917))) (-15 -3819 ((-169 (-381)) (-953 (-169 |#1|)))) (-15 -3819 ((-169 (-381)) (-953 (-169 |#1|)) (-917)))) |noBranch|) (IF (|has| |#1| (-1047)) (PROGN (-15 -2942 ((-381) (-953 |#1|))) (-15 -2942 ((-381) (-953 |#1|) (-917))) (-15 -3819 ((-169 (-381)) (-953 |#1|))) (-15 -3819 ((-169 (-381)) (-953 |#1|) (-917)))) |noBranch|) (IF (|has| |#1| (-558)) (PROGN (-15 -2942 ((-381) (-409 (-953 |#1|)))) (-15 -2942 ((-381) (-409 (-953 |#1|)) (-917))) (-15 -3819 ((-169 (-381)) (-409 (-953 |#1|)))) (-15 -3819 ((-169 (-381)) (-409 (-953 |#1|)) (-917))) (-15 -3819 ((-169 (-381)) (-409 (-953 (-169 |#1|))))) (-15 -3819 ((-169 (-381)) (-409 (-953 (-169 |#1|))) (-917))) (IF (|has| |#1| (-842)) (PROGN (-15 -2942 ((-381) (-310 |#1|))) (-15 -2942 ((-381) (-310 |#1|) (-917))) (-15 -3819 ((-169 (-381)) (-310 |#1|))) (-15 -3819 ((-169 (-381)) (-310 |#1|) (-917))) (-15 -3819 ((-169 (-381)) (-310 (-169 |#1|)))) (-15 -3819 ((-169 (-381)) (-310 (-169 |#1|)) (-917)))) |noBranch|)) |noBranch|) (IF (|has| |#1| (-172)) (PROGN (-15 -3297 ((-3 (-169 (-381)) "failed") (-953 (-169 |#1|)))) (-15 -3297 ((-3 (-169 (-381)) "failed") (-953 (-169 |#1|)) (-917)))) |noBranch|) (IF (|has| |#1| (-1047)) (PROGN (-15 -3717 ((-3 (-381) "failed") (-953 |#1|))) (-15 -3717 ((-3 (-381) "failed") (-953 |#1|) (-917))) (-15 -3297 ((-3 (-169 (-381)) "failed") (-953 |#1|))) (-15 -3297 ((-3 (-169 (-381)) "failed") (-953 |#1|) (-917)))) |noBranch|) (IF (|has| |#1| (-558)) (PROGN (-15 -3717 ((-3 (-381) "failed") (-409 (-953 |#1|)))) (-15 -3717 ((-3 (-381) "failed") (-409 (-953 |#1|)) (-917))) (-15 -3297 ((-3 (-169 (-381)) "failed") (-409 (-953 |#1|)))) (-15 -3297 ((-3 (-169 (-381)) "failed") (-409 (-953 |#1|)) (-917))) (-15 -3297 ((-3 (-169 (-381)) "failed") (-409 (-953 (-169 |#1|))))) (-15 -3297 ((-3 (-169 (-381)) "failed") (-409 (-953 (-169 |#1|))) (-917))) (IF (|has| |#1| (-842)) (PROGN (-15 -3717 ((-3 (-381) "failed") (-310 |#1|))) (-15 -3717 ((-3 (-381) "failed") (-310 |#1|) (-917))) (-15 -3297 ((-3 (-169 (-381)) "failed") (-310 |#1|))) (-15 -3297 ((-3 (-169 (-381)) "failed") (-310 |#1|) (-917))) (-15 -3297 ((-3 (-169 (-381)) "failed") (-310 (-169 |#1|)))) (-15 -3297 ((-3 (-169 (-381)) "failed") (-310 (-169 |#1|)) (-917)))) |noBranch|)) |noBranch|)) +((-1518 (((-917) (-1143)) 63)) (-2900 (((-3 (-381) "failed") (-1143)) 32)) (-3985 (((-381) (-1143)) 30)) (-2306 (((-917) (-1143)) 53)) (-3592 (((-1143) (-917)) 54)) (-1938 (((-1143) (-917)) 52))) +(((-781) (-10 -7 (-15 -1938 ((-1143) (-917))) (-15 -2306 ((-917) (-1143))) (-15 -3592 ((-1143) (-917))) (-15 -1518 ((-917) (-1143))) (-15 -3985 ((-381) (-1143))) (-15 -2900 ((-3 (-381) "failed") (-1143))))) (T -781)) +((-2900 (*1 *2 *3) (|partial| -12 (-5 *3 (-1143)) (-5 *2 (-381)) (-5 *1 (-781)))) (-3985 (*1 *2 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-381)) (-5 *1 (-781)))) (-1518 (*1 *2 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-917)) (-5 *1 (-781)))) (-3592 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1143)) (-5 *1 (-781)))) (-2306 (*1 *2 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-917)) (-5 *1 (-781)))) (-1938 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1143)) (-5 *1 (-781))))) +(-10 -7 (-15 -1938 ((-1143) (-917))) (-15 -2306 ((-917) (-1143))) (-15 -3592 ((-1143) (-917))) (-15 -1518 ((-917) (-1143))) (-15 -3985 ((-381) (-1143))) (-15 -2900 ((-3 (-381) "failed") (-1143)))) +((-2447 (((-121) $ $) 7)) (-1304 (((-1035) (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215))) (-1035)) 14) (((-1035) (-2 (|:| |fn| (-310 (-215))) (|:| -1338 (-634 (-1084 (-835 (-215))))) (|:| |abserr| (-215)) (|:| |relerr| (-215))) (-1035)) 12)) (-3029 (((-2 (|:| -3029 (-381)) (|:| |explanations| (-1143)) (|:| |extra| (-1035))) (-1059) (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) 15) (((-2 (|:| -3029 (-381)) (|:| |explanations| (-1143)) (|:| |extra| (-1035))) (-1059) (-2 (|:| |fn| (-310 (-215))) (|:| -1338 (-634 (-1084 (-835 (-215))))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) 13)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-2745 (((-850) $) 11)) (-1717 (((-121) $ $) 6))) +(((-782) (-1275)) (T -782)) +((-3029 (*1 *2 *3 *4) (-12 (-4 *1 (-782)) (-5 *3 (-1059)) (-5 *4 (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (-5 *2 (-2 (|:| -3029 (-381)) (|:| |explanations| (-1143)) (|:| |extra| (-1035)))))) (-1304 (*1 *2 *3 *2) (-12 (-4 *1 (-782)) (-5 *2 (-1035)) (-5 *3 (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))))) (-3029 (*1 *2 *3 *4) (-12 (-4 *1 (-782)) (-5 *3 (-1059)) (-5 *4 (-2 (|:| |fn| (-310 (-215))) (|:| -1338 (-634 (-1084 (-835 (-215))))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (-5 *2 (-2 (|:| -3029 (-381)) (|:| |explanations| (-1143)) (|:| |extra| (-1035)))))) (-1304 (*1 *2 *3 *2) (-12 (-4 *1 (-782)) (-5 *2 (-1035)) (-5 *3 (-2 (|:| |fn| (-310 (-215))) (|:| -1338 (-634 (-1084 (-835 (-215))))) (|:| |abserr| (-215)) (|:| |relerr| (-215))))))) +(-13 (-1090) (-10 -7 (-15 -3029 ((-2 (|:| -3029 (-381)) (|:| |explanations| (-1143)) (|:| |extra| (-1035))) (-1059) (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215))))) (-15 -1304 ((-1035) (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215))) (-1035))) (-15 -3029 ((-2 (|:| -3029 (-381)) (|:| |explanations| (-1143)) (|:| |extra| (-1035))) (-1059) (-2 (|:| |fn| (-310 (-215))) (|:| -1338 (-634 (-1084 (-835 (-215))))) (|:| |abserr| (-215)) (|:| |relerr| (-215))))) (-15 -1304 ((-1035) (-2 (|:| |fn| (-310 (-215))) (|:| -1338 (-634 (-1084 (-835 (-215))))) (|:| |abserr| (-215)) (|:| |relerr| (-215))) (-1035))))) +(((-105) . T) ((-608 (-850)) . T) ((-1090) . T)) +((-2806 (((-1249) (-1244 (-381)) (-568) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3650 (-381))) (-381) (-1244 (-381)) (-1 (-1249) (-1244 (-381)) (-1244 (-381)) (-381)) (-1244 (-381)) (-1244 (-381)) (-1244 (-381)) (-1244 (-381)) (-1244 (-381)) (-1244 (-381)) (-1244 (-381))) 44) (((-1249) (-1244 (-381)) (-568) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3650 (-381))) (-381) (-1244 (-381)) (-1 (-1249) (-1244 (-381)) (-1244 (-381)) (-381))) 43)) (-1307 (((-1249) (-1244 (-381)) (-568) (-381) (-381) (-568) (-1 (-1249) (-1244 (-381)) (-1244 (-381)) (-381))) 50)) (-2120 (((-1249) (-1244 (-381)) (-568) (-381) (-381) (-381) (-381) (-568) (-1 (-1249) (-1244 (-381)) (-1244 (-381)) (-381))) 41)) (-3283 (((-1249) (-1244 (-381)) (-568) (-381) (-381) (-1 (-1249) (-1244 (-381)) (-1244 (-381)) (-381)) (-1244 (-381)) (-1244 (-381)) (-1244 (-381)) (-1244 (-381))) 52) (((-1249) (-1244 (-381)) (-568) (-381) (-381) (-1 (-1249) (-1244 (-381)) (-1244 (-381)) (-381))) 51))) +(((-783) (-10 -7 (-15 -3283 ((-1249) (-1244 (-381)) (-568) (-381) (-381) (-1 (-1249) (-1244 (-381)) (-1244 (-381)) (-381)))) (-15 -3283 ((-1249) (-1244 (-381)) (-568) (-381) (-381) (-1 (-1249) (-1244 (-381)) (-1244 (-381)) (-381)) (-1244 (-381)) (-1244 (-381)) (-1244 (-381)) (-1244 (-381)))) (-15 -2120 ((-1249) (-1244 (-381)) (-568) (-381) (-381) (-381) (-381) (-568) (-1 (-1249) (-1244 (-381)) (-1244 (-381)) (-381)))) (-15 -2806 ((-1249) (-1244 (-381)) (-568) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3650 (-381))) (-381) (-1244 (-381)) (-1 (-1249) (-1244 (-381)) (-1244 (-381)) (-381)))) (-15 -2806 ((-1249) (-1244 (-381)) (-568) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3650 (-381))) (-381) (-1244 (-381)) (-1 (-1249) (-1244 (-381)) (-1244 (-381)) (-381)) (-1244 (-381)) (-1244 (-381)) (-1244 (-381)) (-1244 (-381)) (-1244 (-381)) (-1244 (-381)) (-1244 (-381)))) (-15 -1307 ((-1249) (-1244 (-381)) (-568) (-381) (-381) (-568) (-1 (-1249) (-1244 (-381)) (-1244 (-381)) (-381)))))) (T -783)) +((-1307 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-568)) (-5 *6 (-1 (-1249) (-1244 *5) (-1244 *5) (-381))) (-5 *3 (-1244 (-381))) (-5 *5 (-381)) (-5 *2 (-1249)) (-5 *1 (-783)))) (-2806 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-568)) (-5 *6 (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3650 (-381)))) (-5 *7 (-1 (-1249) (-1244 *5) (-1244 *5) (-381))) (-5 *3 (-1244 (-381))) (-5 *5 (-381)) (-5 *2 (-1249)) (-5 *1 (-783)))) (-2806 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-568)) (-5 *6 (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3650 (-381)))) (-5 *7 (-1 (-1249) (-1244 *5) (-1244 *5) (-381))) (-5 *3 (-1244 (-381))) (-5 *5 (-381)) (-5 *2 (-1249)) (-5 *1 (-783)))) (-2120 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-568)) (-5 *6 (-1 (-1249) (-1244 *5) (-1244 *5) (-381))) (-5 *3 (-1244 (-381))) (-5 *5 (-381)) (-5 *2 (-1249)) (-5 *1 (-783)))) (-3283 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-568)) (-5 *6 (-1 (-1249) (-1244 *5) (-1244 *5) (-381))) (-5 *3 (-1244 (-381))) (-5 *5 (-381)) (-5 *2 (-1249)) (-5 *1 (-783)))) (-3283 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-568)) (-5 *6 (-1 (-1249) (-1244 *5) (-1244 *5) (-381))) (-5 *3 (-1244 (-381))) (-5 *5 (-381)) (-5 *2 (-1249)) (-5 *1 (-783))))) +(-10 -7 (-15 -3283 ((-1249) (-1244 (-381)) (-568) (-381) (-381) (-1 (-1249) (-1244 (-381)) (-1244 (-381)) (-381)))) (-15 -3283 ((-1249) (-1244 (-381)) (-568) (-381) (-381) (-1 (-1249) (-1244 (-381)) (-1244 (-381)) (-381)) (-1244 (-381)) (-1244 (-381)) (-1244 (-381)) (-1244 (-381)))) (-15 -2120 ((-1249) (-1244 (-381)) (-568) (-381) (-381) (-381) (-381) (-568) (-1 (-1249) (-1244 (-381)) (-1244 (-381)) (-381)))) (-15 -2806 ((-1249) (-1244 (-381)) (-568) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3650 (-381))) (-381) (-1244 (-381)) (-1 (-1249) (-1244 (-381)) (-1244 (-381)) (-381)))) (-15 -2806 ((-1249) (-1244 (-381)) (-568) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3650 (-381))) (-381) (-1244 (-381)) (-1 (-1249) (-1244 (-381)) (-1244 (-381)) (-381)) (-1244 (-381)) (-1244 (-381)) (-1244 (-381)) (-1244 (-381)) (-1244 (-381)) (-1244 (-381)) (-1244 (-381)))) (-15 -1307 ((-1249) (-1244 (-381)) (-568) (-381) (-381) (-568) (-1 (-1249) (-1244 (-381)) (-1244 (-381)) (-381))))) +((-4236 (((-2 (|:| -2850 (-381)) (|:| -2183 (-381)) (|:| |totalpts| (-568)) (|:| |success| (-121))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-568) (-568)) 53)) (-3294 (((-2 (|:| -2850 (-381)) (|:| -2183 (-381)) (|:| |totalpts| (-568)) (|:| |success| (-121))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-568) (-568)) 30)) (-3304 (((-2 (|:| -2850 (-381)) (|:| -2183 (-381)) (|:| |totalpts| (-568)) (|:| |success| (-121))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-568) (-568)) 52)) (-4399 (((-2 (|:| -2850 (-381)) (|:| -2183 (-381)) (|:| |totalpts| (-568)) (|:| |success| (-121))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-568) (-568)) 28)) (-3402 (((-2 (|:| -2850 (-381)) (|:| -2183 (-381)) (|:| |totalpts| (-568)) (|:| |success| (-121))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-568) (-568)) 51)) (-1452 (((-2 (|:| -2850 (-381)) (|:| -2183 (-381)) (|:| |totalpts| (-568)) (|:| |success| (-121))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-568) (-568)) 18)) (-2530 (((-2 (|:| -2850 (-381)) (|:| -2183 (-381)) (|:| |totalpts| (-568)) (|:| |success| (-121))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-568) (-568) (-568)) 31)) (-1549 (((-2 (|:| -2850 (-381)) (|:| -2183 (-381)) (|:| |totalpts| (-568)) (|:| |success| (-121))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-568) (-568) (-568)) 29)) (-3899 (((-2 (|:| -2850 (-381)) (|:| -2183 (-381)) (|:| |totalpts| (-568)) (|:| |success| (-121))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-568) (-568) (-568)) 27))) +(((-784) (-10 -7 (-15 -3899 ((-2 (|:| -2850 (-381)) (|:| -2183 (-381)) (|:| |totalpts| (-568)) (|:| |success| (-121))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-568) (-568) (-568))) (-15 -1549 ((-2 (|:| -2850 (-381)) (|:| -2183 (-381)) (|:| |totalpts| (-568)) (|:| |success| (-121))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-568) (-568) (-568))) (-15 -2530 ((-2 (|:| -2850 (-381)) (|:| -2183 (-381)) (|:| |totalpts| (-568)) (|:| |success| (-121))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-568) (-568) (-568))) (-15 -1452 ((-2 (|:| -2850 (-381)) (|:| -2183 (-381)) (|:| |totalpts| (-568)) (|:| |success| (-121))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-568) (-568))) (-15 -4399 ((-2 (|:| -2850 (-381)) (|:| -2183 (-381)) (|:| |totalpts| (-568)) (|:| |success| (-121))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-568) (-568))) (-15 -3294 ((-2 (|:| -2850 (-381)) (|:| -2183 (-381)) (|:| |totalpts| (-568)) (|:| |success| (-121))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-568) (-568))) (-15 -3402 ((-2 (|:| -2850 (-381)) (|:| -2183 (-381)) (|:| |totalpts| (-568)) (|:| |success| (-121))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-568) (-568))) (-15 -3304 ((-2 (|:| -2850 (-381)) (|:| -2183 (-381)) (|:| |totalpts| (-568)) (|:| |success| (-121))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-568) (-568))) (-15 -4236 ((-2 (|:| -2850 (-381)) (|:| -2183 (-381)) (|:| |totalpts| (-568)) (|:| |success| (-121))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-568) (-568))))) (T -784)) +((-4236 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -2850 *4) (|:| -2183 *4) (|:| |totalpts| (-568)) (|:| |success| (-121)))) (-5 *1 (-784)) (-5 *5 (-568)))) (-3304 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -2850 *4) (|:| -2183 *4) (|:| |totalpts| (-568)) (|:| |success| (-121)))) (-5 *1 (-784)) (-5 *5 (-568)))) (-3402 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -2850 *4) (|:| -2183 *4) (|:| |totalpts| (-568)) (|:| |success| (-121)))) (-5 *1 (-784)) (-5 *5 (-568)))) (-3294 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -2850 *4) (|:| -2183 *4) (|:| |totalpts| (-568)) (|:| |success| (-121)))) (-5 *1 (-784)) (-5 *5 (-568)))) (-4399 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -2850 *4) (|:| -2183 *4) (|:| |totalpts| (-568)) (|:| |success| (-121)))) (-5 *1 (-784)) (-5 *5 (-568)))) (-1452 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -2850 *4) (|:| -2183 *4) (|:| |totalpts| (-568)) (|:| |success| (-121)))) (-5 *1 (-784)) (-5 *5 (-568)))) (-2530 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -2850 *4) (|:| -2183 *4) (|:| |totalpts| (-568)) (|:| |success| (-121)))) (-5 *1 (-784)) (-5 *5 (-568)))) (-1549 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -2850 *4) (|:| -2183 *4) (|:| |totalpts| (-568)) (|:| |success| (-121)))) (-5 *1 (-784)) (-5 *5 (-568)))) (-3899 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -2850 *4) (|:| -2183 *4) (|:| |totalpts| (-568)) (|:| |success| (-121)))) (-5 *1 (-784)) (-5 *5 (-568))))) +(-10 -7 (-15 -3899 ((-2 (|:| -2850 (-381)) (|:| -2183 (-381)) (|:| |totalpts| (-568)) (|:| |success| (-121))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-568) (-568) (-568))) (-15 -1549 ((-2 (|:| -2850 (-381)) (|:| -2183 (-381)) (|:| |totalpts| (-568)) (|:| |success| (-121))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-568) (-568) (-568))) (-15 -2530 ((-2 (|:| -2850 (-381)) (|:| -2183 (-381)) (|:| |totalpts| (-568)) (|:| |success| (-121))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-568) (-568) (-568))) (-15 -1452 ((-2 (|:| -2850 (-381)) (|:| -2183 (-381)) (|:| |totalpts| (-568)) (|:| |success| (-121))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-568) (-568))) (-15 -4399 ((-2 (|:| -2850 (-381)) (|:| -2183 (-381)) (|:| |totalpts| (-568)) (|:| |success| (-121))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-568) (-568))) (-15 -3294 ((-2 (|:| -2850 (-381)) (|:| -2183 (-381)) (|:| |totalpts| (-568)) (|:| |success| (-121))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-568) (-568))) (-15 -3402 ((-2 (|:| -2850 (-381)) (|:| -2183 (-381)) (|:| |totalpts| (-568)) (|:| |success| (-121))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-568) (-568))) (-15 -3304 ((-2 (|:| -2850 (-381)) (|:| -2183 (-381)) (|:| |totalpts| (-568)) (|:| |success| (-121))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-568) (-568))) (-15 -4236 ((-2 (|:| -2850 (-381)) (|:| -2183 (-381)) (|:| |totalpts| (-568)) (|:| |success| (-121))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-568) (-568)))) +((-3368 (((-1191 |#1|) |#1| (-215) (-568)) 45))) +(((-785 |#1|) (-10 -7 (-15 -3368 ((-1191 |#1|) |#1| (-215) (-568)))) (-975)) (T -785)) +((-3368 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-215)) (-5 *5 (-568)) (-5 *2 (-1191 *3)) (-5 *1 (-785 *3)) (-4 *3 (-975))))) +(-10 -7 (-15 -3368 ((-1191 |#1|) |#1| (-215) (-568)))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 23)) (-3134 (((-3 $ "failed") $ $) 25)) (-2671 (($) 22 T CONST)) (-2521 (($ $ $) 12)) (-3268 (($ $ $) 13)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-2745 (((-850) $) 11)) (-3056 (($) 21 T CONST)) (-1751 (((-121) $ $) 15)) (-1738 (((-121) $ $) 16)) (-1717 (((-121) $ $) 6)) (-1745 (((-121) $ $) 14)) (-1732 (((-121) $ $) 17)) (-1773 (($ $ $) 27) (($ $) 26)) (-1767 (($ $ $) 19)) (* (($ (-763) $) 24) (($ (-917) $) 20) (($ (-568) $) 28))) +(((-786) (-1275)) (T -786)) +NIL +(-13 (-790) (-21)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-105) . T) ((-137) . T) ((-608 (-850)) . T) ((-787) . T) ((-789) . T) ((-790) . T) ((-842) . T) ((-1090) . T)) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 23)) (-2671 (($) 22 T CONST)) (-2521 (($ $ $) 12)) (-3268 (($ $ $) 13)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-2745 (((-850) $) 11)) (-3056 (($) 21 T CONST)) (-1751 (((-121) $ $) 15)) (-1738 (((-121) $ $) 16)) (-1717 (((-121) $ $) 6)) (-1745 (((-121) $ $) 14)) (-1732 (((-121) $ $) 17)) (-1767 (($ $ $) 19)) (* (($ (-763) $) 24) (($ (-917) $) 20))) +(((-787) (-1275)) (T -787)) +NIL +(-13 (-789) (-23)) +(((-23) . T) ((-25) . T) ((-105) . T) ((-608 (-850)) . T) ((-789) . T) ((-842) . T) ((-1090) . T)) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 23)) (-1462 (($ $ $) 26)) (-3134 (((-3 $ "failed") $ $) 25)) (-2671 (($) 22 T CONST)) (-2521 (($ $ $) 12)) (-3268 (($ $ $) 13)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-2745 (((-850) $) 11)) (-3056 (($) 21 T CONST)) (-1751 (((-121) $ $) 15)) (-1738 (((-121) $ $) 16)) (-1717 (((-121) $ $) 6)) (-1745 (((-121) $ $) 14)) (-1732 (((-121) $ $) 17)) (-1767 (($ $ $) 19)) (* (($ (-763) $) 24) (($ (-917) $) 20))) +(((-788) (-1275)) (T -788)) +((-1462 (*1 *1 *1 *1) (-4 *1 (-788)))) +(-13 (-790) (-10 -8 (-15 -1462 ($ $ $)))) +(((-23) . T) ((-25) . T) ((-105) . T) ((-137) . T) ((-608 (-850)) . T) ((-787) . T) ((-789) . T) ((-790) . T) ((-842) . T) ((-1090) . T)) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 23)) (-2671 (($) 22 T CONST)) (-2521 (($ $ $) 12)) (-3268 (($ $ $) 13)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-2745 (((-850) $) 11)) (-3056 (($) 21 T CONST)) (-1751 (((-121) $ $) 15)) (-1738 (((-121) $ $) 16)) (-1717 (((-121) $ $) 6)) (-1745 (((-121) $ $) 14)) (-1732 (((-121) $ $) 17)) (-1767 (($ $ $) 19)) (* (($ (-763) $) 24) (($ (-917) $) 20))) +(((-789) (-1275)) (T -789)) +NIL +(-13 (-842) (-23)) +(((-23) . T) ((-25) . T) ((-105) . T) ((-608 (-850)) . T) ((-842) . T) ((-1090) . T)) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 23)) (-3134 (((-3 $ "failed") $ $) 25)) (-2671 (($) 22 T CONST)) (-2521 (($ $ $) 12)) (-3268 (($ $ $) 13)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-2745 (((-850) $) 11)) (-3056 (($) 21 T CONST)) (-1751 (((-121) $ $) 15)) (-1738 (((-121) $ $) 16)) (-1717 (((-121) $ $) 6)) (-1745 (((-121) $ $) 14)) (-1732 (((-121) $ $) 17)) (-1767 (($ $ $) 19)) (* (($ (-763) $) 24) (($ (-917) $) 20))) +(((-790) (-1275)) (T -790)) +NIL +(-13 (-787) (-137)) +(((-23) . T) ((-25) . T) ((-105) . T) ((-137) . T) ((-608 (-850)) . T) ((-787) . T) ((-789) . T) ((-842) . T) ((-1090) . T)) +((-2537 (((-121) $) 41)) (-3666 (((-3 (-568) "failed") $) NIL) (((-3 (-409 (-568)) "failed") $) NIL) (((-3 |#2| "failed") $) 44)) (-2854 (((-568) $) NIL) (((-409 (-568)) $) NIL) ((|#2| $) 42)) (-1642 (((-3 (-409 (-568)) "failed") $) 78)) (-2688 (((-121) $) 72)) (-2425 (((-409 (-568)) $) 76)) (-2657 ((|#2| $) 26)) (-2795 (($ (-1 |#2| |#2|) $) 23)) (-2081 (($ $) 61)) (-4278 (((-541) $) 67)) (-1458 (($ $) 21)) (-2745 (((-850) $) 56) (($ (-568)) 39) (($ |#2|) 37) (($ (-409 (-568))) NIL)) (-4078 (((-763)) 10)) (-2897 ((|#2| $) 71)) (-1717 (((-121) $ $) 29)) (-1732 (((-121) $ $) 69)) (-1773 (($ $) 31) (($ $ $) NIL)) (-1767 (($ $ $) 30)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32))) +(((-791 |#1| |#2|) (-10 -8 (-15 -1732 ((-121) |#1| |#1|)) (-15 -4278 ((-541) |#1|)) (-15 -2081 (|#1| |#1|)) (-15 -1642 ((-3 (-409 (-568)) "failed") |#1|)) (-15 -2425 ((-409 (-568)) |#1|)) (-15 -2688 ((-121) |#1|)) (-15 -2897 (|#2| |#1|)) (-15 -2657 (|#2| |#1|)) (-15 -1458 (|#1| |#1|)) (-15 -2795 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2854 (|#2| |#1|)) (-15 -3666 ((-3 |#2| "failed") |#1|)) (-15 -2745 (|#1| (-409 (-568)))) (-15 -3666 ((-3 (-409 (-568)) "failed") |#1|)) (-15 -2854 ((-409 (-568)) |#1|)) (-15 -3666 ((-3 (-568) "failed") |#1|)) (-15 -2854 ((-568) |#1|)) (-15 -2745 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2745 (|#1| (-568))) (-15 -4078 ((-763))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-568) |#1|)) (-15 -1773 (|#1| |#1| |#1|)) (-15 -1773 (|#1| |#1|)) (-15 * (|#1| (-763) |#1|)) (-15 -2537 ((-121) |#1|)) (-15 * (|#1| (-917) |#1|)) (-15 -1767 (|#1| |#1| |#1|)) (-15 -2745 ((-850) |#1|)) (-15 -1717 ((-121) |#1| |#1|))) (-792 |#2|) (-172)) (T -791)) +((-4078 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-763)) (-5 *1 (-791 *3 *4)) (-4 *3 (-792 *4))))) +(-10 -8 (-15 -1732 ((-121) |#1| |#1|)) (-15 -4278 ((-541) |#1|)) (-15 -2081 (|#1| |#1|)) (-15 -1642 ((-3 (-409 (-568)) "failed") |#1|)) (-15 -2425 ((-409 (-568)) |#1|)) (-15 -2688 ((-121) |#1|)) (-15 -2897 (|#2| |#1|)) (-15 -2657 (|#2| |#1|)) (-15 -1458 (|#1| |#1|)) (-15 -2795 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2854 (|#2| |#1|)) (-15 -3666 ((-3 |#2| "failed") |#1|)) (-15 -2745 (|#1| (-409 (-568)))) (-15 -3666 ((-3 (-409 (-568)) "failed") |#1|)) (-15 -2854 ((-409 (-568)) |#1|)) (-15 -3666 ((-3 (-568) "failed") |#1|)) (-15 -2854 ((-568) |#1|)) (-15 -2745 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2745 (|#1| (-568))) (-15 -4078 ((-763))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-568) |#1|)) (-15 -1773 (|#1| |#1| |#1|)) (-15 -1773 (|#1| |#1|)) (-15 * (|#1| (-763) |#1|)) (-15 -2537 ((-121) |#1|)) (-15 * (|#1| (-917) |#1|)) (-15 -1767 (|#1| |#1| |#1|)) (-15 -2745 ((-850) |#1|)) (-15 -1717 ((-121) |#1| |#1|))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-3134 (((-3 $ "failed") $ $) 18)) (-3983 (((-763)) 51 (|has| |#1| (-370)))) (-2671 (($) 16 T CONST)) (-3666 (((-3 (-568) "failed") $) 92 (|has| |#1| (-1037 (-568)))) (((-3 (-409 (-568)) "failed") $) 90 (|has| |#1| (-1037 (-409 (-568))))) (((-3 |#1| "failed") $) 88)) (-2854 (((-568) $) 93 (|has| |#1| (-1037 (-568)))) (((-409 (-568)) $) 91 (|has| |#1| (-1037 (-409 (-568))))) ((|#1| $) 87)) (-2925 (((-3 $ "failed") $) 33)) (-3857 ((|#1| $) 77)) (-1642 (((-3 (-409 (-568)) "failed") $) 64 (|has| |#1| (-550)))) (-2688 (((-121) $) 66 (|has| |#1| (-550)))) (-2425 (((-409 (-568)) $) 65 (|has| |#1| (-550)))) (-1731 (($) 54 (|has| |#1| (-370)))) (-2735 (((-121) $) 30)) (-3739 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 68)) (-2657 ((|#1| $) 69)) (-2521 (($ $ $) 60 (|has| |#1| (-842)))) (-3268 (($ $ $) 59 (|has| |#1| (-842)))) (-2795 (($ (-1 |#1| |#1|) $) 79)) (-3683 (((-917) $) 53 (|has| |#1| (-370)))) (-4487 (((-1143) $) 9)) (-2081 (($ $) 63 (|has| |#1| (-365)))) (-4355 (($ (-917)) 52 (|has| |#1| (-370)))) (-3117 ((|#1| $) 74)) (-3915 ((|#1| $) 75)) (-4341 ((|#1| $) 76)) (-1927 ((|#1| $) 70)) (-3312 ((|#1| $) 71)) (-4184 ((|#1| $) 72)) (-3817 ((|#1| $) 73)) (-4022 (((-1108) $) 10)) (-1339 (($ $ (-634 |#1|) (-634 |#1|)) 85 (|has| |#1| (-303 |#1|))) (($ $ |#1| |#1|) 84 (|has| |#1| (-303 |#1|))) (($ $ (-288 |#1|)) 83 (|has| |#1| (-303 |#1|))) (($ $ (-634 (-288 |#1|))) 82 (|has| |#1| (-303 |#1|))) (($ $ (-634 (-1161)) (-634 |#1|)) 81 (|has| |#1| (-523 (-1161) |#1|))) (($ $ (-1161) |#1|) 80 (|has| |#1| (-523 (-1161) |#1|)))) (-2779 (($ $ |#1|) 86 (|has| |#1| (-281 |#1| |#1|)))) (-4278 (((-541) $) 61 (|has| |#1| (-609 (-541))))) (-1458 (($ $) 78)) (-2745 (((-850) $) 11) (($ (-568)) 27) (($ |#1|) 36) (($ (-409 (-568))) 89 (|has| |#1| (-1037 (-409 (-568)))))) (-4371 (((-3 $ "failed") $) 62 (|has| |#1| (-148)))) (-4078 (((-763)) 28)) (-2897 ((|#1| $) 67 (|has| |#1| (-1056)))) (-1887 (($ $ (-917)) 25) (($ $ (-763)) 32)) (-3056 (($) 17 T CONST)) (-1556 (($) 29 T CONST)) (-1751 (((-121) $ $) 57 (|has| |#1| (-842)))) (-1738 (((-121) $ $) 56 (|has| |#1| (-842)))) (-1717 (((-121) $ $) 6)) (-1745 (((-121) $ $) 58 (|has| |#1| (-842)))) (-1732 (((-121) $ $) 55 (|has| |#1| (-842)))) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 24) (($ $ (-763)) 31)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 23) (($ $ |#1|) 38) (($ |#1| $) 37))) +(((-792 |#1|) (-1275) (-172)) (T -792)) +((-1458 (*1 *1 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-172)))) (-3857 (*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-172)))) (-4341 (*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-172)))) (-3915 (*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-172)))) (-3117 (*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-172)))) (-3817 (*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-172)))) (-4184 (*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-172)))) (-3312 (*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-172)))) (-1927 (*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-172)))) (-2657 (*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-172)))) (-3739 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-792 *2)) (-4 *2 (-172)))) (-2897 (*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-172)) (-4 *2 (-1056)))) (-2688 (*1 *2 *1) (-12 (-4 *1 (-792 *3)) (-4 *3 (-172)) (-4 *3 (-550)) (-5 *2 (-121)))) (-2425 (*1 *2 *1) (-12 (-4 *1 (-792 *3)) (-4 *3 (-172)) (-4 *3 (-550)) (-5 *2 (-409 (-568))))) (-1642 (*1 *2 *1) (|partial| -12 (-4 *1 (-792 *3)) (-4 *3 (-172)) (-4 *3 (-550)) (-5 *2 (-409 (-568))))) (-2081 (*1 *1 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-172)) (-4 *2 (-365))))) +(-13 (-43 |t#1|) (-413 |t#1|) (-336 |t#1|) (-10 -8 (-15 -1458 ($ $)) (-15 -3857 (|t#1| $)) (-15 -4341 (|t#1| $)) (-15 -3915 (|t#1| $)) (-15 -3117 (|t#1| $)) (-15 -3817 (|t#1| $)) (-15 -4184 (|t#1| $)) (-15 -3312 (|t#1| $)) (-15 -1927 (|t#1| $)) (-15 -2657 (|t#1| $)) (-15 -3739 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-370)) (-6 (-370)) |noBranch|) (IF (|has| |t#1| (-842)) (-6 (-842)) |noBranch|) (IF (|has| |t#1| (-609 (-541))) (-6 (-609 (-541))) |noBranch|) (IF (|has| |t#1| (-150)) (-6 (-150)) |noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |noBranch|) (IF (|has| |t#1| (-1056)) (-15 -2897 (|t#1| $)) |noBranch|) (IF (|has| |t#1| (-550)) (PROGN (-15 -2688 ((-121) $)) (-15 -2425 ((-409 (-568)) $)) (-15 -1642 ((-3 (-409 (-568)) "failed") $))) |noBranch|) (IF (|has| |t#1| (-365)) (-15 -2081 ($ $)) |noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-43 |#1|) . T) ((-105) . T) ((-120 |#1| |#1|) . T) ((-137) . T) ((-148) |has| |#1| (-148)) ((-150) |has| |#1| (-150)) ((-608 (-850)) . T) ((-609 (-541)) |has| |#1| (-609 (-541))) ((-281 |#1| $) |has| |#1| (-281 |#1| |#1|)) ((-303 |#1|) |has| |#1| (-303 |#1|)) ((-370) |has| |#1| (-370)) ((-336 |#1|) . T) ((-413 |#1|) . T) ((-523 (-1161) |#1|) |has| |#1| (-523 (-1161) |#1|)) ((-523 |#1| |#1|) |has| |#1| (-303 |#1|)) ((-637 |#1|) . T) ((-637 $) . T) ((-707 |#1|) . T) ((-716) . T) ((-842) |has| |#1| (-842)) ((-1037 (-409 (-568))) |has| |#1| (-1037 (-409 (-568)))) ((-1037 (-568)) |has| |#1| (-1037 (-568))) ((-1037 |#1|) . T) ((-1053 |#1|) . T) ((-1047) . T) ((-1054) . T) ((-1102) . T) ((-1090) . T)) +((-2795 ((|#3| (-1 |#4| |#2|) |#1|) 20))) +(((-793 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2795 (|#3| (-1 |#4| |#2|) |#1|))) (-792 |#2|) (-172) (-792 |#4|) (-172)) (T -793)) +((-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-792 *6)) (-5 *1 (-793 *4 *5 *2 *6)) (-4 *4 (-792 *5))))) +(-10 -7 (-15 -2795 (|#3| (-1 |#4| |#2|) |#1|))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-3983 (((-763)) NIL (|has| |#1| (-370)))) (-2671 (($) NIL T CONST)) (-3666 (((-3 |#1| "failed") $) NIL) (((-3 (-999 |#1|) "failed") $) 35) (((-3 (-568) "failed") $) NIL (-2198 (|has| (-999 |#1|) (-1037 (-568))) (|has| |#1| (-1037 (-568))))) (((-3 (-409 (-568)) "failed") $) NIL (-2198 (|has| (-999 |#1|) (-1037 (-409 (-568)))) (|has| |#1| (-1037 (-409 (-568))))))) (-2854 ((|#1| $) NIL) (((-999 |#1|) $) 33) (((-568) $) NIL (-2198 (|has| (-999 |#1|) (-1037 (-568))) (|has| |#1| (-1037 (-568))))) (((-409 (-568)) $) NIL (-2198 (|has| (-999 |#1|) (-1037 (-409 (-568)))) (|has| |#1| (-1037 (-409 (-568))))))) (-2925 (((-3 $ "failed") $) NIL)) (-3857 ((|#1| $) 16)) (-1642 (((-3 (-409 (-568)) "failed") $) NIL (|has| |#1| (-550)))) (-2688 (((-121) $) NIL (|has| |#1| (-550)))) (-2425 (((-409 (-568)) $) NIL (|has| |#1| (-550)))) (-1731 (($) NIL (|has| |#1| (-370)))) (-2735 (((-121) $) NIL)) (-3739 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-999 |#1|) (-999 |#1|)) 29)) (-2657 ((|#1| $) NIL)) (-2521 (($ $ $) NIL (|has| |#1| (-842)))) (-3268 (($ $ $) NIL (|has| |#1| (-842)))) (-2795 (($ (-1 |#1| |#1|) $) NIL)) (-3683 (((-917) $) NIL (|has| |#1| (-370)))) (-4487 (((-1143) $) NIL)) (-2081 (($ $) NIL (|has| |#1| (-365)))) (-4355 (($ (-917)) NIL (|has| |#1| (-370)))) (-3117 ((|#1| $) 22)) (-3915 ((|#1| $) 20)) (-4341 ((|#1| $) 18)) (-1927 ((|#1| $) 26)) (-3312 ((|#1| $) 25)) (-4184 ((|#1| $) 24)) (-3817 ((|#1| $) 23)) (-4022 (((-1108) $) NIL)) (-1339 (($ $ (-634 |#1|) (-634 |#1|)) NIL (|has| |#1| (-303 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-303 |#1|))) (($ $ (-288 |#1|)) NIL (|has| |#1| (-303 |#1|))) (($ $ (-634 (-288 |#1|))) NIL (|has| |#1| (-303 |#1|))) (($ $ (-634 (-1161)) (-634 |#1|)) NIL (|has| |#1| (-523 (-1161) |#1|))) (($ $ (-1161) |#1|) NIL (|has| |#1| (-523 (-1161) |#1|)))) (-2779 (($ $ |#1|) NIL (|has| |#1| (-281 |#1| |#1|)))) (-4278 (((-541) $) NIL (|has| |#1| (-609 (-541))))) (-1458 (($ $) NIL)) (-2745 (((-850) $) NIL) (($ (-568)) NIL) (($ |#1|) NIL) (($ (-999 |#1|)) 30) (($ (-409 (-568))) NIL (-2198 (|has| (-999 |#1|) (-1037 (-409 (-568)))) (|has| |#1| (-1037 (-409 (-568))))))) (-4371 (((-3 $ "failed") $) NIL (|has| |#1| (-148)))) (-4078 (((-763)) NIL)) (-2897 ((|#1| $) NIL (|has| |#1| (-1056)))) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (-3056 (($) 8 T CONST)) (-1556 (($) 12 T CONST)) (-1751 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1738 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1717 (((-121) $ $) NIL)) (-1745 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1732 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-794 |#1|) (-13 (-792 |#1|) (-413 (-999 |#1|)) (-10 -8 (-15 -3739 ($ (-999 |#1|) (-999 |#1|))))) (-172)) (T -794)) +((-3739 (*1 *1 *2 *2) (-12 (-5 *2 (-999 *3)) (-4 *3 (-172)) (-5 *1 (-794 *3))))) +(-13 (-792 |#1|) (-413 (-999 |#1|)) (-10 -8 (-15 -3739 ($ (-999 |#1|) (-999 |#1|))))) +((-2447 (((-121) $ $) 7)) (-3029 (((-2 (|:| -3029 (-381)) (|:| |explanations| (-1143))) (-1059) (-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) 13)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-2745 (((-850) $) 11)) (-4110 (((-1035) (-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) 12)) (-1717 (((-121) $ $) 6))) +(((-795) (-1275)) (T -795)) +((-3029 (*1 *2 *3 *4) (-12 (-4 *1 (-795)) (-5 *3 (-1059)) (-5 *4 (-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (-5 *2 (-2 (|:| -3029 (-381)) (|:| |explanations| (-1143)))))) (-4110 (*1 *2 *3) (-12 (-4 *1 (-795)) (-5 *3 (-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (-5 *2 (-1035))))) +(-13 (-1090) (-10 -7 (-15 -3029 ((-2 (|:| -3029 (-381)) (|:| |explanations| (-1143))) (-1059) (-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215))))) (-15 -4110 ((-1035) (-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215))))))) +(((-105) . T) ((-608 (-850)) . T) ((-1090) . T)) +((-4146 (((-2 (|:| |particular| |#2|) (|:| -3746 (-634 |#2|))) |#3| |#2| (-1161)) 19))) +(((-796 |#1| |#2| |#3|) (-10 -7 (-15 -4146 ((-2 (|:| |particular| |#2|) (|:| -3746 (-634 |#2|))) |#3| |#2| (-1161)))) (-13 (-842) (-301) (-1037 (-568)) (-630 (-568)) (-150)) (-13 (-29 |#1|) (-1181) (-959)) (-646 |#2|)) (T -796)) +((-4146 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1161)) (-4 *6 (-13 (-842) (-301) (-1037 (-568)) (-630 (-568)) (-150))) (-4 *4 (-13 (-29 *6) (-1181) (-959))) (-5 *2 (-2 (|:| |particular| *4) (|:| -3746 (-634 *4)))) (-5 *1 (-796 *6 *4 *3)) (-4 *3 (-646 *4))))) +(-10 -7 (-15 -4146 ((-2 (|:| |particular| |#2|) (|:| -3746 (-634 |#2|))) |#3| |#2| (-1161)))) +((-4351 (((-3 |#2| "failed") |#2| (-123) (-288 |#2|) (-634 |#2|)) 26) (((-3 |#2| "failed") (-288 |#2|) (-123) (-288 |#2|) (-634 |#2|)) 27) (((-3 (-2 (|:| |particular| |#2|) (|:| -3746 (-634 |#2|))) |#2| "failed") |#2| (-123) (-1161)) 16) (((-3 (-2 (|:| |particular| |#2|) (|:| -3746 (-634 |#2|))) |#2| "failed") (-288 |#2|) (-123) (-1161)) 17) (((-3 (-2 (|:| |particular| (-1244 |#2|)) (|:| -3746 (-634 (-1244 |#2|)))) "failed") (-634 |#2|) (-634 (-123)) (-1161)) 22) (((-3 (-2 (|:| |particular| (-1244 |#2|)) (|:| -3746 (-634 (-1244 |#2|)))) "failed") (-634 (-288 |#2|)) (-634 (-123)) (-1161)) 24) (((-3 (-634 (-1244 |#2|)) "failed") (-679 |#2|) (-1161)) 36) (((-3 (-2 (|:| |particular| (-1244 |#2|)) (|:| -3746 (-634 (-1244 |#2|)))) "failed") (-679 |#2|) (-1244 |#2|) (-1161)) 34))) +(((-797 |#1| |#2|) (-10 -7 (-15 -4351 ((-3 (-2 (|:| |particular| (-1244 |#2|)) (|:| -3746 (-634 (-1244 |#2|)))) "failed") (-679 |#2|) (-1244 |#2|) (-1161))) (-15 -4351 ((-3 (-634 (-1244 |#2|)) "failed") (-679 |#2|) (-1161))) (-15 -4351 ((-3 (-2 (|:| |particular| (-1244 |#2|)) (|:| -3746 (-634 (-1244 |#2|)))) "failed") (-634 (-288 |#2|)) (-634 (-123)) (-1161))) (-15 -4351 ((-3 (-2 (|:| |particular| (-1244 |#2|)) (|:| -3746 (-634 (-1244 |#2|)))) "failed") (-634 |#2|) (-634 (-123)) (-1161))) (-15 -4351 ((-3 (-2 (|:| |particular| |#2|) (|:| -3746 (-634 |#2|))) |#2| "failed") (-288 |#2|) (-123) (-1161))) (-15 -4351 ((-3 (-2 (|:| |particular| |#2|) (|:| -3746 (-634 |#2|))) |#2| "failed") |#2| (-123) (-1161))) (-15 -4351 ((-3 |#2| "failed") (-288 |#2|) (-123) (-288 |#2|) (-634 |#2|))) (-15 -4351 ((-3 |#2| "failed") |#2| (-123) (-288 |#2|) (-634 |#2|)))) (-13 (-842) (-301) (-1037 (-568)) (-630 (-568)) (-150)) (-13 (-29 |#1|) (-1181) (-959))) (T -797)) +((-4351 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-123)) (-5 *4 (-288 *2)) (-5 *5 (-634 *2)) (-4 *2 (-13 (-29 *6) (-1181) (-959))) (-4 *6 (-13 (-842) (-301) (-1037 (-568)) (-630 (-568)) (-150))) (-5 *1 (-797 *6 *2)))) (-4351 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-288 *2)) (-5 *4 (-123)) (-5 *5 (-634 *2)) (-4 *2 (-13 (-29 *6) (-1181) (-959))) (-5 *1 (-797 *6 *2)) (-4 *6 (-13 (-842) (-301) (-1037 (-568)) (-630 (-568)) (-150))))) (-4351 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-123)) (-5 *5 (-1161)) (-4 *6 (-13 (-842) (-301) (-1037 (-568)) (-630 (-568)) (-150))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -3746 (-634 *3))) *3 "failed")) (-5 *1 (-797 *6 *3)) (-4 *3 (-13 (-29 *6) (-1181) (-959))))) (-4351 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-288 *7)) (-5 *4 (-123)) (-5 *5 (-1161)) (-4 *7 (-13 (-29 *6) (-1181) (-959))) (-4 *6 (-13 (-842) (-301) (-1037 (-568)) (-630 (-568)) (-150))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -3746 (-634 *7))) *7 "failed")) (-5 *1 (-797 *6 *7)))) (-4351 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-634 *7)) (-5 *4 (-634 (-123))) (-5 *5 (-1161)) (-4 *7 (-13 (-29 *6) (-1181) (-959))) (-4 *6 (-13 (-842) (-301) (-1037 (-568)) (-630 (-568)) (-150))) (-5 *2 (-2 (|:| |particular| (-1244 *7)) (|:| -3746 (-634 (-1244 *7))))) (-5 *1 (-797 *6 *7)))) (-4351 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-634 (-288 *7))) (-5 *4 (-634 (-123))) (-5 *5 (-1161)) (-4 *7 (-13 (-29 *6) (-1181) (-959))) (-4 *6 (-13 (-842) (-301) (-1037 (-568)) (-630 (-568)) (-150))) (-5 *2 (-2 (|:| |particular| (-1244 *7)) (|:| -3746 (-634 (-1244 *7))))) (-5 *1 (-797 *6 *7)))) (-4351 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-679 *6)) (-5 *4 (-1161)) (-4 *6 (-13 (-29 *5) (-1181) (-959))) (-4 *5 (-13 (-842) (-301) (-1037 (-568)) (-630 (-568)) (-150))) (-5 *2 (-634 (-1244 *6))) (-5 *1 (-797 *5 *6)))) (-4351 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-679 *7)) (-5 *5 (-1161)) (-4 *7 (-13 (-29 *6) (-1181) (-959))) (-4 *6 (-13 (-842) (-301) (-1037 (-568)) (-630 (-568)) (-150))) (-5 *2 (-2 (|:| |particular| (-1244 *7)) (|:| -3746 (-634 (-1244 *7))))) (-5 *1 (-797 *6 *7)) (-5 *4 (-1244 *7))))) +(-10 -7 (-15 -4351 ((-3 (-2 (|:| |particular| (-1244 |#2|)) (|:| -3746 (-634 (-1244 |#2|)))) "failed") (-679 |#2|) (-1244 |#2|) (-1161))) (-15 -4351 ((-3 (-634 (-1244 |#2|)) "failed") (-679 |#2|) (-1161))) (-15 -4351 ((-3 (-2 (|:| |particular| (-1244 |#2|)) (|:| -3746 (-634 (-1244 |#2|)))) "failed") (-634 (-288 |#2|)) (-634 (-123)) (-1161))) (-15 -4351 ((-3 (-2 (|:| |particular| (-1244 |#2|)) (|:| -3746 (-634 (-1244 |#2|)))) "failed") (-634 |#2|) (-634 (-123)) (-1161))) (-15 -4351 ((-3 (-2 (|:| |particular| |#2|) (|:| -3746 (-634 |#2|))) |#2| "failed") (-288 |#2|) (-123) (-1161))) (-15 -4351 ((-3 (-2 (|:| |particular| |#2|) (|:| -3746 (-634 |#2|))) |#2| "failed") |#2| (-123) (-1161))) (-15 -4351 ((-3 |#2| "failed") (-288 |#2|) (-123) (-288 |#2|) (-634 |#2|))) (-15 -4351 ((-3 |#2| "failed") |#2| (-123) (-288 |#2|) (-634 |#2|)))) +((-2641 (($) 9)) (-2727 (((-3 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))) "failed") (-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) 26)) (-1946 (((-634 (-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) $) 23)) (-4450 (($ (-2 (|:| -3649 (-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (|:| -4083 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))))) 20)) (-4176 (($ (-634 (-2 (|:| -3649 (-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (|:| -4083 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))))) 18)) (-2327 (((-1249)) 12))) +(((-798) (-10 -8 (-15 -2641 ($)) (-15 -2327 ((-1249))) (-15 -1946 ((-634 (-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) $)) (-15 -4176 ($ (-634 (-2 (|:| -3649 (-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (|:| -4083 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))))))) (-15 -4450 ($ (-2 (|:| -3649 (-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (|:| -4083 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))))) (-15 -2727 ((-3 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))) "failed") (-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215))))))) (T -798)) +((-2727 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (-5 *2 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))) (-5 *1 (-798)))) (-4450 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3649 (-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (|:| -4083 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))))) (-5 *1 (-798)))) (-4176 (*1 *1 *2) (-12 (-5 *2 (-634 (-2 (|:| -3649 (-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (|:| -4083 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))))) (-5 *1 (-798)))) (-1946 (*1 *2 *1) (-12 (-5 *2 (-634 (-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215))))) (-5 *1 (-798)))) (-2327 (*1 *2) (-12 (-5 *2 (-1249)) (-5 *1 (-798)))) (-2641 (*1 *1) (-5 *1 (-798)))) +(-10 -8 (-15 -2641 ($)) (-15 -2327 ((-1249))) (-15 -1946 ((-634 (-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) $)) (-15 -4176 ($ (-634 (-2 (|:| -3649 (-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (|:| -4083 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))))))) (-15 -4450 ($ (-2 (|:| -3649 (-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (|:| -4083 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))))) (-15 -2727 ((-3 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))) "failed") (-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))))) +((-2178 ((|#2| |#2| (-1161)) 15)) (-2675 ((|#2| |#2| (-1161)) 47)) (-2060 (((-1 |#2| |#2|) (-1161)) 11))) +(((-799 |#1| |#2|) (-10 -7 (-15 -2178 (|#2| |#2| (-1161))) (-15 -2675 (|#2| |#2| (-1161))) (-15 -2060 ((-1 |#2| |#2|) (-1161)))) (-13 (-842) (-301) (-1037 (-568)) (-630 (-568)) (-150)) (-13 (-29 |#1|) (-1181) (-959))) (T -799)) +((-2060 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-4 *4 (-13 (-842) (-301) (-1037 (-568)) (-630 (-568)) (-150))) (-5 *2 (-1 *5 *5)) (-5 *1 (-799 *4 *5)) (-4 *5 (-13 (-29 *4) (-1181) (-959))))) (-2675 (*1 *2 *2 *3) (-12 (-5 *3 (-1161)) (-4 *4 (-13 (-842) (-301) (-1037 (-568)) (-630 (-568)) (-150))) (-5 *1 (-799 *4 *2)) (-4 *2 (-13 (-29 *4) (-1181) (-959))))) (-2178 (*1 *2 *2 *3) (-12 (-5 *3 (-1161)) (-4 *4 (-13 (-842) (-301) (-1037 (-568)) (-630 (-568)) (-150))) (-5 *1 (-799 *4 *2)) (-4 *2 (-13 (-29 *4) (-1181) (-959)))))) +(-10 -7 (-15 -2178 (|#2| |#2| (-1161))) (-15 -2675 (|#2| |#2| (-1161))) (-15 -2060 ((-1 |#2| |#2|) (-1161)))) +((-4351 (((-1035) (-1244 (-310 (-381))) (-381) (-381) (-634 (-381)) (-310 (-381)) (-634 (-381)) (-381) (-381)) 114) (((-1035) (-1244 (-310 (-381))) (-381) (-381) (-634 (-381)) (-310 (-381)) (-634 (-381)) (-381)) 115) (((-1035) (-1244 (-310 (-381))) (-381) (-381) (-634 (-381)) (-634 (-381)) (-381)) 117) (((-1035) (-1244 (-310 (-381))) (-381) (-381) (-634 (-381)) (-310 (-381)) (-381)) 118) (((-1035) (-1244 (-310 (-381))) (-381) (-381) (-634 (-381)) (-381)) 119) (((-1035) (-1244 (-310 (-381))) (-381) (-381) (-634 (-381))) 120) (((-1035) (-803) (-1059)) 105) (((-1035) (-803)) 106)) (-3029 (((-2 (|:| -3029 (-381)) (|:| -3391 (-1143)) (|:| |explanations| (-634 (-1143)))) (-803) (-1059)) 71) (((-2 (|:| -3029 (-381)) (|:| -3391 (-1143)) (|:| |explanations| (-634 (-1143)))) (-803)) 73))) +(((-800) (-10 -7 (-15 -4351 ((-1035) (-803))) (-15 -4351 ((-1035) (-803) (-1059))) (-15 -4351 ((-1035) (-1244 (-310 (-381))) (-381) (-381) (-634 (-381)))) (-15 -4351 ((-1035) (-1244 (-310 (-381))) (-381) (-381) (-634 (-381)) (-381))) (-15 -4351 ((-1035) (-1244 (-310 (-381))) (-381) (-381) (-634 (-381)) (-310 (-381)) (-381))) (-15 -4351 ((-1035) (-1244 (-310 (-381))) (-381) (-381) (-634 (-381)) (-634 (-381)) (-381))) (-15 -4351 ((-1035) (-1244 (-310 (-381))) (-381) (-381) (-634 (-381)) (-310 (-381)) (-634 (-381)) (-381))) (-15 -4351 ((-1035) (-1244 (-310 (-381))) (-381) (-381) (-634 (-381)) (-310 (-381)) (-634 (-381)) (-381) (-381))) (-15 -3029 ((-2 (|:| -3029 (-381)) (|:| -3391 (-1143)) (|:| |explanations| (-634 (-1143)))) (-803))) (-15 -3029 ((-2 (|:| -3029 (-381)) (|:| -3391 (-1143)) (|:| |explanations| (-634 (-1143)))) (-803) (-1059))))) (T -800)) +((-3029 (*1 *2 *3 *4) (-12 (-5 *3 (-803)) (-5 *4 (-1059)) (-5 *2 (-2 (|:| -3029 (-381)) (|:| -3391 (-1143)) (|:| |explanations| (-634 (-1143))))) (-5 *1 (-800)))) (-3029 (*1 *2 *3) (-12 (-5 *3 (-803)) (-5 *2 (-2 (|:| -3029 (-381)) (|:| -3391 (-1143)) (|:| |explanations| (-634 (-1143))))) (-5 *1 (-800)))) (-4351 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1244 (-310 *4))) (-5 *5 (-634 (-381))) (-5 *6 (-310 (-381))) (-5 *4 (-381)) (-5 *2 (-1035)) (-5 *1 (-800)))) (-4351 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1244 (-310 *4))) (-5 *5 (-634 (-381))) (-5 *6 (-310 (-381))) (-5 *4 (-381)) (-5 *2 (-1035)) (-5 *1 (-800)))) (-4351 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1244 (-310 (-381)))) (-5 *4 (-381)) (-5 *5 (-634 *4)) (-5 *2 (-1035)) (-5 *1 (-800)))) (-4351 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1244 (-310 *4))) (-5 *5 (-634 (-381))) (-5 *6 (-310 (-381))) (-5 *4 (-381)) (-5 *2 (-1035)) (-5 *1 (-800)))) (-4351 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1244 (-310 (-381)))) (-5 *4 (-381)) (-5 *5 (-634 *4)) (-5 *2 (-1035)) (-5 *1 (-800)))) (-4351 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1244 (-310 (-381)))) (-5 *4 (-381)) (-5 *5 (-634 *4)) (-5 *2 (-1035)) (-5 *1 (-800)))) (-4351 (*1 *2 *3 *4) (-12 (-5 *3 (-803)) (-5 *4 (-1059)) (-5 *2 (-1035)) (-5 *1 (-800)))) (-4351 (*1 *2 *3) (-12 (-5 *3 (-803)) (-5 *2 (-1035)) (-5 *1 (-800))))) +(-10 -7 (-15 -4351 ((-1035) (-803))) (-15 -4351 ((-1035) (-803) (-1059))) (-15 -4351 ((-1035) (-1244 (-310 (-381))) (-381) (-381) (-634 (-381)))) (-15 -4351 ((-1035) (-1244 (-310 (-381))) (-381) (-381) (-634 (-381)) (-381))) (-15 -4351 ((-1035) (-1244 (-310 (-381))) (-381) (-381) (-634 (-381)) (-310 (-381)) (-381))) (-15 -4351 ((-1035) (-1244 (-310 (-381))) (-381) (-381) (-634 (-381)) (-634 (-381)) (-381))) (-15 -4351 ((-1035) (-1244 (-310 (-381))) (-381) (-381) (-634 (-381)) (-310 (-381)) (-634 (-381)) (-381))) (-15 -4351 ((-1035) (-1244 (-310 (-381))) (-381) (-381) (-634 (-381)) (-310 (-381)) (-634 (-381)) (-381) (-381))) (-15 -3029 ((-2 (|:| -3029 (-381)) (|:| -3391 (-1143)) (|:| |explanations| (-634 (-1143)))) (-803))) (-15 -3029 ((-2 (|:| -3029 (-381)) (|:| -3391 (-1143)) (|:| |explanations| (-634 (-1143)))) (-803) (-1059)))) +((-1349 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3746 (-634 |#4|))) (-643 |#4|) |#4|) 32))) +(((-801 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1349 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3746 (-634 |#4|))) (-643 |#4|) |#4|))) (-13 (-365) (-150) (-1037 (-568)) (-1037 (-409 (-568)))) (-1219 |#1|) (-1219 (-409 |#2|)) (-340 |#1| |#2| |#3|)) (T -801)) +((-1349 (*1 *2 *3 *4) (-12 (-5 *3 (-643 *4)) (-4 *4 (-340 *5 *6 *7)) (-4 *5 (-13 (-365) (-150) (-1037 (-568)) (-1037 (-409 (-568))))) (-4 *6 (-1219 *5)) (-4 *7 (-1219 (-409 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3746 (-634 *4)))) (-5 *1 (-801 *5 *6 *7 *4))))) +(-10 -7 (-15 -1349 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3746 (-634 |#4|))) (-643 |#4|) |#4|))) +((-4114 (((-2 (|:| -1853 |#3|) (|:| |rh| (-634 (-409 |#2|)))) |#4| (-634 (-409 |#2|))) 51)) (-4157 (((-634 (-2 (|:| -1374 |#2|) (|:| -2783 |#2|))) |#4| |#2|) 59) (((-634 (-2 (|:| -1374 |#2|) (|:| -2783 |#2|))) |#4|) 58) (((-634 (-2 (|:| -1374 |#2|) (|:| -2783 |#2|))) |#3| |#2|) 20) (((-634 (-2 (|:| -1374 |#2|) (|:| -2783 |#2|))) |#3|) 21)) (-2969 ((|#2| |#4| |#1|) 60) ((|#2| |#3| |#1|) 27)) (-2522 ((|#2| |#3| (-634 (-409 |#2|))) 93) (((-3 |#2| "failed") |#3| (-409 |#2|)) 90))) +(((-802 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2522 ((-3 |#2| "failed") |#3| (-409 |#2|))) (-15 -2522 (|#2| |#3| (-634 (-409 |#2|)))) (-15 -4157 ((-634 (-2 (|:| -1374 |#2|) (|:| -2783 |#2|))) |#3|)) (-15 -4157 ((-634 (-2 (|:| -1374 |#2|) (|:| -2783 |#2|))) |#3| |#2|)) (-15 -2969 (|#2| |#3| |#1|)) (-15 -4157 ((-634 (-2 (|:| -1374 |#2|) (|:| -2783 |#2|))) |#4|)) (-15 -4157 ((-634 (-2 (|:| -1374 |#2|) (|:| -2783 |#2|))) |#4| |#2|)) (-15 -2969 (|#2| |#4| |#1|)) (-15 -4114 ((-2 (|:| -1853 |#3|) (|:| |rh| (-634 (-409 |#2|)))) |#4| (-634 (-409 |#2|))))) (-13 (-365) (-150) (-1037 (-409 (-568)))) (-1219 |#1|) (-646 |#2|) (-646 (-409 |#2|))) (T -802)) +((-4114 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-365) (-150) (-1037 (-409 (-568))))) (-4 *6 (-1219 *5)) (-5 *2 (-2 (|:| -1853 *7) (|:| |rh| (-634 (-409 *6))))) (-5 *1 (-802 *5 *6 *7 *3)) (-5 *4 (-634 (-409 *6))) (-4 *7 (-646 *6)) (-4 *3 (-646 (-409 *6))))) (-2969 (*1 *2 *3 *4) (-12 (-4 *2 (-1219 *4)) (-5 *1 (-802 *4 *2 *5 *3)) (-4 *4 (-13 (-365) (-150) (-1037 (-409 (-568))))) (-4 *5 (-646 *2)) (-4 *3 (-646 (-409 *2))))) (-4157 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-365) (-150) (-1037 (-409 (-568))))) (-4 *4 (-1219 *5)) (-5 *2 (-634 (-2 (|:| -1374 *4) (|:| -2783 *4)))) (-5 *1 (-802 *5 *4 *6 *3)) (-4 *6 (-646 *4)) (-4 *3 (-646 (-409 *4))))) (-4157 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-150) (-1037 (-409 (-568))))) (-4 *5 (-1219 *4)) (-5 *2 (-634 (-2 (|:| -1374 *5) (|:| -2783 *5)))) (-5 *1 (-802 *4 *5 *6 *3)) (-4 *6 (-646 *5)) (-4 *3 (-646 (-409 *5))))) (-2969 (*1 *2 *3 *4) (-12 (-4 *2 (-1219 *4)) (-5 *1 (-802 *4 *2 *3 *5)) (-4 *4 (-13 (-365) (-150) (-1037 (-409 (-568))))) (-4 *3 (-646 *2)) (-4 *5 (-646 (-409 *2))))) (-4157 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-365) (-150) (-1037 (-409 (-568))))) (-4 *4 (-1219 *5)) (-5 *2 (-634 (-2 (|:| -1374 *4) (|:| -2783 *4)))) (-5 *1 (-802 *5 *4 *3 *6)) (-4 *3 (-646 *4)) (-4 *6 (-646 (-409 *4))))) (-4157 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-150) (-1037 (-409 (-568))))) (-4 *5 (-1219 *4)) (-5 *2 (-634 (-2 (|:| -1374 *5) (|:| -2783 *5)))) (-5 *1 (-802 *4 *5 *3 *6)) (-4 *3 (-646 *5)) (-4 *6 (-646 (-409 *5))))) (-2522 (*1 *2 *3 *4) (-12 (-5 *4 (-634 (-409 *2))) (-4 *2 (-1219 *5)) (-5 *1 (-802 *5 *2 *3 *6)) (-4 *5 (-13 (-365) (-150) (-1037 (-409 (-568))))) (-4 *3 (-646 *2)) (-4 *6 (-646 (-409 *2))))) (-2522 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-409 *2)) (-4 *2 (-1219 *5)) (-5 *1 (-802 *5 *2 *3 *6)) (-4 *5 (-13 (-365) (-150) (-1037 (-409 (-568))))) (-4 *3 (-646 *2)) (-4 *6 (-646 *4))))) +(-10 -7 (-15 -2522 ((-3 |#2| "failed") |#3| (-409 |#2|))) (-15 -2522 (|#2| |#3| (-634 (-409 |#2|)))) (-15 -4157 ((-634 (-2 (|:| -1374 |#2|) (|:| -2783 |#2|))) |#3|)) (-15 -4157 ((-634 (-2 (|:| -1374 |#2|) (|:| -2783 |#2|))) |#3| |#2|)) (-15 -2969 (|#2| |#3| |#1|)) (-15 -4157 ((-634 (-2 (|:| -1374 |#2|) (|:| -2783 |#2|))) |#4|)) (-15 -4157 ((-634 (-2 (|:| -1374 |#2|) (|:| -2783 |#2|))) |#4| |#2|)) (-15 -2969 (|#2| |#4| |#1|)) (-15 -4114 ((-2 (|:| -1853 |#3|) (|:| |rh| (-634 (-409 |#2|)))) |#4| (-634 (-409 |#2|))))) +((-2447 (((-121) $ $) NIL)) (-2854 (((-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215))) $) 9)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2745 (((-850) $) 11) (($ (-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) 8)) (-1717 (((-121) $ $) NIL))) +(((-803) (-13 (-1090) (-10 -8 (-15 -2745 ($ (-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215))))) (-15 -2745 ((-850) $)) (-15 -2854 ((-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215))) $))))) (T -803)) +((-2745 (*1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-803)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (-5 *1 (-803)))) (-2854 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (-5 *1 (-803))))) +(-13 (-1090) (-10 -8 (-15 -2745 ($ (-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215))))) (-15 -2745 ((-850) $)) (-15 -2854 ((-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215))) $)))) +((-3757 (((-634 (-2 (|:| |frac| (-409 |#2|)) (|:| -1853 |#3|))) |#3| (-1 (-634 |#2|) |#2| (-1157 |#2|)) (-1 (-420 |#2|) |#2|)) 118)) (-4482 (((-634 (-2 (|:| |poly| |#2|) (|:| -1853 |#3|))) |#3| (-1 (-634 |#1|) |#2|)) 45)) (-3889 (((-634 (-2 (|:| |deg| (-763)) (|:| -1853 |#2|))) |#3|) 95)) (-3612 ((|#2| |#3|) 37)) (-1486 (((-634 (-2 (|:| -3495 |#1|) (|:| -1853 |#3|))) |#3| (-1 (-634 |#1|) |#2|)) 82)) (-4200 ((|#3| |#3| (-409 |#2|)) 63) ((|#3| |#3| |#2|) 79))) +(((-804 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3612 (|#2| |#3|)) (-15 -3889 ((-634 (-2 (|:| |deg| (-763)) (|:| -1853 |#2|))) |#3|)) (-15 -1486 ((-634 (-2 (|:| -3495 |#1|) (|:| -1853 |#3|))) |#3| (-1 (-634 |#1|) |#2|))) (-15 -4482 ((-634 (-2 (|:| |poly| |#2|) (|:| -1853 |#3|))) |#3| (-1 (-634 |#1|) |#2|))) (-15 -3757 ((-634 (-2 (|:| |frac| (-409 |#2|)) (|:| -1853 |#3|))) |#3| (-1 (-634 |#2|) |#2| (-1157 |#2|)) (-1 (-420 |#2|) |#2|))) (-15 -4200 (|#3| |#3| |#2|)) (-15 -4200 (|#3| |#3| (-409 |#2|)))) (-13 (-365) (-150) (-1037 (-409 (-568)))) (-1219 |#1|) (-646 |#2|) (-646 (-409 |#2|))) (T -804)) +((-4200 (*1 *2 *2 *3) (-12 (-5 *3 (-409 *5)) (-4 *4 (-13 (-365) (-150) (-1037 (-409 (-568))))) (-4 *5 (-1219 *4)) (-5 *1 (-804 *4 *5 *2 *6)) (-4 *2 (-646 *5)) (-4 *6 (-646 *3)))) (-4200 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-365) (-150) (-1037 (-409 (-568))))) (-4 *3 (-1219 *4)) (-5 *1 (-804 *4 *3 *2 *5)) (-4 *2 (-646 *3)) (-4 *5 (-646 (-409 *3))))) (-3757 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-634 *7) *7 (-1157 *7))) (-5 *5 (-1 (-420 *7) *7)) (-4 *7 (-1219 *6)) (-4 *6 (-13 (-365) (-150) (-1037 (-409 (-568))))) (-5 *2 (-634 (-2 (|:| |frac| (-409 *7)) (|:| -1853 *3)))) (-5 *1 (-804 *6 *7 *3 *8)) (-4 *3 (-646 *7)) (-4 *8 (-646 (-409 *7))))) (-4482 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-634 *5) *6)) (-4 *5 (-13 (-365) (-150) (-1037 (-409 (-568))))) (-4 *6 (-1219 *5)) (-5 *2 (-634 (-2 (|:| |poly| *6) (|:| -1853 *3)))) (-5 *1 (-804 *5 *6 *3 *7)) (-4 *3 (-646 *6)) (-4 *7 (-646 (-409 *6))))) (-1486 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-634 *5) *6)) (-4 *5 (-13 (-365) (-150) (-1037 (-409 (-568))))) (-4 *6 (-1219 *5)) (-5 *2 (-634 (-2 (|:| -3495 *5) (|:| -1853 *3)))) (-5 *1 (-804 *5 *6 *3 *7)) (-4 *3 (-646 *6)) (-4 *7 (-646 (-409 *6))))) (-3889 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-150) (-1037 (-409 (-568))))) (-4 *5 (-1219 *4)) (-5 *2 (-634 (-2 (|:| |deg| (-763)) (|:| -1853 *5)))) (-5 *1 (-804 *4 *5 *3 *6)) (-4 *3 (-646 *5)) (-4 *6 (-646 (-409 *5))))) (-3612 (*1 *2 *3) (-12 (-4 *2 (-1219 *4)) (-5 *1 (-804 *4 *2 *3 *5)) (-4 *4 (-13 (-365) (-150) (-1037 (-409 (-568))))) (-4 *3 (-646 *2)) (-4 *5 (-646 (-409 *2)))))) +(-10 -7 (-15 -3612 (|#2| |#3|)) (-15 -3889 ((-634 (-2 (|:| |deg| (-763)) (|:| -1853 |#2|))) |#3|)) (-15 -1486 ((-634 (-2 (|:| -3495 |#1|) (|:| -1853 |#3|))) |#3| (-1 (-634 |#1|) |#2|))) (-15 -4482 ((-634 (-2 (|:| |poly| |#2|) (|:| -1853 |#3|))) |#3| (-1 (-634 |#1|) |#2|))) (-15 -3757 ((-634 (-2 (|:| |frac| (-409 |#2|)) (|:| -1853 |#3|))) |#3| (-1 (-634 |#2|) |#2| (-1157 |#2|)) (-1 (-420 |#2|) |#2|))) (-15 -4200 (|#3| |#3| |#2|)) (-15 -4200 (|#3| |#3| (-409 |#2|)))) +((-1590 (((-2 (|:| -3746 (-634 (-409 |#2|))) (|:| -2928 (-679 |#1|))) (-644 |#2| (-409 |#2|)) (-634 (-409 |#2|))) 117) (((-2 (|:| |particular| (-3 (-409 |#2|) "failed")) (|:| -3746 (-634 (-409 |#2|)))) (-644 |#2| (-409 |#2|)) (-409 |#2|)) 116) (((-2 (|:| -3746 (-634 (-409 |#2|))) (|:| -2928 (-679 |#1|))) (-643 (-409 |#2|)) (-634 (-409 |#2|))) 111) (((-2 (|:| |particular| (-3 (-409 |#2|) "failed")) (|:| -3746 (-634 (-409 |#2|)))) (-643 (-409 |#2|)) (-409 |#2|)) 109)) (-4338 ((|#2| (-644 |#2| (-409 |#2|))) 77) ((|#2| (-643 (-409 |#2|))) 81))) +(((-805 |#1| |#2|) (-10 -7 (-15 -1590 ((-2 (|:| |particular| (-3 (-409 |#2|) "failed")) (|:| -3746 (-634 (-409 |#2|)))) (-643 (-409 |#2|)) (-409 |#2|))) (-15 -1590 ((-2 (|:| -3746 (-634 (-409 |#2|))) (|:| -2928 (-679 |#1|))) (-643 (-409 |#2|)) (-634 (-409 |#2|)))) (-15 -1590 ((-2 (|:| |particular| (-3 (-409 |#2|) "failed")) (|:| -3746 (-634 (-409 |#2|)))) (-644 |#2| (-409 |#2|)) (-409 |#2|))) (-15 -1590 ((-2 (|:| -3746 (-634 (-409 |#2|))) (|:| -2928 (-679 |#1|))) (-644 |#2| (-409 |#2|)) (-634 (-409 |#2|)))) (-15 -4338 (|#2| (-643 (-409 |#2|)))) (-15 -4338 (|#2| (-644 |#2| (-409 |#2|))))) (-13 (-365) (-150) (-1037 (-568)) (-1037 (-409 (-568)))) (-1219 |#1|)) (T -805)) +((-4338 (*1 *2 *3) (-12 (-5 *3 (-644 *2 (-409 *2))) (-4 *2 (-1219 *4)) (-5 *1 (-805 *4 *2)) (-4 *4 (-13 (-365) (-150) (-1037 (-568)) (-1037 (-409 (-568))))))) (-4338 (*1 *2 *3) (-12 (-5 *3 (-643 (-409 *2))) (-4 *2 (-1219 *4)) (-5 *1 (-805 *4 *2)) (-4 *4 (-13 (-365) (-150) (-1037 (-568)) (-1037 (-409 (-568))))))) (-1590 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *6 (-409 *6))) (-4 *6 (-1219 *5)) (-4 *5 (-13 (-365) (-150) (-1037 (-568)) (-1037 (-409 (-568))))) (-5 *2 (-2 (|:| -3746 (-634 (-409 *6))) (|:| -2928 (-679 *5)))) (-5 *1 (-805 *5 *6)) (-5 *4 (-634 (-409 *6))))) (-1590 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *6 (-409 *6))) (-5 *4 (-409 *6)) (-4 *6 (-1219 *5)) (-4 *5 (-13 (-365) (-150) (-1037 (-568)) (-1037 (-409 (-568))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3746 (-634 *4)))) (-5 *1 (-805 *5 *6)))) (-1590 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-409 *6))) (-4 *6 (-1219 *5)) (-4 *5 (-13 (-365) (-150) (-1037 (-568)) (-1037 (-409 (-568))))) (-5 *2 (-2 (|:| -3746 (-634 (-409 *6))) (|:| -2928 (-679 *5)))) (-5 *1 (-805 *5 *6)) (-5 *4 (-634 (-409 *6))))) (-1590 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-409 *6))) (-5 *4 (-409 *6)) (-4 *6 (-1219 *5)) (-4 *5 (-13 (-365) (-150) (-1037 (-568)) (-1037 (-409 (-568))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3746 (-634 *4)))) (-5 *1 (-805 *5 *6))))) +(-10 -7 (-15 -1590 ((-2 (|:| |particular| (-3 (-409 |#2|) "failed")) (|:| -3746 (-634 (-409 |#2|)))) (-643 (-409 |#2|)) (-409 |#2|))) (-15 -1590 ((-2 (|:| -3746 (-634 (-409 |#2|))) (|:| -2928 (-679 |#1|))) (-643 (-409 |#2|)) (-634 (-409 |#2|)))) (-15 -1590 ((-2 (|:| |particular| (-3 (-409 |#2|) "failed")) (|:| -3746 (-634 (-409 |#2|)))) (-644 |#2| (-409 |#2|)) (-409 |#2|))) (-15 -1590 ((-2 (|:| -3746 (-634 (-409 |#2|))) (|:| -2928 (-679 |#1|))) (-644 |#2| (-409 |#2|)) (-634 (-409 |#2|)))) (-15 -4338 (|#2| (-643 (-409 |#2|)))) (-15 -4338 (|#2| (-644 |#2| (-409 |#2|))))) +((-3421 (((-2 (|:| -2928 (-679 |#2|)) (|:| |vec| (-1244 |#1|))) |#5| |#4|) 47))) +(((-806 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3421 ((-2 (|:| -2928 (-679 |#2|)) (|:| |vec| (-1244 |#1|))) |#5| |#4|))) (-365) (-646 |#1|) (-1219 |#1|) (-714 |#1| |#3|) (-646 |#4|)) (T -806)) +((-3421 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *7 (-1219 *5)) (-4 *4 (-714 *5 *7)) (-5 *2 (-2 (|:| -2928 (-679 *6)) (|:| |vec| (-1244 *5)))) (-5 *1 (-806 *5 *6 *7 *4 *3)) (-4 *6 (-646 *5)) (-4 *3 (-646 *4))))) +(-10 -7 (-15 -3421 ((-2 (|:| -2928 (-679 |#2|)) (|:| |vec| (-1244 |#1|))) |#5| |#4|))) +((-3757 (((-634 (-2 (|:| |frac| (-409 |#2|)) (|:| -1853 (-644 |#2| (-409 |#2|))))) (-644 |#2| (-409 |#2|)) (-1 (-420 |#2|) |#2|)) 43)) (-4412 (((-634 (-409 |#2|)) (-644 |#2| (-409 |#2|)) (-1 (-420 |#2|) |#2|)) 133 (|has| |#1| (-27))) (((-634 (-409 |#2|)) (-644 |#2| (-409 |#2|))) 134 (|has| |#1| (-27))) (((-634 (-409 |#2|)) (-643 (-409 |#2|)) (-1 (-420 |#2|) |#2|)) 135 (|has| |#1| (-27))) (((-634 (-409 |#2|)) (-643 (-409 |#2|))) 136 (|has| |#1| (-27))) (((-634 (-409 |#2|)) (-644 |#2| (-409 |#2|)) (-1 (-634 |#1|) |#2|) (-1 (-420 |#2|) |#2|)) 36) (((-634 (-409 |#2|)) (-644 |#2| (-409 |#2|)) (-1 (-634 |#1|) |#2|)) 37) (((-634 (-409 |#2|)) (-643 (-409 |#2|)) (-1 (-634 |#1|) |#2|) (-1 (-420 |#2|) |#2|)) 34) (((-634 (-409 |#2|)) (-643 (-409 |#2|)) (-1 (-634 |#1|) |#2|)) 35)) (-4482 (((-634 (-2 (|:| |poly| |#2|) (|:| -1853 (-644 |#2| (-409 |#2|))))) (-644 |#2| (-409 |#2|)) (-1 (-634 |#1|) |#2|)) 80))) +(((-807 |#1| |#2|) (-10 -7 (-15 -4412 ((-634 (-409 |#2|)) (-643 (-409 |#2|)) (-1 (-634 |#1|) |#2|))) (-15 -4412 ((-634 (-409 |#2|)) (-643 (-409 |#2|)) (-1 (-634 |#1|) |#2|) (-1 (-420 |#2|) |#2|))) (-15 -4412 ((-634 (-409 |#2|)) (-644 |#2| (-409 |#2|)) (-1 (-634 |#1|) |#2|))) (-15 -4412 ((-634 (-409 |#2|)) (-644 |#2| (-409 |#2|)) (-1 (-634 |#1|) |#2|) (-1 (-420 |#2|) |#2|))) (-15 -3757 ((-634 (-2 (|:| |frac| (-409 |#2|)) (|:| -1853 (-644 |#2| (-409 |#2|))))) (-644 |#2| (-409 |#2|)) (-1 (-420 |#2|) |#2|))) (-15 -4482 ((-634 (-2 (|:| |poly| |#2|) (|:| -1853 (-644 |#2| (-409 |#2|))))) (-644 |#2| (-409 |#2|)) (-1 (-634 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4412 ((-634 (-409 |#2|)) (-643 (-409 |#2|)))) (-15 -4412 ((-634 (-409 |#2|)) (-643 (-409 |#2|)) (-1 (-420 |#2|) |#2|))) (-15 -4412 ((-634 (-409 |#2|)) (-644 |#2| (-409 |#2|)))) (-15 -4412 ((-634 (-409 |#2|)) (-644 |#2| (-409 |#2|)) (-1 (-420 |#2|) |#2|)))) |noBranch|)) (-13 (-365) (-150) (-1037 (-568)) (-1037 (-409 (-568)))) (-1219 |#1|)) (T -807)) +((-4412 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *6 (-409 *6))) (-5 *4 (-1 (-420 *6) *6)) (-4 *6 (-1219 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-365) (-150) (-1037 (-568)) (-1037 (-409 (-568))))) (-5 *2 (-634 (-409 *6))) (-5 *1 (-807 *5 *6)))) (-4412 (*1 *2 *3) (-12 (-5 *3 (-644 *5 (-409 *5))) (-4 *5 (-1219 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-365) (-150) (-1037 (-568)) (-1037 (-409 (-568))))) (-5 *2 (-634 (-409 *5))) (-5 *1 (-807 *4 *5)))) (-4412 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-409 *6))) (-5 *4 (-1 (-420 *6) *6)) (-4 *6 (-1219 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-365) (-150) (-1037 (-568)) (-1037 (-409 (-568))))) (-5 *2 (-634 (-409 *6))) (-5 *1 (-807 *5 *6)))) (-4412 (*1 *2 *3) (-12 (-5 *3 (-643 (-409 *5))) (-4 *5 (-1219 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-365) (-150) (-1037 (-568)) (-1037 (-409 (-568))))) (-5 *2 (-634 (-409 *5))) (-5 *1 (-807 *4 *5)))) (-4482 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-634 *5) *6)) (-4 *5 (-13 (-365) (-150) (-1037 (-568)) (-1037 (-409 (-568))))) (-4 *6 (-1219 *5)) (-5 *2 (-634 (-2 (|:| |poly| *6) (|:| -1853 (-644 *6 (-409 *6)))))) (-5 *1 (-807 *5 *6)) (-5 *3 (-644 *6 (-409 *6))))) (-3757 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-420 *6) *6)) (-4 *6 (-1219 *5)) (-4 *5 (-13 (-365) (-150) (-1037 (-568)) (-1037 (-409 (-568))))) (-5 *2 (-634 (-2 (|:| |frac| (-409 *6)) (|:| -1853 (-644 *6 (-409 *6)))))) (-5 *1 (-807 *5 *6)) (-5 *3 (-644 *6 (-409 *6))))) (-4412 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-644 *7 (-409 *7))) (-5 *4 (-1 (-634 *6) *7)) (-5 *5 (-1 (-420 *7) *7)) (-4 *6 (-13 (-365) (-150) (-1037 (-568)) (-1037 (-409 (-568))))) (-4 *7 (-1219 *6)) (-5 *2 (-634 (-409 *7))) (-5 *1 (-807 *6 *7)))) (-4412 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *6 (-409 *6))) (-5 *4 (-1 (-634 *5) *6)) (-4 *5 (-13 (-365) (-150) (-1037 (-568)) (-1037 (-409 (-568))))) (-4 *6 (-1219 *5)) (-5 *2 (-634 (-409 *6))) (-5 *1 (-807 *5 *6)))) (-4412 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-643 (-409 *7))) (-5 *4 (-1 (-634 *6) *7)) (-5 *5 (-1 (-420 *7) *7)) (-4 *6 (-13 (-365) (-150) (-1037 (-568)) (-1037 (-409 (-568))))) (-4 *7 (-1219 *6)) (-5 *2 (-634 (-409 *7))) (-5 *1 (-807 *6 *7)))) (-4412 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-409 *6))) (-5 *4 (-1 (-634 *5) *6)) (-4 *5 (-13 (-365) (-150) (-1037 (-568)) (-1037 (-409 (-568))))) (-4 *6 (-1219 *5)) (-5 *2 (-634 (-409 *6))) (-5 *1 (-807 *5 *6))))) +(-10 -7 (-15 -4412 ((-634 (-409 |#2|)) (-643 (-409 |#2|)) (-1 (-634 |#1|) |#2|))) (-15 -4412 ((-634 (-409 |#2|)) (-643 (-409 |#2|)) (-1 (-634 |#1|) |#2|) (-1 (-420 |#2|) |#2|))) (-15 -4412 ((-634 (-409 |#2|)) (-644 |#2| (-409 |#2|)) (-1 (-634 |#1|) |#2|))) (-15 -4412 ((-634 (-409 |#2|)) (-644 |#2| (-409 |#2|)) (-1 (-634 |#1|) |#2|) (-1 (-420 |#2|) |#2|))) (-15 -3757 ((-634 (-2 (|:| |frac| (-409 |#2|)) (|:| -1853 (-644 |#2| (-409 |#2|))))) (-644 |#2| (-409 |#2|)) (-1 (-420 |#2|) |#2|))) (-15 -4482 ((-634 (-2 (|:| |poly| |#2|) (|:| -1853 (-644 |#2| (-409 |#2|))))) (-644 |#2| (-409 |#2|)) (-1 (-634 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4412 ((-634 (-409 |#2|)) (-643 (-409 |#2|)))) (-15 -4412 ((-634 (-409 |#2|)) (-643 (-409 |#2|)) (-1 (-420 |#2|) |#2|))) (-15 -4412 ((-634 (-409 |#2|)) (-644 |#2| (-409 |#2|)))) (-15 -4412 ((-634 (-409 |#2|)) (-644 |#2| (-409 |#2|)) (-1 (-420 |#2|) |#2|)))) |noBranch|)) +((-3990 (((-2 (|:| -2928 (-679 |#2|)) (|:| |vec| (-1244 |#1|))) (-679 |#2|) (-1244 |#1|)) 86) (((-2 (|:| A (-679 |#1|)) (|:| |eqs| (-634 (-2 (|:| C (-679 |#1|)) (|:| |g| (-1244 |#1|)) (|:| -1853 |#2|) (|:| |rh| |#1|))))) (-679 |#1|) (-1244 |#1|)) 14)) (-2578 (((-2 (|:| |particular| (-3 (-1244 |#1|) "failed")) (|:| -3746 (-634 (-1244 |#1|)))) (-679 |#2|) (-1244 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3746 (-634 |#1|))) |#2| |#1|)) 92)) (-4351 (((-3 (-2 (|:| |particular| (-1244 |#1|)) (|:| -3746 (-679 |#1|))) "failed") (-679 |#1|) (-1244 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3746 (-634 |#1|))) "failed") |#2| |#1|)) 45))) +(((-808 |#1| |#2|) (-10 -7 (-15 -3990 ((-2 (|:| A (-679 |#1|)) (|:| |eqs| (-634 (-2 (|:| C (-679 |#1|)) (|:| |g| (-1244 |#1|)) (|:| -1853 |#2|) (|:| |rh| |#1|))))) (-679 |#1|) (-1244 |#1|))) (-15 -3990 ((-2 (|:| -2928 (-679 |#2|)) (|:| |vec| (-1244 |#1|))) (-679 |#2|) (-1244 |#1|))) (-15 -4351 ((-3 (-2 (|:| |particular| (-1244 |#1|)) (|:| -3746 (-679 |#1|))) "failed") (-679 |#1|) (-1244 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3746 (-634 |#1|))) "failed") |#2| |#1|))) (-15 -2578 ((-2 (|:| |particular| (-3 (-1244 |#1|) "failed")) (|:| -3746 (-634 (-1244 |#1|)))) (-679 |#2|) (-1244 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3746 (-634 |#1|))) |#2| |#1|)))) (-365) (-646 |#1|)) (T -808)) +((-2578 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-679 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -3746 (-634 *6))) *7 *6)) (-4 *6 (-365)) (-4 *7 (-646 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1244 *6) "failed")) (|:| -3746 (-634 (-1244 *6))))) (-5 *1 (-808 *6 *7)) (-5 *4 (-1244 *6)))) (-4351 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -3746 (-634 *6))) "failed") *7 *6)) (-4 *6 (-365)) (-4 *7 (-646 *6)) (-5 *2 (-2 (|:| |particular| (-1244 *6)) (|:| -3746 (-679 *6)))) (-5 *1 (-808 *6 *7)) (-5 *3 (-679 *6)) (-5 *4 (-1244 *6)))) (-3990 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-646 *5)) (-5 *2 (-2 (|:| -2928 (-679 *6)) (|:| |vec| (-1244 *5)))) (-5 *1 (-808 *5 *6)) (-5 *3 (-679 *6)) (-5 *4 (-1244 *5)))) (-3990 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-5 *2 (-2 (|:| A (-679 *5)) (|:| |eqs| (-634 (-2 (|:| C (-679 *5)) (|:| |g| (-1244 *5)) (|:| -1853 *6) (|:| |rh| *5)))))) (-5 *1 (-808 *5 *6)) (-5 *3 (-679 *5)) (-5 *4 (-1244 *5)) (-4 *6 (-646 *5))))) +(-10 -7 (-15 -3990 ((-2 (|:| A (-679 |#1|)) (|:| |eqs| (-634 (-2 (|:| C (-679 |#1|)) (|:| |g| (-1244 |#1|)) (|:| -1853 |#2|) (|:| |rh| |#1|))))) (-679 |#1|) (-1244 |#1|))) (-15 -3990 ((-2 (|:| -2928 (-679 |#2|)) (|:| |vec| (-1244 |#1|))) (-679 |#2|) (-1244 |#1|))) (-15 -4351 ((-3 (-2 (|:| |particular| (-1244 |#1|)) (|:| -3746 (-679 |#1|))) "failed") (-679 |#1|) (-1244 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3746 (-634 |#1|))) "failed") |#2| |#1|))) (-15 -2578 ((-2 (|:| |particular| (-3 (-1244 |#1|) "failed")) (|:| -3746 (-634 (-1244 |#1|)))) (-679 |#2|) (-1244 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3746 (-634 |#1|))) |#2| |#1|)))) +((-3600 (((-679 |#1|) (-634 |#1|) (-763)) 13) (((-679 |#1|) (-634 |#1|)) 14)) (-2057 (((-3 (-1244 |#1|) "failed") |#2| |#1| (-634 |#1|)) 34)) (-4314 (((-3 |#1| "failed") |#2| |#1| (-634 |#1|) (-1 |#1| |#1|)) 42))) +(((-809 |#1| |#2|) (-10 -7 (-15 -3600 ((-679 |#1|) (-634 |#1|))) (-15 -3600 ((-679 |#1|) (-634 |#1|) (-763))) (-15 -2057 ((-3 (-1244 |#1|) "failed") |#2| |#1| (-634 |#1|))) (-15 -4314 ((-3 |#1| "failed") |#2| |#1| (-634 |#1|) (-1 |#1| |#1|)))) (-365) (-646 |#1|)) (T -809)) +((-4314 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-634 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-365)) (-5 *1 (-809 *2 *3)) (-4 *3 (-646 *2)))) (-2057 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-634 *4)) (-4 *4 (-365)) (-5 *2 (-1244 *4)) (-5 *1 (-809 *4 *3)) (-4 *3 (-646 *4)))) (-3600 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *5)) (-5 *4 (-763)) (-4 *5 (-365)) (-5 *2 (-679 *5)) (-5 *1 (-809 *5 *6)) (-4 *6 (-646 *5)))) (-3600 (*1 *2 *3) (-12 (-5 *3 (-634 *4)) (-4 *4 (-365)) (-5 *2 (-679 *4)) (-5 *1 (-809 *4 *5)) (-4 *5 (-646 *4))))) +(-10 -7 (-15 -3600 ((-679 |#1|) (-634 |#1|))) (-15 -3600 ((-679 |#1|) (-634 |#1|) (-763))) (-15 -2057 ((-3 (-1244 |#1|) "failed") |#2| |#1| (-634 |#1|))) (-15 -4314 ((-3 |#1| "failed") |#2| |#1| (-634 |#1|) (-1 |#1| |#1|)))) +((-2447 (((-121) $ $) NIL (|has| |#2| (-1090)))) (-2537 (((-121) $) NIL (|has| |#2| (-137)))) (-1394 (($ (-917)) NIL (|has| |#2| (-1047)))) (-1868 (((-1249) $ (-568) (-568)) NIL (|has| $ (-6 -4520)))) (-1462 (($ $ $) NIL (|has| |#2| (-788)))) (-3134 (((-3 $ "failed") $ $) NIL (|has| |#2| (-137)))) (-2510 (((-121) $ (-763)) NIL)) (-3983 (((-763)) NIL (|has| |#2| (-370)))) (-3662 (((-568) $) NIL (|has| |#2| (-840)))) (-2436 ((|#2| $ (-568) |#2|) NIL (|has| $ (-6 -4520)))) (-2671 (($) NIL T CONST)) (-3666 (((-3 (-568) "failed") $) NIL (-12 (|has| |#2| (-1037 (-568))) (|has| |#2| (-1090)))) (((-3 (-409 (-568)) "failed") $) NIL (-12 (|has| |#2| (-1037 (-409 (-568)))) (|has| |#2| (-1090)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1090)))) (-2854 (((-568) $) NIL (-12 (|has| |#2| (-1037 (-568))) (|has| |#2| (-1090)))) (((-409 (-568)) $) NIL (-12 (|has| |#2| (-1037 (-409 (-568)))) (|has| |#2| (-1090)))) ((|#2| $) NIL (|has| |#2| (-1090)))) (-3164 (((-679 (-568)) (-679 $)) NIL (-12 (|has| |#2| (-630 (-568))) (|has| |#2| (-1047)))) (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) NIL (-12 (|has| |#2| (-630 (-568))) (|has| |#2| (-1047)))) (((-2 (|:| -2928 (-679 |#2|)) (|:| |vec| (-1244 |#2|))) (-679 $) (-1244 $)) NIL (|has| |#2| (-1047))) (((-679 |#2|) (-679 $)) NIL (|has| |#2| (-1047)))) (-2925 (((-3 $ "failed") $) NIL (|has| |#2| (-716)))) (-1731 (($) NIL (|has| |#2| (-370)))) (-3989 ((|#2| $ (-568) |#2|) NIL (|has| $ (-6 -4520)))) (-2602 ((|#2| $ (-568)) NIL)) (-2033 (((-121) $) NIL (|has| |#2| (-840)))) (-4360 (((-634 |#2|) $) NIL (|has| $ (-6 -4519)))) (-2735 (((-121) $) NIL (|has| |#2| (-716)))) (-2245 (((-121) $) NIL (|has| |#2| (-840)))) (-1737 (((-121) $ (-763)) NIL)) (-1881 (((-568) $) NIL (|has| (-568) (-842)))) (-2521 (($ $ $) NIL (-2198 (|has| |#2| (-788)) (|has| |#2| (-840))))) (-1979 (((-634 |#2|) $) NIL (|has| $ (-6 -4519)))) (-3109 (((-121) |#2| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#2| (-1090))))) (-2223 (((-568) $) NIL (|has| (-568) (-842)))) (-3268 (($ $ $) NIL (-2198 (|has| |#2| (-788)) (|has| |#2| (-840))))) (-3674 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#2| |#2|) $) NIL)) (-3683 (((-917) $) NIL (|has| |#2| (-370)))) (-2166 (((-121) $ (-763)) NIL)) (-4487 (((-1143) $) NIL (|has| |#2| (-1090)))) (-4174 (((-634 (-568)) $) NIL)) (-3578 (((-121) (-568) $) NIL)) (-4355 (($ (-917)) NIL (|has| |#2| (-370)))) (-4022 (((-1108) $) NIL (|has| |#2| (-1090)))) (-3876 ((|#2| $) NIL (|has| (-568) (-842)))) (-3724 (($ $ |#2|) NIL (|has| $ (-6 -4520)))) (-1387 (((-121) (-1 (-121) |#2|) $) NIL (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#2|))) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090)))) (($ $ (-634 |#2|) (-634 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090))))) (-3171 (((-121) $ $) NIL)) (-4467 (((-121) |#2| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#2| (-1090))))) (-2041 (((-634 |#2|) $) NIL)) (-3084 (((-121) $) NIL)) (-3248 (($) NIL)) (-2779 ((|#2| $ (-568) |#2|) NIL) ((|#2| $ (-568)) NIL)) (-3682 ((|#2| $ $) NIL (|has| |#2| (-1047)))) (-2039 (($ (-1244 |#2|)) NIL)) (-4321 (((-139)) NIL (|has| |#2| (-365)))) (-4189 (($ $) NIL (-12 (|has| |#2| (-225)) (|has| |#2| (-1047)))) (($ $ (-763)) NIL (-12 (|has| |#2| (-225)) (|has| |#2| (-1047)))) (($ $ (-1161)) NIL (-12 (|has| |#2| (-895 (-1161))) (|has| |#2| (-1047)))) (($ $ (-634 (-1161))) NIL (-12 (|has| |#2| (-895 (-1161))) (|has| |#2| (-1047)))) (($ $ (-1161) (-763)) NIL (-12 (|has| |#2| (-895 (-1161))) (|has| |#2| (-1047)))) (($ $ (-634 (-1161)) (-634 (-763))) NIL (-12 (|has| |#2| (-895 (-1161))) (|has| |#2| (-1047)))) (($ $ (-1 |#2| |#2|) (-763)) NIL (|has| |#2| (-1047))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1047)))) (-4168 (((-763) (-1 (-121) |#2|) $) NIL (|has| $ (-6 -4519))) (((-763) |#2| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#2| (-1090))))) (-3863 (($ $) NIL)) (-2745 (((-1244 |#2|) $) NIL) (((-850) $) NIL (|has| |#2| (-1090))) (($ (-568)) NIL (-2198 (-12 (|has| |#2| (-1037 (-568))) (|has| |#2| (-1090))) (|has| |#2| (-1047)))) (($ (-409 (-568))) NIL (-12 (|has| |#2| (-1037 (-409 (-568)))) (|has| |#2| (-1090)))) (($ |#2|) NIL (|has| |#2| (-1090)))) (-4078 (((-763)) NIL (|has| |#2| (-1047)))) (-1319 (((-121) (-1 (-121) |#2|) $) NIL (|has| $ (-6 -4519)))) (-2897 (($ $) NIL (|has| |#2| (-840)))) (-1887 (($ $ (-763)) NIL (|has| |#2| (-716))) (($ $ (-917)) NIL (|has| |#2| (-716)))) (-3056 (($) NIL (|has| |#2| (-137)) CONST)) (-1556 (($) NIL (|has| |#2| (-716)) CONST)) (-3190 (($ $) NIL (-12 (|has| |#2| (-225)) (|has| |#2| (-1047)))) (($ $ (-763)) NIL (-12 (|has| |#2| (-225)) (|has| |#2| (-1047)))) (($ $ (-1161)) NIL (-12 (|has| |#2| (-895 (-1161))) (|has| |#2| (-1047)))) (($ $ (-634 (-1161))) NIL (-12 (|has| |#2| (-895 (-1161))) (|has| |#2| (-1047)))) (($ $ (-1161) (-763)) NIL (-12 (|has| |#2| (-895 (-1161))) (|has| |#2| (-1047)))) (($ $ (-634 (-1161)) (-634 (-763))) NIL (-12 (|has| |#2| (-895 (-1161))) (|has| |#2| (-1047)))) (($ $ (-1 |#2| |#2|) (-763)) NIL (|has| |#2| (-1047))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1047)))) (-1751 (((-121) $ $) NIL (-2198 (|has| |#2| (-788)) (|has| |#2| (-840))))) (-1738 (((-121) $ $) NIL (-2198 (|has| |#2| (-788)) (|has| |#2| (-840))))) (-1717 (((-121) $ $) NIL (|has| |#2| (-1090)))) (-1745 (((-121) $ $) NIL (-2198 (|has| |#2| (-788)) (|has| |#2| (-840))))) (-1732 (((-121) $ $) 11 (-2198 (|has| |#2| (-788)) (|has| |#2| (-840))))) (-1779 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-1773 (($ $ $) NIL (|has| |#2| (-1047))) (($ $) NIL (|has| |#2| (-1047)))) (-1767 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-763)) NIL (|has| |#2| (-716))) (($ $ (-917)) NIL (|has| |#2| (-716)))) (* (($ (-568) $) NIL (|has| |#2| (-1047))) (($ $ $) NIL (|has| |#2| (-716))) (($ $ |#2|) NIL (|has| |#2| (-1047))) (($ |#2| $) NIL (|has| |#2| (-1047))) (($ (-763) $) NIL (|has| |#2| (-137))) (($ (-917) $) NIL (|has| |#2| (-25)))) (-1697 (((-763) $) NIL (|has| $ (-6 -4519))))) +(((-810 |#1| |#2| |#3|) (-230 |#1| |#2|) (-763) (-788) (-1 (-121) (-1244 |#2|) (-1244 |#2|))) (T -810)) +NIL +(-230 |#1| |#2|) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-3902 (((-634 (-763)) $) NIL) (((-634 (-763)) $ (-1161)) NIL)) (-1551 (((-763) $) NIL) (((-763) $ (-1161)) NIL)) (-2055 (((-634 (-813 (-1161))) $) NIL)) (-3839 (((-1157 $) $ (-813 (-1161))) NIL) (((-1157 |#1|) $) NIL)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-2227 (($ $) NIL (|has| |#1| (-558)))) (-1573 (((-121) $) NIL (|has| |#1| (-558)))) (-2773 (((-763) $) NIL) (((-763) $ (-634 (-813 (-1161)))) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-1750 (((-420 (-1157 $)) (-1157 $)) NIL (|has| |#1| (-904)))) (-4305 (($ $) NIL (|has| |#1| (-453)))) (-1678 (((-420 $) $) NIL (|has| |#1| (-453)))) (-1858 (((-3 (-634 (-1157 $)) "failed") (-634 (-1157 $)) (-1157 $)) NIL (|has| |#1| (-904)))) (-4180 (($ $) NIL)) (-2671 (($) NIL T CONST)) (-3666 (((-3 |#1| "failed") $) NIL) (((-3 (-409 (-568)) "failed") $) NIL (|has| |#1| (-1037 (-409 (-568))))) (((-3 (-568) "failed") $) NIL (|has| |#1| (-1037 (-568)))) (((-3 (-813 (-1161)) "failed") $) NIL) (((-3 (-1161) "failed") $) NIL) (((-3 (-1113 |#1| (-1161)) "failed") $) NIL)) (-2854 ((|#1| $) NIL) (((-409 (-568)) $) NIL (|has| |#1| (-1037 (-409 (-568))))) (((-568) $) NIL (|has| |#1| (-1037 (-568)))) (((-813 (-1161)) $) NIL) (((-1161) $) NIL) (((-1113 |#1| (-1161)) $) NIL)) (-4265 (($ $ $ (-813 (-1161))) NIL (|has| |#1| (-172)))) (-2114 (($ $) NIL)) (-3164 (((-679 (-568)) (-679 $)) NIL (|has| |#1| (-630 (-568)))) (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) NIL (|has| |#1| (-630 (-568)))) (((-2 (|:| -2928 (-679 |#1|)) (|:| |vec| (-1244 |#1|))) (-679 $) (-1244 $)) NIL) (((-679 |#1|) (-679 $)) NIL)) (-2925 (((-3 $ "failed") $) NIL)) (-3250 (($ $) NIL (|has| |#1| (-453))) (($ $ (-813 (-1161))) NIL (|has| |#1| (-453)))) (-2108 (((-634 $) $) NIL)) (-3927 (((-121) $) NIL (|has| |#1| (-904)))) (-3088 (($ $ |#1| (-534 (-813 (-1161))) $) NIL)) (-4410 (((-884 (-381) $) $ (-887 (-381)) (-884 (-381) $)) NIL (-12 (|has| (-813 (-1161)) (-881 (-381))) (|has| |#1| (-881 (-381))))) (((-884 (-568) $) $ (-887 (-568)) (-884 (-568) $)) NIL (-12 (|has| (-813 (-1161)) (-881 (-568))) (|has| |#1| (-881 (-568)))))) (-4477 (((-763) $ (-1161)) NIL) (((-763) $) NIL)) (-2735 (((-121) $) NIL)) (-4178 (((-763) $) NIL)) (-2051 (($ (-1157 |#1|) (-813 (-1161))) NIL) (($ (-1157 $) (-813 (-1161))) NIL)) (-2976 (((-634 $) $) NIL)) (-3921 (((-121) $) NIL)) (-2047 (($ |#1| (-534 (-813 (-1161)))) NIL) (($ $ (-813 (-1161)) (-763)) NIL) (($ $ (-634 (-813 (-1161))) (-634 (-763))) NIL)) (-3379 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $ (-813 (-1161))) NIL)) (-2144 (((-534 (-813 (-1161))) $) NIL) (((-763) $ (-813 (-1161))) NIL) (((-634 (-763)) $ (-634 (-813 (-1161)))) NIL)) (-2521 (($ $ $) NIL (|has| |#1| (-842)))) (-3268 (($ $ $) NIL (|has| |#1| (-842)))) (-3842 (($ (-1 (-534 (-813 (-1161))) (-534 (-813 (-1161)))) $) NIL)) (-2795 (($ (-1 |#1| |#1|) $) NIL)) (-4300 (((-1 $ (-763)) (-1161)) NIL) (((-1 $ (-763)) $) NIL (|has| |#1| (-225)))) (-2244 (((-3 (-813 (-1161)) "failed") $) NIL)) (-2097 (($ $) NIL)) (-2102 ((|#1| $) NIL)) (-1690 (((-813 (-1161)) $) NIL)) (-2495 (($ (-634 $)) NIL (|has| |#1| (-453))) (($ $ $) NIL (|has| |#1| (-453)))) (-4487 (((-1143) $) NIL)) (-1989 (((-121) $) NIL)) (-3324 (((-3 (-634 $) "failed") $) NIL)) (-1794 (((-3 (-634 $) "failed") $) NIL)) (-3751 (((-3 (-2 (|:| |var| (-813 (-1161))) (|:| -3438 (-763))) "failed") $) NIL)) (-1484 (($ $) NIL)) (-4022 (((-1108) $) NIL)) (-2086 (((-121) $) NIL)) (-2091 ((|#1| $) NIL)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL (|has| |#1| (-453)))) (-2721 (($ (-634 $)) NIL (|has| |#1| (-453))) (($ $ $) NIL (|has| |#1| (-453)))) (-2905 (((-420 (-1157 $)) (-1157 $)) NIL (|has| |#1| (-904)))) (-3545 (((-420 (-1157 $)) (-1157 $)) NIL (|has| |#1| (-904)))) (-3848 (((-420 $) $) NIL (|has| |#1| (-904)))) (-2595 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-1339 (($ $ (-634 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-634 $) (-634 $)) NIL) (($ $ (-813 (-1161)) |#1|) NIL) (($ $ (-634 (-813 (-1161))) (-634 |#1|)) NIL) (($ $ (-813 (-1161)) $) NIL) (($ $ (-634 (-813 (-1161))) (-634 $)) NIL) (($ $ (-1161) $) NIL (|has| |#1| (-225))) (($ $ (-634 (-1161)) (-634 $)) NIL (|has| |#1| (-225))) (($ $ (-1161) |#1|) NIL (|has| |#1| (-225))) (($ $ (-634 (-1161)) (-634 |#1|)) NIL (|has| |#1| (-225)))) (-2217 (($ $ (-813 (-1161))) NIL (|has| |#1| (-172)))) (-4189 (($ $ (-813 (-1161))) NIL) (($ $ (-634 (-813 (-1161)))) NIL) (($ $ (-813 (-1161)) (-763)) NIL) (($ $ (-634 (-813 (-1161))) (-634 (-763))) NIL) (($ $) NIL (|has| |#1| (-225))) (($ $ (-763)) NIL (|has| |#1| (-225))) (($ $ (-1161)) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-634 (-1161))) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-1161) (-763)) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-634 (-1161)) (-634 (-763))) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-1 |#1| |#1|) (-763)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3795 (((-634 (-1161)) $) NIL)) (-3206 (((-534 (-813 (-1161))) $) NIL) (((-763) $ (-813 (-1161))) NIL) (((-634 (-763)) $ (-634 (-813 (-1161)))) NIL) (((-763) $ (-1161)) NIL)) (-4278 (((-887 (-381)) $) NIL (-12 (|has| (-813 (-1161)) (-609 (-887 (-381)))) (|has| |#1| (-609 (-887 (-381)))))) (((-887 (-568)) $) NIL (-12 (|has| (-813 (-1161)) (-609 (-887 (-568)))) (|has| |#1| (-609 (-887 (-568)))))) (((-541) $) NIL (-12 (|has| (-813 (-1161)) (-609 (-541))) (|has| |#1| (-609 (-541)))))) (-3367 ((|#1| $) NIL (|has| |#1| (-453))) (($ $ (-813 (-1161))) NIL (|has| |#1| (-453)))) (-2979 (((-3 (-1244 $) "failed") (-679 $)) NIL (-12 (|has| $ (-148)) (|has| |#1| (-904))))) (-2745 (((-850) $) NIL) (($ (-568)) NIL) (($ |#1|) NIL) (($ (-813 (-1161))) NIL) (($ (-1161)) NIL) (($ (-1113 |#1| (-1161))) NIL) (($ (-409 (-568))) NIL (-2198 (|has| |#1| (-43 (-409 (-568)))) (|has| |#1| (-1037 (-409 (-568)))))) (($ $) NIL (|has| |#1| (-558)))) (-1302 (((-634 |#1|) $) NIL)) (-2604 ((|#1| $ (-534 (-813 (-1161)))) NIL) (($ $ (-813 (-1161)) (-763)) NIL) (($ $ (-634 (-813 (-1161))) (-634 (-763))) NIL)) (-4371 (((-3 $ "failed") $) NIL (-2198 (-12 (|has| $ (-148)) (|has| |#1| (-904))) (|has| |#1| (-148))))) (-4078 (((-763)) NIL)) (-4171 (($ $ $ (-763)) NIL (|has| |#1| (-172)))) (-1826 (((-121) $ $) NIL (|has| |#1| (-558)))) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (-3056 (($) NIL T CONST)) (-1556 (($) NIL T CONST)) (-3190 (($ $ (-813 (-1161))) NIL) (($ $ (-634 (-813 (-1161)))) NIL) (($ $ (-813 (-1161)) (-763)) NIL) (($ $ (-634 (-813 (-1161))) (-634 (-763))) NIL) (($ $) NIL (|has| |#1| (-225))) (($ $ (-763)) NIL (|has| |#1| (-225))) (($ $ (-1161)) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-634 (-1161))) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-1161) (-763)) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-634 (-1161)) (-634 (-763))) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-1 |#1| |#1|) (-763)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1751 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1738 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1717 (((-121) $ $) NIL)) (-1745 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1732 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1779 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) NIL) (($ $ (-409 (-568))) NIL (|has| |#1| (-43 (-409 (-568))))) (($ (-409 (-568)) $) NIL (|has| |#1| (-43 (-409 (-568))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-811 |#1|) (-13 (-246 |#1| (-1161) (-813 (-1161)) (-534 (-813 (-1161)))) (-1037 (-1113 |#1| (-1161)))) (-1047)) (T -811)) +NIL +(-13 (-246 |#1| (-1161) (-813 (-1161)) (-534 (-813 (-1161)))) (-1037 (-1113 |#1| (-1161)))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL (|has| |#2| (-365)))) (-2227 (($ $) NIL (|has| |#2| (-365)))) (-1573 (((-121) $) NIL (|has| |#2| (-365)))) (-3134 (((-3 $ "failed") $ $) NIL)) (-4305 (($ $) NIL (|has| |#2| (-365)))) (-1678 (((-420 $) $) NIL (|has| |#2| (-365)))) (-1497 (((-121) $ $) NIL (|has| |#2| (-365)))) (-2671 (($) NIL T CONST)) (-2401 (($ $ $) NIL (|has| |#2| (-365)))) (-2925 (((-3 $ "failed") $) NIL)) (-2412 (($ $ $) NIL (|has| |#2| (-365)))) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) NIL (|has| |#2| (-365)))) (-3927 (((-121) $) NIL (|has| |#2| (-365)))) (-2735 (((-121) $) NIL)) (-3562 (((-3 (-634 $) "failed") (-634 $) $) NIL (|has| |#2| (-365)))) (-2495 (($ (-634 $)) NIL (|has| |#2| (-365))) (($ $ $) NIL (|has| |#2| (-365)))) (-4487 (((-1143) $) NIL)) (-2081 (($ $) 20 (|has| |#2| (-365)))) (-4022 (((-1108) $) NIL)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL (|has| |#2| (-365)))) (-2721 (($ (-634 $)) NIL (|has| |#2| (-365))) (($ $ $) NIL (|has| |#2| (-365)))) (-3848 (((-420 $) $) NIL (|has| |#2| (-365)))) (-4497 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL (|has| |#2| (-365)))) (-2595 (((-3 $ "failed") $ $) NIL (|has| |#2| (-365)))) (-2344 (((-3 (-634 $) "failed") (-634 $) $) NIL (|has| |#2| (-365)))) (-2709 (((-763) $) NIL (|has| |#2| (-365)))) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL (|has| |#2| (-365)))) (-4189 (($ $ (-763)) NIL) (($ $) 13)) (-2745 (((-850) $) NIL) (($ (-568)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-409 (-568))) NIL (|has| |#2| (-365))) (($ $) NIL (|has| |#2| (-365)))) (-4078 (((-763)) NIL)) (-1826 (((-121) $ $) NIL (|has| |#2| (-365)))) (-1887 (($ $ (-763)) NIL) (($ $ (-917)) NIL) (($ $ (-568)) NIL (|has| |#2| (-365)))) (-3056 (($) NIL T CONST)) (-1556 (($) NIL T CONST)) (-3190 (($ $ (-763)) NIL) (($ $) NIL)) (-1717 (((-121) $ $) NIL)) (-1779 (($ $ $) 15 (|has| |#2| (-365)))) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-763)) NIL) (($ $ (-917)) NIL) (($ $ (-568)) 18 (|has| |#2| (-365)))) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-409 (-568)) $) NIL (|has| |#2| (-365))) (($ $ (-409 (-568))) NIL (|has| |#2| (-365))))) +(((-812 |#1| |#2| |#3|) (-13 (-120 $ $) (-225) (-10 -8 (IF (|has| |#2| (-365)) (-6 (-365)) |noBranch|) (-15 -2745 ($ |#2|)) (-15 -2745 (|#2| $)))) (-1090) (-895 |#1|) |#1|) (T -812)) +((-2745 (*1 *1 *2) (-12 (-4 *3 (-1090)) (-14 *4 *3) (-5 *1 (-812 *3 *2 *4)) (-4 *2 (-895 *3)))) (-2745 (*1 *2 *1) (-12 (-4 *2 (-895 *3)) (-5 *1 (-812 *3 *2 *4)) (-4 *3 (-1090)) (-14 *4 *3)))) +(-13 (-120 $ $) (-225) (-10 -8 (IF (|has| |#2| (-365)) (-6 (-365)) |noBranch|) (-15 -2745 ($ |#2|)) (-15 -2745 (|#2| $)))) +((-2447 (((-121) $ $) NIL)) (-1551 (((-763) $) NIL)) (-1305 ((|#1| $) 10)) (-3666 (((-3 |#1| "failed") $) NIL)) (-2854 ((|#1| $) NIL)) (-4477 (((-763) $) 11)) (-2521 (($ $ $) NIL)) (-3268 (($ $ $) NIL)) (-4300 (($ |#1| (-763)) 9)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-4189 (($ $) NIL) (($ $ (-763)) NIL)) (-2745 (((-850) $) NIL) (($ |#1|) NIL)) (-1751 (((-121) $ $) NIL)) (-1738 (((-121) $ $) NIL)) (-1717 (((-121) $ $) NIL)) (-1745 (((-121) $ $) NIL)) (-1732 (((-121) $ $) NIL))) +(((-813 |#1|) (-262 |#1|) (-842)) (T -813)) +NIL +(-262 |#1|) +((-2447 (((-121) $ $) NIL)) (-3595 (((-634 |#1|) $) 34)) (-3983 (((-763) $) NIL)) (-2671 (($) NIL T CONST)) (-2628 (((-3 $ "failed") $ $) 21) (((-3 $ "failed") $ |#1|) 19)) (-3666 (((-3 |#1| "failed") $) NIL)) (-2854 ((|#1| $) NIL)) (-3935 (($ $) 36)) (-2925 (((-3 $ "failed") $) NIL)) (-1715 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-2735 (((-121) $) NIL)) (-2882 ((|#1| $ (-568)) NIL)) (-2408 (((-763) $ (-568)) NIL)) (-2407 (($ $) 40)) (-2521 (($ $ $) NIL)) (-3268 (($ $ $) NIL)) (-2532 (((-3 $ "failed") $ $) 20) (((-3 $ "failed") $ |#1|) 16)) (-4081 (((-121) $ $) 38)) (-3678 (((-763) $) 30)) (-4487 (((-1143) $) NIL)) (-2403 (($ $ $) NIL)) (-3078 (($ $ $) NIL)) (-4022 (((-1108) $) NIL)) (-3876 ((|#1| $) 35)) (-3276 (((-634 (-2 (|:| |gen| |#1|) (|:| -1892 (-763)))) $) NIL)) (-3210 (((-3 (-2 (|:| |lm| (-3 $ "failed")) (|:| |rm| (-3 $ "failed"))) "failed") $ $) 24)) (-2745 (((-850) $) NIL) (($ |#1|) NIL)) (-1887 (($ $ (-763)) NIL) (($ $ (-917)) NIL)) (-1556 (($) 14 T CONST)) (-1751 (((-121) $ $) NIL)) (-1738 (((-121) $ $) NIL)) (-1717 (((-121) $ $) NIL)) (-1745 (((-121) $ $) NIL)) (-1732 (((-121) $ $) 39)) (** (($ $ (-763)) NIL) (($ $ (-917)) NIL) (($ |#1| (-763)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-814 |#1|) (-13 (-838) (-1037 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-763))) (-15 -3876 (|#1| $)) (-15 -3935 ($ $)) (-15 -2407 ($ $)) (-15 -4081 ((-121) $ $)) (-15 -3078 ($ $ $)) (-15 -2403 ($ $ $)) (-15 -2532 ((-3 $ "failed") $ $)) (-15 -2628 ((-3 $ "failed") $ $)) (-15 -2532 ((-3 $ "failed") $ |#1|)) (-15 -2628 ((-3 $ "failed") $ |#1|)) (-15 -3210 ((-3 (-2 (|:| |lm| (-3 $ "failed")) (|:| |rm| (-3 $ "failed"))) "failed") $ $)) (-15 -1715 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3983 ((-763) $)) (-15 -2408 ((-763) $ (-568))) (-15 -2882 (|#1| $ (-568))) (-15 -3276 ((-634 (-2 (|:| |gen| |#1|) (|:| -1892 (-763)))) $)) (-15 -3678 ((-763) $)) (-15 -3595 ((-634 |#1|) $)))) (-842)) (T -814)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-842)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-814 *2)) (-4 *2 (-842)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-763)) (-5 *1 (-814 *2)) (-4 *2 (-842)))) (-3876 (*1 *2 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-842)))) (-3935 (*1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-842)))) (-2407 (*1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-842)))) (-4081 (*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-814 *3)) (-4 *3 (-842)))) (-3078 (*1 *1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-842)))) (-2403 (*1 *1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-842)))) (-2532 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-814 *2)) (-4 *2 (-842)))) (-2628 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-814 *2)) (-4 *2 (-842)))) (-2532 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-814 *2)) (-4 *2 (-842)))) (-2628 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-814 *2)) (-4 *2 (-842)))) (-3210 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-3 (-814 *3) "failed")) (|:| |rm| (-3 (-814 *3) "failed")))) (-5 *1 (-814 *3)) (-4 *3 (-842)))) (-1715 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-814 *3)) (|:| |mm| (-814 *3)) (|:| |rm| (-814 *3)))) (-5 *1 (-814 *3)) (-4 *3 (-842)))) (-3983 (*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-814 *3)) (-4 *3 (-842)))) (-2408 (*1 *2 *1 *3) (-12 (-5 *3 (-568)) (-5 *2 (-763)) (-5 *1 (-814 *4)) (-4 *4 (-842)))) (-2882 (*1 *2 *1 *3) (-12 (-5 *3 (-568)) (-5 *1 (-814 *2)) (-4 *2 (-842)))) (-3276 (*1 *2 *1) (-12 (-5 *2 (-634 (-2 (|:| |gen| *3) (|:| -1892 (-763))))) (-5 *1 (-814 *3)) (-4 *3 (-842)))) (-3678 (*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-814 *3)) (-4 *3 (-842)))) (-3595 (*1 *2 *1) (-12 (-5 *2 (-634 *3)) (-5 *1 (-814 *3)) (-4 *3 (-842))))) +(-13 (-838) (-1037 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-763))) (-15 -3876 (|#1| $)) (-15 -3935 ($ $)) (-15 -2407 ($ $)) (-15 -4081 ((-121) $ $)) (-15 -3078 ($ $ $)) (-15 -2403 ($ $ $)) (-15 -2532 ((-3 $ "failed") $ $)) (-15 -2628 ((-3 $ "failed") $ $)) (-15 -2532 ((-3 $ "failed") $ |#1|)) (-15 -2628 ((-3 $ "failed") $ |#1|)) (-15 -3210 ((-3 (-2 (|:| |lm| (-3 $ "failed")) (|:| |rm| (-3 $ "failed"))) "failed") $ $)) (-15 -1715 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3983 ((-763) $)) (-15 -2408 ((-763) $ (-568))) (-15 -2882 (|#1| $ (-568))) (-15 -3276 ((-634 (-2 (|:| |gen| |#1|) (|:| -1892 (-763)))) $)) (-15 -3678 ((-763) $)) (-15 -3595 ((-634 |#1|) $)))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) 40)) (-2227 (($ $) 39)) (-1573 (((-121) $) 37)) (-3134 (((-3 $ "failed") $ $) 18)) (-3662 (((-568) $) 52)) (-2671 (($) 16 T CONST)) (-2925 (((-3 $ "failed") $) 33)) (-2033 (((-121) $) 50)) (-2735 (((-121) $) 30)) (-2245 (((-121) $) 51)) (-2521 (($ $ $) 49)) (-3268 (($ $ $) 48)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-2595 (((-3 $ "failed") $ $) 41)) (-2745 (((-850) $) 11) (($ (-568)) 27) (($ $) 42)) (-4078 (((-763)) 28)) (-1826 (((-121) $ $) 38)) (-2897 (($ $) 53)) (-1887 (($ $ (-917)) 25) (($ $ (-763)) 32)) (-3056 (($) 17 T CONST)) (-1556 (($) 29 T CONST)) (-1751 (((-121) $ $) 46)) (-1738 (((-121) $ $) 45)) (-1717 (((-121) $ $) 6)) (-1745 (((-121) $ $) 47)) (-1732 (((-121) $ $) 44)) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 24) (($ $ (-763)) 31)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 23))) +(((-815) (-1275)) (T -815)) +NIL +(-13 (-558) (-840)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-43 $) . T) ((-105) . T) ((-120 $ $) . T) ((-137) . T) ((-608 (-850)) . T) ((-172) . T) ((-285) . T) ((-558) . T) ((-637 $) . T) ((-707 $) . T) ((-716) . T) ((-786) . T) ((-787) . T) ((-789) . T) ((-790) . T) ((-840) . T) ((-842) . T) ((-1053 $) . T) ((-1047) . T) ((-1054) . T) ((-1102) . T) ((-1090) . T)) +((-2941 (($ (-1108)) 7)) (-2263 (((-121) $ (-1143) (-1108)) 15)) (-2461 (((-817) $) 12)) (-2728 (((-817) $) 11)) (-2885 (((-1249) $) 9)) (-1460 (((-121) $ (-1108)) 16))) +(((-816) (-10 -8 (-15 -2941 ($ (-1108))) (-15 -2885 ((-1249) $)) (-15 -2728 ((-817) $)) (-15 -2461 ((-817) $)) (-15 -2263 ((-121) $ (-1143) (-1108))) (-15 -1460 ((-121) $ (-1108))))) (T -816)) +((-1460 (*1 *2 *1 *3) (-12 (-5 *3 (-1108)) (-5 *2 (-121)) (-5 *1 (-816)))) (-2263 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1143)) (-5 *4 (-1108)) (-5 *2 (-121)) (-5 *1 (-816)))) (-2461 (*1 *2 *1) (-12 (-5 *2 (-817)) (-5 *1 (-816)))) (-2728 (*1 *2 *1) (-12 (-5 *2 (-817)) (-5 *1 (-816)))) (-2885 (*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-816)))) (-2941 (*1 *1 *2) (-12 (-5 *2 (-1108)) (-5 *1 (-816))))) +(-10 -8 (-15 -2941 ($ (-1108))) (-15 -2885 ((-1249) $)) (-15 -2728 ((-817) $)) (-15 -2461 ((-817) $)) (-15 -2263 ((-121) $ (-1143) (-1108))) (-15 -1460 ((-121) $ (-1108)))) +((-2755 (((-1249) $ (-818)) 12)) (-3540 (((-1249) $ (-1161)) 32)) (-4212 (((-1249) $ (-1143) (-1143)) 34)) (-4141 (((-1249) $ (-1143)) 33)) (-4426 (((-1249) $) 19)) (-1381 (((-1249) $ (-568)) 28)) (-3954 (((-1249) $ (-215)) 30)) (-2370 (((-1249) $) 18)) (-2123 (((-1249) $) 26)) (-2859 (((-1249) $) 25)) (-3120 (((-1249) $) 23)) (-1464 (((-1249) $) 24)) (-1333 (((-1249) $) 22)) (-2013 (((-1249) $) 21)) (-3469 (((-1249) $) 20)) (-3587 (((-1249) $) 16)) (-2647 (((-1249) $) 17)) (-3098 (((-1249) $) 15)) (-2546 (((-1249) $) 14)) (-2350 (((-1249) $) 13)) (-3711 (($ (-1143) (-818)) 9)) (-2399 (($ (-1143) (-1143) (-818)) 8)) (-2575 (((-1161) $) 51)) (-2084 (((-1161) $) 55)) (-3784 (((-2 (|:| |cd| (-1143)) (|:| -3391 (-1143))) $) 54)) (-3045 (((-1143) $) 52)) (-2089 (((-1249) $) 41)) (-2964 (((-568) $) 49)) (-4438 (((-215) $) 50)) (-3072 (((-1249) $) 40)) (-3070 (((-1249) $) 48)) (-2206 (((-1249) $) 47)) (-3719 (((-1249) $) 45)) (-2308 (((-1249) $) 46)) (-2098 (((-1249) $) 44)) (-1605 (((-1249) $) 43)) (-3515 (((-1249) $) 42)) (-4254 (((-1249) $) 38)) (-2305 (((-1249) $) 39)) (-3479 (((-1249) $) 37)) (-3315 (((-1249) $) 36)) (-1906 (((-1249) $) 35)) (-2050 (((-1249) $) 11))) +(((-817) (-10 -8 (-15 -2399 ($ (-1143) (-1143) (-818))) (-15 -3711 ($ (-1143) (-818))) (-15 -2050 ((-1249) $)) (-15 -2755 ((-1249) $ (-818))) (-15 -2350 ((-1249) $)) (-15 -2546 ((-1249) $)) (-15 -3098 ((-1249) $)) (-15 -3587 ((-1249) $)) (-15 -2647 ((-1249) $)) (-15 -2370 ((-1249) $)) (-15 -4426 ((-1249) $)) (-15 -3469 ((-1249) $)) (-15 -2013 ((-1249) $)) (-15 -1333 ((-1249) $)) (-15 -3120 ((-1249) $)) (-15 -1464 ((-1249) $)) (-15 -2859 ((-1249) $)) (-15 -2123 ((-1249) $)) (-15 -1381 ((-1249) $ (-568))) (-15 -3954 ((-1249) $ (-215))) (-15 -3540 ((-1249) $ (-1161))) (-15 -4141 ((-1249) $ (-1143))) (-15 -4212 ((-1249) $ (-1143) (-1143))) (-15 -1906 ((-1249) $)) (-15 -3315 ((-1249) $)) (-15 -3479 ((-1249) $)) (-15 -4254 ((-1249) $)) (-15 -2305 ((-1249) $)) (-15 -3072 ((-1249) $)) (-15 -2089 ((-1249) $)) (-15 -3515 ((-1249) $)) (-15 -1605 ((-1249) $)) (-15 -2098 ((-1249) $)) (-15 -3719 ((-1249) $)) (-15 -2308 ((-1249) $)) (-15 -2206 ((-1249) $)) (-15 -3070 ((-1249) $)) (-15 -2964 ((-568) $)) (-15 -4438 ((-215) $)) (-15 -2575 ((-1161) $)) (-15 -3045 ((-1143) $)) (-15 -3784 ((-2 (|:| |cd| (-1143)) (|:| -3391 (-1143))) $)) (-15 -2084 ((-1161) $)))) (T -817)) +((-2084 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-817)))) (-3784 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1143)) (|:| -3391 (-1143)))) (-5 *1 (-817)))) (-3045 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-817)))) (-2575 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-817)))) (-4438 (*1 *2 *1) (-12 (-5 *2 (-215)) (-5 *1 (-817)))) (-2964 (*1 *2 *1) (-12 (-5 *2 (-568)) (-5 *1 (-817)))) (-3070 (*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-817)))) (-2206 (*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-817)))) (-2308 (*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-817)))) (-3719 (*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-817)))) (-2098 (*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-817)))) (-1605 (*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-817)))) (-3515 (*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-817)))) (-2089 (*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-817)))) (-3072 (*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-817)))) (-2305 (*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-817)))) (-4254 (*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-817)))) (-3479 (*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-817)))) (-3315 (*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-817)))) (-1906 (*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-817)))) (-4212 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-1249)) (-5 *1 (-817)))) (-4141 (*1 *2 *1 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-1249)) (-5 *1 (-817)))) (-3540 (*1 *2 *1 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1249)) (-5 *1 (-817)))) (-3954 (*1 *2 *1 *3) (-12 (-5 *3 (-215)) (-5 *2 (-1249)) (-5 *1 (-817)))) (-1381 (*1 *2 *1 *3) (-12 (-5 *3 (-568)) (-5 *2 (-1249)) (-5 *1 (-817)))) (-2123 (*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-817)))) (-2859 (*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-817)))) (-1464 (*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-817)))) (-3120 (*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-817)))) (-1333 (*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-817)))) (-2013 (*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-817)))) (-3469 (*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-817)))) (-4426 (*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-817)))) (-2370 (*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-817)))) (-2647 (*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-817)))) (-3587 (*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-817)))) (-3098 (*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-817)))) (-2546 (*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-817)))) (-2350 (*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-817)))) (-2755 (*1 *2 *1 *3) (-12 (-5 *3 (-818)) (-5 *2 (-1249)) (-5 *1 (-817)))) (-2050 (*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-817)))) (-3711 (*1 *1 *2 *3) (-12 (-5 *2 (-1143)) (-5 *3 (-818)) (-5 *1 (-817)))) (-2399 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1143)) (-5 *3 (-818)) (-5 *1 (-817))))) +(-10 -8 (-15 -2399 ($ (-1143) (-1143) (-818))) (-15 -3711 ($ (-1143) (-818))) (-15 -2050 ((-1249) $)) (-15 -2755 ((-1249) $ (-818))) (-15 -2350 ((-1249) $)) (-15 -2546 ((-1249) $)) (-15 -3098 ((-1249) $)) (-15 -3587 ((-1249) $)) (-15 -2647 ((-1249) $)) (-15 -2370 ((-1249) $)) (-15 -4426 ((-1249) $)) (-15 -3469 ((-1249) $)) (-15 -2013 ((-1249) $)) (-15 -1333 ((-1249) $)) (-15 -3120 ((-1249) $)) (-15 -1464 ((-1249) $)) (-15 -2859 ((-1249) $)) (-15 -2123 ((-1249) $)) (-15 -1381 ((-1249) $ (-568))) (-15 -3954 ((-1249) $ (-215))) (-15 -3540 ((-1249) $ (-1161))) (-15 -4141 ((-1249) $ (-1143))) (-15 -4212 ((-1249) $ (-1143) (-1143))) (-15 -1906 ((-1249) $)) (-15 -3315 ((-1249) $)) (-15 -3479 ((-1249) $)) (-15 -4254 ((-1249) $)) (-15 -2305 ((-1249) $)) (-15 -3072 ((-1249) $)) (-15 -2089 ((-1249) $)) (-15 -3515 ((-1249) $)) (-15 -1605 ((-1249) $)) (-15 -2098 ((-1249) $)) (-15 -3719 ((-1249) $)) (-15 -2308 ((-1249) $)) (-15 -2206 ((-1249) $)) (-15 -3070 ((-1249) $)) (-15 -2964 ((-568) $)) (-15 -4438 ((-215) $)) (-15 -2575 ((-1161) $)) (-15 -3045 ((-1143) $)) (-15 -3784 ((-2 (|:| |cd| (-1143)) (|:| -3391 (-1143))) $)) (-15 -2084 ((-1161) $))) +((-2447 (((-121) $ $) NIL)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2745 (((-850) $) 12)) (-1356 (($) 15)) (-1954 (($) 13)) (-1570 (($) 16)) (-2095 (($) 14)) (-1717 (((-121) $ $) 8))) +(((-818) (-13 (-1090) (-10 -8 (-15 -1954 ($)) (-15 -1356 ($)) (-15 -1570 ($)) (-15 -2095 ($))))) (T -818)) +((-1954 (*1 *1) (-5 *1 (-818))) (-1356 (*1 *1) (-5 *1 (-818))) (-1570 (*1 *1) (-5 *1 (-818))) (-2095 (*1 *1) (-5 *1 (-818)))) +(-13 (-1090) (-10 -8 (-15 -1954 ($)) (-15 -1356 ($)) (-15 -1570 ($)) (-15 -2095 ($)))) +((-2447 (((-121) $ $) NIL)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2745 (((-850) $) 21) (($ (-1161)) 17)) (-1312 (((-121) $) 10)) (-1762 (((-121) $) 9)) (-3186 (((-121) $) 11)) (-4489 (((-121) $) 8)) (-1717 (((-121) $ $) 19))) +(((-819) (-13 (-1090) (-10 -8 (-15 -2745 ($ (-1161))) (-15 -4489 ((-121) $)) (-15 -1762 ((-121) $)) (-15 -1312 ((-121) $)) (-15 -3186 ((-121) $))))) (T -819)) +((-2745 (*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-819)))) (-4489 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-819)))) (-1762 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-819)))) (-1312 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-819)))) (-3186 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-819))))) +(-13 (-1090) (-10 -8 (-15 -2745 ($ (-1161))) (-15 -4489 ((-121) $)) (-15 -1762 ((-121) $)) (-15 -1312 ((-121) $)) (-15 -3186 ((-121) $)))) +((-2447 (((-121) $ $) NIL)) (-3023 (($ (-819) (-634 (-1161))) 24)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-1574 (((-819) $) 25)) (-4374 (((-634 (-1161)) $) 26)) (-2745 (((-850) $) 23)) (-1717 (((-121) $ $) NIL))) +(((-820) (-13 (-1090) (-10 -8 (-15 -1574 ((-819) $)) (-15 -4374 ((-634 (-1161)) $)) (-15 -3023 ($ (-819) (-634 (-1161))))))) (T -820)) +((-1574 (*1 *2 *1) (-12 (-5 *2 (-819)) (-5 *1 (-820)))) (-4374 (*1 *2 *1) (-12 (-5 *2 (-634 (-1161))) (-5 *1 (-820)))) (-3023 (*1 *1 *2 *3) (-12 (-5 *2 (-819)) (-5 *3 (-634 (-1161))) (-5 *1 (-820))))) +(-13 (-1090) (-10 -8 (-15 -1574 ((-819) $)) (-15 -4374 ((-634 (-1161)) $)) (-15 -3023 ($ (-819) (-634 (-1161)))))) +((-3754 (((-1249) (-817) (-310 |#1|) (-121)) 22) (((-1249) (-817) (-310 |#1|)) 76) (((-1143) (-310 |#1|) (-121)) 75) (((-1143) (-310 |#1|)) 74))) +(((-821 |#1|) (-10 -7 (-15 -3754 ((-1143) (-310 |#1|))) (-15 -3754 ((-1143) (-310 |#1|) (-121))) (-15 -3754 ((-1249) (-817) (-310 |#1|))) (-15 -3754 ((-1249) (-817) (-310 |#1|) (-121)))) (-13 (-823) (-842) (-1047))) (T -821)) +((-3754 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-817)) (-5 *4 (-310 *6)) (-5 *5 (-121)) (-4 *6 (-13 (-823) (-842) (-1047))) (-5 *2 (-1249)) (-5 *1 (-821 *6)))) (-3754 (*1 *2 *3 *4) (-12 (-5 *3 (-817)) (-5 *4 (-310 *5)) (-4 *5 (-13 (-823) (-842) (-1047))) (-5 *2 (-1249)) (-5 *1 (-821 *5)))) (-3754 (*1 *2 *3 *4) (-12 (-5 *3 (-310 *5)) (-5 *4 (-121)) (-4 *5 (-13 (-823) (-842) (-1047))) (-5 *2 (-1143)) (-5 *1 (-821 *5)))) (-3754 (*1 *2 *3) (-12 (-5 *3 (-310 *4)) (-4 *4 (-13 (-823) (-842) (-1047))) (-5 *2 (-1143)) (-5 *1 (-821 *4))))) +(-10 -7 (-15 -3754 ((-1143) (-310 |#1|))) (-15 -3754 ((-1143) (-310 |#1|) (-121))) (-15 -3754 ((-1249) (-817) (-310 |#1|))) (-15 -3754 ((-1249) (-817) (-310 |#1|) (-121)))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-2671 (($) NIL T CONST)) (-2114 (($ $) NIL)) (-2925 (((-3 $ "failed") $) NIL)) (-3506 ((|#1| $) 10)) (-4192 (($ |#1|) 9)) (-2735 (((-121) $) NIL)) (-2047 (($ |#2| (-763)) NIL)) (-2144 (((-763) $) NIL)) (-2102 ((|#2| $) NIL)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-4189 (($ $ (-763)) NIL (|has| |#1| (-225))) (($ $) NIL (|has| |#1| (-225)))) (-3206 (((-763) $) NIL)) (-2745 (((-850) $) 17) (($ (-568)) NIL) (($ |#2|) NIL (|has| |#2| (-172)))) (-2604 ((|#2| $ (-763)) NIL)) (-4078 (((-763)) NIL)) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (-3056 (($) NIL T CONST)) (-1556 (($) NIL T CONST)) (-3190 (($ $ (-763)) NIL (|has| |#1| (-225))) (($ $) NIL (|has| |#1| (-225)))) (-1717 (((-121) $ $) NIL)) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-822 |#1| |#2|) (-13 (-698 |#2|) (-10 -8 (IF (|has| |#1| (-225)) (-6 (-225)) |noBranch|) (-15 -4192 ($ |#1|)) (-15 -3506 (|#1| $)))) (-698 |#2|) (-1047)) (T -822)) +((-4192 (*1 *1 *2) (-12 (-4 *3 (-1047)) (-5 *1 (-822 *2 *3)) (-4 *2 (-698 *3)))) (-3506 (*1 *2 *1) (-12 (-4 *2 (-698 *3)) (-5 *1 (-822 *2 *3)) (-4 *3 (-1047))))) +(-13 (-698 |#2|) (-10 -8 (IF (|has| |#1| (-225)) (-6 (-225)) |noBranch|) (-15 -4192 ($ |#1|)) (-15 -3506 (|#1| $)))) +((-3754 (((-1249) (-817) $ (-121)) 9) (((-1249) (-817) $) 8) (((-1143) $ (-121)) 7) (((-1143) $) 6))) +(((-823) (-1275)) (T -823)) +((-3754 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-823)) (-5 *3 (-817)) (-5 *4 (-121)) (-5 *2 (-1249)))) (-3754 (*1 *2 *3 *1) (-12 (-4 *1 (-823)) (-5 *3 (-817)) (-5 *2 (-1249)))) (-3754 (*1 *2 *1 *3) (-12 (-4 *1 (-823)) (-5 *3 (-121)) (-5 *2 (-1143)))) (-3754 (*1 *2 *1) (-12 (-4 *1 (-823)) (-5 *2 (-1143))))) +(-13 (-10 -8 (-15 -3754 ((-1143) $)) (-15 -3754 ((-1143) $ (-121))) (-15 -3754 ((-1249) (-817) $)) (-15 -3754 ((-1249) (-817) $ (-121))))) +((-2913 (((-305) (-1143) (-1143)) 12)) (-2272 (((-121) (-1143) (-1143)) 33)) (-2614 (((-121) (-1143)) 32)) (-2666 (((-57) (-1143)) 25)) (-3263 (((-57) (-1143)) 23)) (-4263 (((-57) (-817)) 17)) (-3314 (((-634 (-1143)) (-1143)) 28)) (-2119 (((-634 (-1143))) 27))) +(((-824) (-10 -7 (-15 -4263 ((-57) (-817))) (-15 -3263 ((-57) (-1143))) (-15 -2666 ((-57) (-1143))) (-15 -2119 ((-634 (-1143)))) (-15 -3314 ((-634 (-1143)) (-1143))) (-15 -2614 ((-121) (-1143))) (-15 -2272 ((-121) (-1143) (-1143))) (-15 -2913 ((-305) (-1143) (-1143))))) (T -824)) +((-2913 (*1 *2 *3 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-305)) (-5 *1 (-824)))) (-2272 (*1 *2 *3 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-121)) (-5 *1 (-824)))) (-2614 (*1 *2 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-121)) (-5 *1 (-824)))) (-3314 (*1 *2 *3) (-12 (-5 *2 (-634 (-1143))) (-5 *1 (-824)) (-5 *3 (-1143)))) (-2119 (*1 *2) (-12 (-5 *2 (-634 (-1143))) (-5 *1 (-824)))) (-2666 (*1 *2 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-57)) (-5 *1 (-824)))) (-3263 (*1 *2 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-57)) (-5 *1 (-824)))) (-4263 (*1 *2 *3) (-12 (-5 *3 (-817)) (-5 *2 (-57)) (-5 *1 (-824))))) +(-10 -7 (-15 -4263 ((-57) (-817))) (-15 -3263 ((-57) (-1143))) (-15 -2666 ((-57) (-1143))) (-15 -2119 ((-634 (-1143)))) (-15 -3314 ((-634 (-1143)) (-1143))) (-15 -2614 ((-121) (-1143))) (-15 -2272 ((-121) (-1143) (-1143))) (-15 -2913 ((-305) (-1143) (-1143)))) +((-2447 (((-121) $ $) 18)) (-1791 (($ |#1| $) 72) (($ $ |#1|) 71) (($ $ $) 70)) (-1536 (($ $ $) 68)) (-2032 (((-121) $ $) 69)) (-2510 (((-121) $ (-763)) 8)) (-2749 (($ (-634 |#1|)) 64) (($) 63)) (-3507 (($ (-1 (-121) |#1|) $) 42 (|has| $ (-6 -4519)))) (-2801 (($ (-1 (-121) |#1|) $) 52 (|has| $ (-6 -4519)))) (-2671 (($) 7 T CONST)) (-3369 (($ $) 58)) (-3924 (($ $) 55 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-3405 (($ |#1| $) 44 (|has| $ (-6 -4519))) (($ (-1 (-121) |#1|) $) 43 (|has| $ (-6 -4519)))) (-4328 (($ |#1| $) 54 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519)))) (($ (-1 (-121) |#1|) $) 51 (|has| $ (-6 -4519)))) (-3092 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 53 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 50 (|has| $ (-6 -4519))) ((|#1| (-1 |#1| |#1| |#1|) $) 49 (|has| $ (-6 -4519)))) (-4360 (((-634 |#1|) $) 30 (|has| $ (-6 -4519)))) (-1737 (((-121) $ (-763)) 9)) (-2521 ((|#1| $) 74)) (-3349 (($ $ $) 77)) (-1347 (($ $ $) 76)) (-1979 (((-634 |#1|) $) 29 (|has| $ (-6 -4519)))) (-3109 (((-121) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-3268 ((|#1| $) 75)) (-3674 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#1| |#1|) $) 35)) (-2166 (((-121) $ (-763)) 10)) (-4487 (((-1143) $) 22)) (-3212 (($ $ $) 65)) (-1890 ((|#1| $) 36)) (-4450 (($ |#1| $) 37) (($ |#1| $ (-763)) 59)) (-4022 (((-1108) $) 21)) (-3775 (((-3 |#1| "failed") (-1 (-121) |#1|) $) 48)) (-1315 ((|#1| $) 38)) (-1387 (((-121) (-1 (-121) |#1|) $) 32 (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-634 |#1|) (-634 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))))) (-3171 (((-121) $ $) 14)) (-3084 (((-121) $) 11)) (-3248 (($) 12)) (-1799 (((-634 (-2 (|:| -4083 |#1|) (|:| -4168 (-763)))) $) 57)) (-4382 (($ $ |#1|) 67) (($ $ $) 66)) (-2085 (($) 46) (($ (-634 |#1|)) 45)) (-4168 (((-763) (-1 (-121) |#1|) $) 31 (|has| $ (-6 -4519))) (((-763) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-3863 (($ $) 13)) (-4278 (((-541) $) 56 (|has| |#1| (-609 (-541))))) (-4287 (($ (-634 |#1|)) 47)) (-2745 (((-850) $) 20)) (-3844 (($ (-634 |#1|)) 62) (($) 61)) (-2367 (($ (-634 |#1|)) 39)) (-1319 (((-121) (-1 (-121) |#1|) $) 33 (|has| $ (-6 -4519)))) (-1717 (((-121) $ $) 19)) (-1732 (((-121) $ $) 60)) (-1697 (((-763) $) 6 (|has| $ (-6 -4519))))) +(((-825 |#1|) (-1275) (-842)) (T -825)) +((-2521 (*1 *2 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-842))))) +(-13 (-726 |t#1|) (-969 |t#1|) (-10 -8 (-15 -2521 (|t#1| $)))) +(((-39) . T) ((-111 |#1|) . T) ((-105) . T) ((-608 (-850)) . T) ((-154 |#1|) . T) ((-609 (-541)) |has| |#1| (-609 (-541))) ((-227 |#1|) . T) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))) ((-499 |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))) ((-684 |#1|) . T) ((-726 |#1|) . T) ((-969 |#1|) . T) ((-1087 |#1|) . T) ((-1090) . T) ((-1195) . T)) +((-2135 (((-1249) (-1108) (-1108)) 47)) (-3350 (((-1249) (-816) (-57)) 44)) (-1746 (((-57) (-816)) 16))) +(((-826) (-10 -7 (-15 -1746 ((-57) (-816))) (-15 -3350 ((-1249) (-816) (-57))) (-15 -2135 ((-1249) (-1108) (-1108))))) (T -826)) +((-2135 (*1 *2 *3 *3) (-12 (-5 *3 (-1108)) (-5 *2 (-1249)) (-5 *1 (-826)))) (-3350 (*1 *2 *3 *4) (-12 (-5 *3 (-816)) (-5 *4 (-57)) (-5 *2 (-1249)) (-5 *1 (-826)))) (-1746 (*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-57)) (-5 *1 (-826))))) +(-10 -7 (-15 -1746 ((-57) (-816))) (-15 -3350 ((-1249) (-816) (-57))) (-15 -2135 ((-1249) (-1108) (-1108)))) +((-2795 (((-828 |#2|) (-1 |#2| |#1|) (-828 |#1|) (-828 |#2|)) 12) (((-828 |#2|) (-1 |#2| |#1|) (-828 |#1|)) 13))) +(((-827 |#1| |#2|) (-10 -7 (-15 -2795 ((-828 |#2|) (-1 |#2| |#1|) (-828 |#1|))) (-15 -2795 ((-828 |#2|) (-1 |#2| |#1|) (-828 |#1|) (-828 |#2|)))) (-1090) (-1090)) (T -827)) +((-2795 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-828 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-828 *5)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-5 *1 (-827 *5 *6)))) (-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-828 *5)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-5 *2 (-828 *6)) (-5 *1 (-827 *5 *6))))) +(-10 -7 (-15 -2795 ((-828 |#2|) (-1 |#2| |#1|) (-828 |#1|))) (-15 -2795 ((-828 |#2|) (-1 |#2| |#1|) (-828 |#1|) (-828 |#2|)))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL (|has| |#1| (-21)))) (-3134 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3662 (((-568) $) NIL (|has| |#1| (-840)))) (-2671 (($) NIL (|has| |#1| (-21)) CONST)) (-3666 (((-3 (-568) "failed") $) NIL (|has| |#1| (-1037 (-568)))) (((-3 (-409 (-568)) "failed") $) NIL (|has| |#1| (-1037 (-409 (-568))))) (((-3 |#1| "failed") $) 15)) (-2854 (((-568) $) NIL (|has| |#1| (-1037 (-568)))) (((-409 (-568)) $) NIL (|has| |#1| (-1037 (-409 (-568))))) ((|#1| $) 9)) (-2925 (((-3 $ "failed") $) 40 (|has| |#1| (-840)))) (-1642 (((-3 (-409 (-568)) "failed") $) 48 (|has| |#1| (-550)))) (-2688 (((-121) $) 43 (|has| |#1| (-550)))) (-2425 (((-409 (-568)) $) 45 (|has| |#1| (-550)))) (-2033 (((-121) $) NIL (|has| |#1| (-840)))) (-2735 (((-121) $) NIL (|has| |#1| (-840)))) (-2245 (((-121) $) NIL (|has| |#1| (-840)))) (-2521 (($ $ $) NIL (|has| |#1| (-840)))) (-3268 (($ $ $) NIL (|has| |#1| (-840)))) (-4487 (((-1143) $) NIL)) (-3059 (($) 13)) (-3794 (((-121) $) 12)) (-4022 (((-1108) $) NIL)) (-3449 (((-121) $) 11)) (-2745 (((-850) $) 18) (($ (-409 (-568))) NIL (|has| |#1| (-1037 (-409 (-568))))) (($ |#1|) 8) (($ (-568)) NIL (-2198 (|has| |#1| (-840)) (|has| |#1| (-1037 (-568)))))) (-4078 (((-763)) 34 (|has| |#1| (-840)))) (-2897 (($ $) NIL (|has| |#1| (-840)))) (-1887 (($ $ (-917)) NIL (|has| |#1| (-840))) (($ $ (-763)) NIL (|has| |#1| (-840)))) (-3056 (($) 22 (|has| |#1| (-21)) CONST)) (-1556 (($) 31 (|has| |#1| (-840)) CONST)) (-1751 (((-121) $ $) NIL (|has| |#1| (-840)))) (-1738 (((-121) $ $) NIL (|has| |#1| (-840)))) (-1717 (((-121) $ $) 20)) (-1745 (((-121) $ $) NIL (|has| |#1| (-840)))) (-1732 (((-121) $ $) 42 (|has| |#1| (-840)))) (-1773 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-1767 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-917)) NIL (|has| |#1| (-840))) (($ $ (-763)) NIL (|has| |#1| (-840)))) (* (($ $ $) 37 (|has| |#1| (-840))) (($ (-568) $) 25 (|has| |#1| (-21))) (($ (-763) $) NIL (|has| |#1| (-21))) (($ (-917) $) NIL (|has| |#1| (-21))))) +(((-828 |#1|) (-13 (-1090) (-413 |#1|) (-10 -8 (-15 -3059 ($)) (-15 -3449 ((-121) $)) (-15 -3794 ((-121) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |noBranch|) (IF (|has| |#1| (-840)) (-6 (-840)) |noBranch|) (IF (|has| |#1| (-550)) (PROGN (-15 -2688 ((-121) $)) (-15 -2425 ((-409 (-568)) $)) (-15 -1642 ((-3 (-409 (-568)) "failed") $))) |noBranch|))) (-1090)) (T -828)) +((-3059 (*1 *1) (-12 (-5 *1 (-828 *2)) (-4 *2 (-1090)))) (-3449 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-828 *3)) (-4 *3 (-1090)))) (-3794 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-828 *3)) (-4 *3 (-1090)))) (-2688 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-828 *3)) (-4 *3 (-550)) (-4 *3 (-1090)))) (-2425 (*1 *2 *1) (-12 (-5 *2 (-409 (-568))) (-5 *1 (-828 *3)) (-4 *3 (-550)) (-4 *3 (-1090)))) (-1642 (*1 *2 *1) (|partial| -12 (-5 *2 (-409 (-568))) (-5 *1 (-828 *3)) (-4 *3 (-550)) (-4 *3 (-1090))))) +(-13 (-1090) (-413 |#1|) (-10 -8 (-15 -3059 ($)) (-15 -3449 ((-121) $)) (-15 -3794 ((-121) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |noBranch|) (IF (|has| |#1| (-840)) (-6 (-840)) |noBranch|) (IF (|has| |#1| (-550)) (PROGN (-15 -2688 ((-121) $)) (-15 -2425 ((-409 (-568)) $)) (-15 -1642 ((-3 (-409 (-568)) "failed") $))) |noBranch|))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-2671 (($) NIL T CONST)) (-3666 (((-3 |#1| "failed") $) NIL) (((-3 (-123) "failed") $) NIL)) (-2854 ((|#1| $) NIL) (((-123) $) NIL)) (-2925 (((-3 $ "failed") $) NIL)) (-4432 ((|#1| (-123) |#1|) NIL)) (-2735 (((-121) $) NIL)) (-2276 (($ |#1| (-363 (-123))) NIL)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2082 (($ $ (-1 |#1| |#1|)) NIL)) (-1481 (($ $ (-1 |#1| |#1|)) NIL)) (-2779 ((|#1| $ |#1|) NIL)) (-1730 ((|#1| |#1|) NIL (|has| |#1| (-172)))) (-2745 (((-850) $) NIL) (($ (-568)) NIL) (($ |#1|) NIL) (($ (-123)) NIL)) (-4371 (((-3 $ "failed") $) NIL (|has| |#1| (-148)))) (-4078 (((-763)) NIL)) (-4391 (($ $) NIL (|has| |#1| (-172))) (($ $ $) NIL (|has| |#1| (-172)))) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (-3056 (($) NIL T CONST)) (-1556 (($) NIL T CONST)) (-1717 (((-121) $ $) NIL)) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ (-123) (-568)) NIL) (($ $ (-568)) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))))) +(((-829 |#1|) (-13 (-1047) (-1037 |#1|) (-1037 (-123)) (-281 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-150)) (-6 (-150)) |noBranch|) (IF (|has| |#1| (-148)) (-6 (-148)) |noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-43 |#1|)) (-15 -4391 ($ $)) (-15 -4391 ($ $ $)) (-15 -1730 (|#1| |#1|))) |noBranch|) (-15 -1481 ($ $ (-1 |#1| |#1|))) (-15 -2082 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-123) (-568))) (-15 ** ($ $ (-568))) (-15 -4432 (|#1| (-123) |#1|)) (-15 -2276 ($ |#1| (-363 (-123)))))) (-1047)) (T -829)) +((-4391 (*1 *1 *1) (-12 (-5 *1 (-829 *2)) (-4 *2 (-172)) (-4 *2 (-1047)))) (-4391 (*1 *1 *1 *1) (-12 (-5 *1 (-829 *2)) (-4 *2 (-172)) (-4 *2 (-1047)))) (-1730 (*1 *2 *2) (-12 (-5 *1 (-829 *2)) (-4 *2 (-172)) (-4 *2 (-1047)))) (-1481 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1047)) (-5 *1 (-829 *3)))) (-2082 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1047)) (-5 *1 (-829 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-123)) (-5 *3 (-568)) (-5 *1 (-829 *4)) (-4 *4 (-1047)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-829 *3)) (-4 *3 (-1047)))) (-4432 (*1 *2 *3 *2) (-12 (-5 *3 (-123)) (-5 *1 (-829 *2)) (-4 *2 (-1047)))) (-2276 (*1 *1 *2 *3) (-12 (-5 *3 (-363 (-123))) (-5 *1 (-829 *2)) (-4 *2 (-1047))))) +(-13 (-1047) (-1037 |#1|) (-1037 (-123)) (-281 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-150)) (-6 (-150)) |noBranch|) (IF (|has| |#1| (-148)) (-6 (-148)) |noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-43 |#1|)) (-15 -4391 ($ $)) (-15 -4391 ($ $ $)) (-15 -1730 (|#1| |#1|))) |noBranch|) (-15 -1481 ($ $ (-1 |#1| |#1|))) (-15 -2082 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-123) (-568))) (-15 ** ($ $ (-568))) (-15 -4432 (|#1| (-123) |#1|)) (-15 -2276 ($ |#1| (-363 (-123)))))) +((-3457 (((-205 (-511)) (-1143)) 8))) +(((-830) (-10 -7 (-15 -3457 ((-205 (-511)) (-1143))))) (T -830)) +((-3457 (*1 *2 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-205 (-511))) (-5 *1 (-830))))) +(-10 -7 (-15 -3457 ((-205 (-511)) (-1143)))) +((-2447 (((-121) $ $) 7)) (-2855 (((-1035) (-2 (|:| |lfn| (-634 (-310 (-215)))) (|:| -4434 (-634 (-215))))) 13) (((-1035) (-2 (|:| |fn| (-310 (-215))) (|:| -4434 (-634 (-215))) (|:| |lb| (-634 (-835 (-215)))) (|:| |cf| (-634 (-310 (-215)))) (|:| |ub| (-634 (-835 (-215)))))) 12)) (-3029 (((-2 (|:| -3029 (-381)) (|:| |explanations| (-1143))) (-1059) (-2 (|:| |fn| (-310 (-215))) (|:| -4434 (-634 (-215))) (|:| |lb| (-634 (-835 (-215)))) (|:| |cf| (-634 (-310 (-215)))) (|:| |ub| (-634 (-835 (-215)))))) 15) (((-2 (|:| -3029 (-381)) (|:| |explanations| (-1143))) (-1059) (-2 (|:| |lfn| (-634 (-310 (-215)))) (|:| -4434 (-634 (-215))))) 14)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-2745 (((-850) $) 11)) (-1717 (((-121) $ $) 6))) +(((-831) (-1275)) (T -831)) +((-3029 (*1 *2 *3 *4) (-12 (-4 *1 (-831)) (-5 *3 (-1059)) (-5 *4 (-2 (|:| |fn| (-310 (-215))) (|:| -4434 (-634 (-215))) (|:| |lb| (-634 (-835 (-215)))) (|:| |cf| (-634 (-310 (-215)))) (|:| |ub| (-634 (-835 (-215)))))) (-5 *2 (-2 (|:| -3029 (-381)) (|:| |explanations| (-1143)))))) (-3029 (*1 *2 *3 *4) (-12 (-4 *1 (-831)) (-5 *3 (-1059)) (-5 *4 (-2 (|:| |lfn| (-634 (-310 (-215)))) (|:| -4434 (-634 (-215))))) (-5 *2 (-2 (|:| -3029 (-381)) (|:| |explanations| (-1143)))))) (-2855 (*1 *2 *3) (-12 (-4 *1 (-831)) (-5 *3 (-2 (|:| |lfn| (-634 (-310 (-215)))) (|:| -4434 (-634 (-215))))) (-5 *2 (-1035)))) (-2855 (*1 *2 *3) (-12 (-4 *1 (-831)) (-5 *3 (-2 (|:| |fn| (-310 (-215))) (|:| -4434 (-634 (-215))) (|:| |lb| (-634 (-835 (-215)))) (|:| |cf| (-634 (-310 (-215)))) (|:| |ub| (-634 (-835 (-215)))))) (-5 *2 (-1035))))) +(-13 (-1090) (-10 -7 (-15 -3029 ((-2 (|:| -3029 (-381)) (|:| |explanations| (-1143))) (-1059) (-2 (|:| |fn| (-310 (-215))) (|:| -4434 (-634 (-215))) (|:| |lb| (-634 (-835 (-215)))) (|:| |cf| (-634 (-310 (-215)))) (|:| |ub| (-634 (-835 (-215))))))) (-15 -3029 ((-2 (|:| -3029 (-381)) (|:| |explanations| (-1143))) (-1059) (-2 (|:| |lfn| (-634 (-310 (-215)))) (|:| -4434 (-634 (-215)))))) (-15 -2855 ((-1035) (-2 (|:| |lfn| (-634 (-310 (-215)))) (|:| -4434 (-634 (-215)))))) (-15 -2855 ((-1035) (-2 (|:| |fn| (-310 (-215))) (|:| -4434 (-634 (-215))) (|:| |lb| (-634 (-835 (-215)))) (|:| |cf| (-634 (-310 (-215)))) (|:| |ub| (-634 (-835 (-215))))))))) +(((-105) . T) ((-608 (-850)) . T) ((-1090) . T)) +((-4086 (((-1035) (-634 (-310 (-381))) (-634 (-381))) 143) (((-1035) (-310 (-381)) (-634 (-381))) 141) (((-1035) (-310 (-381)) (-634 (-381)) (-634 (-835 (-381))) (-634 (-835 (-381)))) 140) (((-1035) (-310 (-381)) (-634 (-381)) (-634 (-835 (-381))) (-634 (-310 (-381))) (-634 (-835 (-381)))) 139) (((-1035) (-833)) 112) (((-1035) (-833) (-1059)) 111)) (-3029 (((-2 (|:| -3029 (-381)) (|:| -3391 (-1143)) (|:| |explanations| (-634 (-1143)))) (-833) (-1059)) 76) (((-2 (|:| -3029 (-381)) (|:| -3391 (-1143)) (|:| |explanations| (-634 (-1143)))) (-833)) 78)) (-2642 (((-1035) (-634 (-310 (-381))) (-634 (-381))) 144) (((-1035) (-833)) 128))) +(((-832) (-10 -7 (-15 -3029 ((-2 (|:| -3029 (-381)) (|:| -3391 (-1143)) (|:| |explanations| (-634 (-1143)))) (-833))) (-15 -3029 ((-2 (|:| -3029 (-381)) (|:| -3391 (-1143)) (|:| |explanations| (-634 (-1143)))) (-833) (-1059))) (-15 -4086 ((-1035) (-833) (-1059))) (-15 -4086 ((-1035) (-833))) (-15 -2642 ((-1035) (-833))) (-15 -4086 ((-1035) (-310 (-381)) (-634 (-381)) (-634 (-835 (-381))) (-634 (-310 (-381))) (-634 (-835 (-381))))) (-15 -4086 ((-1035) (-310 (-381)) (-634 (-381)) (-634 (-835 (-381))) (-634 (-835 (-381))))) (-15 -4086 ((-1035) (-310 (-381)) (-634 (-381)))) (-15 -4086 ((-1035) (-634 (-310 (-381))) (-634 (-381)))) (-15 -2642 ((-1035) (-634 (-310 (-381))) (-634 (-381)))))) (T -832)) +((-2642 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-310 (-381)))) (-5 *4 (-634 (-381))) (-5 *2 (-1035)) (-5 *1 (-832)))) (-4086 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-310 (-381)))) (-5 *4 (-634 (-381))) (-5 *2 (-1035)) (-5 *1 (-832)))) (-4086 (*1 *2 *3 *4) (-12 (-5 *3 (-310 (-381))) (-5 *4 (-634 (-381))) (-5 *2 (-1035)) (-5 *1 (-832)))) (-4086 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-310 (-381))) (-5 *4 (-634 (-381))) (-5 *5 (-634 (-835 (-381)))) (-5 *2 (-1035)) (-5 *1 (-832)))) (-4086 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-634 (-381))) (-5 *5 (-634 (-835 (-381)))) (-5 *6 (-634 (-310 (-381)))) (-5 *3 (-310 (-381))) (-5 *2 (-1035)) (-5 *1 (-832)))) (-2642 (*1 *2 *3) (-12 (-5 *3 (-833)) (-5 *2 (-1035)) (-5 *1 (-832)))) (-4086 (*1 *2 *3) (-12 (-5 *3 (-833)) (-5 *2 (-1035)) (-5 *1 (-832)))) (-4086 (*1 *2 *3 *4) (-12 (-5 *3 (-833)) (-5 *4 (-1059)) (-5 *2 (-1035)) (-5 *1 (-832)))) (-3029 (*1 *2 *3 *4) (-12 (-5 *3 (-833)) (-5 *4 (-1059)) (-5 *2 (-2 (|:| -3029 (-381)) (|:| -3391 (-1143)) (|:| |explanations| (-634 (-1143))))) (-5 *1 (-832)))) (-3029 (*1 *2 *3) (-12 (-5 *3 (-833)) (-5 *2 (-2 (|:| -3029 (-381)) (|:| -3391 (-1143)) (|:| |explanations| (-634 (-1143))))) (-5 *1 (-832))))) +(-10 -7 (-15 -3029 ((-2 (|:| -3029 (-381)) (|:| -3391 (-1143)) (|:| |explanations| (-634 (-1143)))) (-833))) (-15 -3029 ((-2 (|:| -3029 (-381)) (|:| -3391 (-1143)) (|:| |explanations| (-634 (-1143)))) (-833) (-1059))) (-15 -4086 ((-1035) (-833) (-1059))) (-15 -4086 ((-1035) (-833))) (-15 -2642 ((-1035) (-833))) (-15 -4086 ((-1035) (-310 (-381)) (-634 (-381)) (-634 (-835 (-381))) (-634 (-310 (-381))) (-634 (-835 (-381))))) (-15 -4086 ((-1035) (-310 (-381)) (-634 (-381)) (-634 (-835 (-381))) (-634 (-835 (-381))))) (-15 -4086 ((-1035) (-310 (-381)) (-634 (-381)))) (-15 -4086 ((-1035) (-634 (-310 (-381))) (-634 (-381)))) (-15 -2642 ((-1035) (-634 (-310 (-381))) (-634 (-381))))) +((-2447 (((-121) $ $) NIL)) (-2854 (((-3 (|:| |noa| (-2 (|:| |fn| (-310 (-215))) (|:| -4434 (-634 (-215))) (|:| |lb| (-634 (-835 (-215)))) (|:| |cf| (-634 (-310 (-215)))) (|:| |ub| (-634 (-835 (-215)))))) (|:| |lsa| (-2 (|:| |lfn| (-634 (-310 (-215)))) (|:| -4434 (-634 (-215)))))) $) 15)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2745 (((-850) $) 14) (($ (-2 (|:| |fn| (-310 (-215))) (|:| -4434 (-634 (-215))) (|:| |lb| (-634 (-835 (-215)))) (|:| |cf| (-634 (-310 (-215)))) (|:| |ub| (-634 (-835 (-215)))))) 8) (($ (-2 (|:| |lfn| (-634 (-310 (-215)))) (|:| -4434 (-634 (-215))))) 10) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-310 (-215))) (|:| -4434 (-634 (-215))) (|:| |lb| (-634 (-835 (-215)))) (|:| |cf| (-634 (-310 (-215)))) (|:| |ub| (-634 (-835 (-215)))))) (|:| |lsa| (-2 (|:| |lfn| (-634 (-310 (-215)))) (|:| -4434 (-634 (-215))))))) 12)) (-1717 (((-121) $ $) NIL))) +(((-833) (-13 (-1090) (-10 -8 (-15 -2745 ($ (-2 (|:| |fn| (-310 (-215))) (|:| -4434 (-634 (-215))) (|:| |lb| (-634 (-835 (-215)))) (|:| |cf| (-634 (-310 (-215)))) (|:| |ub| (-634 (-835 (-215))))))) (-15 -2745 ($ (-2 (|:| |lfn| (-634 (-310 (-215)))) (|:| -4434 (-634 (-215)))))) (-15 -2745 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-310 (-215))) (|:| -4434 (-634 (-215))) (|:| |lb| (-634 (-835 (-215)))) (|:| |cf| (-634 (-310 (-215)))) (|:| |ub| (-634 (-835 (-215)))))) (|:| |lsa| (-2 (|:| |lfn| (-634 (-310 (-215)))) (|:| -4434 (-634 (-215)))))))) (-15 -2745 ((-850) $)) (-15 -2854 ((-3 (|:| |noa| (-2 (|:| |fn| (-310 (-215))) (|:| -4434 (-634 (-215))) (|:| |lb| (-634 (-835 (-215)))) (|:| |cf| (-634 (-310 (-215)))) (|:| |ub| (-634 (-835 (-215)))))) (|:| |lsa| (-2 (|:| |lfn| (-634 (-310 (-215)))) (|:| -4434 (-634 (-215)))))) $))))) (T -833)) +((-2745 (*1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-833)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-310 (-215))) (|:| -4434 (-634 (-215))) (|:| |lb| (-634 (-835 (-215)))) (|:| |cf| (-634 (-310 (-215)))) (|:| |ub| (-634 (-835 (-215)))))) (-5 *1 (-833)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-634 (-310 (-215)))) (|:| -4434 (-634 (-215))))) (-5 *1 (-833)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-310 (-215))) (|:| -4434 (-634 (-215))) (|:| |lb| (-634 (-835 (-215)))) (|:| |cf| (-634 (-310 (-215)))) (|:| |ub| (-634 (-835 (-215)))))) (|:| |lsa| (-2 (|:| |lfn| (-634 (-310 (-215)))) (|:| -4434 (-634 (-215))))))) (-5 *1 (-833)))) (-2854 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-310 (-215))) (|:| -4434 (-634 (-215))) (|:| |lb| (-634 (-835 (-215)))) (|:| |cf| (-634 (-310 (-215)))) (|:| |ub| (-634 (-835 (-215)))))) (|:| |lsa| (-2 (|:| |lfn| (-634 (-310 (-215)))) (|:| -4434 (-634 (-215))))))) (-5 *1 (-833))))) +(-13 (-1090) (-10 -8 (-15 -2745 ($ (-2 (|:| |fn| (-310 (-215))) (|:| -4434 (-634 (-215))) (|:| |lb| (-634 (-835 (-215)))) (|:| |cf| (-634 (-310 (-215)))) (|:| |ub| (-634 (-835 (-215))))))) (-15 -2745 ($ (-2 (|:| |lfn| (-634 (-310 (-215)))) (|:| -4434 (-634 (-215)))))) (-15 -2745 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-310 (-215))) (|:| -4434 (-634 (-215))) (|:| |lb| (-634 (-835 (-215)))) (|:| |cf| (-634 (-310 (-215)))) (|:| |ub| (-634 (-835 (-215)))))) (|:| |lsa| (-2 (|:| |lfn| (-634 (-310 (-215)))) (|:| -4434 (-634 (-215)))))))) (-15 -2745 ((-850) $)) (-15 -2854 ((-3 (|:| |noa| (-2 (|:| |fn| (-310 (-215))) (|:| -4434 (-634 (-215))) (|:| |lb| (-634 (-835 (-215)))) (|:| |cf| (-634 (-310 (-215)))) (|:| |ub| (-634 (-835 (-215)))))) (|:| |lsa| (-2 (|:| |lfn| (-634 (-310 (-215)))) (|:| -4434 (-634 (-215)))))) $)))) +((-2795 (((-835 |#2|) (-1 |#2| |#1|) (-835 |#1|) (-835 |#2|) (-835 |#2|)) 13) (((-835 |#2|) (-1 |#2| |#1|) (-835 |#1|)) 14))) +(((-834 |#1| |#2|) (-10 -7 (-15 -2795 ((-835 |#2|) (-1 |#2| |#1|) (-835 |#1|))) (-15 -2795 ((-835 |#2|) (-1 |#2| |#1|) (-835 |#1|) (-835 |#2|) (-835 |#2|)))) (-1090) (-1090)) (T -834)) +((-2795 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-835 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-835 *5)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-5 *1 (-834 *5 *6)))) (-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-835 *5)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-5 *2 (-835 *6)) (-5 *1 (-834 *5 *6))))) +(-10 -7 (-15 -2795 ((-835 |#2|) (-1 |#2| |#1|) (-835 |#1|))) (-15 -2795 ((-835 |#2|) (-1 |#2| |#1|) (-835 |#1|) (-835 |#2|) (-835 |#2|)))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL (|has| |#1| (-21)))) (-2698 (((-1108) $) 24)) (-3134 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3662 (((-568) $) NIL (|has| |#1| (-840)))) (-2671 (($) NIL (|has| |#1| (-21)) CONST)) (-3666 (((-3 (-568) "failed") $) NIL (|has| |#1| (-1037 (-568)))) (((-3 (-409 (-568)) "failed") $) NIL (|has| |#1| (-1037 (-409 (-568))))) (((-3 |#1| "failed") $) 16)) (-2854 (((-568) $) NIL (|has| |#1| (-1037 (-568)))) (((-409 (-568)) $) NIL (|has| |#1| (-1037 (-409 (-568))))) ((|#1| $) 9)) (-2925 (((-3 $ "failed") $) 46 (|has| |#1| (-840)))) (-1642 (((-3 (-409 (-568)) "failed") $) 53 (|has| |#1| (-550)))) (-2688 (((-121) $) 48 (|has| |#1| (-550)))) (-2425 (((-409 (-568)) $) 51 (|has| |#1| (-550)))) (-2033 (((-121) $) NIL (|has| |#1| (-840)))) (-3602 (($) 13)) (-2735 (((-121) $) NIL (|has| |#1| (-840)))) (-2245 (((-121) $) NIL (|has| |#1| (-840)))) (-3594 (($) 14)) (-2521 (($ $ $) NIL (|has| |#1| (-840)))) (-3268 (($ $ $) NIL (|has| |#1| (-840)))) (-4487 (((-1143) $) NIL)) (-3794 (((-121) $) 12)) (-4022 (((-1108) $) NIL)) (-3449 (((-121) $) 11)) (-2745 (((-850) $) 22) (($ (-409 (-568))) NIL (|has| |#1| (-1037 (-409 (-568))))) (($ |#1|) 8) (($ (-568)) NIL (-2198 (|has| |#1| (-840)) (|has| |#1| (-1037 (-568)))))) (-4078 (((-763)) 40 (|has| |#1| (-840)))) (-2897 (($ $) NIL (|has| |#1| (-840)))) (-1887 (($ $ (-917)) NIL (|has| |#1| (-840))) (($ $ (-763)) NIL (|has| |#1| (-840)))) (-3056 (($) 28 (|has| |#1| (-21)) CONST)) (-1556 (($) 37 (|has| |#1| (-840)) CONST)) (-1751 (((-121) $ $) NIL (|has| |#1| (-840)))) (-1738 (((-121) $ $) NIL (|has| |#1| (-840)))) (-1717 (((-121) $ $) 26)) (-1745 (((-121) $ $) NIL (|has| |#1| (-840)))) (-1732 (((-121) $ $) 47 (|has| |#1| (-840)))) (-1773 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 33 (|has| |#1| (-21)))) (-1767 (($ $ $) 35 (|has| |#1| (-21)))) (** (($ $ (-917)) NIL (|has| |#1| (-840))) (($ $ (-763)) NIL (|has| |#1| (-840)))) (* (($ $ $) 43 (|has| |#1| (-840))) (($ (-568) $) 31 (|has| |#1| (-21))) (($ (-763) $) NIL (|has| |#1| (-21))) (($ (-917) $) NIL (|has| |#1| (-21))))) +(((-835 |#1|) (-13 (-1090) (-413 |#1|) (-10 -8 (-15 -3602 ($)) (-15 -3594 ($)) (-15 -3449 ((-121) $)) (-15 -3794 ((-121) $)) (-15 -2698 ((-1108) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |noBranch|) (IF (|has| |#1| (-840)) (-6 (-840)) |noBranch|) (IF (|has| |#1| (-550)) (PROGN (-15 -2688 ((-121) $)) (-15 -2425 ((-409 (-568)) $)) (-15 -1642 ((-3 (-409 (-568)) "failed") $))) |noBranch|))) (-1090)) (T -835)) +((-3602 (*1 *1) (-12 (-5 *1 (-835 *2)) (-4 *2 (-1090)))) (-3594 (*1 *1) (-12 (-5 *1 (-835 *2)) (-4 *2 (-1090)))) (-3449 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-835 *3)) (-4 *3 (-1090)))) (-3794 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-835 *3)) (-4 *3 (-1090)))) (-2698 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-835 *3)) (-4 *3 (-1090)))) (-2688 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-835 *3)) (-4 *3 (-550)) (-4 *3 (-1090)))) (-2425 (*1 *2 *1) (-12 (-5 *2 (-409 (-568))) (-5 *1 (-835 *3)) (-4 *3 (-550)) (-4 *3 (-1090)))) (-1642 (*1 *2 *1) (|partial| -12 (-5 *2 (-409 (-568))) (-5 *1 (-835 *3)) (-4 *3 (-550)) (-4 *3 (-1090))))) +(-13 (-1090) (-413 |#1|) (-10 -8 (-15 -3602 ($)) (-15 -3594 ($)) (-15 -3449 ((-121) $)) (-15 -3794 ((-121) $)) (-15 -2698 ((-1108) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |noBranch|) (IF (|has| |#1| (-840)) (-6 (-840)) |noBranch|) (IF (|has| |#1| (-550)) (PROGN (-15 -2688 ((-121) $)) (-15 -2425 ((-409 (-568)) $)) (-15 -1642 ((-3 (-409 (-568)) "failed") $))) |noBranch|))) +((-2447 (((-121) $ $) 7)) (-3983 (((-763)) 19)) (-1731 (($) 22)) (-2521 (($ $ $) 12)) (-3268 (($ $ $) 13)) (-3683 (((-917) $) 21)) (-4487 (((-1143) $) 9)) (-4355 (($ (-917)) 20)) (-4022 (((-1108) $) 10)) (-2745 (((-850) $) 11)) (-1751 (((-121) $ $) 15)) (-1738 (((-121) $ $) 16)) (-1717 (((-121) $ $) 6)) (-1745 (((-121) $ $) 14)) (-1732 (((-121) $ $) 17))) +(((-836) (-1275)) (T -836)) +NIL +(-13 (-842) (-370)) +(((-105) . T) ((-608 (-850)) . T) ((-370) . T) ((-842) . T) ((-1090) . T)) +((-3128 (((-121) (-1244 |#2|) (-1244 |#2|)) 17)) (-1810 (((-121) (-1244 |#2|) (-1244 |#2|)) 18)) (-1831 (((-121) (-1244 |#2|) (-1244 |#2|)) 14))) +(((-837 |#1| |#2|) (-10 -7 (-15 -1831 ((-121) (-1244 |#2|) (-1244 |#2|))) (-15 -3128 ((-121) (-1244 |#2|) (-1244 |#2|))) (-15 -1810 ((-121) (-1244 |#2|) (-1244 |#2|)))) (-763) (-787)) (T -837)) +((-1810 (*1 *2 *3 *3) (-12 (-5 *3 (-1244 *5)) (-4 *5 (-787)) (-5 *2 (-121)) (-5 *1 (-837 *4 *5)) (-14 *4 (-763)))) (-3128 (*1 *2 *3 *3) (-12 (-5 *3 (-1244 *5)) (-4 *5 (-787)) (-5 *2 (-121)) (-5 *1 (-837 *4 *5)) (-14 *4 (-763)))) (-1831 (*1 *2 *3 *3) (-12 (-5 *3 (-1244 *5)) (-4 *5 (-787)) (-5 *2 (-121)) (-5 *1 (-837 *4 *5)) (-14 *4 (-763))))) +(-10 -7 (-15 -1831 ((-121) (-1244 |#2|) (-1244 |#2|))) (-15 -3128 ((-121) (-1244 |#2|) (-1244 |#2|))) (-15 -1810 ((-121) (-1244 |#2|) (-1244 |#2|)))) +((-2447 (((-121) $ $) 7)) (-2671 (($) 23 T CONST)) (-2925 (((-3 $ "failed") $) 27)) (-2735 (((-121) $) 24)) (-2521 (($ $ $) 12)) (-3268 (($ $ $) 13)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-2745 (((-850) $) 11)) (-1887 (($ $ (-763)) 26) (($ $ (-917)) 21)) (-1556 (($) 22 T CONST)) (-1751 (((-121) $ $) 15)) (-1738 (((-121) $ $) 16)) (-1717 (((-121) $ $) 6)) (-1745 (((-121) $ $) 14)) (-1732 (((-121) $ $) 17)) (** (($ $ (-763)) 25) (($ $ (-917)) 20)) (* (($ $ $) 19))) +(((-838) (-1275)) (T -838)) +NIL +(-13 (-842) (-716)) +(((-105) . T) ((-608 (-850)) . T) ((-716) . T) ((-842) . T) ((-1102) . T) ((-1090) . T)) +((-3662 (((-568) $) 17)) (-2033 (((-121) $) 10)) (-2245 (((-121) $) 11)) (-2897 (($ $) 19))) +(((-839 |#1|) (-10 -8 (-15 -2897 (|#1| |#1|)) (-15 -3662 ((-568) |#1|)) (-15 -2245 ((-121) |#1|)) (-15 -2033 ((-121) |#1|))) (-840)) (T -839)) +NIL +(-10 -8 (-15 -2897 (|#1| |#1|)) (-15 -3662 ((-568) |#1|)) (-15 -2245 ((-121) |#1|)) (-15 -2033 ((-121) |#1|))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 23)) (-3134 (((-3 $ "failed") $ $) 25)) (-3662 (((-568) $) 32)) (-2671 (($) 22 T CONST)) (-2925 (((-3 $ "failed") $) 38)) (-2033 (((-121) $) 34)) (-2735 (((-121) $) 41)) (-2245 (((-121) $) 33)) (-2521 (($ $ $) 12)) (-3268 (($ $ $) 13)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-2745 (((-850) $) 11) (($ (-568)) 44)) (-4078 (((-763)) 43)) (-2897 (($ $) 31)) (-1887 (($ $ (-763)) 39) (($ $ (-917)) 35)) (-3056 (($) 21 T CONST)) (-1556 (($) 42 T CONST)) (-1751 (((-121) $ $) 15)) (-1738 (((-121) $ $) 16)) (-1717 (((-121) $ $) 6)) (-1745 (((-121) $ $) 14)) (-1732 (((-121) $ $) 17)) (-1773 (($ $ $) 27) (($ $) 26)) (-1767 (($ $ $) 19)) (** (($ $ (-763)) 40) (($ $ (-917)) 36)) (* (($ (-763) $) 24) (($ (-917) $) 20) (($ (-568) $) 28) (($ $ $) 37))) +(((-840) (-1275)) (T -840)) +((-2033 (*1 *2 *1) (-12 (-4 *1 (-840)) (-5 *2 (-121)))) (-2245 (*1 *2 *1) (-12 (-4 *1 (-840)) (-5 *2 (-121)))) (-3662 (*1 *2 *1) (-12 (-4 *1 (-840)) (-5 *2 (-568)))) (-2897 (*1 *1 *1) (-4 *1 (-840)))) +(-13 (-786) (-1047) (-716) (-10 -8 (-15 -2033 ((-121) $)) (-15 -2245 ((-121) $)) (-15 -3662 ((-568) $)) (-15 -2897 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-105) . T) ((-137) . T) ((-608 (-850)) . T) ((-637 $) . T) ((-716) . T) ((-786) . T) ((-787) . T) ((-789) . T) ((-790) . T) ((-842) . T) ((-1047) . T) ((-1054) . T) ((-1102) . T) ((-1090) . T)) +((-2521 (($ $ $) 10)) (-3268 (($ $ $) 9)) (-1751 (((-121) $ $) 12)) (-1738 (((-121) $ $) 11)) (-1745 (((-121) $ $) 13))) +(((-841 |#1|) (-10 -8 (-15 -2521 (|#1| |#1| |#1|)) (-15 -3268 (|#1| |#1| |#1|)) (-15 -1745 ((-121) |#1| |#1|)) (-15 -1751 ((-121) |#1| |#1|)) (-15 -1738 ((-121) |#1| |#1|))) (-842)) (T -841)) +NIL +(-10 -8 (-15 -2521 (|#1| |#1| |#1|)) (-15 -3268 (|#1| |#1| |#1|)) (-15 -1745 ((-121) |#1| |#1|)) (-15 -1751 ((-121) |#1| |#1|)) (-15 -1738 ((-121) |#1| |#1|))) +((-2447 (((-121) $ $) 7)) (-2521 (($ $ $) 12)) (-3268 (($ $ $) 13)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-2745 (((-850) $) 11)) (-1751 (((-121) $ $) 15)) (-1738 (((-121) $ $) 16)) (-1717 (((-121) $ $) 6)) (-1745 (((-121) $ $) 14)) (-1732 (((-121) $ $) 17))) +(((-842) (-1275)) (T -842)) +((-1732 (*1 *2 *1 *1) (-12 (-4 *1 (-842)) (-5 *2 (-121)))) (-1738 (*1 *2 *1 *1) (-12 (-4 *1 (-842)) (-5 *2 (-121)))) (-1751 (*1 *2 *1 *1) (-12 (-4 *1 (-842)) (-5 *2 (-121)))) (-1745 (*1 *2 *1 *1) (-12 (-4 *1 (-842)) (-5 *2 (-121)))) (-3268 (*1 *1 *1 *1) (-4 *1 (-842))) (-2521 (*1 *1 *1 *1) (-4 *1 (-842)))) +(-13 (-1090) (-10 -8 (-15 -1732 ((-121) $ $)) (-15 -1738 ((-121) $ $)) (-15 -1751 ((-121) $ $)) (-15 -1745 ((-121) $ $)) (-15 -3268 ($ $ $)) (-15 -2521 ($ $ $)))) +(((-105) . T) ((-608 (-850)) . T) ((-1090) . T)) +((-2012 (($ $ $) 45)) (-2607 (($ $ $) 44)) (-2420 (($ $ $) 42)) (-2681 (($ $ $) 51)) (-1523 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) 46)) (-1884 (((-3 $ "failed") $ $) 49)) (-3666 (((-3 (-568) "failed") $) NIL) (((-3 (-409 (-568)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-3250 (($ $) 35)) (-3748 (($ $ $) 39)) (-1382 (($ $ $) 38)) (-1525 (($ $ $) 47)) (-2450 (($ $ $) 53)) (-3758 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) 41)) (-2260 (((-3 $ "failed") $ $) 48)) (-2595 (((-3 $ "failed") $ |#2|) 28)) (-3367 ((|#2| $) 32)) (-2745 (((-850) $) NIL) (($ (-568)) NIL) (($ (-409 (-568))) NIL) (($ |#2|) 12)) (-1302 (((-634 |#2|) $) 18)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 22))) +(((-843 |#1| |#2|) (-10 -8 (-15 -1525 (|#1| |#1| |#1|)) (-15 -1523 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2704 |#1|)) |#1| |#1|)) (-15 -2681 (|#1| |#1| |#1|)) (-15 -1884 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2012 (|#1| |#1| |#1|)) (-15 -2607 (|#1| |#1| |#1|)) (-15 -2420 (|#1| |#1| |#1|)) (-15 -3758 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2704 |#1|)) |#1| |#1|)) (-15 -2450 (|#1| |#1| |#1|)) (-15 -2260 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3748 (|#1| |#1| |#1|)) (-15 -1382 (|#1| |#1| |#1|)) (-15 -3250 (|#1| |#1|)) (-15 -3367 (|#2| |#1|)) (-15 -2595 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1302 ((-634 |#2|) |#1|)) (-15 -3666 ((-3 |#2| "failed") |#1|)) (-15 -2745 (|#1| |#2|)) (-15 -2745 (|#1| (-409 (-568)))) (-15 -3666 ((-3 (-409 (-568)) "failed") |#1|)) (-15 -3666 ((-3 (-568) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2745 (|#1| (-568))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-568) |#1|)) (-15 * (|#1| (-763) |#1|)) (-15 * (|#1| (-917) |#1|)) (-15 -2745 ((-850) |#1|))) (-844 |#2|) (-1047)) (T -843)) +NIL +(-10 -8 (-15 -1525 (|#1| |#1| |#1|)) (-15 -1523 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2704 |#1|)) |#1| |#1|)) (-15 -2681 (|#1| |#1| |#1|)) (-15 -1884 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2012 (|#1| |#1| |#1|)) (-15 -2607 (|#1| |#1| |#1|)) (-15 -2420 (|#1| |#1| |#1|)) (-15 -3758 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2704 |#1|)) |#1| |#1|)) (-15 -2450 (|#1| |#1| |#1|)) (-15 -2260 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3748 (|#1| |#1| |#1|)) (-15 -1382 (|#1| |#1| |#1|)) (-15 -3250 (|#1| |#1|)) (-15 -3367 (|#2| |#1|)) (-15 -2595 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1302 ((-634 |#2|) |#1|)) (-15 -3666 ((-3 |#2| "failed") |#1|)) (-15 -2745 (|#1| |#2|)) (-15 -2745 (|#1| (-409 (-568)))) (-15 -3666 ((-3 (-409 (-568)) "failed") |#1|)) (-15 -3666 ((-3 (-568) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2745 (|#1| (-568))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-568) |#1|)) (-15 * (|#1| (-763) |#1|)) (-15 * (|#1| (-917) |#1|)) (-15 -2745 ((-850) |#1|))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-3134 (((-3 $ "failed") $ $) 18)) (-2671 (($) 16 T CONST)) (-2012 (($ $ $) 44 (|has| |#1| (-365)))) (-2607 (($ $ $) 45 (|has| |#1| (-365)))) (-2420 (($ $ $) 47 (|has| |#1| (-365)))) (-2681 (($ $ $) 42 (|has| |#1| (-365)))) (-1523 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) 41 (|has| |#1| (-365)))) (-1884 (((-3 $ "failed") $ $) 43 (|has| |#1| (-365)))) (-1653 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) 46 (|has| |#1| (-365)))) (-3666 (((-3 (-568) "failed") $) 73 (|has| |#1| (-1037 (-568)))) (((-3 (-409 (-568)) "failed") $) 71 (|has| |#1| (-1037 (-409 (-568))))) (((-3 |#1| "failed") $) 68)) (-2854 (((-568) $) 74 (|has| |#1| (-1037 (-568)))) (((-409 (-568)) $) 72 (|has| |#1| (-1037 (-409 (-568))))) ((|#1| $) 67)) (-2114 (($ $) 63)) (-2925 (((-3 $ "failed") $) 33)) (-3250 (($ $) 54 (|has| |#1| (-453)))) (-2735 (((-121) $) 30)) (-2047 (($ |#1| (-763)) 61)) (-4123 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) 56 (|has| |#1| (-558)))) (-3937 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) 57 (|has| |#1| (-558)))) (-2144 (((-763) $) 65)) (-3748 (($ $ $) 51 (|has| |#1| (-365)))) (-1382 (($ $ $) 52 (|has| |#1| (-365)))) (-1525 (($ $ $) 40 (|has| |#1| (-365)))) (-2450 (($ $ $) 49 (|has| |#1| (-365)))) (-3758 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) 48 (|has| |#1| (-365)))) (-2260 (((-3 $ "failed") $ $) 50 (|has| |#1| (-365)))) (-1293 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) 53 (|has| |#1| (-365)))) (-2102 ((|#1| $) 64)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-2595 (((-3 $ "failed") $ |#1|) 58 (|has| |#1| (-558)))) (-3206 (((-763) $) 66)) (-3367 ((|#1| $) 55 (|has| |#1| (-453)))) (-2745 (((-850) $) 11) (($ (-568)) 27) (($ (-409 (-568))) 70 (|has| |#1| (-1037 (-409 (-568))))) (($ |#1|) 69)) (-1302 (((-634 |#1|) $) 60)) (-2604 ((|#1| $ (-763)) 62)) (-4078 (((-763)) 28)) (-3823 ((|#1| $ |#1| |#1|) 59)) (-1887 (($ $ (-917)) 25) (($ $ (-763)) 32)) (-3056 (($) 17 T CONST)) (-1556 (($) 29 T CONST)) (-1717 (((-121) $ $) 6)) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 24) (($ $ (-763)) 31)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 23) (($ $ |#1|) 76) (($ |#1| $) 75))) +(((-844 |#1|) (-1275) (-1047)) (T -844)) +((-3206 (*1 *2 *1) (-12 (-4 *1 (-844 *3)) (-4 *3 (-1047)) (-5 *2 (-763)))) (-2144 (*1 *2 *1) (-12 (-4 *1 (-844 *3)) (-4 *3 (-1047)) (-5 *2 (-763)))) (-2102 (*1 *2 *1) (-12 (-4 *1 (-844 *2)) (-4 *2 (-1047)))) (-2114 (*1 *1 *1) (-12 (-4 *1 (-844 *2)) (-4 *2 (-1047)))) (-2604 (*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-4 *1 (-844 *2)) (-4 *2 (-1047)))) (-2047 (*1 *1 *2 *3) (-12 (-5 *3 (-763)) (-4 *1 (-844 *2)) (-4 *2 (-1047)))) (-1302 (*1 *2 *1) (-12 (-4 *1 (-844 *3)) (-4 *3 (-1047)) (-5 *2 (-634 *3)))) (-3823 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-844 *2)) (-4 *2 (-1047)))) (-2595 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-844 *2)) (-4 *2 (-1047)) (-4 *2 (-558)))) (-3937 (*1 *2 *1 *1) (-12 (-4 *3 (-558)) (-4 *3 (-1047)) (-5 *2 (-2 (|:| -3961 *1) (|:| -1500 *1))) (-4 *1 (-844 *3)))) (-4123 (*1 *2 *1 *1) (-12 (-4 *3 (-558)) (-4 *3 (-1047)) (-5 *2 (-2 (|:| -3961 *1) (|:| -1500 *1))) (-4 *1 (-844 *3)))) (-3367 (*1 *2 *1) (-12 (-4 *1 (-844 *2)) (-4 *2 (-1047)) (-4 *2 (-453)))) (-3250 (*1 *1 *1) (-12 (-4 *1 (-844 *2)) (-4 *2 (-1047)) (-4 *2 (-453)))) (-1293 (*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *3 (-1047)) (-5 *2 (-2 (|:| -3961 *1) (|:| -1500 *1))) (-4 *1 (-844 *3)))) (-1382 (*1 *1 *1 *1) (-12 (-4 *1 (-844 *2)) (-4 *2 (-1047)) (-4 *2 (-365)))) (-3748 (*1 *1 *1 *1) (-12 (-4 *1 (-844 *2)) (-4 *2 (-1047)) (-4 *2 (-365)))) (-2260 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-844 *2)) (-4 *2 (-1047)) (-4 *2 (-365)))) (-2450 (*1 *1 *1 *1) (-12 (-4 *1 (-844 *2)) (-4 *2 (-1047)) (-4 *2 (-365)))) (-3758 (*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *3 (-1047)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2704 *1))) (-4 *1 (-844 *3)))) (-2420 (*1 *1 *1 *1) (-12 (-4 *1 (-844 *2)) (-4 *2 (-1047)) (-4 *2 (-365)))) (-1653 (*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *3 (-1047)) (-5 *2 (-2 (|:| -3961 *1) (|:| -1500 *1))) (-4 *1 (-844 *3)))) (-2607 (*1 *1 *1 *1) (-12 (-4 *1 (-844 *2)) (-4 *2 (-1047)) (-4 *2 (-365)))) (-2012 (*1 *1 *1 *1) (-12 (-4 *1 (-844 *2)) (-4 *2 (-1047)) (-4 *2 (-365)))) (-1884 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-844 *2)) (-4 *2 (-1047)) (-4 *2 (-365)))) (-2681 (*1 *1 *1 *1) (-12 (-4 *1 (-844 *2)) (-4 *2 (-1047)) (-4 *2 (-365)))) (-1523 (*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *3 (-1047)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2704 *1))) (-4 *1 (-844 *3)))) (-1525 (*1 *1 *1 *1) (-12 (-4 *1 (-844 *2)) (-4 *2 (-1047)) (-4 *2 (-365))))) +(-13 (-1047) (-120 |t#1| |t#1|) (-413 |t#1|) (-10 -8 (-15 -3206 ((-763) $)) (-15 -2144 ((-763) $)) (-15 -2102 (|t#1| $)) (-15 -2114 ($ $)) (-15 -2604 (|t#1| $ (-763))) (-15 -2047 ($ |t#1| (-763))) (-15 -1302 ((-634 |t#1|) $)) (-15 -3823 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-172)) (-6 (-43 |t#1|)) |noBranch|) (IF (|has| |t#1| (-558)) (PROGN (-15 -2595 ((-3 $ "failed") $ |t#1|)) (-15 -3937 ((-2 (|:| -3961 $) (|:| -1500 $)) $ $)) (-15 -4123 ((-2 (|:| -3961 $) (|:| -1500 $)) $ $))) |noBranch|) (IF (|has| |t#1| (-453)) (PROGN (-15 -3367 (|t#1| $)) (-15 -3250 ($ $))) |noBranch|) (IF (|has| |t#1| (-365)) (PROGN (-15 -1293 ((-2 (|:| -3961 $) (|:| -1500 $)) $ $)) (-15 -1382 ($ $ $)) (-15 -3748 ($ $ $)) (-15 -2260 ((-3 $ "failed") $ $)) (-15 -2450 ($ $ $)) (-15 -3758 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $)) (-15 -2420 ($ $ $)) (-15 -1653 ((-2 (|:| -3961 $) (|:| -1500 $)) $ $)) (-15 -2607 ($ $ $)) (-15 -2012 ($ $ $)) (-15 -1884 ((-3 $ "failed") $ $)) (-15 -2681 ($ $ $)) (-15 -1523 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $)) (-15 -1525 ($ $ $))) |noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-43 |#1|) |has| |#1| (-172)) ((-105) . T) ((-120 |#1| |#1|) . T) ((-137) . T) ((-608 (-850)) . T) ((-413 |#1|) . T) ((-637 |#1|) . T) ((-637 $) . T) ((-707 |#1|) |has| |#1| (-172)) ((-716) . T) ((-1037 (-409 (-568))) |has| |#1| (-1037 (-409 (-568)))) ((-1037 (-568)) |has| |#1| (-1037 (-568))) ((-1037 |#1|) . T) ((-1053 |#1|) . T) ((-1047) . T) ((-1054) . T) ((-1102) . T) ((-1090) . T)) +((-1384 ((|#2| |#2| |#2| (-101 |#1|) (-1 |#1| |#1|)) 20)) (-1653 (((-2 (|:| -3961 |#2|) (|:| -1500 |#2|)) |#2| |#2| (-101 |#1|)) 43 (|has| |#1| (-365)))) (-4123 (((-2 (|:| -3961 |#2|) (|:| -1500 |#2|)) |#2| |#2| (-101 |#1|)) 40 (|has| |#1| (-558)))) (-3937 (((-2 (|:| -3961 |#2|) (|:| -1500 |#2|)) |#2| |#2| (-101 |#1|)) 39 (|has| |#1| (-558)))) (-1293 (((-2 (|:| -3961 |#2|) (|:| -1500 |#2|)) |#2| |#2| (-101 |#1|)) 42 (|has| |#1| (-365)))) (-3823 ((|#1| |#2| |#1| |#1| (-101 |#1|) (-1 |#1| |#1|)) 31))) +(((-845 |#1| |#2|) (-10 -7 (-15 -1384 (|#2| |#2| |#2| (-101 |#1|) (-1 |#1| |#1|))) (-15 -3823 (|#1| |#2| |#1| |#1| (-101 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-558)) (PROGN (-15 -3937 ((-2 (|:| -3961 |#2|) (|:| -1500 |#2|)) |#2| |#2| (-101 |#1|))) (-15 -4123 ((-2 (|:| -3961 |#2|) (|:| -1500 |#2|)) |#2| |#2| (-101 |#1|)))) |noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -1293 ((-2 (|:| -3961 |#2|) (|:| -1500 |#2|)) |#2| |#2| (-101 |#1|))) (-15 -1653 ((-2 (|:| -3961 |#2|) (|:| -1500 |#2|)) |#2| |#2| (-101 |#1|)))) |noBranch|)) (-1047) (-844 |#1|)) (T -845)) +((-1653 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-101 *5)) (-4 *5 (-365)) (-4 *5 (-1047)) (-5 *2 (-2 (|:| -3961 *3) (|:| -1500 *3))) (-5 *1 (-845 *5 *3)) (-4 *3 (-844 *5)))) (-1293 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-101 *5)) (-4 *5 (-365)) (-4 *5 (-1047)) (-5 *2 (-2 (|:| -3961 *3) (|:| -1500 *3))) (-5 *1 (-845 *5 *3)) (-4 *3 (-844 *5)))) (-4123 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-101 *5)) (-4 *5 (-558)) (-4 *5 (-1047)) (-5 *2 (-2 (|:| -3961 *3) (|:| -1500 *3))) (-5 *1 (-845 *5 *3)) (-4 *3 (-844 *5)))) (-3937 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-101 *5)) (-4 *5 (-558)) (-4 *5 (-1047)) (-5 *2 (-2 (|:| -3961 *3) (|:| -1500 *3))) (-5 *1 (-845 *5 *3)) (-4 *3 (-844 *5)))) (-3823 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-101 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1047)) (-5 *1 (-845 *2 *3)) (-4 *3 (-844 *2)))) (-1384 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-101 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1047)) (-5 *1 (-845 *5 *2)) (-4 *2 (-844 *5))))) +(-10 -7 (-15 -1384 (|#2| |#2| |#2| (-101 |#1|) (-1 |#1| |#1|))) (-15 -3823 (|#1| |#2| |#1| |#1| (-101 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-558)) (PROGN (-15 -3937 ((-2 (|:| -3961 |#2|) (|:| -1500 |#2|)) |#2| |#2| (-101 |#1|))) (-15 -4123 ((-2 (|:| -3961 |#2|) (|:| -1500 |#2|)) |#2| |#2| (-101 |#1|)))) |noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -1293 ((-2 (|:| -3961 |#2|) (|:| -1500 |#2|)) |#2| |#2| (-101 |#1|))) (-15 -1653 ((-2 (|:| -3961 |#2|) (|:| -1500 |#2|)) |#2| |#2| (-101 |#1|)))) |noBranch|)) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-2671 (($) NIL T CONST)) (-2012 (($ $ $) NIL (|has| |#1| (-365)))) (-2607 (($ $ $) NIL (|has| |#1| (-365)))) (-2420 (($ $ $) NIL (|has| |#1| (-365)))) (-2681 (($ $ $) NIL (|has| |#1| (-365)))) (-1523 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL (|has| |#1| (-365)))) (-1884 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-1653 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) 25 (|has| |#1| (-365)))) (-3666 (((-3 (-568) "failed") $) NIL (|has| |#1| (-1037 (-568)))) (((-3 (-409 (-568)) "failed") $) NIL (|has| |#1| (-1037 (-409 (-568))))) (((-3 |#1| "failed") $) NIL)) (-2854 (((-568) $) NIL (|has| |#1| (-1037 (-568)))) (((-409 (-568)) $) NIL (|has| |#1| (-1037 (-409 (-568))))) ((|#1| $) NIL)) (-2114 (($ $) NIL)) (-2925 (((-3 $ "failed") $) NIL)) (-3250 (($ $) NIL (|has| |#1| (-453)))) (-3680 (((-850) $ (-850)) NIL)) (-2735 (((-121) $) NIL)) (-2047 (($ |#1| (-763)) NIL)) (-4123 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) 21 (|has| |#1| (-558)))) (-3937 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) 19 (|has| |#1| (-558)))) (-2144 (((-763) $) NIL)) (-3748 (($ $ $) NIL (|has| |#1| (-365)))) (-1382 (($ $ $) NIL (|has| |#1| (-365)))) (-1525 (($ $ $) NIL (|has| |#1| (-365)))) (-2450 (($ $ $) NIL (|has| |#1| (-365)))) (-3758 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL (|has| |#1| (-365)))) (-2260 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-1293 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) 23 (|has| |#1| (-365)))) (-2102 ((|#1| $) NIL)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2595 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558)))) (-3206 (((-763) $) NIL)) (-3367 ((|#1| $) NIL (|has| |#1| (-453)))) (-2745 (((-850) $) NIL) (($ (-568)) NIL) (($ (-409 (-568))) NIL (|has| |#1| (-1037 (-409 (-568))))) (($ |#1|) NIL)) (-1302 (((-634 |#1|) $) NIL)) (-2604 ((|#1| $ (-763)) NIL)) (-4078 (((-763)) NIL)) (-3823 ((|#1| $ |#1| |#1|) 15)) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (-3056 (($) NIL T CONST)) (-1556 (($) NIL T CONST)) (-1717 (((-121) $ $) NIL)) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-846 |#1| |#2| |#3|) (-13 (-844 |#1|) (-10 -8 (-15 -3680 ((-850) $ (-850))))) (-1047) (-101 |#1|) (-1 |#1| |#1|)) (T -846)) +((-3680 (*1 *2 *1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-846 *3 *4 *5)) (-4 *3 (-1047)) (-14 *4 (-101 *3)) (-14 *5 (-1 *3 *3))))) +(-13 (-844 |#1|) (-10 -8 (-15 -3680 ((-850) $ (-850))))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-2671 (($) NIL T CONST)) (-2012 (($ $ $) NIL (|has| |#2| (-365)))) (-2607 (($ $ $) NIL (|has| |#2| (-365)))) (-2420 (($ $ $) NIL (|has| |#2| (-365)))) (-2681 (($ $ $) NIL (|has| |#2| (-365)))) (-1523 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL (|has| |#2| (-365)))) (-1884 (((-3 $ "failed") $ $) NIL (|has| |#2| (-365)))) (-1653 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL (|has| |#2| (-365)))) (-3666 (((-3 (-568) "failed") $) NIL (|has| |#2| (-1037 (-568)))) (((-3 (-409 (-568)) "failed") $) NIL (|has| |#2| (-1037 (-409 (-568))))) (((-3 |#2| "failed") $) NIL)) (-2854 (((-568) $) NIL (|has| |#2| (-1037 (-568)))) (((-409 (-568)) $) NIL (|has| |#2| (-1037 (-409 (-568))))) ((|#2| $) NIL)) (-2114 (($ $) NIL)) (-2925 (((-3 $ "failed") $) NIL)) (-3250 (($ $) NIL (|has| |#2| (-453)))) (-2735 (((-121) $) NIL)) (-2047 (($ |#2| (-763)) 16)) (-4123 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL (|has| |#2| (-558)))) (-3937 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL (|has| |#2| (-558)))) (-2144 (((-763) $) NIL)) (-3748 (($ $ $) NIL (|has| |#2| (-365)))) (-1382 (($ $ $) NIL (|has| |#2| (-365)))) (-1525 (($ $ $) NIL (|has| |#2| (-365)))) (-2450 (($ $ $) NIL (|has| |#2| (-365)))) (-3758 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL (|has| |#2| (-365)))) (-2260 (((-3 $ "failed") $ $) NIL (|has| |#2| (-365)))) (-1293 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL (|has| |#2| (-365)))) (-2102 ((|#2| $) NIL)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2595 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-558)))) (-3206 (((-763) $) NIL)) (-3367 ((|#2| $) NIL (|has| |#2| (-453)))) (-2745 (((-850) $) 23) (($ (-568)) NIL) (($ (-409 (-568))) NIL (|has| |#2| (-1037 (-409 (-568))))) (($ |#2|) NIL) (($ (-1240 |#1|)) 18)) (-1302 (((-634 |#2|) $) NIL)) (-2604 ((|#2| $ (-763)) NIL)) (-4078 (((-763)) NIL)) (-3823 ((|#2| $ |#2| |#2|) NIL)) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (-3056 (($) NIL T CONST)) (-1556 (($) 13 T CONST)) (-1717 (((-121) $ $) NIL)) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-847 |#1| |#2| |#3| |#4|) (-13 (-844 |#2|) (-10 -8 (-15 -2745 ($ (-1240 |#1|))))) (-1161) (-1047) (-101 |#2|) (-1 |#2| |#2|)) (T -847)) +((-2745 (*1 *1 *2) (-12 (-5 *2 (-1240 *3)) (-14 *3 (-1161)) (-5 *1 (-847 *3 *4 *5 *6)) (-4 *4 (-1047)) (-14 *5 (-101 *4)) (-14 *6 (-1 *4 *4))))) +(-13 (-844 |#2|) (-10 -8 (-15 -2745 ($ (-1240 |#1|))))) +((-4043 ((|#1| (-763) |#1|) 35 (|has| |#1| (-43 (-409 (-568)))))) (-2566 ((|#1| (-763) (-763) |#1|) 27) ((|#1| (-763) |#1|) 20)) (-2808 ((|#1| (-763) |#1|) 31)) (-3753 ((|#1| (-763) |#1|) 29)) (-3978 ((|#1| (-763) |#1|) 28))) +(((-848 |#1|) (-10 -7 (-15 -3978 (|#1| (-763) |#1|)) (-15 -3753 (|#1| (-763) |#1|)) (-15 -2808 (|#1| (-763) |#1|)) (-15 -2566 (|#1| (-763) |#1|)) (-15 -2566 (|#1| (-763) (-763) |#1|)) (IF (|has| |#1| (-43 (-409 (-568)))) (-15 -4043 (|#1| (-763) |#1|)) |noBranch|)) (-172)) (T -848)) +((-4043 (*1 *2 *3 *2) (-12 (-5 *3 (-763)) (-5 *1 (-848 *2)) (-4 *2 (-43 (-409 (-568)))) (-4 *2 (-172)))) (-2566 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-763)) (-5 *1 (-848 *2)) (-4 *2 (-172)))) (-2566 (*1 *2 *3 *2) (-12 (-5 *3 (-763)) (-5 *1 (-848 *2)) (-4 *2 (-172)))) (-2808 (*1 *2 *3 *2) (-12 (-5 *3 (-763)) (-5 *1 (-848 *2)) (-4 *2 (-172)))) (-3753 (*1 *2 *3 *2) (-12 (-5 *3 (-763)) (-5 *1 (-848 *2)) (-4 *2 (-172)))) (-3978 (*1 *2 *3 *2) (-12 (-5 *3 (-763)) (-5 *1 (-848 *2)) (-4 *2 (-172))))) +(-10 -7 (-15 -3978 (|#1| (-763) |#1|)) (-15 -3753 (|#1| (-763) |#1|)) (-15 -2808 (|#1| (-763) |#1|)) (-15 -2566 (|#1| (-763) |#1|)) (-15 -2566 (|#1| (-763) (-763) |#1|)) (IF (|has| |#1| (-43 (-409 (-568)))) (-15 -4043 (|#1| (-763) |#1|)) |noBranch|)) +((-2447 (((-121) $ $) NIL)) (-2850 (((-568) $) 12)) (-2521 (($ $ $) NIL)) (-3268 (($ $ $) NIL)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2745 (((-850) $) 18) (($ (-568)) 11)) (-1751 (((-121) $ $) NIL)) (-1738 (((-121) $ $) NIL)) (-1717 (((-121) $ $) 8)) (-1745 (((-121) $ $) NIL)) (-1732 (((-121) $ $) 9))) +(((-849) (-13 (-842) (-10 -8 (-15 -2745 ($ (-568))) (-15 -2850 ((-568) $))))) (T -849)) +((-2745 (*1 *1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-849)))) (-2850 (*1 *2 *1) (-12 (-5 *2 (-568)) (-5 *1 (-849))))) +(-13 (-842) (-10 -8 (-15 -2745 ($ (-568))) (-15 -2850 ((-568) $)))) +((-2447 (((-121) $ $) NIL)) (-1725 (($ $ $) 115)) (-3877 (((-568) $) 30) (((-568)) 35)) (-2780 (($ (-568)) 44)) (-2473 (($ $ $) 45) (($ (-634 $)) 76)) (-2999 (($ $ (-634 $)) 74)) (-2564 (((-568) $) 33)) (-3527 (($ $ $) 63)) (-2627 (($ $) 128) (($ $ $) 129) (($ $ $ $) 130)) (-1602 (((-568) $) 32)) (-2553 (($ $ $) 62)) (-1742 (($ $) 105)) (-3546 (($ $ $) 119)) (-1495 (($ (-634 $)) 52)) (-3687 (($ $ (-634 $)) 69)) (-1670 (($ (-568) (-568)) 46)) (-2143 (($ $) 116) (($ $ $) 117)) (-3284 (($ $ (-568)) 40) (($ $) 43)) (-2401 (($ $ $) 89)) (-2906 (($ $ $) 122)) (-2539 (($ $) 106)) (-2412 (($ $ $) 90)) (-4435 (($ $) 131) (($ $ $) 132) (($ $ $ $) 133)) (-3417 (((-1249) $) 8)) (-4068 (($ $) 109) (($ $ (-763)) 112)) (-3812 (($ $ $) 65)) (-3785 (($ $ $) 64)) (-3390 (($ $ (-634 $)) 100)) (-2140 (($ $ $) 104)) (-1800 (($ (-634 $)) 50)) (-4499 (($ $) 60) (($ (-634 $)) 61)) (-4047 (($ $ $) 113)) (-1837 (($ $) 107)) (-4038 (($ $ $) 118)) (-3680 (($ (-568)) 20) (($ (-1161)) 22) (($ (-1143)) 29) (($ (-215)) 24)) (-3104 (($ $ $) 93)) (-3044 (($ $) 94)) (-2554 (((-1249) (-1143)) 14)) (-3770 (($ (-1143)) 13)) (-2269 (($ (-634 (-634 $))) 48)) (-3028 (($ $ (-568)) 39) (($ $) 42)) (-4487 (((-1143) $) NIL)) (-3306 (($ $ $) 121)) (-2178 (($ $) 134) (($ $ $) 135) (($ $ $ $) 136)) (-1696 (((-121) $) 98)) (-2294 (($ $ (-634 $)) 102) (($ $ $ $) 103)) (-3829 (($ (-568)) 36)) (-2961 (((-568) $) 31) (((-568)) 34)) (-1838 (($ $ $) 37) (($ (-634 $)) 75)) (-4022 (((-1108) $) NIL)) (-2595 (($ $ $) 91)) (-3248 (($) 12)) (-2779 (($ $ (-634 $)) 99)) (-3682 (($ $) 108) (($ $ (-763)) 111)) (-2601 (($ $ $) 88)) (-4189 (($ $ (-763)) 127)) (-2199 (($ (-634 $)) 51)) (-2745 (((-850) $) 18)) (-1374 (($ $ (-568)) 38) (($ $) 41)) (-2466 (($ $) 58) (($ (-634 $)) 59)) (-3844 (($ $) 56) (($ (-634 $)) 57)) (-2092 (($ $) 114)) (-3081 (($ (-634 $)) 55)) (-2787 (($ $ $) 97)) (-3870 (($ $ $) 120)) (-2139 (($ $ $) 92)) (-2612 (($ $ $) 77)) (-4253 (($ $ $) 95) (($ $) 96)) (-1751 (($ $ $) 81)) (-1738 (($ $ $) 79)) (-1717 (((-121) $ $) 15) (($ $ $) 16)) (-1745 (($ $ $) 80)) (-1732 (($ $ $) 78)) (-1779 (($ $ $) 86)) (-1773 (($ $ $) 83) (($ $) 84)) (-1767 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85))) +(((-850) (-13 (-1090) (-10 -8 (-15 -3417 ((-1249) $)) (-15 -3770 ($ (-1143))) (-15 -2554 ((-1249) (-1143))) (-15 -3680 ($ (-568))) (-15 -3680 ($ (-1161))) (-15 -3680 ($ (-1143))) (-15 -3680 ($ (-215))) (-15 -3248 ($)) (-15 -3877 ((-568) $)) (-15 -2961 ((-568) $)) (-15 -3877 ((-568))) (-15 -2961 ((-568))) (-15 -1602 ((-568) $)) (-15 -2564 ((-568) $)) (-15 -3829 ($ (-568))) (-15 -2780 ($ (-568))) (-15 -1670 ($ (-568) (-568))) (-15 -3028 ($ $ (-568))) (-15 -3284 ($ $ (-568))) (-15 -1374 ($ $ (-568))) (-15 -3028 ($ $)) (-15 -3284 ($ $)) (-15 -1374 ($ $)) (-15 -1838 ($ $ $)) (-15 -2473 ($ $ $)) (-15 -1838 ($ (-634 $))) (-15 -2473 ($ (-634 $))) (-15 -3390 ($ $ (-634 $))) (-15 -2294 ($ $ (-634 $))) (-15 -2294 ($ $ $ $)) (-15 -2140 ($ $ $)) (-15 -1696 ((-121) $)) (-15 -2779 ($ $ (-634 $))) (-15 -1742 ($ $)) (-15 -3306 ($ $ $)) (-15 -2092 ($ $)) (-15 -2269 ($ (-634 (-634 $)))) (-15 -1725 ($ $ $)) (-15 -2143 ($ $)) (-15 -2143 ($ $ $)) (-15 -4038 ($ $ $)) (-15 -3546 ($ $ $)) (-15 -3870 ($ $ $)) (-15 -2906 ($ $ $)) (-15 -4189 ($ $ (-763))) (-15 -2787 ($ $ $)) (-15 -2553 ($ $ $)) (-15 -3527 ($ $ $)) (-15 -3785 ($ $ $)) (-15 -3812 ($ $ $)) (-15 -3687 ($ $ (-634 $))) (-15 -2999 ($ $ (-634 $))) (-15 -2539 ($ $)) (-15 -3682 ($ $)) (-15 -3682 ($ $ (-763))) (-15 -4068 ($ $)) (-15 -4068 ($ $ (-763))) (-15 -1837 ($ $)) (-15 -4047 ($ $ $)) (-15 -2627 ($ $)) (-15 -2627 ($ $ $)) (-15 -2627 ($ $ $ $)) (-15 -4435 ($ $)) (-15 -4435 ($ $ $)) (-15 -4435 ($ $ $ $)) (-15 -2178 ($ $)) (-15 -2178 ($ $ $)) (-15 -2178 ($ $ $ $)) (-15 -3844 ($ $)) (-15 -3844 ($ (-634 $))) (-15 -2466 ($ $)) (-15 -2466 ($ (-634 $))) (-15 -4499 ($ $)) (-15 -4499 ($ (-634 $))) (-15 -1800 ($ (-634 $))) (-15 -2199 ($ (-634 $))) (-15 -1495 ($ (-634 $))) (-15 -3081 ($ (-634 $))) (-15 -1717 ($ $ $)) (-15 -2612 ($ $ $)) (-15 -1732 ($ $ $)) (-15 -1738 ($ $ $)) (-15 -1745 ($ $ $)) (-15 -1751 ($ $ $)) (-15 -1767 ($ $ $)) (-15 -1773 ($ $ $)) (-15 -1773 ($ $)) (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -2601 ($ $ $)) (-15 -2401 ($ $ $)) (-15 -2412 ($ $ $)) (-15 -2595 ($ $ $)) (-15 -2139 ($ $ $)) (-15 -3104 ($ $ $)) (-15 -3044 ($ $)) (-15 -4253 ($ $ $)) (-15 -4253 ($ $))))) (T -850)) +((-3417 (*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-850)))) (-3770 (*1 *1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-850)))) (-2554 (*1 *2 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-1249)) (-5 *1 (-850)))) (-3680 (*1 *1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-850)))) (-3680 (*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-850)))) (-3680 (*1 *1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-850)))) (-3680 (*1 *1 *2) (-12 (-5 *2 (-215)) (-5 *1 (-850)))) (-3248 (*1 *1) (-5 *1 (-850))) (-3877 (*1 *2 *1) (-12 (-5 *2 (-568)) (-5 *1 (-850)))) (-2961 (*1 *2 *1) (-12 (-5 *2 (-568)) (-5 *1 (-850)))) (-3877 (*1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-850)))) (-2961 (*1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-850)))) (-1602 (*1 *2 *1) (-12 (-5 *2 (-568)) (-5 *1 (-850)))) (-2564 (*1 *2 *1) (-12 (-5 *2 (-568)) (-5 *1 (-850)))) (-3829 (*1 *1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-850)))) (-2780 (*1 *1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-850)))) (-1670 (*1 *1 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-850)))) (-3028 (*1 *1 *1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-850)))) (-3284 (*1 *1 *1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-850)))) (-1374 (*1 *1 *1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-850)))) (-3028 (*1 *1 *1) (-5 *1 (-850))) (-3284 (*1 *1 *1) (-5 *1 (-850))) (-1374 (*1 *1 *1) (-5 *1 (-850))) (-1838 (*1 *1 *1 *1) (-5 *1 (-850))) (-2473 (*1 *1 *1 *1) (-5 *1 (-850))) (-1838 (*1 *1 *2) (-12 (-5 *2 (-634 (-850))) (-5 *1 (-850)))) (-2473 (*1 *1 *2) (-12 (-5 *2 (-634 (-850))) (-5 *1 (-850)))) (-3390 (*1 *1 *1 *2) (-12 (-5 *2 (-634 (-850))) (-5 *1 (-850)))) (-2294 (*1 *1 *1 *2) (-12 (-5 *2 (-634 (-850))) (-5 *1 (-850)))) (-2294 (*1 *1 *1 *1 *1) (-5 *1 (-850))) (-2140 (*1 *1 *1 *1) (-5 *1 (-850))) (-1696 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-850)))) (-2779 (*1 *1 *1 *2) (-12 (-5 *2 (-634 (-850))) (-5 *1 (-850)))) (-1742 (*1 *1 *1) (-5 *1 (-850))) (-3306 (*1 *1 *1 *1) (-5 *1 (-850))) (-2092 (*1 *1 *1) (-5 *1 (-850))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-634 (-634 (-850)))) (-5 *1 (-850)))) (-1725 (*1 *1 *1 *1) (-5 *1 (-850))) (-2143 (*1 *1 *1) (-5 *1 (-850))) (-2143 (*1 *1 *1 *1) (-5 *1 (-850))) (-4038 (*1 *1 *1 *1) (-5 *1 (-850))) (-3546 (*1 *1 *1 *1) (-5 *1 (-850))) (-3870 (*1 *1 *1 *1) (-5 *1 (-850))) (-2906 (*1 *1 *1 *1) (-5 *1 (-850))) (-4189 (*1 *1 *1 *2) (-12 (-5 *2 (-763)) (-5 *1 (-850)))) (-2787 (*1 *1 *1 *1) (-5 *1 (-850))) (-2553 (*1 *1 *1 *1) (-5 *1 (-850))) (-3527 (*1 *1 *1 *1) (-5 *1 (-850))) (-3785 (*1 *1 *1 *1) (-5 *1 (-850))) (-3812 (*1 *1 *1 *1) (-5 *1 (-850))) (-3687 (*1 *1 *1 *2) (-12 (-5 *2 (-634 (-850))) (-5 *1 (-850)))) (-2999 (*1 *1 *1 *2) (-12 (-5 *2 (-634 (-850))) (-5 *1 (-850)))) (-2539 (*1 *1 *1) (-5 *1 (-850))) (-3682 (*1 *1 *1) (-5 *1 (-850))) (-3682 (*1 *1 *1 *2) (-12 (-5 *2 (-763)) (-5 *1 (-850)))) (-4068 (*1 *1 *1) (-5 *1 (-850))) (-4068 (*1 *1 *1 *2) (-12 (-5 *2 (-763)) (-5 *1 (-850)))) (-1837 (*1 *1 *1) (-5 *1 (-850))) (-4047 (*1 *1 *1 *1) (-5 *1 (-850))) (-2627 (*1 *1 *1) (-5 *1 (-850))) (-2627 (*1 *1 *1 *1) (-5 *1 (-850))) (-2627 (*1 *1 *1 *1 *1) (-5 *1 (-850))) (-4435 (*1 *1 *1) (-5 *1 (-850))) (-4435 (*1 *1 *1 *1) (-5 *1 (-850))) (-4435 (*1 *1 *1 *1 *1) (-5 *1 (-850))) (-2178 (*1 *1 *1) (-5 *1 (-850))) (-2178 (*1 *1 *1 *1) (-5 *1 (-850))) (-2178 (*1 *1 *1 *1 *1) (-5 *1 (-850))) (-3844 (*1 *1 *1) (-5 *1 (-850))) (-3844 (*1 *1 *2) (-12 (-5 *2 (-634 (-850))) (-5 *1 (-850)))) (-2466 (*1 *1 *1) (-5 *1 (-850))) (-2466 (*1 *1 *2) (-12 (-5 *2 (-634 (-850))) (-5 *1 (-850)))) (-4499 (*1 *1 *1) (-5 *1 (-850))) (-4499 (*1 *1 *2) (-12 (-5 *2 (-634 (-850))) (-5 *1 (-850)))) (-1800 (*1 *1 *2) (-12 (-5 *2 (-634 (-850))) (-5 *1 (-850)))) (-2199 (*1 *1 *2) (-12 (-5 *2 (-634 (-850))) (-5 *1 (-850)))) (-1495 (*1 *1 *2) (-12 (-5 *2 (-634 (-850))) (-5 *1 (-850)))) (-3081 (*1 *1 *2) (-12 (-5 *2 (-634 (-850))) (-5 *1 (-850)))) (-1717 (*1 *1 *1 *1) (-5 *1 (-850))) (-2612 (*1 *1 *1 *1) (-5 *1 (-850))) (-1732 (*1 *1 *1 *1) (-5 *1 (-850))) (-1738 (*1 *1 *1 *1) (-5 *1 (-850))) (-1745 (*1 *1 *1 *1) (-5 *1 (-850))) (-1751 (*1 *1 *1 *1) (-5 *1 (-850))) (-1767 (*1 *1 *1 *1) (-5 *1 (-850))) (-1773 (*1 *1 *1 *1) (-5 *1 (-850))) (-1773 (*1 *1 *1) (-5 *1 (-850))) (* (*1 *1 *1 *1) (-5 *1 (-850))) (-1779 (*1 *1 *1 *1) (-5 *1 (-850))) (** (*1 *1 *1 *1) (-5 *1 (-850))) (-2601 (*1 *1 *1 *1) (-5 *1 (-850))) (-2401 (*1 *1 *1 *1) (-5 *1 (-850))) (-2412 (*1 *1 *1 *1) (-5 *1 (-850))) (-2595 (*1 *1 *1 *1) (-5 *1 (-850))) (-2139 (*1 *1 *1 *1) (-5 *1 (-850))) (-3104 (*1 *1 *1 *1) (-5 *1 (-850))) (-3044 (*1 *1 *1) (-5 *1 (-850))) (-4253 (*1 *1 *1 *1) (-5 *1 (-850))) (-4253 (*1 *1 *1) (-5 *1 (-850)))) +(-13 (-1090) (-10 -8 (-15 -3417 ((-1249) $)) (-15 -3770 ($ (-1143))) (-15 -2554 ((-1249) (-1143))) (-15 -3680 ($ (-568))) (-15 -3680 ($ (-1161))) (-15 -3680 ($ (-1143))) (-15 -3680 ($ (-215))) (-15 -3248 ($)) (-15 -3877 ((-568) $)) (-15 -2961 ((-568) $)) (-15 -3877 ((-568))) (-15 -2961 ((-568))) (-15 -1602 ((-568) $)) (-15 -2564 ((-568) $)) (-15 -3829 ($ (-568))) (-15 -2780 ($ (-568))) (-15 -1670 ($ (-568) (-568))) (-15 -3028 ($ $ (-568))) (-15 -3284 ($ $ (-568))) (-15 -1374 ($ $ (-568))) (-15 -3028 ($ $)) (-15 -3284 ($ $)) (-15 -1374 ($ $)) (-15 -1838 ($ $ $)) (-15 -2473 ($ $ $)) (-15 -1838 ($ (-634 $))) (-15 -2473 ($ (-634 $))) (-15 -3390 ($ $ (-634 $))) (-15 -2294 ($ $ (-634 $))) (-15 -2294 ($ $ $ $)) (-15 -2140 ($ $ $)) (-15 -1696 ((-121) $)) (-15 -2779 ($ $ (-634 $))) (-15 -1742 ($ $)) (-15 -3306 ($ $ $)) (-15 -2092 ($ $)) (-15 -2269 ($ (-634 (-634 $)))) (-15 -1725 ($ $ $)) (-15 -2143 ($ $)) (-15 -2143 ($ $ $)) (-15 -4038 ($ $ $)) (-15 -3546 ($ $ $)) (-15 -3870 ($ $ $)) (-15 -2906 ($ $ $)) (-15 -4189 ($ $ (-763))) (-15 -2787 ($ $ $)) (-15 -2553 ($ $ $)) (-15 -3527 ($ $ $)) (-15 -3785 ($ $ $)) (-15 -3812 ($ $ $)) (-15 -3687 ($ $ (-634 $))) (-15 -2999 ($ $ (-634 $))) (-15 -2539 ($ $)) (-15 -3682 ($ $)) (-15 -3682 ($ $ (-763))) (-15 -4068 ($ $)) (-15 -4068 ($ $ (-763))) (-15 -1837 ($ $)) (-15 -4047 ($ $ $)) (-15 -2627 ($ $)) (-15 -2627 ($ $ $)) (-15 -2627 ($ $ $ $)) (-15 -4435 ($ $)) (-15 -4435 ($ $ $)) (-15 -4435 ($ $ $ $)) (-15 -2178 ($ $)) (-15 -2178 ($ $ $)) (-15 -2178 ($ $ $ $)) (-15 -3844 ($ $)) (-15 -3844 ($ (-634 $))) (-15 -2466 ($ $)) (-15 -2466 ($ (-634 $))) (-15 -4499 ($ $)) (-15 -4499 ($ (-634 $))) (-15 -1800 ($ (-634 $))) (-15 -2199 ($ (-634 $))) (-15 -1495 ($ (-634 $))) (-15 -3081 ($ (-634 $))) (-15 -1717 ($ $ $)) (-15 -2612 ($ $ $)) (-15 -1732 ($ $ $)) (-15 -1738 ($ $ $)) (-15 -1745 ($ $ $)) (-15 -1751 ($ $ $)) (-15 -1767 ($ $ $)) (-15 -1773 ($ $ $)) (-15 -1773 ($ $)) (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -2601 ($ $ $)) (-15 -2401 ($ $ $)) (-15 -2412 ($ $ $)) (-15 -2595 ($ $ $)) (-15 -2139 ($ $ $)) (-15 -3104 ($ $ $)) (-15 -3044 ($ $)) (-15 -4253 ($ $ $)) (-15 -4253 ($ $)))) +((-4264 (((-1249) (-634 (-57))) 24)) (-3494 (((-1249) (-1143) (-850)) 14) (((-1249) (-850)) 9) (((-1249) (-1143)) 11))) +(((-851) (-10 -7 (-15 -3494 ((-1249) (-1143))) (-15 -3494 ((-1249) (-850))) (-15 -3494 ((-1249) (-1143) (-850))) (-15 -4264 ((-1249) (-634 (-57)))))) (T -851)) +((-4264 (*1 *2 *3) (-12 (-5 *3 (-634 (-57))) (-5 *2 (-1249)) (-5 *1 (-851)))) (-3494 (*1 *2 *3 *4) (-12 (-5 *3 (-1143)) (-5 *4 (-850)) (-5 *2 (-1249)) (-5 *1 (-851)))) (-3494 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1249)) (-5 *1 (-851)))) (-3494 (*1 *2 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-1249)) (-5 *1 (-851))))) +(-10 -7 (-15 -3494 ((-1249) (-1143))) (-15 -3494 ((-1249) (-850))) (-15 -3494 ((-1249) (-1143) (-850))) (-15 -4264 ((-1249) (-634 (-57))))) +((-2447 (((-121) $ $) NIL)) (-1305 (((-3 $ "failed") (-1161)) 32)) (-3983 (((-763)) 30)) (-1731 (($) NIL)) (-2521 (($ $ $) NIL)) (-3268 (($ $ $) NIL)) (-3683 (((-917) $) 28)) (-4487 (((-1143) $) 38)) (-4355 (($ (-917)) 27)) (-4022 (((-1108) $) NIL)) (-4278 (((-1161) $) 13) (((-541) $) 19) (((-887 (-381)) $) 25) (((-887 (-568)) $) 22)) (-2745 (((-850) $) 16)) (-1751 (((-121) $ $) NIL)) (-1738 (((-121) $ $) NIL)) (-1717 (((-121) $ $) 35)) (-1745 (((-121) $ $) NIL)) (-1732 (((-121) $ $) 34))) +(((-852 |#1|) (-13 (-836) (-609 (-1161)) (-609 (-541)) (-609 (-887 (-381))) (-609 (-887 (-568))) (-10 -8 (-15 -1305 ((-3 $ "failed") (-1161))))) (-634 (-1161))) (T -852)) +((-1305 (*1 *1 *2) (|partial| -12 (-5 *2 (-1161)) (-5 *1 (-852 *3)) (-14 *3 (-634 *2))))) +(-13 (-836) (-609 (-1161)) (-609 (-541)) (-609 (-887 (-381))) (-609 (-887 (-568))) (-10 -8 (-15 -1305 ((-3 $ "failed") (-1161))))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-2671 (($) NIL T CONST)) (-2925 (((-3 $ "failed") $) NIL)) (-2735 (((-121) $) NIL)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2745 (((-850) $) NIL) (($ (-568)) NIL) (((-953 |#1|) $) NIL) (($ (-953 |#1|)) NIL) (($ |#1|) NIL (|has| |#1| (-172)))) (-4078 (((-763)) NIL)) (-4366 (((-1249) (-763)) NIL)) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (-3056 (($) NIL T CONST)) (-1556 (($) NIL T CONST)) (-1717 (((-121) $ $) NIL)) (-1779 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))))) +(((-853 |#1| |#2| |#3| |#4|) (-13 (-1047) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-43 |#1|)) |noBranch|) (-15 -2745 ((-953 |#1|) $)) (-15 -2745 ($ (-953 |#1|))) (IF (|has| |#1| (-365)) (-15 -1779 ((-3 $ "failed") $ $)) |noBranch|) (-15 -4366 ((-1249) (-763))))) (-1047) (-634 (-1161)) (-634 (-763)) (-763)) (T -853)) +((-2745 (*1 *2 *1) (-12 (-5 *2 (-953 *3)) (-5 *1 (-853 *3 *4 *5 *6)) (-4 *3 (-1047)) (-14 *4 (-634 (-1161))) (-14 *5 (-634 (-763))) (-14 *6 (-763)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-953 *3)) (-4 *3 (-1047)) (-5 *1 (-853 *3 *4 *5 *6)) (-14 *4 (-634 (-1161))) (-14 *5 (-634 (-763))) (-14 *6 (-763)))) (-1779 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-853 *2 *3 *4 *5)) (-4 *2 (-365)) (-4 *2 (-1047)) (-14 *3 (-634 (-1161))) (-14 *4 (-634 (-763))) (-14 *5 (-763)))) (-4366 (*1 *2 *3) (-12 (-5 *3 (-763)) (-5 *2 (-1249)) (-5 *1 (-853 *4 *5 *6 *7)) (-4 *4 (-1047)) (-14 *5 (-634 (-1161))) (-14 *6 (-634 *3)) (-14 *7 *3)))) +(-13 (-1047) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-43 |#1|)) |noBranch|) (-15 -2745 ((-953 |#1|) $)) (-15 -2745 ($ (-953 |#1|))) (IF (|has| |#1| (-365)) (-15 -1779 ((-3 $ "failed") $ $)) |noBranch|) (-15 -4366 ((-1249) (-763))))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-2572 (((-1244 $) $ $) 78)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) 40)) (-2227 (($ $) 39)) (-1573 (((-121) $) 37)) (-2615 (((-121) $) 111)) (-1739 (((-763)) 115)) (-3134 (((-3 $ "failed") $ $) 18)) (-4305 (($ $) 71)) (-1678 (((-420 $) $) 70)) (-1497 (((-121) $ $) 57)) (-1285 (((-1249) $) 74)) (-2671 (($) 16 T CONST)) (-3666 (((-3 (-568) "failed") $) 122) (((-3 (-409 (-568)) "failed") $) 119) (((-3 (-409 (-568)) "failed") $) 104) (((-3 (-860) "failed") $) 136) (((-3 (-860) "failed") $) 130)) (-2854 (((-568) $) 121) (((-409 (-568)) $) 118) (((-409 (-568)) $) 105) (((-860) $) 135) (((-860) $) 131)) (-2401 (($ $ $) 53)) (-3092 (($ (-1157 $)) 84)) (-2925 (((-3 $ "failed") $) 33)) (-2412 (($ $ $) 54)) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) 49)) (-3218 (($ $ (-763)) 102 (-2198 (|has| (-860) (-148)) (|has| (-860) (-370)) (|has| (-409 (-568)) (-148)) (|has| (-409 (-568)) (-370)))) (($ $) 101 (-2198 (|has| (-860) (-148)) (|has| (-860) (-370)) (|has| (-409 (-568)) (-148)) (|has| (-409 (-568)) (-370))))) (-3927 (((-121) $) 69)) (-1473 (($ $) 79)) (-4477 (((-828 (-917)) $) 99 (-2198 (|has| (-860) (-148)) (|has| (-860) (-370)) (|has| (-409 (-568)) (-148)) (|has| (-409 (-568)) (-370))))) (-2735 (((-121) $) 30)) (-3355 (($ (-1157 $) $ (-1161)) 76) (($ (-1157 $) (-1161)) 75)) (-3562 (((-3 (-634 $) "failed") (-634 $) $) 50)) (-3614 (($ (-634 $)) 81)) (-3085 (((-1157 $) $) 86) (((-1157 $) $ $) 85)) (-2495 (($ $ $) 45) (($ (-634 $)) 44)) (-4487 (((-1143) $) 9)) (-2081 (($ $) 68)) (-2864 (((-121) $) 112)) (-4022 (((-1108) $) 10)) (-2086 (((-121) $) 82)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) 43)) (-2721 (($ $ $) 47) (($ (-634 $)) 46)) (-3936 (((-850) $) 73)) (-3848 (((-420 $) $) 72)) (-1553 (((-828 (-917))) 114)) (-4497 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2842 (((-917) $) 80)) (-2595 (((-3 $ "failed") $ $) 41)) (-2344 (((-3 (-634 $) "failed") (-634 $) $) 48)) (-2709 (((-763) $) 56)) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) 55)) (-3598 (((-634 $) (-1157 $) $) 83)) (-3143 (((-3 (-763) "failed") $ $) 100 (-2198 (|has| (-860) (-148)) (|has| (-860) (-370)) (|has| (-409 (-568)) (-148)) (|has| (-409 (-568)) (-370))))) (-4321 (((-139)) 106)) (-3206 (((-828 (-917)) $) 113)) (-1626 (((-1157 $)) 88) (((-1157 $) $) 87)) (-1458 (($ $) 77)) (-2745 (((-850) $) 11) (($ (-568)) 27) (($ $) 42) (($ (-409 (-568))) 63) (($ (-568)) 123) (($ (-409 (-568))) 120) (($ (-409 (-568))) 103) (($ (-860)) 137) (($ (-860)) 129)) (-4371 (((-3 $ "failed") $) 98 (-2198 (|has| (-860) (-148)) (|has| (-860) (-370)) (|has| (-409 (-568)) (-148)) (|has| (-409 (-568)) (-370))))) (-4078 (((-763)) 28)) (-1826 (((-121) $ $) 38)) (-4390 (((-121) $) 110)) (-1887 (($ $ (-917)) 25) (($ $ (-763)) 32) (($ $ (-568)) 67)) (-3056 (($) 17 T CONST)) (-1556 (($) 29 T CONST)) (-1316 (($ $ (-763)) 117 (-2198 (|has| (-860) (-370)) (|has| (-409 (-568)) (-370)))) (($ $) 116 (-2198 (|has| (-860) (-370)) (|has| (-409 (-568)) (-370))))) (-1717 (((-121) $ $) 6)) (-1779 (($ $ $) 62) (($ $ (-409 (-568))) 107) (($ $ (-860)) 132)) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 24) (($ $ (-763)) 31) (($ $ (-568)) 66)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 23) (($ $ (-409 (-568))) 65) (($ (-409 (-568)) $) 64) (($ (-409 (-568)) $) 109) (($ $ (-409 (-568))) 108) (($ (-860) $) 134) (($ $ (-860)) 133))) +(((-854) (-1275)) (T -854)) +NIL +(-13 (-859) (-1037 (-860)) (-1261 (-860))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-43 (-409 (-568))) . T) ((-43 $) . T) ((-105) . T) ((-120 (-409 (-568)) (-409 (-568))) . T) ((-120 (-860) (-860)) . T) ((-120 $ $) . T) ((-137) . T) ((-148) -2198 (|has| (-860) (-370)) (|has| (-860) (-148)) (|has| (-409 (-568)) (-370)) (|has| (-409 (-568)) (-148))) ((-150) . T) ((-608 (-850)) . T) ((-172) . T) ((-238) . T) ((-285) . T) ((-301) . T) ((-1261 (-409 (-568))) . T) ((-1261 (-860)) . T) ((-365) . T) ((-404) -2198 (|has| (-860) (-370)) (|has| (-860) (-148)) (|has| (-409 (-568)) (-370)) (|has| (-409 (-568)) (-148))) ((-453) . T) ((-558) . T) ((-637 (-409 (-568))) . T) ((-637 (-860)) . T) ((-637 $) . T) ((-707 (-409 (-568))) . T) ((-707 (-860)) . T) ((-707 $) . T) ((-716) . T) ((-916) . T) ((-858) . T) ((-859) . T) ((-1037 (-409 (-568))) . T) ((-1037 (-568)) . T) ((-1037 (-860)) . T) ((-1053 (-409 (-568))) . T) ((-1053 (-860)) . T) ((-1053 $) . T) ((-1047) . T) ((-1054) . T) ((-1102) . T) ((-1090) . T) ((-1199) . T) ((-1251 (-409 (-568))) . T) ((-1251 (-860)) . T)) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) 47)) (-2572 (((-1244 $) $ $) 69)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL)) (-2227 (($ $) NIL)) (-1573 (((-121) $) NIL)) (-2615 (((-121) $) NIL)) (-1739 (((-763)) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-4305 (($ $) NIL)) (-1678 (((-420 $) $) NIL)) (-1497 (((-121) $ $) NIL)) (-1285 (((-1249) $) 78)) (-2671 (($) NIL T CONST)) (-2713 (((-860) $) 17)) (-3666 (((-3 (-568) "failed") $) 75) (((-3 (-409 (-568)) "failed") $) NIL) (((-3 (-409 (-568)) "failed") $) NIL) (((-3 (-860) "failed") $) 72) (((-3 (-860) "failed") $) 72)) (-2854 (((-568) $) NIL) (((-409 (-568)) $) NIL) (((-409 (-568)) $) NIL) (((-860) $) 111) (((-860) $) 111)) (-2401 (($ $ $) NIL)) (-3092 (($ (-1157 $)) 59)) (-2925 (((-3 $ "failed") $) NIL)) (-2412 (($ $ $) NIL)) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) NIL)) (-3218 (($ $ (-763)) NIL (-2198 (|has| (-409 (-568)) (-148)) (|has| (-409 (-568)) (-370)) (|has| (-860) (-148)) (|has| (-860) (-370)))) (($ $) NIL (-2198 (|has| (-409 (-568)) (-148)) (|has| (-409 (-568)) (-370)) (|has| (-860) (-148)) (|has| (-860) (-370))))) (-3927 (((-121) $) NIL)) (-1473 (($ $) 63)) (-4477 (((-828 (-917)) $) NIL (-2198 (|has| (-409 (-568)) (-148)) (|has| (-409 (-568)) (-370)) (|has| (-860) (-148)) (|has| (-860) (-370))))) (-2735 (((-121) $) 117)) (-3355 (($ (-1157 $) $ (-1161)) 41) (($ (-1157 $) (-1161)) 94)) (-3562 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-3614 (($ (-634 $)) 61)) (-3085 (((-1157 $) $) 55) (((-1157 $) $ $) 56)) (-2495 (($ $ $) NIL) (($ (-634 $)) NIL)) (-4487 (((-1143) $) NIL)) (-2081 (($ $) 101)) (-2864 (((-121) $) NIL)) (-4022 (((-1108) $) NIL)) (-2086 (((-121) $) 62)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL)) (-2721 (($ $ $) NIL) (($ (-634 $)) NIL)) (-3936 (((-850) $) 124)) (-3848 (((-420 $) $) NIL)) (-1553 (((-828 (-917))) NIL)) (-4497 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2842 (((-917) $) 37)) (-2595 (((-3 $ "failed") $ $) NIL)) (-2344 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-2709 (((-763) $) NIL)) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL)) (-3598 (((-634 $) (-1157 $) $) 96)) (-3143 (((-3 (-763) "failed") $ $) NIL (-2198 (|has| (-409 (-568)) (-148)) (|has| (-409 (-568)) (-370)) (|has| (-860) (-148)) (|has| (-860) (-370))))) (-4321 (((-139)) NIL)) (-3206 (((-828 (-917)) $) NIL)) (-1626 (((-1157 $)) 79) (((-1157 $) $) 64)) (-1458 (($ $) NIL)) (-2745 (((-850) $) 123) (($ (-568)) 44) (($ $) NIL) (($ (-409 (-568))) NIL) (($ (-568)) 44) (($ (-409 (-568))) NIL) (($ (-409 (-568))) NIL) (($ (-860)) 118) (($ (-860)) 118)) (-4371 (((-3 $ "failed") $) NIL (-2198 (|has| (-409 (-568)) (-148)) (|has| (-409 (-568)) (-370)) (|has| (-860) (-148)) (|has| (-860) (-370))))) (-4078 (((-763)) 126)) (-1826 (((-121) $ $) NIL)) (-4390 (((-121) $) NIL)) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL)) (-3056 (($) 48 T CONST)) (-1556 (($) 38 T CONST)) (-1316 (($ $ (-763)) NIL (-2198 (|has| (-409 (-568)) (-370)) (|has| (-860) (-370)))) (($ $) NIL (-2198 (|has| (-409 (-568)) (-370)) (|has| (-860) (-370))))) (-1717 (((-121) $ $) 114)) (-1779 (($ $ $) 102) (($ $ (-409 (-568))) NIL) (($ $ (-860)) NIL)) (-1773 (($ $) 35) (($ $ $) 105)) (-1767 (($ $ $) 81)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) 53) (($ $ $) 31) (($ $ (-409 (-568))) 109) (($ (-409 (-568)) $) NIL) (($ (-409 (-568)) $) NIL) (($ $ (-409 (-568))) 109) (($ (-860) $) 103) (($ $ (-860)) 104))) +(((-855 |#1|) (-13 (-854) (-10 -8 (-15 -3936 ((-850) $)) (-15 -2713 ((-860) $)))) (-860)) (T -855)) +((-3936 (*1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-855 *3)) (-14 *3 (-860)))) (-2713 (*1 *2 *1) (-12 (-5 *2 (-860)) (-5 *1 (-855 *3)) (-14 *3 *2)))) +(-13 (-854) (-10 -8 (-15 -3936 ((-850) $)) (-15 -2713 ((-860) $)))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-2572 (((-1244 $) $ $) 113)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) 40)) (-2227 (($ $) 39)) (-1573 (((-121) $) 37)) (-3211 (((-1169 (-917) (-763)) (-568)) 88)) (-3134 (((-3 $ "failed") $ $) 18)) (-4305 (($ $) 71)) (-1678 (((-420 $) $) 70)) (-1497 (((-121) $ $) 57)) (-3983 (((-763)) 98)) (-1285 (((-1249) $) 117)) (-2671 (($) 16 T CONST)) (-2022 (((-3 "prime" "polynomial" "normal" "cyclic")) 82)) (-2401 (($ $ $) 53)) (-3092 (($ (-1157 $)) 107)) (-2925 (((-3 $ "failed") $) 33)) (-1731 (($) 101)) (-2412 (($ $ $) 54)) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) 49)) (-4220 (($) 86)) (-4456 (((-121) $) 85)) (-3218 (($ $) 75) (($ $ (-763)) 74)) (-3927 (((-121) $) 69)) (-1473 (($ $) 112)) (-4477 (((-828 (-917)) $) 77) (((-917) $) 83)) (-2735 (((-121) $) 30)) (-3038 (((-3 $ "failed") $) 97)) (-3355 (($ (-1157 $) (-1161)) 116) (($ (-1157 $) $ (-1161)) 115)) (-3562 (((-3 (-634 $) "failed") (-634 $) $) 50)) (-3614 (($ (-634 $)) 110)) (-3683 (((-917) $) 100)) (-3085 (((-1157 $) $ $) 106) (((-1157 $) $) 105)) (-2495 (($ $ $) 45) (($ (-634 $)) 44)) (-4487 (((-1143) $) 9)) (-2081 (($ $) 68)) (-4434 (($) 96 T CONST)) (-4355 (($ (-917)) 99)) (-4022 (((-1108) $) 10)) (-2086 (((-121) $) 109)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) 43)) (-2721 (($ $ $) 47) (($ (-634 $)) 46)) (-3936 (((-850) $) 118)) (-1418 (((-634 (-2 (|:| -3848 (-568)) (|:| -3438 (-568))))) 89)) (-3848 (((-420 $) $) 72)) (-4497 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2842 (((-917) $) 111)) (-2595 (((-3 $ "failed") $ $) 41)) (-2344 (((-3 (-634 $) "failed") (-634 $) $) 48)) (-2709 (((-763) $) 56)) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) 55)) (-3598 (((-634 $) (-1157 $) $) 108)) (-3143 (((-3 (-763) "failed") $ $) 76) (((-763) $) 84)) (-4189 (($ $ (-763)) 94) (($ $) 92)) (-1626 (((-1157 $) $) 104) (((-1157 $)) 103)) (-3065 (($) 87)) (-1458 (($ $) 114)) (-2979 (((-3 (-1244 $) "failed") (-679 $)) 90)) (-2745 (((-850) $) 11) (($ (-568)) 27) (($ $) 42) (($ (-409 (-568))) 63)) (-4371 (((-3 $ "failed") $) 78) (($ $) 91)) (-4078 (((-763)) 28)) (-1826 (((-121) $ $) 38)) (-1887 (($ $ (-917)) 25) (($ $ (-763)) 32) (($ $ (-568)) 67)) (-3056 (($) 17 T CONST)) (-1556 (($) 29 T CONST)) (-3190 (($ $ (-763)) 95) (($ $) 93)) (-1717 (((-121) $ $) 6)) (-1779 (($ $ $) 62)) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 24) (($ $ (-763)) 31) (($ $ (-568)) 66)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 23) (($ $ (-409 (-568))) 65) (($ (-409 (-568)) $) 64))) +(((-856) (-1275)) (T -856)) +NIL +(-13 (-350) (-858)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-43 (-409 (-568))) . T) ((-43 $) . T) ((-105) . T) ((-120 (-409 (-568)) (-409 (-568))) . T) ((-120 $ $) . T) ((-137) . T) ((-148) . T) ((-608 (-850)) . T) ((-172) . T) ((-225) . T) ((-238) . T) ((-285) . T) ((-301) . T) ((-365) . T) ((-404) . T) ((-370) . T) ((-350) . T) ((-453) . T) ((-558) . T) ((-637 (-409 (-568))) . T) ((-637 $) . T) ((-707 (-409 (-568))) . T) ((-707 $) . T) ((-716) . T) ((-916) . T) ((-858) . T) ((-1053 (-409 (-568))) . T) ((-1053 $) . T) ((-1047) . T) ((-1054) . T) ((-1102) . T) ((-1090) . T) ((-1136) . T) ((-1199) . T)) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) 29)) (-2572 (((-1244 $) $ $) 48)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) 39)) (-2227 (($ $) NIL)) (-1573 (((-121) $) NIL)) (-2615 (((-121) $) NIL)) (-1739 (((-763)) NIL)) (-3211 (((-1169 (-917) (-763)) (-568)) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-4305 (($ $) NIL)) (-1678 (((-420 $) $) NIL)) (-1497 (((-121) $ $) NIL)) (-3983 (((-763)) 52)) (-1285 (((-1249) $) 56)) (-2671 (($) NIL T CONST)) (-3666 (((-3 |#1| "failed") $) 126)) (-2854 ((|#1| $) 85)) (-2022 (((-3 "prime" "polynomial" "normal" "cyclic")) 139)) (-2401 (($ $ $) NIL)) (-3092 (($ (-1157 $)) NIL)) (-2925 (((-3 $ "failed") $) NIL)) (-1731 (($) 82)) (-2412 (($ $ $) NIL)) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) NIL)) (-4220 (($) NIL)) (-4456 (((-121) $) NIL)) (-3218 (($ $) NIL) (($ $ (-763)) NIL)) (-3927 (((-121) $) NIL)) (-1473 (($ $) 41)) (-4477 (((-828 (-917)) $) NIL) (((-917) $) NIL)) (-2735 (((-121) $) 123)) (-3038 (((-3 $ "failed") $) NIL)) (-3355 (($ (-1157 $) (-1161)) 79) (($ (-1157 $) $ (-1161)) 99)) (-3562 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-3614 (($ (-634 $)) 104)) (-3683 (((-917) $) 134)) (-3085 (((-1157 $) $ $) NIL) (((-1157 $) $) NIL)) (-2495 (($ $ $) NIL) (($ (-634 $)) NIL)) (-4487 (((-1143) $) NIL)) (-2081 (($ $) 27)) (-4434 (($) NIL T CONST)) (-4355 (($ (-917)) 136)) (-2864 (((-121) $) NIL)) (-4022 (((-1108) $) NIL)) (-2086 (((-121) $) 40)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL)) (-2721 (($ $ $) NIL) (($ (-634 $)) NIL)) (-3936 (((-850) $) 132)) (-1418 (((-634 (-2 (|:| -3848 (-568)) (|:| -3438 (-568))))) NIL)) (-3848 (((-420 $) $) NIL)) (-1553 (((-828 (-917))) NIL)) (-4497 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2842 (((-917) $) 14)) (-2595 (((-3 $ "failed") $ $) NIL)) (-2344 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-2709 (((-763) $) NIL)) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL)) (-3598 (((-634 $) (-1157 $) $) 81)) (-3143 (((-3 (-763) "failed") $ $) NIL) (((-763) $) NIL)) (-4321 (((-139)) NIL)) (-4189 (($ $ (-763)) NIL) (($ $) NIL)) (-3206 (((-828 (-917)) $) 17)) (-1626 (((-1157 $) $) 20) (((-1157 $)) NIL)) (-3065 (($) NIL)) (-1458 (($ $) 90)) (-2979 (((-3 (-1244 $) "failed") (-679 $)) NIL)) (-2745 (((-850) $) 131) (($ (-568)) NIL) (($ $) NIL) (($ (-409 (-568))) NIL) (($ |#1|) 124)) (-4371 (((-3 $ "failed") $) NIL) (($ $) 89)) (-4078 (((-763)) 140)) (-1826 (((-121) $ $) NIL)) (-4390 (((-121) $) NIL)) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL)) (-3056 (($) 30 T CONST)) (-1556 (($) 21 T CONST)) (-1316 (($ $ (-763)) NIL (|has| |#1| (-370))) (($ $) NIL (|has| |#1| (-370)))) (-3190 (($ $ (-763)) NIL) (($ $) NIL)) (-1717 (((-121) $ $) 120)) (-1779 (($ $ $) 96) (($ $ |#1|) NIL)) (-1773 (($ $) 97) (($ $ $) 107)) (-1767 (($ $ $) 63)) (** (($ $ (-917)) 33) (($ $ (-763)) 34) (($ $ (-568)) 37)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) 111) (($ $ $) 65) (($ $ (-409 (-568))) 112) (($ (-409 (-568)) $) NIL) (($ |#1| $) 105) (($ $ |#1|) 106))) +(((-857 |#1|) (-13 (-856) (-1261 |#1|) (-10 -8 (-15 -3936 ((-850) $)))) (-350)) (T -857)) +((-3936 (*1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-857 *3)) (-4 *3 (-350))))) +(-13 (-856) (-1261 |#1|) (-10 -8 (-15 -3936 ((-850) $)))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-2572 (((-1244 $) $ $) 78)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) 40)) (-2227 (($ $) 39)) (-1573 (((-121) $) 37)) (-3134 (((-3 $ "failed") $ $) 18)) (-4305 (($ $) 71)) (-1678 (((-420 $) $) 70)) (-1497 (((-121) $ $) 57)) (-1285 (((-1249) $) 74)) (-2671 (($) 16 T CONST)) (-2401 (($ $ $) 53)) (-3092 (($ (-1157 $)) 84)) (-2925 (((-3 $ "failed") $) 33)) (-2412 (($ $ $) 54)) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) 49)) (-3927 (((-121) $) 69)) (-1473 (($ $) 79)) (-2735 (((-121) $) 30)) (-3355 (($ (-1157 $) $ (-1161)) 76) (($ (-1157 $) (-1161)) 75)) (-3562 (((-3 (-634 $) "failed") (-634 $) $) 50)) (-3614 (($ (-634 $)) 81)) (-3085 (((-1157 $) $) 86) (((-1157 $) $ $) 85)) (-2495 (($ $ $) 45) (($ (-634 $)) 44)) (-4487 (((-1143) $) 9)) (-2081 (($ $) 68)) (-4022 (((-1108) $) 10)) (-2086 (((-121) $) 82)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) 43)) (-2721 (($ $ $) 47) (($ (-634 $)) 46)) (-3936 (((-850) $) 73)) (-3848 (((-420 $) $) 72)) (-4497 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2842 (((-917) $) 80)) (-2595 (((-3 $ "failed") $ $) 41)) (-2344 (((-3 (-634 $) "failed") (-634 $) $) 48)) (-2709 (((-763) $) 56)) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) 55)) (-3598 (((-634 $) (-1157 $) $) 83)) (-1626 (((-1157 $)) 88) (((-1157 $) $) 87)) (-1458 (($ $) 77)) (-2745 (((-850) $) 11) (($ (-568)) 27) (($ $) 42) (($ (-409 (-568))) 63)) (-4078 (((-763)) 28)) (-1826 (((-121) $ $) 38)) (-1887 (($ $ (-917)) 25) (($ $ (-763)) 32) (($ $ (-568)) 67)) (-3056 (($) 17 T CONST)) (-1556 (($) 29 T CONST)) (-1717 (((-121) $ $) 6)) (-1779 (($ $ $) 62)) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 24) (($ $ (-763)) 31) (($ $ (-568)) 66)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 23) (($ $ (-409 (-568))) 65) (($ (-409 (-568)) $) 64))) +(((-858) (-1275)) (T -858)) +((-1626 (*1 *2) (-12 (-5 *2 (-1157 *1)) (-4 *1 (-858)))) (-1626 (*1 *2 *1) (-12 (-5 *2 (-1157 *1)) (-4 *1 (-858)))) (-3085 (*1 *2 *1) (-12 (-5 *2 (-1157 *1)) (-4 *1 (-858)))) (-3085 (*1 *2 *1 *1) (-12 (-5 *2 (-1157 *1)) (-4 *1 (-858)))) (-3092 (*1 *1 *2) (-12 (-5 *2 (-1157 *1)) (-4 *1 (-858)))) (-3598 (*1 *2 *3 *1) (-12 (-5 *3 (-1157 *1)) (-4 *1 (-858)) (-5 *2 (-634 *1)))) (-2086 (*1 *2 *1) (-12 (-4 *1 (-858)) (-5 *2 (-121)))) (-3614 (*1 *1 *2) (-12 (-5 *2 (-634 *1)) (-4 *1 (-858)))) (-2842 (*1 *2 *1) (-12 (-4 *1 (-858)) (-5 *2 (-917)))) (-1473 (*1 *1 *1) (-4 *1 (-858))) (-2572 (*1 *2 *1 *1) (-12 (-5 *2 (-1244 *1)) (-4 *1 (-858)))) (-1458 (*1 *1 *1) (-4 *1 (-858))) (-3355 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1157 *1)) (-5 *3 (-1161)) (-4 *1 (-858)))) (-3355 (*1 *1 *2 *3) (-12 (-5 *2 (-1157 *1)) (-5 *3 (-1161)) (-4 *1 (-858)))) (-1285 (*1 *2 *1) (-12 (-4 *1 (-858)) (-5 *2 (-1249)))) (-3936 (*1 *2 *1) (-12 (-4 *1 (-858)) (-5 *2 (-850))))) +(-13 (-365) (-10 -8 (-15 -1626 ((-1157 $))) (-15 -1626 ((-1157 $) $)) (-15 -3085 ((-1157 $) $)) (-15 -3085 ((-1157 $) $ $)) (-15 -3092 ($ (-1157 $))) (-15 -3598 ((-634 $) (-1157 $) $)) (-15 -2086 ((-121) $)) (-15 -3614 ($ (-634 $))) (-15 -2842 ((-917) $)) (-15 -1473 ($ $)) (-15 -2572 ((-1244 $) $ $)) (-15 -1458 ($ $)) (-15 -3355 ($ (-1157 $) $ (-1161))) (-15 -3355 ($ (-1157 $) (-1161))) (-15 -1285 ((-1249) $)) (-15 -3936 ((-850) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-43 (-409 (-568))) . T) ((-43 $) . T) ((-105) . T) ((-120 (-409 (-568)) (-409 (-568))) . T) ((-120 $ $) . T) ((-137) . T) ((-608 (-850)) . T) ((-172) . T) ((-238) . T) ((-285) . T) ((-301) . T) ((-365) . T) ((-453) . T) ((-558) . T) ((-637 (-409 (-568))) . T) ((-637 $) . T) ((-707 (-409 (-568))) . T) ((-707 $) . T) ((-716) . T) ((-916) . T) ((-1053 (-409 (-568))) . T) ((-1053 $) . T) ((-1047) . T) ((-1054) . T) ((-1102) . T) ((-1090) . T) ((-1199) . T)) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-2572 (((-1244 $) $ $) 78)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) 40)) (-2227 (($ $) 39)) (-1573 (((-121) $) 37)) (-2615 (((-121) $) 111)) (-1739 (((-763)) 115)) (-3134 (((-3 $ "failed") $ $) 18)) (-4305 (($ $) 71)) (-1678 (((-420 $) $) 70)) (-1497 (((-121) $ $) 57)) (-1285 (((-1249) $) 74)) (-2671 (($) 16 T CONST)) (-3666 (((-3 (-568) "failed") $) 122) (((-3 (-409 (-568)) "failed") $) 119) (((-3 (-409 (-568)) "failed") $) 104)) (-2854 (((-568) $) 121) (((-409 (-568)) $) 118) (((-409 (-568)) $) 105)) (-2401 (($ $ $) 53)) (-3092 (($ (-1157 $)) 84)) (-2925 (((-3 $ "failed") $) 33)) (-2412 (($ $ $) 54)) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) 49)) (-3218 (($ $ (-763)) 102 (-2198 (|has| (-409 (-568)) (-148)) (|has| (-409 (-568)) (-370)))) (($ $) 101 (-2198 (|has| (-409 (-568)) (-148)) (|has| (-409 (-568)) (-370))))) (-3927 (((-121) $) 69)) (-1473 (($ $) 79)) (-4477 (((-828 (-917)) $) 99 (-2198 (|has| (-409 (-568)) (-148)) (|has| (-409 (-568)) (-370))))) (-2735 (((-121) $) 30)) (-3355 (($ (-1157 $) $ (-1161)) 76) (($ (-1157 $) (-1161)) 75)) (-3562 (((-3 (-634 $) "failed") (-634 $) $) 50)) (-3614 (($ (-634 $)) 81)) (-3085 (((-1157 $) $) 86) (((-1157 $) $ $) 85)) (-2495 (($ $ $) 45) (($ (-634 $)) 44)) (-4487 (((-1143) $) 9)) (-2081 (($ $) 68)) (-2864 (((-121) $) 112)) (-4022 (((-1108) $) 10)) (-2086 (((-121) $) 82)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) 43)) (-2721 (($ $ $) 47) (($ (-634 $)) 46)) (-3936 (((-850) $) 73)) (-3848 (((-420 $) $) 72)) (-1553 (((-828 (-917))) 114)) (-4497 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2842 (((-917) $) 80)) (-2595 (((-3 $ "failed") $ $) 41)) (-2344 (((-3 (-634 $) "failed") (-634 $) $) 48)) (-2709 (((-763) $) 56)) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) 55)) (-3598 (((-634 $) (-1157 $) $) 83)) (-3143 (((-3 (-763) "failed") $ $) 100 (-2198 (|has| (-409 (-568)) (-148)) (|has| (-409 (-568)) (-370))))) (-4321 (((-139)) 106)) (-3206 (((-828 (-917)) $) 113)) (-1626 (((-1157 $)) 88) (((-1157 $) $) 87)) (-1458 (($ $) 77)) (-2745 (((-850) $) 11) (($ (-568)) 27) (($ $) 42) (($ (-409 (-568))) 63) (($ (-568)) 123) (($ (-409 (-568))) 120) (($ (-409 (-568))) 103)) (-4371 (((-3 $ "failed") $) 98 (-2198 (|has| (-409 (-568)) (-148)) (|has| (-409 (-568)) (-370))))) (-4078 (((-763)) 28)) (-1826 (((-121) $ $) 38)) (-4390 (((-121) $) 110)) (-1887 (($ $ (-917)) 25) (($ $ (-763)) 32) (($ $ (-568)) 67)) (-3056 (($) 17 T CONST)) (-1556 (($) 29 T CONST)) (-1316 (($ $ (-763)) 117 (|has| (-409 (-568)) (-370))) (($ $) 116 (|has| (-409 (-568)) (-370)))) (-1717 (((-121) $ $) 6)) (-1779 (($ $ $) 62) (($ $ (-409 (-568))) 107)) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 24) (($ $ (-763)) 31) (($ $ (-568)) 66)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 23) (($ $ (-409 (-568))) 65) (($ (-409 (-568)) $) 64) (($ (-409 (-568)) $) 109) (($ $ (-409 (-568))) 108))) +(((-859) (-1275)) (T -859)) +NIL +(-13 (-858) (-150) (-1037 (-568)) (-1037 (-409 (-568))) (-1261 (-409 (-568)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-43 (-409 (-568))) . T) ((-43 $) . T) ((-105) . T) ((-120 (-409 (-568)) (-409 (-568))) . T) ((-120 $ $) . T) ((-137) . T) ((-148) -2198 (|has| (-409 (-568)) (-370)) (|has| (-409 (-568)) (-148))) ((-150) . T) ((-608 (-850)) . T) ((-172) . T) ((-238) . T) ((-285) . T) ((-301) . T) ((-1261 (-409 (-568))) . T) ((-365) . T) ((-404) -2198 (|has| (-409 (-568)) (-370)) (|has| (-409 (-568)) (-148))) ((-453) . T) ((-558) . T) ((-637 (-409 (-568))) . T) ((-637 $) . T) ((-707 (-409 (-568))) . T) ((-707 $) . T) ((-716) . T) ((-916) . T) ((-858) . T) ((-1037 (-409 (-568))) . T) ((-1037 (-568)) . T) ((-1053 (-409 (-568))) . T) ((-1053 $) . T) ((-1047) . T) ((-1054) . T) ((-1102) . T) ((-1090) . T) ((-1199) . T) ((-1251 (-409 (-568))) . T)) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) 16)) (-2572 (((-1244 $) $ $) 47)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL)) (-2227 (($ $) NIL)) (-1573 (((-121) $) NIL)) (-2615 (((-121) $) NIL)) (-1739 (((-763)) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-4305 (($ $) NIL)) (-1678 (((-420 $) $) NIL)) (-1497 (((-121) $ $) NIL)) (-1285 (((-1249) $) 51)) (-2671 (($) NIL T CONST)) (-3666 (((-3 (-568) "failed") $) 104) (((-3 (-409 (-568)) "failed") $) 106) (((-3 (-409 (-568)) "failed") $) 106)) (-2854 (((-568) $) NIL) (((-409 (-568)) $) 94) (((-409 (-568)) $) 94)) (-2401 (($ $ $) NIL)) (-3092 (($ (-1157 $)) 34)) (-2925 (((-3 $ "failed") $) NIL)) (-2412 (($ $ $) NIL)) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) NIL)) (-3218 (($ $ (-763)) NIL (-2198 (|has| (-409 (-568)) (-148)) (|has| (-409 (-568)) (-370)))) (($ $) NIL (-2198 (|has| (-409 (-568)) (-148)) (|has| (-409 (-568)) (-370))))) (-3927 (((-121) $) NIL)) (-1473 (($ $) 40)) (-4477 (((-828 (-917)) $) NIL (-2198 (|has| (-409 (-568)) (-148)) (|has| (-409 (-568)) (-370))))) (-2735 (((-121) $) 100)) (-3355 (($ (-1157 $) $ (-1161)) 79) (($ (-1157 $) (-1161)) 70) (($ (-1157 $) (-1157 $) (-917) $ (-1161)) 80)) (-3562 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-3614 (($ (-634 $)) 38)) (-3085 (((-1157 $) $) 29) (((-1157 $) $ $) 31)) (-2495 (($ $ $) NIL) (($ (-634 $)) NIL)) (-4487 (((-1143) $) NIL)) (-2081 (($ $) 86)) (-2864 (((-121) $) NIL)) (-4022 (((-1108) $) NIL)) (-2086 (((-121) $) 39)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL)) (-2721 (($ $ $) NIL) (($ (-634 $)) NIL)) (-3936 (((-850) $) 112)) (-3848 (((-420 $) $) NIL)) (-1553 (((-828 (-917))) NIL)) (-4497 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2842 (((-917) $) 30)) (-2595 (((-3 $ "failed") $ $) NIL)) (-2344 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-2709 (((-763) $) NIL)) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL)) (-3598 (((-634 $) (-1157 $) $) 72)) (-3143 (((-3 (-763) "failed") $ $) NIL (-2198 (|has| (-409 (-568)) (-148)) (|has| (-409 (-568)) (-370))))) (-4321 (((-139)) NIL)) (-3206 (((-828 (-917)) $) NIL)) (-1626 (((-1157 $)) 52) (((-1157 $) $) 41)) (-1458 (($ $) NIL)) (-2745 (((-850) $) 111) (($ (-568)) 14) (($ $) NIL) (($ (-409 (-568))) 101) (($ (-568)) 14) (($ (-409 (-568))) 101) (($ (-409 (-568))) 101)) (-4371 (((-3 $ "failed") $) NIL (-2198 (|has| (-409 (-568)) (-148)) (|has| (-409 (-568)) (-370))))) (-4078 (((-763)) 114)) (-1826 (((-121) $ $) NIL)) (-4390 (((-121) $) NIL)) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL)) (-3056 (($) 17 T CONST)) (-1556 (($) 73 T CONST)) (-1316 (($ $ (-763)) NIL (|has| (-409 (-568)) (-370))) (($ $) NIL (|has| (-409 (-568)) (-370)))) (-1717 (((-121) $ $) 97)) (-1779 (($ $ $) 78) (($ $ (-409 (-568))) NIL)) (-1773 (($ $) 19) (($ $ $) 89)) (-1767 (($ $ $) 54)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) 18) (($ $ $) 57) (($ $ (-409 (-568))) 88) (($ (-409 (-568)) $) 87) (($ (-409 (-568)) $) 87) (($ $ (-409 (-568))) 88))) +(((-860) (-13 (-859) (-10 -8 (-15 -3936 ((-850) $)) (-15 -3355 ($ (-1157 $) (-1157 $) (-917) $ (-1161)))))) (T -860)) +((-3936 (*1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-860)))) (-3355 (*1 *1 *2 *2 *3 *1 *4) (-12 (-5 *2 (-1157 (-860))) (-5 *3 (-917)) (-5 *4 (-1161)) (-5 *1 (-860))))) +(-13 (-859) (-10 -8 (-15 -3936 ((-850) $)) (-15 -3355 ($ (-1157 $) (-1157 $) (-917) $ (-1161))))) +((-3638 (((-3 (-173 |#3|) "failed") (-763) (-763) |#2| |#2|) 31)) (-1822 (((-3 (-409 |#3|) "failed") (-763) (-763) |#2| |#2|) 24))) +(((-861 |#1| |#2| |#3|) (-10 -7 (-15 -1822 ((-3 (-409 |#3|) "failed") (-763) (-763) |#2| |#2|)) (-15 -3638 ((-3 (-173 |#3|) "failed") (-763) (-763) |#2| |#2|))) (-365) (-1234 |#1|) (-1219 |#1|)) (T -861)) +((-3638 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-763)) (-4 *5 (-365)) (-5 *2 (-173 *6)) (-5 *1 (-861 *5 *4 *6)) (-4 *4 (-1234 *5)) (-4 *6 (-1219 *5)))) (-1822 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-763)) (-4 *5 (-365)) (-5 *2 (-409 *6)) (-5 *1 (-861 *5 *4 *6)) (-4 *4 (-1234 *5)) (-4 *6 (-1219 *5))))) +(-10 -7 (-15 -1822 ((-3 (-409 |#3|) "failed") (-763) (-763) |#2| |#2|)) (-15 -3638 ((-3 (-173 |#3|) "failed") (-763) (-763) |#2| |#2|))) +((-1822 (((-3 (-409 (-1216 |#2| |#1|)) "failed") (-763) (-763) (-1235 |#1| |#2| |#3|)) 28) (((-3 (-409 (-1216 |#2| |#1|)) "failed") (-763) (-763) (-1235 |#1| |#2| |#3|) (-1235 |#1| |#2| |#3|)) 26))) +(((-862 |#1| |#2| |#3|) (-10 -7 (-15 -1822 ((-3 (-409 (-1216 |#2| |#1|)) "failed") (-763) (-763) (-1235 |#1| |#2| |#3|) (-1235 |#1| |#2| |#3|))) (-15 -1822 ((-3 (-409 (-1216 |#2| |#1|)) "failed") (-763) (-763) (-1235 |#1| |#2| |#3|)))) (-365) (-1161) |#1|) (T -862)) +((-1822 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-763)) (-5 *4 (-1235 *5 *6 *7)) (-4 *5 (-365)) (-14 *6 (-1161)) (-14 *7 *5) (-5 *2 (-409 (-1216 *6 *5))) (-5 *1 (-862 *5 *6 *7)))) (-1822 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-763)) (-5 *4 (-1235 *5 *6 *7)) (-4 *5 (-365)) (-14 *6 (-1161)) (-14 *7 *5) (-5 *2 (-409 (-1216 *6 *5))) (-5 *1 (-862 *5 *6 *7))))) +(-10 -7 (-15 -1822 ((-3 (-409 (-1216 |#2| |#1|)) "failed") (-763) (-763) (-1235 |#1| |#2| |#3|) (-1235 |#1| |#2| |#3|))) (-15 -1822 ((-3 (-409 (-1216 |#2| |#1|)) "failed") (-763) (-763) (-1235 |#1| |#2| |#3|)))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) 40)) (-2227 (($ $) 39)) (-1573 (((-121) $) 37)) (-3134 (((-3 $ "failed") $ $) 18)) (-1902 (($ $ (-568)) 60)) (-1497 (((-121) $ $) 57)) (-2671 (($) 16 T CONST)) (-2143 (($ (-1157 (-568)) (-568)) 59)) (-2401 (($ $ $) 53)) (-2925 (((-3 $ "failed") $) 33)) (-3974 (($ $) 62)) (-2412 (($ $ $) 54)) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) 49)) (-4477 (((-763) $) 67)) (-2735 (((-121) $) 30)) (-3562 (((-3 (-634 $) "failed") (-634 $) $) 50)) (-3094 (((-568)) 64)) (-1914 (((-568) $) 63)) (-2495 (($ $ $) 45) (($ (-634 $)) 44)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) 43)) (-2721 (($ $ $) 47) (($ (-634 $)) 46)) (-4497 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-1807 (($ $ (-568)) 66)) (-2595 (((-3 $ "failed") $ $) 41)) (-2344 (((-3 (-634 $) "failed") (-634 $) $) 48)) (-2709 (((-763) $) 56)) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) 55)) (-3396 (((-1141 (-568)) $) 68)) (-1811 (($ $) 65)) (-2745 (((-850) $) 11) (($ (-568)) 27) (($ $) 42)) (-4078 (((-763)) 28)) (-1826 (((-121) $ $) 38)) (-3996 (((-568) $ (-568)) 61)) (-1887 (($ $ (-917)) 25) (($ $ (-763)) 32)) (-3056 (($) 17 T CONST)) (-1556 (($) 29 T CONST)) (-1717 (((-121) $ $) 6)) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 24) (($ $ (-763)) 31)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 23))) +(((-863 |#1|) (-1275) (-568)) (T -863)) +((-3396 (*1 *2 *1) (-12 (-4 *1 (-863 *3)) (-5 *2 (-1141 (-568))))) (-4477 (*1 *2 *1) (-12 (-4 *1 (-863 *3)) (-5 *2 (-763)))) (-1807 (*1 *1 *1 *2) (-12 (-4 *1 (-863 *3)) (-5 *2 (-568)))) (-1811 (*1 *1 *1) (-4 *1 (-863 *2))) (-3094 (*1 *2) (-12 (-4 *1 (-863 *3)) (-5 *2 (-568)))) (-1914 (*1 *2 *1) (-12 (-4 *1 (-863 *3)) (-5 *2 (-568)))) (-3974 (*1 *1 *1) (-4 *1 (-863 *2))) (-3996 (*1 *2 *1 *2) (-12 (-4 *1 (-863 *3)) (-5 *2 (-568)))) (-1902 (*1 *1 *1 *2) (-12 (-4 *1 (-863 *3)) (-5 *2 (-568)))) (-2143 (*1 *1 *2 *3) (-12 (-5 *2 (-1157 (-568))) (-5 *3 (-568)) (-4 *1 (-863 *4))))) +(-13 (-301) (-150) (-10 -8 (-15 -3396 ((-1141 (-568)) $)) (-15 -4477 ((-763) $)) (-15 -1807 ($ $ (-568))) (-15 -1811 ($ $)) (-15 -3094 ((-568))) (-15 -1914 ((-568) $)) (-15 -3974 ($ $)) (-15 -3996 ((-568) $ (-568))) (-15 -1902 ($ $ (-568))) (-15 -2143 ($ (-1157 (-568)) (-568))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-43 $) . T) ((-105) . T) ((-120 $ $) . T) ((-137) . T) ((-150) . T) ((-608 (-850)) . T) ((-172) . T) ((-285) . T) ((-301) . T) ((-453) . T) ((-558) . T) ((-637 $) . T) ((-707 $) . T) ((-716) . T) ((-916) . T) ((-1053 $) . T) ((-1047) . T) ((-1054) . T) ((-1102) . T) ((-1090) . T)) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL)) (-2227 (($ $) NIL)) (-1573 (((-121) $) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-1902 (($ $ (-568)) NIL)) (-1497 (((-121) $ $) NIL)) (-2671 (($) NIL T CONST)) (-2143 (($ (-1157 (-568)) (-568)) NIL)) (-2401 (($ $ $) NIL)) (-2925 (((-3 $ "failed") $) NIL)) (-3974 (($ $) NIL)) (-2412 (($ $ $) NIL)) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) NIL)) (-4477 (((-763) $) NIL)) (-2735 (((-121) $) NIL)) (-3562 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-3094 (((-568)) NIL)) (-1914 (((-568) $) NIL)) (-2495 (($ $ $) NIL) (($ (-634 $)) NIL)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL)) (-2721 (($ $ $) NIL) (($ (-634 $)) NIL)) (-4497 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1807 (($ $ (-568)) NIL)) (-2595 (((-3 $ "failed") $ $) NIL)) (-2344 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-2709 (((-763) $) NIL)) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL)) (-3396 (((-1141 (-568)) $) NIL)) (-1811 (($ $) NIL)) (-2745 (((-850) $) NIL) (($ (-568)) NIL) (($ $) NIL)) (-4078 (((-763)) NIL)) (-1826 (((-121) $ $) NIL)) (-3996 (((-568) $ (-568)) NIL)) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (-3056 (($) NIL T CONST)) (-1556 (($) NIL T CONST)) (-1717 (((-121) $ $) NIL)) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) NIL))) +(((-864 |#1|) (-863 |#1|) (-568)) (T -864)) +NIL +(-863 |#1|) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-1492 (((-864 |#1|) $) NIL (|has| (-864 |#1|) (-301)))) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL)) (-2227 (($ $) NIL)) (-1573 (((-121) $) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-1750 (((-420 (-1157 $)) (-1157 $)) NIL (|has| (-864 |#1|) (-904)))) (-4305 (($ $) NIL)) (-1678 (((-420 $) $) NIL)) (-1858 (((-3 (-634 (-1157 $)) "failed") (-634 (-1157 $)) (-1157 $)) NIL (|has| (-864 |#1|) (-904)))) (-1497 (((-121) $ $) NIL)) (-3662 (((-568) $) NIL (|has| (-864 |#1|) (-815)))) (-2671 (($) NIL T CONST)) (-3666 (((-3 (-864 |#1|) "failed") $) NIL) (((-3 (-1161) "failed") $) NIL (|has| (-864 |#1|) (-1037 (-1161)))) (((-3 (-409 (-568)) "failed") $) NIL (|has| (-864 |#1|) (-1037 (-568)))) (((-3 (-568) "failed") $) NIL (|has| (-864 |#1|) (-1037 (-568))))) (-2854 (((-864 |#1|) $) NIL) (((-1161) $) NIL (|has| (-864 |#1|) (-1037 (-1161)))) (((-409 (-568)) $) NIL (|has| (-864 |#1|) (-1037 (-568)))) (((-568) $) NIL (|has| (-864 |#1|) (-1037 (-568))))) (-1429 (($ $) NIL) (($ (-568) $) NIL)) (-2401 (($ $ $) NIL)) (-3164 (((-679 (-568)) (-679 $)) NIL (|has| (-864 |#1|) (-630 (-568)))) (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) NIL (|has| (-864 |#1|) (-630 (-568)))) (((-2 (|:| -2928 (-679 (-864 |#1|))) (|:| |vec| (-1244 (-864 |#1|)))) (-679 $) (-1244 $)) NIL) (((-679 (-864 |#1|)) (-679 $)) NIL)) (-2925 (((-3 $ "failed") $) NIL)) (-1731 (($) NIL (|has| (-864 |#1|) (-550)))) (-2412 (($ $ $) NIL)) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) NIL)) (-3927 (((-121) $) NIL)) (-2033 (((-121) $) NIL (|has| (-864 |#1|) (-815)))) (-4410 (((-884 (-568) $) $ (-887 (-568)) (-884 (-568) $)) NIL (|has| (-864 |#1|) (-881 (-568)))) (((-884 (-381) $) $ (-887 (-381)) (-884 (-381) $)) NIL (|has| (-864 |#1|) (-881 (-381))))) (-2735 (((-121) $) NIL)) (-1332 (($ $) NIL)) (-2317 (((-864 |#1|) $) NIL)) (-3038 (((-3 $ "failed") $) NIL (|has| (-864 |#1|) (-1136)))) (-2245 (((-121) $) NIL (|has| (-864 |#1|) (-815)))) (-3562 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-2521 (($ $ $) NIL (|has| (-864 |#1|) (-842)))) (-3268 (($ $ $) NIL (|has| (-864 |#1|) (-842)))) (-2795 (($ (-1 (-864 |#1|) (-864 |#1|)) $) NIL)) (-2495 (($ $ $) NIL) (($ (-634 $)) NIL)) (-4487 (((-1143) $) NIL)) (-2081 (($ $) NIL)) (-4434 (($) NIL (|has| (-864 |#1|) (-1136)) CONST)) (-4022 (((-1108) $) NIL)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL)) (-2721 (($ $ $) NIL) (($ (-634 $)) NIL)) (-3880 (($ $) NIL (|has| (-864 |#1|) (-301)))) (-1519 (((-864 |#1|) $) NIL (|has| (-864 |#1|) (-550)))) (-2905 (((-420 (-1157 $)) (-1157 $)) NIL (|has| (-864 |#1|) (-904)))) (-3545 (((-420 (-1157 $)) (-1157 $)) NIL (|has| (-864 |#1|) (-904)))) (-3848 (((-420 $) $) NIL)) (-4497 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2595 (((-3 $ "failed") $ $) NIL)) (-2344 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-1339 (($ $ (-634 (-864 |#1|)) (-634 (-864 |#1|))) NIL (|has| (-864 |#1|) (-303 (-864 |#1|)))) (($ $ (-864 |#1|) (-864 |#1|)) NIL (|has| (-864 |#1|) (-303 (-864 |#1|)))) (($ $ (-288 (-864 |#1|))) NIL (|has| (-864 |#1|) (-303 (-864 |#1|)))) (($ $ (-634 (-288 (-864 |#1|)))) NIL (|has| (-864 |#1|) (-303 (-864 |#1|)))) (($ $ (-634 (-1161)) (-634 (-864 |#1|))) NIL (|has| (-864 |#1|) (-523 (-1161) (-864 |#1|)))) (($ $ (-1161) (-864 |#1|)) NIL (|has| (-864 |#1|) (-523 (-1161) (-864 |#1|))))) (-2709 (((-763) $) NIL)) (-2779 (($ $ (-864 |#1|)) NIL (|has| (-864 |#1|) (-281 (-864 |#1|) (-864 |#1|))))) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL)) (-4189 (($ $) NIL (|has| (-864 |#1|) (-225))) (($ $ (-763)) NIL (|has| (-864 |#1|) (-225))) (($ $ (-1161)) NIL (|has| (-864 |#1|) (-895 (-1161)))) (($ $ (-634 (-1161))) NIL (|has| (-864 |#1|) (-895 (-1161)))) (($ $ (-1161) (-763)) NIL (|has| (-864 |#1|) (-895 (-1161)))) (($ $ (-634 (-1161)) (-634 (-763))) NIL (|has| (-864 |#1|) (-895 (-1161)))) (($ $ (-1 (-864 |#1|) (-864 |#1|)) (-763)) NIL) (($ $ (-1 (-864 |#1|) (-864 |#1|))) NIL)) (-3013 (($ $) NIL)) (-2324 (((-864 |#1|) $) NIL)) (-4278 (((-887 (-568)) $) NIL (|has| (-864 |#1|) (-609 (-887 (-568))))) (((-887 (-381)) $) NIL (|has| (-864 |#1|) (-609 (-887 (-381))))) (((-541) $) NIL (|has| (-864 |#1|) (-609 (-541)))) (((-381) $) NIL (|has| (-864 |#1|) (-1021))) (((-215) $) NIL (|has| (-864 |#1|) (-1021)))) (-3878 (((-173 (-409 (-568))) $) NIL)) (-2979 (((-3 (-1244 $) "failed") (-679 $)) NIL (-12 (|has| $ (-148)) (|has| (-864 |#1|) (-904))))) (-2745 (((-850) $) NIL) (($ (-568)) NIL) (($ $) NIL) (($ (-409 (-568))) NIL) (($ (-864 |#1|)) NIL) (($ (-1161)) NIL (|has| (-864 |#1|) (-1037 (-1161))))) (-4371 (((-3 $ "failed") $) NIL (-2198 (-12 (|has| $ (-148)) (|has| (-864 |#1|) (-904))) (|has| (-864 |#1|) (-148))))) (-4078 (((-763)) NIL)) (-2285 (((-864 |#1|) $) NIL (|has| (-864 |#1|) (-550)))) (-1826 (((-121) $ $) NIL)) (-3996 (((-409 (-568)) $ (-568)) NIL)) (-2897 (($ $) NIL (|has| (-864 |#1|) (-815)))) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL)) (-3056 (($) NIL T CONST)) (-1556 (($) NIL T CONST)) (-3190 (($ $) NIL (|has| (-864 |#1|) (-225))) (($ $ (-763)) NIL (|has| (-864 |#1|) (-225))) (($ $ (-1161)) NIL (|has| (-864 |#1|) (-895 (-1161)))) (($ $ (-634 (-1161))) NIL (|has| (-864 |#1|) (-895 (-1161)))) (($ $ (-1161) (-763)) NIL (|has| (-864 |#1|) (-895 (-1161)))) (($ $ (-634 (-1161)) (-634 (-763))) NIL (|has| (-864 |#1|) (-895 (-1161)))) (($ $ (-1 (-864 |#1|) (-864 |#1|)) (-763)) NIL) (($ $ (-1 (-864 |#1|) (-864 |#1|))) NIL)) (-1751 (((-121) $ $) NIL (|has| (-864 |#1|) (-842)))) (-1738 (((-121) $ $) NIL (|has| (-864 |#1|) (-842)))) (-1717 (((-121) $ $) NIL)) (-1745 (((-121) $ $) NIL (|has| (-864 |#1|) (-842)))) (-1732 (((-121) $ $) NIL (|has| (-864 |#1|) (-842)))) (-1779 (($ $ $) NIL) (($ (-864 |#1|) (-864 |#1|)) NIL)) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) NIL) (($ $ (-409 (-568))) NIL) (($ (-409 (-568)) $) NIL) (($ (-864 |#1|) $) NIL) (($ $ (-864 |#1|)) NIL))) +(((-865 |#1|) (-13 (-993 (-864 |#1|)) (-10 -8 (-15 -3996 ((-409 (-568)) $ (-568))) (-15 -3878 ((-173 (-409 (-568))) $)) (-15 -1429 ($ $)) (-15 -1429 ($ (-568) $)))) (-568)) (T -865)) +((-3996 (*1 *2 *1 *3) (-12 (-5 *2 (-409 (-568))) (-5 *1 (-865 *4)) (-14 *4 *3) (-5 *3 (-568)))) (-3878 (*1 *2 *1) (-12 (-5 *2 (-173 (-409 (-568)))) (-5 *1 (-865 *3)) (-14 *3 (-568)))) (-1429 (*1 *1 *1) (-12 (-5 *1 (-865 *2)) (-14 *2 (-568)))) (-1429 (*1 *1 *2 *1) (-12 (-5 *2 (-568)) (-5 *1 (-865 *3)) (-14 *3 *2)))) +(-13 (-993 (-864 |#1|)) (-10 -8 (-15 -3996 ((-409 (-568)) $ (-568))) (-15 -3878 ((-173 (-409 (-568))) $)) (-15 -1429 ($ $)) (-15 -1429 ($ (-568) $)))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-1492 ((|#2| $) NIL (|has| |#2| (-301)))) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL)) (-2227 (($ $) NIL)) (-1573 (((-121) $) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-1750 (((-420 (-1157 $)) (-1157 $)) NIL (|has| |#2| (-904)))) (-4305 (($ $) NIL)) (-1678 (((-420 $) $) NIL)) (-1858 (((-3 (-634 (-1157 $)) "failed") (-634 (-1157 $)) (-1157 $)) NIL (|has| |#2| (-904)))) (-1497 (((-121) $ $) NIL)) (-3662 (((-568) $) NIL (|has| |#2| (-815)))) (-2671 (($) NIL T CONST)) (-3666 (((-3 |#2| "failed") $) NIL) (((-3 (-1161) "failed") $) NIL (|has| |#2| (-1037 (-1161)))) (((-3 (-409 (-568)) "failed") $) NIL (|has| |#2| (-1037 (-568)))) (((-3 (-568) "failed") $) NIL (|has| |#2| (-1037 (-568))))) (-2854 ((|#2| $) NIL) (((-1161) $) NIL (|has| |#2| (-1037 (-1161)))) (((-409 (-568)) $) NIL (|has| |#2| (-1037 (-568)))) (((-568) $) NIL (|has| |#2| (-1037 (-568))))) (-1429 (($ $) 31) (($ (-568) $) 32)) (-2401 (($ $ $) NIL)) (-3164 (((-679 (-568)) (-679 $)) NIL (|has| |#2| (-630 (-568)))) (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) NIL (|has| |#2| (-630 (-568)))) (((-2 (|:| -2928 (-679 |#2|)) (|:| |vec| (-1244 |#2|))) (-679 $) (-1244 $)) NIL) (((-679 |#2|) (-679 $)) NIL)) (-2925 (((-3 $ "failed") $) 53)) (-1731 (($) NIL (|has| |#2| (-550)))) (-2412 (($ $ $) NIL)) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) NIL)) (-3927 (((-121) $) NIL)) (-2033 (((-121) $) NIL (|has| |#2| (-815)))) (-4410 (((-884 (-568) $) $ (-887 (-568)) (-884 (-568) $)) NIL (|has| |#2| (-881 (-568)))) (((-884 (-381) $) $ (-887 (-381)) (-884 (-381) $)) NIL (|has| |#2| (-881 (-381))))) (-2735 (((-121) $) NIL)) (-1332 (($ $) NIL)) (-2317 ((|#2| $) NIL)) (-3038 (((-3 $ "failed") $) NIL (|has| |#2| (-1136)))) (-2245 (((-121) $) NIL (|has| |#2| (-815)))) (-3562 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-2521 (($ $ $) NIL (|has| |#2| (-842)))) (-3268 (($ $ $) NIL (|has| |#2| (-842)))) (-2795 (($ (-1 |#2| |#2|) $) NIL)) (-2495 (($ $ $) NIL) (($ (-634 $)) NIL)) (-4487 (((-1143) $) NIL)) (-2081 (($ $) 49)) (-4434 (($) NIL (|has| |#2| (-1136)) CONST)) (-4022 (((-1108) $) NIL)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL)) (-2721 (($ $ $) NIL) (($ (-634 $)) NIL)) (-3880 (($ $) NIL (|has| |#2| (-301)))) (-1519 ((|#2| $) NIL (|has| |#2| (-550)))) (-2905 (((-420 (-1157 $)) (-1157 $)) NIL (|has| |#2| (-904)))) (-3545 (((-420 (-1157 $)) (-1157 $)) NIL (|has| |#2| (-904)))) (-3848 (((-420 $) $) NIL)) (-4497 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2595 (((-3 $ "failed") $ $) NIL)) (-2344 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-1339 (($ $ (-634 |#2|) (-634 |#2|)) NIL (|has| |#2| (-303 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-303 |#2|))) (($ $ (-288 |#2|)) NIL (|has| |#2| (-303 |#2|))) (($ $ (-634 (-288 |#2|))) NIL (|has| |#2| (-303 |#2|))) (($ $ (-634 (-1161)) (-634 |#2|)) NIL (|has| |#2| (-523 (-1161) |#2|))) (($ $ (-1161) |#2|) NIL (|has| |#2| (-523 (-1161) |#2|)))) (-2709 (((-763) $) NIL)) (-2779 (($ $ |#2|) NIL (|has| |#2| (-281 |#2| |#2|)))) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL)) (-4189 (($ $) NIL (|has| |#2| (-225))) (($ $ (-763)) NIL (|has| |#2| (-225))) (($ $ (-1161)) NIL (|has| |#2| (-895 (-1161)))) (($ $ (-634 (-1161))) NIL (|has| |#2| (-895 (-1161)))) (($ $ (-1161) (-763)) NIL (|has| |#2| (-895 (-1161)))) (($ $ (-634 (-1161)) (-634 (-763))) NIL (|has| |#2| (-895 (-1161)))) (($ $ (-1 |#2| |#2|) (-763)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3013 (($ $) NIL)) (-2324 ((|#2| $) NIL)) (-4278 (((-887 (-568)) $) NIL (|has| |#2| (-609 (-887 (-568))))) (((-887 (-381)) $) NIL (|has| |#2| (-609 (-887 (-381))))) (((-541) $) NIL (|has| |#2| (-609 (-541)))) (((-381) $) NIL (|has| |#2| (-1021))) (((-215) $) NIL (|has| |#2| (-1021)))) (-3878 (((-173 (-409 (-568))) $) 68)) (-2979 (((-3 (-1244 $) "failed") (-679 $)) NIL (-12 (|has| $ (-148)) (|has| |#2| (-904))))) (-2745 (((-850) $) 85) (($ (-568)) 19) (($ $) NIL) (($ (-409 (-568))) 24) (($ |#2|) 18) (($ (-1161)) NIL (|has| |#2| (-1037 (-1161))))) (-4371 (((-3 $ "failed") $) NIL (-2198 (-12 (|has| $ (-148)) (|has| |#2| (-904))) (|has| |#2| (-148))))) (-4078 (((-763)) NIL)) (-2285 ((|#2| $) NIL (|has| |#2| (-550)))) (-1826 (((-121) $ $) NIL)) (-3996 (((-409 (-568)) $ (-568)) 60)) (-2897 (($ $) NIL (|has| |#2| (-815)))) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL)) (-3056 (($) 14 T CONST)) (-1556 (($) 16 T CONST)) (-3190 (($ $) NIL (|has| |#2| (-225))) (($ $ (-763)) NIL (|has| |#2| (-225))) (($ $ (-1161)) NIL (|has| |#2| (-895 (-1161)))) (($ $ (-634 (-1161))) NIL (|has| |#2| (-895 (-1161)))) (($ $ (-1161) (-763)) NIL (|has| |#2| (-895 (-1161)))) (($ $ (-634 (-1161)) (-634 (-763))) NIL (|has| |#2| (-895 (-1161)))) (($ $ (-1 |#2| |#2|) (-763)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1751 (((-121) $ $) NIL (|has| |#2| (-842)))) (-1738 (((-121) $ $) NIL (|has| |#2| (-842)))) (-1717 (((-121) $ $) 35)) (-1745 (((-121) $ $) NIL (|has| |#2| (-842)))) (-1732 (((-121) $ $) NIL (|has| |#2| (-842)))) (-1779 (($ $ $) 23) (($ |#2| |#2|) 54)) (-1773 (($ $) 39) (($ $ $) 41)) (-1767 (($ $ $) 37)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) 50)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) 42) (($ $ $) 44) (($ $ (-409 (-568))) NIL) (($ (-409 (-568)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL))) +(((-866 |#1| |#2|) (-13 (-993 |#2|) (-10 -8 (-15 -3996 ((-409 (-568)) $ (-568))) (-15 -3878 ((-173 (-409 (-568))) $)) (-15 -1429 ($ $)) (-15 -1429 ($ (-568) $)))) (-568) (-863 |#1|)) (T -866)) +((-3996 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-409 (-568))) (-5 *1 (-866 *4 *5)) (-5 *3 (-568)) (-4 *5 (-863 *4)))) (-3878 (*1 *2 *1) (-12 (-14 *3 (-568)) (-5 *2 (-173 (-409 (-568)))) (-5 *1 (-866 *3 *4)) (-4 *4 (-863 *3)))) (-1429 (*1 *1 *1) (-12 (-14 *2 (-568)) (-5 *1 (-866 *2 *3)) (-4 *3 (-863 *2)))) (-1429 (*1 *1 *2 *1) (-12 (-5 *2 (-568)) (-14 *3 *2) (-5 *1 (-866 *3 *4)) (-4 *4 (-863 *3))))) +(-13 (-993 |#2|) (-10 -8 (-15 -3996 ((-409 (-568)) $ (-568))) (-15 -3878 ((-173 (-409 (-568))) $)) (-15 -1429 ($ $)) (-15 -1429 ($ (-568) $)))) +((-3481 (((-242 |#2| (-857 |#1|)) (-242 |#2| |#1|) (-967 |#1|)) NIL)) (-2606 (((-242 |#2| |#1|)) 107)) (-1846 (((-634 (-967 |#1|))) 116)) (-4149 (((-634 (-967 |#1|)) (-634 (-967 |#1|))) 27)) (-4276 (((-242 |#2| |#1|) (-242 |#2| |#1|)) 35)) (-1895 (((-634 (-967 |#1|))) 60)) (-4397 (((-634 (-922 |#1|))) 58)) (-3534 (((-967 |#1|) (-634 (-857 |#1|))) 17)) (-1279 (((-967 |#1|) (-922 |#1|)) 21)) (-1375 (((-634 (-922 |#1|)) (-917)) 45 (|has| (-857 |#1|) (-370)))) (-1547 (((-634 (-922 |#1|)) (-967 |#1|)) 24)) (-2215 (((-774 (-857 |#1|)) (-242 |#2| |#1|) (-922 |#1|)) 119)) (-3354 (((-568) (-917)) 47 (|has| (-857 |#1|) (-370)))) (-3114 (((-568) (-917) (-917)) 49 (|has| (-857 |#1|) (-370)))) (-3281 (((-568) (-917)) 43 (|has| (-857 |#1|) (-370)))) (-2246 (((-2 (|:| |num| (-634 (-242 |#2| |#1|))) (|:| |den| (-242 |#2| |#1|))) (-236 (-922 |#1|))) 62) (((-634 (-409 (-242 |#2| |#1|))) (-236 (-922 |#1|)) (-763)) NIL)) (-2411 (((-236 (-922 |#1|)) (-242 |#2| |#1|)) 135)) (-2525 (((-634 (-242 |#2| (-857 |#1|))) (-236 (-922 |#1|)) (-634 (-242 |#2| |#1|))) 125)) (-2664 (((-634 (-242 |#2| |#1|)) (-236 (-922 |#1|)) (-763)) 123)) (-3039 (((-242 |#2| |#1|) (-242 |#2| |#1|) (-568)) 13)) (-2766 (((-679 |#1|) (-236 (-922 |#1|)) (-634 (-922 |#1|))) 67) (((-679 |#1|) (-236 (-922 |#1|)) (-236 (-922 |#1|))) 69)) (-1801 (((-568)) 105)) (-2126 (((-763)) 103)) (-1896 (((-1249)) 144)) (-1944 (((-1249)) 140)) (-1640 (((-2 (|:| -1379 (-568)) (|:| |num| (-242 |#2| |#1|)) (|:| |den| (-242 |#2| |#1|)) (|:| |upTo| (-568))) (-236 (-922 |#1|)) (-568) (-568)) 32)) (-3781 (((-3 |#1| "failed") (-409 (-242 |#2| |#1|)) (-922 |#1|)) 132) (((-3 |#1| "failed") (-242 |#2| |#1|) (-242 |#2| |#1|) (-922 |#1|)) 127) (((-3 |#1| "failed") (-242 |#2| |#1|) (-922 |#1|)) 96)) (-1339 ((|#1| (-409 (-242 |#2| |#1|)) (-922 |#1|)) 133) ((|#1| (-242 |#2| |#1|) (-242 |#2| |#1|) (-922 |#1|)) 63) ((|#1| (-242 |#2| |#1|) (-922 |#1|)) 98)) (-4007 (((-634 (-259 (-537 |#1| |#2| |#3|)))) 112)) (-2176 (((-634 (-259 (-537 |#1| |#2| |#3|)))) 110)) (-2277 (((-568)) 56 (|has| (-857 |#1|) (-370)))) (-2480 (((-236 (-922 |#1|))) 114)) (-2596 (((-1239 (-568) -3492) (-917)) 41 (|has| (-857 |#1|) (-370))) (((-1239 (-568) -3492)) 38 (|has| (-857 |#1|) (-370)))) (-1637 (((-1157 (-568)) (-917)) 54 (|has| (-857 |#1|) (-370))) (((-1157 (-568))) 52 (|has| (-857 |#1|) (-370))))) +(((-867 |#1| |#2| |#3|) (-10 -7 (-15 -3039 ((-242 |#2| |#1|) (-242 |#2| |#1|) (-568))) (-15 -1944 ((-1249))) (-15 -1896 ((-1249))) (-15 -4276 ((-242 |#2| |#1|) (-242 |#2| |#1|))) (-15 -3481 ((-242 |#2| (-857 |#1|)) (-242 |#2| |#1|) (-967 |#1|))) (-15 -2766 ((-679 |#1|) (-236 (-922 |#1|)) (-236 (-922 |#1|)))) (-15 -2766 ((-679 |#1|) (-236 (-922 |#1|)) (-634 (-922 |#1|)))) (-15 -1279 ((-967 |#1|) (-922 |#1|))) (-15 -1547 ((-634 (-922 |#1|)) (-967 |#1|))) (-15 -3534 ((-967 |#1|) (-634 (-857 |#1|)))) (-15 -4149 ((-634 (-967 |#1|)) (-634 (-967 |#1|)))) (-15 -4397 ((-634 (-922 |#1|)))) (-15 -2606 ((-242 |#2| |#1|))) (-15 -2126 ((-763))) (-15 -1801 ((-568))) (-15 -4007 ((-634 (-259 (-537 |#1| |#2| |#3|))))) (-15 -2176 ((-634 (-259 (-537 |#1| |#2| |#3|))))) (-15 -1895 ((-634 (-967 |#1|)))) (-15 -1846 ((-634 (-967 |#1|)))) (-15 -2215 ((-774 (-857 |#1|)) (-242 |#2| |#1|) (-922 |#1|))) (-15 -2246 ((-634 (-409 (-242 |#2| |#1|))) (-236 (-922 |#1|)) (-763))) (-15 -2246 ((-2 (|:| |num| (-634 (-242 |#2| |#1|))) (|:| |den| (-242 |#2| |#1|))) (-236 (-922 |#1|)))) (-15 -1640 ((-2 (|:| -1379 (-568)) (|:| |num| (-242 |#2| |#1|)) (|:| |den| (-242 |#2| |#1|)) (|:| |upTo| (-568))) (-236 (-922 |#1|)) (-568) (-568))) (-15 -2525 ((-634 (-242 |#2| (-857 |#1|))) (-236 (-922 |#1|)) (-634 (-242 |#2| |#1|)))) (-15 -2664 ((-634 (-242 |#2| |#1|)) (-236 (-922 |#1|)) (-763))) (-15 -1339 (|#1| (-242 |#2| |#1|) (-922 |#1|))) (-15 -1339 (|#1| (-242 |#2| |#1|) (-242 |#2| |#1|) (-922 |#1|))) (-15 -1339 (|#1| (-409 (-242 |#2| |#1|)) (-922 |#1|))) (-15 -3781 ((-3 |#1| "failed") (-242 |#2| |#1|) (-922 |#1|))) (-15 -3781 ((-3 |#1| "failed") (-242 |#2| |#1|) (-242 |#2| |#1|) (-922 |#1|))) (-15 -3781 ((-3 |#1| "failed") (-409 (-242 |#2| |#1|)) (-922 |#1|))) (-15 -2411 ((-236 (-922 |#1|)) (-242 |#2| |#1|))) (-15 -2480 ((-236 (-922 |#1|)))) (IF (|has| (-857 |#1|) (-370)) (PROGN (-15 -1637 ((-1157 (-568)))) (-15 -1637 ((-1157 (-568)) (-917))) (-15 -2277 ((-568))) (-15 -1375 ((-634 (-922 |#1|)) (-917))) (-15 -3281 ((-568) (-917))) (-15 -3354 ((-568) (-917))) (-15 -3114 ((-568) (-917) (-917))) (-15 -2596 ((-1239 (-568) -3492))) (-15 -2596 ((-1239 (-568) -3492) (-917)))) |noBranch|)) (-350) (-634 (-1161)) (-117)) (T -867)) +((-2596 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1239 (-568) -3492)) (-5 *1 (-867 *4 *5 *6)) (-4 (-857 *4) (-370)) (-4 *4 (-350)) (-14 *5 (-634 (-1161))) (-4 *6 (-117)))) (-2596 (*1 *2) (-12 (-5 *2 (-1239 (-568) -3492)) (-5 *1 (-867 *3 *4 *5)) (-4 (-857 *3) (-370)) (-4 *3 (-350)) (-14 *4 (-634 (-1161))) (-4 *5 (-117)))) (-3114 (*1 *2 *3 *3) (-12 (-5 *3 (-917)) (-5 *2 (-568)) (-5 *1 (-867 *4 *5 *6)) (-4 (-857 *4) (-370)) (-4 *4 (-350)) (-14 *5 (-634 (-1161))) (-4 *6 (-117)))) (-3354 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-568)) (-5 *1 (-867 *4 *5 *6)) (-4 (-857 *4) (-370)) (-4 *4 (-350)) (-14 *5 (-634 (-1161))) (-4 *6 (-117)))) (-3281 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-568)) (-5 *1 (-867 *4 *5 *6)) (-4 (-857 *4) (-370)) (-4 *4 (-350)) (-14 *5 (-634 (-1161))) (-4 *6 (-117)))) (-1375 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-634 (-922 *4))) (-5 *1 (-867 *4 *5 *6)) (-4 (-857 *4) (-370)) (-4 *4 (-350)) (-14 *5 (-634 (-1161))) (-4 *6 (-117)))) (-2277 (*1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-867 *3 *4 *5)) (-4 (-857 *3) (-370)) (-4 *3 (-350)) (-14 *4 (-634 (-1161))) (-4 *5 (-117)))) (-1637 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1157 (-568))) (-5 *1 (-867 *4 *5 *6)) (-4 (-857 *4) (-370)) (-4 *4 (-350)) (-14 *5 (-634 (-1161))) (-4 *6 (-117)))) (-1637 (*1 *2) (-12 (-5 *2 (-1157 (-568))) (-5 *1 (-867 *3 *4 *5)) (-4 (-857 *3) (-370)) (-4 *3 (-350)) (-14 *4 (-634 (-1161))) (-4 *5 (-117)))) (-2480 (*1 *2) (-12 (-5 *2 (-236 (-922 *3))) (-5 *1 (-867 *3 *4 *5)) (-4 *3 (-350)) (-14 *4 (-634 (-1161))) (-4 *5 (-117)))) (-2411 (*1 *2 *3) (-12 (-5 *3 (-242 *5 *4)) (-4 *4 (-350)) (-14 *5 (-634 (-1161))) (-5 *2 (-236 (-922 *4))) (-5 *1 (-867 *4 *5 *6)) (-4 *6 (-117)))) (-3781 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-409 (-242 *5 *2))) (-5 *4 (-922 *2)) (-14 *5 (-634 (-1161))) (-4 *2 (-350)) (-5 *1 (-867 *2 *5 *6)) (-4 *6 (-117)))) (-3781 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-242 *5 *2)) (-5 *4 (-922 *2)) (-14 *5 (-634 (-1161))) (-4 *2 (-350)) (-5 *1 (-867 *2 *5 *6)) (-4 *6 (-117)))) (-3781 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-242 *5 *2)) (-5 *4 (-922 *2)) (-14 *5 (-634 (-1161))) (-4 *2 (-350)) (-5 *1 (-867 *2 *5 *6)) (-4 *6 (-117)))) (-1339 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-242 *5 *2))) (-5 *4 (-922 *2)) (-14 *5 (-634 (-1161))) (-4 *2 (-350)) (-5 *1 (-867 *2 *5 *6)) (-4 *6 (-117)))) (-1339 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-242 *5 *2)) (-5 *4 (-922 *2)) (-14 *5 (-634 (-1161))) (-4 *2 (-350)) (-5 *1 (-867 *2 *5 *6)) (-4 *6 (-117)))) (-1339 (*1 *2 *3 *4) (-12 (-5 *3 (-242 *5 *2)) (-5 *4 (-922 *2)) (-14 *5 (-634 (-1161))) (-4 *2 (-350)) (-5 *1 (-867 *2 *5 *6)) (-4 *6 (-117)))) (-2664 (*1 *2 *3 *4) (-12 (-5 *3 (-236 (-922 *5))) (-5 *4 (-763)) (-4 *5 (-350)) (-5 *2 (-634 (-242 *6 *5))) (-5 *1 (-867 *5 *6 *7)) (-14 *6 (-634 (-1161))) (-4 *7 (-117)))) (-2525 (*1 *2 *3 *4) (-12 (-5 *3 (-236 (-922 *5))) (-5 *4 (-634 (-242 *6 *5))) (-4 *5 (-350)) (-14 *6 (-634 (-1161))) (-5 *2 (-634 (-242 *6 (-857 *5)))) (-5 *1 (-867 *5 *6 *7)) (-4 *7 (-117)))) (-1640 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-236 (-922 *5))) (-4 *5 (-350)) (-5 *2 (-2 (|:| -1379 (-568)) (|:| |num| (-242 *6 *5)) (|:| |den| (-242 *6 *5)) (|:| |upTo| (-568)))) (-5 *1 (-867 *5 *6 *7)) (-5 *4 (-568)) (-14 *6 (-634 (-1161))) (-4 *7 (-117)))) (-2246 (*1 *2 *3) (-12 (-5 *3 (-236 (-922 *4))) (-4 *4 (-350)) (-5 *2 (-2 (|:| |num| (-634 (-242 *5 *4))) (|:| |den| (-242 *5 *4)))) (-5 *1 (-867 *4 *5 *6)) (-14 *5 (-634 (-1161))) (-4 *6 (-117)))) (-2246 (*1 *2 *3 *4) (-12 (-5 *3 (-236 (-922 *5))) (-5 *4 (-763)) (-4 *5 (-350)) (-5 *2 (-634 (-409 (-242 *6 *5)))) (-5 *1 (-867 *5 *6 *7)) (-14 *6 (-634 (-1161))) (-4 *7 (-117)))) (-2215 (*1 *2 *3 *4) (-12 (-5 *3 (-242 *6 *5)) (-5 *4 (-922 *5)) (-4 *5 (-350)) (-14 *6 (-634 (-1161))) (-5 *2 (-774 (-857 *5))) (-5 *1 (-867 *5 *6 *7)) (-4 *7 (-117)))) (-1846 (*1 *2) (-12 (-5 *2 (-634 (-967 *3))) (-5 *1 (-867 *3 *4 *5)) (-4 *3 (-350)) (-14 *4 (-634 (-1161))) (-4 *5 (-117)))) (-1895 (*1 *2) (-12 (-5 *2 (-634 (-967 *3))) (-5 *1 (-867 *3 *4 *5)) (-4 *3 (-350)) (-14 *4 (-634 (-1161))) (-4 *5 (-117)))) (-2176 (*1 *2) (-12 (-5 *2 (-634 (-259 (-537 *3 *4 *5)))) (-5 *1 (-867 *3 *4 *5)) (-4 *3 (-350)) (-14 *4 (-634 (-1161))) (-4 *5 (-117)))) (-4007 (*1 *2) (-12 (-5 *2 (-634 (-259 (-537 *3 *4 *5)))) (-5 *1 (-867 *3 *4 *5)) (-4 *3 (-350)) (-14 *4 (-634 (-1161))) (-4 *5 (-117)))) (-1801 (*1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-867 *3 *4 *5)) (-4 *3 (-350)) (-14 *4 (-634 (-1161))) (-4 *5 (-117)))) (-2126 (*1 *2) (-12 (-5 *2 (-763)) (-5 *1 (-867 *3 *4 *5)) (-4 *3 (-350)) (-14 *4 (-634 (-1161))) (-4 *5 (-117)))) (-2606 (*1 *2) (-12 (-5 *2 (-242 *4 *3)) (-5 *1 (-867 *3 *4 *5)) (-4 *3 (-350)) (-14 *4 (-634 (-1161))) (-4 *5 (-117)))) (-4397 (*1 *2) (-12 (-5 *2 (-634 (-922 *3))) (-5 *1 (-867 *3 *4 *5)) (-4 *3 (-350)) (-14 *4 (-634 (-1161))) (-4 *5 (-117)))) (-4149 (*1 *2 *2) (-12 (-5 *2 (-634 (-967 *3))) (-4 *3 (-350)) (-5 *1 (-867 *3 *4 *5)) (-14 *4 (-634 (-1161))) (-4 *5 (-117)))) (-3534 (*1 *2 *3) (-12 (-5 *3 (-634 (-857 *4))) (-4 *4 (-350)) (-5 *2 (-967 *4)) (-5 *1 (-867 *4 *5 *6)) (-14 *5 (-634 (-1161))) (-4 *6 (-117)))) (-1547 (*1 *2 *3) (-12 (-5 *3 (-967 *4)) (-4 *4 (-350)) (-5 *2 (-634 (-922 *4))) (-5 *1 (-867 *4 *5 *6)) (-14 *5 (-634 (-1161))) (-4 *6 (-117)))) (-1279 (*1 *2 *3) (-12 (-5 *3 (-922 *4)) (-4 *4 (-350)) (-5 *2 (-967 *4)) (-5 *1 (-867 *4 *5 *6)) (-14 *5 (-634 (-1161))) (-4 *6 (-117)))) (-2766 (*1 *2 *3 *4) (-12 (-5 *3 (-236 (-922 *5))) (-5 *4 (-634 (-922 *5))) (-4 *5 (-350)) (-5 *2 (-679 *5)) (-5 *1 (-867 *5 *6 *7)) (-14 *6 (-634 (-1161))) (-4 *7 (-117)))) (-2766 (*1 *2 *3 *3) (-12 (-5 *3 (-236 (-922 *4))) (-4 *4 (-350)) (-5 *2 (-679 *4)) (-5 *1 (-867 *4 *5 *6)) (-14 *5 (-634 (-1161))) (-4 *6 (-117)))) (-3481 (*1 *2 *3 *4) (-12 (-5 *3 (-242 *6 *5)) (-5 *4 (-967 *5)) (-4 *5 (-350)) (-14 *6 (-634 (-1161))) (-5 *2 (-242 *6 (-857 *5))) (-5 *1 (-867 *5 *6 *7)) (-4 *7 (-117)))) (-4276 (*1 *2 *2) (-12 (-5 *2 (-242 *4 *3)) (-4 *3 (-350)) (-14 *4 (-634 (-1161))) (-5 *1 (-867 *3 *4 *5)) (-4 *5 (-117)))) (-1896 (*1 *2) (-12 (-5 *2 (-1249)) (-5 *1 (-867 *3 *4 *5)) (-4 *3 (-350)) (-14 *4 (-634 (-1161))) (-4 *5 (-117)))) (-1944 (*1 *2) (-12 (-5 *2 (-1249)) (-5 *1 (-867 *3 *4 *5)) (-4 *3 (-350)) (-14 *4 (-634 (-1161))) (-4 *5 (-117)))) (-3039 (*1 *2 *2 *3) (-12 (-5 *2 (-242 *5 *4)) (-5 *3 (-568)) (-4 *4 (-350)) (-14 *5 (-634 (-1161))) (-5 *1 (-867 *4 *5 *6)) (-4 *6 (-117))))) +(-10 -7 (-15 -3039 ((-242 |#2| |#1|) (-242 |#2| |#1|) (-568))) (-15 -1944 ((-1249))) (-15 -1896 ((-1249))) (-15 -4276 ((-242 |#2| |#1|) (-242 |#2| |#1|))) (-15 -3481 ((-242 |#2| (-857 |#1|)) (-242 |#2| |#1|) (-967 |#1|))) (-15 -2766 ((-679 |#1|) (-236 (-922 |#1|)) (-236 (-922 |#1|)))) (-15 -2766 ((-679 |#1|) (-236 (-922 |#1|)) (-634 (-922 |#1|)))) (-15 -1279 ((-967 |#1|) (-922 |#1|))) (-15 -1547 ((-634 (-922 |#1|)) (-967 |#1|))) (-15 -3534 ((-967 |#1|) (-634 (-857 |#1|)))) (-15 -4149 ((-634 (-967 |#1|)) (-634 (-967 |#1|)))) (-15 -4397 ((-634 (-922 |#1|)))) (-15 -2606 ((-242 |#2| |#1|))) (-15 -2126 ((-763))) (-15 -1801 ((-568))) (-15 -4007 ((-634 (-259 (-537 |#1| |#2| |#3|))))) (-15 -2176 ((-634 (-259 (-537 |#1| |#2| |#3|))))) (-15 -1895 ((-634 (-967 |#1|)))) (-15 -1846 ((-634 (-967 |#1|)))) (-15 -2215 ((-774 (-857 |#1|)) (-242 |#2| |#1|) (-922 |#1|))) (-15 -2246 ((-634 (-409 (-242 |#2| |#1|))) (-236 (-922 |#1|)) (-763))) (-15 -2246 ((-2 (|:| |num| (-634 (-242 |#2| |#1|))) (|:| |den| (-242 |#2| |#1|))) (-236 (-922 |#1|)))) (-15 -1640 ((-2 (|:| -1379 (-568)) (|:| |num| (-242 |#2| |#1|)) (|:| |den| (-242 |#2| |#1|)) (|:| |upTo| (-568))) (-236 (-922 |#1|)) (-568) (-568))) (-15 -2525 ((-634 (-242 |#2| (-857 |#1|))) (-236 (-922 |#1|)) (-634 (-242 |#2| |#1|)))) (-15 -2664 ((-634 (-242 |#2| |#1|)) (-236 (-922 |#1|)) (-763))) (-15 -1339 (|#1| (-242 |#2| |#1|) (-922 |#1|))) (-15 -1339 (|#1| (-242 |#2| |#1|) (-242 |#2| |#1|) (-922 |#1|))) (-15 -1339 (|#1| (-409 (-242 |#2| |#1|)) (-922 |#1|))) (-15 -3781 ((-3 |#1| "failed") (-242 |#2| |#1|) (-922 |#1|))) (-15 -3781 ((-3 |#1| "failed") (-242 |#2| |#1|) (-242 |#2| |#1|) (-922 |#1|))) (-15 -3781 ((-3 |#1| "failed") (-409 (-242 |#2| |#1|)) (-922 |#1|))) (-15 -2411 ((-236 (-922 |#1|)) (-242 |#2| |#1|))) (-15 -2480 ((-236 (-922 |#1|)))) (IF (|has| (-857 |#1|) (-370)) (PROGN (-15 -1637 ((-1157 (-568)))) (-15 -1637 ((-1157 (-568)) (-917))) (-15 -2277 ((-568))) (-15 -1375 ((-634 (-922 |#1|)) (-917))) (-15 -3281 ((-568) (-917))) (-15 -3354 ((-568) (-917))) (-15 -3114 ((-568) (-917) (-917))) (-15 -2596 ((-1239 (-568) -3492))) (-15 -2596 ((-1239 (-568) -3492) (-917)))) |noBranch|)) +((-2606 (((-242 |#2| |#1|)) 83)) (-1846 (((-634 (-966 |#1|))) 92)) (-4149 (((-634 (-966 |#1|)) (-634 (-966 |#1|))) 24)) (-4276 (((-242 |#2| |#1|) (-242 |#2| |#1|)) 75)) (-1895 (((-634 (-966 |#1|))) 65)) (-4397 (((-634 (-921 |#1|))) 63)) (-3534 (((-966 |#1|) (-634 |#1|)) 27)) (-1279 (((-966 |#1|) (-921 |#1|)) 18)) (-1375 (((-634 (-921 |#1|)) (-917)) 50 (|has| |#1| (-370)))) (-1547 (((-634 (-921 |#1|)) (-966 |#1|)) 21)) (-2215 (((-774 |#1|) (-242 |#2| |#1|) (-921 |#1|)) 95)) (-3354 (((-568) (-917)) 52 (|has| |#1| (-370)))) (-3114 (((-568) (-917) (-917)) 54 (|has| |#1| (-370)))) (-3281 (((-568) (-917)) 48 (|has| |#1| (-370)))) (-2246 (((-2 (|:| |num| (-634 (-242 |#2| |#1|))) (|:| |den| (-242 |#2| |#1|))) (-236 (-921 |#1|))) 33) (((-634 (-409 (-242 |#2| |#1|))) (-236 (-921 |#1|)) (-763)) NIL)) (-2411 (((-236 (-921 |#1|)) (-242 |#2| |#1|)) 107)) (-2525 (((-634 (-242 |#2| |#1|)) (-236 (-921 |#1|)) (-634 (-242 |#2| |#1|))) 31)) (-2664 (((-634 (-242 |#2| |#1|)) (-236 (-921 |#1|)) (-763)) 97)) (-3039 (((-242 |#2| |#1|) (-242 |#2| |#1|) (-568)) 13)) (-2766 (((-679 |#1|) (-236 (-921 |#1|)) (-634 (-921 |#1|))) 38) (((-679 |#1|) (-236 (-921 |#1|)) (-236 (-921 |#1|))) 40)) (-1801 (((-568)) 81)) (-2126 (((-763)) 79)) (-1896 (((-1249)) 116)) (-1944 (((-1249)) 112)) (-1640 (((-2 (|:| -1379 (-568)) (|:| |num| (-242 |#2| |#1|)) (|:| |den| (-242 |#2| |#1|)) (|:| |upTo| (-568))) (-236 (-921 |#1|)) (-568) (-568)) NIL)) (-3781 (((-3 |#1| "failed") (-409 (-242 |#2| |#1|)) (-921 |#1|)) 105) (((-3 |#1| "failed") (-242 |#2| |#1|) (-242 |#2| |#1|) (-921 |#1|)) 104) (((-3 |#1| "failed") (-242 |#2| |#1|) (-921 |#1|)) 73)) (-1339 ((|#1| (-409 (-242 |#2| |#1|)) (-921 |#1|)) 102) ((|#1| (-242 |#2| |#1|) (-242 |#2| |#1|) (-921 |#1|)) 34) ((|#1| (-242 |#2| |#1|) (-921 |#1|)) 70)) (-4007 (((-634 (-259 (-513 |#1| |#2| |#3|)))) 88)) (-2176 (((-634 (-259 (-513 |#1| |#2| |#3|)))) 86)) (-2277 (((-568)) 61 (|has| |#1| (-370)))) (-2480 (((-236 (-921 |#1|))) 90)) (-2596 (((-1239 (-568) -3492) (-917)) 46 (|has| |#1| (-370))) (((-1239 (-568) -3492)) 43 (|has| |#1| (-370)))) (-1637 (((-1157 (-568)) (-917)) 59 (|has| |#1| (-370))) (((-1157 (-568))) 57 (|has| |#1| (-370))))) +(((-868 |#1| |#2| |#3|) (-10 -7 (-15 -3039 ((-242 |#2| |#1|) (-242 |#2| |#1|) (-568))) (-15 -2525 ((-634 (-242 |#2| |#1|)) (-236 (-921 |#1|)) (-634 (-242 |#2| |#1|)))) (-15 -1944 ((-1249))) (-15 -1896 ((-1249))) (-15 -4276 ((-242 |#2| |#1|) (-242 |#2| |#1|))) (-15 -3534 ((-966 |#1|) (-634 |#1|))) (-15 -1279 ((-966 |#1|) (-921 |#1|))) (-15 -1547 ((-634 (-921 |#1|)) (-966 |#1|))) (-15 -4149 ((-634 (-966 |#1|)) (-634 (-966 |#1|)))) (-15 -2766 ((-679 |#1|) (-236 (-921 |#1|)) (-236 (-921 |#1|)))) (-15 -2766 ((-679 |#1|) (-236 (-921 |#1|)) (-634 (-921 |#1|)))) (-15 -4397 ((-634 (-921 |#1|)))) (-15 -2606 ((-242 |#2| |#1|))) (-15 -2126 ((-763))) (-15 -1801 ((-568))) (-15 -4007 ((-634 (-259 (-513 |#1| |#2| |#3|))))) (-15 -2176 ((-634 (-259 (-513 |#1| |#2| |#3|))))) (-15 -1895 ((-634 (-966 |#1|)))) (-15 -1846 ((-634 (-966 |#1|)))) (-15 -2215 ((-774 |#1|) (-242 |#2| |#1|) (-921 |#1|))) (-15 -2246 ((-634 (-409 (-242 |#2| |#1|))) (-236 (-921 |#1|)) (-763))) (-15 -2246 ((-2 (|:| |num| (-634 (-242 |#2| |#1|))) (|:| |den| (-242 |#2| |#1|))) (-236 (-921 |#1|)))) (-15 -1640 ((-2 (|:| -1379 (-568)) (|:| |num| (-242 |#2| |#1|)) (|:| |den| (-242 |#2| |#1|)) (|:| |upTo| (-568))) (-236 (-921 |#1|)) (-568) (-568))) (-15 -2664 ((-634 (-242 |#2| |#1|)) (-236 (-921 |#1|)) (-763))) (-15 -1339 (|#1| (-242 |#2| |#1|) (-921 |#1|))) (-15 -1339 (|#1| (-242 |#2| |#1|) (-242 |#2| |#1|) (-921 |#1|))) (-15 -1339 (|#1| (-409 (-242 |#2| |#1|)) (-921 |#1|))) (-15 -3781 ((-3 |#1| "failed") (-242 |#2| |#1|) (-921 |#1|))) (-15 -3781 ((-3 |#1| "failed") (-242 |#2| |#1|) (-242 |#2| |#1|) (-921 |#1|))) (-15 -3781 ((-3 |#1| "failed") (-409 (-242 |#2| |#1|)) (-921 |#1|))) (-15 -2411 ((-236 (-921 |#1|)) (-242 |#2| |#1|))) (-15 -2480 ((-236 (-921 |#1|)))) (IF (|has| |#1| (-370)) (PROGN (-15 -1637 ((-1157 (-568)))) (-15 -1637 ((-1157 (-568)) (-917))) (-15 -2277 ((-568))) (-15 -1375 ((-634 (-921 |#1|)) (-917))) (-15 -3281 ((-568) (-917))) (-15 -3354 ((-568) (-917))) (-15 -3114 ((-568) (-917) (-917))) (-15 -2596 ((-1239 (-568) -3492))) (-15 -2596 ((-1239 (-568) -3492) (-917)))) |noBranch|)) (-365) (-634 (-1161)) (-117)) (T -868)) +((-2596 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1239 (-568) -3492)) (-5 *1 (-868 *4 *5 *6)) (-4 *4 (-370)) (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *6 (-117)))) (-2596 (*1 *2) (-12 (-5 *2 (-1239 (-568) -3492)) (-5 *1 (-868 *3 *4 *5)) (-4 *3 (-370)) (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *5 (-117)))) (-3114 (*1 *2 *3 *3) (-12 (-5 *3 (-917)) (-5 *2 (-568)) (-5 *1 (-868 *4 *5 *6)) (-4 *4 (-370)) (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *6 (-117)))) (-3354 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-568)) (-5 *1 (-868 *4 *5 *6)) (-4 *4 (-370)) (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *6 (-117)))) (-3281 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-568)) (-5 *1 (-868 *4 *5 *6)) (-4 *4 (-370)) (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *6 (-117)))) (-1375 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-634 (-921 *4))) (-5 *1 (-868 *4 *5 *6)) (-4 *4 (-370)) (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *6 (-117)))) (-2277 (*1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-868 *3 *4 *5)) (-4 *3 (-370)) (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *5 (-117)))) (-1637 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1157 (-568))) (-5 *1 (-868 *4 *5 *6)) (-4 *4 (-370)) (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *6 (-117)))) (-1637 (*1 *2) (-12 (-5 *2 (-1157 (-568))) (-5 *1 (-868 *3 *4 *5)) (-4 *3 (-370)) (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *5 (-117)))) (-2480 (*1 *2) (-12 (-5 *2 (-236 (-921 *3))) (-5 *1 (-868 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *5 (-117)))) (-2411 (*1 *2 *3) (-12 (-5 *3 (-242 *5 *4)) (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-5 *2 (-236 (-921 *4))) (-5 *1 (-868 *4 *5 *6)) (-4 *6 (-117)))) (-3781 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-409 (-242 *5 *2))) (-5 *4 (-921 *2)) (-14 *5 (-634 (-1161))) (-4 *2 (-365)) (-5 *1 (-868 *2 *5 *6)) (-4 *6 (-117)))) (-3781 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-242 *5 *2)) (-5 *4 (-921 *2)) (-14 *5 (-634 (-1161))) (-4 *2 (-365)) (-5 *1 (-868 *2 *5 *6)) (-4 *6 (-117)))) (-3781 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-242 *5 *2)) (-5 *4 (-921 *2)) (-14 *5 (-634 (-1161))) (-4 *2 (-365)) (-5 *1 (-868 *2 *5 *6)) (-4 *6 (-117)))) (-1339 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-242 *5 *2))) (-5 *4 (-921 *2)) (-14 *5 (-634 (-1161))) (-4 *2 (-365)) (-5 *1 (-868 *2 *5 *6)) (-4 *6 (-117)))) (-1339 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-242 *5 *2)) (-5 *4 (-921 *2)) (-14 *5 (-634 (-1161))) (-4 *2 (-365)) (-5 *1 (-868 *2 *5 *6)) (-4 *6 (-117)))) (-1339 (*1 *2 *3 *4) (-12 (-5 *3 (-242 *5 *2)) (-5 *4 (-921 *2)) (-14 *5 (-634 (-1161))) (-4 *2 (-365)) (-5 *1 (-868 *2 *5 *6)) (-4 *6 (-117)))) (-2664 (*1 *2 *3 *4) (-12 (-5 *3 (-236 (-921 *5))) (-5 *4 (-763)) (-4 *5 (-365)) (-5 *2 (-634 (-242 *6 *5))) (-5 *1 (-868 *5 *6 *7)) (-14 *6 (-634 (-1161))) (-4 *7 (-117)))) (-1640 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-236 (-921 *5))) (-4 *5 (-365)) (-5 *2 (-2 (|:| -1379 (-568)) (|:| |num| (-242 *6 *5)) (|:| |den| (-242 *6 *5)) (|:| |upTo| (-568)))) (-5 *1 (-868 *5 *6 *7)) (-5 *4 (-568)) (-14 *6 (-634 (-1161))) (-4 *7 (-117)))) (-2246 (*1 *2 *3) (-12 (-5 *3 (-236 (-921 *4))) (-4 *4 (-365)) (-5 *2 (-2 (|:| |num| (-634 (-242 *5 *4))) (|:| |den| (-242 *5 *4)))) (-5 *1 (-868 *4 *5 *6)) (-14 *5 (-634 (-1161))) (-4 *6 (-117)))) (-2246 (*1 *2 *3 *4) (-12 (-5 *3 (-236 (-921 *5))) (-5 *4 (-763)) (-4 *5 (-365)) (-5 *2 (-634 (-409 (-242 *6 *5)))) (-5 *1 (-868 *5 *6 *7)) (-14 *6 (-634 (-1161))) (-4 *7 (-117)))) (-2215 (*1 *2 *3 *4) (-12 (-5 *3 (-242 *6 *5)) (-5 *4 (-921 *5)) (-4 *5 (-365)) (-14 *6 (-634 (-1161))) (-5 *2 (-774 *5)) (-5 *1 (-868 *5 *6 *7)) (-4 *7 (-117)))) (-1846 (*1 *2) (-12 (-5 *2 (-634 (-966 *3))) (-5 *1 (-868 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *5 (-117)))) (-1895 (*1 *2) (-12 (-5 *2 (-634 (-966 *3))) (-5 *1 (-868 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *5 (-117)))) (-2176 (*1 *2) (-12 (-5 *2 (-634 (-259 (-513 *3 *4 *5)))) (-5 *1 (-868 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *5 (-117)))) (-4007 (*1 *2) (-12 (-5 *2 (-634 (-259 (-513 *3 *4 *5)))) (-5 *1 (-868 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *5 (-117)))) (-1801 (*1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-868 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *5 (-117)))) (-2126 (*1 *2) (-12 (-5 *2 (-763)) (-5 *1 (-868 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *5 (-117)))) (-2606 (*1 *2) (-12 (-5 *2 (-242 *4 *3)) (-5 *1 (-868 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *5 (-117)))) (-4397 (*1 *2) (-12 (-5 *2 (-634 (-921 *3))) (-5 *1 (-868 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *5 (-117)))) (-2766 (*1 *2 *3 *4) (-12 (-5 *3 (-236 (-921 *5))) (-5 *4 (-634 (-921 *5))) (-4 *5 (-365)) (-5 *2 (-679 *5)) (-5 *1 (-868 *5 *6 *7)) (-14 *6 (-634 (-1161))) (-4 *7 (-117)))) (-2766 (*1 *2 *3 *3) (-12 (-5 *3 (-236 (-921 *4))) (-4 *4 (-365)) (-5 *2 (-679 *4)) (-5 *1 (-868 *4 *5 *6)) (-14 *5 (-634 (-1161))) (-4 *6 (-117)))) (-4149 (*1 *2 *2) (-12 (-5 *2 (-634 (-966 *3))) (-4 *3 (-365)) (-5 *1 (-868 *3 *4 *5)) (-14 *4 (-634 (-1161))) (-4 *5 (-117)))) (-1547 (*1 *2 *3) (-12 (-5 *3 (-966 *4)) (-4 *4 (-365)) (-5 *2 (-634 (-921 *4))) (-5 *1 (-868 *4 *5 *6)) (-14 *5 (-634 (-1161))) (-4 *6 (-117)))) (-1279 (*1 *2 *3) (-12 (-5 *3 (-921 *4)) (-4 *4 (-365)) (-5 *2 (-966 *4)) (-5 *1 (-868 *4 *5 *6)) (-14 *5 (-634 (-1161))) (-4 *6 (-117)))) (-3534 (*1 *2 *3) (-12 (-5 *3 (-634 *4)) (-4 *4 (-365)) (-5 *2 (-966 *4)) (-5 *1 (-868 *4 *5 *6)) (-14 *5 (-634 (-1161))) (-4 *6 (-117)))) (-4276 (*1 *2 *2) (-12 (-5 *2 (-242 *4 *3)) (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-5 *1 (-868 *3 *4 *5)) (-4 *5 (-117)))) (-1896 (*1 *2) (-12 (-5 *2 (-1249)) (-5 *1 (-868 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *5 (-117)))) (-1944 (*1 *2) (-12 (-5 *2 (-1249)) (-5 *1 (-868 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *5 (-117)))) (-2525 (*1 *2 *3 *2) (-12 (-5 *2 (-634 (-242 *5 *4))) (-5 *3 (-236 (-921 *4))) (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-5 *1 (-868 *4 *5 *6)) (-4 *6 (-117)))) (-3039 (*1 *2 *2 *3) (-12 (-5 *2 (-242 *5 *4)) (-5 *3 (-568)) (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-5 *1 (-868 *4 *5 *6)) (-4 *6 (-117))))) +(-10 -7 (-15 -3039 ((-242 |#2| |#1|) (-242 |#2| |#1|) (-568))) (-15 -2525 ((-634 (-242 |#2| |#1|)) (-236 (-921 |#1|)) (-634 (-242 |#2| |#1|)))) (-15 -1944 ((-1249))) (-15 -1896 ((-1249))) (-15 -4276 ((-242 |#2| |#1|) (-242 |#2| |#1|))) (-15 -3534 ((-966 |#1|) (-634 |#1|))) (-15 -1279 ((-966 |#1|) (-921 |#1|))) (-15 -1547 ((-634 (-921 |#1|)) (-966 |#1|))) (-15 -4149 ((-634 (-966 |#1|)) (-634 (-966 |#1|)))) (-15 -2766 ((-679 |#1|) (-236 (-921 |#1|)) (-236 (-921 |#1|)))) (-15 -2766 ((-679 |#1|) (-236 (-921 |#1|)) (-634 (-921 |#1|)))) (-15 -4397 ((-634 (-921 |#1|)))) (-15 -2606 ((-242 |#2| |#1|))) (-15 -2126 ((-763))) (-15 -1801 ((-568))) (-15 -4007 ((-634 (-259 (-513 |#1| |#2| |#3|))))) (-15 -2176 ((-634 (-259 (-513 |#1| |#2| |#3|))))) (-15 -1895 ((-634 (-966 |#1|)))) (-15 -1846 ((-634 (-966 |#1|)))) (-15 -2215 ((-774 |#1|) (-242 |#2| |#1|) (-921 |#1|))) (-15 -2246 ((-634 (-409 (-242 |#2| |#1|))) (-236 (-921 |#1|)) (-763))) (-15 -2246 ((-2 (|:| |num| (-634 (-242 |#2| |#1|))) (|:| |den| (-242 |#2| |#1|))) (-236 (-921 |#1|)))) (-15 -1640 ((-2 (|:| -1379 (-568)) (|:| |num| (-242 |#2| |#1|)) (|:| |den| (-242 |#2| |#1|)) (|:| |upTo| (-568))) (-236 (-921 |#1|)) (-568) (-568))) (-15 -2664 ((-634 (-242 |#2| |#1|)) (-236 (-921 |#1|)) (-763))) (-15 -1339 (|#1| (-242 |#2| |#1|) (-921 |#1|))) (-15 -1339 (|#1| (-242 |#2| |#1|) (-242 |#2| |#1|) (-921 |#1|))) (-15 -1339 (|#1| (-409 (-242 |#2| |#1|)) (-921 |#1|))) (-15 -3781 ((-3 |#1| "failed") (-242 |#2| |#1|) (-921 |#1|))) (-15 -3781 ((-3 |#1| "failed") (-242 |#2| |#1|) (-242 |#2| |#1|) (-921 |#1|))) (-15 -3781 ((-3 |#1| "failed") (-409 (-242 |#2| |#1|)) (-921 |#1|))) (-15 -2411 ((-236 (-921 |#1|)) (-242 |#2| |#1|))) (-15 -2480 ((-236 (-921 |#1|)))) (IF (|has| |#1| (-370)) (PROGN (-15 -1637 ((-1157 (-568)))) (-15 -1637 ((-1157 (-568)) (-917))) (-15 -2277 ((-568))) (-15 -1375 ((-634 (-921 |#1|)) (-917))) (-15 -3281 ((-568) (-917))) (-15 -3354 ((-568) (-917))) (-15 -3114 ((-568) (-917) (-917))) (-15 -2596 ((-1239 (-568) -3492))) (-15 -2596 ((-1239 (-568) -3492) (-917)))) |noBranch|)) +((-2447 (((-121) $ $) NIL)) (-4386 (((-568) $) 15)) (-4342 (($ (-158)) 11)) (-2807 (($ (-158)) 12)) (-4487 (((-1143) $) NIL)) (-1819 (((-158) $) 13)) (-4022 (((-1108) $) NIL)) (-2570 (($ (-158)) 9)) (-2459 (($ (-158)) 8)) (-2745 (((-850) $) 23) (($ (-158)) 16)) (-3474 (($ (-158)) 10)) (-1717 (((-121) $ $) NIL))) +(((-869) (-13 (-1090) (-10 -8 (-15 -2459 ($ (-158))) (-15 -2570 ($ (-158))) (-15 -3474 ($ (-158))) (-15 -4342 ($ (-158))) (-15 -2807 ($ (-158))) (-15 -1819 ((-158) $)) (-15 -4386 ((-568) $)) (-15 -2745 ($ (-158)))))) (T -869)) +((-2459 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-869)))) (-2570 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-869)))) (-3474 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-869)))) (-4342 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-869)))) (-2807 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-869)))) (-1819 (*1 *2 *1) (-12 (-5 *2 (-158)) (-5 *1 (-869)))) (-4386 (*1 *2 *1) (-12 (-5 *2 (-568)) (-5 *1 (-869)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-869))))) +(-13 (-1090) (-10 -8 (-15 -2459 ($ (-158))) (-15 -2570 ($ (-158))) (-15 -3474 ($ (-158))) (-15 -4342 ($ (-158))) (-15 -2807 ($ (-158))) (-15 -1819 ((-158) $)) (-15 -4386 ((-568) $)) (-15 -2745 ($ (-158))))) +((-2745 (((-310 (-568)) (-409 (-953 (-53)))) 21) (((-310 (-568)) (-953 (-53))) 16))) +(((-870) (-10 -7 (-15 -2745 ((-310 (-568)) (-953 (-53)))) (-15 -2745 ((-310 (-568)) (-409 (-953 (-53))))))) (T -870)) +((-2745 (*1 *2 *3) (-12 (-5 *3 (-409 (-953 (-53)))) (-5 *2 (-310 (-568))) (-5 *1 (-870)))) (-2745 (*1 *2 *3) (-12 (-5 *3 (-953 (-53))) (-5 *2 (-310 (-568))) (-5 *1 (-870))))) +(-10 -7 (-15 -2745 ((-310 (-568)) (-953 (-53)))) (-15 -2745 ((-310 (-568)) (-409 (-953 (-53)))))) +((-2215 ((|#6| |#3| |#7| (-568)) 36) ((|#6| |#3| |#3| |#7|) 33) ((|#6| |#3| |#7|) 31) ((|#6| |#3| (-634 |#6|)) 28))) +(((-871 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -2215 (|#6| |#3| (-634 |#6|))) (-15 -2215 (|#6| |#3| |#7|)) (-15 -2215 (|#6| |#3| |#3| |#7|)) (-15 -2215 (|#6| |#3| |#7| (-568)))) (-365) (-634 (-1161)) (-950 |#1| |#4| (-852 |#2|)) (-230 (-1697 |#2|) (-763)) (-971 |#1|) (-641 |#1|) (-920 |#1| |#6|)) (T -871)) +((-2215 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-568)) (-4 *6 (-365)) (-14 *7 (-634 (-1161))) (-4 *8 (-230 (-1697 *7) (-763))) (-4 *2 (-641 *6)) (-5 *1 (-871 *6 *7 *3 *8 *9 *2 *4)) (-4 *3 (-950 *6 *8 (-852 *7))) (-4 *9 (-971 *6)) (-4 *4 (-920 *6 *2)))) (-2215 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-365)) (-14 *6 (-634 (-1161))) (-4 *7 (-230 (-1697 *6) (-763))) (-4 *2 (-641 *5)) (-5 *1 (-871 *5 *6 *3 *7 *8 *2 *4)) (-4 *3 (-950 *5 *7 (-852 *6))) (-4 *8 (-971 *5)) (-4 *4 (-920 *5 *2)))) (-2215 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-14 *6 (-634 (-1161))) (-4 *7 (-230 (-1697 *6) (-763))) (-4 *2 (-641 *5)) (-5 *1 (-871 *5 *6 *3 *7 *8 *2 *4)) (-4 *3 (-950 *5 *7 (-852 *6))) (-4 *8 (-971 *5)) (-4 *4 (-920 *5 *2)))) (-2215 (*1 *2 *3 *4) (-12 (-5 *4 (-634 *2)) (-4 *5 (-365)) (-14 *6 (-634 (-1161))) (-4 *7 (-230 (-1697 *6) (-763))) (-4 *2 (-641 *5)) (-5 *1 (-871 *5 *6 *3 *7 *8 *2 *9)) (-4 *3 (-950 *5 *7 (-852 *6))) (-4 *8 (-971 *5)) (-4 *9 (-920 *5 *2))))) +(-10 -7 (-15 -2215 (|#6| |#3| (-634 |#6|))) (-15 -2215 (|#6| |#3| |#7|)) (-15 -2215 (|#6| |#3| |#3| |#7|)) (-15 -2215 (|#6| |#3| |#7| (-568)))) +((-2795 (((-873 |#2|) (-1 |#2| |#1|) (-873 |#1|)) 14))) +(((-872 |#1| |#2|) (-10 -7 (-15 -2795 ((-873 |#2|) (-1 |#2| |#1|) (-873 |#1|)))) (-1195) (-1195)) (T -872)) +((-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-873 *5)) (-4 *5 (-1195)) (-4 *6 (-1195)) (-5 *2 (-873 *6)) (-5 *1 (-872 *5 *6))))) +(-10 -7 (-15 -2795 ((-873 |#2|) (-1 |#2| |#1|) (-873 |#1|)))) +((-4430 (($ |#1| |#1|) 8)) (-2100 ((|#1| $ (-763)) 10))) +(((-873 |#1|) (-10 -8 (-15 -4430 ($ |#1| |#1|)) (-15 -2100 (|#1| $ (-763)))) (-1195)) (T -873)) +((-2100 (*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-5 *1 (-873 *2)) (-4 *2 (-1195)))) (-4430 (*1 *1 *2 *2) (-12 (-5 *1 (-873 *2)) (-4 *2 (-1195))))) +(-10 -8 (-15 -4430 ($ |#1| |#1|)) (-15 -2100 (|#1| $ (-763)))) +((-2795 (((-875 |#2|) (-1 |#2| |#1|) (-875 |#1|)) 14))) +(((-874 |#1| |#2|) (-10 -7 (-15 -2795 ((-875 |#2|) (-1 |#2| |#1|) (-875 |#1|)))) (-1195) (-1195)) (T -874)) +((-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-875 *5)) (-4 *5 (-1195)) (-4 *6 (-1195)) (-5 *2 (-875 *6)) (-5 *1 (-874 *5 *6))))) +(-10 -7 (-15 -2795 ((-875 |#2|) (-1 |#2| |#1|) (-875 |#1|)))) +((-4430 (($ |#1| |#1| |#1|) 8)) (-2100 ((|#1| $ (-763)) 10))) +(((-875 |#1|) (-10 -8 (-15 -4430 ($ |#1| |#1| |#1|)) (-15 -2100 (|#1| $ (-763)))) (-1195)) (T -875)) +((-2100 (*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-5 *1 (-875 *2)) (-4 *2 (-1195)))) (-4430 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-875 *2)) (-4 *2 (-1195))))) +(-10 -8 (-15 -4430 ($ |#1| |#1| |#1|)) (-15 -2100 (|#1| $ (-763)))) +((-2795 (((-877 |#2|) (-1 |#2| |#1|) (-877 |#1|)) 14))) +(((-876 |#1| |#2|) (-10 -7 (-15 -2795 ((-877 |#2|) (-1 |#2| |#1|) (-877 |#1|)))) (-1195) (-1195)) (T -876)) +((-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-877 *5)) (-4 *5 (-1195)) (-4 *6 (-1195)) (-5 *2 (-877 *6)) (-5 *1 (-876 *5 *6))))) +(-10 -7 (-15 -2795 ((-877 |#2|) (-1 |#2| |#1|) (-877 |#1|)))) +((-1437 (($ |#1| |#1| |#1|) 8)) (-2100 ((|#1| $ (-763)) 10))) +(((-877 |#1|) (-10 -8 (-15 -1437 ($ |#1| |#1| |#1|)) (-15 -2100 (|#1| $ (-763)))) (-1195)) (T -877)) +((-2100 (*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-5 *1 (-877 *2)) (-4 *2 (-1195)))) (-1437 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1195))))) +(-10 -8 (-15 -1437 ($ |#1| |#1| |#1|)) (-15 -2100 (|#1| $ (-763)))) +((-2904 (((-1141 (-634 (-568))) (-634 (-568)) (-1141 (-634 (-568)))) 30)) (-3605 (((-1141 (-634 (-568))) (-634 (-568)) (-634 (-568))) 26)) (-2125 (((-1141 (-634 (-568))) (-634 (-568))) 39) (((-1141 (-634 (-568))) (-634 (-568)) (-634 (-568))) 38)) (-3307 (((-1141 (-634 (-568))) (-568)) 40)) (-1929 (((-1141 (-634 (-568))) (-568) (-568)) 22) (((-1141 (-634 (-568))) (-568)) 16) (((-1141 (-634 (-568))) (-568) (-568) (-568)) 12)) (-1930 (((-1141 (-634 (-568))) (-1141 (-634 (-568)))) 24)) (-1458 (((-634 (-568)) (-634 (-568))) 23))) +(((-878) (-10 -7 (-15 -1929 ((-1141 (-634 (-568))) (-568) (-568) (-568))) (-15 -1929 ((-1141 (-634 (-568))) (-568))) (-15 -1929 ((-1141 (-634 (-568))) (-568) (-568))) (-15 -1458 ((-634 (-568)) (-634 (-568)))) (-15 -1930 ((-1141 (-634 (-568))) (-1141 (-634 (-568))))) (-15 -3605 ((-1141 (-634 (-568))) (-634 (-568)) (-634 (-568)))) (-15 -2904 ((-1141 (-634 (-568))) (-634 (-568)) (-1141 (-634 (-568))))) (-15 -2125 ((-1141 (-634 (-568))) (-634 (-568)) (-634 (-568)))) (-15 -2125 ((-1141 (-634 (-568))) (-634 (-568)))) (-15 -3307 ((-1141 (-634 (-568))) (-568))))) (T -878)) +((-3307 (*1 *2 *3) (-12 (-5 *2 (-1141 (-634 (-568)))) (-5 *1 (-878)) (-5 *3 (-568)))) (-2125 (*1 *2 *3) (-12 (-5 *2 (-1141 (-634 (-568)))) (-5 *1 (-878)) (-5 *3 (-634 (-568))))) (-2125 (*1 *2 *3 *3) (-12 (-5 *2 (-1141 (-634 (-568)))) (-5 *1 (-878)) (-5 *3 (-634 (-568))))) (-2904 (*1 *2 *3 *2) (-12 (-5 *2 (-1141 (-634 (-568)))) (-5 *3 (-634 (-568))) (-5 *1 (-878)))) (-3605 (*1 *2 *3 *3) (-12 (-5 *2 (-1141 (-634 (-568)))) (-5 *1 (-878)) (-5 *3 (-634 (-568))))) (-1930 (*1 *2 *2) (-12 (-5 *2 (-1141 (-634 (-568)))) (-5 *1 (-878)))) (-1458 (*1 *2 *2) (-12 (-5 *2 (-634 (-568))) (-5 *1 (-878)))) (-1929 (*1 *2 *3 *3) (-12 (-5 *2 (-1141 (-634 (-568)))) (-5 *1 (-878)) (-5 *3 (-568)))) (-1929 (*1 *2 *3) (-12 (-5 *2 (-1141 (-634 (-568)))) (-5 *1 (-878)) (-5 *3 (-568)))) (-1929 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1141 (-634 (-568)))) (-5 *1 (-878)) (-5 *3 (-568))))) +(-10 -7 (-15 -1929 ((-1141 (-634 (-568))) (-568) (-568) (-568))) (-15 -1929 ((-1141 (-634 (-568))) (-568))) (-15 -1929 ((-1141 (-634 (-568))) (-568) (-568))) (-15 -1458 ((-634 (-568)) (-634 (-568)))) (-15 -1930 ((-1141 (-634 (-568))) (-1141 (-634 (-568))))) (-15 -3605 ((-1141 (-634 (-568))) (-634 (-568)) (-634 (-568)))) (-15 -2904 ((-1141 (-634 (-568))) (-634 (-568)) (-1141 (-634 (-568))))) (-15 -2125 ((-1141 (-634 (-568))) (-634 (-568)) (-634 (-568)))) (-15 -2125 ((-1141 (-634 (-568))) (-634 (-568)))) (-15 -3307 ((-1141 (-634 (-568))) (-568)))) +((-4278 (((-887 (-381)) $) 9 (|has| |#1| (-609 (-887 (-381))))) (((-887 (-568)) $) 8 (|has| |#1| (-609 (-887 (-568))))))) +(((-879 |#1|) (-1275) (-1195)) (T -879)) +NIL +(-13 (-10 -7 (IF (|has| |t#1| (-609 (-887 (-568)))) (-6 (-609 (-887 (-568)))) |noBranch|) (IF (|has| |t#1| (-609 (-887 (-381)))) (-6 (-609 (-887 (-381)))) |noBranch|))) +(((-609 (-887 (-381))) |has| |#1| (-609 (-887 (-381)))) ((-609 (-887 (-568))) |has| |#1| (-609 (-887 (-568))))) +((-2447 (((-121) $ $) NIL)) (-1849 (($) 14)) (-2839 (($ (-884 |#1| |#2|) (-884 |#1| |#3|)) 27)) (-2233 (((-884 |#1| |#3|) $) 16)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-1940 (((-121) $) 22)) (-3483 (($) 19)) (-2745 (((-850) $) 30)) (-2934 (((-884 |#1| |#2|) $) 15)) (-1717 (((-121) $ $) 25))) +(((-880 |#1| |#2| |#3|) (-13 (-1090) (-10 -8 (-15 -1940 ((-121) $)) (-15 -3483 ($)) (-15 -1849 ($)) (-15 -2839 ($ (-884 |#1| |#2|) (-884 |#1| |#3|))) (-15 -2934 ((-884 |#1| |#2|) $)) (-15 -2233 ((-884 |#1| |#3|) $)))) (-1090) (-1090) (-658 |#2|)) (T -880)) +((-1940 (*1 *2 *1) (-12 (-4 *4 (-1090)) (-5 *2 (-121)) (-5 *1 (-880 *3 *4 *5)) (-4 *3 (-1090)) (-4 *5 (-658 *4)))) (-3483 (*1 *1) (-12 (-4 *3 (-1090)) (-5 *1 (-880 *2 *3 *4)) (-4 *2 (-1090)) (-4 *4 (-658 *3)))) (-1849 (*1 *1) (-12 (-4 *3 (-1090)) (-5 *1 (-880 *2 *3 *4)) (-4 *2 (-1090)) (-4 *4 (-658 *3)))) (-2839 (*1 *1 *2 *3) (-12 (-5 *2 (-884 *4 *5)) (-5 *3 (-884 *4 *6)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-658 *5)) (-5 *1 (-880 *4 *5 *6)))) (-2934 (*1 *2 *1) (-12 (-4 *4 (-1090)) (-5 *2 (-884 *3 *4)) (-5 *1 (-880 *3 *4 *5)) (-4 *3 (-1090)) (-4 *5 (-658 *4)))) (-2233 (*1 *2 *1) (-12 (-4 *4 (-1090)) (-5 *2 (-884 *3 *5)) (-5 *1 (-880 *3 *4 *5)) (-4 *3 (-1090)) (-4 *5 (-658 *4))))) +(-13 (-1090) (-10 -8 (-15 -1940 ((-121) $)) (-15 -3483 ($)) (-15 -1849 ($)) (-15 -2839 ($ (-884 |#1| |#2|) (-884 |#1| |#3|))) (-15 -2934 ((-884 |#1| |#2|) $)) (-15 -2233 ((-884 |#1| |#3|) $)))) +((-2447 (((-121) $ $) 7)) (-4410 (((-884 |#1| $) $ (-887 |#1|) (-884 |#1| $)) 12)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-2745 (((-850) $) 11)) (-1717 (((-121) $ $) 6))) +(((-881 |#1|) (-1275) (-1090)) (T -881)) +((-4410 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-884 *4 *1)) (-5 *3 (-887 *4)) (-4 *1 (-881 *4)) (-4 *4 (-1090))))) +(-13 (-1090) (-10 -8 (-15 -4410 ((-884 |t#1| $) $ (-887 |t#1|) (-884 |t#1| $))))) +(((-105) . T) ((-608 (-850)) . T) ((-1090) . T)) +((-2841 (((-121) (-634 |#2|) |#3|) 22) (((-121) |#2| |#3|) 17)) (-3408 (((-884 |#1| |#2|) |#2| |#3|) 42 (-12 (-3044 (|has| |#2| (-1037 (-1161)))) (-3044 (|has| |#2| (-1047))))) (((-634 (-288 (-953 |#2|))) |#2| |#3|) 41 (-12 (|has| |#2| (-1047)) (-3044 (|has| |#2| (-1037 (-1161)))))) (((-634 (-288 |#2|)) |#2| |#3|) 34 (|has| |#2| (-1037 (-1161)))) (((-880 |#1| |#2| (-634 |#2|)) (-634 |#2|) |#3|) 20))) +(((-882 |#1| |#2| |#3|) (-10 -7 (-15 -2841 ((-121) |#2| |#3|)) (-15 -2841 ((-121) (-634 |#2|) |#3|)) (-15 -3408 ((-880 |#1| |#2| (-634 |#2|)) (-634 |#2|) |#3|)) (IF (|has| |#2| (-1037 (-1161))) (-15 -3408 ((-634 (-288 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1047)) (-15 -3408 ((-634 (-288 (-953 |#2|))) |#2| |#3|)) (-15 -3408 ((-884 |#1| |#2|) |#2| |#3|))))) (-1090) (-881 |#1|) (-609 (-887 |#1|))) (T -882)) +((-3408 (*1 *2 *3 *4) (-12 (-4 *5 (-1090)) (-5 *2 (-884 *5 *3)) (-5 *1 (-882 *5 *3 *4)) (-3044 (-4 *3 (-1037 (-1161)))) (-3044 (-4 *3 (-1047))) (-4 *3 (-881 *5)) (-4 *4 (-609 (-887 *5))))) (-3408 (*1 *2 *3 *4) (-12 (-4 *5 (-1090)) (-5 *2 (-634 (-288 (-953 *3)))) (-5 *1 (-882 *5 *3 *4)) (-4 *3 (-1047)) (-3044 (-4 *3 (-1037 (-1161)))) (-4 *3 (-881 *5)) (-4 *4 (-609 (-887 *5))))) (-3408 (*1 *2 *3 *4) (-12 (-4 *5 (-1090)) (-5 *2 (-634 (-288 *3))) (-5 *1 (-882 *5 *3 *4)) (-4 *3 (-1037 (-1161))) (-4 *3 (-881 *5)) (-4 *4 (-609 (-887 *5))))) (-3408 (*1 *2 *3 *4) (-12 (-4 *5 (-1090)) (-4 *6 (-881 *5)) (-5 *2 (-880 *5 *6 (-634 *6))) (-5 *1 (-882 *5 *6 *4)) (-5 *3 (-634 *6)) (-4 *4 (-609 (-887 *5))))) (-2841 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *6)) (-4 *6 (-881 *5)) (-4 *5 (-1090)) (-5 *2 (-121)) (-5 *1 (-882 *5 *6 *4)) (-4 *4 (-609 (-887 *5))))) (-2841 (*1 *2 *3 *4) (-12 (-4 *5 (-1090)) (-5 *2 (-121)) (-5 *1 (-882 *5 *3 *4)) (-4 *3 (-881 *5)) (-4 *4 (-609 (-887 *5)))))) +(-10 -7 (-15 -2841 ((-121) |#2| |#3|)) (-15 -2841 ((-121) (-634 |#2|) |#3|)) (-15 -3408 ((-880 |#1| |#2| (-634 |#2|)) (-634 |#2|) |#3|)) (IF (|has| |#2| (-1037 (-1161))) (-15 -3408 ((-634 (-288 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1047)) (-15 -3408 ((-634 (-288 (-953 |#2|))) |#2| |#3|)) (-15 -3408 ((-884 |#1| |#2|) |#2| |#3|))))) +((-2795 (((-884 |#1| |#3|) (-1 |#3| |#2|) (-884 |#1| |#2|)) 21))) +(((-883 |#1| |#2| |#3|) (-10 -7 (-15 -2795 ((-884 |#1| |#3|) (-1 |#3| |#2|) (-884 |#1| |#2|)))) (-1090) (-1090) (-1090)) (T -883)) +((-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-884 *5 *6)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-884 *5 *7)) (-5 *1 (-883 *5 *6 *7))))) +(-10 -7 (-15 -2795 ((-884 |#1| |#3|) (-1 |#3| |#2|) (-884 |#1| |#2|)))) +((-2447 (((-121) $ $) NIL)) (-1791 (($ $ $) 37)) (-1848 (((-3 (-121) "failed") $ (-887 |#1|)) 34)) (-1849 (($) 11)) (-4487 (((-1143) $) NIL)) (-2648 (($ (-887 |#1|) |#2| $) 20)) (-4022 (((-1108) $) NIL)) (-3962 (((-3 |#2| "failed") (-887 |#1|) $) 48)) (-1940 (((-121) $) 14)) (-3483 (($) 12)) (-2043 (((-634 (-2 (|:| -3649 (-1161)) (|:| -4083 |#2|))) $) 25)) (-4287 (($ (-634 (-2 (|:| -3649 (-1161)) (|:| -4083 |#2|)))) 23)) (-2745 (((-850) $) 42)) (-2299 (($ (-887 |#1|) |#2| $ |#2|) 46)) (-4137 (($ (-887 |#1|) |#2| $) 45)) (-1717 (((-121) $ $) 39))) +(((-884 |#1| |#2|) (-13 (-1090) (-10 -8 (-15 -1940 ((-121) $)) (-15 -3483 ($)) (-15 -1849 ($)) (-15 -1791 ($ $ $)) (-15 -3962 ((-3 |#2| "failed") (-887 |#1|) $)) (-15 -4137 ($ (-887 |#1|) |#2| $)) (-15 -2648 ($ (-887 |#1|) |#2| $)) (-15 -2299 ($ (-887 |#1|) |#2| $ |#2|)) (-15 -2043 ((-634 (-2 (|:| -3649 (-1161)) (|:| -4083 |#2|))) $)) (-15 -4287 ($ (-634 (-2 (|:| -3649 (-1161)) (|:| -4083 |#2|))))) (-15 -1848 ((-3 (-121) "failed") $ (-887 |#1|))))) (-1090) (-1090)) (T -884)) +((-1940 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-884 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090)))) (-3483 (*1 *1) (-12 (-5 *1 (-884 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-1090)))) (-1849 (*1 *1) (-12 (-5 *1 (-884 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-1090)))) (-1791 (*1 *1 *1 *1) (-12 (-5 *1 (-884 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-1090)))) (-3962 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-887 *4)) (-4 *4 (-1090)) (-4 *2 (-1090)) (-5 *1 (-884 *4 *2)))) (-4137 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-887 *4)) (-4 *4 (-1090)) (-5 *1 (-884 *4 *3)) (-4 *3 (-1090)))) (-2648 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-887 *4)) (-4 *4 (-1090)) (-5 *1 (-884 *4 *3)) (-4 *3 (-1090)))) (-2299 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-887 *4)) (-4 *4 (-1090)) (-5 *1 (-884 *4 *3)) (-4 *3 (-1090)))) (-2043 (*1 *2 *1) (-12 (-5 *2 (-634 (-2 (|:| -3649 (-1161)) (|:| -4083 *4)))) (-5 *1 (-884 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090)))) (-4287 (*1 *1 *2) (-12 (-5 *2 (-634 (-2 (|:| -3649 (-1161)) (|:| -4083 *4)))) (-4 *4 (-1090)) (-5 *1 (-884 *3 *4)) (-4 *3 (-1090)))) (-1848 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-887 *4)) (-4 *4 (-1090)) (-5 *2 (-121)) (-5 *1 (-884 *4 *5)) (-4 *5 (-1090))))) +(-13 (-1090) (-10 -8 (-15 -1940 ((-121) $)) (-15 -3483 ($)) (-15 -1849 ($)) (-15 -1791 ($ $ $)) (-15 -3962 ((-3 |#2| "failed") (-887 |#1|) $)) (-15 -4137 ($ (-887 |#1|) |#2| $)) (-15 -2648 ($ (-887 |#1|) |#2| $)) (-15 -2299 ($ (-887 |#1|) |#2| $ |#2|)) (-15 -2043 ((-634 (-2 (|:| -3649 (-1161)) (|:| -4083 |#2|))) $)) (-15 -4287 ($ (-634 (-2 (|:| -3649 (-1161)) (|:| -4083 |#2|))))) (-15 -1848 ((-3 (-121) "failed") $ (-887 |#1|))))) +((-1562 (((-887 |#1|) (-887 |#1|) (-634 (-1161)) (-1 (-121) (-634 |#2|))) 30) (((-887 |#1|) (-887 |#1|) (-634 (-1 (-121) |#2|))) 42) (((-887 |#1|) (-887 |#1|) (-1 (-121) |#2|)) 33)) (-1848 (((-121) (-634 |#2|) (-887 |#1|)) 39) (((-121) |#2| (-887 |#1|)) 35)) (-1392 (((-1 (-121) |#2|) (-887 |#1|)) 14)) (-4229 (((-634 |#2|) (-887 |#1|)) 23)) (-2526 (((-887 |#1|) (-887 |#1|) |#2|) 19))) +(((-885 |#1| |#2|) (-10 -7 (-15 -1562 ((-887 |#1|) (-887 |#1|) (-1 (-121) |#2|))) (-15 -1562 ((-887 |#1|) (-887 |#1|) (-634 (-1 (-121) |#2|)))) (-15 -1562 ((-887 |#1|) (-887 |#1|) (-634 (-1161)) (-1 (-121) (-634 |#2|)))) (-15 -1392 ((-1 (-121) |#2|) (-887 |#1|))) (-15 -1848 ((-121) |#2| (-887 |#1|))) (-15 -1848 ((-121) (-634 |#2|) (-887 |#1|))) (-15 -2526 ((-887 |#1|) (-887 |#1|) |#2|)) (-15 -4229 ((-634 |#2|) (-887 |#1|)))) (-1090) (-1195)) (T -885)) +((-4229 (*1 *2 *3) (-12 (-5 *3 (-887 *4)) (-4 *4 (-1090)) (-5 *2 (-634 *5)) (-5 *1 (-885 *4 *5)) (-4 *5 (-1195)))) (-2526 (*1 *2 *2 *3) (-12 (-5 *2 (-887 *4)) (-4 *4 (-1090)) (-5 *1 (-885 *4 *3)) (-4 *3 (-1195)))) (-1848 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *6)) (-5 *4 (-887 *5)) (-4 *5 (-1090)) (-4 *6 (-1195)) (-5 *2 (-121)) (-5 *1 (-885 *5 *6)))) (-1848 (*1 *2 *3 *4) (-12 (-5 *4 (-887 *5)) (-4 *5 (-1090)) (-5 *2 (-121)) (-5 *1 (-885 *5 *3)) (-4 *3 (-1195)))) (-1392 (*1 *2 *3) (-12 (-5 *3 (-887 *4)) (-4 *4 (-1090)) (-5 *2 (-1 (-121) *5)) (-5 *1 (-885 *4 *5)) (-4 *5 (-1195)))) (-1562 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-887 *5)) (-5 *3 (-634 (-1161))) (-5 *4 (-1 (-121) (-634 *6))) (-4 *5 (-1090)) (-4 *6 (-1195)) (-5 *1 (-885 *5 *6)))) (-1562 (*1 *2 *2 *3) (-12 (-5 *2 (-887 *4)) (-5 *3 (-634 (-1 (-121) *5))) (-4 *4 (-1090)) (-4 *5 (-1195)) (-5 *1 (-885 *4 *5)))) (-1562 (*1 *2 *2 *3) (-12 (-5 *2 (-887 *4)) (-5 *3 (-1 (-121) *5)) (-4 *4 (-1090)) (-4 *5 (-1195)) (-5 *1 (-885 *4 *5))))) +(-10 -7 (-15 -1562 ((-887 |#1|) (-887 |#1|) (-1 (-121) |#2|))) (-15 -1562 ((-887 |#1|) (-887 |#1|) (-634 (-1 (-121) |#2|)))) (-15 -1562 ((-887 |#1|) (-887 |#1|) (-634 (-1161)) (-1 (-121) (-634 |#2|)))) (-15 -1392 ((-1 (-121) |#2|) (-887 |#1|))) (-15 -1848 ((-121) |#2| (-887 |#1|))) (-15 -1848 ((-121) (-634 |#2|) (-887 |#1|))) (-15 -2526 ((-887 |#1|) (-887 |#1|) |#2|)) (-15 -4229 ((-634 |#2|) (-887 |#1|)))) +((-2795 (((-887 |#2|) (-1 |#2| |#1|) (-887 |#1|)) 17))) +(((-886 |#1| |#2|) (-10 -7 (-15 -2795 ((-887 |#2|) (-1 |#2| |#1|) (-887 |#1|)))) (-1090) (-1090)) (T -886)) +((-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-887 *5)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-5 *2 (-887 *6)) (-5 *1 (-886 *5 *6))))) +(-10 -7 (-15 -2795 ((-887 |#2|) (-1 |#2| |#1|) (-887 |#1|)))) +((-2447 (((-121) $ $) NIL)) (-4239 (($ $ (-634 (-57))) 62)) (-2055 (((-634 $) $) 116)) (-3227 (((-2 (|:| |var| (-634 (-1161))) (|:| |pred| (-57))) $) 22)) (-2500 (((-121) $) 29)) (-2624 (($ $ (-634 (-1161)) (-57)) 24)) (-4015 (($ $ (-634 (-57))) 61)) (-3666 (((-3 |#1| "failed") $) 59) (((-3 (-1161) "failed") $) 138)) (-2854 ((|#1| $) 55) (((-1161) $) NIL)) (-3856 (($ $) 106)) (-3573 (((-121) $) 45)) (-2314 (((-634 (-57)) $) 43)) (-3111 (($ (-1161) (-121) (-121) (-121)) 63)) (-1744 (((-3 (-634 $) "failed") (-634 $)) 70)) (-4462 (((-121) $) 48)) (-4345 (((-121) $) 47)) (-4487 (((-1143) $) NIL)) (-3324 (((-3 (-634 $) "failed") $) 34)) (-2258 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 41)) (-2672 (((-3 (-2 (|:| |val| $) (|:| -3438 $)) "failed") $) 81)) (-1794 (((-3 (-634 $) "failed") $) 31)) (-3004 (((-3 (-634 $) "failed") $ (-123)) 105) (((-3 (-2 (|:| -4192 (-123)) (|:| |arg| (-634 $))) "failed") $) 93)) (-3163 (((-3 (-634 $) "failed") $) 35)) (-3751 (((-3 (-2 (|:| |val| $) (|:| -3438 (-763))) "failed") $) 38)) (-2251 (((-121) $) 28)) (-4022 (((-1108) $) NIL)) (-2201 (((-121) $) 20)) (-3606 (((-121) $) 44)) (-3499 (((-634 (-57)) $) 109)) (-3906 (((-121) $) 46)) (-2779 (($ (-123) (-634 $)) 90)) (-4154 (((-763) $) 27)) (-3863 (($ $) 60)) (-4278 (($ (-634 $)) 57)) (-1867 (((-121) $) 25)) (-2745 (((-850) $) 50) (($ |#1|) 18) (($ (-1161)) 64)) (-2526 (($ $ (-57)) 108)) (-3056 (($) 89 T CONST)) (-1556 (($) 71 T CONST)) (-1717 (((-121) $ $) 77)) (-1779 (($ $ $) 98)) (-1767 (($ $ $) 102)) (** (($ $ (-763)) 97) (($ $ $) 51)) (* (($ $ $) 103))) +(((-887 |#1|) (-13 (-1090) (-1037 |#1|) (-1037 (-1161)) (-10 -8 (-15 0 ($) -3495) (-15 1 ($) -3495) (-15 -1794 ((-3 (-634 $) "failed") $)) (-15 -3324 ((-3 (-634 $) "failed") $)) (-15 -3004 ((-3 (-634 $) "failed") $ (-123))) (-15 -3004 ((-3 (-2 (|:| -4192 (-123)) (|:| |arg| (-634 $))) "failed") $)) (-15 -3751 ((-3 (-2 (|:| |val| $) (|:| -3438 (-763))) "failed") $)) (-15 -2258 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3163 ((-3 (-634 $) "failed") $)) (-15 -2672 ((-3 (-2 (|:| |val| $) (|:| -3438 $)) "failed") $)) (-15 -2779 ($ (-123) (-634 $))) (-15 -1767 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-763))) (-15 ** ($ $ $)) (-15 -1779 ($ $ $)) (-15 -4154 ((-763) $)) (-15 -4278 ($ (-634 $))) (-15 -3863 ($ $)) (-15 -2251 ((-121) $)) (-15 -3573 ((-121) $)) (-15 -2500 ((-121) $)) (-15 -1867 ((-121) $)) (-15 -3906 ((-121) $)) (-15 -4345 ((-121) $)) (-15 -4462 ((-121) $)) (-15 -3606 ((-121) $)) (-15 -2314 ((-634 (-57)) $)) (-15 -4015 ($ $ (-634 (-57)))) (-15 -4239 ($ $ (-634 (-57)))) (-15 -3111 ($ (-1161) (-121) (-121) (-121))) (-15 -2624 ($ $ (-634 (-1161)) (-57))) (-15 -3227 ((-2 (|:| |var| (-634 (-1161))) (|:| |pred| (-57))) $)) (-15 -2201 ((-121) $)) (-15 -3856 ($ $)) (-15 -2526 ($ $ (-57))) (-15 -3499 ((-634 (-57)) $)) (-15 -2055 ((-634 $) $)) (-15 -1744 ((-3 (-634 $) "failed") (-634 $))))) (-1090)) (T -887)) +((-3056 (*1 *1) (-12 (-5 *1 (-887 *2)) (-4 *2 (-1090)))) (-1556 (*1 *1) (-12 (-5 *1 (-887 *2)) (-4 *2 (-1090)))) (-1794 (*1 *2 *1) (|partial| -12 (-5 *2 (-634 (-887 *3))) (-5 *1 (-887 *3)) (-4 *3 (-1090)))) (-3324 (*1 *2 *1) (|partial| -12 (-5 *2 (-634 (-887 *3))) (-5 *1 (-887 *3)) (-4 *3 (-1090)))) (-3004 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-123)) (-5 *2 (-634 (-887 *4))) (-5 *1 (-887 *4)) (-4 *4 (-1090)))) (-3004 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -4192 (-123)) (|:| |arg| (-634 (-887 *3))))) (-5 *1 (-887 *3)) (-4 *3 (-1090)))) (-3751 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-887 *3)) (|:| -3438 (-763)))) (-5 *1 (-887 *3)) (-4 *3 (-1090)))) (-2258 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-887 *3)) (|:| |den| (-887 *3)))) (-5 *1 (-887 *3)) (-4 *3 (-1090)))) (-3163 (*1 *2 *1) (|partial| -12 (-5 *2 (-634 (-887 *3))) (-5 *1 (-887 *3)) (-4 *3 (-1090)))) (-2672 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-887 *3)) (|:| -3438 (-887 *3)))) (-5 *1 (-887 *3)) (-4 *3 (-1090)))) (-2779 (*1 *1 *2 *3) (-12 (-5 *2 (-123)) (-5 *3 (-634 (-887 *4))) (-5 *1 (-887 *4)) (-4 *4 (-1090)))) (-1767 (*1 *1 *1 *1) (-12 (-5 *1 (-887 *2)) (-4 *2 (-1090)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-887 *2)) (-4 *2 (-1090)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-763)) (-5 *1 (-887 *3)) (-4 *3 (-1090)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-887 *2)) (-4 *2 (-1090)))) (-1779 (*1 *1 *1 *1) (-12 (-5 *1 (-887 *2)) (-4 *2 (-1090)))) (-4154 (*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-887 *3)) (-4 *3 (-1090)))) (-4278 (*1 *1 *2) (-12 (-5 *2 (-634 (-887 *3))) (-5 *1 (-887 *3)) (-4 *3 (-1090)))) (-3863 (*1 *1 *1) (-12 (-5 *1 (-887 *2)) (-4 *2 (-1090)))) (-2251 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-887 *3)) (-4 *3 (-1090)))) (-3573 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-887 *3)) (-4 *3 (-1090)))) (-2500 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-887 *3)) (-4 *3 (-1090)))) (-1867 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-887 *3)) (-4 *3 (-1090)))) (-3906 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-887 *3)) (-4 *3 (-1090)))) (-4345 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-887 *3)) (-4 *3 (-1090)))) (-4462 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-887 *3)) (-4 *3 (-1090)))) (-3606 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-887 *3)) (-4 *3 (-1090)))) (-2314 (*1 *2 *1) (-12 (-5 *2 (-634 (-57))) (-5 *1 (-887 *3)) (-4 *3 (-1090)))) (-4015 (*1 *1 *1 *2) (-12 (-5 *2 (-634 (-57))) (-5 *1 (-887 *3)) (-4 *3 (-1090)))) (-4239 (*1 *1 *1 *2) (-12 (-5 *2 (-634 (-57))) (-5 *1 (-887 *3)) (-4 *3 (-1090)))) (-3111 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-121)) (-5 *1 (-887 *4)) (-4 *4 (-1090)))) (-2624 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-634 (-1161))) (-5 *3 (-57)) (-5 *1 (-887 *4)) (-4 *4 (-1090)))) (-3227 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-634 (-1161))) (|:| |pred| (-57)))) (-5 *1 (-887 *3)) (-4 *3 (-1090)))) (-2201 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-887 *3)) (-4 *3 (-1090)))) (-3856 (*1 *1 *1) (-12 (-5 *1 (-887 *2)) (-4 *2 (-1090)))) (-2526 (*1 *1 *1 *2) (-12 (-5 *2 (-57)) (-5 *1 (-887 *3)) (-4 *3 (-1090)))) (-3499 (*1 *2 *1) (-12 (-5 *2 (-634 (-57))) (-5 *1 (-887 *3)) (-4 *3 (-1090)))) (-2055 (*1 *2 *1) (-12 (-5 *2 (-634 (-887 *3))) (-5 *1 (-887 *3)) (-4 *3 (-1090)))) (-1744 (*1 *2 *2) (|partial| -12 (-5 *2 (-634 (-887 *3))) (-5 *1 (-887 *3)) (-4 *3 (-1090))))) +(-13 (-1090) (-1037 |#1|) (-1037 (-1161)) (-10 -8 (-15 (-3056) ($) -3495) (-15 (-1556) ($) -3495) (-15 -1794 ((-3 (-634 $) "failed") $)) (-15 -3324 ((-3 (-634 $) "failed") $)) (-15 -3004 ((-3 (-634 $) "failed") $ (-123))) (-15 -3004 ((-3 (-2 (|:| -4192 (-123)) (|:| |arg| (-634 $))) "failed") $)) (-15 -3751 ((-3 (-2 (|:| |val| $) (|:| -3438 (-763))) "failed") $)) (-15 -2258 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3163 ((-3 (-634 $) "failed") $)) (-15 -2672 ((-3 (-2 (|:| |val| $) (|:| -3438 $)) "failed") $)) (-15 -2779 ($ (-123) (-634 $))) (-15 -1767 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-763))) (-15 ** ($ $ $)) (-15 -1779 ($ $ $)) (-15 -4154 ((-763) $)) (-15 -4278 ($ (-634 $))) (-15 -3863 ($ $)) (-15 -2251 ((-121) $)) (-15 -3573 ((-121) $)) (-15 -2500 ((-121) $)) (-15 -1867 ((-121) $)) (-15 -3906 ((-121) $)) (-15 -4345 ((-121) $)) (-15 -4462 ((-121) $)) (-15 -3606 ((-121) $)) (-15 -2314 ((-634 (-57)) $)) (-15 -4015 ($ $ (-634 (-57)))) (-15 -4239 ($ $ (-634 (-57)))) (-15 -3111 ($ (-1161) (-121) (-121) (-121))) (-15 -2624 ($ $ (-634 (-1161)) (-57))) (-15 -3227 ((-2 (|:| |var| (-634 (-1161))) (|:| |pred| (-57))) $)) (-15 -2201 ((-121) $)) (-15 -3856 ($ $)) (-15 -2526 ($ $ (-57))) (-15 -3499 ((-634 (-57)) $)) (-15 -2055 ((-634 $) $)) (-15 -1744 ((-3 (-634 $) "failed") (-634 $))))) +((-2447 (((-121) $ $) NIL)) (-3595 (((-634 |#1|) $) 16)) (-3374 (((-121) $) 38)) (-3666 (((-3 (-663 |#1|) "failed") $) 41)) (-2854 (((-663 |#1|) $) 39)) (-3935 (($ $) 18)) (-2521 (($ $ $) NIL)) (-3268 (($ $ $) NIL)) (-4297 (((-634 (-663 |#1|)) $) 23)) (-3678 (((-763) $) 45)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-3876 (((-663 |#1|) $) 17)) (-2745 (((-850) $) 37) (($ (-663 |#1|)) 21) (((-814 |#1|) $) 27) (($ |#1|) 20)) (-1556 (($) 8 T CONST)) (-1751 (((-121) $ $) NIL)) (-1738 (((-121) $ $) NIL)) (-1717 (((-121) $ $) 11)) (-1745 (((-121) $ $) NIL)) (-1732 (((-121) $ $) 48))) +(((-888 |#1|) (-13 (-842) (-1037 (-663 |#1|)) (-10 -8 (-15 1 ($) -3495) (-15 -2745 ((-814 |#1|) $)) (-15 -2745 ($ |#1|)) (-15 -3876 ((-663 |#1|) $)) (-15 -3678 ((-763) $)) (-15 -4297 ((-634 (-663 |#1|)) $)) (-15 -3935 ($ $)) (-15 -3374 ((-121) $)) (-15 -3595 ((-634 |#1|) $)))) (-842)) (T -888)) +((-1556 (*1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-842)))) (-2745 (*1 *2 *1) (-12 (-5 *2 (-814 *3)) (-5 *1 (-888 *3)) (-4 *3 (-842)))) (-2745 (*1 *1 *2) (-12 (-5 *1 (-888 *2)) (-4 *2 (-842)))) (-3876 (*1 *2 *1) (-12 (-5 *2 (-663 *3)) (-5 *1 (-888 *3)) (-4 *3 (-842)))) (-3678 (*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-888 *3)) (-4 *3 (-842)))) (-4297 (*1 *2 *1) (-12 (-5 *2 (-634 (-663 *3))) (-5 *1 (-888 *3)) (-4 *3 (-842)))) (-3935 (*1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-842)))) (-3374 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-888 *3)) (-4 *3 (-842)))) (-3595 (*1 *2 *1) (-12 (-5 *2 (-634 *3)) (-5 *1 (-888 *3)) (-4 *3 (-842))))) +(-13 (-842) (-1037 (-663 |#1|)) (-10 -8 (-15 (-1556) ($) -3495) (-15 -2745 ((-814 |#1|) $)) (-15 -2745 ($ |#1|)) (-15 -3876 ((-663 |#1|) $)) (-15 -3678 ((-763) $)) (-15 -4297 ((-634 (-663 |#1|)) $)) (-15 -3935 ($ $)) (-15 -3374 ((-121) $)) (-15 -3595 ((-634 |#1|) $)))) +((-1474 ((|#1| |#1| |#1|) 19))) +(((-889 |#1| |#2|) (-10 -7 (-15 -1474 (|#1| |#1| |#1|))) (-1219 |#2|) (-1047)) (T -889)) +((-1474 (*1 *2 *2 *2) (-12 (-4 *3 (-1047)) (-5 *1 (-889 *2 *3)) (-4 *2 (-1219 *3))))) +(-10 -7 (-15 -1474 (|#1| |#1| |#1|))) +((-2447 (((-121) $ $) 7)) (-3029 (((-2 (|:| -3029 (-381)) (|:| |explanations| (-1143))) (-1059) (-2 (|:| |pde| (-634 (-310 (-215)))) (|:| |constraints| (-634 (-2 (|:| |start| (-215)) (|:| |finish| (-215)) (|:| |grid| (-763)) (|:| |boundaryType| (-568)) (|:| |dStart| (-679 (-215))) (|:| |dFinish| (-679 (-215)))))) (|:| |f| (-634 (-634 (-310 (-215))))) (|:| |st| (-1143)) (|:| |tol| (-215)))) 13)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-2745 (((-850) $) 11)) (-4030 (((-1035) (-2 (|:| |pde| (-634 (-310 (-215)))) (|:| |constraints| (-634 (-2 (|:| |start| (-215)) (|:| |finish| (-215)) (|:| |grid| (-763)) (|:| |boundaryType| (-568)) (|:| |dStart| (-679 (-215))) (|:| |dFinish| (-679 (-215)))))) (|:| |f| (-634 (-634 (-310 (-215))))) (|:| |st| (-1143)) (|:| |tol| (-215)))) 12)) (-1717 (((-121) $ $) 6))) +(((-890) (-1275)) (T -890)) +((-3029 (*1 *2 *3 *4) (-12 (-4 *1 (-890)) (-5 *3 (-1059)) (-5 *4 (-2 (|:| |pde| (-634 (-310 (-215)))) (|:| |constraints| (-634 (-2 (|:| |start| (-215)) (|:| |finish| (-215)) (|:| |grid| (-763)) (|:| |boundaryType| (-568)) (|:| |dStart| (-679 (-215))) (|:| |dFinish| (-679 (-215)))))) (|:| |f| (-634 (-634 (-310 (-215))))) (|:| |st| (-1143)) (|:| |tol| (-215)))) (-5 *2 (-2 (|:| -3029 (-381)) (|:| |explanations| (-1143)))))) (-4030 (*1 *2 *3) (-12 (-4 *1 (-890)) (-5 *3 (-2 (|:| |pde| (-634 (-310 (-215)))) (|:| |constraints| (-634 (-2 (|:| |start| (-215)) (|:| |finish| (-215)) (|:| |grid| (-763)) (|:| |boundaryType| (-568)) (|:| |dStart| (-679 (-215))) (|:| |dFinish| (-679 (-215)))))) (|:| |f| (-634 (-634 (-310 (-215))))) (|:| |st| (-1143)) (|:| |tol| (-215)))) (-5 *2 (-1035))))) +(-13 (-1090) (-10 -7 (-15 -3029 ((-2 (|:| -3029 (-381)) (|:| |explanations| (-1143))) (-1059) (-2 (|:| |pde| (-634 (-310 (-215)))) (|:| |constraints| (-634 (-2 (|:| |start| (-215)) (|:| |finish| (-215)) (|:| |grid| (-763)) (|:| |boundaryType| (-568)) (|:| |dStart| (-679 (-215))) (|:| |dFinish| (-679 (-215)))))) (|:| |f| (-634 (-634 (-310 (-215))))) (|:| |st| (-1143)) (|:| |tol| (-215))))) (-15 -4030 ((-1035) (-2 (|:| |pde| (-634 (-310 (-215)))) (|:| |constraints| (-634 (-2 (|:| |start| (-215)) (|:| |finish| (-215)) (|:| |grid| (-763)) (|:| |boundaryType| (-568)) (|:| |dStart| (-679 (-215))) (|:| |dFinish| (-679 (-215)))))) (|:| |f| (-634 (-634 (-310 (-215))))) (|:| |st| (-1143)) (|:| |tol| (-215))))))) +(((-105) . T) ((-608 (-850)) . T) ((-1090) . T)) +((-4303 ((|#1| |#1| (-763)) 23)) (-3386 (((-3 |#1| "failed") |#1| |#1|) 22)) (-2847 (((-3 (-2 (|:| -3028 |#1|) (|:| -3284 |#1|)) "failed") |#1| (-763) (-763)) 26) (((-634 |#1|) |#1|) 28))) +(((-891 |#1| |#2|) (-10 -7 (-15 -2847 ((-634 |#1|) |#1|)) (-15 -2847 ((-3 (-2 (|:| -3028 |#1|) (|:| -3284 |#1|)) "failed") |#1| (-763) (-763))) (-15 -3386 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4303 (|#1| |#1| (-763)))) (-1219 |#2|) (-365)) (T -891)) +((-4303 (*1 *2 *2 *3) (-12 (-5 *3 (-763)) (-4 *4 (-365)) (-5 *1 (-891 *2 *4)) (-4 *2 (-1219 *4)))) (-3386 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-365)) (-5 *1 (-891 *2 *3)) (-4 *2 (-1219 *3)))) (-2847 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-763)) (-4 *5 (-365)) (-5 *2 (-2 (|:| -3028 *3) (|:| -3284 *3))) (-5 *1 (-891 *3 *5)) (-4 *3 (-1219 *5)))) (-2847 (*1 *2 *3) (-12 (-4 *4 (-365)) (-5 *2 (-634 *3)) (-5 *1 (-891 *3 *4)) (-4 *3 (-1219 *4))))) +(-10 -7 (-15 -2847 ((-634 |#1|) |#1|)) (-15 -2847 ((-3 (-2 (|:| -3028 |#1|) (|:| -3284 |#1|)) "failed") |#1| (-763) (-763))) (-15 -3386 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4303 (|#1| |#1| (-763)))) +((-4351 (((-1035) (-381) (-381) (-381) (-381) (-763) (-763) (-634 (-310 (-381))) (-634 (-634 (-310 (-381)))) (-1143)) 92) (((-1035) (-381) (-381) (-381) (-381) (-763) (-763) (-634 (-310 (-381))) (-634 (-634 (-310 (-381)))) (-1143) (-215)) 87) (((-1035) (-893) (-1059)) 76) (((-1035) (-893)) 77)) (-3029 (((-2 (|:| -3029 (-381)) (|:| -3391 (-1143)) (|:| |explanations| (-634 (-1143)))) (-893) (-1059)) 50) (((-2 (|:| -3029 (-381)) (|:| -3391 (-1143)) (|:| |explanations| (-634 (-1143)))) (-893)) 52))) +(((-892) (-10 -7 (-15 -4351 ((-1035) (-893))) (-15 -4351 ((-1035) (-893) (-1059))) (-15 -4351 ((-1035) (-381) (-381) (-381) (-381) (-763) (-763) (-634 (-310 (-381))) (-634 (-634 (-310 (-381)))) (-1143) (-215))) (-15 -4351 ((-1035) (-381) (-381) (-381) (-381) (-763) (-763) (-634 (-310 (-381))) (-634 (-634 (-310 (-381)))) (-1143))) (-15 -3029 ((-2 (|:| -3029 (-381)) (|:| -3391 (-1143)) (|:| |explanations| (-634 (-1143)))) (-893))) (-15 -3029 ((-2 (|:| -3029 (-381)) (|:| -3391 (-1143)) (|:| |explanations| (-634 (-1143)))) (-893) (-1059))))) (T -892)) +((-3029 (*1 *2 *3 *4) (-12 (-5 *3 (-893)) (-5 *4 (-1059)) (-5 *2 (-2 (|:| -3029 (-381)) (|:| -3391 (-1143)) (|:| |explanations| (-634 (-1143))))) (-5 *1 (-892)))) (-3029 (*1 *2 *3) (-12 (-5 *3 (-893)) (-5 *2 (-2 (|:| -3029 (-381)) (|:| -3391 (-1143)) (|:| |explanations| (-634 (-1143))))) (-5 *1 (-892)))) (-4351 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-763)) (-5 *6 (-634 (-634 (-310 *3)))) (-5 *7 (-1143)) (-5 *5 (-634 (-310 (-381)))) (-5 *3 (-381)) (-5 *2 (-1035)) (-5 *1 (-892)))) (-4351 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-763)) (-5 *6 (-634 (-634 (-310 *3)))) (-5 *7 (-1143)) (-5 *8 (-215)) (-5 *5 (-634 (-310 (-381)))) (-5 *3 (-381)) (-5 *2 (-1035)) (-5 *1 (-892)))) (-4351 (*1 *2 *3 *4) (-12 (-5 *3 (-893)) (-5 *4 (-1059)) (-5 *2 (-1035)) (-5 *1 (-892)))) (-4351 (*1 *2 *3) (-12 (-5 *3 (-893)) (-5 *2 (-1035)) (-5 *1 (-892))))) +(-10 -7 (-15 -4351 ((-1035) (-893))) (-15 -4351 ((-1035) (-893) (-1059))) (-15 -4351 ((-1035) (-381) (-381) (-381) (-381) (-763) (-763) (-634 (-310 (-381))) (-634 (-634 (-310 (-381)))) (-1143) (-215))) (-15 -4351 ((-1035) (-381) (-381) (-381) (-381) (-763) (-763) (-634 (-310 (-381))) (-634 (-634 (-310 (-381)))) (-1143))) (-15 -3029 ((-2 (|:| -3029 (-381)) (|:| -3391 (-1143)) (|:| |explanations| (-634 (-1143)))) (-893))) (-15 -3029 ((-2 (|:| -3029 (-381)) (|:| -3391 (-1143)) (|:| |explanations| (-634 (-1143)))) (-893) (-1059)))) +((-2447 (((-121) $ $) NIL)) (-2854 (((-2 (|:| |pde| (-634 (-310 (-215)))) (|:| |constraints| (-634 (-2 (|:| |start| (-215)) (|:| |finish| (-215)) (|:| |grid| (-763)) (|:| |boundaryType| (-568)) (|:| |dStart| (-679 (-215))) (|:| |dFinish| (-679 (-215)))))) (|:| |f| (-634 (-634 (-310 (-215))))) (|:| |st| (-1143)) (|:| |tol| (-215))) $) 10)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2745 (((-850) $) 12) (($ (-2 (|:| |pde| (-634 (-310 (-215)))) (|:| |constraints| (-634 (-2 (|:| |start| (-215)) (|:| |finish| (-215)) (|:| |grid| (-763)) (|:| |boundaryType| (-568)) (|:| |dStart| (-679 (-215))) (|:| |dFinish| (-679 (-215)))))) (|:| |f| (-634 (-634 (-310 (-215))))) (|:| |st| (-1143)) (|:| |tol| (-215)))) 9)) (-1717 (((-121) $ $) NIL))) +(((-893) (-13 (-1090) (-10 -8 (-15 -2745 ($ (-2 (|:| |pde| (-634 (-310 (-215)))) (|:| |constraints| (-634 (-2 (|:| |start| (-215)) (|:| |finish| (-215)) (|:| |grid| (-763)) (|:| |boundaryType| (-568)) (|:| |dStart| (-679 (-215))) (|:| |dFinish| (-679 (-215)))))) (|:| |f| (-634 (-634 (-310 (-215))))) (|:| |st| (-1143)) (|:| |tol| (-215))))) (-15 -2745 ((-850) $)) (-15 -2854 ((-2 (|:| |pde| (-634 (-310 (-215)))) (|:| |constraints| (-634 (-2 (|:| |start| (-215)) (|:| |finish| (-215)) (|:| |grid| (-763)) (|:| |boundaryType| (-568)) (|:| |dStart| (-679 (-215))) (|:| |dFinish| (-679 (-215)))))) (|:| |f| (-634 (-634 (-310 (-215))))) (|:| |st| (-1143)) (|:| |tol| (-215))) $))))) (T -893)) +((-2745 (*1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-893)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-634 (-310 (-215)))) (|:| |constraints| (-634 (-2 (|:| |start| (-215)) (|:| |finish| (-215)) (|:| |grid| (-763)) (|:| |boundaryType| (-568)) (|:| |dStart| (-679 (-215))) (|:| |dFinish| (-679 (-215)))))) (|:| |f| (-634 (-634 (-310 (-215))))) (|:| |st| (-1143)) (|:| |tol| (-215)))) (-5 *1 (-893)))) (-2854 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-634 (-310 (-215)))) (|:| |constraints| (-634 (-2 (|:| |start| (-215)) (|:| |finish| (-215)) (|:| |grid| (-763)) (|:| |boundaryType| (-568)) (|:| |dStart| (-679 (-215))) (|:| |dFinish| (-679 (-215)))))) (|:| |f| (-634 (-634 (-310 (-215))))) (|:| |st| (-1143)) (|:| |tol| (-215)))) (-5 *1 (-893))))) +(-13 (-1090) (-10 -8 (-15 -2745 ($ (-2 (|:| |pde| (-634 (-310 (-215)))) (|:| |constraints| (-634 (-2 (|:| |start| (-215)) (|:| |finish| (-215)) (|:| |grid| (-763)) (|:| |boundaryType| (-568)) (|:| |dStart| (-679 (-215))) (|:| |dFinish| (-679 (-215)))))) (|:| |f| (-634 (-634 (-310 (-215))))) (|:| |st| (-1143)) (|:| |tol| (-215))))) (-15 -2745 ((-850) $)) (-15 -2854 ((-2 (|:| |pde| (-634 (-310 (-215)))) (|:| |constraints| (-634 (-2 (|:| |start| (-215)) (|:| |finish| (-215)) (|:| |grid| (-763)) (|:| |boundaryType| (-568)) (|:| |dStart| (-679 (-215))) (|:| |dFinish| (-679 (-215)))))) (|:| |f| (-634 (-634 (-310 (-215))))) (|:| |st| (-1143)) (|:| |tol| (-215))) $)))) +((-4189 (($ $ |#2|) NIL) (($ $ (-634 |#2|)) 10) (($ $ |#2| (-763)) 12) (($ $ (-634 |#2|) (-634 (-763))) 15)) (-3190 (($ $ |#2|) 16) (($ $ (-634 |#2|)) 18) (($ $ |#2| (-763)) 19) (($ $ (-634 |#2|) (-634 (-763))) 21))) +(((-894 |#1| |#2|) (-10 -8 (-15 -3190 (|#1| |#1| (-634 |#2|) (-634 (-763)))) (-15 -3190 (|#1| |#1| |#2| (-763))) (-15 -3190 (|#1| |#1| (-634 |#2|))) (-15 -3190 (|#1| |#1| |#2|)) (-15 -4189 (|#1| |#1| (-634 |#2|) (-634 (-763)))) (-15 -4189 (|#1| |#1| |#2| (-763))) (-15 -4189 (|#1| |#1| (-634 |#2|))) (-15 -4189 (|#1| |#1| |#2|))) (-895 |#2|) (-1090)) (T -894)) +NIL +(-10 -8 (-15 -3190 (|#1| |#1| (-634 |#2|) (-634 (-763)))) (-15 -3190 (|#1| |#1| |#2| (-763))) (-15 -3190 (|#1| |#1| (-634 |#2|))) (-15 -3190 (|#1| |#1| |#2|)) (-15 -4189 (|#1| |#1| (-634 |#2|) (-634 (-763)))) (-15 -4189 (|#1| |#1| |#2| (-763))) (-15 -4189 (|#1| |#1| (-634 |#2|))) (-15 -4189 (|#1| |#1| |#2|))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-3134 (((-3 $ "failed") $ $) 18)) (-2671 (($) 16 T CONST)) (-2925 (((-3 $ "failed") $) 33)) (-2735 (((-121) $) 30)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-4189 (($ $ |#1|) 41) (($ $ (-634 |#1|)) 40) (($ $ |#1| (-763)) 39) (($ $ (-634 |#1|) (-634 (-763))) 38)) (-2745 (((-850) $) 11) (($ (-568)) 27)) (-4078 (((-763)) 28)) (-1887 (($ $ (-917)) 25) (($ $ (-763)) 32)) (-3056 (($) 17 T CONST)) (-1556 (($) 29 T CONST)) (-3190 (($ $ |#1|) 37) (($ $ (-634 |#1|)) 36) (($ $ |#1| (-763)) 35) (($ $ (-634 |#1|) (-634 (-763))) 34)) (-1717 (((-121) $ $) 6)) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 24) (($ $ (-763)) 31)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 23))) +(((-895 |#1|) (-1275) (-1090)) (T -895)) +((-4189 (*1 *1 *1 *2) (-12 (-4 *1 (-895 *2)) (-4 *2 (-1090)))) (-4189 (*1 *1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *1 (-895 *3)) (-4 *3 (-1090)))) (-4189 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-763)) (-4 *1 (-895 *2)) (-4 *2 (-1090)))) (-4189 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-634 *4)) (-5 *3 (-634 (-763))) (-4 *1 (-895 *4)) (-4 *4 (-1090)))) (-3190 (*1 *1 *1 *2) (-12 (-4 *1 (-895 *2)) (-4 *2 (-1090)))) (-3190 (*1 *1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *1 (-895 *3)) (-4 *3 (-1090)))) (-3190 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-763)) (-4 *1 (-895 *2)) (-4 *2 (-1090)))) (-3190 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-634 *4)) (-5 *3 (-634 (-763))) (-4 *1 (-895 *4)) (-4 *4 (-1090))))) +(-13 (-1047) (-10 -8 (-15 -4189 ($ $ |t#1|)) (-15 -4189 ($ $ (-634 |t#1|))) (-15 -4189 ($ $ |t#1| (-763))) (-15 -4189 ($ $ (-634 |t#1|) (-634 (-763)))) (-15 -3190 ($ $ |t#1|)) (-15 -3190 ($ $ (-634 |t#1|))) (-15 -3190 ($ $ |t#1| (-763))) (-15 -3190 ($ $ (-634 |t#1|) (-634 (-763)))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-105) . T) ((-137) . T) ((-608 (-850)) . T) ((-637 $) . T) ((-716) . T) ((-1047) . T) ((-1054) . T) ((-1102) . T) ((-1090) . T)) +((-2447 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-2850 ((|#1| $) 26)) (-2510 (((-121) $ (-763)) NIL)) (-1659 ((|#1| $ |#1|) NIL (|has| $ (-6 -4520)))) (-3497 (($ $ $) NIL (|has| $ (-6 -4520)))) (-3089 (($ $ $) NIL (|has| $ (-6 -4520)))) (-2436 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4520))) (($ $ "left" $) NIL (|has| $ (-6 -4520))) (($ $ "right" $) NIL (|has| $ (-6 -4520)))) (-3827 (($ $ (-634 $)) NIL (|has| $ (-6 -4520)))) (-2671 (($) NIL T CONST)) (-3284 (($ $) 25)) (-1844 (($ |#1|) 12) (($ $ $) 17)) (-4360 (((-634 |#1|) $) NIL (|has| $ (-6 -4519)))) (-2287 (((-634 $) $) NIL)) (-1700 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-1737 (((-121) $ (-763)) NIL)) (-1979 (((-634 |#1|) $) NIL (|has| $ (-6 -4519)))) (-3109 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-3674 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#1| |#1|) $) NIL)) (-2166 (((-121) $ (-763)) NIL)) (-3028 (($ $) 23)) (-2869 (((-634 |#1|) $) NIL)) (-1651 (((-121) $) 20)) (-4487 (((-1143) $) NIL (|has| |#1| (-1090)))) (-4022 (((-1108) $) NIL (|has| |#1| (-1090)))) (-1387 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-634 |#1|) (-634 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))))) (-3171 (((-121) $ $) NIL)) (-3084 (((-121) $) NIL)) (-3248 (($) NIL)) (-2779 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4075 (((-568) $ $) NIL)) (-3790 (((-121) $) NIL)) (-4168 (((-763) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519))) (((-763) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-3863 (($ $) NIL)) (-2745 (((-850) $) 29 (|has| |#1| (-1090))) (((-1182 |#1|) $) 9)) (-4339 (((-634 $) $) NIL)) (-3491 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-1319 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-1717 (((-121) $ $) 21 (|has| |#1| (-1090)))) (-1697 (((-763) $) NIL (|has| $ (-6 -4519))))) +(((-896 |#1|) (-13 (-128 |#1|) (-10 -8 (-15 -1844 ($ |#1|)) (-15 -1844 ($ $ $)) (-15 -2745 ((-1182 |#1|) $)))) (-1090)) (T -896)) +((-1844 (*1 *1 *2) (-12 (-5 *1 (-896 *2)) (-4 *2 (-1090)))) (-1844 (*1 *1 *1 *1) (-12 (-5 *1 (-896 *2)) (-4 *2 (-1090)))) (-2745 (*1 *2 *1) (-12 (-5 *2 (-1182 *3)) (-5 *1 (-896 *3)) (-4 *3 (-1090))))) +(-13 (-128 |#1|) (-10 -8 (-15 -1844 ($ |#1|)) (-15 -1844 ($ $ $)) (-15 -2745 ((-1182 |#1|) $)))) +((-3271 ((|#2| (-1127 |#1| |#2|)) 39))) +(((-897 |#1| |#2|) (-10 -7 (-15 -3271 (|#2| (-1127 |#1| |#2|)))) (-917) (-13 (-1047) (-10 -7 (-6 (-4521 "*"))))) (T -897)) +((-3271 (*1 *2 *3) (-12 (-5 *3 (-1127 *4 *2)) (-14 *4 (-917)) (-4 *2 (-13 (-1047) (-10 -7 (-6 (-4521 "*"))))) (-5 *1 (-897 *4 *2))))) +(-10 -7 (-15 -3271 (|#2| (-1127 |#1| |#2|)))) +((-2447 (((-121) $ $) 7)) (-2671 (($) 19 T CONST)) (-2925 (((-3 $ "failed") $) 15)) (-3340 (((-1092 |#1|) $ |#1|) 34)) (-2735 (((-121) $) 18)) (-2521 (($ $ $) 32 (-2198 (|has| |#1| (-842)) (|has| |#1| (-370))))) (-3268 (($ $ $) 31 (-2198 (|has| |#1| (-842)) (|has| |#1| (-370))))) (-4487 (((-1143) $) 9)) (-2081 (($ $) 26)) (-4022 (((-1108) $) 10)) (-1339 ((|#1| $ |#1|) 36)) (-2779 ((|#1| $ |#1|) 35)) (-2921 (($ (-634 (-634 |#1|))) 37)) (-3503 (($ (-634 |#1|)) 38)) (-1458 (($ $ $) 22)) (-2353 (($ $ $) 21)) (-2745 (((-850) $) 11)) (-1887 (($ $ (-917)) 12) (($ $ (-763)) 16) (($ $ (-568)) 23)) (-1556 (($) 20 T CONST)) (-1751 (((-121) $ $) 29 (-2198 (|has| |#1| (-842)) (|has| |#1| (-370))))) (-1738 (((-121) $ $) 28 (-2198 (|has| |#1| (-842)) (|has| |#1| (-370))))) (-1717 (((-121) $ $) 6)) (-1745 (((-121) $ $) 30 (-2198 (|has| |#1| (-842)) (|has| |#1| (-370))))) (-1732 (((-121) $ $) 33)) (-1779 (($ $ $) 25)) (** (($ $ (-917)) 13) (($ $ (-763)) 17) (($ $ (-568)) 24)) (* (($ $ $) 14))) +(((-898 |#1|) (-1275) (-1090)) (T -898)) +((-3503 (*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-1090)) (-4 *1 (-898 *3)))) (-2921 (*1 *1 *2) (-12 (-5 *2 (-634 (-634 *3))) (-4 *3 (-1090)) (-4 *1 (-898 *3)))) (-1339 (*1 *2 *1 *2) (-12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))) (-2779 (*1 *2 *1 *2) (-12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))) (-3340 (*1 *2 *1 *3) (-12 (-4 *1 (-898 *3)) (-4 *3 (-1090)) (-5 *2 (-1092 *3)))) (-1732 (*1 *2 *1 *1) (-12 (-4 *1 (-898 *3)) (-4 *3 (-1090)) (-5 *2 (-121))))) +(-13 (-478) (-10 -8 (-15 -3503 ($ (-634 |t#1|))) (-15 -2921 ($ (-634 (-634 |t#1|)))) (-15 -1339 (|t#1| $ |t#1|)) (-15 -2779 (|t#1| $ |t#1|)) (-15 -3340 ((-1092 |t#1|) $ |t#1|)) (-15 -1732 ((-121) $ $)) (IF (|has| |t#1| (-842)) (-6 (-842)) |noBranch|) (IF (|has| |t#1| (-370)) (-6 (-842)) |noBranch|))) +(((-105) . T) ((-608 (-850)) . T) ((-478) . T) ((-716) . T) ((-842) -2198 (|has| |#1| (-842)) (|has| |#1| (-370))) ((-1102) . T) ((-1090) . T)) +((-2447 (((-121) $ $) NIL)) (-2639 (((-634 (-634 (-763))) $) 106)) (-2772 (((-634 (-763)) (-900 |#1|) $) 128)) (-4322 (((-634 (-763)) (-900 |#1|) $) 129)) (-3298 (((-634 (-900 |#1|)) $) 96)) (-1731 (((-900 |#1|) $ (-568)) 101) (((-900 |#1|) $) 102)) (-3901 (($ (-634 (-900 |#1|))) 108)) (-4477 (((-763) $) 103)) (-3389 (((-1092 (-1092 |#1|)) $) 126)) (-3340 (((-1092 |#1|) $ |#1|) 119) (((-1092 (-1092 |#1|)) $ (-1092 |#1|)) 137) (((-1092 (-634 |#1|)) $ (-634 |#1|)) 140)) (-3192 (((-1092 |#1|) $) 99)) (-3109 (((-121) (-900 |#1|) $) 90)) (-4487 (((-1143) $) NIL)) (-1594 (((-1249) $) 93) (((-1249) $ (-568) (-568)) 141)) (-4022 (((-1108) $) NIL)) (-2865 (((-634 (-900 |#1|)) $) 94)) (-2779 (((-900 |#1|) $ (-763)) 97)) (-3206 (((-763) $) 104)) (-2745 (((-850) $) 117) (((-634 (-900 |#1|)) $) 22) (($ (-634 (-900 |#1|))) 107)) (-1461 (((-634 |#1|) $) 105)) (-1717 (((-121) $ $) 134)) (-1745 (((-121) $ $) 132)) (-1732 (((-121) $ $) 131))) +(((-899 |#1|) (-13 (-1090) (-10 -8 (-15 -2745 ((-634 (-900 |#1|)) $)) (-15 -2865 ((-634 (-900 |#1|)) $)) (-15 -2779 ((-900 |#1|) $ (-763))) (-15 -1731 ((-900 |#1|) $ (-568))) (-15 -1731 ((-900 |#1|) $)) (-15 -4477 ((-763) $)) (-15 -3206 ((-763) $)) (-15 -1461 ((-634 |#1|) $)) (-15 -3298 ((-634 (-900 |#1|)) $)) (-15 -2639 ((-634 (-634 (-763))) $)) (-15 -2745 ($ (-634 (-900 |#1|)))) (-15 -3901 ($ (-634 (-900 |#1|)))) (-15 -3340 ((-1092 |#1|) $ |#1|)) (-15 -3389 ((-1092 (-1092 |#1|)) $)) (-15 -3340 ((-1092 (-1092 |#1|)) $ (-1092 |#1|))) (-15 -3340 ((-1092 (-634 |#1|)) $ (-634 |#1|))) (-15 -3109 ((-121) (-900 |#1|) $)) (-15 -2772 ((-634 (-763)) (-900 |#1|) $)) (-15 -4322 ((-634 (-763)) (-900 |#1|) $)) (-15 -3192 ((-1092 |#1|) $)) (-15 -1732 ((-121) $ $)) (-15 -1745 ((-121) $ $)) (-15 -1594 ((-1249) $)) (-15 -1594 ((-1249) $ (-568) (-568))))) (-1090)) (T -899)) +((-2745 (*1 *2 *1) (-12 (-5 *2 (-634 (-900 *3))) (-5 *1 (-899 *3)) (-4 *3 (-1090)))) (-2865 (*1 *2 *1) (-12 (-5 *2 (-634 (-900 *3))) (-5 *1 (-899 *3)) (-4 *3 (-1090)))) (-2779 (*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-5 *2 (-900 *4)) (-5 *1 (-899 *4)) (-4 *4 (-1090)))) (-1731 (*1 *2 *1 *3) (-12 (-5 *3 (-568)) (-5 *2 (-900 *4)) (-5 *1 (-899 *4)) (-4 *4 (-1090)))) (-1731 (*1 *2 *1) (-12 (-5 *2 (-900 *3)) (-5 *1 (-899 *3)) (-4 *3 (-1090)))) (-4477 (*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-899 *3)) (-4 *3 (-1090)))) (-3206 (*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-899 *3)) (-4 *3 (-1090)))) (-1461 (*1 *2 *1) (-12 (-5 *2 (-634 *3)) (-5 *1 (-899 *3)) (-4 *3 (-1090)))) (-3298 (*1 *2 *1) (-12 (-5 *2 (-634 (-900 *3))) (-5 *1 (-899 *3)) (-4 *3 (-1090)))) (-2639 (*1 *2 *1) (-12 (-5 *2 (-634 (-634 (-763)))) (-5 *1 (-899 *3)) (-4 *3 (-1090)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-634 (-900 *3))) (-4 *3 (-1090)) (-5 *1 (-899 *3)))) (-3901 (*1 *1 *2) (-12 (-5 *2 (-634 (-900 *3))) (-4 *3 (-1090)) (-5 *1 (-899 *3)))) (-3340 (*1 *2 *1 *3) (-12 (-5 *2 (-1092 *3)) (-5 *1 (-899 *3)) (-4 *3 (-1090)))) (-3389 (*1 *2 *1) (-12 (-5 *2 (-1092 (-1092 *3))) (-5 *1 (-899 *3)) (-4 *3 (-1090)))) (-3340 (*1 *2 *1 *3) (-12 (-4 *4 (-1090)) (-5 *2 (-1092 (-1092 *4))) (-5 *1 (-899 *4)) (-5 *3 (-1092 *4)))) (-3340 (*1 *2 *1 *3) (-12 (-4 *4 (-1090)) (-5 *2 (-1092 (-634 *4))) (-5 *1 (-899 *4)) (-5 *3 (-634 *4)))) (-3109 (*1 *2 *3 *1) (-12 (-5 *3 (-900 *4)) (-4 *4 (-1090)) (-5 *2 (-121)) (-5 *1 (-899 *4)))) (-2772 (*1 *2 *3 *1) (-12 (-5 *3 (-900 *4)) (-4 *4 (-1090)) (-5 *2 (-634 (-763))) (-5 *1 (-899 *4)))) (-4322 (*1 *2 *3 *1) (-12 (-5 *3 (-900 *4)) (-4 *4 (-1090)) (-5 *2 (-634 (-763))) (-5 *1 (-899 *4)))) (-3192 (*1 *2 *1) (-12 (-5 *2 (-1092 *3)) (-5 *1 (-899 *3)) (-4 *3 (-1090)))) (-1732 (*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-899 *3)) (-4 *3 (-1090)))) (-1745 (*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-899 *3)) (-4 *3 (-1090)))) (-1594 (*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-899 *3)) (-4 *3 (-1090)))) (-1594 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-568)) (-5 *2 (-1249)) (-5 *1 (-899 *4)) (-4 *4 (-1090))))) +(-13 (-1090) (-10 -8 (-15 -2745 ((-634 (-900 |#1|)) $)) (-15 -2865 ((-634 (-900 |#1|)) $)) (-15 -2779 ((-900 |#1|) $ (-763))) (-15 -1731 ((-900 |#1|) $ (-568))) (-15 -1731 ((-900 |#1|) $)) (-15 -4477 ((-763) $)) (-15 -3206 ((-763) $)) (-15 -1461 ((-634 |#1|) $)) (-15 -3298 ((-634 (-900 |#1|)) $)) (-15 -2639 ((-634 (-634 (-763))) $)) (-15 -2745 ($ (-634 (-900 |#1|)))) (-15 -3901 ($ (-634 (-900 |#1|)))) (-15 -3340 ((-1092 |#1|) $ |#1|)) (-15 -3389 ((-1092 (-1092 |#1|)) $)) (-15 -3340 ((-1092 (-1092 |#1|)) $ (-1092 |#1|))) (-15 -3340 ((-1092 (-634 |#1|)) $ (-634 |#1|))) (-15 -3109 ((-121) (-900 |#1|) $)) (-15 -2772 ((-634 (-763)) (-900 |#1|) $)) (-15 -4322 ((-634 (-763)) (-900 |#1|) $)) (-15 -3192 ((-1092 |#1|) $)) (-15 -1732 ((-121) $ $)) (-15 -1745 ((-121) $ $)) (-15 -1594 ((-1249) $)) (-15 -1594 ((-1249) $ (-568) (-568))))) +((-2447 (((-121) $ $) NIL)) (-3644 (((-634 $) (-634 $)) 76)) (-3662 (((-568) $) 59)) (-2671 (($) NIL T CONST)) (-2925 (((-3 $ "failed") $) NIL)) (-4477 (((-763) $) 57)) (-3340 (((-1092 |#1|) $ |#1|) 48)) (-2735 (((-121) $) NIL)) (-1825 (((-121) $) 62)) (-2239 (((-763) $) 60)) (-3192 (((-1092 |#1|) $) 41)) (-2521 (($ $ $) NIL (-2198 (|has| |#1| (-370)) (|has| |#1| (-842))))) (-3268 (($ $ $) NIL (-2198 (|has| |#1| (-370)) (|has| |#1| (-842))))) (-3050 (((-2 (|:| |preimage| (-634 |#1|)) (|:| |image| (-634 |#1|))) $) 35)) (-4487 (((-1143) $) NIL)) (-2081 (($ $) 92)) (-4022 (((-1108) $) NIL)) (-3131 (((-1092 |#1|) $) 98 (|has| |#1| (-370)))) (-3277 (((-121) $) 58)) (-1339 ((|#1| $ |#1|) 46)) (-2779 ((|#1| $ |#1|) 93)) (-3206 (((-763) $) 43)) (-2921 (($ (-634 (-634 |#1|))) 84)) (-2770 (((-972) $) 52)) (-3503 (($ (-634 |#1|)) 21)) (-1458 (($ $ $) NIL)) (-2353 (($ $ $) NIL)) (-2813 (($ (-634 (-634 |#1|))) 38)) (-3531 (($ (-634 (-634 |#1|))) 87)) (-2965 (($ (-634 |#1|)) 95)) (-2745 (((-850) $) 83) (($ (-634 (-634 |#1|))) 65) (($ (-634 |#1|)) 66)) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL)) (-1556 (($) 16 T CONST)) (-1751 (((-121) $ $) NIL (-2198 (|has| |#1| (-370)) (|has| |#1| (-842))))) (-1738 (((-121) $ $) NIL (-2198 (|has| |#1| (-370)) (|has| |#1| (-842))))) (-1717 (((-121) $ $) 44)) (-1745 (((-121) $ $) NIL (-2198 (|has| |#1| (-370)) (|has| |#1| (-842))))) (-1732 (((-121) $ $) 64)) (-1779 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL)) (* (($ $ $) 22))) +(((-900 |#1|) (-13 (-898 |#1|) (-10 -8 (-15 -3050 ((-2 (|:| |preimage| (-634 |#1|)) (|:| |image| (-634 |#1|))) $)) (-15 -2813 ($ (-634 (-634 |#1|)))) (-15 -2745 ($ (-634 (-634 |#1|)))) (-15 -2745 ($ (-634 |#1|))) (-15 -3531 ($ (-634 (-634 |#1|)))) (-15 -3206 ((-763) $)) (-15 -3192 ((-1092 |#1|) $)) (-15 -2770 ((-972) $)) (-15 -4477 ((-763) $)) (-15 -2239 ((-763) $)) (-15 -3662 ((-568) $)) (-15 -3277 ((-121) $)) (-15 -1825 ((-121) $)) (-15 -3644 ((-634 $) (-634 $))) (IF (|has| |#1| (-370)) (-15 -3131 ((-1092 |#1|) $)) |noBranch|) (IF (|has| |#1| (-550)) (-15 -2965 ($ (-634 |#1|))) (IF (|has| |#1| (-370)) (-15 -2965 ($ (-634 |#1|))) |noBranch|)))) (-1090)) (T -900)) +((-3050 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-634 *3)) (|:| |image| (-634 *3)))) (-5 *1 (-900 *3)) (-4 *3 (-1090)))) (-2813 (*1 *1 *2) (-12 (-5 *2 (-634 (-634 *3))) (-4 *3 (-1090)) (-5 *1 (-900 *3)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-634 (-634 *3))) (-4 *3 (-1090)) (-5 *1 (-900 *3)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-1090)) (-5 *1 (-900 *3)))) (-3531 (*1 *1 *2) (-12 (-5 *2 (-634 (-634 *3))) (-4 *3 (-1090)) (-5 *1 (-900 *3)))) (-3206 (*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-900 *3)) (-4 *3 (-1090)))) (-3192 (*1 *2 *1) (-12 (-5 *2 (-1092 *3)) (-5 *1 (-900 *3)) (-4 *3 (-1090)))) (-2770 (*1 *2 *1) (-12 (-5 *2 (-972)) (-5 *1 (-900 *3)) (-4 *3 (-1090)))) (-4477 (*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-900 *3)) (-4 *3 (-1090)))) (-2239 (*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-900 *3)) (-4 *3 (-1090)))) (-3662 (*1 *2 *1) (-12 (-5 *2 (-568)) (-5 *1 (-900 *3)) (-4 *3 (-1090)))) (-3277 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-900 *3)) (-4 *3 (-1090)))) (-1825 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-900 *3)) (-4 *3 (-1090)))) (-3644 (*1 *2 *2) (-12 (-5 *2 (-634 (-900 *3))) (-5 *1 (-900 *3)) (-4 *3 (-1090)))) (-3131 (*1 *2 *1) (-12 (-5 *2 (-1092 *3)) (-5 *1 (-900 *3)) (-4 *3 (-370)) (-4 *3 (-1090)))) (-2965 (*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-1090)) (-5 *1 (-900 *3))))) +(-13 (-898 |#1|) (-10 -8 (-15 -3050 ((-2 (|:| |preimage| (-634 |#1|)) (|:| |image| (-634 |#1|))) $)) (-15 -2813 ($ (-634 (-634 |#1|)))) (-15 -2745 ($ (-634 (-634 |#1|)))) (-15 -2745 ($ (-634 |#1|))) (-15 -3531 ($ (-634 (-634 |#1|)))) (-15 -3206 ((-763) $)) (-15 -3192 ((-1092 |#1|) $)) (-15 -2770 ((-972) $)) (-15 -4477 ((-763) $)) (-15 -2239 ((-763) $)) (-15 -3662 ((-568) $)) (-15 -3277 ((-121) $)) (-15 -1825 ((-121) $)) (-15 -3644 ((-634 $) (-634 $))) (IF (|has| |#1| (-370)) (-15 -3131 ((-1092 |#1|) $)) |noBranch|) (IF (|has| |#1| (-550)) (-15 -2965 ($ (-634 |#1|))) (IF (|has| |#1| (-370)) (-15 -2965 ($ (-634 |#1|))) |noBranch|)))) +((-1355 (((-3 (-634 (-1157 |#4|)) "failed") (-634 (-1157 |#4|)) (-1157 |#4|)) 127)) (-3629 ((|#1|) 75)) (-2653 (((-420 (-1157 |#4|)) (-1157 |#4|)) 136)) (-2695 (((-420 (-1157 |#4|)) (-634 |#3|) (-1157 |#4|)) 67)) (-3420 (((-420 (-1157 |#4|)) (-1157 |#4|)) 146)) (-3454 (((-3 (-634 (-1157 |#4|)) "failed") (-634 (-1157 |#4|)) (-1157 |#4|) |#3|) 91))) +(((-901 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1355 ((-3 (-634 (-1157 |#4|)) "failed") (-634 (-1157 |#4|)) (-1157 |#4|))) (-15 -3420 ((-420 (-1157 |#4|)) (-1157 |#4|))) (-15 -2653 ((-420 (-1157 |#4|)) (-1157 |#4|))) (-15 -3629 (|#1|)) (-15 -3454 ((-3 (-634 (-1157 |#4|)) "failed") (-634 (-1157 |#4|)) (-1157 |#4|) |#3|)) (-15 -2695 ((-420 (-1157 |#4|)) (-634 |#3|) (-1157 |#4|)))) (-904) (-788) (-842) (-950 |#1| |#2| |#3|)) (T -901)) +((-2695 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *7)) (-4 *7 (-842)) (-4 *5 (-904)) (-4 *6 (-788)) (-4 *8 (-950 *5 *6 *7)) (-5 *2 (-420 (-1157 *8))) (-5 *1 (-901 *5 *6 *7 *8)) (-5 *4 (-1157 *8)))) (-3454 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-634 (-1157 *7))) (-5 *3 (-1157 *7)) (-4 *7 (-950 *5 *6 *4)) (-4 *5 (-904)) (-4 *6 (-788)) (-4 *4 (-842)) (-5 *1 (-901 *5 *6 *4 *7)))) (-3629 (*1 *2) (-12 (-4 *3 (-788)) (-4 *4 (-842)) (-4 *2 (-904)) (-5 *1 (-901 *2 *3 *4 *5)) (-4 *5 (-950 *2 *3 *4)))) (-2653 (*1 *2 *3) (-12 (-4 *4 (-904)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *7 (-950 *4 *5 *6)) (-5 *2 (-420 (-1157 *7))) (-5 *1 (-901 *4 *5 *6 *7)) (-5 *3 (-1157 *7)))) (-3420 (*1 *2 *3) (-12 (-4 *4 (-904)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *7 (-950 *4 *5 *6)) (-5 *2 (-420 (-1157 *7))) (-5 *1 (-901 *4 *5 *6 *7)) (-5 *3 (-1157 *7)))) (-1355 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-634 (-1157 *7))) (-5 *3 (-1157 *7)) (-4 *7 (-950 *4 *5 *6)) (-4 *4 (-904)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *1 (-901 *4 *5 *6 *7))))) +(-10 -7 (-15 -1355 ((-3 (-634 (-1157 |#4|)) "failed") (-634 (-1157 |#4|)) (-1157 |#4|))) (-15 -3420 ((-420 (-1157 |#4|)) (-1157 |#4|))) (-15 -2653 ((-420 (-1157 |#4|)) (-1157 |#4|))) (-15 -3629 (|#1|)) (-15 -3454 ((-3 (-634 (-1157 |#4|)) "failed") (-634 (-1157 |#4|)) (-1157 |#4|) |#3|)) (-15 -2695 ((-420 (-1157 |#4|)) (-634 |#3|) (-1157 |#4|)))) +((-1355 (((-3 (-634 (-1157 |#2|)) "failed") (-634 (-1157 |#2|)) (-1157 |#2|)) 36)) (-3629 ((|#1|) 53)) (-2653 (((-420 (-1157 |#2|)) (-1157 |#2|)) 101)) (-2695 (((-420 (-1157 |#2|)) (-1157 |#2|)) 88)) (-3420 (((-420 (-1157 |#2|)) (-1157 |#2|)) 112))) +(((-902 |#1| |#2|) (-10 -7 (-15 -1355 ((-3 (-634 (-1157 |#2|)) "failed") (-634 (-1157 |#2|)) (-1157 |#2|))) (-15 -3420 ((-420 (-1157 |#2|)) (-1157 |#2|))) (-15 -2653 ((-420 (-1157 |#2|)) (-1157 |#2|))) (-15 -3629 (|#1|)) (-15 -2695 ((-420 (-1157 |#2|)) (-1157 |#2|)))) (-904) (-1219 |#1|)) (T -902)) +((-2695 (*1 *2 *3) (-12 (-4 *4 (-904)) (-4 *5 (-1219 *4)) (-5 *2 (-420 (-1157 *5))) (-5 *1 (-902 *4 *5)) (-5 *3 (-1157 *5)))) (-3629 (*1 *2) (-12 (-4 *2 (-904)) (-5 *1 (-902 *2 *3)) (-4 *3 (-1219 *2)))) (-2653 (*1 *2 *3) (-12 (-4 *4 (-904)) (-4 *5 (-1219 *4)) (-5 *2 (-420 (-1157 *5))) (-5 *1 (-902 *4 *5)) (-5 *3 (-1157 *5)))) (-3420 (*1 *2 *3) (-12 (-4 *4 (-904)) (-4 *5 (-1219 *4)) (-5 *2 (-420 (-1157 *5))) (-5 *1 (-902 *4 *5)) (-5 *3 (-1157 *5)))) (-1355 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-634 (-1157 *5))) (-5 *3 (-1157 *5)) (-4 *5 (-1219 *4)) (-4 *4 (-904)) (-5 *1 (-902 *4 *5))))) +(-10 -7 (-15 -1355 ((-3 (-634 (-1157 |#2|)) "failed") (-634 (-1157 |#2|)) (-1157 |#2|))) (-15 -3420 ((-420 (-1157 |#2|)) (-1157 |#2|))) (-15 -2653 ((-420 (-1157 |#2|)) (-1157 |#2|))) (-15 -3629 (|#1|)) (-15 -2695 ((-420 (-1157 |#2|)) (-1157 |#2|)))) +((-1858 (((-3 (-634 (-1157 $)) "failed") (-634 (-1157 $)) (-1157 $)) 39)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) 18)) (-4371 (((-3 $ "failed") $) 33))) +(((-903 |#1|) (-10 -8 (-15 -4371 ((-3 |#1| "failed") |#1|)) (-15 -1858 ((-3 (-634 (-1157 |#1|)) "failed") (-634 (-1157 |#1|)) (-1157 |#1|))) (-15 -2155 ((-1157 |#1|) (-1157 |#1|) (-1157 |#1|)))) (-904)) (T -903)) +NIL +(-10 -8 (-15 -4371 ((-3 |#1| "failed") |#1|)) (-15 -1858 ((-3 (-634 (-1157 |#1|)) "failed") (-634 (-1157 |#1|)) (-1157 |#1|))) (-15 -2155 ((-1157 |#1|) (-1157 |#1|) (-1157 |#1|)))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) 40)) (-2227 (($ $) 39)) (-1573 (((-121) $) 37)) (-3134 (((-3 $ "failed") $ $) 18)) (-1750 (((-420 (-1157 $)) (-1157 $)) 57)) (-4305 (($ $) 49)) (-1678 (((-420 $) $) 50)) (-1858 (((-3 (-634 (-1157 $)) "failed") (-634 (-1157 $)) (-1157 $)) 54)) (-2671 (($) 16 T CONST)) (-2925 (((-3 $ "failed") $) 33)) (-3927 (((-121) $) 51)) (-2735 (((-121) $) 30)) (-2495 (($ $ $) 45) (($ (-634 $)) 44)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) 43)) (-2721 (($ $ $) 47) (($ (-634 $)) 46)) (-2905 (((-420 (-1157 $)) (-1157 $)) 55)) (-3545 (((-420 (-1157 $)) (-1157 $)) 56)) (-3848 (((-420 $) $) 48)) (-2595 (((-3 $ "failed") $ $) 41)) (-2979 (((-3 (-1244 $) "failed") (-679 $)) 53 (|has| $ (-148)))) (-2745 (((-850) $) 11) (($ (-568)) 27) (($ $) 42)) (-4371 (((-3 $ "failed") $) 52 (|has| $ (-148)))) (-4078 (((-763)) 28)) (-1826 (((-121) $ $) 38)) (-1887 (($ $ (-917)) 25) (($ $ (-763)) 32)) (-3056 (($) 17 T CONST)) (-1556 (($) 29 T CONST)) (-1717 (((-121) $ $) 6)) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 24) (($ $ (-763)) 31)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 23))) +(((-904) (-1275)) (T -904)) +((-2155 (*1 *2 *2 *2) (-12 (-5 *2 (-1157 *1)) (-4 *1 (-904)))) (-1750 (*1 *2 *3) (-12 (-4 *1 (-904)) (-5 *2 (-420 (-1157 *1))) (-5 *3 (-1157 *1)))) (-3545 (*1 *2 *3) (-12 (-4 *1 (-904)) (-5 *2 (-420 (-1157 *1))) (-5 *3 (-1157 *1)))) (-2905 (*1 *2 *3) (-12 (-4 *1 (-904)) (-5 *2 (-420 (-1157 *1))) (-5 *3 (-1157 *1)))) (-1858 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-634 (-1157 *1))) (-5 *3 (-1157 *1)) (-4 *1 (-904)))) (-2979 (*1 *2 *3) (|partial| -12 (-5 *3 (-679 *1)) (-4 *1 (-148)) (-4 *1 (-904)) (-5 *2 (-1244 *1)))) (-4371 (*1 *1 *1) (|partial| -12 (-4 *1 (-148)) (-4 *1 (-904))))) +(-13 (-1199) (-10 -8 (-15 -1750 ((-420 (-1157 $)) (-1157 $))) (-15 -3545 ((-420 (-1157 $)) (-1157 $))) (-15 -2905 ((-420 (-1157 $)) (-1157 $))) (-15 -2155 ((-1157 $) (-1157 $) (-1157 $))) (-15 -1858 ((-3 (-634 (-1157 $)) "failed") (-634 (-1157 $)) (-1157 $))) (IF (|has| $ (-148)) (PROGN (-15 -2979 ((-3 (-1244 $) "failed") (-679 $))) (-15 -4371 ((-3 $ "failed") $))) |noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-43 $) . T) ((-105) . T) ((-120 $ $) . T) ((-137) . T) ((-608 (-850)) . T) ((-172) . T) ((-285) . T) ((-453) . T) ((-558) . T) ((-637 $) . T) ((-707 $) . T) ((-716) . T) ((-1053 $) . T) ((-1047) . T) ((-1054) . T) ((-1102) . T) ((-1090) . T) ((-1199) . T)) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL)) (-2227 (($ $) NIL)) (-1573 (((-121) $) NIL)) (-2615 (((-121) $) NIL)) (-1739 (((-763)) NIL)) (-1932 (($ $ (-917)) NIL (|has| $ (-370))) (($ $) NIL)) (-3211 (((-1169 (-917) (-763)) (-568)) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-4305 (($ $) NIL)) (-1678 (((-420 $) $) NIL)) (-1497 (((-121) $ $) NIL)) (-3983 (((-763)) NIL)) (-2671 (($) NIL T CONST)) (-3666 (((-3 $ "failed") $) NIL)) (-2854 (($ $) NIL)) (-3498 (($ (-1244 $)) NIL)) (-2022 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2401 (($ $ $) NIL)) (-2925 (((-3 $ "failed") $) NIL)) (-1731 (($) NIL)) (-2412 (($ $ $) NIL)) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) NIL)) (-4220 (($) NIL)) (-4456 (((-121) $) NIL)) (-3218 (($ $) NIL) (($ $ (-763)) NIL)) (-3927 (((-121) $) NIL)) (-4477 (((-828 (-917)) $) NIL) (((-917) $) NIL)) (-2735 (((-121) $) NIL)) (-2883 (($) NIL (|has| $ (-370)))) (-3917 (((-121) $) NIL (|has| $ (-370)))) (-2657 (($ $ (-917)) NIL (|has| $ (-370))) (($ $) NIL)) (-3038 (((-3 $ "failed") $) NIL)) (-3562 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-2045 (((-1157 $) $ (-917)) NIL (|has| $ (-370))) (((-1157 $) $) NIL)) (-3683 (((-917) $) NIL)) (-2035 (((-1157 $) $) NIL (|has| $ (-370)))) (-1422 (((-3 (-1157 $) "failed") $ $) NIL (|has| $ (-370))) (((-1157 $) $) NIL (|has| $ (-370)))) (-2109 (($ $ (-1157 $)) NIL (|has| $ (-370)))) (-2495 (($ $ $) NIL) (($ (-634 $)) NIL)) (-4487 (((-1143) $) NIL)) (-2081 (($ $) NIL)) (-4434 (($) NIL T CONST)) (-4355 (($ (-917)) NIL)) (-2864 (((-121) $) NIL)) (-4022 (((-1108) $) NIL)) (-2704 (($) NIL (|has| $ (-370)))) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL)) (-2721 (($ $ $) NIL) (($ (-634 $)) NIL)) (-1418 (((-634 (-2 (|:| -3848 (-568)) (|:| -3438 (-568))))) NIL)) (-3848 (((-420 $) $) NIL)) (-1553 (((-917)) NIL) (((-828 (-917))) NIL)) (-4497 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2595 (((-3 $ "failed") $ $) NIL)) (-2344 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-2709 (((-763) $) NIL)) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL)) (-3143 (((-3 (-763) "failed") $ $) NIL) (((-763) $) NIL)) (-4321 (((-139)) NIL)) (-4189 (($ $ (-763)) NIL) (($ $) NIL)) (-3206 (((-917) $) NIL) (((-828 (-917)) $) NIL)) (-1626 (((-1157 $)) NIL)) (-3065 (($) NIL)) (-2027 (($) NIL (|has| $ (-370)))) (-4073 (((-679 $) (-1244 $)) NIL) (((-1244 $) $) NIL)) (-4278 (((-568) $) NIL)) (-2979 (((-3 (-1244 $) "failed") (-679 $)) NIL)) (-2745 (((-850) $) NIL) (($ (-568)) NIL) (($ $) NIL) (($ (-409 (-568))) NIL)) (-4371 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-4078 (((-763)) NIL)) (-3746 (((-1244 $) (-917)) NIL) (((-1244 $)) NIL)) (-1826 (((-121) $ $) NIL)) (-4390 (((-121) $) NIL)) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL)) (-3056 (($) NIL T CONST)) (-1556 (($) NIL T CONST)) (-1316 (($ $ (-763)) NIL (|has| $ (-370))) (($ $) NIL (|has| $ (-370)))) (-3190 (($ $ (-763)) NIL) (($ $) NIL)) (-1717 (((-121) $ $) NIL)) (-1779 (($ $ $) NIL)) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) NIL) (($ $ (-409 (-568))) NIL) (($ (-409 (-568)) $) NIL))) +(((-905 |#1|) (-13 (-350) (-327 $) (-609 (-568))) (-917)) (T -905)) +NIL +(-13 (-350) (-327 $) (-609 (-568))) +((-1747 (((-3 (-2 (|:| -4477 (-763)) (|:| -1864 |#5|)) "failed") (-334 |#2| |#3| |#4| |#5|)) 76)) (-3919 (((-121) (-334 |#2| |#3| |#4| |#5|)) 16)) (-4477 (((-3 (-763) "failed") (-334 |#2| |#3| |#4| |#5|)) 14))) +(((-906 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4477 ((-3 (-763) "failed") (-334 |#2| |#3| |#4| |#5|))) (-15 -3919 ((-121) (-334 |#2| |#3| |#4| |#5|))) (-15 -1747 ((-3 (-2 (|:| -4477 (-763)) (|:| -1864 |#5|)) "failed") (-334 |#2| |#3| |#4| |#5|)))) (-13 (-842) (-558) (-1037 (-568))) (-432 |#1|) (-1219 |#2|) (-1219 (-409 |#3|)) (-340 |#2| |#3| |#4|)) (T -906)) +((-1747 (*1 *2 *3) (|partial| -12 (-5 *3 (-334 *5 *6 *7 *8)) (-4 *5 (-432 *4)) (-4 *6 (-1219 *5)) (-4 *7 (-1219 (-409 *6))) (-4 *8 (-340 *5 *6 *7)) (-4 *4 (-13 (-842) (-558) (-1037 (-568)))) (-5 *2 (-2 (|:| -4477 (-763)) (|:| -1864 *8))) (-5 *1 (-906 *4 *5 *6 *7 *8)))) (-3919 (*1 *2 *3) (-12 (-5 *3 (-334 *5 *6 *7 *8)) (-4 *5 (-432 *4)) (-4 *6 (-1219 *5)) (-4 *7 (-1219 (-409 *6))) (-4 *8 (-340 *5 *6 *7)) (-4 *4 (-13 (-842) (-558) (-1037 (-568)))) (-5 *2 (-121)) (-5 *1 (-906 *4 *5 *6 *7 *8)))) (-4477 (*1 *2 *3) (|partial| -12 (-5 *3 (-334 *5 *6 *7 *8)) (-4 *5 (-432 *4)) (-4 *6 (-1219 *5)) (-4 *7 (-1219 (-409 *6))) (-4 *8 (-340 *5 *6 *7)) (-4 *4 (-13 (-842) (-558) (-1037 (-568)))) (-5 *2 (-763)) (-5 *1 (-906 *4 *5 *6 *7 *8))))) +(-10 -7 (-15 -4477 ((-3 (-763) "failed") (-334 |#2| |#3| |#4| |#5|))) (-15 -3919 ((-121) (-334 |#2| |#3| |#4| |#5|))) (-15 -1747 ((-3 (-2 (|:| -4477 (-763)) (|:| -1864 |#5|)) "failed") (-334 |#2| |#3| |#4| |#5|)))) +((-1747 (((-3 (-2 (|:| -4477 (-763)) (|:| -1864 |#3|)) "failed") (-334 (-409 (-568)) |#1| |#2| |#3|)) 56)) (-3919 (((-121) (-334 (-409 (-568)) |#1| |#2| |#3|)) 13)) (-4477 (((-3 (-763) "failed") (-334 (-409 (-568)) |#1| |#2| |#3|)) 11))) +(((-907 |#1| |#2| |#3|) (-10 -7 (-15 -4477 ((-3 (-763) "failed") (-334 (-409 (-568)) |#1| |#2| |#3|))) (-15 -3919 ((-121) (-334 (-409 (-568)) |#1| |#2| |#3|))) (-15 -1747 ((-3 (-2 (|:| -4477 (-763)) (|:| -1864 |#3|)) "failed") (-334 (-409 (-568)) |#1| |#2| |#3|)))) (-1219 (-409 (-568))) (-1219 (-409 |#1|)) (-340 (-409 (-568)) |#1| |#2|)) (T -907)) +((-1747 (*1 *2 *3) (|partial| -12 (-5 *3 (-334 (-409 (-568)) *4 *5 *6)) (-4 *4 (-1219 (-409 (-568)))) (-4 *5 (-1219 (-409 *4))) (-4 *6 (-340 (-409 (-568)) *4 *5)) (-5 *2 (-2 (|:| -4477 (-763)) (|:| -1864 *6))) (-5 *1 (-907 *4 *5 *6)))) (-3919 (*1 *2 *3) (-12 (-5 *3 (-334 (-409 (-568)) *4 *5 *6)) (-4 *4 (-1219 (-409 (-568)))) (-4 *5 (-1219 (-409 *4))) (-4 *6 (-340 (-409 (-568)) *4 *5)) (-5 *2 (-121)) (-5 *1 (-907 *4 *5 *6)))) (-4477 (*1 *2 *3) (|partial| -12 (-5 *3 (-334 (-409 (-568)) *4 *5 *6)) (-4 *4 (-1219 (-409 (-568)))) (-4 *5 (-1219 (-409 *4))) (-4 *6 (-340 (-409 (-568)) *4 *5)) (-5 *2 (-763)) (-5 *1 (-907 *4 *5 *6))))) +(-10 -7 (-15 -4477 ((-3 (-763) "failed") (-334 (-409 (-568)) |#1| |#2| |#3|))) (-15 -3919 ((-121) (-334 (-409 (-568)) |#1| |#2| |#3|))) (-15 -1747 ((-3 (-2 (|:| -4477 (-763)) (|:| -1864 |#3|)) "failed") (-334 (-409 (-568)) |#1| |#2| |#3|)))) +((-3839 (((-1157 |#1|) |#2|) 36)) (-1859 ((|#2| |#2| (-634 |#1|)) 59) ((|#2| |#2| (-634 |#1|) (-568)) 61)) (-2773 (((-763) |#2|) 70)) (-3639 ((|#2| |#2| |#2| (-568)) 51)) (-3742 ((|#2| |#2| |#2|) 49)) (-3841 ((|#2| |#2| |#2|) 48)) (-3994 ((|#2| |#2| (-568)) 64)) (-4064 ((|#2| |#2| (-568)) 60)) (-2976 (((-634 |#2|) |#2|) 15)) (-2563 ((|#2| |#2|) 82)) (-3842 ((|#2| (-1 |#3| |#3|) |#2|) 40)) (-2844 (((-634 |#2|)) 26)) (-2943 (((-634 |#3|) (-568)) 92)) (-3062 (((-634 |#2|) (-763)) 93)) (-3039 ((|#2| |#2| (-568)) 71)) (-4335 ((|#3| |#2|) NIL)) (-1301 (((-763) |#2|) 83)) (-3206 (((-763) |#2| (-568)) 67)) (-1606 ((|#1| |#2| (-917)) 80)) (-3495 ((|#1| |#2|) 81))) +(((-908 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3842 (|#2| (-1 |#3| |#3|) |#2|)) (-15 -3206 ((-763) |#2| (-568))) (-15 -3839 ((-1157 |#1|) |#2|)) (-15 -2773 ((-763) |#2|)) (-15 -3841 (|#2| |#2| |#2|)) (-15 -3742 (|#2| |#2| |#2|)) (-15 -3639 (|#2| |#2| |#2| (-568))) (-15 -2563 (|#2| |#2|)) (-15 -4335 (|#3| |#2|)) (-15 -3994 (|#2| |#2| (-568))) (-15 -4064 (|#2| |#2| (-568))) (-15 -1859 (|#2| |#2| (-634 |#1|) (-568))) (-15 -1859 (|#2| |#2| (-634 |#1|))) (-15 -1606 (|#1| |#2| (-917))) (-15 -3495 (|#1| |#2|)) (-15 -3039 (|#2| |#2| (-568))) (-15 -2943 ((-634 |#3|) (-568))) (-15 -3062 ((-634 |#2|) (-763))) (-15 -1301 ((-763) |#2|)) (-15 -2844 ((-634 |#2|))) (-15 -2976 ((-634 |#2|) |#2|))) (-1047) (-324 |#1| |#3|) (-230 |#4| (-763)) (-763)) (T -908)) +((-2976 (*1 *2 *3) (-12 (-4 *4 (-1047)) (-4 *5 (-230 *6 (-763))) (-14 *6 (-763)) (-5 *2 (-634 *3)) (-5 *1 (-908 *4 *3 *5 *6)) (-4 *3 (-324 *4 *5)))) (-2844 (*1 *2) (-12 (-4 *3 (-1047)) (-4 *5 (-230 *6 (-763))) (-14 *6 (-763)) (-5 *2 (-634 *4)) (-5 *1 (-908 *3 *4 *5 *6)) (-4 *4 (-324 *3 *5)))) (-1301 (*1 *2 *3) (-12 (-4 *4 (-1047)) (-4 *5 (-230 *6 *2)) (-14 *6 *2) (-5 *2 (-763)) (-5 *1 (-908 *4 *3 *5 *6)) (-4 *3 (-324 *4 *5)))) (-3062 (*1 *2 *3) (-12 (-5 *3 (-763)) (-4 *4 (-1047)) (-4 *6 (-230 *7 *3)) (-14 *7 *3) (-5 *2 (-634 *5)) (-5 *1 (-908 *4 *5 *6 *7)) (-4 *5 (-324 *4 *6)))) (-2943 (*1 *2 *3) (-12 (-5 *3 (-568)) (-4 *4 (-1047)) (-4 *6 (-230 *7 (-763))) (-14 *7 (-763)) (-5 *2 (-634 *6)) (-5 *1 (-908 *4 *5 *6 *7)) (-4 *5 (-324 *4 *6)))) (-3039 (*1 *2 *2 *3) (-12 (-5 *3 (-568)) (-4 *4 (-1047)) (-4 *5 (-230 *6 (-763))) (-14 *6 (-763)) (-5 *1 (-908 *4 *2 *5 *6)) (-4 *2 (-324 *4 *5)))) (-3495 (*1 *2 *3) (-12 (-4 *4 (-230 *5 (-763))) (-14 *5 (-763)) (-4 *2 (-1047)) (-5 *1 (-908 *2 *3 *4 *5)) (-4 *3 (-324 *2 *4)))) (-1606 (*1 *2 *3 *4) (-12 (-5 *4 (-917)) (-4 *5 (-230 *6 (-763))) (-14 *6 (-763)) (-4 *2 (-1047)) (-5 *1 (-908 *2 *3 *5 *6)) (-4 *3 (-324 *2 *5)))) (-1859 (*1 *2 *2 *3) (-12 (-5 *3 (-634 *4)) (-4 *4 (-1047)) (-4 *5 (-230 *6 (-763))) (-14 *6 (-763)) (-5 *1 (-908 *4 *2 *5 *6)) (-4 *2 (-324 *4 *5)))) (-1859 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-634 *5)) (-5 *4 (-568)) (-4 *5 (-1047)) (-4 *6 (-230 *7 (-763))) (-14 *7 (-763)) (-5 *1 (-908 *5 *2 *6 *7)) (-4 *2 (-324 *5 *6)))) (-4064 (*1 *2 *2 *3) (-12 (-5 *3 (-568)) (-4 *4 (-1047)) (-4 *5 (-230 *6 (-763))) (-14 *6 (-763)) (-5 *1 (-908 *4 *2 *5 *6)) (-4 *2 (-324 *4 *5)))) (-3994 (*1 *2 *2 *3) (-12 (-5 *3 (-568)) (-4 *4 (-1047)) (-4 *5 (-230 *6 (-763))) (-14 *6 (-763)) (-5 *1 (-908 *4 *2 *5 *6)) (-4 *2 (-324 *4 *5)))) (-4335 (*1 *2 *3) (-12 (-4 *4 (-1047)) (-4 *2 (-230 *5 (-763))) (-5 *1 (-908 *4 *3 *2 *5)) (-4 *3 (-324 *4 *2)) (-14 *5 (-763)))) (-2563 (*1 *2 *2) (-12 (-4 *3 (-1047)) (-4 *4 (-230 *5 (-763))) (-14 *5 (-763)) (-5 *1 (-908 *3 *2 *4 *5)) (-4 *2 (-324 *3 *4)))) (-3639 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-568)) (-4 *4 (-1047)) (-4 *5 (-230 *6 (-763))) (-14 *6 (-763)) (-5 *1 (-908 *4 *2 *5 *6)) (-4 *2 (-324 *4 *5)))) (-3742 (*1 *2 *2 *2) (-12 (-4 *3 (-1047)) (-4 *4 (-230 *5 (-763))) (-14 *5 (-763)) (-5 *1 (-908 *3 *2 *4 *5)) (-4 *2 (-324 *3 *4)))) (-3841 (*1 *2 *2 *2) (-12 (-4 *3 (-1047)) (-4 *4 (-230 *5 (-763))) (-14 *5 (-763)) (-5 *1 (-908 *3 *2 *4 *5)) (-4 *2 (-324 *3 *4)))) (-2773 (*1 *2 *3) (-12 (-4 *4 (-1047)) (-4 *5 (-230 *6 *2)) (-14 *6 *2) (-5 *2 (-763)) (-5 *1 (-908 *4 *3 *5 *6)) (-4 *3 (-324 *4 *5)))) (-3839 (*1 *2 *3) (-12 (-4 *4 (-1047)) (-4 *5 (-230 *6 (-763))) (-14 *6 (-763)) (-5 *2 (-1157 *4)) (-5 *1 (-908 *4 *3 *5 *6)) (-4 *3 (-324 *4 *5)))) (-3206 (*1 *2 *3 *4) (-12 (-5 *4 (-568)) (-4 *5 (-1047)) (-4 *6 (-230 *7 *2)) (-14 *7 *2) (-5 *2 (-763)) (-5 *1 (-908 *5 *3 *6 *7)) (-4 *3 (-324 *5 *6)))) (-3842 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-230 *6 (-763))) (-14 *6 (-763)) (-4 *4 (-1047)) (-5 *1 (-908 *4 *2 *5 *6)) (-4 *2 (-324 *4 *5))))) +(-10 -7 (-15 -3842 (|#2| (-1 |#3| |#3|) |#2|)) (-15 -3206 ((-763) |#2| (-568))) (-15 -3839 ((-1157 |#1|) |#2|)) (-15 -2773 ((-763) |#2|)) (-15 -3841 (|#2| |#2| |#2|)) (-15 -3742 (|#2| |#2| |#2|)) (-15 -3639 (|#2| |#2| |#2| (-568))) (-15 -2563 (|#2| |#2|)) (-15 -4335 (|#3| |#2|)) (-15 -3994 (|#2| |#2| (-568))) (-15 -4064 (|#2| |#2| (-568))) (-15 -1859 (|#2| |#2| (-634 |#1|) (-568))) (-15 -1859 (|#2| |#2| (-634 |#1|))) (-15 -1606 (|#1| |#2| (-917))) (-15 -3495 (|#1| |#2|)) (-15 -3039 (|#2| |#2| (-568))) (-15 -2943 ((-634 |#3|) (-568))) (-15 -3062 ((-634 |#2|) (-763))) (-15 -1301 ((-763) |#2|)) (-15 -2844 ((-634 |#2|))) (-15 -2976 ((-634 |#2|) |#2|))) +((-3834 ((|#2| |#2|) 25)) (-4466 (((-568) (-634 (-2 (|:| |den| (-568)) (|:| |gcdnum| (-568))))) 15)) (-2515 (((-917) (-568)) 35)) (-1494 (((-568) |#2|) 42)) (-3738 (((-568) |#2|) 21) (((-2 (|:| |den| (-568)) (|:| |gcdnum| (-568))) |#1|) 20))) +(((-909 |#1| |#2|) (-10 -7 (-15 -2515 ((-917) (-568))) (-15 -3738 ((-2 (|:| |den| (-568)) (|:| |gcdnum| (-568))) |#1|)) (-15 -3738 ((-568) |#2|)) (-15 -4466 ((-568) (-634 (-2 (|:| |den| (-568)) (|:| |gcdnum| (-568)))))) (-15 -1494 ((-568) |#2|)) (-15 -3834 (|#2| |#2|))) (-1219 (-409 (-568))) (-1219 (-409 |#1|))) (T -909)) +((-3834 (*1 *2 *2) (-12 (-4 *3 (-1219 (-409 (-568)))) (-5 *1 (-909 *3 *2)) (-4 *2 (-1219 (-409 *3))))) (-1494 (*1 *2 *3) (-12 (-4 *4 (-1219 (-409 *2))) (-5 *2 (-568)) (-5 *1 (-909 *4 *3)) (-4 *3 (-1219 (-409 *4))))) (-4466 (*1 *2 *3) (-12 (-5 *3 (-634 (-2 (|:| |den| (-568)) (|:| |gcdnum| (-568))))) (-4 *4 (-1219 (-409 *2))) (-5 *2 (-568)) (-5 *1 (-909 *4 *5)) (-4 *5 (-1219 (-409 *4))))) (-3738 (*1 *2 *3) (-12 (-4 *4 (-1219 (-409 *2))) (-5 *2 (-568)) (-5 *1 (-909 *4 *3)) (-4 *3 (-1219 (-409 *4))))) (-3738 (*1 *2 *3) (-12 (-4 *3 (-1219 (-409 (-568)))) (-5 *2 (-2 (|:| |den| (-568)) (|:| |gcdnum| (-568)))) (-5 *1 (-909 *3 *4)) (-4 *4 (-1219 (-409 *3))))) (-2515 (*1 *2 *3) (-12 (-5 *3 (-568)) (-4 *4 (-1219 (-409 *3))) (-5 *2 (-917)) (-5 *1 (-909 *4 *5)) (-4 *5 (-1219 (-409 *4)))))) +(-10 -7 (-15 -2515 ((-917) (-568))) (-15 -3738 ((-2 (|:| |den| (-568)) (|:| |gcdnum| (-568))) |#1|)) (-15 -3738 ((-568) |#2|)) (-15 -4466 ((-568) (-634 (-2 (|:| |den| (-568)) (|:| |gcdnum| (-568)))))) (-15 -1494 ((-568) |#2|)) (-15 -3834 (|#2| |#2|))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-1492 ((|#1| $) 80)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL)) (-2227 (($ $) NIL)) (-1573 (((-121) $) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-4305 (($ $) NIL)) (-1678 (((-420 $) $) NIL)) (-1497 (((-121) $ $) NIL)) (-2671 (($) NIL T CONST)) (-2401 (($ $ $) NIL)) (-2925 (((-3 $ "failed") $) 74)) (-2412 (($ $ $) NIL)) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) NIL)) (-3927 (((-121) $) NIL)) (-2231 (($ |#1| (-420 |#1|)) 72)) (-1985 (((-1157 |#1|) |#1| |#1|) 40)) (-2186 (($ $) 48)) (-2735 (((-121) $) NIL)) (-1427 (((-568) $) 77)) (-2464 (($ $ (-568)) 79)) (-3562 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-2495 (($ $ $) NIL) (($ (-634 $)) NIL)) (-4487 (((-1143) $) NIL)) (-2081 (($ $) NIL)) (-4022 (((-1108) $) NIL)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL)) (-2721 (($ $ $) NIL) (($ (-634 $)) NIL)) (-3862 ((|#1| $) 76)) (-2360 (((-420 |#1|) $) 75)) (-3848 (((-420 $) $) NIL)) (-4497 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2595 (((-3 $ "failed") $ $) 73)) (-2344 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-2709 (((-763) $) NIL)) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL)) (-2720 (($ $) 38)) (-2745 (((-850) $) 98) (($ (-568)) 53) (($ $) NIL) (($ (-409 (-568))) NIL) (($ |#1|) 30) (((-409 |#1|) $) 58) (($ (-409 (-420 |#1|))) 66)) (-4078 (((-763)) 51)) (-1826 (((-121) $ $) NIL)) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL)) (-3056 (($) 23 T CONST)) (-1556 (($) 11 T CONST)) (-1717 (((-121) $ $) 67)) (-1779 (($ $ $) NIL)) (-1773 (($ $) 87) (($ $ $) NIL)) (-1767 (($ $ $) 37)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) 89) (($ $ $) 36) (($ $ (-409 (-568))) NIL) (($ (-409 (-568)) $) NIL) (($ |#1| $) 88) (($ $ |#1|) NIL))) +(((-910 |#1|) (-13 (-365) (-43 |#1|) (-10 -8 (-15 -2745 ((-409 |#1|) $)) (-15 -2745 ($ (-409 (-420 |#1|)))) (-15 -2720 ($ $)) (-15 -2360 ((-420 |#1|) $)) (-15 -3862 (|#1| $)) (-15 -2464 ($ $ (-568))) (-15 -1427 ((-568) $)) (-15 -1985 ((-1157 |#1|) |#1| |#1|)) (-15 -2186 ($ $)) (-15 -2231 ($ |#1| (-420 |#1|))) (-15 -1492 (|#1| $)))) (-301)) (T -910)) +((-2745 (*1 *2 *1) (-12 (-5 *2 (-409 *3)) (-5 *1 (-910 *3)) (-4 *3 (-301)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-409 (-420 *3))) (-4 *3 (-301)) (-5 *1 (-910 *3)))) (-2720 (*1 *1 *1) (-12 (-5 *1 (-910 *2)) (-4 *2 (-301)))) (-2360 (*1 *2 *1) (-12 (-5 *2 (-420 *3)) (-5 *1 (-910 *3)) (-4 *3 (-301)))) (-3862 (*1 *2 *1) (-12 (-5 *1 (-910 *2)) (-4 *2 (-301)))) (-2464 (*1 *1 *1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-910 *3)) (-4 *3 (-301)))) (-1427 (*1 *2 *1) (-12 (-5 *2 (-568)) (-5 *1 (-910 *3)) (-4 *3 (-301)))) (-1985 (*1 *2 *3 *3) (-12 (-5 *2 (-1157 *3)) (-5 *1 (-910 *3)) (-4 *3 (-301)))) (-2186 (*1 *1 *1) (-12 (-5 *1 (-910 *2)) (-4 *2 (-301)))) (-2231 (*1 *1 *2 *3) (-12 (-5 *3 (-420 *2)) (-4 *2 (-301)) (-5 *1 (-910 *2)))) (-1492 (*1 *2 *1) (-12 (-5 *1 (-910 *2)) (-4 *2 (-301))))) +(-13 (-365) (-43 |#1|) (-10 -8 (-15 -2745 ((-409 |#1|) $)) (-15 -2745 ($ (-409 (-420 |#1|)))) (-15 -2720 ($ $)) (-15 -2360 ((-420 |#1|) $)) (-15 -3862 (|#1| $)) (-15 -2464 ($ $ (-568))) (-15 -1427 ((-568) $)) (-15 -1985 ((-1157 |#1|) |#1| |#1|)) (-15 -2186 ($ $)) (-15 -2231 ($ |#1| (-420 |#1|))) (-15 -1492 (|#1| $)))) +((-2231 (((-57) (-953 |#1|) (-420 (-953 |#1|)) (-1161)) 16) (((-57) (-409 (-953 |#1|)) (-1161)) 17))) +(((-911 |#1|) (-10 -7 (-15 -2231 ((-57) (-409 (-953 |#1|)) (-1161))) (-15 -2231 ((-57) (-953 |#1|) (-420 (-953 |#1|)) (-1161)))) (-13 (-301) (-150))) (T -911)) +((-2231 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-420 (-953 *6))) (-5 *5 (-1161)) (-5 *3 (-953 *6)) (-4 *6 (-13 (-301) (-150))) (-5 *2 (-57)) (-5 *1 (-911 *6)))) (-2231 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-953 *5))) (-5 *4 (-1161)) (-4 *5 (-13 (-301) (-150))) (-5 *2 (-57)) (-5 *1 (-911 *5))))) +(-10 -7 (-15 -2231 ((-57) (-409 (-953 |#1|)) (-1161))) (-15 -2231 ((-57) (-953 |#1|) (-420 (-953 |#1|)) (-1161)))) +((-3400 ((|#4| (-634 |#4|)) 118) (((-1157 |#4|) (-1157 |#4|) (-1157 |#4|)) 65) ((|#4| |#4| |#4|) 117)) (-2721 (((-1157 |#4|) (-634 (-1157 |#4|))) 111) (((-1157 |#4|) (-1157 |#4|) (-1157 |#4|)) 48) ((|#4| (-634 |#4|)) 53) ((|#4| |#4| |#4|) 82))) +(((-912 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2721 (|#4| |#4| |#4|)) (-15 -2721 (|#4| (-634 |#4|))) (-15 -2721 ((-1157 |#4|) (-1157 |#4|) (-1157 |#4|))) (-15 -2721 ((-1157 |#4|) (-634 (-1157 |#4|)))) (-15 -3400 (|#4| |#4| |#4|)) (-15 -3400 ((-1157 |#4|) (-1157 |#4|) (-1157 |#4|))) (-15 -3400 (|#4| (-634 |#4|)))) (-788) (-842) (-301) (-950 |#3| |#1| |#2|)) (T -912)) +((-3400 (*1 *2 *3) (-12 (-5 *3 (-634 *2)) (-4 *2 (-950 *6 *4 *5)) (-5 *1 (-912 *4 *5 *6 *2)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-301)))) (-3400 (*1 *2 *2 *2) (-12 (-5 *2 (-1157 *6)) (-4 *6 (-950 *5 *3 *4)) (-4 *3 (-788)) (-4 *4 (-842)) (-4 *5 (-301)) (-5 *1 (-912 *3 *4 *5 *6)))) (-3400 (*1 *2 *2 *2) (-12 (-4 *3 (-788)) (-4 *4 (-842)) (-4 *5 (-301)) (-5 *1 (-912 *3 *4 *5 *2)) (-4 *2 (-950 *5 *3 *4)))) (-2721 (*1 *2 *3) (-12 (-5 *3 (-634 (-1157 *7))) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-301)) (-5 *2 (-1157 *7)) (-5 *1 (-912 *4 *5 *6 *7)) (-4 *7 (-950 *6 *4 *5)))) (-2721 (*1 *2 *2 *2) (-12 (-5 *2 (-1157 *6)) (-4 *6 (-950 *5 *3 *4)) (-4 *3 (-788)) (-4 *4 (-842)) (-4 *5 (-301)) (-5 *1 (-912 *3 *4 *5 *6)))) (-2721 (*1 *2 *3) (-12 (-5 *3 (-634 *2)) (-4 *2 (-950 *6 *4 *5)) (-5 *1 (-912 *4 *5 *6 *2)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-301)))) (-2721 (*1 *2 *2 *2) (-12 (-4 *3 (-788)) (-4 *4 (-842)) (-4 *5 (-301)) (-5 *1 (-912 *3 *4 *5 *2)) (-4 *2 (-950 *5 *3 *4))))) +(-10 -7 (-15 -2721 (|#4| |#4| |#4|)) (-15 -2721 (|#4| (-634 |#4|))) (-15 -2721 ((-1157 |#4|) (-1157 |#4|) (-1157 |#4|))) (-15 -2721 ((-1157 |#4|) (-634 (-1157 |#4|)))) (-15 -3400 (|#4| |#4| |#4|)) (-15 -3400 ((-1157 |#4|) (-1157 |#4|) (-1157 |#4|))) (-15 -3400 (|#4| (-634 |#4|)))) +((-1763 (((-899 (-568)) (-972)) 22) (((-899 (-568)) (-634 (-568))) 19)) (-3073 (((-899 (-568)) (-634 (-568))) 46) (((-899 (-568)) (-917)) 47)) (-2319 (((-899 (-568))) 23)) (-1627 (((-899 (-568))) 36) (((-899 (-568)) (-634 (-568))) 35)) (-3702 (((-899 (-568))) 34) (((-899 (-568)) (-634 (-568))) 33)) (-1286 (((-899 (-568))) 32) (((-899 (-568)) (-634 (-568))) 31)) (-3631 (((-899 (-568))) 30) (((-899 (-568)) (-634 (-568))) 29)) (-1652 (((-899 (-568))) 28) (((-899 (-568)) (-634 (-568))) 27)) (-3086 (((-899 (-568))) 38) (((-899 (-568)) (-634 (-568))) 37)) (-3141 (((-899 (-568)) (-634 (-568))) 50) (((-899 (-568)) (-917)) 51)) (-3965 (((-899 (-568)) (-634 (-568))) 48) (((-899 (-568)) (-917)) 49)) (-2927 (((-899 (-568)) (-634 (-568))) 43) (((-899 (-568)) (-917)) 45)) (-3803 (((-899 (-568)) (-634 (-917))) 40))) +(((-913) (-10 -7 (-15 -3073 ((-899 (-568)) (-917))) (-15 -3073 ((-899 (-568)) (-634 (-568)))) (-15 -2927 ((-899 (-568)) (-917))) (-15 -2927 ((-899 (-568)) (-634 (-568)))) (-15 -3803 ((-899 (-568)) (-634 (-917)))) (-15 -3965 ((-899 (-568)) (-917))) (-15 -3965 ((-899 (-568)) (-634 (-568)))) (-15 -3141 ((-899 (-568)) (-917))) (-15 -3141 ((-899 (-568)) (-634 (-568)))) (-15 -1652 ((-899 (-568)) (-634 (-568)))) (-15 -1652 ((-899 (-568)))) (-15 -3631 ((-899 (-568)) (-634 (-568)))) (-15 -3631 ((-899 (-568)))) (-15 -1286 ((-899 (-568)) (-634 (-568)))) (-15 -1286 ((-899 (-568)))) (-15 -3702 ((-899 (-568)) (-634 (-568)))) (-15 -3702 ((-899 (-568)))) (-15 -1627 ((-899 (-568)) (-634 (-568)))) (-15 -1627 ((-899 (-568)))) (-15 -3086 ((-899 (-568)) (-634 (-568)))) (-15 -3086 ((-899 (-568)))) (-15 -2319 ((-899 (-568)))) (-15 -1763 ((-899 (-568)) (-634 (-568)))) (-15 -1763 ((-899 (-568)) (-972))))) (T -913)) +((-1763 (*1 *2 *3) (-12 (-5 *3 (-972)) (-5 *2 (-899 (-568))) (-5 *1 (-913)))) (-1763 (*1 *2 *3) (-12 (-5 *3 (-634 (-568))) (-5 *2 (-899 (-568))) (-5 *1 (-913)))) (-2319 (*1 *2) (-12 (-5 *2 (-899 (-568))) (-5 *1 (-913)))) (-3086 (*1 *2) (-12 (-5 *2 (-899 (-568))) (-5 *1 (-913)))) (-3086 (*1 *2 *3) (-12 (-5 *3 (-634 (-568))) (-5 *2 (-899 (-568))) (-5 *1 (-913)))) (-1627 (*1 *2) (-12 (-5 *2 (-899 (-568))) (-5 *1 (-913)))) (-1627 (*1 *2 *3) (-12 (-5 *3 (-634 (-568))) (-5 *2 (-899 (-568))) (-5 *1 (-913)))) (-3702 (*1 *2) (-12 (-5 *2 (-899 (-568))) (-5 *1 (-913)))) (-3702 (*1 *2 *3) (-12 (-5 *3 (-634 (-568))) (-5 *2 (-899 (-568))) (-5 *1 (-913)))) (-1286 (*1 *2) (-12 (-5 *2 (-899 (-568))) (-5 *1 (-913)))) (-1286 (*1 *2 *3) (-12 (-5 *3 (-634 (-568))) (-5 *2 (-899 (-568))) (-5 *1 (-913)))) (-3631 (*1 *2) (-12 (-5 *2 (-899 (-568))) (-5 *1 (-913)))) (-3631 (*1 *2 *3) (-12 (-5 *3 (-634 (-568))) (-5 *2 (-899 (-568))) (-5 *1 (-913)))) (-1652 (*1 *2) (-12 (-5 *2 (-899 (-568))) (-5 *1 (-913)))) (-1652 (*1 *2 *3) (-12 (-5 *3 (-634 (-568))) (-5 *2 (-899 (-568))) (-5 *1 (-913)))) (-3141 (*1 *2 *3) (-12 (-5 *3 (-634 (-568))) (-5 *2 (-899 (-568))) (-5 *1 (-913)))) (-3141 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-899 (-568))) (-5 *1 (-913)))) (-3965 (*1 *2 *3) (-12 (-5 *3 (-634 (-568))) (-5 *2 (-899 (-568))) (-5 *1 (-913)))) (-3965 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-899 (-568))) (-5 *1 (-913)))) (-3803 (*1 *2 *3) (-12 (-5 *3 (-634 (-917))) (-5 *2 (-899 (-568))) (-5 *1 (-913)))) (-2927 (*1 *2 *3) (-12 (-5 *3 (-634 (-568))) (-5 *2 (-899 (-568))) (-5 *1 (-913)))) (-2927 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-899 (-568))) (-5 *1 (-913)))) (-3073 (*1 *2 *3) (-12 (-5 *3 (-634 (-568))) (-5 *2 (-899 (-568))) (-5 *1 (-913)))) (-3073 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-899 (-568))) (-5 *1 (-913))))) +(-10 -7 (-15 -3073 ((-899 (-568)) (-917))) (-15 -3073 ((-899 (-568)) (-634 (-568)))) (-15 -2927 ((-899 (-568)) (-917))) (-15 -2927 ((-899 (-568)) (-634 (-568)))) (-15 -3803 ((-899 (-568)) (-634 (-917)))) (-15 -3965 ((-899 (-568)) (-917))) (-15 -3965 ((-899 (-568)) (-634 (-568)))) (-15 -3141 ((-899 (-568)) (-917))) (-15 -3141 ((-899 (-568)) (-634 (-568)))) (-15 -1652 ((-899 (-568)) (-634 (-568)))) (-15 -1652 ((-899 (-568)))) (-15 -3631 ((-899 (-568)) (-634 (-568)))) (-15 -3631 ((-899 (-568)))) (-15 -1286 ((-899 (-568)) (-634 (-568)))) (-15 -1286 ((-899 (-568)))) (-15 -3702 ((-899 (-568)) (-634 (-568)))) (-15 -3702 ((-899 (-568)))) (-15 -1627 ((-899 (-568)) (-634 (-568)))) (-15 -1627 ((-899 (-568)))) (-15 -3086 ((-899 (-568)) (-634 (-568)))) (-15 -3086 ((-899 (-568)))) (-15 -2319 ((-899 (-568)))) (-15 -1763 ((-899 (-568)) (-634 (-568)))) (-15 -1763 ((-899 (-568)) (-972)))) +((-4138 (((-634 (-953 |#1|)) (-634 (-953 |#1|)) (-634 (-1161))) 10)) (-1532 (((-634 (-953 |#1|)) (-634 (-953 |#1|)) (-634 (-1161))) 9))) +(((-914 |#1|) (-10 -7 (-15 -1532 ((-634 (-953 |#1|)) (-634 (-953 |#1|)) (-634 (-1161)))) (-15 -4138 ((-634 (-953 |#1|)) (-634 (-953 |#1|)) (-634 (-1161))))) (-453)) (T -914)) +((-4138 (*1 *2 *2 *3) (-12 (-5 *2 (-634 (-953 *4))) (-5 *3 (-634 (-1161))) (-4 *4 (-453)) (-5 *1 (-914 *4)))) (-1532 (*1 *2 *2 *3) (-12 (-5 *2 (-634 (-953 *4))) (-5 *3 (-634 (-1161))) (-4 *4 (-453)) (-5 *1 (-914 *4))))) +(-10 -7 (-15 -1532 ((-634 (-953 |#1|)) (-634 (-953 |#1|)) (-634 (-1161)))) (-15 -4138 ((-634 (-953 |#1|)) (-634 (-953 |#1|)) (-634 (-1161))))) +((-2745 (((-310 |#1|) (-489)) 15))) +(((-915 |#1|) (-10 -7 (-15 -2745 ((-310 |#1|) (-489)))) (-13 (-842) (-558))) (T -915)) +((-2745 (*1 *2 *3) (-12 (-5 *3 (-489)) (-5 *2 (-310 *4)) (-5 *1 (-915 *4)) (-4 *4 (-13 (-842) (-558)))))) +(-10 -7 (-15 -2745 ((-310 |#1|) (-489)))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) 40)) (-2227 (($ $) 39)) (-1573 (((-121) $) 37)) (-3134 (((-3 $ "failed") $ $) 18)) (-2671 (($) 16 T CONST)) (-2925 (((-3 $ "failed") $) 33)) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) 49)) (-2735 (((-121) $) 30)) (-2495 (($ $ $) 45) (($ (-634 $)) 44)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) 43)) (-2721 (($ $ $) 47) (($ (-634 $)) 46)) (-2595 (((-3 $ "failed") $ $) 41)) (-2344 (((-3 (-634 $) "failed") (-634 $) $) 48)) (-2745 (((-850) $) 11) (($ (-568)) 27) (($ $) 42)) (-4078 (((-763)) 28)) (-1826 (((-121) $ $) 38)) (-1887 (($ $ (-917)) 25) (($ $ (-763)) 32)) (-3056 (($) 17 T CONST)) (-1556 (($) 29 T CONST)) (-1717 (((-121) $ $) 6)) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 24) (($ $ (-763)) 31)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 23))) +(((-916) (-1275)) (T -916)) +((-1983 (*1 *2 *3) (-12 (-4 *1 (-916)) (-5 *2 (-2 (|:| -2348 (-634 *1)) (|:| -2704 *1))) (-5 *3 (-634 *1)))) (-2344 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-634 *1)) (-4 *1 (-916))))) +(-13 (-453) (-10 -8 (-15 -1983 ((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $))) (-15 -2344 ((-3 (-634 $) "failed") (-634 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-43 $) . T) ((-105) . T) ((-120 $ $) . T) ((-137) . T) ((-608 (-850)) . T) ((-172) . T) ((-285) . T) ((-453) . T) ((-558) . T) ((-637 $) . T) ((-707 $) . T) ((-716) . T) ((-1053 $) . T) ((-1047) . T) ((-1054) . T) ((-1102) . T) ((-1090) . T)) +((-2447 (((-121) $ $) NIL)) (-2671 (($) NIL T CONST)) (-2925 (((-3 $ "failed") $) NIL)) (-2735 (((-121) $) NIL)) (-2521 (($ $ $) NIL)) (-3268 (($ $ $) NIL)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2721 (($ $ $) NIL)) (-2745 (((-850) $) NIL)) (-1887 (($ $ (-763)) NIL) (($ $ (-917)) NIL)) (-1556 (($) NIL T CONST)) (-1751 (((-121) $ $) NIL)) (-1738 (((-121) $ $) NIL)) (-1717 (((-121) $ $) NIL)) (-1745 (((-121) $ $) NIL)) (-1732 (((-121) $ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-763)) NIL) (($ $ (-917)) NIL)) (* (($ (-917) $) NIL) (($ $ $) NIL))) +(((-917) (-13 (-25) (-842) (-716) (-10 -8 (-15 -2721 ($ $ $)) (-6 (-4521 "*"))))) (T -917)) +((-2721 (*1 *1 *1 *1) (-5 *1 (-917)))) +(-13 (-25) (-842) (-716) (-10 -8 (-15 -2721 ($ $ $)) (-6 (-4521 "*")))) +((-1327 ((|#2| (-634 |#1|) (-634 |#1|)) 22))) +(((-918 |#1| |#2|) (-10 -7 (-15 -1327 (|#2| (-634 |#1|) (-634 |#1|)))) (-365) (-1219 |#1|)) (T -918)) +((-1327 (*1 *2 *3 *3) (-12 (-5 *3 (-634 *4)) (-4 *4 (-365)) (-4 *2 (-1219 *4)) (-5 *1 (-918 *4 *2))))) +(-10 -7 (-15 -1327 (|#2| (-634 |#1|) (-634 |#1|)))) +((-1919 (((-1157 |#2|) (-634 |#2|) (-634 |#2|)) 17) (((-1216 |#1| |#2|) (-1216 |#1| |#2|) (-634 |#2|) (-634 |#2|)) 13))) +(((-919 |#1| |#2|) (-10 -7 (-15 -1919 ((-1216 |#1| |#2|) (-1216 |#1| |#2|) (-634 |#2|) (-634 |#2|))) (-15 -1919 ((-1157 |#2|) (-634 |#2|) (-634 |#2|)))) (-1161) (-365)) (T -919)) +((-1919 (*1 *2 *3 *3) (-12 (-5 *3 (-634 *5)) (-4 *5 (-365)) (-5 *2 (-1157 *5)) (-5 *1 (-919 *4 *5)) (-14 *4 (-1161)))) (-1919 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1216 *4 *5)) (-5 *3 (-634 *5)) (-14 *4 (-1161)) (-4 *5 (-365)) (-5 *1 (-919 *4 *5))))) +(-10 -7 (-15 -1919 ((-1216 |#1| |#2|) (-1216 |#1| |#2|) (-634 |#2|) (-634 |#2|))) (-15 -1919 ((-1157 |#2|) (-634 |#2|) (-634 |#2|)))) +((-2447 (((-121) $ $) 7)) (-4313 (((-1249) $ (-634 |#2|)) 19)) (-1288 (((-634 $)) 14)) (-1510 (((-1249) $ (-917)) 18)) (-3092 (((-236 $) (-634 $)) 23)) (-3361 (((-634 |#2|) $) 20)) (-1651 (((-121) $) 17)) (-4487 (((-1143) $) 9)) (-3580 (((-1249) $) 16)) (-4022 (((-1108) $) 10)) (-3763 (((-634 $)) 15)) (-2779 ((|#1| $ (-568)) 13)) (-3206 (((-917) $) 12)) (-2373 (($ (-634 |#1|)) 22) (($ (-1161)) 21)) (-2745 (((-850) $) 11)) (-1717 (((-121) $ $) 6)) (-1773 (((-236 $) $ $) 28) (((-236 $) (-236 $) $) 27) (((-236 $) $ (-236 $)) 26) (((-236 $) $) 25)) (-1767 (((-236 $) $ $) 31) (((-236 $) (-236 $) $) 30) (((-236 $) $ (-236 $)) 29)) (* (((-236 $) (-568) $) 24))) +(((-920 |#1| |#2|) (-1275) (-365) (-641 |t#1|)) (T -920)) +((-1767 (*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *4 (-641 *3)) (-5 *2 (-236 *1)) (-4 *1 (-920 *3 *4)))) (-1767 (*1 *2 *2 *1) (-12 (-5 *2 (-236 *1)) (-4 *1 (-920 *3 *4)) (-4 *3 (-365)) (-4 *4 (-641 *3)))) (-1767 (*1 *2 *1 *2) (-12 (-5 *2 (-236 *1)) (-4 *1 (-920 *3 *4)) (-4 *3 (-365)) (-4 *4 (-641 *3)))) (-1773 (*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *4 (-641 *3)) (-5 *2 (-236 *1)) (-4 *1 (-920 *3 *4)))) (-1773 (*1 *2 *2 *1) (-12 (-5 *2 (-236 *1)) (-4 *1 (-920 *3 *4)) (-4 *3 (-365)) (-4 *4 (-641 *3)))) (-1773 (*1 *2 *1 *2) (-12 (-5 *2 (-236 *1)) (-4 *1 (-920 *3 *4)) (-4 *3 (-365)) (-4 *4 (-641 *3)))) (-1773 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-641 *3)) (-5 *2 (-236 *1)) (-4 *1 (-920 *3 *4)))) (* (*1 *2 *3 *1) (-12 (-5 *3 (-568)) (-4 *4 (-365)) (-4 *5 (-641 *4)) (-5 *2 (-236 *1)) (-4 *1 (-920 *4 *5)))) (-3092 (*1 *2 *3) (-12 (-5 *3 (-634 *1)) (-4 *1 (-920 *4 *5)) (-4 *4 (-365)) (-4 *5 (-641 *4)) (-5 *2 (-236 *1)))) (-2373 (*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-365)) (-4 *1 (-920 *3 *4)) (-4 *4 (-641 *3)))) (-2373 (*1 *1 *2) (-12 (-5 *2 (-1161)) (-4 *3 (-365)) (-4 *1 (-920 *3 *4)) (-4 *4 (-641 *3)))) (-3361 (*1 *2 *1) (-12 (-4 *1 (-920 *3 *4)) (-4 *3 (-365)) (-4 *4 (-641 *3)) (-5 *2 (-634 *4)))) (-4313 (*1 *2 *1 *3) (-12 (-5 *3 (-634 *5)) (-4 *1 (-920 *4 *5)) (-4 *4 (-365)) (-4 *5 (-641 *4)) (-5 *2 (-1249)))) (-1510 (*1 *2 *1 *3) (-12 (-5 *3 (-917)) (-4 *1 (-920 *4 *5)) (-4 *4 (-365)) (-4 *5 (-641 *4)) (-5 *2 (-1249)))) (-1651 (*1 *2 *1) (-12 (-4 *1 (-920 *3 *4)) (-4 *3 (-365)) (-4 *4 (-641 *3)) (-5 *2 (-121)))) (-3580 (*1 *2 *1) (-12 (-4 *1 (-920 *3 *4)) (-4 *3 (-365)) (-4 *4 (-641 *3)) (-5 *2 (-1249)))) (-3763 (*1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-641 *3)) (-5 *2 (-634 *1)) (-4 *1 (-920 *3 *4)))) (-1288 (*1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-641 *3)) (-5 *2 (-634 *1)) (-4 *1 (-920 *3 *4)))) (-2779 (*1 *2 *1 *3) (-12 (-5 *3 (-568)) (-4 *1 (-920 *2 *4)) (-4 *4 (-641 *2)) (-4 *2 (-365))))) +(-13 (-1088) (-10 -8 (-15 -1767 ((-236 $) $ $)) (-15 -1767 ((-236 $) (-236 $) $)) (-15 -1767 ((-236 $) $ (-236 $))) (-15 -1773 ((-236 $) $ $)) (-15 -1773 ((-236 $) (-236 $) $)) (-15 -1773 ((-236 $) $ (-236 $))) (-15 -1773 ((-236 $) $)) (-15 * ((-236 $) (-568) $)) (-15 -3092 ((-236 $) (-634 $))) (-15 -2373 ($ (-634 |t#1|))) (-15 -2373 ($ (-1161))) (-15 -3361 ((-634 |t#2|) $)) (-15 -4313 ((-1249) $ (-634 |t#2|))) (-15 -1510 ((-1249) $ (-917))) (-15 -1651 ((-121) $)) (-15 -3580 ((-1249) $)) (-15 -3763 ((-634 $))) (-15 -1288 ((-634 $))) (-15 -2779 (|t#1| $ (-568))))) +(((-105) . T) ((-608 (-850)) . T) ((-1090) . T) ((-1088) . T)) +((-2447 (((-121) $ $) NIL)) (-4313 (((-1249) $ (-634 (-774 |#1|))) NIL)) (-1288 (((-634 $)) NIL)) (-1510 (((-1249) $ (-917)) NIL)) (-3092 (((-236 $) (-634 $)) NIL)) (-3361 (((-634 (-774 |#1|)) $) NIL)) (-1651 (((-121) $) NIL)) (-4487 (((-1143) $) NIL)) (-3580 (((-1249) $) NIL)) (-4022 (((-1108) $) NIL)) (-3763 (((-634 $)) NIL)) (-2779 ((|#1| $ (-568)) NIL)) (-3206 (((-917) $) NIL)) (-2373 (($ (-634 |#1|)) NIL) (($ (-1161)) NIL)) (-2745 (((-850) $) NIL)) (-1717 (((-121) $ $) NIL)) (-1773 (((-236 $) $ $) NIL) (((-236 $) (-236 $) $) NIL) (((-236 $) $ (-236 $)) NIL) (((-236 $) $) NIL)) (-1767 (((-236 $) $ $) NIL) (((-236 $) (-236 $) $) NIL) (((-236 $) $ (-236 $)) NIL)) (* (((-236 $) (-568) $) NIL))) +(((-921 |#1|) (-920 |#1| (-774 |#1|)) (-365)) (T -921)) +NIL +(-920 |#1| (-774 |#1|)) +((-2447 (((-121) $ $) NIL)) (-4313 (((-1249) $ (-634 (-774 (-857 |#1|)))) NIL)) (-1288 (((-634 $)) NIL)) (-1510 (((-1249) $ (-917)) NIL)) (-3092 (((-236 $) (-634 $)) NIL)) (-3361 (((-634 (-774 (-857 |#1|))) $) NIL)) (-1651 (((-121) $) NIL)) (-4487 (((-1143) $) NIL)) (-3580 (((-1249) $) NIL)) (-4022 (((-1108) $) NIL)) (-3763 (((-634 $)) NIL)) (-2779 (((-857 |#1|) $ (-568)) NIL)) (-3206 (((-917) $) NIL)) (-2373 (($ (-634 (-857 |#1|))) NIL) (($ (-1161)) NIL)) (-2745 (((-850) $) NIL)) (-1717 (((-121) $ $) NIL)) (-1773 (((-236 $) $ $) NIL) (((-236 $) (-236 $) $) NIL) (((-236 $) $ (-236 $)) NIL) (((-236 $) $) NIL)) (-1767 (((-236 $) $ $) NIL) (((-236 $) (-236 $) $) NIL) (((-236 $) $ (-236 $)) NIL)) (* (((-236 $) (-568) $) NIL))) +(((-922 |#1|) (-920 (-857 |#1|) (-774 (-857 |#1|))) (-350)) (T -922)) +NIL +(-920 (-857 |#1|) (-774 (-857 |#1|))) +((-2447 (((-121) $ $) NIL)) (-4313 (((-1249) $ (-634 |#2|)) 73)) (-1288 (((-634 $)) 62)) (-1510 (((-1249) $ (-917)) 71)) (-3092 (((-236 $) (-634 $)) 27)) (-3361 (((-634 |#2|) $) 74)) (-1651 (((-121) $) 54)) (-4487 (((-1143) $) NIL)) (-3580 (((-1249) $) 57)) (-4022 (((-1108) $) NIL)) (-3763 (((-634 $)) 59)) (-2779 ((|#1| $ (-568)) 53)) (-3206 (((-917) $) 42)) (-2373 (($ (-634 |#1|)) 69) (($ (-1161)) 70)) (-2745 (((-850) $) 45)) (-1717 (((-121) $ $) 50)) (-1773 (((-236 $) $ $) 18) (((-236 $) (-236 $) $) 30) (((-236 $) $ (-236 $)) 31) (((-236 $) $) 33)) (-1767 (((-236 $) $ $) 16) (((-236 $) (-236 $) $) 28) (((-236 $) $ (-236 $)) 29)) (* (((-236 $) (-568) $) 21))) +(((-923 |#1| |#2|) (-920 |#1| |#2|) (-365) (-641 |#1|)) (T -923)) +NIL +(-920 |#1| |#2|) +((-1295 (((-568) (-634 (-2 (|:| |eqzro| (-634 |#4|)) (|:| |neqzro| (-634 |#4|)) (|:| |wcond| (-634 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1244 (-409 (-953 |#1|)))) (|:| -3746 (-634 (-1244 (-409 (-953 |#1|))))))))) (-1143)) 137)) (-3872 ((|#4| |#4|) 153)) (-1845 (((-634 (-409 (-953 |#1|))) (-634 (-1161))) 116)) (-3691 (((-2 (|:| |eqzro| (-634 |#4|)) (|:| |neqzro| (-634 |#4|)) (|:| |wcond| (-634 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1244 (-409 (-953 |#1|)))) (|:| -3746 (-634 (-1244 (-409 (-953 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-634 (-568))) (|:| |cols| (-634 (-568)))) (-679 |#4|) (-634 (-409 (-953 |#1|))) (-634 (-634 |#4|)) (-763) (-763) (-568)) 73)) (-1329 (((-2 (|:| |partsol| (-1244 (-409 (-953 |#1|)))) (|:| -3746 (-634 (-1244 (-409 (-953 |#1|)))))) (-2 (|:| |partsol| (-1244 (-409 (-953 |#1|)))) (|:| -3746 (-634 (-1244 (-409 (-953 |#1|)))))) (-634 |#4|)) 57)) (-2232 (((-679 |#4|) (-679 |#4|) (-634 |#4|)) 53)) (-1370 (((-634 (-2 (|:| |eqzro| (-634 |#4|)) (|:| |neqzro| (-634 |#4|)) (|:| |wcond| (-634 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1244 (-409 (-953 |#1|)))) (|:| -3746 (-634 (-1244 (-409 (-953 |#1|))))))))) (-1143)) 149)) (-4376 (((-568) (-679 |#4|) (-917) (-1143)) 130) (((-568) (-679 |#4|) (-634 (-1161)) (-917) (-1143)) 129) (((-568) (-679 |#4|) (-634 |#4|) (-917) (-1143)) 128) (((-568) (-679 |#4|) (-1143)) 125) (((-568) (-679 |#4|) (-634 (-1161)) (-1143)) 124) (((-568) (-679 |#4|) (-634 |#4|) (-1143)) 123) (((-634 (-2 (|:| |eqzro| (-634 |#4|)) (|:| |neqzro| (-634 |#4|)) (|:| |wcond| (-634 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1244 (-409 (-953 |#1|)))) (|:| -3746 (-634 (-1244 (-409 (-953 |#1|))))))))) (-679 |#4|) (-917)) 122) (((-634 (-2 (|:| |eqzro| (-634 |#4|)) (|:| |neqzro| (-634 |#4|)) (|:| |wcond| (-634 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1244 (-409 (-953 |#1|)))) (|:| -3746 (-634 (-1244 (-409 (-953 |#1|))))))))) (-679 |#4|) (-634 (-1161)) (-917)) 121) (((-634 (-2 (|:| |eqzro| (-634 |#4|)) (|:| |neqzro| (-634 |#4|)) (|:| |wcond| (-634 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1244 (-409 (-953 |#1|)))) (|:| -3746 (-634 (-1244 (-409 (-953 |#1|))))))))) (-679 |#4|) (-634 |#4|) (-917)) 120) (((-634 (-2 (|:| |eqzro| (-634 |#4|)) (|:| |neqzro| (-634 |#4|)) (|:| |wcond| (-634 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1244 (-409 (-953 |#1|)))) (|:| -3746 (-634 (-1244 (-409 (-953 |#1|))))))))) (-679 |#4|)) 118) (((-634 (-2 (|:| |eqzro| (-634 |#4|)) (|:| |neqzro| (-634 |#4|)) (|:| |wcond| (-634 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1244 (-409 (-953 |#1|)))) (|:| -3746 (-634 (-1244 (-409 (-953 |#1|))))))))) (-679 |#4|) (-634 (-1161))) 117) (((-634 (-2 (|:| |eqzro| (-634 |#4|)) (|:| |neqzro| (-634 |#4|)) (|:| |wcond| (-634 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1244 (-409 (-953 |#1|)))) (|:| -3746 (-634 (-1244 (-409 (-953 |#1|))))))))) (-679 |#4|) (-634 |#4|)) 114)) (-3267 ((|#4| (-953 |#1|)) 66)) (-1425 (((-121) (-634 |#4|) (-634 (-634 |#4|))) 150)) (-3080 (((-634 (-634 (-568))) (-568) (-568)) 127)) (-4428 (((-634 (-634 |#4|)) (-634 (-634 |#4|))) 85)) (-2034 (((-763) (-634 (-2 (|:| -3700 (-763)) (|:| |eqns| (-634 (-2 (|:| |det| |#4|) (|:| |rows| (-634 (-568))) (|:| |cols| (-634 (-568)))))) (|:| |fgb| (-634 |#4|))))) 83)) (-2843 (((-763) (-634 (-2 (|:| -3700 (-763)) (|:| |eqns| (-634 (-2 (|:| |det| |#4|) (|:| |rows| (-634 (-568))) (|:| |cols| (-634 (-568)))))) (|:| |fgb| (-634 |#4|))))) 82)) (-3537 (((-121) (-634 (-953 |#1|))) 17) (((-121) (-634 |#4|)) 13)) (-1545 (((-2 (|:| |sysok| (-121)) (|:| |z0| (-634 |#4|)) (|:| |n0| (-634 |#4|))) (-634 |#4|) (-634 |#4|)) 69)) (-1514 (((-634 |#4|) |#4|) 47)) (-1559 (((-634 (-409 (-953 |#1|))) (-634 |#4|)) 112) (((-679 (-409 (-953 |#1|))) (-679 |#4|)) 54) (((-409 (-953 |#1|)) |#4|) 109)) (-3549 (((-2 (|:| |rgl| (-634 (-2 (|:| |eqzro| (-634 |#4|)) (|:| |neqzro| (-634 |#4|)) (|:| |wcond| (-634 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1244 (-409 (-953 |#1|)))) (|:| -3746 (-634 (-1244 (-409 (-953 |#1|)))))))))) (|:| |rgsz| (-568))) (-679 |#4|) (-634 (-409 (-953 |#1|))) (-763) (-1143) (-568)) 89)) (-2730 (((-634 (-2 (|:| -3700 (-763)) (|:| |eqns| (-634 (-2 (|:| |det| |#4|) (|:| |rows| (-634 (-568))) (|:| |cols| (-634 (-568)))))) (|:| |fgb| (-634 |#4|)))) (-679 |#4|) (-763)) 81)) (-3589 (((-634 (-2 (|:| |det| |#4|) (|:| |rows| (-634 (-568))) (|:| |cols| (-634 (-568))))) (-679 |#4|) (-763)) 98)) (-3945 (((-2 (|:| |partsol| (-1244 (-409 (-953 |#1|)))) (|:| -3746 (-634 (-1244 (-409 (-953 |#1|)))))) (-2 (|:| -2928 (-679 (-409 (-953 |#1|)))) (|:| |vec| (-634 (-409 (-953 |#1|)))) (|:| -3700 (-763)) (|:| |rows| (-634 (-568))) (|:| |cols| (-634 (-568))))) 46))) +(((-924 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4376 ((-634 (-2 (|:| |eqzro| (-634 |#4|)) (|:| |neqzro| (-634 |#4|)) (|:| |wcond| (-634 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1244 (-409 (-953 |#1|)))) (|:| -3746 (-634 (-1244 (-409 (-953 |#1|))))))))) (-679 |#4|) (-634 |#4|))) (-15 -4376 ((-634 (-2 (|:| |eqzro| (-634 |#4|)) (|:| |neqzro| (-634 |#4|)) (|:| |wcond| (-634 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1244 (-409 (-953 |#1|)))) (|:| -3746 (-634 (-1244 (-409 (-953 |#1|))))))))) (-679 |#4|) (-634 (-1161)))) (-15 -4376 ((-634 (-2 (|:| |eqzro| (-634 |#4|)) (|:| |neqzro| (-634 |#4|)) (|:| |wcond| (-634 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1244 (-409 (-953 |#1|)))) (|:| -3746 (-634 (-1244 (-409 (-953 |#1|))))))))) (-679 |#4|))) (-15 -4376 ((-634 (-2 (|:| |eqzro| (-634 |#4|)) (|:| |neqzro| (-634 |#4|)) (|:| |wcond| (-634 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1244 (-409 (-953 |#1|)))) (|:| -3746 (-634 (-1244 (-409 (-953 |#1|))))))))) (-679 |#4|) (-634 |#4|) (-917))) (-15 -4376 ((-634 (-2 (|:| |eqzro| (-634 |#4|)) (|:| |neqzro| (-634 |#4|)) (|:| |wcond| (-634 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1244 (-409 (-953 |#1|)))) (|:| -3746 (-634 (-1244 (-409 (-953 |#1|))))))))) (-679 |#4|) (-634 (-1161)) (-917))) (-15 -4376 ((-634 (-2 (|:| |eqzro| (-634 |#4|)) (|:| |neqzro| (-634 |#4|)) (|:| |wcond| (-634 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1244 (-409 (-953 |#1|)))) (|:| -3746 (-634 (-1244 (-409 (-953 |#1|))))))))) (-679 |#4|) (-917))) (-15 -4376 ((-568) (-679 |#4|) (-634 |#4|) (-1143))) (-15 -4376 ((-568) (-679 |#4|) (-634 (-1161)) (-1143))) (-15 -4376 ((-568) (-679 |#4|) (-1143))) (-15 -4376 ((-568) (-679 |#4|) (-634 |#4|) (-917) (-1143))) (-15 -4376 ((-568) (-679 |#4|) (-634 (-1161)) (-917) (-1143))) (-15 -4376 ((-568) (-679 |#4|) (-917) (-1143))) (-15 -1295 ((-568) (-634 (-2 (|:| |eqzro| (-634 |#4|)) (|:| |neqzro| (-634 |#4|)) (|:| |wcond| (-634 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1244 (-409 (-953 |#1|)))) (|:| -3746 (-634 (-1244 (-409 (-953 |#1|))))))))) (-1143))) (-15 -1370 ((-634 (-2 (|:| |eqzro| (-634 |#4|)) (|:| |neqzro| (-634 |#4|)) (|:| |wcond| (-634 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1244 (-409 (-953 |#1|)))) (|:| -3746 (-634 (-1244 (-409 (-953 |#1|))))))))) (-1143))) (-15 -3549 ((-2 (|:| |rgl| (-634 (-2 (|:| |eqzro| (-634 |#4|)) (|:| |neqzro| (-634 |#4|)) (|:| |wcond| (-634 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1244 (-409 (-953 |#1|)))) (|:| -3746 (-634 (-1244 (-409 (-953 |#1|)))))))))) (|:| |rgsz| (-568))) (-679 |#4|) (-634 (-409 (-953 |#1|))) (-763) (-1143) (-568))) (-15 -1559 ((-409 (-953 |#1|)) |#4|)) (-15 -1559 ((-679 (-409 (-953 |#1|))) (-679 |#4|))) (-15 -1559 ((-634 (-409 (-953 |#1|))) (-634 |#4|))) (-15 -1845 ((-634 (-409 (-953 |#1|))) (-634 (-1161)))) (-15 -3267 (|#4| (-953 |#1|))) (-15 -1545 ((-2 (|:| |sysok| (-121)) (|:| |z0| (-634 |#4|)) (|:| |n0| (-634 |#4|))) (-634 |#4|) (-634 |#4|))) (-15 -2730 ((-634 (-2 (|:| -3700 (-763)) (|:| |eqns| (-634 (-2 (|:| |det| |#4|) (|:| |rows| (-634 (-568))) (|:| |cols| (-634 (-568)))))) (|:| |fgb| (-634 |#4|)))) (-679 |#4|) (-763))) (-15 -1329 ((-2 (|:| |partsol| (-1244 (-409 (-953 |#1|)))) (|:| -3746 (-634 (-1244 (-409 (-953 |#1|)))))) (-2 (|:| |partsol| (-1244 (-409 (-953 |#1|)))) (|:| -3746 (-634 (-1244 (-409 (-953 |#1|)))))) (-634 |#4|))) (-15 -3945 ((-2 (|:| |partsol| (-1244 (-409 (-953 |#1|)))) (|:| -3746 (-634 (-1244 (-409 (-953 |#1|)))))) (-2 (|:| -2928 (-679 (-409 (-953 |#1|)))) (|:| |vec| (-634 (-409 (-953 |#1|)))) (|:| -3700 (-763)) (|:| |rows| (-634 (-568))) (|:| |cols| (-634 (-568)))))) (-15 -1514 ((-634 |#4|) |#4|)) (-15 -2843 ((-763) (-634 (-2 (|:| -3700 (-763)) (|:| |eqns| (-634 (-2 (|:| |det| |#4|) (|:| |rows| (-634 (-568))) (|:| |cols| (-634 (-568)))))) (|:| |fgb| (-634 |#4|)))))) (-15 -2034 ((-763) (-634 (-2 (|:| -3700 (-763)) (|:| |eqns| (-634 (-2 (|:| |det| |#4|) (|:| |rows| (-634 (-568))) (|:| |cols| (-634 (-568)))))) (|:| |fgb| (-634 |#4|)))))) (-15 -4428 ((-634 (-634 |#4|)) (-634 (-634 |#4|)))) (-15 -3080 ((-634 (-634 (-568))) (-568) (-568))) (-15 -1425 ((-121) (-634 |#4|) (-634 (-634 |#4|)))) (-15 -3589 ((-634 (-2 (|:| |det| |#4|) (|:| |rows| (-634 (-568))) (|:| |cols| (-634 (-568))))) (-679 |#4|) (-763))) (-15 -2232 ((-679 |#4|) (-679 |#4|) (-634 |#4|))) (-15 -3691 ((-2 (|:| |eqzro| (-634 |#4|)) (|:| |neqzro| (-634 |#4|)) (|:| |wcond| (-634 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1244 (-409 (-953 |#1|)))) (|:| -3746 (-634 (-1244 (-409 (-953 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-634 (-568))) (|:| |cols| (-634 (-568)))) (-679 |#4|) (-634 (-409 (-953 |#1|))) (-634 (-634 |#4|)) (-763) (-763) (-568))) (-15 -3872 (|#4| |#4|)) (-15 -3537 ((-121) (-634 |#4|))) (-15 -3537 ((-121) (-634 (-953 |#1|))))) (-13 (-301) (-150)) (-13 (-842) (-609 (-1161))) (-788) (-950 |#1| |#3| |#2|)) (T -924)) +((-3537 (*1 *2 *3) (-12 (-5 *3 (-634 (-953 *4))) (-4 *4 (-13 (-301) (-150))) (-4 *5 (-13 (-842) (-609 (-1161)))) (-4 *6 (-788)) (-5 *2 (-121)) (-5 *1 (-924 *4 *5 *6 *7)) (-4 *7 (-950 *4 *6 *5)))) (-3537 (*1 *2 *3) (-12 (-5 *3 (-634 *7)) (-4 *7 (-950 *4 *6 *5)) (-4 *4 (-13 (-301) (-150))) (-4 *5 (-13 (-842) (-609 (-1161)))) (-4 *6 (-788)) (-5 *2 (-121)) (-5 *1 (-924 *4 *5 *6 *7)))) (-3872 (*1 *2 *2) (-12 (-4 *3 (-13 (-301) (-150))) (-4 *4 (-13 (-842) (-609 (-1161)))) (-4 *5 (-788)) (-5 *1 (-924 *3 *4 *5 *2)) (-4 *2 (-950 *3 *5 *4)))) (-3691 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-634 (-568))) (|:| |cols| (-634 (-568))))) (-5 *4 (-679 *12)) (-5 *5 (-634 (-409 (-953 *9)))) (-5 *6 (-634 (-634 *12))) (-5 *7 (-763)) (-5 *8 (-568)) (-4 *9 (-13 (-301) (-150))) (-4 *12 (-950 *9 *11 *10)) (-4 *10 (-13 (-842) (-609 (-1161)))) (-4 *11 (-788)) (-5 *2 (-2 (|:| |eqzro| (-634 *12)) (|:| |neqzro| (-634 *12)) (|:| |wcond| (-634 (-953 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1244 (-409 (-953 *9)))) (|:| -3746 (-634 (-1244 (-409 (-953 *9))))))))) (-5 *1 (-924 *9 *10 *11 *12)))) (-2232 (*1 *2 *2 *3) (-12 (-5 *2 (-679 *7)) (-5 *3 (-634 *7)) (-4 *7 (-950 *4 *6 *5)) (-4 *4 (-13 (-301) (-150))) (-4 *5 (-13 (-842) (-609 (-1161)))) (-4 *6 (-788)) (-5 *1 (-924 *4 *5 *6 *7)))) (-3589 (*1 *2 *3 *4) (-12 (-5 *3 (-679 *8)) (-5 *4 (-763)) (-4 *8 (-950 *5 *7 *6)) (-4 *5 (-13 (-301) (-150))) (-4 *6 (-13 (-842) (-609 (-1161)))) (-4 *7 (-788)) (-5 *2 (-634 (-2 (|:| |det| *8) (|:| |rows| (-634 (-568))) (|:| |cols| (-634 (-568)))))) (-5 *1 (-924 *5 *6 *7 *8)))) (-1425 (*1 *2 *3 *4) (-12 (-5 *4 (-634 (-634 *8))) (-5 *3 (-634 *8)) (-4 *8 (-950 *5 *7 *6)) (-4 *5 (-13 (-301) (-150))) (-4 *6 (-13 (-842) (-609 (-1161)))) (-4 *7 (-788)) (-5 *2 (-121)) (-5 *1 (-924 *5 *6 *7 *8)))) (-3080 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-301) (-150))) (-4 *5 (-13 (-842) (-609 (-1161)))) (-4 *6 (-788)) (-5 *2 (-634 (-634 (-568)))) (-5 *1 (-924 *4 *5 *6 *7)) (-5 *3 (-568)) (-4 *7 (-950 *4 *6 *5)))) (-4428 (*1 *2 *2) (-12 (-5 *2 (-634 (-634 *6))) (-4 *6 (-950 *3 *5 *4)) (-4 *3 (-13 (-301) (-150))) (-4 *4 (-13 (-842) (-609 (-1161)))) (-4 *5 (-788)) (-5 *1 (-924 *3 *4 *5 *6)))) (-2034 (*1 *2 *3) (-12 (-5 *3 (-634 (-2 (|:| -3700 (-763)) (|:| |eqns| (-634 (-2 (|:| |det| *7) (|:| |rows| (-634 (-568))) (|:| |cols| (-634 (-568)))))) (|:| |fgb| (-634 *7))))) (-4 *7 (-950 *4 *6 *5)) (-4 *4 (-13 (-301) (-150))) (-4 *5 (-13 (-842) (-609 (-1161)))) (-4 *6 (-788)) (-5 *2 (-763)) (-5 *1 (-924 *4 *5 *6 *7)))) (-2843 (*1 *2 *3) (-12 (-5 *3 (-634 (-2 (|:| -3700 (-763)) (|:| |eqns| (-634 (-2 (|:| |det| *7) (|:| |rows| (-634 (-568))) (|:| |cols| (-634 (-568)))))) (|:| |fgb| (-634 *7))))) (-4 *7 (-950 *4 *6 *5)) (-4 *4 (-13 (-301) (-150))) (-4 *5 (-13 (-842) (-609 (-1161)))) (-4 *6 (-788)) (-5 *2 (-763)) (-5 *1 (-924 *4 *5 *6 *7)))) (-1514 (*1 *2 *3) (-12 (-4 *4 (-13 (-301) (-150))) (-4 *5 (-13 (-842) (-609 (-1161)))) (-4 *6 (-788)) (-5 *2 (-634 *3)) (-5 *1 (-924 *4 *5 *6 *3)) (-4 *3 (-950 *4 *6 *5)))) (-3945 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2928 (-679 (-409 (-953 *4)))) (|:| |vec| (-634 (-409 (-953 *4)))) (|:| -3700 (-763)) (|:| |rows| (-634 (-568))) (|:| |cols| (-634 (-568))))) (-4 *4 (-13 (-301) (-150))) (-4 *5 (-13 (-842) (-609 (-1161)))) (-4 *6 (-788)) (-5 *2 (-2 (|:| |partsol| (-1244 (-409 (-953 *4)))) (|:| -3746 (-634 (-1244 (-409 (-953 *4))))))) (-5 *1 (-924 *4 *5 *6 *7)) (-4 *7 (-950 *4 *6 *5)))) (-1329 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1244 (-409 (-953 *4)))) (|:| -3746 (-634 (-1244 (-409 (-953 *4))))))) (-5 *3 (-634 *7)) (-4 *4 (-13 (-301) (-150))) (-4 *7 (-950 *4 *6 *5)) (-4 *5 (-13 (-842) (-609 (-1161)))) (-4 *6 (-788)) (-5 *1 (-924 *4 *5 *6 *7)))) (-2730 (*1 *2 *3 *4) (-12 (-5 *3 (-679 *8)) (-4 *8 (-950 *5 *7 *6)) (-4 *5 (-13 (-301) (-150))) (-4 *6 (-13 (-842) (-609 (-1161)))) (-4 *7 (-788)) (-5 *2 (-634 (-2 (|:| -3700 (-763)) (|:| |eqns| (-634 (-2 (|:| |det| *8) (|:| |rows| (-634 (-568))) (|:| |cols| (-634 (-568)))))) (|:| |fgb| (-634 *8))))) (-5 *1 (-924 *5 *6 *7 *8)) (-5 *4 (-763)))) (-1545 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-301) (-150))) (-4 *5 (-13 (-842) (-609 (-1161)))) (-4 *6 (-788)) (-4 *7 (-950 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-121)) (|:| |z0| (-634 *7)) (|:| |n0| (-634 *7)))) (-5 *1 (-924 *4 *5 *6 *7)) (-5 *3 (-634 *7)))) (-3267 (*1 *2 *3) (-12 (-5 *3 (-953 *4)) (-4 *4 (-13 (-301) (-150))) (-4 *2 (-950 *4 *6 *5)) (-5 *1 (-924 *4 *5 *6 *2)) (-4 *5 (-13 (-842) (-609 (-1161)))) (-4 *6 (-788)))) (-1845 (*1 *2 *3) (-12 (-5 *3 (-634 (-1161))) (-4 *4 (-13 (-301) (-150))) (-4 *5 (-13 (-842) (-609 (-1161)))) (-4 *6 (-788)) (-5 *2 (-634 (-409 (-953 *4)))) (-5 *1 (-924 *4 *5 *6 *7)) (-4 *7 (-950 *4 *6 *5)))) (-1559 (*1 *2 *3) (-12 (-5 *3 (-634 *7)) (-4 *7 (-950 *4 *6 *5)) (-4 *4 (-13 (-301) (-150))) (-4 *5 (-13 (-842) (-609 (-1161)))) (-4 *6 (-788)) (-5 *2 (-634 (-409 (-953 *4)))) (-5 *1 (-924 *4 *5 *6 *7)))) (-1559 (*1 *2 *3) (-12 (-5 *3 (-679 *7)) (-4 *7 (-950 *4 *6 *5)) (-4 *4 (-13 (-301) (-150))) (-4 *5 (-13 (-842) (-609 (-1161)))) (-4 *6 (-788)) (-5 *2 (-679 (-409 (-953 *4)))) (-5 *1 (-924 *4 *5 *6 *7)))) (-1559 (*1 *2 *3) (-12 (-4 *4 (-13 (-301) (-150))) (-4 *5 (-13 (-842) (-609 (-1161)))) (-4 *6 (-788)) (-5 *2 (-409 (-953 *4))) (-5 *1 (-924 *4 *5 *6 *3)) (-4 *3 (-950 *4 *6 *5)))) (-3549 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-679 *11)) (-5 *4 (-634 (-409 (-953 *8)))) (-5 *5 (-763)) (-5 *6 (-1143)) (-4 *8 (-13 (-301) (-150))) (-4 *11 (-950 *8 *10 *9)) (-4 *9 (-13 (-842) (-609 (-1161)))) (-4 *10 (-788)) (-5 *2 (-2 (|:| |rgl| (-634 (-2 (|:| |eqzro| (-634 *11)) (|:| |neqzro| (-634 *11)) (|:| |wcond| (-634 (-953 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1244 (-409 (-953 *8)))) (|:| -3746 (-634 (-1244 (-409 (-953 *8)))))))))) (|:| |rgsz| (-568)))) (-5 *1 (-924 *8 *9 *10 *11)) (-5 *7 (-568)))) (-1370 (*1 *2 *3) (-12 (-5 *3 (-1143)) (-4 *4 (-13 (-301) (-150))) (-4 *5 (-13 (-842) (-609 (-1161)))) (-4 *6 (-788)) (-5 *2 (-634 (-2 (|:| |eqzro| (-634 *7)) (|:| |neqzro| (-634 *7)) (|:| |wcond| (-634 (-953 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1244 (-409 (-953 *4)))) (|:| -3746 (-634 (-1244 (-409 (-953 *4)))))))))) (-5 *1 (-924 *4 *5 *6 *7)) (-4 *7 (-950 *4 *6 *5)))) (-1295 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-2 (|:| |eqzro| (-634 *8)) (|:| |neqzro| (-634 *8)) (|:| |wcond| (-634 (-953 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1244 (-409 (-953 *5)))) (|:| -3746 (-634 (-1244 (-409 (-953 *5)))))))))) (-5 *4 (-1143)) (-4 *5 (-13 (-301) (-150))) (-4 *8 (-950 *5 *7 *6)) (-4 *6 (-13 (-842) (-609 (-1161)))) (-4 *7 (-788)) (-5 *2 (-568)) (-5 *1 (-924 *5 *6 *7 *8)))) (-4376 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-679 *9)) (-5 *4 (-917)) (-5 *5 (-1143)) (-4 *9 (-950 *6 *8 *7)) (-4 *6 (-13 (-301) (-150))) (-4 *7 (-13 (-842) (-609 (-1161)))) (-4 *8 (-788)) (-5 *2 (-568)) (-5 *1 (-924 *6 *7 *8 *9)))) (-4376 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-679 *10)) (-5 *4 (-634 (-1161))) (-5 *5 (-917)) (-5 *6 (-1143)) (-4 *10 (-950 *7 *9 *8)) (-4 *7 (-13 (-301) (-150))) (-4 *8 (-13 (-842) (-609 (-1161)))) (-4 *9 (-788)) (-5 *2 (-568)) (-5 *1 (-924 *7 *8 *9 *10)))) (-4376 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-679 *10)) (-5 *4 (-634 *10)) (-5 *5 (-917)) (-5 *6 (-1143)) (-4 *10 (-950 *7 *9 *8)) (-4 *7 (-13 (-301) (-150))) (-4 *8 (-13 (-842) (-609 (-1161)))) (-4 *9 (-788)) (-5 *2 (-568)) (-5 *1 (-924 *7 *8 *9 *10)))) (-4376 (*1 *2 *3 *4) (-12 (-5 *3 (-679 *8)) (-5 *4 (-1143)) (-4 *8 (-950 *5 *7 *6)) (-4 *5 (-13 (-301) (-150))) (-4 *6 (-13 (-842) (-609 (-1161)))) (-4 *7 (-788)) (-5 *2 (-568)) (-5 *1 (-924 *5 *6 *7 *8)))) (-4376 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-679 *9)) (-5 *4 (-634 (-1161))) (-5 *5 (-1143)) (-4 *9 (-950 *6 *8 *7)) (-4 *6 (-13 (-301) (-150))) (-4 *7 (-13 (-842) (-609 (-1161)))) (-4 *8 (-788)) (-5 *2 (-568)) (-5 *1 (-924 *6 *7 *8 *9)))) (-4376 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-679 *9)) (-5 *4 (-634 *9)) (-5 *5 (-1143)) (-4 *9 (-950 *6 *8 *7)) (-4 *6 (-13 (-301) (-150))) (-4 *7 (-13 (-842) (-609 (-1161)))) (-4 *8 (-788)) (-5 *2 (-568)) (-5 *1 (-924 *6 *7 *8 *9)))) (-4376 (*1 *2 *3 *4) (-12 (-5 *3 (-679 *8)) (-5 *4 (-917)) (-4 *8 (-950 *5 *7 *6)) (-4 *5 (-13 (-301) (-150))) (-4 *6 (-13 (-842) (-609 (-1161)))) (-4 *7 (-788)) (-5 *2 (-634 (-2 (|:| |eqzro| (-634 *8)) (|:| |neqzro| (-634 *8)) (|:| |wcond| (-634 (-953 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1244 (-409 (-953 *5)))) (|:| -3746 (-634 (-1244 (-409 (-953 *5)))))))))) (-5 *1 (-924 *5 *6 *7 *8)))) (-4376 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-679 *9)) (-5 *4 (-634 (-1161))) (-5 *5 (-917)) (-4 *9 (-950 *6 *8 *7)) (-4 *6 (-13 (-301) (-150))) (-4 *7 (-13 (-842) (-609 (-1161)))) (-4 *8 (-788)) (-5 *2 (-634 (-2 (|:| |eqzro| (-634 *9)) (|:| |neqzro| (-634 *9)) (|:| |wcond| (-634 (-953 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1244 (-409 (-953 *6)))) (|:| -3746 (-634 (-1244 (-409 (-953 *6)))))))))) (-5 *1 (-924 *6 *7 *8 *9)))) (-4376 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-679 *9)) (-5 *5 (-917)) (-4 *9 (-950 *6 *8 *7)) (-4 *6 (-13 (-301) (-150))) (-4 *7 (-13 (-842) (-609 (-1161)))) (-4 *8 (-788)) (-5 *2 (-634 (-2 (|:| |eqzro| (-634 *9)) (|:| |neqzro| (-634 *9)) (|:| |wcond| (-634 (-953 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1244 (-409 (-953 *6)))) (|:| -3746 (-634 (-1244 (-409 (-953 *6)))))))))) (-5 *1 (-924 *6 *7 *8 *9)) (-5 *4 (-634 *9)))) (-4376 (*1 *2 *3) (-12 (-5 *3 (-679 *7)) (-4 *7 (-950 *4 *6 *5)) (-4 *4 (-13 (-301) (-150))) (-4 *5 (-13 (-842) (-609 (-1161)))) (-4 *6 (-788)) (-5 *2 (-634 (-2 (|:| |eqzro| (-634 *7)) (|:| |neqzro| (-634 *7)) (|:| |wcond| (-634 (-953 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1244 (-409 (-953 *4)))) (|:| -3746 (-634 (-1244 (-409 (-953 *4)))))))))) (-5 *1 (-924 *4 *5 *6 *7)))) (-4376 (*1 *2 *3 *4) (-12 (-5 *3 (-679 *8)) (-5 *4 (-634 (-1161))) (-4 *8 (-950 *5 *7 *6)) (-4 *5 (-13 (-301) (-150))) (-4 *6 (-13 (-842) (-609 (-1161)))) (-4 *7 (-788)) (-5 *2 (-634 (-2 (|:| |eqzro| (-634 *8)) (|:| |neqzro| (-634 *8)) (|:| |wcond| (-634 (-953 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1244 (-409 (-953 *5)))) (|:| -3746 (-634 (-1244 (-409 (-953 *5)))))))))) (-5 *1 (-924 *5 *6 *7 *8)))) (-4376 (*1 *2 *3 *4) (-12 (-5 *3 (-679 *8)) (-4 *8 (-950 *5 *7 *6)) (-4 *5 (-13 (-301) (-150))) (-4 *6 (-13 (-842) (-609 (-1161)))) (-4 *7 (-788)) (-5 *2 (-634 (-2 (|:| |eqzro| (-634 *8)) (|:| |neqzro| (-634 *8)) (|:| |wcond| (-634 (-953 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1244 (-409 (-953 *5)))) (|:| -3746 (-634 (-1244 (-409 (-953 *5)))))))))) (-5 *1 (-924 *5 *6 *7 *8)) (-5 *4 (-634 *8))))) +(-10 -7 (-15 -4376 ((-634 (-2 (|:| |eqzro| (-634 |#4|)) (|:| |neqzro| (-634 |#4|)) (|:| |wcond| (-634 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1244 (-409 (-953 |#1|)))) (|:| -3746 (-634 (-1244 (-409 (-953 |#1|))))))))) (-679 |#4|) (-634 |#4|))) (-15 -4376 ((-634 (-2 (|:| |eqzro| (-634 |#4|)) (|:| |neqzro| (-634 |#4|)) (|:| |wcond| (-634 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1244 (-409 (-953 |#1|)))) (|:| -3746 (-634 (-1244 (-409 (-953 |#1|))))))))) (-679 |#4|) (-634 (-1161)))) (-15 -4376 ((-634 (-2 (|:| |eqzro| (-634 |#4|)) (|:| |neqzro| (-634 |#4|)) (|:| |wcond| (-634 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1244 (-409 (-953 |#1|)))) (|:| -3746 (-634 (-1244 (-409 (-953 |#1|))))))))) (-679 |#4|))) (-15 -4376 ((-634 (-2 (|:| |eqzro| (-634 |#4|)) (|:| |neqzro| (-634 |#4|)) (|:| |wcond| (-634 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1244 (-409 (-953 |#1|)))) (|:| -3746 (-634 (-1244 (-409 (-953 |#1|))))))))) (-679 |#4|) (-634 |#4|) (-917))) (-15 -4376 ((-634 (-2 (|:| |eqzro| (-634 |#4|)) (|:| |neqzro| (-634 |#4|)) (|:| |wcond| (-634 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1244 (-409 (-953 |#1|)))) (|:| -3746 (-634 (-1244 (-409 (-953 |#1|))))))))) (-679 |#4|) (-634 (-1161)) (-917))) (-15 -4376 ((-634 (-2 (|:| |eqzro| (-634 |#4|)) (|:| |neqzro| (-634 |#4|)) (|:| |wcond| (-634 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1244 (-409 (-953 |#1|)))) (|:| -3746 (-634 (-1244 (-409 (-953 |#1|))))))))) (-679 |#4|) (-917))) (-15 -4376 ((-568) (-679 |#4|) (-634 |#4|) (-1143))) (-15 -4376 ((-568) (-679 |#4|) (-634 (-1161)) (-1143))) (-15 -4376 ((-568) (-679 |#4|) (-1143))) (-15 -4376 ((-568) (-679 |#4|) (-634 |#4|) (-917) (-1143))) (-15 -4376 ((-568) (-679 |#4|) (-634 (-1161)) (-917) (-1143))) (-15 -4376 ((-568) (-679 |#4|) (-917) (-1143))) (-15 -1295 ((-568) (-634 (-2 (|:| |eqzro| (-634 |#4|)) (|:| |neqzro| (-634 |#4|)) (|:| |wcond| (-634 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1244 (-409 (-953 |#1|)))) (|:| -3746 (-634 (-1244 (-409 (-953 |#1|))))))))) (-1143))) (-15 -1370 ((-634 (-2 (|:| |eqzro| (-634 |#4|)) (|:| |neqzro| (-634 |#4|)) (|:| |wcond| (-634 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1244 (-409 (-953 |#1|)))) (|:| -3746 (-634 (-1244 (-409 (-953 |#1|))))))))) (-1143))) (-15 -3549 ((-2 (|:| |rgl| (-634 (-2 (|:| |eqzro| (-634 |#4|)) (|:| |neqzro| (-634 |#4|)) (|:| |wcond| (-634 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1244 (-409 (-953 |#1|)))) (|:| -3746 (-634 (-1244 (-409 (-953 |#1|)))))))))) (|:| |rgsz| (-568))) (-679 |#4|) (-634 (-409 (-953 |#1|))) (-763) (-1143) (-568))) (-15 -1559 ((-409 (-953 |#1|)) |#4|)) (-15 -1559 ((-679 (-409 (-953 |#1|))) (-679 |#4|))) (-15 -1559 ((-634 (-409 (-953 |#1|))) (-634 |#4|))) (-15 -1845 ((-634 (-409 (-953 |#1|))) (-634 (-1161)))) (-15 -3267 (|#4| (-953 |#1|))) (-15 -1545 ((-2 (|:| |sysok| (-121)) (|:| |z0| (-634 |#4|)) (|:| |n0| (-634 |#4|))) (-634 |#4|) (-634 |#4|))) (-15 -2730 ((-634 (-2 (|:| -3700 (-763)) (|:| |eqns| (-634 (-2 (|:| |det| |#4|) (|:| |rows| (-634 (-568))) (|:| |cols| (-634 (-568)))))) (|:| |fgb| (-634 |#4|)))) (-679 |#4|) (-763))) (-15 -1329 ((-2 (|:| |partsol| (-1244 (-409 (-953 |#1|)))) (|:| -3746 (-634 (-1244 (-409 (-953 |#1|)))))) (-2 (|:| |partsol| (-1244 (-409 (-953 |#1|)))) (|:| -3746 (-634 (-1244 (-409 (-953 |#1|)))))) (-634 |#4|))) (-15 -3945 ((-2 (|:| |partsol| (-1244 (-409 (-953 |#1|)))) (|:| -3746 (-634 (-1244 (-409 (-953 |#1|)))))) (-2 (|:| -2928 (-679 (-409 (-953 |#1|)))) (|:| |vec| (-634 (-409 (-953 |#1|)))) (|:| -3700 (-763)) (|:| |rows| (-634 (-568))) (|:| |cols| (-634 (-568)))))) (-15 -1514 ((-634 |#4|) |#4|)) (-15 -2843 ((-763) (-634 (-2 (|:| -3700 (-763)) (|:| |eqns| (-634 (-2 (|:| |det| |#4|) (|:| |rows| (-634 (-568))) (|:| |cols| (-634 (-568)))))) (|:| |fgb| (-634 |#4|)))))) (-15 -2034 ((-763) (-634 (-2 (|:| -3700 (-763)) (|:| |eqns| (-634 (-2 (|:| |det| |#4|) (|:| |rows| (-634 (-568))) (|:| |cols| (-634 (-568)))))) (|:| |fgb| (-634 |#4|)))))) (-15 -4428 ((-634 (-634 |#4|)) (-634 (-634 |#4|)))) (-15 -3080 ((-634 (-634 (-568))) (-568) (-568))) (-15 -1425 ((-121) (-634 |#4|) (-634 (-634 |#4|)))) (-15 -3589 ((-634 (-2 (|:| |det| |#4|) (|:| |rows| (-634 (-568))) (|:| |cols| (-634 (-568))))) (-679 |#4|) (-763))) (-15 -2232 ((-679 |#4|) (-679 |#4|) (-634 |#4|))) (-15 -3691 ((-2 (|:| |eqzro| (-634 |#4|)) (|:| |neqzro| (-634 |#4|)) (|:| |wcond| (-634 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1244 (-409 (-953 |#1|)))) (|:| -3746 (-634 (-1244 (-409 (-953 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-634 (-568))) (|:| |cols| (-634 (-568)))) (-679 |#4|) (-634 (-409 (-953 |#1|))) (-634 (-634 |#4|)) (-763) (-763) (-568))) (-15 -3872 (|#4| |#4|)) (-15 -3537 ((-121) (-634 |#4|))) (-15 -3537 ((-121) (-634 (-953 |#1|))))) +((-1343 (((-927) |#1| (-1161)) 16) (((-927) |#1| (-1161) (-1084 (-215))) 20)) (-2059 (((-927) |#1| |#1| (-1161) (-1084 (-215))) 18) (((-927) |#1| (-1161) (-1084 (-215))) 14))) +(((-925 |#1|) (-10 -7 (-15 -2059 ((-927) |#1| (-1161) (-1084 (-215)))) (-15 -2059 ((-927) |#1| |#1| (-1161) (-1084 (-215)))) (-15 -1343 ((-927) |#1| (-1161) (-1084 (-215)))) (-15 -1343 ((-927) |#1| (-1161)))) (-609 (-541))) (T -925)) +((-1343 (*1 *2 *3 *4) (-12 (-5 *4 (-1161)) (-5 *2 (-927)) (-5 *1 (-925 *3)) (-4 *3 (-609 (-541))))) (-1343 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1161)) (-5 *5 (-1084 (-215))) (-5 *2 (-927)) (-5 *1 (-925 *3)) (-4 *3 (-609 (-541))))) (-2059 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1161)) (-5 *5 (-1084 (-215))) (-5 *2 (-927)) (-5 *1 (-925 *3)) (-4 *3 (-609 (-541))))) (-2059 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1161)) (-5 *5 (-1084 (-215))) (-5 *2 (-927)) (-5 *1 (-925 *3)) (-4 *3 (-609 (-541)))))) +(-10 -7 (-15 -2059 ((-927) |#1| (-1161) (-1084 (-215)))) (-15 -2059 ((-927) |#1| |#1| (-1161) (-1084 (-215)))) (-15 -1343 ((-927) |#1| (-1161) (-1084 (-215)))) (-15 -1343 ((-927) |#1| (-1161)))) +((-2868 (($ $ (-1084 (-215)) (-1084 (-215)) (-1084 (-215))) 68)) (-2514 (((-1084 (-215)) $) 40)) (-4017 (((-1084 (-215)) $) 39)) (-1351 (((-1084 (-215)) $) 38)) (-4228 (((-634 (-634 (-215))) $) 43)) (-2560 (((-1084 (-215)) $) 41)) (-1835 (((-568) (-568)) 32)) (-1894 (((-568) (-568)) 28)) (-4340 (((-568) (-568)) 30)) (-1326 (((-121) (-121)) 35)) (-2547 (((-568)) 31)) (-4069 (($ $ (-1084 (-215))) 71) (($ $) 72)) (-1823 (($ (-1 (-944 (-215)) (-215)) (-1084 (-215))) 76) (($ (-1 (-944 (-215)) (-215)) (-1084 (-215)) (-1084 (-215)) (-1084 (-215)) (-1084 (-215))) 77)) (-2059 (($ (-1 (-215) (-215)) (-1 (-215) (-215)) (-1 (-215) (-215)) (-1 (-215) (-215)) (-1084 (-215))) 79) (($ (-1 (-215) (-215)) (-1 (-215) (-215)) (-1 (-215) (-215)) (-1 (-215) (-215)) (-1084 (-215)) (-1084 (-215)) (-1084 (-215)) (-1084 (-215))) 80) (($ $ (-1084 (-215))) 74)) (-1899 (((-568)) 36)) (-4260 (((-568)) 27)) (-2440 (((-568)) 29)) (-2550 (((-634 (-634 (-944 (-215)))) $) 92)) (-3066 (((-121) (-121)) 37)) (-2745 (((-850) $) 91)) (-2629 (((-121)) 34))) +(((-926) (-13 (-975) (-10 -8 (-15 -1823 ($ (-1 (-944 (-215)) (-215)) (-1084 (-215)))) (-15 -1823 ($ (-1 (-944 (-215)) (-215)) (-1084 (-215)) (-1084 (-215)) (-1084 (-215)) (-1084 (-215)))) (-15 -2059 ($ (-1 (-215) (-215)) (-1 (-215) (-215)) (-1 (-215) (-215)) (-1 (-215) (-215)) (-1084 (-215)))) (-15 -2059 ($ (-1 (-215) (-215)) (-1 (-215) (-215)) (-1 (-215) (-215)) (-1 (-215) (-215)) (-1084 (-215)) (-1084 (-215)) (-1084 (-215)) (-1084 (-215)))) (-15 -2059 ($ $ (-1084 (-215)))) (-15 -2868 ($ $ (-1084 (-215)) (-1084 (-215)) (-1084 (-215)))) (-15 -4069 ($ $ (-1084 (-215)))) (-15 -4069 ($ $)) (-15 -2560 ((-1084 (-215)) $)) (-15 -4228 ((-634 (-634 (-215))) $)) (-15 -4260 ((-568))) (-15 -1894 ((-568) (-568))) (-15 -2440 ((-568))) (-15 -4340 ((-568) (-568))) (-15 -2547 ((-568))) (-15 -1835 ((-568) (-568))) (-15 -2629 ((-121))) (-15 -1326 ((-121) (-121))) (-15 -1899 ((-568))) (-15 -3066 ((-121) (-121)))))) (T -926)) +((-1823 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-944 (-215)) (-215))) (-5 *3 (-1084 (-215))) (-5 *1 (-926)))) (-1823 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-944 (-215)) (-215))) (-5 *3 (-1084 (-215))) (-5 *1 (-926)))) (-2059 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-215) (-215))) (-5 *3 (-1084 (-215))) (-5 *1 (-926)))) (-2059 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-215) (-215))) (-5 *3 (-1084 (-215))) (-5 *1 (-926)))) (-2059 (*1 *1 *1 *2) (-12 (-5 *2 (-1084 (-215))) (-5 *1 (-926)))) (-2868 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1084 (-215))) (-5 *1 (-926)))) (-4069 (*1 *1 *1 *2) (-12 (-5 *2 (-1084 (-215))) (-5 *1 (-926)))) (-4069 (*1 *1 *1) (-5 *1 (-926))) (-2560 (*1 *2 *1) (-12 (-5 *2 (-1084 (-215))) (-5 *1 (-926)))) (-4228 (*1 *2 *1) (-12 (-5 *2 (-634 (-634 (-215)))) (-5 *1 (-926)))) (-4260 (*1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-926)))) (-1894 (*1 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-926)))) (-2440 (*1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-926)))) (-4340 (*1 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-926)))) (-2547 (*1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-926)))) (-1835 (*1 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-926)))) (-2629 (*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-926)))) (-1326 (*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-926)))) (-1899 (*1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-926)))) (-3066 (*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-926))))) +(-13 (-975) (-10 -8 (-15 -1823 ($ (-1 (-944 (-215)) (-215)) (-1084 (-215)))) (-15 -1823 ($ (-1 (-944 (-215)) (-215)) (-1084 (-215)) (-1084 (-215)) (-1084 (-215)) (-1084 (-215)))) (-15 -2059 ($ (-1 (-215) (-215)) (-1 (-215) (-215)) (-1 (-215) (-215)) (-1 (-215) (-215)) (-1084 (-215)))) (-15 -2059 ($ (-1 (-215) (-215)) (-1 (-215) (-215)) (-1 (-215) (-215)) (-1 (-215) (-215)) (-1084 (-215)) (-1084 (-215)) (-1084 (-215)) (-1084 (-215)))) (-15 -2059 ($ $ (-1084 (-215)))) (-15 -2868 ($ $ (-1084 (-215)) (-1084 (-215)) (-1084 (-215)))) (-15 -4069 ($ $ (-1084 (-215)))) (-15 -4069 ($ $)) (-15 -2560 ((-1084 (-215)) $)) (-15 -4228 ((-634 (-634 (-215))) $)) (-15 -4260 ((-568))) (-15 -1894 ((-568) (-568))) (-15 -2440 ((-568))) (-15 -4340 ((-568) (-568))) (-15 -2547 ((-568))) (-15 -1835 ((-568) (-568))) (-15 -2629 ((-121))) (-15 -1326 ((-121) (-121))) (-15 -1899 ((-568))) (-15 -3066 ((-121) (-121))))) +((-2868 (($ $ (-1084 (-215))) 69) (($ $ (-1084 (-215)) (-1084 (-215))) 70)) (-4017 (((-1084 (-215)) $) 43)) (-1351 (((-1084 (-215)) $) 42)) (-2560 (((-1084 (-215)) $) 44)) (-4010 (((-568) (-568)) 36)) (-3946 (((-568) (-568)) 32)) (-2058 (((-568) (-568)) 34)) (-4372 (((-121) (-121)) 38)) (-3964 (((-568)) 35)) (-4069 (($ $ (-1084 (-215))) 73) (($ $) 74)) (-1823 (($ (-1 (-944 (-215)) (-215)) (-1084 (-215))) 83) (($ (-1 (-944 (-215)) (-215)) (-1084 (-215)) (-1084 (-215)) (-1084 (-215))) 84)) (-1343 (($ (-1 (-215) (-215)) (-1084 (-215))) 91) (($ (-1 (-215) (-215))) 94)) (-2059 (($ (-1 (-215) (-215)) (-1084 (-215))) 78) (($ (-1 (-215) (-215)) (-1084 (-215)) (-1084 (-215))) 79) (($ (-634 (-1 (-215) (-215))) (-1084 (-215))) 86) (($ (-634 (-1 (-215) (-215))) (-1084 (-215)) (-1084 (-215))) 87) (($ (-1 (-215) (-215)) (-1 (-215) (-215)) (-1084 (-215))) 80) (($ (-1 (-215) (-215)) (-1 (-215) (-215)) (-1084 (-215)) (-1084 (-215)) (-1084 (-215))) 81) (($ $ (-1084 (-215))) 75)) (-3518 (((-121) $) 39)) (-1996 (((-568)) 40)) (-4035 (((-568)) 31)) (-3144 (((-568)) 33)) (-2550 (((-634 (-634 (-944 (-215)))) $) 22)) (-4019 (((-121) (-121)) 41)) (-2745 (((-850) $) 105)) (-4095 (((-121)) 37))) +(((-927) (-13 (-955) (-10 -8 (-15 -2059 ($ (-1 (-215) (-215)) (-1084 (-215)))) (-15 -2059 ($ (-1 (-215) (-215)) (-1084 (-215)) (-1084 (-215)))) (-15 -2059 ($ (-634 (-1 (-215) (-215))) (-1084 (-215)))) (-15 -2059 ($ (-634 (-1 (-215) (-215))) (-1084 (-215)) (-1084 (-215)))) (-15 -2059 ($ (-1 (-215) (-215)) (-1 (-215) (-215)) (-1084 (-215)))) (-15 -2059 ($ (-1 (-215) (-215)) (-1 (-215) (-215)) (-1084 (-215)) (-1084 (-215)) (-1084 (-215)))) (-15 -1823 ($ (-1 (-944 (-215)) (-215)) (-1084 (-215)))) (-15 -1823 ($ (-1 (-944 (-215)) (-215)) (-1084 (-215)) (-1084 (-215)) (-1084 (-215)))) (-15 -1343 ($ (-1 (-215) (-215)) (-1084 (-215)))) (-15 -1343 ($ (-1 (-215) (-215)))) (-15 -2059 ($ $ (-1084 (-215)))) (-15 -3518 ((-121) $)) (-15 -2868 ($ $ (-1084 (-215)))) (-15 -2868 ($ $ (-1084 (-215)) (-1084 (-215)))) (-15 -4069 ($ $ (-1084 (-215)))) (-15 -4069 ($ $)) (-15 -2560 ((-1084 (-215)) $)) (-15 -4035 ((-568))) (-15 -3946 ((-568) (-568))) (-15 -3144 ((-568))) (-15 -2058 ((-568) (-568))) (-15 -3964 ((-568))) (-15 -4010 ((-568) (-568))) (-15 -4095 ((-121))) (-15 -4372 ((-121) (-121))) (-15 -1996 ((-568))) (-15 -4019 ((-121) (-121)))))) (T -927)) +((-2059 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-215) (-215))) (-5 *3 (-1084 (-215))) (-5 *1 (-927)))) (-2059 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-215) (-215))) (-5 *3 (-1084 (-215))) (-5 *1 (-927)))) (-2059 (*1 *1 *2 *3) (-12 (-5 *2 (-634 (-1 (-215) (-215)))) (-5 *3 (-1084 (-215))) (-5 *1 (-927)))) (-2059 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-634 (-1 (-215) (-215)))) (-5 *3 (-1084 (-215))) (-5 *1 (-927)))) (-2059 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-215) (-215))) (-5 *3 (-1084 (-215))) (-5 *1 (-927)))) (-2059 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-215) (-215))) (-5 *3 (-1084 (-215))) (-5 *1 (-927)))) (-1823 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-944 (-215)) (-215))) (-5 *3 (-1084 (-215))) (-5 *1 (-927)))) (-1823 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-944 (-215)) (-215))) (-5 *3 (-1084 (-215))) (-5 *1 (-927)))) (-1343 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-215) (-215))) (-5 *3 (-1084 (-215))) (-5 *1 (-927)))) (-1343 (*1 *1 *2) (-12 (-5 *2 (-1 (-215) (-215))) (-5 *1 (-927)))) (-2059 (*1 *1 *1 *2) (-12 (-5 *2 (-1084 (-215))) (-5 *1 (-927)))) (-3518 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-927)))) (-2868 (*1 *1 *1 *2) (-12 (-5 *2 (-1084 (-215))) (-5 *1 (-927)))) (-2868 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1084 (-215))) (-5 *1 (-927)))) (-4069 (*1 *1 *1 *2) (-12 (-5 *2 (-1084 (-215))) (-5 *1 (-927)))) (-4069 (*1 *1 *1) (-5 *1 (-927))) (-2560 (*1 *2 *1) (-12 (-5 *2 (-1084 (-215))) (-5 *1 (-927)))) (-4035 (*1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-927)))) (-3946 (*1 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-927)))) (-3144 (*1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-927)))) (-2058 (*1 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-927)))) (-3964 (*1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-927)))) (-4010 (*1 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-927)))) (-4095 (*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-927)))) (-4372 (*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-927)))) (-1996 (*1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-927)))) (-4019 (*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-927))))) +(-13 (-955) (-10 -8 (-15 -2059 ($ (-1 (-215) (-215)) (-1084 (-215)))) (-15 -2059 ($ (-1 (-215) (-215)) (-1084 (-215)) (-1084 (-215)))) (-15 -2059 ($ (-634 (-1 (-215) (-215))) (-1084 (-215)))) (-15 -2059 ($ (-634 (-1 (-215) (-215))) (-1084 (-215)) (-1084 (-215)))) (-15 -2059 ($ (-1 (-215) (-215)) (-1 (-215) (-215)) (-1084 (-215)))) (-15 -2059 ($ (-1 (-215) (-215)) (-1 (-215) (-215)) (-1084 (-215)) (-1084 (-215)) (-1084 (-215)))) (-15 -1823 ($ (-1 (-944 (-215)) (-215)) (-1084 (-215)))) (-15 -1823 ($ (-1 (-944 (-215)) (-215)) (-1084 (-215)) (-1084 (-215)) (-1084 (-215)))) (-15 -1343 ($ (-1 (-215) (-215)) (-1084 (-215)))) (-15 -1343 ($ (-1 (-215) (-215)))) (-15 -2059 ($ $ (-1084 (-215)))) (-15 -3518 ((-121) $)) (-15 -2868 ($ $ (-1084 (-215)))) (-15 -2868 ($ $ (-1084 (-215)) (-1084 (-215)))) (-15 -4069 ($ $ (-1084 (-215)))) (-15 -4069 ($ $)) (-15 -2560 ((-1084 (-215)) $)) (-15 -4035 ((-568))) (-15 -3946 ((-568) (-568))) (-15 -3144 ((-568))) (-15 -2058 ((-568) (-568))) (-15 -3964 ((-568))) (-15 -4010 ((-568) (-568))) (-15 -4095 ((-121))) (-15 -4372 ((-121) (-121))) (-15 -1996 ((-568))) (-15 -4019 ((-121) (-121))))) +((-1790 (((-634 (-1084 (-215))) (-634 (-634 (-944 (-215))))) 23))) +(((-928) (-10 -7 (-15 -1790 ((-634 (-1084 (-215))) (-634 (-634 (-944 (-215)))))))) (T -928)) +((-1790 (*1 *2 *3) (-12 (-5 *3 (-634 (-634 (-944 (-215))))) (-5 *2 (-634 (-1084 (-215)))) (-5 *1 (-928))))) +(-10 -7 (-15 -1790 ((-634 (-1084 (-215))) (-634 (-634 (-944 (-215))))))) +((-3481 ((|#2| |#2| |#5|) 39) ((|#2| |#2| |#5| (-568)) 20)) (-3734 (((-121) (-634 |#2|) |#5|) 23)) (-4029 (((-763) |#2| |#5| (-568)) 42) (((-763) |#2| |#5|) 41)) (-2563 ((|#2| |#2| |#5| (-568)) 45) ((|#2| |#2| |#5|) 44)) (-1339 ((|#1| |#2| |#5|) 21))) +(((-929 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3734 ((-121) (-634 |#2|) |#5|)) (-15 -1339 (|#1| |#2| |#5|)) (-15 -3481 (|#2| |#2| |#5| (-568))) (-15 -3481 (|#2| |#2| |#5|)) (-15 -2563 (|#2| |#2| |#5|)) (-15 -2563 (|#2| |#2| |#5| (-568))) (-15 -4029 ((-763) |#2| |#5|)) (-15 -4029 ((-763) |#2| |#5| (-568)))) (-365) (-324 |#1| |#3|) (-230 |#4| (-763)) (-763) (-971 |#1|)) (T -929)) +((-4029 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-568)) (-4 *6 (-365)) (-4 *7 (-230 *8 *2)) (-14 *8 *2) (-5 *2 (-763)) (-5 *1 (-929 *6 *3 *7 *8 *4)) (-4 *3 (-324 *6 *7)) (-4 *4 (-971 *6)))) (-4029 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-230 *7 *2)) (-14 *7 *2) (-5 *2 (-763)) (-5 *1 (-929 *5 *3 *6 *7 *4)) (-4 *3 (-324 *5 *6)) (-4 *4 (-971 *5)))) (-2563 (*1 *2 *2 *3 *4) (-12 (-5 *4 (-568)) (-4 *5 (-365)) (-4 *6 (-230 *7 (-763))) (-14 *7 (-763)) (-5 *1 (-929 *5 *2 *6 *7 *3)) (-4 *2 (-324 *5 *6)) (-4 *3 (-971 *5)))) (-2563 (*1 *2 *2 *3) (-12 (-4 *4 (-365)) (-4 *5 (-230 *6 (-763))) (-14 *6 (-763)) (-5 *1 (-929 *4 *2 *5 *6 *3)) (-4 *2 (-324 *4 *5)) (-4 *3 (-971 *4)))) (-3481 (*1 *2 *2 *3) (-12 (-4 *4 (-365)) (-4 *5 (-230 *6 (-763))) (-14 *6 (-763)) (-5 *1 (-929 *4 *2 *5 *6 *3)) (-4 *2 (-324 *4 *5)) (-4 *3 (-971 *4)))) (-3481 (*1 *2 *2 *3 *4) (-12 (-5 *4 (-568)) (-4 *5 (-365)) (-4 *6 (-230 *7 (-763))) (-14 *7 (-763)) (-5 *1 (-929 *5 *2 *6 *7 *3)) (-4 *2 (-324 *5 *6)) (-4 *3 (-971 *5)))) (-1339 (*1 *2 *3 *4) (-12 (-4 *5 (-230 *6 (-763))) (-14 *6 (-763)) (-4 *2 (-365)) (-5 *1 (-929 *2 *3 *5 *6 *4)) (-4 *3 (-324 *2 *5)) (-4 *4 (-971 *2)))) (-3734 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *6)) (-4 *6 (-324 *5 *7)) (-4 *7 (-230 *8 (-763))) (-14 *8 (-763)) (-4 *5 (-365)) (-5 *2 (-121)) (-5 *1 (-929 *5 *6 *7 *8 *4)) (-4 *4 (-971 *5))))) +(-10 -7 (-15 -3734 ((-121) (-634 |#2|) |#5|)) (-15 -1339 (|#1| |#2| |#5|)) (-15 -3481 (|#2| |#2| |#5| (-568))) (-15 -3481 (|#2| |#2| |#5|)) (-15 -2563 (|#2| |#2| |#5|)) (-15 -2563 (|#2| |#2| |#5| (-568))) (-15 -4029 ((-763) |#2| |#5|)) (-15 -4029 ((-763) |#2| |#5| (-568)))) +((-3037 ((|#2| |#2|) 25)) (-3033 ((|#2| |#2|) 26)) (-3495 ((|#2| |#2|) 24)) (-2209 ((|#2| |#2| (-1143)) 23))) +(((-930 |#1| |#2|) (-10 -7 (-15 -2209 (|#2| |#2| (-1143))) (-15 -3495 (|#2| |#2|)) (-15 -3037 (|#2| |#2|)) (-15 -3033 (|#2| |#2|))) (-842) (-432 |#1|)) (T -930)) +((-3033 (*1 *2 *2) (-12 (-4 *3 (-842)) (-5 *1 (-930 *3 *2)) (-4 *2 (-432 *3)))) (-3037 (*1 *2 *2) (-12 (-4 *3 (-842)) (-5 *1 (-930 *3 *2)) (-4 *2 (-432 *3)))) (-3495 (*1 *2 *2) (-12 (-4 *3 (-842)) (-5 *1 (-930 *3 *2)) (-4 *2 (-432 *3)))) (-2209 (*1 *2 *2 *3) (-12 (-5 *3 (-1143)) (-4 *4 (-842)) (-5 *1 (-930 *4 *2)) (-4 *2 (-432 *4))))) +(-10 -7 (-15 -2209 (|#2| |#2| (-1143))) (-15 -3495 (|#2| |#2|)) (-15 -3037 (|#2| |#2|)) (-15 -3033 (|#2| |#2|))) +((-3037 (((-310 (-568)) (-1161)) 15)) (-3033 (((-310 (-568)) (-1161)) 13)) (-3495 (((-310 (-568)) (-1161)) 11)) (-2209 (((-310 (-568)) (-1161) (-1143)) 18))) +(((-931) (-10 -7 (-15 -2209 ((-310 (-568)) (-1161) (-1143))) (-15 -3495 ((-310 (-568)) (-1161))) (-15 -3037 ((-310 (-568)) (-1161))) (-15 -3033 ((-310 (-568)) (-1161))))) (T -931)) +((-3033 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-310 (-568))) (-5 *1 (-931)))) (-3037 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-310 (-568))) (-5 *1 (-931)))) (-3495 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-310 (-568))) (-5 *1 (-931)))) (-2209 (*1 *2 *3 *4) (-12 (-5 *3 (-1161)) (-5 *4 (-1143)) (-5 *2 (-310 (-568))) (-5 *1 (-931))))) +(-10 -7 (-15 -2209 ((-310 (-568)) (-1161) (-1143))) (-15 -3495 ((-310 (-568)) (-1161))) (-15 -3037 ((-310 (-568)) (-1161))) (-15 -3033 ((-310 (-568)) (-1161)))) +((-4410 (((-884 |#1| |#3|) |#2| (-887 |#1|) (-884 |#1| |#3|)) 24)) (-2377 (((-1 (-121) |#2|) (-1 (-121) |#3|)) 12))) +(((-932 |#1| |#2| |#3|) (-10 -7 (-15 -2377 ((-1 (-121) |#2|) (-1 (-121) |#3|))) (-15 -4410 ((-884 |#1| |#3|) |#2| (-887 |#1|) (-884 |#1| |#3|)))) (-1090) (-881 |#1|) (-13 (-1090) (-1037 |#2|))) (T -932)) +((-4410 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-884 *5 *6)) (-5 *4 (-887 *5)) (-4 *5 (-1090)) (-4 *6 (-13 (-1090) (-1037 *3))) (-4 *3 (-881 *5)) (-5 *1 (-932 *5 *3 *6)))) (-2377 (*1 *2 *3) (-12 (-5 *3 (-1 (-121) *6)) (-4 *6 (-13 (-1090) (-1037 *5))) (-4 *5 (-881 *4)) (-4 *4 (-1090)) (-5 *2 (-1 (-121) *5)) (-5 *1 (-932 *4 *5 *6))))) +(-10 -7 (-15 -2377 ((-1 (-121) |#2|) (-1 (-121) |#3|))) (-15 -4410 ((-884 |#1| |#3|) |#2| (-887 |#1|) (-884 |#1| |#3|)))) +((-4410 (((-884 |#1| |#3|) |#3| (-887 |#1|) (-884 |#1| |#3|)) 29))) +(((-933 |#1| |#2| |#3|) (-10 -7 (-15 -4410 ((-884 |#1| |#3|) |#3| (-887 |#1|) (-884 |#1| |#3|)))) (-1090) (-13 (-558) (-842) (-881 |#1|)) (-13 (-432 |#2|) (-609 (-887 |#1|)) (-881 |#1|) (-1037 (-607 $)))) (T -933)) +((-4410 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-884 *5 *3)) (-4 *5 (-1090)) (-4 *3 (-13 (-432 *6) (-609 *4) (-881 *5) (-1037 (-607 $)))) (-5 *4 (-887 *5)) (-4 *6 (-13 (-558) (-842) (-881 *5))) (-5 *1 (-933 *5 *6 *3))))) +(-10 -7 (-15 -4410 ((-884 |#1| |#3|) |#3| (-887 |#1|) (-884 |#1| |#3|)))) +((-4410 (((-884 (-568) |#1|) |#1| (-887 (-568)) (-884 (-568) |#1|)) 12))) +(((-934 |#1|) (-10 -7 (-15 -4410 ((-884 (-568) |#1|) |#1| (-887 (-568)) (-884 (-568) |#1|)))) (-550)) (T -934)) +((-4410 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-884 (-568) *3)) (-5 *4 (-887 (-568))) (-4 *3 (-550)) (-5 *1 (-934 *3))))) +(-10 -7 (-15 -4410 ((-884 (-568) |#1|) |#1| (-887 (-568)) (-884 (-568) |#1|)))) +((-4410 (((-884 |#1| |#2|) (-607 |#2|) (-887 |#1|) (-884 |#1| |#2|)) 52))) +(((-935 |#1| |#2|) (-10 -7 (-15 -4410 ((-884 |#1| |#2|) (-607 |#2|) (-887 |#1|) (-884 |#1| |#2|)))) (-1090) (-13 (-842) (-1037 (-607 $)) (-609 (-887 |#1|)) (-881 |#1|))) (T -935)) +((-4410 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-884 *5 *6)) (-5 *3 (-607 *6)) (-4 *5 (-1090)) (-4 *6 (-13 (-842) (-1037 (-607 $)) (-609 *4) (-881 *5))) (-5 *4 (-887 *5)) (-5 *1 (-935 *5 *6))))) +(-10 -7 (-15 -4410 ((-884 |#1| |#2|) (-607 |#2|) (-887 |#1|) (-884 |#1| |#2|)))) +((-4410 (((-880 |#1| |#2| |#3|) |#3| (-887 |#1|) (-880 |#1| |#2| |#3|)) 14))) +(((-936 |#1| |#2| |#3|) (-10 -7 (-15 -4410 ((-880 |#1| |#2| |#3|) |#3| (-887 |#1|) (-880 |#1| |#2| |#3|)))) (-1090) (-881 |#1|) (-658 |#2|)) (T -936)) +((-4410 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-880 *5 *6 *3)) (-5 *4 (-887 *5)) (-4 *5 (-1090)) (-4 *6 (-881 *5)) (-4 *3 (-658 *6)) (-5 *1 (-936 *5 *6 *3))))) +(-10 -7 (-15 -4410 ((-880 |#1| |#2| |#3|) |#3| (-887 |#1|) (-880 |#1| |#2| |#3|)))) +((-4410 (((-884 |#1| |#5|) |#5| (-887 |#1|) (-884 |#1| |#5|)) 17 (|has| |#3| (-881 |#1|))) (((-884 |#1| |#5|) |#5| (-887 |#1|) (-884 |#1| |#5|) (-1 (-884 |#1| |#5|) |#3| (-887 |#1|) (-884 |#1| |#5|))) 16))) +(((-937 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4410 ((-884 |#1| |#5|) |#5| (-887 |#1|) (-884 |#1| |#5|) (-1 (-884 |#1| |#5|) |#3| (-887 |#1|) (-884 |#1| |#5|)))) (IF (|has| |#3| (-881 |#1|)) (-15 -4410 ((-884 |#1| |#5|) |#5| (-887 |#1|) (-884 |#1| |#5|))) |noBranch|)) (-1090) (-788) (-842) (-13 (-1047) (-842) (-881 |#1|)) (-13 (-950 |#4| |#2| |#3|) (-609 (-887 |#1|)))) (T -937)) +((-4410 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-884 *5 *3)) (-4 *5 (-1090)) (-4 *3 (-13 (-950 *8 *6 *7) (-609 *4))) (-5 *4 (-887 *5)) (-4 *7 (-881 *5)) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *8 (-13 (-1047) (-842) (-881 *5))) (-5 *1 (-937 *5 *6 *7 *8 *3)))) (-4410 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-884 *6 *3) *8 (-887 *6) (-884 *6 *3))) (-4 *8 (-842)) (-5 *2 (-884 *6 *3)) (-5 *4 (-887 *6)) (-4 *6 (-1090)) (-4 *3 (-13 (-950 *9 *7 *8) (-609 *4))) (-4 *7 (-788)) (-4 *9 (-13 (-1047) (-842) (-881 *6))) (-5 *1 (-937 *6 *7 *8 *9 *3))))) +(-10 -7 (-15 -4410 ((-884 |#1| |#5|) |#5| (-887 |#1|) (-884 |#1| |#5|) (-1 (-884 |#1| |#5|) |#3| (-887 |#1|) (-884 |#1| |#5|)))) (IF (|has| |#3| (-881 |#1|)) (-15 -4410 ((-884 |#1| |#5|) |#5| (-887 |#1|) (-884 |#1| |#5|))) |noBranch|)) +((-1562 ((|#2| |#2| (-634 (-1 (-121) |#3|))) 11) ((|#2| |#2| (-1 (-121) |#3|)) 12))) +(((-938 |#1| |#2| |#3|) (-10 -7 (-15 -1562 (|#2| |#2| (-1 (-121) |#3|))) (-15 -1562 (|#2| |#2| (-634 (-1 (-121) |#3|))))) (-842) (-432 |#1|) (-1195)) (T -938)) +((-1562 (*1 *2 *2 *3) (-12 (-5 *3 (-634 (-1 (-121) *5))) (-4 *5 (-1195)) (-4 *4 (-842)) (-5 *1 (-938 *4 *2 *5)) (-4 *2 (-432 *4)))) (-1562 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-121) *5)) (-4 *5 (-1195)) (-4 *4 (-842)) (-5 *1 (-938 *4 *2 *5)) (-4 *2 (-432 *4))))) +(-10 -7 (-15 -1562 (|#2| |#2| (-1 (-121) |#3|))) (-15 -1562 (|#2| |#2| (-634 (-1 (-121) |#3|))))) +((-1562 (((-310 (-568)) (-1161) (-634 (-1 (-121) |#1|))) 16) (((-310 (-568)) (-1161) (-1 (-121) |#1|)) 13))) +(((-939 |#1|) (-10 -7 (-15 -1562 ((-310 (-568)) (-1161) (-1 (-121) |#1|))) (-15 -1562 ((-310 (-568)) (-1161) (-634 (-1 (-121) |#1|))))) (-1195)) (T -939)) +((-1562 (*1 *2 *3 *4) (-12 (-5 *3 (-1161)) (-5 *4 (-634 (-1 (-121) *5))) (-4 *5 (-1195)) (-5 *2 (-310 (-568))) (-5 *1 (-939 *5)))) (-1562 (*1 *2 *3 *4) (-12 (-5 *3 (-1161)) (-5 *4 (-1 (-121) *5)) (-4 *5 (-1195)) (-5 *2 (-310 (-568))) (-5 *1 (-939 *5))))) +(-10 -7 (-15 -1562 ((-310 (-568)) (-1161) (-1 (-121) |#1|))) (-15 -1562 ((-310 (-568)) (-1161) (-634 (-1 (-121) |#1|))))) +((-4410 (((-884 |#1| |#3|) |#3| (-887 |#1|) (-884 |#1| |#3|)) 25))) +(((-940 |#1| |#2| |#3|) (-10 -7 (-15 -4410 ((-884 |#1| |#3|) |#3| (-887 |#1|) (-884 |#1| |#3|)))) (-1090) (-13 (-558) (-881 |#1|) (-609 (-887 |#1|))) (-993 |#2|)) (T -940)) +((-4410 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-884 *5 *3)) (-4 *5 (-1090)) (-4 *3 (-993 *6)) (-4 *6 (-13 (-558) (-881 *5) (-609 *4))) (-5 *4 (-887 *5)) (-5 *1 (-940 *5 *6 *3))))) +(-10 -7 (-15 -4410 ((-884 |#1| |#3|) |#3| (-887 |#1|) (-884 |#1| |#3|)))) +((-4410 (((-884 |#1| (-1161)) (-1161) (-887 |#1|) (-884 |#1| (-1161))) 17))) +(((-941 |#1|) (-10 -7 (-15 -4410 ((-884 |#1| (-1161)) (-1161) (-887 |#1|) (-884 |#1| (-1161))))) (-1090)) (T -941)) +((-4410 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-884 *5 (-1161))) (-5 *3 (-1161)) (-5 *4 (-887 *5)) (-4 *5 (-1090)) (-5 *1 (-941 *5))))) +(-10 -7 (-15 -4410 ((-884 |#1| (-1161)) (-1161) (-887 |#1|) (-884 |#1| (-1161))))) +((-2693 (((-884 |#1| |#3|) (-634 |#3|) (-634 (-887 |#1|)) (-884 |#1| |#3|) (-1 (-884 |#1| |#3|) |#3| (-887 |#1|) (-884 |#1| |#3|))) 33)) (-4410 (((-884 |#1| |#3|) (-634 |#3|) (-634 (-887 |#1|)) (-1 |#3| (-634 |#3|)) (-884 |#1| |#3|) (-1 (-884 |#1| |#3|) |#3| (-887 |#1|) (-884 |#1| |#3|))) 32))) +(((-942 |#1| |#2| |#3|) (-10 -7 (-15 -4410 ((-884 |#1| |#3|) (-634 |#3|) (-634 (-887 |#1|)) (-1 |#3| (-634 |#3|)) (-884 |#1| |#3|) (-1 (-884 |#1| |#3|) |#3| (-887 |#1|) (-884 |#1| |#3|)))) (-15 -2693 ((-884 |#1| |#3|) (-634 |#3|) (-634 (-887 |#1|)) (-884 |#1| |#3|) (-1 (-884 |#1| |#3|) |#3| (-887 |#1|) (-884 |#1| |#3|))))) (-1090) (-13 (-1047) (-842)) (-13 (-1047) (-609 (-887 |#1|)) (-1037 |#2|))) (T -942)) +((-2693 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-634 *8)) (-5 *4 (-634 (-887 *6))) (-5 *5 (-1 (-884 *6 *8) *8 (-887 *6) (-884 *6 *8))) (-4 *6 (-1090)) (-4 *8 (-13 (-1047) (-609 (-887 *6)) (-1037 *7))) (-5 *2 (-884 *6 *8)) (-4 *7 (-13 (-1047) (-842))) (-5 *1 (-942 *6 *7 *8)))) (-4410 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-634 (-887 *7))) (-5 *5 (-1 *9 (-634 *9))) (-5 *6 (-1 (-884 *7 *9) *9 (-887 *7) (-884 *7 *9))) (-4 *7 (-1090)) (-4 *9 (-13 (-1047) (-609 (-887 *7)) (-1037 *8))) (-5 *2 (-884 *7 *9)) (-5 *3 (-634 *9)) (-4 *8 (-13 (-1047) (-842))) (-5 *1 (-942 *7 *8 *9))))) +(-10 -7 (-15 -4410 ((-884 |#1| |#3|) (-634 |#3|) (-634 (-887 |#1|)) (-1 |#3| (-634 |#3|)) (-884 |#1| |#3|) (-1 (-884 |#1| |#3|) |#3| (-887 |#1|) (-884 |#1| |#3|)))) (-15 -2693 ((-884 |#1| |#3|) (-634 |#3|) (-634 (-887 |#1|)) (-884 |#1| |#3|) (-1 (-884 |#1| |#3|) |#3| (-887 |#1|) (-884 |#1| |#3|))))) +((-1291 (((-1157 (-409 (-568))) (-568)) 61)) (-1632 (((-1157 (-568)) (-568)) 64)) (-1308 (((-1157 (-568)) (-568)) 58)) (-3041 (((-568) (-1157 (-568))) 53)) (-3982 (((-1157 (-409 (-568))) (-568)) 47)) (-4411 (((-1157 (-568)) (-568)) 36)) (-3753 (((-1157 (-568)) (-568)) 66)) (-3978 (((-1157 (-568)) (-568)) 65)) (-2542 (((-1157 (-409 (-568))) (-568)) 49))) +(((-943) (-10 -7 (-15 -2542 ((-1157 (-409 (-568))) (-568))) (-15 -3978 ((-1157 (-568)) (-568))) (-15 -3753 ((-1157 (-568)) (-568))) (-15 -4411 ((-1157 (-568)) (-568))) (-15 -3982 ((-1157 (-409 (-568))) (-568))) (-15 -3041 ((-568) (-1157 (-568)))) (-15 -1308 ((-1157 (-568)) (-568))) (-15 -1632 ((-1157 (-568)) (-568))) (-15 -1291 ((-1157 (-409 (-568))) (-568))))) (T -943)) +((-1291 (*1 *2 *3) (-12 (-5 *2 (-1157 (-409 (-568)))) (-5 *1 (-943)) (-5 *3 (-568)))) (-1632 (*1 *2 *3) (-12 (-5 *2 (-1157 (-568))) (-5 *1 (-943)) (-5 *3 (-568)))) (-1308 (*1 *2 *3) (-12 (-5 *2 (-1157 (-568))) (-5 *1 (-943)) (-5 *3 (-568)))) (-3041 (*1 *2 *3) (-12 (-5 *3 (-1157 (-568))) (-5 *2 (-568)) (-5 *1 (-943)))) (-3982 (*1 *2 *3) (-12 (-5 *2 (-1157 (-409 (-568)))) (-5 *1 (-943)) (-5 *3 (-568)))) (-4411 (*1 *2 *3) (-12 (-5 *2 (-1157 (-568))) (-5 *1 (-943)) (-5 *3 (-568)))) (-3753 (*1 *2 *3) (-12 (-5 *2 (-1157 (-568))) (-5 *1 (-943)) (-5 *3 (-568)))) (-3978 (*1 *2 *3) (-12 (-5 *2 (-1157 (-568))) (-5 *1 (-943)) (-5 *3 (-568)))) (-2542 (*1 *2 *3) (-12 (-5 *2 (-1157 (-409 (-568)))) (-5 *1 (-943)) (-5 *3 (-568))))) +(-10 -7 (-15 -2542 ((-1157 (-409 (-568))) (-568))) (-15 -3978 ((-1157 (-568)) (-568))) (-15 -3753 ((-1157 (-568)) (-568))) (-15 -4411 ((-1157 (-568)) (-568))) (-15 -3982 ((-1157 (-409 (-568))) (-568))) (-15 -3041 ((-568) (-1157 (-568)))) (-15 -1308 ((-1157 (-568)) (-568))) (-15 -1632 ((-1157 (-568)) (-568))) (-15 -1291 ((-1157 (-409 (-568))) (-568)))) +((-2447 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-3205 (($ (-763)) NIL (|has| |#1| (-23)))) (-1868 (((-1249) $ (-568) (-568)) NIL (|has| $ (-6 -4520)))) (-2016 (((-121) (-1 (-121) |#1| |#1|) $) NIL) (((-121) $) NIL (|has| |#1| (-842)))) (-3908 (($ (-1 (-121) |#1| |#1|) $) NIL (|has| $ (-6 -4520))) (($ $) NIL (-12 (|has| $ (-6 -4520)) (|has| |#1| (-842))))) (-3644 (($ (-1 (-121) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-842)))) (-2510 (((-121) $ (-763)) NIL)) (-2436 ((|#1| $ (-568) |#1|) 11 (|has| $ (-6 -4520))) ((|#1| $ (-1210 (-568)) |#1|) NIL (|has| $ (-6 -4520)))) (-2801 (($ (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-2671 (($) NIL T CONST)) (-1578 (($ $) NIL (|has| $ (-6 -4520)))) (-3943 (($ $) NIL)) (-3924 (($ $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-4328 (($ |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090)))) (($ (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-3092 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4519))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4519)))) (-3989 ((|#1| $ (-568) |#1|) NIL (|has| $ (-6 -4520)))) (-2602 ((|#1| $ (-568)) NIL)) (-2764 (((-568) (-1 (-121) |#1|) $) NIL) (((-568) |#1| $) NIL (|has| |#1| (-1090))) (((-568) |#1| $ (-568)) NIL (|has| |#1| (-1090)))) (-4203 (($ (-634 |#1|)) 13)) (-4360 (((-634 |#1|) $) NIL (|has| $ (-6 -4519)))) (-1802 (((-679 |#1|) $ $) NIL (|has| |#1| (-1047)))) (-1849 (($ (-763) |#1|) 8)) (-1737 (((-121) $ (-763)) NIL)) (-1881 (((-568) $) 10 (|has| (-568) (-842)))) (-2521 (($ $ $) NIL (|has| |#1| (-842)))) (-1347 (($ (-1 (-121) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-842)))) (-1979 (((-634 |#1|) $) NIL (|has| $ (-6 -4519)))) (-3109 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-2223 (((-568) $) NIL (|has| (-568) (-842)))) (-3268 (($ $ $) NIL (|has| |#1| (-842)))) (-3674 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1550 ((|#1| $) NIL (-12 (|has| |#1| (-1002)) (|has| |#1| (-1047))))) (-2166 (((-121) $ (-763)) NIL)) (-3678 ((|#1| $) NIL (-12 (|has| |#1| (-1002)) (|has| |#1| (-1047))))) (-4487 (((-1143) $) NIL (|has| |#1| (-1090)))) (-4122 (($ |#1| $ (-568)) NIL) (($ $ $ (-568)) NIL)) (-4174 (((-634 (-568)) $) NIL)) (-3578 (((-121) (-568) $) NIL)) (-4022 (((-1108) $) NIL (|has| |#1| (-1090)))) (-3876 ((|#1| $) NIL (|has| (-568) (-842)))) (-3775 (((-3 |#1| "failed") (-1 (-121) |#1|) $) NIL)) (-3724 (($ $ |#1|) NIL (|has| $ (-6 -4520)))) (-1807 (($ $ (-634 |#1|)) 24)) (-1387 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-634 |#1|) (-634 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))))) (-3171 (((-121) $ $) NIL)) (-4467 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-2041 (((-634 |#1|) $) NIL)) (-3084 (((-121) $) NIL)) (-3248 (($) NIL)) (-2779 ((|#1| $ (-568) |#1|) NIL) ((|#1| $ (-568)) 18) (($ $ (-1210 (-568))) NIL)) (-3682 ((|#1| $ $) NIL (|has| |#1| (-1047)))) (-4321 (((-917) $) 16)) (-2826 (($ $ (-568)) NIL) (($ $ (-1210 (-568))) NIL)) (-2748 (($ $ $) 22)) (-4168 (((-763) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519))) (((-763) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-2256 (($ $ $ (-568)) NIL (|has| $ (-6 -4520)))) (-3863 (($ $) NIL)) (-4278 (((-541) $) NIL (|has| |#1| (-609 (-541)))) (($ (-634 |#1|)) 17)) (-4287 (($ (-634 |#1|)) NIL)) (-2768 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 23) (($ (-634 $)) NIL)) (-2745 (((-850) $) NIL (|has| |#1| (-1090)))) (-1319 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-1751 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1738 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1717 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-1745 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1732 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1773 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1767 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-568) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-716))) (($ $ |#1|) NIL (|has| |#1| (-716)))) (-1697 (((-763) $) 14 (|has| $ (-6 -4519))))) +(((-944 |#1|) (-981 |#1|) (-1047)) (T -944)) +NIL +(-981 |#1|) +((-3699 (((-492 |#1| |#2|) (-953 |#2|)) 17)) (-3493 (((-242 |#1| |#2|) (-953 |#2|)) 29)) (-3343 (((-953 |#2|) (-492 |#1| |#2|)) 22)) (-4218 (((-242 |#1| |#2|) (-492 |#1| |#2|)) 53)) (-3260 (((-953 |#2|) (-242 |#1| |#2|)) 26)) (-1752 (((-492 |#1| |#2|) (-242 |#1| |#2|)) 44))) +(((-945 |#1| |#2|) (-10 -7 (-15 -1752 ((-492 |#1| |#2|) (-242 |#1| |#2|))) (-15 -4218 ((-242 |#1| |#2|) (-492 |#1| |#2|))) (-15 -3699 ((-492 |#1| |#2|) (-953 |#2|))) (-15 -3343 ((-953 |#2|) (-492 |#1| |#2|))) (-15 -3260 ((-953 |#2|) (-242 |#1| |#2|))) (-15 -3493 ((-242 |#1| |#2|) (-953 |#2|)))) (-634 (-1161)) (-1047)) (T -945)) +((-3493 (*1 *2 *3) (-12 (-5 *3 (-953 *5)) (-4 *5 (-1047)) (-5 *2 (-242 *4 *5)) (-5 *1 (-945 *4 *5)) (-14 *4 (-634 (-1161))))) (-3260 (*1 *2 *3) (-12 (-5 *3 (-242 *4 *5)) (-14 *4 (-634 (-1161))) (-4 *5 (-1047)) (-5 *2 (-953 *5)) (-5 *1 (-945 *4 *5)))) (-3343 (*1 *2 *3) (-12 (-5 *3 (-492 *4 *5)) (-14 *4 (-634 (-1161))) (-4 *5 (-1047)) (-5 *2 (-953 *5)) (-5 *1 (-945 *4 *5)))) (-3699 (*1 *2 *3) (-12 (-5 *3 (-953 *5)) (-4 *5 (-1047)) (-5 *2 (-492 *4 *5)) (-5 *1 (-945 *4 *5)) (-14 *4 (-634 (-1161))))) (-4218 (*1 *2 *3) (-12 (-5 *3 (-492 *4 *5)) (-14 *4 (-634 (-1161))) (-4 *5 (-1047)) (-5 *2 (-242 *4 *5)) (-5 *1 (-945 *4 *5)))) (-1752 (*1 *2 *3) (-12 (-5 *3 (-242 *4 *5)) (-14 *4 (-634 (-1161))) (-4 *5 (-1047)) (-5 *2 (-492 *4 *5)) (-5 *1 (-945 *4 *5))))) +(-10 -7 (-15 -1752 ((-492 |#1| |#2|) (-242 |#1| |#2|))) (-15 -4218 ((-242 |#1| |#2|) (-492 |#1| |#2|))) (-15 -3699 ((-492 |#1| |#2|) (-953 |#2|))) (-15 -3343 ((-953 |#2|) (-492 |#1| |#2|))) (-15 -3260 ((-953 |#2|) (-242 |#1| |#2|))) (-15 -3493 ((-242 |#1| |#2|) (-953 |#2|)))) +((-1668 (((-634 |#2|) |#2| |#2|) 10)) (-1530 (((-763) (-634 |#1|)) 37 (|has| |#1| (-840)))) (-2634 (((-634 |#2|) |#2|) 11)) (-2527 (((-763) (-634 |#1|) (-568) (-568)) 36 (|has| |#1| (-840)))) (-2359 ((|#1| |#2|) 32 (|has| |#1| (-840))))) +(((-946 |#1| |#2|) (-10 -7 (-15 -1668 ((-634 |#2|) |#2| |#2|)) (-15 -2634 ((-634 |#2|) |#2|)) (IF (|has| |#1| (-840)) (PROGN (-15 -2359 (|#1| |#2|)) (-15 -1530 ((-763) (-634 |#1|))) (-15 -2527 ((-763) (-634 |#1|) (-568) (-568)))) |noBranch|)) (-365) (-1219 |#1|)) (T -946)) +((-2527 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-634 *5)) (-5 *4 (-568)) (-4 *5 (-840)) (-4 *5 (-365)) (-5 *2 (-763)) (-5 *1 (-946 *5 *6)) (-4 *6 (-1219 *5)))) (-1530 (*1 *2 *3) (-12 (-5 *3 (-634 *4)) (-4 *4 (-840)) (-4 *4 (-365)) (-5 *2 (-763)) (-5 *1 (-946 *4 *5)) (-4 *5 (-1219 *4)))) (-2359 (*1 *2 *3) (-12 (-4 *2 (-365)) (-4 *2 (-840)) (-5 *1 (-946 *2 *3)) (-4 *3 (-1219 *2)))) (-2634 (*1 *2 *3) (-12 (-4 *4 (-365)) (-5 *2 (-634 *3)) (-5 *1 (-946 *4 *3)) (-4 *3 (-1219 *4)))) (-1668 (*1 *2 *3 *3) (-12 (-4 *4 (-365)) (-5 *2 (-634 *3)) (-5 *1 (-946 *4 *3)) (-4 *3 (-1219 *4))))) +(-10 -7 (-15 -1668 ((-634 |#2|) |#2| |#2|)) (-15 -2634 ((-634 |#2|) |#2|)) (IF (|has| |#1| (-840)) (PROGN (-15 -2359 (|#1| |#2|)) (-15 -1530 ((-763) (-634 |#1|))) (-15 -2527 ((-763) (-634 |#1|) (-568) (-568)))) |noBranch|)) +((-2795 (((-953 |#2|) (-1 |#2| |#1|) (-953 |#1|)) 18))) +(((-947 |#1| |#2|) (-10 -7 (-15 -2795 ((-953 |#2|) (-1 |#2| |#1|) (-953 |#1|)))) (-1047) (-1047)) (T -947)) +((-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-953 *5)) (-4 *5 (-1047)) (-4 *6 (-1047)) (-5 *2 (-953 *6)) (-5 *1 (-947 *5 *6))))) +(-10 -7 (-15 -2795 ((-953 |#2|) (-1 |#2| |#1|) (-953 |#1|)))) +((-3839 (((-1216 |#1| (-953 |#2|)) (-953 |#2|) (-1240 |#1|)) 18))) +(((-948 |#1| |#2|) (-10 -7 (-15 -3839 ((-1216 |#1| (-953 |#2|)) (-953 |#2|) (-1240 |#1|)))) (-1161) (-1047)) (T -948)) +((-3839 (*1 *2 *3 *4) (-12 (-5 *4 (-1240 *5)) (-14 *5 (-1161)) (-4 *6 (-1047)) (-5 *2 (-1216 *5 (-953 *6))) (-5 *1 (-948 *5 *6)) (-5 *3 (-953 *6))))) +(-10 -7 (-15 -3839 ((-1216 |#1| (-953 |#2|)) (-953 |#2|) (-1240 |#1|)))) +((-2773 (((-763) $) 69) (((-763) $ (-634 |#4|)) 72)) (-4305 (($ $) 169)) (-1678 (((-420 $) $) 161)) (-1858 (((-3 (-634 (-1157 $)) "failed") (-634 (-1157 $)) (-1157 $)) 112)) (-3666 (((-3 |#2| "failed") $) NIL) (((-3 (-409 (-568)) "failed") $) NIL) (((-3 (-568) "failed") $) NIL) (((-3 |#4| "failed") $) 58)) (-2854 ((|#2| $) NIL) (((-409 (-568)) $) NIL) (((-568) $) NIL) ((|#4| $) 57)) (-4265 (($ $ $ |#4|) 74)) (-3164 (((-679 (-568)) (-679 $)) NIL) (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) NIL) (((-2 (|:| -2928 (-679 |#2|)) (|:| |vec| (-1244 |#2|))) (-679 $) (-1244 $)) 102) (((-679 |#2|) (-679 $)) 95)) (-3250 (($ $) 177) (($ $ |#4|) 180)) (-2108 (((-634 $) $) 61)) (-4410 (((-884 (-381) $) $ (-887 (-381)) (-884 (-381) $)) 195) (((-884 (-568) $) $ (-887 (-568)) (-884 (-568) $)) 189)) (-2976 (((-634 $) $) 27)) (-2047 (($ |#2| |#3|) NIL) (($ $ |#4| (-763)) NIL) (($ $ (-634 |#4|) (-634 (-763))) 55)) (-3379 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $ |#4|) 158)) (-3324 (((-3 (-634 $) "failed") $) 41)) (-1794 (((-3 (-634 $) "failed") $) 30)) (-3751 (((-3 (-2 (|:| |var| |#4|) (|:| -3438 (-763))) "failed") $) 45)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) 105)) (-2905 (((-420 (-1157 $)) (-1157 $)) 118)) (-3545 (((-420 (-1157 $)) (-1157 $)) 116)) (-3848 (((-420 $) $) 136)) (-1339 (($ $ (-634 (-288 $))) 20) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-634 $) (-634 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-634 |#4|) (-634 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-634 |#4|) (-634 $)) NIL)) (-2217 (($ $ |#4|) 76)) (-4278 (((-887 (-381)) $) 209) (((-887 (-568)) $) 202) (((-541) $) 217)) (-3367 ((|#2| $) NIL) (($ $ |#4|) 171)) (-2979 (((-3 (-1244 $) "failed") (-679 $)) 150)) (-2604 ((|#2| $ |#3|) NIL) (($ $ |#4| (-763)) 50) (($ $ (-634 |#4|) (-634 (-763))) 53)) (-4371 (((-3 $ "failed") $) 152)) (-1732 (((-121) $ $) 183))) +(((-949 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2155 ((-1157 |#1|) (-1157 |#1|) (-1157 |#1|))) (-15 -1678 ((-420 |#1|) |#1|)) (-15 -4305 (|#1| |#1|)) (-15 -4371 ((-3 |#1| "failed") |#1|)) (-15 -1732 ((-121) |#1| |#1|)) (-15 -4278 ((-541) |#1|)) (-15 -4278 ((-887 (-568)) |#1|)) (-15 -4278 ((-887 (-381)) |#1|)) (-15 -4410 ((-884 (-568) |#1|) |#1| (-887 (-568)) (-884 (-568) |#1|))) (-15 -4410 ((-884 (-381) |#1|) |#1| (-887 (-381)) (-884 (-381) |#1|))) (-15 -3848 ((-420 |#1|) |#1|)) (-15 -3545 ((-420 (-1157 |#1|)) (-1157 |#1|))) (-15 -2905 ((-420 (-1157 |#1|)) (-1157 |#1|))) (-15 -1858 ((-3 (-634 (-1157 |#1|)) "failed") (-634 (-1157 |#1|)) (-1157 |#1|))) (-15 -2979 ((-3 (-1244 |#1|) "failed") (-679 |#1|))) (-15 -3250 (|#1| |#1| |#4|)) (-15 -3367 (|#1| |#1| |#4|)) (-15 -2217 (|#1| |#1| |#4|)) (-15 -4265 (|#1| |#1| |#1| |#4|)) (-15 -2108 ((-634 |#1|) |#1|)) (-15 -2773 ((-763) |#1| (-634 |#4|))) (-15 -2773 ((-763) |#1|)) (-15 -3751 ((-3 (-2 (|:| |var| |#4|) (|:| -3438 (-763))) "failed") |#1|)) (-15 -3324 ((-3 (-634 |#1|) "failed") |#1|)) (-15 -1794 ((-3 (-634 |#1|) "failed") |#1|)) (-15 -2047 (|#1| |#1| (-634 |#4|) (-634 (-763)))) (-15 -2047 (|#1| |#1| |#4| (-763))) (-15 -3379 ((-2 (|:| -3961 |#1|) (|:| -1500 |#1|)) |#1| |#1| |#4|)) (-15 -2976 ((-634 |#1|) |#1|)) (-15 -2604 (|#1| |#1| (-634 |#4|) (-634 (-763)))) (-15 -2604 (|#1| |#1| |#4| (-763))) (-15 -3164 ((-679 |#2|) (-679 |#1|))) (-15 -3164 ((-2 (|:| -2928 (-679 |#2|)) (|:| |vec| (-1244 |#2|))) (-679 |#1|) (-1244 |#1|))) (-15 -3164 ((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 |#1|) (-1244 |#1|))) (-15 -3164 ((-679 (-568)) (-679 |#1|))) (-15 -2854 (|#4| |#1|)) (-15 -3666 ((-3 |#4| "failed") |#1|)) (-15 -1339 (|#1| |#1| (-634 |#4|) (-634 |#1|))) (-15 -1339 (|#1| |#1| |#4| |#1|)) (-15 -1339 (|#1| |#1| (-634 |#4|) (-634 |#2|))) (-15 -1339 (|#1| |#1| |#4| |#2|)) (-15 -1339 (|#1| |#1| (-634 |#1|) (-634 |#1|))) (-15 -1339 (|#1| |#1| |#1| |#1|)) (-15 -1339 (|#1| |#1| (-288 |#1|))) (-15 -1339 (|#1| |#1| (-634 (-288 |#1|)))) (-15 -2047 (|#1| |#2| |#3|)) (-15 -2604 (|#2| |#1| |#3|)) (-15 -2854 ((-568) |#1|)) (-15 -3666 ((-3 (-568) "failed") |#1|)) (-15 -2854 ((-409 (-568)) |#1|)) (-15 -3666 ((-3 (-409 (-568)) "failed") |#1|)) (-15 -3666 ((-3 |#2| "failed") |#1|)) (-15 -2854 (|#2| |#1|)) (-15 -3367 (|#2| |#1|)) (-15 -3250 (|#1| |#1|))) (-950 |#2| |#3| |#4|) (-1047) (-788) (-842)) (T -949)) +NIL +(-10 -8 (-15 -2155 ((-1157 |#1|) (-1157 |#1|) (-1157 |#1|))) (-15 -1678 ((-420 |#1|) |#1|)) (-15 -4305 (|#1| |#1|)) (-15 -4371 ((-3 |#1| "failed") |#1|)) (-15 -1732 ((-121) |#1| |#1|)) (-15 -4278 ((-541) |#1|)) (-15 -4278 ((-887 (-568)) |#1|)) (-15 -4278 ((-887 (-381)) |#1|)) (-15 -4410 ((-884 (-568) |#1|) |#1| (-887 (-568)) (-884 (-568) |#1|))) (-15 -4410 ((-884 (-381) |#1|) |#1| (-887 (-381)) (-884 (-381) |#1|))) (-15 -3848 ((-420 |#1|) |#1|)) (-15 -3545 ((-420 (-1157 |#1|)) (-1157 |#1|))) (-15 -2905 ((-420 (-1157 |#1|)) (-1157 |#1|))) (-15 -1858 ((-3 (-634 (-1157 |#1|)) "failed") (-634 (-1157 |#1|)) (-1157 |#1|))) (-15 -2979 ((-3 (-1244 |#1|) "failed") (-679 |#1|))) (-15 -3250 (|#1| |#1| |#4|)) (-15 -3367 (|#1| |#1| |#4|)) (-15 -2217 (|#1| |#1| |#4|)) (-15 -4265 (|#1| |#1| |#1| |#4|)) (-15 -2108 ((-634 |#1|) |#1|)) (-15 -2773 ((-763) |#1| (-634 |#4|))) (-15 -2773 ((-763) |#1|)) (-15 -3751 ((-3 (-2 (|:| |var| |#4|) (|:| -3438 (-763))) "failed") |#1|)) (-15 -3324 ((-3 (-634 |#1|) "failed") |#1|)) (-15 -1794 ((-3 (-634 |#1|) "failed") |#1|)) (-15 -2047 (|#1| |#1| (-634 |#4|) (-634 (-763)))) (-15 -2047 (|#1| |#1| |#4| (-763))) (-15 -3379 ((-2 (|:| -3961 |#1|) (|:| -1500 |#1|)) |#1| |#1| |#4|)) (-15 -2976 ((-634 |#1|) |#1|)) (-15 -2604 (|#1| |#1| (-634 |#4|) (-634 (-763)))) (-15 -2604 (|#1| |#1| |#4| (-763))) (-15 -3164 ((-679 |#2|) (-679 |#1|))) (-15 -3164 ((-2 (|:| -2928 (-679 |#2|)) (|:| |vec| (-1244 |#2|))) (-679 |#1|) (-1244 |#1|))) (-15 -3164 ((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 |#1|) (-1244 |#1|))) (-15 -3164 ((-679 (-568)) (-679 |#1|))) (-15 -2854 (|#4| |#1|)) (-15 -3666 ((-3 |#4| "failed") |#1|)) (-15 -1339 (|#1| |#1| (-634 |#4|) (-634 |#1|))) (-15 -1339 (|#1| |#1| |#4| |#1|)) (-15 -1339 (|#1| |#1| (-634 |#4|) (-634 |#2|))) (-15 -1339 (|#1| |#1| |#4| |#2|)) (-15 -1339 (|#1| |#1| (-634 |#1|) (-634 |#1|))) (-15 -1339 (|#1| |#1| |#1| |#1|)) (-15 -1339 (|#1| |#1| (-288 |#1|))) (-15 -1339 (|#1| |#1| (-634 (-288 |#1|)))) (-15 -2047 (|#1| |#2| |#3|)) (-15 -2604 (|#2| |#1| |#3|)) (-15 -2854 ((-568) |#1|)) (-15 -3666 ((-3 (-568) "failed") |#1|)) (-15 -2854 ((-409 (-568)) |#1|)) (-15 -3666 ((-3 (-409 (-568)) "failed") |#1|)) (-15 -3666 ((-3 |#2| "failed") |#1|)) (-15 -2854 (|#2| |#1|)) (-15 -3367 (|#2| |#1|)) (-15 -3250 (|#1| |#1|))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-2055 (((-634 |#3|) $) 108)) (-3839 (((-1157 $) $ |#3|) 123) (((-1157 |#1|) $) 122)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) 85 (|has| |#1| (-558)))) (-2227 (($ $) 86 (|has| |#1| (-558)))) (-1573 (((-121) $) 88 (|has| |#1| (-558)))) (-2773 (((-763) $) 110) (((-763) $ (-634 |#3|)) 109)) (-3134 (((-3 $ "failed") $ $) 18)) (-1750 (((-420 (-1157 $)) (-1157 $)) 98 (|has| |#1| (-904)))) (-4305 (($ $) 96 (|has| |#1| (-453)))) (-1678 (((-420 $) $) 95 (|has| |#1| (-453)))) (-1858 (((-3 (-634 (-1157 $)) "failed") (-634 (-1157 $)) (-1157 $)) 101 (|has| |#1| (-904)))) (-2671 (($) 16 T CONST)) (-3666 (((-3 |#1| "failed") $) 162) (((-3 (-409 (-568)) "failed") $) 160 (|has| |#1| (-1037 (-409 (-568))))) (((-3 (-568) "failed") $) 158 (|has| |#1| (-1037 (-568)))) (((-3 |#3| "failed") $) 134)) (-2854 ((|#1| $) 163) (((-409 (-568)) $) 159 (|has| |#1| (-1037 (-409 (-568))))) (((-568) $) 157 (|has| |#1| (-1037 (-568)))) ((|#3| $) 133)) (-4265 (($ $ $ |#3|) 106 (|has| |#1| (-172)))) (-2114 (($ $) 152)) (-3164 (((-679 (-568)) (-679 $)) 132 (|has| |#1| (-630 (-568)))) (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) 131 (|has| |#1| (-630 (-568)))) (((-2 (|:| -2928 (-679 |#1|)) (|:| |vec| (-1244 |#1|))) (-679 $) (-1244 $)) 130) (((-679 |#1|) (-679 $)) 129)) (-2925 (((-3 $ "failed") $) 33)) (-3250 (($ $) 174 (|has| |#1| (-453))) (($ $ |#3|) 103 (|has| |#1| (-453)))) (-2108 (((-634 $) $) 107)) (-3927 (((-121) $) 94 (|has| |#1| (-904)))) (-3088 (($ $ |#1| |#2| $) 170)) (-4410 (((-884 (-381) $) $ (-887 (-381)) (-884 (-381) $)) 82 (-12 (|has| |#3| (-881 (-381))) (|has| |#1| (-881 (-381))))) (((-884 (-568) $) $ (-887 (-568)) (-884 (-568) $)) 81 (-12 (|has| |#3| (-881 (-568))) (|has| |#1| (-881 (-568)))))) (-2735 (((-121) $) 30)) (-4178 (((-763) $) 167)) (-2051 (($ (-1157 |#1|) |#3|) 115) (($ (-1157 $) |#3|) 114)) (-2976 (((-634 $) $) 124)) (-3921 (((-121) $) 150)) (-2047 (($ |#1| |#2|) 151) (($ $ |#3| (-763)) 117) (($ $ (-634 |#3|) (-634 (-763))) 116)) (-3379 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $ |#3|) 118)) (-2144 ((|#2| $) 168) (((-763) $ |#3|) 120) (((-634 (-763)) $ (-634 |#3|)) 119)) (-2521 (($ $ $) 77 (|has| |#1| (-842)))) (-3268 (($ $ $) 76 (|has| |#1| (-842)))) (-3842 (($ (-1 |#2| |#2|) $) 169)) (-2795 (($ (-1 |#1| |#1|) $) 149)) (-2244 (((-3 |#3| "failed") $) 121)) (-2097 (($ $) 147)) (-2102 ((|#1| $) 146)) (-2495 (($ (-634 $)) 92 (|has| |#1| (-453))) (($ $ $) 91 (|has| |#1| (-453)))) (-4487 (((-1143) $) 9)) (-3324 (((-3 (-634 $) "failed") $) 112)) (-1794 (((-3 (-634 $) "failed") $) 113)) (-3751 (((-3 (-2 (|:| |var| |#3|) (|:| -3438 (-763))) "failed") $) 111)) (-4022 (((-1108) $) 10)) (-2086 (((-121) $) 164)) (-2091 ((|#1| $) 165)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) 93 (|has| |#1| (-453)))) (-2721 (($ (-634 $)) 90 (|has| |#1| (-453))) (($ $ $) 89 (|has| |#1| (-453)))) (-2905 (((-420 (-1157 $)) (-1157 $)) 100 (|has| |#1| (-904)))) (-3545 (((-420 (-1157 $)) (-1157 $)) 99 (|has| |#1| (-904)))) (-3848 (((-420 $) $) 97 (|has| |#1| (-904)))) (-2595 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-558))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-558)))) (-1339 (($ $ (-634 (-288 $))) 143) (($ $ (-288 $)) 142) (($ $ $ $) 141) (($ $ (-634 $) (-634 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-634 |#3|) (-634 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-634 |#3|) (-634 $)) 136)) (-2217 (($ $ |#3|) 105 (|has| |#1| (-172)))) (-4189 (($ $ |#3|) 41) (($ $ (-634 |#3|)) 40) (($ $ |#3| (-763)) 39) (($ $ (-634 |#3|) (-634 (-763))) 38)) (-3206 ((|#2| $) 148) (((-763) $ |#3|) 128) (((-634 (-763)) $ (-634 |#3|)) 127)) (-4278 (((-887 (-381)) $) 80 (-12 (|has| |#3| (-609 (-887 (-381)))) (|has| |#1| (-609 (-887 (-381)))))) (((-887 (-568)) $) 79 (-12 (|has| |#3| (-609 (-887 (-568)))) (|has| |#1| (-609 (-887 (-568)))))) (((-541) $) 78 (-12 (|has| |#3| (-609 (-541))) (|has| |#1| (-609 (-541)))))) (-3367 ((|#1| $) 173 (|has| |#1| (-453))) (($ $ |#3|) 104 (|has| |#1| (-453)))) (-2979 (((-3 (-1244 $) "failed") (-679 $)) 102 (-2139 (|has| $ (-148)) (|has| |#1| (-904))))) (-2745 (((-850) $) 11) (($ (-568)) 27) (($ |#1|) 161) (($ |#3|) 135) (($ $) 83 (|has| |#1| (-558))) (($ (-409 (-568))) 70 (-2198 (|has| |#1| (-1037 (-409 (-568)))) (|has| |#1| (-43 (-409 (-568))))))) (-1302 (((-634 |#1|) $) 166)) (-2604 ((|#1| $ |#2|) 153) (($ $ |#3| (-763)) 126) (($ $ (-634 |#3|) (-634 (-763))) 125)) (-4371 (((-3 $ "failed") $) 71 (-2198 (-2139 (|has| $ (-148)) (|has| |#1| (-904))) (|has| |#1| (-148))))) (-4078 (((-763)) 28)) (-4171 (($ $ $ (-763)) 171 (|has| |#1| (-172)))) (-1826 (((-121) $ $) 87 (|has| |#1| (-558)))) (-1887 (($ $ (-917)) 25) (($ $ (-763)) 32)) (-3056 (($) 17 T CONST)) (-1556 (($) 29 T CONST)) (-3190 (($ $ |#3|) 37) (($ $ (-634 |#3|)) 36) (($ $ |#3| (-763)) 35) (($ $ (-634 |#3|) (-634 (-763))) 34)) (-1751 (((-121) $ $) 74 (|has| |#1| (-842)))) (-1738 (((-121) $ $) 73 (|has| |#1| (-842)))) (-1717 (((-121) $ $) 6)) (-1745 (((-121) $ $) 75 (|has| |#1| (-842)))) (-1732 (((-121) $ $) 72 (|has| |#1| (-842)))) (-1779 (($ $ |#1|) 154 (|has| |#1| (-365)))) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 24) (($ $ (-763)) 31)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 23) (($ $ (-409 (-568))) 156 (|has| |#1| (-43 (-409 (-568))))) (($ (-409 (-568)) $) 155 (|has| |#1| (-43 (-409 (-568))))) (($ |#1| $) 145) (($ $ |#1|) 144))) +(((-950 |#1| |#2| |#3|) (-1275) (-1047) (-788) (-842)) (T -950)) +((-3250 (*1 *1 *1) (-12 (-4 *1 (-950 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-788)) (-4 *4 (-842)) (-4 *2 (-453)))) (-3206 (*1 *2 *1 *3) (-12 (-4 *1 (-950 *4 *5 *3)) (-4 *4 (-1047)) (-4 *5 (-788)) (-4 *3 (-842)) (-5 *2 (-763)))) (-3206 (*1 *2 *1 *3) (-12 (-5 *3 (-634 *6)) (-4 *1 (-950 *4 *5 *6)) (-4 *4 (-1047)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-634 (-763))))) (-2604 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-763)) (-4 *1 (-950 *4 *5 *2)) (-4 *4 (-1047)) (-4 *5 (-788)) (-4 *2 (-842)))) (-2604 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-634 *6)) (-5 *3 (-634 (-763))) (-4 *1 (-950 *4 *5 *6)) (-4 *4 (-1047)) (-4 *5 (-788)) (-4 *6 (-842)))) (-2976 (*1 *2 *1) (-12 (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-634 *1)) (-4 *1 (-950 *3 *4 *5)))) (-3839 (*1 *2 *1 *3) (-12 (-4 *4 (-1047)) (-4 *5 (-788)) (-4 *3 (-842)) (-5 *2 (-1157 *1)) (-4 *1 (-950 *4 *5 *3)))) (-3839 (*1 *2 *1) (-12 (-4 *1 (-950 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-1157 *3)))) (-2244 (*1 *2 *1) (|partial| -12 (-4 *1 (-950 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *2 (-842)))) (-2144 (*1 *2 *1 *3) (-12 (-4 *1 (-950 *4 *5 *3)) (-4 *4 (-1047)) (-4 *5 (-788)) (-4 *3 (-842)) (-5 *2 (-763)))) (-2144 (*1 *2 *1 *3) (-12 (-5 *3 (-634 *6)) (-4 *1 (-950 *4 *5 *6)) (-4 *4 (-1047)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-634 (-763))))) (-3379 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1047)) (-4 *5 (-788)) (-4 *3 (-842)) (-5 *2 (-2 (|:| -3961 *1) (|:| -1500 *1))) (-4 *1 (-950 *4 *5 *3)))) (-2047 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-763)) (-4 *1 (-950 *4 *5 *2)) (-4 *4 (-1047)) (-4 *5 (-788)) (-4 *2 (-842)))) (-2047 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-634 *6)) (-5 *3 (-634 (-763))) (-4 *1 (-950 *4 *5 *6)) (-4 *4 (-1047)) (-4 *5 (-788)) (-4 *6 (-842)))) (-2051 (*1 *1 *2 *3) (-12 (-5 *2 (-1157 *4)) (-4 *4 (-1047)) (-4 *1 (-950 *4 *5 *3)) (-4 *5 (-788)) (-4 *3 (-842)))) (-2051 (*1 *1 *2 *3) (-12 (-5 *2 (-1157 *1)) (-4 *1 (-950 *4 *5 *3)) (-4 *4 (-1047)) (-4 *5 (-788)) (-4 *3 (-842)))) (-1794 (*1 *2 *1) (|partial| -12 (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-634 *1)) (-4 *1 (-950 *3 *4 *5)))) (-3324 (*1 *2 *1) (|partial| -12 (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-634 *1)) (-4 *1 (-950 *3 *4 *5)))) (-3751 (*1 *2 *1) (|partial| -12 (-4 *1 (-950 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-2 (|:| |var| *5) (|:| -3438 (-763)))))) (-2773 (*1 *2 *1) (-12 (-4 *1 (-950 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-763)))) (-2773 (*1 *2 *1 *3) (-12 (-5 *3 (-634 *6)) (-4 *1 (-950 *4 *5 *6)) (-4 *4 (-1047)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-763)))) (-2055 (*1 *2 *1) (-12 (-4 *1 (-950 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-634 *5)))) (-2108 (*1 *2 *1) (-12 (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-634 *1)) (-4 *1 (-950 *3 *4 *5)))) (-4265 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-950 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *2 (-842)) (-4 *3 (-172)))) (-2217 (*1 *1 *1 *2) (-12 (-4 *1 (-950 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *2 (-842)) (-4 *3 (-172)))) (-3367 (*1 *1 *1 *2) (-12 (-4 *1 (-950 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *2 (-842)) (-4 *3 (-453)))) (-3250 (*1 *1 *1 *2) (-12 (-4 *1 (-950 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *2 (-842)) (-4 *3 (-453)))) (-4305 (*1 *1 *1) (-12 (-4 *1 (-950 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-788)) (-4 *4 (-842)) (-4 *2 (-453)))) (-1678 (*1 *2 *1) (-12 (-4 *3 (-453)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-420 *1)) (-4 *1 (-950 *3 *4 *5))))) +(-13 (-895 |t#3|) (-324 |t#1| |t#2|) (-303 $) (-523 |t#3| |t#1|) (-523 |t#3| $) (-1037 |t#3|) (-379 |t#1|) (-10 -8 (-15 -3206 ((-763) $ |t#3|)) (-15 -3206 ((-634 (-763)) $ (-634 |t#3|))) (-15 -2604 ($ $ |t#3| (-763))) (-15 -2604 ($ $ (-634 |t#3|) (-634 (-763)))) (-15 -2976 ((-634 $) $)) (-15 -3839 ((-1157 $) $ |t#3|)) (-15 -3839 ((-1157 |t#1|) $)) (-15 -2244 ((-3 |t#3| "failed") $)) (-15 -2144 ((-763) $ |t#3|)) (-15 -2144 ((-634 (-763)) $ (-634 |t#3|))) (-15 -3379 ((-2 (|:| -3961 $) (|:| -1500 $)) $ $ |t#3|)) (-15 -2047 ($ $ |t#3| (-763))) (-15 -2047 ($ $ (-634 |t#3|) (-634 (-763)))) (-15 -2051 ($ (-1157 |t#1|) |t#3|)) (-15 -2051 ($ (-1157 $) |t#3|)) (-15 -1794 ((-3 (-634 $) "failed") $)) (-15 -3324 ((-3 (-634 $) "failed") $)) (-15 -3751 ((-3 (-2 (|:| |var| |t#3|) (|:| -3438 (-763))) "failed") $)) (-15 -2773 ((-763) $)) (-15 -2773 ((-763) $ (-634 |t#3|))) (-15 -2055 ((-634 |t#3|) $)) (-15 -2108 ((-634 $) $)) (IF (|has| |t#1| (-842)) (-6 (-842)) |noBranch|) (IF (|has| |t#1| (-609 (-541))) (IF (|has| |t#3| (-609 (-541))) (-6 (-609 (-541))) |noBranch|) |noBranch|) (IF (|has| |t#1| (-609 (-887 (-568)))) (IF (|has| |t#3| (-609 (-887 (-568)))) (-6 (-609 (-887 (-568)))) |noBranch|) |noBranch|) (IF (|has| |t#1| (-609 (-887 (-381)))) (IF (|has| |t#3| (-609 (-887 (-381)))) (-6 (-609 (-887 (-381)))) |noBranch|) |noBranch|) (IF (|has| |t#1| (-881 (-568))) (IF (|has| |t#3| (-881 (-568))) (-6 (-881 (-568))) |noBranch|) |noBranch|) (IF (|has| |t#1| (-881 (-381))) (IF (|has| |t#3| (-881 (-381))) (-6 (-881 (-381))) |noBranch|) |noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-15 -4265 ($ $ $ |t#3|)) (-15 -2217 ($ $ |t#3|))) |noBranch|) (IF (|has| |t#1| (-453)) (PROGN (-6 (-453)) (-15 -3367 ($ $ |t#3|)) (-15 -3250 ($ $)) (-15 -3250 ($ $ |t#3|)) (-15 -1678 ((-420 $) $)) (-15 -4305 ($ $))) |noBranch|) (IF (|has| |t#1| (-6 -4517)) (-6 -4517) |noBranch|) (IF (|has| |t#1| (-904)) (-6 (-904)) |noBranch|))) +(((-21) . T) ((-23) . T) ((-52 |#1| |#2|) . T) ((-25) . T) ((-43 (-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((-43 |#1|) |has| |#1| (-172)) ((-43 $) -2198 (|has| |#1| (-904)) (|has| |#1| (-558)) (|has| |#1| (-453))) ((-105) . T) ((-120 (-409 (-568)) (-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((-120 |#1| |#1|) . T) ((-120 $ $) -2198 (|has| |#1| (-904)) (|has| |#1| (-558)) (|has| |#1| (-453)) (|has| |#1| (-172))) ((-137) . T) ((-148) |has| |#1| (-148)) ((-150) |has| |#1| (-150)) ((-608 (-850)) . T) ((-172) -2198 (|has| |#1| (-904)) (|has| |#1| (-558)) (|has| |#1| (-453)) (|has| |#1| (-172))) ((-609 (-541)) -12 (|has| |#1| (-609 (-541))) (|has| |#3| (-609 (-541)))) ((-609 (-887 (-381))) -12 (|has| |#1| (-609 (-887 (-381)))) (|has| |#3| (-609 (-887 (-381))))) ((-609 (-887 (-568))) -12 (|has| |#1| (-609 (-887 (-568)))) (|has| |#3| (-609 (-887 (-568))))) ((-285) -2198 (|has| |#1| (-904)) (|has| |#1| (-558)) (|has| |#1| (-453))) ((-303 $) . T) ((-324 |#1| |#2|) . T) ((-379 |#1|) . T) ((-413 |#1|) . T) ((-453) -2198 (|has| |#1| (-904)) (|has| |#1| (-453))) ((-523 |#3| |#1|) . T) ((-523 |#3| $) . T) ((-523 $ $) . T) ((-558) -2198 (|has| |#1| (-904)) (|has| |#1| (-558)) (|has| |#1| (-453))) ((-637 (-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((-637 |#1|) . T) ((-637 $) . T) ((-630 (-568)) |has| |#1| (-630 (-568))) ((-630 |#1|) . T) ((-707 (-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((-707 |#1|) |has| |#1| (-172)) ((-707 $) -2198 (|has| |#1| (-904)) (|has| |#1| (-558)) (|has| |#1| (-453))) ((-716) . T) ((-842) |has| |#1| (-842)) ((-895 |#3|) . T) ((-881 (-381)) -12 (|has| |#1| (-881 (-381))) (|has| |#3| (-881 (-381)))) ((-881 (-568)) -12 (|has| |#1| (-881 (-568))) (|has| |#3| (-881 (-568)))) ((-904) |has| |#1| (-904)) ((-1037 (-409 (-568))) |has| |#1| (-1037 (-409 (-568)))) ((-1037 (-568)) |has| |#1| (-1037 (-568))) ((-1037 |#1|) . T) ((-1037 |#3|) . T) ((-1053 (-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((-1053 |#1|) . T) ((-1053 $) -2198 (|has| |#1| (-904)) (|has| |#1| (-558)) (|has| |#1| (-453)) (|has| |#1| (-172))) ((-1047) . T) ((-1054) . T) ((-1102) . T) ((-1090) . T) ((-1199) |has| |#1| (-904))) +((-2055 (((-634 |#2|) |#5|) 36)) (-3839 (((-1157 |#5|) |#5| |#2| (-1157 |#5|)) 23) (((-409 (-1157 |#5|)) |#5| |#2|) 16)) (-2051 ((|#5| (-409 (-1157 |#5|)) |#2|) 30)) (-2244 (((-3 |#2| "failed") |#5|) 61)) (-3324 (((-3 (-634 |#5|) "failed") |#5|) 55)) (-2672 (((-3 (-2 (|:| |val| |#5|) (|:| -3438 (-568))) "failed") |#5|) 45)) (-1794 (((-3 (-634 |#5|) "failed") |#5|) 57)) (-3751 (((-3 (-2 (|:| |var| |#2|) (|:| -3438 (-568))) "failed") |#5|) 48))) +(((-951 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2055 ((-634 |#2|) |#5|)) (-15 -2244 ((-3 |#2| "failed") |#5|)) (-15 -3839 ((-409 (-1157 |#5|)) |#5| |#2|)) (-15 -2051 (|#5| (-409 (-1157 |#5|)) |#2|)) (-15 -3839 ((-1157 |#5|) |#5| |#2| (-1157 |#5|))) (-15 -1794 ((-3 (-634 |#5|) "failed") |#5|)) (-15 -3324 ((-3 (-634 |#5|) "failed") |#5|)) (-15 -3751 ((-3 (-2 (|:| |var| |#2|) (|:| -3438 (-568))) "failed") |#5|)) (-15 -2672 ((-3 (-2 (|:| |val| |#5|) (|:| -3438 (-568))) "failed") |#5|))) (-788) (-842) (-1047) (-950 |#3| |#1| |#2|) (-13 (-365) (-10 -8 (-15 -2745 ($ |#4|)) (-15 -2317 (|#4| $)) (-15 -2324 (|#4| $))))) (T -951)) +((-2672 (*1 *2 *3) (|partial| -12 (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1047)) (-4 *7 (-950 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -3438 (-568)))) (-5 *1 (-951 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -2745 ($ *7)) (-15 -2317 (*7 $)) (-15 -2324 (*7 $))))))) (-3751 (*1 *2 *3) (|partial| -12 (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1047)) (-4 *7 (-950 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -3438 (-568)))) (-5 *1 (-951 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -2745 ($ *7)) (-15 -2317 (*7 $)) (-15 -2324 (*7 $))))))) (-3324 (*1 *2 *3) (|partial| -12 (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1047)) (-4 *7 (-950 *6 *4 *5)) (-5 *2 (-634 *3)) (-5 *1 (-951 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -2745 ($ *7)) (-15 -2317 (*7 $)) (-15 -2324 (*7 $))))))) (-1794 (*1 *2 *3) (|partial| -12 (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1047)) (-4 *7 (-950 *6 *4 *5)) (-5 *2 (-634 *3)) (-5 *1 (-951 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -2745 ($ *7)) (-15 -2317 (*7 $)) (-15 -2324 (*7 $))))))) (-3839 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -2745 ($ *7)) (-15 -2317 (*7 $)) (-15 -2324 (*7 $))))) (-4 *7 (-950 *6 *5 *4)) (-4 *5 (-788)) (-4 *4 (-842)) (-4 *6 (-1047)) (-5 *1 (-951 *5 *4 *6 *7 *3)))) (-2051 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-1157 *2))) (-4 *5 (-788)) (-4 *4 (-842)) (-4 *6 (-1047)) (-4 *2 (-13 (-365) (-10 -8 (-15 -2745 ($ *7)) (-15 -2317 (*7 $)) (-15 -2324 (*7 $))))) (-5 *1 (-951 *5 *4 *6 *7 *2)) (-4 *7 (-950 *6 *5 *4)))) (-3839 (*1 *2 *3 *4) (-12 (-4 *5 (-788)) (-4 *4 (-842)) (-4 *6 (-1047)) (-4 *7 (-950 *6 *5 *4)) (-5 *2 (-409 (-1157 *3))) (-5 *1 (-951 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -2745 ($ *7)) (-15 -2317 (*7 $)) (-15 -2324 (*7 $))))))) (-2244 (*1 *2 *3) (|partial| -12 (-4 *4 (-788)) (-4 *5 (-1047)) (-4 *6 (-950 *5 *4 *2)) (-4 *2 (-842)) (-5 *1 (-951 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -2745 ($ *6)) (-15 -2317 (*6 $)) (-15 -2324 (*6 $))))))) (-2055 (*1 *2 *3) (-12 (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1047)) (-4 *7 (-950 *6 *4 *5)) (-5 *2 (-634 *5)) (-5 *1 (-951 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -2745 ($ *7)) (-15 -2317 (*7 $)) (-15 -2324 (*7 $)))))))) +(-10 -7 (-15 -2055 ((-634 |#2|) |#5|)) (-15 -2244 ((-3 |#2| "failed") |#5|)) (-15 -3839 ((-409 (-1157 |#5|)) |#5| |#2|)) (-15 -2051 (|#5| (-409 (-1157 |#5|)) |#2|)) (-15 -3839 ((-1157 |#5|) |#5| |#2| (-1157 |#5|))) (-15 -1794 ((-3 (-634 |#5|) "failed") |#5|)) (-15 -3324 ((-3 (-634 |#5|) "failed") |#5|)) (-15 -3751 ((-3 (-2 (|:| |var| |#2|) (|:| -3438 (-568))) "failed") |#5|)) (-15 -2672 ((-3 (-2 (|:| |val| |#5|) (|:| -3438 (-568))) "failed") |#5|))) +((-2795 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 23))) +(((-952 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2795 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-788) (-842) (-1047) (-950 |#3| |#1| |#2|) (-13 (-1090) (-10 -8 (-15 -1767 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-763)))))) (T -952)) +((-2795 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-842)) (-4 *8 (-1047)) (-4 *6 (-788)) (-4 *2 (-13 (-1090) (-10 -8 (-15 -1767 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-763)))))) (-5 *1 (-952 *6 *7 *8 *5 *2)) (-4 *5 (-950 *8 *6 *7))))) +(-10 -7 (-15 -2795 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-2055 (((-634 (-1161)) $) 15)) (-3839 (((-1157 $) $ (-1161)) 21) (((-1157 |#1|) $) NIL)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-2227 (($ $) NIL (|has| |#1| (-558)))) (-1573 (((-121) $) NIL (|has| |#1| (-558)))) (-2773 (((-763) $) NIL) (((-763) $ (-634 (-1161))) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-1750 (((-420 (-1157 $)) (-1157 $)) NIL (|has| |#1| (-904)))) (-4305 (($ $) NIL (|has| |#1| (-453)))) (-1678 (((-420 $) $) NIL (|has| |#1| (-453)))) (-1858 (((-3 (-634 (-1157 $)) "failed") (-634 (-1157 $)) (-1157 $)) NIL (|has| |#1| (-904)))) (-2671 (($) NIL T CONST)) (-3666 (((-3 |#1| "failed") $) 8) (((-3 (-409 (-568)) "failed") $) NIL (|has| |#1| (-1037 (-409 (-568))))) (((-3 (-568) "failed") $) NIL (|has| |#1| (-1037 (-568)))) (((-3 (-1161) "failed") $) NIL)) (-2854 ((|#1| $) NIL) (((-409 (-568)) $) NIL (|has| |#1| (-1037 (-409 (-568))))) (((-568) $) NIL (|has| |#1| (-1037 (-568)))) (((-1161) $) NIL)) (-4265 (($ $ $ (-1161)) NIL (|has| |#1| (-172)))) (-2114 (($ $) NIL)) (-3164 (((-679 (-568)) (-679 $)) NIL (|has| |#1| (-630 (-568)))) (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) NIL (|has| |#1| (-630 (-568)))) (((-2 (|:| -2928 (-679 |#1|)) (|:| |vec| (-1244 |#1|))) (-679 $) (-1244 $)) NIL) (((-679 |#1|) (-679 $)) NIL)) (-2925 (((-3 $ "failed") $) NIL)) (-3250 (($ $) NIL (|has| |#1| (-453))) (($ $ (-1161)) NIL (|has| |#1| (-453)))) (-2108 (((-634 $) $) NIL)) (-3927 (((-121) $) NIL (|has| |#1| (-904)))) (-3088 (($ $ |#1| (-534 (-1161)) $) NIL)) (-4410 (((-884 (-381) $) $ (-887 (-381)) (-884 (-381) $)) NIL (-12 (|has| (-1161) (-881 (-381))) (|has| |#1| (-881 (-381))))) (((-884 (-568) $) $ (-887 (-568)) (-884 (-568) $)) NIL (-12 (|has| (-1161) (-881 (-568))) (|has| |#1| (-881 (-568)))))) (-2735 (((-121) $) NIL)) (-4178 (((-763) $) NIL)) (-2051 (($ (-1157 |#1|) (-1161)) NIL) (($ (-1157 $) (-1161)) NIL)) (-2976 (((-634 $) $) NIL)) (-3921 (((-121) $) NIL)) (-2047 (($ |#1| (-534 (-1161))) NIL) (($ $ (-1161) (-763)) NIL) (($ $ (-634 (-1161)) (-634 (-763))) NIL)) (-3379 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $ (-1161)) NIL)) (-2144 (((-534 (-1161)) $) NIL) (((-763) $ (-1161)) NIL) (((-634 (-763)) $ (-634 (-1161))) NIL)) (-2521 (($ $ $) NIL (|has| |#1| (-842)))) (-3268 (($ $ $) NIL (|has| |#1| (-842)))) (-3842 (($ (-1 (-534 (-1161)) (-534 (-1161))) $) NIL)) (-2795 (($ (-1 |#1| |#1|) $) NIL)) (-2244 (((-3 (-1161) "failed") $) 19)) (-2097 (($ $) NIL)) (-2102 ((|#1| $) NIL)) (-2495 (($ (-634 $)) NIL (|has| |#1| (-453))) (($ $ $) NIL (|has| |#1| (-453)))) (-4487 (((-1143) $) NIL)) (-3324 (((-3 (-634 $) "failed") $) NIL)) (-1794 (((-3 (-634 $) "failed") $) NIL)) (-3751 (((-3 (-2 (|:| |var| (-1161)) (|:| -3438 (-763))) "failed") $) NIL)) (-3837 (($ $ (-1161)) 29 (|has| |#1| (-43 (-409 (-568)))))) (-4022 (((-1108) $) NIL)) (-2086 (((-121) $) NIL)) (-2091 ((|#1| $) NIL)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL (|has| |#1| (-453)))) (-2721 (($ (-634 $)) NIL (|has| |#1| (-453))) (($ $ $) NIL (|has| |#1| (-453)))) (-2905 (((-420 (-1157 $)) (-1157 $)) NIL (|has| |#1| (-904)))) (-3545 (((-420 (-1157 $)) (-1157 $)) NIL (|has| |#1| (-904)))) (-3848 (((-420 $) $) NIL (|has| |#1| (-904)))) (-2595 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-1339 (($ $ (-634 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-634 $) (-634 $)) NIL) (($ $ (-1161) |#1|) NIL) (($ $ (-634 (-1161)) (-634 |#1|)) NIL) (($ $ (-1161) $) NIL) (($ $ (-634 (-1161)) (-634 $)) NIL)) (-2217 (($ $ (-1161)) NIL (|has| |#1| (-172)))) (-4189 (($ $ (-1161)) NIL) (($ $ (-634 (-1161))) NIL) (($ $ (-1161) (-763)) NIL) (($ $ (-634 (-1161)) (-634 (-763))) NIL)) (-3206 (((-534 (-1161)) $) NIL) (((-763) $ (-1161)) NIL) (((-634 (-763)) $ (-634 (-1161))) NIL)) (-4278 (((-887 (-381)) $) NIL (-12 (|has| (-1161) (-609 (-887 (-381)))) (|has| |#1| (-609 (-887 (-381)))))) (((-887 (-568)) $) NIL (-12 (|has| (-1161) (-609 (-887 (-568)))) (|has| |#1| (-609 (-887 (-568)))))) (((-541) $) NIL (-12 (|has| (-1161) (-609 (-541))) (|has| |#1| (-609 (-541)))))) (-3367 ((|#1| $) NIL (|has| |#1| (-453))) (($ $ (-1161)) NIL (|has| |#1| (-453)))) (-2979 (((-3 (-1244 $) "failed") (-679 $)) NIL (-12 (|has| $ (-148)) (|has| |#1| (-904))))) (-2745 (((-850) $) 25) (($ (-568)) NIL) (($ |#1|) NIL) (($ (-1161)) 27) (($ (-409 (-568))) NIL (-2198 (|has| |#1| (-43 (-409 (-568)))) (|has| |#1| (-1037 (-409 (-568)))))) (($ $) NIL (|has| |#1| (-558)))) (-1302 (((-634 |#1|) $) NIL)) (-2604 ((|#1| $ (-534 (-1161))) NIL) (($ $ (-1161) (-763)) NIL) (($ $ (-634 (-1161)) (-634 (-763))) NIL)) (-4371 (((-3 $ "failed") $) NIL (-2198 (-12 (|has| $ (-148)) (|has| |#1| (-904))) (|has| |#1| (-148))))) (-4078 (((-763)) NIL)) (-4171 (($ $ $ (-763)) NIL (|has| |#1| (-172)))) (-1826 (((-121) $ $) NIL (|has| |#1| (-558)))) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (-3056 (($) NIL T CONST)) (-1556 (($) NIL T CONST)) (-3190 (($ $ (-1161)) NIL) (($ $ (-634 (-1161))) NIL) (($ $ (-1161) (-763)) NIL) (($ $ (-634 (-1161)) (-634 (-763))) NIL)) (-1751 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1738 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1717 (((-121) $ $) NIL)) (-1745 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1732 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1779 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) NIL) (($ $ (-409 (-568))) NIL (|has| |#1| (-43 (-409 (-568))))) (($ (-409 (-568)) $) NIL (|has| |#1| (-43 (-409 (-568))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-953 |#1|) (-13 (-950 |#1| (-534 (-1161)) (-1161)) (-10 -8 (IF (|has| |#1| (-43 (-409 (-568)))) (-15 -3837 ($ $ (-1161))) |noBranch|))) (-1047)) (T -953)) +((-3837 (*1 *1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-953 *3)) (-4 *3 (-43 (-409 (-568)))) (-4 *3 (-1047))))) +(-13 (-950 |#1| (-534 (-1161)) (-1161)) (-10 -8 (IF (|has| |#1| (-43 (-409 (-568)))) (-15 -3837 ($ $ (-1161))) |noBranch|))) +((-2613 (((-2 (|:| -3438 (-763)) (|:| -2348 |#5|) (|:| |radicand| |#5|)) |#3| (-763)) 37)) (-3710 (((-2 (|:| -3438 (-763)) (|:| -2348 |#5|) (|:| |radicand| |#5|)) (-409 (-568)) (-763)) 33)) (-2771 (((-2 (|:| -3438 (-763)) (|:| -2348 |#4|) (|:| |radicand| (-634 |#4|))) |#4| (-763)) 52)) (-3563 (((-2 (|:| -3438 (-763)) (|:| -2348 |#5|) (|:| |radicand| |#5|)) |#5| (-763)) 62 (|has| |#3| (-453))))) +(((-954 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2613 ((-2 (|:| -3438 (-763)) (|:| -2348 |#5|) (|:| |radicand| |#5|)) |#3| (-763))) (-15 -3710 ((-2 (|:| -3438 (-763)) (|:| -2348 |#5|) (|:| |radicand| |#5|)) (-409 (-568)) (-763))) (IF (|has| |#3| (-453)) (-15 -3563 ((-2 (|:| -3438 (-763)) (|:| -2348 |#5|) (|:| |radicand| |#5|)) |#5| (-763))) |noBranch|) (-15 -2771 ((-2 (|:| -3438 (-763)) (|:| -2348 |#4|) (|:| |radicand| (-634 |#4|))) |#4| (-763)))) (-788) (-842) (-558) (-950 |#3| |#1| |#2|) (-13 (-365) (-10 -8 (-15 -2317 (|#4| $)) (-15 -2324 (|#4| $)) (-15 -2745 ($ |#4|))))) (T -954)) +((-2771 (*1 *2 *3 *4) (-12 (-4 *5 (-788)) (-4 *6 (-842)) (-4 *7 (-558)) (-4 *3 (-950 *7 *5 *6)) (-5 *2 (-2 (|:| -3438 (-763)) (|:| -2348 *3) (|:| |radicand| (-634 *3)))) (-5 *1 (-954 *5 *6 *7 *3 *8)) (-5 *4 (-763)) (-4 *8 (-13 (-365) (-10 -8 (-15 -2317 (*3 $)) (-15 -2324 (*3 $)) (-15 -2745 ($ *3))))))) (-3563 (*1 *2 *3 *4) (-12 (-4 *7 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *7 (-558)) (-4 *8 (-950 *7 *5 *6)) (-5 *2 (-2 (|:| -3438 (-763)) (|:| -2348 *3) (|:| |radicand| *3))) (-5 *1 (-954 *5 *6 *7 *8 *3)) (-5 *4 (-763)) (-4 *3 (-13 (-365) (-10 -8 (-15 -2317 (*8 $)) (-15 -2324 (*8 $)) (-15 -2745 ($ *8))))))) (-3710 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-568))) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *7 (-558)) (-4 *8 (-950 *7 *5 *6)) (-5 *2 (-2 (|:| -3438 (-763)) (|:| -2348 *9) (|:| |radicand| *9))) (-5 *1 (-954 *5 *6 *7 *8 *9)) (-5 *4 (-763)) (-4 *9 (-13 (-365) (-10 -8 (-15 -2317 (*8 $)) (-15 -2324 (*8 $)) (-15 -2745 ($ *8))))))) (-2613 (*1 *2 *3 *4) (-12 (-4 *5 (-788)) (-4 *6 (-842)) (-4 *3 (-558)) (-4 *7 (-950 *3 *5 *6)) (-5 *2 (-2 (|:| -3438 (-763)) (|:| -2348 *8) (|:| |radicand| *8))) (-5 *1 (-954 *5 *6 *3 *7 *8)) (-5 *4 (-763)) (-4 *8 (-13 (-365) (-10 -8 (-15 -2317 (*7 $)) (-15 -2324 (*7 $)) (-15 -2745 ($ *7)))))))) +(-10 -7 (-15 -2613 ((-2 (|:| -3438 (-763)) (|:| -2348 |#5|) (|:| |radicand| |#5|)) |#3| (-763))) (-15 -3710 ((-2 (|:| -3438 (-763)) (|:| -2348 |#5|) (|:| |radicand| |#5|)) (-409 (-568)) (-763))) (IF (|has| |#3| (-453)) (-15 -3563 ((-2 (|:| -3438 (-763)) (|:| -2348 |#5|) (|:| |radicand| |#5|)) |#5| (-763))) |noBranch|) (-15 -2771 ((-2 (|:| -3438 (-763)) (|:| -2348 |#4|) (|:| |radicand| (-634 |#4|))) |#4| (-763)))) +((-4017 (((-1084 (-215)) $) 7)) (-1351 (((-1084 (-215)) $) 8)) (-2550 (((-634 (-634 (-944 (-215)))) $) 9)) (-2745 (((-850) $) 6))) +(((-955) (-1275)) (T -955)) +((-2550 (*1 *2 *1) (-12 (-4 *1 (-955)) (-5 *2 (-634 (-634 (-944 (-215))))))) (-1351 (*1 *2 *1) (-12 (-4 *1 (-955)) (-5 *2 (-1084 (-215))))) (-4017 (*1 *2 *1) (-12 (-4 *1 (-955)) (-5 *2 (-1084 (-215)))))) +(-13 (-608 (-850)) (-10 -8 (-15 -2550 ((-634 (-634 (-944 (-215)))) $)) (-15 -1351 ((-1084 (-215)) $)) (-15 -4017 ((-1084 (-215)) $)))) +(((-608 (-850)) . T)) +((-3032 (((-3 (-679 |#1|) "failed") |#2| (-917)) 14))) +(((-956 |#1| |#2|) (-10 -7 (-15 -3032 ((-3 (-679 |#1|) "failed") |#2| (-917)))) (-558) (-646 |#1|)) (T -956)) +((-3032 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-917)) (-4 *5 (-558)) (-5 *2 (-679 *5)) (-5 *1 (-956 *5 *3)) (-4 *3 (-646 *5))))) +(-10 -7 (-15 -3032 ((-3 (-679 |#1|) "failed") |#2| (-917)))) +((-2512 (((-958 |#2|) (-1 |#2| |#1| |#2|) (-958 |#1|) |#2|) 16)) (-3092 ((|#2| (-1 |#2| |#1| |#2|) (-958 |#1|) |#2|) 18)) (-2795 (((-958 |#2|) (-1 |#2| |#1|) (-958 |#1|)) 13))) +(((-957 |#1| |#2|) (-10 -7 (-15 -2512 ((-958 |#2|) (-1 |#2| |#1| |#2|) (-958 |#1|) |#2|)) (-15 -3092 (|#2| (-1 |#2| |#1| |#2|) (-958 |#1|) |#2|)) (-15 -2795 ((-958 |#2|) (-1 |#2| |#1|) (-958 |#1|)))) (-1195) (-1195)) (T -957)) +((-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-958 *5)) (-4 *5 (-1195)) (-4 *6 (-1195)) (-5 *2 (-958 *6)) (-5 *1 (-957 *5 *6)))) (-3092 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-958 *5)) (-4 *5 (-1195)) (-4 *2 (-1195)) (-5 *1 (-957 *5 *2)))) (-2512 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-958 *6)) (-4 *6 (-1195)) (-4 *5 (-1195)) (-5 *2 (-958 *5)) (-5 *1 (-957 *6 *5))))) +(-10 -7 (-15 -2512 ((-958 |#2|) (-1 |#2| |#1| |#2|) (-958 |#1|) |#2|)) (-15 -3092 (|#2| (-1 |#2| |#1| |#2|) (-958 |#1|) |#2|)) (-15 -2795 ((-958 |#2|) (-1 |#2| |#1|) (-958 |#1|)))) +((-2447 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-1868 (((-1249) $ (-568) (-568)) NIL (|has| $ (-6 -4520)))) (-2016 (((-121) (-1 (-121) |#1| |#1|) $) NIL) (((-121) $) NIL (|has| |#1| (-842)))) (-3908 (($ (-1 (-121) |#1| |#1|) $) NIL (|has| $ (-6 -4520))) (($ $) NIL (-12 (|has| $ (-6 -4520)) (|has| |#1| (-842))))) (-3644 (($ (-1 (-121) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-842)))) (-2510 (((-121) $ (-763)) NIL)) (-2436 ((|#1| $ (-568) |#1|) 17 (|has| $ (-6 -4520))) ((|#1| $ (-1210 (-568)) |#1|) NIL (|has| $ (-6 -4520)))) (-2801 (($ (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-2671 (($) NIL T CONST)) (-1578 (($ $) NIL (|has| $ (-6 -4520)))) (-3943 (($ $) NIL)) (-3924 (($ $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-4328 (($ |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090)))) (($ (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-3092 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4519))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4519)))) (-3989 ((|#1| $ (-568) |#1|) 16 (|has| $ (-6 -4520)))) (-2602 ((|#1| $ (-568)) 14)) (-2764 (((-568) (-1 (-121) |#1|) $) NIL) (((-568) |#1| $) NIL (|has| |#1| (-1090))) (((-568) |#1| $ (-568)) NIL (|has| |#1| (-1090)))) (-4360 (((-634 |#1|) $) NIL (|has| $ (-6 -4519)))) (-1849 (($ (-763) |#1|) 13)) (-1737 (((-121) $ (-763)) NIL)) (-1881 (((-568) $) 10 (|has| (-568) (-842)))) (-2521 (($ $ $) NIL (|has| |#1| (-842)))) (-1347 (($ (-1 (-121) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-842)))) (-1979 (((-634 |#1|) $) NIL (|has| $ (-6 -4519)))) (-3109 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-2223 (((-568) $) NIL (|has| (-568) (-842)))) (-3268 (($ $ $) NIL (|has| |#1| (-842)))) (-3674 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2166 (((-121) $ (-763)) NIL)) (-4487 (((-1143) $) NIL (|has| |#1| (-1090)))) (-4122 (($ |#1| $ (-568)) NIL) (($ $ $ (-568)) NIL)) (-4174 (((-634 (-568)) $) NIL)) (-3578 (((-121) (-568) $) NIL)) (-4022 (((-1108) $) NIL (|has| |#1| (-1090)))) (-3876 ((|#1| $) NIL (|has| (-568) (-842)))) (-3775 (((-3 |#1| "failed") (-1 (-121) |#1|) $) NIL)) (-3724 (($ $ |#1|) 12 (|has| $ (-6 -4520)))) (-1387 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-634 |#1|) (-634 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))))) (-3171 (((-121) $ $) NIL)) (-4467 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-2041 (((-634 |#1|) $) NIL)) (-3084 (((-121) $) NIL)) (-3248 (($) 11)) (-2779 ((|#1| $ (-568) |#1|) NIL) ((|#1| $ (-568)) 15) (($ $ (-1210 (-568))) NIL)) (-2826 (($ $ (-568)) NIL) (($ $ (-1210 (-568))) NIL)) (-4168 (((-763) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519))) (((-763) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-2256 (($ $ $ (-568)) NIL (|has| $ (-6 -4520)))) (-3863 (($ $) NIL)) (-4278 (((-541) $) NIL (|has| |#1| (-609 (-541))))) (-4287 (($ (-634 |#1|)) NIL)) (-2768 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-634 $)) NIL)) (-2745 (((-850) $) NIL (|has| |#1| (-1090)))) (-1319 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-1751 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1738 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1717 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-1745 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1732 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1697 (((-763) $) 8 (|has| $ (-6 -4519))))) +(((-958 |#1|) (-19 |#1|) (-1195)) (T -958)) NIL (-19 |#1|) -((-4041 (($ $ (-1074 $)) 7) (($ $ (-1153)) 6))) -(((-951) (-1267)) (T -951)) -((-4041 (*1 *1 *1 *2) (-12 (-5 *2 (-1074 *1)) (-4 *1 (-951)))) (-4041 (*1 *1 *1 *2) (-12 (-4 *1 (-951)) (-5 *2 (-1153))))) -(-13 (-10 -8 (-15 -4041 ($ $ (-1153))) (-15 -4041 ($ $ (-1074 $))))) -((-2481 (((-2 (|:| -2169 (-626 (-560))) (|:| |poly| (-626 (-1149 |#1|))) (|:| |prim| (-1149 |#1|))) (-626 (-945 |#1|)) (-626 (-1153)) (-1153)) 23) (((-2 (|:| -2169 (-626 (-560))) (|:| |poly| (-626 (-1149 |#1|))) (|:| |prim| (-1149 |#1|))) (-626 (-945 |#1|)) (-626 (-1153))) 24) (((-2 (|:| |coef1| (-560)) (|:| |coef2| (-560)) (|:| |prim| (-1149 |#1|))) (-945 |#1|) (-1153) (-945 |#1|) (-1153)) 41))) -(((-952 |#1|) (-10 -7 (-15 -2481 ((-2 (|:| |coef1| (-560)) (|:| |coef2| (-560)) (|:| |prim| (-1149 |#1|))) (-945 |#1|) (-1153) (-945 |#1|) (-1153))) (-15 -2481 ((-2 (|:| -2169 (-626 (-560))) (|:| |poly| (-626 (-1149 |#1|))) (|:| |prim| (-1149 |#1|))) (-626 (-945 |#1|)) (-626 (-1153)))) (-15 -2481 ((-2 (|:| -2169 (-626 (-560))) (|:| |poly| (-626 (-1149 |#1|))) (|:| |prim| (-1149 |#1|))) (-626 (-945 |#1|)) (-626 (-1153)) (-1153)))) (-13 (-359) (-148))) (T -952)) -((-2481 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-626 (-945 *6))) (-5 *4 (-626 (-1153))) (-5 *5 (-1153)) (-4 *6 (-13 (-359) (-148))) (-5 *2 (-2 (|:| -2169 (-626 (-560))) (|:| |poly| (-626 (-1149 *6))) (|:| |prim| (-1149 *6)))) (-5 *1 (-952 *6)))) (-2481 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-945 *5))) (-5 *4 (-626 (-1153))) (-4 *5 (-13 (-359) (-148))) (-5 *2 (-2 (|:| -2169 (-626 (-560))) (|:| |poly| (-626 (-1149 *5))) (|:| |prim| (-1149 *5)))) (-5 *1 (-952 *5)))) (-2481 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-945 *5)) (-5 *4 (-1153)) (-4 *5 (-13 (-359) (-148))) (-5 *2 (-2 (|:| |coef1| (-560)) (|:| |coef2| (-560)) (|:| |prim| (-1149 *5)))) (-5 *1 (-952 *5))))) -(-10 -7 (-15 -2481 ((-2 (|:| |coef1| (-560)) (|:| |coef2| (-560)) (|:| |prim| (-1149 |#1|))) (-945 |#1|) (-1153) (-945 |#1|) (-1153))) (-15 -2481 ((-2 (|:| -2169 (-626 (-560))) (|:| |poly| (-626 (-1149 |#1|))) (|:| |prim| (-1149 |#1|))) (-626 (-945 |#1|)) (-626 (-1153)))) (-15 -2481 ((-2 (|:| -2169 (-626 (-560))) (|:| |poly| (-626 (-1149 |#1|))) (|:| |prim| (-1149 |#1|))) (-626 (-945 |#1|)) (-626 (-1153)) (-1153)))) -((-1418 (((-626 |#1|) |#1| |#1|) 42)) (-3319 (((-121) |#1|) 39)) (-2124 ((|#1| |#1|) 64)) (-4413 ((|#1| |#1|) 63))) -(((-953 |#1|) (-10 -7 (-15 -3319 ((-121) |#1|)) (-15 -4413 (|#1| |#1|)) (-15 -2124 (|#1| |#1|)) (-15 -1418 ((-626 |#1|) |#1| |#1|))) (-542)) (T -953)) -((-1418 (*1 *2 *3 *3) (-12 (-5 *2 (-626 *3)) (-5 *1 (-953 *3)) (-4 *3 (-542)))) (-2124 (*1 *2 *2) (-12 (-5 *1 (-953 *2)) (-4 *2 (-542)))) (-4413 (*1 *2 *2) (-12 (-5 *1 (-953 *2)) (-4 *2 (-542)))) (-3319 (*1 *2 *3) (-12 (-5 *2 (-121)) (-5 *1 (-953 *3)) (-4 *3 (-542))))) -(-10 -7 (-15 -3319 ((-121) |#1|)) (-15 -4413 (|#1| |#1|)) (-15 -2124 (|#1| |#1|)) (-15 -1418 ((-626 |#1|) |#1| |#1|))) -((-3589 (((-1241) (-842)) 9))) -(((-954) (-10 -7 (-15 -3589 ((-1241) (-842))))) (T -954)) -((-3589 (*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1241)) (-5 *1 (-954))))) -(-10 -7 (-15 -3589 ((-1241) (-842)))) -((-2117 (((-626 |#5|) |#3| (-626 |#3|)) 70)) (-2125 (((-626 |#5|) |#3|) 45)) (-2330 (((-626 |#5|) |#3| (-909)) 58)) (-2133 (((-626 |#5|) (-626 |#3|)) 48))) -(((-955 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2117 ((-626 |#5|) |#3| (-626 |#3|))) (-15 -2125 ((-626 |#5|) |#3|)) (-15 -2133 ((-626 |#5|) (-626 |#3|))) (-15 -2330 ((-626 |#5|) |#3| (-909)))) (-359) (-626 (-1153)) (-942 |#1| |#4| (-844 |#2|)) (-226 (-2271 |#2|) (-755)) (-963 |#1|)) (T -955)) -((-2330 (*1 *2 *3 *4) (-12 (-5 *4 (-909)) (-4 *5 (-359)) (-14 *6 (-626 (-1153))) (-4 *7 (-226 (-2271 *6) (-755))) (-5 *2 (-626 *8)) (-5 *1 (-955 *5 *6 *3 *7 *8)) (-4 *3 (-942 *5 *7 (-844 *6))) (-4 *8 (-963 *5)))) (-2133 (*1 *2 *3) (-12 (-5 *3 (-626 *6)) (-4 *6 (-942 *4 *7 (-844 *5))) (-4 *7 (-226 (-2271 *5) (-755))) (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-5 *2 (-626 *8)) (-5 *1 (-955 *4 *5 *6 *7 *8)) (-4 *8 (-963 *4)))) (-2125 (*1 *2 *3) (-12 (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *6 (-226 (-2271 *5) (-755))) (-5 *2 (-626 *7)) (-5 *1 (-955 *4 *5 *3 *6 *7)) (-4 *3 (-942 *4 *6 (-844 *5))) (-4 *7 (-963 *4)))) (-2117 (*1 *2 *3 *4) (-12 (-5 *4 (-626 *3)) (-4 *3 (-942 *5 *7 (-844 *6))) (-4 *7 (-226 (-2271 *6) (-755))) (-4 *5 (-359)) (-14 *6 (-626 (-1153))) (-5 *2 (-626 *8)) (-5 *1 (-955 *5 *6 *3 *7 *8)) (-4 *8 (-963 *5))))) -(-10 -7 (-15 -2117 ((-626 |#5|) |#3| (-626 |#3|))) (-15 -2125 ((-626 |#5|) |#3|)) (-15 -2133 ((-626 |#5|) (-626 |#3|))) (-15 -2330 ((-626 |#5|) |#3| (-909)))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) 62 (|has| |#1| (-550)))) (-1350 (($ $) 63 (|has| |#1| (-550)))) (-3376 (((-121) $) NIL (|has| |#1| (-550)))) (-2314 (((-3 $ "failed") $ $) NIL)) (-4236 (($) NIL T CONST)) (-1473 (((-3 (-560) "failed") $) NIL (|has| |#1| (-1029 (-560)))) (((-3 (-403 (-560)) "failed") $) NIL (|has| |#1| (-1029 (-403 (-560))))) (((-3 |#1| "failed") $) 28)) (-3001 (((-560) $) NIL (|has| |#1| (-1029 (-560)))) (((-403 (-560)) $) NIL (|has| |#1| (-1029 (-403 (-560))))) ((|#1| $) NIL)) (-1750 (($ $) 24)) (-1823 (((-3 $ "failed") $) 35)) (-3605 (($ $) NIL (|has| |#1| (-447)))) (-1456 (($ $ |#1| |#2| $) 47)) (-2642 (((-121) $) NIL)) (-3235 (((-755) $) 16)) (-1814 (((-121) $) NIL)) (-1637 (($ |#1| |#2|) NIL)) (-3693 ((|#2| $) 19)) (-1504 (($ (-1 |#2| |#2|) $) NIL)) (-2803 (($ (-1 |#1| |#1|) $) NIL)) (-1726 (($ $) 23)) (-1735 ((|#1| $) 21)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-1704 (((-121) $) 40)) (-1711 ((|#1| $) NIL)) (-4465 (($ $ |#2| |#1| $) 71 (-12 (|has| |#2| (-137)) (|has| |#1| (-550))))) (-2336 (((-3 $ "failed") $ $) 73 (|has| |#1| (-550))) (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-550)))) (-3662 ((|#2| $) 17)) (-1896 ((|#1| $) NIL (|has| |#1| (-447)))) (-2801 (((-842) $) NIL) (($ (-560)) 39) (($ $) NIL (|has| |#1| (-550))) (($ |#1|) 34) (($ (-403 (-560))) NIL (-2318 (|has| |#1| (-43 (-403 (-560)))) (|has| |#1| (-1029 (-403 (-560))))))) (-2423 (((-626 |#1|) $) NIL)) (-2636 ((|#1| $ |#2|) 31)) (-2272 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1751 (((-755)) 15)) (-3487 (($ $ $ (-755)) 58 (|has| |#1| (-170)))) (-2328 (((-121) $ $) 68 (|has| |#1| (-550)))) (-2464 (($ $ (-909)) 54) (($ $ (-755)) 55)) (-3304 (($) 22 T CONST)) (-1459 (($) 12 T CONST)) (-1653 (((-121) $ $) 67)) (-1733 (($ $ |#1|) 74 (|has| |#1| (-359)))) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) NIL)) (** (($ $ (-909)) 53) (($ $ (-755)) 51)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) 50) (($ $ |#1|) 49) (($ |#1| $) 48) (($ (-403 (-560)) $) NIL (|has| |#1| (-43 (-403 (-560))))) (($ $ (-403 (-560))) NIL (|has| |#1| (-43 (-403 (-560))))))) -(((-956 |#1| |#2|) (-13 (-318 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-550)) (IF (|has| |#2| (-137)) (-15 -4465 ($ $ |#2| |#1| $)) |noBranch|) |noBranch|) (IF (|has| |#1| (-6 -4503)) (-6 -4503) |noBranch|))) (-1039) (-779)) (T -956)) -((-4465 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-956 *3 *2)) (-4 *2 (-137)) (-4 *3 (-550)) (-4 *3 (-1039)) (-4 *2 (-779))))) -(-13 (-318 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-550)) (IF (|has| |#2| (-137)) (-15 -4465 ($ $ |#2| |#1| $)) |noBranch|) |noBranch|) (IF (|has| |#1| (-6 -4503)) (-6 -4503) |noBranch|))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL (-2318 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-137)) (|has| |#2| (-137))) (-12 (|has| |#1| (-780)) (|has| |#2| (-780)))))) (-2280 (($ $ $) 63 (-12 (|has| |#1| (-780)) (|has| |#2| (-780))))) (-2314 (((-3 $ "failed") $ $) 50 (-2318 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-137)) (|has| |#2| (-137))) (-12 (|has| |#1| (-780)) (|has| |#2| (-780)))))) (-2912 (((-755)) 34 (-12 (|has| |#1| (-364)) (|has| |#2| (-364))))) (-2603 ((|#2| $) 21)) (-1929 ((|#1| $) 20)) (-4236 (($) NIL (-2318 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-137)) (|has| |#2| (-137))) (-12 (|has| |#1| (-471)) (|has| |#2| (-471))) (-12 (|has| |#1| (-708)) (|has| |#2| (-708))) (-12 (|has| |#1| (-780)) (|has| |#2| (-780)))) CONST)) (-1823 (((-3 $ "failed") $) NIL (-2318 (-12 (|has| |#1| (-471)) (|has| |#2| (-471))) (-12 (|has| |#1| (-708)) (|has| |#2| (-708)))))) (-1666 (($) NIL (-12 (|has| |#1| (-364)) (|has| |#2| (-364))))) (-2642 (((-121) $) NIL (-2318 (-12 (|has| |#1| (-471)) (|has| |#2| (-471))) (-12 (|has| |#1| (-708)) (|has| |#2| (-708)))))) (-4325 (($ $ $) NIL (-2318 (-12 (|has| |#1| (-780)) (|has| |#2| (-780))) (-12 (|has| |#1| (-834)) (|has| |#2| (-834)))))) (-2501 (($ $ $) NIL (-2318 (-12 (|has| |#1| (-780)) (|has| |#2| (-780))) (-12 (|has| |#1| (-834)) (|has| |#2| (-834)))))) (-2818 (($ |#1| |#2|) 19)) (-3142 (((-909) $) NIL (-12 (|has| |#1| (-364)) (|has| |#2| (-364))))) (-1291 (((-1135) $) NIL)) (-1701 (($ $) 37 (-12 (|has| |#1| (-471)) (|has| |#2| (-471))))) (-1330 (($ (-909)) NIL (-12 (|has| |#1| (-364)) (|has| |#2| (-364))))) (-4353 (((-1100) $) NIL)) (-3101 (($ $ $) NIL (-12 (|has| |#1| (-471)) (|has| |#2| (-471))))) (-1671 (($ $ $) NIL (-12 (|has| |#1| (-471)) (|has| |#2| (-471))))) (-2801 (((-842) $) 14)) (-2464 (($ $ (-560)) NIL (-12 (|has| |#1| (-471)) (|has| |#2| (-471)))) (($ $ (-755)) NIL (-2318 (-12 (|has| |#1| (-471)) (|has| |#2| (-471))) (-12 (|has| |#1| (-708)) (|has| |#2| (-708))))) (($ $ (-909)) NIL (-2318 (-12 (|has| |#1| (-471)) (|has| |#2| (-471))) (-12 (|has| |#1| (-708)) (|has| |#2| (-708)))))) (-3304 (($) 40 (-2318 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-137)) (|has| |#2| (-137))) (-12 (|has| |#1| (-780)) (|has| |#2| (-780)))) CONST)) (-1459 (($) 24 (-2318 (-12 (|has| |#1| (-471)) (|has| |#2| (-471))) (-12 (|has| |#1| (-708)) (|has| |#2| (-708)))) CONST)) (-1691 (((-121) $ $) NIL (-2318 (-12 (|has| |#1| (-780)) (|has| |#2| (-780))) (-12 (|has| |#1| (-834)) (|has| |#2| (-834)))))) (-1675 (((-121) $ $) NIL (-2318 (-12 (|has| |#1| (-780)) (|has| |#2| (-780))) (-12 (|has| |#1| (-834)) (|has| |#2| (-834)))))) (-1653 (((-121) $ $) 18)) (-1683 (((-121) $ $) NIL (-2318 (-12 (|has| |#1| (-780)) (|has| |#2| (-780))) (-12 (|has| |#1| (-834)) (|has| |#2| (-834)))))) (-1667 (((-121) $ $) 66 (-2318 (-12 (|has| |#1| (-780)) (|has| |#2| (-780))) (-12 (|has| |#1| (-834)) (|has| |#2| (-834)))))) (-1733 (($ $ $) NIL (-12 (|has| |#1| (-471)) (|has| |#2| (-471))))) (-1725 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-1716 (($ $ $) 43 (-2318 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-137)) (|has| |#2| (-137))) (-12 (|has| |#1| (-780)) (|has| |#2| (-780)))))) (** (($ $ (-560)) NIL (-12 (|has| |#1| (-471)) (|has| |#2| (-471)))) (($ $ (-755)) 31 (-2318 (-12 (|has| |#1| (-471)) (|has| |#2| (-471))) (-12 (|has| |#1| (-708)) (|has| |#2| (-708))))) (($ $ (-909)) NIL (-2318 (-12 (|has| |#1| (-471)) (|has| |#2| (-471))) (-12 (|has| |#1| (-708)) (|has| |#2| (-708)))))) (* (($ (-560) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-755) $) 46 (-2318 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-137)) (|has| |#2| (-137))) (-12 (|has| |#1| (-780)) (|has| |#2| (-780))))) (($ (-909) $) NIL (-2318 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-137)) (|has| |#2| (-137))) (-12 (|has| |#1| (-780)) (|has| |#2| (-780))))) (($ $ $) 27 (-2318 (-12 (|has| |#1| (-471)) (|has| |#2| (-471))) (-12 (|has| |#1| (-708)) (|has| |#2| (-708))))))) -(((-957 |#1| |#2|) (-13 (-1082) (-10 -8 (IF (|has| |#1| (-364)) (IF (|has| |#2| (-364)) (-6 (-364)) |noBranch|) |noBranch|) (IF (|has| |#1| (-708)) (IF (|has| |#2| (-708)) (-6 (-708)) |noBranch|) |noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |noBranch|) |noBranch|) (IF (|has| |#1| (-137)) (IF (|has| |#2| (-137)) (-6 (-137)) |noBranch|) |noBranch|) (IF (|has| |#1| (-471)) (IF (|has| |#2| (-471)) (-6 (-471)) |noBranch|) |noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |noBranch|) |noBranch|) (IF (|has| |#1| (-780)) (IF (|has| |#2| (-780)) (-6 (-780)) |noBranch|) |noBranch|) (IF (|has| |#1| (-834)) (IF (|has| |#2| (-834)) (-6 (-834)) |noBranch|) |noBranch|) (-15 -2818 ($ |#1| |#2|)) (-15 -1929 (|#1| $)) (-15 -2603 (|#2| $)))) (-1082) (-1082)) (T -957)) -((-2818 (*1 *1 *2 *3) (-12 (-5 *1 (-957 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-1082)))) (-1929 (*1 *2 *1) (-12 (-4 *2 (-1082)) (-5 *1 (-957 *2 *3)) (-4 *3 (-1082)))) (-2603 (*1 *2 *1) (-12 (-4 *2 (-1082)) (-5 *1 (-957 *3 *2)) (-4 *3 (-1082))))) -(-13 (-1082) (-10 -8 (IF (|has| |#1| (-364)) (IF (|has| |#2| (-364)) (-6 (-364)) |noBranch|) |noBranch|) (IF (|has| |#1| (-708)) (IF (|has| |#2| (-708)) (-6 (-708)) |noBranch|) |noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |noBranch|) |noBranch|) (IF (|has| |#1| (-137)) (IF (|has| |#2| (-137)) (-6 (-137)) |noBranch|) |noBranch|) (IF (|has| |#1| (-471)) (IF (|has| |#2| (-471)) (-6 (-471)) |noBranch|) |noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |noBranch|) |noBranch|) (IF (|has| |#1| (-780)) (IF (|has| |#2| (-780)) (-6 (-780)) |noBranch|) |noBranch|) (IF (|has| |#1| (-834)) (IF (|has| |#2| (-834)) (-6 (-834)) |noBranch|) |noBranch|) (-15 -2818 ($ |#1| |#2|)) (-15 -1929 (|#1| $)) (-15 -2603 (|#2| $)))) -((-2601 (((-121) $ $) NIL)) (-2764 ((|#1| $ (-560) |#1|) NIL)) (-1990 (((-626 $) (-626 $) (-755)) NIL) (((-626 $) (-626 $)) NIL)) (-1689 (((-121) $ (-755)) NIL) (((-121) $) NIL)) (-1997 (($ (-626 |#1|)) NIL)) (-2004 (((-626 |#1|) $) NIL)) (-1805 (((-626 $) $) NIL) (((-626 $) $ (-755)) NIL)) (-2843 (((-626 |#1|) $) NIL)) (-1291 (((-1135) $) NIL)) (-2012 (((-560) $) NIL)) (-2020 (((-560) $) NIL)) (-2027 (($ $ (-560)) NIL) (($ $) NIL)) (-4353 (((-1100) $) NIL)) (-2778 ((|#1| $ (-560)) NIL)) (-3662 (((-909) $) NIL)) (-2034 ((|#1| $) NIL)) (-3101 (($ $ (-755)) NIL) (($ $) NIL)) (-2801 (((-842) $) NIL) (((-626 |#1|) $) NIL) (($ (-626 |#1|)) NIL)) (-1653 (((-121) $ $) NIL))) -(((-958 |#1|) (-963 |#1|) (-359)) (T -958)) -NIL -(-963 |#1|) -((-2601 (((-121) $ $) NIL)) (-2764 (((-849 |#1|) $ (-560) (-849 |#1|)) NIL)) (-1990 (((-626 $) (-626 $) (-755)) NIL) (((-626 $) (-626 $)) NIL)) (-1689 (((-121) $ (-755)) NIL) (((-121) $) NIL)) (-1997 (($ (-626 (-849 |#1|))) NIL)) (-2004 (((-626 (-849 |#1|)) $) NIL)) (-1805 (((-626 $) $) NIL) (((-626 $) $ (-755)) NIL)) (-2843 (((-626 (-849 |#1|)) $) NIL)) (-1291 (((-1135) $) NIL)) (-2012 (((-560) $) NIL)) (-2020 (((-560) $) NIL)) (-2027 (($ $ (-560)) NIL) (($ $) NIL)) (-4353 (((-1100) $) NIL)) (-2778 (((-849 |#1|) $ (-560)) NIL)) (-3662 (((-909) $) NIL)) (-2034 (((-849 |#1|) $) NIL)) (-3101 (($ $ (-755)) NIL) (($ $) NIL)) (-2801 (((-842) $) NIL) (((-626 (-849 |#1|)) $) NIL) (($ (-626 (-849 |#1|))) NIL)) (-1653 (((-121) $ $) NIL))) -(((-959 |#1|) (-963 (-849 |#1|)) (-344)) (T -959)) -NIL -(-963 (-849 |#1|)) -((-2601 (((-121) $ $) NIL)) (-2764 ((|#2| $ (-560) |#2|) NIL)) (-1990 (((-626 $) (-626 $) (-755)) 41) (((-626 $) (-626 $)) 42)) (-1689 (((-121) $ (-755)) 38) (((-121) $) 40)) (-1997 (($ (-626 |#2|)) 25)) (-2004 (((-626 |#2|) $) 27)) (-1805 (((-626 $) $) 50) (((-626 $) $ (-755)) 47)) (-2843 (((-626 |#2|) $) 26)) (-1291 (((-1135) $) NIL)) (-2012 (((-560) $) 59)) (-2020 (((-560) $) 62)) (-2027 (($ $ (-560)) 36) (($ $) 52)) (-4353 (((-1100) $) NIL)) (-2778 ((|#2| $ (-560)) 32)) (-3662 (((-909) $) 16)) (-2034 ((|#2| $) 22)) (-3101 (($ $ (-755)) 30) (($ $) 49)) (-2801 (((-842) $) 19) (((-626 |#2|) $) 24) (($ (-626 |#2|)) 58)) (-1653 (((-121) $ $) 37))) -(((-960 |#1| |#2|) (-963 |#2|) (-755) (-359)) (T -960)) -NIL -(-963 |#2|) -((-2601 (((-121) $ $) 18 (|has| |#1| (-1082)))) (-3909 (((-121) $ (-755)) 8)) (-4236 (($) 7 T CONST)) (-1981 (((-626 |#1|) $) 30 (|has| $ (-6 -4505)))) (-2122 (((-121) $ (-755)) 9)) (-2037 (($ $ $) 40)) (-2492 (($ $ $) 41)) (-2130 (((-626 |#1|) $) 29 (|has| $ (-6 -4505)))) (-2030 (((-121) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-2501 ((|#1| $) 42)) (-3778 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#1| |#1|) $) 35)) (-3441 (((-121) $ (-755)) 10)) (-1291 (((-1135) $) 22 (|has| |#1| (-1082)))) (-2525 ((|#1| $) 36)) (-4345 (($ |#1| $) 37)) (-4353 (((-1100) $) 21 (|has| |#1| (-1082)))) (-2146 ((|#1| $) 38)) (-2865 (((-121) (-1 (-121) |#1|) $) 32 (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#1|))) 26 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-283 |#1|)) 25 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-626 |#1|) (-626 |#1|)) 23 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))))) (-2214 (((-121) $ $) 14)) (-4191 (((-121) $) 11)) (-3260 (($) 12)) (-4035 (((-755) (-1 (-121) |#1|) $) 31 (|has| $ (-6 -4505))) (((-755) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-2813 (($ $) 13)) (-2801 (((-842) $) 20 (|has| |#1| (-1082)))) (-1354 (($ (-626 |#1|)) 39)) (-3656 (((-121) (-1 (-121) |#1|) $) 33 (|has| $ (-6 -4505)))) (-1653 (((-121) $ $) 19 (|has| |#1| (-1082)))) (-2271 (((-755) $) 6 (|has| $ (-6 -4505))))) -(((-961 |#1|) (-1267) (-834)) (T -961)) -((-2501 (*1 *2 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-834)))) (-2492 (*1 *1 *1 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-834)))) (-2037 (*1 *1 *1 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-834))))) -(-13 (-111 |t#1|) (-10 -8 (-6 -4505) (-15 -2501 (|t#1| $)) (-15 -2492 ($ $ $)) (-15 -2037 ($ $ $)))) -(((-39) . T) ((-111 |#1|) . T) ((-105) |has| |#1| (-1082)) ((-600 (-842)) |has| |#1| (-1082)) ((-298 |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))) ((-492 |#1|) . T) ((-515 |#1| |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))) ((-1082) |has| |#1| (-1082)) ((-1187) . T)) -((-2112 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4440 |#2|)) |#2| |#2|) 84)) (-4408 ((|#2| |#2| |#2|) 82)) (-4280 (((-2 (|:| |coef2| |#2|) (|:| -4440 |#2|)) |#2| |#2|) 86)) (-3539 (((-2 (|:| |coef1| |#2|) (|:| -4440 |#2|)) |#2| |#2|) 88)) (-3447 (((-2 (|:| |coef2| |#2|) (|:| -3350 |#1|)) |#2| |#2|) 106 (|has| |#1| (-447)))) (-2845 (((-2 (|:| |coef2| |#2|) (|:| -1979 |#1|)) |#2| |#2|) 45)) (-2145 (((-2 (|:| |coef2| |#2|) (|:| -1979 |#1|)) |#2| |#2|) 63)) (-2938 (((-2 (|:| |coef1| |#2|) (|:| -1979 |#1|)) |#2| |#2|) 65)) (-2467 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 77)) (-3241 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-755)) 70)) (-3572 (((-2 (|:| |coef2| |#2|) (|:| -4069 |#1|)) |#2|) 96)) (-2503 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-755)) 73)) (-2087 (((-626 (-755)) |#2| |#2|) 81)) (-2307 ((|#1| |#2| |#2|) 41)) (-3912 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3350 |#1|)) |#2| |#2|) 104 (|has| |#1| (-447)))) (-3350 ((|#1| |#2| |#2|) 102 (|has| |#1| (-447)))) (-2161 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1979 |#1|)) |#2| |#2|) 43)) (-2362 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1979 |#1|)) |#2| |#2|) 62)) (-1979 ((|#1| |#2| |#2|) 60)) (-4051 (((-2 (|:| -2169 |#1|) (|:| -2583 |#2|) (|:| -4397 |#2|)) |#2| |#2|) 35)) (-1465 ((|#2| |#2| |#2| |#2| |#1|) 52)) (-2121 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 75)) (-3069 ((|#2| |#2| |#2|) 74)) (-3882 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-755)) 68)) (-2717 ((|#2| |#2| |#2| (-755)) 66)) (-4440 ((|#2| |#2| |#2|) 110 (|has| |#1| (-447)))) (-2336 (((-1236 |#2|) (-1236 |#2|) |#1|) 21)) (-2215 (((-2 (|:| -2583 |#2|) (|:| -4397 |#2|)) |#2| |#2|) 38)) (-1476 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4069 |#1|)) |#2|) 94)) (-4069 ((|#1| |#2|) 91)) (-3466 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-755)) 72)) (-3832 ((|#2| |#2| |#2| (-755)) 71)) (-2521 (((-626 |#2|) |#2| |#2|) 79)) (-4435 ((|#2| |#2| |#1| |#1| (-755)) 49)) (-2100 ((|#1| |#1| |#1| (-755)) 48)) (* (((-1236 |#2|) |#1| (-1236 |#2|)) 16))) -(((-962 |#1| |#2|) (-10 -7 (-15 -1979 (|#1| |#2| |#2|)) (-15 -2362 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1979 |#1|)) |#2| |#2|)) (-15 -2145 ((-2 (|:| |coef2| |#2|) (|:| -1979 |#1|)) |#2| |#2|)) (-15 -2938 ((-2 (|:| |coef1| |#2|) (|:| -1979 |#1|)) |#2| |#2|)) (-15 -2717 (|#2| |#2| |#2| (-755))) (-15 -3882 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-755))) (-15 -3241 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-755))) (-15 -3832 (|#2| |#2| |#2| (-755))) (-15 -3466 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-755))) (-15 -2503 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-755))) (-15 -3069 (|#2| |#2| |#2|)) (-15 -2121 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2467 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4408 (|#2| |#2| |#2|)) (-15 -2112 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4440 |#2|)) |#2| |#2|)) (-15 -4280 ((-2 (|:| |coef2| |#2|) (|:| -4440 |#2|)) |#2| |#2|)) (-15 -3539 ((-2 (|:| |coef1| |#2|) (|:| -4440 |#2|)) |#2| |#2|)) (-15 -4069 (|#1| |#2|)) (-15 -1476 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4069 |#1|)) |#2|)) (-15 -3572 ((-2 (|:| |coef2| |#2|) (|:| -4069 |#1|)) |#2|)) (-15 -2521 ((-626 |#2|) |#2| |#2|)) (-15 -2087 ((-626 (-755)) |#2| |#2|)) (IF (|has| |#1| (-447)) (PROGN (-15 -3350 (|#1| |#2| |#2|)) (-15 -3912 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3350 |#1|)) |#2| |#2|)) (-15 -3447 ((-2 (|:| |coef2| |#2|) (|:| -3350 |#1|)) |#2| |#2|)) (-15 -4440 (|#2| |#2| |#2|))) |noBranch|) (-15 * ((-1236 |#2|) |#1| (-1236 |#2|))) (-15 -2336 ((-1236 |#2|) (-1236 |#2|) |#1|)) (-15 -4051 ((-2 (|:| -2169 |#1|) (|:| -2583 |#2|) (|:| -4397 |#2|)) |#2| |#2|)) (-15 -2215 ((-2 (|:| -2583 |#2|) (|:| -4397 |#2|)) |#2| |#2|)) (-15 -2100 (|#1| |#1| |#1| (-755))) (-15 -4435 (|#2| |#2| |#1| |#1| (-755))) (-15 -1465 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2307 (|#1| |#2| |#2|)) (-15 -2161 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1979 |#1|)) |#2| |#2|)) (-15 -2845 ((-2 (|:| |coef2| |#2|) (|:| -1979 |#1|)) |#2| |#2|))) (-550) (-1211 |#1|)) (T -962)) -((-2845 (*1 *2 *3 *3) (-12 (-4 *4 (-550)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1979 *4))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1211 *4)))) (-2161 (*1 *2 *3 *3) (-12 (-4 *4 (-550)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1979 *4))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1211 *4)))) (-2307 (*1 *2 *3 *3) (-12 (-4 *2 (-550)) (-5 *1 (-962 *2 *3)) (-4 *3 (-1211 *2)))) (-1465 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-550)) (-5 *1 (-962 *3 *2)) (-4 *2 (-1211 *3)))) (-4435 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-755)) (-4 *3 (-550)) (-5 *1 (-962 *3 *2)) (-4 *2 (-1211 *3)))) (-2100 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-755)) (-4 *2 (-550)) (-5 *1 (-962 *2 *4)) (-4 *4 (-1211 *2)))) (-2215 (*1 *2 *3 *3) (-12 (-4 *4 (-550)) (-5 *2 (-2 (|:| -2583 *3) (|:| -4397 *3))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1211 *4)))) (-4051 (*1 *2 *3 *3) (-12 (-4 *4 (-550)) (-5 *2 (-2 (|:| -2169 *4) (|:| -2583 *3) (|:| -4397 *3))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1211 *4)))) (-2336 (*1 *2 *2 *3) (-12 (-5 *2 (-1236 *4)) (-4 *4 (-1211 *3)) (-4 *3 (-550)) (-5 *1 (-962 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1236 *4)) (-4 *4 (-1211 *3)) (-4 *3 (-550)) (-5 *1 (-962 *3 *4)))) (-4440 (*1 *2 *2 *2) (-12 (-4 *3 (-447)) (-4 *3 (-550)) (-5 *1 (-962 *3 *2)) (-4 *2 (-1211 *3)))) (-3447 (*1 *2 *3 *3) (-12 (-4 *4 (-447)) (-4 *4 (-550)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3350 *4))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1211 *4)))) (-3912 (*1 *2 *3 *3) (-12 (-4 *4 (-447)) (-4 *4 (-550)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3350 *4))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1211 *4)))) (-3350 (*1 *2 *3 *3) (-12 (-4 *2 (-550)) (-4 *2 (-447)) (-5 *1 (-962 *2 *3)) (-4 *3 (-1211 *2)))) (-2087 (*1 *2 *3 *3) (-12 (-4 *4 (-550)) (-5 *2 (-626 (-755))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1211 *4)))) (-2521 (*1 *2 *3 *3) (-12 (-4 *4 (-550)) (-5 *2 (-626 *3)) (-5 *1 (-962 *4 *3)) (-4 *3 (-1211 *4)))) (-3572 (*1 *2 *3) (-12 (-4 *4 (-550)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4069 *4))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1211 *4)))) (-1476 (*1 *2 *3) (-12 (-4 *4 (-550)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4069 *4))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1211 *4)))) (-4069 (*1 *2 *3) (-12 (-4 *2 (-550)) (-5 *1 (-962 *2 *3)) (-4 *3 (-1211 *2)))) (-3539 (*1 *2 *3 *3) (-12 (-4 *4 (-550)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4440 *3))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1211 *4)))) (-4280 (*1 *2 *3 *3) (-12 (-4 *4 (-550)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4440 *3))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1211 *4)))) (-2112 (*1 *2 *3 *3) (-12 (-4 *4 (-550)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4440 *3))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1211 *4)))) (-4408 (*1 *2 *2 *2) (-12 (-4 *3 (-550)) (-5 *1 (-962 *3 *2)) (-4 *2 (-1211 *3)))) (-2467 (*1 *2 *3 *3) (-12 (-4 *4 (-550)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1211 *4)))) (-2121 (*1 *2 *3 *3) (-12 (-4 *4 (-550)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1211 *4)))) (-3069 (*1 *2 *2 *2) (-12 (-4 *3 (-550)) (-5 *1 (-962 *3 *2)) (-4 *2 (-1211 *3)))) (-2503 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-755)) (-4 *5 (-550)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-962 *5 *3)) (-4 *3 (-1211 *5)))) (-3466 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-755)) (-4 *5 (-550)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-962 *5 *3)) (-4 *3 (-1211 *5)))) (-3832 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-755)) (-4 *4 (-550)) (-5 *1 (-962 *4 *2)) (-4 *2 (-1211 *4)))) (-3241 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-755)) (-4 *5 (-550)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-962 *5 *3)) (-4 *3 (-1211 *5)))) (-3882 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-755)) (-4 *5 (-550)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-962 *5 *3)) (-4 *3 (-1211 *5)))) (-2717 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-755)) (-4 *4 (-550)) (-5 *1 (-962 *4 *2)) (-4 *2 (-1211 *4)))) (-2938 (*1 *2 *3 *3) (-12 (-4 *4 (-550)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1979 *4))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1211 *4)))) (-2145 (*1 *2 *3 *3) (-12 (-4 *4 (-550)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1979 *4))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1211 *4)))) (-2362 (*1 *2 *3 *3) (-12 (-4 *4 (-550)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1979 *4))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1211 *4)))) (-1979 (*1 *2 *3 *3) (-12 (-4 *2 (-550)) (-5 *1 (-962 *2 *3)) (-4 *3 (-1211 *2))))) -(-10 -7 (-15 -1979 (|#1| |#2| |#2|)) (-15 -2362 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1979 |#1|)) |#2| |#2|)) (-15 -2145 ((-2 (|:| |coef2| |#2|) (|:| -1979 |#1|)) |#2| |#2|)) (-15 -2938 ((-2 (|:| |coef1| |#2|) (|:| -1979 |#1|)) |#2| |#2|)) (-15 -2717 (|#2| |#2| |#2| (-755))) (-15 -3882 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-755))) (-15 -3241 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-755))) (-15 -3832 (|#2| |#2| |#2| (-755))) (-15 -3466 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-755))) (-15 -2503 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-755))) (-15 -3069 (|#2| |#2| |#2|)) (-15 -2121 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2467 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4408 (|#2| |#2| |#2|)) (-15 -2112 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4440 |#2|)) |#2| |#2|)) (-15 -4280 ((-2 (|:| |coef2| |#2|) (|:| -4440 |#2|)) |#2| |#2|)) (-15 -3539 ((-2 (|:| |coef1| |#2|) (|:| -4440 |#2|)) |#2| |#2|)) (-15 -4069 (|#1| |#2|)) (-15 -1476 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4069 |#1|)) |#2|)) (-15 -3572 ((-2 (|:| |coef2| |#2|) (|:| -4069 |#1|)) |#2|)) (-15 -2521 ((-626 |#2|) |#2| |#2|)) (-15 -2087 ((-626 (-755)) |#2| |#2|)) (IF (|has| |#1| (-447)) (PROGN (-15 -3350 (|#1| |#2| |#2|)) (-15 -3912 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3350 |#1|)) |#2| |#2|)) (-15 -3447 ((-2 (|:| |coef2| |#2|) (|:| -3350 |#1|)) |#2| |#2|)) (-15 -4440 (|#2| |#2| |#2|))) |noBranch|) (-15 * ((-1236 |#2|) |#1| (-1236 |#2|))) (-15 -2336 ((-1236 |#2|) (-1236 |#2|) |#1|)) (-15 -4051 ((-2 (|:| -2169 |#1|) (|:| -2583 |#2|) (|:| -4397 |#2|)) |#2| |#2|)) (-15 -2215 ((-2 (|:| -2583 |#2|) (|:| -4397 |#2|)) |#2| |#2|)) (-15 -2100 (|#1| |#1| |#1| (-755))) (-15 -4435 (|#2| |#2| |#1| |#1| (-755))) (-15 -1465 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2307 (|#1| |#2| |#2|)) (-15 -2161 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1979 |#1|)) |#2| |#2|)) (-15 -2845 ((-2 (|:| |coef2| |#2|) (|:| -1979 |#1|)) |#2| |#2|))) -((-2601 (((-121) $ $) 7)) (-2764 ((|#1| $ (-560) |#1|) 14)) (-1990 (((-626 $) (-626 $) (-755)) 22) (((-626 $) (-626 $)) 21)) (-1689 (((-121) $ (-755)) 20) (((-121) $) 19)) (-1997 (($ (-626 |#1|)) 30)) (-2004 (((-626 |#1|) $) 13)) (-1805 (((-626 $) $) 26) (((-626 $) $ (-755)) 25)) (-2843 (((-626 |#1|) $) 16)) (-1291 (((-1135) $) 9)) (-2012 (((-560) $) 17)) (-2020 (((-560) $) 32)) (-2027 (($ $ (-560)) 31) (($ $) 18)) (-4353 (((-1100) $) 10)) (-2778 ((|#1| $ (-560)) 15)) (-3662 (((-909) $) 12)) (-2034 ((|#1| $) 29)) (-3101 (($ $ (-755)) 24) (($ $) 23)) (-2801 (((-842) $) 11) (((-626 |#1|) $) 28) (($ (-626 |#1|)) 27)) (-1653 (((-121) $ $) 6))) -(((-963 |#1|) (-1267) (-359)) (T -963)) -((-2020 (*1 *2 *1) (-12 (-4 *1 (-963 *3)) (-4 *3 (-359)) (-5 *2 (-560)))) (-2027 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-963 *3)) (-4 *3 (-359)))) (-1997 (*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-359)) (-4 *1 (-963 *3)))) (-2034 (*1 *2 *1) (-12 (-4 *1 (-963 *2)) (-4 *2 (-359)))) (-2801 (*1 *2 *1) (-12 (-4 *1 (-963 *3)) (-4 *3 (-359)) (-5 *2 (-626 *3)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-359)) (-4 *1 (-963 *3)))) (-1805 (*1 *2 *1) (-12 (-4 *3 (-359)) (-5 *2 (-626 *1)) (-4 *1 (-963 *3)))) (-1805 (*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-4 *4 (-359)) (-5 *2 (-626 *1)) (-4 *1 (-963 *4)))) (-3101 (*1 *1 *1 *2) (-12 (-5 *2 (-755)) (-4 *1 (-963 *3)) (-4 *3 (-359)))) (-3101 (*1 *1 *1) (-12 (-4 *1 (-963 *2)) (-4 *2 (-359)))) (-1990 (*1 *2 *2 *3) (-12 (-5 *2 (-626 *1)) (-5 *3 (-755)) (-4 *1 (-963 *4)) (-4 *4 (-359)))) (-1990 (*1 *2 *2) (-12 (-5 *2 (-626 *1)) (-4 *1 (-963 *3)) (-4 *3 (-359)))) (-1689 (*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-4 *1 (-963 *4)) (-4 *4 (-359)) (-5 *2 (-121)))) (-1689 (*1 *2 *1) (-12 (-4 *1 (-963 *3)) (-4 *3 (-359)) (-5 *2 (-121)))) (-2027 (*1 *1 *1) (-12 (-4 *1 (-963 *2)) (-4 *2 (-359)))) (-2012 (*1 *2 *1) (-12 (-4 *1 (-963 *3)) (-4 *3 (-359)) (-5 *2 (-560)))) (-2843 (*1 *2 *1) (-12 (-4 *1 (-963 *3)) (-4 *3 (-359)) (-5 *2 (-626 *3)))) (-2778 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *1 (-963 *2)) (-4 *2 (-359)))) (-2764 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-560)) (-4 *1 (-963 *2)) (-4 *2 (-359)))) (-2004 (*1 *2 *1) (-12 (-4 *1 (-963 *3)) (-4 *3 (-359)) (-5 *2 (-626 *3))))) -(-13 (-1080) (-10 -8 (-15 -2020 ((-560) $)) (-15 -2027 ($ $ (-560))) (-15 -1997 ($ (-626 |t#1|))) (-15 -2034 (|t#1| $)) (-15 -2801 ((-626 |t#1|) $)) (-15 -2801 ($ (-626 |t#1|))) (-15 -1805 ((-626 $) $)) (-15 -1805 ((-626 $) $ (-755))) (-15 -3101 ($ $ (-755))) (-15 -3101 ($ $)) (-15 -1990 ((-626 $) (-626 $) (-755))) (-15 -1990 ((-626 $) (-626 $))) (-15 -1689 ((-121) $ (-755))) (-15 -1689 ((-121) $)) (-15 -2027 ($ $)) (-15 -2012 ((-560) $)) (-15 -2843 ((-626 |t#1|) $)) (-15 -2778 (|t#1| $ (-560))) (-15 -2764 (|t#1| $ (-560) |t#1|)) (-15 -2004 ((-626 |t#1|) $)))) -(((-105) . T) ((-600 (-842)) . T) ((-1082) . T) ((-1080) . T)) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-2314 (((-3 $ "failed") $ $) 26)) (-4236 (($) NIL T CONST)) (-4405 (((-626 (-626 (-560))) (-626 (-560))) 28)) (-3141 (((-560) $) 44)) (-2728 (($ (-626 (-560))) 17)) (-4325 (($ $ $) NIL)) (-2501 (($ $ $) NIL)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-4255 (((-626 (-560)) $) 11)) (-3101 (($ $) 31)) (-2801 (((-842) $) 42) (((-626 (-560)) $) 9)) (-3304 (($) 7 T CONST)) (-1691 (((-121) $ $) NIL)) (-1675 (((-121) $ $) NIL)) (-1653 (((-121) $ $) 19)) (-1683 (((-121) $ $) NIL)) (-1667 (((-121) $ $) 18)) (-1716 (($ $ $) 20)) (* (($ (-755) $) 24) (($ (-909) $) NIL))) -(((-964) (-13 (-782) (-601 (-626 (-560))) (-10 -8 (-15 -2728 ($ (-626 (-560)))) (-15 -4405 ((-626 (-626 (-560))) (-626 (-560)))) (-15 -3141 ((-560) $)) (-15 -3101 ($ $)) (-15 -2801 ((-626 (-560)) $))))) (T -964)) -((-2728 (*1 *1 *2) (-12 (-5 *2 (-626 (-560))) (-5 *1 (-964)))) (-4405 (*1 *2 *3) (-12 (-5 *2 (-626 (-626 (-560)))) (-5 *1 (-964)) (-5 *3 (-626 (-560))))) (-3141 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-964)))) (-3101 (*1 *1 *1) (-5 *1 (-964))) (-2801 (*1 *2 *1) (-12 (-5 *2 (-626 (-560))) (-5 *1 (-964))))) -(-13 (-782) (-601 (-626 (-560))) (-10 -8 (-15 -2728 ($ (-626 (-560)))) (-15 -4405 ((-626 (-626 (-560))) (-626 (-560)))) (-15 -3141 ((-560) $)) (-15 -3101 ($ $)) (-15 -2801 ((-626 (-560)) $)))) -((-1733 (($ $ |#2|) 30)) (-1725 (($ $) 22) (($ $ $) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-403 (-560)) $) 26) (($ $ (-403 (-560))) 28))) -(((-965 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-403 (-560)))) (-15 * (|#1| (-403 (-560)) |#1|)) (-15 -1733 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 -1725 (|#1| |#1| |#1|)) (-15 -1725 (|#1| |#1|)) (-15 * (|#1| (-755) |#1|)) (-15 * (|#1| (-909) |#1|))) (-966 |#2| |#3| |#4|) (-1039) (-779) (-834)) (T -965)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-403 (-560)))) (-15 * (|#1| (-403 (-560)) |#1|)) (-15 -1733 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 -1725 (|#1| |#1| |#1|)) (-15 -1725 (|#1| |#1|)) (-15 * (|#1| (-755) |#1|)) (-15 * (|#1| (-909) |#1|))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-1654 (((-626 |#3|) $) 70)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) 50 (|has| |#1| (-550)))) (-1350 (($ $) 51 (|has| |#1| (-550)))) (-3376 (((-121) $) 53 (|has| |#1| (-550)))) (-2314 (((-3 $ "failed") $ $) 18)) (-4236 (($) 16 T CONST)) (-1750 (($ $) 59)) (-1823 (((-3 $ "failed") $) 33)) (-1815 (((-121) $) 69)) (-2642 (((-121) $) 30)) (-1814 (((-121) $) 61)) (-1637 (($ |#1| |#2|) 60) (($ $ |#3| |#2|) 72) (($ $ (-626 |#3|) (-626 |#2|)) 71)) (-2803 (($ (-1 |#1| |#1|) $) 62)) (-1726 (($ $) 64)) (-1735 ((|#1| $) 65)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-2336 (((-3 $ "failed") $ $) 49 (|has| |#1| (-550)))) (-3662 ((|#2| $) 63)) (-2234 (($ $) 68)) (-2801 (((-842) $) 11) (($ (-560)) 27) (($ (-403 (-560))) 56 (|has| |#1| (-43 (-403 (-560))))) (($ $) 48 (|has| |#1| (-550))) (($ |#1|) 46 (|has| |#1| (-170)))) (-2636 ((|#1| $ |#2|) 58)) (-2272 (((-3 $ "failed") $) 47 (|has| |#1| (-146)))) (-1751 (((-755)) 28)) (-2328 (((-121) $ $) 52 (|has| |#1| (-550)))) (-2464 (($ $ (-909)) 25) (($ $ (-755)) 32)) (-3304 (($) 17 T CONST)) (-1459 (($) 29 T CONST)) (-1653 (((-121) $ $) 6)) (-1733 (($ $ |#1|) 57 (|has| |#1| (-359)))) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 24) (($ $ (-755)) 31)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 23) (($ $ |#1|) 67) (($ |#1| $) 66) (($ (-403 (-560)) $) 55 (|has| |#1| (-43 (-403 (-560))))) (($ $ (-403 (-560))) 54 (|has| |#1| (-43 (-403 (-560))))))) -(((-966 |#1| |#2| |#3|) (-1267) (-1039) (-779) (-834)) (T -966)) -((-1735 (*1 *2 *1) (-12 (-4 *1 (-966 *2 *3 *4)) (-4 *3 (-779)) (-4 *4 (-834)) (-4 *2 (-1039)))) (-1726 (*1 *1 *1) (-12 (-4 *1 (-966 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-779)) (-4 *4 (-834)))) (-3662 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *2 *4)) (-4 *3 (-1039)) (-4 *4 (-834)) (-4 *2 (-779)))) (-1637 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-966 *4 *3 *2)) (-4 *4 (-1039)) (-4 *3 (-779)) (-4 *2 (-834)))) (-1637 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-626 *6)) (-5 *3 (-626 *5)) (-4 *1 (-966 *4 *5 *6)) (-4 *4 (-1039)) (-4 *5 (-779)) (-4 *6 (-834)))) (-1654 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-779)) (-4 *5 (-834)) (-5 *2 (-626 *5)))) (-1815 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-779)) (-4 *5 (-834)) (-5 *2 (-121)))) (-2234 (*1 *1 *1) (-12 (-4 *1 (-966 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-779)) (-4 *4 (-834))))) -(-13 (-52 |t#1| |t#2|) (-10 -8 (-15 -1637 ($ $ |t#3| |t#2|)) (-15 -1637 ($ $ (-626 |t#3|) (-626 |t#2|))) (-15 -1726 ($ $)) (-15 -1735 (|t#1| $)) (-15 -3662 (|t#2| $)) (-15 -1654 ((-626 |t#3|) $)) (-15 -1815 ((-121) $)) (-15 -2234 ($ $)))) -(((-21) . T) ((-23) . T) ((-52 |#1| |#2|) . T) ((-25) . T) ((-43 (-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((-43 |#1|) |has| |#1| (-170)) ((-43 $) |has| |#1| (-550)) ((-105) . T) ((-120 (-403 (-560)) (-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((-120 |#1| |#1|) . T) ((-120 $ $) -2318 (|has| |#1| (-550)) (|has| |#1| (-170))) ((-137) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-600 (-842)) . T) ((-170) -2318 (|has| |#1| (-550)) (|has| |#1| (-170))) ((-280) |has| |#1| (-550)) ((-550) |has| |#1| (-550)) ((-629 (-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((-629 |#1|) . T) ((-629 $) . T) ((-699 (-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((-699 |#1|) |has| |#1| (-170)) ((-699 $) |has| |#1| (-550)) ((-708) . T) ((-1045 (-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((-1045 |#1|) . T) ((-1045 $) -2318 (|has| |#1| (-550)) (|has| |#1| (-170))) ((-1039) . T) ((-1046) . T) ((-1094) . T) ((-1082) . T)) -((-2776 (((-1076 (-213)) $) 7)) (-3867 (((-1076 (-213)) $) 8)) (-3092 (((-1076 (-213)) $) 9)) (-3277 (((-626 (-626 (-936 (-213)))) $) 10)) (-2801 (((-842) $) 6))) -(((-967) (-1267)) (T -967)) -((-3277 (*1 *2 *1) (-12 (-4 *1 (-967)) (-5 *2 (-626 (-626 (-936 (-213))))))) (-3092 (*1 *2 *1) (-12 (-4 *1 (-967)) (-5 *2 (-1076 (-213))))) (-3867 (*1 *2 *1) (-12 (-4 *1 (-967)) (-5 *2 (-1076 (-213))))) (-2776 (*1 *2 *1) (-12 (-4 *1 (-967)) (-5 *2 (-1076 (-213)))))) -(-13 (-600 (-842)) (-10 -8 (-15 -3277 ((-626 (-626 (-936 (-213)))) $)) (-15 -3092 ((-1076 (-213)) $)) (-15 -3867 ((-1076 (-213)) $)) (-15 -2776 ((-1076 (-213)) $)))) -(((-600 (-842)) . T)) -((-1654 (((-626 |#4|) $) 23)) (-1385 (((-121) $) 47)) (-3617 (((-121) $) 46)) (-3743 (((-2 (|:| |under| $) (|:| -2150 $) (|:| |upper| $)) $ |#4|) 35)) (-2226 (((-121) $) 48)) (-3225 (((-121) $ $) 54)) (-4195 (((-121) $ $) 57)) (-1501 (((-121) $) 52)) (-4318 (((-626 |#5|) (-626 |#5|) $) 89)) (-3979 (((-626 |#5|) (-626 |#5|) $) 86)) (-4397 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 80)) (-4475 (((-626 |#4|) $) 27)) (-1304 (((-121) |#4| $) 29)) (-1960 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 72)) (-3369 (($ $ |#4|) 32)) (-2673 (($ $ |#4|) 31)) (-3388 (($ $ |#4|) 33)) (-1653 (((-121) $ $) 39))) -(((-968 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3617 ((-121) |#1|)) (-15 -4318 ((-626 |#5|) (-626 |#5|) |#1|)) (-15 -3979 ((-626 |#5|) (-626 |#5|) |#1|)) (-15 -4397 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1960 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2226 ((-121) |#1|)) (-15 -4195 ((-121) |#1| |#1|)) (-15 -3225 ((-121) |#1| |#1|)) (-15 -1501 ((-121) |#1|)) (-15 -1385 ((-121) |#1|)) (-15 -3743 ((-2 (|:| |under| |#1|) (|:| -2150 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3369 (|#1| |#1| |#4|)) (-15 -3388 (|#1| |#1| |#4|)) (-15 -2673 (|#1| |#1| |#4|)) (-15 -1304 ((-121) |#4| |#1|)) (-15 -4475 ((-626 |#4|) |#1|)) (-15 -1654 ((-626 |#4|) |#1|)) (-15 -1653 ((-121) |#1| |#1|))) (-969 |#2| |#3| |#4| |#5|) (-1039) (-780) (-834) (-1053 |#2| |#3| |#4|)) (T -968)) -NIL -(-10 -8 (-15 -3617 ((-121) |#1|)) (-15 -4318 ((-626 |#5|) (-626 |#5|) |#1|)) (-15 -3979 ((-626 |#5|) (-626 |#5|) |#1|)) (-15 -4397 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1960 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2226 ((-121) |#1|)) (-15 -4195 ((-121) |#1| |#1|)) (-15 -3225 ((-121) |#1| |#1|)) (-15 -1501 ((-121) |#1|)) (-15 -1385 ((-121) |#1|)) (-15 -3743 ((-2 (|:| |under| |#1|) (|:| -2150 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3369 (|#1| |#1| |#4|)) (-15 -3388 (|#1| |#1| |#4|)) (-15 -2673 (|#1| |#1| |#4|)) (-15 -1304 ((-121) |#4| |#1|)) (-15 -4475 ((-626 |#4|) |#1|)) (-15 -1654 ((-626 |#4|) |#1|)) (-15 -1653 ((-121) |#1| |#1|))) -((-2601 (((-121) $ $) 7)) (-1654 (((-626 |#3|) $) 32)) (-1385 (((-121) $) 25)) (-3617 (((-121) $) 16 (|has| |#1| (-550)))) (-3743 (((-2 (|:| |under| $) (|:| -2150 $) (|:| |upper| $)) $ |#3|) 26)) (-3909 (((-121) $ (-755)) 43)) (-3802 (($ (-1 (-121) |#4|) $) 64 (|has| $ (-6 -4505)))) (-4236 (($) 44 T CONST)) (-2226 (((-121) $) 21 (|has| |#1| (-550)))) (-3225 (((-121) $ $) 23 (|has| |#1| (-550)))) (-4195 (((-121) $ $) 22 (|has| |#1| (-550)))) (-1501 (((-121) $) 24 (|has| |#1| (-550)))) (-4318 (((-626 |#4|) (-626 |#4|) $) 17 (|has| |#1| (-550)))) (-3979 (((-626 |#4|) (-626 |#4|) $) 18 (|has| |#1| (-550)))) (-1473 (((-3 $ "failed") (-626 |#4|)) 35)) (-3001 (($ (-626 |#4|)) 34)) (-2868 (($ $) 67 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4505))))) (-4310 (($ |#4| $) 66 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4505)))) (($ (-1 (-121) |#4|) $) 63 (|has| $ (-6 -4505)))) (-4397 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 19 (|has| |#1| (-550)))) (-2342 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 65 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4505)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 62 (|has| $ (-6 -4505))) ((|#4| (-1 |#4| |#4| |#4|) $) 61 (|has| $ (-6 -4505)))) (-1981 (((-626 |#4|) $) 51 (|has| $ (-6 -4505)))) (-2819 ((|#3| $) 33)) (-2122 (((-121) $ (-755)) 42)) (-2130 (((-626 |#4|) $) 52 (|has| $ (-6 -4505)))) (-2030 (((-121) |#4| $) 54 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4505))))) (-3778 (($ (-1 |#4| |#4|) $) 47 (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#4| |#4|) $) 46)) (-4475 (((-626 |#3|) $) 31)) (-1304 (((-121) |#3| $) 30)) (-3441 (((-121) $ (-755)) 41)) (-1291 (((-1135) $) 9)) (-1960 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-550)))) (-4353 (((-1100) $) 10)) (-3786 (((-3 |#4| "failed") (-1 (-121) |#4|) $) 60)) (-2865 (((-121) (-1 (-121) |#4|) $) 49 (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 |#4|) (-626 |#4|)) 58 (-12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082)))) (($ $ |#4| |#4|) 57 (-12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082)))) (($ $ (-283 |#4|)) 56 (-12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082)))) (($ $ (-626 (-283 |#4|))) 55 (-12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082))))) (-2214 (((-121) $ $) 37)) (-4191 (((-121) $) 40)) (-3260 (($) 39)) (-4035 (((-755) |#4| $) 53 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4505)))) (((-755) (-1 (-121) |#4|) $) 50 (|has| $ (-6 -4505)))) (-2813 (($ $) 38)) (-4255 (((-533) $) 68 (|has| |#4| (-601 (-533))))) (-4162 (($ (-626 |#4|)) 59)) (-3369 (($ $ |#3|) 27)) (-2673 (($ $ |#3|) 29)) (-3388 (($ $ |#3|) 28)) (-2801 (((-842) $) 11) (((-626 |#4|) $) 36)) (-3656 (((-121) (-1 (-121) |#4|) $) 48 (|has| $ (-6 -4505)))) (-1653 (((-121) $ $) 6)) (-2271 (((-755) $) 45 (|has| $ (-6 -4505))))) -(((-969 |#1| |#2| |#3| |#4|) (-1267) (-1039) (-780) (-834) (-1053 |t#1| |t#2| |t#3|)) (T -969)) -((-1473 (*1 *1 *2) (|partial| -12 (-5 *2 (-626 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *1 (-969 *3 *4 *5 *6)))) (-3001 (*1 *1 *2) (-12 (-5 *2 (-626 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *1 (-969 *3 *4 *5 *6)))) (-2819 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *2 *5)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-1053 *3 *4 *2)) (-4 *2 (-834)))) (-1654 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-626 *5)))) (-4475 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-626 *5)))) (-1304 (*1 *2 *3 *1) (-12 (-4 *1 (-969 *4 *5 *3 *6)) (-4 *4 (-1039)) (-4 *5 (-780)) (-4 *3 (-834)) (-4 *6 (-1053 *4 *5 *3)) (-5 *2 (-121)))) (-2673 (*1 *1 *1 *2) (-12 (-4 *1 (-969 *3 *4 *2 *5)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *2 (-834)) (-4 *5 (-1053 *3 *4 *2)))) (-3388 (*1 *1 *1 *2) (-12 (-4 *1 (-969 *3 *4 *2 *5)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *2 (-834)) (-4 *5 (-1053 *3 *4 *2)))) (-3369 (*1 *1 *1 *2) (-12 (-4 *1 (-969 *3 *4 *2 *5)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *2 (-834)) (-4 *5 (-1053 *3 *4 *2)))) (-3743 (*1 *2 *1 *3) (-12 (-4 *4 (-1039)) (-4 *5 (-780)) (-4 *3 (-834)) (-4 *6 (-1053 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -2150 *1) (|:| |upper| *1))) (-4 *1 (-969 *4 *5 *3 *6)))) (-1385 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-121)))) (-1501 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550)) (-5 *2 (-121)))) (-3225 (*1 *2 *1 *1) (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550)) (-5 *2 (-121)))) (-4195 (*1 *2 *1 *1) (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550)) (-5 *2 (-121)))) (-2226 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550)) (-5 *2 (-121)))) (-1960 (*1 *2 *3 *1) (-12 (-4 *1 (-969 *4 *5 *6 *3)) (-4 *4 (-1039)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *3 (-1053 *4 *5 *6)) (-4 *4 (-550)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-4397 (*1 *2 *3 *1) (-12 (-4 *1 (-969 *4 *5 *6 *3)) (-4 *4 (-1039)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *3 (-1053 *4 *5 *6)) (-4 *4 (-550)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-3979 (*1 *2 *2 *1) (-12 (-5 *2 (-626 *6)) (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550)))) (-4318 (*1 *2 *2 *1) (-12 (-5 *2 (-626 *6)) (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550)))) (-3617 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550)) (-5 *2 (-121))))) -(-13 (-1082) (-152 |t#4|) (-600 (-626 |t#4|)) (-10 -8 (-6 -4505) (-15 -1473 ((-3 $ "failed") (-626 |t#4|))) (-15 -3001 ($ (-626 |t#4|))) (-15 -2819 (|t#3| $)) (-15 -1654 ((-626 |t#3|) $)) (-15 -4475 ((-626 |t#3|) $)) (-15 -1304 ((-121) |t#3| $)) (-15 -2673 ($ $ |t#3|)) (-15 -3388 ($ $ |t#3|)) (-15 -3369 ($ $ |t#3|)) (-15 -3743 ((-2 (|:| |under| $) (|:| -2150 $) (|:| |upper| $)) $ |t#3|)) (-15 -1385 ((-121) $)) (IF (|has| |t#1| (-550)) (PROGN (-15 -1501 ((-121) $)) (-15 -3225 ((-121) $ $)) (-15 -4195 ((-121) $ $)) (-15 -2226 ((-121) $)) (-15 -1960 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -4397 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3979 ((-626 |t#4|) (-626 |t#4|) $)) (-15 -4318 ((-626 |t#4|) (-626 |t#4|) $)) (-15 -3617 ((-121) $))) |noBranch|))) -(((-39) . T) ((-105) . T) ((-600 (-626 |#4|)) . T) ((-600 (-842)) . T) ((-152 |#4|) . T) ((-601 (-533)) |has| |#4| (-601 (-533))) ((-298 |#4|) -12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082))) ((-492 |#4|) . T) ((-515 |#4| |#4|) -12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082))) ((-1082) . T) ((-1187) . T)) -((-3221 (((-626 |#4|) |#4| |#4|) 114)) (-3113 (((-626 |#4|) (-626 |#4|) (-121)) 103 (|has| |#1| (-447))) (((-626 |#4|) (-626 |#4|)) 104 (|has| |#1| (-447)))) (-3145 (((-2 (|:| |goodPols| (-626 |#4|)) (|:| |badPols| (-626 |#4|))) (-626 |#4|)) 34)) (-3945 (((-121) |#4|) 33)) (-2713 (((-626 |#4|) |#4|) 100 (|has| |#1| (-447)))) (-2763 (((-2 (|:| |goodPols| (-626 |#4|)) (|:| |badPols| (-626 |#4|))) (-1 (-121) |#4|) (-626 |#4|)) 19)) (-3134 (((-2 (|:| |goodPols| (-626 |#4|)) (|:| |badPols| (-626 |#4|))) (-626 (-1 (-121) |#4|)) (-626 |#4|)) 21)) (-1707 (((-2 (|:| |goodPols| (-626 |#4|)) (|:| |badPols| (-626 |#4|))) (-626 (-1 (-121) |#4|)) (-626 |#4|)) 22)) (-1643 (((-3 (-2 (|:| |bas| (-474 |#1| |#2| |#3| |#4|)) (|:| -4224 (-626 |#4|))) "failed") (-626 |#4|)) 72)) (-2963 (((-626 |#4|) (-626 |#4|) (-1 (-121) |#4|) (-1 (-121) |#4| |#4|) (-1 |#4| |#4| |#4|)) 84)) (-2242 (((-626 |#4|) (-626 |#4|) (-1 (-121) |#4| |#4|) (-1 |#4| |#4| |#4|)) 107)) (-4200 (((-626 |#4|) (-626 |#4|)) 106)) (-2695 (((-626 |#4|) (-626 |#4|) (-626 |#4|) (-121)) 47) (((-626 |#4|) (-626 |#4|) (-626 |#4|)) 49)) (-3667 ((|#4| |#4| (-626 |#4|)) 48)) (-3135 (((-626 |#4|) (-626 |#4|) (-626 |#4|)) 110 (|has| |#1| (-447)))) (-2623 (((-626 |#4|) (-626 |#4|) (-626 |#4|)) 113 (|has| |#1| (-447)))) (-3191 (((-626 |#4|) (-626 |#4|) (-626 |#4|)) 112 (|has| |#1| (-447)))) (-3696 (((-626 |#4|) (-626 |#4|) (-626 |#4|) (-1 (-626 |#4|) (-626 |#4|))) 86) (((-626 |#4|) (-626 |#4|) (-626 |#4|)) 88) (((-626 |#4|) (-626 |#4|) |#4|) 117) (((-626 |#4|) |#4| |#4|) 115) (((-626 |#4|) (-626 |#4|)) 87)) (-2615 (((-626 |#4|) (-626 |#4|) (-626 |#4|)) 97 (-12 (|has| |#1| (-148)) (|has| |#1| (-296))))) (-2264 (((-2 (|:| |goodPols| (-626 |#4|)) (|:| |badPols| (-626 |#4|))) (-626 |#4|)) 40)) (-3659 (((-121) (-626 |#4|)) 61)) (-3910 (((-121) (-626 |#4|) (-626 (-626 |#4|))) 52)) (-3352 (((-2 (|:| |goodPols| (-626 |#4|)) (|:| |badPols| (-626 |#4|))) (-626 |#4|)) 28)) (-2854 (((-121) |#4|) 27)) (-1986 (((-626 |#4|) (-626 |#4|)) 96 (-12 (|has| |#1| (-148)) (|has| |#1| (-296))))) (-1759 (((-626 |#4|) (-626 |#4|)) 95 (-12 (|has| |#1| (-148)) (|has| |#1| (-296))))) (-1681 (((-626 |#4|) (-626 |#4|)) 65)) (-3527 (((-626 |#4|) (-626 |#4|)) 78)) (-1715 (((-121) (-626 |#4|) (-626 |#4|)) 50)) (-3794 (((-2 (|:| |goodPols| (-626 |#4|)) (|:| |badPols| (-626 |#4|))) (-626 |#4|)) 38)) (-4214 (((-121) |#4|) 35))) -(((-970 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3696 ((-626 |#4|) (-626 |#4|))) (-15 -3696 ((-626 |#4|) |#4| |#4|)) (-15 -4200 ((-626 |#4|) (-626 |#4|))) (-15 -3221 ((-626 |#4|) |#4| |#4|)) (-15 -3696 ((-626 |#4|) (-626 |#4|) |#4|)) (-15 -3696 ((-626 |#4|) (-626 |#4|) (-626 |#4|))) (-15 -3696 ((-626 |#4|) (-626 |#4|) (-626 |#4|) (-1 (-626 |#4|) (-626 |#4|)))) (-15 -1715 ((-121) (-626 |#4|) (-626 |#4|))) (-15 -3910 ((-121) (-626 |#4|) (-626 (-626 |#4|)))) (-15 -3659 ((-121) (-626 |#4|))) (-15 -2763 ((-2 (|:| |goodPols| (-626 |#4|)) (|:| |badPols| (-626 |#4|))) (-1 (-121) |#4|) (-626 |#4|))) (-15 -3134 ((-2 (|:| |goodPols| (-626 |#4|)) (|:| |badPols| (-626 |#4|))) (-626 (-1 (-121) |#4|)) (-626 |#4|))) (-15 -1707 ((-2 (|:| |goodPols| (-626 |#4|)) (|:| |badPols| (-626 |#4|))) (-626 (-1 (-121) |#4|)) (-626 |#4|))) (-15 -2264 ((-2 (|:| |goodPols| (-626 |#4|)) (|:| |badPols| (-626 |#4|))) (-626 |#4|))) (-15 -3945 ((-121) |#4|)) (-15 -3145 ((-2 (|:| |goodPols| (-626 |#4|)) (|:| |badPols| (-626 |#4|))) (-626 |#4|))) (-15 -2854 ((-121) |#4|)) (-15 -3352 ((-2 (|:| |goodPols| (-626 |#4|)) (|:| |badPols| (-626 |#4|))) (-626 |#4|))) (-15 -4214 ((-121) |#4|)) (-15 -3794 ((-2 (|:| |goodPols| (-626 |#4|)) (|:| |badPols| (-626 |#4|))) (-626 |#4|))) (-15 -2695 ((-626 |#4|) (-626 |#4|) (-626 |#4|))) (-15 -2695 ((-626 |#4|) (-626 |#4|) (-626 |#4|) (-121))) (-15 -3667 (|#4| |#4| (-626 |#4|))) (-15 -1681 ((-626 |#4|) (-626 |#4|))) (-15 -1643 ((-3 (-2 (|:| |bas| (-474 |#1| |#2| |#3| |#4|)) (|:| -4224 (-626 |#4|))) "failed") (-626 |#4|))) (-15 -3527 ((-626 |#4|) (-626 |#4|))) (-15 -2963 ((-626 |#4|) (-626 |#4|) (-1 (-121) |#4|) (-1 (-121) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2242 ((-626 |#4|) (-626 |#4|) (-1 (-121) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-447)) (PROGN (-15 -2713 ((-626 |#4|) |#4|)) (-15 -3113 ((-626 |#4|) (-626 |#4|))) (-15 -3113 ((-626 |#4|) (-626 |#4|) (-121))) (-15 -3135 ((-626 |#4|) (-626 |#4|) (-626 |#4|))) (-15 -3191 ((-626 |#4|) (-626 |#4|) (-626 |#4|))) (-15 -2623 ((-626 |#4|) (-626 |#4|) (-626 |#4|)))) |noBranch|) (IF (|has| |#1| (-296)) (IF (|has| |#1| (-148)) (PROGN (-15 -1759 ((-626 |#4|) (-626 |#4|))) (-15 -1986 ((-626 |#4|) (-626 |#4|))) (-15 -2615 ((-626 |#4|) (-626 |#4|) (-626 |#4|)))) |noBranch|) |noBranch|)) (-550) (-780) (-834) (-1053 |#1| |#2| |#3|)) (T -970)) -((-2615 (*1 *2 *2 *2) (-12 (-5 *2 (-626 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-296)) (-4 *3 (-550)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *1 (-970 *3 *4 *5 *6)))) (-1986 (*1 *2 *2) (-12 (-5 *2 (-626 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-296)) (-4 *3 (-550)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *1 (-970 *3 *4 *5 *6)))) (-1759 (*1 *2 *2) (-12 (-5 *2 (-626 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-296)) (-4 *3 (-550)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *1 (-970 *3 *4 *5 *6)))) (-2623 (*1 *2 *2 *2) (-12 (-5 *2 (-626 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-447)) (-4 *3 (-550)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *1 (-970 *3 *4 *5 *6)))) (-3191 (*1 *2 *2 *2) (-12 (-5 *2 (-626 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-447)) (-4 *3 (-550)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *1 (-970 *3 *4 *5 *6)))) (-3135 (*1 *2 *2 *2) (-12 (-5 *2 (-626 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-447)) (-4 *3 (-550)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *1 (-970 *3 *4 *5 *6)))) (-3113 (*1 *2 *2 *3) (-12 (-5 *2 (-626 *7)) (-5 *3 (-121)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-447)) (-4 *4 (-550)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *1 (-970 *4 *5 *6 *7)))) (-3113 (*1 *2 *2) (-12 (-5 *2 (-626 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-447)) (-4 *3 (-550)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *1 (-970 *3 *4 *5 *6)))) (-2713 (*1 *2 *3) (-12 (-4 *4 (-447)) (-4 *4 (-550)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-626 *3)) (-5 *1 (-970 *4 *5 *6 *3)) (-4 *3 (-1053 *4 *5 *6)))) (-2242 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-626 *8)) (-5 *3 (-1 (-121) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-550)) (-4 *6 (-780)) (-4 *7 (-834)) (-5 *1 (-970 *5 *6 *7 *8)))) (-2963 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-626 *9)) (-5 *3 (-1 (-121) *9)) (-5 *4 (-1 (-121) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1053 *6 *7 *8)) (-4 *6 (-550)) (-4 *7 (-780)) (-4 *8 (-834)) (-5 *1 (-970 *6 *7 *8 *9)))) (-3527 (*1 *2 *2) (-12 (-5 *2 (-626 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *1 (-970 *3 *4 *5 *6)))) (-1643 (*1 *2 *3) (|partial| -12 (-4 *4 (-550)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-474 *4 *5 *6 *7)) (|:| -4224 (-626 *7)))) (-5 *1 (-970 *4 *5 *6 *7)) (-5 *3 (-626 *7)))) (-1681 (*1 *2 *2) (-12 (-5 *2 (-626 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *1 (-970 *3 *4 *5 *6)))) (-3667 (*1 *2 *2 *3) (-12 (-5 *3 (-626 *2)) (-4 *2 (-1053 *4 *5 *6)) (-4 *4 (-550)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *1 (-970 *4 *5 *6 *2)))) (-2695 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-626 *7)) (-5 *3 (-121)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-550)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *1 (-970 *4 *5 *6 *7)))) (-2695 (*1 *2 *2 *2) (-12 (-5 *2 (-626 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *1 (-970 *3 *4 *5 *6)))) (-3794 (*1 *2 *3) (-12 (-4 *4 (-550)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-626 *7)) (|:| |badPols| (-626 *7)))) (-5 *1 (-970 *4 *5 *6 *7)) (-5 *3 (-626 *7)))) (-4214 (*1 *2 *3) (-12 (-4 *4 (-550)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-121)) (-5 *1 (-970 *4 *5 *6 *3)) (-4 *3 (-1053 *4 *5 *6)))) (-3352 (*1 *2 *3) (-12 (-4 *4 (-550)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-626 *7)) (|:| |badPols| (-626 *7)))) (-5 *1 (-970 *4 *5 *6 *7)) (-5 *3 (-626 *7)))) (-2854 (*1 *2 *3) (-12 (-4 *4 (-550)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-121)) (-5 *1 (-970 *4 *5 *6 *3)) (-4 *3 (-1053 *4 *5 *6)))) (-3145 (*1 *2 *3) (-12 (-4 *4 (-550)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-626 *7)) (|:| |badPols| (-626 *7)))) (-5 *1 (-970 *4 *5 *6 *7)) (-5 *3 (-626 *7)))) (-3945 (*1 *2 *3) (-12 (-4 *4 (-550)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-121)) (-5 *1 (-970 *4 *5 *6 *3)) (-4 *3 (-1053 *4 *5 *6)))) (-2264 (*1 *2 *3) (-12 (-4 *4 (-550)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-626 *7)) (|:| |badPols| (-626 *7)))) (-5 *1 (-970 *4 *5 *6 *7)) (-5 *3 (-626 *7)))) (-1707 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-1 (-121) *8))) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-550)) (-4 *6 (-780)) (-4 *7 (-834)) (-5 *2 (-2 (|:| |goodPols| (-626 *8)) (|:| |badPols| (-626 *8)))) (-5 *1 (-970 *5 *6 *7 *8)) (-5 *4 (-626 *8)))) (-3134 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-1 (-121) *8))) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-550)) (-4 *6 (-780)) (-4 *7 (-834)) (-5 *2 (-2 (|:| |goodPols| (-626 *8)) (|:| |badPols| (-626 *8)))) (-5 *1 (-970 *5 *6 *7 *8)) (-5 *4 (-626 *8)))) (-2763 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-121) *8)) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-550)) (-4 *6 (-780)) (-4 *7 (-834)) (-5 *2 (-2 (|:| |goodPols| (-626 *8)) (|:| |badPols| (-626 *8)))) (-5 *1 (-970 *5 *6 *7 *8)) (-5 *4 (-626 *8)))) (-3659 (*1 *2 *3) (-12 (-5 *3 (-626 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-550)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-121)) (-5 *1 (-970 *4 *5 *6 *7)))) (-3910 (*1 *2 *3 *4) (-12 (-5 *4 (-626 (-626 *8))) (-5 *3 (-626 *8)) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-550)) (-4 *6 (-780)) (-4 *7 (-834)) (-5 *2 (-121)) (-5 *1 (-970 *5 *6 *7 *8)))) (-1715 (*1 *2 *3 *3) (-12 (-5 *3 (-626 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-550)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-121)) (-5 *1 (-970 *4 *5 *6 *7)))) (-3696 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-626 *7) (-626 *7))) (-5 *2 (-626 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-550)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *1 (-970 *4 *5 *6 *7)))) (-3696 (*1 *2 *2 *2) (-12 (-5 *2 (-626 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *1 (-970 *3 *4 *5 *6)))) (-3696 (*1 *2 *2 *3) (-12 (-5 *2 (-626 *3)) (-4 *3 (-1053 *4 *5 *6)) (-4 *4 (-550)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *1 (-970 *4 *5 *6 *3)))) (-3221 (*1 *2 *3 *3) (-12 (-4 *4 (-550)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-626 *3)) (-5 *1 (-970 *4 *5 *6 *3)) (-4 *3 (-1053 *4 *5 *6)))) (-4200 (*1 *2 *2) (-12 (-5 *2 (-626 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *1 (-970 *3 *4 *5 *6)))) (-3696 (*1 *2 *3 *3) (-12 (-4 *4 (-550)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-626 *3)) (-5 *1 (-970 *4 *5 *6 *3)) (-4 *3 (-1053 *4 *5 *6)))) (-3696 (*1 *2 *2) (-12 (-5 *2 (-626 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *1 (-970 *3 *4 *5 *6))))) -(-10 -7 (-15 -3696 ((-626 |#4|) (-626 |#4|))) (-15 -3696 ((-626 |#4|) |#4| |#4|)) (-15 -4200 ((-626 |#4|) (-626 |#4|))) (-15 -3221 ((-626 |#4|) |#4| |#4|)) (-15 -3696 ((-626 |#4|) (-626 |#4|) |#4|)) (-15 -3696 ((-626 |#4|) (-626 |#4|) (-626 |#4|))) (-15 -3696 ((-626 |#4|) (-626 |#4|) (-626 |#4|) (-1 (-626 |#4|) (-626 |#4|)))) (-15 -1715 ((-121) (-626 |#4|) (-626 |#4|))) (-15 -3910 ((-121) (-626 |#4|) (-626 (-626 |#4|)))) (-15 -3659 ((-121) (-626 |#4|))) (-15 -2763 ((-2 (|:| |goodPols| (-626 |#4|)) (|:| |badPols| (-626 |#4|))) (-1 (-121) |#4|) (-626 |#4|))) (-15 -3134 ((-2 (|:| |goodPols| (-626 |#4|)) (|:| |badPols| (-626 |#4|))) (-626 (-1 (-121) |#4|)) (-626 |#4|))) (-15 -1707 ((-2 (|:| |goodPols| (-626 |#4|)) (|:| |badPols| (-626 |#4|))) (-626 (-1 (-121) |#4|)) (-626 |#4|))) (-15 -2264 ((-2 (|:| |goodPols| (-626 |#4|)) (|:| |badPols| (-626 |#4|))) (-626 |#4|))) (-15 -3945 ((-121) |#4|)) (-15 -3145 ((-2 (|:| |goodPols| (-626 |#4|)) (|:| |badPols| (-626 |#4|))) (-626 |#4|))) (-15 -2854 ((-121) |#4|)) (-15 -3352 ((-2 (|:| |goodPols| (-626 |#4|)) (|:| |badPols| (-626 |#4|))) (-626 |#4|))) (-15 -4214 ((-121) |#4|)) (-15 -3794 ((-2 (|:| |goodPols| (-626 |#4|)) (|:| |badPols| (-626 |#4|))) (-626 |#4|))) (-15 -2695 ((-626 |#4|) (-626 |#4|) (-626 |#4|))) (-15 -2695 ((-626 |#4|) (-626 |#4|) (-626 |#4|) (-121))) (-15 -3667 (|#4| |#4| (-626 |#4|))) (-15 -1681 ((-626 |#4|) (-626 |#4|))) (-15 -1643 ((-3 (-2 (|:| |bas| (-474 |#1| |#2| |#3| |#4|)) (|:| -4224 (-626 |#4|))) "failed") (-626 |#4|))) (-15 -3527 ((-626 |#4|) (-626 |#4|))) (-15 -2963 ((-626 |#4|) (-626 |#4|) (-1 (-121) |#4|) (-1 (-121) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2242 ((-626 |#4|) (-626 |#4|) (-1 (-121) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-447)) (PROGN (-15 -2713 ((-626 |#4|) |#4|)) (-15 -3113 ((-626 |#4|) (-626 |#4|))) (-15 -3113 ((-626 |#4|) (-626 |#4|) (-121))) (-15 -3135 ((-626 |#4|) (-626 |#4|) (-626 |#4|))) (-15 -3191 ((-626 |#4|) (-626 |#4|) (-626 |#4|))) (-15 -2623 ((-626 |#4|) (-626 |#4|) (-626 |#4|)))) |noBranch|) (IF (|has| |#1| (-296)) (IF (|has| |#1| (-148)) (PROGN (-15 -1759 ((-626 |#4|) (-626 |#4|))) (-15 -1986 ((-626 |#4|) (-626 |#4|))) (-15 -2615 ((-626 |#4|) (-626 |#4|) (-626 |#4|)))) |noBranch|) |noBranch|)) -((-2475 (((-2 (|:| R (-671 |#1|)) (|:| A (-671 |#1|)) (|:| |Ainv| (-671 |#1|))) (-671 |#1|) (-101 |#1|) (-1 |#1| |#1|)) 19)) (-2144 (((-626 (-2 (|:| C (-671 |#1|)) (|:| |g| (-1236 |#1|)))) (-671 |#1|) (-1236 |#1|)) 35)) (-4252 (((-671 |#1|) (-671 |#1|) (-671 |#1|) (-101 |#1|) (-1 |#1| |#1|)) 16))) -(((-971 |#1|) (-10 -7 (-15 -2475 ((-2 (|:| R (-671 |#1|)) (|:| A (-671 |#1|)) (|:| |Ainv| (-671 |#1|))) (-671 |#1|) (-101 |#1|) (-1 |#1| |#1|))) (-15 -4252 ((-671 |#1|) (-671 |#1|) (-671 |#1|) (-101 |#1|) (-1 |#1| |#1|))) (-15 -2144 ((-626 (-2 (|:| C (-671 |#1|)) (|:| |g| (-1236 |#1|)))) (-671 |#1|) (-1236 |#1|)))) (-359)) (T -971)) -((-2144 (*1 *2 *3 *4) (-12 (-4 *5 (-359)) (-5 *2 (-626 (-2 (|:| C (-671 *5)) (|:| |g| (-1236 *5))))) (-5 *1 (-971 *5)) (-5 *3 (-671 *5)) (-5 *4 (-1236 *5)))) (-4252 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-671 *5)) (-5 *3 (-101 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-359)) (-5 *1 (-971 *5)))) (-2475 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-101 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-359)) (-5 *2 (-2 (|:| R (-671 *6)) (|:| A (-671 *6)) (|:| |Ainv| (-671 *6)))) (-5 *1 (-971 *6)) (-5 *3 (-671 *6))))) -(-10 -7 (-15 -2475 ((-2 (|:| R (-671 |#1|)) (|:| A (-671 |#1|)) (|:| |Ainv| (-671 |#1|))) (-671 |#1|) (-101 |#1|) (-1 |#1| |#1|))) (-15 -4252 ((-671 |#1|) (-671 |#1|) (-671 |#1|) (-101 |#1|) (-1 |#1| |#1|))) (-15 -2144 ((-626 (-2 (|:| C (-671 |#1|)) (|:| |g| (-1236 |#1|)))) (-671 |#1|) (-1236 |#1|)))) -((-2953 (((-414 |#4|) |#4|) 47))) -(((-972 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2953 ((-414 |#4|) |#4|))) (-834) (-780) (-447) (-942 |#3| |#2| |#1|)) (T -972)) -((-2953 (*1 *2 *3) (-12 (-4 *4 (-834)) (-4 *5 (-780)) (-4 *6 (-447)) (-5 *2 (-414 *3)) (-5 *1 (-972 *4 *5 *6 *3)) (-4 *3 (-942 *6 *5 *4))))) -(-10 -7 (-15 -2953 ((-414 |#4|) |#4|))) -((-2601 (((-121) $ $) 18 (|has| |#1| (-1082)))) (-3382 (($ (-755)) 105 (|has| |#1| (-23)))) (-2960 (((-1241) $ (-560) (-560)) 37 (|has| $ (-6 -4506)))) (-3189 (((-121) (-1 (-121) |#1| |#1|) $) 91) (((-121) $) 85 (|has| |#1| (-834)))) (-4410 (($ (-1 (-121) |#1| |#1|) $) 82 (|has| $ (-6 -4506))) (($ $) 81 (-12 (|has| |#1| (-834)) (|has| $ (-6 -4506))))) (-3743 (($ (-1 (-121) |#1| |#1|) $) 92) (($ $) 86 (|has| |#1| (-834)))) (-3909 (((-121) $ (-755)) 8)) (-2764 ((|#1| $ (-560) |#1|) 49 (|has| $ (-6 -4506))) ((|#1| $ (-1202 (-560)) |#1|) 53 (|has| $ (-6 -4506)))) (-3802 (($ (-1 (-121) |#1|) $) 70 (|has| $ (-6 -4505)))) (-4236 (($) 7 T CONST)) (-4030 (($ $) 83 (|has| $ (-6 -4506)))) (-2883 (($ $) 93)) (-2868 (($ $) 73 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-4310 (($ |#1| $) 72 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505)))) (($ (-1 (-121) |#1|) $) 69 (|has| $ (-6 -4505)))) (-2342 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 71 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 68 (|has| $ (-6 -4505))) ((|#1| (-1 |#1| |#1| |#1|) $) 67 (|has| $ (-6 -4505)))) (-1746 ((|#1| $ (-560) |#1|) 50 (|has| $ (-6 -4506)))) (-1361 ((|#1| $ (-560)) 48)) (-2839 (((-560) (-1 (-121) |#1|) $) 90) (((-560) |#1| $) 89 (|has| |#1| (-1082))) (((-560) |#1| $ (-560)) 88 (|has| |#1| (-1082)))) (-4151 (($ (-626 |#1|)) 110)) (-1981 (((-626 |#1|) $) 30 (|has| $ (-6 -4505)))) (-1764 (((-671 |#1|) $ $) 98 (|has| |#1| (-1039)))) (-1721 (($ (-755) |#1|) 64)) (-2122 (((-121) $ (-755)) 9)) (-4099 (((-560) $) 40 (|has| (-560) (-834)))) (-4325 (($ $ $) 80 (|has| |#1| (-834)))) (-2492 (($ (-1 (-121) |#1| |#1|) $ $) 94) (($ $ $) 87 (|has| |#1| (-834)))) (-2130 (((-626 |#1|) $) 29 (|has| $ (-6 -4505)))) (-2030 (((-121) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-2767 (((-560) $) 41 (|has| (-560) (-834)))) (-2501 (($ $ $) 79 (|has| |#1| (-834)))) (-3778 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 59)) (-2429 ((|#1| $) 95 (-12 (|has| |#1| (-1039)) (|has| |#1| (-994))))) (-3441 (((-121) $ (-755)) 10)) (-2349 ((|#1| $) 96 (-12 (|has| |#1| (-1039)) (|has| |#1| (-994))))) (-1291 (((-1135) $) 22 (|has| |#1| (-1082)))) (-4103 (($ |#1| $ (-560)) 55) (($ $ $ (-560)) 54)) (-1529 (((-626 (-560)) $) 43)) (-1310 (((-121) (-560) $) 44)) (-4353 (((-1100) $) 21 (|has| |#1| (-1082)))) (-2824 ((|#1| $) 39 (|has| (-560) (-834)))) (-3786 (((-3 |#1| "failed") (-1 (-121) |#1|) $) 66)) (-3038 (($ $ |#1|) 38 (|has| $ (-6 -4506)))) (-3292 (($ $ (-626 |#1|)) 107)) (-2865 (((-121) (-1 (-121) |#1|) $) 32 (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#1|))) 26 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-283 |#1|)) 25 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-626 |#1|) (-626 |#1|)) 23 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))))) (-2214 (((-121) $ $) 14)) (-1290 (((-121) |#1| $) 42 (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-4460 (((-626 |#1|) $) 45)) (-4191 (((-121) $) 11)) (-3260 (($) 12)) (-2778 ((|#1| $ (-560) |#1|) 47) ((|#1| $ (-560)) 46) (($ $ (-1202 (-560))) 58)) (-2372 ((|#1| $ $) 99 (|has| |#1| (-1039)))) (-4016 (((-909) $) 109)) (-2949 (($ $ (-560)) 57) (($ $ (-1202 (-560))) 56)) (-2078 (($ $ $) 97)) (-4035 (((-755) (-1 (-121) |#1|) $) 31 (|has| $ (-6 -4505))) (((-755) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-4072 (($ $ $ (-560)) 84 (|has| $ (-6 -4506)))) (-2813 (($ $) 13)) (-4255 (((-533) $) 74 (|has| |#1| (-601 (-533)))) (($ (-626 |#1|)) 108)) (-4162 (($ (-626 |#1|)) 65)) (-2849 (($ $ |#1|) 63) (($ |#1| $) 62) (($ $ $) 61) (($ (-626 $)) 60)) (-2801 (((-842) $) 20 (|has| |#1| (-1082)))) (-3656 (((-121) (-1 (-121) |#1|) $) 33 (|has| $ (-6 -4505)))) (-1691 (((-121) $ $) 77 (|has| |#1| (-834)))) (-1675 (((-121) $ $) 76 (|has| |#1| (-834)))) (-1653 (((-121) $ $) 19 (|has| |#1| (-1082)))) (-1683 (((-121) $ $) 78 (|has| |#1| (-834)))) (-1667 (((-121) $ $) 75 (|has| |#1| (-834)))) (-1725 (($ $) 104 (|has| |#1| (-21))) (($ $ $) 103 (|has| |#1| (-21)))) (-1716 (($ $ $) 106 (|has| |#1| (-25)))) (* (($ (-560) $) 102 (|has| |#1| (-21))) (($ |#1| $) 101 (|has| |#1| (-708))) (($ $ |#1|) 100 (|has| |#1| (-708)))) (-2271 (((-755) $) 6 (|has| $ (-6 -4505))))) -(((-973 |#1|) (-1267) (-1039)) (T -973)) -((-4151 (*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-1039)) (-4 *1 (-973 *3)))) (-4016 (*1 *2 *1) (-12 (-4 *1 (-973 *3)) (-4 *3 (-1039)) (-5 *2 (-909)))) (-4255 (*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-1039)) (-4 *1 (-973 *3)))) (-2078 (*1 *1 *1 *1) (-12 (-4 *1 (-973 *2)) (-4 *2 (-1039)))) (-3292 (*1 *1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *1 (-973 *3)) (-4 *3 (-1039))))) -(-13 (-1234 |t#1|) (-10 -8 (-15 -4151 ($ (-626 |t#1|))) (-15 -4016 ((-909) $)) (-15 -4255 ($ (-626 |t#1|))) (-15 -2078 ($ $ $)) (-15 -3292 ($ $ (-626 |t#1|))))) -(((-39) . T) ((-105) -2318 (|has| |#1| (-1082)) (|has| |#1| (-834))) ((-600 (-842)) -2318 (|has| |#1| (-1082)) (|has| |#1| (-834))) ((-152 |#1|) . T) ((-601 (-533)) |has| |#1| (-601 (-533))) ((-276 (-560) |#1|) . T) ((-278 (-560) |#1|) . T) ((-298 |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))) ((-369 |#1|) . T) ((-492 |#1|) . T) ((-593 (-560) |#1|) . T) ((-515 |#1| |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))) ((-632 |#1|) . T) ((-19 |#1|) . T) ((-834) |has| |#1| (-834)) ((-1082) -2318 (|has| |#1| (-1082)) (|has| |#1| (-834))) ((-1187) . T) ((-1234 |#1|) . T)) -((-2803 (((-936 |#2|) (-1 |#2| |#1|) (-936 |#1|)) 17))) -(((-974 |#1| |#2|) (-10 -7 (-15 -2803 ((-936 |#2|) (-1 |#2| |#1|) (-936 |#1|)))) (-1039) (-1039)) (T -974)) -((-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-936 *5)) (-4 *5 (-1039)) (-4 *6 (-1039)) (-5 *2 (-936 *6)) (-5 *1 (-974 *5 *6))))) -(-10 -7 (-15 -2803 ((-936 |#2|) (-1 |#2| |#1|) (-936 |#1|)))) -((-3790 ((|#1| (-936 |#1|)) 13)) (-1629 ((|#1| (-936 |#1|)) 12)) (-3148 ((|#1| (-936 |#1|)) 11)) (-2502 ((|#1| (-936 |#1|)) 15)) (-2855 ((|#1| (-936 |#1|)) 21)) (-2825 ((|#1| (-936 |#1|)) 14)) (-1797 ((|#1| (-936 |#1|)) 16)) (-3597 ((|#1| (-936 |#1|)) 20)) (-1372 ((|#1| (-936 |#1|)) 19))) -(((-975 |#1|) (-10 -7 (-15 -3148 (|#1| (-936 |#1|))) (-15 -1629 (|#1| (-936 |#1|))) (-15 -3790 (|#1| (-936 |#1|))) (-15 -2825 (|#1| (-936 |#1|))) (-15 -2502 (|#1| (-936 |#1|))) (-15 -1797 (|#1| (-936 |#1|))) (-15 -1372 (|#1| (-936 |#1|))) (-15 -3597 (|#1| (-936 |#1|))) (-15 -2855 (|#1| (-936 |#1|)))) (-1039)) (T -975)) -((-2855 (*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1039)))) (-3597 (*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1039)))) (-1372 (*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1039)))) (-1797 (*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1039)))) (-2502 (*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1039)))) (-2825 (*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1039)))) (-3790 (*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1039)))) (-1629 (*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1039)))) (-3148 (*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1039))))) -(-10 -7 (-15 -3148 (|#1| (-936 |#1|))) (-15 -1629 (|#1| (-936 |#1|))) (-15 -3790 (|#1| (-936 |#1|))) (-15 -2825 (|#1| (-936 |#1|))) (-15 -2502 (|#1| (-936 |#1|))) (-15 -1797 (|#1| (-936 |#1|))) (-15 -1372 (|#1| (-936 |#1|))) (-15 -3597 (|#1| (-936 |#1|))) (-15 -2855 (|#1| (-936 |#1|)))) -((-1270 (((-3 |#1| "failed") |#1|) 18)) (-3080 (((-3 |#1| "failed") |#1|) 6)) (-1306 (((-3 |#1| "failed") |#1|) 16)) (-3999 (((-3 |#1| "failed") |#1|) 4)) (-3904 (((-3 |#1| "failed") |#1|) 20)) (-2577 (((-3 |#1| "failed") |#1|) 8)) (-3214 (((-3 |#1| "failed") |#1| (-755)) 1)) (-2878 (((-3 |#1| "failed") |#1|) 3)) (-4447 (((-3 |#1| "failed") |#1|) 2)) (-2668 (((-3 |#1| "failed") |#1|) 21)) (-3175 (((-3 |#1| "failed") |#1|) 9)) (-3278 (((-3 |#1| "failed") |#1|) 19)) (-1497 (((-3 |#1| "failed") |#1|) 7)) (-2425 (((-3 |#1| "failed") |#1|) 17)) (-3579 (((-3 |#1| "failed") |#1|) 5)) (-1371 (((-3 |#1| "failed") |#1|) 24)) (-2663 (((-3 |#1| "failed") |#1|) 12)) (-3190 (((-3 |#1| "failed") |#1|) 22)) (-1413 (((-3 |#1| "failed") |#1|) 10)) (-3430 (((-3 |#1| "failed") |#1|) 26)) (-3031 (((-3 |#1| "failed") |#1|) 14)) (-3439 (((-3 |#1| "failed") |#1|) 27)) (-2345 (((-3 |#1| "failed") |#1|) 15)) (-2460 (((-3 |#1| "failed") |#1|) 25)) (-2208 (((-3 |#1| "failed") |#1|) 13)) (-4244 (((-3 |#1| "failed") |#1|) 23)) (-2164 (((-3 |#1| "failed") |#1|) 11))) -(((-976 |#1|) (-1267) (-1173)) (T -976)) -((-3439 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1173)))) (-3430 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1173)))) (-2460 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1173)))) (-1371 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1173)))) (-4244 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1173)))) (-3190 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1173)))) (-2668 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1173)))) (-3904 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1173)))) (-3278 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1173)))) (-1270 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1173)))) (-2425 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1173)))) (-1306 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1173)))) (-2345 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1173)))) (-3031 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1173)))) (-2208 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1173)))) (-2663 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1173)))) (-2164 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1173)))) (-1413 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1173)))) (-3175 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1173)))) (-2577 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1173)))) (-1497 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1173)))) (-3080 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1173)))) (-3579 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1173)))) (-3999 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1173)))) (-2878 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1173)))) (-4447 (*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1173)))) (-3214 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-755)) (-4 *1 (-976 *2)) (-4 *2 (-1173))))) -(-13 (-10 -7 (-15 -3214 ((-3 |t#1| "failed") |t#1| (-755))) (-15 -4447 ((-3 |t#1| "failed") |t#1|)) (-15 -2878 ((-3 |t#1| "failed") |t#1|)) (-15 -3999 ((-3 |t#1| "failed") |t#1|)) (-15 -3579 ((-3 |t#1| "failed") |t#1|)) (-15 -3080 ((-3 |t#1| "failed") |t#1|)) (-15 -1497 ((-3 |t#1| "failed") |t#1|)) (-15 -2577 ((-3 |t#1| "failed") |t#1|)) (-15 -3175 ((-3 |t#1| "failed") |t#1|)) (-15 -1413 ((-3 |t#1| "failed") |t#1|)) (-15 -2164 ((-3 |t#1| "failed") |t#1|)) (-15 -2663 ((-3 |t#1| "failed") |t#1|)) (-15 -2208 ((-3 |t#1| "failed") |t#1|)) (-15 -3031 ((-3 |t#1| "failed") |t#1|)) (-15 -2345 ((-3 |t#1| "failed") |t#1|)) (-15 -1306 ((-3 |t#1| "failed") |t#1|)) (-15 -2425 ((-3 |t#1| "failed") |t#1|)) (-15 -1270 ((-3 |t#1| "failed") |t#1|)) (-15 -3278 ((-3 |t#1| "failed") |t#1|)) (-15 -3904 ((-3 |t#1| "failed") |t#1|)) (-15 -2668 ((-3 |t#1| "failed") |t#1|)) (-15 -3190 ((-3 |t#1| "failed") |t#1|)) (-15 -4244 ((-3 |t#1| "failed") |t#1|)) (-15 -1371 ((-3 |t#1| "failed") |t#1|)) (-15 -2460 ((-3 |t#1| "failed") |t#1|)) (-15 -3430 ((-3 |t#1| "failed") |t#1|)) (-15 -3439 ((-3 |t#1| "failed") |t#1|)))) -((-1421 ((|#4| |#4| (-626 |#3|)) 55) ((|#4| |#4| |#3|) 54)) (-4287 ((|#4| |#4| (-626 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-2803 ((|#4| (-1 |#4| (-945 |#1|)) |#4|) 30))) -(((-977 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4287 (|#4| |#4| |#3|)) (-15 -4287 (|#4| |#4| (-626 |#3|))) (-15 -1421 (|#4| |#4| |#3|)) (-15 -1421 (|#4| |#4| (-626 |#3|))) (-15 -2803 (|#4| (-1 |#4| (-945 |#1|)) |#4|))) (-1039) (-780) (-13 (-834) (-10 -8 (-15 -4255 ((-1153) $)) (-15 -1395 ((-3 $ "failed") (-1153))))) (-942 (-945 |#1|) |#2| |#3|)) (T -977)) -((-2803 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-945 *4))) (-4 *4 (-1039)) (-4 *2 (-942 (-945 *4) *5 *6)) (-4 *5 (-780)) (-4 *6 (-13 (-834) (-10 -8 (-15 -4255 ((-1153) $)) (-15 -1395 ((-3 $ "failed") (-1153)))))) (-5 *1 (-977 *4 *5 *6 *2)))) (-1421 (*1 *2 *2 *3) (-12 (-5 *3 (-626 *6)) (-4 *6 (-13 (-834) (-10 -8 (-15 -4255 ((-1153) $)) (-15 -1395 ((-3 $ "failed") (-1153)))))) (-4 *4 (-1039)) (-4 *5 (-780)) (-5 *1 (-977 *4 *5 *6 *2)) (-4 *2 (-942 (-945 *4) *5 *6)))) (-1421 (*1 *2 *2 *3) (-12 (-4 *4 (-1039)) (-4 *5 (-780)) (-4 *3 (-13 (-834) (-10 -8 (-15 -4255 ((-1153) $)) (-15 -1395 ((-3 $ "failed") (-1153)))))) (-5 *1 (-977 *4 *5 *3 *2)) (-4 *2 (-942 (-945 *4) *5 *3)))) (-4287 (*1 *2 *2 *3) (-12 (-5 *3 (-626 *6)) (-4 *6 (-13 (-834) (-10 -8 (-15 -4255 ((-1153) $)) (-15 -1395 ((-3 $ "failed") (-1153)))))) (-4 *4 (-1039)) (-4 *5 (-780)) (-5 *1 (-977 *4 *5 *6 *2)) (-4 *2 (-942 (-945 *4) *5 *6)))) (-4287 (*1 *2 *2 *3) (-12 (-4 *4 (-1039)) (-4 *5 (-780)) (-4 *3 (-13 (-834) (-10 -8 (-15 -4255 ((-1153) $)) (-15 -1395 ((-3 $ "failed") (-1153)))))) (-5 *1 (-977 *4 *5 *3 *2)) (-4 *2 (-942 (-945 *4) *5 *3))))) -(-10 -7 (-15 -4287 (|#4| |#4| |#3|)) (-15 -4287 (|#4| |#4| (-626 |#3|))) (-15 -1421 (|#4| |#4| |#3|)) (-15 -1421 (|#4| |#4| (-626 |#3|))) (-15 -2803 (|#4| (-1 |#4| (-945 |#1|)) |#4|))) -((-2239 ((|#2| |#3|) 34)) (-2434 (((-2 (|:| -4374 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|))) |#2|) 71)) (-1335 (((-2 (|:| -4374 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|)))) 86))) -(((-978 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1335 ((-2 (|:| -4374 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|))))) (-15 -2434 ((-2 (|:| -4374 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|))) |#2|)) (-15 -2239 (|#2| |#3|))) (-344) (-1211 |#1|) (-1211 |#2|) (-706 |#2| |#3|)) (T -978)) -((-2239 (*1 *2 *3) (-12 (-4 *3 (-1211 *2)) (-4 *2 (-1211 *4)) (-5 *1 (-978 *4 *2 *3 *5)) (-4 *4 (-344)) (-4 *5 (-706 *2 *3)))) (-2434 (*1 *2 *3) (-12 (-4 *4 (-344)) (-4 *3 (-1211 *4)) (-4 *5 (-1211 *3)) (-5 *2 (-2 (|:| -4374 (-671 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-671 *3)))) (-5 *1 (-978 *4 *3 *5 *6)) (-4 *6 (-706 *3 *5)))) (-1335 (*1 *2) (-12 (-4 *3 (-344)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 *4)) (-5 *2 (-2 (|:| -4374 (-671 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-671 *4)))) (-5 *1 (-978 *3 *4 *5 *6)) (-4 *6 (-706 *4 *5))))) -(-10 -7 (-15 -1335 ((-2 (|:| -4374 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|))))) (-15 -2434 ((-2 (|:| -4374 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|))) |#2|)) (-15 -2239 (|#2| |#3|))) -((-2023 (((-980 (-403 (-560)) (-844 |#1|) (-228 |#2| (-755)) (-237 |#1| (-403 (-560)))) (-980 (-403 (-560)) (-844 |#1|) (-228 |#2| (-755)) (-237 |#1| (-403 (-560))))) 64))) -(((-979 |#1| |#2|) (-10 -7 (-15 -2023 ((-980 (-403 (-560)) (-844 |#1|) (-228 |#2| (-755)) (-237 |#1| (-403 (-560)))) (-980 (-403 (-560)) (-844 |#1|) (-228 |#2| (-755)) (-237 |#1| (-403 (-560))))))) (-626 (-1153)) (-755)) (T -979)) -((-2023 (*1 *2 *2) (-12 (-5 *2 (-980 (-403 (-560)) (-844 *3) (-228 *4 (-755)) (-237 *3 (-403 (-560))))) (-14 *3 (-626 (-1153))) (-14 *4 (-755)) (-5 *1 (-979 *3 *4))))) -(-10 -7 (-15 -2023 ((-980 (-403 (-560)) (-844 |#1|) (-228 |#2| (-755)) (-237 |#1| (-403 (-560)))) (-980 (-403 (-560)) (-844 |#1|) (-228 |#2| (-755)) (-237 |#1| (-403 (-560))))))) -((-2601 (((-121) $ $) NIL)) (-2632 (((-3 (-121) "failed") $) 67)) (-2141 (($ $) 35 (-12 (|has| |#1| (-148)) (|has| |#1| (-296))))) (-3827 (($ $ (-3 (-121) "failed")) 68)) (-1845 (($ (-626 |#4|) |#4|) 24)) (-1291 (((-1135) $) NIL)) (-3410 (($ $) 65)) (-4353 (((-1100) $) NIL)) (-4191 (((-121) $) 66)) (-3260 (($) 29)) (-3821 ((|#4| $) 70)) (-1549 (((-626 |#4|) $) 69)) (-2801 (((-842) $) 64)) (-1653 (((-121) $ $) NIL))) -(((-980 |#1| |#2| |#3| |#4|) (-13 (-1082) (-600 (-842)) (-10 -8 (-15 -3260 ($)) (-15 -1845 ($ (-626 |#4|) |#4|)) (-15 -2632 ((-3 (-121) "failed") $)) (-15 -3827 ($ $ (-3 (-121) "failed"))) (-15 -4191 ((-121) $)) (-15 -1549 ((-626 |#4|) $)) (-15 -3821 (|#4| $)) (-15 -3410 ($ $)) (IF (|has| |#1| (-296)) (IF (|has| |#1| (-148)) (-15 -2141 ($ $)) |noBranch|) |noBranch|))) (-447) (-834) (-780) (-942 |#1| |#3| |#2|)) (T -980)) -((-3260 (*1 *1) (-12 (-4 *2 (-447)) (-4 *3 (-834)) (-4 *4 (-780)) (-5 *1 (-980 *2 *3 *4 *5)) (-4 *5 (-942 *2 *4 *3)))) (-1845 (*1 *1 *2 *3) (-12 (-5 *2 (-626 *3)) (-4 *3 (-942 *4 *6 *5)) (-4 *4 (-447)) (-4 *5 (-834)) (-4 *6 (-780)) (-5 *1 (-980 *4 *5 *6 *3)))) (-2632 (*1 *2 *1) (|partial| -12 (-4 *3 (-447)) (-4 *4 (-834)) (-4 *5 (-780)) (-5 *2 (-121)) (-5 *1 (-980 *3 *4 *5 *6)) (-4 *6 (-942 *3 *5 *4)))) (-3827 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-121) "failed")) (-4 *3 (-447)) (-4 *4 (-834)) (-4 *5 (-780)) (-5 *1 (-980 *3 *4 *5 *6)) (-4 *6 (-942 *3 *5 *4)))) (-4191 (*1 *2 *1) (-12 (-4 *3 (-447)) (-4 *4 (-834)) (-4 *5 (-780)) (-5 *2 (-121)) (-5 *1 (-980 *3 *4 *5 *6)) (-4 *6 (-942 *3 *5 *4)))) (-1549 (*1 *2 *1) (-12 (-4 *3 (-447)) (-4 *4 (-834)) (-4 *5 (-780)) (-5 *2 (-626 *6)) (-5 *1 (-980 *3 *4 *5 *6)) (-4 *6 (-942 *3 *5 *4)))) (-3821 (*1 *2 *1) (-12 (-4 *2 (-942 *3 *5 *4)) (-5 *1 (-980 *3 *4 *5 *2)) (-4 *3 (-447)) (-4 *4 (-834)) (-4 *5 (-780)))) (-3410 (*1 *1 *1) (-12 (-4 *2 (-447)) (-4 *3 (-834)) (-4 *4 (-780)) (-5 *1 (-980 *2 *3 *4 *5)) (-4 *5 (-942 *2 *4 *3)))) (-2141 (*1 *1 *1) (-12 (-4 *2 (-148)) (-4 *2 (-296)) (-4 *2 (-447)) (-4 *3 (-834)) (-4 *4 (-780)) (-5 *1 (-980 *2 *3 *4 *5)) (-4 *5 (-942 *2 *4 *3))))) -(-13 (-1082) (-600 (-842)) (-10 -8 (-15 -3260 ($)) (-15 -1845 ($ (-626 |#4|) |#4|)) (-15 -2632 ((-3 (-121) "failed") $)) (-15 -3827 ($ $ (-3 (-121) "failed"))) (-15 -4191 ((-121) $)) (-15 -1549 ((-626 |#4|) $)) (-15 -3821 (|#4| $)) (-15 -3410 ($ $)) (IF (|has| |#1| (-296)) (IF (|has| |#1| (-148)) (-15 -2141 ($ $)) |noBranch|) |noBranch|))) -((-2490 (((-121) |#5| |#5|) 37)) (-1427 (((-121) |#5| |#5|) 51)) (-3406 (((-121) |#5| (-626 |#5|)) 73) (((-121) |#5| |#5|) 60)) (-4156 (((-121) (-626 |#4|) (-626 |#4|)) 57)) (-4296 (((-121) (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|)) (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))) 62)) (-1973 (((-1241)) 33)) (-1541 (((-1241) (-1135) (-1135) (-1135)) 29)) (-3695 (((-626 |#5|) (-626 |#5|)) 80)) (-1325 (((-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))) (-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|)))) 78)) (-2084 (((-626 (-2 (|:| -2654 (-626 |#4|)) (|:| -3249 |#5|) (|:| |ineq| (-626 |#4|)))) (-626 |#4|) (-626 |#5|) (-121) (-121)) 100)) (-4461 (((-121) |#5| |#5|) 46)) (-4342 (((-3 (-121) "failed") |#5| |#5|) 70)) (-2680 (((-121) (-626 |#4|) (-626 |#4|)) 56)) (-3071 (((-121) (-626 |#4|) (-626 |#4|)) 58)) (-3564 (((-121) (-626 |#4|) (-626 |#4|)) 59)) (-3554 (((-3 (-2 (|:| -2654 (-626 |#4|)) (|:| -3249 |#5|) (|:| |ineq| (-626 |#4|))) "failed") (-626 |#4|) |#5| (-626 |#4|) (-121) (-121) (-121) (-121) (-121)) 96)) (-3408 (((-626 |#5|) (-626 |#5|)) 42))) -(((-981 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1541 ((-1241) (-1135) (-1135) (-1135))) (-15 -1973 ((-1241))) (-15 -2490 ((-121) |#5| |#5|)) (-15 -3408 ((-626 |#5|) (-626 |#5|))) (-15 -4461 ((-121) |#5| |#5|)) (-15 -1427 ((-121) |#5| |#5|)) (-15 -4156 ((-121) (-626 |#4|) (-626 |#4|))) (-15 -2680 ((-121) (-626 |#4|) (-626 |#4|))) (-15 -3071 ((-121) (-626 |#4|) (-626 |#4|))) (-15 -3564 ((-121) (-626 |#4|) (-626 |#4|))) (-15 -4342 ((-3 (-121) "failed") |#5| |#5|)) (-15 -3406 ((-121) |#5| |#5|)) (-15 -3406 ((-121) |#5| (-626 |#5|))) (-15 -3695 ((-626 |#5|) (-626 |#5|))) (-15 -4296 ((-121) (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|)) (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|)))) (-15 -1325 ((-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))) (-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))))) (-15 -2084 ((-626 (-2 (|:| -2654 (-626 |#4|)) (|:| -3249 |#5|) (|:| |ineq| (-626 |#4|)))) (-626 |#4|) (-626 |#5|) (-121) (-121))) (-15 -3554 ((-3 (-2 (|:| -2654 (-626 |#4|)) (|:| -3249 |#5|) (|:| |ineq| (-626 |#4|))) "failed") (-626 |#4|) |#5| (-626 |#4|) (-121) (-121) (-121) (-121) (-121)))) (-447) (-780) (-834) (-1053 |#1| |#2| |#3|) (-1058 |#1| |#2| |#3| |#4|)) (T -981)) -((-3554 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-121)) (-4 *6 (-447)) (-4 *7 (-780)) (-4 *8 (-834)) (-4 *9 (-1053 *6 *7 *8)) (-5 *2 (-2 (|:| -2654 (-626 *9)) (|:| -3249 *4) (|:| |ineq| (-626 *9)))) (-5 *1 (-981 *6 *7 *8 *9 *4)) (-5 *3 (-626 *9)) (-4 *4 (-1058 *6 *7 *8 *9)))) (-2084 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-626 *10)) (-5 *5 (-121)) (-4 *10 (-1058 *6 *7 *8 *9)) (-4 *6 (-447)) (-4 *7 (-780)) (-4 *8 (-834)) (-4 *9 (-1053 *6 *7 *8)) (-5 *2 (-626 (-2 (|:| -2654 (-626 *9)) (|:| -3249 *10) (|:| |ineq| (-626 *9))))) (-5 *1 (-981 *6 *7 *8 *9 *10)) (-5 *3 (-626 *9)))) (-1325 (*1 *2 *2) (-12 (-5 *2 (-626 (-2 (|:| |val| (-626 *6)) (|:| -3249 *7)))) (-4 *6 (-1053 *3 *4 *5)) (-4 *7 (-1058 *3 *4 *5 *6)) (-4 *3 (-447)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *1 (-981 *3 *4 *5 *6 *7)))) (-4296 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-626 *7)) (|:| -3249 *8))) (-4 *7 (-1053 *4 *5 *6)) (-4 *8 (-1058 *4 *5 *6 *7)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-121)) (-5 *1 (-981 *4 *5 *6 *7 *8)))) (-3695 (*1 *2 *2) (-12 (-5 *2 (-626 *7)) (-4 *7 (-1058 *3 *4 *5 *6)) (-4 *3 (-447)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1053 *3 *4 *5)) (-5 *1 (-981 *3 *4 *5 *6 *7)))) (-3406 (*1 *2 *3 *4) (-12 (-5 *4 (-626 *3)) (-4 *3 (-1058 *5 *6 *7 *8)) (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *8 (-1053 *5 *6 *7)) (-5 *2 (-121)) (-5 *1 (-981 *5 *6 *7 *8 *3)))) (-3406 (*1 *2 *3 *3) (-12 (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-121)) (-5 *1 (-981 *4 *5 *6 *7 *3)) (-4 *3 (-1058 *4 *5 *6 *7)))) (-4342 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-121)) (-5 *1 (-981 *4 *5 *6 *7 *3)) (-4 *3 (-1058 *4 *5 *6 *7)))) (-3564 (*1 *2 *3 *3) (-12 (-5 *3 (-626 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-121)) (-5 *1 (-981 *4 *5 *6 *7 *8)) (-4 *8 (-1058 *4 *5 *6 *7)))) (-3071 (*1 *2 *3 *3) (-12 (-5 *3 (-626 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-121)) (-5 *1 (-981 *4 *5 *6 *7 *8)) (-4 *8 (-1058 *4 *5 *6 *7)))) (-2680 (*1 *2 *3 *3) (-12 (-5 *3 (-626 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-121)) (-5 *1 (-981 *4 *5 *6 *7 *8)) (-4 *8 (-1058 *4 *5 *6 *7)))) (-4156 (*1 *2 *3 *3) (-12 (-5 *3 (-626 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-121)) (-5 *1 (-981 *4 *5 *6 *7 *8)) (-4 *8 (-1058 *4 *5 *6 *7)))) (-1427 (*1 *2 *3 *3) (-12 (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-121)) (-5 *1 (-981 *4 *5 *6 *7 *3)) (-4 *3 (-1058 *4 *5 *6 *7)))) (-4461 (*1 *2 *3 *3) (-12 (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-121)) (-5 *1 (-981 *4 *5 *6 *7 *3)) (-4 *3 (-1058 *4 *5 *6 *7)))) (-3408 (*1 *2 *2) (-12 (-5 *2 (-626 *7)) (-4 *7 (-1058 *3 *4 *5 *6)) (-4 *3 (-447)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1053 *3 *4 *5)) (-5 *1 (-981 *3 *4 *5 *6 *7)))) (-2490 (*1 *2 *3 *3) (-12 (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-121)) (-5 *1 (-981 *4 *5 *6 *7 *3)) (-4 *3 (-1058 *4 *5 *6 *7)))) (-1973 (*1 *2) (-12 (-4 *3 (-447)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-1241)) (-5 *1 (-981 *3 *4 *5 *6 *7)) (-4 *7 (-1058 *3 *4 *5 *6)))) (-1541 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-1241)) (-5 *1 (-981 *4 *5 *6 *7 *8)) (-4 *8 (-1058 *4 *5 *6 *7))))) -(-10 -7 (-15 -1541 ((-1241) (-1135) (-1135) (-1135))) (-15 -1973 ((-1241))) (-15 -2490 ((-121) |#5| |#5|)) (-15 -3408 ((-626 |#5|) (-626 |#5|))) (-15 -4461 ((-121) |#5| |#5|)) (-15 -1427 ((-121) |#5| |#5|)) (-15 -4156 ((-121) (-626 |#4|) (-626 |#4|))) (-15 -2680 ((-121) (-626 |#4|) (-626 |#4|))) (-15 -3071 ((-121) (-626 |#4|) (-626 |#4|))) (-15 -3564 ((-121) (-626 |#4|) (-626 |#4|))) (-15 -4342 ((-3 (-121) "failed") |#5| |#5|)) (-15 -3406 ((-121) |#5| |#5|)) (-15 -3406 ((-121) |#5| (-626 |#5|))) (-15 -3695 ((-626 |#5|) (-626 |#5|))) (-15 -4296 ((-121) (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|)) (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|)))) (-15 -1325 ((-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))) (-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))))) (-15 -2084 ((-626 (-2 (|:| -2654 (-626 |#4|)) (|:| -3249 |#5|) (|:| |ineq| (-626 |#4|)))) (-626 |#4|) (-626 |#5|) (-121) (-121))) (-15 -3554 ((-3 (-2 (|:| -2654 (-626 |#4|)) (|:| -3249 |#5|) (|:| |ineq| (-626 |#4|))) "failed") (-626 |#4|) |#5| (-626 |#4|) (-121) (-121) (-121) (-121) (-121)))) -((-1395 (((-1153) $) 15)) (-2981 (((-1135) $) 16)) (-2785 (($ (-1153) (-1135)) 14)) (-2801 (((-842) $) 13))) -(((-982) (-13 (-600 (-842)) (-10 -8 (-15 -2785 ($ (-1153) (-1135))) (-15 -1395 ((-1153) $)) (-15 -2981 ((-1135) $))))) (T -982)) -((-2785 (*1 *1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-1135)) (-5 *1 (-982)))) (-1395 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-982)))) (-2981 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-982))))) -(-13 (-600 (-842)) (-10 -8 (-15 -2785 ($ (-1153) (-1135))) (-15 -1395 ((-1153) $)) (-15 -2981 ((-1135) $)))) -((-2803 ((|#4| (-1 |#2| |#1|) |#3|) 14))) -(((-983 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2803 (|#4| (-1 |#2| |#1|) |#3|))) (-550) (-550) (-985 |#1|) (-985 |#2|)) (T -983)) -((-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-550)) (-4 *6 (-550)) (-4 *2 (-985 *6)) (-5 *1 (-983 *5 *6 *4 *2)) (-4 *4 (-985 *5))))) -(-10 -7 (-15 -2803 (|#4| (-1 |#2| |#1|) |#3|))) -((-1473 (((-3 |#2| "failed") $) NIL) (((-3 (-1153) "failed") $) 65) (((-3 (-403 (-560)) "failed") $) NIL) (((-3 (-560) "failed") $) 95)) (-3001 ((|#2| $) NIL) (((-1153) $) 60) (((-403 (-560)) $) NIL) (((-560) $) 92)) (-2616 (((-671 (-560)) (-671 $)) NIL) (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) NIL) (((-2 (|:| -3818 (-671 |#2|)) (|:| |vec| (-1236 |#2|))) (-671 $) (-1236 $)) 112) (((-671 |#2|) (-671 $)) 28)) (-1666 (($) 98)) (-2399 (((-876 (-560) $) $ (-879 (-560)) (-876 (-560) $)) 74) (((-876 (-375) $) $ (-879 (-375)) (-876 (-375) $)) 83)) (-1540 (($ $) 10)) (-1424 (((-3 $ "failed") $) 20)) (-2803 (($ (-1 |#2| |#2|) $) 22)) (-1394 (($) 16)) (-4302 (($ $) 54)) (-2443 (($ $) NIL) (($ $ (-755)) NIL) (($ $ (-1153)) NIL) (($ $ (-626 (-1153))) NIL) (($ $ (-1153) (-755)) NIL) (($ $ (-626 (-1153)) (-626 (-755))) NIL) (($ $ (-1 |#2| |#2|) (-755)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-1646 (($ $) 12)) (-4255 (((-879 (-560)) $) 69) (((-879 (-375)) $) 78) (((-533) $) 40) (((-375) $) 44) (((-213) $) 47)) (-2801 (((-842) $) NIL) (($ (-560)) NIL) (($ $) NIL) (($ (-403 (-560))) 90) (($ |#2|) NIL) (($ (-1153)) 57)) (-1751 (((-755)) 31)) (-1667 (((-121) $ $) 50))) -(((-984 |#1| |#2|) (-10 -8 (-15 -1667 ((-121) |#1| |#1|)) (-15 -1394 (|#1|)) (-15 -1424 ((-3 |#1| "failed") |#1|)) (-15 -3001 ((-560) |#1|)) (-15 -1473 ((-3 (-560) "failed") |#1|)) (-15 -3001 ((-403 (-560)) |#1|)) (-15 -1473 ((-3 (-403 (-560)) "failed") |#1|)) (-15 -4255 ((-213) |#1|)) (-15 -4255 ((-375) |#1|)) (-15 -4255 ((-533) |#1|)) (-15 -3001 ((-1153) |#1|)) (-15 -1473 ((-3 (-1153) "failed") |#1|)) (-15 -2801 (|#1| (-1153))) (-15 -1666 (|#1|)) (-15 -4302 (|#1| |#1|)) (-15 -1646 (|#1| |#1|)) (-15 -1540 (|#1| |#1|)) (-15 -2399 ((-876 (-375) |#1|) |#1| (-879 (-375)) (-876 (-375) |#1|))) (-15 -2399 ((-876 (-560) |#1|) |#1| (-879 (-560)) (-876 (-560) |#1|))) (-15 -4255 ((-879 (-375)) |#1|)) (-15 -4255 ((-879 (-560)) |#1|)) (-15 -2616 ((-671 |#2|) (-671 |#1|))) (-15 -2616 ((-2 (|:| -3818 (-671 |#2|)) (|:| |vec| (-1236 |#2|))) (-671 |#1|) (-1236 |#1|))) (-15 -2616 ((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 |#1|) (-1236 |#1|))) (-15 -2616 ((-671 (-560)) (-671 |#1|))) (-15 -2443 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2443 (|#1| |#1| (-1 |#2| |#2|) (-755))) (-15 -2443 (|#1| |#1| (-626 (-1153)) (-626 (-755)))) (-15 -2443 (|#1| |#1| (-1153) (-755))) (-15 -2443 (|#1| |#1| (-626 (-1153)))) (-15 -2443 (|#1| |#1| (-1153))) (-15 -2443 (|#1| |#1| (-755))) (-15 -2443 (|#1| |#1|)) (-15 -2803 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3001 (|#2| |#1|)) (-15 -1473 ((-3 |#2| "failed") |#1|)) (-15 -2801 (|#1| |#2|)) (-15 -2801 (|#1| (-403 (-560)))) (-15 -2801 (|#1| |#1|)) (-15 -2801 (|#1| (-560))) (-15 -1751 ((-755))) (-15 -2801 ((-842) |#1|))) (-985 |#2|) (-550)) (T -984)) -((-1751 (*1 *2) (-12 (-4 *4 (-550)) (-5 *2 (-755)) (-5 *1 (-984 *3 *4)) (-4 *3 (-985 *4))))) -(-10 -8 (-15 -1667 ((-121) |#1| |#1|)) (-15 -1394 (|#1|)) (-15 -1424 ((-3 |#1| "failed") |#1|)) (-15 -3001 ((-560) |#1|)) (-15 -1473 ((-3 (-560) "failed") |#1|)) (-15 -3001 ((-403 (-560)) |#1|)) (-15 -1473 ((-3 (-403 (-560)) "failed") |#1|)) (-15 -4255 ((-213) |#1|)) (-15 -4255 ((-375) |#1|)) (-15 -4255 ((-533) |#1|)) (-15 -3001 ((-1153) |#1|)) (-15 -1473 ((-3 (-1153) "failed") |#1|)) (-15 -2801 (|#1| (-1153))) (-15 -1666 (|#1|)) (-15 -4302 (|#1| |#1|)) (-15 -1646 (|#1| |#1|)) (-15 -1540 (|#1| |#1|)) (-15 -2399 ((-876 (-375) |#1|) |#1| (-879 (-375)) (-876 (-375) |#1|))) (-15 -2399 ((-876 (-560) |#1|) |#1| (-879 (-560)) (-876 (-560) |#1|))) (-15 -4255 ((-879 (-375)) |#1|)) (-15 -4255 ((-879 (-560)) |#1|)) (-15 -2616 ((-671 |#2|) (-671 |#1|))) (-15 -2616 ((-2 (|:| -3818 (-671 |#2|)) (|:| |vec| (-1236 |#2|))) (-671 |#1|) (-1236 |#1|))) (-15 -2616 ((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 |#1|) (-1236 |#1|))) (-15 -2616 ((-671 (-560)) (-671 |#1|))) (-15 -2443 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2443 (|#1| |#1| (-1 |#2| |#2|) (-755))) (-15 -2443 (|#1| |#1| (-626 (-1153)) (-626 (-755)))) (-15 -2443 (|#1| |#1| (-1153) (-755))) (-15 -2443 (|#1| |#1| (-626 (-1153)))) (-15 -2443 (|#1| |#1| (-1153))) (-15 -2443 (|#1| |#1| (-755))) (-15 -2443 (|#1| |#1|)) (-15 -2803 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3001 (|#2| |#1|)) (-15 -1473 ((-3 |#2| "failed") |#1|)) (-15 -2801 (|#1| |#2|)) (-15 -2801 (|#1| (-403 (-560)))) (-15 -2801 (|#1| |#1|)) (-15 -2801 (|#1| (-560))) (-15 -1751 ((-755))) (-15 -2801 ((-842) |#1|))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-1947 ((|#1| $) 135 (|has| |#1| (-296)))) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) 40)) (-1350 (($ $) 39)) (-3376 (((-121) $) 37)) (-2314 (((-3 $ "failed") $ $) 18)) (-1776 (((-414 (-1149 $)) (-1149 $)) 126 (|has| |#1| (-896)))) (-3065 (($ $) 71)) (-2953 (((-414 $) $) 70)) (-1887 (((-3 (-626 (-1149 $)) "failed") (-626 (-1149 $)) (-1149 $)) 129 (|has| |#1| (-896)))) (-4179 (((-121) $ $) 57)) (-4235 (((-560) $) 116 (|has| |#1| (-807)))) (-4236 (($) 16 T CONST)) (-1473 (((-3 |#1| "failed") $) 174) (((-3 (-1153) "failed") $) 124 (|has| |#1| (-1029 (-1153)))) (((-3 (-403 (-560)) "failed") $) 108 (|has| |#1| (-1029 (-560)))) (((-3 (-560) "failed") $) 106 (|has| |#1| (-1029 (-560))))) (-3001 ((|#1| $) 173) (((-1153) $) 123 (|has| |#1| (-1029 (-1153)))) (((-403 (-560)) $) 107 (|has| |#1| (-1029 (-560)))) (((-560) $) 105 (|has| |#1| (-1029 (-560))))) (-2563 (($ $ $) 53)) (-2616 (((-671 (-560)) (-671 $)) 148 (|has| |#1| (-622 (-560)))) (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) 147 (|has| |#1| (-622 (-560)))) (((-2 (|:| -3818 (-671 |#1|)) (|:| |vec| (-1236 |#1|))) (-671 $) (-1236 $)) 146) (((-671 |#1|) (-671 $)) 145)) (-1823 (((-3 $ "failed") $) 33)) (-1666 (($) 133 (|has| |#1| (-542)))) (-2572 (($ $ $) 54)) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) 49)) (-3319 (((-121) $) 69)) (-1786 (((-121) $) 118 (|has| |#1| (-807)))) (-2399 (((-876 (-560) $) $ (-879 (-560)) (-876 (-560) $)) 142 (|has| |#1| (-873 (-560)))) (((-876 (-375) $) $ (-879 (-375)) (-876 (-375) $)) 141 (|has| |#1| (-873 (-375))))) (-2642 (((-121) $) 30)) (-1540 (($ $) 137)) (-2132 ((|#1| $) 139)) (-1424 (((-3 $ "failed") $) 104 (|has| |#1| (-1128)))) (-2187 (((-121) $) 117 (|has| |#1| (-807)))) (-3856 (((-3 (-626 $) "failed") (-626 $) $) 50)) (-4325 (($ $ $) 114 (|has| |#1| (-834)))) (-2501 (($ $ $) 113 (|has| |#1| (-834)))) (-2803 (($ (-1 |#1| |#1|) $) 165)) (-2582 (($ $ $) 45) (($ (-626 $)) 44)) (-1291 (((-1135) $) 9)) (-1701 (($ $) 68)) (-1394 (($) 103 (|has| |#1| (-1128)) CONST)) (-4353 (((-1100) $) 10)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) 43)) (-4440 (($ $ $) 47) (($ (-626 $)) 46)) (-4302 (($ $) 134 (|has| |#1| (-296)))) (-2150 ((|#1| $) 131 (|has| |#1| (-542)))) (-3817 (((-414 (-1149 $)) (-1149 $)) 128 (|has| |#1| (-896)))) (-3032 (((-414 (-1149 $)) (-1149 $)) 127 (|has| |#1| (-896)))) (-1601 (((-414 $) $) 72)) (-3505 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2336 (((-3 $ "failed") $ $) 41)) (-3456 (((-3 (-626 $) "failed") (-626 $) $) 48)) (-4450 (($ $ (-626 |#1|) (-626 |#1|)) 171 (|has| |#1| (-298 |#1|))) (($ $ |#1| |#1|) 170 (|has| |#1| (-298 |#1|))) (($ $ (-283 |#1|)) 169 (|has| |#1| (-298 |#1|))) (($ $ (-626 (-283 |#1|))) 168 (|has| |#1| (-298 |#1|))) (($ $ (-626 (-1153)) (-626 |#1|)) 167 (|has| |#1| (-515 (-1153) |#1|))) (($ $ (-1153) |#1|) 166 (|has| |#1| (-515 (-1153) |#1|)))) (-4445 (((-755) $) 56)) (-2778 (($ $ |#1|) 172 (|has| |#1| (-276 |#1| |#1|)))) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) 55)) (-2443 (($ $) 164 (|has| |#1| (-221))) (($ $ (-755)) 162 (|has| |#1| (-221))) (($ $ (-1153)) 160 (|has| |#1| (-887 (-1153)))) (($ $ (-626 (-1153))) 159 (|has| |#1| (-887 (-1153)))) (($ $ (-1153) (-755)) 158 (|has| |#1| (-887 (-1153)))) (($ $ (-626 (-1153)) (-626 (-755))) 157 (|has| |#1| (-887 (-1153)))) (($ $ (-1 |#1| |#1|) (-755)) 150) (($ $ (-1 |#1| |#1|)) 149)) (-1646 (($ $) 136)) (-2139 ((|#1| $) 138)) (-4255 (((-879 (-560)) $) 144 (|has| |#1| (-601 (-879 (-560))))) (((-879 (-375)) $) 143 (|has| |#1| (-601 (-879 (-375))))) (((-533) $) 121 (|has| |#1| (-601 (-533)))) (((-375) $) 120 (|has| |#1| (-1013))) (((-213) $) 119 (|has| |#1| (-1013)))) (-3248 (((-3 (-1236 $) "failed") (-671 $)) 130 (-2256 (|has| $ (-146)) (|has| |#1| (-896))))) (-2801 (((-842) $) 11) (($ (-560)) 27) (($ $) 42) (($ (-403 (-560))) 63) (($ |#1|) 177) (($ (-1153)) 125 (|has| |#1| (-1029 (-1153))))) (-2272 (((-3 $ "failed") $) 122 (-2318 (|has| |#1| (-146)) (-2256 (|has| $ (-146)) (|has| |#1| (-896)))))) (-1751 (((-755)) 28)) (-4316 ((|#1| $) 132 (|has| |#1| (-542)))) (-2328 (((-121) $ $) 38)) (-1822 (($ $) 115 (|has| |#1| (-807)))) (-2464 (($ $ (-909)) 25) (($ $ (-755)) 32) (($ $ (-560)) 67)) (-3304 (($) 17 T CONST)) (-1459 (($) 29 T CONST)) (-2500 (($ $) 163 (|has| |#1| (-221))) (($ $ (-755)) 161 (|has| |#1| (-221))) (($ $ (-1153)) 156 (|has| |#1| (-887 (-1153)))) (($ $ (-626 (-1153))) 155 (|has| |#1| (-887 (-1153)))) (($ $ (-1153) (-755)) 154 (|has| |#1| (-887 (-1153)))) (($ $ (-626 (-1153)) (-626 (-755))) 153 (|has| |#1| (-887 (-1153)))) (($ $ (-1 |#1| |#1|) (-755)) 152) (($ $ (-1 |#1| |#1|)) 151)) (-1691 (((-121) $ $) 111 (|has| |#1| (-834)))) (-1675 (((-121) $ $) 110 (|has| |#1| (-834)))) (-1653 (((-121) $ $) 6)) (-1683 (((-121) $ $) 112 (|has| |#1| (-834)))) (-1667 (((-121) $ $) 109 (|has| |#1| (-834)))) (-1733 (($ $ $) 62) (($ |#1| |#1|) 140)) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 24) (($ $ (-755)) 31) (($ $ (-560)) 66)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 23) (($ $ (-403 (-560))) 65) (($ (-403 (-560)) $) 64) (($ |#1| $) 176) (($ $ |#1|) 175))) -(((-985 |#1|) (-1267) (-550)) (T -985)) -((-1733 (*1 *1 *2 *2) (-12 (-4 *1 (-985 *2)) (-4 *2 (-550)))) (-2132 (*1 *2 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-550)))) (-2139 (*1 *2 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-550)))) (-1540 (*1 *1 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-550)))) (-1646 (*1 *1 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-550)))) (-1947 (*1 *2 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-550)) (-4 *2 (-296)))) (-4302 (*1 *1 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-550)) (-4 *2 (-296)))) (-1666 (*1 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-542)) (-4 *2 (-550)))) (-4316 (*1 *2 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-550)) (-4 *2 (-542)))) (-2150 (*1 *2 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-550)) (-4 *2 (-542))))) -(-13 (-359) (-43 |t#1|) (-1029 |t#1|) (-330 |t#1|) (-219 |t#1|) (-373 |t#1|) (-871 |t#1|) (-396 |t#1|) (-10 -8 (-15 -1733 ($ |t#1| |t#1|)) (-15 -2132 (|t#1| $)) (-15 -2139 (|t#1| $)) (-15 -1540 ($ $)) (-15 -1646 ($ $)) (IF (|has| |t#1| (-1128)) (-6 (-1128)) |noBranch|) (IF (|has| |t#1| (-1029 (-560))) (PROGN (-6 (-1029 (-560))) (-6 (-1029 (-403 (-560))))) |noBranch|) (IF (|has| |t#1| (-834)) (-6 (-834)) |noBranch|) (IF (|has| |t#1| (-807)) (-6 (-807)) |noBranch|) (IF (|has| |t#1| (-1013)) (-6 (-1013)) |noBranch|) (IF (|has| |t#1| (-601 (-533))) (-6 (-601 (-533))) |noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |noBranch|) (IF (|has| |t#1| (-1029 (-1153))) (-6 (-1029 (-1153))) |noBranch|) (IF (|has| |t#1| (-296)) (PROGN (-15 -1947 (|t#1| $)) (-15 -4302 ($ $))) |noBranch|) (IF (|has| |t#1| (-542)) (PROGN (-15 -1666 ($)) (-15 -4316 (|t#1| $)) (-15 -2150 (|t#1| $))) |noBranch|) (IF (|has| |t#1| (-896)) (-6 (-896)) |noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-43 (-403 (-560))) . T) ((-43 |#1|) . T) ((-43 $) . T) ((-105) . T) ((-120 (-403 (-560)) (-403 (-560))) . T) ((-120 |#1| |#1|) . T) ((-120 $ $) . T) ((-137) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-600 (-842)) . T) ((-170) . T) ((-601 (-213)) |has| |#1| (-1013)) ((-601 (-375)) |has| |#1| (-1013)) ((-601 (-533)) |has| |#1| (-601 (-533))) ((-601 (-879 (-375))) |has| |#1| (-601 (-879 (-375)))) ((-601 (-879 (-560))) |has| |#1| (-601 (-879 (-560)))) ((-219 |#1|) . T) ((-221) |has| |#1| (-221)) ((-233) . T) ((-276 |#1| $) |has| |#1| (-276 |#1| |#1|)) ((-280) . T) ((-296) . T) ((-298 |#1|) |has| |#1| (-298 |#1|)) ((-359) . T) ((-330 |#1|) . T) ((-373 |#1|) . T) ((-396 |#1|) . T) ((-447) . T) ((-515 (-1153) |#1|) |has| |#1| (-515 (-1153) |#1|)) ((-515 |#1| |#1|) |has| |#1| (-298 |#1|)) ((-550) . T) ((-629 (-403 (-560))) . T) ((-629 |#1|) . T) ((-629 $) . T) ((-622 (-560)) |has| |#1| (-622 (-560))) ((-622 |#1|) . T) ((-699 (-403 (-560))) . T) ((-699 |#1|) . T) ((-699 $) . T) ((-708) . T) ((-778) |has| |#1| (-807)) ((-779) |has| |#1| (-807)) ((-781) |has| |#1| (-807)) ((-782) |has| |#1| (-807)) ((-807) |has| |#1| (-807)) ((-832) |has| |#1| (-807)) ((-834) -2318 (|has| |#1| (-834)) (|has| |#1| (-807))) ((-887 (-1153)) |has| |#1| (-887 (-1153))) ((-873 (-375)) |has| |#1| (-873 (-375))) ((-873 (-560)) |has| |#1| (-873 (-560))) ((-871 |#1|) . T) ((-896) |has| |#1| (-896)) ((-908) . T) ((-1013) |has| |#1| (-1013)) ((-1029 (-403 (-560))) |has| |#1| (-1029 (-560))) ((-1029 (-560)) |has| |#1| (-1029 (-560))) ((-1029 (-1153)) |has| |#1| (-1029 (-1153))) ((-1029 |#1|) . T) ((-1045 (-403 (-560))) . T) ((-1045 |#1|) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1094) . T) ((-1082) . T) ((-1128) |has| |#1| (-1128)) ((-1187) . T) ((-1191) . T)) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-4236 (($) NIL T CONST)) (-3609 (($ (-1119 |#1| |#2|)) 11)) (-3851 (((-1119 |#1| |#2|) $) 12)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2778 ((|#2| $ (-228 |#1| |#2|)) 16)) (-2801 (((-842) $) NIL)) (-3304 (($) NIL T CONST)) (-1653 (((-121) $ $) NIL)) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL))) -(((-986 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -3609 ($ (-1119 |#1| |#2|))) (-15 -3851 ((-1119 |#1| |#2|) $)) (-15 -2778 (|#2| $ (-228 |#1| |#2|))))) (-909) (-359)) (T -986)) -((-3609 (*1 *1 *2) (-12 (-5 *2 (-1119 *3 *4)) (-14 *3 (-909)) (-4 *4 (-359)) (-5 *1 (-986 *3 *4)))) (-3851 (*1 *2 *1) (-12 (-5 *2 (-1119 *3 *4)) (-5 *1 (-986 *3 *4)) (-14 *3 (-909)) (-4 *4 (-359)))) (-2778 (*1 *2 *1 *3) (-12 (-5 *3 (-228 *4 *2)) (-14 *4 (-909)) (-4 *2 (-359)) (-5 *1 (-986 *4 *2))))) -(-13 (-21) (-10 -8 (-15 -3609 ($ (-1119 |#1| |#2|))) (-15 -3851 ((-1119 |#1| |#2|) $)) (-15 -2778 (|#2| $ (-228 |#1| |#2|))))) -((-2601 (((-121) $ $) 18 (|has| |#1| (-1082)))) (-3909 (((-121) $ (-755)) 8)) (-4236 (($) 7 T CONST)) (-3547 (($ $) 43)) (-1981 (((-626 |#1|) $) 30 (|has| $ (-6 -4505)))) (-2122 (((-121) $ (-755)) 9)) (-2130 (((-626 |#1|) $) 29 (|has| $ (-6 -4505)))) (-2030 (((-121) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-3778 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#1| |#1|) $) 35)) (-3441 (((-121) $ (-755)) 10)) (-2349 (((-755) $) 42)) (-1291 (((-1135) $) 22 (|has| |#1| (-1082)))) (-2525 ((|#1| $) 36)) (-4345 (($ |#1| $) 37)) (-4353 (((-1100) $) 21 (|has| |#1| (-1082)))) (-3043 ((|#1| $) 41)) (-2146 ((|#1| $) 38)) (-2865 (((-121) (-1 (-121) |#1|) $) 32 (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#1|))) 26 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-283 |#1|)) 25 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-626 |#1|) (-626 |#1|)) 23 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))))) (-2214 (((-121) $ $) 14)) (-3205 ((|#1| |#1| $) 45)) (-4191 (((-121) $) 11)) (-3260 (($) 12)) (-4433 ((|#1| $) 44)) (-4035 (((-755) (-1 (-121) |#1|) $) 31 (|has| $ (-6 -4505))) (((-755) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-2813 (($ $) 13)) (-2801 (((-842) $) 20 (|has| |#1| (-1082)))) (-1354 (($ (-626 |#1|)) 39)) (-2846 ((|#1| $) 40)) (-3656 (((-121) (-1 (-121) |#1|) $) 33 (|has| $ (-6 -4505)))) (-1653 (((-121) $ $) 19 (|has| |#1| (-1082)))) (-2271 (((-755) $) 6 (|has| $ (-6 -4505))))) -(((-987 |#1|) (-1267) (-1187)) (T -987)) -((-3205 (*1 *2 *2 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-1187)))) (-4433 (*1 *2 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-1187)))) (-3547 (*1 *1 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-1187)))) (-2349 (*1 *2 *1) (-12 (-4 *1 (-987 *3)) (-4 *3 (-1187)) (-5 *2 (-755)))) (-3043 (*1 *2 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-1187)))) (-2846 (*1 *2 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-1187))))) -(-13 (-111 |t#1|) (-10 -8 (-6 -4505) (-15 -3205 (|t#1| |t#1| $)) (-15 -4433 (|t#1| $)) (-15 -3547 ($ $)) (-15 -2349 ((-755) $)) (-15 -3043 (|t#1| $)) (-15 -2846 (|t#1| $)))) -(((-39) . T) ((-111 |#1|) . T) ((-105) |has| |#1| (-1082)) ((-600 (-842)) |has| |#1| (-1082)) ((-298 |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))) ((-492 |#1|) . T) ((-515 |#1| |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))) ((-1082) |has| |#1| (-1082)) ((-1187) . T)) -((-2832 (((-121) $) 42)) (-1473 (((-3 (-560) "failed") $) NIL) (((-3 (-403 (-560)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-3001 (((-560) $) NIL) (((-403 (-560)) $) NIL) ((|#2| $) 43)) (-1367 (((-3 (-403 (-560)) "failed") $) 78)) (-1689 (((-121) $) 72)) (-1519 (((-403 (-560)) $) 76)) (-2642 (((-121) $) 41)) (-3339 ((|#2| $) 22)) (-2803 (($ (-1 |#2| |#2|) $) 19)) (-1701 (($ $) 61)) (-2443 (($ $) NIL) (($ $ (-755)) NIL) (($ $ (-1153)) NIL) (($ $ (-626 (-1153))) NIL) (($ $ (-1153) (-755)) NIL) (($ $ (-626 (-1153)) (-626 (-755))) NIL) (($ $ (-1 |#2| |#2|) (-755)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-4255 (((-533) $) 67)) (-3101 (($ $) 17)) (-2801 (((-842) $) 56) (($ (-560)) 38) (($ |#2|) 36) (($ (-403 (-560))) NIL)) (-1751 (((-755)) 10)) (-1822 ((|#2| $) 71)) (-1653 (((-121) $ $) 25)) (-1667 (((-121) $ $) 69)) (-1725 (($ $) 29) (($ $ $) 28)) (-1716 (($ $ $) 26)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-403 (-560))) NIL) (($ (-403 (-560)) $) NIL))) -(((-988 |#1| |#2|) (-10 -8 (-15 -2801 (|#1| (-403 (-560)))) (-15 -1667 ((-121) |#1| |#1|)) (-15 * (|#1| (-403 (-560)) |#1|)) (-15 * (|#1| |#1| (-403 (-560)))) (-15 -1701 (|#1| |#1|)) (-15 -4255 ((-533) |#1|)) (-15 -1367 ((-3 (-403 (-560)) "failed") |#1|)) (-15 -1519 ((-403 (-560)) |#1|)) (-15 -1689 ((-121) |#1|)) (-15 -1822 (|#2| |#1|)) (-15 -3339 (|#2| |#1|)) (-15 -3101 (|#1| |#1|)) (-15 -2803 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2443 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2443 (|#1| |#1| (-1 |#2| |#2|) (-755))) (-15 -2443 (|#1| |#1| (-626 (-1153)) (-626 (-755)))) (-15 -2443 (|#1| |#1| (-1153) (-755))) (-15 -2443 (|#1| |#1| (-626 (-1153)))) (-15 -2443 (|#1| |#1| (-1153))) (-15 -2443 (|#1| |#1| (-755))) (-15 -2443 (|#1| |#1|)) (-15 -3001 (|#2| |#1|)) (-15 -1473 ((-3 |#2| "failed") |#1|)) (-15 -1473 ((-3 (-403 (-560)) "failed") |#1|)) (-15 -3001 ((-403 (-560)) |#1|)) (-15 -1473 ((-3 (-560) "failed") |#1|)) (-15 -3001 ((-560) |#1|)) (-15 -2801 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2801 (|#1| (-560))) (-15 -1751 ((-755))) (-15 -2642 ((-121) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 -1725 (|#1| |#1| |#1|)) (-15 -1725 (|#1| |#1|)) (-15 * (|#1| (-755) |#1|)) (-15 -2832 ((-121) |#1|)) (-15 * (|#1| (-909) |#1|)) (-15 -1716 (|#1| |#1| |#1|)) (-15 -2801 ((-842) |#1|)) (-15 -1653 ((-121) |#1| |#1|))) (-989 |#2|) (-170)) (T -988)) -((-1751 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-755)) (-5 *1 (-988 *3 *4)) (-4 *3 (-989 *4))))) -(-10 -8 (-15 -2801 (|#1| (-403 (-560)))) (-15 -1667 ((-121) |#1| |#1|)) (-15 * (|#1| (-403 (-560)) |#1|)) (-15 * (|#1| |#1| (-403 (-560)))) (-15 -1701 (|#1| |#1|)) (-15 -4255 ((-533) |#1|)) (-15 -1367 ((-3 (-403 (-560)) "failed") |#1|)) (-15 -1519 ((-403 (-560)) |#1|)) (-15 -1689 ((-121) |#1|)) (-15 -1822 (|#2| |#1|)) (-15 -3339 (|#2| |#1|)) (-15 -3101 (|#1| |#1|)) (-15 -2803 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2443 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2443 (|#1| |#1| (-1 |#2| |#2|) (-755))) (-15 -2443 (|#1| |#1| (-626 (-1153)) (-626 (-755)))) (-15 -2443 (|#1| |#1| (-1153) (-755))) (-15 -2443 (|#1| |#1| (-626 (-1153)))) (-15 -2443 (|#1| |#1| (-1153))) (-15 -2443 (|#1| |#1| (-755))) (-15 -2443 (|#1| |#1|)) (-15 -3001 (|#2| |#1|)) (-15 -1473 ((-3 |#2| "failed") |#1|)) (-15 -1473 ((-3 (-403 (-560)) "failed") |#1|)) (-15 -3001 ((-403 (-560)) |#1|)) (-15 -1473 ((-3 (-560) "failed") |#1|)) (-15 -3001 ((-560) |#1|)) (-15 -2801 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2801 (|#1| (-560))) (-15 -1751 ((-755))) (-15 -2642 ((-121) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 -1725 (|#1| |#1| |#1|)) (-15 -1725 (|#1| |#1|)) (-15 * (|#1| (-755) |#1|)) (-15 -2832 ((-121) |#1|)) (-15 * (|#1| (-909) |#1|)) (-15 -1716 (|#1| |#1| |#1|)) (-15 -2801 ((-842) |#1|)) (-15 -1653 ((-121) |#1| |#1|))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-2314 (((-3 $ "failed") $ $) 18)) (-4236 (($) 16 T CONST)) (-1473 (((-3 (-560) "failed") $) 117 (|has| |#1| (-1029 (-560)))) (((-3 (-403 (-560)) "failed") $) 115 (|has| |#1| (-1029 (-403 (-560))))) (((-3 |#1| "failed") $) 114)) (-3001 (((-560) $) 118 (|has| |#1| (-1029 (-560)))) (((-403 (-560)) $) 116 (|has| |#1| (-1029 (-403 (-560))))) ((|#1| $) 113)) (-2616 (((-671 (-560)) (-671 $)) 88 (|has| |#1| (-622 (-560)))) (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) 87 (|has| |#1| (-622 (-560)))) (((-2 (|:| -3818 (-671 |#1|)) (|:| |vec| (-1236 |#1|))) (-671 $) (-1236 $)) 86) (((-671 |#1|) (-671 $)) 85)) (-1823 (((-3 $ "failed") $) 33)) (-1611 ((|#1| $) 78)) (-1367 (((-3 (-403 (-560)) "failed") $) 74 (|has| |#1| (-542)))) (-1689 (((-121) $) 76 (|has| |#1| (-542)))) (-1519 (((-403 (-560)) $) 75 (|has| |#1| (-542)))) (-2754 (($ |#1| |#1| |#1| |#1|) 79)) (-2642 (((-121) $) 30)) (-3339 ((|#1| $) 80)) (-4325 (($ $ $) 66 (|has| |#1| (-834)))) (-2501 (($ $ $) 65 (|has| |#1| (-834)))) (-2803 (($ (-1 |#1| |#1|) $) 89)) (-1291 (((-1135) $) 9)) (-1701 (($ $) 71 (|has| |#1| (-359)))) (-3935 ((|#1| $) 81)) (-4031 ((|#1| $) 82)) (-2136 ((|#1| $) 83)) (-4353 (((-1100) $) 10)) (-4450 (($ $ (-626 |#1|) (-626 |#1|)) 95 (|has| |#1| (-298 |#1|))) (($ $ |#1| |#1|) 94 (|has| |#1| (-298 |#1|))) (($ $ (-283 |#1|)) 93 (|has| |#1| (-298 |#1|))) (($ $ (-626 (-283 |#1|))) 92 (|has| |#1| (-298 |#1|))) (($ $ (-626 (-1153)) (-626 |#1|)) 91 (|has| |#1| (-515 (-1153) |#1|))) (($ $ (-1153) |#1|) 90 (|has| |#1| (-515 (-1153) |#1|)))) (-2778 (($ $ |#1|) 96 (|has| |#1| (-276 |#1| |#1|)))) (-2443 (($ $) 112 (|has| |#1| (-221))) (($ $ (-755)) 110 (|has| |#1| (-221))) (($ $ (-1153)) 108 (|has| |#1| (-887 (-1153)))) (($ $ (-626 (-1153))) 107 (|has| |#1| (-887 (-1153)))) (($ $ (-1153) (-755)) 106 (|has| |#1| (-887 (-1153)))) (($ $ (-626 (-1153)) (-626 (-755))) 105 (|has| |#1| (-887 (-1153)))) (($ $ (-1 |#1| |#1|) (-755)) 98) (($ $ (-1 |#1| |#1|)) 97)) (-4255 (((-533) $) 72 (|has| |#1| (-601 (-533))))) (-3101 (($ $) 84)) (-2801 (((-842) $) 11) (($ (-560)) 27) (($ |#1|) 36) (($ (-403 (-560))) 60 (-2318 (|has| |#1| (-359)) (|has| |#1| (-1029 (-403 (-560))))))) (-2272 (((-3 $ "failed") $) 73 (|has| |#1| (-146)))) (-1751 (((-755)) 28)) (-1822 ((|#1| $) 77 (|has| |#1| (-1048)))) (-2464 (($ $ (-909)) 25) (($ $ (-755)) 32) (($ $ (-560)) 70 (|has| |#1| (-359)))) (-3304 (($) 17 T CONST)) (-1459 (($) 29 T CONST)) (-2500 (($ $) 111 (|has| |#1| (-221))) (($ $ (-755)) 109 (|has| |#1| (-221))) (($ $ (-1153)) 104 (|has| |#1| (-887 (-1153)))) (($ $ (-626 (-1153))) 103 (|has| |#1| (-887 (-1153)))) (($ $ (-1153) (-755)) 102 (|has| |#1| (-887 (-1153)))) (($ $ (-626 (-1153)) (-626 (-755))) 101 (|has| |#1| (-887 (-1153)))) (($ $ (-1 |#1| |#1|) (-755)) 100) (($ $ (-1 |#1| |#1|)) 99)) (-1691 (((-121) $ $) 63 (|has| |#1| (-834)))) (-1675 (((-121) $ $) 62 (|has| |#1| (-834)))) (-1653 (((-121) $ $) 6)) (-1683 (((-121) $ $) 64 (|has| |#1| (-834)))) (-1667 (((-121) $ $) 61 (|has| |#1| (-834)))) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 24) (($ $ (-755)) 31) (($ $ (-560)) 69 (|has| |#1| (-359)))) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 23) (($ $ |#1|) 38) (($ |#1| $) 37) (($ $ (-403 (-560))) 68 (|has| |#1| (-359))) (($ (-403 (-560)) $) 67 (|has| |#1| (-359))))) -(((-989 |#1|) (-1267) (-170)) (T -989)) -((-3101 (*1 *1 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-170)))) (-2136 (*1 *2 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-170)))) (-4031 (*1 *2 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-170)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-170)))) (-3339 (*1 *2 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-170)))) (-2754 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-989 *2)) (-4 *2 (-170)))) (-1611 (*1 *2 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-170)))) (-1822 (*1 *2 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-170)) (-4 *2 (-1048)))) (-1689 (*1 *2 *1) (-12 (-4 *1 (-989 *3)) (-4 *3 (-170)) (-4 *3 (-542)) (-5 *2 (-121)))) (-1519 (*1 *2 *1) (-12 (-4 *1 (-989 *3)) (-4 *3 (-170)) (-4 *3 (-542)) (-5 *2 (-403 (-560))))) (-1367 (*1 *2 *1) (|partial| -12 (-4 *1 (-989 *3)) (-4 *3 (-170)) (-4 *3 (-542)) (-5 *2 (-403 (-560)))))) -(-13 (-43 |t#1|) (-407 |t#1|) (-219 |t#1|) (-330 |t#1|) (-373 |t#1|) (-10 -8 (-15 -3101 ($ $)) (-15 -2136 (|t#1| $)) (-15 -4031 (|t#1| $)) (-15 -3935 (|t#1| $)) (-15 -3339 (|t#1| $)) (-15 -2754 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -1611 (|t#1| $)) (IF (|has| |t#1| (-280)) (-6 (-280)) |noBranch|) (IF (|has| |t#1| (-834)) (-6 (-834)) |noBranch|) (IF (|has| |t#1| (-359)) (-6 (-233)) |noBranch|) (IF (|has| |t#1| (-601 (-533))) (-6 (-601 (-533))) |noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |noBranch|) (IF (|has| |t#1| (-1048)) (-15 -1822 (|t#1| $)) |noBranch|) (IF (|has| |t#1| (-542)) (PROGN (-15 -1689 ((-121) $)) (-15 -1519 ((-403 (-560)) $)) (-15 -1367 ((-3 (-403 (-560)) "failed") $))) |noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-43 (-403 (-560))) |has| |#1| (-359)) ((-43 |#1|) . T) ((-105) . T) ((-120 (-403 (-560)) (-403 (-560))) |has| |#1| (-359)) ((-120 |#1| |#1|) . T) ((-120 $ $) -2318 (|has| |#1| (-359)) (|has| |#1| (-280))) ((-137) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-600 (-842)) . T) ((-601 (-533)) |has| |#1| (-601 (-533))) ((-219 |#1|) . T) ((-221) |has| |#1| (-221)) ((-233) |has| |#1| (-359)) ((-276 |#1| $) |has| |#1| (-276 |#1| |#1|)) ((-280) -2318 (|has| |#1| (-359)) (|has| |#1| (-280))) ((-298 |#1|) |has| |#1| (-298 |#1|)) ((-330 |#1|) . T) ((-373 |#1|) . T) ((-407 |#1|) . T) ((-515 (-1153) |#1|) |has| |#1| (-515 (-1153) |#1|)) ((-515 |#1| |#1|) |has| |#1| (-298 |#1|)) ((-629 (-403 (-560))) |has| |#1| (-359)) ((-629 |#1|) . T) ((-629 $) . T) ((-622 (-560)) |has| |#1| (-622 (-560))) ((-622 |#1|) . T) ((-699 (-403 (-560))) |has| |#1| (-359)) ((-699 |#1|) . T) ((-708) . T) ((-834) |has| |#1| (-834)) ((-887 (-1153)) |has| |#1| (-887 (-1153))) ((-1029 (-403 (-560))) |has| |#1| (-1029 (-403 (-560)))) ((-1029 (-560)) |has| |#1| (-1029 (-560))) ((-1029 |#1|) . T) ((-1045 (-403 (-560))) |has| |#1| (-359)) ((-1045 |#1|) . T) ((-1045 $) -2318 (|has| |#1| (-359)) (|has| |#1| (-280))) ((-1039) . T) ((-1046) . T) ((-1094) . T) ((-1082) . T)) -((-2803 ((|#3| (-1 |#4| |#2|) |#1|) 16))) -(((-990 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2803 (|#3| (-1 |#4| |#2|) |#1|))) (-989 |#2|) (-170) (-989 |#4|) (-170)) (T -990)) -((-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-4 *2 (-989 *6)) (-5 *1 (-990 *4 *5 *2 *6)) (-4 *4 (-989 *5))))) -(-10 -7 (-15 -2803 (|#3| (-1 |#4| |#2|) |#1|))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-4236 (($) NIL T CONST)) (-1473 (((-3 (-560) "failed") $) NIL (|has| |#1| (-1029 (-560)))) (((-3 (-403 (-560)) "failed") $) NIL (|has| |#1| (-1029 (-403 (-560))))) (((-3 |#1| "failed") $) NIL)) (-3001 (((-560) $) NIL (|has| |#1| (-1029 (-560)))) (((-403 (-560)) $) NIL (|has| |#1| (-1029 (-403 (-560))))) ((|#1| $) NIL)) (-2616 (((-671 (-560)) (-671 $)) NIL (|has| |#1| (-622 (-560)))) (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) NIL (|has| |#1| (-622 (-560)))) (((-2 (|:| -3818 (-671 |#1|)) (|:| |vec| (-1236 |#1|))) (-671 $) (-1236 $)) NIL) (((-671 |#1|) (-671 $)) NIL)) (-1823 (((-3 $ "failed") $) NIL)) (-1611 ((|#1| $) 12)) (-1367 (((-3 (-403 (-560)) "failed") $) NIL (|has| |#1| (-542)))) (-1689 (((-121) $) NIL (|has| |#1| (-542)))) (-1519 (((-403 (-560)) $) NIL (|has| |#1| (-542)))) (-2754 (($ |#1| |#1| |#1| |#1|) 16)) (-2642 (((-121) $) NIL)) (-3339 ((|#1| $) NIL)) (-4325 (($ $ $) NIL (|has| |#1| (-834)))) (-2501 (($ $ $) NIL (|has| |#1| (-834)))) (-2803 (($ (-1 |#1| |#1|) $) NIL)) (-1291 (((-1135) $) NIL)) (-1701 (($ $) NIL (|has| |#1| (-359)))) (-3935 ((|#1| $) 15)) (-4031 ((|#1| $) 14)) (-2136 ((|#1| $) 13)) (-4353 (((-1100) $) NIL)) (-4450 (($ $ (-626 |#1|) (-626 |#1|)) NIL (|has| |#1| (-298 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-298 |#1|))) (($ $ (-283 |#1|)) NIL (|has| |#1| (-298 |#1|))) (($ $ (-626 (-283 |#1|))) NIL (|has| |#1| (-298 |#1|))) (($ $ (-626 (-1153)) (-626 |#1|)) NIL (|has| |#1| (-515 (-1153) |#1|))) (($ $ (-1153) |#1|) NIL (|has| |#1| (-515 (-1153) |#1|)))) (-2778 (($ $ |#1|) NIL (|has| |#1| (-276 |#1| |#1|)))) (-2443 (($ $) NIL (|has| |#1| (-221))) (($ $ (-755)) NIL (|has| |#1| (-221))) (($ $ (-1153)) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-626 (-1153))) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-1153) (-755)) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-626 (-1153)) (-626 (-755))) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-1 |#1| |#1|) (-755)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4255 (((-533) $) NIL (|has| |#1| (-601 (-533))))) (-3101 (($ $) NIL)) (-2801 (((-842) $) NIL) (($ (-560)) NIL) (($ |#1|) NIL) (($ (-403 (-560))) NIL (-2318 (|has| |#1| (-359)) (|has| |#1| (-1029 (-403 (-560))))))) (-2272 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1751 (((-755)) NIL)) (-1822 ((|#1| $) NIL (|has| |#1| (-1048)))) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL (|has| |#1| (-359)))) (-3304 (($) 8 T CONST)) (-1459 (($) 10 T CONST)) (-2500 (($ $) NIL (|has| |#1| (-221))) (($ $ (-755)) NIL (|has| |#1| (-221))) (($ $ (-1153)) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-626 (-1153))) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-1153) (-755)) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-626 (-1153)) (-626 (-755))) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-1 |#1| |#1|) (-755)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1691 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1675 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1653 (((-121) $ $) NIL)) (-1683 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1667 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) NIL)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL (|has| |#1| (-359)))) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-403 (-560))) NIL (|has| |#1| (-359))) (($ (-403 (-560)) $) NIL (|has| |#1| (-359))))) -(((-991 |#1|) (-989 |#1|) (-170)) (T -991)) -NIL -(-989 |#1|) -((-2601 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-3909 (((-121) $ (-755)) NIL)) (-4236 (($) NIL T CONST)) (-3547 (($ $) 20)) (-2972 (($ (-626 |#1|)) 29)) (-1981 (((-626 |#1|) $) NIL (|has| $ (-6 -4505)))) (-2122 (((-121) $ (-755)) NIL)) (-2130 (((-626 |#1|) $) NIL (|has| $ (-6 -4505)))) (-2030 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-3778 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#1| |#1|) $) NIL)) (-3441 (((-121) $ (-755)) NIL)) (-2349 (((-755) $) 22)) (-1291 (((-1135) $) NIL (|has| |#1| (-1082)))) (-2525 ((|#1| $) 24)) (-4345 (($ |#1| $) 15)) (-4353 (((-1100) $) NIL (|has| |#1| (-1082)))) (-3043 ((|#1| $) 23)) (-2146 ((|#1| $) 19)) (-2865 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#1|))) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-283 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-626 |#1|) (-626 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))))) (-2214 (((-121) $ $) NIL)) (-3205 ((|#1| |#1| $) 14)) (-4191 (((-121) $) 17)) (-3260 (($) NIL)) (-4433 ((|#1| $) 18)) (-4035 (((-755) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505))) (((-755) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-2813 (($ $) NIL)) (-2801 (((-842) $) NIL (|has| |#1| (-1082)))) (-1354 (($ (-626 |#1|)) NIL)) (-2846 ((|#1| $) 26)) (-3656 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-1653 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-2271 (((-755) $) NIL (|has| $ (-6 -4505))))) -(((-992 |#1|) (-13 (-987 |#1|) (-10 -8 (-15 -2972 ($ (-626 |#1|))) (-15 -4433 (|#1| $)) (-15 -2146 (|#1| $)) (-15 -3205 (|#1| |#1| $)) (-15 -4345 ($ |#1| $)) (-15 -2525 (|#1| $)) (-15 -3043 (|#1| $)) (-15 -2846 (|#1| $)) (-15 -3547 ($ $)) (-15 -2349 ((-755) $)) (-15 -3441 ((-121) $ (-755))) (-15 -2122 ((-121) $ (-755))) (-15 -3909 ((-121) $ (-755))) (-15 -1354 ($ (-626 |#1|))) (-15 -4191 ((-121) $)) (-15 -3260 ($)) (-15 -4236 ($)) (-15 -2813 ($ $)) (-15 -2214 ((-121) $ $)) (-15 -2803 ($ (-1 |#1| |#1|) $)) (IF (|has| $ (-6 -4506)) (-15 -3778 ($ (-1 |#1| |#1|) $)) |noBranch|) (IF (|has| |#1| (-1082)) (PROGN (-15 -1291 ((-1135) $)) (-15 -4353 ((-1100) $)) (-15 -2801 ((-842) $)) (-15 -1653 ((-121) $ $)) (-15 -2601 ((-121) $ $))) |noBranch|) (IF (|has| $ (-6 -4505)) (PROGN (-15 -2865 ((-121) (-1 (-121) |#1|) $)) (-15 -3656 ((-121) (-1 (-121) |#1|) $)) (-15 -4035 ((-755) (-1 (-121) |#1|) $)) (-15 -2271 ((-755) $)) (-15 -1981 ((-626 |#1|) $)) (-15 -2130 ((-626 |#1|) $))) |noBranch|) (IF (|has| $ (-6 -4505)) (IF (|has| |#1| (-1082)) (PROGN (-15 -2030 ((-121) |#1| $)) (-15 -4035 ((-755) |#1| $))) |noBranch|) |noBranch|))) (-1082)) (T -992)) -((-2214 (*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-992 *3)) (-4 *3 (-1082)))) (-2813 (*1 *1 *1) (-12 (-5 *1 (-992 *2)) (-4 *2 (-1082)))) (-3260 (*1 *1) (-12 (-5 *1 (-992 *2)) (-4 *2 (-1082)))) (-4191 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-992 *3)) (-4 *3 (-1082)))) (-3441 (*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *2 (-121)) (-5 *1 (-992 *4)) (-4 *4 (-1082)))) (-2122 (*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *2 (-121)) (-5 *1 (-992 *4)) (-4 *4 (-1082)))) (-3909 (*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *2 (-121)) (-5 *1 (-992 *4)) (-4 *4 (-1082)))) (-4236 (*1 *1) (-12 (-5 *1 (-992 *2)) (-4 *2 (-1082)))) (-2271 (*1 *2 *1) (-12 (|has| $ (-6 -4505)) (-5 *2 (-755)) (-5 *1 (-992 *3)) (-4 *3 (-1082)))) (-2803 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1082)) (-5 *1 (-992 *3)))) (-3778 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| $ (-6 -4506)) (-4 *3 (-1082)) (-5 *1 (-992 *3)))) (-3656 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| $ (-6 -4505)) (-4 *4 (-1082)) (-5 *2 (-121)) (-5 *1 (-992 *4)))) (-2865 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| $ (-6 -4505)) (-4 *4 (-1082)) (-5 *2 (-121)) (-5 *1 (-992 *4)))) (-4035 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| $ (-6 -4505)) (-4 *4 (-1082)) (-5 *2 (-755)) (-5 *1 (-992 *4)))) (-1981 (*1 *2 *1) (-12 (|has| $ (-6 -4505)) (-5 *2 (-626 *3)) (-5 *1 (-992 *3)) (-4 *3 (-1082)))) (-2130 (*1 *2 *1) (-12 (|has| $ (-6 -4505)) (-5 *2 (-626 *3)) (-5 *1 (-992 *3)) (-4 *3 (-1082)))) (-4035 (*1 *2 *3 *1) (-12 (|has| $ (-6 -4505)) (-5 *2 (-755)) (-5 *1 (-992 *3)) (-4 *3 (-1082)) (-4 *3 (-1082)))) (-2030 (*1 *2 *3 *1) (-12 (|has| $ (-6 -4505)) (-5 *2 (-121)) (-5 *1 (-992 *3)) (-4 *3 (-1082)) (-4 *3 (-1082)))) (-1291 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-992 *3)) (-4 *3 (-1082)) (-4 *3 (-1082)))) (-4353 (*1 *2 *1) (-12 (-5 *2 (-1100)) (-5 *1 (-992 *3)) (-4 *3 (-1082)) (-4 *3 (-1082)))) (-2801 (*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-992 *3)) (-4 *3 (-1082)) (-4 *3 (-1082)))) (-1653 (*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-992 *3)) (-4 *3 (-1082)) (-4 *3 (-1082)))) (-2601 (*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-992 *3)) (-4 *3 (-1082)) (-4 *3 (-1082)))) (-1354 (*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-1082)) (-5 *1 (-992 *3)))) (-2146 (*1 *2 *1) (-12 (-5 *1 (-992 *2)) (-4 *2 (-1082)))) (-4345 (*1 *1 *2 *1) (-12 (-5 *1 (-992 *2)) (-4 *2 (-1082)))) (-2525 (*1 *2 *1) (-12 (-5 *1 (-992 *2)) (-4 *2 (-1082)))) (-3205 (*1 *2 *2 *1) (-12 (-5 *1 (-992 *2)) (-4 *2 (-1082)))) (-4433 (*1 *2 *1) (-12 (-5 *1 (-992 *2)) (-4 *2 (-1082)))) (-3547 (*1 *1 *1) (-12 (-5 *1 (-992 *2)) (-4 *2 (-1082)))) (-2349 (*1 *2 *1) (-12 (-5 *2 (-755)) (-5 *1 (-992 *3)) (-4 *3 (-1082)))) (-3043 (*1 *2 *1) (-12 (-5 *1 (-992 *2)) (-4 *2 (-1082)))) (-2846 (*1 *2 *1) (-12 (-5 *1 (-992 *2)) (-4 *2 (-1082)))) (-2972 (*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-1082)) (-5 *1 (-992 *3))))) -(-13 (-987 |#1|) (-10 -8 (-15 -2972 ($ (-626 |#1|))) (-15 -4433 (|#1| $)) (-15 -2146 (|#1| $)) (-15 -3205 (|#1| |#1| $)) (-15 -4345 ($ |#1| $)) (-15 -2525 (|#1| $)) (-15 -3043 (|#1| $)) (-15 -2846 (|#1| $)) (-15 -3547 ($ $)) (-15 -2349 ((-755) $)) (-15 -3441 ((-121) $ (-755))) (-15 -2122 ((-121) $ (-755))) (-15 -3909 ((-121) $ (-755))) (-15 -1354 ($ (-626 |#1|))) (-15 -4191 ((-121) $)) (-15 -3260 ($)) (-15 -4236 ($)) (-15 -2813 ($ $)) (-15 -2214 ((-121) $ $)) (-15 -2803 ($ (-1 |#1| |#1|) $)) (IF (|has| $ (-6 -4506)) (-15 -3778 ($ (-1 |#1| |#1|) $)) |noBranch|) (IF (|has| |#1| (-1082)) (PROGN (-15 -1291 ((-1135) $)) (-15 -4353 ((-1100) $)) (-15 -2801 ((-842) $)) (-15 -1653 ((-121) $ $)) (-15 -2601 ((-121) $ $))) |noBranch|) (IF (|has| $ (-6 -4505)) (PROGN (-15 -2865 ((-121) (-1 (-121) |#1|) $)) (-15 -3656 ((-121) (-1 (-121) |#1|) $)) (-15 -4035 ((-755) (-1 (-121) |#1|) $)) (-15 -2271 ((-755) $)) (-15 -1981 ((-626 |#1|) $)) (-15 -2130 ((-626 |#1|) $))) |noBranch|) (IF (|has| $ (-6 -4505)) (IF (|has| |#1| (-1082)) (PROGN (-15 -2030 ((-121) |#1| $)) (-15 -4035 ((-755) |#1| $))) |noBranch|) |noBranch|))) -((-2479 (($ $) 12)) (-2586 (($ $ (-560)) 13))) -(((-993 |#1|) (-10 -8 (-15 -2479 (|#1| |#1|)) (-15 -2586 (|#1| |#1| (-560)))) (-994)) (T -993)) -NIL -(-10 -8 (-15 -2479 (|#1| |#1|)) (-15 -2586 (|#1| |#1| (-560)))) -((-2479 (($ $) 6)) (-2586 (($ $ (-560)) 7)) (** (($ $ (-403 (-560))) 8))) -(((-994) (-1267)) (T -994)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-994)) (-5 *2 (-403 (-560))))) (-2586 (*1 *1 *1 *2) (-12 (-4 *1 (-994)) (-5 *2 (-560)))) (-2479 (*1 *1 *1) (-4 *1 (-994)))) -(-13 (-10 -8 (-15 -2479 ($ $)) (-15 -2586 ($ $ (-560))) (-15 ** ($ $ (-403 (-560)))))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-3479 (((-2 (|:| |num| (-1236 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL (|has| (-403 |#2|) (-359)))) (-1350 (($ $) NIL (|has| (-403 |#2|) (-359)))) (-3376 (((-121) $) NIL (|has| (-403 |#2|) (-359)))) (-2196 (((-671 (-403 |#2|)) (-1236 $)) NIL) (((-671 (-403 |#2|))) NIL)) (-1944 (((-403 |#2|) $) NIL)) (-4357 (((-1161 (-909) (-755)) (-560)) NIL (|has| (-403 |#2|) (-344)))) (-2314 (((-3 $ "failed") $ $) NIL)) (-3065 (($ $) NIL (|has| (-403 |#2|) (-359)))) (-2953 (((-414 $) $) NIL (|has| (-403 |#2|) (-359)))) (-4179 (((-121) $ $) NIL (|has| (-403 |#2|) (-359)))) (-2912 (((-755)) NIL (|has| (-403 |#2|) (-364)))) (-2789 (((-121)) NIL)) (-3938 (((-121) |#1|) 147) (((-121) |#2|) 152)) (-4236 (($) NIL T CONST)) (-1473 (((-3 (-560) "failed") $) NIL (|has| (-403 |#2|) (-1029 (-560)))) (((-3 (-403 (-560)) "failed") $) NIL (|has| (-403 |#2|) (-1029 (-403 (-560))))) (((-3 (-403 |#2|) "failed") $) NIL)) (-3001 (((-560) $) NIL (|has| (-403 |#2|) (-1029 (-560)))) (((-403 (-560)) $) NIL (|has| (-403 |#2|) (-1029 (-403 (-560))))) (((-403 |#2|) $) NIL)) (-3380 (($ (-1236 (-403 |#2|)) (-1236 $)) NIL) (($ (-1236 (-403 |#2|))) 70) (($ (-1236 |#2|) |#2|) NIL)) (-4107 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-403 |#2|) (-344)))) (-2563 (($ $ $) NIL (|has| (-403 |#2|) (-359)))) (-2954 (((-671 (-403 |#2|)) $ (-1236 $)) NIL) (((-671 (-403 |#2|)) $) NIL)) (-2616 (((-671 (-560)) (-671 $)) NIL (|has| (-403 |#2|) (-622 (-560)))) (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) NIL (|has| (-403 |#2|) (-622 (-560)))) (((-2 (|:| -3818 (-671 (-403 |#2|))) (|:| |vec| (-1236 (-403 |#2|)))) (-671 $) (-1236 $)) NIL) (((-671 (-403 |#2|)) (-671 $)) NIL)) (-3781 (((-1236 $) (-1236 $)) NIL)) (-2342 (($ |#3|) 65) (((-3 $ "failed") (-403 |#3|)) NIL (|has| (-403 |#2|) (-359)))) (-1823 (((-3 $ "failed") $) NIL)) (-2330 (((-626 (-626 |#1|))) NIL (|has| |#1| (-364)))) (-1663 (((-121) |#1| |#1|) NIL)) (-3143 (((-909)) NIL)) (-1666 (($) NIL (|has| (-403 |#2|) (-364)))) (-3718 (((-121)) NIL)) (-4346 (((-121) |#1|) 56) (((-121) |#2|) 149)) (-2572 (($ $ $) NIL (|has| (-403 |#2|) (-359)))) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) NIL (|has| (-403 |#2|) (-359)))) (-3605 (($ $) NIL)) (-2481 (($) NIL (|has| (-403 |#2|) (-344)))) (-1537 (((-121) $) NIL (|has| (-403 |#2|) (-344)))) (-2937 (($ $ (-755)) NIL (|has| (-403 |#2|) (-344))) (($ $) NIL (|has| (-403 |#2|) (-344)))) (-3319 (((-121) $) NIL (|has| (-403 |#2|) (-359)))) (-3504 (((-909) $) NIL (|has| (-403 |#2|) (-344))) (((-820 (-909)) $) NIL (|has| (-403 |#2|) (-344)))) (-2642 (((-121) $) NIL)) (-3684 (((-755)) NIL)) (-3399 (((-1236 $) (-1236 $)) NIL)) (-3339 (((-403 |#2|) $) NIL)) (-3202 (((-626 (-945 |#1|)) (-1153)) NIL (|has| |#1| (-359)))) (-1424 (((-3 $ "failed") $) NIL (|has| (-403 |#2|) (-344)))) (-3856 (((-3 (-626 $) "failed") (-626 $) $) NIL (|has| (-403 |#2|) (-359)))) (-4108 ((|#3| $) NIL (|has| (-403 |#2|) (-359)))) (-3142 (((-909) $) NIL (|has| (-403 |#2|) (-364)))) (-2335 ((|#3| $) NIL)) (-2582 (($ (-626 $)) NIL (|has| (-403 |#2|) (-359))) (($ $ $) NIL (|has| (-403 |#2|) (-359)))) (-1291 (((-1135) $) NIL)) (-2276 (((-671 (-403 |#2|))) 52)) (-2859 (((-671 (-403 |#2|))) 51)) (-1701 (($ $) NIL (|has| (-403 |#2|) (-359)))) (-2485 (($ (-1236 |#2|) |#2|) 71)) (-2445 (((-671 (-403 |#2|))) 50)) (-4268 (((-671 (-403 |#2|))) 49)) (-2282 (((-2 (|:| |num| (-671 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-4269 (((-2 (|:| |num| (-1236 |#2|)) (|:| |den| |#2|)) $) 77)) (-1567 (((-1236 $)) 46)) (-1335 (((-1236 $)) 45)) (-3044 (((-121) $) NIL)) (-1596 (((-121) $) NIL) (((-121) $ |#1|) NIL) (((-121) $ |#2|) NIL)) (-1394 (($) NIL (|has| (-403 |#2|) (-344)) CONST)) (-1330 (($ (-909)) NIL (|has| (-403 |#2|) (-364)))) (-3219 (((-3 |#2| "failed")) 63)) (-4353 (((-1100) $) NIL)) (-4390 (((-755)) NIL)) (-4250 (($) NIL)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL (|has| (-403 |#2|) (-359)))) (-4440 (($ (-626 $)) NIL (|has| (-403 |#2|) (-359))) (($ $ $) NIL (|has| (-403 |#2|) (-359)))) (-2385 (((-626 (-2 (|:| -1601 (-560)) (|:| -4034 (-560))))) NIL (|has| (-403 |#2|) (-344)))) (-1601 (((-414 $) $) NIL (|has| (-403 |#2|) (-359)))) (-3505 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-403 |#2|) (-359))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL (|has| (-403 |#2|) (-359)))) (-2336 (((-3 $ "failed") $ $) NIL (|has| (-403 |#2|) (-359)))) (-3456 (((-3 (-626 $) "failed") (-626 $) $) NIL (|has| (-403 |#2|) (-359)))) (-4445 (((-755) $) NIL (|has| (-403 |#2|) (-359)))) (-2778 ((|#1| $ |#1| |#1|) NIL)) (-2290 (((-3 |#2| "failed")) 62)) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL (|has| (-403 |#2|) (-359)))) (-4069 (((-403 |#2|) (-1236 $)) NIL) (((-403 |#2|)) 42)) (-2935 (((-755) $) NIL (|has| (-403 |#2|) (-344))) (((-3 (-755) "failed") $ $) NIL (|has| (-403 |#2|) (-344)))) (-2443 (($ $ (-1 (-403 |#2|) (-403 |#2|)) (-755)) NIL (|has| (-403 |#2|) (-359))) (($ $ (-1 (-403 |#2|) (-403 |#2|))) NIL (|has| (-403 |#2|) (-359))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-626 (-1153)) (-626 (-755))) NIL (-12 (|has| (-403 |#2|) (-359)) (|has| (-403 |#2|) (-887 (-1153))))) (($ $ (-1153) (-755)) NIL (-12 (|has| (-403 |#2|) (-359)) (|has| (-403 |#2|) (-887 (-1153))))) (($ $ (-626 (-1153))) NIL (-12 (|has| (-403 |#2|) (-359)) (|has| (-403 |#2|) (-887 (-1153))))) (($ $ (-1153)) NIL (-12 (|has| (-403 |#2|) (-359)) (|has| (-403 |#2|) (-887 (-1153))))) (($ $ (-755)) NIL (-2318 (-12 (|has| (-403 |#2|) (-221)) (|has| (-403 |#2|) (-359))) (|has| (-403 |#2|) (-344)))) (($ $) NIL (-2318 (-12 (|has| (-403 |#2|) (-221)) (|has| (-403 |#2|) (-359))) (|has| (-403 |#2|) (-344))))) (-2142 (((-671 (-403 |#2|)) (-1236 $) (-1 (-403 |#2|) (-403 |#2|))) NIL (|has| (-403 |#2|) (-359)))) (-3591 ((|#3|) 53)) (-2612 (($) NIL (|has| (-403 |#2|) (-344)))) (-3390 (((-1236 (-403 |#2|)) $ (-1236 $)) NIL) (((-671 (-403 |#2|)) (-1236 $) (-1236 $)) NIL) (((-1236 (-403 |#2|)) $) 72) (((-671 (-403 |#2|)) (-1236 $)) NIL)) (-4255 (((-1236 (-403 |#2|)) $) NIL) (($ (-1236 (-403 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3248 (((-3 (-1236 $) "failed") (-671 $)) NIL (|has| (-403 |#2|) (-344)))) (-4229 (((-1236 $) (-1236 $)) NIL)) (-2801 (((-842) $) NIL) (($ (-560)) NIL) (($ (-403 |#2|)) NIL) (($ (-403 (-560))) NIL (-2318 (|has| (-403 |#2|) (-359)) (|has| (-403 |#2|) (-1029 (-403 (-560)))))) (($ $) NIL (|has| (-403 |#2|) (-359)))) (-2272 (($ $) NIL (|has| (-403 |#2|) (-344))) (((-3 $ "failed") $) NIL (|has| (-403 |#2|) (-146)))) (-3642 ((|#3| $) NIL)) (-1751 (((-755)) NIL)) (-1630 (((-121)) 60)) (-1771 (((-121) |#1|) 153) (((-121) |#2|) 154)) (-4374 (((-1236 $)) 124)) (-2328 (((-121) $ $) NIL (|has| (-403 |#2|) (-359)))) (-2895 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1834 (((-121)) NIL)) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL (|has| (-403 |#2|) (-359)))) (-3304 (($) 94 T CONST)) (-1459 (($) NIL T CONST)) (-2500 (($ $ (-1 (-403 |#2|) (-403 |#2|)) (-755)) NIL (|has| (-403 |#2|) (-359))) (($ $ (-1 (-403 |#2|) (-403 |#2|))) NIL (|has| (-403 |#2|) (-359))) (($ $ (-626 (-1153)) (-626 (-755))) NIL (-12 (|has| (-403 |#2|) (-359)) (|has| (-403 |#2|) (-887 (-1153))))) (($ $ (-1153) (-755)) NIL (-12 (|has| (-403 |#2|) (-359)) (|has| (-403 |#2|) (-887 (-1153))))) (($ $ (-626 (-1153))) NIL (-12 (|has| (-403 |#2|) (-359)) (|has| (-403 |#2|) (-887 (-1153))))) (($ $ (-1153)) NIL (-12 (|has| (-403 |#2|) (-359)) (|has| (-403 |#2|) (-887 (-1153))))) (($ $ (-755)) NIL (-2318 (-12 (|has| (-403 |#2|) (-221)) (|has| (-403 |#2|) (-359))) (|has| (-403 |#2|) (-344)))) (($ $) NIL (-2318 (-12 (|has| (-403 |#2|) (-221)) (|has| (-403 |#2|) (-359))) (|has| (-403 |#2|) (-344))))) (-1653 (((-121) $ $) NIL)) (-1733 (($ $ $) NIL (|has| (-403 |#2|) (-359)))) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) NIL)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL (|has| (-403 |#2|) (-359)))) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) NIL) (($ $ (-403 |#2|)) NIL) (($ (-403 |#2|) $) NIL) (($ (-403 (-560)) $) NIL (|has| (-403 |#2|) (-359))) (($ $ (-403 (-560))) NIL (|has| (-403 |#2|) (-359))))) -(((-995 |#1| |#2| |#3| |#4| |#5|) (-334 |#1| |#2| |#3|) (-1191) (-1211 |#1|) (-1211 (-403 |#2|)) (-403 |#2|) (-755)) (T -995)) -NIL -(-334 |#1| |#2| |#3|) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-2509 (((-626 (-560)) $) 54)) (-2269 (($ (-626 (-560))) 62)) (-1947 (((-560) $) 40 (|has| (-560) (-296)))) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL)) (-1350 (($ $) NIL)) (-3376 (((-121) $) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-1776 (((-414 (-1149 $)) (-1149 $)) NIL (|has| (-560) (-896)))) (-3065 (($ $) NIL)) (-2953 (((-414 $) $) NIL)) (-1887 (((-3 (-626 (-1149 $)) "failed") (-626 (-1149 $)) (-1149 $)) NIL (|has| (-560) (-896)))) (-4179 (((-121) $ $) NIL)) (-4235 (((-560) $) NIL (|has| (-560) (-807)))) (-4236 (($) NIL T CONST)) (-1473 (((-3 (-560) "failed") $) 49) (((-3 (-1153) "failed") $) NIL (|has| (-560) (-1029 (-1153)))) (((-3 (-403 (-560)) "failed") $) 47 (|has| (-560) (-1029 (-560)))) (((-3 (-560) "failed") $) 49 (|has| (-560) (-1029 (-560))))) (-3001 (((-560) $) NIL) (((-1153) $) NIL (|has| (-560) (-1029 (-1153)))) (((-403 (-560)) $) NIL (|has| (-560) (-1029 (-560)))) (((-560) $) NIL (|has| (-560) (-1029 (-560))))) (-2563 (($ $ $) NIL)) (-2616 (((-671 (-560)) (-671 $)) NIL (|has| (-560) (-622 (-560)))) (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) NIL (|has| (-560) (-622 (-560)))) (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) NIL) (((-671 (-560)) (-671 $)) NIL)) (-1823 (((-3 $ "failed") $) NIL)) (-1666 (($) NIL (|has| (-560) (-542)))) (-2572 (($ $ $) NIL)) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) NIL)) (-3319 (((-121) $) NIL)) (-4174 (((-626 (-560)) $) 60)) (-1786 (((-121) $) NIL (|has| (-560) (-807)))) (-2399 (((-876 (-560) $) $ (-879 (-560)) (-876 (-560) $)) NIL (|has| (-560) (-873 (-560)))) (((-876 (-375) $) $ (-879 (-375)) (-876 (-375) $)) NIL (|has| (-560) (-873 (-375))))) (-2642 (((-121) $) NIL)) (-1540 (($ $) NIL)) (-2132 (((-560) $) 37)) (-1424 (((-3 $ "failed") $) NIL (|has| (-560) (-1128)))) (-2187 (((-121) $) NIL (|has| (-560) (-807)))) (-3856 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-4325 (($ $ $) NIL (|has| (-560) (-834)))) (-2501 (($ $ $) NIL (|has| (-560) (-834)))) (-2803 (($ (-1 (-560) (-560)) $) NIL)) (-2582 (($ $ $) NIL) (($ (-626 $)) NIL)) (-1291 (((-1135) $) NIL)) (-1701 (($ $) NIL)) (-1394 (($) NIL (|has| (-560) (-1128)) CONST)) (-4353 (((-1100) $) NIL)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL)) (-4440 (($ $ $) NIL) (($ (-626 $)) NIL)) (-4302 (($ $) NIL (|has| (-560) (-296))) (((-403 (-560)) $) 42)) (-1639 (((-1133 (-560)) $) 59)) (-3005 (($ (-626 (-560)) (-626 (-560))) 63)) (-2150 (((-560) $) 53 (|has| (-560) (-542)))) (-3817 (((-414 (-1149 $)) (-1149 $)) NIL (|has| (-560) (-896)))) (-3032 (((-414 (-1149 $)) (-1149 $)) NIL (|has| (-560) (-896)))) (-1601 (((-414 $) $) NIL)) (-3505 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2336 (((-3 $ "failed") $ $) NIL)) (-3456 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-4450 (($ $ (-626 (-560)) (-626 (-560))) NIL (|has| (-560) (-298 (-560)))) (($ $ (-560) (-560)) NIL (|has| (-560) (-298 (-560)))) (($ $ (-283 (-560))) NIL (|has| (-560) (-298 (-560)))) (($ $ (-626 (-283 (-560)))) NIL (|has| (-560) (-298 (-560)))) (($ $ (-626 (-1153)) (-626 (-560))) NIL (|has| (-560) (-515 (-1153) (-560)))) (($ $ (-1153) (-560)) NIL (|has| (-560) (-515 (-1153) (-560))))) (-4445 (((-755) $) NIL)) (-2778 (($ $ (-560)) NIL (|has| (-560) (-276 (-560) (-560))))) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL)) (-2443 (($ $) 11 (|has| (-560) (-221))) (($ $ (-755)) NIL (|has| (-560) (-221))) (($ $ (-1153)) NIL (|has| (-560) (-887 (-1153)))) (($ $ (-626 (-1153))) NIL (|has| (-560) (-887 (-1153)))) (($ $ (-1153) (-755)) NIL (|has| (-560) (-887 (-1153)))) (($ $ (-626 (-1153)) (-626 (-755))) NIL (|has| (-560) (-887 (-1153)))) (($ $ (-1 (-560) (-560)) (-755)) NIL) (($ $ (-1 (-560) (-560))) NIL)) (-1646 (($ $) NIL)) (-2139 (((-560) $) 39)) (-2697 (((-626 (-560)) $) 61)) (-4255 (((-879 (-560)) $) NIL (|has| (-560) (-601 (-879 (-560))))) (((-879 (-375)) $) NIL (|has| (-560) (-601 (-879 (-375))))) (((-533) $) NIL (|has| (-560) (-601 (-533)))) (((-375) $) NIL (|has| (-560) (-1013))) (((-213) $) NIL (|has| (-560) (-1013)))) (-3248 (((-3 (-1236 $) "failed") (-671 $)) NIL (-12 (|has| $ (-146)) (|has| (-560) (-896))))) (-2801 (((-842) $) 77) (($ (-560)) 43) (($ $) NIL) (($ (-403 (-560))) 19) (($ (-560)) 43) (($ (-1153)) NIL (|has| (-560) (-1029 (-1153)))) (((-403 (-560)) $) 17)) (-2272 (((-3 $ "failed") $) NIL (-2318 (-12 (|has| $ (-146)) (|has| (-560) (-896))) (|has| (-560) (-146))))) (-1751 (((-755)) 9)) (-4316 (((-560) $) 51 (|has| (-560) (-542)))) (-2328 (((-121) $ $) NIL)) (-1822 (($ $) NIL (|has| (-560) (-807)))) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL)) (-3304 (($) 10 T CONST)) (-1459 (($) 12 T CONST)) (-2500 (($ $) NIL (|has| (-560) (-221))) (($ $ (-755)) NIL (|has| (-560) (-221))) (($ $ (-1153)) NIL (|has| (-560) (-887 (-1153)))) (($ $ (-626 (-1153))) NIL (|has| (-560) (-887 (-1153)))) (($ $ (-1153) (-755)) NIL (|has| (-560) (-887 (-1153)))) (($ $ (-626 (-1153)) (-626 (-755))) NIL (|has| (-560) (-887 (-1153)))) (($ $ (-1 (-560) (-560)) (-755)) NIL) (($ $ (-1 (-560) (-560))) NIL)) (-1691 (((-121) $ $) NIL (|has| (-560) (-834)))) (-1675 (((-121) $ $) NIL (|has| (-560) (-834)))) (-1653 (((-121) $ $) 14)) (-1683 (((-121) $ $) NIL (|has| (-560) (-834)))) (-1667 (((-121) $ $) 33 (|has| (-560) (-834)))) (-1733 (($ $ $) 29) (($ (-560) (-560)) 31)) (-1725 (($ $) 15) (($ $ $) 22)) (-1716 (($ $ $) 20)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) 25) (($ $ $) 27) (($ $ (-403 (-560))) NIL) (($ (-403 (-560)) $) NIL) (($ (-560) $) 25) (($ $ (-560)) NIL))) -(((-996 |#1|) (-13 (-985 (-560)) (-10 -8 (-15 -2801 ((-403 (-560)) $)) (-15 -4302 ((-403 (-560)) $)) (-15 -2509 ((-626 (-560)) $)) (-15 -1639 ((-1133 (-560)) $)) (-15 -4174 ((-626 (-560)) $)) (-15 -2697 ((-626 (-560)) $)) (-15 -2269 ($ (-626 (-560)))) (-15 -3005 ($ (-626 (-560)) (-626 (-560)))))) (-560)) (T -996)) -((-2801 (*1 *2 *1) (-12 (-5 *2 (-403 (-560))) (-5 *1 (-996 *3)) (-14 *3 (-560)))) (-4302 (*1 *2 *1) (-12 (-5 *2 (-403 (-560))) (-5 *1 (-996 *3)) (-14 *3 (-560)))) (-2509 (*1 *2 *1) (-12 (-5 *2 (-626 (-560))) (-5 *1 (-996 *3)) (-14 *3 (-560)))) (-1639 (*1 *2 *1) (-12 (-5 *2 (-1133 (-560))) (-5 *1 (-996 *3)) (-14 *3 (-560)))) (-4174 (*1 *2 *1) (-12 (-5 *2 (-626 (-560))) (-5 *1 (-996 *3)) (-14 *3 (-560)))) (-2697 (*1 *2 *1) (-12 (-5 *2 (-626 (-560))) (-5 *1 (-996 *3)) (-14 *3 (-560)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-626 (-560))) (-5 *1 (-996 *3)) (-14 *3 (-560)))) (-3005 (*1 *1 *2 *2) (-12 (-5 *2 (-626 (-560))) (-5 *1 (-996 *3)) (-14 *3 (-560))))) -(-13 (-985 (-560)) (-10 -8 (-15 -2801 ((-403 (-560)) $)) (-15 -4302 ((-403 (-560)) $)) (-15 -2509 ((-626 (-560)) $)) (-15 -1639 ((-1133 (-560)) $)) (-15 -4174 ((-626 (-560)) $)) (-15 -2697 ((-626 (-560)) $)) (-15 -2269 ($ (-626 (-560)))) (-15 -3005 ($ (-626 (-560)) (-626 (-560)))))) -((-2709 (((-57) (-403 (-560)) (-560)) 9))) -(((-997) (-10 -7 (-15 -2709 ((-57) (-403 (-560)) (-560))))) (T -997)) -((-2709 (*1 *2 *3 *4) (-12 (-5 *3 (-403 (-560))) (-5 *4 (-560)) (-5 *2 (-57)) (-5 *1 (-997))))) -(-10 -7 (-15 -2709 ((-57) (-403 (-560)) (-560)))) -((-2912 (((-560)) 13)) (-2148 (((-560)) 16)) (-3207 (((-1241) (-560)) 15)) (-2254 (((-560) (-560)) 17) (((-560)) 12))) -(((-998) (-10 -7 (-15 -2254 ((-560))) (-15 -2912 ((-560))) (-15 -2254 ((-560) (-560))) (-15 -3207 ((-1241) (-560))) (-15 -2148 ((-560))))) (T -998)) -((-2148 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-998)))) (-3207 (*1 *2 *3) (-12 (-5 *3 (-560)) (-5 *2 (-1241)) (-5 *1 (-998)))) (-2254 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-998)))) (-2912 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-998)))) (-2254 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-998))))) -(-10 -7 (-15 -2254 ((-560))) (-15 -2912 ((-560))) (-15 -2254 ((-560) (-560))) (-15 -3207 ((-1241) (-560))) (-15 -2148 ((-560)))) -((-2387 (((-414 |#1|) |#1|) 40)) (-1601 (((-414 |#1|) |#1|) 39))) -(((-999 |#1|) (-10 -7 (-15 -1601 ((-414 |#1|) |#1|)) (-15 -2387 ((-414 |#1|) |#1|))) (-1211 (-403 (-560)))) (T -999)) -((-2387 (*1 *2 *3) (-12 (-5 *2 (-414 *3)) (-5 *1 (-999 *3)) (-4 *3 (-1211 (-403 (-560)))))) (-1601 (*1 *2 *3) (-12 (-5 *2 (-414 *3)) (-5 *1 (-999 *3)) (-4 *3 (-1211 (-403 (-560))))))) -(-10 -7 (-15 -1601 ((-414 |#1|) |#1|)) (-15 -2387 ((-414 |#1|) |#1|))) -((-1367 (((-3 (-403 (-560)) "failed") |#1|) 14)) (-1689 (((-121) |#1|) 13)) (-1519 (((-403 (-560)) |#1|) 9))) -(((-1000 |#1|) (-10 -7 (-15 -1519 ((-403 (-560)) |#1|)) (-15 -1689 ((-121) |#1|)) (-15 -1367 ((-3 (-403 (-560)) "failed") |#1|))) (-1029 (-403 (-560)))) (T -1000)) -((-1367 (*1 *2 *3) (|partial| -12 (-5 *2 (-403 (-560))) (-5 *1 (-1000 *3)) (-4 *3 (-1029 *2)))) (-1689 (*1 *2 *3) (-12 (-5 *2 (-121)) (-5 *1 (-1000 *3)) (-4 *3 (-1029 (-403 (-560)))))) (-1519 (*1 *2 *3) (-12 (-5 *2 (-403 (-560))) (-5 *1 (-1000 *3)) (-4 *3 (-1029 *2))))) -(-10 -7 (-15 -1519 ((-403 (-560)) |#1|)) (-15 -1689 ((-121) |#1|)) (-15 -1367 ((-3 (-403 (-560)) "failed") |#1|))) -((-2764 ((|#2| $ "value" |#2|) 12)) (-2778 ((|#2| $ "value") 10)) (-3761 (((-121) $ $) 18))) -(((-1001 |#1| |#2|) (-10 -8 (-15 -2764 (|#2| |#1| "value" |#2|)) (-15 -3761 ((-121) |#1| |#1|)) (-15 -2778 (|#2| |#1| "value"))) (-1002 |#2|) (-1187)) (T -1001)) -NIL -(-10 -8 (-15 -2764 (|#2| |#1| "value" |#2|)) (-15 -3761 ((-121) |#1| |#1|)) (-15 -2778 (|#2| |#1| "value"))) -((-2601 (((-121) $ $) 18 (|has| |#1| (-1082)))) (-2981 ((|#1| $) 45)) (-3909 (((-121) $ (-755)) 8)) (-3119 ((|#1| $ |#1|) 36 (|has| $ (-6 -4506)))) (-2764 ((|#1| $ "value" |#1|) 37 (|has| $ (-6 -4506)))) (-4043 (($ $ (-626 $)) 38 (|has| $ (-6 -4506)))) (-4236 (($) 7 T CONST)) (-1981 (((-626 |#1|) $) 30 (|has| $ (-6 -4505)))) (-3971 (((-626 $) $) 47)) (-2420 (((-121) $ $) 39 (|has| |#1| (-1082)))) (-2122 (((-121) $ (-755)) 9)) (-2130 (((-626 |#1|) $) 29 (|has| $ (-6 -4505)))) (-2030 (((-121) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-3778 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#1| |#1|) $) 35)) (-3441 (((-121) $ (-755)) 10)) (-2173 (((-626 |#1|) $) 42)) (-3992 (((-121) $) 46)) (-1291 (((-1135) $) 22 (|has| |#1| (-1082)))) (-4353 (((-1100) $) 21 (|has| |#1| (-1082)))) (-2865 (((-121) (-1 (-121) |#1|) $) 32 (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#1|))) 26 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-283 |#1|)) 25 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-626 |#1|) (-626 |#1|)) 23 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))))) (-2214 (((-121) $ $) 14)) (-4191 (((-121) $) 11)) (-3260 (($) 12)) (-2778 ((|#1| $ "value") 44)) (-1435 (((-560) $ $) 41)) (-3316 (((-121) $) 43)) (-4035 (((-755) (-1 (-121) |#1|) $) 31 (|has| $ (-6 -4505))) (((-755) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-2813 (($ $) 13)) (-2801 (((-842) $) 20 (|has| |#1| (-1082)))) (-2853 (((-626 $) $) 48)) (-3761 (((-121) $ $) 40 (|has| |#1| (-1082)))) (-3656 (((-121) (-1 (-121) |#1|) $) 33 (|has| $ (-6 -4505)))) (-1653 (((-121) $ $) 19 (|has| |#1| (-1082)))) (-2271 (((-755) $) 6 (|has| $ (-6 -4505))))) -(((-1002 |#1|) (-1267) (-1187)) (T -1002)) -((-2853 (*1 *2 *1) (-12 (-4 *3 (-1187)) (-5 *2 (-626 *1)) (-4 *1 (-1002 *3)))) (-3971 (*1 *2 *1) (-12 (-4 *3 (-1187)) (-5 *2 (-626 *1)) (-4 *1 (-1002 *3)))) (-3992 (*1 *2 *1) (-12 (-4 *1 (-1002 *3)) (-4 *3 (-1187)) (-5 *2 (-121)))) (-2981 (*1 *2 *1) (-12 (-4 *1 (-1002 *2)) (-4 *2 (-1187)))) (-2778 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1002 *2)) (-4 *2 (-1187)))) (-3316 (*1 *2 *1) (-12 (-4 *1 (-1002 *3)) (-4 *3 (-1187)) (-5 *2 (-121)))) (-2173 (*1 *2 *1) (-12 (-4 *1 (-1002 *3)) (-4 *3 (-1187)) (-5 *2 (-626 *3)))) (-1435 (*1 *2 *1 *1) (-12 (-4 *1 (-1002 *3)) (-4 *3 (-1187)) (-5 *2 (-560)))) (-3761 (*1 *2 *1 *1) (-12 (-4 *1 (-1002 *3)) (-4 *3 (-1187)) (-4 *3 (-1082)) (-5 *2 (-121)))) (-2420 (*1 *2 *1 *1) (-12 (-4 *1 (-1002 *3)) (-4 *3 (-1187)) (-4 *3 (-1082)) (-5 *2 (-121)))) (-4043 (*1 *1 *1 *2) (-12 (-5 *2 (-626 *1)) (|has| *1 (-6 -4506)) (-4 *1 (-1002 *3)) (-4 *3 (-1187)))) (-2764 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4506)) (-4 *1 (-1002 *2)) (-4 *2 (-1187)))) (-3119 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4506)) (-4 *1 (-1002 *2)) (-4 *2 (-1187))))) -(-13 (-492 |t#1|) (-10 -8 (-15 -2853 ((-626 $) $)) (-15 -3971 ((-626 $) $)) (-15 -3992 ((-121) $)) (-15 -2981 (|t#1| $)) (-15 -2778 (|t#1| $ "value")) (-15 -3316 ((-121) $)) (-15 -2173 ((-626 |t#1|) $)) (-15 -1435 ((-560) $ $)) (IF (|has| |t#1| (-1082)) (PROGN (-15 -3761 ((-121) $ $)) (-15 -2420 ((-121) $ $))) |noBranch|) (IF (|has| $ (-6 -4506)) (PROGN (-15 -4043 ($ $ (-626 $))) (-15 -2764 (|t#1| $ "value" |t#1|)) (-15 -3119 (|t#1| $ |t#1|))) |noBranch|))) -(((-39) . T) ((-105) |has| |#1| (-1082)) ((-600 (-842)) |has| |#1| (-1082)) ((-298 |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))) ((-492 |#1|) . T) ((-515 |#1| |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))) ((-1082) |has| |#1| (-1082)) ((-1187) . T)) -((-2479 (($ $) 9) (($ $ (-755)) 43) (($ (-403 (-560))) 12) (($ (-560)) 15)) (-1449 (((-3 $ "failed") (-1149 $) (-909) (-842)) 23) (((-3 $ "failed") (-1149 $) (-909)) 28)) (-2586 (($ $ (-560)) 49)) (-1751 (((-755)) 16)) (-2140 (((-626 $) (-1149 $)) NIL) (((-626 $) (-1149 (-403 (-560)))) 54) (((-626 $) (-1149 (-560))) 59) (((-626 $) (-945 $)) 63) (((-626 $) (-945 (-403 (-560)))) 67) (((-626 $) (-945 (-560))) 71)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL) (($ $ (-403 (-560))) 47))) -(((-1003 |#1|) (-10 -8 (-15 -2479 (|#1| (-560))) (-15 -2479 (|#1| (-403 (-560)))) (-15 -2479 (|#1| |#1| (-755))) (-15 -2140 ((-626 |#1|) (-945 (-560)))) (-15 -2140 ((-626 |#1|) (-945 (-403 (-560))))) (-15 -2140 ((-626 |#1|) (-945 |#1|))) (-15 -2140 ((-626 |#1|) (-1149 (-560)))) (-15 -2140 ((-626 |#1|) (-1149 (-403 (-560))))) (-15 -2140 ((-626 |#1|) (-1149 |#1|))) (-15 -1449 ((-3 |#1| "failed") (-1149 |#1|) (-909))) (-15 -1449 ((-3 |#1| "failed") (-1149 |#1|) (-909) (-842))) (-15 ** (|#1| |#1| (-403 (-560)))) (-15 -2586 (|#1| |#1| (-560))) (-15 -2479 (|#1| |#1|)) (-15 ** (|#1| |#1| (-560))) (-15 -1751 ((-755))) (-15 ** (|#1| |#1| (-755))) (-15 ** (|#1| |#1| (-909)))) (-1004)) (T -1003)) -((-1751 (*1 *2) (-12 (-5 *2 (-755)) (-5 *1 (-1003 *3)) (-4 *3 (-1004))))) -(-10 -8 (-15 -2479 (|#1| (-560))) (-15 -2479 (|#1| (-403 (-560)))) (-15 -2479 (|#1| |#1| (-755))) (-15 -2140 ((-626 |#1|) (-945 (-560)))) (-15 -2140 ((-626 |#1|) (-945 (-403 (-560))))) (-15 -2140 ((-626 |#1|) (-945 |#1|))) (-15 -2140 ((-626 |#1|) (-1149 (-560)))) (-15 -2140 ((-626 |#1|) (-1149 (-403 (-560))))) (-15 -2140 ((-626 |#1|) (-1149 |#1|))) (-15 -1449 ((-3 |#1| "failed") (-1149 |#1|) (-909))) (-15 -1449 ((-3 |#1| "failed") (-1149 |#1|) (-909) (-842))) (-15 ** (|#1| |#1| (-403 (-560)))) (-15 -2586 (|#1| |#1| (-560))) (-15 -2479 (|#1| |#1|)) (-15 ** (|#1| |#1| (-560))) (-15 -1751 ((-755))) (-15 ** (|#1| |#1| (-755))) (-15 ** (|#1| |#1| (-909)))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) 88)) (-1350 (($ $) 89)) (-3376 (((-121) $) 91)) (-2314 (((-3 $ "failed") $ $) 18)) (-3065 (($ $) 108)) (-2953 (((-414 $) $) 109)) (-2479 (($ $) 72) (($ $ (-755)) 58) (($ (-403 (-560))) 57) (($ (-560)) 56)) (-4179 (((-121) $ $) 99)) (-4235 (((-560) $) 126)) (-4236 (($) 16 T CONST)) (-1449 (((-3 $ "failed") (-1149 $) (-909) (-842)) 66) (((-3 $ "failed") (-1149 $) (-909)) 65)) (-1473 (((-3 (-560) "failed") $) 84 (|has| (-403 (-560)) (-1029 (-560)))) (((-3 (-403 (-560)) "failed") $) 82 (|has| (-403 (-560)) (-1029 (-403 (-560))))) (((-3 (-403 (-560)) "failed") $) 80)) (-3001 (((-560) $) 85 (|has| (-403 (-560)) (-1029 (-560)))) (((-403 (-560)) $) 83 (|has| (-403 (-560)) (-1029 (-403 (-560))))) (((-403 (-560)) $) 79)) (-3397 (($ $ (-842)) 55)) (-1331 (($ $ (-842)) 54)) (-2563 (($ $ $) 103)) (-1823 (((-3 $ "failed") $) 33)) (-2572 (($ $ $) 102)) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) 97)) (-3319 (((-121) $) 110)) (-1786 (((-121) $) 124)) (-2642 (((-121) $) 30)) (-2586 (($ $ (-560)) 71)) (-2187 (((-121) $) 125)) (-3856 (((-3 (-626 $) "failed") (-626 $) $) 106)) (-4325 (($ $ $) 123)) (-2501 (($ $ $) 122)) (-3546 (((-3 (-1149 $) "failed") $) 67)) (-1939 (((-3 (-842) "failed") $) 69)) (-1974 (((-3 (-1149 $) "failed") $) 68)) (-2582 (($ (-626 $)) 95) (($ $ $) 94)) (-1291 (((-1135) $) 9)) (-1701 (($ $) 111)) (-4353 (((-1100) $) 10)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) 96)) (-4440 (($ (-626 $)) 93) (($ $ $) 92)) (-1601 (((-414 $) $) 107)) (-3505 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 105) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) 104)) (-2336 (((-3 $ "failed") $ $) 87)) (-3456 (((-3 (-626 $) "failed") (-626 $) $) 98)) (-4445 (((-755) $) 100)) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) 101)) (-2801 (((-842) $) 11) (($ (-560)) 27) (($ (-403 (-560))) 116) (($ $) 86) (($ (-403 (-560))) 81) (($ (-560)) 78) (($ (-403 (-560))) 75)) (-1751 (((-755)) 28)) (-2328 (((-121) $ $) 90)) (-2550 (((-403 (-560)) $ $) 53)) (-2140 (((-626 $) (-1149 $)) 64) (((-626 $) (-1149 (-403 (-560)))) 63) (((-626 $) (-1149 (-560))) 62) (((-626 $) (-945 $)) 61) (((-626 $) (-945 (-403 (-560)))) 60) (((-626 $) (-945 (-560))) 59)) (-1822 (($ $) 127)) (-2464 (($ $ (-909)) 25) (($ $ (-755)) 32) (($ $ (-560)) 112)) (-3304 (($) 17 T CONST)) (-1459 (($) 29 T CONST)) (-1691 (((-121) $ $) 120)) (-1675 (((-121) $ $) 119)) (-1653 (((-121) $ $) 6)) (-1683 (((-121) $ $) 121)) (-1667 (((-121) $ $) 118)) (-1733 (($ $ $) 117)) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 24) (($ $ (-755)) 31) (($ $ (-560)) 113) (($ $ (-403 (-560))) 70)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 23) (($ (-403 (-560)) $) 115) (($ $ (-403 (-560))) 114) (($ (-560) $) 77) (($ $ (-560)) 76) (($ (-403 (-560)) $) 74) (($ $ (-403 (-560))) 73))) -(((-1004) (-1267)) (T -1004)) -((-2479 (*1 *1 *1) (-4 *1 (-1004))) (-1939 (*1 *2 *1) (|partial| -12 (-4 *1 (-1004)) (-5 *2 (-842)))) (-1974 (*1 *2 *1) (|partial| -12 (-5 *2 (-1149 *1)) (-4 *1 (-1004)))) (-3546 (*1 *2 *1) (|partial| -12 (-5 *2 (-1149 *1)) (-4 *1 (-1004)))) (-1449 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1149 *1)) (-5 *3 (-909)) (-5 *4 (-842)) (-4 *1 (-1004)))) (-1449 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1149 *1)) (-5 *3 (-909)) (-4 *1 (-1004)))) (-2140 (*1 *2 *3) (-12 (-5 *3 (-1149 *1)) (-4 *1 (-1004)) (-5 *2 (-626 *1)))) (-2140 (*1 *2 *3) (-12 (-5 *3 (-1149 (-403 (-560)))) (-5 *2 (-626 *1)) (-4 *1 (-1004)))) (-2140 (*1 *2 *3) (-12 (-5 *3 (-1149 (-560))) (-5 *2 (-626 *1)) (-4 *1 (-1004)))) (-2140 (*1 *2 *3) (-12 (-5 *3 (-945 *1)) (-4 *1 (-1004)) (-5 *2 (-626 *1)))) (-2140 (*1 *2 *3) (-12 (-5 *3 (-945 (-403 (-560)))) (-5 *2 (-626 *1)) (-4 *1 (-1004)))) (-2140 (*1 *2 *3) (-12 (-5 *3 (-945 (-560))) (-5 *2 (-626 *1)) (-4 *1 (-1004)))) (-2479 (*1 *1 *1 *2) (-12 (-4 *1 (-1004)) (-5 *2 (-755)))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-403 (-560))) (-4 *1 (-1004)))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-1004)))) (-3397 (*1 *1 *1 *2) (-12 (-4 *1 (-1004)) (-5 *2 (-842)))) (-1331 (*1 *1 *1 *2) (-12 (-4 *1 (-1004)) (-5 *2 (-842)))) (-2550 (*1 *2 *1 *1) (-12 (-4 *1 (-1004)) (-5 *2 (-403 (-560)))))) -(-13 (-148) (-832) (-170) (-359) (-407 (-403 (-560))) (-43 (-560)) (-43 (-403 (-560))) (-994) (-10 -8 (-15 -1939 ((-3 (-842) "failed") $)) (-15 -1974 ((-3 (-1149 $) "failed") $)) (-15 -3546 ((-3 (-1149 $) "failed") $)) (-15 -1449 ((-3 $ "failed") (-1149 $) (-909) (-842))) (-15 -1449 ((-3 $ "failed") (-1149 $) (-909))) (-15 -2140 ((-626 $) (-1149 $))) (-15 -2140 ((-626 $) (-1149 (-403 (-560))))) (-15 -2140 ((-626 $) (-1149 (-560)))) (-15 -2140 ((-626 $) (-945 $))) (-15 -2140 ((-626 $) (-945 (-403 (-560))))) (-15 -2140 ((-626 $) (-945 (-560)))) (-15 -2479 ($ $ (-755))) (-15 -2479 ($ $)) (-15 -2479 ($ (-403 (-560)))) (-15 -2479 ($ (-560))) (-15 -3397 ($ $ (-842))) (-15 -1331 ($ $ (-842))) (-15 -2550 ((-403 (-560)) $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-43 (-403 (-560))) . T) ((-43 (-560)) . T) ((-43 $) . T) ((-105) . T) ((-120 (-403 (-560)) (-403 (-560))) . T) ((-120 (-560) (-560)) . T) ((-120 $ $) . T) ((-137) . T) ((-148) . T) ((-600 (-842)) . T) ((-170) . T) ((-233) . T) ((-280) . T) ((-296) . T) ((-359) . T) ((-407 (-403 (-560))) . T) ((-447) . T) ((-550) . T) ((-629 (-403 (-560))) . T) ((-629 (-560)) . T) ((-629 $) . T) ((-699 (-403 (-560))) . T) ((-699 (-560)) . T) ((-699 $) . T) ((-708) . T) ((-778) . T) ((-779) . T) ((-781) . T) ((-782) . T) ((-832) . T) ((-834) . T) ((-908) . T) ((-994) . T) ((-1029 (-403 (-560))) . T) ((-1029 (-560)) |has| (-403 (-560)) (-1029 (-560))) ((-1045 (-403 (-560))) . T) ((-1045 (-560)) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1094) . T) ((-1082) . T) ((-1191) . T)) -((-4484 (((-2 (|:| |ans| |#2|) (|:| -3437 |#2|) (|:| |sol?| (-121))) (-560) |#2| |#2| (-1153) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-626 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-626 |#2|)) (-1 (-3 (-2 (|:| -2962 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 61))) -(((-1005 |#1| |#2|) (-10 -7 (-15 -4484 ((-2 (|:| |ans| |#2|) (|:| -3437 |#2|) (|:| |sol?| (-121))) (-560) |#2| |#2| (-1153) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-626 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-626 |#2|)) (-1 (-3 (-2 (|:| -2962 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-447) (-834) (-148) (-1029 (-560)) (-622 (-560))) (-13 (-1173) (-27) (-426 |#1|))) (T -1005)) -((-4484 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1153)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-626 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-626 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2962 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1173) (-27) (-426 *8))) (-4 *8 (-13 (-447) (-834) (-148) (-1029 *3) (-622 *3))) (-5 *3 (-560)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3437 *4) (|:| |sol?| (-121)))) (-5 *1 (-1005 *8 *4))))) -(-10 -7 (-15 -4484 ((-2 (|:| |ans| |#2|) (|:| -3437 |#2|) (|:| |sol?| (-121))) (-560) |#2| |#2| (-1153) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-626 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-626 |#2|)) (-1 (-3 (-2 (|:| -2962 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-3934 (((-3 (-626 |#2|) "failed") (-560) |#2| |#2| |#2| (-1153) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-626 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-626 |#2|)) (-1 (-3 (-2 (|:| -2962 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 47))) -(((-1006 |#1| |#2|) (-10 -7 (-15 -3934 ((-3 (-626 |#2|) "failed") (-560) |#2| |#2| |#2| (-1153) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-626 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-626 |#2|)) (-1 (-3 (-2 (|:| -2962 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-447) (-834) (-148) (-1029 (-560)) (-622 (-560))) (-13 (-1173) (-27) (-426 |#1|))) (T -1006)) -((-3934 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1153)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-626 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-626 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2962 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1173) (-27) (-426 *8))) (-4 *8 (-13 (-447) (-834) (-148) (-1029 *3) (-622 *3))) (-5 *3 (-560)) (-5 *2 (-626 *4)) (-5 *1 (-1006 *8 *4))))) -(-10 -7 (-15 -3934 ((-3 (-626 |#2|) "failed") (-560) |#2| |#2| |#2| (-1153) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-626 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-626 |#2|)) (-1 (-3 (-2 (|:| -2962 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-4213 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-121)))) (|:| -2654 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-560)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-560) (-1 |#2| |#2|)) 30)) (-2159 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-403 |#2|)) (|:| |c| (-403 |#2|)) (|:| -3962 |#2|)) "failed") (-403 |#2|) (-403 |#2|) (-1 |#2| |#2|)) 56)) (-4284 (((-2 (|:| |ans| (-403 |#2|)) (|:| |nosol| (-121))) (-403 |#2|) (-403 |#2|)) 61))) -(((-1007 |#1| |#2|) (-10 -7 (-15 -2159 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-403 |#2|)) (|:| |c| (-403 |#2|)) (|:| -3962 |#2|)) "failed") (-403 |#2|) (-403 |#2|) (-1 |#2| |#2|))) (-15 -4284 ((-2 (|:| |ans| (-403 |#2|)) (|:| |nosol| (-121))) (-403 |#2|) (-403 |#2|))) (-15 -4213 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-121)))) (|:| -2654 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-560)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-560) (-1 |#2| |#2|)))) (-13 (-359) (-148) (-1029 (-560))) (-1211 |#1|)) (T -1007)) -((-4213 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1211 *6)) (-4 *6 (-13 (-359) (-148) (-1029 *4))) (-5 *4 (-560)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-121)))) (|:| -2654 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1007 *6 *3)))) (-4284 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-359) (-148) (-1029 (-560)))) (-4 *5 (-1211 *4)) (-5 *2 (-2 (|:| |ans| (-403 *5)) (|:| |nosol| (-121)))) (-5 *1 (-1007 *4 *5)) (-5 *3 (-403 *5)))) (-2159 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1211 *5)) (-4 *5 (-13 (-359) (-148) (-1029 (-560)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-403 *6)) (|:| |c| (-403 *6)) (|:| -3962 *6))) (-5 *1 (-1007 *5 *6)) (-5 *3 (-403 *6))))) -(-10 -7 (-15 -2159 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-403 |#2|)) (|:| |c| (-403 |#2|)) (|:| -3962 |#2|)) "failed") (-403 |#2|) (-403 |#2|) (-1 |#2| |#2|))) (-15 -4284 ((-2 (|:| |ans| (-403 |#2|)) (|:| |nosol| (-121))) (-403 |#2|) (-403 |#2|))) (-15 -4213 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-121)))) (|:| -2654 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-560)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-560) (-1 |#2| |#2|)))) -((-2667 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-403 |#2|)) (|:| |h| |#2|) (|:| |c1| (-403 |#2|)) (|:| |c2| (-403 |#2|)) (|:| -3962 |#2|)) "failed") (-403 |#2|) (-403 |#2|) (-403 |#2|) (-1 |#2| |#2|)) 22)) (-3812 (((-3 (-626 (-403 |#2|)) "failed") (-403 |#2|) (-403 |#2|) (-403 |#2|)) 32))) -(((-1008 |#1| |#2|) (-10 -7 (-15 -2667 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-403 |#2|)) (|:| |h| |#2|) (|:| |c1| (-403 |#2|)) (|:| |c2| (-403 |#2|)) (|:| -3962 |#2|)) "failed") (-403 |#2|) (-403 |#2|) (-403 |#2|) (-1 |#2| |#2|))) (-15 -3812 ((-3 (-626 (-403 |#2|)) "failed") (-403 |#2|) (-403 |#2|) (-403 |#2|)))) (-13 (-359) (-148) (-1029 (-560))) (-1211 |#1|)) (T -1008)) -((-3812 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-359) (-148) (-1029 (-560)))) (-4 *5 (-1211 *4)) (-5 *2 (-626 (-403 *5))) (-5 *1 (-1008 *4 *5)) (-5 *3 (-403 *5)))) (-2667 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1211 *5)) (-4 *5 (-13 (-359) (-148) (-1029 (-560)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-403 *6)) (|:| |h| *6) (|:| |c1| (-403 *6)) (|:| |c2| (-403 *6)) (|:| -3962 *6))) (-5 *1 (-1008 *5 *6)) (-5 *3 (-403 *6))))) -(-10 -7 (-15 -2667 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-403 |#2|)) (|:| |h| |#2|) (|:| |c1| (-403 |#2|)) (|:| |c2| (-403 |#2|)) (|:| -3962 |#2|)) "failed") (-403 |#2|) (-403 |#2|) (-403 |#2|) (-1 |#2| |#2|))) (-15 -3812 ((-3 (-626 (-403 |#2|)) "failed") (-403 |#2|) (-403 |#2|) (-403 |#2|)))) -((-3615 (((-1 |#1|) (-626 (-2 (|:| -2981 |#1|) (|:| -1400 (-560))))) 37)) (-2515 (((-1 |#1|) (-1084 |#1|)) 45)) (-2861 (((-1 |#1|) (-1236 |#1|) (-1236 (-560)) (-560)) 34))) -(((-1009 |#1|) (-10 -7 (-15 -2515 ((-1 |#1|) (-1084 |#1|))) (-15 -3615 ((-1 |#1|) (-626 (-2 (|:| -2981 |#1|) (|:| -1400 (-560)))))) (-15 -2861 ((-1 |#1|) (-1236 |#1|) (-1236 (-560)) (-560)))) (-1082)) (T -1009)) -((-2861 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1236 *6)) (-5 *4 (-1236 (-560))) (-5 *5 (-560)) (-4 *6 (-1082)) (-5 *2 (-1 *6)) (-5 *1 (-1009 *6)))) (-3615 (*1 *2 *3) (-12 (-5 *3 (-626 (-2 (|:| -2981 *4) (|:| -1400 (-560))))) (-4 *4 (-1082)) (-5 *2 (-1 *4)) (-5 *1 (-1009 *4)))) (-2515 (*1 *2 *3) (-12 (-5 *3 (-1084 *4)) (-4 *4 (-1082)) (-5 *2 (-1 *4)) (-5 *1 (-1009 *4))))) -(-10 -7 (-15 -2515 ((-1 |#1|) (-1084 |#1|))) (-15 -3615 ((-1 |#1|) (-626 (-2 (|:| -2981 |#1|) (|:| -1400 (-560)))))) (-15 -2861 ((-1 |#1|) (-1236 |#1|) (-1236 (-560)) (-560)))) -((-3504 (((-755) (-328 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23))) -(((-1010 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3504 ((-755) (-328 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-359) (-1211 |#1|) (-1211 (-403 |#2|)) (-334 |#1| |#2| |#3|) (-13 (-364) (-359))) (T -1010)) -((-3504 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-328 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-359)) (-4 *7 (-1211 *6)) (-4 *4 (-1211 (-403 *7))) (-4 *8 (-334 *6 *7 *4)) (-4 *9 (-13 (-364) (-359))) (-5 *2 (-755)) (-5 *1 (-1010 *6 *7 *4 *8 *9))))) -(-10 -7 (-15 -3504 ((-755) (-328 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) -((-2588 (((-3 (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560)))) "failed") |#1| (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560)))) (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560))))) 31) (((-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560)))) |#1| (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560)))) (-403 (-560))) 28)) (-2802 (((-626 (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560))))) |#1| (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560)))) (-403 (-560))) 33) (((-626 (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560))))) |#1| (-403 (-560))) 29) (((-626 (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560))))) |#1| (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560))))) 32) (((-626 (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560))))) |#1|) 27)) (-1828 (((-626 (-403 (-560))) (-626 (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560)))))) 19)) (-2793 (((-403 (-560)) (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560))))) 16))) -(((-1011 |#1|) (-10 -7 (-15 -2802 ((-626 (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560))))) |#1|)) (-15 -2802 ((-626 (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560))))) |#1| (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560)))))) (-15 -2802 ((-626 (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560))))) |#1| (-403 (-560)))) (-15 -2802 ((-626 (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560))))) |#1| (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560)))) (-403 (-560)))) (-15 -2588 ((-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560)))) |#1| (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560)))) (-403 (-560)))) (-15 -2588 ((-3 (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560)))) "failed") |#1| (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560)))) (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560)))))) (-15 -2793 ((-403 (-560)) (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560)))))) (-15 -1828 ((-626 (-403 (-560))) (-626 (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560)))))))) (-1211 (-560))) (T -1011)) -((-1828 (*1 *2 *3) (-12 (-5 *3 (-626 (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560)))))) (-5 *2 (-626 (-403 (-560)))) (-5 *1 (-1011 *4)) (-4 *4 (-1211 (-560))))) (-2793 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560))))) (-5 *2 (-403 (-560))) (-5 *1 (-1011 *4)) (-4 *4 (-1211 (-560))))) (-2588 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560))))) (-5 *1 (-1011 *3)) (-4 *3 (-1211 (-560))))) (-2588 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560))))) (-5 *4 (-403 (-560))) (-5 *1 (-1011 *3)) (-4 *3 (-1211 (-560))))) (-2802 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-403 (-560))) (-5 *2 (-626 (-2 (|:| -3156 *5) (|:| -3437 *5)))) (-5 *1 (-1011 *3)) (-4 *3 (-1211 (-560))) (-5 *4 (-2 (|:| -3156 *5) (|:| -3437 *5))))) (-2802 (*1 *2 *3 *4) (-12 (-5 *2 (-626 (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560)))))) (-5 *1 (-1011 *3)) (-4 *3 (-1211 (-560))) (-5 *4 (-403 (-560))))) (-2802 (*1 *2 *3 *4) (-12 (-5 *2 (-626 (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560)))))) (-5 *1 (-1011 *3)) (-4 *3 (-1211 (-560))) (-5 *4 (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560))))))) (-2802 (*1 *2 *3) (-12 (-5 *2 (-626 (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560)))))) (-5 *1 (-1011 *3)) (-4 *3 (-1211 (-560)))))) -(-10 -7 (-15 -2802 ((-626 (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560))))) |#1|)) (-15 -2802 ((-626 (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560))))) |#1| (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560)))))) (-15 -2802 ((-626 (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560))))) |#1| (-403 (-560)))) (-15 -2802 ((-626 (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560))))) |#1| (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560)))) (-403 (-560)))) (-15 -2588 ((-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560)))) |#1| (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560)))) (-403 (-560)))) (-15 -2588 ((-3 (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560)))) "failed") |#1| (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560)))) (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560)))))) (-15 -2793 ((-403 (-560)) (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560)))))) (-15 -1828 ((-626 (-403 (-560))) (-626 (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560)))))))) -((-2588 (((-3 (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560)))) "failed") |#1| (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560)))) (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560))))) 35) (((-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560)))) |#1| (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560)))) (-403 (-560))) 32)) (-2802 (((-626 (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560))))) |#1| (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560)))) (-403 (-560))) 30) (((-626 (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560))))) |#1| (-403 (-560))) 26) (((-626 (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560))))) |#1| (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560))))) 28) (((-626 (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560))))) |#1|) 24))) -(((-1012 |#1|) (-10 -7 (-15 -2802 ((-626 (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560))))) |#1|)) (-15 -2802 ((-626 (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560))))) |#1| (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560)))))) (-15 -2802 ((-626 (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560))))) |#1| (-403 (-560)))) (-15 -2802 ((-626 (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560))))) |#1| (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560)))) (-403 (-560)))) (-15 -2588 ((-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560)))) |#1| (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560)))) (-403 (-560)))) (-15 -2588 ((-3 (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560)))) "failed") |#1| (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560)))) (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560))))))) (-1211 (-403 (-560)))) (T -1012)) -((-2588 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560))))) (-5 *1 (-1012 *3)) (-4 *3 (-1211 (-403 (-560)))))) (-2588 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560))))) (-5 *4 (-403 (-560))) (-5 *1 (-1012 *3)) (-4 *3 (-1211 *4)))) (-2802 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-403 (-560))) (-5 *2 (-626 (-2 (|:| -3156 *5) (|:| -3437 *5)))) (-5 *1 (-1012 *3)) (-4 *3 (-1211 *5)) (-5 *4 (-2 (|:| -3156 *5) (|:| -3437 *5))))) (-2802 (*1 *2 *3 *4) (-12 (-5 *4 (-403 (-560))) (-5 *2 (-626 (-2 (|:| -3156 *4) (|:| -3437 *4)))) (-5 *1 (-1012 *3)) (-4 *3 (-1211 *4)))) (-2802 (*1 *2 *3 *4) (-12 (-5 *2 (-626 (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560)))))) (-5 *1 (-1012 *3)) (-4 *3 (-1211 (-403 (-560)))) (-5 *4 (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560))))))) (-2802 (*1 *2 *3) (-12 (-5 *2 (-626 (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560)))))) (-5 *1 (-1012 *3)) (-4 *3 (-1211 (-403 (-560))))))) -(-10 -7 (-15 -2802 ((-626 (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560))))) |#1|)) (-15 -2802 ((-626 (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560))))) |#1| (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560)))))) (-15 -2802 ((-626 (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560))))) |#1| (-403 (-560)))) (-15 -2802 ((-626 (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560))))) |#1| (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560)))) (-403 (-560)))) (-15 -2588 ((-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560)))) |#1| (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560)))) (-403 (-560)))) (-15 -2588 ((-3 (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560)))) "failed") |#1| (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560)))) (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560))))))) -((-4255 (((-213) $) 6) (((-375) $) 8))) -(((-1013) (-1267)) (T -1013)) -NIL -(-13 (-601 (-213)) (-601 (-375))) -(((-601 (-213)) . T) ((-601 (-375)) . T)) -((-4159 (((-626 (-375)) (-945 (-560)) (-375)) 27) (((-626 (-375)) (-945 (-403 (-560))) (-375)) 26)) (-1652 (((-626 (-626 (-375))) (-626 (-945 (-560))) (-626 (-1153)) (-375)) 36))) -(((-1014) (-10 -7 (-15 -4159 ((-626 (-375)) (-945 (-403 (-560))) (-375))) (-15 -4159 ((-626 (-375)) (-945 (-560)) (-375))) (-15 -1652 ((-626 (-626 (-375))) (-626 (-945 (-560))) (-626 (-1153)) (-375))))) (T -1014)) -((-1652 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-626 (-945 (-560)))) (-5 *4 (-626 (-1153))) (-5 *2 (-626 (-626 (-375)))) (-5 *1 (-1014)) (-5 *5 (-375)))) (-4159 (*1 *2 *3 *4) (-12 (-5 *3 (-945 (-560))) (-5 *2 (-626 (-375))) (-5 *1 (-1014)) (-5 *4 (-375)))) (-4159 (*1 *2 *3 *4) (-12 (-5 *3 (-945 (-403 (-560)))) (-5 *2 (-626 (-375))) (-5 *1 (-1014)) (-5 *4 (-375))))) -(-10 -7 (-15 -4159 ((-626 (-375)) (-945 (-403 (-560))) (-375))) (-15 -4159 ((-626 (-375)) (-945 (-560)) (-375))) (-15 -1652 ((-626 (-626 (-375))) (-626 (-945 (-560))) (-626 (-1153)) (-375)))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) 70)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL)) (-1350 (($ $) NIL)) (-3376 (((-121) $) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-3065 (($ $) NIL)) (-2953 (((-414 $) $) NIL)) (-2479 (($ $) NIL) (($ $ (-755)) NIL) (($ (-403 (-560))) NIL) (($ (-560)) NIL)) (-4179 (((-121) $ $) NIL)) (-4235 (((-560) $) 65)) (-4236 (($) NIL T CONST)) (-1449 (((-3 $ "failed") (-1149 $) (-909) (-842)) NIL) (((-3 $ "failed") (-1149 $) (-909)) 49)) (-1473 (((-3 (-403 (-560)) "failed") $) NIL (|has| (-403 (-560)) (-1029 (-403 (-560))))) (((-3 (-403 (-560)) "failed") $) NIL) (((-3 |#1| "failed") $) 108) (((-3 (-560) "failed") $) NIL (-2318 (|has| (-403 (-560)) (-1029 (-560))) (|has| |#1| (-1029 (-560)))))) (-3001 (((-403 (-560)) $) 14 (|has| (-403 (-560)) (-1029 (-403 (-560))))) (((-403 (-560)) $) 14) ((|#1| $) 109) (((-560) $) NIL (-2318 (|has| (-403 (-560)) (-1029 (-560))) (|has| |#1| (-1029 (-560)))))) (-3397 (($ $ (-842)) 40)) (-1331 (($ $ (-842)) 41)) (-2563 (($ $ $) NIL)) (-3152 (((-403 (-560)) $ $) 18)) (-1823 (((-3 $ "failed") $) 83)) (-2572 (($ $ $) NIL)) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) NIL)) (-3319 (((-121) $) NIL)) (-1786 (((-121) $) 60)) (-2642 (((-121) $) NIL)) (-2586 (($ $ (-560)) NIL)) (-2187 (((-121) $) 63)) (-3856 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-4325 (($ $ $) NIL)) (-2501 (($ $ $) NIL)) (-3546 (((-3 (-1149 $) "failed") $) 78)) (-1939 (((-3 (-842) "failed") $) 77)) (-1974 (((-3 (-1149 $) "failed") $) 75)) (-3509 (((-3 (-1049 $ (-1149 $)) "failed") $) 73)) (-2582 (($ (-626 $)) NIL) (($ $ $) NIL)) (-1291 (((-1135) $) NIL)) (-1701 (($ $) 84)) (-4353 (((-1100) $) NIL)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL)) (-4440 (($ (-626 $)) NIL) (($ $ $) NIL)) (-1601 (((-414 $) $) NIL)) (-3505 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL)) (-2336 (((-3 $ "failed") $ $) NIL)) (-3456 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-4445 (((-755) $) NIL)) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL)) (-2801 (((-842) $) 82) (($ (-560)) NIL) (($ (-403 (-560))) NIL) (($ $) 57) (($ (-403 (-560))) NIL) (($ (-560)) NIL) (($ (-403 (-560))) NIL) (($ |#1|) 111)) (-1751 (((-755)) NIL)) (-2328 (((-121) $ $) NIL)) (-2550 (((-403 (-560)) $ $) 24)) (-2140 (((-626 $) (-1149 $)) 55) (((-626 $) (-1149 (-403 (-560)))) NIL) (((-626 $) (-1149 (-560))) NIL) (((-626 $) (-945 $)) NIL) (((-626 $) (-945 (-403 (-560)))) NIL) (((-626 $) (-945 (-560))) NIL)) (-3757 (($ (-1049 $ (-1149 $)) (-842)) 39)) (-1822 (($ $) 19)) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL)) (-3304 (($) 28 T CONST)) (-1459 (($) 34 T CONST)) (-1691 (((-121) $ $) NIL)) (-1675 (((-121) $ $) NIL)) (-1653 (((-121) $ $) 71)) (-1683 (((-121) $ $) NIL)) (-1667 (((-121) $ $) 21)) (-1733 (($ $ $) 32)) (-1725 (($ $) 33) (($ $ $) 69)) (-1716 (($ $ $) 104)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL) (($ $ (-403 (-560))) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) 92) (($ $ $) 97) (($ (-403 (-560)) $) NIL) (($ $ (-403 (-560))) NIL) (($ (-560) $) 92) (($ $ (-560)) NIL) (($ (-403 (-560)) $) NIL) (($ $ (-403 (-560))) NIL) (($ |#1| $) 96) (($ $ |#1|) NIL))) -(((-1015 |#1|) (-13 (-1004) (-407 |#1|) (-43 |#1|) (-10 -8 (-15 -3757 ($ (-1049 $ (-1149 $)) (-842))) (-15 -3509 ((-3 (-1049 $ (-1149 $)) "failed") $)) (-15 -3152 ((-403 (-560)) $ $)))) (-13 (-832) (-359) (-1013))) (T -1015)) -((-3757 (*1 *1 *2 *3) (-12 (-5 *2 (-1049 (-1015 *4) (-1149 (-1015 *4)))) (-5 *3 (-842)) (-5 *1 (-1015 *4)) (-4 *4 (-13 (-832) (-359) (-1013))))) (-3509 (*1 *2 *1) (|partial| -12 (-5 *2 (-1049 (-1015 *3) (-1149 (-1015 *3)))) (-5 *1 (-1015 *3)) (-4 *3 (-13 (-832) (-359) (-1013))))) (-3152 (*1 *2 *1 *1) (-12 (-5 *2 (-403 (-560))) (-5 *1 (-1015 *3)) (-4 *3 (-13 (-832) (-359) (-1013)))))) -(-13 (-1004) (-407 |#1|) (-43 |#1|) (-10 -8 (-15 -3757 ($ (-1049 $ (-1149 $)) (-842))) (-15 -3509 ((-3 (-1049 $ (-1149 $)) "failed") $)) (-15 -3152 ((-403 (-560)) $ $)))) -((-3532 (((-2 (|:| -2501 (-3 (-560) "failed")) (|:| -1943 (-3 (-560) "failed")) (|:| |ker| (-599 |#2|))) (-123) (-1153) |#2|) 59 (|has| |#1| (-1039)))) (-3540 (((-560) (-560) (-123) (-1153) |#2|) 76)) (-3544 (((-3 (-560) "failed") (-123) (-599 |#2|) (-1153)) 56 (|has| |#1| (-1039)))) (-3548 (((-123) |#2|) 103)) (-3553 ((|#2| |#2|) 102)) (-3558 ((|#2| (-123) (-1153) |#2| |#2| |#2| (-626 |#2|)) 72)) (-3562 ((|#2| (-123) (-1153) |#2| |#2| |#2| (-626 |#2|)) 100))) -(((-1016 |#1| |#2|) (-10 -7 (-15 -3558 (|#2| (-123) (-1153) |#2| |#2| |#2| (-626 |#2|))) (-15 -3562 (|#2| (-123) (-1153) |#2| |#2| |#2| (-626 |#2|))) (-15 -3553 (|#2| |#2|)) (-15 -3548 ((-123) |#2|)) (-15 -3540 ((-560) (-560) (-123) (-1153) |#2|)) (IF (|has| |#1| (-1039)) (PROGN (-15 -3544 ((-3 (-560) "failed") (-123) (-599 |#2|) (-1153))) (-15 -3532 ((-2 (|:| -2501 (-3 (-560) "failed")) (|:| -1943 (-3 (-560) "failed")) (|:| |ker| (-599 |#2|))) (-123) (-1153) |#2|))) |noBranch|)) (-13 (-834) (-550) (-601 (-533))) (-13 (-426 |#1|) (-23) (-1029 (-560)) (-1029 (-1153)) (-887 (-1153)) (-159))) (T -1016)) -((-3532 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-123)) (-5 *4 (-1153)) (-4 *6 (-1039)) (-4 *6 (-13 (-834) (-550) (-601 (-533)))) (-5 *2 (-2 (|:| -2501 (-3 (-560) "failed")) (|:| -1943 (-3 (-560) "failed")) (|:| |ker| (-599 *5)))) (-5 *1 (-1016 *6 *5)) (-4 *5 (-13 (-426 *6) (-23) (-1029 (-560)) (-1029 *4) (-887 *4) (-159))))) (-3544 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-123)) (-5 *4 (-599 *7)) (-4 *7 (-13 (-426 *6) (-23) (-1029 *2) (-1029 *5) (-887 *5) (-159))) (-5 *5 (-1153)) (-4 *6 (-1039)) (-4 *6 (-13 (-834) (-550) (-601 (-533)))) (-5 *2 (-560)) (-5 *1 (-1016 *6 *7)))) (-3540 (*1 *2 *2 *3 *4 *5) (-12 (-5 *3 (-123)) (-5 *2 (-560)) (-5 *4 (-1153)) (-4 *6 (-13 (-834) (-550) (-601 (-533)))) (-5 *1 (-1016 *6 *5)) (-4 *5 (-13 (-426 *6) (-23) (-1029 *2) (-1029 *4) (-887 *4) (-159))))) (-3548 (*1 *2 *3) (-12 (-4 *4 (-13 (-834) (-550) (-601 (-533)))) (-5 *2 (-123)) (-5 *1 (-1016 *4 *3)) (-4 *3 (-13 (-426 *4) (-23) (-1029 (-560)) (-1029 (-1153)) (-887 (-1153)) (-159))))) (-3553 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550) (-601 (-533)))) (-5 *1 (-1016 *3 *2)) (-4 *2 (-13 (-426 *3) (-23) (-1029 (-560)) (-1029 (-1153)) (-887 (-1153)) (-159))))) (-3562 (*1 *2 *3 *4 *2 *2 *2 *5) (-12 (-5 *3 (-123)) (-5 *5 (-626 *2)) (-4 *2 (-13 (-426 *6) (-23) (-1029 (-560)) (-1029 *4) (-887 *4) (-159))) (-5 *4 (-1153)) (-4 *6 (-13 (-834) (-550) (-601 (-533)))) (-5 *1 (-1016 *6 *2)))) (-3558 (*1 *2 *3 *4 *2 *2 *2 *5) (-12 (-5 *3 (-123)) (-5 *5 (-626 *2)) (-4 *2 (-13 (-426 *6) (-23) (-1029 (-560)) (-1029 *4) (-887 *4) (-159))) (-5 *4 (-1153)) (-4 *6 (-13 (-834) (-550) (-601 (-533)))) (-5 *1 (-1016 *6 *2))))) -(-10 -7 (-15 -3558 (|#2| (-123) (-1153) |#2| |#2| |#2| (-626 |#2|))) (-15 -3562 (|#2| (-123) (-1153) |#2| |#2| |#2| (-626 |#2|))) (-15 -3553 (|#2| |#2|)) (-15 -3548 ((-123) |#2|)) (-15 -3540 ((-560) (-560) (-123) (-1153) |#2|)) (IF (|has| |#1| (-1039)) (PROGN (-15 -3544 ((-3 (-560) "failed") (-123) (-599 |#2|) (-1153))) (-15 -3532 ((-2 (|:| -2501 (-3 (-560) "failed")) (|:| -1943 (-3 (-560) "failed")) (|:| |ker| (-599 |#2|))) (-123) (-1153) |#2|))) |noBranch|)) -((-1967 (((-2 (|:| -2654 |#2|) (|:| -1882 (-626 |#1|))) |#2| (-626 |#1|)) 20) ((|#2| |#2| |#1|) 15))) -(((-1017 |#1| |#2|) (-10 -7 (-15 -1967 (|#2| |#2| |#1|)) (-15 -1967 ((-2 (|:| -2654 |#2|) (|:| -1882 (-626 |#1|))) |#2| (-626 |#1|)))) (-359) (-638 |#1|)) (T -1017)) -((-1967 (*1 *2 *3 *4) (-12 (-4 *5 (-359)) (-5 *2 (-2 (|:| -2654 *3) (|:| -1882 (-626 *5)))) (-5 *1 (-1017 *5 *3)) (-5 *4 (-626 *5)) (-4 *3 (-638 *5)))) (-1967 (*1 *2 *2 *3) (-12 (-4 *3 (-359)) (-5 *1 (-1017 *3 *2)) (-4 *2 (-638 *3))))) -(-10 -7 (-15 -1967 (|#2| |#2| |#1|)) (-15 -1967 ((-2 (|:| -2654 |#2|) (|:| -1882 (-626 |#1|))) |#2| (-626 |#1|)))) -((-2601 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-3121 ((|#1| $ |#1|) 14)) (-2764 ((|#1| $ |#1|) 12)) (-2281 (($ |#1|) 10)) (-1291 (((-1135) $) NIL (|has| |#1| (-1082)))) (-4353 (((-1100) $) NIL (|has| |#1| (-1082)))) (-2778 ((|#1| $) 11)) (-1850 ((|#1| $) 13)) (-2801 (((-842) $) 21 (|has| |#1| (-1082)))) (-1653 (((-121) $ $) 9))) -(((-1018 |#1|) (-13 (-1187) (-10 -8 (-15 -2281 ($ |#1|)) (-15 -2778 (|#1| $)) (-15 -2764 (|#1| $ |#1|)) (-15 -1850 (|#1| $)) (-15 -3121 (|#1| $ |#1|)) (-15 -1653 ((-121) $ $)) (IF (|has| |#1| (-1082)) (-6 (-1082)) |noBranch|))) (-1187)) (T -1018)) -((-2281 (*1 *1 *2) (-12 (-5 *1 (-1018 *2)) (-4 *2 (-1187)))) (-2778 (*1 *2 *1) (-12 (-5 *1 (-1018 *2)) (-4 *2 (-1187)))) (-2764 (*1 *2 *1 *2) (-12 (-5 *1 (-1018 *2)) (-4 *2 (-1187)))) (-1850 (*1 *2 *1) (-12 (-5 *1 (-1018 *2)) (-4 *2 (-1187)))) (-3121 (*1 *2 *1 *2) (-12 (-5 *1 (-1018 *2)) (-4 *2 (-1187)))) (-1653 (*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1018 *3)) (-4 *3 (-1187))))) -(-13 (-1187) (-10 -8 (-15 -2281 ($ |#1|)) (-15 -2778 (|#1| $)) (-15 -2764 (|#1| $ |#1|)) (-15 -1850 (|#1| $)) (-15 -3121 (|#1| $ |#1|)) (-15 -1653 ((-121) $ $)) (IF (|has| |#1| (-1082)) (-6 (-1082)) |noBranch|))) -((-2601 (((-121) $ $) NIL)) (-3975 (((-626 (-2 (|:| -4071 $) (|:| -3997 (-626 |#4|)))) (-626 |#4|)) NIL)) (-3332 (((-626 $) (-626 |#4|)) 104) (((-626 $) (-626 |#4|) (-121)) 105) (((-626 $) (-626 |#4|) (-121) (-121)) 103) (((-626 $) (-626 |#4|) (-121) (-121) (-121) (-121)) 106)) (-1654 (((-626 |#3|) $) NIL)) (-1385 (((-121) $) NIL)) (-3617 (((-121) $) NIL (|has| |#1| (-550)))) (-2898 (((-121) |#4| $) NIL) (((-121) $) NIL)) (-3177 ((|#4| |#4| $) NIL)) (-3065 (((-626 (-2 (|:| |val| |#4|) (|:| -3249 $))) |#4| $) 98)) (-3743 (((-2 (|:| |under| $) (|:| -2150 $) (|:| |upper| $)) $ |#3|) NIL)) (-3909 (((-121) $ (-755)) NIL)) (-3802 (($ (-1 (-121) |#4|) $) NIL (|has| $ (-6 -4505))) (((-3 |#4| "failed") $ |#3|) 53)) (-4236 (($) NIL T CONST)) (-2226 (((-121) $) 26 (|has| |#1| (-550)))) (-3225 (((-121) $ $) NIL (|has| |#1| (-550)))) (-4195 (((-121) $ $) NIL (|has| |#1| (-550)))) (-1501 (((-121) $) NIL (|has| |#1| (-550)))) (-4339 (((-626 |#4|) (-626 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-121) |#4| |#4|)) NIL)) (-4318 (((-626 |#4|) (-626 |#4|) $) NIL (|has| |#1| (-550)))) (-3979 (((-626 |#4|) (-626 |#4|) $) NIL (|has| |#1| (-550)))) (-1473 (((-3 $ "failed") (-626 |#4|)) NIL)) (-3001 (($ (-626 |#4|)) NIL)) (-2877 (((-3 $ "failed") $) 39)) (-2134 ((|#4| |#4| $) 56)) (-2868 (($ $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#4| (-1082))))) (-4310 (($ |#4| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#4| (-1082)))) (($ (-1 (-121) |#4|) $) NIL (|has| $ (-6 -4505)))) (-4397 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 72 (|has| |#1| (-550)))) (-1590 (((-121) |#4| $ (-1 (-121) |#4| |#4|)) NIL)) (-4048 ((|#4| |#4| $) NIL)) (-2342 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4505)) (|has| |#4| (-1082)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4505))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4505))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-121) |#4| |#4|)) NIL)) (-3035 (((-2 (|:| -4071 (-626 |#4|)) (|:| -3997 (-626 |#4|))) $) NIL)) (-2329 (((-121) |#4| $) NIL)) (-3701 (((-121) |#4| $) NIL)) (-2894 (((-121) |#4| $) NIL) (((-121) $) NIL)) (-4274 (((-2 (|:| |val| (-626 |#4|)) (|:| |towers| (-626 $))) (-626 |#4|) (-121) (-121)) 118)) (-1981 (((-626 |#4|) $) 16 (|has| $ (-6 -4505)))) (-2864 (((-121) |#4| $) NIL) (((-121) $) NIL)) (-2819 ((|#3| $) 33)) (-2122 (((-121) $ (-755)) NIL)) (-2130 (((-626 |#4|) $) 17 (|has| $ (-6 -4505)))) (-2030 (((-121) |#4| $) 25 (-12 (|has| $ (-6 -4505)) (|has| |#4| (-1082))))) (-3778 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#4| |#4|) $) 21)) (-4475 (((-626 |#3|) $) NIL)) (-1304 (((-121) |#3| $) NIL)) (-3441 (((-121) $ (-755)) NIL)) (-1291 (((-1135) $) NIL)) (-3283 (((-3 |#4| (-626 $)) |#4| |#4| $) NIL)) (-3069 (((-626 (-2 (|:| |val| |#4|) (|:| -3249 $))) |#4| |#4| $) 96)) (-4139 (((-3 |#4| "failed") $) 37)) (-3269 (((-626 $) |#4| $) 79)) (-2061 (((-3 (-121) (-626 $)) |#4| $) NIL)) (-2638 (((-626 (-2 (|:| |val| (-121)) (|:| -3249 $))) |#4| $) 89) (((-121) |#4| $) 51)) (-4283 (((-626 $) |#4| $) 101) (((-626 $) (-626 |#4|) $) NIL) (((-626 $) (-626 |#4|) (-626 $)) 102) (((-626 $) |#4| (-626 $)) NIL)) (-1788 (((-626 $) (-626 |#4|) (-121) (-121) (-121)) 113)) (-3760 (($ |#4| $) 69) (($ (-626 |#4|) $) 70) (((-626 $) |#4| $ (-121) (-121) (-121) (-121) (-121)) 66)) (-3840 (((-626 |#4|) $) NIL)) (-3098 (((-121) |#4| $) NIL) (((-121) $) NIL)) (-2054 ((|#4| |#4| $) NIL)) (-3564 (((-121) $ $) NIL)) (-1960 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-550)))) (-1584 (((-121) |#4| $) NIL) (((-121) $) NIL)) (-4047 ((|#4| |#4| $) NIL)) (-4353 (((-1100) $) NIL)) (-2824 (((-3 |#4| "failed") $) 35)) (-3786 (((-3 |#4| "failed") (-1 (-121) |#4|) $) NIL)) (-1368 (((-3 $ "failed") $ |#4|) 47)) (-3292 (($ $ |#4|) NIL) (((-626 $) |#4| $) 81) (((-626 $) |#4| (-626 $)) NIL) (((-626 $) (-626 |#4|) $) NIL) (((-626 $) (-626 |#4|) (-626 $)) 76)) (-2865 (((-121) (-1 (-121) |#4|) $) NIL (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 |#4|) (-626 |#4|)) NIL (-12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082)))) (($ $ (-283 |#4|)) NIL (-12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082)))) (($ $ (-626 (-283 |#4|))) NIL (-12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082))))) (-2214 (((-121) $ $) NIL)) (-4191 (((-121) $) 15)) (-3260 (($) 13)) (-3662 (((-755) $) NIL)) (-4035 (((-755) |#4| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#4| (-1082)))) (((-755) (-1 (-121) |#4|) $) NIL (|has| $ (-6 -4505)))) (-2813 (($ $) 12)) (-4255 (((-533) $) NIL (|has| |#4| (-601 (-533))))) (-4162 (($ (-626 |#4|)) 20)) (-3369 (($ $ |#3|) 42)) (-2673 (($ $ |#3|) 43)) (-3746 (($ $) NIL)) (-3388 (($ $ |#3|) NIL)) (-2801 (((-842) $) 31) (((-626 |#4|) $) 40)) (-4277 (((-755) $) NIL (|has| |#3| (-364)))) (-3133 (((-3 (-2 (|:| |bas| $) (|:| -4224 (-626 |#4|))) "failed") (-626 |#4|) (-1 (-121) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -4224 (-626 |#4|))) "failed") (-626 |#4|) (-1 (-121) |#4|) (-1 (-121) |#4| |#4|)) NIL)) (-2967 (((-121) $ (-1 (-121) |#4| (-626 |#4|))) NIL)) (-1767 (((-626 $) |#4| $) 78) (((-626 $) |#4| (-626 $)) NIL) (((-626 $) (-626 |#4|) $) NIL) (((-626 $) (-626 |#4|) (-626 $)) NIL)) (-3656 (((-121) (-1 (-121) |#4|) $) NIL (|has| $ (-6 -4505)))) (-3284 (((-626 |#3|) $) NIL)) (-4073 (((-121) |#4| $) NIL)) (-1535 (((-121) |#3| $) 52)) (-1653 (((-121) $ $) NIL)) (-2271 (((-755) $) NIL (|has| $ (-6 -4505))))) -(((-1019 |#1| |#2| |#3| |#4|) (-13 (-1058 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3760 ((-626 $) |#4| $ (-121) (-121) (-121) (-121) (-121))) (-15 -3332 ((-626 $) (-626 |#4|) (-121) (-121))) (-15 -3332 ((-626 $) (-626 |#4|) (-121) (-121) (-121) (-121))) (-15 -1788 ((-626 $) (-626 |#4|) (-121) (-121) (-121))) (-15 -4274 ((-2 (|:| |val| (-626 |#4|)) (|:| |towers| (-626 $))) (-626 |#4|) (-121) (-121))))) (-447) (-780) (-834) (-1053 |#1| |#2| |#3|)) (T -1019)) -((-3760 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-121)) (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-5 *2 (-626 (-1019 *5 *6 *7 *3))) (-5 *1 (-1019 *5 *6 *7 *3)) (-4 *3 (-1053 *5 *6 *7)))) (-3332 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-626 *8)) (-5 *4 (-121)) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-5 *2 (-626 (-1019 *5 *6 *7 *8))) (-5 *1 (-1019 *5 *6 *7 *8)))) (-3332 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-626 *8)) (-5 *4 (-121)) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-5 *2 (-626 (-1019 *5 *6 *7 *8))) (-5 *1 (-1019 *5 *6 *7 *8)))) (-1788 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-626 *8)) (-5 *4 (-121)) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-5 *2 (-626 (-1019 *5 *6 *7 *8))) (-5 *1 (-1019 *5 *6 *7 *8)))) (-4274 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-121)) (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *8 (-1053 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-626 *8)) (|:| |towers| (-626 (-1019 *5 *6 *7 *8))))) (-5 *1 (-1019 *5 *6 *7 *8)) (-5 *3 (-626 *8))))) -(-13 (-1058 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3760 ((-626 $) |#4| $ (-121) (-121) (-121) (-121) (-121))) (-15 -3332 ((-626 $) (-626 |#4|) (-121) (-121))) (-15 -3332 ((-626 $) (-626 |#4|) (-121) (-121) (-121) (-121))) (-15 -1788 ((-626 $) (-626 |#4|) (-121) (-121) (-121))) (-15 -4274 ((-2 (|:| |val| (-626 |#4|)) (|:| |towers| (-626 $))) (-626 |#4|) (-121) (-121))))) -((-3980 (((-626 (-671 |#1|)) (-626 (-671 |#1|))) 56) (((-671 |#1|) (-671 |#1|)) 55) (((-626 (-671 |#1|)) (-626 (-671 |#1|)) (-626 (-671 |#1|))) 54) (((-671 |#1|) (-671 |#1|) (-671 |#1|)) 51)) (-3128 (((-626 (-671 |#1|)) (-626 (-671 |#1|)) (-909)) 50) (((-671 |#1|) (-671 |#1|) (-909)) 49)) (-2889 (((-626 (-671 (-560))) (-626 (-626 (-560)))) 66) (((-626 (-671 (-560))) (-626 (-892 (-560))) (-560)) 65) (((-671 (-560)) (-626 (-560))) 62) (((-671 (-560)) (-892 (-560)) (-560)) 61)) (-2620 (((-671 (-945 |#1|)) (-755)) 79)) (-3932 (((-626 (-671 |#1|)) (-626 (-671 |#1|)) (-909)) 36 (|has| |#1| (-6 (-4507 "*")))) (((-671 |#1|) (-671 |#1|) (-909)) 34 (|has| |#1| (-6 (-4507 "*")))))) -(((-1020 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4507 "*"))) (-15 -3932 ((-671 |#1|) (-671 |#1|) (-909))) |noBranch|) (IF (|has| |#1| (-6 (-4507 "*"))) (-15 -3932 ((-626 (-671 |#1|)) (-626 (-671 |#1|)) (-909))) |noBranch|) (-15 -2620 ((-671 (-945 |#1|)) (-755))) (-15 -3128 ((-671 |#1|) (-671 |#1|) (-909))) (-15 -3128 ((-626 (-671 |#1|)) (-626 (-671 |#1|)) (-909))) (-15 -3980 ((-671 |#1|) (-671 |#1|) (-671 |#1|))) (-15 -3980 ((-626 (-671 |#1|)) (-626 (-671 |#1|)) (-626 (-671 |#1|)))) (-15 -3980 ((-671 |#1|) (-671 |#1|))) (-15 -3980 ((-626 (-671 |#1|)) (-626 (-671 |#1|)))) (-15 -2889 ((-671 (-560)) (-892 (-560)) (-560))) (-15 -2889 ((-671 (-560)) (-626 (-560)))) (-15 -2889 ((-626 (-671 (-560))) (-626 (-892 (-560))) (-560))) (-15 -2889 ((-626 (-671 (-560))) (-626 (-626 (-560)))))) (-1039)) (T -1020)) -((-2889 (*1 *2 *3) (-12 (-5 *3 (-626 (-626 (-560)))) (-5 *2 (-626 (-671 (-560)))) (-5 *1 (-1020 *4)) (-4 *4 (-1039)))) (-2889 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-892 (-560)))) (-5 *4 (-560)) (-5 *2 (-626 (-671 *4))) (-5 *1 (-1020 *5)) (-4 *5 (-1039)))) (-2889 (*1 *2 *3) (-12 (-5 *3 (-626 (-560))) (-5 *2 (-671 (-560))) (-5 *1 (-1020 *4)) (-4 *4 (-1039)))) (-2889 (*1 *2 *3 *4) (-12 (-5 *3 (-892 (-560))) (-5 *4 (-560)) (-5 *2 (-671 *4)) (-5 *1 (-1020 *5)) (-4 *5 (-1039)))) (-3980 (*1 *2 *2) (-12 (-5 *2 (-626 (-671 *3))) (-4 *3 (-1039)) (-5 *1 (-1020 *3)))) (-3980 (*1 *2 *2) (-12 (-5 *2 (-671 *3)) (-4 *3 (-1039)) (-5 *1 (-1020 *3)))) (-3980 (*1 *2 *2 *2) (-12 (-5 *2 (-626 (-671 *3))) (-4 *3 (-1039)) (-5 *1 (-1020 *3)))) (-3980 (*1 *2 *2 *2) (-12 (-5 *2 (-671 *3)) (-4 *3 (-1039)) (-5 *1 (-1020 *3)))) (-3128 (*1 *2 *2 *3) (-12 (-5 *2 (-626 (-671 *4))) (-5 *3 (-909)) (-4 *4 (-1039)) (-5 *1 (-1020 *4)))) (-3128 (*1 *2 *2 *3) (-12 (-5 *2 (-671 *4)) (-5 *3 (-909)) (-4 *4 (-1039)) (-5 *1 (-1020 *4)))) (-2620 (*1 *2 *3) (-12 (-5 *3 (-755)) (-5 *2 (-671 (-945 *4))) (-5 *1 (-1020 *4)) (-4 *4 (-1039)))) (-3932 (*1 *2 *2 *3) (-12 (-5 *2 (-626 (-671 *4))) (-5 *3 (-909)) (|has| *4 (-6 (-4507 "*"))) (-4 *4 (-1039)) (-5 *1 (-1020 *4)))) (-3932 (*1 *2 *2 *3) (-12 (-5 *2 (-671 *4)) (-5 *3 (-909)) (|has| *4 (-6 (-4507 "*"))) (-4 *4 (-1039)) (-5 *1 (-1020 *4))))) -(-10 -7 (IF (|has| |#1| (-6 (-4507 "*"))) (-15 -3932 ((-671 |#1|) (-671 |#1|) (-909))) |noBranch|) (IF (|has| |#1| (-6 (-4507 "*"))) (-15 -3932 ((-626 (-671 |#1|)) (-626 (-671 |#1|)) (-909))) |noBranch|) (-15 -2620 ((-671 (-945 |#1|)) (-755))) (-15 -3128 ((-671 |#1|) (-671 |#1|) (-909))) (-15 -3128 ((-626 (-671 |#1|)) (-626 (-671 |#1|)) (-909))) (-15 -3980 ((-671 |#1|) (-671 |#1|) (-671 |#1|))) (-15 -3980 ((-626 (-671 |#1|)) (-626 (-671 |#1|)) (-626 (-671 |#1|)))) (-15 -3980 ((-671 |#1|) (-671 |#1|))) (-15 -3980 ((-626 (-671 |#1|)) (-626 (-671 |#1|)))) (-15 -2889 ((-671 (-560)) (-892 (-560)) (-560))) (-15 -2889 ((-671 (-560)) (-626 (-560)))) (-15 -2889 ((-626 (-671 (-560))) (-626 (-892 (-560))) (-560))) (-15 -2889 ((-626 (-671 (-560))) (-626 (-626 (-560)))))) -((-1804 (((-671 |#1|) (-626 (-671 |#1|)) (-1236 |#1|)) 48 (|has| |#1| (-296)))) (-2437 (((-626 (-626 (-671 |#1|))) (-626 (-671 |#1|)) (-1236 (-1236 |#1|))) 71 (|has| |#1| (-359))) (((-626 (-626 (-671 |#1|))) (-626 (-671 |#1|)) (-1236 |#1|)) 69 (|has| |#1| (-359)))) (-2197 (((-1236 |#1|) (-626 (-1236 |#1|)) (-560)) 73 (-12 (|has| |#1| (-359)) (|has| |#1| (-364))))) (-3279 (((-626 (-626 (-671 |#1|))) (-626 (-671 |#1|)) (-909)) 78 (-12 (|has| |#1| (-359)) (|has| |#1| (-364)))) (((-626 (-626 (-671 |#1|))) (-626 (-671 |#1|)) (-121)) 76 (-12 (|has| |#1| (-359)) (|has| |#1| (-364)))) (((-626 (-626 (-671 |#1|))) (-626 (-671 |#1|))) 75 (-12 (|has| |#1| (-359)) (|has| |#1| (-364)))) (((-626 (-626 (-671 |#1|))) (-626 (-671 |#1|)) (-121) (-560) (-560)) 74 (-12 (|has| |#1| (-359)) (|has| |#1| (-364))))) (-3734 (((-121) (-626 (-671 |#1|))) 67 (|has| |#1| (-359))) (((-121) (-626 (-671 |#1|)) (-560)) 66 (|has| |#1| (-359)))) (-3899 (((-1236 (-1236 |#1|)) (-626 (-671 |#1|)) (-1236 |#1|)) 46 (|has| |#1| (-296)))) (-2393 (((-671 |#1|) (-626 (-671 |#1|)) (-671 |#1|)) 32)) (-2768 (((-671 |#1|) (-1236 (-1236 |#1|))) 29)) (-2334 (((-671 |#1|) (-626 (-671 |#1|)) (-626 (-671 |#1|)) (-560)) 62 (|has| |#1| (-359))) (((-671 |#1|) (-626 (-671 |#1|)) (-626 (-671 |#1|))) 61 (|has| |#1| (-359))) (((-671 |#1|) (-626 (-671 |#1|)) (-626 (-671 |#1|)) (-121) (-560)) 60 (|has| |#1| (-359))))) -(((-1021 |#1|) (-10 -7 (-15 -2768 ((-671 |#1|) (-1236 (-1236 |#1|)))) (-15 -2393 ((-671 |#1|) (-626 (-671 |#1|)) (-671 |#1|))) (IF (|has| |#1| (-296)) (PROGN (-15 -3899 ((-1236 (-1236 |#1|)) (-626 (-671 |#1|)) (-1236 |#1|))) (-15 -1804 ((-671 |#1|) (-626 (-671 |#1|)) (-1236 |#1|)))) |noBranch|) (IF (|has| |#1| (-359)) (PROGN (-15 -2334 ((-671 |#1|) (-626 (-671 |#1|)) (-626 (-671 |#1|)) (-121) (-560))) (-15 -2334 ((-671 |#1|) (-626 (-671 |#1|)) (-626 (-671 |#1|)))) (-15 -2334 ((-671 |#1|) (-626 (-671 |#1|)) (-626 (-671 |#1|)) (-560))) (-15 -3734 ((-121) (-626 (-671 |#1|)) (-560))) (-15 -3734 ((-121) (-626 (-671 |#1|)))) (-15 -2437 ((-626 (-626 (-671 |#1|))) (-626 (-671 |#1|)) (-1236 |#1|))) (-15 -2437 ((-626 (-626 (-671 |#1|))) (-626 (-671 |#1|)) (-1236 (-1236 |#1|))))) |noBranch|) (IF (|has| |#1| (-364)) (IF (|has| |#1| (-359)) (PROGN (-15 -3279 ((-626 (-626 (-671 |#1|))) (-626 (-671 |#1|)) (-121) (-560) (-560))) (-15 -3279 ((-626 (-626 (-671 |#1|))) (-626 (-671 |#1|)))) (-15 -3279 ((-626 (-626 (-671 |#1|))) (-626 (-671 |#1|)) (-121))) (-15 -3279 ((-626 (-626 (-671 |#1|))) (-626 (-671 |#1|)) (-909))) (-15 -2197 ((-1236 |#1|) (-626 (-1236 |#1|)) (-560)))) |noBranch|) |noBranch|)) (-1039)) (T -1021)) -((-2197 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-1236 *5))) (-5 *4 (-560)) (-5 *2 (-1236 *5)) (-5 *1 (-1021 *5)) (-4 *5 (-359)) (-4 *5 (-364)) (-4 *5 (-1039)))) (-3279 (*1 *2 *3 *4) (-12 (-5 *4 (-909)) (-4 *5 (-359)) (-4 *5 (-364)) (-4 *5 (-1039)) (-5 *2 (-626 (-626 (-671 *5)))) (-5 *1 (-1021 *5)) (-5 *3 (-626 (-671 *5))))) (-3279 (*1 *2 *3 *4) (-12 (-5 *4 (-121)) (-4 *5 (-359)) (-4 *5 (-364)) (-4 *5 (-1039)) (-5 *2 (-626 (-626 (-671 *5)))) (-5 *1 (-1021 *5)) (-5 *3 (-626 (-671 *5))))) (-3279 (*1 *2 *3) (-12 (-4 *4 (-359)) (-4 *4 (-364)) (-4 *4 (-1039)) (-5 *2 (-626 (-626 (-671 *4)))) (-5 *1 (-1021 *4)) (-5 *3 (-626 (-671 *4))))) (-3279 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-121)) (-5 *5 (-560)) (-4 *6 (-359)) (-4 *6 (-364)) (-4 *6 (-1039)) (-5 *2 (-626 (-626 (-671 *6)))) (-5 *1 (-1021 *6)) (-5 *3 (-626 (-671 *6))))) (-2437 (*1 *2 *3 *4) (-12 (-5 *4 (-1236 (-1236 *5))) (-4 *5 (-359)) (-4 *5 (-1039)) (-5 *2 (-626 (-626 (-671 *5)))) (-5 *1 (-1021 *5)) (-5 *3 (-626 (-671 *5))))) (-2437 (*1 *2 *3 *4) (-12 (-5 *4 (-1236 *5)) (-4 *5 (-359)) (-4 *5 (-1039)) (-5 *2 (-626 (-626 (-671 *5)))) (-5 *1 (-1021 *5)) (-5 *3 (-626 (-671 *5))))) (-3734 (*1 *2 *3) (-12 (-5 *3 (-626 (-671 *4))) (-4 *4 (-359)) (-4 *4 (-1039)) (-5 *2 (-121)) (-5 *1 (-1021 *4)))) (-3734 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-671 *5))) (-5 *4 (-560)) (-4 *5 (-359)) (-4 *5 (-1039)) (-5 *2 (-121)) (-5 *1 (-1021 *5)))) (-2334 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-626 (-671 *5))) (-5 *4 (-560)) (-5 *2 (-671 *5)) (-5 *1 (-1021 *5)) (-4 *5 (-359)) (-4 *5 (-1039)))) (-2334 (*1 *2 *3 *3) (-12 (-5 *3 (-626 (-671 *4))) (-5 *2 (-671 *4)) (-5 *1 (-1021 *4)) (-4 *4 (-359)) (-4 *4 (-1039)))) (-2334 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-626 (-671 *6))) (-5 *4 (-121)) (-5 *5 (-560)) (-5 *2 (-671 *6)) (-5 *1 (-1021 *6)) (-4 *6 (-359)) (-4 *6 (-1039)))) (-1804 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-671 *5))) (-5 *4 (-1236 *5)) (-4 *5 (-296)) (-4 *5 (-1039)) (-5 *2 (-671 *5)) (-5 *1 (-1021 *5)))) (-3899 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-671 *5))) (-4 *5 (-296)) (-4 *5 (-1039)) (-5 *2 (-1236 (-1236 *5))) (-5 *1 (-1021 *5)) (-5 *4 (-1236 *5)))) (-2393 (*1 *2 *3 *2) (-12 (-5 *3 (-626 (-671 *4))) (-5 *2 (-671 *4)) (-4 *4 (-1039)) (-5 *1 (-1021 *4)))) (-2768 (*1 *2 *3) (-12 (-5 *3 (-1236 (-1236 *4))) (-4 *4 (-1039)) (-5 *2 (-671 *4)) (-5 *1 (-1021 *4))))) -(-10 -7 (-15 -2768 ((-671 |#1|) (-1236 (-1236 |#1|)))) (-15 -2393 ((-671 |#1|) (-626 (-671 |#1|)) (-671 |#1|))) (IF (|has| |#1| (-296)) (PROGN (-15 -3899 ((-1236 (-1236 |#1|)) (-626 (-671 |#1|)) (-1236 |#1|))) (-15 -1804 ((-671 |#1|) (-626 (-671 |#1|)) (-1236 |#1|)))) |noBranch|) (IF (|has| |#1| (-359)) (PROGN (-15 -2334 ((-671 |#1|) (-626 (-671 |#1|)) (-626 (-671 |#1|)) (-121) (-560))) (-15 -2334 ((-671 |#1|) (-626 (-671 |#1|)) (-626 (-671 |#1|)))) (-15 -2334 ((-671 |#1|) (-626 (-671 |#1|)) (-626 (-671 |#1|)) (-560))) (-15 -3734 ((-121) (-626 (-671 |#1|)) (-560))) (-15 -3734 ((-121) (-626 (-671 |#1|)))) (-15 -2437 ((-626 (-626 (-671 |#1|))) (-626 (-671 |#1|)) (-1236 |#1|))) (-15 -2437 ((-626 (-626 (-671 |#1|))) (-626 (-671 |#1|)) (-1236 (-1236 |#1|))))) |noBranch|) (IF (|has| |#1| (-364)) (IF (|has| |#1| (-359)) (PROGN (-15 -3279 ((-626 (-626 (-671 |#1|))) (-626 (-671 |#1|)) (-121) (-560) (-560))) (-15 -3279 ((-626 (-626 (-671 |#1|))) (-626 (-671 |#1|)))) (-15 -3279 ((-626 (-626 (-671 |#1|))) (-626 (-671 |#1|)) (-121))) (-15 -3279 ((-626 (-626 (-671 |#1|))) (-626 (-671 |#1|)) (-909))) (-15 -2197 ((-1236 |#1|) (-626 (-1236 |#1|)) (-560)))) |noBranch|) |noBranch|)) -((-3067 ((|#1| (-909) |#1|) 9))) -(((-1022 |#1|) (-10 -7 (-15 -3067 (|#1| (-909) |#1|))) (-13 (-1082) (-10 -8 (-15 -1716 ($ $ $))))) (T -1022)) -((-3067 (*1 *2 *3 *2) (-12 (-5 *3 (-909)) (-5 *1 (-1022 *2)) (-4 *2 (-13 (-1082) (-10 -8 (-15 -1716 ($ $ $)))))))) -(-10 -7 (-15 -3067 (|#1| (-909) |#1|))) -((-4115 (((-626 (-2 (|:| |radval| (-304 (-560))) (|:| |radmult| (-560)) (|:| |radvect| (-626 (-671 (-304 (-560))))))) (-671 (-403 (-945 (-560))))) 58)) (-4104 (((-626 (-671 (-304 (-560)))) (-304 (-560)) (-671 (-403 (-945 (-560))))) 48)) (-4279 (((-626 (-304 (-560))) (-671 (-403 (-945 (-560))))) 41)) (-4223 (((-626 (-671 (-304 (-560)))) (-671 (-403 (-945 (-560))))) 67)) (-3258 (((-671 (-304 (-560))) (-671 (-304 (-560)))) 33)) (-2990 (((-626 (-671 (-304 (-560)))) (-626 (-671 (-304 (-560))))) 61)) (-1448 (((-3 (-671 (-304 (-560))) "failed") (-671 (-403 (-945 (-560))))) 65))) -(((-1023) (-10 -7 (-15 -4115 ((-626 (-2 (|:| |radval| (-304 (-560))) (|:| |radmult| (-560)) (|:| |radvect| (-626 (-671 (-304 (-560))))))) (-671 (-403 (-945 (-560)))))) (-15 -4104 ((-626 (-671 (-304 (-560)))) (-304 (-560)) (-671 (-403 (-945 (-560)))))) (-15 -4279 ((-626 (-304 (-560))) (-671 (-403 (-945 (-560)))))) (-15 -1448 ((-3 (-671 (-304 (-560))) "failed") (-671 (-403 (-945 (-560)))))) (-15 -3258 ((-671 (-304 (-560))) (-671 (-304 (-560))))) (-15 -2990 ((-626 (-671 (-304 (-560)))) (-626 (-671 (-304 (-560)))))) (-15 -4223 ((-626 (-671 (-304 (-560)))) (-671 (-403 (-945 (-560)))))))) (T -1023)) -((-4223 (*1 *2 *3) (-12 (-5 *3 (-671 (-403 (-945 (-560))))) (-5 *2 (-626 (-671 (-304 (-560))))) (-5 *1 (-1023)))) (-2990 (*1 *2 *2) (-12 (-5 *2 (-626 (-671 (-304 (-560))))) (-5 *1 (-1023)))) (-3258 (*1 *2 *2) (-12 (-5 *2 (-671 (-304 (-560)))) (-5 *1 (-1023)))) (-1448 (*1 *2 *3) (|partial| -12 (-5 *3 (-671 (-403 (-945 (-560))))) (-5 *2 (-671 (-304 (-560)))) (-5 *1 (-1023)))) (-4279 (*1 *2 *3) (-12 (-5 *3 (-671 (-403 (-945 (-560))))) (-5 *2 (-626 (-304 (-560)))) (-5 *1 (-1023)))) (-4104 (*1 *2 *3 *4) (-12 (-5 *4 (-671 (-403 (-945 (-560))))) (-5 *2 (-626 (-671 (-304 (-560))))) (-5 *1 (-1023)) (-5 *3 (-304 (-560))))) (-4115 (*1 *2 *3) (-12 (-5 *3 (-671 (-403 (-945 (-560))))) (-5 *2 (-626 (-2 (|:| |radval| (-304 (-560))) (|:| |radmult| (-560)) (|:| |radvect| (-626 (-671 (-304 (-560)))))))) (-5 *1 (-1023))))) -(-10 -7 (-15 -4115 ((-626 (-2 (|:| |radval| (-304 (-560))) (|:| |radmult| (-560)) (|:| |radvect| (-626 (-671 (-304 (-560))))))) (-671 (-403 (-945 (-560)))))) (-15 -4104 ((-626 (-671 (-304 (-560)))) (-304 (-560)) (-671 (-403 (-945 (-560)))))) (-15 -4279 ((-626 (-304 (-560))) (-671 (-403 (-945 (-560)))))) (-15 -1448 ((-3 (-671 (-304 (-560))) "failed") (-671 (-403 (-945 (-560)))))) (-15 -3258 ((-671 (-304 (-560))) (-671 (-304 (-560))))) (-15 -2990 ((-626 (-671 (-304 (-560)))) (-626 (-671 (-304 (-560)))))) (-15 -4223 ((-626 (-671 (-304 (-560)))) (-671 (-403 (-945 (-560))))))) -((-2710 ((|#1| |#1| (-909)) 9))) -(((-1024 |#1|) (-10 -7 (-15 -2710 (|#1| |#1| (-909)))) (-13 (-1082) (-10 -8 (-15 * ($ $ $))))) (T -1024)) -((-2710 (*1 *2 *2 *3) (-12 (-5 *3 (-909)) (-5 *1 (-1024 *2)) (-4 *2 (-13 (-1082) (-10 -8 (-15 * ($ $ $)))))))) -(-10 -7 (-15 -2710 (|#1| |#1| (-909)))) -((-2801 ((|#1| (-300)) 11) (((-1241) |#1|) 9))) -(((-1025 |#1|) (-10 -7 (-15 -2801 ((-1241) |#1|)) (-15 -2801 (|#1| (-300)))) (-1187)) (T -1025)) -((-2801 (*1 *2 *3) (-12 (-5 *3 (-300)) (-5 *1 (-1025 *2)) (-4 *2 (-1187)))) (-2801 (*1 *2 *3) (-12 (-5 *2 (-1241)) (-5 *1 (-1025 *3)) (-4 *3 (-1187))))) -(-10 -7 (-15 -2801 ((-1241) |#1|)) (-15 -2801 (|#1| (-300)))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-4236 (($) NIL T CONST)) (-2342 (($ |#4|) 25)) (-1823 (((-3 $ "failed") $) NIL)) (-2642 (((-121) $) NIL)) (-2335 ((|#4| $) 27)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2801 (((-842) $) 46) (($ (-560)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-1751 (((-755)) 43)) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (-3304 (($) 21 T CONST)) (-1459 (($) 23 T CONST)) (-1653 (((-121) $ $) 40)) (-1725 (($ $) 31) (($ $ $) NIL)) (-1716 (($ $ $) 29)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) -(((-1026 |#1| |#2| |#3| |#4| |#5|) (-13 (-170) (-43 |#1|) (-10 -8 (-15 -2342 ($ |#4|)) (-15 -2801 ($ |#4|)) (-15 -2335 (|#4| $)))) (-359) (-780) (-834) (-942 |#1| |#2| |#3|) (-626 |#4|)) (T -1026)) -((-2342 (*1 *1 *2) (-12 (-4 *3 (-359)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *1 (-1026 *3 *4 *5 *2 *6)) (-4 *2 (-942 *3 *4 *5)) (-14 *6 (-626 *2)))) (-2801 (*1 *1 *2) (-12 (-4 *3 (-359)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *1 (-1026 *3 *4 *5 *2 *6)) (-4 *2 (-942 *3 *4 *5)) (-14 *6 (-626 *2)))) (-2335 (*1 *2 *1) (-12 (-4 *2 (-942 *3 *4 *5)) (-5 *1 (-1026 *3 *4 *5 *2 *6)) (-4 *3 (-359)) (-4 *4 (-780)) (-4 *5 (-834)) (-14 *6 (-626 *2))))) -(-13 (-170) (-43 |#1|) (-10 -8 (-15 -2342 ($ |#4|)) (-15 -2801 ($ |#4|)) (-15 -2335 (|#4| $)))) -((-2601 (((-121) $ $) NIL (-2318 (|has| (-57) (-1082)) (|has| (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (-1082))))) (-4050 (($) NIL) (($ (-626 (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))))) NIL)) (-2960 (((-1241) $ (-1153) (-1153)) NIL (|has| $ (-6 -4506)))) (-3909 (((-121) $ (-755)) NIL)) (-1285 (((-121) (-121)) 39)) (-4377 (((-121) (-121)) 38)) (-2764 (((-57) $ (-1153) (-57)) NIL)) (-3763 (($ (-1 (-121) (-2 (|:| -3655 (-1153)) (|:| -2371 (-57)))) $) NIL (|has| $ (-6 -4505)))) (-3802 (($ (-1 (-121) (-2 (|:| -3655 (-1153)) (|:| -2371 (-57)))) $) NIL (|has| $ (-6 -4505)))) (-2722 (((-3 (-57) "failed") (-1153) $) NIL)) (-4236 (($) NIL T CONST)) (-2868 (($ $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (-1082))))) (-3561 (($ (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) $) NIL (|has| $ (-6 -4505))) (($ (-1 (-121) (-2 (|:| -3655 (-1153)) (|:| -2371 (-57)))) $) NIL (|has| $ (-6 -4505))) (((-3 (-57) "failed") (-1153) $) NIL)) (-4310 (($ (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (-1082)))) (($ (-1 (-121) (-2 (|:| -3655 (-1153)) (|:| -2371 (-57)))) $) NIL (|has| $ (-6 -4505)))) (-2342 (((-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (-1 (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (-2 (|:| -3655 (-1153)) (|:| -2371 (-57)))) $ (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (-2 (|:| -3655 (-1153)) (|:| -2371 (-57)))) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (-1082)))) (((-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (-1 (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (-2 (|:| -3655 (-1153)) (|:| -2371 (-57)))) $ (-2 (|:| -3655 (-1153)) (|:| -2371 (-57)))) NIL (|has| $ (-6 -4505))) (((-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (-1 (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (-2 (|:| -3655 (-1153)) (|:| -2371 (-57)))) $) NIL (|has| $ (-6 -4505)))) (-1746 (((-57) $ (-1153) (-57)) NIL (|has| $ (-6 -4506)))) (-1361 (((-57) $ (-1153)) NIL)) (-1981 (((-626 (-2 (|:| -3655 (-1153)) (|:| -2371 (-57)))) $) NIL (|has| $ (-6 -4505))) (((-626 (-57)) $) NIL (|has| $ (-6 -4505)))) (-2122 (((-121) $ (-755)) NIL)) (-4099 (((-1153) $) NIL (|has| (-1153) (-834)))) (-2130 (((-626 (-2 (|:| -3655 (-1153)) (|:| -2371 (-57)))) $) NIL (|has| $ (-6 -4505))) (((-626 (-57)) $) NIL (|has| $ (-6 -4505)))) (-2030 (((-121) (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (-1082)))) (((-121) (-57) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-57) (-1082))))) (-2767 (((-1153) $) NIL (|has| (-1153) (-834)))) (-3778 (($ (-1 (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (-2 (|:| -3655 (-1153)) (|:| -2371 (-57)))) $) NIL (|has| $ (-6 -4506))) (($ (-1 (-57) (-57)) $) NIL (|has| $ (-6 -4506)))) (-2803 (($ (-1 (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (-2 (|:| -3655 (-1153)) (|:| -2371 (-57)))) $) NIL) (($ (-1 (-57) (-57)) $) NIL) (($ (-1 (-57) (-57) (-57)) $ $) NIL)) (-3441 (((-121) $ (-755)) NIL)) (-1291 (((-1135) $) NIL (-2318 (|has| (-57) (-1082)) (|has| (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (-1082))))) (-1377 (((-626 (-1153)) $) 34)) (-3855 (((-121) (-1153) $) NIL)) (-2525 (((-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) $) NIL)) (-4345 (($ (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) $) NIL)) (-1529 (((-626 (-1153)) $) NIL)) (-1310 (((-121) (-1153) $) NIL)) (-4353 (((-1100) $) NIL (-2318 (|has| (-57) (-1082)) (|has| (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (-1082))))) (-2824 (((-57) $) NIL (|has| (-1153) (-834)))) (-3786 (((-3 (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) "failed") (-1 (-121) (-2 (|:| -3655 (-1153)) (|:| -2371 (-57)))) $) NIL)) (-3038 (($ $ (-57)) NIL (|has| $ (-6 -4506)))) (-2146 (((-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) $) NIL)) (-2865 (((-121) (-1 (-121) (-2 (|:| -3655 (-1153)) (|:| -2371 (-57)))) $) NIL (|has| $ (-6 -4505))) (((-121) (-1 (-121) (-57)) $) NIL (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 (-2 (|:| -3655 (-1153)) (|:| -2371 (-57)))))) NIL (-12 (|has| (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (-298 (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))))) (|has| (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (-1082)))) (($ $ (-283 (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))))) NIL (-12 (|has| (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (-298 (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))))) (|has| (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (-1082)))) (($ $ (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (-2 (|:| -3655 (-1153)) (|:| -2371 (-57)))) NIL (-12 (|has| (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (-298 (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))))) (|has| (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (-1082)))) (($ $ (-626 (-2 (|:| -3655 (-1153)) (|:| -2371 (-57)))) (-626 (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))))) NIL (-12 (|has| (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (-298 (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))))) (|has| (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (-1082)))) (($ $ (-626 (-57)) (-626 (-57))) NIL (-12 (|has| (-57) (-298 (-57))) (|has| (-57) (-1082)))) (($ $ (-57) (-57)) NIL (-12 (|has| (-57) (-298 (-57))) (|has| (-57) (-1082)))) (($ $ (-283 (-57))) NIL (-12 (|has| (-57) (-298 (-57))) (|has| (-57) (-1082)))) (($ $ (-626 (-283 (-57)))) NIL (-12 (|has| (-57) (-298 (-57))) (|has| (-57) (-1082))))) (-2214 (((-121) $ $) NIL)) (-1290 (((-121) (-57) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-57) (-1082))))) (-4460 (((-626 (-57)) $) NIL)) (-4191 (((-121) $) NIL)) (-3260 (($) NIL)) (-2778 (((-57) $ (-1153)) 35) (((-57) $ (-1153) (-57)) NIL)) (-3958 (($) NIL) (($ (-626 (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))))) NIL)) (-4035 (((-755) (-1 (-121) (-2 (|:| -3655 (-1153)) (|:| -2371 (-57)))) $) NIL (|has| $ (-6 -4505))) (((-755) (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (-1082)))) (((-755) (-57) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-57) (-1082)))) (((-755) (-1 (-121) (-57)) $) NIL (|has| $ (-6 -4505)))) (-2813 (($ $) NIL)) (-4255 (((-533) $) NIL (|has| (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (-601 (-533))))) (-4162 (($ (-626 (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))))) NIL)) (-2801 (((-842) $) 37 (-2318 (|has| (-57) (-1082)) (|has| (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (-1082))))) (-1354 (($ (-626 (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))))) NIL)) (-3656 (((-121) (-1 (-121) (-2 (|:| -3655 (-1153)) (|:| -2371 (-57)))) $) NIL (|has| $ (-6 -4505))) (((-121) (-1 (-121) (-57)) $) NIL (|has| $ (-6 -4505)))) (-1653 (((-121) $ $) NIL (-2318 (|has| (-57) (-1082)) (|has| (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (-1082))))) (-2271 (((-755) $) NIL (|has| $ (-6 -4505))))) -(((-1027) (-13 (-1164 (-1153) (-57)) (-10 -7 (-15 -1285 ((-121) (-121))) (-15 -4377 ((-121) (-121))) (-6 -4505)))) (T -1027)) -((-1285 (*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-1027)))) (-4377 (*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-1027))))) -(-13 (-1164 (-1153) (-57)) (-10 -7 (-15 -1285 ((-121) (-121))) (-15 -4377 ((-121) (-121))) (-6 -4505))) -((-3001 ((|#2| $) 10))) -(((-1028 |#1| |#2|) (-10 -8 (-15 -3001 (|#2| |#1|))) (-1029 |#2|) (-1187)) (T -1028)) -NIL -(-10 -8 (-15 -3001 (|#2| |#1|))) -((-1473 (((-3 |#1| "failed") $) 7)) (-3001 ((|#1| $) 8)) (-2801 (($ |#1|) 6))) -(((-1029 |#1|) (-1267) (-1187)) (T -1029)) -((-3001 (*1 *2 *1) (-12 (-4 *1 (-1029 *2)) (-4 *2 (-1187)))) (-1473 (*1 *2 *1) (|partial| -12 (-4 *1 (-1029 *2)) (-4 *2 (-1187)))) (-2801 (*1 *1 *2) (-12 (-4 *1 (-1029 *2)) (-4 *2 (-1187))))) -(-13 (-10 -8 (-15 -2801 ($ |t#1|)) (-15 -1473 ((-3 |t#1| "failed") $)) (-15 -3001 (|t#1| $)))) -((-2858 (((-626 (-626 (-283 (-403 (-945 |#2|))))) (-626 (-945 |#2|)) (-626 (-1153))) 35))) -(((-1030 |#1| |#2|) (-10 -7 (-15 -2858 ((-626 (-626 (-283 (-403 (-945 |#2|))))) (-626 (-945 |#2|)) (-626 (-1153))))) (-550) (-13 (-550) (-1029 |#1|))) (T -1030)) -((-2858 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-945 *6))) (-5 *4 (-626 (-1153))) (-4 *6 (-13 (-550) (-1029 *5))) (-4 *5 (-550)) (-5 *2 (-626 (-626 (-283 (-403 (-945 *6)))))) (-5 *1 (-1030 *5 *6))))) -(-10 -7 (-15 -2858 ((-626 (-626 (-283 (-403 (-945 |#2|))))) (-626 (-945 |#2|)) (-626 (-1153))))) -((-3961 (((-375)) 15)) (-2515 (((-1 (-375)) (-375) (-375)) 20)) (-3962 (((-1 (-375)) (-755)) 42)) (-3384 (((-375)) 33)) (-2828 (((-1 (-375)) (-375) (-375)) 34)) (-3538 (((-375)) 26)) (-4157 (((-1 (-375)) (-375)) 27)) (-1762 (((-375) (-755)) 37)) (-3282 (((-1 (-375)) (-755)) 38)) (-1333 (((-1 (-375)) (-755) (-755)) 41)) (-2002 (((-1 (-375)) (-755) (-755)) 39))) -(((-1031) (-10 -7 (-15 -3961 ((-375))) (-15 -3384 ((-375))) (-15 -3538 ((-375))) (-15 -1762 ((-375) (-755))) (-15 -2515 ((-1 (-375)) (-375) (-375))) (-15 -2828 ((-1 (-375)) (-375) (-375))) (-15 -4157 ((-1 (-375)) (-375))) (-15 -3282 ((-1 (-375)) (-755))) (-15 -2002 ((-1 (-375)) (-755) (-755))) (-15 -1333 ((-1 (-375)) (-755) (-755))) (-15 -3962 ((-1 (-375)) (-755))))) (T -1031)) -((-3962 (*1 *2 *3) (-12 (-5 *3 (-755)) (-5 *2 (-1 (-375))) (-5 *1 (-1031)))) (-1333 (*1 *2 *3 *3) (-12 (-5 *3 (-755)) (-5 *2 (-1 (-375))) (-5 *1 (-1031)))) (-2002 (*1 *2 *3 *3) (-12 (-5 *3 (-755)) (-5 *2 (-1 (-375))) (-5 *1 (-1031)))) (-3282 (*1 *2 *3) (-12 (-5 *3 (-755)) (-5 *2 (-1 (-375))) (-5 *1 (-1031)))) (-4157 (*1 *2 *3) (-12 (-5 *2 (-1 (-375))) (-5 *1 (-1031)) (-5 *3 (-375)))) (-2828 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-375))) (-5 *1 (-1031)) (-5 *3 (-375)))) (-2515 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-375))) (-5 *1 (-1031)) (-5 *3 (-375)))) (-1762 (*1 *2 *3) (-12 (-5 *3 (-755)) (-5 *2 (-375)) (-5 *1 (-1031)))) (-3538 (*1 *2) (-12 (-5 *2 (-375)) (-5 *1 (-1031)))) (-3384 (*1 *2) (-12 (-5 *2 (-375)) (-5 *1 (-1031)))) (-3961 (*1 *2) (-12 (-5 *2 (-375)) (-5 *1 (-1031))))) -(-10 -7 (-15 -3961 ((-375))) (-15 -3384 ((-375))) (-15 -3538 ((-375))) (-15 -1762 ((-375) (-755))) (-15 -2515 ((-1 (-375)) (-375) (-375))) (-15 -2828 ((-1 (-375)) (-375) (-375))) (-15 -4157 ((-1 (-375)) (-375))) (-15 -3282 ((-1 (-375)) (-755))) (-15 -2002 ((-1 (-375)) (-755) (-755))) (-15 -1333 ((-1 (-375)) (-755) (-755))) (-15 -3962 ((-1 (-375)) (-755)))) -((-1601 (((-414 |#1|) |#1|) 31))) -(((-1032 |#1|) (-10 -7 (-15 -1601 ((-414 |#1|) |#1|))) (-1211 (-403 (-945 (-560))))) (T -1032)) -((-1601 (*1 *2 *3) (-12 (-5 *2 (-414 *3)) (-5 *1 (-1032 *3)) (-4 *3 (-1211 (-403 (-945 (-560)))))))) -(-10 -7 (-15 -1601 ((-414 |#1|) |#1|))) -((-3492 (((-403 (-414 (-945 |#1|))) (-403 (-945 |#1|))) 14))) -(((-1033 |#1|) (-10 -7 (-15 -3492 ((-403 (-414 (-945 |#1|))) (-403 (-945 |#1|))))) (-296)) (T -1033)) -((-3492 (*1 *2 *3) (-12 (-5 *3 (-403 (-945 *4))) (-4 *4 (-296)) (-5 *2 (-403 (-414 (-945 *4)))) (-5 *1 (-1033 *4))))) -(-10 -7 (-15 -3492 ((-403 (-414 (-945 |#1|))) (-403 (-945 |#1|))))) -((-1654 (((-626 (-1153)) (-403 (-945 |#1|))) 15)) (-1593 (((-403 (-1149 (-403 (-945 |#1|)))) (-403 (-945 |#1|)) (-1153)) 22)) (-1647 (((-403 (-945 |#1|)) (-403 (-1149 (-403 (-945 |#1|)))) (-1153)) 24)) (-2101 (((-3 (-1153) "failed") (-403 (-945 |#1|))) 18)) (-4450 (((-403 (-945 |#1|)) (-403 (-945 |#1|)) (-626 (-283 (-403 (-945 |#1|))))) 29) (((-403 (-945 |#1|)) (-403 (-945 |#1|)) (-283 (-403 (-945 |#1|)))) 31) (((-403 (-945 |#1|)) (-403 (-945 |#1|)) (-626 (-1153)) (-626 (-403 (-945 |#1|)))) 26) (((-403 (-945 |#1|)) (-403 (-945 |#1|)) (-1153) (-403 (-945 |#1|))) 27)) (-2801 (((-403 (-945 |#1|)) |#1|) 11))) -(((-1034 |#1|) (-10 -7 (-15 -1654 ((-626 (-1153)) (-403 (-945 |#1|)))) (-15 -2101 ((-3 (-1153) "failed") (-403 (-945 |#1|)))) (-15 -1593 ((-403 (-1149 (-403 (-945 |#1|)))) (-403 (-945 |#1|)) (-1153))) (-15 -1647 ((-403 (-945 |#1|)) (-403 (-1149 (-403 (-945 |#1|)))) (-1153))) (-15 -4450 ((-403 (-945 |#1|)) (-403 (-945 |#1|)) (-1153) (-403 (-945 |#1|)))) (-15 -4450 ((-403 (-945 |#1|)) (-403 (-945 |#1|)) (-626 (-1153)) (-626 (-403 (-945 |#1|))))) (-15 -4450 ((-403 (-945 |#1|)) (-403 (-945 |#1|)) (-283 (-403 (-945 |#1|))))) (-15 -4450 ((-403 (-945 |#1|)) (-403 (-945 |#1|)) (-626 (-283 (-403 (-945 |#1|)))))) (-15 -2801 ((-403 (-945 |#1|)) |#1|))) (-550)) (T -1034)) -((-2801 (*1 *2 *3) (-12 (-5 *2 (-403 (-945 *3))) (-5 *1 (-1034 *3)) (-4 *3 (-550)))) (-4450 (*1 *2 *2 *3) (-12 (-5 *3 (-626 (-283 (-403 (-945 *4))))) (-5 *2 (-403 (-945 *4))) (-4 *4 (-550)) (-5 *1 (-1034 *4)))) (-4450 (*1 *2 *2 *3) (-12 (-5 *3 (-283 (-403 (-945 *4)))) (-5 *2 (-403 (-945 *4))) (-4 *4 (-550)) (-5 *1 (-1034 *4)))) (-4450 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-626 (-1153))) (-5 *4 (-626 (-403 (-945 *5)))) (-5 *2 (-403 (-945 *5))) (-4 *5 (-550)) (-5 *1 (-1034 *5)))) (-4450 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-403 (-945 *4))) (-5 *3 (-1153)) (-4 *4 (-550)) (-5 *1 (-1034 *4)))) (-1647 (*1 *2 *3 *4) (-12 (-5 *3 (-403 (-1149 (-403 (-945 *5))))) (-5 *4 (-1153)) (-5 *2 (-403 (-945 *5))) (-5 *1 (-1034 *5)) (-4 *5 (-550)))) (-1593 (*1 *2 *3 *4) (-12 (-5 *4 (-1153)) (-4 *5 (-550)) (-5 *2 (-403 (-1149 (-403 (-945 *5))))) (-5 *1 (-1034 *5)) (-5 *3 (-403 (-945 *5))))) (-2101 (*1 *2 *3) (|partial| -12 (-5 *3 (-403 (-945 *4))) (-4 *4 (-550)) (-5 *2 (-1153)) (-5 *1 (-1034 *4)))) (-1654 (*1 *2 *3) (-12 (-5 *3 (-403 (-945 *4))) (-4 *4 (-550)) (-5 *2 (-626 (-1153))) (-5 *1 (-1034 *4))))) -(-10 -7 (-15 -1654 ((-626 (-1153)) (-403 (-945 |#1|)))) (-15 -2101 ((-3 (-1153) "failed") (-403 (-945 |#1|)))) (-15 -1593 ((-403 (-1149 (-403 (-945 |#1|)))) (-403 (-945 |#1|)) (-1153))) (-15 -1647 ((-403 (-945 |#1|)) (-403 (-1149 (-403 (-945 |#1|)))) (-1153))) (-15 -4450 ((-403 (-945 |#1|)) (-403 (-945 |#1|)) (-1153) (-403 (-945 |#1|)))) (-15 -4450 ((-403 (-945 |#1|)) (-403 (-945 |#1|)) (-626 (-1153)) (-626 (-403 (-945 |#1|))))) (-15 -4450 ((-403 (-945 |#1|)) (-403 (-945 |#1|)) (-283 (-403 (-945 |#1|))))) (-15 -4450 ((-403 (-945 |#1|)) (-403 (-945 |#1|)) (-626 (-283 (-403 (-945 |#1|)))))) (-15 -2801 ((-403 (-945 |#1|)) |#1|))) -((-3368 (((-626 |#1|) (-626 |#1|)) 45)) (-3377 (((-626 |#1|)) 9)) (-3383 (((-2 (|:| |zeros| (-626 |#1|)) (|:| -3394 (-560))) (-1149 |#1|) |#1|) 19)) (-3400 (((-2 (|:| |zeros| (-626 |#1|)) (|:| -3394 (-560))) (-626 (-1149 |#1|)) |#1|) 37))) -(((-1035 |#1|) (-10 -7 (-15 -3383 ((-2 (|:| |zeros| (-626 |#1|)) (|:| -3394 (-560))) (-1149 |#1|) |#1|)) (-15 -3400 ((-2 (|:| |zeros| (-626 |#1|)) (|:| -3394 (-560))) (-626 (-1149 |#1|)) |#1|)) (-15 -3377 ((-626 |#1|))) (-15 -3368 ((-626 |#1|) (-626 |#1|)))) (-359)) (T -1035)) -((-3368 (*1 *2 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-359)) (-5 *1 (-1035 *3)))) (-3377 (*1 *2) (-12 (-5 *2 (-626 *3)) (-5 *1 (-1035 *3)) (-4 *3 (-359)))) (-3400 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-1149 *4))) (-4 *4 (-359)) (-5 *2 (-2 (|:| |zeros| (-626 *4)) (|:| -3394 (-560)))) (-5 *1 (-1035 *4)))) (-3383 (*1 *2 *3 *4) (-12 (-5 *3 (-1149 *4)) (-4 *4 (-359)) (-5 *2 (-2 (|:| |zeros| (-626 *4)) (|:| -3394 (-560)))) (-5 *1 (-1035 *4))))) -(-10 -7 (-15 -3383 ((-2 (|:| |zeros| (-626 |#1|)) (|:| -3394 (-560))) (-1149 |#1|) |#1|)) (-15 -3400 ((-2 (|:| |zeros| (-626 |#1|)) (|:| -3394 (-560))) (-626 (-1149 |#1|)) |#1|)) (-15 -3377 ((-626 |#1|))) (-15 -3368 ((-626 |#1|) (-626 |#1|)))) -((-2601 (((-121) $ $) NIL)) (-3975 (((-626 (-2 (|:| -4071 $) (|:| -3997 (-626 (-767 |#1| (-844 |#2|)))))) (-626 (-767 |#1| (-844 |#2|)))) NIL)) (-3332 (((-626 $) (-626 (-767 |#1| (-844 |#2|)))) NIL) (((-626 $) (-626 (-767 |#1| (-844 |#2|))) (-121)) NIL) (((-626 $) (-626 (-767 |#1| (-844 |#2|))) (-121) (-121)) NIL)) (-1654 (((-626 (-844 |#2|)) $) NIL)) (-1385 (((-121) $) NIL)) (-3617 (((-121) $) NIL (|has| |#1| (-550)))) (-2898 (((-121) (-767 |#1| (-844 |#2|)) $) NIL) (((-121) $) NIL)) (-3177 (((-767 |#1| (-844 |#2|)) (-767 |#1| (-844 |#2|)) $) NIL)) (-3065 (((-626 (-2 (|:| |val| (-767 |#1| (-844 |#2|))) (|:| -3249 $))) (-767 |#1| (-844 |#2|)) $) NIL)) (-3743 (((-2 (|:| |under| $) (|:| -2150 $) (|:| |upper| $)) $ (-844 |#2|)) NIL)) (-3909 (((-121) $ (-755)) NIL)) (-3802 (($ (-1 (-121) (-767 |#1| (-844 |#2|))) $) NIL (|has| $ (-6 -4505))) (((-3 (-767 |#1| (-844 |#2|)) "failed") $ (-844 |#2|)) NIL)) (-4236 (($) NIL T CONST)) (-2226 (((-121) $) NIL (|has| |#1| (-550)))) (-3225 (((-121) $ $) NIL (|has| |#1| (-550)))) (-4195 (((-121) $ $) NIL (|has| |#1| (-550)))) (-1501 (((-121) $) NIL (|has| |#1| (-550)))) (-4339 (((-626 (-767 |#1| (-844 |#2|))) (-626 (-767 |#1| (-844 |#2|))) $ (-1 (-767 |#1| (-844 |#2|)) (-767 |#1| (-844 |#2|)) (-767 |#1| (-844 |#2|))) (-1 (-121) (-767 |#1| (-844 |#2|)) (-767 |#1| (-844 |#2|)))) NIL)) (-4318 (((-626 (-767 |#1| (-844 |#2|))) (-626 (-767 |#1| (-844 |#2|))) $) NIL (|has| |#1| (-550)))) (-3979 (((-626 (-767 |#1| (-844 |#2|))) (-626 (-767 |#1| (-844 |#2|))) $) NIL (|has| |#1| (-550)))) (-1473 (((-3 $ "failed") (-626 (-767 |#1| (-844 |#2|)))) NIL)) (-3001 (($ (-626 (-767 |#1| (-844 |#2|)))) NIL)) (-2877 (((-3 $ "failed") $) NIL)) (-2134 (((-767 |#1| (-844 |#2|)) (-767 |#1| (-844 |#2|)) $) NIL)) (-2868 (($ $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-767 |#1| (-844 |#2|)) (-1082))))) (-4310 (($ (-767 |#1| (-844 |#2|)) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-767 |#1| (-844 |#2|)) (-1082)))) (($ (-1 (-121) (-767 |#1| (-844 |#2|))) $) NIL (|has| $ (-6 -4505)))) (-4397 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-767 |#1| (-844 |#2|))) (|:| |den| |#1|)) (-767 |#1| (-844 |#2|)) $) NIL (|has| |#1| (-550)))) (-1590 (((-121) (-767 |#1| (-844 |#2|)) $ (-1 (-121) (-767 |#1| (-844 |#2|)) (-767 |#1| (-844 |#2|)))) NIL)) (-4048 (((-767 |#1| (-844 |#2|)) (-767 |#1| (-844 |#2|)) $) NIL)) (-2342 (((-767 |#1| (-844 |#2|)) (-1 (-767 |#1| (-844 |#2|)) (-767 |#1| (-844 |#2|)) (-767 |#1| (-844 |#2|))) $ (-767 |#1| (-844 |#2|)) (-767 |#1| (-844 |#2|))) NIL (-12 (|has| $ (-6 -4505)) (|has| (-767 |#1| (-844 |#2|)) (-1082)))) (((-767 |#1| (-844 |#2|)) (-1 (-767 |#1| (-844 |#2|)) (-767 |#1| (-844 |#2|)) (-767 |#1| (-844 |#2|))) $ (-767 |#1| (-844 |#2|))) NIL (|has| $ (-6 -4505))) (((-767 |#1| (-844 |#2|)) (-1 (-767 |#1| (-844 |#2|)) (-767 |#1| (-844 |#2|)) (-767 |#1| (-844 |#2|))) $) NIL (|has| $ (-6 -4505))) (((-767 |#1| (-844 |#2|)) (-767 |#1| (-844 |#2|)) $ (-1 (-767 |#1| (-844 |#2|)) (-767 |#1| (-844 |#2|)) (-767 |#1| (-844 |#2|))) (-1 (-121) (-767 |#1| (-844 |#2|)) (-767 |#1| (-844 |#2|)))) NIL)) (-3035 (((-2 (|:| -4071 (-626 (-767 |#1| (-844 |#2|)))) (|:| -3997 (-626 (-767 |#1| (-844 |#2|))))) $) NIL)) (-2329 (((-121) (-767 |#1| (-844 |#2|)) $) NIL)) (-3701 (((-121) (-767 |#1| (-844 |#2|)) $) NIL)) (-2894 (((-121) (-767 |#1| (-844 |#2|)) $) NIL) (((-121) $) NIL)) (-1981 (((-626 (-767 |#1| (-844 |#2|))) $) NIL (|has| $ (-6 -4505)))) (-2864 (((-121) (-767 |#1| (-844 |#2|)) $) NIL) (((-121) $) NIL)) (-2819 (((-844 |#2|) $) NIL)) (-2122 (((-121) $ (-755)) NIL)) (-2130 (((-626 (-767 |#1| (-844 |#2|))) $) NIL (|has| $ (-6 -4505)))) (-2030 (((-121) (-767 |#1| (-844 |#2|)) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-767 |#1| (-844 |#2|)) (-1082))))) (-3778 (($ (-1 (-767 |#1| (-844 |#2|)) (-767 |#1| (-844 |#2|))) $) NIL (|has| $ (-6 -4506)))) (-2803 (($ (-1 (-767 |#1| (-844 |#2|)) (-767 |#1| (-844 |#2|))) $) NIL)) (-4475 (((-626 (-844 |#2|)) $) NIL)) (-1304 (((-121) (-844 |#2|) $) NIL)) (-3441 (((-121) $ (-755)) NIL)) (-1291 (((-1135) $) NIL)) (-3283 (((-3 (-767 |#1| (-844 |#2|)) (-626 $)) (-767 |#1| (-844 |#2|)) (-767 |#1| (-844 |#2|)) $) NIL)) (-3069 (((-626 (-2 (|:| |val| (-767 |#1| (-844 |#2|))) (|:| -3249 $))) (-767 |#1| (-844 |#2|)) (-767 |#1| (-844 |#2|)) $) NIL)) (-4139 (((-3 (-767 |#1| (-844 |#2|)) "failed") $) NIL)) (-3269 (((-626 $) (-767 |#1| (-844 |#2|)) $) NIL)) (-2061 (((-3 (-121) (-626 $)) (-767 |#1| (-844 |#2|)) $) NIL)) (-2638 (((-626 (-2 (|:| |val| (-121)) (|:| -3249 $))) (-767 |#1| (-844 |#2|)) $) NIL) (((-121) (-767 |#1| (-844 |#2|)) $) NIL)) (-4283 (((-626 $) (-767 |#1| (-844 |#2|)) $) NIL) (((-626 $) (-626 (-767 |#1| (-844 |#2|))) $) NIL) (((-626 $) (-626 (-767 |#1| (-844 |#2|))) (-626 $)) NIL) (((-626 $) (-767 |#1| (-844 |#2|)) (-626 $)) NIL)) (-3760 (($ (-767 |#1| (-844 |#2|)) $) NIL) (($ (-626 (-767 |#1| (-844 |#2|))) $) NIL)) (-3840 (((-626 (-767 |#1| (-844 |#2|))) $) NIL)) (-3098 (((-121) (-767 |#1| (-844 |#2|)) $) NIL) (((-121) $) NIL)) (-2054 (((-767 |#1| (-844 |#2|)) (-767 |#1| (-844 |#2|)) $) NIL)) (-3564 (((-121) $ $) NIL)) (-1960 (((-2 (|:| |num| (-767 |#1| (-844 |#2|))) (|:| |den| |#1|)) (-767 |#1| (-844 |#2|)) $) NIL (|has| |#1| (-550)))) (-1584 (((-121) (-767 |#1| (-844 |#2|)) $) NIL) (((-121) $) NIL)) (-4047 (((-767 |#1| (-844 |#2|)) (-767 |#1| (-844 |#2|)) $) NIL)) (-4353 (((-1100) $) NIL)) (-2824 (((-3 (-767 |#1| (-844 |#2|)) "failed") $) NIL)) (-3786 (((-3 (-767 |#1| (-844 |#2|)) "failed") (-1 (-121) (-767 |#1| (-844 |#2|))) $) NIL)) (-1368 (((-3 $ "failed") $ (-767 |#1| (-844 |#2|))) NIL)) (-3292 (($ $ (-767 |#1| (-844 |#2|))) NIL) (((-626 $) (-767 |#1| (-844 |#2|)) $) NIL) (((-626 $) (-767 |#1| (-844 |#2|)) (-626 $)) NIL) (((-626 $) (-626 (-767 |#1| (-844 |#2|))) $) NIL) (((-626 $) (-626 (-767 |#1| (-844 |#2|))) (-626 $)) NIL)) (-2865 (((-121) (-1 (-121) (-767 |#1| (-844 |#2|))) $) NIL (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-767 |#1| (-844 |#2|))) (-626 (-767 |#1| (-844 |#2|)))) NIL (-12 (|has| (-767 |#1| (-844 |#2|)) (-298 (-767 |#1| (-844 |#2|)))) (|has| (-767 |#1| (-844 |#2|)) (-1082)))) (($ $ (-767 |#1| (-844 |#2|)) (-767 |#1| (-844 |#2|))) NIL (-12 (|has| (-767 |#1| (-844 |#2|)) (-298 (-767 |#1| (-844 |#2|)))) (|has| (-767 |#1| (-844 |#2|)) (-1082)))) (($ $ (-283 (-767 |#1| (-844 |#2|)))) NIL (-12 (|has| (-767 |#1| (-844 |#2|)) (-298 (-767 |#1| (-844 |#2|)))) (|has| (-767 |#1| (-844 |#2|)) (-1082)))) (($ $ (-626 (-283 (-767 |#1| (-844 |#2|))))) NIL (-12 (|has| (-767 |#1| (-844 |#2|)) (-298 (-767 |#1| (-844 |#2|)))) (|has| (-767 |#1| (-844 |#2|)) (-1082))))) (-2214 (((-121) $ $) NIL)) (-4191 (((-121) $) NIL)) (-3260 (($) NIL)) (-3662 (((-755) $) NIL)) (-4035 (((-755) (-767 |#1| (-844 |#2|)) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-767 |#1| (-844 |#2|)) (-1082)))) (((-755) (-1 (-121) (-767 |#1| (-844 |#2|))) $) NIL (|has| $ (-6 -4505)))) (-2813 (($ $) NIL)) (-4255 (((-533) $) NIL (|has| (-767 |#1| (-844 |#2|)) (-601 (-533))))) (-4162 (($ (-626 (-767 |#1| (-844 |#2|)))) NIL)) (-3369 (($ $ (-844 |#2|)) NIL)) (-2673 (($ $ (-844 |#2|)) NIL)) (-3746 (($ $) NIL)) (-3388 (($ $ (-844 |#2|)) NIL)) (-2801 (((-842) $) NIL) (((-626 (-767 |#1| (-844 |#2|))) $) NIL)) (-4277 (((-755) $) NIL (|has| (-844 |#2|) (-364)))) (-3133 (((-3 (-2 (|:| |bas| $) (|:| -4224 (-626 (-767 |#1| (-844 |#2|))))) "failed") (-626 (-767 |#1| (-844 |#2|))) (-1 (-121) (-767 |#1| (-844 |#2|)) (-767 |#1| (-844 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -4224 (-626 (-767 |#1| (-844 |#2|))))) "failed") (-626 (-767 |#1| (-844 |#2|))) (-1 (-121) (-767 |#1| (-844 |#2|))) (-1 (-121) (-767 |#1| (-844 |#2|)) (-767 |#1| (-844 |#2|)))) NIL)) (-2967 (((-121) $ (-1 (-121) (-767 |#1| (-844 |#2|)) (-626 (-767 |#1| (-844 |#2|))))) NIL)) (-1767 (((-626 $) (-767 |#1| (-844 |#2|)) $) NIL) (((-626 $) (-767 |#1| (-844 |#2|)) (-626 $)) NIL) (((-626 $) (-626 (-767 |#1| (-844 |#2|))) $) NIL) (((-626 $) (-626 (-767 |#1| (-844 |#2|))) (-626 $)) NIL)) (-3656 (((-121) (-1 (-121) (-767 |#1| (-844 |#2|))) $) NIL (|has| $ (-6 -4505)))) (-3284 (((-626 (-844 |#2|)) $) NIL)) (-4073 (((-121) (-767 |#1| (-844 |#2|)) $) NIL)) (-1535 (((-121) (-844 |#2|) $) NIL)) (-1653 (((-121) $ $) NIL)) (-2271 (((-755) $) NIL (|has| $ (-6 -4505))))) -(((-1036 |#1| |#2|) (-13 (-1058 |#1| (-526 (-844 |#2|)) (-844 |#2|) (-767 |#1| (-844 |#2|))) (-10 -8 (-15 -3332 ((-626 $) (-626 (-767 |#1| (-844 |#2|))) (-121) (-121))))) (-447) (-626 (-1153))) (T -1036)) -((-3332 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-626 (-767 *5 (-844 *6)))) (-5 *4 (-121)) (-4 *5 (-447)) (-14 *6 (-626 (-1153))) (-5 *2 (-626 (-1036 *5 *6))) (-5 *1 (-1036 *5 *6))))) -(-13 (-1058 |#1| (-526 (-844 |#2|)) (-844 |#2|) (-767 |#1| (-844 |#2|))) (-10 -8 (-15 -3332 ((-626 $) (-626 (-767 |#1| (-844 |#2|))) (-121) (-121))))) -((-2515 (((-1 (-560)) (-1076 (-560))) 33)) (-4146 (((-560) (-560) (-560) (-560) (-560)) 30)) (-1539 (((-1 (-560)) |RationalNumber|) NIL)) (-2412 (((-1 (-560)) |RationalNumber|) NIL)) (-2406 (((-1 (-560)) (-560) |RationalNumber|) NIL))) -(((-1037) (-10 -7 (-15 -2515 ((-1 (-560)) (-1076 (-560)))) (-15 -2406 ((-1 (-560)) (-560) |RationalNumber|)) (-15 -1539 ((-1 (-560)) |RationalNumber|)) (-15 -2412 ((-1 (-560)) |RationalNumber|)) (-15 -4146 ((-560) (-560) (-560) (-560) (-560))))) (T -1037)) -((-4146 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-1037)))) (-2412 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-560))) (-5 *1 (-1037)))) (-1539 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-560))) (-5 *1 (-1037)))) (-2406 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-560))) (-5 *1 (-1037)) (-5 *3 (-560)))) (-2515 (*1 *2 *3) (-12 (-5 *3 (-1076 (-560))) (-5 *2 (-1 (-560))) (-5 *1 (-1037))))) -(-10 -7 (-15 -2515 ((-1 (-560)) (-1076 (-560)))) (-15 -2406 ((-1 (-560)) (-560) |RationalNumber|)) (-15 -1539 ((-1 (-560)) |RationalNumber|)) (-15 -2412 ((-1 (-560)) |RationalNumber|)) (-15 -4146 ((-560) (-560) (-560) (-560) (-560)))) -((-2801 (((-842) $) NIL) (($ (-560)) 10))) -(((-1038 |#1|) (-10 -8 (-15 -2801 (|#1| (-560))) (-15 -2801 ((-842) |#1|))) (-1039)) (T -1038)) -NIL -(-10 -8 (-15 -2801 (|#1| (-560))) (-15 -2801 ((-842) |#1|))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-2314 (((-3 $ "failed") $ $) 18)) (-4236 (($) 16 T CONST)) (-1823 (((-3 $ "failed") $) 33)) (-2642 (((-121) $) 30)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-2801 (((-842) $) 11) (($ (-560)) 27)) (-1751 (((-755)) 28)) (-2464 (($ $ (-909)) 25) (($ $ (-755)) 32)) (-3304 (($) 17 T CONST)) (-1459 (($) 29 T CONST)) (-1653 (((-121) $ $) 6)) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 24) (($ $ (-755)) 31)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 23))) -(((-1039) (-1267)) (T -1039)) -((-1751 (*1 *2) (-12 (-4 *1 (-1039)) (-5 *2 (-755)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-1039))))) -(-13 (-1046) (-708) (-629 $) (-10 -8 (-15 -1751 ((-755))) (-15 -2801 ($ (-560))) (-6 -4502))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-105) . T) ((-137) . T) ((-600 (-842)) . T) ((-629 $) . T) ((-708) . T) ((-1046) . T) ((-1094) . T) ((-1082) . T)) -((-1571 (((-403 (-945 |#2|)) (-626 |#2|) (-626 |#2|) (-755) (-755)) 45))) -(((-1040 |#1| |#2|) (-10 -7 (-15 -1571 ((-403 (-945 |#2|)) (-626 |#2|) (-626 |#2|) (-755) (-755)))) (-1153) (-359)) (T -1040)) -((-1571 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-626 *6)) (-5 *4 (-755)) (-4 *6 (-359)) (-5 *2 (-403 (-945 *6))) (-5 *1 (-1040 *5 *6)) (-14 *5 (-1153))))) -(-10 -7 (-15 -1571 ((-403 (-945 |#2|)) (-626 |#2|) (-626 |#2|) (-755) (-755)))) -((-3839 (((-121) $) 27)) (-1915 (((-121) $) 16)) (-1454 (((-755) $) 13)) (-2634 (((-755) $) 14)) (-3185 (((-121) $) 25)) (-3298 (((-121) $) 29))) -(((-1041 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -2634 ((-755) |#1|)) (-15 -1454 ((-755) |#1|)) (-15 -3298 ((-121) |#1|)) (-15 -3839 ((-121) |#1|)) (-15 -3185 ((-121) |#1|)) (-15 -1915 ((-121) |#1|))) (-1042 |#2| |#3| |#4| |#5| |#6|) (-755) (-755) (-1039) (-226 |#3| |#4|) (-226 |#2| |#4|)) (T -1041)) -NIL -(-10 -8 (-15 -2634 ((-755) |#1|)) (-15 -1454 ((-755) |#1|)) (-15 -3298 ((-121) |#1|)) (-15 -3839 ((-121) |#1|)) (-15 -3185 ((-121) |#1|)) (-15 -1915 ((-121) |#1|))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-3839 (((-121) $) 48)) (-2314 (((-3 $ "failed") $ $) 18)) (-1915 (((-121) $) 50)) (-3909 (((-121) $ (-755)) 58)) (-4236 (($) 16 T CONST)) (-1439 (($ $) 31 (|has| |#3| (-296)))) (-4097 ((|#4| $ (-560)) 36)) (-3143 (((-755) $) 30 (|has| |#3| (-550)))) (-1361 ((|#3| $ (-560) (-560)) 38)) (-1981 (((-626 |#3|) $) 65 (|has| $ (-6 -4505)))) (-3436 (((-755) $) 29 (|has| |#3| (-550)))) (-3700 (((-626 |#5|) $) 28 (|has| |#3| (-550)))) (-1454 (((-755) $) 42)) (-2634 (((-755) $) 41)) (-2122 (((-121) $ (-755)) 57)) (-2984 (((-560) $) 46)) (-1994 (((-560) $) 44)) (-2130 (((-626 |#3|) $) 66 (|has| $ (-6 -4505)))) (-2030 (((-121) |#3| $) 68 (-12 (|has| |#3| (-1082)) (|has| $ (-6 -4505))))) (-3755 (((-560) $) 45)) (-1420 (((-560) $) 43)) (-3851 (($ (-626 (-626 |#3|))) 51)) (-3778 (($ (-1 |#3| |#3|) $) 61 (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#3| |#3|) $) 60) (($ (-1 |#3| |#3| |#3|) $ $) 34)) (-2184 (((-626 (-626 |#3|)) $) 40)) (-3441 (((-121) $ (-755)) 56)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-2336 (((-3 $ "failed") $ |#3|) 33 (|has| |#3| (-550)))) (-2865 (((-121) (-1 (-121) |#3|) $) 63 (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 |#3|) (-626 |#3|)) 72 (-12 (|has| |#3| (-298 |#3|)) (|has| |#3| (-1082)))) (($ $ |#3| |#3|) 71 (-12 (|has| |#3| (-298 |#3|)) (|has| |#3| (-1082)))) (($ $ (-283 |#3|)) 70 (-12 (|has| |#3| (-298 |#3|)) (|has| |#3| (-1082)))) (($ $ (-626 (-283 |#3|))) 69 (-12 (|has| |#3| (-298 |#3|)) (|has| |#3| (-1082))))) (-2214 (((-121) $ $) 52)) (-4191 (((-121) $) 55)) (-3260 (($) 54)) (-2778 ((|#3| $ (-560) (-560)) 39) ((|#3| $ (-560) (-560) |#3|) 37)) (-3185 (((-121) $) 49)) (-4035 (((-755) |#3| $) 67 (-12 (|has| |#3| (-1082)) (|has| $ (-6 -4505)))) (((-755) (-1 (-121) |#3|) $) 64 (|has| $ (-6 -4505)))) (-2813 (($ $) 53)) (-3677 ((|#5| $ (-560)) 35)) (-2801 (((-842) $) 11)) (-3656 (((-121) (-1 (-121) |#3|) $) 62 (|has| $ (-6 -4505)))) (-3298 (((-121) $) 47)) (-3304 (($) 17 T CONST)) (-1653 (((-121) $ $) 6)) (-1733 (($ $ |#3|) 32 (|has| |#3| (-359)))) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ |#3| $) 22) (($ $ |#3|) 24)) (-2271 (((-755) $) 59 (|has| $ (-6 -4505))))) -(((-1042 |#1| |#2| |#3| |#4| |#5|) (-1267) (-755) (-755) (-1039) (-226 |t#2| |t#3|) (-226 |t#1| |t#3|)) (T -1042)) -((-2803 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039)) (-4 *6 (-226 *4 *5)) (-4 *7 (-226 *3 *5)))) (-3851 (*1 *1 *2) (-12 (-5 *2 (-626 (-626 *5))) (-4 *5 (-1039)) (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *6 (-226 *4 *5)) (-4 *7 (-226 *3 *5)))) (-1915 (*1 *2 *1) (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039)) (-4 *6 (-226 *4 *5)) (-4 *7 (-226 *3 *5)) (-5 *2 (-121)))) (-3185 (*1 *2 *1) (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039)) (-4 *6 (-226 *4 *5)) (-4 *7 (-226 *3 *5)) (-5 *2 (-121)))) (-3839 (*1 *2 *1) (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039)) (-4 *6 (-226 *4 *5)) (-4 *7 (-226 *3 *5)) (-5 *2 (-121)))) (-3298 (*1 *2 *1) (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039)) (-4 *6 (-226 *4 *5)) (-4 *7 (-226 *3 *5)) (-5 *2 (-121)))) (-2984 (*1 *2 *1) (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039)) (-4 *6 (-226 *4 *5)) (-4 *7 (-226 *3 *5)) (-5 *2 (-560)))) (-3755 (*1 *2 *1) (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039)) (-4 *6 (-226 *4 *5)) (-4 *7 (-226 *3 *5)) (-5 *2 (-560)))) (-1994 (*1 *2 *1) (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039)) (-4 *6 (-226 *4 *5)) (-4 *7 (-226 *3 *5)) (-5 *2 (-560)))) (-1420 (*1 *2 *1) (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039)) (-4 *6 (-226 *4 *5)) (-4 *7 (-226 *3 *5)) (-5 *2 (-560)))) (-1454 (*1 *2 *1) (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039)) (-4 *6 (-226 *4 *5)) (-4 *7 (-226 *3 *5)) (-5 *2 (-755)))) (-2634 (*1 *2 *1) (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039)) (-4 *6 (-226 *4 *5)) (-4 *7 (-226 *3 *5)) (-5 *2 (-755)))) (-2184 (*1 *2 *1) (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039)) (-4 *6 (-226 *4 *5)) (-4 *7 (-226 *3 *5)) (-5 *2 (-626 (-626 *5))))) (-2778 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-560)) (-4 *1 (-1042 *4 *5 *2 *6 *7)) (-4 *6 (-226 *5 *2)) (-4 *7 (-226 *4 *2)) (-4 *2 (-1039)))) (-1361 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-560)) (-4 *1 (-1042 *4 *5 *2 *6 *7)) (-4 *6 (-226 *5 *2)) (-4 *7 (-226 *4 *2)) (-4 *2 (-1039)))) (-2778 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-560)) (-4 *1 (-1042 *4 *5 *2 *6 *7)) (-4 *2 (-1039)) (-4 *6 (-226 *5 *2)) (-4 *7 (-226 *4 *2)))) (-4097 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *1 (-1042 *4 *5 *6 *2 *7)) (-4 *6 (-1039)) (-4 *7 (-226 *4 *6)) (-4 *2 (-226 *5 *6)))) (-3677 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *1 (-1042 *4 *5 *6 *7 *2)) (-4 *6 (-1039)) (-4 *7 (-226 *5 *6)) (-4 *2 (-226 *4 *6)))) (-2803 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039)) (-4 *6 (-226 *4 *5)) (-4 *7 (-226 *3 *5)))) (-2336 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1042 *3 *4 *2 *5 *6)) (-4 *2 (-1039)) (-4 *5 (-226 *4 *2)) (-4 *6 (-226 *3 *2)) (-4 *2 (-550)))) (-1733 (*1 *1 *1 *2) (-12 (-4 *1 (-1042 *3 *4 *2 *5 *6)) (-4 *2 (-1039)) (-4 *5 (-226 *4 *2)) (-4 *6 (-226 *3 *2)) (-4 *2 (-359)))) (-1439 (*1 *1 *1) (-12 (-4 *1 (-1042 *2 *3 *4 *5 *6)) (-4 *4 (-1039)) (-4 *5 (-226 *3 *4)) (-4 *6 (-226 *2 *4)) (-4 *4 (-296)))) (-3143 (*1 *2 *1) (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039)) (-4 *6 (-226 *4 *5)) (-4 *7 (-226 *3 *5)) (-4 *5 (-550)) (-5 *2 (-755)))) (-3436 (*1 *2 *1) (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039)) (-4 *6 (-226 *4 *5)) (-4 *7 (-226 *3 *5)) (-4 *5 (-550)) (-5 *2 (-755)))) (-3700 (*1 *2 *1) (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039)) (-4 *6 (-226 *4 *5)) (-4 *7 (-226 *3 *5)) (-4 *5 (-550)) (-5 *2 (-626 *7))))) -(-13 (-120 |t#3| |t#3|) (-492 |t#3|) (-10 -8 (-6 -4505) (IF (|has| |t#3| (-170)) (-6 (-699 |t#3|)) |noBranch|) (-15 -3851 ($ (-626 (-626 |t#3|)))) (-15 -1915 ((-121) $)) (-15 -3185 ((-121) $)) (-15 -3839 ((-121) $)) (-15 -3298 ((-121) $)) (-15 -2984 ((-560) $)) (-15 -3755 ((-560) $)) (-15 -1994 ((-560) $)) (-15 -1420 ((-560) $)) (-15 -1454 ((-755) $)) (-15 -2634 ((-755) $)) (-15 -2184 ((-626 (-626 |t#3|)) $)) (-15 -2778 (|t#3| $ (-560) (-560))) (-15 -1361 (|t#3| $ (-560) (-560))) (-15 -2778 (|t#3| $ (-560) (-560) |t#3|)) (-15 -4097 (|t#4| $ (-560))) (-15 -3677 (|t#5| $ (-560))) (-15 -2803 ($ (-1 |t#3| |t#3|) $)) (-15 -2803 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-550)) (-15 -2336 ((-3 $ "failed") $ |t#3|)) |noBranch|) (IF (|has| |t#3| (-359)) (-15 -1733 ($ $ |t#3|)) |noBranch|) (IF (|has| |t#3| (-296)) (-15 -1439 ($ $)) |noBranch|) (IF (|has| |t#3| (-550)) (PROGN (-15 -3143 ((-755) $)) (-15 -3436 ((-755) $)) (-15 -3700 ((-626 |t#5|) $))) |noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-39) . T) ((-105) . T) ((-120 |#3| |#3|) . T) ((-137) . T) ((-600 (-842)) . T) ((-298 |#3|) -12 (|has| |#3| (-298 |#3|)) (|has| |#3| (-1082))) ((-492 |#3|) . T) ((-515 |#3| |#3|) -12 (|has| |#3| (-298 |#3|)) (|has| |#3| (-1082))) ((-629 |#3|) . T) ((-699 |#3|) |has| |#3| (-170)) ((-1045 |#3|) . T) ((-1082) . T) ((-1187) . T)) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-3839 (((-121) $) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-1915 (((-121) $) NIL)) (-3909 (((-121) $ (-755)) NIL)) (-4236 (($) NIL T CONST)) (-1439 (($ $) 40 (|has| |#3| (-296)))) (-4097 (((-228 |#2| |#3|) $ (-560)) 29)) (-4055 (($ (-671 |#3|)) 38)) (-3143 (((-755) $) 42 (|has| |#3| (-550)))) (-1361 ((|#3| $ (-560) (-560)) NIL)) (-1981 (((-626 |#3|) $) NIL (|has| $ (-6 -4505)))) (-3436 (((-755) $) 44 (|has| |#3| (-550)))) (-3700 (((-626 (-228 |#1| |#3|)) $) 48 (|has| |#3| (-550)))) (-1454 (((-755) $) NIL)) (-2634 (((-755) $) NIL)) (-2122 (((-121) $ (-755)) NIL)) (-2984 (((-560) $) NIL)) (-1994 (((-560) $) NIL)) (-2130 (((-626 |#3|) $) NIL (|has| $ (-6 -4505)))) (-2030 (((-121) |#3| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#3| (-1082))))) (-3755 (((-560) $) NIL)) (-1420 (((-560) $) NIL)) (-3851 (($ (-626 (-626 |#3|))) 24)) (-3778 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-2184 (((-626 (-626 |#3|)) $) NIL)) (-3441 (((-121) $ (-755)) NIL)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2336 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-550)))) (-2865 (((-121) (-1 (-121) |#3|) $) NIL (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 |#3|) (-626 |#3|)) NIL (-12 (|has| |#3| (-298 |#3|)) (|has| |#3| (-1082)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-298 |#3|)) (|has| |#3| (-1082)))) (($ $ (-283 |#3|)) NIL (-12 (|has| |#3| (-298 |#3|)) (|has| |#3| (-1082)))) (($ $ (-626 (-283 |#3|))) NIL (-12 (|has| |#3| (-298 |#3|)) (|has| |#3| (-1082))))) (-2214 (((-121) $ $) NIL)) (-4191 (((-121) $) NIL)) (-3260 (($) NIL)) (-2778 ((|#3| $ (-560) (-560)) NIL) ((|#3| $ (-560) (-560) |#3|) NIL)) (-4016 (((-139)) 51 (|has| |#3| (-359)))) (-3185 (((-121) $) NIL)) (-4035 (((-755) |#3| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#3| (-1082)))) (((-755) (-1 (-121) |#3|) $) NIL (|has| $ (-6 -4505)))) (-2813 (($ $) NIL)) (-4255 (((-533) $) 60 (|has| |#3| (-601 (-533))))) (-3677 (((-228 |#1| |#3|) $ (-560)) 33)) (-2801 (((-842) $) 16) (((-671 |#3|) $) 35)) (-3656 (((-121) (-1 (-121) |#3|) $) NIL (|has| $ (-6 -4505)))) (-3298 (((-121) $) NIL)) (-3304 (($) 13 T CONST)) (-1653 (((-121) $ $) NIL)) (-1733 (($ $ |#3|) NIL (|has| |#3| (-359)))) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-2271 (((-755) $) NIL (|has| $ (-6 -4505))))) -(((-1043 |#1| |#2| |#3|) (-13 (-1042 |#1| |#2| |#3| (-228 |#2| |#3|) (-228 |#1| |#3|)) (-600 (-671 |#3|)) (-10 -8 (IF (|has| |#3| (-359)) (-6 (-1243 |#3|)) |noBranch|) (IF (|has| |#3| (-601 (-533))) (-6 (-601 (-533))) |noBranch|) (-15 -4055 ($ (-671 |#3|))) (-15 -2801 ((-671 |#3|) $)))) (-755) (-755) (-1039)) (T -1043)) -((-2801 (*1 *2 *1) (-12 (-5 *2 (-671 *5)) (-5 *1 (-1043 *3 *4 *5)) (-14 *3 (-755)) (-14 *4 (-755)) (-4 *5 (-1039)))) (-4055 (*1 *1 *2) (-12 (-5 *2 (-671 *5)) (-4 *5 (-1039)) (-5 *1 (-1043 *3 *4 *5)) (-14 *3 (-755)) (-14 *4 (-755))))) -(-13 (-1042 |#1| |#2| |#3| (-228 |#2| |#3|) (-228 |#1| |#3|)) (-600 (-671 |#3|)) (-10 -8 (IF (|has| |#3| (-359)) (-6 (-1243 |#3|)) |noBranch|) (IF (|has| |#3| (-601 (-533))) (-6 (-601 (-533))) |noBranch|) (-15 -4055 ($ (-671 |#3|))) (-15 -2801 ((-671 |#3|) $)))) -((-2342 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-2803 ((|#10| (-1 |#7| |#3|) |#6|) 32))) -(((-1044 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -2803 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2342 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-755) (-755) (-1039) (-226 |#2| |#3|) (-226 |#1| |#3|) (-1042 |#1| |#2| |#3| |#4| |#5|) (-1039) (-226 |#2| |#7|) (-226 |#1| |#7|) (-1042 |#1| |#2| |#7| |#8| |#9|)) (T -1044)) -((-2342 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1039)) (-4 *2 (-1039)) (-14 *5 (-755)) (-14 *6 (-755)) (-4 *8 (-226 *6 *7)) (-4 *9 (-226 *5 *7)) (-4 *10 (-226 *6 *2)) (-4 *11 (-226 *5 *2)) (-5 *1 (-1044 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1042 *5 *6 *7 *8 *9)) (-4 *12 (-1042 *5 *6 *2 *10 *11)))) (-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1039)) (-4 *10 (-1039)) (-14 *5 (-755)) (-14 *6 (-755)) (-4 *8 (-226 *6 *7)) (-4 *9 (-226 *5 *7)) (-4 *2 (-1042 *5 *6 *10 *11 *12)) (-5 *1 (-1044 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1042 *5 *6 *7 *8 *9)) (-4 *11 (-226 *6 *10)) (-4 *12 (-226 *5 *10))))) -(-10 -7 (-15 -2803 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2342 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-2314 (((-3 $ "failed") $ $) 18)) (-4236 (($) 16 T CONST)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-2801 (((-842) $) 11)) (-3304 (($) 17 T CONST)) (-1653 (((-121) $ $) 6)) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ |#1|) 22))) -(((-1045 |#1|) (-1267) (-1046)) (T -1045)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-1045 *2)) (-4 *2 (-1046))))) +((-3690 (($ $ (-1082 $)) 7) (($ $ (-1161)) 6))) +(((-959) (-1275)) (T -959)) +((-3690 (*1 *1 *1 *2) (-12 (-5 *2 (-1082 *1)) (-4 *1 (-959)))) (-3690 (*1 *1 *1 *2) (-12 (-4 *1 (-959)) (-5 *2 (-1161))))) +(-13 (-10 -8 (-15 -3690 ($ $ (-1161))) (-15 -3690 ($ $ (-1082 $))))) +((-4220 (((-2 (|:| -2348 (-634 (-568))) (|:| |poly| (-634 (-1157 |#1|))) (|:| |prim| (-1157 |#1|))) (-634 (-953 |#1|)) (-634 (-1161)) (-1161)) 23) (((-2 (|:| -2348 (-634 (-568))) (|:| |poly| (-634 (-1157 |#1|))) (|:| |prim| (-1157 |#1|))) (-634 (-953 |#1|)) (-634 (-1161))) 24) (((-2 (|:| |coef1| (-568)) (|:| |coef2| (-568)) (|:| |prim| (-1157 |#1|))) (-953 |#1|) (-1161) (-953 |#1|) (-1161)) 41))) +(((-960 |#1|) (-10 -7 (-15 -4220 ((-2 (|:| |coef1| (-568)) (|:| |coef2| (-568)) (|:| |prim| (-1157 |#1|))) (-953 |#1|) (-1161) (-953 |#1|) (-1161))) (-15 -4220 ((-2 (|:| -2348 (-634 (-568))) (|:| |poly| (-634 (-1157 |#1|))) (|:| |prim| (-1157 |#1|))) (-634 (-953 |#1|)) (-634 (-1161)))) (-15 -4220 ((-2 (|:| -2348 (-634 (-568))) (|:| |poly| (-634 (-1157 |#1|))) (|:| |prim| (-1157 |#1|))) (-634 (-953 |#1|)) (-634 (-1161)) (-1161)))) (-13 (-365) (-150))) (T -960)) +((-4220 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-634 (-953 *6))) (-5 *4 (-634 (-1161))) (-5 *5 (-1161)) (-4 *6 (-13 (-365) (-150))) (-5 *2 (-2 (|:| -2348 (-634 (-568))) (|:| |poly| (-634 (-1157 *6))) (|:| |prim| (-1157 *6)))) (-5 *1 (-960 *6)))) (-4220 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-953 *5))) (-5 *4 (-634 (-1161))) (-4 *5 (-13 (-365) (-150))) (-5 *2 (-2 (|:| -2348 (-634 (-568))) (|:| |poly| (-634 (-1157 *5))) (|:| |prim| (-1157 *5)))) (-5 *1 (-960 *5)))) (-4220 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-953 *5)) (-5 *4 (-1161)) (-4 *5 (-13 (-365) (-150))) (-5 *2 (-2 (|:| |coef1| (-568)) (|:| |coef2| (-568)) (|:| |prim| (-1157 *5)))) (-5 *1 (-960 *5))))) +(-10 -7 (-15 -4220 ((-2 (|:| |coef1| (-568)) (|:| |coef2| (-568)) (|:| |prim| (-1157 |#1|))) (-953 |#1|) (-1161) (-953 |#1|) (-1161))) (-15 -4220 ((-2 (|:| -2348 (-634 (-568))) (|:| |poly| (-634 (-1157 |#1|))) (|:| |prim| (-1157 |#1|))) (-634 (-953 |#1|)) (-634 (-1161)))) (-15 -4220 ((-2 (|:| -2348 (-634 (-568))) (|:| |poly| (-634 (-1157 |#1|))) (|:| |prim| (-1157 |#1|))) (-634 (-953 |#1|)) (-634 (-1161)) (-1161)))) +((-2828 (((-634 |#1|) |#1| |#1|) 42)) (-3927 (((-121) |#1|) 39)) (-1821 ((|#1| |#1|) 64)) (-4130 ((|#1| |#1|) 63))) +(((-961 |#1|) (-10 -7 (-15 -3927 ((-121) |#1|)) (-15 -4130 (|#1| |#1|)) (-15 -1821 (|#1| |#1|)) (-15 -2828 ((-634 |#1|) |#1| |#1|))) (-550)) (T -961)) +((-2828 (*1 *2 *3 *3) (-12 (-5 *2 (-634 *3)) (-5 *1 (-961 *3)) (-4 *3 (-550)))) (-1821 (*1 *2 *2) (-12 (-5 *1 (-961 *2)) (-4 *2 (-550)))) (-4130 (*1 *2 *2) (-12 (-5 *1 (-961 *2)) (-4 *2 (-550)))) (-3927 (*1 *2 *3) (-12 (-5 *2 (-121)) (-5 *1 (-961 *3)) (-4 *3 (-550))))) +(-10 -7 (-15 -3927 ((-121) |#1|)) (-15 -4130 (|#1| |#1|)) (-15 -1821 (|#1| |#1|)) (-15 -2828 ((-634 |#1|) |#1| |#1|))) +((-3417 (((-1249) (-850)) 9))) +(((-962) (-10 -7 (-15 -3417 ((-1249) (-850))))) (T -962)) +((-3417 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1249)) (-5 *1 (-962))))) +(-10 -7 (-15 -3417 ((-1249) (-850)))) +((-2725 (((-634 |#5|) |#3| (-634 |#3|)) 70)) (-1846 (((-634 |#5|) |#3|) 45)) (-1895 (((-634 |#5|) |#3| (-917)) 58)) (-2036 (((-634 |#5|) (-634 |#3|)) 48))) +(((-963 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2725 ((-634 |#5|) |#3| (-634 |#3|))) (-15 -1846 ((-634 |#5|) |#3|)) (-15 -2036 ((-634 |#5|) (-634 |#3|))) (-15 -1895 ((-634 |#5|) |#3| (-917)))) (-365) (-634 (-1161)) (-950 |#1| |#4| (-852 |#2|)) (-230 (-1697 |#2|) (-763)) (-971 |#1|)) (T -963)) +((-1895 (*1 *2 *3 *4) (-12 (-5 *4 (-917)) (-4 *5 (-365)) (-14 *6 (-634 (-1161))) (-4 *7 (-230 (-1697 *6) (-763))) (-5 *2 (-634 *8)) (-5 *1 (-963 *5 *6 *3 *7 *8)) (-4 *3 (-950 *5 *7 (-852 *6))) (-4 *8 (-971 *5)))) (-2036 (*1 *2 *3) (-12 (-5 *3 (-634 *6)) (-4 *6 (-950 *4 *7 (-852 *5))) (-4 *7 (-230 (-1697 *5) (-763))) (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-5 *2 (-634 *8)) (-5 *1 (-963 *4 *5 *6 *7 *8)) (-4 *8 (-971 *4)))) (-1846 (*1 *2 *3) (-12 (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *6 (-230 (-1697 *5) (-763))) (-5 *2 (-634 *7)) (-5 *1 (-963 *4 *5 *3 *6 *7)) (-4 *3 (-950 *4 *6 (-852 *5))) (-4 *7 (-971 *4)))) (-2725 (*1 *2 *3 *4) (-12 (-5 *4 (-634 *3)) (-4 *3 (-950 *5 *7 (-852 *6))) (-4 *7 (-230 (-1697 *6) (-763))) (-4 *5 (-365)) (-14 *6 (-634 (-1161))) (-5 *2 (-634 *8)) (-5 *1 (-963 *5 *6 *3 *7 *8)) (-4 *8 (-971 *5))))) +(-10 -7 (-15 -2725 ((-634 |#5|) |#3| (-634 |#3|))) (-15 -1846 ((-634 |#5|) |#3|)) (-15 -2036 ((-634 |#5|) (-634 |#3|))) (-15 -1895 ((-634 |#5|) |#3| (-917)))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) 62 (|has| |#1| (-558)))) (-2227 (($ $) 63 (|has| |#1| (-558)))) (-1573 (((-121) $) NIL (|has| |#1| (-558)))) (-3134 (((-3 $ "failed") $ $) NIL)) (-2671 (($) NIL T CONST)) (-3666 (((-3 (-568) "failed") $) NIL (|has| |#1| (-1037 (-568)))) (((-3 (-409 (-568)) "failed") $) NIL (|has| |#1| (-1037 (-409 (-568))))) (((-3 |#1| "failed") $) 28)) (-2854 (((-568) $) NIL (|has| |#1| (-1037 (-568)))) (((-409 (-568)) $) NIL (|has| |#1| (-1037 (-409 (-568))))) ((|#1| $) NIL)) (-2114 (($ $) 24)) (-2925 (((-3 $ "failed") $) 35)) (-3250 (($ $) NIL (|has| |#1| (-453)))) (-3088 (($ $ |#1| |#2| $) 47)) (-2735 (((-121) $) NIL)) (-4178 (((-763) $) 16)) (-3921 (((-121) $) NIL)) (-2047 (($ |#1| |#2|) NIL)) (-2144 ((|#2| $) 19)) (-3842 (($ (-1 |#2| |#2|) $) NIL)) (-2795 (($ (-1 |#1| |#1|) $) NIL)) (-2097 (($ $) 23)) (-2102 ((|#1| $) 21)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2086 (((-121) $) 40)) (-2091 ((|#1| $) NIL)) (-4285 (($ $ |#2| |#1| $) 71 (-12 (|has| |#2| (-137)) (|has| |#1| (-558))))) (-2595 (((-3 $ "failed") $ $) 73 (|has| |#1| (-558))) (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-558)))) (-3206 ((|#2| $) 17)) (-3367 ((|#1| $) NIL (|has| |#1| (-453)))) (-2745 (((-850) $) NIL) (($ (-568)) 39) (($ $) NIL (|has| |#1| (-558))) (($ |#1|) 34) (($ (-409 (-568))) NIL (-2198 (|has| |#1| (-43 (-409 (-568)))) (|has| |#1| (-1037 (-409 (-568))))))) (-1302 (((-634 |#1|) $) NIL)) (-2604 ((|#1| $ |#2|) 31)) (-4371 (((-3 $ "failed") $) NIL (|has| |#1| (-148)))) (-4078 (((-763)) 15)) (-4171 (($ $ $ (-763)) 58 (|has| |#1| (-172)))) (-1826 (((-121) $ $) 68 (|has| |#1| (-558)))) (-1887 (($ $ (-917)) 54) (($ $ (-763)) 55)) (-3056 (($) 22 T CONST)) (-1556 (($) 12 T CONST)) (-1717 (((-121) $ $) 67)) (-1779 (($ $ |#1|) 74 (|has| |#1| (-365)))) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-917)) 53) (($ $ (-763)) 51)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) 50) (($ $ |#1|) 49) (($ |#1| $) 48) (($ (-409 (-568)) $) NIL (|has| |#1| (-43 (-409 (-568))))) (($ $ (-409 (-568))) NIL (|has| |#1| (-43 (-409 (-568))))))) +(((-964 |#1| |#2|) (-13 (-324 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-558)) (IF (|has| |#2| (-137)) (-15 -4285 ($ $ |#2| |#1| $)) |noBranch|) |noBranch|) (IF (|has| |#1| (-6 -4517)) (-6 -4517) |noBranch|))) (-1047) (-787)) (T -964)) +((-4285 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-964 *3 *2)) (-4 *2 (-137)) (-4 *3 (-558)) (-4 *3 (-1047)) (-4 *2 (-787))))) +(-13 (-324 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-558)) (IF (|has| |#2| (-137)) (-15 -4285 ($ $ |#2| |#1| $)) |noBranch|) |noBranch|) (IF (|has| |#1| (-6 -4517)) (-6 -4517) |noBranch|))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL (-2198 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-137)) (|has| |#2| (-137))) (-12 (|has| |#1| (-788)) (|has| |#2| (-788)))))) (-1462 (($ $ $) 63 (-12 (|has| |#1| (-788)) (|has| |#2| (-788))))) (-3134 (((-3 $ "failed") $ $) 50 (-2198 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-137)) (|has| |#2| (-137))) (-12 (|has| |#1| (-788)) (|has| |#2| (-788)))))) (-3983 (((-763)) 34 (-12 (|has| |#1| (-370)) (|has| |#2| (-370))))) (-2911 ((|#2| $) 21)) (-4091 ((|#1| $) 20)) (-2671 (($) NIL (-2198 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-137)) (|has| |#2| (-137))) (-12 (|has| |#1| (-478)) (|has| |#2| (-478))) (-12 (|has| |#1| (-716)) (|has| |#2| (-716))) (-12 (|has| |#1| (-788)) (|has| |#2| (-788)))) CONST)) (-2925 (((-3 $ "failed") $) NIL (-2198 (-12 (|has| |#1| (-478)) (|has| |#2| (-478))) (-12 (|has| |#1| (-716)) (|has| |#2| (-716)))))) (-1731 (($) NIL (-12 (|has| |#1| (-370)) (|has| |#2| (-370))))) (-2735 (((-121) $) NIL (-2198 (-12 (|has| |#1| (-478)) (|has| |#2| (-478))) (-12 (|has| |#1| (-716)) (|has| |#2| (-716)))))) (-2521 (($ $ $) NIL (-2198 (-12 (|has| |#1| (-788)) (|has| |#2| (-788))) (-12 (|has| |#1| (-842)) (|has| |#2| (-842)))))) (-3268 (($ $ $) NIL (-2198 (-12 (|has| |#1| (-788)) (|has| |#2| (-788))) (-12 (|has| |#1| (-842)) (|has| |#2| (-842)))))) (-2338 (($ |#1| |#2|) 19)) (-3683 (((-917) $) NIL (-12 (|has| |#1| (-370)) (|has| |#2| (-370))))) (-4487 (((-1143) $) NIL)) (-2081 (($ $) 37 (-12 (|has| |#1| (-478)) (|has| |#2| (-478))))) (-4355 (($ (-917)) NIL (-12 (|has| |#1| (-370)) (|has| |#2| (-370))))) (-4022 (((-1108) $) NIL)) (-1458 (($ $ $) NIL (-12 (|has| |#1| (-478)) (|has| |#2| (-478))))) (-2353 (($ $ $) NIL (-12 (|has| |#1| (-478)) (|has| |#2| (-478))))) (-2745 (((-850) $) 14)) (-1887 (($ $ (-568)) NIL (-12 (|has| |#1| (-478)) (|has| |#2| (-478)))) (($ $ (-763)) NIL (-2198 (-12 (|has| |#1| (-478)) (|has| |#2| (-478))) (-12 (|has| |#1| (-716)) (|has| |#2| (-716))))) (($ $ (-917)) NIL (-2198 (-12 (|has| |#1| (-478)) (|has| |#2| (-478))) (-12 (|has| |#1| (-716)) (|has| |#2| (-716)))))) (-3056 (($) 40 (-2198 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-137)) (|has| |#2| (-137))) (-12 (|has| |#1| (-788)) (|has| |#2| (-788)))) CONST)) (-1556 (($) 24 (-2198 (-12 (|has| |#1| (-478)) (|has| |#2| (-478))) (-12 (|has| |#1| (-716)) (|has| |#2| (-716)))) CONST)) (-1751 (((-121) $ $) NIL (-2198 (-12 (|has| |#1| (-788)) (|has| |#2| (-788))) (-12 (|has| |#1| (-842)) (|has| |#2| (-842)))))) (-1738 (((-121) $ $) NIL (-2198 (-12 (|has| |#1| (-788)) (|has| |#2| (-788))) (-12 (|has| |#1| (-842)) (|has| |#2| (-842)))))) (-1717 (((-121) $ $) 18)) (-1745 (((-121) $ $) NIL (-2198 (-12 (|has| |#1| (-788)) (|has| |#2| (-788))) (-12 (|has| |#1| (-842)) (|has| |#2| (-842)))))) (-1732 (((-121) $ $) 66 (-2198 (-12 (|has| |#1| (-788)) (|has| |#2| (-788))) (-12 (|has| |#1| (-842)) (|has| |#2| (-842)))))) (-1779 (($ $ $) NIL (-12 (|has| |#1| (-478)) (|has| |#2| (-478))))) (-1773 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-1767 (($ $ $) 43 (-2198 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-137)) (|has| |#2| (-137))) (-12 (|has| |#1| (-788)) (|has| |#2| (-788)))))) (** (($ $ (-568)) NIL (-12 (|has| |#1| (-478)) (|has| |#2| (-478)))) (($ $ (-763)) 31 (-2198 (-12 (|has| |#1| (-478)) (|has| |#2| (-478))) (-12 (|has| |#1| (-716)) (|has| |#2| (-716))))) (($ $ (-917)) NIL (-2198 (-12 (|has| |#1| (-478)) (|has| |#2| (-478))) (-12 (|has| |#1| (-716)) (|has| |#2| (-716)))))) (* (($ (-568) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-763) $) 46 (-2198 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-137)) (|has| |#2| (-137))) (-12 (|has| |#1| (-788)) (|has| |#2| (-788))))) (($ (-917) $) NIL (-2198 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-137)) (|has| |#2| (-137))) (-12 (|has| |#1| (-788)) (|has| |#2| (-788))))) (($ $ $) 27 (-2198 (-12 (|has| |#1| (-478)) (|has| |#2| (-478))) (-12 (|has| |#1| (-716)) (|has| |#2| (-716))))))) +(((-965 |#1| |#2|) (-13 (-1090) (-10 -8 (IF (|has| |#1| (-370)) (IF (|has| |#2| (-370)) (-6 (-370)) |noBranch|) |noBranch|) (IF (|has| |#1| (-716)) (IF (|has| |#2| (-716)) (-6 (-716)) |noBranch|) |noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |noBranch|) |noBranch|) (IF (|has| |#1| (-137)) (IF (|has| |#2| (-137)) (-6 (-137)) |noBranch|) |noBranch|) (IF (|has| |#1| (-478)) (IF (|has| |#2| (-478)) (-6 (-478)) |noBranch|) |noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |noBranch|) |noBranch|) (IF (|has| |#1| (-788)) (IF (|has| |#2| (-788)) (-6 (-788)) |noBranch|) |noBranch|) (IF (|has| |#1| (-842)) (IF (|has| |#2| (-842)) (-6 (-842)) |noBranch|) |noBranch|) (-15 -2338 ($ |#1| |#2|)) (-15 -4091 (|#1| $)) (-15 -2911 (|#2| $)))) (-1090) (-1090)) (T -965)) +((-2338 (*1 *1 *2 *3) (-12 (-5 *1 (-965 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-1090)))) (-4091 (*1 *2 *1) (-12 (-4 *2 (-1090)) (-5 *1 (-965 *2 *3)) (-4 *3 (-1090)))) (-2911 (*1 *2 *1) (-12 (-4 *2 (-1090)) (-5 *1 (-965 *3 *2)) (-4 *3 (-1090))))) +(-13 (-1090) (-10 -8 (IF (|has| |#1| (-370)) (IF (|has| |#2| (-370)) (-6 (-370)) |noBranch|) |noBranch|) (IF (|has| |#1| (-716)) (IF (|has| |#2| (-716)) (-6 (-716)) |noBranch|) |noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |noBranch|) |noBranch|) (IF (|has| |#1| (-137)) (IF (|has| |#2| (-137)) (-6 (-137)) |noBranch|) |noBranch|) (IF (|has| |#1| (-478)) (IF (|has| |#2| (-478)) (-6 (-478)) |noBranch|) |noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |noBranch|) |noBranch|) (IF (|has| |#1| (-788)) (IF (|has| |#2| (-788)) (-6 (-788)) |noBranch|) |noBranch|) (IF (|has| |#1| (-842)) (IF (|has| |#2| (-842)) (-6 (-842)) |noBranch|) |noBranch|) (-15 -2338 ($ |#1| |#2|)) (-15 -4091 (|#1| $)) (-15 -2911 (|#2| $)))) +((-2447 (((-121) $ $) NIL)) (-2436 ((|#1| $ (-568) |#1|) NIL)) (-1501 (((-634 $) (-634 $) (-763)) NIL) (((-634 $) (-634 $)) NIL)) (-2688 (((-121) $ (-763)) NIL) (((-121) $) NIL)) (-3534 (($ (-634 |#1|)) NIL)) (-3890 (((-634 |#1|) $) NIL)) (-3340 (((-634 $) $) NIL) (((-634 $) $ (-763)) NIL)) (-3896 (((-634 |#1|) $) NIL)) (-4487 (((-1143) $) NIL)) (-4131 (((-568) $) NIL)) (-2891 (((-568) $) NIL)) (-3039 (($ $ (-568)) NIL) (($ $) NIL)) (-4022 (((-1108) $) NIL)) (-2779 ((|#1| $ (-568)) NIL)) (-3206 (((-917) $) NIL)) (-3233 ((|#1| $) NIL)) (-1458 (($ $ (-763)) NIL) (($ $) NIL)) (-2745 (((-850) $) NIL) (((-634 |#1|) $) NIL) (($ (-634 |#1|)) NIL)) (-1717 (((-121) $ $) NIL))) +(((-966 |#1|) (-971 |#1|) (-365)) (T -966)) +NIL +(-971 |#1|) +((-2447 (((-121) $ $) NIL)) (-2436 (((-857 |#1|) $ (-568) (-857 |#1|)) NIL)) (-1501 (((-634 $) (-634 $) (-763)) NIL) (((-634 $) (-634 $)) NIL)) (-2688 (((-121) $ (-763)) NIL) (((-121) $) NIL)) (-3534 (($ (-634 (-857 |#1|))) NIL)) (-3890 (((-634 (-857 |#1|)) $) NIL)) (-3340 (((-634 $) $) NIL) (((-634 $) $ (-763)) NIL)) (-3896 (((-634 (-857 |#1|)) $) NIL)) (-4487 (((-1143) $) NIL)) (-4131 (((-568) $) NIL)) (-2891 (((-568) $) NIL)) (-3039 (($ $ (-568)) NIL) (($ $) NIL)) (-4022 (((-1108) $) NIL)) (-2779 (((-857 |#1|) $ (-568)) NIL)) (-3206 (((-917) $) NIL)) (-3233 (((-857 |#1|) $) NIL)) (-1458 (($ $ (-763)) NIL) (($ $) NIL)) (-2745 (((-850) $) NIL) (((-634 (-857 |#1|)) $) NIL) (($ (-634 (-857 |#1|))) NIL)) (-1717 (((-121) $ $) NIL))) +(((-967 |#1|) (-971 (-857 |#1|)) (-350)) (T -967)) +NIL +(-971 (-857 |#1|)) +((-2447 (((-121) $ $) NIL)) (-2436 ((|#2| $ (-568) |#2|) NIL)) (-1501 (((-634 $) (-634 $) (-763)) 41) (((-634 $) (-634 $)) 42)) (-2688 (((-121) $ (-763)) 38) (((-121) $) 40)) (-3534 (($ (-634 |#2|)) 25)) (-3890 (((-634 |#2|) $) 27)) (-3340 (((-634 $) $) 50) (((-634 $) $ (-763)) 47)) (-3896 (((-634 |#2|) $) 26)) (-4487 (((-1143) $) NIL)) (-4131 (((-568) $) 59)) (-2891 (((-568) $) 62)) (-3039 (($ $ (-568)) 36) (($ $) 52)) (-4022 (((-1108) $) NIL)) (-2779 ((|#2| $ (-568)) 32)) (-3206 (((-917) $) 16)) (-3233 ((|#2| $) 22)) (-1458 (($ $ (-763)) 30) (($ $) 49)) (-2745 (((-850) $) 19) (((-634 |#2|) $) 24) (($ (-634 |#2|)) 58)) (-1717 (((-121) $ $) 37))) +(((-968 |#1| |#2|) (-971 |#2|) (-763) (-365)) (T -968)) +NIL +(-971 |#2|) +((-2447 (((-121) $ $) 18 (|has| |#1| (-1090)))) (-2510 (((-121) $ (-763)) 8)) (-2671 (($) 7 T CONST)) (-4360 (((-634 |#1|) $) 30 (|has| $ (-6 -4519)))) (-1737 (((-121) $ (-763)) 9)) (-3349 (($ $ $) 40)) (-1347 (($ $ $) 41)) (-1979 (((-634 |#1|) $) 29 (|has| $ (-6 -4519)))) (-3109 (((-121) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-3268 ((|#1| $) 42)) (-3674 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#1| |#1|) $) 35)) (-2166 (((-121) $ (-763)) 10)) (-4487 (((-1143) $) 22 (|has| |#1| (-1090)))) (-1890 ((|#1| $) 36)) (-4450 (($ |#1| $) 37)) (-4022 (((-1108) $) 21 (|has| |#1| (-1090)))) (-1315 ((|#1| $) 38)) (-1387 (((-121) (-1 (-121) |#1|) $) 32 (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-634 |#1|) (-634 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))))) (-3171 (((-121) $ $) 14)) (-3084 (((-121) $) 11)) (-3248 (($) 12)) (-4168 (((-763) (-1 (-121) |#1|) $) 31 (|has| $ (-6 -4519))) (((-763) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-3863 (($ $) 13)) (-2745 (((-850) $) 20 (|has| |#1| (-1090)))) (-2367 (($ (-634 |#1|)) 39)) (-1319 (((-121) (-1 (-121) |#1|) $) 33 (|has| $ (-6 -4519)))) (-1717 (((-121) $ $) 19 (|has| |#1| (-1090)))) (-1697 (((-763) $) 6 (|has| $ (-6 -4519))))) +(((-969 |#1|) (-1275) (-842)) (T -969)) +((-3268 (*1 *2 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-842)))) (-1347 (*1 *1 *1 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-842)))) (-3349 (*1 *1 *1 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-842))))) +(-13 (-111 |t#1|) (-10 -8 (-6 -4519) (-15 -3268 (|t#1| $)) (-15 -1347 ($ $ $)) (-15 -3349 ($ $ $)))) +(((-39) . T) ((-111 |#1|) . T) ((-105) |has| |#1| (-1090)) ((-608 (-850)) |has| |#1| (-1090)) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))) ((-499 |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))) ((-1090) |has| |#1| (-1090)) ((-1195) . T)) +((-2538 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2721 |#2|)) |#2| |#2|) 84)) (-3809 ((|#2| |#2| |#2|) 82)) (-1345 (((-2 (|:| |coef2| |#2|) (|:| -2721 |#2|)) |#2| |#2|) 86)) (-3257 (((-2 (|:| |coef1| |#2|) (|:| -2721 |#2|)) |#2| |#2|) 88)) (-2226 (((-2 (|:| |coef2| |#2|) (|:| -1880 |#1|)) |#2| |#2|) 106 (|has| |#1| (-453)))) (-4164 (((-2 (|:| |coef2| |#2|) (|:| -4265 |#1|)) |#2| |#2|) 45)) (-1280 (((-2 (|:| |coef2| |#2|) (|:| -4265 |#1|)) |#2| |#2|) 63)) (-3265 (((-2 (|:| |coef1| |#2|) (|:| -4265 |#1|)) |#2| |#2|) 65)) (-2437 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 77)) (-2860 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-763)) 70)) (-3560 (((-2 (|:| |coef2| |#2|) (|:| -2217 |#1|)) |#2|) 96)) (-3345 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-763)) 73)) (-3679 (((-634 (-763)) |#2| |#2|) 81)) (-2963 ((|#1| |#2| |#2|) 41)) (-2586 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1880 |#1|)) |#2| |#2|) 104 (|has| |#1| (-453)))) (-1880 ((|#1| |#2| |#2|) 102 (|has| |#1| (-453)))) (-3733 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4265 |#1|)) |#2| |#2|) 43)) (-1554 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4265 |#1|)) |#2| |#2|) 62)) (-4265 ((|#1| |#2| |#2|) 60)) (-4144 (((-2 (|:| -2348 |#1|) (|:| -3961 |#2|) (|:| -1500 |#2|)) |#2| |#2|) 35)) (-3366 ((|#2| |#2| |#2| |#2| |#1|) 52)) (-1704 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 75)) (-4330 ((|#2| |#2| |#2|) 74)) (-2938 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-763)) 68)) (-2048 ((|#2| |#2| |#2| (-763)) 66)) (-2721 ((|#2| |#2| |#2|) 110 (|has| |#1| (-453)))) (-2595 (((-1244 |#2|) (-1244 |#2|) |#1|) 21)) (-3210 (((-2 (|:| -3961 |#2|) (|:| -1500 |#2|)) |#2| |#2|) 38)) (-1634 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2217 |#1|)) |#2|) 94)) (-2217 ((|#1| |#2|) 91)) (-2479 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-763)) 72)) (-4377 ((|#2| |#2| |#2| (-763)) 71)) (-1805 (((-634 |#2|) |#2| |#2|) 79)) (-2434 ((|#2| |#2| |#1| |#1| (-763)) 49)) (-2211 ((|#1| |#1| |#1| (-763)) 48)) (* (((-1244 |#2|) |#1| (-1244 |#2|)) 16))) +(((-970 |#1| |#2|) (-10 -7 (-15 -4265 (|#1| |#2| |#2|)) (-15 -1554 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4265 |#1|)) |#2| |#2|)) (-15 -1280 ((-2 (|:| |coef2| |#2|) (|:| -4265 |#1|)) |#2| |#2|)) (-15 -3265 ((-2 (|:| |coef1| |#2|) (|:| -4265 |#1|)) |#2| |#2|)) (-15 -2048 (|#2| |#2| |#2| (-763))) (-15 -2938 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-763))) (-15 -2860 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-763))) (-15 -4377 (|#2| |#2| |#2| (-763))) (-15 -2479 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-763))) (-15 -3345 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-763))) (-15 -4330 (|#2| |#2| |#2|)) (-15 -1704 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2437 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3809 (|#2| |#2| |#2|)) (-15 -2538 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2721 |#2|)) |#2| |#2|)) (-15 -1345 ((-2 (|:| |coef2| |#2|) (|:| -2721 |#2|)) |#2| |#2|)) (-15 -3257 ((-2 (|:| |coef1| |#2|) (|:| -2721 |#2|)) |#2| |#2|)) (-15 -2217 (|#1| |#2|)) (-15 -1634 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2217 |#1|)) |#2|)) (-15 -3560 ((-2 (|:| |coef2| |#2|) (|:| -2217 |#1|)) |#2|)) (-15 -1805 ((-634 |#2|) |#2| |#2|)) (-15 -3679 ((-634 (-763)) |#2| |#2|)) (IF (|has| |#1| (-453)) (PROGN (-15 -1880 (|#1| |#2| |#2|)) (-15 -2586 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1880 |#1|)) |#2| |#2|)) (-15 -2226 ((-2 (|:| |coef2| |#2|) (|:| -1880 |#1|)) |#2| |#2|)) (-15 -2721 (|#2| |#2| |#2|))) |noBranch|) (-15 * ((-1244 |#2|) |#1| (-1244 |#2|))) (-15 -2595 ((-1244 |#2|) (-1244 |#2|) |#1|)) (-15 -4144 ((-2 (|:| -2348 |#1|) (|:| -3961 |#2|) (|:| -1500 |#2|)) |#2| |#2|)) (-15 -3210 ((-2 (|:| -3961 |#2|) (|:| -1500 |#2|)) |#2| |#2|)) (-15 -2211 (|#1| |#1| |#1| (-763))) (-15 -2434 (|#2| |#2| |#1| |#1| (-763))) (-15 -3366 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2963 (|#1| |#2| |#2|)) (-15 -3733 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4265 |#1|)) |#2| |#2|)) (-15 -4164 ((-2 (|:| |coef2| |#2|) (|:| -4265 |#1|)) |#2| |#2|))) (-558) (-1219 |#1|)) (T -970)) +((-4164 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4265 *4))) (-5 *1 (-970 *4 *3)) (-4 *3 (-1219 *4)))) (-3733 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4265 *4))) (-5 *1 (-970 *4 *3)) (-4 *3 (-1219 *4)))) (-2963 (*1 *2 *3 *3) (-12 (-4 *2 (-558)) (-5 *1 (-970 *2 *3)) (-4 *3 (-1219 *2)))) (-3366 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-558)) (-5 *1 (-970 *3 *2)) (-4 *2 (-1219 *3)))) (-2434 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-763)) (-4 *3 (-558)) (-5 *1 (-970 *3 *2)) (-4 *2 (-1219 *3)))) (-2211 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-763)) (-4 *2 (-558)) (-5 *1 (-970 *2 *4)) (-4 *4 (-1219 *2)))) (-3210 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| -3961 *3) (|:| -1500 *3))) (-5 *1 (-970 *4 *3)) (-4 *3 (-1219 *4)))) (-4144 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| -2348 *4) (|:| -3961 *3) (|:| -1500 *3))) (-5 *1 (-970 *4 *3)) (-4 *3 (-1219 *4)))) (-2595 (*1 *2 *2 *3) (-12 (-5 *2 (-1244 *4)) (-4 *4 (-1219 *3)) (-4 *3 (-558)) (-5 *1 (-970 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1244 *4)) (-4 *4 (-1219 *3)) (-4 *3 (-558)) (-5 *1 (-970 *3 *4)))) (-2721 (*1 *2 *2 *2) (-12 (-4 *3 (-453)) (-4 *3 (-558)) (-5 *1 (-970 *3 *2)) (-4 *2 (-1219 *3)))) (-2226 (*1 *2 *3 *3) (-12 (-4 *4 (-453)) (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1880 *4))) (-5 *1 (-970 *4 *3)) (-4 *3 (-1219 *4)))) (-2586 (*1 *2 *3 *3) (-12 (-4 *4 (-453)) (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1880 *4))) (-5 *1 (-970 *4 *3)) (-4 *3 (-1219 *4)))) (-1880 (*1 *2 *3 *3) (-12 (-4 *2 (-558)) (-4 *2 (-453)) (-5 *1 (-970 *2 *3)) (-4 *3 (-1219 *2)))) (-3679 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-634 (-763))) (-5 *1 (-970 *4 *3)) (-4 *3 (-1219 *4)))) (-1805 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-634 *3)) (-5 *1 (-970 *4 *3)) (-4 *3 (-1219 *4)))) (-3560 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2217 *4))) (-5 *1 (-970 *4 *3)) (-4 *3 (-1219 *4)))) (-1634 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2217 *4))) (-5 *1 (-970 *4 *3)) (-4 *3 (-1219 *4)))) (-2217 (*1 *2 *3) (-12 (-4 *2 (-558)) (-5 *1 (-970 *2 *3)) (-4 *3 (-1219 *2)))) (-3257 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2721 *3))) (-5 *1 (-970 *4 *3)) (-4 *3 (-1219 *4)))) (-1345 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2721 *3))) (-5 *1 (-970 *4 *3)) (-4 *3 (-1219 *4)))) (-2538 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2721 *3))) (-5 *1 (-970 *4 *3)) (-4 *3 (-1219 *4)))) (-3809 (*1 *2 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-970 *3 *2)) (-4 *2 (-1219 *3)))) (-2437 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-970 *4 *3)) (-4 *3 (-1219 *4)))) (-1704 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-970 *4 *3)) (-4 *3 (-1219 *4)))) (-4330 (*1 *2 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-970 *3 *2)) (-4 *2 (-1219 *3)))) (-3345 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-763)) (-4 *5 (-558)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-970 *5 *3)) (-4 *3 (-1219 *5)))) (-2479 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-763)) (-4 *5 (-558)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-970 *5 *3)) (-4 *3 (-1219 *5)))) (-4377 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-763)) (-4 *4 (-558)) (-5 *1 (-970 *4 *2)) (-4 *2 (-1219 *4)))) (-2860 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-763)) (-4 *5 (-558)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-970 *5 *3)) (-4 *3 (-1219 *5)))) (-2938 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-763)) (-4 *5 (-558)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-970 *5 *3)) (-4 *3 (-1219 *5)))) (-2048 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-763)) (-4 *4 (-558)) (-5 *1 (-970 *4 *2)) (-4 *2 (-1219 *4)))) (-3265 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4265 *4))) (-5 *1 (-970 *4 *3)) (-4 *3 (-1219 *4)))) (-1280 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4265 *4))) (-5 *1 (-970 *4 *3)) (-4 *3 (-1219 *4)))) (-1554 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4265 *4))) (-5 *1 (-970 *4 *3)) (-4 *3 (-1219 *4)))) (-4265 (*1 *2 *3 *3) (-12 (-4 *2 (-558)) (-5 *1 (-970 *2 *3)) (-4 *3 (-1219 *2))))) +(-10 -7 (-15 -4265 (|#1| |#2| |#2|)) (-15 -1554 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4265 |#1|)) |#2| |#2|)) (-15 -1280 ((-2 (|:| |coef2| |#2|) (|:| -4265 |#1|)) |#2| |#2|)) (-15 -3265 ((-2 (|:| |coef1| |#2|) (|:| -4265 |#1|)) |#2| |#2|)) (-15 -2048 (|#2| |#2| |#2| (-763))) (-15 -2938 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-763))) (-15 -2860 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-763))) (-15 -4377 (|#2| |#2| |#2| (-763))) (-15 -2479 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-763))) (-15 -3345 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-763))) (-15 -4330 (|#2| |#2| |#2|)) (-15 -1704 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2437 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3809 (|#2| |#2| |#2|)) (-15 -2538 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2721 |#2|)) |#2| |#2|)) (-15 -1345 ((-2 (|:| |coef2| |#2|) (|:| -2721 |#2|)) |#2| |#2|)) (-15 -3257 ((-2 (|:| |coef1| |#2|) (|:| -2721 |#2|)) |#2| |#2|)) (-15 -2217 (|#1| |#2|)) (-15 -1634 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2217 |#1|)) |#2|)) (-15 -3560 ((-2 (|:| |coef2| |#2|) (|:| -2217 |#1|)) |#2|)) (-15 -1805 ((-634 |#2|) |#2| |#2|)) (-15 -3679 ((-634 (-763)) |#2| |#2|)) (IF (|has| |#1| (-453)) (PROGN (-15 -1880 (|#1| |#2| |#2|)) (-15 -2586 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1880 |#1|)) |#2| |#2|)) (-15 -2226 ((-2 (|:| |coef2| |#2|) (|:| -1880 |#1|)) |#2| |#2|)) (-15 -2721 (|#2| |#2| |#2|))) |noBranch|) (-15 * ((-1244 |#2|) |#1| (-1244 |#2|))) (-15 -2595 ((-1244 |#2|) (-1244 |#2|) |#1|)) (-15 -4144 ((-2 (|:| -2348 |#1|) (|:| -3961 |#2|) (|:| -1500 |#2|)) |#2| |#2|)) (-15 -3210 ((-2 (|:| -3961 |#2|) (|:| -1500 |#2|)) |#2| |#2|)) (-15 -2211 (|#1| |#1| |#1| (-763))) (-15 -2434 (|#2| |#2| |#1| |#1| (-763))) (-15 -3366 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2963 (|#1| |#2| |#2|)) (-15 -3733 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4265 |#1|)) |#2| |#2|)) (-15 -4164 ((-2 (|:| |coef2| |#2|) (|:| -4265 |#1|)) |#2| |#2|))) +((-2447 (((-121) $ $) 7)) (-2436 ((|#1| $ (-568) |#1|) 14)) (-1501 (((-634 $) (-634 $) (-763)) 22) (((-634 $) (-634 $)) 21)) (-2688 (((-121) $ (-763)) 20) (((-121) $) 19)) (-3534 (($ (-634 |#1|)) 30)) (-3890 (((-634 |#1|) $) 13)) (-3340 (((-634 $) $) 26) (((-634 $) $ (-763)) 25)) (-3896 (((-634 |#1|) $) 16)) (-4487 (((-1143) $) 9)) (-4131 (((-568) $) 17)) (-2891 (((-568) $) 32)) (-3039 (($ $ (-568)) 31) (($ $) 18)) (-4022 (((-1108) $) 10)) (-2779 ((|#1| $ (-568)) 15)) (-3206 (((-917) $) 12)) (-3233 ((|#1| $) 29)) (-1458 (($ $ (-763)) 24) (($ $) 23)) (-2745 (((-850) $) 11) (((-634 |#1|) $) 28) (($ (-634 |#1|)) 27)) (-1717 (((-121) $ $) 6))) +(((-971 |#1|) (-1275) (-365)) (T -971)) +((-2891 (*1 *2 *1) (-12 (-4 *1 (-971 *3)) (-4 *3 (-365)) (-5 *2 (-568)))) (-3039 (*1 *1 *1 *2) (-12 (-5 *2 (-568)) (-4 *1 (-971 *3)) (-4 *3 (-365)))) (-3534 (*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-365)) (-4 *1 (-971 *3)))) (-3233 (*1 *2 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-365)))) (-2745 (*1 *2 *1) (-12 (-4 *1 (-971 *3)) (-4 *3 (-365)) (-5 *2 (-634 *3)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-365)) (-4 *1 (-971 *3)))) (-3340 (*1 *2 *1) (-12 (-4 *3 (-365)) (-5 *2 (-634 *1)) (-4 *1 (-971 *3)))) (-3340 (*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-4 *4 (-365)) (-5 *2 (-634 *1)) (-4 *1 (-971 *4)))) (-1458 (*1 *1 *1 *2) (-12 (-5 *2 (-763)) (-4 *1 (-971 *3)) (-4 *3 (-365)))) (-1458 (*1 *1 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-365)))) (-1501 (*1 *2 *2 *3) (-12 (-5 *2 (-634 *1)) (-5 *3 (-763)) (-4 *1 (-971 *4)) (-4 *4 (-365)))) (-1501 (*1 *2 *2) (-12 (-5 *2 (-634 *1)) (-4 *1 (-971 *3)) (-4 *3 (-365)))) (-2688 (*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-4 *1 (-971 *4)) (-4 *4 (-365)) (-5 *2 (-121)))) (-2688 (*1 *2 *1) (-12 (-4 *1 (-971 *3)) (-4 *3 (-365)) (-5 *2 (-121)))) (-3039 (*1 *1 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-365)))) (-4131 (*1 *2 *1) (-12 (-4 *1 (-971 *3)) (-4 *3 (-365)) (-5 *2 (-568)))) (-3896 (*1 *2 *1) (-12 (-4 *1 (-971 *3)) (-4 *3 (-365)) (-5 *2 (-634 *3)))) (-2779 (*1 *2 *1 *3) (-12 (-5 *3 (-568)) (-4 *1 (-971 *2)) (-4 *2 (-365)))) (-2436 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-568)) (-4 *1 (-971 *2)) (-4 *2 (-365)))) (-3890 (*1 *2 *1) (-12 (-4 *1 (-971 *3)) (-4 *3 (-365)) (-5 *2 (-634 *3))))) +(-13 (-1088) (-10 -8 (-15 -2891 ((-568) $)) (-15 -3039 ($ $ (-568))) (-15 -3534 ($ (-634 |t#1|))) (-15 -3233 (|t#1| $)) (-15 -2745 ((-634 |t#1|) $)) (-15 -2745 ($ (-634 |t#1|))) (-15 -3340 ((-634 $) $)) (-15 -3340 ((-634 $) $ (-763))) (-15 -1458 ($ $ (-763))) (-15 -1458 ($ $)) (-15 -1501 ((-634 $) (-634 $) (-763))) (-15 -1501 ((-634 $) (-634 $))) (-15 -2688 ((-121) $ (-763))) (-15 -2688 ((-121) $)) (-15 -3039 ($ $)) (-15 -4131 ((-568) $)) (-15 -3896 ((-634 |t#1|) $)) (-15 -2779 (|t#1| $ (-568))) (-15 -2436 (|t#1| $ (-568) |t#1|)) (-15 -3890 ((-634 |t#1|) $)))) +(((-105) . T) ((-608 (-850)) . T) ((-1090) . T) ((-1088) . T)) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-3134 (((-3 $ "failed") $ $) 26)) (-2671 (($) NIL T CONST)) (-3590 (((-634 (-634 (-568))) (-634 (-568))) 28)) (-3665 (((-568) $) 44)) (-4473 (($ (-634 (-568))) 17)) (-2521 (($ $ $) NIL)) (-3268 (($ $ $) NIL)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-4278 (((-634 (-568)) $) 11)) (-1458 (($ $) 31)) (-2745 (((-850) $) 42) (((-634 (-568)) $) 9)) (-3056 (($) 7 T CONST)) (-1751 (((-121) $ $) NIL)) (-1738 (((-121) $ $) NIL)) (-1717 (((-121) $ $) 19)) (-1745 (((-121) $ $) NIL)) (-1732 (((-121) $ $) 18)) (-1767 (($ $ $) 20)) (* (($ (-763) $) 24) (($ (-917) $) NIL))) +(((-972) (-13 (-790) (-609 (-634 (-568))) (-10 -8 (-15 -4473 ($ (-634 (-568)))) (-15 -3590 ((-634 (-634 (-568))) (-634 (-568)))) (-15 -3665 ((-568) $)) (-15 -1458 ($ $)) (-15 -2745 ((-634 (-568)) $))))) (T -972)) +((-4473 (*1 *1 *2) (-12 (-5 *2 (-634 (-568))) (-5 *1 (-972)))) (-3590 (*1 *2 *3) (-12 (-5 *2 (-634 (-634 (-568)))) (-5 *1 (-972)) (-5 *3 (-634 (-568))))) (-3665 (*1 *2 *1) (-12 (-5 *2 (-568)) (-5 *1 (-972)))) (-1458 (*1 *1 *1) (-5 *1 (-972))) (-2745 (*1 *2 *1) (-12 (-5 *2 (-634 (-568))) (-5 *1 (-972))))) +(-13 (-790) (-609 (-634 (-568))) (-10 -8 (-15 -4473 ($ (-634 (-568)))) (-15 -3590 ((-634 (-634 (-568))) (-634 (-568)))) (-15 -3665 ((-568) $)) (-15 -1458 ($ $)) (-15 -2745 ((-634 (-568)) $)))) +((-1779 (($ $ |#2|) 30)) (-1773 (($ $) 22) (($ $ $) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-409 (-568)) $) 26) (($ $ (-409 (-568))) 28))) +(((-973 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-409 (-568)))) (-15 * (|#1| (-409 (-568)) |#1|)) (-15 -1779 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-568) |#1|)) (-15 -1773 (|#1| |#1| |#1|)) (-15 -1773 (|#1| |#1|)) (-15 * (|#1| (-763) |#1|)) (-15 * (|#1| (-917) |#1|))) (-974 |#2| |#3| |#4|) (-1047) (-787) (-842)) (T -973)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-409 (-568)))) (-15 * (|#1| (-409 (-568)) |#1|)) (-15 -1779 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-568) |#1|)) (-15 -1773 (|#1| |#1| |#1|)) (-15 -1773 (|#1| |#1|)) (-15 * (|#1| (-763) |#1|)) (-15 * (|#1| (-917) |#1|))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-2055 (((-634 |#3|) $) 70)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) 50 (|has| |#1| (-558)))) (-2227 (($ $) 51 (|has| |#1| (-558)))) (-1573 (((-121) $) 53 (|has| |#1| (-558)))) (-3134 (((-3 $ "failed") $ $) 18)) (-2671 (($) 16 T CONST)) (-2114 (($ $) 59)) (-2925 (((-3 $ "failed") $) 33)) (-3992 (((-121) $) 69)) (-2735 (((-121) $) 30)) (-3921 (((-121) $) 61)) (-2047 (($ |#1| |#2|) 60) (($ $ |#3| |#2|) 72) (($ $ (-634 |#3|) (-634 |#2|)) 71)) (-2795 (($ (-1 |#1| |#1|) $) 62)) (-2097 (($ $) 64)) (-2102 ((|#1| $) 65)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-2595 (((-3 $ "failed") $ $) 49 (|has| |#1| (-558)))) (-3206 ((|#2| $) 63)) (-1811 (($ $) 68)) (-2745 (((-850) $) 11) (($ (-568)) 27) (($ (-409 (-568))) 56 (|has| |#1| (-43 (-409 (-568))))) (($ $) 48 (|has| |#1| (-558))) (($ |#1|) 46 (|has| |#1| (-172)))) (-2604 ((|#1| $ |#2|) 58)) (-4371 (((-3 $ "failed") $) 47 (|has| |#1| (-148)))) (-4078 (((-763)) 28)) (-1826 (((-121) $ $) 52 (|has| |#1| (-558)))) (-1887 (($ $ (-917)) 25) (($ $ (-763)) 32)) (-3056 (($) 17 T CONST)) (-1556 (($) 29 T CONST)) (-1717 (((-121) $ $) 6)) (-1779 (($ $ |#1|) 57 (|has| |#1| (-365)))) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 24) (($ $ (-763)) 31)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 23) (($ $ |#1|) 67) (($ |#1| $) 66) (($ (-409 (-568)) $) 55 (|has| |#1| (-43 (-409 (-568))))) (($ $ (-409 (-568))) 54 (|has| |#1| (-43 (-409 (-568))))))) +(((-974 |#1| |#2| |#3|) (-1275) (-1047) (-787) (-842)) (T -974)) +((-2102 (*1 *2 *1) (-12 (-4 *1 (-974 *2 *3 *4)) (-4 *3 (-787)) (-4 *4 (-842)) (-4 *2 (-1047)))) (-2097 (*1 *1 *1) (-12 (-4 *1 (-974 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-787)) (-4 *4 (-842)))) (-3206 (*1 *2 *1) (-12 (-4 *1 (-974 *3 *2 *4)) (-4 *3 (-1047)) (-4 *4 (-842)) (-4 *2 (-787)))) (-2047 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-974 *4 *3 *2)) (-4 *4 (-1047)) (-4 *3 (-787)) (-4 *2 (-842)))) (-2047 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-634 *6)) (-5 *3 (-634 *5)) (-4 *1 (-974 *4 *5 *6)) (-4 *4 (-1047)) (-4 *5 (-787)) (-4 *6 (-842)))) (-2055 (*1 *2 *1) (-12 (-4 *1 (-974 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-787)) (-4 *5 (-842)) (-5 *2 (-634 *5)))) (-3992 (*1 *2 *1) (-12 (-4 *1 (-974 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-787)) (-4 *5 (-842)) (-5 *2 (-121)))) (-1811 (*1 *1 *1) (-12 (-4 *1 (-974 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-787)) (-4 *4 (-842))))) +(-13 (-52 |t#1| |t#2|) (-10 -8 (-15 -2047 ($ $ |t#3| |t#2|)) (-15 -2047 ($ $ (-634 |t#3|) (-634 |t#2|))) (-15 -2097 ($ $)) (-15 -2102 (|t#1| $)) (-15 -3206 (|t#2| $)) (-15 -2055 ((-634 |t#3|) $)) (-15 -3992 ((-121) $)) (-15 -1811 ($ $)))) +(((-21) . T) ((-23) . T) ((-52 |#1| |#2|) . T) ((-25) . T) ((-43 (-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((-43 |#1|) |has| |#1| (-172)) ((-43 $) |has| |#1| (-558)) ((-105) . T) ((-120 (-409 (-568)) (-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((-120 |#1| |#1|) . T) ((-120 $ $) -2198 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-137) . T) ((-148) |has| |#1| (-148)) ((-150) |has| |#1| (-150)) ((-608 (-850)) . T) ((-172) -2198 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-285) |has| |#1| (-558)) ((-558) |has| |#1| (-558)) ((-637 (-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((-637 |#1|) . T) ((-637 $) . T) ((-707 (-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((-707 |#1|) |has| |#1| (-172)) ((-707 $) |has| |#1| (-558)) ((-716) . T) ((-1053 (-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((-1053 |#1|) . T) ((-1053 $) -2198 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-1047) . T) ((-1054) . T) ((-1102) . T) ((-1090) . T)) +((-2514 (((-1084 (-215)) $) 7)) (-4017 (((-1084 (-215)) $) 8)) (-1351 (((-1084 (-215)) $) 9)) (-2550 (((-634 (-634 (-944 (-215)))) $) 10)) (-2745 (((-850) $) 6))) +(((-975) (-1275)) (T -975)) +((-2550 (*1 *2 *1) (-12 (-4 *1 (-975)) (-5 *2 (-634 (-634 (-944 (-215))))))) (-1351 (*1 *2 *1) (-12 (-4 *1 (-975)) (-5 *2 (-1084 (-215))))) (-4017 (*1 *2 *1) (-12 (-4 *1 (-975)) (-5 *2 (-1084 (-215))))) (-2514 (*1 *2 *1) (-12 (-4 *1 (-975)) (-5 *2 (-1084 (-215)))))) +(-13 (-608 (-850)) (-10 -8 (-15 -2550 ((-634 (-634 (-944 (-215)))) $)) (-15 -1351 ((-1084 (-215)) $)) (-15 -4017 ((-1084 (-215)) $)) (-15 -2514 ((-1084 (-215)) $)))) +(((-608 (-850)) . T)) +((-2055 (((-634 |#4|) $) 23)) (-4211 (((-121) $) 47)) (-3824 (((-121) $) 46)) (-3644 (((-2 (|:| |under| $) (|:| -1519 $) (|:| |upper| $)) $ |#4|) 35)) (-1565 (((-121) $) 48)) (-3846 (((-121) $ $) 54)) (-3106 (((-121) $ $) 57)) (-3695 (((-121) $) 52)) (-2355 (((-634 |#5|) (-634 |#5|) $) 89)) (-2492 (((-634 |#5|) (-634 |#5|) $) 86)) (-1500 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 80)) (-1432 (((-634 |#4|) $) 27)) (-3392 (((-121) |#4| $) 29)) (-2705 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 72)) (-1290 (($ $ |#4|) 32)) (-3732 (($ $ |#4|) 31)) (-3944 (($ $ |#4|) 33)) (-1717 (((-121) $ $) 39))) +(((-976 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3824 ((-121) |#1|)) (-15 -2355 ((-634 |#5|) (-634 |#5|) |#1|)) (-15 -2492 ((-634 |#5|) (-634 |#5|) |#1|)) (-15 -1500 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2705 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1565 ((-121) |#1|)) (-15 -3106 ((-121) |#1| |#1|)) (-15 -3846 ((-121) |#1| |#1|)) (-15 -3695 ((-121) |#1|)) (-15 -4211 ((-121) |#1|)) (-15 -3644 ((-2 (|:| |under| |#1|) (|:| -1519 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -1290 (|#1| |#1| |#4|)) (-15 -3944 (|#1| |#1| |#4|)) (-15 -3732 (|#1| |#1| |#4|)) (-15 -3392 ((-121) |#4| |#1|)) (-15 -1432 ((-634 |#4|) |#1|)) (-15 -2055 ((-634 |#4|) |#1|)) (-15 -1717 ((-121) |#1| |#1|))) (-977 |#2| |#3| |#4| |#5|) (-1047) (-788) (-842) (-1061 |#2| |#3| |#4|)) (T -976)) +NIL +(-10 -8 (-15 -3824 ((-121) |#1|)) (-15 -2355 ((-634 |#5|) (-634 |#5|) |#1|)) (-15 -2492 ((-634 |#5|) (-634 |#5|) |#1|)) (-15 -1500 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2705 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1565 ((-121) |#1|)) (-15 -3106 ((-121) |#1| |#1|)) (-15 -3846 ((-121) |#1| |#1|)) (-15 -3695 ((-121) |#1|)) (-15 -4211 ((-121) |#1|)) (-15 -3644 ((-2 (|:| |under| |#1|) (|:| -1519 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -1290 (|#1| |#1| |#4|)) (-15 -3944 (|#1| |#1| |#4|)) (-15 -3732 (|#1| |#1| |#4|)) (-15 -3392 ((-121) |#4| |#1|)) (-15 -1432 ((-634 |#4|) |#1|)) (-15 -2055 ((-634 |#4|) |#1|)) (-15 -1717 ((-121) |#1| |#1|))) +((-2447 (((-121) $ $) 7)) (-2055 (((-634 |#3|) $) 32)) (-4211 (((-121) $) 25)) (-3824 (((-121) $) 16 (|has| |#1| (-558)))) (-3644 (((-2 (|:| |under| $) (|:| -1519 $) (|:| |upper| $)) $ |#3|) 26)) (-2510 (((-121) $ (-763)) 43)) (-2801 (($ (-1 (-121) |#4|) $) 64 (|has| $ (-6 -4519)))) (-2671 (($) 44 T CONST)) (-1565 (((-121) $) 21 (|has| |#1| (-558)))) (-3846 (((-121) $ $) 23 (|has| |#1| (-558)))) (-3106 (((-121) $ $) 22 (|has| |#1| (-558)))) (-3695 (((-121) $) 24 (|has| |#1| (-558)))) (-2355 (((-634 |#4|) (-634 |#4|) $) 17 (|has| |#1| (-558)))) (-2492 (((-634 |#4|) (-634 |#4|) $) 18 (|has| |#1| (-558)))) (-3666 (((-3 $ "failed") (-634 |#4|)) 35)) (-2854 (($ (-634 |#4|)) 34)) (-3924 (($ $) 67 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4519))))) (-4328 (($ |#4| $) 66 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4519)))) (($ (-1 (-121) |#4|) $) 63 (|has| $ (-6 -4519)))) (-1500 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 19 (|has| |#1| (-558)))) (-3092 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 65 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4519)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 62 (|has| $ (-6 -4519))) ((|#4| (-1 |#4| |#4| |#4|) $) 61 (|has| $ (-6 -4519)))) (-4360 (((-634 |#4|) $) 51 (|has| $ (-6 -4519)))) (-2356 ((|#3| $) 33)) (-1737 (((-121) $ (-763)) 42)) (-1979 (((-634 |#4|) $) 52 (|has| $ (-6 -4519)))) (-3109 (((-121) |#4| $) 54 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4519))))) (-3674 (($ (-1 |#4| |#4|) $) 47 (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#4| |#4|) $) 46)) (-1432 (((-634 |#3|) $) 31)) (-3392 (((-121) |#3| $) 30)) (-2166 (((-121) $ (-763)) 41)) (-4487 (((-1143) $) 9)) (-2705 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-558)))) (-4022 (((-1108) $) 10)) (-3775 (((-3 |#4| "failed") (-1 (-121) |#4|) $) 60)) (-1387 (((-121) (-1 (-121) |#4|) $) 49 (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 |#4|) (-634 |#4|)) 58 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090)))) (($ $ |#4| |#4|) 57 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090)))) (($ $ (-288 |#4|)) 56 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090)))) (($ $ (-634 (-288 |#4|))) 55 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090))))) (-3171 (((-121) $ $) 37)) (-3084 (((-121) $) 40)) (-3248 (($) 39)) (-4168 (((-763) |#4| $) 53 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4519)))) (((-763) (-1 (-121) |#4|) $) 50 (|has| $ (-6 -4519)))) (-3863 (($ $) 38)) (-4278 (((-541) $) 68 (|has| |#4| (-609 (-541))))) (-4287 (($ (-634 |#4|)) 59)) (-1290 (($ $ |#3|) 27)) (-3732 (($ $ |#3|) 29)) (-3944 (($ $ |#3|) 28)) (-2745 (((-850) $) 11) (((-634 |#4|) $) 36)) (-1319 (((-121) (-1 (-121) |#4|) $) 48 (|has| $ (-6 -4519)))) (-1717 (((-121) $ $) 6)) (-1697 (((-763) $) 45 (|has| $ (-6 -4519))))) +(((-977 |#1| |#2| |#3| |#4|) (-1275) (-1047) (-788) (-842) (-1061 |t#1| |t#2| |t#3|)) (T -977)) +((-3666 (*1 *1 *2) (|partial| -12 (-5 *2 (-634 *6)) (-4 *6 (-1061 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *1 (-977 *3 *4 *5 *6)))) (-2854 (*1 *1 *2) (-12 (-5 *2 (-634 *6)) (-4 *6 (-1061 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *1 (-977 *3 *4 *5 *6)))) (-2356 (*1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *2 *5)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-1061 *3 *4 *2)) (-4 *2 (-842)))) (-2055 (*1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1061 *3 *4 *5)) (-5 *2 (-634 *5)))) (-1432 (*1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1061 *3 *4 *5)) (-5 *2 (-634 *5)))) (-3392 (*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *5 *3 *6)) (-4 *4 (-1047)) (-4 *5 (-788)) (-4 *3 (-842)) (-4 *6 (-1061 *4 *5 *3)) (-5 *2 (-121)))) (-3732 (*1 *1 *1 *2) (-12 (-4 *1 (-977 *3 *4 *2 *5)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *2 (-842)) (-4 *5 (-1061 *3 *4 *2)))) (-3944 (*1 *1 *1 *2) (-12 (-4 *1 (-977 *3 *4 *2 *5)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *2 (-842)) (-4 *5 (-1061 *3 *4 *2)))) (-1290 (*1 *1 *1 *2) (-12 (-4 *1 (-977 *3 *4 *2 *5)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *2 (-842)) (-4 *5 (-1061 *3 *4 *2)))) (-3644 (*1 *2 *1 *3) (-12 (-4 *4 (-1047)) (-4 *5 (-788)) (-4 *3 (-842)) (-4 *6 (-1061 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -1519 *1) (|:| |upper| *1))) (-4 *1 (-977 *4 *5 *3 *6)))) (-4211 (*1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1061 *3 *4 *5)) (-5 *2 (-121)))) (-3695 (*1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1061 *3 *4 *5)) (-4 *3 (-558)) (-5 *2 (-121)))) (-3846 (*1 *2 *1 *1) (-12 (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1061 *3 *4 *5)) (-4 *3 (-558)) (-5 *2 (-121)))) (-3106 (*1 *2 *1 *1) (-12 (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1061 *3 *4 *5)) (-4 *3 (-558)) (-5 *2 (-121)))) (-1565 (*1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1061 *3 *4 *5)) (-4 *3 (-558)) (-5 *2 (-121)))) (-2705 (*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *5 *6 *3)) (-4 *4 (-1047)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *3 (-1061 *4 *5 *6)) (-4 *4 (-558)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-1500 (*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *5 *6 *3)) (-4 *4 (-1047)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *3 (-1061 *4 *5 *6)) (-4 *4 (-558)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-2492 (*1 *2 *2 *1) (-12 (-5 *2 (-634 *6)) (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1061 *3 *4 *5)) (-4 *3 (-558)))) (-2355 (*1 *2 *2 *1) (-12 (-5 *2 (-634 *6)) (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1061 *3 *4 *5)) (-4 *3 (-558)))) (-3824 (*1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1061 *3 *4 *5)) (-4 *3 (-558)) (-5 *2 (-121))))) +(-13 (-1090) (-154 |t#4|) (-608 (-634 |t#4|)) (-10 -8 (-6 -4519) (-15 -3666 ((-3 $ "failed") (-634 |t#4|))) (-15 -2854 ($ (-634 |t#4|))) (-15 -2356 (|t#3| $)) (-15 -2055 ((-634 |t#3|) $)) (-15 -1432 ((-634 |t#3|) $)) (-15 -3392 ((-121) |t#3| $)) (-15 -3732 ($ $ |t#3|)) (-15 -3944 ($ $ |t#3|)) (-15 -1290 ($ $ |t#3|)) (-15 -3644 ((-2 (|:| |under| $) (|:| -1519 $) (|:| |upper| $)) $ |t#3|)) (-15 -4211 ((-121) $)) (IF (|has| |t#1| (-558)) (PROGN (-15 -3695 ((-121) $)) (-15 -3846 ((-121) $ $)) (-15 -3106 ((-121) $ $)) (-15 -1565 ((-121) $)) (-15 -2705 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -1500 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2492 ((-634 |t#4|) (-634 |t#4|) $)) (-15 -2355 ((-634 |t#4|) (-634 |t#4|) $)) (-15 -3824 ((-121) $))) |noBranch|))) +(((-39) . T) ((-105) . T) ((-608 (-634 |#4|)) . T) ((-608 (-850)) . T) ((-154 |#4|) . T) ((-609 (-541)) |has| |#4| (-609 (-541))) ((-303 |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090))) ((-499 |#4|) . T) ((-523 |#4| |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090))) ((-1090) . T) ((-1195) . T)) +((-3656 (((-634 |#4|) |#4| |#4|) 114)) (-1599 (((-634 |#4|) (-634 |#4|) (-121)) 103 (|has| |#1| (-453))) (((-634 |#4|) (-634 |#4|)) 104 (|has| |#1| (-453)))) (-3721 (((-2 (|:| |goodPols| (-634 |#4|)) (|:| |badPols| (-634 |#4|))) (-634 |#4|)) 34)) (-2020 (((-121) |#4|) 33)) (-1959 (((-634 |#4|) |#4|) 100 (|has| |#1| (-453)))) (-3216 (((-2 (|:| |goodPols| (-634 |#4|)) (|:| |badPols| (-634 |#4|))) (-1 (-121) |#4|) (-634 |#4|)) 19)) (-3570 (((-2 (|:| |goodPols| (-634 |#4|)) (|:| |badPols| (-634 |#4|))) (-634 (-1 (-121) |#4|)) (-634 |#4|)) 21)) (-3847 (((-2 (|:| |goodPols| (-634 |#4|)) (|:| |badPols| (-634 |#4|))) (-634 (-1 (-121) |#4|)) (-634 |#4|)) 22)) (-2946 (((-3 (-2 (|:| |bas| (-481 |#1| |#2| |#3| |#4|)) (|:| -2616 (-634 |#4|))) "failed") (-634 |#4|)) 72)) (-1337 (((-634 |#4|) (-634 |#4|) (-1 (-121) |#4|) (-1 (-121) |#4| |#4|) (-1 |#4| |#4| |#4|)) 84)) (-3236 (((-634 |#4|) (-634 |#4|) (-1 (-121) |#4| |#4|) (-1 |#4| |#4| |#4|)) 107)) (-3165 (((-634 |#4|) (-634 |#4|)) 106)) (-2568 (((-634 |#4|) (-634 |#4|) (-634 |#4|) (-121)) 47) (((-634 |#4|) (-634 |#4|) (-634 |#4|)) 49)) (-3403 ((|#4| |#4| (-634 |#4|)) 48)) (-3584 (((-634 |#4|) (-634 |#4|) (-634 |#4|)) 110 (|has| |#1| (-453)))) (-2274 (((-634 |#4|) (-634 |#4|) (-634 |#4|)) 113 (|has| |#1| (-453)))) (-2063 (((-634 |#4|) (-634 |#4|) (-634 |#4|)) 112 (|has| |#1| (-453)))) (-2173 (((-634 |#4|) (-634 |#4|) (-634 |#4|) (-1 (-634 |#4|) (-634 |#4|))) 86) (((-634 |#4|) (-634 |#4|) (-634 |#4|)) 88) (((-634 |#4|) (-634 |#4|) |#4|) 117) (((-634 |#4|) |#4| |#4|) 115) (((-634 |#4|) (-634 |#4|)) 87)) (-3136 (((-634 |#4|) (-634 |#4|) (-634 |#4|)) 97 (-12 (|has| |#1| (-150)) (|has| |#1| (-301))))) (-2052 (((-2 (|:| |goodPols| (-634 |#4|)) (|:| |badPols| (-634 |#4|))) (-634 |#4|)) 40)) (-1435 (((-121) (-634 |#4|)) 61)) (-2535 (((-121) (-634 |#4|) (-634 (-634 |#4|))) 52)) (-1934 (((-2 (|:| |goodPols| (-634 |#4|)) (|:| |badPols| (-634 |#4|))) (-634 |#4|)) 28)) (-4364 (((-121) |#4|) 27)) (-1322 (((-634 |#4|) (-634 |#4|)) 96 (-12 (|has| |#1| (-150)) (|has| |#1| (-301))))) (-2333 (((-634 |#4|) (-634 |#4|)) 95 (-12 (|has| |#1| (-150)) (|has| |#1| (-301))))) (-2545 (((-634 |#4|) (-634 |#4|)) 65)) (-1618 (((-634 |#4|) (-634 |#4|)) 78)) (-3230 (((-121) (-634 |#4|) (-634 |#4|)) 50)) (-3885 (((-2 (|:| |goodPols| (-634 |#4|)) (|:| |badPols| (-634 |#4|))) (-634 |#4|)) 38)) (-3484 (((-121) |#4|) 35))) +(((-978 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2173 ((-634 |#4|) (-634 |#4|))) (-15 -2173 ((-634 |#4|) |#4| |#4|)) (-15 -3165 ((-634 |#4|) (-634 |#4|))) (-15 -3656 ((-634 |#4|) |#4| |#4|)) (-15 -2173 ((-634 |#4|) (-634 |#4|) |#4|)) (-15 -2173 ((-634 |#4|) (-634 |#4|) (-634 |#4|))) (-15 -2173 ((-634 |#4|) (-634 |#4|) (-634 |#4|) (-1 (-634 |#4|) (-634 |#4|)))) (-15 -3230 ((-121) (-634 |#4|) (-634 |#4|))) (-15 -2535 ((-121) (-634 |#4|) (-634 (-634 |#4|)))) (-15 -1435 ((-121) (-634 |#4|))) (-15 -3216 ((-2 (|:| |goodPols| (-634 |#4|)) (|:| |badPols| (-634 |#4|))) (-1 (-121) |#4|) (-634 |#4|))) (-15 -3570 ((-2 (|:| |goodPols| (-634 |#4|)) (|:| |badPols| (-634 |#4|))) (-634 (-1 (-121) |#4|)) (-634 |#4|))) (-15 -3847 ((-2 (|:| |goodPols| (-634 |#4|)) (|:| |badPols| (-634 |#4|))) (-634 (-1 (-121) |#4|)) (-634 |#4|))) (-15 -2052 ((-2 (|:| |goodPols| (-634 |#4|)) (|:| |badPols| (-634 |#4|))) (-634 |#4|))) (-15 -2020 ((-121) |#4|)) (-15 -3721 ((-2 (|:| |goodPols| (-634 |#4|)) (|:| |badPols| (-634 |#4|))) (-634 |#4|))) (-15 -4364 ((-121) |#4|)) (-15 -1934 ((-2 (|:| |goodPols| (-634 |#4|)) (|:| |badPols| (-634 |#4|))) (-634 |#4|))) (-15 -3484 ((-121) |#4|)) (-15 -3885 ((-2 (|:| |goodPols| (-634 |#4|)) (|:| |badPols| (-634 |#4|))) (-634 |#4|))) (-15 -2568 ((-634 |#4|) (-634 |#4|) (-634 |#4|))) (-15 -2568 ((-634 |#4|) (-634 |#4|) (-634 |#4|) (-121))) (-15 -3403 (|#4| |#4| (-634 |#4|))) (-15 -2545 ((-634 |#4|) (-634 |#4|))) (-15 -2946 ((-3 (-2 (|:| |bas| (-481 |#1| |#2| |#3| |#4|)) (|:| -2616 (-634 |#4|))) "failed") (-634 |#4|))) (-15 -1618 ((-634 |#4|) (-634 |#4|))) (-15 -1337 ((-634 |#4|) (-634 |#4|) (-1 (-121) |#4|) (-1 (-121) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3236 ((-634 |#4|) (-634 |#4|) (-1 (-121) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-453)) (PROGN (-15 -1959 ((-634 |#4|) |#4|)) (-15 -1599 ((-634 |#4|) (-634 |#4|))) (-15 -1599 ((-634 |#4|) (-634 |#4|) (-121))) (-15 -3584 ((-634 |#4|) (-634 |#4|) (-634 |#4|))) (-15 -2063 ((-634 |#4|) (-634 |#4|) (-634 |#4|))) (-15 -2274 ((-634 |#4|) (-634 |#4|) (-634 |#4|)))) |noBranch|) (IF (|has| |#1| (-301)) (IF (|has| |#1| (-150)) (PROGN (-15 -2333 ((-634 |#4|) (-634 |#4|))) (-15 -1322 ((-634 |#4|) (-634 |#4|))) (-15 -3136 ((-634 |#4|) (-634 |#4|) (-634 |#4|)))) |noBranch|) |noBranch|)) (-558) (-788) (-842) (-1061 |#1| |#2| |#3|)) (T -978)) +((-3136 (*1 *2 *2 *2) (-12 (-5 *2 (-634 *6)) (-4 *6 (-1061 *3 *4 *5)) (-4 *3 (-150)) (-4 *3 (-301)) (-4 *3 (-558)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *1 (-978 *3 *4 *5 *6)))) (-1322 (*1 *2 *2) (-12 (-5 *2 (-634 *6)) (-4 *6 (-1061 *3 *4 *5)) (-4 *3 (-150)) (-4 *3 (-301)) (-4 *3 (-558)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *1 (-978 *3 *4 *5 *6)))) (-2333 (*1 *2 *2) (-12 (-5 *2 (-634 *6)) (-4 *6 (-1061 *3 *4 *5)) (-4 *3 (-150)) (-4 *3 (-301)) (-4 *3 (-558)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *1 (-978 *3 *4 *5 *6)))) (-2274 (*1 *2 *2 *2) (-12 (-5 *2 (-634 *6)) (-4 *6 (-1061 *3 *4 *5)) (-4 *3 (-453)) (-4 *3 (-558)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *1 (-978 *3 *4 *5 *6)))) (-2063 (*1 *2 *2 *2) (-12 (-5 *2 (-634 *6)) (-4 *6 (-1061 *3 *4 *5)) (-4 *3 (-453)) (-4 *3 (-558)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *1 (-978 *3 *4 *5 *6)))) (-3584 (*1 *2 *2 *2) (-12 (-5 *2 (-634 *6)) (-4 *6 (-1061 *3 *4 *5)) (-4 *3 (-453)) (-4 *3 (-558)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *1 (-978 *3 *4 *5 *6)))) (-1599 (*1 *2 *2 *3) (-12 (-5 *2 (-634 *7)) (-5 *3 (-121)) (-4 *7 (-1061 *4 *5 *6)) (-4 *4 (-453)) (-4 *4 (-558)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *1 (-978 *4 *5 *6 *7)))) (-1599 (*1 *2 *2) (-12 (-5 *2 (-634 *6)) (-4 *6 (-1061 *3 *4 *5)) (-4 *3 (-453)) (-4 *3 (-558)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *1 (-978 *3 *4 *5 *6)))) (-1959 (*1 *2 *3) (-12 (-4 *4 (-453)) (-4 *4 (-558)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-634 *3)) (-5 *1 (-978 *4 *5 *6 *3)) (-4 *3 (-1061 *4 *5 *6)))) (-3236 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-634 *8)) (-5 *3 (-1 (-121) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1061 *5 *6 *7)) (-4 *5 (-558)) (-4 *6 (-788)) (-4 *7 (-842)) (-5 *1 (-978 *5 *6 *7 *8)))) (-1337 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-634 *9)) (-5 *3 (-1 (-121) *9)) (-5 *4 (-1 (-121) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1061 *6 *7 *8)) (-4 *6 (-558)) (-4 *7 (-788)) (-4 *8 (-842)) (-5 *1 (-978 *6 *7 *8 *9)))) (-1618 (*1 *2 *2) (-12 (-5 *2 (-634 *6)) (-4 *6 (-1061 *3 *4 *5)) (-4 *3 (-558)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *1 (-978 *3 *4 *5 *6)))) (-2946 (*1 *2 *3) (|partial| -12 (-4 *4 (-558)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *7 (-1061 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-481 *4 *5 *6 *7)) (|:| -2616 (-634 *7)))) (-5 *1 (-978 *4 *5 *6 *7)) (-5 *3 (-634 *7)))) (-2545 (*1 *2 *2) (-12 (-5 *2 (-634 *6)) (-4 *6 (-1061 *3 *4 *5)) (-4 *3 (-558)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *1 (-978 *3 *4 *5 *6)))) (-3403 (*1 *2 *2 *3) (-12 (-5 *3 (-634 *2)) (-4 *2 (-1061 *4 *5 *6)) (-4 *4 (-558)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *1 (-978 *4 *5 *6 *2)))) (-2568 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-634 *7)) (-5 *3 (-121)) (-4 *7 (-1061 *4 *5 *6)) (-4 *4 (-558)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *1 (-978 *4 *5 *6 *7)))) (-2568 (*1 *2 *2 *2) (-12 (-5 *2 (-634 *6)) (-4 *6 (-1061 *3 *4 *5)) (-4 *3 (-558)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *1 (-978 *3 *4 *5 *6)))) (-3885 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *7 (-1061 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-634 *7)) (|:| |badPols| (-634 *7)))) (-5 *1 (-978 *4 *5 *6 *7)) (-5 *3 (-634 *7)))) (-3484 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-121)) (-5 *1 (-978 *4 *5 *6 *3)) (-4 *3 (-1061 *4 *5 *6)))) (-1934 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *7 (-1061 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-634 *7)) (|:| |badPols| (-634 *7)))) (-5 *1 (-978 *4 *5 *6 *7)) (-5 *3 (-634 *7)))) (-4364 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-121)) (-5 *1 (-978 *4 *5 *6 *3)) (-4 *3 (-1061 *4 *5 *6)))) (-3721 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *7 (-1061 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-634 *7)) (|:| |badPols| (-634 *7)))) (-5 *1 (-978 *4 *5 *6 *7)) (-5 *3 (-634 *7)))) (-2020 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-121)) (-5 *1 (-978 *4 *5 *6 *3)) (-4 *3 (-1061 *4 *5 *6)))) (-2052 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *7 (-1061 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-634 *7)) (|:| |badPols| (-634 *7)))) (-5 *1 (-978 *4 *5 *6 *7)) (-5 *3 (-634 *7)))) (-3847 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-1 (-121) *8))) (-4 *8 (-1061 *5 *6 *7)) (-4 *5 (-558)) (-4 *6 (-788)) (-4 *7 (-842)) (-5 *2 (-2 (|:| |goodPols| (-634 *8)) (|:| |badPols| (-634 *8)))) (-5 *1 (-978 *5 *6 *7 *8)) (-5 *4 (-634 *8)))) (-3570 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-1 (-121) *8))) (-4 *8 (-1061 *5 *6 *7)) (-4 *5 (-558)) (-4 *6 (-788)) (-4 *7 (-842)) (-5 *2 (-2 (|:| |goodPols| (-634 *8)) (|:| |badPols| (-634 *8)))) (-5 *1 (-978 *5 *6 *7 *8)) (-5 *4 (-634 *8)))) (-3216 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-121) *8)) (-4 *8 (-1061 *5 *6 *7)) (-4 *5 (-558)) (-4 *6 (-788)) (-4 *7 (-842)) (-5 *2 (-2 (|:| |goodPols| (-634 *8)) (|:| |badPols| (-634 *8)))) (-5 *1 (-978 *5 *6 *7 *8)) (-5 *4 (-634 *8)))) (-1435 (*1 *2 *3) (-12 (-5 *3 (-634 *7)) (-4 *7 (-1061 *4 *5 *6)) (-4 *4 (-558)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-121)) (-5 *1 (-978 *4 *5 *6 *7)))) (-2535 (*1 *2 *3 *4) (-12 (-5 *4 (-634 (-634 *8))) (-5 *3 (-634 *8)) (-4 *8 (-1061 *5 *6 *7)) (-4 *5 (-558)) (-4 *6 (-788)) (-4 *7 (-842)) (-5 *2 (-121)) (-5 *1 (-978 *5 *6 *7 *8)))) (-3230 (*1 *2 *3 *3) (-12 (-5 *3 (-634 *7)) (-4 *7 (-1061 *4 *5 *6)) (-4 *4 (-558)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-121)) (-5 *1 (-978 *4 *5 *6 *7)))) (-2173 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-634 *7) (-634 *7))) (-5 *2 (-634 *7)) (-4 *7 (-1061 *4 *5 *6)) (-4 *4 (-558)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *1 (-978 *4 *5 *6 *7)))) (-2173 (*1 *2 *2 *2) (-12 (-5 *2 (-634 *6)) (-4 *6 (-1061 *3 *4 *5)) (-4 *3 (-558)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *1 (-978 *3 *4 *5 *6)))) (-2173 (*1 *2 *2 *3) (-12 (-5 *2 (-634 *3)) (-4 *3 (-1061 *4 *5 *6)) (-4 *4 (-558)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *1 (-978 *4 *5 *6 *3)))) (-3656 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-634 *3)) (-5 *1 (-978 *4 *5 *6 *3)) (-4 *3 (-1061 *4 *5 *6)))) (-3165 (*1 *2 *2) (-12 (-5 *2 (-634 *6)) (-4 *6 (-1061 *3 *4 *5)) (-4 *3 (-558)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *1 (-978 *3 *4 *5 *6)))) (-2173 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-634 *3)) (-5 *1 (-978 *4 *5 *6 *3)) (-4 *3 (-1061 *4 *5 *6)))) (-2173 (*1 *2 *2) (-12 (-5 *2 (-634 *6)) (-4 *6 (-1061 *3 *4 *5)) (-4 *3 (-558)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *1 (-978 *3 *4 *5 *6))))) +(-10 -7 (-15 -2173 ((-634 |#4|) (-634 |#4|))) (-15 -2173 ((-634 |#4|) |#4| |#4|)) (-15 -3165 ((-634 |#4|) (-634 |#4|))) (-15 -3656 ((-634 |#4|) |#4| |#4|)) (-15 -2173 ((-634 |#4|) (-634 |#4|) |#4|)) (-15 -2173 ((-634 |#4|) (-634 |#4|) (-634 |#4|))) (-15 -2173 ((-634 |#4|) (-634 |#4|) (-634 |#4|) (-1 (-634 |#4|) (-634 |#4|)))) (-15 -3230 ((-121) (-634 |#4|) (-634 |#4|))) (-15 -2535 ((-121) (-634 |#4|) (-634 (-634 |#4|)))) (-15 -1435 ((-121) (-634 |#4|))) (-15 -3216 ((-2 (|:| |goodPols| (-634 |#4|)) (|:| |badPols| (-634 |#4|))) (-1 (-121) |#4|) (-634 |#4|))) (-15 -3570 ((-2 (|:| |goodPols| (-634 |#4|)) (|:| |badPols| (-634 |#4|))) (-634 (-1 (-121) |#4|)) (-634 |#4|))) (-15 -3847 ((-2 (|:| |goodPols| (-634 |#4|)) (|:| |badPols| (-634 |#4|))) (-634 (-1 (-121) |#4|)) (-634 |#4|))) (-15 -2052 ((-2 (|:| |goodPols| (-634 |#4|)) (|:| |badPols| (-634 |#4|))) (-634 |#4|))) (-15 -2020 ((-121) |#4|)) (-15 -3721 ((-2 (|:| |goodPols| (-634 |#4|)) (|:| |badPols| (-634 |#4|))) (-634 |#4|))) (-15 -4364 ((-121) |#4|)) (-15 -1934 ((-2 (|:| |goodPols| (-634 |#4|)) (|:| |badPols| (-634 |#4|))) (-634 |#4|))) (-15 -3484 ((-121) |#4|)) (-15 -3885 ((-2 (|:| |goodPols| (-634 |#4|)) (|:| |badPols| (-634 |#4|))) (-634 |#4|))) (-15 -2568 ((-634 |#4|) (-634 |#4|) (-634 |#4|))) (-15 -2568 ((-634 |#4|) (-634 |#4|) (-634 |#4|) (-121))) (-15 -3403 (|#4| |#4| (-634 |#4|))) (-15 -2545 ((-634 |#4|) (-634 |#4|))) (-15 -2946 ((-3 (-2 (|:| |bas| (-481 |#1| |#2| |#3| |#4|)) (|:| -2616 (-634 |#4|))) "failed") (-634 |#4|))) (-15 -1618 ((-634 |#4|) (-634 |#4|))) (-15 -1337 ((-634 |#4|) (-634 |#4|) (-1 (-121) |#4|) (-1 (-121) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3236 ((-634 |#4|) (-634 |#4|) (-1 (-121) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-453)) (PROGN (-15 -1959 ((-634 |#4|) |#4|)) (-15 -1599 ((-634 |#4|) (-634 |#4|))) (-15 -1599 ((-634 |#4|) (-634 |#4|) (-121))) (-15 -3584 ((-634 |#4|) (-634 |#4|) (-634 |#4|))) (-15 -2063 ((-634 |#4|) (-634 |#4|) (-634 |#4|))) (-15 -2274 ((-634 |#4|) (-634 |#4|) (-634 |#4|)))) |noBranch|) (IF (|has| |#1| (-301)) (IF (|has| |#1| (-150)) (PROGN (-15 -2333 ((-634 |#4|) (-634 |#4|))) (-15 -1322 ((-634 |#4|) (-634 |#4|))) (-15 -3136 ((-634 |#4|) (-634 |#4|) (-634 |#4|)))) |noBranch|) |noBranch|)) +((-2633 (((-2 (|:| R (-679 |#1|)) (|:| A (-679 |#1|)) (|:| |Ainv| (-679 |#1|))) (-679 |#1|) (-101 |#1|) (-1 |#1| |#1|)) 19)) (-4468 (((-634 (-2 (|:| C (-679 |#1|)) (|:| |g| (-1244 |#1|)))) (-679 |#1|) (-1244 |#1|)) 35)) (-3799 (((-679 |#1|) (-679 |#1|) (-679 |#1|) (-101 |#1|) (-1 |#1| |#1|)) 16))) +(((-979 |#1|) (-10 -7 (-15 -2633 ((-2 (|:| R (-679 |#1|)) (|:| A (-679 |#1|)) (|:| |Ainv| (-679 |#1|))) (-679 |#1|) (-101 |#1|) (-1 |#1| |#1|))) (-15 -3799 ((-679 |#1|) (-679 |#1|) (-679 |#1|) (-101 |#1|) (-1 |#1| |#1|))) (-15 -4468 ((-634 (-2 (|:| C (-679 |#1|)) (|:| |g| (-1244 |#1|)))) (-679 |#1|) (-1244 |#1|)))) (-365)) (T -979)) +((-4468 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-5 *2 (-634 (-2 (|:| C (-679 *5)) (|:| |g| (-1244 *5))))) (-5 *1 (-979 *5)) (-5 *3 (-679 *5)) (-5 *4 (-1244 *5)))) (-3799 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-679 *5)) (-5 *3 (-101 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-365)) (-5 *1 (-979 *5)))) (-2633 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-101 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-365)) (-5 *2 (-2 (|:| R (-679 *6)) (|:| A (-679 *6)) (|:| |Ainv| (-679 *6)))) (-5 *1 (-979 *6)) (-5 *3 (-679 *6))))) +(-10 -7 (-15 -2633 ((-2 (|:| R (-679 |#1|)) (|:| A (-679 |#1|)) (|:| |Ainv| (-679 |#1|))) (-679 |#1|) (-101 |#1|) (-1 |#1| |#1|))) (-15 -3799 ((-679 |#1|) (-679 |#1|) (-679 |#1|) (-101 |#1|) (-1 |#1| |#1|))) (-15 -4468 ((-634 (-2 (|:| C (-679 |#1|)) (|:| |g| (-1244 |#1|)))) (-679 |#1|) (-1244 |#1|)))) +((-1678 (((-420 |#4|) |#4|) 47))) +(((-980 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1678 ((-420 |#4|) |#4|))) (-842) (-788) (-453) (-950 |#3| |#2| |#1|)) (T -980)) +((-1678 (*1 *2 *3) (-12 (-4 *4 (-842)) (-4 *5 (-788)) (-4 *6 (-453)) (-5 *2 (-420 *3)) (-5 *1 (-980 *4 *5 *6 *3)) (-4 *3 (-950 *6 *5 *4))))) +(-10 -7 (-15 -1678 ((-420 |#4|) |#4|))) +((-2447 (((-121) $ $) 18 (|has| |#1| (-1090)))) (-3205 (($ (-763)) 105 (|has| |#1| (-23)))) (-1868 (((-1249) $ (-568) (-568)) 37 (|has| $ (-6 -4520)))) (-2016 (((-121) (-1 (-121) |#1| |#1|) $) 91) (((-121) $) 85 (|has| |#1| (-842)))) (-3908 (($ (-1 (-121) |#1| |#1|) $) 82 (|has| $ (-6 -4520))) (($ $) 81 (-12 (|has| |#1| (-842)) (|has| $ (-6 -4520))))) (-3644 (($ (-1 (-121) |#1| |#1|) $) 92) (($ $) 86 (|has| |#1| (-842)))) (-2510 (((-121) $ (-763)) 8)) (-2436 ((|#1| $ (-568) |#1|) 49 (|has| $ (-6 -4520))) ((|#1| $ (-1210 (-568)) |#1|) 53 (|has| $ (-6 -4520)))) (-2801 (($ (-1 (-121) |#1|) $) 70 (|has| $ (-6 -4519)))) (-2671 (($) 7 T CONST)) (-1578 (($ $) 83 (|has| $ (-6 -4520)))) (-3943 (($ $) 93)) (-3924 (($ $) 73 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-4328 (($ |#1| $) 72 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519)))) (($ (-1 (-121) |#1|) $) 69 (|has| $ (-6 -4519)))) (-3092 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 71 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 68 (|has| $ (-6 -4519))) ((|#1| (-1 |#1| |#1| |#1|) $) 67 (|has| $ (-6 -4519)))) (-3989 ((|#1| $ (-568) |#1|) 50 (|has| $ (-6 -4520)))) (-2602 ((|#1| $ (-568)) 48)) (-2764 (((-568) (-1 (-121) |#1|) $) 90) (((-568) |#1| $) 89 (|has| |#1| (-1090))) (((-568) |#1| $ (-568)) 88 (|has| |#1| (-1090)))) (-4203 (($ (-634 |#1|)) 110)) (-4360 (((-634 |#1|) $) 30 (|has| $ (-6 -4519)))) (-1802 (((-679 |#1|) $ $) 98 (|has| |#1| (-1047)))) (-1849 (($ (-763) |#1|) 64)) (-1737 (((-121) $ (-763)) 9)) (-1881 (((-568) $) 40 (|has| (-568) (-842)))) (-2521 (($ $ $) 80 (|has| |#1| (-842)))) (-1347 (($ (-1 (-121) |#1| |#1|) $ $) 94) (($ $ $) 87 (|has| |#1| (-842)))) (-1979 (((-634 |#1|) $) 29 (|has| $ (-6 -4519)))) (-3109 (((-121) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-2223 (((-568) $) 41 (|has| (-568) (-842)))) (-3268 (($ $ $) 79 (|has| |#1| (-842)))) (-3674 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 59)) (-1550 ((|#1| $) 95 (-12 (|has| |#1| (-1047)) (|has| |#1| (-1002))))) (-2166 (((-121) $ (-763)) 10)) (-3678 ((|#1| $) 96 (-12 (|has| |#1| (-1047)) (|has| |#1| (-1002))))) (-4487 (((-1143) $) 22 (|has| |#1| (-1090)))) (-4122 (($ |#1| $ (-568)) 55) (($ $ $ (-568)) 54)) (-4174 (((-634 (-568)) $) 43)) (-3578 (((-121) (-568) $) 44)) (-4022 (((-1108) $) 21 (|has| |#1| (-1090)))) (-3876 ((|#1| $) 39 (|has| (-568) (-842)))) (-3775 (((-3 |#1| "failed") (-1 (-121) |#1|) $) 66)) (-3724 (($ $ |#1|) 38 (|has| $ (-6 -4520)))) (-1807 (($ $ (-634 |#1|)) 107)) (-1387 (((-121) (-1 (-121) |#1|) $) 32 (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-634 |#1|) (-634 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))))) (-3171 (((-121) $ $) 14)) (-4467 (((-121) |#1| $) 42 (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-2041 (((-634 |#1|) $) 45)) (-3084 (((-121) $) 11)) (-3248 (($) 12)) (-2779 ((|#1| $ (-568) |#1|) 47) ((|#1| $ (-568)) 46) (($ $ (-1210 (-568))) 58)) (-3682 ((|#1| $ $) 99 (|has| |#1| (-1047)))) (-4321 (((-917) $) 109)) (-2826 (($ $ (-568)) 57) (($ $ (-1210 (-568))) 56)) (-2748 (($ $ $) 97)) (-4168 (((-763) (-1 (-121) |#1|) $) 31 (|has| $ (-6 -4519))) (((-763) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-2256 (($ $ $ (-568)) 84 (|has| $ (-6 -4520)))) (-3863 (($ $) 13)) (-4278 (((-541) $) 74 (|has| |#1| (-609 (-541)))) (($ (-634 |#1|)) 108)) (-4287 (($ (-634 |#1|)) 65)) (-2768 (($ $ |#1|) 63) (($ |#1| $) 62) (($ $ $) 61) (($ (-634 $)) 60)) (-2745 (((-850) $) 20 (|has| |#1| (-1090)))) (-1319 (((-121) (-1 (-121) |#1|) $) 33 (|has| $ (-6 -4519)))) (-1751 (((-121) $ $) 77 (|has| |#1| (-842)))) (-1738 (((-121) $ $) 76 (|has| |#1| (-842)))) (-1717 (((-121) $ $) 19 (|has| |#1| (-1090)))) (-1745 (((-121) $ $) 78 (|has| |#1| (-842)))) (-1732 (((-121) $ $) 75 (|has| |#1| (-842)))) (-1773 (($ $) 104 (|has| |#1| (-21))) (($ $ $) 103 (|has| |#1| (-21)))) (-1767 (($ $ $) 106 (|has| |#1| (-25)))) (* (($ (-568) $) 102 (|has| |#1| (-21))) (($ |#1| $) 101 (|has| |#1| (-716))) (($ $ |#1|) 100 (|has| |#1| (-716)))) (-1697 (((-763) $) 6 (|has| $ (-6 -4519))))) +(((-981 |#1|) (-1275) (-1047)) (T -981)) +((-4203 (*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-1047)) (-4 *1 (-981 *3)))) (-4321 (*1 *2 *1) (-12 (-4 *1 (-981 *3)) (-4 *3 (-1047)) (-5 *2 (-917)))) (-4278 (*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-1047)) (-4 *1 (-981 *3)))) (-2748 (*1 *1 *1 *1) (-12 (-4 *1 (-981 *2)) (-4 *2 (-1047)))) (-1807 (*1 *1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *1 (-981 *3)) (-4 *3 (-1047))))) +(-13 (-1242 |t#1|) (-10 -8 (-15 -4203 ($ (-634 |t#1|))) (-15 -4321 ((-917) $)) (-15 -4278 ($ (-634 |t#1|))) (-15 -2748 ($ $ $)) (-15 -1807 ($ $ (-634 |t#1|))))) +(((-39) . T) ((-105) -2198 (|has| |#1| (-1090)) (|has| |#1| (-842))) ((-608 (-850)) -2198 (|has| |#1| (-1090)) (|has| |#1| (-842))) ((-154 |#1|) . T) ((-609 (-541)) |has| |#1| (-609 (-541))) ((-281 (-568) |#1|) . T) ((-283 (-568) |#1|) . T) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))) ((-375 |#1|) . T) ((-499 |#1|) . T) ((-601 (-568) |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))) ((-640 |#1|) . T) ((-19 |#1|) . T) ((-842) |has| |#1| (-842)) ((-1090) -2198 (|has| |#1| (-1090)) (|has| |#1| (-842))) ((-1195) . T) ((-1242 |#1|) . T)) +((-2795 (((-944 |#2|) (-1 |#2| |#1|) (-944 |#1|)) 17))) +(((-982 |#1| |#2|) (-10 -7 (-15 -2795 ((-944 |#2|) (-1 |#2| |#1|) (-944 |#1|)))) (-1047) (-1047)) (T -982)) +((-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-944 *5)) (-4 *5 (-1047)) (-4 *6 (-1047)) (-5 *2 (-944 *6)) (-5 *1 (-982 *5 *6))))) +(-10 -7 (-15 -2795 ((-944 |#2|) (-1 |#2| |#1|) (-944 |#1|)))) +((-3811 ((|#1| (-944 |#1|)) 13)) (-4166 ((|#1| (-944 |#1|)) 12)) (-3767 ((|#1| (-944 |#1|)) 11)) (-3310 ((|#1| (-944 |#1|)) 15)) (-4386 ((|#1| (-944 |#1|)) 21)) (-2438 ((|#1| (-944 |#1|)) 14)) (-4498 ((|#1| (-944 |#1|)) 16)) (-1819 ((|#1| (-944 |#1|)) 20)) (-1813 ((|#1| (-944 |#1|)) 19))) +(((-983 |#1|) (-10 -7 (-15 -3767 (|#1| (-944 |#1|))) (-15 -4166 (|#1| (-944 |#1|))) (-15 -3811 (|#1| (-944 |#1|))) (-15 -2438 (|#1| (-944 |#1|))) (-15 -3310 (|#1| (-944 |#1|))) (-15 -4498 (|#1| (-944 |#1|))) (-15 -1813 (|#1| (-944 |#1|))) (-15 -1819 (|#1| (-944 |#1|))) (-15 -4386 (|#1| (-944 |#1|)))) (-1047)) (T -983)) +((-4386 (*1 *2 *3) (-12 (-5 *3 (-944 *2)) (-5 *1 (-983 *2)) (-4 *2 (-1047)))) (-1819 (*1 *2 *3) (-12 (-5 *3 (-944 *2)) (-5 *1 (-983 *2)) (-4 *2 (-1047)))) (-1813 (*1 *2 *3) (-12 (-5 *3 (-944 *2)) (-5 *1 (-983 *2)) (-4 *2 (-1047)))) (-4498 (*1 *2 *3) (-12 (-5 *3 (-944 *2)) (-5 *1 (-983 *2)) (-4 *2 (-1047)))) (-3310 (*1 *2 *3) (-12 (-5 *3 (-944 *2)) (-5 *1 (-983 *2)) (-4 *2 (-1047)))) (-2438 (*1 *2 *3) (-12 (-5 *3 (-944 *2)) (-5 *1 (-983 *2)) (-4 *2 (-1047)))) (-3811 (*1 *2 *3) (-12 (-5 *3 (-944 *2)) (-5 *1 (-983 *2)) (-4 *2 (-1047)))) (-4166 (*1 *2 *3) (-12 (-5 *3 (-944 *2)) (-5 *1 (-983 *2)) (-4 *2 (-1047)))) (-3767 (*1 *2 *3) (-12 (-5 *3 (-944 *2)) (-5 *1 (-983 *2)) (-4 *2 (-1047))))) +(-10 -7 (-15 -3767 (|#1| (-944 |#1|))) (-15 -4166 (|#1| (-944 |#1|))) (-15 -3811 (|#1| (-944 |#1|))) (-15 -2438 (|#1| (-944 |#1|))) (-15 -3310 (|#1| (-944 |#1|))) (-15 -4498 (|#1| (-944 |#1|))) (-15 -1813 (|#1| (-944 |#1|))) (-15 -1819 (|#1| (-944 |#1|))) (-15 -4386 (|#1| (-944 |#1|)))) +((-2588 (((-3 |#1| "failed") |#1|) 18)) (-4444 (((-3 |#1| "failed") |#1|) 6)) (-3458 (((-3 |#1| "failed") |#1|) 16)) (-1856 (((-3 |#1| "failed") |#1|) 4)) (-2369 (((-3 |#1| "failed") |#1|) 20)) (-3864 (((-3 |#1| "failed") |#1|) 8)) (-1623 (((-3 |#1| "failed") |#1| (-763)) 1)) (-3269 (((-3 |#1| "failed") |#1|) 3)) (-1648 (((-3 |#1| "failed") |#1|) 2)) (-3511 (((-3 |#1| "failed") |#1|) 21)) (-4206 (((-3 |#1| "failed") |#1|) 9)) (-2581 (((-3 |#1| "failed") |#1|) 19)) (-3509 (((-3 |#1| "failed") |#1|) 7)) (-1390 (((-3 |#1| "failed") |#1|) 17)) (-3322 (((-3 |#1| "failed") |#1|) 5)) (-1778 (((-3 |#1| "failed") |#1|) 24)) (-1981 (((-3 |#1| "failed") |#1|) 12)) (-2037 (((-3 |#1| "failed") |#1|) 22)) (-3984 (((-3 |#1| "failed") |#1|) 10)) (-1780 (((-3 |#1| "failed") |#1|) 26)) (-3517 (((-3 |#1| "failed") |#1|) 14)) (-2136 (((-3 |#1| "failed") |#1|) 27)) (-4316 (((-3 |#1| "failed") |#1|) 15)) (-2236 (((-3 |#1| "failed") |#1|) 25)) (-3053 (((-3 |#1| "failed") |#1|) 13)) (-3525 (((-3 |#1| "failed") |#1|) 23)) (-3928 (((-3 |#1| "failed") |#1|) 11))) +(((-984 |#1|) (-1275) (-1181)) (T -984)) +((-2136 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1181)))) (-1780 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1181)))) (-2236 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1181)))) (-1778 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1181)))) (-3525 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1181)))) (-2037 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1181)))) (-3511 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1181)))) (-2369 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1181)))) (-2581 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1181)))) (-2588 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1181)))) (-1390 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1181)))) (-3458 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1181)))) (-4316 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1181)))) (-3517 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1181)))) (-3053 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1181)))) (-1981 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1181)))) (-3928 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1181)))) (-3984 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1181)))) (-4206 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1181)))) (-3864 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1181)))) (-3509 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1181)))) (-4444 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1181)))) (-3322 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1181)))) (-1856 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1181)))) (-3269 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1181)))) (-1648 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1181)))) (-1623 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-763)) (-4 *1 (-984 *2)) (-4 *2 (-1181))))) +(-13 (-10 -7 (-15 -1623 ((-3 |t#1| "failed") |t#1| (-763))) (-15 -1648 ((-3 |t#1| "failed") |t#1|)) (-15 -3269 ((-3 |t#1| "failed") |t#1|)) (-15 -1856 ((-3 |t#1| "failed") |t#1|)) (-15 -3322 ((-3 |t#1| "failed") |t#1|)) (-15 -4444 ((-3 |t#1| "failed") |t#1|)) (-15 -3509 ((-3 |t#1| "failed") |t#1|)) (-15 -3864 ((-3 |t#1| "failed") |t#1|)) (-15 -4206 ((-3 |t#1| "failed") |t#1|)) (-15 -3984 ((-3 |t#1| "failed") |t#1|)) (-15 -3928 ((-3 |t#1| "failed") |t#1|)) (-15 -1981 ((-3 |t#1| "failed") |t#1|)) (-15 -3053 ((-3 |t#1| "failed") |t#1|)) (-15 -3517 ((-3 |t#1| "failed") |t#1|)) (-15 -4316 ((-3 |t#1| "failed") |t#1|)) (-15 -3458 ((-3 |t#1| "failed") |t#1|)) (-15 -1390 ((-3 |t#1| "failed") |t#1|)) (-15 -2588 ((-3 |t#1| "failed") |t#1|)) (-15 -2581 ((-3 |t#1| "failed") |t#1|)) (-15 -2369 ((-3 |t#1| "failed") |t#1|)) (-15 -3511 ((-3 |t#1| "failed") |t#1|)) (-15 -2037 ((-3 |t#1| "failed") |t#1|)) (-15 -3525 ((-3 |t#1| "failed") |t#1|)) (-15 -1778 ((-3 |t#1| "failed") |t#1|)) (-15 -2236 ((-3 |t#1| "failed") |t#1|)) (-15 -1780 ((-3 |t#1| "failed") |t#1|)) (-15 -2136 ((-3 |t#1| "failed") |t#1|)))) +((-2917 ((|#4| |#4| (-634 |#3|)) 55) ((|#4| |#4| |#3|) 54)) (-3352 ((|#4| |#4| (-634 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-2795 ((|#4| (-1 |#4| (-953 |#1|)) |#4|) 30))) +(((-985 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3352 (|#4| |#4| |#3|)) (-15 -3352 (|#4| |#4| (-634 |#3|))) (-15 -2917 (|#4| |#4| |#3|)) (-15 -2917 (|#4| |#4| (-634 |#3|))) (-15 -2795 (|#4| (-1 |#4| (-953 |#1|)) |#4|))) (-1047) (-788) (-13 (-842) (-10 -8 (-15 -4278 ((-1161) $)) (-15 -1305 ((-3 $ "failed") (-1161))))) (-950 (-953 |#1|) |#2| |#3|)) (T -985)) +((-2795 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-953 *4))) (-4 *4 (-1047)) (-4 *2 (-950 (-953 *4) *5 *6)) (-4 *5 (-788)) (-4 *6 (-13 (-842) (-10 -8 (-15 -4278 ((-1161) $)) (-15 -1305 ((-3 $ "failed") (-1161)))))) (-5 *1 (-985 *4 *5 *6 *2)))) (-2917 (*1 *2 *2 *3) (-12 (-5 *3 (-634 *6)) (-4 *6 (-13 (-842) (-10 -8 (-15 -4278 ((-1161) $)) (-15 -1305 ((-3 $ "failed") (-1161)))))) (-4 *4 (-1047)) (-4 *5 (-788)) (-5 *1 (-985 *4 *5 *6 *2)) (-4 *2 (-950 (-953 *4) *5 *6)))) (-2917 (*1 *2 *2 *3) (-12 (-4 *4 (-1047)) (-4 *5 (-788)) (-4 *3 (-13 (-842) (-10 -8 (-15 -4278 ((-1161) $)) (-15 -1305 ((-3 $ "failed") (-1161)))))) (-5 *1 (-985 *4 *5 *3 *2)) (-4 *2 (-950 (-953 *4) *5 *3)))) (-3352 (*1 *2 *2 *3) (-12 (-5 *3 (-634 *6)) (-4 *6 (-13 (-842) (-10 -8 (-15 -4278 ((-1161) $)) (-15 -1305 ((-3 $ "failed") (-1161)))))) (-4 *4 (-1047)) (-4 *5 (-788)) (-5 *1 (-985 *4 *5 *6 *2)) (-4 *2 (-950 (-953 *4) *5 *6)))) (-3352 (*1 *2 *2 *3) (-12 (-4 *4 (-1047)) (-4 *5 (-788)) (-4 *3 (-13 (-842) (-10 -8 (-15 -4278 ((-1161) $)) (-15 -1305 ((-3 $ "failed") (-1161)))))) (-5 *1 (-985 *4 *5 *3 *2)) (-4 *2 (-950 (-953 *4) *5 *3))))) +(-10 -7 (-15 -3352 (|#4| |#4| |#3|)) (-15 -3352 (|#4| |#4| (-634 |#3|))) (-15 -2917 (|#4| |#4| |#3|)) (-15 -2917 (|#4| |#4| (-634 |#3|))) (-15 -2795 (|#4| (-1 |#4| (-953 |#1|)) |#4|))) +((-1330 ((|#2| |#3|) 34)) (-3714 (((-2 (|:| -3746 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|))) |#2|) 71)) (-3661 (((-2 (|:| -3746 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|)))) 86))) +(((-986 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3661 ((-2 (|:| -3746 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|))))) (-15 -3714 ((-2 (|:| -3746 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|))) |#2|)) (-15 -1330 (|#2| |#3|))) (-350) (-1219 |#1|) (-1219 |#2|) (-714 |#2| |#3|)) (T -986)) +((-1330 (*1 *2 *3) (-12 (-4 *3 (-1219 *2)) (-4 *2 (-1219 *4)) (-5 *1 (-986 *4 *2 *3 *5)) (-4 *4 (-350)) (-4 *5 (-714 *2 *3)))) (-3714 (*1 *2 *3) (-12 (-4 *4 (-350)) (-4 *3 (-1219 *4)) (-4 *5 (-1219 *3)) (-5 *2 (-2 (|:| -3746 (-679 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-679 *3)))) (-5 *1 (-986 *4 *3 *5 *6)) (-4 *6 (-714 *3 *5)))) (-3661 (*1 *2) (-12 (-4 *3 (-350)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 *4)) (-5 *2 (-2 (|:| -3746 (-679 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-679 *4)))) (-5 *1 (-986 *3 *4 *5 *6)) (-4 *6 (-714 *4 *5))))) +(-10 -7 (-15 -3661 ((-2 (|:| -3746 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|))))) (-15 -3714 ((-2 (|:| -3746 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|))) |#2|)) (-15 -1330 (|#2| |#3|))) +((-2950 (((-988 (-409 (-568)) (-852 |#1|) (-232 |#2| (-763)) (-242 |#1| (-409 (-568)))) (-988 (-409 (-568)) (-852 |#1|) (-232 |#2| (-763)) (-242 |#1| (-409 (-568))))) 64))) +(((-987 |#1| |#2|) (-10 -7 (-15 -2950 ((-988 (-409 (-568)) (-852 |#1|) (-232 |#2| (-763)) (-242 |#1| (-409 (-568)))) (-988 (-409 (-568)) (-852 |#1|) (-232 |#2| (-763)) (-242 |#1| (-409 (-568))))))) (-634 (-1161)) (-763)) (T -987)) +((-2950 (*1 *2 *2) (-12 (-5 *2 (-988 (-409 (-568)) (-852 *3) (-232 *4 (-763)) (-242 *3 (-409 (-568))))) (-14 *3 (-634 (-1161))) (-14 *4 (-763)) (-5 *1 (-987 *3 *4))))) +(-10 -7 (-15 -2950 ((-988 (-409 (-568)) (-852 |#1|) (-232 |#2| (-763)) (-242 |#1| (-409 (-568)))) (-988 (-409 (-568)) (-852 |#1|) (-232 |#2| (-763)) (-242 |#1| (-409 (-568))))))) +((-2447 (((-121) $ $) NIL)) (-2812 (((-3 (-121) "failed") $) 67)) (-4352 (($ $) 35 (-12 (|has| |#1| (-150)) (|has| |#1| (-301))))) (-2137 (($ $ (-3 (-121) "failed")) 68)) (-2830 (($ (-634 |#4|) |#4|) 24)) (-4487 (((-1143) $) NIL)) (-2346 (($ $) 65)) (-4022 (((-1108) $) NIL)) (-3084 (((-121) $) 66)) (-3248 (($) 29)) (-2991 ((|#4| $) 70)) (-2422 (((-634 |#4|) $) 69)) (-2745 (((-850) $) 64)) (-1717 (((-121) $ $) NIL))) +(((-988 |#1| |#2| |#3| |#4|) (-13 (-1090) (-608 (-850)) (-10 -8 (-15 -3248 ($)) (-15 -2830 ($ (-634 |#4|) |#4|)) (-15 -2812 ((-3 (-121) "failed") $)) (-15 -2137 ($ $ (-3 (-121) "failed"))) (-15 -3084 ((-121) $)) (-15 -2422 ((-634 |#4|) $)) (-15 -2991 (|#4| $)) (-15 -2346 ($ $)) (IF (|has| |#1| (-301)) (IF (|has| |#1| (-150)) (-15 -4352 ($ $)) |noBranch|) |noBranch|))) (-453) (-842) (-788) (-950 |#1| |#3| |#2|)) (T -988)) +((-3248 (*1 *1) (-12 (-4 *2 (-453)) (-4 *3 (-842)) (-4 *4 (-788)) (-5 *1 (-988 *2 *3 *4 *5)) (-4 *5 (-950 *2 *4 *3)))) (-2830 (*1 *1 *2 *3) (-12 (-5 *2 (-634 *3)) (-4 *3 (-950 *4 *6 *5)) (-4 *4 (-453)) (-4 *5 (-842)) (-4 *6 (-788)) (-5 *1 (-988 *4 *5 *6 *3)))) (-2812 (*1 *2 *1) (|partial| -12 (-4 *3 (-453)) (-4 *4 (-842)) (-4 *5 (-788)) (-5 *2 (-121)) (-5 *1 (-988 *3 *4 *5 *6)) (-4 *6 (-950 *3 *5 *4)))) (-2137 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-121) "failed")) (-4 *3 (-453)) (-4 *4 (-842)) (-4 *5 (-788)) (-5 *1 (-988 *3 *4 *5 *6)) (-4 *6 (-950 *3 *5 *4)))) (-3084 (*1 *2 *1) (-12 (-4 *3 (-453)) (-4 *4 (-842)) (-4 *5 (-788)) (-5 *2 (-121)) (-5 *1 (-988 *3 *4 *5 *6)) (-4 *6 (-950 *3 *5 *4)))) (-2422 (*1 *2 *1) (-12 (-4 *3 (-453)) (-4 *4 (-842)) (-4 *5 (-788)) (-5 *2 (-634 *6)) (-5 *1 (-988 *3 *4 *5 *6)) (-4 *6 (-950 *3 *5 *4)))) (-2991 (*1 *2 *1) (-12 (-4 *2 (-950 *3 *5 *4)) (-5 *1 (-988 *3 *4 *5 *2)) (-4 *3 (-453)) (-4 *4 (-842)) (-4 *5 (-788)))) (-2346 (*1 *1 *1) (-12 (-4 *2 (-453)) (-4 *3 (-842)) (-4 *4 (-788)) (-5 *1 (-988 *2 *3 *4 *5)) (-4 *5 (-950 *2 *4 *3)))) (-4352 (*1 *1 *1) (-12 (-4 *2 (-150)) (-4 *2 (-301)) (-4 *2 (-453)) (-4 *3 (-842)) (-4 *4 (-788)) (-5 *1 (-988 *2 *3 *4 *5)) (-4 *5 (-950 *2 *4 *3))))) +(-13 (-1090) (-608 (-850)) (-10 -8 (-15 -3248 ($)) (-15 -2830 ($ (-634 |#4|) |#4|)) (-15 -2812 ((-3 (-121) "failed") $)) (-15 -2137 ($ $ (-3 (-121) "failed"))) (-15 -3084 ((-121) $)) (-15 -2422 ((-634 |#4|) $)) (-15 -2991 (|#4| $)) (-15 -2346 ($ $)) (IF (|has| |#1| (-301)) (IF (|has| |#1| (-150)) (-15 -4352 ($ $)) |noBranch|) |noBranch|))) +((-1278 (((-121) |#5| |#5|) 37)) (-3891 (((-121) |#5| |#5|) 51)) (-2212 (((-121) |#5| (-634 |#5|)) 73) (((-121) |#5| |#5|) 60)) (-4302 (((-121) (-634 |#4|) (-634 |#4|)) 57)) (-3686 (((-121) (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|)) (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))) 62)) (-2008 (((-1249)) 33)) (-1373 (((-1249) (-1143) (-1143) (-1143)) 29)) (-2164 (((-634 |#5|) (-634 |#5|)) 80)) (-2736 (((-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))) (-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|)))) 78)) (-3553 (((-634 (-2 (|:| -1853 (-634 |#4|)) (|:| -3001 |#5|) (|:| |ineq| (-634 |#4|)))) (-634 |#4|) (-634 |#5|) (-121) (-121)) 100)) (-2068 (((-121) |#5| |#5|) 46)) (-4350 (((-3 (-121) "failed") |#5| |#5|) 70)) (-4048 (((-121) (-634 |#4|) (-634 |#4|)) 56)) (-4354 (((-121) (-634 |#4|) (-634 |#4|)) 58)) (-2644 (((-121) (-634 |#4|) (-634 |#4|)) 59)) (-3821 (((-3 (-2 (|:| -1853 (-634 |#4|)) (|:| -3001 |#5|) (|:| |ineq| (-634 |#4|))) "failed") (-634 |#4|) |#5| (-634 |#4|) (-121) (-121) (-121) (-121) (-121)) 96)) (-2283 (((-634 |#5|) (-634 |#5|)) 42))) +(((-989 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1373 ((-1249) (-1143) (-1143) (-1143))) (-15 -2008 ((-1249))) (-15 -1278 ((-121) |#5| |#5|)) (-15 -2283 ((-634 |#5|) (-634 |#5|))) (-15 -2068 ((-121) |#5| |#5|)) (-15 -3891 ((-121) |#5| |#5|)) (-15 -4302 ((-121) (-634 |#4|) (-634 |#4|))) (-15 -4048 ((-121) (-634 |#4|) (-634 |#4|))) (-15 -4354 ((-121) (-634 |#4|) (-634 |#4|))) (-15 -2644 ((-121) (-634 |#4|) (-634 |#4|))) (-15 -4350 ((-3 (-121) "failed") |#5| |#5|)) (-15 -2212 ((-121) |#5| |#5|)) (-15 -2212 ((-121) |#5| (-634 |#5|))) (-15 -2164 ((-634 |#5|) (-634 |#5|))) (-15 -3686 ((-121) (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|)) (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|)))) (-15 -2736 ((-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))) (-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))))) (-15 -3553 ((-634 (-2 (|:| -1853 (-634 |#4|)) (|:| -3001 |#5|) (|:| |ineq| (-634 |#4|)))) (-634 |#4|) (-634 |#5|) (-121) (-121))) (-15 -3821 ((-3 (-2 (|:| -1853 (-634 |#4|)) (|:| -3001 |#5|) (|:| |ineq| (-634 |#4|))) "failed") (-634 |#4|) |#5| (-634 |#4|) (-121) (-121) (-121) (-121) (-121)))) (-453) (-788) (-842) (-1061 |#1| |#2| |#3|) (-1066 |#1| |#2| |#3| |#4|)) (T -989)) +((-3821 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-121)) (-4 *6 (-453)) (-4 *7 (-788)) (-4 *8 (-842)) (-4 *9 (-1061 *6 *7 *8)) (-5 *2 (-2 (|:| -1853 (-634 *9)) (|:| -3001 *4) (|:| |ineq| (-634 *9)))) (-5 *1 (-989 *6 *7 *8 *9 *4)) (-5 *3 (-634 *9)) (-4 *4 (-1066 *6 *7 *8 *9)))) (-3553 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-634 *10)) (-5 *5 (-121)) (-4 *10 (-1066 *6 *7 *8 *9)) (-4 *6 (-453)) (-4 *7 (-788)) (-4 *8 (-842)) (-4 *9 (-1061 *6 *7 *8)) (-5 *2 (-634 (-2 (|:| -1853 (-634 *9)) (|:| -3001 *10) (|:| |ineq| (-634 *9))))) (-5 *1 (-989 *6 *7 *8 *9 *10)) (-5 *3 (-634 *9)))) (-2736 (*1 *2 *2) (-12 (-5 *2 (-634 (-2 (|:| |val| (-634 *6)) (|:| -3001 *7)))) (-4 *6 (-1061 *3 *4 *5)) (-4 *7 (-1066 *3 *4 *5 *6)) (-4 *3 (-453)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *1 (-989 *3 *4 *5 *6 *7)))) (-3686 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-634 *7)) (|:| -3001 *8))) (-4 *7 (-1061 *4 *5 *6)) (-4 *8 (-1066 *4 *5 *6 *7)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-121)) (-5 *1 (-989 *4 *5 *6 *7 *8)))) (-2164 (*1 *2 *2) (-12 (-5 *2 (-634 *7)) (-4 *7 (-1066 *3 *4 *5 *6)) (-4 *3 (-453)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1061 *3 *4 *5)) (-5 *1 (-989 *3 *4 *5 *6 *7)))) (-2212 (*1 *2 *3 *4) (-12 (-5 *4 (-634 *3)) (-4 *3 (-1066 *5 *6 *7 *8)) (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *8 (-1061 *5 *6 *7)) (-5 *2 (-121)) (-5 *1 (-989 *5 *6 *7 *8 *3)))) (-2212 (*1 *2 *3 *3) (-12 (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *7 (-1061 *4 *5 *6)) (-5 *2 (-121)) (-5 *1 (-989 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))) (-4350 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *7 (-1061 *4 *5 *6)) (-5 *2 (-121)) (-5 *1 (-989 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))) (-2644 (*1 *2 *3 *3) (-12 (-5 *3 (-634 *7)) (-4 *7 (-1061 *4 *5 *6)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-121)) (-5 *1 (-989 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) (-4354 (*1 *2 *3 *3) (-12 (-5 *3 (-634 *7)) (-4 *7 (-1061 *4 *5 *6)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-121)) (-5 *1 (-989 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) (-4048 (*1 *2 *3 *3) (-12 (-5 *3 (-634 *7)) (-4 *7 (-1061 *4 *5 *6)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-121)) (-5 *1 (-989 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) (-4302 (*1 *2 *3 *3) (-12 (-5 *3 (-634 *7)) (-4 *7 (-1061 *4 *5 *6)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-121)) (-5 *1 (-989 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) (-3891 (*1 *2 *3 *3) (-12 (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *7 (-1061 *4 *5 *6)) (-5 *2 (-121)) (-5 *1 (-989 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))) (-2068 (*1 *2 *3 *3) (-12 (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *7 (-1061 *4 *5 *6)) (-5 *2 (-121)) (-5 *1 (-989 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))) (-2283 (*1 *2 *2) (-12 (-5 *2 (-634 *7)) (-4 *7 (-1066 *3 *4 *5 *6)) (-4 *3 (-453)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1061 *3 *4 *5)) (-5 *1 (-989 *3 *4 *5 *6 *7)))) (-1278 (*1 *2 *3 *3) (-12 (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *7 (-1061 *4 *5 *6)) (-5 *2 (-121)) (-5 *1 (-989 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))) (-2008 (*1 *2) (-12 (-4 *3 (-453)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1061 *3 *4 *5)) (-5 *2 (-1249)) (-5 *1 (-989 *3 *4 *5 *6 *7)) (-4 *7 (-1066 *3 *4 *5 *6)))) (-1373 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1143)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *7 (-1061 *4 *5 *6)) (-5 *2 (-1249)) (-5 *1 (-989 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7))))) +(-10 -7 (-15 -1373 ((-1249) (-1143) (-1143) (-1143))) (-15 -2008 ((-1249))) (-15 -1278 ((-121) |#5| |#5|)) (-15 -2283 ((-634 |#5|) (-634 |#5|))) (-15 -2068 ((-121) |#5| |#5|)) (-15 -3891 ((-121) |#5| |#5|)) (-15 -4302 ((-121) (-634 |#4|) (-634 |#4|))) (-15 -4048 ((-121) (-634 |#4|) (-634 |#4|))) (-15 -4354 ((-121) (-634 |#4|) (-634 |#4|))) (-15 -2644 ((-121) (-634 |#4|) (-634 |#4|))) (-15 -4350 ((-3 (-121) "failed") |#5| |#5|)) (-15 -2212 ((-121) |#5| |#5|)) (-15 -2212 ((-121) |#5| (-634 |#5|))) (-15 -2164 ((-634 |#5|) (-634 |#5|))) (-15 -3686 ((-121) (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|)) (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|)))) (-15 -2736 ((-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))) (-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))))) (-15 -3553 ((-634 (-2 (|:| -1853 (-634 |#4|)) (|:| -3001 |#5|) (|:| |ineq| (-634 |#4|)))) (-634 |#4|) (-634 |#5|) (-121) (-121))) (-15 -3821 ((-3 (-2 (|:| -1853 (-634 |#4|)) (|:| -3001 |#5|) (|:| |ineq| (-634 |#4|))) "failed") (-634 |#4|) |#5| (-634 |#4|) (-121) (-121) (-121) (-121) (-121)))) +((-1305 (((-1161) $) 15)) (-2850 (((-1143) $) 16)) (-2783 (($ (-1161) (-1143)) 14)) (-2745 (((-850) $) 13))) +(((-990) (-13 (-608 (-850)) (-10 -8 (-15 -2783 ($ (-1161) (-1143))) (-15 -1305 ((-1161) $)) (-15 -2850 ((-1143) $))))) (T -990)) +((-2783 (*1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-1143)) (-5 *1 (-990)))) (-1305 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-990)))) (-2850 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-990))))) +(-13 (-608 (-850)) (-10 -8 (-15 -2783 ($ (-1161) (-1143))) (-15 -1305 ((-1161) $)) (-15 -2850 ((-1143) $)))) +((-2795 ((|#4| (-1 |#2| |#1|) |#3|) 14))) +(((-991 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2795 (|#4| (-1 |#2| |#1|) |#3|))) (-558) (-558) (-993 |#1|) (-993 |#2|)) (T -991)) +((-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-558)) (-4 *6 (-558)) (-4 *2 (-993 *6)) (-5 *1 (-991 *5 *6 *4 *2)) (-4 *4 (-993 *5))))) +(-10 -7 (-15 -2795 (|#4| (-1 |#2| |#1|) |#3|))) +((-3666 (((-3 |#2| "failed") $) NIL) (((-3 (-1161) "failed") $) 65) (((-3 (-409 (-568)) "failed") $) NIL) (((-3 (-568) "failed") $) 95)) (-2854 ((|#2| $) NIL) (((-1161) $) 60) (((-409 (-568)) $) NIL) (((-568) $) 92)) (-3164 (((-679 (-568)) (-679 $)) NIL) (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) NIL) (((-2 (|:| -2928 (-679 |#2|)) (|:| |vec| (-1244 |#2|))) (-679 $) (-1244 $)) 112) (((-679 |#2|) (-679 $)) 28)) (-1731 (($) 98)) (-4410 (((-884 (-568) $) $ (-887 (-568)) (-884 (-568) $)) 74) (((-884 (-381) $) $ (-887 (-381)) (-884 (-381) $)) 83)) (-1332 (($ $) 10)) (-3038 (((-3 $ "failed") $) 20)) (-2795 (($ (-1 |#2| |#2|) $) 22)) (-4434 (($) 16)) (-3880 (($ $) 54)) (-4189 (($ $) NIL) (($ $ (-763)) NIL) (($ $ (-1161)) NIL) (($ $ (-634 (-1161))) NIL) (($ $ (-1161) (-763)) NIL) (($ $ (-634 (-1161)) (-634 (-763))) NIL) (($ $ (-1 |#2| |#2|) (-763)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-3013 (($ $) 12)) (-4278 (((-887 (-568)) $) 69) (((-887 (-381)) $) 78) (((-541) $) 40) (((-381) $) 44) (((-215) $) 47)) (-2745 (((-850) $) NIL) (($ (-568)) NIL) (($ $) NIL) (($ (-409 (-568))) 90) (($ |#2|) NIL) (($ (-1161)) 57)) (-4078 (((-763)) 31)) (-1732 (((-121) $ $) 50))) +(((-992 |#1| |#2|) (-10 -8 (-15 -1732 ((-121) |#1| |#1|)) (-15 -4434 (|#1|)) (-15 -3038 ((-3 |#1| "failed") |#1|)) (-15 -2854 ((-568) |#1|)) (-15 -3666 ((-3 (-568) "failed") |#1|)) (-15 -2854 ((-409 (-568)) |#1|)) (-15 -3666 ((-3 (-409 (-568)) "failed") |#1|)) (-15 -4278 ((-215) |#1|)) (-15 -4278 ((-381) |#1|)) (-15 -4278 ((-541) |#1|)) (-15 -2854 ((-1161) |#1|)) (-15 -3666 ((-3 (-1161) "failed") |#1|)) (-15 -2745 (|#1| (-1161))) (-15 -1731 (|#1|)) (-15 -3880 (|#1| |#1|)) (-15 -3013 (|#1| |#1|)) (-15 -1332 (|#1| |#1|)) (-15 -4410 ((-884 (-381) |#1|) |#1| (-887 (-381)) (-884 (-381) |#1|))) (-15 -4410 ((-884 (-568) |#1|) |#1| (-887 (-568)) (-884 (-568) |#1|))) (-15 -4278 ((-887 (-381)) |#1|)) (-15 -4278 ((-887 (-568)) |#1|)) (-15 -3164 ((-679 |#2|) (-679 |#1|))) (-15 -3164 ((-2 (|:| -2928 (-679 |#2|)) (|:| |vec| (-1244 |#2|))) (-679 |#1|) (-1244 |#1|))) (-15 -3164 ((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 |#1|) (-1244 |#1|))) (-15 -3164 ((-679 (-568)) (-679 |#1|))) (-15 -4189 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4189 (|#1| |#1| (-1 |#2| |#2|) (-763))) (-15 -4189 (|#1| |#1| (-634 (-1161)) (-634 (-763)))) (-15 -4189 (|#1| |#1| (-1161) (-763))) (-15 -4189 (|#1| |#1| (-634 (-1161)))) (-15 -4189 (|#1| |#1| (-1161))) (-15 -4189 (|#1| |#1| (-763))) (-15 -4189 (|#1| |#1|)) (-15 -2795 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2854 (|#2| |#1|)) (-15 -3666 ((-3 |#2| "failed") |#1|)) (-15 -2745 (|#1| |#2|)) (-15 -2745 (|#1| (-409 (-568)))) (-15 -2745 (|#1| |#1|)) (-15 -2745 (|#1| (-568))) (-15 -4078 ((-763))) (-15 -2745 ((-850) |#1|))) (-993 |#2|) (-558)) (T -992)) +((-4078 (*1 *2) (-12 (-4 *4 (-558)) (-5 *2 (-763)) (-5 *1 (-992 *3 *4)) (-4 *3 (-993 *4))))) +(-10 -8 (-15 -1732 ((-121) |#1| |#1|)) (-15 -4434 (|#1|)) (-15 -3038 ((-3 |#1| "failed") |#1|)) (-15 -2854 ((-568) |#1|)) (-15 -3666 ((-3 (-568) "failed") |#1|)) (-15 -2854 ((-409 (-568)) |#1|)) (-15 -3666 ((-3 (-409 (-568)) "failed") |#1|)) (-15 -4278 ((-215) |#1|)) (-15 -4278 ((-381) |#1|)) (-15 -4278 ((-541) |#1|)) (-15 -2854 ((-1161) |#1|)) (-15 -3666 ((-3 (-1161) "failed") |#1|)) (-15 -2745 (|#1| (-1161))) (-15 -1731 (|#1|)) (-15 -3880 (|#1| |#1|)) (-15 -3013 (|#1| |#1|)) (-15 -1332 (|#1| |#1|)) (-15 -4410 ((-884 (-381) |#1|) |#1| (-887 (-381)) (-884 (-381) |#1|))) (-15 -4410 ((-884 (-568) |#1|) |#1| (-887 (-568)) (-884 (-568) |#1|))) (-15 -4278 ((-887 (-381)) |#1|)) (-15 -4278 ((-887 (-568)) |#1|)) (-15 -3164 ((-679 |#2|) (-679 |#1|))) (-15 -3164 ((-2 (|:| -2928 (-679 |#2|)) (|:| |vec| (-1244 |#2|))) (-679 |#1|) (-1244 |#1|))) (-15 -3164 ((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 |#1|) (-1244 |#1|))) (-15 -3164 ((-679 (-568)) (-679 |#1|))) (-15 -4189 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4189 (|#1| |#1| (-1 |#2| |#2|) (-763))) (-15 -4189 (|#1| |#1| (-634 (-1161)) (-634 (-763)))) (-15 -4189 (|#1| |#1| (-1161) (-763))) (-15 -4189 (|#1| |#1| (-634 (-1161)))) (-15 -4189 (|#1| |#1| (-1161))) (-15 -4189 (|#1| |#1| (-763))) (-15 -4189 (|#1| |#1|)) (-15 -2795 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2854 (|#2| |#1|)) (-15 -3666 ((-3 |#2| "failed") |#1|)) (-15 -2745 (|#1| |#2|)) (-15 -2745 (|#1| (-409 (-568)))) (-15 -2745 (|#1| |#1|)) (-15 -2745 (|#1| (-568))) (-15 -4078 ((-763))) (-15 -2745 ((-850) |#1|))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-1492 ((|#1| $) 135 (|has| |#1| (-301)))) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) 40)) (-2227 (($ $) 39)) (-1573 (((-121) $) 37)) (-3134 (((-3 $ "failed") $ $) 18)) (-1750 (((-420 (-1157 $)) (-1157 $)) 126 (|has| |#1| (-904)))) (-4305 (($ $) 71)) (-1678 (((-420 $) $) 70)) (-1858 (((-3 (-634 (-1157 $)) "failed") (-634 (-1157 $)) (-1157 $)) 129 (|has| |#1| (-904)))) (-1497 (((-121) $ $) 57)) (-3662 (((-568) $) 116 (|has| |#1| (-815)))) (-2671 (($) 16 T CONST)) (-3666 (((-3 |#1| "failed") $) 174) (((-3 (-1161) "failed") $) 124 (|has| |#1| (-1037 (-1161)))) (((-3 (-409 (-568)) "failed") $) 108 (|has| |#1| (-1037 (-568)))) (((-3 (-568) "failed") $) 106 (|has| |#1| (-1037 (-568))))) (-2854 ((|#1| $) 173) (((-1161) $) 123 (|has| |#1| (-1037 (-1161)))) (((-409 (-568)) $) 107 (|has| |#1| (-1037 (-568)))) (((-568) $) 105 (|has| |#1| (-1037 (-568))))) (-2401 (($ $ $) 53)) (-3164 (((-679 (-568)) (-679 $)) 148 (|has| |#1| (-630 (-568)))) (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) 147 (|has| |#1| (-630 (-568)))) (((-2 (|:| -2928 (-679 |#1|)) (|:| |vec| (-1244 |#1|))) (-679 $) (-1244 $)) 146) (((-679 |#1|) (-679 $)) 145)) (-2925 (((-3 $ "failed") $) 33)) (-1731 (($) 133 (|has| |#1| (-550)))) (-2412 (($ $ $) 54)) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) 49)) (-3927 (((-121) $) 69)) (-2033 (((-121) $) 118 (|has| |#1| (-815)))) (-4410 (((-884 (-568) $) $ (-887 (-568)) (-884 (-568) $)) 142 (|has| |#1| (-881 (-568)))) (((-884 (-381) $) $ (-887 (-381)) (-884 (-381) $)) 141 (|has| |#1| (-881 (-381))))) (-2735 (((-121) $) 30)) (-1332 (($ $) 137)) (-2317 ((|#1| $) 139)) (-3038 (((-3 $ "failed") $) 104 (|has| |#1| (-1136)))) (-2245 (((-121) $) 117 (|has| |#1| (-815)))) (-3562 (((-3 (-634 $) "failed") (-634 $) $) 50)) (-2521 (($ $ $) 114 (|has| |#1| (-842)))) (-3268 (($ $ $) 113 (|has| |#1| (-842)))) (-2795 (($ (-1 |#1| |#1|) $) 165)) (-2495 (($ $ $) 45) (($ (-634 $)) 44)) (-4487 (((-1143) $) 9)) (-2081 (($ $) 68)) (-4434 (($) 103 (|has| |#1| (-1136)) CONST)) (-4022 (((-1108) $) 10)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) 43)) (-2721 (($ $ $) 47) (($ (-634 $)) 46)) (-3880 (($ $) 134 (|has| |#1| (-301)))) (-1519 ((|#1| $) 131 (|has| |#1| (-550)))) (-2905 (((-420 (-1157 $)) (-1157 $)) 128 (|has| |#1| (-904)))) (-3545 (((-420 (-1157 $)) (-1157 $)) 127 (|has| |#1| (-904)))) (-3848 (((-420 $) $) 72)) (-4497 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2595 (((-3 $ "failed") $ $) 41)) (-2344 (((-3 (-634 $) "failed") (-634 $) $) 48)) (-1339 (($ $ (-634 |#1|) (-634 |#1|)) 171 (|has| |#1| (-303 |#1|))) (($ $ |#1| |#1|) 170 (|has| |#1| (-303 |#1|))) (($ $ (-288 |#1|)) 169 (|has| |#1| (-303 |#1|))) (($ $ (-634 (-288 |#1|))) 168 (|has| |#1| (-303 |#1|))) (($ $ (-634 (-1161)) (-634 |#1|)) 167 (|has| |#1| (-523 (-1161) |#1|))) (($ $ (-1161) |#1|) 166 (|has| |#1| (-523 (-1161) |#1|)))) (-2709 (((-763) $) 56)) (-2779 (($ $ |#1|) 172 (|has| |#1| (-281 |#1| |#1|)))) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) 55)) (-4189 (($ $) 164 (|has| |#1| (-225))) (($ $ (-763)) 162 (|has| |#1| (-225))) (($ $ (-1161)) 160 (|has| |#1| (-895 (-1161)))) (($ $ (-634 (-1161))) 159 (|has| |#1| (-895 (-1161)))) (($ $ (-1161) (-763)) 158 (|has| |#1| (-895 (-1161)))) (($ $ (-634 (-1161)) (-634 (-763))) 157 (|has| |#1| (-895 (-1161)))) (($ $ (-1 |#1| |#1|) (-763)) 150) (($ $ (-1 |#1| |#1|)) 149)) (-3013 (($ $) 136)) (-2324 ((|#1| $) 138)) (-4278 (((-887 (-568)) $) 144 (|has| |#1| (-609 (-887 (-568))))) (((-887 (-381)) $) 143 (|has| |#1| (-609 (-887 (-381))))) (((-541) $) 121 (|has| |#1| (-609 (-541)))) (((-381) $) 120 (|has| |#1| (-1021))) (((-215) $) 119 (|has| |#1| (-1021)))) (-2979 (((-3 (-1244 $) "failed") (-679 $)) 130 (-2139 (|has| $ (-148)) (|has| |#1| (-904))))) (-2745 (((-850) $) 11) (($ (-568)) 27) (($ $) 42) (($ (-409 (-568))) 63) (($ |#1|) 177) (($ (-1161)) 125 (|has| |#1| (-1037 (-1161))))) (-4371 (((-3 $ "failed") $) 122 (-2198 (|has| |#1| (-148)) (-2139 (|has| $ (-148)) (|has| |#1| (-904)))))) (-4078 (((-763)) 28)) (-2285 ((|#1| $) 132 (|has| |#1| (-550)))) (-1826 (((-121) $ $) 38)) (-2897 (($ $) 115 (|has| |#1| (-815)))) (-1887 (($ $ (-917)) 25) (($ $ (-763)) 32) (($ $ (-568)) 67)) (-3056 (($) 17 T CONST)) (-1556 (($) 29 T CONST)) (-3190 (($ $) 163 (|has| |#1| (-225))) (($ $ (-763)) 161 (|has| |#1| (-225))) (($ $ (-1161)) 156 (|has| |#1| (-895 (-1161)))) (($ $ (-634 (-1161))) 155 (|has| |#1| (-895 (-1161)))) (($ $ (-1161) (-763)) 154 (|has| |#1| (-895 (-1161)))) (($ $ (-634 (-1161)) (-634 (-763))) 153 (|has| |#1| (-895 (-1161)))) (($ $ (-1 |#1| |#1|) (-763)) 152) (($ $ (-1 |#1| |#1|)) 151)) (-1751 (((-121) $ $) 111 (|has| |#1| (-842)))) (-1738 (((-121) $ $) 110 (|has| |#1| (-842)))) (-1717 (((-121) $ $) 6)) (-1745 (((-121) $ $) 112 (|has| |#1| (-842)))) (-1732 (((-121) $ $) 109 (|has| |#1| (-842)))) (-1779 (($ $ $) 62) (($ |#1| |#1|) 140)) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 24) (($ $ (-763)) 31) (($ $ (-568)) 66)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 23) (($ $ (-409 (-568))) 65) (($ (-409 (-568)) $) 64) (($ |#1| $) 176) (($ $ |#1|) 175))) +(((-993 |#1|) (-1275) (-558)) (T -993)) +((-1779 (*1 *1 *2 *2) (-12 (-4 *1 (-993 *2)) (-4 *2 (-558)))) (-2317 (*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-558)))) (-2324 (*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-558)))) (-1332 (*1 *1 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-558)))) (-3013 (*1 *1 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-558)))) (-1492 (*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-558)) (-4 *2 (-301)))) (-3880 (*1 *1 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-558)) (-4 *2 (-301)))) (-1731 (*1 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-550)) (-4 *2 (-558)))) (-2285 (*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-558)) (-4 *2 (-550)))) (-1519 (*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-558)) (-4 *2 (-550))))) +(-13 (-365) (-43 |t#1|) (-1037 |t#1|) (-336 |t#1|) (-223 |t#1|) (-379 |t#1|) (-879 |t#1|) (-402 |t#1|) (-10 -8 (-15 -1779 ($ |t#1| |t#1|)) (-15 -2317 (|t#1| $)) (-15 -2324 (|t#1| $)) (-15 -1332 ($ $)) (-15 -3013 ($ $)) (IF (|has| |t#1| (-1136)) (-6 (-1136)) |noBranch|) (IF (|has| |t#1| (-1037 (-568))) (PROGN (-6 (-1037 (-568))) (-6 (-1037 (-409 (-568))))) |noBranch|) (IF (|has| |t#1| (-842)) (-6 (-842)) |noBranch|) (IF (|has| |t#1| (-815)) (-6 (-815)) |noBranch|) (IF (|has| |t#1| (-1021)) (-6 (-1021)) |noBranch|) (IF (|has| |t#1| (-609 (-541))) (-6 (-609 (-541))) |noBranch|) (IF (|has| |t#1| (-150)) (-6 (-150)) |noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |noBranch|) (IF (|has| |t#1| (-1037 (-1161))) (-6 (-1037 (-1161))) |noBranch|) (IF (|has| |t#1| (-301)) (PROGN (-15 -1492 (|t#1| $)) (-15 -3880 ($ $))) |noBranch|) (IF (|has| |t#1| (-550)) (PROGN (-15 -1731 ($)) (-15 -2285 (|t#1| $)) (-15 -1519 (|t#1| $))) |noBranch|) (IF (|has| |t#1| (-904)) (-6 (-904)) |noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-43 (-409 (-568))) . T) ((-43 |#1|) . T) ((-43 $) . T) ((-105) . T) ((-120 (-409 (-568)) (-409 (-568))) . T) ((-120 |#1| |#1|) . T) ((-120 $ $) . T) ((-137) . T) ((-148) |has| |#1| (-148)) ((-150) |has| |#1| (-150)) ((-608 (-850)) . T) ((-172) . T) ((-609 (-215)) |has| |#1| (-1021)) ((-609 (-381)) |has| |#1| (-1021)) ((-609 (-541)) |has| |#1| (-609 (-541))) ((-609 (-887 (-381))) |has| |#1| (-609 (-887 (-381)))) ((-609 (-887 (-568))) |has| |#1| (-609 (-887 (-568)))) ((-223 |#1|) . T) ((-225) |has| |#1| (-225)) ((-238) . T) ((-281 |#1| $) |has| |#1| (-281 |#1| |#1|)) ((-285) . T) ((-301) . T) ((-303 |#1|) |has| |#1| (-303 |#1|)) ((-365) . T) ((-336 |#1|) . T) ((-379 |#1|) . T) ((-402 |#1|) . T) ((-453) . T) ((-523 (-1161) |#1|) |has| |#1| (-523 (-1161) |#1|)) ((-523 |#1| |#1|) |has| |#1| (-303 |#1|)) ((-558) . T) ((-637 (-409 (-568))) . T) ((-637 |#1|) . T) ((-637 $) . T) ((-630 (-568)) |has| |#1| (-630 (-568))) ((-630 |#1|) . T) ((-707 (-409 (-568))) . T) ((-707 |#1|) . T) ((-707 $) . T) ((-716) . T) ((-786) |has| |#1| (-815)) ((-787) |has| |#1| (-815)) ((-789) |has| |#1| (-815)) ((-790) |has| |#1| (-815)) ((-815) |has| |#1| (-815)) ((-840) |has| |#1| (-815)) ((-842) -2198 (|has| |#1| (-842)) (|has| |#1| (-815))) ((-895 (-1161)) |has| |#1| (-895 (-1161))) ((-881 (-381)) |has| |#1| (-881 (-381))) ((-881 (-568)) |has| |#1| (-881 (-568))) ((-879 |#1|) . T) ((-904) |has| |#1| (-904)) ((-916) . T) ((-1021) |has| |#1| (-1021)) ((-1037 (-409 (-568))) |has| |#1| (-1037 (-568))) ((-1037 (-568)) |has| |#1| (-1037 (-568))) ((-1037 (-1161)) |has| |#1| (-1037 (-1161))) ((-1037 |#1|) . T) ((-1053 (-409 (-568))) . T) ((-1053 |#1|) . T) ((-1053 $) . T) ((-1047) . T) ((-1054) . T) ((-1102) . T) ((-1090) . T) ((-1136) |has| |#1| (-1136)) ((-1195) . T) ((-1199) . T)) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-2671 (($) NIL T CONST)) (-3444 (($ (-1127 |#1| |#2|)) 11)) (-2269 (((-1127 |#1| |#2|) $) 12)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2779 ((|#2| $ (-232 |#1| |#2|)) 16)) (-2745 (((-850) $) NIL)) (-3056 (($) NIL T CONST)) (-1717 (((-121) $ $) NIL)) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL))) +(((-994 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -3444 ($ (-1127 |#1| |#2|))) (-15 -2269 ((-1127 |#1| |#2|) $)) (-15 -2779 (|#2| $ (-232 |#1| |#2|))))) (-917) (-365)) (T -994)) +((-3444 (*1 *1 *2) (-12 (-5 *2 (-1127 *3 *4)) (-14 *3 (-917)) (-4 *4 (-365)) (-5 *1 (-994 *3 *4)))) (-2269 (*1 *2 *1) (-12 (-5 *2 (-1127 *3 *4)) (-5 *1 (-994 *3 *4)) (-14 *3 (-917)) (-4 *4 (-365)))) (-2779 (*1 *2 *1 *3) (-12 (-5 *3 (-232 *4 *2)) (-14 *4 (-917)) (-4 *2 (-365)) (-5 *1 (-994 *4 *2))))) +(-13 (-21) (-10 -8 (-15 -3444 ($ (-1127 |#1| |#2|))) (-15 -2269 ((-1127 |#1| |#2|) $)) (-15 -2779 (|#2| $ (-232 |#1| |#2|))))) +((-2447 (((-121) $ $) 18 (|has| |#1| (-1090)))) (-2510 (((-121) $ (-763)) 8)) (-2671 (($) 7 T CONST)) (-3475 (($ $) 43)) (-4360 (((-634 |#1|) $) 30 (|has| $ (-6 -4519)))) (-1737 (((-121) $ (-763)) 9)) (-1979 (((-634 |#1|) $) 29 (|has| $ (-6 -4519)))) (-3109 (((-121) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-3674 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#1| |#1|) $) 35)) (-2166 (((-121) $ (-763)) 10)) (-3678 (((-763) $) 42)) (-4487 (((-1143) $) 22 (|has| |#1| (-1090)))) (-1890 ((|#1| $) 36)) (-4450 (($ |#1| $) 37)) (-4022 (((-1108) $) 21 (|has| |#1| (-1090)))) (-3860 ((|#1| $) 41)) (-1315 ((|#1| $) 38)) (-1387 (((-121) (-1 (-121) |#1|) $) 32 (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-634 |#1|) (-634 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))))) (-3171 (((-121) $ $) 14)) (-1383 ((|#1| |#1| $) 45)) (-3084 (((-121) $) 11)) (-3248 (($) 12)) (-2368 ((|#1| $) 44)) (-4168 (((-763) (-1 (-121) |#1|) $) 31 (|has| $ (-6 -4519))) (((-763) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-3863 (($ $) 13)) (-2745 (((-850) $) 20 (|has| |#1| (-1090)))) (-2367 (($ (-634 |#1|)) 39)) (-4190 ((|#1| $) 40)) (-1319 (((-121) (-1 (-121) |#1|) $) 33 (|has| $ (-6 -4519)))) (-1717 (((-121) $ $) 19 (|has| |#1| (-1090)))) (-1697 (((-763) $) 6 (|has| $ (-6 -4519))))) +(((-995 |#1|) (-1275) (-1195)) (T -995)) +((-1383 (*1 *2 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1195)))) (-2368 (*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1195)))) (-3475 (*1 *1 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1195)))) (-3678 (*1 *2 *1) (-12 (-4 *1 (-995 *3)) (-4 *3 (-1195)) (-5 *2 (-763)))) (-3860 (*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1195)))) (-4190 (*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1195))))) +(-13 (-111 |t#1|) (-10 -8 (-6 -4519) (-15 -1383 (|t#1| |t#1| $)) (-15 -2368 (|t#1| $)) (-15 -3475 ($ $)) (-15 -3678 ((-763) $)) (-15 -3860 (|t#1| $)) (-15 -4190 (|t#1| $)))) +(((-39) . T) ((-111 |#1|) . T) ((-105) |has| |#1| (-1090)) ((-608 (-850)) |has| |#1| (-1090)) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))) ((-499 |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))) ((-1090) |has| |#1| (-1090)) ((-1195) . T)) +((-2537 (((-121) $) 42)) (-3666 (((-3 (-568) "failed") $) NIL) (((-3 (-409 (-568)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-2854 (((-568) $) NIL) (((-409 (-568)) $) NIL) ((|#2| $) 43)) (-1642 (((-3 (-409 (-568)) "failed") $) 78)) (-2688 (((-121) $) 72)) (-2425 (((-409 (-568)) $) 76)) (-2735 (((-121) $) 41)) (-2657 ((|#2| $) 22)) (-2795 (($ (-1 |#2| |#2|) $) 19)) (-2081 (($ $) 61)) (-4189 (($ $) NIL) (($ $ (-763)) NIL) (($ $ (-1161)) NIL) (($ $ (-634 (-1161))) NIL) (($ $ (-1161) (-763)) NIL) (($ $ (-634 (-1161)) (-634 (-763))) NIL) (($ $ (-1 |#2| |#2|) (-763)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-4278 (((-541) $) 67)) (-1458 (($ $) 17)) (-2745 (((-850) $) 56) (($ (-568)) 38) (($ |#2|) 36) (($ (-409 (-568))) NIL)) (-4078 (((-763)) 10)) (-2897 ((|#2| $) 71)) (-1717 (((-121) $ $) 25)) (-1732 (((-121) $ $) 69)) (-1773 (($ $) 29) (($ $ $) 28)) (-1767 (($ $ $) 26)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-409 (-568))) NIL) (($ (-409 (-568)) $) NIL))) +(((-996 |#1| |#2|) (-10 -8 (-15 -2745 (|#1| (-409 (-568)))) (-15 -1732 ((-121) |#1| |#1|)) (-15 * (|#1| (-409 (-568)) |#1|)) (-15 * (|#1| |#1| (-409 (-568)))) (-15 -2081 (|#1| |#1|)) (-15 -4278 ((-541) |#1|)) (-15 -1642 ((-3 (-409 (-568)) "failed") |#1|)) (-15 -2425 ((-409 (-568)) |#1|)) (-15 -2688 ((-121) |#1|)) (-15 -2897 (|#2| |#1|)) (-15 -2657 (|#2| |#1|)) (-15 -1458 (|#1| |#1|)) (-15 -2795 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4189 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4189 (|#1| |#1| (-1 |#2| |#2|) (-763))) (-15 -4189 (|#1| |#1| (-634 (-1161)) (-634 (-763)))) (-15 -4189 (|#1| |#1| (-1161) (-763))) (-15 -4189 (|#1| |#1| (-634 (-1161)))) (-15 -4189 (|#1| |#1| (-1161))) (-15 -4189 (|#1| |#1| (-763))) (-15 -4189 (|#1| |#1|)) (-15 -2854 (|#2| |#1|)) (-15 -3666 ((-3 |#2| "failed") |#1|)) (-15 -3666 ((-3 (-409 (-568)) "failed") |#1|)) (-15 -2854 ((-409 (-568)) |#1|)) (-15 -3666 ((-3 (-568) "failed") |#1|)) (-15 -2854 ((-568) |#1|)) (-15 -2745 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2745 (|#1| (-568))) (-15 -4078 ((-763))) (-15 -2735 ((-121) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-568) |#1|)) (-15 -1773 (|#1| |#1| |#1|)) (-15 -1773 (|#1| |#1|)) (-15 * (|#1| (-763) |#1|)) (-15 -2537 ((-121) |#1|)) (-15 * (|#1| (-917) |#1|)) (-15 -1767 (|#1| |#1| |#1|)) (-15 -2745 ((-850) |#1|)) (-15 -1717 ((-121) |#1| |#1|))) (-997 |#2|) (-172)) (T -996)) +((-4078 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-763)) (-5 *1 (-996 *3 *4)) (-4 *3 (-997 *4))))) +(-10 -8 (-15 -2745 (|#1| (-409 (-568)))) (-15 -1732 ((-121) |#1| |#1|)) (-15 * (|#1| (-409 (-568)) |#1|)) (-15 * (|#1| |#1| (-409 (-568)))) (-15 -2081 (|#1| |#1|)) (-15 -4278 ((-541) |#1|)) (-15 -1642 ((-3 (-409 (-568)) "failed") |#1|)) (-15 -2425 ((-409 (-568)) |#1|)) (-15 -2688 ((-121) |#1|)) (-15 -2897 (|#2| |#1|)) (-15 -2657 (|#2| |#1|)) (-15 -1458 (|#1| |#1|)) (-15 -2795 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4189 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4189 (|#1| |#1| (-1 |#2| |#2|) (-763))) (-15 -4189 (|#1| |#1| (-634 (-1161)) (-634 (-763)))) (-15 -4189 (|#1| |#1| (-1161) (-763))) (-15 -4189 (|#1| |#1| (-634 (-1161)))) (-15 -4189 (|#1| |#1| (-1161))) (-15 -4189 (|#1| |#1| (-763))) (-15 -4189 (|#1| |#1|)) (-15 -2854 (|#2| |#1|)) (-15 -3666 ((-3 |#2| "failed") |#1|)) (-15 -3666 ((-3 (-409 (-568)) "failed") |#1|)) (-15 -2854 ((-409 (-568)) |#1|)) (-15 -3666 ((-3 (-568) "failed") |#1|)) (-15 -2854 ((-568) |#1|)) (-15 -2745 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2745 (|#1| (-568))) (-15 -4078 ((-763))) (-15 -2735 ((-121) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-568) |#1|)) (-15 -1773 (|#1| |#1| |#1|)) (-15 -1773 (|#1| |#1|)) (-15 * (|#1| (-763) |#1|)) (-15 -2537 ((-121) |#1|)) (-15 * (|#1| (-917) |#1|)) (-15 -1767 (|#1| |#1| |#1|)) (-15 -2745 ((-850) |#1|)) (-15 -1717 ((-121) |#1| |#1|))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-3134 (((-3 $ "failed") $ $) 18)) (-2671 (($) 16 T CONST)) (-3666 (((-3 (-568) "failed") $) 117 (|has| |#1| (-1037 (-568)))) (((-3 (-409 (-568)) "failed") $) 115 (|has| |#1| (-1037 (-409 (-568))))) (((-3 |#1| "failed") $) 114)) (-2854 (((-568) $) 118 (|has| |#1| (-1037 (-568)))) (((-409 (-568)) $) 116 (|has| |#1| (-1037 (-409 (-568))))) ((|#1| $) 113)) (-3164 (((-679 (-568)) (-679 $)) 88 (|has| |#1| (-630 (-568)))) (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) 87 (|has| |#1| (-630 (-568)))) (((-2 (|:| -2928 (-679 |#1|)) (|:| |vec| (-1244 |#1|))) (-679 $) (-1244 $)) 86) (((-679 |#1|) (-679 $)) 85)) (-2925 (((-3 $ "failed") $) 33)) (-3857 ((|#1| $) 78)) (-1642 (((-3 (-409 (-568)) "failed") $) 74 (|has| |#1| (-550)))) (-2688 (((-121) $) 76 (|has| |#1| (-550)))) (-2425 (((-409 (-568)) $) 75 (|has| |#1| (-550)))) (-2873 (($ |#1| |#1| |#1| |#1|) 79)) (-2735 (((-121) $) 30)) (-2657 ((|#1| $) 80)) (-2521 (($ $ $) 66 (|has| |#1| (-842)))) (-3268 (($ $ $) 65 (|has| |#1| (-842)))) (-2795 (($ (-1 |#1| |#1|) $) 89)) (-4487 (((-1143) $) 9)) (-2081 (($ $) 71 (|has| |#1| (-365)))) (-1927 ((|#1| $) 81)) (-3312 ((|#1| $) 82)) (-4184 ((|#1| $) 83)) (-4022 (((-1108) $) 10)) (-1339 (($ $ (-634 |#1|) (-634 |#1|)) 95 (|has| |#1| (-303 |#1|))) (($ $ |#1| |#1|) 94 (|has| |#1| (-303 |#1|))) (($ $ (-288 |#1|)) 93 (|has| |#1| (-303 |#1|))) (($ $ (-634 (-288 |#1|))) 92 (|has| |#1| (-303 |#1|))) (($ $ (-634 (-1161)) (-634 |#1|)) 91 (|has| |#1| (-523 (-1161) |#1|))) (($ $ (-1161) |#1|) 90 (|has| |#1| (-523 (-1161) |#1|)))) (-2779 (($ $ |#1|) 96 (|has| |#1| (-281 |#1| |#1|)))) (-4189 (($ $) 112 (|has| |#1| (-225))) (($ $ (-763)) 110 (|has| |#1| (-225))) (($ $ (-1161)) 108 (|has| |#1| (-895 (-1161)))) (($ $ (-634 (-1161))) 107 (|has| |#1| (-895 (-1161)))) (($ $ (-1161) (-763)) 106 (|has| |#1| (-895 (-1161)))) (($ $ (-634 (-1161)) (-634 (-763))) 105 (|has| |#1| (-895 (-1161)))) (($ $ (-1 |#1| |#1|) (-763)) 98) (($ $ (-1 |#1| |#1|)) 97)) (-4278 (((-541) $) 72 (|has| |#1| (-609 (-541))))) (-1458 (($ $) 84)) (-2745 (((-850) $) 11) (($ (-568)) 27) (($ |#1|) 36) (($ (-409 (-568))) 60 (-2198 (|has| |#1| (-365)) (|has| |#1| (-1037 (-409 (-568))))))) (-4371 (((-3 $ "failed") $) 73 (|has| |#1| (-148)))) (-4078 (((-763)) 28)) (-2897 ((|#1| $) 77 (|has| |#1| (-1056)))) (-1887 (($ $ (-917)) 25) (($ $ (-763)) 32) (($ $ (-568)) 70 (|has| |#1| (-365)))) (-3056 (($) 17 T CONST)) (-1556 (($) 29 T CONST)) (-3190 (($ $) 111 (|has| |#1| (-225))) (($ $ (-763)) 109 (|has| |#1| (-225))) (($ $ (-1161)) 104 (|has| |#1| (-895 (-1161)))) (($ $ (-634 (-1161))) 103 (|has| |#1| (-895 (-1161)))) (($ $ (-1161) (-763)) 102 (|has| |#1| (-895 (-1161)))) (($ $ (-634 (-1161)) (-634 (-763))) 101 (|has| |#1| (-895 (-1161)))) (($ $ (-1 |#1| |#1|) (-763)) 100) (($ $ (-1 |#1| |#1|)) 99)) (-1751 (((-121) $ $) 63 (|has| |#1| (-842)))) (-1738 (((-121) $ $) 62 (|has| |#1| (-842)))) (-1717 (((-121) $ $) 6)) (-1745 (((-121) $ $) 64 (|has| |#1| (-842)))) (-1732 (((-121) $ $) 61 (|has| |#1| (-842)))) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 24) (($ $ (-763)) 31) (($ $ (-568)) 69 (|has| |#1| (-365)))) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 23) (($ $ |#1|) 38) (($ |#1| $) 37) (($ $ (-409 (-568))) 68 (|has| |#1| (-365))) (($ (-409 (-568)) $) 67 (|has| |#1| (-365))))) +(((-997 |#1|) (-1275) (-172)) (T -997)) +((-1458 (*1 *1 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172)))) (-4184 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172)))) (-3312 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172)))) (-1927 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172)))) (-2657 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172)))) (-2873 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172)))) (-3857 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172)))) (-2897 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172)) (-4 *2 (-1056)))) (-2688 (*1 *2 *1) (-12 (-4 *1 (-997 *3)) (-4 *3 (-172)) (-4 *3 (-550)) (-5 *2 (-121)))) (-2425 (*1 *2 *1) (-12 (-4 *1 (-997 *3)) (-4 *3 (-172)) (-4 *3 (-550)) (-5 *2 (-409 (-568))))) (-1642 (*1 *2 *1) (|partial| -12 (-4 *1 (-997 *3)) (-4 *3 (-172)) (-4 *3 (-550)) (-5 *2 (-409 (-568)))))) +(-13 (-43 |t#1|) (-413 |t#1|) (-223 |t#1|) (-336 |t#1|) (-379 |t#1|) (-10 -8 (-15 -1458 ($ $)) (-15 -4184 (|t#1| $)) (-15 -3312 (|t#1| $)) (-15 -1927 (|t#1| $)) (-15 -2657 (|t#1| $)) (-15 -2873 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -3857 (|t#1| $)) (IF (|has| |t#1| (-285)) (-6 (-285)) |noBranch|) (IF (|has| |t#1| (-842)) (-6 (-842)) |noBranch|) (IF (|has| |t#1| (-365)) (-6 (-238)) |noBranch|) (IF (|has| |t#1| (-609 (-541))) (-6 (-609 (-541))) |noBranch|) (IF (|has| |t#1| (-150)) (-6 (-150)) |noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |noBranch|) (IF (|has| |t#1| (-1056)) (-15 -2897 (|t#1| $)) |noBranch|) (IF (|has| |t#1| (-550)) (PROGN (-15 -2688 ((-121) $)) (-15 -2425 ((-409 (-568)) $)) (-15 -1642 ((-3 (-409 (-568)) "failed") $))) |noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-43 (-409 (-568))) |has| |#1| (-365)) ((-43 |#1|) . T) ((-105) . T) ((-120 (-409 (-568)) (-409 (-568))) |has| |#1| (-365)) ((-120 |#1| |#1|) . T) ((-120 $ $) -2198 (|has| |#1| (-365)) (|has| |#1| (-285))) ((-137) . T) ((-148) |has| |#1| (-148)) ((-150) |has| |#1| (-150)) ((-608 (-850)) . T) ((-609 (-541)) |has| |#1| (-609 (-541))) ((-223 |#1|) . T) ((-225) |has| |#1| (-225)) ((-238) |has| |#1| (-365)) ((-281 |#1| $) |has| |#1| (-281 |#1| |#1|)) ((-285) -2198 (|has| |#1| (-365)) (|has| |#1| (-285))) ((-303 |#1|) |has| |#1| (-303 |#1|)) ((-336 |#1|) . T) ((-379 |#1|) . T) ((-413 |#1|) . T) ((-523 (-1161) |#1|) |has| |#1| (-523 (-1161) |#1|)) ((-523 |#1| |#1|) |has| |#1| (-303 |#1|)) ((-637 (-409 (-568))) |has| |#1| (-365)) ((-637 |#1|) . T) ((-637 $) . T) ((-630 (-568)) |has| |#1| (-630 (-568))) ((-630 |#1|) . T) ((-707 (-409 (-568))) |has| |#1| (-365)) ((-707 |#1|) . T) ((-716) . T) ((-842) |has| |#1| (-842)) ((-895 (-1161)) |has| |#1| (-895 (-1161))) ((-1037 (-409 (-568))) |has| |#1| (-1037 (-409 (-568)))) ((-1037 (-568)) |has| |#1| (-1037 (-568))) ((-1037 |#1|) . T) ((-1053 (-409 (-568))) |has| |#1| (-365)) ((-1053 |#1|) . T) ((-1053 $) -2198 (|has| |#1| (-365)) (|has| |#1| (-285))) ((-1047) . T) ((-1054) . T) ((-1102) . T) ((-1090) . T)) +((-2795 ((|#3| (-1 |#4| |#2|) |#1|) 16))) +(((-998 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2795 (|#3| (-1 |#4| |#2|) |#1|))) (-997 |#2|) (-172) (-997 |#4|) (-172)) (T -998)) +((-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-997 *6)) (-5 *1 (-998 *4 *5 *2 *6)) (-4 *4 (-997 *5))))) +(-10 -7 (-15 -2795 (|#3| (-1 |#4| |#2|) |#1|))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-2671 (($) NIL T CONST)) (-3666 (((-3 (-568) "failed") $) NIL (|has| |#1| (-1037 (-568)))) (((-3 (-409 (-568)) "failed") $) NIL (|has| |#1| (-1037 (-409 (-568))))) (((-3 |#1| "failed") $) NIL)) (-2854 (((-568) $) NIL (|has| |#1| (-1037 (-568)))) (((-409 (-568)) $) NIL (|has| |#1| (-1037 (-409 (-568))))) ((|#1| $) NIL)) (-3164 (((-679 (-568)) (-679 $)) NIL (|has| |#1| (-630 (-568)))) (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) NIL (|has| |#1| (-630 (-568)))) (((-2 (|:| -2928 (-679 |#1|)) (|:| |vec| (-1244 |#1|))) (-679 $) (-1244 $)) NIL) (((-679 |#1|) (-679 $)) NIL)) (-2925 (((-3 $ "failed") $) NIL)) (-3857 ((|#1| $) 12)) (-1642 (((-3 (-409 (-568)) "failed") $) NIL (|has| |#1| (-550)))) (-2688 (((-121) $) NIL (|has| |#1| (-550)))) (-2425 (((-409 (-568)) $) NIL (|has| |#1| (-550)))) (-2873 (($ |#1| |#1| |#1| |#1|) 16)) (-2735 (((-121) $) NIL)) (-2657 ((|#1| $) NIL)) (-2521 (($ $ $) NIL (|has| |#1| (-842)))) (-3268 (($ $ $) NIL (|has| |#1| (-842)))) (-2795 (($ (-1 |#1| |#1|) $) NIL)) (-4487 (((-1143) $) NIL)) (-2081 (($ $) NIL (|has| |#1| (-365)))) (-1927 ((|#1| $) 15)) (-3312 ((|#1| $) 14)) (-4184 ((|#1| $) 13)) (-4022 (((-1108) $) NIL)) (-1339 (($ $ (-634 |#1|) (-634 |#1|)) NIL (|has| |#1| (-303 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-303 |#1|))) (($ $ (-288 |#1|)) NIL (|has| |#1| (-303 |#1|))) (($ $ (-634 (-288 |#1|))) NIL (|has| |#1| (-303 |#1|))) (($ $ (-634 (-1161)) (-634 |#1|)) NIL (|has| |#1| (-523 (-1161) |#1|))) (($ $ (-1161) |#1|) NIL (|has| |#1| (-523 (-1161) |#1|)))) (-2779 (($ $ |#1|) NIL (|has| |#1| (-281 |#1| |#1|)))) (-4189 (($ $) NIL (|has| |#1| (-225))) (($ $ (-763)) NIL (|has| |#1| (-225))) (($ $ (-1161)) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-634 (-1161))) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-1161) (-763)) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-634 (-1161)) (-634 (-763))) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-1 |#1| |#1|) (-763)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4278 (((-541) $) NIL (|has| |#1| (-609 (-541))))) (-1458 (($ $) NIL)) (-2745 (((-850) $) NIL) (($ (-568)) NIL) (($ |#1|) NIL) (($ (-409 (-568))) NIL (-2198 (|has| |#1| (-365)) (|has| |#1| (-1037 (-409 (-568))))))) (-4371 (((-3 $ "failed") $) NIL (|has| |#1| (-148)))) (-4078 (((-763)) NIL)) (-2897 ((|#1| $) NIL (|has| |#1| (-1056)))) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL (|has| |#1| (-365)))) (-3056 (($) 8 T CONST)) (-1556 (($) 10 T CONST)) (-3190 (($ $) NIL (|has| |#1| (-225))) (($ $ (-763)) NIL (|has| |#1| (-225))) (($ $ (-1161)) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-634 (-1161))) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-1161) (-763)) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-634 (-1161)) (-634 (-763))) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-1 |#1| |#1|) (-763)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1751 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1738 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1717 (((-121) $ $) NIL)) (-1745 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1732 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL (|has| |#1| (-365)))) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-409 (-568))) NIL (|has| |#1| (-365))) (($ (-409 (-568)) $) NIL (|has| |#1| (-365))))) +(((-999 |#1|) (-997 |#1|) (-172)) (T -999)) +NIL +(-997 |#1|) +((-2447 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-2510 (((-121) $ (-763)) NIL)) (-2671 (($) NIL T CONST)) (-3475 (($ $) 20)) (-3530 (($ (-634 |#1|)) 29)) (-4360 (((-634 |#1|) $) NIL (|has| $ (-6 -4519)))) (-1737 (((-121) $ (-763)) NIL)) (-1979 (((-634 |#1|) $) NIL (|has| $ (-6 -4519)))) (-3109 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-3674 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#1| |#1|) $) NIL)) (-2166 (((-121) $ (-763)) NIL)) (-3678 (((-763) $) 22)) (-4487 (((-1143) $) NIL (|has| |#1| (-1090)))) (-1890 ((|#1| $) 24)) (-4450 (($ |#1| $) 15)) (-4022 (((-1108) $) NIL (|has| |#1| (-1090)))) (-3860 ((|#1| $) 23)) (-1315 ((|#1| $) 19)) (-1387 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-634 |#1|) (-634 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))))) (-3171 (((-121) $ $) NIL)) (-1383 ((|#1| |#1| $) 14)) (-3084 (((-121) $) 17)) (-3248 (($) NIL)) (-2368 ((|#1| $) 18)) (-4168 (((-763) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519))) (((-763) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-3863 (($ $) NIL)) (-2745 (((-850) $) NIL (|has| |#1| (-1090)))) (-2367 (($ (-634 |#1|)) NIL)) (-4190 ((|#1| $) 26)) (-1319 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-1717 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-1697 (((-763) $) NIL (|has| $ (-6 -4519))))) +(((-1000 |#1|) (-13 (-995 |#1|) (-10 -8 (-15 -3530 ($ (-634 |#1|))) (-15 -2368 (|#1| $)) (-15 -1315 (|#1| $)) (-15 -1383 (|#1| |#1| $)) (-15 -4450 ($ |#1| $)) (-15 -1890 (|#1| $)) (-15 -3860 (|#1| $)) (-15 -4190 (|#1| $)) (-15 -3475 ($ $)) (-15 -3678 ((-763) $)) (-15 -2166 ((-121) $ (-763))) (-15 -1737 ((-121) $ (-763))) (-15 -2510 ((-121) $ (-763))) (-15 -2367 ($ (-634 |#1|))) (-15 -3084 ((-121) $)) (-15 -3248 ($)) (-15 -2671 ($)) (-15 -3863 ($ $)) (-15 -3171 ((-121) $ $)) (-15 -2795 ($ (-1 |#1| |#1|) $)) (IF (|has| $ (-6 -4520)) (-15 -3674 ($ (-1 |#1| |#1|) $)) |noBranch|) (IF (|has| |#1| (-1090)) (PROGN (-15 -4487 ((-1143) $)) (-15 -4022 ((-1108) $)) (-15 -2745 ((-850) $)) (-15 -1717 ((-121) $ $)) (-15 -2447 ((-121) $ $))) |noBranch|) (IF (|has| $ (-6 -4519)) (PROGN (-15 -1387 ((-121) (-1 (-121) |#1|) $)) (-15 -1319 ((-121) (-1 (-121) |#1|) $)) (-15 -4168 ((-763) (-1 (-121) |#1|) $)) (-15 -1697 ((-763) $)) (-15 -4360 ((-634 |#1|) $)) (-15 -1979 ((-634 |#1|) $))) |noBranch|) (IF (|has| $ (-6 -4519)) (IF (|has| |#1| (-1090)) (PROGN (-15 -3109 ((-121) |#1| $)) (-15 -4168 ((-763) |#1| $))) |noBranch|) |noBranch|))) (-1090)) (T -1000)) +((-3171 (*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1000 *3)) (-4 *3 (-1090)))) (-3863 (*1 *1 *1) (-12 (-5 *1 (-1000 *2)) (-4 *2 (-1090)))) (-3248 (*1 *1) (-12 (-5 *1 (-1000 *2)) (-4 *2 (-1090)))) (-3084 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1000 *3)) (-4 *3 (-1090)))) (-2166 (*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-5 *2 (-121)) (-5 *1 (-1000 *4)) (-4 *4 (-1090)))) (-1737 (*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-5 *2 (-121)) (-5 *1 (-1000 *4)) (-4 *4 (-1090)))) (-2510 (*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-5 *2 (-121)) (-5 *1 (-1000 *4)) (-4 *4 (-1090)))) (-2671 (*1 *1) (-12 (-5 *1 (-1000 *2)) (-4 *2 (-1090)))) (-1697 (*1 *2 *1) (-12 (|has| $ (-6 -4519)) (-5 *2 (-763)) (-5 *1 (-1000 *3)) (-4 *3 (-1090)))) (-2795 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1090)) (-5 *1 (-1000 *3)))) (-3674 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| $ (-6 -4520)) (-4 *3 (-1090)) (-5 *1 (-1000 *3)))) (-1319 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| $ (-6 -4519)) (-4 *4 (-1090)) (-5 *2 (-121)) (-5 *1 (-1000 *4)))) (-1387 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| $ (-6 -4519)) (-4 *4 (-1090)) (-5 *2 (-121)) (-5 *1 (-1000 *4)))) (-4168 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| $ (-6 -4519)) (-4 *4 (-1090)) (-5 *2 (-763)) (-5 *1 (-1000 *4)))) (-4360 (*1 *2 *1) (-12 (|has| $ (-6 -4519)) (-5 *2 (-634 *3)) (-5 *1 (-1000 *3)) (-4 *3 (-1090)))) (-1979 (*1 *2 *1) (-12 (|has| $ (-6 -4519)) (-5 *2 (-634 *3)) (-5 *1 (-1000 *3)) (-4 *3 (-1090)))) (-4168 (*1 *2 *3 *1) (-12 (|has| $ (-6 -4519)) (-5 *2 (-763)) (-5 *1 (-1000 *3)) (-4 *3 (-1090)) (-4 *3 (-1090)))) (-3109 (*1 *2 *3 *1) (-12 (|has| $ (-6 -4519)) (-5 *2 (-121)) (-5 *1 (-1000 *3)) (-4 *3 (-1090)) (-4 *3 (-1090)))) (-4487 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1000 *3)) (-4 *3 (-1090)) (-4 *3 (-1090)))) (-4022 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1000 *3)) (-4 *3 (-1090)) (-4 *3 (-1090)))) (-2745 (*1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-1000 *3)) (-4 *3 (-1090)) (-4 *3 (-1090)))) (-1717 (*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1000 *3)) (-4 *3 (-1090)) (-4 *3 (-1090)))) (-2447 (*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1000 *3)) (-4 *3 (-1090)) (-4 *3 (-1090)))) (-2367 (*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-1090)) (-5 *1 (-1000 *3)))) (-1315 (*1 *2 *1) (-12 (-5 *1 (-1000 *2)) (-4 *2 (-1090)))) (-4450 (*1 *1 *2 *1) (-12 (-5 *1 (-1000 *2)) (-4 *2 (-1090)))) (-1890 (*1 *2 *1) (-12 (-5 *1 (-1000 *2)) (-4 *2 (-1090)))) (-1383 (*1 *2 *2 *1) (-12 (-5 *1 (-1000 *2)) (-4 *2 (-1090)))) (-2368 (*1 *2 *1) (-12 (-5 *1 (-1000 *2)) (-4 *2 (-1090)))) (-3475 (*1 *1 *1) (-12 (-5 *1 (-1000 *2)) (-4 *2 (-1090)))) (-3678 (*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-1000 *3)) (-4 *3 (-1090)))) (-3860 (*1 *2 *1) (-12 (-5 *1 (-1000 *2)) (-4 *2 (-1090)))) (-4190 (*1 *2 *1) (-12 (-5 *1 (-1000 *2)) (-4 *2 (-1090)))) (-3530 (*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-1090)) (-5 *1 (-1000 *3))))) +(-13 (-995 |#1|) (-10 -8 (-15 -3530 ($ (-634 |#1|))) (-15 -2368 (|#1| $)) (-15 -1315 (|#1| $)) (-15 -1383 (|#1| |#1| $)) (-15 -4450 ($ |#1| $)) (-15 -1890 (|#1| $)) (-15 -3860 (|#1| $)) (-15 -4190 (|#1| $)) (-15 -3475 ($ $)) (-15 -3678 ((-763) $)) (-15 -2166 ((-121) $ (-763))) (-15 -1737 ((-121) $ (-763))) (-15 -2510 ((-121) $ (-763))) (-15 -2367 ($ (-634 |#1|))) (-15 -3084 ((-121) $)) (-15 -3248 ($)) (-15 -2671 ($)) (-15 -3863 ($ $)) (-15 -3171 ((-121) $ $)) (-15 -2795 ($ (-1 |#1| |#1|) $)) (IF (|has| $ (-6 -4520)) (-15 -3674 ($ (-1 |#1| |#1|) $)) |noBranch|) (IF (|has| |#1| (-1090)) (PROGN (-15 -4487 ((-1143) $)) (-15 -4022 ((-1108) $)) (-15 -2745 ((-850) $)) (-15 -1717 ((-121) $ $)) (-15 -2447 ((-121) $ $))) |noBranch|) (IF (|has| $ (-6 -4519)) (PROGN (-15 -1387 ((-121) (-1 (-121) |#1|) $)) (-15 -1319 ((-121) (-1 (-121) |#1|) $)) (-15 -4168 ((-763) (-1 (-121) |#1|) $)) (-15 -1697 ((-763) $)) (-15 -4360 ((-634 |#1|) $)) (-15 -1979 ((-634 |#1|) $))) |noBranch|) (IF (|has| $ (-6 -4519)) (IF (|has| |#1| (-1090)) (PROGN (-15 -3109 ((-121) |#1| $)) (-15 -4168 ((-763) |#1| $))) |noBranch|) |noBranch|))) +((-1902 (($ $) 12)) (-4044 (($ $ (-568)) 13))) +(((-1001 |#1|) (-10 -8 (-15 -1902 (|#1| |#1|)) (-15 -4044 (|#1| |#1| (-568)))) (-1002)) (T -1001)) +NIL +(-10 -8 (-15 -1902 (|#1| |#1|)) (-15 -4044 (|#1| |#1| (-568)))) +((-1902 (($ $) 6)) (-4044 (($ $ (-568)) 7)) (** (($ $ (-409 (-568))) 8))) +(((-1002) (-1275)) (T -1002)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-1002)) (-5 *2 (-409 (-568))))) (-4044 (*1 *1 *1 *2) (-12 (-4 *1 (-1002)) (-5 *2 (-568)))) (-1902 (*1 *1 *1) (-4 *1 (-1002)))) +(-13 (-10 -8 (-15 -1902 ($ $)) (-15 -4044 ($ $ (-568))) (-15 ** ($ $ (-409 (-568)))))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-2646 (((-2 (|:| |num| (-1244 |#2|)) (|:| |den| |#2|)) $) NIL)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL (|has| (-409 |#2|) (-365)))) (-2227 (($ $) NIL (|has| (-409 |#2|) (-365)))) (-1573 (((-121) $) NIL (|has| (-409 |#2|) (-365)))) (-4255 (((-679 (-409 |#2|)) (-1244 $)) NIL) (((-679 (-409 |#2|))) NIL)) (-1932 (((-409 |#2|) $) NIL)) (-3211 (((-1169 (-917) (-763)) (-568)) NIL (|has| (-409 |#2|) (-350)))) (-3134 (((-3 $ "failed") $ $) NIL)) (-4305 (($ $) NIL (|has| (-409 |#2|) (-365)))) (-1678 (((-420 $) $) NIL (|has| (-409 |#2|) (-365)))) (-1497 (((-121) $ $) NIL (|has| (-409 |#2|) (-365)))) (-3983 (((-763)) NIL (|has| (-409 |#2|) (-370)))) (-3926 (((-121)) NIL)) (-1965 (((-121) |#1|) 147) (((-121) |#2|) 152)) (-2671 (($) NIL T CONST)) (-3666 (((-3 (-568) "failed") $) NIL (|has| (-409 |#2|) (-1037 (-568)))) (((-3 (-409 (-568)) "failed") $) NIL (|has| (-409 |#2|) (-1037 (-409 (-568))))) (((-3 (-409 |#2|) "failed") $) NIL)) (-2854 (((-568) $) NIL (|has| (-409 |#2|) (-1037 (-568)))) (((-409 (-568)) $) NIL (|has| (-409 |#2|) (-1037 (-409 (-568))))) (((-409 |#2|) $) NIL)) (-3498 (($ (-1244 (-409 |#2|)) (-1244 $)) NIL) (($ (-1244 (-409 |#2|))) 70) (($ (-1244 |#2|) |#2|) NIL)) (-2022 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-409 |#2|) (-350)))) (-2401 (($ $ $) NIL (|has| (-409 |#2|) (-365)))) (-1709 (((-679 (-409 |#2|)) $ (-1244 $)) NIL) (((-679 (-409 |#2|)) $) NIL)) (-3164 (((-679 (-568)) (-679 $)) NIL (|has| (-409 |#2|) (-630 (-568)))) (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) NIL (|has| (-409 |#2|) (-630 (-568)))) (((-2 (|:| -2928 (-679 (-409 |#2|))) (|:| |vec| (-1244 (-409 |#2|)))) (-679 $) (-1244 $)) NIL) (((-679 (-409 |#2|)) (-679 $)) NIL)) (-3692 (((-1244 $) (-1244 $)) NIL)) (-3092 (($ |#3|) 65) (((-3 $ "failed") (-409 |#3|)) NIL (|has| (-409 |#2|) (-365)))) (-2925 (((-3 $ "failed") $) NIL)) (-1895 (((-634 (-634 |#1|))) NIL (|has| |#1| (-370)))) (-2234 (((-121) |#1| |#1|) NIL)) (-3700 (((-917)) NIL)) (-1731 (($) NIL (|has| (-409 |#2|) (-370)))) (-4449 (((-121)) NIL)) (-4481 (((-121) |#1|) 56) (((-121) |#2|) 149)) (-2412 (($ $ $) NIL (|has| (-409 |#2|) (-365)))) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) NIL (|has| (-409 |#2|) (-365)))) (-3250 (($ $) NIL)) (-4220 (($) NIL (|has| (-409 |#2|) (-350)))) (-4456 (((-121) $) NIL (|has| (-409 |#2|) (-350)))) (-3218 (($ $ (-763)) NIL (|has| (-409 |#2|) (-350))) (($ $) NIL (|has| (-409 |#2|) (-350)))) (-3927 (((-121) $) NIL (|has| (-409 |#2|) (-365)))) (-4477 (((-917) $) NIL (|has| (-409 |#2|) (-350))) (((-828 (-917)) $) NIL (|has| (-409 |#2|) (-350)))) (-2735 (((-121) $) NIL)) (-3900 (((-763)) NIL)) (-3017 (((-1244 $) (-1244 $)) NIL)) (-2657 (((-409 |#2|) $) NIL)) (-1296 (((-634 (-953 |#1|)) (-1161)) NIL (|has| |#1| (-365)))) (-3038 (((-3 $ "failed") $) NIL (|has| (-409 |#2|) (-350)))) (-3562 (((-3 (-634 $) "failed") (-634 $) $) NIL (|has| (-409 |#2|) (-365)))) (-2045 ((|#3| $) NIL (|has| (-409 |#2|) (-365)))) (-3683 (((-917) $) NIL (|has| (-409 |#2|) (-370)))) (-3085 ((|#3| $) NIL)) (-2495 (($ (-634 $)) NIL (|has| (-409 |#2|) (-365))) (($ $ $) NIL (|has| (-409 |#2|) (-365)))) (-4487 (((-1143) $) NIL)) (-1300 (((-679 (-409 |#2|))) 52)) (-4472 (((-679 (-409 |#2|))) 51)) (-2081 (($ $) NIL (|has| (-409 |#2|) (-365)))) (-4368 (($ (-1244 |#2|) |#2|) 71)) (-3036 (((-679 (-409 |#2|))) 50)) (-1630 (((-679 (-409 |#2|))) 49)) (-1557 (((-2 (|:| |num| (-679 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-1658 (((-2 (|:| |num| (-1244 |#2|)) (|:| |den| |#2|)) $) 77)) (-1820 (((-1244 $)) 46)) (-3661 (((-1244 $)) 45)) (-3874 (((-121) $) NIL)) (-1489 (((-121) $) NIL) (((-121) $ |#1|) NIL) (((-121) $ |#2|) NIL)) (-4434 (($) NIL (|has| (-409 |#2|) (-350)) CONST)) (-4355 (($ (-917)) NIL (|has| (-409 |#2|) (-370)))) (-3541 (((-3 |#2| "failed")) 63)) (-4022 (((-1108) $) NIL)) (-2126 (((-763)) NIL)) (-2704 (($) NIL)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL (|has| (-409 |#2|) (-365)))) (-2721 (($ (-634 $)) NIL (|has| (-409 |#2|) (-365))) (($ $ $) NIL (|has| (-409 |#2|) (-365)))) (-1418 (((-634 (-2 (|:| -3848 (-568)) (|:| -3438 (-568))))) NIL (|has| (-409 |#2|) (-350)))) (-3848 (((-420 $) $) NIL (|has| (-409 |#2|) (-365)))) (-4497 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-409 |#2|) (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL (|has| (-409 |#2|) (-365)))) (-2595 (((-3 $ "failed") $ $) NIL (|has| (-409 |#2|) (-365)))) (-2344 (((-3 (-634 $) "failed") (-634 $) $) NIL (|has| (-409 |#2|) (-365)))) (-2709 (((-763) $) NIL (|has| (-409 |#2|) (-365)))) (-2779 ((|#1| $ |#1| |#1|) NIL)) (-3633 (((-3 |#2| "failed")) 62)) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL (|has| (-409 |#2|) (-365)))) (-2217 (((-409 |#2|) (-1244 $)) NIL) (((-409 |#2|)) 42)) (-3143 (((-763) $) NIL (|has| (-409 |#2|) (-350))) (((-3 (-763) "failed") $ $) NIL (|has| (-409 |#2|) (-350)))) (-4189 (($ $ (-1 (-409 |#2|) (-409 |#2|)) (-763)) NIL (|has| (-409 |#2|) (-365))) (($ $ (-1 (-409 |#2|) (-409 |#2|))) NIL (|has| (-409 |#2|) (-365))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-634 (-1161)) (-634 (-763))) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-895 (-1161))))) (($ $ (-1161) (-763)) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-895 (-1161))))) (($ $ (-634 (-1161))) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-895 (-1161))))) (($ $ (-1161)) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-895 (-1161))))) (($ $ (-763)) NIL (-2198 (-12 (|has| (-409 |#2|) (-225)) (|has| (-409 |#2|) (-365))) (|has| (-409 |#2|) (-350)))) (($ $) NIL (-2198 (-12 (|has| (-409 |#2|) (-225)) (|has| (-409 |#2|) (-365))) (|has| (-409 |#2|) (-350))))) (-4387 (((-679 (-409 |#2|)) (-1244 $) (-1 (-409 |#2|) (-409 |#2|))) NIL (|has| (-409 |#2|) (-365)))) (-1626 ((|#3|) 53)) (-3065 (($) NIL (|has| (-409 |#2|) (-350)))) (-4073 (((-1244 (-409 |#2|)) $ (-1244 $)) NIL) (((-679 (-409 |#2|)) (-1244 $) (-1244 $)) NIL) (((-1244 (-409 |#2|)) $) 72) (((-679 (-409 |#2|)) (-1244 $)) NIL)) (-4278 (((-1244 (-409 |#2|)) $) NIL) (($ (-1244 (-409 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-2979 (((-3 (-1244 $) "failed") (-679 $)) NIL (|has| (-409 |#2|) (-350)))) (-3016 (((-1244 $) (-1244 $)) NIL)) (-2745 (((-850) $) NIL) (($ (-568)) NIL) (($ (-409 |#2|)) NIL) (($ (-409 (-568))) NIL (-2198 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-1037 (-409 (-568)))))) (($ $) NIL (|has| (-409 |#2|) (-365)))) (-4371 (($ $) NIL (|has| (-409 |#2|) (-350))) (((-3 $ "failed") $) NIL (|has| (-409 |#2|) (-148)))) (-2678 ((|#3| $) NIL)) (-4078 (((-763)) NIL)) (-4199 (((-121)) 60)) (-2712 (((-121) |#1|) 153) (((-121) |#2|) 154)) (-3746 (((-1244 $)) 124)) (-1826 (((-121) $ $) NIL (|has| (-409 |#2|) (-365)))) (-3223 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-2262 (((-121)) NIL)) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL (|has| (-409 |#2|) (-365)))) (-3056 (($) 94 T CONST)) (-1556 (($) NIL T CONST)) (-3190 (($ $ (-1 (-409 |#2|) (-409 |#2|)) (-763)) NIL (|has| (-409 |#2|) (-365))) (($ $ (-1 (-409 |#2|) (-409 |#2|))) NIL (|has| (-409 |#2|) (-365))) (($ $ (-634 (-1161)) (-634 (-763))) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-895 (-1161))))) (($ $ (-1161) (-763)) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-895 (-1161))))) (($ $ (-634 (-1161))) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-895 (-1161))))) (($ $ (-1161)) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-895 (-1161))))) (($ $ (-763)) NIL (-2198 (-12 (|has| (-409 |#2|) (-225)) (|has| (-409 |#2|) (-365))) (|has| (-409 |#2|) (-350)))) (($ $) NIL (-2198 (-12 (|has| (-409 |#2|) (-225)) (|has| (-409 |#2|) (-365))) (|has| (-409 |#2|) (-350))))) (-1717 (((-121) $ $) NIL)) (-1779 (($ $ $) NIL (|has| (-409 |#2|) (-365)))) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL (|has| (-409 |#2|) (-365)))) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) NIL) (($ $ (-409 |#2|)) NIL) (($ (-409 |#2|) $) NIL) (($ (-409 (-568)) $) NIL (|has| (-409 |#2|) (-365))) (($ $ (-409 (-568))) NIL (|has| (-409 |#2|) (-365))))) +(((-1003 |#1| |#2| |#3| |#4| |#5|) (-340 |#1| |#2| |#3|) (-1199) (-1219 |#1|) (-1219 (-409 |#2|)) (-409 |#2|) (-763)) (T -1003)) +NIL +(-340 |#1| |#2| |#3|) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-3566 (((-634 (-568)) $) 54)) (-4291 (($ (-634 (-568))) 62)) (-1492 (((-568) $) 40 (|has| (-568) (-301)))) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL)) (-2227 (($ $) NIL)) (-1573 (((-121) $) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-1750 (((-420 (-1157 $)) (-1157 $)) NIL (|has| (-568) (-904)))) (-4305 (($ $) NIL)) (-1678 (((-420 $) $) NIL)) (-1858 (((-3 (-634 (-1157 $)) "failed") (-634 (-1157 $)) (-1157 $)) NIL (|has| (-568) (-904)))) (-1497 (((-121) $ $) NIL)) (-3662 (((-568) $) NIL (|has| (-568) (-815)))) (-2671 (($) NIL T CONST)) (-3666 (((-3 (-568) "failed") $) 49) (((-3 (-1161) "failed") $) NIL (|has| (-568) (-1037 (-1161)))) (((-3 (-409 (-568)) "failed") $) 47 (|has| (-568) (-1037 (-568)))) (((-3 (-568) "failed") $) 49 (|has| (-568) (-1037 (-568))))) (-2854 (((-568) $) NIL) (((-1161) $) NIL (|has| (-568) (-1037 (-1161)))) (((-409 (-568)) $) NIL (|has| (-568) (-1037 (-568)))) (((-568) $) NIL (|has| (-568) (-1037 (-568))))) (-2401 (($ $ $) NIL)) (-3164 (((-679 (-568)) (-679 $)) NIL (|has| (-568) (-630 (-568)))) (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) NIL (|has| (-568) (-630 (-568)))) (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) NIL) (((-679 (-568)) (-679 $)) NIL)) (-2925 (((-3 $ "failed") $) NIL)) (-1731 (($) NIL (|has| (-568) (-550)))) (-2412 (($ $ $) NIL)) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) NIL)) (-3927 (((-121) $) NIL)) (-1399 (((-634 (-568)) $) 60)) (-2033 (((-121) $) NIL (|has| (-568) (-815)))) (-4410 (((-884 (-568) $) $ (-887 (-568)) (-884 (-568) $)) NIL (|has| (-568) (-881 (-568)))) (((-884 (-381) $) $ (-887 (-381)) (-884 (-381) $)) NIL (|has| (-568) (-881 (-381))))) (-2735 (((-121) $) NIL)) (-1332 (($ $) NIL)) (-2317 (((-568) $) 37)) (-3038 (((-3 $ "failed") $) NIL (|has| (-568) (-1136)))) (-2245 (((-121) $) NIL (|has| (-568) (-815)))) (-3562 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-2521 (($ $ $) NIL (|has| (-568) (-842)))) (-3268 (($ $ $) NIL (|has| (-568) (-842)))) (-2795 (($ (-1 (-568) (-568)) $) NIL)) (-2495 (($ $ $) NIL) (($ (-634 $)) NIL)) (-4487 (((-1143) $) NIL)) (-2081 (($ $) NIL)) (-4434 (($) NIL (|has| (-568) (-1136)) CONST)) (-4022 (((-1108) $) NIL)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL)) (-2721 (($ $ $) NIL) (($ (-634 $)) NIL)) (-3880 (($ $) NIL (|has| (-568) (-301))) (((-409 (-568)) $) 42)) (-2888 (((-1141 (-568)) $) 59)) (-4106 (($ (-634 (-568)) (-634 (-568))) 63)) (-1519 (((-568) $) 53 (|has| (-568) (-550)))) (-2905 (((-420 (-1157 $)) (-1157 $)) NIL (|has| (-568) (-904)))) (-3545 (((-420 (-1157 $)) (-1157 $)) NIL (|has| (-568) (-904)))) (-3848 (((-420 $) $) NIL)) (-4497 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2595 (((-3 $ "failed") $ $) NIL)) (-2344 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-1339 (($ $ (-634 (-568)) (-634 (-568))) NIL (|has| (-568) (-303 (-568)))) (($ $ (-568) (-568)) NIL (|has| (-568) (-303 (-568)))) (($ $ (-288 (-568))) NIL (|has| (-568) (-303 (-568)))) (($ $ (-634 (-288 (-568)))) NIL (|has| (-568) (-303 (-568)))) (($ $ (-634 (-1161)) (-634 (-568))) NIL (|has| (-568) (-523 (-1161) (-568)))) (($ $ (-1161) (-568)) NIL (|has| (-568) (-523 (-1161) (-568))))) (-2709 (((-763) $) NIL)) (-2779 (($ $ (-568)) NIL (|has| (-568) (-281 (-568) (-568))))) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL)) (-4189 (($ $) 11 (|has| (-568) (-225))) (($ $ (-763)) NIL (|has| (-568) (-225))) (($ $ (-1161)) NIL (|has| (-568) (-895 (-1161)))) (($ $ (-634 (-1161))) NIL (|has| (-568) (-895 (-1161)))) (($ $ (-1161) (-763)) NIL (|has| (-568) (-895 (-1161)))) (($ $ (-634 (-1161)) (-634 (-763))) NIL (|has| (-568) (-895 (-1161)))) (($ $ (-1 (-568) (-568)) (-763)) NIL) (($ $ (-1 (-568) (-568))) NIL)) (-3013 (($ $) NIL)) (-2324 (((-568) $) 39)) (-2652 (((-634 (-568)) $) 61)) (-4278 (((-887 (-568)) $) NIL (|has| (-568) (-609 (-887 (-568))))) (((-887 (-381)) $) NIL (|has| (-568) (-609 (-887 (-381))))) (((-541) $) NIL (|has| (-568) (-609 (-541)))) (((-381) $) NIL (|has| (-568) (-1021))) (((-215) $) NIL (|has| (-568) (-1021)))) (-2979 (((-3 (-1244 $) "failed") (-679 $)) NIL (-12 (|has| $ (-148)) (|has| (-568) (-904))))) (-2745 (((-850) $) 77) (($ (-568)) 43) (($ $) NIL) (($ (-409 (-568))) 19) (($ (-568)) 43) (($ (-1161)) NIL (|has| (-568) (-1037 (-1161)))) (((-409 (-568)) $) 17)) (-4371 (((-3 $ "failed") $) NIL (-2198 (-12 (|has| $ (-148)) (|has| (-568) (-904))) (|has| (-568) (-148))))) (-4078 (((-763)) 9)) (-2285 (((-568) $) 51 (|has| (-568) (-550)))) (-1826 (((-121) $ $) NIL)) (-2897 (($ $) NIL (|has| (-568) (-815)))) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL)) (-3056 (($) 10 T CONST)) (-1556 (($) 12 T CONST)) (-3190 (($ $) NIL (|has| (-568) (-225))) (($ $ (-763)) NIL (|has| (-568) (-225))) (($ $ (-1161)) NIL (|has| (-568) (-895 (-1161)))) (($ $ (-634 (-1161))) NIL (|has| (-568) (-895 (-1161)))) (($ $ (-1161) (-763)) NIL (|has| (-568) (-895 (-1161)))) (($ $ (-634 (-1161)) (-634 (-763))) NIL (|has| (-568) (-895 (-1161)))) (($ $ (-1 (-568) (-568)) (-763)) NIL) (($ $ (-1 (-568) (-568))) NIL)) (-1751 (((-121) $ $) NIL (|has| (-568) (-842)))) (-1738 (((-121) $ $) NIL (|has| (-568) (-842)))) (-1717 (((-121) $ $) 14)) (-1745 (((-121) $ $) NIL (|has| (-568) (-842)))) (-1732 (((-121) $ $) 33 (|has| (-568) (-842)))) (-1779 (($ $ $) 29) (($ (-568) (-568)) 31)) (-1773 (($ $) 15) (($ $ $) 22)) (-1767 (($ $ $) 20)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) 25) (($ $ $) 27) (($ $ (-409 (-568))) NIL) (($ (-409 (-568)) $) NIL) (($ (-568) $) 25) (($ $ (-568)) NIL))) +(((-1004 |#1|) (-13 (-993 (-568)) (-10 -8 (-15 -2745 ((-409 (-568)) $)) (-15 -3880 ((-409 (-568)) $)) (-15 -3566 ((-634 (-568)) $)) (-15 -2888 ((-1141 (-568)) $)) (-15 -1399 ((-634 (-568)) $)) (-15 -2652 ((-634 (-568)) $)) (-15 -4291 ($ (-634 (-568)))) (-15 -4106 ($ (-634 (-568)) (-634 (-568)))))) (-568)) (T -1004)) +((-2745 (*1 *2 *1) (-12 (-5 *2 (-409 (-568))) (-5 *1 (-1004 *3)) (-14 *3 (-568)))) (-3880 (*1 *2 *1) (-12 (-5 *2 (-409 (-568))) (-5 *1 (-1004 *3)) (-14 *3 (-568)))) (-3566 (*1 *2 *1) (-12 (-5 *2 (-634 (-568))) (-5 *1 (-1004 *3)) (-14 *3 (-568)))) (-2888 (*1 *2 *1) (-12 (-5 *2 (-1141 (-568))) (-5 *1 (-1004 *3)) (-14 *3 (-568)))) (-1399 (*1 *2 *1) (-12 (-5 *2 (-634 (-568))) (-5 *1 (-1004 *3)) (-14 *3 (-568)))) (-2652 (*1 *2 *1) (-12 (-5 *2 (-634 (-568))) (-5 *1 (-1004 *3)) (-14 *3 (-568)))) (-4291 (*1 *1 *2) (-12 (-5 *2 (-634 (-568))) (-5 *1 (-1004 *3)) (-14 *3 (-568)))) (-4106 (*1 *1 *2 *2) (-12 (-5 *2 (-634 (-568))) (-5 *1 (-1004 *3)) (-14 *3 (-568))))) +(-13 (-993 (-568)) (-10 -8 (-15 -2745 ((-409 (-568)) $)) (-15 -3880 ((-409 (-568)) $)) (-15 -3566 ((-634 (-568)) $)) (-15 -2888 ((-1141 (-568)) $)) (-15 -1399 ((-634 (-568)) $)) (-15 -2652 ((-634 (-568)) $)) (-15 -4291 ($ (-634 (-568)))) (-15 -4106 ($ (-634 (-568)) (-634 (-568)))))) +((-1851 (((-57) (-409 (-568)) (-568)) 9))) +(((-1005) (-10 -7 (-15 -1851 ((-57) (-409 (-568)) (-568))))) (T -1005)) +((-1851 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-568))) (-5 *4 (-568)) (-5 *2 (-57)) (-5 *1 (-1005))))) +(-10 -7 (-15 -1851 ((-57) (-409 (-568)) (-568)))) +((-3983 (((-568)) 13)) (-1413 (((-568)) 16)) (-1469 (((-1249) (-568)) 15)) (-3709 (((-568) (-568)) 17) (((-568)) 12))) +(((-1006) (-10 -7 (-15 -3709 ((-568))) (-15 -3983 ((-568))) (-15 -3709 ((-568) (-568))) (-15 -1469 ((-1249) (-568))) (-15 -1413 ((-568))))) (T -1006)) +((-1413 (*1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-1006)))) (-1469 (*1 *2 *3) (-12 (-5 *3 (-568)) (-5 *2 (-1249)) (-5 *1 (-1006)))) (-3709 (*1 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-1006)))) (-3983 (*1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-1006)))) (-3709 (*1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-1006))))) +(-10 -7 (-15 -3709 ((-568))) (-15 -3983 ((-568))) (-15 -3709 ((-568) (-568))) (-15 -1469 ((-1249) (-568))) (-15 -1413 ((-568)))) +((-2630 (((-420 |#1|) |#1|) 40)) (-3848 (((-420 |#1|) |#1|) 39))) +(((-1007 |#1|) (-10 -7 (-15 -3848 ((-420 |#1|) |#1|)) (-15 -2630 ((-420 |#1|) |#1|))) (-1219 (-409 (-568)))) (T -1007)) +((-2630 (*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-1007 *3)) (-4 *3 (-1219 (-409 (-568)))))) (-3848 (*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-1007 *3)) (-4 *3 (-1219 (-409 (-568))))))) +(-10 -7 (-15 -3848 ((-420 |#1|) |#1|)) (-15 -2630 ((-420 |#1|) |#1|))) +((-1642 (((-3 (-409 (-568)) "failed") |#1|) 14)) (-2688 (((-121) |#1|) 13)) (-2425 (((-409 (-568)) |#1|) 9))) +(((-1008 |#1|) (-10 -7 (-15 -2425 ((-409 (-568)) |#1|)) (-15 -2688 ((-121) |#1|)) (-15 -1642 ((-3 (-409 (-568)) "failed") |#1|))) (-1037 (-409 (-568)))) (T -1008)) +((-1642 (*1 *2 *3) (|partial| -12 (-5 *2 (-409 (-568))) (-5 *1 (-1008 *3)) (-4 *3 (-1037 *2)))) (-2688 (*1 *2 *3) (-12 (-5 *2 (-121)) (-5 *1 (-1008 *3)) (-4 *3 (-1037 (-409 (-568)))))) (-2425 (*1 *2 *3) (-12 (-5 *2 (-409 (-568))) (-5 *1 (-1008 *3)) (-4 *3 (-1037 *2))))) +(-10 -7 (-15 -2425 ((-409 (-568)) |#1|)) (-15 -2688 ((-121) |#1|)) (-15 -1642 ((-3 (-409 (-568)) "failed") |#1|))) +((-2436 ((|#2| $ "value" |#2|) 12)) (-2779 ((|#2| $ "value") 10)) (-3491 (((-121) $ $) 18))) +(((-1009 |#1| |#2|) (-10 -8 (-15 -2436 (|#2| |#1| "value" |#2|)) (-15 -3491 ((-121) |#1| |#1|)) (-15 -2779 (|#2| |#1| "value"))) (-1010 |#2|) (-1195)) (T -1009)) +NIL +(-10 -8 (-15 -2436 (|#2| |#1| "value" |#2|)) (-15 -3491 ((-121) |#1| |#1|)) (-15 -2779 (|#2| |#1| "value"))) +((-2447 (((-121) $ $) 18 (|has| |#1| (-1090)))) (-2850 ((|#1| $) 45)) (-2510 (((-121) $ (-763)) 8)) (-1659 ((|#1| $ |#1|) 36 (|has| $ (-6 -4520)))) (-2436 ((|#1| $ "value" |#1|) 37 (|has| $ (-6 -4520)))) (-3827 (($ $ (-634 $)) 38 (|has| $ (-6 -4520)))) (-2671 (($) 7 T CONST)) (-4360 (((-634 |#1|) $) 30 (|has| $ (-6 -4519)))) (-2287 (((-634 $) $) 47)) (-1700 (((-121) $ $) 39 (|has| |#1| (-1090)))) (-1737 (((-121) $ (-763)) 9)) (-1979 (((-634 |#1|) $) 29 (|has| $ (-6 -4519)))) (-3109 (((-121) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-3674 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#1| |#1|) $) 35)) (-2166 (((-121) $ (-763)) 10)) (-2869 (((-634 |#1|) $) 42)) (-1651 (((-121) $) 46)) (-4487 (((-1143) $) 22 (|has| |#1| (-1090)))) (-4022 (((-1108) $) 21 (|has| |#1| (-1090)))) (-1387 (((-121) (-1 (-121) |#1|) $) 32 (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-634 |#1|) (-634 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))))) (-3171 (((-121) $ $) 14)) (-3084 (((-121) $) 11)) (-3248 (($) 12)) (-2779 ((|#1| $ "value") 44)) (-4075 (((-568) $ $) 41)) (-3790 (((-121) $) 43)) (-4168 (((-763) (-1 (-121) |#1|) $) 31 (|has| $ (-6 -4519))) (((-763) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-3863 (($ $) 13)) (-2745 (((-850) $) 20 (|has| |#1| (-1090)))) (-4339 (((-634 $) $) 48)) (-3491 (((-121) $ $) 40 (|has| |#1| (-1090)))) (-1319 (((-121) (-1 (-121) |#1|) $) 33 (|has| $ (-6 -4519)))) (-1717 (((-121) $ $) 19 (|has| |#1| (-1090)))) (-1697 (((-763) $) 6 (|has| $ (-6 -4519))))) +(((-1010 |#1|) (-1275) (-1195)) (T -1010)) +((-4339 (*1 *2 *1) (-12 (-4 *3 (-1195)) (-5 *2 (-634 *1)) (-4 *1 (-1010 *3)))) (-2287 (*1 *2 *1) (-12 (-4 *3 (-1195)) (-5 *2 (-634 *1)) (-4 *1 (-1010 *3)))) (-1651 (*1 *2 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1195)) (-5 *2 (-121)))) (-2850 (*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1195)))) (-2779 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1010 *2)) (-4 *2 (-1195)))) (-3790 (*1 *2 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1195)) (-5 *2 (-121)))) (-2869 (*1 *2 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1195)) (-5 *2 (-634 *3)))) (-4075 (*1 *2 *1 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1195)) (-5 *2 (-568)))) (-3491 (*1 *2 *1 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1195)) (-4 *3 (-1090)) (-5 *2 (-121)))) (-1700 (*1 *2 *1 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1195)) (-4 *3 (-1090)) (-5 *2 (-121)))) (-3827 (*1 *1 *1 *2) (-12 (-5 *2 (-634 *1)) (|has| *1 (-6 -4520)) (-4 *1 (-1010 *3)) (-4 *3 (-1195)))) (-2436 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4520)) (-4 *1 (-1010 *2)) (-4 *2 (-1195)))) (-1659 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4520)) (-4 *1 (-1010 *2)) (-4 *2 (-1195))))) +(-13 (-499 |t#1|) (-10 -8 (-15 -4339 ((-634 $) $)) (-15 -2287 ((-634 $) $)) (-15 -1651 ((-121) $)) (-15 -2850 (|t#1| $)) (-15 -2779 (|t#1| $ "value")) (-15 -3790 ((-121) $)) (-15 -2869 ((-634 |t#1|) $)) (-15 -4075 ((-568) $ $)) (IF (|has| |t#1| (-1090)) (PROGN (-15 -3491 ((-121) $ $)) (-15 -1700 ((-121) $ $))) |noBranch|) (IF (|has| $ (-6 -4520)) (PROGN (-15 -3827 ($ $ (-634 $))) (-15 -2436 (|t#1| $ "value" |t#1|)) (-15 -1659 (|t#1| $ |t#1|))) |noBranch|))) +(((-39) . T) ((-105) |has| |#1| (-1090)) ((-608 (-850)) |has| |#1| (-1090)) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))) ((-499 |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))) ((-1090) |has| |#1| (-1090)) ((-1195) . T)) +((-1902 (($ $) 9) (($ $ (-763)) 43) (($ (-409 (-568))) 12) (($ (-568)) 15)) (-2932 (((-3 $ "failed") (-1157 $) (-917) (-850)) 23) (((-3 $ "failed") (-1157 $) (-917)) 28)) (-4044 (($ $ (-568)) 49)) (-4078 (((-763)) 16)) (-4309 (((-634 $) (-1157 $)) NIL) (((-634 $) (-1157 (-409 (-568)))) 54) (((-634 $) (-1157 (-568))) 59) (((-634 $) (-953 $)) 63) (((-634 $) (-953 (-409 (-568)))) 67) (((-634 $) (-953 (-568))) 71)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL) (($ $ (-409 (-568))) 47))) +(((-1011 |#1|) (-10 -8 (-15 -1902 (|#1| (-568))) (-15 -1902 (|#1| (-409 (-568)))) (-15 -1902 (|#1| |#1| (-763))) (-15 -4309 ((-634 |#1|) (-953 (-568)))) (-15 -4309 ((-634 |#1|) (-953 (-409 (-568))))) (-15 -4309 ((-634 |#1|) (-953 |#1|))) (-15 -4309 ((-634 |#1|) (-1157 (-568)))) (-15 -4309 ((-634 |#1|) (-1157 (-409 (-568))))) (-15 -4309 ((-634 |#1|) (-1157 |#1|))) (-15 -2932 ((-3 |#1| "failed") (-1157 |#1|) (-917))) (-15 -2932 ((-3 |#1| "failed") (-1157 |#1|) (-917) (-850))) (-15 ** (|#1| |#1| (-409 (-568)))) (-15 -4044 (|#1| |#1| (-568))) (-15 -1902 (|#1| |#1|)) (-15 ** (|#1| |#1| (-568))) (-15 -4078 ((-763))) (-15 ** (|#1| |#1| (-763))) (-15 ** (|#1| |#1| (-917)))) (-1012)) (T -1011)) +((-4078 (*1 *2) (-12 (-5 *2 (-763)) (-5 *1 (-1011 *3)) (-4 *3 (-1012))))) +(-10 -8 (-15 -1902 (|#1| (-568))) (-15 -1902 (|#1| (-409 (-568)))) (-15 -1902 (|#1| |#1| (-763))) (-15 -4309 ((-634 |#1|) (-953 (-568)))) (-15 -4309 ((-634 |#1|) (-953 (-409 (-568))))) (-15 -4309 ((-634 |#1|) (-953 |#1|))) (-15 -4309 ((-634 |#1|) (-1157 (-568)))) (-15 -4309 ((-634 |#1|) (-1157 (-409 (-568))))) (-15 -4309 ((-634 |#1|) (-1157 |#1|))) (-15 -2932 ((-3 |#1| "failed") (-1157 |#1|) (-917))) (-15 -2932 ((-3 |#1| "failed") (-1157 |#1|) (-917) (-850))) (-15 ** (|#1| |#1| (-409 (-568)))) (-15 -4044 (|#1| |#1| (-568))) (-15 -1902 (|#1| |#1|)) (-15 ** (|#1| |#1| (-568))) (-15 -4078 ((-763))) (-15 ** (|#1| |#1| (-763))) (-15 ** (|#1| |#1| (-917)))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) 88)) (-2227 (($ $) 89)) (-1573 (((-121) $) 91)) (-3134 (((-3 $ "failed") $ $) 18)) (-4305 (($ $) 108)) (-1678 (((-420 $) $) 109)) (-1902 (($ $) 72) (($ $ (-763)) 58) (($ (-409 (-568))) 57) (($ (-568)) 56)) (-1497 (((-121) $ $) 99)) (-3662 (((-568) $) 126)) (-2671 (($) 16 T CONST)) (-2932 (((-3 $ "failed") (-1157 $) (-917) (-850)) 66) (((-3 $ "failed") (-1157 $) (-917)) 65)) (-3666 (((-3 (-568) "failed") $) 84 (|has| (-409 (-568)) (-1037 (-568)))) (((-3 (-409 (-568)) "failed") $) 82 (|has| (-409 (-568)) (-1037 (-409 (-568))))) (((-3 (-409 (-568)) "failed") $) 80)) (-2854 (((-568) $) 85 (|has| (-409 (-568)) (-1037 (-568)))) (((-409 (-568)) $) 83 (|has| (-409 (-568)) (-1037 (-409 (-568))))) (((-409 (-568)) $) 79)) (-2937 (($ $ (-850)) 55)) (-3539 (($ $ (-850)) 54)) (-2401 (($ $ $) 103)) (-2925 (((-3 $ "failed") $) 33)) (-2412 (($ $ $) 102)) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) 97)) (-3927 (((-121) $) 110)) (-2033 (((-121) $) 124)) (-2735 (((-121) $) 30)) (-4044 (($ $ (-568)) 71)) (-2245 (((-121) $) 125)) (-3562 (((-3 (-634 $) "failed") (-634 $) $) 106)) (-2521 (($ $ $) 123)) (-3268 (($ $ $) 122)) (-3442 (((-3 (-1157 $) "failed") $) 67)) (-4461 (((-3 (-850) "failed") $) 69)) (-2031 (((-3 (-1157 $) "failed") $) 68)) (-2495 (($ (-634 $)) 95) (($ $ $) 94)) (-4487 (((-1143) $) 9)) (-2081 (($ $) 111)) (-4022 (((-1108) $) 10)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) 96)) (-2721 (($ (-634 $)) 93) (($ $ $) 92)) (-3848 (((-420 $) $) 107)) (-4497 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 105) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) 104)) (-2595 (((-3 $ "failed") $ $) 87)) (-2344 (((-3 (-634 $) "failed") (-634 $) $) 98)) (-2709 (((-763) $) 100)) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) 101)) (-2745 (((-850) $) 11) (($ (-568)) 27) (($ (-409 (-568))) 116) (($ $) 86) (($ (-409 (-568))) 81) (($ (-568)) 78) (($ (-409 (-568))) 75)) (-4078 (((-763)) 28)) (-1826 (((-121) $ $) 90)) (-3996 (((-409 (-568)) $ $) 53)) (-4309 (((-634 $) (-1157 $)) 64) (((-634 $) (-1157 (-409 (-568)))) 63) (((-634 $) (-1157 (-568))) 62) (((-634 $) (-953 $)) 61) (((-634 $) (-953 (-409 (-568)))) 60) (((-634 $) (-953 (-568))) 59)) (-2897 (($ $) 127)) (-1887 (($ $ (-917)) 25) (($ $ (-763)) 32) (($ $ (-568)) 112)) (-3056 (($) 17 T CONST)) (-1556 (($) 29 T CONST)) (-1751 (((-121) $ $) 120)) (-1738 (((-121) $ $) 119)) (-1717 (((-121) $ $) 6)) (-1745 (((-121) $ $) 121)) (-1732 (((-121) $ $) 118)) (-1779 (($ $ $) 117)) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 24) (($ $ (-763)) 31) (($ $ (-568)) 113) (($ $ (-409 (-568))) 70)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 23) (($ (-409 (-568)) $) 115) (($ $ (-409 (-568))) 114) (($ (-568) $) 77) (($ $ (-568)) 76) (($ (-409 (-568)) $) 74) (($ $ (-409 (-568))) 73))) +(((-1012) (-1275)) (T -1012)) +((-1902 (*1 *1 *1) (-4 *1 (-1012))) (-4461 (*1 *2 *1) (|partial| -12 (-4 *1 (-1012)) (-5 *2 (-850)))) (-2031 (*1 *2 *1) (|partial| -12 (-5 *2 (-1157 *1)) (-4 *1 (-1012)))) (-3442 (*1 *2 *1) (|partial| -12 (-5 *2 (-1157 *1)) (-4 *1 (-1012)))) (-2932 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1157 *1)) (-5 *3 (-917)) (-5 *4 (-850)) (-4 *1 (-1012)))) (-2932 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1157 *1)) (-5 *3 (-917)) (-4 *1 (-1012)))) (-4309 (*1 *2 *3) (-12 (-5 *3 (-1157 *1)) (-4 *1 (-1012)) (-5 *2 (-634 *1)))) (-4309 (*1 *2 *3) (-12 (-5 *3 (-1157 (-409 (-568)))) (-5 *2 (-634 *1)) (-4 *1 (-1012)))) (-4309 (*1 *2 *3) (-12 (-5 *3 (-1157 (-568))) (-5 *2 (-634 *1)) (-4 *1 (-1012)))) (-4309 (*1 *2 *3) (-12 (-5 *3 (-953 *1)) (-4 *1 (-1012)) (-5 *2 (-634 *1)))) (-4309 (*1 *2 *3) (-12 (-5 *3 (-953 (-409 (-568)))) (-5 *2 (-634 *1)) (-4 *1 (-1012)))) (-4309 (*1 *2 *3) (-12 (-5 *3 (-953 (-568))) (-5 *2 (-634 *1)) (-4 *1 (-1012)))) (-1902 (*1 *1 *1 *2) (-12 (-4 *1 (-1012)) (-5 *2 (-763)))) (-1902 (*1 *1 *2) (-12 (-5 *2 (-409 (-568))) (-4 *1 (-1012)))) (-1902 (*1 *1 *2) (-12 (-5 *2 (-568)) (-4 *1 (-1012)))) (-2937 (*1 *1 *1 *2) (-12 (-4 *1 (-1012)) (-5 *2 (-850)))) (-3539 (*1 *1 *1 *2) (-12 (-4 *1 (-1012)) (-5 *2 (-850)))) (-3996 (*1 *2 *1 *1) (-12 (-4 *1 (-1012)) (-5 *2 (-409 (-568)))))) +(-13 (-150) (-840) (-172) (-365) (-413 (-409 (-568))) (-43 (-568)) (-43 (-409 (-568))) (-1002) (-10 -8 (-15 -4461 ((-3 (-850) "failed") $)) (-15 -2031 ((-3 (-1157 $) "failed") $)) (-15 -3442 ((-3 (-1157 $) "failed") $)) (-15 -2932 ((-3 $ "failed") (-1157 $) (-917) (-850))) (-15 -2932 ((-3 $ "failed") (-1157 $) (-917))) (-15 -4309 ((-634 $) (-1157 $))) (-15 -4309 ((-634 $) (-1157 (-409 (-568))))) (-15 -4309 ((-634 $) (-1157 (-568)))) (-15 -4309 ((-634 $) (-953 $))) (-15 -4309 ((-634 $) (-953 (-409 (-568))))) (-15 -4309 ((-634 $) (-953 (-568)))) (-15 -1902 ($ $ (-763))) (-15 -1902 ($ $)) (-15 -1902 ($ (-409 (-568)))) (-15 -1902 ($ (-568))) (-15 -2937 ($ $ (-850))) (-15 -3539 ($ $ (-850))) (-15 -3996 ((-409 (-568)) $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-43 (-409 (-568))) . T) ((-43 (-568)) . T) ((-43 $) . T) ((-105) . T) ((-120 (-409 (-568)) (-409 (-568))) . T) ((-120 (-568) (-568)) . T) ((-120 $ $) . T) ((-137) . T) ((-150) . T) ((-608 (-850)) . T) ((-172) . T) ((-238) . T) ((-285) . T) ((-301) . T) ((-365) . T) ((-413 (-409 (-568))) . T) ((-453) . T) ((-558) . T) ((-637 (-409 (-568))) . T) ((-637 (-568)) . T) ((-637 $) . T) ((-707 (-409 (-568))) . T) ((-707 (-568)) . T) ((-707 $) . T) ((-716) . T) ((-786) . T) ((-787) . T) ((-789) . T) ((-790) . T) ((-840) . T) ((-842) . T) ((-916) . T) ((-1002) . T) ((-1037 (-409 (-568))) . T) ((-1037 (-568)) |has| (-409 (-568)) (-1037 (-568))) ((-1053 (-409 (-568))) . T) ((-1053 (-568)) . T) ((-1053 $) . T) ((-1047) . T) ((-1054) . T) ((-1102) . T) ((-1090) . T) ((-1199) . T)) +((-3555 (((-2 (|:| |ans| |#2|) (|:| -3284 |#2|) (|:| |sol?| (-121))) (-568) |#2| |#2| (-1161) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-634 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-634 |#2|)) (-1 (-3 (-2 (|:| -1924 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 61))) +(((-1013 |#1| |#2|) (-10 -7 (-15 -3555 ((-2 (|:| |ans| |#2|) (|:| -3284 |#2|) (|:| |sol?| (-121))) (-568) |#2| |#2| (-1161) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-634 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-634 |#2|)) (-1 (-3 (-2 (|:| -1924 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-453) (-842) (-150) (-1037 (-568)) (-630 (-568))) (-13 (-1181) (-27) (-432 |#1|))) (T -1013)) +((-3555 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1161)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-634 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-634 *4))) (-5 *7 (-1 (-3 (-2 (|:| -1924 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1181) (-27) (-432 *8))) (-4 *8 (-13 (-453) (-842) (-150) (-1037 *3) (-630 *3))) (-5 *3 (-568)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3284 *4) (|:| |sol?| (-121)))) (-5 *1 (-1013 *8 *4))))) +(-10 -7 (-15 -3555 ((-2 (|:| |ans| |#2|) (|:| -3284 |#2|) (|:| |sol?| (-121))) (-568) |#2| |#2| (-1161) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-634 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-634 |#2|)) (-1 (-3 (-2 (|:| -1924 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-1915 (((-3 (-634 |#2|) "failed") (-568) |#2| |#2| |#2| (-1161) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-634 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-634 |#2|)) (-1 (-3 (-2 (|:| -1924 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 47))) +(((-1014 |#1| |#2|) (-10 -7 (-15 -1915 ((-3 (-634 |#2|) "failed") (-568) |#2| |#2| |#2| (-1161) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-634 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-634 |#2|)) (-1 (-3 (-2 (|:| -1924 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-453) (-842) (-150) (-1037 (-568)) (-630 (-568))) (-13 (-1181) (-27) (-432 |#1|))) (T -1014)) +((-1915 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1161)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-634 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-634 *4))) (-5 *7 (-1 (-3 (-2 (|:| -1924 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1181) (-27) (-432 *8))) (-4 *8 (-13 (-453) (-842) (-150) (-1037 *3) (-630 *3))) (-5 *3 (-568)) (-5 *2 (-634 *4)) (-5 *1 (-1014 *8 *4))))) +(-10 -7 (-15 -1915 ((-3 (-634 |#2|) "failed") (-568) |#2| |#2| |#2| (-1161) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-634 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-634 |#2|)) (-1 (-3 (-2 (|:| -1924 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-3450 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-121)))) (|:| -1853 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-568)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-568) (-1 |#2| |#2|)) 30)) (-3663 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-409 |#2|)) (|:| |c| (-409 |#2|)) (|:| -3492 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-1 |#2| |#2|)) 56)) (-3259 (((-2 (|:| |ans| (-409 |#2|)) (|:| |nosol| (-121))) (-409 |#2|) (-409 |#2|)) 61))) +(((-1015 |#1| |#2|) (-10 -7 (-15 -3663 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-409 |#2|)) (|:| |c| (-409 |#2|)) (|:| -3492 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-1 |#2| |#2|))) (-15 -3259 ((-2 (|:| |ans| (-409 |#2|)) (|:| |nosol| (-121))) (-409 |#2|) (-409 |#2|))) (-15 -3450 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-121)))) (|:| -1853 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-568)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-568) (-1 |#2| |#2|)))) (-13 (-365) (-150) (-1037 (-568))) (-1219 |#1|)) (T -1015)) +((-3450 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1219 *6)) (-4 *6 (-13 (-365) (-150) (-1037 *4))) (-5 *4 (-568)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-121)))) (|:| -1853 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1015 *6 *3)))) (-3259 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-365) (-150) (-1037 (-568)))) (-4 *5 (-1219 *4)) (-5 *2 (-2 (|:| |ans| (-409 *5)) (|:| |nosol| (-121)))) (-5 *1 (-1015 *4 *5)) (-5 *3 (-409 *5)))) (-3663 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1219 *5)) (-4 *5 (-13 (-365) (-150) (-1037 (-568)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-409 *6)) (|:| |c| (-409 *6)) (|:| -3492 *6))) (-5 *1 (-1015 *5 *6)) (-5 *3 (-409 *6))))) +(-10 -7 (-15 -3663 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-409 |#2|)) (|:| |c| (-409 |#2|)) (|:| -3492 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-1 |#2| |#2|))) (-15 -3259 ((-2 (|:| |ans| (-409 |#2|)) (|:| |nosol| (-121))) (-409 |#2|) (-409 |#2|))) (-15 -3450 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-121)))) (|:| -1853 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-568)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-568) (-1 |#2| |#2|)))) +((-3461 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-409 |#2|)) (|:| |h| |#2|) (|:| |c1| (-409 |#2|)) (|:| |c2| (-409 |#2|)) (|:| -3492 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-409 |#2|) (-1 |#2| |#2|)) 22)) (-2822 (((-3 (-634 (-409 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-409 |#2|)) 32))) +(((-1016 |#1| |#2|) (-10 -7 (-15 -3461 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-409 |#2|)) (|:| |h| |#2|) (|:| |c1| (-409 |#2|)) (|:| |c2| (-409 |#2|)) (|:| -3492 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-409 |#2|) (-1 |#2| |#2|))) (-15 -2822 ((-3 (-634 (-409 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-409 |#2|)))) (-13 (-365) (-150) (-1037 (-568))) (-1219 |#1|)) (T -1016)) +((-2822 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-365) (-150) (-1037 (-568)))) (-4 *5 (-1219 *4)) (-5 *2 (-634 (-409 *5))) (-5 *1 (-1016 *4 *5)) (-5 *3 (-409 *5)))) (-3461 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1219 *5)) (-4 *5 (-13 (-365) (-150) (-1037 (-568)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-409 *6)) (|:| |h| *6) (|:| |c1| (-409 *6)) (|:| |c2| (-409 *6)) (|:| -3492 *6))) (-5 *1 (-1016 *5 *6)) (-5 *3 (-409 *6))))) +(-10 -7 (-15 -3461 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-409 |#2|)) (|:| |h| |#2|) (|:| |c1| (-409 |#2|)) (|:| |c2| (-409 |#2|)) (|:| -3492 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-409 |#2|) (-1 |#2| |#2|))) (-15 -2822 ((-3 (-634 (-409 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-409 |#2|)))) +((-3723 (((-1 |#1|) (-634 (-2 (|:| -2850 |#1|) (|:| -1551 (-568))))) 37)) (-3703 (((-1 |#1|) (-1092 |#1|)) 45)) (-1289 (((-1 |#1|) (-1244 |#1|) (-1244 (-568)) (-568)) 34))) +(((-1017 |#1|) (-10 -7 (-15 -3703 ((-1 |#1|) (-1092 |#1|))) (-15 -3723 ((-1 |#1|) (-634 (-2 (|:| -2850 |#1|) (|:| -1551 (-568)))))) (-15 -1289 ((-1 |#1|) (-1244 |#1|) (-1244 (-568)) (-568)))) (-1090)) (T -1017)) +((-1289 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1244 *6)) (-5 *4 (-1244 (-568))) (-5 *5 (-568)) (-4 *6 (-1090)) (-5 *2 (-1 *6)) (-5 *1 (-1017 *6)))) (-3723 (*1 *2 *3) (-12 (-5 *3 (-634 (-2 (|:| -2850 *4) (|:| -1551 (-568))))) (-4 *4 (-1090)) (-5 *2 (-1 *4)) (-5 *1 (-1017 *4)))) (-3703 (*1 *2 *3) (-12 (-5 *3 (-1092 *4)) (-4 *4 (-1090)) (-5 *2 (-1 *4)) (-5 *1 (-1017 *4))))) +(-10 -7 (-15 -3703 ((-1 |#1|) (-1092 |#1|))) (-15 -3723 ((-1 |#1|) (-634 (-2 (|:| -2850 |#1|) (|:| -1551 (-568)))))) (-15 -1289 ((-1 |#1|) (-1244 |#1|) (-1244 (-568)) (-568)))) +((-4477 (((-763) (-334 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23))) +(((-1018 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4477 ((-763) (-334 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-365) (-1219 |#1|) (-1219 (-409 |#2|)) (-340 |#1| |#2| |#3|) (-13 (-370) (-365))) (T -1018)) +((-4477 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-334 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-365)) (-4 *7 (-1219 *6)) (-4 *4 (-1219 (-409 *7))) (-4 *8 (-340 *6 *7 *4)) (-4 *9 (-13 (-370) (-365))) (-5 *2 (-763)) (-5 *1 (-1018 *6 *7 *4 *8 *9))))) +(-10 -7 (-15 -4477 ((-763) (-334 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) +((-4069 (((-3 (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568)))) "failed") |#1| (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568)))) (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568))))) 31) (((-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568)))) |#1| (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568)))) (-409 (-568))) 28)) (-2146 (((-634 (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568))))) |#1| (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568)))) (-409 (-568))) 33) (((-634 (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568))))) |#1| (-409 (-568))) 29) (((-634 (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568))))) |#1| (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568))))) 32) (((-634 (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568))))) |#1|) 27)) (-3113 (((-634 (-409 (-568))) (-634 (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568)))))) 19)) (-4006 (((-409 (-568)) (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568))))) 16))) +(((-1019 |#1|) (-10 -7 (-15 -2146 ((-634 (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568))))) |#1|)) (-15 -2146 ((-634 (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568))))) |#1| (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568)))))) (-15 -2146 ((-634 (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568))))) |#1| (-409 (-568)))) (-15 -2146 ((-634 (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568))))) |#1| (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568)))) (-409 (-568)))) (-15 -4069 ((-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568)))) |#1| (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568)))) (-409 (-568)))) (-15 -4069 ((-3 (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568)))) "failed") |#1| (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568)))) (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568)))))) (-15 -4006 ((-409 (-568)) (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568)))))) (-15 -3113 ((-634 (-409 (-568))) (-634 (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568)))))))) (-1219 (-568))) (T -1019)) +((-3113 (*1 *2 *3) (-12 (-5 *3 (-634 (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568)))))) (-5 *2 (-634 (-409 (-568)))) (-5 *1 (-1019 *4)) (-4 *4 (-1219 (-568))))) (-4006 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568))))) (-5 *2 (-409 (-568))) (-5 *1 (-1019 *4)) (-4 *4 (-1219 (-568))))) (-4069 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568))))) (-5 *1 (-1019 *3)) (-4 *3 (-1219 (-568))))) (-4069 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568))))) (-5 *4 (-409 (-568))) (-5 *1 (-1019 *3)) (-4 *3 (-1219 (-568))))) (-2146 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-409 (-568))) (-5 *2 (-634 (-2 (|:| -3028 *5) (|:| -3284 *5)))) (-5 *1 (-1019 *3)) (-4 *3 (-1219 (-568))) (-5 *4 (-2 (|:| -3028 *5) (|:| -3284 *5))))) (-2146 (*1 *2 *3 *4) (-12 (-5 *2 (-634 (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568)))))) (-5 *1 (-1019 *3)) (-4 *3 (-1219 (-568))) (-5 *4 (-409 (-568))))) (-2146 (*1 *2 *3 *4) (-12 (-5 *2 (-634 (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568)))))) (-5 *1 (-1019 *3)) (-4 *3 (-1219 (-568))) (-5 *4 (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568))))))) (-2146 (*1 *2 *3) (-12 (-5 *2 (-634 (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568)))))) (-5 *1 (-1019 *3)) (-4 *3 (-1219 (-568)))))) +(-10 -7 (-15 -2146 ((-634 (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568))))) |#1|)) (-15 -2146 ((-634 (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568))))) |#1| (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568)))))) (-15 -2146 ((-634 (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568))))) |#1| (-409 (-568)))) (-15 -2146 ((-634 (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568))))) |#1| (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568)))) (-409 (-568)))) (-15 -4069 ((-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568)))) |#1| (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568)))) (-409 (-568)))) (-15 -4069 ((-3 (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568)))) "failed") |#1| (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568)))) (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568)))))) (-15 -4006 ((-409 (-568)) (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568)))))) (-15 -3113 ((-634 (-409 (-568))) (-634 (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568)))))))) +((-4069 (((-3 (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568)))) "failed") |#1| (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568)))) (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568))))) 35) (((-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568)))) |#1| (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568)))) (-409 (-568))) 32)) (-2146 (((-634 (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568))))) |#1| (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568)))) (-409 (-568))) 30) (((-634 (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568))))) |#1| (-409 (-568))) 26) (((-634 (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568))))) |#1| (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568))))) 28) (((-634 (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568))))) |#1|) 24))) +(((-1020 |#1|) (-10 -7 (-15 -2146 ((-634 (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568))))) |#1|)) (-15 -2146 ((-634 (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568))))) |#1| (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568)))))) (-15 -2146 ((-634 (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568))))) |#1| (-409 (-568)))) (-15 -2146 ((-634 (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568))))) |#1| (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568)))) (-409 (-568)))) (-15 -4069 ((-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568)))) |#1| (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568)))) (-409 (-568)))) (-15 -4069 ((-3 (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568)))) "failed") |#1| (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568)))) (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568))))))) (-1219 (-409 (-568)))) (T -1020)) +((-4069 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568))))) (-5 *1 (-1020 *3)) (-4 *3 (-1219 (-409 (-568)))))) (-4069 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568))))) (-5 *4 (-409 (-568))) (-5 *1 (-1020 *3)) (-4 *3 (-1219 *4)))) (-2146 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-409 (-568))) (-5 *2 (-634 (-2 (|:| -3028 *5) (|:| -3284 *5)))) (-5 *1 (-1020 *3)) (-4 *3 (-1219 *5)) (-5 *4 (-2 (|:| -3028 *5) (|:| -3284 *5))))) (-2146 (*1 *2 *3 *4) (-12 (-5 *4 (-409 (-568))) (-5 *2 (-634 (-2 (|:| -3028 *4) (|:| -3284 *4)))) (-5 *1 (-1020 *3)) (-4 *3 (-1219 *4)))) (-2146 (*1 *2 *3 *4) (-12 (-5 *2 (-634 (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568)))))) (-5 *1 (-1020 *3)) (-4 *3 (-1219 (-409 (-568)))) (-5 *4 (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568))))))) (-2146 (*1 *2 *3) (-12 (-5 *2 (-634 (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568)))))) (-5 *1 (-1020 *3)) (-4 *3 (-1219 (-409 (-568))))))) +(-10 -7 (-15 -2146 ((-634 (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568))))) |#1|)) (-15 -2146 ((-634 (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568))))) |#1| (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568)))))) (-15 -2146 ((-634 (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568))))) |#1| (-409 (-568)))) (-15 -2146 ((-634 (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568))))) |#1| (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568)))) (-409 (-568)))) (-15 -4069 ((-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568)))) |#1| (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568)))) (-409 (-568)))) (-15 -4069 ((-3 (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568)))) "failed") |#1| (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568)))) (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568))))))) +((-4278 (((-215) $) 6) (((-381) $) 8))) +(((-1021) (-1275)) (T -1021)) +NIL +(-13 (-609 (-215)) (-609 (-381))) +(((-609 (-215)) . T) ((-609 (-381)) . T)) +((-4351 (((-634 (-381)) (-953 (-568)) (-381)) 27) (((-634 (-381)) (-953 (-409 (-568))) (-381)) 26)) (-3105 (((-634 (-634 (-381))) (-634 (-953 (-568))) (-634 (-1161)) (-381)) 36))) +(((-1022) (-10 -7 (-15 -4351 ((-634 (-381)) (-953 (-409 (-568))) (-381))) (-15 -4351 ((-634 (-381)) (-953 (-568)) (-381))) (-15 -3105 ((-634 (-634 (-381))) (-634 (-953 (-568))) (-634 (-1161)) (-381))))) (T -1022)) +((-3105 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-634 (-953 (-568)))) (-5 *4 (-634 (-1161))) (-5 *2 (-634 (-634 (-381)))) (-5 *1 (-1022)) (-5 *5 (-381)))) (-4351 (*1 *2 *3 *4) (-12 (-5 *3 (-953 (-568))) (-5 *2 (-634 (-381))) (-5 *1 (-1022)) (-5 *4 (-381)))) (-4351 (*1 *2 *3 *4) (-12 (-5 *3 (-953 (-409 (-568)))) (-5 *2 (-634 (-381))) (-5 *1 (-1022)) (-5 *4 (-381))))) +(-10 -7 (-15 -4351 ((-634 (-381)) (-953 (-409 (-568))) (-381))) (-15 -4351 ((-634 (-381)) (-953 (-568)) (-381))) (-15 -3105 ((-634 (-634 (-381))) (-634 (-953 (-568))) (-634 (-1161)) (-381)))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) 70)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL)) (-2227 (($ $) NIL)) (-1573 (((-121) $) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-4305 (($ $) NIL)) (-1678 (((-420 $) $) NIL)) (-1902 (($ $) NIL) (($ $ (-763)) NIL) (($ (-409 (-568))) NIL) (($ (-568)) NIL)) (-1497 (((-121) $ $) NIL)) (-3662 (((-568) $) 65)) (-2671 (($) NIL T CONST)) (-2932 (((-3 $ "failed") (-1157 $) (-917) (-850)) NIL) (((-3 $ "failed") (-1157 $) (-917)) 49)) (-3666 (((-3 (-409 (-568)) "failed") $) NIL (|has| (-409 (-568)) (-1037 (-409 (-568))))) (((-3 (-409 (-568)) "failed") $) NIL) (((-3 |#1| "failed") $) 108) (((-3 (-568) "failed") $) NIL (-2198 (|has| (-409 (-568)) (-1037 (-568))) (|has| |#1| (-1037 (-568)))))) (-2854 (((-409 (-568)) $) 14 (|has| (-409 (-568)) (-1037 (-409 (-568))))) (((-409 (-568)) $) 14) ((|#1| $) 109) (((-568) $) NIL (-2198 (|has| (-409 (-568)) (-1037 (-568))) (|has| |#1| (-1037 (-568)))))) (-2937 (($ $ (-850)) 40)) (-3539 (($ $ (-850)) 41)) (-2401 (($ $ $) NIL)) (-3820 (((-409 (-568)) $ $) 18)) (-2925 (((-3 $ "failed") $) 83)) (-2412 (($ $ $) NIL)) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) NIL)) (-3927 (((-121) $) NIL)) (-2033 (((-121) $) 60)) (-2735 (((-121) $) NIL)) (-4044 (($ $ (-568)) NIL)) (-2245 (((-121) $) 63)) (-3562 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-2521 (($ $ $) NIL)) (-3268 (($ $ $) NIL)) (-3442 (((-3 (-1157 $) "failed") $) 78)) (-4461 (((-3 (-850) "failed") $) 77)) (-2031 (((-3 (-1157 $) "failed") $) 75)) (-1341 (((-3 (-1057 $ (-1157 $)) "failed") $) 73)) (-2495 (($ (-634 $)) NIL) (($ $ $) NIL)) (-4487 (((-1143) $) NIL)) (-2081 (($ $) 84)) (-4022 (((-1108) $) NIL)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL)) (-2721 (($ (-634 $)) NIL) (($ $ $) NIL)) (-3848 (((-420 $) $) NIL)) (-4497 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL)) (-2595 (((-3 $ "failed") $ $) NIL)) (-2344 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-2709 (((-763) $) NIL)) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL)) (-2745 (((-850) $) 82) (($ (-568)) NIL) (($ (-409 (-568))) NIL) (($ $) 57) (($ (-409 (-568))) NIL) (($ (-568)) NIL) (($ (-409 (-568))) NIL) (($ |#1|) 111)) (-4078 (((-763)) NIL)) (-1826 (((-121) $ $) NIL)) (-3996 (((-409 (-568)) $ $) 24)) (-4309 (((-634 $) (-1157 $)) 55) (((-634 $) (-1157 (-409 (-568)))) NIL) (((-634 $) (-1157 (-568))) NIL) (((-634 $) (-953 $)) NIL) (((-634 $) (-953 (-409 (-568)))) NIL) (((-634 $) (-953 (-568))) NIL)) (-3440 (($ (-1057 $ (-1157 $)) (-850)) 39)) (-2897 (($ $) 19)) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL)) (-3056 (($) 28 T CONST)) (-1556 (($) 34 T CONST)) (-1751 (((-121) $ $) NIL)) (-1738 (((-121) $ $) NIL)) (-1717 (((-121) $ $) 71)) (-1745 (((-121) $ $) NIL)) (-1732 (((-121) $ $) 21)) (-1779 (($ $ $) 32)) (-1773 (($ $) 33) (($ $ $) 69)) (-1767 (($ $ $) 104)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL) (($ $ (-409 (-568))) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) 92) (($ $ $) 97) (($ (-409 (-568)) $) NIL) (($ $ (-409 (-568))) NIL) (($ (-568) $) 92) (($ $ (-568)) NIL) (($ (-409 (-568)) $) NIL) (($ $ (-409 (-568))) NIL) (($ |#1| $) 96) (($ $ |#1|) NIL))) +(((-1023 |#1|) (-13 (-1012) (-413 |#1|) (-43 |#1|) (-10 -8 (-15 -3440 ($ (-1057 $ (-1157 $)) (-850))) (-15 -1341 ((-3 (-1057 $ (-1157 $)) "failed") $)) (-15 -3820 ((-409 (-568)) $ $)))) (-13 (-840) (-365) (-1021))) (T -1023)) +((-3440 (*1 *1 *2 *3) (-12 (-5 *2 (-1057 (-1023 *4) (-1157 (-1023 *4)))) (-5 *3 (-850)) (-5 *1 (-1023 *4)) (-4 *4 (-13 (-840) (-365) (-1021))))) (-1341 (*1 *2 *1) (|partial| -12 (-5 *2 (-1057 (-1023 *3) (-1157 (-1023 *3)))) (-5 *1 (-1023 *3)) (-4 *3 (-13 (-840) (-365) (-1021))))) (-3820 (*1 *2 *1 *1) (-12 (-5 *2 (-409 (-568))) (-5 *1 (-1023 *3)) (-4 *3 (-13 (-840) (-365) (-1021)))))) +(-13 (-1012) (-413 |#1|) (-43 |#1|) (-10 -8 (-15 -3440 ($ (-1057 $ (-1157 $)) (-850))) (-15 -1341 ((-3 (-1057 $ (-1157 $)) "failed") $)) (-15 -3820 ((-409 (-568)) $ $)))) +((-3115 (((-2 (|:| -3268 (-3 (-568) "failed")) (|:| -1379 (-3 (-568) "failed")) (|:| |ker| (-607 |#2|))) (-123) (-1161) |#2|) 59 (|has| |#1| (-1047)))) (-3282 (((-568) (-568) (-123) (-1161) |#2|) 76)) (-3373 (((-3 (-568) "failed") (-123) (-607 |#2|) (-1161)) 56 (|has| |#1| (-1047)))) (-3508 (((-123) |#2|) 103)) (-3776 ((|#2| |#2|) 102)) (-2988 ((|#2| (-123) (-1161) |#2| |#2| |#2| (-634 |#2|)) 72)) (-3455 ((|#2| (-123) (-1161) |#2| |#2| |#2| (-634 |#2|)) 100))) +(((-1024 |#1| |#2|) (-10 -7 (-15 -2988 (|#2| (-123) (-1161) |#2| |#2| |#2| (-634 |#2|))) (-15 -3455 (|#2| (-123) (-1161) |#2| |#2| |#2| (-634 |#2|))) (-15 -3776 (|#2| |#2|)) (-15 -3508 ((-123) |#2|)) (-15 -3282 ((-568) (-568) (-123) (-1161) |#2|)) (IF (|has| |#1| (-1047)) (PROGN (-15 -3373 ((-3 (-568) "failed") (-123) (-607 |#2|) (-1161))) (-15 -3115 ((-2 (|:| -3268 (-3 (-568) "failed")) (|:| -1379 (-3 (-568) "failed")) (|:| |ker| (-607 |#2|))) (-123) (-1161) |#2|))) |noBranch|)) (-13 (-842) (-558) (-609 (-541))) (-13 (-432 |#1|) (-23) (-1037 (-568)) (-1037 (-1161)) (-895 (-1161)) (-161))) (T -1024)) +((-3115 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-123)) (-5 *4 (-1161)) (-4 *6 (-1047)) (-4 *6 (-13 (-842) (-558) (-609 (-541)))) (-5 *2 (-2 (|:| -3268 (-3 (-568) "failed")) (|:| -1379 (-3 (-568) "failed")) (|:| |ker| (-607 *5)))) (-5 *1 (-1024 *6 *5)) (-4 *5 (-13 (-432 *6) (-23) (-1037 (-568)) (-1037 *4) (-895 *4) (-161))))) (-3373 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-123)) (-5 *4 (-607 *7)) (-4 *7 (-13 (-432 *6) (-23) (-1037 *2) (-1037 *5) (-895 *5) (-161))) (-5 *5 (-1161)) (-4 *6 (-1047)) (-4 *6 (-13 (-842) (-558) (-609 (-541)))) (-5 *2 (-568)) (-5 *1 (-1024 *6 *7)))) (-3282 (*1 *2 *2 *3 *4 *5) (-12 (-5 *3 (-123)) (-5 *2 (-568)) (-5 *4 (-1161)) (-4 *6 (-13 (-842) (-558) (-609 (-541)))) (-5 *1 (-1024 *6 *5)) (-4 *5 (-13 (-432 *6) (-23) (-1037 *2) (-1037 *4) (-895 *4) (-161))))) (-3508 (*1 *2 *3) (-12 (-4 *4 (-13 (-842) (-558) (-609 (-541)))) (-5 *2 (-123)) (-5 *1 (-1024 *4 *3)) (-4 *3 (-13 (-432 *4) (-23) (-1037 (-568)) (-1037 (-1161)) (-895 (-1161)) (-161))))) (-3776 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558) (-609 (-541)))) (-5 *1 (-1024 *3 *2)) (-4 *2 (-13 (-432 *3) (-23) (-1037 (-568)) (-1037 (-1161)) (-895 (-1161)) (-161))))) (-3455 (*1 *2 *3 *4 *2 *2 *2 *5) (-12 (-5 *3 (-123)) (-5 *5 (-634 *2)) (-4 *2 (-13 (-432 *6) (-23) (-1037 (-568)) (-1037 *4) (-895 *4) (-161))) (-5 *4 (-1161)) (-4 *6 (-13 (-842) (-558) (-609 (-541)))) (-5 *1 (-1024 *6 *2)))) (-2988 (*1 *2 *3 *4 *2 *2 *2 *5) (-12 (-5 *3 (-123)) (-5 *5 (-634 *2)) (-4 *2 (-13 (-432 *6) (-23) (-1037 (-568)) (-1037 *4) (-895 *4) (-161))) (-5 *4 (-1161)) (-4 *6 (-13 (-842) (-558) (-609 (-541)))) (-5 *1 (-1024 *6 *2))))) +(-10 -7 (-15 -2988 (|#2| (-123) (-1161) |#2| |#2| |#2| (-634 |#2|))) (-15 -3455 (|#2| (-123) (-1161) |#2| |#2| |#2| (-634 |#2|))) (-15 -3776 (|#2| |#2|)) (-15 -3508 ((-123) |#2|)) (-15 -3282 ((-568) (-568) (-123) (-1161) |#2|)) (IF (|has| |#1| (-1047)) (PROGN (-15 -3373 ((-3 (-568) "failed") (-123) (-607 |#2|) (-1161))) (-15 -3115 ((-2 (|:| -3268 (-3 (-568) "failed")) (|:| -1379 (-3 (-568) "failed")) (|:| |ker| (-607 |#2|))) (-123) (-1161) |#2|))) |noBranch|)) +((-1830 (((-2 (|:| -1853 |#2|) (|:| -4192 (-634 |#1|))) |#2| (-634 |#1|)) 20) ((|#2| |#2| |#1|) 15))) +(((-1025 |#1| |#2|) (-10 -7 (-15 -1830 (|#2| |#2| |#1|)) (-15 -1830 ((-2 (|:| -1853 |#2|) (|:| -4192 (-634 |#1|))) |#2| (-634 |#1|)))) (-365) (-646 |#1|)) (T -1025)) +((-1830 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-5 *2 (-2 (|:| -1853 *3) (|:| -4192 (-634 *5)))) (-5 *1 (-1025 *5 *3)) (-5 *4 (-634 *5)) (-4 *3 (-646 *5)))) (-1830 (*1 *2 *2 *3) (-12 (-4 *3 (-365)) (-5 *1 (-1025 *3 *2)) (-4 *2 (-646 *3))))) +(-10 -7 (-15 -1830 (|#2| |#2| |#1|)) (-15 -1830 ((-2 (|:| -1853 |#2|) (|:| -4192 (-634 |#1|))) |#2| (-634 |#1|)))) +((-2447 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-3432 ((|#1| $ |#1|) 14)) (-2436 ((|#1| $ |#1|) 12)) (-1505 (($ |#1|) 10)) (-4487 (((-1143) $) NIL (|has| |#1| (-1090)))) (-4022 (((-1108) $) NIL (|has| |#1| (-1090)))) (-2779 ((|#1| $) 11)) (-2915 ((|#1| $) 13)) (-2745 (((-850) $) 21 (|has| |#1| (-1090)))) (-1717 (((-121) $ $) 9))) +(((-1026 |#1|) (-13 (-1195) (-10 -8 (-15 -1505 ($ |#1|)) (-15 -2779 (|#1| $)) (-15 -2436 (|#1| $ |#1|)) (-15 -2915 (|#1| $)) (-15 -3432 (|#1| $ |#1|)) (-15 -1717 ((-121) $ $)) (IF (|has| |#1| (-1090)) (-6 (-1090)) |noBranch|))) (-1195)) (T -1026)) +((-1505 (*1 *1 *2) (-12 (-5 *1 (-1026 *2)) (-4 *2 (-1195)))) (-2779 (*1 *2 *1) (-12 (-5 *1 (-1026 *2)) (-4 *2 (-1195)))) (-2436 (*1 *2 *1 *2) (-12 (-5 *1 (-1026 *2)) (-4 *2 (-1195)))) (-2915 (*1 *2 *1) (-12 (-5 *1 (-1026 *2)) (-4 *2 (-1195)))) (-3432 (*1 *2 *1 *2) (-12 (-5 *1 (-1026 *2)) (-4 *2 (-1195)))) (-1717 (*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1026 *3)) (-4 *3 (-1195))))) +(-13 (-1195) (-10 -8 (-15 -1505 ($ |#1|)) (-15 -2779 (|#1| $)) (-15 -2436 (|#1| $ |#1|)) (-15 -2915 (|#1| $)) (-15 -3432 (|#1| $ |#1|)) (-15 -1717 ((-121) $ $)) (IF (|has| |#1| (-1090)) (-6 (-1090)) |noBranch|))) +((-2447 (((-121) $ $) NIL)) (-2387 (((-634 (-2 (|:| -4092 $) (|:| -1798 (-634 |#4|)))) (-634 |#4|)) NIL)) (-2415 (((-634 $) (-634 |#4|)) 104) (((-634 $) (-634 |#4|) (-121)) 105) (((-634 $) (-634 |#4|) (-121) (-121)) 103) (((-634 $) (-634 |#4|) (-121) (-121) (-121) (-121)) 106)) (-2055 (((-634 |#3|) $) NIL)) (-4211 (((-121) $) NIL)) (-3824 (((-121) $) NIL (|has| |#1| (-558)))) (-3300 (((-121) |#4| $) NIL) (((-121) $) NIL)) (-2819 ((|#4| |#4| $) NIL)) (-4305 (((-634 (-2 (|:| |val| |#4|) (|:| -3001 $))) |#4| $) 98)) (-3644 (((-2 (|:| |under| $) (|:| -1519 $) (|:| |upper| $)) $ |#3|) NIL)) (-2510 (((-121) $ (-763)) NIL)) (-2801 (($ (-1 (-121) |#4|) $) NIL (|has| $ (-6 -4519))) (((-3 |#4| "failed") $ |#3|) 53)) (-2671 (($) NIL T CONST)) (-1565 (((-121) $) 26 (|has| |#1| (-558)))) (-3846 (((-121) $ $) NIL (|has| |#1| (-558)))) (-3106 (((-121) $ $) NIL (|has| |#1| (-558)))) (-3695 (((-121) $) NIL (|has| |#1| (-558)))) (-4275 (((-634 |#4|) (-634 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-121) |#4| |#4|)) NIL)) (-2355 (((-634 |#4|) (-634 |#4|) $) NIL (|has| |#1| (-558)))) (-2492 (((-634 |#4|) (-634 |#4|) $) NIL (|has| |#1| (-558)))) (-3666 (((-3 $ "failed") (-634 |#4|)) NIL)) (-2854 (($ (-634 |#4|)) NIL)) (-3935 (((-3 $ "failed") $) 39)) (-2062 ((|#4| |#4| $) 56)) (-3924 (($ $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#4| (-1090))))) (-4328 (($ |#4| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#4| (-1090)))) (($ (-1 (-121) |#4|) $) NIL (|has| $ (-6 -4519)))) (-1500 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 72 (|has| |#1| (-558)))) (-1281 (((-121) |#4| $ (-1 (-121) |#4| |#4|)) NIL)) (-4079 ((|#4| |#4| $) NIL)) (-3092 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4519)) (|has| |#4| (-1090)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4519))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4519))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-121) |#4| |#4|)) NIL)) (-3635 (((-2 (|:| -4092 (-634 |#4|)) (|:| -1798 (-634 |#4|))) $) NIL)) (-1862 (((-121) |#4| $) NIL)) (-4286 (((-121) |#4| $) NIL)) (-3193 (((-121) |#4| $) NIL) (((-121) $) NIL)) (-1796 (((-2 (|:| |val| (-634 |#4|)) (|:| |towers| (-634 $))) (-634 |#4|) (-121) (-121)) 118)) (-4360 (((-634 |#4|) $) 16 (|has| $ (-6 -4519)))) (-1362 (((-121) |#4| $) NIL) (((-121) $) NIL)) (-2356 ((|#3| $) 33)) (-1737 (((-121) $ (-763)) NIL)) (-1979 (((-634 |#4|) $) 17 (|has| $ (-6 -4519)))) (-3109 (((-121) |#4| $) 25 (-12 (|has| $ (-6 -4519)) (|has| |#4| (-1090))))) (-3674 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#4| |#4|) $) 21)) (-1432 (((-634 |#3|) $) NIL)) (-3392 (((-121) |#3| $) NIL)) (-2166 (((-121) $ (-763)) NIL)) (-4487 (((-1143) $) NIL)) (-2717 (((-3 |#4| (-634 $)) |#4| |#4| $) NIL)) (-4330 (((-634 (-2 (|:| |val| |#4|) (|:| -3001 $))) |#4| |#4| $) 96)) (-4162 (((-3 |#4| "failed") $) 37)) (-2335 (((-634 $) |#4| $) 79)) (-1719 (((-3 (-121) (-634 $)) |#4| $) NIL)) (-2632 (((-634 (-2 (|:| |val| (-121)) (|:| -3001 $))) |#4| $) 89) (((-121) |#4| $) 51)) (-3212 (((-634 $) |#4| $) 101) (((-634 $) (-634 |#4|) $) NIL) (((-634 $) (-634 |#4|) (-634 $)) 102) (((-634 $) |#4| (-634 $)) NIL)) (-2099 (((-634 $) (-634 |#4|) (-121) (-121) (-121)) 113)) (-3473 (($ |#4| $) 69) (($ (-634 |#4|) $) 70) (((-634 $) |#4| $ (-121) (-121) (-121) (-121) (-121)) 66)) (-1377 (((-634 |#4|) $) NIL)) (-1415 (((-121) |#4| $) NIL) (((-121) $) NIL)) (-2682 ((|#4| |#4| $) NIL)) (-2644 (((-121) $ $) NIL)) (-2705 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-558)))) (-4347 (((-121) |#4| $) NIL) (((-121) $) NIL)) (-4025 ((|#4| |#4| $) NIL)) (-4022 (((-1108) $) NIL)) (-3876 (((-3 |#4| "failed") $) 35)) (-3775 (((-3 |#4| "failed") (-1 (-121) |#4|) $) NIL)) (-1665 (((-3 $ "failed") $ |#4|) 47)) (-1807 (($ $ |#4|) NIL) (((-634 $) |#4| $) 81) (((-634 $) |#4| (-634 $)) NIL) (((-634 $) (-634 |#4|) $) NIL) (((-634 $) (-634 |#4|) (-634 $)) 76)) (-1387 (((-121) (-1 (-121) |#4|) $) NIL (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 |#4|) (-634 |#4|)) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090)))) (($ $ (-288 |#4|)) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090)))) (($ $ (-634 (-288 |#4|))) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090))))) (-3171 (((-121) $ $) NIL)) (-3084 (((-121) $) 15)) (-3248 (($) 13)) (-3206 (((-763) $) NIL)) (-4168 (((-763) |#4| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#4| (-1090)))) (((-763) (-1 (-121) |#4|) $) NIL (|has| $ (-6 -4519)))) (-3863 (($ $) 12)) (-4278 (((-541) $) NIL (|has| |#4| (-609 (-541))))) (-4287 (($ (-634 |#4|)) 20)) (-1290 (($ $ |#3|) 42)) (-3732 (($ $ |#3|) 43)) (-1567 (($ $) NIL)) (-3944 (($ $ |#3|) NIL)) (-2745 (((-850) $) 31) (((-634 |#4|) $) 40)) (-1878 (((-763) $) NIL (|has| |#3| (-370)))) (-3556 (((-3 (-2 (|:| |bas| $) (|:| -2616 (-634 |#4|))) "failed") (-634 |#4|) (-1 (-121) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2616 (-634 |#4|))) "failed") (-634 |#4|) (-1 (-121) |#4|) (-1 (-121) |#4| |#4|)) NIL)) (-3292 (((-121) $ (-1 (-121) |#4| (-634 |#4|))) NIL)) (-2574 (((-634 $) |#4| $) 78) (((-634 $) |#4| (-634 $)) NIL) (((-634 $) (-634 |#4|) $) NIL) (((-634 $) (-634 |#4|) (-634 $)) NIL)) (-1319 (((-121) (-1 (-121) |#4|) $) NIL (|has| $ (-6 -4519)))) (-2739 (((-634 |#3|) $) NIL)) (-2288 (((-121) |#4| $) NIL)) (-4390 (((-121) |#3| $) 52)) (-1717 (((-121) $ $) NIL)) (-1697 (((-763) $) NIL (|has| $ (-6 -4519))))) +(((-1027 |#1| |#2| |#3| |#4|) (-13 (-1066 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3473 ((-634 $) |#4| $ (-121) (-121) (-121) (-121) (-121))) (-15 -2415 ((-634 $) (-634 |#4|) (-121) (-121))) (-15 -2415 ((-634 $) (-634 |#4|) (-121) (-121) (-121) (-121))) (-15 -2099 ((-634 $) (-634 |#4|) (-121) (-121) (-121))) (-15 -1796 ((-2 (|:| |val| (-634 |#4|)) (|:| |towers| (-634 $))) (-634 |#4|) (-121) (-121))))) (-453) (-788) (-842) (-1061 |#1| |#2| |#3|)) (T -1027)) +((-3473 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-121)) (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-5 *2 (-634 (-1027 *5 *6 *7 *3))) (-5 *1 (-1027 *5 *6 *7 *3)) (-4 *3 (-1061 *5 *6 *7)))) (-2415 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-634 *8)) (-5 *4 (-121)) (-4 *8 (-1061 *5 *6 *7)) (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-5 *2 (-634 (-1027 *5 *6 *7 *8))) (-5 *1 (-1027 *5 *6 *7 *8)))) (-2415 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-634 *8)) (-5 *4 (-121)) (-4 *8 (-1061 *5 *6 *7)) (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-5 *2 (-634 (-1027 *5 *6 *7 *8))) (-5 *1 (-1027 *5 *6 *7 *8)))) (-2099 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-634 *8)) (-5 *4 (-121)) (-4 *8 (-1061 *5 *6 *7)) (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-5 *2 (-634 (-1027 *5 *6 *7 *8))) (-5 *1 (-1027 *5 *6 *7 *8)))) (-1796 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-121)) (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *8 (-1061 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-634 *8)) (|:| |towers| (-634 (-1027 *5 *6 *7 *8))))) (-5 *1 (-1027 *5 *6 *7 *8)) (-5 *3 (-634 *8))))) +(-13 (-1066 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3473 ((-634 $) |#4| $ (-121) (-121) (-121) (-121) (-121))) (-15 -2415 ((-634 $) (-634 |#4|) (-121) (-121))) (-15 -2415 ((-634 $) (-634 |#4|) (-121) (-121) (-121) (-121))) (-15 -2099 ((-634 $) (-634 |#4|) (-121) (-121) (-121))) (-15 -1796 ((-2 (|:| |val| (-634 |#4|)) (|:| |towers| (-634 $))) (-634 |#4|) (-121) (-121))))) +((-2523 (((-634 (-679 |#1|)) (-634 (-679 |#1|))) 56) (((-679 |#1|) (-679 |#1|)) 55) (((-634 (-679 |#1|)) (-634 (-679 |#1|)) (-634 (-679 |#1|))) 54) (((-679 |#1|) (-679 |#1|) (-679 |#1|)) 51)) (-3514 (((-634 (-679 |#1|)) (-634 (-679 |#1|)) (-917)) 50) (((-679 |#1|) (-679 |#1|) (-917)) 49)) (-3125 (((-634 (-679 (-568))) (-634 (-634 (-568)))) 66) (((-634 (-679 (-568))) (-634 (-900 (-568))) (-568)) 65) (((-679 (-568)) (-634 (-568))) 62) (((-679 (-568)) (-900 (-568)) (-568)) 61)) (-3320 (((-679 (-953 |#1|)) (-763)) 79)) (-1882 (((-634 (-679 |#1|)) (-634 (-679 |#1|)) (-917)) 36 (|has| |#1| (-6 (-4521 "*")))) (((-679 |#1|) (-679 |#1|) (-917)) 34 (|has| |#1| (-6 (-4521 "*")))))) +(((-1028 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4521 "*"))) (-15 -1882 ((-679 |#1|) (-679 |#1|) (-917))) |noBranch|) (IF (|has| |#1| (-6 (-4521 "*"))) (-15 -1882 ((-634 (-679 |#1|)) (-634 (-679 |#1|)) (-917))) |noBranch|) (-15 -3320 ((-679 (-953 |#1|)) (-763))) (-15 -3514 ((-679 |#1|) (-679 |#1|) (-917))) (-15 -3514 ((-634 (-679 |#1|)) (-634 (-679 |#1|)) (-917))) (-15 -2523 ((-679 |#1|) (-679 |#1|) (-679 |#1|))) (-15 -2523 ((-634 (-679 |#1|)) (-634 (-679 |#1|)) (-634 (-679 |#1|)))) (-15 -2523 ((-679 |#1|) (-679 |#1|))) (-15 -2523 ((-634 (-679 |#1|)) (-634 (-679 |#1|)))) (-15 -3125 ((-679 (-568)) (-900 (-568)) (-568))) (-15 -3125 ((-679 (-568)) (-634 (-568)))) (-15 -3125 ((-634 (-679 (-568))) (-634 (-900 (-568))) (-568))) (-15 -3125 ((-634 (-679 (-568))) (-634 (-634 (-568)))))) (-1047)) (T -1028)) +((-3125 (*1 *2 *3) (-12 (-5 *3 (-634 (-634 (-568)))) (-5 *2 (-634 (-679 (-568)))) (-5 *1 (-1028 *4)) (-4 *4 (-1047)))) (-3125 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-900 (-568)))) (-5 *4 (-568)) (-5 *2 (-634 (-679 *4))) (-5 *1 (-1028 *5)) (-4 *5 (-1047)))) (-3125 (*1 *2 *3) (-12 (-5 *3 (-634 (-568))) (-5 *2 (-679 (-568))) (-5 *1 (-1028 *4)) (-4 *4 (-1047)))) (-3125 (*1 *2 *3 *4) (-12 (-5 *3 (-900 (-568))) (-5 *4 (-568)) (-5 *2 (-679 *4)) (-5 *1 (-1028 *5)) (-4 *5 (-1047)))) (-2523 (*1 *2 *2) (-12 (-5 *2 (-634 (-679 *3))) (-4 *3 (-1047)) (-5 *1 (-1028 *3)))) (-2523 (*1 *2 *2) (-12 (-5 *2 (-679 *3)) (-4 *3 (-1047)) (-5 *1 (-1028 *3)))) (-2523 (*1 *2 *2 *2) (-12 (-5 *2 (-634 (-679 *3))) (-4 *3 (-1047)) (-5 *1 (-1028 *3)))) (-2523 (*1 *2 *2 *2) (-12 (-5 *2 (-679 *3)) (-4 *3 (-1047)) (-5 *1 (-1028 *3)))) (-3514 (*1 *2 *2 *3) (-12 (-5 *2 (-634 (-679 *4))) (-5 *3 (-917)) (-4 *4 (-1047)) (-5 *1 (-1028 *4)))) (-3514 (*1 *2 *2 *3) (-12 (-5 *2 (-679 *4)) (-5 *3 (-917)) (-4 *4 (-1047)) (-5 *1 (-1028 *4)))) (-3320 (*1 *2 *3) (-12 (-5 *3 (-763)) (-5 *2 (-679 (-953 *4))) (-5 *1 (-1028 *4)) (-4 *4 (-1047)))) (-1882 (*1 *2 *2 *3) (-12 (-5 *2 (-634 (-679 *4))) (-5 *3 (-917)) (|has| *4 (-6 (-4521 "*"))) (-4 *4 (-1047)) (-5 *1 (-1028 *4)))) (-1882 (*1 *2 *2 *3) (-12 (-5 *2 (-679 *4)) (-5 *3 (-917)) (|has| *4 (-6 (-4521 "*"))) (-4 *4 (-1047)) (-5 *1 (-1028 *4))))) +(-10 -7 (IF (|has| |#1| (-6 (-4521 "*"))) (-15 -1882 ((-679 |#1|) (-679 |#1|) (-917))) |noBranch|) (IF (|has| |#1| (-6 (-4521 "*"))) (-15 -1882 ((-634 (-679 |#1|)) (-634 (-679 |#1|)) (-917))) |noBranch|) (-15 -3320 ((-679 (-953 |#1|)) (-763))) (-15 -3514 ((-679 |#1|) (-679 |#1|) (-917))) (-15 -3514 ((-634 (-679 |#1|)) (-634 (-679 |#1|)) (-917))) (-15 -2523 ((-679 |#1|) (-679 |#1|) (-679 |#1|))) (-15 -2523 ((-634 (-679 |#1|)) (-634 (-679 |#1|)) (-634 (-679 |#1|)))) (-15 -2523 ((-679 |#1|) (-679 |#1|))) (-15 -2523 ((-634 (-679 |#1|)) (-634 (-679 |#1|)))) (-15 -3125 ((-679 (-568)) (-900 (-568)) (-568))) (-15 -3125 ((-679 (-568)) (-634 (-568)))) (-15 -3125 ((-634 (-679 (-568))) (-634 (-900 (-568))) (-568))) (-15 -3125 ((-634 (-679 (-568))) (-634 (-634 (-568)))))) +((-1593 (((-679 |#1|) (-634 (-679 |#1|)) (-1244 |#1|)) 48 (|has| |#1| (-301)))) (-3969 (((-634 (-634 (-679 |#1|))) (-634 (-679 |#1|)) (-1244 (-1244 |#1|))) 71 (|has| |#1| (-365))) (((-634 (-634 (-679 |#1|))) (-634 (-679 |#1|)) (-1244 |#1|)) 69 (|has| |#1| (-365)))) (-2834 (((-1244 |#1|) (-634 (-1244 |#1|)) (-568)) 73 (-12 (|has| |#1| (-365)) (|has| |#1| (-370))))) (-2609 (((-634 (-634 (-679 |#1|))) (-634 (-679 |#1|)) (-917)) 78 (-12 (|has| |#1| (-365)) (|has| |#1| (-370)))) (((-634 (-634 (-679 |#1|))) (-634 (-679 |#1|)) (-121)) 76 (-12 (|has| |#1| (-365)) (|has| |#1| (-370)))) (((-634 (-634 (-679 |#1|))) (-634 (-679 |#1|))) 75 (-12 (|has| |#1| (-365)) (|has| |#1| (-370)))) (((-634 (-634 (-679 |#1|))) (-634 (-679 |#1|)) (-121) (-568) (-568)) 74 (-12 (|has| |#1| (-365)) (|has| |#1| (-370))))) (-1433 (((-121) (-634 (-679 |#1|))) 67 (|has| |#1| (-365))) (((-121) (-634 (-679 |#1|)) (-568)) 66 (|has| |#1| (-365)))) (-2229 (((-1244 (-1244 |#1|)) (-634 (-679 |#1|)) (-1244 |#1|)) 46 (|has| |#1| (-301)))) (-1772 (((-679 |#1|) (-634 (-679 |#1|)) (-679 |#1|)) 32)) (-2273 (((-679 |#1|) (-1244 (-1244 |#1|))) 29)) (-2004 (((-679 |#1|) (-634 (-679 |#1|)) (-634 (-679 |#1|)) (-568)) 62 (|has| |#1| (-365))) (((-679 |#1|) (-634 (-679 |#1|)) (-634 (-679 |#1|))) 61 (|has| |#1| (-365))) (((-679 |#1|) (-634 (-679 |#1|)) (-634 (-679 |#1|)) (-121) (-568)) 60 (|has| |#1| (-365))))) +(((-1029 |#1|) (-10 -7 (-15 -2273 ((-679 |#1|) (-1244 (-1244 |#1|)))) (-15 -1772 ((-679 |#1|) (-634 (-679 |#1|)) (-679 |#1|))) (IF (|has| |#1| (-301)) (PROGN (-15 -2229 ((-1244 (-1244 |#1|)) (-634 (-679 |#1|)) (-1244 |#1|))) (-15 -1593 ((-679 |#1|) (-634 (-679 |#1|)) (-1244 |#1|)))) |noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -2004 ((-679 |#1|) (-634 (-679 |#1|)) (-634 (-679 |#1|)) (-121) (-568))) (-15 -2004 ((-679 |#1|) (-634 (-679 |#1|)) (-634 (-679 |#1|)))) (-15 -2004 ((-679 |#1|) (-634 (-679 |#1|)) (-634 (-679 |#1|)) (-568))) (-15 -1433 ((-121) (-634 (-679 |#1|)) (-568))) (-15 -1433 ((-121) (-634 (-679 |#1|)))) (-15 -3969 ((-634 (-634 (-679 |#1|))) (-634 (-679 |#1|)) (-1244 |#1|))) (-15 -3969 ((-634 (-634 (-679 |#1|))) (-634 (-679 |#1|)) (-1244 (-1244 |#1|))))) |noBranch|) (IF (|has| |#1| (-370)) (IF (|has| |#1| (-365)) (PROGN (-15 -2609 ((-634 (-634 (-679 |#1|))) (-634 (-679 |#1|)) (-121) (-568) (-568))) (-15 -2609 ((-634 (-634 (-679 |#1|))) (-634 (-679 |#1|)))) (-15 -2609 ((-634 (-634 (-679 |#1|))) (-634 (-679 |#1|)) (-121))) (-15 -2609 ((-634 (-634 (-679 |#1|))) (-634 (-679 |#1|)) (-917))) (-15 -2834 ((-1244 |#1|) (-634 (-1244 |#1|)) (-568)))) |noBranch|) |noBranch|)) (-1047)) (T -1029)) +((-2834 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-1244 *5))) (-5 *4 (-568)) (-5 *2 (-1244 *5)) (-5 *1 (-1029 *5)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1047)))) (-2609 (*1 *2 *3 *4) (-12 (-5 *4 (-917)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1047)) (-5 *2 (-634 (-634 (-679 *5)))) (-5 *1 (-1029 *5)) (-5 *3 (-634 (-679 *5))))) (-2609 (*1 *2 *3 *4) (-12 (-5 *4 (-121)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1047)) (-5 *2 (-634 (-634 (-679 *5)))) (-5 *1 (-1029 *5)) (-5 *3 (-634 (-679 *5))))) (-2609 (*1 *2 *3) (-12 (-4 *4 (-365)) (-4 *4 (-370)) (-4 *4 (-1047)) (-5 *2 (-634 (-634 (-679 *4)))) (-5 *1 (-1029 *4)) (-5 *3 (-634 (-679 *4))))) (-2609 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-121)) (-5 *5 (-568)) (-4 *6 (-365)) (-4 *6 (-370)) (-4 *6 (-1047)) (-5 *2 (-634 (-634 (-679 *6)))) (-5 *1 (-1029 *6)) (-5 *3 (-634 (-679 *6))))) (-3969 (*1 *2 *3 *4) (-12 (-5 *4 (-1244 (-1244 *5))) (-4 *5 (-365)) (-4 *5 (-1047)) (-5 *2 (-634 (-634 (-679 *5)))) (-5 *1 (-1029 *5)) (-5 *3 (-634 (-679 *5))))) (-3969 (*1 *2 *3 *4) (-12 (-5 *4 (-1244 *5)) (-4 *5 (-365)) (-4 *5 (-1047)) (-5 *2 (-634 (-634 (-679 *5)))) (-5 *1 (-1029 *5)) (-5 *3 (-634 (-679 *5))))) (-1433 (*1 *2 *3) (-12 (-5 *3 (-634 (-679 *4))) (-4 *4 (-365)) (-4 *4 (-1047)) (-5 *2 (-121)) (-5 *1 (-1029 *4)))) (-1433 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-679 *5))) (-5 *4 (-568)) (-4 *5 (-365)) (-4 *5 (-1047)) (-5 *2 (-121)) (-5 *1 (-1029 *5)))) (-2004 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-634 (-679 *5))) (-5 *4 (-568)) (-5 *2 (-679 *5)) (-5 *1 (-1029 *5)) (-4 *5 (-365)) (-4 *5 (-1047)))) (-2004 (*1 *2 *3 *3) (-12 (-5 *3 (-634 (-679 *4))) (-5 *2 (-679 *4)) (-5 *1 (-1029 *4)) (-4 *4 (-365)) (-4 *4 (-1047)))) (-2004 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-634 (-679 *6))) (-5 *4 (-121)) (-5 *5 (-568)) (-5 *2 (-679 *6)) (-5 *1 (-1029 *6)) (-4 *6 (-365)) (-4 *6 (-1047)))) (-1593 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-679 *5))) (-5 *4 (-1244 *5)) (-4 *5 (-301)) (-4 *5 (-1047)) (-5 *2 (-679 *5)) (-5 *1 (-1029 *5)))) (-2229 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-679 *5))) (-4 *5 (-301)) (-4 *5 (-1047)) (-5 *2 (-1244 (-1244 *5))) (-5 *1 (-1029 *5)) (-5 *4 (-1244 *5)))) (-1772 (*1 *2 *3 *2) (-12 (-5 *3 (-634 (-679 *4))) (-5 *2 (-679 *4)) (-4 *4 (-1047)) (-5 *1 (-1029 *4)))) (-2273 (*1 *2 *3) (-12 (-5 *3 (-1244 (-1244 *4))) (-4 *4 (-1047)) (-5 *2 (-679 *4)) (-5 *1 (-1029 *4))))) +(-10 -7 (-15 -2273 ((-679 |#1|) (-1244 (-1244 |#1|)))) (-15 -1772 ((-679 |#1|) (-634 (-679 |#1|)) (-679 |#1|))) (IF (|has| |#1| (-301)) (PROGN (-15 -2229 ((-1244 (-1244 |#1|)) (-634 (-679 |#1|)) (-1244 |#1|))) (-15 -1593 ((-679 |#1|) (-634 (-679 |#1|)) (-1244 |#1|)))) |noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -2004 ((-679 |#1|) (-634 (-679 |#1|)) (-634 (-679 |#1|)) (-121) (-568))) (-15 -2004 ((-679 |#1|) (-634 (-679 |#1|)) (-634 (-679 |#1|)))) (-15 -2004 ((-679 |#1|) (-634 (-679 |#1|)) (-634 (-679 |#1|)) (-568))) (-15 -1433 ((-121) (-634 (-679 |#1|)) (-568))) (-15 -1433 ((-121) (-634 (-679 |#1|)))) (-15 -3969 ((-634 (-634 (-679 |#1|))) (-634 (-679 |#1|)) (-1244 |#1|))) (-15 -3969 ((-634 (-634 (-679 |#1|))) (-634 (-679 |#1|)) (-1244 (-1244 |#1|))))) |noBranch|) (IF (|has| |#1| (-370)) (IF (|has| |#1| (-365)) (PROGN (-15 -2609 ((-634 (-634 (-679 |#1|))) (-634 (-679 |#1|)) (-121) (-568) (-568))) (-15 -2609 ((-634 (-634 (-679 |#1|))) (-634 (-679 |#1|)))) (-15 -2609 ((-634 (-634 (-679 |#1|))) (-634 (-679 |#1|)) (-121))) (-15 -2609 ((-634 (-634 (-679 |#1|))) (-634 (-679 |#1|)) (-917))) (-15 -2834 ((-1244 |#1|) (-634 (-1244 |#1|)) (-568)))) |noBranch|) |noBranch|)) +((-3063 ((|#1| (-917) |#1|) 9))) +(((-1030 |#1|) (-10 -7 (-15 -3063 (|#1| (-917) |#1|))) (-13 (-1090) (-10 -8 (-15 -1767 ($ $ $))))) (T -1030)) +((-3063 (*1 *2 *3 *2) (-12 (-5 *3 (-917)) (-5 *1 (-1030 *2)) (-4 *2 (-13 (-1090) (-10 -8 (-15 -1767 ($ $ $)))))))) +(-10 -7 (-15 -3063 (|#1| (-917) |#1|))) +((-2266 (((-634 (-2 (|:| |radval| (-310 (-568))) (|:| |radmult| (-568)) (|:| |radvect| (-634 (-679 (-310 (-568))))))) (-679 (-409 (-953 (-568))))) 58)) (-1968 (((-634 (-679 (-310 (-568)))) (-310 (-568)) (-679 (-409 (-953 (-568))))) 48)) (-3825 (((-634 (-310 (-568))) (-679 (-409 (-953 (-568))))) 41)) (-3830 (((-634 (-679 (-310 (-568)))) (-679 (-409 (-953 (-568))))) 67)) (-3170 (((-679 (-310 (-568))) (-679 (-310 (-568)))) 33)) (-2275 (((-634 (-679 (-310 (-568)))) (-634 (-679 (-310 (-568))))) 61)) (-2912 (((-3 (-679 (-310 (-568))) "failed") (-679 (-409 (-953 (-568))))) 65))) +(((-1031) (-10 -7 (-15 -2266 ((-634 (-2 (|:| |radval| (-310 (-568))) (|:| |radmult| (-568)) (|:| |radvect| (-634 (-679 (-310 (-568))))))) (-679 (-409 (-953 (-568)))))) (-15 -1968 ((-634 (-679 (-310 (-568)))) (-310 (-568)) (-679 (-409 (-953 (-568)))))) (-15 -3825 ((-634 (-310 (-568))) (-679 (-409 (-953 (-568)))))) (-15 -2912 ((-3 (-679 (-310 (-568))) "failed") (-679 (-409 (-953 (-568)))))) (-15 -3170 ((-679 (-310 (-568))) (-679 (-310 (-568))))) (-15 -2275 ((-634 (-679 (-310 (-568)))) (-634 (-679 (-310 (-568)))))) (-15 -3830 ((-634 (-679 (-310 (-568)))) (-679 (-409 (-953 (-568)))))))) (T -1031)) +((-3830 (*1 *2 *3) (-12 (-5 *3 (-679 (-409 (-953 (-568))))) (-5 *2 (-634 (-679 (-310 (-568))))) (-5 *1 (-1031)))) (-2275 (*1 *2 *2) (-12 (-5 *2 (-634 (-679 (-310 (-568))))) (-5 *1 (-1031)))) (-3170 (*1 *2 *2) (-12 (-5 *2 (-679 (-310 (-568)))) (-5 *1 (-1031)))) (-2912 (*1 *2 *3) (|partial| -12 (-5 *3 (-679 (-409 (-953 (-568))))) (-5 *2 (-679 (-310 (-568)))) (-5 *1 (-1031)))) (-3825 (*1 *2 *3) (-12 (-5 *3 (-679 (-409 (-953 (-568))))) (-5 *2 (-634 (-310 (-568)))) (-5 *1 (-1031)))) (-1968 (*1 *2 *3 *4) (-12 (-5 *4 (-679 (-409 (-953 (-568))))) (-5 *2 (-634 (-679 (-310 (-568))))) (-5 *1 (-1031)) (-5 *3 (-310 (-568))))) (-2266 (*1 *2 *3) (-12 (-5 *3 (-679 (-409 (-953 (-568))))) (-5 *2 (-634 (-2 (|:| |radval| (-310 (-568))) (|:| |radmult| (-568)) (|:| |radvect| (-634 (-679 (-310 (-568)))))))) (-5 *1 (-1031))))) +(-10 -7 (-15 -2266 ((-634 (-2 (|:| |radval| (-310 (-568))) (|:| |radmult| (-568)) (|:| |radvect| (-634 (-679 (-310 (-568))))))) (-679 (-409 (-953 (-568)))))) (-15 -1968 ((-634 (-679 (-310 (-568)))) (-310 (-568)) (-679 (-409 (-953 (-568)))))) (-15 -3825 ((-634 (-310 (-568))) (-679 (-409 (-953 (-568)))))) (-15 -2912 ((-3 (-679 (-310 (-568))) "failed") (-679 (-409 (-953 (-568)))))) (-15 -3170 ((-679 (-310 (-568))) (-679 (-310 (-568))))) (-15 -2275 ((-634 (-679 (-310 (-568)))) (-634 (-679 (-310 (-568)))))) (-15 -3830 ((-634 (-679 (-310 (-568)))) (-679 (-409 (-953 (-568))))))) +((-1876 ((|#1| |#1| (-917)) 9))) +(((-1032 |#1|) (-10 -7 (-15 -1876 (|#1| |#1| (-917)))) (-13 (-1090) (-10 -8 (-15 * ($ $ $))))) (T -1032)) +((-1876 (*1 *2 *2 *3) (-12 (-5 *3 (-917)) (-5 *1 (-1032 *2)) (-4 *2 (-13 (-1090) (-10 -8 (-15 * ($ $ $)))))))) +(-10 -7 (-15 -1876 (|#1| |#1| (-917)))) +((-2745 ((|#1| (-305)) 11) (((-1249) |#1|) 9))) +(((-1033 |#1|) (-10 -7 (-15 -2745 ((-1249) |#1|)) (-15 -2745 (|#1| (-305)))) (-1195)) (T -1033)) +((-2745 (*1 *2 *3) (-12 (-5 *3 (-305)) (-5 *1 (-1033 *2)) (-4 *2 (-1195)))) (-2745 (*1 *2 *3) (-12 (-5 *2 (-1249)) (-5 *1 (-1033 *3)) (-4 *3 (-1195))))) +(-10 -7 (-15 -2745 ((-1249) |#1|)) (-15 -2745 (|#1| (-305)))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-2671 (($) NIL T CONST)) (-3092 (($ |#4|) 25)) (-2925 (((-3 $ "failed") $) NIL)) (-2735 (((-121) $) NIL)) (-3085 ((|#4| $) 27)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2745 (((-850) $) 46) (($ (-568)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-4078 (((-763)) 43)) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (-3056 (($) 21 T CONST)) (-1556 (($) 23 T CONST)) (-1717 (((-121) $ $) 40)) (-1773 (($ $) 31) (($ $ $) NIL)) (-1767 (($ $ $) 29)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) +(((-1034 |#1| |#2| |#3| |#4| |#5|) (-13 (-172) (-43 |#1|) (-10 -8 (-15 -3092 ($ |#4|)) (-15 -2745 ($ |#4|)) (-15 -3085 (|#4| $)))) (-365) (-788) (-842) (-950 |#1| |#2| |#3|) (-634 |#4|)) (T -1034)) +((-3092 (*1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *1 (-1034 *3 *4 *5 *2 *6)) (-4 *2 (-950 *3 *4 *5)) (-14 *6 (-634 *2)))) (-2745 (*1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *1 (-1034 *3 *4 *5 *2 *6)) (-4 *2 (-950 *3 *4 *5)) (-14 *6 (-634 *2)))) (-3085 (*1 *2 *1) (-12 (-4 *2 (-950 *3 *4 *5)) (-5 *1 (-1034 *3 *4 *5 *2 *6)) (-4 *3 (-365)) (-4 *4 (-788)) (-4 *5 (-842)) (-14 *6 (-634 *2))))) +(-13 (-172) (-43 |#1|) (-10 -8 (-15 -3092 ($ |#4|)) (-15 -2745 ($ |#4|)) (-15 -3085 (|#4| $)))) +((-2447 (((-121) $ $) NIL (-2198 (|has| (-57) (-1090)) (|has| (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (-1090))))) (-2986 (($) NIL) (($ (-634 (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))))) NIL)) (-1868 (((-1249) $ (-1161) (-1161)) NIL (|has| $ (-6 -4520)))) (-2510 (((-121) $ (-763)) NIL)) (-4358 (((-121) (-121)) 39)) (-3843 (((-121) (-121)) 38)) (-2436 (((-57) $ (-1161) (-57)) NIL)) (-3507 (($ (-1 (-121) (-2 (|:| -3649 (-1161)) (|:| -4083 (-57)))) $) NIL (|has| $ (-6 -4519)))) (-2801 (($ (-1 (-121) (-2 (|:| -3649 (-1161)) (|:| -4083 (-57)))) $) NIL (|has| $ (-6 -4519)))) (-2674 (((-3 (-57) "failed") (-1161) $) NIL)) (-2671 (($) NIL T CONST)) (-3924 (($ $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (-1090))))) (-3405 (($ (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) $) NIL (|has| $ (-6 -4519))) (($ (-1 (-121) (-2 (|:| -3649 (-1161)) (|:| -4083 (-57)))) $) NIL (|has| $ (-6 -4519))) (((-3 (-57) "failed") (-1161) $) NIL)) (-4328 (($ (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (-1090)))) (($ (-1 (-121) (-2 (|:| -3649 (-1161)) (|:| -4083 (-57)))) $) NIL (|has| $ (-6 -4519)))) (-3092 (((-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (-1 (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (-2 (|:| -3649 (-1161)) (|:| -4083 (-57)))) $ (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (-2 (|:| -3649 (-1161)) (|:| -4083 (-57)))) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (-1090)))) (((-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (-1 (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (-2 (|:| -3649 (-1161)) (|:| -4083 (-57)))) $ (-2 (|:| -3649 (-1161)) (|:| -4083 (-57)))) NIL (|has| $ (-6 -4519))) (((-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (-1 (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (-2 (|:| -3649 (-1161)) (|:| -4083 (-57)))) $) NIL (|has| $ (-6 -4519)))) (-3989 (((-57) $ (-1161) (-57)) NIL (|has| $ (-6 -4520)))) (-2602 (((-57) $ (-1161)) NIL)) (-4360 (((-634 (-2 (|:| -3649 (-1161)) (|:| -4083 (-57)))) $) NIL (|has| $ (-6 -4519))) (((-634 (-57)) $) NIL (|has| $ (-6 -4519)))) (-1737 (((-121) $ (-763)) NIL)) (-1881 (((-1161) $) NIL (|has| (-1161) (-842)))) (-1979 (((-634 (-2 (|:| -3649 (-1161)) (|:| -4083 (-57)))) $) NIL (|has| $ (-6 -4519))) (((-634 (-57)) $) NIL (|has| $ (-6 -4519)))) (-3109 (((-121) (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (-1090)))) (((-121) (-57) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-57) (-1090))))) (-2223 (((-1161) $) NIL (|has| (-1161) (-842)))) (-3674 (($ (-1 (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (-2 (|:| -3649 (-1161)) (|:| -4083 (-57)))) $) NIL (|has| $ (-6 -4520))) (($ (-1 (-57) (-57)) $) NIL (|has| $ (-6 -4520)))) (-2795 (($ (-1 (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (-2 (|:| -3649 (-1161)) (|:| -4083 (-57)))) $) NIL) (($ (-1 (-57) (-57)) $) NIL) (($ (-1 (-57) (-57) (-57)) $ $) NIL)) (-2166 (((-121) $ (-763)) NIL)) (-4487 (((-1143) $) NIL (-2198 (|has| (-57) (-1090)) (|has| (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (-1090))))) (-1946 (((-634 (-1161)) $) 34)) (-3548 (((-121) (-1161) $) NIL)) (-1890 (((-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) $) NIL)) (-4450 (($ (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) $) NIL)) (-4174 (((-634 (-1161)) $) NIL)) (-3578 (((-121) (-1161) $) NIL)) (-4022 (((-1108) $) NIL (-2198 (|has| (-57) (-1090)) (|has| (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (-1090))))) (-3876 (((-57) $) NIL (|has| (-1161) (-842)))) (-3775 (((-3 (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) "failed") (-1 (-121) (-2 (|:| -3649 (-1161)) (|:| -4083 (-57)))) $) NIL)) (-3724 (($ $ (-57)) NIL (|has| $ (-6 -4520)))) (-1315 (((-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) $) NIL)) (-1387 (((-121) (-1 (-121) (-2 (|:| -3649 (-1161)) (|:| -4083 (-57)))) $) NIL (|has| $ (-6 -4519))) (((-121) (-1 (-121) (-57)) $) NIL (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 (-2 (|:| -3649 (-1161)) (|:| -4083 (-57)))))) NIL (-12 (|has| (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (-303 (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))))) (|has| (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (-1090)))) (($ $ (-288 (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))))) NIL (-12 (|has| (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (-303 (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))))) (|has| (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (-1090)))) (($ $ (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (-2 (|:| -3649 (-1161)) (|:| -4083 (-57)))) NIL (-12 (|has| (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (-303 (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))))) (|has| (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (-1090)))) (($ $ (-634 (-2 (|:| -3649 (-1161)) (|:| -4083 (-57)))) (-634 (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))))) NIL (-12 (|has| (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (-303 (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))))) (|has| (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (-1090)))) (($ $ (-634 (-57)) (-634 (-57))) NIL (-12 (|has| (-57) (-303 (-57))) (|has| (-57) (-1090)))) (($ $ (-57) (-57)) NIL (-12 (|has| (-57) (-303 (-57))) (|has| (-57) (-1090)))) (($ $ (-288 (-57))) NIL (-12 (|has| (-57) (-303 (-57))) (|has| (-57) (-1090)))) (($ $ (-634 (-288 (-57)))) NIL (-12 (|has| (-57) (-303 (-57))) (|has| (-57) (-1090))))) (-3171 (((-121) $ $) NIL)) (-4467 (((-121) (-57) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-57) (-1090))))) (-2041 (((-634 (-57)) $) NIL)) (-3084 (((-121) $) NIL)) (-3248 (($) NIL)) (-2779 (((-57) $ (-1161)) 35) (((-57) $ (-1161) (-57)) NIL)) (-2085 (($) NIL) (($ (-634 (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))))) NIL)) (-4168 (((-763) (-1 (-121) (-2 (|:| -3649 (-1161)) (|:| -4083 (-57)))) $) NIL (|has| $ (-6 -4519))) (((-763) (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (-1090)))) (((-763) (-57) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-57) (-1090)))) (((-763) (-1 (-121) (-57)) $) NIL (|has| $ (-6 -4519)))) (-3863 (($ $) NIL)) (-4278 (((-541) $) NIL (|has| (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (-609 (-541))))) (-4287 (($ (-634 (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))))) NIL)) (-2745 (((-850) $) 37 (-2198 (|has| (-57) (-1090)) (|has| (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (-1090))))) (-2367 (($ (-634 (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))))) NIL)) (-1319 (((-121) (-1 (-121) (-2 (|:| -3649 (-1161)) (|:| -4083 (-57)))) $) NIL (|has| $ (-6 -4519))) (((-121) (-1 (-121) (-57)) $) NIL (|has| $ (-6 -4519)))) (-1717 (((-121) $ $) NIL (-2198 (|has| (-57) (-1090)) (|has| (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (-1090))))) (-1697 (((-763) $) NIL (|has| $ (-6 -4519))))) +(((-1035) (-13 (-1172 (-1161) (-57)) (-10 -7 (-15 -4358 ((-121) (-121))) (-15 -3843 ((-121) (-121))) (-6 -4519)))) (T -1035)) +((-4358 (*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-1035)))) (-3843 (*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-1035))))) +(-13 (-1172 (-1161) (-57)) (-10 -7 (-15 -4358 ((-121) (-121))) (-15 -3843 ((-121) (-121))) (-6 -4519))) +((-2854 ((|#2| $) 10))) +(((-1036 |#1| |#2|) (-10 -8 (-15 -2854 (|#2| |#1|))) (-1037 |#2|) (-1195)) (T -1036)) +NIL +(-10 -8 (-15 -2854 (|#2| |#1|))) +((-3666 (((-3 |#1| "failed") $) 7)) (-2854 ((|#1| $) 8)) (-2745 (($ |#1|) 6))) +(((-1037 |#1|) (-1275) (-1195)) (T -1037)) +((-2854 (*1 *2 *1) (-12 (-4 *1 (-1037 *2)) (-4 *2 (-1195)))) (-3666 (*1 *2 *1) (|partial| -12 (-4 *1 (-1037 *2)) (-4 *2 (-1195)))) (-2745 (*1 *1 *2) (-12 (-4 *1 (-1037 *2)) (-4 *2 (-1195))))) +(-13 (-10 -8 (-15 -2745 ($ |t#1|)) (-15 -3666 ((-3 |t#1| "failed") $)) (-15 -2854 (|t#1| $)))) +((-4451 (((-634 (-634 (-288 (-409 (-953 |#2|))))) (-634 (-953 |#2|)) (-634 (-1161))) 35))) +(((-1038 |#1| |#2|) (-10 -7 (-15 -4451 ((-634 (-634 (-288 (-409 (-953 |#2|))))) (-634 (-953 |#2|)) (-634 (-1161))))) (-558) (-13 (-558) (-1037 |#1|))) (T -1038)) +((-4451 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-953 *6))) (-5 *4 (-634 (-1161))) (-4 *6 (-13 (-558) (-1037 *5))) (-4 *5 (-558)) (-5 *2 (-634 (-634 (-288 (-409 (-953 *6)))))) (-5 *1 (-1038 *5 *6))))) +(-10 -7 (-15 -4451 ((-634 (-634 (-288 (-409 (-953 |#2|))))) (-634 (-953 |#2|)) (-634 (-1161))))) +((-4024 (((-381)) 15)) (-3703 (((-1 (-381)) (-381) (-381)) 20)) (-3492 (((-1 (-381)) (-763)) 42)) (-3681 (((-381)) 33)) (-2242 (((-1 (-381)) (-381) (-381)) 34)) (-3234 (((-381)) 26)) (-4327 (((-1 (-381)) (-381)) 27)) (-2444 (((-381) (-763)) 37)) (-2692 (((-1 (-381)) (-763)) 38)) (-1478 (((-1 (-381)) (-763) (-763)) 41)) (-3792 (((-1 (-381)) (-763) (-763)) 39))) +(((-1039) (-10 -7 (-15 -4024 ((-381))) (-15 -3681 ((-381))) (-15 -3234 ((-381))) (-15 -2444 ((-381) (-763))) (-15 -3703 ((-1 (-381)) (-381) (-381))) (-15 -2242 ((-1 (-381)) (-381) (-381))) (-15 -4327 ((-1 (-381)) (-381))) (-15 -2692 ((-1 (-381)) (-763))) (-15 -3792 ((-1 (-381)) (-763) (-763))) (-15 -1478 ((-1 (-381)) (-763) (-763))) (-15 -3492 ((-1 (-381)) (-763))))) (T -1039)) +((-3492 (*1 *2 *3) (-12 (-5 *3 (-763)) (-5 *2 (-1 (-381))) (-5 *1 (-1039)))) (-1478 (*1 *2 *3 *3) (-12 (-5 *3 (-763)) (-5 *2 (-1 (-381))) (-5 *1 (-1039)))) (-3792 (*1 *2 *3 *3) (-12 (-5 *3 (-763)) (-5 *2 (-1 (-381))) (-5 *1 (-1039)))) (-2692 (*1 *2 *3) (-12 (-5 *3 (-763)) (-5 *2 (-1 (-381))) (-5 *1 (-1039)))) (-4327 (*1 *2 *3) (-12 (-5 *2 (-1 (-381))) (-5 *1 (-1039)) (-5 *3 (-381)))) (-2242 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-381))) (-5 *1 (-1039)) (-5 *3 (-381)))) (-3703 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-381))) (-5 *1 (-1039)) (-5 *3 (-381)))) (-2444 (*1 *2 *3) (-12 (-5 *3 (-763)) (-5 *2 (-381)) (-5 *1 (-1039)))) (-3234 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1039)))) (-3681 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1039)))) (-4024 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1039))))) +(-10 -7 (-15 -4024 ((-381))) (-15 -3681 ((-381))) (-15 -3234 ((-381))) (-15 -2444 ((-381) (-763))) (-15 -3703 ((-1 (-381)) (-381) (-381))) (-15 -2242 ((-1 (-381)) (-381) (-381))) (-15 -4327 ((-1 (-381)) (-381))) (-15 -2692 ((-1 (-381)) (-763))) (-15 -3792 ((-1 (-381)) (-763) (-763))) (-15 -1478 ((-1 (-381)) (-763) (-763))) (-15 -3492 ((-1 (-381)) (-763)))) +((-3848 (((-420 |#1|) |#1|) 31))) +(((-1040 |#1|) (-10 -7 (-15 -3848 ((-420 |#1|) |#1|))) (-1219 (-409 (-953 (-568))))) (T -1040)) +((-3848 (*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-1040 *3)) (-4 *3 (-1219 (-409 (-953 (-568)))))))) +(-10 -7 (-15 -3848 ((-420 |#1|) |#1|))) +((-4269 (((-409 (-420 (-953 |#1|))) (-409 (-953 |#1|))) 14))) +(((-1041 |#1|) (-10 -7 (-15 -4269 ((-409 (-420 (-953 |#1|))) (-409 (-953 |#1|))))) (-301)) (T -1041)) +((-4269 (*1 *2 *3) (-12 (-5 *3 (-409 (-953 *4))) (-4 *4 (-301)) (-5 *2 (-409 (-420 (-953 *4)))) (-5 *1 (-1041 *4))))) +(-10 -7 (-15 -4269 ((-409 (-420 (-953 |#1|))) (-409 (-953 |#1|))))) +((-2055 (((-634 (-1161)) (-409 (-953 |#1|))) 15)) (-3839 (((-409 (-1157 (-409 (-953 |#1|)))) (-409 (-953 |#1|)) (-1161)) 22)) (-2051 (((-409 (-953 |#1|)) (-409 (-1157 (-409 (-953 |#1|)))) (-1161)) 24)) (-2244 (((-3 (-1161) "failed") (-409 (-953 |#1|))) 18)) (-1339 (((-409 (-953 |#1|)) (-409 (-953 |#1|)) (-634 (-288 (-409 (-953 |#1|))))) 29) (((-409 (-953 |#1|)) (-409 (-953 |#1|)) (-288 (-409 (-953 |#1|)))) 31) (((-409 (-953 |#1|)) (-409 (-953 |#1|)) (-634 (-1161)) (-634 (-409 (-953 |#1|)))) 26) (((-409 (-953 |#1|)) (-409 (-953 |#1|)) (-1161) (-409 (-953 |#1|))) 27)) (-2745 (((-409 (-953 |#1|)) |#1|) 11))) +(((-1042 |#1|) (-10 -7 (-15 -2055 ((-634 (-1161)) (-409 (-953 |#1|)))) (-15 -2244 ((-3 (-1161) "failed") (-409 (-953 |#1|)))) (-15 -3839 ((-409 (-1157 (-409 (-953 |#1|)))) (-409 (-953 |#1|)) (-1161))) (-15 -2051 ((-409 (-953 |#1|)) (-409 (-1157 (-409 (-953 |#1|)))) (-1161))) (-15 -1339 ((-409 (-953 |#1|)) (-409 (-953 |#1|)) (-1161) (-409 (-953 |#1|)))) (-15 -1339 ((-409 (-953 |#1|)) (-409 (-953 |#1|)) (-634 (-1161)) (-634 (-409 (-953 |#1|))))) (-15 -1339 ((-409 (-953 |#1|)) (-409 (-953 |#1|)) (-288 (-409 (-953 |#1|))))) (-15 -1339 ((-409 (-953 |#1|)) (-409 (-953 |#1|)) (-634 (-288 (-409 (-953 |#1|)))))) (-15 -2745 ((-409 (-953 |#1|)) |#1|))) (-558)) (T -1042)) +((-2745 (*1 *2 *3) (-12 (-5 *2 (-409 (-953 *3))) (-5 *1 (-1042 *3)) (-4 *3 (-558)))) (-1339 (*1 *2 *2 *3) (-12 (-5 *3 (-634 (-288 (-409 (-953 *4))))) (-5 *2 (-409 (-953 *4))) (-4 *4 (-558)) (-5 *1 (-1042 *4)))) (-1339 (*1 *2 *2 *3) (-12 (-5 *3 (-288 (-409 (-953 *4)))) (-5 *2 (-409 (-953 *4))) (-4 *4 (-558)) (-5 *1 (-1042 *4)))) (-1339 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-634 (-1161))) (-5 *4 (-634 (-409 (-953 *5)))) (-5 *2 (-409 (-953 *5))) (-4 *5 (-558)) (-5 *1 (-1042 *5)))) (-1339 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-409 (-953 *4))) (-5 *3 (-1161)) (-4 *4 (-558)) (-5 *1 (-1042 *4)))) (-2051 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-1157 (-409 (-953 *5))))) (-5 *4 (-1161)) (-5 *2 (-409 (-953 *5))) (-5 *1 (-1042 *5)) (-4 *5 (-558)))) (-3839 (*1 *2 *3 *4) (-12 (-5 *4 (-1161)) (-4 *5 (-558)) (-5 *2 (-409 (-1157 (-409 (-953 *5))))) (-5 *1 (-1042 *5)) (-5 *3 (-409 (-953 *5))))) (-2244 (*1 *2 *3) (|partial| -12 (-5 *3 (-409 (-953 *4))) (-4 *4 (-558)) (-5 *2 (-1161)) (-5 *1 (-1042 *4)))) (-2055 (*1 *2 *3) (-12 (-5 *3 (-409 (-953 *4))) (-4 *4 (-558)) (-5 *2 (-634 (-1161))) (-5 *1 (-1042 *4))))) +(-10 -7 (-15 -2055 ((-634 (-1161)) (-409 (-953 |#1|)))) (-15 -2244 ((-3 (-1161) "failed") (-409 (-953 |#1|)))) (-15 -3839 ((-409 (-1157 (-409 (-953 |#1|)))) (-409 (-953 |#1|)) (-1161))) (-15 -2051 ((-409 (-953 |#1|)) (-409 (-1157 (-409 (-953 |#1|)))) (-1161))) (-15 -1339 ((-409 (-953 |#1|)) (-409 (-953 |#1|)) (-1161) (-409 (-953 |#1|)))) (-15 -1339 ((-409 (-953 |#1|)) (-409 (-953 |#1|)) (-634 (-1161)) (-634 (-409 (-953 |#1|))))) (-15 -1339 ((-409 (-953 |#1|)) (-409 (-953 |#1|)) (-288 (-409 (-953 |#1|))))) (-15 -1339 ((-409 (-953 |#1|)) (-409 (-953 |#1|)) (-634 (-288 (-409 (-953 |#1|)))))) (-15 -2745 ((-409 (-953 |#1|)) |#1|))) +((-4478 (((-634 |#1|) (-634 |#1|)) 45)) (-1604 (((-634 |#1|)) 9)) (-3598 (((-2 (|:| |zeros| (-634 |#1|)) (|:| -2842 (-568))) (-1157 |#1|) |#1|) 19)) (-3051 (((-2 (|:| |zeros| (-634 |#1|)) (|:| -2842 (-568))) (-634 (-1157 |#1|)) |#1|) 37))) +(((-1043 |#1|) (-10 -7 (-15 -3598 ((-2 (|:| |zeros| (-634 |#1|)) (|:| -2842 (-568))) (-1157 |#1|) |#1|)) (-15 -3051 ((-2 (|:| |zeros| (-634 |#1|)) (|:| -2842 (-568))) (-634 (-1157 |#1|)) |#1|)) (-15 -1604 ((-634 |#1|))) (-15 -4478 ((-634 |#1|) (-634 |#1|)))) (-365)) (T -1043)) +((-4478 (*1 *2 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-365)) (-5 *1 (-1043 *3)))) (-1604 (*1 *2) (-12 (-5 *2 (-634 *3)) (-5 *1 (-1043 *3)) (-4 *3 (-365)))) (-3051 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-1157 *4))) (-4 *4 (-365)) (-5 *2 (-2 (|:| |zeros| (-634 *4)) (|:| -2842 (-568)))) (-5 *1 (-1043 *4)))) (-3598 (*1 *2 *3 *4) (-12 (-5 *3 (-1157 *4)) (-4 *4 (-365)) (-5 *2 (-2 (|:| |zeros| (-634 *4)) (|:| -2842 (-568)))) (-5 *1 (-1043 *4))))) +(-10 -7 (-15 -3598 ((-2 (|:| |zeros| (-634 |#1|)) (|:| -2842 (-568))) (-1157 |#1|) |#1|)) (-15 -3051 ((-2 (|:| |zeros| (-634 |#1|)) (|:| -2842 (-568))) (-634 (-1157 |#1|)) |#1|)) (-15 -1604 ((-634 |#1|))) (-15 -4478 ((-634 |#1|) (-634 |#1|)))) +((-2447 (((-121) $ $) NIL)) (-2387 (((-634 (-2 (|:| -4092 $) (|:| -1798 (-634 (-775 |#1| (-852 |#2|)))))) (-634 (-775 |#1| (-852 |#2|)))) NIL)) (-2415 (((-634 $) (-634 (-775 |#1| (-852 |#2|)))) NIL) (((-634 $) (-634 (-775 |#1| (-852 |#2|))) (-121)) NIL) (((-634 $) (-634 (-775 |#1| (-852 |#2|))) (-121) (-121)) NIL)) (-2055 (((-634 (-852 |#2|)) $) NIL)) (-4211 (((-121) $) NIL)) (-3824 (((-121) $) NIL (|has| |#1| (-558)))) (-3300 (((-121) (-775 |#1| (-852 |#2|)) $) NIL) (((-121) $) NIL)) (-2819 (((-775 |#1| (-852 |#2|)) (-775 |#1| (-852 |#2|)) $) NIL)) (-4305 (((-634 (-2 (|:| |val| (-775 |#1| (-852 |#2|))) (|:| -3001 $))) (-775 |#1| (-852 |#2|)) $) NIL)) (-3644 (((-2 (|:| |under| $) (|:| -1519 $) (|:| |upper| $)) $ (-852 |#2|)) NIL)) (-2510 (((-121) $ (-763)) NIL)) (-2801 (($ (-1 (-121) (-775 |#1| (-852 |#2|))) $) NIL (|has| $ (-6 -4519))) (((-3 (-775 |#1| (-852 |#2|)) "failed") $ (-852 |#2|)) NIL)) (-2671 (($) NIL T CONST)) (-1565 (((-121) $) NIL (|has| |#1| (-558)))) (-3846 (((-121) $ $) NIL (|has| |#1| (-558)))) (-3106 (((-121) $ $) NIL (|has| |#1| (-558)))) (-3695 (((-121) $) NIL (|has| |#1| (-558)))) (-4275 (((-634 (-775 |#1| (-852 |#2|))) (-634 (-775 |#1| (-852 |#2|))) $ (-1 (-775 |#1| (-852 |#2|)) (-775 |#1| (-852 |#2|)) (-775 |#1| (-852 |#2|))) (-1 (-121) (-775 |#1| (-852 |#2|)) (-775 |#1| (-852 |#2|)))) NIL)) (-2355 (((-634 (-775 |#1| (-852 |#2|))) (-634 (-775 |#1| (-852 |#2|))) $) NIL (|has| |#1| (-558)))) (-2492 (((-634 (-775 |#1| (-852 |#2|))) (-634 (-775 |#1| (-852 |#2|))) $) NIL (|has| |#1| (-558)))) (-3666 (((-3 $ "failed") (-634 (-775 |#1| (-852 |#2|)))) NIL)) (-2854 (($ (-634 (-775 |#1| (-852 |#2|)))) NIL)) (-3935 (((-3 $ "failed") $) NIL)) (-2062 (((-775 |#1| (-852 |#2|)) (-775 |#1| (-852 |#2|)) $) NIL)) (-3924 (($ $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-775 |#1| (-852 |#2|)) (-1090))))) (-4328 (($ (-775 |#1| (-852 |#2|)) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-775 |#1| (-852 |#2|)) (-1090)))) (($ (-1 (-121) (-775 |#1| (-852 |#2|))) $) NIL (|has| $ (-6 -4519)))) (-1500 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-775 |#1| (-852 |#2|))) (|:| |den| |#1|)) (-775 |#1| (-852 |#2|)) $) NIL (|has| |#1| (-558)))) (-1281 (((-121) (-775 |#1| (-852 |#2|)) $ (-1 (-121) (-775 |#1| (-852 |#2|)) (-775 |#1| (-852 |#2|)))) NIL)) (-4079 (((-775 |#1| (-852 |#2|)) (-775 |#1| (-852 |#2|)) $) NIL)) (-3092 (((-775 |#1| (-852 |#2|)) (-1 (-775 |#1| (-852 |#2|)) (-775 |#1| (-852 |#2|)) (-775 |#1| (-852 |#2|))) $ (-775 |#1| (-852 |#2|)) (-775 |#1| (-852 |#2|))) NIL (-12 (|has| $ (-6 -4519)) (|has| (-775 |#1| (-852 |#2|)) (-1090)))) (((-775 |#1| (-852 |#2|)) (-1 (-775 |#1| (-852 |#2|)) (-775 |#1| (-852 |#2|)) (-775 |#1| (-852 |#2|))) $ (-775 |#1| (-852 |#2|))) NIL (|has| $ (-6 -4519))) (((-775 |#1| (-852 |#2|)) (-1 (-775 |#1| (-852 |#2|)) (-775 |#1| (-852 |#2|)) (-775 |#1| (-852 |#2|))) $) NIL (|has| $ (-6 -4519))) (((-775 |#1| (-852 |#2|)) (-775 |#1| (-852 |#2|)) $ (-1 (-775 |#1| (-852 |#2|)) (-775 |#1| (-852 |#2|)) (-775 |#1| (-852 |#2|))) (-1 (-121) (-775 |#1| (-852 |#2|)) (-775 |#1| (-852 |#2|)))) NIL)) (-3635 (((-2 (|:| -4092 (-634 (-775 |#1| (-852 |#2|)))) (|:| -1798 (-634 (-775 |#1| (-852 |#2|))))) $) NIL)) (-1862 (((-121) (-775 |#1| (-852 |#2|)) $) NIL)) (-4286 (((-121) (-775 |#1| (-852 |#2|)) $) NIL)) (-3193 (((-121) (-775 |#1| (-852 |#2|)) $) NIL) (((-121) $) NIL)) (-4360 (((-634 (-775 |#1| (-852 |#2|))) $) NIL (|has| $ (-6 -4519)))) (-1362 (((-121) (-775 |#1| (-852 |#2|)) $) NIL) (((-121) $) NIL)) (-2356 (((-852 |#2|) $) NIL)) (-1737 (((-121) $ (-763)) NIL)) (-1979 (((-634 (-775 |#1| (-852 |#2|))) $) NIL (|has| $ (-6 -4519)))) (-3109 (((-121) (-775 |#1| (-852 |#2|)) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-775 |#1| (-852 |#2|)) (-1090))))) (-3674 (($ (-1 (-775 |#1| (-852 |#2|)) (-775 |#1| (-852 |#2|))) $) NIL (|has| $ (-6 -4520)))) (-2795 (($ (-1 (-775 |#1| (-852 |#2|)) (-775 |#1| (-852 |#2|))) $) NIL)) (-1432 (((-634 (-852 |#2|)) $) NIL)) (-3392 (((-121) (-852 |#2|) $) NIL)) (-2166 (((-121) $ (-763)) NIL)) (-4487 (((-1143) $) NIL)) (-2717 (((-3 (-775 |#1| (-852 |#2|)) (-634 $)) (-775 |#1| (-852 |#2|)) (-775 |#1| (-852 |#2|)) $) NIL)) (-4330 (((-634 (-2 (|:| |val| (-775 |#1| (-852 |#2|))) (|:| -3001 $))) (-775 |#1| (-852 |#2|)) (-775 |#1| (-852 |#2|)) $) NIL)) (-4162 (((-3 (-775 |#1| (-852 |#2|)) "failed") $) NIL)) (-2335 (((-634 $) (-775 |#1| (-852 |#2|)) $) NIL)) (-1719 (((-3 (-121) (-634 $)) (-775 |#1| (-852 |#2|)) $) NIL)) (-2632 (((-634 (-2 (|:| |val| (-121)) (|:| -3001 $))) (-775 |#1| (-852 |#2|)) $) NIL) (((-121) (-775 |#1| (-852 |#2|)) $) NIL)) (-3212 (((-634 $) (-775 |#1| (-852 |#2|)) $) NIL) (((-634 $) (-634 (-775 |#1| (-852 |#2|))) $) NIL) (((-634 $) (-634 (-775 |#1| (-852 |#2|))) (-634 $)) NIL) (((-634 $) (-775 |#1| (-852 |#2|)) (-634 $)) NIL)) (-3473 (($ (-775 |#1| (-852 |#2|)) $) NIL) (($ (-634 (-775 |#1| (-852 |#2|))) $) NIL)) (-1377 (((-634 (-775 |#1| (-852 |#2|))) $) NIL)) (-1415 (((-121) (-775 |#1| (-852 |#2|)) $) NIL) (((-121) $) NIL)) (-2682 (((-775 |#1| (-852 |#2|)) (-775 |#1| (-852 |#2|)) $) NIL)) (-2644 (((-121) $ $) NIL)) (-2705 (((-2 (|:| |num| (-775 |#1| (-852 |#2|))) (|:| |den| |#1|)) (-775 |#1| (-852 |#2|)) $) NIL (|has| |#1| (-558)))) (-4347 (((-121) (-775 |#1| (-852 |#2|)) $) NIL) (((-121) $) NIL)) (-4025 (((-775 |#1| (-852 |#2|)) (-775 |#1| (-852 |#2|)) $) NIL)) (-4022 (((-1108) $) NIL)) (-3876 (((-3 (-775 |#1| (-852 |#2|)) "failed") $) NIL)) (-3775 (((-3 (-775 |#1| (-852 |#2|)) "failed") (-1 (-121) (-775 |#1| (-852 |#2|))) $) NIL)) (-1665 (((-3 $ "failed") $ (-775 |#1| (-852 |#2|))) NIL)) (-1807 (($ $ (-775 |#1| (-852 |#2|))) NIL) (((-634 $) (-775 |#1| (-852 |#2|)) $) NIL) (((-634 $) (-775 |#1| (-852 |#2|)) (-634 $)) NIL) (((-634 $) (-634 (-775 |#1| (-852 |#2|))) $) NIL) (((-634 $) (-634 (-775 |#1| (-852 |#2|))) (-634 $)) NIL)) (-1387 (((-121) (-1 (-121) (-775 |#1| (-852 |#2|))) $) NIL (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-775 |#1| (-852 |#2|))) (-634 (-775 |#1| (-852 |#2|)))) NIL (-12 (|has| (-775 |#1| (-852 |#2|)) (-303 (-775 |#1| (-852 |#2|)))) (|has| (-775 |#1| (-852 |#2|)) (-1090)))) (($ $ (-775 |#1| (-852 |#2|)) (-775 |#1| (-852 |#2|))) NIL (-12 (|has| (-775 |#1| (-852 |#2|)) (-303 (-775 |#1| (-852 |#2|)))) (|has| (-775 |#1| (-852 |#2|)) (-1090)))) (($ $ (-288 (-775 |#1| (-852 |#2|)))) NIL (-12 (|has| (-775 |#1| (-852 |#2|)) (-303 (-775 |#1| (-852 |#2|)))) (|has| (-775 |#1| (-852 |#2|)) (-1090)))) (($ $ (-634 (-288 (-775 |#1| (-852 |#2|))))) NIL (-12 (|has| (-775 |#1| (-852 |#2|)) (-303 (-775 |#1| (-852 |#2|)))) (|has| (-775 |#1| (-852 |#2|)) (-1090))))) (-3171 (((-121) $ $) NIL)) (-3084 (((-121) $) NIL)) (-3248 (($) NIL)) (-3206 (((-763) $) NIL)) (-4168 (((-763) (-775 |#1| (-852 |#2|)) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-775 |#1| (-852 |#2|)) (-1090)))) (((-763) (-1 (-121) (-775 |#1| (-852 |#2|))) $) NIL (|has| $ (-6 -4519)))) (-3863 (($ $) NIL)) (-4278 (((-541) $) NIL (|has| (-775 |#1| (-852 |#2|)) (-609 (-541))))) (-4287 (($ (-634 (-775 |#1| (-852 |#2|)))) NIL)) (-1290 (($ $ (-852 |#2|)) NIL)) (-3732 (($ $ (-852 |#2|)) NIL)) (-1567 (($ $) NIL)) (-3944 (($ $ (-852 |#2|)) NIL)) (-2745 (((-850) $) NIL) (((-634 (-775 |#1| (-852 |#2|))) $) NIL)) (-1878 (((-763) $) NIL (|has| (-852 |#2|) (-370)))) (-3556 (((-3 (-2 (|:| |bas| $) (|:| -2616 (-634 (-775 |#1| (-852 |#2|))))) "failed") (-634 (-775 |#1| (-852 |#2|))) (-1 (-121) (-775 |#1| (-852 |#2|)) (-775 |#1| (-852 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2616 (-634 (-775 |#1| (-852 |#2|))))) "failed") (-634 (-775 |#1| (-852 |#2|))) (-1 (-121) (-775 |#1| (-852 |#2|))) (-1 (-121) (-775 |#1| (-852 |#2|)) (-775 |#1| (-852 |#2|)))) NIL)) (-3292 (((-121) $ (-1 (-121) (-775 |#1| (-852 |#2|)) (-634 (-775 |#1| (-852 |#2|))))) NIL)) (-2574 (((-634 $) (-775 |#1| (-852 |#2|)) $) NIL) (((-634 $) (-775 |#1| (-852 |#2|)) (-634 $)) NIL) (((-634 $) (-634 (-775 |#1| (-852 |#2|))) $) NIL) (((-634 $) (-634 (-775 |#1| (-852 |#2|))) (-634 $)) NIL)) (-1319 (((-121) (-1 (-121) (-775 |#1| (-852 |#2|))) $) NIL (|has| $ (-6 -4519)))) (-2739 (((-634 (-852 |#2|)) $) NIL)) (-2288 (((-121) (-775 |#1| (-852 |#2|)) $) NIL)) (-4390 (((-121) (-852 |#2|) $) NIL)) (-1717 (((-121) $ $) NIL)) (-1697 (((-763) $) NIL (|has| $ (-6 -4519))))) +(((-1044 |#1| |#2|) (-13 (-1066 |#1| (-534 (-852 |#2|)) (-852 |#2|) (-775 |#1| (-852 |#2|))) (-10 -8 (-15 -2415 ((-634 $) (-634 (-775 |#1| (-852 |#2|))) (-121) (-121))))) (-453) (-634 (-1161))) (T -1044)) +((-2415 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-634 (-775 *5 (-852 *6)))) (-5 *4 (-121)) (-4 *5 (-453)) (-14 *6 (-634 (-1161))) (-5 *2 (-634 (-1044 *5 *6))) (-5 *1 (-1044 *5 *6))))) +(-13 (-1066 |#1| (-534 (-852 |#2|)) (-852 |#2|) (-775 |#1| (-852 |#2|))) (-10 -8 (-15 -2415 ((-634 $) (-634 (-775 |#1| (-852 |#2|))) (-121) (-121))))) +((-3703 (((-1 (-568)) (-1084 (-568))) 33)) (-2694 (((-568) (-568) (-568) (-568) (-568)) 30)) (-1298 (((-1 (-568)) |RationalNumber|) NIL)) (-3064 (((-1 (-568)) |RationalNumber|) NIL)) (-2787 (((-1 (-568)) (-568) |RationalNumber|) NIL))) +(((-1045) (-10 -7 (-15 -3703 ((-1 (-568)) (-1084 (-568)))) (-15 -2787 ((-1 (-568)) (-568) |RationalNumber|)) (-15 -1298 ((-1 (-568)) |RationalNumber|)) (-15 -3064 ((-1 (-568)) |RationalNumber|)) (-15 -2694 ((-568) (-568) (-568) (-568) (-568))))) (T -1045)) +((-2694 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-1045)))) (-3064 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-568))) (-5 *1 (-1045)))) (-1298 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-568))) (-5 *1 (-1045)))) (-2787 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-568))) (-5 *1 (-1045)) (-5 *3 (-568)))) (-3703 (*1 *2 *3) (-12 (-5 *3 (-1084 (-568))) (-5 *2 (-1 (-568))) (-5 *1 (-1045))))) +(-10 -7 (-15 -3703 ((-1 (-568)) (-1084 (-568)))) (-15 -2787 ((-1 (-568)) (-568) |RationalNumber|)) (-15 -1298 ((-1 (-568)) |RationalNumber|)) (-15 -3064 ((-1 (-568)) |RationalNumber|)) (-15 -2694 ((-568) (-568) (-568) (-568) (-568)))) +((-2745 (((-850) $) NIL) (($ (-568)) 10))) +(((-1046 |#1|) (-10 -8 (-15 -2745 (|#1| (-568))) (-15 -2745 ((-850) |#1|))) (-1047)) (T -1046)) +NIL +(-10 -8 (-15 -2745 (|#1| (-568))) (-15 -2745 ((-850) |#1|))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-3134 (((-3 $ "failed") $ $) 18)) (-2671 (($) 16 T CONST)) (-2925 (((-3 $ "failed") $) 33)) (-2735 (((-121) $) 30)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-2745 (((-850) $) 11) (($ (-568)) 27)) (-4078 (((-763)) 28)) (-1887 (($ $ (-917)) 25) (($ $ (-763)) 32)) (-3056 (($) 17 T CONST)) (-1556 (($) 29 T CONST)) (-1717 (((-121) $ $) 6)) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 24) (($ $ (-763)) 31)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 23))) +(((-1047) (-1275)) (T -1047)) +((-4078 (*1 *2) (-12 (-4 *1 (-1047)) (-5 *2 (-763)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-568)) (-4 *1 (-1047))))) +(-13 (-1054) (-716) (-637 $) (-10 -8 (-15 -4078 ((-763))) (-15 -2745 ($ (-568))) (-6 -4516))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-105) . T) ((-137) . T) ((-608 (-850)) . T) ((-637 $) . T) ((-716) . T) ((-1054) . T) ((-1102) . T) ((-1090) . T)) +((-1919 (((-409 (-953 |#2|)) (-634 |#2|) (-634 |#2|) (-763) (-763)) 45))) +(((-1048 |#1| |#2|) (-10 -7 (-15 -1919 ((-409 (-953 |#2|)) (-634 |#2|) (-634 |#2|) (-763) (-763)))) (-1161) (-365)) (T -1048)) +((-1919 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-634 *6)) (-5 *4 (-763)) (-4 *6 (-365)) (-5 *2 (-409 (-953 *6))) (-5 *1 (-1048 *5 *6)) (-14 *5 (-1161))))) +(-10 -7 (-15 -1919 ((-409 (-953 |#2|)) (-634 |#2|) (-634 |#2|) (-763) (-763)))) +((-1335 (((-121) $) 27)) (-2230 (((-121) $) 16)) (-3043 (((-763) $) 13)) (-2555 (((-763) $) 14)) (-1960 (((-121) $) 25)) (-1910 (((-121) $) 29))) +(((-1049 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -2555 ((-763) |#1|)) (-15 -3043 ((-763) |#1|)) (-15 -1910 ((-121) |#1|)) (-15 -1335 ((-121) |#1|)) (-15 -1960 ((-121) |#1|)) (-15 -2230 ((-121) |#1|))) (-1050 |#2| |#3| |#4| |#5| |#6|) (-763) (-763) (-1047) (-230 |#3| |#4|) (-230 |#2| |#4|)) (T -1049)) +NIL +(-10 -8 (-15 -2555 ((-763) |#1|)) (-15 -3043 ((-763) |#1|)) (-15 -1910 ((-121) |#1|)) (-15 -1335 ((-121) |#1|)) (-15 -1960 ((-121) |#1|)) (-15 -2230 ((-121) |#1|))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-1335 (((-121) $) 48)) (-3134 (((-3 $ "failed") $ $) 18)) (-2230 (((-121) $) 50)) (-2510 (((-121) $ (-763)) 58)) (-2671 (($) 16 T CONST)) (-4167 (($ $) 31 (|has| |#3| (-301)))) (-1818 ((|#4| $ (-568)) 36)) (-3700 (((-763) $) 30 (|has| |#3| (-558)))) (-2602 ((|#3| $ (-568) (-568)) 38)) (-4360 (((-634 |#3|) $) 65 (|has| $ (-6 -4519)))) (-2121 (((-763) $) 29 (|has| |#3| (-558)))) (-4272 (((-634 |#5|) $) 28 (|has| |#3| (-558)))) (-3043 (((-763) $) 42)) (-2555 (((-763) $) 41)) (-1737 (((-121) $ (-763)) 57)) (-2087 (((-568) $) 46)) (-3364 (((-568) $) 44)) (-1979 (((-634 |#3|) $) 66 (|has| $ (-6 -4519)))) (-3109 (((-121) |#3| $) 68 (-12 (|has| |#3| (-1090)) (|has| $ (-6 -4519))))) (-1663 (((-568) $) 45)) (-2893 (((-568) $) 43)) (-2269 (($ (-634 (-634 |#3|))) 51)) (-3674 (($ (-1 |#3| |#3|) $) 61 (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#3| |#3|) $) 60) (($ (-1 |#3| |#3| |#3|) $ $) 34)) (-3208 (((-634 (-634 |#3|)) $) 40)) (-2166 (((-121) $ (-763)) 56)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-2595 (((-3 $ "failed") $ |#3|) 33 (|has| |#3| (-558)))) (-1387 (((-121) (-1 (-121) |#3|) $) 63 (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 |#3|) (-634 |#3|)) 72 (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1090)))) (($ $ |#3| |#3|) 71 (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1090)))) (($ $ (-288 |#3|)) 70 (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1090)))) (($ $ (-634 (-288 |#3|))) 69 (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1090))))) (-3171 (((-121) $ $) 52)) (-3084 (((-121) $) 55)) (-3248 (($) 54)) (-2779 ((|#3| $ (-568) (-568)) 39) ((|#3| $ (-568) (-568) |#3|) 37)) (-1960 (((-121) $) 49)) (-4168 (((-763) |#3| $) 67 (-12 (|has| |#3| (-1090)) (|has| $ (-6 -4519)))) (((-763) (-1 (-121) |#3|) $) 64 (|has| $ (-6 -4519)))) (-3863 (($ $) 53)) (-3731 ((|#5| $ (-568)) 35)) (-2745 (((-850) $) 11)) (-1319 (((-121) (-1 (-121) |#3|) $) 62 (|has| $ (-6 -4519)))) (-1910 (((-121) $) 47)) (-3056 (($) 17 T CONST)) (-1717 (((-121) $ $) 6)) (-1779 (($ $ |#3|) 32 (|has| |#3| (-365)))) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ |#3| $) 22) (($ $ |#3|) 24)) (-1697 (((-763) $) 59 (|has| $ (-6 -4519))))) +(((-1050 |#1| |#2| |#3| |#4| |#5|) (-1275) (-763) (-763) (-1047) (-230 |t#2| |t#3|) (-230 |t#1| |t#3|)) (T -1050)) +((-2795 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1050 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-634 (-634 *5))) (-4 *5 (-1047)) (-4 *1 (-1050 *3 *4 *5 *6 *7)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)))) (-2230 (*1 *2 *1) (-12 (-4 *1 (-1050 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-5 *2 (-121)))) (-1960 (*1 *2 *1) (-12 (-4 *1 (-1050 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-5 *2 (-121)))) (-1335 (*1 *2 *1) (-12 (-4 *1 (-1050 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-5 *2 (-121)))) (-1910 (*1 *2 *1) (-12 (-4 *1 (-1050 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-5 *2 (-121)))) (-2087 (*1 *2 *1) (-12 (-4 *1 (-1050 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-5 *2 (-568)))) (-1663 (*1 *2 *1) (-12 (-4 *1 (-1050 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-5 *2 (-568)))) (-3364 (*1 *2 *1) (-12 (-4 *1 (-1050 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-5 *2 (-568)))) (-2893 (*1 *2 *1) (-12 (-4 *1 (-1050 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-5 *2 (-568)))) (-3043 (*1 *2 *1) (-12 (-4 *1 (-1050 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-5 *2 (-763)))) (-2555 (*1 *2 *1) (-12 (-4 *1 (-1050 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-5 *2 (-763)))) (-3208 (*1 *2 *1) (-12 (-4 *1 (-1050 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-5 *2 (-634 (-634 *5))))) (-2779 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-568)) (-4 *1 (-1050 *4 *5 *2 *6 *7)) (-4 *6 (-230 *5 *2)) (-4 *7 (-230 *4 *2)) (-4 *2 (-1047)))) (-2602 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-568)) (-4 *1 (-1050 *4 *5 *2 *6 *7)) (-4 *6 (-230 *5 *2)) (-4 *7 (-230 *4 *2)) (-4 *2 (-1047)))) (-2779 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-568)) (-4 *1 (-1050 *4 *5 *2 *6 *7)) (-4 *2 (-1047)) (-4 *6 (-230 *5 *2)) (-4 *7 (-230 *4 *2)))) (-1818 (*1 *2 *1 *3) (-12 (-5 *3 (-568)) (-4 *1 (-1050 *4 *5 *6 *2 *7)) (-4 *6 (-1047)) (-4 *7 (-230 *4 *6)) (-4 *2 (-230 *5 *6)))) (-3731 (*1 *2 *1 *3) (-12 (-5 *3 (-568)) (-4 *1 (-1050 *4 *5 *6 *7 *2)) (-4 *6 (-1047)) (-4 *7 (-230 *5 *6)) (-4 *2 (-230 *4 *6)))) (-2795 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1050 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)))) (-2595 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1050 *3 *4 *2 *5 *6)) (-4 *2 (-1047)) (-4 *5 (-230 *4 *2)) (-4 *6 (-230 *3 *2)) (-4 *2 (-558)))) (-1779 (*1 *1 *1 *2) (-12 (-4 *1 (-1050 *3 *4 *2 *5 *6)) (-4 *2 (-1047)) (-4 *5 (-230 *4 *2)) (-4 *6 (-230 *3 *2)) (-4 *2 (-365)))) (-4167 (*1 *1 *1) (-12 (-4 *1 (-1050 *2 *3 *4 *5 *6)) (-4 *4 (-1047)) (-4 *5 (-230 *3 *4)) (-4 *6 (-230 *2 *4)) (-4 *4 (-301)))) (-3700 (*1 *2 *1) (-12 (-4 *1 (-1050 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-4 *5 (-558)) (-5 *2 (-763)))) (-2121 (*1 *2 *1) (-12 (-4 *1 (-1050 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-4 *5 (-558)) (-5 *2 (-763)))) (-4272 (*1 *2 *1) (-12 (-4 *1 (-1050 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-4 *5 (-558)) (-5 *2 (-634 *7))))) +(-13 (-120 |t#3| |t#3|) (-499 |t#3|) (-10 -8 (-6 -4519) (IF (|has| |t#3| (-172)) (-6 (-707 |t#3|)) |noBranch|) (-15 -2269 ($ (-634 (-634 |t#3|)))) (-15 -2230 ((-121) $)) (-15 -1960 ((-121) $)) (-15 -1335 ((-121) $)) (-15 -1910 ((-121) $)) (-15 -2087 ((-568) $)) (-15 -1663 ((-568) $)) (-15 -3364 ((-568) $)) (-15 -2893 ((-568) $)) (-15 -3043 ((-763) $)) (-15 -2555 ((-763) $)) (-15 -3208 ((-634 (-634 |t#3|)) $)) (-15 -2779 (|t#3| $ (-568) (-568))) (-15 -2602 (|t#3| $ (-568) (-568))) (-15 -2779 (|t#3| $ (-568) (-568) |t#3|)) (-15 -1818 (|t#4| $ (-568))) (-15 -3731 (|t#5| $ (-568))) (-15 -2795 ($ (-1 |t#3| |t#3|) $)) (-15 -2795 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-558)) (-15 -2595 ((-3 $ "failed") $ |t#3|)) |noBranch|) (IF (|has| |t#3| (-365)) (-15 -1779 ($ $ |t#3|)) |noBranch|) (IF (|has| |t#3| (-301)) (-15 -4167 ($ $)) |noBranch|) (IF (|has| |t#3| (-558)) (PROGN (-15 -3700 ((-763) $)) (-15 -2121 ((-763) $)) (-15 -4272 ((-634 |t#5|) $))) |noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-39) . T) ((-105) . T) ((-120 |#3| |#3|) . T) ((-137) . T) ((-608 (-850)) . T) ((-303 |#3|) -12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1090))) ((-499 |#3|) . T) ((-523 |#3| |#3|) -12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1090))) ((-637 |#3|) . T) ((-707 |#3|) |has| |#3| (-172)) ((-1053 |#3|) . T) ((-1090) . T) ((-1195) . T)) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-1335 (((-121) $) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-2230 (((-121) $) NIL)) (-2510 (((-121) $ (-763)) NIL)) (-2671 (($) NIL T CONST)) (-4167 (($ $) 40 (|has| |#3| (-301)))) (-1818 (((-232 |#2| |#3|) $ (-568)) 29)) (-2846 (($ (-679 |#3|)) 38)) (-3700 (((-763) $) 42 (|has| |#3| (-558)))) (-2602 ((|#3| $ (-568) (-568)) NIL)) (-4360 (((-634 |#3|) $) NIL (|has| $ (-6 -4519)))) (-2121 (((-763) $) 44 (|has| |#3| (-558)))) (-4272 (((-634 (-232 |#1| |#3|)) $) 48 (|has| |#3| (-558)))) (-3043 (((-763) $) NIL)) (-2555 (((-763) $) NIL)) (-1737 (((-121) $ (-763)) NIL)) (-2087 (((-568) $) NIL)) (-3364 (((-568) $) NIL)) (-1979 (((-634 |#3|) $) NIL (|has| $ (-6 -4519)))) (-3109 (((-121) |#3| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#3| (-1090))))) (-1663 (((-568) $) NIL)) (-2893 (((-568) $) NIL)) (-2269 (($ (-634 (-634 |#3|))) 24)) (-3674 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-3208 (((-634 (-634 |#3|)) $) NIL)) (-2166 (((-121) $ (-763)) NIL)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2595 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-558)))) (-1387 (((-121) (-1 (-121) |#3|) $) NIL (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 |#3|) (-634 |#3|)) NIL (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1090)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1090)))) (($ $ (-288 |#3|)) NIL (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1090)))) (($ $ (-634 (-288 |#3|))) NIL (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1090))))) (-3171 (((-121) $ $) NIL)) (-3084 (((-121) $) NIL)) (-3248 (($) NIL)) (-2779 ((|#3| $ (-568) (-568)) NIL) ((|#3| $ (-568) (-568) |#3|) NIL)) (-4321 (((-139)) 51 (|has| |#3| (-365)))) (-1960 (((-121) $) NIL)) (-4168 (((-763) |#3| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#3| (-1090)))) (((-763) (-1 (-121) |#3|) $) NIL (|has| $ (-6 -4519)))) (-3863 (($ $) NIL)) (-4278 (((-541) $) 60 (|has| |#3| (-609 (-541))))) (-3731 (((-232 |#1| |#3|) $ (-568)) 33)) (-2745 (((-850) $) 16) (((-679 |#3|) $) 35)) (-1319 (((-121) (-1 (-121) |#3|) $) NIL (|has| $ (-6 -4519)))) (-1910 (((-121) $) NIL)) (-3056 (($) 13 T CONST)) (-1717 (((-121) $ $) NIL)) (-1779 (($ $ |#3|) NIL (|has| |#3| (-365)))) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-1697 (((-763) $) NIL (|has| $ (-6 -4519))))) +(((-1051 |#1| |#2| |#3|) (-13 (-1050 |#1| |#2| |#3| (-232 |#2| |#3|) (-232 |#1| |#3|)) (-608 (-679 |#3|)) (-10 -8 (IF (|has| |#3| (-365)) (-6 (-1251 |#3|)) |noBranch|) (IF (|has| |#3| (-609 (-541))) (-6 (-609 (-541))) |noBranch|) (-15 -2846 ($ (-679 |#3|))) (-15 -2745 ((-679 |#3|) $)))) (-763) (-763) (-1047)) (T -1051)) +((-2745 (*1 *2 *1) (-12 (-5 *2 (-679 *5)) (-5 *1 (-1051 *3 *4 *5)) (-14 *3 (-763)) (-14 *4 (-763)) (-4 *5 (-1047)))) (-2846 (*1 *1 *2) (-12 (-5 *2 (-679 *5)) (-4 *5 (-1047)) (-5 *1 (-1051 *3 *4 *5)) (-14 *3 (-763)) (-14 *4 (-763))))) +(-13 (-1050 |#1| |#2| |#3| (-232 |#2| |#3|) (-232 |#1| |#3|)) (-608 (-679 |#3|)) (-10 -8 (IF (|has| |#3| (-365)) (-6 (-1251 |#3|)) |noBranch|) (IF (|has| |#3| (-609 (-541))) (-6 (-609 (-541))) |noBranch|) (-15 -2846 ($ (-679 |#3|))) (-15 -2745 ((-679 |#3|) $)))) +((-3092 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-2795 ((|#10| (-1 |#7| |#3|) |#6|) 32))) +(((-1052 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -2795 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3092 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-763) (-763) (-1047) (-230 |#2| |#3|) (-230 |#1| |#3|) (-1050 |#1| |#2| |#3| |#4| |#5|) (-1047) (-230 |#2| |#7|) (-230 |#1| |#7|) (-1050 |#1| |#2| |#7| |#8| |#9|)) (T -1052)) +((-3092 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1047)) (-4 *2 (-1047)) (-14 *5 (-763)) (-14 *6 (-763)) (-4 *8 (-230 *6 *7)) (-4 *9 (-230 *5 *7)) (-4 *10 (-230 *6 *2)) (-4 *11 (-230 *5 *2)) (-5 *1 (-1052 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1050 *5 *6 *7 *8 *9)) (-4 *12 (-1050 *5 *6 *2 *10 *11)))) (-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1047)) (-4 *10 (-1047)) (-14 *5 (-763)) (-14 *6 (-763)) (-4 *8 (-230 *6 *7)) (-4 *9 (-230 *5 *7)) (-4 *2 (-1050 *5 *6 *10 *11 *12)) (-5 *1 (-1052 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1050 *5 *6 *7 *8 *9)) (-4 *11 (-230 *6 *10)) (-4 *12 (-230 *5 *10))))) +(-10 -7 (-15 -2795 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3092 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-3134 (((-3 $ "failed") $ $) 18)) (-2671 (($) 16 T CONST)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-2745 (((-850) $) 11)) (-3056 (($) 17 T CONST)) (-1717 (((-121) $ $) 6)) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ |#1|) 22))) +(((-1053 |#1|) (-1275) (-1054)) (T -1053)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-1053 *2)) (-4 *2 (-1054))))) (-13 (-21) (-10 -8 (-15 * ($ $ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-105) . T) ((-137) . T) ((-600 (-842)) . T) ((-1082) . T)) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-2314 (((-3 $ "failed") $ $) 18)) (-4236 (($) 16 T CONST)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-2801 (((-842) $) 11)) (-2464 (($ $ (-909)) 25)) (-3304 (($) 17 T CONST)) (-1653 (((-121) $ $) 6)) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 24)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 23))) -(((-1046) (-1267)) (T -1046)) -NIL -(-13 (-21) (-1094)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-105) . T) ((-137) . T) ((-600 (-842)) . T) ((-1094) . T) ((-1082) . T)) -((-4330 (($ $) 16)) (-4422 (($ $) 22)) (-2399 (((-876 (-375) $) $ (-879 (-375)) (-876 (-375) $)) 49)) (-3339 (($ $) 24)) (-4302 (($ $) 11)) (-2150 (($ $) 38)) (-4255 (((-375) $) NIL) (((-213) $) NIL) (((-879 (-375)) $) 33)) (-2801 (((-842) $) NIL) (($ (-560)) NIL) (($ $) NIL) (($ (-403 (-560))) 28) (($ (-560)) NIL) (($ (-403 (-560))) 28)) (-1751 (((-755)) 8)) (-4316 (($ $) 39))) -(((-1047 |#1|) (-10 -8 (-15 -4422 (|#1| |#1|)) (-15 -4330 (|#1| |#1|)) (-15 -4302 (|#1| |#1|)) (-15 -2150 (|#1| |#1|)) (-15 -4316 (|#1| |#1|)) (-15 -3339 (|#1| |#1|)) (-15 -2399 ((-876 (-375) |#1|) |#1| (-879 (-375)) (-876 (-375) |#1|))) (-15 -4255 ((-879 (-375)) |#1|)) (-15 -2801 (|#1| (-403 (-560)))) (-15 -2801 (|#1| (-560))) (-15 -4255 ((-213) |#1|)) (-15 -4255 ((-375) |#1|)) (-15 -2801 (|#1| (-403 (-560)))) (-15 -2801 (|#1| |#1|)) (-15 -2801 (|#1| (-560))) (-15 -1751 ((-755))) (-15 -2801 ((-842) |#1|))) (-1048)) (T -1047)) -((-1751 (*1 *2) (-12 (-5 *2 (-755)) (-5 *1 (-1047 *3)) (-4 *3 (-1048))))) -(-10 -8 (-15 -4422 (|#1| |#1|)) (-15 -4330 (|#1| |#1|)) (-15 -4302 (|#1| |#1|)) (-15 -2150 (|#1| |#1|)) (-15 -4316 (|#1| |#1|)) (-15 -3339 (|#1| |#1|)) (-15 -2399 ((-876 (-375) |#1|) |#1| (-879 (-375)) (-876 (-375) |#1|))) (-15 -4255 ((-879 (-375)) |#1|)) (-15 -2801 (|#1| (-403 (-560)))) (-15 -2801 (|#1| (-560))) (-15 -4255 ((-213) |#1|)) (-15 -4255 ((-375) |#1|)) (-15 -2801 (|#1| (-403 (-560)))) (-15 -2801 (|#1| |#1|)) (-15 -2801 (|#1| (-560))) (-15 -1751 ((-755))) (-15 -2801 ((-842) |#1|))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-1947 (((-560) $) 85)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) 40)) (-1350 (($ $) 39)) (-3376 (((-121) $) 37)) (-4330 (($ $) 83)) (-2314 (((-3 $ "failed") $ $) 18)) (-3065 (($ $) 71)) (-2953 (((-414 $) $) 70)) (-2479 (($ $) 93)) (-4179 (((-121) $ $) 57)) (-4235 (((-560) $) 110)) (-4236 (($) 16 T CONST)) (-4422 (($ $) 82)) (-1473 (((-3 (-560) "failed") $) 98) (((-3 (-403 (-560)) "failed") $) 95)) (-3001 (((-560) $) 97) (((-403 (-560)) $) 94)) (-2563 (($ $ $) 53)) (-1823 (((-3 $ "failed") $) 33)) (-2572 (($ $ $) 54)) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) 49)) (-3319 (((-121) $) 69)) (-1786 (((-121) $) 108)) (-2399 (((-876 (-375) $) $ (-879 (-375)) (-876 (-375) $)) 89)) (-2642 (((-121) $) 30)) (-2586 (($ $ (-560)) 92)) (-3339 (($ $) 88)) (-2187 (((-121) $) 109)) (-3856 (((-3 (-626 $) "failed") (-626 $) $) 50)) (-4325 (($ $ $) 107)) (-2501 (($ $ $) 106)) (-2582 (($ $ $) 45) (($ (-626 $)) 44)) (-1291 (((-1135) $) 9)) (-1701 (($ $) 68)) (-4353 (((-1100) $) 10)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) 43)) (-4440 (($ $ $) 47) (($ (-626 $)) 46)) (-4302 (($ $) 84)) (-2150 (($ $) 86)) (-1601 (((-414 $) $) 72)) (-3505 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2336 (((-3 $ "failed") $ $) 41)) (-3456 (((-3 (-626 $) "failed") (-626 $) $) 48)) (-4445 (((-755) $) 56)) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) 55)) (-4255 (((-375) $) 101) (((-213) $) 100) (((-879 (-375)) $) 90)) (-2801 (((-842) $) 11) (($ (-560)) 27) (($ $) 42) (($ (-403 (-560))) 63) (($ (-560)) 99) (($ (-403 (-560))) 96)) (-1751 (((-755)) 28)) (-4316 (($ $) 87)) (-2328 (((-121) $ $) 38)) (-1822 (($ $) 111)) (-2464 (($ $ (-909)) 25) (($ $ (-755)) 32) (($ $ (-560)) 67)) (-3304 (($) 17 T CONST)) (-1459 (($) 29 T CONST)) (-1691 (((-121) $ $) 104)) (-1675 (((-121) $ $) 103)) (-1653 (((-121) $ $) 6)) (-1683 (((-121) $ $) 105)) (-1667 (((-121) $ $) 102)) (-1733 (($ $ $) 62)) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 24) (($ $ (-755)) 31) (($ $ (-560)) 66) (($ $ (-403 (-560))) 91)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 23) (($ $ (-403 (-560))) 65) (($ (-403 (-560)) $) 64))) -(((-1048) (-1267)) (T -1048)) -((-1822 (*1 *1 *1) (-4 *1 (-1048))) (-3339 (*1 *1 *1) (-4 *1 (-1048))) (-4316 (*1 *1 *1) (-4 *1 (-1048))) (-2150 (*1 *1 *1) (-4 *1 (-1048))) (-1947 (*1 *2 *1) (-12 (-4 *1 (-1048)) (-5 *2 (-560)))) (-4302 (*1 *1 *1) (-4 *1 (-1048))) (-4330 (*1 *1 *1) (-4 *1 (-1048))) (-4422 (*1 *1 *1) (-4 *1 (-1048)))) -(-13 (-359) (-832) (-1013) (-1029 (-560)) (-1029 (-403 (-560))) (-994) (-601 (-879 (-375))) (-873 (-375)) (-148) (-10 -8 (-15 -3339 ($ $)) (-15 -4316 ($ $)) (-15 -2150 ($ $)) (-15 -1947 ((-560) $)) (-15 -4302 ($ $)) (-15 -4330 ($ $)) (-15 -4422 ($ $)) (-15 -1822 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-43 (-403 (-560))) . T) ((-43 $) . T) ((-105) . T) ((-120 (-403 (-560)) (-403 (-560))) . T) ((-120 $ $) . T) ((-137) . T) ((-148) . T) ((-600 (-842)) . T) ((-170) . T) ((-601 (-213)) . T) ((-601 (-375)) . T) ((-601 (-879 (-375))) . T) ((-233) . T) ((-280) . T) ((-296) . T) ((-359) . T) ((-447) . T) ((-550) . T) ((-629 (-403 (-560))) . T) ((-629 $) . T) ((-699 (-403 (-560))) . T) ((-699 $) . T) ((-708) . T) ((-778) . T) ((-779) . T) ((-781) . T) ((-782) . T) ((-832) . T) ((-834) . T) ((-873 (-375)) . T) ((-908) . T) ((-994) . T) ((-1013) . T) ((-1029 (-403 (-560))) . T) ((-1029 (-560)) . T) ((-1045 (-403 (-560))) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1094) . T) ((-1082) . T) ((-1191) . T)) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) |#2| $) 23)) (-2912 ((|#1| $) 10)) (-4235 (((-560) |#2| $) 88)) (-1449 (((-3 $ "failed") |#2| (-909)) 58)) (-3437 ((|#1| $) 28)) (-3152 ((|#1| |#2| $ |#1|) 37)) (-2588 (($ $) 25)) (-1823 (((-3 |#2| "failed") |#2| $) 87)) (-1786 (((-121) |#2| $) NIL)) (-2187 (((-121) |#2| $) NIL)) (-3483 (((-121) |#2| $) 24)) (-3063 ((|#1| $) 89)) (-3156 ((|#1| $) 27)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-3591 ((|#2| $) 79)) (-2801 (((-842) $) 71)) (-2550 ((|#1| |#2| $ |#1|) 38)) (-2140 (((-626 $) |#2|) 60)) (-1653 (((-121) $ $) 74))) -(((-1049 |#1| |#2|) (-13 (-1055 |#1| |#2|) (-10 -8 (-15 -3156 (|#1| $)) (-15 -3437 (|#1| $)) (-15 -2912 (|#1| $)) (-15 -3063 (|#1| $)) (-15 -2588 ($ $)) (-15 -3483 ((-121) |#2| $)) (-15 -3152 (|#1| |#2| $ |#1|)))) (-13 (-832) (-359)) (-1211 |#1|)) (T -1049)) -((-3152 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-832) (-359))) (-5 *1 (-1049 *2 *3)) (-4 *3 (-1211 *2)))) (-3156 (*1 *2 *1) (-12 (-4 *2 (-13 (-832) (-359))) (-5 *1 (-1049 *2 *3)) (-4 *3 (-1211 *2)))) (-3437 (*1 *2 *1) (-12 (-4 *2 (-13 (-832) (-359))) (-5 *1 (-1049 *2 *3)) (-4 *3 (-1211 *2)))) (-2912 (*1 *2 *1) (-12 (-4 *2 (-13 (-832) (-359))) (-5 *1 (-1049 *2 *3)) (-4 *3 (-1211 *2)))) (-3063 (*1 *2 *1) (-12 (-4 *2 (-13 (-832) (-359))) (-5 *1 (-1049 *2 *3)) (-4 *3 (-1211 *2)))) (-2588 (*1 *1 *1) (-12 (-4 *2 (-13 (-832) (-359))) (-5 *1 (-1049 *2 *3)) (-4 *3 (-1211 *2)))) (-3483 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-832) (-359))) (-5 *2 (-121)) (-5 *1 (-1049 *4 *3)) (-4 *3 (-1211 *4))))) -(-13 (-1055 |#1| |#2|) (-10 -8 (-15 -3156 (|#1| $)) (-15 -3437 (|#1| $)) (-15 -2912 (|#1| $)) (-15 -3063 (|#1| $)) (-15 -2588 ($ $)) (-15 -3483 ((-121) |#2| $)) (-15 -3152 (|#1| |#2| $ |#1|)))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL)) (-1350 (($ $) NIL)) (-3376 (((-121) $) NIL)) (-3296 (($ $ $) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-2698 (($ $ $ $) NIL)) (-3065 (($ $) NIL)) (-2953 (((-414 $) $) NIL)) (-4179 (((-121) $ $) NIL)) (-4235 (((-560) $) NIL)) (-2956 (($ $ $) NIL)) (-4236 (($) NIL T CONST)) (-2370 (($ (-1153)) 10) (($ (-560)) 7)) (-1473 (((-3 (-560) "failed") $) NIL)) (-3001 (((-560) $) NIL)) (-2563 (($ $ $) NIL)) (-2616 (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) NIL) (((-671 (-560)) (-671 $)) NIL)) (-1823 (((-3 $ "failed") $) NIL)) (-1367 (((-3 (-403 (-560)) "failed") $) NIL)) (-1689 (((-121) $) NIL)) (-1519 (((-403 (-560)) $) NIL)) (-1666 (($) NIL) (($ $) NIL)) (-2572 (($ $ $) NIL)) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) NIL)) (-3319 (((-121) $) NIL)) (-2360 (($ $ $ $) NIL)) (-3016 (($ $ $) NIL)) (-1786 (((-121) $) NIL)) (-3634 (($ $ $) NIL)) (-2399 (((-876 (-560) $) $ (-879 (-560)) (-876 (-560) $)) NIL)) (-2642 (((-121) $) NIL)) (-3348 (((-121) $) NIL)) (-1424 (((-3 $ "failed") $) NIL)) (-2187 (((-121) $) NIL)) (-3856 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-4401 (($ $ $ $) NIL)) (-4325 (($ $ $) NIL)) (-2501 (($ $ $) NIL)) (-4247 (($ $) NIL)) (-2349 (($ $) NIL)) (-2582 (($ $ $) NIL) (($ (-626 $)) NIL)) (-1291 (((-1135) $) NIL)) (-4389 (($ $ $) NIL)) (-1394 (($) NIL T CONST)) (-1813 (($ $) NIL)) (-4353 (((-1100) $) NIL) (($ $) NIL)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL)) (-4440 (($ $ $) NIL) (($ (-626 $)) NIL)) (-2691 (($ $) NIL)) (-1601 (((-414 $) $) NIL)) (-3505 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL)) (-2336 (((-3 $ "failed") $ $) NIL)) (-3456 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-3522 (((-121) $) NIL)) (-4445 (((-755) $) NIL)) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL)) (-2443 (($ $ (-755)) NIL) (($ $) NIL)) (-2992 (($ $) NIL)) (-2813 (($ $) NIL)) (-4255 (((-560) $) 16) (((-533) $) NIL) (((-879 (-560)) $) NIL) (((-375) $) NIL) (((-213) $) NIL) (($ (-1153)) 9)) (-2801 (((-842) $) 20) (($ (-560)) 6) (($ $) NIL) (($ (-560)) 6)) (-1751 (((-755)) NIL)) (-4189 (((-121) $ $) NIL)) (-2406 (($ $ $) NIL)) (-2871 (($) NIL)) (-2328 (((-121) $ $) NIL)) (-4344 (($ $ $ $) NIL)) (-1822 (($ $) NIL)) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (-3304 (($) NIL T CONST)) (-1459 (($) NIL T CONST)) (-2500 (($ $ (-755)) NIL) (($ $) NIL)) (-1691 (((-121) $ $) NIL)) (-1675 (((-121) $ $) NIL)) (-1653 (((-121) $ $) NIL)) (-1683 (((-121) $ $) NIL)) (-1667 (((-121) $ $) NIL)) (-1725 (($ $) 19) (($ $ $) NIL)) (-1716 (($ $ $) NIL)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) NIL))) -(((-1050) (-13 (-542) (-10 -8 (-6 -4492) (-6 -4497) (-6 -4493) (-15 -4255 ($ (-1153))) (-15 -2370 ($ (-1153))) (-15 -2370 ($ (-560)))))) (T -1050)) -((-4255 (*1 *1 *2) (-12 (-5 *2 (-1153)) (-5 *1 (-1050)))) (-2370 (*1 *1 *2) (-12 (-5 *2 (-1153)) (-5 *1 (-1050)))) (-2370 (*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-1050))))) -(-13 (-542) (-10 -8 (-6 -4492) (-6 -4497) (-6 -4493) (-15 -4255 ($ (-1153))) (-15 -2370 ($ (-1153))) (-15 -2370 ($ (-560))))) -((-2601 (((-121) $ $) NIL (-2318 (|has| (-57) (-1082)) (|has| (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (-1082))))) (-4050 (($) NIL) (($ (-626 (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))))) NIL)) (-2960 (((-1241) $ (-1153) (-1153)) NIL (|has| $ (-6 -4506)))) (-3909 (((-121) $ (-755)) NIL)) (-1685 (($) 9)) (-2764 (((-57) $ (-1153) (-57)) NIL)) (-3431 (($ $) 23)) (-3159 (($ $) 21)) (-4332 (($ $) 20)) (-4245 (($ $) 22)) (-4462 (($ $) 25)) (-2025 (($ $) 26)) (-1865 (($ $) 19)) (-2538 (($ $) 24)) (-3763 (($ (-1 (-121) (-2 (|:| -3655 (-1153)) (|:| -2371 (-57)))) $) NIL (|has| $ (-6 -4505)))) (-3802 (($ (-1 (-121) (-2 (|:| -3655 (-1153)) (|:| -2371 (-57)))) $) 18 (|has| $ (-6 -4505)))) (-2722 (((-3 (-57) "failed") (-1153) $) 34)) (-4236 (($) NIL T CONST)) (-3155 (($) 7)) (-2868 (($ $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (-1082))))) (-3561 (($ (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) $) 46 (|has| $ (-6 -4505))) (($ (-1 (-121) (-2 (|:| -3655 (-1153)) (|:| -2371 (-57)))) $) NIL (|has| $ (-6 -4505))) (((-3 (-57) "failed") (-1153) $) NIL)) (-4310 (($ (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (-1082)))) (($ (-1 (-121) (-2 (|:| -3655 (-1153)) (|:| -2371 (-57)))) $) NIL (|has| $ (-6 -4505)))) (-2342 (((-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (-1 (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (-2 (|:| -3655 (-1153)) (|:| -2371 (-57)))) $ (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (-2 (|:| -3655 (-1153)) (|:| -2371 (-57)))) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (-1082)))) (((-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (-1 (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (-2 (|:| -3655 (-1153)) (|:| -2371 (-57)))) $ (-2 (|:| -3655 (-1153)) (|:| -2371 (-57)))) NIL (|has| $ (-6 -4505))) (((-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (-1 (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (-2 (|:| -3655 (-1153)) (|:| -2371 (-57)))) $) NIL (|has| $ (-6 -4505)))) (-2982 (((-3 (-1135) "failed") $ (-1135) (-560)) 59)) (-1746 (((-57) $ (-1153) (-57)) NIL (|has| $ (-6 -4506)))) (-1361 (((-57) $ (-1153)) NIL)) (-1981 (((-626 (-2 (|:| -3655 (-1153)) (|:| -2371 (-57)))) $) NIL (|has| $ (-6 -4505))) (((-626 (-57)) $) NIL (|has| $ (-6 -4505)))) (-2122 (((-121) $ (-755)) NIL)) (-4099 (((-1153) $) NIL (|has| (-1153) (-834)))) (-2130 (((-626 (-2 (|:| -3655 (-1153)) (|:| -2371 (-57)))) $) 28 (|has| $ (-6 -4505))) (((-626 (-57)) $) NIL (|has| $ (-6 -4505)))) (-2030 (((-121) (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (-1082)))) (((-121) (-57) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-57) (-1082))))) (-2767 (((-1153) $) NIL (|has| (-1153) (-834)))) (-3778 (($ (-1 (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (-2 (|:| -3655 (-1153)) (|:| -2371 (-57)))) $) NIL (|has| $ (-6 -4506))) (($ (-1 (-57) (-57)) $) NIL (|has| $ (-6 -4506)))) (-2803 (($ (-1 (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (-2 (|:| -3655 (-1153)) (|:| -2371 (-57)))) $) NIL) (($ (-1 (-57) (-57)) $) NIL) (($ (-1 (-57) (-57) (-57)) $ $) NIL)) (-3441 (((-121) $ (-755)) NIL)) (-1291 (((-1135) $) NIL (-2318 (|has| (-57) (-1082)) (|has| (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (-1082))))) (-1377 (((-626 (-1153)) $) NIL)) (-3855 (((-121) (-1153) $) NIL)) (-2525 (((-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) $) NIL)) (-4345 (($ (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) $) 37)) (-1529 (((-626 (-1153)) $) NIL)) (-1310 (((-121) (-1153) $) NIL)) (-4353 (((-1100) $) NIL (-2318 (|has| (-57) (-1082)) (|has| (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (-1082))))) (-1761 (((-375) $ (-1153)) 45)) (-1274 (((-626 (-1135)) $ (-1135)) 60)) (-2824 (((-57) $) NIL (|has| (-1153) (-834)))) (-3786 (((-3 (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) "failed") (-1 (-121) (-2 (|:| -3655 (-1153)) (|:| -2371 (-57)))) $) NIL)) (-3038 (($ $ (-57)) NIL (|has| $ (-6 -4506)))) (-2146 (((-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) $) NIL)) (-2865 (((-121) (-1 (-121) (-2 (|:| -3655 (-1153)) (|:| -2371 (-57)))) $) NIL (|has| $ (-6 -4505))) (((-121) (-1 (-121) (-57)) $) NIL (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 (-2 (|:| -3655 (-1153)) (|:| -2371 (-57)))))) NIL (-12 (|has| (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (-298 (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))))) (|has| (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (-1082)))) (($ $ (-283 (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))))) NIL (-12 (|has| (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (-298 (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))))) (|has| (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (-1082)))) (($ $ (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (-2 (|:| -3655 (-1153)) (|:| -2371 (-57)))) NIL (-12 (|has| (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (-298 (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))))) (|has| (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (-1082)))) (($ $ (-626 (-2 (|:| -3655 (-1153)) (|:| -2371 (-57)))) (-626 (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))))) NIL (-12 (|has| (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (-298 (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))))) (|has| (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (-1082)))) (($ $ (-626 (-57)) (-626 (-57))) NIL (-12 (|has| (-57) (-298 (-57))) (|has| (-57) (-1082)))) (($ $ (-57) (-57)) NIL (-12 (|has| (-57) (-298 (-57))) (|has| (-57) (-1082)))) (($ $ (-283 (-57))) NIL (-12 (|has| (-57) (-298 (-57))) (|has| (-57) (-1082)))) (($ $ (-626 (-283 (-57)))) NIL (-12 (|has| (-57) (-298 (-57))) (|has| (-57) (-1082))))) (-2214 (((-121) $ $) NIL)) (-1290 (((-121) (-57) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-57) (-1082))))) (-4460 (((-626 (-57)) $) NIL)) (-4191 (((-121) $) NIL)) (-3260 (($) NIL)) (-2778 (((-57) $ (-1153)) NIL) (((-57) $ (-1153) (-57)) NIL)) (-3958 (($) NIL) (($ (-626 (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))))) NIL)) (-2666 (($ $ (-1153)) 47)) (-4035 (((-755) (-1 (-121) (-2 (|:| -3655 (-1153)) (|:| -2371 (-57)))) $) NIL (|has| $ (-6 -4505))) (((-755) (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (-1082)))) (((-755) (-57) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-57) (-1082)))) (((-755) (-1 (-121) (-57)) $) NIL (|has| $ (-6 -4505)))) (-2813 (($ $) NIL)) (-4255 (((-533) $) NIL (|has| (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (-601 (-533))))) (-4162 (($ (-626 (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))))) 30)) (-2849 (($ $ $) 31)) (-2801 (((-842) $) NIL (-2318 (|has| (-57) (-1082)) (|has| (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (-1082))))) (-3834 (($ $ (-1153) (-375)) 43)) (-2942 (($ $ (-1153) (-375)) 44)) (-1354 (($ (-626 (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))))) NIL)) (-3656 (((-121) (-1 (-121) (-2 (|:| -3655 (-1153)) (|:| -2371 (-57)))) $) NIL (|has| $ (-6 -4505))) (((-121) (-1 (-121) (-57)) $) NIL (|has| $ (-6 -4505)))) (-1653 (((-121) $ $) NIL (-2318 (|has| (-57) (-1082)) (|has| (-2 (|:| -3655 (-1153)) (|:| -2371 (-57))) (-1082))))) (-2271 (((-755) $) NIL (|has| $ (-6 -4505))))) -(((-1051) (-13 (-1164 (-1153) (-57)) (-10 -8 (-15 -2849 ($ $ $)) (-15 -3155 ($)) (-15 -1865 ($ $)) (-15 -4332 ($ $)) (-15 -3159 ($ $)) (-15 -4245 ($ $)) (-15 -2538 ($ $)) (-15 -3431 ($ $)) (-15 -4462 ($ $)) (-15 -2025 ($ $)) (-15 -3834 ($ $ (-1153) (-375))) (-15 -2942 ($ $ (-1153) (-375))) (-15 -1761 ((-375) $ (-1153))) (-15 -1274 ((-626 (-1135)) $ (-1135))) (-15 -2666 ($ $ (-1153))) (-15 -1685 ($)) (-15 -2982 ((-3 (-1135) "failed") $ (-1135) (-560))) (-6 -4505)))) (T -1051)) -((-2849 (*1 *1 *1 *1) (-5 *1 (-1051))) (-3155 (*1 *1) (-5 *1 (-1051))) (-1865 (*1 *1 *1) (-5 *1 (-1051))) (-4332 (*1 *1 *1) (-5 *1 (-1051))) (-3159 (*1 *1 *1) (-5 *1 (-1051))) (-4245 (*1 *1 *1) (-5 *1 (-1051))) (-2538 (*1 *1 *1) (-5 *1 (-1051))) (-3431 (*1 *1 *1) (-5 *1 (-1051))) (-4462 (*1 *1 *1) (-5 *1 (-1051))) (-2025 (*1 *1 *1) (-5 *1 (-1051))) (-3834 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-375)) (-5 *1 (-1051)))) (-2942 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-375)) (-5 *1 (-1051)))) (-1761 (*1 *2 *1 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-375)) (-5 *1 (-1051)))) (-1274 (*1 *2 *1 *3) (-12 (-5 *2 (-626 (-1135))) (-5 *1 (-1051)) (-5 *3 (-1135)))) (-2666 (*1 *1 *1 *2) (-12 (-5 *2 (-1153)) (-5 *1 (-1051)))) (-1685 (*1 *1) (-5 *1 (-1051))) (-2982 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1135)) (-5 *3 (-560)) (-5 *1 (-1051))))) -(-13 (-1164 (-1153) (-57)) (-10 -8 (-15 -2849 ($ $ $)) (-15 -3155 ($)) (-15 -1865 ($ $)) (-15 -4332 ($ $)) (-15 -3159 ($ $)) (-15 -4245 ($ $)) (-15 -2538 ($ $)) (-15 -3431 ($ $)) (-15 -4462 ($ $)) (-15 -2025 ($ $)) (-15 -3834 ($ $ (-1153) (-375))) (-15 -2942 ($ $ (-1153) (-375))) (-15 -1761 ((-375) $ (-1153))) (-15 -1274 ((-626 (-1135)) $ (-1135))) (-15 -2666 ($ $ (-1153))) (-15 -1685 ($)) (-15 -2982 ((-3 (-1135) "failed") $ (-1135) (-560))) (-6 -4505))) -((-1417 (($ $) 45)) (-4370 (((-121) $ $) 74)) (-1473 (((-3 |#2| "failed") $) NIL) (((-3 (-403 (-560)) "failed") $) NIL) (((-3 (-560) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-945 (-403 (-560)))) 226) (((-3 $ "failed") (-945 (-560))) 225) (((-3 $ "failed") (-945 |#2|)) 228)) (-3001 ((|#2| $) NIL) (((-403 (-560)) $) NIL) (((-560) $) NIL) ((|#4| $) NIL) (($ (-945 (-403 (-560)))) 214) (($ (-945 (-560))) 210) (($ (-945 |#2|)) 230)) (-1750 (($ $) NIL) (($ $ |#4|) 43)) (-1590 (((-121) $ $) 111) (((-121) $ (-626 $)) 112)) (-3322 (((-121) $) 56)) (-4051 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) 106)) (-2338 (($ $) 137)) (-3253 (($ $) 133)) (-2565 (($ $) 132)) (-3064 (($ $ $) 79) (($ $ $ |#4|) 84)) (-1446 (($ $ $) 82) (($ $ $ |#4|) 86)) (-2864 (((-121) $ $) 120) (((-121) $ (-626 $)) 121)) (-2819 ((|#4| $) 33)) (-2830 (($ $ $) 109)) (-2188 (((-121) $) 55)) (-3153 (((-755) $) 35)) (-4206 (($ $) 151)) (-1352 (($ $) 148)) (-3323 (((-626 $) $) 68)) (-1674 (($ $) 57)) (-2718 (($ $) 144)) (-3633 (((-626 $) $) 65)) (-3435 (($ $) 59)) (-1735 ((|#2| $) NIL) (($ $ |#4|) 38)) (-3629 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2001 (-755))) $ $) 110)) (-2741 (((-2 (|:| -2169 $) (|:| |gap| (-755)) (|:| -2583 $) (|:| -4397 $)) $ $) 107) (((-2 (|:| -2169 $) (|:| |gap| (-755)) (|:| -2583 $) (|:| -4397 $)) $ $ |#4|) 108)) (-2106 (((-2 (|:| -2169 $) (|:| |gap| (-755)) (|:| -4397 $)) $ $) 103) (((-2 (|:| -2169 $) (|:| |gap| (-755)) (|:| -4397 $)) $ $ |#4|) 104)) (-2155 (($ $ $) 89) (($ $ $ |#4|) 94)) (-1615 (($ $ $) 90) (($ $ $ |#4|) 95)) (-3933 (((-626 $) $) 51)) (-3098 (((-121) $ $) 117) (((-121) $ (-626 $)) 118)) (-2054 (($ $ $) 102)) (-1394 (($ $) 37)) (-3564 (((-121) $ $) 72)) (-1584 (((-121) $ $) 113) (((-121) $ (-626 $)) 115)) (-4047 (($ $ $) 100)) (-1480 (($ $) 40)) (-4440 ((|#2| |#2| $) 141) (($ (-626 $)) NIL) (($ $ $) NIL)) (-4062 (($ $ |#2|) NIL) (($ $ $) 130)) (-1816 (($ $ |#2|) 125) (($ $ $) 128)) (-3749 (($ $) 48)) (-1559 (($ $) 52)) (-4255 (((-879 (-375)) $) NIL) (((-879 (-560)) $) NIL) (((-533) $) NIL) (($ (-945 (-403 (-560)))) 216) (($ (-945 (-560))) 212) (($ (-945 |#2|)) 227) (((-1135) $) 249) (((-945 |#2|) $) 161)) (-2801 (((-842) $) 30) (($ (-560)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-945 |#2|) $) 162) (($ (-403 (-560))) NIL) (($ $) NIL)) (-4219 (((-3 (-121) "failed") $ $) 71))) -(((-1052 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2801 (|#1| |#1|)) (-15 -4440 (|#1| |#1| |#1|)) (-15 -4440 (|#1| (-626 |#1|))) (-15 -2801 (|#1| (-403 (-560)))) (-15 -2801 ((-945 |#2|) |#1|)) (-15 -4255 ((-945 |#2|) |#1|)) (-15 -4255 ((-1135) |#1|)) (-15 -4206 (|#1| |#1|)) (-15 -1352 (|#1| |#1|)) (-15 -2718 (|#1| |#1|)) (-15 -2338 (|#1| |#1|)) (-15 -4440 (|#2| |#2| |#1|)) (-15 -4062 (|#1| |#1| |#1|)) (-15 -1816 (|#1| |#1| |#1|)) (-15 -4062 (|#1| |#1| |#2|)) (-15 -1816 (|#1| |#1| |#2|)) (-15 -3253 (|#1| |#1|)) (-15 -2565 (|#1| |#1|)) (-15 -4255 (|#1| (-945 |#2|))) (-15 -3001 (|#1| (-945 |#2|))) (-15 -1473 ((-3 |#1| "failed") (-945 |#2|))) (-15 -4255 (|#1| (-945 (-560)))) (-15 -3001 (|#1| (-945 (-560)))) (-15 -1473 ((-3 |#1| "failed") (-945 (-560)))) (-15 -4255 (|#1| (-945 (-403 (-560))))) (-15 -3001 (|#1| (-945 (-403 (-560))))) (-15 -1473 ((-3 |#1| "failed") (-945 (-403 (-560))))) (-15 -2054 (|#1| |#1| |#1|)) (-15 -4047 (|#1| |#1| |#1|)) (-15 -3629 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -2001 (-755))) |#1| |#1|)) (-15 -2830 (|#1| |#1| |#1|)) (-15 -4051 ((-2 (|:| -2583 |#1|) (|:| -4397 |#1|)) |#1| |#1|)) (-15 -2741 ((-2 (|:| -2169 |#1|) (|:| |gap| (-755)) (|:| -2583 |#1|) (|:| -4397 |#1|)) |#1| |#1| |#4|)) (-15 -2741 ((-2 (|:| -2169 |#1|) (|:| |gap| (-755)) (|:| -2583 |#1|) (|:| -4397 |#1|)) |#1| |#1|)) (-15 -2106 ((-2 (|:| -2169 |#1|) (|:| |gap| (-755)) (|:| -4397 |#1|)) |#1| |#1| |#4|)) (-15 -2106 ((-2 (|:| -2169 |#1|) (|:| |gap| (-755)) (|:| -4397 |#1|)) |#1| |#1|)) (-15 -1615 (|#1| |#1| |#1| |#4|)) (-15 -2155 (|#1| |#1| |#1| |#4|)) (-15 -1615 (|#1| |#1| |#1|)) (-15 -2155 (|#1| |#1| |#1|)) (-15 -1446 (|#1| |#1| |#1| |#4|)) (-15 -3064 (|#1| |#1| |#1| |#4|)) (-15 -1446 (|#1| |#1| |#1|)) (-15 -3064 (|#1| |#1| |#1|)) (-15 -2864 ((-121) |#1| (-626 |#1|))) (-15 -2864 ((-121) |#1| |#1|)) (-15 -3098 ((-121) |#1| (-626 |#1|))) (-15 -3098 ((-121) |#1| |#1|)) (-15 -1584 ((-121) |#1| (-626 |#1|))) (-15 -1584 ((-121) |#1| |#1|)) (-15 -1590 ((-121) |#1| (-626 |#1|))) (-15 -1590 ((-121) |#1| |#1|)) (-15 -4370 ((-121) |#1| |#1|)) (-15 -3564 ((-121) |#1| |#1|)) (-15 -4219 ((-3 (-121) "failed") |#1| |#1|)) (-15 -3323 ((-626 |#1|) |#1|)) (-15 -3633 ((-626 |#1|) |#1|)) (-15 -3435 (|#1| |#1|)) (-15 -1674 (|#1| |#1|)) (-15 -3322 ((-121) |#1|)) (-15 -2188 ((-121) |#1|)) (-15 -1750 (|#1| |#1| |#4|)) (-15 -1735 (|#1| |#1| |#4|)) (-15 -1559 (|#1| |#1|)) (-15 -3933 ((-626 |#1|) |#1|)) (-15 -3749 (|#1| |#1|)) (-15 -1417 (|#1| |#1|)) (-15 -1480 (|#1| |#1|)) (-15 -1394 (|#1| |#1|)) (-15 -3153 ((-755) |#1|)) (-15 -2819 (|#4| |#1|)) (-15 -4255 ((-533) |#1|)) (-15 -4255 ((-879 (-560)) |#1|)) (-15 -4255 ((-879 (-375)) |#1|)) (-15 -3001 (|#4| |#1|)) (-15 -1473 ((-3 |#4| "failed") |#1|)) (-15 -2801 (|#1| |#4|)) (-15 -1735 (|#2| |#1|)) (-15 -1750 (|#1| |#1|)) (-15 -3001 ((-560) |#1|)) (-15 -1473 ((-3 (-560) "failed") |#1|)) (-15 -3001 ((-403 (-560)) |#1|)) (-15 -1473 ((-3 (-403 (-560)) "failed") |#1|)) (-15 -2801 (|#1| |#2|)) (-15 -1473 ((-3 |#2| "failed") |#1|)) (-15 -3001 (|#2| |#1|)) (-15 -2801 (|#1| (-560))) (-15 -2801 ((-842) |#1|))) (-1053 |#2| |#3| |#4|) (-1039) (-780) (-834)) (T -1052)) -NIL -(-10 -8 (-15 -2801 (|#1| |#1|)) (-15 -4440 (|#1| |#1| |#1|)) (-15 -4440 (|#1| (-626 |#1|))) (-15 -2801 (|#1| (-403 (-560)))) (-15 -2801 ((-945 |#2|) |#1|)) (-15 -4255 ((-945 |#2|) |#1|)) (-15 -4255 ((-1135) |#1|)) (-15 -4206 (|#1| |#1|)) (-15 -1352 (|#1| |#1|)) (-15 -2718 (|#1| |#1|)) (-15 -2338 (|#1| |#1|)) (-15 -4440 (|#2| |#2| |#1|)) (-15 -4062 (|#1| |#1| |#1|)) (-15 -1816 (|#1| |#1| |#1|)) (-15 -4062 (|#1| |#1| |#2|)) (-15 -1816 (|#1| |#1| |#2|)) (-15 -3253 (|#1| |#1|)) (-15 -2565 (|#1| |#1|)) (-15 -4255 (|#1| (-945 |#2|))) (-15 -3001 (|#1| (-945 |#2|))) (-15 -1473 ((-3 |#1| "failed") (-945 |#2|))) (-15 -4255 (|#1| (-945 (-560)))) (-15 -3001 (|#1| (-945 (-560)))) (-15 -1473 ((-3 |#1| "failed") (-945 (-560)))) (-15 -4255 (|#1| (-945 (-403 (-560))))) (-15 -3001 (|#1| (-945 (-403 (-560))))) (-15 -1473 ((-3 |#1| "failed") (-945 (-403 (-560))))) (-15 -2054 (|#1| |#1| |#1|)) (-15 -4047 (|#1| |#1| |#1|)) (-15 -3629 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -2001 (-755))) |#1| |#1|)) (-15 -2830 (|#1| |#1| |#1|)) (-15 -4051 ((-2 (|:| -2583 |#1|) (|:| -4397 |#1|)) |#1| |#1|)) (-15 -2741 ((-2 (|:| -2169 |#1|) (|:| |gap| (-755)) (|:| -2583 |#1|) (|:| -4397 |#1|)) |#1| |#1| |#4|)) (-15 -2741 ((-2 (|:| -2169 |#1|) (|:| |gap| (-755)) (|:| -2583 |#1|) (|:| -4397 |#1|)) |#1| |#1|)) (-15 -2106 ((-2 (|:| -2169 |#1|) (|:| |gap| (-755)) (|:| -4397 |#1|)) |#1| |#1| |#4|)) (-15 -2106 ((-2 (|:| -2169 |#1|) (|:| |gap| (-755)) (|:| -4397 |#1|)) |#1| |#1|)) (-15 -1615 (|#1| |#1| |#1| |#4|)) (-15 -2155 (|#1| |#1| |#1| |#4|)) (-15 -1615 (|#1| |#1| |#1|)) (-15 -2155 (|#1| |#1| |#1|)) (-15 -1446 (|#1| |#1| |#1| |#4|)) (-15 -3064 (|#1| |#1| |#1| |#4|)) (-15 -1446 (|#1| |#1| |#1|)) (-15 -3064 (|#1| |#1| |#1|)) (-15 -2864 ((-121) |#1| (-626 |#1|))) (-15 -2864 ((-121) |#1| |#1|)) (-15 -3098 ((-121) |#1| (-626 |#1|))) (-15 -3098 ((-121) |#1| |#1|)) (-15 -1584 ((-121) |#1| (-626 |#1|))) (-15 -1584 ((-121) |#1| |#1|)) (-15 -1590 ((-121) |#1| (-626 |#1|))) (-15 -1590 ((-121) |#1| |#1|)) (-15 -4370 ((-121) |#1| |#1|)) (-15 -3564 ((-121) |#1| |#1|)) (-15 -4219 ((-3 (-121) "failed") |#1| |#1|)) (-15 -3323 ((-626 |#1|) |#1|)) (-15 -3633 ((-626 |#1|) |#1|)) (-15 -3435 (|#1| |#1|)) (-15 -1674 (|#1| |#1|)) (-15 -3322 ((-121) |#1|)) (-15 -2188 ((-121) |#1|)) (-15 -1750 (|#1| |#1| |#4|)) (-15 -1735 (|#1| |#1| |#4|)) (-15 -1559 (|#1| |#1|)) (-15 -3933 ((-626 |#1|) |#1|)) (-15 -3749 (|#1| |#1|)) (-15 -1417 (|#1| |#1|)) (-15 -1480 (|#1| |#1|)) (-15 -1394 (|#1| |#1|)) (-15 -3153 ((-755) |#1|)) (-15 -2819 (|#4| |#1|)) (-15 -4255 ((-533) |#1|)) (-15 -4255 ((-879 (-560)) |#1|)) (-15 -4255 ((-879 (-375)) |#1|)) (-15 -3001 (|#4| |#1|)) (-15 -1473 ((-3 |#4| "failed") |#1|)) (-15 -2801 (|#1| |#4|)) (-15 -1735 (|#2| |#1|)) (-15 -1750 (|#1| |#1|)) (-15 -3001 ((-560) |#1|)) (-15 -1473 ((-3 (-560) "failed") |#1|)) (-15 -3001 ((-403 (-560)) |#1|)) (-15 -1473 ((-3 (-403 (-560)) "failed") |#1|)) (-15 -2801 (|#1| |#2|)) (-15 -1473 ((-3 |#2| "failed") |#1|)) (-15 -3001 (|#2| |#1|)) (-15 -2801 (|#1| (-560))) (-15 -2801 ((-842) |#1|))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-1654 (((-626 |#3|) $) 108)) (-1593 (((-1149 $) $ |#3|) 123) (((-1149 |#1|) $) 122)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) 85 (|has| |#1| (-550)))) (-1350 (($ $) 86 (|has| |#1| (-550)))) (-3376 (((-121) $) 88 (|has| |#1| (-550)))) (-1697 (((-755) $) 110) (((-755) $ (-626 |#3|)) 109)) (-1417 (($ $) 250)) (-4370 (((-121) $ $) 236)) (-2314 (((-3 $ "failed") $ $) 18)) (-4408 (($ $ $) 195 (|has| |#1| (-550)))) (-1619 (((-626 $) $ $) 190 (|has| |#1| (-550)))) (-1776 (((-414 (-1149 $)) (-1149 $)) 98 (|has| |#1| (-896)))) (-3065 (($ $) 96 (|has| |#1| (-447)))) (-2953 (((-414 $) $) 95 (|has| |#1| (-447)))) (-1887 (((-3 (-626 (-1149 $)) "failed") (-626 (-1149 $)) (-1149 $)) 101 (|has| |#1| (-896)))) (-4236 (($) 16 T CONST)) (-1473 (((-3 |#1| "failed") $) 162) (((-3 (-403 (-560)) "failed") $) 160 (|has| |#1| (-1029 (-403 (-560))))) (((-3 (-560) "failed") $) 158 (|has| |#1| (-1029 (-560)))) (((-3 |#3| "failed") $) 134) (((-3 $ "failed") (-945 (-403 (-560)))) 210 (-12 (|has| |#1| (-43 (-403 (-560)))) (|has| |#3| (-601 (-1153))))) (((-3 $ "failed") (-945 (-560))) 207 (-2318 (-12 (-3186 (|has| |#1| (-43 (-403 (-560))))) (|has| |#1| (-43 (-560))) (|has| |#3| (-601 (-1153)))) (-12 (|has| |#1| (-43 (-403 (-560)))) (|has| |#3| (-601 (-1153)))))) (((-3 $ "failed") (-945 |#1|)) 204 (-2318 (-12 (-3186 (|has| |#1| (-43 (-403 (-560))))) (-3186 (|has| |#1| (-43 (-560)))) (|has| |#3| (-601 (-1153)))) (-12 (-3186 (|has| |#1| (-542))) (-3186 (|has| |#1| (-43 (-403 (-560))))) (|has| |#1| (-43 (-560))) (|has| |#3| (-601 (-1153)))) (-12 (-3186 (|has| |#1| (-985 (-560)))) (|has| |#1| (-43 (-403 (-560)))) (|has| |#3| (-601 (-1153))))))) (-3001 ((|#1| $) 163) (((-403 (-560)) $) 159 (|has| |#1| (-1029 (-403 (-560))))) (((-560) $) 157 (|has| |#1| (-1029 (-560)))) ((|#3| $) 133) (($ (-945 (-403 (-560)))) 209 (-12 (|has| |#1| (-43 (-403 (-560)))) (|has| |#3| (-601 (-1153))))) (($ (-945 (-560))) 206 (-2318 (-12 (-3186 (|has| |#1| (-43 (-403 (-560))))) (|has| |#1| (-43 (-560))) (|has| |#3| (-601 (-1153)))) (-12 (|has| |#1| (-43 (-403 (-560)))) (|has| |#3| (-601 (-1153)))))) (($ (-945 |#1|)) 203 (-2318 (-12 (-3186 (|has| |#1| (-43 (-403 (-560))))) (-3186 (|has| |#1| (-43 (-560)))) (|has| |#3| (-601 (-1153)))) (-12 (-3186 (|has| |#1| (-542))) (-3186 (|has| |#1| (-43 (-403 (-560))))) (|has| |#1| (-43 (-560))) (|has| |#3| (-601 (-1153)))) (-12 (-3186 (|has| |#1| (-985 (-560)))) (|has| |#1| (-43 (-403 (-560)))) (|has| |#3| (-601 (-1153))))))) (-1979 (($ $ $ |#3|) 106 (|has| |#1| (-170))) (($ $ $) 191 (|has| |#1| (-550)))) (-1750 (($ $) 152) (($ $ |#3|) 245)) (-2616 (((-671 (-560)) (-671 $)) 132 (|has| |#1| (-622 (-560)))) (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) 131 (|has| |#1| (-622 (-560)))) (((-2 (|:| -3818 (-671 |#1|)) (|:| |vec| (-1236 |#1|))) (-671 $) (-1236 $)) 130) (((-671 |#1|) (-671 $)) 129)) (-1590 (((-121) $ $) 235) (((-121) $ (-626 $)) 234)) (-1823 (((-3 $ "failed") $) 33)) (-3322 (((-121) $) 243)) (-4051 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) 215)) (-2338 (($ $) 184 (|has| |#1| (-447)))) (-3605 (($ $) 174 (|has| |#1| (-447))) (($ $ |#3|) 103 (|has| |#1| (-447)))) (-1743 (((-626 $) $) 107)) (-3319 (((-121) $) 94 (|has| |#1| (-896)))) (-3253 (($ $) 200 (|has| |#1| (-550)))) (-2565 (($ $) 201 (|has| |#1| (-550)))) (-3064 (($ $ $) 227) (($ $ $ |#3|) 225)) (-1446 (($ $ $) 226) (($ $ $ |#3|) 224)) (-1456 (($ $ |#1| |#2| $) 170)) (-2399 (((-876 (-375) $) $ (-879 (-375)) (-876 (-375) $)) 82 (-12 (|has| |#3| (-873 (-375))) (|has| |#1| (-873 (-375))))) (((-876 (-560) $) $ (-879 (-560)) (-876 (-560) $)) 81 (-12 (|has| |#3| (-873 (-560))) (|has| |#1| (-873 (-560)))))) (-2642 (((-121) $) 30)) (-3235 (((-755) $) 167)) (-2864 (((-121) $ $) 229) (((-121) $ (-626 $)) 228)) (-1937 (($ $ $ $ $) 186 (|has| |#1| (-550)))) (-2819 ((|#3| $) 254)) (-1647 (($ (-1149 |#1|) |#3|) 115) (($ (-1149 $) |#3|) 114)) (-1854 (((-626 $) $) 124)) (-1814 (((-121) $) 150)) (-1637 (($ |#1| |#2|) 151) (($ $ |#3| (-755)) 117) (($ $ (-626 |#3|) (-626 (-755))) 116)) (-2830 (($ $ $) 214)) (-2923 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $ |#3|) 118)) (-2188 (((-121) $) 244)) (-3693 ((|#2| $) 168) (((-755) $ |#3|) 120) (((-626 (-755)) $ (-626 |#3|)) 119)) (-4325 (($ $ $) 77 (|has| |#1| (-834)))) (-3153 (((-755) $) 253)) (-2501 (($ $ $) 76 (|has| |#1| (-834)))) (-1504 (($ (-1 |#2| |#2|) $) 169)) (-2803 (($ (-1 |#1| |#1|) $) 149)) (-2101 (((-3 |#3| "failed") $) 121)) (-4206 (($ $) 181 (|has| |#1| (-447)))) (-1352 (($ $) 182 (|has| |#1| (-447)))) (-3323 (((-626 $) $) 239)) (-1674 (($ $) 242)) (-2718 (($ $) 183 (|has| |#1| (-447)))) (-3633 (((-626 $) $) 240)) (-3435 (($ $) 241)) (-1726 (($ $) 147)) (-1735 ((|#1| $) 146) (($ $ |#3|) 246)) (-2582 (($ (-626 $)) 92 (|has| |#1| (-447))) (($ $ $) 91 (|has| |#1| (-447)))) (-3629 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2001 (-755))) $ $) 213)) (-2741 (((-2 (|:| -2169 $) (|:| |gap| (-755)) (|:| -2583 $) (|:| -4397 $)) $ $) 217) (((-2 (|:| -2169 $) (|:| |gap| (-755)) (|:| -2583 $) (|:| -4397 $)) $ $ |#3|) 216)) (-2106 (((-2 (|:| -2169 $) (|:| |gap| (-755)) (|:| -4397 $)) $ $) 219) (((-2 (|:| -2169 $) (|:| |gap| (-755)) (|:| -4397 $)) $ $ |#3|) 218)) (-2155 (($ $ $) 223) (($ $ $ |#3|) 221)) (-1615 (($ $ $) 222) (($ $ $ |#3|) 220)) (-1291 (((-1135) $) 9)) (-3069 (($ $ $) 189 (|has| |#1| (-550)))) (-3933 (((-626 $) $) 248)) (-3665 (((-3 (-626 $) "failed") $) 112)) (-2327 (((-3 (-626 $) "failed") $) 113)) (-2913 (((-3 (-2 (|:| |var| |#3|) (|:| -4034 (-755))) "failed") $) 111)) (-3098 (((-121) $ $) 231) (((-121) $ (-626 $)) 230)) (-2054 (($ $ $) 211)) (-1394 (($ $) 252)) (-3564 (((-121) $ $) 237)) (-1584 (((-121) $ $) 233) (((-121) $ (-626 $)) 232)) (-4047 (($ $ $) 212)) (-1480 (($ $) 251)) (-4353 (((-1100) $) 10)) (-4056 (((-2 (|:| -4440 $) (|:| |coef2| $)) $ $) 192 (|has| |#1| (-550)))) (-1864 (((-2 (|:| -4440 $) (|:| |coef1| $)) $ $) 193 (|has| |#1| (-550)))) (-1704 (((-121) $) 164)) (-1711 ((|#1| $) 165)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) 93 (|has| |#1| (-447)))) (-4440 ((|#1| |#1| $) 185 (|has| |#1| (-447))) (($ (-626 $)) 90 (|has| |#1| (-447))) (($ $ $) 89 (|has| |#1| (-447)))) (-3817 (((-414 (-1149 $)) (-1149 $)) 100 (|has| |#1| (-896)))) (-3032 (((-414 (-1149 $)) (-1149 $)) 99 (|has| |#1| (-896)))) (-1601 (((-414 $) $) 97 (|has| |#1| (-896)))) (-3087 (((-2 (|:| -4440 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 194 (|has| |#1| (-550)))) (-2336 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-550))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-550)))) (-4062 (($ $ |#1|) 198 (|has| |#1| (-550))) (($ $ $) 196 (|has| |#1| (-550)))) (-1816 (($ $ |#1|) 199 (|has| |#1| (-550))) (($ $ $) 197 (|has| |#1| (-550)))) (-4450 (($ $ (-626 (-283 $))) 143) (($ $ (-283 $)) 142) (($ $ $ $) 141) (($ $ (-626 $) (-626 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-626 |#3|) (-626 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-626 |#3|) (-626 $)) 136)) (-4069 (($ $ |#3|) 105 (|has| |#1| (-170)))) (-2443 (($ $ |#3|) 41) (($ $ (-626 |#3|)) 40) (($ $ |#3| (-755)) 39) (($ $ (-626 |#3|) (-626 (-755))) 38)) (-3662 ((|#2| $) 148) (((-755) $ |#3|) 128) (((-626 (-755)) $ (-626 |#3|)) 127)) (-3749 (($ $) 249)) (-1559 (($ $) 247)) (-4255 (((-879 (-375)) $) 80 (-12 (|has| |#3| (-601 (-879 (-375)))) (|has| |#1| (-601 (-879 (-375)))))) (((-879 (-560)) $) 79 (-12 (|has| |#3| (-601 (-879 (-560)))) (|has| |#1| (-601 (-879 (-560)))))) (((-533) $) 78 (-12 (|has| |#3| (-601 (-533))) (|has| |#1| (-601 (-533))))) (($ (-945 (-403 (-560)))) 208 (-12 (|has| |#1| (-43 (-403 (-560)))) (|has| |#3| (-601 (-1153))))) (($ (-945 (-560))) 205 (-2318 (-12 (-3186 (|has| |#1| (-43 (-403 (-560))))) (|has| |#1| (-43 (-560))) (|has| |#3| (-601 (-1153)))) (-12 (|has| |#1| (-43 (-403 (-560)))) (|has| |#3| (-601 (-1153)))))) (($ (-945 |#1|)) 202 (|has| |#3| (-601 (-1153)))) (((-1135) $) 180 (-12 (|has| |#1| (-1029 (-560))) (|has| |#3| (-601 (-1153))))) (((-945 |#1|) $) 179 (|has| |#3| (-601 (-1153))))) (-1896 ((|#1| $) 173 (|has| |#1| (-447))) (($ $ |#3|) 104 (|has| |#1| (-447)))) (-3248 (((-3 (-1236 $) "failed") (-671 $)) 102 (-2256 (|has| $ (-146)) (|has| |#1| (-896))))) (-2801 (((-842) $) 11) (($ (-560)) 27) (($ |#1|) 161) (($ |#3|) 135) (((-945 |#1|) $) 178 (|has| |#3| (-601 (-1153)))) (($ (-403 (-560))) 70 (-2318 (|has| |#1| (-1029 (-403 (-560)))) (|has| |#1| (-43 (-403 (-560)))))) (($ $) 83 (|has| |#1| (-550)))) (-2423 (((-626 |#1|) $) 166)) (-2636 ((|#1| $ |#2|) 153) (($ $ |#3| (-755)) 126) (($ $ (-626 |#3|) (-626 (-755))) 125)) (-2272 (((-3 $ "failed") $) 71 (-2318 (-2256 (|has| $ (-146)) (|has| |#1| (-896))) (|has| |#1| (-146))))) (-1751 (((-755)) 28)) (-3487 (($ $ $ (-755)) 171 (|has| |#1| (-170)))) (-2328 (((-121) $ $) 87 (|has| |#1| (-550)))) (-2464 (($ $ (-909)) 25) (($ $ (-755)) 32)) (-3304 (($) 17 T CONST)) (-4219 (((-3 (-121) "failed") $ $) 238)) (-1459 (($) 29 T CONST)) (-3457 (($ $ $ $ (-755)) 187 (|has| |#1| (-550)))) (-4392 (($ $ $ (-755)) 188 (|has| |#1| (-550)))) (-2500 (($ $ |#3|) 37) (($ $ (-626 |#3|)) 36) (($ $ |#3| (-755)) 35) (($ $ (-626 |#3|) (-626 (-755))) 34)) (-1691 (((-121) $ $) 74 (|has| |#1| (-834)))) (-1675 (((-121) $ $) 73 (|has| |#1| (-834)))) (-1653 (((-121) $ $) 6)) (-1683 (((-121) $ $) 75 (|has| |#1| (-834)))) (-1667 (((-121) $ $) 72 (|has| |#1| (-834)))) (-1733 (($ $ |#1|) 154 (|has| |#1| (-359)))) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 24) (($ $ (-755)) 31)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 23) (($ $ (-403 (-560))) 156 (|has| |#1| (-43 (-403 (-560))))) (($ (-403 (-560)) $) 155 (|has| |#1| (-43 (-403 (-560))))) (($ |#1| $) 145) (($ $ |#1|) 144))) -(((-1053 |#1| |#2| |#3|) (-1267) (-1039) (-780) (-834)) (T -1053)) -((-2819 (*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *2 (-834)))) (-3153 (*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-755)))) (-1394 (*1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-780)) (-4 *4 (-834)))) (-1480 (*1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-780)) (-4 *4 (-834)))) (-1417 (*1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-780)) (-4 *4 (-834)))) (-3749 (*1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-780)) (-4 *4 (-834)))) (-3933 (*1 *2 *1) (-12 (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-626 *1)) (-4 *1 (-1053 *3 *4 *5)))) (-1559 (*1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-780)) (-4 *4 (-834)))) (-1735 (*1 *1 *1 *2) (-12 (-4 *1 (-1053 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *2 (-834)))) (-1750 (*1 *1 *1 *2) (-12 (-4 *1 (-1053 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *2 (-834)))) (-2188 (*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-121)))) (-3322 (*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-121)))) (-1674 (*1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-780)) (-4 *4 (-834)))) (-3435 (*1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-780)) (-4 *4 (-834)))) (-3633 (*1 *2 *1) (-12 (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-626 *1)) (-4 *1 (-1053 *3 *4 *5)))) (-3323 (*1 *2 *1) (-12 (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-626 *1)) (-4 *1 (-1053 *3 *4 *5)))) (-4219 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-121)))) (-3564 (*1 *2 *1 *1) (-12 (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-121)))) (-4370 (*1 *2 *1 *1) (-12 (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-121)))) (-1590 (*1 *2 *1 *1) (-12 (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-121)))) (-1590 (*1 *2 *1 *3) (-12 (-5 *3 (-626 *1)) (-4 *1 (-1053 *4 *5 *6)) (-4 *4 (-1039)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-121)))) (-1584 (*1 *2 *1 *1) (-12 (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-121)))) (-1584 (*1 *2 *1 *3) (-12 (-5 *3 (-626 *1)) (-4 *1 (-1053 *4 *5 *6)) (-4 *4 (-1039)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-121)))) (-3098 (*1 *2 *1 *1) (-12 (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-121)))) (-3098 (*1 *2 *1 *3) (-12 (-5 *3 (-626 *1)) (-4 *1 (-1053 *4 *5 *6)) (-4 *4 (-1039)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-121)))) (-2864 (*1 *2 *1 *1) (-12 (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-121)))) (-2864 (*1 *2 *1 *3) (-12 (-5 *3 (-626 *1)) (-4 *1 (-1053 *4 *5 *6)) (-4 *4 (-1039)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-121)))) (-3064 (*1 *1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-780)) (-4 *4 (-834)))) (-1446 (*1 *1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-780)) (-4 *4 (-834)))) (-3064 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1053 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *2 (-834)))) (-1446 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1053 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *2 (-834)))) (-2155 (*1 *1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-780)) (-4 *4 (-834)))) (-1615 (*1 *1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-780)) (-4 *4 (-834)))) (-2155 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1053 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *2 (-834)))) (-1615 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1053 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *2 (-834)))) (-2106 (*1 *2 *1 *1) (-12 (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-2 (|:| -2169 *1) (|:| |gap| (-755)) (|:| -4397 *1))) (-4 *1 (-1053 *3 *4 *5)))) (-2106 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1039)) (-4 *5 (-780)) (-4 *3 (-834)) (-5 *2 (-2 (|:| -2169 *1) (|:| |gap| (-755)) (|:| -4397 *1))) (-4 *1 (-1053 *4 *5 *3)))) (-2741 (*1 *2 *1 *1) (-12 (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-2 (|:| -2169 *1) (|:| |gap| (-755)) (|:| -2583 *1) (|:| -4397 *1))) (-4 *1 (-1053 *3 *4 *5)))) (-2741 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1039)) (-4 *5 (-780)) (-4 *3 (-834)) (-5 *2 (-2 (|:| -2169 *1) (|:| |gap| (-755)) (|:| -2583 *1) (|:| -4397 *1))) (-4 *1 (-1053 *4 *5 *3)))) (-4051 (*1 *2 *1 *1) (-12 (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-2 (|:| -2583 *1) (|:| -4397 *1))) (-4 *1 (-1053 *3 *4 *5)))) (-2830 (*1 *1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-780)) (-4 *4 (-834)))) (-3629 (*1 *2 *1 *1) (-12 (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -2001 (-755)))) (-4 *1 (-1053 *3 *4 *5)))) (-4047 (*1 *1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-780)) (-4 *4 (-834)))) (-2054 (*1 *1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-780)) (-4 *4 (-834)))) (-1473 (*1 *1 *2) (|partial| -12 (-5 *2 (-945 (-403 (-560)))) (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-43 (-403 (-560)))) (-4 *5 (-601 (-1153))) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)))) (-3001 (*1 *1 *2) (-12 (-5 *2 (-945 (-403 (-560)))) (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-43 (-403 (-560)))) (-4 *5 (-601 (-1153))) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)))) (-4255 (*1 *1 *2) (-12 (-5 *2 (-945 (-403 (-560)))) (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-43 (-403 (-560)))) (-4 *5 (-601 (-1153))) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)))) (-1473 (*1 *1 *2) (|partial| -2318 (-12 (-5 *2 (-945 (-560))) (-4 *1 (-1053 *3 *4 *5)) (-12 (-3186 (-4 *3 (-43 (-403 (-560))))) (-4 *3 (-43 (-560))) (-4 *5 (-601 (-1153)))) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834))) (-12 (-5 *2 (-945 (-560))) (-4 *1 (-1053 *3 *4 *5)) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *5 (-601 (-1153)))) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834))))) (-3001 (*1 *1 *2) (-2318 (-12 (-5 *2 (-945 (-560))) (-4 *1 (-1053 *3 *4 *5)) (-12 (-3186 (-4 *3 (-43 (-403 (-560))))) (-4 *3 (-43 (-560))) (-4 *5 (-601 (-1153)))) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834))) (-12 (-5 *2 (-945 (-560))) (-4 *1 (-1053 *3 *4 *5)) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *5 (-601 (-1153)))) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834))))) (-4255 (*1 *1 *2) (-2318 (-12 (-5 *2 (-945 (-560))) (-4 *1 (-1053 *3 *4 *5)) (-12 (-3186 (-4 *3 (-43 (-403 (-560))))) (-4 *3 (-43 (-560))) (-4 *5 (-601 (-1153)))) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834))) (-12 (-5 *2 (-945 (-560))) (-4 *1 (-1053 *3 *4 *5)) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *5 (-601 (-1153)))) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834))))) (-1473 (*1 *1 *2) (|partial| -2318 (-12 (-5 *2 (-945 *3)) (-12 (-3186 (-4 *3 (-43 (-403 (-560))))) (-3186 (-4 *3 (-43 (-560)))) (-4 *5 (-601 (-1153)))) (-4 *3 (-1039)) (-4 *1 (-1053 *3 *4 *5)) (-4 *4 (-780)) (-4 *5 (-834))) (-12 (-5 *2 (-945 *3)) (-12 (-3186 (-4 *3 (-542))) (-3186 (-4 *3 (-43 (-403 (-560))))) (-4 *3 (-43 (-560))) (-4 *5 (-601 (-1153)))) (-4 *3 (-1039)) (-4 *1 (-1053 *3 *4 *5)) (-4 *4 (-780)) (-4 *5 (-834))) (-12 (-5 *2 (-945 *3)) (-12 (-3186 (-4 *3 (-985 (-560)))) (-4 *3 (-43 (-403 (-560)))) (-4 *5 (-601 (-1153)))) (-4 *3 (-1039)) (-4 *1 (-1053 *3 *4 *5)) (-4 *4 (-780)) (-4 *5 (-834))))) (-3001 (*1 *1 *2) (-2318 (-12 (-5 *2 (-945 *3)) (-12 (-3186 (-4 *3 (-43 (-403 (-560))))) (-3186 (-4 *3 (-43 (-560)))) (-4 *5 (-601 (-1153)))) (-4 *3 (-1039)) (-4 *1 (-1053 *3 *4 *5)) (-4 *4 (-780)) (-4 *5 (-834))) (-12 (-5 *2 (-945 *3)) (-12 (-3186 (-4 *3 (-542))) (-3186 (-4 *3 (-43 (-403 (-560))))) (-4 *3 (-43 (-560))) (-4 *5 (-601 (-1153)))) (-4 *3 (-1039)) (-4 *1 (-1053 *3 *4 *5)) (-4 *4 (-780)) (-4 *5 (-834))) (-12 (-5 *2 (-945 *3)) (-12 (-3186 (-4 *3 (-985 (-560)))) (-4 *3 (-43 (-403 (-560)))) (-4 *5 (-601 (-1153)))) (-4 *3 (-1039)) (-4 *1 (-1053 *3 *4 *5)) (-4 *4 (-780)) (-4 *5 (-834))))) (-4255 (*1 *1 *2) (-12 (-5 *2 (-945 *3)) (-4 *3 (-1039)) (-4 *1 (-1053 *3 *4 *5)) (-4 *5 (-601 (-1153))) (-4 *4 (-780)) (-4 *5 (-834)))) (-2565 (*1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-780)) (-4 *4 (-834)) (-4 *2 (-550)))) (-3253 (*1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-780)) (-4 *4 (-834)) (-4 *2 (-550)))) (-1816 (*1 *1 *1 *2) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-780)) (-4 *4 (-834)) (-4 *2 (-550)))) (-4062 (*1 *1 *1 *2) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-780)) (-4 *4 (-834)) (-4 *2 (-550)))) (-1816 (*1 *1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-780)) (-4 *4 (-834)) (-4 *2 (-550)))) (-4062 (*1 *1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-780)) (-4 *4 (-834)) (-4 *2 (-550)))) (-4408 (*1 *1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-780)) (-4 *4 (-834)) (-4 *2 (-550)))) (-3087 (*1 *2 *1 *1) (-12 (-4 *3 (-550)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-2 (|:| -4440 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1053 *3 *4 *5)))) (-1864 (*1 *2 *1 *1) (-12 (-4 *3 (-550)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-2 (|:| -4440 *1) (|:| |coef1| *1))) (-4 *1 (-1053 *3 *4 *5)))) (-4056 (*1 *2 *1 *1) (-12 (-4 *3 (-550)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-2 (|:| -4440 *1) (|:| |coef2| *1))) (-4 *1 (-1053 *3 *4 *5)))) (-1979 (*1 *1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-780)) (-4 *4 (-834)) (-4 *2 (-550)))) (-1619 (*1 *2 *1 *1) (-12 (-4 *3 (-550)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-626 *1)) (-4 *1 (-1053 *3 *4 *5)))) (-3069 (*1 *1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-780)) (-4 *4 (-834)) (-4 *2 (-550)))) (-4392 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-755)) (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *3 (-550)))) (-3457 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-755)) (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *3 (-550)))) (-1937 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-780)) (-4 *4 (-834)) (-4 *2 (-550)))) (-4440 (*1 *2 *2 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-780)) (-4 *4 (-834)) (-4 *2 (-447)))) (-2338 (*1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-780)) (-4 *4 (-834)) (-4 *2 (-447)))) (-2718 (*1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-780)) (-4 *4 (-834)) (-4 *2 (-447)))) (-1352 (*1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-780)) (-4 *4 (-834)) (-4 *2 (-447)))) (-4206 (*1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-780)) (-4 *4 (-834)) (-4 *2 (-447))))) -(-13 (-942 |t#1| |t#2| |t#3|) (-10 -8 (-15 -2819 (|t#3| $)) (-15 -3153 ((-755) $)) (-15 -1394 ($ $)) (-15 -1480 ($ $)) (-15 -1417 ($ $)) (-15 -3749 ($ $)) (-15 -3933 ((-626 $) $)) (-15 -1559 ($ $)) (-15 -1735 ($ $ |t#3|)) (-15 -1750 ($ $ |t#3|)) (-15 -2188 ((-121) $)) (-15 -3322 ((-121) $)) (-15 -1674 ($ $)) (-15 -3435 ($ $)) (-15 -3633 ((-626 $) $)) (-15 -3323 ((-626 $) $)) (-15 -4219 ((-3 (-121) "failed") $ $)) (-15 -3564 ((-121) $ $)) (-15 -4370 ((-121) $ $)) (-15 -1590 ((-121) $ $)) (-15 -1590 ((-121) $ (-626 $))) (-15 -1584 ((-121) $ $)) (-15 -1584 ((-121) $ (-626 $))) (-15 -3098 ((-121) $ $)) (-15 -3098 ((-121) $ (-626 $))) (-15 -2864 ((-121) $ $)) (-15 -2864 ((-121) $ (-626 $))) (-15 -3064 ($ $ $)) (-15 -1446 ($ $ $)) (-15 -3064 ($ $ $ |t#3|)) (-15 -1446 ($ $ $ |t#3|)) (-15 -2155 ($ $ $)) (-15 -1615 ($ $ $)) (-15 -2155 ($ $ $ |t#3|)) (-15 -1615 ($ $ $ |t#3|)) (-15 -2106 ((-2 (|:| -2169 $) (|:| |gap| (-755)) (|:| -4397 $)) $ $)) (-15 -2106 ((-2 (|:| -2169 $) (|:| |gap| (-755)) (|:| -4397 $)) $ $ |t#3|)) (-15 -2741 ((-2 (|:| -2169 $) (|:| |gap| (-755)) (|:| -2583 $) (|:| -4397 $)) $ $)) (-15 -2741 ((-2 (|:| -2169 $) (|:| |gap| (-755)) (|:| -2583 $) (|:| -4397 $)) $ $ |t#3|)) (-15 -4051 ((-2 (|:| -2583 $) (|:| -4397 $)) $ $)) (-15 -2830 ($ $ $)) (-15 -3629 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2001 (-755))) $ $)) (-15 -4047 ($ $ $)) (-15 -2054 ($ $ $)) (IF (|has| |t#3| (-601 (-1153))) (PROGN (-6 (-600 (-945 |t#1|))) (-6 (-601 (-945 |t#1|))) (IF (|has| |t#1| (-43 (-403 (-560)))) (PROGN (-15 -1473 ((-3 $ "failed") (-945 (-403 (-560))))) (-15 -3001 ($ (-945 (-403 (-560))))) (-15 -4255 ($ (-945 (-403 (-560))))) (-15 -1473 ((-3 $ "failed") (-945 (-560)))) (-15 -3001 ($ (-945 (-560)))) (-15 -4255 ($ (-945 (-560)))) (IF (|has| |t#1| (-985 (-560))) |noBranch| (PROGN (-15 -1473 ((-3 $ "failed") (-945 |t#1|))) (-15 -3001 ($ (-945 |t#1|)))))) |noBranch|) (IF (|has| |t#1| (-43 (-560))) (IF (|has| |t#1| (-43 (-403 (-560)))) |noBranch| (PROGN (-15 -1473 ((-3 $ "failed") (-945 (-560)))) (-15 -3001 ($ (-945 (-560)))) (-15 -4255 ($ (-945 (-560)))) (IF (|has| |t#1| (-542)) |noBranch| (PROGN (-15 -1473 ((-3 $ "failed") (-945 |t#1|))) (-15 -3001 ($ (-945 |t#1|))))))) |noBranch|) (IF (|has| |t#1| (-43 (-560))) |noBranch| (IF (|has| |t#1| (-43 (-403 (-560)))) |noBranch| (PROGN (-15 -1473 ((-3 $ "failed") (-945 |t#1|))) (-15 -3001 ($ (-945 |t#1|)))))) (-15 -4255 ($ (-945 |t#1|))) (IF (|has| |t#1| (-1029 (-560))) (-6 (-601 (-1135))) |noBranch|)) |noBranch|) (IF (|has| |t#1| (-550)) (PROGN (-15 -2565 ($ $)) (-15 -3253 ($ $)) (-15 -1816 ($ $ |t#1|)) (-15 -4062 ($ $ |t#1|)) (-15 -1816 ($ $ $)) (-15 -4062 ($ $ $)) (-15 -4408 ($ $ $)) (-15 -3087 ((-2 (|:| -4440 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1864 ((-2 (|:| -4440 $) (|:| |coef1| $)) $ $)) (-15 -4056 ((-2 (|:| -4440 $) (|:| |coef2| $)) $ $)) (-15 -1979 ($ $ $)) (-15 -1619 ((-626 $) $ $)) (-15 -3069 ($ $ $)) (-15 -4392 ($ $ $ (-755))) (-15 -3457 ($ $ $ $ (-755))) (-15 -1937 ($ $ $ $ $))) |noBranch|) (IF (|has| |t#1| (-447)) (PROGN (-15 -4440 (|t#1| |t#1| $)) (-15 -2338 ($ $)) (-15 -2718 ($ $)) (-15 -1352 ($ $)) (-15 -4206 ($ $))) |noBranch|))) -(((-21) . T) ((-23) . T) ((-52 |#1| |#2|) . T) ((-25) . T) ((-43 (-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((-43 |#1|) |has| |#1| (-170)) ((-43 $) -2318 (|has| |#1| (-896)) (|has| |#1| (-550)) (|has| |#1| (-447))) ((-105) . T) ((-120 (-403 (-560)) (-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((-120 |#1| |#1|) . T) ((-120 $ $) -2318 (|has| |#1| (-896)) (|has| |#1| (-550)) (|has| |#1| (-447)) (|has| |#1| (-170))) ((-137) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-600 (-842)) . T) ((-600 (-945 |#1|)) |has| |#3| (-601 (-1153))) ((-170) -2318 (|has| |#1| (-896)) (|has| |#1| (-550)) (|has| |#1| (-447)) (|has| |#1| (-170))) ((-601 (-533)) -12 (|has| |#1| (-601 (-533))) (|has| |#3| (-601 (-533)))) ((-601 (-879 (-375))) -12 (|has| |#1| (-601 (-879 (-375)))) (|has| |#3| (-601 (-879 (-375))))) ((-601 (-879 (-560))) -12 (|has| |#1| (-601 (-879 (-560)))) (|has| |#3| (-601 (-879 (-560))))) ((-601 (-945 |#1|)) |has| |#3| (-601 (-1153))) ((-601 (-1135)) -12 (|has| |#1| (-1029 (-560))) (|has| |#3| (-601 (-1153)))) ((-280) -2318 (|has| |#1| (-896)) (|has| |#1| (-550)) (|has| |#1| (-447))) ((-298 $) . T) ((-318 |#1| |#2|) . T) ((-373 |#1|) . T) ((-407 |#1|) . T) ((-447) -2318 (|has| |#1| (-896)) (|has| |#1| (-447))) ((-515 |#3| |#1|) . T) ((-515 |#3| $) . T) ((-515 $ $) . T) ((-550) -2318 (|has| |#1| (-896)) (|has| |#1| (-550)) (|has| |#1| (-447))) ((-629 (-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((-629 |#1|) . T) ((-629 $) . T) ((-622 (-560)) |has| |#1| (-622 (-560))) ((-622 |#1|) . T) ((-699 (-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((-699 |#1|) |has| |#1| (-170)) ((-699 $) -2318 (|has| |#1| (-896)) (|has| |#1| (-550)) (|has| |#1| (-447))) ((-708) . T) ((-834) |has| |#1| (-834)) ((-887 |#3|) . T) ((-873 (-375)) -12 (|has| |#1| (-873 (-375))) (|has| |#3| (-873 (-375)))) ((-873 (-560)) -12 (|has| |#1| (-873 (-560))) (|has| |#3| (-873 (-560)))) ((-942 |#1| |#2| |#3|) . T) ((-896) |has| |#1| (-896)) ((-1029 (-403 (-560))) |has| |#1| (-1029 (-403 (-560)))) ((-1029 (-560)) |has| |#1| (-1029 (-560))) ((-1029 |#1|) . T) ((-1029 |#3|) . T) ((-1045 (-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((-1045 |#1|) . T) ((-1045 $) -2318 (|has| |#1| (-896)) (|has| |#1| (-550)) (|has| |#1| (-447)) (|has| |#1| (-170))) ((-1039) . T) ((-1046) . T) ((-1094) . T) ((-1082) . T) ((-1191) |has| |#1| (-896))) -((-2832 (((-121) |#3| $) 13)) (-1449 (((-3 $ "failed") |#3| (-909)) 23)) (-1823 (((-3 |#3| "failed") |#3| $) 37)) (-1786 (((-121) |#3| $) 16)) (-2187 (((-121) |#3| $) 14))) -(((-1054 |#1| |#2| |#3|) (-10 -8 (-15 -1449 ((-3 |#1| "failed") |#3| (-909))) (-15 -1823 ((-3 |#3| "failed") |#3| |#1|)) (-15 -1786 ((-121) |#3| |#1|)) (-15 -2187 ((-121) |#3| |#1|)) (-15 -2832 ((-121) |#3| |#1|))) (-1055 |#2| |#3|) (-13 (-832) (-359)) (-1211 |#2|)) (T -1054)) -NIL -(-10 -8 (-15 -1449 ((-3 |#1| "failed") |#3| (-909))) (-15 -1823 ((-3 |#3| "failed") |#3| |#1|)) (-15 -1786 ((-121) |#3| |#1|)) (-15 -2187 ((-121) |#3| |#1|)) (-15 -2832 ((-121) |#3| |#1|))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) |#2| $) 20)) (-4235 (((-560) |#2| $) 21)) (-1449 (((-3 $ "failed") |#2| (-909)) 14)) (-3152 ((|#1| |#2| $ |#1|) 12)) (-1823 (((-3 |#2| "failed") |#2| $) 17)) (-1786 (((-121) |#2| $) 18)) (-2187 (((-121) |#2| $) 19)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-3591 ((|#2| $) 16)) (-2801 (((-842) $) 11)) (-2550 ((|#1| |#2| $ |#1|) 13)) (-2140 (((-626 $) |#2|) 15)) (-1653 (((-121) $ $) 6))) -(((-1055 |#1| |#2|) (-1267) (-13 (-832) (-359)) (-1211 |t#1|)) (T -1055)) -((-4235 (*1 *2 *3 *1) (-12 (-4 *1 (-1055 *4 *3)) (-4 *4 (-13 (-832) (-359))) (-4 *3 (-1211 *4)) (-5 *2 (-560)))) (-2832 (*1 *2 *3 *1) (-12 (-4 *1 (-1055 *4 *3)) (-4 *4 (-13 (-832) (-359))) (-4 *3 (-1211 *4)) (-5 *2 (-121)))) (-2187 (*1 *2 *3 *1) (-12 (-4 *1 (-1055 *4 *3)) (-4 *4 (-13 (-832) (-359))) (-4 *3 (-1211 *4)) (-5 *2 (-121)))) (-1786 (*1 *2 *3 *1) (-12 (-4 *1 (-1055 *4 *3)) (-4 *4 (-13 (-832) (-359))) (-4 *3 (-1211 *4)) (-5 *2 (-121)))) (-1823 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1055 *3 *2)) (-4 *3 (-13 (-832) (-359))) (-4 *2 (-1211 *3)))) (-3591 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *2)) (-4 *3 (-13 (-832) (-359))) (-4 *2 (-1211 *3)))) (-2140 (*1 *2 *3) (-12 (-4 *4 (-13 (-832) (-359))) (-4 *3 (-1211 *4)) (-5 *2 (-626 *1)) (-4 *1 (-1055 *4 *3)))) (-1449 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-909)) (-4 *4 (-13 (-832) (-359))) (-4 *1 (-1055 *4 *2)) (-4 *2 (-1211 *4)))) (-2550 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1055 *2 *3)) (-4 *2 (-13 (-832) (-359))) (-4 *3 (-1211 *2)))) (-3152 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1055 *2 *3)) (-4 *2 (-13 (-832) (-359))) (-4 *3 (-1211 *2))))) -(-13 (-1082) (-10 -8 (-15 -4235 ((-560) |t#2| $)) (-15 -2832 ((-121) |t#2| $)) (-15 -2187 ((-121) |t#2| $)) (-15 -1786 ((-121) |t#2| $)) (-15 -1823 ((-3 |t#2| "failed") |t#2| $)) (-15 -3591 (|t#2| $)) (-15 -2140 ((-626 $) |t#2|)) (-15 -1449 ((-3 $ "failed") |t#2| (-909))) (-15 -2550 (|t#1| |t#2| $ |t#1|)) (-15 -3152 (|t#1| |t#2| $ |t#1|)))) -(((-105) . T) ((-600 (-842)) . T) ((-1082) . T)) -((-1806 (((-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))) (-626 |#4|) (-626 |#5|) (-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))) (-2 (|:| |done| (-626 |#5|)) (|:| |todo| (-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))))) (-755)) 95)) (-3468 (((-2 (|:| |done| (-626 |#5|)) (|:| |todo| (-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))))) |#4| |#5|) 56) (((-2 (|:| |done| (-626 |#5|)) (|:| |todo| (-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))))) |#4| |#5| (-755)) 55)) (-1269 (((-1241) (-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))) (-755)) 87)) (-1624 (((-755) (-626 |#4|) (-626 |#5|)) 27)) (-3083 (((-2 (|:| |done| (-626 |#5|)) (|:| |todo| (-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))))) |#4| |#5|) 58) (((-2 (|:| |done| (-626 |#5|)) (|:| |todo| (-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))))) |#4| |#5| (-755)) 57) (((-2 (|:| |done| (-626 |#5|)) (|:| |todo| (-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))))) |#4| |#5| (-755) (-121)) 59)) (-1636 (((-626 |#5|) (-626 |#4|) (-626 |#5|) (-121) (-121) (-121) (-121) (-121)) 78) (((-626 |#5|) (-626 |#4|) (-626 |#5|) (-121) (-121)) 79)) (-4255 (((-1135) (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))) 82)) (-2517 (((-2 (|:| |done| (-626 |#5|)) (|:| |todo| (-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))))) |#4| |#5| (-121)) 54)) (-1934 (((-755) (-626 |#4|) (-626 |#5|)) 19))) -(((-1056 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1934 ((-755) (-626 |#4|) (-626 |#5|))) (-15 -1624 ((-755) (-626 |#4|) (-626 |#5|))) (-15 -2517 ((-2 (|:| |done| (-626 |#5|)) (|:| |todo| (-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))))) |#4| |#5| (-121))) (-15 -3468 ((-2 (|:| |done| (-626 |#5|)) (|:| |todo| (-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))))) |#4| |#5| (-755))) (-15 -3468 ((-2 (|:| |done| (-626 |#5|)) (|:| |todo| (-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))))) |#4| |#5|)) (-15 -3083 ((-2 (|:| |done| (-626 |#5|)) (|:| |todo| (-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))))) |#4| |#5| (-755) (-121))) (-15 -3083 ((-2 (|:| |done| (-626 |#5|)) (|:| |todo| (-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))))) |#4| |#5| (-755))) (-15 -3083 ((-2 (|:| |done| (-626 |#5|)) (|:| |todo| (-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))))) |#4| |#5|)) (-15 -1636 ((-626 |#5|) (-626 |#4|) (-626 |#5|) (-121) (-121))) (-15 -1636 ((-626 |#5|) (-626 |#4|) (-626 |#5|) (-121) (-121) (-121) (-121) (-121))) (-15 -1806 ((-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))) (-626 |#4|) (-626 |#5|) (-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))) (-2 (|:| |done| (-626 |#5|)) (|:| |todo| (-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))))) (-755))) (-15 -4255 ((-1135) (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|)))) (-15 -1269 ((-1241) (-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))) (-755)))) (-447) (-780) (-834) (-1053 |#1| |#2| |#3|) (-1058 |#1| |#2| |#3| |#4|)) (T -1056)) -((-1269 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-2 (|:| |val| (-626 *8)) (|:| -3249 *9)))) (-5 *4 (-755)) (-4 *8 (-1053 *5 *6 *7)) (-4 *9 (-1058 *5 *6 *7 *8)) (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-5 *2 (-1241)) (-5 *1 (-1056 *5 *6 *7 *8 *9)))) (-4255 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-626 *7)) (|:| -3249 *8))) (-4 *7 (-1053 *4 *5 *6)) (-4 *8 (-1058 *4 *5 *6 *7)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-1135)) (-5 *1 (-1056 *4 *5 *6 *7 *8)))) (-1806 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-626 *11)) (|:| |todo| (-626 (-2 (|:| |val| *3) (|:| -3249 *11)))))) (-5 *6 (-755)) (-5 *2 (-626 (-2 (|:| |val| (-626 *10)) (|:| -3249 *11)))) (-5 *3 (-626 *10)) (-5 *4 (-626 *11)) (-4 *10 (-1053 *7 *8 *9)) (-4 *11 (-1058 *7 *8 *9 *10)) (-4 *7 (-447)) (-4 *8 (-780)) (-4 *9 (-834)) (-5 *1 (-1056 *7 *8 *9 *10 *11)))) (-1636 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-626 *9)) (-5 *3 (-626 *8)) (-5 *4 (-121)) (-4 *8 (-1053 *5 *6 *7)) (-4 *9 (-1058 *5 *6 *7 *8)) (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-5 *1 (-1056 *5 *6 *7 *8 *9)))) (-1636 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-626 *9)) (-5 *3 (-626 *8)) (-5 *4 (-121)) (-4 *8 (-1053 *5 *6 *7)) (-4 *9 (-1058 *5 *6 *7 *8)) (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-5 *1 (-1056 *5 *6 *7 *8 *9)))) (-3083 (*1 *2 *3 *4) (-12 (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-626 *4)) (|:| |todo| (-626 (-2 (|:| |val| (-626 *3)) (|:| -3249 *4)))))) (-5 *1 (-1056 *5 *6 *7 *3 *4)) (-4 *4 (-1058 *5 *6 *7 *3)))) (-3083 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-755)) (-4 *6 (-447)) (-4 *7 (-780)) (-4 *8 (-834)) (-4 *3 (-1053 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-626 *4)) (|:| |todo| (-626 (-2 (|:| |val| (-626 *3)) (|:| -3249 *4)))))) (-5 *1 (-1056 *6 *7 *8 *3 *4)) (-4 *4 (-1058 *6 *7 *8 *3)))) (-3083 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-755)) (-5 *6 (-121)) (-4 *7 (-447)) (-4 *8 (-780)) (-4 *9 (-834)) (-4 *3 (-1053 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-626 *4)) (|:| |todo| (-626 (-2 (|:| |val| (-626 *3)) (|:| -3249 *4)))))) (-5 *1 (-1056 *7 *8 *9 *3 *4)) (-4 *4 (-1058 *7 *8 *9 *3)))) (-3468 (*1 *2 *3 *4) (-12 (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-626 *4)) (|:| |todo| (-626 (-2 (|:| |val| (-626 *3)) (|:| -3249 *4)))))) (-5 *1 (-1056 *5 *6 *7 *3 *4)) (-4 *4 (-1058 *5 *6 *7 *3)))) (-3468 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-755)) (-4 *6 (-447)) (-4 *7 (-780)) (-4 *8 (-834)) (-4 *3 (-1053 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-626 *4)) (|:| |todo| (-626 (-2 (|:| |val| (-626 *3)) (|:| -3249 *4)))))) (-5 *1 (-1056 *6 *7 *8 *3 *4)) (-4 *4 (-1058 *6 *7 *8 *3)))) (-2517 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-121)) (-4 *6 (-447)) (-4 *7 (-780)) (-4 *8 (-834)) (-4 *3 (-1053 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-626 *4)) (|:| |todo| (-626 (-2 (|:| |val| (-626 *3)) (|:| -3249 *4)))))) (-5 *1 (-1056 *6 *7 *8 *3 *4)) (-4 *4 (-1058 *6 *7 *8 *3)))) (-1624 (*1 *2 *3 *4) (-12 (-5 *3 (-626 *8)) (-5 *4 (-626 *9)) (-4 *8 (-1053 *5 *6 *7)) (-4 *9 (-1058 *5 *6 *7 *8)) (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-5 *2 (-755)) (-5 *1 (-1056 *5 *6 *7 *8 *9)))) (-1934 (*1 *2 *3 *4) (-12 (-5 *3 (-626 *8)) (-5 *4 (-626 *9)) (-4 *8 (-1053 *5 *6 *7)) (-4 *9 (-1058 *5 *6 *7 *8)) (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-5 *2 (-755)) (-5 *1 (-1056 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -1934 ((-755) (-626 |#4|) (-626 |#5|))) (-15 -1624 ((-755) (-626 |#4|) (-626 |#5|))) (-15 -2517 ((-2 (|:| |done| (-626 |#5|)) (|:| |todo| (-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))))) |#4| |#5| (-121))) (-15 -3468 ((-2 (|:| |done| (-626 |#5|)) (|:| |todo| (-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))))) |#4| |#5| (-755))) (-15 -3468 ((-2 (|:| |done| (-626 |#5|)) (|:| |todo| (-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))))) |#4| |#5|)) (-15 -3083 ((-2 (|:| |done| (-626 |#5|)) (|:| |todo| (-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))))) |#4| |#5| (-755) (-121))) (-15 -3083 ((-2 (|:| |done| (-626 |#5|)) (|:| |todo| (-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))))) |#4| |#5| (-755))) (-15 -3083 ((-2 (|:| |done| (-626 |#5|)) (|:| |todo| (-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))))) |#4| |#5|)) (-15 -1636 ((-626 |#5|) (-626 |#4|) (-626 |#5|) (-121) (-121))) (-15 -1636 ((-626 |#5|) (-626 |#4|) (-626 |#5|) (-121) (-121) (-121) (-121) (-121))) (-15 -1806 ((-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))) (-626 |#4|) (-626 |#5|) (-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))) (-2 (|:| |done| (-626 |#5|)) (|:| |todo| (-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))))) (-755))) (-15 -4255 ((-1135) (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|)))) (-15 -1269 ((-1241) (-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))) (-755)))) -((-2329 (((-121) |#5| $) 20)) (-3701 (((-121) |#5| $) 23)) (-2894 (((-121) |#5| $) 16) (((-121) $) 44)) (-4283 (((-626 $) |#5| $) NIL) (((-626 $) (-626 |#5|) $) 76) (((-626 $) (-626 |#5|) (-626 $)) 74) (((-626 $) |#5| (-626 $)) 77)) (-3292 (($ $ |#5|) NIL) (((-626 $) |#5| $) NIL) (((-626 $) |#5| (-626 $)) 59) (((-626 $) (-626 |#5|) $) 61) (((-626 $) (-626 |#5|) (-626 $)) 63)) (-1767 (((-626 $) |#5| $) NIL) (((-626 $) |#5| (-626 $)) 53) (((-626 $) (-626 |#5|) $) 55) (((-626 $) (-626 |#5|) (-626 $)) 57)) (-4073 (((-121) |#5| $) 26))) -(((-1057 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3292 ((-626 |#1|) (-626 |#5|) (-626 |#1|))) (-15 -3292 ((-626 |#1|) (-626 |#5|) |#1|)) (-15 -3292 ((-626 |#1|) |#5| (-626 |#1|))) (-15 -3292 ((-626 |#1|) |#5| |#1|)) (-15 -1767 ((-626 |#1|) (-626 |#5|) (-626 |#1|))) (-15 -1767 ((-626 |#1|) (-626 |#5|) |#1|)) (-15 -1767 ((-626 |#1|) |#5| (-626 |#1|))) (-15 -1767 ((-626 |#1|) |#5| |#1|)) (-15 -4283 ((-626 |#1|) |#5| (-626 |#1|))) (-15 -4283 ((-626 |#1|) (-626 |#5|) (-626 |#1|))) (-15 -4283 ((-626 |#1|) (-626 |#5|) |#1|)) (-15 -4283 ((-626 |#1|) |#5| |#1|)) (-15 -3701 ((-121) |#5| |#1|)) (-15 -2894 ((-121) |#1|)) (-15 -4073 ((-121) |#5| |#1|)) (-15 -2329 ((-121) |#5| |#1|)) (-15 -2894 ((-121) |#5| |#1|)) (-15 -3292 (|#1| |#1| |#5|))) (-1058 |#2| |#3| |#4| |#5|) (-447) (-780) (-834) (-1053 |#2| |#3| |#4|)) (T -1057)) -NIL -(-10 -8 (-15 -3292 ((-626 |#1|) (-626 |#5|) (-626 |#1|))) (-15 -3292 ((-626 |#1|) (-626 |#5|) |#1|)) (-15 -3292 ((-626 |#1|) |#5| (-626 |#1|))) (-15 -3292 ((-626 |#1|) |#5| |#1|)) (-15 -1767 ((-626 |#1|) (-626 |#5|) (-626 |#1|))) (-15 -1767 ((-626 |#1|) (-626 |#5|) |#1|)) (-15 -1767 ((-626 |#1|) |#5| (-626 |#1|))) (-15 -1767 ((-626 |#1|) |#5| |#1|)) (-15 -4283 ((-626 |#1|) |#5| (-626 |#1|))) (-15 -4283 ((-626 |#1|) (-626 |#5|) (-626 |#1|))) (-15 -4283 ((-626 |#1|) (-626 |#5|) |#1|)) (-15 -4283 ((-626 |#1|) |#5| |#1|)) (-15 -3701 ((-121) |#5| |#1|)) (-15 -2894 ((-121) |#1|)) (-15 -4073 ((-121) |#5| |#1|)) (-15 -2329 ((-121) |#5| |#1|)) (-15 -2894 ((-121) |#5| |#1|)) (-15 -3292 (|#1| |#1| |#5|))) -((-2601 (((-121) $ $) 7)) (-3975 (((-626 (-2 (|:| -4071 $) (|:| -3997 (-626 |#4|)))) (-626 |#4|)) 78)) (-3332 (((-626 $) (-626 |#4|)) 79) (((-626 $) (-626 |#4|) (-121)) 104)) (-1654 (((-626 |#3|) $) 32)) (-1385 (((-121) $) 25)) (-3617 (((-121) $) 16 (|has| |#1| (-550)))) (-2898 (((-121) |#4| $) 94) (((-121) $) 90)) (-3177 ((|#4| |#4| $) 85)) (-3065 (((-626 (-2 (|:| |val| |#4|) (|:| -3249 $))) |#4| $) 119)) (-3743 (((-2 (|:| |under| $) (|:| -2150 $) (|:| |upper| $)) $ |#3|) 26)) (-3909 (((-121) $ (-755)) 43)) (-3802 (($ (-1 (-121) |#4|) $) 64 (|has| $ (-6 -4505))) (((-3 |#4| "failed") $ |#3|) 72)) (-4236 (($) 44 T CONST)) (-2226 (((-121) $) 21 (|has| |#1| (-550)))) (-3225 (((-121) $ $) 23 (|has| |#1| (-550)))) (-4195 (((-121) $ $) 22 (|has| |#1| (-550)))) (-1501 (((-121) $) 24 (|has| |#1| (-550)))) (-4339 (((-626 |#4|) (-626 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-121) |#4| |#4|)) 86)) (-4318 (((-626 |#4|) (-626 |#4|) $) 17 (|has| |#1| (-550)))) (-3979 (((-626 |#4|) (-626 |#4|) $) 18 (|has| |#1| (-550)))) (-1473 (((-3 $ "failed") (-626 |#4|)) 35)) (-3001 (($ (-626 |#4|)) 34)) (-2877 (((-3 $ "failed") $) 75)) (-2134 ((|#4| |#4| $) 82)) (-2868 (($ $) 67 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4505))))) (-4310 (($ |#4| $) 66 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4505)))) (($ (-1 (-121) |#4|) $) 63 (|has| $ (-6 -4505)))) (-4397 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 19 (|has| |#1| (-550)))) (-1590 (((-121) |#4| $ (-1 (-121) |#4| |#4|)) 95)) (-4048 ((|#4| |#4| $) 80)) (-2342 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 65 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4505)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 62 (|has| $ (-6 -4505))) ((|#4| (-1 |#4| |#4| |#4|) $) 61 (|has| $ (-6 -4505))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-121) |#4| |#4|)) 87)) (-3035 (((-2 (|:| -4071 (-626 |#4|)) (|:| -3997 (-626 |#4|))) $) 98)) (-2329 (((-121) |#4| $) 129)) (-3701 (((-121) |#4| $) 126)) (-2894 (((-121) |#4| $) 130) (((-121) $) 127)) (-1981 (((-626 |#4|) $) 51 (|has| $ (-6 -4505)))) (-2864 (((-121) |#4| $) 97) (((-121) $) 96)) (-2819 ((|#3| $) 33)) (-2122 (((-121) $ (-755)) 42)) (-2130 (((-626 |#4|) $) 52 (|has| $ (-6 -4505)))) (-2030 (((-121) |#4| $) 54 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4505))))) (-3778 (($ (-1 |#4| |#4|) $) 47 (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#4| |#4|) $) 46)) (-4475 (((-626 |#3|) $) 31)) (-1304 (((-121) |#3| $) 30)) (-3441 (((-121) $ (-755)) 41)) (-1291 (((-1135) $) 9)) (-3283 (((-3 |#4| (-626 $)) |#4| |#4| $) 121)) (-3069 (((-626 (-2 (|:| |val| |#4|) (|:| -3249 $))) |#4| |#4| $) 120)) (-4139 (((-3 |#4| "failed") $) 76)) (-3269 (((-626 $) |#4| $) 122)) (-2061 (((-3 (-121) (-626 $)) |#4| $) 125)) (-2638 (((-626 (-2 (|:| |val| (-121)) (|:| -3249 $))) |#4| $) 124) (((-121) |#4| $) 123)) (-4283 (((-626 $) |#4| $) 118) (((-626 $) (-626 |#4|) $) 117) (((-626 $) (-626 |#4|) (-626 $)) 116) (((-626 $) |#4| (-626 $)) 115)) (-3760 (($ |#4| $) 110) (($ (-626 |#4|) $) 109)) (-3840 (((-626 |#4|) $) 100)) (-3098 (((-121) |#4| $) 92) (((-121) $) 88)) (-2054 ((|#4| |#4| $) 83)) (-3564 (((-121) $ $) 103)) (-1960 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-550)))) (-1584 (((-121) |#4| $) 93) (((-121) $) 89)) (-4047 ((|#4| |#4| $) 84)) (-4353 (((-1100) $) 10)) (-2824 (((-3 |#4| "failed") $) 77)) (-3786 (((-3 |#4| "failed") (-1 (-121) |#4|) $) 60)) (-1368 (((-3 $ "failed") $ |#4|) 71)) (-3292 (($ $ |#4|) 70) (((-626 $) |#4| $) 108) (((-626 $) |#4| (-626 $)) 107) (((-626 $) (-626 |#4|) $) 106) (((-626 $) (-626 |#4|) (-626 $)) 105)) (-2865 (((-121) (-1 (-121) |#4|) $) 49 (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 |#4|) (-626 |#4|)) 58 (-12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082)))) (($ $ |#4| |#4|) 57 (-12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082)))) (($ $ (-283 |#4|)) 56 (-12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082)))) (($ $ (-626 (-283 |#4|))) 55 (-12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082))))) (-2214 (((-121) $ $) 37)) (-4191 (((-121) $) 40)) (-3260 (($) 39)) (-3662 (((-755) $) 99)) (-4035 (((-755) |#4| $) 53 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4505)))) (((-755) (-1 (-121) |#4|) $) 50 (|has| $ (-6 -4505)))) (-2813 (($ $) 38)) (-4255 (((-533) $) 68 (|has| |#4| (-601 (-533))))) (-4162 (($ (-626 |#4|)) 59)) (-3369 (($ $ |#3|) 27)) (-2673 (($ $ |#3|) 29)) (-3746 (($ $) 81)) (-3388 (($ $ |#3|) 28)) (-2801 (((-842) $) 11) (((-626 |#4|) $) 36)) (-4277 (((-755) $) 69 (|has| |#3| (-364)))) (-3133 (((-3 (-2 (|:| |bas| $) (|:| -4224 (-626 |#4|))) "failed") (-626 |#4|) (-1 (-121) |#4| |#4|)) 102) (((-3 (-2 (|:| |bas| $) (|:| -4224 (-626 |#4|))) "failed") (-626 |#4|) (-1 (-121) |#4|) (-1 (-121) |#4| |#4|)) 101)) (-2967 (((-121) $ (-1 (-121) |#4| (-626 |#4|))) 91)) (-1767 (((-626 $) |#4| $) 114) (((-626 $) |#4| (-626 $)) 113) (((-626 $) (-626 |#4|) $) 112) (((-626 $) (-626 |#4|) (-626 $)) 111)) (-3656 (((-121) (-1 (-121) |#4|) $) 48 (|has| $ (-6 -4505)))) (-3284 (((-626 |#3|) $) 74)) (-4073 (((-121) |#4| $) 128)) (-1535 (((-121) |#3| $) 73)) (-1653 (((-121) $ $) 6)) (-2271 (((-755) $) 45 (|has| $ (-6 -4505))))) -(((-1058 |#1| |#2| |#3| |#4|) (-1267) (-447) (-780) (-834) (-1053 |t#1| |t#2| |t#3|)) (T -1058)) -((-2894 (*1 *2 *3 *1) (-12 (-4 *1 (-1058 *4 *5 *6 *3)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-121)))) (-2329 (*1 *2 *3 *1) (-12 (-4 *1 (-1058 *4 *5 *6 *3)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-121)))) (-4073 (*1 *2 *3 *1) (-12 (-4 *1 (-1058 *4 *5 *6 *3)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-121)))) (-2894 (*1 *2 *1) (-12 (-4 *1 (-1058 *3 *4 *5 *6)) (-4 *3 (-447)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-121)))) (-3701 (*1 *2 *3 *1) (-12 (-4 *1 (-1058 *4 *5 *6 *3)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-121)))) (-2061 (*1 *2 *3 *1) (-12 (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-3 (-121) (-626 *1))) (-4 *1 (-1058 *4 *5 *6 *3)))) (-2638 (*1 *2 *3 *1) (-12 (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-626 (-2 (|:| |val| (-121)) (|:| -3249 *1)))) (-4 *1 (-1058 *4 *5 *6 *3)))) (-2638 (*1 *2 *3 *1) (-12 (-4 *1 (-1058 *4 *5 *6 *3)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-121)))) (-3269 (*1 *2 *3 *1) (-12 (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-626 *1)) (-4 *1 (-1058 *4 *5 *6 *3)))) (-3283 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-3 *3 (-626 *1))) (-4 *1 (-1058 *4 *5 *6 *3)))) (-3069 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-626 (-2 (|:| |val| *3) (|:| -3249 *1)))) (-4 *1 (-1058 *4 *5 *6 *3)))) (-3065 (*1 *2 *3 *1) (-12 (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-626 (-2 (|:| |val| *3) (|:| -3249 *1)))) (-4 *1 (-1058 *4 *5 *6 *3)))) (-4283 (*1 *2 *3 *1) (-12 (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-626 *1)) (-4 *1 (-1058 *4 *5 *6 *3)))) (-4283 (*1 *2 *3 *1) (-12 (-5 *3 (-626 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-626 *1)) (-4 *1 (-1058 *4 *5 *6 *7)))) (-4283 (*1 *2 *3 *2) (-12 (-5 *2 (-626 *1)) (-5 *3 (-626 *7)) (-4 *1 (-1058 *4 *5 *6 *7)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *7 (-1053 *4 *5 *6)))) (-4283 (*1 *2 *3 *2) (-12 (-5 *2 (-626 *1)) (-4 *1 (-1058 *4 *5 *6 *3)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *3 (-1053 *4 *5 *6)))) (-1767 (*1 *2 *3 *1) (-12 (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-626 *1)) (-4 *1 (-1058 *4 *5 *6 *3)))) (-1767 (*1 *2 *3 *2) (-12 (-5 *2 (-626 *1)) (-4 *1 (-1058 *4 *5 *6 *3)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *3 (-1053 *4 *5 *6)))) (-1767 (*1 *2 *3 *1) (-12 (-5 *3 (-626 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-626 *1)) (-4 *1 (-1058 *4 *5 *6 *7)))) (-1767 (*1 *2 *3 *2) (-12 (-5 *2 (-626 *1)) (-5 *3 (-626 *7)) (-4 *1 (-1058 *4 *5 *6 *7)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *7 (-1053 *4 *5 *6)))) (-3760 (*1 *1 *2 *1) (-12 (-4 *1 (-1058 *3 *4 *5 *2)) (-4 *3 (-447)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *2 (-1053 *3 *4 *5)))) (-3760 (*1 *1 *2 *1) (-12 (-5 *2 (-626 *6)) (-4 *1 (-1058 *3 *4 *5 *6)) (-4 *3 (-447)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1053 *3 *4 *5)))) (-3292 (*1 *2 *3 *1) (-12 (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-626 *1)) (-4 *1 (-1058 *4 *5 *6 *3)))) (-3292 (*1 *2 *3 *2) (-12 (-5 *2 (-626 *1)) (-4 *1 (-1058 *4 *5 *6 *3)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *3 (-1053 *4 *5 *6)))) (-3292 (*1 *2 *3 *1) (-12 (-5 *3 (-626 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-626 *1)) (-4 *1 (-1058 *4 *5 *6 *7)))) (-3292 (*1 *2 *3 *2) (-12 (-5 *2 (-626 *1)) (-5 *3 (-626 *7)) (-4 *1 (-1058 *4 *5 *6 *7)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *7 (-1053 *4 *5 *6)))) (-3332 (*1 *2 *3 *4) (-12 (-5 *3 (-626 *8)) (-5 *4 (-121)) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-5 *2 (-626 *1)) (-4 *1 (-1058 *5 *6 *7 *8))))) -(-13 (-1181 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -2894 ((-121) |t#4| $)) (-15 -2329 ((-121) |t#4| $)) (-15 -4073 ((-121) |t#4| $)) (-15 -2894 ((-121) $)) (-15 -3701 ((-121) |t#4| $)) (-15 -2061 ((-3 (-121) (-626 $)) |t#4| $)) (-15 -2638 ((-626 (-2 (|:| |val| (-121)) (|:| -3249 $))) |t#4| $)) (-15 -2638 ((-121) |t#4| $)) (-15 -3269 ((-626 $) |t#4| $)) (-15 -3283 ((-3 |t#4| (-626 $)) |t#4| |t#4| $)) (-15 -3069 ((-626 (-2 (|:| |val| |t#4|) (|:| -3249 $))) |t#4| |t#4| $)) (-15 -3065 ((-626 (-2 (|:| |val| |t#4|) (|:| -3249 $))) |t#4| $)) (-15 -4283 ((-626 $) |t#4| $)) (-15 -4283 ((-626 $) (-626 |t#4|) $)) (-15 -4283 ((-626 $) (-626 |t#4|) (-626 $))) (-15 -4283 ((-626 $) |t#4| (-626 $))) (-15 -1767 ((-626 $) |t#4| $)) (-15 -1767 ((-626 $) |t#4| (-626 $))) (-15 -1767 ((-626 $) (-626 |t#4|) $)) (-15 -1767 ((-626 $) (-626 |t#4|) (-626 $))) (-15 -3760 ($ |t#4| $)) (-15 -3760 ($ (-626 |t#4|) $)) (-15 -3292 ((-626 $) |t#4| $)) (-15 -3292 ((-626 $) |t#4| (-626 $))) (-15 -3292 ((-626 $) (-626 |t#4|) $)) (-15 -3292 ((-626 $) (-626 |t#4|) (-626 $))) (-15 -3332 ((-626 $) (-626 |t#4|) (-121))))) -(((-39) . T) ((-105) . T) ((-600 (-626 |#4|)) . T) ((-600 (-842)) . T) ((-152 |#4|) . T) ((-601 (-533)) |has| |#4| (-601 (-533))) ((-298 |#4|) -12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082))) ((-492 |#4|) . T) ((-515 |#4| |#4|) -12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082))) ((-969 |#1| |#2| |#3| |#4|) . T) ((-1082) . T) ((-1181 |#1| |#2| |#3| |#4|) . T) ((-1187) . T)) -((-1897 (((-626 (-2 (|:| |val| |#4|) (|:| -3249 |#5|))) |#4| |#5|) 81)) (-2003 (((-626 (-2 (|:| |val| |#4|) (|:| -3249 |#5|))) |#4| |#4| |#5|) 112)) (-1770 (((-626 |#5|) |#4| |#5|) 70)) (-3733 (((-626 (-2 (|:| |val| (-121)) (|:| -3249 |#5|))) |#4| |#5|) 44) (((-121) |#4| |#5|) 52)) (-3386 (((-1241)) 35)) (-2461 (((-1241)) 25)) (-1461 (((-1241) (-1135) (-1135) (-1135)) 31)) (-1892 (((-1241) (-1135) (-1135) (-1135)) 20)) (-3176 (((-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))) |#4| |#4| |#5|) 95)) (-3969 (((-626 (-2 (|:| |val| |#4|) (|:| -3249 |#5|))) (-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))) |#3| (-121)) 106) (((-626 (-2 (|:| |val| |#4|) (|:| -3249 |#5|))) |#4| |#4| |#5| (-121) (-121)) 49)) (-2626 (((-626 (-2 (|:| |val| |#4|) (|:| -3249 |#5|))) |#4| |#4| |#5|) 101))) -(((-1059 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1892 ((-1241) (-1135) (-1135) (-1135))) (-15 -2461 ((-1241))) (-15 -1461 ((-1241) (-1135) (-1135) (-1135))) (-15 -3386 ((-1241))) (-15 -3176 ((-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))) |#4| |#4| |#5|)) (-15 -3969 ((-626 (-2 (|:| |val| |#4|) (|:| -3249 |#5|))) |#4| |#4| |#5| (-121) (-121))) (-15 -3969 ((-626 (-2 (|:| |val| |#4|) (|:| -3249 |#5|))) (-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))) |#3| (-121))) (-15 -2626 ((-626 (-2 (|:| |val| |#4|) (|:| -3249 |#5|))) |#4| |#4| |#5|)) (-15 -2003 ((-626 (-2 (|:| |val| |#4|) (|:| -3249 |#5|))) |#4| |#4| |#5|)) (-15 -3733 ((-121) |#4| |#5|)) (-15 -3733 ((-626 (-2 (|:| |val| (-121)) (|:| -3249 |#5|))) |#4| |#5|)) (-15 -1770 ((-626 |#5|) |#4| |#5|)) (-15 -1897 ((-626 (-2 (|:| |val| |#4|) (|:| -3249 |#5|))) |#4| |#5|))) (-447) (-780) (-834) (-1053 |#1| |#2| |#3|) (-1058 |#1| |#2| |#3| |#4|)) (T -1059)) -((-1897 (*1 *2 *3 *4) (-12 (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-626 (-2 (|:| |val| *3) (|:| -3249 *4)))) (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1058 *5 *6 *7 *3)))) (-1770 (*1 *2 *3 *4) (-12 (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-626 *4)) (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1058 *5 *6 *7 *3)))) (-3733 (*1 *2 *3 *4) (-12 (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-626 (-2 (|:| |val| (-121)) (|:| -3249 *4)))) (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1058 *5 *6 *7 *3)))) (-3733 (*1 *2 *3 *4) (-12 (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-121)) (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1058 *5 *6 *7 *3)))) (-2003 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-626 (-2 (|:| |val| *3) (|:| -3249 *4)))) (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1058 *5 *6 *7 *3)))) (-2626 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-626 (-2 (|:| |val| *3) (|:| -3249 *4)))) (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1058 *5 *6 *7 *3)))) (-3969 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-626 (-2 (|:| |val| (-626 *8)) (|:| -3249 *9)))) (-5 *5 (-121)) (-4 *8 (-1053 *6 *7 *4)) (-4 *9 (-1058 *6 *7 *4 *8)) (-4 *6 (-447)) (-4 *7 (-780)) (-4 *4 (-834)) (-5 *2 (-626 (-2 (|:| |val| *8) (|:| -3249 *9)))) (-5 *1 (-1059 *6 *7 *4 *8 *9)))) (-3969 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-121)) (-4 *6 (-447)) (-4 *7 (-780)) (-4 *8 (-834)) (-4 *3 (-1053 *6 *7 *8)) (-5 *2 (-626 (-2 (|:| |val| *3) (|:| -3249 *4)))) (-5 *1 (-1059 *6 *7 *8 *3 *4)) (-4 *4 (-1058 *6 *7 *8 *3)))) (-3176 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-626 (-2 (|:| |val| (-626 *3)) (|:| -3249 *4)))) (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1058 *5 *6 *7 *3)))) (-3386 (*1 *2) (-12 (-4 *3 (-447)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-1241)) (-5 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *7 (-1058 *3 *4 *5 *6)))) (-1461 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-1241)) (-5 *1 (-1059 *4 *5 *6 *7 *8)) (-4 *8 (-1058 *4 *5 *6 *7)))) (-2461 (*1 *2) (-12 (-4 *3 (-447)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-1241)) (-5 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *7 (-1058 *3 *4 *5 *6)))) (-1892 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-1241)) (-5 *1 (-1059 *4 *5 *6 *7 *8)) (-4 *8 (-1058 *4 *5 *6 *7))))) -(-10 -7 (-15 -1892 ((-1241) (-1135) (-1135) (-1135))) (-15 -2461 ((-1241))) (-15 -1461 ((-1241) (-1135) (-1135) (-1135))) (-15 -3386 ((-1241))) (-15 -3176 ((-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))) |#4| |#4| |#5|)) (-15 -3969 ((-626 (-2 (|:| |val| |#4|) (|:| -3249 |#5|))) |#4| |#4| |#5| (-121) (-121))) (-15 -3969 ((-626 (-2 (|:| |val| |#4|) (|:| -3249 |#5|))) (-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))) |#3| (-121))) (-15 -2626 ((-626 (-2 (|:| |val| |#4|) (|:| -3249 |#5|))) |#4| |#4| |#5|)) (-15 -2003 ((-626 (-2 (|:| |val| |#4|) (|:| -3249 |#5|))) |#4| |#4| |#5|)) (-15 -3733 ((-121) |#4| |#5|)) (-15 -3733 ((-626 (-2 (|:| |val| (-121)) (|:| -3249 |#5|))) |#4| |#5|)) (-15 -1770 ((-626 |#5|) |#4| |#5|)) (-15 -1897 ((-626 (-2 (|:| |val| |#4|) (|:| -3249 |#5|))) |#4| |#5|))) -((-2601 (((-121) $ $) NIL)) (-1337 (((-1153) $) 8)) (-1291 (((-1135) $) 16)) (-4353 (((-1100) $) NIL)) (-2801 (((-842) $) 11)) (-1653 (((-121) $ $) 13))) -(((-1060 |#1|) (-13 (-1082) (-10 -8 (-15 -1337 ((-1153) $)))) (-1153)) (T -1060)) -((-1337 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-1060 *3)) (-14 *3 *2)))) -(-13 (-1082) (-10 -8 (-15 -1337 ((-1153) $)))) -((-2601 (((-121) $ $) NIL)) (-1408 (($ $ (-626 (-1153)) (-1 (-121) (-626 |#3|))) 29)) (-3484 (($ |#3| |#3|) 21) (($ |#3| |#3| (-626 (-1153))) 19)) (-3051 ((|#3| $) 13)) (-1473 (((-3 (-283 |#3|) "failed") $) 56)) (-3001 (((-283 |#3|) $) NIL)) (-3901 (((-626 (-1153)) $) 15)) (-3109 (((-879 |#1|) $) 11)) (-3021 ((|#3| $) 12)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2778 ((|#3| $ |#3|) 25) ((|#3| $ |#3| (-909)) 36)) (-2801 (((-842) $) 84) (($ (-283 |#3|)) 20)) (-1653 (((-121) $ $) 33))) -(((-1061 |#1| |#2| |#3|) (-13 (-1082) (-276 |#3| |#3|) (-1029 (-283 |#3|)) (-10 -8 (-15 -3484 ($ |#3| |#3|)) (-15 -3484 ($ |#3| |#3| (-626 (-1153)))) (-15 -1408 ($ $ (-626 (-1153)) (-1 (-121) (-626 |#3|)))) (-15 -3109 ((-879 |#1|) $)) (-15 -3021 (|#3| $)) (-15 -3051 (|#3| $)) (-15 -2778 (|#3| $ |#3| (-909))) (-15 -3901 ((-626 (-1153)) $)))) (-1082) (-13 (-1039) (-873 |#1|) (-834) (-601 (-879 |#1|))) (-13 (-426 |#2|) (-873 |#1|) (-601 (-879 |#1|)))) (T -1061)) -((-3484 (*1 *1 *2 *2) (-12 (-4 *3 (-1082)) (-4 *4 (-13 (-1039) (-873 *3) (-834) (-601 (-879 *3)))) (-5 *1 (-1061 *3 *4 *2)) (-4 *2 (-13 (-426 *4) (-873 *3) (-601 (-879 *3)))))) (-3484 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-626 (-1153))) (-4 *4 (-1082)) (-4 *5 (-13 (-1039) (-873 *4) (-834) (-601 (-879 *4)))) (-5 *1 (-1061 *4 *5 *2)) (-4 *2 (-13 (-426 *5) (-873 *4) (-601 (-879 *4)))))) (-1408 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-626 (-1153))) (-5 *3 (-1 (-121) (-626 *6))) (-4 *6 (-13 (-426 *5) (-873 *4) (-601 (-879 *4)))) (-4 *4 (-1082)) (-4 *5 (-13 (-1039) (-873 *4) (-834) (-601 (-879 *4)))) (-5 *1 (-1061 *4 *5 *6)))) (-3109 (*1 *2 *1) (-12 (-4 *3 (-1082)) (-4 *4 (-13 (-1039) (-873 *3) (-834) (-601 *2))) (-5 *2 (-879 *3)) (-5 *1 (-1061 *3 *4 *5)) (-4 *5 (-13 (-426 *4) (-873 *3) (-601 *2))))) (-3021 (*1 *2 *1) (-12 (-4 *3 (-1082)) (-4 *2 (-13 (-426 *4) (-873 *3) (-601 (-879 *3)))) (-5 *1 (-1061 *3 *4 *2)) (-4 *4 (-13 (-1039) (-873 *3) (-834) (-601 (-879 *3)))))) (-3051 (*1 *2 *1) (-12 (-4 *3 (-1082)) (-4 *2 (-13 (-426 *4) (-873 *3) (-601 (-879 *3)))) (-5 *1 (-1061 *3 *4 *2)) (-4 *4 (-13 (-1039) (-873 *3) (-834) (-601 (-879 *3)))))) (-2778 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-909)) (-4 *4 (-1082)) (-4 *5 (-13 (-1039) (-873 *4) (-834) (-601 (-879 *4)))) (-5 *1 (-1061 *4 *5 *2)) (-4 *2 (-13 (-426 *5) (-873 *4) (-601 (-879 *4)))))) (-3901 (*1 *2 *1) (-12 (-4 *3 (-1082)) (-4 *4 (-13 (-1039) (-873 *3) (-834) (-601 (-879 *3)))) (-5 *2 (-626 (-1153))) (-5 *1 (-1061 *3 *4 *5)) (-4 *5 (-13 (-426 *4) (-873 *3) (-601 (-879 *3))))))) -(-13 (-1082) (-276 |#3| |#3|) (-1029 (-283 |#3|)) (-10 -8 (-15 -3484 ($ |#3| |#3|)) (-15 -3484 ($ |#3| |#3| (-626 (-1153)))) (-15 -1408 ($ $ (-626 (-1153)) (-1 (-121) (-626 |#3|)))) (-15 -3109 ((-879 |#1|) $)) (-15 -3021 (|#3| $)) (-15 -3051 (|#3| $)) (-15 -2778 (|#3| $ |#3| (-909))) (-15 -3901 ((-626 (-1153)) $)))) -((-2601 (((-121) $ $) NIL)) (-3499 (($ (-626 (-1061 |#1| |#2| |#3|))) 12)) (-2637 (((-626 (-1061 |#1| |#2| |#3|)) $) 19)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2778 ((|#3| $ |#3|) 22) ((|#3| $ |#3| (-909)) 25)) (-2801 (((-842) $) 15)) (-1653 (((-121) $ $) 18))) -(((-1062 |#1| |#2| |#3|) (-13 (-1082) (-276 |#3| |#3|) (-10 -8 (-15 -3499 ($ (-626 (-1061 |#1| |#2| |#3|)))) (-15 -2637 ((-626 (-1061 |#1| |#2| |#3|)) $)) (-15 -2778 (|#3| $ |#3| (-909))))) (-1082) (-13 (-1039) (-873 |#1|) (-834) (-601 (-879 |#1|))) (-13 (-426 |#2|) (-873 |#1|) (-601 (-879 |#1|)))) (T -1062)) -((-3499 (*1 *1 *2) (-12 (-5 *2 (-626 (-1061 *3 *4 *5))) (-4 *3 (-1082)) (-4 *4 (-13 (-1039) (-873 *3) (-834) (-601 (-879 *3)))) (-4 *5 (-13 (-426 *4) (-873 *3) (-601 (-879 *3)))) (-5 *1 (-1062 *3 *4 *5)))) (-2637 (*1 *2 *1) (-12 (-4 *3 (-1082)) (-4 *4 (-13 (-1039) (-873 *3) (-834) (-601 (-879 *3)))) (-5 *2 (-626 (-1061 *3 *4 *5))) (-5 *1 (-1062 *3 *4 *5)) (-4 *5 (-13 (-426 *4) (-873 *3) (-601 (-879 *3)))))) (-2778 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-909)) (-4 *4 (-1082)) (-4 *5 (-13 (-1039) (-873 *4) (-834) (-601 (-879 *4)))) (-5 *1 (-1062 *4 *5 *2)) (-4 *2 (-13 (-426 *5) (-873 *4) (-601 (-879 *4))))))) -(-13 (-1082) (-276 |#3| |#3|) (-10 -8 (-15 -3499 ($ (-626 (-1061 |#1| |#2| |#3|)))) (-15 -2637 ((-626 (-1061 |#1| |#2| |#3|)) $)) (-15 -2778 (|#3| $ |#3| (-909))))) -((-3357 (((-626 (-2 (|:| -1807 (-1149 |#1|)) (|:| -3390 (-626 (-945 |#1|))))) (-626 (-945 |#1|)) (-121) (-121)) 73) (((-626 (-2 (|:| -1807 (-1149 |#1|)) (|:| -3390 (-626 (-945 |#1|))))) (-626 (-945 |#1|))) 75) (((-626 (-2 (|:| -1807 (-1149 |#1|)) (|:| -3390 (-626 (-945 |#1|))))) (-626 (-945 |#1|)) (-121)) 74))) -(((-1063 |#1| |#2|) (-10 -7 (-15 -3357 ((-626 (-2 (|:| -1807 (-1149 |#1|)) (|:| -3390 (-626 (-945 |#1|))))) (-626 (-945 |#1|)) (-121))) (-15 -3357 ((-626 (-2 (|:| -1807 (-1149 |#1|)) (|:| -3390 (-626 (-945 |#1|))))) (-626 (-945 |#1|)))) (-15 -3357 ((-626 (-2 (|:| -1807 (-1149 |#1|)) (|:| -3390 (-626 (-945 |#1|))))) (-626 (-945 |#1|)) (-121) (-121)))) (-13 (-296) (-148)) (-626 (-1153))) (T -1063)) -((-3357 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-121)) (-4 *5 (-13 (-296) (-148))) (-5 *2 (-626 (-2 (|:| -1807 (-1149 *5)) (|:| -3390 (-626 (-945 *5)))))) (-5 *1 (-1063 *5 *6)) (-5 *3 (-626 (-945 *5))) (-14 *6 (-626 (-1153))))) (-3357 (*1 *2 *3) (-12 (-4 *4 (-13 (-296) (-148))) (-5 *2 (-626 (-2 (|:| -1807 (-1149 *4)) (|:| -3390 (-626 (-945 *4)))))) (-5 *1 (-1063 *4 *5)) (-5 *3 (-626 (-945 *4))) (-14 *5 (-626 (-1153))))) (-3357 (*1 *2 *3 *4) (-12 (-5 *4 (-121)) (-4 *5 (-13 (-296) (-148))) (-5 *2 (-626 (-2 (|:| -1807 (-1149 *5)) (|:| -3390 (-626 (-945 *5)))))) (-5 *1 (-1063 *5 *6)) (-5 *3 (-626 (-945 *5))) (-14 *6 (-626 (-1153)))))) -(-10 -7 (-15 -3357 ((-626 (-2 (|:| -1807 (-1149 |#1|)) (|:| -3390 (-626 (-945 |#1|))))) (-626 (-945 |#1|)) (-121))) (-15 -3357 ((-626 (-2 (|:| -1807 (-1149 |#1|)) (|:| -3390 (-626 (-945 |#1|))))) (-626 (-945 |#1|)))) (-15 -3357 ((-626 (-2 (|:| -1807 (-1149 |#1|)) (|:| -3390 (-626 (-945 |#1|))))) (-626 (-945 |#1|)) (-121) (-121)))) -((-1601 (((-414 |#3|) |#3|) 16))) -(((-1064 |#1| |#2| |#3|) (-10 -7 (-15 -1601 ((-414 |#3|) |#3|))) (-1211 (-403 (-560))) (-13 (-359) (-148) (-706 (-403 (-560)) |#1|)) (-1211 |#2|)) (T -1064)) -((-1601 (*1 *2 *3) (-12 (-4 *4 (-1211 (-403 (-560)))) (-4 *5 (-13 (-359) (-148) (-706 (-403 (-560)) *4))) (-5 *2 (-414 *3)) (-5 *1 (-1064 *4 *5 *3)) (-4 *3 (-1211 *5))))) -(-10 -7 (-15 -1601 ((-414 |#3|) |#3|))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) 125)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL (|has| |#1| (-359)))) (-1350 (($ $) NIL (|has| |#1| (-359)))) (-3376 (((-121) $) NIL (|has| |#1| (-359)))) (-2196 (((-671 |#1|) (-1236 $)) NIL) (((-671 |#1|)) 115)) (-1944 ((|#1| $) 119)) (-4357 (((-1161 (-909) (-755)) (-560)) NIL (|has| |#1| (-344)))) (-2314 (((-3 $ "failed") $ $) NIL)) (-3065 (($ $) NIL (|has| |#1| (-359)))) (-2953 (((-414 $) $) NIL (|has| |#1| (-359)))) (-4179 (((-121) $ $) NIL (|has| |#1| (-359)))) (-2912 (((-755)) 40 (|has| |#1| (-364)))) (-4236 (($) NIL T CONST)) (-1473 (((-3 (-560) "failed") $) NIL (|has| |#1| (-1029 (-560)))) (((-3 (-403 (-560)) "failed") $) NIL (|has| |#1| (-1029 (-403 (-560))))) (((-3 |#1| "failed") $) NIL)) (-3001 (((-560) $) NIL (|has| |#1| (-1029 (-560)))) (((-403 (-560)) $) NIL (|has| |#1| (-1029 (-403 (-560))))) ((|#1| $) NIL)) (-3380 (($ (-1236 |#1|) (-1236 $)) NIL) (($ (-1236 |#1|)) 43)) (-4107 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-344)))) (-2563 (($ $ $) NIL (|has| |#1| (-359)))) (-2954 (((-671 |#1|) $ (-1236 $)) NIL) (((-671 |#1|) $) NIL)) (-2616 (((-671 (-560)) (-671 $)) NIL (|has| |#1| (-622 (-560)))) (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) NIL (|has| |#1| (-622 (-560)))) (((-2 (|:| -3818 (-671 |#1|)) (|:| |vec| (-1236 |#1|))) (-671 $) (-1236 $)) 106) (((-671 |#1|) (-671 $)) 100)) (-2342 (($ |#2|) 61) (((-3 $ "failed") (-403 |#2|)) NIL (|has| |#1| (-359)))) (-1823 (((-3 $ "failed") $) NIL)) (-3143 (((-909)) 77)) (-1666 (($) 44 (|has| |#1| (-364)))) (-2572 (($ $ $) NIL (|has| |#1| (-359)))) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) NIL (|has| |#1| (-359)))) (-2481 (($) NIL (|has| |#1| (-344)))) (-1537 (((-121) $) NIL (|has| |#1| (-344)))) (-2937 (($ $ (-755)) NIL (|has| |#1| (-344))) (($ $) NIL (|has| |#1| (-344)))) (-3319 (((-121) $) NIL (|has| |#1| (-359)))) (-3504 (((-909) $) NIL (|has| |#1| (-344))) (((-820 (-909)) $) NIL (|has| |#1| (-344)))) (-2642 (((-121) $) NIL)) (-3339 ((|#1| $) NIL)) (-1424 (((-3 $ "failed") $) NIL (|has| |#1| (-344)))) (-3856 (((-3 (-626 $) "failed") (-626 $) $) NIL (|has| |#1| (-359)))) (-4108 ((|#2| $) 84 (|has| |#1| (-359)))) (-3142 (((-909) $) 129 (|has| |#1| (-364)))) (-2335 ((|#2| $) 58)) (-2582 (($ (-626 $)) NIL (|has| |#1| (-359))) (($ $ $) NIL (|has| |#1| (-359)))) (-1291 (((-1135) $) NIL)) (-1701 (($ $) NIL (|has| |#1| (-359)))) (-1394 (($) NIL (|has| |#1| (-344)) CONST)) (-1330 (($ (-909)) 124 (|has| |#1| (-364)))) (-4353 (((-1100) $) NIL)) (-4250 (($) 121)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL (|has| |#1| (-359)))) (-4440 (($ (-626 $)) NIL (|has| |#1| (-359))) (($ $ $) NIL (|has| |#1| (-359)))) (-2385 (((-626 (-2 (|:| -1601 (-560)) (|:| -4034 (-560))))) NIL (|has| |#1| (-344)))) (-1601 (((-414 $) $) NIL (|has| |#1| (-359)))) (-3505 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-359))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL (|has| |#1| (-359)))) (-2336 (((-3 $ "failed") $ $) NIL (|has| |#1| (-359)))) (-3456 (((-3 (-626 $) "failed") (-626 $) $) NIL (|has| |#1| (-359)))) (-4445 (((-755) $) NIL (|has| |#1| (-359)))) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL (|has| |#1| (-359)))) (-4069 ((|#1| (-1236 $)) NIL) ((|#1|) 109)) (-2935 (((-755) $) NIL (|has| |#1| (-344))) (((-3 (-755) "failed") $ $) NIL (|has| |#1| (-344)))) (-2443 (($ $) NIL (-2318 (-12 (|has| |#1| (-221)) (|has| |#1| (-359))) (|has| |#1| (-344)))) (($ $ (-755)) NIL (-2318 (-12 (|has| |#1| (-221)) (|has| |#1| (-359))) (|has| |#1| (-344)))) (($ $ (-1153)) NIL (-12 (|has| |#1| (-359)) (|has| |#1| (-887 (-1153))))) (($ $ (-626 (-1153))) NIL (-12 (|has| |#1| (-359)) (|has| |#1| (-887 (-1153))))) (($ $ (-1153) (-755)) NIL (-12 (|has| |#1| (-359)) (|has| |#1| (-887 (-1153))))) (($ $ (-626 (-1153)) (-626 (-755))) NIL (-12 (|has| |#1| (-359)) (|has| |#1| (-887 (-1153))))) (($ $ (-1 |#1| |#1|) (-755)) NIL (|has| |#1| (-359))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-359)))) (-2142 (((-671 |#1|) (-1236 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-359)))) (-3591 ((|#2|) 73)) (-2612 (($) NIL (|has| |#1| (-344)))) (-3390 (((-1236 |#1|) $ (-1236 $)) 89) (((-671 |#1|) (-1236 $) (-1236 $)) NIL) (((-1236 |#1|) $) 71) (((-671 |#1|) (-1236 $)) 85)) (-4255 (((-1236 |#1|) $) NIL) (($ (-1236 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-3248 (((-3 (-1236 $) "failed") (-671 $)) NIL (|has| |#1| (-344)))) (-2801 (((-842) $) 57) (($ (-560)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-359))) (($ (-403 (-560))) NIL (-2318 (|has| |#1| (-359)) (|has| |#1| (-1029 (-403 (-560))))))) (-2272 (($ $) NIL (|has| |#1| (-344))) (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3642 ((|#2| $) 82)) (-1751 (((-755)) 75)) (-4374 (((-1236 $)) 81)) (-2328 (((-121) $ $) NIL (|has| |#1| (-359)))) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL (|has| |#1| (-359)))) (-3304 (($) 30 T CONST)) (-1459 (($) 19 T CONST)) (-2500 (($ $) NIL (-2318 (-12 (|has| |#1| (-221)) (|has| |#1| (-359))) (|has| |#1| (-344)))) (($ $ (-755)) NIL (-2318 (-12 (|has| |#1| (-221)) (|has| |#1| (-359))) (|has| |#1| (-344)))) (($ $ (-1153)) NIL (-12 (|has| |#1| (-359)) (|has| |#1| (-887 (-1153))))) (($ $ (-626 (-1153))) NIL (-12 (|has| |#1| (-359)) (|has| |#1| (-887 (-1153))))) (($ $ (-1153) (-755)) NIL (-12 (|has| |#1| (-359)) (|has| |#1| (-887 (-1153))))) (($ $ (-626 (-1153)) (-626 (-755))) NIL (-12 (|has| |#1| (-359)) (|has| |#1| (-887 (-1153))))) (($ $ (-1 |#1| |#1|) (-755)) NIL (|has| |#1| (-359))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-359)))) (-1653 (((-121) $ $) 63)) (-1733 (($ $ $) NIL (|has| |#1| (-359)))) (-1725 (($ $) 67) (($ $ $) NIL)) (-1716 (($ $ $) 65)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL (|has| |#1| (-359)))) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-403 (-560)) $) NIL (|has| |#1| (-359))) (($ $ (-403 (-560))) NIL (|has| |#1| (-359))))) -(((-1065 |#1| |#2| |#3|) (-706 |#1| |#2|) (-170) (-1211 |#1|) |#2|) (T -1065)) -NIL -(-706 |#1| |#2|) -((-1601 (((-414 |#3|) |#3|) 16))) -(((-1066 |#1| |#2| |#3|) (-10 -7 (-15 -1601 ((-414 |#3|) |#3|))) (-1211 (-403 (-945 (-560)))) (-13 (-359) (-148) (-706 (-403 (-945 (-560))) |#1|)) (-1211 |#2|)) (T -1066)) -((-1601 (*1 *2 *3) (-12 (-4 *4 (-1211 (-403 (-945 (-560))))) (-4 *5 (-13 (-359) (-148) (-706 (-403 (-945 (-560))) *4))) (-5 *2 (-414 *3)) (-5 *1 (-1066 *4 *5 *3)) (-4 *3 (-1211 *5))))) -(-10 -7 (-15 -1601 ((-414 |#3|) |#3|))) -((-2601 (((-121) $ $) NIL)) (-4325 (($ $ $) 14)) (-2501 (($ $ $) 15)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2772 (($) 6)) (-4255 (((-1153) $) 18)) (-2801 (((-842) $) 12)) (-1691 (((-121) $ $) NIL)) (-1675 (((-121) $ $) NIL)) (-1653 (((-121) $ $) 13)) (-1683 (((-121) $ $) NIL)) (-1667 (((-121) $ $) 8))) -(((-1067) (-13 (-834) (-10 -8 (-15 -2772 ($)) (-15 -4255 ((-1153) $))))) (T -1067)) -((-2772 (*1 *1) (-5 *1 (-1067))) (-4255 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-1067))))) -(-13 (-834) (-10 -8 (-15 -2772 ($)) (-15 -4255 ((-1153) $)))) -((-3255 ((|#1| |#1| (-1 (-560) |#1| |#1|)) 21) ((|#1| |#1| (-1 (-121) |#1|)) 18)) (-1478 (((-1241)) 15)) (-3268 (((-626 |#1|)) 9))) -(((-1068 |#1|) (-10 -7 (-15 -1478 ((-1241))) (-15 -3268 ((-626 |#1|))) (-15 -3255 (|#1| |#1| (-1 (-121) |#1|))) (-15 -3255 (|#1| |#1| (-1 (-560) |#1| |#1|)))) (-138)) (T -1068)) -((-3255 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-560) *2 *2)) (-4 *2 (-138)) (-5 *1 (-1068 *2)))) (-3255 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-121) *2)) (-4 *2 (-138)) (-5 *1 (-1068 *2)))) (-3268 (*1 *2) (-12 (-5 *2 (-626 *3)) (-5 *1 (-1068 *3)) (-4 *3 (-138)))) (-1478 (*1 *2) (-12 (-5 *2 (-1241)) (-5 *1 (-1068 *3)) (-4 *3 (-138))))) -(-10 -7 (-15 -1478 ((-1241))) (-15 -3268 ((-626 |#1|))) (-15 -3255 (|#1| |#1| (-1 (-121) |#1|))) (-15 -3255 (|#1| |#1| (-1 (-560) |#1| |#1|)))) -((-2059 (((-1236 (-671 |#1|)) (-626 (-671 |#1|))) 41) (((-1236 (-671 (-945 |#1|))) (-626 (-1153)) (-671 (-945 |#1|))) 60) (((-1236 (-671 (-403 (-945 |#1|)))) (-626 (-1153)) (-671 (-403 (-945 |#1|)))) 76)) (-3390 (((-1236 |#1|) (-671 |#1|) (-626 (-671 |#1|))) 35))) -(((-1069 |#1|) (-10 -7 (-15 -2059 ((-1236 (-671 (-403 (-945 |#1|)))) (-626 (-1153)) (-671 (-403 (-945 |#1|))))) (-15 -2059 ((-1236 (-671 (-945 |#1|))) (-626 (-1153)) (-671 (-945 |#1|)))) (-15 -2059 ((-1236 (-671 |#1|)) (-626 (-671 |#1|)))) (-15 -3390 ((-1236 |#1|) (-671 |#1|) (-626 (-671 |#1|))))) (-359)) (T -1069)) -((-3390 (*1 *2 *3 *4) (-12 (-5 *4 (-626 (-671 *5))) (-5 *3 (-671 *5)) (-4 *5 (-359)) (-5 *2 (-1236 *5)) (-5 *1 (-1069 *5)))) (-2059 (*1 *2 *3) (-12 (-5 *3 (-626 (-671 *4))) (-4 *4 (-359)) (-5 *2 (-1236 (-671 *4))) (-5 *1 (-1069 *4)))) (-2059 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-1153))) (-4 *5 (-359)) (-5 *2 (-1236 (-671 (-945 *5)))) (-5 *1 (-1069 *5)) (-5 *4 (-671 (-945 *5))))) (-2059 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-1153))) (-4 *5 (-359)) (-5 *2 (-1236 (-671 (-403 (-945 *5))))) (-5 *1 (-1069 *5)) (-5 *4 (-671 (-403 (-945 *5))))))) -(-10 -7 (-15 -2059 ((-1236 (-671 (-403 (-945 |#1|)))) (-626 (-1153)) (-671 (-403 (-945 |#1|))))) (-15 -2059 ((-1236 (-671 (-945 |#1|))) (-626 (-1153)) (-671 (-945 |#1|)))) (-15 -2059 ((-1236 (-671 |#1|)) (-626 (-671 |#1|)))) (-15 -3390 ((-1236 |#1|) (-671 |#1|) (-626 (-671 |#1|))))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-2402 (((-626 (-755)) $) NIL) (((-626 (-755)) $ (-1153)) NIL)) (-1400 (((-755) $) NIL) (((-755) $ (-1153)) NIL)) (-1654 (((-626 (-1071 (-1153))) $) NIL)) (-1593 (((-1149 $) $ (-1071 (-1153))) NIL) (((-1149 |#1|) $) NIL)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL (|has| |#1| (-550)))) (-1350 (($ $) NIL (|has| |#1| (-550)))) (-3376 (((-121) $) NIL (|has| |#1| (-550)))) (-1697 (((-755) $) NIL) (((-755) $ (-626 (-1071 (-1153)))) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-1776 (((-414 (-1149 $)) (-1149 $)) NIL (|has| |#1| (-896)))) (-3065 (($ $) NIL (|has| |#1| (-447)))) (-2953 (((-414 $) $) NIL (|has| |#1| (-447)))) (-1887 (((-3 (-626 (-1149 $)) "failed") (-626 (-1149 $)) (-1149 $)) NIL (|has| |#1| (-896)))) (-1278 (($ $) NIL)) (-4236 (($) NIL T CONST)) (-1473 (((-3 |#1| "failed") $) NIL) (((-3 (-403 (-560)) "failed") $) NIL (|has| |#1| (-1029 (-403 (-560))))) (((-3 (-560) "failed") $) NIL (|has| |#1| (-1029 (-560)))) (((-3 (-1071 (-1153)) "failed") $) NIL) (((-3 (-1153) "failed") $) NIL) (((-3 (-1105 |#1| (-1153)) "failed") $) NIL)) (-3001 ((|#1| $) NIL) (((-403 (-560)) $) NIL (|has| |#1| (-1029 (-403 (-560))))) (((-560) $) NIL (|has| |#1| (-1029 (-560)))) (((-1071 (-1153)) $) NIL) (((-1153) $) NIL) (((-1105 |#1| (-1153)) $) NIL)) (-1979 (($ $ $ (-1071 (-1153))) NIL (|has| |#1| (-170)))) (-1750 (($ $) NIL)) (-2616 (((-671 (-560)) (-671 $)) NIL (|has| |#1| (-622 (-560)))) (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) NIL (|has| |#1| (-622 (-560)))) (((-2 (|:| -3818 (-671 |#1|)) (|:| |vec| (-1236 |#1|))) (-671 $) (-1236 $)) NIL) (((-671 |#1|) (-671 $)) NIL)) (-1823 (((-3 $ "failed") $) NIL)) (-3605 (($ $) NIL (|has| |#1| (-447))) (($ $ (-1071 (-1153))) NIL (|has| |#1| (-447)))) (-1743 (((-626 $) $) NIL)) (-3319 (((-121) $) NIL (|has| |#1| (-896)))) (-1456 (($ $ |#1| (-526 (-1071 (-1153))) $) NIL)) (-2399 (((-876 (-375) $) $ (-879 (-375)) (-876 (-375) $)) NIL (-12 (|has| (-1071 (-1153)) (-873 (-375))) (|has| |#1| (-873 (-375))))) (((-876 (-560) $) $ (-879 (-560)) (-876 (-560) $)) NIL (-12 (|has| (-1071 (-1153)) (-873 (-560))) (|has| |#1| (-873 (-560)))))) (-3504 (((-755) $ (-1153)) NIL) (((-755) $) NIL)) (-2642 (((-121) $) NIL)) (-3235 (((-755) $) NIL)) (-1647 (($ (-1149 |#1|) (-1071 (-1153))) NIL) (($ (-1149 $) (-1071 (-1153))) NIL)) (-1854 (((-626 $) $) NIL)) (-1814 (((-121) $) NIL)) (-1637 (($ |#1| (-526 (-1071 (-1153)))) NIL) (($ $ (-1071 (-1153)) (-755)) NIL) (($ $ (-626 (-1071 (-1153))) (-626 (-755))) NIL)) (-2923 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $ (-1071 (-1153))) NIL)) (-3693 (((-526 (-1071 (-1153))) $) NIL) (((-755) $ (-1071 (-1153))) NIL) (((-626 (-755)) $ (-626 (-1071 (-1153)))) NIL)) (-4325 (($ $ $) NIL (|has| |#1| (-834)))) (-2501 (($ $ $) NIL (|has| |#1| (-834)))) (-1504 (($ (-1 (-526 (-1071 (-1153))) (-526 (-1071 (-1153)))) $) NIL)) (-2803 (($ (-1 |#1| |#1|) $) NIL)) (-4340 (((-1 $ (-755)) (-1153)) NIL) (((-1 $ (-755)) $) NIL (|has| |#1| (-221)))) (-2101 (((-3 (-1071 (-1153)) "failed") $) NIL)) (-1726 (($ $) NIL)) (-1735 ((|#1| $) NIL)) (-2263 (((-1071 (-1153)) $) NIL)) (-2582 (($ (-626 $)) NIL (|has| |#1| (-447))) (($ $ $) NIL (|has| |#1| (-447)))) (-1291 (((-1135) $) NIL)) (-3940 (((-121) $) NIL)) (-3665 (((-3 (-626 $) "failed") $) NIL)) (-2327 (((-3 (-626 $) "failed") $) NIL)) (-2913 (((-3 (-2 (|:| |var| (-1071 (-1153))) (|:| -4034 (-755))) "failed") $) NIL)) (-2006 (($ $) NIL)) (-4353 (((-1100) $) NIL)) (-1704 (((-121) $) NIL)) (-1711 ((|#1| $) NIL)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL (|has| |#1| (-447)))) (-4440 (($ (-626 $)) NIL (|has| |#1| (-447))) (($ $ $) NIL (|has| |#1| (-447)))) (-3817 (((-414 (-1149 $)) (-1149 $)) NIL (|has| |#1| (-896)))) (-3032 (((-414 (-1149 $)) (-1149 $)) NIL (|has| |#1| (-896)))) (-1601 (((-414 $) $) NIL (|has| |#1| (-896)))) (-2336 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-550))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-550)))) (-4450 (($ $ (-626 (-283 $))) NIL) (($ $ (-283 $)) NIL) (($ $ $ $) NIL) (($ $ (-626 $) (-626 $)) NIL) (($ $ (-1071 (-1153)) |#1|) NIL) (($ $ (-626 (-1071 (-1153))) (-626 |#1|)) NIL) (($ $ (-1071 (-1153)) $) NIL) (($ $ (-626 (-1071 (-1153))) (-626 $)) NIL) (($ $ (-1153) $) NIL (|has| |#1| (-221))) (($ $ (-626 (-1153)) (-626 $)) NIL (|has| |#1| (-221))) (($ $ (-1153) |#1|) NIL (|has| |#1| (-221))) (($ $ (-626 (-1153)) (-626 |#1|)) NIL (|has| |#1| (-221)))) (-4069 (($ $ (-1071 (-1153))) NIL (|has| |#1| (-170)))) (-2443 (($ $ (-1071 (-1153))) NIL) (($ $ (-626 (-1071 (-1153)))) NIL) (($ $ (-1071 (-1153)) (-755)) NIL) (($ $ (-626 (-1071 (-1153))) (-626 (-755))) NIL) (($ $) NIL (|has| |#1| (-221))) (($ $ (-755)) NIL (|has| |#1| (-221))) (($ $ (-1153)) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-626 (-1153))) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-1153) (-755)) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-626 (-1153)) (-626 (-755))) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-1 |#1| |#1|) (-755)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1339 (((-626 (-1153)) $) NIL)) (-3662 (((-526 (-1071 (-1153))) $) NIL) (((-755) $ (-1071 (-1153))) NIL) (((-626 (-755)) $ (-626 (-1071 (-1153)))) NIL) (((-755) $ (-1153)) NIL)) (-4255 (((-879 (-375)) $) NIL (-12 (|has| (-1071 (-1153)) (-601 (-879 (-375)))) (|has| |#1| (-601 (-879 (-375)))))) (((-879 (-560)) $) NIL (-12 (|has| (-1071 (-1153)) (-601 (-879 (-560)))) (|has| |#1| (-601 (-879 (-560)))))) (((-533) $) NIL (-12 (|has| (-1071 (-1153)) (-601 (-533))) (|has| |#1| (-601 (-533)))))) (-1896 ((|#1| $) NIL (|has| |#1| (-447))) (($ $ (-1071 (-1153))) NIL (|has| |#1| (-447)))) (-3248 (((-3 (-1236 $) "failed") (-671 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-896))))) (-2801 (((-842) $) NIL) (($ (-560)) NIL) (($ |#1|) NIL) (($ (-1071 (-1153))) NIL) (($ (-1153)) NIL) (($ (-1105 |#1| (-1153))) NIL) (($ (-403 (-560))) NIL (-2318 (|has| |#1| (-43 (-403 (-560)))) (|has| |#1| (-1029 (-403 (-560)))))) (($ $) NIL (|has| |#1| (-550)))) (-2423 (((-626 |#1|) $) NIL)) (-2636 ((|#1| $ (-526 (-1071 (-1153)))) NIL) (($ $ (-1071 (-1153)) (-755)) NIL) (($ $ (-626 (-1071 (-1153))) (-626 (-755))) NIL)) (-2272 (((-3 $ "failed") $) NIL (-2318 (-12 (|has| $ (-146)) (|has| |#1| (-896))) (|has| |#1| (-146))))) (-1751 (((-755)) NIL)) (-3487 (($ $ $ (-755)) NIL (|has| |#1| (-170)))) (-2328 (((-121) $ $) NIL (|has| |#1| (-550)))) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (-3304 (($) NIL T CONST)) (-1459 (($) NIL T CONST)) (-2500 (($ $ (-1071 (-1153))) NIL) (($ $ (-626 (-1071 (-1153)))) NIL) (($ $ (-1071 (-1153)) (-755)) NIL) (($ $ (-626 (-1071 (-1153))) (-626 (-755))) NIL) (($ $) NIL (|has| |#1| (-221))) (($ $ (-755)) NIL (|has| |#1| (-221))) (($ $ (-1153)) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-626 (-1153))) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-1153) (-755)) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-626 (-1153)) (-626 (-755))) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-1 |#1| |#1|) (-755)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1691 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1675 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1653 (((-121) $ $) NIL)) (-1683 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1667 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1733 (($ $ |#1|) NIL (|has| |#1| (-359)))) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) NIL)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) NIL) (($ $ (-403 (-560))) NIL (|has| |#1| (-43 (-403 (-560))))) (($ (-403 (-560)) $) NIL (|has| |#1| (-43 (-403 (-560))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-1070 |#1|) (-13 (-241 |#1| (-1153) (-1071 (-1153)) (-526 (-1071 (-1153)))) (-1029 (-1105 |#1| (-1153)))) (-1039)) (T -1070)) -NIL -(-13 (-241 |#1| (-1153) (-1071 (-1153)) (-526 (-1071 (-1153)))) (-1029 (-1105 |#1| (-1153)))) -((-2601 (((-121) $ $) NIL)) (-1400 (((-755) $) NIL)) (-1395 ((|#1| $) 10)) (-1473 (((-3 |#1| "failed") $) NIL)) (-3001 ((|#1| $) NIL)) (-3504 (((-755) $) 11)) (-4325 (($ $ $) NIL)) (-2501 (($ $ $) NIL)) (-4340 (($ |#1| (-755)) 9)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2443 (($ $) NIL) (($ $ (-755)) NIL)) (-2801 (((-842) $) NIL) (($ |#1|) NIL)) (-1691 (((-121) $ $) NIL)) (-1675 (((-121) $ $) NIL)) (-1653 (((-121) $ $) NIL)) (-1683 (((-121) $ $) NIL)) (-1667 (((-121) $ $) 15))) -(((-1071 |#1|) (-257 |#1|) (-834)) (T -1071)) -NIL -(-257 |#1|) -((-2803 (((-626 |#2|) (-1 |#2| |#1|) (-1076 |#1|)) 23 (|has| |#1| (-832))) (((-1076 |#2|) (-1 |#2| |#1|) (-1076 |#1|)) 14))) -(((-1072 |#1| |#2|) (-10 -7 (-15 -2803 ((-1076 |#2|) (-1 |#2| |#1|) (-1076 |#1|))) (IF (|has| |#1| (-832)) (-15 -2803 ((-626 |#2|) (-1 |#2| |#1|) (-1076 |#1|))) |noBranch|)) (-1187) (-1187)) (T -1072)) -((-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1076 *5)) (-4 *5 (-832)) (-4 *5 (-1187)) (-4 *6 (-1187)) (-5 *2 (-626 *6)) (-5 *1 (-1072 *5 *6)))) (-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1076 *5)) (-4 *5 (-1187)) (-4 *6 (-1187)) (-5 *2 (-1076 *6)) (-5 *1 (-1072 *5 *6))))) -(-10 -7 (-15 -2803 ((-1076 |#2|) (-1 |#2| |#1|) (-1076 |#1|))) (IF (|has| |#1| (-832)) (-15 -2803 ((-626 |#2|) (-1 |#2| |#1|) (-1076 |#1|))) |noBranch|)) -((-2803 (((-1074 |#2|) (-1 |#2| |#1|) (-1074 |#1|)) 19))) -(((-1073 |#1| |#2|) (-10 -7 (-15 -2803 ((-1074 |#2|) (-1 |#2| |#1|) (-1074 |#1|)))) (-1187) (-1187)) (T -1073)) -((-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1074 *5)) (-4 *5 (-1187)) (-4 *6 (-1187)) (-5 *2 (-1074 *6)) (-5 *1 (-1073 *5 *6))))) -(-10 -7 (-15 -2803 ((-1074 |#2|) (-1 |#2| |#1|) (-1074 |#1|)))) -((-2601 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-1395 (((-1153) $) 11)) (-2555 (((-1076 |#1|) $) 12)) (-1291 (((-1135) $) NIL (|has| |#1| (-1082)))) (-4353 (((-1100) $) NIL (|has| |#1| (-1082)))) (-2785 (($ (-1153) (-1076 |#1|)) 10)) (-2801 (((-842) $) 20 (|has| |#1| (-1082)))) (-1653 (((-121) $ $) 15 (|has| |#1| (-1082))))) -(((-1074 |#1|) (-13 (-1187) (-10 -8 (-15 -2785 ($ (-1153) (-1076 |#1|))) (-15 -1395 ((-1153) $)) (-15 -2555 ((-1076 |#1|) $)) (IF (|has| |#1| (-1082)) (-6 (-1082)) |noBranch|))) (-1187)) (T -1074)) -((-2785 (*1 *1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-1076 *4)) (-4 *4 (-1187)) (-5 *1 (-1074 *4)))) (-1395 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-1074 *3)) (-4 *3 (-1187)))) (-2555 (*1 *2 *1) (-12 (-5 *2 (-1076 *3)) (-5 *1 (-1074 *3)) (-4 *3 (-1187))))) -(-13 (-1187) (-10 -8 (-15 -2785 ($ (-1153) (-1076 |#1|))) (-15 -1395 ((-1153) $)) (-15 -2555 ((-1076 |#1|) $)) (IF (|has| |#1| (-1082)) (-6 (-1082)) |noBranch|))) -((-2555 (($ |#1| |#1|) 7)) (-3965 ((|#1| $) 10)) (-4322 ((|#1| $) 12)) (-4329 (((-560) $) 8)) (-1451 ((|#1| $) 9)) (-4336 ((|#1| $) 11)) (-4255 (($ |#1|) 6)) (-4227 (($ |#1| |#1|) 14)) (-4124 (($ $ (-560)) 13))) -(((-1075 |#1|) (-1267) (-1187)) (T -1075)) -((-4227 (*1 *1 *2 *2) (-12 (-4 *1 (-1075 *2)) (-4 *2 (-1187)))) (-4124 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-1075 *3)) (-4 *3 (-1187)))) (-4322 (*1 *2 *1) (-12 (-4 *1 (-1075 *2)) (-4 *2 (-1187)))) (-4336 (*1 *2 *1) (-12 (-4 *1 (-1075 *2)) (-4 *2 (-1187)))) (-3965 (*1 *2 *1) (-12 (-4 *1 (-1075 *2)) (-4 *2 (-1187)))) (-1451 (*1 *2 *1) (-12 (-4 *1 (-1075 *2)) (-4 *2 (-1187)))) (-4329 (*1 *2 *1) (-12 (-4 *1 (-1075 *3)) (-4 *3 (-1187)) (-5 *2 (-560)))) (-2555 (*1 *1 *2 *2) (-12 (-4 *1 (-1075 *2)) (-4 *2 (-1187)))) (-4255 (*1 *1 *2) (-12 (-4 *1 (-1075 *2)) (-4 *2 (-1187))))) -(-13 (-1187) (-10 -8 (-15 -4227 ($ |t#1| |t#1|)) (-15 -4124 ($ $ (-560))) (-15 -4322 (|t#1| $)) (-15 -4336 (|t#1| $)) (-15 -3965 (|t#1| $)) (-15 -1451 (|t#1| $)) (-15 -4329 ((-560) $)) (-15 -2555 ($ |t#1| |t#1|)) (-15 -4255 ($ |t#1|)))) -(((-1187) . T)) -((-2601 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-2555 (($ |#1| |#1|) 15)) (-2803 (((-626 |#1|) (-1 |#1| |#1|) $) 37 (|has| |#1| (-832)))) (-3965 ((|#1| $) 10)) (-4322 ((|#1| $) 9)) (-1291 (((-1135) $) NIL (|has| |#1| (-1082)))) (-4329 (((-560) $) 14)) (-1451 ((|#1| $) 12)) (-4336 ((|#1| $) 11)) (-4353 (((-1100) $) NIL (|has| |#1| (-1082)))) (-3780 (((-626 |#1|) $) 35 (|has| |#1| (-832))) (((-626 |#1|) (-626 $)) 34 (|has| |#1| (-832)))) (-4255 (($ |#1|) 26)) (-2801 (((-842) $) 25 (|has| |#1| (-1082)))) (-4227 (($ |#1| |#1|) 8)) (-4124 (($ $ (-560)) 16)) (-1653 (((-121) $ $) 19 (|has| |#1| (-1082))))) -(((-1076 |#1|) (-13 (-1075 |#1|) (-10 -7 (IF (|has| |#1| (-1082)) (-6 (-1082)) |noBranch|) (IF (|has| |#1| (-832)) (-6 (-1077 |#1| (-626 |#1|))) |noBranch|))) (-1187)) (T -1076)) -NIL -(-13 (-1075 |#1|) (-10 -7 (IF (|has| |#1| (-1082)) (-6 (-1082)) |noBranch|) (IF (|has| |#1| (-832)) (-6 (-1077 |#1| (-626 |#1|))) |noBranch|))) -((-2555 (($ |#1| |#1|) 7)) (-2803 ((|#2| (-1 |#1| |#1|) $) 15)) (-3965 ((|#1| $) 10)) (-4322 ((|#1| $) 12)) (-4329 (((-560) $) 8)) (-1451 ((|#1| $) 9)) (-4336 ((|#1| $) 11)) (-3780 ((|#2| (-626 $)) 17) ((|#2| $) 16)) (-4255 (($ |#1|) 6)) (-4227 (($ |#1| |#1|) 14)) (-4124 (($ $ (-560)) 13))) -(((-1077 |#1| |#2|) (-1267) (-832) (-1126 |t#1|)) (T -1077)) -((-3780 (*1 *2 *3) (-12 (-5 *3 (-626 *1)) (-4 *1 (-1077 *4 *2)) (-4 *4 (-832)) (-4 *2 (-1126 *4)))) (-3780 (*1 *2 *1) (-12 (-4 *1 (-1077 *3 *2)) (-4 *3 (-832)) (-4 *2 (-1126 *3)))) (-2803 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1077 *4 *2)) (-4 *4 (-832)) (-4 *2 (-1126 *4))))) -(-13 (-1075 |t#1|) (-10 -8 (-15 -3780 (|t#2| (-626 $))) (-15 -3780 (|t#2| $)) (-15 -2803 (|t#2| (-1 |t#1| |t#1|) $)))) -(((-1075 |#1|) . T) ((-1187) . T)) -((-1749 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-2498 (($ $ $) 10)) (-1794 (($ $ $) NIL) (($ $ |#2|) 15))) -(((-1078 |#1| |#2|) (-10 -8 (-15 -1749 (|#1| |#2| |#1|)) (-15 -1749 (|#1| |#1| |#2|)) (-15 -1749 (|#1| |#1| |#1|)) (-15 -2498 (|#1| |#1| |#1|)) (-15 -1794 (|#1| |#1| |#2|)) (-15 -1794 (|#1| |#1| |#1|))) (-1079 |#2|) (-1082)) (T -1078)) -NIL -(-10 -8 (-15 -1749 (|#1| |#2| |#1|)) (-15 -1749 (|#1| |#1| |#2|)) (-15 -1749 (|#1| |#1| |#1|)) (-15 -2498 (|#1| |#1| |#1|)) (-15 -1794 (|#1| |#1| |#2|)) (-15 -1794 (|#1| |#1| |#1|))) -((-2601 (((-121) $ $) 7)) (-1749 (($ $ $) 17) (($ $ |#1|) 16) (($ |#1| $) 15)) (-2498 (($ $ $) 19)) (-3947 (((-121) $ $) 18)) (-3909 (((-121) $ (-755)) 34)) (-2808 (($) 24) (($ (-626 |#1|)) 23)) (-3802 (($ (-1 (-121) |#1|) $) 55 (|has| $ (-6 -4505)))) (-4236 (($) 35 T CONST)) (-2868 (($ $) 58 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-4310 (($ |#1| $) 57 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505)))) (($ (-1 (-121) |#1|) $) 54 (|has| $ (-6 -4505)))) (-2342 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4505))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4505)))) (-1981 (((-626 |#1|) $) 42 (|has| $ (-6 -4505)))) (-2122 (((-121) $ (-755)) 33)) (-2130 (((-626 |#1|) $) 43 (|has| $ (-6 -4505)))) (-2030 (((-121) |#1| $) 45 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-3778 (($ (-1 |#1| |#1|) $) 38 (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#1| |#1|) $) 37)) (-3441 (((-121) $ (-755)) 32)) (-1291 (((-1135) $) 9)) (-4283 (($ $ $) 22)) (-4353 (((-1100) $) 10)) (-3786 (((-3 |#1| "failed") (-1 (-121) |#1|) $) 51)) (-2865 (((-121) (-1 (-121) |#1|) $) 40 (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 |#1|) (-626 |#1|)) 49 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 48 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-283 |#1|)) 47 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-626 (-283 |#1|))) 46 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))))) (-2214 (((-121) $ $) 28)) (-4191 (((-121) $) 31)) (-3260 (($) 30)) (-1794 (($ $ $) 21) (($ $ |#1|) 20)) (-4035 (((-755) |#1| $) 44 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505)))) (((-755) (-1 (-121) |#1|) $) 41 (|has| $ (-6 -4505)))) (-2813 (($ $) 29)) (-4255 (((-533) $) 59 (|has| |#1| (-601 (-533))))) (-4162 (($ (-626 |#1|)) 50)) (-2801 (((-842) $) 11)) (-2799 (($) 26) (($ (-626 |#1|)) 25)) (-3656 (((-121) (-1 (-121) |#1|) $) 39 (|has| $ (-6 -4505)))) (-1653 (((-121) $ $) 6)) (-1667 (((-121) $ $) 27)) (-2271 (((-755) $) 36 (|has| $ (-6 -4505))))) -(((-1079 |#1|) (-1267) (-1082)) (T -1079)) -((-1667 (*1 *2 *1 *1) (-12 (-4 *1 (-1079 *3)) (-4 *3 (-1082)) (-5 *2 (-121)))) (-2799 (*1 *1) (-12 (-4 *1 (-1079 *2)) (-4 *2 (-1082)))) (-2799 (*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-1082)) (-4 *1 (-1079 *3)))) (-2808 (*1 *1) (-12 (-4 *1 (-1079 *2)) (-4 *2 (-1082)))) (-2808 (*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-1082)) (-4 *1 (-1079 *3)))) (-4283 (*1 *1 *1 *1) (-12 (-4 *1 (-1079 *2)) (-4 *2 (-1082)))) (-1794 (*1 *1 *1 *1) (-12 (-4 *1 (-1079 *2)) (-4 *2 (-1082)))) (-1794 (*1 *1 *1 *2) (-12 (-4 *1 (-1079 *2)) (-4 *2 (-1082)))) (-2498 (*1 *1 *1 *1) (-12 (-4 *1 (-1079 *2)) (-4 *2 (-1082)))) (-3947 (*1 *2 *1 *1) (-12 (-4 *1 (-1079 *3)) (-4 *3 (-1082)) (-5 *2 (-121)))) (-1749 (*1 *1 *1 *1) (-12 (-4 *1 (-1079 *2)) (-4 *2 (-1082)))) (-1749 (*1 *1 *1 *2) (-12 (-4 *1 (-1079 *2)) (-4 *2 (-1082)))) (-1749 (*1 *1 *2 *1) (-12 (-4 *1 (-1079 *2)) (-4 *2 (-1082))))) -(-13 (-1082) (-152 |t#1|) (-10 -8 (-6 -4495) (-15 -1667 ((-121) $ $)) (-15 -2799 ($)) (-15 -2799 ($ (-626 |t#1|))) (-15 -2808 ($)) (-15 -2808 ($ (-626 |t#1|))) (-15 -4283 ($ $ $)) (-15 -1794 ($ $ $)) (-15 -1794 ($ $ |t#1|)) (-15 -2498 ($ $ $)) (-15 -3947 ((-121) $ $)) (-15 -1749 ($ $ $)) (-15 -1749 ($ $ |t#1|)) (-15 -1749 ($ |t#1| $)))) -(((-39) . T) ((-105) . T) ((-600 (-842)) . T) ((-152 |#1|) . T) ((-601 (-533)) |has| |#1| (-601 (-533))) ((-298 |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))) ((-492 |#1|) . T) ((-515 |#1| |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))) ((-1082) . T) ((-1187) . T)) -((-2601 (((-121) $ $) 7)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-3662 (((-909) $) 12)) (-2801 (((-842) $) 11)) (-1653 (((-121) $ $) 6))) -(((-1080) (-1267)) (T -1080)) -((-3662 (*1 *2 *1) (-12 (-4 *1 (-1080)) (-5 *2 (-909))))) -(-13 (-1082) (-10 -8 (-15 -3662 ((-909) $)))) -(((-105) . T) ((-600 (-842)) . T) ((-1082) . T)) -((-1291 (((-1135) $) 10)) (-4353 (((-1100) $) 8))) -(((-1081 |#1|) (-10 -8 (-15 -1291 ((-1135) |#1|)) (-15 -4353 ((-1100) |#1|))) (-1082)) (T -1081)) -NIL -(-10 -8 (-15 -1291 ((-1135) |#1|)) (-15 -4353 ((-1100) |#1|))) -((-2601 (((-121) $ $) 7)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-2801 (((-842) $) 11)) (-1653 (((-121) $ $) 6))) -(((-1082) (-1267)) (T -1082)) -((-4353 (*1 *2 *1) (-12 (-4 *1 (-1082)) (-5 *2 (-1100)))) (-1291 (*1 *2 *1) (-12 (-4 *1 (-1082)) (-5 *2 (-1135))))) -(-13 (-105) (-600 (-842)) (-10 -8 (-15 -4353 ((-1100) $)) (-15 -1291 ((-1135) $)))) -(((-105) . T) ((-600 (-842)) . T)) -((-2601 (((-121) $ $) NIL)) (-2912 (((-755)) 30)) (-2364 (($ (-626 (-909))) 52)) (-3706 (((-3 $ "failed") $ (-909) (-909)) 57)) (-1666 (($) 32)) (-2030 (((-121) (-909) $) 35)) (-3142 (((-909) $) 50)) (-1291 (((-1135) $) NIL)) (-1330 (($ (-909)) 31)) (-2383 (((-3 $ "failed") $ (-909)) 55)) (-4353 (((-1100) $) NIL)) (-2908 (((-1236 $)) 40)) (-1884 (((-626 (-909)) $) 23)) (-4349 (((-755) $ (-909) (-909)) 56)) (-2801 (((-842) $) 29)) (-1653 (((-121) $ $) 21))) -(((-1083 |#1| |#2|) (-13 (-364) (-10 -8 (-15 -2383 ((-3 $ "failed") $ (-909))) (-15 -3706 ((-3 $ "failed") $ (-909) (-909))) (-15 -1884 ((-626 (-909)) $)) (-15 -2364 ($ (-626 (-909)))) (-15 -2908 ((-1236 $))) (-15 -2030 ((-121) (-909) $)) (-15 -4349 ((-755) $ (-909) (-909))))) (-909) (-909)) (T -1083)) -((-2383 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-909)) (-5 *1 (-1083 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3706 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-909)) (-5 *1 (-1083 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-1884 (*1 *2 *1) (-12 (-5 *2 (-626 (-909))) (-5 *1 (-1083 *3 *4)) (-14 *3 (-909)) (-14 *4 (-909)))) (-2364 (*1 *1 *2) (-12 (-5 *2 (-626 (-909))) (-5 *1 (-1083 *3 *4)) (-14 *3 (-909)) (-14 *4 (-909)))) (-2908 (*1 *2) (-12 (-5 *2 (-1236 (-1083 *3 *4))) (-5 *1 (-1083 *3 *4)) (-14 *3 (-909)) (-14 *4 (-909)))) (-2030 (*1 *2 *3 *1) (-12 (-5 *3 (-909)) (-5 *2 (-121)) (-5 *1 (-1083 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-4349 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-909)) (-5 *2 (-755)) (-5 *1 (-1083 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-13 (-364) (-10 -8 (-15 -2383 ((-3 $ "failed") $ (-909))) (-15 -3706 ((-3 $ "failed") $ (-909) (-909))) (-15 -1884 ((-626 (-909)) $)) (-15 -2364 ($ (-626 (-909)))) (-15 -2908 ((-1236 $))) (-15 -2030 ((-121) (-909) $)) (-15 -4349 ((-755) $ (-909) (-909))))) -((-2601 (((-121) $ $) NIL)) (-3569 (($) NIL (|has| |#1| (-364)))) (-1749 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 73)) (-2498 (($ $ $) 71)) (-3947 (((-121) $ $) 72)) (-3909 (((-121) $ (-755)) NIL)) (-2912 (((-755)) NIL (|has| |#1| (-364)))) (-2808 (($ (-626 |#1|)) NIL) (($) 13)) (-3763 (($ (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-3802 (($ (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-4236 (($) NIL T CONST)) (-2868 (($ $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-3561 (($ |#1| $) 67 (|has| $ (-6 -4505))) (($ (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-4310 (($ |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082)))) (($ (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-2342 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4505))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4505)))) (-1666 (($) NIL (|has| |#1| (-364)))) (-1981 (((-626 |#1|) $) 19 (|has| $ (-6 -4505)))) (-2122 (((-121) $ (-755)) NIL)) (-4325 ((|#1| $) 57 (|has| |#1| (-834)))) (-2130 (((-626 |#1|) $) NIL (|has| $ (-6 -4505)))) (-2030 (((-121) |#1| $) 66 (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-2501 ((|#1| $) 55 (|has| |#1| (-834)))) (-3778 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#1| |#1|) $) 34)) (-3142 (((-909) $) NIL (|has| |#1| (-364)))) (-3441 (((-121) $ (-755)) NIL)) (-1291 (((-1135) $) NIL)) (-4283 (($ $ $) 69)) (-2525 ((|#1| $) 25)) (-4345 (($ |#1| $) 65)) (-1330 (($ (-909)) NIL (|has| |#1| (-364)))) (-4353 (((-1100) $) NIL)) (-3786 (((-3 |#1| "failed") (-1 (-121) |#1|) $) 31)) (-2146 ((|#1| $) 27)) (-2865 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#1|))) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-283 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-626 |#1|) (-626 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))))) (-2214 (((-121) $ $) NIL)) (-4191 (((-121) $) 21)) (-3260 (($) 11)) (-1794 (($ $ |#1|) NIL) (($ $ $) 70)) (-3958 (($) NIL) (($ (-626 |#1|)) NIL)) (-4035 (((-755) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505))) (((-755) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-2813 (($ $) 16)) (-4255 (((-533) $) 52 (|has| |#1| (-601 (-533))))) (-4162 (($ (-626 |#1|)) 61)) (-1511 (($ $) NIL (|has| |#1| (-364)))) (-2801 (((-842) $) NIL)) (-4127 (((-755) $) NIL)) (-2799 (($ (-626 |#1|)) NIL) (($) 12)) (-1354 (($ (-626 |#1|)) NIL)) (-3656 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-1653 (((-121) $ $) 54)) (-1667 (((-121) $ $) NIL)) (-2271 (((-755) $) 10 (|has| $ (-6 -4505))))) -(((-1084 |#1|) (-421 |#1|) (-1082)) (T -1084)) -NIL -(-421 |#1|) -((-2601 (((-121) $ $) 7)) (-2631 (((-121) $) 31)) (-3361 ((|#2| $) 26)) (-3114 (((-121) $) 32)) (-2308 ((|#1| $) 27)) (-3903 (((-121) $) 34)) (-2829 (((-121) $) 36)) (-2707 (((-121) $) 33)) (-1291 (((-1135) $) 9)) (-1589 (((-121) $) 30)) (-2292 ((|#3| $) 25)) (-4353 (((-1100) $) 10)) (-2872 (((-121) $) 29)) (-3737 ((|#4| $) 24)) (-1846 ((|#5| $) 23)) (-2654 (((-121) $ $) 37)) (-2778 (($ $ (-560)) 13) (($ $ (-626 (-560))) 12)) (-1631 (((-626 $) $) 28)) (-4255 (($ (-626 $)) 22) (($ |#1|) 21) (($ |#2|) 20) (($ |#3|) 19) (($ |#4|) 18) (($ |#5|) 17)) (-2801 (((-842) $) 11)) (-1442 (($ $) 15)) (-1437 (($ $) 16)) (-2091 (((-121) $) 35)) (-1653 (((-121) $ $) 6)) (-2271 (((-560) $) 14))) -(((-1085 |#1| |#2| |#3| |#4| |#5|) (-1267) (-1082) (-1082) (-1082) (-1082) (-1082)) (T -1085)) -((-2654 (*1 *2 *1 *1) (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-121)))) (-2829 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-121)))) (-2091 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-121)))) (-3903 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-121)))) (-2707 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-121)))) (-3114 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-121)))) (-2631 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-121)))) (-1589 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-121)))) (-2872 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-121)))) (-1631 (*1 *2 *1) (-12 (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-626 *1)) (-4 *1 (-1085 *3 *4 *5 *6 *7)))) (-2308 (*1 *2 *1) (-12 (-4 *1 (-1085 *2 *3 *4 *5 *6)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *2 (-1082)))) (-3361 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *2 *4 *5 *6)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *2 (-1082)))) (-2292 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *2 *5 *6)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *2 (-1082)))) (-3737 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *5 *2 *6)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *2 (-1082)))) (-1846 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *5 *6 *2)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *2 (-1082)))) (-4255 (*1 *1 *2) (-12 (-5 *2 (-626 *1)) (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)))) (-4255 (*1 *1 *2) (-12 (-4 *1 (-1085 *2 *3 *4 *5 *6)) (-4 *2 (-1082)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)))) (-4255 (*1 *1 *2) (-12 (-4 *1 (-1085 *3 *2 *4 *5 *6)) (-4 *3 (-1082)) (-4 *2 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)))) (-4255 (*1 *1 *2) (-12 (-4 *1 (-1085 *3 *4 *2 *5 *6)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *2 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)))) (-4255 (*1 *1 *2) (-12 (-4 *1 (-1085 *3 *4 *5 *2 *6)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *2 (-1082)) (-4 *6 (-1082)))) (-4255 (*1 *1 *2) (-12 (-4 *1 (-1085 *3 *4 *5 *6 *2)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *2 (-1082)))) (-1437 (*1 *1 *1) (-12 (-4 *1 (-1085 *2 *3 *4 *5 *6)) (-4 *2 (-1082)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)))) (-1442 (*1 *1 *1) (-12 (-4 *1 (-1085 *2 *3 *4 *5 *6)) (-4 *2 (-1082)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)))) (-2271 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-560)))) (-2778 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)))) (-2778 (*1 *1 *1 *2) (-12 (-5 *2 (-626 (-560))) (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082))))) -(-13 (-1082) (-10 -8 (-15 -2654 ((-121) $ $)) (-15 -2829 ((-121) $)) (-15 -2091 ((-121) $)) (-15 -3903 ((-121) $)) (-15 -2707 ((-121) $)) (-15 -3114 ((-121) $)) (-15 -2631 ((-121) $)) (-15 -1589 ((-121) $)) (-15 -2872 ((-121) $)) (-15 -1631 ((-626 $) $)) (-15 -2308 (|t#1| $)) (-15 -3361 (|t#2| $)) (-15 -2292 (|t#3| $)) (-15 -3737 (|t#4| $)) (-15 -1846 (|t#5| $)) (-15 -4255 ($ (-626 $))) (-15 -4255 ($ |t#1|)) (-15 -4255 ($ |t#2|)) (-15 -4255 ($ |t#3|)) (-15 -4255 ($ |t#4|)) (-15 -4255 ($ |t#5|)) (-15 -1437 ($ $)) (-15 -1442 ($ $)) (-15 -2271 ((-560) $)) (-15 -2778 ($ $ (-560))) (-15 -2778 ($ $ (-626 (-560)))))) -(((-105) . T) ((-600 (-842)) . T) ((-1082) . T)) -((-2601 (((-121) $ $) NIL)) (-2631 (((-121) $) NIL)) (-3361 (((-1153) $) NIL)) (-3114 (((-121) $) NIL)) (-2308 (((-1135) $) NIL)) (-3903 (((-121) $) NIL)) (-2829 (((-121) $) NIL)) (-2707 (((-121) $) NIL)) (-1291 (((-1135) $) NIL)) (-1589 (((-121) $) NIL)) (-2292 (((-560) $) NIL)) (-4353 (((-1100) $) NIL)) (-2872 (((-121) $) NIL)) (-3737 (((-213) $) NIL)) (-1846 (((-842) $) NIL)) (-2654 (((-121) $ $) NIL)) (-2778 (($ $ (-560)) NIL) (($ $ (-626 (-560))) NIL)) (-1631 (((-626 $) $) NIL)) (-4255 (($ (-626 $)) NIL) (($ (-1135)) NIL) (($ (-1153)) NIL) (($ (-560)) NIL) (($ (-213)) NIL) (($ (-842)) NIL)) (-2801 (((-842) $) NIL)) (-1442 (($ $) NIL)) (-1437 (($ $) NIL)) (-2091 (((-121) $) NIL)) (-1653 (((-121) $ $) NIL)) (-2271 (((-560) $) NIL))) -(((-1086) (-1085 (-1135) (-1153) (-560) (-213) (-842))) (T -1086)) -NIL -(-1085 (-1135) (-1153) (-560) (-213) (-842)) -((-2601 (((-121) $ $) NIL)) (-2631 (((-121) $) 37)) (-3361 ((|#2| $) 41)) (-3114 (((-121) $) 36)) (-2308 ((|#1| $) 40)) (-3903 (((-121) $) 34)) (-2829 (((-121) $) 14)) (-2707 (((-121) $) 35)) (-1291 (((-1135) $) NIL)) (-1589 (((-121) $) 38)) (-2292 ((|#3| $) 43)) (-4353 (((-1100) $) NIL)) (-2872 (((-121) $) 39)) (-3737 ((|#4| $) 42)) (-1846 ((|#5| $) 44)) (-2654 (((-121) $ $) 33)) (-2778 (($ $ (-560)) 55) (($ $ (-626 (-560))) 57)) (-1631 (((-626 $) $) 21)) (-4255 (($ (-626 $)) 45) (($ |#1|) 46) (($ |#2|) 47) (($ |#3|) 48) (($ |#4|) 49) (($ |#5|) 50)) (-2801 (((-842) $) 22)) (-1442 (($ $) 20)) (-1437 (($ $) 51)) (-2091 (((-121) $) 18)) (-1653 (((-121) $ $) 32)) (-2271 (((-560) $) 53))) -(((-1087 |#1| |#2| |#3| |#4| |#5|) (-1085 |#1| |#2| |#3| |#4| |#5|) (-1082) (-1082) (-1082) (-1082) (-1082)) (T -1087)) -NIL -(-1085 |#1| |#2| |#3| |#4| |#5|) -((-2405 (((-1241) $) 23)) (-3982 (($ (-1153) (-430) |#2|) 11)) (-2801 (((-842) $) 16))) -(((-1088 |#1| |#2|) (-13 (-391) (-10 -8 (-15 -3982 ($ (-1153) (-430) |#2|)))) (-834) (-426 |#1|)) (T -1088)) -((-3982 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1153)) (-5 *3 (-430)) (-4 *5 (-834)) (-5 *1 (-1088 *5 *4)) (-4 *4 (-426 *5))))) -(-13 (-391) (-10 -8 (-15 -3982 ($ (-1153) (-430) |#2|)))) -((-2490 (((-121) |#5| |#5|) 37)) (-1427 (((-121) |#5| |#5|) 51)) (-3406 (((-121) |#5| (-626 |#5|)) 74) (((-121) |#5| |#5|) 60)) (-4156 (((-121) (-626 |#4|) (-626 |#4|)) 57)) (-4296 (((-121) (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|)) (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))) 62)) (-1973 (((-1241)) 33)) (-1541 (((-1241) (-1135) (-1135) (-1135)) 29)) (-3695 (((-626 |#5|) (-626 |#5|)) 81)) (-1325 (((-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))) (-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|)))) 79)) (-2084 (((-626 (-2 (|:| -2654 (-626 |#4|)) (|:| -3249 |#5|) (|:| |ineq| (-626 |#4|)))) (-626 |#4|) (-626 |#5|) (-121) (-121)) 101)) (-4461 (((-121) |#5| |#5|) 46)) (-4342 (((-3 (-121) "failed") |#5| |#5|) 70)) (-2680 (((-121) (-626 |#4|) (-626 |#4|)) 56)) (-3071 (((-121) (-626 |#4|) (-626 |#4|)) 58)) (-3564 (((-121) (-626 |#4|) (-626 |#4|)) 59)) (-3554 (((-3 (-2 (|:| -2654 (-626 |#4|)) (|:| -3249 |#5|) (|:| |ineq| (-626 |#4|))) "failed") (-626 |#4|) |#5| (-626 |#4|) (-121) (-121) (-121) (-121) (-121)) 97)) (-3408 (((-626 |#5|) (-626 |#5|)) 42))) -(((-1089 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1541 ((-1241) (-1135) (-1135) (-1135))) (-15 -1973 ((-1241))) (-15 -2490 ((-121) |#5| |#5|)) (-15 -3408 ((-626 |#5|) (-626 |#5|))) (-15 -4461 ((-121) |#5| |#5|)) (-15 -1427 ((-121) |#5| |#5|)) (-15 -4156 ((-121) (-626 |#4|) (-626 |#4|))) (-15 -2680 ((-121) (-626 |#4|) (-626 |#4|))) (-15 -3071 ((-121) (-626 |#4|) (-626 |#4|))) (-15 -3564 ((-121) (-626 |#4|) (-626 |#4|))) (-15 -4342 ((-3 (-121) "failed") |#5| |#5|)) (-15 -3406 ((-121) |#5| |#5|)) (-15 -3406 ((-121) |#5| (-626 |#5|))) (-15 -3695 ((-626 |#5|) (-626 |#5|))) (-15 -4296 ((-121) (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|)) (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|)))) (-15 -1325 ((-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))) (-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))))) (-15 -2084 ((-626 (-2 (|:| -2654 (-626 |#4|)) (|:| -3249 |#5|) (|:| |ineq| (-626 |#4|)))) (-626 |#4|) (-626 |#5|) (-121) (-121))) (-15 -3554 ((-3 (-2 (|:| -2654 (-626 |#4|)) (|:| -3249 |#5|) (|:| |ineq| (-626 |#4|))) "failed") (-626 |#4|) |#5| (-626 |#4|) (-121) (-121) (-121) (-121) (-121)))) (-447) (-780) (-834) (-1053 |#1| |#2| |#3|) (-1058 |#1| |#2| |#3| |#4|)) (T -1089)) -((-3554 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-121)) (-4 *6 (-447)) (-4 *7 (-780)) (-4 *8 (-834)) (-4 *9 (-1053 *6 *7 *8)) (-5 *2 (-2 (|:| -2654 (-626 *9)) (|:| -3249 *4) (|:| |ineq| (-626 *9)))) (-5 *1 (-1089 *6 *7 *8 *9 *4)) (-5 *3 (-626 *9)) (-4 *4 (-1058 *6 *7 *8 *9)))) (-2084 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-626 *10)) (-5 *5 (-121)) (-4 *10 (-1058 *6 *7 *8 *9)) (-4 *6 (-447)) (-4 *7 (-780)) (-4 *8 (-834)) (-4 *9 (-1053 *6 *7 *8)) (-5 *2 (-626 (-2 (|:| -2654 (-626 *9)) (|:| -3249 *10) (|:| |ineq| (-626 *9))))) (-5 *1 (-1089 *6 *7 *8 *9 *10)) (-5 *3 (-626 *9)))) (-1325 (*1 *2 *2) (-12 (-5 *2 (-626 (-2 (|:| |val| (-626 *6)) (|:| -3249 *7)))) (-4 *6 (-1053 *3 *4 *5)) (-4 *7 (-1058 *3 *4 *5 *6)) (-4 *3 (-447)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *1 (-1089 *3 *4 *5 *6 *7)))) (-4296 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-626 *7)) (|:| -3249 *8))) (-4 *7 (-1053 *4 *5 *6)) (-4 *8 (-1058 *4 *5 *6 *7)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-121)) (-5 *1 (-1089 *4 *5 *6 *7 *8)))) (-3695 (*1 *2 *2) (-12 (-5 *2 (-626 *7)) (-4 *7 (-1058 *3 *4 *5 *6)) (-4 *3 (-447)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1053 *3 *4 *5)) (-5 *1 (-1089 *3 *4 *5 *6 *7)))) (-3406 (*1 *2 *3 *4) (-12 (-5 *4 (-626 *3)) (-4 *3 (-1058 *5 *6 *7 *8)) (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *8 (-1053 *5 *6 *7)) (-5 *2 (-121)) (-5 *1 (-1089 *5 *6 *7 *8 *3)))) (-3406 (*1 *2 *3 *3) (-12 (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-121)) (-5 *1 (-1089 *4 *5 *6 *7 *3)) (-4 *3 (-1058 *4 *5 *6 *7)))) (-4342 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-121)) (-5 *1 (-1089 *4 *5 *6 *7 *3)) (-4 *3 (-1058 *4 *5 *6 *7)))) (-3564 (*1 *2 *3 *3) (-12 (-5 *3 (-626 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-121)) (-5 *1 (-1089 *4 *5 *6 *7 *8)) (-4 *8 (-1058 *4 *5 *6 *7)))) (-3071 (*1 *2 *3 *3) (-12 (-5 *3 (-626 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-121)) (-5 *1 (-1089 *4 *5 *6 *7 *8)) (-4 *8 (-1058 *4 *5 *6 *7)))) (-2680 (*1 *2 *3 *3) (-12 (-5 *3 (-626 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-121)) (-5 *1 (-1089 *4 *5 *6 *7 *8)) (-4 *8 (-1058 *4 *5 *6 *7)))) (-4156 (*1 *2 *3 *3) (-12 (-5 *3 (-626 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-121)) (-5 *1 (-1089 *4 *5 *6 *7 *8)) (-4 *8 (-1058 *4 *5 *6 *7)))) (-1427 (*1 *2 *3 *3) (-12 (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-121)) (-5 *1 (-1089 *4 *5 *6 *7 *3)) (-4 *3 (-1058 *4 *5 *6 *7)))) (-4461 (*1 *2 *3 *3) (-12 (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-121)) (-5 *1 (-1089 *4 *5 *6 *7 *3)) (-4 *3 (-1058 *4 *5 *6 *7)))) (-3408 (*1 *2 *2) (-12 (-5 *2 (-626 *7)) (-4 *7 (-1058 *3 *4 *5 *6)) (-4 *3 (-447)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1053 *3 *4 *5)) (-5 *1 (-1089 *3 *4 *5 *6 *7)))) (-2490 (*1 *2 *3 *3) (-12 (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-121)) (-5 *1 (-1089 *4 *5 *6 *7 *3)) (-4 *3 (-1058 *4 *5 *6 *7)))) (-1973 (*1 *2) (-12 (-4 *3 (-447)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-1241)) (-5 *1 (-1089 *3 *4 *5 *6 *7)) (-4 *7 (-1058 *3 *4 *5 *6)))) (-1541 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-1241)) (-5 *1 (-1089 *4 *5 *6 *7 *8)) (-4 *8 (-1058 *4 *5 *6 *7))))) -(-10 -7 (-15 -1541 ((-1241) (-1135) (-1135) (-1135))) (-15 -1973 ((-1241))) (-15 -2490 ((-121) |#5| |#5|)) (-15 -3408 ((-626 |#5|) (-626 |#5|))) (-15 -4461 ((-121) |#5| |#5|)) (-15 -1427 ((-121) |#5| |#5|)) (-15 -4156 ((-121) (-626 |#4|) (-626 |#4|))) (-15 -2680 ((-121) (-626 |#4|) (-626 |#4|))) (-15 -3071 ((-121) (-626 |#4|) (-626 |#4|))) (-15 -3564 ((-121) (-626 |#4|) (-626 |#4|))) (-15 -4342 ((-3 (-121) "failed") |#5| |#5|)) (-15 -3406 ((-121) |#5| |#5|)) (-15 -3406 ((-121) |#5| (-626 |#5|))) (-15 -3695 ((-626 |#5|) (-626 |#5|))) (-15 -4296 ((-121) (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|)) (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|)))) (-15 -1325 ((-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))) (-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))))) (-15 -2084 ((-626 (-2 (|:| -2654 (-626 |#4|)) (|:| -3249 |#5|) (|:| |ineq| (-626 |#4|)))) (-626 |#4|) (-626 |#5|) (-121) (-121))) (-15 -3554 ((-3 (-2 (|:| -2654 (-626 |#4|)) (|:| -3249 |#5|) (|:| |ineq| (-626 |#4|))) "failed") (-626 |#4|) |#5| (-626 |#4|) (-121) (-121) (-121) (-121) (-121)))) -((-1793 (((-626 (-2 (|:| |val| |#4|) (|:| -3249 |#5|))) |#4| |#5|) 94)) (-1463 (((-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))) |#4| |#4| |#5|) 70)) (-1308 (((-626 (-2 (|:| |val| |#4|) (|:| -3249 |#5|))) |#4| |#4| |#5|) 88)) (-4289 (((-626 |#5|) |#4| |#5|) 109)) (-1798 (((-626 |#5|) |#4| |#5|) 116)) (-3075 (((-626 |#5|) |#4| |#5|) 117)) (-3395 (((-626 (-2 (|:| |val| (-121)) (|:| -3249 |#5|))) |#4| |#5|) 95)) (-1399 (((-626 (-2 (|:| |val| (-121)) (|:| -3249 |#5|))) |#4| |#5|) 115)) (-3346 (((-626 (-2 (|:| |val| (-121)) (|:| -3249 |#5|))) |#4| |#5|) 44) (((-121) |#4| |#5|) 52)) (-3344 (((-626 (-2 (|:| |val| |#4|) (|:| -3249 |#5|))) (-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))) |#3| (-121)) 82) (((-626 (-2 (|:| |val| |#4|) (|:| -3249 |#5|))) |#4| |#4| |#5| (-121) (-121)) 49)) (-1730 (((-626 (-2 (|:| |val| |#4|) (|:| -3249 |#5|))) |#4| |#4| |#5|) 77)) (-3386 (((-1241)) 35)) (-2461 (((-1241)) 25)) (-1461 (((-1241) (-1135) (-1135) (-1135)) 31)) (-1892 (((-1241) (-1135) (-1135) (-1135)) 20))) -(((-1090 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1892 ((-1241) (-1135) (-1135) (-1135))) (-15 -2461 ((-1241))) (-15 -1461 ((-1241) (-1135) (-1135) (-1135))) (-15 -3386 ((-1241))) (-15 -1463 ((-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))) |#4| |#4| |#5|)) (-15 -3344 ((-626 (-2 (|:| |val| |#4|) (|:| -3249 |#5|))) |#4| |#4| |#5| (-121) (-121))) (-15 -3344 ((-626 (-2 (|:| |val| |#4|) (|:| -3249 |#5|))) (-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))) |#3| (-121))) (-15 -1730 ((-626 (-2 (|:| |val| |#4|) (|:| -3249 |#5|))) |#4| |#4| |#5|)) (-15 -1308 ((-626 (-2 (|:| |val| |#4|) (|:| -3249 |#5|))) |#4| |#4| |#5|)) (-15 -3346 ((-121) |#4| |#5|)) (-15 -3395 ((-626 (-2 (|:| |val| (-121)) (|:| -3249 |#5|))) |#4| |#5|)) (-15 -4289 ((-626 |#5|) |#4| |#5|)) (-15 -1399 ((-626 (-2 (|:| |val| (-121)) (|:| -3249 |#5|))) |#4| |#5|)) (-15 -1798 ((-626 |#5|) |#4| |#5|)) (-15 -3346 ((-626 (-2 (|:| |val| (-121)) (|:| -3249 |#5|))) |#4| |#5|)) (-15 -3075 ((-626 |#5|) |#4| |#5|)) (-15 -1793 ((-626 (-2 (|:| |val| |#4|) (|:| -3249 |#5|))) |#4| |#5|))) (-447) (-780) (-834) (-1053 |#1| |#2| |#3|) (-1058 |#1| |#2| |#3| |#4|)) (T -1090)) -((-1793 (*1 *2 *3 *4) (-12 (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-626 (-2 (|:| |val| *3) (|:| -3249 *4)))) (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1058 *5 *6 *7 *3)))) (-3075 (*1 *2 *3 *4) (-12 (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-626 *4)) (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1058 *5 *6 *7 *3)))) (-3346 (*1 *2 *3 *4) (-12 (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-626 (-2 (|:| |val| (-121)) (|:| -3249 *4)))) (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1058 *5 *6 *7 *3)))) (-1798 (*1 *2 *3 *4) (-12 (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-626 *4)) (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1058 *5 *6 *7 *3)))) (-1399 (*1 *2 *3 *4) (-12 (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-626 (-2 (|:| |val| (-121)) (|:| -3249 *4)))) (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1058 *5 *6 *7 *3)))) (-4289 (*1 *2 *3 *4) (-12 (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-626 *4)) (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1058 *5 *6 *7 *3)))) (-3395 (*1 *2 *3 *4) (-12 (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-626 (-2 (|:| |val| (-121)) (|:| -3249 *4)))) (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1058 *5 *6 *7 *3)))) (-3346 (*1 *2 *3 *4) (-12 (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-121)) (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1058 *5 *6 *7 *3)))) (-1308 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-626 (-2 (|:| |val| *3) (|:| -3249 *4)))) (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1058 *5 *6 *7 *3)))) (-1730 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-626 (-2 (|:| |val| *3) (|:| -3249 *4)))) (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1058 *5 *6 *7 *3)))) (-3344 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-626 (-2 (|:| |val| (-626 *8)) (|:| -3249 *9)))) (-5 *5 (-121)) (-4 *8 (-1053 *6 *7 *4)) (-4 *9 (-1058 *6 *7 *4 *8)) (-4 *6 (-447)) (-4 *7 (-780)) (-4 *4 (-834)) (-5 *2 (-626 (-2 (|:| |val| *8) (|:| -3249 *9)))) (-5 *1 (-1090 *6 *7 *4 *8 *9)))) (-3344 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-121)) (-4 *6 (-447)) (-4 *7 (-780)) (-4 *8 (-834)) (-4 *3 (-1053 *6 *7 *8)) (-5 *2 (-626 (-2 (|:| |val| *3) (|:| -3249 *4)))) (-5 *1 (-1090 *6 *7 *8 *3 *4)) (-4 *4 (-1058 *6 *7 *8 *3)))) (-1463 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-626 (-2 (|:| |val| (-626 *3)) (|:| -3249 *4)))) (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1058 *5 *6 *7 *3)))) (-3386 (*1 *2) (-12 (-4 *3 (-447)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-1241)) (-5 *1 (-1090 *3 *4 *5 *6 *7)) (-4 *7 (-1058 *3 *4 *5 *6)))) (-1461 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-1241)) (-5 *1 (-1090 *4 *5 *6 *7 *8)) (-4 *8 (-1058 *4 *5 *6 *7)))) (-2461 (*1 *2) (-12 (-4 *3 (-447)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-1241)) (-5 *1 (-1090 *3 *4 *5 *6 *7)) (-4 *7 (-1058 *3 *4 *5 *6)))) (-1892 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-1241)) (-5 *1 (-1090 *4 *5 *6 *7 *8)) (-4 *8 (-1058 *4 *5 *6 *7))))) -(-10 -7 (-15 -1892 ((-1241) (-1135) (-1135) (-1135))) (-15 -2461 ((-1241))) (-15 -1461 ((-1241) (-1135) (-1135) (-1135))) (-15 -3386 ((-1241))) (-15 -1463 ((-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))) |#4| |#4| |#5|)) (-15 -3344 ((-626 (-2 (|:| |val| |#4|) (|:| -3249 |#5|))) |#4| |#4| |#5| (-121) (-121))) (-15 -3344 ((-626 (-2 (|:| |val| |#4|) (|:| -3249 |#5|))) (-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))) |#3| (-121))) (-15 -1730 ((-626 (-2 (|:| |val| |#4|) (|:| -3249 |#5|))) |#4| |#4| |#5|)) (-15 -1308 ((-626 (-2 (|:| |val| |#4|) (|:| -3249 |#5|))) |#4| |#4| |#5|)) (-15 -3346 ((-121) |#4| |#5|)) (-15 -3395 ((-626 (-2 (|:| |val| (-121)) (|:| -3249 |#5|))) |#4| |#5|)) (-15 -4289 ((-626 |#5|) |#4| |#5|)) (-15 -1399 ((-626 (-2 (|:| |val| (-121)) (|:| -3249 |#5|))) |#4| |#5|)) (-15 -1798 ((-626 |#5|) |#4| |#5|)) (-15 -3346 ((-626 (-2 (|:| |val| (-121)) (|:| -3249 |#5|))) |#4| |#5|)) (-15 -3075 ((-626 |#5|) |#4| |#5|)) (-15 -1793 ((-626 (-2 (|:| |val| |#4|) (|:| -3249 |#5|))) |#4| |#5|))) -((-2601 (((-121) $ $) 7)) (-3975 (((-626 (-2 (|:| -4071 $) (|:| -3997 (-626 |#4|)))) (-626 |#4|)) 78)) (-3332 (((-626 $) (-626 |#4|)) 79) (((-626 $) (-626 |#4|) (-121)) 104)) (-1654 (((-626 |#3|) $) 32)) (-1385 (((-121) $) 25)) (-3617 (((-121) $) 16 (|has| |#1| (-550)))) (-2898 (((-121) |#4| $) 94) (((-121) $) 90)) (-3177 ((|#4| |#4| $) 85)) (-3065 (((-626 (-2 (|:| |val| |#4|) (|:| -3249 $))) |#4| $) 119)) (-3743 (((-2 (|:| |under| $) (|:| -2150 $) (|:| |upper| $)) $ |#3|) 26)) (-3909 (((-121) $ (-755)) 43)) (-3802 (($ (-1 (-121) |#4|) $) 64 (|has| $ (-6 -4505))) (((-3 |#4| "failed") $ |#3|) 72)) (-4236 (($) 44 T CONST)) (-2226 (((-121) $) 21 (|has| |#1| (-550)))) (-3225 (((-121) $ $) 23 (|has| |#1| (-550)))) (-4195 (((-121) $ $) 22 (|has| |#1| (-550)))) (-1501 (((-121) $) 24 (|has| |#1| (-550)))) (-4339 (((-626 |#4|) (-626 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-121) |#4| |#4|)) 86)) (-4318 (((-626 |#4|) (-626 |#4|) $) 17 (|has| |#1| (-550)))) (-3979 (((-626 |#4|) (-626 |#4|) $) 18 (|has| |#1| (-550)))) (-1473 (((-3 $ "failed") (-626 |#4|)) 35)) (-3001 (($ (-626 |#4|)) 34)) (-2877 (((-3 $ "failed") $) 75)) (-2134 ((|#4| |#4| $) 82)) (-2868 (($ $) 67 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4505))))) (-4310 (($ |#4| $) 66 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4505)))) (($ (-1 (-121) |#4|) $) 63 (|has| $ (-6 -4505)))) (-4397 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 19 (|has| |#1| (-550)))) (-1590 (((-121) |#4| $ (-1 (-121) |#4| |#4|)) 95)) (-4048 ((|#4| |#4| $) 80)) (-2342 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 65 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4505)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 62 (|has| $ (-6 -4505))) ((|#4| (-1 |#4| |#4| |#4|) $) 61 (|has| $ (-6 -4505))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-121) |#4| |#4|)) 87)) (-3035 (((-2 (|:| -4071 (-626 |#4|)) (|:| -3997 (-626 |#4|))) $) 98)) (-2329 (((-121) |#4| $) 129)) (-3701 (((-121) |#4| $) 126)) (-2894 (((-121) |#4| $) 130) (((-121) $) 127)) (-1981 (((-626 |#4|) $) 51 (|has| $ (-6 -4505)))) (-2864 (((-121) |#4| $) 97) (((-121) $) 96)) (-2819 ((|#3| $) 33)) (-2122 (((-121) $ (-755)) 42)) (-2130 (((-626 |#4|) $) 52 (|has| $ (-6 -4505)))) (-2030 (((-121) |#4| $) 54 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4505))))) (-3778 (($ (-1 |#4| |#4|) $) 47 (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#4| |#4|) $) 46)) (-4475 (((-626 |#3|) $) 31)) (-1304 (((-121) |#3| $) 30)) (-3441 (((-121) $ (-755)) 41)) (-1291 (((-1135) $) 9)) (-3283 (((-3 |#4| (-626 $)) |#4| |#4| $) 121)) (-3069 (((-626 (-2 (|:| |val| |#4|) (|:| -3249 $))) |#4| |#4| $) 120)) (-4139 (((-3 |#4| "failed") $) 76)) (-3269 (((-626 $) |#4| $) 122)) (-2061 (((-3 (-121) (-626 $)) |#4| $) 125)) (-2638 (((-626 (-2 (|:| |val| (-121)) (|:| -3249 $))) |#4| $) 124) (((-121) |#4| $) 123)) (-4283 (((-626 $) |#4| $) 118) (((-626 $) (-626 |#4|) $) 117) (((-626 $) (-626 |#4|) (-626 $)) 116) (((-626 $) |#4| (-626 $)) 115)) (-3760 (($ |#4| $) 110) (($ (-626 |#4|) $) 109)) (-3840 (((-626 |#4|) $) 100)) (-3098 (((-121) |#4| $) 92) (((-121) $) 88)) (-2054 ((|#4| |#4| $) 83)) (-3564 (((-121) $ $) 103)) (-1960 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-550)))) (-1584 (((-121) |#4| $) 93) (((-121) $) 89)) (-4047 ((|#4| |#4| $) 84)) (-4353 (((-1100) $) 10)) (-2824 (((-3 |#4| "failed") $) 77)) (-3786 (((-3 |#4| "failed") (-1 (-121) |#4|) $) 60)) (-1368 (((-3 $ "failed") $ |#4|) 71)) (-3292 (($ $ |#4|) 70) (((-626 $) |#4| $) 108) (((-626 $) |#4| (-626 $)) 107) (((-626 $) (-626 |#4|) $) 106) (((-626 $) (-626 |#4|) (-626 $)) 105)) (-2865 (((-121) (-1 (-121) |#4|) $) 49 (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 |#4|) (-626 |#4|)) 58 (-12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082)))) (($ $ |#4| |#4|) 57 (-12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082)))) (($ $ (-283 |#4|)) 56 (-12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082)))) (($ $ (-626 (-283 |#4|))) 55 (-12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082))))) (-2214 (((-121) $ $) 37)) (-4191 (((-121) $) 40)) (-3260 (($) 39)) (-3662 (((-755) $) 99)) (-4035 (((-755) |#4| $) 53 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4505)))) (((-755) (-1 (-121) |#4|) $) 50 (|has| $ (-6 -4505)))) (-2813 (($ $) 38)) (-4255 (((-533) $) 68 (|has| |#4| (-601 (-533))))) (-4162 (($ (-626 |#4|)) 59)) (-3369 (($ $ |#3|) 27)) (-2673 (($ $ |#3|) 29)) (-3746 (($ $) 81)) (-3388 (($ $ |#3|) 28)) (-2801 (((-842) $) 11) (((-626 |#4|) $) 36)) (-4277 (((-755) $) 69 (|has| |#3| (-364)))) (-3133 (((-3 (-2 (|:| |bas| $) (|:| -4224 (-626 |#4|))) "failed") (-626 |#4|) (-1 (-121) |#4| |#4|)) 102) (((-3 (-2 (|:| |bas| $) (|:| -4224 (-626 |#4|))) "failed") (-626 |#4|) (-1 (-121) |#4|) (-1 (-121) |#4| |#4|)) 101)) (-2967 (((-121) $ (-1 (-121) |#4| (-626 |#4|))) 91)) (-1767 (((-626 $) |#4| $) 114) (((-626 $) |#4| (-626 $)) 113) (((-626 $) (-626 |#4|) $) 112) (((-626 $) (-626 |#4|) (-626 $)) 111)) (-3656 (((-121) (-1 (-121) |#4|) $) 48 (|has| $ (-6 -4505)))) (-3284 (((-626 |#3|) $) 74)) (-4073 (((-121) |#4| $) 128)) (-1535 (((-121) |#3| $) 73)) (-1653 (((-121) $ $) 6)) (-2271 (((-755) $) 45 (|has| $ (-6 -4505))))) -(((-1091 |#1| |#2| |#3| |#4|) (-1267) (-447) (-780) (-834) (-1053 |t#1| |t#2| |t#3|)) (T -1091)) -NIL -(-13 (-1058 |t#1| |t#2| |t#3| |t#4|)) -(((-39) . T) ((-105) . T) ((-600 (-626 |#4|)) . T) ((-600 (-842)) . T) ((-152 |#4|) . T) ((-601 (-533)) |has| |#4| (-601 (-533))) ((-298 |#4|) -12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082))) ((-492 |#4|) . T) ((-515 |#4| |#4|) -12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082))) ((-969 |#1| |#2| |#3| |#4|) . T) ((-1058 |#1| |#2| |#3| |#4|) . T) ((-1082) . T) ((-1181 |#1| |#2| |#3| |#4|) . T) ((-1187) . T)) -((-3739 (((-626 (-560)) (-560) (-560) (-560)) 20)) (-3238 (((-626 (-560)) (-560) (-560) (-560)) 12)) (-4254 (((-626 (-560)) (-560) (-560) (-560)) 16)) (-3956 (((-560) (-560) (-560)) 9)) (-4091 (((-1236 (-560)) (-626 (-560)) (-1236 (-560)) (-560)) 44) (((-1236 (-560)) (-1236 (-560)) (-1236 (-560)) (-560)) 39)) (-3805 (((-626 (-560)) (-626 (-560)) (-626 (-560)) (-121)) 26)) (-3573 (((-671 (-560)) (-626 (-560)) (-626 (-560)) (-671 (-560))) 43)) (-4418 (((-671 (-560)) (-626 (-560)) (-626 (-560))) 31)) (-1592 (((-626 (-671 (-560))) (-626 (-560))) 33)) (-2322 (((-626 (-560)) (-626 (-560)) (-626 (-560)) (-671 (-560))) 46)) (-1904 (((-671 (-560)) (-626 (-560)) (-626 (-560)) (-626 (-560))) 54))) -(((-1092) (-10 -7 (-15 -1904 ((-671 (-560)) (-626 (-560)) (-626 (-560)) (-626 (-560)))) (-15 -2322 ((-626 (-560)) (-626 (-560)) (-626 (-560)) (-671 (-560)))) (-15 -1592 ((-626 (-671 (-560))) (-626 (-560)))) (-15 -4418 ((-671 (-560)) (-626 (-560)) (-626 (-560)))) (-15 -3573 ((-671 (-560)) (-626 (-560)) (-626 (-560)) (-671 (-560)))) (-15 -3805 ((-626 (-560)) (-626 (-560)) (-626 (-560)) (-121))) (-15 -4091 ((-1236 (-560)) (-1236 (-560)) (-1236 (-560)) (-560))) (-15 -4091 ((-1236 (-560)) (-626 (-560)) (-1236 (-560)) (-560))) (-15 -3956 ((-560) (-560) (-560))) (-15 -4254 ((-626 (-560)) (-560) (-560) (-560))) (-15 -3238 ((-626 (-560)) (-560) (-560) (-560))) (-15 -3739 ((-626 (-560)) (-560) (-560) (-560))))) (T -1092)) -((-3739 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-626 (-560))) (-5 *1 (-1092)) (-5 *3 (-560)))) (-3238 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-626 (-560))) (-5 *1 (-1092)) (-5 *3 (-560)))) (-4254 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-626 (-560))) (-5 *1 (-1092)) (-5 *3 (-560)))) (-3956 (*1 *2 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-1092)))) (-4091 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1236 (-560))) (-5 *3 (-626 (-560))) (-5 *4 (-560)) (-5 *1 (-1092)))) (-4091 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1236 (-560))) (-5 *3 (-560)) (-5 *1 (-1092)))) (-3805 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-626 (-560))) (-5 *3 (-121)) (-5 *1 (-1092)))) (-3573 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-671 (-560))) (-5 *3 (-626 (-560))) (-5 *1 (-1092)))) (-4418 (*1 *2 *3 *3) (-12 (-5 *3 (-626 (-560))) (-5 *2 (-671 (-560))) (-5 *1 (-1092)))) (-1592 (*1 *2 *3) (-12 (-5 *3 (-626 (-560))) (-5 *2 (-626 (-671 (-560)))) (-5 *1 (-1092)))) (-2322 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-626 (-560))) (-5 *3 (-671 (-560))) (-5 *1 (-1092)))) (-1904 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-626 (-560))) (-5 *2 (-671 (-560))) (-5 *1 (-1092))))) -(-10 -7 (-15 -1904 ((-671 (-560)) (-626 (-560)) (-626 (-560)) (-626 (-560)))) (-15 -2322 ((-626 (-560)) (-626 (-560)) (-626 (-560)) (-671 (-560)))) (-15 -1592 ((-626 (-671 (-560))) (-626 (-560)))) (-15 -4418 ((-671 (-560)) (-626 (-560)) (-626 (-560)))) (-15 -3573 ((-671 (-560)) (-626 (-560)) (-626 (-560)) (-671 (-560)))) (-15 -3805 ((-626 (-560)) (-626 (-560)) (-626 (-560)) (-121))) (-15 -4091 ((-1236 (-560)) (-1236 (-560)) (-1236 (-560)) (-560))) (-15 -4091 ((-1236 (-560)) (-626 (-560)) (-1236 (-560)) (-560))) (-15 -3956 ((-560) (-560) (-560))) (-15 -4254 ((-626 (-560)) (-560) (-560) (-560))) (-15 -3238 ((-626 (-560)) (-560) (-560) (-560))) (-15 -3739 ((-626 (-560)) (-560) (-560) (-560)))) -((-2464 (($ $ (-909)) 12)) (** (($ $ (-909)) 10))) -(((-1093 |#1|) (-10 -8 (-15 -2464 (|#1| |#1| (-909))) (-15 ** (|#1| |#1| (-909)))) (-1094)) (T -1093)) -NIL -(-10 -8 (-15 -2464 (|#1| |#1| (-909))) (-15 ** (|#1| |#1| (-909)))) -((-2601 (((-121) $ $) 7)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-2801 (((-842) $) 11)) (-2464 (($ $ (-909)) 12)) (-1653 (((-121) $ $) 6)) (** (($ $ (-909)) 13)) (* (($ $ $) 14))) -(((-1094) (-1267)) (T -1094)) -((* (*1 *1 *1 *1) (-4 *1 (-1094))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1094)) (-5 *2 (-909)))) (-2464 (*1 *1 *1 *2) (-12 (-4 *1 (-1094)) (-5 *2 (-909))))) -(-13 (-1082) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-909))) (-15 -2464 ($ $ (-909))))) -(((-105) . T) ((-600 (-842)) . T) ((-1082) . T)) -((-2601 (((-121) $ $) NIL (|has| |#3| (-1082)))) (-2832 (((-121) $) NIL (|has| |#3| (-137)))) (-4259 (($ (-909)) NIL (|has| |#3| (-1039)))) (-2960 (((-1241) $ (-560) (-560)) NIL (|has| $ (-6 -4506)))) (-2280 (($ $ $) NIL (|has| |#3| (-780)))) (-2314 (((-3 $ "failed") $ $) NIL (|has| |#3| (-137)))) (-3909 (((-121) $ (-755)) NIL)) (-2912 (((-755)) NIL (|has| |#3| (-364)))) (-4235 (((-560) $) NIL (|has| |#3| (-832)))) (-2764 ((|#3| $ (-560) |#3|) NIL (|has| $ (-6 -4506)))) (-4236 (($) NIL T CONST)) (-1473 (((-3 (-560) "failed") $) NIL (-12 (|has| |#3| (-1029 (-560))) (|has| |#3| (-1082)))) (((-3 (-403 (-560)) "failed") $) NIL (-12 (|has| |#3| (-1029 (-403 (-560)))) (|has| |#3| (-1082)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1082)))) (-3001 (((-560) $) NIL (-12 (|has| |#3| (-1029 (-560))) (|has| |#3| (-1082)))) (((-403 (-560)) $) NIL (-12 (|has| |#3| (-1029 (-403 (-560)))) (|has| |#3| (-1082)))) ((|#3| $) NIL (|has| |#3| (-1082)))) (-2616 (((-671 (-560)) (-671 $)) NIL (-12 (|has| |#3| (-622 (-560))) (|has| |#3| (-1039)))) (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) NIL (-12 (|has| |#3| (-622 (-560))) (|has| |#3| (-1039)))) (((-2 (|:| -3818 (-671 |#3|)) (|:| |vec| (-1236 |#3|))) (-671 $) (-1236 $)) NIL (|has| |#3| (-1039))) (((-671 |#3|) (-671 $)) NIL (|has| |#3| (-1039)))) (-1823 (((-3 $ "failed") $) NIL (|has| |#3| (-708)))) (-1666 (($) NIL (|has| |#3| (-364)))) (-1746 ((|#3| $ (-560) |#3|) NIL (|has| $ (-6 -4506)))) (-1361 ((|#3| $ (-560)) 12)) (-1786 (((-121) $) NIL (|has| |#3| (-832)))) (-1981 (((-626 |#3|) $) NIL (|has| $ (-6 -4505)))) (-2642 (((-121) $) NIL (|has| |#3| (-708)))) (-2187 (((-121) $) NIL (|has| |#3| (-832)))) (-2122 (((-121) $ (-755)) NIL)) (-4099 (((-560) $) NIL (|has| (-560) (-834)))) (-4325 (($ $ $) NIL (-2318 (|has| |#3| (-780)) (|has| |#3| (-832))))) (-2130 (((-626 |#3|) $) NIL (|has| $ (-6 -4505)))) (-2030 (((-121) |#3| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#3| (-1082))))) (-2767 (((-560) $) NIL (|has| (-560) (-834)))) (-2501 (($ $ $) NIL (-2318 (|has| |#3| (-780)) (|has| |#3| (-832))))) (-3778 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#3| |#3|) $) NIL)) (-3142 (((-909) $) NIL (|has| |#3| (-364)))) (-3441 (((-121) $ (-755)) NIL)) (-1291 (((-1135) $) NIL (|has| |#3| (-1082)))) (-1529 (((-626 (-560)) $) NIL)) (-1310 (((-121) (-560) $) NIL)) (-1330 (($ (-909)) NIL (|has| |#3| (-364)))) (-4353 (((-1100) $) NIL (|has| |#3| (-1082)))) (-2824 ((|#3| $) NIL (|has| (-560) (-834)))) (-3038 (($ $ |#3|) NIL (|has| $ (-6 -4506)))) (-2865 (((-121) (-1 (-121) |#3|) $) NIL (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#3|))) NIL (-12 (|has| |#3| (-298 |#3|)) (|has| |#3| (-1082)))) (($ $ (-283 |#3|)) NIL (-12 (|has| |#3| (-298 |#3|)) (|has| |#3| (-1082)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-298 |#3|)) (|has| |#3| (-1082)))) (($ $ (-626 |#3|) (-626 |#3|)) NIL (-12 (|has| |#3| (-298 |#3|)) (|has| |#3| (-1082))))) (-2214 (((-121) $ $) NIL)) (-1290 (((-121) |#3| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#3| (-1082))))) (-4460 (((-626 |#3|) $) NIL)) (-4191 (((-121) $) NIL)) (-3260 (($) NIL)) (-2778 ((|#3| $ (-560) |#3|) NIL) ((|#3| $ (-560)) NIL)) (-2372 ((|#3| $ $) NIL (|has| |#3| (-1039)))) (-1621 (($ (-1236 |#3|)) NIL)) (-4016 (((-139)) NIL (|has| |#3| (-359)))) (-2443 (($ $) NIL (-12 (|has| |#3| (-221)) (|has| |#3| (-1039)))) (($ $ (-755)) NIL (-12 (|has| |#3| (-221)) (|has| |#3| (-1039)))) (($ $ (-1153)) NIL (-12 (|has| |#3| (-887 (-1153))) (|has| |#3| (-1039)))) (($ $ (-626 (-1153))) NIL (-12 (|has| |#3| (-887 (-1153))) (|has| |#3| (-1039)))) (($ $ (-1153) (-755)) NIL (-12 (|has| |#3| (-887 (-1153))) (|has| |#3| (-1039)))) (($ $ (-626 (-1153)) (-626 (-755))) NIL (-12 (|has| |#3| (-887 (-1153))) (|has| |#3| (-1039)))) (($ $ (-1 |#3| |#3|) (-755)) NIL (|has| |#3| (-1039))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1039)))) (-4035 (((-755) (-1 (-121) |#3|) $) NIL (|has| $ (-6 -4505))) (((-755) |#3| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#3| (-1082))))) (-2813 (($ $) NIL)) (-2801 (((-1236 |#3|) $) NIL) (((-842) $) NIL (|has| |#3| (-1082))) (($ (-560)) NIL (-2318 (-12 (|has| |#3| (-1029 (-560))) (|has| |#3| (-1082))) (|has| |#3| (-1039)))) (($ (-403 (-560))) NIL (-12 (|has| |#3| (-1029 (-403 (-560)))) (|has| |#3| (-1082)))) (($ |#3|) NIL (|has| |#3| (-1082)))) (-1751 (((-755)) NIL (|has| |#3| (-1039)))) (-3656 (((-121) (-1 (-121) |#3|) $) NIL (|has| $ (-6 -4505)))) (-1822 (($ $) NIL (|has| |#3| (-832)))) (-2464 (($ $ (-755)) NIL (|has| |#3| (-708))) (($ $ (-909)) NIL (|has| |#3| (-708)))) (-3304 (($) NIL (|has| |#3| (-137)) CONST)) (-1459 (($) NIL (|has| |#3| (-708)) CONST)) (-2500 (($ $) NIL (-12 (|has| |#3| (-221)) (|has| |#3| (-1039)))) (($ $ (-755)) NIL (-12 (|has| |#3| (-221)) (|has| |#3| (-1039)))) (($ $ (-1153)) NIL (-12 (|has| |#3| (-887 (-1153))) (|has| |#3| (-1039)))) (($ $ (-626 (-1153))) NIL (-12 (|has| |#3| (-887 (-1153))) (|has| |#3| (-1039)))) (($ $ (-1153) (-755)) NIL (-12 (|has| |#3| (-887 (-1153))) (|has| |#3| (-1039)))) (($ $ (-626 (-1153)) (-626 (-755))) NIL (-12 (|has| |#3| (-887 (-1153))) (|has| |#3| (-1039)))) (($ $ (-1 |#3| |#3|) (-755)) NIL (|has| |#3| (-1039))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1039)))) (-1691 (((-121) $ $) NIL (-2318 (|has| |#3| (-780)) (|has| |#3| (-832))))) (-1675 (((-121) $ $) NIL (-2318 (|has| |#3| (-780)) (|has| |#3| (-832))))) (-1653 (((-121) $ $) NIL (|has| |#3| (-1082)))) (-1683 (((-121) $ $) NIL (-2318 (|has| |#3| (-780)) (|has| |#3| (-832))))) (-1667 (((-121) $ $) 17 (-2318 (|has| |#3| (-780)) (|has| |#3| (-832))))) (-1733 (($ $ |#3|) NIL (|has| |#3| (-359)))) (-1725 (($ $ $) NIL (|has| |#3| (-1039))) (($ $) NIL (|has| |#3| (-1039)))) (-1716 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-755)) NIL (|has| |#3| (-708))) (($ $ (-909)) NIL (|has| |#3| (-708)))) (* (($ (-560) $) NIL (|has| |#3| (-1039))) (($ $ $) NIL (|has| |#3| (-708))) (($ $ |#3|) NIL (|has| |#3| (-1039))) (($ |#3| $) NIL (|has| |#3| (-1039))) (($ (-755) $) NIL (|has| |#3| (-137))) (($ (-909) $) NIL (|has| |#3| (-25)))) (-2271 (((-755) $) NIL (|has| $ (-6 -4505))))) -(((-1095 |#1| |#2| |#3|) (-226 |#1| |#3|) (-755) (-755) (-780)) (T -1095)) -NIL -(-226 |#1| |#3|) -((-3714 (((-626 (-1208 |#2| |#1|)) (-1208 |#2| |#1|) (-1208 |#2| |#1|)) 36)) (-1474 (((-560) (-1208 |#2| |#1|)) 67 (|has| |#1| (-447)))) (-3721 (((-560) (-1208 |#2| |#1|)) 53)) (-3318 (((-626 (-1208 |#2| |#1|)) (-1208 |#2| |#1|) (-1208 |#2| |#1|)) 44)) (-2936 (((-560) (-1208 |#2| |#1|) (-1208 |#2| |#1|)) 55 (|has| |#1| (-447)))) (-2416 (((-626 |#1|) (-1208 |#2| |#1|) (-1208 |#2| |#1|)) 47)) (-3050 (((-560) (-1208 |#2| |#1|) (-1208 |#2| |#1|)) 52))) -(((-1096 |#1| |#2|) (-10 -7 (-15 -3714 ((-626 (-1208 |#2| |#1|)) (-1208 |#2| |#1|) (-1208 |#2| |#1|))) (-15 -3318 ((-626 (-1208 |#2| |#1|)) (-1208 |#2| |#1|) (-1208 |#2| |#1|))) (-15 -2416 ((-626 |#1|) (-1208 |#2| |#1|) (-1208 |#2| |#1|))) (-15 -3050 ((-560) (-1208 |#2| |#1|) (-1208 |#2| |#1|))) (-15 -3721 ((-560) (-1208 |#2| |#1|))) (IF (|has| |#1| (-447)) (PROGN (-15 -2936 ((-560) (-1208 |#2| |#1|) (-1208 |#2| |#1|))) (-15 -1474 ((-560) (-1208 |#2| |#1|)))) |noBranch|)) (-807) (-1153)) (T -1096)) -((-1474 (*1 *2 *3) (-12 (-5 *3 (-1208 *5 *4)) (-4 *4 (-447)) (-4 *4 (-807)) (-14 *5 (-1153)) (-5 *2 (-560)) (-5 *1 (-1096 *4 *5)))) (-2936 (*1 *2 *3 *3) (-12 (-5 *3 (-1208 *5 *4)) (-4 *4 (-447)) (-4 *4 (-807)) (-14 *5 (-1153)) (-5 *2 (-560)) (-5 *1 (-1096 *4 *5)))) (-3721 (*1 *2 *3) (-12 (-5 *3 (-1208 *5 *4)) (-4 *4 (-807)) (-14 *5 (-1153)) (-5 *2 (-560)) (-5 *1 (-1096 *4 *5)))) (-3050 (*1 *2 *3 *3) (-12 (-5 *3 (-1208 *5 *4)) (-4 *4 (-807)) (-14 *5 (-1153)) (-5 *2 (-560)) (-5 *1 (-1096 *4 *5)))) (-2416 (*1 *2 *3 *3) (-12 (-5 *3 (-1208 *5 *4)) (-4 *4 (-807)) (-14 *5 (-1153)) (-5 *2 (-626 *4)) (-5 *1 (-1096 *4 *5)))) (-3318 (*1 *2 *3 *3) (-12 (-4 *4 (-807)) (-14 *5 (-1153)) (-5 *2 (-626 (-1208 *5 *4))) (-5 *1 (-1096 *4 *5)) (-5 *3 (-1208 *5 *4)))) (-3714 (*1 *2 *3 *3) (-12 (-4 *4 (-807)) (-14 *5 (-1153)) (-5 *2 (-626 (-1208 *5 *4))) (-5 *1 (-1096 *4 *5)) (-5 *3 (-1208 *5 *4))))) -(-10 -7 (-15 -3714 ((-626 (-1208 |#2| |#1|)) (-1208 |#2| |#1|) (-1208 |#2| |#1|))) (-15 -3318 ((-626 (-1208 |#2| |#1|)) (-1208 |#2| |#1|) (-1208 |#2| |#1|))) (-15 -2416 ((-626 |#1|) (-1208 |#2| |#1|) (-1208 |#2| |#1|))) (-15 -3050 ((-560) (-1208 |#2| |#1|) (-1208 |#2| |#1|))) (-15 -3721 ((-560) (-1208 |#2| |#1|))) (IF (|has| |#1| (-447)) (PROGN (-15 -2936 ((-560) (-1208 |#2| |#1|) (-1208 |#2| |#1|))) (-15 -1474 ((-560) (-1208 |#2| |#1|)))) |noBranch|)) -((-4235 (((-3 (-560) "failed") |#2| (-1153) |#2| (-1135)) 16) (((-3 (-560) "failed") |#2| (-1153) (-827 |#2|)) 14) (((-3 (-560) "failed") |#2|) 51))) -(((-1097 |#1| |#2|) (-10 -7 (-15 -4235 ((-3 (-560) "failed") |#2|)) (-15 -4235 ((-3 (-560) "failed") |#2| (-1153) (-827 |#2|))) (-15 -4235 ((-3 (-560) "failed") |#2| (-1153) |#2| (-1135)))) (-13 (-550) (-834) (-1029 (-560)) (-622 (-560)) (-447)) (-13 (-27) (-1173) (-426 |#1|))) (T -1097)) -((-4235 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1153)) (-5 *5 (-1135)) (-4 *6 (-13 (-550) (-834) (-1029 *2) (-622 *2) (-447))) (-5 *2 (-560)) (-5 *1 (-1097 *6 *3)) (-4 *3 (-13 (-27) (-1173) (-426 *6))))) (-4235 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1153)) (-5 *5 (-827 *3)) (-4 *3 (-13 (-27) (-1173) (-426 *6))) (-4 *6 (-13 (-550) (-834) (-1029 *2) (-622 *2) (-447))) (-5 *2 (-560)) (-5 *1 (-1097 *6 *3)))) (-4235 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-550) (-834) (-1029 *2) (-622 *2) (-447))) (-5 *2 (-560)) (-5 *1 (-1097 *4 *3)) (-4 *3 (-13 (-27) (-1173) (-426 *4)))))) -(-10 -7 (-15 -4235 ((-3 (-560) "failed") |#2|)) (-15 -4235 ((-3 (-560) "failed") |#2| (-1153) (-827 |#2|))) (-15 -4235 ((-3 (-560) "failed") |#2| (-1153) |#2| (-1135)))) -((-4235 (((-3 (-560) "failed") (-403 (-945 |#1|)) (-1153) (-403 (-945 |#1|)) (-1135)) 34) (((-3 (-560) "failed") (-403 (-945 |#1|)) (-1153) (-827 (-403 (-945 |#1|)))) 29) (((-3 (-560) "failed") (-403 (-945 |#1|))) 12))) -(((-1098 |#1|) (-10 -7 (-15 -4235 ((-3 (-560) "failed") (-403 (-945 |#1|)))) (-15 -4235 ((-3 (-560) "failed") (-403 (-945 |#1|)) (-1153) (-827 (-403 (-945 |#1|))))) (-15 -4235 ((-3 (-560) "failed") (-403 (-945 |#1|)) (-1153) (-403 (-945 |#1|)) (-1135)))) (-447)) (T -1098)) -((-4235 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-403 (-945 *6))) (-5 *4 (-1153)) (-5 *5 (-1135)) (-4 *6 (-447)) (-5 *2 (-560)) (-5 *1 (-1098 *6)))) (-4235 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1153)) (-5 *5 (-827 (-403 (-945 *6)))) (-5 *3 (-403 (-945 *6))) (-4 *6 (-447)) (-5 *2 (-560)) (-5 *1 (-1098 *6)))) (-4235 (*1 *2 *3) (|partial| -12 (-5 *3 (-403 (-945 *4))) (-4 *4 (-447)) (-5 *2 (-560)) (-5 *1 (-1098 *4))))) -(-10 -7 (-15 -4235 ((-3 (-560) "failed") (-403 (-945 |#1|)))) (-15 -4235 ((-3 (-560) "failed") (-403 (-945 |#1|)) (-1153) (-827 (-403 (-945 |#1|))))) (-15 -4235 ((-3 (-560) "failed") (-403 (-945 |#1|)) (-1153) (-403 (-945 |#1|)) (-1135)))) -((-2141 (((-304 (-560)) (-53)) 11))) -(((-1099) (-10 -7 (-15 -2141 ((-304 (-560)) (-53))))) (T -1099)) -((-2141 (*1 *2 *3) (-12 (-5 *3 (-53)) (-5 *2 (-304 (-560))) (-5 *1 (-1099))))) -(-10 -7 (-15 -2141 ((-304 (-560)) (-53)))) -((-2601 (((-121) $ $) NIL)) (-1434 (($ $) 41)) (-2832 (((-121) $) 65)) (-1564 (($ $ $) 48)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) 84)) (-1350 (($ $) NIL)) (-3376 (((-121) $) NIL)) (-3296 (($ $ $) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-2698 (($ $ $ $) 74)) (-3065 (($ $) NIL)) (-2953 (((-414 $) $) NIL)) (-4179 (((-121) $ $) NIL)) (-4235 (((-560) $) NIL)) (-2956 (($ $ $) 71)) (-4236 (($) NIL T CONST)) (-1473 (((-3 (-560) "failed") $) NIL)) (-3001 (((-560) $) NIL)) (-2563 (($ $ $) 59)) (-2616 (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) 78) (((-671 (-560)) (-671 $)) 28)) (-1823 (((-3 $ "failed") $) NIL)) (-1367 (((-3 (-403 (-560)) "failed") $) NIL)) (-1689 (((-121) $) NIL)) (-1519 (((-403 (-560)) $) NIL)) (-1666 (($) 81) (($ $) 82)) (-2572 (($ $ $) 58)) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) NIL)) (-3319 (((-121) $) NIL)) (-2360 (($ $ $ $) NIL)) (-3016 (($ $ $) 79)) (-1786 (((-121) $) NIL)) (-3634 (($ $ $) NIL)) (-2399 (((-876 (-560) $) $ (-879 (-560)) (-876 (-560) $)) NIL)) (-2642 (((-121) $) 66)) (-3348 (((-121) $) 64)) (-3186 (($ $) 42)) (-1424 (((-3 $ "failed") $) NIL)) (-2187 (((-121) $) 75)) (-3856 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-4401 (($ $ $ $) 72)) (-4325 (($ $ $) 68) (($) 39)) (-2501 (($ $ $) 67) (($) 38)) (-4247 (($ $) NIL)) (-2349 (($ $) 70)) (-2582 (($ $ $) NIL) (($ (-626 $)) NIL)) (-1291 (((-1135) $) NIL)) (-4389 (($ $ $) NIL)) (-1394 (($) NIL T CONST)) (-1813 (($ $) 50)) (-4353 (((-1100) $) NIL) (($ $) 69)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL)) (-4440 (($ $ $) 62) (($ (-626 $)) NIL)) (-2691 (($ $) NIL)) (-1601 (((-414 $) $) NIL)) (-3505 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL)) (-2336 (((-3 $ "failed") $ $) NIL)) (-3456 (((-3 (-626 $) "failed") (-626 $) $) NIL)) (-3522 (((-121) $) NIL)) (-4445 (((-755) $) NIL)) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) 61)) (-2443 (($ $ (-755)) NIL) (($ $) NIL)) (-2992 (($ $) 51)) (-2813 (($ $) NIL)) (-4255 (((-560) $) 32) (((-533) $) NIL) (((-879 (-560)) $) NIL) (((-375) $) NIL) (((-213) $) NIL)) (-2801 (((-842) $) 31) (($ (-560)) 80) (($ $) NIL) (($ (-560)) 80)) (-1751 (((-755)) NIL)) (-4189 (((-121) $ $) NIL)) (-2406 (($ $ $) NIL)) (-2871 (($) 37)) (-2328 (((-121) $ $) NIL)) (-4344 (($ $ $ $) 73)) (-1822 (($ $) 63)) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (-2587 (($ $ $) 44)) (-3304 (($) 35 T CONST)) (-3443 (($ $ $) 47)) (-1459 (($) 36 T CONST)) (-3039 (((-1135) $) 21) (((-1135) $ (-121)) 23) (((-1241) (-809) $) 24) (((-1241) (-809) $ (-121)) 25)) (-3416 (($ $) 45)) (-2500 (($ $ (-755)) NIL) (($ $) NIL)) (-3124 (($ $ $) 46)) (-1691 (((-121) $ $) NIL)) (-1675 (((-121) $ $) NIL)) (-1653 (((-121) $ $) 40)) (-1683 (((-121) $ $) NIL)) (-1667 (((-121) $ $) 49)) (-2581 (($ $ $) 43)) (-1725 (($ $) 52) (($ $ $) 54)) (-1716 (($ $ $) 53)) (** (($ $ (-909)) NIL) (($ $ (-755)) 57)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) 34) (($ $ $) 55))) -(((-1100) (-13 (-542) (-643) (-815) (-10 -8 (-6 -4492) (-6 -4497) (-6 -4493) (-15 -2501 ($)) (-15 -4325 ($)) (-15 -3186 ($ $)) (-15 -1434 ($ $)) (-15 -2581 ($ $ $)) (-15 -2587 ($ $ $)) (-15 -1564 ($ $ $)) (-15 -3416 ($ $)) (-15 -3124 ($ $ $)) (-15 -3443 ($ $ $))))) (T -1100)) -((-2587 (*1 *1 *1 *1) (-5 *1 (-1100))) (-2581 (*1 *1 *1 *1) (-5 *1 (-1100))) (-1434 (*1 *1 *1) (-5 *1 (-1100))) (-2501 (*1 *1) (-5 *1 (-1100))) (-4325 (*1 *1) (-5 *1 (-1100))) (-3186 (*1 *1 *1) (-5 *1 (-1100))) (-1564 (*1 *1 *1 *1) (-5 *1 (-1100))) (-3416 (*1 *1 *1) (-5 *1 (-1100))) (-3124 (*1 *1 *1 *1) (-5 *1 (-1100))) (-3443 (*1 *1 *1 *1) (-5 *1 (-1100)))) -(-13 (-542) (-643) (-815) (-10 -8 (-6 -4492) (-6 -4497) (-6 -4493) (-15 -2501 ($)) (-15 -4325 ($)) (-15 -3186 ($ $)) (-15 -1434 ($ $)) (-15 -2581 ($ $ $)) (-15 -2587 ($ $ $)) (-15 -1564 ($ $ $)) (-15 -3416 ($ $)) (-15 -3124 ($ $ $)) (-15 -3443 ($ $ $)))) -((-2601 (((-121) $ $) 18 (|has| |#1| (-1082)))) (-4224 ((|#1| $) 41)) (-3909 (((-121) $ (-755)) 8)) (-4236 (($) 7 T CONST)) (-3881 ((|#1| |#1| $) 43)) (-2200 ((|#1| $) 42)) (-1981 (((-626 |#1|) $) 30 (|has| $ (-6 -4505)))) (-2122 (((-121) $ (-755)) 9)) (-2130 (((-626 |#1|) $) 29 (|has| $ (-6 -4505)))) (-2030 (((-121) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-3778 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#1| |#1|) $) 35)) (-3441 (((-121) $ (-755)) 10)) (-1291 (((-1135) $) 22 (|has| |#1| (-1082)))) (-2525 ((|#1| $) 36)) (-4345 (($ |#1| $) 37)) (-4353 (((-1100) $) 21 (|has| |#1| (-1082)))) (-2146 ((|#1| $) 38)) (-2865 (((-121) (-1 (-121) |#1|) $) 32 (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#1|))) 26 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-283 |#1|)) 25 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-626 |#1|) (-626 |#1|)) 23 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))))) (-2214 (((-121) $ $) 14)) (-4191 (((-121) $) 11)) (-3260 (($) 12)) (-4023 (((-755) $) 40)) (-4035 (((-755) (-1 (-121) |#1|) $) 31 (|has| $ (-6 -4505))) (((-755) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-2813 (($ $) 13)) (-2801 (((-842) $) 20 (|has| |#1| (-1082)))) (-1354 (($ (-626 |#1|)) 39)) (-3656 (((-121) (-1 (-121) |#1|) $) 33 (|has| $ (-6 -4505)))) (-1653 (((-121) $ $) 19 (|has| |#1| (-1082)))) (-2271 (((-755) $) 6 (|has| $ (-6 -4505))))) -(((-1101 |#1|) (-1267) (-1187)) (T -1101)) -((-3881 (*1 *2 *2 *1) (-12 (-4 *1 (-1101 *2)) (-4 *2 (-1187)))) (-2200 (*1 *2 *1) (-12 (-4 *1 (-1101 *2)) (-4 *2 (-1187)))) (-4224 (*1 *2 *1) (-12 (-4 *1 (-1101 *2)) (-4 *2 (-1187)))) (-4023 (*1 *2 *1) (-12 (-4 *1 (-1101 *3)) (-4 *3 (-1187)) (-5 *2 (-755))))) -(-13 (-111 |t#1|) (-10 -8 (-6 -4505) (-15 -3881 (|t#1| |t#1| $)) (-15 -2200 (|t#1| $)) (-15 -4224 (|t#1| $)) (-15 -4023 ((-755) $)))) -(((-39) . T) ((-111 |#1|) . T) ((-105) |has| |#1| (-1082)) ((-600 (-842)) |has| |#1| (-1082)) ((-298 |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))) ((-492 |#1|) . T) ((-515 |#1| |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))) ((-1082) |has| |#1| (-1082)) ((-1187) . T)) -((-1944 ((|#3| $) 76)) (-1473 (((-3 (-560) "failed") $) NIL) (((-3 (-403 (-560)) "failed") $) NIL) (((-3 |#3| "failed") $) 40)) (-3001 (((-560) $) NIL) (((-403 (-560)) $) NIL) ((|#3| $) 37)) (-2616 (((-671 (-560)) (-671 $)) NIL) (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) NIL) (((-2 (|:| -3818 (-671 |#3|)) (|:| |vec| (-1236 |#3|))) (-671 $) (-1236 $)) 73) (((-671 |#3|) (-671 $)) 65)) (-2443 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-755)) NIL) (($ $ (-626 (-1153)) (-626 (-755))) NIL) (($ $ (-1153) (-755)) NIL) (($ $ (-626 (-1153))) NIL) (($ $ (-1153)) NIL) (($ $ (-755)) NIL) (($ $) NIL)) (-1462 ((|#3| $) 78)) (-2978 ((|#4| $) 32)) (-2801 (((-842) $) NIL) (($ (-560)) NIL) (($ (-403 (-560))) NIL) (($ |#3|) 16)) (** (($ $ (-909)) NIL) (($ $ (-755)) 15) (($ $ (-560)) 82))) -(((-1102 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-560))) (-15 -1462 (|#3| |#1|)) (-15 -1944 (|#3| |#1|)) (-15 -2978 (|#4| |#1|)) (-15 -2616 ((-671 |#3|) (-671 |#1|))) (-15 -2616 ((-2 (|:| -3818 (-671 |#3|)) (|:| |vec| (-1236 |#3|))) (-671 |#1|) (-1236 |#1|))) (-15 -2616 ((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 |#1|) (-1236 |#1|))) (-15 -2616 ((-671 (-560)) (-671 |#1|))) (-15 -3001 (|#3| |#1|)) (-15 -1473 ((-3 |#3| "failed") |#1|)) (-15 -2801 (|#1| |#3|)) (-15 -2801 (|#1| (-403 (-560)))) (-15 -1473 ((-3 (-403 (-560)) "failed") |#1|)) (-15 -3001 ((-403 (-560)) |#1|)) (-15 -1473 ((-3 (-560) "failed") |#1|)) (-15 -3001 ((-560) |#1|)) (-15 -2443 (|#1| |#1|)) (-15 -2443 (|#1| |#1| (-755))) (-15 -2443 (|#1| |#1| (-1153))) (-15 -2443 (|#1| |#1| (-626 (-1153)))) (-15 -2443 (|#1| |#1| (-1153) (-755))) (-15 -2443 (|#1| |#1| (-626 (-1153)) (-626 (-755)))) (-15 -2443 (|#1| |#1| (-1 |#3| |#3|) (-755))) (-15 -2443 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2801 (|#1| (-560))) (-15 ** (|#1| |#1| (-755))) (-15 ** (|#1| |#1| (-909))) (-15 -2801 ((-842) |#1|))) (-1103 |#2| |#3| |#4| |#5|) (-755) (-1039) (-226 |#2| |#3|) (-226 |#2| |#3|)) (T -1102)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-560))) (-15 -1462 (|#3| |#1|)) (-15 -1944 (|#3| |#1|)) (-15 -2978 (|#4| |#1|)) (-15 -2616 ((-671 |#3|) (-671 |#1|))) (-15 -2616 ((-2 (|:| -3818 (-671 |#3|)) (|:| |vec| (-1236 |#3|))) (-671 |#1|) (-1236 |#1|))) (-15 -2616 ((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 |#1|) (-1236 |#1|))) (-15 -2616 ((-671 (-560)) (-671 |#1|))) (-15 -3001 (|#3| |#1|)) (-15 -1473 ((-3 |#3| "failed") |#1|)) (-15 -2801 (|#1| |#3|)) (-15 -2801 (|#1| (-403 (-560)))) (-15 -1473 ((-3 (-403 (-560)) "failed") |#1|)) (-15 -3001 ((-403 (-560)) |#1|)) (-15 -1473 ((-3 (-560) "failed") |#1|)) (-15 -3001 ((-560) |#1|)) (-15 -2443 (|#1| |#1|)) (-15 -2443 (|#1| |#1| (-755))) (-15 -2443 (|#1| |#1| (-1153))) (-15 -2443 (|#1| |#1| (-626 (-1153)))) (-15 -2443 (|#1| |#1| (-1153) (-755))) (-15 -2443 (|#1| |#1| (-626 (-1153)) (-626 (-755)))) (-15 -2443 (|#1| |#1| (-1 |#3| |#3|) (-755))) (-15 -2443 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2801 (|#1| (-560))) (-15 ** (|#1| |#1| (-755))) (-15 ** (|#1| |#1| (-909))) (-15 -2801 ((-842) |#1|))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-1944 ((|#2| $) 69)) (-3839 (((-121) $) 109)) (-2314 (((-3 $ "failed") $ $) 18)) (-1915 (((-121) $) 107)) (-3909 (((-121) $ (-755)) 99)) (-2366 (($ |#2|) 72)) (-4236 (($) 16 T CONST)) (-1439 (($ $) 126 (|has| |#2| (-296)))) (-4097 ((|#3| $ (-560)) 121)) (-1473 (((-3 (-560) "failed") $) 83 (|has| |#2| (-1029 (-560)))) (((-3 (-403 (-560)) "failed") $) 81 (|has| |#2| (-1029 (-403 (-560))))) (((-3 |#2| "failed") $) 78)) (-3001 (((-560) $) 84 (|has| |#2| (-1029 (-560)))) (((-403 (-560)) $) 82 (|has| |#2| (-1029 (-403 (-560))))) ((|#2| $) 77)) (-2616 (((-671 (-560)) (-671 $)) 76 (|has| |#2| (-622 (-560)))) (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) 75 (|has| |#2| (-622 (-560)))) (((-2 (|:| -3818 (-671 |#2|)) (|:| |vec| (-1236 |#2|))) (-671 $) (-1236 $)) 74) (((-671 |#2|) (-671 $)) 73)) (-1823 (((-3 $ "failed") $) 33)) (-3143 (((-755) $) 127 (|has| |#2| (-550)))) (-1361 ((|#2| $ (-560) (-560)) 119)) (-1981 (((-626 |#2|) $) 92 (|has| $ (-6 -4505)))) (-2642 (((-121) $) 30)) (-3436 (((-755) $) 128 (|has| |#2| (-550)))) (-3700 (((-626 |#4|) $) 129 (|has| |#2| (-550)))) (-1454 (((-755) $) 115)) (-2634 (((-755) $) 116)) (-2122 (((-121) $ (-755)) 100)) (-3826 ((|#2| $) 64 (|has| |#2| (-6 (-4507 "*"))))) (-2984 (((-560) $) 111)) (-1994 (((-560) $) 113)) (-2130 (((-626 |#2|) $) 91 (|has| $ (-6 -4505)))) (-2030 (((-121) |#2| $) 89 (-12 (|has| |#2| (-1082)) (|has| $ (-6 -4505))))) (-3755 (((-560) $) 112)) (-1420 (((-560) $) 114)) (-3851 (($ (-626 (-626 |#2|))) 106)) (-3778 (($ (-1 |#2| |#2|) $) 96 (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#2| |#2| |#2|) $ $) 123) (($ (-1 |#2| |#2|) $) 97)) (-2184 (((-626 (-626 |#2|)) $) 117)) (-3441 (((-121) $ (-755)) 101)) (-1291 (((-1135) $) 9)) (-3257 (((-3 $ "failed") $) 63 (|has| |#2| (-359)))) (-4353 (((-1100) $) 10)) (-2336 (((-3 $ "failed") $ |#2|) 124 (|has| |#2| (-550)))) (-2865 (((-121) (-1 (-121) |#2|) $) 94 (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#2|))) 88 (-12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082)))) (($ $ (-283 |#2|)) 87 (-12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082)))) (($ $ (-626 |#2|) (-626 |#2|)) 85 (-12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082))))) (-2214 (((-121) $ $) 105)) (-4191 (((-121) $) 102)) (-3260 (($) 103)) (-2778 ((|#2| $ (-560) (-560) |#2|) 120) ((|#2| $ (-560) (-560)) 118)) (-2443 (($ $ (-1 |#2| |#2|)) 51) (($ $ (-1 |#2| |#2|) (-755)) 50) (($ $ (-626 (-1153)) (-626 (-755))) 43 (|has| |#2| (-887 (-1153)))) (($ $ (-1153) (-755)) 42 (|has| |#2| (-887 (-1153)))) (($ $ (-626 (-1153))) 41 (|has| |#2| (-887 (-1153)))) (($ $ (-1153)) 40 (|has| |#2| (-887 (-1153)))) (($ $ (-755)) 38 (|has| |#2| (-221))) (($ $) 36 (|has| |#2| (-221)))) (-1462 ((|#2| $) 68)) (-3328 (($ (-626 |#2|)) 71)) (-3185 (((-121) $) 108)) (-2978 ((|#3| $) 70)) (-1708 ((|#2| $) 65 (|has| |#2| (-6 (-4507 "*"))))) (-4035 (((-755) (-1 (-121) |#2|) $) 93 (|has| $ (-6 -4505))) (((-755) |#2| $) 90 (-12 (|has| |#2| (-1082)) (|has| $ (-6 -4505))))) (-2813 (($ $) 104)) (-3677 ((|#4| $ (-560)) 122)) (-2801 (((-842) $) 11) (($ (-560)) 27) (($ (-403 (-560))) 80 (|has| |#2| (-1029 (-403 (-560))))) (($ |#2|) 79)) (-1751 (((-755)) 28)) (-3656 (((-121) (-1 (-121) |#2|) $) 95 (|has| $ (-6 -4505)))) (-3298 (((-121) $) 110)) (-2464 (($ $ (-909)) 25) (($ $ (-755)) 32)) (-3304 (($) 17 T CONST)) (-1459 (($) 29 T CONST)) (-2500 (($ $ (-1 |#2| |#2|)) 49) (($ $ (-1 |#2| |#2|) (-755)) 48) (($ $ (-626 (-1153)) (-626 (-755))) 47 (|has| |#2| (-887 (-1153)))) (($ $ (-1153) (-755)) 46 (|has| |#2| (-887 (-1153)))) (($ $ (-626 (-1153))) 45 (|has| |#2| (-887 (-1153)))) (($ $ (-1153)) 44 (|has| |#2| (-887 (-1153)))) (($ $ (-755)) 39 (|has| |#2| (-221))) (($ $) 37 (|has| |#2| (-221)))) (-1653 (((-121) $ $) 6)) (-1733 (($ $ |#2|) 125 (|has| |#2| (-359)))) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 24) (($ $ (-755)) 31) (($ $ (-560)) 62 (|has| |#2| (-359)))) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 23) (($ $ |#2|) 131) (($ |#2| $) 130) ((|#4| $ |#4|) 67) ((|#3| |#3| $) 66)) (-2271 (((-755) $) 98 (|has| $ (-6 -4505))))) -(((-1103 |#1| |#2| |#3| |#4|) (-1267) (-755) (-1039) (-226 |t#1| |t#2|) (-226 |t#1| |t#2|)) (T -1103)) -((-2366 (*1 *1 *2) (-12 (-4 *2 (-1039)) (-4 *1 (-1103 *3 *2 *4 *5)) (-4 *4 (-226 *3 *2)) (-4 *5 (-226 *3 *2)))) (-3328 (*1 *1 *2) (-12 (-5 *2 (-626 *4)) (-4 *4 (-1039)) (-4 *1 (-1103 *3 *4 *5 *6)) (-4 *5 (-226 *3 *4)) (-4 *6 (-226 *3 *4)))) (-2978 (*1 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *2 *5)) (-4 *4 (-1039)) (-4 *5 (-226 *3 *4)) (-4 *2 (-226 *3 *4)))) (-1944 (*1 *2 *1) (-12 (-4 *1 (-1103 *3 *2 *4 *5)) (-4 *4 (-226 *3 *2)) (-4 *5 (-226 *3 *2)) (-4 *2 (-1039)))) (-1462 (*1 *2 *1) (-12 (-4 *1 (-1103 *3 *2 *4 *5)) (-4 *4 (-226 *3 *2)) (-4 *5 (-226 *3 *2)) (-4 *2 (-1039)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1103 *3 *4 *5 *2)) (-4 *4 (-1039)) (-4 *5 (-226 *3 *4)) (-4 *2 (-226 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *2 *5)) (-4 *4 (-1039)) (-4 *2 (-226 *3 *4)) (-4 *5 (-226 *3 *4)))) (-1708 (*1 *2 *1) (-12 (-4 *1 (-1103 *3 *2 *4 *5)) (-4 *4 (-226 *3 *2)) (-4 *5 (-226 *3 *2)) (|has| *2 (-6 (-4507 "*"))) (-4 *2 (-1039)))) (-3826 (*1 *2 *1) (-12 (-4 *1 (-1103 *3 *2 *4 *5)) (-4 *4 (-226 *3 *2)) (-4 *5 (-226 *3 *2)) (|has| *2 (-6 (-4507 "*"))) (-4 *2 (-1039)))) (-3257 (*1 *1 *1) (|partial| -12 (-4 *1 (-1103 *2 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-226 *2 *3)) (-4 *5 (-226 *2 *3)) (-4 *3 (-359)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-1103 *3 *4 *5 *6)) (-4 *4 (-1039)) (-4 *5 (-226 *3 *4)) (-4 *6 (-226 *3 *4)) (-4 *4 (-359))))) -(-13 (-219 |t#2|) (-120 |t#2| |t#2|) (-1042 |t#1| |t#1| |t#2| |t#3| |t#4|) (-407 |t#2|) (-373 |t#2|) (-10 -8 (IF (|has| |t#2| (-170)) (-6 (-699 |t#2|)) |noBranch|) (-15 -2366 ($ |t#2|)) (-15 -3328 ($ (-626 |t#2|))) (-15 -2978 (|t#3| $)) (-15 -1944 (|t#2| $)) (-15 -1462 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4507 "*"))) (PROGN (-6 (-43 |t#2|)) (-15 -1708 (|t#2| $)) (-15 -3826 (|t#2| $))) |noBranch|) (IF (|has| |t#2| (-359)) (PROGN (-15 -3257 ((-3 $ "failed") $)) (-15 ** ($ $ (-560)))) |noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-39) . T) ((-43 |#2|) |has| |#2| (-6 (-4507 "*"))) ((-105) . T) ((-120 |#2| |#2|) . T) ((-137) . T) ((-600 (-842)) . T) ((-219 |#2|) . T) ((-221) |has| |#2| (-221)) ((-298 |#2|) -12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082))) ((-373 |#2|) . T) ((-407 |#2|) . T) ((-492 |#2|) . T) ((-515 |#2| |#2|) -12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082))) ((-629 |#2|) . T) ((-629 $) . T) ((-622 (-560)) |has| |#2| (-622 (-560))) ((-622 |#2|) . T) ((-699 |#2|) -2318 (|has| |#2| (-170)) (|has| |#2| (-6 (-4507 "*")))) ((-708) . T) ((-887 (-1153)) |has| |#2| (-887 (-1153))) ((-1042 |#1| |#1| |#2| |#3| |#4|) . T) ((-1029 (-403 (-560))) |has| |#2| (-1029 (-403 (-560)))) ((-1029 (-560)) |has| |#2| (-1029 (-560))) ((-1029 |#2|) . T) ((-1045 |#2|) . T) ((-1039) . T) ((-1046) . T) ((-1094) . T) ((-1082) . T) ((-1187) . T)) -((-2022 ((|#4| |#4|) 67)) (-2491 ((|#4| |#4|) 62)) (-2060 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4374 (-626 |#3|))) |#4| |#3|) 75)) (-4101 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 66)) (-1862 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 64))) -(((-1104 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2491 (|#4| |#4|)) (-15 -1862 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2022 (|#4| |#4|)) (-15 -4101 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -2060 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4374 (-626 |#3|))) |#4| |#3|))) (-296) (-369 |#1|) (-369 |#1|) (-669 |#1| |#2| |#3|)) (T -1104)) -((-2060 (*1 *2 *3 *4) (-12 (-4 *5 (-296)) (-4 *6 (-369 *5)) (-4 *4 (-369 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4374 (-626 *4)))) (-5 *1 (-1104 *5 *6 *4 *3)) (-4 *3 (-669 *5 *6 *4)))) (-4101 (*1 *2 *3) (-12 (-4 *4 (-296)) (-4 *5 (-369 *4)) (-4 *6 (-369 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1104 *4 *5 *6 *3)) (-4 *3 (-669 *4 *5 *6)))) (-2022 (*1 *2 *2) (-12 (-4 *3 (-296)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)) (-5 *1 (-1104 *3 *4 *5 *2)) (-4 *2 (-669 *3 *4 *5)))) (-1862 (*1 *2 *3) (-12 (-4 *4 (-296)) (-4 *5 (-369 *4)) (-4 *6 (-369 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1104 *4 *5 *6 *3)) (-4 *3 (-669 *4 *5 *6)))) (-2491 (*1 *2 *2) (-12 (-4 *3 (-296)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)) (-5 *1 (-1104 *3 *4 *5 *2)) (-4 *2 (-669 *3 *4 *5))))) -(-10 -7 (-15 -2491 (|#4| |#4|)) (-15 -1862 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2022 (|#4| |#4|)) (-15 -4101 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -2060 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4374 (-626 |#3|))) |#4| |#3|))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) 17)) (-1654 (((-626 |#2|) $) 160)) (-1593 (((-1149 $) $ |#2|) 54) (((-1149 |#1|) $) 43)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) 110 (|has| |#1| (-550)))) (-1350 (($ $) 112 (|has| |#1| (-550)))) (-3376 (((-121) $) 114 (|has| |#1| (-550)))) (-1697 (((-755) $) NIL) (((-755) $ (-626 |#2|)) 193)) (-2314 (((-3 $ "failed") $ $) NIL)) (-1776 (((-414 (-1149 $)) (-1149 $)) NIL (|has| |#1| (-896)))) (-3065 (($ $) NIL (|has| |#1| (-447)))) (-2953 (((-414 $) $) NIL (|has| |#1| (-447)))) (-1887 (((-3 (-626 (-1149 $)) "failed") (-626 (-1149 $)) (-1149 $)) NIL (|has| |#1| (-896)))) (-4236 (($) NIL T CONST)) (-1473 (((-3 |#1| "failed") $) 157) (((-3 (-403 (-560)) "failed") $) NIL (|has| |#1| (-1029 (-403 (-560))))) (((-3 (-560) "failed") $) NIL (|has| |#1| (-1029 (-560)))) (((-3 |#2| "failed") $) NIL)) (-3001 ((|#1| $) 155) (((-403 (-560)) $) NIL (|has| |#1| (-1029 (-403 (-560))))) (((-560) $) NIL (|has| |#1| (-1029 (-560)))) ((|#2| $) NIL)) (-1979 (($ $ $ |#2|) NIL (|has| |#1| (-170)))) (-1750 (($ $) 197)) (-2616 (((-671 (-560)) (-671 $)) NIL (|has| |#1| (-622 (-560)))) (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) NIL (|has| |#1| (-622 (-560)))) (((-2 (|:| -3818 (-671 |#1|)) (|:| |vec| (-1236 |#1|))) (-671 $) (-1236 $)) NIL) (((-671 |#1|) (-671 $)) NIL)) (-1823 (((-3 $ "failed") $) 82)) (-3605 (($ $) NIL (|has| |#1| (-447))) (($ $ |#2|) NIL (|has| |#1| (-447)))) (-1743 (((-626 $) $) NIL)) (-3319 (((-121) $) NIL (|has| |#1| (-896)))) (-1456 (($ $ |#1| (-526 |#2|) $) NIL)) (-2399 (((-876 (-375) $) $ (-879 (-375)) (-876 (-375) $)) NIL (-12 (|has| |#1| (-873 (-375))) (|has| |#2| (-873 (-375))))) (((-876 (-560) $) $ (-879 (-560)) (-876 (-560) $)) NIL (-12 (|has| |#1| (-873 (-560))) (|has| |#2| (-873 (-560)))))) (-2642 (((-121) $) 19)) (-3235 (((-755) $) 26)) (-1647 (($ (-1149 |#1|) |#2|) 48) (($ (-1149 $) |#2|) 64)) (-1854 (((-626 $) $) NIL)) (-1814 (((-121) $) 31)) (-1637 (($ |#1| (-526 |#2|)) 71) (($ $ |#2| (-755)) 52) (($ $ (-626 |#2|) (-626 (-755))) NIL)) (-2923 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $ |#2|) NIL)) (-3693 (((-526 |#2|) $) 187) (((-755) $ |#2|) 188) (((-626 (-755)) $ (-626 |#2|)) 189)) (-4325 (($ $ $) NIL (|has| |#1| (-834)))) (-2501 (($ $ $) NIL (|has| |#1| (-834)))) (-1504 (($ (-1 (-526 |#2|) (-526 |#2|)) $) NIL)) (-2803 (($ (-1 |#1| |#1|) $) 122)) (-2101 (((-3 |#2| "failed") $) 162)) (-1726 (($ $) 196)) (-1735 ((|#1| $) 37)) (-2582 (($ (-626 $)) NIL (|has| |#1| (-447))) (($ $ $) NIL (|has| |#1| (-447)))) (-1291 (((-1135) $) NIL)) (-3665 (((-3 (-626 $) "failed") $) NIL)) (-2327 (((-3 (-626 $) "failed") $) NIL)) (-2913 (((-3 (-2 (|:| |var| |#2|) (|:| -4034 (-755))) "failed") $) NIL)) (-4353 (((-1100) $) NIL)) (-1704 (((-121) $) 32)) (-1711 ((|#1| $) NIL)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) 140 (|has| |#1| (-447)))) (-4440 (($ (-626 $)) 145 (|has| |#1| (-447))) (($ $ $) 132 (|has| |#1| (-447)))) (-3817 (((-414 (-1149 $)) (-1149 $)) NIL (|has| |#1| (-896)))) (-3032 (((-414 (-1149 $)) (-1149 $)) NIL (|has| |#1| (-896)))) (-1601 (((-414 $) $) NIL (|has| |#1| (-896)))) (-2336 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-550))) (((-3 $ "failed") $ $) 120 (|has| |#1| (-550)))) (-4450 (($ $ (-626 (-283 $))) NIL) (($ $ (-283 $)) NIL) (($ $ $ $) NIL) (($ $ (-626 $) (-626 $)) NIL) (($ $ |#2| |#1|) 165) (($ $ (-626 |#2|) (-626 |#1|)) 178) (($ $ |#2| $) 164) (($ $ (-626 |#2|) (-626 $)) 177)) (-4069 (($ $ |#2|) NIL (|has| |#1| (-170)))) (-2443 (($ $ |#2|) 195) (($ $ (-626 |#2|)) NIL) (($ $ |#2| (-755)) NIL) (($ $ (-626 |#2|) (-626 (-755))) NIL)) (-3662 (((-526 |#2|) $) 183) (((-755) $ |#2|) 179) (((-626 (-755)) $ (-626 |#2|)) 181)) (-4255 (((-879 (-375)) $) NIL (-12 (|has| |#1| (-601 (-879 (-375)))) (|has| |#2| (-601 (-879 (-375)))))) (((-879 (-560)) $) NIL (-12 (|has| |#1| (-601 (-879 (-560)))) (|has| |#2| (-601 (-879 (-560)))))) (((-533) $) NIL (-12 (|has| |#1| (-601 (-533))) (|has| |#2| (-601 (-533)))))) (-1896 ((|#1| $) 128 (|has| |#1| (-447))) (($ $ |#2|) 131 (|has| |#1| (-447)))) (-3248 (((-3 (-1236 $) "failed") (-671 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-896))))) (-2801 (((-842) $) 151) (($ (-560)) 76) (($ |#1|) 77) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-550))) (($ (-403 (-560))) NIL (-2318 (|has| |#1| (-43 (-403 (-560)))) (|has| |#1| (-1029 (-403 (-560))))))) (-2423 (((-626 |#1|) $) 154)) (-2636 ((|#1| $ (-526 |#2|)) 73) (($ $ |#2| (-755)) NIL) (($ $ (-626 |#2|) (-626 (-755))) NIL)) (-2272 (((-3 $ "failed") $) NIL (-2318 (-12 (|has| $ (-146)) (|has| |#1| (-896))) (|has| |#1| (-146))))) (-1751 (((-755)) 79)) (-3487 (($ $ $ (-755)) NIL (|has| |#1| (-170)))) (-2328 (((-121) $ $) 117 (|has| |#1| (-550)))) (-2464 (($ $ (-909)) 102) (($ $ (-755)) 104)) (-3304 (($) 12 T CONST)) (-1459 (($) 14 T CONST)) (-2500 (($ $ |#2|) NIL) (($ $ (-626 |#2|)) NIL) (($ $ |#2| (-755)) NIL) (($ $ (-626 |#2|) (-626 (-755))) NIL)) (-1691 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1675 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1653 (((-121) $ $) 97)) (-1683 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1667 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1733 (($ $ |#1|) 126 (|has| |#1| (-359)))) (-1725 (($ $) 85) (($ $ $) 95)) (-1716 (($ $ $) 49)) (** (($ $ (-909)) 103) (($ $ (-755)) 100)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) 88) (($ $ $) 65) (($ $ (-403 (-560))) NIL (|has| |#1| (-43 (-403 (-560))))) (($ (-403 (-560)) $) NIL (|has| |#1| (-43 (-403 (-560))))) (($ |#1| $) 90) (($ $ |#1|) NIL))) -(((-1105 |#1| |#2|) (-942 |#1| (-526 |#2|) |#2|) (-1039) (-834)) (T -1105)) -NIL -(-942 |#1| (-526 |#2|) |#2|) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-1654 (((-626 |#2|) $) NIL)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL (|has| |#1| (-550)))) (-1350 (($ $) NIL (|has| |#1| (-550)))) (-3376 (((-121) $) NIL (|has| |#1| (-550)))) (-2570 (($ $) 154 (|has| |#1| (-43 (-403 (-560)))))) (-2514 (($ $) 130 (|has| |#1| (-43 (-403 (-560)))))) (-2314 (((-3 $ "failed") $ $) NIL)) (-2479 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2561 (($ $) 150 (|has| |#1| (-43 (-403 (-560)))))) (-2790 (($ $) 126 (|has| |#1| (-43 (-403 (-560)))))) (-2579 (($ $) 158 (|has| |#1| (-43 (-403 (-560)))))) (-2523 (($ $) 134 (|has| |#1| (-43 (-403 (-560)))))) (-4236 (($) NIL T CONST)) (-1750 (($ $) NIL)) (-1823 (((-3 $ "failed") $) NIL)) (-4350 (((-945 |#1|) $ (-755)) NIL) (((-945 |#1|) $ (-755) (-755)) NIL)) (-1815 (((-121) $) NIL)) (-2474 (($) NIL (|has| |#1| (-43 (-403 (-560)))))) (-3504 (((-755) $ |#2|) NIL) (((-755) $ |#2| (-755)) NIL)) (-2642 (((-121) $) NIL)) (-2586 (($ $ (-560)) NIL (|has| |#1| (-43 (-403 (-560)))))) (-1814 (((-121) $) NIL)) (-1637 (($ $ (-626 |#2|) (-626 (-526 |#2|))) NIL) (($ $ |#2| (-526 |#2|)) NIL) (($ |#1| (-526 |#2|)) NIL) (($ $ |#2| (-755)) 71) (($ $ (-626 |#2|) (-626 (-755))) NIL)) (-2803 (($ (-1 |#1| |#1|) $) NIL)) (-4399 (($ $) 124 (|has| |#1| (-43 (-403 (-560)))))) (-1726 (($ $) NIL)) (-1735 ((|#1| $) NIL)) (-1291 (((-1135) $) NIL)) (-2376 (($ $ |#2|) NIL (|has| |#1| (-43 (-403 (-560))))) (($ $ |#2| |#1|) 177 (|has| |#1| (-43 (-403 (-560)))))) (-4353 (((-1100) $) NIL)) (-1513 (($ (-1 $) |#2| |#1|) 176 (|has| |#1| (-43 (-403 (-560)))))) (-3292 (($ $ (-755)) 15)) (-2336 (((-3 $ "failed") $ $) NIL (|has| |#1| (-550)))) (-2469 (($ $) 122 (|has| |#1| (-43 (-403 (-560)))))) (-4450 (($ $ |#2| $) 109) (($ $ (-626 |#2|) (-626 $)) 102) (($ $ (-626 (-283 $))) NIL) (($ $ (-283 $)) NIL) (($ $ $ $) NIL) (($ $ (-626 $) (-626 $)) NIL)) (-2443 (($ $ |#2|) 111) (($ $ (-626 |#2|)) NIL) (($ $ |#2| (-755)) NIL) (($ $ (-626 |#2|) (-626 (-755))) NIL)) (-3662 (((-526 |#2|) $) NIL)) (-4164 (((-1 (-1133 |#3|) |#3|) (-626 |#2|) (-626 (-1133 |#3|))) 92)) (-2585 (($ $) 160 (|has| |#1| (-43 (-403 (-560)))))) (-2528 (($ $) 136 (|has| |#1| (-43 (-403 (-560)))))) (-2575 (($ $) 156 (|has| |#1| (-43 (-403 (-560)))))) (-2519 (($ $) 132 (|has| |#1| (-43 (-403 (-560)))))) (-2566 (($ $) 152 (|has| |#1| (-43 (-403 (-560)))))) (-2795 (($ $) 128 (|has| |#1| (-43 (-403 (-560)))))) (-2234 (($ $) 17)) (-2801 (((-842) $) 192) (($ (-560)) NIL) (($ |#1|) 59 (|has| |#1| (-170))) (($ $) NIL (|has| |#1| (-550))) (($ (-403 (-560))) NIL (|has| |#1| (-43 (-403 (-560))))) (($ |#2|) 78) (($ |#3|) 76)) (-2636 ((|#1| $ (-526 |#2|)) 57) (($ $ |#2| (-755)) NIL) (($ $ (-626 |#2|) (-626 (-755))) 50) ((|#3| $ (-755)) 42)) (-2272 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1751 (((-755)) NIL)) (-2598 (($ $) 166 (|has| |#1| (-43 (-403 (-560)))))) (-2541 (($ $) 142 (|has| |#1| (-43 (-403 (-560)))))) (-2328 (((-121) $ $) NIL (|has| |#1| (-550)))) (-2590 (($ $) 162 (|has| |#1| (-43 (-403 (-560)))))) (-2532 (($ $) 138 (|has| |#1| (-43 (-403 (-560)))))) (-2608 (($ $) 170 (|has| |#1| (-43 (-403 (-560)))))) (-2549 (($ $) 146 (|has| |#1| (-43 (-403 (-560)))))) (-3689 (($ $) 172 (|has| |#1| (-43 (-403 (-560)))))) (-2554 (($ $) 148 (|has| |#1| (-43 (-403 (-560)))))) (-2604 (($ $) 168 (|has| |#1| (-43 (-403 (-560)))))) (-2545 (($ $) 144 (|has| |#1| (-43 (-403 (-560)))))) (-2594 (($ $) 164 (|has| |#1| (-43 (-403 (-560)))))) (-2536 (($ $) 140 (|has| |#1| (-43 (-403 (-560)))))) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (-3304 (($) 18 T CONST)) (-1459 (($) 10 T CONST)) (-2500 (($ $ |#2|) NIL) (($ $ (-626 |#2|)) NIL) (($ $ |#2| (-755)) NIL) (($ $ (-626 |#2|) (-626 (-755))) NIL)) (-1653 (((-121) $ $) NIL)) (-1733 (($ $ |#1|) 194 (|has| |#1| (-359)))) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) 74)) (** (($ $ (-909)) NIL) (($ $ (-755)) 83) (($ $ $) NIL (|has| |#1| (-43 (-403 (-560))))) (($ $ (-403 (-560))) 114 (|has| |#1| (-43 (-403 (-560)))))) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) 73) (($ $ (-403 (-560))) 119 (|has| |#1| (-43 (-403 (-560))))) (($ (-403 (-560)) $) 117 (|has| |#1| (-43 (-403 (-560))))) (($ |#1| $) 62) (($ $ |#1|) 63) (($ |#3| $) 61))) -(((-1106 |#1| |#2| |#3|) (-13 (-722 |#1| |#2|) (-10 -8 (-15 -2636 (|#3| $ (-755))) (-15 -2801 ($ |#2|)) (-15 -2801 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -4164 ((-1 (-1133 |#3|) |#3|) (-626 |#2|) (-626 (-1133 |#3|)))) (IF (|has| |#1| (-43 (-403 (-560)))) (PROGN (-15 -2376 ($ $ |#2| |#1|)) (-15 -1513 ($ (-1 $) |#2| |#1|))) |noBranch|))) (-1039) (-834) (-942 |#1| (-526 |#2|) |#2|)) (T -1106)) -((-2636 (*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-4 *2 (-942 *4 (-526 *5) *5)) (-5 *1 (-1106 *4 *5 *2)) (-4 *4 (-1039)) (-4 *5 (-834)))) (-2801 (*1 *1 *2) (-12 (-4 *3 (-1039)) (-4 *2 (-834)) (-5 *1 (-1106 *3 *2 *4)) (-4 *4 (-942 *3 (-526 *2) *2)))) (-2801 (*1 *1 *2) (-12 (-4 *3 (-1039)) (-4 *4 (-834)) (-5 *1 (-1106 *3 *4 *2)) (-4 *2 (-942 *3 (-526 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1039)) (-4 *4 (-834)) (-5 *1 (-1106 *3 *4 *2)) (-4 *2 (-942 *3 (-526 *4) *4)))) (-4164 (*1 *2 *3 *4) (-12 (-5 *3 (-626 *6)) (-5 *4 (-626 (-1133 *7))) (-4 *6 (-834)) (-4 *7 (-942 *5 (-526 *6) *6)) (-4 *5 (-1039)) (-5 *2 (-1 (-1133 *7) *7)) (-5 *1 (-1106 *5 *6 *7)))) (-2376 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *3 (-1039)) (-4 *2 (-834)) (-5 *1 (-1106 *3 *2 *4)) (-4 *4 (-942 *3 (-526 *2) *2)))) (-1513 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1106 *4 *3 *5))) (-4 *4 (-43 (-403 (-560)))) (-4 *4 (-1039)) (-4 *3 (-834)) (-5 *1 (-1106 *4 *3 *5)) (-4 *5 (-942 *4 (-526 *3) *3))))) -(-13 (-722 |#1| |#2|) (-10 -8 (-15 -2636 (|#3| $ (-755))) (-15 -2801 ($ |#2|)) (-15 -2801 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -4164 ((-1 (-1133 |#3|) |#3|) (-626 |#2|) (-626 (-1133 |#3|)))) (IF (|has| |#1| (-43 (-403 (-560)))) (PROGN (-15 -2376 ($ $ |#2| |#1|)) (-15 -1513 ($ (-1 $) |#2| |#1|))) |noBranch|))) -((-2601 (((-121) $ $) 7)) (-3975 (((-626 (-2 (|:| -4071 $) (|:| -3997 (-626 |#4|)))) (-626 |#4|)) 78)) (-3332 (((-626 $) (-626 |#4|)) 79) (((-626 $) (-626 |#4|) (-121)) 104)) (-1654 (((-626 |#3|) $) 32)) (-1385 (((-121) $) 25)) (-3617 (((-121) $) 16 (|has| |#1| (-550)))) (-2898 (((-121) |#4| $) 94) (((-121) $) 90)) (-3177 ((|#4| |#4| $) 85)) (-3065 (((-626 (-2 (|:| |val| |#4|) (|:| -3249 $))) |#4| $) 119)) (-3743 (((-2 (|:| |under| $) (|:| -2150 $) (|:| |upper| $)) $ |#3|) 26)) (-3909 (((-121) $ (-755)) 43)) (-3802 (($ (-1 (-121) |#4|) $) 64 (|has| $ (-6 -4505))) (((-3 |#4| "failed") $ |#3|) 72)) (-4236 (($) 44 T CONST)) (-2226 (((-121) $) 21 (|has| |#1| (-550)))) (-3225 (((-121) $ $) 23 (|has| |#1| (-550)))) (-4195 (((-121) $ $) 22 (|has| |#1| (-550)))) (-1501 (((-121) $) 24 (|has| |#1| (-550)))) (-4339 (((-626 |#4|) (-626 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-121) |#4| |#4|)) 86)) (-4318 (((-626 |#4|) (-626 |#4|) $) 17 (|has| |#1| (-550)))) (-3979 (((-626 |#4|) (-626 |#4|) $) 18 (|has| |#1| (-550)))) (-1473 (((-3 $ "failed") (-626 |#4|)) 35)) (-3001 (($ (-626 |#4|)) 34)) (-2877 (((-3 $ "failed") $) 75)) (-2134 ((|#4| |#4| $) 82)) (-2868 (($ $) 67 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4505))))) (-4310 (($ |#4| $) 66 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4505)))) (($ (-1 (-121) |#4|) $) 63 (|has| $ (-6 -4505)))) (-4397 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 19 (|has| |#1| (-550)))) (-1590 (((-121) |#4| $ (-1 (-121) |#4| |#4|)) 95)) (-4048 ((|#4| |#4| $) 80)) (-2342 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 65 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4505)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 62 (|has| $ (-6 -4505))) ((|#4| (-1 |#4| |#4| |#4|) $) 61 (|has| $ (-6 -4505))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-121) |#4| |#4|)) 87)) (-3035 (((-2 (|:| -4071 (-626 |#4|)) (|:| -3997 (-626 |#4|))) $) 98)) (-2329 (((-121) |#4| $) 129)) (-3701 (((-121) |#4| $) 126)) (-2894 (((-121) |#4| $) 130) (((-121) $) 127)) (-1981 (((-626 |#4|) $) 51 (|has| $ (-6 -4505)))) (-2864 (((-121) |#4| $) 97) (((-121) $) 96)) (-2819 ((|#3| $) 33)) (-2122 (((-121) $ (-755)) 42)) (-2130 (((-626 |#4|) $) 52 (|has| $ (-6 -4505)))) (-2030 (((-121) |#4| $) 54 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4505))))) (-3778 (($ (-1 |#4| |#4|) $) 47 (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#4| |#4|) $) 46)) (-4475 (((-626 |#3|) $) 31)) (-1304 (((-121) |#3| $) 30)) (-3441 (((-121) $ (-755)) 41)) (-1291 (((-1135) $) 9)) (-3283 (((-3 |#4| (-626 $)) |#4| |#4| $) 121)) (-3069 (((-626 (-2 (|:| |val| |#4|) (|:| -3249 $))) |#4| |#4| $) 120)) (-4139 (((-3 |#4| "failed") $) 76)) (-3269 (((-626 $) |#4| $) 122)) (-2061 (((-3 (-121) (-626 $)) |#4| $) 125)) (-2638 (((-626 (-2 (|:| |val| (-121)) (|:| -3249 $))) |#4| $) 124) (((-121) |#4| $) 123)) (-4283 (((-626 $) |#4| $) 118) (((-626 $) (-626 |#4|) $) 117) (((-626 $) (-626 |#4|) (-626 $)) 116) (((-626 $) |#4| (-626 $)) 115)) (-3760 (($ |#4| $) 110) (($ (-626 |#4|) $) 109)) (-3840 (((-626 |#4|) $) 100)) (-3098 (((-121) |#4| $) 92) (((-121) $) 88)) (-2054 ((|#4| |#4| $) 83)) (-3564 (((-121) $ $) 103)) (-1960 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-550)))) (-1584 (((-121) |#4| $) 93) (((-121) $) 89)) (-4047 ((|#4| |#4| $) 84)) (-4353 (((-1100) $) 10)) (-2824 (((-3 |#4| "failed") $) 77)) (-3786 (((-3 |#4| "failed") (-1 (-121) |#4|) $) 60)) (-1368 (((-3 $ "failed") $ |#4|) 71)) (-3292 (($ $ |#4|) 70) (((-626 $) |#4| $) 108) (((-626 $) |#4| (-626 $)) 107) (((-626 $) (-626 |#4|) $) 106) (((-626 $) (-626 |#4|) (-626 $)) 105)) (-2865 (((-121) (-1 (-121) |#4|) $) 49 (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 |#4|) (-626 |#4|)) 58 (-12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082)))) (($ $ |#4| |#4|) 57 (-12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082)))) (($ $ (-283 |#4|)) 56 (-12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082)))) (($ $ (-626 (-283 |#4|))) 55 (-12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082))))) (-2214 (((-121) $ $) 37)) (-4191 (((-121) $) 40)) (-3260 (($) 39)) (-3662 (((-755) $) 99)) (-4035 (((-755) |#4| $) 53 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4505)))) (((-755) (-1 (-121) |#4|) $) 50 (|has| $ (-6 -4505)))) (-2813 (($ $) 38)) (-4255 (((-533) $) 68 (|has| |#4| (-601 (-533))))) (-4162 (($ (-626 |#4|)) 59)) (-3369 (($ $ |#3|) 27)) (-2673 (($ $ |#3|) 29)) (-3746 (($ $) 81)) (-3388 (($ $ |#3|) 28)) (-2801 (((-842) $) 11) (((-626 |#4|) $) 36)) (-4277 (((-755) $) 69 (|has| |#3| (-364)))) (-3133 (((-3 (-2 (|:| |bas| $) (|:| -4224 (-626 |#4|))) "failed") (-626 |#4|) (-1 (-121) |#4| |#4|)) 102) (((-3 (-2 (|:| |bas| $) (|:| -4224 (-626 |#4|))) "failed") (-626 |#4|) (-1 (-121) |#4|) (-1 (-121) |#4| |#4|)) 101)) (-2967 (((-121) $ (-1 (-121) |#4| (-626 |#4|))) 91)) (-1767 (((-626 $) |#4| $) 114) (((-626 $) |#4| (-626 $)) 113) (((-626 $) (-626 |#4|) $) 112) (((-626 $) (-626 |#4|) (-626 $)) 111)) (-3656 (((-121) (-1 (-121) |#4|) $) 48 (|has| $ (-6 -4505)))) (-3284 (((-626 |#3|) $) 74)) (-4073 (((-121) |#4| $) 128)) (-1535 (((-121) |#3| $) 73)) (-1653 (((-121) $ $) 6)) (-2271 (((-755) $) 45 (|has| $ (-6 -4505))))) -(((-1107 |#1| |#2| |#3| |#4|) (-1267) (-447) (-780) (-834) (-1053 |t#1| |t#2| |t#3|)) (T -1107)) -NIL -(-13 (-1091 |t#1| |t#2| |t#3| |t#4|) (-771 |t#1| |t#2| |t#3| |t#4|)) -(((-39) . T) ((-105) . T) ((-600 (-626 |#4|)) . T) ((-600 (-842)) . T) ((-152 |#4|) . T) ((-601 (-533)) |has| |#4| (-601 (-533))) ((-298 |#4|) -12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082))) ((-492 |#4|) . T) ((-515 |#4| |#4|) -12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082))) ((-771 |#1| |#2| |#3| |#4|) . T) ((-969 |#1| |#2| |#3| |#4|) . T) ((-1058 |#1| |#2| |#3| |#4|) . T) ((-1082) . T) ((-1091 |#1| |#2| |#3| |#4|) . T) ((-1181 |#1| |#2| |#3| |#4|) . T) ((-1187) . T)) -((-4159 (((-626 |#2|) |#1|) 12)) (-3824 (((-626 |#2|) |#2| |#2| |#2| |#2| |#2|) 37) (((-626 |#2|) |#1|) 47)) (-2607 (((-626 |#2|) |#2| |#2| |#2|) 35) (((-626 |#2|) |#1|) 45)) (-2852 ((|#2| |#1|) 42)) (-4327 (((-2 (|:| |solns| (-626 |#2|)) (|:| |maps| (-626 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 16)) (-1755 (((-626 |#2|) |#2| |#2|) 34) (((-626 |#2|) |#1|) 44)) (-2194 (((-626 |#2|) |#2| |#2| |#2| |#2|) 36) (((-626 |#2|) |#1|) 46)) (-1268 ((|#2| |#2| |#2| |#2| |#2| |#2|) 41)) (-4420 ((|#2| |#2| |#2| |#2|) 39)) (-3898 ((|#2| |#2| |#2|) 38)) (-2118 ((|#2| |#2| |#2| |#2| |#2|) 40))) -(((-1108 |#1| |#2|) (-10 -7 (-15 -4159 ((-626 |#2|) |#1|)) (-15 -2852 (|#2| |#1|)) (-15 -4327 ((-2 (|:| |solns| (-626 |#2|)) (|:| |maps| (-626 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -1755 ((-626 |#2|) |#1|)) (-15 -2607 ((-626 |#2|) |#1|)) (-15 -2194 ((-626 |#2|) |#1|)) (-15 -3824 ((-626 |#2|) |#1|)) (-15 -1755 ((-626 |#2|) |#2| |#2|)) (-15 -2607 ((-626 |#2|) |#2| |#2| |#2|)) (-15 -2194 ((-626 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3824 ((-626 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3898 (|#2| |#2| |#2|)) (-15 -4420 (|#2| |#2| |#2| |#2|)) (-15 -2118 (|#2| |#2| |#2| |#2| |#2|)) (-15 -1268 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1211 |#2|) (-13 (-359) (-10 -8 (-15 ** ($ $ (-403 (-560))))))) (T -1108)) -((-1268 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-359) (-10 -8 (-15 ** ($ $ (-403 (-560))))))) (-5 *1 (-1108 *3 *2)) (-4 *3 (-1211 *2)))) (-2118 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-359) (-10 -8 (-15 ** ($ $ (-403 (-560))))))) (-5 *1 (-1108 *3 *2)) (-4 *3 (-1211 *2)))) (-4420 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-359) (-10 -8 (-15 ** ($ $ (-403 (-560))))))) (-5 *1 (-1108 *3 *2)) (-4 *3 (-1211 *2)))) (-3898 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-359) (-10 -8 (-15 ** ($ $ (-403 (-560))))))) (-5 *1 (-1108 *3 *2)) (-4 *3 (-1211 *2)))) (-3824 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-359) (-10 -8 (-15 ** ($ $ (-403 (-560))))))) (-5 *2 (-626 *3)) (-5 *1 (-1108 *4 *3)) (-4 *4 (-1211 *3)))) (-2194 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-359) (-10 -8 (-15 ** ($ $ (-403 (-560))))))) (-5 *2 (-626 *3)) (-5 *1 (-1108 *4 *3)) (-4 *4 (-1211 *3)))) (-2607 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-359) (-10 -8 (-15 ** ($ $ (-403 (-560))))))) (-5 *2 (-626 *3)) (-5 *1 (-1108 *4 *3)) (-4 *4 (-1211 *3)))) (-1755 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-359) (-10 -8 (-15 ** ($ $ (-403 (-560))))))) (-5 *2 (-626 *3)) (-5 *1 (-1108 *4 *3)) (-4 *4 (-1211 *3)))) (-3824 (*1 *2 *3) (-12 (-4 *4 (-13 (-359) (-10 -8 (-15 ** ($ $ (-403 (-560))))))) (-5 *2 (-626 *4)) (-5 *1 (-1108 *3 *4)) (-4 *3 (-1211 *4)))) (-2194 (*1 *2 *3) (-12 (-4 *4 (-13 (-359) (-10 -8 (-15 ** ($ $ (-403 (-560))))))) (-5 *2 (-626 *4)) (-5 *1 (-1108 *3 *4)) (-4 *3 (-1211 *4)))) (-2607 (*1 *2 *3) (-12 (-4 *4 (-13 (-359) (-10 -8 (-15 ** ($ $ (-403 (-560))))))) (-5 *2 (-626 *4)) (-5 *1 (-1108 *3 *4)) (-4 *3 (-1211 *4)))) (-1755 (*1 *2 *3) (-12 (-4 *4 (-13 (-359) (-10 -8 (-15 ** ($ $ (-403 (-560))))))) (-5 *2 (-626 *4)) (-5 *1 (-1108 *3 *4)) (-4 *3 (-1211 *4)))) (-4327 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-359) (-10 -8 (-15 ** ($ $ (-403 (-560))))))) (-5 *2 (-2 (|:| |solns| (-626 *5)) (|:| |maps| (-626 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1108 *3 *5)) (-4 *3 (-1211 *5)))) (-2852 (*1 *2 *3) (-12 (-4 *2 (-13 (-359) (-10 -8 (-15 ** ($ $ (-403 (-560))))))) (-5 *1 (-1108 *3 *2)) (-4 *3 (-1211 *2)))) (-4159 (*1 *2 *3) (-12 (-4 *4 (-13 (-359) (-10 -8 (-15 ** ($ $ (-403 (-560))))))) (-5 *2 (-626 *4)) (-5 *1 (-1108 *3 *4)) (-4 *3 (-1211 *4))))) -(-10 -7 (-15 -4159 ((-626 |#2|) |#1|)) (-15 -2852 (|#2| |#1|)) (-15 -4327 ((-2 (|:| |solns| (-626 |#2|)) (|:| |maps| (-626 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -1755 ((-626 |#2|) |#1|)) (-15 -2607 ((-626 |#2|) |#1|)) (-15 -2194 ((-626 |#2|) |#1|)) (-15 -3824 ((-626 |#2|) |#1|)) (-15 -1755 ((-626 |#2|) |#2| |#2|)) (-15 -2607 ((-626 |#2|) |#2| |#2| |#2|)) (-15 -2194 ((-626 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3824 ((-626 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3898 (|#2| |#2| |#2|)) (-15 -4420 (|#2| |#2| |#2| |#2|)) (-15 -2118 (|#2| |#2| |#2| |#2| |#2|)) (-15 -1268 (|#2| |#2| |#2| |#2| |#2| |#2|))) -((-3220 (((-626 (-626 (-283 (-304 |#1|)))) (-626 (-283 (-403 (-945 |#1|))))) 94) (((-626 (-626 (-283 (-304 |#1|)))) (-626 (-283 (-403 (-945 |#1|)))) (-626 (-1153))) 93) (((-626 (-626 (-283 (-304 |#1|)))) (-626 (-403 (-945 |#1|)))) 91) (((-626 (-626 (-283 (-304 |#1|)))) (-626 (-403 (-945 |#1|))) (-626 (-1153))) 89) (((-626 (-283 (-304 |#1|))) (-283 (-403 (-945 |#1|)))) 75) (((-626 (-283 (-304 |#1|))) (-283 (-403 (-945 |#1|))) (-1153)) 76) (((-626 (-283 (-304 |#1|))) (-403 (-945 |#1|))) 70) (((-626 (-283 (-304 |#1|))) (-403 (-945 |#1|)) (-1153)) 59)) (-2812 (((-626 (-626 (-304 |#1|))) (-626 (-403 (-945 |#1|))) (-626 (-1153))) 87) (((-626 (-304 |#1|)) (-403 (-945 |#1|)) (-1153)) 43)) (-2149 (((-1142 (-626 (-304 |#1|)) (-626 (-283 (-304 |#1|)))) (-403 (-945 |#1|)) (-1153)) 97) (((-1142 (-626 (-304 |#1|)) (-626 (-283 (-304 |#1|)))) (-283 (-403 (-945 |#1|))) (-1153)) 96))) -(((-1109 |#1|) (-10 -7 (-15 -3220 ((-626 (-283 (-304 |#1|))) (-403 (-945 |#1|)) (-1153))) (-15 -3220 ((-626 (-283 (-304 |#1|))) (-403 (-945 |#1|)))) (-15 -3220 ((-626 (-283 (-304 |#1|))) (-283 (-403 (-945 |#1|))) (-1153))) (-15 -3220 ((-626 (-283 (-304 |#1|))) (-283 (-403 (-945 |#1|))))) (-15 -3220 ((-626 (-626 (-283 (-304 |#1|)))) (-626 (-403 (-945 |#1|))) (-626 (-1153)))) (-15 -3220 ((-626 (-626 (-283 (-304 |#1|)))) (-626 (-403 (-945 |#1|))))) (-15 -3220 ((-626 (-626 (-283 (-304 |#1|)))) (-626 (-283 (-403 (-945 |#1|)))) (-626 (-1153)))) (-15 -3220 ((-626 (-626 (-283 (-304 |#1|)))) (-626 (-283 (-403 (-945 |#1|)))))) (-15 -2812 ((-626 (-304 |#1|)) (-403 (-945 |#1|)) (-1153))) (-15 -2812 ((-626 (-626 (-304 |#1|))) (-626 (-403 (-945 |#1|))) (-626 (-1153)))) (-15 -2149 ((-1142 (-626 (-304 |#1|)) (-626 (-283 (-304 |#1|)))) (-283 (-403 (-945 |#1|))) (-1153))) (-15 -2149 ((-1142 (-626 (-304 |#1|)) (-626 (-283 (-304 |#1|)))) (-403 (-945 |#1|)) (-1153)))) (-13 (-296) (-834) (-148))) (T -1109)) -((-2149 (*1 *2 *3 *4) (-12 (-5 *3 (-403 (-945 *5))) (-5 *4 (-1153)) (-4 *5 (-13 (-296) (-834) (-148))) (-5 *2 (-1142 (-626 (-304 *5)) (-626 (-283 (-304 *5))))) (-5 *1 (-1109 *5)))) (-2149 (*1 *2 *3 *4) (-12 (-5 *3 (-283 (-403 (-945 *5)))) (-5 *4 (-1153)) (-4 *5 (-13 (-296) (-834) (-148))) (-5 *2 (-1142 (-626 (-304 *5)) (-626 (-283 (-304 *5))))) (-5 *1 (-1109 *5)))) (-2812 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-945 *5)))) (-5 *4 (-626 (-1153))) (-4 *5 (-13 (-296) (-834) (-148))) (-5 *2 (-626 (-626 (-304 *5)))) (-5 *1 (-1109 *5)))) (-2812 (*1 *2 *3 *4) (-12 (-5 *3 (-403 (-945 *5))) (-5 *4 (-1153)) (-4 *5 (-13 (-296) (-834) (-148))) (-5 *2 (-626 (-304 *5))) (-5 *1 (-1109 *5)))) (-3220 (*1 *2 *3) (-12 (-5 *3 (-626 (-283 (-403 (-945 *4))))) (-4 *4 (-13 (-296) (-834) (-148))) (-5 *2 (-626 (-626 (-283 (-304 *4))))) (-5 *1 (-1109 *4)))) (-3220 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-283 (-403 (-945 *5))))) (-5 *4 (-626 (-1153))) (-4 *5 (-13 (-296) (-834) (-148))) (-5 *2 (-626 (-626 (-283 (-304 *5))))) (-5 *1 (-1109 *5)))) (-3220 (*1 *2 *3) (-12 (-5 *3 (-626 (-403 (-945 *4)))) (-4 *4 (-13 (-296) (-834) (-148))) (-5 *2 (-626 (-626 (-283 (-304 *4))))) (-5 *1 (-1109 *4)))) (-3220 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-945 *5)))) (-5 *4 (-626 (-1153))) (-4 *5 (-13 (-296) (-834) (-148))) (-5 *2 (-626 (-626 (-283 (-304 *5))))) (-5 *1 (-1109 *5)))) (-3220 (*1 *2 *3) (-12 (-5 *3 (-283 (-403 (-945 *4)))) (-4 *4 (-13 (-296) (-834) (-148))) (-5 *2 (-626 (-283 (-304 *4)))) (-5 *1 (-1109 *4)))) (-3220 (*1 *2 *3 *4) (-12 (-5 *3 (-283 (-403 (-945 *5)))) (-5 *4 (-1153)) (-4 *5 (-13 (-296) (-834) (-148))) (-5 *2 (-626 (-283 (-304 *5)))) (-5 *1 (-1109 *5)))) (-3220 (*1 *2 *3) (-12 (-5 *3 (-403 (-945 *4))) (-4 *4 (-13 (-296) (-834) (-148))) (-5 *2 (-626 (-283 (-304 *4)))) (-5 *1 (-1109 *4)))) (-3220 (*1 *2 *3 *4) (-12 (-5 *3 (-403 (-945 *5))) (-5 *4 (-1153)) (-4 *5 (-13 (-296) (-834) (-148))) (-5 *2 (-626 (-283 (-304 *5)))) (-5 *1 (-1109 *5))))) -(-10 -7 (-15 -3220 ((-626 (-283 (-304 |#1|))) (-403 (-945 |#1|)) (-1153))) (-15 -3220 ((-626 (-283 (-304 |#1|))) (-403 (-945 |#1|)))) (-15 -3220 ((-626 (-283 (-304 |#1|))) (-283 (-403 (-945 |#1|))) (-1153))) (-15 -3220 ((-626 (-283 (-304 |#1|))) (-283 (-403 (-945 |#1|))))) (-15 -3220 ((-626 (-626 (-283 (-304 |#1|)))) (-626 (-403 (-945 |#1|))) (-626 (-1153)))) (-15 -3220 ((-626 (-626 (-283 (-304 |#1|)))) (-626 (-403 (-945 |#1|))))) (-15 -3220 ((-626 (-626 (-283 (-304 |#1|)))) (-626 (-283 (-403 (-945 |#1|)))) (-626 (-1153)))) (-15 -3220 ((-626 (-626 (-283 (-304 |#1|)))) (-626 (-283 (-403 (-945 |#1|)))))) (-15 -2812 ((-626 (-304 |#1|)) (-403 (-945 |#1|)) (-1153))) (-15 -2812 ((-626 (-626 (-304 |#1|))) (-626 (-403 (-945 |#1|))) (-626 (-1153)))) (-15 -2149 ((-1142 (-626 (-304 |#1|)) (-626 (-283 (-304 |#1|)))) (-283 (-403 (-945 |#1|))) (-1153))) (-15 -2149 ((-1142 (-626 (-304 |#1|)) (-626 (-283 (-304 |#1|)))) (-403 (-945 |#1|)) (-1153)))) -((-3754 (((-403 (-1149 (-304 |#1|))) (-1236 (-304 |#1|)) (-403 (-1149 (-304 |#1|))) (-560)) 27)) (-1444 (((-403 (-1149 (-304 |#1|))) (-403 (-1149 (-304 |#1|))) (-403 (-1149 (-304 |#1|))) (-403 (-1149 (-304 |#1|)))) 39))) -(((-1110 |#1|) (-10 -7 (-15 -1444 ((-403 (-1149 (-304 |#1|))) (-403 (-1149 (-304 |#1|))) (-403 (-1149 (-304 |#1|))) (-403 (-1149 (-304 |#1|))))) (-15 -3754 ((-403 (-1149 (-304 |#1|))) (-1236 (-304 |#1|)) (-403 (-1149 (-304 |#1|))) (-560)))) (-13 (-550) (-834))) (T -1110)) -((-3754 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-403 (-1149 (-304 *5)))) (-5 *3 (-1236 (-304 *5))) (-5 *4 (-560)) (-4 *5 (-13 (-550) (-834))) (-5 *1 (-1110 *5)))) (-1444 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-403 (-1149 (-304 *3)))) (-4 *3 (-13 (-550) (-834))) (-5 *1 (-1110 *3))))) -(-10 -7 (-15 -1444 ((-403 (-1149 (-304 |#1|))) (-403 (-1149 (-304 |#1|))) (-403 (-1149 (-304 |#1|))) (-403 (-1149 (-304 |#1|))))) (-15 -3754 ((-403 (-1149 (-304 |#1|))) (-1236 (-304 |#1|)) (-403 (-1149 (-304 |#1|))) (-560)))) -((-4159 (((-626 (-626 (-283 (-304 |#1|)))) (-626 (-283 (-304 |#1|))) (-626 (-1153))) 216) (((-626 (-283 (-304 |#1|))) (-304 |#1|) (-1153)) 20) (((-626 (-283 (-304 |#1|))) (-283 (-304 |#1|)) (-1153)) 26) (((-626 (-283 (-304 |#1|))) (-283 (-304 |#1|))) 25) (((-626 (-283 (-304 |#1|))) (-304 |#1|)) 21))) -(((-1111 |#1|) (-10 -7 (-15 -4159 ((-626 (-283 (-304 |#1|))) (-304 |#1|))) (-15 -4159 ((-626 (-283 (-304 |#1|))) (-283 (-304 |#1|)))) (-15 -4159 ((-626 (-283 (-304 |#1|))) (-283 (-304 |#1|)) (-1153))) (-15 -4159 ((-626 (-283 (-304 |#1|))) (-304 |#1|) (-1153))) (-15 -4159 ((-626 (-626 (-283 (-304 |#1|)))) (-626 (-283 (-304 |#1|))) (-626 (-1153))))) (-13 (-834) (-296) (-1029 (-560)) (-622 (-560)) (-148))) (T -1111)) -((-4159 (*1 *2 *3 *4) (-12 (-5 *4 (-626 (-1153))) (-4 *5 (-13 (-834) (-296) (-1029 (-560)) (-622 (-560)) (-148))) (-5 *2 (-626 (-626 (-283 (-304 *5))))) (-5 *1 (-1111 *5)) (-5 *3 (-626 (-283 (-304 *5)))))) (-4159 (*1 *2 *3 *4) (-12 (-5 *4 (-1153)) (-4 *5 (-13 (-834) (-296) (-1029 (-560)) (-622 (-560)) (-148))) (-5 *2 (-626 (-283 (-304 *5)))) (-5 *1 (-1111 *5)) (-5 *3 (-304 *5)))) (-4159 (*1 *2 *3 *4) (-12 (-5 *4 (-1153)) (-4 *5 (-13 (-834) (-296) (-1029 (-560)) (-622 (-560)) (-148))) (-5 *2 (-626 (-283 (-304 *5)))) (-5 *1 (-1111 *5)) (-5 *3 (-283 (-304 *5))))) (-4159 (*1 *2 *3) (-12 (-4 *4 (-13 (-834) (-296) (-1029 (-560)) (-622 (-560)) (-148))) (-5 *2 (-626 (-283 (-304 *4)))) (-5 *1 (-1111 *4)) (-5 *3 (-283 (-304 *4))))) (-4159 (*1 *2 *3) (-12 (-4 *4 (-13 (-834) (-296) (-1029 (-560)) (-622 (-560)) (-148))) (-5 *2 (-626 (-283 (-304 *4)))) (-5 *1 (-1111 *4)) (-5 *3 (-304 *4))))) -(-10 -7 (-15 -4159 ((-626 (-283 (-304 |#1|))) (-304 |#1|))) (-15 -4159 ((-626 (-283 (-304 |#1|))) (-283 (-304 |#1|)))) (-15 -4159 ((-626 (-283 (-304 |#1|))) (-283 (-304 |#1|)) (-1153))) (-15 -4159 ((-626 (-283 (-304 |#1|))) (-304 |#1|) (-1153))) (-15 -4159 ((-626 (-626 (-283 (-304 |#1|)))) (-626 (-283 (-304 |#1|))) (-626 (-1153))))) -((-3030 ((|#2| |#2|) 20 (|has| |#1| (-834))) ((|#2| |#2| (-1 (-121) |#1| |#1|)) 16)) (-2220 ((|#2| |#2|) 19 (|has| |#1| (-834))) ((|#2| |#2| (-1 (-121) |#1| |#1|)) 15))) -(((-1112 |#1| |#2|) (-10 -7 (-15 -2220 (|#2| |#2| (-1 (-121) |#1| |#1|))) (-15 -3030 (|#2| |#2| (-1 (-121) |#1| |#1|))) (IF (|has| |#1| (-834)) (PROGN (-15 -2220 (|#2| |#2|)) (-15 -3030 (|#2| |#2|))) |noBranch|)) (-1187) (-13 (-593 (-560) |#1|) (-10 -7 (-6 -4505) (-6 -4506)))) (T -1112)) -((-3030 (*1 *2 *2) (-12 (-4 *3 (-834)) (-4 *3 (-1187)) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-593 (-560) *3) (-10 -7 (-6 -4505) (-6 -4506)))))) (-2220 (*1 *2 *2) (-12 (-4 *3 (-834)) (-4 *3 (-1187)) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-593 (-560) *3) (-10 -7 (-6 -4505) (-6 -4506)))))) (-3030 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-121) *4 *4)) (-4 *4 (-1187)) (-5 *1 (-1112 *4 *2)) (-4 *2 (-13 (-593 (-560) *4) (-10 -7 (-6 -4505) (-6 -4506)))))) (-2220 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-121) *4 *4)) (-4 *4 (-1187)) (-5 *1 (-1112 *4 *2)) (-4 *2 (-13 (-593 (-560) *4) (-10 -7 (-6 -4505) (-6 -4506))))))) -(-10 -7 (-15 -2220 (|#2| |#2| (-1 (-121) |#1| |#1|))) (-15 -3030 (|#2| |#2| (-1 (-121) |#1| |#1|))) (IF (|has| |#1| (-834)) (PROGN (-15 -2220 (|#2| |#2|)) (-15 -3030 (|#2| |#2|))) |noBranch|)) -((-2601 (((-121) $ $) NIL)) (-4391 (((-1141 3 |#1|) $) 105)) (-1323 (((-121) $) 72)) (-2452 (($ $ (-626 (-936 |#1|))) 20) (($ $ (-626 (-626 |#1|))) 75) (($ (-626 (-936 |#1|))) 74) (((-626 (-936 |#1|)) $) 73)) (-4117 (((-121) $) 41)) (-4151 (($ $ (-936 |#1|)) 46) (($ $ (-626 |#1|)) 51) (($ $ (-755)) 53) (($ (-936 |#1|)) 47) (((-936 |#1|) $) 45)) (-1469 (((-2 (|:| -1471 (-755)) (|:| |curves| (-755)) (|:| |polygons| (-755)) (|:| |constructs| (-755))) $) 103)) (-2259 (((-755) $) 26)) (-3684 (((-755) $) 25)) (-1545 (($ $ (-755) (-936 |#1|)) 39)) (-3046 (((-121) $) 82)) (-3222 (($ $ (-626 (-626 (-936 |#1|))) (-626 (-169)) (-169)) 89) (($ $ (-626 (-626 (-626 |#1|))) (-626 (-169)) (-169)) 91) (($ $ (-626 (-626 (-936 |#1|))) (-121) (-121)) 85) (($ $ (-626 (-626 (-626 |#1|))) (-121) (-121)) 93) (($ (-626 (-626 (-936 |#1|)))) 86) (($ (-626 (-626 (-936 |#1|))) (-121) (-121)) 87) (((-626 (-626 (-936 |#1|))) $) 84)) (-2492 (($ (-626 $)) 28) (($ $ $) 29)) (-1857 (((-626 (-169)) $) 101)) (-2821 (((-626 (-936 |#1|)) $) 96)) (-2770 (((-626 (-626 (-169))) $) 100)) (-2052 (((-626 (-626 (-626 (-936 |#1|)))) $) NIL)) (-3272 (((-626 (-626 (-626 (-755)))) $) 98)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2950 (((-755) $ (-626 (-936 |#1|))) 37)) (-2746 (((-121) $) 54)) (-2857 (($ $ (-626 (-936 |#1|))) 56) (($ $ (-626 (-626 |#1|))) 62) (($ (-626 (-936 |#1|))) 57) (((-626 (-936 |#1|)) $) 55)) (-3806 (($) 23) (($ (-1141 3 |#1|)) 24)) (-2813 (($ $) 35)) (-2640 (((-626 $) $) 34)) (-2791 (($ (-626 $)) 31)) (-1970 (((-626 $) $) 33)) (-2801 (((-842) $) 109)) (-4028 (((-121) $) 64)) (-2529 (($ $ (-626 (-936 |#1|))) 66) (($ $ (-626 (-626 |#1|))) 69) (($ (-626 (-936 |#1|))) 67) (((-626 (-936 |#1|)) $) 65)) (-2229 (($ $) 104)) (-1653 (((-121) $ $) NIL))) -(((-1113 |#1|) (-1114 |#1|) (-1039)) (T -1113)) -NIL -(-1114 |#1|) -((-2601 (((-121) $ $) 7)) (-4391 (((-1141 3 |#1|) $) 12)) (-1323 (((-121) $) 28)) (-2452 (($ $ (-626 (-936 |#1|))) 32) (($ $ (-626 (-626 |#1|))) 31) (($ (-626 (-936 |#1|))) 30) (((-626 (-936 |#1|)) $) 29)) (-4117 (((-121) $) 43)) (-4151 (($ $ (-936 |#1|)) 48) (($ $ (-626 |#1|)) 47) (($ $ (-755)) 46) (($ (-936 |#1|)) 45) (((-936 |#1|) $) 44)) (-1469 (((-2 (|:| -1471 (-755)) (|:| |curves| (-755)) (|:| |polygons| (-755)) (|:| |constructs| (-755))) $) 14)) (-2259 (((-755) $) 57)) (-3684 (((-755) $) 58)) (-1545 (($ $ (-755) (-936 |#1|)) 49)) (-3046 (((-121) $) 20)) (-3222 (($ $ (-626 (-626 (-936 |#1|))) (-626 (-169)) (-169)) 27) (($ $ (-626 (-626 (-626 |#1|))) (-626 (-169)) (-169)) 26) (($ $ (-626 (-626 (-936 |#1|))) (-121) (-121)) 25) (($ $ (-626 (-626 (-626 |#1|))) (-121) (-121)) 24) (($ (-626 (-626 (-936 |#1|)))) 23) (($ (-626 (-626 (-936 |#1|))) (-121) (-121)) 22) (((-626 (-626 (-936 |#1|))) $) 21)) (-2492 (($ (-626 $)) 56) (($ $ $) 55)) (-1857 (((-626 (-169)) $) 15)) (-2821 (((-626 (-936 |#1|)) $) 19)) (-2770 (((-626 (-626 (-169))) $) 16)) (-2052 (((-626 (-626 (-626 (-936 |#1|)))) $) 17)) (-3272 (((-626 (-626 (-626 (-755)))) $) 18)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-2950 (((-755) $ (-626 (-936 |#1|))) 50)) (-2746 (((-121) $) 38)) (-2857 (($ $ (-626 (-936 |#1|))) 42) (($ $ (-626 (-626 |#1|))) 41) (($ (-626 (-936 |#1|))) 40) (((-626 (-936 |#1|)) $) 39)) (-3806 (($) 60) (($ (-1141 3 |#1|)) 59)) (-2813 (($ $) 51)) (-2640 (((-626 $) $) 52)) (-2791 (($ (-626 $)) 54)) (-1970 (((-626 $) $) 53)) (-2801 (((-842) $) 11)) (-4028 (((-121) $) 33)) (-2529 (($ $ (-626 (-936 |#1|))) 37) (($ $ (-626 (-626 |#1|))) 36) (($ (-626 (-936 |#1|))) 35) (((-626 (-936 |#1|)) $) 34)) (-2229 (($ $) 13)) (-1653 (((-121) $ $) 6))) -(((-1114 |#1|) (-1267) (-1039)) (T -1114)) -((-2801 (*1 *2 *1) (-12 (-4 *1 (-1114 *3)) (-4 *3 (-1039)) (-5 *2 (-842)))) (-3806 (*1 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1039)))) (-3806 (*1 *1 *2) (-12 (-5 *2 (-1141 3 *3)) (-4 *3 (-1039)) (-4 *1 (-1114 *3)))) (-3684 (*1 *2 *1) (-12 (-4 *1 (-1114 *3)) (-4 *3 (-1039)) (-5 *2 (-755)))) (-2259 (*1 *2 *1) (-12 (-4 *1 (-1114 *3)) (-4 *3 (-1039)) (-5 *2 (-755)))) (-2492 (*1 *1 *2) (-12 (-5 *2 (-626 *1)) (-4 *1 (-1114 *3)) (-4 *3 (-1039)))) (-2492 (*1 *1 *1 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1039)))) (-2791 (*1 *1 *2) (-12 (-5 *2 (-626 *1)) (-4 *1 (-1114 *3)) (-4 *3 (-1039)))) (-1970 (*1 *2 *1) (-12 (-4 *3 (-1039)) (-5 *2 (-626 *1)) (-4 *1 (-1114 *3)))) (-2640 (*1 *2 *1) (-12 (-4 *3 (-1039)) (-5 *2 (-626 *1)) (-4 *1 (-1114 *3)))) (-2813 (*1 *1 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1039)))) (-2950 (*1 *2 *1 *3) (-12 (-5 *3 (-626 (-936 *4))) (-4 *1 (-1114 *4)) (-4 *4 (-1039)) (-5 *2 (-755)))) (-1545 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-755)) (-5 *3 (-936 *4)) (-4 *1 (-1114 *4)) (-4 *4 (-1039)))) (-4151 (*1 *1 *1 *2) (-12 (-5 *2 (-936 *3)) (-4 *1 (-1114 *3)) (-4 *3 (-1039)))) (-4151 (*1 *1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *1 (-1114 *3)) (-4 *3 (-1039)))) (-4151 (*1 *1 *1 *2) (-12 (-5 *2 (-755)) (-4 *1 (-1114 *3)) (-4 *3 (-1039)))) (-4151 (*1 *1 *2) (-12 (-5 *2 (-936 *3)) (-4 *3 (-1039)) (-4 *1 (-1114 *3)))) (-4151 (*1 *2 *1) (-12 (-4 *1 (-1114 *3)) (-4 *3 (-1039)) (-5 *2 (-936 *3)))) (-4117 (*1 *2 *1) (-12 (-4 *1 (-1114 *3)) (-4 *3 (-1039)) (-5 *2 (-121)))) (-2857 (*1 *1 *1 *2) (-12 (-5 *2 (-626 (-936 *3))) (-4 *1 (-1114 *3)) (-4 *3 (-1039)))) (-2857 (*1 *1 *1 *2) (-12 (-5 *2 (-626 (-626 *3))) (-4 *1 (-1114 *3)) (-4 *3 (-1039)))) (-2857 (*1 *1 *2) (-12 (-5 *2 (-626 (-936 *3))) (-4 *3 (-1039)) (-4 *1 (-1114 *3)))) (-2857 (*1 *2 *1) (-12 (-4 *1 (-1114 *3)) (-4 *3 (-1039)) (-5 *2 (-626 (-936 *3))))) (-2746 (*1 *2 *1) (-12 (-4 *1 (-1114 *3)) (-4 *3 (-1039)) (-5 *2 (-121)))) (-2529 (*1 *1 *1 *2) (-12 (-5 *2 (-626 (-936 *3))) (-4 *1 (-1114 *3)) (-4 *3 (-1039)))) (-2529 (*1 *1 *1 *2) (-12 (-5 *2 (-626 (-626 *3))) (-4 *1 (-1114 *3)) (-4 *3 (-1039)))) (-2529 (*1 *1 *2) (-12 (-5 *2 (-626 (-936 *3))) (-4 *3 (-1039)) (-4 *1 (-1114 *3)))) (-2529 (*1 *2 *1) (-12 (-4 *1 (-1114 *3)) (-4 *3 (-1039)) (-5 *2 (-626 (-936 *3))))) (-4028 (*1 *2 *1) (-12 (-4 *1 (-1114 *3)) (-4 *3 (-1039)) (-5 *2 (-121)))) (-2452 (*1 *1 *1 *2) (-12 (-5 *2 (-626 (-936 *3))) (-4 *1 (-1114 *3)) (-4 *3 (-1039)))) (-2452 (*1 *1 *1 *2) (-12 (-5 *2 (-626 (-626 *3))) (-4 *1 (-1114 *3)) (-4 *3 (-1039)))) (-2452 (*1 *1 *2) (-12 (-5 *2 (-626 (-936 *3))) (-4 *3 (-1039)) (-4 *1 (-1114 *3)))) (-2452 (*1 *2 *1) (-12 (-4 *1 (-1114 *3)) (-4 *3 (-1039)) (-5 *2 (-626 (-936 *3))))) (-1323 (*1 *2 *1) (-12 (-4 *1 (-1114 *3)) (-4 *3 (-1039)) (-5 *2 (-121)))) (-3222 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-626 (-626 (-936 *5)))) (-5 *3 (-626 (-169))) (-5 *4 (-169)) (-4 *1 (-1114 *5)) (-4 *5 (-1039)))) (-3222 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-626 (-626 (-626 *5)))) (-5 *3 (-626 (-169))) (-5 *4 (-169)) (-4 *1 (-1114 *5)) (-4 *5 (-1039)))) (-3222 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-626 (-626 (-936 *4)))) (-5 *3 (-121)) (-4 *1 (-1114 *4)) (-4 *4 (-1039)))) (-3222 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-626 (-626 (-626 *4)))) (-5 *3 (-121)) (-4 *1 (-1114 *4)) (-4 *4 (-1039)))) (-3222 (*1 *1 *2) (-12 (-5 *2 (-626 (-626 (-936 *3)))) (-4 *3 (-1039)) (-4 *1 (-1114 *3)))) (-3222 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-626 (-626 (-936 *4)))) (-5 *3 (-121)) (-4 *4 (-1039)) (-4 *1 (-1114 *4)))) (-3222 (*1 *2 *1) (-12 (-4 *1 (-1114 *3)) (-4 *3 (-1039)) (-5 *2 (-626 (-626 (-936 *3)))))) (-3046 (*1 *2 *1) (-12 (-4 *1 (-1114 *3)) (-4 *3 (-1039)) (-5 *2 (-121)))) (-2821 (*1 *2 *1) (-12 (-4 *1 (-1114 *3)) (-4 *3 (-1039)) (-5 *2 (-626 (-936 *3))))) (-3272 (*1 *2 *1) (-12 (-4 *1 (-1114 *3)) (-4 *3 (-1039)) (-5 *2 (-626 (-626 (-626 (-755))))))) (-2052 (*1 *2 *1) (-12 (-4 *1 (-1114 *3)) (-4 *3 (-1039)) (-5 *2 (-626 (-626 (-626 (-936 *3))))))) (-2770 (*1 *2 *1) (-12 (-4 *1 (-1114 *3)) (-4 *3 (-1039)) (-5 *2 (-626 (-626 (-169)))))) (-1857 (*1 *2 *1) (-12 (-4 *1 (-1114 *3)) (-4 *3 (-1039)) (-5 *2 (-626 (-169))))) (-1469 (*1 *2 *1) (-12 (-4 *1 (-1114 *3)) (-4 *3 (-1039)) (-5 *2 (-2 (|:| -1471 (-755)) (|:| |curves| (-755)) (|:| |polygons| (-755)) (|:| |constructs| (-755)))))) (-2229 (*1 *1 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1039)))) (-4391 (*1 *2 *1) (-12 (-4 *1 (-1114 *3)) (-4 *3 (-1039)) (-5 *2 (-1141 3 *3))))) -(-13 (-1082) (-10 -8 (-15 -3806 ($)) (-15 -3806 ($ (-1141 3 |t#1|))) (-15 -3684 ((-755) $)) (-15 -2259 ((-755) $)) (-15 -2492 ($ (-626 $))) (-15 -2492 ($ $ $)) (-15 -2791 ($ (-626 $))) (-15 -1970 ((-626 $) $)) (-15 -2640 ((-626 $) $)) (-15 -2813 ($ $)) (-15 -2950 ((-755) $ (-626 (-936 |t#1|)))) (-15 -1545 ($ $ (-755) (-936 |t#1|))) (-15 -4151 ($ $ (-936 |t#1|))) (-15 -4151 ($ $ (-626 |t#1|))) (-15 -4151 ($ $ (-755))) (-15 -4151 ($ (-936 |t#1|))) (-15 -4151 ((-936 |t#1|) $)) (-15 -4117 ((-121) $)) (-15 -2857 ($ $ (-626 (-936 |t#1|)))) (-15 -2857 ($ $ (-626 (-626 |t#1|)))) (-15 -2857 ($ (-626 (-936 |t#1|)))) (-15 -2857 ((-626 (-936 |t#1|)) $)) (-15 -2746 ((-121) $)) (-15 -2529 ($ $ (-626 (-936 |t#1|)))) (-15 -2529 ($ $ (-626 (-626 |t#1|)))) (-15 -2529 ($ (-626 (-936 |t#1|)))) (-15 -2529 ((-626 (-936 |t#1|)) $)) (-15 -4028 ((-121) $)) (-15 -2452 ($ $ (-626 (-936 |t#1|)))) (-15 -2452 ($ $ (-626 (-626 |t#1|)))) (-15 -2452 ($ (-626 (-936 |t#1|)))) (-15 -2452 ((-626 (-936 |t#1|)) $)) (-15 -1323 ((-121) $)) (-15 -3222 ($ $ (-626 (-626 (-936 |t#1|))) (-626 (-169)) (-169))) (-15 -3222 ($ $ (-626 (-626 (-626 |t#1|))) (-626 (-169)) (-169))) (-15 -3222 ($ $ (-626 (-626 (-936 |t#1|))) (-121) (-121))) (-15 -3222 ($ $ (-626 (-626 (-626 |t#1|))) (-121) (-121))) (-15 -3222 ($ (-626 (-626 (-936 |t#1|))))) (-15 -3222 ($ (-626 (-626 (-936 |t#1|))) (-121) (-121))) (-15 -3222 ((-626 (-626 (-936 |t#1|))) $)) (-15 -3046 ((-121) $)) (-15 -2821 ((-626 (-936 |t#1|)) $)) (-15 -3272 ((-626 (-626 (-626 (-755)))) $)) (-15 -2052 ((-626 (-626 (-626 (-936 |t#1|)))) $)) (-15 -2770 ((-626 (-626 (-169))) $)) (-15 -1857 ((-626 (-169)) $)) (-15 -1469 ((-2 (|:| -1471 (-755)) (|:| |curves| (-755)) (|:| |polygons| (-755)) (|:| |constructs| (-755))) $)) (-15 -2229 ($ $)) (-15 -4391 ((-1141 3 |t#1|) $)) (-15 -2801 ((-842) $)))) -(((-105) . T) ((-600 (-842)) . T) ((-1082) . T)) -((-2677 (((-1241) (-626 (-842))) 23) (((-1241) (-842)) 22)) (-4423 (((-1241) (-626 (-842))) 21) (((-1241) (-842)) 20)) (-2405 (((-1241) (-626 (-842))) 19) (((-1241) (-842)) 11) (((-1241) (-1135) (-842)) 17))) -(((-1115) (-10 -7 (-15 -2405 ((-1241) (-1135) (-842))) (-15 -2405 ((-1241) (-842))) (-15 -4423 ((-1241) (-842))) (-15 -2677 ((-1241) (-842))) (-15 -2405 ((-1241) (-626 (-842)))) (-15 -4423 ((-1241) (-626 (-842)))) (-15 -2677 ((-1241) (-626 (-842)))))) (T -1115)) -((-2677 (*1 *2 *3) (-12 (-5 *3 (-626 (-842))) (-5 *2 (-1241)) (-5 *1 (-1115)))) (-4423 (*1 *2 *3) (-12 (-5 *3 (-626 (-842))) (-5 *2 (-1241)) (-5 *1 (-1115)))) (-2405 (*1 *2 *3) (-12 (-5 *3 (-626 (-842))) (-5 *2 (-1241)) (-5 *1 (-1115)))) (-2677 (*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1241)) (-5 *1 (-1115)))) (-4423 (*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1241)) (-5 *1 (-1115)))) (-2405 (*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1241)) (-5 *1 (-1115)))) (-2405 (*1 *2 *3 *4) (-12 (-5 *3 (-1135)) (-5 *4 (-842)) (-5 *2 (-1241)) (-5 *1 (-1115))))) -(-10 -7 (-15 -2405 ((-1241) (-1135) (-842))) (-15 -2405 ((-1241) (-842))) (-15 -4423 ((-1241) (-842))) (-15 -2677 ((-1241) (-842))) (-15 -2405 ((-1241) (-626 (-842)))) (-15 -4423 ((-1241) (-626 (-842)))) (-15 -2677 ((-1241) (-626 (-842))))) -((-1941 (($ $ $) 10)) (-4098 (($ $) 9)) (-3777 (($ $ $) 13)) (-2993 (($ $ $) 15)) (-1870 (($ $ $) 12)) (-1502 (($ $ $) 14)) (-1616 (($ $) 17)) (-3974 (($ $) 16)) (-1822 (($ $) 6)) (-3227 (($ $ $) 11) (($ $) 7)) (-2002 (($ $ $) 8))) -(((-1116) (-1267)) (T -1116)) -((-1616 (*1 *1 *1) (-4 *1 (-1116))) (-3974 (*1 *1 *1) (-4 *1 (-1116))) (-2993 (*1 *1 *1 *1) (-4 *1 (-1116))) (-1502 (*1 *1 *1 *1) (-4 *1 (-1116))) (-3777 (*1 *1 *1 *1) (-4 *1 (-1116))) (-1870 (*1 *1 *1 *1) (-4 *1 (-1116))) (-3227 (*1 *1 *1 *1) (-4 *1 (-1116))) (-1941 (*1 *1 *1 *1) (-4 *1 (-1116))) (-4098 (*1 *1 *1) (-4 *1 (-1116))) (-2002 (*1 *1 *1 *1) (-4 *1 (-1116))) (-3227 (*1 *1 *1) (-4 *1 (-1116))) (-1822 (*1 *1 *1) (-4 *1 (-1116)))) -(-13 (-10 -8 (-15 -1822 ($ $)) (-15 -3227 ($ $)) (-15 -2002 ($ $ $)) (-15 -4098 ($ $)) (-15 -1941 ($ $ $)) (-15 -3227 ($ $ $)) (-15 -1870 ($ $ $)) (-15 -3777 ($ $ $)) (-15 -1502 ($ $ $)) (-15 -2993 ($ $ $)) (-15 -3974 ($ $)) (-15 -1616 ($ $)))) -((-2601 (((-121) $ $) 41)) (-2981 ((|#1| $) 15)) (-2293 (((-121) $ $ (-1 (-121) |#2| |#2|)) 36)) (-2632 (((-121) $) 17)) (-3555 (($ $ |#1|) 28)) (-4014 (($ $ (-121)) 30)) (-2270 (($ $) 31)) (-4323 (($ $ |#2|) 29)) (-1291 (((-1135) $) NIL)) (-2980 (((-121) $ $ (-1 (-121) |#1| |#1|) (-1 (-121) |#2| |#2|)) 35)) (-4353 (((-1100) $) NIL)) (-4191 (((-121) $) 14)) (-3260 (($) 10)) (-2813 (($ $) 27)) (-4162 (($ |#1| |#2| (-121)) 18) (($ |#1| |#2|) 19) (($ (-2 (|:| |val| |#1|) (|:| -3249 |#2|))) 21) (((-626 $) (-626 (-2 (|:| |val| |#1|) (|:| -3249 |#2|)))) 24) (((-626 $) |#1| (-626 |#2|)) 26)) (-2243 ((|#2| $) 16)) (-2801 (((-842) $) 50)) (-1653 (((-121) $ $) 39))) -(((-1117 |#1| |#2|) (-13 (-1082) (-10 -8 (-15 -3260 ($)) (-15 -4191 ((-121) $)) (-15 -2981 (|#1| $)) (-15 -2243 (|#2| $)) (-15 -2632 ((-121) $)) (-15 -4162 ($ |#1| |#2| (-121))) (-15 -4162 ($ |#1| |#2|)) (-15 -4162 ($ (-2 (|:| |val| |#1|) (|:| -3249 |#2|)))) (-15 -4162 ((-626 $) (-626 (-2 (|:| |val| |#1|) (|:| -3249 |#2|))))) (-15 -4162 ((-626 $) |#1| (-626 |#2|))) (-15 -2813 ($ $)) (-15 -3555 ($ $ |#1|)) (-15 -4323 ($ $ |#2|)) (-15 -4014 ($ $ (-121))) (-15 -2270 ($ $)) (-15 -2980 ((-121) $ $ (-1 (-121) |#1| |#1|) (-1 (-121) |#2| |#2|))) (-15 -2293 ((-121) $ $ (-1 (-121) |#2| |#2|))))) (-13 (-1082) (-39)) (-13 (-1082) (-39))) (T -1117)) -((-3260 (*1 *1) (-12 (-5 *1 (-1117 *2 *3)) (-4 *2 (-13 (-1082) (-39))) (-4 *3 (-13 (-1082) (-39))))) (-4191 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1117 *3 *4)) (-4 *3 (-13 (-1082) (-39))) (-4 *4 (-13 (-1082) (-39))))) (-2981 (*1 *2 *1) (-12 (-4 *2 (-13 (-1082) (-39))) (-5 *1 (-1117 *2 *3)) (-4 *3 (-13 (-1082) (-39))))) (-2243 (*1 *2 *1) (-12 (-4 *2 (-13 (-1082) (-39))) (-5 *1 (-1117 *3 *2)) (-4 *3 (-13 (-1082) (-39))))) (-2632 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1117 *3 *4)) (-4 *3 (-13 (-1082) (-39))) (-4 *4 (-13 (-1082) (-39))))) (-4162 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-121)) (-5 *1 (-1117 *2 *3)) (-4 *2 (-13 (-1082) (-39))) (-4 *3 (-13 (-1082) (-39))))) (-4162 (*1 *1 *2 *3) (-12 (-5 *1 (-1117 *2 *3)) (-4 *2 (-13 (-1082) (-39))) (-4 *3 (-13 (-1082) (-39))))) (-4162 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3249 *4))) (-4 *3 (-13 (-1082) (-39))) (-4 *4 (-13 (-1082) (-39))) (-5 *1 (-1117 *3 *4)))) (-4162 (*1 *2 *3) (-12 (-5 *3 (-626 (-2 (|:| |val| *4) (|:| -3249 *5)))) (-4 *4 (-13 (-1082) (-39))) (-4 *5 (-13 (-1082) (-39))) (-5 *2 (-626 (-1117 *4 *5))) (-5 *1 (-1117 *4 *5)))) (-4162 (*1 *2 *3 *4) (-12 (-5 *4 (-626 *5)) (-4 *5 (-13 (-1082) (-39))) (-5 *2 (-626 (-1117 *3 *5))) (-5 *1 (-1117 *3 *5)) (-4 *3 (-13 (-1082) (-39))))) (-2813 (*1 *1 *1) (-12 (-5 *1 (-1117 *2 *3)) (-4 *2 (-13 (-1082) (-39))) (-4 *3 (-13 (-1082) (-39))))) (-3555 (*1 *1 *1 *2) (-12 (-5 *1 (-1117 *2 *3)) (-4 *2 (-13 (-1082) (-39))) (-4 *3 (-13 (-1082) (-39))))) (-4323 (*1 *1 *1 *2) (-12 (-5 *1 (-1117 *3 *2)) (-4 *3 (-13 (-1082) (-39))) (-4 *2 (-13 (-1082) (-39))))) (-4014 (*1 *1 *1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-1117 *3 *4)) (-4 *3 (-13 (-1082) (-39))) (-4 *4 (-13 (-1082) (-39))))) (-2270 (*1 *1 *1) (-12 (-5 *1 (-1117 *2 *3)) (-4 *2 (-13 (-1082) (-39))) (-4 *3 (-13 (-1082) (-39))))) (-2980 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-121) *5 *5)) (-5 *4 (-1 (-121) *6 *6)) (-4 *5 (-13 (-1082) (-39))) (-4 *6 (-13 (-1082) (-39))) (-5 *2 (-121)) (-5 *1 (-1117 *5 *6)))) (-2293 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-121) *5 *5)) (-4 *5 (-13 (-1082) (-39))) (-5 *2 (-121)) (-5 *1 (-1117 *4 *5)) (-4 *4 (-13 (-1082) (-39)))))) -(-13 (-1082) (-10 -8 (-15 -3260 ($)) (-15 -4191 ((-121) $)) (-15 -2981 (|#1| $)) (-15 -2243 (|#2| $)) (-15 -2632 ((-121) $)) (-15 -4162 ($ |#1| |#2| (-121))) (-15 -4162 ($ |#1| |#2|)) (-15 -4162 ($ (-2 (|:| |val| |#1|) (|:| -3249 |#2|)))) (-15 -4162 ((-626 $) (-626 (-2 (|:| |val| |#1|) (|:| -3249 |#2|))))) (-15 -4162 ((-626 $) |#1| (-626 |#2|))) (-15 -2813 ($ $)) (-15 -3555 ($ $ |#1|)) (-15 -4323 ($ $ |#2|)) (-15 -4014 ($ $ (-121))) (-15 -2270 ($ $)) (-15 -2980 ((-121) $ $ (-1 (-121) |#1| |#1|) (-1 (-121) |#2| |#2|))) (-15 -2293 ((-121) $ $ (-1 (-121) |#2| |#2|))))) -((-2601 (((-121) $ $) NIL (|has| (-1117 |#1| |#2|) (-1082)))) (-2981 (((-1117 |#1| |#2|) $) 25)) (-2661 (($ $) 75)) (-2298 (((-121) (-1117 |#1| |#2|) $ (-1 (-121) |#2| |#2|)) 84)) (-2589 (($ $ $ (-626 (-1117 |#1| |#2|))) 89) (($ $ $ (-626 (-1117 |#1| |#2|)) (-1 (-121) |#2| |#2|)) 90)) (-3909 (((-121) $ (-755)) NIL)) (-3119 (((-1117 |#1| |#2|) $ (-1117 |#1| |#2|)) 42 (|has| $ (-6 -4506)))) (-2764 (((-1117 |#1| |#2|) $ "value" (-1117 |#1| |#2|)) NIL (|has| $ (-6 -4506)))) (-4043 (($ $ (-626 $)) 40 (|has| $ (-6 -4506)))) (-4236 (($) NIL T CONST)) (-2249 (((-626 (-2 (|:| |val| |#1|) (|:| -3249 |#2|))) $) 79)) (-3561 (($ (-1117 |#1| |#2|) $) 38)) (-4310 (($ (-1117 |#1| |#2|) $) 30)) (-1981 (((-626 (-1117 |#1| |#2|)) $) NIL (|has| $ (-6 -4505)))) (-3971 (((-626 $) $) 50)) (-4282 (((-121) (-1117 |#1| |#2|) $) 81)) (-2420 (((-121) $ $) NIL (|has| (-1117 |#1| |#2|) (-1082)))) (-2122 (((-121) $ (-755)) NIL)) (-2130 (((-626 (-1117 |#1| |#2|)) $) 54 (|has| $ (-6 -4505)))) (-2030 (((-121) (-1117 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-1117 |#1| |#2|) (-1082))))) (-3778 (($ (-1 (-1117 |#1| |#2|) (-1117 |#1| |#2|)) $) 46 (|has| $ (-6 -4506)))) (-2803 (($ (-1 (-1117 |#1| |#2|) (-1117 |#1| |#2|)) $) 45)) (-3441 (((-121) $ (-755)) NIL)) (-2173 (((-626 (-1117 |#1| |#2|)) $) 52)) (-3992 (((-121) $) 41)) (-1291 (((-1135) $) NIL (|has| (-1117 |#1| |#2|) (-1082)))) (-4353 (((-1100) $) NIL (|has| (-1117 |#1| |#2|) (-1082)))) (-2414 (((-3 $ "failed") $) 74)) (-2865 (((-121) (-1 (-121) (-1117 |#1| |#2|)) $) NIL (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 (-1117 |#1| |#2|)))) NIL (-12 (|has| (-1117 |#1| |#2|) (-298 (-1117 |#1| |#2|))) (|has| (-1117 |#1| |#2|) (-1082)))) (($ $ (-283 (-1117 |#1| |#2|))) NIL (-12 (|has| (-1117 |#1| |#2|) (-298 (-1117 |#1| |#2|))) (|has| (-1117 |#1| |#2|) (-1082)))) (($ $ (-1117 |#1| |#2|) (-1117 |#1| |#2|)) NIL (-12 (|has| (-1117 |#1| |#2|) (-298 (-1117 |#1| |#2|))) (|has| (-1117 |#1| |#2|) (-1082)))) (($ $ (-626 (-1117 |#1| |#2|)) (-626 (-1117 |#1| |#2|))) NIL (-12 (|has| (-1117 |#1| |#2|) (-298 (-1117 |#1| |#2|))) (|has| (-1117 |#1| |#2|) (-1082))))) (-2214 (((-121) $ $) 49)) (-4191 (((-121) $) 22)) (-3260 (($) 24)) (-2778 (((-1117 |#1| |#2|) $ "value") NIL)) (-1435 (((-560) $ $) NIL)) (-3316 (((-121) $) 43)) (-4035 (((-755) (-1 (-121) (-1117 |#1| |#2|)) $) NIL (|has| $ (-6 -4505))) (((-755) (-1117 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-1117 |#1| |#2|) (-1082))))) (-2813 (($ $) 48)) (-4162 (($ (-1117 |#1| |#2|)) 9) (($ |#1| |#2| (-626 $)) 12) (($ |#1| |#2| (-626 (-1117 |#1| |#2|))) 14) (($ |#1| |#2| |#1| (-626 |#2|)) 17)) (-2810 (((-626 |#2|) $) 80)) (-2801 (((-842) $) 72 (|has| (-1117 |#1| |#2|) (-1082)))) (-2853 (((-626 $) $) 28)) (-3761 (((-121) $ $) NIL (|has| (-1117 |#1| |#2|) (-1082)))) (-3656 (((-121) (-1 (-121) (-1117 |#1| |#2|)) $) NIL (|has| $ (-6 -4505)))) (-1653 (((-121) $ $) 63 (|has| (-1117 |#1| |#2|) (-1082)))) (-2271 (((-755) $) 57 (|has| $ (-6 -4505))))) -(((-1118 |#1| |#2|) (-13 (-1002 (-1117 |#1| |#2|)) (-10 -8 (-6 -4506) (-6 -4505) (-15 -2414 ((-3 $ "failed") $)) (-15 -2661 ($ $)) (-15 -4162 ($ (-1117 |#1| |#2|))) (-15 -4162 ($ |#1| |#2| (-626 $))) (-15 -4162 ($ |#1| |#2| (-626 (-1117 |#1| |#2|)))) (-15 -4162 ($ |#1| |#2| |#1| (-626 |#2|))) (-15 -2810 ((-626 |#2|) $)) (-15 -2249 ((-626 (-2 (|:| |val| |#1|) (|:| -3249 |#2|))) $)) (-15 -4282 ((-121) (-1117 |#1| |#2|) $)) (-15 -2298 ((-121) (-1117 |#1| |#2|) $ (-1 (-121) |#2| |#2|))) (-15 -4310 ($ (-1117 |#1| |#2|) $)) (-15 -3561 ($ (-1117 |#1| |#2|) $)) (-15 -2589 ($ $ $ (-626 (-1117 |#1| |#2|)))) (-15 -2589 ($ $ $ (-626 (-1117 |#1| |#2|)) (-1 (-121) |#2| |#2|))))) (-13 (-1082) (-39)) (-13 (-1082) (-39))) (T -1118)) -((-2414 (*1 *1 *1) (|partial| -12 (-5 *1 (-1118 *2 *3)) (-4 *2 (-13 (-1082) (-39))) (-4 *3 (-13 (-1082) (-39))))) (-2661 (*1 *1 *1) (-12 (-5 *1 (-1118 *2 *3)) (-4 *2 (-13 (-1082) (-39))) (-4 *3 (-13 (-1082) (-39))))) (-4162 (*1 *1 *2) (-12 (-5 *2 (-1117 *3 *4)) (-4 *3 (-13 (-1082) (-39))) (-4 *4 (-13 (-1082) (-39))) (-5 *1 (-1118 *3 *4)))) (-4162 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-626 (-1118 *2 *3))) (-5 *1 (-1118 *2 *3)) (-4 *2 (-13 (-1082) (-39))) (-4 *3 (-13 (-1082) (-39))))) (-4162 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-626 (-1117 *2 *3))) (-4 *2 (-13 (-1082) (-39))) (-4 *3 (-13 (-1082) (-39))) (-5 *1 (-1118 *2 *3)))) (-4162 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-626 *3)) (-4 *3 (-13 (-1082) (-39))) (-5 *1 (-1118 *2 *3)) (-4 *2 (-13 (-1082) (-39))))) (-2810 (*1 *2 *1) (-12 (-5 *2 (-626 *4)) (-5 *1 (-1118 *3 *4)) (-4 *3 (-13 (-1082) (-39))) (-4 *4 (-13 (-1082) (-39))))) (-2249 (*1 *2 *1) (-12 (-5 *2 (-626 (-2 (|:| |val| *3) (|:| -3249 *4)))) (-5 *1 (-1118 *3 *4)) (-4 *3 (-13 (-1082) (-39))) (-4 *4 (-13 (-1082) (-39))))) (-4282 (*1 *2 *3 *1) (-12 (-5 *3 (-1117 *4 *5)) (-4 *4 (-13 (-1082) (-39))) (-4 *5 (-13 (-1082) (-39))) (-5 *2 (-121)) (-5 *1 (-1118 *4 *5)))) (-2298 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1117 *5 *6)) (-5 *4 (-1 (-121) *6 *6)) (-4 *5 (-13 (-1082) (-39))) (-4 *6 (-13 (-1082) (-39))) (-5 *2 (-121)) (-5 *1 (-1118 *5 *6)))) (-4310 (*1 *1 *2 *1) (-12 (-5 *2 (-1117 *3 *4)) (-4 *3 (-13 (-1082) (-39))) (-4 *4 (-13 (-1082) (-39))) (-5 *1 (-1118 *3 *4)))) (-3561 (*1 *1 *2 *1) (-12 (-5 *2 (-1117 *3 *4)) (-4 *3 (-13 (-1082) (-39))) (-4 *4 (-13 (-1082) (-39))) (-5 *1 (-1118 *3 *4)))) (-2589 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-626 (-1117 *3 *4))) (-4 *3 (-13 (-1082) (-39))) (-4 *4 (-13 (-1082) (-39))) (-5 *1 (-1118 *3 *4)))) (-2589 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-626 (-1117 *4 *5))) (-5 *3 (-1 (-121) *5 *5)) (-4 *4 (-13 (-1082) (-39))) (-4 *5 (-13 (-1082) (-39))) (-5 *1 (-1118 *4 *5))))) -(-13 (-1002 (-1117 |#1| |#2|)) (-10 -8 (-6 -4506) (-6 -4505) (-15 -2414 ((-3 $ "failed") $)) (-15 -2661 ($ $)) (-15 -4162 ($ (-1117 |#1| |#2|))) (-15 -4162 ($ |#1| |#2| (-626 $))) (-15 -4162 ($ |#1| |#2| (-626 (-1117 |#1| |#2|)))) (-15 -4162 ($ |#1| |#2| |#1| (-626 |#2|))) (-15 -2810 ((-626 |#2|) $)) (-15 -2249 ((-626 (-2 (|:| |val| |#1|) (|:| -3249 |#2|))) $)) (-15 -4282 ((-121) (-1117 |#1| |#2|) $)) (-15 -2298 ((-121) (-1117 |#1| |#2|) $ (-1 (-121) |#2| |#2|))) (-15 -4310 ($ (-1117 |#1| |#2|) $)) (-15 -3561 ($ (-1117 |#1| |#2|) $)) (-15 -2589 ($ $ $ (-626 (-1117 |#1| |#2|)))) (-15 -2589 ($ $ $ (-626 (-1117 |#1| |#2|)) (-1 (-121) |#2| |#2|))))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-1638 (($ $) NIL)) (-1944 ((|#2| $) NIL)) (-3839 (((-121) $) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-3029 (($ (-671 |#2|)) 45)) (-1915 (((-121) $) NIL)) (-3909 (((-121) $ (-755)) NIL)) (-2366 (($ |#2|) 9)) (-4236 (($) NIL T CONST)) (-1439 (($ $) 58 (|has| |#2| (-296)))) (-4097 (((-228 |#1| |#2|) $ (-560)) 31)) (-1473 (((-3 (-560) "failed") $) NIL (|has| |#2| (-1029 (-560)))) (((-3 (-403 (-560)) "failed") $) NIL (|has| |#2| (-1029 (-403 (-560))))) (((-3 |#2| "failed") $) NIL)) (-3001 (((-560) $) NIL (|has| |#2| (-1029 (-560)))) (((-403 (-560)) $) NIL (|has| |#2| (-1029 (-403 (-560))))) ((|#2| $) NIL)) (-2616 (((-671 (-560)) (-671 $)) NIL (|has| |#2| (-622 (-560)))) (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) NIL (|has| |#2| (-622 (-560)))) (((-2 (|:| -3818 (-671 |#2|)) (|:| |vec| (-1236 |#2|))) (-671 $) (-1236 $)) NIL) (((-671 |#2|) (-671 $)) NIL)) (-1823 (((-3 $ "failed") $) 72)) (-3143 (((-755) $) 60 (|has| |#2| (-550)))) (-1361 ((|#2| $ (-560) (-560)) NIL)) (-1981 (((-626 |#2|) $) NIL (|has| $ (-6 -4505)))) (-2642 (((-121) $) NIL)) (-3436 (((-755) $) 62 (|has| |#2| (-550)))) (-3700 (((-626 (-228 |#1| |#2|)) $) 66 (|has| |#2| (-550)))) (-1454 (((-755) $) NIL)) (-2634 (((-755) $) NIL)) (-2122 (((-121) $ (-755)) NIL)) (-3826 ((|#2| $) 56 (|has| |#2| (-6 (-4507 "*"))))) (-2984 (((-560) $) NIL)) (-1994 (((-560) $) NIL)) (-2130 (((-626 |#2|) $) NIL (|has| $ (-6 -4505)))) (-2030 (((-121) |#2| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#2| (-1082))))) (-3755 (((-560) $) NIL)) (-1420 (((-560) $) NIL)) (-3851 (($ (-626 (-626 |#2|))) 26)) (-3778 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-2184 (((-626 (-626 |#2|)) $) NIL)) (-3441 (((-121) $ (-755)) NIL)) (-1291 (((-1135) $) NIL)) (-3257 (((-3 $ "failed") $) 69 (|has| |#2| (-359)))) (-4353 (((-1100) $) NIL)) (-2336 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-550)))) (-2865 (((-121) (-1 (-121) |#2|) $) NIL (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#2|))) NIL (-12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082)))) (($ $ (-283 |#2|)) NIL (-12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082)))) (($ $ (-626 |#2|) (-626 |#2|)) NIL (-12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082))))) (-2214 (((-121) $ $) NIL)) (-4191 (((-121) $) NIL)) (-3260 (($) NIL)) (-2778 ((|#2| $ (-560) (-560) |#2|) NIL) ((|#2| $ (-560) (-560)) NIL)) (-2443 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-755)) NIL) (($ $ (-626 (-1153)) (-626 (-755))) NIL (|has| |#2| (-887 (-1153)))) (($ $ (-1153) (-755)) NIL (|has| |#2| (-887 (-1153)))) (($ $ (-626 (-1153))) NIL (|has| |#2| (-887 (-1153)))) (($ $ (-1153)) NIL (|has| |#2| (-887 (-1153)))) (($ $ (-755)) NIL (|has| |#2| (-221))) (($ $) NIL (|has| |#2| (-221)))) (-1462 ((|#2| $) NIL)) (-3328 (($ (-626 |#2|)) 40)) (-3185 (((-121) $) NIL)) (-2978 (((-228 |#1| |#2|) $) NIL)) (-1708 ((|#2| $) 54 (|has| |#2| (-6 (-4507 "*"))))) (-4035 (((-755) (-1 (-121) |#2|) $) NIL (|has| $ (-6 -4505))) (((-755) |#2| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#2| (-1082))))) (-2813 (($ $) NIL)) (-4255 (((-533) $) 81 (|has| |#2| (-601 (-533))))) (-3677 (((-228 |#1| |#2|) $ (-560)) 33)) (-2801 (((-842) $) 36) (($ (-560)) NIL) (($ (-403 (-560))) NIL (|has| |#2| (-1029 (-403 (-560))))) (($ |#2|) NIL) (((-671 |#2|) $) 42)) (-1751 (((-755)) 17)) (-3656 (((-121) (-1 (-121) |#2|) $) NIL (|has| $ (-6 -4505)))) (-3298 (((-121) $) NIL)) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (-3304 (($) 11 T CONST)) (-1459 (($) 14 T CONST)) (-2500 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-755)) NIL) (($ $ (-626 (-1153)) (-626 (-755))) NIL (|has| |#2| (-887 (-1153)))) (($ $ (-1153) (-755)) NIL (|has| |#2| (-887 (-1153)))) (($ $ (-626 (-1153))) NIL (|has| |#2| (-887 (-1153)))) (($ $ (-1153)) NIL (|has| |#2| (-887 (-1153)))) (($ $ (-755)) NIL (|has| |#2| (-221))) (($ $) NIL (|has| |#2| (-221)))) (-1653 (((-121) $ $) NIL)) (-1733 (($ $ |#2|) NIL (|has| |#2| (-359)))) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) NIL)) (** (($ $ (-909)) NIL) (($ $ (-755)) 52) (($ $ (-560)) 71 (|has| |#2| (-359)))) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-228 |#1| |#2|) $ (-228 |#1| |#2|)) 48) (((-228 |#1| |#2|) (-228 |#1| |#2|) $) 50)) (-2271 (((-755) $) NIL (|has| $ (-6 -4505))))) -(((-1119 |#1| |#2|) (-13 (-1103 |#1| |#2| (-228 |#1| |#2|) (-228 |#1| |#2|)) (-600 (-671 |#2|)) (-10 -8 (-15 -1638 ($ $)) (-15 -3029 ($ (-671 |#2|))) (-15 -2801 ((-671 |#2|) $)) (IF (|has| |#2| (-6 (-4507 "*"))) (-6 -4494) |noBranch|) (IF (|has| |#2| (-6 (-4507 "*"))) (IF (|has| |#2| (-6 -4502)) (-6 -4502) |noBranch|) |noBranch|) (IF (|has| |#2| (-601 (-533))) (-6 (-601 (-533))) |noBranch|))) (-755) (-1039)) (T -1119)) -((-2801 (*1 *2 *1) (-12 (-5 *2 (-671 *4)) (-5 *1 (-1119 *3 *4)) (-14 *3 (-755)) (-4 *4 (-1039)))) (-1638 (*1 *1 *1) (-12 (-5 *1 (-1119 *2 *3)) (-14 *2 (-755)) (-4 *3 (-1039)))) (-3029 (*1 *1 *2) (-12 (-5 *2 (-671 *4)) (-4 *4 (-1039)) (-5 *1 (-1119 *3 *4)) (-14 *3 (-755))))) -(-13 (-1103 |#1| |#2| (-228 |#1| |#2|) (-228 |#1| |#2|)) (-600 (-671 |#2|)) (-10 -8 (-15 -1638 ($ $)) (-15 -3029 ($ (-671 |#2|))) (-15 -2801 ((-671 |#2|) $)) (IF (|has| |#2| (-6 (-4507 "*"))) (-6 -4494) |noBranch|) (IF (|has| |#2| (-6 (-4507 "*"))) (IF (|has| |#2| (-6 -4502)) (-6 -4502) |noBranch|) |noBranch|) (IF (|has| |#2| (-601 (-533))) (-6 (-601 (-533))) |noBranch|))) -((-4010 (($ $) 19)) (-2486 (($ $ (-145)) 10) (($ $ (-142)) 14)) (-3848 (((-121) $ $) 24)) (-1379 (($ $) 17)) (-2778 (((-145) $ (-560) (-145)) NIL) (((-145) $ (-560)) NIL) (($ $ (-1202 (-560))) NIL) (($ $ $) 29)) (-2801 (($ (-145)) 27) (((-842) $) NIL))) -(((-1120 |#1|) (-10 -8 (-15 -2801 ((-842) |#1|)) (-15 -2778 (|#1| |#1| |#1|)) (-15 -2486 (|#1| |#1| (-142))) (-15 -2486 (|#1| |#1| (-145))) (-15 -2801 (|#1| (-145))) (-15 -3848 ((-121) |#1| |#1|)) (-15 -4010 (|#1| |#1|)) (-15 -1379 (|#1| |#1|)) (-15 -2778 (|#1| |#1| (-1202 (-560)))) (-15 -2778 ((-145) |#1| (-560))) (-15 -2778 ((-145) |#1| (-560) (-145)))) (-1121)) (T -1120)) -NIL -(-10 -8 (-15 -2801 ((-842) |#1|)) (-15 -2778 (|#1| |#1| |#1|)) (-15 -2486 (|#1| |#1| (-142))) (-15 -2486 (|#1| |#1| (-145))) (-15 -2801 (|#1| (-145))) (-15 -3848 ((-121) |#1| |#1|)) (-15 -4010 (|#1| |#1|)) (-15 -1379 (|#1| |#1|)) (-15 -2778 (|#1| |#1| (-1202 (-560)))) (-15 -2778 ((-145) |#1| (-560))) (-15 -2778 ((-145) |#1| (-560) (-145)))) -((-2601 (((-121) $ $) 18 (|has| (-145) (-1082)))) (-4454 (($ $) 113)) (-4010 (($ $) 114)) (-2486 (($ $ (-145)) 101) (($ $ (-142)) 100)) (-2960 (((-1241) $ (-560) (-560)) 37 (|has| $ (-6 -4506)))) (-3762 (((-121) $ $) 111)) (-3842 (((-121) $ $ (-560)) 110)) (-2437 (((-626 $) $ (-145)) 103) (((-626 $) $ (-142)) 102)) (-3189 (((-121) (-1 (-121) (-145) (-145)) $) 91) (((-121) $) 85 (|has| (-145) (-834)))) (-4410 (($ (-1 (-121) (-145) (-145)) $) 82 (|has| $ (-6 -4506))) (($ $) 81 (-12 (|has| (-145) (-834)) (|has| $ (-6 -4506))))) (-3743 (($ (-1 (-121) (-145) (-145)) $) 92) (($ $) 86 (|has| (-145) (-834)))) (-3909 (((-121) $ (-755)) 8)) (-2764 (((-145) $ (-560) (-145)) 49 (|has| $ (-6 -4506))) (((-145) $ (-1202 (-560)) (-145)) 53 (|has| $ (-6 -4506)))) (-3802 (($ (-1 (-121) (-145)) $) 70 (|has| $ (-6 -4505)))) (-4236 (($) 7 T CONST)) (-1851 (($ $ (-145)) 97) (($ $ (-142)) 96)) (-4030 (($ $) 83 (|has| $ (-6 -4506)))) (-2883 (($ $) 93)) (-2493 (($ $ (-1202 (-560)) $) 107)) (-2868 (($ $) 73 (-12 (|has| (-145) (-1082)) (|has| $ (-6 -4505))))) (-4310 (($ (-145) $) 72 (-12 (|has| (-145) (-1082)) (|has| $ (-6 -4505)))) (($ (-1 (-121) (-145)) $) 69 (|has| $ (-6 -4505)))) (-2342 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) 71 (-12 (|has| (-145) (-1082)) (|has| $ (-6 -4505)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) 68 (|has| $ (-6 -4505))) (((-145) (-1 (-145) (-145) (-145)) $) 67 (|has| $ (-6 -4505)))) (-1746 (((-145) $ (-560) (-145)) 50 (|has| $ (-6 -4506)))) (-1361 (((-145) $ (-560)) 48)) (-3848 (((-121) $ $) 112)) (-2839 (((-560) (-1 (-121) (-145)) $) 90) (((-560) (-145) $) 89 (|has| (-145) (-1082))) (((-560) (-145) $ (-560)) 88 (|has| (-145) (-1082))) (((-560) $ $ (-560)) 106) (((-560) (-142) $ (-560)) 105)) (-1981 (((-626 (-145)) $) 30 (|has| $ (-6 -4505)))) (-1721 (($ (-755) (-145)) 64)) (-2122 (((-121) $ (-755)) 9)) (-4099 (((-560) $) 40 (|has| (-560) (-834)))) (-4325 (($ $ $) 80 (|has| (-145) (-834)))) (-2492 (($ (-1 (-121) (-145) (-145)) $ $) 94) (($ $ $) 87 (|has| (-145) (-834)))) (-2130 (((-626 (-145)) $) 29 (|has| $ (-6 -4505)))) (-2030 (((-121) (-145) $) 27 (-12 (|has| (-145) (-1082)) (|has| $ (-6 -4505))))) (-2767 (((-560) $) 41 (|has| (-560) (-834)))) (-2501 (($ $ $) 79 (|has| (-145) (-834)))) (-4040 (((-121) $ $ (-145)) 108)) (-2840 (((-755) $ $ (-145)) 109)) (-3778 (($ (-1 (-145) (-145)) $) 34 (|has| $ (-6 -4506)))) (-2803 (($ (-1 (-145) (-145)) $) 35) (($ (-1 (-145) (-145) (-145)) $ $) 59)) (-1521 (($ $) 115)) (-1379 (($ $) 116)) (-3441 (((-121) $ (-755)) 10)) (-3574 (($ $ (-145)) 99) (($ $ (-142)) 98)) (-1291 (((-1135) $) 22 (|has| (-145) (-1082)))) (-4103 (($ (-145) $ (-560)) 55) (($ $ $ (-560)) 54)) (-1529 (((-626 (-560)) $) 43)) (-1310 (((-121) (-560) $) 44)) (-4353 (((-1100) $) 21 (|has| (-145) (-1082)))) (-2824 (((-145) $) 39 (|has| (-560) (-834)))) (-3786 (((-3 (-145) "failed") (-1 (-121) (-145)) $) 66)) (-3038 (($ $ (-145)) 38 (|has| $ (-6 -4506)))) (-2865 (((-121) (-1 (-121) (-145)) $) 32 (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 (-145)))) 26 (-12 (|has| (-145) (-298 (-145))) (|has| (-145) (-1082)))) (($ $ (-283 (-145))) 25 (-12 (|has| (-145) (-298 (-145))) (|has| (-145) (-1082)))) (($ $ (-145) (-145)) 24 (-12 (|has| (-145) (-298 (-145))) (|has| (-145) (-1082)))) (($ $ (-626 (-145)) (-626 (-145))) 23 (-12 (|has| (-145) (-298 (-145))) (|has| (-145) (-1082))))) (-2214 (((-121) $ $) 14)) (-1290 (((-121) (-145) $) 42 (-12 (|has| $ (-6 -4505)) (|has| (-145) (-1082))))) (-4460 (((-626 (-145)) $) 45)) (-4191 (((-121) $) 11)) (-3260 (($) 12)) (-2778 (((-145) $ (-560) (-145)) 47) (((-145) $ (-560)) 46) (($ $ (-1202 (-560))) 58) (($ $ $) 95)) (-2949 (($ $ (-560)) 57) (($ $ (-1202 (-560))) 56)) (-4035 (((-755) (-1 (-121) (-145)) $) 31 (|has| $ (-6 -4505))) (((-755) (-145) $) 28 (-12 (|has| (-145) (-1082)) (|has| $ (-6 -4505))))) (-4072 (($ $ $ (-560)) 84 (|has| $ (-6 -4506)))) (-2813 (($ $) 13)) (-4255 (((-533) $) 74 (|has| (-145) (-601 (-533))))) (-4162 (($ (-626 (-145))) 65)) (-2849 (($ $ (-145)) 63) (($ (-145) $) 62) (($ $ $) 61) (($ (-626 $)) 60)) (-2801 (($ (-145)) 104) (((-842) $) 20 (|has| (-145) (-1082)))) (-3656 (((-121) (-1 (-121) (-145)) $) 33 (|has| $ (-6 -4505)))) (-1691 (((-121) $ $) 77 (|has| (-145) (-834)))) (-1675 (((-121) $ $) 76 (|has| (-145) (-834)))) (-1653 (((-121) $ $) 19 (|has| (-145) (-1082)))) (-1683 (((-121) $ $) 78 (|has| (-145) (-834)))) (-1667 (((-121) $ $) 75 (|has| (-145) (-834)))) (-2271 (((-755) $) 6 (|has| $ (-6 -4505))))) -(((-1121) (-1267)) (T -1121)) -((-1379 (*1 *1 *1) (-4 *1 (-1121))) (-1521 (*1 *1 *1) (-4 *1 (-1121))) (-4010 (*1 *1 *1) (-4 *1 (-1121))) (-4454 (*1 *1 *1) (-4 *1 (-1121))) (-3848 (*1 *2 *1 *1) (-12 (-4 *1 (-1121)) (-5 *2 (-121)))) (-3762 (*1 *2 *1 *1) (-12 (-4 *1 (-1121)) (-5 *2 (-121)))) (-3842 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1121)) (-5 *3 (-560)) (-5 *2 (-121)))) (-2840 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1121)) (-5 *3 (-145)) (-5 *2 (-755)))) (-4040 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1121)) (-5 *3 (-145)) (-5 *2 (-121)))) (-2493 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1121)) (-5 *2 (-1202 (-560))))) (-2839 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1121)) (-5 *2 (-560)))) (-2839 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1121)) (-5 *2 (-560)) (-5 *3 (-142)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-145)) (-4 *1 (-1121)))) (-2437 (*1 *2 *1 *3) (-12 (-5 *3 (-145)) (-5 *2 (-626 *1)) (-4 *1 (-1121)))) (-2437 (*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-626 *1)) (-4 *1 (-1121)))) (-2486 (*1 *1 *1 *2) (-12 (-4 *1 (-1121)) (-5 *2 (-145)))) (-2486 (*1 *1 *1 *2) (-12 (-4 *1 (-1121)) (-5 *2 (-142)))) (-3574 (*1 *1 *1 *2) (-12 (-4 *1 (-1121)) (-5 *2 (-145)))) (-3574 (*1 *1 *1 *2) (-12 (-4 *1 (-1121)) (-5 *2 (-142)))) (-1851 (*1 *1 *1 *2) (-12 (-4 *1 (-1121)) (-5 *2 (-145)))) (-1851 (*1 *1 *1 *2) (-12 (-4 *1 (-1121)) (-5 *2 (-142)))) (-2778 (*1 *1 *1 *1) (-4 *1 (-1121)))) -(-13 (-19 (-145)) (-10 -8 (-15 -1379 ($ $)) (-15 -1521 ($ $)) (-15 -4010 ($ $)) (-15 -4454 ($ $)) (-15 -3848 ((-121) $ $)) (-15 -3762 ((-121) $ $)) (-15 -3842 ((-121) $ $ (-560))) (-15 -2840 ((-755) $ $ (-145))) (-15 -4040 ((-121) $ $ (-145))) (-15 -2493 ($ $ (-1202 (-560)) $)) (-15 -2839 ((-560) $ $ (-560))) (-15 -2839 ((-560) (-142) $ (-560))) (-15 -2801 ($ (-145))) (-15 -2437 ((-626 $) $ (-145))) (-15 -2437 ((-626 $) $ (-142))) (-15 -2486 ($ $ (-145))) (-15 -2486 ($ $ (-142))) (-15 -3574 ($ $ (-145))) (-15 -3574 ($ $ (-142))) (-15 -1851 ($ $ (-145))) (-15 -1851 ($ $ (-142))) (-15 -2778 ($ $ $)))) -(((-39) . T) ((-105) -2318 (|has| (-145) (-1082)) (|has| (-145) (-834))) ((-600 (-842)) -2318 (|has| (-145) (-1082)) (|has| (-145) (-834))) ((-152 (-145)) . T) ((-601 (-533)) |has| (-145) (-601 (-533))) ((-276 (-560) (-145)) . T) ((-278 (-560) (-145)) . T) ((-298 (-145)) -12 (|has| (-145) (-298 (-145))) (|has| (-145) (-1082))) ((-369 (-145)) . T) ((-492 (-145)) . T) ((-593 (-560) (-145)) . T) ((-515 (-145) (-145)) -12 (|has| (-145) (-298 (-145))) (|has| (-145) (-1082))) ((-632 (-145)) . T) ((-19 (-145)) . T) ((-834) |has| (-145) (-834)) ((-1082) -2318 (|has| (-145) (-1082)) (|has| (-145) (-834))) ((-1187) . T)) -((-1806 (((-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))) (-626 |#4|) (-626 |#5|) (-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))) (-2 (|:| |done| (-626 |#5|)) (|:| |todo| (-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))))) (-755)) 93)) (-3468 (((-2 (|:| |done| (-626 |#5|)) (|:| |todo| (-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))))) |#4| |#5|) 54) (((-2 (|:| |done| (-626 |#5|)) (|:| |todo| (-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))))) |#4| |#5| (-755)) 53)) (-1269 (((-1241) (-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))) (-755)) 85)) (-1624 (((-755) (-626 |#4|) (-626 |#5|)) 27)) (-3083 (((-2 (|:| |done| (-626 |#5|)) (|:| |todo| (-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))))) |#4| |#5|) 56) (((-2 (|:| |done| (-626 |#5|)) (|:| |todo| (-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))))) |#4| |#5| (-755)) 55) (((-2 (|:| |done| (-626 |#5|)) (|:| |todo| (-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))))) |#4| |#5| (-755) (-121)) 57)) (-1636 (((-626 |#5|) (-626 |#4|) (-626 |#5|) (-121) (-121) (-121) (-121) (-121)) 76) (((-626 |#5|) (-626 |#4|) (-626 |#5|) (-121) (-121)) 77)) (-4255 (((-1135) (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))) 80)) (-2517 (((-2 (|:| |done| (-626 |#5|)) (|:| |todo| (-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))))) |#4| |#5|) 52)) (-1934 (((-755) (-626 |#4|) (-626 |#5|)) 19))) -(((-1122 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1934 ((-755) (-626 |#4|) (-626 |#5|))) (-15 -1624 ((-755) (-626 |#4|) (-626 |#5|))) (-15 -2517 ((-2 (|:| |done| (-626 |#5|)) (|:| |todo| (-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))))) |#4| |#5|)) (-15 -3468 ((-2 (|:| |done| (-626 |#5|)) (|:| |todo| (-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))))) |#4| |#5| (-755))) (-15 -3468 ((-2 (|:| |done| (-626 |#5|)) (|:| |todo| (-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))))) |#4| |#5|)) (-15 -3083 ((-2 (|:| |done| (-626 |#5|)) (|:| |todo| (-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))))) |#4| |#5| (-755) (-121))) (-15 -3083 ((-2 (|:| |done| (-626 |#5|)) (|:| |todo| (-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))))) |#4| |#5| (-755))) (-15 -3083 ((-2 (|:| |done| (-626 |#5|)) (|:| |todo| (-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))))) |#4| |#5|)) (-15 -1636 ((-626 |#5|) (-626 |#4|) (-626 |#5|) (-121) (-121))) (-15 -1636 ((-626 |#5|) (-626 |#4|) (-626 |#5|) (-121) (-121) (-121) (-121) (-121))) (-15 -1806 ((-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))) (-626 |#4|) (-626 |#5|) (-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))) (-2 (|:| |done| (-626 |#5|)) (|:| |todo| (-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))))) (-755))) (-15 -4255 ((-1135) (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|)))) (-15 -1269 ((-1241) (-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))) (-755)))) (-447) (-780) (-834) (-1053 |#1| |#2| |#3|) (-1091 |#1| |#2| |#3| |#4|)) (T -1122)) -((-1269 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-2 (|:| |val| (-626 *8)) (|:| -3249 *9)))) (-5 *4 (-755)) (-4 *8 (-1053 *5 *6 *7)) (-4 *9 (-1091 *5 *6 *7 *8)) (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-5 *2 (-1241)) (-5 *1 (-1122 *5 *6 *7 *8 *9)))) (-4255 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-626 *7)) (|:| -3249 *8))) (-4 *7 (-1053 *4 *5 *6)) (-4 *8 (-1091 *4 *5 *6 *7)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-1135)) (-5 *1 (-1122 *4 *5 *6 *7 *8)))) (-1806 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-626 *11)) (|:| |todo| (-626 (-2 (|:| |val| *3) (|:| -3249 *11)))))) (-5 *6 (-755)) (-5 *2 (-626 (-2 (|:| |val| (-626 *10)) (|:| -3249 *11)))) (-5 *3 (-626 *10)) (-5 *4 (-626 *11)) (-4 *10 (-1053 *7 *8 *9)) (-4 *11 (-1091 *7 *8 *9 *10)) (-4 *7 (-447)) (-4 *8 (-780)) (-4 *9 (-834)) (-5 *1 (-1122 *7 *8 *9 *10 *11)))) (-1636 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-626 *9)) (-5 *3 (-626 *8)) (-5 *4 (-121)) (-4 *8 (-1053 *5 *6 *7)) (-4 *9 (-1091 *5 *6 *7 *8)) (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-5 *1 (-1122 *5 *6 *7 *8 *9)))) (-1636 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-626 *9)) (-5 *3 (-626 *8)) (-5 *4 (-121)) (-4 *8 (-1053 *5 *6 *7)) (-4 *9 (-1091 *5 *6 *7 *8)) (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-5 *1 (-1122 *5 *6 *7 *8 *9)))) (-3083 (*1 *2 *3 *4) (-12 (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-626 *4)) (|:| |todo| (-626 (-2 (|:| |val| (-626 *3)) (|:| -3249 *4)))))) (-5 *1 (-1122 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3)))) (-3083 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-755)) (-4 *6 (-447)) (-4 *7 (-780)) (-4 *8 (-834)) (-4 *3 (-1053 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-626 *4)) (|:| |todo| (-626 (-2 (|:| |val| (-626 *3)) (|:| -3249 *4)))))) (-5 *1 (-1122 *6 *7 *8 *3 *4)) (-4 *4 (-1091 *6 *7 *8 *3)))) (-3083 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-755)) (-5 *6 (-121)) (-4 *7 (-447)) (-4 *8 (-780)) (-4 *9 (-834)) (-4 *3 (-1053 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-626 *4)) (|:| |todo| (-626 (-2 (|:| |val| (-626 *3)) (|:| -3249 *4)))))) (-5 *1 (-1122 *7 *8 *9 *3 *4)) (-4 *4 (-1091 *7 *8 *9 *3)))) (-3468 (*1 *2 *3 *4) (-12 (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-626 *4)) (|:| |todo| (-626 (-2 (|:| |val| (-626 *3)) (|:| -3249 *4)))))) (-5 *1 (-1122 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3)))) (-3468 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-755)) (-4 *6 (-447)) (-4 *7 (-780)) (-4 *8 (-834)) (-4 *3 (-1053 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-626 *4)) (|:| |todo| (-626 (-2 (|:| |val| (-626 *3)) (|:| -3249 *4)))))) (-5 *1 (-1122 *6 *7 *8 *3 *4)) (-4 *4 (-1091 *6 *7 *8 *3)))) (-2517 (*1 *2 *3 *4) (-12 (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-626 *4)) (|:| |todo| (-626 (-2 (|:| |val| (-626 *3)) (|:| -3249 *4)))))) (-5 *1 (-1122 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3)))) (-1624 (*1 *2 *3 *4) (-12 (-5 *3 (-626 *8)) (-5 *4 (-626 *9)) (-4 *8 (-1053 *5 *6 *7)) (-4 *9 (-1091 *5 *6 *7 *8)) (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-5 *2 (-755)) (-5 *1 (-1122 *5 *6 *7 *8 *9)))) (-1934 (*1 *2 *3 *4) (-12 (-5 *3 (-626 *8)) (-5 *4 (-626 *9)) (-4 *8 (-1053 *5 *6 *7)) (-4 *9 (-1091 *5 *6 *7 *8)) (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-5 *2 (-755)) (-5 *1 (-1122 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -1934 ((-755) (-626 |#4|) (-626 |#5|))) (-15 -1624 ((-755) (-626 |#4|) (-626 |#5|))) (-15 -2517 ((-2 (|:| |done| (-626 |#5|)) (|:| |todo| (-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))))) |#4| |#5|)) (-15 -3468 ((-2 (|:| |done| (-626 |#5|)) (|:| |todo| (-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))))) |#4| |#5| (-755))) (-15 -3468 ((-2 (|:| |done| (-626 |#5|)) (|:| |todo| (-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))))) |#4| |#5|)) (-15 -3083 ((-2 (|:| |done| (-626 |#5|)) (|:| |todo| (-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))))) |#4| |#5| (-755) (-121))) (-15 -3083 ((-2 (|:| |done| (-626 |#5|)) (|:| |todo| (-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))))) |#4| |#5| (-755))) (-15 -3083 ((-2 (|:| |done| (-626 |#5|)) (|:| |todo| (-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))))) |#4| |#5|)) (-15 -1636 ((-626 |#5|) (-626 |#4|) (-626 |#5|) (-121) (-121))) (-15 -1636 ((-626 |#5|) (-626 |#4|) (-626 |#5|) (-121) (-121) (-121) (-121) (-121))) (-15 -1806 ((-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))) (-626 |#4|) (-626 |#5|) (-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))) (-2 (|:| |done| (-626 |#5|)) (|:| |todo| (-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))))) (-755))) (-15 -4255 ((-1135) (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|)))) (-15 -1269 ((-1241) (-626 (-2 (|:| |val| (-626 |#4|)) (|:| -3249 |#5|))) (-755)))) -((-2601 (((-121) $ $) NIL)) (-3975 (((-626 (-2 (|:| -4071 $) (|:| -3997 (-626 |#4|)))) (-626 |#4|)) NIL)) (-3332 (((-626 $) (-626 |#4|)) 109) (((-626 $) (-626 |#4|) (-121)) 110) (((-626 $) (-626 |#4|) (-121) (-121)) 108) (((-626 $) (-626 |#4|) (-121) (-121) (-121) (-121)) 111)) (-1654 (((-626 |#3|) $) NIL)) (-1385 (((-121) $) NIL)) (-3617 (((-121) $) NIL (|has| |#1| (-550)))) (-2898 (((-121) |#4| $) NIL) (((-121) $) NIL)) (-3177 ((|#4| |#4| $) NIL)) (-3065 (((-626 (-2 (|:| |val| |#4|) (|:| -3249 $))) |#4| $) 83)) (-3743 (((-2 (|:| |under| $) (|:| -2150 $) (|:| |upper| $)) $ |#3|) NIL)) (-3909 (((-121) $ (-755)) NIL)) (-3802 (($ (-1 (-121) |#4|) $) NIL (|has| $ (-6 -4505))) (((-3 |#4| "failed") $ |#3|) 61)) (-4236 (($) NIL T CONST)) (-2226 (((-121) $) 26 (|has| |#1| (-550)))) (-3225 (((-121) $ $) NIL (|has| |#1| (-550)))) (-4195 (((-121) $ $) NIL (|has| |#1| (-550)))) (-1501 (((-121) $) NIL (|has| |#1| (-550)))) (-4339 (((-626 |#4|) (-626 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-121) |#4| |#4|)) NIL)) (-4318 (((-626 |#4|) (-626 |#4|) $) NIL (|has| |#1| (-550)))) (-3979 (((-626 |#4|) (-626 |#4|) $) NIL (|has| |#1| (-550)))) (-1473 (((-3 $ "failed") (-626 |#4|)) NIL)) (-3001 (($ (-626 |#4|)) NIL)) (-2877 (((-3 $ "failed") $) 39)) (-2134 ((|#4| |#4| $) 64)) (-2868 (($ $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#4| (-1082))))) (-4310 (($ |#4| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#4| (-1082)))) (($ (-1 (-121) |#4|) $) NIL (|has| $ (-6 -4505)))) (-4397 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 77 (|has| |#1| (-550)))) (-1590 (((-121) |#4| $ (-1 (-121) |#4| |#4|)) NIL)) (-4048 ((|#4| |#4| $) NIL)) (-2342 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4505)) (|has| |#4| (-1082)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4505))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4505))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-121) |#4| |#4|)) NIL)) (-3035 (((-2 (|:| -4071 (-626 |#4|)) (|:| -3997 (-626 |#4|))) $) NIL)) (-2329 (((-121) |#4| $) NIL)) (-3701 (((-121) |#4| $) NIL)) (-2894 (((-121) |#4| $) NIL) (((-121) $) NIL)) (-4274 (((-2 (|:| |val| (-626 |#4|)) (|:| |towers| (-626 $))) (-626 |#4|) (-121) (-121)) 123)) (-1981 (((-626 |#4|) $) 16 (|has| $ (-6 -4505)))) (-2864 (((-121) |#4| $) NIL) (((-121) $) NIL)) (-2819 ((|#3| $) 33)) (-2122 (((-121) $ (-755)) NIL)) (-2130 (((-626 |#4|) $) 17 (|has| $ (-6 -4505)))) (-2030 (((-121) |#4| $) 25 (-12 (|has| $ (-6 -4505)) (|has| |#4| (-1082))))) (-3778 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#4| |#4|) $) 21)) (-4475 (((-626 |#3|) $) NIL)) (-1304 (((-121) |#3| $) NIL)) (-3441 (((-121) $ (-755)) NIL)) (-1291 (((-1135) $) NIL)) (-3283 (((-3 |#4| (-626 $)) |#4| |#4| $) NIL)) (-3069 (((-626 (-2 (|:| |val| |#4|) (|:| -3249 $))) |#4| |#4| $) 102)) (-4139 (((-3 |#4| "failed") $) 37)) (-3269 (((-626 $) |#4| $) 87)) (-2061 (((-3 (-121) (-626 $)) |#4| $) NIL)) (-2638 (((-626 (-2 (|:| |val| (-121)) (|:| -3249 $))) |#4| $) 97) (((-121) |#4| $) 52)) (-4283 (((-626 $) |#4| $) 106) (((-626 $) (-626 |#4|) $) NIL) (((-626 $) (-626 |#4|) (-626 $)) 107) (((-626 $) |#4| (-626 $)) NIL)) (-1788 (((-626 $) (-626 |#4|) (-121) (-121) (-121)) 118)) (-3760 (($ |#4| $) 74) (($ (-626 |#4|) $) 75) (((-626 $) |#4| $ (-121) (-121) (-121) (-121) (-121)) 73)) (-3840 (((-626 |#4|) $) NIL)) (-3098 (((-121) |#4| $) NIL) (((-121) $) NIL)) (-2054 ((|#4| |#4| $) NIL)) (-3564 (((-121) $ $) NIL)) (-1960 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-550)))) (-1584 (((-121) |#4| $) NIL) (((-121) $) NIL)) (-4047 ((|#4| |#4| $) NIL)) (-4353 (((-1100) $) NIL)) (-2824 (((-3 |#4| "failed") $) 35)) (-3786 (((-3 |#4| "failed") (-1 (-121) |#4|) $) NIL)) (-1368 (((-3 $ "failed") $ |#4|) 47)) (-3292 (($ $ |#4|) NIL) (((-626 $) |#4| $) 89) (((-626 $) |#4| (-626 $)) NIL) (((-626 $) (-626 |#4|) $) NIL) (((-626 $) (-626 |#4|) (-626 $)) 85)) (-2865 (((-121) (-1 (-121) |#4|) $) NIL (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 |#4|) (-626 |#4|)) NIL (-12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082)))) (($ $ (-283 |#4|)) NIL (-12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082)))) (($ $ (-626 (-283 |#4|))) NIL (-12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082))))) (-2214 (((-121) $ $) NIL)) (-4191 (((-121) $) 15)) (-3260 (($) 13)) (-3662 (((-755) $) NIL)) (-4035 (((-755) |#4| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#4| (-1082)))) (((-755) (-1 (-121) |#4|) $) NIL (|has| $ (-6 -4505)))) (-2813 (($ $) 12)) (-4255 (((-533) $) NIL (|has| |#4| (-601 (-533))))) (-4162 (($ (-626 |#4|)) 20)) (-3369 (($ $ |#3|) 42)) (-2673 (($ $ |#3|) 43)) (-3746 (($ $) NIL)) (-3388 (($ $ |#3|) NIL)) (-2801 (((-842) $) 31) (((-626 |#4|) $) 40)) (-4277 (((-755) $) NIL (|has| |#3| (-364)))) (-3133 (((-3 (-2 (|:| |bas| $) (|:| -4224 (-626 |#4|))) "failed") (-626 |#4|) (-1 (-121) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -4224 (-626 |#4|))) "failed") (-626 |#4|) (-1 (-121) |#4|) (-1 (-121) |#4| |#4|)) NIL)) (-2967 (((-121) $ (-1 (-121) |#4| (-626 |#4|))) NIL)) (-1767 (((-626 $) |#4| $) 53) (((-626 $) |#4| (-626 $)) NIL) (((-626 $) (-626 |#4|) $) NIL) (((-626 $) (-626 |#4|) (-626 $)) NIL)) (-3656 (((-121) (-1 (-121) |#4|) $) NIL (|has| $ (-6 -4505)))) (-3284 (((-626 |#3|) $) NIL)) (-4073 (((-121) |#4| $) NIL)) (-1535 (((-121) |#3| $) 60)) (-1653 (((-121) $ $) NIL)) (-2271 (((-755) $) NIL (|has| $ (-6 -4505))))) -(((-1123 |#1| |#2| |#3| |#4|) (-13 (-1091 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3760 ((-626 $) |#4| $ (-121) (-121) (-121) (-121) (-121))) (-15 -3332 ((-626 $) (-626 |#4|) (-121) (-121))) (-15 -3332 ((-626 $) (-626 |#4|) (-121) (-121) (-121) (-121))) (-15 -1788 ((-626 $) (-626 |#4|) (-121) (-121) (-121))) (-15 -4274 ((-2 (|:| |val| (-626 |#4|)) (|:| |towers| (-626 $))) (-626 |#4|) (-121) (-121))))) (-447) (-780) (-834) (-1053 |#1| |#2| |#3|)) (T -1123)) -((-3760 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-121)) (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-5 *2 (-626 (-1123 *5 *6 *7 *3))) (-5 *1 (-1123 *5 *6 *7 *3)) (-4 *3 (-1053 *5 *6 *7)))) (-3332 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-626 *8)) (-5 *4 (-121)) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-5 *2 (-626 (-1123 *5 *6 *7 *8))) (-5 *1 (-1123 *5 *6 *7 *8)))) (-3332 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-626 *8)) (-5 *4 (-121)) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-5 *2 (-626 (-1123 *5 *6 *7 *8))) (-5 *1 (-1123 *5 *6 *7 *8)))) (-1788 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-626 *8)) (-5 *4 (-121)) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-5 *2 (-626 (-1123 *5 *6 *7 *8))) (-5 *1 (-1123 *5 *6 *7 *8)))) (-4274 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-121)) (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *8 (-1053 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-626 *8)) (|:| |towers| (-626 (-1123 *5 *6 *7 *8))))) (-5 *1 (-1123 *5 *6 *7 *8)) (-5 *3 (-626 *8))))) -(-13 (-1091 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3760 ((-626 $) |#4| $ (-121) (-121) (-121) (-121) (-121))) (-15 -3332 ((-626 $) (-626 |#4|) (-121) (-121))) (-15 -3332 ((-626 $) (-626 |#4|) (-121) (-121) (-121) (-121))) (-15 -1788 ((-626 $) (-626 |#4|) (-121) (-121) (-121))) (-15 -4274 ((-2 (|:| |val| (-626 |#4|)) (|:| |towers| (-626 $))) (-626 |#4|) (-121) (-121))))) -((-2601 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-4224 ((|#1| $) 28)) (-3660 (($ (-626 |#1|)) 33)) (-3909 (((-121) $ (-755)) NIL)) (-4236 (($) NIL T CONST)) (-3881 ((|#1| |#1| $) 30)) (-2200 ((|#1| $) 26)) (-1981 (((-626 |#1|) $) 34 (|has| $ (-6 -4505)))) (-2122 (((-121) $ (-755)) NIL)) (-2130 (((-626 |#1|) $) NIL (|has| $ (-6 -4505)))) (-2030 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-3778 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#1| |#1|) $) 37)) (-3441 (((-121) $ (-755)) NIL)) (-1291 (((-1135) $) NIL (|has| |#1| (-1082)))) (-2525 ((|#1| $) 29)) (-4345 (($ |#1| $) 31)) (-4353 (((-1100) $) NIL (|has| |#1| (-1082)))) (-2146 ((|#1| $) 27)) (-2865 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#1|))) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-283 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-626 |#1|) (-626 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))))) (-2214 (((-121) $ $) NIL)) (-4191 (((-121) $) 24)) (-3260 (($) 32)) (-4023 (((-755) $) 22)) (-4035 (((-755) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505))) (((-755) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-2813 (($ $) 20)) (-2801 (((-842) $) 17 (|has| |#1| (-1082)))) (-1354 (($ (-626 |#1|)) NIL)) (-3656 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-1653 (((-121) $ $) 12 (|has| |#1| (-1082)))) (-2271 (((-755) $) 23 (|has| $ (-6 -4505))))) -(((-1124 |#1|) (-13 (-1101 |#1|) (-10 -8 (-15 -3660 ($ (-626 |#1|))) (-15 -2200 (|#1| $)) (-15 -2146 (|#1| $)) (-15 -3881 (|#1| |#1| $)) (-15 -4345 ($ |#1| $)) (-15 -2525 (|#1| $)) (-15 -4224 (|#1| $)) (-15 -4023 ((-755) $)) (-15 -3441 ((-121) $ (-755))) (-15 -2122 ((-121) $ (-755))) (-15 -3909 ((-121) $ (-755))) (-15 -1354 ($ (-626 |#1|))) (-15 -4191 ((-121) $)) (-15 -3260 ($)) (-15 -4236 ($)) (-15 -2813 ($ $)) (-15 -2214 ((-121) $ $)) (-15 -2803 ($ (-1 |#1| |#1|) $)) (IF (|has| $ (-6 -4506)) (-15 -3778 ($ (-1 |#1| |#1|) $)) |noBranch|) (IF (|has| |#1| (-1082)) (PROGN (-15 -1291 ((-1135) $)) (-15 -4353 ((-1100) $)) (-15 -2801 ((-842) $)) (-15 -1653 ((-121) $ $)) (-15 -2601 ((-121) $ $))) |noBranch|) (IF (|has| $ (-6 -4505)) (PROGN (-15 -2865 ((-121) (-1 (-121) |#1|) $)) (-15 -3656 ((-121) (-1 (-121) |#1|) $)) (-15 -4035 ((-755) (-1 (-121) |#1|) $)) (-15 -2271 ((-755) $)) (-15 -1981 ((-626 |#1|) $)) (-15 -2130 ((-626 |#1|) $))) |noBranch|) (IF (|has| $ (-6 -4505)) (IF (|has| |#1| (-1082)) (PROGN (-15 -2030 ((-121) |#1| $)) (-15 -4035 ((-755) |#1| $))) |noBranch|) |noBranch|))) (-1082)) (T -1124)) -((-2214 (*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1124 *3)) (-4 *3 (-1082)))) (-2813 (*1 *1 *1) (-12 (-5 *1 (-1124 *2)) (-4 *2 (-1082)))) (-3260 (*1 *1) (-12 (-5 *1 (-1124 *2)) (-4 *2 (-1082)))) (-4191 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1124 *3)) (-4 *3 (-1082)))) (-3441 (*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *2 (-121)) (-5 *1 (-1124 *4)) (-4 *4 (-1082)))) (-2122 (*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *2 (-121)) (-5 *1 (-1124 *4)) (-4 *4 (-1082)))) (-3909 (*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *2 (-121)) (-5 *1 (-1124 *4)) (-4 *4 (-1082)))) (-4236 (*1 *1) (-12 (-5 *1 (-1124 *2)) (-4 *2 (-1082)))) (-2271 (*1 *2 *1) (-12 (|has| $ (-6 -4505)) (-5 *2 (-755)) (-5 *1 (-1124 *3)) (-4 *3 (-1082)))) (-2803 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1082)) (-5 *1 (-1124 *3)))) (-3778 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| $ (-6 -4506)) (-4 *3 (-1082)) (-5 *1 (-1124 *3)))) (-3656 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| $ (-6 -4505)) (-4 *4 (-1082)) (-5 *2 (-121)) (-5 *1 (-1124 *4)))) (-2865 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| $ (-6 -4505)) (-4 *4 (-1082)) (-5 *2 (-121)) (-5 *1 (-1124 *4)))) (-4035 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| $ (-6 -4505)) (-4 *4 (-1082)) (-5 *2 (-755)) (-5 *1 (-1124 *4)))) (-1981 (*1 *2 *1) (-12 (|has| $ (-6 -4505)) (-5 *2 (-626 *3)) (-5 *1 (-1124 *3)) (-4 *3 (-1082)))) (-2130 (*1 *2 *1) (-12 (|has| $ (-6 -4505)) (-5 *2 (-626 *3)) (-5 *1 (-1124 *3)) (-4 *3 (-1082)))) (-4035 (*1 *2 *3 *1) (-12 (|has| $ (-6 -4505)) (-5 *2 (-755)) (-5 *1 (-1124 *3)) (-4 *3 (-1082)) (-4 *3 (-1082)))) (-2030 (*1 *2 *3 *1) (-12 (|has| $ (-6 -4505)) (-5 *2 (-121)) (-5 *1 (-1124 *3)) (-4 *3 (-1082)) (-4 *3 (-1082)))) (-1291 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1124 *3)) (-4 *3 (-1082)) (-4 *3 (-1082)))) (-4353 (*1 *2 *1) (-12 (-5 *2 (-1100)) (-5 *1 (-1124 *3)) (-4 *3 (-1082)) (-4 *3 (-1082)))) (-2801 (*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-1124 *3)) (-4 *3 (-1082)) (-4 *3 (-1082)))) (-1653 (*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1124 *3)) (-4 *3 (-1082)) (-4 *3 (-1082)))) (-2601 (*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1124 *3)) (-4 *3 (-1082)) (-4 *3 (-1082)))) (-1354 (*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-1082)) (-5 *1 (-1124 *3)))) (-2146 (*1 *2 *1) (-12 (-5 *1 (-1124 *2)) (-4 *2 (-1082)))) (-4345 (*1 *1 *2 *1) (-12 (-5 *1 (-1124 *2)) (-4 *2 (-1082)))) (-2525 (*1 *2 *1) (-12 (-5 *1 (-1124 *2)) (-4 *2 (-1082)))) (-3881 (*1 *2 *2 *1) (-12 (-5 *1 (-1124 *2)) (-4 *2 (-1082)))) (-2200 (*1 *2 *1) (-12 (-5 *1 (-1124 *2)) (-4 *2 (-1082)))) (-4224 (*1 *2 *1) (-12 (-5 *1 (-1124 *2)) (-4 *2 (-1082)))) (-4023 (*1 *2 *1) (-12 (-5 *2 (-755)) (-5 *1 (-1124 *3)) (-4 *3 (-1082)))) (-3660 (*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-1082)) (-5 *1 (-1124 *3))))) -(-13 (-1101 |#1|) (-10 -8 (-15 -3660 ($ (-626 |#1|))) (-15 -2200 (|#1| $)) (-15 -2146 (|#1| $)) (-15 -3881 (|#1| |#1| $)) (-15 -4345 ($ |#1| $)) (-15 -2525 (|#1| $)) (-15 -4224 (|#1| $)) (-15 -4023 ((-755) $)) (-15 -3441 ((-121) $ (-755))) (-15 -2122 ((-121) $ (-755))) (-15 -3909 ((-121) $ (-755))) (-15 -1354 ($ (-626 |#1|))) (-15 -4191 ((-121) $)) (-15 -3260 ($)) (-15 -4236 ($)) (-15 -2813 ($ $)) (-15 -2214 ((-121) $ $)) (-15 -2803 ($ (-1 |#1| |#1|) $)) (IF (|has| $ (-6 -4506)) (-15 -3778 ($ (-1 |#1| |#1|) $)) |noBranch|) (IF (|has| |#1| (-1082)) (PROGN (-15 -1291 ((-1135) $)) (-15 -4353 ((-1100) $)) (-15 -2801 ((-842) $)) (-15 -1653 ((-121) $ $)) (-15 -2601 ((-121) $ $))) |noBranch|) (IF (|has| $ (-6 -4505)) (PROGN (-15 -2865 ((-121) (-1 (-121) |#1|) $)) (-15 -3656 ((-121) (-1 (-121) |#1|) $)) (-15 -4035 ((-755) (-1 (-121) |#1|) $)) (-15 -2271 ((-755) $)) (-15 -1981 ((-626 |#1|) $)) (-15 -2130 ((-626 |#1|) $))) |noBranch|) (IF (|has| $ (-6 -4505)) (IF (|has| |#1| (-1082)) (PROGN (-15 -2030 ((-121) |#1| $)) (-15 -4035 ((-755) |#1| $))) |noBranch|) |noBranch|))) -((-2764 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1202 (-560)) |#2|) 43) ((|#2| $ (-560) |#2|) 40)) (-2737 (((-121) $) 11)) (-3778 (($ (-1 |#2| |#2|) $) 38)) (-2824 ((|#2| $) NIL) (($ $ (-755)) 16)) (-3038 (($ $ |#2|) 39)) (-2957 (((-121) $) 10)) (-2778 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1202 (-560))) 30) ((|#2| $ (-560)) 22) ((|#2| $ (-560) |#2|) NIL)) (-3602 (($ $ $) 46) (($ $ |#2|) NIL)) (-2849 (($ $ $) 32) (($ |#2| $) NIL) (($ (-626 $)) 35) (($ $ |#2|) NIL))) -(((-1125 |#1| |#2|) (-10 -8 (-15 -2737 ((-121) |#1|)) (-15 -2957 ((-121) |#1|)) (-15 -2764 (|#2| |#1| (-560) |#2|)) (-15 -2778 (|#2| |#1| (-560) |#2|)) (-15 -2778 (|#2| |#1| (-560))) (-15 -3038 (|#1| |#1| |#2|)) (-15 -2849 (|#1| |#1| |#2|)) (-15 -2849 (|#1| (-626 |#1|))) (-15 -2778 (|#1| |#1| (-1202 (-560)))) (-15 -2764 (|#2| |#1| (-1202 (-560)) |#2|)) (-15 -2764 (|#2| |#1| "last" |#2|)) (-15 -2764 (|#1| |#1| "rest" |#1|)) (-15 -2764 (|#2| |#1| "first" |#2|)) (-15 -3602 (|#1| |#1| |#2|)) (-15 -3602 (|#1| |#1| |#1|)) (-15 -2778 (|#2| |#1| "last")) (-15 -2778 (|#1| |#1| "rest")) (-15 -2824 (|#1| |#1| (-755))) (-15 -2778 (|#2| |#1| "first")) (-15 -2824 (|#2| |#1|)) (-15 -2849 (|#1| |#2| |#1|)) (-15 -2849 (|#1| |#1| |#1|)) (-15 -2764 (|#2| |#1| "value" |#2|)) (-15 -2778 (|#2| |#1| "value")) (-15 -3778 (|#1| (-1 |#2| |#2|) |#1|))) (-1126 |#2|) (-1187)) (T -1125)) -NIL -(-10 -8 (-15 -2737 ((-121) |#1|)) (-15 -2957 ((-121) |#1|)) (-15 -2764 (|#2| |#1| (-560) |#2|)) (-15 -2778 (|#2| |#1| (-560) |#2|)) (-15 -2778 (|#2| |#1| (-560))) (-15 -3038 (|#1| |#1| |#2|)) (-15 -2849 (|#1| |#1| |#2|)) (-15 -2849 (|#1| (-626 |#1|))) (-15 -2778 (|#1| |#1| (-1202 (-560)))) (-15 -2764 (|#2| |#1| (-1202 (-560)) |#2|)) (-15 -2764 (|#2| |#1| "last" |#2|)) (-15 -2764 (|#1| |#1| "rest" |#1|)) (-15 -2764 (|#2| |#1| "first" |#2|)) (-15 -3602 (|#1| |#1| |#2|)) (-15 -3602 (|#1| |#1| |#1|)) (-15 -2778 (|#2| |#1| "last")) (-15 -2778 (|#1| |#1| "rest")) (-15 -2824 (|#1| |#1| (-755))) (-15 -2778 (|#2| |#1| "first")) (-15 -2824 (|#2| |#1|)) (-15 -2849 (|#1| |#2| |#1|)) (-15 -2849 (|#1| |#1| |#1|)) (-15 -2764 (|#2| |#1| "value" |#2|)) (-15 -2778 (|#2| |#1| "value")) (-15 -3778 (|#1| (-1 |#2| |#2|) |#1|))) -((-2601 (((-121) $ $) 18 (|has| |#1| (-1082)))) (-2981 ((|#1| $) 45)) (-1886 ((|#1| $) 62)) (-1417 (($ $) 64)) (-2960 (((-1241) $ (-560) (-560)) 94 (|has| $ (-6 -4506)))) (-2435 (($ $ (-560)) 49 (|has| $ (-6 -4506)))) (-3909 (((-121) $ (-755)) 8)) (-3119 ((|#1| $ |#1|) 36 (|has| $ (-6 -4506)))) (-1741 (($ $ $) 53 (|has| $ (-6 -4506)))) (-1920 ((|#1| $ |#1|) 51 (|has| $ (-6 -4506)))) (-4133 ((|#1| $ |#1|) 55 (|has| $ (-6 -4506)))) (-2764 ((|#1| $ "value" |#1|) 37 (|has| $ (-6 -4506))) ((|#1| $ "first" |#1|) 54 (|has| $ (-6 -4506))) (($ $ "rest" $) 52 (|has| $ (-6 -4506))) ((|#1| $ "last" |#1|) 50 (|has| $ (-6 -4506))) ((|#1| $ (-1202 (-560)) |#1|) 114 (|has| $ (-6 -4506))) ((|#1| $ (-560) |#1|) 83 (|has| $ (-6 -4506)))) (-4043 (($ $ (-626 $)) 38 (|has| $ (-6 -4506)))) (-3802 (($ (-1 (-121) |#1|) $) 99 (|has| $ (-6 -4505)))) (-1603 ((|#1| $) 63)) (-4236 (($) 7 T CONST)) (-2877 (($ $) 70) (($ $ (-755)) 68)) (-2868 (($ $) 96 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-4310 (($ (-1 (-121) |#1|) $) 100 (|has| $ (-6 -4505))) (($ |#1| $) 97 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-2342 ((|#1| (-1 |#1| |#1| |#1|) $) 102 (|has| $ (-6 -4505))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 101 (|has| $ (-6 -4505))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 98 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-1746 ((|#1| $ (-560) |#1|) 82 (|has| $ (-6 -4506)))) (-1361 ((|#1| $ (-560)) 84)) (-2737 (((-121) $) 80)) (-1981 (((-626 |#1|) $) 30 (|has| $ (-6 -4505)))) (-3971 (((-626 $) $) 47)) (-2420 (((-121) $ $) 39 (|has| |#1| (-1082)))) (-1721 (($ (-755) |#1|) 105)) (-2122 (((-121) $ (-755)) 9)) (-4099 (((-560) $) 92 (|has| (-560) (-834)))) (-2130 (((-626 |#1|) $) 29 (|has| $ (-6 -4505)))) (-2030 (((-121) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-2767 (((-560) $) 91 (|has| (-560) (-834)))) (-3778 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 108)) (-3441 (((-121) $ (-755)) 10)) (-2173 (((-626 |#1|) $) 42)) (-3992 (((-121) $) 46)) (-1291 (((-1135) $) 22 (|has| |#1| (-1082)))) (-4139 ((|#1| $) 67) (($ $ (-755)) 65)) (-4103 (($ $ $ (-560)) 113) (($ |#1| $ (-560)) 112)) (-1529 (((-626 (-560)) $) 89)) (-1310 (((-121) (-560) $) 88)) (-4353 (((-1100) $) 21 (|has| |#1| (-1082)))) (-2824 ((|#1| $) 73) (($ $ (-755)) 71)) (-3786 (((-3 |#1| "failed") (-1 (-121) |#1|) $) 103)) (-3038 (($ $ |#1|) 93 (|has| $ (-6 -4506)))) (-2957 (((-121) $) 81)) (-2865 (((-121) (-1 (-121) |#1|) $) 32 (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#1|))) 26 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-283 |#1|)) 25 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-626 |#1|) (-626 |#1|)) 23 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))))) (-2214 (((-121) $ $) 14)) (-1290 (((-121) |#1| $) 90 (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-4460 (((-626 |#1|) $) 87)) (-4191 (((-121) $) 11)) (-3260 (($) 12)) (-2778 ((|#1| $ "value") 44) ((|#1| $ "first") 72) (($ $ "rest") 69) ((|#1| $ "last") 66) (($ $ (-1202 (-560))) 109) ((|#1| $ (-560)) 86) ((|#1| $ (-560) |#1|) 85)) (-1435 (((-560) $ $) 41)) (-2949 (($ $ (-1202 (-560))) 111) (($ $ (-560)) 110)) (-3316 (((-121) $) 43)) (-4432 (($ $) 59)) (-2641 (($ $) 56 (|has| $ (-6 -4506)))) (-2751 (((-755) $) 60)) (-4208 (($ $) 61)) (-4035 (((-755) (-1 (-121) |#1|) $) 31 (|has| $ (-6 -4505))) (((-755) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-2813 (($ $) 13)) (-4255 (((-533) $) 95 (|has| |#1| (-601 (-533))))) (-4162 (($ (-626 |#1|)) 104)) (-3602 (($ $ $) 58 (|has| $ (-6 -4506))) (($ $ |#1|) 57 (|has| $ (-6 -4506)))) (-2849 (($ $ $) 75) (($ |#1| $) 74) (($ (-626 $)) 107) (($ $ |#1|) 106)) (-2801 (((-842) $) 20 (|has| |#1| (-1082)))) (-2853 (((-626 $) $) 48)) (-3761 (((-121) $ $) 40 (|has| |#1| (-1082)))) (-3656 (((-121) (-1 (-121) |#1|) $) 33 (|has| $ (-6 -4505)))) (-1653 (((-121) $ $) 19 (|has| |#1| (-1082)))) (-2271 (((-755) $) 6 (|has| $ (-6 -4505))))) -(((-1126 |#1|) (-1267) (-1187)) (T -1126)) -((-2957 (*1 *2 *1) (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1187)) (-5 *2 (-121)))) (-2737 (*1 *2 *1) (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1187)) (-5 *2 (-121))))) -(-13 (-1223 |t#1|) (-632 |t#1|) (-10 -8 (-15 -2957 ((-121) $)) (-15 -2737 ((-121) $)))) -(((-39) . T) ((-105) |has| |#1| (-1082)) ((-600 (-842)) |has| |#1| (-1082)) ((-152 |#1|) . T) ((-601 (-533)) |has| |#1| (-601 (-533))) ((-276 (-560) |#1|) . T) ((-278 (-560) |#1|) . T) ((-298 |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))) ((-492 |#1|) . T) ((-593 (-560) |#1|) . T) ((-515 |#1| |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))) ((-632 |#1|) . T) ((-1002 |#1|) . T) ((-1082) |has| |#1| (-1082)) ((-1187) . T) ((-1223 |#1|) . T)) -((-2601 (((-121) $ $) NIL (-2318 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-4050 (($) NIL) (($ (-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) NIL)) (-2960 (((-1241) $ |#1| |#1|) NIL (|has| $ (-6 -4506)))) (-3909 (((-121) $ (-755)) NIL)) (-2764 ((|#2| $ |#1| |#2|) NIL)) (-3763 (($ (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505)))) (-3802 (($ (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505)))) (-2722 (((-3 |#2| "failed") |#1| $) NIL)) (-4236 (($) NIL T CONST)) (-2868 (($ $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082))))) (-3561 (($ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) NIL (|has| $ (-6 -4505))) (($ (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505))) (((-3 |#2| "failed") |#1| $) NIL)) (-4310 (($ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (($ (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505)))) (-2342 (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) NIL (|has| $ (-6 -4505))) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505)))) (-1746 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4506)))) (-1361 ((|#2| $ |#1|) NIL)) (-1981 (((-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505))) (((-626 |#2|) $) NIL (|has| $ (-6 -4505)))) (-2122 (((-121) $ (-755)) NIL)) (-4099 ((|#1| $) NIL (|has| |#1| (-834)))) (-2130 (((-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505))) (((-626 |#2|) $) NIL (|has| $ (-6 -4505)))) (-2030 (((-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (((-121) |#2| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#2| (-1082))))) (-2767 ((|#1| $) NIL (|has| |#1| (-834)))) (-3778 (($ (-1 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4506))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4506)))) (-2803 (($ (-1 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3441 (((-121) $ (-755)) NIL)) (-1291 (((-1135) $) NIL (-2318 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-1377 (((-626 |#1|) $) NIL)) (-3855 (((-121) |#1| $) NIL)) (-2525 (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) NIL)) (-4345 (($ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) NIL)) (-1529 (((-626 |#1|) $) NIL)) (-1310 (((-121) |#1| $) NIL)) (-4353 (((-1100) $) NIL (-2318 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-2824 ((|#2| $) NIL (|has| |#1| (-834)))) (-3786 (((-3 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) "failed") (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL)) (-3038 (($ $ |#2|) NIL (|has| $ (-6 -4506)))) (-2146 (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) NIL)) (-2865 (((-121) (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505))) (((-121) (-1 (-121) |#2|) $) NIL (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))))) NIL (-12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (($ $ (-283 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) NIL (-12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (($ $ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) NIL (-12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (($ $ (-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) (-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) NIL (-12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (($ $ (-626 |#2|) (-626 |#2|)) NIL (-12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082)))) (($ $ (-283 |#2|)) NIL (-12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082)))) (($ $ (-626 (-283 |#2|))) NIL (-12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082))))) (-2214 (((-121) $ $) NIL)) (-1290 (((-121) |#2| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#2| (-1082))))) (-4460 (((-626 |#2|) $) NIL)) (-4191 (((-121) $) NIL)) (-3260 (($) NIL)) (-2778 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3958 (($) NIL) (($ (-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) NIL)) (-4035 (((-755) (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505))) (((-755) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (((-755) |#2| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#2| (-1082)))) (((-755) (-1 (-121) |#2|) $) NIL (|has| $ (-6 -4505)))) (-2813 (($ $) NIL)) (-4255 (((-533) $) NIL (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-601 (-533))))) (-4162 (($ (-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) NIL)) (-2801 (((-842) $) NIL (-2318 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-1354 (($ (-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) NIL)) (-3656 (((-121) (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505))) (((-121) (-1 (-121) |#2|) $) NIL (|has| $ (-6 -4505)))) (-1653 (((-121) $ $) NIL (-2318 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-2271 (((-755) $) NIL (|has| $ (-6 -4505))))) -(((-1127 |#1| |#2| |#3|) (-1164 |#1| |#2|) (-1082) (-1082) |#2|) (T -1127)) -NIL -(-1164 |#1| |#2|) -((-2601 (((-121) $ $) 7)) (-1424 (((-3 $ "failed") $) 12)) (-1291 (((-1135) $) 9)) (-1394 (($) 13 T CONST)) (-4353 (((-1100) $) 10)) (-2801 (((-842) $) 11)) (-1653 (((-121) $ $) 6))) -(((-1128) (-1267)) (T -1128)) -((-1394 (*1 *1) (-4 *1 (-1128))) (-1424 (*1 *1 *1) (|partial| -4 *1 (-1128)))) -(-13 (-1082) (-10 -8 (-15 -1394 ($) -3565) (-15 -1424 ((-3 $ "failed") $)))) -(((-105) . T) ((-600 (-842)) . T) ((-1082) . T)) -((-1576 (((-1133 |#1|) (-1133 |#1|)) 17)) (-2714 (((-1133 |#1|) (-1133 |#1|)) 13)) (-2847 (((-1133 |#1|) (-1133 |#1|) (-560) (-560)) 20)) (-2055 (((-1133 |#1|) (-1133 |#1|)) 15))) -(((-1129 |#1|) (-10 -7 (-15 -2714 ((-1133 |#1|) (-1133 |#1|))) (-15 -2055 ((-1133 |#1|) (-1133 |#1|))) (-15 -1576 ((-1133 |#1|) (-1133 |#1|))) (-15 -2847 ((-1133 |#1|) (-1133 |#1|) (-560) (-560)))) (-13 (-550) (-148))) (T -1129)) -((-2847 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1133 *4)) (-5 *3 (-560)) (-4 *4 (-13 (-550) (-148))) (-5 *1 (-1129 *4)))) (-1576 (*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-13 (-550) (-148))) (-5 *1 (-1129 *3)))) (-2055 (*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-13 (-550) (-148))) (-5 *1 (-1129 *3)))) (-2714 (*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-13 (-550) (-148))) (-5 *1 (-1129 *3))))) -(-10 -7 (-15 -2714 ((-1133 |#1|) (-1133 |#1|))) (-15 -2055 ((-1133 |#1|) (-1133 |#1|))) (-15 -1576 ((-1133 |#1|) (-1133 |#1|))) (-15 -2847 ((-1133 |#1|) (-1133 |#1|) (-560) (-560)))) -((-2849 (((-1133 |#1|) (-1133 (-1133 |#1|))) 15))) -(((-1130 |#1|) (-10 -7 (-15 -2849 ((-1133 |#1|) (-1133 (-1133 |#1|))))) (-1187)) (T -1130)) -((-2849 (*1 *2 *3) (-12 (-5 *3 (-1133 (-1133 *4))) (-5 *2 (-1133 *4)) (-5 *1 (-1130 *4)) (-4 *4 (-1187))))) -(-10 -7 (-15 -2849 ((-1133 |#1|) (-1133 (-1133 |#1|))))) -((-3469 (((-1133 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1133 |#1|)) 25)) (-2342 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1133 |#1|)) 26)) (-2803 (((-1133 |#2|) (-1 |#2| |#1|) (-1133 |#1|)) 16))) -(((-1131 |#1| |#2|) (-10 -7 (-15 -2803 ((-1133 |#2|) (-1 |#2| |#1|) (-1133 |#1|))) (-15 -3469 ((-1133 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1133 |#1|))) (-15 -2342 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1133 |#1|)))) (-1187) (-1187)) (T -1131)) -((-2342 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1133 *5)) (-4 *5 (-1187)) (-4 *2 (-1187)) (-5 *1 (-1131 *5 *2)))) (-3469 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1133 *6)) (-4 *6 (-1187)) (-4 *3 (-1187)) (-5 *2 (-1133 *3)) (-5 *1 (-1131 *6 *3)))) (-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1133 *5)) (-4 *5 (-1187)) (-4 *6 (-1187)) (-5 *2 (-1133 *6)) (-5 *1 (-1131 *5 *6))))) -(-10 -7 (-15 -2803 ((-1133 |#2|) (-1 |#2| |#1|) (-1133 |#1|))) (-15 -3469 ((-1133 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1133 |#1|))) (-15 -2342 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1133 |#1|)))) -((-2803 (((-1133 |#3|) (-1 |#3| |#1| |#2|) (-1133 |#1|) (-1133 |#2|)) 21))) -(((-1132 |#1| |#2| |#3|) (-10 -7 (-15 -2803 ((-1133 |#3|) (-1 |#3| |#1| |#2|) (-1133 |#1|) (-1133 |#2|)))) (-1187) (-1187) (-1187)) (T -1132)) -((-2803 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1133 *6)) (-5 *5 (-1133 *7)) (-4 *6 (-1187)) (-4 *7 (-1187)) (-4 *8 (-1187)) (-5 *2 (-1133 *8)) (-5 *1 (-1132 *6 *7 *8))))) -(-10 -7 (-15 -2803 ((-1133 |#3|) (-1 |#3| |#1| |#2|) (-1133 |#1|) (-1133 |#2|)))) -((-2601 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-2981 ((|#1| $) NIL)) (-1886 ((|#1| $) NIL)) (-1417 (($ $) 48)) (-2960 (((-1241) $ (-560) (-560)) 73 (|has| $ (-6 -4506)))) (-2435 (($ $ (-560)) 107 (|has| $ (-6 -4506)))) (-3909 (((-121) $ (-755)) NIL)) (-1403 (((-842) $) 37 (|has| |#1| (-1082)))) (-1942 (((-121)) 38 (|has| |#1| (-1082)))) (-3119 ((|#1| $ |#1|) NIL (|has| $ (-6 -4506)))) (-1741 (($ $ $) 95 (|has| $ (-6 -4506))) (($ $ (-560) $) 117)) (-1920 ((|#1| $ |#1|) 104 (|has| $ (-6 -4506)))) (-4133 ((|#1| $ |#1|) 99 (|has| $ (-6 -4506)))) (-2764 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4506))) ((|#1| $ "first" |#1|) 101 (|has| $ (-6 -4506))) (($ $ "rest" $) 103 (|has| $ (-6 -4506))) ((|#1| $ "last" |#1|) 106 (|has| $ (-6 -4506))) ((|#1| $ (-1202 (-560)) |#1|) 86 (|has| $ (-6 -4506))) ((|#1| $ (-560) |#1|) 52 (|has| $ (-6 -4506)))) (-4043 (($ $ (-626 $)) NIL (|has| $ (-6 -4506)))) (-3802 (($ (-1 (-121) |#1|) $) 55)) (-1603 ((|#1| $) NIL)) (-4236 (($) NIL T CONST)) (-3105 (($ $) 14)) (-2877 (($ $) 28) (($ $ (-755)) 85)) (-1899 (((-121) (-626 |#1|) $) 112 (|has| |#1| (-1082)))) (-2798 (($ (-626 |#1|)) 109)) (-2868 (($ $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-4310 (($ |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082)))) (($ (-1 (-121) |#1|) $) 54)) (-2342 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4505))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4505))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-1746 ((|#1| $ (-560) |#1|) NIL (|has| $ (-6 -4506)))) (-1361 ((|#1| $ (-560)) NIL)) (-2737 (((-121) $) NIL)) (-1981 (((-626 |#1|) $) NIL (|has| $ (-6 -4505)))) (-3632 (((-1241) (-560) $) 116 (|has| |#1| (-1082)))) (-1314 (((-755) $) 114)) (-3971 (((-626 $) $) NIL)) (-2420 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-1721 (($ (-755) |#1|) NIL)) (-2122 (((-121) $ (-755)) NIL)) (-4099 (((-560) $) NIL (|has| (-560) (-834)))) (-2130 (((-626 |#1|) $) NIL (|has| $ (-6 -4505)))) (-2030 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-2767 (((-560) $) NIL (|has| (-560) (-834)))) (-3778 (($ (-1 |#1| |#1|) $) 70 (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#1| |#1|) $) 60) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3441 (((-121) $ (-755)) NIL)) (-2173 (((-626 |#1|) $) NIL)) (-3992 (((-121) $) NIL)) (-1447 (($ $) 87)) (-1906 (((-121) $) 13)) (-1291 (((-1135) $) NIL (|has| |#1| (-1082)))) (-4139 ((|#1| $) NIL) (($ $ (-755)) NIL)) (-4103 (($ $ $ (-560)) NIL) (($ |#1| $ (-560)) NIL)) (-1529 (((-626 (-560)) $) NIL)) (-1310 (((-121) (-560) $) 71)) (-4353 (((-1100) $) NIL (|has| |#1| (-1082)))) (-3765 (($ (-1 |#1|)) 119) (($ (-1 |#1| |#1|) |#1|) 120)) (-2921 ((|#1| $) 10)) (-2824 ((|#1| $) 27) (($ $ (-755)) 46)) (-2176 (((-2 (|:| |cycle?| (-121)) (|:| -1858 (-755)) (|:| |period| (-755))) (-755) $) 24)) (-3786 (((-3 |#1| "failed") (-1 (-121) |#1|) $) NIL)) (-3788 (($ (-1 (-121) |#1|) $) 121)) (-3795 (($ (-1 (-121) |#1|) $) 122)) (-3038 (($ $ |#1|) 65 (|has| $ (-6 -4506)))) (-3292 (($ $ (-560)) 31)) (-2957 (((-121) $) 69)) (-3510 (((-121) $) 12)) (-3671 (((-121) $) 113)) (-2865 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#1|))) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-283 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-626 |#1|) (-626 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))))) (-2214 (((-121) $ $) 20)) (-1290 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-4460 (((-626 |#1|) $) NIL)) (-4191 (((-121) $) 15)) (-3260 (($) 40)) (-2778 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1202 (-560))) NIL) ((|#1| $ (-560)) 51) ((|#1| $ (-560) |#1|) NIL)) (-1435 (((-560) $ $) 45)) (-2949 (($ $ (-1202 (-560))) NIL) (($ $ (-560)) NIL)) (-2275 (($ (-1 $)) 44)) (-3316 (((-121) $) 66)) (-4432 (($ $) 67)) (-2641 (($ $) 96 (|has| $ (-6 -4506)))) (-2751 (((-755) $) NIL)) (-4208 (($ $) NIL)) (-4035 (((-755) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505))) (((-755) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-2813 (($ $) 41)) (-4255 (((-533) $) NIL (|has| |#1| (-601 (-533))))) (-4162 (($ (-626 |#1|)) 50)) (-2807 (($ |#1| $) 94)) (-3602 (($ $ $) 97 (|has| $ (-6 -4506))) (($ $ |#1|) 98 (|has| $ (-6 -4506)))) (-2849 (($ $ $) 75) (($ |#1| $) 42) (($ (-626 $)) 80) (($ $ |#1|) 74)) (-2234 (($ $) 47)) (-2801 (((-842) $) 39 (|has| |#1| (-1082))) (($ (-626 |#1|)) 108)) (-2853 (((-626 $) $) NIL)) (-3761 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-3656 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-1653 (((-121) $ $) 111 (|has| |#1| (-1082)))) (-2271 (((-755) $) NIL (|has| $ (-6 -4505))))) -(((-1133 |#1|) (-13 (-657 |#1|) (-10 -8 (-6 -4506) (-15 -2801 ($ (-626 |#1|))) (-15 -2798 ($ (-626 |#1|))) (IF (|has| |#1| (-1082)) (-15 -1899 ((-121) (-626 |#1|) $)) |noBranch|) (-15 -2176 ((-2 (|:| |cycle?| (-121)) (|:| -1858 (-755)) (|:| |period| (-755))) (-755) $)) (-15 -2275 ($ (-1 $))) (-15 -2807 ($ |#1| $)) (IF (|has| |#1| (-1082)) (PROGN (-15 -3632 ((-1241) (-560) $)) (-15 -1403 ((-842) $)) (-15 -1942 ((-121)))) |noBranch|) (-15 -1741 ($ $ (-560) $)) (-15 -3765 ($ (-1 |#1|))) (-15 -3765 ($ (-1 |#1| |#1|) |#1|)) (-15 -3788 ($ (-1 (-121) |#1|) $)) (-15 -3795 ($ (-1 (-121) |#1|) $)))) (-1187)) (T -1133)) -((-2801 (*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-1187)) (-5 *1 (-1133 *3)))) (-2798 (*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-1187)) (-5 *1 (-1133 *3)))) (-1899 (*1 *2 *3 *1) (-12 (-5 *3 (-626 *4)) (-4 *4 (-1082)) (-4 *4 (-1187)) (-5 *2 (-121)) (-5 *1 (-1133 *4)))) (-2176 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-121)) (|:| -1858 (-755)) (|:| |period| (-755)))) (-5 *1 (-1133 *4)) (-4 *4 (-1187)) (-5 *3 (-755)))) (-2275 (*1 *1 *2) (-12 (-5 *2 (-1 (-1133 *3))) (-5 *1 (-1133 *3)) (-4 *3 (-1187)))) (-2807 (*1 *1 *2 *1) (-12 (-5 *1 (-1133 *2)) (-4 *2 (-1187)))) (-3632 (*1 *2 *3 *1) (-12 (-5 *3 (-560)) (-5 *2 (-1241)) (-5 *1 (-1133 *4)) (-4 *4 (-1082)) (-4 *4 (-1187)))) (-1403 (*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-1133 *3)) (-4 *3 (-1082)) (-4 *3 (-1187)))) (-1942 (*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-1133 *3)) (-4 *3 (-1082)) (-4 *3 (-1187)))) (-1741 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-1133 *3)) (-4 *3 (-1187)))) (-3765 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1187)) (-5 *1 (-1133 *3)))) (-3765 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1187)) (-5 *1 (-1133 *3)))) (-3788 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-121) *3)) (-4 *3 (-1187)) (-5 *1 (-1133 *3)))) (-3795 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-121) *3)) (-4 *3 (-1187)) (-5 *1 (-1133 *3))))) -(-13 (-657 |#1|) (-10 -8 (-6 -4506) (-15 -2801 ($ (-626 |#1|))) (-15 -2798 ($ (-626 |#1|))) (IF (|has| |#1| (-1082)) (-15 -1899 ((-121) (-626 |#1|) $)) |noBranch|) (-15 -2176 ((-2 (|:| |cycle?| (-121)) (|:| -1858 (-755)) (|:| |period| (-755))) (-755) $)) (-15 -2275 ($ (-1 $))) (-15 -2807 ($ |#1| $)) (IF (|has| |#1| (-1082)) (PROGN (-15 -3632 ((-1241) (-560) $)) (-15 -1403 ((-842) $)) (-15 -1942 ((-121)))) |noBranch|) (-15 -1741 ($ $ (-560) $)) (-15 -3765 ($ (-1 |#1|))) (-15 -3765 ($ (-1 |#1| |#1|) |#1|)) (-15 -3788 ($ (-1 (-121) |#1|) $)) (-15 -3795 ($ (-1 (-121) |#1|) $)))) -((-2601 (((-121) $ $) 18)) (-4454 (($ $) 113)) (-4010 (($ $) 114)) (-2486 (($ $ (-145)) 101) (($ $ (-142)) 100)) (-2960 (((-1241) $ (-560) (-560)) 37 (|has| $ (-6 -4506)))) (-3762 (((-121) $ $) 111)) (-3842 (((-121) $ $ (-560)) 110)) (-2308 (($ (-560)) 118)) (-2437 (((-626 $) $ (-145)) 103) (((-626 $) $ (-142)) 102)) (-3189 (((-121) (-1 (-121) (-145) (-145)) $) 91) (((-121) $) 85 (|has| (-145) (-834)))) (-4410 (($ (-1 (-121) (-145) (-145)) $) 82 (|has| $ (-6 -4506))) (($ $) 81 (-12 (|has| (-145) (-834)) (|has| $ (-6 -4506))))) (-3743 (($ (-1 (-121) (-145) (-145)) $) 92) (($ $) 86 (|has| (-145) (-834)))) (-3909 (((-121) $ (-755)) 8)) (-2764 (((-145) $ (-560) (-145)) 49 (|has| $ (-6 -4506))) (((-145) $ (-1202 (-560)) (-145)) 53 (|has| $ (-6 -4506)))) (-3802 (($ (-1 (-121) (-145)) $) 70 (|has| $ (-6 -4505)))) (-4236 (($) 7 T CONST)) (-1851 (($ $ (-145)) 97) (($ $ (-142)) 96)) (-4030 (($ $) 83 (|has| $ (-6 -4506)))) (-2883 (($ $) 93)) (-2493 (($ $ (-1202 (-560)) $) 107)) (-2868 (($ $) 73 (-12 (|has| (-145) (-1082)) (|has| $ (-6 -4505))))) (-4310 (($ (-145) $) 72 (-12 (|has| (-145) (-1082)) (|has| $ (-6 -4505)))) (($ (-1 (-121) (-145)) $) 69 (|has| $ (-6 -4505)))) (-2342 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) 71 (-12 (|has| (-145) (-1082)) (|has| $ (-6 -4505)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) 68 (|has| $ (-6 -4505))) (((-145) (-1 (-145) (-145) (-145)) $) 67 (|has| $ (-6 -4505)))) (-1746 (((-145) $ (-560) (-145)) 50 (|has| $ (-6 -4506)))) (-1361 (((-145) $ (-560)) 48)) (-3848 (((-121) $ $) 112)) (-2839 (((-560) (-1 (-121) (-145)) $) 90) (((-560) (-145) $) 89 (|has| (-145) (-1082))) (((-560) (-145) $ (-560)) 88 (|has| (-145) (-1082))) (((-560) $ $ (-560)) 106) (((-560) (-142) $ (-560)) 105)) (-1981 (((-626 (-145)) $) 30 (|has| $ (-6 -4505)))) (-1721 (($ (-755) (-145)) 64)) (-2122 (((-121) $ (-755)) 9)) (-4099 (((-560) $) 40 (|has| (-560) (-834)))) (-4325 (($ $ $) 80 (|has| (-145) (-834)))) (-2492 (($ (-1 (-121) (-145) (-145)) $ $) 94) (($ $ $) 87 (|has| (-145) (-834)))) (-2130 (((-626 (-145)) $) 29 (|has| $ (-6 -4505)))) (-2030 (((-121) (-145) $) 27 (-12 (|has| (-145) (-1082)) (|has| $ (-6 -4505))))) (-2767 (((-560) $) 41 (|has| (-560) (-834)))) (-2501 (($ $ $) 79 (|has| (-145) (-834)))) (-4040 (((-121) $ $ (-145)) 108)) (-2840 (((-755) $ $ (-145)) 109)) (-3778 (($ (-1 (-145) (-145)) $) 34 (|has| $ (-6 -4506)))) (-2803 (($ (-1 (-145) (-145)) $) 35) (($ (-1 (-145) (-145) (-145)) $ $) 59)) (-1521 (($ $) 115)) (-1379 (($ $) 116)) (-3441 (((-121) $ (-755)) 10)) (-3574 (($ $ (-145)) 99) (($ $ (-142)) 98)) (-1291 (((-1135) $) 22)) (-4103 (($ (-145) $ (-560)) 55) (($ $ $ (-560)) 54)) (-1529 (((-626 (-560)) $) 43)) (-1310 (((-121) (-560) $) 44)) (-4353 (((-1100) $) 21)) (-2824 (((-145) $) 39 (|has| (-560) (-834)))) (-3786 (((-3 (-145) "failed") (-1 (-121) (-145)) $) 66)) (-3038 (($ $ (-145)) 38 (|has| $ (-6 -4506)))) (-2865 (((-121) (-1 (-121) (-145)) $) 32 (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 (-145)))) 26 (-12 (|has| (-145) (-298 (-145))) (|has| (-145) (-1082)))) (($ $ (-283 (-145))) 25 (-12 (|has| (-145) (-298 (-145))) (|has| (-145) (-1082)))) (($ $ (-145) (-145)) 24 (-12 (|has| (-145) (-298 (-145))) (|has| (-145) (-1082)))) (($ $ (-626 (-145)) (-626 (-145))) 23 (-12 (|has| (-145) (-298 (-145))) (|has| (-145) (-1082))))) (-2214 (((-121) $ $) 14)) (-1290 (((-121) (-145) $) 42 (-12 (|has| $ (-6 -4505)) (|has| (-145) (-1082))))) (-4460 (((-626 (-145)) $) 45)) (-4191 (((-121) $) 11)) (-3260 (($) 12)) (-2778 (((-145) $ (-560) (-145)) 47) (((-145) $ (-560)) 46) (($ $ (-1202 (-560))) 58) (($ $ $) 95)) (-2949 (($ $ (-560)) 57) (($ $ (-1202 (-560))) 56)) (-4035 (((-755) (-1 (-121) (-145)) $) 31 (|has| $ (-6 -4505))) (((-755) (-145) $) 28 (-12 (|has| (-145) (-1082)) (|has| $ (-6 -4505))))) (-4072 (($ $ $ (-560)) 84 (|has| $ (-6 -4506)))) (-2813 (($ $) 13)) (-4255 (((-533) $) 74 (|has| (-145) (-601 (-533))))) (-4162 (($ (-626 (-145))) 65)) (-2849 (($ $ (-145)) 63) (($ (-145) $) 62) (($ $ $) 61) (($ (-626 $)) 60)) (-2801 (($ (-145)) 104) (((-842) $) 20)) (-3656 (((-121) (-1 (-121) (-145)) $) 33 (|has| $ (-6 -4505)))) (-3039 (((-1135) $) 122) (((-1135) $ (-121)) 121) (((-1241) (-809) $) 120) (((-1241) (-809) $ (-121)) 119)) (-1691 (((-121) $ $) 77 (|has| (-145) (-834)))) (-1675 (((-121) $ $) 76 (|has| (-145) (-834)))) (-1653 (((-121) $ $) 19)) (-1683 (((-121) $ $) 78 (|has| (-145) (-834)))) (-1667 (((-121) $ $) 75 (|has| (-145) (-834)))) (-2271 (((-755) $) 6 (|has| $ (-6 -4505))))) -(((-1134) (-1267)) (T -1134)) -((-2308 (*1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-1134))))) -(-13 (-1121) (-1082) (-815) (-10 -8 (-15 -2308 ($ (-560))))) -(((-39) . T) ((-105) . T) ((-600 (-842)) . T) ((-152 (-145)) . T) ((-601 (-533)) |has| (-145) (-601 (-533))) ((-276 (-560) (-145)) . T) ((-278 (-560) (-145)) . T) ((-298 (-145)) -12 (|has| (-145) (-298 (-145))) (|has| (-145) (-1082))) ((-369 (-145)) . T) ((-492 (-145)) . T) ((-593 (-560) (-145)) . T) ((-515 (-145) (-145)) -12 (|has| (-145) (-298 (-145))) (|has| (-145) (-1082))) ((-632 (-145)) . T) ((-19 (-145)) . T) ((-815) . T) ((-834) |has| (-145) (-834)) ((-1082) . T) ((-1121) . T) ((-1187) . T)) -((-2601 (((-121) $ $) NIL)) (-4454 (($ $) NIL)) (-4010 (($ $) NIL)) (-2486 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-2960 (((-1241) $ (-560) (-560)) NIL (|has| $ (-6 -4506)))) (-3762 (((-121) $ $) NIL)) (-3842 (((-121) $ $ (-560)) NIL)) (-2308 (($ (-560)) 7)) (-2437 (((-626 $) $ (-145)) NIL) (((-626 $) $ (-142)) NIL)) (-3189 (((-121) (-1 (-121) (-145) (-145)) $) NIL) (((-121) $) NIL (|has| (-145) (-834)))) (-4410 (($ (-1 (-121) (-145) (-145)) $) NIL (|has| $ (-6 -4506))) (($ $) NIL (-12 (|has| $ (-6 -4506)) (|has| (-145) (-834))))) (-3743 (($ (-1 (-121) (-145) (-145)) $) NIL) (($ $) NIL (|has| (-145) (-834)))) (-3909 (((-121) $ (-755)) NIL)) (-2764 (((-145) $ (-560) (-145)) NIL (|has| $ (-6 -4506))) (((-145) $ (-1202 (-560)) (-145)) NIL (|has| $ (-6 -4506)))) (-3802 (($ (-1 (-121) (-145)) $) NIL (|has| $ (-6 -4505)))) (-4236 (($) NIL T CONST)) (-1851 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-4030 (($ $) NIL (|has| $ (-6 -4506)))) (-2883 (($ $) NIL)) (-2493 (($ $ (-1202 (-560)) $) NIL)) (-2868 (($ $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-145) (-1082))))) (-4310 (($ (-145) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-145) (-1082)))) (($ (-1 (-121) (-145)) $) NIL (|has| $ (-6 -4505)))) (-2342 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4505)) (|has| (-145) (-1082)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4505))) (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4505)))) (-1746 (((-145) $ (-560) (-145)) NIL (|has| $ (-6 -4506)))) (-1361 (((-145) $ (-560)) NIL)) (-3848 (((-121) $ $) NIL)) (-2839 (((-560) (-1 (-121) (-145)) $) NIL) (((-560) (-145) $) NIL (|has| (-145) (-1082))) (((-560) (-145) $ (-560)) NIL (|has| (-145) (-1082))) (((-560) $ $ (-560)) NIL) (((-560) (-142) $ (-560)) NIL)) (-1981 (((-626 (-145)) $) NIL (|has| $ (-6 -4505)))) (-1721 (($ (-755) (-145)) NIL)) (-2122 (((-121) $ (-755)) NIL)) (-4099 (((-560) $) NIL (|has| (-560) (-834)))) (-4325 (($ $ $) NIL (|has| (-145) (-834)))) (-2492 (($ (-1 (-121) (-145) (-145)) $ $) NIL) (($ $ $) NIL (|has| (-145) (-834)))) (-2130 (((-626 (-145)) $) NIL (|has| $ (-6 -4505)))) (-2030 (((-121) (-145) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-145) (-1082))))) (-2767 (((-560) $) NIL (|has| (-560) (-834)))) (-2501 (($ $ $) NIL (|has| (-145) (-834)))) (-4040 (((-121) $ $ (-145)) NIL)) (-2840 (((-755) $ $ (-145)) NIL)) (-3778 (($ (-1 (-145) (-145)) $) NIL (|has| $ (-6 -4506)))) (-2803 (($ (-1 (-145) (-145)) $) NIL) (($ (-1 (-145) (-145) (-145)) $ $) NIL)) (-1521 (($ $) NIL)) (-1379 (($ $) NIL)) (-3441 (((-121) $ (-755)) NIL)) (-3574 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-1291 (((-1135) $) NIL)) (-4103 (($ (-145) $ (-560)) NIL) (($ $ $ (-560)) NIL)) (-1529 (((-626 (-560)) $) NIL)) (-1310 (((-121) (-560) $) NIL)) (-4353 (((-1100) $) NIL)) (-2824 (((-145) $) NIL (|has| (-560) (-834)))) (-3786 (((-3 (-145) "failed") (-1 (-121) (-145)) $) NIL)) (-3038 (($ $ (-145)) NIL (|has| $ (-6 -4506)))) (-2865 (((-121) (-1 (-121) (-145)) $) NIL (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 (-145)))) NIL (-12 (|has| (-145) (-298 (-145))) (|has| (-145) (-1082)))) (($ $ (-283 (-145))) NIL (-12 (|has| (-145) (-298 (-145))) (|has| (-145) (-1082)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-298 (-145))) (|has| (-145) (-1082)))) (($ $ (-626 (-145)) (-626 (-145))) NIL (-12 (|has| (-145) (-298 (-145))) (|has| (-145) (-1082))))) (-2214 (((-121) $ $) NIL)) (-1290 (((-121) (-145) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-145) (-1082))))) (-4460 (((-626 (-145)) $) NIL)) (-4191 (((-121) $) NIL)) (-3260 (($) NIL)) (-2778 (((-145) $ (-560) (-145)) NIL) (((-145) $ (-560)) NIL) (($ $ (-1202 (-560))) NIL) (($ $ $) NIL)) (-2949 (($ $ (-560)) NIL) (($ $ (-1202 (-560))) NIL)) (-4035 (((-755) (-1 (-121) (-145)) $) NIL (|has| $ (-6 -4505))) (((-755) (-145) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-145) (-1082))))) (-4072 (($ $ $ (-560)) NIL (|has| $ (-6 -4506)))) (-2813 (($ $) NIL)) (-4255 (((-533) $) NIL (|has| (-145) (-601 (-533))))) (-4162 (($ (-626 (-145))) NIL)) (-2849 (($ $ (-145)) NIL) (($ (-145) $) NIL) (($ $ $) NIL) (($ (-626 $)) NIL)) (-2801 (($ (-145)) NIL) (((-842) $) NIL)) (-3656 (((-121) (-1 (-121) (-145)) $) NIL (|has| $ (-6 -4505)))) (-3039 (((-1135) $) 18) (((-1135) $ (-121)) 20) (((-1241) (-809) $) 21) (((-1241) (-809) $ (-121)) 22)) (-1691 (((-121) $ $) NIL (|has| (-145) (-834)))) (-1675 (((-121) $ $) NIL (|has| (-145) (-834)))) (-1653 (((-121) $ $) NIL)) (-1683 (((-121) $ $) NIL (|has| (-145) (-834)))) (-1667 (((-121) $ $) NIL (|has| (-145) (-834)))) (-2271 (((-755) $) NIL (|has| $ (-6 -4505))))) -(((-1135) (-1134)) (T -1135)) -NIL -(-1134) -((-2601 (((-121) $ $) NIL (-2318 (|has| (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (-1082)) (|has| |#1| (-1082))))) (-4050 (($) NIL) (($ (-626 (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)))) NIL)) (-2960 (((-1241) $ (-1135) (-1135)) NIL (|has| $ (-6 -4506)))) (-3909 (((-121) $ (-755)) NIL)) (-2764 ((|#1| $ (-1135) |#1|) NIL)) (-3763 (($ (-1 (-121) (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|))) $) NIL (|has| $ (-6 -4505)))) (-3802 (($ (-1 (-121) (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|))) $) NIL (|has| $ (-6 -4505)))) (-2722 (((-3 |#1| "failed") (-1135) $) NIL)) (-4236 (($) NIL T CONST)) (-2868 (($ $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (-1082))))) (-3561 (($ (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) $) NIL (|has| $ (-6 -4505))) (($ (-1 (-121) (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|))) $) NIL (|has| $ (-6 -4505))) (((-3 |#1| "failed") (-1135) $) NIL)) (-4310 (($ (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (-1082)))) (($ (-1 (-121) (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|))) $) NIL (|has| $ (-6 -4505)))) (-2342 (((-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (-1 (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|))) $ (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|))) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (-1082)))) (((-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (-1 (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|))) $ (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|))) NIL (|has| $ (-6 -4505))) (((-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (-1 (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|))) $) NIL (|has| $ (-6 -4505)))) (-1746 ((|#1| $ (-1135) |#1|) NIL (|has| $ (-6 -4506)))) (-1361 ((|#1| $ (-1135)) NIL)) (-1981 (((-626 (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|))) $) NIL (|has| $ (-6 -4505))) (((-626 |#1|) $) NIL (|has| $ (-6 -4505)))) (-2122 (((-121) $ (-755)) NIL)) (-4099 (((-1135) $) NIL (|has| (-1135) (-834)))) (-2130 (((-626 (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|))) $) NIL (|has| $ (-6 -4505))) (((-626 |#1|) $) NIL (|has| $ (-6 -4505)))) (-2030 (((-121) (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (-1082)))) (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-2767 (((-1135) $) NIL (|has| (-1135) (-834)))) (-3778 (($ (-1 (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|))) $) NIL (|has| $ (-6 -4506))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4506)))) (-2803 (($ (-1 (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3441 (((-121) $ (-755)) NIL)) (-1291 (((-1135) $) NIL (-2318 (|has| (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (-1082)) (|has| |#1| (-1082))))) (-1377 (((-626 (-1135)) $) NIL)) (-3855 (((-121) (-1135) $) NIL)) (-2525 (((-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) $) NIL)) (-4345 (($ (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) $) NIL)) (-1529 (((-626 (-1135)) $) NIL)) (-1310 (((-121) (-1135) $) NIL)) (-4353 (((-1100) $) NIL (-2318 (|has| (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (-1082)) (|has| |#1| (-1082))))) (-2824 ((|#1| $) NIL (|has| (-1135) (-834)))) (-3786 (((-3 (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) "failed") (-1 (-121) (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|))) $) NIL)) (-3038 (($ $ |#1|) NIL (|has| $ (-6 -4506)))) (-2146 (((-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) $) NIL)) (-2865 (((-121) (-1 (-121) (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|))) $) NIL (|has| $ (-6 -4505))) (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|))))) NIL (-12 (|has| (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (-298 (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)))) (|has| (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (-1082)))) (($ $ (-283 (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)))) NIL (-12 (|has| (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (-298 (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)))) (|has| (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (-1082)))) (($ $ (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|))) NIL (-12 (|has| (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (-298 (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)))) (|has| (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (-1082)))) (($ $ (-626 (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|))) (-626 (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)))) NIL (-12 (|has| (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (-298 (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)))) (|has| (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (-1082)))) (($ $ (-626 |#1|) (-626 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-283 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-626 (-283 |#1|))) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))))) (-2214 (((-121) $ $) NIL)) (-1290 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-4460 (((-626 |#1|) $) NIL)) (-4191 (((-121) $) NIL)) (-3260 (($) NIL)) (-2778 ((|#1| $ (-1135)) NIL) ((|#1| $ (-1135) |#1|) NIL)) (-3958 (($) NIL) (($ (-626 (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)))) NIL)) (-4035 (((-755) (-1 (-121) (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|))) $) NIL (|has| $ (-6 -4505))) (((-755) (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (-1082)))) (((-755) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082)))) (((-755) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-2813 (($ $) NIL)) (-4255 (((-533) $) NIL (|has| (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (-601 (-533))))) (-4162 (($ (-626 (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)))) NIL)) (-2801 (((-842) $) NIL (-2318 (|has| (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (-1082)) (|has| |#1| (-1082))))) (-1354 (($ (-626 (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)))) NIL)) (-3656 (((-121) (-1 (-121) (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|))) $) NIL (|has| $ (-6 -4505))) (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-1653 (((-121) $ $) NIL (-2318 (|has| (-2 (|:| -3655 (-1135)) (|:| -2371 |#1|)) (-1082)) (|has| |#1| (-1082))))) (-2271 (((-755) $) NIL (|has| $ (-6 -4505))))) -(((-1136 |#1|) (-13 (-1164 (-1135) |#1|) (-10 -7 (-6 -4505))) (-1082)) (T -1136)) -NIL -(-13 (-1164 (-1135) |#1|) (-10 -7 (-6 -4505))) -((-3053 (((-1133 |#1|) (-1133 |#1|)) 77)) (-1823 (((-3 (-1133 |#1|) "failed") (-1133 |#1|)) 37)) (-3303 (((-1133 |#1|) (-403 (-560)) (-1133 |#1|)) 117 (|has| |#1| (-43 (-403 (-560)))))) (-2001 (((-1133 |#1|) |#1| (-1133 |#1|)) 121 (|has| |#1| (-359)))) (-2131 (((-1133 |#1|) (-1133 |#1|)) 90)) (-2195 (((-1133 (-560)) (-560)) 57)) (-1573 (((-1133 |#1|) (-1133 (-1133 |#1|))) 108 (|has| |#1| (-43 (-403 (-560)))))) (-4143 (((-1133 |#1|) (-560) (-560) (-1133 |#1|)) 95)) (-2175 (((-1133 |#1|) |#1| (-560)) 45)) (-3723 (((-1133 |#1|) (-1133 |#1|) (-1133 |#1|)) 60)) (-1860 (((-1133 |#1|) (-1133 |#1|) (-1133 |#1|)) 119 (|has| |#1| (-359)))) (-3580 (((-1133 |#1|) |#1| (-1 (-1133 |#1|))) 107 (|has| |#1| (-43 (-403 (-560)))))) (-2574 (((-1133 |#1|) (-1 |#1| (-560)) |#1| (-1 (-1133 |#1|))) 120 (|has| |#1| (-359)))) (-4297 (((-1133 |#1|) (-1133 |#1|)) 89)) (-2780 (((-1133 |#1|) (-1133 |#1|)) 76)) (-2796 (((-1133 |#1|) (-560) (-560) (-1133 |#1|)) 96)) (-2376 (((-1133 |#1|) |#1| (-1133 |#1|)) 105 (|has| |#1| (-43 (-403 (-560)))))) (-4312 (((-1133 (-560)) (-560)) 56)) (-3059 (((-1133 |#1|) |#1|) 59)) (-3264 (((-1133 |#1|) (-1133 |#1|) (-560) (-560)) 92)) (-3040 (((-1133 |#1|) (-1 |#1| (-560)) (-1133 |#1|)) 66)) (-2336 (((-3 (-1133 |#1|) "failed") (-1133 |#1|) (-1133 |#1|)) 35)) (-1760 (((-1133 |#1|) (-1133 |#1|)) 91)) (-4450 (((-1133 |#1|) (-1133 |#1|) |#1|) 71)) (-3310 (((-1133 |#1|) (-1133 |#1|)) 62)) (-4262 (((-1133 |#1|) (-1133 |#1|) (-1133 |#1|)) 72)) (-2801 (((-1133 |#1|) |#1|) 67)) (-3891 (((-1133 |#1|) (-1133 (-1133 |#1|))) 82)) (-1733 (((-1133 |#1|) (-1133 |#1|) (-1133 |#1|)) 36)) (-1725 (((-1133 |#1|) (-1133 |#1|)) 21) (((-1133 |#1|) (-1133 |#1|) (-1133 |#1|)) 23)) (-1716 (((-1133 |#1|) (-1133 |#1|) (-1133 |#1|)) 17)) (* (((-1133 |#1|) (-1133 |#1|) |#1|) 29) (((-1133 |#1|) |#1| (-1133 |#1|)) 26) (((-1133 |#1|) (-1133 |#1|) (-1133 |#1|)) 27))) -(((-1137 |#1|) (-10 -7 (-15 -1716 ((-1133 |#1|) (-1133 |#1|) (-1133 |#1|))) (-15 -1725 ((-1133 |#1|) (-1133 |#1|) (-1133 |#1|))) (-15 -1725 ((-1133 |#1|) (-1133 |#1|))) (-15 * ((-1133 |#1|) (-1133 |#1|) (-1133 |#1|))) (-15 * ((-1133 |#1|) |#1| (-1133 |#1|))) (-15 * ((-1133 |#1|) (-1133 |#1|) |#1|)) (-15 -2336 ((-3 (-1133 |#1|) "failed") (-1133 |#1|) (-1133 |#1|))) (-15 -1733 ((-1133 |#1|) (-1133 |#1|) (-1133 |#1|))) (-15 -1823 ((-3 (-1133 |#1|) "failed") (-1133 |#1|))) (-15 -2175 ((-1133 |#1|) |#1| (-560))) (-15 -4312 ((-1133 (-560)) (-560))) (-15 -2195 ((-1133 (-560)) (-560))) (-15 -3059 ((-1133 |#1|) |#1|)) (-15 -3723 ((-1133 |#1|) (-1133 |#1|) (-1133 |#1|))) (-15 -3310 ((-1133 |#1|) (-1133 |#1|))) (-15 -3040 ((-1133 |#1|) (-1 |#1| (-560)) (-1133 |#1|))) (-15 -2801 ((-1133 |#1|) |#1|)) (-15 -4450 ((-1133 |#1|) (-1133 |#1|) |#1|)) (-15 -4262 ((-1133 |#1|) (-1133 |#1|) (-1133 |#1|))) (-15 -2780 ((-1133 |#1|) (-1133 |#1|))) (-15 -3053 ((-1133 |#1|) (-1133 |#1|))) (-15 -3891 ((-1133 |#1|) (-1133 (-1133 |#1|)))) (-15 -4297 ((-1133 |#1|) (-1133 |#1|))) (-15 -2131 ((-1133 |#1|) (-1133 |#1|))) (-15 -1760 ((-1133 |#1|) (-1133 |#1|))) (-15 -3264 ((-1133 |#1|) (-1133 |#1|) (-560) (-560))) (-15 -4143 ((-1133 |#1|) (-560) (-560) (-1133 |#1|))) (-15 -2796 ((-1133 |#1|) (-560) (-560) (-1133 |#1|))) (IF (|has| |#1| (-43 (-403 (-560)))) (PROGN (-15 -2376 ((-1133 |#1|) |#1| (-1133 |#1|))) (-15 -3580 ((-1133 |#1|) |#1| (-1 (-1133 |#1|)))) (-15 -1573 ((-1133 |#1|) (-1133 (-1133 |#1|)))) (-15 -3303 ((-1133 |#1|) (-403 (-560)) (-1133 |#1|)))) |noBranch|) (IF (|has| |#1| (-359)) (PROGN (-15 -1860 ((-1133 |#1|) (-1133 |#1|) (-1133 |#1|))) (-15 -2574 ((-1133 |#1|) (-1 |#1| (-560)) |#1| (-1 (-1133 |#1|)))) (-15 -2001 ((-1133 |#1|) |#1| (-1133 |#1|)))) |noBranch|)) (-1039)) (T -1137)) -((-2001 (*1 *2 *3 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-359)) (-4 *3 (-1039)) (-5 *1 (-1137 *3)))) (-2574 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-560))) (-5 *5 (-1 (-1133 *4))) (-4 *4 (-359)) (-4 *4 (-1039)) (-5 *2 (-1133 *4)) (-5 *1 (-1137 *4)))) (-1860 (*1 *2 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-359)) (-4 *3 (-1039)) (-5 *1 (-1137 *3)))) (-3303 (*1 *2 *3 *2) (-12 (-5 *2 (-1133 *4)) (-4 *4 (-43 *3)) (-4 *4 (-1039)) (-5 *3 (-403 (-560))) (-5 *1 (-1137 *4)))) (-1573 (*1 *2 *3) (-12 (-5 *3 (-1133 (-1133 *4))) (-5 *2 (-1133 *4)) (-5 *1 (-1137 *4)) (-4 *4 (-43 (-403 (-560)))) (-4 *4 (-1039)))) (-3580 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1133 *3))) (-5 *2 (-1133 *3)) (-5 *1 (-1137 *3)) (-4 *3 (-43 (-403 (-560)))) (-4 *3 (-1039)))) (-2376 (*1 *2 *3 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-4 *3 (-1039)) (-5 *1 (-1137 *3)))) (-2796 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1133 *4)) (-5 *3 (-560)) (-4 *4 (-1039)) (-5 *1 (-1137 *4)))) (-4143 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1133 *4)) (-5 *3 (-560)) (-4 *4 (-1039)) (-5 *1 (-1137 *4)))) (-3264 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1133 *4)) (-5 *3 (-560)) (-4 *4 (-1039)) (-5 *1 (-1137 *4)))) (-1760 (*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-1039)) (-5 *1 (-1137 *3)))) (-2131 (*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-1039)) (-5 *1 (-1137 *3)))) (-4297 (*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-1039)) (-5 *1 (-1137 *3)))) (-3891 (*1 *2 *3) (-12 (-5 *3 (-1133 (-1133 *4))) (-5 *2 (-1133 *4)) (-5 *1 (-1137 *4)) (-4 *4 (-1039)))) (-3053 (*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-1039)) (-5 *1 (-1137 *3)))) (-2780 (*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-1039)) (-5 *1 (-1137 *3)))) (-4262 (*1 *2 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-1039)) (-5 *1 (-1137 *3)))) (-4450 (*1 *2 *2 *3) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-1039)) (-5 *1 (-1137 *3)))) (-2801 (*1 *2 *3) (-12 (-5 *2 (-1133 *3)) (-5 *1 (-1137 *3)) (-4 *3 (-1039)))) (-3040 (*1 *2 *3 *2) (-12 (-5 *2 (-1133 *4)) (-5 *3 (-1 *4 (-560))) (-4 *4 (-1039)) (-5 *1 (-1137 *4)))) (-3310 (*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-1039)) (-5 *1 (-1137 *3)))) (-3723 (*1 *2 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-1039)) (-5 *1 (-1137 *3)))) (-3059 (*1 *2 *3) (-12 (-5 *2 (-1133 *3)) (-5 *1 (-1137 *3)) (-4 *3 (-1039)))) (-2195 (*1 *2 *3) (-12 (-5 *2 (-1133 (-560))) (-5 *1 (-1137 *4)) (-4 *4 (-1039)) (-5 *3 (-560)))) (-4312 (*1 *2 *3) (-12 (-5 *2 (-1133 (-560))) (-5 *1 (-1137 *4)) (-4 *4 (-1039)) (-5 *3 (-560)))) (-2175 (*1 *2 *3 *4) (-12 (-5 *4 (-560)) (-5 *2 (-1133 *3)) (-5 *1 (-1137 *3)) (-4 *3 (-1039)))) (-1823 (*1 *2 *2) (|partial| -12 (-5 *2 (-1133 *3)) (-4 *3 (-1039)) (-5 *1 (-1137 *3)))) (-1733 (*1 *2 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-1039)) (-5 *1 (-1137 *3)))) (-2336 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1133 *3)) (-4 *3 (-1039)) (-5 *1 (-1137 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-1039)) (-5 *1 (-1137 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-1039)) (-5 *1 (-1137 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-1039)) (-5 *1 (-1137 *3)))) (-1725 (*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-1039)) (-5 *1 (-1137 *3)))) (-1725 (*1 *2 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-1039)) (-5 *1 (-1137 *3)))) (-1716 (*1 *2 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-1039)) (-5 *1 (-1137 *3))))) -(-10 -7 (-15 -1716 ((-1133 |#1|) (-1133 |#1|) (-1133 |#1|))) (-15 -1725 ((-1133 |#1|) (-1133 |#1|) (-1133 |#1|))) (-15 -1725 ((-1133 |#1|) (-1133 |#1|))) (-15 * ((-1133 |#1|) (-1133 |#1|) (-1133 |#1|))) (-15 * ((-1133 |#1|) |#1| (-1133 |#1|))) (-15 * ((-1133 |#1|) (-1133 |#1|) |#1|)) (-15 -2336 ((-3 (-1133 |#1|) "failed") (-1133 |#1|) (-1133 |#1|))) (-15 -1733 ((-1133 |#1|) (-1133 |#1|) (-1133 |#1|))) (-15 -1823 ((-3 (-1133 |#1|) "failed") (-1133 |#1|))) (-15 -2175 ((-1133 |#1|) |#1| (-560))) (-15 -4312 ((-1133 (-560)) (-560))) (-15 -2195 ((-1133 (-560)) (-560))) (-15 -3059 ((-1133 |#1|) |#1|)) (-15 -3723 ((-1133 |#1|) (-1133 |#1|) (-1133 |#1|))) (-15 -3310 ((-1133 |#1|) (-1133 |#1|))) (-15 -3040 ((-1133 |#1|) (-1 |#1| (-560)) (-1133 |#1|))) (-15 -2801 ((-1133 |#1|) |#1|)) (-15 -4450 ((-1133 |#1|) (-1133 |#1|) |#1|)) (-15 -4262 ((-1133 |#1|) (-1133 |#1|) (-1133 |#1|))) (-15 -2780 ((-1133 |#1|) (-1133 |#1|))) (-15 -3053 ((-1133 |#1|) (-1133 |#1|))) (-15 -3891 ((-1133 |#1|) (-1133 (-1133 |#1|)))) (-15 -4297 ((-1133 |#1|) (-1133 |#1|))) (-15 -2131 ((-1133 |#1|) (-1133 |#1|))) (-15 -1760 ((-1133 |#1|) (-1133 |#1|))) (-15 -3264 ((-1133 |#1|) (-1133 |#1|) (-560) (-560))) (-15 -4143 ((-1133 |#1|) (-560) (-560) (-1133 |#1|))) (-15 -2796 ((-1133 |#1|) (-560) (-560) (-1133 |#1|))) (IF (|has| |#1| (-43 (-403 (-560)))) (PROGN (-15 -2376 ((-1133 |#1|) |#1| (-1133 |#1|))) (-15 -3580 ((-1133 |#1|) |#1| (-1 (-1133 |#1|)))) (-15 -1573 ((-1133 |#1|) (-1133 (-1133 |#1|)))) (-15 -3303 ((-1133 |#1|) (-403 (-560)) (-1133 |#1|)))) |noBranch|) (IF (|has| |#1| (-359)) (PROGN (-15 -1860 ((-1133 |#1|) (-1133 |#1|) (-1133 |#1|))) (-15 -2574 ((-1133 |#1|) (-1 |#1| (-560)) |#1| (-1 (-1133 |#1|)))) (-15 -2001 ((-1133 |#1|) |#1| (-1133 |#1|)))) |noBranch|)) -((-2570 (((-1133 |#1|) (-1133 |#1|)) 57)) (-2514 (((-1133 |#1|) (-1133 |#1|)) 39)) (-2561 (((-1133 |#1|) (-1133 |#1|)) 53)) (-2790 (((-1133 |#1|) (-1133 |#1|)) 35)) (-2579 (((-1133 |#1|) (-1133 |#1|)) 60)) (-2523 (((-1133 |#1|) (-1133 |#1|)) 42)) (-4399 (((-1133 |#1|) (-1133 |#1|)) 31)) (-2469 (((-1133 |#1|) (-1133 |#1|)) 27)) (-2585 (((-1133 |#1|) (-1133 |#1|)) 61)) (-2528 (((-1133 |#1|) (-1133 |#1|)) 43)) (-2575 (((-1133 |#1|) (-1133 |#1|)) 58)) (-2519 (((-1133 |#1|) (-1133 |#1|)) 40)) (-2566 (((-1133 |#1|) (-1133 |#1|)) 55)) (-2795 (((-1133 |#1|) (-1133 |#1|)) 37)) (-2598 (((-1133 |#1|) (-1133 |#1|)) 65)) (-2541 (((-1133 |#1|) (-1133 |#1|)) 47)) (-2590 (((-1133 |#1|) (-1133 |#1|)) 63)) (-2532 (((-1133 |#1|) (-1133 |#1|)) 45)) (-2608 (((-1133 |#1|) (-1133 |#1|)) 68)) (-2549 (((-1133 |#1|) (-1133 |#1|)) 50)) (-3689 (((-1133 |#1|) (-1133 |#1|)) 69)) (-2554 (((-1133 |#1|) (-1133 |#1|)) 51)) (-2604 (((-1133 |#1|) (-1133 |#1|)) 67)) (-2545 (((-1133 |#1|) (-1133 |#1|)) 49)) (-2594 (((-1133 |#1|) (-1133 |#1|)) 66)) (-2536 (((-1133 |#1|) (-1133 |#1|)) 48)) (** (((-1133 |#1|) (-1133 |#1|) (-1133 |#1|)) 33))) -(((-1138 |#1|) (-10 -7 (-15 -2469 ((-1133 |#1|) (-1133 |#1|))) (-15 -4399 ((-1133 |#1|) (-1133 |#1|))) (-15 ** ((-1133 |#1|) (-1133 |#1|) (-1133 |#1|))) (-15 -2790 ((-1133 |#1|) (-1133 |#1|))) (-15 -2795 ((-1133 |#1|) (-1133 |#1|))) (-15 -2514 ((-1133 |#1|) (-1133 |#1|))) (-15 -2519 ((-1133 |#1|) (-1133 |#1|))) (-15 -2523 ((-1133 |#1|) (-1133 |#1|))) (-15 -2528 ((-1133 |#1|) (-1133 |#1|))) (-15 -2532 ((-1133 |#1|) (-1133 |#1|))) (-15 -2536 ((-1133 |#1|) (-1133 |#1|))) (-15 -2541 ((-1133 |#1|) (-1133 |#1|))) (-15 -2545 ((-1133 |#1|) (-1133 |#1|))) (-15 -2549 ((-1133 |#1|) (-1133 |#1|))) (-15 -2554 ((-1133 |#1|) (-1133 |#1|))) (-15 -2561 ((-1133 |#1|) (-1133 |#1|))) (-15 -2566 ((-1133 |#1|) (-1133 |#1|))) (-15 -2570 ((-1133 |#1|) (-1133 |#1|))) (-15 -2575 ((-1133 |#1|) (-1133 |#1|))) (-15 -2579 ((-1133 |#1|) (-1133 |#1|))) (-15 -2585 ((-1133 |#1|) (-1133 |#1|))) (-15 -2590 ((-1133 |#1|) (-1133 |#1|))) (-15 -2594 ((-1133 |#1|) (-1133 |#1|))) (-15 -2598 ((-1133 |#1|) (-1133 |#1|))) (-15 -2604 ((-1133 |#1|) (-1133 |#1|))) (-15 -2608 ((-1133 |#1|) (-1133 |#1|))) (-15 -3689 ((-1133 |#1|) (-1133 |#1|)))) (-43 (-403 (-560)))) (T -1138)) -((-3689 (*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1138 *3)))) (-2608 (*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1138 *3)))) (-2604 (*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1138 *3)))) (-2598 (*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1138 *3)))) (-2594 (*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1138 *3)))) (-2590 (*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1138 *3)))) (-2585 (*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1138 *3)))) (-2579 (*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1138 *3)))) (-2575 (*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1138 *3)))) (-2570 (*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1138 *3)))) (-2566 (*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1138 *3)))) (-2561 (*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1138 *3)))) (-2554 (*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1138 *3)))) (-2549 (*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1138 *3)))) (-2545 (*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1138 *3)))) (-2541 (*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1138 *3)))) (-2536 (*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1138 *3)))) (-2532 (*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1138 *3)))) (-2528 (*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1138 *3)))) (-2523 (*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1138 *3)))) (-2519 (*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1138 *3)))) (-2514 (*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1138 *3)))) (-2795 (*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1138 *3)))) (-2790 (*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1138 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1138 *3)))) (-4399 (*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1138 *3)))) (-2469 (*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1138 *3))))) -(-10 -7 (-15 -2469 ((-1133 |#1|) (-1133 |#1|))) (-15 -4399 ((-1133 |#1|) (-1133 |#1|))) (-15 ** ((-1133 |#1|) (-1133 |#1|) (-1133 |#1|))) (-15 -2790 ((-1133 |#1|) (-1133 |#1|))) (-15 -2795 ((-1133 |#1|) (-1133 |#1|))) (-15 -2514 ((-1133 |#1|) (-1133 |#1|))) (-15 -2519 ((-1133 |#1|) (-1133 |#1|))) (-15 -2523 ((-1133 |#1|) (-1133 |#1|))) (-15 -2528 ((-1133 |#1|) (-1133 |#1|))) (-15 -2532 ((-1133 |#1|) (-1133 |#1|))) (-15 -2536 ((-1133 |#1|) (-1133 |#1|))) (-15 -2541 ((-1133 |#1|) (-1133 |#1|))) (-15 -2545 ((-1133 |#1|) (-1133 |#1|))) (-15 -2549 ((-1133 |#1|) (-1133 |#1|))) (-15 -2554 ((-1133 |#1|) (-1133 |#1|))) (-15 -2561 ((-1133 |#1|) (-1133 |#1|))) (-15 -2566 ((-1133 |#1|) (-1133 |#1|))) (-15 -2570 ((-1133 |#1|) (-1133 |#1|))) (-15 -2575 ((-1133 |#1|) (-1133 |#1|))) (-15 -2579 ((-1133 |#1|) (-1133 |#1|))) (-15 -2585 ((-1133 |#1|) (-1133 |#1|))) (-15 -2590 ((-1133 |#1|) (-1133 |#1|))) (-15 -2594 ((-1133 |#1|) (-1133 |#1|))) (-15 -2598 ((-1133 |#1|) (-1133 |#1|))) (-15 -2604 ((-1133 |#1|) (-1133 |#1|))) (-15 -2608 ((-1133 |#1|) (-1133 |#1|))) (-15 -3689 ((-1133 |#1|) (-1133 |#1|)))) -((-2570 (((-1133 |#1|) (-1133 |#1|)) 100)) (-2514 (((-1133 |#1|) (-1133 |#1|)) 64)) (-2397 (((-2 (|:| -2561 (-1133 |#1|)) (|:| -2566 (-1133 |#1|))) (-1133 |#1|)) 96)) (-2561 (((-1133 |#1|) (-1133 |#1|)) 97)) (-3584 (((-2 (|:| -2790 (-1133 |#1|)) (|:| -2795 (-1133 |#1|))) (-1133 |#1|)) 53)) (-2790 (((-1133 |#1|) (-1133 |#1|)) 54)) (-2579 (((-1133 |#1|) (-1133 |#1|)) 102)) (-2523 (((-1133 |#1|) (-1133 |#1|)) 71)) (-4399 (((-1133 |#1|) (-1133 |#1|)) 39)) (-2469 (((-1133 |#1|) (-1133 |#1|)) 36)) (-2585 (((-1133 |#1|) (-1133 |#1|)) 103)) (-2528 (((-1133 |#1|) (-1133 |#1|)) 72)) (-2575 (((-1133 |#1|) (-1133 |#1|)) 101)) (-2519 (((-1133 |#1|) (-1133 |#1|)) 67)) (-2566 (((-1133 |#1|) (-1133 |#1|)) 98)) (-2795 (((-1133 |#1|) (-1133 |#1|)) 55)) (-2598 (((-1133 |#1|) (-1133 |#1|)) 111)) (-2541 (((-1133 |#1|) (-1133 |#1|)) 86)) (-2590 (((-1133 |#1|) (-1133 |#1|)) 105)) (-2532 (((-1133 |#1|) (-1133 |#1|)) 82)) (-2608 (((-1133 |#1|) (-1133 |#1|)) 115)) (-2549 (((-1133 |#1|) (-1133 |#1|)) 90)) (-3689 (((-1133 |#1|) (-1133 |#1|)) 117)) (-2554 (((-1133 |#1|) (-1133 |#1|)) 92)) (-2604 (((-1133 |#1|) (-1133 |#1|)) 113)) (-2545 (((-1133 |#1|) (-1133 |#1|)) 88)) (-2594 (((-1133 |#1|) (-1133 |#1|)) 107)) (-2536 (((-1133 |#1|) (-1133 |#1|)) 84)) (** (((-1133 |#1|) (-1133 |#1|) (-1133 |#1|)) 40))) -(((-1139 |#1|) (-10 -7 (-15 -2469 ((-1133 |#1|) (-1133 |#1|))) (-15 -4399 ((-1133 |#1|) (-1133 |#1|))) (-15 ** ((-1133 |#1|) (-1133 |#1|) (-1133 |#1|))) (-15 -3584 ((-2 (|:| -2790 (-1133 |#1|)) (|:| -2795 (-1133 |#1|))) (-1133 |#1|))) (-15 -2790 ((-1133 |#1|) (-1133 |#1|))) (-15 -2795 ((-1133 |#1|) (-1133 |#1|))) (-15 -2514 ((-1133 |#1|) (-1133 |#1|))) (-15 -2519 ((-1133 |#1|) (-1133 |#1|))) (-15 -2523 ((-1133 |#1|) (-1133 |#1|))) (-15 -2528 ((-1133 |#1|) (-1133 |#1|))) (-15 -2532 ((-1133 |#1|) (-1133 |#1|))) (-15 -2536 ((-1133 |#1|) (-1133 |#1|))) (-15 -2541 ((-1133 |#1|) (-1133 |#1|))) (-15 -2545 ((-1133 |#1|) (-1133 |#1|))) (-15 -2549 ((-1133 |#1|) (-1133 |#1|))) (-15 -2554 ((-1133 |#1|) (-1133 |#1|))) (-15 -2397 ((-2 (|:| -2561 (-1133 |#1|)) (|:| -2566 (-1133 |#1|))) (-1133 |#1|))) (-15 -2561 ((-1133 |#1|) (-1133 |#1|))) (-15 -2566 ((-1133 |#1|) (-1133 |#1|))) (-15 -2570 ((-1133 |#1|) (-1133 |#1|))) (-15 -2575 ((-1133 |#1|) (-1133 |#1|))) (-15 -2579 ((-1133 |#1|) (-1133 |#1|))) (-15 -2585 ((-1133 |#1|) (-1133 |#1|))) (-15 -2590 ((-1133 |#1|) (-1133 |#1|))) (-15 -2594 ((-1133 |#1|) (-1133 |#1|))) (-15 -2598 ((-1133 |#1|) (-1133 |#1|))) (-15 -2604 ((-1133 |#1|) (-1133 |#1|))) (-15 -2608 ((-1133 |#1|) (-1133 |#1|))) (-15 -3689 ((-1133 |#1|) (-1133 |#1|)))) (-43 (-403 (-560)))) (T -1139)) -((-3689 (*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1139 *3)))) (-2608 (*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1139 *3)))) (-2604 (*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1139 *3)))) (-2598 (*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1139 *3)))) (-2594 (*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1139 *3)))) (-2590 (*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1139 *3)))) (-2585 (*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1139 *3)))) (-2579 (*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1139 *3)))) (-2575 (*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1139 *3)))) (-2570 (*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1139 *3)))) (-2566 (*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1139 *3)))) (-2561 (*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1139 *3)))) (-2397 (*1 *2 *3) (-12 (-4 *4 (-43 (-403 (-560)))) (-5 *2 (-2 (|:| -2561 (-1133 *4)) (|:| -2566 (-1133 *4)))) (-5 *1 (-1139 *4)) (-5 *3 (-1133 *4)))) (-2554 (*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1139 *3)))) (-2549 (*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1139 *3)))) (-2545 (*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1139 *3)))) (-2541 (*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1139 *3)))) (-2536 (*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1139 *3)))) (-2532 (*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1139 *3)))) (-2528 (*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1139 *3)))) (-2523 (*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1139 *3)))) (-2519 (*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1139 *3)))) (-2514 (*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1139 *3)))) (-2795 (*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1139 *3)))) (-2790 (*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1139 *3)))) (-3584 (*1 *2 *3) (-12 (-4 *4 (-43 (-403 (-560)))) (-5 *2 (-2 (|:| -2790 (-1133 *4)) (|:| -2795 (-1133 *4)))) (-5 *1 (-1139 *4)) (-5 *3 (-1133 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1139 *3)))) (-4399 (*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1139 *3)))) (-2469 (*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1139 *3))))) -(-10 -7 (-15 -2469 ((-1133 |#1|) (-1133 |#1|))) (-15 -4399 ((-1133 |#1|) (-1133 |#1|))) (-15 ** ((-1133 |#1|) (-1133 |#1|) (-1133 |#1|))) (-15 -3584 ((-2 (|:| -2790 (-1133 |#1|)) (|:| -2795 (-1133 |#1|))) (-1133 |#1|))) (-15 -2790 ((-1133 |#1|) (-1133 |#1|))) (-15 -2795 ((-1133 |#1|) (-1133 |#1|))) (-15 -2514 ((-1133 |#1|) (-1133 |#1|))) (-15 -2519 ((-1133 |#1|) (-1133 |#1|))) (-15 -2523 ((-1133 |#1|) (-1133 |#1|))) (-15 -2528 ((-1133 |#1|) (-1133 |#1|))) (-15 -2532 ((-1133 |#1|) (-1133 |#1|))) (-15 -2536 ((-1133 |#1|) (-1133 |#1|))) (-15 -2541 ((-1133 |#1|) (-1133 |#1|))) (-15 -2545 ((-1133 |#1|) (-1133 |#1|))) (-15 -2549 ((-1133 |#1|) (-1133 |#1|))) (-15 -2554 ((-1133 |#1|) (-1133 |#1|))) (-15 -2397 ((-2 (|:| -2561 (-1133 |#1|)) (|:| -2566 (-1133 |#1|))) (-1133 |#1|))) (-15 -2561 ((-1133 |#1|) (-1133 |#1|))) (-15 -2566 ((-1133 |#1|) (-1133 |#1|))) (-15 -2570 ((-1133 |#1|) (-1133 |#1|))) (-15 -2575 ((-1133 |#1|) (-1133 |#1|))) (-15 -2579 ((-1133 |#1|) (-1133 |#1|))) (-15 -2585 ((-1133 |#1|) (-1133 |#1|))) (-15 -2590 ((-1133 |#1|) (-1133 |#1|))) (-15 -2594 ((-1133 |#1|) (-1133 |#1|))) (-15 -2598 ((-1133 |#1|) (-1133 |#1|))) (-15 -2604 ((-1133 |#1|) (-1133 |#1|))) (-15 -2608 ((-1133 |#1|) (-1133 |#1|))) (-15 -3689 ((-1133 |#1|) (-1133 |#1|)))) -((-1378 (((-950 |#2|) |#2| |#2|) 35)) (-3605 ((|#2| |#2| |#1|) 19 (|has| |#1| (-296))))) -(((-1140 |#1| |#2|) (-10 -7 (-15 -1378 ((-950 |#2|) |#2| |#2|)) (IF (|has| |#1| (-296)) (-15 -3605 (|#2| |#2| |#1|)) |noBranch|)) (-550) (-1211 |#1|)) (T -1140)) -((-3605 (*1 *2 *2 *3) (-12 (-4 *3 (-296)) (-4 *3 (-550)) (-5 *1 (-1140 *3 *2)) (-4 *2 (-1211 *3)))) (-1378 (*1 *2 *3 *3) (-12 (-4 *4 (-550)) (-5 *2 (-950 *3)) (-5 *1 (-1140 *4 *3)) (-4 *3 (-1211 *4))))) -(-10 -7 (-15 -1378 ((-950 |#2|) |#2| |#2|)) (IF (|has| |#1| (-296)) (-15 -3605 (|#2| |#2| |#1|)) |noBranch|)) -((-2601 (((-121) $ $) NIL)) (-1364 (($ $ (-626 (-755))) 66)) (-4391 (($) 25)) (-3593 (($ $) 41)) (-2562 (((-626 $) $) 50)) (-1632 (((-121) $) 16)) (-2171 (((-626 (-936 |#2|)) $) 73)) (-2860 (($ $) 67)) (-1363 (((-755) $) 36)) (-1721 (($) 24)) (-3946 (($ $ (-626 (-755)) (-936 |#2|)) 59) (($ $ (-626 (-755)) (-755)) 60) (($ $ (-755) (-936 |#2|)) 62)) (-2492 (($ $ $) 47) (($ (-626 $)) 49)) (-2558 (((-755) $) 74)) (-3992 (((-121) $) 15)) (-1291 (((-1135) $) NIL)) (-4393 (((-121) $) 17)) (-4353 (((-1100) $) NIL)) (-1949 (((-169) $) 72)) (-1911 (((-936 |#2|) $) 68)) (-3093 (((-755) $) 69)) (-2297 (((-121) $) 71)) (-1969 (($ $ (-626 (-755)) (-169)) 65)) (-2645 (($ $) 42)) (-2801 (((-842) $) 84)) (-2600 (($ $ (-626 (-755)) (-121)) 64)) (-2853 (((-626 $) $) 11)) (-4286 (($ $ (-755)) 35)) (-1397 (($ $) 31)) (-2172 (($ $ $ (-936 |#2|) (-755)) 55)) (-2648 (($ $ (-936 |#2|)) 54)) (-3720 (($ $ (-626 (-755)) (-936 |#2|)) 53) (($ $ (-626 (-755)) (-755)) 57) (((-755) $ (-936 |#2|)) 58)) (-1653 (((-121) $ $) 78))) -(((-1141 |#1| |#2|) (-13 (-1082) (-10 -8 (-15 -3992 ((-121) $)) (-15 -1632 ((-121) $)) (-15 -4393 ((-121) $)) (-15 -1721 ($)) (-15 -4391 ($)) (-15 -1397 ($ $)) (-15 -4286 ($ $ (-755))) (-15 -2853 ((-626 $) $)) (-15 -1363 ((-755) $)) (-15 -3593 ($ $)) (-15 -2645 ($ $)) (-15 -2492 ($ $ $)) (-15 -2492 ($ (-626 $))) (-15 -2562 ((-626 $) $)) (-15 -3720 ($ $ (-626 (-755)) (-936 |#2|))) (-15 -2648 ($ $ (-936 |#2|))) (-15 -2172 ($ $ $ (-936 |#2|) (-755))) (-15 -3946 ($ $ (-626 (-755)) (-936 |#2|))) (-15 -3720 ($ $ (-626 (-755)) (-755))) (-15 -3946 ($ $ (-626 (-755)) (-755))) (-15 -3720 ((-755) $ (-936 |#2|))) (-15 -3946 ($ $ (-755) (-936 |#2|))) (-15 -2600 ($ $ (-626 (-755)) (-121))) (-15 -1969 ($ $ (-626 (-755)) (-169))) (-15 -1364 ($ $ (-626 (-755)))) (-15 -1911 ((-936 |#2|) $)) (-15 -3093 ((-755) $)) (-15 -2297 ((-121) $)) (-15 -1949 ((-169) $)) (-15 -2558 ((-755) $)) (-15 -2860 ($ $)) (-15 -2171 ((-626 (-936 |#2|)) $)))) (-909) (-1039)) (T -1141)) -((-3992 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1141 *3 *4)) (-14 *3 (-909)) (-4 *4 (-1039)))) (-1632 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1141 *3 *4)) (-14 *3 (-909)) (-4 *4 (-1039)))) (-4393 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1141 *3 *4)) (-14 *3 (-909)) (-4 *4 (-1039)))) (-1721 (*1 *1) (-12 (-5 *1 (-1141 *2 *3)) (-14 *2 (-909)) (-4 *3 (-1039)))) (-4391 (*1 *1) (-12 (-5 *1 (-1141 *2 *3)) (-14 *2 (-909)) (-4 *3 (-1039)))) (-1397 (*1 *1 *1) (-12 (-5 *1 (-1141 *2 *3)) (-14 *2 (-909)) (-4 *3 (-1039)))) (-4286 (*1 *1 *1 *2) (-12 (-5 *2 (-755)) (-5 *1 (-1141 *3 *4)) (-14 *3 (-909)) (-4 *4 (-1039)))) (-2853 (*1 *2 *1) (-12 (-5 *2 (-626 (-1141 *3 *4))) (-5 *1 (-1141 *3 *4)) (-14 *3 (-909)) (-4 *4 (-1039)))) (-1363 (*1 *2 *1) (-12 (-5 *2 (-755)) (-5 *1 (-1141 *3 *4)) (-14 *3 (-909)) (-4 *4 (-1039)))) (-3593 (*1 *1 *1) (-12 (-5 *1 (-1141 *2 *3)) (-14 *2 (-909)) (-4 *3 (-1039)))) (-2645 (*1 *1 *1) (-12 (-5 *1 (-1141 *2 *3)) (-14 *2 (-909)) (-4 *3 (-1039)))) (-2492 (*1 *1 *1 *1) (-12 (-5 *1 (-1141 *2 *3)) (-14 *2 (-909)) (-4 *3 (-1039)))) (-2492 (*1 *1 *2) (-12 (-5 *2 (-626 (-1141 *3 *4))) (-5 *1 (-1141 *3 *4)) (-14 *3 (-909)) (-4 *4 (-1039)))) (-2562 (*1 *2 *1) (-12 (-5 *2 (-626 (-1141 *3 *4))) (-5 *1 (-1141 *3 *4)) (-14 *3 (-909)) (-4 *4 (-1039)))) (-3720 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-626 (-755))) (-5 *3 (-936 *5)) (-4 *5 (-1039)) (-5 *1 (-1141 *4 *5)) (-14 *4 (-909)))) (-2648 (*1 *1 *1 *2) (-12 (-5 *2 (-936 *4)) (-4 *4 (-1039)) (-5 *1 (-1141 *3 *4)) (-14 *3 (-909)))) (-2172 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-936 *5)) (-5 *3 (-755)) (-4 *5 (-1039)) (-5 *1 (-1141 *4 *5)) (-14 *4 (-909)))) (-3946 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-626 (-755))) (-5 *3 (-936 *5)) (-4 *5 (-1039)) (-5 *1 (-1141 *4 *5)) (-14 *4 (-909)))) (-3720 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-626 (-755))) (-5 *3 (-755)) (-5 *1 (-1141 *4 *5)) (-14 *4 (-909)) (-4 *5 (-1039)))) (-3946 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-626 (-755))) (-5 *3 (-755)) (-5 *1 (-1141 *4 *5)) (-14 *4 (-909)) (-4 *5 (-1039)))) (-3720 (*1 *2 *1 *3) (-12 (-5 *3 (-936 *5)) (-4 *5 (-1039)) (-5 *2 (-755)) (-5 *1 (-1141 *4 *5)) (-14 *4 (-909)))) (-3946 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-755)) (-5 *3 (-936 *5)) (-4 *5 (-1039)) (-5 *1 (-1141 *4 *5)) (-14 *4 (-909)))) (-2600 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-626 (-755))) (-5 *3 (-121)) (-5 *1 (-1141 *4 *5)) (-14 *4 (-909)) (-4 *5 (-1039)))) (-1969 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-626 (-755))) (-5 *3 (-169)) (-5 *1 (-1141 *4 *5)) (-14 *4 (-909)) (-4 *5 (-1039)))) (-1364 (*1 *1 *1 *2) (-12 (-5 *2 (-626 (-755))) (-5 *1 (-1141 *3 *4)) (-14 *3 (-909)) (-4 *4 (-1039)))) (-1911 (*1 *2 *1) (-12 (-5 *2 (-936 *4)) (-5 *1 (-1141 *3 *4)) (-14 *3 (-909)) (-4 *4 (-1039)))) (-3093 (*1 *2 *1) (-12 (-5 *2 (-755)) (-5 *1 (-1141 *3 *4)) (-14 *3 (-909)) (-4 *4 (-1039)))) (-2297 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1141 *3 *4)) (-14 *3 (-909)) (-4 *4 (-1039)))) (-1949 (*1 *2 *1) (-12 (-5 *2 (-169)) (-5 *1 (-1141 *3 *4)) (-14 *3 (-909)) (-4 *4 (-1039)))) (-2558 (*1 *2 *1) (-12 (-5 *2 (-755)) (-5 *1 (-1141 *3 *4)) (-14 *3 (-909)) (-4 *4 (-1039)))) (-2860 (*1 *1 *1) (-12 (-5 *1 (-1141 *2 *3)) (-14 *2 (-909)) (-4 *3 (-1039)))) (-2171 (*1 *2 *1) (-12 (-5 *2 (-626 (-936 *4))) (-5 *1 (-1141 *3 *4)) (-14 *3 (-909)) (-4 *4 (-1039))))) -(-13 (-1082) (-10 -8 (-15 -3992 ((-121) $)) (-15 -1632 ((-121) $)) (-15 -4393 ((-121) $)) (-15 -1721 ($)) (-15 -4391 ($)) (-15 -1397 ($ $)) (-15 -4286 ($ $ (-755))) (-15 -2853 ((-626 $) $)) (-15 -1363 ((-755) $)) (-15 -3593 ($ $)) (-15 -2645 ($ $)) (-15 -2492 ($ $ $)) (-15 -2492 ($ (-626 $))) (-15 -2562 ((-626 $) $)) (-15 -3720 ($ $ (-626 (-755)) (-936 |#2|))) (-15 -2648 ($ $ (-936 |#2|))) (-15 -2172 ($ $ $ (-936 |#2|) (-755))) (-15 -3946 ($ $ (-626 (-755)) (-936 |#2|))) (-15 -3720 ($ $ (-626 (-755)) (-755))) (-15 -3946 ($ $ (-626 (-755)) (-755))) (-15 -3720 ((-755) $ (-936 |#2|))) (-15 -3946 ($ $ (-755) (-936 |#2|))) (-15 -2600 ($ $ (-626 (-755)) (-121))) (-15 -1969 ($ $ (-626 (-755)) (-169))) (-15 -1364 ($ $ (-626 (-755)))) (-15 -1911 ((-936 |#2|) $)) (-15 -3093 ((-755) $)) (-15 -2297 ((-121) $)) (-15 -1949 ((-169) $)) (-15 -2558 ((-755) $)) (-15 -2860 ($ $)) (-15 -2171 ((-626 (-936 |#2|)) $)))) -((-2601 (((-121) $ $) NIL)) (-3051 ((|#2| $) 11)) (-3021 ((|#1| $) 10)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-4162 (($ |#1| |#2|) 9)) (-2801 (((-842) $) 16)) (-1653 (((-121) $ $) NIL))) -(((-1142 |#1| |#2|) (-13 (-1082) (-10 -8 (-15 -4162 ($ |#1| |#2|)) (-15 -3021 (|#1| $)) (-15 -3051 (|#2| $)))) (-1082) (-1082)) (T -1142)) -((-4162 (*1 *1 *2 *3) (-12 (-5 *1 (-1142 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-1082)))) (-3021 (*1 *2 *1) (-12 (-4 *2 (-1082)) (-5 *1 (-1142 *2 *3)) (-4 *3 (-1082)))) (-3051 (*1 *2 *1) (-12 (-4 *2 (-1082)) (-5 *1 (-1142 *3 *2)) (-4 *3 (-1082))))) -(-13 (-1082) (-10 -8 (-15 -4162 ($ |#1| |#2|)) (-15 -3021 (|#1| $)) (-15 -3051 (|#2| $)))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-1947 (((-1151 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1151 |#1| |#2| |#3|) (-296)) (|has| |#1| (-359))))) (-1654 (((-626 (-1067)) $) NIL)) (-1395 (((-1153) $) 11)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL (-2318 (-12 (|has| (-1151 |#1| |#2| |#3|) (-807)) (|has| |#1| (-359))) (-12 (|has| (-1151 |#1| |#2| |#3|) (-896)) (|has| |#1| (-359))) (|has| |#1| (-550))))) (-1350 (($ $) NIL (-2318 (-12 (|has| (-1151 |#1| |#2| |#3|) (-807)) (|has| |#1| (-359))) (-12 (|has| (-1151 |#1| |#2| |#3|) (-896)) (|has| |#1| (-359))) (|has| |#1| (-550))))) (-3376 (((-121) $) NIL (-2318 (-12 (|has| (-1151 |#1| |#2| |#3|) (-807)) (|has| |#1| (-359))) (-12 (|has| (-1151 |#1| |#2| |#3|) (-896)) (|has| |#1| (-359))) (|has| |#1| (-550))))) (-4330 (($ $ (-560)) NIL) (($ $ (-560) (-560)) 66)) (-4138 (((-1133 (-2 (|:| |k| (-560)) (|:| |c| |#1|))) $) NIL)) (-1334 (((-1151 |#1| |#2| |#3|) $) 36)) (-3389 (((-3 (-1151 |#1| |#2| |#3|) "failed") $) 29)) (-1676 (((-1151 |#1| |#2| |#3|) $) 30)) (-2570 (($ $) 107 (|has| |#1| (-43 (-403 (-560)))))) (-2514 (($ $) 83 (|has| |#1| (-43 (-403 (-560)))))) (-2314 (((-3 $ "failed") $ $) NIL)) (-1776 (((-414 (-1149 $)) (-1149 $)) NIL (-12 (|has| (-1151 |#1| |#2| |#3|) (-896)) (|has| |#1| (-359))))) (-3065 (($ $) NIL (|has| |#1| (-359)))) (-2953 (((-414 $) $) NIL (|has| |#1| (-359)))) (-2479 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-1887 (((-3 (-626 (-1149 $)) "failed") (-626 (-1149 $)) (-1149 $)) NIL (-12 (|has| (-1151 |#1| |#2| |#3|) (-896)) (|has| |#1| (-359))))) (-4179 (((-121) $ $) NIL (|has| |#1| (-359)))) (-2561 (($ $) 103 (|has| |#1| (-43 (-403 (-560)))))) (-2790 (($ $) 79 (|has| |#1| (-43 (-403 (-560)))))) (-4235 (((-560) $) NIL (-12 (|has| (-1151 |#1| |#2| |#3|) (-807)) (|has| |#1| (-359))))) (-3783 (($ (-1133 (-2 (|:| |k| (-560)) (|:| |c| |#1|)))) NIL)) (-2579 (($ $) 111 (|has| |#1| (-43 (-403 (-560)))))) (-2523 (($ $) 87 (|has| |#1| (-43 (-403 (-560)))))) (-4236 (($) NIL T CONST)) (-1473 (((-3 (-1151 |#1| |#2| |#3|) "failed") $) 31) (((-3 (-1153) "failed") $) NIL (-12 (|has| (-1151 |#1| |#2| |#3|) (-1029 (-1153))) (|has| |#1| (-359)))) (((-3 (-403 (-560)) "failed") $) NIL (-12 (|has| (-1151 |#1| |#2| |#3|) (-1029 (-560))) (|has| |#1| (-359)))) (((-3 (-560) "failed") $) NIL (-12 (|has| (-1151 |#1| |#2| |#3|) (-1029 (-560))) (|has| |#1| (-359))))) (-3001 (((-1151 |#1| |#2| |#3|) $) 131) (((-1153) $) NIL (-12 (|has| (-1151 |#1| |#2| |#3|) (-1029 (-1153))) (|has| |#1| (-359)))) (((-403 (-560)) $) NIL (-12 (|has| (-1151 |#1| |#2| |#3|) (-1029 (-560))) (|has| |#1| (-359)))) (((-560) $) NIL (-12 (|has| (-1151 |#1| |#2| |#3|) (-1029 (-560))) (|has| |#1| (-359))))) (-3020 (($ $) 34) (($ (-560) $) 35)) (-2563 (($ $ $) NIL (|has| |#1| (-359)))) (-1750 (($ $) NIL)) (-2616 (((-671 (-1151 |#1| |#2| |#3|)) (-671 $)) NIL (|has| |#1| (-359))) (((-2 (|:| -3818 (-671 (-1151 |#1| |#2| |#3|))) (|:| |vec| (-1236 (-1151 |#1| |#2| |#3|)))) (-671 $) (-1236 $)) NIL (|has| |#1| (-359))) (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) NIL (-12 (|has| (-1151 |#1| |#2| |#3|) (-622 (-560))) (|has| |#1| (-359)))) (((-671 (-560)) (-671 $)) NIL (-12 (|has| (-1151 |#1| |#2| |#3|) (-622 (-560))) (|has| |#1| (-359))))) (-1823 (((-3 $ "failed") $) 48)) (-1289 (((-403 (-945 |#1|)) $ (-560)) 65 (|has| |#1| (-550))) (((-403 (-945 |#1|)) $ (-560) (-560)) 67 (|has| |#1| (-550)))) (-1666 (($) NIL (-12 (|has| (-1151 |#1| |#2| |#3|) (-542)) (|has| |#1| (-359))))) (-2572 (($ $ $) NIL (|has| |#1| (-359)))) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) NIL (|has| |#1| (-359)))) (-3319 (((-121) $) NIL (|has| |#1| (-359)))) (-1786 (((-121) $) NIL (-12 (|has| (-1151 |#1| |#2| |#3|) (-807)) (|has| |#1| (-359))))) (-1815 (((-121) $) 25)) (-2474 (($) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2399 (((-876 (-560) $) $ (-879 (-560)) (-876 (-560) $)) NIL (-12 (|has| (-1151 |#1| |#2| |#3|) (-873 (-560))) (|has| |#1| (-359)))) (((-876 (-375) $) $ (-879 (-375)) (-876 (-375) $)) NIL (-12 (|has| (-1151 |#1| |#2| |#3|) (-873 (-375))) (|has| |#1| (-359))))) (-3504 (((-560) $) NIL) (((-560) $ (-560)) 24)) (-2642 (((-121) $) NIL)) (-1540 (($ $) NIL (|has| |#1| (-359)))) (-2132 (((-1151 |#1| |#2| |#3|) $) 38 (|has| |#1| (-359)))) (-2586 (($ $ (-560)) NIL (|has| |#1| (-43 (-403 (-560)))))) (-1424 (((-3 $ "failed") $) NIL (-12 (|has| (-1151 |#1| |#2| |#3|) (-1128)) (|has| |#1| (-359))))) (-2187 (((-121) $) NIL (-12 (|has| (-1151 |#1| |#2| |#3|) (-807)) (|has| |#1| (-359))))) (-3549 (($ $ (-909)) NIL)) (-3994 (($ (-1 |#1| (-560)) $) NIL)) (-3856 (((-3 (-626 $) "failed") (-626 $) $) NIL (|has| |#1| (-359)))) (-1814 (((-121) $) NIL)) (-1637 (($ |#1| (-560)) 18) (($ $ (-1067) (-560)) NIL) (($ $ (-626 (-1067)) (-626 (-560))) NIL)) (-4325 (($ $ $) NIL (-2318 (-12 (|has| (-1151 |#1| |#2| |#3|) (-807)) (|has| |#1| (-359))) (-12 (|has| (-1151 |#1| |#2| |#3|) (-834)) (|has| |#1| (-359)))))) (-2501 (($ $ $) NIL (-2318 (-12 (|has| (-1151 |#1| |#2| |#3|) (-807)) (|has| |#1| (-359))) (-12 (|has| (-1151 |#1| |#2| |#3|) (-834)) (|has| |#1| (-359)))))) (-2803 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1151 |#1| |#2| |#3|) (-1151 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-359)))) (-4399 (($ $) 72 (|has| |#1| (-43 (-403 (-560)))))) (-1726 (($ $) NIL)) (-1735 ((|#1| $) NIL)) (-2582 (($ (-626 $)) NIL (|has| |#1| (-359))) (($ $ $) NIL (|has| |#1| (-359)))) (-1684 (($ (-560) (-1151 |#1| |#2| |#3|)) 33)) (-1291 (((-1135) $) NIL)) (-1701 (($ $) NIL (|has| |#1| (-359)))) (-2376 (($ $) 70 (|has| |#1| (-43 (-403 (-560))))) (($ $ (-1153)) NIL (-2318 (-12 (|has| |#1| (-15 -2376 (|#1| |#1| (-1153)))) (|has| |#1| (-15 -1654 ((-626 (-1153)) |#1|))) (|has| |#1| (-43 (-403 (-560))))) (-12 (|has| |#1| (-29 (-560))) (|has| |#1| (-43 (-403 (-560)))) (|has| |#1| (-951)) (|has| |#1| (-1173))))) (($ $ (-1232 |#2|)) 71 (|has| |#1| (-43 (-403 (-560)))))) (-1394 (($) NIL (-12 (|has| (-1151 |#1| |#2| |#3|) (-1128)) (|has| |#1| (-359))) CONST)) (-4353 (((-1100) $) NIL)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL (|has| |#1| (-359)))) (-4440 (($ (-626 $)) NIL (|has| |#1| (-359))) (($ $ $) NIL (|has| |#1| (-359)))) (-4302 (($ $) NIL (-12 (|has| (-1151 |#1| |#2| |#3|) (-296)) (|has| |#1| (-359))))) (-2150 (((-1151 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1151 |#1| |#2| |#3|) (-542)) (|has| |#1| (-359))))) (-3817 (((-414 (-1149 $)) (-1149 $)) NIL (-12 (|has| (-1151 |#1| |#2| |#3|) (-896)) (|has| |#1| (-359))))) (-3032 (((-414 (-1149 $)) (-1149 $)) NIL (-12 (|has| (-1151 |#1| |#2| |#3|) (-896)) (|has| |#1| (-359))))) (-1601 (((-414 $) $) NIL (|has| |#1| (-359)))) (-3505 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-359))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL (|has| |#1| (-359)))) (-3292 (($ $ (-560)) 145)) (-2336 (((-3 $ "failed") $ $) 49 (-2318 (-12 (|has| (-1151 |#1| |#2| |#3|) (-807)) (|has| |#1| (-359))) (-12 (|has| (-1151 |#1| |#2| |#3|) (-896)) (|has| |#1| (-359))) (|has| |#1| (-550))))) (-3456 (((-3 (-626 $) "failed") (-626 $) $) NIL (|has| |#1| (-359)))) (-2469 (($ $) 73 (|has| |#1| (-43 (-403 (-560)))))) (-4450 (((-1133 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-560))))) (($ $ (-1153) (-1151 |#1| |#2| |#3|)) NIL (-12 (|has| (-1151 |#1| |#2| |#3|) (-515 (-1153) (-1151 |#1| |#2| |#3|))) (|has| |#1| (-359)))) (($ $ (-626 (-1153)) (-626 (-1151 |#1| |#2| |#3|))) NIL (-12 (|has| (-1151 |#1| |#2| |#3|) (-515 (-1153) (-1151 |#1| |#2| |#3|))) (|has| |#1| (-359)))) (($ $ (-626 (-283 (-1151 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1151 |#1| |#2| |#3|) (-298 (-1151 |#1| |#2| |#3|))) (|has| |#1| (-359)))) (($ $ (-283 (-1151 |#1| |#2| |#3|))) NIL (-12 (|has| (-1151 |#1| |#2| |#3|) (-298 (-1151 |#1| |#2| |#3|))) (|has| |#1| (-359)))) (($ $ (-1151 |#1| |#2| |#3|) (-1151 |#1| |#2| |#3|)) NIL (-12 (|has| (-1151 |#1| |#2| |#3|) (-298 (-1151 |#1| |#2| |#3|))) (|has| |#1| (-359)))) (($ $ (-626 (-1151 |#1| |#2| |#3|)) (-626 (-1151 |#1| |#2| |#3|))) NIL (-12 (|has| (-1151 |#1| |#2| |#3|) (-298 (-1151 |#1| |#2| |#3|))) (|has| |#1| (-359))))) (-4445 (((-755) $) NIL (|has| |#1| (-359)))) (-2778 ((|#1| $ (-560)) NIL) (($ $ $) 54 (|has| (-560) (-1094))) (($ $ (-1151 |#1| |#2| |#3|)) NIL (-12 (|has| (-1151 |#1| |#2| |#3|) (-276 (-1151 |#1| |#2| |#3|) (-1151 |#1| |#2| |#3|))) (|has| |#1| (-359))))) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL (|has| |#1| (-359)))) (-2443 (($ $ (-1 (-1151 |#1| |#2| |#3|) (-1151 |#1| |#2| |#3|))) NIL (|has| |#1| (-359))) (($ $ (-1 (-1151 |#1| |#2| |#3|) (-1151 |#1| |#2| |#3|)) (-755)) NIL (|has| |#1| (-359))) (($ $ (-1232 |#2|)) 51) (($ $ (-755)) NIL (-2318 (-12 (|has| (-1151 |#1| |#2| |#3|) (-221)) (|has| |#1| (-359))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) (($ $) 50 (-2318 (-12 (|has| (-1151 |#1| |#2| |#3|) (-221)) (|has| |#1| (-359))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) (($ $ (-626 (-1153)) (-626 (-755))) NIL (-2318 (-12 (|has| (-1151 |#1| |#2| |#3|) (-887 (-1153))) (|has| |#1| (-359))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-887 (-1153)))))) (($ $ (-1153) (-755)) NIL (-2318 (-12 (|has| (-1151 |#1| |#2| |#3|) (-887 (-1153))) (|has| |#1| (-359))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-887 (-1153)))))) (($ $ (-626 (-1153))) NIL (-2318 (-12 (|has| (-1151 |#1| |#2| |#3|) (-887 (-1153))) (|has| |#1| (-359))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-887 (-1153)))))) (($ $ (-1153)) NIL (-2318 (-12 (|has| (-1151 |#1| |#2| |#3|) (-887 (-1153))) (|has| |#1| (-359))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-887 (-1153))))))) (-1646 (($ $) NIL (|has| |#1| (-359)))) (-2139 (((-1151 |#1| |#2| |#3|) $) 41 (|has| |#1| (-359)))) (-3662 (((-560) $) 37)) (-2585 (($ $) 113 (|has| |#1| (-43 (-403 (-560)))))) (-2528 (($ $) 89 (|has| |#1| (-43 (-403 (-560)))))) (-2575 (($ $) 109 (|has| |#1| (-43 (-403 (-560)))))) (-2519 (($ $) 85 (|has| |#1| (-43 (-403 (-560)))))) (-2566 (($ $) 105 (|has| |#1| (-43 (-403 (-560)))))) (-2795 (($ $) 81 (|has| |#1| (-43 (-403 (-560)))))) (-4255 (((-533) $) NIL (-12 (|has| (-1151 |#1| |#2| |#3|) (-601 (-533))) (|has| |#1| (-359)))) (((-375) $) NIL (-12 (|has| (-1151 |#1| |#2| |#3|) (-1013)) (|has| |#1| (-359)))) (((-213) $) NIL (-12 (|has| (-1151 |#1| |#2| |#3|) (-1013)) (|has| |#1| (-359)))) (((-879 (-375)) $) NIL (-12 (|has| (-1151 |#1| |#2| |#3|) (-601 (-879 (-375)))) (|has| |#1| (-359)))) (((-879 (-560)) $) NIL (-12 (|has| (-1151 |#1| |#2| |#3|) (-601 (-879 (-560)))) (|has| |#1| (-359))))) (-3248 (((-3 (-1236 $) "failed") (-671 $)) NIL (-12 (|has| $ (-146)) (|has| (-1151 |#1| |#2| |#3|) (-896)) (|has| |#1| (-359))))) (-2234 (($ $) NIL)) (-2801 (((-842) $) 149) (($ (-560)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1151 |#1| |#2| |#3|)) 27) (($ (-1232 |#2|)) 23) (($ (-1153)) NIL (-12 (|has| (-1151 |#1| |#2| |#3|) (-1029 (-1153))) (|has| |#1| (-359)))) (($ $) NIL (-2318 (-12 (|has| (-1151 |#1| |#2| |#3|) (-807)) (|has| |#1| (-359))) (-12 (|has| (-1151 |#1| |#2| |#3|) (-896)) (|has| |#1| (-359))) (|has| |#1| (-550)))) (($ (-403 (-560))) NIL (-2318 (-12 (|has| (-1151 |#1| |#2| |#3|) (-1029 (-560))) (|has| |#1| (-359))) (|has| |#1| (-43 (-403 (-560))))))) (-2636 ((|#1| $ (-560)) 68)) (-2272 (((-3 $ "failed") $) NIL (-2318 (-12 (|has| $ (-146)) (|has| (-1151 |#1| |#2| |#3|) (-896)) (|has| |#1| (-359))) (-12 (|has| (-1151 |#1| |#2| |#3|) (-146)) (|has| |#1| (-359))) (|has| |#1| (-146))))) (-1751 (((-755)) NIL)) (-1341 ((|#1| $) 12)) (-4316 (((-1151 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1151 |#1| |#2| |#3|) (-542)) (|has| |#1| (-359))))) (-2598 (($ $) 119 (|has| |#1| (-43 (-403 (-560)))))) (-2541 (($ $) 95 (|has| |#1| (-43 (-403 (-560)))))) (-2328 (((-121) $ $) NIL (-2318 (-12 (|has| (-1151 |#1| |#2| |#3|) (-807)) (|has| |#1| (-359))) (-12 (|has| (-1151 |#1| |#2| |#3|) (-896)) (|has| |#1| (-359))) (|has| |#1| (-550))))) (-2590 (($ $) 115 (|has| |#1| (-43 (-403 (-560)))))) (-2532 (($ $) 91 (|has| |#1| (-43 (-403 (-560)))))) (-2608 (($ $) 123 (|has| |#1| (-43 (-403 (-560)))))) (-2549 (($ $) 99 (|has| |#1| (-43 (-403 (-560)))))) (-2550 ((|#1| $ (-560)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-560)))) (|has| |#1| (-15 -2801 (|#1| (-1153))))))) (-3689 (($ $) 125 (|has| |#1| (-43 (-403 (-560)))))) (-2554 (($ $) 101 (|has| |#1| (-43 (-403 (-560)))))) (-2604 (($ $) 121 (|has| |#1| (-43 (-403 (-560)))))) (-2545 (($ $) 97 (|has| |#1| (-43 (-403 (-560)))))) (-2594 (($ $) 117 (|has| |#1| (-43 (-403 (-560)))))) (-2536 (($ $) 93 (|has| |#1| (-43 (-403 (-560)))))) (-1822 (($ $) NIL (-12 (|has| (-1151 |#1| |#2| |#3|) (-807)) (|has| |#1| (-359))))) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL (|has| |#1| (-359)))) (-3304 (($) 20 T CONST)) (-1459 (($) 16 T CONST)) (-2500 (($ $ (-1 (-1151 |#1| |#2| |#3|) (-1151 |#1| |#2| |#3|))) NIL (|has| |#1| (-359))) (($ $ (-1 (-1151 |#1| |#2| |#3|) (-1151 |#1| |#2| |#3|)) (-755)) NIL (|has| |#1| (-359))) (($ $ (-755)) NIL (-2318 (-12 (|has| (-1151 |#1| |#2| |#3|) (-221)) (|has| |#1| (-359))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) (($ $) NIL (-2318 (-12 (|has| (-1151 |#1| |#2| |#3|) (-221)) (|has| |#1| (-359))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) (($ $ (-626 (-1153)) (-626 (-755))) NIL (-2318 (-12 (|has| (-1151 |#1| |#2| |#3|) (-887 (-1153))) (|has| |#1| (-359))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-887 (-1153)))))) (($ $ (-1153) (-755)) NIL (-2318 (-12 (|has| (-1151 |#1| |#2| |#3|) (-887 (-1153))) (|has| |#1| (-359))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-887 (-1153)))))) (($ $ (-626 (-1153))) NIL (-2318 (-12 (|has| (-1151 |#1| |#2| |#3|) (-887 (-1153))) (|has| |#1| (-359))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-887 (-1153)))))) (($ $ (-1153)) NIL (-2318 (-12 (|has| (-1151 |#1| |#2| |#3|) (-887 (-1153))) (|has| |#1| (-359))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-887 (-1153))))))) (-1691 (((-121) $ $) NIL (-2318 (-12 (|has| (-1151 |#1| |#2| |#3|) (-807)) (|has| |#1| (-359))) (-12 (|has| (-1151 |#1| |#2| |#3|) (-834)) (|has| |#1| (-359)))))) (-1675 (((-121) $ $) NIL (-2318 (-12 (|has| (-1151 |#1| |#2| |#3|) (-807)) (|has| |#1| (-359))) (-12 (|has| (-1151 |#1| |#2| |#3|) (-834)) (|has| |#1| (-359)))))) (-1653 (((-121) $ $) NIL)) (-1683 (((-121) $ $) NIL (-2318 (-12 (|has| (-1151 |#1| |#2| |#3|) (-807)) (|has| |#1| (-359))) (-12 (|has| (-1151 |#1| |#2| |#3|) (-834)) (|has| |#1| (-359)))))) (-1667 (((-121) $ $) NIL (-2318 (-12 (|has| (-1151 |#1| |#2| |#3|) (-807)) (|has| |#1| (-359))) (-12 (|has| (-1151 |#1| |#2| |#3|) (-834)) (|has| |#1| (-359)))))) (-1733 (($ $ |#1|) NIL (|has| |#1| (-359))) (($ $ $) 44 (|has| |#1| (-359))) (($ (-1151 |#1| |#2| |#3|) (-1151 |#1| |#2| |#3|)) 45 (|has| |#1| (-359)))) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) 21)) (** (($ $ (-909)) NIL) (($ $ (-755)) 53) (($ $ (-560)) NIL (|has| |#1| (-359))) (($ $ $) 74 (|has| |#1| (-43 (-403 (-560))))) (($ $ (-403 (-560))) 128 (|has| |#1| (-43 (-403 (-560)))))) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1151 |#1| |#2| |#3|)) 43 (|has| |#1| (-359))) (($ (-1151 |#1| |#2| |#3|) $) 42 (|has| |#1| (-359))) (($ (-403 (-560)) $) NIL (|has| |#1| (-43 (-403 (-560))))) (($ $ (-403 (-560))) NIL (|has| |#1| (-43 (-403 (-560))))))) -(((-1143 |#1| |#2| |#3|) (-13 (-1197 |#1| (-1151 |#1| |#2| |#3|)) (-10 -8 (-15 -2801 ($ (-1232 |#2|))) (-15 -2443 ($ $ (-1232 |#2|))) (IF (|has| |#1| (-43 (-403 (-560)))) (-15 -2376 ($ $ (-1232 |#2|))) |noBranch|))) (-1039) (-1153) |#1|) (T -1143)) -((-2801 (*1 *1 *2) (-12 (-5 *2 (-1232 *4)) (-14 *4 (-1153)) (-5 *1 (-1143 *3 *4 *5)) (-4 *3 (-1039)) (-14 *5 *3))) (-2443 (*1 *1 *1 *2) (-12 (-5 *2 (-1232 *4)) (-14 *4 (-1153)) (-5 *1 (-1143 *3 *4 *5)) (-4 *3 (-1039)) (-14 *5 *3))) (-2376 (*1 *1 *1 *2) (-12 (-5 *2 (-1232 *4)) (-14 *4 (-1153)) (-5 *1 (-1143 *3 *4 *5)) (-4 *3 (-43 (-403 (-560)))) (-4 *3 (-1039)) (-14 *5 *3)))) -(-13 (-1197 |#1| (-1151 |#1| |#2| |#3|)) (-10 -8 (-15 -2801 ($ (-1232 |#2|))) (-15 -2443 ($ $ (-1232 |#2|))) (IF (|has| |#1| (-43 (-403 (-560)))) (-15 -2376 ($ $ (-1232 |#2|))) |noBranch|))) -((-2700 ((|#2| |#2| (-1074 |#2|)) 26) ((|#2| |#2| (-1153)) 28))) -(((-1144 |#1| |#2|) (-10 -7 (-15 -2700 (|#2| |#2| (-1153))) (-15 -2700 (|#2| |#2| (-1074 |#2|)))) (-13 (-550) (-834) (-1029 (-560)) (-622 (-560))) (-13 (-426 |#1|) (-159) (-27) (-1173))) (T -1144)) -((-2700 (*1 *2 *2 *3) (-12 (-5 *3 (-1074 *2)) (-4 *2 (-13 (-426 *4) (-159) (-27) (-1173))) (-4 *4 (-13 (-550) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *1 (-1144 *4 *2)))) (-2700 (*1 *2 *2 *3) (-12 (-5 *3 (-1153)) (-4 *4 (-13 (-550) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *1 (-1144 *4 *2)) (-4 *2 (-13 (-426 *4) (-159) (-27) (-1173)))))) -(-10 -7 (-15 -2700 (|#2| |#2| (-1153))) (-15 -2700 (|#2| |#2| (-1074 |#2|)))) -((-2700 (((-3 (-403 (-945 |#1|)) (-304 |#1|)) (-403 (-945 |#1|)) (-1074 (-403 (-945 |#1|)))) 30) (((-403 (-945 |#1|)) (-945 |#1|) (-1074 (-945 |#1|))) 44) (((-3 (-403 (-945 |#1|)) (-304 |#1|)) (-403 (-945 |#1|)) (-1153)) 32) (((-403 (-945 |#1|)) (-945 |#1|) (-1153)) 36))) -(((-1145 |#1|) (-10 -7 (-15 -2700 ((-403 (-945 |#1|)) (-945 |#1|) (-1153))) (-15 -2700 ((-3 (-403 (-945 |#1|)) (-304 |#1|)) (-403 (-945 |#1|)) (-1153))) (-15 -2700 ((-403 (-945 |#1|)) (-945 |#1|) (-1074 (-945 |#1|)))) (-15 -2700 ((-3 (-403 (-945 |#1|)) (-304 |#1|)) (-403 (-945 |#1|)) (-1074 (-403 (-945 |#1|)))))) (-13 (-550) (-834) (-1029 (-560)))) (T -1145)) -((-2700 (*1 *2 *3 *4) (-12 (-5 *4 (-1074 (-403 (-945 *5)))) (-5 *3 (-403 (-945 *5))) (-4 *5 (-13 (-550) (-834) (-1029 (-560)))) (-5 *2 (-3 *3 (-304 *5))) (-5 *1 (-1145 *5)))) (-2700 (*1 *2 *3 *4) (-12 (-5 *4 (-1074 (-945 *5))) (-5 *3 (-945 *5)) (-4 *5 (-13 (-550) (-834) (-1029 (-560)))) (-5 *2 (-403 *3)) (-5 *1 (-1145 *5)))) (-2700 (*1 *2 *3 *4) (-12 (-5 *4 (-1153)) (-4 *5 (-13 (-550) (-834) (-1029 (-560)))) (-5 *2 (-3 (-403 (-945 *5)) (-304 *5))) (-5 *1 (-1145 *5)) (-5 *3 (-403 (-945 *5))))) (-2700 (*1 *2 *3 *4) (-12 (-5 *4 (-1153)) (-4 *5 (-13 (-550) (-834) (-1029 (-560)))) (-5 *2 (-403 (-945 *5))) (-5 *1 (-1145 *5)) (-5 *3 (-945 *5))))) -(-10 -7 (-15 -2700 ((-403 (-945 |#1|)) (-945 |#1|) (-1153))) (-15 -2700 ((-3 (-403 (-945 |#1|)) (-304 |#1|)) (-403 (-945 |#1|)) (-1153))) (-15 -2700 ((-403 (-945 |#1|)) (-945 |#1|) (-1074 (-945 |#1|)))) (-15 -2700 ((-3 (-403 (-945 |#1|)) (-304 |#1|)) (-403 (-945 |#1|)) (-1074 (-403 (-945 |#1|)))))) -((-2803 (((-1149 |#2|) (-1 |#2| |#1|) (-1149 |#1|)) 13))) -(((-1146 |#1| |#2|) (-10 -7 (-15 -2803 ((-1149 |#2|) (-1 |#2| |#1|) (-1149 |#1|)))) (-1039) (-1039)) (T -1146)) -((-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1149 *5)) (-4 *5 (-1039)) (-4 *6 (-1039)) (-5 *2 (-1149 *6)) (-5 *1 (-1146 *5 *6))))) -(-10 -7 (-15 -2803 ((-1149 |#2|) (-1 |#2| |#1|) (-1149 |#1|)))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-3000 (((-1236 |#1|) $ (-755)) NIL)) (-1654 (((-626 (-1067)) $) NIL)) (-3023 (($ (-1149 |#1|)) NIL)) (-1593 (((-1149 $) $ (-1067)) NIL) (((-1149 |#1|) $) NIL)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL (|has| |#1| (-550)))) (-1350 (($ $) NIL (|has| |#1| (-550)))) (-3376 (((-121) $) NIL (|has| |#1| (-550)))) (-1697 (((-755) $) NIL) (((-755) $ (-626 (-1067))) NIL)) (-2570 (($ $) NIL (|has| |#1| (-1173)))) (-2514 (($ $) NIL (|has| |#1| (-1173)))) (-2314 (((-3 $ "failed") $ $) NIL)) (-4408 (($ $ $) NIL (|has| |#1| (-550)))) (-1776 (((-414 (-1149 $)) (-1149 $)) NIL (|has| |#1| (-896)))) (-3065 (($ $) NIL (|has| |#1| (-447)))) (-2953 (((-414 $) $) NIL (|has| |#1| (-447)))) (-1887 (((-3 (-626 (-1149 $)) "failed") (-626 (-1149 $)) (-1149 $)) NIL (|has| |#1| (-896)))) (-4179 (((-121) $ $) NIL (|has| |#1| (-359)))) (-2561 (($ $) NIL (|has| |#1| (-1173)))) (-2790 (($ $) 22 (|has| |#1| (-1173)))) (-2891 (($ $ (-755)) NIL)) (-2090 (($ $ (-755)) NIL)) (-2562 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-447)))) (-2579 (($ $) NIL (|has| |#1| (-1173)))) (-2523 (($ $) NIL (|has| |#1| (-1173)))) (-4236 (($) NIL T CONST)) (-1473 (((-3 |#1| "failed") $) NIL) (((-3 (-403 (-560)) "failed") $) NIL (|has| |#1| (-1029 (-403 (-560))))) (((-3 (-560) "failed") $) NIL (|has| |#1| (-1029 (-560)))) (((-3 (-1067) "failed") $) NIL)) (-3001 ((|#1| $) NIL) (((-403 (-560)) $) NIL (|has| |#1| (-1029 (-403 (-560))))) (((-560) $) NIL (|has| |#1| (-1029 (-560)))) (((-1067) $) NIL)) (-1979 (($ $ $ (-1067)) NIL (|has| |#1| (-170))) ((|#1| $ $) NIL (|has| |#1| (-170)))) (-2563 (($ $ $) NIL (|has| |#1| (-359)))) (-1750 (($ $) NIL)) (-2616 (((-671 (-560)) (-671 $)) NIL (|has| |#1| (-622 (-560)))) (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) NIL (|has| |#1| (-622 (-560)))) (((-2 (|:| -3818 (-671 |#1|)) (|:| |vec| (-1236 |#1|))) (-671 $) (-1236 $)) NIL) (((-671 |#1|) (-671 $)) NIL)) (-1823 (((-3 $ "failed") $) NIL)) (-2572 (($ $ $) NIL (|has| |#1| (-359)))) (-2309 (($ $ $) NIL)) (-1332 (($ $ $) NIL (|has| |#1| (-550)))) (-4051 (((-2 (|:| -2169 |#1|) (|:| -2583 $) (|:| -4397 $)) $ $) NIL (|has| |#1| (-550)))) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) NIL (|has| |#1| (-359)))) (-3605 (($ $) NIL (|has| |#1| (-447))) (($ $ (-1067)) NIL (|has| |#1| (-447)))) (-1743 (((-626 $) $) NIL)) (-3319 (((-121) $) NIL (|has| |#1| (-896)))) (-1456 (($ $ |#1| (-755) $) NIL)) (-2474 (($) NIL (|has| |#1| (-1173)))) (-2399 (((-876 (-375) $) $ (-879 (-375)) (-876 (-375) $)) NIL (-12 (|has| (-1067) (-873 (-375))) (|has| |#1| (-873 (-375))))) (((-876 (-560) $) $ (-879 (-560)) (-876 (-560) $)) NIL (-12 (|has| (-1067) (-873 (-560))) (|has| |#1| (-873 (-560)))))) (-3504 (((-755) $ $) NIL (|has| |#1| (-550)))) (-2642 (((-121) $) NIL)) (-3235 (((-755) $) NIL)) (-1424 (((-3 $ "failed") $) NIL (|has| |#1| (-1128)))) (-1647 (($ (-1149 |#1|) (-1067)) NIL) (($ (-1149 $) (-1067)) NIL)) (-3549 (($ $ (-755)) NIL)) (-3856 (((-3 (-626 $) "failed") (-626 $) $) NIL (|has| |#1| (-359)))) (-1854 (((-626 $) $) NIL)) (-1814 (((-121) $) NIL)) (-1637 (($ |#1| (-755)) NIL) (($ $ (-1067) (-755)) NIL) (($ $ (-626 (-1067)) (-626 (-755))) NIL)) (-2923 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $ (-1067)) NIL) (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL)) (-3693 (((-755) $) NIL) (((-755) $ (-1067)) NIL) (((-626 (-755)) $ (-626 (-1067))) NIL)) (-4325 (($ $ $) NIL (|has| |#1| (-834)))) (-2501 (($ $ $) NIL (|has| |#1| (-834)))) (-1504 (($ (-1 (-755) (-755)) $) NIL)) (-2803 (($ (-1 |#1| |#1|) $) NIL)) (-1739 (((-1149 |#1|) $) NIL)) (-2101 (((-3 (-1067) "failed") $) NIL)) (-4399 (($ $) 18 (|has| |#1| (-1173)))) (-1726 (($ $) NIL)) (-1735 ((|#1| $) NIL)) (-2582 (($ (-626 $)) NIL (|has| |#1| (-447))) (($ $ $) NIL (|has| |#1| (-447)))) (-1291 (((-1135) $) NIL)) (-2325 (((-2 (|:| -2583 $) (|:| -4397 $)) $ (-755)) NIL)) (-3665 (((-3 (-626 $) "failed") $) NIL)) (-2327 (((-3 (-626 $) "failed") $) NIL)) (-2913 (((-3 (-2 (|:| |var| (-1067)) (|:| -4034 (-755))) "failed") $) NIL)) (-2376 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-1394 (($) NIL (|has| |#1| (-1128)) CONST)) (-4353 (((-1100) $) NIL)) (-1704 (((-121) $) 8)) (-1711 ((|#1| $) 9)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL (|has| |#1| (-447)))) (-4440 (($ (-626 $)) NIL (|has| |#1| (-447))) (($ $ $) NIL (|has| |#1| (-447)))) (-3817 (((-414 (-1149 $)) (-1149 $)) NIL (|has| |#1| (-896)))) (-3032 (((-414 (-1149 $)) (-1149 $)) NIL (|has| |#1| (-896)))) (-1601 (((-414 $) $) NIL (|has| |#1| (-896)))) (-3505 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-359))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL (|has| |#1| (-359)))) (-2336 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-550))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-550)))) (-3456 (((-3 (-626 $) "failed") (-626 $) $) NIL (|has| |#1| (-359)))) (-2469 (($ $) 20 (|has| |#1| (-1173)))) (-4450 (($ $ (-626 (-283 $))) NIL) (($ $ (-283 $)) NIL) (($ $ $ $) NIL) (($ $ (-626 $) (-626 $)) NIL) (($ $ (-1067) |#1|) NIL) (($ $ (-626 (-1067)) (-626 |#1|)) NIL) (($ $ (-1067) $) NIL) (($ $ (-626 (-1067)) (-626 $)) NIL)) (-4445 (((-755) $) NIL (|has| |#1| (-359)))) (-2778 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-403 $) (-403 $) (-403 $)) NIL (|has| |#1| (-550))) ((|#1| (-403 $) |#1|) NIL (|has| |#1| (-359))) (((-403 $) $ (-403 $)) NIL (|has| |#1| (-550)))) (-1754 (((-3 $ "failed") $ (-755)) NIL)) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL (|has| |#1| (-359)))) (-4069 (($ $ (-1067)) NIL (|has| |#1| (-170))) ((|#1| $) NIL (|has| |#1| (-170)))) (-2443 (($ $ (-1067)) NIL) (($ $ (-626 (-1067))) NIL) (($ $ (-1067) (-755)) NIL) (($ $ (-626 (-1067)) (-626 (-755))) NIL) (($ $ (-755)) NIL) (($ $) NIL) (($ $ (-1153)) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-626 (-1153))) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-1153) (-755)) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-626 (-1153)) (-626 (-755))) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-1 |#1| |#1|) (-755)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3662 (((-755) $) NIL) (((-755) $ (-1067)) NIL) (((-626 (-755)) $ (-626 (-1067))) NIL)) (-2585 (($ $) NIL (|has| |#1| (-1173)))) (-2528 (($ $) NIL (|has| |#1| (-1173)))) (-2575 (($ $) NIL (|has| |#1| (-1173)))) (-2519 (($ $) NIL (|has| |#1| (-1173)))) (-2566 (($ $) NIL (|has| |#1| (-1173)))) (-2795 (($ $) 26 (|has| |#1| (-1173)))) (-4255 (((-879 (-375)) $) NIL (-12 (|has| (-1067) (-601 (-879 (-375)))) (|has| |#1| (-601 (-879 (-375)))))) (((-879 (-560)) $) NIL (-12 (|has| (-1067) (-601 (-879 (-560)))) (|has| |#1| (-601 (-879 (-560)))))) (((-533) $) NIL (-12 (|has| (-1067) (-601 (-533))) (|has| |#1| (-601 (-533)))))) (-1896 ((|#1| $) NIL (|has| |#1| (-447))) (($ $ (-1067)) NIL (|has| |#1| (-447)))) (-3248 (((-3 (-1236 $) "failed") (-671 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-896))))) (-2791 (((-3 $ "failed") $ $) NIL (|has| |#1| (-550))) (((-3 (-403 $) "failed") (-403 $) $) NIL (|has| |#1| (-550)))) (-2801 (((-842) $) 13) (($ (-560)) NIL) (($ |#1|) 11) (($ (-1067)) NIL) (($ (-403 (-560))) NIL (-2318 (|has| |#1| (-43 (-403 (-560)))) (|has| |#1| (-1029 (-403 (-560)))))) (($ $) NIL (|has| |#1| (-550)))) (-2423 (((-626 |#1|) $) NIL)) (-2636 ((|#1| $ (-755)) NIL) (($ $ (-1067) (-755)) NIL) (($ $ (-626 (-1067)) (-626 (-755))) NIL)) (-2272 (((-3 $ "failed") $) NIL (-2318 (-12 (|has| $ (-146)) (|has| |#1| (-896))) (|has| |#1| (-146))))) (-1751 (((-755)) NIL)) (-3487 (($ $ $ (-755)) NIL (|has| |#1| (-170)))) (-2598 (($ $) NIL (|has| |#1| (-1173)))) (-2541 (($ $) NIL (|has| |#1| (-1173)))) (-2328 (((-121) $ $) NIL (|has| |#1| (-550)))) (-2590 (($ $) NIL (|has| |#1| (-1173)))) (-2532 (($ $) 24 (|has| |#1| (-1173)))) (-2608 (($ $) NIL (|has| |#1| (-1173)))) (-2549 (($ $) NIL (|has| |#1| (-1173)))) (-3689 (($ $) NIL (|has| |#1| (-1173)))) (-2554 (($ $) NIL (|has| |#1| (-1173)))) (-2604 (($ $) NIL (|has| |#1| (-1173)))) (-2545 (($ $) NIL (|has| |#1| (-1173)))) (-2594 (($ $) NIL (|has| |#1| (-1173)))) (-2536 (($ $) 28 (|has| |#1| (-1173)))) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (-3304 (($) NIL T CONST)) (-1459 (($) NIL T CONST)) (-2500 (($ $ (-1067)) NIL) (($ $ (-626 (-1067))) NIL) (($ $ (-1067) (-755)) NIL) (($ $ (-626 (-1067)) (-626 (-755))) NIL) (($ $ (-755)) NIL) (($ $) NIL) (($ $ (-1153)) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-626 (-1153))) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-1153) (-755)) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-626 (-1153)) (-626 (-755))) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-1 |#1| |#1|) (-755)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1691 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1675 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1653 (((-121) $ $) NIL)) (-1683 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1667 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1733 (($ $ |#1|) NIL (|has| |#1| (-359)))) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) NIL)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ $) NIL (|has| |#1| (-1173)))) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) NIL) (($ $ (-403 (-560))) NIL (|has| |#1| (-43 (-403 (-560))))) (($ (-403 (-560)) $) NIL (|has| |#1| (-43 (-403 (-560))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-1147 |#1|) (-13 (-1211 |#1|) (-10 -7 (IF (|has| |#1| (-1173)) (-6 (-1173)) |noBranch|))) (-1039)) (T -1147)) -NIL -(-13 (-1211 |#1|) (-10 -7 (IF (|has| |#1| (-1173)) (-6 (-1173)) |noBranch|))) -((-2953 (((-414 (-1149 (-403 |#4|))) (-1149 (-403 |#4|))) 50)) (-1601 (((-414 (-1149 (-403 |#4|))) (-1149 (-403 |#4|))) 51))) -(((-1148 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1601 ((-414 (-1149 (-403 |#4|))) (-1149 (-403 |#4|)))) (-15 -2953 ((-414 (-1149 (-403 |#4|))) (-1149 (-403 |#4|))))) (-780) (-834) (-447) (-942 |#3| |#1| |#2|)) (T -1148)) -((-2953 (*1 *2 *3) (-12 (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-447)) (-4 *7 (-942 *6 *4 *5)) (-5 *2 (-414 (-1149 (-403 *7)))) (-5 *1 (-1148 *4 *5 *6 *7)) (-5 *3 (-1149 (-403 *7))))) (-1601 (*1 *2 *3) (-12 (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-447)) (-4 *7 (-942 *6 *4 *5)) (-5 *2 (-414 (-1149 (-403 *7)))) (-5 *1 (-1148 *4 *5 *6 *7)) (-5 *3 (-1149 (-403 *7)))))) -(-10 -7 (-15 -1601 ((-414 (-1149 (-403 |#4|))) (-1149 (-403 |#4|)))) (-15 -2953 ((-414 (-1149 (-403 |#4|))) (-1149 (-403 |#4|))))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) 30)) (-3000 (((-1236 |#1|) $ (-755)) NIL)) (-1654 (((-626 (-1067)) $) NIL)) (-3023 (($ (-1149 |#1|)) NIL)) (-1593 (((-1149 $) $ (-1067)) 59) (((-1149 |#1|) $) 48)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL (|has| |#1| (-550)))) (-1350 (($ $) 132 (|has| |#1| (-550)))) (-3376 (((-121) $) NIL (|has| |#1| (-550)))) (-1697 (((-755) $) NIL) (((-755) $ (-626 (-1067))) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-4408 (($ $ $) 126 (|has| |#1| (-550)))) (-1776 (((-414 (-1149 $)) (-1149 $)) 72 (|has| |#1| (-896)))) (-3065 (($ $) NIL (|has| |#1| (-447)))) (-2953 (((-414 $) $) NIL (|has| |#1| (-447)))) (-1887 (((-3 (-626 (-1149 $)) "failed") (-626 (-1149 $)) (-1149 $)) 92 (|has| |#1| (-896)))) (-4179 (((-121) $ $) NIL (|has| |#1| (-359)))) (-2891 (($ $ (-755)) 42)) (-2090 (($ $ (-755)) 43)) (-2562 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-447)))) (-4236 (($) NIL T CONST)) (-1473 (((-3 |#1| "failed") $) NIL) (((-3 (-403 (-560)) "failed") $) NIL (|has| |#1| (-1029 (-403 (-560))))) (((-3 (-560) "failed") $) NIL (|has| |#1| (-1029 (-560)))) (((-3 (-1067) "failed") $) NIL)) (-3001 ((|#1| $) NIL) (((-403 (-560)) $) NIL (|has| |#1| (-1029 (-403 (-560))))) (((-560) $) NIL (|has| |#1| (-1029 (-560)))) (((-1067) $) NIL)) (-1979 (($ $ $ (-1067)) NIL (|has| |#1| (-170))) ((|#1| $ $) 128 (|has| |#1| (-170)))) (-2563 (($ $ $) NIL (|has| |#1| (-359)))) (-1750 (($ $) 57)) (-2616 (((-671 (-560)) (-671 $)) NIL (|has| |#1| (-622 (-560)))) (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) NIL (|has| |#1| (-622 (-560)))) (((-2 (|:| -3818 (-671 |#1|)) (|:| |vec| (-1236 |#1|))) (-671 $) (-1236 $)) NIL) (((-671 |#1|) (-671 $)) NIL)) (-1823 (((-3 $ "failed") $) NIL)) (-2572 (($ $ $) NIL (|has| |#1| (-359)))) (-2309 (($ $ $) 104)) (-1332 (($ $ $) NIL (|has| |#1| (-550)))) (-4051 (((-2 (|:| -2169 |#1|) (|:| -2583 $) (|:| -4397 $)) $ $) NIL (|has| |#1| (-550)))) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) NIL (|has| |#1| (-359)))) (-3605 (($ $) 133 (|has| |#1| (-447))) (($ $ (-1067)) NIL (|has| |#1| (-447)))) (-1743 (((-626 $) $) NIL)) (-3319 (((-121) $) NIL (|has| |#1| (-896)))) (-1456 (($ $ |#1| (-755) $) 46)) (-2399 (((-876 (-375) $) $ (-879 (-375)) (-876 (-375) $)) NIL (-12 (|has| (-1067) (-873 (-375))) (|has| |#1| (-873 (-375))))) (((-876 (-560) $) $ (-879 (-560)) (-876 (-560) $)) NIL (-12 (|has| (-1067) (-873 (-560))) (|has| |#1| (-873 (-560)))))) (-1720 (((-842) $ (-842)) 117)) (-3504 (((-755) $ $) NIL (|has| |#1| (-550)))) (-2642 (((-121) $) 32)) (-3235 (((-755) $) NIL)) (-1424 (((-3 $ "failed") $) NIL (|has| |#1| (-1128)))) (-1647 (($ (-1149 |#1|) (-1067)) 50) (($ (-1149 $) (-1067)) 66)) (-3549 (($ $ (-755)) 34)) (-3856 (((-3 (-626 $) "failed") (-626 $) $) NIL (|has| |#1| (-359)))) (-1854 (((-626 $) $) NIL)) (-1814 (((-121) $) NIL)) (-1637 (($ |#1| (-755)) 64) (($ $ (-1067) (-755)) NIL) (($ $ (-626 (-1067)) (-626 (-755))) NIL)) (-2923 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $ (-1067)) NIL) (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) 121)) (-3693 (((-755) $) NIL) (((-755) $ (-1067)) NIL) (((-626 (-755)) $ (-626 (-1067))) NIL)) (-4325 (($ $ $) NIL (|has| |#1| (-834)))) (-2501 (($ $ $) NIL (|has| |#1| (-834)))) (-1504 (($ (-1 (-755) (-755)) $) NIL)) (-2803 (($ (-1 |#1| |#1|) $) NIL)) (-1739 (((-1149 |#1|) $) NIL)) (-2101 (((-3 (-1067) "failed") $) NIL)) (-1726 (($ $) NIL)) (-1735 ((|#1| $) 53)) (-2582 (($ (-626 $)) NIL (|has| |#1| (-447))) (($ $ $) NIL (|has| |#1| (-447)))) (-1291 (((-1135) $) NIL)) (-2325 (((-2 (|:| -2583 $) (|:| -4397 $)) $ (-755)) 41)) (-3665 (((-3 (-626 $) "failed") $) NIL)) (-2327 (((-3 (-626 $) "failed") $) NIL)) (-2913 (((-3 (-2 (|:| |var| (-1067)) (|:| -4034 (-755))) "failed") $) NIL)) (-2376 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-1394 (($) NIL (|has| |#1| (-1128)) CONST)) (-4353 (((-1100) $) NIL)) (-1704 (((-121) $) 33)) (-1711 ((|#1| $) NIL)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) 80 (|has| |#1| (-447)))) (-4440 (($ (-626 $)) NIL (|has| |#1| (-447))) (($ $ $) 135 (|has| |#1| (-447)))) (-4465 (($ $ (-755) |#1| $) 99)) (-3817 (((-414 (-1149 $)) (-1149 $)) 78 (|has| |#1| (-896)))) (-3032 (((-414 (-1149 $)) (-1149 $)) 77 (|has| |#1| (-896)))) (-1601 (((-414 $) $) 85 (|has| |#1| (-896)))) (-3505 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-359))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL (|has| |#1| (-359)))) (-2336 (((-3 $ "failed") $ |#1|) 131 (|has| |#1| (-550))) (((-3 $ "failed") $ $) 100 (|has| |#1| (-550)))) (-3456 (((-3 (-626 $) "failed") (-626 $) $) NIL (|has| |#1| (-359)))) (-4450 (($ $ (-626 (-283 $))) NIL) (($ $ (-283 $)) NIL) (($ $ $ $) NIL) (($ $ (-626 $) (-626 $)) NIL) (($ $ (-1067) |#1|) NIL) (($ $ (-626 (-1067)) (-626 |#1|)) NIL) (($ $ (-1067) $) NIL) (($ $ (-626 (-1067)) (-626 $)) NIL)) (-4445 (((-755) $) NIL (|has| |#1| (-359)))) (-2778 ((|#1| $ |#1|) 119) (($ $ $) 120) (((-403 $) (-403 $) (-403 $)) NIL (|has| |#1| (-550))) ((|#1| (-403 $) |#1|) NIL (|has| |#1| (-359))) (((-403 $) $ (-403 $)) NIL (|has| |#1| (-550)))) (-1754 (((-3 $ "failed") $ (-755)) 37)) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) 137 (|has| |#1| (-359)))) (-4069 (($ $ (-1067)) NIL (|has| |#1| (-170))) ((|#1| $) 124 (|has| |#1| (-170)))) (-2443 (($ $ (-1067)) NIL) (($ $ (-626 (-1067))) NIL) (($ $ (-1067) (-755)) NIL) (($ $ (-626 (-1067)) (-626 (-755))) NIL) (($ $ (-755)) NIL) (($ $) NIL) (($ $ (-1153)) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-626 (-1153))) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-1153) (-755)) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-626 (-1153)) (-626 (-755))) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-1 |#1| |#1|) (-755)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3662 (((-755) $) 55) (((-755) $ (-1067)) NIL) (((-626 (-755)) $ (-626 (-1067))) NIL)) (-4255 (((-879 (-375)) $) NIL (-12 (|has| (-1067) (-601 (-879 (-375)))) (|has| |#1| (-601 (-879 (-375)))))) (((-879 (-560)) $) NIL (-12 (|has| (-1067) (-601 (-879 (-560)))) (|has| |#1| (-601 (-879 (-560)))))) (((-533) $) NIL (-12 (|has| (-1067) (-601 (-533))) (|has| |#1| (-601 (-533)))))) (-1896 ((|#1| $) 130 (|has| |#1| (-447))) (($ $ (-1067)) NIL (|has| |#1| (-447)))) (-3248 (((-3 (-1236 $) "failed") (-671 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-896))))) (-2791 (((-3 $ "failed") $ $) NIL (|has| |#1| (-550))) (((-3 (-403 $) "failed") (-403 $) $) NIL (|has| |#1| (-550)))) (-2801 (((-842) $) 118) (($ (-560)) NIL) (($ |#1|) 54) (($ (-1067)) NIL) (($ (-403 (-560))) NIL (-2318 (|has| |#1| (-43 (-403 (-560)))) (|has| |#1| (-1029 (-403 (-560)))))) (($ $) NIL (|has| |#1| (-550)))) (-2423 (((-626 |#1|) $) NIL)) (-2636 ((|#1| $ (-755)) NIL) (($ $ (-1067) (-755)) NIL) (($ $ (-626 (-1067)) (-626 (-755))) NIL)) (-2272 (((-3 $ "failed") $) NIL (-2318 (-12 (|has| $ (-146)) (|has| |#1| (-896))) (|has| |#1| (-146))))) (-1751 (((-755)) NIL)) (-3487 (($ $ $ (-755)) 28 (|has| |#1| (-170)))) (-2328 (((-121) $ $) NIL (|has| |#1| (-550)))) (-2464 (($ $ (-909)) 15) (($ $ (-755)) 16)) (-3304 (($) 17 T CONST)) (-1459 (($) 18 T CONST)) (-2500 (($ $ (-1067)) NIL) (($ $ (-626 (-1067))) NIL) (($ $ (-1067) (-755)) NIL) (($ $ (-626 (-1067)) (-626 (-755))) NIL) (($ $ (-755)) NIL) (($ $) NIL) (($ $ (-1153)) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-626 (-1153))) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-1153) (-755)) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-626 (-1153)) (-626 (-755))) NIL (|has| |#1| (-887 (-1153)))) (($ $ (-1 |#1| |#1|) (-755)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1691 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1675 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1653 (((-121) $ $) 97)) (-1683 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1667 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1733 (($ $ |#1|) 138 (|has| |#1| (-359)))) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) 67)) (** (($ $ (-909)) 14) (($ $ (-755)) 12)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) 27) (($ $ (-403 (-560))) NIL (|has| |#1| (-43 (-403 (-560))))) (($ (-403 (-560)) $) NIL (|has| |#1| (-43 (-403 (-560))))) (($ |#1| $) 102) (($ $ |#1|) NIL))) -(((-1149 |#1|) (-13 (-1211 |#1|) (-10 -8 (-15 -1720 ((-842) $ (-842))) (-15 -4465 ($ $ (-755) |#1| $)))) (-1039)) (T -1149)) -((-1720 (*1 *2 *1 *2) (-12 (-5 *2 (-842)) (-5 *1 (-1149 *3)) (-4 *3 (-1039)))) (-4465 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-755)) (-5 *1 (-1149 *3)) (-4 *3 (-1039))))) -(-13 (-1211 |#1|) (-10 -8 (-15 -1720 ((-842) $ (-842))) (-15 -4465 ($ $ (-755) |#1| $)))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-1654 (((-626 (-1067)) $) NIL)) (-1395 (((-1153) $) 11)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL (|has| |#1| (-550)))) (-1350 (($ $) NIL (|has| |#1| (-550)))) (-3376 (((-121) $) NIL (|has| |#1| (-550)))) (-4330 (($ $ (-403 (-560))) NIL) (($ $ (-403 (-560)) (-403 (-560))) NIL)) (-4138 (((-1133 (-2 (|:| |k| (-403 (-560))) (|:| |c| |#1|))) $) NIL)) (-2570 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2514 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2314 (((-3 $ "failed") $ $) NIL)) (-3065 (($ $) NIL (|has| |#1| (-359)))) (-2953 (((-414 $) $) NIL (|has| |#1| (-359)))) (-2479 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-4179 (((-121) $ $) NIL (|has| |#1| (-359)))) (-2561 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2790 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-3783 (($ (-755) (-1133 (-2 (|:| |k| (-403 (-560))) (|:| |c| |#1|)))) NIL)) (-2579 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2523 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-4236 (($) NIL T CONST)) (-1473 (((-3 (-1143 |#1| |#2| |#3|) "failed") $) 32) (((-3 (-1151 |#1| |#2| |#3|) "failed") $) 35)) (-3001 (((-1143 |#1| |#2| |#3|) $) NIL) (((-1151 |#1| |#2| |#3|) $) NIL)) (-2563 (($ $ $) NIL (|has| |#1| (-359)))) (-1750 (($ $) NIL)) (-1823 (((-3 $ "failed") $) NIL)) (-1808 (((-403 (-560)) $) 55)) (-2572 (($ $ $) NIL (|has| |#1| (-359)))) (-1693 (($ (-403 (-560)) (-1143 |#1| |#2| |#3|)) NIL)) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) NIL (|has| |#1| (-359)))) (-3319 (((-121) $) NIL (|has| |#1| (-359)))) (-1815 (((-121) $) NIL)) (-2474 (($) NIL (|has| |#1| (-43 (-403 (-560)))))) (-3504 (((-403 (-560)) $) NIL) (((-403 (-560)) $ (-403 (-560))) NIL)) (-2642 (((-121) $) NIL)) (-2586 (($ $ (-560)) NIL (|has| |#1| (-43 (-403 (-560)))))) (-3549 (($ $ (-909)) NIL) (($ $ (-403 (-560))) NIL)) (-3856 (((-3 (-626 $) "failed") (-626 $) $) NIL (|has| |#1| (-359)))) (-1814 (((-121) $) NIL)) (-1637 (($ |#1| (-403 (-560))) 19) (($ $ (-1067) (-403 (-560))) NIL) (($ $ (-626 (-1067)) (-626 (-403 (-560)))) NIL)) (-2803 (($ (-1 |#1| |#1|) $) NIL)) (-4399 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-1726 (($ $) NIL)) (-1735 ((|#1| $) NIL)) (-2582 (($ (-626 $)) NIL (|has| |#1| (-359))) (($ $ $) NIL (|has| |#1| (-359)))) (-4242 (((-1143 |#1| |#2| |#3|) $) 40)) (-2920 (((-3 (-1143 |#1| |#2| |#3|) "failed") $) NIL)) (-1684 (((-1143 |#1| |#2| |#3|) $) NIL)) (-1291 (((-1135) $) NIL)) (-1701 (($ $) NIL (|has| |#1| (-359)))) (-2376 (($ $) 38 (|has| |#1| (-43 (-403 (-560))))) (($ $ (-1153)) NIL (-2318 (-12 (|has| |#1| (-15 -2376 (|#1| |#1| (-1153)))) (|has| |#1| (-15 -1654 ((-626 (-1153)) |#1|))) (|has| |#1| (-43 (-403 (-560))))) (-12 (|has| |#1| (-29 (-560))) (|has| |#1| (-43 (-403 (-560)))) (|has| |#1| (-951)) (|has| |#1| (-1173))))) (($ $ (-1232 |#2|)) 39 (|has| |#1| (-43 (-403 (-560)))))) (-4353 (((-1100) $) NIL)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL (|has| |#1| (-359)))) (-4440 (($ (-626 $)) NIL (|has| |#1| (-359))) (($ $ $) NIL (|has| |#1| (-359)))) (-1601 (((-414 $) $) NIL (|has| |#1| (-359)))) (-3505 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-359))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL (|has| |#1| (-359)))) (-3292 (($ $ (-403 (-560))) NIL)) (-2336 (((-3 $ "failed") $ $) NIL (|has| |#1| (-550)))) (-3456 (((-3 (-626 $) "failed") (-626 $) $) NIL (|has| |#1| (-359)))) (-2469 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-4450 (((-1133 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-403 (-560))))))) (-4445 (((-755) $) NIL (|has| |#1| (-359)))) (-2778 ((|#1| $ (-403 (-560))) NIL) (($ $ $) NIL (|has| (-403 (-560)) (-1094)))) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL (|has| |#1| (-359)))) (-2443 (($ $ (-626 (-1153)) (-626 (-755))) NIL (-12 (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-1153) (-755)) NIL (-12 (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-626 (-1153))) NIL (-12 (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-1153)) NIL (-12 (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-755)) NIL (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|)))) (($ $) 36 (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|)))) (($ $ (-1232 |#2|)) 37)) (-3662 (((-403 (-560)) $) NIL)) (-2585 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2528 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2575 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2519 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2566 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2795 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2234 (($ $) NIL)) (-2801 (((-842) $) 58) (($ (-560)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1143 |#1| |#2| |#3|)) 29) (($ (-1151 |#1| |#2| |#3|)) 30) (($ (-1232 |#2|)) 25) (($ (-403 (-560))) NIL (|has| |#1| (-43 (-403 (-560))))) (($ $) NIL (|has| |#1| (-550)))) (-2636 ((|#1| $ (-403 (-560))) NIL)) (-2272 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1751 (((-755)) NIL)) (-1341 ((|#1| $) 12)) (-2598 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2541 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2328 (((-121) $ $) NIL (|has| |#1| (-550)))) (-2590 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2532 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2608 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2549 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2550 ((|#1| $ (-403 (-560))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-403 (-560))))) (|has| |#1| (-15 -2801 (|#1| (-1153))))))) (-3689 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2554 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2604 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2545 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2594 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2536 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL (|has| |#1| (-359)))) (-3304 (($) 21 T CONST)) (-1459 (($) 16 T CONST)) (-2500 (($ $ (-626 (-1153)) (-626 (-755))) NIL (-12 (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-1153) (-755)) NIL (-12 (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-626 (-1153))) NIL (-12 (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-1153)) NIL (-12 (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-755)) NIL (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))))) (-1653 (((-121) $ $) NIL)) (-1733 (($ $ |#1|) NIL (|has| |#1| (-359))) (($ $ $) NIL (|has| |#1| (-359)))) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) 23)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL (|has| |#1| (-359))) (($ $ $) NIL (|has| |#1| (-43 (-403 (-560))))) (($ $ (-403 (-560))) NIL (|has| |#1| (-43 (-403 (-560)))))) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-403 (-560)) $) NIL (|has| |#1| (-43 (-403 (-560))))) (($ $ (-403 (-560))) NIL (|has| |#1| (-43 (-403 (-560))))))) -(((-1150 |#1| |#2| |#3|) (-13 (-1218 |#1| (-1143 |#1| |#2| |#3|)) (-1029 (-1151 |#1| |#2| |#3|)) (-10 -8 (-15 -2801 ($ (-1232 |#2|))) (-15 -2443 ($ $ (-1232 |#2|))) (IF (|has| |#1| (-43 (-403 (-560)))) (-15 -2376 ($ $ (-1232 |#2|))) |noBranch|))) (-1039) (-1153) |#1|) (T -1150)) -((-2801 (*1 *1 *2) (-12 (-5 *2 (-1232 *4)) (-14 *4 (-1153)) (-5 *1 (-1150 *3 *4 *5)) (-4 *3 (-1039)) (-14 *5 *3))) (-2443 (*1 *1 *1 *2) (-12 (-5 *2 (-1232 *4)) (-14 *4 (-1153)) (-5 *1 (-1150 *3 *4 *5)) (-4 *3 (-1039)) (-14 *5 *3))) (-2376 (*1 *1 *1 *2) (-12 (-5 *2 (-1232 *4)) (-14 *4 (-1153)) (-5 *1 (-1150 *3 *4 *5)) (-4 *3 (-43 (-403 (-560)))) (-4 *3 (-1039)) (-14 *5 *3)))) -(-13 (-1218 |#1| (-1143 |#1| |#2| |#3|)) (-1029 (-1151 |#1| |#2| |#3|)) (-10 -8 (-15 -2801 ($ (-1232 |#2|))) (-15 -2443 ($ $ (-1232 |#2|))) (IF (|has| |#1| (-43 (-403 (-560)))) (-15 -2376 ($ $ (-1232 |#2|))) |noBranch|))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) 124)) (-1654 (((-626 (-1067)) $) NIL)) (-1395 (((-1153) $) 115)) (-2965 (((-1208 |#2| |#1|) $ (-755)) 62)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL (|has| |#1| (-550)))) (-1350 (($ $) NIL (|has| |#1| (-550)))) (-3376 (((-121) $) NIL (|has| |#1| (-550)))) (-4330 (($ $ (-755)) 78) (($ $ (-755) (-755)) 75)) (-4138 (((-1133 (-2 (|:| |k| (-755)) (|:| |c| |#1|))) $) 101)) (-2570 (($ $) 168 (|has| |#1| (-43 (-403 (-560)))))) (-2514 (($ $) 144 (|has| |#1| (-43 (-403 (-560)))))) (-2314 (((-3 $ "failed") $ $) NIL)) (-2479 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2561 (($ $) 164 (|has| |#1| (-43 (-403 (-560)))))) (-2790 (($ $) 140 (|has| |#1| (-43 (-403 (-560)))))) (-3783 (($ (-1133 (-2 (|:| |k| (-755)) (|:| |c| |#1|)))) 114) (($ (-1133 |#1|)) 109)) (-2579 (($ $) 172 (|has| |#1| (-43 (-403 (-560)))))) (-2523 (($ $) 148 (|has| |#1| (-43 (-403 (-560)))))) (-4236 (($) NIL T CONST)) (-1750 (($ $) NIL)) (-1823 (((-3 $ "failed") $) 23)) (-2567 (($ $) 26)) (-4350 (((-945 |#1|) $ (-755)) 74) (((-945 |#1|) $ (-755) (-755)) 76)) (-1815 (((-121) $) 119)) (-2474 (($) NIL (|has| |#1| (-43 (-403 (-560)))))) (-3504 (((-755) $) 121) (((-755) $ (-755)) 123)) (-2642 (((-121) $) NIL)) (-2586 (($ $ (-560)) NIL (|has| |#1| (-43 (-403 (-560)))))) (-3549 (($ $ (-909)) NIL)) (-3994 (($ (-1 |#1| (-560)) $) NIL)) (-1814 (((-121) $) NIL)) (-1637 (($ |#1| (-755)) 13) (($ $ (-1067) (-755)) NIL) (($ $ (-626 (-1067)) (-626 (-755))) NIL)) (-2803 (($ (-1 |#1| |#1|) $) NIL)) (-4399 (($ $) 130 (|has| |#1| (-43 (-403 (-560)))))) (-1726 (($ $) NIL)) (-1735 ((|#1| $) NIL)) (-1291 (((-1135) $) NIL)) (-2376 (($ $) 128 (|has| |#1| (-43 (-403 (-560))))) (($ $ (-1153)) NIL (-2318 (-12 (|has| |#1| (-15 -2376 (|#1| |#1| (-1153)))) (|has| |#1| (-15 -1654 ((-626 (-1153)) |#1|))) (|has| |#1| (-43 (-403 (-560))))) (-12 (|has| |#1| (-29 (-560))) (|has| |#1| (-43 (-403 (-560)))) (|has| |#1| (-951)) (|has| |#1| (-1173))))) (($ $ (-1232 |#2|)) 129 (|has| |#1| (-43 (-403 (-560)))))) (-4353 (((-1100) $) NIL)) (-3292 (($ $ (-755)) 15)) (-2336 (((-3 $ "failed") $ $) 24 (|has| |#1| (-550)))) (-2469 (($ $) 132 (|has| |#1| (-43 (-403 (-560)))))) (-4450 (((-1133 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-755)))))) (-2778 ((|#1| $ (-755)) 118) (($ $ $) 127 (|has| (-755) (-1094)))) (-2443 (($ $ (-626 (-1153)) (-626 (-755))) NIL (-12 (|has| |#1| (-15 * (|#1| (-755) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-1153) (-755)) NIL (-12 (|has| |#1| (-15 * (|#1| (-755) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-626 (-1153))) NIL (-12 (|has| |#1| (-15 * (|#1| (-755) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-1153)) NIL (-12 (|has| |#1| (-15 * (|#1| (-755) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-755)) NIL (|has| |#1| (-15 * (|#1| (-755) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-755) |#1|)))) (($ $ (-1232 |#2|)) 29)) (-3662 (((-755) $) NIL)) (-2585 (($ $) 174 (|has| |#1| (-43 (-403 (-560)))))) (-2528 (($ $) 150 (|has| |#1| (-43 (-403 (-560)))))) (-2575 (($ $) 170 (|has| |#1| (-43 (-403 (-560)))))) (-2519 (($ $) 146 (|has| |#1| (-43 (-403 (-560)))))) (-2566 (($ $) 166 (|has| |#1| (-43 (-403 (-560)))))) (-2795 (($ $) 142 (|has| |#1| (-43 (-403 (-560)))))) (-2234 (($ $) NIL)) (-2801 (((-842) $) 200) (($ (-560)) NIL) (($ (-403 (-560))) NIL (|has| |#1| (-43 (-403 (-560))))) (($ $) NIL (|has| |#1| (-550))) (($ |#1|) 125 (|has| |#1| (-170))) (($ (-1208 |#2| |#1|)) 50) (($ (-1232 |#2|)) 32)) (-2423 (((-1133 |#1|) $) 97)) (-2636 ((|#1| $ (-755)) 117)) (-2272 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1751 (((-755)) NIL)) (-1341 ((|#1| $) 53)) (-2598 (($ $) 180 (|has| |#1| (-43 (-403 (-560)))))) (-2541 (($ $) 156 (|has| |#1| (-43 (-403 (-560)))))) (-2328 (((-121) $ $) NIL (|has| |#1| (-550)))) (-2590 (($ $) 176 (|has| |#1| (-43 (-403 (-560)))))) (-2532 (($ $) 152 (|has| |#1| (-43 (-403 (-560)))))) (-2608 (($ $) 184 (|has| |#1| (-43 (-403 (-560)))))) (-2549 (($ $) 160 (|has| |#1| (-43 (-403 (-560)))))) (-2550 ((|#1| $ (-755)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-755)))) (|has| |#1| (-15 -2801 (|#1| (-1153))))))) (-3689 (($ $) 186 (|has| |#1| (-43 (-403 (-560)))))) (-2554 (($ $) 162 (|has| |#1| (-43 (-403 (-560)))))) (-2604 (($ $) 182 (|has| |#1| (-43 (-403 (-560)))))) (-2545 (($ $) 158 (|has| |#1| (-43 (-403 (-560)))))) (-2594 (($ $) 178 (|has| |#1| (-43 (-403 (-560)))))) (-2536 (($ $) 154 (|has| |#1| (-43 (-403 (-560)))))) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (-3304 (($) 17 T CONST)) (-1459 (($) 19 T CONST)) (-2500 (($ $ (-626 (-1153)) (-626 (-755))) NIL (-12 (|has| |#1| (-15 * (|#1| (-755) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-1153) (-755)) NIL (-12 (|has| |#1| (-15 * (|#1| (-755) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-626 (-1153))) NIL (-12 (|has| |#1| (-15 * (|#1| (-755) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-1153)) NIL (-12 (|has| |#1| (-15 * (|#1| (-755) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-755)) NIL (|has| |#1| (-15 * (|#1| (-755) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-755) |#1|))))) (-1653 (((-121) $ $) NIL)) (-1733 (($ $ |#1|) NIL (|has| |#1| (-359)))) (-1725 (($ $) NIL) (($ $ $) 193)) (-1716 (($ $ $) 31)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ |#1|) 197 (|has| |#1| (-359))) (($ $ $) 133 (|has| |#1| (-43 (-403 (-560))))) (($ $ (-403 (-560))) 136 (|has| |#1| (-43 (-403 (-560)))))) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) 131) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-403 (-560)) $) NIL (|has| |#1| (-43 (-403 (-560))))) (($ $ (-403 (-560))) NIL (|has| |#1| (-43 (-403 (-560))))))) -(((-1151 |#1| |#2| |#3|) (-13 (-1226 |#1|) (-10 -8 (-15 -2801 ($ (-1208 |#2| |#1|))) (-15 -2965 ((-1208 |#2| |#1|) $ (-755))) (-15 -2801 ($ (-1232 |#2|))) (-15 -2443 ($ $ (-1232 |#2|))) (IF (|has| |#1| (-43 (-403 (-560)))) (-15 -2376 ($ $ (-1232 |#2|))) |noBranch|))) (-1039) (-1153) |#1|) (T -1151)) -((-2801 (*1 *1 *2) (-12 (-5 *2 (-1208 *4 *3)) (-4 *3 (-1039)) (-14 *4 (-1153)) (-14 *5 *3) (-5 *1 (-1151 *3 *4 *5)))) (-2965 (*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *2 (-1208 *5 *4)) (-5 *1 (-1151 *4 *5 *6)) (-4 *4 (-1039)) (-14 *5 (-1153)) (-14 *6 *4))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-1232 *4)) (-14 *4 (-1153)) (-5 *1 (-1151 *3 *4 *5)) (-4 *3 (-1039)) (-14 *5 *3))) (-2443 (*1 *1 *1 *2) (-12 (-5 *2 (-1232 *4)) (-14 *4 (-1153)) (-5 *1 (-1151 *3 *4 *5)) (-4 *3 (-1039)) (-14 *5 *3))) (-2376 (*1 *1 *1 *2) (-12 (-5 *2 (-1232 *4)) (-14 *4 (-1153)) (-5 *1 (-1151 *3 *4 *5)) (-4 *3 (-43 (-403 (-560)))) (-4 *3 (-1039)) (-14 *5 *3)))) -(-13 (-1226 |#1|) (-10 -8 (-15 -2801 ($ (-1208 |#2| |#1|))) (-15 -2965 ((-1208 |#2| |#1|) $ (-755))) (-15 -2801 ($ (-1232 |#2|))) (-15 -2443 ($ $ (-1232 |#2|))) (IF (|has| |#1| (-43 (-403 (-560)))) (-15 -2376 ($ $ (-1232 |#2|))) |noBranch|))) -((-2801 (((-842) $) 22) (($ (-1153)) 24)) (-2318 (($ (-3 (|:| I (-304 (-560))) (|:| -1333 (-304 (-375))) (|:| CF (-304 (-167 (-375)))) (|:| |switch| $)) (-3 (|:| I (-304 (-560))) (|:| -1333 (-304 (-375))) (|:| CF (-304 (-167 (-375)))) (|:| |switch| $))) 35)) (-2312 (($ (-3 (|:| I (-304 (-560))) (|:| -1333 (-304 (-375))) (|:| CF (-304 (-167 (-375)))) (|:| |switch| $))) 28) (($ $) 29)) (-2653 (($ (-3 (|:| I (-304 (-560))) (|:| -1333 (-304 (-375))) (|:| CF (-304 (-167 (-375)))) (|:| |switch| $)) (-3 (|:| I (-304 (-560))) (|:| -1333 (-304 (-375))) (|:| CF (-304 (-167 (-375)))) (|:| |switch| $))) 30)) (-2727 (($ (-3 (|:| I (-304 (-560))) (|:| -1333 (-304 (-375))) (|:| CF (-304 (-167 (-375)))) (|:| |switch| $)) (-3 (|:| I (-304 (-560))) (|:| -1333 (-304 (-375))) (|:| CF (-304 (-167 (-375)))) (|:| |switch| $))) 32)) (-2769 (($ (-3 (|:| I (-304 (-560))) (|:| -1333 (-304 (-375))) (|:| CF (-304 (-167 (-375)))) (|:| |switch| $)) (-3 (|:| I (-304 (-560))) (|:| -1333 (-304 (-375))) (|:| CF (-304 (-167 (-375)))) (|:| |switch| $))) 31)) (-2866 (($ (-3 (|:| I (-304 (-560))) (|:| -1333 (-304 (-375))) (|:| CF (-304 (-167 (-375)))) (|:| |switch| $)) (-3 (|:| I (-304 (-560))) (|:| -1333 (-304 (-375))) (|:| CF (-304 (-167 (-375)))) (|:| |switch| $))) 33)) (-3211 (($ (-3 (|:| I (-304 (-560))) (|:| -1333 (-304 (-375))) (|:| CF (-304 (-167 (-375)))) (|:| |switch| $)) (-3 (|:| I (-304 (-560))) (|:| -1333 (-304 (-375))) (|:| CF (-304 (-167 (-375)))) (|:| |switch| $))) 36)) (-12 (($ (-3 (|:| I (-304 (-560))) (|:| -1333 (-304 (-375))) (|:| CF (-304 (-167 (-375)))) (|:| |switch| $)) (-3 (|:| I (-304 (-560))) (|:| -1333 (-304 (-375))) (|:| CF (-304 (-167 (-375)))) (|:| |switch| $))) 34))) -(((-1152) (-13 (-600 (-842)) (-10 -8 (-15 -2801 ($ (-1153))) (-15 -2653 ($ (-3 (|:| I (-304 (-560))) (|:| -1333 (-304 (-375))) (|:| CF (-304 (-167 (-375)))) (|:| |switch| $)) (-3 (|:| I (-304 (-560))) (|:| -1333 (-304 (-375))) (|:| CF (-304 (-167 (-375)))) (|:| |switch| $)))) (-15 -2769 ($ (-3 (|:| I (-304 (-560))) (|:| -1333 (-304 (-375))) (|:| CF (-304 (-167 (-375)))) (|:| |switch| $)) (-3 (|:| I (-304 (-560))) (|:| -1333 (-304 (-375))) (|:| CF (-304 (-167 (-375)))) (|:| |switch| $)))) (-15 -2727 ($ (-3 (|:| I (-304 (-560))) (|:| -1333 (-304 (-375))) (|:| CF (-304 (-167 (-375)))) (|:| |switch| $)) (-3 (|:| I (-304 (-560))) (|:| -1333 (-304 (-375))) (|:| CF (-304 (-167 (-375)))) (|:| |switch| $)))) (-15 -2866 ($ (-3 (|:| I (-304 (-560))) (|:| -1333 (-304 (-375))) (|:| CF (-304 (-167 (-375)))) (|:| |switch| $)) (-3 (|:| I (-304 (-560))) (|:| -1333 (-304 (-375))) (|:| CF (-304 (-167 (-375)))) (|:| |switch| $)))) (-15 -2318 ($ (-3 (|:| I (-304 (-560))) (|:| -1333 (-304 (-375))) (|:| CF (-304 (-167 (-375)))) (|:| |switch| $)) (-3 (|:| I (-304 (-560))) (|:| -1333 (-304 (-375))) (|:| CF (-304 (-167 (-375)))) (|:| |switch| $)))) (-15 -3211 ($ (-3 (|:| I (-304 (-560))) (|:| -1333 (-304 (-375))) (|:| CF (-304 (-167 (-375)))) (|:| |switch| $)) (-3 (|:| I (-304 (-560))) (|:| -1333 (-304 (-375))) (|:| CF (-304 (-167 (-375)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-304 (-560))) (|:| -1333 (-304 (-375))) (|:| CF (-304 (-167 (-375)))) (|:| |switch| $)) (-3 (|:| I (-304 (-560))) (|:| -1333 (-304 (-375))) (|:| CF (-304 (-167 (-375)))) (|:| |switch| $)))) (-15 -2312 ($ (-3 (|:| I (-304 (-560))) (|:| -1333 (-304 (-375))) (|:| CF (-304 (-167 (-375)))) (|:| |switch| $)))) (-15 -2312 ($ $))))) (T -1152)) -((-2801 (*1 *1 *2) (-12 (-5 *2 (-1153)) (-5 *1 (-1152)))) (-2653 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-304 (-560))) (|:| -1333 (-304 (-375))) (|:| CF (-304 (-167 (-375)))) (|:| |switch| (-1152)))) (-5 *1 (-1152)))) (-2769 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-304 (-560))) (|:| -1333 (-304 (-375))) (|:| CF (-304 (-167 (-375)))) (|:| |switch| (-1152)))) (-5 *1 (-1152)))) (-2727 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-304 (-560))) (|:| -1333 (-304 (-375))) (|:| CF (-304 (-167 (-375)))) (|:| |switch| (-1152)))) (-5 *1 (-1152)))) (-2866 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-304 (-560))) (|:| -1333 (-304 (-375))) (|:| CF (-304 (-167 (-375)))) (|:| |switch| (-1152)))) (-5 *1 (-1152)))) (-2318 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-304 (-560))) (|:| -1333 (-304 (-375))) (|:| CF (-304 (-167 (-375)))) (|:| |switch| (-1152)))) (-5 *1 (-1152)))) (-3211 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-304 (-560))) (|:| -1333 (-304 (-375))) (|:| CF (-304 (-167 (-375)))) (|:| |switch| (-1152)))) (-5 *1 (-1152)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-304 (-560))) (|:| -1333 (-304 (-375))) (|:| CF (-304 (-167 (-375)))) (|:| |switch| (-1152)))) (-5 *1 (-1152)))) (-2312 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-304 (-560))) (|:| -1333 (-304 (-375))) (|:| CF (-304 (-167 (-375)))) (|:| |switch| (-1152)))) (-5 *1 (-1152)))) (-2312 (*1 *1 *1) (-5 *1 (-1152)))) -(-13 (-600 (-842)) (-10 -8 (-15 -2801 ($ (-1153))) (-15 -2653 ($ (-3 (|:| I (-304 (-560))) (|:| -1333 (-304 (-375))) (|:| CF (-304 (-167 (-375)))) (|:| |switch| $)) (-3 (|:| I (-304 (-560))) (|:| -1333 (-304 (-375))) (|:| CF (-304 (-167 (-375)))) (|:| |switch| $)))) (-15 -2769 ($ (-3 (|:| I (-304 (-560))) (|:| -1333 (-304 (-375))) (|:| CF (-304 (-167 (-375)))) (|:| |switch| $)) (-3 (|:| I (-304 (-560))) (|:| -1333 (-304 (-375))) (|:| CF (-304 (-167 (-375)))) (|:| |switch| $)))) (-15 -2727 ($ (-3 (|:| I (-304 (-560))) (|:| -1333 (-304 (-375))) (|:| CF (-304 (-167 (-375)))) (|:| |switch| $)) (-3 (|:| I (-304 (-560))) (|:| -1333 (-304 (-375))) (|:| CF (-304 (-167 (-375)))) (|:| |switch| $)))) (-15 -2866 ($ (-3 (|:| I (-304 (-560))) (|:| -1333 (-304 (-375))) (|:| CF (-304 (-167 (-375)))) (|:| |switch| $)) (-3 (|:| I (-304 (-560))) (|:| -1333 (-304 (-375))) (|:| CF (-304 (-167 (-375)))) (|:| |switch| $)))) (-15 -2318 ($ (-3 (|:| I (-304 (-560))) (|:| -1333 (-304 (-375))) (|:| CF (-304 (-167 (-375)))) (|:| |switch| $)) (-3 (|:| I (-304 (-560))) (|:| -1333 (-304 (-375))) (|:| CF (-304 (-167 (-375)))) (|:| |switch| $)))) (-15 -3211 ($ (-3 (|:| I (-304 (-560))) (|:| -1333 (-304 (-375))) (|:| CF (-304 (-167 (-375)))) (|:| |switch| $)) (-3 (|:| I (-304 (-560))) (|:| -1333 (-304 (-375))) (|:| CF (-304 (-167 (-375)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-304 (-560))) (|:| -1333 (-304 (-375))) (|:| CF (-304 (-167 (-375)))) (|:| |switch| $)) (-3 (|:| I (-304 (-560))) (|:| -1333 (-304 (-375))) (|:| CF (-304 (-167 (-375)))) (|:| |switch| $)))) (-15 -2312 ($ (-3 (|:| I (-304 (-560))) (|:| -1333 (-304 (-375))) (|:| CF (-304 (-167 (-375)))) (|:| |switch| $)))) (-15 -2312 ($ $)))) -((-2601 (((-121) $ $) NIL)) (-2507 (($ $ (-626 (-842))) 58)) (-4474 (($ $ (-626 (-842))) 56)) (-2308 (((-1135) $) 82)) (-2355 (((-2 (|:| -3981 (-626 (-842))) (|:| -2280 (-626 (-842))) (|:| |presup| (-626 (-842))) (|:| -4221 (-626 (-842))) (|:| |args| (-626 (-842)))) $) 85)) (-4132 (((-121) $) 21)) (-3952 (($ $ (-626 (-626 (-842)))) 54) (($ $ (-2 (|:| -3981 (-626 (-842))) (|:| -2280 (-626 (-842))) (|:| |presup| (-626 (-842))) (|:| -4221 (-626 (-842))) (|:| |args| (-626 (-842))))) 80)) (-4236 (($) 122 T CONST)) (-2433 (((-1241)) 103)) (-2399 (((-876 (-560) $) $ (-879 (-560)) (-876 (-560) $)) 65) (((-876 (-375) $) $ (-879 (-375)) (-876 (-375) $)) 71)) (-1721 (($) 92) (($ $) 98)) (-1337 (($ $) 81)) (-4325 (($ $ $) NIL)) (-2501 (($ $ $) NIL)) (-2843 (((-626 $) $) 104)) (-1291 (((-1135) $) 87)) (-4353 (((-1100) $) NIL)) (-2778 (($ $ (-626 (-842))) 57)) (-4255 (((-533) $) 45) (((-1153) $) 46) (((-879 (-560)) $) 75) (((-879 (-375)) $) 73)) (-2801 (((-842) $) 52) (($ (-1135)) 47)) (-2870 (($ $ (-626 (-842))) 59)) (-3039 (((-1135) $) 33) (((-1135) $ (-121)) 34) (((-1241) (-809) $) 35) (((-1241) (-809) $ (-121)) 36)) (-1691 (((-121) $ $) NIL)) (-1675 (((-121) $ $) NIL)) (-1653 (((-121) $ $) 48)) (-1683 (((-121) $ $) NIL)) (-1667 (((-121) $ $) 49))) -(((-1153) (-13 (-834) (-601 (-533)) (-815) (-601 (-1153)) (-601 (-879 (-560))) (-601 (-879 (-375))) (-873 (-560)) (-873 (-375)) (-10 -8 (-15 -1721 ($)) (-15 -1721 ($ $)) (-15 -2433 ((-1241))) (-15 -2801 ($ (-1135))) (-15 -1337 ($ $)) (-15 -4132 ((-121) $)) (-15 -2355 ((-2 (|:| -3981 (-626 (-842))) (|:| -2280 (-626 (-842))) (|:| |presup| (-626 (-842))) (|:| -4221 (-626 (-842))) (|:| |args| (-626 (-842)))) $)) (-15 -3952 ($ $ (-626 (-626 (-842))))) (-15 -3952 ($ $ (-2 (|:| -3981 (-626 (-842))) (|:| -2280 (-626 (-842))) (|:| |presup| (-626 (-842))) (|:| -4221 (-626 (-842))) (|:| |args| (-626 (-842)))))) (-15 -4474 ($ $ (-626 (-842)))) (-15 -2507 ($ $ (-626 (-842)))) (-15 -2870 ($ $ (-626 (-842)))) (-15 -2778 ($ $ (-626 (-842)))) (-15 -2308 ((-1135) $)) (-15 -2843 ((-626 $) $)) (-15 -4236 ($) -3565)))) (T -1153)) -((-1721 (*1 *1) (-5 *1 (-1153))) (-1721 (*1 *1 *1) (-5 *1 (-1153))) (-2433 (*1 *2) (-12 (-5 *2 (-1241)) (-5 *1 (-1153)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-1153)))) (-1337 (*1 *1 *1) (-5 *1 (-1153))) (-4132 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1153)))) (-2355 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3981 (-626 (-842))) (|:| -2280 (-626 (-842))) (|:| |presup| (-626 (-842))) (|:| -4221 (-626 (-842))) (|:| |args| (-626 (-842))))) (-5 *1 (-1153)))) (-3952 (*1 *1 *1 *2) (-12 (-5 *2 (-626 (-626 (-842)))) (-5 *1 (-1153)))) (-3952 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -3981 (-626 (-842))) (|:| -2280 (-626 (-842))) (|:| |presup| (-626 (-842))) (|:| -4221 (-626 (-842))) (|:| |args| (-626 (-842))))) (-5 *1 (-1153)))) (-4474 (*1 *1 *1 *2) (-12 (-5 *2 (-626 (-842))) (-5 *1 (-1153)))) (-2507 (*1 *1 *1 *2) (-12 (-5 *2 (-626 (-842))) (-5 *1 (-1153)))) (-2870 (*1 *1 *1 *2) (-12 (-5 *2 (-626 (-842))) (-5 *1 (-1153)))) (-2778 (*1 *1 *1 *2) (-12 (-5 *2 (-626 (-842))) (-5 *1 (-1153)))) (-2308 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1153)))) (-2843 (*1 *2 *1) (-12 (-5 *2 (-626 (-1153))) (-5 *1 (-1153)))) (-4236 (*1 *1) (-5 *1 (-1153)))) -(-13 (-834) (-601 (-533)) (-815) (-601 (-1153)) (-601 (-879 (-560))) (-601 (-879 (-375))) (-873 (-560)) (-873 (-375)) (-10 -8 (-15 -1721 ($)) (-15 -1721 ($ $)) (-15 -2433 ((-1241))) (-15 -2801 ($ (-1135))) (-15 -1337 ($ $)) (-15 -4132 ((-121) $)) (-15 -2355 ((-2 (|:| -3981 (-626 (-842))) (|:| -2280 (-626 (-842))) (|:| |presup| (-626 (-842))) (|:| -4221 (-626 (-842))) (|:| |args| (-626 (-842)))) $)) (-15 -3952 ($ $ (-626 (-626 (-842))))) (-15 -3952 ($ $ (-2 (|:| -3981 (-626 (-842))) (|:| -2280 (-626 (-842))) (|:| |presup| (-626 (-842))) (|:| -4221 (-626 (-842))) (|:| |args| (-626 (-842)))))) (-15 -4474 ($ $ (-626 (-842)))) (-15 -2507 ($ $ (-626 (-842)))) (-15 -2870 ($ $ (-626 (-842)))) (-15 -2778 ($ $ (-626 (-842)))) (-15 -2308 ((-1135) $)) (-15 -2843 ((-626 $) $)) (-15 -4236 ($) -3565))) -((-2841 (((-1236 |#1|) |#1| (-909)) 16) (((-1236 |#1|) (-626 |#1|)) 20))) -(((-1154 |#1|) (-10 -7 (-15 -2841 ((-1236 |#1|) (-626 |#1|))) (-15 -2841 ((-1236 |#1|) |#1| (-909)))) (-1039)) (T -1154)) -((-2841 (*1 *2 *3 *4) (-12 (-5 *4 (-909)) (-5 *2 (-1236 *3)) (-5 *1 (-1154 *3)) (-4 *3 (-1039)))) (-2841 (*1 *2 *3) (-12 (-5 *3 (-626 *4)) (-4 *4 (-1039)) (-5 *2 (-1236 *4)) (-5 *1 (-1154 *4))))) -(-10 -7 (-15 -2841 ((-1236 |#1|) (-626 |#1|))) (-15 -2841 ((-1236 |#1|) |#1| (-909)))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL (|has| |#1| (-550)))) (-1350 (($ $) NIL (|has| |#1| (-550)))) (-3376 (((-121) $) NIL (|has| |#1| (-550)))) (-2314 (((-3 $ "failed") $ $) NIL)) (-4236 (($) NIL T CONST)) (-1473 (((-3 (-560) "failed") $) NIL (|has| |#1| (-1029 (-560)))) (((-3 (-403 (-560)) "failed") $) NIL (|has| |#1| (-1029 (-403 (-560))))) (((-3 |#1| "failed") $) NIL)) (-3001 (((-560) $) NIL (|has| |#1| (-1029 (-560)))) (((-403 (-560)) $) NIL (|has| |#1| (-1029 (-403 (-560))))) ((|#1| $) NIL)) (-1750 (($ $) NIL)) (-1823 (((-3 $ "failed") $) NIL)) (-3605 (($ $) NIL (|has| |#1| (-447)))) (-1456 (($ $ |#1| (-964) $) NIL)) (-2642 (((-121) $) NIL)) (-3235 (((-755) $) NIL)) (-1814 (((-121) $) NIL)) (-1637 (($ |#1| (-964)) NIL)) (-3693 (((-964) $) NIL)) (-1504 (($ (-1 (-964) (-964)) $) NIL)) (-2803 (($ (-1 |#1| |#1|) $) NIL)) (-1726 (($ $) NIL)) (-1735 ((|#1| $) NIL)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-1704 (((-121) $) NIL)) (-1711 ((|#1| $) NIL)) (-4465 (($ $ (-964) |#1| $) NIL (-12 (|has| (-964) (-137)) (|has| |#1| (-550))))) (-2336 (((-3 $ "failed") $ $) NIL (|has| |#1| (-550))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-550)))) (-3662 (((-964) $) NIL)) (-1896 ((|#1| $) NIL (|has| |#1| (-447)))) (-2801 (((-842) $) NIL) (($ (-560)) NIL) (($ $) NIL (|has| |#1| (-550))) (($ |#1|) NIL) (($ (-403 (-560))) NIL (-2318 (|has| |#1| (-43 (-403 (-560)))) (|has| |#1| (-1029 (-403 (-560))))))) (-2423 (((-626 |#1|) $) NIL)) (-2636 ((|#1| $ (-964)) NIL)) (-2272 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1751 (((-755)) NIL)) (-3487 (($ $ $ (-755)) NIL (|has| |#1| (-170)))) (-2328 (((-121) $ $) NIL (|has| |#1| (-550)))) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (-3304 (($) 9 T CONST)) (-1459 (($) 14 T CONST)) (-1653 (((-121) $ $) 16)) (-1733 (($ $ |#1|) NIL (|has| |#1| (-359)))) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) 19)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-403 (-560)) $) NIL (|has| |#1| (-43 (-403 (-560))))) (($ $ (-403 (-560))) NIL (|has| |#1| (-43 (-403 (-560))))))) -(((-1155 |#1|) (-13 (-318 |#1| (-964)) (-10 -8 (IF (|has| |#1| (-550)) (IF (|has| (-964) (-137)) (-15 -4465 ($ $ (-964) |#1| $)) |noBranch|) |noBranch|) (IF (|has| |#1| (-6 -4503)) (-6 -4503) |noBranch|))) (-1039)) (T -1155)) -((-4465 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-964)) (-4 *2 (-137)) (-5 *1 (-1155 *3)) (-4 *3 (-550)) (-4 *3 (-1039))))) -(-13 (-318 |#1| (-964)) (-10 -8 (IF (|has| |#1| (-550)) (IF (|has| (-964) (-137)) (-15 -4465 ($ $ (-964) |#1| $)) |noBranch|) |noBranch|) (IF (|has| |#1| (-6 -4503)) (-6 -4503) |noBranch|))) -((-3586 (((-1157) (-1153) $) 24)) (-4203 (($) 28)) (-3167 (((-3 (|:| |fst| (-430)) (|:| -2303 "void")) (-1153) $) 21)) (-3048 (((-1241) (-1153) (-3 (|:| |fst| (-430)) (|:| -2303 "void")) $) 40) (((-1241) (-1153) (-3 (|:| |fst| (-430)) (|:| -2303 "void"))) 41) (((-1241) (-3 (|:| |fst| (-430)) (|:| -2303 "void"))) 42)) (-2375 (((-1241) (-1153)) 57)) (-1282 (((-1241) (-1153) $) 54) (((-1241) (-1153)) 55) (((-1241)) 56)) (-2113 (((-1241) (-1153)) 36)) (-2245 (((-1153)) 35)) (-3260 (($) 33)) (-2207 (((-433) (-1153) (-433) (-1153) $) 44) (((-433) (-626 (-1153)) (-433) (-1153) $) 48) (((-433) (-1153) (-433)) 45) (((-433) (-1153) (-433) (-1153)) 49)) (-1358 (((-1153)) 34)) (-2801 (((-842) $) 27)) (-3503 (((-1241)) 29) (((-1241) (-1153)) 32)) (-2703 (((-626 (-1153)) (-1153) $) 23)) (-1625 (((-1241) (-1153) (-626 (-1153)) $) 37) (((-1241) (-1153) (-626 (-1153))) 38) (((-1241) (-626 (-1153))) 39))) -(((-1156) (-13 (-600 (-842)) (-10 -8 (-15 -4203 ($)) (-15 -3503 ((-1241))) (-15 -3503 ((-1241) (-1153))) (-15 -2207 ((-433) (-1153) (-433) (-1153) $)) (-15 -2207 ((-433) (-626 (-1153)) (-433) (-1153) $)) (-15 -2207 ((-433) (-1153) (-433))) (-15 -2207 ((-433) (-1153) (-433) (-1153))) (-15 -2113 ((-1241) (-1153))) (-15 -1358 ((-1153))) (-15 -2245 ((-1153))) (-15 -1625 ((-1241) (-1153) (-626 (-1153)) $)) (-15 -1625 ((-1241) (-1153) (-626 (-1153)))) (-15 -1625 ((-1241) (-626 (-1153)))) (-15 -3048 ((-1241) (-1153) (-3 (|:| |fst| (-430)) (|:| -2303 "void")) $)) (-15 -3048 ((-1241) (-1153) (-3 (|:| |fst| (-430)) (|:| -2303 "void")))) (-15 -3048 ((-1241) (-3 (|:| |fst| (-430)) (|:| -2303 "void")))) (-15 -1282 ((-1241) (-1153) $)) (-15 -1282 ((-1241) (-1153))) (-15 -1282 ((-1241))) (-15 -2375 ((-1241) (-1153))) (-15 -3260 ($)) (-15 -3167 ((-3 (|:| |fst| (-430)) (|:| -2303 "void")) (-1153) $)) (-15 -2703 ((-626 (-1153)) (-1153) $)) (-15 -3586 ((-1157) (-1153) $))))) (T -1156)) -((-4203 (*1 *1) (-5 *1 (-1156))) (-3503 (*1 *2) (-12 (-5 *2 (-1241)) (-5 *1 (-1156)))) (-3503 (*1 *2 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-1241)) (-5 *1 (-1156)))) (-2207 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-433)) (-5 *3 (-1153)) (-5 *1 (-1156)))) (-2207 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-433)) (-5 *3 (-626 (-1153))) (-5 *4 (-1153)) (-5 *1 (-1156)))) (-2207 (*1 *2 *3 *2) (-12 (-5 *2 (-433)) (-5 *3 (-1153)) (-5 *1 (-1156)))) (-2207 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-433)) (-5 *3 (-1153)) (-5 *1 (-1156)))) (-2113 (*1 *2 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-1241)) (-5 *1 (-1156)))) (-1358 (*1 *2) (-12 (-5 *2 (-1153)) (-5 *1 (-1156)))) (-2245 (*1 *2) (-12 (-5 *2 (-1153)) (-5 *1 (-1156)))) (-1625 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-626 (-1153))) (-5 *3 (-1153)) (-5 *2 (-1241)) (-5 *1 (-1156)))) (-1625 (*1 *2 *3 *4) (-12 (-5 *4 (-626 (-1153))) (-5 *3 (-1153)) (-5 *2 (-1241)) (-5 *1 (-1156)))) (-1625 (*1 *2 *3) (-12 (-5 *3 (-626 (-1153))) (-5 *2 (-1241)) (-5 *1 (-1156)))) (-3048 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1153)) (-5 *4 (-3 (|:| |fst| (-430)) (|:| -2303 "void"))) (-5 *2 (-1241)) (-5 *1 (-1156)))) (-3048 (*1 *2 *3 *4) (-12 (-5 *3 (-1153)) (-5 *4 (-3 (|:| |fst| (-430)) (|:| -2303 "void"))) (-5 *2 (-1241)) (-5 *1 (-1156)))) (-3048 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-430)) (|:| -2303 "void"))) (-5 *2 (-1241)) (-5 *1 (-1156)))) (-1282 (*1 *2 *3 *1) (-12 (-5 *3 (-1153)) (-5 *2 (-1241)) (-5 *1 (-1156)))) (-1282 (*1 *2 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-1241)) (-5 *1 (-1156)))) (-1282 (*1 *2) (-12 (-5 *2 (-1241)) (-5 *1 (-1156)))) (-2375 (*1 *2 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-1241)) (-5 *1 (-1156)))) (-3260 (*1 *1) (-5 *1 (-1156))) (-3167 (*1 *2 *3 *1) (-12 (-5 *3 (-1153)) (-5 *2 (-3 (|:| |fst| (-430)) (|:| -2303 "void"))) (-5 *1 (-1156)))) (-2703 (*1 *2 *3 *1) (-12 (-5 *2 (-626 (-1153))) (-5 *1 (-1156)) (-5 *3 (-1153)))) (-3586 (*1 *2 *3 *1) (-12 (-5 *3 (-1153)) (-5 *2 (-1157)) (-5 *1 (-1156))))) -(-13 (-600 (-842)) (-10 -8 (-15 -4203 ($)) (-15 -3503 ((-1241))) (-15 -3503 ((-1241) (-1153))) (-15 -2207 ((-433) (-1153) (-433) (-1153) $)) (-15 -2207 ((-433) (-626 (-1153)) (-433) (-1153) $)) (-15 -2207 ((-433) (-1153) (-433))) (-15 -2207 ((-433) (-1153) (-433) (-1153))) (-15 -2113 ((-1241) (-1153))) (-15 -1358 ((-1153))) (-15 -2245 ((-1153))) (-15 -1625 ((-1241) (-1153) (-626 (-1153)) $)) (-15 -1625 ((-1241) (-1153) (-626 (-1153)))) (-15 -1625 ((-1241) (-626 (-1153)))) (-15 -3048 ((-1241) (-1153) (-3 (|:| |fst| (-430)) (|:| -2303 "void")) $)) (-15 -3048 ((-1241) (-1153) (-3 (|:| |fst| (-430)) (|:| -2303 "void")))) (-15 -3048 ((-1241) (-3 (|:| |fst| (-430)) (|:| -2303 "void")))) (-15 -1282 ((-1241) (-1153) $)) (-15 -1282 ((-1241) (-1153))) (-15 -1282 ((-1241))) (-15 -2375 ((-1241) (-1153))) (-15 -3260 ($)) (-15 -3167 ((-3 (|:| |fst| (-430)) (|:| -2303 "void")) (-1153) $)) (-15 -2703 ((-626 (-1153)) (-1153) $)) (-15 -3586 ((-1157) (-1153) $)))) -((-2365 (((-626 (-626 (-3 (|:| -1337 (-1153)) (|:| |bounds| (-626 (-3 (|:| S (-1153)) (|:| P (-945 (-560))))))))) $) 57)) (-2997 (((-626 (-3 (|:| -1337 (-1153)) (|:| |bounds| (-626 (-3 (|:| S (-1153)) (|:| P (-945 (-560)))))))) (-430) $) 40)) (-2384 (($ (-626 (-2 (|:| -3655 (-1153)) (|:| -2371 (-433))))) 15)) (-2375 (((-1241) $) 65)) (-2202 (((-626 (-1153)) $) 20)) (-2484 (((-1086) $) 53)) (-2049 (((-433) (-1153) $) 27)) (-3006 (((-626 (-1153)) $) 30)) (-3260 (($) 17)) (-2207 (((-433) (-626 (-1153)) (-433) $) 25) (((-433) (-1153) (-433) $) 24)) (-2801 (((-842) $) 9) (((-1161 (-1153) (-433)) $) 11))) -(((-1157) (-13 (-600 (-842)) (-10 -8 (-15 -2801 ((-1161 (-1153) (-433)) $)) (-15 -3260 ($)) (-15 -2207 ((-433) (-626 (-1153)) (-433) $)) (-15 -2207 ((-433) (-1153) (-433) $)) (-15 -2049 ((-433) (-1153) $)) (-15 -2202 ((-626 (-1153)) $)) (-15 -2997 ((-626 (-3 (|:| -1337 (-1153)) (|:| |bounds| (-626 (-3 (|:| S (-1153)) (|:| P (-945 (-560)))))))) (-430) $)) (-15 -3006 ((-626 (-1153)) $)) (-15 -2365 ((-626 (-626 (-3 (|:| -1337 (-1153)) (|:| |bounds| (-626 (-3 (|:| S (-1153)) (|:| P (-945 (-560))))))))) $)) (-15 -2484 ((-1086) $)) (-15 -2375 ((-1241) $)) (-15 -2384 ($ (-626 (-2 (|:| -3655 (-1153)) (|:| -2371 (-433))))))))) (T -1157)) -((-2801 (*1 *2 *1) (-12 (-5 *2 (-1161 (-1153) (-433))) (-5 *1 (-1157)))) (-3260 (*1 *1) (-5 *1 (-1157))) (-2207 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-433)) (-5 *3 (-626 (-1153))) (-5 *1 (-1157)))) (-2207 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-433)) (-5 *3 (-1153)) (-5 *1 (-1157)))) (-2049 (*1 *2 *3 *1) (-12 (-5 *3 (-1153)) (-5 *2 (-433)) (-5 *1 (-1157)))) (-2202 (*1 *2 *1) (-12 (-5 *2 (-626 (-1153))) (-5 *1 (-1157)))) (-2997 (*1 *2 *3 *1) (-12 (-5 *3 (-430)) (-5 *2 (-626 (-3 (|:| -1337 (-1153)) (|:| |bounds| (-626 (-3 (|:| S (-1153)) (|:| P (-945 (-560))))))))) (-5 *1 (-1157)))) (-3006 (*1 *2 *1) (-12 (-5 *2 (-626 (-1153))) (-5 *1 (-1157)))) (-2365 (*1 *2 *1) (-12 (-5 *2 (-626 (-626 (-3 (|:| -1337 (-1153)) (|:| |bounds| (-626 (-3 (|:| S (-1153)) (|:| P (-945 (-560)))))))))) (-5 *1 (-1157)))) (-2484 (*1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-1157)))) (-2375 (*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-1157)))) (-2384 (*1 *1 *2) (-12 (-5 *2 (-626 (-2 (|:| -3655 (-1153)) (|:| -2371 (-433))))) (-5 *1 (-1157))))) -(-13 (-600 (-842)) (-10 -8 (-15 -2801 ((-1161 (-1153) (-433)) $)) (-15 -3260 ($)) (-15 -2207 ((-433) (-626 (-1153)) (-433) $)) (-15 -2207 ((-433) (-1153) (-433) $)) (-15 -2049 ((-433) (-1153) $)) (-15 -2202 ((-626 (-1153)) $)) (-15 -2997 ((-626 (-3 (|:| -1337 (-1153)) (|:| |bounds| (-626 (-3 (|:| S (-1153)) (|:| P (-945 (-560)))))))) (-430) $)) (-15 -3006 ((-626 (-1153)) $)) (-15 -2365 ((-626 (-626 (-3 (|:| -1337 (-1153)) (|:| |bounds| (-626 (-3 (|:| S (-1153)) (|:| P (-945 (-560))))))))) $)) (-15 -2484 ((-1086) $)) (-15 -2375 ((-1241) $)) (-15 -2384 ($ (-626 (-2 (|:| -3655 (-1153)) (|:| -2371 (-433)))))))) -((-4152 (((-626 (-626 (-945 |#1|))) (-626 (-403 (-945 |#1|))) (-626 (-1153))) 55)) (-4159 (((-626 (-283 (-403 (-945 |#1|)))) (-283 (-403 (-945 |#1|)))) 66) (((-626 (-283 (-403 (-945 |#1|)))) (-403 (-945 |#1|))) 62) (((-626 (-283 (-403 (-945 |#1|)))) (-283 (-403 (-945 |#1|))) (-1153)) 67) (((-626 (-283 (-403 (-945 |#1|)))) (-403 (-945 |#1|)) (-1153)) 61) (((-626 (-626 (-283 (-403 (-945 |#1|))))) (-626 (-283 (-403 (-945 |#1|))))) 91) (((-626 (-626 (-283 (-403 (-945 |#1|))))) (-626 (-403 (-945 |#1|)))) 90) (((-626 (-626 (-283 (-403 (-945 |#1|))))) (-626 (-283 (-403 (-945 |#1|)))) (-626 (-1153))) 92) (((-626 (-626 (-283 (-403 (-945 |#1|))))) (-626 (-403 (-945 |#1|))) (-626 (-1153))) 89))) -(((-1158 |#1|) (-10 -7 (-15 -4159 ((-626 (-626 (-283 (-403 (-945 |#1|))))) (-626 (-403 (-945 |#1|))) (-626 (-1153)))) (-15 -4159 ((-626 (-626 (-283 (-403 (-945 |#1|))))) (-626 (-283 (-403 (-945 |#1|)))) (-626 (-1153)))) (-15 -4159 ((-626 (-626 (-283 (-403 (-945 |#1|))))) (-626 (-403 (-945 |#1|))))) (-15 -4159 ((-626 (-626 (-283 (-403 (-945 |#1|))))) (-626 (-283 (-403 (-945 |#1|)))))) (-15 -4159 ((-626 (-283 (-403 (-945 |#1|)))) (-403 (-945 |#1|)) (-1153))) (-15 -4159 ((-626 (-283 (-403 (-945 |#1|)))) (-283 (-403 (-945 |#1|))) (-1153))) (-15 -4159 ((-626 (-283 (-403 (-945 |#1|)))) (-403 (-945 |#1|)))) (-15 -4159 ((-626 (-283 (-403 (-945 |#1|)))) (-283 (-403 (-945 |#1|))))) (-15 -4152 ((-626 (-626 (-945 |#1|))) (-626 (-403 (-945 |#1|))) (-626 (-1153))))) (-550)) (T -1158)) -((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-945 *5)))) (-5 *4 (-626 (-1153))) (-4 *5 (-550)) (-5 *2 (-626 (-626 (-945 *5)))) (-5 *1 (-1158 *5)))) (-4159 (*1 *2 *3) (-12 (-4 *4 (-550)) (-5 *2 (-626 (-283 (-403 (-945 *4))))) (-5 *1 (-1158 *4)) (-5 *3 (-283 (-403 (-945 *4)))))) (-4159 (*1 *2 *3) (-12 (-4 *4 (-550)) (-5 *2 (-626 (-283 (-403 (-945 *4))))) (-5 *1 (-1158 *4)) (-5 *3 (-403 (-945 *4))))) (-4159 (*1 *2 *3 *4) (-12 (-5 *4 (-1153)) (-4 *5 (-550)) (-5 *2 (-626 (-283 (-403 (-945 *5))))) (-5 *1 (-1158 *5)) (-5 *3 (-283 (-403 (-945 *5)))))) (-4159 (*1 *2 *3 *4) (-12 (-5 *4 (-1153)) (-4 *5 (-550)) (-5 *2 (-626 (-283 (-403 (-945 *5))))) (-5 *1 (-1158 *5)) (-5 *3 (-403 (-945 *5))))) (-4159 (*1 *2 *3) (-12 (-4 *4 (-550)) (-5 *2 (-626 (-626 (-283 (-403 (-945 *4)))))) (-5 *1 (-1158 *4)) (-5 *3 (-626 (-283 (-403 (-945 *4))))))) (-4159 (*1 *2 *3) (-12 (-5 *3 (-626 (-403 (-945 *4)))) (-4 *4 (-550)) (-5 *2 (-626 (-626 (-283 (-403 (-945 *4)))))) (-5 *1 (-1158 *4)))) (-4159 (*1 *2 *3 *4) (-12 (-5 *4 (-626 (-1153))) (-4 *5 (-550)) (-5 *2 (-626 (-626 (-283 (-403 (-945 *5)))))) (-5 *1 (-1158 *5)) (-5 *3 (-626 (-283 (-403 (-945 *5))))))) (-4159 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-945 *5)))) (-5 *4 (-626 (-1153))) (-4 *5 (-550)) (-5 *2 (-626 (-626 (-283 (-403 (-945 *5)))))) (-5 *1 (-1158 *5))))) -(-10 -7 (-15 -4159 ((-626 (-626 (-283 (-403 (-945 |#1|))))) (-626 (-403 (-945 |#1|))) (-626 (-1153)))) (-15 -4159 ((-626 (-626 (-283 (-403 (-945 |#1|))))) (-626 (-283 (-403 (-945 |#1|)))) (-626 (-1153)))) (-15 -4159 ((-626 (-626 (-283 (-403 (-945 |#1|))))) (-626 (-403 (-945 |#1|))))) (-15 -4159 ((-626 (-626 (-283 (-403 (-945 |#1|))))) (-626 (-283 (-403 (-945 |#1|)))))) (-15 -4159 ((-626 (-283 (-403 (-945 |#1|)))) (-403 (-945 |#1|)) (-1153))) (-15 -4159 ((-626 (-283 (-403 (-945 |#1|)))) (-283 (-403 (-945 |#1|))) (-1153))) (-15 -4159 ((-626 (-283 (-403 (-945 |#1|)))) (-403 (-945 |#1|)))) (-15 -4159 ((-626 (-283 (-403 (-945 |#1|)))) (-283 (-403 (-945 |#1|))))) (-15 -4152 ((-626 (-626 (-945 |#1|))) (-626 (-403 (-945 |#1|))) (-626 (-1153))))) -((-3418 (((-626 (-626 |#1|)) (-626 (-626 |#1|)) (-626 (-626 (-626 |#1|)))) 38)) (-4046 (((-626 (-626 (-626 |#1|))) (-626 (-626 |#1|))) 24)) (-1391 (((-1160 (-626 |#1|)) (-626 |#1|)) 34)) (-1552 (((-626 (-626 |#1|)) (-626 |#1|)) 30)) (-4476 (((-2 (|:| |f1| (-626 |#1|)) (|:| |f2| (-626 (-626 (-626 |#1|)))) (|:| |f3| (-626 (-626 |#1|))) (|:| |f4| (-626 (-626 (-626 |#1|))))) (-626 (-626 (-626 |#1|)))) 37)) (-2153 (((-2 (|:| |f1| (-626 |#1|)) (|:| |f2| (-626 (-626 (-626 |#1|)))) (|:| |f3| (-626 (-626 |#1|))) (|:| |f4| (-626 (-626 (-626 |#1|))))) (-626 |#1|) (-626 (-626 (-626 |#1|))) (-626 (-626 |#1|)) (-626 (-626 (-626 |#1|))) (-626 (-626 (-626 |#1|))) (-626 (-626 (-626 |#1|)))) 36)) (-3575 (((-626 (-626 |#1|)) (-626 (-626 |#1|))) 28)) (-3257 (((-626 |#1|) (-626 |#1|)) 31)) (-3232 (((-626 (-626 (-626 |#1|))) (-626 |#1|) (-626 (-626 (-626 |#1|)))) 18)) (-3637 (((-626 (-626 (-626 |#1|))) (-1 (-121) |#1| |#1|) (-626 |#1|) (-626 (-626 (-626 |#1|)))) 15)) (-1324 (((-2 (|:| |fs| (-121)) (|:| |sd| (-626 |#1|)) (|:| |td| (-626 (-626 |#1|)))) (-1 (-121) |#1| |#1|) (-626 |#1|) (-626 (-626 |#1|))) 13)) (-3289 (((-626 (-626 |#1|)) (-626 (-626 (-626 |#1|)))) 39)) (-2987 (((-626 (-626 |#1|)) (-1160 (-626 |#1|))) 41))) -(((-1159 |#1|) (-10 -7 (-15 -1324 ((-2 (|:| |fs| (-121)) (|:| |sd| (-626 |#1|)) (|:| |td| (-626 (-626 |#1|)))) (-1 (-121) |#1| |#1|) (-626 |#1|) (-626 (-626 |#1|)))) (-15 -3637 ((-626 (-626 (-626 |#1|))) (-1 (-121) |#1| |#1|) (-626 |#1|) (-626 (-626 (-626 |#1|))))) (-15 -3232 ((-626 (-626 (-626 |#1|))) (-626 |#1|) (-626 (-626 (-626 |#1|))))) (-15 -3418 ((-626 (-626 |#1|)) (-626 (-626 |#1|)) (-626 (-626 (-626 |#1|))))) (-15 -3289 ((-626 (-626 |#1|)) (-626 (-626 (-626 |#1|))))) (-15 -2987 ((-626 (-626 |#1|)) (-1160 (-626 |#1|)))) (-15 -4046 ((-626 (-626 (-626 |#1|))) (-626 (-626 |#1|)))) (-15 -1391 ((-1160 (-626 |#1|)) (-626 |#1|))) (-15 -3575 ((-626 (-626 |#1|)) (-626 (-626 |#1|)))) (-15 -1552 ((-626 (-626 |#1|)) (-626 |#1|))) (-15 -3257 ((-626 |#1|) (-626 |#1|))) (-15 -2153 ((-2 (|:| |f1| (-626 |#1|)) (|:| |f2| (-626 (-626 (-626 |#1|)))) (|:| |f3| (-626 (-626 |#1|))) (|:| |f4| (-626 (-626 (-626 |#1|))))) (-626 |#1|) (-626 (-626 (-626 |#1|))) (-626 (-626 |#1|)) (-626 (-626 (-626 |#1|))) (-626 (-626 (-626 |#1|))) (-626 (-626 (-626 |#1|))))) (-15 -4476 ((-2 (|:| |f1| (-626 |#1|)) (|:| |f2| (-626 (-626 (-626 |#1|)))) (|:| |f3| (-626 (-626 |#1|))) (|:| |f4| (-626 (-626 (-626 |#1|))))) (-626 (-626 (-626 |#1|)))))) (-834)) (T -1159)) -((-4476 (*1 *2 *3) (-12 (-4 *4 (-834)) (-5 *2 (-2 (|:| |f1| (-626 *4)) (|:| |f2| (-626 (-626 (-626 *4)))) (|:| |f3| (-626 (-626 *4))) (|:| |f4| (-626 (-626 (-626 *4)))))) (-5 *1 (-1159 *4)) (-5 *3 (-626 (-626 (-626 *4)))))) (-2153 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-834)) (-5 *3 (-626 *6)) (-5 *5 (-626 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-626 *5)) (|:| |f3| *5) (|:| |f4| (-626 *5)))) (-5 *1 (-1159 *6)) (-5 *4 (-626 *5)))) (-3257 (*1 *2 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-834)) (-5 *1 (-1159 *3)))) (-1552 (*1 *2 *3) (-12 (-4 *4 (-834)) (-5 *2 (-626 (-626 *4))) (-5 *1 (-1159 *4)) (-5 *3 (-626 *4)))) (-3575 (*1 *2 *2) (-12 (-5 *2 (-626 (-626 *3))) (-4 *3 (-834)) (-5 *1 (-1159 *3)))) (-1391 (*1 *2 *3) (-12 (-4 *4 (-834)) (-5 *2 (-1160 (-626 *4))) (-5 *1 (-1159 *4)) (-5 *3 (-626 *4)))) (-4046 (*1 *2 *3) (-12 (-4 *4 (-834)) (-5 *2 (-626 (-626 (-626 *4)))) (-5 *1 (-1159 *4)) (-5 *3 (-626 (-626 *4))))) (-2987 (*1 *2 *3) (-12 (-5 *3 (-1160 (-626 *4))) (-4 *4 (-834)) (-5 *2 (-626 (-626 *4))) (-5 *1 (-1159 *4)))) (-3289 (*1 *2 *3) (-12 (-5 *3 (-626 (-626 (-626 *4)))) (-5 *2 (-626 (-626 *4))) (-5 *1 (-1159 *4)) (-4 *4 (-834)))) (-3418 (*1 *2 *2 *3) (-12 (-5 *3 (-626 (-626 (-626 *4)))) (-5 *2 (-626 (-626 *4))) (-4 *4 (-834)) (-5 *1 (-1159 *4)))) (-3232 (*1 *2 *3 *2) (-12 (-5 *2 (-626 (-626 (-626 *4)))) (-5 *3 (-626 *4)) (-4 *4 (-834)) (-5 *1 (-1159 *4)))) (-3637 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-626 (-626 (-626 *5)))) (-5 *3 (-1 (-121) *5 *5)) (-5 *4 (-626 *5)) (-4 *5 (-834)) (-5 *1 (-1159 *5)))) (-1324 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-121) *6 *6)) (-4 *6 (-834)) (-5 *4 (-626 *6)) (-5 *2 (-2 (|:| |fs| (-121)) (|:| |sd| *4) (|:| |td| (-626 *4)))) (-5 *1 (-1159 *6)) (-5 *5 (-626 *4))))) -(-10 -7 (-15 -1324 ((-2 (|:| |fs| (-121)) (|:| |sd| (-626 |#1|)) (|:| |td| (-626 (-626 |#1|)))) (-1 (-121) |#1| |#1|) (-626 |#1|) (-626 (-626 |#1|)))) (-15 -3637 ((-626 (-626 (-626 |#1|))) (-1 (-121) |#1| |#1|) (-626 |#1|) (-626 (-626 (-626 |#1|))))) (-15 -3232 ((-626 (-626 (-626 |#1|))) (-626 |#1|) (-626 (-626 (-626 |#1|))))) (-15 -3418 ((-626 (-626 |#1|)) (-626 (-626 |#1|)) (-626 (-626 (-626 |#1|))))) (-15 -3289 ((-626 (-626 |#1|)) (-626 (-626 (-626 |#1|))))) (-15 -2987 ((-626 (-626 |#1|)) (-1160 (-626 |#1|)))) (-15 -4046 ((-626 (-626 (-626 |#1|))) (-626 (-626 |#1|)))) (-15 -1391 ((-1160 (-626 |#1|)) (-626 |#1|))) (-15 -3575 ((-626 (-626 |#1|)) (-626 (-626 |#1|)))) (-15 -1552 ((-626 (-626 |#1|)) (-626 |#1|))) (-15 -3257 ((-626 |#1|) (-626 |#1|))) (-15 -2153 ((-2 (|:| |f1| (-626 |#1|)) (|:| |f2| (-626 (-626 (-626 |#1|)))) (|:| |f3| (-626 (-626 |#1|))) (|:| |f4| (-626 (-626 (-626 |#1|))))) (-626 |#1|) (-626 (-626 (-626 |#1|))) (-626 (-626 |#1|)) (-626 (-626 (-626 |#1|))) (-626 (-626 (-626 |#1|))) (-626 (-626 (-626 |#1|))))) (-15 -4476 ((-2 (|:| |f1| (-626 |#1|)) (|:| |f2| (-626 (-626 (-626 |#1|)))) (|:| |f3| (-626 (-626 |#1|))) (|:| |f4| (-626 (-626 (-626 |#1|))))) (-626 (-626 (-626 |#1|)))))) -((-2468 (($ (-626 (-626 |#1|))) 9)) (-2184 (((-626 (-626 |#1|)) $) 10)) (-2801 (((-842) $) 25))) -(((-1160 |#1|) (-10 -8 (-15 -2468 ($ (-626 (-626 |#1|)))) (-15 -2184 ((-626 (-626 |#1|)) $)) (-15 -2801 ((-842) $))) (-1082)) (T -1160)) -((-2801 (*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-1160 *3)) (-4 *3 (-1082)))) (-2184 (*1 *2 *1) (-12 (-5 *2 (-626 (-626 *3))) (-5 *1 (-1160 *3)) (-4 *3 (-1082)))) (-2468 (*1 *1 *2) (-12 (-5 *2 (-626 (-626 *3))) (-4 *3 (-1082)) (-5 *1 (-1160 *3))))) -(-10 -8 (-15 -2468 ($ (-626 (-626 |#1|)))) (-15 -2184 ((-626 (-626 |#1|)) $)) (-15 -2801 ((-842) $))) -((-2601 (((-121) $ $) NIL (-2318 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-4050 (($) NIL) (($ (-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) NIL)) (-2960 (((-1241) $ |#1| |#1|) NIL (|has| $ (-6 -4506)))) (-3909 (((-121) $ (-755)) NIL)) (-2764 ((|#2| $ |#1| |#2|) NIL)) (-3763 (($ (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505)))) (-3802 (($ (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505)))) (-2722 (((-3 |#2| "failed") |#1| $) NIL)) (-4236 (($) NIL T CONST)) (-2868 (($ $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082))))) (-3561 (($ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) NIL (|has| $ (-6 -4505))) (($ (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505))) (((-3 |#2| "failed") |#1| $) NIL)) (-4310 (($ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (($ (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505)))) (-2342 (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) NIL (|has| $ (-6 -4505))) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505)))) (-1746 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4506)))) (-1361 ((|#2| $ |#1|) NIL)) (-1981 (((-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505))) (((-626 |#2|) $) NIL (|has| $ (-6 -4505)))) (-2122 (((-121) $ (-755)) NIL)) (-4099 ((|#1| $) NIL (|has| |#1| (-834)))) (-2130 (((-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505))) (((-626 |#2|) $) NIL (|has| $ (-6 -4505)))) (-2030 (((-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (((-121) |#2| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#2| (-1082))))) (-2767 ((|#1| $) NIL (|has| |#1| (-834)))) (-3778 (($ (-1 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4506))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4506)))) (-2803 (($ (-1 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3441 (((-121) $ (-755)) NIL)) (-1291 (((-1135) $) NIL (-2318 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-1377 (((-626 |#1|) $) NIL)) (-3855 (((-121) |#1| $) NIL)) (-2525 (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) NIL)) (-4345 (($ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) NIL)) (-1529 (((-626 |#1|) $) NIL)) (-1310 (((-121) |#1| $) NIL)) (-4353 (((-1100) $) NIL (-2318 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-2824 ((|#2| $) NIL (|has| |#1| (-834)))) (-3786 (((-3 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) "failed") (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL)) (-3038 (($ $ |#2|) NIL (|has| $ (-6 -4506)))) (-2146 (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) NIL)) (-2865 (((-121) (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505))) (((-121) (-1 (-121) |#2|) $) NIL (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))))) NIL (-12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (($ $ (-283 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) NIL (-12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (($ $ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) NIL (-12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (($ $ (-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) (-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) NIL (-12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (($ $ (-626 |#2|) (-626 |#2|)) NIL (-12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082)))) (($ $ (-283 |#2|)) NIL (-12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082)))) (($ $ (-626 (-283 |#2|))) NIL (-12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082))))) (-2214 (((-121) $ $) NIL)) (-1290 (((-121) |#2| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#2| (-1082))))) (-4460 (((-626 |#2|) $) NIL)) (-4191 (((-121) $) NIL)) (-3260 (($) NIL)) (-2778 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3958 (($) NIL) (($ (-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) NIL)) (-4035 (((-755) (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505))) (((-755) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) NIL (-12 (|has| $ (-6 -4505)) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (((-755) |#2| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#2| (-1082)))) (((-755) (-1 (-121) |#2|) $) NIL (|has| $ (-6 -4505)))) (-2813 (($ $) NIL)) (-4255 (((-533) $) NIL (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-601 (-533))))) (-4162 (($ (-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) NIL)) (-2801 (((-842) $) NIL (-2318 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-1354 (($ (-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) NIL)) (-3656 (((-121) (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) NIL (|has| $ (-6 -4505))) (((-121) (-1 (-121) |#2|) $) NIL (|has| $ (-6 -4505)))) (-1653 (((-121) $ $) NIL (-2318 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)) (|has| |#2| (-1082))))) (-2271 (((-755) $) NIL (|has| $ (-6 -4505))))) -(((-1161 |#1| |#2|) (-13 (-1164 |#1| |#2|) (-10 -7 (-6 -4505))) (-1082) (-1082)) (T -1161)) -NIL -(-13 (-1164 |#1| |#2|) (-10 -7 (-6 -4505))) -((-1381 ((|#1| (-626 |#1|)) 32)) (-1609 ((|#1| |#1| (-560)) 18)) (-4362 (((-1149 |#1|) |#1| (-909)) 15))) -(((-1162 |#1|) (-10 -7 (-15 -1381 (|#1| (-626 |#1|))) (-15 -4362 ((-1149 |#1|) |#1| (-909))) (-15 -1609 (|#1| |#1| (-560)))) (-359)) (T -1162)) -((-1609 (*1 *2 *2 *3) (-12 (-5 *3 (-560)) (-5 *1 (-1162 *2)) (-4 *2 (-359)))) (-4362 (*1 *2 *3 *4) (-12 (-5 *4 (-909)) (-5 *2 (-1149 *3)) (-5 *1 (-1162 *3)) (-4 *3 (-359)))) (-1381 (*1 *2 *3) (-12 (-5 *3 (-626 *2)) (-5 *1 (-1162 *2)) (-4 *2 (-359))))) -(-10 -7 (-15 -1381 (|#1| (-626 |#1|))) (-15 -4362 ((-1149 |#1|) |#1| (-909))) (-15 -1609 (|#1| |#1| (-560)))) -((-4050 (($) 10) (($ (-626 (-2 (|:| -3655 |#2|) (|:| -2371 |#3|)))) 14)) (-3561 (($ (-2 (|:| -3655 |#2|) (|:| -2371 |#3|)) $) 60) (($ (-1 (-121) (-2 (|:| -3655 |#2|) (|:| -2371 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-1981 (((-626 (-2 (|:| -3655 |#2|) (|:| -2371 |#3|))) $) 39) (((-626 |#3|) $) 41)) (-3778 (($ (-1 (-2 (|:| -3655 |#2|) (|:| -2371 |#3|)) (-2 (|:| -3655 |#2|) (|:| -2371 |#3|))) $) 52) (($ (-1 |#3| |#3|) $) 33)) (-2803 (($ (-1 (-2 (|:| -3655 |#2|) (|:| -2371 |#3|)) (-2 (|:| -3655 |#2|) (|:| -2371 |#3|))) $) 50) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-2525 (((-2 (|:| -3655 |#2|) (|:| -2371 |#3|)) $) 53)) (-4345 (($ (-2 (|:| -3655 |#2|) (|:| -2371 |#3|)) $) 16)) (-1529 (((-626 |#2|) $) 19)) (-1310 (((-121) |#2| $) 58)) (-3786 (((-3 (-2 (|:| -3655 |#2|) (|:| -2371 |#3|)) "failed") (-1 (-121) (-2 (|:| -3655 |#2|) (|:| -2371 |#3|))) $) 57)) (-2146 (((-2 (|:| -3655 |#2|) (|:| -2371 |#3|)) $) 62)) (-2865 (((-121) (-1 (-121) (-2 (|:| -3655 |#2|) (|:| -2371 |#3|))) $) NIL) (((-121) (-1 (-121) |#3|) $) 65)) (-4460 (((-626 |#3|) $) 43)) (-2778 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-4035 (((-755) (-1 (-121) (-2 (|:| -3655 |#2|) (|:| -2371 |#3|))) $) NIL) (((-755) (-2 (|:| -3655 |#2|) (|:| -2371 |#3|)) $) NIL) (((-755) |#3| $) NIL) (((-755) (-1 (-121) |#3|) $) 66)) (-2801 (((-842) $) 27)) (-3656 (((-121) (-1 (-121) (-2 (|:| -3655 |#2|) (|:| -2371 |#3|))) $) NIL) (((-121) (-1 (-121) |#3|) $) 64)) (-1653 (((-121) $ $) 48))) -(((-1163 |#1| |#2| |#3|) (-10 -8 (-15 -1653 ((-121) |#1| |#1|)) (-15 -2801 ((-842) |#1|)) (-15 -2803 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4050 (|#1| (-626 (-2 (|:| -3655 |#2|) (|:| -2371 |#3|))))) (-15 -4050 (|#1|)) (-15 -2803 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3778 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3656 ((-121) (-1 (-121) |#3|) |#1|)) (-15 -2865 ((-121) (-1 (-121) |#3|) |#1|)) (-15 -4035 ((-755) (-1 (-121) |#3|) |#1|)) (-15 -1981 ((-626 |#3|) |#1|)) (-15 -4035 ((-755) |#3| |#1|)) (-15 -2778 (|#3| |#1| |#2| |#3|)) (-15 -2778 (|#3| |#1| |#2|)) (-15 -4460 ((-626 |#3|) |#1|)) (-15 -1310 ((-121) |#2| |#1|)) (-15 -1529 ((-626 |#2|) |#1|)) (-15 -3561 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3561 (|#1| (-1 (-121) (-2 (|:| -3655 |#2|) (|:| -2371 |#3|))) |#1|)) (-15 -3561 (|#1| (-2 (|:| -3655 |#2|) (|:| -2371 |#3|)) |#1|)) (-15 -3786 ((-3 (-2 (|:| -3655 |#2|) (|:| -2371 |#3|)) "failed") (-1 (-121) (-2 (|:| -3655 |#2|) (|:| -2371 |#3|))) |#1|)) (-15 -2525 ((-2 (|:| -3655 |#2|) (|:| -2371 |#3|)) |#1|)) (-15 -4345 (|#1| (-2 (|:| -3655 |#2|) (|:| -2371 |#3|)) |#1|)) (-15 -2146 ((-2 (|:| -3655 |#2|) (|:| -2371 |#3|)) |#1|)) (-15 -4035 ((-755) (-2 (|:| -3655 |#2|) (|:| -2371 |#3|)) |#1|)) (-15 -1981 ((-626 (-2 (|:| -3655 |#2|) (|:| -2371 |#3|))) |#1|)) (-15 -4035 ((-755) (-1 (-121) (-2 (|:| -3655 |#2|) (|:| -2371 |#3|))) |#1|)) (-15 -2865 ((-121) (-1 (-121) (-2 (|:| -3655 |#2|) (|:| -2371 |#3|))) |#1|)) (-15 -3656 ((-121) (-1 (-121) (-2 (|:| -3655 |#2|) (|:| -2371 |#3|))) |#1|)) (-15 -3778 (|#1| (-1 (-2 (|:| -3655 |#2|) (|:| -2371 |#3|)) (-2 (|:| -3655 |#2|) (|:| -2371 |#3|))) |#1|)) (-15 -2803 (|#1| (-1 (-2 (|:| -3655 |#2|) (|:| -2371 |#3|)) (-2 (|:| -3655 |#2|) (|:| -2371 |#3|))) |#1|))) (-1164 |#2| |#3|) (-1082) (-1082)) (T -1163)) -NIL -(-10 -8 (-15 -1653 ((-121) |#1| |#1|)) (-15 -2801 ((-842) |#1|)) (-15 -2803 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4050 (|#1| (-626 (-2 (|:| -3655 |#2|) (|:| -2371 |#3|))))) (-15 -4050 (|#1|)) (-15 -2803 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3778 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3656 ((-121) (-1 (-121) |#3|) |#1|)) (-15 -2865 ((-121) (-1 (-121) |#3|) |#1|)) (-15 -4035 ((-755) (-1 (-121) |#3|) |#1|)) (-15 -1981 ((-626 |#3|) |#1|)) (-15 -4035 ((-755) |#3| |#1|)) (-15 -2778 (|#3| |#1| |#2| |#3|)) (-15 -2778 (|#3| |#1| |#2|)) (-15 -4460 ((-626 |#3|) |#1|)) (-15 -1310 ((-121) |#2| |#1|)) (-15 -1529 ((-626 |#2|) |#1|)) (-15 -3561 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3561 (|#1| (-1 (-121) (-2 (|:| -3655 |#2|) (|:| -2371 |#3|))) |#1|)) (-15 -3561 (|#1| (-2 (|:| -3655 |#2|) (|:| -2371 |#3|)) |#1|)) (-15 -3786 ((-3 (-2 (|:| -3655 |#2|) (|:| -2371 |#3|)) "failed") (-1 (-121) (-2 (|:| -3655 |#2|) (|:| -2371 |#3|))) |#1|)) (-15 -2525 ((-2 (|:| -3655 |#2|) (|:| -2371 |#3|)) |#1|)) (-15 -4345 (|#1| (-2 (|:| -3655 |#2|) (|:| -2371 |#3|)) |#1|)) (-15 -2146 ((-2 (|:| -3655 |#2|) (|:| -2371 |#3|)) |#1|)) (-15 -4035 ((-755) (-2 (|:| -3655 |#2|) (|:| -2371 |#3|)) |#1|)) (-15 -1981 ((-626 (-2 (|:| -3655 |#2|) (|:| -2371 |#3|))) |#1|)) (-15 -4035 ((-755) (-1 (-121) (-2 (|:| -3655 |#2|) (|:| -2371 |#3|))) |#1|)) (-15 -2865 ((-121) (-1 (-121) (-2 (|:| -3655 |#2|) (|:| -2371 |#3|))) |#1|)) (-15 -3656 ((-121) (-1 (-121) (-2 (|:| -3655 |#2|) (|:| -2371 |#3|))) |#1|)) (-15 -3778 (|#1| (-1 (-2 (|:| -3655 |#2|) (|:| -2371 |#3|)) (-2 (|:| -3655 |#2|) (|:| -2371 |#3|))) |#1|)) (-15 -2803 (|#1| (-1 (-2 (|:| -3655 |#2|) (|:| -2371 |#3|)) (-2 (|:| -3655 |#2|) (|:| -2371 |#3|))) |#1|))) -((-2601 (((-121) $ $) 18 (-2318 (|has| |#2| (-1082)) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082))))) (-4050 (($) 66) (($ (-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) 65)) (-2960 (((-1241) $ |#1| |#1|) 93 (|has| $ (-6 -4506)))) (-3909 (((-121) $ (-755)) 8)) (-2764 ((|#2| $ |#1| |#2|) 67)) (-3763 (($ (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) 42 (|has| $ (-6 -4505)))) (-3802 (($ (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) 52 (|has| $ (-6 -4505)))) (-2722 (((-3 |#2| "failed") |#1| $) 57)) (-4236 (($) 7 T CONST)) (-2868 (($ $) 55 (-12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)) (|has| $ (-6 -4505))))) (-3561 (($ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) 44 (|has| $ (-6 -4505))) (($ (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) 43 (|has| $ (-6 -4505))) (((-3 |#2| "failed") |#1| $) 58)) (-4310 (($ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) 54 (-12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)) (|has| $ (-6 -4505)))) (($ (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) 51 (|has| $ (-6 -4505)))) (-2342 (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) 53 (-12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)) (|has| $ (-6 -4505)))) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) 50 (|has| $ (-6 -4505))) (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) 49 (|has| $ (-6 -4505)))) (-1746 ((|#2| $ |#1| |#2|) 81 (|has| $ (-6 -4506)))) (-1361 ((|#2| $ |#1|) 82)) (-1981 (((-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) 30 (|has| $ (-6 -4505))) (((-626 |#2|) $) 73 (|has| $ (-6 -4505)))) (-2122 (((-121) $ (-755)) 9)) (-4099 ((|#1| $) 90 (|has| |#1| (-834)))) (-2130 (((-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) 29 (|has| $ (-6 -4505))) (((-626 |#2|) $) 74 (|has| $ (-6 -4505)))) (-2030 (((-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)) (|has| $ (-6 -4505)))) (((-121) |#2| $) 76 (-12 (|has| |#2| (-1082)) (|has| $ (-6 -4505))))) (-2767 ((|#1| $) 89 (|has| |#1| (-834)))) (-3778 (($ (-1 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) 34 (|has| $ (-6 -4506))) (($ (-1 |#2| |#2|) $) 69 (|has| $ (-6 -4506)))) (-2803 (($ (-1 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 68) (($ (-1 |#2| |#2| |#2|) $ $) 64)) (-3441 (((-121) $ (-755)) 10)) (-1291 (((-1135) $) 22 (-2318 (|has| |#2| (-1082)) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082))))) (-1377 (((-626 |#1|) $) 59)) (-3855 (((-121) |#1| $) 60)) (-2525 (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) 36)) (-4345 (($ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) 37)) (-1529 (((-626 |#1|) $) 87)) (-1310 (((-121) |#1| $) 86)) (-4353 (((-1100) $) 21 (-2318 (|has| |#2| (-1082)) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082))))) (-2824 ((|#2| $) 91 (|has| |#1| (-834)))) (-3786 (((-3 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) "failed") (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) 48)) (-3038 (($ $ |#2|) 92 (|has| $ (-6 -4506)))) (-2146 (((-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) 38)) (-2865 (((-121) (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) 32 (|has| $ (-6 -4505))) (((-121) (-1 (-121) |#2|) $) 71 (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))))) 26 (-12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (($ $ (-283 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) 25 (-12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (($ $ (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) 24 (-12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (($ $ (-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) (-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) 23 (-12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)))) (($ $ (-626 |#2|) (-626 |#2|)) 80 (-12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082)))) (($ $ |#2| |#2|) 79 (-12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082)))) (($ $ (-283 |#2|)) 78 (-12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082)))) (($ $ (-626 (-283 |#2|))) 77 (-12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082))))) (-2214 (((-121) $ $) 14)) (-1290 (((-121) |#2| $) 88 (-12 (|has| $ (-6 -4505)) (|has| |#2| (-1082))))) (-4460 (((-626 |#2|) $) 85)) (-4191 (((-121) $) 11)) (-3260 (($) 12)) (-2778 ((|#2| $ |#1|) 84) ((|#2| $ |#1| |#2|) 83)) (-3958 (($) 46) (($ (-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) 45)) (-4035 (((-755) (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) 31 (|has| $ (-6 -4505))) (((-755) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082)) (|has| $ (-6 -4505)))) (((-755) |#2| $) 75 (-12 (|has| |#2| (-1082)) (|has| $ (-6 -4505)))) (((-755) (-1 (-121) |#2|) $) 72 (|has| $ (-6 -4505)))) (-2813 (($ $) 13)) (-4255 (((-533) $) 56 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-601 (-533))))) (-4162 (($ (-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) 47)) (-2801 (((-842) $) 20 (-2318 (|has| |#2| (-1082)) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082))))) (-1354 (($ (-626 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) 39)) (-3656 (((-121) (-1 (-121) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) $) 33 (|has| $ (-6 -4505))) (((-121) (-1 (-121) |#2|) $) 70 (|has| $ (-6 -4505)))) (-1653 (((-121) $ $) 19 (-2318 (|has| |#2| (-1082)) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082))))) (-2271 (((-755) $) 6 (|has| $ (-6 -4505))))) -(((-1164 |#1| |#2|) (-1267) (-1082) (-1082)) (T -1164)) -((-2764 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1164 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-1082)))) (-4050 (*1 *1) (-12 (-4 *1 (-1164 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-1082)))) (-4050 (*1 *1 *2) (-12 (-5 *2 (-626 (-2 (|:| -3655 *3) (|:| -2371 *4)))) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *1 (-1164 *3 *4)))) (-2803 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1164 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082))))) -(-13 (-597 |t#1| |t#2|) (-593 |t#1| |t#2|) (-10 -8 (-15 -2764 (|t#2| $ |t#1| |t#2|)) (-15 -4050 ($)) (-15 -4050 ($ (-626 (-2 (|:| -3655 |t#1|) (|:| -2371 |t#2|))))) (-15 -2803 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) -(((-39) . T) ((-111 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) . T) ((-105) -2318 (|has| |#2| (-1082)) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082))) ((-600 (-842)) -2318 (|has| |#2| (-1082)) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082))) ((-152 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) . T) ((-601 (-533)) |has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-601 (-533))) ((-217 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) . T) ((-223 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) . T) ((-276 |#1| |#2|) . T) ((-278 |#1| |#2|) . T) ((-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) -12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082))) ((-298 |#2|) -12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082))) ((-492 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) . T) ((-492 |#2|) . T) ((-593 |#1| |#2|) . T) ((-515 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-2 (|:| -3655 |#1|) (|:| -2371 |#2|))) -12 (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-298 (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)))) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082))) ((-515 |#2| |#2|) -12 (|has| |#2| (-298 |#2|)) (|has| |#2| (-1082))) ((-597 |#1| |#2|) . T) ((-1082) -2318 (|has| |#2| (-1082)) (|has| (-2 (|:| -3655 |#1|) (|:| -2371 |#2|)) (-1082))) ((-1187) . T)) -((-1955 (((-121)) 24)) (-3711 (((-1241) (-1135)) 26)) (-4114 (((-121)) 36)) (-4469 (((-1241)) 34)) (-3807 (((-1241) (-1135) (-1135)) 25)) (-2552 (((-121)) 37)) (-4345 (((-1241) |#1| |#2|) 44)) (-1602 (((-1241)) 20)) (-3774 (((-3 |#2| "failed") |#1|) 42)) (-3196 (((-1241)) 35))) -(((-1165 |#1| |#2|) (-10 -7 (-15 -1602 ((-1241))) (-15 -3807 ((-1241) (-1135) (-1135))) (-15 -3711 ((-1241) (-1135))) (-15 -4469 ((-1241))) (-15 -3196 ((-1241))) (-15 -1955 ((-121))) (-15 -4114 ((-121))) (-15 -2552 ((-121))) (-15 -3774 ((-3 |#2| "failed") |#1|)) (-15 -4345 ((-1241) |#1| |#2|))) (-1082) (-1082)) (T -1165)) -((-4345 (*1 *2 *3 *4) (-12 (-5 *2 (-1241)) (-5 *1 (-1165 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082)))) (-3774 (*1 *2 *3) (|partial| -12 (-4 *2 (-1082)) (-5 *1 (-1165 *3 *2)) (-4 *3 (-1082)))) (-2552 (*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-1165 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082)))) (-4114 (*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-1165 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082)))) (-1955 (*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-1165 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082)))) (-3196 (*1 *2) (-12 (-5 *2 (-1241)) (-5 *1 (-1165 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082)))) (-4469 (*1 *2) (-12 (-5 *2 (-1241)) (-5 *1 (-1165 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082)))) (-3711 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1241)) (-5 *1 (-1165 *4 *5)) (-4 *4 (-1082)) (-4 *5 (-1082)))) (-3807 (*1 *2 *3 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1241)) (-5 *1 (-1165 *4 *5)) (-4 *4 (-1082)) (-4 *5 (-1082)))) (-1602 (*1 *2) (-12 (-5 *2 (-1241)) (-5 *1 (-1165 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082))))) -(-10 -7 (-15 -1602 ((-1241))) (-15 -3807 ((-1241) (-1135) (-1135))) (-15 -3711 ((-1241) (-1135))) (-15 -4469 ((-1241))) (-15 -3196 ((-1241))) (-15 -1955 ((-121))) (-15 -4114 ((-121))) (-15 -2552 ((-121))) (-15 -3774 ((-3 |#2| "failed") |#1|)) (-15 -4345 ((-1241) |#1| |#2|))) -((-3927 (((-1135) (-1135)) 18)) (-3137 (((-57) (-1135)) 21))) -(((-1166) (-10 -7 (-15 -3137 ((-57) (-1135))) (-15 -3927 ((-1135) (-1135))))) (T -1166)) -((-3927 (*1 *2 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-1166)))) (-3137 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-57)) (-5 *1 (-1166))))) -(-10 -7 (-15 -3137 ((-57) (-1135))) (-15 -3927 ((-1135) (-1135)))) -((-2801 (((-1168) |#1|) 11))) -(((-1167 |#1|) (-10 -7 (-15 -2801 ((-1168) |#1|))) (-1082)) (T -1167)) -((-2801 (*1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *1 (-1167 *3)) (-4 *3 (-1082))))) -(-10 -7 (-15 -2801 ((-1168) |#1|))) -((-2601 (((-121) $ $) NIL)) (-4093 (((-626 (-1135)) $) 33)) (-2814 (((-626 (-1135)) $ (-626 (-1135))) 36)) (-4270 (((-626 (-1135)) $ (-626 (-1135))) 35)) (-2564 (((-626 (-1135)) $ (-626 (-1135))) 37)) (-4029 (((-626 (-1135)) $) 32)) (-1721 (($) 22)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-1659 (((-626 (-1135)) $) 34)) (-4106 (((-1241) $ (-560)) 29) (((-1241) $) 30)) (-4255 (($ (-842) (-560)) 26) (($ (-842) (-560) (-842)) NIL)) (-2801 (((-842) $) 39) (($ (-842)) 24)) (-1653 (((-121) $ $) NIL))) -(((-1168) (-13 (-1082) (-10 -8 (-15 -2801 ($ (-842))) (-15 -4255 ($ (-842) (-560))) (-15 -4255 ($ (-842) (-560) (-842))) (-15 -4106 ((-1241) $ (-560))) (-15 -4106 ((-1241) $)) (-15 -1659 ((-626 (-1135)) $)) (-15 -4093 ((-626 (-1135)) $)) (-15 -1721 ($)) (-15 -4029 ((-626 (-1135)) $)) (-15 -2564 ((-626 (-1135)) $ (-626 (-1135)))) (-15 -2814 ((-626 (-1135)) $ (-626 (-1135)))) (-15 -4270 ((-626 (-1135)) $ (-626 (-1135))))))) (T -1168)) -((-2801 (*1 *1 *2) (-12 (-5 *2 (-842)) (-5 *1 (-1168)))) (-4255 (*1 *1 *2 *3) (-12 (-5 *2 (-842)) (-5 *3 (-560)) (-5 *1 (-1168)))) (-4255 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-842)) (-5 *3 (-560)) (-5 *1 (-1168)))) (-4106 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-5 *2 (-1241)) (-5 *1 (-1168)))) (-4106 (*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-1168)))) (-1659 (*1 *2 *1) (-12 (-5 *2 (-626 (-1135))) (-5 *1 (-1168)))) (-4093 (*1 *2 *1) (-12 (-5 *2 (-626 (-1135))) (-5 *1 (-1168)))) (-1721 (*1 *1) (-5 *1 (-1168))) (-4029 (*1 *2 *1) (-12 (-5 *2 (-626 (-1135))) (-5 *1 (-1168)))) (-2564 (*1 *2 *1 *2) (-12 (-5 *2 (-626 (-1135))) (-5 *1 (-1168)))) (-2814 (*1 *2 *1 *2) (-12 (-5 *2 (-626 (-1135))) (-5 *1 (-1168)))) (-4270 (*1 *2 *1 *2) (-12 (-5 *2 (-626 (-1135))) (-5 *1 (-1168))))) -(-13 (-1082) (-10 -8 (-15 -2801 ($ (-842))) (-15 -4255 ($ (-842) (-560))) (-15 -4255 ($ (-842) (-560) (-842))) (-15 -4106 ((-1241) $ (-560))) (-15 -4106 ((-1241) $)) (-15 -1659 ((-626 (-1135)) $)) (-15 -4093 ((-626 (-1135)) $)) (-15 -1721 ($)) (-15 -4029 ((-626 (-1135)) $)) (-15 -2564 ((-626 (-1135)) $ (-626 (-1135)))) (-15 -2814 ((-626 (-1135)) $ (-626 (-1135)))) (-15 -4270 ((-626 (-1135)) $ (-626 (-1135)))))) -((-2601 (((-121) $ $) NIL)) (-4395 (((-1135) $ (-1135)) 15) (((-1135) $) 14)) (-1880 (((-1135) $ (-1135)) 13)) (-2998 (($ $ (-1135)) NIL)) (-1677 (((-3 (-1135) "failed") $) 11)) (-3577 (((-1135) $) 8)) (-3793 (((-3 (-1135) "failed") $) 12)) (-1464 (((-1135) $) 9)) (-3997 (($ (-384)) NIL) (($ (-384) (-1135)) NIL)) (-1337 (((-384) $) NIL)) (-1291 (((-1135) $) NIL)) (-1661 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-1931 (((-1241) $) NIL)) (-4464 (((-121) $) 17)) (-2801 (((-842) $) NIL)) (-2074 (($ $) NIL)) (-1653 (((-121) $ $) NIL))) -(((-1169) (-13 (-360 (-384) (-1135)) (-10 -8 (-15 -4395 ((-1135) $ (-1135))) (-15 -4395 ((-1135) $)) (-15 -3577 ((-1135) $)) (-15 -1677 ((-3 (-1135) "failed") $)) (-15 -3793 ((-3 (-1135) "failed") $)) (-15 -4464 ((-121) $))))) (T -1169)) -((-4395 (*1 *2 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-1169)))) (-4395 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1169)))) (-3577 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1169)))) (-1677 (*1 *2 *1) (|partial| -12 (-5 *2 (-1135)) (-5 *1 (-1169)))) (-3793 (*1 *2 *1) (|partial| -12 (-5 *2 (-1135)) (-5 *1 (-1169)))) (-4464 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1169))))) -(-13 (-360 (-384) (-1135)) (-10 -8 (-15 -4395 ((-1135) $ (-1135))) (-15 -4395 ((-1135) $)) (-15 -3577 ((-1135) $)) (-15 -1677 ((-3 (-1135) "failed") $)) (-15 -3793 ((-3 (-1135) "failed") $)) (-15 -4464 ((-121) $)))) -((-4235 (((-3 (-560) "failed") |#1|) 19)) (-1699 (((-3 (-560) "failed") |#1|) 13)) (-3183 (((-560) (-1135)) 28))) -(((-1170 |#1|) (-10 -7 (-15 -4235 ((-3 (-560) "failed") |#1|)) (-15 -1699 ((-3 (-560) "failed") |#1|)) (-15 -3183 ((-560) (-1135)))) (-1039)) (T -1170)) -((-3183 (*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-560)) (-5 *1 (-1170 *4)) (-4 *4 (-1039)))) (-1699 (*1 *2 *3) (|partial| -12 (-5 *2 (-560)) (-5 *1 (-1170 *3)) (-4 *3 (-1039)))) (-4235 (*1 *2 *3) (|partial| -12 (-5 *2 (-560)) (-5 *1 (-1170 *3)) (-4 *3 (-1039))))) -(-10 -7 (-15 -4235 ((-3 (-560) "failed") |#1|)) (-15 -1699 ((-3 (-560) "failed") |#1|)) (-15 -3183 ((-560) (-1135)))) -((-3049 (((-1113 (-213))) 8))) -(((-1171) (-10 -7 (-15 -3049 ((-1113 (-213)))))) (T -1171)) -((-3049 (*1 *2) (-12 (-5 *2 (-1113 (-213))) (-5 *1 (-1171))))) -(-10 -7 (-15 -3049 ((-1113 (-213))))) -((-2474 (($) 11)) (-2598 (($ $) 35)) (-2590 (($ $) 33)) (-2532 (($ $) 25)) (-2608 (($ $) 17)) (-3689 (($ $) 15)) (-2604 (($ $) 19)) (-2545 (($ $) 30)) (-2594 (($ $) 34)) (-2536 (($ $) 29))) -(((-1172 |#1|) (-10 -8 (-15 -2474 (|#1|)) (-15 -2598 (|#1| |#1|)) (-15 -2590 (|#1| |#1|)) (-15 -2608 (|#1| |#1|)) (-15 -3689 (|#1| |#1|)) (-15 -2604 (|#1| |#1|)) (-15 -2594 (|#1| |#1|)) (-15 -2532 (|#1| |#1|)) (-15 -2545 (|#1| |#1|)) (-15 -2536 (|#1| |#1|))) (-1173)) (T -1172)) -NIL -(-10 -8 (-15 -2474 (|#1|)) (-15 -2598 (|#1| |#1|)) (-15 -2590 (|#1| |#1|)) (-15 -2608 (|#1| |#1|)) (-15 -3689 (|#1| |#1|)) (-15 -2604 (|#1| |#1|)) (-15 -2594 (|#1| |#1|)) (-15 -2532 (|#1| |#1|)) (-15 -2545 (|#1| |#1|)) (-15 -2536 (|#1| |#1|))) -((-2570 (($ $) 26)) (-2514 (($ $) 11)) (-2561 (($ $) 27)) (-2790 (($ $) 10)) (-2579 (($ $) 28)) (-2523 (($ $) 9)) (-2474 (($) 16)) (-4399 (($ $) 19)) (-2469 (($ $) 18)) (-2585 (($ $) 29)) (-2528 (($ $) 8)) (-2575 (($ $) 30)) (-2519 (($ $) 7)) (-2566 (($ $) 31)) (-2795 (($ $) 6)) (-2598 (($ $) 20)) (-2541 (($ $) 32)) (-2590 (($ $) 21)) (-2532 (($ $) 33)) (-2608 (($ $) 22)) (-2549 (($ $) 34)) (-3689 (($ $) 23)) (-2554 (($ $) 35)) (-2604 (($ $) 24)) (-2545 (($ $) 36)) (-2594 (($ $) 25)) (-2536 (($ $) 37)) (** (($ $ $) 17))) -(((-1173) (-1267)) (T -1173)) -((-2474 (*1 *1) (-4 *1 (-1173)))) -(-13 (-1176) (-98) (-494) (-40) (-274) (-10 -8 (-15 -2474 ($)))) -(((-40) . T) ((-98) . T) ((-274) . T) ((-494) . T) ((-1176) . T)) -((-2601 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-2981 ((|#1| $) 17)) (-2902 (($ |#1| (-626 $)) 23) (($ (-626 |#1|)) 27) (($ |#1|) 25)) (-3909 (((-121) $ (-755)) 46)) (-3119 ((|#1| $ |#1|) 14 (|has| $ (-6 -4506)))) (-2764 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4506)))) (-4043 (($ $ (-626 $)) 13 (|has| $ (-6 -4506)))) (-4236 (($) NIL T CONST)) (-1981 (((-626 |#1|) $) 50 (|has| $ (-6 -4505)))) (-3971 (((-626 $) $) 41)) (-2420 (((-121) $ $) 32 (|has| |#1| (-1082)))) (-2122 (((-121) $ (-755)) 39)) (-2130 (((-626 |#1|) $) 51 (|has| $ (-6 -4505)))) (-2030 (((-121) |#1| $) 49 (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-3778 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#1| |#1|) $) 22)) (-3441 (((-121) $ (-755)) 38)) (-2173 (((-626 |#1|) $) 36)) (-3992 (((-121) $) 35)) (-1291 (((-1135) $) NIL (|has| |#1| (-1082)))) (-4353 (((-1100) $) NIL (|has| |#1| (-1082)))) (-2865 (((-121) (-1 (-121) |#1|) $) 48 (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#1|))) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-283 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-626 |#1|) (-626 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))))) (-2214 (((-121) $ $) 73)) (-4191 (((-121) $) 9)) (-3260 (($) 10)) (-2778 ((|#1| $ "value") NIL)) (-1435 (((-560) $ $) 31)) (-3212 (((-626 $) $) 57)) (-2610 (((-121) $ $) 75)) (-2198 (((-626 $) $) 70)) (-1583 (($ $) 71)) (-3316 (((-121) $) 54)) (-4035 (((-755) (-1 (-121) |#1|) $) 20 (|has| $ (-6 -4505))) (((-755) |#1| $) 16 (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-2813 (($ $) 56)) (-2801 (((-842) $) 59 (|has| |#1| (-1082)))) (-2853 (((-626 $) $) 12)) (-3761 (((-121) $ $) 29 (|has| |#1| (-1082)))) (-3656 (((-121) (-1 (-121) |#1|) $) 47 (|has| $ (-6 -4505)))) (-1653 (((-121) $ $) 28 (|has| |#1| (-1082)))) (-2271 (((-755) $) 37 (|has| $ (-6 -4505))))) -(((-1174 |#1|) (-13 (-1002 |#1|) (-10 -8 (-6 -4505) (-6 -4506) (-15 -2902 ($ |#1| (-626 $))) (-15 -2902 ($ (-626 |#1|))) (-15 -2902 ($ |#1|)) (-15 -3316 ((-121) $)) (-15 -1583 ($ $)) (-15 -2198 ((-626 $) $)) (-15 -2610 ((-121) $ $)) (-15 -3212 ((-626 $) $)))) (-1082)) (T -1174)) -((-3316 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1174 *3)) (-4 *3 (-1082)))) (-2902 (*1 *1 *2 *3) (-12 (-5 *3 (-626 (-1174 *2))) (-5 *1 (-1174 *2)) (-4 *2 (-1082)))) (-2902 (*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-1082)) (-5 *1 (-1174 *3)))) (-2902 (*1 *1 *2) (-12 (-5 *1 (-1174 *2)) (-4 *2 (-1082)))) (-1583 (*1 *1 *1) (-12 (-5 *1 (-1174 *2)) (-4 *2 (-1082)))) (-2198 (*1 *2 *1) (-12 (-5 *2 (-626 (-1174 *3))) (-5 *1 (-1174 *3)) (-4 *3 (-1082)))) (-2610 (*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1174 *3)) (-4 *3 (-1082)))) (-3212 (*1 *2 *1) (-12 (-5 *2 (-626 (-1174 *3))) (-5 *1 (-1174 *3)) (-4 *3 (-1082))))) -(-13 (-1002 |#1|) (-10 -8 (-6 -4505) (-6 -4506) (-15 -2902 ($ |#1| (-626 $))) (-15 -2902 ($ (-626 |#1|))) (-15 -2902 ($ |#1|)) (-15 -3316 ((-121) $)) (-15 -1583 ($ $)) (-15 -2198 ((-626 $) $)) (-15 -2610 ((-121) $ $)) (-15 -3212 ((-626 $) $)))) -((-2514 (($ $) 15)) (-2523 (($ $) 12)) (-2528 (($ $) 10)) (-2519 (($ $) 17))) -(((-1175 |#1|) (-10 -8 (-15 -2519 (|#1| |#1|)) (-15 -2528 (|#1| |#1|)) (-15 -2523 (|#1| |#1|)) (-15 -2514 (|#1| |#1|))) (-1176)) (T -1175)) -NIL -(-10 -8 (-15 -2519 (|#1| |#1|)) (-15 -2528 (|#1| |#1|)) (-15 -2523 (|#1| |#1|)) (-15 -2514 (|#1| |#1|))) -((-2514 (($ $) 11)) (-2790 (($ $) 10)) (-2523 (($ $) 9)) (-2528 (($ $) 8)) (-2519 (($ $) 7)) (-2795 (($ $) 6))) -(((-1176) (-1267)) (T -1176)) -((-2514 (*1 *1 *1) (-4 *1 (-1176))) (-2790 (*1 *1 *1) (-4 *1 (-1176))) (-2523 (*1 *1 *1) (-4 *1 (-1176))) (-2528 (*1 *1 *1) (-4 *1 (-1176))) (-2519 (*1 *1 *1) (-4 *1 (-1176))) (-2795 (*1 *1 *1) (-4 *1 (-1176)))) -(-13 (-10 -8 (-15 -2795 ($ $)) (-15 -2519 ($ $)) (-15 -2528 ($ $)) (-15 -2523 ($ $)) (-15 -2790 ($ $)) (-15 -2514 ($ $)))) -((-1338 ((|#2| |#2|) 85)) (-4442 (((-121) |#2|) 25)) (-1611 ((|#2| |#2|) 29)) (-1618 ((|#2| |#2|) 31)) (-2016 ((|#2| |#2| (-1153)) 79) ((|#2| |#2|) 80)) (-3893 (((-167 |#2|) |#2|) 27)) (-4328 ((|#2| |#2| (-1153)) 81) ((|#2| |#2|) 82))) -(((-1177 |#1| |#2|) (-10 -7 (-15 -2016 (|#2| |#2|)) (-15 -2016 (|#2| |#2| (-1153))) (-15 -4328 (|#2| |#2|)) (-15 -4328 (|#2| |#2| (-1153))) (-15 -1338 (|#2| |#2|)) (-15 -1611 (|#2| |#2|)) (-15 -1618 (|#2| |#2|)) (-15 -4442 ((-121) |#2|)) (-15 -3893 ((-167 |#2|) |#2|))) (-13 (-447) (-834) (-1029 (-560)) (-622 (-560))) (-13 (-27) (-1173) (-426 |#1|))) (T -1177)) -((-3893 (*1 *2 *3) (-12 (-4 *4 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-167 *3)) (-5 *1 (-1177 *4 *3)) (-4 *3 (-13 (-27) (-1173) (-426 *4))))) (-4442 (*1 *2 *3) (-12 (-4 *4 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-121)) (-5 *1 (-1177 *4 *3)) (-4 *3 (-13 (-27) (-1173) (-426 *4))))) (-1618 (*1 *2 *2) (-12 (-4 *3 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-27) (-1173) (-426 *3))))) (-1611 (*1 *2 *2) (-12 (-4 *3 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-27) (-1173) (-426 *3))))) (-1338 (*1 *2 *2) (-12 (-4 *3 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-27) (-1173) (-426 *3))))) (-4328 (*1 *2 *2 *3) (-12 (-5 *3 (-1153)) (-4 *4 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *1 (-1177 *4 *2)) (-4 *2 (-13 (-27) (-1173) (-426 *4))))) (-4328 (*1 *2 *2) (-12 (-4 *3 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-27) (-1173) (-426 *3))))) (-2016 (*1 *2 *2 *3) (-12 (-5 *3 (-1153)) (-4 *4 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *1 (-1177 *4 *2)) (-4 *2 (-13 (-27) (-1173) (-426 *4))))) (-2016 (*1 *2 *2) (-12 (-4 *3 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-27) (-1173) (-426 *3)))))) -(-10 -7 (-15 -2016 (|#2| |#2|)) (-15 -2016 (|#2| |#2| (-1153))) (-15 -4328 (|#2| |#2|)) (-15 -4328 (|#2| |#2| (-1153))) (-15 -1338 (|#2| |#2|)) (-15 -1611 (|#2| |#2|)) (-15 -1618 (|#2| |#2|)) (-15 -4442 ((-121) |#2|)) (-15 -3893 ((-167 |#2|) |#2|))) -((-3056 ((|#4| |#4| |#1|) 27)) (-1709 ((|#4| |#4| |#1|) 28))) -(((-1178 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3056 (|#4| |#4| |#1|)) (-15 -1709 (|#4| |#4| |#1|))) (-550) (-369 |#1|) (-369 |#1|) (-669 |#1| |#2| |#3|)) (T -1178)) -((-1709 (*1 *2 *2 *3) (-12 (-4 *3 (-550)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)) (-5 *1 (-1178 *3 *4 *5 *2)) (-4 *2 (-669 *3 *4 *5)))) (-3056 (*1 *2 *2 *3) (-12 (-4 *3 (-550)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)) (-5 *1 (-1178 *3 *4 *5 *2)) (-4 *2 (-669 *3 *4 *5))))) -(-10 -7 (-15 -3056 (|#4| |#4| |#1|)) (-15 -1709 (|#4| |#4| |#1|))) -((-2573 ((|#2| |#2|) 132)) (-1925 ((|#2| |#2|) 129)) (-1890 ((|#2| |#2|) 120)) (-1926 ((|#2| |#2|) 117)) (-4009 ((|#2| |#2|) 125)) (-3424 ((|#2| |#2|) 113)) (-3345 ((|#2| |#2|) 42)) (-2811 ((|#2| |#2|) 93)) (-2141 ((|#2| |#2|) 73)) (-2038 ((|#2| |#2|) 127)) (-3673 ((|#2| |#2|) 115)) (-1853 ((|#2| |#2|) 137)) (-1438 ((|#2| |#2|) 135)) (-4036 ((|#2| |#2|) 136)) (-2424 ((|#2| |#2|) 134)) (-3846 ((|#2| |#2|) 146)) (-4335 ((|#2| |#2|) 30 (-12 (|has| |#2| (-601 (-879 |#1|))) (|has| |#2| (-873 |#1|)) (|has| |#1| (-601 (-879 |#1|))) (|has| |#1| (-873 |#1|))))) (-3643 ((|#2| |#2|) 74)) (-2578 ((|#2| |#2|) 138)) (-3780 ((|#2| |#2|) 139)) (-2045 ((|#2| |#2|) 126)) (-3364 ((|#2| |#2|) 114)) (-2178 ((|#2| |#2|) 133)) (-2775 ((|#2| |#2|) 131)) (-4197 ((|#2| |#2|) 121)) (-3129 ((|#2| |#2|) 119)) (-1453 ((|#2| |#2|) 123)) (-2419 ((|#2| |#2|) 111))) -(((-1179 |#1| |#2|) (-10 -7 (-15 -3780 (|#2| |#2|)) (-15 -2141 (|#2| |#2|)) (-15 -3846 (|#2| |#2|)) (-15 -2811 (|#2| |#2|)) (-15 -3345 (|#2| |#2|)) (-15 -3643 (|#2| |#2|)) (-15 -2578 (|#2| |#2|)) (-15 -2419 (|#2| |#2|)) (-15 -1453 (|#2| |#2|)) (-15 -4197 (|#2| |#2|)) (-15 -2178 (|#2| |#2|)) (-15 -3364 (|#2| |#2|)) (-15 -2045 (|#2| |#2|)) (-15 -3673 (|#2| |#2|)) (-15 -2038 (|#2| |#2|)) (-15 -3424 (|#2| |#2|)) (-15 -4009 (|#2| |#2|)) (-15 -1890 (|#2| |#2|)) (-15 -2573 (|#2| |#2|)) (-15 -1926 (|#2| |#2|)) (-15 -1925 (|#2| |#2|)) (-15 -3129 (|#2| |#2|)) (-15 -2775 (|#2| |#2|)) (-15 -2424 (|#2| |#2|)) (-15 -1438 (|#2| |#2|)) (-15 -4036 (|#2| |#2|)) (-15 -1853 (|#2| |#2|)) (IF (|has| |#1| (-873 |#1|)) (IF (|has| |#1| (-601 (-879 |#1|))) (IF (|has| |#2| (-601 (-879 |#1|))) (IF (|has| |#2| (-873 |#1|)) (-15 -4335 (|#2| |#2|)) |noBranch|) |noBranch|) |noBranch|) |noBranch|)) (-13 (-834) (-447)) (-13 (-426 |#1|) (-1173))) (T -1179)) -((-4335 (*1 *2 *2) (-12 (-4 *3 (-601 (-879 *3))) (-4 *3 (-873 *3)) (-4 *3 (-13 (-834) (-447))) (-5 *1 (-1179 *3 *2)) (-4 *2 (-601 (-879 *3))) (-4 *2 (-873 *3)) (-4 *2 (-13 (-426 *3) (-1173))))) (-1853 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-447))) (-5 *1 (-1179 *3 *2)) (-4 *2 (-13 (-426 *3) (-1173))))) (-4036 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-447))) (-5 *1 (-1179 *3 *2)) (-4 *2 (-13 (-426 *3) (-1173))))) (-1438 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-447))) (-5 *1 (-1179 *3 *2)) (-4 *2 (-13 (-426 *3) (-1173))))) (-2424 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-447))) (-5 *1 (-1179 *3 *2)) (-4 *2 (-13 (-426 *3) (-1173))))) (-2775 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-447))) (-5 *1 (-1179 *3 *2)) (-4 *2 (-13 (-426 *3) (-1173))))) (-3129 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-447))) (-5 *1 (-1179 *3 *2)) (-4 *2 (-13 (-426 *3) (-1173))))) (-1925 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-447))) (-5 *1 (-1179 *3 *2)) (-4 *2 (-13 (-426 *3) (-1173))))) (-1926 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-447))) (-5 *1 (-1179 *3 *2)) (-4 *2 (-13 (-426 *3) (-1173))))) (-2573 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-447))) (-5 *1 (-1179 *3 *2)) (-4 *2 (-13 (-426 *3) (-1173))))) (-1890 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-447))) (-5 *1 (-1179 *3 *2)) (-4 *2 (-13 (-426 *3) (-1173))))) (-4009 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-447))) (-5 *1 (-1179 *3 *2)) (-4 *2 (-13 (-426 *3) (-1173))))) (-3424 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-447))) (-5 *1 (-1179 *3 *2)) (-4 *2 (-13 (-426 *3) (-1173))))) (-2038 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-447))) (-5 *1 (-1179 *3 *2)) (-4 *2 (-13 (-426 *3) (-1173))))) (-3673 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-447))) (-5 *1 (-1179 *3 *2)) (-4 *2 (-13 (-426 *3) (-1173))))) (-2045 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-447))) (-5 *1 (-1179 *3 *2)) (-4 *2 (-13 (-426 *3) (-1173))))) (-3364 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-447))) (-5 *1 (-1179 *3 *2)) (-4 *2 (-13 (-426 *3) (-1173))))) (-2178 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-447))) (-5 *1 (-1179 *3 *2)) (-4 *2 (-13 (-426 *3) (-1173))))) (-4197 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-447))) (-5 *1 (-1179 *3 *2)) (-4 *2 (-13 (-426 *3) (-1173))))) (-1453 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-447))) (-5 *1 (-1179 *3 *2)) (-4 *2 (-13 (-426 *3) (-1173))))) (-2419 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-447))) (-5 *1 (-1179 *3 *2)) (-4 *2 (-13 (-426 *3) (-1173))))) (-2578 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-447))) (-5 *1 (-1179 *3 *2)) (-4 *2 (-13 (-426 *3) (-1173))))) (-3643 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-447))) (-5 *1 (-1179 *3 *2)) (-4 *2 (-13 (-426 *3) (-1173))))) (-3345 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-447))) (-5 *1 (-1179 *3 *2)) (-4 *2 (-13 (-426 *3) (-1173))))) (-2811 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-447))) (-5 *1 (-1179 *3 *2)) (-4 *2 (-13 (-426 *3) (-1173))))) (-3846 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-447))) (-5 *1 (-1179 *3 *2)) (-4 *2 (-13 (-426 *3) (-1173))))) (-2141 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-447))) (-5 *1 (-1179 *3 *2)) (-4 *2 (-13 (-426 *3) (-1173))))) (-3780 (*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-447))) (-5 *1 (-1179 *3 *2)) (-4 *2 (-13 (-426 *3) (-1173)))))) -(-10 -7 (-15 -3780 (|#2| |#2|)) (-15 -2141 (|#2| |#2|)) (-15 -3846 (|#2| |#2|)) (-15 -2811 (|#2| |#2|)) (-15 -3345 (|#2| |#2|)) (-15 -3643 (|#2| |#2|)) (-15 -2578 (|#2| |#2|)) (-15 -2419 (|#2| |#2|)) (-15 -1453 (|#2| |#2|)) (-15 -4197 (|#2| |#2|)) (-15 -2178 (|#2| |#2|)) (-15 -3364 (|#2| |#2|)) (-15 -2045 (|#2| |#2|)) (-15 -3673 (|#2| |#2|)) (-15 -2038 (|#2| |#2|)) (-15 -3424 (|#2| |#2|)) (-15 -4009 (|#2| |#2|)) (-15 -1890 (|#2| |#2|)) (-15 -2573 (|#2| |#2|)) (-15 -1926 (|#2| |#2|)) (-15 -1925 (|#2| |#2|)) (-15 -3129 (|#2| |#2|)) (-15 -2775 (|#2| |#2|)) (-15 -2424 (|#2| |#2|)) (-15 -1438 (|#2| |#2|)) (-15 -4036 (|#2| |#2|)) (-15 -1853 (|#2| |#2|)) (IF (|has| |#1| (-873 |#1|)) (IF (|has| |#1| (-601 (-879 |#1|))) (IF (|has| |#2| (-601 (-879 |#1|))) (IF (|has| |#2| (-873 |#1|)) (-15 -4335 (|#2| |#2|)) |noBranch|) |noBranch|) |noBranch|) |noBranch|)) -((-2898 (((-121) |#5| $) 59) (((-121) $) 101)) (-3177 ((|#5| |#5| $) 74)) (-3802 (($ (-1 (-121) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 118)) (-4339 (((-626 |#5|) (-626 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-121) |#5| |#5|)) 72)) (-1473 (((-3 $ "failed") (-626 |#5|)) 125)) (-2877 (((-3 $ "failed") $) 111)) (-2134 ((|#5| |#5| $) 93)) (-1590 (((-121) |#5| $ (-1 (-121) |#5| |#5|)) 30)) (-4048 ((|#5| |#5| $) 97)) (-2342 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-121) |#5| |#5|)) 68)) (-3035 (((-2 (|:| -4071 (-626 |#5|)) (|:| -3997 (-626 |#5|))) $) 54)) (-2864 (((-121) |#5| $) 57) (((-121) $) 102)) (-2819 ((|#4| $) 107)) (-4139 (((-3 |#5| "failed") $) 109)) (-3840 (((-626 |#5|) $) 48)) (-3098 (((-121) |#5| $) 66) (((-121) $) 106)) (-2054 ((|#5| |#5| $) 80)) (-3564 (((-121) $ $) 26)) (-1584 (((-121) |#5| $) 62) (((-121) $) 104)) (-4047 ((|#5| |#5| $) 77)) (-2824 (((-3 |#5| "failed") $) 108)) (-3292 (($ $ |#5|) 126)) (-3662 (((-755) $) 51)) (-4162 (($ (-626 |#5|)) 123)) (-3369 (($ $ |#4|) 121)) (-2673 (($ $ |#4|) 120)) (-3746 (($ $) 119)) (-2801 (((-842) $) NIL) (((-626 |#5|) $) 112)) (-4277 (((-755) $) 129)) (-3133 (((-3 (-2 (|:| |bas| $) (|:| -4224 (-626 |#5|))) "failed") (-626 |#5|) (-1 (-121) |#5| |#5|)) 42) (((-3 (-2 (|:| |bas| $) (|:| -4224 (-626 |#5|))) "failed") (-626 |#5|) (-1 (-121) |#5|) (-1 (-121) |#5| |#5|)) 44)) (-2967 (((-121) $ (-1 (-121) |#5| (-626 |#5|))) 99)) (-3284 (((-626 |#4|) $) 114)) (-1535 (((-121) |#4| $) 117)) (-1653 (((-121) $ $) 19))) -(((-1180 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4277 ((-755) |#1|)) (-15 -3292 (|#1| |#1| |#5|)) (-15 -3802 ((-3 |#5| "failed") |#1| |#4|)) (-15 -1535 ((-121) |#4| |#1|)) (-15 -3284 ((-626 |#4|) |#1|)) (-15 -2877 ((-3 |#1| "failed") |#1|)) (-15 -4139 ((-3 |#5| "failed") |#1|)) (-15 -2824 ((-3 |#5| "failed") |#1|)) (-15 -4048 (|#5| |#5| |#1|)) (-15 -3746 (|#1| |#1|)) (-15 -2134 (|#5| |#5| |#1|)) (-15 -2054 (|#5| |#5| |#1|)) (-15 -4047 (|#5| |#5| |#1|)) (-15 -3177 (|#5| |#5| |#1|)) (-15 -4339 ((-626 |#5|) (-626 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-121) |#5| |#5|))) (-15 -2342 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-121) |#5| |#5|))) (-15 -3098 ((-121) |#1|)) (-15 -1584 ((-121) |#1|)) (-15 -2898 ((-121) |#1|)) (-15 -2967 ((-121) |#1| (-1 (-121) |#5| (-626 |#5|)))) (-15 -3098 ((-121) |#5| |#1|)) (-15 -1584 ((-121) |#5| |#1|)) (-15 -2898 ((-121) |#5| |#1|)) (-15 -1590 ((-121) |#5| |#1| (-1 (-121) |#5| |#5|))) (-15 -2864 ((-121) |#1|)) (-15 -2864 ((-121) |#5| |#1|)) (-15 -3035 ((-2 (|:| -4071 (-626 |#5|)) (|:| -3997 (-626 |#5|))) |#1|)) (-15 -3662 ((-755) |#1|)) (-15 -3840 ((-626 |#5|) |#1|)) (-15 -3133 ((-3 (-2 (|:| |bas| |#1|) (|:| -4224 (-626 |#5|))) "failed") (-626 |#5|) (-1 (-121) |#5|) (-1 (-121) |#5| |#5|))) (-15 -3133 ((-3 (-2 (|:| |bas| |#1|) (|:| -4224 (-626 |#5|))) "failed") (-626 |#5|) (-1 (-121) |#5| |#5|))) (-15 -3564 ((-121) |#1| |#1|)) (-15 -3369 (|#1| |#1| |#4|)) (-15 -2673 (|#1| |#1| |#4|)) (-15 -2819 (|#4| |#1|)) (-15 -1473 ((-3 |#1| "failed") (-626 |#5|))) (-15 -2801 ((-626 |#5|) |#1|)) (-15 -4162 (|#1| (-626 |#5|))) (-15 -2342 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2342 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3802 (|#1| (-1 (-121) |#5|) |#1|)) (-15 -2342 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2801 ((-842) |#1|)) (-15 -1653 ((-121) |#1| |#1|))) (-1181 |#2| |#3| |#4| |#5|) (-550) (-780) (-834) (-1053 |#2| |#3| |#4|)) (T -1180)) -NIL -(-10 -8 (-15 -4277 ((-755) |#1|)) (-15 -3292 (|#1| |#1| |#5|)) (-15 -3802 ((-3 |#5| "failed") |#1| |#4|)) (-15 -1535 ((-121) |#4| |#1|)) (-15 -3284 ((-626 |#4|) |#1|)) (-15 -2877 ((-3 |#1| "failed") |#1|)) (-15 -4139 ((-3 |#5| "failed") |#1|)) (-15 -2824 ((-3 |#5| "failed") |#1|)) (-15 -4048 (|#5| |#5| |#1|)) (-15 -3746 (|#1| |#1|)) (-15 -2134 (|#5| |#5| |#1|)) (-15 -2054 (|#5| |#5| |#1|)) (-15 -4047 (|#5| |#5| |#1|)) (-15 -3177 (|#5| |#5| |#1|)) (-15 -4339 ((-626 |#5|) (-626 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-121) |#5| |#5|))) (-15 -2342 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-121) |#5| |#5|))) (-15 -3098 ((-121) |#1|)) (-15 -1584 ((-121) |#1|)) (-15 -2898 ((-121) |#1|)) (-15 -2967 ((-121) |#1| (-1 (-121) |#5| (-626 |#5|)))) (-15 -3098 ((-121) |#5| |#1|)) (-15 -1584 ((-121) |#5| |#1|)) (-15 -2898 ((-121) |#5| |#1|)) (-15 -1590 ((-121) |#5| |#1| (-1 (-121) |#5| |#5|))) (-15 -2864 ((-121) |#1|)) (-15 -2864 ((-121) |#5| |#1|)) (-15 -3035 ((-2 (|:| -4071 (-626 |#5|)) (|:| -3997 (-626 |#5|))) |#1|)) (-15 -3662 ((-755) |#1|)) (-15 -3840 ((-626 |#5|) |#1|)) (-15 -3133 ((-3 (-2 (|:| |bas| |#1|) (|:| -4224 (-626 |#5|))) "failed") (-626 |#5|) (-1 (-121) |#5|) (-1 (-121) |#5| |#5|))) (-15 -3133 ((-3 (-2 (|:| |bas| |#1|) (|:| -4224 (-626 |#5|))) "failed") (-626 |#5|) (-1 (-121) |#5| |#5|))) (-15 -3564 ((-121) |#1| |#1|)) (-15 -3369 (|#1| |#1| |#4|)) (-15 -2673 (|#1| |#1| |#4|)) (-15 -2819 (|#4| |#1|)) (-15 -1473 ((-3 |#1| "failed") (-626 |#5|))) (-15 -2801 ((-626 |#5|) |#1|)) (-15 -4162 (|#1| (-626 |#5|))) (-15 -2342 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2342 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3802 (|#1| (-1 (-121) |#5|) |#1|)) (-15 -2342 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2801 ((-842) |#1|)) (-15 -1653 ((-121) |#1| |#1|))) -((-2601 (((-121) $ $) 7)) (-3975 (((-626 (-2 (|:| -4071 $) (|:| -3997 (-626 |#4|)))) (-626 |#4|)) 78)) (-3332 (((-626 $) (-626 |#4|)) 79)) (-1654 (((-626 |#3|) $) 32)) (-1385 (((-121) $) 25)) (-3617 (((-121) $) 16 (|has| |#1| (-550)))) (-2898 (((-121) |#4| $) 94) (((-121) $) 90)) (-3177 ((|#4| |#4| $) 85)) (-3743 (((-2 (|:| |under| $) (|:| -2150 $) (|:| |upper| $)) $ |#3|) 26)) (-3909 (((-121) $ (-755)) 43)) (-3802 (($ (-1 (-121) |#4|) $) 64 (|has| $ (-6 -4505))) (((-3 |#4| "failed") $ |#3|) 72)) (-4236 (($) 44 T CONST)) (-2226 (((-121) $) 21 (|has| |#1| (-550)))) (-3225 (((-121) $ $) 23 (|has| |#1| (-550)))) (-4195 (((-121) $ $) 22 (|has| |#1| (-550)))) (-1501 (((-121) $) 24 (|has| |#1| (-550)))) (-4339 (((-626 |#4|) (-626 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-121) |#4| |#4|)) 86)) (-4318 (((-626 |#4|) (-626 |#4|) $) 17 (|has| |#1| (-550)))) (-3979 (((-626 |#4|) (-626 |#4|) $) 18 (|has| |#1| (-550)))) (-1473 (((-3 $ "failed") (-626 |#4|)) 35)) (-3001 (($ (-626 |#4|)) 34)) (-2877 (((-3 $ "failed") $) 75)) (-2134 ((|#4| |#4| $) 82)) (-2868 (($ $) 67 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4505))))) (-4310 (($ |#4| $) 66 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4505)))) (($ (-1 (-121) |#4|) $) 63 (|has| $ (-6 -4505)))) (-4397 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 19 (|has| |#1| (-550)))) (-1590 (((-121) |#4| $ (-1 (-121) |#4| |#4|)) 95)) (-4048 ((|#4| |#4| $) 80)) (-2342 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 65 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4505)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 62 (|has| $ (-6 -4505))) ((|#4| (-1 |#4| |#4| |#4|) $) 61 (|has| $ (-6 -4505))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-121) |#4| |#4|)) 87)) (-3035 (((-2 (|:| -4071 (-626 |#4|)) (|:| -3997 (-626 |#4|))) $) 98)) (-1981 (((-626 |#4|) $) 51 (|has| $ (-6 -4505)))) (-2864 (((-121) |#4| $) 97) (((-121) $) 96)) (-2819 ((|#3| $) 33)) (-2122 (((-121) $ (-755)) 42)) (-2130 (((-626 |#4|) $) 52 (|has| $ (-6 -4505)))) (-2030 (((-121) |#4| $) 54 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4505))))) (-3778 (($ (-1 |#4| |#4|) $) 47 (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#4| |#4|) $) 46)) (-4475 (((-626 |#3|) $) 31)) (-1304 (((-121) |#3| $) 30)) (-3441 (((-121) $ (-755)) 41)) (-1291 (((-1135) $) 9)) (-4139 (((-3 |#4| "failed") $) 76)) (-3840 (((-626 |#4|) $) 100)) (-3098 (((-121) |#4| $) 92) (((-121) $) 88)) (-2054 ((|#4| |#4| $) 83)) (-3564 (((-121) $ $) 103)) (-1960 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-550)))) (-1584 (((-121) |#4| $) 93) (((-121) $) 89)) (-4047 ((|#4| |#4| $) 84)) (-4353 (((-1100) $) 10)) (-2824 (((-3 |#4| "failed") $) 77)) (-3786 (((-3 |#4| "failed") (-1 (-121) |#4|) $) 60)) (-1368 (((-3 $ "failed") $ |#4|) 71)) (-3292 (($ $ |#4|) 70)) (-2865 (((-121) (-1 (-121) |#4|) $) 49 (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 |#4|) (-626 |#4|)) 58 (-12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082)))) (($ $ |#4| |#4|) 57 (-12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082)))) (($ $ (-283 |#4|)) 56 (-12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082)))) (($ $ (-626 (-283 |#4|))) 55 (-12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082))))) (-2214 (((-121) $ $) 37)) (-4191 (((-121) $) 40)) (-3260 (($) 39)) (-3662 (((-755) $) 99)) (-4035 (((-755) |#4| $) 53 (-12 (|has| |#4| (-1082)) (|has| $ (-6 -4505)))) (((-755) (-1 (-121) |#4|) $) 50 (|has| $ (-6 -4505)))) (-2813 (($ $) 38)) (-4255 (((-533) $) 68 (|has| |#4| (-601 (-533))))) (-4162 (($ (-626 |#4|)) 59)) (-3369 (($ $ |#3|) 27)) (-2673 (($ $ |#3|) 29)) (-3746 (($ $) 81)) (-3388 (($ $ |#3|) 28)) (-2801 (((-842) $) 11) (((-626 |#4|) $) 36)) (-4277 (((-755) $) 69 (|has| |#3| (-364)))) (-3133 (((-3 (-2 (|:| |bas| $) (|:| -4224 (-626 |#4|))) "failed") (-626 |#4|) (-1 (-121) |#4| |#4|)) 102) (((-3 (-2 (|:| |bas| $) (|:| -4224 (-626 |#4|))) "failed") (-626 |#4|) (-1 (-121) |#4|) (-1 (-121) |#4| |#4|)) 101)) (-2967 (((-121) $ (-1 (-121) |#4| (-626 |#4|))) 91)) (-3656 (((-121) (-1 (-121) |#4|) $) 48 (|has| $ (-6 -4505)))) (-3284 (((-626 |#3|) $) 74)) (-1535 (((-121) |#3| $) 73)) (-1653 (((-121) $ $) 6)) (-2271 (((-755) $) 45 (|has| $ (-6 -4505))))) -(((-1181 |#1| |#2| |#3| |#4|) (-1267) (-550) (-780) (-834) (-1053 |t#1| |t#2| |t#3|)) (T -1181)) -((-3564 (*1 *2 *1 *1) (-12 (-4 *1 (-1181 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-121)))) (-3133 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-121) *8 *8)) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-550)) (-4 *6 (-780)) (-4 *7 (-834)) (-5 *2 (-2 (|:| |bas| *1) (|:| -4224 (-626 *8)))) (-5 *3 (-626 *8)) (-4 *1 (-1181 *5 *6 *7 *8)))) (-3133 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-121) *9)) (-5 *5 (-1 (-121) *9 *9)) (-4 *9 (-1053 *6 *7 *8)) (-4 *6 (-550)) (-4 *7 (-780)) (-4 *8 (-834)) (-5 *2 (-2 (|:| |bas| *1) (|:| -4224 (-626 *9)))) (-5 *3 (-626 *9)) (-4 *1 (-1181 *6 *7 *8 *9)))) (-3840 (*1 *2 *1) (-12 (-4 *1 (-1181 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-626 *6)))) (-3662 (*1 *2 *1) (-12 (-4 *1 (-1181 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-755)))) (-3035 (*1 *2 *1) (-12 (-4 *1 (-1181 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-2 (|:| -4071 (-626 *6)) (|:| -3997 (-626 *6)))))) (-2864 (*1 *2 *3 *1) (-12 (-4 *1 (-1181 *4 *5 *6 *3)) (-4 *4 (-550)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-121)))) (-2864 (*1 *2 *1) (-12 (-4 *1 (-1181 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-121)))) (-1590 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-121) *3 *3)) (-4 *1 (-1181 *5 *6 *7 *3)) (-4 *5 (-550)) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-121)))) (-2898 (*1 *2 *3 *1) (-12 (-4 *1 (-1181 *4 *5 *6 *3)) (-4 *4 (-550)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-121)))) (-1584 (*1 *2 *3 *1) (-12 (-4 *1 (-1181 *4 *5 *6 *3)) (-4 *4 (-550)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-121)))) (-3098 (*1 *2 *3 *1) (-12 (-4 *1 (-1181 *4 *5 *6 *3)) (-4 *4 (-550)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-121)))) (-2967 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-121) *7 (-626 *7))) (-4 *1 (-1181 *4 *5 *6 *7)) (-4 *4 (-550)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-121)))) (-2898 (*1 *2 *1) (-12 (-4 *1 (-1181 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-121)))) (-1584 (*1 *2 *1) (-12 (-4 *1 (-1181 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-121)))) (-3098 (*1 *2 *1) (-12 (-4 *1 (-1181 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-121)))) (-2342 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-121) *2 *2)) (-4 *1 (-1181 *5 *6 *7 *2)) (-4 *5 (-550)) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *2 (-1053 *5 *6 *7)))) (-4339 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-626 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-121) *8 *8)) (-4 *1 (-1181 *5 *6 *7 *8)) (-4 *5 (-550)) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *8 (-1053 *5 *6 *7)))) (-3177 (*1 *2 *2 *1) (-12 (-4 *1 (-1181 *3 *4 *5 *2)) (-4 *3 (-550)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *2 (-1053 *3 *4 *5)))) (-4047 (*1 *2 *2 *1) (-12 (-4 *1 (-1181 *3 *4 *5 *2)) (-4 *3 (-550)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *2 (-1053 *3 *4 *5)))) (-2054 (*1 *2 *2 *1) (-12 (-4 *1 (-1181 *3 *4 *5 *2)) (-4 *3 (-550)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *2 (-1053 *3 *4 *5)))) (-2134 (*1 *2 *2 *1) (-12 (-4 *1 (-1181 *3 *4 *5 *2)) (-4 *3 (-550)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *2 (-1053 *3 *4 *5)))) (-3746 (*1 *1 *1) (-12 (-4 *1 (-1181 *2 *3 *4 *5)) (-4 *2 (-550)) (-4 *3 (-780)) (-4 *4 (-834)) (-4 *5 (-1053 *2 *3 *4)))) (-4048 (*1 *2 *2 *1) (-12 (-4 *1 (-1181 *3 *4 *5 *2)) (-4 *3 (-550)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *2 (-1053 *3 *4 *5)))) (-3332 (*1 *2 *3) (-12 (-5 *3 (-626 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-550)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-626 *1)) (-4 *1 (-1181 *4 *5 *6 *7)))) (-3975 (*1 *2 *3) (-12 (-4 *4 (-550)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-626 (-2 (|:| -4071 *1) (|:| -3997 (-626 *7))))) (-5 *3 (-626 *7)) (-4 *1 (-1181 *4 *5 *6 *7)))) (-2824 (*1 *2 *1) (|partial| -12 (-4 *1 (-1181 *3 *4 *5 *2)) (-4 *3 (-550)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *2 (-1053 *3 *4 *5)))) (-4139 (*1 *2 *1) (|partial| -12 (-4 *1 (-1181 *3 *4 *5 *2)) (-4 *3 (-550)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *2 (-1053 *3 *4 *5)))) (-2877 (*1 *1 *1) (|partial| -12 (-4 *1 (-1181 *2 *3 *4 *5)) (-4 *2 (-550)) (-4 *3 (-780)) (-4 *4 (-834)) (-4 *5 (-1053 *2 *3 *4)))) (-3284 (*1 *2 *1) (-12 (-4 *1 (-1181 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-626 *5)))) (-1535 (*1 *2 *3 *1) (-12 (-4 *1 (-1181 *4 *5 *3 *6)) (-4 *4 (-550)) (-4 *5 (-780)) (-4 *3 (-834)) (-4 *6 (-1053 *4 *5 *3)) (-5 *2 (-121)))) (-3802 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1181 *4 *5 *3 *2)) (-4 *4 (-550)) (-4 *5 (-780)) (-4 *3 (-834)) (-4 *2 (-1053 *4 *5 *3)))) (-1368 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1181 *3 *4 *5 *2)) (-4 *3 (-550)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *2 (-1053 *3 *4 *5)))) (-3292 (*1 *1 *1 *2) (-12 (-4 *1 (-1181 *3 *4 *5 *2)) (-4 *3 (-550)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *2 (-1053 *3 *4 *5)))) (-4277 (*1 *2 *1) (-12 (-4 *1 (-1181 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1053 *3 *4 *5)) (-4 *5 (-364)) (-5 *2 (-755))))) -(-13 (-969 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4505) (-6 -4506) (-15 -3564 ((-121) $ $)) (-15 -3133 ((-3 (-2 (|:| |bas| $) (|:| -4224 (-626 |t#4|))) "failed") (-626 |t#4|) (-1 (-121) |t#4| |t#4|))) (-15 -3133 ((-3 (-2 (|:| |bas| $) (|:| -4224 (-626 |t#4|))) "failed") (-626 |t#4|) (-1 (-121) |t#4|) (-1 (-121) |t#4| |t#4|))) (-15 -3840 ((-626 |t#4|) $)) (-15 -3662 ((-755) $)) (-15 -3035 ((-2 (|:| -4071 (-626 |t#4|)) (|:| -3997 (-626 |t#4|))) $)) (-15 -2864 ((-121) |t#4| $)) (-15 -2864 ((-121) $)) (-15 -1590 ((-121) |t#4| $ (-1 (-121) |t#4| |t#4|))) (-15 -2898 ((-121) |t#4| $)) (-15 -1584 ((-121) |t#4| $)) (-15 -3098 ((-121) |t#4| $)) (-15 -2967 ((-121) $ (-1 (-121) |t#4| (-626 |t#4|)))) (-15 -2898 ((-121) $)) (-15 -1584 ((-121) $)) (-15 -3098 ((-121) $)) (-15 -2342 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-121) |t#4| |t#4|))) (-15 -4339 ((-626 |t#4|) (-626 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-121) |t#4| |t#4|))) (-15 -3177 (|t#4| |t#4| $)) (-15 -4047 (|t#4| |t#4| $)) (-15 -2054 (|t#4| |t#4| $)) (-15 -2134 (|t#4| |t#4| $)) (-15 -3746 ($ $)) (-15 -4048 (|t#4| |t#4| $)) (-15 -3332 ((-626 $) (-626 |t#4|))) (-15 -3975 ((-626 (-2 (|:| -4071 $) (|:| -3997 (-626 |t#4|)))) (-626 |t#4|))) (-15 -2824 ((-3 |t#4| "failed") $)) (-15 -4139 ((-3 |t#4| "failed") $)) (-15 -2877 ((-3 $ "failed") $)) (-15 -3284 ((-626 |t#3|) $)) (-15 -1535 ((-121) |t#3| $)) (-15 -3802 ((-3 |t#4| "failed") $ |t#3|)) (-15 -1368 ((-3 $ "failed") $ |t#4|)) (-15 -3292 ($ $ |t#4|)) (IF (|has| |t#3| (-364)) (-15 -4277 ((-755) $)) |noBranch|))) -(((-39) . T) ((-105) . T) ((-600 (-626 |#4|)) . T) ((-600 (-842)) . T) ((-152 |#4|) . T) ((-601 (-533)) |has| |#4| (-601 (-533))) ((-298 |#4|) -12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082))) ((-492 |#4|) . T) ((-515 |#4| |#4|) -12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082))) ((-969 |#1| |#2| |#3| |#4|) . T) ((-1082) . T) ((-1187) . T)) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-1654 (((-626 (-1153)) $) NIL)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL (|has| |#1| (-550)))) (-1350 (($ $) NIL (|has| |#1| (-550)))) (-3376 (((-121) $) NIL (|has| |#1| (-550)))) (-2570 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2514 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2314 (((-3 $ "failed") $ $) NIL)) (-2479 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2561 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2790 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2579 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2523 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-4236 (($) NIL T CONST)) (-1750 (($ $) NIL)) (-1823 (((-3 $ "failed") $) NIL)) (-4350 (((-945 |#1|) $ (-755)) 16) (((-945 |#1|) $ (-755) (-755)) NIL)) (-1815 (((-121) $) NIL)) (-2474 (($) NIL (|has| |#1| (-43 (-403 (-560)))))) (-3504 (((-755) $ (-1153)) NIL) (((-755) $ (-1153) (-755)) NIL)) (-2642 (((-121) $) NIL)) (-2586 (($ $ (-560)) NIL (|has| |#1| (-43 (-403 (-560)))))) (-1814 (((-121) $) NIL)) (-1637 (($ $ (-626 (-1153)) (-626 (-526 (-1153)))) NIL) (($ $ (-1153) (-526 (-1153))) NIL) (($ |#1| (-526 (-1153))) NIL) (($ $ (-1153) (-755)) NIL) (($ $ (-626 (-1153)) (-626 (-755))) NIL)) (-2803 (($ (-1 |#1| |#1|) $) NIL)) (-4399 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-1726 (($ $) NIL)) (-1735 ((|#1| $) NIL)) (-1291 (((-1135) $) NIL)) (-2376 (($ $ (-1153)) NIL (|has| |#1| (-43 (-403 (-560))))) (($ $ (-1153) |#1|) NIL (|has| |#1| (-43 (-403 (-560)))))) (-4353 (((-1100) $) NIL)) (-1513 (($ (-1 $) (-1153) |#1|) NIL (|has| |#1| (-43 (-403 (-560)))))) (-3292 (($ $ (-755)) NIL)) (-2336 (((-3 $ "failed") $ $) NIL (|has| |#1| (-550)))) (-2469 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-4450 (($ $ (-1153) $) NIL) (($ $ (-626 (-1153)) (-626 $)) NIL) (($ $ (-626 (-283 $))) NIL) (($ $ (-283 $)) NIL) (($ $ $ $) NIL) (($ $ (-626 $) (-626 $)) NIL)) (-2443 (($ $ (-1153)) NIL) (($ $ (-626 (-1153))) NIL) (($ $ (-1153) (-755)) NIL) (($ $ (-626 (-1153)) (-626 (-755))) NIL)) (-3662 (((-526 (-1153)) $) NIL)) (-2585 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2528 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2575 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2519 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2566 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2795 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2234 (($ $) NIL)) (-2801 (((-842) $) NIL) (($ (-560)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ $) NIL (|has| |#1| (-550))) (($ (-403 (-560))) NIL (|has| |#1| (-43 (-403 (-560))))) (($ (-1153)) NIL) (($ (-945 |#1|)) NIL)) (-2636 ((|#1| $ (-526 (-1153))) NIL) (($ $ (-1153) (-755)) NIL) (($ $ (-626 (-1153)) (-626 (-755))) NIL) (((-945 |#1|) $ (-755)) NIL)) (-2272 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1751 (((-755)) NIL)) (-2598 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2541 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2328 (((-121) $ $) NIL (|has| |#1| (-550)))) (-2590 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2532 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2608 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2549 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-3689 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2554 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2604 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2545 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2594 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2536 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (-3304 (($) NIL T CONST)) (-1459 (($) NIL T CONST)) (-2500 (($ $ (-1153)) NIL) (($ $ (-626 (-1153))) NIL) (($ $ (-1153) (-755)) NIL) (($ $ (-626 (-1153)) (-626 (-755))) NIL)) (-1653 (((-121) $ $) NIL)) (-1733 (($ $ |#1|) NIL (|has| |#1| (-359)))) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) NIL)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ $) NIL (|has| |#1| (-43 (-403 (-560))))) (($ $ (-403 (-560))) NIL (|has| |#1| (-43 (-403 (-560)))))) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) NIL) (($ $ (-403 (-560))) NIL (|has| |#1| (-43 (-403 (-560))))) (($ (-403 (-560)) $) NIL (|has| |#1| (-43 (-403 (-560))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-1182 |#1|) (-13 (-722 |#1| (-1153)) (-10 -8 (-15 -2636 ((-945 |#1|) $ (-755))) (-15 -2801 ($ (-1153))) (-15 -2801 ($ (-945 |#1|))) (IF (|has| |#1| (-43 (-403 (-560)))) (PROGN (-15 -2376 ($ $ (-1153) |#1|)) (-15 -1513 ($ (-1 $) (-1153) |#1|))) |noBranch|))) (-1039)) (T -1182)) -((-2636 (*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *2 (-945 *4)) (-5 *1 (-1182 *4)) (-4 *4 (-1039)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-1153)) (-5 *1 (-1182 *3)) (-4 *3 (-1039)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-945 *3)) (-4 *3 (-1039)) (-5 *1 (-1182 *3)))) (-2376 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *1 (-1182 *3)) (-4 *3 (-43 (-403 (-560)))) (-4 *3 (-1039)))) (-1513 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1182 *4))) (-5 *3 (-1153)) (-5 *1 (-1182 *4)) (-4 *4 (-43 (-403 (-560)))) (-4 *4 (-1039))))) -(-13 (-722 |#1| (-1153)) (-10 -8 (-15 -2636 ((-945 |#1|) $ (-755))) (-15 -2801 ($ (-1153))) (-15 -2801 ($ (-945 |#1|))) (IF (|has| |#1| (-43 (-403 (-560)))) (PROGN (-15 -2376 ($ $ (-1153) |#1|)) (-15 -1513 ($ (-1 $) (-1153) |#1|))) |noBranch|))) -((-4361 (($ |#1| (-626 (-626 (-936 (-213)))) (-121)) 15)) (-2346 (((-121) $ (-121)) 14)) (-3682 (((-121) $) 13)) (-4202 (((-626 (-626 (-936 (-213)))) $) 10)) (-4451 ((|#1| $) 8)) (-1867 (((-121) $) 12))) -(((-1183 |#1|) (-10 -8 (-15 -4451 (|#1| $)) (-15 -4202 ((-626 (-626 (-936 (-213)))) $)) (-15 -1867 ((-121) $)) (-15 -3682 ((-121) $)) (-15 -2346 ((-121) $ (-121))) (-15 -4361 ($ |#1| (-626 (-626 (-936 (-213)))) (-121)))) (-967)) (T -1183)) -((-4361 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-626 (-626 (-936 (-213))))) (-5 *4 (-121)) (-5 *1 (-1183 *2)) (-4 *2 (-967)))) (-2346 (*1 *2 *1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-1183 *3)) (-4 *3 (-967)))) (-3682 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1183 *3)) (-4 *3 (-967)))) (-1867 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1183 *3)) (-4 *3 (-967)))) (-4202 (*1 *2 *1) (-12 (-5 *2 (-626 (-626 (-936 (-213))))) (-5 *1 (-1183 *3)) (-4 *3 (-967)))) (-4451 (*1 *2 *1) (-12 (-5 *1 (-1183 *2)) (-4 *2 (-967))))) -(-10 -8 (-15 -4451 (|#1| $)) (-15 -4202 ((-626 (-626 (-936 (-213)))) $)) (-15 -1867 ((-121) $)) (-15 -3682 ((-121) $)) (-15 -2346 ((-121) $ (-121))) (-15 -4361 ($ |#1| (-626 (-626 (-936 (-213)))) (-121)))) -((-4259 (((-936 (-213)) (-936 (-213))) 25)) (-4151 (((-936 (-213)) (-213) (-213) (-213) (-213)) 10)) (-2369 (((-626 (-936 (-213))) (-936 (-213)) (-936 (-213)) (-936 (-213)) (-213) (-626 (-626 (-213)))) 35)) (-2372 (((-213) (-936 (-213)) (-936 (-213))) 21)) (-2078 (((-936 (-213)) (-936 (-213)) (-936 (-213))) 22)) (-1705 (((-626 (-626 (-213))) (-560)) 31)) (-1725 (((-936 (-213)) (-936 (-213)) (-936 (-213))) 20)) (-1716 (((-936 (-213)) (-936 (-213)) (-936 (-213))) 19)) (* (((-936 (-213)) (-213) (-936 (-213))) 18))) -(((-1184) (-10 -7 (-15 -4151 ((-936 (-213)) (-213) (-213) (-213) (-213))) (-15 * ((-936 (-213)) (-213) (-936 (-213)))) (-15 -1716 ((-936 (-213)) (-936 (-213)) (-936 (-213)))) (-15 -1725 ((-936 (-213)) (-936 (-213)) (-936 (-213)))) (-15 -2372 ((-213) (-936 (-213)) (-936 (-213)))) (-15 -2078 ((-936 (-213)) (-936 (-213)) (-936 (-213)))) (-15 -4259 ((-936 (-213)) (-936 (-213)))) (-15 -1705 ((-626 (-626 (-213))) (-560))) (-15 -2369 ((-626 (-936 (-213))) (-936 (-213)) (-936 (-213)) (-936 (-213)) (-213) (-626 (-626 (-213))))))) (T -1184)) -((-2369 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-626 (-626 (-213)))) (-5 *4 (-213)) (-5 *2 (-626 (-936 *4))) (-5 *1 (-1184)) (-5 *3 (-936 *4)))) (-1705 (*1 *2 *3) (-12 (-5 *3 (-560)) (-5 *2 (-626 (-626 (-213)))) (-5 *1 (-1184)))) (-4259 (*1 *2 *2) (-12 (-5 *2 (-936 (-213))) (-5 *1 (-1184)))) (-2078 (*1 *2 *2 *2) (-12 (-5 *2 (-936 (-213))) (-5 *1 (-1184)))) (-2372 (*1 *2 *3 *3) (-12 (-5 *3 (-936 (-213))) (-5 *2 (-213)) (-5 *1 (-1184)))) (-1725 (*1 *2 *2 *2) (-12 (-5 *2 (-936 (-213))) (-5 *1 (-1184)))) (-1716 (*1 *2 *2 *2) (-12 (-5 *2 (-936 (-213))) (-5 *1 (-1184)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-936 (-213))) (-5 *3 (-213)) (-5 *1 (-1184)))) (-4151 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-936 (-213))) (-5 *1 (-1184)) (-5 *3 (-213))))) -(-10 -7 (-15 -4151 ((-936 (-213)) (-213) (-213) (-213) (-213))) (-15 * ((-936 (-213)) (-213) (-936 (-213)))) (-15 -1716 ((-936 (-213)) (-936 (-213)) (-936 (-213)))) (-15 -1725 ((-936 (-213)) (-936 (-213)) (-936 (-213)))) (-15 -2372 ((-213) (-936 (-213)) (-936 (-213)))) (-15 -2078 ((-936 (-213)) (-936 (-213)) (-936 (-213)))) (-15 -4259 ((-936 (-213)) (-936 (-213)))) (-15 -1705 ((-626 (-626 (-213))) (-560))) (-15 -2369 ((-626 (-936 (-213))) (-936 (-213)) (-936 (-213)) (-936 (-213)) (-213) (-626 (-626 (-213)))))) -((-2601 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-3802 ((|#1| $ (-755)) 13)) (-2349 (((-755) $) 12)) (-1291 (((-1135) $) NIL (|has| |#1| (-1082)))) (-4353 (((-1100) $) NIL (|has| |#1| (-1082)))) (-2801 (((-950 |#1|) $) 10) (($ (-950 |#1|)) 9) (((-842) $) 23 (|has| |#1| (-1082)))) (-1653 (((-121) $ $) 16 (|has| |#1| (-1082))))) -(((-1185 |#1|) (-13 (-600 (-950 |#1|)) (-10 -8 (-15 -2801 ($ (-950 |#1|))) (-15 -3802 (|#1| $ (-755))) (-15 -2349 ((-755) $)) (IF (|has| |#1| (-1082)) (-6 (-1082)) |noBranch|))) (-1187)) (T -1185)) -((-2801 (*1 *1 *2) (-12 (-5 *2 (-950 *3)) (-4 *3 (-1187)) (-5 *1 (-1185 *3)))) (-3802 (*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *1 (-1185 *2)) (-4 *2 (-1187)))) (-2349 (*1 *2 *1) (-12 (-5 *2 (-755)) (-5 *1 (-1185 *3)) (-4 *3 (-1187))))) -(-13 (-600 (-950 |#1|)) (-10 -8 (-15 -2801 ($ (-950 |#1|))) (-15 -3802 (|#1| $ (-755))) (-15 -2349 ((-755) $)) (IF (|has| |#1| (-1082)) (-6 (-1082)) |noBranch|))) -((-4431 (((-414 (-1149 (-1149 |#1|))) (-1149 (-1149 |#1|)) (-560)) 79)) (-4376 (((-414 (-1149 (-1149 |#1|))) (-1149 (-1149 |#1|))) 73)) (-3028 (((-414 (-1149 (-1149 |#1|))) (-1149 (-1149 |#1|))) 58))) -(((-1186 |#1|) (-10 -7 (-15 -4376 ((-414 (-1149 (-1149 |#1|))) (-1149 (-1149 |#1|)))) (-15 -3028 ((-414 (-1149 (-1149 |#1|))) (-1149 (-1149 |#1|)))) (-15 -4431 ((-414 (-1149 (-1149 |#1|))) (-1149 (-1149 |#1|)) (-560)))) (-344)) (T -1186)) -((-4431 (*1 *2 *3 *4) (-12 (-5 *4 (-560)) (-4 *5 (-344)) (-5 *2 (-414 (-1149 (-1149 *5)))) (-5 *1 (-1186 *5)) (-5 *3 (-1149 (-1149 *5))))) (-3028 (*1 *2 *3) (-12 (-4 *4 (-344)) (-5 *2 (-414 (-1149 (-1149 *4)))) (-5 *1 (-1186 *4)) (-5 *3 (-1149 (-1149 *4))))) (-4376 (*1 *2 *3) (-12 (-4 *4 (-344)) (-5 *2 (-414 (-1149 (-1149 *4)))) (-5 *1 (-1186 *4)) (-5 *3 (-1149 (-1149 *4)))))) -(-10 -7 (-15 -4376 ((-414 (-1149 (-1149 |#1|))) (-1149 (-1149 |#1|)))) (-15 -3028 ((-414 (-1149 (-1149 |#1|))) (-1149 (-1149 |#1|)))) (-15 -4431 ((-414 (-1149 (-1149 |#1|))) (-1149 (-1149 |#1|)) (-560)))) -NIL -(((-1187) (-1267)) (T -1187)) -NIL -(-13 (-10 -7 (-6 -2537))) -((-2671 (((-121)) 14)) (-1723 (((-1241) (-626 |#1|) (-626 |#1|)) 18) (((-1241) (-626 |#1|)) 19)) (-2122 (((-121) |#1| |#1|) 30 (|has| |#1| (-834)))) (-3441 (((-121) |#1| |#1| (-1 (-121) |#1| |#1|)) 26) (((-3 (-121) "failed") |#1| |#1|) 24)) (-4343 ((|#1| (-626 |#1|)) 31 (|has| |#1| (-834))) ((|#1| (-626 |#1|) (-1 (-121) |#1| |#1|)) 27)) (-2099 (((-2 (|:| -3965 (-626 |#1|)) (|:| -1451 (-626 |#1|)))) 16))) -(((-1188 |#1|) (-10 -7 (-15 -1723 ((-1241) (-626 |#1|))) (-15 -1723 ((-1241) (-626 |#1|) (-626 |#1|))) (-15 -2099 ((-2 (|:| -3965 (-626 |#1|)) (|:| -1451 (-626 |#1|))))) (-15 -3441 ((-3 (-121) "failed") |#1| |#1|)) (-15 -3441 ((-121) |#1| |#1| (-1 (-121) |#1| |#1|))) (-15 -4343 (|#1| (-626 |#1|) (-1 (-121) |#1| |#1|))) (-15 -2671 ((-121))) (IF (|has| |#1| (-834)) (PROGN (-15 -4343 (|#1| (-626 |#1|))) (-15 -2122 ((-121) |#1| |#1|))) |noBranch|)) (-1082)) (T -1188)) -((-2122 (*1 *2 *3 *3) (-12 (-5 *2 (-121)) (-5 *1 (-1188 *3)) (-4 *3 (-834)) (-4 *3 (-1082)))) (-4343 (*1 *2 *3) (-12 (-5 *3 (-626 *2)) (-4 *2 (-1082)) (-4 *2 (-834)) (-5 *1 (-1188 *2)))) (-2671 (*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-1188 *3)) (-4 *3 (-1082)))) (-4343 (*1 *2 *3 *4) (-12 (-5 *3 (-626 *2)) (-5 *4 (-1 (-121) *2 *2)) (-5 *1 (-1188 *2)) (-4 *2 (-1082)))) (-3441 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-121) *3 *3)) (-4 *3 (-1082)) (-5 *2 (-121)) (-5 *1 (-1188 *3)))) (-3441 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-121)) (-5 *1 (-1188 *3)) (-4 *3 (-1082)))) (-2099 (*1 *2) (-12 (-5 *2 (-2 (|:| -3965 (-626 *3)) (|:| -1451 (-626 *3)))) (-5 *1 (-1188 *3)) (-4 *3 (-1082)))) (-1723 (*1 *2 *3 *3) (-12 (-5 *3 (-626 *4)) (-4 *4 (-1082)) (-5 *2 (-1241)) (-5 *1 (-1188 *4)))) (-1723 (*1 *2 *3) (-12 (-5 *3 (-626 *4)) (-4 *4 (-1082)) (-5 *2 (-1241)) (-5 *1 (-1188 *4))))) -(-10 -7 (-15 -1723 ((-1241) (-626 |#1|))) (-15 -1723 ((-1241) (-626 |#1|) (-626 |#1|))) (-15 -2099 ((-2 (|:| -3965 (-626 |#1|)) (|:| -1451 (-626 |#1|))))) (-15 -3441 ((-3 (-121) "failed") |#1| |#1|)) (-15 -3441 ((-121) |#1| |#1| (-1 (-121) |#1| |#1|))) (-15 -4343 (|#1| (-626 |#1|) (-1 (-121) |#1| |#1|))) (-15 -2671 ((-121))) (IF (|has| |#1| (-834)) (PROGN (-15 -4343 (|#1| (-626 |#1|))) (-15 -2122 ((-121) |#1| |#1|))) |noBranch|)) -((-2333 (((-1241) (-626 (-1153)) (-626 (-1153))) 12) (((-1241) (-626 (-1153))) 10)) (-2048 (((-1241)) 13)) (-3926 (((-2 (|:| -1451 (-626 (-1153))) (|:| -3965 (-626 (-1153))))) 17))) -(((-1189) (-10 -7 (-15 -2333 ((-1241) (-626 (-1153)))) (-15 -2333 ((-1241) (-626 (-1153)) (-626 (-1153)))) (-15 -3926 ((-2 (|:| -1451 (-626 (-1153))) (|:| -3965 (-626 (-1153)))))) (-15 -2048 ((-1241))))) (T -1189)) -((-2048 (*1 *2) (-12 (-5 *2 (-1241)) (-5 *1 (-1189)))) (-3926 (*1 *2) (-12 (-5 *2 (-2 (|:| -1451 (-626 (-1153))) (|:| -3965 (-626 (-1153))))) (-5 *1 (-1189)))) (-2333 (*1 *2 *3 *3) (-12 (-5 *3 (-626 (-1153))) (-5 *2 (-1241)) (-5 *1 (-1189)))) (-2333 (*1 *2 *3) (-12 (-5 *3 (-626 (-1153))) (-5 *2 (-1241)) (-5 *1 (-1189))))) -(-10 -7 (-15 -2333 ((-1241) (-626 (-1153)))) (-15 -2333 ((-1241) (-626 (-1153)) (-626 (-1153)))) (-15 -3926 ((-2 (|:| -1451 (-626 (-1153))) (|:| -3965 (-626 (-1153)))))) (-15 -2048 ((-1241)))) -((-3065 (($ $) 16)) (-3319 (((-121) $) 23))) -(((-1190 |#1|) (-10 -8 (-15 -3065 (|#1| |#1|)) (-15 -3319 ((-121) |#1|))) (-1191)) (T -1190)) -NIL -(-10 -8 (-15 -3065 (|#1| |#1|)) (-15 -3319 ((-121) |#1|))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) 40)) (-1350 (($ $) 39)) (-3376 (((-121) $) 37)) (-2314 (((-3 $ "failed") $ $) 18)) (-3065 (($ $) 49)) (-2953 (((-414 $) $) 50)) (-4236 (($) 16 T CONST)) (-1823 (((-3 $ "failed") $) 33)) (-3319 (((-121) $) 51)) (-2642 (((-121) $) 30)) (-2582 (($ $ $) 45) (($ (-626 $)) 44)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) 43)) (-4440 (($ $ $) 47) (($ (-626 $)) 46)) (-1601 (((-414 $) $) 48)) (-2336 (((-3 $ "failed") $ $) 41)) (-2801 (((-842) $) 11) (($ (-560)) 27) (($ $) 42)) (-1751 (((-755)) 28)) (-2328 (((-121) $ $) 38)) (-2464 (($ $ (-909)) 25) (($ $ (-755)) 32)) (-3304 (($) 17 T CONST)) (-1459 (($) 29 T CONST)) (-1653 (((-121) $ $) 6)) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 24) (($ $ (-755)) 31)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 23))) -(((-1191) (-1267)) (T -1191)) -((-3319 (*1 *2 *1) (-12 (-4 *1 (-1191)) (-5 *2 (-121)))) (-2953 (*1 *2 *1) (-12 (-5 *2 (-414 *1)) (-4 *1 (-1191)))) (-3065 (*1 *1 *1) (-4 *1 (-1191))) (-1601 (*1 *2 *1) (-12 (-5 *2 (-414 *1)) (-4 *1 (-1191))))) -(-13 (-447) (-10 -8 (-15 -3319 ((-121) $)) (-15 -2953 ((-414 $) $)) (-15 -3065 ($ $)) (-15 -1601 ((-414 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-43 $) . T) ((-105) . T) ((-120 $ $) . T) ((-137) . T) ((-600 (-842)) . T) ((-170) . T) ((-280) . T) ((-447) . T) ((-550) . T) ((-629 $) . T) ((-699 $) . T) ((-708) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1094) . T) ((-1082) . T)) -((-1883 (((-1193 |#1|) (-1193 |#1|) (-1193 |#1|)) 15))) -(((-1192 |#1|) (-10 -7 (-15 -1883 ((-1193 |#1|) (-1193 |#1|) (-1193 |#1|)))) (-1039)) (T -1192)) -((-1883 (*1 *2 *2 *2) (-12 (-5 *2 (-1193 *3)) (-4 *3 (-1039)) (-5 *1 (-1192 *3))))) -(-10 -7 (-15 -1883 ((-1193 |#1|) (-1193 |#1|) (-1193 |#1|)))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-1654 (((-626 (-1067)) $) NIL)) (-1395 (((-1153) $) NIL)) (-2965 (((-1208 (QUOTE |x|) |#1|) $ (-755)) NIL)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL (|has| |#1| (-550)))) (-1350 (($ $) NIL (|has| |#1| (-550)))) (-3376 (((-121) $) NIL (|has| |#1| (-550)))) (-4330 (($ $ (-755)) NIL) (($ $ (-755) (-755)) NIL)) (-4138 (((-1133 (-2 (|:| |k| (-755)) (|:| |c| |#1|))) $) NIL)) (-2570 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2514 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2314 (((-3 $ "failed") $ $) NIL)) (-2479 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2561 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2790 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-3783 (($ (-1133 (-2 (|:| |k| (-755)) (|:| |c| |#1|)))) NIL) (($ (-1133 |#1|)) NIL)) (-2579 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2523 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-4236 (($) NIL T CONST)) (-3053 (($ $) NIL)) (-1750 (($ $) NIL)) (-1823 (((-3 $ "failed") $) NIL)) (-2567 (($ $) NIL)) (-4350 (((-945 |#1|) $ (-755)) NIL) (((-945 |#1|) $ (-755) (-755)) NIL)) (-1815 (((-121) $) NIL)) (-2474 (($) NIL (|has| |#1| (-43 (-403 (-560)))))) (-3504 (((-755) $) NIL) (((-755) $ (-755)) NIL)) (-2642 (((-121) $) NIL)) (-2131 (($ $) NIL)) (-2586 (($ $ (-560)) NIL (|has| |#1| (-43 (-403 (-560)))))) (-4143 (($ (-560) (-560) $) NIL)) (-3549 (($ $ (-909)) NIL)) (-3994 (($ (-1 |#1| (-560)) $) NIL)) (-1814 (((-121) $) NIL)) (-1637 (($ |#1| (-755)) NIL) (($ $ (-1067) (-755)) NIL) (($ $ (-626 (-1067)) (-626 (-755))) NIL)) (-2803 (($ (-1 |#1| |#1|) $) NIL)) (-4399 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-1726 (($ $) NIL)) (-1735 ((|#1| $) NIL)) (-1291 (((-1135) $) NIL)) (-4297 (($ $) NIL)) (-2780 (($ $) NIL)) (-2796 (($ (-560) (-560) $) NIL)) (-2376 (($ $) NIL (|has| |#1| (-43 (-403 (-560))))) (($ $ (-1153)) NIL (-2318 (-12 (|has| |#1| (-15 -2376 (|#1| |#1| (-1153)))) (|has| |#1| (-15 -1654 ((-626 (-1153)) |#1|))) (|has| |#1| (-43 (-403 (-560))))) (-12 (|has| |#1| (-29 (-560))) (|has| |#1| (-43 (-403 (-560)))) (|has| |#1| (-951)) (|has| |#1| (-1173))))) (($ $ (-1232 (QUOTE |x|))) NIL (|has| |#1| (-43 (-403 (-560)))))) (-4353 (((-1100) $) NIL)) (-3264 (($ $ (-560) (-560)) NIL)) (-3292 (($ $ (-755)) NIL)) (-2336 (((-3 $ "failed") $ $) NIL (|has| |#1| (-550)))) (-2469 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-1760 (($ $) NIL)) (-4450 (((-1133 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-755)))))) (-2778 ((|#1| $ (-755)) NIL) (($ $ $) NIL (|has| (-755) (-1094)))) (-2443 (($ $ (-626 (-1153)) (-626 (-755))) NIL (-12 (|has| |#1| (-15 * (|#1| (-755) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-1153) (-755)) NIL (-12 (|has| |#1| (-15 * (|#1| (-755) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-626 (-1153))) NIL (-12 (|has| |#1| (-15 * (|#1| (-755) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-1153)) NIL (-12 (|has| |#1| (-15 * (|#1| (-755) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-755)) NIL (|has| |#1| (-15 * (|#1| (-755) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-755) |#1|)))) (($ $ (-1232 (QUOTE |x|))) NIL)) (-3662 (((-755) $) NIL)) (-2585 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2528 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2575 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2519 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2566 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2795 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2234 (($ $) NIL)) (-2801 (((-842) $) NIL) (($ (-560)) NIL) (($ (-403 (-560))) NIL (|has| |#1| (-43 (-403 (-560))))) (($ $) NIL (|has| |#1| (-550))) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1208 (QUOTE |x|) |#1|)) NIL) (($ (-1232 (QUOTE |x|))) NIL)) (-2423 (((-1133 |#1|) $) NIL)) (-2636 ((|#1| $ (-755)) NIL)) (-2272 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1751 (((-755)) NIL)) (-1341 ((|#1| $) NIL)) (-2598 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2541 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2328 (((-121) $ $) NIL (|has| |#1| (-550)))) (-2590 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2532 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2608 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2549 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2550 ((|#1| $ (-755)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-755)))) (|has| |#1| (-15 -2801 (|#1| (-1153))))))) (-3689 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2554 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2604 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2545 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2594 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2536 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (-3304 (($) NIL T CONST)) (-1459 (($) NIL T CONST)) (-2500 (($ $ (-626 (-1153)) (-626 (-755))) NIL (-12 (|has| |#1| (-15 * (|#1| (-755) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-1153) (-755)) NIL (-12 (|has| |#1| (-15 * (|#1| (-755) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-626 (-1153))) NIL (-12 (|has| |#1| (-15 * (|#1| (-755) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-1153)) NIL (-12 (|has| |#1| (-15 * (|#1| (-755) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-755)) NIL (|has| |#1| (-15 * (|#1| (-755) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-755) |#1|))))) (-1653 (((-121) $ $) NIL)) (-1733 (($ $ |#1|) NIL (|has| |#1| (-359)))) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) NIL)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ |#1|) NIL (|has| |#1| (-359))) (($ $ $) NIL (|has| |#1| (-43 (-403 (-560))))) (($ $ (-403 (-560))) NIL (|has| |#1| (-43 (-403 (-560)))))) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-403 (-560)) $) NIL (|has| |#1| (-43 (-403 (-560))))) (($ $ (-403 (-560))) NIL (|has| |#1| (-43 (-403 (-560))))))) -(((-1193 |#1|) (-13 (-1226 |#1|) (-10 -8 (-15 -2801 ($ (-1208 (QUOTE |x|) |#1|))) (-15 -2965 ((-1208 (QUOTE |x|) |#1|) $ (-755))) (-15 -2801 ($ (-1232 (QUOTE |x|)))) (-15 -2443 ($ $ (-1232 (QUOTE |x|)))) (-15 -2780 ($ $)) (-15 -4297 ($ $)) (-15 -2131 ($ $)) (-15 -1760 ($ $)) (-15 -3264 ($ $ (-560) (-560))) (-15 -3053 ($ $)) (-15 -4143 ($ (-560) (-560) $)) (-15 -2796 ($ (-560) (-560) $)) (IF (|has| |#1| (-43 (-403 (-560)))) (-15 -2376 ($ $ (-1232 (QUOTE |x|)))) |noBranch|))) (-1039)) (T -1193)) -((-2801 (*1 *1 *2) (-12 (-5 *2 (-1208 (QUOTE |x|) *3)) (-4 *3 (-1039)) (-5 *1 (-1193 *3)))) (-2965 (*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *2 (-1208 (QUOTE |x|) *4)) (-5 *1 (-1193 *4)) (-4 *4 (-1039)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-1232 (QUOTE |x|))) (-5 *1 (-1193 *3)) (-4 *3 (-1039)))) (-2443 (*1 *1 *1 *2) (-12 (-5 *2 (-1232 (QUOTE |x|))) (-5 *1 (-1193 *3)) (-4 *3 (-1039)))) (-2780 (*1 *1 *1) (-12 (-5 *1 (-1193 *2)) (-4 *2 (-1039)))) (-4297 (*1 *1 *1) (-12 (-5 *1 (-1193 *2)) (-4 *2 (-1039)))) (-2131 (*1 *1 *1) (-12 (-5 *1 (-1193 *2)) (-4 *2 (-1039)))) (-1760 (*1 *1 *1) (-12 (-5 *1 (-1193 *2)) (-4 *2 (-1039)))) (-3264 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-1193 *3)) (-4 *3 (-1039)))) (-3053 (*1 *1 *1) (-12 (-5 *1 (-1193 *2)) (-4 *2 (-1039)))) (-4143 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-1193 *3)) (-4 *3 (-1039)))) (-2796 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-1193 *3)) (-4 *3 (-1039)))) (-2376 (*1 *1 *1 *2) (-12 (-5 *2 (-1232 (QUOTE |x|))) (-5 *1 (-1193 *3)) (-4 *3 (-43 (-403 (-560)))) (-4 *3 (-1039))))) -(-13 (-1226 |#1|) (-10 -8 (-15 -2801 ($ (-1208 (QUOTE |x|) |#1|))) (-15 -2965 ((-1208 (QUOTE |x|) |#1|) $ (-755))) (-15 -2801 ($ (-1232 (QUOTE |x|)))) (-15 -2443 ($ $ (-1232 (QUOTE |x|)))) (-15 -2780 ($ $)) (-15 -4297 ($ $)) (-15 -2131 ($ $)) (-15 -1760 ($ $)) (-15 -3264 ($ $ (-560) (-560))) (-15 -3053 ($ $)) (-15 -4143 ($ (-560) (-560) $)) (-15 -2796 ($ (-560) (-560) $)) (IF (|has| |#1| (-43 (-403 (-560)))) (-15 -2376 ($ $ (-1232 (QUOTE |x|)))) |noBranch|))) -((-2803 (((-1199 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1199 |#1| |#3| |#5|)) 23))) -(((-1194 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2803 ((-1199 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1199 |#1| |#3| |#5|)))) (-1039) (-1039) (-1153) (-1153) |#1| |#2|) (T -1194)) -((-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1199 *5 *7 *9)) (-4 *5 (-1039)) (-4 *6 (-1039)) (-14 *7 (-1153)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1199 *6 *8 *10)) (-5 *1 (-1194 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1153))))) -(-10 -7 (-15 -2803 ((-1199 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1199 |#1| |#3| |#5|)))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-1654 (((-626 (-1067)) $) 70)) (-1395 (((-1153) $) 98)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) 50 (|has| |#1| (-550)))) (-1350 (($ $) 51 (|has| |#1| (-550)))) (-3376 (((-121) $) 53 (|has| |#1| (-550)))) (-4330 (($ $ (-560)) 93) (($ $ (-560) (-560)) 92)) (-4138 (((-1133 (-2 (|:| |k| (-560)) (|:| |c| |#1|))) $) 100)) (-2570 (($ $) 127 (|has| |#1| (-43 (-403 (-560)))))) (-2514 (($ $) 110 (|has| |#1| (-43 (-403 (-560)))))) (-2314 (((-3 $ "failed") $ $) 18)) (-3065 (($ $) 154 (|has| |#1| (-359)))) (-2953 (((-414 $) $) 155 (|has| |#1| (-359)))) (-2479 (($ $) 109 (|has| |#1| (-43 (-403 (-560)))))) (-4179 (((-121) $ $) 145 (|has| |#1| (-359)))) (-2561 (($ $) 126 (|has| |#1| (-43 (-403 (-560)))))) (-2790 (($ $) 111 (|has| |#1| (-43 (-403 (-560)))))) (-3783 (($ (-1133 (-2 (|:| |k| (-560)) (|:| |c| |#1|)))) 166)) (-2579 (($ $) 125 (|has| |#1| (-43 (-403 (-560)))))) (-2523 (($ $) 112 (|has| |#1| (-43 (-403 (-560)))))) (-4236 (($) 16 T CONST)) (-2563 (($ $ $) 149 (|has| |#1| (-359)))) (-1750 (($ $) 59)) (-1823 (((-3 $ "failed") $) 33)) (-1289 (((-403 (-945 |#1|)) $ (-560)) 164 (|has| |#1| (-550))) (((-403 (-945 |#1|)) $ (-560) (-560)) 163 (|has| |#1| (-550)))) (-2572 (($ $ $) 148 (|has| |#1| (-359)))) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) 143 (|has| |#1| (-359)))) (-3319 (((-121) $) 156 (|has| |#1| (-359)))) (-1815 (((-121) $) 69)) (-2474 (($) 137 (|has| |#1| (-43 (-403 (-560)))))) (-3504 (((-560) $) 95) (((-560) $ (-560)) 94)) (-2642 (((-121) $) 30)) (-2586 (($ $ (-560)) 108 (|has| |#1| (-43 (-403 (-560)))))) (-3549 (($ $ (-909)) 96)) (-3994 (($ (-1 |#1| (-560)) $) 165)) (-3856 (((-3 (-626 $) "failed") (-626 $) $) 152 (|has| |#1| (-359)))) (-1814 (((-121) $) 61)) (-1637 (($ |#1| (-560)) 60) (($ $ (-1067) (-560)) 72) (($ $ (-626 (-1067)) (-626 (-560))) 71)) (-2803 (($ (-1 |#1| |#1|) $) 62)) (-4399 (($ $) 134 (|has| |#1| (-43 (-403 (-560)))))) (-1726 (($ $) 64)) (-1735 ((|#1| $) 65)) (-2582 (($ (-626 $)) 141 (|has| |#1| (-359))) (($ $ $) 140 (|has| |#1| (-359)))) (-1291 (((-1135) $) 9)) (-1701 (($ $) 157 (|has| |#1| (-359)))) (-2376 (($ $) 162 (|has| |#1| (-43 (-403 (-560))))) (($ $ (-1153)) 161 (-2318 (-12 (|has| |#1| (-29 (-560))) (|has| |#1| (-951)) (|has| |#1| (-1173)) (|has| |#1| (-43 (-403 (-560))))) (-12 (|has| |#1| (-15 -1654 ((-626 (-1153)) |#1|))) (|has| |#1| (-15 -2376 (|#1| |#1| (-1153)))) (|has| |#1| (-43 (-403 (-560)))))))) (-4353 (((-1100) $) 10)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) 142 (|has| |#1| (-359)))) (-4440 (($ (-626 $)) 139 (|has| |#1| (-359))) (($ $ $) 138 (|has| |#1| (-359)))) (-1601 (((-414 $) $) 153 (|has| |#1| (-359)))) (-3505 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 151 (|has| |#1| (-359))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) 150 (|has| |#1| (-359)))) (-3292 (($ $ (-560)) 90)) (-2336 (((-3 $ "failed") $ $) 49 (|has| |#1| (-550)))) (-3456 (((-3 (-626 $) "failed") (-626 $) $) 144 (|has| |#1| (-359)))) (-2469 (($ $) 135 (|has| |#1| (-43 (-403 (-560)))))) (-4450 (((-1133 |#1|) $ |#1|) 89 (|has| |#1| (-15 ** (|#1| |#1| (-560)))))) (-4445 (((-755) $) 146 (|has| |#1| (-359)))) (-2778 ((|#1| $ (-560)) 99) (($ $ $) 76 (|has| (-560) (-1094)))) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) 147 (|has| |#1| (-359)))) (-2443 (($ $ (-626 (-1153)) (-626 (-755))) 84 (-12 (|has| |#1| (-887 (-1153))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) (($ $ (-1153) (-755)) 83 (-12 (|has| |#1| (-887 (-1153))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) (($ $ (-626 (-1153))) 82 (-12 (|has| |#1| (-887 (-1153))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) (($ $ (-1153)) 81 (-12 (|has| |#1| (-887 (-1153))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) (($ $ (-755)) 79 (|has| |#1| (-15 * (|#1| (-560) |#1|)))) (($ $) 77 (|has| |#1| (-15 * (|#1| (-560) |#1|))))) (-3662 (((-560) $) 63)) (-2585 (($ $) 124 (|has| |#1| (-43 (-403 (-560)))))) (-2528 (($ $) 113 (|has| |#1| (-43 (-403 (-560)))))) (-2575 (($ $) 123 (|has| |#1| (-43 (-403 (-560)))))) (-2519 (($ $) 114 (|has| |#1| (-43 (-403 (-560)))))) (-2566 (($ $) 122 (|has| |#1| (-43 (-403 (-560)))))) (-2795 (($ $) 115 (|has| |#1| (-43 (-403 (-560)))))) (-2234 (($ $) 68)) (-2801 (((-842) $) 11) (($ (-560)) 27) (($ |#1|) 46 (|has| |#1| (-170))) (($ (-403 (-560))) 56 (|has| |#1| (-43 (-403 (-560))))) (($ $) 48 (|has| |#1| (-550)))) (-2636 ((|#1| $ (-560)) 58)) (-2272 (((-3 $ "failed") $) 47 (|has| |#1| (-146)))) (-1751 (((-755)) 28)) (-1341 ((|#1| $) 97)) (-2598 (($ $) 133 (|has| |#1| (-43 (-403 (-560)))))) (-2541 (($ $) 121 (|has| |#1| (-43 (-403 (-560)))))) (-2328 (((-121) $ $) 52 (|has| |#1| (-550)))) (-2590 (($ $) 132 (|has| |#1| (-43 (-403 (-560)))))) (-2532 (($ $) 120 (|has| |#1| (-43 (-403 (-560)))))) (-2608 (($ $) 131 (|has| |#1| (-43 (-403 (-560)))))) (-2549 (($ $) 119 (|has| |#1| (-43 (-403 (-560)))))) (-2550 ((|#1| $ (-560)) 91 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-560)))) (|has| |#1| (-15 -2801 (|#1| (-1153))))))) (-3689 (($ $) 130 (|has| |#1| (-43 (-403 (-560)))))) (-2554 (($ $) 118 (|has| |#1| (-43 (-403 (-560)))))) (-2604 (($ $) 129 (|has| |#1| (-43 (-403 (-560)))))) (-2545 (($ $) 117 (|has| |#1| (-43 (-403 (-560)))))) (-2594 (($ $) 128 (|has| |#1| (-43 (-403 (-560)))))) (-2536 (($ $) 116 (|has| |#1| (-43 (-403 (-560)))))) (-2464 (($ $ (-909)) 25) (($ $ (-755)) 32) (($ $ (-560)) 158 (|has| |#1| (-359)))) (-3304 (($) 17 T CONST)) (-1459 (($) 29 T CONST)) (-2500 (($ $ (-626 (-1153)) (-626 (-755))) 88 (-12 (|has| |#1| (-887 (-1153))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) (($ $ (-1153) (-755)) 87 (-12 (|has| |#1| (-887 (-1153))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) (($ $ (-626 (-1153))) 86 (-12 (|has| |#1| (-887 (-1153))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) (($ $ (-1153)) 85 (-12 (|has| |#1| (-887 (-1153))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) (($ $ (-755)) 80 (|has| |#1| (-15 * (|#1| (-560) |#1|)))) (($ $) 78 (|has| |#1| (-15 * (|#1| (-560) |#1|))))) (-1653 (((-121) $ $) 6)) (-1733 (($ $ |#1|) 57 (|has| |#1| (-359))) (($ $ $) 160 (|has| |#1| (-359)))) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 24) (($ $ (-755)) 31) (($ $ (-560)) 159 (|has| |#1| (-359))) (($ $ $) 136 (|has| |#1| (-43 (-403 (-560))))) (($ $ (-403 (-560))) 107 (|has| |#1| (-43 (-403 (-560)))))) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 23) (($ $ |#1|) 67) (($ |#1| $) 66) (($ (-403 (-560)) $) 55 (|has| |#1| (-43 (-403 (-560))))) (($ $ (-403 (-560))) 54 (|has| |#1| (-43 (-403 (-560))))))) -(((-1195 |#1|) (-1267) (-1039)) (T -1195)) -((-3783 (*1 *1 *2) (-12 (-5 *2 (-1133 (-2 (|:| |k| (-560)) (|:| |c| *3)))) (-4 *3 (-1039)) (-4 *1 (-1195 *3)))) (-3994 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-560))) (-4 *1 (-1195 *3)) (-4 *3 (-1039)))) (-1289 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *1 (-1195 *4)) (-4 *4 (-1039)) (-4 *4 (-550)) (-5 *2 (-403 (-945 *4))))) (-1289 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-560)) (-4 *1 (-1195 *4)) (-4 *4 (-1039)) (-4 *4 (-550)) (-5 *2 (-403 (-945 *4))))) (-2376 (*1 *1 *1) (-12 (-4 *1 (-1195 *2)) (-4 *2 (-1039)) (-4 *2 (-43 (-403 (-560)))))) (-2376 (*1 *1 *1 *2) (-2318 (-12 (-5 *2 (-1153)) (-4 *1 (-1195 *3)) (-4 *3 (-1039)) (-12 (-4 *3 (-29 (-560))) (-4 *3 (-951)) (-4 *3 (-1173)) (-4 *3 (-43 (-403 (-560)))))) (-12 (-5 *2 (-1153)) (-4 *1 (-1195 *3)) (-4 *3 (-1039)) (-12 (|has| *3 (-15 -1654 ((-626 *2) *3))) (|has| *3 (-15 -2376 (*3 *3 *2))) (-4 *3 (-43 (-403 (-560))))))))) -(-13 (-1213 |t#1| (-560)) (-10 -8 (-15 -3783 ($ (-1133 (-2 (|:| |k| (-560)) (|:| |c| |t#1|))))) (-15 -3994 ($ (-1 |t#1| (-560)) $)) (IF (|has| |t#1| (-550)) (PROGN (-15 -1289 ((-403 (-945 |t#1|)) $ (-560))) (-15 -1289 ((-403 (-945 |t#1|)) $ (-560) (-560)))) |noBranch|) (IF (|has| |t#1| (-43 (-403 (-560)))) (PROGN (-15 -2376 ($ $)) (IF (|has| |t#1| (-15 -2376 (|t#1| |t#1| (-1153)))) (IF (|has| |t#1| (-15 -1654 ((-626 (-1153)) |t#1|))) (-15 -2376 ($ $ (-1153))) |noBranch|) |noBranch|) (IF (|has| |t#1| (-1173)) (IF (|has| |t#1| (-951)) (IF (|has| |t#1| (-29 (-560))) (-15 -2376 ($ $ (-1153))) |noBranch|) |noBranch|) |noBranch|) (-6 (-994)) (-6 (-1173))) |noBranch|) (IF (|has| |t#1| (-359)) (-6 (-359)) |noBranch|))) -(((-21) . T) ((-23) . T) ((-52 |#1| (-560)) . T) ((-25) . T) ((-43 (-403 (-560))) -2318 (|has| |#1| (-359)) (|has| |#1| (-43 (-403 (-560))))) ((-43 |#1|) |has| |#1| (-170)) ((-43 $) -2318 (|has| |#1| (-550)) (|has| |#1| (-359))) ((-40) |has| |#1| (-43 (-403 (-560)))) ((-98) |has| |#1| (-43 (-403 (-560)))) ((-105) . T) ((-120 (-403 (-560)) (-403 (-560))) -2318 (|has| |#1| (-359)) (|has| |#1| (-43 (-403 (-560))))) ((-120 |#1| |#1|) . T) ((-120 $ $) -2318 (|has| |#1| (-550)) (|has| |#1| (-359)) (|has| |#1| (-170))) ((-137) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-600 (-842)) . T) ((-170) -2318 (|has| |#1| (-550)) (|has| |#1| (-359)) (|has| |#1| (-170))) ((-221) |has| |#1| (-15 * (|#1| (-560) |#1|))) ((-233) |has| |#1| (-359)) ((-274) |has| |#1| (-43 (-403 (-560)))) ((-276 $ $) |has| (-560) (-1094)) ((-280) -2318 (|has| |#1| (-550)) (|has| |#1| (-359))) ((-296) |has| |#1| (-359)) ((-359) |has| |#1| (-359)) ((-447) |has| |#1| (-359)) ((-494) |has| |#1| (-43 (-403 (-560)))) ((-550) -2318 (|has| |#1| (-550)) (|has| |#1| (-359))) ((-629 (-403 (-560))) -2318 (|has| |#1| (-359)) (|has| |#1| (-43 (-403 (-560))))) ((-629 |#1|) . T) ((-629 $) . T) ((-699 (-403 (-560))) -2318 (|has| |#1| (-359)) (|has| |#1| (-43 (-403 (-560))))) ((-699 |#1|) |has| |#1| (-170)) ((-699 $) -2318 (|has| |#1| (-550)) (|has| |#1| (-359))) ((-708) . T) ((-887 (-1153)) -12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-887 (-1153)))) ((-966 |#1| (-560) (-1067)) . T) ((-908) |has| |#1| (-359)) ((-994) |has| |#1| (-43 (-403 (-560)))) ((-1045 (-403 (-560))) -2318 (|has| |#1| (-359)) (|has| |#1| (-43 (-403 (-560))))) ((-1045 |#1|) . T) ((-1045 $) -2318 (|has| |#1| (-550)) (|has| |#1| (-359)) (|has| |#1| (-170))) ((-1039) . T) ((-1046) . T) ((-1094) . T) ((-1082) . T) ((-1173) |has| |#1| (-43 (-403 (-560)))) ((-1176) |has| |#1| (-43 (-403 (-560)))) ((-1191) |has| |#1| (-359)) ((-1213 |#1| (-560)) . T)) -((-2832 (((-121) $) 12)) (-1473 (((-3 |#3| "failed") $) 17) (((-3 (-1153) "failed") $) NIL) (((-3 (-403 (-560)) "failed") $) NIL) (((-3 (-560) "failed") $) NIL)) (-3001 ((|#3| $) 14) (((-1153) $) NIL) (((-403 (-560)) $) NIL) (((-560) $) NIL))) -(((-1196 |#1| |#2| |#3|) (-10 -8 (-15 -3001 ((-560) |#1|)) (-15 -1473 ((-3 (-560) "failed") |#1|)) (-15 -3001 ((-403 (-560)) |#1|)) (-15 -1473 ((-3 (-403 (-560)) "failed") |#1|)) (-15 -3001 ((-1153) |#1|)) (-15 -1473 ((-3 (-1153) "failed") |#1|)) (-15 -3001 (|#3| |#1|)) (-15 -1473 ((-3 |#3| "failed") |#1|)) (-15 -2832 ((-121) |#1|))) (-1197 |#2| |#3|) (-1039) (-1226 |#2|)) (T -1196)) -NIL -(-10 -8 (-15 -3001 ((-560) |#1|)) (-15 -1473 ((-3 (-560) "failed") |#1|)) (-15 -3001 ((-403 (-560)) |#1|)) (-15 -1473 ((-3 (-403 (-560)) "failed") |#1|)) (-15 -3001 ((-1153) |#1|)) (-15 -1473 ((-3 (-1153) "failed") |#1|)) (-15 -3001 (|#3| |#1|)) (-15 -1473 ((-3 |#3| "failed") |#1|)) (-15 -2832 ((-121) |#1|))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-1947 ((|#2| $) 219 (-2256 (|has| |#2| (-296)) (|has| |#1| (-359))))) (-1654 (((-626 (-1067)) $) 70)) (-1395 (((-1153) $) 98)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) 50 (|has| |#1| (-550)))) (-1350 (($ $) 51 (|has| |#1| (-550)))) (-3376 (((-121) $) 53 (|has| |#1| (-550)))) (-4330 (($ $ (-560)) 93) (($ $ (-560) (-560)) 92)) (-4138 (((-1133 (-2 (|:| |k| (-560)) (|:| |c| |#1|))) $) 100)) (-1334 ((|#2| $) 255)) (-3389 (((-3 |#2| "failed") $) 251)) (-1676 ((|#2| $) 252)) (-2570 (($ $) 127 (|has| |#1| (-43 (-403 (-560)))))) (-2514 (($ $) 110 (|has| |#1| (-43 (-403 (-560)))))) (-2314 (((-3 $ "failed") $ $) 18)) (-1776 (((-414 (-1149 $)) (-1149 $)) 228 (-2256 (|has| |#2| (-896)) (|has| |#1| (-359))))) (-3065 (($ $) 154 (|has| |#1| (-359)))) (-2953 (((-414 $) $) 155 (|has| |#1| (-359)))) (-2479 (($ $) 109 (|has| |#1| (-43 (-403 (-560)))))) (-1887 (((-3 (-626 (-1149 $)) "failed") (-626 (-1149 $)) (-1149 $)) 225 (-2256 (|has| |#2| (-896)) (|has| |#1| (-359))))) (-4179 (((-121) $ $) 145 (|has| |#1| (-359)))) (-2561 (($ $) 126 (|has| |#1| (-43 (-403 (-560)))))) (-2790 (($ $) 111 (|has| |#1| (-43 (-403 (-560)))))) (-4235 (((-560) $) 237 (-2256 (|has| |#2| (-807)) (|has| |#1| (-359))))) (-3783 (($ (-1133 (-2 (|:| |k| (-560)) (|:| |c| |#1|)))) 166)) (-2579 (($ $) 125 (|has| |#1| (-43 (-403 (-560)))))) (-2523 (($ $) 112 (|has| |#1| (-43 (-403 (-560)))))) (-4236 (($) 16 T CONST)) (-1473 (((-3 |#2| "failed") $) 258) (((-3 (-560) "failed") $) 247 (-2256 (|has| |#2| (-1029 (-560))) (|has| |#1| (-359)))) (((-3 (-403 (-560)) "failed") $) 245 (-2256 (|has| |#2| (-1029 (-560))) (|has| |#1| (-359)))) (((-3 (-1153) "failed") $) 230 (-2256 (|has| |#2| (-1029 (-1153))) (|has| |#1| (-359))))) (-3001 ((|#2| $) 257) (((-560) $) 248 (-2256 (|has| |#2| (-1029 (-560))) (|has| |#1| (-359)))) (((-403 (-560)) $) 246 (-2256 (|has| |#2| (-1029 (-560))) (|has| |#1| (-359)))) (((-1153) $) 231 (-2256 (|has| |#2| (-1029 (-1153))) (|has| |#1| (-359))))) (-3020 (($ $) 254) (($ (-560) $) 253)) (-2563 (($ $ $) 149 (|has| |#1| (-359)))) (-1750 (($ $) 59)) (-2616 (((-671 |#2|) (-671 $)) 209 (|has| |#1| (-359))) (((-2 (|:| -3818 (-671 |#2|)) (|:| |vec| (-1236 |#2|))) (-671 $) (-1236 $)) 208 (|has| |#1| (-359))) (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) 207 (-2256 (|has| |#2| (-622 (-560))) (|has| |#1| (-359)))) (((-671 (-560)) (-671 $)) 206 (-2256 (|has| |#2| (-622 (-560))) (|has| |#1| (-359))))) (-1823 (((-3 $ "failed") $) 33)) (-1289 (((-403 (-945 |#1|)) $ (-560)) 164 (|has| |#1| (-550))) (((-403 (-945 |#1|)) $ (-560) (-560)) 163 (|has| |#1| (-550)))) (-1666 (($) 221 (-2256 (|has| |#2| (-542)) (|has| |#1| (-359))))) (-2572 (($ $ $) 148 (|has| |#1| (-359)))) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) 143 (|has| |#1| (-359)))) (-3319 (((-121) $) 156 (|has| |#1| (-359)))) (-1786 (((-121) $) 235 (-2256 (|has| |#2| (-807)) (|has| |#1| (-359))))) (-1815 (((-121) $) 69)) (-2474 (($) 137 (|has| |#1| (-43 (-403 (-560)))))) (-2399 (((-876 (-375) $) $ (-879 (-375)) (-876 (-375) $)) 213 (-2256 (|has| |#2| (-873 (-375))) (|has| |#1| (-359)))) (((-876 (-560) $) $ (-879 (-560)) (-876 (-560) $)) 212 (-2256 (|has| |#2| (-873 (-560))) (|has| |#1| (-359))))) (-3504 (((-560) $) 95) (((-560) $ (-560)) 94)) (-2642 (((-121) $) 30)) (-1540 (($ $) 217 (|has| |#1| (-359)))) (-2132 ((|#2| $) 215 (|has| |#1| (-359)))) (-2586 (($ $ (-560)) 108 (|has| |#1| (-43 (-403 (-560)))))) (-1424 (((-3 $ "failed") $) 249 (-2256 (|has| |#2| (-1128)) (|has| |#1| (-359))))) (-2187 (((-121) $) 236 (-2256 (|has| |#2| (-807)) (|has| |#1| (-359))))) (-3549 (($ $ (-909)) 96)) (-3994 (($ (-1 |#1| (-560)) $) 165)) (-3856 (((-3 (-626 $) "failed") (-626 $) $) 152 (|has| |#1| (-359)))) (-1814 (((-121) $) 61)) (-1637 (($ |#1| (-560)) 60) (($ $ (-1067) (-560)) 72) (($ $ (-626 (-1067)) (-626 (-560))) 71)) (-4325 (($ $ $) 239 (-2256 (|has| |#2| (-834)) (|has| |#1| (-359))))) (-2501 (($ $ $) 240 (-2256 (|has| |#2| (-834)) (|has| |#1| (-359))))) (-2803 (($ (-1 |#1| |#1|) $) 62) (($ (-1 |#2| |#2|) $) 201 (|has| |#1| (-359)))) (-4399 (($ $) 134 (|has| |#1| (-43 (-403 (-560)))))) (-1726 (($ $) 64)) (-1735 ((|#1| $) 65)) (-2582 (($ (-626 $)) 141 (|has| |#1| (-359))) (($ $ $) 140 (|has| |#1| (-359)))) (-1684 (($ (-560) |#2|) 256)) (-1291 (((-1135) $) 9)) (-1701 (($ $) 157 (|has| |#1| (-359)))) (-2376 (($ $) 162 (|has| |#1| (-43 (-403 (-560))))) (($ $ (-1153)) 161 (-2318 (-12 (|has| |#1| (-29 (-560))) (|has| |#1| (-951)) (|has| |#1| (-1173)) (|has| |#1| (-43 (-403 (-560))))) (-12 (|has| |#1| (-15 -1654 ((-626 (-1153)) |#1|))) (|has| |#1| (-15 -2376 (|#1| |#1| (-1153)))) (|has| |#1| (-43 (-403 (-560)))))))) (-1394 (($) 250 (-2256 (|has| |#2| (-1128)) (|has| |#1| (-359))) CONST)) (-4353 (((-1100) $) 10)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) 142 (|has| |#1| (-359)))) (-4440 (($ (-626 $)) 139 (|has| |#1| (-359))) (($ $ $) 138 (|has| |#1| (-359)))) (-4302 (($ $) 220 (-2256 (|has| |#2| (-296)) (|has| |#1| (-359))))) (-2150 ((|#2| $) 223 (-2256 (|has| |#2| (-542)) (|has| |#1| (-359))))) (-3817 (((-414 (-1149 $)) (-1149 $)) 226 (-2256 (|has| |#2| (-896)) (|has| |#1| (-359))))) (-3032 (((-414 (-1149 $)) (-1149 $)) 227 (-2256 (|has| |#2| (-896)) (|has| |#1| (-359))))) (-1601 (((-414 $) $) 153 (|has| |#1| (-359)))) (-3505 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 151 (|has| |#1| (-359))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) 150 (|has| |#1| (-359)))) (-3292 (($ $ (-560)) 90)) (-2336 (((-3 $ "failed") $ $) 49 (|has| |#1| (-550)))) (-3456 (((-3 (-626 $) "failed") (-626 $) $) 144 (|has| |#1| (-359)))) (-2469 (($ $) 135 (|has| |#1| (-43 (-403 (-560)))))) (-4450 (((-1133 |#1|) $ |#1|) 89 (|has| |#1| (-15 ** (|#1| |#1| (-560))))) (($ $ (-1153) |#2|) 200 (-2256 (|has| |#2| (-515 (-1153) |#2|)) (|has| |#1| (-359)))) (($ $ (-626 (-1153)) (-626 |#2|)) 199 (-2256 (|has| |#2| (-515 (-1153) |#2|)) (|has| |#1| (-359)))) (($ $ (-626 (-283 |#2|))) 198 (-2256 (|has| |#2| (-298 |#2|)) (|has| |#1| (-359)))) (($ $ (-283 |#2|)) 197 (-2256 (|has| |#2| (-298 |#2|)) (|has| |#1| (-359)))) (($ $ |#2| |#2|) 196 (-2256 (|has| |#2| (-298 |#2|)) (|has| |#1| (-359)))) (($ $ (-626 |#2|) (-626 |#2|)) 195 (-2256 (|has| |#2| (-298 |#2|)) (|has| |#1| (-359))))) (-4445 (((-755) $) 146 (|has| |#1| (-359)))) (-2778 ((|#1| $ (-560)) 99) (($ $ $) 76 (|has| (-560) (-1094))) (($ $ |#2|) 194 (-2256 (|has| |#2| (-276 |#2| |#2|)) (|has| |#1| (-359))))) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) 147 (|has| |#1| (-359)))) (-2443 (($ $ (-1 |#2| |#2|)) 205 (|has| |#1| (-359))) (($ $ (-1 |#2| |#2|) (-755)) 204 (|has| |#1| (-359))) (($ $ (-755)) 79 (-2318 (-2256 (|has| |#2| (-221)) (|has| |#1| (-359))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) (($ $) 77 (-2318 (-2256 (|has| |#2| (-221)) (|has| |#1| (-359))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) (($ $ (-626 (-1153)) (-626 (-755))) 84 (-2318 (-2256 (|has| |#2| (-887 (-1153))) (|has| |#1| (-359))) (-12 (|has| |#1| (-887 (-1153))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))))) (($ $ (-1153) (-755)) 83 (-2318 (-2256 (|has| |#2| (-887 (-1153))) (|has| |#1| (-359))) (-12 (|has| |#1| (-887 (-1153))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))))) (($ $ (-626 (-1153))) 82 (-2318 (-2256 (|has| |#2| (-887 (-1153))) (|has| |#1| (-359))) (-12 (|has| |#1| (-887 (-1153))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))))) (($ $ (-1153)) 81 (-2318 (-2256 (|has| |#2| (-887 (-1153))) (|has| |#1| (-359))) (-12 (|has| |#1| (-887 (-1153))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))))) (-1646 (($ $) 218 (|has| |#1| (-359)))) (-2139 ((|#2| $) 216 (|has| |#1| (-359)))) (-3662 (((-560) $) 63)) (-2585 (($ $) 124 (|has| |#1| (-43 (-403 (-560)))))) (-2528 (($ $) 113 (|has| |#1| (-43 (-403 (-560)))))) (-2575 (($ $) 123 (|has| |#1| (-43 (-403 (-560)))))) (-2519 (($ $) 114 (|has| |#1| (-43 (-403 (-560)))))) (-2566 (($ $) 122 (|has| |#1| (-43 (-403 (-560)))))) (-2795 (($ $) 115 (|has| |#1| (-43 (-403 (-560)))))) (-4255 (((-213) $) 234 (-2256 (|has| |#2| (-1013)) (|has| |#1| (-359)))) (((-375) $) 233 (-2256 (|has| |#2| (-1013)) (|has| |#1| (-359)))) (((-533) $) 232 (-2256 (|has| |#2| (-601 (-533))) (|has| |#1| (-359)))) (((-879 (-375)) $) 211 (-2256 (|has| |#2| (-601 (-879 (-375)))) (|has| |#1| (-359)))) (((-879 (-560)) $) 210 (-2256 (|has| |#2| (-601 (-879 (-560)))) (|has| |#1| (-359))))) (-3248 (((-3 (-1236 $) "failed") (-671 $)) 224 (-2256 (-2256 (|has| $ (-146)) (|has| |#2| (-896))) (|has| |#1| (-359))))) (-2234 (($ $) 68)) (-2801 (((-842) $) 11) (($ (-560)) 27) (($ |#1|) 46 (|has| |#1| (-170))) (($ |#2|) 259) (($ (-1153)) 229 (-2256 (|has| |#2| (-1029 (-1153))) (|has| |#1| (-359)))) (($ (-403 (-560))) 56 (|has| |#1| (-43 (-403 (-560))))) (($ $) 48 (|has| |#1| (-550)))) (-2636 ((|#1| $ (-560)) 58)) (-2272 (((-3 $ "failed") $) 47 (-2318 (-2256 (-2318 (|has| |#2| (-146)) (-2256 (|has| $ (-146)) (|has| |#2| (-896)))) (|has| |#1| (-359))) (|has| |#1| (-146))))) (-1751 (((-755)) 28)) (-1341 ((|#1| $) 97)) (-4316 ((|#2| $) 222 (-2256 (|has| |#2| (-542)) (|has| |#1| (-359))))) (-2598 (($ $) 133 (|has| |#1| (-43 (-403 (-560)))))) (-2541 (($ $) 121 (|has| |#1| (-43 (-403 (-560)))))) (-2328 (((-121) $ $) 52 (|has| |#1| (-550)))) (-2590 (($ $) 132 (|has| |#1| (-43 (-403 (-560)))))) (-2532 (($ $) 120 (|has| |#1| (-43 (-403 (-560)))))) (-2608 (($ $) 131 (|has| |#1| (-43 (-403 (-560)))))) (-2549 (($ $) 119 (|has| |#1| (-43 (-403 (-560)))))) (-2550 ((|#1| $ (-560)) 91 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-560)))) (|has| |#1| (-15 -2801 (|#1| (-1153))))))) (-3689 (($ $) 130 (|has| |#1| (-43 (-403 (-560)))))) (-2554 (($ $) 118 (|has| |#1| (-43 (-403 (-560)))))) (-2604 (($ $) 129 (|has| |#1| (-43 (-403 (-560)))))) (-2545 (($ $) 117 (|has| |#1| (-43 (-403 (-560)))))) (-2594 (($ $) 128 (|has| |#1| (-43 (-403 (-560)))))) (-2536 (($ $) 116 (|has| |#1| (-43 (-403 (-560)))))) (-1822 (($ $) 238 (-2256 (|has| |#2| (-807)) (|has| |#1| (-359))))) (-2464 (($ $ (-909)) 25) (($ $ (-755)) 32) (($ $ (-560)) 158 (|has| |#1| (-359)))) (-3304 (($) 17 T CONST)) (-1459 (($) 29 T CONST)) (-2500 (($ $ (-1 |#2| |#2|)) 203 (|has| |#1| (-359))) (($ $ (-1 |#2| |#2|) (-755)) 202 (|has| |#1| (-359))) (($ $ (-755)) 80 (-2318 (-2256 (|has| |#2| (-221)) (|has| |#1| (-359))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) (($ $) 78 (-2318 (-2256 (|has| |#2| (-221)) (|has| |#1| (-359))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) (($ $ (-626 (-1153)) (-626 (-755))) 88 (-2318 (-2256 (|has| |#2| (-887 (-1153))) (|has| |#1| (-359))) (-12 (|has| |#1| (-887 (-1153))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))))) (($ $ (-1153) (-755)) 87 (-2318 (-2256 (|has| |#2| (-887 (-1153))) (|has| |#1| (-359))) (-12 (|has| |#1| (-887 (-1153))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))))) (($ $ (-626 (-1153))) 86 (-2318 (-2256 (|has| |#2| (-887 (-1153))) (|has| |#1| (-359))) (-12 (|has| |#1| (-887 (-1153))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))))) (($ $ (-1153)) 85 (-2318 (-2256 (|has| |#2| (-887 (-1153))) (|has| |#1| (-359))) (-12 (|has| |#1| (-887 (-1153))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))))) (-1691 (((-121) $ $) 242 (-2256 (|has| |#2| (-834)) (|has| |#1| (-359))))) (-1675 (((-121) $ $) 243 (-2256 (|has| |#2| (-834)) (|has| |#1| (-359))))) (-1653 (((-121) $ $) 6)) (-1683 (((-121) $ $) 241 (-2256 (|has| |#2| (-834)) (|has| |#1| (-359))))) (-1667 (((-121) $ $) 244 (-2256 (|has| |#2| (-834)) (|has| |#1| (-359))))) (-1733 (($ $ |#1|) 57 (|has| |#1| (-359))) (($ $ $) 160 (|has| |#1| (-359))) (($ |#2| |#2|) 214 (|has| |#1| (-359)))) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 24) (($ $ (-755)) 31) (($ $ (-560)) 159 (|has| |#1| (-359))) (($ $ $) 136 (|has| |#1| (-43 (-403 (-560))))) (($ $ (-403 (-560))) 107 (|has| |#1| (-43 (-403 (-560)))))) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 23) (($ $ |#1|) 67) (($ |#1| $) 66) (($ $ |#2|) 193 (|has| |#1| (-359))) (($ |#2| $) 192 (|has| |#1| (-359))) (($ (-403 (-560)) $) 55 (|has| |#1| (-43 (-403 (-560))))) (($ $ (-403 (-560))) 54 (|has| |#1| (-43 (-403 (-560))))))) -(((-1197 |#1| |#2|) (-1267) (-1039) (-1226 |t#1|)) (T -1197)) -((-3662 (*1 *2 *1) (-12 (-4 *1 (-1197 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-1226 *3)) (-5 *2 (-560)))) (-2801 (*1 *1 *2) (-12 (-4 *3 (-1039)) (-4 *1 (-1197 *3 *2)) (-4 *2 (-1226 *3)))) (-1684 (*1 *1 *2 *3) (-12 (-5 *2 (-560)) (-4 *4 (-1039)) (-4 *1 (-1197 *4 *3)) (-4 *3 (-1226 *4)))) (-1334 (*1 *2 *1) (-12 (-4 *1 (-1197 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-1226 *3)))) (-3020 (*1 *1 *1) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-1226 *2)))) (-3020 (*1 *1 *2 *1) (-12 (-5 *2 (-560)) (-4 *1 (-1197 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-1226 *3)))) (-1676 (*1 *2 *1) (-12 (-4 *1 (-1197 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-1226 *3)))) (-3389 (*1 *2 *1) (|partial| -12 (-4 *1 (-1197 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-1226 *3))))) -(-13 (-1195 |t#1|) (-1029 |t#2|) (-10 -8 (-15 -1684 ($ (-560) |t#2|)) (-15 -3662 ((-560) $)) (-15 -1334 (|t#2| $)) (-15 -3020 ($ $)) (-15 -3020 ($ (-560) $)) (-15 -2801 ($ |t#2|)) (-15 -1676 (|t#2| $)) (-15 -3389 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-359)) (-6 (-985 |t#2|)) |noBranch|))) -(((-21) . T) ((-23) . T) ((-52 |#1| (-560)) . T) ((-25) . T) ((-43 (-403 (-560))) -2318 (|has| |#1| (-359)) (|has| |#1| (-43 (-403 (-560))))) ((-43 |#1|) |has| |#1| (-170)) ((-43 |#2|) |has| |#1| (-359)) ((-43 $) -2318 (|has| |#1| (-550)) (|has| |#1| (-359))) ((-40) |has| |#1| (-43 (-403 (-560)))) ((-98) |has| |#1| (-43 (-403 (-560)))) ((-105) . T) ((-120 (-403 (-560)) (-403 (-560))) -2318 (|has| |#1| (-359)) (|has| |#1| (-43 (-403 (-560))))) ((-120 |#1| |#1|) . T) ((-120 |#2| |#2|) |has| |#1| (-359)) ((-120 $ $) -2318 (|has| |#1| (-550)) (|has| |#1| (-359)) (|has| |#1| (-170))) ((-137) . T) ((-146) -2318 (-12 (|has| |#1| (-359)) (|has| |#2| (-146))) (|has| |#1| (-146))) ((-148) -2318 (-12 (|has| |#1| (-359)) (|has| |#2| (-148))) (|has| |#1| (-148))) ((-600 (-842)) . T) ((-170) -2318 (|has| |#1| (-550)) (|has| |#1| (-359)) (|has| |#1| (-170))) ((-601 (-213)) -12 (|has| |#1| (-359)) (|has| |#2| (-1013))) ((-601 (-375)) -12 (|has| |#1| (-359)) (|has| |#2| (-1013))) ((-601 (-533)) -12 (|has| |#1| (-359)) (|has| |#2| (-601 (-533)))) ((-601 (-879 (-375))) -12 (|has| |#1| (-359)) (|has| |#2| (-601 (-879 (-375))))) ((-601 (-879 (-560))) -12 (|has| |#1| (-359)) (|has| |#2| (-601 (-879 (-560))))) ((-219 |#2|) |has| |#1| (-359)) ((-221) -2318 (-12 (|has| |#1| (-359)) (|has| |#2| (-221))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ((-233) |has| |#1| (-359)) ((-274) |has| |#1| (-43 (-403 (-560)))) ((-276 |#2| $) -12 (|has| |#1| (-359)) (|has| |#2| (-276 |#2| |#2|))) ((-276 $ $) |has| (-560) (-1094)) ((-280) -2318 (|has| |#1| (-550)) (|has| |#1| (-359))) ((-296) |has| |#1| (-359)) ((-298 |#2|) -12 (|has| |#1| (-359)) (|has| |#2| (-298 |#2|))) ((-359) |has| |#1| (-359)) ((-330 |#2|) |has| |#1| (-359)) ((-373 |#2|) |has| |#1| (-359)) ((-396 |#2|) |has| |#1| (-359)) ((-447) |has| |#1| (-359)) ((-494) |has| |#1| (-43 (-403 (-560)))) ((-515 (-1153) |#2|) -12 (|has| |#1| (-359)) (|has| |#2| (-515 (-1153) |#2|))) ((-515 |#2| |#2|) -12 (|has| |#1| (-359)) (|has| |#2| (-298 |#2|))) ((-550) -2318 (|has| |#1| (-550)) (|has| |#1| (-359))) ((-629 (-403 (-560))) -2318 (|has| |#1| (-359)) (|has| |#1| (-43 (-403 (-560))))) ((-629 |#1|) . T) ((-629 |#2|) |has| |#1| (-359)) ((-629 $) . T) ((-622 (-560)) -12 (|has| |#1| (-359)) (|has| |#2| (-622 (-560)))) ((-622 |#2|) |has| |#1| (-359)) ((-699 (-403 (-560))) -2318 (|has| |#1| (-359)) (|has| |#1| (-43 (-403 (-560))))) ((-699 |#1|) |has| |#1| (-170)) ((-699 |#2|) |has| |#1| (-359)) ((-699 $) -2318 (|has| |#1| (-550)) (|has| |#1| (-359))) ((-708) . T) ((-778) -12 (|has| |#1| (-359)) (|has| |#2| (-807))) ((-779) -12 (|has| |#1| (-359)) (|has| |#2| (-807))) ((-781) -12 (|has| |#1| (-359)) (|has| |#2| (-807))) ((-782) -12 (|has| |#1| (-359)) (|has| |#2| (-807))) ((-807) -12 (|has| |#1| (-359)) (|has| |#2| (-807))) ((-832) -12 (|has| |#1| (-359)) (|has| |#2| (-807))) ((-834) -2318 (-12 (|has| |#1| (-359)) (|has| |#2| (-834))) (-12 (|has| |#1| (-359)) (|has| |#2| (-807)))) ((-887 (-1153)) -2318 (-12 (|has| |#1| (-359)) (|has| |#2| (-887 (-1153)))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-887 (-1153))))) ((-873 (-375)) -12 (|has| |#1| (-359)) (|has| |#2| (-873 (-375)))) ((-873 (-560)) -12 (|has| |#1| (-359)) (|has| |#2| (-873 (-560)))) ((-871 |#2|) |has| |#1| (-359)) ((-896) -12 (|has| |#1| (-359)) (|has| |#2| (-896))) ((-966 |#1| (-560) (-1067)) . T) ((-908) |has| |#1| (-359)) ((-985 |#2|) |has| |#1| (-359)) ((-994) |has| |#1| (-43 (-403 (-560)))) ((-1013) -12 (|has| |#1| (-359)) (|has| |#2| (-1013))) ((-1029 (-403 (-560))) -12 (|has| |#1| (-359)) (|has| |#2| (-1029 (-560)))) ((-1029 (-560)) -12 (|has| |#1| (-359)) (|has| |#2| (-1029 (-560)))) ((-1029 (-1153)) -12 (|has| |#1| (-359)) (|has| |#2| (-1029 (-1153)))) ((-1029 |#2|) . T) ((-1045 (-403 (-560))) -2318 (|has| |#1| (-359)) (|has| |#1| (-43 (-403 (-560))))) ((-1045 |#1|) . T) ((-1045 |#2|) |has| |#1| (-359)) ((-1045 $) -2318 (|has| |#1| (-550)) (|has| |#1| (-359)) (|has| |#1| (-170))) ((-1039) . T) ((-1046) . T) ((-1094) . T) ((-1082) . T) ((-1128) -12 (|has| |#1| (-359)) (|has| |#2| (-1128))) ((-1173) |has| |#1| (-43 (-403 (-560)))) ((-1176) |has| |#1| (-43 (-403 (-560)))) ((-1187) |has| |#1| (-359)) ((-1191) |has| |#1| (-359)) ((-1195 |#1|) . T) ((-1213 |#1| (-560)) . T)) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) 70)) (-1947 ((|#2| $) NIL (-12 (|has| |#2| (-296)) (|has| |#1| (-359))))) (-1654 (((-626 (-1067)) $) NIL)) (-1395 (((-1153) $) 88)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL (|has| |#1| (-550)))) (-1350 (($ $) NIL (|has| |#1| (-550)))) (-3376 (((-121) $) NIL (|has| |#1| (-550)))) (-4330 (($ $ (-560)) 97) (($ $ (-560) (-560)) 99)) (-4138 (((-1133 (-2 (|:| |k| (-560)) (|:| |c| |#1|))) $) 47)) (-1334 ((|#2| $) 11)) (-3389 (((-3 |#2| "failed") $) 30)) (-1676 ((|#2| $) 31)) (-2570 (($ $) 192 (|has| |#1| (-43 (-403 (-560)))))) (-2514 (($ $) 168 (|has| |#1| (-43 (-403 (-560)))))) (-2314 (((-3 $ "failed") $ $) NIL)) (-1776 (((-414 (-1149 $)) (-1149 $)) NIL (-12 (|has| |#2| (-896)) (|has| |#1| (-359))))) (-3065 (($ $) NIL (|has| |#1| (-359)))) (-2953 (((-414 $) $) NIL (|has| |#1| (-359)))) (-2479 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-1887 (((-3 (-626 (-1149 $)) "failed") (-626 (-1149 $)) (-1149 $)) NIL (-12 (|has| |#2| (-896)) (|has| |#1| (-359))))) (-4179 (((-121) $ $) NIL (|has| |#1| (-359)))) (-2561 (($ $) 188 (|has| |#1| (-43 (-403 (-560)))))) (-2790 (($ $) 164 (|has| |#1| (-43 (-403 (-560)))))) (-4235 (((-560) $) NIL (-12 (|has| |#2| (-807)) (|has| |#1| (-359))))) (-3783 (($ (-1133 (-2 (|:| |k| (-560)) (|:| |c| |#1|)))) 57)) (-2579 (($ $) 196 (|has| |#1| (-43 (-403 (-560)))))) (-2523 (($ $) 172 (|has| |#1| (-43 (-403 (-560)))))) (-4236 (($) NIL T CONST)) (-1473 (((-3 |#2| "failed") $) 144) (((-3 (-560) "failed") $) NIL (-12 (|has| |#2| (-1029 (-560))) (|has| |#1| (-359)))) (((-3 (-403 (-560)) "failed") $) NIL (-12 (|has| |#2| (-1029 (-560))) (|has| |#1| (-359)))) (((-3 (-1153) "failed") $) NIL (-12 (|has| |#2| (-1029 (-1153))) (|has| |#1| (-359))))) (-3001 ((|#2| $) 143) (((-560) $) NIL (-12 (|has| |#2| (-1029 (-560))) (|has| |#1| (-359)))) (((-403 (-560)) $) NIL (-12 (|has| |#2| (-1029 (-560))) (|has| |#1| (-359)))) (((-1153) $) NIL (-12 (|has| |#2| (-1029 (-1153))) (|has| |#1| (-359))))) (-3020 (($ $) 61) (($ (-560) $) 24)) (-2563 (($ $ $) NIL (|has| |#1| (-359)))) (-1750 (($ $) NIL)) (-2616 (((-671 |#2|) (-671 $)) NIL (|has| |#1| (-359))) (((-2 (|:| -3818 (-671 |#2|)) (|:| |vec| (-1236 |#2|))) (-671 $) (-1236 $)) NIL (|has| |#1| (-359))) (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) NIL (-12 (|has| |#2| (-622 (-560))) (|has| |#1| (-359)))) (((-671 (-560)) (-671 $)) NIL (-12 (|has| |#2| (-622 (-560))) (|has| |#1| (-359))))) (-1823 (((-3 $ "failed") $) 77)) (-1289 (((-403 (-945 |#1|)) $ (-560)) 112 (|has| |#1| (-550))) (((-403 (-945 |#1|)) $ (-560) (-560)) 114 (|has| |#1| (-550)))) (-1666 (($) NIL (-12 (|has| |#2| (-542)) (|has| |#1| (-359))))) (-2572 (($ $ $) NIL (|has| |#1| (-359)))) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) NIL (|has| |#1| (-359)))) (-3319 (((-121) $) NIL (|has| |#1| (-359)))) (-1786 (((-121) $) NIL (-12 (|has| |#2| (-807)) (|has| |#1| (-359))))) (-1815 (((-121) $) 64)) (-2474 (($) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2399 (((-876 (-375) $) $ (-879 (-375)) (-876 (-375) $)) NIL (-12 (|has| |#2| (-873 (-375))) (|has| |#1| (-359)))) (((-876 (-560) $) $ (-879 (-560)) (-876 (-560) $)) NIL (-12 (|has| |#2| (-873 (-560))) (|has| |#1| (-359))))) (-3504 (((-560) $) 93) (((-560) $ (-560)) 95)) (-2642 (((-121) $) NIL)) (-1540 (($ $) NIL (|has| |#1| (-359)))) (-2132 ((|#2| $) 151 (|has| |#1| (-359)))) (-2586 (($ $ (-560)) NIL (|has| |#1| (-43 (-403 (-560)))))) (-1424 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1128)) (|has| |#1| (-359))))) (-2187 (((-121) $) NIL (-12 (|has| |#2| (-807)) (|has| |#1| (-359))))) (-3549 (($ $ (-909)) 136)) (-3994 (($ (-1 |#1| (-560)) $) 132)) (-3856 (((-3 (-626 $) "failed") (-626 $) $) NIL (|has| |#1| (-359)))) (-1814 (((-121) $) NIL)) (-1637 (($ |#1| (-560)) 19) (($ $ (-1067) (-560)) NIL) (($ $ (-626 (-1067)) (-626 (-560))) NIL)) (-4325 (($ $ $) NIL (-12 (|has| |#2| (-834)) (|has| |#1| (-359))))) (-2501 (($ $ $) NIL (-12 (|has| |#2| (-834)) (|has| |#1| (-359))))) (-2803 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-359)))) (-4399 (($ $) 162 (|has| |#1| (-43 (-403 (-560)))))) (-1726 (($ $) NIL)) (-1735 ((|#1| $) NIL)) (-2582 (($ (-626 $)) NIL (|has| |#1| (-359))) (($ $ $) NIL (|has| |#1| (-359)))) (-1684 (($ (-560) |#2|) 10)) (-1291 (((-1135) $) NIL)) (-1701 (($ $) 145 (|has| |#1| (-359)))) (-2376 (($ $) 214 (|has| |#1| (-43 (-403 (-560))))) (($ $ (-1153)) 219 (-2318 (-12 (|has| |#1| (-15 -2376 (|#1| |#1| (-1153)))) (|has| |#1| (-15 -1654 ((-626 (-1153)) |#1|))) (|has| |#1| (-43 (-403 (-560))))) (-12 (|has| |#1| (-29 (-560))) (|has| |#1| (-43 (-403 (-560)))) (|has| |#1| (-951)) (|has| |#1| (-1173)))))) (-1394 (($) NIL (-12 (|has| |#2| (-1128)) (|has| |#1| (-359))) CONST)) (-4353 (((-1100) $) NIL)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL (|has| |#1| (-359)))) (-4440 (($ (-626 $)) NIL (|has| |#1| (-359))) (($ $ $) NIL (|has| |#1| (-359)))) (-4302 (($ $) NIL (-12 (|has| |#2| (-296)) (|has| |#1| (-359))))) (-2150 ((|#2| $) NIL (-12 (|has| |#2| (-542)) (|has| |#1| (-359))))) (-3817 (((-414 (-1149 $)) (-1149 $)) NIL (-12 (|has| |#2| (-896)) (|has| |#1| (-359))))) (-3032 (((-414 (-1149 $)) (-1149 $)) NIL (-12 (|has| |#2| (-896)) (|has| |#1| (-359))))) (-1601 (((-414 $) $) NIL (|has| |#1| (-359)))) (-3505 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-359))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL (|has| |#1| (-359)))) (-3292 (($ $ (-560)) 126)) (-2336 (((-3 $ "failed") $ $) 116 (|has| |#1| (-550)))) (-3456 (((-3 (-626 $) "failed") (-626 $) $) NIL (|has| |#1| (-359)))) (-2469 (($ $) 160 (|has| |#1| (-43 (-403 (-560)))))) (-4450 (((-1133 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-560))))) (($ $ (-1153) |#2|) NIL (-12 (|has| |#2| (-515 (-1153) |#2|)) (|has| |#1| (-359)))) (($ $ (-626 (-1153)) (-626 |#2|)) NIL (-12 (|has| |#2| (-515 (-1153) |#2|)) (|has| |#1| (-359)))) (($ $ (-626 (-283 |#2|))) NIL (-12 (|has| |#2| (-298 |#2|)) (|has| |#1| (-359)))) (($ $ (-283 |#2|)) NIL (-12 (|has| |#2| (-298 |#2|)) (|has| |#1| (-359)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-298 |#2|)) (|has| |#1| (-359)))) (($ $ (-626 |#2|) (-626 |#2|)) NIL (-12 (|has| |#2| (-298 |#2|)) (|has| |#1| (-359))))) (-4445 (((-755) $) NIL (|has| |#1| (-359)))) (-2778 ((|#1| $ (-560)) 91) (($ $ $) 79 (|has| (-560) (-1094))) (($ $ |#2|) NIL (-12 (|has| |#2| (-276 |#2| |#2|)) (|has| |#1| (-359))))) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL (|has| |#1| (-359)))) (-2443 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-359))) (($ $ (-1 |#2| |#2|) (-755)) NIL (|has| |#1| (-359))) (($ $ (-755)) NIL (-2318 (-12 (|has| |#2| (-221)) (|has| |#1| (-359))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) (($ $) 137 (-2318 (-12 (|has| |#2| (-221)) (|has| |#1| (-359))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) (($ $ (-626 (-1153)) (-626 (-755))) NIL (-2318 (-12 (|has| |#2| (-887 (-1153))) (|has| |#1| (-359))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-887 (-1153)))))) (($ $ (-1153) (-755)) NIL (-2318 (-12 (|has| |#2| (-887 (-1153))) (|has| |#1| (-359))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-887 (-1153)))))) (($ $ (-626 (-1153))) NIL (-2318 (-12 (|has| |#2| (-887 (-1153))) (|has| |#1| (-359))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-887 (-1153)))))) (($ $ (-1153)) 140 (-2318 (-12 (|has| |#2| (-887 (-1153))) (|has| |#1| (-359))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-887 (-1153))))))) (-1646 (($ $) NIL (|has| |#1| (-359)))) (-2139 ((|#2| $) 152 (|has| |#1| (-359)))) (-3662 (((-560) $) 12)) (-2585 (($ $) 198 (|has| |#1| (-43 (-403 (-560)))))) (-2528 (($ $) 174 (|has| |#1| (-43 (-403 (-560)))))) (-2575 (($ $) 194 (|has| |#1| (-43 (-403 (-560)))))) (-2519 (($ $) 170 (|has| |#1| (-43 (-403 (-560)))))) (-2566 (($ $) 190 (|has| |#1| (-43 (-403 (-560)))))) (-2795 (($ $) 166 (|has| |#1| (-43 (-403 (-560)))))) (-4255 (((-213) $) NIL (-12 (|has| |#2| (-1013)) (|has| |#1| (-359)))) (((-375) $) NIL (-12 (|has| |#2| (-1013)) (|has| |#1| (-359)))) (((-533) $) NIL (-12 (|has| |#2| (-601 (-533))) (|has| |#1| (-359)))) (((-879 (-375)) $) NIL (-12 (|has| |#2| (-601 (-879 (-375)))) (|has| |#1| (-359)))) (((-879 (-560)) $) NIL (-12 (|has| |#2| (-601 (-879 (-560)))) (|has| |#1| (-359))))) (-3248 (((-3 (-1236 $) "failed") (-671 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-896)) (|has| |#1| (-359))))) (-2234 (($ $) 124)) (-2801 (((-842) $) 242) (($ (-560)) 23) (($ |#1|) 21 (|has| |#1| (-170))) (($ |#2|) 20) (($ (-1153)) NIL (-12 (|has| |#2| (-1029 (-1153))) (|has| |#1| (-359)))) (($ (-403 (-560))) 155 (|has| |#1| (-43 (-403 (-560))))) (($ $) NIL (|has| |#1| (-550)))) (-2636 ((|#1| $ (-560)) 74)) (-2272 (((-3 $ "failed") $) NIL (-2318 (-12 (|has| $ (-146)) (|has| |#2| (-896)) (|has| |#1| (-359))) (-12 (|has| |#2| (-146)) (|has| |#1| (-359))) (|has| |#1| (-146))))) (-1751 (((-755)) 142)) (-1341 ((|#1| $) 90)) (-4316 ((|#2| $) NIL (-12 (|has| |#2| (-542)) (|has| |#1| (-359))))) (-2598 (($ $) 204 (|has| |#1| (-43 (-403 (-560)))))) (-2541 (($ $) 180 (|has| |#1| (-43 (-403 (-560)))))) (-2328 (((-121) $ $) NIL (|has| |#1| (-550)))) (-2590 (($ $) 200 (|has| |#1| (-43 (-403 (-560)))))) (-2532 (($ $) 176 (|has| |#1| (-43 (-403 (-560)))))) (-2608 (($ $) 208 (|has| |#1| (-43 (-403 (-560)))))) (-2549 (($ $) 184 (|has| |#1| (-43 (-403 (-560)))))) (-2550 ((|#1| $ (-560)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-560)))) (|has| |#1| (-15 -2801 (|#1| (-1153))))))) (-3689 (($ $) 210 (|has| |#1| (-43 (-403 (-560)))))) (-2554 (($ $) 186 (|has| |#1| (-43 (-403 (-560)))))) (-2604 (($ $) 206 (|has| |#1| (-43 (-403 (-560)))))) (-2545 (($ $) 182 (|has| |#1| (-43 (-403 (-560)))))) (-2594 (($ $) 202 (|has| |#1| (-43 (-403 (-560)))))) (-2536 (($ $) 178 (|has| |#1| (-43 (-403 (-560)))))) (-1822 (($ $) NIL (-12 (|has| |#2| (-807)) (|has| |#1| (-359))))) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL (|has| |#1| (-359)))) (-3304 (($) 13 T CONST)) (-1459 (($) 17 T CONST)) (-2500 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-359))) (($ $ (-1 |#2| |#2|) (-755)) NIL (|has| |#1| (-359))) (($ $ (-755)) NIL (-2318 (-12 (|has| |#2| (-221)) (|has| |#1| (-359))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) (($ $) NIL (-2318 (-12 (|has| |#2| (-221)) (|has| |#1| (-359))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) (($ $ (-626 (-1153)) (-626 (-755))) NIL (-2318 (-12 (|has| |#2| (-887 (-1153))) (|has| |#1| (-359))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-887 (-1153)))))) (($ $ (-1153) (-755)) NIL (-2318 (-12 (|has| |#2| (-887 (-1153))) (|has| |#1| (-359))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-887 (-1153)))))) (($ $ (-626 (-1153))) NIL (-2318 (-12 (|has| |#2| (-887 (-1153))) (|has| |#1| (-359))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-887 (-1153)))))) (($ $ (-1153)) NIL (-2318 (-12 (|has| |#2| (-887 (-1153))) (|has| |#1| (-359))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-887 (-1153))))))) (-1691 (((-121) $ $) NIL (-12 (|has| |#2| (-834)) (|has| |#1| (-359))))) (-1675 (((-121) $ $) NIL (-12 (|has| |#2| (-834)) (|has| |#1| (-359))))) (-1653 (((-121) $ $) 63)) (-1683 (((-121) $ $) NIL (-12 (|has| |#2| (-834)) (|has| |#1| (-359))))) (-1667 (((-121) $ $) NIL (-12 (|has| |#2| (-834)) (|has| |#1| (-359))))) (-1733 (($ $ |#1|) NIL (|has| |#1| (-359))) (($ $ $) 149 (|has| |#1| (-359))) (($ |#2| |#2|) 150 (|has| |#1| (-359)))) (-1725 (($ $) 213) (($ $ $) 68)) (-1716 (($ $ $) 66)) (** (($ $ (-909)) NIL) (($ $ (-755)) 73) (($ $ (-560)) 146 (|has| |#1| (-359))) (($ $ $) NIL (|has| |#1| (-43 (-403 (-560))))) (($ $ (-403 (-560))) 158 (|has| |#1| (-43 (-403 (-560)))))) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-359))) (($ |#2| $) 147 (|has| |#1| (-359))) (($ (-403 (-560)) $) NIL (|has| |#1| (-43 (-403 (-560))))) (($ $ (-403 (-560))) NIL (|has| |#1| (-43 (-403 (-560))))))) -(((-1198 |#1| |#2|) (-1197 |#1| |#2|) (-1039) (-1226 |#1|)) (T -1198)) -NIL -(-1197 |#1| |#2|) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-1947 (((-1227 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-296)) (|has| |#1| (-359))))) (-1654 (((-626 (-1067)) $) NIL)) (-1395 (((-1153) $) 10)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL (-2318 (-12 (|has| (-1227 |#1| |#2| |#3|) (-807)) (|has| |#1| (-359))) (-12 (|has| (-1227 |#1| |#2| |#3|) (-896)) (|has| |#1| (-359))) (|has| |#1| (-550))))) (-1350 (($ $) NIL (-2318 (-12 (|has| (-1227 |#1| |#2| |#3|) (-807)) (|has| |#1| (-359))) (-12 (|has| (-1227 |#1| |#2| |#3|) (-896)) (|has| |#1| (-359))) (|has| |#1| (-550))))) (-3376 (((-121) $) NIL (-2318 (-12 (|has| (-1227 |#1| |#2| |#3|) (-807)) (|has| |#1| (-359))) (-12 (|has| (-1227 |#1| |#2| |#3|) (-896)) (|has| |#1| (-359))) (|has| |#1| (-550))))) (-4330 (($ $ (-560)) NIL) (($ $ (-560) (-560)) NIL)) (-4138 (((-1133 (-2 (|:| |k| (-560)) (|:| |c| |#1|))) $) NIL)) (-1334 (((-1227 |#1| |#2| |#3|) $) NIL)) (-3389 (((-3 (-1227 |#1| |#2| |#3|) "failed") $) NIL)) (-1676 (((-1227 |#1| |#2| |#3|) $) NIL)) (-2570 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2514 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2314 (((-3 $ "failed") $ $) NIL)) (-1776 (((-414 (-1149 $)) (-1149 $)) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-896)) (|has| |#1| (-359))))) (-3065 (($ $) NIL (|has| |#1| (-359)))) (-2953 (((-414 $) $) NIL (|has| |#1| (-359)))) (-2479 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-1887 (((-3 (-626 (-1149 $)) "failed") (-626 (-1149 $)) (-1149 $)) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-896)) (|has| |#1| (-359))))) (-4179 (((-121) $ $) NIL (|has| |#1| (-359)))) (-2561 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2790 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-4235 (((-560) $) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-807)) (|has| |#1| (-359))))) (-3783 (($ (-1133 (-2 (|:| |k| (-560)) (|:| |c| |#1|)))) NIL)) (-2579 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2523 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-4236 (($) NIL T CONST)) (-1473 (((-3 (-1227 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1153) "failed") $) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-1029 (-1153))) (|has| |#1| (-359)))) (((-3 (-403 (-560)) "failed") $) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-1029 (-560))) (|has| |#1| (-359)))) (((-3 (-560) "failed") $) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-1029 (-560))) (|has| |#1| (-359))))) (-3001 (((-1227 |#1| |#2| |#3|) $) NIL) (((-1153) $) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-1029 (-1153))) (|has| |#1| (-359)))) (((-403 (-560)) $) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-1029 (-560))) (|has| |#1| (-359)))) (((-560) $) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-1029 (-560))) (|has| |#1| (-359))))) (-3020 (($ $) NIL) (($ (-560) $) NIL)) (-2563 (($ $ $) NIL (|has| |#1| (-359)))) (-1750 (($ $) NIL)) (-2616 (((-671 (-1227 |#1| |#2| |#3|)) (-671 $)) NIL (|has| |#1| (-359))) (((-2 (|:| -3818 (-671 (-1227 |#1| |#2| |#3|))) (|:| |vec| (-1236 (-1227 |#1| |#2| |#3|)))) (-671 $) (-1236 $)) NIL (|has| |#1| (-359))) (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-622 (-560))) (|has| |#1| (-359)))) (((-671 (-560)) (-671 $)) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-622 (-560))) (|has| |#1| (-359))))) (-1823 (((-3 $ "failed") $) NIL)) (-1289 (((-403 (-945 |#1|)) $ (-560)) NIL (|has| |#1| (-550))) (((-403 (-945 |#1|)) $ (-560) (-560)) NIL (|has| |#1| (-550)))) (-1666 (($) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-542)) (|has| |#1| (-359))))) (-2572 (($ $ $) NIL (|has| |#1| (-359)))) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) NIL (|has| |#1| (-359)))) (-3319 (((-121) $) NIL (|has| |#1| (-359)))) (-1786 (((-121) $) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-807)) (|has| |#1| (-359))))) (-1815 (((-121) $) NIL)) (-2474 (($) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2399 (((-876 (-560) $) $ (-879 (-560)) (-876 (-560) $)) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-873 (-560))) (|has| |#1| (-359)))) (((-876 (-375) $) $ (-879 (-375)) (-876 (-375) $)) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-873 (-375))) (|has| |#1| (-359))))) (-3504 (((-560) $) NIL) (((-560) $ (-560)) NIL)) (-2642 (((-121) $) NIL)) (-1540 (($ $) NIL (|has| |#1| (-359)))) (-2132 (((-1227 |#1| |#2| |#3|) $) NIL (|has| |#1| (-359)))) (-2586 (($ $ (-560)) NIL (|has| |#1| (-43 (-403 (-560)))))) (-1424 (((-3 $ "failed") $) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-1128)) (|has| |#1| (-359))))) (-2187 (((-121) $) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-807)) (|has| |#1| (-359))))) (-3549 (($ $ (-909)) NIL)) (-3994 (($ (-1 |#1| (-560)) $) NIL)) (-3856 (((-3 (-626 $) "failed") (-626 $) $) NIL (|has| |#1| (-359)))) (-1814 (((-121) $) NIL)) (-1637 (($ |#1| (-560)) 17) (($ $ (-1067) (-560)) NIL) (($ $ (-626 (-1067)) (-626 (-560))) NIL)) (-4325 (($ $ $) NIL (-2318 (-12 (|has| (-1227 |#1| |#2| |#3|) (-807)) (|has| |#1| (-359))) (-12 (|has| (-1227 |#1| |#2| |#3|) (-834)) (|has| |#1| (-359)))))) (-2501 (($ $ $) NIL (-2318 (-12 (|has| (-1227 |#1| |#2| |#3|) (-807)) (|has| |#1| (-359))) (-12 (|has| (-1227 |#1| |#2| |#3|) (-834)) (|has| |#1| (-359)))))) (-2803 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1227 |#1| |#2| |#3|) (-1227 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-359)))) (-4399 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-1726 (($ $) NIL)) (-1735 ((|#1| $) NIL)) (-2582 (($ (-626 $)) NIL (|has| |#1| (-359))) (($ $ $) NIL (|has| |#1| (-359)))) (-1684 (($ (-560) (-1227 |#1| |#2| |#3|)) NIL)) (-1291 (((-1135) $) NIL)) (-1701 (($ $) NIL (|has| |#1| (-359)))) (-2376 (($ $) 25 (|has| |#1| (-43 (-403 (-560))))) (($ $ (-1153)) NIL (-2318 (-12 (|has| |#1| (-15 -2376 (|#1| |#1| (-1153)))) (|has| |#1| (-15 -1654 ((-626 (-1153)) |#1|))) (|has| |#1| (-43 (-403 (-560))))) (-12 (|has| |#1| (-29 (-560))) (|has| |#1| (-43 (-403 (-560)))) (|has| |#1| (-951)) (|has| |#1| (-1173))))) (($ $ (-1232 |#2|)) 26 (|has| |#1| (-43 (-403 (-560)))))) (-1394 (($) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-1128)) (|has| |#1| (-359))) CONST)) (-4353 (((-1100) $) NIL)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL (|has| |#1| (-359)))) (-4440 (($ (-626 $)) NIL (|has| |#1| (-359))) (($ $ $) NIL (|has| |#1| (-359)))) (-4302 (($ $) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-296)) (|has| |#1| (-359))))) (-2150 (((-1227 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-542)) (|has| |#1| (-359))))) (-3817 (((-414 (-1149 $)) (-1149 $)) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-896)) (|has| |#1| (-359))))) (-3032 (((-414 (-1149 $)) (-1149 $)) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-896)) (|has| |#1| (-359))))) (-1601 (((-414 $) $) NIL (|has| |#1| (-359)))) (-3505 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-359))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL (|has| |#1| (-359)))) (-3292 (($ $ (-560)) NIL)) (-2336 (((-3 $ "failed") $ $) NIL (-2318 (-12 (|has| (-1227 |#1| |#2| |#3|) (-807)) (|has| |#1| (-359))) (-12 (|has| (-1227 |#1| |#2| |#3|) (-896)) (|has| |#1| (-359))) (|has| |#1| (-550))))) (-3456 (((-3 (-626 $) "failed") (-626 $) $) NIL (|has| |#1| (-359)))) (-2469 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-4450 (((-1133 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-560))))) (($ $ (-1153) (-1227 |#1| |#2| |#3|)) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-515 (-1153) (-1227 |#1| |#2| |#3|))) (|has| |#1| (-359)))) (($ $ (-626 (-1153)) (-626 (-1227 |#1| |#2| |#3|))) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-515 (-1153) (-1227 |#1| |#2| |#3|))) (|has| |#1| (-359)))) (($ $ (-626 (-283 (-1227 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-298 (-1227 |#1| |#2| |#3|))) (|has| |#1| (-359)))) (($ $ (-283 (-1227 |#1| |#2| |#3|))) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-298 (-1227 |#1| |#2| |#3|))) (|has| |#1| (-359)))) (($ $ (-1227 |#1| |#2| |#3|) (-1227 |#1| |#2| |#3|)) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-298 (-1227 |#1| |#2| |#3|))) (|has| |#1| (-359)))) (($ $ (-626 (-1227 |#1| |#2| |#3|)) (-626 (-1227 |#1| |#2| |#3|))) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-298 (-1227 |#1| |#2| |#3|))) (|has| |#1| (-359))))) (-4445 (((-755) $) NIL (|has| |#1| (-359)))) (-2778 ((|#1| $ (-560)) NIL) (($ $ $) NIL (|has| (-560) (-1094))) (($ $ (-1227 |#1| |#2| |#3|)) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-276 (-1227 |#1| |#2| |#3|) (-1227 |#1| |#2| |#3|))) (|has| |#1| (-359))))) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL (|has| |#1| (-359)))) (-2443 (($ $ (-1 (-1227 |#1| |#2| |#3|) (-1227 |#1| |#2| |#3|))) NIL (|has| |#1| (-359))) (($ $ (-1 (-1227 |#1| |#2| |#3|) (-1227 |#1| |#2| |#3|)) (-755)) NIL (|has| |#1| (-359))) (($ $ (-1232 |#2|)) 24) (($ $ (-755)) NIL (-2318 (-12 (|has| (-1227 |#1| |#2| |#3|) (-221)) (|has| |#1| (-359))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) (($ $) 23 (-2318 (-12 (|has| (-1227 |#1| |#2| |#3|) (-221)) (|has| |#1| (-359))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) (($ $ (-626 (-1153)) (-626 (-755))) NIL (-2318 (-12 (|has| (-1227 |#1| |#2| |#3|) (-887 (-1153))) (|has| |#1| (-359))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-887 (-1153)))))) (($ $ (-1153) (-755)) NIL (-2318 (-12 (|has| (-1227 |#1| |#2| |#3|) (-887 (-1153))) (|has| |#1| (-359))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-887 (-1153)))))) (($ $ (-626 (-1153))) NIL (-2318 (-12 (|has| (-1227 |#1| |#2| |#3|) (-887 (-1153))) (|has| |#1| (-359))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-887 (-1153)))))) (($ $ (-1153)) NIL (-2318 (-12 (|has| (-1227 |#1| |#2| |#3|) (-887 (-1153))) (|has| |#1| (-359))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-887 (-1153))))))) (-1646 (($ $) NIL (|has| |#1| (-359)))) (-2139 (((-1227 |#1| |#2| |#3|) $) NIL (|has| |#1| (-359)))) (-3662 (((-560) $) NIL)) (-2585 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2528 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2575 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2519 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2566 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2795 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-4255 (((-533) $) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-601 (-533))) (|has| |#1| (-359)))) (((-375) $) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-1013)) (|has| |#1| (-359)))) (((-213) $) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-1013)) (|has| |#1| (-359)))) (((-879 (-375)) $) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-601 (-879 (-375)))) (|has| |#1| (-359)))) (((-879 (-560)) $) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-601 (-879 (-560)))) (|has| |#1| (-359))))) (-3248 (((-3 (-1236 $) "failed") (-671 $)) NIL (-12 (|has| $ (-146)) (|has| (-1227 |#1| |#2| |#3|) (-896)) (|has| |#1| (-359))))) (-2234 (($ $) NIL)) (-2801 (((-842) $) NIL) (($ (-560)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1227 |#1| |#2| |#3|)) NIL) (($ (-1232 |#2|)) 22) (($ (-1153)) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-1029 (-1153))) (|has| |#1| (-359)))) (($ $) NIL (-2318 (-12 (|has| (-1227 |#1| |#2| |#3|) (-807)) (|has| |#1| (-359))) (-12 (|has| (-1227 |#1| |#2| |#3|) (-896)) (|has| |#1| (-359))) (|has| |#1| (-550)))) (($ (-403 (-560))) NIL (-2318 (-12 (|has| (-1227 |#1| |#2| |#3|) (-1029 (-560))) (|has| |#1| (-359))) (|has| |#1| (-43 (-403 (-560))))))) (-2636 ((|#1| $ (-560)) NIL)) (-2272 (((-3 $ "failed") $) NIL (-2318 (-12 (|has| $ (-146)) (|has| (-1227 |#1| |#2| |#3|) (-896)) (|has| |#1| (-359))) (-12 (|has| (-1227 |#1| |#2| |#3|) (-146)) (|has| |#1| (-359))) (|has| |#1| (-146))))) (-1751 (((-755)) NIL)) (-1341 ((|#1| $) 11)) (-4316 (((-1227 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-542)) (|has| |#1| (-359))))) (-2598 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2541 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2328 (((-121) $ $) NIL (-2318 (-12 (|has| (-1227 |#1| |#2| |#3|) (-807)) (|has| |#1| (-359))) (-12 (|has| (-1227 |#1| |#2| |#3|) (-896)) (|has| |#1| (-359))) (|has| |#1| (-550))))) (-2590 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2532 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2608 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2549 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2550 ((|#1| $ (-560)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-560)))) (|has| |#1| (-15 -2801 (|#1| (-1153))))))) (-3689 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2554 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2604 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2545 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2594 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2536 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-1822 (($ $) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-807)) (|has| |#1| (-359))))) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL (|has| |#1| (-359)))) (-3304 (($) 19 T CONST)) (-1459 (($) 15 T CONST)) (-2500 (($ $ (-1 (-1227 |#1| |#2| |#3|) (-1227 |#1| |#2| |#3|))) NIL (|has| |#1| (-359))) (($ $ (-1 (-1227 |#1| |#2| |#3|) (-1227 |#1| |#2| |#3|)) (-755)) NIL (|has| |#1| (-359))) (($ $ (-755)) NIL (-2318 (-12 (|has| (-1227 |#1| |#2| |#3|) (-221)) (|has| |#1| (-359))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) (($ $) NIL (-2318 (-12 (|has| (-1227 |#1| |#2| |#3|) (-221)) (|has| |#1| (-359))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) (($ $ (-626 (-1153)) (-626 (-755))) NIL (-2318 (-12 (|has| (-1227 |#1| |#2| |#3|) (-887 (-1153))) (|has| |#1| (-359))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-887 (-1153)))))) (($ $ (-1153) (-755)) NIL (-2318 (-12 (|has| (-1227 |#1| |#2| |#3|) (-887 (-1153))) (|has| |#1| (-359))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-887 (-1153)))))) (($ $ (-626 (-1153))) NIL (-2318 (-12 (|has| (-1227 |#1| |#2| |#3|) (-887 (-1153))) (|has| |#1| (-359))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-887 (-1153)))))) (($ $ (-1153)) NIL (-2318 (-12 (|has| (-1227 |#1| |#2| |#3|) (-887 (-1153))) (|has| |#1| (-359))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-887 (-1153))))))) (-1691 (((-121) $ $) NIL (-2318 (-12 (|has| (-1227 |#1| |#2| |#3|) (-807)) (|has| |#1| (-359))) (-12 (|has| (-1227 |#1| |#2| |#3|) (-834)) (|has| |#1| (-359)))))) (-1675 (((-121) $ $) NIL (-2318 (-12 (|has| (-1227 |#1| |#2| |#3|) (-807)) (|has| |#1| (-359))) (-12 (|has| (-1227 |#1| |#2| |#3|) (-834)) (|has| |#1| (-359)))))) (-1653 (((-121) $ $) NIL)) (-1683 (((-121) $ $) NIL (-2318 (-12 (|has| (-1227 |#1| |#2| |#3|) (-807)) (|has| |#1| (-359))) (-12 (|has| (-1227 |#1| |#2| |#3|) (-834)) (|has| |#1| (-359)))))) (-1667 (((-121) $ $) NIL (-2318 (-12 (|has| (-1227 |#1| |#2| |#3|) (-807)) (|has| |#1| (-359))) (-12 (|has| (-1227 |#1| |#2| |#3|) (-834)) (|has| |#1| (-359)))))) (-1733 (($ $ |#1|) NIL (|has| |#1| (-359))) (($ $ $) NIL (|has| |#1| (-359))) (($ (-1227 |#1| |#2| |#3|) (-1227 |#1| |#2| |#3|)) NIL (|has| |#1| (-359)))) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) 20)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL (|has| |#1| (-359))) (($ $ $) NIL (|has| |#1| (-43 (-403 (-560))))) (($ $ (-403 (-560))) NIL (|has| |#1| (-43 (-403 (-560)))))) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1227 |#1| |#2| |#3|)) NIL (|has| |#1| (-359))) (($ (-1227 |#1| |#2| |#3|) $) NIL (|has| |#1| (-359))) (($ (-403 (-560)) $) NIL (|has| |#1| (-43 (-403 (-560))))) (($ $ (-403 (-560))) NIL (|has| |#1| (-43 (-403 (-560))))))) -(((-1199 |#1| |#2| |#3|) (-13 (-1197 |#1| (-1227 |#1| |#2| |#3|)) (-10 -8 (-15 -2801 ($ (-1232 |#2|))) (-15 -2443 ($ $ (-1232 |#2|))) (IF (|has| |#1| (-43 (-403 (-560)))) (-15 -2376 ($ $ (-1232 |#2|))) |noBranch|))) (-1039) (-1153) |#1|) (T -1199)) -((-2801 (*1 *1 *2) (-12 (-5 *2 (-1232 *4)) (-14 *4 (-1153)) (-5 *1 (-1199 *3 *4 *5)) (-4 *3 (-1039)) (-14 *5 *3))) (-2443 (*1 *1 *1 *2) (-12 (-5 *2 (-1232 *4)) (-14 *4 (-1153)) (-5 *1 (-1199 *3 *4 *5)) (-4 *3 (-1039)) (-14 *5 *3))) (-2376 (*1 *1 *1 *2) (-12 (-5 *2 (-1232 *4)) (-14 *4 (-1153)) (-5 *1 (-1199 *3 *4 *5)) (-4 *3 (-43 (-403 (-560)))) (-4 *3 (-1039)) (-14 *5 *3)))) -(-13 (-1197 |#1| (-1227 |#1| |#2| |#3|)) (-10 -8 (-15 -2801 ($ (-1232 |#2|))) (-15 -2443 ($ $ (-1232 |#2|))) (IF (|has| |#1| (-43 (-403 (-560)))) (-15 -2376 ($ $ (-1232 |#2|))) |noBranch|))) -((-3247 (((-2 (|:| |contp| (-560)) (|:| -3025 (-626 (-2 (|:| |irr| |#1|) (|:| -2678 (-560)))))) |#1| (-121)) 10)) (-2387 (((-414 |#1|) |#1|) 21)) (-1601 (((-414 |#1|) |#1|) 20))) -(((-1200 |#1|) (-10 -7 (-15 -1601 ((-414 |#1|) |#1|)) (-15 -2387 ((-414 |#1|) |#1|)) (-15 -3247 ((-2 (|:| |contp| (-560)) (|:| -3025 (-626 (-2 (|:| |irr| |#1|) (|:| -2678 (-560)))))) |#1| (-121)))) (-1211 (-560))) (T -1200)) -((-3247 (*1 *2 *3 *4) (-12 (-5 *4 (-121)) (-5 *2 (-2 (|:| |contp| (-560)) (|:| -3025 (-626 (-2 (|:| |irr| *3) (|:| -2678 (-560))))))) (-5 *1 (-1200 *3)) (-4 *3 (-1211 (-560))))) (-2387 (*1 *2 *3) (-12 (-5 *2 (-414 *3)) (-5 *1 (-1200 *3)) (-4 *3 (-1211 (-560))))) (-1601 (*1 *2 *3) (-12 (-5 *2 (-414 *3)) (-5 *1 (-1200 *3)) (-4 *3 (-1211 (-560)))))) -(-10 -7 (-15 -1601 ((-414 |#1|) |#1|)) (-15 -2387 ((-414 |#1|) |#1|)) (-15 -3247 ((-2 (|:| |contp| (-560)) (|:| -3025 (-626 (-2 (|:| |irr| |#1|) (|:| -2678 (-560)))))) |#1| (-121)))) -((-2803 (((-1133 |#2|) (-1 |#2| |#1|) (-1202 |#1|)) 23 (|has| |#1| (-832))) (((-1202 |#2|) (-1 |#2| |#1|) (-1202 |#1|)) 17))) -(((-1201 |#1| |#2|) (-10 -7 (-15 -2803 ((-1202 |#2|) (-1 |#2| |#1|) (-1202 |#1|))) (IF (|has| |#1| (-832)) (-15 -2803 ((-1133 |#2|) (-1 |#2| |#1|) (-1202 |#1|))) |noBranch|)) (-1187) (-1187)) (T -1201)) -((-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1202 *5)) (-4 *5 (-832)) (-4 *5 (-1187)) (-4 *6 (-1187)) (-5 *2 (-1133 *6)) (-5 *1 (-1201 *5 *6)))) (-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1202 *5)) (-4 *5 (-1187)) (-4 *6 (-1187)) (-5 *2 (-1202 *6)) (-5 *1 (-1201 *5 *6))))) -(-10 -7 (-15 -2803 ((-1202 |#2|) (-1 |#2| |#1|) (-1202 |#1|))) (IF (|has| |#1| (-832)) (-15 -2803 ((-1133 |#2|) (-1 |#2| |#1|) (-1202 |#1|))) |noBranch|)) -((-2601 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-2555 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-2803 (((-1133 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-832)))) (-3965 ((|#1| $) 14)) (-4322 ((|#1| $) 10)) (-1291 (((-1135) $) NIL (|has| |#1| (-1082)))) (-4329 (((-560) $) 18)) (-1451 ((|#1| $) 17)) (-4336 ((|#1| $) 11)) (-4353 (((-1100) $) NIL (|has| |#1| (-1082)))) (-4411 (((-121) $) 16)) (-3780 (((-1133 |#1|) $) 38 (|has| |#1| (-832))) (((-1133 |#1|) (-626 $)) 37 (|has| |#1| (-832)))) (-4255 (($ |#1|) 25)) (-2801 (($ (-1076 |#1|)) 24) (((-842) $) 34 (|has| |#1| (-1082)))) (-4227 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-4124 (($ $ (-560)) 13)) (-1653 (((-121) $ $) 27 (|has| |#1| (-1082))))) -(((-1202 |#1|) (-13 (-1075 |#1|) (-10 -8 (-15 -4227 ($ |#1|)) (-15 -2555 ($ |#1|)) (-15 -2801 ($ (-1076 |#1|))) (-15 -4411 ((-121) $)) (IF (|has| |#1| (-1082)) (-6 (-1082)) |noBranch|) (IF (|has| |#1| (-832)) (-6 (-1077 |#1| (-1133 |#1|))) |noBranch|))) (-1187)) (T -1202)) -((-4227 (*1 *1 *2) (-12 (-5 *1 (-1202 *2)) (-4 *2 (-1187)))) (-2555 (*1 *1 *2) (-12 (-5 *1 (-1202 *2)) (-4 *2 (-1187)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-1187)) (-5 *1 (-1202 *3)))) (-4411 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1202 *3)) (-4 *3 (-1187))))) -(-13 (-1075 |#1|) (-10 -8 (-15 -4227 ($ |#1|)) (-15 -2555 ($ |#1|)) (-15 -2801 ($ (-1076 |#1|))) (-15 -4411 ((-121) $)) (IF (|has| |#1| (-1082)) (-6 (-1082)) |noBranch|) (IF (|has| |#1| (-832)) (-6 (-1077 |#1| (-1133 |#1|))) |noBranch|))) -((-2803 (((-1208 |#3| |#4|) (-1 |#4| |#2|) (-1208 |#1| |#2|)) 15))) -(((-1203 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2803 ((-1208 |#3| |#4|) (-1 |#4| |#2|) (-1208 |#1| |#2|)))) (-1153) (-1039) (-1153) (-1039)) (T -1203)) -((-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1208 *5 *6)) (-14 *5 (-1153)) (-4 *6 (-1039)) (-4 *8 (-1039)) (-5 *2 (-1208 *7 *8)) (-5 *1 (-1203 *5 *6 *7 *8)) (-14 *7 (-1153))))) -(-10 -7 (-15 -2803 ((-1208 |#3| |#4|) (-1 |#4| |#2|) (-1208 |#1| |#2|)))) -((-1347 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-3401 ((|#1| |#3|) 13)) (-4436 ((|#3| |#3|) 19))) -(((-1204 |#1| |#2| |#3|) (-10 -7 (-15 -3401 (|#1| |#3|)) (-15 -4436 (|#3| |#3|)) (-15 -1347 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-550) (-985 |#1|) (-1211 |#2|)) (T -1204)) -((-1347 (*1 *2 *3) (-12 (-4 *4 (-550)) (-4 *5 (-985 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1204 *4 *5 *3)) (-4 *3 (-1211 *5)))) (-4436 (*1 *2 *2) (-12 (-4 *3 (-550)) (-4 *4 (-985 *3)) (-5 *1 (-1204 *3 *4 *2)) (-4 *2 (-1211 *4)))) (-3401 (*1 *2 *3) (-12 (-4 *4 (-985 *2)) (-4 *2 (-550)) (-5 *1 (-1204 *2 *4 *3)) (-4 *3 (-1211 *4))))) -(-10 -7 (-15 -3401 (|#1| |#3|)) (-15 -4436 (|#3| |#3|)) (-15 -1347 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-1827 (((-3 |#2| "failed") |#2| (-755) |#1|) 29)) (-1348 (((-3 |#2| "failed") |#2| (-755)) 30)) (-3335 (((-3 (-2 (|:| -3156 |#2|) (|:| -3437 |#2|)) "failed") |#2|) 42)) (-3959 (((-626 |#2|) |#2|) 44)) (-3750 (((-3 |#2| "failed") |#2| |#2|) 39))) -(((-1205 |#1| |#2|) (-10 -7 (-15 -1348 ((-3 |#2| "failed") |#2| (-755))) (-15 -1827 ((-3 |#2| "failed") |#2| (-755) |#1|)) (-15 -3750 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3335 ((-3 (-2 (|:| -3156 |#2|) (|:| -3437 |#2|)) "failed") |#2|)) (-15 -3959 ((-626 |#2|) |#2|))) (-13 (-550) (-148)) (-1211 |#1|)) (T -1205)) -((-3959 (*1 *2 *3) (-12 (-4 *4 (-13 (-550) (-148))) (-5 *2 (-626 *3)) (-5 *1 (-1205 *4 *3)) (-4 *3 (-1211 *4)))) (-3335 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-550) (-148))) (-5 *2 (-2 (|:| -3156 *3) (|:| -3437 *3))) (-5 *1 (-1205 *4 *3)) (-4 *3 (-1211 *4)))) (-3750 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-550) (-148))) (-5 *1 (-1205 *3 *2)) (-4 *2 (-1211 *3)))) (-1827 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-755)) (-4 *4 (-13 (-550) (-148))) (-5 *1 (-1205 *4 *2)) (-4 *2 (-1211 *4)))) (-1348 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-755)) (-4 *4 (-13 (-550) (-148))) (-5 *1 (-1205 *4 *2)) (-4 *2 (-1211 *4))))) -(-10 -7 (-15 -1348 ((-3 |#2| "failed") |#2| (-755))) (-15 -1827 ((-3 |#2| "failed") |#2| (-755) |#1|)) (-15 -3750 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3335 ((-3 (-2 (|:| -3156 |#2|) (|:| -3437 |#2|)) "failed") |#2|)) (-15 -3959 ((-626 |#2|) |#2|))) -((-1484 (((-3 (-2 (|:| -2583 |#2|) (|:| -4397 |#2|)) "failed") |#2| |#2|) 31))) -(((-1206 |#1| |#2|) (-10 -7 (-15 -1484 ((-3 (-2 (|:| -2583 |#2|) (|:| -4397 |#2|)) "failed") |#2| |#2|))) (-550) (-1211 |#1|)) (T -1206)) -((-1484 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-550)) (-5 *2 (-2 (|:| -2583 *3) (|:| -4397 *3))) (-5 *1 (-1206 *4 *3)) (-4 *3 (-1211 *4))))) -(-10 -7 (-15 -1484 ((-3 (-2 (|:| -2583 |#2|) (|:| -4397 |#2|)) "failed") |#2| |#2|))) -((-3694 ((|#2| |#2| |#2|) 19)) (-1287 ((|#2| |#2| |#2|) 30)) (-1398 ((|#2| |#2| |#2| (-755) (-755)) 36))) -(((-1207 |#1| |#2|) (-10 -7 (-15 -3694 (|#2| |#2| |#2|)) (-15 -1287 (|#2| |#2| |#2|)) (-15 -1398 (|#2| |#2| |#2| (-755) (-755)))) (-1039) (-1211 |#1|)) (T -1207)) -((-1398 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-755)) (-4 *4 (-1039)) (-5 *1 (-1207 *4 *2)) (-4 *2 (-1211 *4)))) (-1287 (*1 *2 *2 *2) (-12 (-4 *3 (-1039)) (-5 *1 (-1207 *3 *2)) (-4 *2 (-1211 *3)))) (-3694 (*1 *2 *2 *2) (-12 (-4 *3 (-1039)) (-5 *1 (-1207 *3 *2)) (-4 *2 (-1211 *3))))) -(-10 -7 (-15 -3694 (|#2| |#2| |#2|)) (-15 -1287 (|#2| |#2| |#2|)) (-15 -1398 (|#2| |#2| |#2| (-755) (-755)))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-3000 (((-1236 |#2|) $ (-755)) NIL)) (-1654 (((-626 (-1067)) $) NIL)) (-3023 (($ (-1149 |#2|)) NIL)) (-1593 (((-1149 $) $ (-1067)) NIL) (((-1149 |#2|) $) NIL)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL (|has| |#2| (-550)))) (-1350 (($ $) NIL (|has| |#2| (-550)))) (-3376 (((-121) $) NIL (|has| |#2| (-550)))) (-1697 (((-755) $) NIL) (((-755) $ (-626 (-1067))) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-4408 (($ $ $) NIL (|has| |#2| (-550)))) (-1776 (((-414 (-1149 $)) (-1149 $)) NIL (|has| |#2| (-896)))) (-3065 (($ $) NIL (|has| |#2| (-447)))) (-2953 (((-414 $) $) NIL (|has| |#2| (-447)))) (-1887 (((-3 (-626 (-1149 $)) "failed") (-626 (-1149 $)) (-1149 $)) NIL (|has| |#2| (-896)))) (-4179 (((-121) $ $) NIL (|has| |#2| (-359)))) (-2891 (($ $ (-755)) NIL)) (-2090 (($ $ (-755)) NIL)) (-2562 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-447)))) (-4236 (($) NIL T CONST)) (-1473 (((-3 |#2| "failed") $) NIL) (((-3 (-403 (-560)) "failed") $) NIL (|has| |#2| (-1029 (-403 (-560))))) (((-3 (-560) "failed") $) NIL (|has| |#2| (-1029 (-560)))) (((-3 (-1067) "failed") $) NIL)) (-3001 ((|#2| $) NIL) (((-403 (-560)) $) NIL (|has| |#2| (-1029 (-403 (-560))))) (((-560) $) NIL (|has| |#2| (-1029 (-560)))) (((-1067) $) NIL)) (-1979 (($ $ $ (-1067)) NIL (|has| |#2| (-170))) ((|#2| $ $) NIL (|has| |#2| (-170)))) (-2563 (($ $ $) NIL (|has| |#2| (-359)))) (-1750 (($ $) NIL)) (-2616 (((-671 (-560)) (-671 $)) NIL (|has| |#2| (-622 (-560)))) (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) NIL (|has| |#2| (-622 (-560)))) (((-2 (|:| -3818 (-671 |#2|)) (|:| |vec| (-1236 |#2|))) (-671 $) (-1236 $)) NIL) (((-671 |#2|) (-671 $)) NIL)) (-1823 (((-3 $ "failed") $) NIL)) (-2572 (($ $ $) NIL (|has| |#2| (-359)))) (-2309 (($ $ $) NIL)) (-1332 (($ $ $) NIL (|has| |#2| (-550)))) (-4051 (((-2 (|:| -2169 |#2|) (|:| -2583 $) (|:| -4397 $)) $ $) NIL (|has| |#2| (-550)))) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) NIL (|has| |#2| (-359)))) (-3605 (($ $) NIL (|has| |#2| (-447))) (($ $ (-1067)) NIL (|has| |#2| (-447)))) (-1743 (((-626 $) $) NIL)) (-3319 (((-121) $) NIL (|has| |#2| (-896)))) (-1456 (($ $ |#2| (-755) $) NIL)) (-2399 (((-876 (-375) $) $ (-879 (-375)) (-876 (-375) $)) NIL (-12 (|has| (-1067) (-873 (-375))) (|has| |#2| (-873 (-375))))) (((-876 (-560) $) $ (-879 (-560)) (-876 (-560) $)) NIL (-12 (|has| (-1067) (-873 (-560))) (|has| |#2| (-873 (-560)))))) (-3504 (((-755) $ $) NIL (|has| |#2| (-550)))) (-2642 (((-121) $) NIL)) (-3235 (((-755) $) NIL)) (-1424 (((-3 $ "failed") $) NIL (|has| |#2| (-1128)))) (-1647 (($ (-1149 |#2|) (-1067)) NIL) (($ (-1149 $) (-1067)) NIL)) (-3549 (($ $ (-755)) NIL)) (-3856 (((-3 (-626 $) "failed") (-626 $) $) NIL (|has| |#2| (-359)))) (-1854 (((-626 $) $) NIL)) (-1814 (((-121) $) NIL)) (-1637 (($ |#2| (-755)) 17) (($ $ (-1067) (-755)) NIL) (($ $ (-626 (-1067)) (-626 (-755))) NIL)) (-2923 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $ (-1067)) NIL) (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL)) (-3693 (((-755) $) NIL) (((-755) $ (-1067)) NIL) (((-626 (-755)) $ (-626 (-1067))) NIL)) (-4325 (($ $ $) NIL (|has| |#2| (-834)))) (-2501 (($ $ $) NIL (|has| |#2| (-834)))) (-1504 (($ (-1 (-755) (-755)) $) NIL)) (-2803 (($ (-1 |#2| |#2|) $) NIL)) (-1739 (((-1149 |#2|) $) NIL)) (-2101 (((-3 (-1067) "failed") $) NIL)) (-1726 (($ $) NIL)) (-1735 ((|#2| $) NIL)) (-2582 (($ (-626 $)) NIL (|has| |#2| (-447))) (($ $ $) NIL (|has| |#2| (-447)))) (-1291 (((-1135) $) NIL)) (-2325 (((-2 (|:| -2583 $) (|:| -4397 $)) $ (-755)) NIL)) (-3665 (((-3 (-626 $) "failed") $) NIL)) (-2327 (((-3 (-626 $) "failed") $) NIL)) (-2913 (((-3 (-2 (|:| |var| (-1067)) (|:| -4034 (-755))) "failed") $) NIL)) (-2376 (($ $) NIL (|has| |#2| (-43 (-403 (-560)))))) (-1394 (($) NIL (|has| |#2| (-1128)) CONST)) (-4353 (((-1100) $) NIL)) (-1704 (((-121) $) NIL)) (-1711 ((|#2| $) NIL)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL (|has| |#2| (-447)))) (-4440 (($ (-626 $)) NIL (|has| |#2| (-447))) (($ $ $) NIL (|has| |#2| (-447)))) (-4465 (($ $ (-755) |#2| $) NIL)) (-3817 (((-414 (-1149 $)) (-1149 $)) NIL (|has| |#2| (-896)))) (-3032 (((-414 (-1149 $)) (-1149 $)) NIL (|has| |#2| (-896)))) (-1601 (((-414 $) $) NIL (|has| |#2| (-896)))) (-3505 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-359))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL (|has| |#2| (-359)))) (-2336 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-550))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-550)))) (-3456 (((-3 (-626 $) "failed") (-626 $) $) NIL (|has| |#2| (-359)))) (-4450 (($ $ (-626 (-283 $))) NIL) (($ $ (-283 $)) NIL) (($ $ $ $) NIL) (($ $ (-626 $) (-626 $)) NIL) (($ $ (-1067) |#2|) NIL) (($ $ (-626 (-1067)) (-626 |#2|)) NIL) (($ $ (-1067) $) NIL) (($ $ (-626 (-1067)) (-626 $)) NIL)) (-4445 (((-755) $) NIL (|has| |#2| (-359)))) (-2778 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-403 $) (-403 $) (-403 $)) NIL (|has| |#2| (-550))) ((|#2| (-403 $) |#2|) NIL (|has| |#2| (-359))) (((-403 $) $ (-403 $)) NIL (|has| |#2| (-550)))) (-1754 (((-3 $ "failed") $ (-755)) NIL)) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL (|has| |#2| (-359)))) (-4069 (($ $ (-1067)) NIL (|has| |#2| (-170))) ((|#2| $) NIL (|has| |#2| (-170)))) (-2443 (($ $ (-1067)) NIL) (($ $ (-626 (-1067))) NIL) (($ $ (-1067) (-755)) NIL) (($ $ (-626 (-1067)) (-626 (-755))) NIL) (($ $ (-755)) NIL) (($ $) NIL) (($ $ (-1153)) NIL (|has| |#2| (-887 (-1153)))) (($ $ (-626 (-1153))) NIL (|has| |#2| (-887 (-1153)))) (($ $ (-1153) (-755)) NIL (|has| |#2| (-887 (-1153)))) (($ $ (-626 (-1153)) (-626 (-755))) NIL (|has| |#2| (-887 (-1153)))) (($ $ (-1 |#2| |#2|) (-755)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-3662 (((-755) $) NIL) (((-755) $ (-1067)) NIL) (((-626 (-755)) $ (-626 (-1067))) NIL)) (-4255 (((-879 (-375)) $) NIL (-12 (|has| (-1067) (-601 (-879 (-375)))) (|has| |#2| (-601 (-879 (-375)))))) (((-879 (-560)) $) NIL (-12 (|has| (-1067) (-601 (-879 (-560)))) (|has| |#2| (-601 (-879 (-560)))))) (((-533) $) NIL (-12 (|has| (-1067) (-601 (-533))) (|has| |#2| (-601 (-533)))))) (-1896 ((|#2| $) NIL (|has| |#2| (-447))) (($ $ (-1067)) NIL (|has| |#2| (-447)))) (-3248 (((-3 (-1236 $) "failed") (-671 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-896))))) (-2791 (((-3 $ "failed") $ $) NIL (|has| |#2| (-550))) (((-3 (-403 $) "failed") (-403 $) $) NIL (|has| |#2| (-550)))) (-2801 (((-842) $) 13) (($ (-560)) NIL) (($ |#2|) NIL) (($ (-1067)) NIL) (($ (-1232 |#1|)) 19) (($ (-403 (-560))) NIL (-2318 (|has| |#2| (-43 (-403 (-560)))) (|has| |#2| (-1029 (-403 (-560)))))) (($ $) NIL (|has| |#2| (-550)))) (-2423 (((-626 |#2|) $) NIL)) (-2636 ((|#2| $ (-755)) NIL) (($ $ (-1067) (-755)) NIL) (($ $ (-626 (-1067)) (-626 (-755))) NIL)) (-2272 (((-3 $ "failed") $) NIL (-2318 (-12 (|has| $ (-146)) (|has| |#2| (-896))) (|has| |#2| (-146))))) (-1751 (((-755)) NIL)) (-3487 (($ $ $ (-755)) NIL (|has| |#2| (-170)))) (-2328 (((-121) $ $) NIL (|has| |#2| (-550)))) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (-3304 (($) NIL T CONST)) (-1459 (($) 14 T CONST)) (-2500 (($ $ (-1067)) NIL) (($ $ (-626 (-1067))) NIL) (($ $ (-1067) (-755)) NIL) (($ $ (-626 (-1067)) (-626 (-755))) NIL) (($ $ (-755)) NIL) (($ $) NIL) (($ $ (-1153)) NIL (|has| |#2| (-887 (-1153)))) (($ $ (-626 (-1153))) NIL (|has| |#2| (-887 (-1153)))) (($ $ (-1153) (-755)) NIL (|has| |#2| (-887 (-1153)))) (($ $ (-626 (-1153)) (-626 (-755))) NIL (|has| |#2| (-887 (-1153)))) (($ $ (-1 |#2| |#2|) (-755)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1691 (((-121) $ $) NIL (|has| |#2| (-834)))) (-1675 (((-121) $ $) NIL (|has| |#2| (-834)))) (-1653 (((-121) $ $) NIL)) (-1683 (((-121) $ $) NIL (|has| |#2| (-834)))) (-1667 (((-121) $ $) NIL (|has| |#2| (-834)))) (-1733 (($ $ |#2|) NIL (|has| |#2| (-359)))) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) NIL)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) NIL) (($ $ (-403 (-560))) NIL (|has| |#2| (-43 (-403 (-560))))) (($ (-403 (-560)) $) NIL (|has| |#2| (-43 (-403 (-560))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-1208 |#1| |#2|) (-13 (-1211 |#2|) (-10 -8 (-15 -2801 ($ (-1232 |#1|))) (-15 -4465 ($ $ (-755) |#2| $)))) (-1153) (-1039)) (T -1208)) -((-2801 (*1 *1 *2) (-12 (-5 *2 (-1232 *3)) (-14 *3 (-1153)) (-5 *1 (-1208 *3 *4)) (-4 *4 (-1039)))) (-4465 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-755)) (-5 *1 (-1208 *4 *3)) (-14 *4 (-1153)) (-4 *3 (-1039))))) -(-13 (-1211 |#2|) (-10 -8 (-15 -2801 ($ (-1232 |#1|))) (-15 -4465 ($ $ (-755) |#2| $)))) -((-2803 ((|#4| (-1 |#3| |#1|) |#2|) 22))) -(((-1209 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2803 (|#4| (-1 |#3| |#1|) |#2|))) (-1039) (-1211 |#1|) (-1039) (-1211 |#3|)) (T -1209)) -((-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1039)) (-4 *6 (-1039)) (-4 *2 (-1211 *6)) (-5 *1 (-1209 *5 *4 *6 *2)) (-4 *4 (-1211 *5))))) -(-10 -7 (-15 -2803 (|#4| (-1 |#3| |#1|) |#2|))) -((-3000 (((-1236 |#2|) $ (-755)) 113)) (-1654 (((-626 (-1067)) $) 15)) (-3023 (($ (-1149 |#2|)) 66)) (-1697 (((-755) $) NIL) (((-755) $ (-626 (-1067))) 18)) (-1776 (((-414 (-1149 $)) (-1149 $)) 183)) (-3065 (($ $) 173)) (-2953 (((-414 $) $) 171)) (-1887 (((-3 (-626 (-1149 $)) "failed") (-626 (-1149 $)) (-1149 $)) 81)) (-2891 (($ $ (-755)) 70)) (-2090 (($ $ (-755)) 72)) (-2562 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 129)) (-1473 (((-3 |#2| "failed") $) 116) (((-3 (-403 (-560)) "failed") $) NIL) (((-3 (-560) "failed") $) NIL) (((-3 (-1067) "failed") $) NIL)) (-3001 ((|#2| $) 114) (((-403 (-560)) $) NIL) (((-560) $) NIL) (((-1067) $) NIL)) (-1332 (($ $ $) 150)) (-4051 (((-2 (|:| -2169 |#2|) (|:| -2583 $) (|:| -4397 $)) $ $) 152)) (-3504 (((-755) $ $) 168)) (-1424 (((-3 $ "failed") $) 122)) (-1637 (($ |#2| (-755)) NIL) (($ $ (-1067) (-755)) 46) (($ $ (-626 (-1067)) (-626 (-755))) NIL)) (-3693 (((-755) $) NIL) (((-755) $ (-1067)) 41) (((-626 (-755)) $ (-626 (-1067))) 42)) (-1739 (((-1149 |#2|) $) 58)) (-2101 (((-3 (-1067) "failed") $) 39)) (-2325 (((-2 (|:| -2583 $) (|:| -4397 $)) $ (-755)) 69)) (-2376 (($ $) 194)) (-1394 (($) 118)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) 180)) (-3817 (((-414 (-1149 $)) (-1149 $)) 87)) (-3032 (((-414 (-1149 $)) (-1149 $)) 85)) (-1601 (((-414 $) $) 105)) (-4450 (($ $ (-626 (-283 $))) 38) (($ $ (-283 $)) NIL) (($ $ $ $) NIL) (($ $ (-626 $) (-626 $)) NIL) (($ $ (-1067) |#2|) 31) (($ $ (-626 (-1067)) (-626 |#2|)) 28) (($ $ (-1067) $) 25) (($ $ (-626 (-1067)) (-626 $)) 23)) (-4445 (((-755) $) 186)) (-2778 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-403 $) (-403 $) (-403 $)) 146) ((|#2| (-403 $) |#2|) 185) (((-403 $) $ (-403 $)) 167)) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) 189)) (-2443 (($ $ (-1067)) 139) (($ $ (-626 (-1067))) NIL) (($ $ (-1067) (-755)) NIL) (($ $ (-626 (-1067)) (-626 (-755))) NIL) (($ $ (-755)) NIL) (($ $) 137) (($ $ (-1153)) NIL) (($ $ (-626 (-1153))) NIL) (($ $ (-1153) (-755)) NIL) (($ $ (-626 (-1153)) (-626 (-755))) NIL) (($ $ (-1 |#2| |#2|) (-755)) NIL) (($ $ (-1 |#2| |#2|)) 136) (($ $ (-1 |#2| |#2|) $) 133)) (-3662 (((-755) $) NIL) (((-755) $ (-1067)) 16) (((-626 (-755)) $ (-626 (-1067))) 20)) (-1896 ((|#2| $) NIL) (($ $ (-1067)) 124)) (-2791 (((-3 $ "failed") $ $) 160) (((-3 (-403 $) "failed") (-403 $) $) 156)) (-2801 (((-842) $) NIL) (($ (-560)) NIL) (($ |#2|) NIL) (($ (-1067)) 50) (($ (-403 (-560))) NIL) (($ $) NIL))) -(((-1210 |#1| |#2|) (-10 -8 (-15 -2801 (|#1| |#1|)) (-15 -4311 ((-1149 |#1|) (-1149 |#1|) (-1149 |#1|))) (-15 -2953 ((-414 |#1|) |#1|)) (-15 -3065 (|#1| |#1|)) (-15 -2801 (|#1| (-403 (-560)))) (-15 -1394 (|#1|)) (-15 -1424 ((-3 |#1| "failed") |#1|)) (-15 -2778 ((-403 |#1|) |#1| (-403 |#1|))) (-15 -4445 ((-755) |#1|)) (-15 -2215 ((-2 (|:| -2583 |#1|) (|:| -4397 |#1|)) |#1| |#1|)) (-15 -2376 (|#1| |#1|)) (-15 -2778 (|#2| (-403 |#1|) |#2|)) (-15 -2562 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -4051 ((-2 (|:| -2169 |#2|) (|:| -2583 |#1|) (|:| -4397 |#1|)) |#1| |#1|)) (-15 -1332 (|#1| |#1| |#1|)) (-15 -2791 ((-3 (-403 |#1|) "failed") (-403 |#1|) |#1|)) (-15 -2791 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3504 ((-755) |#1| |#1|)) (-15 -2778 ((-403 |#1|) (-403 |#1|) (-403 |#1|))) (-15 -2443 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2090 (|#1| |#1| (-755))) (-15 -2891 (|#1| |#1| (-755))) (-15 -2325 ((-2 (|:| -2583 |#1|) (|:| -4397 |#1|)) |#1| (-755))) (-15 -3023 (|#1| (-1149 |#2|))) (-15 -1739 ((-1149 |#2|) |#1|)) (-15 -3000 ((-1236 |#2|) |#1| (-755))) (-15 -2443 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2443 (|#1| |#1| (-1 |#2| |#2|) (-755))) (-15 -2443 (|#1| |#1| (-626 (-1153)) (-626 (-755)))) (-15 -2443 (|#1| |#1| (-1153) (-755))) (-15 -2443 (|#1| |#1| (-626 (-1153)))) (-15 -2443 (|#1| |#1| (-1153))) (-15 -2443 (|#1| |#1|)) (-15 -2443 (|#1| |#1| (-755))) (-15 -2778 (|#1| |#1| |#1|)) (-15 -2778 (|#2| |#1| |#2|)) (-15 -1601 ((-414 |#1|) |#1|)) (-15 -1776 ((-414 (-1149 |#1|)) (-1149 |#1|))) (-15 -3032 ((-414 (-1149 |#1|)) (-1149 |#1|))) (-15 -3817 ((-414 (-1149 |#1|)) (-1149 |#1|))) (-15 -1887 ((-3 (-626 (-1149 |#1|)) "failed") (-626 (-1149 |#1|)) (-1149 |#1|))) (-15 -1896 (|#1| |#1| (-1067))) (-15 -1654 ((-626 (-1067)) |#1|)) (-15 -1697 ((-755) |#1| (-626 (-1067)))) (-15 -1697 ((-755) |#1|)) (-15 -1637 (|#1| |#1| (-626 (-1067)) (-626 (-755)))) (-15 -1637 (|#1| |#1| (-1067) (-755))) (-15 -3693 ((-626 (-755)) |#1| (-626 (-1067)))) (-15 -3693 ((-755) |#1| (-1067))) (-15 -2101 ((-3 (-1067) "failed") |#1|)) (-15 -3662 ((-626 (-755)) |#1| (-626 (-1067)))) (-15 -3662 ((-755) |#1| (-1067))) (-15 -3001 ((-1067) |#1|)) (-15 -1473 ((-3 (-1067) "failed") |#1|)) (-15 -2801 (|#1| (-1067))) (-15 -4450 (|#1| |#1| (-626 (-1067)) (-626 |#1|))) (-15 -4450 (|#1| |#1| (-1067) |#1|)) (-15 -4450 (|#1| |#1| (-626 (-1067)) (-626 |#2|))) (-15 -4450 (|#1| |#1| (-1067) |#2|)) (-15 -4450 (|#1| |#1| (-626 |#1|) (-626 |#1|))) (-15 -4450 (|#1| |#1| |#1| |#1|)) (-15 -4450 (|#1| |#1| (-283 |#1|))) (-15 -4450 (|#1| |#1| (-626 (-283 |#1|)))) (-15 -3662 ((-755) |#1|)) (-15 -1637 (|#1| |#2| (-755))) (-15 -3001 ((-560) |#1|)) (-15 -1473 ((-3 (-560) "failed") |#1|)) (-15 -3001 ((-403 (-560)) |#1|)) (-15 -1473 ((-3 (-403 (-560)) "failed") |#1|)) (-15 -2801 (|#1| |#2|)) (-15 -1473 ((-3 |#2| "failed") |#1|)) (-15 -3001 (|#2| |#1|)) (-15 -3693 ((-755) |#1|)) (-15 -1896 (|#2| |#1|)) (-15 -2443 (|#1| |#1| (-626 (-1067)) (-626 (-755)))) (-15 -2443 (|#1| |#1| (-1067) (-755))) (-15 -2443 (|#1| |#1| (-626 (-1067)))) (-15 -2443 (|#1| |#1| (-1067))) (-15 -2801 (|#1| (-560))) (-15 -2801 ((-842) |#1|))) (-1211 |#2|) (-1039)) (T -1210)) -NIL -(-10 -8 (-15 -2801 (|#1| |#1|)) (-15 -4311 ((-1149 |#1|) (-1149 |#1|) (-1149 |#1|))) (-15 -2953 ((-414 |#1|) |#1|)) (-15 -3065 (|#1| |#1|)) (-15 -2801 (|#1| (-403 (-560)))) (-15 -1394 (|#1|)) (-15 -1424 ((-3 |#1| "failed") |#1|)) (-15 -2778 ((-403 |#1|) |#1| (-403 |#1|))) (-15 -4445 ((-755) |#1|)) (-15 -2215 ((-2 (|:| -2583 |#1|) (|:| -4397 |#1|)) |#1| |#1|)) (-15 -2376 (|#1| |#1|)) (-15 -2778 (|#2| (-403 |#1|) |#2|)) (-15 -2562 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -4051 ((-2 (|:| -2169 |#2|) (|:| -2583 |#1|) (|:| -4397 |#1|)) |#1| |#1|)) (-15 -1332 (|#1| |#1| |#1|)) (-15 -2791 ((-3 (-403 |#1|) "failed") (-403 |#1|) |#1|)) (-15 -2791 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3504 ((-755) |#1| |#1|)) (-15 -2778 ((-403 |#1|) (-403 |#1|) (-403 |#1|))) (-15 -2443 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2090 (|#1| |#1| (-755))) (-15 -2891 (|#1| |#1| (-755))) (-15 -2325 ((-2 (|:| -2583 |#1|) (|:| -4397 |#1|)) |#1| (-755))) (-15 -3023 (|#1| (-1149 |#2|))) (-15 -1739 ((-1149 |#2|) |#1|)) (-15 -3000 ((-1236 |#2|) |#1| (-755))) (-15 -2443 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2443 (|#1| |#1| (-1 |#2| |#2|) (-755))) (-15 -2443 (|#1| |#1| (-626 (-1153)) (-626 (-755)))) (-15 -2443 (|#1| |#1| (-1153) (-755))) (-15 -2443 (|#1| |#1| (-626 (-1153)))) (-15 -2443 (|#1| |#1| (-1153))) (-15 -2443 (|#1| |#1|)) (-15 -2443 (|#1| |#1| (-755))) (-15 -2778 (|#1| |#1| |#1|)) (-15 -2778 (|#2| |#1| |#2|)) (-15 -1601 ((-414 |#1|) |#1|)) (-15 -1776 ((-414 (-1149 |#1|)) (-1149 |#1|))) (-15 -3032 ((-414 (-1149 |#1|)) (-1149 |#1|))) (-15 -3817 ((-414 (-1149 |#1|)) (-1149 |#1|))) (-15 -1887 ((-3 (-626 (-1149 |#1|)) "failed") (-626 (-1149 |#1|)) (-1149 |#1|))) (-15 -1896 (|#1| |#1| (-1067))) (-15 -1654 ((-626 (-1067)) |#1|)) (-15 -1697 ((-755) |#1| (-626 (-1067)))) (-15 -1697 ((-755) |#1|)) (-15 -1637 (|#1| |#1| (-626 (-1067)) (-626 (-755)))) (-15 -1637 (|#1| |#1| (-1067) (-755))) (-15 -3693 ((-626 (-755)) |#1| (-626 (-1067)))) (-15 -3693 ((-755) |#1| (-1067))) (-15 -2101 ((-3 (-1067) "failed") |#1|)) (-15 -3662 ((-626 (-755)) |#1| (-626 (-1067)))) (-15 -3662 ((-755) |#1| (-1067))) (-15 -3001 ((-1067) |#1|)) (-15 -1473 ((-3 (-1067) "failed") |#1|)) (-15 -2801 (|#1| (-1067))) (-15 -4450 (|#1| |#1| (-626 (-1067)) (-626 |#1|))) (-15 -4450 (|#1| |#1| (-1067) |#1|)) (-15 -4450 (|#1| |#1| (-626 (-1067)) (-626 |#2|))) (-15 -4450 (|#1| |#1| (-1067) |#2|)) (-15 -4450 (|#1| |#1| (-626 |#1|) (-626 |#1|))) (-15 -4450 (|#1| |#1| |#1| |#1|)) (-15 -4450 (|#1| |#1| (-283 |#1|))) (-15 -4450 (|#1| |#1| (-626 (-283 |#1|)))) (-15 -3662 ((-755) |#1|)) (-15 -1637 (|#1| |#2| (-755))) (-15 -3001 ((-560) |#1|)) (-15 -1473 ((-3 (-560) "failed") |#1|)) (-15 -3001 ((-403 (-560)) |#1|)) (-15 -1473 ((-3 (-403 (-560)) "failed") |#1|)) (-15 -2801 (|#1| |#2|)) (-15 -1473 ((-3 |#2| "failed") |#1|)) (-15 -3001 (|#2| |#1|)) (-15 -3693 ((-755) |#1|)) (-15 -1896 (|#2| |#1|)) (-15 -2443 (|#1| |#1| (-626 (-1067)) (-626 (-755)))) (-15 -2443 (|#1| |#1| (-1067) (-755))) (-15 -2443 (|#1| |#1| (-626 (-1067)))) (-15 -2443 (|#1| |#1| (-1067))) (-15 -2801 (|#1| (-560))) (-15 -2801 ((-842) |#1|))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-3000 (((-1236 |#1|) $ (-755)) 217)) (-1654 (((-626 (-1067)) $) 108)) (-3023 (($ (-1149 |#1|)) 215)) (-1593 (((-1149 $) $ (-1067)) 123) (((-1149 |#1|) $) 122)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) 85 (|has| |#1| (-550)))) (-1350 (($ $) 86 (|has| |#1| (-550)))) (-3376 (((-121) $) 88 (|has| |#1| (-550)))) (-1697 (((-755) $) 110) (((-755) $ (-626 (-1067))) 109)) (-2314 (((-3 $ "failed") $ $) 18)) (-4408 (($ $ $) 202 (|has| |#1| (-550)))) (-1776 (((-414 (-1149 $)) (-1149 $)) 98 (|has| |#1| (-896)))) (-3065 (($ $) 96 (|has| |#1| (-447)))) (-2953 (((-414 $) $) 95 (|has| |#1| (-447)))) (-1887 (((-3 (-626 (-1149 $)) "failed") (-626 (-1149 $)) (-1149 $)) 101 (|has| |#1| (-896)))) (-4179 (((-121) $ $) 187 (|has| |#1| (-359)))) (-2891 (($ $ (-755)) 210)) (-2090 (($ $ (-755)) 209)) (-2562 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 197 (|has| |#1| (-447)))) (-4236 (($) 16 T CONST)) (-1473 (((-3 |#1| "failed") $) 162) (((-3 (-403 (-560)) "failed") $) 160 (|has| |#1| (-1029 (-403 (-560))))) (((-3 (-560) "failed") $) 158 (|has| |#1| (-1029 (-560)))) (((-3 (-1067) "failed") $) 134)) (-3001 ((|#1| $) 163) (((-403 (-560)) $) 159 (|has| |#1| (-1029 (-403 (-560))))) (((-560) $) 157 (|has| |#1| (-1029 (-560)))) (((-1067) $) 133)) (-1979 (($ $ $ (-1067)) 106 (|has| |#1| (-170))) ((|#1| $ $) 205 (|has| |#1| (-170)))) (-2563 (($ $ $) 191 (|has| |#1| (-359)))) (-1750 (($ $) 152)) (-2616 (((-671 (-560)) (-671 $)) 132 (|has| |#1| (-622 (-560)))) (((-2 (|:| -3818 (-671 (-560))) (|:| |vec| (-1236 (-560)))) (-671 $) (-1236 $)) 131 (|has| |#1| (-622 (-560)))) (((-2 (|:| -3818 (-671 |#1|)) (|:| |vec| (-1236 |#1|))) (-671 $) (-1236 $)) 130) (((-671 |#1|) (-671 $)) 129)) (-1823 (((-3 $ "failed") $) 33)) (-2572 (($ $ $) 190 (|has| |#1| (-359)))) (-2309 (($ $ $) 208)) (-1332 (($ $ $) 199 (|has| |#1| (-550)))) (-4051 (((-2 (|:| -2169 |#1|) (|:| -2583 $) (|:| -4397 $)) $ $) 198 (|has| |#1| (-550)))) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) 185 (|has| |#1| (-359)))) (-3605 (($ $) 174 (|has| |#1| (-447))) (($ $ (-1067)) 103 (|has| |#1| (-447)))) (-1743 (((-626 $) $) 107)) (-3319 (((-121) $) 94 (|has| |#1| (-896)))) (-1456 (($ $ |#1| (-755) $) 170)) (-2399 (((-876 (-375) $) $ (-879 (-375)) (-876 (-375) $)) 82 (-12 (|has| (-1067) (-873 (-375))) (|has| |#1| (-873 (-375))))) (((-876 (-560) $) $ (-879 (-560)) (-876 (-560) $)) 81 (-12 (|has| (-1067) (-873 (-560))) (|has| |#1| (-873 (-560)))))) (-3504 (((-755) $ $) 203 (|has| |#1| (-550)))) (-2642 (((-121) $) 30)) (-3235 (((-755) $) 167)) (-1424 (((-3 $ "failed") $) 183 (|has| |#1| (-1128)))) (-1647 (($ (-1149 |#1|) (-1067)) 115) (($ (-1149 $) (-1067)) 114)) (-3549 (($ $ (-755)) 214)) (-3856 (((-3 (-626 $) "failed") (-626 $) $) 194 (|has| |#1| (-359)))) (-1854 (((-626 $) $) 124)) (-1814 (((-121) $) 150)) (-1637 (($ |#1| (-755)) 151) (($ $ (-1067) (-755)) 117) (($ $ (-626 (-1067)) (-626 (-755))) 116)) (-2923 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $ (-1067)) 118) (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) 212)) (-3693 (((-755) $) 168) (((-755) $ (-1067)) 120) (((-626 (-755)) $ (-626 (-1067))) 119)) (-4325 (($ $ $) 77 (|has| |#1| (-834)))) (-2501 (($ $ $) 76 (|has| |#1| (-834)))) (-1504 (($ (-1 (-755) (-755)) $) 169)) (-2803 (($ (-1 |#1| |#1|) $) 149)) (-1739 (((-1149 |#1|) $) 216)) (-2101 (((-3 (-1067) "failed") $) 121)) (-1726 (($ $) 147)) (-1735 ((|#1| $) 146)) (-2582 (($ (-626 $)) 92 (|has| |#1| (-447))) (($ $ $) 91 (|has| |#1| (-447)))) (-1291 (((-1135) $) 9)) (-2325 (((-2 (|:| -2583 $) (|:| -4397 $)) $ (-755)) 211)) (-3665 (((-3 (-626 $) "failed") $) 112)) (-2327 (((-3 (-626 $) "failed") $) 113)) (-2913 (((-3 (-2 (|:| |var| (-1067)) (|:| -4034 (-755))) "failed") $) 111)) (-2376 (($ $) 195 (|has| |#1| (-43 (-403 (-560)))))) (-1394 (($) 182 (|has| |#1| (-1128)) CONST)) (-4353 (((-1100) $) 10)) (-1704 (((-121) $) 164)) (-1711 ((|#1| $) 165)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) 93 (|has| |#1| (-447)))) (-4440 (($ (-626 $)) 90 (|has| |#1| (-447))) (($ $ $) 89 (|has| |#1| (-447)))) (-3817 (((-414 (-1149 $)) (-1149 $)) 100 (|has| |#1| (-896)))) (-3032 (((-414 (-1149 $)) (-1149 $)) 99 (|has| |#1| (-896)))) (-1601 (((-414 $) $) 97 (|has| |#1| (-896)))) (-3505 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 193 (|has| |#1| (-359))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) 192 (|has| |#1| (-359)))) (-2336 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-550))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-550)))) (-3456 (((-3 (-626 $) "failed") (-626 $) $) 186 (|has| |#1| (-359)))) (-4450 (($ $ (-626 (-283 $))) 143) (($ $ (-283 $)) 142) (($ $ $ $) 141) (($ $ (-626 $) (-626 $)) 140) (($ $ (-1067) |#1|) 139) (($ $ (-626 (-1067)) (-626 |#1|)) 138) (($ $ (-1067) $) 137) (($ $ (-626 (-1067)) (-626 $)) 136)) (-4445 (((-755) $) 188 (|has| |#1| (-359)))) (-2778 ((|#1| $ |#1|) 235) (($ $ $) 234) (((-403 $) (-403 $) (-403 $)) 204 (|has| |#1| (-550))) ((|#1| (-403 $) |#1|) 196 (|has| |#1| (-359))) (((-403 $) $ (-403 $)) 184 (|has| |#1| (-550)))) (-1754 (((-3 $ "failed") $ (-755)) 213)) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) 189 (|has| |#1| (-359)))) (-4069 (($ $ (-1067)) 105 (|has| |#1| (-170))) ((|#1| $) 206 (|has| |#1| (-170)))) (-2443 (($ $ (-1067)) 41) (($ $ (-626 (-1067))) 40) (($ $ (-1067) (-755)) 39) (($ $ (-626 (-1067)) (-626 (-755))) 38) (($ $ (-755)) 232) (($ $) 230) (($ $ (-1153)) 229 (|has| |#1| (-887 (-1153)))) (($ $ (-626 (-1153))) 228 (|has| |#1| (-887 (-1153)))) (($ $ (-1153) (-755)) 227 (|has| |#1| (-887 (-1153)))) (($ $ (-626 (-1153)) (-626 (-755))) 226 (|has| |#1| (-887 (-1153)))) (($ $ (-1 |#1| |#1|) (-755)) 219) (($ $ (-1 |#1| |#1|)) 218) (($ $ (-1 |#1| |#1|) $) 207)) (-3662 (((-755) $) 148) (((-755) $ (-1067)) 128) (((-626 (-755)) $ (-626 (-1067))) 127)) (-4255 (((-879 (-375)) $) 80 (-12 (|has| (-1067) (-601 (-879 (-375)))) (|has| |#1| (-601 (-879 (-375)))))) (((-879 (-560)) $) 79 (-12 (|has| (-1067) (-601 (-879 (-560)))) (|has| |#1| (-601 (-879 (-560)))))) (((-533) $) 78 (-12 (|has| (-1067) (-601 (-533))) (|has| |#1| (-601 (-533)))))) (-1896 ((|#1| $) 173 (|has| |#1| (-447))) (($ $ (-1067)) 104 (|has| |#1| (-447)))) (-3248 (((-3 (-1236 $) "failed") (-671 $)) 102 (-2256 (|has| $ (-146)) (|has| |#1| (-896))))) (-2791 (((-3 $ "failed") $ $) 201 (|has| |#1| (-550))) (((-3 (-403 $) "failed") (-403 $) $) 200 (|has| |#1| (-550)))) (-2801 (((-842) $) 11) (($ (-560)) 27) (($ |#1|) 161) (($ (-1067)) 135) (($ (-403 (-560))) 70 (-2318 (|has| |#1| (-1029 (-403 (-560)))) (|has| |#1| (-43 (-403 (-560)))))) (($ $) 83 (|has| |#1| (-550)))) (-2423 (((-626 |#1|) $) 166)) (-2636 ((|#1| $ (-755)) 153) (($ $ (-1067) (-755)) 126) (($ $ (-626 (-1067)) (-626 (-755))) 125)) (-2272 (((-3 $ "failed") $) 71 (-2318 (-2256 (|has| $ (-146)) (|has| |#1| (-896))) (|has| |#1| (-146))))) (-1751 (((-755)) 28)) (-3487 (($ $ $ (-755)) 171 (|has| |#1| (-170)))) (-2328 (((-121) $ $) 87 (|has| |#1| (-550)))) (-2464 (($ $ (-909)) 25) (($ $ (-755)) 32)) (-3304 (($) 17 T CONST)) (-1459 (($) 29 T CONST)) (-2500 (($ $ (-1067)) 37) (($ $ (-626 (-1067))) 36) (($ $ (-1067) (-755)) 35) (($ $ (-626 (-1067)) (-626 (-755))) 34) (($ $ (-755)) 233) (($ $) 231) (($ $ (-1153)) 225 (|has| |#1| (-887 (-1153)))) (($ $ (-626 (-1153))) 224 (|has| |#1| (-887 (-1153)))) (($ $ (-1153) (-755)) 223 (|has| |#1| (-887 (-1153)))) (($ $ (-626 (-1153)) (-626 (-755))) 222 (|has| |#1| (-887 (-1153)))) (($ $ (-1 |#1| |#1|) (-755)) 221) (($ $ (-1 |#1| |#1|)) 220)) (-1691 (((-121) $ $) 74 (|has| |#1| (-834)))) (-1675 (((-121) $ $) 73 (|has| |#1| (-834)))) (-1653 (((-121) $ $) 6)) (-1683 (((-121) $ $) 75 (|has| |#1| (-834)))) (-1667 (((-121) $ $) 72 (|has| |#1| (-834)))) (-1733 (($ $ |#1|) 154 (|has| |#1| (-359)))) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 24) (($ $ (-755)) 31)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 23) (($ $ (-403 (-560))) 156 (|has| |#1| (-43 (-403 (-560))))) (($ (-403 (-560)) $) 155 (|has| |#1| (-43 (-403 (-560))))) (($ |#1| $) 145) (($ $ |#1|) 144))) -(((-1211 |#1|) (-1267) (-1039)) (T -1211)) -((-3000 (*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-4 *1 (-1211 *4)) (-4 *4 (-1039)) (-5 *2 (-1236 *4)))) (-1739 (*1 *2 *1) (-12 (-4 *1 (-1211 *3)) (-4 *3 (-1039)) (-5 *2 (-1149 *3)))) (-3023 (*1 *1 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1039)) (-4 *1 (-1211 *3)))) (-3549 (*1 *1 *1 *2) (-12 (-5 *2 (-755)) (-4 *1 (-1211 *3)) (-4 *3 (-1039)))) (-1754 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-755)) (-4 *1 (-1211 *3)) (-4 *3 (-1039)))) (-2923 (*1 *2 *1 *1) (-12 (-4 *3 (-1039)) (-5 *2 (-2 (|:| -2583 *1) (|:| -4397 *1))) (-4 *1 (-1211 *3)))) (-2325 (*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-4 *4 (-1039)) (-5 *2 (-2 (|:| -2583 *1) (|:| -4397 *1))) (-4 *1 (-1211 *4)))) (-2891 (*1 *1 *1 *2) (-12 (-5 *2 (-755)) (-4 *1 (-1211 *3)) (-4 *3 (-1039)))) (-2090 (*1 *1 *1 *2) (-12 (-5 *2 (-755)) (-4 *1 (-1211 *3)) (-4 *3 (-1039)))) (-2309 (*1 *1 *1 *1) (-12 (-4 *1 (-1211 *2)) (-4 *2 (-1039)))) (-2443 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1211 *3)) (-4 *3 (-1039)))) (-4069 (*1 *2 *1) (-12 (-4 *1 (-1211 *2)) (-4 *2 (-1039)) (-4 *2 (-170)))) (-1979 (*1 *2 *1 *1) (-12 (-4 *1 (-1211 *2)) (-4 *2 (-1039)) (-4 *2 (-170)))) (-2778 (*1 *2 *2 *2) (-12 (-5 *2 (-403 *1)) (-4 *1 (-1211 *3)) (-4 *3 (-1039)) (-4 *3 (-550)))) (-3504 (*1 *2 *1 *1) (-12 (-4 *1 (-1211 *3)) (-4 *3 (-1039)) (-4 *3 (-550)) (-5 *2 (-755)))) (-4408 (*1 *1 *1 *1) (-12 (-4 *1 (-1211 *2)) (-4 *2 (-1039)) (-4 *2 (-550)))) (-2791 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1211 *2)) (-4 *2 (-1039)) (-4 *2 (-550)))) (-2791 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-403 *1)) (-4 *1 (-1211 *3)) (-4 *3 (-1039)) (-4 *3 (-550)))) (-1332 (*1 *1 *1 *1) (-12 (-4 *1 (-1211 *2)) (-4 *2 (-1039)) (-4 *2 (-550)))) (-4051 (*1 *2 *1 *1) (-12 (-4 *3 (-550)) (-4 *3 (-1039)) (-5 *2 (-2 (|:| -2169 *3) (|:| -2583 *1) (|:| -4397 *1))) (-4 *1 (-1211 *3)))) (-2562 (*1 *2 *1 *1) (-12 (-4 *3 (-447)) (-4 *3 (-1039)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1211 *3)))) (-2778 (*1 *2 *3 *2) (-12 (-5 *3 (-403 *1)) (-4 *1 (-1211 *2)) (-4 *2 (-1039)) (-4 *2 (-359)))) (-2376 (*1 *1 *1) (-12 (-4 *1 (-1211 *2)) (-4 *2 (-1039)) (-4 *2 (-43 (-403 (-560))))))) -(-13 (-942 |t#1| (-755) (-1067)) (-276 |t#1| |t#1|) (-276 $ $) (-221) (-219 |t#1|) (-10 -8 (-15 -3000 ((-1236 |t#1|) $ (-755))) (-15 -1739 ((-1149 |t#1|) $)) (-15 -3023 ($ (-1149 |t#1|))) (-15 -3549 ($ $ (-755))) (-15 -1754 ((-3 $ "failed") $ (-755))) (-15 -2923 ((-2 (|:| -2583 $) (|:| -4397 $)) $ $)) (-15 -2325 ((-2 (|:| -2583 $) (|:| -4397 $)) $ (-755))) (-15 -2891 ($ $ (-755))) (-15 -2090 ($ $ (-755))) (-15 -2309 ($ $ $)) (-15 -2443 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1128)) (-6 (-1128)) |noBranch|) (IF (|has| |t#1| (-170)) (PROGN (-15 -4069 (|t#1| $)) (-15 -1979 (|t#1| $ $))) |noBranch|) (IF (|has| |t#1| (-550)) (PROGN (-6 (-276 (-403 $) (-403 $))) (-15 -2778 ((-403 $) (-403 $) (-403 $))) (-15 -3504 ((-755) $ $)) (-15 -4408 ($ $ $)) (-15 -2791 ((-3 $ "failed") $ $)) (-15 -2791 ((-3 (-403 $) "failed") (-403 $) $)) (-15 -1332 ($ $ $)) (-15 -4051 ((-2 (|:| -2169 |t#1|) (|:| -2583 $) (|:| -4397 $)) $ $))) |noBranch|) (IF (|has| |t#1| (-447)) (-15 -2562 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |noBranch|) (IF (|has| |t#1| (-359)) (PROGN (-6 (-296)) (-6 -4501) (-15 -2778 (|t#1| (-403 $) |t#1|))) |noBranch|) (IF (|has| |t#1| (-43 (-403 (-560)))) (-15 -2376 ($ $)) |noBranch|))) -(((-21) . T) ((-23) . T) ((-52 |#1| (-755)) . T) ((-25) . T) ((-43 (-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((-43 |#1|) |has| |#1| (-170)) ((-43 $) -2318 (|has| |#1| (-896)) (|has| |#1| (-550)) (|has| |#1| (-447)) (|has| |#1| (-359))) ((-105) . T) ((-120 (-403 (-560)) (-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((-120 |#1| |#1|) . T) ((-120 $ $) -2318 (|has| |#1| (-896)) (|has| |#1| (-550)) (|has| |#1| (-447)) (|has| |#1| (-359)) (|has| |#1| (-170))) ((-137) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-600 (-842)) . T) ((-170) -2318 (|has| |#1| (-896)) (|has| |#1| (-550)) (|has| |#1| (-447)) (|has| |#1| (-359)) (|has| |#1| (-170))) ((-601 (-533)) -12 (|has| (-1067) (-601 (-533))) (|has| |#1| (-601 (-533)))) ((-601 (-879 (-375))) -12 (|has| (-1067) (-601 (-879 (-375)))) (|has| |#1| (-601 (-879 (-375))))) ((-601 (-879 (-560))) -12 (|has| (-1067) (-601 (-879 (-560)))) (|has| |#1| (-601 (-879 (-560))))) ((-219 |#1|) . T) ((-221) . T) ((-276 (-403 $) (-403 $)) |has| |#1| (-550)) ((-276 |#1| |#1|) . T) ((-276 $ $) . T) ((-280) -2318 (|has| |#1| (-896)) (|has| |#1| (-550)) (|has| |#1| (-447)) (|has| |#1| (-359))) ((-296) |has| |#1| (-359)) ((-298 $) . T) ((-318 |#1| (-755)) . T) ((-373 |#1|) . T) ((-407 |#1|) . T) ((-447) -2318 (|has| |#1| (-896)) (|has| |#1| (-447)) (|has| |#1| (-359))) ((-515 (-1067) |#1|) . T) ((-515 (-1067) $) . T) ((-515 $ $) . T) ((-550) -2318 (|has| |#1| (-896)) (|has| |#1| (-550)) (|has| |#1| (-447)) (|has| |#1| (-359))) ((-629 (-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((-629 |#1|) . T) ((-629 $) . T) ((-622 (-560)) |has| |#1| (-622 (-560))) ((-622 |#1|) . T) ((-699 (-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((-699 |#1|) |has| |#1| (-170)) ((-699 $) -2318 (|has| |#1| (-896)) (|has| |#1| (-550)) (|has| |#1| (-447)) (|has| |#1| (-359))) ((-708) . T) ((-834) |has| |#1| (-834)) ((-887 (-1067)) . T) ((-887 (-1153)) |has| |#1| (-887 (-1153))) ((-873 (-375)) -12 (|has| (-1067) (-873 (-375))) (|has| |#1| (-873 (-375)))) ((-873 (-560)) -12 (|has| (-1067) (-873 (-560))) (|has| |#1| (-873 (-560)))) ((-942 |#1| (-755) (-1067)) . T) ((-896) |has| |#1| (-896)) ((-908) |has| |#1| (-359)) ((-1029 (-403 (-560))) |has| |#1| (-1029 (-403 (-560)))) ((-1029 (-560)) |has| |#1| (-1029 (-560))) ((-1029 (-1067)) . T) ((-1029 |#1|) . T) ((-1045 (-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((-1045 |#1|) . T) ((-1045 $) -2318 (|has| |#1| (-896)) (|has| |#1| (-550)) (|has| |#1| (-447)) (|has| |#1| (-359)) (|has| |#1| (-170))) ((-1039) . T) ((-1046) . T) ((-1094) . T) ((-1082) . T) ((-1128) |has| |#1| (-1128)) ((-1191) |has| |#1| (-896))) -((-1654 (((-626 (-1067)) $) 28)) (-1750 (($ $) 25)) (-1637 (($ |#2| |#3|) NIL) (($ $ (-1067) |#3|) 22) (($ $ (-626 (-1067)) (-626 |#3|)) 20)) (-1726 (($ $) 14)) (-1735 ((|#2| $) 12)) (-3662 ((|#3| $) 10))) -(((-1212 |#1| |#2| |#3|) (-10 -8 (-15 -1654 ((-626 (-1067)) |#1|)) (-15 -1637 (|#1| |#1| (-626 (-1067)) (-626 |#3|))) (-15 -1637 (|#1| |#1| (-1067) |#3|)) (-15 -1750 (|#1| |#1|)) (-15 -1637 (|#1| |#2| |#3|)) (-15 -3662 (|#3| |#1|)) (-15 -1726 (|#1| |#1|)) (-15 -1735 (|#2| |#1|))) (-1213 |#2| |#3|) (-1039) (-779)) (T -1212)) -NIL -(-10 -8 (-15 -1654 ((-626 (-1067)) |#1|)) (-15 -1637 (|#1| |#1| (-626 (-1067)) (-626 |#3|))) (-15 -1637 (|#1| |#1| (-1067) |#3|)) (-15 -1750 (|#1| |#1|)) (-15 -1637 (|#1| |#2| |#3|)) (-15 -3662 (|#3| |#1|)) (-15 -1726 (|#1| |#1|)) (-15 -1735 (|#2| |#1|))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-1654 (((-626 (-1067)) $) 70)) (-1395 (((-1153) $) 98)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) 50 (|has| |#1| (-550)))) (-1350 (($ $) 51 (|has| |#1| (-550)))) (-3376 (((-121) $) 53 (|has| |#1| (-550)))) (-4330 (($ $ |#2|) 93) (($ $ |#2| |#2|) 92)) (-4138 (((-1133 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 100)) (-2314 (((-3 $ "failed") $ $) 18)) (-4236 (($) 16 T CONST)) (-1750 (($ $) 59)) (-1823 (((-3 $ "failed") $) 33)) (-1815 (((-121) $) 69)) (-3504 ((|#2| $) 95) ((|#2| $ |#2|) 94)) (-2642 (((-121) $) 30)) (-3549 (($ $ (-909)) 96)) (-1814 (((-121) $) 61)) (-1637 (($ |#1| |#2|) 60) (($ $ (-1067) |#2|) 72) (($ $ (-626 (-1067)) (-626 |#2|)) 71)) (-2803 (($ (-1 |#1| |#1|) $) 62)) (-1726 (($ $) 64)) (-1735 ((|#1| $) 65)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-3292 (($ $ |#2|) 90)) (-2336 (((-3 $ "failed") $ $) 49 (|has| |#1| (-550)))) (-4450 (((-1133 |#1|) $ |#1|) 89 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-2778 ((|#1| $ |#2|) 99) (($ $ $) 76 (|has| |#2| (-1094)))) (-2443 (($ $ (-626 (-1153)) (-626 (-755))) 84 (-12 (|has| |#1| (-887 (-1153))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1153) (-755)) 83 (-12 (|has| |#1| (-887 (-1153))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-626 (-1153))) 82 (-12 (|has| |#1| (-887 (-1153))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1153)) 81 (-12 (|has| |#1| (-887 (-1153))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-755)) 79 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 77 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3662 ((|#2| $) 63)) (-2234 (($ $) 68)) (-2801 (((-842) $) 11) (($ (-560)) 27) (($ (-403 (-560))) 56 (|has| |#1| (-43 (-403 (-560))))) (($ $) 48 (|has| |#1| (-550))) (($ |#1|) 46 (|has| |#1| (-170)))) (-2636 ((|#1| $ |#2|) 58)) (-2272 (((-3 $ "failed") $) 47 (|has| |#1| (-146)))) (-1751 (((-755)) 28)) (-1341 ((|#1| $) 97)) (-2328 (((-121) $ $) 52 (|has| |#1| (-550)))) (-2550 ((|#1| $ |#2|) 91 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -2801 (|#1| (-1153))))))) (-2464 (($ $ (-909)) 25) (($ $ (-755)) 32)) (-3304 (($) 17 T CONST)) (-1459 (($) 29 T CONST)) (-2500 (($ $ (-626 (-1153)) (-626 (-755))) 88 (-12 (|has| |#1| (-887 (-1153))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1153) (-755)) 87 (-12 (|has| |#1| (-887 (-1153))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-626 (-1153))) 86 (-12 (|has| |#1| (-887 (-1153))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1153)) 85 (-12 (|has| |#1| (-887 (-1153))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-755)) 80 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 78 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-1653 (((-121) $ $) 6)) (-1733 (($ $ |#1|) 57 (|has| |#1| (-359)))) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 24) (($ $ (-755)) 31)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 23) (($ $ |#1|) 67) (($ |#1| $) 66) (($ (-403 (-560)) $) 55 (|has| |#1| (-43 (-403 (-560))))) (($ $ (-403 (-560))) 54 (|has| |#1| (-43 (-403 (-560))))))) -(((-1213 |#1| |#2|) (-1267) (-1039) (-779)) (T -1213)) -((-4138 (*1 *2 *1) (-12 (-4 *1 (-1213 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-779)) (-5 *2 (-1133 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-2778 (*1 *2 *1 *3) (-12 (-4 *1 (-1213 *2 *3)) (-4 *3 (-779)) (-4 *2 (-1039)))) (-1395 (*1 *2 *1) (-12 (-4 *1 (-1213 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-779)) (-5 *2 (-1153)))) (-1341 (*1 *2 *1) (-12 (-4 *1 (-1213 *2 *3)) (-4 *3 (-779)) (-4 *2 (-1039)))) (-3549 (*1 *1 *1 *2) (-12 (-5 *2 (-909)) (-4 *1 (-1213 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-779)))) (-3504 (*1 *2 *1) (-12 (-4 *1 (-1213 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-779)))) (-3504 (*1 *2 *1 *2) (-12 (-4 *1 (-1213 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-779)))) (-4330 (*1 *1 *1 *2) (-12 (-4 *1 (-1213 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-779)))) (-4330 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1213 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-779)))) (-2550 (*1 *2 *1 *3) (-12 (-4 *1 (-1213 *2 *3)) (-4 *3 (-779)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2801 (*2 (-1153)))) (-4 *2 (-1039)))) (-3292 (*1 *1 *1 *2) (-12 (-4 *1 (-1213 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-779)))) (-4450 (*1 *2 *1 *3) (-12 (-4 *1 (-1213 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-779)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1133 *3))))) -(-13 (-966 |t#1| |t#2| (-1067)) (-10 -8 (-15 -4138 ((-1133 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -2778 (|t#1| $ |t#2|)) (-15 -1395 ((-1153) $)) (-15 -1341 (|t#1| $)) (-15 -3549 ($ $ (-909))) (-15 -3504 (|t#2| $)) (-15 -3504 (|t#2| $ |t#2|)) (-15 -4330 ($ $ |t#2|)) (-15 -4330 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -2801 (|t#1| (-1153)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2550 (|t#1| $ |t#2|)) |noBranch|) |noBranch|) (-15 -3292 ($ $ |t#2|)) (IF (|has| |t#2| (-1094)) (-6 (-276 $ $)) |noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-221)) (IF (|has| |t#1| (-887 (-1153))) (-6 (-887 (-1153))) |noBranch|)) |noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4450 ((-1133 |t#1|) $ |t#1|)) |noBranch|))) -(((-21) . T) ((-23) . T) ((-52 |#1| |#2|) . T) ((-25) . T) ((-43 (-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((-43 |#1|) |has| |#1| (-170)) ((-43 $) |has| |#1| (-550)) ((-105) . T) ((-120 (-403 (-560)) (-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((-120 |#1| |#1|) . T) ((-120 $ $) -2318 (|has| |#1| (-550)) (|has| |#1| (-170))) ((-137) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-600 (-842)) . T) ((-170) -2318 (|has| |#1| (-550)) (|has| |#1| (-170))) ((-221) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-276 $ $) |has| |#2| (-1094)) ((-280) |has| |#1| (-550)) ((-550) |has| |#1| (-550)) ((-629 (-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((-629 |#1|) . T) ((-629 $) . T) ((-699 (-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((-699 |#1|) |has| |#1| (-170)) ((-699 $) |has| |#1| (-550)) ((-708) . T) ((-887 (-1153)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-887 (-1153)))) ((-966 |#1| |#2| (-1067)) . T) ((-1045 (-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((-1045 |#1|) . T) ((-1045 $) -2318 (|has| |#1| (-550)) (|has| |#1| (-170))) ((-1039) . T) ((-1046) . T) ((-1094) . T) ((-1082) . T)) -((-3065 ((|#2| |#2|) 12)) (-2953 (((-414 |#2|) |#2|) 14)) (-2705 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-560))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-560)))) 30))) -(((-1214 |#1| |#2|) (-10 -7 (-15 -2953 ((-414 |#2|) |#2|)) (-15 -3065 (|#2| |#2|)) (-15 -2705 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-560))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-560)))))) (-550) (-13 (-1211 |#1|) (-550) (-10 -8 (-15 -4440 ($ $ $))))) (T -1214)) -((-2705 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-560)))) (-4 *4 (-13 (-1211 *3) (-550) (-10 -8 (-15 -4440 ($ $ $))))) (-4 *3 (-550)) (-5 *1 (-1214 *3 *4)))) (-3065 (*1 *2 *2) (-12 (-4 *3 (-550)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-1211 *3) (-550) (-10 -8 (-15 -4440 ($ $ $))))))) (-2953 (*1 *2 *3) (-12 (-4 *4 (-550)) (-5 *2 (-414 *3)) (-5 *1 (-1214 *4 *3)) (-4 *3 (-13 (-1211 *4) (-550) (-10 -8 (-15 -4440 ($ $ $)))))))) -(-10 -7 (-15 -2953 ((-414 |#2|) |#2|)) (-15 -3065 (|#2| |#2|)) (-15 -2705 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-560))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-560)))))) -((-2803 (((-1220 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1220 |#1| |#3| |#5|)) 23))) -(((-1215 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2803 ((-1220 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1220 |#1| |#3| |#5|)))) (-1039) (-1039) (-1153) (-1153) |#1| |#2|) (T -1215)) -((-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1220 *5 *7 *9)) (-4 *5 (-1039)) (-4 *6 (-1039)) (-14 *7 (-1153)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1220 *6 *8 *10)) (-5 *1 (-1215 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1153))))) -(-10 -7 (-15 -2803 ((-1220 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1220 |#1| |#3| |#5|)))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-1654 (((-626 (-1067)) $) 70)) (-1395 (((-1153) $) 98)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) 50 (|has| |#1| (-550)))) (-1350 (($ $) 51 (|has| |#1| (-550)))) (-3376 (((-121) $) 53 (|has| |#1| (-550)))) (-4330 (($ $ (-403 (-560))) 93) (($ $ (-403 (-560)) (-403 (-560))) 92)) (-4138 (((-1133 (-2 (|:| |k| (-403 (-560))) (|:| |c| |#1|))) $) 100)) (-2570 (($ $) 127 (|has| |#1| (-43 (-403 (-560)))))) (-2514 (($ $) 110 (|has| |#1| (-43 (-403 (-560)))))) (-2314 (((-3 $ "failed") $ $) 18)) (-3065 (($ $) 154 (|has| |#1| (-359)))) (-2953 (((-414 $) $) 155 (|has| |#1| (-359)))) (-2479 (($ $) 109 (|has| |#1| (-43 (-403 (-560)))))) (-4179 (((-121) $ $) 145 (|has| |#1| (-359)))) (-2561 (($ $) 126 (|has| |#1| (-43 (-403 (-560)))))) (-2790 (($ $) 111 (|has| |#1| (-43 (-403 (-560)))))) (-3783 (($ (-755) (-1133 (-2 (|:| |k| (-403 (-560))) (|:| |c| |#1|)))) 164)) (-2579 (($ $) 125 (|has| |#1| (-43 (-403 (-560)))))) (-2523 (($ $) 112 (|has| |#1| (-43 (-403 (-560)))))) (-4236 (($) 16 T CONST)) (-2563 (($ $ $) 149 (|has| |#1| (-359)))) (-1750 (($ $) 59)) (-1823 (((-3 $ "failed") $) 33)) (-2572 (($ $ $) 148 (|has| |#1| (-359)))) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) 143 (|has| |#1| (-359)))) (-3319 (((-121) $) 156 (|has| |#1| (-359)))) (-1815 (((-121) $) 69)) (-2474 (($) 137 (|has| |#1| (-43 (-403 (-560)))))) (-3504 (((-403 (-560)) $) 95) (((-403 (-560)) $ (-403 (-560))) 94)) (-2642 (((-121) $) 30)) (-2586 (($ $ (-560)) 108 (|has| |#1| (-43 (-403 (-560)))))) (-3549 (($ $ (-909)) 96) (($ $ (-403 (-560))) 163)) (-3856 (((-3 (-626 $) "failed") (-626 $) $) 152 (|has| |#1| (-359)))) (-1814 (((-121) $) 61)) (-1637 (($ |#1| (-403 (-560))) 60) (($ $ (-1067) (-403 (-560))) 72) (($ $ (-626 (-1067)) (-626 (-403 (-560)))) 71)) (-2803 (($ (-1 |#1| |#1|) $) 62)) (-4399 (($ $) 134 (|has| |#1| (-43 (-403 (-560)))))) (-1726 (($ $) 64)) (-1735 ((|#1| $) 65)) (-2582 (($ (-626 $)) 141 (|has| |#1| (-359))) (($ $ $) 140 (|has| |#1| (-359)))) (-1291 (((-1135) $) 9)) (-1701 (($ $) 157 (|has| |#1| (-359)))) (-2376 (($ $) 162 (|has| |#1| (-43 (-403 (-560))))) (($ $ (-1153)) 161 (-2318 (-12 (|has| |#1| (-29 (-560))) (|has| |#1| (-951)) (|has| |#1| (-1173)) (|has| |#1| (-43 (-403 (-560))))) (-12 (|has| |#1| (-15 -1654 ((-626 (-1153)) |#1|))) (|has| |#1| (-15 -2376 (|#1| |#1| (-1153)))) (|has| |#1| (-43 (-403 (-560)))))))) (-4353 (((-1100) $) 10)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) 142 (|has| |#1| (-359)))) (-4440 (($ (-626 $)) 139 (|has| |#1| (-359))) (($ $ $) 138 (|has| |#1| (-359)))) (-1601 (((-414 $) $) 153 (|has| |#1| (-359)))) (-3505 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 151 (|has| |#1| (-359))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) 150 (|has| |#1| (-359)))) (-3292 (($ $ (-403 (-560))) 90)) (-2336 (((-3 $ "failed") $ $) 49 (|has| |#1| (-550)))) (-3456 (((-3 (-626 $) "failed") (-626 $) $) 144 (|has| |#1| (-359)))) (-2469 (($ $) 135 (|has| |#1| (-43 (-403 (-560)))))) (-4450 (((-1133 |#1|) $ |#1|) 89 (|has| |#1| (-15 ** (|#1| |#1| (-403 (-560))))))) (-4445 (((-755) $) 146 (|has| |#1| (-359)))) (-2778 ((|#1| $ (-403 (-560))) 99) (($ $ $) 76 (|has| (-403 (-560)) (-1094)))) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) 147 (|has| |#1| (-359)))) (-2443 (($ $ (-626 (-1153)) (-626 (-755))) 84 (-12 (|has| |#1| (-887 (-1153))) (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))))) (($ $ (-1153) (-755)) 83 (-12 (|has| |#1| (-887 (-1153))) (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))))) (($ $ (-626 (-1153))) 82 (-12 (|has| |#1| (-887 (-1153))) (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))))) (($ $ (-1153)) 81 (-12 (|has| |#1| (-887 (-1153))) (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))))) (($ $ (-755)) 79 (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|)))) (($ $) 77 (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))))) (-3662 (((-403 (-560)) $) 63)) (-2585 (($ $) 124 (|has| |#1| (-43 (-403 (-560)))))) (-2528 (($ $) 113 (|has| |#1| (-43 (-403 (-560)))))) (-2575 (($ $) 123 (|has| |#1| (-43 (-403 (-560)))))) (-2519 (($ $) 114 (|has| |#1| (-43 (-403 (-560)))))) (-2566 (($ $) 122 (|has| |#1| (-43 (-403 (-560)))))) (-2795 (($ $) 115 (|has| |#1| (-43 (-403 (-560)))))) (-2234 (($ $) 68)) (-2801 (((-842) $) 11) (($ (-560)) 27) (($ |#1|) 46 (|has| |#1| (-170))) (($ (-403 (-560))) 56 (|has| |#1| (-43 (-403 (-560))))) (($ $) 48 (|has| |#1| (-550)))) (-2636 ((|#1| $ (-403 (-560))) 58)) (-2272 (((-3 $ "failed") $) 47 (|has| |#1| (-146)))) (-1751 (((-755)) 28)) (-1341 ((|#1| $) 97)) (-2598 (($ $) 133 (|has| |#1| (-43 (-403 (-560)))))) (-2541 (($ $) 121 (|has| |#1| (-43 (-403 (-560)))))) (-2328 (((-121) $ $) 52 (|has| |#1| (-550)))) (-2590 (($ $) 132 (|has| |#1| (-43 (-403 (-560)))))) (-2532 (($ $) 120 (|has| |#1| (-43 (-403 (-560)))))) (-2608 (($ $) 131 (|has| |#1| (-43 (-403 (-560)))))) (-2549 (($ $) 119 (|has| |#1| (-43 (-403 (-560)))))) (-2550 ((|#1| $ (-403 (-560))) 91 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-403 (-560))))) (|has| |#1| (-15 -2801 (|#1| (-1153))))))) (-3689 (($ $) 130 (|has| |#1| (-43 (-403 (-560)))))) (-2554 (($ $) 118 (|has| |#1| (-43 (-403 (-560)))))) (-2604 (($ $) 129 (|has| |#1| (-43 (-403 (-560)))))) (-2545 (($ $) 117 (|has| |#1| (-43 (-403 (-560)))))) (-2594 (($ $) 128 (|has| |#1| (-43 (-403 (-560)))))) (-2536 (($ $) 116 (|has| |#1| (-43 (-403 (-560)))))) (-2464 (($ $ (-909)) 25) (($ $ (-755)) 32) (($ $ (-560)) 158 (|has| |#1| (-359)))) (-3304 (($) 17 T CONST)) (-1459 (($) 29 T CONST)) (-2500 (($ $ (-626 (-1153)) (-626 (-755))) 88 (-12 (|has| |#1| (-887 (-1153))) (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))))) (($ $ (-1153) (-755)) 87 (-12 (|has| |#1| (-887 (-1153))) (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))))) (($ $ (-626 (-1153))) 86 (-12 (|has| |#1| (-887 (-1153))) (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))))) (($ $ (-1153)) 85 (-12 (|has| |#1| (-887 (-1153))) (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))))) (($ $ (-755)) 80 (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|)))) (($ $) 78 (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))))) (-1653 (((-121) $ $) 6)) (-1733 (($ $ |#1|) 57 (|has| |#1| (-359))) (($ $ $) 160 (|has| |#1| (-359)))) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 24) (($ $ (-755)) 31) (($ $ (-560)) 159 (|has| |#1| (-359))) (($ $ $) 136 (|has| |#1| (-43 (-403 (-560))))) (($ $ (-403 (-560))) 107 (|has| |#1| (-43 (-403 (-560)))))) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 23) (($ $ |#1|) 67) (($ |#1| $) 66) (($ (-403 (-560)) $) 55 (|has| |#1| (-43 (-403 (-560))))) (($ $ (-403 (-560))) 54 (|has| |#1| (-43 (-403 (-560))))))) -(((-1216 |#1|) (-1267) (-1039)) (T -1216)) -((-3783 (*1 *1 *2 *3) (-12 (-5 *2 (-755)) (-5 *3 (-1133 (-2 (|:| |k| (-403 (-560))) (|:| |c| *4)))) (-4 *4 (-1039)) (-4 *1 (-1216 *4)))) (-3549 (*1 *1 *1 *2) (-12 (-5 *2 (-403 (-560))) (-4 *1 (-1216 *3)) (-4 *3 (-1039)))) (-2376 (*1 *1 *1) (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1039)) (-4 *2 (-43 (-403 (-560)))))) (-2376 (*1 *1 *1 *2) (-2318 (-12 (-5 *2 (-1153)) (-4 *1 (-1216 *3)) (-4 *3 (-1039)) (-12 (-4 *3 (-29 (-560))) (-4 *3 (-951)) (-4 *3 (-1173)) (-4 *3 (-43 (-403 (-560)))))) (-12 (-5 *2 (-1153)) (-4 *1 (-1216 *3)) (-4 *3 (-1039)) (-12 (|has| *3 (-15 -1654 ((-626 *2) *3))) (|has| *3 (-15 -2376 (*3 *3 *2))) (-4 *3 (-43 (-403 (-560))))))))) -(-13 (-1213 |t#1| (-403 (-560))) (-10 -8 (-15 -3783 ($ (-755) (-1133 (-2 (|:| |k| (-403 (-560))) (|:| |c| |t#1|))))) (-15 -3549 ($ $ (-403 (-560)))) (IF (|has| |t#1| (-43 (-403 (-560)))) (PROGN (-15 -2376 ($ $)) (IF (|has| |t#1| (-15 -2376 (|t#1| |t#1| (-1153)))) (IF (|has| |t#1| (-15 -1654 ((-626 (-1153)) |t#1|))) (-15 -2376 ($ $ (-1153))) |noBranch|) |noBranch|) (IF (|has| |t#1| (-1173)) (IF (|has| |t#1| (-951)) (IF (|has| |t#1| (-29 (-560))) (-15 -2376 ($ $ (-1153))) |noBranch|) |noBranch|) |noBranch|) (-6 (-994)) (-6 (-1173))) |noBranch|) (IF (|has| |t#1| (-359)) (-6 (-359)) |noBranch|))) -(((-21) . T) ((-23) . T) ((-52 |#1| (-403 (-560))) . T) ((-25) . T) ((-43 (-403 (-560))) -2318 (|has| |#1| (-359)) (|has| |#1| (-43 (-403 (-560))))) ((-43 |#1|) |has| |#1| (-170)) ((-43 $) -2318 (|has| |#1| (-550)) (|has| |#1| (-359))) ((-40) |has| |#1| (-43 (-403 (-560)))) ((-98) |has| |#1| (-43 (-403 (-560)))) ((-105) . T) ((-120 (-403 (-560)) (-403 (-560))) -2318 (|has| |#1| (-359)) (|has| |#1| (-43 (-403 (-560))))) ((-120 |#1| |#1|) . T) ((-120 $ $) -2318 (|has| |#1| (-550)) (|has| |#1| (-359)) (|has| |#1| (-170))) ((-137) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-600 (-842)) . T) ((-170) -2318 (|has| |#1| (-550)) (|has| |#1| (-359)) (|has| |#1| (-170))) ((-221) |has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))) ((-233) |has| |#1| (-359)) ((-274) |has| |#1| (-43 (-403 (-560)))) ((-276 $ $) |has| (-403 (-560)) (-1094)) ((-280) -2318 (|has| |#1| (-550)) (|has| |#1| (-359))) ((-296) |has| |#1| (-359)) ((-359) |has| |#1| (-359)) ((-447) |has| |#1| (-359)) ((-494) |has| |#1| (-43 (-403 (-560)))) ((-550) -2318 (|has| |#1| (-550)) (|has| |#1| (-359))) ((-629 (-403 (-560))) -2318 (|has| |#1| (-359)) (|has| |#1| (-43 (-403 (-560))))) ((-629 |#1|) . T) ((-629 $) . T) ((-699 (-403 (-560))) -2318 (|has| |#1| (-359)) (|has| |#1| (-43 (-403 (-560))))) ((-699 |#1|) |has| |#1| (-170)) ((-699 $) -2318 (|has| |#1| (-550)) (|has| |#1| (-359))) ((-708) . T) ((-887 (-1153)) -12 (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))) (|has| |#1| (-887 (-1153)))) ((-966 |#1| (-403 (-560)) (-1067)) . T) ((-908) |has| |#1| (-359)) ((-994) |has| |#1| (-43 (-403 (-560)))) ((-1045 (-403 (-560))) -2318 (|has| |#1| (-359)) (|has| |#1| (-43 (-403 (-560))))) ((-1045 |#1|) . T) ((-1045 $) -2318 (|has| |#1| (-550)) (|has| |#1| (-359)) (|has| |#1| (-170))) ((-1039) . T) ((-1046) . T) ((-1094) . T) ((-1082) . T) ((-1173) |has| |#1| (-43 (-403 (-560)))) ((-1176) |has| |#1| (-43 (-403 (-560)))) ((-1191) |has| |#1| (-359)) ((-1213 |#1| (-403 (-560))) . T)) -((-2832 (((-121) $) 12)) (-1473 (((-3 |#3| "failed") $) 17)) (-3001 ((|#3| $) 14))) -(((-1217 |#1| |#2| |#3|) (-10 -8 (-15 -3001 (|#3| |#1|)) (-15 -1473 ((-3 |#3| "failed") |#1|)) (-15 -2832 ((-121) |#1|))) (-1218 |#2| |#3|) (-1039) (-1195 |#2|)) (T -1217)) -NIL -(-10 -8 (-15 -3001 (|#3| |#1|)) (-15 -1473 ((-3 |#3| "failed") |#1|)) (-15 -2832 ((-121) |#1|))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-1654 (((-626 (-1067)) $) 70)) (-1395 (((-1153) $) 98)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) 50 (|has| |#1| (-550)))) (-1350 (($ $) 51 (|has| |#1| (-550)))) (-3376 (((-121) $) 53 (|has| |#1| (-550)))) (-4330 (($ $ (-403 (-560))) 93) (($ $ (-403 (-560)) (-403 (-560))) 92)) (-4138 (((-1133 (-2 (|:| |k| (-403 (-560))) (|:| |c| |#1|))) $) 100)) (-2570 (($ $) 127 (|has| |#1| (-43 (-403 (-560)))))) (-2514 (($ $) 110 (|has| |#1| (-43 (-403 (-560)))))) (-2314 (((-3 $ "failed") $ $) 18)) (-3065 (($ $) 154 (|has| |#1| (-359)))) (-2953 (((-414 $) $) 155 (|has| |#1| (-359)))) (-2479 (($ $) 109 (|has| |#1| (-43 (-403 (-560)))))) (-4179 (((-121) $ $) 145 (|has| |#1| (-359)))) (-2561 (($ $) 126 (|has| |#1| (-43 (-403 (-560)))))) (-2790 (($ $) 111 (|has| |#1| (-43 (-403 (-560)))))) (-3783 (($ (-755) (-1133 (-2 (|:| |k| (-403 (-560))) (|:| |c| |#1|)))) 164)) (-2579 (($ $) 125 (|has| |#1| (-43 (-403 (-560)))))) (-2523 (($ $) 112 (|has| |#1| (-43 (-403 (-560)))))) (-4236 (($) 16 T CONST)) (-1473 (((-3 |#2| "failed") $) 172)) (-3001 ((|#2| $) 171)) (-2563 (($ $ $) 149 (|has| |#1| (-359)))) (-1750 (($ $) 59)) (-1823 (((-3 $ "failed") $) 33)) (-1808 (((-403 (-560)) $) 169)) (-2572 (($ $ $) 148 (|has| |#1| (-359)))) (-1693 (($ (-403 (-560)) |#2|) 170)) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) 143 (|has| |#1| (-359)))) (-3319 (((-121) $) 156 (|has| |#1| (-359)))) (-1815 (((-121) $) 69)) (-2474 (($) 137 (|has| |#1| (-43 (-403 (-560)))))) (-3504 (((-403 (-560)) $) 95) (((-403 (-560)) $ (-403 (-560))) 94)) (-2642 (((-121) $) 30)) (-2586 (($ $ (-560)) 108 (|has| |#1| (-43 (-403 (-560)))))) (-3549 (($ $ (-909)) 96) (($ $ (-403 (-560))) 163)) (-3856 (((-3 (-626 $) "failed") (-626 $) $) 152 (|has| |#1| (-359)))) (-1814 (((-121) $) 61)) (-1637 (($ |#1| (-403 (-560))) 60) (($ $ (-1067) (-403 (-560))) 72) (($ $ (-626 (-1067)) (-626 (-403 (-560)))) 71)) (-2803 (($ (-1 |#1| |#1|) $) 62)) (-4399 (($ $) 134 (|has| |#1| (-43 (-403 (-560)))))) (-1726 (($ $) 64)) (-1735 ((|#1| $) 65)) (-2582 (($ (-626 $)) 141 (|has| |#1| (-359))) (($ $ $) 140 (|has| |#1| (-359)))) (-4242 ((|#2| $) 168)) (-2920 (((-3 |#2| "failed") $) 166)) (-1684 ((|#2| $) 167)) (-1291 (((-1135) $) 9)) (-1701 (($ $) 157 (|has| |#1| (-359)))) (-2376 (($ $) 162 (|has| |#1| (-43 (-403 (-560))))) (($ $ (-1153)) 161 (-2318 (-12 (|has| |#1| (-29 (-560))) (|has| |#1| (-951)) (|has| |#1| (-1173)) (|has| |#1| (-43 (-403 (-560))))) (-12 (|has| |#1| (-15 -1654 ((-626 (-1153)) |#1|))) (|has| |#1| (-15 -2376 (|#1| |#1| (-1153)))) (|has| |#1| (-43 (-403 (-560)))))))) (-4353 (((-1100) $) 10)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) 142 (|has| |#1| (-359)))) (-4440 (($ (-626 $)) 139 (|has| |#1| (-359))) (($ $ $) 138 (|has| |#1| (-359)))) (-1601 (((-414 $) $) 153 (|has| |#1| (-359)))) (-3505 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 151 (|has| |#1| (-359))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) 150 (|has| |#1| (-359)))) (-3292 (($ $ (-403 (-560))) 90)) (-2336 (((-3 $ "failed") $ $) 49 (|has| |#1| (-550)))) (-3456 (((-3 (-626 $) "failed") (-626 $) $) 144 (|has| |#1| (-359)))) (-2469 (($ $) 135 (|has| |#1| (-43 (-403 (-560)))))) (-4450 (((-1133 |#1|) $ |#1|) 89 (|has| |#1| (-15 ** (|#1| |#1| (-403 (-560))))))) (-4445 (((-755) $) 146 (|has| |#1| (-359)))) (-2778 ((|#1| $ (-403 (-560))) 99) (($ $ $) 76 (|has| (-403 (-560)) (-1094)))) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) 147 (|has| |#1| (-359)))) (-2443 (($ $ (-626 (-1153)) (-626 (-755))) 84 (-12 (|has| |#1| (-887 (-1153))) (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))))) (($ $ (-1153) (-755)) 83 (-12 (|has| |#1| (-887 (-1153))) (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))))) (($ $ (-626 (-1153))) 82 (-12 (|has| |#1| (-887 (-1153))) (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))))) (($ $ (-1153)) 81 (-12 (|has| |#1| (-887 (-1153))) (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))))) (($ $ (-755)) 79 (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|)))) (($ $) 77 (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))))) (-3662 (((-403 (-560)) $) 63)) (-2585 (($ $) 124 (|has| |#1| (-43 (-403 (-560)))))) (-2528 (($ $) 113 (|has| |#1| (-43 (-403 (-560)))))) (-2575 (($ $) 123 (|has| |#1| (-43 (-403 (-560)))))) (-2519 (($ $) 114 (|has| |#1| (-43 (-403 (-560)))))) (-2566 (($ $) 122 (|has| |#1| (-43 (-403 (-560)))))) (-2795 (($ $) 115 (|has| |#1| (-43 (-403 (-560)))))) (-2234 (($ $) 68)) (-2801 (((-842) $) 11) (($ (-560)) 27) (($ |#1|) 46 (|has| |#1| (-170))) (($ |#2|) 173) (($ (-403 (-560))) 56 (|has| |#1| (-43 (-403 (-560))))) (($ $) 48 (|has| |#1| (-550)))) (-2636 ((|#1| $ (-403 (-560))) 58)) (-2272 (((-3 $ "failed") $) 47 (|has| |#1| (-146)))) (-1751 (((-755)) 28)) (-1341 ((|#1| $) 97)) (-2598 (($ $) 133 (|has| |#1| (-43 (-403 (-560)))))) (-2541 (($ $) 121 (|has| |#1| (-43 (-403 (-560)))))) (-2328 (((-121) $ $) 52 (|has| |#1| (-550)))) (-2590 (($ $) 132 (|has| |#1| (-43 (-403 (-560)))))) (-2532 (($ $) 120 (|has| |#1| (-43 (-403 (-560)))))) (-2608 (($ $) 131 (|has| |#1| (-43 (-403 (-560)))))) (-2549 (($ $) 119 (|has| |#1| (-43 (-403 (-560)))))) (-2550 ((|#1| $ (-403 (-560))) 91 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-403 (-560))))) (|has| |#1| (-15 -2801 (|#1| (-1153))))))) (-3689 (($ $) 130 (|has| |#1| (-43 (-403 (-560)))))) (-2554 (($ $) 118 (|has| |#1| (-43 (-403 (-560)))))) (-2604 (($ $) 129 (|has| |#1| (-43 (-403 (-560)))))) (-2545 (($ $) 117 (|has| |#1| (-43 (-403 (-560)))))) (-2594 (($ $) 128 (|has| |#1| (-43 (-403 (-560)))))) (-2536 (($ $) 116 (|has| |#1| (-43 (-403 (-560)))))) (-2464 (($ $ (-909)) 25) (($ $ (-755)) 32) (($ $ (-560)) 158 (|has| |#1| (-359)))) (-3304 (($) 17 T CONST)) (-1459 (($) 29 T CONST)) (-2500 (($ $ (-626 (-1153)) (-626 (-755))) 88 (-12 (|has| |#1| (-887 (-1153))) (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))))) (($ $ (-1153) (-755)) 87 (-12 (|has| |#1| (-887 (-1153))) (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))))) (($ $ (-626 (-1153))) 86 (-12 (|has| |#1| (-887 (-1153))) (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))))) (($ $ (-1153)) 85 (-12 (|has| |#1| (-887 (-1153))) (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))))) (($ $ (-755)) 80 (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|)))) (($ $) 78 (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))))) (-1653 (((-121) $ $) 6)) (-1733 (($ $ |#1|) 57 (|has| |#1| (-359))) (($ $ $) 160 (|has| |#1| (-359)))) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 24) (($ $ (-755)) 31) (($ $ (-560)) 159 (|has| |#1| (-359))) (($ $ $) 136 (|has| |#1| (-43 (-403 (-560))))) (($ $ (-403 (-560))) 107 (|has| |#1| (-43 (-403 (-560)))))) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 23) (($ $ |#1|) 67) (($ |#1| $) 66) (($ (-403 (-560)) $) 55 (|has| |#1| (-43 (-403 (-560))))) (($ $ (-403 (-560))) 54 (|has| |#1| (-43 (-403 (-560))))))) -(((-1218 |#1| |#2|) (-1267) (-1039) (-1195 |t#1|)) (T -1218)) -((-3662 (*1 *2 *1) (-12 (-4 *1 (-1218 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-1195 *3)) (-5 *2 (-403 (-560))))) (-2801 (*1 *1 *2) (-12 (-4 *3 (-1039)) (-4 *1 (-1218 *3 *2)) (-4 *2 (-1195 *3)))) (-1693 (*1 *1 *2 *3) (-12 (-5 *2 (-403 (-560))) (-4 *4 (-1039)) (-4 *1 (-1218 *4 *3)) (-4 *3 (-1195 *4)))) (-1808 (*1 *2 *1) (-12 (-4 *1 (-1218 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-1195 *3)) (-5 *2 (-403 (-560))))) (-4242 (*1 *2 *1) (-12 (-4 *1 (-1218 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-1195 *3)))) (-1684 (*1 *2 *1) (-12 (-4 *1 (-1218 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-1195 *3)))) (-2920 (*1 *2 *1) (|partial| -12 (-4 *1 (-1218 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-1195 *3))))) -(-13 (-1216 |t#1|) (-1029 |t#2|) (-10 -8 (-15 -1693 ($ (-403 (-560)) |t#2|)) (-15 -1808 ((-403 (-560)) $)) (-15 -4242 (|t#2| $)) (-15 -3662 ((-403 (-560)) $)) (-15 -2801 ($ |t#2|)) (-15 -1684 (|t#2| $)) (-15 -2920 ((-3 |t#2| "failed") $)))) -(((-21) . T) ((-23) . T) ((-52 |#1| (-403 (-560))) . T) ((-25) . T) ((-43 (-403 (-560))) -2318 (|has| |#1| (-359)) (|has| |#1| (-43 (-403 (-560))))) ((-43 |#1|) |has| |#1| (-170)) ((-43 $) -2318 (|has| |#1| (-550)) (|has| |#1| (-359))) ((-40) |has| |#1| (-43 (-403 (-560)))) ((-98) |has| |#1| (-43 (-403 (-560)))) ((-105) . T) ((-120 (-403 (-560)) (-403 (-560))) -2318 (|has| |#1| (-359)) (|has| |#1| (-43 (-403 (-560))))) ((-120 |#1| |#1|) . T) ((-120 $ $) -2318 (|has| |#1| (-550)) (|has| |#1| (-359)) (|has| |#1| (-170))) ((-137) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-600 (-842)) . T) ((-170) -2318 (|has| |#1| (-550)) (|has| |#1| (-359)) (|has| |#1| (-170))) ((-221) |has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))) ((-233) |has| |#1| (-359)) ((-274) |has| |#1| (-43 (-403 (-560)))) ((-276 $ $) |has| (-403 (-560)) (-1094)) ((-280) -2318 (|has| |#1| (-550)) (|has| |#1| (-359))) ((-296) |has| |#1| (-359)) ((-359) |has| |#1| (-359)) ((-447) |has| |#1| (-359)) ((-494) |has| |#1| (-43 (-403 (-560)))) ((-550) -2318 (|has| |#1| (-550)) (|has| |#1| (-359))) ((-629 (-403 (-560))) -2318 (|has| |#1| (-359)) (|has| |#1| (-43 (-403 (-560))))) ((-629 |#1|) . T) ((-629 $) . T) ((-699 (-403 (-560))) -2318 (|has| |#1| (-359)) (|has| |#1| (-43 (-403 (-560))))) ((-699 |#1|) |has| |#1| (-170)) ((-699 $) -2318 (|has| |#1| (-550)) (|has| |#1| (-359))) ((-708) . T) ((-887 (-1153)) -12 (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))) (|has| |#1| (-887 (-1153)))) ((-966 |#1| (-403 (-560)) (-1067)) . T) ((-908) |has| |#1| (-359)) ((-994) |has| |#1| (-43 (-403 (-560)))) ((-1029 |#2|) . T) ((-1045 (-403 (-560))) -2318 (|has| |#1| (-359)) (|has| |#1| (-43 (-403 (-560))))) ((-1045 |#1|) . T) ((-1045 $) -2318 (|has| |#1| (-550)) (|has| |#1| (-359)) (|has| |#1| (-170))) ((-1039) . T) ((-1046) . T) ((-1094) . T) ((-1082) . T) ((-1173) |has| |#1| (-43 (-403 (-560)))) ((-1176) |has| |#1| (-43 (-403 (-560)))) ((-1191) |has| |#1| (-359)) ((-1213 |#1| (-403 (-560))) . T) ((-1216 |#1|) . T)) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-1654 (((-626 (-1067)) $) NIL)) (-1395 (((-1153) $) 96)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL (|has| |#1| (-550)))) (-1350 (($ $) NIL (|has| |#1| (-550)))) (-3376 (((-121) $) NIL (|has| |#1| (-550)))) (-4330 (($ $ (-403 (-560))) 106) (($ $ (-403 (-560)) (-403 (-560))) 108)) (-4138 (((-1133 (-2 (|:| |k| (-403 (-560))) (|:| |c| |#1|))) $) 51)) (-2570 (($ $) 179 (|has| |#1| (-43 (-403 (-560)))))) (-2514 (($ $) 155 (|has| |#1| (-43 (-403 (-560)))))) (-2314 (((-3 $ "failed") $ $) NIL)) (-3065 (($ $) NIL (|has| |#1| (-359)))) (-2953 (((-414 $) $) NIL (|has| |#1| (-359)))) (-2479 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-4179 (((-121) $ $) NIL (|has| |#1| (-359)))) (-2561 (($ $) 175 (|has| |#1| (-43 (-403 (-560)))))) (-2790 (($ $) 151 (|has| |#1| (-43 (-403 (-560)))))) (-3783 (($ (-755) (-1133 (-2 (|:| |k| (-403 (-560))) (|:| |c| |#1|)))) 61)) (-2579 (($ $) 183 (|has| |#1| (-43 (-403 (-560)))))) (-2523 (($ $) 159 (|has| |#1| (-43 (-403 (-560)))))) (-4236 (($) NIL T CONST)) (-1473 (((-3 |#2| "failed") $) NIL)) (-3001 ((|#2| $) NIL)) (-2563 (($ $ $) NIL (|has| |#1| (-359)))) (-1750 (($ $) NIL)) (-1823 (((-3 $ "failed") $) 79)) (-1808 (((-403 (-560)) $) 12)) (-2572 (($ $ $) NIL (|has| |#1| (-359)))) (-1693 (($ (-403 (-560)) |#2|) 10)) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) NIL (|has| |#1| (-359)))) (-3319 (((-121) $) NIL (|has| |#1| (-359)))) (-1815 (((-121) $) 68)) (-2474 (($) NIL (|has| |#1| (-43 (-403 (-560)))))) (-3504 (((-403 (-560)) $) 103) (((-403 (-560)) $ (-403 (-560))) 104)) (-2642 (((-121) $) NIL)) (-2586 (($ $ (-560)) NIL (|has| |#1| (-43 (-403 (-560)))))) (-3549 (($ $ (-909)) 120) (($ $ (-403 (-560))) 118)) (-3856 (((-3 (-626 $) "failed") (-626 $) $) NIL (|has| |#1| (-359)))) (-1814 (((-121) $) NIL)) (-1637 (($ |#1| (-403 (-560))) 31) (($ $ (-1067) (-403 (-560))) NIL) (($ $ (-626 (-1067)) (-626 (-403 (-560)))) NIL)) (-2803 (($ (-1 |#1| |#1|) $) 115)) (-4399 (($ $) 149 (|has| |#1| (-43 (-403 (-560)))))) (-1726 (($ $) NIL)) (-1735 ((|#1| $) NIL)) (-2582 (($ (-626 $)) NIL (|has| |#1| (-359))) (($ $ $) NIL (|has| |#1| (-359)))) (-4242 ((|#2| $) 11)) (-2920 (((-3 |#2| "failed") $) 41)) (-1684 ((|#2| $) 42)) (-1291 (((-1135) $) NIL)) (-1701 (($ $) 93 (|has| |#1| (-359)))) (-2376 (($ $) 135 (|has| |#1| (-43 (-403 (-560))))) (($ $ (-1153)) 140 (-2318 (-12 (|has| |#1| (-15 -2376 (|#1| |#1| (-1153)))) (|has| |#1| (-15 -1654 ((-626 (-1153)) |#1|))) (|has| |#1| (-43 (-403 (-560))))) (-12 (|has| |#1| (-29 (-560))) (|has| |#1| (-43 (-403 (-560)))) (|has| |#1| (-951)) (|has| |#1| (-1173)))))) (-4353 (((-1100) $) NIL)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL (|has| |#1| (-359)))) (-4440 (($ (-626 $)) NIL (|has| |#1| (-359))) (($ $ $) NIL (|has| |#1| (-359)))) (-1601 (((-414 $) $) NIL (|has| |#1| (-359)))) (-3505 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-359))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL (|has| |#1| (-359)))) (-3292 (($ $ (-403 (-560))) 112)) (-2336 (((-3 $ "failed") $ $) NIL (|has| |#1| (-550)))) (-3456 (((-3 (-626 $) "failed") (-626 $) $) NIL (|has| |#1| (-359)))) (-2469 (($ $) 147 (|has| |#1| (-43 (-403 (-560)))))) (-4450 (((-1133 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-403 (-560))))))) (-4445 (((-755) $) NIL (|has| |#1| (-359)))) (-2778 ((|#1| $ (-403 (-560))) 100) (($ $ $) 86 (|has| (-403 (-560)) (-1094)))) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL (|has| |#1| (-359)))) (-2443 (($ $ (-626 (-1153)) (-626 (-755))) NIL (-12 (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-1153) (-755)) NIL (-12 (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-626 (-1153))) NIL (-12 (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-1153)) 127 (-12 (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-755)) NIL (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))))) (-3662 (((-403 (-560)) $) 16)) (-2585 (($ $) 185 (|has| |#1| (-43 (-403 (-560)))))) (-2528 (($ $) 161 (|has| |#1| (-43 (-403 (-560)))))) (-2575 (($ $) 181 (|has| |#1| (-43 (-403 (-560)))))) (-2519 (($ $) 157 (|has| |#1| (-43 (-403 (-560)))))) (-2566 (($ $) 177 (|has| |#1| (-43 (-403 (-560)))))) (-2795 (($ $) 153 (|has| |#1| (-43 (-403 (-560)))))) (-2234 (($ $) 110)) (-2801 (((-842) $) NIL) (($ (-560)) 35) (($ |#1|) 27 (|has| |#1| (-170))) (($ |#2|) 32) (($ (-403 (-560))) 128 (|has| |#1| (-43 (-403 (-560))))) (($ $) NIL (|has| |#1| (-550)))) (-2636 ((|#1| $ (-403 (-560))) 99)) (-2272 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1751 (((-755)) 117)) (-1341 ((|#1| $) 98)) (-2598 (($ $) 191 (|has| |#1| (-43 (-403 (-560)))))) (-2541 (($ $) 167 (|has| |#1| (-43 (-403 (-560)))))) (-2328 (((-121) $ $) NIL (|has| |#1| (-550)))) (-2590 (($ $) 187 (|has| |#1| (-43 (-403 (-560)))))) (-2532 (($ $) 163 (|has| |#1| (-43 (-403 (-560)))))) (-2608 (($ $) 195 (|has| |#1| (-43 (-403 (-560)))))) (-2549 (($ $) 171 (|has| |#1| (-43 (-403 (-560)))))) (-2550 ((|#1| $ (-403 (-560))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-403 (-560))))) (|has| |#1| (-15 -2801 (|#1| (-1153))))))) (-3689 (($ $) 197 (|has| |#1| (-43 (-403 (-560)))))) (-2554 (($ $) 173 (|has| |#1| (-43 (-403 (-560)))))) (-2604 (($ $) 193 (|has| |#1| (-43 (-403 (-560)))))) (-2545 (($ $) 169 (|has| |#1| (-43 (-403 (-560)))))) (-2594 (($ $) 189 (|has| |#1| (-43 (-403 (-560)))))) (-2536 (($ $) 165 (|has| |#1| (-43 (-403 (-560)))))) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL (|has| |#1| (-359)))) (-3304 (($) 21 T CONST)) (-1459 (($) 17 T CONST)) (-2500 (($ $ (-626 (-1153)) (-626 (-755))) NIL (-12 (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-1153) (-755)) NIL (-12 (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-626 (-1153))) NIL (-12 (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-1153)) NIL (-12 (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-755)) NIL (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))))) (-1653 (((-121) $ $) 66)) (-1733 (($ $ |#1|) NIL (|has| |#1| (-359))) (($ $ $) 92 (|has| |#1| (-359)))) (-1725 (($ $) 131) (($ $ $) 72)) (-1716 (($ $ $) 70)) (** (($ $ (-909)) NIL) (($ $ (-755)) 76) (($ $ (-560)) 144 (|has| |#1| (-359))) (($ $ $) NIL (|has| |#1| (-43 (-403 (-560))))) (($ $ (-403 (-560))) 145 (|has| |#1| (-43 (-403 (-560)))))) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-403 (-560)) $) NIL (|has| |#1| (-43 (-403 (-560))))) (($ $ (-403 (-560))) NIL (|has| |#1| (-43 (-403 (-560))))))) -(((-1219 |#1| |#2|) (-1218 |#1| |#2|) (-1039) (-1195 |#1|)) (T -1219)) -NIL -(-1218 |#1| |#2|) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-1654 (((-626 (-1067)) $) NIL)) (-1395 (((-1153) $) 11)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL (|has| |#1| (-550)))) (-1350 (($ $) NIL (|has| |#1| (-550)))) (-3376 (((-121) $) NIL (|has| |#1| (-550)))) (-4330 (($ $ (-403 (-560))) NIL) (($ $ (-403 (-560)) (-403 (-560))) NIL)) (-4138 (((-1133 (-2 (|:| |k| (-403 (-560))) (|:| |c| |#1|))) $) NIL)) (-2570 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2514 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2314 (((-3 $ "failed") $ $) NIL)) (-3065 (($ $) NIL (|has| |#1| (-359)))) (-2953 (((-414 $) $) NIL (|has| |#1| (-359)))) (-2479 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-4179 (((-121) $ $) NIL (|has| |#1| (-359)))) (-2561 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2790 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-3783 (($ (-755) (-1133 (-2 (|:| |k| (-403 (-560))) (|:| |c| |#1|)))) NIL)) (-2579 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2523 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-4236 (($) NIL T CONST)) (-1473 (((-3 (-1199 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1227 |#1| |#2| |#3|) "failed") $) 22)) (-3001 (((-1199 |#1| |#2| |#3|) $) NIL) (((-1227 |#1| |#2| |#3|) $) NIL)) (-2563 (($ $ $) NIL (|has| |#1| (-359)))) (-1750 (($ $) NIL)) (-1823 (((-3 $ "failed") $) NIL)) (-1808 (((-403 (-560)) $) 57)) (-2572 (($ $ $) NIL (|has| |#1| (-359)))) (-1693 (($ (-403 (-560)) (-1199 |#1| |#2| |#3|)) NIL)) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) NIL (|has| |#1| (-359)))) (-3319 (((-121) $) NIL (|has| |#1| (-359)))) (-1815 (((-121) $) NIL)) (-2474 (($) NIL (|has| |#1| (-43 (-403 (-560)))))) (-3504 (((-403 (-560)) $) NIL) (((-403 (-560)) $ (-403 (-560))) NIL)) (-2642 (((-121) $) NIL)) (-2586 (($ $ (-560)) NIL (|has| |#1| (-43 (-403 (-560)))))) (-3549 (($ $ (-909)) NIL) (($ $ (-403 (-560))) NIL)) (-3856 (((-3 (-626 $) "failed") (-626 $) $) NIL (|has| |#1| (-359)))) (-1814 (((-121) $) NIL)) (-1637 (($ |#1| (-403 (-560))) 29) (($ $ (-1067) (-403 (-560))) NIL) (($ $ (-626 (-1067)) (-626 (-403 (-560)))) NIL)) (-2803 (($ (-1 |#1| |#1|) $) NIL)) (-4399 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-1726 (($ $) NIL)) (-1735 ((|#1| $) NIL)) (-2582 (($ (-626 $)) NIL (|has| |#1| (-359))) (($ $ $) NIL (|has| |#1| (-359)))) (-4242 (((-1199 |#1| |#2| |#3|) $) 60)) (-2920 (((-3 (-1199 |#1| |#2| |#3|) "failed") $) NIL)) (-1684 (((-1199 |#1| |#2| |#3|) $) NIL)) (-1291 (((-1135) $) NIL)) (-1701 (($ $) NIL (|has| |#1| (-359)))) (-2376 (($ $) 38 (|has| |#1| (-43 (-403 (-560))))) (($ $ (-1153)) NIL (-2318 (-12 (|has| |#1| (-15 -2376 (|#1| |#1| (-1153)))) (|has| |#1| (-15 -1654 ((-626 (-1153)) |#1|))) (|has| |#1| (-43 (-403 (-560))))) (-12 (|has| |#1| (-29 (-560))) (|has| |#1| (-43 (-403 (-560)))) (|has| |#1| (-951)) (|has| |#1| (-1173))))) (($ $ (-1232 |#2|)) 39 (|has| |#1| (-43 (-403 (-560)))))) (-4353 (((-1100) $) NIL)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) NIL (|has| |#1| (-359)))) (-4440 (($ (-626 $)) NIL (|has| |#1| (-359))) (($ $ $) NIL (|has| |#1| (-359)))) (-1601 (((-414 $) $) NIL (|has| |#1| (-359)))) (-3505 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-359))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) NIL (|has| |#1| (-359)))) (-3292 (($ $ (-403 (-560))) NIL)) (-2336 (((-3 $ "failed") $ $) NIL (|has| |#1| (-550)))) (-3456 (((-3 (-626 $) "failed") (-626 $) $) NIL (|has| |#1| (-359)))) (-2469 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-4450 (((-1133 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-403 (-560))))))) (-4445 (((-755) $) NIL (|has| |#1| (-359)))) (-2778 ((|#1| $ (-403 (-560))) NIL) (($ $ $) NIL (|has| (-403 (-560)) (-1094)))) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) NIL (|has| |#1| (-359)))) (-2443 (($ $ (-626 (-1153)) (-626 (-755))) NIL (-12 (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-1153) (-755)) NIL (-12 (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-626 (-1153))) NIL (-12 (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-1153)) NIL (-12 (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-755)) NIL (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|)))) (($ $) 36 (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|)))) (($ $ (-1232 |#2|)) 37)) (-3662 (((-403 (-560)) $) NIL)) (-2585 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2528 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2575 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2519 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2566 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2795 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2234 (($ $) NIL)) (-2801 (((-842) $) 87) (($ (-560)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1199 |#1| |#2| |#3|)) 16) (($ (-1227 |#1| |#2| |#3|)) 17) (($ (-1232 |#2|)) 35) (($ (-403 (-560))) NIL (|has| |#1| (-43 (-403 (-560))))) (($ $) NIL (|has| |#1| (-550)))) (-2636 ((|#1| $ (-403 (-560))) NIL)) (-2272 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1751 (((-755)) NIL)) (-1341 ((|#1| $) 12)) (-2598 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2541 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2328 (((-121) $ $) NIL (|has| |#1| (-550)))) (-2590 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2532 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2608 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2549 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2550 ((|#1| $ (-403 (-560))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-403 (-560))))) (|has| |#1| (-15 -2801 (|#1| (-1153))))))) (-3689 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2554 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2604 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2545 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2594 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2536 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL (|has| |#1| (-359)))) (-3304 (($) 31 T CONST)) (-1459 (($) 26 T CONST)) (-2500 (($ $ (-626 (-1153)) (-626 (-755))) NIL (-12 (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-1153) (-755)) NIL (-12 (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-626 (-1153))) NIL (-12 (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-1153)) NIL (-12 (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-755)) NIL (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-403 (-560)) |#1|))))) (-1653 (((-121) $ $) NIL)) (-1733 (($ $ |#1|) NIL (|has| |#1| (-359))) (($ $ $) NIL (|has| |#1| (-359)))) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) 33)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ (-560)) NIL (|has| |#1| (-359))) (($ $ $) NIL (|has| |#1| (-43 (-403 (-560))))) (($ $ (-403 (-560))) NIL (|has| |#1| (-43 (-403 (-560)))))) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-403 (-560)) $) NIL (|has| |#1| (-43 (-403 (-560))))) (($ $ (-403 (-560))) NIL (|has| |#1| (-43 (-403 (-560))))))) -(((-1220 |#1| |#2| |#3|) (-13 (-1218 |#1| (-1199 |#1| |#2| |#3|)) (-1029 (-1227 |#1| |#2| |#3|)) (-10 -8 (-15 -2801 ($ (-1232 |#2|))) (-15 -2443 ($ $ (-1232 |#2|))) (IF (|has| |#1| (-43 (-403 (-560)))) (-15 -2376 ($ $ (-1232 |#2|))) |noBranch|))) (-1039) (-1153) |#1|) (T -1220)) -((-2801 (*1 *1 *2) (-12 (-5 *2 (-1232 *4)) (-14 *4 (-1153)) (-5 *1 (-1220 *3 *4 *5)) (-4 *3 (-1039)) (-14 *5 *3))) (-2443 (*1 *1 *1 *2) (-12 (-5 *2 (-1232 *4)) (-14 *4 (-1153)) (-5 *1 (-1220 *3 *4 *5)) (-4 *3 (-1039)) (-14 *5 *3))) (-2376 (*1 *1 *1 *2) (-12 (-5 *2 (-1232 *4)) (-14 *4 (-1153)) (-5 *1 (-1220 *3 *4 *5)) (-4 *3 (-43 (-403 (-560)))) (-4 *3 (-1039)) (-14 *5 *3)))) -(-13 (-1218 |#1| (-1199 |#1| |#2| |#3|)) (-1029 (-1227 |#1| |#2| |#3|)) (-10 -8 (-15 -2801 ($ (-1232 |#2|))) (-15 -2443 ($ $ (-1232 |#2|))) (IF (|has| |#1| (-43 (-403 (-560)))) (-15 -2376 ($ $ (-1232 |#2|))) |noBranch|))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) 32)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL)) (-1350 (($ $) NIL)) (-3376 (((-121) $) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-4236 (($) NIL T CONST)) (-1473 (((-3 (-560) "failed") $) NIL (|has| (-1220 |#2| |#3| |#4|) (-1029 (-560)))) (((-3 (-403 (-560)) "failed") $) NIL (|has| (-1220 |#2| |#3| |#4|) (-1029 (-403 (-560))))) (((-3 (-1220 |#2| |#3| |#4|) "failed") $) 20)) (-3001 (((-560) $) NIL (|has| (-1220 |#2| |#3| |#4|) (-1029 (-560)))) (((-403 (-560)) $) NIL (|has| (-1220 |#2| |#3| |#4|) (-1029 (-403 (-560))))) (((-1220 |#2| |#3| |#4|) $) NIL)) (-1750 (($ $) 33)) (-1823 (((-3 $ "failed") $) 25)) (-3605 (($ $) NIL (|has| (-1220 |#2| |#3| |#4|) (-447)))) (-1456 (($ $ (-1220 |#2| |#3| |#4|) (-308 |#2| |#3| |#4|) $) NIL)) (-2642 (((-121) $) NIL)) (-3235 (((-755) $) 11)) (-1814 (((-121) $) NIL)) (-1637 (($ (-1220 |#2| |#3| |#4|) (-308 |#2| |#3| |#4|)) 23)) (-3693 (((-308 |#2| |#3| |#4|) $) NIL)) (-1504 (($ (-1 (-308 |#2| |#3| |#4|) (-308 |#2| |#3| |#4|)) $) NIL)) (-2803 (($ (-1 (-1220 |#2| |#3| |#4|) (-1220 |#2| |#3| |#4|)) $) NIL)) (-4085 (((-3 (-827 |#2|) "failed") $) 72)) (-1726 (($ $) NIL)) (-1735 (((-1220 |#2| |#3| |#4|) $) 18)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-1704 (((-121) $) NIL)) (-1711 (((-1220 |#2| |#3| |#4|) $) NIL)) (-2336 (((-3 $ "failed") $ (-1220 |#2| |#3| |#4|)) NIL (|has| (-1220 |#2| |#3| |#4|) (-550))) (((-3 $ "failed") $ $) NIL)) (-2253 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1220 |#2| |#3| |#4|)) (|:| |%expon| (-308 |#2| |#3| |#4|)) (|:| |%expTerms| (-626 (-2 (|:| |k| (-403 (-560))) (|:| |c| |#2|)))))) (|:| |%type| (-1135))) "failed") $) 55)) (-3662 (((-308 |#2| |#3| |#4|) $) 14)) (-1896 (((-1220 |#2| |#3| |#4|) $) NIL (|has| (-1220 |#2| |#3| |#4|) (-447)))) (-2801 (((-842) $) NIL) (($ (-560)) NIL) (($ (-1220 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-403 (-560))) NIL (-2318 (|has| (-1220 |#2| |#3| |#4|) (-43 (-403 (-560)))) (|has| (-1220 |#2| |#3| |#4|) (-1029 (-403 (-560))))))) (-2423 (((-626 (-1220 |#2| |#3| |#4|)) $) NIL)) (-2636 (((-1220 |#2| |#3| |#4|) $ (-308 |#2| |#3| |#4|)) NIL)) (-2272 (((-3 $ "failed") $) NIL (|has| (-1220 |#2| |#3| |#4|) (-146)))) (-1751 (((-755)) NIL)) (-3487 (($ $ $ (-755)) NIL (|has| (-1220 |#2| |#3| |#4|) (-170)))) (-2328 (((-121) $ $) NIL)) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (-3304 (($) 60 T CONST)) (-1459 (($) NIL T CONST)) (-1653 (((-121) $ $) NIL)) (-1733 (($ $ (-1220 |#2| |#3| |#4|)) NIL (|has| (-1220 |#2| |#3| |#4|) (-359)))) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) NIL)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) NIL) (($ $ (-1220 |#2| |#3| |#4|)) NIL) (($ (-1220 |#2| |#3| |#4|) $) NIL) (($ (-403 (-560)) $) NIL (|has| (-1220 |#2| |#3| |#4|) (-43 (-403 (-560))))) (($ $ (-403 (-560))) NIL (|has| (-1220 |#2| |#3| |#4|) (-43 (-403 (-560))))))) -(((-1221 |#1| |#2| |#3| |#4|) (-13 (-318 (-1220 |#2| |#3| |#4|) (-308 |#2| |#3| |#4|)) (-550) (-10 -8 (-15 -4085 ((-3 (-827 |#2|) "failed") $)) (-15 -2253 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1220 |#2| |#3| |#4|)) (|:| |%expon| (-308 |#2| |#3| |#4|)) (|:| |%expTerms| (-626 (-2 (|:| |k| (-403 (-560))) (|:| |c| |#2|)))))) (|:| |%type| (-1135))) "failed") $)))) (-13 (-834) (-1029 (-560)) (-622 (-560)) (-447)) (-13 (-27) (-1173) (-426 |#1|)) (-1153) |#2|) (T -1221)) -((-4085 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-834) (-1029 (-560)) (-622 (-560)) (-447))) (-5 *2 (-827 *4)) (-5 *1 (-1221 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1173) (-426 *3))) (-14 *5 (-1153)) (-14 *6 *4))) (-2253 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-834) (-1029 (-560)) (-622 (-560)) (-447))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1220 *4 *5 *6)) (|:| |%expon| (-308 *4 *5 *6)) (|:| |%expTerms| (-626 (-2 (|:| |k| (-403 (-560))) (|:| |c| *4)))))) (|:| |%type| (-1135)))) (-5 *1 (-1221 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1173) (-426 *3))) (-14 *5 (-1153)) (-14 *6 *4)))) -(-13 (-318 (-1220 |#2| |#3| |#4|) (-308 |#2| |#3| |#4|)) (-550) (-10 -8 (-15 -4085 ((-3 (-827 |#2|) "failed") $)) (-15 -2253 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1220 |#2| |#3| |#4|)) (|:| |%expon| (-308 |#2| |#3| |#4|)) (|:| |%expTerms| (-626 (-2 (|:| |k| (-403 (-560))) (|:| |c| |#2|)))))) (|:| |%type| (-1135))) "failed") $)))) -((-2981 ((|#2| $) 28)) (-1886 ((|#2| $) 18)) (-1417 (($ $) 35)) (-2435 (($ $ (-560)) 63)) (-3909 (((-121) $ (-755)) 32)) (-3119 ((|#2| $ |#2|) 60)) (-1920 ((|#2| $ |#2|) 58)) (-2764 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 51) (($ $ "rest" $) 55) ((|#2| $ "last" |#2|) 53)) (-4043 (($ $ (-626 $)) 59)) (-1603 ((|#2| $) 17)) (-2877 (($ $) NIL) (($ $ (-755)) 41)) (-3971 (((-626 $) $) 25)) (-2420 (((-121) $ $) 49)) (-2122 (((-121) $ (-755)) 31)) (-3441 (((-121) $ (-755)) 30)) (-3992 (((-121) $) 27)) (-4139 ((|#2| $) 23) (($ $ (-755)) 45)) (-2778 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-3316 (((-121) $) 21)) (-4432 (($ $) 38)) (-2641 (($ $) 64)) (-2751 (((-755) $) 40)) (-4208 (($ $) 39)) (-2849 (($ $ $) 57) (($ |#2| $) NIL)) (-2853 (((-626 $) $) 26)) (-1653 (((-121) $ $) 47)) (-2271 (((-755) $) 34))) -(((-1222 |#1| |#2|) (-10 -8 (-15 -2435 (|#1| |#1| (-560))) (-15 -2764 (|#2| |#1| "last" |#2|)) (-15 -1920 (|#2| |#1| |#2|)) (-15 -2764 (|#1| |#1| "rest" |#1|)) (-15 -2764 (|#2| |#1| "first" |#2|)) (-15 -2641 (|#1| |#1|)) (-15 -4432 (|#1| |#1|)) (-15 -2751 ((-755) |#1|)) (-15 -4208 (|#1| |#1|)) (-15 -1886 (|#2| |#1|)) (-15 -1603 (|#2| |#1|)) (-15 -1417 (|#1| |#1|)) (-15 -4139 (|#1| |#1| (-755))) (-15 -2778 (|#2| |#1| "last")) (-15 -4139 (|#2| |#1|)) (-15 -2877 (|#1| |#1| (-755))) (-15 -2778 (|#1| |#1| "rest")) (-15 -2877 (|#1| |#1|)) (-15 -2778 (|#2| |#1| "first")) (-15 -2849 (|#1| |#2| |#1|)) (-15 -2849 (|#1| |#1| |#1|)) (-15 -3119 (|#2| |#1| |#2|)) (-15 -2764 (|#2| |#1| "value" |#2|)) (-15 -4043 (|#1| |#1| (-626 |#1|))) (-15 -2420 ((-121) |#1| |#1|)) (-15 -3316 ((-121) |#1|)) (-15 -2778 (|#2| |#1| "value")) (-15 -2981 (|#2| |#1|)) (-15 -3992 ((-121) |#1|)) (-15 -3971 ((-626 |#1|) |#1|)) (-15 -2853 ((-626 |#1|) |#1|)) (-15 -1653 ((-121) |#1| |#1|)) (-15 -2271 ((-755) |#1|)) (-15 -3909 ((-121) |#1| (-755))) (-15 -2122 ((-121) |#1| (-755))) (-15 -3441 ((-121) |#1| (-755)))) (-1223 |#2|) (-1187)) (T -1222)) -NIL -(-10 -8 (-15 -2435 (|#1| |#1| (-560))) (-15 -2764 (|#2| |#1| "last" |#2|)) (-15 -1920 (|#2| |#1| |#2|)) (-15 -2764 (|#1| |#1| "rest" |#1|)) (-15 -2764 (|#2| |#1| "first" |#2|)) (-15 -2641 (|#1| |#1|)) (-15 -4432 (|#1| |#1|)) (-15 -2751 ((-755) |#1|)) (-15 -4208 (|#1| |#1|)) (-15 -1886 (|#2| |#1|)) (-15 -1603 (|#2| |#1|)) (-15 -1417 (|#1| |#1|)) (-15 -4139 (|#1| |#1| (-755))) (-15 -2778 (|#2| |#1| "last")) (-15 -4139 (|#2| |#1|)) (-15 -2877 (|#1| |#1| (-755))) (-15 -2778 (|#1| |#1| "rest")) (-15 -2877 (|#1| |#1|)) (-15 -2778 (|#2| |#1| "first")) (-15 -2849 (|#1| |#2| |#1|)) (-15 -2849 (|#1| |#1| |#1|)) (-15 -3119 (|#2| |#1| |#2|)) (-15 -2764 (|#2| |#1| "value" |#2|)) (-15 -4043 (|#1| |#1| (-626 |#1|))) (-15 -2420 ((-121) |#1| |#1|)) (-15 -3316 ((-121) |#1|)) (-15 -2778 (|#2| |#1| "value")) (-15 -2981 (|#2| |#1|)) (-15 -3992 ((-121) |#1|)) (-15 -3971 ((-626 |#1|) |#1|)) (-15 -2853 ((-626 |#1|) |#1|)) (-15 -1653 ((-121) |#1| |#1|)) (-15 -2271 ((-755) |#1|)) (-15 -3909 ((-121) |#1| (-755))) (-15 -2122 ((-121) |#1| (-755))) (-15 -3441 ((-121) |#1| (-755)))) -((-2601 (((-121) $ $) 18 (|has| |#1| (-1082)))) (-2981 ((|#1| $) 45)) (-1886 ((|#1| $) 62)) (-1417 (($ $) 64)) (-2435 (($ $ (-560)) 49 (|has| $ (-6 -4506)))) (-3909 (((-121) $ (-755)) 8)) (-3119 ((|#1| $ |#1|) 36 (|has| $ (-6 -4506)))) (-1741 (($ $ $) 53 (|has| $ (-6 -4506)))) (-1920 ((|#1| $ |#1|) 51 (|has| $ (-6 -4506)))) (-4133 ((|#1| $ |#1|) 55 (|has| $ (-6 -4506)))) (-2764 ((|#1| $ "value" |#1|) 37 (|has| $ (-6 -4506))) ((|#1| $ "first" |#1|) 54 (|has| $ (-6 -4506))) (($ $ "rest" $) 52 (|has| $ (-6 -4506))) ((|#1| $ "last" |#1|) 50 (|has| $ (-6 -4506)))) (-4043 (($ $ (-626 $)) 38 (|has| $ (-6 -4506)))) (-1603 ((|#1| $) 63)) (-4236 (($) 7 T CONST)) (-2877 (($ $) 70) (($ $ (-755)) 68)) (-1981 (((-626 |#1|) $) 30 (|has| $ (-6 -4505)))) (-3971 (((-626 $) $) 47)) (-2420 (((-121) $ $) 39 (|has| |#1| (-1082)))) (-2122 (((-121) $ (-755)) 9)) (-2130 (((-626 |#1|) $) 29 (|has| $ (-6 -4505)))) (-2030 (((-121) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-3778 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#1| |#1|) $) 35)) (-3441 (((-121) $ (-755)) 10)) (-2173 (((-626 |#1|) $) 42)) (-3992 (((-121) $) 46)) (-1291 (((-1135) $) 22 (|has| |#1| (-1082)))) (-4139 ((|#1| $) 67) (($ $ (-755)) 65)) (-4353 (((-1100) $) 21 (|has| |#1| (-1082)))) (-2824 ((|#1| $) 73) (($ $ (-755)) 71)) (-2865 (((-121) (-1 (-121) |#1|) $) 32 (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#1|))) 26 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-283 |#1|)) 25 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-626 |#1|) (-626 |#1|)) 23 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))))) (-2214 (((-121) $ $) 14)) (-4191 (((-121) $) 11)) (-3260 (($) 12)) (-2778 ((|#1| $ "value") 44) ((|#1| $ "first") 72) (($ $ "rest") 69) ((|#1| $ "last") 66)) (-1435 (((-560) $ $) 41)) (-3316 (((-121) $) 43)) (-4432 (($ $) 59)) (-2641 (($ $) 56 (|has| $ (-6 -4506)))) (-2751 (((-755) $) 60)) (-4208 (($ $) 61)) (-4035 (((-755) (-1 (-121) |#1|) $) 31 (|has| $ (-6 -4505))) (((-755) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-2813 (($ $) 13)) (-3602 (($ $ $) 58 (|has| $ (-6 -4506))) (($ $ |#1|) 57 (|has| $ (-6 -4506)))) (-2849 (($ $ $) 75) (($ |#1| $) 74)) (-2801 (((-842) $) 20 (|has| |#1| (-1082)))) (-2853 (((-626 $) $) 48)) (-3761 (((-121) $ $) 40 (|has| |#1| (-1082)))) (-3656 (((-121) (-1 (-121) |#1|) $) 33 (|has| $ (-6 -4505)))) (-1653 (((-121) $ $) 19 (|has| |#1| (-1082)))) (-2271 (((-755) $) 6 (|has| $ (-6 -4505))))) -(((-1223 |#1|) (-1267) (-1187)) (T -1223)) -((-2849 (*1 *1 *1 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1187)))) (-2849 (*1 *1 *2 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1187)))) (-2824 (*1 *2 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1187)))) (-2778 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1223 *2)) (-4 *2 (-1187)))) (-2824 (*1 *1 *1 *2) (-12 (-5 *2 (-755)) (-4 *1 (-1223 *3)) (-4 *3 (-1187)))) (-2877 (*1 *1 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1187)))) (-2778 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1223 *3)) (-4 *3 (-1187)))) (-2877 (*1 *1 *1 *2) (-12 (-5 *2 (-755)) (-4 *1 (-1223 *3)) (-4 *3 (-1187)))) (-4139 (*1 *2 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1187)))) (-2778 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1223 *2)) (-4 *2 (-1187)))) (-4139 (*1 *1 *1 *2) (-12 (-5 *2 (-755)) (-4 *1 (-1223 *3)) (-4 *3 (-1187)))) (-1417 (*1 *1 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1187)))) (-1603 (*1 *2 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1187)))) (-1886 (*1 *2 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1187)))) (-4208 (*1 *1 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1187)))) (-2751 (*1 *2 *1) (-12 (-4 *1 (-1223 *3)) (-4 *3 (-1187)) (-5 *2 (-755)))) (-4432 (*1 *1 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1187)))) (-3602 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4506)) (-4 *1 (-1223 *2)) (-4 *2 (-1187)))) (-3602 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4506)) (-4 *1 (-1223 *2)) (-4 *2 (-1187)))) (-2641 (*1 *1 *1) (-12 (|has| *1 (-6 -4506)) (-4 *1 (-1223 *2)) (-4 *2 (-1187)))) (-4133 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4506)) (-4 *1 (-1223 *2)) (-4 *2 (-1187)))) (-2764 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4506)) (-4 *1 (-1223 *2)) (-4 *2 (-1187)))) (-1741 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4506)) (-4 *1 (-1223 *2)) (-4 *2 (-1187)))) (-2764 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4506)) (-4 *1 (-1223 *3)) (-4 *3 (-1187)))) (-1920 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4506)) (-4 *1 (-1223 *2)) (-4 *2 (-1187)))) (-2764 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4506)) (-4 *1 (-1223 *2)) (-4 *2 (-1187)))) (-2435 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (|has| *1 (-6 -4506)) (-4 *1 (-1223 *3)) (-4 *3 (-1187))))) -(-13 (-1002 |t#1|) (-10 -8 (-15 -2849 ($ $ $)) (-15 -2849 ($ |t#1| $)) (-15 -2824 (|t#1| $)) (-15 -2778 (|t#1| $ "first")) (-15 -2824 ($ $ (-755))) (-15 -2877 ($ $)) (-15 -2778 ($ $ "rest")) (-15 -2877 ($ $ (-755))) (-15 -4139 (|t#1| $)) (-15 -2778 (|t#1| $ "last")) (-15 -4139 ($ $ (-755))) (-15 -1417 ($ $)) (-15 -1603 (|t#1| $)) (-15 -1886 (|t#1| $)) (-15 -4208 ($ $)) (-15 -2751 ((-755) $)) (-15 -4432 ($ $)) (IF (|has| $ (-6 -4506)) (PROGN (-15 -3602 ($ $ $)) (-15 -3602 ($ $ |t#1|)) (-15 -2641 ($ $)) (-15 -4133 (|t#1| $ |t#1|)) (-15 -2764 (|t#1| $ "first" |t#1|)) (-15 -1741 ($ $ $)) (-15 -2764 ($ $ "rest" $)) (-15 -1920 (|t#1| $ |t#1|)) (-15 -2764 (|t#1| $ "last" |t#1|)) (-15 -2435 ($ $ (-560)))) |noBranch|))) -(((-39) . T) ((-105) |has| |#1| (-1082)) ((-600 (-842)) |has| |#1| (-1082)) ((-298 |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))) ((-492 |#1|) . T) ((-515 |#1| |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))) ((-1002 |#1|) . T) ((-1082) |has| |#1| (-1082)) ((-1187) . T)) -((-2803 ((|#4| (-1 |#2| |#1|) |#3|) 17))) -(((-1224 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2803 (|#4| (-1 |#2| |#1|) |#3|))) (-1039) (-1039) (-1226 |#1|) (-1226 |#2|)) (T -1224)) -((-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1039)) (-4 *6 (-1039)) (-4 *2 (-1226 *6)) (-5 *1 (-1224 *5 *6 *4 *2)) (-4 *4 (-1226 *5))))) -(-10 -7 (-15 -2803 (|#4| (-1 |#2| |#1|) |#3|))) -((-2832 (((-121) $) 15)) (-2570 (($ $) 90)) (-2514 (($ $) 66)) (-2561 (($ $) 86)) (-2790 (($ $) 62)) (-2579 (($ $) 94)) (-2523 (($ $) 70)) (-4399 (($ $) 60)) (-2469 (($ $) 58)) (-2585 (($ $) 96)) (-2528 (($ $) 72)) (-2575 (($ $) 92)) (-2519 (($ $) 68)) (-2566 (($ $) 88)) (-2795 (($ $) 64)) (-2801 (((-842) $) 46) (($ (-560)) NIL) (($ (-403 (-560))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-2598 (($ $) 102)) (-2541 (($ $) 78)) (-2590 (($ $) 98)) (-2532 (($ $) 74)) (-2608 (($ $) 106)) (-2549 (($ $) 82)) (-3689 (($ $) 108)) (-2554 (($ $) 84)) (-2604 (($ $) 104)) (-2545 (($ $) 80)) (-2594 (($ $) 100)) (-2536 (($ $) 76)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ |#2|) 50) (($ $ $) 53) (($ $ (-403 (-560))) 56))) -(((-1225 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-403 (-560)))) (-15 -2514 (|#1| |#1|)) (-15 -2790 (|#1| |#1|)) (-15 -2523 (|#1| |#1|)) (-15 -2528 (|#1| |#1|)) (-15 -2519 (|#1| |#1|)) (-15 -2795 (|#1| |#1|)) (-15 -2536 (|#1| |#1|)) (-15 -2545 (|#1| |#1|)) (-15 -2554 (|#1| |#1|)) (-15 -2549 (|#1| |#1|)) (-15 -2532 (|#1| |#1|)) (-15 -2541 (|#1| |#1|)) (-15 -2566 (|#1| |#1|)) (-15 -2575 (|#1| |#1|)) (-15 -2585 (|#1| |#1|)) (-15 -2579 (|#1| |#1|)) (-15 -2561 (|#1| |#1|)) (-15 -2570 (|#1| |#1|)) (-15 -2594 (|#1| |#1|)) (-15 -2604 (|#1| |#1|)) (-15 -3689 (|#1| |#1|)) (-15 -2608 (|#1| |#1|)) (-15 -2590 (|#1| |#1|)) (-15 -2598 (|#1| |#1|)) (-15 -4399 (|#1| |#1|)) (-15 -2469 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2801 (|#1| |#2|)) (-15 -2801 (|#1| |#1|)) (-15 -2801 (|#1| (-403 (-560)))) (-15 -2801 (|#1| (-560))) (-15 ** (|#1| |#1| (-755))) (-15 ** (|#1| |#1| (-909))) (-15 -2832 ((-121) |#1|)) (-15 -2801 ((-842) |#1|))) (-1226 |#2|) (-1039)) (T -1225)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-403 (-560)))) (-15 -2514 (|#1| |#1|)) (-15 -2790 (|#1| |#1|)) (-15 -2523 (|#1| |#1|)) (-15 -2528 (|#1| |#1|)) (-15 -2519 (|#1| |#1|)) (-15 -2795 (|#1| |#1|)) (-15 -2536 (|#1| |#1|)) (-15 -2545 (|#1| |#1|)) (-15 -2554 (|#1| |#1|)) (-15 -2549 (|#1| |#1|)) (-15 -2532 (|#1| |#1|)) (-15 -2541 (|#1| |#1|)) (-15 -2566 (|#1| |#1|)) (-15 -2575 (|#1| |#1|)) (-15 -2585 (|#1| |#1|)) (-15 -2579 (|#1| |#1|)) (-15 -2561 (|#1| |#1|)) (-15 -2570 (|#1| |#1|)) (-15 -2594 (|#1| |#1|)) (-15 -2604 (|#1| |#1|)) (-15 -3689 (|#1| |#1|)) (-15 -2608 (|#1| |#1|)) (-15 -2590 (|#1| |#1|)) (-15 -2598 (|#1| |#1|)) (-15 -4399 (|#1| |#1|)) (-15 -2469 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2801 (|#1| |#2|)) (-15 -2801 (|#1| |#1|)) (-15 -2801 (|#1| (-403 (-560)))) (-15 -2801 (|#1| (-560))) (-15 ** (|#1| |#1| (-755))) (-15 ** (|#1| |#1| (-909))) (-15 -2832 ((-121) |#1|)) (-15 -2801 ((-842) |#1|))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-1654 (((-626 (-1067)) $) 70)) (-1395 (((-1153) $) 98)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) 50 (|has| |#1| (-550)))) (-1350 (($ $) 51 (|has| |#1| (-550)))) (-3376 (((-121) $) 53 (|has| |#1| (-550)))) (-4330 (($ $ (-755)) 93) (($ $ (-755) (-755)) 92)) (-4138 (((-1133 (-2 (|:| |k| (-755)) (|:| |c| |#1|))) $) 100)) (-2570 (($ $) 127 (|has| |#1| (-43 (-403 (-560)))))) (-2514 (($ $) 110 (|has| |#1| (-43 (-403 (-560)))))) (-2314 (((-3 $ "failed") $ $) 18)) (-2479 (($ $) 109 (|has| |#1| (-43 (-403 (-560)))))) (-2561 (($ $) 126 (|has| |#1| (-43 (-403 (-560)))))) (-2790 (($ $) 111 (|has| |#1| (-43 (-403 (-560)))))) (-3783 (($ (-1133 (-2 (|:| |k| (-755)) (|:| |c| |#1|)))) 147) (($ (-1133 |#1|)) 145)) (-2579 (($ $) 125 (|has| |#1| (-43 (-403 (-560)))))) (-2523 (($ $) 112 (|has| |#1| (-43 (-403 (-560)))))) (-4236 (($) 16 T CONST)) (-1750 (($ $) 59)) (-1823 (((-3 $ "failed") $) 33)) (-2567 (($ $) 144)) (-4350 (((-945 |#1|) $ (-755)) 142) (((-945 |#1|) $ (-755) (-755)) 141)) (-1815 (((-121) $) 69)) (-2474 (($) 137 (|has| |#1| (-43 (-403 (-560)))))) (-3504 (((-755) $) 95) (((-755) $ (-755)) 94)) (-2642 (((-121) $) 30)) (-2586 (($ $ (-560)) 108 (|has| |#1| (-43 (-403 (-560)))))) (-3549 (($ $ (-909)) 96)) (-3994 (($ (-1 |#1| (-560)) $) 143)) (-1814 (((-121) $) 61)) (-1637 (($ |#1| (-755)) 60) (($ $ (-1067) (-755)) 72) (($ $ (-626 (-1067)) (-626 (-755))) 71)) (-2803 (($ (-1 |#1| |#1|) $) 62)) (-4399 (($ $) 134 (|has| |#1| (-43 (-403 (-560)))))) (-1726 (($ $) 64)) (-1735 ((|#1| $) 65)) (-1291 (((-1135) $) 9)) (-2376 (($ $) 139 (|has| |#1| (-43 (-403 (-560))))) (($ $ (-1153)) 138 (-2318 (-12 (|has| |#1| (-29 (-560))) (|has| |#1| (-951)) (|has| |#1| (-1173)) (|has| |#1| (-43 (-403 (-560))))) (-12 (|has| |#1| (-15 -1654 ((-626 (-1153)) |#1|))) (|has| |#1| (-15 -2376 (|#1| |#1| (-1153)))) (|has| |#1| (-43 (-403 (-560)))))))) (-4353 (((-1100) $) 10)) (-3292 (($ $ (-755)) 90)) (-2336 (((-3 $ "failed") $ $) 49 (|has| |#1| (-550)))) (-2469 (($ $) 135 (|has| |#1| (-43 (-403 (-560)))))) (-4450 (((-1133 |#1|) $ |#1|) 89 (|has| |#1| (-15 ** (|#1| |#1| (-755)))))) (-2778 ((|#1| $ (-755)) 99) (($ $ $) 76 (|has| (-755) (-1094)))) (-2443 (($ $ (-626 (-1153)) (-626 (-755))) 84 (-12 (|has| |#1| (-887 (-1153))) (|has| |#1| (-15 * (|#1| (-755) |#1|))))) (($ $ (-1153) (-755)) 83 (-12 (|has| |#1| (-887 (-1153))) (|has| |#1| (-15 * (|#1| (-755) |#1|))))) (($ $ (-626 (-1153))) 82 (-12 (|has| |#1| (-887 (-1153))) (|has| |#1| (-15 * (|#1| (-755) |#1|))))) (($ $ (-1153)) 81 (-12 (|has| |#1| (-887 (-1153))) (|has| |#1| (-15 * (|#1| (-755) |#1|))))) (($ $ (-755)) 79 (|has| |#1| (-15 * (|#1| (-755) |#1|)))) (($ $) 77 (|has| |#1| (-15 * (|#1| (-755) |#1|))))) (-3662 (((-755) $) 63)) (-2585 (($ $) 124 (|has| |#1| (-43 (-403 (-560)))))) (-2528 (($ $) 113 (|has| |#1| (-43 (-403 (-560)))))) (-2575 (($ $) 123 (|has| |#1| (-43 (-403 (-560)))))) (-2519 (($ $) 114 (|has| |#1| (-43 (-403 (-560)))))) (-2566 (($ $) 122 (|has| |#1| (-43 (-403 (-560)))))) (-2795 (($ $) 115 (|has| |#1| (-43 (-403 (-560)))))) (-2234 (($ $) 68)) (-2801 (((-842) $) 11) (($ (-560)) 27) (($ (-403 (-560))) 56 (|has| |#1| (-43 (-403 (-560))))) (($ $) 48 (|has| |#1| (-550))) (($ |#1|) 46 (|has| |#1| (-170)))) (-2423 (((-1133 |#1|) $) 146)) (-2636 ((|#1| $ (-755)) 58)) (-2272 (((-3 $ "failed") $) 47 (|has| |#1| (-146)))) (-1751 (((-755)) 28)) (-1341 ((|#1| $) 97)) (-2598 (($ $) 133 (|has| |#1| (-43 (-403 (-560)))))) (-2541 (($ $) 121 (|has| |#1| (-43 (-403 (-560)))))) (-2328 (((-121) $ $) 52 (|has| |#1| (-550)))) (-2590 (($ $) 132 (|has| |#1| (-43 (-403 (-560)))))) (-2532 (($ $) 120 (|has| |#1| (-43 (-403 (-560)))))) (-2608 (($ $) 131 (|has| |#1| (-43 (-403 (-560)))))) (-2549 (($ $) 119 (|has| |#1| (-43 (-403 (-560)))))) (-2550 ((|#1| $ (-755)) 91 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-755)))) (|has| |#1| (-15 -2801 (|#1| (-1153))))))) (-3689 (($ $) 130 (|has| |#1| (-43 (-403 (-560)))))) (-2554 (($ $) 118 (|has| |#1| (-43 (-403 (-560)))))) (-2604 (($ $) 129 (|has| |#1| (-43 (-403 (-560)))))) (-2545 (($ $) 117 (|has| |#1| (-43 (-403 (-560)))))) (-2594 (($ $) 128 (|has| |#1| (-43 (-403 (-560)))))) (-2536 (($ $) 116 (|has| |#1| (-43 (-403 (-560)))))) (-2464 (($ $ (-909)) 25) (($ $ (-755)) 32)) (-3304 (($) 17 T CONST)) (-1459 (($) 29 T CONST)) (-2500 (($ $ (-626 (-1153)) (-626 (-755))) 88 (-12 (|has| |#1| (-887 (-1153))) (|has| |#1| (-15 * (|#1| (-755) |#1|))))) (($ $ (-1153) (-755)) 87 (-12 (|has| |#1| (-887 (-1153))) (|has| |#1| (-15 * (|#1| (-755) |#1|))))) (($ $ (-626 (-1153))) 86 (-12 (|has| |#1| (-887 (-1153))) (|has| |#1| (-15 * (|#1| (-755) |#1|))))) (($ $ (-1153)) 85 (-12 (|has| |#1| (-887 (-1153))) (|has| |#1| (-15 * (|#1| (-755) |#1|))))) (($ $ (-755)) 80 (|has| |#1| (-15 * (|#1| (-755) |#1|)))) (($ $) 78 (|has| |#1| (-15 * (|#1| (-755) |#1|))))) (-1653 (((-121) $ $) 6)) (-1733 (($ $ |#1|) 57 (|has| |#1| (-359)))) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 24) (($ $ (-755)) 31) (($ $ |#1|) 140 (|has| |#1| (-359))) (($ $ $) 136 (|has| |#1| (-43 (-403 (-560))))) (($ $ (-403 (-560))) 107 (|has| |#1| (-43 (-403 (-560)))))) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 23) (($ $ |#1|) 67) (($ |#1| $) 66) (($ (-403 (-560)) $) 55 (|has| |#1| (-43 (-403 (-560))))) (($ $ (-403 (-560))) 54 (|has| |#1| (-43 (-403 (-560))))))) -(((-1226 |#1|) (-1267) (-1039)) (T -1226)) -((-3783 (*1 *1 *2) (-12 (-5 *2 (-1133 (-2 (|:| |k| (-755)) (|:| |c| *3)))) (-4 *3 (-1039)) (-4 *1 (-1226 *3)))) (-2423 (*1 *2 *1) (-12 (-4 *1 (-1226 *3)) (-4 *3 (-1039)) (-5 *2 (-1133 *3)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-1039)) (-4 *1 (-1226 *3)))) (-2567 (*1 *1 *1) (-12 (-4 *1 (-1226 *2)) (-4 *2 (-1039)))) (-3994 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-560))) (-4 *1 (-1226 *3)) (-4 *3 (-1039)))) (-4350 (*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-4 *1 (-1226 *4)) (-4 *4 (-1039)) (-5 *2 (-945 *4)))) (-4350 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-755)) (-4 *1 (-1226 *4)) (-4 *4 (-1039)) (-5 *2 (-945 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1226 *2)) (-4 *2 (-1039)) (-4 *2 (-359)))) (-2376 (*1 *1 *1) (-12 (-4 *1 (-1226 *2)) (-4 *2 (-1039)) (-4 *2 (-43 (-403 (-560)))))) (-2376 (*1 *1 *1 *2) (-2318 (-12 (-5 *2 (-1153)) (-4 *1 (-1226 *3)) (-4 *3 (-1039)) (-12 (-4 *3 (-29 (-560))) (-4 *3 (-951)) (-4 *3 (-1173)) (-4 *3 (-43 (-403 (-560)))))) (-12 (-5 *2 (-1153)) (-4 *1 (-1226 *3)) (-4 *3 (-1039)) (-12 (|has| *3 (-15 -1654 ((-626 *2) *3))) (|has| *3 (-15 -2376 (*3 *3 *2))) (-4 *3 (-43 (-403 (-560))))))))) -(-13 (-1213 |t#1| (-755)) (-10 -8 (-15 -3783 ($ (-1133 (-2 (|:| |k| (-755)) (|:| |c| |t#1|))))) (-15 -2423 ((-1133 |t#1|) $)) (-15 -3783 ($ (-1133 |t#1|))) (-15 -2567 ($ $)) (-15 -3994 ($ (-1 |t#1| (-560)) $)) (-15 -4350 ((-945 |t#1|) $ (-755))) (-15 -4350 ((-945 |t#1|) $ (-755) (-755))) (IF (|has| |t#1| (-359)) (-15 ** ($ $ |t#1|)) |noBranch|) (IF (|has| |t#1| (-43 (-403 (-560)))) (PROGN (-15 -2376 ($ $)) (IF (|has| |t#1| (-15 -2376 (|t#1| |t#1| (-1153)))) (IF (|has| |t#1| (-15 -1654 ((-626 (-1153)) |t#1|))) (-15 -2376 ($ $ (-1153))) |noBranch|) |noBranch|) (IF (|has| |t#1| (-1173)) (IF (|has| |t#1| (-951)) (IF (|has| |t#1| (-29 (-560))) (-15 -2376 ($ $ (-1153))) |noBranch|) |noBranch|) |noBranch|) (-6 (-994)) (-6 (-1173))) |noBranch|))) -(((-21) . T) ((-23) . T) ((-52 |#1| (-755)) . T) ((-25) . T) ((-43 (-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((-43 |#1|) |has| |#1| (-170)) ((-43 $) |has| |#1| (-550)) ((-40) |has| |#1| (-43 (-403 (-560)))) ((-98) |has| |#1| (-43 (-403 (-560)))) ((-105) . T) ((-120 (-403 (-560)) (-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((-120 |#1| |#1|) . T) ((-120 $ $) -2318 (|has| |#1| (-550)) (|has| |#1| (-170))) ((-137) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-600 (-842)) . T) ((-170) -2318 (|has| |#1| (-550)) (|has| |#1| (-170))) ((-221) |has| |#1| (-15 * (|#1| (-755) |#1|))) ((-274) |has| |#1| (-43 (-403 (-560)))) ((-276 $ $) |has| (-755) (-1094)) ((-280) |has| |#1| (-550)) ((-494) |has| |#1| (-43 (-403 (-560)))) ((-550) |has| |#1| (-550)) ((-629 (-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((-629 |#1|) . T) ((-629 $) . T) ((-699 (-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((-699 |#1|) |has| |#1| (-170)) ((-699 $) |has| |#1| (-550)) ((-708) . T) ((-887 (-1153)) -12 (|has| |#1| (-15 * (|#1| (-755) |#1|))) (|has| |#1| (-887 (-1153)))) ((-966 |#1| (-755) (-1067)) . T) ((-994) |has| |#1| (-43 (-403 (-560)))) ((-1045 (-403 (-560))) |has| |#1| (-43 (-403 (-560)))) ((-1045 |#1|) . T) ((-1045 $) -2318 (|has| |#1| (-550)) (|has| |#1| (-170))) ((-1039) . T) ((-1046) . T) ((-1094) . T) ((-1082) . T) ((-1173) |has| |#1| (-43 (-403 (-560)))) ((-1176) |has| |#1| (-43 (-403 (-560)))) ((-1213 |#1| (-755)) . T)) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-1654 (((-626 (-1067)) $) NIL)) (-1395 (((-1153) $) 86)) (-2965 (((-1208 |#2| |#1|) $ (-755)) 73)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL (|has| |#1| (-550)))) (-1350 (($ $) NIL (|has| |#1| (-550)))) (-3376 (((-121) $) 135 (|has| |#1| (-550)))) (-4330 (($ $ (-755)) 120) (($ $ (-755) (-755)) 122)) (-4138 (((-1133 (-2 (|:| |k| (-755)) (|:| |c| |#1|))) $) 42)) (-2570 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2514 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2314 (((-3 $ "failed") $ $) NIL)) (-2479 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2561 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2790 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-3783 (($ (-1133 (-2 (|:| |k| (-755)) (|:| |c| |#1|)))) 53) (($ (-1133 |#1|)) NIL)) (-2579 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2523 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-4236 (($) NIL T CONST)) (-3053 (($ $) 126)) (-1750 (($ $) NIL)) (-1823 (((-3 $ "failed") $) NIL)) (-2567 (($ $) 133)) (-4350 (((-945 |#1|) $ (-755)) 63) (((-945 |#1|) $ (-755) (-755)) 65)) (-1815 (((-121) $) NIL)) (-2474 (($) NIL (|has| |#1| (-43 (-403 (-560)))))) (-3504 (((-755) $) NIL) (((-755) $ (-755)) NIL)) (-2642 (((-121) $) NIL)) (-2131 (($ $) 110)) (-2586 (($ $ (-560)) NIL (|has| |#1| (-43 (-403 (-560)))))) (-4143 (($ (-560) (-560) $) 128)) (-3549 (($ $ (-909)) 132)) (-3994 (($ (-1 |#1| (-560)) $) 104)) (-1814 (((-121) $) NIL)) (-1637 (($ |#1| (-755)) 15) (($ $ (-1067) (-755)) NIL) (($ $ (-626 (-1067)) (-626 (-755))) NIL)) (-2803 (($ (-1 |#1| |#1|) $) 92)) (-4399 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-1726 (($ $) NIL)) (-1735 ((|#1| $) NIL)) (-1291 (((-1135) $) NIL)) (-4297 (($ $) 108)) (-2780 (($ $) 106)) (-2796 (($ (-560) (-560) $) 130)) (-2376 (($ $) 143 (|has| |#1| (-43 (-403 (-560))))) (($ $ (-1153)) 149 (-2318 (-12 (|has| |#1| (-15 -2376 (|#1| |#1| (-1153)))) (|has| |#1| (-15 -1654 ((-626 (-1153)) |#1|))) (|has| |#1| (-43 (-403 (-560))))) (-12 (|has| |#1| (-29 (-560))) (|has| |#1| (-43 (-403 (-560)))) (|has| |#1| (-951)) (|has| |#1| (-1173))))) (($ $ (-1232 |#2|)) 144 (|has| |#1| (-43 (-403 (-560)))))) (-4353 (((-1100) $) NIL)) (-3264 (($ $ (-560) (-560)) 114)) (-3292 (($ $ (-755)) 116)) (-2336 (((-3 $ "failed") $ $) NIL (|has| |#1| (-550)))) (-2469 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-1760 (($ $) 112)) (-4450 (((-1133 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-755)))))) (-2778 ((|#1| $ (-755)) 89) (($ $ $) 124 (|has| (-755) (-1094)))) (-2443 (($ $ (-626 (-1153)) (-626 (-755))) NIL (-12 (|has| |#1| (-15 * (|#1| (-755) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-1153) (-755)) NIL (-12 (|has| |#1| (-15 * (|#1| (-755) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-626 (-1153))) NIL (-12 (|has| |#1| (-15 * (|#1| (-755) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-1153)) 101 (-12 (|has| |#1| (-15 * (|#1| (-755) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-755)) NIL (|has| |#1| (-15 * (|#1| (-755) |#1|)))) (($ $) 96 (|has| |#1| (-15 * (|#1| (-755) |#1|)))) (($ $ (-1232 |#2|)) 97)) (-3662 (((-755) $) NIL)) (-2585 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2528 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2575 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2519 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2566 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2795 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2234 (($ $) 118)) (-2801 (((-842) $) NIL) (($ (-560)) 24) (($ (-403 (-560))) 141 (|has| |#1| (-43 (-403 (-560))))) (($ $) NIL (|has| |#1| (-550))) (($ |#1|) 23 (|has| |#1| (-170))) (($ (-1208 |#2| |#1|)) 79) (($ (-1232 |#2|)) 20)) (-2423 (((-1133 |#1|) $) NIL)) (-2636 ((|#1| $ (-755)) 88)) (-2272 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1751 (((-755)) NIL)) (-1341 ((|#1| $) 87)) (-2598 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2541 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2328 (((-121) $ $) NIL (|has| |#1| (-550)))) (-2590 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2532 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2608 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2549 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2550 ((|#1| $ (-755)) 85 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-755)))) (|has| |#1| (-15 -2801 (|#1| (-1153))))))) (-3689 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2554 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2604 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2545 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2594 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2536 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (-3304 (($) 17 T CONST)) (-1459 (($) 13 T CONST)) (-2500 (($ $ (-626 (-1153)) (-626 (-755))) NIL (-12 (|has| |#1| (-15 * (|#1| (-755) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-1153) (-755)) NIL (-12 (|has| |#1| (-15 * (|#1| (-755) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-626 (-1153))) NIL (-12 (|has| |#1| (-15 * (|#1| (-755) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-1153)) NIL (-12 (|has| |#1| (-15 * (|#1| (-755) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-755)) NIL (|has| |#1| (-15 * (|#1| (-755) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-755) |#1|))))) (-1653 (((-121) $ $) NIL)) (-1733 (($ $ |#1|) NIL (|has| |#1| (-359)))) (-1725 (($ $) NIL) (($ $ $) 100)) (-1716 (($ $ $) 18)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ |#1|) 138 (|has| |#1| (-359))) (($ $ $) NIL (|has| |#1| (-43 (-403 (-560))))) (($ $ (-403 (-560))) NIL (|has| |#1| (-43 (-403 (-560)))))) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 99) (($ (-403 (-560)) $) NIL (|has| |#1| (-43 (-403 (-560))))) (($ $ (-403 (-560))) NIL (|has| |#1| (-43 (-403 (-560))))))) -(((-1227 |#1| |#2| |#3|) (-13 (-1226 |#1|) (-10 -8 (-15 -2801 ($ (-1208 |#2| |#1|))) (-15 -2965 ((-1208 |#2| |#1|) $ (-755))) (-15 -2801 ($ (-1232 |#2|))) (-15 -2443 ($ $ (-1232 |#2|))) (-15 -2780 ($ $)) (-15 -4297 ($ $)) (-15 -2131 ($ $)) (-15 -1760 ($ $)) (-15 -3264 ($ $ (-560) (-560))) (-15 -3053 ($ $)) (-15 -4143 ($ (-560) (-560) $)) (-15 -2796 ($ (-560) (-560) $)) (IF (|has| |#1| (-43 (-403 (-560)))) (-15 -2376 ($ $ (-1232 |#2|))) |noBranch|))) (-1039) (-1153) |#1|) (T -1227)) -((-2801 (*1 *1 *2) (-12 (-5 *2 (-1208 *4 *3)) (-4 *3 (-1039)) (-14 *4 (-1153)) (-14 *5 *3) (-5 *1 (-1227 *3 *4 *5)))) (-2965 (*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *2 (-1208 *5 *4)) (-5 *1 (-1227 *4 *5 *6)) (-4 *4 (-1039)) (-14 *5 (-1153)) (-14 *6 *4))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-1232 *4)) (-14 *4 (-1153)) (-5 *1 (-1227 *3 *4 *5)) (-4 *3 (-1039)) (-14 *5 *3))) (-2443 (*1 *1 *1 *2) (-12 (-5 *2 (-1232 *4)) (-14 *4 (-1153)) (-5 *1 (-1227 *3 *4 *5)) (-4 *3 (-1039)) (-14 *5 *3))) (-2780 (*1 *1 *1) (-12 (-5 *1 (-1227 *2 *3 *4)) (-4 *2 (-1039)) (-14 *3 (-1153)) (-14 *4 *2))) (-4297 (*1 *1 *1) (-12 (-5 *1 (-1227 *2 *3 *4)) (-4 *2 (-1039)) (-14 *3 (-1153)) (-14 *4 *2))) (-2131 (*1 *1 *1) (-12 (-5 *1 (-1227 *2 *3 *4)) (-4 *2 (-1039)) (-14 *3 (-1153)) (-14 *4 *2))) (-1760 (*1 *1 *1) (-12 (-5 *1 (-1227 *2 *3 *4)) (-4 *2 (-1039)) (-14 *3 (-1153)) (-14 *4 *2))) (-3264 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-1227 *3 *4 *5)) (-4 *3 (-1039)) (-14 *4 (-1153)) (-14 *5 *3))) (-3053 (*1 *1 *1) (-12 (-5 *1 (-1227 *2 *3 *4)) (-4 *2 (-1039)) (-14 *3 (-1153)) (-14 *4 *2))) (-4143 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-1227 *3 *4 *5)) (-4 *3 (-1039)) (-14 *4 (-1153)) (-14 *5 *3))) (-2796 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-1227 *3 *4 *5)) (-4 *3 (-1039)) (-14 *4 (-1153)) (-14 *5 *3))) (-2376 (*1 *1 *1 *2) (-12 (-5 *2 (-1232 *4)) (-14 *4 (-1153)) (-5 *1 (-1227 *3 *4 *5)) (-4 *3 (-43 (-403 (-560)))) (-4 *3 (-1039)) (-14 *5 *3)))) -(-13 (-1226 |#1|) (-10 -8 (-15 -2801 ($ (-1208 |#2| |#1|))) (-15 -2965 ((-1208 |#2| |#1|) $ (-755))) (-15 -2801 ($ (-1232 |#2|))) (-15 -2443 ($ $ (-1232 |#2|))) (-15 -2780 ($ $)) (-15 -4297 ($ $)) (-15 -2131 ($ $)) (-15 -1760 ($ $)) (-15 -3264 ($ $ (-560) (-560))) (-15 -3053 ($ $)) (-15 -4143 ($ (-560) (-560) $)) (-15 -2796 ($ (-560) (-560) $)) (IF (|has| |#1| (-43 (-403 (-560)))) (-15 -2376 ($ $ (-1232 |#2|))) |noBranch|))) -((-2211 (((-1 (-1133 |#1|) (-626 (-1133 |#1|))) (-1 |#2| (-626 |#2|))) 24)) (-1302 (((-1 (-1133 |#1|) (-1133 |#1|) (-1133 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-2708 (((-1 (-1133 |#1|) (-1133 |#1|)) (-1 |#2| |#2|)) 13)) (-1682 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-1486 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-2058 ((|#2| (-1 |#2| (-626 |#2|)) (-626 |#1|)) 54)) (-2064 (((-626 |#2|) (-626 |#1|) (-626 (-1 |#2| (-626 |#2|)))) 61)) (-3365 ((|#2| |#2| |#2|) 43))) -(((-1228 |#1| |#2|) (-10 -7 (-15 -2708 ((-1 (-1133 |#1|) (-1133 |#1|)) (-1 |#2| |#2|))) (-15 -1302 ((-1 (-1133 |#1|) (-1133 |#1|) (-1133 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -2211 ((-1 (-1133 |#1|) (-626 (-1133 |#1|))) (-1 |#2| (-626 |#2|)))) (-15 -3365 (|#2| |#2| |#2|)) (-15 -1486 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -1682 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2058 (|#2| (-1 |#2| (-626 |#2|)) (-626 |#1|))) (-15 -2064 ((-626 |#2|) (-626 |#1|) (-626 (-1 |#2| (-626 |#2|)))))) (-43 (-403 (-560))) (-1226 |#1|)) (T -1228)) -((-2064 (*1 *2 *3 *4) (-12 (-5 *3 (-626 *5)) (-5 *4 (-626 (-1 *6 (-626 *6)))) (-4 *5 (-43 (-403 (-560)))) (-4 *6 (-1226 *5)) (-5 *2 (-626 *6)) (-5 *1 (-1228 *5 *6)))) (-2058 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-626 *2))) (-5 *4 (-626 *5)) (-4 *5 (-43 (-403 (-560)))) (-4 *2 (-1226 *5)) (-5 *1 (-1228 *5 *2)))) (-1682 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1226 *4)) (-5 *1 (-1228 *4 *2)) (-4 *4 (-43 (-403 (-560)))))) (-1486 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1226 *4)) (-5 *1 (-1228 *4 *2)) (-4 *4 (-43 (-403 (-560)))))) (-3365 (*1 *2 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1228 *3 *2)) (-4 *2 (-1226 *3)))) (-2211 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-626 *5))) (-4 *5 (-1226 *4)) (-4 *4 (-43 (-403 (-560)))) (-5 *2 (-1 (-1133 *4) (-626 (-1133 *4)))) (-5 *1 (-1228 *4 *5)))) (-1302 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1226 *4)) (-4 *4 (-43 (-403 (-560)))) (-5 *2 (-1 (-1133 *4) (-1133 *4) (-1133 *4))) (-5 *1 (-1228 *4 *5)))) (-2708 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1226 *4)) (-4 *4 (-43 (-403 (-560)))) (-5 *2 (-1 (-1133 *4) (-1133 *4))) (-5 *1 (-1228 *4 *5))))) -(-10 -7 (-15 -2708 ((-1 (-1133 |#1|) (-1133 |#1|)) (-1 |#2| |#2|))) (-15 -1302 ((-1 (-1133 |#1|) (-1133 |#1|) (-1133 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -2211 ((-1 (-1133 |#1|) (-626 (-1133 |#1|))) (-1 |#2| (-626 |#2|)))) (-15 -3365 (|#2| |#2| |#2|)) (-15 -1486 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -1682 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2058 (|#2| (-1 |#2| (-626 |#2|)) (-626 |#1|))) (-15 -2064 ((-626 |#2|) (-626 |#1|) (-626 (-1 |#2| (-626 |#2|)))))) -((-1404 ((|#2| |#4| (-755)) 30)) (-4455 ((|#4| |#2|) 25)) (-1802 ((|#4| (-403 |#2|)) 51 (|has| |#1| (-550)))) (-1425 (((-1 |#4| (-626 |#4|)) |#3|) 45))) -(((-1229 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4455 (|#4| |#2|)) (-15 -1404 (|#2| |#4| (-755))) (-15 -1425 ((-1 |#4| (-626 |#4|)) |#3|)) (IF (|has| |#1| (-550)) (-15 -1802 (|#4| (-403 |#2|))) |noBranch|)) (-1039) (-1211 |#1|) (-638 |#2|) (-1226 |#1|)) (T -1229)) -((-1802 (*1 *2 *3) (-12 (-5 *3 (-403 *5)) (-4 *5 (-1211 *4)) (-4 *4 (-550)) (-4 *4 (-1039)) (-4 *2 (-1226 *4)) (-5 *1 (-1229 *4 *5 *6 *2)) (-4 *6 (-638 *5)))) (-1425 (*1 *2 *3) (-12 (-4 *4 (-1039)) (-4 *5 (-1211 *4)) (-5 *2 (-1 *6 (-626 *6))) (-5 *1 (-1229 *4 *5 *3 *6)) (-4 *3 (-638 *5)) (-4 *6 (-1226 *4)))) (-1404 (*1 *2 *3 *4) (-12 (-5 *4 (-755)) (-4 *5 (-1039)) (-4 *2 (-1211 *5)) (-5 *1 (-1229 *5 *2 *6 *3)) (-4 *6 (-638 *2)) (-4 *3 (-1226 *5)))) (-4455 (*1 *2 *3) (-12 (-4 *4 (-1039)) (-4 *3 (-1211 *4)) (-4 *2 (-1226 *4)) (-5 *1 (-1229 *4 *3 *5 *2)) (-4 *5 (-638 *3))))) -(-10 -7 (-15 -4455 (|#4| |#2|)) (-15 -1404 (|#2| |#4| (-755))) (-15 -1425 ((-1 |#4| (-626 |#4|)) |#3|)) (IF (|has| |#1| (-550)) (-15 -1802 (|#4| (-403 |#2|))) |noBranch|)) -((-1933 ((|#2| (-1 |#3| |#3|) (-626 |#1|)) 67))) -(((-1230 |#1| |#2| |#3|) (-10 -7 (-15 -1933 (|#2| (-1 |#3| |#3|) (-626 |#1|)))) (-359) (-1226 |#1|) (-1226 (-1147 |#1|))) (T -1230)) -((-1933 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *6)) (-5 *4 (-626 *5)) (-4 *5 (-359)) (-4 *6 (-1226 (-1147 *5))) (-4 *2 (-1226 *5)) (-5 *1 (-1230 *5 *2 *6))))) -(-10 -7 (-15 -1933 (|#2| (-1 |#3| |#3|) (-626 |#1|)))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-1654 (((-626 (-1067)) $) NIL)) (-1395 (((-1153) $) 79)) (-2965 (((-1208 |#2| |#1|) $ (-755)) 68)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) NIL (|has| |#1| (-550)))) (-1350 (($ $) NIL (|has| |#1| (-550)))) (-3376 (((-121) $) 128 (|has| |#1| (-550)))) (-4330 (($ $ (-755)) 113) (($ $ (-755) (-755)) 115)) (-4138 (((-1133 (-2 (|:| |k| (-755)) (|:| |c| |#1|))) $) 38)) (-2570 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2514 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2314 (((-3 $ "failed") $ $) NIL)) (-2479 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2561 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2790 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-3783 (($ (-1133 (-2 (|:| |k| (-755)) (|:| |c| |#1|)))) 51) (($ (-1133 |#1|)) NIL)) (-2579 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2523 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-4236 (($) NIL T CONST)) (-3053 (($ $) 119)) (-1750 (($ $) NIL)) (-1823 (((-3 $ "failed") $) NIL)) (-2567 (($ $) 126)) (-4350 (((-945 |#1|) $ (-755)) 59) (((-945 |#1|) $ (-755) (-755)) 61)) (-1815 (((-121) $) NIL)) (-2474 (($) NIL (|has| |#1| (-43 (-403 (-560)))))) (-3504 (((-755) $) NIL) (((-755) $ (-755)) NIL)) (-2642 (((-121) $) NIL)) (-2131 (($ $) 103)) (-2586 (($ $ (-560)) NIL (|has| |#1| (-43 (-403 (-560)))))) (-4143 (($ (-560) (-560) $) 121)) (-3549 (($ $ (-909)) 125)) (-3994 (($ (-1 |#1| (-560)) $) 97)) (-1814 (((-121) $) NIL)) (-1637 (($ |#1| (-755)) 12) (($ $ (-1067) (-755)) NIL) (($ $ (-626 (-1067)) (-626 (-755))) NIL)) (-2803 (($ (-1 |#1| |#1|) $) 85)) (-4399 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-1726 (($ $) NIL)) (-1735 ((|#1| $) NIL)) (-1291 (((-1135) $) NIL)) (-4297 (($ $) 101)) (-2780 (($ $) 99)) (-2796 (($ (-560) (-560) $) 123)) (-2376 (($ $) 136 (|has| |#1| (-43 (-403 (-560))))) (($ $ (-1153)) 139 (-2318 (-12 (|has| |#1| (-15 -2376 (|#1| |#1| (-1153)))) (|has| |#1| (-15 -1654 ((-626 (-1153)) |#1|))) (|has| |#1| (-43 (-403 (-560))))) (-12 (|has| |#1| (-29 (-560))) (|has| |#1| (-43 (-403 (-560)))) (|has| |#1| (-951)) (|has| |#1| (-1173))))) (($ $ (-1232 |#2|)) 137 (|has| |#1| (-43 (-403 (-560)))))) (-4353 (((-1100) $) NIL)) (-3264 (($ $ (-560) (-560)) 107)) (-3292 (($ $ (-755)) 109)) (-2336 (((-3 $ "failed") $ $) NIL (|has| |#1| (-550)))) (-2469 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-1760 (($ $) 105)) (-4450 (((-1133 |#1|) $ |#1|) 87 (|has| |#1| (-15 ** (|#1| |#1| (-755)))))) (-2778 ((|#1| $ (-755)) 82) (($ $ $) 117 (|has| (-755) (-1094)))) (-2443 (($ $ (-626 (-1153)) (-626 (-755))) NIL (-12 (|has| |#1| (-15 * (|#1| (-755) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-1153) (-755)) NIL (-12 (|has| |#1| (-15 * (|#1| (-755) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-626 (-1153))) NIL (-12 (|has| |#1| (-15 * (|#1| (-755) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-1153)) 92 (-12 (|has| |#1| (-15 * (|#1| (-755) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-755)) NIL (|has| |#1| (-15 * (|#1| (-755) |#1|)))) (($ $) 89 (|has| |#1| (-15 * (|#1| (-755) |#1|)))) (($ $ (-1232 |#2|)) 90)) (-3662 (((-755) $) NIL)) (-2585 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2528 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2575 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2519 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2566 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2795 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2234 (($ $) 111)) (-2801 (((-842) $) NIL) (($ (-560)) 18) (($ (-403 (-560))) 134 (|has| |#1| (-43 (-403 (-560))))) (($ $) NIL (|has| |#1| (-550))) (($ |#1|) 17 (|has| |#1| (-170))) (($ (-1208 |#2| |#1|)) 73) (($ (-1232 |#2|)) 14)) (-2423 (((-1133 |#1|) $) NIL)) (-2636 ((|#1| $ (-755)) 81)) (-2272 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1751 (((-755)) NIL)) (-1341 ((|#1| $) 80)) (-2598 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2541 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2328 (((-121) $ $) NIL (|has| |#1| (-550)))) (-2590 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2532 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2608 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2549 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2550 ((|#1| $ (-755)) 78 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-755)))) (|has| |#1| (-15 -2801 (|#1| (-1153))))))) (-3689 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2554 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2604 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2545 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2594 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2536 (($ $) NIL (|has| |#1| (-43 (-403 (-560)))))) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (-3304 (($) 44 T CONST)) (-1459 (($) 9 T CONST)) (-2500 (($ $ (-626 (-1153)) (-626 (-755))) NIL (-12 (|has| |#1| (-15 * (|#1| (-755) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-1153) (-755)) NIL (-12 (|has| |#1| (-15 * (|#1| (-755) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-626 (-1153))) NIL (-12 (|has| |#1| (-15 * (|#1| (-755) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-1153)) NIL (-12 (|has| |#1| (-15 * (|#1| (-755) |#1|))) (|has| |#1| (-887 (-1153))))) (($ $ (-755)) NIL (|has| |#1| (-15 * (|#1| (-755) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-755) |#1|))))) (-1653 (((-121) $ $) NIL)) (-1733 (($ $ |#1|) NIL (|has| |#1| (-359)))) (-1725 (($ $) NIL) (($ $ $) 94)) (-1716 (($ $ $) NIL)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL) (($ $ |#1|) 131 (|has| |#1| (-359))) (($ $ $) NIL (|has| |#1| (-43 (-403 (-560))))) (($ $ (-403 (-560))) NIL (|has| |#1| (-43 (-403 (-560)))))) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) 93) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-403 (-560)) $) NIL (|has| |#1| (-43 (-403 (-560))))) (($ $ (-403 (-560))) NIL (|has| |#1| (-43 (-403 (-560))))))) -(((-1231 |#1| |#2|) (-13 (-1226 |#1|) (-10 -8 (-15 -2801 ($ (-1208 |#2| |#1|))) (-15 -2965 ((-1208 |#2| |#1|) $ (-755))) (-15 -2801 ($ (-1232 |#2|))) (-15 -2443 ($ $ (-1232 |#2|))) (-15 -2780 ($ $)) (-15 -4297 ($ $)) (-15 -2131 ($ $)) (-15 -1760 ($ $)) (-15 -3264 ($ $ (-560) (-560))) (-15 -3053 ($ $)) (-15 -4143 ($ (-560) (-560) $)) (-15 -2796 ($ (-560) (-560) $)) (IF (|has| |#1| (-43 (-403 (-560)))) (-15 -2376 ($ $ (-1232 |#2|))) |noBranch|))) (-1039) (-1153)) (T -1231)) -((-2801 (*1 *1 *2) (-12 (-5 *2 (-1208 *4 *3)) (-4 *3 (-1039)) (-14 *4 (-1153)) (-5 *1 (-1231 *3 *4)))) (-2965 (*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *2 (-1208 *5 *4)) (-5 *1 (-1231 *4 *5)) (-4 *4 (-1039)) (-14 *5 (-1153)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-1232 *4)) (-14 *4 (-1153)) (-5 *1 (-1231 *3 *4)) (-4 *3 (-1039)))) (-2443 (*1 *1 *1 *2) (-12 (-5 *2 (-1232 *4)) (-14 *4 (-1153)) (-5 *1 (-1231 *3 *4)) (-4 *3 (-1039)))) (-2780 (*1 *1 *1) (-12 (-5 *1 (-1231 *2 *3)) (-4 *2 (-1039)) (-14 *3 (-1153)))) (-4297 (*1 *1 *1) (-12 (-5 *1 (-1231 *2 *3)) (-4 *2 (-1039)) (-14 *3 (-1153)))) (-2131 (*1 *1 *1) (-12 (-5 *1 (-1231 *2 *3)) (-4 *2 (-1039)) (-14 *3 (-1153)))) (-1760 (*1 *1 *1) (-12 (-5 *1 (-1231 *2 *3)) (-4 *2 (-1039)) (-14 *3 (-1153)))) (-3264 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-1231 *3 *4)) (-4 *3 (-1039)) (-14 *4 (-1153)))) (-3053 (*1 *1 *1) (-12 (-5 *1 (-1231 *2 *3)) (-4 *2 (-1039)) (-14 *3 (-1153)))) (-4143 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-1231 *3 *4)) (-4 *3 (-1039)) (-14 *4 (-1153)))) (-2796 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-1231 *3 *4)) (-4 *3 (-1039)) (-14 *4 (-1153)))) (-2376 (*1 *1 *1 *2) (-12 (-5 *2 (-1232 *4)) (-14 *4 (-1153)) (-5 *1 (-1231 *3 *4)) (-4 *3 (-43 (-403 (-560)))) (-4 *3 (-1039))))) -(-13 (-1226 |#1|) (-10 -8 (-15 -2801 ($ (-1208 |#2| |#1|))) (-15 -2965 ((-1208 |#2| |#1|) $ (-755))) (-15 -2801 ($ (-1232 |#2|))) (-15 -2443 ($ $ (-1232 |#2|))) (-15 -2780 ($ $)) (-15 -4297 ($ $)) (-15 -2131 ($ $)) (-15 -1760 ($ $)) (-15 -3264 ($ $ (-560) (-560))) (-15 -3053 ($ $)) (-15 -4143 ($ (-560) (-560) $)) (-15 -2796 ($ (-560) (-560) $)) (IF (|has| |#1| (-43 (-403 (-560)))) (-15 -2376 ($ $ (-1232 |#2|))) |noBranch|))) -((-2601 (((-121) $ $) NIL)) (-1395 (((-1153)) 12)) (-1291 (((-1135) $) 17)) (-4353 (((-1100) $) NIL)) (-2801 (((-842) $) 11) (((-1153) $) 8)) (-1653 (((-121) $ $) 14))) -(((-1232 |#1|) (-13 (-1082) (-600 (-1153)) (-10 -8 (-15 -2801 ((-1153) $)) (-15 -1395 ((-1153))))) (-1153)) (T -1232)) -((-2801 (*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-1232 *3)) (-14 *3 *2))) (-1395 (*1 *2) (-12 (-5 *2 (-1153)) (-5 *1 (-1232 *3)) (-14 *3 *2)))) -(-13 (-1082) (-600 (-1153)) (-10 -8 (-15 -2801 ((-1153) $)) (-15 -1395 ((-1153))))) -((-3382 (($ (-755)) 16)) (-1764 (((-671 |#2|) $ $) 37)) (-2429 ((|#2| $) 46)) (-2349 ((|#2| $) 45)) (-2372 ((|#2| $ $) 33)) (-2078 (($ $ $) 42)) (-1725 (($ $) 20) (($ $ $) 26)) (-1716 (($ $ $) 13)) (* (($ (-560) $) 23) (($ |#2| $) 29) (($ $ |#2|) 28))) -(((-1233 |#1| |#2|) (-10 -8 (-15 -2429 (|#2| |#1|)) (-15 -2349 (|#2| |#1|)) (-15 -2078 (|#1| |#1| |#1|)) (-15 -1764 ((-671 |#2|) |#1| |#1|)) (-15 -2372 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 -1725 (|#1| |#1| |#1|)) (-15 -1725 (|#1| |#1|)) (-15 -3382 (|#1| (-755))) (-15 -1716 (|#1| |#1| |#1|))) (-1234 |#2|) (-1187)) (T -1233)) -NIL -(-10 -8 (-15 -2429 (|#2| |#1|)) (-15 -2349 (|#2| |#1|)) (-15 -2078 (|#1| |#1| |#1|)) (-15 -1764 ((-671 |#2|) |#1| |#1|)) (-15 -2372 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 -1725 (|#1| |#1| |#1|)) (-15 -1725 (|#1| |#1|)) (-15 -3382 (|#1| (-755))) (-15 -1716 (|#1| |#1| |#1|))) -((-2601 (((-121) $ $) 18 (|has| |#1| (-1082)))) (-3382 (($ (-755)) 105 (|has| |#1| (-23)))) (-2960 (((-1241) $ (-560) (-560)) 37 (|has| $ (-6 -4506)))) (-3189 (((-121) (-1 (-121) |#1| |#1|) $) 91) (((-121) $) 85 (|has| |#1| (-834)))) (-4410 (($ (-1 (-121) |#1| |#1|) $) 82 (|has| $ (-6 -4506))) (($ $) 81 (-12 (|has| |#1| (-834)) (|has| $ (-6 -4506))))) (-3743 (($ (-1 (-121) |#1| |#1|) $) 92) (($ $) 86 (|has| |#1| (-834)))) (-3909 (((-121) $ (-755)) 8)) (-2764 ((|#1| $ (-560) |#1|) 49 (|has| $ (-6 -4506))) ((|#1| $ (-1202 (-560)) |#1|) 53 (|has| $ (-6 -4506)))) (-3802 (($ (-1 (-121) |#1|) $) 70 (|has| $ (-6 -4505)))) (-4236 (($) 7 T CONST)) (-4030 (($ $) 83 (|has| $ (-6 -4506)))) (-2883 (($ $) 93)) (-2868 (($ $) 73 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-4310 (($ |#1| $) 72 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505)))) (($ (-1 (-121) |#1|) $) 69 (|has| $ (-6 -4505)))) (-2342 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 71 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 68 (|has| $ (-6 -4505))) ((|#1| (-1 |#1| |#1| |#1|) $) 67 (|has| $ (-6 -4505)))) (-1746 ((|#1| $ (-560) |#1|) 50 (|has| $ (-6 -4506)))) (-1361 ((|#1| $ (-560)) 48)) (-2839 (((-560) (-1 (-121) |#1|) $) 90) (((-560) |#1| $) 89 (|has| |#1| (-1082))) (((-560) |#1| $ (-560)) 88 (|has| |#1| (-1082)))) (-1981 (((-626 |#1|) $) 30 (|has| $ (-6 -4505)))) (-1764 (((-671 |#1|) $ $) 98 (|has| |#1| (-1039)))) (-1721 (($ (-755) |#1|) 64)) (-2122 (((-121) $ (-755)) 9)) (-4099 (((-560) $) 40 (|has| (-560) (-834)))) (-4325 (($ $ $) 80 (|has| |#1| (-834)))) (-2492 (($ (-1 (-121) |#1| |#1|) $ $) 94) (($ $ $) 87 (|has| |#1| (-834)))) (-2130 (((-626 |#1|) $) 29 (|has| $ (-6 -4505)))) (-2030 (((-121) |#1| $) 27 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-2767 (((-560) $) 41 (|has| (-560) (-834)))) (-2501 (($ $ $) 79 (|has| |#1| (-834)))) (-3778 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 59)) (-2429 ((|#1| $) 95 (-12 (|has| |#1| (-1039)) (|has| |#1| (-994))))) (-3441 (((-121) $ (-755)) 10)) (-2349 ((|#1| $) 96 (-12 (|has| |#1| (-1039)) (|has| |#1| (-994))))) (-1291 (((-1135) $) 22 (|has| |#1| (-1082)))) (-4103 (($ |#1| $ (-560)) 55) (($ $ $ (-560)) 54)) (-1529 (((-626 (-560)) $) 43)) (-1310 (((-121) (-560) $) 44)) (-4353 (((-1100) $) 21 (|has| |#1| (-1082)))) (-2824 ((|#1| $) 39 (|has| (-560) (-834)))) (-3786 (((-3 |#1| "failed") (-1 (-121) |#1|) $) 66)) (-3038 (($ $ |#1|) 38 (|has| $ (-6 -4506)))) (-2865 (((-121) (-1 (-121) |#1|) $) 32 (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#1|))) 26 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-283 |#1|)) 25 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-626 |#1|) (-626 |#1|)) 23 (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))))) (-2214 (((-121) $ $) 14)) (-1290 (((-121) |#1| $) 42 (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-4460 (((-626 |#1|) $) 45)) (-4191 (((-121) $) 11)) (-3260 (($) 12)) (-2778 ((|#1| $ (-560) |#1|) 47) ((|#1| $ (-560)) 46) (($ $ (-1202 (-560))) 58)) (-2372 ((|#1| $ $) 99 (|has| |#1| (-1039)))) (-2949 (($ $ (-560)) 57) (($ $ (-1202 (-560))) 56)) (-2078 (($ $ $) 97 (|has| |#1| (-1039)))) (-4035 (((-755) (-1 (-121) |#1|) $) 31 (|has| $ (-6 -4505))) (((-755) |#1| $) 28 (-12 (|has| |#1| (-1082)) (|has| $ (-6 -4505))))) (-4072 (($ $ $ (-560)) 84 (|has| $ (-6 -4506)))) (-2813 (($ $) 13)) (-4255 (((-533) $) 74 (|has| |#1| (-601 (-533))))) (-4162 (($ (-626 |#1|)) 65)) (-2849 (($ $ |#1|) 63) (($ |#1| $) 62) (($ $ $) 61) (($ (-626 $)) 60)) (-2801 (((-842) $) 20 (|has| |#1| (-1082)))) (-3656 (((-121) (-1 (-121) |#1|) $) 33 (|has| $ (-6 -4505)))) (-1691 (((-121) $ $) 77 (|has| |#1| (-834)))) (-1675 (((-121) $ $) 76 (|has| |#1| (-834)))) (-1653 (((-121) $ $) 19 (|has| |#1| (-1082)))) (-1683 (((-121) $ $) 78 (|has| |#1| (-834)))) (-1667 (((-121) $ $) 75 (|has| |#1| (-834)))) (-1725 (($ $) 104 (|has| |#1| (-21))) (($ $ $) 103 (|has| |#1| (-21)))) (-1716 (($ $ $) 106 (|has| |#1| (-25)))) (* (($ (-560) $) 102 (|has| |#1| (-21))) (($ |#1| $) 101 (|has| |#1| (-708))) (($ $ |#1|) 100 (|has| |#1| (-708)))) (-2271 (((-755) $) 6 (|has| $ (-6 -4505))))) -(((-1234 |#1|) (-1267) (-1187)) (T -1234)) -((-1716 (*1 *1 *1 *1) (-12 (-4 *1 (-1234 *2)) (-4 *2 (-1187)) (-4 *2 (-25)))) (-3382 (*1 *1 *2) (-12 (-5 *2 (-755)) (-4 *1 (-1234 *3)) (-4 *3 (-23)) (-4 *3 (-1187)))) (-1725 (*1 *1 *1) (-12 (-4 *1 (-1234 *2)) (-4 *2 (-1187)) (-4 *2 (-21)))) (-1725 (*1 *1 *1 *1) (-12 (-4 *1 (-1234 *2)) (-4 *2 (-1187)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-560)) (-4 *1 (-1234 *3)) (-4 *3 (-1187)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1234 *2)) (-4 *2 (-1187)) (-4 *2 (-708)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1234 *2)) (-4 *2 (-1187)) (-4 *2 (-708)))) (-2372 (*1 *2 *1 *1) (-12 (-4 *1 (-1234 *2)) (-4 *2 (-1187)) (-4 *2 (-1039)))) (-1764 (*1 *2 *1 *1) (-12 (-4 *1 (-1234 *3)) (-4 *3 (-1187)) (-4 *3 (-1039)) (-5 *2 (-671 *3)))) (-2078 (*1 *1 *1 *1) (-12 (-4 *1 (-1234 *2)) (-4 *2 (-1187)) (-4 *2 (-1039)))) (-2349 (*1 *2 *1) (-12 (-4 *1 (-1234 *2)) (-4 *2 (-1187)) (-4 *2 (-994)) (-4 *2 (-1039)))) (-2429 (*1 *2 *1) (-12 (-4 *1 (-1234 *2)) (-4 *2 (-1187)) (-4 *2 (-994)) (-4 *2 (-1039))))) -(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -1716 ($ $ $)) |noBranch|) (IF (|has| |t#1| (-23)) (-15 -3382 ($ (-755))) |noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -1725 ($ $)) (-15 -1725 ($ $ $)) (-15 * ($ (-560) $))) |noBranch|) (IF (|has| |t#1| (-708)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |noBranch|) (IF (|has| |t#1| (-1039)) (PROGN (-15 -2372 (|t#1| $ $)) (-15 -1764 ((-671 |t#1|) $ $)) (-15 -2078 ($ $ $))) |noBranch|) (IF (|has| |t#1| (-994)) (IF (|has| |t#1| (-1039)) (PROGN (-15 -2349 (|t#1| $)) (-15 -2429 (|t#1| $))) |noBranch|) |noBranch|))) -(((-39) . T) ((-105) -2318 (|has| |#1| (-1082)) (|has| |#1| (-834))) ((-600 (-842)) -2318 (|has| |#1| (-1082)) (|has| |#1| (-834))) ((-152 |#1|) . T) ((-601 (-533)) |has| |#1| (-601 (-533))) ((-276 (-560) |#1|) . T) ((-278 (-560) |#1|) . T) ((-298 |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))) ((-369 |#1|) . T) ((-492 |#1|) . T) ((-593 (-560) |#1|) . T) ((-515 |#1| |#1|) -12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))) ((-632 |#1|) . T) ((-19 |#1|) . T) ((-834) |has| |#1| (-834)) ((-1082) -2318 (|has| |#1| (-1082)) (|has| |#1| (-834))) ((-1187) . T)) -((-3469 (((-1236 |#2|) (-1 |#2| |#1| |#2|) (-1236 |#1|) |#2|) 13)) (-2342 ((|#2| (-1 |#2| |#1| |#2|) (-1236 |#1|) |#2|) 15)) (-2803 (((-3 (-1236 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1236 |#1|)) 28) (((-1236 |#2|) (-1 |#2| |#1|) (-1236 |#1|)) 18))) -(((-1235 |#1| |#2|) (-10 -7 (-15 -3469 ((-1236 |#2|) (-1 |#2| |#1| |#2|) (-1236 |#1|) |#2|)) (-15 -2342 (|#2| (-1 |#2| |#1| |#2|) (-1236 |#1|) |#2|)) (-15 -2803 ((-1236 |#2|) (-1 |#2| |#1|) (-1236 |#1|))) (-15 -2803 ((-3 (-1236 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1236 |#1|)))) (-1187) (-1187)) (T -1235)) -((-2803 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1236 *5)) (-4 *5 (-1187)) (-4 *6 (-1187)) (-5 *2 (-1236 *6)) (-5 *1 (-1235 *5 *6)))) (-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1236 *5)) (-4 *5 (-1187)) (-4 *6 (-1187)) (-5 *2 (-1236 *6)) (-5 *1 (-1235 *5 *6)))) (-2342 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1236 *5)) (-4 *5 (-1187)) (-4 *2 (-1187)) (-5 *1 (-1235 *5 *2)))) (-3469 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1236 *6)) (-4 *6 (-1187)) (-4 *5 (-1187)) (-5 *2 (-1236 *5)) (-5 *1 (-1235 *6 *5))))) -(-10 -7 (-15 -3469 ((-1236 |#2|) (-1 |#2| |#1| |#2|) (-1236 |#1|) |#2|)) (-15 -2342 (|#2| (-1 |#2| |#1| |#2|) (-1236 |#1|) |#2|)) (-15 -2803 ((-1236 |#2|) (-1 |#2| |#1|) (-1236 |#1|))) (-15 -2803 ((-3 (-1236 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1236 |#1|)))) -((-2601 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-3382 (($ (-755)) NIL (|has| |#1| (-23)))) (-2459 (($ (-626 |#1|)) 9)) (-2960 (((-1241) $ (-560) (-560)) NIL (|has| $ (-6 -4506)))) (-3189 (((-121) (-1 (-121) |#1| |#1|) $) NIL) (((-121) $) NIL (|has| |#1| (-834)))) (-4410 (($ (-1 (-121) |#1| |#1|) $) NIL (|has| $ (-6 -4506))) (($ $) NIL (-12 (|has| $ (-6 -4506)) (|has| |#1| (-834))))) (-3743 (($ (-1 (-121) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-834)))) (-3909 (((-121) $ (-755)) NIL)) (-2764 ((|#1| $ (-560) |#1|) NIL (|has| $ (-6 -4506))) ((|#1| $ (-1202 (-560)) |#1|) NIL (|has| $ (-6 -4506)))) (-3802 (($ (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-4236 (($) NIL T CONST)) (-4030 (($ $) NIL (|has| $ (-6 -4506)))) (-2883 (($ $) NIL)) (-2868 (($ $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-4310 (($ |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082)))) (($ (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-2342 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4505))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4505)))) (-1746 ((|#1| $ (-560) |#1|) NIL (|has| $ (-6 -4506)))) (-1361 ((|#1| $ (-560)) NIL)) (-2839 (((-560) (-1 (-121) |#1|) $) NIL) (((-560) |#1| $) NIL (|has| |#1| (-1082))) (((-560) |#1| $ (-560)) NIL (|has| |#1| (-1082)))) (-1981 (((-626 |#1|) $) 15 (|has| $ (-6 -4505)))) (-1764 (((-671 |#1|) $ $) NIL (|has| |#1| (-1039)))) (-1721 (($ (-755) |#1|) NIL)) (-2122 (((-121) $ (-755)) NIL)) (-4099 (((-560) $) NIL (|has| (-560) (-834)))) (-4325 (($ $ $) NIL (|has| |#1| (-834)))) (-2492 (($ (-1 (-121) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-834)))) (-2130 (((-626 |#1|) $) NIL (|has| $ (-6 -4505)))) (-2030 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-2767 (((-560) $) NIL (|has| (-560) (-834)))) (-2501 (($ $ $) NIL (|has| |#1| (-834)))) (-3778 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2429 ((|#1| $) NIL (-12 (|has| |#1| (-994)) (|has| |#1| (-1039))))) (-3441 (((-121) $ (-755)) NIL)) (-2349 ((|#1| $) NIL (-12 (|has| |#1| (-994)) (|has| |#1| (-1039))))) (-1291 (((-1135) $) NIL (|has| |#1| (-1082)))) (-4103 (($ |#1| $ (-560)) NIL) (($ $ $ (-560)) NIL)) (-1529 (((-626 (-560)) $) NIL)) (-1310 (((-121) (-560) $) NIL)) (-4353 (((-1100) $) NIL (|has| |#1| (-1082)))) (-2824 ((|#1| $) NIL (|has| (-560) (-834)))) (-3786 (((-3 |#1| "failed") (-1 (-121) |#1|) $) NIL)) (-3038 (($ $ |#1|) NIL (|has| $ (-6 -4506)))) (-2865 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 (-283 |#1|))) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-283 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082)))) (($ $ (-626 |#1|) (-626 |#1|)) NIL (-12 (|has| |#1| (-298 |#1|)) (|has| |#1| (-1082))))) (-2214 (((-121) $ $) NIL)) (-1290 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-4460 (((-626 |#1|) $) NIL)) (-4191 (((-121) $) NIL)) (-3260 (($) NIL)) (-2778 ((|#1| $ (-560) |#1|) NIL) ((|#1| $ (-560)) NIL) (($ $ (-1202 (-560))) NIL)) (-2372 ((|#1| $ $) NIL (|has| |#1| (-1039)))) (-2949 (($ $ (-560)) NIL) (($ $ (-1202 (-560))) NIL)) (-2078 (($ $ $) NIL (|has| |#1| (-1039)))) (-4035 (((-755) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505))) (((-755) |#1| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#1| (-1082))))) (-4072 (($ $ $ (-560)) NIL (|has| $ (-6 -4506)))) (-2813 (($ $) NIL)) (-4255 (((-533) $) 19 (|has| |#1| (-601 (-533))))) (-4162 (($ (-626 |#1|)) 8)) (-2849 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-626 $)) NIL)) (-2801 (((-842) $) NIL (|has| |#1| (-1082)))) (-3656 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4505)))) (-1691 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1675 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1653 (((-121) $ $) NIL (|has| |#1| (-1082)))) (-1683 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1667 (((-121) $ $) NIL (|has| |#1| (-834)))) (-1725 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1716 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-560) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-708))) (($ $ |#1|) NIL (|has| |#1| (-708)))) (-2271 (((-755) $) NIL (|has| $ (-6 -4505))))) -(((-1236 |#1|) (-13 (-1234 |#1|) (-10 -8 (-15 -2459 ($ (-626 |#1|))))) (-1187)) (T -1236)) -((-2459 (*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-1187)) (-5 *1 (-1236 *3))))) -(-13 (-1234 |#1|) (-10 -8 (-15 -2459 ($ (-626 |#1|))))) -((-2601 (((-121) $ $) NIL)) (-2354 (((-1135) $ (-1135)) 87) (((-1135) $ (-1135) (-1135)) 85) (((-1135) $ (-1135) (-626 (-1135))) 84)) (-2926 (($) 56)) (-3174 (((-1241) $ (-466) (-909)) 42)) (-2089 (((-1241) $ (-909) (-1135)) 70) (((-1241) $ (-909) (-861)) 71)) (-1742 (((-1241) $ (-909) (-375) (-375)) 45)) (-1777 (((-1241) $ (-1135)) 66)) (-1561 (((-1241) $ (-909) (-1135)) 75)) (-1407 (((-1241) $ (-909) (-375) (-375)) 46)) (-3738 (((-1241) $ (-909) (-909)) 43)) (-2347 (((-1241) $) 67)) (-2732 (((-1241) $ (-909) (-1135)) 74)) (-3740 (((-1241) $ (-466) (-909)) 30)) (-1471 (((-1241) $ (-909) (-1135)) 73)) (-1300 (((-626 (-251)) $) 22) (($ $ (-626 (-251))) 23)) (-2836 (((-1241) $ (-755) (-755)) 40)) (-3537 (($ $) 57) (($ (-466) (-626 (-251))) 58)) (-1291 (((-1135) $) NIL)) (-3655 (((-560) $) 37)) (-4353 (((-1100) $) NIL)) (-3398 (((-1236 (-3 (-466) "undefined")) $) 36)) (-1657 (((-1236 (-2 (|:| |scaleX| (-213)) (|:| |scaleY| (-213)) (|:| |deltaX| (-213)) (|:| |deltaY| (-213)) (|:| -1471 (-560)) (|:| -2482 (-560)) (|:| |spline| (-560)) (|:| -3594 (-560)) (|:| |axesColor| (-861)) (|:| -2089 (-560)) (|:| |unitsColor| (-861)) (|:| |showing| (-560)))) $) 35)) (-4082 (((-1241) $ (-909) (-213) (-213) (-213) (-213) (-560) (-560) (-560) (-560) (-861) (-560) (-861) (-560)) 65)) (-3246 (((-626 (-936 (-213))) $) NIL)) (-4415 (((-466) $ (-909)) 32)) (-2250 (((-1241) $ (-755) (-755) (-909) (-909)) 39)) (-3897 (((-1241) $ (-1135)) 76)) (-2482 (((-1241) $ (-909) (-1135)) 72)) (-2801 (((-842) $) 82)) (-4071 (((-1241) $) 77)) (-3594 (((-1241) $ (-909) (-1135)) 68) (((-1241) $ (-909) (-861)) 69)) (-1653 (((-121) $ $) NIL))) -(((-1237) (-13 (-1082) (-10 -8 (-15 -3246 ((-626 (-936 (-213))) $)) (-15 -2926 ($)) (-15 -3537 ($ $)) (-15 -1300 ((-626 (-251)) $)) (-15 -1300 ($ $ (-626 (-251)))) (-15 -3537 ($ (-466) (-626 (-251)))) (-15 -4082 ((-1241) $ (-909) (-213) (-213) (-213) (-213) (-560) (-560) (-560) (-560) (-861) (-560) (-861) (-560))) (-15 -1657 ((-1236 (-2 (|:| |scaleX| (-213)) (|:| |scaleY| (-213)) (|:| |deltaX| (-213)) (|:| |deltaY| (-213)) (|:| -1471 (-560)) (|:| -2482 (-560)) (|:| |spline| (-560)) (|:| -3594 (-560)) (|:| |axesColor| (-861)) (|:| -2089 (-560)) (|:| |unitsColor| (-861)) (|:| |showing| (-560)))) $)) (-15 -3398 ((-1236 (-3 (-466) "undefined")) $)) (-15 -1777 ((-1241) $ (-1135))) (-15 -3740 ((-1241) $ (-466) (-909))) (-15 -4415 ((-466) $ (-909))) (-15 -3594 ((-1241) $ (-909) (-1135))) (-15 -3594 ((-1241) $ (-909) (-861))) (-15 -2089 ((-1241) $ (-909) (-1135))) (-15 -2089 ((-1241) $ (-909) (-861))) (-15 -1471 ((-1241) $ (-909) (-1135))) (-15 -2732 ((-1241) $ (-909) (-1135))) (-15 -2482 ((-1241) $ (-909) (-1135))) (-15 -3897 ((-1241) $ (-1135))) (-15 -4071 ((-1241) $)) (-15 -2250 ((-1241) $ (-755) (-755) (-909) (-909))) (-15 -1407 ((-1241) $ (-909) (-375) (-375))) (-15 -1742 ((-1241) $ (-909) (-375) (-375))) (-15 -1561 ((-1241) $ (-909) (-1135))) (-15 -2836 ((-1241) $ (-755) (-755))) (-15 -3174 ((-1241) $ (-466) (-909))) (-15 -3738 ((-1241) $ (-909) (-909))) (-15 -2354 ((-1135) $ (-1135))) (-15 -2354 ((-1135) $ (-1135) (-1135))) (-15 -2354 ((-1135) $ (-1135) (-626 (-1135)))) (-15 -2347 ((-1241) $)) (-15 -3655 ((-560) $)) (-15 -2801 ((-842) $))))) (T -1237)) -((-2801 (*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-1237)))) (-3246 (*1 *2 *1) (-12 (-5 *2 (-626 (-936 (-213)))) (-5 *1 (-1237)))) (-2926 (*1 *1) (-5 *1 (-1237))) (-3537 (*1 *1 *1) (-5 *1 (-1237))) (-1300 (*1 *2 *1) (-12 (-5 *2 (-626 (-251))) (-5 *1 (-1237)))) (-1300 (*1 *1 *1 *2) (-12 (-5 *2 (-626 (-251))) (-5 *1 (-1237)))) (-3537 (*1 *1 *2 *3) (-12 (-5 *2 (-466)) (-5 *3 (-626 (-251))) (-5 *1 (-1237)))) (-4082 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-909)) (-5 *4 (-213)) (-5 *5 (-560)) (-5 *6 (-861)) (-5 *2 (-1241)) (-5 *1 (-1237)))) (-1657 (*1 *2 *1) (-12 (-5 *2 (-1236 (-2 (|:| |scaleX| (-213)) (|:| |scaleY| (-213)) (|:| |deltaX| (-213)) (|:| |deltaY| (-213)) (|:| -1471 (-560)) (|:| -2482 (-560)) (|:| |spline| (-560)) (|:| -3594 (-560)) (|:| |axesColor| (-861)) (|:| -2089 (-560)) (|:| |unitsColor| (-861)) (|:| |showing| (-560))))) (-5 *1 (-1237)))) (-3398 (*1 *2 *1) (-12 (-5 *2 (-1236 (-3 (-466) "undefined"))) (-5 *1 (-1237)))) (-1777 (*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1241)) (-5 *1 (-1237)))) (-3740 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-466)) (-5 *4 (-909)) (-5 *2 (-1241)) (-5 *1 (-1237)))) (-4415 (*1 *2 *1 *3) (-12 (-5 *3 (-909)) (-5 *2 (-466)) (-5 *1 (-1237)))) (-3594 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-909)) (-5 *4 (-1135)) (-5 *2 (-1241)) (-5 *1 (-1237)))) (-3594 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-909)) (-5 *4 (-861)) (-5 *2 (-1241)) (-5 *1 (-1237)))) (-2089 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-909)) (-5 *4 (-1135)) (-5 *2 (-1241)) (-5 *1 (-1237)))) (-2089 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-909)) (-5 *4 (-861)) (-5 *2 (-1241)) (-5 *1 (-1237)))) (-1471 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-909)) (-5 *4 (-1135)) (-5 *2 (-1241)) (-5 *1 (-1237)))) (-2732 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-909)) (-5 *4 (-1135)) (-5 *2 (-1241)) (-5 *1 (-1237)))) (-2482 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-909)) (-5 *4 (-1135)) (-5 *2 (-1241)) (-5 *1 (-1237)))) (-3897 (*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1241)) (-5 *1 (-1237)))) (-4071 (*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-1237)))) (-2250 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-755)) (-5 *4 (-909)) (-5 *2 (-1241)) (-5 *1 (-1237)))) (-1407 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-909)) (-5 *4 (-375)) (-5 *2 (-1241)) (-5 *1 (-1237)))) (-1742 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-909)) (-5 *4 (-375)) (-5 *2 (-1241)) (-5 *1 (-1237)))) (-1561 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-909)) (-5 *4 (-1135)) (-5 *2 (-1241)) (-5 *1 (-1237)))) (-2836 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-755)) (-5 *2 (-1241)) (-5 *1 (-1237)))) (-3174 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-466)) (-5 *4 (-909)) (-5 *2 (-1241)) (-5 *1 (-1237)))) (-3738 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-909)) (-5 *2 (-1241)) (-5 *1 (-1237)))) (-2354 (*1 *2 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-1237)))) (-2354 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-1237)))) (-2354 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-626 (-1135))) (-5 *2 (-1135)) (-5 *1 (-1237)))) (-2347 (*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-1237)))) (-3655 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-1237))))) -(-13 (-1082) (-10 -8 (-15 -3246 ((-626 (-936 (-213))) $)) (-15 -2926 ($)) (-15 -3537 ($ $)) (-15 -1300 ((-626 (-251)) $)) (-15 -1300 ($ $ (-626 (-251)))) (-15 -3537 ($ (-466) (-626 (-251)))) (-15 -4082 ((-1241) $ (-909) (-213) (-213) (-213) (-213) (-560) (-560) (-560) (-560) (-861) (-560) (-861) (-560))) (-15 -1657 ((-1236 (-2 (|:| |scaleX| (-213)) (|:| |scaleY| (-213)) (|:| |deltaX| (-213)) (|:| |deltaY| (-213)) (|:| -1471 (-560)) (|:| -2482 (-560)) (|:| |spline| (-560)) (|:| -3594 (-560)) (|:| |axesColor| (-861)) (|:| -2089 (-560)) (|:| |unitsColor| (-861)) (|:| |showing| (-560)))) $)) (-15 -3398 ((-1236 (-3 (-466) "undefined")) $)) (-15 -1777 ((-1241) $ (-1135))) (-15 -3740 ((-1241) $ (-466) (-909))) (-15 -4415 ((-466) $ (-909))) (-15 -3594 ((-1241) $ (-909) (-1135))) (-15 -3594 ((-1241) $ (-909) (-861))) (-15 -2089 ((-1241) $ (-909) (-1135))) (-15 -2089 ((-1241) $ (-909) (-861))) (-15 -1471 ((-1241) $ (-909) (-1135))) (-15 -2732 ((-1241) $ (-909) (-1135))) (-15 -2482 ((-1241) $ (-909) (-1135))) (-15 -3897 ((-1241) $ (-1135))) (-15 -4071 ((-1241) $)) (-15 -2250 ((-1241) $ (-755) (-755) (-909) (-909))) (-15 -1407 ((-1241) $ (-909) (-375) (-375))) (-15 -1742 ((-1241) $ (-909) (-375) (-375))) (-15 -1561 ((-1241) $ (-909) (-1135))) (-15 -2836 ((-1241) $ (-755) (-755))) (-15 -3174 ((-1241) $ (-466) (-909))) (-15 -3738 ((-1241) $ (-909) (-909))) (-15 -2354 ((-1135) $ (-1135))) (-15 -2354 ((-1135) $ (-1135) (-1135))) (-15 -2354 ((-1135) $ (-1135) (-626 (-1135)))) (-15 -2347 ((-1241) $)) (-15 -3655 ((-560) $)) (-15 -2801 ((-842) $)))) -((-2601 (((-121) $ $) NIL)) (-1326 (((-1241) $ (-375)) 138) (((-1241) $ (-375) (-375) (-375)) 139)) (-2354 (((-1135) $ (-1135)) 146) (((-1135) $ (-1135) (-1135)) 144) (((-1135) $ (-1135) (-626 (-1135))) 143)) (-3126 (($) 49)) (-1923 (((-1241) $ (-375) (-375) (-375) (-375) (-375)) 114) (((-2 (|:| |theta| (-213)) (|:| |phi| (-213)) (|:| -1407 (-213)) (|:| |scaleX| (-213)) (|:| |scaleY| (-213)) (|:| |scaleZ| (-213)) (|:| |deltaX| (-213)) (|:| |deltaY| (-213))) $) 112) (((-1241) $ (-2 (|:| |theta| (-213)) (|:| |phi| (-213)) (|:| -1407 (-213)) (|:| |scaleX| (-213)) (|:| |scaleY| (-213)) (|:| |scaleZ| (-213)) (|:| |deltaX| (-213)) (|:| |deltaY| (-213)))) 113) (((-1241) $ (-560) (-560) (-375) (-375) (-375)) 115) (((-1241) $ (-375) (-375)) 116) (((-1241) $ (-375) (-375) (-375)) 123)) (-1357 (((-375)) 96) (((-375) (-375)) 97)) (-4402 (((-375)) 91) (((-375) (-375)) 93)) (-1832 (((-375)) 94) (((-375) (-375)) 95)) (-2560 (((-375)) 100) (((-375) (-375)) 101)) (-4355 (((-375)) 98) (((-375) (-375)) 99)) (-1742 (((-1241) $ (-375) (-375)) 140)) (-1777 (((-1241) $ (-1135)) 124)) (-4391 (((-1113 (-213)) $) 50) (($ $ (-1113 (-213))) 51)) (-3782 (((-1241) $ (-1135)) 152)) (-1547 (((-1241) $ (-1135)) 153)) (-2119 (((-1241) $ (-375) (-375)) 122) (((-1241) $ (-560) (-560)) 137)) (-3738 (((-1241) $ (-909) (-909)) 130)) (-2347 (((-1241) $) 110)) (-2659 (((-1241) $ (-1135)) 151)) (-1346 (((-1241) $ (-1135)) 107)) (-1300 (((-626 (-251)) $) 52) (($ $ (-626 (-251))) 53)) (-2836 (((-1241) $ (-755) (-755)) 129)) (-1545 (((-1241) $ (-755) (-936 (-213))) 158)) (-1932 (($ $) 56) (($ (-1113 (-213)) (-1135)) 57) (($ (-1113 (-213)) (-626 (-251))) 58)) (-3473 (((-1241) $ (-375) (-375) (-375)) 104)) (-1291 (((-1135) $) NIL)) (-3655 (((-560) $) 102)) (-2453 (((-1241) $ (-375)) 141)) (-2758 (((-1241) $ (-375)) 156)) (-4353 (((-1100) $) NIL)) (-2899 (((-1241) $ (-375)) 155)) (-2135 (((-1241) $ (-1135)) 109)) (-2250 (((-1241) $ (-755) (-755) (-909) (-909)) 128)) (-2959 (((-1241) $ (-1135)) 106)) (-3897 (((-1241) $ (-1135)) 108)) (-1506 (((-1241) $ (-156) (-156)) 127)) (-2801 (((-842) $) 135)) (-4071 (((-1241) $) 111)) (-2098 (((-1241) $ (-1135)) 154)) (-3594 (((-1241) $ (-1135)) 105)) (-1653 (((-121) $ $) NIL))) -(((-1238) (-13 (-1082) (-10 -8 (-15 -4402 ((-375))) (-15 -4402 ((-375) (-375))) (-15 -1832 ((-375))) (-15 -1832 ((-375) (-375))) (-15 -1357 ((-375))) (-15 -1357 ((-375) (-375))) (-15 -4355 ((-375))) (-15 -4355 ((-375) (-375))) (-15 -2560 ((-375))) (-15 -2560 ((-375) (-375))) (-15 -3126 ($)) (-15 -1932 ($ $)) (-15 -1932 ($ (-1113 (-213)) (-1135))) (-15 -1932 ($ (-1113 (-213)) (-626 (-251)))) (-15 -4391 ((-1113 (-213)) $)) (-15 -4391 ($ $ (-1113 (-213)))) (-15 -1545 ((-1241) $ (-755) (-936 (-213)))) (-15 -1300 ((-626 (-251)) $)) (-15 -1300 ($ $ (-626 (-251)))) (-15 -2836 ((-1241) $ (-755) (-755))) (-15 -3738 ((-1241) $ (-909) (-909))) (-15 -1777 ((-1241) $ (-1135))) (-15 -2250 ((-1241) $ (-755) (-755) (-909) (-909))) (-15 -1923 ((-1241) $ (-375) (-375) (-375) (-375) (-375))) (-15 -1923 ((-2 (|:| |theta| (-213)) (|:| |phi| (-213)) (|:| -1407 (-213)) (|:| |scaleX| (-213)) (|:| |scaleY| (-213)) (|:| |scaleZ| (-213)) (|:| |deltaX| (-213)) (|:| |deltaY| (-213))) $)) (-15 -1923 ((-1241) $ (-2 (|:| |theta| (-213)) (|:| |phi| (-213)) (|:| -1407 (-213)) (|:| |scaleX| (-213)) (|:| |scaleY| (-213)) (|:| |scaleZ| (-213)) (|:| |deltaX| (-213)) (|:| |deltaY| (-213))))) (-15 -1923 ((-1241) $ (-560) (-560) (-375) (-375) (-375))) (-15 -1923 ((-1241) $ (-375) (-375))) (-15 -1923 ((-1241) $ (-375) (-375) (-375))) (-15 -3897 ((-1241) $ (-1135))) (-15 -3594 ((-1241) $ (-1135))) (-15 -2959 ((-1241) $ (-1135))) (-15 -1346 ((-1241) $ (-1135))) (-15 -2135 ((-1241) $ (-1135))) (-15 -2119 ((-1241) $ (-375) (-375))) (-15 -2119 ((-1241) $ (-560) (-560))) (-15 -1326 ((-1241) $ (-375))) (-15 -1326 ((-1241) $ (-375) (-375) (-375))) (-15 -1742 ((-1241) $ (-375) (-375))) (-15 -2659 ((-1241) $ (-1135))) (-15 -2899 ((-1241) $ (-375))) (-15 -2758 ((-1241) $ (-375))) (-15 -3782 ((-1241) $ (-1135))) (-15 -1547 ((-1241) $ (-1135))) (-15 -2098 ((-1241) $ (-1135))) (-15 -3473 ((-1241) $ (-375) (-375) (-375))) (-15 -2453 ((-1241) $ (-375))) (-15 -2347 ((-1241) $)) (-15 -1506 ((-1241) $ (-156) (-156))) (-15 -2354 ((-1135) $ (-1135))) (-15 -2354 ((-1135) $ (-1135) (-1135))) (-15 -2354 ((-1135) $ (-1135) (-626 (-1135)))) (-15 -4071 ((-1241) $)) (-15 -3655 ((-560) $))))) (T -1238)) -((-4402 (*1 *2) (-12 (-5 *2 (-375)) (-5 *1 (-1238)))) (-4402 (*1 *2 *2) (-12 (-5 *2 (-375)) (-5 *1 (-1238)))) (-1832 (*1 *2) (-12 (-5 *2 (-375)) (-5 *1 (-1238)))) (-1832 (*1 *2 *2) (-12 (-5 *2 (-375)) (-5 *1 (-1238)))) (-1357 (*1 *2) (-12 (-5 *2 (-375)) (-5 *1 (-1238)))) (-1357 (*1 *2 *2) (-12 (-5 *2 (-375)) (-5 *1 (-1238)))) (-4355 (*1 *2) (-12 (-5 *2 (-375)) (-5 *1 (-1238)))) (-4355 (*1 *2 *2) (-12 (-5 *2 (-375)) (-5 *1 (-1238)))) (-2560 (*1 *2) (-12 (-5 *2 (-375)) (-5 *1 (-1238)))) (-2560 (*1 *2 *2) (-12 (-5 *2 (-375)) (-5 *1 (-1238)))) (-3126 (*1 *1) (-5 *1 (-1238))) (-1932 (*1 *1 *1) (-5 *1 (-1238))) (-1932 (*1 *1 *2 *3) (-12 (-5 *2 (-1113 (-213))) (-5 *3 (-1135)) (-5 *1 (-1238)))) (-1932 (*1 *1 *2 *3) (-12 (-5 *2 (-1113 (-213))) (-5 *3 (-626 (-251))) (-5 *1 (-1238)))) (-4391 (*1 *2 *1) (-12 (-5 *2 (-1113 (-213))) (-5 *1 (-1238)))) (-4391 (*1 *1 *1 *2) (-12 (-5 *2 (-1113 (-213))) (-5 *1 (-1238)))) (-1545 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-755)) (-5 *4 (-936 (-213))) (-5 *2 (-1241)) (-5 *1 (-1238)))) (-1300 (*1 *2 *1) (-12 (-5 *2 (-626 (-251))) (-5 *1 (-1238)))) (-1300 (*1 *1 *1 *2) (-12 (-5 *2 (-626 (-251))) (-5 *1 (-1238)))) (-2836 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-755)) (-5 *2 (-1241)) (-5 *1 (-1238)))) (-3738 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-909)) (-5 *2 (-1241)) (-5 *1 (-1238)))) (-1777 (*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1241)) (-5 *1 (-1238)))) (-2250 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-755)) (-5 *4 (-909)) (-5 *2 (-1241)) (-5 *1 (-1238)))) (-1923 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-375)) (-5 *2 (-1241)) (-5 *1 (-1238)))) (-1923 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-213)) (|:| |phi| (-213)) (|:| -1407 (-213)) (|:| |scaleX| (-213)) (|:| |scaleY| (-213)) (|:| |scaleZ| (-213)) (|:| |deltaX| (-213)) (|:| |deltaY| (-213)))) (-5 *1 (-1238)))) (-1923 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-213)) (|:| |phi| (-213)) (|:| -1407 (-213)) (|:| |scaleX| (-213)) (|:| |scaleY| (-213)) (|:| |scaleZ| (-213)) (|:| |deltaX| (-213)) (|:| |deltaY| (-213)))) (-5 *2 (-1241)) (-5 *1 (-1238)))) (-1923 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-560)) (-5 *4 (-375)) (-5 *2 (-1241)) (-5 *1 (-1238)))) (-1923 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-375)) (-5 *2 (-1241)) (-5 *1 (-1238)))) (-1923 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-375)) (-5 *2 (-1241)) (-5 *1 (-1238)))) (-3897 (*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1241)) (-5 *1 (-1238)))) (-3594 (*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1241)) (-5 *1 (-1238)))) (-2959 (*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1241)) (-5 *1 (-1238)))) (-1346 (*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1241)) (-5 *1 (-1238)))) (-2135 (*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1241)) (-5 *1 (-1238)))) (-2119 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-375)) (-5 *2 (-1241)) (-5 *1 (-1238)))) (-2119 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-560)) (-5 *2 (-1241)) (-5 *1 (-1238)))) (-1326 (*1 *2 *1 *3) (-12 (-5 *3 (-375)) (-5 *2 (-1241)) (-5 *1 (-1238)))) (-1326 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-375)) (-5 *2 (-1241)) (-5 *1 (-1238)))) (-1742 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-375)) (-5 *2 (-1241)) (-5 *1 (-1238)))) (-2659 (*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1241)) (-5 *1 (-1238)))) (-2899 (*1 *2 *1 *3) (-12 (-5 *3 (-375)) (-5 *2 (-1241)) (-5 *1 (-1238)))) (-2758 (*1 *2 *1 *3) (-12 (-5 *3 (-375)) (-5 *2 (-1241)) (-5 *1 (-1238)))) (-3782 (*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1241)) (-5 *1 (-1238)))) (-1547 (*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1241)) (-5 *1 (-1238)))) (-2098 (*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1241)) (-5 *1 (-1238)))) (-3473 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-375)) (-5 *2 (-1241)) (-5 *1 (-1238)))) (-2453 (*1 *2 *1 *3) (-12 (-5 *3 (-375)) (-5 *2 (-1241)) (-5 *1 (-1238)))) (-2347 (*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-1238)))) (-1506 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-156)) (-5 *2 (-1241)) (-5 *1 (-1238)))) (-2354 (*1 *2 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-1238)))) (-2354 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-1238)))) (-2354 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-626 (-1135))) (-5 *2 (-1135)) (-5 *1 (-1238)))) (-4071 (*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-1238)))) (-3655 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-1238))))) -(-13 (-1082) (-10 -8 (-15 -4402 ((-375))) (-15 -4402 ((-375) (-375))) (-15 -1832 ((-375))) (-15 -1832 ((-375) (-375))) (-15 -1357 ((-375))) (-15 -1357 ((-375) (-375))) (-15 -4355 ((-375))) (-15 -4355 ((-375) (-375))) (-15 -2560 ((-375))) (-15 -2560 ((-375) (-375))) (-15 -3126 ($)) (-15 -1932 ($ $)) (-15 -1932 ($ (-1113 (-213)) (-1135))) (-15 -1932 ($ (-1113 (-213)) (-626 (-251)))) (-15 -4391 ((-1113 (-213)) $)) (-15 -4391 ($ $ (-1113 (-213)))) (-15 -1545 ((-1241) $ (-755) (-936 (-213)))) (-15 -1300 ((-626 (-251)) $)) (-15 -1300 ($ $ (-626 (-251)))) (-15 -2836 ((-1241) $ (-755) (-755))) (-15 -3738 ((-1241) $ (-909) (-909))) (-15 -1777 ((-1241) $ (-1135))) (-15 -2250 ((-1241) $ (-755) (-755) (-909) (-909))) (-15 -1923 ((-1241) $ (-375) (-375) (-375) (-375) (-375))) (-15 -1923 ((-2 (|:| |theta| (-213)) (|:| |phi| (-213)) (|:| -1407 (-213)) (|:| |scaleX| (-213)) (|:| |scaleY| (-213)) (|:| |scaleZ| (-213)) (|:| |deltaX| (-213)) (|:| |deltaY| (-213))) $)) (-15 -1923 ((-1241) $ (-2 (|:| |theta| (-213)) (|:| |phi| (-213)) (|:| -1407 (-213)) (|:| |scaleX| (-213)) (|:| |scaleY| (-213)) (|:| |scaleZ| (-213)) (|:| |deltaX| (-213)) (|:| |deltaY| (-213))))) (-15 -1923 ((-1241) $ (-560) (-560) (-375) (-375) (-375))) (-15 -1923 ((-1241) $ (-375) (-375))) (-15 -1923 ((-1241) $ (-375) (-375) (-375))) (-15 -3897 ((-1241) $ (-1135))) (-15 -3594 ((-1241) $ (-1135))) (-15 -2959 ((-1241) $ (-1135))) (-15 -1346 ((-1241) $ (-1135))) (-15 -2135 ((-1241) $ (-1135))) (-15 -2119 ((-1241) $ (-375) (-375))) (-15 -2119 ((-1241) $ (-560) (-560))) (-15 -1326 ((-1241) $ (-375))) (-15 -1326 ((-1241) $ (-375) (-375) (-375))) (-15 -1742 ((-1241) $ (-375) (-375))) (-15 -2659 ((-1241) $ (-1135))) (-15 -2899 ((-1241) $ (-375))) (-15 -2758 ((-1241) $ (-375))) (-15 -3782 ((-1241) $ (-1135))) (-15 -1547 ((-1241) $ (-1135))) (-15 -2098 ((-1241) $ (-1135))) (-15 -3473 ((-1241) $ (-375) (-375) (-375))) (-15 -2453 ((-1241) $ (-375))) (-15 -2347 ((-1241) $)) (-15 -1506 ((-1241) $ (-156) (-156))) (-15 -2354 ((-1135) $ (-1135))) (-15 -2354 ((-1135) $ (-1135) (-1135))) (-15 -2354 ((-1135) $ (-1135) (-626 (-1135)))) (-15 -4071 ((-1241) $)) (-15 -3655 ((-560) $)))) -((-1280 (((-626 (-1135)) (-626 (-1135))) 94) (((-626 (-1135))) 89)) (-3371 (((-626 (-1135))) 87)) (-4017 (((-626 (-909)) (-626 (-909))) 62) (((-626 (-909))) 59)) (-4231 (((-626 (-755)) (-626 (-755))) 56) (((-626 (-755))) 52)) (-3563 (((-1241)) 64)) (-2715 (((-909) (-909)) 80) (((-909)) 79)) (-2192 (((-909) (-909)) 78) (((-909)) 77)) (-2925 (((-861) (-861)) 74) (((-861)) 73)) (-2748 (((-213)) 84) (((-213) (-375)) 86)) (-1921 (((-909)) 81) (((-909) (-909)) 82)) (-4042 (((-909) (-909)) 76) (((-909)) 75)) (-2108 (((-861) (-861)) 68) (((-861)) 66)) (-1847 (((-861) (-861)) 70) (((-861)) 69)) (-1466 (((-861) (-861)) 72) (((-861)) 71))) -(((-1239) (-10 -7 (-15 -2108 ((-861))) (-15 -2108 ((-861) (-861))) (-15 -1847 ((-861))) (-15 -1847 ((-861) (-861))) (-15 -1466 ((-861))) (-15 -1466 ((-861) (-861))) (-15 -2925 ((-861))) (-15 -2925 ((-861) (-861))) (-15 -4042 ((-909))) (-15 -4042 ((-909) (-909))) (-15 -4231 ((-626 (-755)))) (-15 -4231 ((-626 (-755)) (-626 (-755)))) (-15 -4017 ((-626 (-909)))) (-15 -4017 ((-626 (-909)) (-626 (-909)))) (-15 -3563 ((-1241))) (-15 -1280 ((-626 (-1135)))) (-15 -1280 ((-626 (-1135)) (-626 (-1135)))) (-15 -3371 ((-626 (-1135)))) (-15 -2192 ((-909))) (-15 -2715 ((-909))) (-15 -2192 ((-909) (-909))) (-15 -2715 ((-909) (-909))) (-15 -1921 ((-909) (-909))) (-15 -1921 ((-909))) (-15 -2748 ((-213) (-375))) (-15 -2748 ((-213))))) (T -1239)) -((-2748 (*1 *2) (-12 (-5 *2 (-213)) (-5 *1 (-1239)))) (-2748 (*1 *2 *3) (-12 (-5 *3 (-375)) (-5 *2 (-213)) (-5 *1 (-1239)))) (-1921 (*1 *2) (-12 (-5 *2 (-909)) (-5 *1 (-1239)))) (-1921 (*1 *2 *2) (-12 (-5 *2 (-909)) (-5 *1 (-1239)))) (-2715 (*1 *2 *2) (-12 (-5 *2 (-909)) (-5 *1 (-1239)))) (-2192 (*1 *2 *2) (-12 (-5 *2 (-909)) (-5 *1 (-1239)))) (-2715 (*1 *2) (-12 (-5 *2 (-909)) (-5 *1 (-1239)))) (-2192 (*1 *2) (-12 (-5 *2 (-909)) (-5 *1 (-1239)))) (-3371 (*1 *2) (-12 (-5 *2 (-626 (-1135))) (-5 *1 (-1239)))) (-1280 (*1 *2 *2) (-12 (-5 *2 (-626 (-1135))) (-5 *1 (-1239)))) (-1280 (*1 *2) (-12 (-5 *2 (-626 (-1135))) (-5 *1 (-1239)))) (-3563 (*1 *2) (-12 (-5 *2 (-1241)) (-5 *1 (-1239)))) (-4017 (*1 *2 *2) (-12 (-5 *2 (-626 (-909))) (-5 *1 (-1239)))) (-4017 (*1 *2) (-12 (-5 *2 (-626 (-909))) (-5 *1 (-1239)))) (-4231 (*1 *2 *2) (-12 (-5 *2 (-626 (-755))) (-5 *1 (-1239)))) (-4231 (*1 *2) (-12 (-5 *2 (-626 (-755))) (-5 *1 (-1239)))) (-4042 (*1 *2 *2) (-12 (-5 *2 (-909)) (-5 *1 (-1239)))) (-4042 (*1 *2) (-12 (-5 *2 (-909)) (-5 *1 (-1239)))) (-2925 (*1 *2 *2) (-12 (-5 *2 (-861)) (-5 *1 (-1239)))) (-2925 (*1 *2) (-12 (-5 *2 (-861)) (-5 *1 (-1239)))) (-1466 (*1 *2 *2) (-12 (-5 *2 (-861)) (-5 *1 (-1239)))) (-1466 (*1 *2) (-12 (-5 *2 (-861)) (-5 *1 (-1239)))) (-1847 (*1 *2 *2) (-12 (-5 *2 (-861)) (-5 *1 (-1239)))) (-1847 (*1 *2) (-12 (-5 *2 (-861)) (-5 *1 (-1239)))) (-2108 (*1 *2 *2) (-12 (-5 *2 (-861)) (-5 *1 (-1239)))) (-2108 (*1 *2) (-12 (-5 *2 (-861)) (-5 *1 (-1239))))) -(-10 -7 (-15 -2108 ((-861))) (-15 -2108 ((-861) (-861))) (-15 -1847 ((-861))) (-15 -1847 ((-861) (-861))) (-15 -1466 ((-861))) (-15 -1466 ((-861) (-861))) (-15 -2925 ((-861))) (-15 -2925 ((-861) (-861))) (-15 -4042 ((-909))) (-15 -4042 ((-909) (-909))) (-15 -4231 ((-626 (-755)))) (-15 -4231 ((-626 (-755)) (-626 (-755)))) (-15 -4017 ((-626 (-909)))) (-15 -4017 ((-626 (-909)) (-626 (-909)))) (-15 -3563 ((-1241))) (-15 -1280 ((-626 (-1135)))) (-15 -1280 ((-626 (-1135)) (-626 (-1135)))) (-15 -3371 ((-626 (-1135)))) (-15 -2192 ((-909))) (-15 -2715 ((-909))) (-15 -2192 ((-909) (-909))) (-15 -2715 ((-909) (-909))) (-15 -1921 ((-909) (-909))) (-15 -1921 ((-909))) (-15 -2748 ((-213) (-375))) (-15 -2748 ((-213)))) -((-3775 (((-466) (-626 (-626 (-936 (-213)))) (-626 (-251))) 17) (((-466) (-626 (-626 (-936 (-213))))) 16) (((-466) (-626 (-626 (-936 (-213)))) (-861) (-861) (-909) (-626 (-251))) 15)) (-3026 (((-1237) (-626 (-626 (-936 (-213)))) (-626 (-251))) 23) (((-1237) (-626 (-626 (-936 (-213)))) (-861) (-861) (-909) (-626 (-251))) 22)) (-2801 (((-1237) (-466)) 34))) -(((-1240) (-10 -7 (-15 -3775 ((-466) (-626 (-626 (-936 (-213)))) (-861) (-861) (-909) (-626 (-251)))) (-15 -3775 ((-466) (-626 (-626 (-936 (-213)))))) (-15 -3775 ((-466) (-626 (-626 (-936 (-213)))) (-626 (-251)))) (-15 -3026 ((-1237) (-626 (-626 (-936 (-213)))) (-861) (-861) (-909) (-626 (-251)))) (-15 -3026 ((-1237) (-626 (-626 (-936 (-213)))) (-626 (-251)))) (-15 -2801 ((-1237) (-466))))) (T -1240)) -((-2801 (*1 *2 *3) (-12 (-5 *3 (-466)) (-5 *2 (-1237)) (-5 *1 (-1240)))) (-3026 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-626 (-936 (-213))))) (-5 *4 (-626 (-251))) (-5 *2 (-1237)) (-5 *1 (-1240)))) (-3026 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-626 (-626 (-936 (-213))))) (-5 *4 (-861)) (-5 *5 (-909)) (-5 *6 (-626 (-251))) (-5 *2 (-1237)) (-5 *1 (-1240)))) (-3775 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-626 (-936 (-213))))) (-5 *4 (-626 (-251))) (-5 *2 (-466)) (-5 *1 (-1240)))) (-3775 (*1 *2 *3) (-12 (-5 *3 (-626 (-626 (-936 (-213))))) (-5 *2 (-466)) (-5 *1 (-1240)))) (-3775 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-626 (-626 (-936 (-213))))) (-5 *4 (-861)) (-5 *5 (-909)) (-5 *6 (-626 (-251))) (-5 *2 (-466)) (-5 *1 (-1240))))) -(-10 -7 (-15 -3775 ((-466) (-626 (-626 (-936 (-213)))) (-861) (-861) (-909) (-626 (-251)))) (-15 -3775 ((-466) (-626 (-626 (-936 (-213)))))) (-15 -3775 ((-466) (-626 (-626 (-936 (-213)))) (-626 (-251)))) (-15 -3026 ((-1237) (-626 (-626 (-936 (-213)))) (-861) (-861) (-909) (-626 (-251)))) (-15 -3026 ((-1237) (-626 (-626 (-936 (-213)))) (-626 (-251)))) (-15 -2801 ((-1237) (-466)))) -((-2303 (($) 7)) (-2801 (((-842) $) 10))) -(((-1241) (-10 -8 (-15 -2303 ($)) (-15 -2801 ((-842) $)))) (T -1241)) -((-2801 (*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-1241)))) (-2303 (*1 *1) (-5 *1 (-1241)))) -(-10 -8 (-15 -2303 ($)) (-15 -2801 ((-842) $))) -((-1733 (($ $ |#2|) 10))) -(((-1242 |#1| |#2|) (-10 -8 (-15 -1733 (|#1| |#1| |#2|))) (-1243 |#2|) (-359)) (T -1242)) -NIL -(-10 -8 (-15 -1733 (|#1| |#1| |#2|))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-2314 (((-3 $ "failed") $ $) 18)) (-4236 (($) 16 T CONST)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-4016 (((-139)) 25)) (-2801 (((-842) $) 11)) (-3304 (($) 17 T CONST)) (-1653 (((-121) $ $) 6)) (-1733 (($ $ |#1|) 26)) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ |#1| $) 22) (($ $ |#1|) 24))) -(((-1243 |#1|) (-1267) (-359)) (T -1243)) -((-1733 (*1 *1 *1 *2) (-12 (-4 *1 (-1243 *2)) (-4 *2 (-359)))) (-4016 (*1 *2) (-12 (-4 *1 (-1243 *3)) (-4 *3 (-359)) (-5 *2 (-139))))) -(-13 (-699 |t#1|) (-10 -8 (-15 -1733 ($ $ |t#1|)) (-15 -4016 ((-139))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-105) . T) ((-120 |#1| |#1|) . T) ((-137) . T) ((-600 (-842)) . T) ((-629 |#1|) . T) ((-699 |#1|) . T) ((-1045 |#1|) . T) ((-1082) . T)) -((-3924 (((-626 (-1182 |#1|)) (-1153) (-1182 |#1|)) 78)) (-3338 (((-1133 (-1133 (-945 |#1|))) (-1153) (-1133 (-945 |#1|))) 57)) (-2147 (((-1 (-1133 (-1182 |#1|)) (-1133 (-1182 |#1|))) (-755) (-1182 |#1|) (-1133 (-1182 |#1|))) 68)) (-3393 (((-1 (-1133 (-945 |#1|)) (-1133 (-945 |#1|))) (-755)) 59)) (-1791 (((-1 (-1149 (-945 |#1|)) (-945 |#1|)) (-1153)) 27)) (-1297 (((-1 (-1133 (-945 |#1|)) (-1133 (-945 |#1|))) (-755)) 58))) -(((-1244 |#1|) (-10 -7 (-15 -3393 ((-1 (-1133 (-945 |#1|)) (-1133 (-945 |#1|))) (-755))) (-15 -1297 ((-1 (-1133 (-945 |#1|)) (-1133 (-945 |#1|))) (-755))) (-15 -3338 ((-1133 (-1133 (-945 |#1|))) (-1153) (-1133 (-945 |#1|)))) (-15 -1791 ((-1 (-1149 (-945 |#1|)) (-945 |#1|)) (-1153))) (-15 -3924 ((-626 (-1182 |#1|)) (-1153) (-1182 |#1|))) (-15 -2147 ((-1 (-1133 (-1182 |#1|)) (-1133 (-1182 |#1|))) (-755) (-1182 |#1|) (-1133 (-1182 |#1|))))) (-359)) (T -1244)) -((-2147 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-755)) (-4 *6 (-359)) (-5 *4 (-1182 *6)) (-5 *2 (-1 (-1133 *4) (-1133 *4))) (-5 *1 (-1244 *6)) (-5 *5 (-1133 *4)))) (-3924 (*1 *2 *3 *4) (-12 (-5 *3 (-1153)) (-4 *5 (-359)) (-5 *2 (-626 (-1182 *5))) (-5 *1 (-1244 *5)) (-5 *4 (-1182 *5)))) (-1791 (*1 *2 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-1 (-1149 (-945 *4)) (-945 *4))) (-5 *1 (-1244 *4)) (-4 *4 (-359)))) (-3338 (*1 *2 *3 *4) (-12 (-5 *3 (-1153)) (-4 *5 (-359)) (-5 *2 (-1133 (-1133 (-945 *5)))) (-5 *1 (-1244 *5)) (-5 *4 (-1133 (-945 *5))))) (-1297 (*1 *2 *3) (-12 (-5 *3 (-755)) (-5 *2 (-1 (-1133 (-945 *4)) (-1133 (-945 *4)))) (-5 *1 (-1244 *4)) (-4 *4 (-359)))) (-3393 (*1 *2 *3) (-12 (-5 *3 (-755)) (-5 *2 (-1 (-1133 (-945 *4)) (-1133 (-945 *4)))) (-5 *1 (-1244 *4)) (-4 *4 (-359))))) -(-10 -7 (-15 -3393 ((-1 (-1133 (-945 |#1|)) (-1133 (-945 |#1|))) (-755))) (-15 -1297 ((-1 (-1133 (-945 |#1|)) (-1133 (-945 |#1|))) (-755))) (-15 -3338 ((-1133 (-1133 (-945 |#1|))) (-1153) (-1133 (-945 |#1|)))) (-15 -1791 ((-1 (-1149 (-945 |#1|)) (-945 |#1|)) (-1153))) (-15 -3924 ((-626 (-1182 |#1|)) (-1153) (-1182 |#1|))) (-15 -2147 ((-1 (-1133 (-1182 |#1|)) (-1133 (-1182 |#1|))) (-755) (-1182 |#1|) (-1133 (-1182 |#1|))))) -((-2434 (((-2 (|:| -4374 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|))) |#2|) 74)) (-1335 (((-2 (|:| -4374 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|)))) 73))) -(((-1245 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1335 ((-2 (|:| -4374 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|))))) (-15 -2434 ((-2 (|:| -4374 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|))) |#2|))) (-344) (-1211 |#1|) (-1211 |#2|) (-405 |#2| |#3|)) (T -1245)) -((-2434 (*1 *2 *3) (-12 (-4 *4 (-344)) (-4 *3 (-1211 *4)) (-4 *5 (-1211 *3)) (-5 *2 (-2 (|:| -4374 (-671 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-671 *3)))) (-5 *1 (-1245 *4 *3 *5 *6)) (-4 *6 (-405 *3 *5)))) (-1335 (*1 *2) (-12 (-4 *3 (-344)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 *4)) (-5 *2 (-2 (|:| -4374 (-671 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-671 *4)))) (-5 *1 (-1245 *3 *4 *5 *6)) (-4 *6 (-405 *4 *5))))) -(-10 -7 (-15 -1335 ((-2 (|:| -4374 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|))))) (-15 -2434 ((-2 (|:| -4374 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|))) |#2|))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) 41)) (-2314 (((-3 $ "failed") $ $) NIL)) (-4236 (($) NIL T CONST)) (-1823 (((-3 $ "failed") $) NIL)) (-2642 (((-121) $) NIL)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2801 (((-842) $) 62) (($ (-560)) NIL) ((|#4| $) 52) (($ |#4|) 47) (($ |#1|) NIL (|has| |#1| (-170)))) (-1751 (((-755)) NIL)) (-2542 (((-1241) (-755)) 16)) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (-3304 (($) 26 T CONST)) (-1459 (($) 65 T CONST)) (-1653 (((-121) $ $) 67)) (-1733 (((-3 $ "failed") $ $) NIL (|has| |#1| (-359)))) (-1725 (($ $) 69) (($ $ $) NIL)) (-1716 (($ $ $) 45)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) 71) (($ |#1| $) NIL (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170))))) -(((-1246 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1039) (-10 -8 (IF (|has| |#1| (-170)) (-6 (-43 |#1|)) |noBranch|) (-15 -2801 (|#4| $)) (IF (|has| |#1| (-359)) (-15 -1733 ((-3 $ "failed") $ $)) |noBranch|) (-15 -2801 ($ |#4|)) (-15 -2542 ((-1241) (-755))))) (-1039) (-834) (-780) (-942 |#1| |#3| |#2|) (-626 |#2|) (-626 (-755)) (-755)) (T -1246)) -((-2801 (*1 *2 *1) (-12 (-4 *2 (-942 *3 *5 *4)) (-5 *1 (-1246 *3 *4 *5 *2 *6 *7 *8)) (-4 *3 (-1039)) (-4 *4 (-834)) (-4 *5 (-780)) (-14 *6 (-626 *4)) (-14 *7 (-626 (-755))) (-14 *8 (-755)))) (-1733 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-359)) (-4 *2 (-1039)) (-4 *3 (-834)) (-4 *4 (-780)) (-14 *6 (-626 *3)) (-5 *1 (-1246 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-942 *2 *4 *3)) (-14 *7 (-626 (-755))) (-14 *8 (-755)))) (-2801 (*1 *1 *2) (-12 (-4 *3 (-1039)) (-4 *4 (-834)) (-4 *5 (-780)) (-14 *6 (-626 *4)) (-5 *1 (-1246 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-942 *3 *5 *4)) (-14 *7 (-626 (-755))) (-14 *8 (-755)))) (-2542 (*1 *2 *3) (-12 (-5 *3 (-755)) (-4 *4 (-1039)) (-4 *5 (-834)) (-4 *6 (-780)) (-14 *8 (-626 *5)) (-5 *2 (-1241)) (-5 *1 (-1246 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-942 *4 *6 *5)) (-14 *9 (-626 *3)) (-14 *10 *3)))) -(-13 (-1039) (-10 -8 (IF (|has| |#1| (-170)) (-6 (-43 |#1|)) |noBranch|) (-15 -2801 (|#4| $)) (IF (|has| |#1| (-359)) (-15 -1733 ((-3 $ "failed") $ $)) |noBranch|) (-15 -2801 ($ |#4|)) (-15 -2542 ((-1241) (-755))))) -((-2601 (((-121) $ $) NIL)) (-3975 (((-626 (-2 (|:| -4071 $) (|:| -3997 (-626 |#4|)))) (-626 |#4|)) NIL)) (-3332 (((-626 $) (-626 |#4|)) 87)) (-1654 (((-626 |#3|) $) NIL)) (-1385 (((-121) $) NIL)) (-3617 (((-121) $) NIL (|has| |#1| (-550)))) (-2898 (((-121) |#4| $) NIL) (((-121) $) NIL)) (-3177 ((|#4| |#4| $) NIL)) (-3743 (((-2 (|:| |under| $) (|:| -2150 $) (|:| |upper| $)) $ |#3|) NIL)) (-3909 (((-121) $ (-755)) NIL)) (-3802 (($ (-1 (-121) |#4|) $) NIL (|has| $ (-6 -4505))) (((-3 |#4| "failed") $ |#3|) NIL)) (-4236 (($) NIL T CONST)) (-2226 (((-121) $) NIL (|has| |#1| (-550)))) (-3225 (((-121) $ $) NIL (|has| |#1| (-550)))) (-4195 (((-121) $ $) NIL (|has| |#1| (-550)))) (-1501 (((-121) $) NIL (|has| |#1| (-550)))) (-4339 (((-626 |#4|) (-626 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-121) |#4| |#4|)) 27)) (-4318 (((-626 |#4|) (-626 |#4|) $) 24 (|has| |#1| (-550)))) (-3979 (((-626 |#4|) (-626 |#4|) $) NIL (|has| |#1| (-550)))) (-1473 (((-3 $ "failed") (-626 |#4|)) NIL)) (-3001 (($ (-626 |#4|)) NIL)) (-2877 (((-3 $ "failed") $) 69)) (-2134 ((|#4| |#4| $) 74)) (-2868 (($ $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#4| (-1082))))) (-4310 (($ |#4| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#4| (-1082)))) (($ (-1 (-121) |#4|) $) NIL (|has| $ (-6 -4505)))) (-4397 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-550)))) (-1590 (((-121) |#4| $ (-1 (-121) |#4| |#4|)) NIL)) (-4048 ((|#4| |#4| $) NIL)) (-2342 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4505)) (|has| |#4| (-1082)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4505))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4505))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-121) |#4| |#4|)) NIL)) (-3035 (((-2 (|:| -4071 (-626 |#4|)) (|:| -3997 (-626 |#4|))) $) NIL)) (-1981 (((-626 |#4|) $) NIL (|has| $ (-6 -4505)))) (-2864 (((-121) |#4| $) NIL) (((-121) $) NIL)) (-2819 ((|#3| $) 75)) (-2122 (((-121) $ (-755)) NIL)) (-2130 (((-626 |#4|) $) 28 (|has| $ (-6 -4505)))) (-2030 (((-121) |#4| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#4| (-1082))))) (-4382 (((-3 $ "failed") (-626 |#4|) (-1 (-121) |#4| |#4|) (-1 |#4| |#4| |#4|)) 31) (((-3 $ "failed") (-626 |#4|)) 34)) (-3778 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4506)))) (-2803 (($ (-1 |#4| |#4|) $) NIL)) (-4475 (((-626 |#3|) $) NIL)) (-1304 (((-121) |#3| $) NIL)) (-3441 (((-121) $ (-755)) NIL)) (-1291 (((-1135) $) NIL)) (-4139 (((-3 |#4| "failed") $) NIL)) (-3840 (((-626 |#4|) $) 49)) (-3098 (((-121) |#4| $) NIL) (((-121) $) NIL)) (-2054 ((|#4| |#4| $) 73)) (-3564 (((-121) $ $) 84)) (-1960 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-550)))) (-1584 (((-121) |#4| $) NIL) (((-121) $) NIL)) (-4047 ((|#4| |#4| $) NIL)) (-4353 (((-1100) $) NIL)) (-2824 (((-3 |#4| "failed") $) 68)) (-3786 (((-3 |#4| "failed") (-1 (-121) |#4|) $) NIL)) (-1368 (((-3 $ "failed") $ |#4|) NIL)) (-3292 (($ $ |#4|) NIL)) (-2865 (((-121) (-1 (-121) |#4|) $) NIL (|has| $ (-6 -4505)))) (-4450 (($ $ (-626 |#4|) (-626 |#4|)) NIL (-12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082)))) (($ $ (-283 |#4|)) NIL (-12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082)))) (($ $ (-626 (-283 |#4|))) NIL (-12 (|has| |#4| (-298 |#4|)) (|has| |#4| (-1082))))) (-2214 (((-121) $ $) NIL)) (-4191 (((-121) $) 66)) (-3260 (($) 41)) (-3662 (((-755) $) NIL)) (-4035 (((-755) |#4| $) NIL (-12 (|has| $ (-6 -4505)) (|has| |#4| (-1082)))) (((-755) (-1 (-121) |#4|) $) NIL (|has| $ (-6 -4505)))) (-2813 (($ $) NIL)) (-4255 (((-533) $) NIL (|has| |#4| (-601 (-533))))) (-4162 (($ (-626 |#4|)) NIL)) (-3369 (($ $ |#3|) NIL)) (-2673 (($ $ |#3|) NIL)) (-3746 (($ $) NIL)) (-3388 (($ $ |#3|) NIL)) (-2801 (((-842) $) NIL) (((-626 |#4|) $) 56)) (-4277 (((-755) $) NIL (|has| |#3| (-364)))) (-2377 (((-3 $ "failed") (-626 |#4|) (-1 (-121) |#4| |#4|) (-1 |#4| |#4| |#4|)) 39) (((-3 $ "failed") (-626 |#4|)) 40)) (-2051 (((-626 $) (-626 |#4|) (-1 (-121) |#4| |#4|) (-1 |#4| |#4| |#4|)) 64) (((-626 $) (-626 |#4|)) 65)) (-3133 (((-3 (-2 (|:| |bas| $) (|:| -4224 (-626 |#4|))) "failed") (-626 |#4|) (-1 (-121) |#4| |#4|)) 23) (((-3 (-2 (|:| |bas| $) (|:| -4224 (-626 |#4|))) "failed") (-626 |#4|) (-1 (-121) |#4|) (-1 (-121) |#4| |#4|)) NIL)) (-2967 (((-121) $ (-1 (-121) |#4| (-626 |#4|))) NIL)) (-3656 (((-121) (-1 (-121) |#4|) $) NIL (|has| $ (-6 -4505)))) (-3284 (((-626 |#3|) $) NIL)) (-1535 (((-121) |#3| $) NIL)) (-1653 (((-121) $ $) NIL)) (-2271 (((-755) $) NIL (|has| $ (-6 -4505))))) -(((-1247 |#1| |#2| |#3| |#4|) (-13 (-1181 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4382 ((-3 $ "failed") (-626 |#4|) (-1 (-121) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4382 ((-3 $ "failed") (-626 |#4|))) (-15 -2377 ((-3 $ "failed") (-626 |#4|) (-1 (-121) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2377 ((-3 $ "failed") (-626 |#4|))) (-15 -2051 ((-626 $) (-626 |#4|) (-1 (-121) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2051 ((-626 $) (-626 |#4|))))) (-550) (-780) (-834) (-1053 |#1| |#2| |#3|)) (T -1247)) -((-4382 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-626 *8)) (-5 *3 (-1 (-121) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-550)) (-4 *6 (-780)) (-4 *7 (-834)) (-5 *1 (-1247 *5 *6 *7 *8)))) (-4382 (*1 *1 *2) (|partial| -12 (-5 *2 (-626 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *1 (-1247 *3 *4 *5 *6)))) (-2377 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-626 *8)) (-5 *3 (-1 (-121) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-550)) (-4 *6 (-780)) (-4 *7 (-834)) (-5 *1 (-1247 *5 *6 *7 *8)))) (-2377 (*1 *1 *2) (|partial| -12 (-5 *2 (-626 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *1 (-1247 *3 *4 *5 *6)))) (-2051 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-626 *9)) (-5 *4 (-1 (-121) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1053 *6 *7 *8)) (-4 *6 (-550)) (-4 *7 (-780)) (-4 *8 (-834)) (-5 *2 (-626 (-1247 *6 *7 *8 *9))) (-5 *1 (-1247 *6 *7 *8 *9)))) (-2051 (*1 *2 *3) (-12 (-5 *3 (-626 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-550)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-626 (-1247 *4 *5 *6 *7))) (-5 *1 (-1247 *4 *5 *6 *7))))) -(-13 (-1181 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4382 ((-3 $ "failed") (-626 |#4|) (-1 (-121) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4382 ((-3 $ "failed") (-626 |#4|))) (-15 -2377 ((-3 $ "failed") (-626 |#4|) (-1 (-121) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2377 ((-3 $ "failed") (-626 |#4|))) (-15 -2051 ((-626 $) (-626 |#4|) (-1 (-121) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2051 ((-626 $) (-626 |#4|))))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-2314 (((-3 $ "failed") $ $) 18)) (-4236 (($) 16 T CONST)) (-1823 (((-3 $ "failed") $) 33)) (-2642 (((-121) $) 30)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-2801 (((-842) $) 11) (($ (-560)) 27) (($ |#1|) 37)) (-1751 (((-755)) 28)) (-2464 (($ $ (-909)) 25) (($ $ (-755)) 32)) (-3304 (($) 17 T CONST)) (-1459 (($) 29 T CONST)) (-1653 (((-121) $ $) 6)) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 24) (($ $ (-755)) 31)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 23) (($ $ |#1|) 39) (($ |#1| $) 38))) -(((-1248 |#1|) (-1267) (-1039)) (T -1248)) -((-2801 (*1 *1 *2) (-12 (-4 *1 (-1248 *2)) (-4 *2 (-1039))))) -(-13 (-1039) (-120 |t#1| |t#1|) (-10 -8 (-15 -2801 ($ |t#1|)) (IF (|has| |t#1| (-170)) (-6 (-43 |t#1|)) |noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-43 |#1|) |has| |#1| (-170)) ((-105) . T) ((-120 |#1| |#1|) . T) ((-137) . T) ((-600 (-842)) . T) ((-629 |#1|) . T) ((-629 $) . T) ((-699 |#1|) |has| |#1| (-170)) ((-708) . T) ((-1045 |#1|) . T) ((-1039) . T) ((-1046) . T) ((-1094) . T) ((-1082) . T)) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-1499 (((-626 |#1|) $) 45)) (-3239 (($ $ (-755)) 39)) (-2314 (((-3 $ "failed") $ $) NIL)) (-1756 (($ $ (-755)) 17 (|has| |#2| (-170))) (($ $ $) 18 (|has| |#2| (-170)))) (-4236 (($) NIL T CONST)) (-1927 (($ $ $) 61) (($ $ (-806 |#1|)) 48) (($ $ |#1|) 52)) (-1473 (((-3 (-806 |#1|) "failed") $) NIL)) (-3001 (((-806 |#1|) $) NIL)) (-1750 (($ $) 32)) (-1823 (((-3 $ "failed") $) NIL)) (-3378 (((-121) $) NIL)) (-3699 (($ $) NIL)) (-2642 (((-121) $) NIL)) (-3235 (((-755) $) NIL)) (-1854 (((-626 $) $) NIL)) (-1814 (((-121) $) NIL)) (-2175 (($ (-806 |#1|) |#2|) 31)) (-2994 (($ $) 33)) (-4066 (((-2 (|:| |k| (-806 |#1|)) (|:| |c| |#2|)) $) 11)) (-4008 (((-806 |#1|) $) NIL)) (-1562 (((-806 |#1|) $) 34)) (-2803 (($ (-1 |#2| |#2|) $) NIL)) (-4135 (($ $ $) 60) (($ $ (-806 |#1|)) 50) (($ $ |#1|) 54)) (-1387 (((-626 (-2 (|:| |k| (-806 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1669 (((-2 (|:| |k| (-806 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1726 (((-806 |#1|) $) 28)) (-1735 ((|#2| $) 30)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-3662 (((-755) $) 36)) (-2524 (((-121) $) 40)) (-3565 ((|#2| $) NIL)) (-2801 (((-842) $) NIL) (($ (-806 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-560)) NIL)) (-2423 (((-626 |#2|) $) NIL)) (-2636 ((|#2| $ (-806 |#1|)) NIL)) (-2169 ((|#2| $ $) 63) ((|#2| $ (-806 |#1|)) NIL)) (-1751 (((-755)) NIL)) (-2464 (($ $ (-755)) NIL) (($ $ (-909)) NIL)) (-3304 (($) 12 T CONST)) (-1459 (($) 14 T CONST)) (-1653 (((-121) $ $) 38)) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) 21)) (** (($ $ (-755)) NIL) (($ $ (-909)) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ |#2| $) 20) (($ $ |#2|) 59) (($ |#2| (-806 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL))) -(((-1249 |#1| |#2|) (-13 (-378 |#2| (-806 |#1|)) (-1255 |#1| |#2|)) (-834) (-1039)) (T -1249)) -NIL -(-13 (-378 |#2| (-806 |#1|)) (-1255 |#1| |#2|)) -((-4399 ((|#3| |#3| (-755)) 23)) (-2469 ((|#3| |#3| (-755)) 28)) (-2476 ((|#3| |#3| |#3| (-755)) 29))) -(((-1250 |#1| |#2| |#3|) (-10 -7 (-15 -2469 (|#3| |#3| (-755))) (-15 -4399 (|#3| |#3| (-755))) (-15 -2476 (|#3| |#3| |#3| (-755)))) (-13 (-1039) (-699 (-403 (-560)))) (-834) (-1255 |#2| |#1|)) (T -1250)) -((-2476 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-755)) (-4 *4 (-13 (-1039) (-699 (-403 (-560))))) (-4 *5 (-834)) (-5 *1 (-1250 *4 *5 *2)) (-4 *2 (-1255 *5 *4)))) (-4399 (*1 *2 *2 *3) (-12 (-5 *3 (-755)) (-4 *4 (-13 (-1039) (-699 (-403 (-560))))) (-4 *5 (-834)) (-5 *1 (-1250 *4 *5 *2)) (-4 *2 (-1255 *5 *4)))) (-2469 (*1 *2 *2 *3) (-12 (-5 *3 (-755)) (-4 *4 (-13 (-1039) (-699 (-403 (-560))))) (-4 *5 (-834)) (-5 *1 (-1250 *4 *5 *2)) (-4 *2 (-1255 *5 *4))))) -(-10 -7 (-15 -2469 (|#3| |#3| (-755))) (-15 -4399 (|#3| |#3| (-755))) (-15 -2476 (|#3| |#3| |#3| (-755)))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-1499 (((-626 |#1|) $) 39)) (-2314 (((-3 $ "failed") $ $) 18)) (-1756 (($ $ $) 42 (|has| |#2| (-170))) (($ $ (-755)) 41 (|has| |#2| (-170)))) (-4236 (($) 16 T CONST)) (-1927 (($ $ |#1|) 53) (($ $ (-806 |#1|)) 52) (($ $ $) 51)) (-1473 (((-3 (-806 |#1|) "failed") $) 63)) (-3001 (((-806 |#1|) $) 62)) (-1823 (((-3 $ "failed") $) 33)) (-3378 (((-121) $) 44)) (-3699 (($ $) 43)) (-2642 (((-121) $) 30)) (-1814 (((-121) $) 49)) (-2175 (($ (-806 |#1|) |#2|) 50)) (-2994 (($ $) 48)) (-4066 (((-2 (|:| |k| (-806 |#1|)) (|:| |c| |#2|)) $) 59)) (-4008 (((-806 |#1|) $) 60)) (-2803 (($ (-1 |#2| |#2|) $) 40)) (-4135 (($ $ |#1|) 56) (($ $ (-806 |#1|)) 55) (($ $ $) 54)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-2524 (((-121) $) 46)) (-3565 ((|#2| $) 45)) (-2801 (((-842) $) 11) (($ (-560)) 27) (($ |#2|) 67) (($ (-806 |#1|)) 64) (($ |#1|) 47)) (-2169 ((|#2| $ (-806 |#1|)) 58) ((|#2| $ $) 57)) (-1751 (((-755)) 28)) (-2464 (($ $ (-909)) 25) (($ $ (-755)) 32)) (-3304 (($) 17 T CONST)) (-1459 (($) 29 T CONST)) (-1653 (((-121) $ $) 6)) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 24) (($ $ (-755)) 31)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 23) (($ |#2| $) 66) (($ $ |#2|) 65) (($ |#1| $) 61))) -(((-1251 |#1| |#2|) (-1267) (-834) (-1039)) (T -1251)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-834)) (-4 *2 (-1039)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1251 *2 *3)) (-4 *2 (-834)) (-4 *3 (-1039)))) (-4008 (*1 *2 *1) (-12 (-4 *1 (-1251 *3 *4)) (-4 *3 (-834)) (-4 *4 (-1039)) (-5 *2 (-806 *3)))) (-4066 (*1 *2 *1) (-12 (-4 *1 (-1251 *3 *4)) (-4 *3 (-834)) (-4 *4 (-1039)) (-5 *2 (-2 (|:| |k| (-806 *3)) (|:| |c| *4))))) (-2169 (*1 *2 *1 *3) (-12 (-5 *3 (-806 *4)) (-4 *1 (-1251 *4 *2)) (-4 *4 (-834)) (-4 *2 (-1039)))) (-2169 (*1 *2 *1 *1) (-12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-834)) (-4 *2 (-1039)))) (-4135 (*1 *1 *1 *2) (-12 (-4 *1 (-1251 *2 *3)) (-4 *2 (-834)) (-4 *3 (-1039)))) (-4135 (*1 *1 *1 *2) (-12 (-5 *2 (-806 *3)) (-4 *1 (-1251 *3 *4)) (-4 *3 (-834)) (-4 *4 (-1039)))) (-4135 (*1 *1 *1 *1) (-12 (-4 *1 (-1251 *2 *3)) (-4 *2 (-834)) (-4 *3 (-1039)))) (-1927 (*1 *1 *1 *2) (-12 (-4 *1 (-1251 *2 *3)) (-4 *2 (-834)) (-4 *3 (-1039)))) (-1927 (*1 *1 *1 *2) (-12 (-5 *2 (-806 *3)) (-4 *1 (-1251 *3 *4)) (-4 *3 (-834)) (-4 *4 (-1039)))) (-1927 (*1 *1 *1 *1) (-12 (-4 *1 (-1251 *2 *3)) (-4 *2 (-834)) (-4 *3 (-1039)))) (-2175 (*1 *1 *2 *3) (-12 (-5 *2 (-806 *4)) (-4 *4 (-834)) (-4 *1 (-1251 *4 *3)) (-4 *3 (-1039)))) (-1814 (*1 *2 *1) (-12 (-4 *1 (-1251 *3 *4)) (-4 *3 (-834)) (-4 *4 (-1039)) (-5 *2 (-121)))) (-2994 (*1 *1 *1) (-12 (-4 *1 (-1251 *2 *3)) (-4 *2 (-834)) (-4 *3 (-1039)))) (-2801 (*1 *1 *2) (-12 (-4 *1 (-1251 *2 *3)) (-4 *2 (-834)) (-4 *3 (-1039)))) (-2524 (*1 *2 *1) (-12 (-4 *1 (-1251 *3 *4)) (-4 *3 (-834)) (-4 *4 (-1039)) (-5 *2 (-121)))) (-3565 (*1 *2 *1) (-12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-834)) (-4 *2 (-1039)))) (-3378 (*1 *2 *1) (-12 (-4 *1 (-1251 *3 *4)) (-4 *3 (-834)) (-4 *4 (-1039)) (-5 *2 (-121)))) (-3699 (*1 *1 *1) (-12 (-4 *1 (-1251 *2 *3)) (-4 *2 (-834)) (-4 *3 (-1039)))) (-1756 (*1 *1 *1 *1) (-12 (-4 *1 (-1251 *2 *3)) (-4 *2 (-834)) (-4 *3 (-1039)) (-4 *3 (-170)))) (-1756 (*1 *1 *1 *2) (-12 (-5 *2 (-755)) (-4 *1 (-1251 *3 *4)) (-4 *3 (-834)) (-4 *4 (-1039)) (-4 *4 (-170)))) (-2803 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1251 *3 *4)) (-4 *3 (-834)) (-4 *4 (-1039)))) (-1499 (*1 *2 *1) (-12 (-4 *1 (-1251 *3 *4)) (-4 *3 (-834)) (-4 *4 (-1039)) (-5 *2 (-626 *3))))) -(-13 (-1039) (-1248 |t#2|) (-1029 (-806 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -4008 ((-806 |t#1|) $)) (-15 -4066 ((-2 (|:| |k| (-806 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -2169 (|t#2| $ (-806 |t#1|))) (-15 -2169 (|t#2| $ $)) (-15 -4135 ($ $ |t#1|)) (-15 -4135 ($ $ (-806 |t#1|))) (-15 -4135 ($ $ $)) (-15 -1927 ($ $ |t#1|)) (-15 -1927 ($ $ (-806 |t#1|))) (-15 -1927 ($ $ $)) (-15 -2175 ($ (-806 |t#1|) |t#2|)) (-15 -1814 ((-121) $)) (-15 -2994 ($ $)) (-15 -2801 ($ |t#1|)) (-15 -2524 ((-121) $)) (-15 -3565 (|t#2| $)) (-15 -3378 ((-121) $)) (-15 -3699 ($ $)) (IF (|has| |t#2| (-170)) (PROGN (-15 -1756 ($ $ $)) (-15 -1756 ($ $ (-755)))) |noBranch|) (-15 -2803 ($ (-1 |t#2| |t#2|) $)) (-15 -1499 ((-626 |t#1|) $)) (IF (|has| |t#2| (-6 -4498)) (-6 -4498) |noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-43 |#2|) |has| |#2| (-170)) ((-105) . T) ((-120 |#2| |#2|) . T) ((-137) . T) ((-600 (-842)) . T) ((-629 |#2|) . T) ((-629 $) . T) ((-699 |#2|) |has| |#2| (-170)) ((-708) . T) ((-1029 (-806 |#1|)) . T) ((-1045 |#2|) . T) ((-1039) . T) ((-1046) . T) ((-1094) . T) ((-1082) . T) ((-1248 |#2|) . T)) -((-3913 (((-121) $) 13)) (-1535 (((-121) $) 12)) (-2353 (($ $) 17) (($ $ (-755)) 18))) -(((-1252 |#1| |#2|) (-10 -8 (-15 -2353 (|#1| |#1| (-755))) (-15 -2353 (|#1| |#1|)) (-15 -3913 ((-121) |#1|)) (-15 -1535 ((-121) |#1|))) (-1253 |#2|) (-359)) (T -1252)) -NIL -(-10 -8 (-15 -2353 (|#1| |#1| (-755))) (-15 -2353 (|#1| |#1|)) (-15 -3913 ((-121) |#1|)) (-15 -1535 ((-121) |#1|))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-2744 (((-2 (|:| -1917 $) (|:| -4492 $) (|:| |associate| $)) $) 40)) (-1350 (($ $) 39)) (-3376 (((-121) $) 37)) (-3913 (((-121) $) 90)) (-1881 (((-755)) 86)) (-2314 (((-3 $ "failed") $ $) 18)) (-3065 (($ $) 71)) (-2953 (((-414 $) $) 70)) (-4179 (((-121) $ $) 57)) (-4236 (($) 16 T CONST)) (-1473 (((-3 |#1| "failed") $) 97)) (-3001 ((|#1| $) 96)) (-2563 (($ $ $) 53)) (-1823 (((-3 $ "failed") $) 33)) (-2572 (($ $ $) 54)) (-3354 (((-2 (|:| -2169 (-626 $)) (|:| -4250 $)) (-626 $)) 49)) (-2937 (($ $ (-755)) 83 (-2318 (|has| |#1| (-146)) (|has| |#1| (-364)))) (($ $) 82 (-2318 (|has| |#1| (-146)) (|has| |#1| (-364))))) (-3319 (((-121) $) 69)) (-3504 (((-820 (-909)) $) 80 (-2318 (|has| |#1| (-146)) (|has| |#1| (-364))))) (-2642 (((-121) $) 30)) (-3856 (((-3 (-626 $) "failed") (-626 $) $) 50)) (-2582 (($ $ $) 45) (($ (-626 $)) 44)) (-1291 (((-1135) $) 9)) (-1701 (($ $) 68)) (-3557 (((-121) $) 89)) (-4353 (((-1100) $) 10)) (-4311 (((-1149 $) (-1149 $) (-1149 $)) 43)) (-4440 (($ $ $) 47) (($ (-626 $)) 46)) (-1601 (((-414 $) $) 72)) (-1472 (((-820 (-909))) 87)) (-3505 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4250 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2336 (((-3 $ "failed") $ $) 41)) (-3456 (((-3 (-626 $) "failed") (-626 $) $) 48)) (-4445 (((-755) $) 56)) (-2215 (((-2 (|:| -2583 $) (|:| -4397 $)) $ $) 55)) (-2935 (((-3 (-755) "failed") $ $) 81 (-2318 (|has| |#1| (-146)) (|has| |#1| (-364))))) (-4016 (((-139)) 95)) (-3662 (((-820 (-909)) $) 88)) (-2801 (((-842) $) 11) (($ (-560)) 27) (($ $) 42) (($ (-403 (-560))) 63) (($ |#1|) 98)) (-2272 (((-3 $ "failed") $) 79 (-2318 (|has| |#1| (-146)) (|has| |#1| (-364))))) (-1751 (((-755)) 28)) (-2328 (((-121) $ $) 38)) (-1535 (((-121) $) 91)) (-2464 (($ $ (-909)) 25) (($ $ (-755)) 32) (($ $ (-560)) 67)) (-3304 (($) 17 T CONST)) (-1459 (($) 29 T CONST)) (-2353 (($ $) 85 (|has| |#1| (-364))) (($ $ (-755)) 84 (|has| |#1| (-364)))) (-1653 (((-121) $ $) 6)) (-1733 (($ $ $) 62) (($ $ |#1|) 94)) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 24) (($ $ (-755)) 31) (($ $ (-560)) 66)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 23) (($ $ (-403 (-560))) 65) (($ (-403 (-560)) $) 64) (($ $ |#1|) 93) (($ |#1| $) 92))) -(((-1253 |#1|) (-1267) (-359)) (T -1253)) -((-1535 (*1 *2 *1) (-12 (-4 *1 (-1253 *3)) (-4 *3 (-359)) (-5 *2 (-121)))) (-3913 (*1 *2 *1) (-12 (-4 *1 (-1253 *3)) (-4 *3 (-359)) (-5 *2 (-121)))) (-3557 (*1 *2 *1) (-12 (-4 *1 (-1253 *3)) (-4 *3 (-359)) (-5 *2 (-121)))) (-3662 (*1 *2 *1) (-12 (-4 *1 (-1253 *3)) (-4 *3 (-359)) (-5 *2 (-820 (-909))))) (-1472 (*1 *2) (-12 (-4 *1 (-1253 *3)) (-4 *3 (-359)) (-5 *2 (-820 (-909))))) (-1881 (*1 *2) (-12 (-4 *1 (-1253 *3)) (-4 *3 (-359)) (-5 *2 (-755)))) (-2353 (*1 *1 *1) (-12 (-4 *1 (-1253 *2)) (-4 *2 (-359)) (-4 *2 (-364)))) (-2353 (*1 *1 *1 *2) (-12 (-5 *2 (-755)) (-4 *1 (-1253 *3)) (-4 *3 (-359)) (-4 *3 (-364))))) -(-13 (-359) (-1029 |t#1|) (-1243 |t#1|) (-10 -8 (IF (|has| |t#1| (-148)) (-6 (-148)) |noBranch|) (IF (|has| |t#1| (-146)) (-6 (-398)) |noBranch|) (-15 -1535 ((-121) $)) (-15 -3913 ((-121) $)) (-15 -3557 ((-121) $)) (-15 -3662 ((-820 (-909)) $)) (-15 -1472 ((-820 (-909)))) (-15 -1881 ((-755))) (IF (|has| |t#1| (-364)) (PROGN (-6 (-398)) (-15 -2353 ($ $)) (-15 -2353 ($ $ (-755)))) |noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-43 (-403 (-560))) . T) ((-43 $) . T) ((-105) . T) ((-120 (-403 (-560)) (-403 (-560))) . T) ((-120 |#1| |#1|) . T) ((-120 $ $) . T) ((-137) . T) ((-146) -2318 (|has| |#1| (-364)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-600 (-842)) . T) ((-170) . T) ((-233) . T) ((-280) . T) ((-296) . T) ((-359) . T) ((-398) -2318 (|has| |#1| (-364)) (|has| |#1| (-146))) ((-447) . T) ((-550) . T) ((-629 (-403 (-560))) . T) ((-629 |#1|) . T) ((-629 $) . T) ((-699 (-403 (-560))) . T) ((-699 |#1|) . T) ((-699 $) . T) ((-708) . T) ((-908) . T) ((-1029 |#1|) . T) ((-1045 (-403 (-560))) . T) ((-1045 |#1|) . T) ((-1045 $) . T) ((-1039) . T) ((-1046) . T) ((-1094) . T) ((-1082) . T) ((-1191) . T) ((-1243 |#1|) . T)) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-1499 (((-626 |#1|) $) 84)) (-3239 (($ $ (-755)) 87)) (-2314 (((-3 $ "failed") $ $) NIL)) (-1756 (($ $ $) NIL (|has| |#2| (-170))) (($ $ (-755)) NIL (|has| |#2| (-170)))) (-4236 (($) NIL T CONST)) (-1927 (($ $ |#1|) NIL) (($ $ (-806 |#1|)) NIL) (($ $ $) NIL)) (-1473 (((-3 (-806 |#1|) "failed") $) NIL) (((-3 (-880 |#1|) "failed") $) NIL)) (-3001 (((-806 |#1|) $) NIL) (((-880 |#1|) $) NIL)) (-1750 (($ $) 86)) (-1823 (((-3 $ "failed") $) NIL)) (-3378 (((-121) $) 75)) (-3699 (($ $) 79)) (-2035 (($ $ $ (-755)) 88)) (-2642 (((-121) $) NIL)) (-3235 (((-755) $) NIL)) (-1854 (((-626 $) $) NIL)) (-1814 (((-121) $) NIL)) (-2175 (($ (-806 |#1|) |#2|) NIL) (($ (-880 |#1|) |#2|) 25)) (-2994 (($ $) 101)) (-4066 (((-2 (|:| |k| (-806 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4008 (((-806 |#1|) $) NIL)) (-1562 (((-806 |#1|) $) NIL)) (-2803 (($ (-1 |#2| |#2|) $) NIL)) (-4135 (($ $ |#1|) NIL) (($ $ (-806 |#1|)) NIL) (($ $ $) NIL)) (-4399 (($ $ (-755)) 95 (|has| |#2| (-699 (-403 (-560)))))) (-1387 (((-626 (-2 (|:| |k| (-880 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1669 (((-2 (|:| |k| (-880 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1726 (((-880 |#1|) $) 69)) (-1735 ((|#2| $) NIL)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2469 (($ $ (-755)) 92 (|has| |#2| (-699 (-403 (-560)))))) (-3662 (((-755) $) 85)) (-2524 (((-121) $) 70)) (-3565 ((|#2| $) 74)) (-2801 (((-842) $) 56) (($ (-560)) NIL) (($ |#2|) 50) (($ (-806 |#1|)) NIL) (($ |#1|) 58) (($ (-880 |#1|)) NIL) (($ (-648 |#1| |#2|)) 42) (((-1249 |#1| |#2|) $) 63) (((-1258 |#1| |#2|) $) 68)) (-2423 (((-626 |#2|) $) NIL)) (-2636 ((|#2| $ (-880 |#1|)) NIL)) (-2169 ((|#2| $ (-806 |#1|)) NIL) ((|#2| $ $) NIL)) (-1751 (((-755)) NIL)) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (-3304 (($) 21 T CONST)) (-1459 (($) 24 T CONST)) (-4315 (((-3 (-648 |#1| |#2|) "failed") $) 100)) (-1653 (((-121) $ $) 64)) (-1725 (($ $) 94) (($ $ $) 93)) (-1716 (($ $ $) 20)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) 43) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-880 |#1|)) NIL))) -(((-1254 |#1| |#2|) (-13 (-1255 |#1| |#2|) (-378 |#2| (-880 |#1|)) (-10 -8 (-15 -2801 ($ (-648 |#1| |#2|))) (-15 -2801 ((-1249 |#1| |#2|) $)) (-15 -2801 ((-1258 |#1| |#2|) $)) (-15 -4315 ((-3 (-648 |#1| |#2|) "failed") $)) (-15 -2035 ($ $ $ (-755))) (IF (|has| |#2| (-699 (-403 (-560)))) (PROGN (-15 -2469 ($ $ (-755))) (-15 -4399 ($ $ (-755)))) |noBranch|))) (-834) (-170)) (T -1254)) -((-2801 (*1 *1 *2) (-12 (-5 *2 (-648 *3 *4)) (-4 *3 (-834)) (-4 *4 (-170)) (-5 *1 (-1254 *3 *4)))) (-2801 (*1 *2 *1) (-12 (-5 *2 (-1249 *3 *4)) (-5 *1 (-1254 *3 *4)) (-4 *3 (-834)) (-4 *4 (-170)))) (-2801 (*1 *2 *1) (-12 (-5 *2 (-1258 *3 *4)) (-5 *1 (-1254 *3 *4)) (-4 *3 (-834)) (-4 *4 (-170)))) (-4315 (*1 *2 *1) (|partial| -12 (-5 *2 (-648 *3 *4)) (-5 *1 (-1254 *3 *4)) (-4 *3 (-834)) (-4 *4 (-170)))) (-2035 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-755)) (-5 *1 (-1254 *3 *4)) (-4 *3 (-834)) (-4 *4 (-170)))) (-2469 (*1 *1 *1 *2) (-12 (-5 *2 (-755)) (-5 *1 (-1254 *3 *4)) (-4 *4 (-699 (-403 (-560)))) (-4 *3 (-834)) (-4 *4 (-170)))) (-4399 (*1 *1 *1 *2) (-12 (-5 *2 (-755)) (-5 *1 (-1254 *3 *4)) (-4 *4 (-699 (-403 (-560)))) (-4 *3 (-834)) (-4 *4 (-170))))) -(-13 (-1255 |#1| |#2|) (-378 |#2| (-880 |#1|)) (-10 -8 (-15 -2801 ($ (-648 |#1| |#2|))) (-15 -2801 ((-1249 |#1| |#2|) $)) (-15 -2801 ((-1258 |#1| |#2|) $)) (-15 -4315 ((-3 (-648 |#1| |#2|) "failed") $)) (-15 -2035 ($ $ $ (-755))) (IF (|has| |#2| (-699 (-403 (-560)))) (PROGN (-15 -2469 ($ $ (-755))) (-15 -4399 ($ $ (-755)))) |noBranch|))) -((-2601 (((-121) $ $) 7)) (-2832 (((-121) $) 15)) (-1499 (((-626 |#1|) $) 39)) (-3239 (($ $ (-755)) 68)) (-2314 (((-3 $ "failed") $ $) 18)) (-1756 (($ $ $) 42 (|has| |#2| (-170))) (($ $ (-755)) 41 (|has| |#2| (-170)))) (-4236 (($) 16 T CONST)) (-1927 (($ $ |#1|) 53) (($ $ (-806 |#1|)) 52) (($ $ $) 51)) (-1473 (((-3 (-806 |#1|) "failed") $) 63)) (-3001 (((-806 |#1|) $) 62)) (-1823 (((-3 $ "failed") $) 33)) (-3378 (((-121) $) 44)) (-3699 (($ $) 43)) (-2642 (((-121) $) 30)) (-1814 (((-121) $) 49)) (-2175 (($ (-806 |#1|) |#2|) 50)) (-2994 (($ $) 48)) (-4066 (((-2 (|:| |k| (-806 |#1|)) (|:| |c| |#2|)) $) 59)) (-4008 (((-806 |#1|) $) 60)) (-1562 (((-806 |#1|) $) 70)) (-2803 (($ (-1 |#2| |#2|) $) 40)) (-4135 (($ $ |#1|) 56) (($ $ (-806 |#1|)) 55) (($ $ $) 54)) (-1291 (((-1135) $) 9)) (-4353 (((-1100) $) 10)) (-3662 (((-755) $) 69)) (-2524 (((-121) $) 46)) (-3565 ((|#2| $) 45)) (-2801 (((-842) $) 11) (($ (-560)) 27) (($ |#2|) 67) (($ (-806 |#1|)) 64) (($ |#1|) 47)) (-2169 ((|#2| $ (-806 |#1|)) 58) ((|#2| $ $) 57)) (-1751 (((-755)) 28)) (-2464 (($ $ (-909)) 25) (($ $ (-755)) 32)) (-3304 (($) 17 T CONST)) (-1459 (($) 29 T CONST)) (-1653 (((-121) $ $) 6)) (-1725 (($ $) 21) (($ $ $) 20)) (-1716 (($ $ $) 13)) (** (($ $ (-909)) 24) (($ $ (-755)) 31)) (* (($ (-909) $) 12) (($ (-755) $) 14) (($ (-560) $) 19) (($ $ $) 23) (($ |#2| $) 66) (($ $ |#2|) 65) (($ |#1| $) 61))) -(((-1255 |#1| |#2|) (-1267) (-834) (-1039)) (T -1255)) -((-1562 (*1 *2 *1) (-12 (-4 *1 (-1255 *3 *4)) (-4 *3 (-834)) (-4 *4 (-1039)) (-5 *2 (-806 *3)))) (-3662 (*1 *2 *1) (-12 (-4 *1 (-1255 *3 *4)) (-4 *3 (-834)) (-4 *4 (-1039)) (-5 *2 (-755)))) (-3239 (*1 *1 *1 *2) (-12 (-5 *2 (-755)) (-4 *1 (-1255 *3 *4)) (-4 *3 (-834)) (-4 *4 (-1039))))) -(-13 (-1251 |t#1| |t#2|) (-10 -8 (-15 -1562 ((-806 |t#1|) $)) (-15 -3662 ((-755) $)) (-15 -3239 ($ $ (-755))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-43 |#2|) |has| |#2| (-170)) ((-105) . T) ((-120 |#2| |#2|) . T) ((-137) . T) ((-600 (-842)) . T) ((-629 |#2|) . T) ((-629 $) . T) ((-699 |#2|) |has| |#2| (-170)) ((-708) . T) ((-1029 (-806 |#1|)) . T) ((-1045 |#2|) . T) ((-1039) . T) ((-1046) . T) ((-1094) . T) ((-1082) . T) ((-1248 |#2|) . T) ((-1251 |#1| |#2|) . T)) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-1499 (((-626 (-1153)) $) NIL)) (-2842 (($ (-1249 (-1153) |#1|)) NIL)) (-3239 (($ $ (-755)) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-1756 (($ $ $) NIL (|has| |#1| (-170))) (($ $ (-755)) NIL (|has| |#1| (-170)))) (-4236 (($) NIL T CONST)) (-1927 (($ $ (-1153)) NIL) (($ $ (-806 (-1153))) NIL) (($ $ $) NIL)) (-1473 (((-3 (-806 (-1153)) "failed") $) NIL)) (-3001 (((-806 (-1153)) $) NIL)) (-1823 (((-3 $ "failed") $) NIL)) (-3378 (((-121) $) NIL)) (-3699 (($ $) NIL)) (-2642 (((-121) $) NIL)) (-1814 (((-121) $) NIL)) (-2175 (($ (-806 (-1153)) |#1|) NIL)) (-2994 (($ $) NIL)) (-4066 (((-2 (|:| |k| (-806 (-1153))) (|:| |c| |#1|)) $) NIL)) (-4008 (((-806 (-1153)) $) NIL)) (-1562 (((-806 (-1153)) $) NIL)) (-2803 (($ (-1 |#1| |#1|) $) NIL)) (-4135 (($ $ (-1153)) NIL) (($ $ (-806 (-1153))) NIL) (($ $ $) NIL)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-3780 (((-1249 (-1153) |#1|) $) NIL)) (-3662 (((-755) $) NIL)) (-2524 (((-121) $) NIL)) (-3565 ((|#1| $) NIL)) (-2801 (((-842) $) NIL) (($ (-560)) NIL) (($ |#1|) NIL) (($ (-806 (-1153))) NIL) (($ (-1153)) NIL)) (-2169 ((|#1| $ (-806 (-1153))) NIL) ((|#1| $ $) NIL)) (-1751 (((-755)) NIL)) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (-3304 (($) NIL T CONST)) (-1503 (((-626 (-2 (|:| |k| (-1153)) (|:| |c| $))) $) NIL)) (-1459 (($) NIL T CONST)) (-1653 (((-121) $ $) NIL)) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) NIL)) (** (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1153) $) NIL))) -(((-1256 |#1|) (-13 (-1255 (-1153) |#1|) (-10 -8 (-15 -3780 ((-1249 (-1153) |#1|) $)) (-15 -2842 ($ (-1249 (-1153) |#1|))) (-15 -1503 ((-626 (-2 (|:| |k| (-1153)) (|:| |c| $))) $)))) (-1039)) (T -1256)) -((-3780 (*1 *2 *1) (-12 (-5 *2 (-1249 (-1153) *3)) (-5 *1 (-1256 *3)) (-4 *3 (-1039)))) (-2842 (*1 *1 *2) (-12 (-5 *2 (-1249 (-1153) *3)) (-4 *3 (-1039)) (-5 *1 (-1256 *3)))) (-1503 (*1 *2 *1) (-12 (-5 *2 (-626 (-2 (|:| |k| (-1153)) (|:| |c| (-1256 *3))))) (-5 *1 (-1256 *3)) (-4 *3 (-1039))))) -(-13 (-1255 (-1153) |#1|) (-10 -8 (-15 -3780 ((-1249 (-1153) |#1|) $)) (-15 -2842 ($ (-1249 (-1153) |#1|))) (-15 -1503 ((-626 (-2 (|:| |k| (-1153)) (|:| |c| $))) $)))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-2314 (((-3 $ "failed") $ $) NIL)) (-4236 (($) NIL T CONST)) (-1473 (((-3 |#2| "failed") $) NIL)) (-3001 ((|#2| $) NIL)) (-1750 (($ $) NIL)) (-1823 (((-3 $ "failed") $) 34)) (-3378 (((-121) $) 29)) (-3699 (($ $) 30)) (-2642 (((-121) $) NIL)) (-3235 (((-755) $) NIL)) (-1854 (((-626 $) $) NIL)) (-1814 (((-121) $) NIL)) (-2175 (($ |#2| |#1|) NIL)) (-4008 ((|#2| $) 19)) (-1562 ((|#2| $) 16)) (-2803 (($ (-1 |#1| |#1|) $) NIL)) (-1387 (((-626 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-1669 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-1726 ((|#2| $) NIL)) (-1735 ((|#1| $) NIL)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-2524 (((-121) $) 27)) (-3565 ((|#1| $) 28)) (-2801 (((-842) $) 53) (($ (-560)) 38) (($ |#1|) 33) (($ |#2|) NIL)) (-2423 (((-626 |#1|) $) NIL)) (-2636 ((|#1| $ |#2|) NIL)) (-2169 ((|#1| $ |#2|) 24)) (-1751 (((-755)) 14)) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (-3304 (($) 25 T CONST)) (-1459 (($) 11 T CONST)) (-1653 (((-121) $ $) 26)) (-1733 (($ $ |#1|) 55 (|has| |#1| (-359)))) (-1725 (($ $) NIL) (($ $ $) NIL)) (-1716 (($ $ $) 42)) (** (($ $ (-909)) NIL) (($ $ (-755)) 44)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) NIL) (($ $ $) 43) (($ |#1| $) 39) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-2271 (((-755) $) 15))) -(((-1257 |#1| |#2|) (-13 (-1039) (-1248 |#1|) (-378 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2271 ((-755) $)) (-15 -2801 ($ |#2|)) (-15 -1562 (|#2| $)) (-15 -4008 (|#2| $)) (-15 -1750 ($ $)) (-15 -2169 (|#1| $ |#2|)) (-15 -2524 ((-121) $)) (-15 -3565 (|#1| $)) (-15 -3378 ((-121) $)) (-15 -3699 ($ $)) (-15 -2803 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-359)) (-15 -1733 ($ $ |#1|)) |noBranch|) (IF (|has| |#1| (-6 -4498)) (-6 -4498) |noBranch|) (IF (|has| |#1| (-6 -4502)) (-6 -4502) |noBranch|) (IF (|has| |#1| (-6 -4503)) (-6 -4503) |noBranch|))) (-1039) (-830)) (T -1257)) -((* (*1 *1 *1 *2) (-12 (-5 *1 (-1257 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-830)))) (-1750 (*1 *1 *1) (-12 (-5 *1 (-1257 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-830)))) (-2803 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1039)) (-5 *1 (-1257 *3 *4)) (-4 *4 (-830)))) (-2801 (*1 *1 *2) (-12 (-5 *1 (-1257 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-830)))) (-2271 (*1 *2 *1) (-12 (-5 *2 (-755)) (-5 *1 (-1257 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-830)))) (-1562 (*1 *2 *1) (-12 (-4 *2 (-830)) (-5 *1 (-1257 *3 *2)) (-4 *3 (-1039)))) (-4008 (*1 *2 *1) (-12 (-4 *2 (-830)) (-5 *1 (-1257 *3 *2)) (-4 *3 (-1039)))) (-2169 (*1 *2 *1 *3) (-12 (-4 *2 (-1039)) (-5 *1 (-1257 *2 *3)) (-4 *3 (-830)))) (-2524 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1257 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-830)))) (-3565 (*1 *2 *1) (-12 (-4 *2 (-1039)) (-5 *1 (-1257 *2 *3)) (-4 *3 (-830)))) (-3378 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1257 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-830)))) (-3699 (*1 *1 *1) (-12 (-5 *1 (-1257 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-830)))) (-1733 (*1 *1 *1 *2) (-12 (-5 *1 (-1257 *2 *3)) (-4 *2 (-359)) (-4 *2 (-1039)) (-4 *3 (-830))))) -(-13 (-1039) (-1248 |#1|) (-378 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2271 ((-755) $)) (-15 -2801 ($ |#2|)) (-15 -1562 (|#2| $)) (-15 -4008 (|#2| $)) (-15 -1750 ($ $)) (-15 -2169 (|#1| $ |#2|)) (-15 -2524 ((-121) $)) (-15 -3565 (|#1| $)) (-15 -3378 ((-121) $)) (-15 -3699 ($ $)) (-15 -2803 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-359)) (-15 -1733 ($ $ |#1|)) |noBranch|) (IF (|has| |#1| (-6 -4498)) (-6 -4498) |noBranch|) (IF (|has| |#1| (-6 -4502)) (-6 -4502) |noBranch|) (IF (|has| |#1| (-6 -4503)) (-6 -4503) |noBranch|))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) NIL)) (-1499 (((-626 |#1|) $) 119)) (-2842 (($ (-1249 |#1| |#2|)) 43)) (-3239 (($ $ (-755)) 31)) (-2314 (((-3 $ "failed") $ $) NIL)) (-1756 (($ $ $) 47 (|has| |#2| (-170))) (($ $ (-755)) 45 (|has| |#2| (-170)))) (-4236 (($) NIL T CONST)) (-1927 (($ $ |#1|) 101) (($ $ (-806 |#1|)) 102) (($ $ $) 25)) (-1473 (((-3 (-806 |#1|) "failed") $) NIL)) (-3001 (((-806 |#1|) $) NIL)) (-1823 (((-3 $ "failed") $) 109)) (-3378 (((-121) $) 104)) (-3699 (($ $) 105)) (-2642 (((-121) $) NIL)) (-1814 (((-121) $) NIL)) (-2175 (($ (-806 |#1|) |#2|) 19)) (-2994 (($ $) NIL)) (-4066 (((-2 (|:| |k| (-806 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4008 (((-806 |#1|) $) 110)) (-1562 (((-806 |#1|) $) 113)) (-2803 (($ (-1 |#2| |#2|) $) 118)) (-4135 (($ $ |#1|) 99) (($ $ (-806 |#1|)) 100) (($ $ $) 55)) (-1291 (((-1135) $) NIL)) (-4353 (((-1100) $) NIL)) (-3780 (((-1249 |#1| |#2|) $) 83)) (-3662 (((-755) $) 116)) (-2524 (((-121) $) 69)) (-3565 ((|#2| $) 27)) (-2801 (((-842) $) 62) (($ (-560)) 76) (($ |#2|) 73) (($ (-806 |#1|)) 17) (($ |#1|) 72)) (-2169 ((|#2| $ (-806 |#1|)) 103) ((|#2| $ $) 26)) (-1751 (((-755)) 107)) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (-3304 (($) 14 T CONST)) (-1503 (((-626 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 52)) (-1459 (($) 28 T CONST)) (-1653 (((-121) $ $) 13)) (-1725 (($ $) 87) (($ $ $) 90)) (-1716 (($ $ $) 54)) (** (($ $ (-909)) NIL) (($ $ (-755)) 48)) (* (($ (-909) $) NIL) (($ (-755) $) 46) (($ (-560) $) 93) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 81))) -(((-1258 |#1| |#2|) (-13 (-1255 |#1| |#2|) (-10 -8 (-15 -3780 ((-1249 |#1| |#2|) $)) (-15 -2842 ($ (-1249 |#1| |#2|))) (-15 -1503 ((-626 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-834) (-1039)) (T -1258)) -((-3780 (*1 *2 *1) (-12 (-5 *2 (-1249 *3 *4)) (-5 *1 (-1258 *3 *4)) (-4 *3 (-834)) (-4 *4 (-1039)))) (-2842 (*1 *1 *2) (-12 (-5 *2 (-1249 *3 *4)) (-4 *3 (-834)) (-4 *4 (-1039)) (-5 *1 (-1258 *3 *4)))) (-1503 (*1 *2 *1) (-12 (-5 *2 (-626 (-2 (|:| |k| *3) (|:| |c| (-1258 *3 *4))))) (-5 *1 (-1258 *3 *4)) (-4 *3 (-834)) (-4 *4 (-1039))))) -(-13 (-1255 |#1| |#2|) (-10 -8 (-15 -3780 ((-1249 |#1| |#2|) $)) (-15 -2842 ($ (-1249 |#1| |#2|))) (-15 -1503 ((-626 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) -((-3095 (((-626 (-1133 |#1|)) (-1 (-626 (-1133 |#1|)) (-626 (-1133 |#1|))) (-560)) 15) (((-1133 |#1|) (-1 (-1133 |#1|) (-1133 |#1|))) 11))) -(((-1259 |#1|) (-10 -7 (-15 -3095 ((-1133 |#1|) (-1 (-1133 |#1|) (-1133 |#1|)))) (-15 -3095 ((-626 (-1133 |#1|)) (-1 (-626 (-1133 |#1|)) (-626 (-1133 |#1|))) (-560)))) (-1187)) (T -1259)) -((-3095 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-626 (-1133 *5)) (-626 (-1133 *5)))) (-5 *4 (-560)) (-5 *2 (-626 (-1133 *5))) (-5 *1 (-1259 *5)) (-4 *5 (-1187)))) (-3095 (*1 *2 *3) (-12 (-5 *3 (-1 (-1133 *4) (-1133 *4))) (-5 *2 (-1133 *4)) (-5 *1 (-1259 *4)) (-4 *4 (-1187))))) -(-10 -7 (-15 -3095 ((-1133 |#1|) (-1 (-1133 |#1|) (-1133 |#1|)))) (-15 -3095 ((-626 (-1133 |#1|)) (-1 (-626 (-1133 |#1|)) (-626 (-1133 |#1|))) (-560)))) -((-3263 (((-626 (-2 (|:| -1807 (-1149 |#1|)) (|:| -3390 (-626 (-945 |#1|))))) (-626 (-945 |#1|))) 145) (((-626 (-2 (|:| -1807 (-1149 |#1|)) (|:| -3390 (-626 (-945 |#1|))))) (-626 (-945 |#1|)) (-121)) 144) (((-626 (-2 (|:| -1807 (-1149 |#1|)) (|:| -3390 (-626 (-945 |#1|))))) (-626 (-945 |#1|)) (-121) (-121)) 143) (((-626 (-2 (|:| -1807 (-1149 |#1|)) (|:| -3390 (-626 (-945 |#1|))))) (-626 (-945 |#1|)) (-121) (-121) (-121)) 142) (((-626 (-2 (|:| -1807 (-1149 |#1|)) (|:| -3390 (-626 (-945 |#1|))))) (-1036 |#1| |#2|)) 127)) (-3308 (((-626 (-1036 |#1| |#2|)) (-626 (-945 |#1|))) 70) (((-626 (-1036 |#1| |#2|)) (-626 (-945 |#1|)) (-121)) 69) (((-626 (-1036 |#1| |#2|)) (-626 (-945 |#1|)) (-121) (-121)) 68)) (-2953 (((-626 (-1123 |#1| (-526 (-844 |#3|)) (-844 |#3|) (-767 |#1| (-844 |#3|)))) (-1036 |#1| |#2|)) 59)) (-1652 (((-626 (-626 (-1015 (-403 |#1|)))) (-626 (-945 |#1|))) 112) (((-626 (-626 (-1015 (-403 |#1|)))) (-626 (-945 |#1|)) (-121)) 111) (((-626 (-626 (-1015 (-403 |#1|)))) (-626 (-945 |#1|)) (-121) (-121)) 110) (((-626 (-626 (-1015 (-403 |#1|)))) (-626 (-945 |#1|)) (-121) (-121) (-121)) 109) (((-626 (-626 (-1015 (-403 |#1|)))) (-1036 |#1| |#2|)) 104)) (-3356 (((-626 (-626 (-1015 (-403 |#1|)))) (-626 (-945 |#1|))) 117) (((-626 (-626 (-1015 (-403 |#1|)))) (-626 (-945 |#1|)) (-121)) 116) (((-626 (-626 (-1015 (-403 |#1|)))) (-626 (-945 |#1|)) (-121) (-121)) 115) (((-626 (-626 (-1015 (-403 |#1|)))) (-1036 |#1| |#2|)) 114)) (-4255 (((-626 (-767 |#1| (-844 |#3|))) (-1123 |#1| (-526 (-844 |#3|)) (-844 |#3|) (-767 |#1| (-844 |#3|)))) 96) (((-1149 (-1015 (-403 |#1|))) (-1149 |#1|)) 87) (((-945 (-1015 (-403 |#1|))) (-767 |#1| (-844 |#3|))) 94) (((-945 (-1015 (-403 |#1|))) (-945 |#1|)) 92) (((-767 |#1| (-844 |#3|)) (-767 |#1| (-844 |#2|))) 32))) -(((-1260 |#1| |#2| |#3|) (-10 -7 (-15 -3308 ((-626 (-1036 |#1| |#2|)) (-626 (-945 |#1|)) (-121) (-121))) (-15 -3308 ((-626 (-1036 |#1| |#2|)) (-626 (-945 |#1|)) (-121))) (-15 -3308 ((-626 (-1036 |#1| |#2|)) (-626 (-945 |#1|)))) (-15 -3263 ((-626 (-2 (|:| -1807 (-1149 |#1|)) (|:| -3390 (-626 (-945 |#1|))))) (-1036 |#1| |#2|))) (-15 -3263 ((-626 (-2 (|:| -1807 (-1149 |#1|)) (|:| -3390 (-626 (-945 |#1|))))) (-626 (-945 |#1|)) (-121) (-121) (-121))) (-15 -3263 ((-626 (-2 (|:| -1807 (-1149 |#1|)) (|:| -3390 (-626 (-945 |#1|))))) (-626 (-945 |#1|)) (-121) (-121))) (-15 -3263 ((-626 (-2 (|:| -1807 (-1149 |#1|)) (|:| -3390 (-626 (-945 |#1|))))) (-626 (-945 |#1|)) (-121))) (-15 -3263 ((-626 (-2 (|:| -1807 (-1149 |#1|)) (|:| -3390 (-626 (-945 |#1|))))) (-626 (-945 |#1|)))) (-15 -1652 ((-626 (-626 (-1015 (-403 |#1|)))) (-1036 |#1| |#2|))) (-15 -1652 ((-626 (-626 (-1015 (-403 |#1|)))) (-626 (-945 |#1|)) (-121) (-121) (-121))) (-15 -1652 ((-626 (-626 (-1015 (-403 |#1|)))) (-626 (-945 |#1|)) (-121) (-121))) (-15 -1652 ((-626 (-626 (-1015 (-403 |#1|)))) (-626 (-945 |#1|)) (-121))) (-15 -1652 ((-626 (-626 (-1015 (-403 |#1|)))) (-626 (-945 |#1|)))) (-15 -3356 ((-626 (-626 (-1015 (-403 |#1|)))) (-1036 |#1| |#2|))) (-15 -3356 ((-626 (-626 (-1015 (-403 |#1|)))) (-626 (-945 |#1|)) (-121) (-121))) (-15 -3356 ((-626 (-626 (-1015 (-403 |#1|)))) (-626 (-945 |#1|)) (-121))) (-15 -3356 ((-626 (-626 (-1015 (-403 |#1|)))) (-626 (-945 |#1|)))) (-15 -2953 ((-626 (-1123 |#1| (-526 (-844 |#3|)) (-844 |#3|) (-767 |#1| (-844 |#3|)))) (-1036 |#1| |#2|))) (-15 -4255 ((-767 |#1| (-844 |#3|)) (-767 |#1| (-844 |#2|)))) (-15 -4255 ((-945 (-1015 (-403 |#1|))) (-945 |#1|))) (-15 -4255 ((-945 (-1015 (-403 |#1|))) (-767 |#1| (-844 |#3|)))) (-15 -4255 ((-1149 (-1015 (-403 |#1|))) (-1149 |#1|))) (-15 -4255 ((-626 (-767 |#1| (-844 |#3|))) (-1123 |#1| (-526 (-844 |#3|)) (-844 |#3|) (-767 |#1| (-844 |#3|)))))) (-13 (-832) (-296) (-148) (-1013)) (-626 (-1153)) (-626 (-1153))) (T -1260)) -((-4255 (*1 *2 *3) (-12 (-5 *3 (-1123 *4 (-526 (-844 *6)) (-844 *6) (-767 *4 (-844 *6)))) (-4 *4 (-13 (-832) (-296) (-148) (-1013))) (-14 *6 (-626 (-1153))) (-5 *2 (-626 (-767 *4 (-844 *6)))) (-5 *1 (-1260 *4 *5 *6)) (-14 *5 (-626 (-1153))))) (-4255 (*1 *2 *3) (-12 (-5 *3 (-1149 *4)) (-4 *4 (-13 (-832) (-296) (-148) (-1013))) (-5 *2 (-1149 (-1015 (-403 *4)))) (-5 *1 (-1260 *4 *5 *6)) (-14 *5 (-626 (-1153))) (-14 *6 (-626 (-1153))))) (-4255 (*1 *2 *3) (-12 (-5 *3 (-767 *4 (-844 *6))) (-4 *4 (-13 (-832) (-296) (-148) (-1013))) (-14 *6 (-626 (-1153))) (-5 *2 (-945 (-1015 (-403 *4)))) (-5 *1 (-1260 *4 *5 *6)) (-14 *5 (-626 (-1153))))) (-4255 (*1 *2 *3) (-12 (-5 *3 (-945 *4)) (-4 *4 (-13 (-832) (-296) (-148) (-1013))) (-5 *2 (-945 (-1015 (-403 *4)))) (-5 *1 (-1260 *4 *5 *6)) (-14 *5 (-626 (-1153))) (-14 *6 (-626 (-1153))))) (-4255 (*1 *2 *3) (-12 (-5 *3 (-767 *4 (-844 *5))) (-4 *4 (-13 (-832) (-296) (-148) (-1013))) (-14 *5 (-626 (-1153))) (-5 *2 (-767 *4 (-844 *6))) (-5 *1 (-1260 *4 *5 *6)) (-14 *6 (-626 (-1153))))) (-2953 (*1 *2 *3) (-12 (-5 *3 (-1036 *4 *5)) (-4 *4 (-13 (-832) (-296) (-148) (-1013))) (-14 *5 (-626 (-1153))) (-5 *2 (-626 (-1123 *4 (-526 (-844 *6)) (-844 *6) (-767 *4 (-844 *6))))) (-5 *1 (-1260 *4 *5 *6)) (-14 *6 (-626 (-1153))))) (-3356 (*1 *2 *3) (-12 (-5 *3 (-626 (-945 *4))) (-4 *4 (-13 (-832) (-296) (-148) (-1013))) (-5 *2 (-626 (-626 (-1015 (-403 *4))))) (-5 *1 (-1260 *4 *5 *6)) (-14 *5 (-626 (-1153))) (-14 *6 (-626 (-1153))))) (-3356 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-945 *5))) (-5 *4 (-121)) (-4 *5 (-13 (-832) (-296) (-148) (-1013))) (-5 *2 (-626 (-626 (-1015 (-403 *5))))) (-5 *1 (-1260 *5 *6 *7)) (-14 *6 (-626 (-1153))) (-14 *7 (-626 (-1153))))) (-3356 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-626 (-945 *5))) (-5 *4 (-121)) (-4 *5 (-13 (-832) (-296) (-148) (-1013))) (-5 *2 (-626 (-626 (-1015 (-403 *5))))) (-5 *1 (-1260 *5 *6 *7)) (-14 *6 (-626 (-1153))) (-14 *7 (-626 (-1153))))) (-3356 (*1 *2 *3) (-12 (-5 *3 (-1036 *4 *5)) (-4 *4 (-13 (-832) (-296) (-148) (-1013))) (-14 *5 (-626 (-1153))) (-5 *2 (-626 (-626 (-1015 (-403 *4))))) (-5 *1 (-1260 *4 *5 *6)) (-14 *6 (-626 (-1153))))) (-1652 (*1 *2 *3) (-12 (-5 *3 (-626 (-945 *4))) (-4 *4 (-13 (-832) (-296) (-148) (-1013))) (-5 *2 (-626 (-626 (-1015 (-403 *4))))) (-5 *1 (-1260 *4 *5 *6)) (-14 *5 (-626 (-1153))) (-14 *6 (-626 (-1153))))) (-1652 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-945 *5))) (-5 *4 (-121)) (-4 *5 (-13 (-832) (-296) (-148) (-1013))) (-5 *2 (-626 (-626 (-1015 (-403 *5))))) (-5 *1 (-1260 *5 *6 *7)) (-14 *6 (-626 (-1153))) (-14 *7 (-626 (-1153))))) (-1652 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-626 (-945 *5))) (-5 *4 (-121)) (-4 *5 (-13 (-832) (-296) (-148) (-1013))) (-5 *2 (-626 (-626 (-1015 (-403 *5))))) (-5 *1 (-1260 *5 *6 *7)) (-14 *6 (-626 (-1153))) (-14 *7 (-626 (-1153))))) (-1652 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-626 (-945 *5))) (-5 *4 (-121)) (-4 *5 (-13 (-832) (-296) (-148) (-1013))) (-5 *2 (-626 (-626 (-1015 (-403 *5))))) (-5 *1 (-1260 *5 *6 *7)) (-14 *6 (-626 (-1153))) (-14 *7 (-626 (-1153))))) (-1652 (*1 *2 *3) (-12 (-5 *3 (-1036 *4 *5)) (-4 *4 (-13 (-832) (-296) (-148) (-1013))) (-14 *5 (-626 (-1153))) (-5 *2 (-626 (-626 (-1015 (-403 *4))))) (-5 *1 (-1260 *4 *5 *6)) (-14 *6 (-626 (-1153))))) (-3263 (*1 *2 *3) (-12 (-4 *4 (-13 (-832) (-296) (-148) (-1013))) (-5 *2 (-626 (-2 (|:| -1807 (-1149 *4)) (|:| -3390 (-626 (-945 *4)))))) (-5 *1 (-1260 *4 *5 *6)) (-5 *3 (-626 (-945 *4))) (-14 *5 (-626 (-1153))) (-14 *6 (-626 (-1153))))) (-3263 (*1 *2 *3 *4) (-12 (-5 *4 (-121)) (-4 *5 (-13 (-832) (-296) (-148) (-1013))) (-5 *2 (-626 (-2 (|:| -1807 (-1149 *5)) (|:| -3390 (-626 (-945 *5)))))) (-5 *1 (-1260 *5 *6 *7)) (-5 *3 (-626 (-945 *5))) (-14 *6 (-626 (-1153))) (-14 *7 (-626 (-1153))))) (-3263 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-121)) (-4 *5 (-13 (-832) (-296) (-148) (-1013))) (-5 *2 (-626 (-2 (|:| -1807 (-1149 *5)) (|:| -3390 (-626 (-945 *5)))))) (-5 *1 (-1260 *5 *6 *7)) (-5 *3 (-626 (-945 *5))) (-14 *6 (-626 (-1153))) (-14 *7 (-626 (-1153))))) (-3263 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-121)) (-4 *5 (-13 (-832) (-296) (-148) (-1013))) (-5 *2 (-626 (-2 (|:| -1807 (-1149 *5)) (|:| -3390 (-626 (-945 *5)))))) (-5 *1 (-1260 *5 *6 *7)) (-5 *3 (-626 (-945 *5))) (-14 *6 (-626 (-1153))) (-14 *7 (-626 (-1153))))) (-3263 (*1 *2 *3) (-12 (-5 *3 (-1036 *4 *5)) (-4 *4 (-13 (-832) (-296) (-148) (-1013))) (-14 *5 (-626 (-1153))) (-5 *2 (-626 (-2 (|:| -1807 (-1149 *4)) (|:| -3390 (-626 (-945 *4)))))) (-5 *1 (-1260 *4 *5 *6)) (-14 *6 (-626 (-1153))))) (-3308 (*1 *2 *3) (-12 (-5 *3 (-626 (-945 *4))) (-4 *4 (-13 (-832) (-296) (-148) (-1013))) (-5 *2 (-626 (-1036 *4 *5))) (-5 *1 (-1260 *4 *5 *6)) (-14 *5 (-626 (-1153))) (-14 *6 (-626 (-1153))))) (-3308 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-945 *5))) (-5 *4 (-121)) (-4 *5 (-13 (-832) (-296) (-148) (-1013))) (-5 *2 (-626 (-1036 *5 *6))) (-5 *1 (-1260 *5 *6 *7)) (-14 *6 (-626 (-1153))) (-14 *7 (-626 (-1153))))) (-3308 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-626 (-945 *5))) (-5 *4 (-121)) (-4 *5 (-13 (-832) (-296) (-148) (-1013))) (-5 *2 (-626 (-1036 *5 *6))) (-5 *1 (-1260 *5 *6 *7)) (-14 *6 (-626 (-1153))) (-14 *7 (-626 (-1153)))))) -(-10 -7 (-15 -3308 ((-626 (-1036 |#1| |#2|)) (-626 (-945 |#1|)) (-121) (-121))) (-15 -3308 ((-626 (-1036 |#1| |#2|)) (-626 (-945 |#1|)) (-121))) (-15 -3308 ((-626 (-1036 |#1| |#2|)) (-626 (-945 |#1|)))) (-15 -3263 ((-626 (-2 (|:| -1807 (-1149 |#1|)) (|:| -3390 (-626 (-945 |#1|))))) (-1036 |#1| |#2|))) (-15 -3263 ((-626 (-2 (|:| -1807 (-1149 |#1|)) (|:| -3390 (-626 (-945 |#1|))))) (-626 (-945 |#1|)) (-121) (-121) (-121))) (-15 -3263 ((-626 (-2 (|:| -1807 (-1149 |#1|)) (|:| -3390 (-626 (-945 |#1|))))) (-626 (-945 |#1|)) (-121) (-121))) (-15 -3263 ((-626 (-2 (|:| -1807 (-1149 |#1|)) (|:| -3390 (-626 (-945 |#1|))))) (-626 (-945 |#1|)) (-121))) (-15 -3263 ((-626 (-2 (|:| -1807 (-1149 |#1|)) (|:| -3390 (-626 (-945 |#1|))))) (-626 (-945 |#1|)))) (-15 -1652 ((-626 (-626 (-1015 (-403 |#1|)))) (-1036 |#1| |#2|))) (-15 -1652 ((-626 (-626 (-1015 (-403 |#1|)))) (-626 (-945 |#1|)) (-121) (-121) (-121))) (-15 -1652 ((-626 (-626 (-1015 (-403 |#1|)))) (-626 (-945 |#1|)) (-121) (-121))) (-15 -1652 ((-626 (-626 (-1015 (-403 |#1|)))) (-626 (-945 |#1|)) (-121))) (-15 -1652 ((-626 (-626 (-1015 (-403 |#1|)))) (-626 (-945 |#1|)))) (-15 -3356 ((-626 (-626 (-1015 (-403 |#1|)))) (-1036 |#1| |#2|))) (-15 -3356 ((-626 (-626 (-1015 (-403 |#1|)))) (-626 (-945 |#1|)) (-121) (-121))) (-15 -3356 ((-626 (-626 (-1015 (-403 |#1|)))) (-626 (-945 |#1|)) (-121))) (-15 -3356 ((-626 (-626 (-1015 (-403 |#1|)))) (-626 (-945 |#1|)))) (-15 -2953 ((-626 (-1123 |#1| (-526 (-844 |#3|)) (-844 |#3|) (-767 |#1| (-844 |#3|)))) (-1036 |#1| |#2|))) (-15 -4255 ((-767 |#1| (-844 |#3|)) (-767 |#1| (-844 |#2|)))) (-15 -4255 ((-945 (-1015 (-403 |#1|))) (-945 |#1|))) (-15 -4255 ((-945 (-1015 (-403 |#1|))) (-767 |#1| (-844 |#3|)))) (-15 -4255 ((-1149 (-1015 (-403 |#1|))) (-1149 |#1|))) (-15 -4255 ((-626 (-767 |#1| (-844 |#3|))) (-1123 |#1| (-526 (-844 |#3|)) (-844 |#3|) (-767 |#1| (-844 |#3|)))))) -((-4295 (((-3 (-1236 (-403 (-560))) "failed") (-1236 |#1|) |#1|) 17)) (-2024 (((-121) (-1236 |#1|)) 11)) (-3073 (((-3 (-1236 (-560)) "failed") (-1236 |#1|)) 14))) -(((-1261 |#1|) (-10 -7 (-15 -2024 ((-121) (-1236 |#1|))) (-15 -3073 ((-3 (-1236 (-560)) "failed") (-1236 |#1|))) (-15 -4295 ((-3 (-1236 (-403 (-560))) "failed") (-1236 |#1|) |#1|))) (-622 (-560))) (T -1261)) -((-4295 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1236 *4)) (-4 *4 (-622 (-560))) (-5 *2 (-1236 (-403 (-560)))) (-5 *1 (-1261 *4)))) (-3073 (*1 *2 *3) (|partial| -12 (-5 *3 (-1236 *4)) (-4 *4 (-622 (-560))) (-5 *2 (-1236 (-560))) (-5 *1 (-1261 *4)))) (-2024 (*1 *2 *3) (-12 (-5 *3 (-1236 *4)) (-4 *4 (-622 (-560))) (-5 *2 (-121)) (-5 *1 (-1261 *4))))) -(-10 -7 (-15 -2024 ((-121) (-1236 |#1|))) (-15 -3073 ((-3 (-1236 (-560)) "failed") (-1236 |#1|))) (-15 -4295 ((-3 (-1236 (-403 (-560))) "failed") (-1236 |#1|) |#1|))) -((-2601 (((-121) $ $) NIL)) (-2832 (((-121) $) 11)) (-2314 (((-3 $ "failed") $ $) NIL)) (-2912 (((-755)) 8)) (-4236 (($) NIL T CONST)) (-1823 (((-3 $ "failed") $) 43)) (-1666 (($) 36)) (-2642 (((-121) $) NIL)) (-1424 (((-3 $ "failed") $) 29)) (-3142 (((-909) $) 15)) (-1291 (((-1135) $) NIL)) (-1394 (($) 25 T CONST)) (-1330 (($ (-909)) 37)) (-4353 (((-1100) $) NIL)) (-4255 (((-560) $) 13)) (-2801 (((-842) $) 22) (($ (-560)) 19)) (-1751 (((-755)) 9)) (-2464 (($ $ (-909)) NIL) (($ $ (-755)) NIL)) (-3304 (($) 23 T CONST)) (-1459 (($) 24 T CONST)) (-1653 (((-121) $ $) 27)) (-1725 (($ $) 38) (($ $ $) 35)) (-1716 (($ $ $) 26)) (** (($ $ (-909)) NIL) (($ $ (-755)) 40)) (* (($ (-909) $) NIL) (($ (-755) $) NIL) (($ (-560) $) 32) (($ $ $) 31))) -(((-1262 |#1|) (-13 (-170) (-364) (-601 (-560)) (-1128)) (-909)) (T -1262)) -NIL -(-13 (-170) (-364) (-601 (-560)) (-1128)) -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -((-1267 3554132 3554137 3554142 "NIL" NIL T NIL (NIL) NIL NIL NIL) (-3 3554117 3554122 3554127 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (-2 3554102 3554107 3554112 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (-1 3554087 3554092 3554097 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (0 3554072 3554077 3554082 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (-1262 3553202 3553947 3554024 "ZMOD" 3554029 NIL ZMOD (NIL NIL) -8 NIL NIL) (-1261 3552312 3552476 3552685 "ZLINDEP" 3553034 NIL ZLINDEP (NIL T) -7 NIL NIL) (-1260 3541616 3543380 3545352 "ZDSOLVE" 3550442 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL) (-1259 3540862 3541003 3541192 "YSTREAM" 3541462 NIL YSTREAM (NIL T) -7 NIL NIL) (-1258 3538627 3540163 3540367 "XRPOLY" 3540705 NIL XRPOLY (NIL T T) -8 NIL NIL) (-1257 3535081 3536410 3536990 "XPR" 3538094 NIL XPR (NIL T T) -8 NIL NIL) (-1256 3532791 3534412 3534616 "XPOLY" 3534912 NIL XPOLY (NIL T) -8 NIL NIL) (-1255 3530595 3531973 3532029 "XPOLYC" 3532317 NIL XPOLYC (NIL T T) -9 NIL 3532430) (-1254 3526969 3529114 3529501 "XPBWPOLY" 3530254 NIL XPBWPOLY (NIL T T) -8 NIL NIL) (-1253 3522847 3525157 3525200 "XF" 3525821 NIL XF (NIL T) -9 NIL 3526218) (-1252 3522468 3522556 3522725 "XF-" 3522730 NIL XF- (NIL T T) -8 NIL NIL) (-1251 3517817 3519116 3519172 "XFALG" 3521344 NIL XFALG (NIL T T) -9 NIL 3522131) (-1250 3516950 3517054 3517259 "XEXPPKG" 3517709 NIL XEXPPKG (NIL T T T) -7 NIL NIL) (-1249 3515047 3516800 3516896 "XDPOLY" 3516901 NIL XDPOLY (NIL T T) -8 NIL NIL) (-1248 3513919 3514529 3514573 "XALG" 3514636 NIL XALG (NIL T) -9 NIL 3514755) (-1247 3507388 3511896 3512390 "WUTSET" 3513511 NIL WUTSET (NIL T T T T) -8 NIL NIL) (-1246 3505197 3506004 3506355 "WP" 3507171 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL) (-1245 3504083 3504281 3504576 "WFFINTBS" 3504994 NIL WFFINTBS (NIL T T T T) -7 NIL NIL) (-1244 3501987 3502414 3502876 "WEIER" 3503655 NIL WEIER (NIL T) -7 NIL NIL) (-1243 3501133 3501557 3501600 "VSPACE" 3501736 NIL VSPACE (NIL T) -9 NIL 3501810) (-1242 3500971 3500998 3501089 "VSPACE-" 3501094 NIL VSPACE- (NIL T T) -8 NIL NIL) (-1241 3500717 3500760 3500831 "VOID" 3500922 T VOID (NIL) -8 NIL NIL) (-1240 3498853 3499212 3499618 "VIEW" 3500333 T VIEW (NIL) -7 NIL NIL) (-1239 3495278 3495916 3496653 "VIEWDEF" 3498138 T VIEWDEF (NIL) -7 NIL NIL) (-1238 3484617 3486826 3488999 "VIEW3D" 3493127 T VIEW3D (NIL) -8 NIL NIL) (-1237 3476899 3478528 3480107 "VIEW2D" 3483060 T VIEW2D (NIL) -8 NIL NIL) (-1236 3472309 3476669 3476761 "VECTOR" 3476842 NIL VECTOR (NIL T) -8 NIL NIL) (-1235 3470886 3471145 3471463 "VECTOR2" 3472039 NIL VECTOR2 (NIL T T) -7 NIL NIL) (-1234 3464456 3468700 3468744 "VECTCAT" 3469737 NIL VECTCAT (NIL T) -9 NIL 3470316) (-1233 3463470 3463724 3464114 "VECTCAT-" 3464119 NIL VECTCAT- (NIL T T) -8 NIL NIL) (-1232 3462951 3463121 3463241 "VARIABLE" 3463385 NIL VARIABLE (NIL NIL) -8 NIL NIL) (-1231 3454993 3460784 3461262 "UTSZ" 3462521 NIL UTSZ (NIL T NIL) -8 NIL NIL) (-1230 3454599 3454649 3454783 "UTSSOL" 3454937 NIL UTSSOL (NIL T T T) -7 NIL NIL) (-1229 3453431 3453585 3453846 "UTSODETL" 3454426 NIL UTSODETL (NIL T T T T) -7 NIL NIL) (-1228 3450871 3451331 3451855 "UTSODE" 3452972 NIL UTSODE (NIL T T) -7 NIL NIL) (-1227 3442704 3448499 3448987 "UTS" 3450441 NIL UTS (NIL T NIL NIL) -8 NIL NIL) (-1226 3433992 3439352 3439396 "UTSCAT" 3440508 NIL UTSCAT (NIL T) -9 NIL 3441258) (-1225 3431347 3432062 3433051 "UTSCAT-" 3433056 NIL UTSCAT- (NIL T T) -8 NIL NIL) (-1224 3430974 3431017 3431150 "UTS2" 3431298 NIL UTS2 (NIL T T T T) -7 NIL NIL) (-1223 3425288 3427847 3427891 "URAGG" 3429961 NIL URAGG (NIL T) -9 NIL 3430683) (-1222 3422227 3423090 3424213 "URAGG-" 3424218 NIL URAGG- (NIL T T) -8 NIL NIL) (-1221 3417905 3420841 3421313 "UPXSSING" 3421891 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL) (-1220 3409792 3417022 3417303 "UPXS" 3417682 NIL UPXS (NIL T NIL NIL) -8 NIL NIL) (-1219 3402820 3409696 3409768 "UPXSCONS" 3409773 NIL UPXSCONS (NIL T T) -8 NIL NIL) (-1218 3393033 3399858 3399921 "UPXSCCA" 3400577 NIL UPXSCCA (NIL T T) -9 NIL 3400819) (-1217 3392671 3392756 3392930 "UPXSCCA-" 3392935 NIL UPXSCCA- (NIL T T T) -8 NIL NIL) (-1216 3382817 3389415 3389459 "UPXSCAT" 3390107 NIL UPXSCAT (NIL T) -9 NIL 3390708) (-1215 3382247 3382326 3382505 "UPXS2" 3382732 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1214 3380901 3381154 3381505 "UPSQFREE" 3381990 NIL UPSQFREE (NIL T T) -7 NIL NIL) (-1213 3374736 3377786 3377842 "UPSCAT" 3379003 NIL UPSCAT (NIL T T) -9 NIL 3379771) (-1212 3373940 3374147 3374474 "UPSCAT-" 3374479 NIL UPSCAT- (NIL T T T) -8 NIL NIL) (-1211 3359929 3367969 3368013 "UPOLYC" 3370114 NIL UPOLYC (NIL T) -9 NIL 3371329) (-1210 3351258 3353683 3356830 "UPOLYC-" 3356835 NIL UPOLYC- (NIL T T) -8 NIL NIL) (-1209 3350885 3350928 3351061 "UPOLYC2" 3351209 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL) (-1208 3342296 3350451 3350589 "UP" 3350795 NIL UP (NIL NIL T) -8 NIL NIL) (-1207 3341635 3341742 3341906 "UPMP" 3342185 NIL UPMP (NIL T T) -7 NIL NIL) (-1206 3341188 3341269 3341408 "UPDIVP" 3341548 NIL UPDIVP (NIL T T) -7 NIL NIL) (-1205 3339756 3340005 3340321 "UPDECOMP" 3340937 NIL UPDECOMP (NIL T T) -7 NIL NIL) (-1204 3338991 3339103 3339288 "UPCDEN" 3339640 NIL UPCDEN (NIL T T T) -7 NIL NIL) (-1203 3338510 3338579 3338728 "UP2" 3338916 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL) (-1202 3337031 3337718 3337993 "UNISEG" 3338270 NIL UNISEG (NIL T) -8 NIL NIL) (-1201 3336248 3336375 3336579 "UNISEG2" 3336875 NIL UNISEG2 (NIL T T) -7 NIL NIL) (-1200 3335308 3335488 3335714 "UNIFACT" 3336064 NIL UNIFACT (NIL T) -7 NIL NIL) (-1199 3319192 3334487 3334737 "ULS" 3335116 NIL ULS (NIL T NIL NIL) -8 NIL NIL) (-1198 3307147 3319096 3319168 "ULSCONS" 3319173 NIL ULSCONS (NIL T T) -8 NIL NIL) (-1197 3289815 3301832 3301895 "ULSCCAT" 3302615 NIL ULSCCAT (NIL T T) -9 NIL 3302911) (-1196 3288865 3289110 3289498 "ULSCCAT-" 3289503 NIL ULSCCAT- (NIL T T T) -8 NIL NIL) (-1195 3278803 3285315 3285359 "ULSCAT" 3286222 NIL ULSCAT (NIL T) -9 NIL 3286944) (-1194 3278233 3278312 3278491 "ULS2" 3278718 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1193 3270371 3276224 3276724 "UFPS" 3277768 NIL UFPS (NIL T) -8 NIL NIL) (-1192 3270068 3270125 3270223 "UFPS1" 3270308 NIL UFPS1 (NIL T) -7 NIL NIL) (-1191 3268461 3269428 3269459 "UFD" 3269671 T UFD (NIL) -9 NIL 3269785) (-1190 3268255 3268301 3268396 "UFD-" 3268401 NIL UFD- (NIL T) -8 NIL NIL) (-1189 3267337 3267520 3267736 "UDVO" 3268061 T UDVO (NIL) -7 NIL NIL) (-1188 3265155 3265564 3266034 "UDPO" 3266902 NIL UDPO (NIL T) -7 NIL NIL) (-1187 3265087 3265092 3265123 "TYPE" 3265128 T TYPE (NIL) -9 NIL NIL) (-1186 3264058 3264260 3264500 "TWOFACT" 3264881 NIL TWOFACT (NIL T) -7 NIL NIL) (-1185 3263130 3263461 3263660 "TUPLE" 3263894 NIL TUPLE (NIL T) -8 NIL NIL) (-1184 3260821 3261340 3261879 "TUBETOOL" 3262613 T TUBETOOL (NIL) -7 NIL NIL) (-1183 3259670 3259875 3260116 "TUBE" 3260614 NIL TUBE (NIL T) -8 NIL NIL) (-1182 3254390 3258644 3258926 "TS" 3259423 NIL TS (NIL T) -8 NIL NIL) (-1181 3243064 3247149 3247247 "TSETCAT" 3252516 NIL TSETCAT (NIL T T T T) -9 NIL 3254046) (-1180 3237799 3239396 3241287 "TSETCAT-" 3241292 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL) (-1179 3232070 3232916 3233854 "TRMANIP" 3236939 NIL TRMANIP (NIL T T) -7 NIL NIL) (-1178 3231511 3231574 3231737 "TRIMAT" 3232002 NIL TRIMAT (NIL T T T T) -7 NIL NIL) (-1177 3229307 3229544 3229908 "TRIGMNIP" 3231260 NIL TRIGMNIP (NIL T T) -7 NIL NIL) (-1176 3228826 3228939 3228970 "TRIGCAT" 3229183 T TRIGCAT (NIL) -9 NIL NIL) (-1175 3228495 3228574 3228715 "TRIGCAT-" 3228720 NIL TRIGCAT- (NIL T) -8 NIL NIL) (-1174 3225398 3227353 3227634 "TREE" 3228249 NIL TREE (NIL T) -8 NIL NIL) (-1173 3224671 3225199 3225230 "TRANFUN" 3225265 T TRANFUN (NIL) -9 NIL 3225331) (-1172 3223950 3224141 3224421 "TRANFUN-" 3224426 NIL TRANFUN- (NIL T) -8 NIL NIL) (-1171 3223754 3223786 3223847 "TOPSP" 3223911 T TOPSP (NIL) -7 NIL NIL) (-1170 3223102 3223217 3223371 "TOOLSIGN" 3223635 NIL TOOLSIGN (NIL T) -7 NIL NIL) (-1169 3221737 3222279 3222518 "TEXTFILE" 3222885 T TEXTFILE (NIL) -8 NIL NIL) (-1168 3219602 3220116 3220554 "TEX" 3221321 T TEX (NIL) -8 NIL NIL) (-1167 3219383 3219414 3219486 "TEX1" 3219565 NIL TEX1 (NIL T) -7 NIL NIL) (-1166 3219031 3219094 3219184 "TEMUTL" 3219315 T TEMUTL (NIL) -7 NIL NIL) (-1165 3217185 3217465 3217790 "TBCMPPK" 3218754 NIL TBCMPPK (NIL T T) -7 NIL NIL) (-1164 3208930 3215190 3215247 "TBAGG" 3215647 NIL TBAGG (NIL T T) -9 NIL 3215858) (-1163 3204000 3205488 3207242 "TBAGG-" 3207247 NIL TBAGG- (NIL T T T) -8 NIL NIL) (-1162 3203384 3203491 3203636 "TANEXP" 3203889 NIL TANEXP (NIL T) -7 NIL NIL) (-1161 3196897 3203241 3203334 "TABLE" 3203339 NIL TABLE (NIL T T) -8 NIL NIL) (-1160 3196310 3196408 3196546 "TABLEAU" 3196794 NIL TABLEAU (NIL T) -8 NIL NIL) (-1159 3190918 3192138 3193386 "TABLBUMP" 3195096 NIL TABLBUMP (NIL T) -7 NIL NIL) (-1158 3187381 3188076 3188859 "SYSSOLP" 3190169 NIL SYSSOLP (NIL T) -7 NIL NIL) (-1157 3184515 3185123 3185761 "SYMTAB" 3186765 T SYMTAB (NIL) -8 NIL NIL) (-1156 3179764 3180666 3181649 "SYMS" 3183554 T SYMS (NIL) -8 NIL NIL) (-1155 3176996 3179228 3179455 "SYMPOLY" 3179572 NIL SYMPOLY (NIL T) -8 NIL NIL) (-1154 3176513 3176588 3176711 "SYMFUNC" 3176908 NIL SYMFUNC (NIL T) -7 NIL NIL) (-1153 3172491 3173750 3174572 "SYMBOL" 3175713 T SYMBOL (NIL) -8 NIL NIL) (-1152 3166030 3167719 3169439 "SWITCH" 3170793 T SWITCH (NIL) -8 NIL NIL) (-1151 3159256 3164853 3165155 "SUTS" 3165786 NIL SUTS (NIL T NIL NIL) -8 NIL NIL) (-1150 3151142 3158373 3158654 "SUPXS" 3159033 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL) (-1149 3142627 3150760 3150886 "SUP" 3151051 NIL SUP (NIL T) -8 NIL NIL) (-1148 3141786 3141913 3142130 "SUPFRACF" 3142495 NIL SUPFRACF (NIL T T T T) -7 NIL NIL) (-1147 3132358 3141588 3141702 "SUPEXPR" 3141707 NIL SUPEXPR (NIL T) -8 NIL NIL) (-1146 3131979 3132038 3132151 "SUP2" 3132293 NIL SUP2 (NIL T T) -7 NIL NIL) (-1145 3130392 3130666 3131029 "SUMRF" 3131678 NIL SUMRF (NIL T) -7 NIL NIL) (-1144 3129706 3129772 3129971 "SUMFS" 3130313 NIL SUMFS (NIL T T) -7 NIL NIL) (-1143 3113630 3128885 3129135 "SULS" 3129514 NIL SULS (NIL T NIL NIL) -8 NIL NIL) (-1142 3112952 3113155 3113295 "SUCH" 3113538 NIL SUCH (NIL T T) -8 NIL NIL) (-1141 3106846 3107858 3108817 "SUBSPACE" 3112040 NIL SUBSPACE (NIL NIL T) -8 NIL NIL) (-1140 3106278 3106368 3106531 "SUBRESP" 3106735 NIL SUBRESP (NIL T T) -7 NIL NIL) (-1139 3099647 3100943 3102254 "STTF" 3105014 NIL STTF (NIL T) -7 NIL NIL) (-1138 3093820 3094940 3096087 "STTFNC" 3098547 NIL STTFNC (NIL T) -7 NIL NIL) (-1137 3085139 3087006 3088798 "STTAYLOR" 3092063 NIL STTAYLOR (NIL T) -7 NIL NIL) (-1136 3078395 3085003 3085086 "STRTBL" 3085091 NIL STRTBL (NIL T) -8 NIL NIL) (-1135 3073786 3078350 3078381 "STRING" 3078386 T STRING (NIL) -8 NIL NIL) (-1134 3068650 3073128 3073159 "STRICAT" 3073218 T STRICAT (NIL) -9 NIL 3073280) (-1133 3061377 3066177 3066795 "STREAM" 3068067 NIL STREAM (NIL T) -8 NIL NIL) (-1132 3060887 3060964 3061108 "STREAM3" 3061294 NIL STREAM3 (NIL T T T) -7 NIL NIL) (-1131 3059869 3060052 3060287 "STREAM2" 3060700 NIL STREAM2 (NIL T T) -7 NIL NIL) (-1130 3059557 3059609 3059702 "STREAM1" 3059811 NIL STREAM1 (NIL T) -7 NIL NIL) (-1129 3058573 3058754 3058985 "STINPROD" 3059373 NIL STINPROD (NIL T) -7 NIL NIL) (-1128 3058150 3058334 3058365 "STEP" 3058445 T STEP (NIL) -9 NIL 3058523) (-1127 3051705 3058049 3058126 "STBL" 3058131 NIL STBL (NIL T T NIL) -8 NIL NIL) (-1126 3046919 3050957 3051001 "STAGG" 3051154 NIL STAGG (NIL T) -9 NIL 3051243) (-1125 3044621 3045223 3046095 "STAGG-" 3046100 NIL STAGG- (NIL T T) -8 NIL NIL) (-1124 3038113 3039682 3040797 "STACK" 3043541 NIL STACK (NIL T) -8 NIL NIL) (-1123 3030838 3036254 3036710 "SREGSET" 3037743 NIL SREGSET (NIL T T T T) -8 NIL NIL) (-1122 3023264 3024632 3026145 "SRDCMPK" 3029444 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL) (-1121 3016242 3020702 3020733 "SRAGG" 3022036 T SRAGG (NIL) -9 NIL 3022644) (-1120 3015259 3015514 3015893 "SRAGG-" 3015898 NIL SRAGG- (NIL T) -8 NIL NIL) (-1119 3009707 3014182 3014606 "SQMATRIX" 3014882 NIL SQMATRIX (NIL NIL T) -8 NIL NIL) (-1118 3003463 3006425 3007152 "SPLTREE" 3009052 NIL SPLTREE (NIL T T) -8 NIL NIL) (-1117 2999453 3000119 3000765 "SPLNODE" 3002889 NIL SPLNODE (NIL T T) -8 NIL NIL) (-1116 2998499 2998732 2998763 "SPFCAT" 2999207 T SPFCAT (NIL) -9 NIL NIL) (-1115 2997236 2997446 2997710 "SPECOUT" 2998257 T SPECOUT (NIL) -7 NIL NIL) (-1114 2989206 2990953 2990997 "SPACEC" 2995370 NIL SPACEC (NIL T) -9 NIL 2997186) (-1113 2987377 2989138 2989187 "SPACE3" 2989192 NIL SPACE3 (NIL T) -8 NIL NIL) (-1112 2986131 2986302 2986592 "SORTPAK" 2987183 NIL SORTPAK (NIL T T) -7 NIL NIL) (-1111 2984181 2984484 2984903 "SOLVETRA" 2985795 NIL SOLVETRA (NIL T) -7 NIL NIL) (-1110 2983192 2983414 2983688 "SOLVESER" 2983954 NIL SOLVESER (NIL T) -7 NIL NIL) (-1109 2978412 2979293 2980295 "SOLVERAD" 2982244 NIL SOLVERAD (NIL T) -7 NIL NIL) (-1108 2974227 2974836 2975565 "SOLVEFOR" 2977779 NIL SOLVEFOR (NIL T T) -7 NIL NIL) (-1107 2968530 2973575 2973673 "SNTSCAT" 2973678 NIL SNTSCAT (NIL T T T T) -9 NIL 2973748) (-1106 2962628 2966855 2967245 "SMTS" 2968221 NIL SMTS (NIL T T T) -8 NIL NIL) (-1105 2957032 2962516 2962593 "SMP" 2962598 NIL SMP (NIL T T) -8 NIL NIL) (-1104 2955191 2955492 2955890 "SMITH" 2956729 NIL SMITH (NIL T T T T) -7 NIL NIL) (-1103 2948133 2952331 2952435 "SMATCAT" 2953786 NIL SMATCAT (NIL NIL T T T) -9 NIL 2954333) (-1102 2945073 2945896 2947074 "SMATCAT-" 2947079 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL) (-1101 2942826 2944343 2944387 "SKAGG" 2944648 NIL SKAGG (NIL T) -9 NIL 2944783) (-1100 2938884 2941930 2942208 "SINT" 2942570 T SINT (NIL) -8 NIL NIL) (-1099 2938656 2938694 2938760 "SIMPAN" 2938840 T SIMPAN (NIL) -7 NIL NIL) (-1098 2937494 2937715 2937990 "SIGNRF" 2938415 NIL SIGNRF (NIL T) -7 NIL NIL) (-1097 2936299 2936450 2936741 "SIGNEF" 2937323 NIL SIGNEF (NIL T T) -7 NIL NIL) (-1096 2933991 2934445 2934950 "SHP" 2935841 NIL SHP (NIL T NIL) -7 NIL NIL) (-1095 2927815 2933892 2933968 "SHDP" 2933973 NIL SHDP (NIL NIL NIL T) -8 NIL NIL) (-1094 2927303 2927495 2927526 "SGROUP" 2927678 T SGROUP (NIL) -9 NIL 2927765) (-1093 2927073 2927125 2927229 "SGROUP-" 2927234 NIL SGROUP- (NIL T) -8 NIL NIL) (-1092 2923909 2924606 2925329 "SGCF" 2926372 T SGCF (NIL) -7 NIL NIL) (-1091 2918310 2923355 2923453 "SFRTCAT" 2923458 NIL SFRTCAT (NIL T T T T) -9 NIL 2923497) (-1090 2911734 2912749 2913885 "SFRGCD" 2917293 NIL SFRGCD (NIL T T T T T) -7 NIL NIL) (-1089 2904862 2905933 2907119 "SFQCMPK" 2910667 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL) (-1088 2904484 2904573 2904683 "SFORT" 2904803 NIL SFORT (NIL T T) -8 NIL NIL) (-1087 2903629 2904324 2904445 "SEXOF" 2904450 NIL SEXOF (NIL T T T T T) -8 NIL NIL) (-1086 2902763 2903510 2903578 "SEX" 2903583 T SEX (NIL) -8 NIL NIL) (-1085 2897538 2898227 2898323 "SEXCAT" 2902094 NIL SEXCAT (NIL T T T T T) -9 NIL 2902713) (-1084 2894718 2897472 2897520 "SET" 2897525 NIL SET (NIL T) -8 NIL NIL) (-1083 2892969 2893431 2893736 "SETMN" 2894459 NIL SETMN (NIL NIL NIL) -8 NIL NIL) (-1082 2892574 2892700 2892731 "SETCAT" 2892848 T SETCAT (NIL) -9 NIL 2892933) (-1081 2892354 2892406 2892505 "SETCAT-" 2892510 NIL SETCAT- (NIL T) -8 NIL NIL) (-1080 2892017 2892167 2892198 "SETCATD" 2892257 T SETCATD (NIL) -9 NIL 2892304) (-1079 2888403 2890477 2890521 "SETAGG" 2891391 NIL SETAGG (NIL T) -9 NIL 2891731) (-1078 2887861 2887977 2888214 "SETAGG-" 2888219 NIL SETAGG- (NIL T T) -8 NIL NIL) (-1077 2887064 2887357 2887419 "SEGXCAT" 2887705 NIL SEGXCAT (NIL T T) -9 NIL 2887825) (-1076 2886124 2886734 2886914 "SEG" 2886919 NIL SEG (NIL T) -8 NIL NIL) (-1075 2885030 2885243 2885287 "SEGCAT" 2885869 NIL SEGCAT (NIL T) -9 NIL 2886107) (-1074 2884081 2884411 2884610 "SEGBIND" 2884866 NIL SEGBIND (NIL T) -8 NIL NIL) (-1073 2883702 2883761 2883874 "SEGBIND2" 2884016 NIL SEGBIND2 (NIL T T) -7 NIL NIL) (-1072 2882923 2883049 2883252 "SEG2" 2883547 NIL SEG2 (NIL T T) -7 NIL NIL) (-1071 2882360 2882858 2882905 "SDVAR" 2882910 NIL SDVAR (NIL T) -8 NIL NIL) (-1070 2874604 2882130 2882260 "SDPOL" 2882265 NIL SDPOL (NIL T) -8 NIL NIL) (-1069 2873197 2873463 2873782 "SCPKG" 2874319 NIL SCPKG (NIL T) -7 NIL NIL) (-1068 2872418 2872551 2872730 "SCACHE" 2873052 NIL SCACHE (NIL T) -7 NIL NIL) (-1067 2871857 2872178 2872263 "SAOS" 2872355 T SAOS (NIL) -8 NIL NIL) (-1066 2871422 2871457 2871630 "SAERFFC" 2871816 NIL SAERFFC (NIL T T T) -7 NIL NIL) (-1065 2865311 2871319 2871399 "SAE" 2871404 NIL SAE (NIL T T NIL) -8 NIL NIL) (-1064 2864904 2864939 2865098 "SAEFACT" 2865270 NIL SAEFACT (NIL T T T) -7 NIL NIL) (-1063 2863225 2863539 2863940 "RURPK" 2864570 NIL RURPK (NIL T NIL) -7 NIL NIL) (-1062 2861861 2862140 2862452 "RULESET" 2863059 NIL RULESET (NIL T T T) -8 NIL NIL) (-1061 2859048 2859551 2860016 "RULE" 2861542 NIL RULE (NIL T T T) -8 NIL NIL) (-1060 2858687 2858842 2858925 "RULECOLD" 2859000 NIL RULECOLD (NIL NIL) -8 NIL NIL) (-1059 2853536 2854330 2855250 "RSETGCD" 2857886 NIL RSETGCD (NIL T T T T T) -7 NIL NIL) (-1058 2842799 2847844 2847942 "RSETCAT" 2852061 NIL RSETCAT (NIL T T T T) -9 NIL 2853158) (-1057 2840726 2841265 2842089 "RSETCAT-" 2842094 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL) (-1056 2833113 2834488 2836008 "RSDCMPK" 2839325 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL) (-1055 2831117 2831558 2831633 "RRCC" 2832719 NIL RRCC (NIL T T) -9 NIL 2833063) (-1054 2830468 2830642 2830921 "RRCC-" 2830926 NIL RRCC- (NIL T T T) -8 NIL NIL) (-1053 2804615 2814244 2814312 "RPOLCAT" 2824976 NIL RPOLCAT (NIL T T T) -9 NIL 2828124) (-1052 2796115 2798453 2801575 "RPOLCAT-" 2801580 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL) (-1051 2787174 2794326 2794808 "ROUTINE" 2795655 T ROUTINE (NIL) -8 NIL NIL) (-1050 2783874 2786725 2786874 "ROMAN" 2787047 T ROMAN (NIL) -8 NIL NIL) (-1049 2782149 2782734 2782994 "ROIRC" 2783679 NIL ROIRC (NIL T T) -8 NIL NIL) (-1048 2778489 2780789 2780820 "RNS" 2781124 T RNS (NIL) -9 NIL 2781397) (-1047 2776998 2777381 2777915 "RNS-" 2777990 NIL RNS- (NIL T) -8 NIL NIL) (-1046 2776420 2776828 2776859 "RNG" 2776864 T RNG (NIL) -9 NIL 2776885) (-1045 2775811 2776173 2776217 "RMODULE" 2776279 NIL RMODULE (NIL T) -9 NIL 2776321) (-1044 2774647 2774741 2775077 "RMCAT2" 2775712 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL) (-1043 2771356 2773825 2774148 "RMATRIX" 2774383 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL) (-1042 2764302 2766536 2766652 "RMATCAT" 2770011 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2770988) (-1041 2763677 2763824 2764131 "RMATCAT-" 2764136 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL) (-1040 2763244 2763319 2763447 "RINTERP" 2763596 NIL RINTERP (NIL NIL T) -7 NIL NIL) (-1039 2762287 2762851 2762882 "RING" 2762994 T RING (NIL) -9 NIL 2763089) (-1038 2762079 2762123 2762220 "RING-" 2762225 NIL RING- (NIL T) -8 NIL NIL) (-1037 2760920 2761157 2761415 "RIDIST" 2761843 T RIDIST (NIL) -7 NIL NIL) (-1036 2752236 2760388 2760594 "RGCHAIN" 2760768 NIL RGCHAIN (NIL T NIL) -8 NIL NIL) (-1035 2751036 2751277 2751556 "RFP" 2751991 NIL RFP (NIL T) -7 NIL NIL) (-1034 2748030 2748644 2749314 "RF" 2750400 NIL RF (NIL T) -7 NIL NIL) (-1033 2747676 2747739 2747842 "RFFACTOR" 2747961 NIL RFFACTOR (NIL T) -7 NIL NIL) (-1032 2747401 2747436 2747533 "RFFACT" 2747635 NIL RFFACT (NIL T) -7 NIL NIL) (-1031 2745518 2745882 2746264 "RFDIST" 2747041 T RFDIST (NIL) -7 NIL NIL) (-1030 2744971 2745063 2745226 "RETSOL" 2745420 NIL RETSOL (NIL T T) -7 NIL NIL) (-1029 2744558 2744638 2744682 "RETRACT" 2744875 NIL RETRACT (NIL T) -9 NIL NIL) (-1028 2744407 2744432 2744519 "RETRACT-" 2744524 NIL RETRACT- (NIL T T) -8 NIL NIL) (-1027 2737273 2744060 2744187 "RESULT" 2744302 T RESULT (NIL) -8 NIL NIL) (-1026 2735853 2736542 2736741 "RESRING" 2737176 NIL RESRING (NIL T T T T NIL) -8 NIL NIL) (-1025 2735489 2735538 2735636 "RESLATC" 2735790 NIL RESLATC (NIL T) -7 NIL NIL) (-1024 2735195 2735229 2735336 "REPSQ" 2735448 NIL REPSQ (NIL T) -7 NIL NIL) (-1023 2732617 2733197 2733799 "REP" 2734615 T REP (NIL) -7 NIL NIL) (-1022 2732315 2732349 2732460 "REPDB" 2732576 NIL REPDB (NIL T) -7 NIL NIL) (-1021 2726233 2727612 2728831 "REP2" 2731131 NIL REP2 (NIL T) -7 NIL NIL) (-1020 2722614 2723295 2724101 "REP1" 2725462 NIL REP1 (NIL T) -7 NIL NIL) (-1019 2715340 2720755 2721211 "REGSET" 2722244 NIL REGSET (NIL T T T T) -8 NIL NIL) (-1018 2714155 2714490 2714739 "REF" 2715126 NIL REF (NIL T) -8 NIL NIL) (-1017 2713532 2713635 2713802 "REDORDER" 2714039 NIL REDORDER (NIL T T) -7 NIL NIL) (-1016 2710394 2710860 2711469 "RECOP" 2713066 NIL RECOP (NIL T T) -7 NIL NIL) (-1015 2706334 2709607 2709834 "RECLOS" 2710222 NIL RECLOS (NIL T) -8 NIL NIL) (-1014 2705386 2705567 2705782 "REALSOLV" 2706141 T REALSOLV (NIL) -7 NIL NIL) (-1013 2705231 2705272 2705303 "REAL" 2705308 T REAL (NIL) -9 NIL 2705343) (-1012 2701714 2702516 2703400 "REAL0Q" 2704396 NIL REAL0Q (NIL T) -7 NIL NIL) (-1011 2697315 2698303 2699364 "REAL0" 2700695 NIL REAL0 (NIL T) -7 NIL NIL) (-1010 2696720 2696792 2696999 "RDIV" 2697237 NIL RDIV (NIL T T T T T) -7 NIL NIL) (-1009 2695788 2695962 2696175 "RDIST" 2696542 NIL RDIST (NIL T) -7 NIL NIL) (-1008 2694385 2694672 2695044 "RDETRS" 2695496 NIL RDETRS (NIL T T) -7 NIL NIL) (-1007 2692197 2692651 2693189 "RDETR" 2693927 NIL RDETR (NIL T T) -7 NIL NIL) (-1006 2690808 2691086 2691490 "RDEEFS" 2691913 NIL RDEEFS (NIL T T) -7 NIL NIL) (-1005 2689303 2689609 2690041 "RDEEF" 2690496 NIL RDEEF (NIL T T) -7 NIL NIL) (-1004 2683496 2686431 2686462 "RCFIELD" 2687757 T RCFIELD (NIL) -9 NIL 2688487) (-1003 2681560 2682064 2682760 "RCFIELD-" 2682835 NIL RCFIELD- (NIL T) -8 NIL NIL) (-1002 2677918 2679697 2679741 "RCAGG" 2680825 NIL RCAGG (NIL T) -9 NIL 2681288) (-1001 2677546 2677640 2677803 "RCAGG-" 2677808 NIL RCAGG- (NIL T T) -8 NIL NIL) (-1000 2676882 2676993 2677158 "RATRET" 2677430 NIL RATRET (NIL T) -7 NIL NIL) (-999 2676439 2676506 2676625 "RATFACT" 2676810 NIL RATFACT (NIL T) -7 NIL NIL) (-998 2675754 2675874 2676024 "RANDSRC" 2676309 T RANDSRC (NIL) -7 NIL NIL) (-997 2675491 2675535 2675606 "RADUTIL" 2675703 T RADUTIL (NIL) -7 NIL NIL) (-996 2668489 2674234 2674551 "RADIX" 2675206 NIL RADIX (NIL NIL) -8 NIL NIL) (-995 2660054 2668333 2668461 "RADFF" 2668466 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL) (-994 2659705 2659780 2659809 "RADCAT" 2659966 T RADCAT (NIL) -9 NIL NIL) (-993 2659490 2659538 2659635 "RADCAT-" 2659640 NIL RADCAT- (NIL T) -8 NIL NIL) (-992 2652773 2654391 2655542 "QUEUE" 2658372 NIL QUEUE (NIL T) -8 NIL NIL) (-991 2649264 2652710 2652755 "QUAT" 2652760 NIL QUAT (NIL T) -8 NIL NIL) (-990 2648902 2648945 2649072 "QUATCT2" 2649215 NIL QUATCT2 (NIL T T T T) -7 NIL NIL) (-989 2642639 2646023 2646064 "QUATCAT" 2646844 NIL QUATCAT (NIL T) -9 NIL 2647602) (-988 2638783 2639820 2641207 "QUATCAT-" 2641301 NIL QUATCAT- (NIL T T) -8 NIL NIL) (-987 2636343 2637901 2637943 "QUAGG" 2638318 NIL QUAGG (NIL T) -9 NIL 2638493) (-986 2635268 2635741 2635913 "QFORM" 2636215 NIL QFORM (NIL NIL T) -8 NIL NIL) (-985 2626495 2631762 2631803 "QFCAT" 2632461 NIL QFCAT (NIL T) -9 NIL 2633450) (-984 2622067 2623268 2624859 "QFCAT-" 2624953 NIL QFCAT- (NIL T T) -8 NIL NIL) (-983 2621705 2621748 2621875 "QFCAT2" 2622018 NIL QFCAT2 (NIL T T T T) -7 NIL NIL) (-982 2621165 2621275 2621405 "QEQUAT" 2621595 T QEQUAT (NIL) -8 NIL NIL) (-981 2614313 2615384 2616568 "QCMPACK" 2620098 NIL QCMPACK (NIL T T T T T) -7 NIL NIL) (-980 2611893 2612314 2612740 "QALGSET" 2613970 NIL QALGSET (NIL T T T T) -8 NIL NIL) (-979 2611138 2611312 2611544 "QALGSET2" 2611713 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL) (-978 2609829 2610052 2610369 "PWFFINTB" 2610911 NIL PWFFINTB (NIL T T T T) -7 NIL NIL) (-977 2608011 2608179 2608533 "PUSHVAR" 2609643 NIL PUSHVAR (NIL T T T T) -7 NIL NIL) (-976 2603928 2604982 2605024 "PTRANFN" 2606908 NIL PTRANFN (NIL T) -9 NIL NIL) (-975 2602330 2602621 2602943 "PTPACK" 2603639 NIL PTPACK (NIL T) -7 NIL NIL) (-974 2601962 2602019 2602128 "PTFUNC2" 2602267 NIL PTFUNC2 (NIL T T) -7 NIL NIL) (-973 2596464 2600796 2600838 "PTCAT" 2601211 NIL PTCAT (NIL T) -9 NIL 2601373) (-972 2596122 2596157 2596281 "PSQFR" 2596423 NIL PSQFR (NIL T T T T) -7 NIL NIL) (-971 2594709 2595009 2595345 "PSEUDLIN" 2595818 NIL PSEUDLIN (NIL T) -7 NIL NIL) (-970 2581485 2583849 2586170 "PSETPK" 2592472 NIL PSETPK (NIL T T T T) -7 NIL NIL) (-969 2574529 2577243 2577340 "PSETCAT" 2580361 NIL PSETCAT (NIL T T T T) -9 NIL 2581174) (-968 2572365 2572999 2573820 "PSETCAT-" 2573825 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL) (-967 2571714 2571878 2571907 "PSCURVE" 2572175 T PSCURVE (NIL) -9 NIL 2572342) (-966 2568103 2569629 2569695 "PSCAT" 2570539 NIL PSCAT (NIL T T T) -9 NIL 2570779) (-965 2567166 2567382 2567782 "PSCAT-" 2567787 NIL PSCAT- (NIL T T T T) -8 NIL NIL) (-964 2565819 2566451 2566665 "PRTITION" 2566972 T PRTITION (NIL) -8 NIL NIL) (-963 2562983 2563632 2563673 "PRSPCAT" 2565187 NIL PRSPCAT (NIL T) -9 NIL 2565755) (-962 2552083 2554289 2556476 "PRS" 2560846 NIL PRS (NIL T T) -7 NIL NIL) (-961 2549981 2551467 2551508 "PRQAGG" 2551691 NIL PRQAGG (NIL T) -9 NIL 2551793) (-960 2549250 2549906 2549963 "PROJSP" 2549968 NIL PROJSP (NIL NIL T) -8 NIL NIL) (-959 2548432 2549173 2549225 "PROJPLPS" 2549230 NIL PROJPLPS (NIL T) -8 NIL NIL) (-958 2547691 2548369 2548414 "PROJPL" 2548419 NIL PROJPL (NIL T) -8 NIL NIL) (-957 2541497 2545889 2546693 "PRODUCT" 2546933 NIL PRODUCT (NIL T T) -8 NIL NIL) (-956 2538772 2540961 2541192 "PR" 2541311 NIL PR (NIL T T) -8 NIL NIL) (-955 2537324 2537481 2537776 "PRJALGPK" 2538612 NIL PRJALGPK (NIL T NIL T T T) -7 NIL NIL) (-954 2537120 2537152 2537211 "PRINT" 2537285 T PRINT (NIL) -7 NIL NIL) (-953 2536460 2536577 2536729 "PRIMES" 2537000 NIL PRIMES (NIL T) -7 NIL NIL) (-952 2534525 2534926 2535392 "PRIMELT" 2536039 NIL PRIMELT (NIL T) -7 NIL NIL) (-951 2534253 2534302 2534331 "PRIMCAT" 2534455 T PRIMCAT (NIL) -9 NIL NIL) (-950 2530420 2534191 2534236 "PRIMARR" 2534241 NIL PRIMARR (NIL T) -8 NIL NIL) (-949 2529427 2529605 2529833 "PRIMARR2" 2530238 NIL PRIMARR2 (NIL T T) -7 NIL NIL) (-948 2529070 2529126 2529237 "PREASSOC" 2529365 NIL PREASSOC (NIL T T) -7 NIL NIL) (-947 2528545 2528677 2528706 "PPCURVE" 2528911 T PPCURVE (NIL) -9 NIL 2529047) (-946 2525906 2526305 2526896 "POLYROOT" 2528127 NIL POLYROOT (NIL T T T T T) -7 NIL NIL) (-945 2519807 2525512 2525671 "POLY" 2525780 NIL POLY (NIL T) -8 NIL NIL) (-944 2519190 2519248 2519482 "POLYLIFT" 2519743 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL) (-943 2515465 2515914 2516543 "POLYCATQ" 2518735 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL) (-942 2502427 2507827 2507893 "POLYCAT" 2511407 NIL POLYCAT (NIL T T T) -9 NIL 2513320) (-941 2495877 2497738 2500122 "POLYCAT-" 2500127 NIL POLYCAT- (NIL T T T T) -8 NIL NIL) (-940 2495464 2495532 2495652 "POLY2UP" 2495803 NIL POLY2UP (NIL NIL T) -7 NIL NIL) (-939 2495096 2495153 2495262 "POLY2" 2495401 NIL POLY2 (NIL T T) -7 NIL NIL) (-938 2493783 2494022 2494297 "POLUTIL" 2494871 NIL POLUTIL (NIL T T) -7 NIL NIL) (-937 2492138 2492415 2492746 "POLTOPOL" 2493505 NIL POLTOPOL (NIL NIL T) -7 NIL NIL) (-936 2487662 2492074 2492120 "POINT" 2492125 NIL POINT (NIL T) -8 NIL NIL) (-935 2485849 2486206 2486581 "PNTHEORY" 2487307 T PNTHEORY (NIL) -7 NIL NIL) (-934 2484268 2484565 2484977 "PMTOOLS" 2485547 NIL PMTOOLS (NIL T T T) -7 NIL NIL) (-933 2483861 2483939 2484056 "PMSYM" 2484184 NIL PMSYM (NIL T) -7 NIL NIL) (-932 2483371 2483440 2483614 "PMQFCAT" 2483786 NIL PMQFCAT (NIL T T T) -7 NIL NIL) (-931 2482726 2482836 2482992 "PMPRED" 2483248 NIL PMPRED (NIL T) -7 NIL NIL) (-930 2482122 2482208 2482369 "PMPREDFS" 2482627 NIL PMPREDFS (NIL T T T) -7 NIL NIL) (-929 2480767 2480975 2481359 "PMPLCAT" 2481885 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL) (-928 2480299 2480378 2480530 "PMLSAGG" 2480682 NIL PMLSAGG (NIL T T T) -7 NIL NIL) (-927 2479774 2479850 2480031 "PMKERNEL" 2480217 NIL PMKERNEL (NIL T T) -7 NIL NIL) (-926 2479391 2479466 2479579 "PMINS" 2479693 NIL PMINS (NIL T) -7 NIL NIL) (-925 2478819 2478888 2479104 "PMFS" 2479316 NIL PMFS (NIL T T T) -7 NIL NIL) (-924 2478047 2478165 2478370 "PMDOWN" 2478696 NIL PMDOWN (NIL T T T) -7 NIL NIL) (-923 2477210 2477369 2477551 "PMASS" 2477885 T PMASS (NIL) -7 NIL NIL) (-922 2476484 2476595 2476758 "PMASSFS" 2477096 NIL PMASSFS (NIL T T) -7 NIL NIL) (-921 2474244 2474497 2474880 "PLPKCRV" 2476208 NIL PLPKCRV (NIL T T T NIL T) -7 NIL NIL) (-920 2473899 2473967 2474061 "PLOTTOOL" 2474170 T PLOTTOOL (NIL) -7 NIL NIL) (-919 2468521 2469710 2470858 "PLOT" 2472771 T PLOT (NIL) -8 NIL NIL) (-918 2464335 2465369 2466290 "PLOT3D" 2467620 T PLOT3D (NIL) -8 NIL NIL) (-917 2463247 2463424 2463659 "PLOT1" 2464139 NIL PLOT1 (NIL T) -7 NIL NIL) (-916 2438642 2443313 2448164 "PLEQN" 2458513 NIL PLEQN (NIL T T T T) -7 NIL NIL) (-915 2437882 2438552 2438619 "PLCS" 2438624 NIL PLCS (NIL T T) -8 NIL NIL) (-914 2437033 2437767 2437838 "PLACESPS" 2437843 NIL PLACESPS (NIL T) -8 NIL NIL) (-913 2436240 2436946 2437003 "PLACES" 2437008 NIL PLACES (NIL T) -8 NIL NIL) (-912 2433306 2433970 2434029 "PLACESC" 2435605 NIL PLACESC (NIL T T) -9 NIL 2436176) (-911 2432624 2432746 2432926 "PINTERP" 2433171 NIL PINTERP (NIL NIL T) -7 NIL NIL) (-910 2432317 2432364 2432467 "PINTERPA" 2432571 NIL PINTERPA (NIL T T) -7 NIL NIL) (-909 2431544 2432111 2432204 "PI" 2432244 T PI (NIL) -8 NIL NIL) (-908 2429931 2430916 2430945 "PID" 2431127 T PID (NIL) -9 NIL 2431261) (-907 2429656 2429693 2429781 "PICOERCE" 2429888 NIL PICOERCE (NIL T) -7 NIL NIL) (-906 2428977 2429115 2429291 "PGROEB" 2429512 NIL PGROEB (NIL T) -7 NIL NIL) (-905 2424564 2425378 2426283 "PGE" 2428092 T PGE (NIL) -7 NIL NIL) (-904 2422688 2422934 2423300 "PGCD" 2424281 NIL PGCD (NIL T T T T) -7 NIL NIL) (-903 2422026 2422129 2422290 "PFRPAC" 2422572 NIL PFRPAC (NIL T) -7 NIL NIL) (-902 2418641 2420574 2420927 "PFR" 2421705 NIL PFR (NIL T) -8 NIL NIL) (-901 2417030 2417274 2417599 "PFOTOOLS" 2418388 NIL PFOTOOLS (NIL T T) -7 NIL NIL) (-900 2411895 2412560 2413309 "PFORP" 2416372 NIL PFORP (NIL T T T NIL) -7 NIL NIL) (-899 2410428 2410667 2411018 "PFOQ" 2411652 NIL PFOQ (NIL T T T) -7 NIL NIL) (-898 2408901 2409113 2409476 "PFO" 2410212 NIL PFO (NIL T T T T T) -7 NIL NIL) (-897 2405424 2408790 2408859 "PF" 2408864 NIL PF (NIL NIL) -8 NIL NIL) (-896 2402849 2404130 2404159 "PFECAT" 2404744 T PFECAT (NIL) -9 NIL 2405127) (-895 2402294 2402448 2402662 "PFECAT-" 2402667 NIL PFECAT- (NIL T) -8 NIL NIL) (-894 2400898 2401149 2401450 "PFBRU" 2402043 NIL PFBRU (NIL T T) -7 NIL NIL) (-893 2398765 2399116 2399548 "PFBR" 2400549 NIL PFBR (NIL T T T T) -7 NIL NIL) (-892 2394621 2396145 2396819 "PERM" 2398124 NIL PERM (NIL T) -8 NIL NIL) (-891 2389888 2390828 2391698 "PERMGRP" 2393784 NIL PERMGRP (NIL T) -8 NIL NIL) (-890 2387959 2388952 2388994 "PERMCAT" 2389440 NIL PERMCAT (NIL T) -9 NIL 2389743) (-889 2387612 2387653 2387777 "PERMAN" 2387912 NIL PERMAN (NIL NIL T) -7 NIL NIL) (-888 2385058 2387181 2387312 "PENDTREE" 2387514 NIL PENDTREE (NIL T) -8 NIL NIL) (-887 2383126 2383904 2383946 "PDRING" 2384603 NIL PDRING (NIL T) -9 NIL 2384889) (-886 2382229 2382447 2382809 "PDRING-" 2382814 NIL PDRING- (NIL T T) -8 NIL NIL) (-885 2379371 2380121 2380812 "PDEPROB" 2381558 T PDEPROB (NIL) -8 NIL NIL) (-884 2376918 2377420 2377975 "PDEPACK" 2378836 T PDEPACK (NIL) -7 NIL NIL) (-883 2375830 2376020 2376271 "PDECOMP" 2376717 NIL PDECOMP (NIL T T) -7 NIL NIL) (-882 2373434 2374251 2374280 "PDECAT" 2375067 T PDECAT (NIL) -9 NIL 2375780) (-881 2373185 2373218 2373308 "PCOMP" 2373395 NIL PCOMP (NIL T T) -7 NIL NIL) (-880 2371390 2371986 2372283 "PBWLB" 2372914 NIL PBWLB (NIL T) -8 NIL NIL) (-879 2363895 2365463 2366801 "PATTERN" 2370073 NIL PATTERN (NIL T) -8 NIL NIL) (-878 2363527 2363584 2363693 "PATTERN2" 2363832 NIL PATTERN2 (NIL T T) -7 NIL NIL) (-877 2361284 2361672 2362129 "PATTERN1" 2363116 NIL PATTERN1 (NIL T T) -7 NIL NIL) (-876 2358679 2359233 2359714 "PATRES" 2360849 NIL PATRES (NIL T T) -8 NIL NIL) (-875 2358243 2358310 2358442 "PATRES2" 2358606 NIL PATRES2 (NIL T T T) -7 NIL NIL) (-874 2356126 2356531 2356938 "PATMATCH" 2357910 NIL PATMATCH (NIL T T T) -7 NIL NIL) (-873 2355661 2355844 2355886 "PATMAB" 2355993 NIL PATMAB (NIL T) -9 NIL 2356076) (-872 2354206 2354515 2354773 "PATLRES" 2355466 NIL PATLRES (NIL T T T) -8 NIL NIL) (-871 2353753 2353876 2353918 "PATAB" 2353923 NIL PATAB (NIL T) -9 NIL 2354093) (-870 2351234 2351766 2352339 "PARTPERM" 2353200 T PARTPERM (NIL) -7 NIL NIL) (-869 2350855 2350918 2351020 "PARSURF" 2351165 NIL PARSURF (NIL T) -8 NIL NIL) (-868 2350487 2350544 2350653 "PARSU2" 2350792 NIL PARSU2 (NIL T T) -7 NIL NIL) (-867 2350108 2350171 2350273 "PARSCURV" 2350418 NIL PARSCURV (NIL T) -8 NIL NIL) (-866 2349740 2349797 2349906 "PARSC2" 2350045 NIL PARSC2 (NIL T T) -7 NIL NIL) (-865 2349379 2349437 2349534 "PARPCURV" 2349676 NIL PARPCURV (NIL T) -8 NIL NIL) (-864 2349011 2349068 2349177 "PARPC2" 2349316 NIL PARPC2 (NIL T T) -7 NIL NIL) (-863 2347491 2347609 2347928 "PARAMP" 2348866 NIL PARAMP (NIL T NIL T T T T T) -7 NIL NIL) (-862 2347011 2347097 2347216 "PAN2EXPR" 2347392 T PAN2EXPR (NIL) -7 NIL NIL) (-861 2345817 2346132 2346360 "PALETTE" 2346803 T PALETTE (NIL) -8 NIL NIL) (-860 2333450 2335616 2337732 "PAFF" 2343765 NIL PAFF (NIL T NIL T) -7 NIL NIL) (-859 2320446 2322774 2324985 "PAFFFF" 2331303 NIL PAFFFF (NIL T NIL T) -7 NIL NIL) (-858 2314287 2319705 2319899 "PADICRC" 2320301 NIL PADICRC (NIL NIL T) -8 NIL NIL) (-857 2307486 2313633 2313817 "PADICRAT" 2314135 NIL PADICRAT (NIL NIL) -8 NIL NIL) (-856 2305790 2307423 2307468 "PADIC" 2307473 NIL PADIC (NIL NIL) -8 NIL NIL) (-855 2302990 2304564 2304605 "PADICCT" 2305186 NIL PADICCT (NIL NIL) -9 NIL 2305468) (-854 2301947 2302147 2302415 "PADEPAC" 2302777 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL) (-853 2301159 2301292 2301498 "PADE" 2301809 NIL PADE (NIL T T T) -7 NIL NIL) (-852 2297636 2300777 2300896 "PACRAT" 2301060 T PACRAT (NIL) -8 NIL NIL) (-851 2293697 2296747 2296776 "PACRATC" 2296781 T PACRATC (NIL) -9 NIL 2296861) (-850 2289819 2291784 2291813 "PACPERC" 2292759 T PACPERC (NIL) -9 NIL 2293199) (-849 2286489 2289593 2289684 "PACOFF" 2289760 NIL PACOFF (NIL T) -8 NIL NIL) (-848 2283184 2285844 2285873 "PACFFC" 2285878 T PACFFC (NIL) -9 NIL 2285899) (-847 2279274 2282867 2282968 "PACEXT" 2283115 NIL PACEXT (NIL NIL) -8 NIL NIL) (-846 2274652 2278169 2278198 "PACEXTC" 2278203 T PACEXTC (NIL) -9 NIL 2278247) (-845 2272660 2273492 2273807 "OWP" 2274421 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL) (-844 2271769 2272265 2272437 "OVAR" 2272528 NIL OVAR (NIL NIL) -8 NIL NIL) (-843 2271033 2271154 2271315 "OUT" 2271628 T OUT (NIL) -7 NIL NIL) (-842 2260079 2262258 2264428 "OUTFORM" 2268883 T OUTFORM (NIL) -8 NIL NIL) (-841 2259487 2259808 2259897 "OSI" 2260010 T OSI (NIL) -8 NIL NIL) (-840 2258234 2258461 2258745 "ORTHPOL" 2259235 NIL ORTHPOL (NIL T) -7 NIL NIL) (-839 2255596 2257891 2258031 "OREUP" 2258177 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL) (-838 2252983 2255285 2255413 "ORESUP" 2255538 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL) (-837 2250491 2250997 2251562 "OREPCTO" 2252468 NIL OREPCTO (NIL T T) -7 NIL NIL) (-836 2244361 2246572 2246614 "OREPCAT" 2248962 NIL OREPCAT (NIL T) -9 NIL 2250062) (-835 2241508 2242290 2243348 "OREPCAT-" 2243353 NIL OREPCAT- (NIL T T) -8 NIL NIL) (-834 2240684 2240956 2240985 "ORDSET" 2241294 T ORDSET (NIL) -9 NIL 2241458) (-833 2240203 2240325 2240518 "ORDSET-" 2240523 NIL ORDSET- (NIL T) -8 NIL NIL) (-832 2238812 2239613 2239642 "ORDRING" 2239844 T ORDRING (NIL) -9 NIL 2239969) (-831 2238457 2238551 2238695 "ORDRING-" 2238700 NIL ORDRING- (NIL T) -8 NIL NIL) (-830 2237831 2238312 2238341 "ORDMON" 2238346 T ORDMON (NIL) -9 NIL 2238367) (-829 2236993 2237140 2237335 "ORDFUNS" 2237680 NIL ORDFUNS (NIL NIL T) -7 NIL NIL) (-828 2236503 2236862 2236891 "ORDFIN" 2236896 T ORDFIN (NIL) -9 NIL 2236917) (-827 2233015 2235095 2235501 "ORDCOMP" 2236130 NIL ORDCOMP (NIL T) -8 NIL NIL) (-826 2232281 2232408 2232594 "ORDCOMP2" 2232875 NIL ORDCOMP2 (NIL T T) -7 NIL NIL) (-825 2228789 2229671 2230508 "OPTPROB" 2231464 T OPTPROB (NIL) -8 NIL NIL) (-824 2225591 2226230 2226934 "OPTPACK" 2228105 T OPTPACK (NIL) -7 NIL NIL) (-823 2223303 2224043 2224072 "OPTCAT" 2224891 T OPTCAT (NIL) -9 NIL 2225541) (-822 2223071 2223110 2223176 "OPQUERY" 2223257 T OPQUERY (NIL) -7 NIL NIL) (-821 2220197 2221388 2221889 "OP" 2222603 NIL OP (NIL T) -8 NIL NIL) (-820 2216962 2219000 2219366 "ONECOMP" 2219864 NIL ONECOMP (NIL T) -8 NIL NIL) (-819 2216267 2216382 2216556 "ONECOMP2" 2216834 NIL ONECOMP2 (NIL T T) -7 NIL NIL) (-818 2215686 2215792 2215922 "OMSERVER" 2216157 T OMSERVER (NIL) -7 NIL NIL) (-817 2212573 2215125 2215166 "OMSAGG" 2215227 NIL OMSAGG (NIL T) -9 NIL 2215291) (-816 2211196 2211459 2211741 "OMPKG" 2212311 T OMPKG (NIL) -7 NIL NIL) (-815 2210625 2210728 2210757 "OM" 2211056 T OM (NIL) -9 NIL NIL) (-814 2209163 2210176 2210344 "OMLO" 2210507 NIL OMLO (NIL T T) -8 NIL NIL) (-813 2208088 2208235 2208462 "OMEXPR" 2208989 NIL OMEXPR (NIL T) -7 NIL NIL) (-812 2207406 2207634 2207770 "OMERR" 2207972 T OMERR (NIL) -8 NIL NIL) (-811 2206584 2206827 2206987 "OMERRK" 2207266 T OMERRK (NIL) -8 NIL NIL) (-810 2206062 2206261 2206369 "OMENC" 2206496 T OMENC (NIL) -8 NIL NIL) (-809 2199957 2201142 2202313 "OMDEV" 2204911 T OMDEV (NIL) -8 NIL NIL) (-808 2199026 2199197 2199391 "OMCONN" 2199783 T OMCONN (NIL) -8 NIL NIL) (-807 2197637 2198623 2198652 "OINTDOM" 2198657 T OINTDOM (NIL) -9 NIL 2198678) (-806 2193288 2194543 2195287 "OFMONOID" 2196925 NIL OFMONOID (NIL T) -8 NIL NIL) (-805 2192726 2193225 2193270 "ODVAR" 2193275 NIL ODVAR (NIL T) -8 NIL NIL) (-804 2189853 2192225 2192409 "ODR" 2192602 NIL ODR (NIL T T NIL) -8 NIL NIL) (-803 2182151 2189629 2189755 "ODPOL" 2189760 NIL ODPOL (NIL T) -8 NIL NIL) (-802 2175945 2182023 2182128 "ODP" 2182133 NIL ODP (NIL NIL T NIL) -8 NIL NIL) (-801 2174711 2174926 2175201 "ODETOOLS" 2175719 NIL ODETOOLS (NIL T T) -7 NIL NIL) (-800 2171680 2172336 2173052 "ODESYS" 2174044 NIL ODESYS (NIL T T) -7 NIL NIL) (-799 2166564 2167472 2168496 "ODERTRIC" 2170756 NIL ODERTRIC (NIL T T) -7 NIL NIL) (-798 2165990 2166072 2166266 "ODERED" 2166476 NIL ODERED (NIL T T T T T) -7 NIL NIL) (-797 2162878 2163426 2164103 "ODERAT" 2165413 NIL ODERAT (NIL T T) -7 NIL NIL) (-796 2159838 2160302 2160899 "ODEPRRIC" 2162407 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL) (-795 2157709 2158276 2158785 "ODEPROB" 2159349 T ODEPROB (NIL) -8 NIL NIL) (-794 2154231 2154714 2155361 "ODEPRIM" 2157188 NIL ODEPRIM (NIL T T T T) -7 NIL NIL) (-793 2153480 2153582 2153842 "ODEPAL" 2154123 NIL ODEPAL (NIL T T T T) -7 NIL NIL) (-792 2149642 2150433 2151297 "ODEPACK" 2152636 T ODEPACK (NIL) -7 NIL NIL) (-791 2148675 2148782 2149011 "ODEINT" 2149531 NIL ODEINT (NIL T T) -7 NIL NIL) (-790 2142776 2144201 2145648 "ODEIFTBL" 2147248 T ODEIFTBL (NIL) -8 NIL NIL) (-789 2138111 2138897 2139856 "ODEEF" 2141935 NIL ODEEF (NIL T T) -7 NIL NIL) (-788 2137446 2137535 2137765 "ODECONST" 2138016 NIL ODECONST (NIL T T T) -7 NIL NIL) (-787 2135596 2136231 2136260 "ODECAT" 2136865 T ODECAT (NIL) -9 NIL 2137396) (-786 2132457 2135308 2135427 "OCT" 2135509 NIL OCT (NIL T) -8 NIL NIL) (-785 2132095 2132138 2132265 "OCTCT2" 2132408 NIL OCTCT2 (NIL T T T T) -7 NIL NIL) (-784 2126919 2129363 2129404 "OC" 2130501 NIL OC (NIL T) -9 NIL 2131351) (-783 2124146 2124894 2125884 "OC-" 2125978 NIL OC- (NIL T T) -8 NIL NIL) (-782 2123523 2123965 2123994 "OCAMON" 2123999 T OCAMON (NIL) -9 NIL 2124020) (-781 2122975 2123382 2123411 "OASGP" 2123416 T OASGP (NIL) -9 NIL 2123436) (-780 2122261 2122724 2122753 "OAMONS" 2122793 T OAMONS (NIL) -9 NIL 2122836) (-779 2121700 2122107 2122136 "OAMON" 2122141 T OAMON (NIL) -9 NIL 2122161) (-778 2121003 2121495 2121524 "OAGROUP" 2121529 T OAGROUP (NIL) -9 NIL 2121549) (-777 2120693 2120743 2120831 "NUMTUBE" 2120947 NIL NUMTUBE (NIL T) -7 NIL NIL) (-776 2114266 2115784 2117320 "NUMQUAD" 2119177 T NUMQUAD (NIL) -7 NIL NIL) (-775 2110022 2111010 2112035 "NUMODE" 2113261 T NUMODE (NIL) -7 NIL NIL) (-774 2107402 2108256 2108285 "NUMINT" 2109208 T NUMINT (NIL) -9 NIL 2109972) (-773 2106350 2106547 2106765 "NUMFMT" 2107204 T NUMFMT (NIL) -7 NIL NIL) (-772 2092728 2095670 2098194 "NUMERIC" 2103865 NIL NUMERIC (NIL T) -7 NIL NIL) (-771 2087131 2092176 2092272 "NTSCAT" 2092277 NIL NTSCAT (NIL T T T T) -9 NIL 2092316) (-770 2086327 2086492 2086684 "NTPOLFN" 2086971 NIL NTPOLFN (NIL T) -7 NIL NIL) (-769 2074123 2083154 2083965 "NSUP" 2085549 NIL NSUP (NIL T) -8 NIL NIL) (-768 2073755 2073812 2073921 "NSUP2" 2074060 NIL NSUP2 (NIL T T) -7 NIL NIL) (-767 2063706 2073529 2073662 "NSMP" 2073667 NIL NSMP (NIL T T) -8 NIL NIL) (-766 2051798 2063288 2063452 "NSDPS" 2063574 NIL NSDPS (NIL T) -8 NIL NIL) (-765 2050230 2050531 2050888 "NREP" 2051486 NIL NREP (NIL T) -7 NIL NIL) (-764 2047319 2047867 2048516 "NPOLYGON" 2049672 NIL NPOLYGON (NIL T T T NIL) -7 NIL NIL) (-763 2045910 2046162 2046520 "NPCOEF" 2047062 NIL NPCOEF (NIL T T T T T) -7 NIL NIL) (-762 2045192 2045694 2045778 "NOTTING" 2045858 NIL NOTTING (NIL T) -8 NIL NIL) (-761 2044258 2044373 2044589 "NORMRETR" 2045073 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL) (-760 2042299 2042589 2042998 "NORMPK" 2043966 NIL NORMPK (NIL T T T T T) -7 NIL NIL) (-759 2041984 2042012 2042136 "NORMMA" 2042265 NIL NORMMA (NIL T T T T) -7 NIL NIL) (-758 2041811 2041941 2041970 "NONE" 2041975 T NONE (NIL) -8 NIL NIL) (-757 2041600 2041629 2041698 "NONE1" 2041775 NIL NONE1 (NIL T) -7 NIL NIL) (-756 2041083 2041145 2041331 "NODE1" 2041532 NIL NODE1 (NIL T T) -7 NIL NIL) (-755 2039377 2040246 2040501 "NNI" 2040848 T NNI (NIL) -8 NIL NIL) (-754 2037797 2038110 2038474 "NLINSOL" 2039045 NIL NLINSOL (NIL T) -7 NIL NIL) (-753 2033965 2034932 2035854 "NIPROB" 2036895 T NIPROB (NIL) -8 NIL NIL) (-752 2032722 2032956 2033258 "NFINTBAS" 2033727 NIL NFINTBAS (NIL T T) -7 NIL NIL) (-751 2032451 2032494 2032575 "NEWTON" 2032673 NIL NEWTON (NIL T) -7 NIL NIL) (-750 2031159 2031390 2031671 "NCODIV" 2032219 NIL NCODIV (NIL T T) -7 NIL NIL) (-749 2030921 2030958 2031033 "NCNTFRAC" 2031116 NIL NCNTFRAC (NIL T) -7 NIL NIL) (-748 2029101 2029465 2029885 "NCEP" 2030546 NIL NCEP (NIL T) -7 NIL NIL) (-747 2028011 2028750 2028779 "NASRING" 2028889 T NASRING (NIL) -9 NIL 2028963) (-746 2027806 2027850 2027944 "NASRING-" 2027949 NIL NASRING- (NIL T) -8 NIL NIL) (-745 2026958 2027457 2027486 "NARNG" 2027603 T NARNG (NIL) -9 NIL 2027694) (-744 2026650 2026717 2026851 "NARNG-" 2026856 NIL NARNG- (NIL T) -8 NIL NIL) (-743 2025529 2025736 2025971 "NAGSP" 2026435 T NAGSP (NIL) -7 NIL NIL) (-742 2016801 2018485 2020158 "NAGS" 2023876 T NAGS (NIL) -7 NIL NIL) (-741 2015349 2015657 2015988 "NAGF07" 2016490 T NAGF07 (NIL) -7 NIL NIL) (-740 2009887 2011178 2012485 "NAGF04" 2014062 T NAGF04 (NIL) -7 NIL NIL) (-739 2002855 2004469 2006102 "NAGF02" 2008274 T NAGF02 (NIL) -7 NIL NIL) (-738 1998079 1999179 2000296 "NAGF01" 2001758 T NAGF01 (NIL) -7 NIL NIL) (-737 1991707 1993273 1994858 "NAGE04" 1996514 T NAGE04 (NIL) -7 NIL NIL) (-736 1982876 1984997 1987127 "NAGE02" 1989597 T NAGE02 (NIL) -7 NIL NIL) (-735 1978829 1979776 1980740 "NAGE01" 1981932 T NAGE01 (NIL) -7 NIL NIL) (-734 1976624 1977158 1977716 "NAGD03" 1978291 T NAGD03 (NIL) -7 NIL NIL) (-733 1968374 1970302 1972256 "NAGD02" 1974690 T NAGD02 (NIL) -7 NIL NIL) (-732 1962185 1963610 1965050 "NAGD01" 1966954 T NAGD01 (NIL) -7 NIL NIL) (-731 1958394 1959216 1960053 "NAGC06" 1961368 T NAGC06 (NIL) -7 NIL NIL) (-730 1956859 1957191 1957547 "NAGC05" 1958058 T NAGC05 (NIL) -7 NIL NIL) (-729 1956235 1956354 1956498 "NAGC02" 1956735 T NAGC02 (NIL) -7 NIL NIL) (-728 1955294 1955851 1955892 "NAALG" 1955971 NIL NAALG (NIL T) -9 NIL 1956032) (-727 1955129 1955158 1955248 "NAALG-" 1955253 NIL NAALG- (NIL T T) -8 NIL NIL) (-726 1946005 1954245 1954520 "MYUP" 1954900 NIL MYUP (NIL NIL T) -8 NIL NIL) (-725 1936368 1944461 1944832 "MYEXPR" 1945700 NIL MYEXPR (NIL NIL T) -8 NIL NIL) (-724 1930318 1931426 1932613 "MULTSQFR" 1935264 NIL MULTSQFR (NIL T T T T) -7 NIL NIL) (-723 1929637 1929712 1929896 "MULTFACT" 1930230 NIL MULTFACT (NIL T T T T) -7 NIL NIL) (-722 1922764 1926673 1926727 "MTSCAT" 1927797 NIL MTSCAT (NIL T T) -9 NIL 1928310) (-721 1922476 1922530 1922622 "MTHING" 1922704 NIL MTHING (NIL T) -7 NIL NIL) (-720 1922268 1922301 1922361 "MSYSCMD" 1922436 T MSYSCMD (NIL) -7 NIL NIL) (-719 1918380 1921023 1921343 "MSET" 1921981 NIL MSET (NIL T) -8 NIL NIL) (-718 1915474 1917940 1917982 "MSETAGG" 1917987 NIL MSETAGG (NIL T) -9 NIL 1918021) (-717 1911323 1912865 1913604 "MRING" 1914780 NIL MRING (NIL T T) -8 NIL NIL) (-716 1910889 1910956 1911087 "MRF2" 1911250 NIL MRF2 (NIL T T T) -7 NIL NIL) (-715 1910507 1910542 1910686 "MRATFAC" 1910848 NIL MRATFAC (NIL T T T T) -7 NIL NIL) (-714 1908119 1908414 1908845 "MPRFF" 1910212 NIL MPRFF (NIL T T T T) -7 NIL NIL) (-713 1902133 1907973 1908070 "MPOLY" 1908075 NIL MPOLY (NIL NIL T) -8 NIL NIL) (-712 1901623 1901658 1901866 "MPCPF" 1902092 NIL MPCPF (NIL T T T T) -7 NIL NIL) (-711 1901137 1901180 1901364 "MPC3" 1901574 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL) (-710 1900332 1900413 1900634 "MPC2" 1901052 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL) (-709 1898633 1898970 1899360 "MONOTOOL" 1899992 NIL MONOTOOL (NIL T T) -7 NIL NIL) (-708 1897756 1898091 1898120 "MONOID" 1898397 T MONOID (NIL) -9 NIL 1898569) (-707 1897134 1897297 1897540 "MONOID-" 1897545 NIL MONOID- (NIL T) -8 NIL NIL) (-706 1888060 1894045 1894105 "MONOGEN" 1894779 NIL MONOGEN (NIL T T) -9 NIL 1895232) (-705 1885278 1886013 1887013 "MONOGEN-" 1887132 NIL MONOGEN- (NIL T T T) -8 NIL NIL) (-704 1884136 1884556 1884585 "MONADWU" 1884977 T MONADWU (NIL) -9 NIL 1885215) (-703 1883508 1883667 1883915 "MONADWU-" 1883920 NIL MONADWU- (NIL T) -8 NIL NIL) (-702 1882892 1883110 1883139 "MONAD" 1883346 T MONAD (NIL) -9 NIL 1883458) (-701 1882577 1882655 1882787 "MONAD-" 1882792 NIL MONAD- (NIL T) -8 NIL NIL) (-700 1880828 1881490 1881769 "MOEBIUS" 1882330 NIL MOEBIUS (NIL T) -8 NIL NIL) (-699 1880219 1880597 1880638 "MODULE" 1880643 NIL MODULE (NIL T) -9 NIL 1880669) (-698 1879787 1879883 1880073 "MODULE-" 1880078 NIL MODULE- (NIL T T) -8 NIL NIL) (-697 1877456 1878151 1878478 "MODRING" 1879611 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL) (-696 1874402 1875567 1876085 "MODOP" 1876988 NIL MODOP (NIL T T) -8 NIL NIL) (-695 1872589 1873041 1873382 "MODMONOM" 1874201 NIL MODMONOM (NIL T T NIL) -8 NIL NIL) (-694 1862254 1870785 1871206 "MODMON" 1872219 NIL MODMON (NIL T T) -8 NIL NIL) (-693 1859380 1861098 1861374 "MODFIELD" 1862129 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL) (-692 1858384 1858661 1858851 "MMLFORM" 1859210 T MMLFORM (NIL) -8 NIL NIL) (-691 1857910 1857953 1858132 "MMAP" 1858335 NIL MMAP (NIL T T T T T T) -7 NIL NIL) (-690 1856135 1856912 1856954 "MLO" 1857377 NIL MLO (NIL T) -9 NIL 1857618) (-689 1853502 1854017 1854619 "MLIFT" 1855616 NIL MLIFT (NIL T T T T) -7 NIL NIL) (-688 1852893 1852977 1853131 "MKUCFUNC" 1853413 NIL MKUCFUNC (NIL T T T) -7 NIL NIL) (-687 1852492 1852562 1852685 "MKRECORD" 1852816 NIL MKRECORD (NIL T T) -7 NIL NIL) (-686 1851540 1851701 1851929 "MKFUNC" 1852303 NIL MKFUNC (NIL T) -7 NIL NIL) (-685 1850928 1851032 1851188 "MKFLCFN" 1851423 NIL MKFLCFN (NIL T) -7 NIL NIL) (-684 1850354 1850721 1850810 "MKCHSET" 1850872 NIL MKCHSET (NIL T) -8 NIL NIL) (-683 1849631 1849733 1849918 "MKBCFUNC" 1850247 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL) (-682 1846315 1849185 1849321 "MINT" 1849515 T MINT (NIL) -8 NIL NIL) (-681 1845127 1845370 1845647 "MHROWRED" 1846070 NIL MHROWRED (NIL T) -7 NIL NIL) (-680 1840394 1843568 1843994 "MFLOAT" 1844721 T MFLOAT (NIL) -8 NIL NIL) (-679 1839751 1839827 1839998 "MFINFACT" 1840306 NIL MFINFACT (NIL T T T T) -7 NIL NIL) (-678 1836066 1836914 1837798 "MESH" 1838887 T MESH (NIL) -7 NIL NIL) (-677 1834456 1834768 1835121 "MDDFACT" 1835753 NIL MDDFACT (NIL T) -7 NIL NIL) (-676 1831338 1833649 1833691 "MDAGG" 1833946 NIL MDAGG (NIL T) -9 NIL 1834089) (-675 1821029 1830631 1830838 "MCMPLX" 1831151 T MCMPLX (NIL) -8 NIL NIL) (-674 1820170 1820316 1820516 "MCDEN" 1820878 NIL MCDEN (NIL T T) -7 NIL NIL) (-673 1818060 1818330 1818710 "MCALCFN" 1819900 NIL MCALCFN (NIL T T T T) -7 NIL NIL) (-672 1815672 1816195 1816757 "MATSTOR" 1817531 NIL MATSTOR (NIL T) -7 NIL NIL) (-671 1811586 1815048 1815294 "MATRIX" 1815459 NIL MATRIX (NIL T) -8 NIL NIL) (-670 1807362 1808065 1808798 "MATLIN" 1810946 NIL MATLIN (NIL T T T T) -7 NIL NIL) (-669 1797127 1800348 1800426 "MATCAT" 1805556 NIL MATCAT (NIL T T T) -9 NIL 1807063) (-668 1793326 1794394 1795805 "MATCAT-" 1795810 NIL MATCAT- (NIL T T T T) -8 NIL NIL) (-667 1791920 1792073 1792406 "MATCAT2" 1793161 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-666 1790660 1790926 1791241 "MAPPKG4" 1791651 NIL MAPPKG4 (NIL T T) -7 NIL NIL) (-665 1788772 1789096 1789480 "MAPPKG3" 1790335 NIL MAPPKG3 (NIL T T T) -7 NIL NIL) (-664 1787753 1787926 1788148 "MAPPKG2" 1788596 NIL MAPPKG2 (NIL T T) -7 NIL NIL) (-663 1786252 1786536 1786863 "MAPPKG1" 1787459 NIL MAPPKG1 (NIL T) -7 NIL NIL) (-662 1785863 1785921 1786044 "MAPHACK3" 1786188 NIL MAPHACK3 (NIL T T T) -7 NIL NIL) (-661 1785455 1785516 1785630 "MAPHACK2" 1785795 NIL MAPHACK2 (NIL T T) -7 NIL NIL) (-660 1784893 1784996 1785138 "MAPHACK1" 1785346 NIL MAPHACK1 (NIL T) -7 NIL NIL) (-659 1782999 1783593 1783897 "MAGMA" 1784621 NIL MAGMA (NIL T) -8 NIL NIL) (-658 1779474 1781240 1781700 "M3D" 1782572 NIL M3D (NIL T) -8 NIL NIL) (-657 1773668 1777874 1777916 "LZSTAGG" 1778698 NIL LZSTAGG (NIL T) -9 NIL 1778993) (-656 1769642 1770799 1772256 "LZSTAGG-" 1772261 NIL LZSTAGG- (NIL T T) -8 NIL NIL) (-655 1766756 1767533 1768020 "LWORD" 1769187 NIL LWORD (NIL T) -8 NIL NIL) (-654 1759911 1766527 1766661 "LSQM" 1766666 NIL LSQM (NIL NIL T) -8 NIL NIL) (-653 1759135 1759274 1759502 "LSPP" 1759766 NIL LSPP (NIL T T T T) -7 NIL NIL) (-652 1756947 1757248 1757704 "LSMP" 1758824 NIL LSMP (NIL T T T T) -7 NIL NIL) (-651 1753726 1754400 1755130 "LSMP1" 1756249 NIL LSMP1 (NIL T) -7 NIL NIL) (-650 1747683 1752916 1752958 "LSAGG" 1753020 NIL LSAGG (NIL T) -9 NIL 1753098) (-649 1744378 1745302 1746515 "LSAGG-" 1746520 NIL LSAGG- (NIL T T) -8 NIL NIL) (-648 1742004 1743522 1743771 "LPOLY" 1744173 NIL LPOLY (NIL T T) -8 NIL NIL) (-647 1741586 1741671 1741794 "LPEFRAC" 1741913 NIL LPEFRAC (NIL T) -7 NIL NIL) (-646 1739150 1739399 1739831 "LPARSPT" 1741328 NIL LPARSPT (NIL T NIL T T T T T) -7 NIL NIL) (-645 1737625 1737952 1738312 "LOP" 1738822 NIL LOP (NIL T) -7 NIL NIL) (-644 1735974 1736721 1736973 "LO" 1737458 NIL LO (NIL T T T) -8 NIL NIL) (-643 1735625 1735737 1735766 "LOGIC" 1735877 T LOGIC (NIL) -9 NIL 1735958) (-642 1735487 1735510 1735581 "LOGIC-" 1735586 NIL LOGIC- (NIL T) -8 NIL NIL) (-641 1734680 1734820 1735013 "LODOOPS" 1735343 NIL LODOOPS (NIL T T) -7 NIL NIL) (-640 1732092 1734596 1734662 "LODO" 1734667 NIL LODO (NIL T NIL) -8 NIL NIL) (-639 1730632 1730867 1731219 "LODOF" 1731840 NIL LODOF (NIL T T) -7 NIL NIL) (-638 1727031 1729472 1729514 "LODOCAT" 1729952 NIL LODOCAT (NIL T) -9 NIL 1730162) (-637 1726764 1726822 1726949 "LODOCAT-" 1726954 NIL LODOCAT- (NIL T T) -8 NIL NIL) (-636 1724073 1726605 1726723 "LODO2" 1726728 NIL LODO2 (NIL T T) -8 NIL NIL) (-635 1721497 1724010 1724055 "LODO1" 1724060 NIL LODO1 (NIL T) -8 NIL NIL) (-634 1720357 1720522 1720834 "LODEEF" 1721320 NIL LODEEF (NIL T T T) -7 NIL NIL) (-633 1713184 1717349 1717390 "LOCPOWC" 1718852 NIL LOCPOWC (NIL T) -9 NIL 1719429) (-632 1708508 1711346 1711388 "LNAGG" 1712335 NIL LNAGG (NIL T) -9 NIL 1712778) (-631 1707655 1707869 1708211 "LNAGG-" 1708216 NIL LNAGG- (NIL T T) -8 NIL NIL) (-630 1703818 1704580 1705219 "LMOPS" 1707070 NIL LMOPS (NIL T T NIL) -8 NIL NIL) (-629 1703212 1703574 1703616 "LMODULE" 1703677 NIL LMODULE (NIL T) -9 NIL 1703719) (-628 1700464 1702857 1702980 "LMDICT" 1703122 NIL LMDICT (NIL T) -8 NIL NIL) (-627 1699621 1699755 1699942 "LISYSER" 1700326 NIL LISYSER (NIL T T) -7 NIL NIL) (-626 1692858 1698571 1698867 "LIST" 1699358 NIL LIST (NIL T) -8 NIL NIL) (-625 1692383 1692457 1692596 "LIST3" 1692778 NIL LIST3 (NIL T T T) -7 NIL NIL) (-624 1691390 1691568 1691796 "LIST2" 1692201 NIL LIST2 (NIL T T) -7 NIL NIL) (-623 1689524 1689836 1690235 "LIST2MAP" 1691037 NIL LIST2MAP (NIL T T) -7 NIL NIL) (-622 1688229 1688909 1688951 "LINEXP" 1689206 NIL LINEXP (NIL T) -9 NIL 1689355) (-621 1686876 1687136 1687433 "LINDEP" 1687981 NIL LINDEP (NIL T T) -7 NIL NIL) (-620 1683643 1684362 1685139 "LIMITRF" 1686131 NIL LIMITRF (NIL T) -7 NIL NIL) (-619 1681920 1682214 1682630 "LIMITPS" 1683338 NIL LIMITPS (NIL T T) -7 NIL NIL) (-618 1676379 1681435 1681661 "LIE" 1681743 NIL LIE (NIL T T) -8 NIL NIL) (-617 1675428 1675871 1675912 "LIECAT" 1676052 NIL LIECAT (NIL T) -9 NIL 1676202) (-616 1675269 1675296 1675384 "LIECAT-" 1675389 NIL LIECAT- (NIL T T) -8 NIL NIL) (-615 1667803 1674648 1674831 "LIB" 1675106 T LIB (NIL) -8 NIL NIL) (-614 1663440 1664321 1665256 "LGROBP" 1666920 NIL LGROBP (NIL NIL T) -7 NIL NIL) (-613 1661306 1661580 1661942 "LF" 1663161 NIL LF (NIL T T) -7 NIL NIL) (-612 1660145 1660837 1660866 "LFCAT" 1661073 T LFCAT (NIL) -9 NIL 1661212) (-611 1657049 1657677 1658365 "LEXTRIPK" 1659509 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL) (-610 1653755 1654619 1655122 "LEXP" 1656629 NIL LEXP (NIL T T NIL) -8 NIL NIL) (-609 1652153 1652466 1652867 "LEADCDET" 1653437 NIL LEADCDET (NIL T T T T) -7 NIL NIL) (-608 1651343 1651417 1651646 "LAZM3PK" 1652074 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL) (-607 1646259 1649426 1649961 "LAUPOL" 1650858 NIL LAUPOL (NIL T T) -8 NIL NIL) (-606 1645824 1645868 1646036 "LAPLACE" 1646209 NIL LAPLACE (NIL T T) -7 NIL NIL) (-605 1643754 1644927 1645177 "LA" 1645658 NIL LA (NIL T T T) -8 NIL NIL) (-604 1642810 1643404 1643446 "LALG" 1643508 NIL LALG (NIL T) -9 NIL 1643567) (-603 1642524 1642583 1642719 "LALG-" 1642724 NIL LALG- (NIL T T) -8 NIL NIL) (-602 1641428 1641615 1641914 "KOVACIC" 1642324 NIL KOVACIC (NIL T T) -7 NIL NIL) (-601 1641262 1641286 1641328 "KONVERT" 1641390 NIL KONVERT (NIL T) -9 NIL NIL) (-600 1641096 1641120 1641162 "KOERCE" 1641224 NIL KOERCE (NIL T) -9 NIL NIL) (-599 1638832 1639592 1639984 "KERNEL" 1640736 NIL KERNEL (NIL T) -8 NIL NIL) (-598 1638334 1638415 1638545 "KERNEL2" 1638746 NIL KERNEL2 (NIL T T) -7 NIL NIL) (-597 1632017 1636699 1636754 "KDAGG" 1637131 NIL KDAGG (NIL T T) -9 NIL 1637337) (-596 1631546 1631670 1631875 "KDAGG-" 1631880 NIL KDAGG- (NIL T T T) -8 NIL NIL) (-595 1624695 1631207 1631362 "KAFILE" 1631424 NIL KAFILE (NIL T) -8 NIL NIL) (-594 1619154 1624210 1624436 "JORDAN" 1624518 NIL JORDAN (NIL T T) -8 NIL NIL) (-593 1615497 1617397 1617452 "IXAGG" 1618381 NIL IXAGG (NIL T T) -9 NIL 1618836) (-592 1614416 1614722 1615141 "IXAGG-" 1615146 NIL IXAGG- (NIL T T T) -8 NIL NIL) (-591 1610002 1614338 1614397 "IVECTOR" 1614402 NIL IVECTOR (NIL T NIL) -8 NIL NIL) (-590 1608768 1609005 1609271 "ITUPLE" 1609769 NIL ITUPLE (NIL T) -8 NIL NIL) (-589 1607204 1607381 1607687 "ITRIGMNP" 1608590 NIL ITRIGMNP (NIL T T T) -7 NIL NIL) (-588 1605949 1606153 1606436 "ITFUN3" 1606980 NIL ITFUN3 (NIL T T T) -7 NIL NIL) (-587 1605581 1605638 1605747 "ITFUN2" 1605886 NIL ITFUN2 (NIL T T) -7 NIL NIL) (-586 1603374 1604445 1604743 "ITAYLOR" 1605316 NIL ITAYLOR (NIL T) -8 NIL NIL) (-585 1592313 1597513 1598675 "ISUPS" 1602245 NIL ISUPS (NIL T) -8 NIL NIL) (-584 1591417 1591557 1591793 "ISUMP" 1592160 NIL ISUMP (NIL T T T T) -7 NIL NIL) (-583 1586687 1591218 1591297 "ISTRING" 1591370 NIL ISTRING (NIL NIL) -8 NIL NIL) (-582 1585897 1585978 1586194 "IRURPK" 1586601 NIL IRURPK (NIL T T T T T) -7 NIL NIL) (-581 1584833 1585034 1585274 "IRSN" 1585677 T IRSN (NIL) -7 NIL NIL) (-580 1582864 1583219 1583654 "IRRF2F" 1584472 NIL IRRF2F (NIL T) -7 NIL NIL) (-579 1582611 1582649 1582725 "IRREDFFX" 1582820 NIL IRREDFFX (NIL T) -7 NIL NIL) (-578 1581226 1581485 1581784 "IROOT" 1582344 NIL IROOT (NIL T) -7 NIL NIL) (-577 1577862 1578914 1579604 "IR" 1580568 NIL IR (NIL T) -8 NIL NIL) (-576 1575475 1575970 1576536 "IR2" 1577340 NIL IR2 (NIL T T) -7 NIL NIL) (-575 1574547 1574660 1574881 "IR2F" 1575358 NIL IR2F (NIL T T) -7 NIL NIL) (-574 1574338 1574372 1574432 "IPRNTPK" 1574507 T IPRNTPK (NIL) -7 NIL NIL) (-573 1570892 1574227 1574296 "IPF" 1574301 NIL IPF (NIL NIL) -8 NIL NIL) (-572 1569209 1570817 1570874 "IPADIC" 1570879 NIL IPADIC (NIL NIL NIL) -8 NIL NIL) (-571 1568706 1568764 1568954 "INVLAPLA" 1569145 NIL INVLAPLA (NIL T T) -7 NIL NIL) (-570 1558355 1560708 1563094 "INTTR" 1566370 NIL INTTR (NIL T T) -7 NIL NIL) (-569 1554713 1555455 1556312 "INTTOOLS" 1557547 NIL INTTOOLS (NIL T T) -7 NIL NIL) (-568 1554299 1554390 1554507 "INTSLPE" 1554616 T INTSLPE (NIL) -7 NIL NIL) (-567 1552249 1554222 1554281 "INTRVL" 1554286 NIL INTRVL (NIL T) -8 NIL NIL) (-566 1549851 1550363 1550938 "INTRF" 1551734 NIL INTRF (NIL T) -7 NIL NIL) (-565 1549262 1549359 1549501 "INTRET" 1549749 NIL INTRET (NIL T) -7 NIL NIL) (-564 1547259 1547648 1548118 "INTRAT" 1548870 NIL INTRAT (NIL T T) -7 NIL NIL) (-563 1544495 1545078 1545700 "INTPM" 1546748 NIL INTPM (NIL T T) -7 NIL NIL) (-562 1541200 1541799 1542543 "INTPAF" 1543882 NIL INTPAF (NIL T T T) -7 NIL NIL) (-561 1536379 1537341 1538392 "INTPACK" 1540169 T INTPACK (NIL) -7 NIL NIL) (-560 1533233 1536108 1536235 "INT" 1536272 T INT (NIL) -8 NIL NIL) (-559 1532485 1532637 1532845 "INTHERTR" 1533075 NIL INTHERTR (NIL T T) -7 NIL NIL) (-558 1531924 1532004 1532192 "INTHERAL" 1532399 NIL INTHERAL (NIL T T T T) -7 NIL NIL) (-557 1529770 1530213 1530670 "INTHEORY" 1531487 T INTHEORY (NIL) -7 NIL NIL) (-556 1521081 1522701 1524479 "INTG0" 1528123 NIL INTG0 (NIL T T T) -7 NIL NIL) (-555 1501654 1506444 1511254 "INTFTBL" 1516291 T INTFTBL (NIL) -8 NIL NIL) (-554 1499691 1499898 1500299 "INTFRSP" 1501444 NIL INTFRSP (NIL T NIL T T T T T T) -7 NIL NIL) (-553 1498940 1499078 1499251 "INTFACT" 1499550 NIL INTFACT (NIL T) -7 NIL NIL) (-552 1498530 1498572 1498723 "INTERGB" 1498892 NIL INTERGB (NIL T NIL T T T) -7 NIL NIL) (-551 1495915 1496361 1496925 "INTEF" 1498084 NIL INTEF (NIL T T) -7 NIL NIL) (-550 1494372 1495121 1495150 "INTDOM" 1495451 T INTDOM (NIL) -9 NIL 1495658) (-549 1493741 1493915 1494157 "INTDOM-" 1494162 NIL INTDOM- (NIL T) -8 NIL NIL) (-548 1492345 1492450 1492840 "INTDIVP" 1493631 NIL INTDIVP (NIL T NIL T T T T T T T T T) -7 NIL NIL) (-547 1488833 1490763 1490818 "INTCAT" 1491617 NIL INTCAT (NIL T) -9 NIL 1491937) (-546 1488306 1488408 1488536 "INTBIT" 1488725 T INTBIT (NIL) -7 NIL NIL) (-545 1486977 1487131 1487445 "INTALG" 1488151 NIL INTALG (NIL T T T T T) -7 NIL NIL) (-544 1486434 1486524 1486694 "INTAF" 1486881 NIL INTAF (NIL T T) -7 NIL NIL) (-543 1479900 1486244 1486384 "INTABL" 1486389 NIL INTABL (NIL T T T) -8 NIL NIL) (-542 1474845 1477571 1477600 "INS" 1478568 T INS (NIL) -9 NIL 1479251) (-541 1472085 1472856 1473830 "INS-" 1473903 NIL INS- (NIL T) -8 NIL NIL) (-540 1470860 1471087 1471385 "INPSIGN" 1471838 NIL INPSIGN (NIL T T) -7 NIL NIL) (-539 1469978 1470095 1470292 "INPRODPF" 1470740 NIL INPRODPF (NIL T T) -7 NIL NIL) (-538 1468872 1468989 1469226 "INPRODFF" 1469858 NIL INPRODFF (NIL T T T T) -7 NIL NIL) (-537 1467872 1468024 1468284 "INNMFACT" 1468708 NIL INNMFACT (NIL T T T T) -7 NIL NIL) (-536 1467069 1467166 1467354 "INMODGCD" 1467771 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL) (-535 1465578 1465822 1466146 "INFSP" 1466814 NIL INFSP (NIL T T T) -7 NIL NIL) (-534 1464762 1464879 1465062 "INFPROD0" 1465458 NIL INFPROD0 (NIL T T) -7 NIL NIL) (-533 1461643 1462827 1463342 "INFORM" 1464255 T INFORM (NIL) -8 NIL NIL) (-532 1461253 1461313 1461411 "INFORM1" 1461578 NIL INFORM1 (NIL T) -7 NIL NIL) (-531 1460776 1460865 1460979 "INFINITY" 1461159 T INFINITY (NIL) -7 NIL NIL) (-530 1458459 1459456 1459799 "INFCLSPT" 1460636 NIL INFCLSPT (NIL T NIL T T T T T T T) -8 NIL NIL) (-529 1456336 1457581 1457875 "INFCLSPS" 1458229 NIL INFCLSPS (NIL T NIL T) -8 NIL NIL) (-528 1449264 1450187 1450408 "INFCLCT" 1455461 NIL INFCLCT (NIL T NIL T T T T T T T) -9 NIL 1456272) (-527 1447882 1448130 1448451 "INEP" 1449012 NIL INEP (NIL T T T) -7 NIL NIL) (-526 1447158 1447779 1447844 "INDE" 1447849 NIL INDE (NIL T) -8 NIL NIL) (-525 1446722 1446790 1446907 "INCRMAPS" 1447085 NIL INCRMAPS (NIL T) -7 NIL NIL) (-524 1442033 1442958 1443902 "INBFF" 1445810 NIL INBFF (NIL T) -7 NIL NIL) (-523 1438428 1441877 1441981 "IMATRIX" 1441986 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL) (-522 1437142 1437265 1437579 "IMATQF" 1438285 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL) (-521 1435364 1435591 1435927 "IMATLIN" 1436899 NIL IMATLIN (NIL T T T T) -7 NIL NIL) (-520 1429996 1435288 1435346 "ILIST" 1435351 NIL ILIST (NIL T NIL) -8 NIL NIL) (-519 1427955 1429856 1429969 "IIARRAY2" 1429974 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL) (-518 1423323 1427866 1427930 "IFF" 1427935 NIL IFF (NIL NIL NIL) -8 NIL NIL) (-517 1418372 1422615 1422803 "IFARRAY" 1423180 NIL IFARRAY (NIL T NIL) -8 NIL NIL) (-516 1417579 1418276 1418349 "IFAMON" 1418354 NIL IFAMON (NIL T T NIL) -8 NIL NIL) (-515 1417162 1417227 1417282 "IEVALAB" 1417489 NIL IEVALAB (NIL T T) -9 NIL NIL) (-514 1416837 1416905 1417065 "IEVALAB-" 1417070 NIL IEVALAB- (NIL T T T) -8 NIL NIL) (-513 1416495 1416751 1416814 "IDPO" 1416819 NIL IDPO (NIL T T) -8 NIL NIL) (-512 1415772 1416384 1416459 "IDPOAMS" 1416464 NIL IDPOAMS (NIL T T) -8 NIL NIL) (-511 1415106 1415661 1415736 "IDPOAM" 1415741 NIL IDPOAM (NIL T T) -8 NIL NIL) (-510 1414190 1414440 1414494 "IDPC" 1414907 NIL IDPC (NIL T T) -9 NIL 1415056) (-509 1413686 1414082 1414155 "IDPAM" 1414160 NIL IDPAM (NIL T T) -8 NIL NIL) (-508 1413089 1413578 1413651 "IDPAG" 1413656 NIL IDPAG (NIL T T) -8 NIL NIL) (-507 1409344 1410192 1411087 "IDECOMP" 1412246 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL) (-506 1402220 1403269 1404315 "IDEAL" 1408381 NIL IDEAL (NIL T T T T) -8 NIL NIL) (-505 1400237 1401384 1401657 "ICP" 1402011 NIL ICP (NIL T NIL T) -8 NIL NIL) (-504 1399401 1399513 1399712 "ICDEN" 1400121 NIL ICDEN (NIL T T T T) -7 NIL NIL) (-503 1398500 1398881 1399028 "ICARD" 1399274 T ICARD (NIL) -8 NIL NIL) (-502 1396560 1396873 1397278 "IBPTOOLS" 1398177 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL) (-501 1392174 1396180 1396293 "IBITS" 1396479 NIL IBITS (NIL NIL) -8 NIL NIL) (-500 1388897 1389473 1390168 "IBATOOL" 1391591 NIL IBATOOL (NIL T T T) -7 NIL NIL) (-499 1386677 1387138 1387671 "IBACHIN" 1388432 NIL IBACHIN (NIL T T T) -7 NIL NIL) (-498 1384560 1386523 1386626 "IARRAY2" 1386631 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL) (-497 1380719 1384486 1384543 "IARRAY1" 1384548 NIL IARRAY1 (NIL T NIL) -8 NIL NIL) (-496 1374649 1379131 1379612 "IAN" 1380258 T IAN (NIL) -8 NIL NIL) (-495 1374160 1374217 1374390 "IALGFACT" 1374586 NIL IALGFACT (NIL T T T T) -7 NIL NIL) (-494 1373687 1373800 1373829 "HYPCAT" 1374036 T HYPCAT (NIL) -9 NIL NIL) (-493 1373225 1373342 1373528 "HYPCAT-" 1373533 NIL HYPCAT- (NIL T) -8 NIL NIL) (-492 1370014 1371339 1371381 "HOAGG" 1372362 NIL HOAGG (NIL T) -9 NIL 1372971) (-491 1368608 1369007 1369533 "HOAGG-" 1369538 NIL HOAGG- (NIL T T) -8 NIL NIL) (-490 1362430 1368049 1368215 "HEXADEC" 1368462 T HEXADEC (NIL) -8 NIL NIL) (-489 1361178 1361400 1361663 "HEUGCD" 1362207 NIL HEUGCD (NIL T) -7 NIL NIL) (-488 1360281 1361015 1361145 "HELLFDIV" 1361150 NIL HELLFDIV (NIL T T T T) -8 NIL NIL) (-487 1353998 1355541 1356622 "HEAP" 1359232 NIL HEAP (NIL T) -8 NIL NIL) (-486 1347836 1353913 1353975 "HDP" 1353980 NIL HDP (NIL NIL T) -8 NIL NIL) (-485 1341541 1347471 1347623 "HDMP" 1347737 NIL HDMP (NIL NIL T) -8 NIL NIL) (-484 1340866 1341005 1341169 "HB" 1341397 T HB (NIL) -7 NIL NIL) (-483 1334375 1340712 1340816 "HASHTBL" 1340821 NIL HASHTBL (NIL T T NIL) -8 NIL NIL) (-482 1332122 1333997 1334179 "HACKPI" 1334213 T HACKPI (NIL) -8 NIL NIL) (-481 1314270 1318139 1322142 "GUESSUP" 1328152 NIL GUESSUP (NIL NIL) -7 NIL NIL) (-480 1285367 1292408 1299104 "GUESSP" 1307594 T GUESSP (NIL) -7 NIL NIL) (-479 1252182 1257453 1262837 "GUESS" 1280311 NIL GUESS (NIL T T T T NIL NIL) -7 NIL NIL) (-478 1225687 1232084 1238220 "GUESSINT" 1246066 T GUESSINT (NIL) -7 NIL NIL) (-477 1201058 1206508 1212075 "GUESSF" 1220172 NIL GUESSF (NIL T) -7 NIL NIL) (-476 1200780 1200817 1200912 "GUESSF1" 1201015 NIL GUESSF1 (NIL T) -7 NIL NIL) (-475 1176941 1182475 1188090 "GUESSAN" 1195185 T GUESSAN (NIL) -7 NIL NIL) (-474 1172636 1176794 1176907 "GTSET" 1176912 NIL GTSET (NIL T T T T) -8 NIL NIL) (-473 1166174 1172514 1172612 "GSTBL" 1172617 NIL GSTBL (NIL T T T NIL) -8 NIL NIL) (-472 1158404 1165207 1165471 "GSERIES" 1165966 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL) (-471 1157425 1157878 1157907 "GROUP" 1158168 T GROUP (NIL) -9 NIL 1158327) (-470 1156541 1156764 1157108 "GROUP-" 1157113 NIL GROUP- (NIL T) -8 NIL NIL) (-469 1154910 1155229 1155616 "GROEBSOL" 1156218 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL) (-468 1153849 1154111 1154163 "GRMOD" 1154692 NIL GRMOD (NIL T T) -9 NIL 1154860) (-467 1153617 1153653 1153781 "GRMOD-" 1153786 NIL GRMOD- (NIL T T T) -8 NIL NIL) (-466 1148946 1149971 1150971 "GRIMAGE" 1152637 T GRIMAGE (NIL) -8 NIL NIL) (-465 1147413 1147673 1147997 "GRDEF" 1148642 T GRDEF (NIL) -7 NIL NIL) (-464 1146857 1146973 1147114 "GRAY" 1147292 T GRAY (NIL) -7 NIL NIL) (-463 1146087 1146467 1146519 "GRALG" 1146672 NIL GRALG (NIL T T) -9 NIL 1146765) (-462 1145748 1145821 1145984 "GRALG-" 1145989 NIL GRALG- (NIL T T T) -8 NIL NIL) (-461 1142552 1145333 1145511 "GPOLSET" 1145655 NIL GPOLSET (NIL T T T T) -8 NIL NIL) (-460 1124755 1126245 1127834 "GPAFF" 1141243 NIL GPAFF (NIL T NIL T T T T T T T T T) -7 NIL NIL) (-459 1124109 1124166 1124424 "GOSPER" 1124692 NIL GOSPER (NIL T T T T T) -7 NIL NIL) (-458 1121502 1122096 1122585 "GOPT" 1123640 T GOPT (NIL) -8 NIL NIL) (-457 1118723 1119364 1119901 "GOPT0" 1120985 T GOPT0 (NIL) -8 NIL NIL) (-456 1114482 1115161 1115687 "GMODPOL" 1118422 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL) (-455 1113487 1113671 1113909 "GHENSEL" 1114294 NIL GHENSEL (NIL T T) -7 NIL NIL) (-454 1107538 1108381 1109408 "GENUPS" 1112571 NIL GENUPS (NIL T T) -7 NIL NIL) (-453 1107235 1107286 1107375 "GENUFACT" 1107481 NIL GENUFACT (NIL T) -7 NIL NIL) (-452 1106647 1106724 1106889 "GENPGCD" 1107153 NIL GENPGCD (NIL T T T T) -7 NIL NIL) (-451 1106121 1106156 1106369 "GENMFACT" 1106606 NIL GENMFACT (NIL T T T T T) -7 NIL NIL) (-450 1104689 1104944 1105251 "GENEEZ" 1105864 NIL GENEEZ (NIL T T) -7 NIL NIL) (-449 1098556 1104300 1104462 "GDMP" 1104612 NIL GDMP (NIL NIL T T) -8 NIL NIL) (-448 1087940 1092329 1093434 "GCNAALG" 1097540 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL) (-447 1086357 1087229 1087258 "GCDDOM" 1087513 T GCDDOM (NIL) -9 NIL 1087670) (-446 1085827 1085954 1086169 "GCDDOM-" 1086174 NIL GCDDOM- (NIL T) -8 NIL NIL) (-445 1084501 1084686 1084989 "GB" 1085607 NIL GB (NIL T T T T) -7 NIL NIL) (-444 1073121 1075447 1077839 "GBINTERN" 1082192 NIL GBINTERN (NIL T T T T) -7 NIL NIL) (-443 1070958 1071250 1071671 "GBF" 1072796 NIL GBF (NIL T T T T) -7 NIL NIL) (-442 1069739 1069904 1070171 "GBEUCLID" 1070774 NIL GBEUCLID (NIL T T T T) -7 NIL NIL) (-441 1069088 1069213 1069362 "GAUSSFAC" 1069610 T GAUSSFAC (NIL) -7 NIL NIL) (-440 1067457 1067759 1068072 "GALUTIL" 1068808 NIL GALUTIL (NIL T) -7 NIL NIL) (-439 1065765 1066039 1066363 "GALPOLYU" 1067184 NIL GALPOLYU (NIL T T) -7 NIL NIL) (-438 1063130 1063420 1063827 "GALFACTU" 1065462 NIL GALFACTU (NIL T T T) -7 NIL NIL) (-437 1054936 1056435 1058043 "GALFACT" 1061562 NIL GALFACT (NIL T) -7 NIL NIL) (-436 1052324 1052981 1053010 "FVFUN" 1054166 T FVFUN (NIL) -9 NIL 1054886) (-435 1051590 1051771 1051800 "FVC" 1052091 T FVC (NIL) -9 NIL 1052274) (-434 1051232 1051387 1051468 "FUNCTION" 1051542 NIL FUNCTION (NIL NIL) -8 NIL NIL) (-433 1048902 1049453 1049942 "FT" 1050763 T FT (NIL) -8 NIL NIL) (-432 1047694 1048203 1048406 "FTEM" 1048719 T FTEM (NIL) -8 NIL NIL) (-431 1045952 1046241 1046644 "FSUPFACT" 1047386 NIL FSUPFACT (NIL T T T) -7 NIL NIL) (-430 1044349 1044638 1044970 "FST" 1045640 T FST (NIL) -8 NIL NIL) (-429 1043520 1043626 1043821 "FSRED" 1044231 NIL FSRED (NIL T T) -7 NIL NIL) (-428 1042201 1042456 1042809 "FSPRMELT" 1043236 NIL FSPRMELT (NIL T T) -7 NIL NIL) (-427 1037567 1038272 1039029 "FSPECF" 1041506 NIL FSPECF (NIL T T) -7 NIL NIL) (-426 1019825 1028414 1028455 "FS" 1032303 NIL FS (NIL T) -9 NIL 1034581) (-425 1008475 1011465 1015521 "FS-" 1015818 NIL FS- (NIL T T) -8 NIL NIL) (-424 1007989 1008043 1008220 "FSINT" 1008416 NIL FSINT (NIL T T) -7 NIL NIL) (-423 1006274 1006986 1007287 "FSERIES" 1007770 NIL FSERIES (NIL T T) -8 NIL NIL) (-422 1005288 1005404 1005635 "FSCINT" 1006154 NIL FSCINT (NIL T T) -7 NIL NIL) (-421 1001523 1004233 1004275 "FSAGG" 1004645 NIL FSAGG (NIL T) -9 NIL 1004902) (-420 999285 999886 1000682 "FSAGG-" 1000777 NIL FSAGG- (NIL T T) -8 NIL NIL) (-419 998327 998470 998697 "FSAGG2" 999138 NIL FSAGG2 (NIL T T T T) -7 NIL NIL) (-418 995982 996261 996815 "FS2UPS" 998045 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL) (-417 995564 995607 995762 "FS2" 995933 NIL FS2 (NIL T T T T) -7 NIL NIL) (-416 994421 994592 994901 "FS2EXPXP" 995389 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL) (-415 993847 993962 994114 "FRUTIL" 994301 NIL FRUTIL (NIL T) -7 NIL NIL) (-414 985273 989358 990708 "FR" 992529 NIL FR (NIL T) -8 NIL NIL) (-413 980353 982991 983032 "FRNAALG" 984428 NIL FRNAALG (NIL T) -9 NIL 985034) (-412 976032 977102 978377 "FRNAALG-" 979127 NIL FRNAALG- (NIL T T) -8 NIL NIL) (-411 975670 975713 975840 "FRNAAF2" 975983 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL) (-410 974033 974526 974820 "FRMOD" 975483 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL) (-409 971748 972416 972733 "FRIDEAL" 973824 NIL FRIDEAL (NIL T T T T) -8 NIL NIL) (-408 970943 971030 971319 "FRIDEAL2" 971655 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL) (-407 970186 970600 970642 "FRETRCT" 970647 NIL FRETRCT (NIL T) -9 NIL 970821) (-406 969298 969529 969880 "FRETRCT-" 969885 NIL FRETRCT- (NIL T T) -8 NIL NIL) (-405 966503 967723 967783 "FRAMALG" 968665 NIL FRAMALG (NIL T T) -9 NIL 968957) (-404 964636 965092 965722 "FRAMALG-" 965945 NIL FRAMALG- (NIL T T T) -8 NIL NIL) (-403 958539 964121 964392 "FRAC" 964397 NIL FRAC (NIL T) -8 NIL NIL) (-402 958175 958232 958339 "FRAC2" 958476 NIL FRAC2 (NIL T T) -7 NIL NIL) (-401 957811 957868 957975 "FR2" 958112 NIL FR2 (NIL T T) -7 NIL NIL) (-400 952434 955343 955372 "FPS" 956491 T FPS (NIL) -9 NIL 957045) (-399 951883 951992 952156 "FPS-" 952302 NIL FPS- (NIL T) -8 NIL NIL) (-398 949279 950976 951005 "FPC" 951230 T FPC (NIL) -9 NIL 951372) (-397 949072 949112 949209 "FPC-" 949214 NIL FPC- (NIL T) -8 NIL NIL) (-396 947951 948561 948603 "FPATMAB" 948608 NIL FPATMAB (NIL T) -9 NIL 948758) (-395 945651 946127 946553 "FPARFRAC" 947588 NIL FPARFRAC (NIL T T) -8 NIL NIL) (-394 941046 941543 942225 "FORTRAN" 945083 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL) (-393 938762 939262 939801 "FORT" 940527 T FORT (NIL) -7 NIL NIL) (-392 936438 936999 937028 "FORTFN" 938088 T FORTFN (NIL) -9 NIL 938712) (-391 936201 936251 936280 "FORTCAT" 936339 T FORTCAT (NIL) -9 NIL 936401) (-390 934261 934744 935143 "FORMULA" 935822 T FORMULA (NIL) -8 NIL NIL) (-389 934049 934079 934148 "FORMULA1" 934225 NIL FORMULA1 (NIL T) -7 NIL NIL) (-388 933572 933624 933797 "FORDER" 933991 NIL FORDER (NIL T T T T) -7 NIL NIL) (-387 932668 932832 933025 "FOP" 933399 T FOP (NIL) -7 NIL NIL) (-386 931276 931948 932122 "FNLA" 932550 NIL FNLA (NIL NIL NIL T) -8 NIL NIL) (-385 929943 930332 930361 "FNCAT" 930933 T FNCAT (NIL) -9 NIL 931226) (-384 929509 929902 929930 "FNAME" 929935 T FNAME (NIL) -8 NIL NIL) (-383 928162 929135 929164 "FMTC" 929169 T FMTC (NIL) -9 NIL 929205) (-382 924480 925687 926315 "FMONOID" 927567 NIL FMONOID (NIL T) -8 NIL NIL) (-381 923701 924224 924372 "FM" 924377 NIL FM (NIL T T) -8 NIL NIL) (-380 921125 921770 921799 "FMFUN" 922943 T FMFUN (NIL) -9 NIL 923651) (-379 920394 920574 920603 "FMC" 920893 T FMC (NIL) -9 NIL 921075) (-378 917606 918440 918495 "FMCAT" 919690 NIL FMCAT (NIL T T) -9 NIL 920184) (-377 916499 917372 917472 "FM1" 917551 NIL FM1 (NIL T T) -8 NIL NIL) (-376 914273 914689 915183 "FLOATRP" 916050 NIL FLOATRP (NIL T) -7 NIL NIL) (-375 907760 911929 912559 "FLOAT" 913663 T FLOAT (NIL) -8 NIL NIL) (-374 905198 905698 906276 "FLOATCP" 907227 NIL FLOATCP (NIL T) -7 NIL NIL) (-373 903983 904831 904873 "FLINEXP" 904878 NIL FLINEXP (NIL T) -9 NIL 904970) (-372 903137 903372 903700 "FLINEXP-" 903705 NIL FLINEXP- (NIL T T) -8 NIL NIL) (-371 902213 902357 902581 "FLASORT" 902989 NIL FLASORT (NIL T T) -7 NIL NIL) (-370 899429 900271 900324 "FLALG" 901551 NIL FLALG (NIL T T) -9 NIL 902018) (-369 893248 896942 896984 "FLAGG" 898246 NIL FLAGG (NIL T) -9 NIL 898894) (-368 891974 892313 892803 "FLAGG-" 892808 NIL FLAGG- (NIL T T) -8 NIL NIL) (-367 891016 891159 891386 "FLAGG2" 891827 NIL FLAGG2 (NIL T T T T) -7 NIL NIL) (-366 887987 889005 889065 "FINRALG" 890193 NIL FINRALG (NIL T T) -9 NIL 890698) (-365 887147 887376 887715 "FINRALG-" 887720 NIL FINRALG- (NIL T T T) -8 NIL NIL) (-364 886552 886765 886794 "FINITE" 886990 T FINITE (NIL) -9 NIL 887097) (-363 879010 881171 881212 "FINAALG" 884879 NIL FINAALG (NIL T) -9 NIL 886331) (-362 874350 875392 876536 "FINAALG-" 877915 NIL FINAALG- (NIL T T) -8 NIL NIL) (-361 873720 874105 874208 "FILE" 874280 NIL FILE (NIL T) -8 NIL NIL) (-360 872260 872597 872652 "FILECAT" 873430 NIL FILECAT (NIL T T) -9 NIL 873670) (-359 870070 871626 871655 "FIELD" 871695 T FIELD (NIL) -9 NIL 871775) (-358 868690 869075 869586 "FIELD-" 869591 NIL FIELD- (NIL T) -8 NIL NIL) (-357 866503 867325 867672 "FGROUP" 868376 NIL FGROUP (NIL T) -8 NIL NIL) (-356 865593 865757 865977 "FGLMICPK" 866335 NIL FGLMICPK (NIL T NIL) -7 NIL NIL) (-355 861395 865518 865575 "FFX" 865580 NIL FFX (NIL T NIL) -8 NIL NIL) (-354 860935 861002 861124 "FFSQFR" 861323 NIL FFSQFR (NIL T T) -7 NIL NIL) (-353 860536 860597 860732 "FFSLPE" 860868 NIL FFSLPE (NIL T T T) -7 NIL NIL) (-352 856532 857308 858104 "FFPOLY" 859772 NIL FFPOLY (NIL T) -7 NIL NIL) (-351 856036 856072 856281 "FFPOLY2" 856490 NIL FFPOLY2 (NIL T T) -7 NIL NIL) (-350 851858 855955 856018 "FFP" 856023 NIL FFP (NIL T NIL) -8 NIL NIL) (-349 847226 851769 851833 "FF" 851838 NIL FF (NIL NIL NIL) -8 NIL NIL) (-348 842322 846569 846759 "FFNBX" 847080 NIL FFNBX (NIL T NIL) -8 NIL NIL) (-347 837232 841457 841715 "FFNBP" 842176 NIL FFNBP (NIL T NIL) -8 NIL NIL) (-346 831835 836516 836727 "FFNB" 837065 NIL FFNB (NIL NIL NIL) -8 NIL NIL) (-345 830667 830865 831180 "FFINTBAS" 831632 NIL FFINTBAS (NIL T T T) -7 NIL NIL) (-344 826843 829078 829107 "FFIELDC" 829727 T FFIELDC (NIL) -9 NIL 830103) (-343 825506 825876 826373 "FFIELDC-" 826378 NIL FFIELDC- (NIL T) -8 NIL NIL) (-342 825076 825121 825245 "FFHOM" 825448 NIL FFHOM (NIL T T T) -7 NIL NIL) (-341 822774 823258 823775 "FFF" 824591 NIL FFF (NIL T) -7 NIL NIL) (-340 818470 819235 820079 "FFFG" 821998 NIL FFFG (NIL T T) -7 NIL NIL) (-339 817196 817405 817727 "FFFGF" 818248 NIL FFFGF (NIL T T T) -7 NIL NIL) (-338 815947 816144 816392 "FFFACTSE" 816998 NIL FFFACTSE (NIL T T) -7 NIL NIL) (-337 811535 815689 815790 "FFCGX" 815890 NIL FFCGX (NIL T NIL) -8 NIL NIL) (-336 807137 811267 811374 "FFCGP" 811478 NIL FFCGP (NIL T NIL) -8 NIL NIL) (-335 802290 806864 806972 "FFCG" 807073 NIL FFCG (NIL NIL NIL) -8 NIL NIL) (-334 784079 793201 793288 "FFCAT" 798453 NIL FFCAT (NIL T T T) -9 NIL 799938) (-333 779277 780324 781638 "FFCAT-" 782868 NIL FFCAT- (NIL T T T T) -8 NIL NIL) (-332 778688 778731 778966 "FFCAT2" 779228 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-331 767858 771664 772882 "FEXPR" 777542 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL) (-330 766860 767295 767337 "FEVALAB" 767421 NIL FEVALAB (NIL T) -9 NIL 767679) (-329 766019 766229 766567 "FEVALAB-" 766572 NIL FEVALAB- (NIL T T) -8 NIL NIL) (-328 764612 765402 765605 "FDIV" 765918 NIL FDIV (NIL T T T T) -8 NIL NIL) (-327 761677 762392 762508 "FDIVCAT" 764076 NIL FDIVCAT (NIL T T T T) -9 NIL 764513) (-326 761439 761466 761636 "FDIVCAT-" 761641 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL) (-325 760659 760746 761023 "FDIV2" 761346 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL) (-324 759345 759604 759893 "FCPAK1" 760390 T FCPAK1 (NIL) -7 NIL NIL) (-323 758473 758845 758986 "FCOMP" 759236 NIL FCOMP (NIL T) -8 NIL NIL) (-322 742101 745516 749079 "FC" 754930 T FC (NIL) -8 NIL NIL) (-321 734645 738688 738729 "FAXF" 740531 NIL FAXF (NIL T) -9 NIL 741222) (-320 731925 732579 733404 "FAXF-" 733869 NIL FAXF- (NIL T T) -8 NIL NIL) (-319 727031 731301 731477 "FARRAY" 731782 NIL FARRAY (NIL T) -8 NIL NIL) (-318 722349 724425 724479 "FAMR" 725502 NIL FAMR (NIL T T) -9 NIL 725959) (-317 721239 721541 721976 "FAMR-" 721981 NIL FAMR- (NIL T T T) -8 NIL NIL) (-316 720827 720870 721021 "FAMR2" 721190 NIL FAMR2 (NIL T T T T T) -7 NIL NIL) (-315 720023 720749 720802 "FAMONOID" 720807 NIL FAMONOID (NIL T) -8 NIL NIL) (-314 717853 718537 718591 "FAMONC" 719532 NIL FAMONC (NIL T T) -9 NIL 719917) (-313 716547 717609 717745 "FAGROUP" 717750 NIL FAGROUP (NIL T) -8 NIL NIL) (-312 714342 714661 715064 "FACUTIL" 716228 NIL FACUTIL (NIL T T T T) -7 NIL NIL) (-311 713758 713867 714013 "FACTRN" 714228 NIL FACTRN (NIL T) -7 NIL NIL) (-310 712857 713042 713264 "FACTFUNC" 713568 NIL FACTFUNC (NIL T) -7 NIL NIL) (-309 712273 712382 712528 "FACTEXT" 712743 NIL FACTEXT (NIL T) -7 NIL NIL) (-308 704593 711524 711736 "EXPUPXS" 712129 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL) (-307 702076 702616 703202 "EXPRTUBE" 704027 T EXPRTUBE (NIL) -7 NIL NIL) (-306 701247 701342 701562 "EXPRSOL" 701976 NIL EXPRSOL (NIL T T T T) -7 NIL NIL) (-305 697441 698033 698770 "EXPRODE" 700586 NIL EXPRODE (NIL T T) -7 NIL NIL) (-304 682542 696102 696527 "EXPR" 697048 NIL EXPR (NIL T) -8 NIL NIL) (-303 676949 677536 678349 "EXPR2UPS" 681840 NIL EXPR2UPS (NIL T T) -7 NIL NIL) (-302 676585 676642 676749 "EXPR2" 676886 NIL EXPR2 (NIL T T) -7 NIL NIL) (-301 667925 675717 676014 "EXPEXPAN" 676422 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL) (-300 667752 667882 667911 "EXIT" 667916 T EXIT (NIL) -8 NIL NIL) (-299 667379 667441 667554 "EVALCYC" 667684 NIL EVALCYC (NIL T) -7 NIL NIL) (-298 666921 667037 667079 "EVALAB" 667249 NIL EVALAB (NIL T) -9 NIL 667353) (-297 666402 666524 666745 "EVALAB-" 666750 NIL EVALAB- (NIL T T) -8 NIL NIL) (-296 663860 665172 665201 "EUCDOM" 665756 T EUCDOM (NIL) -9 NIL 666106) (-295 662265 662707 663297 "EUCDOM-" 663302 NIL EUCDOM- (NIL T) -8 NIL NIL) (-294 649805 652563 655313 "ESTOOLS" 659535 T ESTOOLS (NIL) -7 NIL NIL) (-293 649437 649494 649603 "ESTOOLS2" 649742 NIL ESTOOLS2 (NIL T T) -7 NIL NIL) (-292 649188 649230 649310 "ESTOOLS1" 649389 NIL ESTOOLS1 (NIL T) -7 NIL NIL) (-291 643114 644842 644871 "ES" 647639 T ES (NIL) -9 NIL 649046) (-290 638062 639348 641165 "ES-" 641329 NIL ES- (NIL T) -8 NIL NIL) (-289 634437 635197 635977 "ESCONT" 637302 T ESCONT (NIL) -7 NIL NIL) (-288 634182 634214 634296 "ESCONT1" 634399 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL) (-287 633857 633907 634007 "ES2" 634126 NIL ES2 (NIL T T) -7 NIL NIL) (-286 633487 633545 633654 "ES1" 633793 NIL ES1 (NIL T T) -7 NIL NIL) (-285 632703 632832 633008 "ERROR" 633331 T ERROR (NIL) -7 NIL NIL) (-284 626218 632562 632653 "EQTBL" 632658 NIL EQTBL (NIL T T) -8 NIL NIL) (-283 618677 621560 622995 "EQ" 624816 NIL -3211 (NIL T) -8 NIL NIL) (-282 618309 618366 618475 "EQ2" 618614 NIL EQ2 (NIL T T) -7 NIL NIL) (-281 613601 614647 615740 "EP" 617248 NIL EP (NIL T) -7 NIL NIL) (-280 612755 613319 613348 "ENTIRER" 613353 T ENTIRER (NIL) -9 NIL 613399) (-279 609211 610710 611080 "EMR" 612554 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL) (-278 608357 608540 608595 "ELTAGG" 608975 NIL ELTAGG (NIL T T) -9 NIL 609185) (-277 608076 608138 608279 "ELTAGG-" 608284 NIL ELTAGG- (NIL T T T) -8 NIL NIL) (-276 607864 607893 607948 "ELTAB" 608032 NIL ELTAB (NIL T T) -9 NIL NIL) (-275 606990 607136 607335 "ELFUTS" 607715 NIL ELFUTS (NIL T T) -7 NIL NIL) (-274 606731 606787 606816 "ELEMFUN" 606921 T ELEMFUN (NIL) -9 NIL NIL) (-273 606601 606622 606690 "ELEMFUN-" 606695 NIL ELEMFUN- (NIL T) -8 NIL NIL) (-272 601531 604734 604776 "ELAGG" 605716 NIL ELAGG (NIL T) -9 NIL 606177) (-271 599816 600250 600913 "ELAGG-" 600918 NIL ELAGG- (NIL T T) -8 NIL NIL) (-270 592686 594485 595311 "EFUPXS" 599093 NIL EFUPXS (NIL T T T T) -8 NIL NIL) (-269 586138 587939 588748 "EFULS" 591963 NIL EFULS (NIL T T T) -8 NIL NIL) (-268 583560 583918 584397 "EFSTRUC" 585770 NIL EFSTRUC (NIL T T) -7 NIL NIL) (-267 572632 574197 575757 "EF" 582075 NIL EF (NIL T T) -7 NIL NIL) (-266 571733 572117 572266 "EAB" 572503 T EAB (NIL) -8 NIL NIL) (-265 570942 571692 571720 "E04UCFA" 571725 T E04UCFA (NIL) -8 NIL NIL) (-264 570151 570901 570929 "E04NAFA" 570934 T E04NAFA (NIL) -8 NIL NIL) (-263 569360 570110 570138 "E04MBFA" 570143 T E04MBFA (NIL) -8 NIL NIL) (-262 568569 569319 569347 "E04JAFA" 569352 T E04JAFA (NIL) -8 NIL NIL) (-261 567780 568528 568556 "E04GCFA" 568561 T E04GCFA (NIL) -8 NIL NIL) (-260 566991 567739 567767 "E04FDFA" 567772 T E04FDFA (NIL) -8 NIL NIL) (-259 566200 566950 566978 "E04DGFA" 566983 T E04DGFA (NIL) -8 NIL NIL) (-258 560379 561725 563089 "E04AGNT" 564856 T E04AGNT (NIL) -7 NIL NIL) (-257 559102 559582 559623 "DVARCAT" 560098 NIL DVARCAT (NIL T) -9 NIL 560297) (-256 558306 558518 558832 "DVARCAT-" 558837 NIL DVARCAT- (NIL T T) -8 NIL NIL) (-255 551275 551757 552506 "DTP" 557837 NIL DTP (NIL T NIL T T T T T T T T T) -7 NIL NIL) (-254 548724 550697 550854 "DSTREE" 551151 NIL DSTREE (NIL T) -8 NIL NIL) (-253 546193 548038 548080 "DSTRCAT" 548299 NIL DSTRCAT (NIL T) -9 NIL 548433) (-252 539047 545992 546121 "DSMP" 546126 NIL DSMP (NIL T T T) -8 NIL NIL) (-251 533857 534992 536060 "DROPT" 537999 T DROPT (NIL) -8 NIL NIL) (-250 533522 533581 533679 "DROPT1" 533792 NIL DROPT1 (NIL T) -7 NIL NIL) (-249 528637 529763 530900 "DROPT0" 532405 T DROPT0 (NIL) -7 NIL NIL) (-248 526982 527307 527693 "DRAWPT" 528271 T DRAWPT (NIL) -7 NIL NIL) (-247 521569 522492 523571 "DRAW" 525956 NIL DRAW (NIL T) -7 NIL NIL) (-246 521202 521255 521373 "DRAWHACK" 521510 NIL DRAWHACK (NIL T) -7 NIL NIL) (-245 519933 520202 520493 "DRAWCX" 520931 T DRAWCX (NIL) -7 NIL NIL) (-244 519449 519517 519668 "DRAWCURV" 519859 NIL DRAWCURV (NIL T T) -7 NIL NIL) (-243 509921 511879 513994 "DRAWCFUN" 517354 T DRAWCFUN (NIL) -7 NIL NIL) (-242 506774 508650 508692 "DQAGG" 509321 NIL DQAGG (NIL T) -9 NIL 509594) (-241 495202 501943 502027 "DPOLCAT" 503879 NIL DPOLCAT (NIL T T T T) -9 NIL 504423) (-240 490041 491387 493345 "DPOLCAT-" 493350 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL) (-239 482780 489902 490000 "DPMO" 490005 NIL DPMO (NIL NIL T T) -8 NIL NIL) (-238 475422 482560 482727 "DPMM" 482732 NIL DPMM (NIL NIL T T T) -8 NIL NIL) (-237 469127 475057 475209 "DMP" 475323 NIL DMP (NIL NIL T) -8 NIL NIL) (-236 468727 468783 468927 "DLP" 469065 NIL DLP (NIL T) -7 NIL NIL) (-235 462377 467828 468055 "DLIST" 468532 NIL DLIST (NIL T) -8 NIL NIL) (-234 459262 461265 461307 "DLAGG" 461857 NIL DLAGG (NIL T) -9 NIL 462086) (-233 457919 458611 458640 "DIVRING" 458790 T DIVRING (NIL) -9 NIL 458898) (-232 456907 457160 457553 "DIVRING-" 457558 NIL DIVRING- (NIL T) -8 NIL NIL) (-231 455335 456500 456636 "DIV" 456804 NIL DIV (NIL T) -8 NIL NIL) (-230 452829 453897 453939 "DIVCAT" 454773 NIL DIVCAT (NIL T) -9 NIL 455104) (-229 450931 451288 451694 "DISPLAY" 452443 T DISPLAY (NIL) -7 NIL NIL) (-228 444791 450845 450908 "DIRPROD" 450913 NIL DIRPROD (NIL NIL T) -8 NIL NIL) (-227 443639 443842 444107 "DIRPROD2" 444584 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL) (-226 433203 439232 439286 "DIRPCAT" 439544 NIL DIRPCAT (NIL NIL T) -9 NIL 440388) (-225 430529 431171 432052 "DIRPCAT-" 432389 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL) (-224 429816 429976 430162 "DIOSP" 430363 T DIOSP (NIL) -7 NIL NIL) (-223 426559 428763 428805 "DIOPS" 429239 NIL DIOPS (NIL T) -9 NIL 429467) (-222 426108 426222 426413 "DIOPS-" 426418 NIL DIOPS- (NIL T T) -8 NIL NIL) (-221 424975 425613 425642 "DIFRING" 425829 T DIFRING (NIL) -9 NIL 425939) (-220 424621 424698 424850 "DIFRING-" 424855 NIL DIFRING- (NIL T) -8 NIL NIL) (-219 422403 423685 423727 "DIFEXT" 424090 NIL DIFEXT (NIL T) -9 NIL 424382) (-218 420688 421116 421782 "DIFEXT-" 421787 NIL DIFEXT- (NIL T T) -8 NIL NIL) (-217 418050 420254 420296 "DIAGG" 420301 NIL DIAGG (NIL T) -9 NIL 420321) (-216 417434 417591 417843 "DIAGG-" 417848 NIL DIAGG- (NIL T T) -8 NIL NIL) (-215 412804 416393 416670 "DHMATRIX" 417203 NIL DHMATRIX (NIL T) -8 NIL NIL) (-214 406688 407977 409358 "DFSFUN" 411443 T DFSFUN (NIL) -7 NIL NIL) (-213 400965 405142 405575 "DFLOAT" 406275 T DFLOAT (NIL) -8 NIL NIL) (-212 399193 399474 399870 "DFINTTLS" 400673 NIL DFINTTLS (NIL T T) -7 NIL NIL) (-211 396212 397214 397614 "DERHAM" 398859 NIL DERHAM (NIL T NIL) -8 NIL NIL) (-210 387825 389742 391177 "DEQUEUE" 394810 NIL DEQUEUE (NIL T) -8 NIL NIL) (-209 387040 387173 387369 "DEGRED" 387687 NIL DEGRED (NIL T T) -7 NIL NIL) (-208 383435 384180 385033 "DEFINTRF" 386268 NIL DEFINTRF (NIL T) -7 NIL NIL) (-207 380962 381431 382030 "DEFINTEF" 382954 NIL DEFINTEF (NIL T T) -7 NIL NIL) (-206 374784 380403 380569 "DECIMAL" 380816 T DECIMAL (NIL) -8 NIL NIL) (-205 372296 372754 373260 "DDFACT" 374328 NIL DDFACT (NIL T T) -7 NIL NIL) (-204 371892 371935 372086 "DBLRESP" 372247 NIL DBLRESP (NIL T T T T) -7 NIL NIL) (-203 369602 369936 370305 "DBASE" 371650 NIL DBASE (NIL T) -8 NIL NIL) (-202 368735 369561 369589 "D03FAFA" 369594 T D03FAFA (NIL) -8 NIL NIL) (-201 367869 368694 368722 "D03EEFA" 368727 T D03EEFA (NIL) -8 NIL NIL) (-200 365819 366285 366774 "D03AGNT" 367400 T D03AGNT (NIL) -7 NIL NIL) (-199 365135 365778 365806 "D02EJFA" 365811 T D02EJFA (NIL) -8 NIL NIL) (-198 364451 365094 365122 "D02CJFA" 365127 T D02CJFA (NIL) -8 NIL NIL) (-197 363767 364410 364438 "D02BHFA" 364443 T D02BHFA (NIL) -8 NIL NIL) (-196 363083 363726 363754 "D02BBFA" 363759 T D02BBFA (NIL) -8 NIL NIL) (-195 356282 357869 359475 "D02AGNT" 361497 T D02AGNT (NIL) -7 NIL NIL) (-194 354051 354573 355119 "D01WGTS" 355756 T D01WGTS (NIL) -7 NIL NIL) (-193 353146 354010 354038 "D01TRNS" 354043 T D01TRNS (NIL) -8 NIL NIL) (-192 352241 353105 353133 "D01GBFA" 353138 T D01GBFA (NIL) -8 NIL NIL) (-191 351336 352200 352228 "D01FCFA" 352233 T D01FCFA (NIL) -8 NIL NIL) (-190 350431 351295 351323 "D01ASFA" 351328 T D01ASFA (NIL) -8 NIL NIL) (-189 349526 350390 350418 "D01AQFA" 350423 T D01AQFA (NIL) -8 NIL NIL) (-188 348621 349485 349513 "D01APFA" 349518 T D01APFA (NIL) -8 NIL NIL) (-187 347716 348580 348608 "D01ANFA" 348613 T D01ANFA (NIL) -8 NIL NIL) (-186 346811 347675 347703 "D01AMFA" 347708 T D01AMFA (NIL) -8 NIL NIL) (-185 345906 346770 346798 "D01ALFA" 346803 T D01ALFA (NIL) -8 NIL NIL) (-184 345001 345865 345893 "D01AKFA" 345898 T D01AKFA (NIL) -8 NIL NIL) (-183 344096 344960 344988 "D01AJFA" 344993 T D01AJFA (NIL) -8 NIL NIL) (-182 337393 338944 340505 "D01AGNT" 342555 T D01AGNT (NIL) -7 NIL NIL) (-181 336730 336858 337010 "CYCLOTOM" 337261 T CYCLOTOM (NIL) -7 NIL NIL) (-180 333465 334178 334905 "CYCLES" 336023 T CYCLES (NIL) -7 NIL NIL) (-179 332777 332911 333082 "CVMP" 333326 NIL CVMP (NIL T) -7 NIL NIL) (-178 330549 330806 331182 "CTRIGMNP" 332505 NIL CTRIGMNP (NIL T T) -7 NIL NIL) (-177 329923 330022 330175 "CSTTOOLS" 330446 NIL CSTTOOLS (NIL T T) -7 NIL NIL) (-176 325722 326379 327137 "CRFP" 329235 NIL CRFP (NIL T T) -7 NIL NIL) (-175 324769 324954 325182 "CRAPACK" 325526 NIL CRAPACK (NIL T) -7 NIL NIL) (-174 324155 324256 324459 "CPMATCH" 324646 NIL CPMATCH (NIL T T T) -7 NIL NIL) (-173 323880 323908 324014 "CPIMA" 324121 NIL CPIMA (NIL T T T) -7 NIL NIL) (-172 320244 320916 321634 "COORDSYS" 323215 NIL COORDSYS (NIL T) -7 NIL NIL) (-171 316105 318247 318739 "CONTFRAC" 319784 NIL CONTFRAC (NIL T) -8 NIL NIL) (-170 315253 315817 315846 "COMRING" 315851 T COMRING (NIL) -9 NIL 315903) (-169 314334 314611 314795 "COMPPROP" 315089 T COMPPROP (NIL) -8 NIL NIL) (-168 313995 314030 314158 "COMPLPAT" 314293 NIL COMPLPAT (NIL T T T) -7 NIL NIL) (-167 303969 313806 313914 "COMPLEX" 313919 NIL COMPLEX (NIL T) -8 NIL NIL) (-166 303605 303662 303769 "COMPLEX2" 303906 NIL COMPLEX2 (NIL T T) -7 NIL NIL) (-165 303323 303358 303456 "COMPFACT" 303564 NIL COMPFACT (NIL T T) -7 NIL NIL) (-164 287582 297879 297920 "COMPCAT" 298924 NIL COMPCAT (NIL T) -9 NIL 300303) (-163 277098 280021 283648 "COMPCAT-" 284004 NIL COMPCAT- (NIL T T) -8 NIL NIL) (-162 276827 276855 276958 "COMMUPC" 277064 NIL COMMUPC (NIL T T T) -7 NIL NIL) (-161 276622 276655 276714 "COMMONOP" 276788 T COMMONOP (NIL) -7 NIL NIL) (-160 276205 276373 276460 "COMM" 276555 T COMM (NIL) -8 NIL NIL) (-159 275453 275647 275676 "COMBOPC" 276014 T COMBOPC (NIL) -9 NIL 276189) (-158 274349 274559 274801 "COMBINAT" 275243 NIL COMBINAT (NIL T) -7 NIL NIL) (-157 270547 271120 271760 "COMBF" 273771 NIL COMBF (NIL T T) -7 NIL NIL) (-156 269333 269663 269898 "COLOR" 270332 T COLOR (NIL) -8 NIL NIL) (-155 268973 269020 269145 "CMPLXRT" 269280 NIL CMPLXRT (NIL T T) -7 NIL NIL) (-154 264475 265503 266583 "CLIP" 267913 T CLIP (NIL) -7 NIL NIL) (-153 262811 263581 263820 "CLIF" 264302 NIL CLIF (NIL NIL T NIL) -8 NIL NIL) (-152 259076 260994 261036 "CLAGG" 261965 NIL CLAGG (NIL T) -9 NIL 262498) (-151 257498 257955 258538 "CLAGG-" 258543 NIL CLAGG- (NIL T T) -8 NIL NIL) (-150 257042 257127 257267 "CINTSLPE" 257407 NIL CINTSLPE (NIL T T) -7 NIL NIL) (-149 254543 255014 255562 "CHVAR" 256570 NIL CHVAR (NIL T T T) -7 NIL NIL) (-148 253761 254325 254354 "CHARZ" 254359 T CHARZ (NIL) -9 NIL 254374) (-147 253515 253555 253633 "CHARPOL" 253715 NIL CHARPOL (NIL T) -7 NIL NIL) (-146 252617 253214 253243 "CHARNZ" 253290 T CHARNZ (NIL) -9 NIL 253346) (-145 250640 251307 251642 "CHAR" 252302 T CHAR (NIL) -8 NIL NIL) (-144 250365 250426 250455 "CFCAT" 250566 T CFCAT (NIL) -9 NIL NIL) (-143 249610 249721 249903 "CDEN" 250249 NIL CDEN (NIL T T T) -7 NIL NIL) (-142 245602 248763 249043 "CCLASS" 249350 T CCLASS (NIL) -8 NIL NIL) (-141 240655 241631 242384 "CARTEN" 244905 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL) (-140 239763 239911 240132 "CARTEN2" 240502 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL) (-139 238058 238913 239170 "CARD" 239526 T CARD (NIL) -8 NIL NIL) (-138 237429 237757 237786 "CACHSET" 237918 T CACHSET (NIL) -9 NIL 237995) (-137 236924 237220 237249 "CABMON" 237299 T CABMON (NIL) -9 NIL 237355) (-136 234487 236616 236723 "BTREE" 236850 NIL BTREE (NIL T) -8 NIL NIL) (-135 231991 234135 234257 "BTOURN" 234397 NIL BTOURN (NIL T) -8 NIL NIL) (-134 229448 231495 231537 "BTCAT" 231605 NIL BTCAT (NIL T) -9 NIL 231682) (-133 229115 229195 229344 "BTCAT-" 229349 NIL BTCAT- (NIL T T) -8 NIL NIL) (-132 224305 228175 228204 "BTAGG" 228460 T BTAGG (NIL) -9 NIL 228639) (-131 223728 223872 224102 "BTAGG-" 224107 NIL BTAGG- (NIL T) -8 NIL NIL) (-130 220778 223006 223221 "BSTREE" 223545 NIL BSTREE (NIL T) -8 NIL NIL) (-129 219916 220042 220226 "BRILL" 220634 NIL BRILL (NIL T) -7 NIL NIL) (-128 216656 218677 218719 "BRAGG" 219368 NIL BRAGG (NIL T) -9 NIL 219625) (-127 215185 215591 216146 "BRAGG-" 216151 NIL BRAGG- (NIL T T) -8 NIL NIL) (-126 208384 214531 214715 "BPADICRT" 215033 NIL BPADICRT (NIL NIL) -8 NIL NIL) (-125 206688 208321 208366 "BPADIC" 208371 NIL BPADIC (NIL NIL) -8 NIL NIL) (-124 206386 206416 206530 "BOUNDZRO" 206652 NIL BOUNDZRO (NIL T T) -7 NIL NIL) (-123 201901 202992 203859 "BOP" 205539 T BOP (NIL) -8 NIL NIL) (-122 199524 199968 200487 "BOP1" 201415 NIL BOP1 (NIL T) -7 NIL NIL) (-121 197877 198567 198861 "BOOLEAN" 199250 T BOOLEAN (NIL) -8 NIL NIL) (-120 197238 197616 197671 "BMODULE" 197676 NIL BMODULE (NIL T T) -9 NIL 197741) (-119 193581 194251 195037 "BLUPPACK" 196570 NIL BLUPPACK (NIL T NIL T T T) -7 NIL NIL) (-118 192973 193458 193527 "BLQT" 193532 T BLQT (NIL) -8 NIL NIL) (-117 191402 191877 191906 "BLMETCT" 192551 T BLMETCT (NIL) -9 NIL 192923) (-116 190801 191283 191350 "BLHN" 191355 T BLHN (NIL) -8 NIL NIL) (-115 189619 189878 190161 "BLAS1" 190538 T BLAS1 (NIL) -7 NIL NIL) (-114 185429 189417 189490 "BITS" 189566 T BITS (NIL) -8 NIL NIL) (-113 184500 184961 185113 "BINFILE" 185297 T BINFILE (NIL) -8 NIL NIL) (-112 178326 183944 184109 "BINARY" 184355 T BINARY (NIL) -8 NIL NIL) (-111 176193 177615 177657 "BGAGG" 177917 NIL BGAGG (NIL T) -9 NIL 178054) (-110 176024 176056 176147 "BGAGG-" 176152 NIL BGAGG- (NIL T T) -8 NIL NIL) (-109 175122 175408 175613 "BFUNCT" 175839 T BFUNCT (NIL) -8 NIL NIL) (-108 173814 173992 174279 "BEZOUT" 174947 NIL BEZOUT (NIL T T T T T) -7 NIL NIL) (-107 172777 172999 173258 "BEZIER" 173588 NIL BEZIER (NIL T) -7 NIL NIL) (-106 169300 171629 171959 "BBTREE" 172480 NIL BBTREE (NIL T) -8 NIL NIL) (-105 169033 169086 169115 "BASTYPE" 169234 T BASTYPE (NIL) -9 NIL NIL) (-104 168886 168914 168987 "BASTYPE-" 168992 NIL BASTYPE- (NIL T) -8 NIL NIL) (-103 168320 168396 168548 "BALFACT" 168797 NIL BALFACT (NIL T T) -7 NIL NIL) (-102 167684 167807 167955 "AXSERV" 168192 T AXSERV (NIL) -7 NIL NIL) (-101 166497 167094 167282 "AUTOMOR" 167529 NIL AUTOMOR (NIL T) -8 NIL NIL) (-100 166209 166214 166243 "ATTREG" 166248 T ATTREG (NIL) -9 NIL NIL) (-99 164488 164906 165258 "ATTRBUT" 165875 T ATTRBUT (NIL) -8 NIL NIL) (-98 164023 164136 164163 "ATRIG" 164364 T ATRIG (NIL) -9 NIL NIL) (-97 163832 163873 163960 "ATRIG-" 163965 NIL ATRIG- (NIL T) -8 NIL NIL) (-96 157392 158961 160072 "ASTACK" 162752 NIL ASTACK (NIL T) -8 NIL NIL) (-95 155899 156196 156560 "ASSOCEQ" 157075 NIL ASSOCEQ (NIL T T) -7 NIL NIL) (-94 154931 155558 155682 "ASP9" 155806 NIL ASP9 (NIL NIL) -8 NIL NIL) (-93 154695 154879 154918 "ASP8" 154923 NIL ASP8 (NIL NIL) -8 NIL NIL) (-92 153565 154300 154442 "ASP80" 154584 NIL ASP80 (NIL NIL) -8 NIL NIL) (-91 152464 153200 153332 "ASP7" 153464 NIL ASP7 (NIL NIL) -8 NIL NIL) (-90 151420 152141 152259 "ASP78" 152377 NIL ASP78 (NIL NIL) -8 NIL NIL) (-89 150391 151100 151217 "ASP77" 151334 NIL ASP77 (NIL NIL) -8 NIL NIL) (-88 149306 150029 150160 "ASP74" 150291 NIL ASP74 (NIL NIL) -8 NIL NIL) (-87 148207 148941 149073 "ASP73" 149205 NIL ASP73 (NIL NIL) -8 NIL NIL) (-86 147162 147884 148002 "ASP6" 148120 NIL ASP6 (NIL NIL) -8 NIL NIL) (-85 146111 146839 146957 "ASP55" 147075 NIL ASP55 (NIL NIL) -8 NIL NIL) (-84 145061 145785 145904 "ASP50" 146023 NIL ASP50 (NIL NIL) -8 NIL NIL) (-83 144149 144762 144872 "ASP4" 144982 NIL ASP4 (NIL NIL) -8 NIL NIL) (-82 143237 143850 143960 "ASP49" 144070 NIL ASP49 (NIL NIL) -8 NIL NIL) (-81 142022 142776 142944 "ASP42" 143126 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL) (-80 140800 141555 141725 "ASP41" 141909 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL) (-79 139752 140477 140595 "ASP35" 140713 NIL ASP35 (NIL NIL) -8 NIL NIL) (-78 139517 139700 139739 "ASP34" 139744 NIL ASP34 (NIL NIL) -8 NIL NIL) (-77 139254 139321 139397 "ASP33" 139472 NIL ASP33 (NIL NIL) -8 NIL NIL) (-76 138150 138889 139021 "ASP31" 139153 NIL ASP31 (NIL NIL) -8 NIL NIL) (-75 137915 138098 138137 "ASP30" 138142 NIL ASP30 (NIL NIL) -8 NIL NIL) (-74 137650 137719 137795 "ASP29" 137870 NIL ASP29 (NIL NIL) -8 NIL NIL) (-73 137415 137598 137637 "ASP28" 137642 NIL ASP28 (NIL NIL) -8 NIL NIL) (-72 137180 137363 137402 "ASP27" 137407 NIL ASP27 (NIL NIL) -8 NIL NIL) (-71 136264 136878 136989 "ASP24" 137100 NIL ASP24 (NIL NIL) -8 NIL NIL) (-70 135181 135905 136035 "ASP20" 136165 NIL ASP20 (NIL NIL) -8 NIL NIL) (-69 134269 134882 134992 "ASP1" 135102 NIL ASP1 (NIL NIL) -8 NIL NIL) (-68 133213 133943 134062 "ASP19" 134181 NIL ASP19 (NIL NIL) -8 NIL NIL) (-67 132950 133017 133093 "ASP12" 133168 NIL ASP12 (NIL NIL) -8 NIL NIL) (-66 131803 132549 132693 "ASP10" 132837 NIL ASP10 (NIL NIL) -8 NIL NIL) (-65 129708 131647 131738 "ARRAY2" 131743 NIL ARRAY2 (NIL T) -8 NIL NIL) (-64 125530 129356 129470 "ARRAY1" 129625 NIL ARRAY1 (NIL T) -8 NIL NIL) (-63 124562 124735 124956 "ARRAY12" 125353 NIL ARRAY12 (NIL T T) -7 NIL NIL) (-62 118961 120826 120902 "ARR2CAT" 123532 NIL ARR2CAT (NIL T T T) -9 NIL 124290) (-61 116395 117139 118093 "ARR2CAT-" 118098 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL) (-60 115143 115295 115601 "APPRULE" 116231 NIL APPRULE (NIL T T T) -7 NIL NIL) (-59 114794 114842 114961 "APPLYORE" 115089 NIL APPLYORE (NIL T T T) -7 NIL NIL) (-58 114318 114406 114516 "API" 114702 T API (NIL) -7 NIL NIL) (-57 113292 113583 113778 "ANY" 114141 T ANY (NIL) -8 NIL NIL) (-56 112570 112693 112850 "ANY1" 113166 NIL ANY1 (NIL T) -7 NIL NIL) (-55 110089 111007 111334 "ANTISYM" 112294 NIL ANTISYM (NIL T NIL) -8 NIL NIL) (-54 109916 110048 110075 "ANON" 110080 T ANON (NIL) -8 NIL NIL) (-53 103983 108455 108909 "AN" 109480 T AN (NIL) -8 NIL NIL) (-52 100278 101676 101728 "AMR" 102476 NIL AMR (NIL T T) -9 NIL 103070) (-51 99390 99611 99974 "AMR-" 99979 NIL AMR- (NIL T T T) -8 NIL NIL) (-50 83952 99307 99368 "ALIST" 99373 NIL ALIST (NIL T T) -8 NIL NIL) (-49 80789 83546 83715 "ALGSC" 83870 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL) (-48 77347 77901 78507 "ALGPKG" 80230 NIL ALGPKG (NIL T T) -7 NIL NIL) (-47 76624 76725 76909 "ALGMFACT" 77233 NIL ALGMFACT (NIL T T T) -7 NIL NIL) (-46 72372 73056 73707 "ALGMANIP" 76151 NIL ALGMANIP (NIL T T) -7 NIL NIL) (-45 63686 71998 72148 "ALGFF" 72305 NIL ALGFF (NIL T T T NIL) -8 NIL NIL) (-44 62882 63013 63192 "ALGFACT" 63544 NIL ALGFACT (NIL T) -7 NIL NIL) (-43 61867 62477 62516 "ALGEBRA" 62576 NIL ALGEBRA (NIL T) -9 NIL 62635) (-42 61585 61644 61776 "ALGEBRA-" 61781 NIL ALGEBRA- (NIL T T) -8 NIL NIL) (-41 43392 59117 59170 "ALAGG" 59306 NIL ALAGG (NIL T T) -9 NIL 59467) (-40 42927 43040 43067 "AHYP" 43268 T AHYP (NIL) -9 NIL NIL) (-39 41858 42106 42133 "AGG" 42632 T AGG (NIL) -9 NIL 42910) (-38 41292 41454 41668 "AGG-" 41673 NIL AGG- (NIL T) -8 NIL NIL) (-37 38841 39422 39461 "AFSPCAT" 40733 NIL AFSPCAT (NIL T) -9 NIL 41228) (-36 36520 36942 37359 "AF" 38484 NIL AF (NIL T T) -7 NIL NIL) (-35 35860 36449 36503 "AFFSP" 36508 NIL AFFSP (NIL NIL T) -8 NIL NIL) (-34 35117 35787 35836 "AFFPLPS" 35841 NIL AFFPLPS (NIL T) -8 NIL NIL) (-33 34451 35058 35100 "AFFPL" 35105 NIL AFFPL (NIL T) -8 NIL NIL) (-32 31164 31651 32279 "AFALGRES" 33956 NIL AFALGRES (NIL T NIL T T T) -7 NIL NIL) (-31 29810 29987 30301 "AFALGGRO" 30983 NIL AFALGGRO (NIL T NIL T T T) -7 NIL NIL) (-30 29079 29337 29493 "ACPLOT" 29672 T ACPLOT (NIL) -8 NIL NIL) (-29 18440 26423 26475 "ACFS" 27186 NIL ACFS (NIL T) -9 NIL 27425) (-28 16454 16944 17719 "ACFS-" 17724 NIL ACFS- (NIL T T) -8 NIL NIL) (-27 12669 14625 14652 "ACF" 15531 T ACF (NIL) -9 NIL 15943) (-26 11373 11707 12200 "ACF-" 12205 NIL ACF- (NIL T) -8 NIL NIL) (-25 10970 11139 11166 "ABELSG" 11258 T ABELSG (NIL) -9 NIL 11323) (-24 10837 10862 10928 "ABELSG-" 10933 NIL ABELSG- (NIL T) -8 NIL NIL) (-23 10205 10466 10493 "ABELMON" 10663 T ABELMON (NIL) -9 NIL 10775) (-22 9869 9953 10091 "ABELMON-" 10096 NIL ABELMON- (NIL T) -8 NIL NIL) (-21 9202 9548 9575 "ABELGRP" 9700 T ABELGRP (NIL) -9 NIL 9782) (-20 8665 8794 9010 "ABELGRP-" 9015 NIL ABELGRP- (NIL T) -8 NIL NIL) (-19 4333 8027 8067 "A1AGG" 8072 NIL A1AGG (NIL T) -9 NIL 8112) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL)) \ No newline at end of file +(((-21) . T) ((-23) . T) ((-25) . T) ((-105) . T) ((-137) . T) ((-608 (-850)) . T) ((-1090) . T)) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-3134 (((-3 $ "failed") $ $) 18)) (-2671 (($) 16 T CONST)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-2745 (((-850) $) 11)) (-1887 (($ $ (-917)) 25)) (-3056 (($) 17 T CONST)) (-1717 (((-121) $ $) 6)) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 24)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 23))) +(((-1054) (-1275)) (T -1054)) +NIL +(-13 (-21) (-1102)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-105) . T) ((-137) . T) ((-608 (-850)) . T) ((-1102) . T) ((-1090) . T)) +((-2617 (($ $) 16)) (-3047 (($ $) 22)) (-4410 (((-884 (-381) $) $ (-887 (-381)) (-884 (-381) $)) 49)) (-2657 (($ $) 24)) (-3880 (($ $) 11)) (-1519 (($ $) 38)) (-4278 (((-381) $) NIL) (((-215) $) NIL) (((-887 (-381)) $) 33)) (-2745 (((-850) $) NIL) (($ (-568)) NIL) (($ $) NIL) (($ (-409 (-568))) 28) (($ (-568)) NIL) (($ (-409 (-568))) 28)) (-4078 (((-763)) 8)) (-2285 (($ $) 39))) +(((-1055 |#1|) (-10 -8 (-15 -3047 (|#1| |#1|)) (-15 -2617 (|#1| |#1|)) (-15 -3880 (|#1| |#1|)) (-15 -1519 (|#1| |#1|)) (-15 -2285 (|#1| |#1|)) (-15 -2657 (|#1| |#1|)) (-15 -4410 ((-884 (-381) |#1|) |#1| (-887 (-381)) (-884 (-381) |#1|))) (-15 -4278 ((-887 (-381)) |#1|)) (-15 -2745 (|#1| (-409 (-568)))) (-15 -2745 (|#1| (-568))) (-15 -4278 ((-215) |#1|)) (-15 -4278 ((-381) |#1|)) (-15 -2745 (|#1| (-409 (-568)))) (-15 -2745 (|#1| |#1|)) (-15 -2745 (|#1| (-568))) (-15 -4078 ((-763))) (-15 -2745 ((-850) |#1|))) (-1056)) (T -1055)) +((-4078 (*1 *2) (-12 (-5 *2 (-763)) (-5 *1 (-1055 *3)) (-4 *3 (-1056))))) +(-10 -8 (-15 -3047 (|#1| |#1|)) (-15 -2617 (|#1| |#1|)) (-15 -3880 (|#1| |#1|)) (-15 -1519 (|#1| |#1|)) (-15 -2285 (|#1| |#1|)) (-15 -2657 (|#1| |#1|)) (-15 -4410 ((-884 (-381) |#1|) |#1| (-887 (-381)) (-884 (-381) |#1|))) (-15 -4278 ((-887 (-381)) |#1|)) (-15 -2745 (|#1| (-409 (-568)))) (-15 -2745 (|#1| (-568))) (-15 -4278 ((-215) |#1|)) (-15 -4278 ((-381) |#1|)) (-15 -2745 (|#1| (-409 (-568)))) (-15 -2745 (|#1| |#1|)) (-15 -2745 (|#1| (-568))) (-15 -4078 ((-763))) (-15 -2745 ((-850) |#1|))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-1492 (((-568) $) 85)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) 40)) (-2227 (($ $) 39)) (-1573 (((-121) $) 37)) (-2617 (($ $) 83)) (-3134 (((-3 $ "failed") $ $) 18)) (-4305 (($ $) 71)) (-1678 (((-420 $) $) 70)) (-1902 (($ $) 93)) (-1497 (((-121) $ $) 57)) (-3662 (((-568) $) 110)) (-2671 (($) 16 T CONST)) (-3047 (($ $) 82)) (-3666 (((-3 (-568) "failed") $) 98) (((-3 (-409 (-568)) "failed") $) 95)) (-2854 (((-568) $) 97) (((-409 (-568)) $) 94)) (-2401 (($ $ $) 53)) (-2925 (((-3 $ "failed") $) 33)) (-2412 (($ $ $) 54)) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) 49)) (-3927 (((-121) $) 69)) (-2033 (((-121) $) 108)) (-4410 (((-884 (-381) $) $ (-887 (-381)) (-884 (-381) $)) 89)) (-2735 (((-121) $) 30)) (-4044 (($ $ (-568)) 92)) (-2657 (($ $) 88)) (-2245 (((-121) $) 109)) (-3562 (((-3 (-634 $) "failed") (-634 $) $) 50)) (-2521 (($ $ $) 107)) (-3268 (($ $ $) 106)) (-2495 (($ $ $) 45) (($ (-634 $)) 44)) (-4487 (((-1143) $) 9)) (-2081 (($ $) 68)) (-4022 (((-1108) $) 10)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) 43)) (-2721 (($ $ $) 47) (($ (-634 $)) 46)) (-3880 (($ $) 84)) (-1519 (($ $) 86)) (-3848 (((-420 $) $) 72)) (-4497 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2595 (((-3 $ "failed") $ $) 41)) (-2344 (((-3 (-634 $) "failed") (-634 $) $) 48)) (-2709 (((-763) $) 56)) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) 55)) (-4278 (((-381) $) 101) (((-215) $) 100) (((-887 (-381)) $) 90)) (-2745 (((-850) $) 11) (($ (-568)) 27) (($ $) 42) (($ (-409 (-568))) 63) (($ (-568)) 99) (($ (-409 (-568))) 96)) (-4078 (((-763)) 28)) (-2285 (($ $) 87)) (-1826 (((-121) $ $) 38)) (-2897 (($ $) 111)) (-1887 (($ $ (-917)) 25) (($ $ (-763)) 32) (($ $ (-568)) 67)) (-3056 (($) 17 T CONST)) (-1556 (($) 29 T CONST)) (-1751 (((-121) $ $) 104)) (-1738 (((-121) $ $) 103)) (-1717 (((-121) $ $) 6)) (-1745 (((-121) $ $) 105)) (-1732 (((-121) $ $) 102)) (-1779 (($ $ $) 62)) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 24) (($ $ (-763)) 31) (($ $ (-568)) 66) (($ $ (-409 (-568))) 91)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 23) (($ $ (-409 (-568))) 65) (($ (-409 (-568)) $) 64))) +(((-1056) (-1275)) (T -1056)) +((-2897 (*1 *1 *1) (-4 *1 (-1056))) (-2657 (*1 *1 *1) (-4 *1 (-1056))) (-2285 (*1 *1 *1) (-4 *1 (-1056))) (-1519 (*1 *1 *1) (-4 *1 (-1056))) (-1492 (*1 *2 *1) (-12 (-4 *1 (-1056)) (-5 *2 (-568)))) (-3880 (*1 *1 *1) (-4 *1 (-1056))) (-2617 (*1 *1 *1) (-4 *1 (-1056))) (-3047 (*1 *1 *1) (-4 *1 (-1056)))) +(-13 (-365) (-840) (-1021) (-1037 (-568)) (-1037 (-409 (-568))) (-1002) (-609 (-887 (-381))) (-881 (-381)) (-150) (-10 -8 (-15 -2657 ($ $)) (-15 -2285 ($ $)) (-15 -1519 ($ $)) (-15 -1492 ((-568) $)) (-15 -3880 ($ $)) (-15 -2617 ($ $)) (-15 -3047 ($ $)) (-15 -2897 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-43 (-409 (-568))) . T) ((-43 $) . T) ((-105) . T) ((-120 (-409 (-568)) (-409 (-568))) . T) ((-120 $ $) . T) ((-137) . T) ((-150) . T) ((-608 (-850)) . T) ((-172) . T) ((-609 (-215)) . T) ((-609 (-381)) . T) ((-609 (-887 (-381))) . T) ((-238) . T) ((-285) . T) ((-301) . T) ((-365) . T) ((-453) . T) ((-558) . T) ((-637 (-409 (-568))) . T) ((-637 $) . T) ((-707 (-409 (-568))) . T) ((-707 $) . T) ((-716) . T) ((-786) . T) ((-787) . T) ((-789) . T) ((-790) . T) ((-840) . T) ((-842) . T) ((-881 (-381)) . T) ((-916) . T) ((-1002) . T) ((-1021) . T) ((-1037 (-409 (-568))) . T) ((-1037 (-568)) . T) ((-1053 (-409 (-568))) . T) ((-1053 $) . T) ((-1047) . T) ((-1054) . T) ((-1102) . T) ((-1090) . T) ((-1199) . T)) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) |#2| $) 23)) (-3983 ((|#1| $) 10)) (-3662 (((-568) |#2| $) 88)) (-2932 (((-3 $ "failed") |#2| (-917)) 58)) (-3284 ((|#1| $) 28)) (-3820 ((|#1| |#2| $ |#1|) 37)) (-4069 (($ $) 25)) (-2925 (((-3 |#2| "failed") |#2| $) 87)) (-2033 (((-121) |#2| $) NIL)) (-2245 (((-121) |#2| $) NIL)) (-2707 (((-121) |#2| $) 24)) (-4279 ((|#1| $) 89)) (-3028 ((|#1| $) 27)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-1626 ((|#2| $) 79)) (-2745 (((-850) $) 71)) (-3996 ((|#1| |#2| $ |#1|) 38)) (-4309 (((-634 $) |#2|) 60)) (-1717 (((-121) $ $) 74))) +(((-1057 |#1| |#2|) (-13 (-1063 |#1| |#2|) (-10 -8 (-15 -3028 (|#1| $)) (-15 -3284 (|#1| $)) (-15 -3983 (|#1| $)) (-15 -4279 (|#1| $)) (-15 -4069 ($ $)) (-15 -2707 ((-121) |#2| $)) (-15 -3820 (|#1| |#2| $ |#1|)))) (-13 (-840) (-365)) (-1219 |#1|)) (T -1057)) +((-3820 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-840) (-365))) (-5 *1 (-1057 *2 *3)) (-4 *3 (-1219 *2)))) (-3028 (*1 *2 *1) (-12 (-4 *2 (-13 (-840) (-365))) (-5 *1 (-1057 *2 *3)) (-4 *3 (-1219 *2)))) (-3284 (*1 *2 *1) (-12 (-4 *2 (-13 (-840) (-365))) (-5 *1 (-1057 *2 *3)) (-4 *3 (-1219 *2)))) (-3983 (*1 *2 *1) (-12 (-4 *2 (-13 (-840) (-365))) (-5 *1 (-1057 *2 *3)) (-4 *3 (-1219 *2)))) (-4279 (*1 *2 *1) (-12 (-4 *2 (-13 (-840) (-365))) (-5 *1 (-1057 *2 *3)) (-4 *3 (-1219 *2)))) (-4069 (*1 *1 *1) (-12 (-4 *2 (-13 (-840) (-365))) (-5 *1 (-1057 *2 *3)) (-4 *3 (-1219 *2)))) (-2707 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-840) (-365))) (-5 *2 (-121)) (-5 *1 (-1057 *4 *3)) (-4 *3 (-1219 *4))))) +(-13 (-1063 |#1| |#2|) (-10 -8 (-15 -3028 (|#1| $)) (-15 -3284 (|#1| $)) (-15 -3983 (|#1| $)) (-15 -4279 (|#1| $)) (-15 -4069 ($ $)) (-15 -2707 ((-121) |#2| $)) (-15 -3820 (|#1| |#2| $ |#1|)))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL)) (-2227 (($ $) NIL)) (-1573 (((-121) $) NIL)) (-1877 (($ $ $) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-2690 (($ $ $ $) NIL)) (-4305 (($ $) NIL)) (-1678 (((-420 $) $) NIL)) (-1497 (((-121) $ $) NIL)) (-3662 (((-568) $) NIL)) (-1870 (($ $ $) NIL)) (-2671 (($) NIL T CONST)) (-3630 (($ (-1161)) 10) (($ (-568)) 7)) (-3666 (((-3 (-568) "failed") $) NIL)) (-2854 (((-568) $) NIL)) (-2401 (($ $ $) NIL)) (-3164 (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) NIL) (((-679 (-568)) (-679 $)) NIL)) (-2925 (((-3 $ "failed") $) NIL)) (-1642 (((-3 (-409 (-568)) "failed") $) NIL)) (-2688 (((-121) $) NIL)) (-2425 (((-409 (-568)) $) NIL)) (-1731 (($) NIL) (($ $) NIL)) (-2412 (($ $ $) NIL)) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) NIL)) (-3927 (((-121) $) NIL)) (-1457 (($ $ $ $) NIL)) (-1283 (($ $ $) NIL)) (-2033 (((-121) $) NIL)) (-2413 (($ $ $) NIL)) (-4410 (((-884 (-568) $) $ (-887 (-568)) (-884 (-568) $)) NIL)) (-2735 (((-121) $) NIL)) (-1825 (((-121) $) NIL)) (-3038 (((-3 $ "failed") $) NIL)) (-2245 (((-121) $) NIL)) (-3562 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-3326 (($ $ $ $) NIL)) (-2521 (($ $ $) NIL)) (-3268 (($ $ $) NIL)) (-3651 (($ $) NIL)) (-3678 (($ $) NIL)) (-2495 (($ $ $) NIL) (($ (-634 $)) NIL)) (-4487 (((-1143) $) NIL)) (-2110 (($ $ $) NIL)) (-4434 (($) NIL T CONST)) (-3850 (($ $) NIL)) (-4022 (((-1108) $) NIL) (($ $) NIL)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL)) (-2721 (($ $ $) NIL) (($ (-634 $)) NIL)) (-2427 (($ $) NIL)) (-3848 (((-420 $) $) NIL)) (-4497 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL)) (-2595 (((-3 $ "failed") $ $) NIL)) (-2344 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-3277 (((-121) $) NIL)) (-2709 (((-763) $) NIL)) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL)) (-4189 (($ $ (-763)) NIL) (($ $) NIL)) (-2349 (($ $) NIL)) (-3863 (($ $) NIL)) (-4278 (((-568) $) 16) (((-541) $) NIL) (((-887 (-568)) $) NIL) (((-381) $) NIL) (((-215) $) NIL) (($ (-1161)) 9)) (-2745 (((-850) $) 20) (($ (-568)) 6) (($ $) NIL) (($ (-568)) 6)) (-4078 (((-763)) NIL)) (-2791 (((-121) $ $) NIL)) (-2787 (($ $ $) NIL)) (-1461 (($) NIL)) (-1826 (((-121) $ $) NIL)) (-4419 (($ $ $ $) NIL)) (-2897 (($ $) NIL)) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (-3056 (($) NIL T CONST)) (-1556 (($) NIL T CONST)) (-3190 (($ $ (-763)) NIL) (($ $) NIL)) (-1751 (((-121) $ $) NIL)) (-1738 (((-121) $ $) NIL)) (-1717 (((-121) $ $) NIL)) (-1745 (((-121) $ $) NIL)) (-1732 (((-121) $ $) NIL)) (-1773 (($ $) 19) (($ $ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) NIL))) +(((-1058) (-13 (-550) (-10 -8 (-6 -4506) (-6 -4511) (-6 -4507) (-15 -4278 ($ (-1161))) (-15 -3630 ($ (-1161))) (-15 -3630 ($ (-568)))))) (T -1058)) +((-4278 (*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-1058)))) (-3630 (*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-1058)))) (-3630 (*1 *1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-1058))))) +(-13 (-550) (-10 -8 (-6 -4506) (-6 -4511) (-6 -4507) (-15 -4278 ($ (-1161))) (-15 -3630 ($ (-1161))) (-15 -3630 ($ (-568))))) +((-2447 (((-121) $ $) NIL (-2198 (|has| (-57) (-1090)) (|has| (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (-1090))))) (-2986 (($) NIL) (($ (-634 (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))))) NIL)) (-1868 (((-1249) $ (-1161) (-1161)) NIL (|has| $ (-6 -4520)))) (-2510 (((-121) $ (-763)) NIL)) (-2591 (($) 9)) (-2436 (((-57) $ (-1161) (-57)) NIL)) (-1814 (($ $) 23)) (-3930 (($ $) 21)) (-4077 (($ $) 20)) (-3567 (($ $) 22)) (-2106 (($ $) 25)) (-2995 (($ $) 26)) (-3249 (($ $) 19)) (-4223 (($ $) 24)) (-3507 (($ (-1 (-121) (-2 (|:| -3649 (-1161)) (|:| -4083 (-57)))) $) NIL (|has| $ (-6 -4519)))) (-2801 (($ (-1 (-121) (-2 (|:| -3649 (-1161)) (|:| -4083 (-57)))) $) 18 (|has| $ (-6 -4519)))) (-2674 (((-3 (-57) "failed") (-1161) $) 34)) (-2671 (($) NIL T CONST)) (-3879 (($) 7)) (-3924 (($ $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (-1090))))) (-3405 (($ (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) $) 46 (|has| $ (-6 -4519))) (($ (-1 (-121) (-2 (|:| -3649 (-1161)) (|:| -4083 (-57)))) $) NIL (|has| $ (-6 -4519))) (((-3 (-57) "failed") (-1161) $) NIL)) (-4328 (($ (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (-1090)))) (($ (-1 (-121) (-2 (|:| -3649 (-1161)) (|:| -4083 (-57)))) $) NIL (|has| $ (-6 -4519)))) (-3092 (((-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (-1 (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (-2 (|:| -3649 (-1161)) (|:| -4083 (-57)))) $ (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (-2 (|:| -3649 (-1161)) (|:| -4083 (-57)))) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (-1090)))) (((-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (-1 (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (-2 (|:| -3649 (-1161)) (|:| -4083 (-57)))) $ (-2 (|:| -3649 (-1161)) (|:| -4083 (-57)))) NIL (|has| $ (-6 -4519))) (((-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (-1 (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (-2 (|:| -3649 (-1161)) (|:| -4083 (-57)))) $) NIL (|has| $ (-6 -4519)))) (-3957 (((-3 (-1143) "failed") $ (-1143) (-568)) 59)) (-3989 (((-57) $ (-1161) (-57)) NIL (|has| $ (-6 -4520)))) (-2602 (((-57) $ (-1161)) NIL)) (-4360 (((-634 (-2 (|:| -3649 (-1161)) (|:| -4083 (-57)))) $) NIL (|has| $ (-6 -4519))) (((-634 (-57)) $) NIL (|has| $ (-6 -4519)))) (-1737 (((-121) $ (-763)) NIL)) (-1881 (((-1161) $) NIL (|has| (-1161) (-842)))) (-1979 (((-634 (-2 (|:| -3649 (-1161)) (|:| -4083 (-57)))) $) 28 (|has| $ (-6 -4519))) (((-634 (-57)) $) NIL (|has| $ (-6 -4519)))) (-3109 (((-121) (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (-1090)))) (((-121) (-57) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-57) (-1090))))) (-2223 (((-1161) $) NIL (|has| (-1161) (-842)))) (-3674 (($ (-1 (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (-2 (|:| -3649 (-1161)) (|:| -4083 (-57)))) $) NIL (|has| $ (-6 -4520))) (($ (-1 (-57) (-57)) $) NIL (|has| $ (-6 -4520)))) (-2795 (($ (-1 (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (-2 (|:| -3649 (-1161)) (|:| -4083 (-57)))) $) NIL) (($ (-1 (-57) (-57)) $) NIL) (($ (-1 (-57) (-57) (-57)) $ $) NIL)) (-2166 (((-121) $ (-763)) NIL)) (-4487 (((-1143) $) NIL (-2198 (|has| (-57) (-1090)) (|has| (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (-1090))))) (-1946 (((-634 (-1161)) $) NIL)) (-3548 (((-121) (-1161) $) NIL)) (-1890 (((-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) $) NIL)) (-4450 (($ (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) $) 37)) (-4174 (((-634 (-1161)) $) NIL)) (-3578 (((-121) (-1161) $) NIL)) (-4022 (((-1108) $) NIL (-2198 (|has| (-57) (-1090)) (|has| (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (-1090))))) (-2404 (((-381) $ (-1161)) 45)) (-2679 (((-634 (-1143)) $ (-1143)) 60)) (-3876 (((-57) $) NIL (|has| (-1161) (-842)))) (-3775 (((-3 (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) "failed") (-1 (-121) (-2 (|:| -3649 (-1161)) (|:| -4083 (-57)))) $) NIL)) (-3724 (($ $ (-57)) NIL (|has| $ (-6 -4520)))) (-1315 (((-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) $) NIL)) (-1387 (((-121) (-1 (-121) (-2 (|:| -3649 (-1161)) (|:| -4083 (-57)))) $) NIL (|has| $ (-6 -4519))) (((-121) (-1 (-121) (-57)) $) NIL (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 (-2 (|:| -3649 (-1161)) (|:| -4083 (-57)))))) NIL (-12 (|has| (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (-303 (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))))) (|has| (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (-1090)))) (($ $ (-288 (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))))) NIL (-12 (|has| (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (-303 (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))))) (|has| (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (-1090)))) (($ $ (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (-2 (|:| -3649 (-1161)) (|:| -4083 (-57)))) NIL (-12 (|has| (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (-303 (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))))) (|has| (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (-1090)))) (($ $ (-634 (-2 (|:| -3649 (-1161)) (|:| -4083 (-57)))) (-634 (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))))) NIL (-12 (|has| (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (-303 (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))))) (|has| (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (-1090)))) (($ $ (-634 (-57)) (-634 (-57))) NIL (-12 (|has| (-57) (-303 (-57))) (|has| (-57) (-1090)))) (($ $ (-57) (-57)) NIL (-12 (|has| (-57) (-303 (-57))) (|has| (-57) (-1090)))) (($ $ (-288 (-57))) NIL (-12 (|has| (-57) (-303 (-57))) (|has| (-57) (-1090)))) (($ $ (-634 (-288 (-57)))) NIL (-12 (|has| (-57) (-303 (-57))) (|has| (-57) (-1090))))) (-3171 (((-121) $ $) NIL)) (-4467 (((-121) (-57) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-57) (-1090))))) (-2041 (((-634 (-57)) $) NIL)) (-3084 (((-121) $) NIL)) (-3248 (($) NIL)) (-2779 (((-57) $ (-1161)) NIL) (((-57) $ (-1161) (-57)) NIL)) (-2085 (($) NIL) (($ (-634 (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))))) NIL)) (-3412 (($ $ (-1161)) 47)) (-4168 (((-763) (-1 (-121) (-2 (|:| -3649 (-1161)) (|:| -4083 (-57)))) $) NIL (|has| $ (-6 -4519))) (((-763) (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (-1090)))) (((-763) (-57) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-57) (-1090)))) (((-763) (-1 (-121) (-57)) $) NIL (|has| $ (-6 -4519)))) (-3863 (($ $) NIL)) (-4278 (((-541) $) NIL (|has| (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (-609 (-541))))) (-4287 (($ (-634 (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))))) 30)) (-2768 (($ $ $) 31)) (-2745 (((-850) $) NIL (-2198 (|has| (-57) (-1090)) (|has| (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (-1090))))) (-4453 (($ $ (-1161) (-381)) 43)) (-1342 (($ $ (-1161) (-381)) 44)) (-2367 (($ (-634 (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))))) NIL)) (-1319 (((-121) (-1 (-121) (-2 (|:| -3649 (-1161)) (|:| -4083 (-57)))) $) NIL (|has| $ (-6 -4519))) (((-121) (-1 (-121) (-57)) $) NIL (|has| $ (-6 -4519)))) (-1717 (((-121) $ $) NIL (-2198 (|has| (-57) (-1090)) (|has| (-2 (|:| -3649 (-1161)) (|:| -4083 (-57))) (-1090))))) (-1697 (((-763) $) NIL (|has| $ (-6 -4519))))) +(((-1059) (-13 (-1172 (-1161) (-57)) (-10 -8 (-15 -2768 ($ $ $)) (-15 -3879 ($)) (-15 -3249 ($ $)) (-15 -4077 ($ $)) (-15 -3930 ($ $)) (-15 -3567 ($ $)) (-15 -4223 ($ $)) (-15 -1814 ($ $)) (-15 -2106 ($ $)) (-15 -2995 ($ $)) (-15 -4453 ($ $ (-1161) (-381))) (-15 -1342 ($ $ (-1161) (-381))) (-15 -2404 ((-381) $ (-1161))) (-15 -2679 ((-634 (-1143)) $ (-1143))) (-15 -3412 ($ $ (-1161))) (-15 -2591 ($)) (-15 -3957 ((-3 (-1143) "failed") $ (-1143) (-568))) (-6 -4519)))) (T -1059)) +((-2768 (*1 *1 *1 *1) (-5 *1 (-1059))) (-3879 (*1 *1) (-5 *1 (-1059))) (-3249 (*1 *1 *1) (-5 *1 (-1059))) (-4077 (*1 *1 *1) (-5 *1 (-1059))) (-3930 (*1 *1 *1) (-5 *1 (-1059))) (-3567 (*1 *1 *1) (-5 *1 (-1059))) (-4223 (*1 *1 *1) (-5 *1 (-1059))) (-1814 (*1 *1 *1) (-5 *1 (-1059))) (-2106 (*1 *1 *1) (-5 *1 (-1059))) (-2995 (*1 *1 *1) (-5 *1 (-1059))) (-4453 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-381)) (-5 *1 (-1059)))) (-1342 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-381)) (-5 *1 (-1059)))) (-2404 (*1 *2 *1 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-381)) (-5 *1 (-1059)))) (-2679 (*1 *2 *1 *3) (-12 (-5 *2 (-634 (-1143))) (-5 *1 (-1059)) (-5 *3 (-1143)))) (-3412 (*1 *1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-1059)))) (-2591 (*1 *1) (-5 *1 (-1059))) (-3957 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1143)) (-5 *3 (-568)) (-5 *1 (-1059))))) +(-13 (-1172 (-1161) (-57)) (-10 -8 (-15 -2768 ($ $ $)) (-15 -3879 ($)) (-15 -3249 ($ $)) (-15 -4077 ($ $)) (-15 -3930 ($ $)) (-15 -3567 ($ $)) (-15 -4223 ($ $)) (-15 -1814 ($ $)) (-15 -2106 ($ $)) (-15 -2995 ($ $)) (-15 -4453 ($ $ (-1161) (-381))) (-15 -1342 ($ $ (-1161) (-381))) (-15 -2404 ((-381) $ (-1161))) (-15 -2679 ((-634 (-1143)) $ (-1143))) (-15 -3412 ($ $ (-1161))) (-15 -2591 ($)) (-15 -3957 ((-3 (-1143) "failed") $ (-1143) (-568))) (-6 -4519))) +((-2796 (($ $) 45)) (-3653 (((-121) $ $) 74)) (-3666 (((-3 |#2| "failed") $) NIL) (((-3 (-409 (-568)) "failed") $) NIL) (((-3 (-568) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-953 (-409 (-568)))) 226) (((-3 $ "failed") (-953 (-568))) 225) (((-3 $ "failed") (-953 |#2|)) 228)) (-2854 ((|#2| $) NIL) (((-409 (-568)) $) NIL) (((-568) $) NIL) ((|#4| $) NIL) (($ (-953 (-409 (-568)))) 214) (($ (-953 (-568))) 210) (($ (-953 |#2|)) 230)) (-2114 (($ $) NIL) (($ $ |#4|) 43)) (-1281 (((-121) $ $) 111) (((-121) $ (-634 $)) 112)) (-4054 (((-121) $) 56)) (-4144 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) 106)) (-2053 (($ $) 137)) (-3069 (($ $) 133)) (-3431 (($ $) 132)) (-4293 (($ $ $) 79) (($ $ $ |#4|) 84)) (-2875 (($ $ $) 82) (($ $ $ |#4|) 86)) (-1362 (((-121) $ $) 120) (((-121) $ (-634 $)) 121)) (-2356 ((|#4| $) 33)) (-2507 (($ $ $) 109)) (-2278 (((-121) $) 55)) (-3838 (((-763) $) 35)) (-3290 (($ $) 151)) (-2297 (($ $) 148)) (-4093 (((-634 $) $) 68)) (-2429 (($ $) 57)) (-2111 (($ $) 144)) (-2380 (((-634 $) $) 65)) (-2104 (($ $) 59)) (-2102 ((|#2| $) NIL) (($ $ |#4|) 38)) (-2280 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3741 (-763))) $ $) 110)) (-3547 (((-2 (|:| -2348 $) (|:| |gap| (-763)) (|:| -3961 $) (|:| -1500 $)) $ $) 107) (((-2 (|:| -2348 $) (|:| |gap| (-763)) (|:| -3961 $) (|:| -1500 $)) $ $ |#4|) 108)) (-2409 (((-2 (|:| -2348 $) (|:| |gap| (-763)) (|:| -1500 $)) $ $) 103) (((-2 (|:| -2348 $) (|:| |gap| (-763)) (|:| -1500 $)) $ $ |#4|) 104)) (-3413 (($ $ $) 89) (($ $ $ |#4|) 94)) (-3774 (($ $ $) 90) (($ $ $ |#4|) 95)) (-1901 (((-634 $) $) 51)) (-1415 (((-121) $ $) 117) (((-121) $ (-634 $)) 118)) (-2682 (($ $ $) 102)) (-4434 (($ $) 37)) (-2644 (((-121) $ $) 72)) (-4347 (((-121) $ $) 113) (((-121) $ (-634 $)) 115)) (-4025 (($ $ $) 100)) (-1733 (($ $) 40)) (-2721 ((|#2| |#2| $) 141) (($ (-634 $)) NIL) (($ $ $) NIL)) (-3055 (($ $ |#2|) NIL) (($ $ $) 130)) (-4049 (($ $ |#2|) 125) (($ $ $) 128)) (-1595 (($ $) 48)) (-2734 (($ $) 52)) (-4278 (((-887 (-381)) $) NIL) (((-887 (-568)) $) NIL) (((-541) $) NIL) (($ (-953 (-409 (-568)))) 216) (($ (-953 (-568))) 212) (($ (-953 |#2|)) 227) (((-1143) $) 249) (((-953 |#2|) $) 161)) (-2745 (((-850) $) 30) (($ (-568)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-953 |#2|) $) 162) (($ (-409 (-568))) NIL) (($ $) NIL)) (-3601 (((-3 (-121) "failed") $ $) 71))) +(((-1060 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2745 (|#1| |#1|)) (-15 -2721 (|#1| |#1| |#1|)) (-15 -2721 (|#1| (-634 |#1|))) (-15 -2745 (|#1| (-409 (-568)))) (-15 -2745 ((-953 |#2|) |#1|)) (-15 -4278 ((-953 |#2|) |#1|)) (-15 -4278 ((-1143) |#1|)) (-15 -3290 (|#1| |#1|)) (-15 -2297 (|#1| |#1|)) (-15 -2111 (|#1| |#1|)) (-15 -2053 (|#1| |#1|)) (-15 -2721 (|#2| |#2| |#1|)) (-15 -3055 (|#1| |#1| |#1|)) (-15 -4049 (|#1| |#1| |#1|)) (-15 -3055 (|#1| |#1| |#2|)) (-15 -4049 (|#1| |#1| |#2|)) (-15 -3069 (|#1| |#1|)) (-15 -3431 (|#1| |#1|)) (-15 -4278 (|#1| (-953 |#2|))) (-15 -2854 (|#1| (-953 |#2|))) (-15 -3666 ((-3 |#1| "failed") (-953 |#2|))) (-15 -4278 (|#1| (-953 (-568)))) (-15 -2854 (|#1| (-953 (-568)))) (-15 -3666 ((-3 |#1| "failed") (-953 (-568)))) (-15 -4278 (|#1| (-953 (-409 (-568))))) (-15 -2854 (|#1| (-953 (-409 (-568))))) (-15 -3666 ((-3 |#1| "failed") (-953 (-409 (-568))))) (-15 -2682 (|#1| |#1| |#1|)) (-15 -4025 (|#1| |#1| |#1|)) (-15 -2280 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3741 (-763))) |#1| |#1|)) (-15 -2507 (|#1| |#1| |#1|)) (-15 -4144 ((-2 (|:| -3961 |#1|) (|:| -1500 |#1|)) |#1| |#1|)) (-15 -3547 ((-2 (|:| -2348 |#1|) (|:| |gap| (-763)) (|:| -3961 |#1|) (|:| -1500 |#1|)) |#1| |#1| |#4|)) (-15 -3547 ((-2 (|:| -2348 |#1|) (|:| |gap| (-763)) (|:| -3961 |#1|) (|:| -1500 |#1|)) |#1| |#1|)) (-15 -2409 ((-2 (|:| -2348 |#1|) (|:| |gap| (-763)) (|:| -1500 |#1|)) |#1| |#1| |#4|)) (-15 -2409 ((-2 (|:| -2348 |#1|) (|:| |gap| (-763)) (|:| -1500 |#1|)) |#1| |#1|)) (-15 -3774 (|#1| |#1| |#1| |#4|)) (-15 -3413 (|#1| |#1| |#1| |#4|)) (-15 -3774 (|#1| |#1| |#1|)) (-15 -3413 (|#1| |#1| |#1|)) (-15 -2875 (|#1| |#1| |#1| |#4|)) (-15 -4293 (|#1| |#1| |#1| |#4|)) (-15 -2875 (|#1| |#1| |#1|)) (-15 -4293 (|#1| |#1| |#1|)) (-15 -1362 ((-121) |#1| (-634 |#1|))) (-15 -1362 ((-121) |#1| |#1|)) (-15 -1415 ((-121) |#1| (-634 |#1|))) (-15 -1415 ((-121) |#1| |#1|)) (-15 -4347 ((-121) |#1| (-634 |#1|))) (-15 -4347 ((-121) |#1| |#1|)) (-15 -1281 ((-121) |#1| (-634 |#1|))) (-15 -1281 ((-121) |#1| |#1|)) (-15 -3653 ((-121) |#1| |#1|)) (-15 -2644 ((-121) |#1| |#1|)) (-15 -3601 ((-3 (-121) "failed") |#1| |#1|)) (-15 -4093 ((-634 |#1|) |#1|)) (-15 -2380 ((-634 |#1|) |#1|)) (-15 -2104 (|#1| |#1|)) (-15 -2429 (|#1| |#1|)) (-15 -4054 ((-121) |#1|)) (-15 -2278 ((-121) |#1|)) (-15 -2114 (|#1| |#1| |#4|)) (-15 -2102 (|#1| |#1| |#4|)) (-15 -2734 (|#1| |#1|)) (-15 -1901 ((-634 |#1|) |#1|)) (-15 -1595 (|#1| |#1|)) (-15 -2796 (|#1| |#1|)) (-15 -1733 (|#1| |#1|)) (-15 -4434 (|#1| |#1|)) (-15 -3838 ((-763) |#1|)) (-15 -2356 (|#4| |#1|)) (-15 -4278 ((-541) |#1|)) (-15 -4278 ((-887 (-568)) |#1|)) (-15 -4278 ((-887 (-381)) |#1|)) (-15 -2854 (|#4| |#1|)) (-15 -3666 ((-3 |#4| "failed") |#1|)) (-15 -2745 (|#1| |#4|)) (-15 -2102 (|#2| |#1|)) (-15 -2114 (|#1| |#1|)) (-15 -2854 ((-568) |#1|)) (-15 -3666 ((-3 (-568) "failed") |#1|)) (-15 -2854 ((-409 (-568)) |#1|)) (-15 -3666 ((-3 (-409 (-568)) "failed") |#1|)) (-15 -2745 (|#1| |#2|)) (-15 -3666 ((-3 |#2| "failed") |#1|)) (-15 -2854 (|#2| |#1|)) (-15 -2745 (|#1| (-568))) (-15 -2745 ((-850) |#1|))) (-1061 |#2| |#3| |#4|) (-1047) (-788) (-842)) (T -1060)) +NIL +(-10 -8 (-15 -2745 (|#1| |#1|)) (-15 -2721 (|#1| |#1| |#1|)) (-15 -2721 (|#1| (-634 |#1|))) (-15 -2745 (|#1| (-409 (-568)))) (-15 -2745 ((-953 |#2|) |#1|)) (-15 -4278 ((-953 |#2|) |#1|)) (-15 -4278 ((-1143) |#1|)) (-15 -3290 (|#1| |#1|)) (-15 -2297 (|#1| |#1|)) (-15 -2111 (|#1| |#1|)) (-15 -2053 (|#1| |#1|)) (-15 -2721 (|#2| |#2| |#1|)) (-15 -3055 (|#1| |#1| |#1|)) (-15 -4049 (|#1| |#1| |#1|)) (-15 -3055 (|#1| |#1| |#2|)) (-15 -4049 (|#1| |#1| |#2|)) (-15 -3069 (|#1| |#1|)) (-15 -3431 (|#1| |#1|)) (-15 -4278 (|#1| (-953 |#2|))) (-15 -2854 (|#1| (-953 |#2|))) (-15 -3666 ((-3 |#1| "failed") (-953 |#2|))) (-15 -4278 (|#1| (-953 (-568)))) (-15 -2854 (|#1| (-953 (-568)))) (-15 -3666 ((-3 |#1| "failed") (-953 (-568)))) (-15 -4278 (|#1| (-953 (-409 (-568))))) (-15 -2854 (|#1| (-953 (-409 (-568))))) (-15 -3666 ((-3 |#1| "failed") (-953 (-409 (-568))))) (-15 -2682 (|#1| |#1| |#1|)) (-15 -4025 (|#1| |#1| |#1|)) (-15 -2280 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3741 (-763))) |#1| |#1|)) (-15 -2507 (|#1| |#1| |#1|)) (-15 -4144 ((-2 (|:| -3961 |#1|) (|:| -1500 |#1|)) |#1| |#1|)) (-15 -3547 ((-2 (|:| -2348 |#1|) (|:| |gap| (-763)) (|:| -3961 |#1|) (|:| -1500 |#1|)) |#1| |#1| |#4|)) (-15 -3547 ((-2 (|:| -2348 |#1|) (|:| |gap| (-763)) (|:| -3961 |#1|) (|:| -1500 |#1|)) |#1| |#1|)) (-15 -2409 ((-2 (|:| -2348 |#1|) (|:| |gap| (-763)) (|:| -1500 |#1|)) |#1| |#1| |#4|)) (-15 -2409 ((-2 (|:| -2348 |#1|) (|:| |gap| (-763)) (|:| -1500 |#1|)) |#1| |#1|)) (-15 -3774 (|#1| |#1| |#1| |#4|)) (-15 -3413 (|#1| |#1| |#1| |#4|)) (-15 -3774 (|#1| |#1| |#1|)) (-15 -3413 (|#1| |#1| |#1|)) (-15 -2875 (|#1| |#1| |#1| |#4|)) (-15 -4293 (|#1| |#1| |#1| |#4|)) (-15 -2875 (|#1| |#1| |#1|)) (-15 -4293 (|#1| |#1| |#1|)) (-15 -1362 ((-121) |#1| (-634 |#1|))) (-15 -1362 ((-121) |#1| |#1|)) (-15 -1415 ((-121) |#1| (-634 |#1|))) (-15 -1415 ((-121) |#1| |#1|)) (-15 -4347 ((-121) |#1| (-634 |#1|))) (-15 -4347 ((-121) |#1| |#1|)) (-15 -1281 ((-121) |#1| (-634 |#1|))) (-15 -1281 ((-121) |#1| |#1|)) (-15 -3653 ((-121) |#1| |#1|)) (-15 -2644 ((-121) |#1| |#1|)) (-15 -3601 ((-3 (-121) "failed") |#1| |#1|)) (-15 -4093 ((-634 |#1|) |#1|)) (-15 -2380 ((-634 |#1|) |#1|)) (-15 -2104 (|#1| |#1|)) (-15 -2429 (|#1| |#1|)) (-15 -4054 ((-121) |#1|)) (-15 -2278 ((-121) |#1|)) (-15 -2114 (|#1| |#1| |#4|)) (-15 -2102 (|#1| |#1| |#4|)) (-15 -2734 (|#1| |#1|)) (-15 -1901 ((-634 |#1|) |#1|)) (-15 -1595 (|#1| |#1|)) (-15 -2796 (|#1| |#1|)) (-15 -1733 (|#1| |#1|)) (-15 -4434 (|#1| |#1|)) (-15 -3838 ((-763) |#1|)) (-15 -2356 (|#4| |#1|)) (-15 -4278 ((-541) |#1|)) (-15 -4278 ((-887 (-568)) |#1|)) (-15 -4278 ((-887 (-381)) |#1|)) (-15 -2854 (|#4| |#1|)) (-15 -3666 ((-3 |#4| "failed") |#1|)) (-15 -2745 (|#1| |#4|)) (-15 -2102 (|#2| |#1|)) (-15 -2114 (|#1| |#1|)) (-15 -2854 ((-568) |#1|)) (-15 -3666 ((-3 (-568) "failed") |#1|)) (-15 -2854 ((-409 (-568)) |#1|)) (-15 -3666 ((-3 (-409 (-568)) "failed") |#1|)) (-15 -2745 (|#1| |#2|)) (-15 -3666 ((-3 |#2| "failed") |#1|)) (-15 -2854 (|#2| |#1|)) (-15 -2745 (|#1| (-568))) (-15 -2745 ((-850) |#1|))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-2055 (((-634 |#3|) $) 108)) (-3839 (((-1157 $) $ |#3|) 123) (((-1157 |#1|) $) 122)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) 85 (|has| |#1| (-558)))) (-2227 (($ $) 86 (|has| |#1| (-558)))) (-1573 (((-121) $) 88 (|has| |#1| (-558)))) (-2773 (((-763) $) 110) (((-763) $ (-634 |#3|)) 109)) (-2796 (($ $) 250)) (-3653 (((-121) $ $) 236)) (-3134 (((-3 $ "failed") $ $) 18)) (-3809 (($ $ $) 195 (|has| |#1| (-558)))) (-3909 (((-634 $) $ $) 190 (|has| |#1| (-558)))) (-1750 (((-420 (-1157 $)) (-1157 $)) 98 (|has| |#1| (-904)))) (-4305 (($ $) 96 (|has| |#1| (-453)))) (-1678 (((-420 $) $) 95 (|has| |#1| (-453)))) (-1858 (((-3 (-634 (-1157 $)) "failed") (-634 (-1157 $)) (-1157 $)) 101 (|has| |#1| (-904)))) (-2671 (($) 16 T CONST)) (-3666 (((-3 |#1| "failed") $) 162) (((-3 (-409 (-568)) "failed") $) 160 (|has| |#1| (-1037 (-409 (-568))))) (((-3 (-568) "failed") $) 158 (|has| |#1| (-1037 (-568)))) (((-3 |#3| "failed") $) 134) (((-3 $ "failed") (-953 (-409 (-568)))) 210 (-12 (|has| |#1| (-43 (-409 (-568)))) (|has| |#3| (-609 (-1161))))) (((-3 $ "failed") (-953 (-568))) 207 (-2198 (-12 (-3044 (|has| |#1| (-43 (-409 (-568))))) (|has| |#1| (-43 (-568))) (|has| |#3| (-609 (-1161)))) (-12 (|has| |#1| (-43 (-409 (-568)))) (|has| |#3| (-609 (-1161)))))) (((-3 $ "failed") (-953 |#1|)) 204 (-2198 (-12 (-3044 (|has| |#1| (-43 (-409 (-568))))) (-3044 (|has| |#1| (-43 (-568)))) (|has| |#3| (-609 (-1161)))) (-12 (-3044 (|has| |#1| (-550))) (-3044 (|has| |#1| (-43 (-409 (-568))))) (|has| |#1| (-43 (-568))) (|has| |#3| (-609 (-1161)))) (-12 (-3044 (|has| |#1| (-993 (-568)))) (|has| |#1| (-43 (-409 (-568)))) (|has| |#3| (-609 (-1161))))))) (-2854 ((|#1| $) 163) (((-409 (-568)) $) 159 (|has| |#1| (-1037 (-409 (-568))))) (((-568) $) 157 (|has| |#1| (-1037 (-568)))) ((|#3| $) 133) (($ (-953 (-409 (-568)))) 209 (-12 (|has| |#1| (-43 (-409 (-568)))) (|has| |#3| (-609 (-1161))))) (($ (-953 (-568))) 206 (-2198 (-12 (-3044 (|has| |#1| (-43 (-409 (-568))))) (|has| |#1| (-43 (-568))) (|has| |#3| (-609 (-1161)))) (-12 (|has| |#1| (-43 (-409 (-568)))) (|has| |#3| (-609 (-1161)))))) (($ (-953 |#1|)) 203 (-2198 (-12 (-3044 (|has| |#1| (-43 (-409 (-568))))) (-3044 (|has| |#1| (-43 (-568)))) (|has| |#3| (-609 (-1161)))) (-12 (-3044 (|has| |#1| (-550))) (-3044 (|has| |#1| (-43 (-409 (-568))))) (|has| |#1| (-43 (-568))) (|has| |#3| (-609 (-1161)))) (-12 (-3044 (|has| |#1| (-993 (-568)))) (|has| |#1| (-43 (-409 (-568)))) (|has| |#3| (-609 (-1161))))))) (-4265 (($ $ $ |#3|) 106 (|has| |#1| (-172))) (($ $ $) 191 (|has| |#1| (-558)))) (-2114 (($ $) 152) (($ $ |#3|) 245)) (-3164 (((-679 (-568)) (-679 $)) 132 (|has| |#1| (-630 (-568)))) (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) 131 (|has| |#1| (-630 (-568)))) (((-2 (|:| -2928 (-679 |#1|)) (|:| |vec| (-1244 |#1|))) (-679 $) (-1244 $)) 130) (((-679 |#1|) (-679 $)) 129)) (-1281 (((-121) $ $) 235) (((-121) $ (-634 $)) 234)) (-2925 (((-3 $ "failed") $) 33)) (-4054 (((-121) $) 243)) (-4144 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) 215)) (-2053 (($ $) 184 (|has| |#1| (-453)))) (-3250 (($ $) 174 (|has| |#1| (-453))) (($ $ |#3|) 103 (|has| |#1| (-453)))) (-2108 (((-634 $) $) 107)) (-3927 (((-121) $) 94 (|has| |#1| (-904)))) (-3069 (($ $) 200 (|has| |#1| (-558)))) (-3431 (($ $) 201 (|has| |#1| (-558)))) (-4293 (($ $ $) 227) (($ $ $ |#3|) 225)) (-2875 (($ $ $) 226) (($ $ $ |#3|) 224)) (-3088 (($ $ |#1| |#2| $) 170)) (-4410 (((-884 (-381) $) $ (-887 (-381)) (-884 (-381) $)) 82 (-12 (|has| |#3| (-881 (-381))) (|has| |#1| (-881 (-381))))) (((-884 (-568) $) $ (-887 (-568)) (-884 (-568) $)) 81 (-12 (|has| |#3| (-881 (-568))) (|has| |#1| (-881 (-568)))))) (-2735 (((-121) $) 30)) (-4178 (((-763) $) 167)) (-1362 (((-121) $ $) 229) (((-121) $ (-634 $)) 228)) (-4396 (($ $ $ $ $) 186 (|has| |#1| (-558)))) (-2356 ((|#3| $) 254)) (-2051 (($ (-1157 |#1|) |#3|) 115) (($ (-1157 $) |#3|) 114)) (-2976 (((-634 $) $) 124)) (-3921 (((-121) $) 150)) (-2047 (($ |#1| |#2|) 151) (($ $ |#3| (-763)) 117) (($ $ (-634 |#3|) (-634 (-763))) 116)) (-2507 (($ $ $) 214)) (-3379 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $ |#3|) 118)) (-2278 (((-121) $) 244)) (-2144 ((|#2| $) 168) (((-763) $ |#3|) 120) (((-634 (-763)) $ (-634 |#3|)) 119)) (-2521 (($ $ $) 77 (|has| |#1| (-842)))) (-3838 (((-763) $) 253)) (-3268 (($ $ $) 76 (|has| |#1| (-842)))) (-3842 (($ (-1 |#2| |#2|) $) 169)) (-2795 (($ (-1 |#1| |#1|) $) 149)) (-2244 (((-3 |#3| "failed") $) 121)) (-3290 (($ $) 181 (|has| |#1| (-453)))) (-2297 (($ $) 182 (|has| |#1| (-453)))) (-4093 (((-634 $) $) 239)) (-2429 (($ $) 242)) (-2111 (($ $) 183 (|has| |#1| (-453)))) (-2380 (((-634 $) $) 240)) (-2104 (($ $) 241)) (-2097 (($ $) 147)) (-2102 ((|#1| $) 146) (($ $ |#3|) 246)) (-2495 (($ (-634 $)) 92 (|has| |#1| (-453))) (($ $ $) 91 (|has| |#1| (-453)))) (-2280 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3741 (-763))) $ $) 213)) (-3547 (((-2 (|:| -2348 $) (|:| |gap| (-763)) (|:| -3961 $) (|:| -1500 $)) $ $) 217) (((-2 (|:| -2348 $) (|:| |gap| (-763)) (|:| -3961 $) (|:| -1500 $)) $ $ |#3|) 216)) (-2409 (((-2 (|:| -2348 $) (|:| |gap| (-763)) (|:| -1500 $)) $ $) 219) (((-2 (|:| -2348 $) (|:| |gap| (-763)) (|:| -1500 $)) $ $ |#3|) 218)) (-3413 (($ $ $) 223) (($ $ $ |#3|) 221)) (-3774 (($ $ $) 222) (($ $ $ |#3|) 220)) (-4487 (((-1143) $) 9)) (-4330 (($ $ $) 189 (|has| |#1| (-558)))) (-1901 (((-634 $) $) 248)) (-3324 (((-3 (-634 $) "failed") $) 112)) (-1794 (((-3 (-634 $) "failed") $) 113)) (-3751 (((-3 (-2 (|:| |var| |#3|) (|:| -3438 (-763))) "failed") $) 111)) (-1415 (((-121) $ $) 231) (((-121) $ (-634 $)) 230)) (-2682 (($ $ $) 211)) (-4434 (($ $) 252)) (-2644 (((-121) $ $) 237)) (-4347 (((-121) $ $) 233) (((-121) $ (-634 $)) 232)) (-4025 (($ $ $) 212)) (-1733 (($ $) 251)) (-4022 (((-1108) $) 10)) (-2879 (((-2 (|:| -2721 $) (|:| |coef2| $)) $ $) 192 (|has| |#1| (-558)))) (-3203 (((-2 (|:| -2721 $) (|:| |coef1| $)) $ $) 193 (|has| |#1| (-558)))) (-2086 (((-121) $) 164)) (-2091 ((|#1| $) 165)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) 93 (|has| |#1| (-453)))) (-2721 ((|#1| |#1| $) 185 (|has| |#1| (-453))) (($ (-634 $)) 90 (|has| |#1| (-453))) (($ $ $) 89 (|has| |#1| (-453)))) (-2905 (((-420 (-1157 $)) (-1157 $)) 100 (|has| |#1| (-904)))) (-3545 (((-420 (-1157 $)) (-1157 $)) 99 (|has| |#1| (-904)))) (-3848 (((-420 $) $) 97 (|has| |#1| (-904)))) (-1297 (((-2 (|:| -2721 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 194 (|has| |#1| (-558)))) (-2595 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-558))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-558)))) (-3055 (($ $ |#1|) 198 (|has| |#1| (-558))) (($ $ $) 196 (|has| |#1| (-558)))) (-4049 (($ $ |#1|) 199 (|has| |#1| (-558))) (($ $ $) 197 (|has| |#1| (-558)))) (-1339 (($ $ (-634 (-288 $))) 143) (($ $ (-288 $)) 142) (($ $ $ $) 141) (($ $ (-634 $) (-634 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-634 |#3|) (-634 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-634 |#3|) (-634 $)) 136)) (-2217 (($ $ |#3|) 105 (|has| |#1| (-172)))) (-4189 (($ $ |#3|) 41) (($ $ (-634 |#3|)) 40) (($ $ |#3| (-763)) 39) (($ $ (-634 |#3|) (-634 (-763))) 38)) (-3206 ((|#2| $) 148) (((-763) $ |#3|) 128) (((-634 (-763)) $ (-634 |#3|)) 127)) (-1595 (($ $) 249)) (-2734 (($ $) 247)) (-4278 (((-887 (-381)) $) 80 (-12 (|has| |#3| (-609 (-887 (-381)))) (|has| |#1| (-609 (-887 (-381)))))) (((-887 (-568)) $) 79 (-12 (|has| |#3| (-609 (-887 (-568)))) (|has| |#1| (-609 (-887 (-568)))))) (((-541) $) 78 (-12 (|has| |#3| (-609 (-541))) (|has| |#1| (-609 (-541))))) (($ (-953 (-409 (-568)))) 208 (-12 (|has| |#1| (-43 (-409 (-568)))) (|has| |#3| (-609 (-1161))))) (($ (-953 (-568))) 205 (-2198 (-12 (-3044 (|has| |#1| (-43 (-409 (-568))))) (|has| |#1| (-43 (-568))) (|has| |#3| (-609 (-1161)))) (-12 (|has| |#1| (-43 (-409 (-568)))) (|has| |#3| (-609 (-1161)))))) (($ (-953 |#1|)) 202 (|has| |#3| (-609 (-1161)))) (((-1143) $) 180 (-12 (|has| |#1| (-1037 (-568))) (|has| |#3| (-609 (-1161))))) (((-953 |#1|) $) 179 (|has| |#3| (-609 (-1161))))) (-3367 ((|#1| $) 173 (|has| |#1| (-453))) (($ $ |#3|) 104 (|has| |#1| (-453)))) (-2979 (((-3 (-1244 $) "failed") (-679 $)) 102 (-2139 (|has| $ (-148)) (|has| |#1| (-904))))) (-2745 (((-850) $) 11) (($ (-568)) 27) (($ |#1|) 161) (($ |#3|) 135) (((-953 |#1|) $) 178 (|has| |#3| (-609 (-1161)))) (($ (-409 (-568))) 70 (-2198 (|has| |#1| (-1037 (-409 (-568)))) (|has| |#1| (-43 (-409 (-568)))))) (($ $) 83 (|has| |#1| (-558)))) (-1302 (((-634 |#1|) $) 166)) (-2604 ((|#1| $ |#2|) 153) (($ $ |#3| (-763)) 126) (($ $ (-634 |#3|) (-634 (-763))) 125)) (-4371 (((-3 $ "failed") $) 71 (-2198 (-2139 (|has| $ (-148)) (|has| |#1| (-904))) (|has| |#1| (-148))))) (-4078 (((-763)) 28)) (-4171 (($ $ $ (-763)) 171 (|has| |#1| (-172)))) (-1826 (((-121) $ $) 87 (|has| |#1| (-558)))) (-1887 (($ $ (-917)) 25) (($ $ (-763)) 32)) (-3056 (($) 17 T CONST)) (-3601 (((-3 (-121) "failed") $ $) 238)) (-1556 (($) 29 T CONST)) (-2361 (($ $ $ $ (-763)) 187 (|has| |#1| (-558)))) (-2156 (($ $ $ (-763)) 188 (|has| |#1| (-558)))) (-3190 (($ $ |#3|) 37) (($ $ (-634 |#3|)) 36) (($ $ |#3| (-763)) 35) (($ $ (-634 |#3|) (-634 (-763))) 34)) (-1751 (((-121) $ $) 74 (|has| |#1| (-842)))) (-1738 (((-121) $ $) 73 (|has| |#1| (-842)))) (-1717 (((-121) $ $) 6)) (-1745 (((-121) $ $) 75 (|has| |#1| (-842)))) (-1732 (((-121) $ $) 72 (|has| |#1| (-842)))) (-1779 (($ $ |#1|) 154 (|has| |#1| (-365)))) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 24) (($ $ (-763)) 31)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 23) (($ $ (-409 (-568))) 156 (|has| |#1| (-43 (-409 (-568))))) (($ (-409 (-568)) $) 155 (|has| |#1| (-43 (-409 (-568))))) (($ |#1| $) 145) (($ $ |#1|) 144))) +(((-1061 |#1| |#2| |#3|) (-1275) (-1047) (-788) (-842)) (T -1061)) +((-2356 (*1 *2 *1) (-12 (-4 *1 (-1061 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *2 (-842)))) (-3838 (*1 *2 *1) (-12 (-4 *1 (-1061 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-763)))) (-4434 (*1 *1 *1) (-12 (-4 *1 (-1061 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-788)) (-4 *4 (-842)))) (-1733 (*1 *1 *1) (-12 (-4 *1 (-1061 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-788)) (-4 *4 (-842)))) (-2796 (*1 *1 *1) (-12 (-4 *1 (-1061 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-788)) (-4 *4 (-842)))) (-1595 (*1 *1 *1) (-12 (-4 *1 (-1061 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-788)) (-4 *4 (-842)))) (-1901 (*1 *2 *1) (-12 (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-634 *1)) (-4 *1 (-1061 *3 *4 *5)))) (-2734 (*1 *1 *1) (-12 (-4 *1 (-1061 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-788)) (-4 *4 (-842)))) (-2102 (*1 *1 *1 *2) (-12 (-4 *1 (-1061 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *2 (-842)))) (-2114 (*1 *1 *1 *2) (-12 (-4 *1 (-1061 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *2 (-842)))) (-2278 (*1 *2 *1) (-12 (-4 *1 (-1061 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-121)))) (-4054 (*1 *2 *1) (-12 (-4 *1 (-1061 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-121)))) (-2429 (*1 *1 *1) (-12 (-4 *1 (-1061 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-788)) (-4 *4 (-842)))) (-2104 (*1 *1 *1) (-12 (-4 *1 (-1061 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-788)) (-4 *4 (-842)))) (-2380 (*1 *2 *1) (-12 (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-634 *1)) (-4 *1 (-1061 *3 *4 *5)))) (-4093 (*1 *2 *1) (-12 (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-634 *1)) (-4 *1 (-1061 *3 *4 *5)))) (-3601 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1061 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-121)))) (-2644 (*1 *2 *1 *1) (-12 (-4 *1 (-1061 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-121)))) (-3653 (*1 *2 *1 *1) (-12 (-4 *1 (-1061 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-121)))) (-1281 (*1 *2 *1 *1) (-12 (-4 *1 (-1061 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-121)))) (-1281 (*1 *2 *1 *3) (-12 (-5 *3 (-634 *1)) (-4 *1 (-1061 *4 *5 *6)) (-4 *4 (-1047)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-121)))) (-4347 (*1 *2 *1 *1) (-12 (-4 *1 (-1061 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-121)))) (-4347 (*1 *2 *1 *3) (-12 (-5 *3 (-634 *1)) (-4 *1 (-1061 *4 *5 *6)) (-4 *4 (-1047)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-121)))) (-1415 (*1 *2 *1 *1) (-12 (-4 *1 (-1061 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-121)))) (-1415 (*1 *2 *1 *3) (-12 (-5 *3 (-634 *1)) (-4 *1 (-1061 *4 *5 *6)) (-4 *4 (-1047)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-121)))) (-1362 (*1 *2 *1 *1) (-12 (-4 *1 (-1061 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-121)))) (-1362 (*1 *2 *1 *3) (-12 (-5 *3 (-634 *1)) (-4 *1 (-1061 *4 *5 *6)) (-4 *4 (-1047)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-121)))) (-4293 (*1 *1 *1 *1) (-12 (-4 *1 (-1061 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-788)) (-4 *4 (-842)))) (-2875 (*1 *1 *1 *1) (-12 (-4 *1 (-1061 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-788)) (-4 *4 (-842)))) (-4293 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1061 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *2 (-842)))) (-2875 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1061 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *2 (-842)))) (-3413 (*1 *1 *1 *1) (-12 (-4 *1 (-1061 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-788)) (-4 *4 (-842)))) (-3774 (*1 *1 *1 *1) (-12 (-4 *1 (-1061 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-788)) (-4 *4 (-842)))) (-3413 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1061 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *2 (-842)))) (-3774 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1061 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *2 (-842)))) (-2409 (*1 *2 *1 *1) (-12 (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-2 (|:| -2348 *1) (|:| |gap| (-763)) (|:| -1500 *1))) (-4 *1 (-1061 *3 *4 *5)))) (-2409 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1047)) (-4 *5 (-788)) (-4 *3 (-842)) (-5 *2 (-2 (|:| -2348 *1) (|:| |gap| (-763)) (|:| -1500 *1))) (-4 *1 (-1061 *4 *5 *3)))) (-3547 (*1 *2 *1 *1) (-12 (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-2 (|:| -2348 *1) (|:| |gap| (-763)) (|:| -3961 *1) (|:| -1500 *1))) (-4 *1 (-1061 *3 *4 *5)))) (-3547 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1047)) (-4 *5 (-788)) (-4 *3 (-842)) (-5 *2 (-2 (|:| -2348 *1) (|:| |gap| (-763)) (|:| -3961 *1) (|:| -1500 *1))) (-4 *1 (-1061 *4 *5 *3)))) (-4144 (*1 *2 *1 *1) (-12 (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-2 (|:| -3961 *1) (|:| -1500 *1))) (-4 *1 (-1061 *3 *4 *5)))) (-2507 (*1 *1 *1 *1) (-12 (-4 *1 (-1061 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-788)) (-4 *4 (-842)))) (-2280 (*1 *2 *1 *1) (-12 (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3741 (-763)))) (-4 *1 (-1061 *3 *4 *5)))) (-4025 (*1 *1 *1 *1) (-12 (-4 *1 (-1061 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-788)) (-4 *4 (-842)))) (-2682 (*1 *1 *1 *1) (-12 (-4 *1 (-1061 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-788)) (-4 *4 (-842)))) (-3666 (*1 *1 *2) (|partial| -12 (-5 *2 (-953 (-409 (-568)))) (-4 *1 (-1061 *3 *4 *5)) (-4 *3 (-43 (-409 (-568)))) (-4 *5 (-609 (-1161))) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)))) (-2854 (*1 *1 *2) (-12 (-5 *2 (-953 (-409 (-568)))) (-4 *1 (-1061 *3 *4 *5)) (-4 *3 (-43 (-409 (-568)))) (-4 *5 (-609 (-1161))) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)))) (-4278 (*1 *1 *2) (-12 (-5 *2 (-953 (-409 (-568)))) (-4 *1 (-1061 *3 *4 *5)) (-4 *3 (-43 (-409 (-568)))) (-4 *5 (-609 (-1161))) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)))) (-3666 (*1 *1 *2) (|partial| -2198 (-12 (-5 *2 (-953 (-568))) (-4 *1 (-1061 *3 *4 *5)) (-12 (-3044 (-4 *3 (-43 (-409 (-568))))) (-4 *3 (-43 (-568))) (-4 *5 (-609 (-1161)))) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842))) (-12 (-5 *2 (-953 (-568))) (-4 *1 (-1061 *3 *4 *5)) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *5 (-609 (-1161)))) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842))))) (-2854 (*1 *1 *2) (-2198 (-12 (-5 *2 (-953 (-568))) (-4 *1 (-1061 *3 *4 *5)) (-12 (-3044 (-4 *3 (-43 (-409 (-568))))) (-4 *3 (-43 (-568))) (-4 *5 (-609 (-1161)))) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842))) (-12 (-5 *2 (-953 (-568))) (-4 *1 (-1061 *3 *4 *5)) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *5 (-609 (-1161)))) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842))))) (-4278 (*1 *1 *2) (-2198 (-12 (-5 *2 (-953 (-568))) (-4 *1 (-1061 *3 *4 *5)) (-12 (-3044 (-4 *3 (-43 (-409 (-568))))) (-4 *3 (-43 (-568))) (-4 *5 (-609 (-1161)))) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842))) (-12 (-5 *2 (-953 (-568))) (-4 *1 (-1061 *3 *4 *5)) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *5 (-609 (-1161)))) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842))))) (-3666 (*1 *1 *2) (|partial| -2198 (-12 (-5 *2 (-953 *3)) (-12 (-3044 (-4 *3 (-43 (-409 (-568))))) (-3044 (-4 *3 (-43 (-568)))) (-4 *5 (-609 (-1161)))) (-4 *3 (-1047)) (-4 *1 (-1061 *3 *4 *5)) (-4 *4 (-788)) (-4 *5 (-842))) (-12 (-5 *2 (-953 *3)) (-12 (-3044 (-4 *3 (-550))) (-3044 (-4 *3 (-43 (-409 (-568))))) (-4 *3 (-43 (-568))) (-4 *5 (-609 (-1161)))) (-4 *3 (-1047)) (-4 *1 (-1061 *3 *4 *5)) (-4 *4 (-788)) (-4 *5 (-842))) (-12 (-5 *2 (-953 *3)) (-12 (-3044 (-4 *3 (-993 (-568)))) (-4 *3 (-43 (-409 (-568)))) (-4 *5 (-609 (-1161)))) (-4 *3 (-1047)) (-4 *1 (-1061 *3 *4 *5)) (-4 *4 (-788)) (-4 *5 (-842))))) (-2854 (*1 *1 *2) (-2198 (-12 (-5 *2 (-953 *3)) (-12 (-3044 (-4 *3 (-43 (-409 (-568))))) (-3044 (-4 *3 (-43 (-568)))) (-4 *5 (-609 (-1161)))) (-4 *3 (-1047)) (-4 *1 (-1061 *3 *4 *5)) (-4 *4 (-788)) (-4 *5 (-842))) (-12 (-5 *2 (-953 *3)) (-12 (-3044 (-4 *3 (-550))) (-3044 (-4 *3 (-43 (-409 (-568))))) (-4 *3 (-43 (-568))) (-4 *5 (-609 (-1161)))) (-4 *3 (-1047)) (-4 *1 (-1061 *3 *4 *5)) (-4 *4 (-788)) (-4 *5 (-842))) (-12 (-5 *2 (-953 *3)) (-12 (-3044 (-4 *3 (-993 (-568)))) (-4 *3 (-43 (-409 (-568)))) (-4 *5 (-609 (-1161)))) (-4 *3 (-1047)) (-4 *1 (-1061 *3 *4 *5)) (-4 *4 (-788)) (-4 *5 (-842))))) (-4278 (*1 *1 *2) (-12 (-5 *2 (-953 *3)) (-4 *3 (-1047)) (-4 *1 (-1061 *3 *4 *5)) (-4 *5 (-609 (-1161))) (-4 *4 (-788)) (-4 *5 (-842)))) (-3431 (*1 *1 *1) (-12 (-4 *1 (-1061 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-788)) (-4 *4 (-842)) (-4 *2 (-558)))) (-3069 (*1 *1 *1) (-12 (-4 *1 (-1061 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-788)) (-4 *4 (-842)) (-4 *2 (-558)))) (-4049 (*1 *1 *1 *2) (-12 (-4 *1 (-1061 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-788)) (-4 *4 (-842)) (-4 *2 (-558)))) (-3055 (*1 *1 *1 *2) (-12 (-4 *1 (-1061 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-788)) (-4 *4 (-842)) (-4 *2 (-558)))) (-4049 (*1 *1 *1 *1) (-12 (-4 *1 (-1061 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-788)) (-4 *4 (-842)) (-4 *2 (-558)))) (-3055 (*1 *1 *1 *1) (-12 (-4 *1 (-1061 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-788)) (-4 *4 (-842)) (-4 *2 (-558)))) (-3809 (*1 *1 *1 *1) (-12 (-4 *1 (-1061 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-788)) (-4 *4 (-842)) (-4 *2 (-558)))) (-1297 (*1 *2 *1 *1) (-12 (-4 *3 (-558)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-2 (|:| -2721 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1061 *3 *4 *5)))) (-3203 (*1 *2 *1 *1) (-12 (-4 *3 (-558)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-2 (|:| -2721 *1) (|:| |coef1| *1))) (-4 *1 (-1061 *3 *4 *5)))) (-2879 (*1 *2 *1 *1) (-12 (-4 *3 (-558)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-2 (|:| -2721 *1) (|:| |coef2| *1))) (-4 *1 (-1061 *3 *4 *5)))) (-4265 (*1 *1 *1 *1) (-12 (-4 *1 (-1061 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-788)) (-4 *4 (-842)) (-4 *2 (-558)))) (-3909 (*1 *2 *1 *1) (-12 (-4 *3 (-558)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-634 *1)) (-4 *1 (-1061 *3 *4 *5)))) (-4330 (*1 *1 *1 *1) (-12 (-4 *1 (-1061 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-788)) (-4 *4 (-842)) (-4 *2 (-558)))) (-2156 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-763)) (-4 *1 (-1061 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *3 (-558)))) (-2361 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-763)) (-4 *1 (-1061 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *3 (-558)))) (-4396 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1061 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-788)) (-4 *4 (-842)) (-4 *2 (-558)))) (-2721 (*1 *2 *2 *1) (-12 (-4 *1 (-1061 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-788)) (-4 *4 (-842)) (-4 *2 (-453)))) (-2053 (*1 *1 *1) (-12 (-4 *1 (-1061 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-788)) (-4 *4 (-842)) (-4 *2 (-453)))) (-2111 (*1 *1 *1) (-12 (-4 *1 (-1061 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-788)) (-4 *4 (-842)) (-4 *2 (-453)))) (-2297 (*1 *1 *1) (-12 (-4 *1 (-1061 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-788)) (-4 *4 (-842)) (-4 *2 (-453)))) (-3290 (*1 *1 *1) (-12 (-4 *1 (-1061 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-788)) (-4 *4 (-842)) (-4 *2 (-453))))) +(-13 (-950 |t#1| |t#2| |t#3|) (-10 -8 (-15 -2356 (|t#3| $)) (-15 -3838 ((-763) $)) (-15 -4434 ($ $)) (-15 -1733 ($ $)) (-15 -2796 ($ $)) (-15 -1595 ($ $)) (-15 -1901 ((-634 $) $)) (-15 -2734 ($ $)) (-15 -2102 ($ $ |t#3|)) (-15 -2114 ($ $ |t#3|)) (-15 -2278 ((-121) $)) (-15 -4054 ((-121) $)) (-15 -2429 ($ $)) (-15 -2104 ($ $)) (-15 -2380 ((-634 $) $)) (-15 -4093 ((-634 $) $)) (-15 -3601 ((-3 (-121) "failed") $ $)) (-15 -2644 ((-121) $ $)) (-15 -3653 ((-121) $ $)) (-15 -1281 ((-121) $ $)) (-15 -1281 ((-121) $ (-634 $))) (-15 -4347 ((-121) $ $)) (-15 -4347 ((-121) $ (-634 $))) (-15 -1415 ((-121) $ $)) (-15 -1415 ((-121) $ (-634 $))) (-15 -1362 ((-121) $ $)) (-15 -1362 ((-121) $ (-634 $))) (-15 -4293 ($ $ $)) (-15 -2875 ($ $ $)) (-15 -4293 ($ $ $ |t#3|)) (-15 -2875 ($ $ $ |t#3|)) (-15 -3413 ($ $ $)) (-15 -3774 ($ $ $)) (-15 -3413 ($ $ $ |t#3|)) (-15 -3774 ($ $ $ |t#3|)) (-15 -2409 ((-2 (|:| -2348 $) (|:| |gap| (-763)) (|:| -1500 $)) $ $)) (-15 -2409 ((-2 (|:| -2348 $) (|:| |gap| (-763)) (|:| -1500 $)) $ $ |t#3|)) (-15 -3547 ((-2 (|:| -2348 $) (|:| |gap| (-763)) (|:| -3961 $) (|:| -1500 $)) $ $)) (-15 -3547 ((-2 (|:| -2348 $) (|:| |gap| (-763)) (|:| -3961 $) (|:| -1500 $)) $ $ |t#3|)) (-15 -4144 ((-2 (|:| -3961 $) (|:| -1500 $)) $ $)) (-15 -2507 ($ $ $)) (-15 -2280 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3741 (-763))) $ $)) (-15 -4025 ($ $ $)) (-15 -2682 ($ $ $)) (IF (|has| |t#3| (-609 (-1161))) (PROGN (-6 (-608 (-953 |t#1|))) (-6 (-609 (-953 |t#1|))) (IF (|has| |t#1| (-43 (-409 (-568)))) (PROGN (-15 -3666 ((-3 $ "failed") (-953 (-409 (-568))))) (-15 -2854 ($ (-953 (-409 (-568))))) (-15 -4278 ($ (-953 (-409 (-568))))) (-15 -3666 ((-3 $ "failed") (-953 (-568)))) (-15 -2854 ($ (-953 (-568)))) (-15 -4278 ($ (-953 (-568)))) (IF (|has| |t#1| (-993 (-568))) |noBranch| (PROGN (-15 -3666 ((-3 $ "failed") (-953 |t#1|))) (-15 -2854 ($ (-953 |t#1|)))))) |noBranch|) (IF (|has| |t#1| (-43 (-568))) (IF (|has| |t#1| (-43 (-409 (-568)))) |noBranch| (PROGN (-15 -3666 ((-3 $ "failed") (-953 (-568)))) (-15 -2854 ($ (-953 (-568)))) (-15 -4278 ($ (-953 (-568)))) (IF (|has| |t#1| (-550)) |noBranch| (PROGN (-15 -3666 ((-3 $ "failed") (-953 |t#1|))) (-15 -2854 ($ (-953 |t#1|))))))) |noBranch|) (IF (|has| |t#1| (-43 (-568))) |noBranch| (IF (|has| |t#1| (-43 (-409 (-568)))) |noBranch| (PROGN (-15 -3666 ((-3 $ "failed") (-953 |t#1|))) (-15 -2854 ($ (-953 |t#1|)))))) (-15 -4278 ($ (-953 |t#1|))) (IF (|has| |t#1| (-1037 (-568))) (-6 (-609 (-1143))) |noBranch|)) |noBranch|) (IF (|has| |t#1| (-558)) (PROGN (-15 -3431 ($ $)) (-15 -3069 ($ $)) (-15 -4049 ($ $ |t#1|)) (-15 -3055 ($ $ |t#1|)) (-15 -4049 ($ $ $)) (-15 -3055 ($ $ $)) (-15 -3809 ($ $ $)) (-15 -1297 ((-2 (|:| -2721 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3203 ((-2 (|:| -2721 $) (|:| |coef1| $)) $ $)) (-15 -2879 ((-2 (|:| -2721 $) (|:| |coef2| $)) $ $)) (-15 -4265 ($ $ $)) (-15 -3909 ((-634 $) $ $)) (-15 -4330 ($ $ $)) (-15 -2156 ($ $ $ (-763))) (-15 -2361 ($ $ $ $ (-763))) (-15 -4396 ($ $ $ $ $))) |noBranch|) (IF (|has| |t#1| (-453)) (PROGN (-15 -2721 (|t#1| |t#1| $)) (-15 -2053 ($ $)) (-15 -2111 ($ $)) (-15 -2297 ($ $)) (-15 -3290 ($ $))) |noBranch|))) +(((-21) . T) ((-23) . T) ((-52 |#1| |#2|) . T) ((-25) . T) ((-43 (-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((-43 |#1|) |has| |#1| (-172)) ((-43 $) -2198 (|has| |#1| (-904)) (|has| |#1| (-558)) (|has| |#1| (-453))) ((-105) . T) ((-120 (-409 (-568)) (-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((-120 |#1| |#1|) . T) ((-120 $ $) -2198 (|has| |#1| (-904)) (|has| |#1| (-558)) (|has| |#1| (-453)) (|has| |#1| (-172))) ((-137) . T) ((-148) |has| |#1| (-148)) ((-150) |has| |#1| (-150)) ((-608 (-850)) . T) ((-608 (-953 |#1|)) |has| |#3| (-609 (-1161))) ((-172) -2198 (|has| |#1| (-904)) (|has| |#1| (-558)) (|has| |#1| (-453)) (|has| |#1| (-172))) ((-609 (-541)) -12 (|has| |#1| (-609 (-541))) (|has| |#3| (-609 (-541)))) ((-609 (-887 (-381))) -12 (|has| |#1| (-609 (-887 (-381)))) (|has| |#3| (-609 (-887 (-381))))) ((-609 (-887 (-568))) -12 (|has| |#1| (-609 (-887 (-568)))) (|has| |#3| (-609 (-887 (-568))))) ((-609 (-953 |#1|)) |has| |#3| (-609 (-1161))) ((-609 (-1143)) -12 (|has| |#1| (-1037 (-568))) (|has| |#3| (-609 (-1161)))) ((-285) -2198 (|has| |#1| (-904)) (|has| |#1| (-558)) (|has| |#1| (-453))) ((-303 $) . T) ((-324 |#1| |#2|) . T) ((-379 |#1|) . T) ((-413 |#1|) . T) ((-453) -2198 (|has| |#1| (-904)) (|has| |#1| (-453))) ((-523 |#3| |#1|) . T) ((-523 |#3| $) . T) ((-523 $ $) . T) ((-558) -2198 (|has| |#1| (-904)) (|has| |#1| (-558)) (|has| |#1| (-453))) ((-637 (-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((-637 |#1|) . T) ((-637 $) . T) ((-630 (-568)) |has| |#1| (-630 (-568))) ((-630 |#1|) . T) ((-707 (-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((-707 |#1|) |has| |#1| (-172)) ((-707 $) -2198 (|has| |#1| (-904)) (|has| |#1| (-558)) (|has| |#1| (-453))) ((-716) . T) ((-842) |has| |#1| (-842)) ((-895 |#3|) . T) ((-881 (-381)) -12 (|has| |#1| (-881 (-381))) (|has| |#3| (-881 (-381)))) ((-881 (-568)) -12 (|has| |#1| (-881 (-568))) (|has| |#3| (-881 (-568)))) ((-950 |#1| |#2| |#3|) . T) ((-904) |has| |#1| (-904)) ((-1037 (-409 (-568))) |has| |#1| (-1037 (-409 (-568)))) ((-1037 (-568)) |has| |#1| (-1037 (-568))) ((-1037 |#1|) . T) ((-1037 |#3|) . T) ((-1053 (-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((-1053 |#1|) . T) ((-1053 $) -2198 (|has| |#1| (-904)) (|has| |#1| (-558)) (|has| |#1| (-453)) (|has| |#1| (-172))) ((-1047) . T) ((-1054) . T) ((-1102) . T) ((-1090) . T) ((-1199) |has| |#1| (-904))) +((-2537 (((-121) |#3| $) 13)) (-2932 (((-3 $ "failed") |#3| (-917)) 23)) (-2925 (((-3 |#3| "failed") |#3| $) 37)) (-2033 (((-121) |#3| $) 16)) (-2245 (((-121) |#3| $) 14))) +(((-1062 |#1| |#2| |#3|) (-10 -8 (-15 -2932 ((-3 |#1| "failed") |#3| (-917))) (-15 -2925 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2033 ((-121) |#3| |#1|)) (-15 -2245 ((-121) |#3| |#1|)) (-15 -2537 ((-121) |#3| |#1|))) (-1063 |#2| |#3|) (-13 (-840) (-365)) (-1219 |#2|)) (T -1062)) +NIL +(-10 -8 (-15 -2932 ((-3 |#1| "failed") |#3| (-917))) (-15 -2925 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2033 ((-121) |#3| |#1|)) (-15 -2245 ((-121) |#3| |#1|)) (-15 -2537 ((-121) |#3| |#1|))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) |#2| $) 20)) (-3662 (((-568) |#2| $) 21)) (-2932 (((-3 $ "failed") |#2| (-917)) 14)) (-3820 ((|#1| |#2| $ |#1|) 12)) (-2925 (((-3 |#2| "failed") |#2| $) 17)) (-2033 (((-121) |#2| $) 18)) (-2245 (((-121) |#2| $) 19)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-1626 ((|#2| $) 16)) (-2745 (((-850) $) 11)) (-3996 ((|#1| |#2| $ |#1|) 13)) (-4309 (((-634 $) |#2|) 15)) (-1717 (((-121) $ $) 6))) +(((-1063 |#1| |#2|) (-1275) (-13 (-840) (-365)) (-1219 |t#1|)) (T -1063)) +((-3662 (*1 *2 *3 *1) (-12 (-4 *1 (-1063 *4 *3)) (-4 *4 (-13 (-840) (-365))) (-4 *3 (-1219 *4)) (-5 *2 (-568)))) (-2537 (*1 *2 *3 *1) (-12 (-4 *1 (-1063 *4 *3)) (-4 *4 (-13 (-840) (-365))) (-4 *3 (-1219 *4)) (-5 *2 (-121)))) (-2245 (*1 *2 *3 *1) (-12 (-4 *1 (-1063 *4 *3)) (-4 *4 (-13 (-840) (-365))) (-4 *3 (-1219 *4)) (-5 *2 (-121)))) (-2033 (*1 *2 *3 *1) (-12 (-4 *1 (-1063 *4 *3)) (-4 *4 (-13 (-840) (-365))) (-4 *3 (-1219 *4)) (-5 *2 (-121)))) (-2925 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1063 *3 *2)) (-4 *3 (-13 (-840) (-365))) (-4 *2 (-1219 *3)))) (-1626 (*1 *2 *1) (-12 (-4 *1 (-1063 *3 *2)) (-4 *3 (-13 (-840) (-365))) (-4 *2 (-1219 *3)))) (-4309 (*1 *2 *3) (-12 (-4 *4 (-13 (-840) (-365))) (-4 *3 (-1219 *4)) (-5 *2 (-634 *1)) (-4 *1 (-1063 *4 *3)))) (-2932 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-917)) (-4 *4 (-13 (-840) (-365))) (-4 *1 (-1063 *4 *2)) (-4 *2 (-1219 *4)))) (-3996 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1063 *2 *3)) (-4 *2 (-13 (-840) (-365))) (-4 *3 (-1219 *2)))) (-3820 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1063 *2 *3)) (-4 *2 (-13 (-840) (-365))) (-4 *3 (-1219 *2))))) +(-13 (-1090) (-10 -8 (-15 -3662 ((-568) |t#2| $)) (-15 -2537 ((-121) |t#2| $)) (-15 -2245 ((-121) |t#2| $)) (-15 -2033 ((-121) |t#2| $)) (-15 -2925 ((-3 |t#2| "failed") |t#2| $)) (-15 -1626 (|t#2| $)) (-15 -4309 ((-634 $) |t#2|)) (-15 -2932 ((-3 $ "failed") |t#2| (-917))) (-15 -3996 (|t#1| |t#2| $ |t#1|)) (-15 -3820 (|t#1| |t#2| $ |t#1|)))) +(((-105) . T) ((-608 (-850)) . T) ((-1090) . T)) +((-3404 (((-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))) (-634 |#4|) (-634 |#5|) (-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))) (-2 (|:| |done| (-634 |#5|)) (|:| |todo| (-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))))) (-763)) 95)) (-2497 (((-2 (|:| |done| (-634 |#5|)) (|:| |todo| (-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))))) |#4| |#5|) 56) (((-2 (|:| |done| (-634 |#5|)) (|:| |todo| (-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))))) |#4| |#5| (-763)) 55)) (-1277 (((-1249) (-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))) (-763)) 87)) (-4032 (((-763) (-634 |#4|) (-634 |#5|)) 27)) (-4475 (((-2 (|:| |done| (-634 |#5|)) (|:| |todo| (-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))))) |#4| |#5|) 58) (((-2 (|:| |done| (-634 |#5|)) (|:| |todo| (-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))))) |#4| |#5| (-763)) 57) (((-2 (|:| |done| (-634 |#5|)) (|:| |todo| (-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))))) |#4| |#5| (-763) (-121)) 59)) (-2847 (((-634 |#5|) (-634 |#4|) (-634 |#5|) (-121) (-121) (-121) (-121) (-121)) 78) (((-634 |#5|) (-634 |#4|) (-634 |#5|) (-121) (-121)) 79)) (-4278 (((-1143) (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))) 82)) (-1677 (((-2 (|:| |done| (-634 |#5|)) (|:| |todo| (-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))))) |#4| |#5| (-121)) 54)) (-4295 (((-763) (-634 |#4|) (-634 |#5|)) 19))) +(((-1064 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4295 ((-763) (-634 |#4|) (-634 |#5|))) (-15 -4032 ((-763) (-634 |#4|) (-634 |#5|))) (-15 -1677 ((-2 (|:| |done| (-634 |#5|)) (|:| |todo| (-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))))) |#4| |#5| (-121))) (-15 -2497 ((-2 (|:| |done| (-634 |#5|)) (|:| |todo| (-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))))) |#4| |#5| (-763))) (-15 -2497 ((-2 (|:| |done| (-634 |#5|)) (|:| |todo| (-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))))) |#4| |#5|)) (-15 -4475 ((-2 (|:| |done| (-634 |#5|)) (|:| |todo| (-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))))) |#4| |#5| (-763) (-121))) (-15 -4475 ((-2 (|:| |done| (-634 |#5|)) (|:| |todo| (-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))))) |#4| |#5| (-763))) (-15 -4475 ((-2 (|:| |done| (-634 |#5|)) (|:| |todo| (-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))))) |#4| |#5|)) (-15 -2847 ((-634 |#5|) (-634 |#4|) (-634 |#5|) (-121) (-121))) (-15 -2847 ((-634 |#5|) (-634 |#4|) (-634 |#5|) (-121) (-121) (-121) (-121) (-121))) (-15 -3404 ((-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))) (-634 |#4|) (-634 |#5|) (-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))) (-2 (|:| |done| (-634 |#5|)) (|:| |todo| (-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))))) (-763))) (-15 -4278 ((-1143) (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|)))) (-15 -1277 ((-1249) (-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))) (-763)))) (-453) (-788) (-842) (-1061 |#1| |#2| |#3|) (-1066 |#1| |#2| |#3| |#4|)) (T -1064)) +((-1277 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-2 (|:| |val| (-634 *8)) (|:| -3001 *9)))) (-5 *4 (-763)) (-4 *8 (-1061 *5 *6 *7)) (-4 *9 (-1066 *5 *6 *7 *8)) (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-5 *2 (-1249)) (-5 *1 (-1064 *5 *6 *7 *8 *9)))) (-4278 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-634 *7)) (|:| -3001 *8))) (-4 *7 (-1061 *4 *5 *6)) (-4 *8 (-1066 *4 *5 *6 *7)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-1143)) (-5 *1 (-1064 *4 *5 *6 *7 *8)))) (-3404 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-634 *11)) (|:| |todo| (-634 (-2 (|:| |val| *3) (|:| -3001 *11)))))) (-5 *6 (-763)) (-5 *2 (-634 (-2 (|:| |val| (-634 *10)) (|:| -3001 *11)))) (-5 *3 (-634 *10)) (-5 *4 (-634 *11)) (-4 *10 (-1061 *7 *8 *9)) (-4 *11 (-1066 *7 *8 *9 *10)) (-4 *7 (-453)) (-4 *8 (-788)) (-4 *9 (-842)) (-5 *1 (-1064 *7 *8 *9 *10 *11)))) (-2847 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-634 *9)) (-5 *3 (-634 *8)) (-5 *4 (-121)) (-4 *8 (-1061 *5 *6 *7)) (-4 *9 (-1066 *5 *6 *7 *8)) (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-5 *1 (-1064 *5 *6 *7 *8 *9)))) (-2847 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-634 *9)) (-5 *3 (-634 *8)) (-5 *4 (-121)) (-4 *8 (-1061 *5 *6 *7)) (-4 *9 (-1066 *5 *6 *7 *8)) (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-5 *1 (-1064 *5 *6 *7 *8 *9)))) (-4475 (*1 *2 *3 *4) (-12 (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *3 (-1061 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-634 *4)) (|:| |todo| (-634 (-2 (|:| |val| (-634 *3)) (|:| -3001 *4)))))) (-5 *1 (-1064 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-4475 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-763)) (-4 *6 (-453)) (-4 *7 (-788)) (-4 *8 (-842)) (-4 *3 (-1061 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-634 *4)) (|:| |todo| (-634 (-2 (|:| |val| (-634 *3)) (|:| -3001 *4)))))) (-5 *1 (-1064 *6 *7 *8 *3 *4)) (-4 *4 (-1066 *6 *7 *8 *3)))) (-4475 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-763)) (-5 *6 (-121)) (-4 *7 (-453)) (-4 *8 (-788)) (-4 *9 (-842)) (-4 *3 (-1061 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-634 *4)) (|:| |todo| (-634 (-2 (|:| |val| (-634 *3)) (|:| -3001 *4)))))) (-5 *1 (-1064 *7 *8 *9 *3 *4)) (-4 *4 (-1066 *7 *8 *9 *3)))) (-2497 (*1 *2 *3 *4) (-12 (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *3 (-1061 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-634 *4)) (|:| |todo| (-634 (-2 (|:| |val| (-634 *3)) (|:| -3001 *4)))))) (-5 *1 (-1064 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-2497 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-763)) (-4 *6 (-453)) (-4 *7 (-788)) (-4 *8 (-842)) (-4 *3 (-1061 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-634 *4)) (|:| |todo| (-634 (-2 (|:| |val| (-634 *3)) (|:| -3001 *4)))))) (-5 *1 (-1064 *6 *7 *8 *3 *4)) (-4 *4 (-1066 *6 *7 *8 *3)))) (-1677 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-121)) (-4 *6 (-453)) (-4 *7 (-788)) (-4 *8 (-842)) (-4 *3 (-1061 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-634 *4)) (|:| |todo| (-634 (-2 (|:| |val| (-634 *3)) (|:| -3001 *4)))))) (-5 *1 (-1064 *6 *7 *8 *3 *4)) (-4 *4 (-1066 *6 *7 *8 *3)))) (-4032 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *8)) (-5 *4 (-634 *9)) (-4 *8 (-1061 *5 *6 *7)) (-4 *9 (-1066 *5 *6 *7 *8)) (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-5 *2 (-763)) (-5 *1 (-1064 *5 *6 *7 *8 *9)))) (-4295 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *8)) (-5 *4 (-634 *9)) (-4 *8 (-1061 *5 *6 *7)) (-4 *9 (-1066 *5 *6 *7 *8)) (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-5 *2 (-763)) (-5 *1 (-1064 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -4295 ((-763) (-634 |#4|) (-634 |#5|))) (-15 -4032 ((-763) (-634 |#4|) (-634 |#5|))) (-15 -1677 ((-2 (|:| |done| (-634 |#5|)) (|:| |todo| (-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))))) |#4| |#5| (-121))) (-15 -2497 ((-2 (|:| |done| (-634 |#5|)) (|:| |todo| (-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))))) |#4| |#5| (-763))) (-15 -2497 ((-2 (|:| |done| (-634 |#5|)) (|:| |todo| (-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))))) |#4| |#5|)) (-15 -4475 ((-2 (|:| |done| (-634 |#5|)) (|:| |todo| (-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))))) |#4| |#5| (-763) (-121))) (-15 -4475 ((-2 (|:| |done| (-634 |#5|)) (|:| |todo| (-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))))) |#4| |#5| (-763))) (-15 -4475 ((-2 (|:| |done| (-634 |#5|)) (|:| |todo| (-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))))) |#4| |#5|)) (-15 -2847 ((-634 |#5|) (-634 |#4|) (-634 |#5|) (-121) (-121))) (-15 -2847 ((-634 |#5|) (-634 |#4|) (-634 |#5|) (-121) (-121) (-121) (-121) (-121))) (-15 -3404 ((-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))) (-634 |#4|) (-634 |#5|) (-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))) (-2 (|:| |done| (-634 |#5|)) (|:| |todo| (-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))))) (-763))) (-15 -4278 ((-1143) (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|)))) (-15 -1277 ((-1249) (-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))) (-763)))) +((-1862 (((-121) |#5| $) 20)) (-4286 (((-121) |#5| $) 23)) (-3193 (((-121) |#5| $) 16) (((-121) $) 44)) (-3212 (((-634 $) |#5| $) NIL) (((-634 $) (-634 |#5|) $) 76) (((-634 $) (-634 |#5|) (-634 $)) 74) (((-634 $) |#5| (-634 $)) 77)) (-1807 (($ $ |#5|) NIL) (((-634 $) |#5| $) NIL) (((-634 $) |#5| (-634 $)) 59) (((-634 $) (-634 |#5|) $) 61) (((-634 $) (-634 |#5|) (-634 $)) 63)) (-2574 (((-634 $) |#5| $) NIL) (((-634 $) |#5| (-634 $)) 53) (((-634 $) (-634 |#5|) $) 55) (((-634 $) (-634 |#5|) (-634 $)) 57)) (-2288 (((-121) |#5| $) 26))) +(((-1065 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1807 ((-634 |#1|) (-634 |#5|) (-634 |#1|))) (-15 -1807 ((-634 |#1|) (-634 |#5|) |#1|)) (-15 -1807 ((-634 |#1|) |#5| (-634 |#1|))) (-15 -1807 ((-634 |#1|) |#5| |#1|)) (-15 -2574 ((-634 |#1|) (-634 |#5|) (-634 |#1|))) (-15 -2574 ((-634 |#1|) (-634 |#5|) |#1|)) (-15 -2574 ((-634 |#1|) |#5| (-634 |#1|))) (-15 -2574 ((-634 |#1|) |#5| |#1|)) (-15 -3212 ((-634 |#1|) |#5| (-634 |#1|))) (-15 -3212 ((-634 |#1|) (-634 |#5|) (-634 |#1|))) (-15 -3212 ((-634 |#1|) (-634 |#5|) |#1|)) (-15 -3212 ((-634 |#1|) |#5| |#1|)) (-15 -4286 ((-121) |#5| |#1|)) (-15 -3193 ((-121) |#1|)) (-15 -2288 ((-121) |#5| |#1|)) (-15 -1862 ((-121) |#5| |#1|)) (-15 -3193 ((-121) |#5| |#1|)) (-15 -1807 (|#1| |#1| |#5|))) (-1066 |#2| |#3| |#4| |#5|) (-453) (-788) (-842) (-1061 |#2| |#3| |#4|)) (T -1065)) +NIL +(-10 -8 (-15 -1807 ((-634 |#1|) (-634 |#5|) (-634 |#1|))) (-15 -1807 ((-634 |#1|) (-634 |#5|) |#1|)) (-15 -1807 ((-634 |#1|) |#5| (-634 |#1|))) (-15 -1807 ((-634 |#1|) |#5| |#1|)) (-15 -2574 ((-634 |#1|) (-634 |#5|) (-634 |#1|))) (-15 -2574 ((-634 |#1|) (-634 |#5|) |#1|)) (-15 -2574 ((-634 |#1|) |#5| (-634 |#1|))) (-15 -2574 ((-634 |#1|) |#5| |#1|)) (-15 -3212 ((-634 |#1|) |#5| (-634 |#1|))) (-15 -3212 ((-634 |#1|) (-634 |#5|) (-634 |#1|))) (-15 -3212 ((-634 |#1|) (-634 |#5|) |#1|)) (-15 -3212 ((-634 |#1|) |#5| |#1|)) (-15 -4286 ((-121) |#5| |#1|)) (-15 -3193 ((-121) |#1|)) (-15 -2288 ((-121) |#5| |#1|)) (-15 -1862 ((-121) |#5| |#1|)) (-15 -3193 ((-121) |#5| |#1|)) (-15 -1807 (|#1| |#1| |#5|))) +((-2447 (((-121) $ $) 7)) (-2387 (((-634 (-2 (|:| -4092 $) (|:| -1798 (-634 |#4|)))) (-634 |#4|)) 78)) (-2415 (((-634 $) (-634 |#4|)) 79) (((-634 $) (-634 |#4|) (-121)) 104)) (-2055 (((-634 |#3|) $) 32)) (-4211 (((-121) $) 25)) (-3824 (((-121) $) 16 (|has| |#1| (-558)))) (-3300 (((-121) |#4| $) 94) (((-121) $) 90)) (-2819 ((|#4| |#4| $) 85)) (-4305 (((-634 (-2 (|:| |val| |#4|) (|:| -3001 $))) |#4| $) 119)) (-3644 (((-2 (|:| |under| $) (|:| -1519 $) (|:| |upper| $)) $ |#3|) 26)) (-2510 (((-121) $ (-763)) 43)) (-2801 (($ (-1 (-121) |#4|) $) 64 (|has| $ (-6 -4519))) (((-3 |#4| "failed") $ |#3|) 72)) (-2671 (($) 44 T CONST)) (-1565 (((-121) $) 21 (|has| |#1| (-558)))) (-3846 (((-121) $ $) 23 (|has| |#1| (-558)))) (-3106 (((-121) $ $) 22 (|has| |#1| (-558)))) (-3695 (((-121) $) 24 (|has| |#1| (-558)))) (-4275 (((-634 |#4|) (-634 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-121) |#4| |#4|)) 86)) (-2355 (((-634 |#4|) (-634 |#4|) $) 17 (|has| |#1| (-558)))) (-2492 (((-634 |#4|) (-634 |#4|) $) 18 (|has| |#1| (-558)))) (-3666 (((-3 $ "failed") (-634 |#4|)) 35)) (-2854 (($ (-634 |#4|)) 34)) (-3935 (((-3 $ "failed") $) 75)) (-2062 ((|#4| |#4| $) 82)) (-3924 (($ $) 67 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4519))))) (-4328 (($ |#4| $) 66 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4519)))) (($ (-1 (-121) |#4|) $) 63 (|has| $ (-6 -4519)))) (-1500 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 19 (|has| |#1| (-558)))) (-1281 (((-121) |#4| $ (-1 (-121) |#4| |#4|)) 95)) (-4079 ((|#4| |#4| $) 80)) (-3092 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 65 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4519)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 62 (|has| $ (-6 -4519))) ((|#4| (-1 |#4| |#4| |#4|) $) 61 (|has| $ (-6 -4519))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-121) |#4| |#4|)) 87)) (-3635 (((-2 (|:| -4092 (-634 |#4|)) (|:| -1798 (-634 |#4|))) $) 98)) (-1862 (((-121) |#4| $) 129)) (-4286 (((-121) |#4| $) 126)) (-3193 (((-121) |#4| $) 130) (((-121) $) 127)) (-4360 (((-634 |#4|) $) 51 (|has| $ (-6 -4519)))) (-1362 (((-121) |#4| $) 97) (((-121) $) 96)) (-2356 ((|#3| $) 33)) (-1737 (((-121) $ (-763)) 42)) (-1979 (((-634 |#4|) $) 52 (|has| $ (-6 -4519)))) (-3109 (((-121) |#4| $) 54 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4519))))) (-3674 (($ (-1 |#4| |#4|) $) 47 (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#4| |#4|) $) 46)) (-1432 (((-634 |#3|) $) 31)) (-3392 (((-121) |#3| $) 30)) (-2166 (((-121) $ (-763)) 41)) (-4487 (((-1143) $) 9)) (-2717 (((-3 |#4| (-634 $)) |#4| |#4| $) 121)) (-4330 (((-634 (-2 (|:| |val| |#4|) (|:| -3001 $))) |#4| |#4| $) 120)) (-4162 (((-3 |#4| "failed") $) 76)) (-2335 (((-634 $) |#4| $) 122)) (-1719 (((-3 (-121) (-634 $)) |#4| $) 125)) (-2632 (((-634 (-2 (|:| |val| (-121)) (|:| -3001 $))) |#4| $) 124) (((-121) |#4| $) 123)) (-3212 (((-634 $) |#4| $) 118) (((-634 $) (-634 |#4|) $) 117) (((-634 $) (-634 |#4|) (-634 $)) 116) (((-634 $) |#4| (-634 $)) 115)) (-3473 (($ |#4| $) 110) (($ (-634 |#4|) $) 109)) (-1377 (((-634 |#4|) $) 100)) (-1415 (((-121) |#4| $) 92) (((-121) $) 88)) (-2682 ((|#4| |#4| $) 83)) (-2644 (((-121) $ $) 103)) (-2705 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-558)))) (-4347 (((-121) |#4| $) 93) (((-121) $) 89)) (-4025 ((|#4| |#4| $) 84)) (-4022 (((-1108) $) 10)) (-3876 (((-3 |#4| "failed") $) 77)) (-3775 (((-3 |#4| "failed") (-1 (-121) |#4|) $) 60)) (-1665 (((-3 $ "failed") $ |#4|) 71)) (-1807 (($ $ |#4|) 70) (((-634 $) |#4| $) 108) (((-634 $) |#4| (-634 $)) 107) (((-634 $) (-634 |#4|) $) 106) (((-634 $) (-634 |#4|) (-634 $)) 105)) (-1387 (((-121) (-1 (-121) |#4|) $) 49 (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 |#4|) (-634 |#4|)) 58 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090)))) (($ $ |#4| |#4|) 57 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090)))) (($ $ (-288 |#4|)) 56 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090)))) (($ $ (-634 (-288 |#4|))) 55 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090))))) (-3171 (((-121) $ $) 37)) (-3084 (((-121) $) 40)) (-3248 (($) 39)) (-3206 (((-763) $) 99)) (-4168 (((-763) |#4| $) 53 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4519)))) (((-763) (-1 (-121) |#4|) $) 50 (|has| $ (-6 -4519)))) (-3863 (($ $) 38)) (-4278 (((-541) $) 68 (|has| |#4| (-609 (-541))))) (-4287 (($ (-634 |#4|)) 59)) (-1290 (($ $ |#3|) 27)) (-3732 (($ $ |#3|) 29)) (-1567 (($ $) 81)) (-3944 (($ $ |#3|) 28)) (-2745 (((-850) $) 11) (((-634 |#4|) $) 36)) (-1878 (((-763) $) 69 (|has| |#3| (-370)))) (-3556 (((-3 (-2 (|:| |bas| $) (|:| -2616 (-634 |#4|))) "failed") (-634 |#4|) (-1 (-121) |#4| |#4|)) 102) (((-3 (-2 (|:| |bas| $) (|:| -2616 (-634 |#4|))) "failed") (-634 |#4|) (-1 (-121) |#4|) (-1 (-121) |#4| |#4|)) 101)) (-3292 (((-121) $ (-1 (-121) |#4| (-634 |#4|))) 91)) (-2574 (((-634 $) |#4| $) 114) (((-634 $) |#4| (-634 $)) 113) (((-634 $) (-634 |#4|) $) 112) (((-634 $) (-634 |#4|) (-634 $)) 111)) (-1319 (((-121) (-1 (-121) |#4|) $) 48 (|has| $ (-6 -4519)))) (-2739 (((-634 |#3|) $) 74)) (-2288 (((-121) |#4| $) 128)) (-4390 (((-121) |#3| $) 73)) (-1717 (((-121) $ $) 6)) (-1697 (((-763) $) 45 (|has| $ (-6 -4519))))) +(((-1066 |#1| |#2| |#3| |#4|) (-1275) (-453) (-788) (-842) (-1061 |t#1| |t#2| |t#3|)) (T -1066)) +((-3193 (*1 *2 *3 *1) (-12 (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *3 (-1061 *4 *5 *6)) (-5 *2 (-121)))) (-1862 (*1 *2 *3 *1) (-12 (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *3 (-1061 *4 *5 *6)) (-5 *2 (-121)))) (-2288 (*1 *2 *3 *1) (-12 (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *3 (-1061 *4 *5 *6)) (-5 *2 (-121)))) (-3193 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6)) (-4 *3 (-453)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1061 *3 *4 *5)) (-5 *2 (-121)))) (-4286 (*1 *2 *3 *1) (-12 (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *3 (-1061 *4 *5 *6)) (-5 *2 (-121)))) (-1719 (*1 *2 *3 *1) (-12 (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *3 (-1061 *4 *5 *6)) (-5 *2 (-3 (-121) (-634 *1))) (-4 *1 (-1066 *4 *5 *6 *3)))) (-2632 (*1 *2 *3 *1) (-12 (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *3 (-1061 *4 *5 *6)) (-5 *2 (-634 (-2 (|:| |val| (-121)) (|:| -3001 *1)))) (-4 *1 (-1066 *4 *5 *6 *3)))) (-2632 (*1 *2 *3 *1) (-12 (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *3 (-1061 *4 *5 *6)) (-5 *2 (-121)))) (-2335 (*1 *2 *3 *1) (-12 (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *3 (-1061 *4 *5 *6)) (-5 *2 (-634 *1)) (-4 *1 (-1066 *4 *5 *6 *3)))) (-2717 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *3 (-1061 *4 *5 *6)) (-5 *2 (-3 *3 (-634 *1))) (-4 *1 (-1066 *4 *5 *6 *3)))) (-4330 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *3 (-1061 *4 *5 *6)) (-5 *2 (-634 (-2 (|:| |val| *3) (|:| -3001 *1)))) (-4 *1 (-1066 *4 *5 *6 *3)))) (-4305 (*1 *2 *3 *1) (-12 (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *3 (-1061 *4 *5 *6)) (-5 *2 (-634 (-2 (|:| |val| *3) (|:| -3001 *1)))) (-4 *1 (-1066 *4 *5 *6 *3)))) (-3212 (*1 *2 *3 *1) (-12 (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *3 (-1061 *4 *5 *6)) (-5 *2 (-634 *1)) (-4 *1 (-1066 *4 *5 *6 *3)))) (-3212 (*1 *2 *3 *1) (-12 (-5 *3 (-634 *7)) (-4 *7 (-1061 *4 *5 *6)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-634 *1)) (-4 *1 (-1066 *4 *5 *6 *7)))) (-3212 (*1 *2 *3 *2) (-12 (-5 *2 (-634 *1)) (-5 *3 (-634 *7)) (-4 *1 (-1066 *4 *5 *6 *7)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *7 (-1061 *4 *5 *6)))) (-3212 (*1 *2 *3 *2) (-12 (-5 *2 (-634 *1)) (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *3 (-1061 *4 *5 *6)))) (-2574 (*1 *2 *3 *1) (-12 (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *3 (-1061 *4 *5 *6)) (-5 *2 (-634 *1)) (-4 *1 (-1066 *4 *5 *6 *3)))) (-2574 (*1 *2 *3 *2) (-12 (-5 *2 (-634 *1)) (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *3 (-1061 *4 *5 *6)))) (-2574 (*1 *2 *3 *1) (-12 (-5 *3 (-634 *7)) (-4 *7 (-1061 *4 *5 *6)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-634 *1)) (-4 *1 (-1066 *4 *5 *6 *7)))) (-2574 (*1 *2 *3 *2) (-12 (-5 *2 (-634 *1)) (-5 *3 (-634 *7)) (-4 *1 (-1066 *4 *5 *6 *7)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *7 (-1061 *4 *5 *6)))) (-3473 (*1 *1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *2)) (-4 *3 (-453)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *2 (-1061 *3 *4 *5)))) (-3473 (*1 *1 *2 *1) (-12 (-5 *2 (-634 *6)) (-4 *1 (-1066 *3 *4 *5 *6)) (-4 *3 (-453)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1061 *3 *4 *5)))) (-1807 (*1 *2 *3 *1) (-12 (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *3 (-1061 *4 *5 *6)) (-5 *2 (-634 *1)) (-4 *1 (-1066 *4 *5 *6 *3)))) (-1807 (*1 *2 *3 *2) (-12 (-5 *2 (-634 *1)) (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *3 (-1061 *4 *5 *6)))) (-1807 (*1 *2 *3 *1) (-12 (-5 *3 (-634 *7)) (-4 *7 (-1061 *4 *5 *6)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-634 *1)) (-4 *1 (-1066 *4 *5 *6 *7)))) (-1807 (*1 *2 *3 *2) (-12 (-5 *2 (-634 *1)) (-5 *3 (-634 *7)) (-4 *1 (-1066 *4 *5 *6 *7)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *7 (-1061 *4 *5 *6)))) (-2415 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *8)) (-5 *4 (-121)) (-4 *8 (-1061 *5 *6 *7)) (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-5 *2 (-634 *1)) (-4 *1 (-1066 *5 *6 *7 *8))))) +(-13 (-1189 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -3193 ((-121) |t#4| $)) (-15 -1862 ((-121) |t#4| $)) (-15 -2288 ((-121) |t#4| $)) (-15 -3193 ((-121) $)) (-15 -4286 ((-121) |t#4| $)) (-15 -1719 ((-3 (-121) (-634 $)) |t#4| $)) (-15 -2632 ((-634 (-2 (|:| |val| (-121)) (|:| -3001 $))) |t#4| $)) (-15 -2632 ((-121) |t#4| $)) (-15 -2335 ((-634 $) |t#4| $)) (-15 -2717 ((-3 |t#4| (-634 $)) |t#4| |t#4| $)) (-15 -4330 ((-634 (-2 (|:| |val| |t#4|) (|:| -3001 $))) |t#4| |t#4| $)) (-15 -4305 ((-634 (-2 (|:| |val| |t#4|) (|:| -3001 $))) |t#4| $)) (-15 -3212 ((-634 $) |t#4| $)) (-15 -3212 ((-634 $) (-634 |t#4|) $)) (-15 -3212 ((-634 $) (-634 |t#4|) (-634 $))) (-15 -3212 ((-634 $) |t#4| (-634 $))) (-15 -2574 ((-634 $) |t#4| $)) (-15 -2574 ((-634 $) |t#4| (-634 $))) (-15 -2574 ((-634 $) (-634 |t#4|) $)) (-15 -2574 ((-634 $) (-634 |t#4|) (-634 $))) (-15 -3473 ($ |t#4| $)) (-15 -3473 ($ (-634 |t#4|) $)) (-15 -1807 ((-634 $) |t#4| $)) (-15 -1807 ((-634 $) |t#4| (-634 $))) (-15 -1807 ((-634 $) (-634 |t#4|) $)) (-15 -1807 ((-634 $) (-634 |t#4|) (-634 $))) (-15 -2415 ((-634 $) (-634 |t#4|) (-121))))) +(((-39) . T) ((-105) . T) ((-608 (-634 |#4|)) . T) ((-608 (-850)) . T) ((-154 |#4|) . T) ((-609 (-541)) |has| |#4| (-609 (-541))) ((-303 |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090))) ((-499 |#4|) . T) ((-523 |#4| |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090))) ((-977 |#1| |#2| |#3| |#4|) . T) ((-1090) . T) ((-1189 |#1| |#2| |#3| |#4|) . T) ((-1195) . T)) +((-3418 (((-634 (-2 (|:| |val| |#4|) (|:| -3001 |#5|))) |#4| |#5|) 81)) (-3855 (((-634 (-2 (|:| |val| |#4|) (|:| -3001 |#5|))) |#4| |#4| |#5|) 112)) (-2686 (((-634 |#5|) |#4| |#5|) 70)) (-1421 (((-634 (-2 (|:| |val| (-121)) (|:| -3001 |#5|))) |#4| |#5|) 44) (((-121) |#4| |#5|) 52)) (-3818 (((-1249)) 35)) (-2270 (((-1249)) 25)) (-3194 (((-1249) (-1143) (-1143) (-1143)) 31)) (-3179 (((-1249) (-1143) (-1143) (-1143)) 20)) (-4230 (((-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))) |#4| |#4| |#5|) 95)) (-2222 (((-634 (-2 (|:| |val| |#4|) (|:| -3001 |#5|))) (-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))) |#3| (-121)) 106) (((-634 (-2 (|:| |val| |#4|) (|:| -3001 |#5|))) |#4| |#4| |#5| (-121) (-121)) 49)) (-2364 (((-634 (-2 (|:| |val| |#4|) (|:| -3001 |#5|))) |#4| |#4| |#5|) 101))) +(((-1067 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3179 ((-1249) (-1143) (-1143) (-1143))) (-15 -2270 ((-1249))) (-15 -3194 ((-1249) (-1143) (-1143) (-1143))) (-15 -3818 ((-1249))) (-15 -4230 ((-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))) |#4| |#4| |#5|)) (-15 -2222 ((-634 (-2 (|:| |val| |#4|) (|:| -3001 |#5|))) |#4| |#4| |#5| (-121) (-121))) (-15 -2222 ((-634 (-2 (|:| |val| |#4|) (|:| -3001 |#5|))) (-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))) |#3| (-121))) (-15 -2364 ((-634 (-2 (|:| |val| |#4|) (|:| -3001 |#5|))) |#4| |#4| |#5|)) (-15 -3855 ((-634 (-2 (|:| |val| |#4|) (|:| -3001 |#5|))) |#4| |#4| |#5|)) (-15 -1421 ((-121) |#4| |#5|)) (-15 -1421 ((-634 (-2 (|:| |val| (-121)) (|:| -3001 |#5|))) |#4| |#5|)) (-15 -2686 ((-634 |#5|) |#4| |#5|)) (-15 -3418 ((-634 (-2 (|:| |val| |#4|) (|:| -3001 |#5|))) |#4| |#5|))) (-453) (-788) (-842) (-1061 |#1| |#2| |#3|) (-1066 |#1| |#2| |#3| |#4|)) (T -1067)) +((-3418 (*1 *2 *3 *4) (-12 (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *3 (-1061 *5 *6 *7)) (-5 *2 (-634 (-2 (|:| |val| *3) (|:| -3001 *4)))) (-5 *1 (-1067 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-2686 (*1 *2 *3 *4) (-12 (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *3 (-1061 *5 *6 *7)) (-5 *2 (-634 *4)) (-5 *1 (-1067 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-1421 (*1 *2 *3 *4) (-12 (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *3 (-1061 *5 *6 *7)) (-5 *2 (-634 (-2 (|:| |val| (-121)) (|:| -3001 *4)))) (-5 *1 (-1067 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-1421 (*1 *2 *3 *4) (-12 (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *3 (-1061 *5 *6 *7)) (-5 *2 (-121)) (-5 *1 (-1067 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-3855 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *3 (-1061 *5 *6 *7)) (-5 *2 (-634 (-2 (|:| |val| *3) (|:| -3001 *4)))) (-5 *1 (-1067 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-2364 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *3 (-1061 *5 *6 *7)) (-5 *2 (-634 (-2 (|:| |val| *3) (|:| -3001 *4)))) (-5 *1 (-1067 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-2222 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-634 (-2 (|:| |val| (-634 *8)) (|:| -3001 *9)))) (-5 *5 (-121)) (-4 *8 (-1061 *6 *7 *4)) (-4 *9 (-1066 *6 *7 *4 *8)) (-4 *6 (-453)) (-4 *7 (-788)) (-4 *4 (-842)) (-5 *2 (-634 (-2 (|:| |val| *8) (|:| -3001 *9)))) (-5 *1 (-1067 *6 *7 *4 *8 *9)))) (-2222 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-121)) (-4 *6 (-453)) (-4 *7 (-788)) (-4 *8 (-842)) (-4 *3 (-1061 *6 *7 *8)) (-5 *2 (-634 (-2 (|:| |val| *3) (|:| -3001 *4)))) (-5 *1 (-1067 *6 *7 *8 *3 *4)) (-4 *4 (-1066 *6 *7 *8 *3)))) (-4230 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *3 (-1061 *5 *6 *7)) (-5 *2 (-634 (-2 (|:| |val| (-634 *3)) (|:| -3001 *4)))) (-5 *1 (-1067 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-3818 (*1 *2) (-12 (-4 *3 (-453)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1061 *3 *4 *5)) (-5 *2 (-1249)) (-5 *1 (-1067 *3 *4 *5 *6 *7)) (-4 *7 (-1066 *3 *4 *5 *6)))) (-3194 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1143)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *7 (-1061 *4 *5 *6)) (-5 *2 (-1249)) (-5 *1 (-1067 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) (-2270 (*1 *2) (-12 (-4 *3 (-453)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1061 *3 *4 *5)) (-5 *2 (-1249)) (-5 *1 (-1067 *3 *4 *5 *6 *7)) (-4 *7 (-1066 *3 *4 *5 *6)))) (-3179 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1143)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *7 (-1061 *4 *5 *6)) (-5 *2 (-1249)) (-5 *1 (-1067 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7))))) +(-10 -7 (-15 -3179 ((-1249) (-1143) (-1143) (-1143))) (-15 -2270 ((-1249))) (-15 -3194 ((-1249) (-1143) (-1143) (-1143))) (-15 -3818 ((-1249))) (-15 -4230 ((-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))) |#4| |#4| |#5|)) (-15 -2222 ((-634 (-2 (|:| |val| |#4|) (|:| -3001 |#5|))) |#4| |#4| |#5| (-121) (-121))) (-15 -2222 ((-634 (-2 (|:| |val| |#4|) (|:| -3001 |#5|))) (-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))) |#3| (-121))) (-15 -2364 ((-634 (-2 (|:| |val| |#4|) (|:| -3001 |#5|))) |#4| |#4| |#5|)) (-15 -3855 ((-634 (-2 (|:| |val| |#4|) (|:| -3001 |#5|))) |#4| |#4| |#5|)) (-15 -1421 ((-121) |#4| |#5|)) (-15 -1421 ((-634 (-2 (|:| |val| (-121)) (|:| -3001 |#5|))) |#4| |#5|)) (-15 -2686 ((-634 |#5|) |#4| |#5|)) (-15 -3418 ((-634 (-2 (|:| |val| |#4|) (|:| -3001 |#5|))) |#4| |#5|))) +((-2447 (((-121) $ $) NIL)) (-3391 (((-1161) $) 8)) (-4487 (((-1143) $) 16)) (-4022 (((-1108) $) NIL)) (-2745 (((-850) $) 11)) (-1717 (((-121) $ $) 13))) +(((-1068 |#1|) (-13 (-1090) (-10 -8 (-15 -3391 ((-1161) $)))) (-1161)) (T -1068)) +((-3391 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-1068 *3)) (-14 *3 *2)))) +(-13 (-1090) (-10 -8 (-15 -3391 ((-1161) $)))) +((-2447 (((-121) $ $) NIL)) (-1562 (($ $ (-634 (-1161)) (-1 (-121) (-634 |#3|))) 29)) (-3360 (($ |#3| |#3|) 21) (($ |#3| |#3| (-634 (-1161))) 19)) (-2107 ((|#3| $) 13)) (-3666 (((-3 (-288 |#3|) "failed") $) 56)) (-2854 (((-288 |#3|) $) NIL)) (-2284 (((-634 (-1161)) $) 15)) (-1561 (((-887 |#1|) $) 11)) (-1466 ((|#3| $) 12)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2779 ((|#3| $ |#3|) 25) ((|#3| $ |#3| (-917)) 36)) (-2745 (((-850) $) 84) (($ (-288 |#3|)) 20)) (-1717 (((-121) $ $) 33))) +(((-1069 |#1| |#2| |#3|) (-13 (-1090) (-281 |#3| |#3|) (-1037 (-288 |#3|)) (-10 -8 (-15 -3360 ($ |#3| |#3|)) (-15 -3360 ($ |#3| |#3| (-634 (-1161)))) (-15 -1562 ($ $ (-634 (-1161)) (-1 (-121) (-634 |#3|)))) (-15 -1561 ((-887 |#1|) $)) (-15 -1466 (|#3| $)) (-15 -2107 (|#3| $)) (-15 -2779 (|#3| $ |#3| (-917))) (-15 -2284 ((-634 (-1161)) $)))) (-1090) (-13 (-1047) (-881 |#1|) (-842) (-609 (-887 |#1|))) (-13 (-432 |#2|) (-881 |#1|) (-609 (-887 |#1|)))) (T -1069)) +((-3360 (*1 *1 *2 *2) (-12 (-4 *3 (-1090)) (-4 *4 (-13 (-1047) (-881 *3) (-842) (-609 (-887 *3)))) (-5 *1 (-1069 *3 *4 *2)) (-4 *2 (-13 (-432 *4) (-881 *3) (-609 (-887 *3)))))) (-3360 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-634 (-1161))) (-4 *4 (-1090)) (-4 *5 (-13 (-1047) (-881 *4) (-842) (-609 (-887 *4)))) (-5 *1 (-1069 *4 *5 *2)) (-4 *2 (-13 (-432 *5) (-881 *4) (-609 (-887 *4)))))) (-1562 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-634 (-1161))) (-5 *3 (-1 (-121) (-634 *6))) (-4 *6 (-13 (-432 *5) (-881 *4) (-609 (-887 *4)))) (-4 *4 (-1090)) (-4 *5 (-13 (-1047) (-881 *4) (-842) (-609 (-887 *4)))) (-5 *1 (-1069 *4 *5 *6)))) (-1561 (*1 *2 *1) (-12 (-4 *3 (-1090)) (-4 *4 (-13 (-1047) (-881 *3) (-842) (-609 *2))) (-5 *2 (-887 *3)) (-5 *1 (-1069 *3 *4 *5)) (-4 *5 (-13 (-432 *4) (-881 *3) (-609 *2))))) (-1466 (*1 *2 *1) (-12 (-4 *3 (-1090)) (-4 *2 (-13 (-432 *4) (-881 *3) (-609 (-887 *3)))) (-5 *1 (-1069 *3 *4 *2)) (-4 *4 (-13 (-1047) (-881 *3) (-842) (-609 (-887 *3)))))) (-2107 (*1 *2 *1) (-12 (-4 *3 (-1090)) (-4 *2 (-13 (-432 *4) (-881 *3) (-609 (-887 *3)))) (-5 *1 (-1069 *3 *4 *2)) (-4 *4 (-13 (-1047) (-881 *3) (-842) (-609 (-887 *3)))))) (-2779 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-917)) (-4 *4 (-1090)) (-4 *5 (-13 (-1047) (-881 *4) (-842) (-609 (-887 *4)))) (-5 *1 (-1069 *4 *5 *2)) (-4 *2 (-13 (-432 *5) (-881 *4) (-609 (-887 *4)))))) (-2284 (*1 *2 *1) (-12 (-4 *3 (-1090)) (-4 *4 (-13 (-1047) (-881 *3) (-842) (-609 (-887 *3)))) (-5 *2 (-634 (-1161))) (-5 *1 (-1069 *3 *4 *5)) (-4 *5 (-13 (-432 *4) (-881 *3) (-609 (-887 *3))))))) +(-13 (-1090) (-281 |#3| |#3|) (-1037 (-288 |#3|)) (-10 -8 (-15 -3360 ($ |#3| |#3|)) (-15 -3360 ($ |#3| |#3| (-634 (-1161)))) (-15 -1562 ($ $ (-634 (-1161)) (-1 (-121) (-634 |#3|)))) (-15 -1561 ((-887 |#1|) $)) (-15 -1466 (|#3| $)) (-15 -2107 (|#3| $)) (-15 -2779 (|#3| $ |#3| (-917))) (-15 -2284 ((-634 (-1161)) $)))) +((-2447 (((-121) $ $) NIL)) (-3385 (($ (-634 (-1069 |#1| |#2| |#3|))) 12)) (-2094 (((-634 (-1069 |#1| |#2| |#3|)) $) 19)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2779 ((|#3| $ |#3|) 22) ((|#3| $ |#3| (-917)) 25)) (-2745 (((-850) $) 15)) (-1717 (((-121) $ $) 18))) +(((-1070 |#1| |#2| |#3|) (-13 (-1090) (-281 |#3| |#3|) (-10 -8 (-15 -3385 ($ (-634 (-1069 |#1| |#2| |#3|)))) (-15 -2094 ((-634 (-1069 |#1| |#2| |#3|)) $)) (-15 -2779 (|#3| $ |#3| (-917))))) (-1090) (-13 (-1047) (-881 |#1|) (-842) (-609 (-887 |#1|))) (-13 (-432 |#2|) (-881 |#1|) (-609 (-887 |#1|)))) (T -1070)) +((-3385 (*1 *1 *2) (-12 (-5 *2 (-634 (-1069 *3 *4 *5))) (-4 *3 (-1090)) (-4 *4 (-13 (-1047) (-881 *3) (-842) (-609 (-887 *3)))) (-4 *5 (-13 (-432 *4) (-881 *3) (-609 (-887 *3)))) (-5 *1 (-1070 *3 *4 *5)))) (-2094 (*1 *2 *1) (-12 (-4 *3 (-1090)) (-4 *4 (-13 (-1047) (-881 *3) (-842) (-609 (-887 *3)))) (-5 *2 (-634 (-1069 *3 *4 *5))) (-5 *1 (-1070 *3 *4 *5)) (-4 *5 (-13 (-432 *4) (-881 *3) (-609 (-887 *3)))))) (-2779 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-917)) (-4 *4 (-1090)) (-4 *5 (-13 (-1047) (-881 *4) (-842) (-609 (-887 *4)))) (-5 *1 (-1070 *4 *5 *2)) (-4 *2 (-13 (-432 *5) (-881 *4) (-609 (-887 *4))))))) +(-13 (-1090) (-281 |#3| |#3|) (-10 -8 (-15 -3385 ($ (-634 (-1069 |#1| |#2| |#3|)))) (-15 -2094 ((-634 (-1069 |#1| |#2| |#3|)) $)) (-15 -2779 (|#3| $ |#3| (-917))))) +((-2067 (((-634 (-2 (|:| -3471 (-1157 |#1|)) (|:| -4073 (-634 (-953 |#1|))))) (-634 (-953 |#1|)) (-121) (-121)) 73) (((-634 (-2 (|:| -3471 (-1157 |#1|)) (|:| -4073 (-634 (-953 |#1|))))) (-634 (-953 |#1|))) 75) (((-634 (-2 (|:| -3471 (-1157 |#1|)) (|:| -4073 (-634 (-953 |#1|))))) (-634 (-953 |#1|)) (-121)) 74))) +(((-1071 |#1| |#2|) (-10 -7 (-15 -2067 ((-634 (-2 (|:| -3471 (-1157 |#1|)) (|:| -4073 (-634 (-953 |#1|))))) (-634 (-953 |#1|)) (-121))) (-15 -2067 ((-634 (-2 (|:| -3471 (-1157 |#1|)) (|:| -4073 (-634 (-953 |#1|))))) (-634 (-953 |#1|)))) (-15 -2067 ((-634 (-2 (|:| -3471 (-1157 |#1|)) (|:| -4073 (-634 (-953 |#1|))))) (-634 (-953 |#1|)) (-121) (-121)))) (-13 (-301) (-150)) (-634 (-1161))) (T -1071)) +((-2067 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-121)) (-4 *5 (-13 (-301) (-150))) (-5 *2 (-634 (-2 (|:| -3471 (-1157 *5)) (|:| -4073 (-634 (-953 *5)))))) (-5 *1 (-1071 *5 *6)) (-5 *3 (-634 (-953 *5))) (-14 *6 (-634 (-1161))))) (-2067 (*1 *2 *3) (-12 (-4 *4 (-13 (-301) (-150))) (-5 *2 (-634 (-2 (|:| -3471 (-1157 *4)) (|:| -4073 (-634 (-953 *4)))))) (-5 *1 (-1071 *4 *5)) (-5 *3 (-634 (-953 *4))) (-14 *5 (-634 (-1161))))) (-2067 (*1 *2 *3 *4) (-12 (-5 *4 (-121)) (-4 *5 (-13 (-301) (-150))) (-5 *2 (-634 (-2 (|:| -3471 (-1157 *5)) (|:| -4073 (-634 (-953 *5)))))) (-5 *1 (-1071 *5 *6)) (-5 *3 (-634 (-953 *5))) (-14 *6 (-634 (-1161)))))) +(-10 -7 (-15 -2067 ((-634 (-2 (|:| -3471 (-1157 |#1|)) (|:| -4073 (-634 (-953 |#1|))))) (-634 (-953 |#1|)) (-121))) (-15 -2067 ((-634 (-2 (|:| -3471 (-1157 |#1|)) (|:| -4073 (-634 (-953 |#1|))))) (-634 (-953 |#1|)))) (-15 -2067 ((-634 (-2 (|:| -3471 (-1157 |#1|)) (|:| -4073 (-634 (-953 |#1|))))) (-634 (-953 |#1|)) (-121) (-121)))) +((-3848 (((-420 |#3|) |#3|) 16))) +(((-1072 |#1| |#2| |#3|) (-10 -7 (-15 -3848 ((-420 |#3|) |#3|))) (-1219 (-409 (-568))) (-13 (-365) (-150) (-714 (-409 (-568)) |#1|)) (-1219 |#2|)) (T -1072)) +((-3848 (*1 *2 *3) (-12 (-4 *4 (-1219 (-409 (-568)))) (-4 *5 (-13 (-365) (-150) (-714 (-409 (-568)) *4))) (-5 *2 (-420 *3)) (-5 *1 (-1072 *4 *5 *3)) (-4 *3 (-1219 *5))))) +(-10 -7 (-15 -3848 ((-420 |#3|) |#3|))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) 125)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL (|has| |#1| (-365)))) (-2227 (($ $) NIL (|has| |#1| (-365)))) (-1573 (((-121) $) NIL (|has| |#1| (-365)))) (-4255 (((-679 |#1|) (-1244 $)) NIL) (((-679 |#1|)) 115)) (-1932 ((|#1| $) 119)) (-3211 (((-1169 (-917) (-763)) (-568)) NIL (|has| |#1| (-350)))) (-3134 (((-3 $ "failed") $ $) NIL)) (-4305 (($ $) NIL (|has| |#1| (-365)))) (-1678 (((-420 $) $) NIL (|has| |#1| (-365)))) (-1497 (((-121) $ $) NIL (|has| |#1| (-365)))) (-3983 (((-763)) 40 (|has| |#1| (-370)))) (-2671 (($) NIL T CONST)) (-3666 (((-3 (-568) "failed") $) NIL (|has| |#1| (-1037 (-568)))) (((-3 (-409 (-568)) "failed") $) NIL (|has| |#1| (-1037 (-409 (-568))))) (((-3 |#1| "failed") $) NIL)) (-2854 (((-568) $) NIL (|has| |#1| (-1037 (-568)))) (((-409 (-568)) $) NIL (|has| |#1| (-1037 (-409 (-568))))) ((|#1| $) NIL)) (-3498 (($ (-1244 |#1|) (-1244 $)) NIL) (($ (-1244 |#1|)) 43)) (-2022 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-350)))) (-2401 (($ $ $) NIL (|has| |#1| (-365)))) (-1709 (((-679 |#1|) $ (-1244 $)) NIL) (((-679 |#1|) $) NIL)) (-3164 (((-679 (-568)) (-679 $)) NIL (|has| |#1| (-630 (-568)))) (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) NIL (|has| |#1| (-630 (-568)))) (((-2 (|:| -2928 (-679 |#1|)) (|:| |vec| (-1244 |#1|))) (-679 $) (-1244 $)) 106) (((-679 |#1|) (-679 $)) 100)) (-3092 (($ |#2|) 61) (((-3 $ "failed") (-409 |#2|)) NIL (|has| |#1| (-365)))) (-2925 (((-3 $ "failed") $) NIL)) (-3700 (((-917)) 77)) (-1731 (($) 44 (|has| |#1| (-370)))) (-2412 (($ $ $) NIL (|has| |#1| (-365)))) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) NIL (|has| |#1| (-365)))) (-4220 (($) NIL (|has| |#1| (-350)))) (-4456 (((-121) $) NIL (|has| |#1| (-350)))) (-3218 (($ $ (-763)) NIL (|has| |#1| (-350))) (($ $) NIL (|has| |#1| (-350)))) (-3927 (((-121) $) NIL (|has| |#1| (-365)))) (-4477 (((-917) $) NIL (|has| |#1| (-350))) (((-828 (-917)) $) NIL (|has| |#1| (-350)))) (-2735 (((-121) $) NIL)) (-2657 ((|#1| $) NIL)) (-3038 (((-3 $ "failed") $) NIL (|has| |#1| (-350)))) (-3562 (((-3 (-634 $) "failed") (-634 $) $) NIL (|has| |#1| (-365)))) (-2045 ((|#2| $) 84 (|has| |#1| (-365)))) (-3683 (((-917) $) 129 (|has| |#1| (-370)))) (-3085 ((|#2| $) 58)) (-2495 (($ (-634 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-4487 (((-1143) $) NIL)) (-2081 (($ $) NIL (|has| |#1| (-365)))) (-4434 (($) NIL (|has| |#1| (-350)) CONST)) (-4355 (($ (-917)) 124 (|has| |#1| (-370)))) (-4022 (((-1108) $) NIL)) (-2704 (($) 121)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL (|has| |#1| (-365)))) (-2721 (($ (-634 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-1418 (((-634 (-2 (|:| -3848 (-568)) (|:| -3438 (-568))))) NIL (|has| |#1| (-350)))) (-3848 (((-420 $) $) NIL (|has| |#1| (-365)))) (-4497 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL (|has| |#1| (-365)))) (-2595 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-2344 (((-3 (-634 $) "failed") (-634 $) $) NIL (|has| |#1| (-365)))) (-2709 (((-763) $) NIL (|has| |#1| (-365)))) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL (|has| |#1| (-365)))) (-2217 ((|#1| (-1244 $)) NIL) ((|#1|) 109)) (-3143 (((-763) $) NIL (|has| |#1| (-350))) (((-3 (-763) "failed") $ $) NIL (|has| |#1| (-350)))) (-4189 (($ $) NIL (-2198 (-12 (|has| |#1| (-225)) (|has| |#1| (-365))) (|has| |#1| (-350)))) (($ $ (-763)) NIL (-2198 (-12 (|has| |#1| (-225)) (|has| |#1| (-365))) (|has| |#1| (-350)))) (($ $ (-1161)) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-895 (-1161))))) (($ $ (-634 (-1161))) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-895 (-1161))))) (($ $ (-1161) (-763)) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-895 (-1161))))) (($ $ (-634 (-1161)) (-634 (-763))) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-895 (-1161))))) (($ $ (-1 |#1| |#1|) (-763)) NIL (|has| |#1| (-365))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-365)))) (-4387 (((-679 |#1|) (-1244 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-365)))) (-1626 ((|#2|) 73)) (-3065 (($) NIL (|has| |#1| (-350)))) (-4073 (((-1244 |#1|) $ (-1244 $)) 89) (((-679 |#1|) (-1244 $) (-1244 $)) NIL) (((-1244 |#1|) $) 71) (((-679 |#1|) (-1244 $)) 85)) (-4278 (((-1244 |#1|) $) NIL) (($ (-1244 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-2979 (((-3 (-1244 $) "failed") (-679 $)) NIL (|has| |#1| (-350)))) (-2745 (((-850) $) 57) (($ (-568)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-365))) (($ (-409 (-568))) NIL (-2198 (|has| |#1| (-365)) (|has| |#1| (-1037 (-409 (-568))))))) (-4371 (($ $) NIL (|has| |#1| (-350))) (((-3 $ "failed") $) NIL (|has| |#1| (-148)))) (-2678 ((|#2| $) 82)) (-4078 (((-763)) 75)) (-3746 (((-1244 $)) 81)) (-1826 (((-121) $ $) NIL (|has| |#1| (-365)))) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL (|has| |#1| (-365)))) (-3056 (($) 30 T CONST)) (-1556 (($) 19 T CONST)) (-3190 (($ $) NIL (-2198 (-12 (|has| |#1| (-225)) (|has| |#1| (-365))) (|has| |#1| (-350)))) (($ $ (-763)) NIL (-2198 (-12 (|has| |#1| (-225)) (|has| |#1| (-365))) (|has| |#1| (-350)))) (($ $ (-1161)) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-895 (-1161))))) (($ $ (-634 (-1161))) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-895 (-1161))))) (($ $ (-1161) (-763)) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-895 (-1161))))) (($ $ (-634 (-1161)) (-634 (-763))) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-895 (-1161))))) (($ $ (-1 |#1| |#1|) (-763)) NIL (|has| |#1| (-365))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-365)))) (-1717 (((-121) $ $) 63)) (-1779 (($ $ $) NIL (|has| |#1| (-365)))) (-1773 (($ $) 67) (($ $ $) NIL)) (-1767 (($ $ $) 65)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL (|has| |#1| (-365)))) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-409 (-568)) $) NIL (|has| |#1| (-365))) (($ $ (-409 (-568))) NIL (|has| |#1| (-365))))) +(((-1073 |#1| |#2| |#3|) (-714 |#1| |#2|) (-172) (-1219 |#1|) |#2|) (T -1073)) +NIL +(-714 |#1| |#2|) +((-3848 (((-420 |#3|) |#3|) 16))) +(((-1074 |#1| |#2| |#3|) (-10 -7 (-15 -3848 ((-420 |#3|) |#3|))) (-1219 (-409 (-953 (-568)))) (-13 (-365) (-150) (-714 (-409 (-953 (-568))) |#1|)) (-1219 |#2|)) (T -1074)) +((-3848 (*1 *2 *3) (-12 (-4 *4 (-1219 (-409 (-953 (-568))))) (-4 *5 (-13 (-365) (-150) (-714 (-409 (-953 (-568))) *4))) (-5 *2 (-420 *3)) (-5 *1 (-1074 *4 *5 *3)) (-4 *3 (-1219 *5))))) +(-10 -7 (-15 -3848 ((-420 |#3|) |#3|))) +((-2447 (((-121) $ $) NIL)) (-2521 (($ $ $) 14)) (-3268 (($ $ $) 15)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2373 (($) 6)) (-4278 (((-1161) $) 18)) (-2745 (((-850) $) 12)) (-1751 (((-121) $ $) NIL)) (-1738 (((-121) $ $) NIL)) (-1717 (((-121) $ $) 13)) (-1745 (((-121) $ $) NIL)) (-1732 (((-121) $ $) 8))) +(((-1075) (-13 (-842) (-10 -8 (-15 -2373 ($)) (-15 -4278 ((-1161) $))))) (T -1075)) +((-2373 (*1 *1) (-5 *1 (-1075))) (-4278 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-1075))))) +(-13 (-842) (-10 -8 (-15 -2373 ($)) (-15 -4278 ((-1161) $)))) +((-3119 ((|#1| |#1| (-1 (-568) |#1| |#1|)) 21) ((|#1| |#1| (-1 (-121) |#1|)) 18)) (-1583 (((-1249)) 15)) (-3302 (((-634 |#1|)) 9))) +(((-1076 |#1|) (-10 -7 (-15 -1583 ((-1249))) (-15 -3302 ((-634 |#1|))) (-15 -3119 (|#1| |#1| (-1 (-121) |#1|))) (-15 -3119 (|#1| |#1| (-1 (-568) |#1| |#1|)))) (-138)) (T -1076)) +((-3119 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-568) *2 *2)) (-4 *2 (-138)) (-5 *1 (-1076 *2)))) (-3119 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-121) *2)) (-4 *2 (-138)) (-5 *1 (-1076 *2)))) (-3302 (*1 *2) (-12 (-5 *2 (-634 *3)) (-5 *1 (-1076 *3)) (-4 *3 (-138)))) (-1583 (*1 *2) (-12 (-5 *2 (-1249)) (-5 *1 (-1076 *3)) (-4 *3 (-138))))) +(-10 -7 (-15 -1583 ((-1249))) (-15 -3302 ((-634 |#1|))) (-15 -3119 (|#1| |#1| (-1 (-121) |#1|))) (-15 -3119 (|#1| |#1| (-1 (-568) |#1| |#1|)))) +((-2776 (((-1244 (-679 |#1|)) (-634 (-679 |#1|))) 41) (((-1244 (-679 (-953 |#1|))) (-634 (-1161)) (-679 (-953 |#1|))) 60) (((-1244 (-679 (-409 (-953 |#1|)))) (-634 (-1161)) (-679 (-409 (-953 |#1|)))) 76)) (-4073 (((-1244 |#1|) (-679 |#1|) (-634 (-679 |#1|))) 35))) +(((-1077 |#1|) (-10 -7 (-15 -2776 ((-1244 (-679 (-409 (-953 |#1|)))) (-634 (-1161)) (-679 (-409 (-953 |#1|))))) (-15 -2776 ((-1244 (-679 (-953 |#1|))) (-634 (-1161)) (-679 (-953 |#1|)))) (-15 -2776 ((-1244 (-679 |#1|)) (-634 (-679 |#1|)))) (-15 -4073 ((-1244 |#1|) (-679 |#1|) (-634 (-679 |#1|))))) (-365)) (T -1077)) +((-4073 (*1 *2 *3 *4) (-12 (-5 *4 (-634 (-679 *5))) (-5 *3 (-679 *5)) (-4 *5 (-365)) (-5 *2 (-1244 *5)) (-5 *1 (-1077 *5)))) (-2776 (*1 *2 *3) (-12 (-5 *3 (-634 (-679 *4))) (-4 *4 (-365)) (-5 *2 (-1244 (-679 *4))) (-5 *1 (-1077 *4)))) (-2776 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-1161))) (-4 *5 (-365)) (-5 *2 (-1244 (-679 (-953 *5)))) (-5 *1 (-1077 *5)) (-5 *4 (-679 (-953 *5))))) (-2776 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-1161))) (-4 *5 (-365)) (-5 *2 (-1244 (-679 (-409 (-953 *5))))) (-5 *1 (-1077 *5)) (-5 *4 (-679 (-409 (-953 *5))))))) +(-10 -7 (-15 -2776 ((-1244 (-679 (-409 (-953 |#1|)))) (-634 (-1161)) (-679 (-409 (-953 |#1|))))) (-15 -2776 ((-1244 (-679 (-953 |#1|))) (-634 (-1161)) (-679 (-953 |#1|)))) (-15 -2776 ((-1244 (-679 |#1|)) (-634 (-679 |#1|)))) (-15 -4073 ((-1244 |#1|) (-679 |#1|) (-634 (-679 |#1|))))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-3902 (((-634 (-763)) $) NIL) (((-634 (-763)) $ (-1161)) NIL)) (-1551 (((-763) $) NIL) (((-763) $ (-1161)) NIL)) (-2055 (((-634 (-1079 (-1161))) $) NIL)) (-3839 (((-1157 $) $ (-1079 (-1161))) NIL) (((-1157 |#1|) $) NIL)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-2227 (($ $) NIL (|has| |#1| (-558)))) (-1573 (((-121) $) NIL (|has| |#1| (-558)))) (-2773 (((-763) $) NIL) (((-763) $ (-634 (-1079 (-1161)))) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-1750 (((-420 (-1157 $)) (-1157 $)) NIL (|has| |#1| (-904)))) (-4305 (($ $) NIL (|has| |#1| (-453)))) (-1678 (((-420 $) $) NIL (|has| |#1| (-453)))) (-1858 (((-3 (-634 (-1157 $)) "failed") (-634 (-1157 $)) (-1157 $)) NIL (|has| |#1| (-904)))) (-4180 (($ $) NIL)) (-2671 (($) NIL T CONST)) (-3666 (((-3 |#1| "failed") $) NIL) (((-3 (-409 (-568)) "failed") $) NIL (|has| |#1| (-1037 (-409 (-568))))) (((-3 (-568) "failed") $) NIL (|has| |#1| (-1037 (-568)))) (((-3 (-1079 (-1161)) "failed") $) NIL) (((-3 (-1161) "failed") $) NIL) (((-3 (-1113 |#1| (-1161)) "failed") $) NIL)) (-2854 ((|#1| $) NIL) (((-409 (-568)) $) NIL (|has| |#1| (-1037 (-409 (-568))))) (((-568) $) NIL (|has| |#1| (-1037 (-568)))) (((-1079 (-1161)) $) NIL) (((-1161) $) NIL) (((-1113 |#1| (-1161)) $) NIL)) (-4265 (($ $ $ (-1079 (-1161))) NIL (|has| |#1| (-172)))) (-2114 (($ $) NIL)) (-3164 (((-679 (-568)) (-679 $)) NIL (|has| |#1| (-630 (-568)))) (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) NIL (|has| |#1| (-630 (-568)))) (((-2 (|:| -2928 (-679 |#1|)) (|:| |vec| (-1244 |#1|))) (-679 $) (-1244 $)) NIL) (((-679 |#1|) (-679 $)) NIL)) (-2925 (((-3 $ "failed") $) NIL)) (-3250 (($ $) NIL (|has| |#1| (-453))) (($ $ (-1079 (-1161))) NIL (|has| |#1| (-453)))) (-2108 (((-634 $) $) NIL)) (-3927 (((-121) $) NIL (|has| |#1| (-904)))) (-3088 (($ $ |#1| (-534 (-1079 (-1161))) $) NIL)) (-4410 (((-884 (-381) $) $ (-887 (-381)) (-884 (-381) $)) NIL (-12 (|has| (-1079 (-1161)) (-881 (-381))) (|has| |#1| (-881 (-381))))) (((-884 (-568) $) $ (-887 (-568)) (-884 (-568) $)) NIL (-12 (|has| (-1079 (-1161)) (-881 (-568))) (|has| |#1| (-881 (-568)))))) (-4477 (((-763) $ (-1161)) NIL) (((-763) $) NIL)) (-2735 (((-121) $) NIL)) (-4178 (((-763) $) NIL)) (-2051 (($ (-1157 |#1|) (-1079 (-1161))) NIL) (($ (-1157 $) (-1079 (-1161))) NIL)) (-2976 (((-634 $) $) NIL)) (-3921 (((-121) $) NIL)) (-2047 (($ |#1| (-534 (-1079 (-1161)))) NIL) (($ $ (-1079 (-1161)) (-763)) NIL) (($ $ (-634 (-1079 (-1161))) (-634 (-763))) NIL)) (-3379 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $ (-1079 (-1161))) NIL)) (-2144 (((-534 (-1079 (-1161))) $) NIL) (((-763) $ (-1079 (-1161))) NIL) (((-634 (-763)) $ (-634 (-1079 (-1161)))) NIL)) (-2521 (($ $ $) NIL (|has| |#1| (-842)))) (-3268 (($ $ $) NIL (|has| |#1| (-842)))) (-3842 (($ (-1 (-534 (-1079 (-1161))) (-534 (-1079 (-1161)))) $) NIL)) (-2795 (($ (-1 |#1| |#1|) $) NIL)) (-4300 (((-1 $ (-763)) (-1161)) NIL) (((-1 $ (-763)) $) NIL (|has| |#1| (-225)))) (-2244 (((-3 (-1079 (-1161)) "failed") $) NIL)) (-2097 (($ $) NIL)) (-2102 ((|#1| $) NIL)) (-1690 (((-1079 (-1161)) $) NIL)) (-2495 (($ (-634 $)) NIL (|has| |#1| (-453))) (($ $ $) NIL (|has| |#1| (-453)))) (-4487 (((-1143) $) NIL)) (-1989 (((-121) $) NIL)) (-3324 (((-3 (-634 $) "failed") $) NIL)) (-1794 (((-3 (-634 $) "failed") $) NIL)) (-3751 (((-3 (-2 (|:| |var| (-1079 (-1161))) (|:| -3438 (-763))) "failed") $) NIL)) (-1484 (($ $) NIL)) (-4022 (((-1108) $) NIL)) (-2086 (((-121) $) NIL)) (-2091 ((|#1| $) NIL)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL (|has| |#1| (-453)))) (-2721 (($ (-634 $)) NIL (|has| |#1| (-453))) (($ $ $) NIL (|has| |#1| (-453)))) (-2905 (((-420 (-1157 $)) (-1157 $)) NIL (|has| |#1| (-904)))) (-3545 (((-420 (-1157 $)) (-1157 $)) NIL (|has| |#1| (-904)))) (-3848 (((-420 $) $) NIL (|has| |#1| (-904)))) (-2595 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-1339 (($ $ (-634 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-634 $) (-634 $)) NIL) (($ $ (-1079 (-1161)) |#1|) NIL) (($ $ (-634 (-1079 (-1161))) (-634 |#1|)) NIL) (($ $ (-1079 (-1161)) $) NIL) (($ $ (-634 (-1079 (-1161))) (-634 $)) NIL) (($ $ (-1161) $) NIL (|has| |#1| (-225))) (($ $ (-634 (-1161)) (-634 $)) NIL (|has| |#1| (-225))) (($ $ (-1161) |#1|) NIL (|has| |#1| (-225))) (($ $ (-634 (-1161)) (-634 |#1|)) NIL (|has| |#1| (-225)))) (-2217 (($ $ (-1079 (-1161))) NIL (|has| |#1| (-172)))) (-4189 (($ $ (-1079 (-1161))) NIL) (($ $ (-634 (-1079 (-1161)))) NIL) (($ $ (-1079 (-1161)) (-763)) NIL) (($ $ (-634 (-1079 (-1161))) (-634 (-763))) NIL) (($ $) NIL (|has| |#1| (-225))) (($ $ (-763)) NIL (|has| |#1| (-225))) (($ $ (-1161)) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-634 (-1161))) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-1161) (-763)) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-634 (-1161)) (-634 (-763))) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-1 |#1| |#1|) (-763)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3795 (((-634 (-1161)) $) NIL)) (-3206 (((-534 (-1079 (-1161))) $) NIL) (((-763) $ (-1079 (-1161))) NIL) (((-634 (-763)) $ (-634 (-1079 (-1161)))) NIL) (((-763) $ (-1161)) NIL)) (-4278 (((-887 (-381)) $) NIL (-12 (|has| (-1079 (-1161)) (-609 (-887 (-381)))) (|has| |#1| (-609 (-887 (-381)))))) (((-887 (-568)) $) NIL (-12 (|has| (-1079 (-1161)) (-609 (-887 (-568)))) (|has| |#1| (-609 (-887 (-568)))))) (((-541) $) NIL (-12 (|has| (-1079 (-1161)) (-609 (-541))) (|has| |#1| (-609 (-541)))))) (-3367 ((|#1| $) NIL (|has| |#1| (-453))) (($ $ (-1079 (-1161))) NIL (|has| |#1| (-453)))) (-2979 (((-3 (-1244 $) "failed") (-679 $)) NIL (-12 (|has| $ (-148)) (|has| |#1| (-904))))) (-2745 (((-850) $) NIL) (($ (-568)) NIL) (($ |#1|) NIL) (($ (-1079 (-1161))) NIL) (($ (-1161)) NIL) (($ (-1113 |#1| (-1161))) NIL) (($ (-409 (-568))) NIL (-2198 (|has| |#1| (-43 (-409 (-568)))) (|has| |#1| (-1037 (-409 (-568)))))) (($ $) NIL (|has| |#1| (-558)))) (-1302 (((-634 |#1|) $) NIL)) (-2604 ((|#1| $ (-534 (-1079 (-1161)))) NIL) (($ $ (-1079 (-1161)) (-763)) NIL) (($ $ (-634 (-1079 (-1161))) (-634 (-763))) NIL)) (-4371 (((-3 $ "failed") $) NIL (-2198 (-12 (|has| $ (-148)) (|has| |#1| (-904))) (|has| |#1| (-148))))) (-4078 (((-763)) NIL)) (-4171 (($ $ $ (-763)) NIL (|has| |#1| (-172)))) (-1826 (((-121) $ $) NIL (|has| |#1| (-558)))) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (-3056 (($) NIL T CONST)) (-1556 (($) NIL T CONST)) (-3190 (($ $ (-1079 (-1161))) NIL) (($ $ (-634 (-1079 (-1161)))) NIL) (($ $ (-1079 (-1161)) (-763)) NIL) (($ $ (-634 (-1079 (-1161))) (-634 (-763))) NIL) (($ $) NIL (|has| |#1| (-225))) (($ $ (-763)) NIL (|has| |#1| (-225))) (($ $ (-1161)) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-634 (-1161))) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-1161) (-763)) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-634 (-1161)) (-634 (-763))) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-1 |#1| |#1|) (-763)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1751 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1738 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1717 (((-121) $ $) NIL)) (-1745 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1732 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1779 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) NIL) (($ $ (-409 (-568))) NIL (|has| |#1| (-43 (-409 (-568))))) (($ (-409 (-568)) $) NIL (|has| |#1| (-43 (-409 (-568))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-1078 |#1|) (-13 (-246 |#1| (-1161) (-1079 (-1161)) (-534 (-1079 (-1161)))) (-1037 (-1113 |#1| (-1161)))) (-1047)) (T -1078)) +NIL +(-13 (-246 |#1| (-1161) (-1079 (-1161)) (-534 (-1079 (-1161)))) (-1037 (-1113 |#1| (-1161)))) +((-2447 (((-121) $ $) NIL)) (-1551 (((-763) $) NIL)) (-1305 ((|#1| $) 10)) (-3666 (((-3 |#1| "failed") $) NIL)) (-2854 ((|#1| $) NIL)) (-4477 (((-763) $) 11)) (-2521 (($ $ $) NIL)) (-3268 (($ $ $) NIL)) (-4300 (($ |#1| (-763)) 9)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-4189 (($ $) NIL) (($ $ (-763)) NIL)) (-2745 (((-850) $) NIL) (($ |#1|) NIL)) (-1751 (((-121) $ $) NIL)) (-1738 (((-121) $ $) NIL)) (-1717 (((-121) $ $) NIL)) (-1745 (((-121) $ $) NIL)) (-1732 (((-121) $ $) 15))) +(((-1079 |#1|) (-262 |#1|) (-842)) (T -1079)) +NIL +(-262 |#1|) +((-2795 (((-634 |#2|) (-1 |#2| |#1|) (-1084 |#1|)) 23 (|has| |#1| (-840))) (((-1084 |#2|) (-1 |#2| |#1|) (-1084 |#1|)) 14))) +(((-1080 |#1| |#2|) (-10 -7 (-15 -2795 ((-1084 |#2|) (-1 |#2| |#1|) (-1084 |#1|))) (IF (|has| |#1| (-840)) (-15 -2795 ((-634 |#2|) (-1 |#2| |#1|) (-1084 |#1|))) |noBranch|)) (-1195) (-1195)) (T -1080)) +((-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1084 *5)) (-4 *5 (-840)) (-4 *5 (-1195)) (-4 *6 (-1195)) (-5 *2 (-634 *6)) (-5 *1 (-1080 *5 *6)))) (-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1084 *5)) (-4 *5 (-1195)) (-4 *6 (-1195)) (-5 *2 (-1084 *6)) (-5 *1 (-1080 *5 *6))))) +(-10 -7 (-15 -2795 ((-1084 |#2|) (-1 |#2| |#1|) (-1084 |#1|))) (IF (|has| |#1| (-840)) (-15 -2795 ((-634 |#2|) (-1 |#2| |#1|) (-1084 |#1|))) |noBranch|)) +((-2795 (((-1082 |#2|) (-1 |#2| |#1|) (-1082 |#1|)) 19))) +(((-1081 |#1| |#2|) (-10 -7 (-15 -2795 ((-1082 |#2|) (-1 |#2| |#1|) (-1082 |#1|)))) (-1195) (-1195)) (T -1081)) +((-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1082 *5)) (-4 *5 (-1195)) (-4 *6 (-1195)) (-5 *2 (-1082 *6)) (-5 *1 (-1081 *5 *6))))) +(-10 -7 (-15 -2795 ((-1082 |#2|) (-1 |#2| |#1|) (-1082 |#1|)))) +((-2447 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-1305 (((-1161) $) 11)) (-2463 (((-1084 |#1|) $) 12)) (-4487 (((-1143) $) NIL (|has| |#1| (-1090)))) (-4022 (((-1108) $) NIL (|has| |#1| (-1090)))) (-2783 (($ (-1161) (-1084 |#1|)) 10)) (-2745 (((-850) $) 20 (|has| |#1| (-1090)))) (-1717 (((-121) $ $) 15 (|has| |#1| (-1090))))) +(((-1082 |#1|) (-13 (-1195) (-10 -8 (-15 -2783 ($ (-1161) (-1084 |#1|))) (-15 -1305 ((-1161) $)) (-15 -2463 ((-1084 |#1|) $)) (IF (|has| |#1| (-1090)) (-6 (-1090)) |noBranch|))) (-1195)) (T -1082)) +((-2783 (*1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-1084 *4)) (-4 *4 (-1195)) (-5 *1 (-1082 *4)))) (-1305 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-1082 *3)) (-4 *3 (-1195)))) (-2463 (*1 *2 *1) (-12 (-5 *2 (-1084 *3)) (-5 *1 (-1082 *3)) (-4 *3 (-1195))))) +(-13 (-1195) (-10 -8 (-15 -2783 ($ (-1161) (-1084 |#1|))) (-15 -1305 ((-1161) $)) (-15 -2463 ((-1084 |#1|) $)) (IF (|has| |#1| (-1090)) (-6 (-1090)) |noBranch|))) +((-2463 (($ |#1| |#1|) 7)) (-4100 ((|#1| $) 10)) (-2746 ((|#1| $) 12)) (-2751 (((-568) $) 8)) (-2971 ((|#1| $) 9)) (-2754 ((|#1| $) 11)) (-4278 (($ |#1|) 6)) (-4253 (($ |#1| |#1|) 14)) (-4143 (($ $ (-568)) 13))) +(((-1083 |#1|) (-1275) (-1195)) (T -1083)) +((-4253 (*1 *1 *2 *2) (-12 (-4 *1 (-1083 *2)) (-4 *2 (-1195)))) (-4143 (*1 *1 *1 *2) (-12 (-5 *2 (-568)) (-4 *1 (-1083 *3)) (-4 *3 (-1195)))) (-2746 (*1 *2 *1) (-12 (-4 *1 (-1083 *2)) (-4 *2 (-1195)))) (-2754 (*1 *2 *1) (-12 (-4 *1 (-1083 *2)) (-4 *2 (-1195)))) (-4100 (*1 *2 *1) (-12 (-4 *1 (-1083 *2)) (-4 *2 (-1195)))) (-2971 (*1 *2 *1) (-12 (-4 *1 (-1083 *2)) (-4 *2 (-1195)))) (-2751 (*1 *2 *1) (-12 (-4 *1 (-1083 *3)) (-4 *3 (-1195)) (-5 *2 (-568)))) (-2463 (*1 *1 *2 *2) (-12 (-4 *1 (-1083 *2)) (-4 *2 (-1195)))) (-4278 (*1 *1 *2) (-12 (-4 *1 (-1083 *2)) (-4 *2 (-1195))))) +(-13 (-1195) (-10 -8 (-15 -4253 ($ |t#1| |t#1|)) (-15 -4143 ($ $ (-568))) (-15 -2746 (|t#1| $)) (-15 -2754 (|t#1| $)) (-15 -4100 (|t#1| $)) (-15 -2971 (|t#1| $)) (-15 -2751 ((-568) $)) (-15 -2463 ($ |t#1| |t#1|)) (-15 -4278 ($ |t#1|)))) +(((-1195) . T)) +((-2447 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-2463 (($ |#1| |#1|) 15)) (-2795 (((-634 |#1|) (-1 |#1| |#1|) $) 37 (|has| |#1| (-840)))) (-4100 ((|#1| $) 10)) (-2746 ((|#1| $) 9)) (-4487 (((-1143) $) NIL (|has| |#1| (-1090)))) (-2751 (((-568) $) 14)) (-2971 ((|#1| $) 12)) (-2754 ((|#1| $) 11)) (-4022 (((-1108) $) NIL (|has| |#1| (-1090)))) (-2789 (((-634 |#1|) $) 35 (|has| |#1| (-840))) (((-634 |#1|) (-634 $)) 34 (|has| |#1| (-840)))) (-4278 (($ |#1|) 26)) (-2745 (((-850) $) 25 (|has| |#1| (-1090)))) (-4253 (($ |#1| |#1|) 8)) (-4143 (($ $ (-568)) 16)) (-1717 (((-121) $ $) 19 (|has| |#1| (-1090))))) +(((-1084 |#1|) (-13 (-1083 |#1|) (-10 -7 (IF (|has| |#1| (-1090)) (-6 (-1090)) |noBranch|) (IF (|has| |#1| (-840)) (-6 (-1085 |#1| (-634 |#1|))) |noBranch|))) (-1195)) (T -1084)) +NIL +(-13 (-1083 |#1|) (-10 -7 (IF (|has| |#1| (-1090)) (-6 (-1090)) |noBranch|) (IF (|has| |#1| (-840)) (-6 (-1085 |#1| (-634 |#1|))) |noBranch|))) +((-2463 (($ |#1| |#1|) 7)) (-2795 ((|#2| (-1 |#1| |#1|) $) 15)) (-4100 ((|#1| $) 10)) (-2746 ((|#1| $) 12)) (-2751 (((-568) $) 8)) (-2971 ((|#1| $) 9)) (-2754 ((|#1| $) 11)) (-2789 ((|#2| (-634 $)) 17) ((|#2| $) 16)) (-4278 (($ |#1|) 6)) (-4253 (($ |#1| |#1|) 14)) (-4143 (($ $ (-568)) 13))) +(((-1085 |#1| |#2|) (-1275) (-840) (-1134 |t#1|)) (T -1085)) +((-2789 (*1 *2 *3) (-12 (-5 *3 (-634 *1)) (-4 *1 (-1085 *4 *2)) (-4 *4 (-840)) (-4 *2 (-1134 *4)))) (-2789 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *2)) (-4 *3 (-840)) (-4 *2 (-1134 *3)))) (-2795 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1085 *4 *2)) (-4 *4 (-840)) (-4 *2 (-1134 *4))))) +(-13 (-1083 |t#1|) (-10 -8 (-15 -2789 (|t#2| (-634 $))) (-15 -2789 (|t#2| $)) (-15 -2795 (|t#2| (-1 |t#1| |t#1|) $)))) +(((-1083 |#1|) . T) ((-1195) . T)) +((-1791 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-1536 (($ $ $) 10)) (-4382 (($ $ $) NIL) (($ $ |#2|) 15))) +(((-1086 |#1| |#2|) (-10 -8 (-15 -1791 (|#1| |#2| |#1|)) (-15 -1791 (|#1| |#1| |#2|)) (-15 -1791 (|#1| |#1| |#1|)) (-15 -1536 (|#1| |#1| |#1|)) (-15 -4382 (|#1| |#1| |#2|)) (-15 -4382 (|#1| |#1| |#1|))) (-1087 |#2|) (-1090)) (T -1086)) +NIL +(-10 -8 (-15 -1791 (|#1| |#2| |#1|)) (-15 -1791 (|#1| |#1| |#2|)) (-15 -1791 (|#1| |#1| |#1|)) (-15 -1536 (|#1| |#1| |#1|)) (-15 -4382 (|#1| |#1| |#2|)) (-15 -4382 (|#1| |#1| |#1|))) +((-2447 (((-121) $ $) 7)) (-1791 (($ $ $) 17) (($ $ |#1|) 16) (($ |#1| $) 15)) (-1536 (($ $ $) 19)) (-2032 (((-121) $ $) 18)) (-2510 (((-121) $ (-763)) 34)) (-2749 (($) 24) (($ (-634 |#1|)) 23)) (-2801 (($ (-1 (-121) |#1|) $) 55 (|has| $ (-6 -4519)))) (-2671 (($) 35 T CONST)) (-3924 (($ $) 58 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-4328 (($ |#1| $) 57 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519)))) (($ (-1 (-121) |#1|) $) 54 (|has| $ (-6 -4519)))) (-3092 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4519))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4519)))) (-4360 (((-634 |#1|) $) 42 (|has| $ (-6 -4519)))) (-1737 (((-121) $ (-763)) 33)) (-1979 (((-634 |#1|) $) 43 (|has| $ (-6 -4519)))) (-3109 (((-121) |#1| $) 45 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-3674 (($ (-1 |#1| |#1|) $) 38 (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#1| |#1|) $) 37)) (-2166 (((-121) $ (-763)) 32)) (-4487 (((-1143) $) 9)) (-3212 (($ $ $) 22)) (-4022 (((-1108) $) 10)) (-3775 (((-3 |#1| "failed") (-1 (-121) |#1|) $) 51)) (-1387 (((-121) (-1 (-121) |#1|) $) 40 (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 |#1|) (-634 |#1|)) 49 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 48 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-288 |#1|)) 47 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-634 (-288 |#1|))) 46 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))))) (-3171 (((-121) $ $) 28)) (-3084 (((-121) $) 31)) (-3248 (($) 30)) (-4382 (($ $ $) 21) (($ $ |#1|) 20)) (-4168 (((-763) |#1| $) 44 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519)))) (((-763) (-1 (-121) |#1|) $) 41 (|has| $ (-6 -4519)))) (-3863 (($ $) 29)) (-4278 (((-541) $) 59 (|has| |#1| (-609 (-541))))) (-4287 (($ (-634 |#1|)) 50)) (-2745 (((-850) $) 11)) (-3844 (($) 26) (($ (-634 |#1|)) 25)) (-1319 (((-121) (-1 (-121) |#1|) $) 39 (|has| $ (-6 -4519)))) (-1717 (((-121) $ $) 6)) (-1732 (((-121) $ $) 27)) (-1697 (((-763) $) 36 (|has| $ (-6 -4519))))) +(((-1087 |#1|) (-1275) (-1090)) (T -1087)) +((-1732 (*1 *2 *1 *1) (-12 (-4 *1 (-1087 *3)) (-4 *3 (-1090)) (-5 *2 (-121)))) (-3844 (*1 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1090)))) (-3844 (*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-1090)) (-4 *1 (-1087 *3)))) (-2749 (*1 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1090)))) (-2749 (*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-1090)) (-4 *1 (-1087 *3)))) (-3212 (*1 *1 *1 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1090)))) (-4382 (*1 *1 *1 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1090)))) (-4382 (*1 *1 *1 *2) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1090)))) (-1536 (*1 *1 *1 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1090)))) (-2032 (*1 *2 *1 *1) (-12 (-4 *1 (-1087 *3)) (-4 *3 (-1090)) (-5 *2 (-121)))) (-1791 (*1 *1 *1 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1090)))) (-1791 (*1 *1 *1 *2) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1090)))) (-1791 (*1 *1 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1090))))) +(-13 (-1090) (-154 |t#1|) (-10 -8 (-6 -4509) (-15 -1732 ((-121) $ $)) (-15 -3844 ($)) (-15 -3844 ($ (-634 |t#1|))) (-15 -2749 ($)) (-15 -2749 ($ (-634 |t#1|))) (-15 -3212 ($ $ $)) (-15 -4382 ($ $ $)) (-15 -4382 ($ $ |t#1|)) (-15 -1536 ($ $ $)) (-15 -2032 ((-121) $ $)) (-15 -1791 ($ $ $)) (-15 -1791 ($ $ |t#1|)) (-15 -1791 ($ |t#1| $)))) +(((-39) . T) ((-105) . T) ((-608 (-850)) . T) ((-154 |#1|) . T) ((-609 (-541)) |has| |#1| (-609 (-541))) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))) ((-499 |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))) ((-1090) . T) ((-1195) . T)) +((-2447 (((-121) $ $) 7)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-3206 (((-917) $) 12)) (-2745 (((-850) $) 11)) (-1717 (((-121) $ $) 6))) +(((-1088) (-1275)) (T -1088)) +((-3206 (*1 *2 *1) (-12 (-4 *1 (-1088)) (-5 *2 (-917))))) +(-13 (-1090) (-10 -8 (-15 -3206 ((-917) $)))) +(((-105) . T) ((-608 (-850)) . T) ((-1090) . T)) +((-4487 (((-1143) $) 10)) (-4022 (((-1108) $) 8))) +(((-1089 |#1|) (-10 -8 (-15 -4487 ((-1143) |#1|)) (-15 -4022 ((-1108) |#1|))) (-1090)) (T -1089)) +NIL +(-10 -8 (-15 -4487 ((-1143) |#1|)) (-15 -4022 ((-1108) |#1|))) +((-2447 (((-121) $ $) 7)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-2745 (((-850) $) 11)) (-1717 (((-121) $ $) 6))) +(((-1090) (-1275)) (T -1090)) +((-4022 (*1 *2 *1) (-12 (-4 *1 (-1090)) (-5 *2 (-1108)))) (-4487 (*1 *2 *1) (-12 (-4 *1 (-1090)) (-5 *2 (-1143))))) +(-13 (-105) (-608 (-850)) (-10 -8 (-15 -4022 ((-1108) $)) (-15 -4487 ((-1143) $)))) +(((-105) . T) ((-608 (-850)) . T)) +((-2447 (((-121) $ $) NIL)) (-3983 (((-763)) 30)) (-1614 (($ (-634 (-917))) 52)) (-4336 (((-3 $ "failed") $ (-917) (-917)) 57)) (-1731 (($) 32)) (-3109 (((-121) (-917) $) 35)) (-3683 (((-917) $) 50)) (-4487 (((-1143) $) NIL)) (-4355 (($ (-917)) 31)) (-2676 (((-3 $ "failed") $ (-917)) 55)) (-4022 (((-1108) $) NIL)) (-3557 (((-1244 $)) 40)) (-1806 (((-634 (-917)) $) 23)) (-1325 (((-763) $ (-917) (-917)) 56)) (-2745 (((-850) $) 29)) (-1717 (((-121) $ $) 21))) +(((-1091 |#1| |#2|) (-13 (-370) (-10 -8 (-15 -2676 ((-3 $ "failed") $ (-917))) (-15 -4336 ((-3 $ "failed") $ (-917) (-917))) (-15 -1806 ((-634 (-917)) $)) (-15 -1614 ($ (-634 (-917)))) (-15 -3557 ((-1244 $))) (-15 -3109 ((-121) (-917) $)) (-15 -1325 ((-763) $ (-917) (-917))))) (-917) (-917)) (T -1091)) +((-2676 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-917)) (-5 *1 (-1091 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-4336 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-917)) (-5 *1 (-1091 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-1806 (*1 *2 *1) (-12 (-5 *2 (-634 (-917))) (-5 *1 (-1091 *3 *4)) (-14 *3 (-917)) (-14 *4 (-917)))) (-1614 (*1 *1 *2) (-12 (-5 *2 (-634 (-917))) (-5 *1 (-1091 *3 *4)) (-14 *3 (-917)) (-14 *4 (-917)))) (-3557 (*1 *2) (-12 (-5 *2 (-1244 (-1091 *3 *4))) (-5 *1 (-1091 *3 *4)) (-14 *3 (-917)) (-14 *4 (-917)))) (-3109 (*1 *2 *3 *1) (-12 (-5 *3 (-917)) (-5 *2 (-121)) (-5 *1 (-1091 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-1325 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-917)) (-5 *2 (-763)) (-5 *1 (-1091 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-13 (-370) (-10 -8 (-15 -2676 ((-3 $ "failed") $ (-917))) (-15 -4336 ((-3 $ "failed") $ (-917) (-917))) (-15 -1806 ((-634 (-917)) $)) (-15 -1614 ($ (-634 (-917)))) (-15 -3557 ((-1244 $))) (-15 -3109 ((-121) (-917) $)) (-15 -1325 ((-763) $ (-917) (-917))))) +((-2447 (((-121) $ $) NIL)) (-3415 (($) NIL (|has| |#1| (-370)))) (-1791 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 73)) (-1536 (($ $ $) 71)) (-2032 (((-121) $ $) 72)) (-2510 (((-121) $ (-763)) NIL)) (-3983 (((-763)) NIL (|has| |#1| (-370)))) (-2749 (($ (-634 |#1|)) NIL) (($) 13)) (-3507 (($ (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-2801 (($ (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-2671 (($) NIL T CONST)) (-3924 (($ $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-3405 (($ |#1| $) 67 (|has| $ (-6 -4519))) (($ (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-4328 (($ |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090)))) (($ (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-3092 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4519))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4519)))) (-1731 (($) NIL (|has| |#1| (-370)))) (-4360 (((-634 |#1|) $) 19 (|has| $ (-6 -4519)))) (-1737 (((-121) $ (-763)) NIL)) (-2521 ((|#1| $) 57 (|has| |#1| (-842)))) (-1979 (((-634 |#1|) $) NIL (|has| $ (-6 -4519)))) (-3109 (((-121) |#1| $) 66 (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-3268 ((|#1| $) 55 (|has| |#1| (-842)))) (-3674 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#1| |#1|) $) 34)) (-3683 (((-917) $) NIL (|has| |#1| (-370)))) (-2166 (((-121) $ (-763)) NIL)) (-4487 (((-1143) $) NIL)) (-3212 (($ $ $) 69)) (-1890 ((|#1| $) 25)) (-4450 (($ |#1| $) 65)) (-4355 (($ (-917)) NIL (|has| |#1| (-370)))) (-4022 (((-1108) $) NIL)) (-3775 (((-3 |#1| "failed") (-1 (-121) |#1|) $) 31)) (-1315 ((|#1| $) 27)) (-1387 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-634 |#1|) (-634 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))))) (-3171 (((-121) $ $) NIL)) (-3084 (((-121) $) 21)) (-3248 (($) 11)) (-4382 (($ $ |#1|) NIL) (($ $ $) 70)) (-2085 (($) NIL) (($ (-634 |#1|)) NIL)) (-4168 (((-763) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519))) (((-763) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-3863 (($ $) 16)) (-4278 (((-541) $) 52 (|has| |#1| (-609 (-541))))) (-4287 (($ (-634 |#1|)) 61)) (-2160 (($ $) NIL (|has| |#1| (-370)))) (-2745 (((-850) $) NIL)) (-2432 (((-763) $) NIL)) (-3844 (($ (-634 |#1|)) NIL) (($) 12)) (-2367 (($ (-634 |#1|)) NIL)) (-1319 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-1717 (((-121) $ $) 54)) (-1732 (((-121) $ $) NIL)) (-1697 (((-763) $) 10 (|has| $ (-6 -4519))))) +(((-1092 |#1|) (-427 |#1|) (-1090)) (T -1092)) +NIL +(-427 |#1|) +((-2447 (((-121) $ $) 7)) (-2500 (((-121) $) 31)) (-3180 ((|#2| $) 26)) (-1620 (((-121) $) 32)) (-1742 ((|#1| $) 27)) (-2341 (((-121) $) 34)) (-2491 (((-121) $) 36)) (-1795 (((-121) $) 33)) (-4487 (((-1143) $) 9)) (-4469 (((-121) $) 30)) (-1721 ((|#3| $) 25)) (-4022 (((-1108) $) 10)) (-1487 (((-121) $) 29)) (-3768 ((|#4| $) 24)) (-4151 ((|#5| $) 23)) (-1853 (((-121) $ $) 37)) (-2779 (($ $ (-568)) 13) (($ $ (-634 (-568))) 12)) (-2043 (((-634 $) $) 28)) (-4278 (($ (-634 $)) 22) (($ |#1|) 21) (($ |#2|) 20) (($ |#3|) 19) (($ |#4|) 18) (($ |#5|) 17)) (-2745 (((-850) $) 11)) (-1527 (($ $) 15)) (-1520 (($ $) 16)) (-3826 (((-121) $) 35)) (-1717 (((-121) $ $) 6)) (-1697 (((-568) $) 14))) +(((-1093 |#1| |#2| |#3| |#4| |#5|) (-1275) (-1090) (-1090) (-1090) (-1090) (-1090)) (T -1093)) +((-1853 (*1 *2 *1 *1) (-12 (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-121)))) (-2491 (*1 *2 *1) (-12 (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-121)))) (-3826 (*1 *2 *1) (-12 (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-121)))) (-2341 (*1 *2 *1) (-12 (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-121)))) (-1795 (*1 *2 *1) (-12 (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-121)))) (-1620 (*1 *2 *1) (-12 (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-121)))) (-2500 (*1 *2 *1) (-12 (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-121)))) (-4469 (*1 *2 *1) (-12 (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-121)))) (-1487 (*1 *2 *1) (-12 (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-121)))) (-2043 (*1 *2 *1) (-12 (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-634 *1)) (-4 *1 (-1093 *3 *4 *5 *6 *7)))) (-1742 (*1 *2 *1) (-12 (-4 *1 (-1093 *2 *3 *4 *5 *6)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *2 (-1090)))) (-3180 (*1 *2 *1) (-12 (-4 *1 (-1093 *3 *2 *4 *5 *6)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *2 (-1090)))) (-1721 (*1 *2 *1) (-12 (-4 *1 (-1093 *3 *4 *2 *5 *6)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *2 (-1090)))) (-3768 (*1 *2 *1) (-12 (-4 *1 (-1093 *3 *4 *5 *2 *6)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *2 (-1090)))) (-4151 (*1 *2 *1) (-12 (-4 *1 (-1093 *3 *4 *5 *6 *2)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *2 (-1090)))) (-4278 (*1 *1 *2) (-12 (-5 *2 (-634 *1)) (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)))) (-4278 (*1 *1 *2) (-12 (-4 *1 (-1093 *2 *3 *4 *5 *6)) (-4 *2 (-1090)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)))) (-4278 (*1 *1 *2) (-12 (-4 *1 (-1093 *3 *2 *4 *5 *6)) (-4 *3 (-1090)) (-4 *2 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)))) (-4278 (*1 *1 *2) (-12 (-4 *1 (-1093 *3 *4 *2 *5 *6)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *2 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)))) (-4278 (*1 *1 *2) (-12 (-4 *1 (-1093 *3 *4 *5 *2 *6)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *2 (-1090)) (-4 *6 (-1090)))) (-4278 (*1 *1 *2) (-12 (-4 *1 (-1093 *3 *4 *5 *6 *2)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *2 (-1090)))) (-1520 (*1 *1 *1) (-12 (-4 *1 (-1093 *2 *3 *4 *5 *6)) (-4 *2 (-1090)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)))) (-1527 (*1 *1 *1) (-12 (-4 *1 (-1093 *2 *3 *4 *5 *6)) (-4 *2 (-1090)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)))) (-1697 (*1 *2 *1) (-12 (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-568)))) (-2779 (*1 *1 *1 *2) (-12 (-5 *2 (-568)) (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)))) (-2779 (*1 *1 *1 *2) (-12 (-5 *2 (-634 (-568))) (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090))))) +(-13 (-1090) (-10 -8 (-15 -1853 ((-121) $ $)) (-15 -2491 ((-121) $)) (-15 -3826 ((-121) $)) (-15 -2341 ((-121) $)) (-15 -1795 ((-121) $)) (-15 -1620 ((-121) $)) (-15 -2500 ((-121) $)) (-15 -4469 ((-121) $)) (-15 -1487 ((-121) $)) (-15 -2043 ((-634 $) $)) (-15 -1742 (|t#1| $)) (-15 -3180 (|t#2| $)) (-15 -1721 (|t#3| $)) (-15 -3768 (|t#4| $)) (-15 -4151 (|t#5| $)) (-15 -4278 ($ (-634 $))) (-15 -4278 ($ |t#1|)) (-15 -4278 ($ |t#2|)) (-15 -4278 ($ |t#3|)) (-15 -4278 ($ |t#4|)) (-15 -4278 ($ |t#5|)) (-15 -1520 ($ $)) (-15 -1527 ($ $)) (-15 -1697 ((-568) $)) (-15 -2779 ($ $ (-568))) (-15 -2779 ($ $ (-634 (-568)))))) +(((-105) . T) ((-608 (-850)) . T) ((-1090) . T)) +((-2447 (((-121) $ $) NIL)) (-2500 (((-121) $) NIL)) (-3180 (((-1161) $) NIL)) (-1620 (((-121) $) NIL)) (-1742 (((-1143) $) NIL)) (-2341 (((-121) $) NIL)) (-2491 (((-121) $) NIL)) (-1795 (((-121) $) NIL)) (-4487 (((-1143) $) NIL)) (-4469 (((-121) $) NIL)) (-1721 (((-568) $) NIL)) (-4022 (((-1108) $) NIL)) (-1487 (((-121) $) NIL)) (-3768 (((-215) $) NIL)) (-4151 (((-850) $) NIL)) (-1853 (((-121) $ $) NIL)) (-2779 (($ $ (-568)) NIL) (($ $ (-634 (-568))) NIL)) (-2043 (((-634 $) $) NIL)) (-4278 (($ (-634 $)) NIL) (($ (-1143)) NIL) (($ (-1161)) NIL) (($ (-568)) NIL) (($ (-215)) NIL) (($ (-850)) NIL)) (-2745 (((-850) $) NIL)) (-1527 (($ $) NIL)) (-1520 (($ $) NIL)) (-3826 (((-121) $) NIL)) (-1717 (((-121) $ $) NIL)) (-1697 (((-568) $) NIL))) +(((-1094) (-1093 (-1143) (-1161) (-568) (-215) (-850))) (T -1094)) +NIL +(-1093 (-1143) (-1161) (-568) (-215) (-850)) +((-2447 (((-121) $ $) NIL)) (-2500 (((-121) $) 37)) (-3180 ((|#2| $) 41)) (-1620 (((-121) $) 36)) (-1742 ((|#1| $) 40)) (-2341 (((-121) $) 34)) (-2491 (((-121) $) 14)) (-1795 (((-121) $) 35)) (-4487 (((-1143) $) NIL)) (-4469 (((-121) $) 38)) (-1721 ((|#3| $) 43)) (-4022 (((-1108) $) NIL)) (-1487 (((-121) $) 39)) (-3768 ((|#4| $) 42)) (-4151 ((|#5| $) 44)) (-1853 (((-121) $ $) 33)) (-2779 (($ $ (-568)) 55) (($ $ (-634 (-568))) 57)) (-2043 (((-634 $) $) 21)) (-4278 (($ (-634 $)) 45) (($ |#1|) 46) (($ |#2|) 47) (($ |#3|) 48) (($ |#4|) 49) (($ |#5|) 50)) (-2745 (((-850) $) 22)) (-1527 (($ $) 20)) (-1520 (($ $) 51)) (-3826 (((-121) $) 18)) (-1717 (((-121) $ $) 32)) (-1697 (((-568) $) 53))) +(((-1095 |#1| |#2| |#3| |#4| |#5|) (-1093 |#1| |#2| |#3| |#4| |#5|) (-1090) (-1090) (-1090) (-1090) (-1090)) (T -1095)) +NIL +(-1093 |#1| |#2| |#3| |#4| |#5|) +((-4128 (((-1249) $) 23)) (-3220 (($ (-1161) (-436) |#2|) 11)) (-2745 (((-850) $) 16))) +(((-1096 |#1| |#2|) (-13 (-397) (-10 -8 (-15 -3220 ($ (-1161) (-436) |#2|)))) (-842) (-432 |#1|)) (T -1096)) +((-3220 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1161)) (-5 *3 (-436)) (-4 *5 (-842)) (-5 *1 (-1096 *5 *4)) (-4 *4 (-432 *5))))) +(-13 (-397) (-10 -8 (-15 -3220 ($ (-1161) (-436) |#2|)))) +((-1278 (((-121) |#5| |#5|) 37)) (-3891 (((-121) |#5| |#5|) 51)) (-2212 (((-121) |#5| (-634 |#5|)) 74) (((-121) |#5| |#5|) 60)) (-4302 (((-121) (-634 |#4|) (-634 |#4|)) 57)) (-3686 (((-121) (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|)) (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))) 62)) (-2008 (((-1249)) 33)) (-1373 (((-1249) (-1143) (-1143) (-1143)) 29)) (-2164 (((-634 |#5|) (-634 |#5|)) 81)) (-2736 (((-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))) (-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|)))) 79)) (-3553 (((-634 (-2 (|:| -1853 (-634 |#4|)) (|:| -3001 |#5|) (|:| |ineq| (-634 |#4|)))) (-634 |#4|) (-634 |#5|) (-121) (-121)) 101)) (-2068 (((-121) |#5| |#5|) 46)) (-4350 (((-3 (-121) "failed") |#5| |#5|) 70)) (-4048 (((-121) (-634 |#4|) (-634 |#4|)) 56)) (-4354 (((-121) (-634 |#4|) (-634 |#4|)) 58)) (-2644 (((-121) (-634 |#4|) (-634 |#4|)) 59)) (-3821 (((-3 (-2 (|:| -1853 (-634 |#4|)) (|:| -3001 |#5|) (|:| |ineq| (-634 |#4|))) "failed") (-634 |#4|) |#5| (-634 |#4|) (-121) (-121) (-121) (-121) (-121)) 97)) (-2283 (((-634 |#5|) (-634 |#5|)) 42))) +(((-1097 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1373 ((-1249) (-1143) (-1143) (-1143))) (-15 -2008 ((-1249))) (-15 -1278 ((-121) |#5| |#5|)) (-15 -2283 ((-634 |#5|) (-634 |#5|))) (-15 -2068 ((-121) |#5| |#5|)) (-15 -3891 ((-121) |#5| |#5|)) (-15 -4302 ((-121) (-634 |#4|) (-634 |#4|))) (-15 -4048 ((-121) (-634 |#4|) (-634 |#4|))) (-15 -4354 ((-121) (-634 |#4|) (-634 |#4|))) (-15 -2644 ((-121) (-634 |#4|) (-634 |#4|))) (-15 -4350 ((-3 (-121) "failed") |#5| |#5|)) (-15 -2212 ((-121) |#5| |#5|)) (-15 -2212 ((-121) |#5| (-634 |#5|))) (-15 -2164 ((-634 |#5|) (-634 |#5|))) (-15 -3686 ((-121) (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|)) (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|)))) (-15 -2736 ((-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))) (-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))))) (-15 -3553 ((-634 (-2 (|:| -1853 (-634 |#4|)) (|:| -3001 |#5|) (|:| |ineq| (-634 |#4|)))) (-634 |#4|) (-634 |#5|) (-121) (-121))) (-15 -3821 ((-3 (-2 (|:| -1853 (-634 |#4|)) (|:| -3001 |#5|) (|:| |ineq| (-634 |#4|))) "failed") (-634 |#4|) |#5| (-634 |#4|) (-121) (-121) (-121) (-121) (-121)))) (-453) (-788) (-842) (-1061 |#1| |#2| |#3|) (-1066 |#1| |#2| |#3| |#4|)) (T -1097)) +((-3821 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-121)) (-4 *6 (-453)) (-4 *7 (-788)) (-4 *8 (-842)) (-4 *9 (-1061 *6 *7 *8)) (-5 *2 (-2 (|:| -1853 (-634 *9)) (|:| -3001 *4) (|:| |ineq| (-634 *9)))) (-5 *1 (-1097 *6 *7 *8 *9 *4)) (-5 *3 (-634 *9)) (-4 *4 (-1066 *6 *7 *8 *9)))) (-3553 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-634 *10)) (-5 *5 (-121)) (-4 *10 (-1066 *6 *7 *8 *9)) (-4 *6 (-453)) (-4 *7 (-788)) (-4 *8 (-842)) (-4 *9 (-1061 *6 *7 *8)) (-5 *2 (-634 (-2 (|:| -1853 (-634 *9)) (|:| -3001 *10) (|:| |ineq| (-634 *9))))) (-5 *1 (-1097 *6 *7 *8 *9 *10)) (-5 *3 (-634 *9)))) (-2736 (*1 *2 *2) (-12 (-5 *2 (-634 (-2 (|:| |val| (-634 *6)) (|:| -3001 *7)))) (-4 *6 (-1061 *3 *4 *5)) (-4 *7 (-1066 *3 *4 *5 *6)) (-4 *3 (-453)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *1 (-1097 *3 *4 *5 *6 *7)))) (-3686 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-634 *7)) (|:| -3001 *8))) (-4 *7 (-1061 *4 *5 *6)) (-4 *8 (-1066 *4 *5 *6 *7)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-121)) (-5 *1 (-1097 *4 *5 *6 *7 *8)))) (-2164 (*1 *2 *2) (-12 (-5 *2 (-634 *7)) (-4 *7 (-1066 *3 *4 *5 *6)) (-4 *3 (-453)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1061 *3 *4 *5)) (-5 *1 (-1097 *3 *4 *5 *6 *7)))) (-2212 (*1 *2 *3 *4) (-12 (-5 *4 (-634 *3)) (-4 *3 (-1066 *5 *6 *7 *8)) (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *8 (-1061 *5 *6 *7)) (-5 *2 (-121)) (-5 *1 (-1097 *5 *6 *7 *8 *3)))) (-2212 (*1 *2 *3 *3) (-12 (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *7 (-1061 *4 *5 *6)) (-5 *2 (-121)) (-5 *1 (-1097 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))) (-4350 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *7 (-1061 *4 *5 *6)) (-5 *2 (-121)) (-5 *1 (-1097 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))) (-2644 (*1 *2 *3 *3) (-12 (-5 *3 (-634 *7)) (-4 *7 (-1061 *4 *5 *6)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-121)) (-5 *1 (-1097 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) (-4354 (*1 *2 *3 *3) (-12 (-5 *3 (-634 *7)) (-4 *7 (-1061 *4 *5 *6)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-121)) (-5 *1 (-1097 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) (-4048 (*1 *2 *3 *3) (-12 (-5 *3 (-634 *7)) (-4 *7 (-1061 *4 *5 *6)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-121)) (-5 *1 (-1097 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) (-4302 (*1 *2 *3 *3) (-12 (-5 *3 (-634 *7)) (-4 *7 (-1061 *4 *5 *6)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-121)) (-5 *1 (-1097 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) (-3891 (*1 *2 *3 *3) (-12 (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *7 (-1061 *4 *5 *6)) (-5 *2 (-121)) (-5 *1 (-1097 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))) (-2068 (*1 *2 *3 *3) (-12 (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *7 (-1061 *4 *5 *6)) (-5 *2 (-121)) (-5 *1 (-1097 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))) (-2283 (*1 *2 *2) (-12 (-5 *2 (-634 *7)) (-4 *7 (-1066 *3 *4 *5 *6)) (-4 *3 (-453)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1061 *3 *4 *5)) (-5 *1 (-1097 *3 *4 *5 *6 *7)))) (-1278 (*1 *2 *3 *3) (-12 (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *7 (-1061 *4 *5 *6)) (-5 *2 (-121)) (-5 *1 (-1097 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))) (-2008 (*1 *2) (-12 (-4 *3 (-453)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1061 *3 *4 *5)) (-5 *2 (-1249)) (-5 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *7 (-1066 *3 *4 *5 *6)))) (-1373 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1143)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *7 (-1061 *4 *5 *6)) (-5 *2 (-1249)) (-5 *1 (-1097 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7))))) +(-10 -7 (-15 -1373 ((-1249) (-1143) (-1143) (-1143))) (-15 -2008 ((-1249))) (-15 -1278 ((-121) |#5| |#5|)) (-15 -2283 ((-634 |#5|) (-634 |#5|))) (-15 -2068 ((-121) |#5| |#5|)) (-15 -3891 ((-121) |#5| |#5|)) (-15 -4302 ((-121) (-634 |#4|) (-634 |#4|))) (-15 -4048 ((-121) (-634 |#4|) (-634 |#4|))) (-15 -4354 ((-121) (-634 |#4|) (-634 |#4|))) (-15 -2644 ((-121) (-634 |#4|) (-634 |#4|))) (-15 -4350 ((-3 (-121) "failed") |#5| |#5|)) (-15 -2212 ((-121) |#5| |#5|)) (-15 -2212 ((-121) |#5| (-634 |#5|))) (-15 -2164 ((-634 |#5|) (-634 |#5|))) (-15 -3686 ((-121) (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|)) (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|)))) (-15 -2736 ((-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))) (-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))))) (-15 -3553 ((-634 (-2 (|:| -1853 (-634 |#4|)) (|:| -3001 |#5|) (|:| |ineq| (-634 |#4|)))) (-634 |#4|) (-634 |#5|) (-121) (-121))) (-15 -3821 ((-3 (-2 (|:| -1853 (-634 |#4|)) (|:| -3001 |#5|) (|:| |ineq| (-634 |#4|))) "failed") (-634 |#4|) |#5| (-634 |#4|) (-121) (-121) (-121) (-121) (-121)))) +((-4346 (((-634 (-2 (|:| |val| |#4|) (|:| -3001 |#5|))) |#4| |#5|) 94)) (-3291 (((-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))) |#4| |#4| |#5|) 70)) (-3522 (((-634 (-2 (|:| |val| |#4|) (|:| -3001 |#5|))) |#4| |#4| |#5|) 88)) (-3452 (((-634 |#5|) |#4| |#5|) 109)) (-1310 (((-634 |#5|) |#4| |#5|) 116)) (-4400 (((-634 |#5|) |#4| |#5|) 117)) (-2876 (((-634 (-2 (|:| |val| (-121)) (|:| -3001 |#5|))) |#4| |#5|) 95)) (-1493 (((-634 (-2 (|:| |val| (-121)) (|:| -3001 |#5|))) |#4| |#5|) 115)) (-1756 (((-634 (-2 (|:| |val| (-121)) (|:| -3001 |#5|))) |#4| |#5|) 44) (((-121) |#4| |#5|) 52)) (-1676 (((-634 (-2 (|:| |val| |#4|) (|:| -3001 |#5|))) (-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))) |#3| (-121)) 82) (((-634 (-2 (|:| |val| |#4|) (|:| -3001 |#5|))) |#4| |#4| |#5| (-121) (-121)) 49)) (-3504 (((-634 (-2 (|:| |val| |#4|) (|:| -3001 |#5|))) |#4| |#4| |#5|) 77)) (-3818 (((-1249)) 35)) (-2270 (((-1249)) 25)) (-3194 (((-1249) (-1143) (-1143) (-1143)) 31)) (-3179 (((-1249) (-1143) (-1143) (-1143)) 20))) +(((-1098 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3179 ((-1249) (-1143) (-1143) (-1143))) (-15 -2270 ((-1249))) (-15 -3194 ((-1249) (-1143) (-1143) (-1143))) (-15 -3818 ((-1249))) (-15 -3291 ((-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))) |#4| |#4| |#5|)) (-15 -1676 ((-634 (-2 (|:| |val| |#4|) (|:| -3001 |#5|))) |#4| |#4| |#5| (-121) (-121))) (-15 -1676 ((-634 (-2 (|:| |val| |#4|) (|:| -3001 |#5|))) (-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))) |#3| (-121))) (-15 -3504 ((-634 (-2 (|:| |val| |#4|) (|:| -3001 |#5|))) |#4| |#4| |#5|)) (-15 -3522 ((-634 (-2 (|:| |val| |#4|) (|:| -3001 |#5|))) |#4| |#4| |#5|)) (-15 -1756 ((-121) |#4| |#5|)) (-15 -2876 ((-634 (-2 (|:| |val| (-121)) (|:| -3001 |#5|))) |#4| |#5|)) (-15 -3452 ((-634 |#5|) |#4| |#5|)) (-15 -1493 ((-634 (-2 (|:| |val| (-121)) (|:| -3001 |#5|))) |#4| |#5|)) (-15 -1310 ((-634 |#5|) |#4| |#5|)) (-15 -1756 ((-634 (-2 (|:| |val| (-121)) (|:| -3001 |#5|))) |#4| |#5|)) (-15 -4400 ((-634 |#5|) |#4| |#5|)) (-15 -4346 ((-634 (-2 (|:| |val| |#4|) (|:| -3001 |#5|))) |#4| |#5|))) (-453) (-788) (-842) (-1061 |#1| |#2| |#3|) (-1066 |#1| |#2| |#3| |#4|)) (T -1098)) +((-4346 (*1 *2 *3 *4) (-12 (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *3 (-1061 *5 *6 *7)) (-5 *2 (-634 (-2 (|:| |val| *3) (|:| -3001 *4)))) (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-4400 (*1 *2 *3 *4) (-12 (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *3 (-1061 *5 *6 *7)) (-5 *2 (-634 *4)) (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-1756 (*1 *2 *3 *4) (-12 (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *3 (-1061 *5 *6 *7)) (-5 *2 (-634 (-2 (|:| |val| (-121)) (|:| -3001 *4)))) (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-1310 (*1 *2 *3 *4) (-12 (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *3 (-1061 *5 *6 *7)) (-5 *2 (-634 *4)) (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-1493 (*1 *2 *3 *4) (-12 (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *3 (-1061 *5 *6 *7)) (-5 *2 (-634 (-2 (|:| |val| (-121)) (|:| -3001 *4)))) (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-3452 (*1 *2 *3 *4) (-12 (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *3 (-1061 *5 *6 *7)) (-5 *2 (-634 *4)) (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-2876 (*1 *2 *3 *4) (-12 (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *3 (-1061 *5 *6 *7)) (-5 *2 (-634 (-2 (|:| |val| (-121)) (|:| -3001 *4)))) (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-1756 (*1 *2 *3 *4) (-12 (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *3 (-1061 *5 *6 *7)) (-5 *2 (-121)) (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-3522 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *3 (-1061 *5 *6 *7)) (-5 *2 (-634 (-2 (|:| |val| *3) (|:| -3001 *4)))) (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-3504 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *3 (-1061 *5 *6 *7)) (-5 *2 (-634 (-2 (|:| |val| *3) (|:| -3001 *4)))) (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-1676 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-634 (-2 (|:| |val| (-634 *8)) (|:| -3001 *9)))) (-5 *5 (-121)) (-4 *8 (-1061 *6 *7 *4)) (-4 *9 (-1066 *6 *7 *4 *8)) (-4 *6 (-453)) (-4 *7 (-788)) (-4 *4 (-842)) (-5 *2 (-634 (-2 (|:| |val| *8) (|:| -3001 *9)))) (-5 *1 (-1098 *6 *7 *4 *8 *9)))) (-1676 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-121)) (-4 *6 (-453)) (-4 *7 (-788)) (-4 *8 (-842)) (-4 *3 (-1061 *6 *7 *8)) (-5 *2 (-634 (-2 (|:| |val| *3) (|:| -3001 *4)))) (-5 *1 (-1098 *6 *7 *8 *3 *4)) (-4 *4 (-1066 *6 *7 *8 *3)))) (-3291 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *3 (-1061 *5 *6 *7)) (-5 *2 (-634 (-2 (|:| |val| (-634 *3)) (|:| -3001 *4)))) (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-3818 (*1 *2) (-12 (-4 *3 (-453)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1061 *3 *4 *5)) (-5 *2 (-1249)) (-5 *1 (-1098 *3 *4 *5 *6 *7)) (-4 *7 (-1066 *3 *4 *5 *6)))) (-3194 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1143)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *7 (-1061 *4 *5 *6)) (-5 *2 (-1249)) (-5 *1 (-1098 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) (-2270 (*1 *2) (-12 (-4 *3 (-453)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1061 *3 *4 *5)) (-5 *2 (-1249)) (-5 *1 (-1098 *3 *4 *5 *6 *7)) (-4 *7 (-1066 *3 *4 *5 *6)))) (-3179 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1143)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *7 (-1061 *4 *5 *6)) (-5 *2 (-1249)) (-5 *1 (-1098 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7))))) +(-10 -7 (-15 -3179 ((-1249) (-1143) (-1143) (-1143))) (-15 -2270 ((-1249))) (-15 -3194 ((-1249) (-1143) (-1143) (-1143))) (-15 -3818 ((-1249))) (-15 -3291 ((-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))) |#4| |#4| |#5|)) (-15 -1676 ((-634 (-2 (|:| |val| |#4|) (|:| -3001 |#5|))) |#4| |#4| |#5| (-121) (-121))) (-15 -1676 ((-634 (-2 (|:| |val| |#4|) (|:| -3001 |#5|))) (-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))) |#3| (-121))) (-15 -3504 ((-634 (-2 (|:| |val| |#4|) (|:| -3001 |#5|))) |#4| |#4| |#5|)) (-15 -3522 ((-634 (-2 (|:| |val| |#4|) (|:| -3001 |#5|))) |#4| |#4| |#5|)) (-15 -1756 ((-121) |#4| |#5|)) (-15 -2876 ((-634 (-2 (|:| |val| (-121)) (|:| -3001 |#5|))) |#4| |#5|)) (-15 -3452 ((-634 |#5|) |#4| |#5|)) (-15 -1493 ((-634 (-2 (|:| |val| (-121)) (|:| -3001 |#5|))) |#4| |#5|)) (-15 -1310 ((-634 |#5|) |#4| |#5|)) (-15 -1756 ((-634 (-2 (|:| |val| (-121)) (|:| -3001 |#5|))) |#4| |#5|)) (-15 -4400 ((-634 |#5|) |#4| |#5|)) (-15 -4346 ((-634 (-2 (|:| |val| |#4|) (|:| -3001 |#5|))) |#4| |#5|))) +((-2447 (((-121) $ $) 7)) (-2387 (((-634 (-2 (|:| -4092 $) (|:| -1798 (-634 |#4|)))) (-634 |#4|)) 78)) (-2415 (((-634 $) (-634 |#4|)) 79) (((-634 $) (-634 |#4|) (-121)) 104)) (-2055 (((-634 |#3|) $) 32)) (-4211 (((-121) $) 25)) (-3824 (((-121) $) 16 (|has| |#1| (-558)))) (-3300 (((-121) |#4| $) 94) (((-121) $) 90)) (-2819 ((|#4| |#4| $) 85)) (-4305 (((-634 (-2 (|:| |val| |#4|) (|:| -3001 $))) |#4| $) 119)) (-3644 (((-2 (|:| |under| $) (|:| -1519 $) (|:| |upper| $)) $ |#3|) 26)) (-2510 (((-121) $ (-763)) 43)) (-2801 (($ (-1 (-121) |#4|) $) 64 (|has| $ (-6 -4519))) (((-3 |#4| "failed") $ |#3|) 72)) (-2671 (($) 44 T CONST)) (-1565 (((-121) $) 21 (|has| |#1| (-558)))) (-3846 (((-121) $ $) 23 (|has| |#1| (-558)))) (-3106 (((-121) $ $) 22 (|has| |#1| (-558)))) (-3695 (((-121) $) 24 (|has| |#1| (-558)))) (-4275 (((-634 |#4|) (-634 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-121) |#4| |#4|)) 86)) (-2355 (((-634 |#4|) (-634 |#4|) $) 17 (|has| |#1| (-558)))) (-2492 (((-634 |#4|) (-634 |#4|) $) 18 (|has| |#1| (-558)))) (-3666 (((-3 $ "failed") (-634 |#4|)) 35)) (-2854 (($ (-634 |#4|)) 34)) (-3935 (((-3 $ "failed") $) 75)) (-2062 ((|#4| |#4| $) 82)) (-3924 (($ $) 67 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4519))))) (-4328 (($ |#4| $) 66 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4519)))) (($ (-1 (-121) |#4|) $) 63 (|has| $ (-6 -4519)))) (-1500 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 19 (|has| |#1| (-558)))) (-1281 (((-121) |#4| $ (-1 (-121) |#4| |#4|)) 95)) (-4079 ((|#4| |#4| $) 80)) (-3092 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 65 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4519)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 62 (|has| $ (-6 -4519))) ((|#4| (-1 |#4| |#4| |#4|) $) 61 (|has| $ (-6 -4519))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-121) |#4| |#4|)) 87)) (-3635 (((-2 (|:| -4092 (-634 |#4|)) (|:| -1798 (-634 |#4|))) $) 98)) (-1862 (((-121) |#4| $) 129)) (-4286 (((-121) |#4| $) 126)) (-3193 (((-121) |#4| $) 130) (((-121) $) 127)) (-4360 (((-634 |#4|) $) 51 (|has| $ (-6 -4519)))) (-1362 (((-121) |#4| $) 97) (((-121) $) 96)) (-2356 ((|#3| $) 33)) (-1737 (((-121) $ (-763)) 42)) (-1979 (((-634 |#4|) $) 52 (|has| $ (-6 -4519)))) (-3109 (((-121) |#4| $) 54 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4519))))) (-3674 (($ (-1 |#4| |#4|) $) 47 (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#4| |#4|) $) 46)) (-1432 (((-634 |#3|) $) 31)) (-3392 (((-121) |#3| $) 30)) (-2166 (((-121) $ (-763)) 41)) (-4487 (((-1143) $) 9)) (-2717 (((-3 |#4| (-634 $)) |#4| |#4| $) 121)) (-4330 (((-634 (-2 (|:| |val| |#4|) (|:| -3001 $))) |#4| |#4| $) 120)) (-4162 (((-3 |#4| "failed") $) 76)) (-2335 (((-634 $) |#4| $) 122)) (-1719 (((-3 (-121) (-634 $)) |#4| $) 125)) (-2632 (((-634 (-2 (|:| |val| (-121)) (|:| -3001 $))) |#4| $) 124) (((-121) |#4| $) 123)) (-3212 (((-634 $) |#4| $) 118) (((-634 $) (-634 |#4|) $) 117) (((-634 $) (-634 |#4|) (-634 $)) 116) (((-634 $) |#4| (-634 $)) 115)) (-3473 (($ |#4| $) 110) (($ (-634 |#4|) $) 109)) (-1377 (((-634 |#4|) $) 100)) (-1415 (((-121) |#4| $) 92) (((-121) $) 88)) (-2682 ((|#4| |#4| $) 83)) (-2644 (((-121) $ $) 103)) (-2705 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-558)))) (-4347 (((-121) |#4| $) 93) (((-121) $) 89)) (-4025 ((|#4| |#4| $) 84)) (-4022 (((-1108) $) 10)) (-3876 (((-3 |#4| "failed") $) 77)) (-3775 (((-3 |#4| "failed") (-1 (-121) |#4|) $) 60)) (-1665 (((-3 $ "failed") $ |#4|) 71)) (-1807 (($ $ |#4|) 70) (((-634 $) |#4| $) 108) (((-634 $) |#4| (-634 $)) 107) (((-634 $) (-634 |#4|) $) 106) (((-634 $) (-634 |#4|) (-634 $)) 105)) (-1387 (((-121) (-1 (-121) |#4|) $) 49 (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 |#4|) (-634 |#4|)) 58 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090)))) (($ $ |#4| |#4|) 57 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090)))) (($ $ (-288 |#4|)) 56 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090)))) (($ $ (-634 (-288 |#4|))) 55 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090))))) (-3171 (((-121) $ $) 37)) (-3084 (((-121) $) 40)) (-3248 (($) 39)) (-3206 (((-763) $) 99)) (-4168 (((-763) |#4| $) 53 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4519)))) (((-763) (-1 (-121) |#4|) $) 50 (|has| $ (-6 -4519)))) (-3863 (($ $) 38)) (-4278 (((-541) $) 68 (|has| |#4| (-609 (-541))))) (-4287 (($ (-634 |#4|)) 59)) (-1290 (($ $ |#3|) 27)) (-3732 (($ $ |#3|) 29)) (-1567 (($ $) 81)) (-3944 (($ $ |#3|) 28)) (-2745 (((-850) $) 11) (((-634 |#4|) $) 36)) (-1878 (((-763) $) 69 (|has| |#3| (-370)))) (-3556 (((-3 (-2 (|:| |bas| $) (|:| -2616 (-634 |#4|))) "failed") (-634 |#4|) (-1 (-121) |#4| |#4|)) 102) (((-3 (-2 (|:| |bas| $) (|:| -2616 (-634 |#4|))) "failed") (-634 |#4|) (-1 (-121) |#4|) (-1 (-121) |#4| |#4|)) 101)) (-3292 (((-121) $ (-1 (-121) |#4| (-634 |#4|))) 91)) (-2574 (((-634 $) |#4| $) 114) (((-634 $) |#4| (-634 $)) 113) (((-634 $) (-634 |#4|) $) 112) (((-634 $) (-634 |#4|) (-634 $)) 111)) (-1319 (((-121) (-1 (-121) |#4|) $) 48 (|has| $ (-6 -4519)))) (-2739 (((-634 |#3|) $) 74)) (-2288 (((-121) |#4| $) 128)) (-4390 (((-121) |#3| $) 73)) (-1717 (((-121) $ $) 6)) (-1697 (((-763) $) 45 (|has| $ (-6 -4519))))) +(((-1099 |#1| |#2| |#3| |#4|) (-1275) (-453) (-788) (-842) (-1061 |t#1| |t#2| |t#3|)) (T -1099)) +NIL +(-13 (-1066 |t#1| |t#2| |t#3| |t#4|)) +(((-39) . T) ((-105) . T) ((-608 (-634 |#4|)) . T) ((-608 (-850)) . T) ((-154 |#4|) . T) ((-609 (-541)) |has| |#4| (-609 (-541))) ((-303 |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090))) ((-499 |#4|) . T) ((-523 |#4| |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090))) ((-977 |#1| |#2| |#3| |#4|) . T) ((-1066 |#1| |#2| |#3| |#4|) . T) ((-1090) . T) ((-1189 |#1| |#2| |#3| |#4|) . T) ((-1195) . T)) +((-1490 (((-634 (-568)) (-568) (-568) (-568)) 20)) (-2805 (((-634 (-568)) (-568) (-568) (-568)) 12)) (-3895 (((-634 (-568)) (-568) (-568) (-568)) 16)) (-2074 (((-568) (-568) (-568)) 9)) (-1694 (((-1244 (-568)) (-634 (-568)) (-1244 (-568)) (-568)) 44) (((-1244 (-568)) (-1244 (-568)) (-1244 (-568)) (-568)) 39)) (-4103 (((-634 (-568)) (-634 (-568)) (-634 (-568)) (-121)) 26)) (-3129 (((-679 (-568)) (-634 (-568)) (-634 (-568)) (-679 (-568))) 43)) (-2903 (((-679 (-568)) (-634 (-568)) (-634 (-568))) 31)) (-1364 (((-634 (-679 (-568))) (-634 (-568))) 33)) (-2559 (((-634 (-568)) (-634 (-568)) (-634 (-568)) (-679 (-568))) 46)) (-3745 (((-679 (-568)) (-634 (-568)) (-634 (-568)) (-634 (-568))) 54))) +(((-1100) (-10 -7 (-15 -3745 ((-679 (-568)) (-634 (-568)) (-634 (-568)) (-634 (-568)))) (-15 -2559 ((-634 (-568)) (-634 (-568)) (-634 (-568)) (-679 (-568)))) (-15 -1364 ((-634 (-679 (-568))) (-634 (-568)))) (-15 -2903 ((-679 (-568)) (-634 (-568)) (-634 (-568)))) (-15 -3129 ((-679 (-568)) (-634 (-568)) (-634 (-568)) (-679 (-568)))) (-15 -4103 ((-634 (-568)) (-634 (-568)) (-634 (-568)) (-121))) (-15 -1694 ((-1244 (-568)) (-1244 (-568)) (-1244 (-568)) (-568))) (-15 -1694 ((-1244 (-568)) (-634 (-568)) (-1244 (-568)) (-568))) (-15 -2074 ((-568) (-568) (-568))) (-15 -3895 ((-634 (-568)) (-568) (-568) (-568))) (-15 -2805 ((-634 (-568)) (-568) (-568) (-568))) (-15 -1490 ((-634 (-568)) (-568) (-568) (-568))))) (T -1100)) +((-1490 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-634 (-568))) (-5 *1 (-1100)) (-5 *3 (-568)))) (-2805 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-634 (-568))) (-5 *1 (-1100)) (-5 *3 (-568)))) (-3895 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-634 (-568))) (-5 *1 (-1100)) (-5 *3 (-568)))) (-2074 (*1 *2 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-1100)))) (-1694 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1244 (-568))) (-5 *3 (-634 (-568))) (-5 *4 (-568)) (-5 *1 (-1100)))) (-1694 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1244 (-568))) (-5 *3 (-568)) (-5 *1 (-1100)))) (-4103 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-634 (-568))) (-5 *3 (-121)) (-5 *1 (-1100)))) (-3129 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-679 (-568))) (-5 *3 (-634 (-568))) (-5 *1 (-1100)))) (-2903 (*1 *2 *3 *3) (-12 (-5 *3 (-634 (-568))) (-5 *2 (-679 (-568))) (-5 *1 (-1100)))) (-1364 (*1 *2 *3) (-12 (-5 *3 (-634 (-568))) (-5 *2 (-634 (-679 (-568)))) (-5 *1 (-1100)))) (-2559 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-634 (-568))) (-5 *3 (-679 (-568))) (-5 *1 (-1100)))) (-3745 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-634 (-568))) (-5 *2 (-679 (-568))) (-5 *1 (-1100))))) +(-10 -7 (-15 -3745 ((-679 (-568)) (-634 (-568)) (-634 (-568)) (-634 (-568)))) (-15 -2559 ((-634 (-568)) (-634 (-568)) (-634 (-568)) (-679 (-568)))) (-15 -1364 ((-634 (-679 (-568))) (-634 (-568)))) (-15 -2903 ((-679 (-568)) (-634 (-568)) (-634 (-568)))) (-15 -3129 ((-679 (-568)) (-634 (-568)) (-634 (-568)) (-679 (-568)))) (-15 -4103 ((-634 (-568)) (-634 (-568)) (-634 (-568)) (-121))) (-15 -1694 ((-1244 (-568)) (-1244 (-568)) (-1244 (-568)) (-568))) (-15 -1694 ((-1244 (-568)) (-634 (-568)) (-1244 (-568)) (-568))) (-15 -2074 ((-568) (-568) (-568))) (-15 -3895 ((-634 (-568)) (-568) (-568) (-568))) (-15 -2805 ((-634 (-568)) (-568) (-568) (-568))) (-15 -1490 ((-634 (-568)) (-568) (-568) (-568)))) +((-1887 (($ $ (-917)) 12)) (** (($ $ (-917)) 10))) +(((-1101 |#1|) (-10 -8 (-15 -1887 (|#1| |#1| (-917))) (-15 ** (|#1| |#1| (-917)))) (-1102)) (T -1101)) +NIL +(-10 -8 (-15 -1887 (|#1| |#1| (-917))) (-15 ** (|#1| |#1| (-917)))) +((-2447 (((-121) $ $) 7)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-2745 (((-850) $) 11)) (-1887 (($ $ (-917)) 12)) (-1717 (((-121) $ $) 6)) (** (($ $ (-917)) 13)) (* (($ $ $) 14))) +(((-1102) (-1275)) (T -1102)) +((* (*1 *1 *1 *1) (-4 *1 (-1102))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1102)) (-5 *2 (-917)))) (-1887 (*1 *1 *1 *2) (-12 (-4 *1 (-1102)) (-5 *2 (-917))))) +(-13 (-1090) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-917))) (-15 -1887 ($ $ (-917))))) +(((-105) . T) ((-608 (-850)) . T) ((-1090) . T)) +((-2447 (((-121) $ $) NIL (|has| |#3| (-1090)))) (-2537 (((-121) $) NIL (|has| |#3| (-137)))) (-1394 (($ (-917)) NIL (|has| |#3| (-1047)))) (-1868 (((-1249) $ (-568) (-568)) NIL (|has| $ (-6 -4520)))) (-1462 (($ $ $) NIL (|has| |#3| (-788)))) (-3134 (((-3 $ "failed") $ $) NIL (|has| |#3| (-137)))) (-2510 (((-121) $ (-763)) NIL)) (-3983 (((-763)) NIL (|has| |#3| (-370)))) (-3662 (((-568) $) NIL (|has| |#3| (-840)))) (-2436 ((|#3| $ (-568) |#3|) NIL (|has| $ (-6 -4520)))) (-2671 (($) NIL T CONST)) (-3666 (((-3 (-568) "failed") $) NIL (-12 (|has| |#3| (-1037 (-568))) (|has| |#3| (-1090)))) (((-3 (-409 (-568)) "failed") $) NIL (-12 (|has| |#3| (-1037 (-409 (-568)))) (|has| |#3| (-1090)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1090)))) (-2854 (((-568) $) NIL (-12 (|has| |#3| (-1037 (-568))) (|has| |#3| (-1090)))) (((-409 (-568)) $) NIL (-12 (|has| |#3| (-1037 (-409 (-568)))) (|has| |#3| (-1090)))) ((|#3| $) NIL (|has| |#3| (-1090)))) (-3164 (((-679 (-568)) (-679 $)) NIL (-12 (|has| |#3| (-630 (-568))) (|has| |#3| (-1047)))) (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) NIL (-12 (|has| |#3| (-630 (-568))) (|has| |#3| (-1047)))) (((-2 (|:| -2928 (-679 |#3|)) (|:| |vec| (-1244 |#3|))) (-679 $) (-1244 $)) NIL (|has| |#3| (-1047))) (((-679 |#3|) (-679 $)) NIL (|has| |#3| (-1047)))) (-2925 (((-3 $ "failed") $) NIL (|has| |#3| (-716)))) (-1731 (($) NIL (|has| |#3| (-370)))) (-3989 ((|#3| $ (-568) |#3|) NIL (|has| $ (-6 -4520)))) (-2602 ((|#3| $ (-568)) 12)) (-2033 (((-121) $) NIL (|has| |#3| (-840)))) (-4360 (((-634 |#3|) $) NIL (|has| $ (-6 -4519)))) (-2735 (((-121) $) NIL (|has| |#3| (-716)))) (-2245 (((-121) $) NIL (|has| |#3| (-840)))) (-1737 (((-121) $ (-763)) NIL)) (-1881 (((-568) $) NIL (|has| (-568) (-842)))) (-2521 (($ $ $) NIL (-2198 (|has| |#3| (-788)) (|has| |#3| (-840))))) (-1979 (((-634 |#3|) $) NIL (|has| $ (-6 -4519)))) (-3109 (((-121) |#3| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#3| (-1090))))) (-2223 (((-568) $) NIL (|has| (-568) (-842)))) (-3268 (($ $ $) NIL (-2198 (|has| |#3| (-788)) (|has| |#3| (-840))))) (-3674 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#3| |#3|) $) NIL)) (-3683 (((-917) $) NIL (|has| |#3| (-370)))) (-2166 (((-121) $ (-763)) NIL)) (-4487 (((-1143) $) NIL (|has| |#3| (-1090)))) (-4174 (((-634 (-568)) $) NIL)) (-3578 (((-121) (-568) $) NIL)) (-4355 (($ (-917)) NIL (|has| |#3| (-370)))) (-4022 (((-1108) $) NIL (|has| |#3| (-1090)))) (-3876 ((|#3| $) NIL (|has| (-568) (-842)))) (-3724 (($ $ |#3|) NIL (|has| $ (-6 -4520)))) (-1387 (((-121) (-1 (-121) |#3|) $) NIL (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#3|))) NIL (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1090)))) (($ $ (-288 |#3|)) NIL (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1090)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1090)))) (($ $ (-634 |#3|) (-634 |#3|)) NIL (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1090))))) (-3171 (((-121) $ $) NIL)) (-4467 (((-121) |#3| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#3| (-1090))))) (-2041 (((-634 |#3|) $) NIL)) (-3084 (((-121) $) NIL)) (-3248 (($) NIL)) (-2779 ((|#3| $ (-568) |#3|) NIL) ((|#3| $ (-568)) NIL)) (-3682 ((|#3| $ $) NIL (|has| |#3| (-1047)))) (-2039 (($ (-1244 |#3|)) NIL)) (-4321 (((-139)) NIL (|has| |#3| (-365)))) (-4189 (($ $) NIL (-12 (|has| |#3| (-225)) (|has| |#3| (-1047)))) (($ $ (-763)) NIL (-12 (|has| |#3| (-225)) (|has| |#3| (-1047)))) (($ $ (-1161)) NIL (-12 (|has| |#3| (-895 (-1161))) (|has| |#3| (-1047)))) (($ $ (-634 (-1161))) NIL (-12 (|has| |#3| (-895 (-1161))) (|has| |#3| (-1047)))) (($ $ (-1161) (-763)) NIL (-12 (|has| |#3| (-895 (-1161))) (|has| |#3| (-1047)))) (($ $ (-634 (-1161)) (-634 (-763))) NIL (-12 (|has| |#3| (-895 (-1161))) (|has| |#3| (-1047)))) (($ $ (-1 |#3| |#3|) (-763)) NIL (|has| |#3| (-1047))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1047)))) (-4168 (((-763) (-1 (-121) |#3|) $) NIL (|has| $ (-6 -4519))) (((-763) |#3| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#3| (-1090))))) (-3863 (($ $) NIL)) (-2745 (((-1244 |#3|) $) NIL) (((-850) $) NIL (|has| |#3| (-1090))) (($ (-568)) NIL (-2198 (-12 (|has| |#3| (-1037 (-568))) (|has| |#3| (-1090))) (|has| |#3| (-1047)))) (($ (-409 (-568))) NIL (-12 (|has| |#3| (-1037 (-409 (-568)))) (|has| |#3| (-1090)))) (($ |#3|) NIL (|has| |#3| (-1090)))) (-4078 (((-763)) NIL (|has| |#3| (-1047)))) (-1319 (((-121) (-1 (-121) |#3|) $) NIL (|has| $ (-6 -4519)))) (-2897 (($ $) NIL (|has| |#3| (-840)))) (-1887 (($ $ (-763)) NIL (|has| |#3| (-716))) (($ $ (-917)) NIL (|has| |#3| (-716)))) (-3056 (($) NIL (|has| |#3| (-137)) CONST)) (-1556 (($) NIL (|has| |#3| (-716)) CONST)) (-3190 (($ $) NIL (-12 (|has| |#3| (-225)) (|has| |#3| (-1047)))) (($ $ (-763)) NIL (-12 (|has| |#3| (-225)) (|has| |#3| (-1047)))) (($ $ (-1161)) NIL (-12 (|has| |#3| (-895 (-1161))) (|has| |#3| (-1047)))) (($ $ (-634 (-1161))) NIL (-12 (|has| |#3| (-895 (-1161))) (|has| |#3| (-1047)))) (($ $ (-1161) (-763)) NIL (-12 (|has| |#3| (-895 (-1161))) (|has| |#3| (-1047)))) (($ $ (-634 (-1161)) (-634 (-763))) NIL (-12 (|has| |#3| (-895 (-1161))) (|has| |#3| (-1047)))) (($ $ (-1 |#3| |#3|) (-763)) NIL (|has| |#3| (-1047))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1047)))) (-1751 (((-121) $ $) NIL (-2198 (|has| |#3| (-788)) (|has| |#3| (-840))))) (-1738 (((-121) $ $) NIL (-2198 (|has| |#3| (-788)) (|has| |#3| (-840))))) (-1717 (((-121) $ $) NIL (|has| |#3| (-1090)))) (-1745 (((-121) $ $) NIL (-2198 (|has| |#3| (-788)) (|has| |#3| (-840))))) (-1732 (((-121) $ $) 17 (-2198 (|has| |#3| (-788)) (|has| |#3| (-840))))) (-1779 (($ $ |#3|) NIL (|has| |#3| (-365)))) (-1773 (($ $ $) NIL (|has| |#3| (-1047))) (($ $) NIL (|has| |#3| (-1047)))) (-1767 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-763)) NIL (|has| |#3| (-716))) (($ $ (-917)) NIL (|has| |#3| (-716)))) (* (($ (-568) $) NIL (|has| |#3| (-1047))) (($ $ $) NIL (|has| |#3| (-716))) (($ $ |#3|) NIL (|has| |#3| (-1047))) (($ |#3| $) NIL (|has| |#3| (-1047))) (($ (-763) $) NIL (|has| |#3| (-137))) (($ (-917) $) NIL (|has| |#3| (-25)))) (-1697 (((-763) $) NIL (|has| $ (-6 -4519))))) +(((-1103 |#1| |#2| |#3|) (-230 |#1| |#3|) (-763) (-763) (-788)) (T -1103)) +NIL +(-230 |#1| |#3|) +((-4407 (((-634 (-1216 |#2| |#1|)) (-1216 |#2| |#1|) (-1216 |#2| |#1|)) 36)) (-1584 (((-568) (-1216 |#2| |#1|)) 67 (|has| |#1| (-453)))) (-4480 (((-568) (-1216 |#2| |#1|)) 53)) (-3888 (((-634 (-1216 |#2| |#1|)) (-1216 |#2| |#1|) (-1216 |#2| |#1|)) 44)) (-3178 (((-568) (-1216 |#2| |#1|) (-1216 |#2| |#1|)) 55 (|has| |#1| (-453)))) (-2696 (((-634 |#1|) (-1216 |#2| |#1|) (-1216 |#2| |#1|)) 47)) (-2090 (((-568) (-1216 |#2| |#1|) (-1216 |#2| |#1|)) 52))) +(((-1104 |#1| |#2|) (-10 -7 (-15 -4407 ((-634 (-1216 |#2| |#1|)) (-1216 |#2| |#1|) (-1216 |#2| |#1|))) (-15 -3888 ((-634 (-1216 |#2| |#1|)) (-1216 |#2| |#1|) (-1216 |#2| |#1|))) (-15 -2696 ((-634 |#1|) (-1216 |#2| |#1|) (-1216 |#2| |#1|))) (-15 -2090 ((-568) (-1216 |#2| |#1|) (-1216 |#2| |#1|))) (-15 -4480 ((-568) (-1216 |#2| |#1|))) (IF (|has| |#1| (-453)) (PROGN (-15 -3178 ((-568) (-1216 |#2| |#1|) (-1216 |#2| |#1|))) (-15 -1584 ((-568) (-1216 |#2| |#1|)))) |noBranch|)) (-815) (-1161)) (T -1104)) +((-1584 (*1 *2 *3) (-12 (-5 *3 (-1216 *5 *4)) (-4 *4 (-453)) (-4 *4 (-815)) (-14 *5 (-1161)) (-5 *2 (-568)) (-5 *1 (-1104 *4 *5)))) (-3178 (*1 *2 *3 *3) (-12 (-5 *3 (-1216 *5 *4)) (-4 *4 (-453)) (-4 *4 (-815)) (-14 *5 (-1161)) (-5 *2 (-568)) (-5 *1 (-1104 *4 *5)))) (-4480 (*1 *2 *3) (-12 (-5 *3 (-1216 *5 *4)) (-4 *4 (-815)) (-14 *5 (-1161)) (-5 *2 (-568)) (-5 *1 (-1104 *4 *5)))) (-2090 (*1 *2 *3 *3) (-12 (-5 *3 (-1216 *5 *4)) (-4 *4 (-815)) (-14 *5 (-1161)) (-5 *2 (-568)) (-5 *1 (-1104 *4 *5)))) (-2696 (*1 *2 *3 *3) (-12 (-5 *3 (-1216 *5 *4)) (-4 *4 (-815)) (-14 *5 (-1161)) (-5 *2 (-634 *4)) (-5 *1 (-1104 *4 *5)))) (-3888 (*1 *2 *3 *3) (-12 (-4 *4 (-815)) (-14 *5 (-1161)) (-5 *2 (-634 (-1216 *5 *4))) (-5 *1 (-1104 *4 *5)) (-5 *3 (-1216 *5 *4)))) (-4407 (*1 *2 *3 *3) (-12 (-4 *4 (-815)) (-14 *5 (-1161)) (-5 *2 (-634 (-1216 *5 *4))) (-5 *1 (-1104 *4 *5)) (-5 *3 (-1216 *5 *4))))) +(-10 -7 (-15 -4407 ((-634 (-1216 |#2| |#1|)) (-1216 |#2| |#1|) (-1216 |#2| |#1|))) (-15 -3888 ((-634 (-1216 |#2| |#1|)) (-1216 |#2| |#1|) (-1216 |#2| |#1|))) (-15 -2696 ((-634 |#1|) (-1216 |#2| |#1|) (-1216 |#2| |#1|))) (-15 -2090 ((-568) (-1216 |#2| |#1|) (-1216 |#2| |#1|))) (-15 -4480 ((-568) (-1216 |#2| |#1|))) (IF (|has| |#1| (-453)) (PROGN (-15 -3178 ((-568) (-1216 |#2| |#1|) (-1216 |#2| |#1|))) (-15 -1584 ((-568) (-1216 |#2| |#1|)))) |noBranch|)) +((-3662 (((-3 (-568) "failed") |#2| (-1161) |#2| (-1143)) 16) (((-3 (-568) "failed") |#2| (-1161) (-835 |#2|)) 14) (((-3 (-568) "failed") |#2|) 51))) +(((-1105 |#1| |#2|) (-10 -7 (-15 -3662 ((-3 (-568) "failed") |#2|)) (-15 -3662 ((-3 (-568) "failed") |#2| (-1161) (-835 |#2|))) (-15 -3662 ((-3 (-568) "failed") |#2| (-1161) |#2| (-1143)))) (-13 (-558) (-842) (-1037 (-568)) (-630 (-568)) (-453)) (-13 (-27) (-1181) (-432 |#1|))) (T -1105)) +((-3662 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1161)) (-5 *5 (-1143)) (-4 *6 (-13 (-558) (-842) (-1037 *2) (-630 *2) (-453))) (-5 *2 (-568)) (-5 *1 (-1105 *6 *3)) (-4 *3 (-13 (-27) (-1181) (-432 *6))))) (-3662 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1161)) (-5 *5 (-835 *3)) (-4 *3 (-13 (-27) (-1181) (-432 *6))) (-4 *6 (-13 (-558) (-842) (-1037 *2) (-630 *2) (-453))) (-5 *2 (-568)) (-5 *1 (-1105 *6 *3)))) (-3662 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-558) (-842) (-1037 *2) (-630 *2) (-453))) (-5 *2 (-568)) (-5 *1 (-1105 *4 *3)) (-4 *3 (-13 (-27) (-1181) (-432 *4)))))) +(-10 -7 (-15 -3662 ((-3 (-568) "failed") |#2|)) (-15 -3662 ((-3 (-568) "failed") |#2| (-1161) (-835 |#2|))) (-15 -3662 ((-3 (-568) "failed") |#2| (-1161) |#2| (-1143)))) +((-3662 (((-3 (-568) "failed") (-409 (-953 |#1|)) (-1161) (-409 (-953 |#1|)) (-1143)) 34) (((-3 (-568) "failed") (-409 (-953 |#1|)) (-1161) (-835 (-409 (-953 |#1|)))) 29) (((-3 (-568) "failed") (-409 (-953 |#1|))) 12))) +(((-1106 |#1|) (-10 -7 (-15 -3662 ((-3 (-568) "failed") (-409 (-953 |#1|)))) (-15 -3662 ((-3 (-568) "failed") (-409 (-953 |#1|)) (-1161) (-835 (-409 (-953 |#1|))))) (-15 -3662 ((-3 (-568) "failed") (-409 (-953 |#1|)) (-1161) (-409 (-953 |#1|)) (-1143)))) (-453)) (T -1106)) +((-3662 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-409 (-953 *6))) (-5 *4 (-1161)) (-5 *5 (-1143)) (-4 *6 (-453)) (-5 *2 (-568)) (-5 *1 (-1106 *6)))) (-3662 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1161)) (-5 *5 (-835 (-409 (-953 *6)))) (-5 *3 (-409 (-953 *6))) (-4 *6 (-453)) (-5 *2 (-568)) (-5 *1 (-1106 *6)))) (-3662 (*1 *2 *3) (|partial| -12 (-5 *3 (-409 (-953 *4))) (-4 *4 (-453)) (-5 *2 (-568)) (-5 *1 (-1106 *4))))) +(-10 -7 (-15 -3662 ((-3 (-568) "failed") (-409 (-953 |#1|)))) (-15 -3662 ((-3 (-568) "failed") (-409 (-953 |#1|)) (-1161) (-835 (-409 (-953 |#1|))))) (-15 -3662 ((-3 (-568) "failed") (-409 (-953 |#1|)) (-1161) (-409 (-953 |#1|)) (-1143)))) +((-4352 (((-310 (-568)) (-53)) 11))) +(((-1107) (-10 -7 (-15 -4352 ((-310 (-568)) (-53))))) (T -1107)) +((-4352 (*1 *2 *3) (-12 (-5 *3 (-53)) (-5 *2 (-310 (-568))) (-5 *1 (-1107))))) +(-10 -7 (-15 -4352 ((-310 (-568)) (-53)))) +((-2447 (((-121) $ $) NIL)) (-1611 (($ $) 41)) (-2537 (((-121) $) 65)) (-3091 (($ $ $) 48)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) 84)) (-2227 (($ $) NIL)) (-1573 (((-121) $) NIL)) (-1877 (($ $ $) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-2690 (($ $ $ $) 74)) (-4305 (($ $) NIL)) (-1678 (((-420 $) $) NIL)) (-1497 (((-121) $ $) NIL)) (-3662 (((-568) $) NIL)) (-1870 (($ $ $) 71)) (-2671 (($) NIL T CONST)) (-3666 (((-3 (-568) "failed") $) NIL)) (-2854 (((-568) $) NIL)) (-2401 (($ $ $) 59)) (-3164 (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) 78) (((-679 (-568)) (-679 $)) 28)) (-2925 (((-3 $ "failed") $) NIL)) (-1642 (((-3 (-409 (-568)) "failed") $) NIL)) (-2688 (((-121) $) NIL)) (-2425 (((-409 (-568)) $) NIL)) (-1731 (($) 81) (($ $) 82)) (-2412 (($ $ $) 58)) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) NIL)) (-3927 (((-121) $) NIL)) (-1457 (($ $ $ $) NIL)) (-1283 (($ $ $) 79)) (-2033 (((-121) $) NIL)) (-2413 (($ $ $) NIL)) (-4410 (((-884 (-568) $) $ (-887 (-568)) (-884 (-568) $)) NIL)) (-2735 (((-121) $) 66)) (-1825 (((-121) $) 64)) (-3044 (($ $) 42)) (-3038 (((-3 $ "failed") $) NIL)) (-2245 (((-121) $) 75)) (-3562 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-3326 (($ $ $ $) 72)) (-2521 (($ $ $) 68) (($) 39)) (-3268 (($ $ $) 67) (($) 38)) (-3651 (($ $) NIL)) (-3678 (($ $) 70)) (-2495 (($ $ $) NIL) (($ (-634 $)) NIL)) (-4487 (((-1143) $) NIL)) (-2110 (($ $ $) NIL)) (-4434 (($) NIL T CONST)) (-3850 (($ $) 50)) (-4022 (((-1108) $) NIL) (($ $) 69)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL)) (-2721 (($ $ $) 62) (($ (-634 $)) NIL)) (-2427 (($ $) NIL)) (-3848 (((-420 $) $) NIL)) (-4497 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL)) (-2595 (((-3 $ "failed") $ $) NIL)) (-2344 (((-3 (-634 $) "failed") (-634 $) $) NIL)) (-3277 (((-121) $) NIL)) (-2709 (((-763) $) NIL)) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) 61)) (-4189 (($ $ (-763)) NIL) (($ $) NIL)) (-2349 (($ $) 51)) (-3863 (($ $) NIL)) (-4278 (((-568) $) 32) (((-541) $) NIL) (((-887 (-568)) $) NIL) (((-381) $) NIL) (((-215) $) NIL)) (-2745 (((-850) $) 31) (($ (-568)) 80) (($ $) NIL) (($ (-568)) 80)) (-4078 (((-763)) NIL)) (-2791 (((-121) $ $) NIL)) (-2787 (($ $ $) NIL)) (-1461 (($) 37)) (-1826 (((-121) $ $) NIL)) (-4419 (($ $ $ $) 73)) (-2897 (($ $) 63)) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (-2430 (($ $ $) 44)) (-3056 (($) 35 T CONST)) (-3293 (($ $ $) 47)) (-1556 (($) 36 T CONST)) (-3754 (((-1143) $) 21) (((-1143) $ (-121)) 23) (((-1249) (-817) $) 24) (((-1249) (-817) $ (-121)) 25)) (-3251 (($ $) 45)) (-3190 (($ $ (-763)) NIL) (($ $) NIL)) (-3005 (($ $ $) 46)) (-1751 (((-121) $ $) NIL)) (-1738 (((-121) $ $) NIL)) (-1717 (((-121) $ $) 40)) (-1745 (((-121) $ $) NIL)) (-1732 (((-121) $ $) 49)) (-2424 (($ $ $) 43)) (-1773 (($ $) 52) (($ $ $) 54)) (-1767 (($ $ $) 53)) (** (($ $ (-917)) NIL) (($ $ (-763)) 57)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) 34) (($ $ $) 55))) +(((-1108) (-13 (-550) (-651) (-823) (-10 -8 (-6 -4506) (-6 -4511) (-6 -4507) (-15 -3268 ($)) (-15 -2521 ($)) (-15 -3044 ($ $)) (-15 -1611 ($ $)) (-15 -2424 ($ $ $)) (-15 -2430 ($ $ $)) (-15 -3091 ($ $ $)) (-15 -3251 ($ $)) (-15 -3005 ($ $ $)) (-15 -3293 ($ $ $))))) (T -1108)) +((-2430 (*1 *1 *1 *1) (-5 *1 (-1108))) (-2424 (*1 *1 *1 *1) (-5 *1 (-1108))) (-1611 (*1 *1 *1) (-5 *1 (-1108))) (-3268 (*1 *1) (-5 *1 (-1108))) (-2521 (*1 *1) (-5 *1 (-1108))) (-3044 (*1 *1 *1) (-5 *1 (-1108))) (-3091 (*1 *1 *1 *1) (-5 *1 (-1108))) (-3251 (*1 *1 *1) (-5 *1 (-1108))) (-3005 (*1 *1 *1 *1) (-5 *1 (-1108))) (-3293 (*1 *1 *1 *1) (-5 *1 (-1108)))) +(-13 (-550) (-651) (-823) (-10 -8 (-6 -4506) (-6 -4511) (-6 -4507) (-15 -3268 ($)) (-15 -2521 ($)) (-15 -3044 ($ $)) (-15 -1611 ($ $)) (-15 -2424 ($ $ $)) (-15 -2430 ($ $ $)) (-15 -3091 ($ $ $)) (-15 -3251 ($ $)) (-15 -3005 ($ $ $)) (-15 -3293 ($ $ $)))) +((-2447 (((-121) $ $) 18 (|has| |#1| (-1090)))) (-2616 ((|#1| $) 41)) (-2510 (((-121) $ (-763)) 8)) (-2671 (($) 7 T CONST)) (-2918 ((|#1| |#1| $) 43)) (-2899 ((|#1| $) 42)) (-4360 (((-634 |#1|) $) 30 (|has| $ (-6 -4519)))) (-1737 (((-121) $ (-763)) 9)) (-1979 (((-634 |#1|) $) 29 (|has| $ (-6 -4519)))) (-3109 (((-121) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-3674 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#1| |#1|) $) 35)) (-2166 (((-121) $ (-763)) 10)) (-4487 (((-1143) $) 22 (|has| |#1| (-1090)))) (-1890 ((|#1| $) 36)) (-4450 (($ |#1| $) 37)) (-4022 (((-1108) $) 21 (|has| |#1| (-1090)))) (-1315 ((|#1| $) 38)) (-1387 (((-121) (-1 (-121) |#1|) $) 32 (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-634 |#1|) (-634 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))))) (-3171 (((-121) $ $) 14)) (-3084 (((-121) $) 11)) (-3248 (($) 12)) (-4154 (((-763) $) 40)) (-4168 (((-763) (-1 (-121) |#1|) $) 31 (|has| $ (-6 -4519))) (((-763) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-3863 (($ $) 13)) (-2745 (((-850) $) 20 (|has| |#1| (-1090)))) (-2367 (($ (-634 |#1|)) 39)) (-1319 (((-121) (-1 (-121) |#1|) $) 33 (|has| $ (-6 -4519)))) (-1717 (((-121) $ $) 19 (|has| |#1| (-1090)))) (-1697 (((-763) $) 6 (|has| $ (-6 -4519))))) +(((-1109 |#1|) (-1275) (-1195)) (T -1109)) +((-2918 (*1 *2 *2 *1) (-12 (-4 *1 (-1109 *2)) (-4 *2 (-1195)))) (-2899 (*1 *2 *1) (-12 (-4 *1 (-1109 *2)) (-4 *2 (-1195)))) (-2616 (*1 *2 *1) (-12 (-4 *1 (-1109 *2)) (-4 *2 (-1195)))) (-4154 (*1 *2 *1) (-12 (-4 *1 (-1109 *3)) (-4 *3 (-1195)) (-5 *2 (-763))))) +(-13 (-111 |t#1|) (-10 -8 (-6 -4519) (-15 -2918 (|t#1| |t#1| $)) (-15 -2899 (|t#1| $)) (-15 -2616 (|t#1| $)) (-15 -4154 ((-763) $)))) +(((-39) . T) ((-111 |#1|) . T) ((-105) |has| |#1| (-1090)) ((-608 (-850)) |has| |#1| (-1090)) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))) ((-499 |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))) ((-1090) |has| |#1| (-1090)) ((-1195) . T)) +((-1932 ((|#3| $) 76)) (-3666 (((-3 (-568) "failed") $) NIL) (((-3 (-409 (-568)) "failed") $) NIL) (((-3 |#3| "failed") $) 40)) (-2854 (((-568) $) NIL) (((-409 (-568)) $) NIL) ((|#3| $) 37)) (-3164 (((-679 (-568)) (-679 $)) NIL) (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) NIL) (((-2 (|:| -2928 (-679 |#3|)) (|:| |vec| (-1244 |#3|))) (-679 $) (-1244 $)) 73) (((-679 |#3|) (-679 $)) 65)) (-4189 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-763)) NIL) (($ $ (-634 (-1161)) (-634 (-763))) NIL) (($ $ (-1161) (-763)) NIL) (($ $ (-634 (-1161))) NIL) (($ $ (-1161)) NIL) (($ $ (-763)) NIL) (($ $) NIL)) (-3241 ((|#3| $) 78)) (-3815 ((|#4| $) 32)) (-2745 (((-850) $) NIL) (($ (-568)) NIL) (($ (-409 (-568))) NIL) (($ |#3|) 16)) (** (($ $ (-917)) NIL) (($ $ (-763)) 15) (($ $ (-568)) 82))) +(((-1110 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-568))) (-15 -3241 (|#3| |#1|)) (-15 -1932 (|#3| |#1|)) (-15 -3815 (|#4| |#1|)) (-15 -3164 ((-679 |#3|) (-679 |#1|))) (-15 -3164 ((-2 (|:| -2928 (-679 |#3|)) (|:| |vec| (-1244 |#3|))) (-679 |#1|) (-1244 |#1|))) (-15 -3164 ((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 |#1|) (-1244 |#1|))) (-15 -3164 ((-679 (-568)) (-679 |#1|))) (-15 -2854 (|#3| |#1|)) (-15 -3666 ((-3 |#3| "failed") |#1|)) (-15 -2745 (|#1| |#3|)) (-15 -2745 (|#1| (-409 (-568)))) (-15 -3666 ((-3 (-409 (-568)) "failed") |#1|)) (-15 -2854 ((-409 (-568)) |#1|)) (-15 -3666 ((-3 (-568) "failed") |#1|)) (-15 -2854 ((-568) |#1|)) (-15 -4189 (|#1| |#1|)) (-15 -4189 (|#1| |#1| (-763))) (-15 -4189 (|#1| |#1| (-1161))) (-15 -4189 (|#1| |#1| (-634 (-1161)))) (-15 -4189 (|#1| |#1| (-1161) (-763))) (-15 -4189 (|#1| |#1| (-634 (-1161)) (-634 (-763)))) (-15 -4189 (|#1| |#1| (-1 |#3| |#3|) (-763))) (-15 -4189 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2745 (|#1| (-568))) (-15 ** (|#1| |#1| (-763))) (-15 ** (|#1| |#1| (-917))) (-15 -2745 ((-850) |#1|))) (-1111 |#2| |#3| |#4| |#5|) (-763) (-1047) (-230 |#2| |#3|) (-230 |#2| |#3|)) (T -1110)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-568))) (-15 -3241 (|#3| |#1|)) (-15 -1932 (|#3| |#1|)) (-15 -3815 (|#4| |#1|)) (-15 -3164 ((-679 |#3|) (-679 |#1|))) (-15 -3164 ((-2 (|:| -2928 (-679 |#3|)) (|:| |vec| (-1244 |#3|))) (-679 |#1|) (-1244 |#1|))) (-15 -3164 ((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 |#1|) (-1244 |#1|))) (-15 -3164 ((-679 (-568)) (-679 |#1|))) (-15 -2854 (|#3| |#1|)) (-15 -3666 ((-3 |#3| "failed") |#1|)) (-15 -2745 (|#1| |#3|)) (-15 -2745 (|#1| (-409 (-568)))) (-15 -3666 ((-3 (-409 (-568)) "failed") |#1|)) (-15 -2854 ((-409 (-568)) |#1|)) (-15 -3666 ((-3 (-568) "failed") |#1|)) (-15 -2854 ((-568) |#1|)) (-15 -4189 (|#1| |#1|)) (-15 -4189 (|#1| |#1| (-763))) (-15 -4189 (|#1| |#1| (-1161))) (-15 -4189 (|#1| |#1| (-634 (-1161)))) (-15 -4189 (|#1| |#1| (-1161) (-763))) (-15 -4189 (|#1| |#1| (-634 (-1161)) (-634 (-763)))) (-15 -4189 (|#1| |#1| (-1 |#3| |#3|) (-763))) (-15 -4189 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2745 (|#1| (-568))) (-15 ** (|#1| |#1| (-763))) (-15 ** (|#1| |#1| (-917))) (-15 -2745 ((-850) |#1|))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-1932 ((|#2| $) 69)) (-1335 (((-121) $) 109)) (-3134 (((-3 $ "failed") $ $) 18)) (-2230 (((-121) $) 107)) (-2510 (((-121) $ (-763)) 99)) (-3422 (($ |#2|) 72)) (-2671 (($) 16 T CONST)) (-4167 (($ $) 126 (|has| |#2| (-301)))) (-1818 ((|#3| $ (-568)) 121)) (-3666 (((-3 (-568) "failed") $) 83 (|has| |#2| (-1037 (-568)))) (((-3 (-409 (-568)) "failed") $) 81 (|has| |#2| (-1037 (-409 (-568))))) (((-3 |#2| "failed") $) 78)) (-2854 (((-568) $) 84 (|has| |#2| (-1037 (-568)))) (((-409 (-568)) $) 82 (|has| |#2| (-1037 (-409 (-568))))) ((|#2| $) 77)) (-3164 (((-679 (-568)) (-679 $)) 76 (|has| |#2| (-630 (-568)))) (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) 75 (|has| |#2| (-630 (-568)))) (((-2 (|:| -2928 (-679 |#2|)) (|:| |vec| (-1244 |#2|))) (-679 $) (-1244 $)) 74) (((-679 |#2|) (-679 $)) 73)) (-2925 (((-3 $ "failed") $) 33)) (-3700 (((-763) $) 127 (|has| |#2| (-558)))) (-2602 ((|#2| $ (-568) (-568)) 119)) (-4360 (((-634 |#2|) $) 92 (|has| $ (-6 -4519)))) (-2735 (((-121) $) 30)) (-2121 (((-763) $) 128 (|has| |#2| (-558)))) (-4272 (((-634 |#4|) $) 129 (|has| |#2| (-558)))) (-3043 (((-763) $) 115)) (-2555 (((-763) $) 116)) (-1737 (((-121) $ (-763)) 100)) (-3082 ((|#2| $) 64 (|has| |#2| (-6 (-4521 "*"))))) (-2087 (((-568) $) 111)) (-3364 (((-568) $) 113)) (-1979 (((-634 |#2|) $) 91 (|has| $ (-6 -4519)))) (-3109 (((-121) |#2| $) 89 (-12 (|has| |#2| (-1090)) (|has| $ (-6 -4519))))) (-1663 (((-568) $) 112)) (-2893 (((-568) $) 114)) (-2269 (($ (-634 (-634 |#2|))) 106)) (-3674 (($ (-1 |#2| |#2|) $) 96 (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#2| |#2| |#2|) $ $) 123) (($ (-1 |#2| |#2|) $) 97)) (-3208 (((-634 (-634 |#2|)) $) 117)) (-2166 (((-121) $ (-763)) 101)) (-4487 (((-1143) $) 9)) (-3140 (((-3 $ "failed") $) 63 (|has| |#2| (-365)))) (-4022 (((-1108) $) 10)) (-2595 (((-3 $ "failed") $ |#2|) 124 (|has| |#2| (-558)))) (-1387 (((-121) (-1 (-121) |#2|) $) 94 (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#2|))) 88 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090)))) (($ $ (-288 |#2|)) 87 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090)))) (($ $ (-634 |#2|) (-634 |#2|)) 85 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090))))) (-3171 (((-121) $ $) 105)) (-3084 (((-121) $) 102)) (-3248 (($) 103)) (-2779 ((|#2| $ (-568) (-568) |#2|) 120) ((|#2| $ (-568) (-568)) 118)) (-4189 (($ $ (-1 |#2| |#2|)) 51) (($ $ (-1 |#2| |#2|) (-763)) 50) (($ $ (-634 (-1161)) (-634 (-763))) 43 (|has| |#2| (-895 (-1161)))) (($ $ (-1161) (-763)) 42 (|has| |#2| (-895 (-1161)))) (($ $ (-634 (-1161))) 41 (|has| |#2| (-895 (-1161)))) (($ $ (-1161)) 40 (|has| |#2| (-895 (-1161)))) (($ $ (-763)) 38 (|has| |#2| (-225))) (($ $) 36 (|has| |#2| (-225)))) (-3241 ((|#2| $) 68)) (-2282 (($ (-634 |#2|)) 71)) (-1960 (((-121) $) 108)) (-3815 ((|#3| $) 70)) (-2465 ((|#2| $) 65 (|has| |#2| (-6 (-4521 "*"))))) (-4168 (((-763) (-1 (-121) |#2|) $) 93 (|has| $ (-6 -4519))) (((-763) |#2| $) 90 (-12 (|has| |#2| (-1090)) (|has| $ (-6 -4519))))) (-3863 (($ $) 104)) (-3731 ((|#4| $ (-568)) 122)) (-2745 (((-850) $) 11) (($ (-568)) 27) (($ (-409 (-568))) 80 (|has| |#2| (-1037 (-409 (-568))))) (($ |#2|) 79)) (-4078 (((-763)) 28)) (-1319 (((-121) (-1 (-121) |#2|) $) 95 (|has| $ (-6 -4519)))) (-1910 (((-121) $) 110)) (-1887 (($ $ (-917)) 25) (($ $ (-763)) 32)) (-3056 (($) 17 T CONST)) (-1556 (($) 29 T CONST)) (-3190 (($ $ (-1 |#2| |#2|)) 49) (($ $ (-1 |#2| |#2|) (-763)) 48) (($ $ (-634 (-1161)) (-634 (-763))) 47 (|has| |#2| (-895 (-1161)))) (($ $ (-1161) (-763)) 46 (|has| |#2| (-895 (-1161)))) (($ $ (-634 (-1161))) 45 (|has| |#2| (-895 (-1161)))) (($ $ (-1161)) 44 (|has| |#2| (-895 (-1161)))) (($ $ (-763)) 39 (|has| |#2| (-225))) (($ $) 37 (|has| |#2| (-225)))) (-1717 (((-121) $ $) 6)) (-1779 (($ $ |#2|) 125 (|has| |#2| (-365)))) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 24) (($ $ (-763)) 31) (($ $ (-568)) 62 (|has| |#2| (-365)))) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 23) (($ $ |#2|) 131) (($ |#2| $) 130) ((|#4| $ |#4|) 67) ((|#3| |#3| $) 66)) (-1697 (((-763) $) 98 (|has| $ (-6 -4519))))) +(((-1111 |#1| |#2| |#3| |#4|) (-1275) (-763) (-1047) (-230 |t#1| |t#2|) (-230 |t#1| |t#2|)) (T -1111)) +((-3422 (*1 *1 *2) (-12 (-4 *2 (-1047)) (-4 *1 (-1111 *3 *2 *4 *5)) (-4 *4 (-230 *3 *2)) (-4 *5 (-230 *3 *2)))) (-2282 (*1 *1 *2) (-12 (-5 *2 (-634 *4)) (-4 *4 (-1047)) (-4 *1 (-1111 *3 *4 *5 *6)) (-4 *5 (-230 *3 *4)) (-4 *6 (-230 *3 *4)))) (-3815 (*1 *2 *1) (-12 (-4 *1 (-1111 *3 *4 *2 *5)) (-4 *4 (-1047)) (-4 *5 (-230 *3 *4)) (-4 *2 (-230 *3 *4)))) (-1932 (*1 *2 *1) (-12 (-4 *1 (-1111 *3 *2 *4 *5)) (-4 *4 (-230 *3 *2)) (-4 *5 (-230 *3 *2)) (-4 *2 (-1047)))) (-3241 (*1 *2 *1) (-12 (-4 *1 (-1111 *3 *2 *4 *5)) (-4 *4 (-230 *3 *2)) (-4 *5 (-230 *3 *2)) (-4 *2 (-1047)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1111 *3 *4 *5 *2)) (-4 *4 (-1047)) (-4 *5 (-230 *3 *4)) (-4 *2 (-230 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1111 *3 *4 *2 *5)) (-4 *4 (-1047)) (-4 *2 (-230 *3 *4)) (-4 *5 (-230 *3 *4)))) (-2465 (*1 *2 *1) (-12 (-4 *1 (-1111 *3 *2 *4 *5)) (-4 *4 (-230 *3 *2)) (-4 *5 (-230 *3 *2)) (|has| *2 (-6 (-4521 "*"))) (-4 *2 (-1047)))) (-3082 (*1 *2 *1) (-12 (-4 *1 (-1111 *3 *2 *4 *5)) (-4 *4 (-230 *3 *2)) (-4 *5 (-230 *3 *2)) (|has| *2 (-6 (-4521 "*"))) (-4 *2 (-1047)))) (-3140 (*1 *1 *1) (|partial| -12 (-4 *1 (-1111 *2 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-230 *2 *3)) (-4 *5 (-230 *2 *3)) (-4 *3 (-365)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-568)) (-4 *1 (-1111 *3 *4 *5 *6)) (-4 *4 (-1047)) (-4 *5 (-230 *3 *4)) (-4 *6 (-230 *3 *4)) (-4 *4 (-365))))) +(-13 (-223 |t#2|) (-120 |t#2| |t#2|) (-1050 |t#1| |t#1| |t#2| |t#3| |t#4|) (-413 |t#2|) (-379 |t#2|) (-10 -8 (IF (|has| |t#2| (-172)) (-6 (-707 |t#2|)) |noBranch|) (-15 -3422 ($ |t#2|)) (-15 -2282 ($ (-634 |t#2|))) (-15 -3815 (|t#3| $)) (-15 -1932 (|t#2| $)) (-15 -3241 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4521 "*"))) (PROGN (-6 (-43 |t#2|)) (-15 -2465 (|t#2| $)) (-15 -3082 (|t#2| $))) |noBranch|) (IF (|has| |t#2| (-365)) (PROGN (-15 -3140 ((-3 $ "failed") $)) (-15 ** ($ $ (-568)))) |noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-39) . T) ((-43 |#2|) |has| |#2| (-6 (-4521 "*"))) ((-105) . T) ((-120 |#2| |#2|) . T) ((-137) . T) ((-608 (-850)) . T) ((-223 |#2|) . T) ((-225) |has| |#2| (-225)) ((-303 |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090))) ((-379 |#2|) . T) ((-413 |#2|) . T) ((-499 |#2|) . T) ((-523 |#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090))) ((-637 |#2|) . T) ((-637 $) . T) ((-630 (-568)) |has| |#2| (-630 (-568))) ((-630 |#2|) . T) ((-707 |#2|) -2198 (|has| |#2| (-172)) (|has| |#2| (-6 (-4521 "*")))) ((-716) . T) ((-895 (-1161)) |has| |#2| (-895 (-1161))) ((-1050 |#1| |#1| |#2| |#3| |#4|) . T) ((-1037 (-409 (-568))) |has| |#2| (-1037 (-409 (-568)))) ((-1037 (-568)) |has| |#2| (-1037 (-568))) ((-1037 |#2|) . T) ((-1053 |#2|) . T) ((-1047) . T) ((-1054) . T) ((-1102) . T) ((-1090) . T) ((-1195) . T)) +((-2931 ((|#4| |#4|) 67)) (-1308 ((|#4| |#4|) 62)) (-1689 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3746 (-634 |#3|))) |#4| |#3|) 75)) (-1939 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 66)) (-3137 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 64))) +(((-1112 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1308 (|#4| |#4|)) (-15 -3137 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2931 (|#4| |#4|)) (-15 -1939 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -1689 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3746 (-634 |#3|))) |#4| |#3|))) (-301) (-375 |#1|) (-375 |#1|) (-677 |#1| |#2| |#3|)) (T -1112)) +((-1689 (*1 *2 *3 *4) (-12 (-4 *5 (-301)) (-4 *6 (-375 *5)) (-4 *4 (-375 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3746 (-634 *4)))) (-5 *1 (-1112 *5 *6 *4 *3)) (-4 *3 (-677 *5 *6 *4)))) (-1939 (*1 *2 *3) (-12 (-4 *4 (-301)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1112 *4 *5 *6 *3)) (-4 *3 (-677 *4 *5 *6)))) (-2931 (*1 *2 *2) (-12 (-4 *3 (-301)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-1112 *3 *4 *5 *2)) (-4 *2 (-677 *3 *4 *5)))) (-3137 (*1 *2 *3) (-12 (-4 *4 (-301)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1112 *4 *5 *6 *3)) (-4 *3 (-677 *4 *5 *6)))) (-1308 (*1 *2 *2) (-12 (-4 *3 (-301)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-1112 *3 *4 *5 *2)) (-4 *2 (-677 *3 *4 *5))))) +(-10 -7 (-15 -1308 (|#4| |#4|)) (-15 -3137 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2931 (|#4| |#4|)) (-15 -1939 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -1689 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3746 (-634 |#3|))) |#4| |#3|))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) 17)) (-2055 (((-634 |#2|) $) 160)) (-3839 (((-1157 $) $ |#2|) 54) (((-1157 |#1|) $) 43)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) 110 (|has| |#1| (-558)))) (-2227 (($ $) 112 (|has| |#1| (-558)))) (-1573 (((-121) $) 114 (|has| |#1| (-558)))) (-2773 (((-763) $) NIL) (((-763) $ (-634 |#2|)) 193)) (-3134 (((-3 $ "failed") $ $) NIL)) (-1750 (((-420 (-1157 $)) (-1157 $)) NIL (|has| |#1| (-904)))) (-4305 (($ $) NIL (|has| |#1| (-453)))) (-1678 (((-420 $) $) NIL (|has| |#1| (-453)))) (-1858 (((-3 (-634 (-1157 $)) "failed") (-634 (-1157 $)) (-1157 $)) NIL (|has| |#1| (-904)))) (-2671 (($) NIL T CONST)) (-3666 (((-3 |#1| "failed") $) 157) (((-3 (-409 (-568)) "failed") $) NIL (|has| |#1| (-1037 (-409 (-568))))) (((-3 (-568) "failed") $) NIL (|has| |#1| (-1037 (-568)))) (((-3 |#2| "failed") $) NIL)) (-2854 ((|#1| $) 155) (((-409 (-568)) $) NIL (|has| |#1| (-1037 (-409 (-568))))) (((-568) $) NIL (|has| |#1| (-1037 (-568)))) ((|#2| $) NIL)) (-4265 (($ $ $ |#2|) NIL (|has| |#1| (-172)))) (-2114 (($ $) 197)) (-3164 (((-679 (-568)) (-679 $)) NIL (|has| |#1| (-630 (-568)))) (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) NIL (|has| |#1| (-630 (-568)))) (((-2 (|:| -2928 (-679 |#1|)) (|:| |vec| (-1244 |#1|))) (-679 $) (-1244 $)) NIL) (((-679 |#1|) (-679 $)) NIL)) (-2925 (((-3 $ "failed") $) 82)) (-3250 (($ $) NIL (|has| |#1| (-453))) (($ $ |#2|) NIL (|has| |#1| (-453)))) (-2108 (((-634 $) $) NIL)) (-3927 (((-121) $) NIL (|has| |#1| (-904)))) (-3088 (($ $ |#1| (-534 |#2|) $) NIL)) (-4410 (((-884 (-381) $) $ (-887 (-381)) (-884 (-381) $)) NIL (-12 (|has| |#1| (-881 (-381))) (|has| |#2| (-881 (-381))))) (((-884 (-568) $) $ (-887 (-568)) (-884 (-568) $)) NIL (-12 (|has| |#1| (-881 (-568))) (|has| |#2| (-881 (-568)))))) (-2735 (((-121) $) 19)) (-4178 (((-763) $) 26)) (-2051 (($ (-1157 |#1|) |#2|) 48) (($ (-1157 $) |#2|) 64)) (-2976 (((-634 $) $) NIL)) (-3921 (((-121) $) 31)) (-2047 (($ |#1| (-534 |#2|)) 71) (($ $ |#2| (-763)) 52) (($ $ (-634 |#2|) (-634 (-763))) NIL)) (-3379 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $ |#2|) NIL)) (-2144 (((-534 |#2|) $) 187) (((-763) $ |#2|) 188) (((-634 (-763)) $ (-634 |#2|)) 189)) (-2521 (($ $ $) NIL (|has| |#1| (-842)))) (-3268 (($ $ $) NIL (|has| |#1| (-842)))) (-3842 (($ (-1 (-534 |#2|) (-534 |#2|)) $) NIL)) (-2795 (($ (-1 |#1| |#1|) $) 122)) (-2244 (((-3 |#2| "failed") $) 162)) (-2097 (($ $) 196)) (-2102 ((|#1| $) 37)) (-2495 (($ (-634 $)) NIL (|has| |#1| (-453))) (($ $ $) NIL (|has| |#1| (-453)))) (-4487 (((-1143) $) NIL)) (-3324 (((-3 (-634 $) "failed") $) NIL)) (-1794 (((-3 (-634 $) "failed") $) NIL)) (-3751 (((-3 (-2 (|:| |var| |#2|) (|:| -3438 (-763))) "failed") $) NIL)) (-4022 (((-1108) $) NIL)) (-2086 (((-121) $) 32)) (-2091 ((|#1| $) NIL)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) 140 (|has| |#1| (-453)))) (-2721 (($ (-634 $)) 145 (|has| |#1| (-453))) (($ $ $) 132 (|has| |#1| (-453)))) (-2905 (((-420 (-1157 $)) (-1157 $)) NIL (|has| |#1| (-904)))) (-3545 (((-420 (-1157 $)) (-1157 $)) NIL (|has| |#1| (-904)))) (-3848 (((-420 $) $) NIL (|has| |#1| (-904)))) (-2595 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558))) (((-3 $ "failed") $ $) 120 (|has| |#1| (-558)))) (-1339 (($ $ (-634 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-634 $) (-634 $)) NIL) (($ $ |#2| |#1|) 165) (($ $ (-634 |#2|) (-634 |#1|)) 178) (($ $ |#2| $) 164) (($ $ (-634 |#2|) (-634 $)) 177)) (-2217 (($ $ |#2|) NIL (|has| |#1| (-172)))) (-4189 (($ $ |#2|) 195) (($ $ (-634 |#2|)) NIL) (($ $ |#2| (-763)) NIL) (($ $ (-634 |#2|) (-634 (-763))) NIL)) (-3206 (((-534 |#2|) $) 183) (((-763) $ |#2|) 179) (((-634 (-763)) $ (-634 |#2|)) 181)) (-4278 (((-887 (-381)) $) NIL (-12 (|has| |#1| (-609 (-887 (-381)))) (|has| |#2| (-609 (-887 (-381)))))) (((-887 (-568)) $) NIL (-12 (|has| |#1| (-609 (-887 (-568)))) (|has| |#2| (-609 (-887 (-568)))))) (((-541) $) NIL (-12 (|has| |#1| (-609 (-541))) (|has| |#2| (-609 (-541)))))) (-3367 ((|#1| $) 128 (|has| |#1| (-453))) (($ $ |#2|) 131 (|has| |#1| (-453)))) (-2979 (((-3 (-1244 $) "failed") (-679 $)) NIL (-12 (|has| $ (-148)) (|has| |#1| (-904))))) (-2745 (((-850) $) 151) (($ (-568)) 76) (($ |#1|) 77) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-558))) (($ (-409 (-568))) NIL (-2198 (|has| |#1| (-43 (-409 (-568)))) (|has| |#1| (-1037 (-409 (-568))))))) (-1302 (((-634 |#1|) $) 154)) (-2604 ((|#1| $ (-534 |#2|)) 73) (($ $ |#2| (-763)) NIL) (($ $ (-634 |#2|) (-634 (-763))) NIL)) (-4371 (((-3 $ "failed") $) NIL (-2198 (-12 (|has| $ (-148)) (|has| |#1| (-904))) (|has| |#1| (-148))))) (-4078 (((-763)) 79)) (-4171 (($ $ $ (-763)) NIL (|has| |#1| (-172)))) (-1826 (((-121) $ $) 117 (|has| |#1| (-558)))) (-1887 (($ $ (-917)) 102) (($ $ (-763)) 104)) (-3056 (($) 12 T CONST)) (-1556 (($) 14 T CONST)) (-3190 (($ $ |#2|) NIL) (($ $ (-634 |#2|)) NIL) (($ $ |#2| (-763)) NIL) (($ $ (-634 |#2|) (-634 (-763))) NIL)) (-1751 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1738 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1717 (((-121) $ $) 97)) (-1745 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1732 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1779 (($ $ |#1|) 126 (|has| |#1| (-365)))) (-1773 (($ $) 85) (($ $ $) 95)) (-1767 (($ $ $) 49)) (** (($ $ (-917)) 103) (($ $ (-763)) 100)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) 88) (($ $ $) 65) (($ $ (-409 (-568))) NIL (|has| |#1| (-43 (-409 (-568))))) (($ (-409 (-568)) $) NIL (|has| |#1| (-43 (-409 (-568))))) (($ |#1| $) 90) (($ $ |#1|) NIL))) +(((-1113 |#1| |#2|) (-950 |#1| (-534 |#2|) |#2|) (-1047) (-842)) (T -1113)) +NIL +(-950 |#1| (-534 |#2|) |#2|) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-2055 (((-634 |#2|) $) NIL)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-2227 (($ $) NIL (|has| |#1| (-558)))) (-1573 (((-121) $) NIL (|has| |#1| (-558)))) (-1982 (($ $) 154 (|has| |#1| (-43 (-409 (-568)))))) (-1933 (($ $) 130 (|has| |#1| (-43 (-409 (-568)))))) (-3134 (((-3 $ "failed") $ $) NIL)) (-1902 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1974 (($ $) 150 (|has| |#1| (-43 (-409 (-568)))))) (-2786 (($ $) 126 (|has| |#1| (-43 (-409 (-568)))))) (-1990 (($ $) 158 (|has| |#1| (-43 (-409 (-568)))))) (-1941 (($ $) 134 (|has| |#1| (-43 (-409 (-568)))))) (-2671 (($) NIL T CONST)) (-2114 (($ $) NIL)) (-2925 (((-3 $ "failed") $) NIL)) (-1367 (((-953 |#1|) $ (-763)) NIL) (((-953 |#1|) $ (-763) (-763)) NIL)) (-3992 (((-121) $) NIL)) (-1897 (($) NIL (|has| |#1| (-43 (-409 (-568)))))) (-4477 (((-763) $ |#2|) NIL) (((-763) $ |#2| (-763)) NIL)) (-2735 (((-121) $) NIL)) (-4044 (($ $ (-568)) NIL (|has| |#1| (-43 (-409 (-568)))))) (-3921 (((-121) $) NIL)) (-2047 (($ $ (-634 |#2|) (-634 (-534 |#2|))) NIL) (($ $ |#2| (-534 |#2|)) NIL) (($ |#1| (-534 |#2|)) NIL) (($ $ |#2| (-763)) 71) (($ $ (-634 |#2|) (-634 (-763))) NIL)) (-2795 (($ (-1 |#1| |#1|) $) NIL)) (-4416 (($ $) 124 (|has| |#1| (-43 (-409 (-568)))))) (-2097 (($ $) NIL)) (-2102 ((|#1| $) NIL)) (-4487 (((-1143) $) NIL)) (-3837 (($ $ |#2|) NIL (|has| |#1| (-43 (-409 (-568))))) (($ $ |#2| |#1|) 177 (|has| |#1| (-43 (-409 (-568)))))) (-4022 (((-1108) $) NIL)) (-2225 (($ (-1 $) |#2| |#1|) 176 (|has| |#1| (-43 (-409 (-568)))))) (-1807 (($ $ (-763)) 15)) (-2595 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-1892 (($ $) 122 (|has| |#1| (-43 (-409 (-568)))))) (-1339 (($ $ |#2| $) 109) (($ $ (-634 |#2|) (-634 $)) 102) (($ $ (-634 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-634 $) (-634 $)) NIL)) (-4189 (($ $ |#2|) 111) (($ $ (-634 |#2|)) NIL) (($ $ |#2| (-763)) NIL) (($ $ (-634 |#2|) (-634 (-763))) NIL)) (-3206 (((-534 |#2|) $) NIL)) (-4441 (((-1 (-1141 |#3|) |#3|) (-634 |#2|) (-634 (-1141 |#3|))) 92)) (-1994 (($ $) 160 (|has| |#1| (-43 (-409 (-568)))))) (-1945 (($ $) 136 (|has| |#1| (-43 (-409 (-568)))))) (-1986 (($ $) 156 (|has| |#1| (-43 (-409 (-568)))))) (-1937 (($ $) 132 (|has| |#1| (-43 (-409 (-568)))))) (-1978 (($ $) 152 (|has| |#1| (-43 (-409 (-568)))))) (-2790 (($ $) 128 (|has| |#1| (-43 (-409 (-568)))))) (-1811 (($ $) 17)) (-2745 (((-850) $) 192) (($ (-568)) NIL) (($ |#1|) 59 (|has| |#1| (-172))) (($ $) NIL (|has| |#1| (-558))) (($ (-409 (-568))) NIL (|has| |#1| (-43 (-409 (-568))))) (($ |#2|) 78) (($ |#3|) 76)) (-2604 ((|#1| $ (-534 |#2|)) 57) (($ $ |#2| (-763)) NIL) (($ $ (-634 |#2|) (-634 (-763))) 50) ((|#3| $ (-763)) 42)) (-4371 (((-3 $ "failed") $) NIL (|has| |#1| (-148)))) (-4078 (((-763)) NIL)) (-2006 (($ $) 166 (|has| |#1| (-43 (-409 (-568)))))) (-1958 (($ $) 142 (|has| |#1| (-43 (-409 (-568)))))) (-1826 (((-121) $ $) NIL (|has| |#1| (-558)))) (-1998 (($ $) 162 (|has| |#1| (-43 (-409 (-568)))))) (-1949 (($ $) 138 (|has| |#1| (-43 (-409 (-568)))))) (-2014 (($ $) 170 (|has| |#1| (-43 (-409 (-568)))))) (-1966 (($ $) 146 (|has| |#1| (-43 (-409 (-568)))))) (-4023 (($ $) 172 (|has| |#1| (-43 (-409 (-568)))))) (-1970 (($ $) 148 (|has| |#1| (-43 (-409 (-568)))))) (-2010 (($ $) 168 (|has| |#1| (-43 (-409 (-568)))))) (-1962 (($ $) 144 (|has| |#1| (-43 (-409 (-568)))))) (-2002 (($ $) 164 (|has| |#1| (-43 (-409 (-568)))))) (-1953 (($ $) 140 (|has| |#1| (-43 (-409 (-568)))))) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (-3056 (($) 18 T CONST)) (-1556 (($) 10 T CONST)) (-3190 (($ $ |#2|) NIL) (($ $ (-634 |#2|)) NIL) (($ $ |#2| (-763)) NIL) (($ $ (-634 |#2|) (-634 (-763))) NIL)) (-1717 (((-121) $ $) NIL)) (-1779 (($ $ |#1|) 194 (|has| |#1| (-365)))) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) 74)) (** (($ $ (-917)) NIL) (($ $ (-763)) 83) (($ $ $) NIL (|has| |#1| (-43 (-409 (-568))))) (($ $ (-409 (-568))) 114 (|has| |#1| (-43 (-409 (-568)))))) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) 73) (($ $ (-409 (-568))) 119 (|has| |#1| (-43 (-409 (-568))))) (($ (-409 (-568)) $) 117 (|has| |#1| (-43 (-409 (-568))))) (($ |#1| $) 62) (($ $ |#1|) 63) (($ |#3| $) 61))) +(((-1114 |#1| |#2| |#3|) (-13 (-730 |#1| |#2|) (-10 -8 (-15 -2604 (|#3| $ (-763))) (-15 -2745 ($ |#2|)) (-15 -2745 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -4441 ((-1 (-1141 |#3|) |#3|) (-634 |#2|) (-634 (-1141 |#3|)))) (IF (|has| |#1| (-43 (-409 (-568)))) (PROGN (-15 -3837 ($ $ |#2| |#1|)) (-15 -2225 ($ (-1 $) |#2| |#1|))) |noBranch|))) (-1047) (-842) (-950 |#1| (-534 |#2|) |#2|)) (T -1114)) +((-2604 (*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-4 *2 (-950 *4 (-534 *5) *5)) (-5 *1 (-1114 *4 *5 *2)) (-4 *4 (-1047)) (-4 *5 (-842)))) (-2745 (*1 *1 *2) (-12 (-4 *3 (-1047)) (-4 *2 (-842)) (-5 *1 (-1114 *3 *2 *4)) (-4 *4 (-950 *3 (-534 *2) *2)))) (-2745 (*1 *1 *2) (-12 (-4 *3 (-1047)) (-4 *4 (-842)) (-5 *1 (-1114 *3 *4 *2)) (-4 *2 (-950 *3 (-534 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1047)) (-4 *4 (-842)) (-5 *1 (-1114 *3 *4 *2)) (-4 *2 (-950 *3 (-534 *4) *4)))) (-4441 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *6)) (-5 *4 (-634 (-1141 *7))) (-4 *6 (-842)) (-4 *7 (-950 *5 (-534 *6) *6)) (-4 *5 (-1047)) (-5 *2 (-1 (-1141 *7) *7)) (-5 *1 (-1114 *5 *6 *7)))) (-3837 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *3 (-1047)) (-4 *2 (-842)) (-5 *1 (-1114 *3 *2 *4)) (-4 *4 (-950 *3 (-534 *2) *2)))) (-2225 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1114 *4 *3 *5))) (-4 *4 (-43 (-409 (-568)))) (-4 *4 (-1047)) (-4 *3 (-842)) (-5 *1 (-1114 *4 *3 *5)) (-4 *5 (-950 *4 (-534 *3) *3))))) +(-13 (-730 |#1| |#2|) (-10 -8 (-15 -2604 (|#3| $ (-763))) (-15 -2745 ($ |#2|)) (-15 -2745 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -4441 ((-1 (-1141 |#3|) |#3|) (-634 |#2|) (-634 (-1141 |#3|)))) (IF (|has| |#1| (-43 (-409 (-568)))) (PROGN (-15 -3837 ($ $ |#2| |#1|)) (-15 -2225 ($ (-1 $) |#2| |#1|))) |noBranch|))) +((-2447 (((-121) $ $) 7)) (-2387 (((-634 (-2 (|:| -4092 $) (|:| -1798 (-634 |#4|)))) (-634 |#4|)) 78)) (-2415 (((-634 $) (-634 |#4|)) 79) (((-634 $) (-634 |#4|) (-121)) 104)) (-2055 (((-634 |#3|) $) 32)) (-4211 (((-121) $) 25)) (-3824 (((-121) $) 16 (|has| |#1| (-558)))) (-3300 (((-121) |#4| $) 94) (((-121) $) 90)) (-2819 ((|#4| |#4| $) 85)) (-4305 (((-634 (-2 (|:| |val| |#4|) (|:| -3001 $))) |#4| $) 119)) (-3644 (((-2 (|:| |under| $) (|:| -1519 $) (|:| |upper| $)) $ |#3|) 26)) (-2510 (((-121) $ (-763)) 43)) (-2801 (($ (-1 (-121) |#4|) $) 64 (|has| $ (-6 -4519))) (((-3 |#4| "failed") $ |#3|) 72)) (-2671 (($) 44 T CONST)) (-1565 (((-121) $) 21 (|has| |#1| (-558)))) (-3846 (((-121) $ $) 23 (|has| |#1| (-558)))) (-3106 (((-121) $ $) 22 (|has| |#1| (-558)))) (-3695 (((-121) $) 24 (|has| |#1| (-558)))) (-4275 (((-634 |#4|) (-634 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-121) |#4| |#4|)) 86)) (-2355 (((-634 |#4|) (-634 |#4|) $) 17 (|has| |#1| (-558)))) (-2492 (((-634 |#4|) (-634 |#4|) $) 18 (|has| |#1| (-558)))) (-3666 (((-3 $ "failed") (-634 |#4|)) 35)) (-2854 (($ (-634 |#4|)) 34)) (-3935 (((-3 $ "failed") $) 75)) (-2062 ((|#4| |#4| $) 82)) (-3924 (($ $) 67 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4519))))) (-4328 (($ |#4| $) 66 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4519)))) (($ (-1 (-121) |#4|) $) 63 (|has| $ (-6 -4519)))) (-1500 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 19 (|has| |#1| (-558)))) (-1281 (((-121) |#4| $ (-1 (-121) |#4| |#4|)) 95)) (-4079 ((|#4| |#4| $) 80)) (-3092 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 65 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4519)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 62 (|has| $ (-6 -4519))) ((|#4| (-1 |#4| |#4| |#4|) $) 61 (|has| $ (-6 -4519))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-121) |#4| |#4|)) 87)) (-3635 (((-2 (|:| -4092 (-634 |#4|)) (|:| -1798 (-634 |#4|))) $) 98)) (-1862 (((-121) |#4| $) 129)) (-4286 (((-121) |#4| $) 126)) (-3193 (((-121) |#4| $) 130) (((-121) $) 127)) (-4360 (((-634 |#4|) $) 51 (|has| $ (-6 -4519)))) (-1362 (((-121) |#4| $) 97) (((-121) $) 96)) (-2356 ((|#3| $) 33)) (-1737 (((-121) $ (-763)) 42)) (-1979 (((-634 |#4|) $) 52 (|has| $ (-6 -4519)))) (-3109 (((-121) |#4| $) 54 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4519))))) (-3674 (($ (-1 |#4| |#4|) $) 47 (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#4| |#4|) $) 46)) (-1432 (((-634 |#3|) $) 31)) (-3392 (((-121) |#3| $) 30)) (-2166 (((-121) $ (-763)) 41)) (-4487 (((-1143) $) 9)) (-2717 (((-3 |#4| (-634 $)) |#4| |#4| $) 121)) (-4330 (((-634 (-2 (|:| |val| |#4|) (|:| -3001 $))) |#4| |#4| $) 120)) (-4162 (((-3 |#4| "failed") $) 76)) (-2335 (((-634 $) |#4| $) 122)) (-1719 (((-3 (-121) (-634 $)) |#4| $) 125)) (-2632 (((-634 (-2 (|:| |val| (-121)) (|:| -3001 $))) |#4| $) 124) (((-121) |#4| $) 123)) (-3212 (((-634 $) |#4| $) 118) (((-634 $) (-634 |#4|) $) 117) (((-634 $) (-634 |#4|) (-634 $)) 116) (((-634 $) |#4| (-634 $)) 115)) (-3473 (($ |#4| $) 110) (($ (-634 |#4|) $) 109)) (-1377 (((-634 |#4|) $) 100)) (-1415 (((-121) |#4| $) 92) (((-121) $) 88)) (-2682 ((|#4| |#4| $) 83)) (-2644 (((-121) $ $) 103)) (-2705 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-558)))) (-4347 (((-121) |#4| $) 93) (((-121) $) 89)) (-4025 ((|#4| |#4| $) 84)) (-4022 (((-1108) $) 10)) (-3876 (((-3 |#4| "failed") $) 77)) (-3775 (((-3 |#4| "failed") (-1 (-121) |#4|) $) 60)) (-1665 (((-3 $ "failed") $ |#4|) 71)) (-1807 (($ $ |#4|) 70) (((-634 $) |#4| $) 108) (((-634 $) |#4| (-634 $)) 107) (((-634 $) (-634 |#4|) $) 106) (((-634 $) (-634 |#4|) (-634 $)) 105)) (-1387 (((-121) (-1 (-121) |#4|) $) 49 (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 |#4|) (-634 |#4|)) 58 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090)))) (($ $ |#4| |#4|) 57 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090)))) (($ $ (-288 |#4|)) 56 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090)))) (($ $ (-634 (-288 |#4|))) 55 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090))))) (-3171 (((-121) $ $) 37)) (-3084 (((-121) $) 40)) (-3248 (($) 39)) (-3206 (((-763) $) 99)) (-4168 (((-763) |#4| $) 53 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4519)))) (((-763) (-1 (-121) |#4|) $) 50 (|has| $ (-6 -4519)))) (-3863 (($ $) 38)) (-4278 (((-541) $) 68 (|has| |#4| (-609 (-541))))) (-4287 (($ (-634 |#4|)) 59)) (-1290 (($ $ |#3|) 27)) (-3732 (($ $ |#3|) 29)) (-1567 (($ $) 81)) (-3944 (($ $ |#3|) 28)) (-2745 (((-850) $) 11) (((-634 |#4|) $) 36)) (-1878 (((-763) $) 69 (|has| |#3| (-370)))) (-3556 (((-3 (-2 (|:| |bas| $) (|:| -2616 (-634 |#4|))) "failed") (-634 |#4|) (-1 (-121) |#4| |#4|)) 102) (((-3 (-2 (|:| |bas| $) (|:| -2616 (-634 |#4|))) "failed") (-634 |#4|) (-1 (-121) |#4|) (-1 (-121) |#4| |#4|)) 101)) (-3292 (((-121) $ (-1 (-121) |#4| (-634 |#4|))) 91)) (-2574 (((-634 $) |#4| $) 114) (((-634 $) |#4| (-634 $)) 113) (((-634 $) (-634 |#4|) $) 112) (((-634 $) (-634 |#4|) (-634 $)) 111)) (-1319 (((-121) (-1 (-121) |#4|) $) 48 (|has| $ (-6 -4519)))) (-2739 (((-634 |#3|) $) 74)) (-2288 (((-121) |#4| $) 128)) (-4390 (((-121) |#3| $) 73)) (-1717 (((-121) $ $) 6)) (-1697 (((-763) $) 45 (|has| $ (-6 -4519))))) +(((-1115 |#1| |#2| |#3| |#4|) (-1275) (-453) (-788) (-842) (-1061 |t#1| |t#2| |t#3|)) (T -1115)) +NIL +(-13 (-1099 |t#1| |t#2| |t#3| |t#4|) (-779 |t#1| |t#2| |t#3| |t#4|)) +(((-39) . T) ((-105) . T) ((-608 (-634 |#4|)) . T) ((-608 (-850)) . T) ((-154 |#4|) . T) ((-609 (-541)) |has| |#4| (-609 (-541))) ((-303 |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090))) ((-499 |#4|) . T) ((-523 |#4| |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090))) ((-779 |#1| |#2| |#3| |#4|) . T) ((-977 |#1| |#2| |#3| |#4|) . T) ((-1066 |#1| |#2| |#3| |#4|) . T) ((-1090) . T) ((-1099 |#1| |#2| |#3| |#4|) . T) ((-1189 |#1| |#2| |#3| |#4|) . T) ((-1195) . T)) +((-4351 (((-634 |#2|) |#1|) 12)) (-3040 (((-634 |#2|) |#2| |#2| |#2| |#2| |#2|) 37) (((-634 |#2|) |#1|) 47)) (-2975 (((-634 |#2|) |#2| |#2| |#2|) 35) (((-634 |#2|) |#1|) 45)) (-4314 ((|#2| |#1|) 42)) (-2551 (((-2 (|:| |solns| (-634 |#2|)) (|:| |maps| (-634 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 16)) (-2205 (((-634 |#2|) |#2| |#2|) 34) (((-634 |#2|) |#1|) 44)) (-2475 (((-634 |#2|) |#2| |#2| |#2| |#2|) 36) (((-634 |#2|) |#1|) 46)) (-2567 ((|#2| |#2| |#2| |#2| |#2| |#2|) 41)) (-2974 ((|#2| |#2| |#2| |#2|) 39)) (-3334 ((|#2| |#2| |#2|) 38)) (-1621 ((|#2| |#2| |#2| |#2| |#2|) 40))) +(((-1116 |#1| |#2|) (-10 -7 (-15 -4351 ((-634 |#2|) |#1|)) (-15 -4314 (|#2| |#1|)) (-15 -2551 ((-2 (|:| |solns| (-634 |#2|)) (|:| |maps| (-634 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -2205 ((-634 |#2|) |#1|)) (-15 -2975 ((-634 |#2|) |#1|)) (-15 -2475 ((-634 |#2|) |#1|)) (-15 -3040 ((-634 |#2|) |#1|)) (-15 -2205 ((-634 |#2|) |#2| |#2|)) (-15 -2975 ((-634 |#2|) |#2| |#2| |#2|)) (-15 -2475 ((-634 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3040 ((-634 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3334 (|#2| |#2| |#2|)) (-15 -2974 (|#2| |#2| |#2| |#2|)) (-15 -1621 (|#2| |#2| |#2| |#2| |#2|)) (-15 -2567 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1219 |#2|) (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-568))))))) (T -1116)) +((-2567 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-568))))))) (-5 *1 (-1116 *3 *2)) (-4 *3 (-1219 *2)))) (-1621 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-568))))))) (-5 *1 (-1116 *3 *2)) (-4 *3 (-1219 *2)))) (-2974 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-568))))))) (-5 *1 (-1116 *3 *2)) (-4 *3 (-1219 *2)))) (-3334 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-568))))))) (-5 *1 (-1116 *3 *2)) (-4 *3 (-1219 *2)))) (-3040 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-568))))))) (-5 *2 (-634 *3)) (-5 *1 (-1116 *4 *3)) (-4 *4 (-1219 *3)))) (-2475 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-568))))))) (-5 *2 (-634 *3)) (-5 *1 (-1116 *4 *3)) (-4 *4 (-1219 *3)))) (-2975 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-568))))))) (-5 *2 (-634 *3)) (-5 *1 (-1116 *4 *3)) (-4 *4 (-1219 *3)))) (-2205 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-568))))))) (-5 *2 (-634 *3)) (-5 *1 (-1116 *4 *3)) (-4 *4 (-1219 *3)))) (-3040 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-568))))))) (-5 *2 (-634 *4)) (-5 *1 (-1116 *3 *4)) (-4 *3 (-1219 *4)))) (-2475 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-568))))))) (-5 *2 (-634 *4)) (-5 *1 (-1116 *3 *4)) (-4 *3 (-1219 *4)))) (-2975 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-568))))))) (-5 *2 (-634 *4)) (-5 *1 (-1116 *3 *4)) (-4 *3 (-1219 *4)))) (-2205 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-568))))))) (-5 *2 (-634 *4)) (-5 *1 (-1116 *3 *4)) (-4 *3 (-1219 *4)))) (-2551 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-568))))))) (-5 *2 (-2 (|:| |solns| (-634 *5)) (|:| |maps| (-634 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1116 *3 *5)) (-4 *3 (-1219 *5)))) (-4314 (*1 *2 *3) (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-568))))))) (-5 *1 (-1116 *3 *2)) (-4 *3 (-1219 *2)))) (-4351 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-568))))))) (-5 *2 (-634 *4)) (-5 *1 (-1116 *3 *4)) (-4 *3 (-1219 *4))))) +(-10 -7 (-15 -4351 ((-634 |#2|) |#1|)) (-15 -4314 (|#2| |#1|)) (-15 -2551 ((-2 (|:| |solns| (-634 |#2|)) (|:| |maps| (-634 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -2205 ((-634 |#2|) |#1|)) (-15 -2975 ((-634 |#2|) |#1|)) (-15 -2475 ((-634 |#2|) |#1|)) (-15 -3040 ((-634 |#2|) |#1|)) (-15 -2205 ((-634 |#2|) |#2| |#2|)) (-15 -2975 ((-634 |#2|) |#2| |#2| |#2|)) (-15 -2475 ((-634 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3040 ((-634 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3334 (|#2| |#2| |#2|)) (-15 -2974 (|#2| |#2| |#2| |#2|)) (-15 -1621 (|#2| |#2| |#2| |#2| |#2|)) (-15 -2567 (|#2| |#2| |#2| |#2| |#2| |#2|))) +((-3599 (((-634 (-634 (-288 (-310 |#1|)))) (-634 (-288 (-409 (-953 |#1|))))) 94) (((-634 (-634 (-288 (-310 |#1|)))) (-634 (-288 (-409 (-953 |#1|)))) (-634 (-1161))) 93) (((-634 (-634 (-288 (-310 |#1|)))) (-634 (-409 (-953 |#1|)))) 91) (((-634 (-634 (-288 (-310 |#1|)))) (-634 (-409 (-953 |#1|))) (-634 (-1161))) 89) (((-634 (-288 (-310 |#1|))) (-288 (-409 (-953 |#1|)))) 75) (((-634 (-288 (-310 |#1|))) (-288 (-409 (-953 |#1|))) (-1161)) 76) (((-634 (-288 (-310 |#1|))) (-409 (-953 |#1|))) 70) (((-634 (-288 (-310 |#1|))) (-409 (-953 |#1|)) (-1161)) 59)) (-2252 (((-634 (-634 (-310 |#1|))) (-634 (-409 (-953 |#1|))) (-634 (-1161))) 87) (((-634 (-310 |#1|)) (-409 (-953 |#1|)) (-1161)) 43)) (-1468 (((-1150 (-634 (-310 |#1|)) (-634 (-288 (-310 |#1|)))) (-409 (-953 |#1|)) (-1161)) 97) (((-1150 (-634 (-310 |#1|)) (-634 (-288 (-310 |#1|)))) (-288 (-409 (-953 |#1|))) (-1161)) 96))) +(((-1117 |#1|) (-10 -7 (-15 -3599 ((-634 (-288 (-310 |#1|))) (-409 (-953 |#1|)) (-1161))) (-15 -3599 ((-634 (-288 (-310 |#1|))) (-409 (-953 |#1|)))) (-15 -3599 ((-634 (-288 (-310 |#1|))) (-288 (-409 (-953 |#1|))) (-1161))) (-15 -3599 ((-634 (-288 (-310 |#1|))) (-288 (-409 (-953 |#1|))))) (-15 -3599 ((-634 (-634 (-288 (-310 |#1|)))) (-634 (-409 (-953 |#1|))) (-634 (-1161)))) (-15 -3599 ((-634 (-634 (-288 (-310 |#1|)))) (-634 (-409 (-953 |#1|))))) (-15 -3599 ((-634 (-634 (-288 (-310 |#1|)))) (-634 (-288 (-409 (-953 |#1|)))) (-634 (-1161)))) (-15 -3599 ((-634 (-634 (-288 (-310 |#1|)))) (-634 (-288 (-409 (-953 |#1|)))))) (-15 -2252 ((-634 (-310 |#1|)) (-409 (-953 |#1|)) (-1161))) (-15 -2252 ((-634 (-634 (-310 |#1|))) (-634 (-409 (-953 |#1|))) (-634 (-1161)))) (-15 -1468 ((-1150 (-634 (-310 |#1|)) (-634 (-288 (-310 |#1|)))) (-288 (-409 (-953 |#1|))) (-1161))) (-15 -1468 ((-1150 (-634 (-310 |#1|)) (-634 (-288 (-310 |#1|)))) (-409 (-953 |#1|)) (-1161)))) (-13 (-301) (-842) (-150))) (T -1117)) +((-1468 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-953 *5))) (-5 *4 (-1161)) (-4 *5 (-13 (-301) (-842) (-150))) (-5 *2 (-1150 (-634 (-310 *5)) (-634 (-288 (-310 *5))))) (-5 *1 (-1117 *5)))) (-1468 (*1 *2 *3 *4) (-12 (-5 *3 (-288 (-409 (-953 *5)))) (-5 *4 (-1161)) (-4 *5 (-13 (-301) (-842) (-150))) (-5 *2 (-1150 (-634 (-310 *5)) (-634 (-288 (-310 *5))))) (-5 *1 (-1117 *5)))) (-2252 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-953 *5)))) (-5 *4 (-634 (-1161))) (-4 *5 (-13 (-301) (-842) (-150))) (-5 *2 (-634 (-634 (-310 *5)))) (-5 *1 (-1117 *5)))) (-2252 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-953 *5))) (-5 *4 (-1161)) (-4 *5 (-13 (-301) (-842) (-150))) (-5 *2 (-634 (-310 *5))) (-5 *1 (-1117 *5)))) (-3599 (*1 *2 *3) (-12 (-5 *3 (-634 (-288 (-409 (-953 *4))))) (-4 *4 (-13 (-301) (-842) (-150))) (-5 *2 (-634 (-634 (-288 (-310 *4))))) (-5 *1 (-1117 *4)))) (-3599 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-288 (-409 (-953 *5))))) (-5 *4 (-634 (-1161))) (-4 *5 (-13 (-301) (-842) (-150))) (-5 *2 (-634 (-634 (-288 (-310 *5))))) (-5 *1 (-1117 *5)))) (-3599 (*1 *2 *3) (-12 (-5 *3 (-634 (-409 (-953 *4)))) (-4 *4 (-13 (-301) (-842) (-150))) (-5 *2 (-634 (-634 (-288 (-310 *4))))) (-5 *1 (-1117 *4)))) (-3599 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-953 *5)))) (-5 *4 (-634 (-1161))) (-4 *5 (-13 (-301) (-842) (-150))) (-5 *2 (-634 (-634 (-288 (-310 *5))))) (-5 *1 (-1117 *5)))) (-3599 (*1 *2 *3) (-12 (-5 *3 (-288 (-409 (-953 *4)))) (-4 *4 (-13 (-301) (-842) (-150))) (-5 *2 (-634 (-288 (-310 *4)))) (-5 *1 (-1117 *4)))) (-3599 (*1 *2 *3 *4) (-12 (-5 *3 (-288 (-409 (-953 *5)))) (-5 *4 (-1161)) (-4 *5 (-13 (-301) (-842) (-150))) (-5 *2 (-634 (-288 (-310 *5)))) (-5 *1 (-1117 *5)))) (-3599 (*1 *2 *3) (-12 (-5 *3 (-409 (-953 *4))) (-4 *4 (-13 (-301) (-842) (-150))) (-5 *2 (-634 (-288 (-310 *4)))) (-5 *1 (-1117 *4)))) (-3599 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-953 *5))) (-5 *4 (-1161)) (-4 *5 (-13 (-301) (-842) (-150))) (-5 *2 (-634 (-288 (-310 *5)))) (-5 *1 (-1117 *5))))) +(-10 -7 (-15 -3599 ((-634 (-288 (-310 |#1|))) (-409 (-953 |#1|)) (-1161))) (-15 -3599 ((-634 (-288 (-310 |#1|))) (-409 (-953 |#1|)))) (-15 -3599 ((-634 (-288 (-310 |#1|))) (-288 (-409 (-953 |#1|))) (-1161))) (-15 -3599 ((-634 (-288 (-310 |#1|))) (-288 (-409 (-953 |#1|))))) (-15 -3599 ((-634 (-634 (-288 (-310 |#1|)))) (-634 (-409 (-953 |#1|))) (-634 (-1161)))) (-15 -3599 ((-634 (-634 (-288 (-310 |#1|)))) (-634 (-409 (-953 |#1|))))) (-15 -3599 ((-634 (-634 (-288 (-310 |#1|)))) (-634 (-288 (-409 (-953 |#1|)))) (-634 (-1161)))) (-15 -3599 ((-634 (-634 (-288 (-310 |#1|)))) (-634 (-288 (-409 (-953 |#1|)))))) (-15 -2252 ((-634 (-310 |#1|)) (-409 (-953 |#1|)) (-1161))) (-15 -2252 ((-634 (-634 (-310 |#1|))) (-634 (-409 (-953 |#1|))) (-634 (-1161)))) (-15 -1468 ((-1150 (-634 (-310 |#1|)) (-634 (-288 (-310 |#1|)))) (-288 (-409 (-953 |#1|))) (-1161))) (-15 -1468 ((-1150 (-634 (-310 |#1|)) (-634 (-288 (-310 |#1|)))) (-409 (-953 |#1|)) (-1161)))) +((-1654 (((-409 (-1157 (-310 |#1|))) (-1244 (-310 |#1|)) (-409 (-1157 (-310 |#1|))) (-568)) 27)) (-2827 (((-409 (-1157 (-310 |#1|))) (-409 (-1157 (-310 |#1|))) (-409 (-1157 (-310 |#1|))) (-409 (-1157 (-310 |#1|)))) 39))) +(((-1118 |#1|) (-10 -7 (-15 -2827 ((-409 (-1157 (-310 |#1|))) (-409 (-1157 (-310 |#1|))) (-409 (-1157 (-310 |#1|))) (-409 (-1157 (-310 |#1|))))) (-15 -1654 ((-409 (-1157 (-310 |#1|))) (-1244 (-310 |#1|)) (-409 (-1157 (-310 |#1|))) (-568)))) (-13 (-558) (-842))) (T -1118)) +((-1654 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-409 (-1157 (-310 *5)))) (-5 *3 (-1244 (-310 *5))) (-5 *4 (-568)) (-4 *5 (-13 (-558) (-842))) (-5 *1 (-1118 *5)))) (-2827 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-409 (-1157 (-310 *3)))) (-4 *3 (-13 (-558) (-842))) (-5 *1 (-1118 *3))))) +(-10 -7 (-15 -2827 ((-409 (-1157 (-310 |#1|))) (-409 (-1157 (-310 |#1|))) (-409 (-1157 (-310 |#1|))) (-409 (-1157 (-310 |#1|))))) (-15 -1654 ((-409 (-1157 (-310 |#1|))) (-1244 (-310 |#1|)) (-409 (-1157 (-310 |#1|))) (-568)))) +((-4351 (((-634 (-634 (-288 (-310 |#1|)))) (-634 (-288 (-310 |#1|))) (-634 (-1161))) 216) (((-634 (-288 (-310 |#1|))) (-310 |#1|) (-1161)) 20) (((-634 (-288 (-310 |#1|))) (-288 (-310 |#1|)) (-1161)) 26) (((-634 (-288 (-310 |#1|))) (-288 (-310 |#1|))) 25) (((-634 (-288 (-310 |#1|))) (-310 |#1|)) 21))) +(((-1119 |#1|) (-10 -7 (-15 -4351 ((-634 (-288 (-310 |#1|))) (-310 |#1|))) (-15 -4351 ((-634 (-288 (-310 |#1|))) (-288 (-310 |#1|)))) (-15 -4351 ((-634 (-288 (-310 |#1|))) (-288 (-310 |#1|)) (-1161))) (-15 -4351 ((-634 (-288 (-310 |#1|))) (-310 |#1|) (-1161))) (-15 -4351 ((-634 (-634 (-288 (-310 |#1|)))) (-634 (-288 (-310 |#1|))) (-634 (-1161))))) (-13 (-842) (-301) (-1037 (-568)) (-630 (-568)) (-150))) (T -1119)) +((-4351 (*1 *2 *3 *4) (-12 (-5 *4 (-634 (-1161))) (-4 *5 (-13 (-842) (-301) (-1037 (-568)) (-630 (-568)) (-150))) (-5 *2 (-634 (-634 (-288 (-310 *5))))) (-5 *1 (-1119 *5)) (-5 *3 (-634 (-288 (-310 *5)))))) (-4351 (*1 *2 *3 *4) (-12 (-5 *4 (-1161)) (-4 *5 (-13 (-842) (-301) (-1037 (-568)) (-630 (-568)) (-150))) (-5 *2 (-634 (-288 (-310 *5)))) (-5 *1 (-1119 *5)) (-5 *3 (-310 *5)))) (-4351 (*1 *2 *3 *4) (-12 (-5 *4 (-1161)) (-4 *5 (-13 (-842) (-301) (-1037 (-568)) (-630 (-568)) (-150))) (-5 *2 (-634 (-288 (-310 *5)))) (-5 *1 (-1119 *5)) (-5 *3 (-288 (-310 *5))))) (-4351 (*1 *2 *3) (-12 (-4 *4 (-13 (-842) (-301) (-1037 (-568)) (-630 (-568)) (-150))) (-5 *2 (-634 (-288 (-310 *4)))) (-5 *1 (-1119 *4)) (-5 *3 (-288 (-310 *4))))) (-4351 (*1 *2 *3) (-12 (-4 *4 (-13 (-842) (-301) (-1037 (-568)) (-630 (-568)) (-150))) (-5 *2 (-634 (-288 (-310 *4)))) (-5 *1 (-1119 *4)) (-5 *3 (-310 *4))))) +(-10 -7 (-15 -4351 ((-634 (-288 (-310 |#1|))) (-310 |#1|))) (-15 -4351 ((-634 (-288 (-310 |#1|))) (-288 (-310 |#1|)))) (-15 -4351 ((-634 (-288 (-310 |#1|))) (-288 (-310 |#1|)) (-1161))) (-15 -4351 ((-634 (-288 (-310 |#1|))) (-310 |#1|) (-1161))) (-15 -4351 ((-634 (-634 (-288 (-310 |#1|)))) (-634 (-288 (-310 |#1|))) (-634 (-1161))))) +((-3478 ((|#2| |#2|) 20 (|has| |#1| (-842))) ((|#2| |#2| (-1 (-121) |#1| |#1|)) 16)) (-1334 ((|#2| |#2|) 19 (|has| |#1| (-842))) ((|#2| |#2| (-1 (-121) |#1| |#1|)) 15))) +(((-1120 |#1| |#2|) (-10 -7 (-15 -1334 (|#2| |#2| (-1 (-121) |#1| |#1|))) (-15 -3478 (|#2| |#2| (-1 (-121) |#1| |#1|))) (IF (|has| |#1| (-842)) (PROGN (-15 -1334 (|#2| |#2|)) (-15 -3478 (|#2| |#2|))) |noBranch|)) (-1195) (-13 (-601 (-568) |#1|) (-10 -7 (-6 -4519) (-6 -4520)))) (T -1120)) +((-3478 (*1 *2 *2) (-12 (-4 *3 (-842)) (-4 *3 (-1195)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-601 (-568) *3) (-10 -7 (-6 -4519) (-6 -4520)))))) (-1334 (*1 *2 *2) (-12 (-4 *3 (-842)) (-4 *3 (-1195)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-601 (-568) *3) (-10 -7 (-6 -4519) (-6 -4520)))))) (-3478 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-121) *4 *4)) (-4 *4 (-1195)) (-5 *1 (-1120 *4 *2)) (-4 *2 (-13 (-601 (-568) *4) (-10 -7 (-6 -4519) (-6 -4520)))))) (-1334 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-121) *4 *4)) (-4 *4 (-1195)) (-5 *1 (-1120 *4 *2)) (-4 *2 (-13 (-601 (-568) *4) (-10 -7 (-6 -4519) (-6 -4520))))))) +(-10 -7 (-15 -1334 (|#2| |#2| (-1 (-121) |#1| |#1|))) (-15 -3478 (|#2| |#2| (-1 (-121) |#1| |#1|))) (IF (|has| |#1| (-842)) (PROGN (-15 -1334 (|#2| |#2|)) (-15 -3478 (|#2| |#2|))) |noBranch|)) +((-2447 (((-121) $ $) NIL)) (-2141 (((-1149 3 |#1|) $) 105)) (-3672 (((-121) $) 72)) (-3949 (($ $ (-634 (-944 |#1|))) 20) (($ $ (-634 (-634 |#1|))) 75) (($ (-634 (-944 |#1|))) 74) (((-634 (-944 |#1|)) $) 73)) (-2296 (((-121) $) 41)) (-4203 (($ $ (-944 |#1|)) 46) (($ $ (-634 |#1|)) 51) (($ $ (-763)) 53) (($ (-944 |#1|)) 47) (((-944 |#1|) $) 45)) (-1443 (((-2 (|:| -1526 (-763)) (|:| |curves| (-763)) (|:| |polygons| (-763)) (|:| |constructs| (-763))) $) 103)) (-1572 (((-763) $) 26)) (-3900 (((-763) $) 25)) (-1524 (($ $ (-763) (-944 |#1|)) 39)) (-2054 (((-121) $) 82)) (-3713 (($ $ (-634 (-634 (-944 |#1|))) (-634 (-171)) (-171)) 89) (($ $ (-634 (-634 (-634 |#1|))) (-634 (-171)) (-171)) 91) (($ $ (-634 (-634 (-944 |#1|))) (-121) (-121)) 85) (($ $ (-634 (-634 (-634 |#1|))) (-121) (-121)) 93) (($ (-634 (-634 (-944 |#1|)))) 86) (($ (-634 (-634 (-944 |#1|))) (-121) (-121)) 87) (((-634 (-634 (-944 |#1|))) $) 84)) (-1347 (($ (-634 $)) 28) (($ $ $) 29)) (-3049 (((-634 (-171)) $) 101)) (-2386 (((-634 (-944 |#1|)) $) 96)) (-2304 (((-634 (-634 (-171))) $) 100)) (-2626 (((-634 (-634 (-634 (-944 |#1|)))) $) NIL)) (-2417 (((-634 (-634 (-634 (-763)))) $) 98)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-1597 (((-763) $ (-634 (-944 |#1|))) 37)) (-3883 (((-121) $) 54)) (-4430 (($ $ (-634 (-944 |#1|))) 56) (($ $ (-634 (-634 |#1|))) 62) (($ (-634 (-944 |#1|))) 57) (((-634 (-944 |#1|)) $) 55)) (-4132 (($) 23) (($ (-1149 3 |#1|)) 24)) (-3863 (($ $) 35)) (-2697 (((-634 $) $) 34)) (-3950 (($ (-634 $)) 31)) (-1923 (((-634 $) $) 33)) (-2745 (((-850) $) 109)) (-1488 (((-121) $) 64)) (-1984 (($ $ (-634 (-944 |#1|))) 66) (($ $ (-634 (-634 |#1|))) 69) (($ (-634 (-944 |#1|))) 67) (((-634 (-944 |#1|)) $) 65)) (-1644 (($ $) 104)) (-1717 (((-121) $ $) NIL))) +(((-1121 |#1|) (-1122 |#1|) (-1047)) (T -1121)) +NIL +(-1122 |#1|) +((-2447 (((-121) $ $) 7)) (-2141 (((-1149 3 |#1|) $) 12)) (-3672 (((-121) $) 28)) (-3949 (($ $ (-634 (-944 |#1|))) 32) (($ $ (-634 (-634 |#1|))) 31) (($ (-634 (-944 |#1|))) 30) (((-634 (-944 |#1|)) $) 29)) (-2296 (((-121) $) 43)) (-4203 (($ $ (-944 |#1|)) 48) (($ $ (-634 |#1|)) 47) (($ $ (-763)) 46) (($ (-944 |#1|)) 45) (((-944 |#1|) $) 44)) (-1443 (((-2 (|:| -1526 (-763)) (|:| |curves| (-763)) (|:| |polygons| (-763)) (|:| |constructs| (-763))) $) 14)) (-1572 (((-763) $) 57)) (-3900 (((-763) $) 58)) (-1524 (($ $ (-763) (-944 |#1|)) 49)) (-2054 (((-121) $) 20)) (-3713 (($ $ (-634 (-634 (-944 |#1|))) (-634 (-171)) (-171)) 27) (($ $ (-634 (-634 (-634 |#1|))) (-634 (-171)) (-171)) 26) (($ $ (-634 (-634 (-944 |#1|))) (-121) (-121)) 25) (($ $ (-634 (-634 (-634 |#1|))) (-121) (-121)) 24) (($ (-634 (-634 (-944 |#1|)))) 23) (($ (-634 (-634 (-944 |#1|))) (-121) (-121)) 22) (((-634 (-634 (-944 |#1|))) $) 21)) (-1347 (($ (-634 $)) 56) (($ $ $) 55)) (-3049 (((-634 (-171)) $) 15)) (-2386 (((-634 (-944 |#1|)) $) 19)) (-2304 (((-634 (-634 (-171))) $) 16)) (-2626 (((-634 (-634 (-634 (-944 |#1|)))) $) 17)) (-2417 (((-634 (-634 (-634 (-763)))) $) 18)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-1597 (((-763) $ (-634 (-944 |#1|))) 50)) (-3883 (((-121) $) 38)) (-4430 (($ $ (-634 (-944 |#1|))) 42) (($ $ (-634 (-634 |#1|))) 41) (($ (-634 (-944 |#1|))) 40) (((-634 (-944 |#1|)) $) 39)) (-4132 (($) 60) (($ (-1149 3 |#1|)) 59)) (-3863 (($ $) 51)) (-2697 (((-634 $) $) 52)) (-3950 (($ (-634 $)) 54)) (-1923 (((-634 $) $) 53)) (-2745 (((-850) $) 11)) (-1488 (((-121) $) 33)) (-1984 (($ $ (-634 (-944 |#1|))) 37) (($ $ (-634 (-634 |#1|))) 36) (($ (-634 (-944 |#1|))) 35) (((-634 (-944 |#1|)) $) 34)) (-1644 (($ $) 13)) (-1717 (((-121) $ $) 6))) +(((-1122 |#1|) (-1275) (-1047)) (T -1122)) +((-2745 (*1 *2 *1) (-12 (-4 *1 (-1122 *3)) (-4 *3 (-1047)) (-5 *2 (-850)))) (-4132 (*1 *1) (-12 (-4 *1 (-1122 *2)) (-4 *2 (-1047)))) (-4132 (*1 *1 *2) (-12 (-5 *2 (-1149 3 *3)) (-4 *3 (-1047)) (-4 *1 (-1122 *3)))) (-3900 (*1 *2 *1) (-12 (-4 *1 (-1122 *3)) (-4 *3 (-1047)) (-5 *2 (-763)))) (-1572 (*1 *2 *1) (-12 (-4 *1 (-1122 *3)) (-4 *3 (-1047)) (-5 *2 (-763)))) (-1347 (*1 *1 *2) (-12 (-5 *2 (-634 *1)) (-4 *1 (-1122 *3)) (-4 *3 (-1047)))) (-1347 (*1 *1 *1 *1) (-12 (-4 *1 (-1122 *2)) (-4 *2 (-1047)))) (-3950 (*1 *1 *2) (-12 (-5 *2 (-634 *1)) (-4 *1 (-1122 *3)) (-4 *3 (-1047)))) (-1923 (*1 *2 *1) (-12 (-4 *3 (-1047)) (-5 *2 (-634 *1)) (-4 *1 (-1122 *3)))) (-2697 (*1 *2 *1) (-12 (-4 *3 (-1047)) (-5 *2 (-634 *1)) (-4 *1 (-1122 *3)))) (-3863 (*1 *1 *1) (-12 (-4 *1 (-1122 *2)) (-4 *2 (-1047)))) (-1597 (*1 *2 *1 *3) (-12 (-5 *3 (-634 (-944 *4))) (-4 *1 (-1122 *4)) (-4 *4 (-1047)) (-5 *2 (-763)))) (-1524 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-763)) (-5 *3 (-944 *4)) (-4 *1 (-1122 *4)) (-4 *4 (-1047)))) (-4203 (*1 *1 *1 *2) (-12 (-5 *2 (-944 *3)) (-4 *1 (-1122 *3)) (-4 *3 (-1047)))) (-4203 (*1 *1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *1 (-1122 *3)) (-4 *3 (-1047)))) (-4203 (*1 *1 *1 *2) (-12 (-5 *2 (-763)) (-4 *1 (-1122 *3)) (-4 *3 (-1047)))) (-4203 (*1 *1 *2) (-12 (-5 *2 (-944 *3)) (-4 *3 (-1047)) (-4 *1 (-1122 *3)))) (-4203 (*1 *2 *1) (-12 (-4 *1 (-1122 *3)) (-4 *3 (-1047)) (-5 *2 (-944 *3)))) (-2296 (*1 *2 *1) (-12 (-4 *1 (-1122 *3)) (-4 *3 (-1047)) (-5 *2 (-121)))) (-4430 (*1 *1 *1 *2) (-12 (-5 *2 (-634 (-944 *3))) (-4 *1 (-1122 *3)) (-4 *3 (-1047)))) (-4430 (*1 *1 *1 *2) (-12 (-5 *2 (-634 (-634 *3))) (-4 *1 (-1122 *3)) (-4 *3 (-1047)))) (-4430 (*1 *1 *2) (-12 (-5 *2 (-634 (-944 *3))) (-4 *3 (-1047)) (-4 *1 (-1122 *3)))) (-4430 (*1 *2 *1) (-12 (-4 *1 (-1122 *3)) (-4 *3 (-1047)) (-5 *2 (-634 (-944 *3))))) (-3883 (*1 *2 *1) (-12 (-4 *1 (-1122 *3)) (-4 *3 (-1047)) (-5 *2 (-121)))) (-1984 (*1 *1 *1 *2) (-12 (-5 *2 (-634 (-944 *3))) (-4 *1 (-1122 *3)) (-4 *3 (-1047)))) (-1984 (*1 *1 *1 *2) (-12 (-5 *2 (-634 (-634 *3))) (-4 *1 (-1122 *3)) (-4 *3 (-1047)))) (-1984 (*1 *1 *2) (-12 (-5 *2 (-634 (-944 *3))) (-4 *3 (-1047)) (-4 *1 (-1122 *3)))) (-1984 (*1 *2 *1) (-12 (-4 *1 (-1122 *3)) (-4 *3 (-1047)) (-5 *2 (-634 (-944 *3))))) (-1488 (*1 *2 *1) (-12 (-4 *1 (-1122 *3)) (-4 *3 (-1047)) (-5 *2 (-121)))) (-3949 (*1 *1 *1 *2) (-12 (-5 *2 (-634 (-944 *3))) (-4 *1 (-1122 *3)) (-4 *3 (-1047)))) (-3949 (*1 *1 *1 *2) (-12 (-5 *2 (-634 (-634 *3))) (-4 *1 (-1122 *3)) (-4 *3 (-1047)))) (-3949 (*1 *1 *2) (-12 (-5 *2 (-634 (-944 *3))) (-4 *3 (-1047)) (-4 *1 (-1122 *3)))) (-3949 (*1 *2 *1) (-12 (-4 *1 (-1122 *3)) (-4 *3 (-1047)) (-5 *2 (-634 (-944 *3))))) (-3672 (*1 *2 *1) (-12 (-4 *1 (-1122 *3)) (-4 *3 (-1047)) (-5 *2 (-121)))) (-3713 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-634 (-634 (-944 *5)))) (-5 *3 (-634 (-171))) (-5 *4 (-171)) (-4 *1 (-1122 *5)) (-4 *5 (-1047)))) (-3713 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-634 (-634 (-634 *5)))) (-5 *3 (-634 (-171))) (-5 *4 (-171)) (-4 *1 (-1122 *5)) (-4 *5 (-1047)))) (-3713 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-634 (-634 (-944 *4)))) (-5 *3 (-121)) (-4 *1 (-1122 *4)) (-4 *4 (-1047)))) (-3713 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-634 (-634 (-634 *4)))) (-5 *3 (-121)) (-4 *1 (-1122 *4)) (-4 *4 (-1047)))) (-3713 (*1 *1 *2) (-12 (-5 *2 (-634 (-634 (-944 *3)))) (-4 *3 (-1047)) (-4 *1 (-1122 *3)))) (-3713 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-634 (-634 (-944 *4)))) (-5 *3 (-121)) (-4 *4 (-1047)) (-4 *1 (-1122 *4)))) (-3713 (*1 *2 *1) (-12 (-4 *1 (-1122 *3)) (-4 *3 (-1047)) (-5 *2 (-634 (-634 (-944 *3)))))) (-2054 (*1 *2 *1) (-12 (-4 *1 (-1122 *3)) (-4 *3 (-1047)) (-5 *2 (-121)))) (-2386 (*1 *2 *1) (-12 (-4 *1 (-1122 *3)) (-4 *3 (-1047)) (-5 *2 (-634 (-944 *3))))) (-2417 (*1 *2 *1) (-12 (-4 *1 (-1122 *3)) (-4 *3 (-1047)) (-5 *2 (-634 (-634 (-634 (-763))))))) (-2626 (*1 *2 *1) (-12 (-4 *1 (-1122 *3)) (-4 *3 (-1047)) (-5 *2 (-634 (-634 (-634 (-944 *3))))))) (-2304 (*1 *2 *1) (-12 (-4 *1 (-1122 *3)) (-4 *3 (-1047)) (-5 *2 (-634 (-634 (-171)))))) (-3049 (*1 *2 *1) (-12 (-4 *1 (-1122 *3)) (-4 *3 (-1047)) (-5 *2 (-634 (-171))))) (-1443 (*1 *2 *1) (-12 (-4 *1 (-1122 *3)) (-4 *3 (-1047)) (-5 *2 (-2 (|:| -1526 (-763)) (|:| |curves| (-763)) (|:| |polygons| (-763)) (|:| |constructs| (-763)))))) (-1644 (*1 *1 *1) (-12 (-4 *1 (-1122 *2)) (-4 *2 (-1047)))) (-2141 (*1 *2 *1) (-12 (-4 *1 (-1122 *3)) (-4 *3 (-1047)) (-5 *2 (-1149 3 *3))))) +(-13 (-1090) (-10 -8 (-15 -4132 ($)) (-15 -4132 ($ (-1149 3 |t#1|))) (-15 -3900 ((-763) $)) (-15 -1572 ((-763) $)) (-15 -1347 ($ (-634 $))) (-15 -1347 ($ $ $)) (-15 -3950 ($ (-634 $))) (-15 -1923 ((-634 $) $)) (-15 -2697 ((-634 $) $)) (-15 -3863 ($ $)) (-15 -1597 ((-763) $ (-634 (-944 |t#1|)))) (-15 -1524 ($ $ (-763) (-944 |t#1|))) (-15 -4203 ($ $ (-944 |t#1|))) (-15 -4203 ($ $ (-634 |t#1|))) (-15 -4203 ($ $ (-763))) (-15 -4203 ($ (-944 |t#1|))) (-15 -4203 ((-944 |t#1|) $)) (-15 -2296 ((-121) $)) (-15 -4430 ($ $ (-634 (-944 |t#1|)))) (-15 -4430 ($ $ (-634 (-634 |t#1|)))) (-15 -4430 ($ (-634 (-944 |t#1|)))) (-15 -4430 ((-634 (-944 |t#1|)) $)) (-15 -3883 ((-121) $)) (-15 -1984 ($ $ (-634 (-944 |t#1|)))) (-15 -1984 ($ $ (-634 (-634 |t#1|)))) (-15 -1984 ($ (-634 (-944 |t#1|)))) (-15 -1984 ((-634 (-944 |t#1|)) $)) (-15 -1488 ((-121) $)) (-15 -3949 ($ $ (-634 (-944 |t#1|)))) (-15 -3949 ($ $ (-634 (-634 |t#1|)))) (-15 -3949 ($ (-634 (-944 |t#1|)))) (-15 -3949 ((-634 (-944 |t#1|)) $)) (-15 -3672 ((-121) $)) (-15 -3713 ($ $ (-634 (-634 (-944 |t#1|))) (-634 (-171)) (-171))) (-15 -3713 ($ $ (-634 (-634 (-634 |t#1|))) (-634 (-171)) (-171))) (-15 -3713 ($ $ (-634 (-634 (-944 |t#1|))) (-121) (-121))) (-15 -3713 ($ $ (-634 (-634 (-634 |t#1|))) (-121) (-121))) (-15 -3713 ($ (-634 (-634 (-944 |t#1|))))) (-15 -3713 ($ (-634 (-634 (-944 |t#1|))) (-121) (-121))) (-15 -3713 ((-634 (-634 (-944 |t#1|))) $)) (-15 -2054 ((-121) $)) (-15 -2386 ((-634 (-944 |t#1|)) $)) (-15 -2417 ((-634 (-634 (-634 (-763)))) $)) (-15 -2626 ((-634 (-634 (-634 (-944 |t#1|)))) $)) (-15 -2304 ((-634 (-634 (-171))) $)) (-15 -3049 ((-634 (-171)) $)) (-15 -1443 ((-2 (|:| -1526 (-763)) (|:| |curves| (-763)) (|:| |polygons| (-763)) (|:| |constructs| (-763))) $)) (-15 -1644 ($ $)) (-15 -2141 ((-1149 3 |t#1|) $)) (-15 -2745 ((-850) $)))) +(((-105) . T) ((-608 (-850)) . T) ((-1090) . T)) +((-3920 (((-1249) (-634 (-850))) 23) (((-1249) (-850)) 22)) (-3071 (((-1249) (-634 (-850))) 21) (((-1249) (-850)) 20)) (-4128 (((-1249) (-634 (-850))) 19) (((-1249) (-850)) 11) (((-1249) (-1143) (-850)) 17))) +(((-1123) (-10 -7 (-15 -4128 ((-1249) (-1143) (-850))) (-15 -4128 ((-1249) (-850))) (-15 -3071 ((-1249) (-850))) (-15 -3920 ((-1249) (-850))) (-15 -4128 ((-1249) (-634 (-850)))) (-15 -3071 ((-1249) (-634 (-850)))) (-15 -3920 ((-1249) (-634 (-850)))))) (T -1123)) +((-3920 (*1 *2 *3) (-12 (-5 *3 (-634 (-850))) (-5 *2 (-1249)) (-5 *1 (-1123)))) (-3071 (*1 *2 *3) (-12 (-5 *3 (-634 (-850))) (-5 *2 (-1249)) (-5 *1 (-1123)))) (-4128 (*1 *2 *3) (-12 (-5 *3 (-634 (-850))) (-5 *2 (-1249)) (-5 *1 (-1123)))) (-3920 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1249)) (-5 *1 (-1123)))) (-3071 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1249)) (-5 *1 (-1123)))) (-4128 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1249)) (-5 *1 (-1123)))) (-4128 (*1 *2 *3 *4) (-12 (-5 *3 (-1143)) (-5 *4 (-850)) (-5 *2 (-1249)) (-5 *1 (-1123))))) +(-10 -7 (-15 -4128 ((-1249) (-1143) (-850))) (-15 -4128 ((-1249) (-850))) (-15 -3071 ((-1249) (-850))) (-15 -3920 ((-1249) (-850))) (-15 -4128 ((-1249) (-634 (-850)))) (-15 -3071 ((-1249) (-634 (-850)))) (-15 -3920 ((-1249) (-634 (-850))))) +((-1303 (($ $ $) 10)) (-1847 (($ $) 9)) (-3657 (($ $ $) 13)) (-2375 (($ $ $) 15)) (-1369 (($ $ $) 12)) (-3737 (($ $ $) 14)) (-3828 (($ $) 17)) (-2357 (($ $) 16)) (-2897 (($ $) 6)) (-3929 (($ $ $) 11) (($ $) 7)) (-3792 (($ $ $) 8))) +(((-1124) (-1275)) (T -1124)) +((-3828 (*1 *1 *1) (-4 *1 (-1124))) (-2357 (*1 *1 *1) (-4 *1 (-1124))) (-2375 (*1 *1 *1 *1) (-4 *1 (-1124))) (-3737 (*1 *1 *1 *1) (-4 *1 (-1124))) (-3657 (*1 *1 *1 *1) (-4 *1 (-1124))) (-1369 (*1 *1 *1 *1) (-4 *1 (-1124))) (-3929 (*1 *1 *1 *1) (-4 *1 (-1124))) (-1303 (*1 *1 *1 *1) (-4 *1 (-1124))) (-1847 (*1 *1 *1) (-4 *1 (-1124))) (-3792 (*1 *1 *1 *1) (-4 *1 (-1124))) (-3929 (*1 *1 *1) (-4 *1 (-1124))) (-2897 (*1 *1 *1) (-4 *1 (-1124)))) +(-13 (-10 -8 (-15 -2897 ($ $)) (-15 -3929 ($ $)) (-15 -3792 ($ $ $)) (-15 -1847 ($ $)) (-15 -1303 ($ $ $)) (-15 -3929 ($ $ $)) (-15 -1369 ($ $ $)) (-15 -3657 ($ $ $)) (-15 -3737 ($ $ $)) (-15 -2375 ($ $ $)) (-15 -2357 ($ $)) (-15 -3828 ($ $)))) +((-2447 (((-121) $ $) 41)) (-2850 ((|#1| $) 15)) (-3800 (((-121) $ $ (-1 (-121) |#2| |#2|)) 36)) (-2812 (((-121) $) 17)) (-3865 (($ $ |#1|) 28)) (-4234 (($ $ (-121)) 30)) (-4334 (($ $) 31)) (-2453 (($ $ |#2|) 29)) (-4487 (((-1143) $) NIL)) (-3912 (((-121) $ $ (-1 (-121) |#1| |#1|) (-1 (-121) |#2| |#2|)) 35)) (-4022 (((-1108) $) NIL)) (-3084 (((-121) $) 14)) (-3248 (($) 10)) (-3863 (($ $) 27)) (-4287 (($ |#1| |#2| (-121)) 18) (($ |#1| |#2|) 19) (($ (-2 (|:| |val| |#1|) (|:| -3001 |#2|))) 21) (((-634 $) (-634 (-2 (|:| |val| |#1|) (|:| -3001 |#2|)))) 24) (((-634 $) |#1| (-634 |#2|)) 26)) (-2213 ((|#2| $) 16)) (-2745 (((-850) $) 50)) (-1717 (((-121) $ $) 39))) +(((-1125 |#1| |#2|) (-13 (-1090) (-10 -8 (-15 -3248 ($)) (-15 -3084 ((-121) $)) (-15 -2850 (|#1| $)) (-15 -2213 (|#2| $)) (-15 -2812 ((-121) $)) (-15 -4287 ($ |#1| |#2| (-121))) (-15 -4287 ($ |#1| |#2|)) (-15 -4287 ($ (-2 (|:| |val| |#1|) (|:| -3001 |#2|)))) (-15 -4287 ((-634 $) (-634 (-2 (|:| |val| |#1|) (|:| -3001 |#2|))))) (-15 -4287 ((-634 $) |#1| (-634 |#2|))) (-15 -3863 ($ $)) (-15 -3865 ($ $ |#1|)) (-15 -2453 ($ $ |#2|)) (-15 -4234 ($ $ (-121))) (-15 -4334 ($ $)) (-15 -3912 ((-121) $ $ (-1 (-121) |#1| |#1|) (-1 (-121) |#2| |#2|))) (-15 -3800 ((-121) $ $ (-1 (-121) |#2| |#2|))))) (-13 (-1090) (-39)) (-13 (-1090) (-39))) (T -1125)) +((-3248 (*1 *1) (-12 (-5 *1 (-1125 *2 *3)) (-4 *2 (-13 (-1090) (-39))) (-4 *3 (-13 (-1090) (-39))))) (-3084 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1125 *3 *4)) (-4 *3 (-13 (-1090) (-39))) (-4 *4 (-13 (-1090) (-39))))) (-2850 (*1 *2 *1) (-12 (-4 *2 (-13 (-1090) (-39))) (-5 *1 (-1125 *2 *3)) (-4 *3 (-13 (-1090) (-39))))) (-2213 (*1 *2 *1) (-12 (-4 *2 (-13 (-1090) (-39))) (-5 *1 (-1125 *3 *2)) (-4 *3 (-13 (-1090) (-39))))) (-2812 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1125 *3 *4)) (-4 *3 (-13 (-1090) (-39))) (-4 *4 (-13 (-1090) (-39))))) (-4287 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-121)) (-5 *1 (-1125 *2 *3)) (-4 *2 (-13 (-1090) (-39))) (-4 *3 (-13 (-1090) (-39))))) (-4287 (*1 *1 *2 *3) (-12 (-5 *1 (-1125 *2 *3)) (-4 *2 (-13 (-1090) (-39))) (-4 *3 (-13 (-1090) (-39))))) (-4287 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3001 *4))) (-4 *3 (-13 (-1090) (-39))) (-4 *4 (-13 (-1090) (-39))) (-5 *1 (-1125 *3 *4)))) (-4287 (*1 *2 *3) (-12 (-5 *3 (-634 (-2 (|:| |val| *4) (|:| -3001 *5)))) (-4 *4 (-13 (-1090) (-39))) (-4 *5 (-13 (-1090) (-39))) (-5 *2 (-634 (-1125 *4 *5))) (-5 *1 (-1125 *4 *5)))) (-4287 (*1 *2 *3 *4) (-12 (-5 *4 (-634 *5)) (-4 *5 (-13 (-1090) (-39))) (-5 *2 (-634 (-1125 *3 *5))) (-5 *1 (-1125 *3 *5)) (-4 *3 (-13 (-1090) (-39))))) (-3863 (*1 *1 *1) (-12 (-5 *1 (-1125 *2 *3)) (-4 *2 (-13 (-1090) (-39))) (-4 *3 (-13 (-1090) (-39))))) (-3865 (*1 *1 *1 *2) (-12 (-5 *1 (-1125 *2 *3)) (-4 *2 (-13 (-1090) (-39))) (-4 *3 (-13 (-1090) (-39))))) (-2453 (*1 *1 *1 *2) (-12 (-5 *1 (-1125 *3 *2)) (-4 *3 (-13 (-1090) (-39))) (-4 *2 (-13 (-1090) (-39))))) (-4234 (*1 *1 *1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-1125 *3 *4)) (-4 *3 (-13 (-1090) (-39))) (-4 *4 (-13 (-1090) (-39))))) (-4334 (*1 *1 *1) (-12 (-5 *1 (-1125 *2 *3)) (-4 *2 (-13 (-1090) (-39))) (-4 *3 (-13 (-1090) (-39))))) (-3912 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-121) *5 *5)) (-5 *4 (-1 (-121) *6 *6)) (-4 *5 (-13 (-1090) (-39))) (-4 *6 (-13 (-1090) (-39))) (-5 *2 (-121)) (-5 *1 (-1125 *5 *6)))) (-3800 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-121) *5 *5)) (-4 *5 (-13 (-1090) (-39))) (-5 *2 (-121)) (-5 *1 (-1125 *4 *5)) (-4 *4 (-13 (-1090) (-39)))))) +(-13 (-1090) (-10 -8 (-15 -3248 ($)) (-15 -3084 ((-121) $)) (-15 -2850 (|#1| $)) (-15 -2213 (|#2| $)) (-15 -2812 ((-121) $)) (-15 -4287 ($ |#1| |#2| (-121))) (-15 -4287 ($ |#1| |#2|)) (-15 -4287 ($ (-2 (|:| |val| |#1|) (|:| -3001 |#2|)))) (-15 -4287 ((-634 $) (-634 (-2 (|:| |val| |#1|) (|:| -3001 |#2|))))) (-15 -4287 ((-634 $) |#1| (-634 |#2|))) (-15 -3863 ($ $)) (-15 -3865 ($ $ |#1|)) (-15 -2453 ($ $ |#2|)) (-15 -4234 ($ $ (-121))) (-15 -4334 ($ $)) (-15 -3912 ((-121) $ $ (-1 (-121) |#1| |#1|) (-1 (-121) |#2| |#2|))) (-15 -3800 ((-121) $ $ (-1 (-121) |#2| |#2|))))) +((-2447 (((-121) $ $) NIL (|has| (-1125 |#1| |#2|) (-1090)))) (-2850 (((-1125 |#1| |#2|) $) 25)) (-1956 (($ $) 75)) (-4115 (((-121) (-1125 |#1| |#2|) $ (-1 (-121) |#2| |#2|)) 84)) (-4109 (($ $ $ (-634 (-1125 |#1| |#2|))) 89) (($ $ $ (-634 (-1125 |#1| |#2|)) (-1 (-121) |#2| |#2|)) 90)) (-2510 (((-121) $ (-763)) NIL)) (-1659 (((-1125 |#1| |#2|) $ (-1125 |#1| |#2|)) 42 (|has| $ (-6 -4520)))) (-2436 (((-1125 |#1| |#2|) $ "value" (-1125 |#1| |#2|)) NIL (|has| $ (-6 -4520)))) (-3827 (($ $ (-634 $)) 40 (|has| $ (-6 -4520)))) (-2671 (($) NIL T CONST)) (-3477 (((-634 (-2 (|:| |val| |#1|) (|:| -3001 |#2|))) $) 79)) (-3405 (($ (-1125 |#1| |#2|) $) 38)) (-4328 (($ (-1125 |#1| |#2|) $) 30)) (-4360 (((-634 (-1125 |#1| |#2|)) $) NIL (|has| $ (-6 -4519)))) (-2287 (((-634 $) $) 50)) (-3166 (((-121) (-1125 |#1| |#2|) $) 81)) (-1700 (((-121) $ $) NIL (|has| (-1125 |#1| |#2|) (-1090)))) (-1737 (((-121) $ (-763)) NIL)) (-1979 (((-634 (-1125 |#1| |#2|)) $) 54 (|has| $ (-6 -4519)))) (-3109 (((-121) (-1125 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-1125 |#1| |#2|) (-1090))))) (-3674 (($ (-1 (-1125 |#1| |#2|) (-1125 |#1| |#2|)) $) 46 (|has| $ (-6 -4520)))) (-2795 (($ (-1 (-1125 |#1| |#2|) (-1125 |#1| |#2|)) $) 45)) (-2166 (((-121) $ (-763)) NIL)) (-2869 (((-634 (-1125 |#1| |#2|)) $) 52)) (-1651 (((-121) $) 41)) (-4487 (((-1143) $) NIL (|has| (-1125 |#1| |#2|) (-1090)))) (-4022 (((-1108) $) NIL (|has| (-1125 |#1| |#2|) (-1090)))) (-3239 (((-3 $ "failed") $) 74)) (-1387 (((-121) (-1 (-121) (-1125 |#1| |#2|)) $) NIL (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 (-1125 |#1| |#2|)))) NIL (-12 (|has| (-1125 |#1| |#2|) (-303 (-1125 |#1| |#2|))) (|has| (-1125 |#1| |#2|) (-1090)))) (($ $ (-288 (-1125 |#1| |#2|))) NIL (-12 (|has| (-1125 |#1| |#2|) (-303 (-1125 |#1| |#2|))) (|has| (-1125 |#1| |#2|) (-1090)))) (($ $ (-1125 |#1| |#2|) (-1125 |#1| |#2|)) NIL (-12 (|has| (-1125 |#1| |#2|) (-303 (-1125 |#1| |#2|))) (|has| (-1125 |#1| |#2|) (-1090)))) (($ $ (-634 (-1125 |#1| |#2|)) (-634 (-1125 |#1| |#2|))) NIL (-12 (|has| (-1125 |#1| |#2|) (-303 (-1125 |#1| |#2|))) (|has| (-1125 |#1| |#2|) (-1090))))) (-3171 (((-121) $ $) 49)) (-3084 (((-121) $) 22)) (-3248 (($) 24)) (-2779 (((-1125 |#1| |#2|) $ "value") NIL)) (-4075 (((-568) $ $) NIL)) (-3790 (((-121) $) 43)) (-4168 (((-763) (-1 (-121) (-1125 |#1| |#2|)) $) NIL (|has| $ (-6 -4519))) (((-763) (-1125 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-1125 |#1| |#2|) (-1090))))) (-3863 (($ $) 48)) (-4287 (($ (-1125 |#1| |#2|)) 9) (($ |#1| |#2| (-634 $)) 12) (($ |#1| |#2| (-634 (-1125 |#1| |#2|))) 14) (($ |#1| |#2| |#1| (-634 |#2|)) 17)) (-2221 (((-634 |#2|) $) 80)) (-2745 (((-850) $) 72 (|has| (-1125 |#1| |#2|) (-1090)))) (-4339 (((-634 $) $) 28)) (-3491 (((-121) $ $) NIL (|has| (-1125 |#1| |#2|) (-1090)))) (-1319 (((-121) (-1 (-121) (-1125 |#1| |#2|)) $) NIL (|has| $ (-6 -4519)))) (-1717 (((-121) $ $) 63 (|has| (-1125 |#1| |#2|) (-1090)))) (-1697 (((-763) $) 57 (|has| $ (-6 -4519))))) +(((-1126 |#1| |#2|) (-13 (-1010 (-1125 |#1| |#2|)) (-10 -8 (-6 -4520) (-6 -4519) (-15 -3239 ((-3 $ "failed") $)) (-15 -1956 ($ $)) (-15 -4287 ($ (-1125 |#1| |#2|))) (-15 -4287 ($ |#1| |#2| (-634 $))) (-15 -4287 ($ |#1| |#2| (-634 (-1125 |#1| |#2|)))) (-15 -4287 ($ |#1| |#2| |#1| (-634 |#2|))) (-15 -2221 ((-634 |#2|) $)) (-15 -3477 ((-634 (-2 (|:| |val| |#1|) (|:| -3001 |#2|))) $)) (-15 -3166 ((-121) (-1125 |#1| |#2|) $)) (-15 -4115 ((-121) (-1125 |#1| |#2|) $ (-1 (-121) |#2| |#2|))) (-15 -4328 ($ (-1125 |#1| |#2|) $)) (-15 -3405 ($ (-1125 |#1| |#2|) $)) (-15 -4109 ($ $ $ (-634 (-1125 |#1| |#2|)))) (-15 -4109 ($ $ $ (-634 (-1125 |#1| |#2|)) (-1 (-121) |#2| |#2|))))) (-13 (-1090) (-39)) (-13 (-1090) (-39))) (T -1126)) +((-3239 (*1 *1 *1) (|partial| -12 (-5 *1 (-1126 *2 *3)) (-4 *2 (-13 (-1090) (-39))) (-4 *3 (-13 (-1090) (-39))))) (-1956 (*1 *1 *1) (-12 (-5 *1 (-1126 *2 *3)) (-4 *2 (-13 (-1090) (-39))) (-4 *3 (-13 (-1090) (-39))))) (-4287 (*1 *1 *2) (-12 (-5 *2 (-1125 *3 *4)) (-4 *3 (-13 (-1090) (-39))) (-4 *4 (-13 (-1090) (-39))) (-5 *1 (-1126 *3 *4)))) (-4287 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-634 (-1126 *2 *3))) (-5 *1 (-1126 *2 *3)) (-4 *2 (-13 (-1090) (-39))) (-4 *3 (-13 (-1090) (-39))))) (-4287 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-634 (-1125 *2 *3))) (-4 *2 (-13 (-1090) (-39))) (-4 *3 (-13 (-1090) (-39))) (-5 *1 (-1126 *2 *3)))) (-4287 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-634 *3)) (-4 *3 (-13 (-1090) (-39))) (-5 *1 (-1126 *2 *3)) (-4 *2 (-13 (-1090) (-39))))) (-2221 (*1 *2 *1) (-12 (-5 *2 (-634 *4)) (-5 *1 (-1126 *3 *4)) (-4 *3 (-13 (-1090) (-39))) (-4 *4 (-13 (-1090) (-39))))) (-3477 (*1 *2 *1) (-12 (-5 *2 (-634 (-2 (|:| |val| *3) (|:| -3001 *4)))) (-5 *1 (-1126 *3 *4)) (-4 *3 (-13 (-1090) (-39))) (-4 *4 (-13 (-1090) (-39))))) (-3166 (*1 *2 *3 *1) (-12 (-5 *3 (-1125 *4 *5)) (-4 *4 (-13 (-1090) (-39))) (-4 *5 (-13 (-1090) (-39))) (-5 *2 (-121)) (-5 *1 (-1126 *4 *5)))) (-4115 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1125 *5 *6)) (-5 *4 (-1 (-121) *6 *6)) (-4 *5 (-13 (-1090) (-39))) (-4 *6 (-13 (-1090) (-39))) (-5 *2 (-121)) (-5 *1 (-1126 *5 *6)))) (-4328 (*1 *1 *2 *1) (-12 (-5 *2 (-1125 *3 *4)) (-4 *3 (-13 (-1090) (-39))) (-4 *4 (-13 (-1090) (-39))) (-5 *1 (-1126 *3 *4)))) (-3405 (*1 *1 *2 *1) (-12 (-5 *2 (-1125 *3 *4)) (-4 *3 (-13 (-1090) (-39))) (-4 *4 (-13 (-1090) (-39))) (-5 *1 (-1126 *3 *4)))) (-4109 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-634 (-1125 *3 *4))) (-4 *3 (-13 (-1090) (-39))) (-4 *4 (-13 (-1090) (-39))) (-5 *1 (-1126 *3 *4)))) (-4109 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-634 (-1125 *4 *5))) (-5 *3 (-1 (-121) *5 *5)) (-4 *4 (-13 (-1090) (-39))) (-4 *5 (-13 (-1090) (-39))) (-5 *1 (-1126 *4 *5))))) +(-13 (-1010 (-1125 |#1| |#2|)) (-10 -8 (-6 -4520) (-6 -4519) (-15 -3239 ((-3 $ "failed") $)) (-15 -1956 ($ $)) (-15 -4287 ($ (-1125 |#1| |#2|))) (-15 -4287 ($ |#1| |#2| (-634 $))) (-15 -4287 ($ |#1| |#2| (-634 (-1125 |#1| |#2|)))) (-15 -4287 ($ |#1| |#2| |#1| (-634 |#2|))) (-15 -2221 ((-634 |#2|) $)) (-15 -3477 ((-634 (-2 (|:| |val| |#1|) (|:| -3001 |#2|))) $)) (-15 -3166 ((-121) (-1125 |#1| |#2|) $)) (-15 -4115 ((-121) (-1125 |#1| |#2|) $ (-1 (-121) |#2| |#2|))) (-15 -4328 ($ (-1125 |#1| |#2|) $)) (-15 -3405 ($ (-1125 |#1| |#2|) $)) (-15 -4109 ($ $ $ (-634 (-1125 |#1| |#2|)))) (-15 -4109 ($ $ $ (-634 (-1125 |#1| |#2|)) (-1 (-121) |#2| |#2|))))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-2870 (($ $) NIL)) (-1932 ((|#2| $) NIL)) (-1335 (((-121) $) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-3436 (($ (-679 |#2|)) 45)) (-2230 (((-121) $) NIL)) (-2510 (((-121) $ (-763)) NIL)) (-3422 (($ |#2|) 9)) (-2671 (($) NIL T CONST)) (-4167 (($ $) 58 (|has| |#2| (-301)))) (-1818 (((-232 |#1| |#2|) $ (-568)) 31)) (-3666 (((-3 (-568) "failed") $) NIL (|has| |#2| (-1037 (-568)))) (((-3 (-409 (-568)) "failed") $) NIL (|has| |#2| (-1037 (-409 (-568))))) (((-3 |#2| "failed") $) NIL)) (-2854 (((-568) $) NIL (|has| |#2| (-1037 (-568)))) (((-409 (-568)) $) NIL (|has| |#2| (-1037 (-409 (-568))))) ((|#2| $) NIL)) (-3164 (((-679 (-568)) (-679 $)) NIL (|has| |#2| (-630 (-568)))) (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) NIL (|has| |#2| (-630 (-568)))) (((-2 (|:| -2928 (-679 |#2|)) (|:| |vec| (-1244 |#2|))) (-679 $) (-1244 $)) NIL) (((-679 |#2|) (-679 $)) NIL)) (-2925 (((-3 $ "failed") $) 72)) (-3700 (((-763) $) 60 (|has| |#2| (-558)))) (-2602 ((|#2| $ (-568) (-568)) NIL)) (-4360 (((-634 |#2|) $) NIL (|has| $ (-6 -4519)))) (-2735 (((-121) $) NIL)) (-2121 (((-763) $) 62 (|has| |#2| (-558)))) (-4272 (((-634 (-232 |#1| |#2|)) $) 66 (|has| |#2| (-558)))) (-3043 (((-763) $) NIL)) (-2555 (((-763) $) NIL)) (-1737 (((-121) $ (-763)) NIL)) (-3082 ((|#2| $) 56 (|has| |#2| (-6 (-4521 "*"))))) (-2087 (((-568) $) NIL)) (-3364 (((-568) $) NIL)) (-1979 (((-634 |#2|) $) NIL (|has| $ (-6 -4519)))) (-3109 (((-121) |#2| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#2| (-1090))))) (-1663 (((-568) $) NIL)) (-2893 (((-568) $) NIL)) (-2269 (($ (-634 (-634 |#2|))) 26)) (-3674 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3208 (((-634 (-634 |#2|)) $) NIL)) (-2166 (((-121) $ (-763)) NIL)) (-4487 (((-1143) $) NIL)) (-3140 (((-3 $ "failed") $) 69 (|has| |#2| (-365)))) (-4022 (((-1108) $) NIL)) (-2595 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-558)))) (-1387 (((-121) (-1 (-121) |#2|) $) NIL (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#2|))) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090)))) (($ $ (-634 |#2|) (-634 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090))))) (-3171 (((-121) $ $) NIL)) (-3084 (((-121) $) NIL)) (-3248 (($) NIL)) (-2779 ((|#2| $ (-568) (-568) |#2|) NIL) ((|#2| $ (-568) (-568)) NIL)) (-4189 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-763)) NIL) (($ $ (-634 (-1161)) (-634 (-763))) NIL (|has| |#2| (-895 (-1161)))) (($ $ (-1161) (-763)) NIL (|has| |#2| (-895 (-1161)))) (($ $ (-634 (-1161))) NIL (|has| |#2| (-895 (-1161)))) (($ $ (-1161)) NIL (|has| |#2| (-895 (-1161)))) (($ $ (-763)) NIL (|has| |#2| (-225))) (($ $) NIL (|has| |#2| (-225)))) (-3241 ((|#2| $) NIL)) (-2282 (($ (-634 |#2|)) 40)) (-1960 (((-121) $) NIL)) (-3815 (((-232 |#1| |#2|) $) NIL)) (-2465 ((|#2| $) 54 (|has| |#2| (-6 (-4521 "*"))))) (-4168 (((-763) (-1 (-121) |#2|) $) NIL (|has| $ (-6 -4519))) (((-763) |#2| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#2| (-1090))))) (-3863 (($ $) NIL)) (-4278 (((-541) $) 81 (|has| |#2| (-609 (-541))))) (-3731 (((-232 |#1| |#2|) $ (-568)) 33)) (-2745 (((-850) $) 36) (($ (-568)) NIL) (($ (-409 (-568))) NIL (|has| |#2| (-1037 (-409 (-568))))) (($ |#2|) NIL) (((-679 |#2|) $) 42)) (-4078 (((-763)) 17)) (-1319 (((-121) (-1 (-121) |#2|) $) NIL (|has| $ (-6 -4519)))) (-1910 (((-121) $) NIL)) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (-3056 (($) 11 T CONST)) (-1556 (($) 14 T CONST)) (-3190 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-763)) NIL) (($ $ (-634 (-1161)) (-634 (-763))) NIL (|has| |#2| (-895 (-1161)))) (($ $ (-1161) (-763)) NIL (|has| |#2| (-895 (-1161)))) (($ $ (-634 (-1161))) NIL (|has| |#2| (-895 (-1161)))) (($ $ (-1161)) NIL (|has| |#2| (-895 (-1161)))) (($ $ (-763)) NIL (|has| |#2| (-225))) (($ $) NIL (|has| |#2| (-225)))) (-1717 (((-121) $ $) NIL)) (-1779 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-763)) 52) (($ $ (-568)) 71 (|has| |#2| (-365)))) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-232 |#1| |#2|) $ (-232 |#1| |#2|)) 48) (((-232 |#1| |#2|) (-232 |#1| |#2|) $) 50)) (-1697 (((-763) $) NIL (|has| $ (-6 -4519))))) +(((-1127 |#1| |#2|) (-13 (-1111 |#1| |#2| (-232 |#1| |#2|) (-232 |#1| |#2|)) (-608 (-679 |#2|)) (-10 -8 (-15 -2870 ($ $)) (-15 -3436 ($ (-679 |#2|))) (-15 -2745 ((-679 |#2|) $)) (IF (|has| |#2| (-6 (-4521 "*"))) (-6 -4508) |noBranch|) (IF (|has| |#2| (-6 (-4521 "*"))) (IF (|has| |#2| (-6 -4516)) (-6 -4516) |noBranch|) |noBranch|) (IF (|has| |#2| (-609 (-541))) (-6 (-609 (-541))) |noBranch|))) (-763) (-1047)) (T -1127)) +((-2745 (*1 *2 *1) (-12 (-5 *2 (-679 *4)) (-5 *1 (-1127 *3 *4)) (-14 *3 (-763)) (-4 *4 (-1047)))) (-2870 (*1 *1 *1) (-12 (-5 *1 (-1127 *2 *3)) (-14 *2 (-763)) (-4 *3 (-1047)))) (-3436 (*1 *1 *2) (-12 (-5 *2 (-679 *4)) (-4 *4 (-1047)) (-5 *1 (-1127 *3 *4)) (-14 *3 (-763))))) +(-13 (-1111 |#1| |#2| (-232 |#1| |#2|) (-232 |#1| |#2|)) (-608 (-679 |#2|)) (-10 -8 (-15 -2870 ($ $)) (-15 -3436 ($ (-679 |#2|))) (-15 -2745 ((-679 |#2|) $)) (IF (|has| |#2| (-6 (-4521 "*"))) (-6 -4508) |noBranch|) (IF (|has| |#2| (-6 (-4521 "*"))) (IF (|has| |#2| (-6 -4516)) (-6 -4516) |noBranch|) |noBranch|) (IF (|has| |#2| (-609 (-541))) (-6 (-609 (-541))) |noBranch|))) +((-2072 (($ $) 19)) (-4403 (($ $ (-147)) 10) (($ $ (-142)) 14)) (-3766 (((-121) $ $) 24)) (-2003 (($ $) 17)) (-2779 (((-147) $ (-568) (-147)) NIL) (((-147) $ (-568)) NIL) (($ $ (-1210 (-568))) NIL) (($ $ $) 29)) (-2745 (($ (-147)) 27) (((-850) $) NIL))) +(((-1128 |#1|) (-10 -8 (-15 -2745 ((-850) |#1|)) (-15 -2779 (|#1| |#1| |#1|)) (-15 -4403 (|#1| |#1| (-142))) (-15 -4403 (|#1| |#1| (-147))) (-15 -2745 (|#1| (-147))) (-15 -3766 ((-121) |#1| |#1|)) (-15 -2072 (|#1| |#1|)) (-15 -2003 (|#1| |#1|)) (-15 -2779 (|#1| |#1| (-1210 (-568)))) (-15 -2779 ((-147) |#1| (-568))) (-15 -2779 ((-147) |#1| (-568) (-147)))) (-1129)) (T -1128)) +NIL +(-10 -8 (-15 -2745 ((-850) |#1|)) (-15 -2779 (|#1| |#1| |#1|)) (-15 -4403 (|#1| |#1| (-142))) (-15 -4403 (|#1| |#1| (-147))) (-15 -2745 (|#1| (-147))) (-15 -3766 ((-121) |#1| |#1|)) (-15 -2072 (|#1| |#1|)) (-15 -2003 (|#1| |#1|)) (-15 -2779 (|#1| |#1| (-1210 (-568)))) (-15 -2779 ((-147) |#1| (-568))) (-15 -2779 ((-147) |#1| (-568) (-147)))) +((-2447 (((-121) $ $) 18 (|has| (-147) (-1090)))) (-1873 (($ $) 113)) (-2072 (($ $) 114)) (-4403 (($ $ (-147)) 101) (($ $ (-142)) 100)) (-1868 (((-1249) $ (-568) (-568)) 37 (|has| $ (-6 -4520)))) (-3673 (((-121) $ $) 111)) (-3760 (((-121) $ $ (-568)) 110)) (-3969 (((-634 $) $ (-147)) 103) (((-634 $) $ (-142)) 102)) (-2016 (((-121) (-1 (-121) (-147) (-147)) $) 91) (((-121) $) 85 (|has| (-147) (-842)))) (-3908 (($ (-1 (-121) (-147) (-147)) $) 82 (|has| $ (-6 -4520))) (($ $) 81 (-12 (|has| (-147) (-842)) (|has| $ (-6 -4520))))) (-3644 (($ (-1 (-121) (-147) (-147)) $) 92) (($ $) 86 (|has| (-147) (-842)))) (-2510 (((-121) $ (-763)) 8)) (-2436 (((-147) $ (-568) (-147)) 49 (|has| $ (-6 -4520))) (((-147) $ (-1210 (-568)) (-147)) 53 (|has| $ (-6 -4520)))) (-2801 (($ (-1 (-121) (-147)) $) 70 (|has| $ (-6 -4519)))) (-2671 (($) 7 T CONST)) (-1869 (($ $ (-147)) 97) (($ $ (-142)) 96)) (-1578 (($ $) 83 (|has| $ (-6 -4520)))) (-3943 (($ $) 93)) (-1386 (($ $ (-1210 (-568)) $) 107)) (-3924 (($ $) 73 (-12 (|has| (-147) (-1090)) (|has| $ (-6 -4519))))) (-4328 (($ (-147) $) 72 (-12 (|has| (-147) (-1090)) (|has| $ (-6 -4519)))) (($ (-1 (-121) (-147)) $) 69 (|has| $ (-6 -4519)))) (-3092 (((-147) (-1 (-147) (-147) (-147)) $ (-147) (-147)) 71 (-12 (|has| (-147) (-1090)) (|has| $ (-6 -4519)))) (((-147) (-1 (-147) (-147) (-147)) $ (-147)) 68 (|has| $ (-6 -4519))) (((-147) (-1 (-147) (-147) (-147)) $) 67 (|has| $ (-6 -4519)))) (-3989 (((-147) $ (-568) (-147)) 50 (|has| $ (-6 -4520)))) (-2602 (((-147) $ (-568)) 48)) (-3766 (((-121) $ $) 112)) (-2764 (((-568) (-1 (-121) (-147)) $) 90) (((-568) (-147) $) 89 (|has| (-147) (-1090))) (((-568) (-147) $ (-568)) 88 (|has| (-147) (-1090))) (((-568) $ $ (-568)) 106) (((-568) (-142) $ (-568)) 105)) (-4360 (((-634 (-147)) $) 30 (|has| $ (-6 -4519)))) (-1849 (($ (-763) (-147)) 64)) (-1737 (((-121) $ (-763)) 9)) (-1881 (((-568) $) 40 (|has| (-568) (-842)))) (-2521 (($ $ $) 80 (|has| (-147) (-842)))) (-1347 (($ (-1 (-121) (-147) (-147)) $ $) 94) (($ $ $) 87 (|has| (-147) (-842)))) (-1979 (((-634 (-147)) $) 29 (|has| $ (-6 -4519)))) (-3109 (((-121) (-147) $) 27 (-12 (|has| (-147) (-1090)) (|has| $ (-6 -4519))))) (-2223 (((-568) $) 41 (|has| (-568) (-842)))) (-3268 (($ $ $) 79 (|has| (-147) (-842)))) (-4062 (((-121) $ $ (-147)) 108)) (-2661 (((-763) $ $ (-147)) 109)) (-3674 (($ (-1 (-147) (-147)) $) 34 (|has| $ (-6 -4520)))) (-2795 (($ (-1 (-147) (-147)) $) 35) (($ (-1 (-147) (-147) (-147)) $ $) 59)) (-2496 (($ $) 115)) (-2003 (($ $) 116)) (-2166 (((-121) $ (-763)) 10)) (-3382 (($ $ (-147)) 99) (($ $ (-142)) 98)) (-4487 (((-1143) $) 22 (|has| (-147) (-1090)))) (-4122 (($ (-147) $ (-568)) 55) (($ $ $ (-568)) 54)) (-4174 (((-634 (-568)) $) 43)) (-3578 (((-121) (-568) $) 44)) (-4022 (((-1108) $) 21 (|has| (-147) (-1090)))) (-3876 (((-147) $) 39 (|has| (-568) (-842)))) (-3775 (((-3 (-147) "failed") (-1 (-121) (-147)) $) 66)) (-3724 (($ $ (-147)) 38 (|has| $ (-6 -4520)))) (-1387 (((-121) (-1 (-121) (-147)) $) 32 (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 (-147)))) 26 (-12 (|has| (-147) (-303 (-147))) (|has| (-147) (-1090)))) (($ $ (-288 (-147))) 25 (-12 (|has| (-147) (-303 (-147))) (|has| (-147) (-1090)))) (($ $ (-147) (-147)) 24 (-12 (|has| (-147) (-303 (-147))) (|has| (-147) (-1090)))) (($ $ (-634 (-147)) (-634 (-147))) 23 (-12 (|has| (-147) (-303 (-147))) (|has| (-147) (-1090))))) (-3171 (((-121) $ $) 14)) (-4467 (((-121) (-147) $) 42 (-12 (|has| $ (-6 -4519)) (|has| (-147) (-1090))))) (-2041 (((-634 (-147)) $) 45)) (-3084 (((-121) $) 11)) (-3248 (($) 12)) (-2779 (((-147) $ (-568) (-147)) 47) (((-147) $ (-568)) 46) (($ $ (-1210 (-568))) 58) (($ $ $) 95)) (-2826 (($ $ (-568)) 57) (($ $ (-1210 (-568))) 56)) (-4168 (((-763) (-1 (-121) (-147)) $) 31 (|has| $ (-6 -4519))) (((-763) (-147) $) 28 (-12 (|has| (-147) (-1090)) (|has| $ (-6 -4519))))) (-2256 (($ $ $ (-568)) 84 (|has| $ (-6 -4520)))) (-3863 (($ $) 13)) (-4278 (((-541) $) 74 (|has| (-147) (-609 (-541))))) (-4287 (($ (-634 (-147))) 65)) (-2768 (($ $ (-147)) 63) (($ (-147) $) 62) (($ $ $) 61) (($ (-634 $)) 60)) (-2745 (($ (-147)) 104) (((-850) $) 20 (|has| (-147) (-1090)))) (-1319 (((-121) (-1 (-121) (-147)) $) 33 (|has| $ (-6 -4519)))) (-1751 (((-121) $ $) 77 (|has| (-147) (-842)))) (-1738 (((-121) $ $) 76 (|has| (-147) (-842)))) (-1717 (((-121) $ $) 19 (|has| (-147) (-1090)))) (-1745 (((-121) $ $) 78 (|has| (-147) (-842)))) (-1732 (((-121) $ $) 75 (|has| (-147) (-842)))) (-1697 (((-763) $) 6 (|has| $ (-6 -4519))))) +(((-1129) (-1275)) (T -1129)) +((-2003 (*1 *1 *1) (-4 *1 (-1129))) (-2496 (*1 *1 *1) (-4 *1 (-1129))) (-2072 (*1 *1 *1) (-4 *1 (-1129))) (-1873 (*1 *1 *1) (-4 *1 (-1129))) (-3766 (*1 *2 *1 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-121)))) (-3673 (*1 *2 *1 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-121)))) (-3760 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1129)) (-5 *3 (-568)) (-5 *2 (-121)))) (-2661 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1129)) (-5 *3 (-147)) (-5 *2 (-763)))) (-4062 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1129)) (-5 *3 (-147)) (-5 *2 (-121)))) (-1386 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-1210 (-568))))) (-2764 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1129)) (-5 *2 (-568)))) (-2764 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1129)) (-5 *2 (-568)) (-5 *3 (-142)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-147)) (-4 *1 (-1129)))) (-3969 (*1 *2 *1 *3) (-12 (-5 *3 (-147)) (-5 *2 (-634 *1)) (-4 *1 (-1129)))) (-3969 (*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-634 *1)) (-4 *1 (-1129)))) (-4403 (*1 *1 *1 *2) (-12 (-4 *1 (-1129)) (-5 *2 (-147)))) (-4403 (*1 *1 *1 *2) (-12 (-4 *1 (-1129)) (-5 *2 (-142)))) (-3382 (*1 *1 *1 *2) (-12 (-4 *1 (-1129)) (-5 *2 (-147)))) (-3382 (*1 *1 *1 *2) (-12 (-4 *1 (-1129)) (-5 *2 (-142)))) (-1869 (*1 *1 *1 *2) (-12 (-4 *1 (-1129)) (-5 *2 (-147)))) (-1869 (*1 *1 *1 *2) (-12 (-4 *1 (-1129)) (-5 *2 (-142)))) (-2779 (*1 *1 *1 *1) (-4 *1 (-1129)))) +(-13 (-19 (-147)) (-10 -8 (-15 -2003 ($ $)) (-15 -2496 ($ $)) (-15 -2072 ($ $)) (-15 -1873 ($ $)) (-15 -3766 ((-121) $ $)) (-15 -3673 ((-121) $ $)) (-15 -3760 ((-121) $ $ (-568))) (-15 -2661 ((-763) $ $ (-147))) (-15 -4062 ((-121) $ $ (-147))) (-15 -1386 ($ $ (-1210 (-568)) $)) (-15 -2764 ((-568) $ $ (-568))) (-15 -2764 ((-568) (-142) $ (-568))) (-15 -2745 ($ (-147))) (-15 -3969 ((-634 $) $ (-147))) (-15 -3969 ((-634 $) $ (-142))) (-15 -4403 ($ $ (-147))) (-15 -4403 ($ $ (-142))) (-15 -3382 ($ $ (-147))) (-15 -3382 ($ $ (-142))) (-15 -1869 ($ $ (-147))) (-15 -1869 ($ $ (-142))) (-15 -2779 ($ $ $)))) +(((-39) . T) ((-105) -2198 (|has| (-147) (-1090)) (|has| (-147) (-842))) ((-608 (-850)) -2198 (|has| (-147) (-1090)) (|has| (-147) (-842))) ((-154 (-147)) . T) ((-609 (-541)) |has| (-147) (-609 (-541))) ((-281 (-568) (-147)) . T) ((-283 (-568) (-147)) . T) ((-303 (-147)) -12 (|has| (-147) (-303 (-147))) (|has| (-147) (-1090))) ((-375 (-147)) . T) ((-499 (-147)) . T) ((-601 (-568) (-147)) . T) ((-523 (-147) (-147)) -12 (|has| (-147) (-303 (-147))) (|has| (-147) (-1090))) ((-640 (-147)) . T) ((-19 (-147)) . T) ((-842) |has| (-147) (-842)) ((-1090) -2198 (|has| (-147) (-1090)) (|has| (-147) (-842))) ((-1195) . T)) +((-3404 (((-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))) (-634 |#4|) (-634 |#5|) (-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))) (-2 (|:| |done| (-634 |#5|)) (|:| |todo| (-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))))) (-763)) 93)) (-2497 (((-2 (|:| |done| (-634 |#5|)) (|:| |todo| (-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))))) |#4| |#5|) 54) (((-2 (|:| |done| (-634 |#5|)) (|:| |todo| (-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))))) |#4| |#5| (-763)) 53)) (-1277 (((-1249) (-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))) (-763)) 85)) (-4032 (((-763) (-634 |#4|) (-634 |#5|)) 27)) (-4475 (((-2 (|:| |done| (-634 |#5|)) (|:| |todo| (-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))))) |#4| |#5|) 56) (((-2 (|:| |done| (-634 |#5|)) (|:| |todo| (-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))))) |#4| |#5| (-763)) 55) (((-2 (|:| |done| (-634 |#5|)) (|:| |todo| (-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))))) |#4| |#5| (-763) (-121)) 57)) (-2847 (((-634 |#5|) (-634 |#4|) (-634 |#5|) (-121) (-121) (-121) (-121) (-121)) 76) (((-634 |#5|) (-634 |#4|) (-634 |#5|) (-121) (-121)) 77)) (-4278 (((-1143) (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))) 80)) (-1677 (((-2 (|:| |done| (-634 |#5|)) (|:| |todo| (-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))))) |#4| |#5|) 52)) (-4295 (((-763) (-634 |#4|) (-634 |#5|)) 19))) +(((-1130 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4295 ((-763) (-634 |#4|) (-634 |#5|))) (-15 -4032 ((-763) (-634 |#4|) (-634 |#5|))) (-15 -1677 ((-2 (|:| |done| (-634 |#5|)) (|:| |todo| (-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))))) |#4| |#5|)) (-15 -2497 ((-2 (|:| |done| (-634 |#5|)) (|:| |todo| (-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))))) |#4| |#5| (-763))) (-15 -2497 ((-2 (|:| |done| (-634 |#5|)) (|:| |todo| (-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))))) |#4| |#5|)) (-15 -4475 ((-2 (|:| |done| (-634 |#5|)) (|:| |todo| (-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))))) |#4| |#5| (-763) (-121))) (-15 -4475 ((-2 (|:| |done| (-634 |#5|)) (|:| |todo| (-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))))) |#4| |#5| (-763))) (-15 -4475 ((-2 (|:| |done| (-634 |#5|)) (|:| |todo| (-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))))) |#4| |#5|)) (-15 -2847 ((-634 |#5|) (-634 |#4|) (-634 |#5|) (-121) (-121))) (-15 -2847 ((-634 |#5|) (-634 |#4|) (-634 |#5|) (-121) (-121) (-121) (-121) (-121))) (-15 -3404 ((-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))) (-634 |#4|) (-634 |#5|) (-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))) (-2 (|:| |done| (-634 |#5|)) (|:| |todo| (-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))))) (-763))) (-15 -4278 ((-1143) (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|)))) (-15 -1277 ((-1249) (-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))) (-763)))) (-453) (-788) (-842) (-1061 |#1| |#2| |#3|) (-1099 |#1| |#2| |#3| |#4|)) (T -1130)) +((-1277 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-2 (|:| |val| (-634 *8)) (|:| -3001 *9)))) (-5 *4 (-763)) (-4 *8 (-1061 *5 *6 *7)) (-4 *9 (-1099 *5 *6 *7 *8)) (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-5 *2 (-1249)) (-5 *1 (-1130 *5 *6 *7 *8 *9)))) (-4278 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-634 *7)) (|:| -3001 *8))) (-4 *7 (-1061 *4 *5 *6)) (-4 *8 (-1099 *4 *5 *6 *7)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-1143)) (-5 *1 (-1130 *4 *5 *6 *7 *8)))) (-3404 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-634 *11)) (|:| |todo| (-634 (-2 (|:| |val| *3) (|:| -3001 *11)))))) (-5 *6 (-763)) (-5 *2 (-634 (-2 (|:| |val| (-634 *10)) (|:| -3001 *11)))) (-5 *3 (-634 *10)) (-5 *4 (-634 *11)) (-4 *10 (-1061 *7 *8 *9)) (-4 *11 (-1099 *7 *8 *9 *10)) (-4 *7 (-453)) (-4 *8 (-788)) (-4 *9 (-842)) (-5 *1 (-1130 *7 *8 *9 *10 *11)))) (-2847 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-634 *9)) (-5 *3 (-634 *8)) (-5 *4 (-121)) (-4 *8 (-1061 *5 *6 *7)) (-4 *9 (-1099 *5 *6 *7 *8)) (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-5 *1 (-1130 *5 *6 *7 *8 *9)))) (-2847 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-634 *9)) (-5 *3 (-634 *8)) (-5 *4 (-121)) (-4 *8 (-1061 *5 *6 *7)) (-4 *9 (-1099 *5 *6 *7 *8)) (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-5 *1 (-1130 *5 *6 *7 *8 *9)))) (-4475 (*1 *2 *3 *4) (-12 (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *3 (-1061 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-634 *4)) (|:| |todo| (-634 (-2 (|:| |val| (-634 *3)) (|:| -3001 *4)))))) (-5 *1 (-1130 *5 *6 *7 *3 *4)) (-4 *4 (-1099 *5 *6 *7 *3)))) (-4475 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-763)) (-4 *6 (-453)) (-4 *7 (-788)) (-4 *8 (-842)) (-4 *3 (-1061 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-634 *4)) (|:| |todo| (-634 (-2 (|:| |val| (-634 *3)) (|:| -3001 *4)))))) (-5 *1 (-1130 *6 *7 *8 *3 *4)) (-4 *4 (-1099 *6 *7 *8 *3)))) (-4475 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-763)) (-5 *6 (-121)) (-4 *7 (-453)) (-4 *8 (-788)) (-4 *9 (-842)) (-4 *3 (-1061 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-634 *4)) (|:| |todo| (-634 (-2 (|:| |val| (-634 *3)) (|:| -3001 *4)))))) (-5 *1 (-1130 *7 *8 *9 *3 *4)) (-4 *4 (-1099 *7 *8 *9 *3)))) (-2497 (*1 *2 *3 *4) (-12 (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *3 (-1061 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-634 *4)) (|:| |todo| (-634 (-2 (|:| |val| (-634 *3)) (|:| -3001 *4)))))) (-5 *1 (-1130 *5 *6 *7 *3 *4)) (-4 *4 (-1099 *5 *6 *7 *3)))) (-2497 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-763)) (-4 *6 (-453)) (-4 *7 (-788)) (-4 *8 (-842)) (-4 *3 (-1061 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-634 *4)) (|:| |todo| (-634 (-2 (|:| |val| (-634 *3)) (|:| -3001 *4)))))) (-5 *1 (-1130 *6 *7 *8 *3 *4)) (-4 *4 (-1099 *6 *7 *8 *3)))) (-1677 (*1 *2 *3 *4) (-12 (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *3 (-1061 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-634 *4)) (|:| |todo| (-634 (-2 (|:| |val| (-634 *3)) (|:| -3001 *4)))))) (-5 *1 (-1130 *5 *6 *7 *3 *4)) (-4 *4 (-1099 *5 *6 *7 *3)))) (-4032 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *8)) (-5 *4 (-634 *9)) (-4 *8 (-1061 *5 *6 *7)) (-4 *9 (-1099 *5 *6 *7 *8)) (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-5 *2 (-763)) (-5 *1 (-1130 *5 *6 *7 *8 *9)))) (-4295 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *8)) (-5 *4 (-634 *9)) (-4 *8 (-1061 *5 *6 *7)) (-4 *9 (-1099 *5 *6 *7 *8)) (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-5 *2 (-763)) (-5 *1 (-1130 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -4295 ((-763) (-634 |#4|) (-634 |#5|))) (-15 -4032 ((-763) (-634 |#4|) (-634 |#5|))) (-15 -1677 ((-2 (|:| |done| (-634 |#5|)) (|:| |todo| (-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))))) |#4| |#5|)) (-15 -2497 ((-2 (|:| |done| (-634 |#5|)) (|:| |todo| (-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))))) |#4| |#5| (-763))) (-15 -2497 ((-2 (|:| |done| (-634 |#5|)) (|:| |todo| (-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))))) |#4| |#5|)) (-15 -4475 ((-2 (|:| |done| (-634 |#5|)) (|:| |todo| (-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))))) |#4| |#5| (-763) (-121))) (-15 -4475 ((-2 (|:| |done| (-634 |#5|)) (|:| |todo| (-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))))) |#4| |#5| (-763))) (-15 -4475 ((-2 (|:| |done| (-634 |#5|)) (|:| |todo| (-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))))) |#4| |#5|)) (-15 -2847 ((-634 |#5|) (-634 |#4|) (-634 |#5|) (-121) (-121))) (-15 -2847 ((-634 |#5|) (-634 |#4|) (-634 |#5|) (-121) (-121) (-121) (-121) (-121))) (-15 -3404 ((-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))) (-634 |#4|) (-634 |#5|) (-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))) (-2 (|:| |done| (-634 |#5|)) (|:| |todo| (-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))))) (-763))) (-15 -4278 ((-1143) (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|)))) (-15 -1277 ((-1249) (-634 (-2 (|:| |val| (-634 |#4|)) (|:| -3001 |#5|))) (-763)))) +((-2447 (((-121) $ $) NIL)) (-2387 (((-634 (-2 (|:| -4092 $) (|:| -1798 (-634 |#4|)))) (-634 |#4|)) NIL)) (-2415 (((-634 $) (-634 |#4|)) 109) (((-634 $) (-634 |#4|) (-121)) 110) (((-634 $) (-634 |#4|) (-121) (-121)) 108) (((-634 $) (-634 |#4|) (-121) (-121) (-121) (-121)) 111)) (-2055 (((-634 |#3|) $) NIL)) (-4211 (((-121) $) NIL)) (-3824 (((-121) $) NIL (|has| |#1| (-558)))) (-3300 (((-121) |#4| $) NIL) (((-121) $) NIL)) (-2819 ((|#4| |#4| $) NIL)) (-4305 (((-634 (-2 (|:| |val| |#4|) (|:| -3001 $))) |#4| $) 83)) (-3644 (((-2 (|:| |under| $) (|:| -1519 $) (|:| |upper| $)) $ |#3|) NIL)) (-2510 (((-121) $ (-763)) NIL)) (-2801 (($ (-1 (-121) |#4|) $) NIL (|has| $ (-6 -4519))) (((-3 |#4| "failed") $ |#3|) 61)) (-2671 (($) NIL T CONST)) (-1565 (((-121) $) 26 (|has| |#1| (-558)))) (-3846 (((-121) $ $) NIL (|has| |#1| (-558)))) (-3106 (((-121) $ $) NIL (|has| |#1| (-558)))) (-3695 (((-121) $) NIL (|has| |#1| (-558)))) (-4275 (((-634 |#4|) (-634 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-121) |#4| |#4|)) NIL)) (-2355 (((-634 |#4|) (-634 |#4|) $) NIL (|has| |#1| (-558)))) (-2492 (((-634 |#4|) (-634 |#4|) $) NIL (|has| |#1| (-558)))) (-3666 (((-3 $ "failed") (-634 |#4|)) NIL)) (-2854 (($ (-634 |#4|)) NIL)) (-3935 (((-3 $ "failed") $) 39)) (-2062 ((|#4| |#4| $) 64)) (-3924 (($ $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#4| (-1090))))) (-4328 (($ |#4| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#4| (-1090)))) (($ (-1 (-121) |#4|) $) NIL (|has| $ (-6 -4519)))) (-1500 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 77 (|has| |#1| (-558)))) (-1281 (((-121) |#4| $ (-1 (-121) |#4| |#4|)) NIL)) (-4079 ((|#4| |#4| $) NIL)) (-3092 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4519)) (|has| |#4| (-1090)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4519))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4519))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-121) |#4| |#4|)) NIL)) (-3635 (((-2 (|:| -4092 (-634 |#4|)) (|:| -1798 (-634 |#4|))) $) NIL)) (-1862 (((-121) |#4| $) NIL)) (-4286 (((-121) |#4| $) NIL)) (-3193 (((-121) |#4| $) NIL) (((-121) $) NIL)) (-1796 (((-2 (|:| |val| (-634 |#4|)) (|:| |towers| (-634 $))) (-634 |#4|) (-121) (-121)) 123)) (-4360 (((-634 |#4|) $) 16 (|has| $ (-6 -4519)))) (-1362 (((-121) |#4| $) NIL) (((-121) $) NIL)) (-2356 ((|#3| $) 33)) (-1737 (((-121) $ (-763)) NIL)) (-1979 (((-634 |#4|) $) 17 (|has| $ (-6 -4519)))) (-3109 (((-121) |#4| $) 25 (-12 (|has| $ (-6 -4519)) (|has| |#4| (-1090))))) (-3674 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#4| |#4|) $) 21)) (-1432 (((-634 |#3|) $) NIL)) (-3392 (((-121) |#3| $) NIL)) (-2166 (((-121) $ (-763)) NIL)) (-4487 (((-1143) $) NIL)) (-2717 (((-3 |#4| (-634 $)) |#4| |#4| $) NIL)) (-4330 (((-634 (-2 (|:| |val| |#4|) (|:| -3001 $))) |#4| |#4| $) 102)) (-4162 (((-3 |#4| "failed") $) 37)) (-2335 (((-634 $) |#4| $) 87)) (-1719 (((-3 (-121) (-634 $)) |#4| $) NIL)) (-2632 (((-634 (-2 (|:| |val| (-121)) (|:| -3001 $))) |#4| $) 97) (((-121) |#4| $) 52)) (-3212 (((-634 $) |#4| $) 106) (((-634 $) (-634 |#4|) $) NIL) (((-634 $) (-634 |#4|) (-634 $)) 107) (((-634 $) |#4| (-634 $)) NIL)) (-2099 (((-634 $) (-634 |#4|) (-121) (-121) (-121)) 118)) (-3473 (($ |#4| $) 74) (($ (-634 |#4|) $) 75) (((-634 $) |#4| $ (-121) (-121) (-121) (-121) (-121)) 73)) (-1377 (((-634 |#4|) $) NIL)) (-1415 (((-121) |#4| $) NIL) (((-121) $) NIL)) (-2682 ((|#4| |#4| $) NIL)) (-2644 (((-121) $ $) NIL)) (-2705 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-558)))) (-4347 (((-121) |#4| $) NIL) (((-121) $) NIL)) (-4025 ((|#4| |#4| $) NIL)) (-4022 (((-1108) $) NIL)) (-3876 (((-3 |#4| "failed") $) 35)) (-3775 (((-3 |#4| "failed") (-1 (-121) |#4|) $) NIL)) (-1665 (((-3 $ "failed") $ |#4|) 47)) (-1807 (($ $ |#4|) NIL) (((-634 $) |#4| $) 89) (((-634 $) |#4| (-634 $)) NIL) (((-634 $) (-634 |#4|) $) NIL) (((-634 $) (-634 |#4|) (-634 $)) 85)) (-1387 (((-121) (-1 (-121) |#4|) $) NIL (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 |#4|) (-634 |#4|)) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090)))) (($ $ (-288 |#4|)) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090)))) (($ $ (-634 (-288 |#4|))) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090))))) (-3171 (((-121) $ $) NIL)) (-3084 (((-121) $) 15)) (-3248 (($) 13)) (-3206 (((-763) $) NIL)) (-4168 (((-763) |#4| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#4| (-1090)))) (((-763) (-1 (-121) |#4|) $) NIL (|has| $ (-6 -4519)))) (-3863 (($ $) 12)) (-4278 (((-541) $) NIL (|has| |#4| (-609 (-541))))) (-4287 (($ (-634 |#4|)) 20)) (-1290 (($ $ |#3|) 42)) (-3732 (($ $ |#3|) 43)) (-1567 (($ $) NIL)) (-3944 (($ $ |#3|) NIL)) (-2745 (((-850) $) 31) (((-634 |#4|) $) 40)) (-1878 (((-763) $) NIL (|has| |#3| (-370)))) (-3556 (((-3 (-2 (|:| |bas| $) (|:| -2616 (-634 |#4|))) "failed") (-634 |#4|) (-1 (-121) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2616 (-634 |#4|))) "failed") (-634 |#4|) (-1 (-121) |#4|) (-1 (-121) |#4| |#4|)) NIL)) (-3292 (((-121) $ (-1 (-121) |#4| (-634 |#4|))) NIL)) (-2574 (((-634 $) |#4| $) 53) (((-634 $) |#4| (-634 $)) NIL) (((-634 $) (-634 |#4|) $) NIL) (((-634 $) (-634 |#4|) (-634 $)) NIL)) (-1319 (((-121) (-1 (-121) |#4|) $) NIL (|has| $ (-6 -4519)))) (-2739 (((-634 |#3|) $) NIL)) (-2288 (((-121) |#4| $) NIL)) (-4390 (((-121) |#3| $) 60)) (-1717 (((-121) $ $) NIL)) (-1697 (((-763) $) NIL (|has| $ (-6 -4519))))) +(((-1131 |#1| |#2| |#3| |#4|) (-13 (-1099 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3473 ((-634 $) |#4| $ (-121) (-121) (-121) (-121) (-121))) (-15 -2415 ((-634 $) (-634 |#4|) (-121) (-121))) (-15 -2415 ((-634 $) (-634 |#4|) (-121) (-121) (-121) (-121))) (-15 -2099 ((-634 $) (-634 |#4|) (-121) (-121) (-121))) (-15 -1796 ((-2 (|:| |val| (-634 |#4|)) (|:| |towers| (-634 $))) (-634 |#4|) (-121) (-121))))) (-453) (-788) (-842) (-1061 |#1| |#2| |#3|)) (T -1131)) +((-3473 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-121)) (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-5 *2 (-634 (-1131 *5 *6 *7 *3))) (-5 *1 (-1131 *5 *6 *7 *3)) (-4 *3 (-1061 *5 *6 *7)))) (-2415 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-634 *8)) (-5 *4 (-121)) (-4 *8 (-1061 *5 *6 *7)) (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-5 *2 (-634 (-1131 *5 *6 *7 *8))) (-5 *1 (-1131 *5 *6 *7 *8)))) (-2415 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-634 *8)) (-5 *4 (-121)) (-4 *8 (-1061 *5 *6 *7)) (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-5 *2 (-634 (-1131 *5 *6 *7 *8))) (-5 *1 (-1131 *5 *6 *7 *8)))) (-2099 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-634 *8)) (-5 *4 (-121)) (-4 *8 (-1061 *5 *6 *7)) (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-5 *2 (-634 (-1131 *5 *6 *7 *8))) (-5 *1 (-1131 *5 *6 *7 *8)))) (-1796 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-121)) (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *8 (-1061 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-634 *8)) (|:| |towers| (-634 (-1131 *5 *6 *7 *8))))) (-5 *1 (-1131 *5 *6 *7 *8)) (-5 *3 (-634 *8))))) +(-13 (-1099 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3473 ((-634 $) |#4| $ (-121) (-121) (-121) (-121) (-121))) (-15 -2415 ((-634 $) (-634 |#4|) (-121) (-121))) (-15 -2415 ((-634 $) (-634 |#4|) (-121) (-121) (-121) (-121))) (-15 -2099 ((-634 $) (-634 |#4|) (-121) (-121) (-121))) (-15 -1796 ((-2 (|:| |val| (-634 |#4|)) (|:| |towers| (-634 $))) (-634 |#4|) (-121) (-121))))) +((-2447 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-2616 ((|#1| $) 28)) (-1472 (($ (-634 |#1|)) 33)) (-2510 (((-121) $ (-763)) NIL)) (-2671 (($) NIL T CONST)) (-2918 ((|#1| |#1| $) 30)) (-2899 ((|#1| $) 26)) (-4360 (((-634 |#1|) $) 34 (|has| $ (-6 -4519)))) (-1737 (((-121) $ (-763)) NIL)) (-1979 (((-634 |#1|) $) NIL (|has| $ (-6 -4519)))) (-3109 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-3674 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#1| |#1|) $) 37)) (-2166 (((-121) $ (-763)) NIL)) (-4487 (((-1143) $) NIL (|has| |#1| (-1090)))) (-1890 ((|#1| $) 29)) (-4450 (($ |#1| $) 31)) (-4022 (((-1108) $) NIL (|has| |#1| (-1090)))) (-1315 ((|#1| $) 27)) (-1387 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-634 |#1|) (-634 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))))) (-3171 (((-121) $ $) NIL)) (-3084 (((-121) $) 24)) (-3248 (($) 32)) (-4154 (((-763) $) 22)) (-4168 (((-763) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519))) (((-763) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-3863 (($ $) 20)) (-2745 (((-850) $) 17 (|has| |#1| (-1090)))) (-2367 (($ (-634 |#1|)) NIL)) (-1319 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-1717 (((-121) $ $) 12 (|has| |#1| (-1090)))) (-1697 (((-763) $) 23 (|has| $ (-6 -4519))))) +(((-1132 |#1|) (-13 (-1109 |#1|) (-10 -8 (-15 -1472 ($ (-634 |#1|))) (-15 -2899 (|#1| $)) (-15 -1315 (|#1| $)) (-15 -2918 (|#1| |#1| $)) (-15 -4450 ($ |#1| $)) (-15 -1890 (|#1| $)) (-15 -2616 (|#1| $)) (-15 -4154 ((-763) $)) (-15 -2166 ((-121) $ (-763))) (-15 -1737 ((-121) $ (-763))) (-15 -2510 ((-121) $ (-763))) (-15 -2367 ($ (-634 |#1|))) (-15 -3084 ((-121) $)) (-15 -3248 ($)) (-15 -2671 ($)) (-15 -3863 ($ $)) (-15 -3171 ((-121) $ $)) (-15 -2795 ($ (-1 |#1| |#1|) $)) (IF (|has| $ (-6 -4520)) (-15 -3674 ($ (-1 |#1| |#1|) $)) |noBranch|) (IF (|has| |#1| (-1090)) (PROGN (-15 -4487 ((-1143) $)) (-15 -4022 ((-1108) $)) (-15 -2745 ((-850) $)) (-15 -1717 ((-121) $ $)) (-15 -2447 ((-121) $ $))) |noBranch|) (IF (|has| $ (-6 -4519)) (PROGN (-15 -1387 ((-121) (-1 (-121) |#1|) $)) (-15 -1319 ((-121) (-1 (-121) |#1|) $)) (-15 -4168 ((-763) (-1 (-121) |#1|) $)) (-15 -1697 ((-763) $)) (-15 -4360 ((-634 |#1|) $)) (-15 -1979 ((-634 |#1|) $))) |noBranch|) (IF (|has| $ (-6 -4519)) (IF (|has| |#1| (-1090)) (PROGN (-15 -3109 ((-121) |#1| $)) (-15 -4168 ((-763) |#1| $))) |noBranch|) |noBranch|))) (-1090)) (T -1132)) +((-3171 (*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1132 *3)) (-4 *3 (-1090)))) (-3863 (*1 *1 *1) (-12 (-5 *1 (-1132 *2)) (-4 *2 (-1090)))) (-3248 (*1 *1) (-12 (-5 *1 (-1132 *2)) (-4 *2 (-1090)))) (-3084 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1132 *3)) (-4 *3 (-1090)))) (-2166 (*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-5 *2 (-121)) (-5 *1 (-1132 *4)) (-4 *4 (-1090)))) (-1737 (*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-5 *2 (-121)) (-5 *1 (-1132 *4)) (-4 *4 (-1090)))) (-2510 (*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-5 *2 (-121)) (-5 *1 (-1132 *4)) (-4 *4 (-1090)))) (-2671 (*1 *1) (-12 (-5 *1 (-1132 *2)) (-4 *2 (-1090)))) (-1697 (*1 *2 *1) (-12 (|has| $ (-6 -4519)) (-5 *2 (-763)) (-5 *1 (-1132 *3)) (-4 *3 (-1090)))) (-2795 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1090)) (-5 *1 (-1132 *3)))) (-3674 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| $ (-6 -4520)) (-4 *3 (-1090)) (-5 *1 (-1132 *3)))) (-1319 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| $ (-6 -4519)) (-4 *4 (-1090)) (-5 *2 (-121)) (-5 *1 (-1132 *4)))) (-1387 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| $ (-6 -4519)) (-4 *4 (-1090)) (-5 *2 (-121)) (-5 *1 (-1132 *4)))) (-4168 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| $ (-6 -4519)) (-4 *4 (-1090)) (-5 *2 (-763)) (-5 *1 (-1132 *4)))) (-4360 (*1 *2 *1) (-12 (|has| $ (-6 -4519)) (-5 *2 (-634 *3)) (-5 *1 (-1132 *3)) (-4 *3 (-1090)))) (-1979 (*1 *2 *1) (-12 (|has| $ (-6 -4519)) (-5 *2 (-634 *3)) (-5 *1 (-1132 *3)) (-4 *3 (-1090)))) (-4168 (*1 *2 *3 *1) (-12 (|has| $ (-6 -4519)) (-5 *2 (-763)) (-5 *1 (-1132 *3)) (-4 *3 (-1090)) (-4 *3 (-1090)))) (-3109 (*1 *2 *3 *1) (-12 (|has| $ (-6 -4519)) (-5 *2 (-121)) (-5 *1 (-1132 *3)) (-4 *3 (-1090)) (-4 *3 (-1090)))) (-4487 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1132 *3)) (-4 *3 (-1090)) (-4 *3 (-1090)))) (-4022 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1132 *3)) (-4 *3 (-1090)) (-4 *3 (-1090)))) (-2745 (*1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-1132 *3)) (-4 *3 (-1090)) (-4 *3 (-1090)))) (-1717 (*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1132 *3)) (-4 *3 (-1090)) (-4 *3 (-1090)))) (-2447 (*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1132 *3)) (-4 *3 (-1090)) (-4 *3 (-1090)))) (-2367 (*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-1090)) (-5 *1 (-1132 *3)))) (-1315 (*1 *2 *1) (-12 (-5 *1 (-1132 *2)) (-4 *2 (-1090)))) (-4450 (*1 *1 *2 *1) (-12 (-5 *1 (-1132 *2)) (-4 *2 (-1090)))) (-1890 (*1 *2 *1) (-12 (-5 *1 (-1132 *2)) (-4 *2 (-1090)))) (-2918 (*1 *2 *2 *1) (-12 (-5 *1 (-1132 *2)) (-4 *2 (-1090)))) (-2899 (*1 *2 *1) (-12 (-5 *1 (-1132 *2)) (-4 *2 (-1090)))) (-2616 (*1 *2 *1) (-12 (-5 *1 (-1132 *2)) (-4 *2 (-1090)))) (-4154 (*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-1132 *3)) (-4 *3 (-1090)))) (-1472 (*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-1090)) (-5 *1 (-1132 *3))))) +(-13 (-1109 |#1|) (-10 -8 (-15 -1472 ($ (-634 |#1|))) (-15 -2899 (|#1| $)) (-15 -1315 (|#1| $)) (-15 -2918 (|#1| |#1| $)) (-15 -4450 ($ |#1| $)) (-15 -1890 (|#1| $)) (-15 -2616 (|#1| $)) (-15 -4154 ((-763) $)) (-15 -2166 ((-121) $ (-763))) (-15 -1737 ((-121) $ (-763))) (-15 -2510 ((-121) $ (-763))) (-15 -2367 ($ (-634 |#1|))) (-15 -3084 ((-121) $)) (-15 -3248 ($)) (-15 -2671 ($)) (-15 -3863 ($ $)) (-15 -3171 ((-121) $ $)) (-15 -2795 ($ (-1 |#1| |#1|) $)) (IF (|has| $ (-6 -4520)) (-15 -3674 ($ (-1 |#1| |#1|) $)) |noBranch|) (IF (|has| |#1| (-1090)) (PROGN (-15 -4487 ((-1143) $)) (-15 -4022 ((-1108) $)) (-15 -2745 ((-850) $)) (-15 -1717 ((-121) $ $)) (-15 -2447 ((-121) $ $))) |noBranch|) (IF (|has| $ (-6 -4519)) (PROGN (-15 -1387 ((-121) (-1 (-121) |#1|) $)) (-15 -1319 ((-121) (-1 (-121) |#1|) $)) (-15 -4168 ((-763) (-1 (-121) |#1|) $)) (-15 -1697 ((-763) $)) (-15 -4360 ((-634 |#1|) $)) (-15 -1979 ((-634 |#1|) $))) |noBranch|) (IF (|has| $ (-6 -4519)) (IF (|has| |#1| (-1090)) (PROGN (-15 -3109 ((-121) |#1| $)) (-15 -4168 ((-763) |#1| $))) |noBranch|) |noBranch|))) +((-2436 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1210 (-568)) |#2|) 43) ((|#2| $ (-568) |#2|) 40)) (-1601 (((-121) $) 11)) (-3674 (($ (-1 |#2| |#2|) $) 38)) (-3876 ((|#2| $) NIL) (($ $ (-763)) 16)) (-3724 (($ $ |#2|) 39)) (-1786 (((-121) $) 10)) (-2779 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1210 (-568))) 30) ((|#2| $ (-568)) 22) ((|#2| $ (-568) |#2|) NIL)) (-3845 (($ $ $) 46) (($ $ |#2|) NIL)) (-2768 (($ $ $) 32) (($ |#2| $) NIL) (($ (-634 $)) 35) (($ $ |#2|) NIL))) +(((-1133 |#1| |#2|) (-10 -8 (-15 -1601 ((-121) |#1|)) (-15 -1786 ((-121) |#1|)) (-15 -2436 (|#2| |#1| (-568) |#2|)) (-15 -2779 (|#2| |#1| (-568) |#2|)) (-15 -2779 (|#2| |#1| (-568))) (-15 -3724 (|#1| |#1| |#2|)) (-15 -2768 (|#1| |#1| |#2|)) (-15 -2768 (|#1| (-634 |#1|))) (-15 -2779 (|#1| |#1| (-1210 (-568)))) (-15 -2436 (|#2| |#1| (-1210 (-568)) |#2|)) (-15 -2436 (|#2| |#1| "last" |#2|)) (-15 -2436 (|#1| |#1| "rest" |#1|)) (-15 -2436 (|#2| |#1| "first" |#2|)) (-15 -3845 (|#1| |#1| |#2|)) (-15 -3845 (|#1| |#1| |#1|)) (-15 -2779 (|#2| |#1| "last")) (-15 -2779 (|#1| |#1| "rest")) (-15 -3876 (|#1| |#1| (-763))) (-15 -2779 (|#2| |#1| "first")) (-15 -3876 (|#2| |#1|)) (-15 -2768 (|#1| |#2| |#1|)) (-15 -2768 (|#1| |#1| |#1|)) (-15 -2436 (|#2| |#1| "value" |#2|)) (-15 -2779 (|#2| |#1| "value")) (-15 -3674 (|#1| (-1 |#2| |#2|) |#1|))) (-1134 |#2|) (-1195)) (T -1133)) +NIL +(-10 -8 (-15 -1601 ((-121) |#1|)) (-15 -1786 ((-121) |#1|)) (-15 -2436 (|#2| |#1| (-568) |#2|)) (-15 -2779 (|#2| |#1| (-568) |#2|)) (-15 -2779 (|#2| |#1| (-568))) (-15 -3724 (|#1| |#1| |#2|)) (-15 -2768 (|#1| |#1| |#2|)) (-15 -2768 (|#1| (-634 |#1|))) (-15 -2779 (|#1| |#1| (-1210 (-568)))) (-15 -2436 (|#2| |#1| (-1210 (-568)) |#2|)) (-15 -2436 (|#2| |#1| "last" |#2|)) (-15 -2436 (|#1| |#1| "rest" |#1|)) (-15 -2436 (|#2| |#1| "first" |#2|)) (-15 -3845 (|#1| |#1| |#2|)) (-15 -3845 (|#1| |#1| |#1|)) (-15 -2779 (|#2| |#1| "last")) (-15 -2779 (|#1| |#1| "rest")) (-15 -3876 (|#1| |#1| (-763))) (-15 -2779 (|#2| |#1| "first")) (-15 -3876 (|#2| |#1|)) (-15 -2768 (|#1| |#2| |#1|)) (-15 -2768 (|#1| |#1| |#1|)) (-15 -2436 (|#2| |#1| "value" |#2|)) (-15 -2779 (|#2| |#1| "value")) (-15 -3674 (|#1| (-1 |#2| |#2|) |#1|))) +((-2447 (((-121) $ $) 18 (|has| |#1| (-1090)))) (-2850 ((|#1| $) 45)) (-2235 ((|#1| $) 62)) (-2796 (($ $) 64)) (-1868 (((-1249) $ (-568) (-568)) 94 (|has| $ (-6 -4520)))) (-3910 (($ $ (-568)) 49 (|has| $ (-6 -4520)))) (-2510 (((-121) $ (-763)) 8)) (-1659 ((|#1| $ |#1|) 36 (|has| $ (-6 -4520)))) (-3869 (($ $ $) 53 (|has| $ (-6 -4520)))) (-2395 ((|#1| $ |#1|) 51 (|has| $ (-6 -4520)))) (-2517 ((|#1| $ |#1|) 55 (|has| $ (-6 -4520)))) (-2436 ((|#1| $ "value" |#1|) 37 (|has| $ (-6 -4520))) ((|#1| $ "first" |#1|) 54 (|has| $ (-6 -4520))) (($ $ "rest" $) 52 (|has| $ (-6 -4520))) ((|#1| $ "last" |#1|) 50 (|has| $ (-6 -4520))) ((|#1| $ (-1210 (-568)) |#1|) 114 (|has| $ (-6 -4520))) ((|#1| $ (-568) |#1|) 83 (|has| $ (-6 -4520)))) (-3827 (($ $ (-634 $)) 38 (|has| $ (-6 -4520)))) (-2801 (($ (-1 (-121) |#1|) $) 99 (|has| $ (-6 -4519)))) (-1679 ((|#1| $) 63)) (-2671 (($) 7 T CONST)) (-3935 (($ $) 70) (($ $ (-763)) 68)) (-3924 (($ $) 96 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-4328 (($ (-1 (-121) |#1|) $) 100 (|has| $ (-6 -4519))) (($ |#1| $) 97 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-3092 ((|#1| (-1 |#1| |#1| |#1|) $) 102 (|has| $ (-6 -4519))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 101 (|has| $ (-6 -4519))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 98 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-3989 ((|#1| $ (-568) |#1|) 82 (|has| $ (-6 -4520)))) (-2602 ((|#1| $ (-568)) 84)) (-1601 (((-121) $) 80)) (-4360 (((-634 |#1|) $) 30 (|has| $ (-6 -4519)))) (-2287 (((-634 $) $) 47)) (-1700 (((-121) $ $) 39 (|has| |#1| (-1090)))) (-1849 (($ (-763) |#1|) 105)) (-1737 (((-121) $ (-763)) 9)) (-1881 (((-568) $) 92 (|has| (-568) (-842)))) (-1979 (((-634 |#1|) $) 29 (|has| $ (-6 -4519)))) (-3109 (((-121) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-2223 (((-568) $) 91 (|has| (-568) (-842)))) (-3674 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 108)) (-2166 (((-121) $ (-763)) 10)) (-2869 (((-634 |#1|) $) 42)) (-1651 (((-121) $) 46)) (-4487 (((-1143) $) 22 (|has| |#1| (-1090)))) (-4162 ((|#1| $) 67) (($ $ (-763)) 65)) (-4122 (($ $ $ (-568)) 113) (($ |#1| $ (-568)) 112)) (-4174 (((-634 (-568)) $) 89)) (-3578 (((-121) (-568) $) 88)) (-4022 (((-1108) $) 21 (|has| |#1| (-1090)))) (-3876 ((|#1| $) 73) (($ $ (-763)) 71)) (-3775 (((-3 |#1| "failed") (-1 (-121) |#1|) $) 103)) (-3724 (($ $ |#1|) 93 (|has| $ (-6 -4520)))) (-1786 (((-121) $) 81)) (-1387 (((-121) (-1 (-121) |#1|) $) 32 (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-634 |#1|) (-634 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))))) (-3171 (((-121) $ $) 14)) (-4467 (((-121) |#1| $) 90 (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-2041 (((-634 |#1|) $) 87)) (-3084 (((-121) $) 11)) (-3248 (($) 12)) (-2779 ((|#1| $ "value") 44) ((|#1| $ "first") 72) (($ $ "rest") 69) ((|#1| $ "last") 66) (($ $ (-1210 (-568))) 109) ((|#1| $ (-568)) 86) ((|#1| $ (-568) |#1|) 85)) (-4075 (((-568) $ $) 41)) (-2826 (($ $ (-1210 (-568))) 111) (($ $ (-568)) 110)) (-3790 (((-121) $) 43)) (-2340 (($ $) 59)) (-2714 (($ $) 56 (|has| $ (-6 -4520)))) (-2775 (((-763) $) 60)) (-3335 (($ $) 61)) (-4168 (((-763) (-1 (-121) |#1|) $) 31 (|has| $ (-6 -4519))) (((-763) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-3863 (($ $) 13)) (-4278 (((-541) $) 95 (|has| |#1| (-609 (-541))))) (-4287 (($ (-634 |#1|)) 104)) (-3845 (($ $ $) 58 (|has| $ (-6 -4520))) (($ $ |#1|) 57 (|has| $ (-6 -4520)))) (-2768 (($ $ $) 75) (($ |#1| $) 74) (($ (-634 $)) 107) (($ $ |#1|) 106)) (-2745 (((-850) $) 20 (|has| |#1| (-1090)))) (-4339 (((-634 $) $) 48)) (-3491 (((-121) $ $) 40 (|has| |#1| (-1090)))) (-1319 (((-121) (-1 (-121) |#1|) $) 33 (|has| $ (-6 -4519)))) (-1717 (((-121) $ $) 19 (|has| |#1| (-1090)))) (-1697 (((-763) $) 6 (|has| $ (-6 -4519))))) +(((-1134 |#1|) (-1275) (-1195)) (T -1134)) +((-1786 (*1 *2 *1) (-12 (-4 *1 (-1134 *3)) (-4 *3 (-1195)) (-5 *2 (-121)))) (-1601 (*1 *2 *1) (-12 (-4 *1 (-1134 *3)) (-4 *3 (-1195)) (-5 *2 (-121))))) +(-13 (-1231 |t#1|) (-640 |t#1|) (-10 -8 (-15 -1786 ((-121) $)) (-15 -1601 ((-121) $)))) +(((-39) . T) ((-105) |has| |#1| (-1090)) ((-608 (-850)) |has| |#1| (-1090)) ((-154 |#1|) . T) ((-609 (-541)) |has| |#1| (-609 (-541))) ((-281 (-568) |#1|) . T) ((-283 (-568) |#1|) . T) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))) ((-499 |#1|) . T) ((-601 (-568) |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))) ((-640 |#1|) . T) ((-1010 |#1|) . T) ((-1090) |has| |#1| (-1090)) ((-1195) . T) ((-1231 |#1|) . T)) +((-2447 (((-121) $ $) NIL (-2198 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-2986 (($) NIL) (($ (-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) NIL)) (-1868 (((-1249) $ |#1| |#1|) NIL (|has| $ (-6 -4520)))) (-2510 (((-121) $ (-763)) NIL)) (-2436 ((|#2| $ |#1| |#2|) NIL)) (-3507 (($ (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519)))) (-2801 (($ (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519)))) (-2674 (((-3 |#2| "failed") |#1| $) NIL)) (-2671 (($) NIL T CONST)) (-3924 (($ $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090))))) (-3405 (($ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) NIL (|has| $ (-6 -4519))) (($ (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519))) (((-3 |#2| "failed") |#1| $) NIL)) (-4328 (($ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (($ (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519)))) (-3092 (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) NIL (|has| $ (-6 -4519))) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519)))) (-3989 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4520)))) (-2602 ((|#2| $ |#1|) NIL)) (-4360 (((-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519))) (((-634 |#2|) $) NIL (|has| $ (-6 -4519)))) (-1737 (((-121) $ (-763)) NIL)) (-1881 ((|#1| $) NIL (|has| |#1| (-842)))) (-1979 (((-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519))) (((-634 |#2|) $) NIL (|has| $ (-6 -4519)))) (-3109 (((-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (((-121) |#2| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#2| (-1090))))) (-2223 ((|#1| $) NIL (|has| |#1| (-842)))) (-3674 (($ (-1 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4520))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4520)))) (-2795 (($ (-1 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2166 (((-121) $ (-763)) NIL)) (-4487 (((-1143) $) NIL (-2198 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-1946 (((-634 |#1|) $) NIL)) (-3548 (((-121) |#1| $) NIL)) (-1890 (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) NIL)) (-4450 (($ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) NIL)) (-4174 (((-634 |#1|) $) NIL)) (-3578 (((-121) |#1| $) NIL)) (-4022 (((-1108) $) NIL (-2198 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-3876 ((|#2| $) NIL (|has| |#1| (-842)))) (-3775 (((-3 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) "failed") (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL)) (-3724 (($ $ |#2|) NIL (|has| $ (-6 -4520)))) (-1315 (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) NIL)) (-1387 (((-121) (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519))) (((-121) (-1 (-121) |#2|) $) NIL (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))))) NIL (-12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (($ $ (-288 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) NIL (-12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (($ $ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) NIL (-12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (($ $ (-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) (-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) NIL (-12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (($ $ (-634 |#2|) (-634 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090)))) (($ $ (-634 (-288 |#2|))) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090))))) (-3171 (((-121) $ $) NIL)) (-4467 (((-121) |#2| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#2| (-1090))))) (-2041 (((-634 |#2|) $) NIL)) (-3084 (((-121) $) NIL)) (-3248 (($) NIL)) (-2779 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2085 (($) NIL) (($ (-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) NIL)) (-4168 (((-763) (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519))) (((-763) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (((-763) |#2| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#2| (-1090)))) (((-763) (-1 (-121) |#2|) $) NIL (|has| $ (-6 -4519)))) (-3863 (($ $) NIL)) (-4278 (((-541) $) NIL (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-609 (-541))))) (-4287 (($ (-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) NIL)) (-2745 (((-850) $) NIL (-2198 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-2367 (($ (-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) NIL)) (-1319 (((-121) (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519))) (((-121) (-1 (-121) |#2|) $) NIL (|has| $ (-6 -4519)))) (-1717 (((-121) $ $) NIL (-2198 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-1697 (((-763) $) NIL (|has| $ (-6 -4519))))) +(((-1135 |#1| |#2| |#3|) (-1172 |#1| |#2|) (-1090) (-1090) |#2|) (T -1135)) +NIL +(-1172 |#1| |#2|) +((-2447 (((-121) $ $) 7)) (-3038 (((-3 $ "failed") $) 12)) (-4487 (((-1143) $) 9)) (-4434 (($) 13 T CONST)) (-4022 (((-1108) $) 10)) (-2745 (((-850) $) 11)) (-1717 (((-121) $ $) 6))) +(((-1136) (-1275)) (T -1136)) +((-4434 (*1 *1) (-4 *1 (-1136))) (-3038 (*1 *1 *1) (|partial| -4 *1 (-1136)))) +(-13 (-1090) (-10 -8 (-15 -4434 ($) -3495) (-15 -3038 ((-3 $ "failed") $)))) +(((-105) . T) ((-608 (-850)) . T) ((-1090) . T)) +((-2049 (((-1141 |#1|) (-1141 |#1|)) 17)) (-1975 (((-1141 |#1|) (-1141 |#1|)) 13)) (-4216 (((-1141 |#1|) (-1141 |#1|) (-568) (-568)) 20)) (-2710 (((-1141 |#1|) (-1141 |#1|)) 15))) +(((-1137 |#1|) (-10 -7 (-15 -1975 ((-1141 |#1|) (-1141 |#1|))) (-15 -2710 ((-1141 |#1|) (-1141 |#1|))) (-15 -2049 ((-1141 |#1|) (-1141 |#1|))) (-15 -4216 ((-1141 |#1|) (-1141 |#1|) (-568) (-568)))) (-13 (-558) (-150))) (T -1137)) +((-4216 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1141 *4)) (-5 *3 (-568)) (-4 *4 (-13 (-558) (-150))) (-5 *1 (-1137 *4)))) (-2049 (*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-13 (-558) (-150))) (-5 *1 (-1137 *3)))) (-2710 (*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-13 (-558) (-150))) (-5 *1 (-1137 *3)))) (-1975 (*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-13 (-558) (-150))) (-5 *1 (-1137 *3))))) +(-10 -7 (-15 -1975 ((-1141 |#1|) (-1141 |#1|))) (-15 -2710 ((-1141 |#1|) (-1141 |#1|))) (-15 -2049 ((-1141 |#1|) (-1141 |#1|))) (-15 -4216 ((-1141 |#1|) (-1141 |#1|) (-568) (-568)))) +((-2768 (((-1141 |#1|) (-1141 (-1141 |#1|))) 15))) +(((-1138 |#1|) (-10 -7 (-15 -2768 ((-1141 |#1|) (-1141 (-1141 |#1|))))) (-1195)) (T -1138)) +((-2768 (*1 *2 *3) (-12 (-5 *3 (-1141 (-1141 *4))) (-5 *2 (-1141 *4)) (-5 *1 (-1138 *4)) (-4 *4 (-1195))))) +(-10 -7 (-15 -2768 ((-1141 |#1|) (-1141 (-1141 |#1|))))) +((-2512 (((-1141 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1141 |#1|)) 25)) (-3092 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1141 |#1|)) 26)) (-2795 (((-1141 |#2|) (-1 |#2| |#1|) (-1141 |#1|)) 16))) +(((-1139 |#1| |#2|) (-10 -7 (-15 -2795 ((-1141 |#2|) (-1 |#2| |#1|) (-1141 |#1|))) (-15 -2512 ((-1141 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1141 |#1|))) (-15 -3092 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1141 |#1|)))) (-1195) (-1195)) (T -1139)) +((-3092 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1141 *5)) (-4 *5 (-1195)) (-4 *2 (-1195)) (-5 *1 (-1139 *5 *2)))) (-2512 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1141 *6)) (-4 *6 (-1195)) (-4 *3 (-1195)) (-5 *2 (-1141 *3)) (-5 *1 (-1139 *6 *3)))) (-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1141 *5)) (-4 *5 (-1195)) (-4 *6 (-1195)) (-5 *2 (-1141 *6)) (-5 *1 (-1139 *5 *6))))) +(-10 -7 (-15 -2795 ((-1141 |#2|) (-1 |#2| |#1|) (-1141 |#1|))) (-15 -2512 ((-1141 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1141 |#1|))) (-15 -3092 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1141 |#1|)))) +((-2795 (((-1141 |#3|) (-1 |#3| |#1| |#2|) (-1141 |#1|) (-1141 |#2|)) 21))) +(((-1140 |#1| |#2| |#3|) (-10 -7 (-15 -2795 ((-1141 |#3|) (-1 |#3| |#1| |#2|) (-1141 |#1|) (-1141 |#2|)))) (-1195) (-1195) (-1195)) (T -1140)) +((-2795 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1141 *6)) (-5 *5 (-1141 *7)) (-4 *6 (-1195)) (-4 *7 (-1195)) (-4 *8 (-1195)) (-5 *2 (-1141 *8)) (-5 *1 (-1140 *6 *7 *8))))) +(-10 -7 (-15 -2795 ((-1141 |#3|) (-1 |#3| |#1| |#2|) (-1141 |#1|) (-1141 |#2|)))) +((-2447 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-2850 ((|#1| $) NIL)) (-2235 ((|#1| $) NIL)) (-2796 (($ $) 48)) (-1868 (((-1249) $ (-568) (-568)) 73 (|has| $ (-6 -4520)))) (-3910 (($ $ (-568)) 107 (|has| $ (-6 -4520)))) (-2510 (((-121) $ (-763)) NIL)) (-3388 (((-850) $) 37 (|has| |#1| (-1090)))) (-1340 (((-121)) 38 (|has| |#1| (-1090)))) (-1659 ((|#1| $ |#1|) NIL (|has| $ (-6 -4520)))) (-3869 (($ $ $) 95 (|has| $ (-6 -4520))) (($ $ (-568) $) 117)) (-2395 ((|#1| $ |#1|) 104 (|has| $ (-6 -4520)))) (-2517 ((|#1| $ |#1|) 99 (|has| $ (-6 -4520)))) (-2436 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4520))) ((|#1| $ "first" |#1|) 101 (|has| $ (-6 -4520))) (($ $ "rest" $) 103 (|has| $ (-6 -4520))) ((|#1| $ "last" |#1|) 106 (|has| $ (-6 -4520))) ((|#1| $ (-1210 (-568)) |#1|) 86 (|has| $ (-6 -4520))) ((|#1| $ (-568) |#1|) 52 (|has| $ (-6 -4520)))) (-3827 (($ $ (-634 $)) NIL (|has| $ (-6 -4520)))) (-2801 (($ (-1 (-121) |#1|) $) 55)) (-1679 ((|#1| $) NIL)) (-2671 (($) NIL T CONST)) (-1496 (($ $) 14)) (-3935 (($ $) 28) (($ $ (-763)) 85)) (-3516 (((-121) (-634 |#1|) $) 112 (|has| |#1| (-1090)))) (-2116 (($ (-634 |#1|)) 109)) (-3924 (($ $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-4328 (($ |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090)))) (($ (-1 (-121) |#1|) $) 54)) (-3092 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4519))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4519))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-3989 ((|#1| $ (-568) |#1|) NIL (|has| $ (-6 -4520)))) (-2602 ((|#1| $ (-568)) NIL)) (-1601 (((-121) $) NIL)) (-4360 (((-634 |#1|) $) NIL (|has| $ (-6 -4519)))) (-3494 (((-1249) (-568) $) 116 (|has| |#1| (-1090)))) (-3836 (((-763) $) 114)) (-2287 (((-634 $) $) NIL)) (-1700 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-1849 (($ (-763) |#1|) NIL)) (-1737 (((-121) $ (-763)) NIL)) (-1881 (((-568) $) NIL (|has| (-568) (-842)))) (-1979 (((-634 |#1|) $) NIL (|has| $ (-6 -4519)))) (-3109 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-2223 (((-568) $) NIL (|has| (-568) (-842)))) (-3674 (($ (-1 |#1| |#1|) $) 70 (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#1| |#1|) $) 60) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2166 (((-121) $ (-763)) NIL)) (-2869 (((-634 |#1|) $) NIL)) (-1651 (((-121) $) NIL)) (-2892 (($ $) 87)) (-3851 (((-121) $) 13)) (-4487 (((-1143) $) NIL (|has| |#1| (-1090)))) (-4162 ((|#1| $) NIL) (($ $ (-763)) NIL)) (-4122 (($ $ $ (-568)) NIL) (($ |#1| $ (-568)) NIL)) (-4174 (((-634 (-568)) $) NIL)) (-3578 (((-121) (-568) $) 71)) (-4022 (((-1108) $) NIL (|has| |#1| (-1090)))) (-2781 (($ (-1 |#1|)) 119) (($ (-1 |#1| |#1|) |#1|) 120)) (-3121 ((|#1| $) 10)) (-3876 ((|#1| $) 27) (($ $ (-763)) 46)) (-2930 (((-2 (|:| |cycle?| (-121)) (|:| -3390 (-763)) (|:| |period| (-763))) (-763) $) 24)) (-3775 (((-3 |#1| "failed") (-1 (-121) |#1|) $) NIL)) (-2794 (($ (-1 (-121) |#1|) $) 121)) (-2798 (($ (-1 (-121) |#1|) $) 122)) (-3724 (($ $ |#1|) 65 (|has| $ (-6 -4520)))) (-1807 (($ $ (-568)) 31)) (-1786 (((-121) $) 69)) (-1368 (((-121) $) 12)) (-3552 (((-121) $) 113)) (-1387 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-634 |#1|) (-634 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))))) (-3171 (((-121) $ $) 20)) (-4467 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-2041 (((-634 |#1|) $) NIL)) (-3084 (((-121) $) 15)) (-3248 (($) 40)) (-2779 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1210 (-568))) NIL) ((|#1| $ (-568)) 51) ((|#1| $ (-568) |#1|) NIL)) (-4075 (((-568) $ $) 45)) (-2826 (($ $ (-1210 (-568))) NIL) (($ $ (-568)) NIL)) (-4493 (($ (-1 $)) 44)) (-3790 (((-121) $) 66)) (-2340 (($ $) 67)) (-2714 (($ $) 96 (|has| $ (-6 -4520)))) (-2775 (((-763) $) NIL)) (-3335 (($ $) NIL)) (-4168 (((-763) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519))) (((-763) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-3863 (($ $) 41)) (-4278 (((-541) $) NIL (|has| |#1| (-609 (-541))))) (-4287 (($ (-634 |#1|)) 50)) (-3853 (($ |#1| $) 94)) (-3845 (($ $ $) 97 (|has| $ (-6 -4520))) (($ $ |#1|) 98 (|has| $ (-6 -4520)))) (-2768 (($ $ $) 75) (($ |#1| $) 42) (($ (-634 $)) 80) (($ $ |#1|) 74)) (-1811 (($ $) 47)) (-2745 (((-850) $) 39 (|has| |#1| (-1090))) (($ (-634 |#1|)) 108)) (-4339 (((-634 $) $) NIL)) (-3491 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-1319 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-1717 (((-121) $ $) 111 (|has| |#1| (-1090)))) (-1697 (((-763) $) NIL (|has| $ (-6 -4519))))) +(((-1141 |#1|) (-13 (-665 |#1|) (-10 -8 (-6 -4520) (-15 -2745 ($ (-634 |#1|))) (-15 -2116 ($ (-634 |#1|))) (IF (|has| |#1| (-1090)) (-15 -3516 ((-121) (-634 |#1|) $)) |noBranch|) (-15 -2930 ((-2 (|:| |cycle?| (-121)) (|:| -3390 (-763)) (|:| |period| (-763))) (-763) $)) (-15 -4493 ($ (-1 $))) (-15 -3853 ($ |#1| $)) (IF (|has| |#1| (-1090)) (PROGN (-15 -3494 ((-1249) (-568) $)) (-15 -3388 ((-850) $)) (-15 -1340 ((-121)))) |noBranch|) (-15 -3869 ($ $ (-568) $)) (-15 -2781 ($ (-1 |#1|))) (-15 -2781 ($ (-1 |#1| |#1|) |#1|)) (-15 -2794 ($ (-1 (-121) |#1|) $)) (-15 -2798 ($ (-1 (-121) |#1|) $)))) (-1195)) (T -1141)) +((-2745 (*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-1195)) (-5 *1 (-1141 *3)))) (-2116 (*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-1195)) (-5 *1 (-1141 *3)))) (-3516 (*1 *2 *3 *1) (-12 (-5 *3 (-634 *4)) (-4 *4 (-1090)) (-4 *4 (-1195)) (-5 *2 (-121)) (-5 *1 (-1141 *4)))) (-2930 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-121)) (|:| -3390 (-763)) (|:| |period| (-763)))) (-5 *1 (-1141 *4)) (-4 *4 (-1195)) (-5 *3 (-763)))) (-4493 (*1 *1 *2) (-12 (-5 *2 (-1 (-1141 *3))) (-5 *1 (-1141 *3)) (-4 *3 (-1195)))) (-3853 (*1 *1 *2 *1) (-12 (-5 *1 (-1141 *2)) (-4 *2 (-1195)))) (-3494 (*1 *2 *3 *1) (-12 (-5 *3 (-568)) (-5 *2 (-1249)) (-5 *1 (-1141 *4)) (-4 *4 (-1090)) (-4 *4 (-1195)))) (-3388 (*1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-1141 *3)) (-4 *3 (-1090)) (-4 *3 (-1195)))) (-1340 (*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-1141 *3)) (-4 *3 (-1090)) (-4 *3 (-1195)))) (-3869 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-568)) (-5 *1 (-1141 *3)) (-4 *3 (-1195)))) (-2781 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1195)) (-5 *1 (-1141 *3)))) (-2781 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1195)) (-5 *1 (-1141 *3)))) (-2794 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-121) *3)) (-4 *3 (-1195)) (-5 *1 (-1141 *3)))) (-2798 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-121) *3)) (-4 *3 (-1195)) (-5 *1 (-1141 *3))))) +(-13 (-665 |#1|) (-10 -8 (-6 -4520) (-15 -2745 ($ (-634 |#1|))) (-15 -2116 ($ (-634 |#1|))) (IF (|has| |#1| (-1090)) (-15 -3516 ((-121) (-634 |#1|) $)) |noBranch|) (-15 -2930 ((-2 (|:| |cycle?| (-121)) (|:| -3390 (-763)) (|:| |period| (-763))) (-763) $)) (-15 -4493 ($ (-1 $))) (-15 -3853 ($ |#1| $)) (IF (|has| |#1| (-1090)) (PROGN (-15 -3494 ((-1249) (-568) $)) (-15 -3388 ((-850) $)) (-15 -1340 ((-121)))) |noBranch|) (-15 -3869 ($ $ (-568) $)) (-15 -2781 ($ (-1 |#1|))) (-15 -2781 ($ (-1 |#1| |#1|) |#1|)) (-15 -2794 ($ (-1 (-121) |#1|) $)) (-15 -2798 ($ (-1 (-121) |#1|) $)))) +((-2447 (((-121) $ $) 18)) (-1873 (($ $) 113)) (-2072 (($ $) 114)) (-4403 (($ $ (-147)) 101) (($ $ (-142)) 100)) (-1868 (((-1249) $ (-568) (-568)) 37 (|has| $ (-6 -4520)))) (-3673 (((-121) $ $) 111)) (-3760 (((-121) $ $ (-568)) 110)) (-1742 (($ (-568)) 118)) (-3969 (((-634 $) $ (-147)) 103) (((-634 $) $ (-142)) 102)) (-2016 (((-121) (-1 (-121) (-147) (-147)) $) 91) (((-121) $) 85 (|has| (-147) (-842)))) (-3908 (($ (-1 (-121) (-147) (-147)) $) 82 (|has| $ (-6 -4520))) (($ $) 81 (-12 (|has| (-147) (-842)) (|has| $ (-6 -4520))))) (-3644 (($ (-1 (-121) (-147) (-147)) $) 92) (($ $) 86 (|has| (-147) (-842)))) (-2510 (((-121) $ (-763)) 8)) (-2436 (((-147) $ (-568) (-147)) 49 (|has| $ (-6 -4520))) (((-147) $ (-1210 (-568)) (-147)) 53 (|has| $ (-6 -4520)))) (-2801 (($ (-1 (-121) (-147)) $) 70 (|has| $ (-6 -4519)))) (-2671 (($) 7 T CONST)) (-1869 (($ $ (-147)) 97) (($ $ (-142)) 96)) (-1578 (($ $) 83 (|has| $ (-6 -4520)))) (-3943 (($ $) 93)) (-1386 (($ $ (-1210 (-568)) $) 107)) (-3924 (($ $) 73 (-12 (|has| (-147) (-1090)) (|has| $ (-6 -4519))))) (-4328 (($ (-147) $) 72 (-12 (|has| (-147) (-1090)) (|has| $ (-6 -4519)))) (($ (-1 (-121) (-147)) $) 69 (|has| $ (-6 -4519)))) (-3092 (((-147) (-1 (-147) (-147) (-147)) $ (-147) (-147)) 71 (-12 (|has| (-147) (-1090)) (|has| $ (-6 -4519)))) (((-147) (-1 (-147) (-147) (-147)) $ (-147)) 68 (|has| $ (-6 -4519))) (((-147) (-1 (-147) (-147) (-147)) $) 67 (|has| $ (-6 -4519)))) (-3989 (((-147) $ (-568) (-147)) 50 (|has| $ (-6 -4520)))) (-2602 (((-147) $ (-568)) 48)) (-3766 (((-121) $ $) 112)) (-2764 (((-568) (-1 (-121) (-147)) $) 90) (((-568) (-147) $) 89 (|has| (-147) (-1090))) (((-568) (-147) $ (-568)) 88 (|has| (-147) (-1090))) (((-568) $ $ (-568)) 106) (((-568) (-142) $ (-568)) 105)) (-4360 (((-634 (-147)) $) 30 (|has| $ (-6 -4519)))) (-1849 (($ (-763) (-147)) 64)) (-1737 (((-121) $ (-763)) 9)) (-1881 (((-568) $) 40 (|has| (-568) (-842)))) (-2521 (($ $ $) 80 (|has| (-147) (-842)))) (-1347 (($ (-1 (-121) (-147) (-147)) $ $) 94) (($ $ $) 87 (|has| (-147) (-842)))) (-1979 (((-634 (-147)) $) 29 (|has| $ (-6 -4519)))) (-3109 (((-121) (-147) $) 27 (-12 (|has| (-147) (-1090)) (|has| $ (-6 -4519))))) (-2223 (((-568) $) 41 (|has| (-568) (-842)))) (-3268 (($ $ $) 79 (|has| (-147) (-842)))) (-4062 (((-121) $ $ (-147)) 108)) (-2661 (((-763) $ $ (-147)) 109)) (-3674 (($ (-1 (-147) (-147)) $) 34 (|has| $ (-6 -4520)))) (-2795 (($ (-1 (-147) (-147)) $) 35) (($ (-1 (-147) (-147) (-147)) $ $) 59)) (-2496 (($ $) 115)) (-2003 (($ $) 116)) (-2166 (((-121) $ (-763)) 10)) (-3382 (($ $ (-147)) 99) (($ $ (-142)) 98)) (-4487 (((-1143) $) 22)) (-4122 (($ (-147) $ (-568)) 55) (($ $ $ (-568)) 54)) (-4174 (((-634 (-568)) $) 43)) (-3578 (((-121) (-568) $) 44)) (-4022 (((-1108) $) 21)) (-3876 (((-147) $) 39 (|has| (-568) (-842)))) (-3775 (((-3 (-147) "failed") (-1 (-121) (-147)) $) 66)) (-3724 (($ $ (-147)) 38 (|has| $ (-6 -4520)))) (-1387 (((-121) (-1 (-121) (-147)) $) 32 (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 (-147)))) 26 (-12 (|has| (-147) (-303 (-147))) (|has| (-147) (-1090)))) (($ $ (-288 (-147))) 25 (-12 (|has| (-147) (-303 (-147))) (|has| (-147) (-1090)))) (($ $ (-147) (-147)) 24 (-12 (|has| (-147) (-303 (-147))) (|has| (-147) (-1090)))) (($ $ (-634 (-147)) (-634 (-147))) 23 (-12 (|has| (-147) (-303 (-147))) (|has| (-147) (-1090))))) (-3171 (((-121) $ $) 14)) (-4467 (((-121) (-147) $) 42 (-12 (|has| $ (-6 -4519)) (|has| (-147) (-1090))))) (-2041 (((-634 (-147)) $) 45)) (-3084 (((-121) $) 11)) (-3248 (($) 12)) (-2779 (((-147) $ (-568) (-147)) 47) (((-147) $ (-568)) 46) (($ $ (-1210 (-568))) 58) (($ $ $) 95)) (-2826 (($ $ (-568)) 57) (($ $ (-1210 (-568))) 56)) (-4168 (((-763) (-1 (-121) (-147)) $) 31 (|has| $ (-6 -4519))) (((-763) (-147) $) 28 (-12 (|has| (-147) (-1090)) (|has| $ (-6 -4519))))) (-2256 (($ $ $ (-568)) 84 (|has| $ (-6 -4520)))) (-3863 (($ $) 13)) (-4278 (((-541) $) 74 (|has| (-147) (-609 (-541))))) (-4287 (($ (-634 (-147))) 65)) (-2768 (($ $ (-147)) 63) (($ (-147) $) 62) (($ $ $) 61) (($ (-634 $)) 60)) (-2745 (($ (-147)) 104) (((-850) $) 20)) (-1319 (((-121) (-1 (-121) (-147)) $) 33 (|has| $ (-6 -4519)))) (-3754 (((-1143) $) 122) (((-1143) $ (-121)) 121) (((-1249) (-817) $) 120) (((-1249) (-817) $ (-121)) 119)) (-1751 (((-121) $ $) 77 (|has| (-147) (-842)))) (-1738 (((-121) $ $) 76 (|has| (-147) (-842)))) (-1717 (((-121) $ $) 19)) (-1745 (((-121) $ $) 78 (|has| (-147) (-842)))) (-1732 (((-121) $ $) 75 (|has| (-147) (-842)))) (-1697 (((-763) $) 6 (|has| $ (-6 -4519))))) +(((-1142) (-1275)) (T -1142)) +((-1742 (*1 *1 *2) (-12 (-5 *2 (-568)) (-4 *1 (-1142))))) +(-13 (-1129) (-1090) (-823) (-10 -8 (-15 -1742 ($ (-568))))) +(((-39) . T) ((-105) . T) ((-608 (-850)) . T) ((-154 (-147)) . T) ((-609 (-541)) |has| (-147) (-609 (-541))) ((-281 (-568) (-147)) . T) ((-283 (-568) (-147)) . T) ((-303 (-147)) -12 (|has| (-147) (-303 (-147))) (|has| (-147) (-1090))) ((-375 (-147)) . T) ((-499 (-147)) . T) ((-601 (-568) (-147)) . T) ((-523 (-147) (-147)) -12 (|has| (-147) (-303 (-147))) (|has| (-147) (-1090))) ((-640 (-147)) . T) ((-19 (-147)) . T) ((-823) . T) ((-842) |has| (-147) (-842)) ((-1090) . T) ((-1129) . T) ((-1195) . T)) +((-2447 (((-121) $ $) NIL)) (-1873 (($ $) NIL)) (-2072 (($ $) NIL)) (-4403 (($ $ (-147)) NIL) (($ $ (-142)) NIL)) (-1868 (((-1249) $ (-568) (-568)) NIL (|has| $ (-6 -4520)))) (-3673 (((-121) $ $) NIL)) (-3760 (((-121) $ $ (-568)) NIL)) (-1742 (($ (-568)) 7)) (-3969 (((-634 $) $ (-147)) NIL) (((-634 $) $ (-142)) NIL)) (-2016 (((-121) (-1 (-121) (-147) (-147)) $) NIL) (((-121) $) NIL (|has| (-147) (-842)))) (-3908 (($ (-1 (-121) (-147) (-147)) $) NIL (|has| $ (-6 -4520))) (($ $) NIL (-12 (|has| $ (-6 -4520)) (|has| (-147) (-842))))) (-3644 (($ (-1 (-121) (-147) (-147)) $) NIL) (($ $) NIL (|has| (-147) (-842)))) (-2510 (((-121) $ (-763)) NIL)) (-2436 (((-147) $ (-568) (-147)) NIL (|has| $ (-6 -4520))) (((-147) $ (-1210 (-568)) (-147)) NIL (|has| $ (-6 -4520)))) (-2801 (($ (-1 (-121) (-147)) $) NIL (|has| $ (-6 -4519)))) (-2671 (($) NIL T CONST)) (-1869 (($ $ (-147)) NIL) (($ $ (-142)) NIL)) (-1578 (($ $) NIL (|has| $ (-6 -4520)))) (-3943 (($ $) NIL)) (-1386 (($ $ (-1210 (-568)) $) NIL)) (-3924 (($ $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-147) (-1090))))) (-4328 (($ (-147) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-147) (-1090)))) (($ (-1 (-121) (-147)) $) NIL (|has| $ (-6 -4519)))) (-3092 (((-147) (-1 (-147) (-147) (-147)) $ (-147) (-147)) NIL (-12 (|has| $ (-6 -4519)) (|has| (-147) (-1090)))) (((-147) (-1 (-147) (-147) (-147)) $ (-147)) NIL (|has| $ (-6 -4519))) (((-147) (-1 (-147) (-147) (-147)) $) NIL (|has| $ (-6 -4519)))) (-3989 (((-147) $ (-568) (-147)) NIL (|has| $ (-6 -4520)))) (-2602 (((-147) $ (-568)) NIL)) (-3766 (((-121) $ $) NIL)) (-2764 (((-568) (-1 (-121) (-147)) $) NIL) (((-568) (-147) $) NIL (|has| (-147) (-1090))) (((-568) (-147) $ (-568)) NIL (|has| (-147) (-1090))) (((-568) $ $ (-568)) NIL) (((-568) (-142) $ (-568)) NIL)) (-4360 (((-634 (-147)) $) NIL (|has| $ (-6 -4519)))) (-1849 (($ (-763) (-147)) NIL)) (-1737 (((-121) $ (-763)) NIL)) (-1881 (((-568) $) NIL (|has| (-568) (-842)))) (-2521 (($ $ $) NIL (|has| (-147) (-842)))) (-1347 (($ (-1 (-121) (-147) (-147)) $ $) NIL) (($ $ $) NIL (|has| (-147) (-842)))) (-1979 (((-634 (-147)) $) NIL (|has| $ (-6 -4519)))) (-3109 (((-121) (-147) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-147) (-1090))))) (-2223 (((-568) $) NIL (|has| (-568) (-842)))) (-3268 (($ $ $) NIL (|has| (-147) (-842)))) (-4062 (((-121) $ $ (-147)) NIL)) (-2661 (((-763) $ $ (-147)) NIL)) (-3674 (($ (-1 (-147) (-147)) $) NIL (|has| $ (-6 -4520)))) (-2795 (($ (-1 (-147) (-147)) $) NIL) (($ (-1 (-147) (-147) (-147)) $ $) NIL)) (-2496 (($ $) NIL)) (-2003 (($ $) NIL)) (-2166 (((-121) $ (-763)) NIL)) (-3382 (($ $ (-147)) NIL) (($ $ (-142)) NIL)) (-4487 (((-1143) $) NIL)) (-4122 (($ (-147) $ (-568)) NIL) (($ $ $ (-568)) NIL)) (-4174 (((-634 (-568)) $) NIL)) (-3578 (((-121) (-568) $) NIL)) (-4022 (((-1108) $) NIL)) (-3876 (((-147) $) NIL (|has| (-568) (-842)))) (-3775 (((-3 (-147) "failed") (-1 (-121) (-147)) $) NIL)) (-3724 (($ $ (-147)) NIL (|has| $ (-6 -4520)))) (-1387 (((-121) (-1 (-121) (-147)) $) NIL (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 (-147)))) NIL (-12 (|has| (-147) (-303 (-147))) (|has| (-147) (-1090)))) (($ $ (-288 (-147))) NIL (-12 (|has| (-147) (-303 (-147))) (|has| (-147) (-1090)))) (($ $ (-147) (-147)) NIL (-12 (|has| (-147) (-303 (-147))) (|has| (-147) (-1090)))) (($ $ (-634 (-147)) (-634 (-147))) NIL (-12 (|has| (-147) (-303 (-147))) (|has| (-147) (-1090))))) (-3171 (((-121) $ $) NIL)) (-4467 (((-121) (-147) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-147) (-1090))))) (-2041 (((-634 (-147)) $) NIL)) (-3084 (((-121) $) NIL)) (-3248 (($) NIL)) (-2779 (((-147) $ (-568) (-147)) NIL) (((-147) $ (-568)) NIL) (($ $ (-1210 (-568))) NIL) (($ $ $) NIL)) (-2826 (($ $ (-568)) NIL) (($ $ (-1210 (-568))) NIL)) (-4168 (((-763) (-1 (-121) (-147)) $) NIL (|has| $ (-6 -4519))) (((-763) (-147) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-147) (-1090))))) (-2256 (($ $ $ (-568)) NIL (|has| $ (-6 -4520)))) (-3863 (($ $) NIL)) (-4278 (((-541) $) NIL (|has| (-147) (-609 (-541))))) (-4287 (($ (-634 (-147))) NIL)) (-2768 (($ $ (-147)) NIL) (($ (-147) $) NIL) (($ $ $) NIL) (($ (-634 $)) NIL)) (-2745 (($ (-147)) NIL) (((-850) $) NIL)) (-1319 (((-121) (-1 (-121) (-147)) $) NIL (|has| $ (-6 -4519)))) (-3754 (((-1143) $) 18) (((-1143) $ (-121)) 20) (((-1249) (-817) $) 21) (((-1249) (-817) $ (-121)) 22)) (-1751 (((-121) $ $) NIL (|has| (-147) (-842)))) (-1738 (((-121) $ $) NIL (|has| (-147) (-842)))) (-1717 (((-121) $ $) NIL)) (-1745 (((-121) $ $) NIL (|has| (-147) (-842)))) (-1732 (((-121) $ $) NIL (|has| (-147) (-842)))) (-1697 (((-763) $) NIL (|has| $ (-6 -4519))))) +(((-1143) (-1142)) (T -1143)) +NIL +(-1142) +((-2447 (((-121) $ $) NIL (-2198 (|has| (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (-1090)) (|has| |#1| (-1090))))) (-2986 (($) NIL) (($ (-634 (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)))) NIL)) (-1868 (((-1249) $ (-1143) (-1143)) NIL (|has| $ (-6 -4520)))) (-2510 (((-121) $ (-763)) NIL)) (-2436 ((|#1| $ (-1143) |#1|) NIL)) (-3507 (($ (-1 (-121) (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|))) $) NIL (|has| $ (-6 -4519)))) (-2801 (($ (-1 (-121) (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|))) $) NIL (|has| $ (-6 -4519)))) (-2674 (((-3 |#1| "failed") (-1143) $) NIL)) (-2671 (($) NIL T CONST)) (-3924 (($ $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (-1090))))) (-3405 (($ (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) $) NIL (|has| $ (-6 -4519))) (($ (-1 (-121) (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|))) $) NIL (|has| $ (-6 -4519))) (((-3 |#1| "failed") (-1143) $) NIL)) (-4328 (($ (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (-1090)))) (($ (-1 (-121) (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|))) $) NIL (|has| $ (-6 -4519)))) (-3092 (((-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (-1 (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|))) $ (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|))) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (-1090)))) (((-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (-1 (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|))) $ (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|))) NIL (|has| $ (-6 -4519))) (((-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (-1 (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|))) $) NIL (|has| $ (-6 -4519)))) (-3989 ((|#1| $ (-1143) |#1|) NIL (|has| $ (-6 -4520)))) (-2602 ((|#1| $ (-1143)) NIL)) (-4360 (((-634 (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|))) $) NIL (|has| $ (-6 -4519))) (((-634 |#1|) $) NIL (|has| $ (-6 -4519)))) (-1737 (((-121) $ (-763)) NIL)) (-1881 (((-1143) $) NIL (|has| (-1143) (-842)))) (-1979 (((-634 (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|))) $) NIL (|has| $ (-6 -4519))) (((-634 |#1|) $) NIL (|has| $ (-6 -4519)))) (-3109 (((-121) (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (-1090)))) (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-2223 (((-1143) $) NIL (|has| (-1143) (-842)))) (-3674 (($ (-1 (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|))) $) NIL (|has| $ (-6 -4520))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4520)))) (-2795 (($ (-1 (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2166 (((-121) $ (-763)) NIL)) (-4487 (((-1143) $) NIL (-2198 (|has| (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (-1090)) (|has| |#1| (-1090))))) (-1946 (((-634 (-1143)) $) NIL)) (-3548 (((-121) (-1143) $) NIL)) (-1890 (((-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) $) NIL)) (-4450 (($ (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) $) NIL)) (-4174 (((-634 (-1143)) $) NIL)) (-3578 (((-121) (-1143) $) NIL)) (-4022 (((-1108) $) NIL (-2198 (|has| (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (-1090)) (|has| |#1| (-1090))))) (-3876 ((|#1| $) NIL (|has| (-1143) (-842)))) (-3775 (((-3 (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) "failed") (-1 (-121) (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|))) $) NIL)) (-3724 (($ $ |#1|) NIL (|has| $ (-6 -4520)))) (-1315 (((-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) $) NIL)) (-1387 (((-121) (-1 (-121) (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|))) $) NIL (|has| $ (-6 -4519))) (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|))))) NIL (-12 (|has| (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (-303 (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)))) (|has| (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (-1090)))) (($ $ (-288 (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)))) NIL (-12 (|has| (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (-303 (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)))) (|has| (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (-1090)))) (($ $ (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|))) NIL (-12 (|has| (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (-303 (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)))) (|has| (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (-1090)))) (($ $ (-634 (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|))) (-634 (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)))) NIL (-12 (|has| (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (-303 (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)))) (|has| (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (-1090)))) (($ $ (-634 |#1|) (-634 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-634 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))))) (-3171 (((-121) $ $) NIL)) (-4467 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-2041 (((-634 |#1|) $) NIL)) (-3084 (((-121) $) NIL)) (-3248 (($) NIL)) (-2779 ((|#1| $ (-1143)) NIL) ((|#1| $ (-1143) |#1|) NIL)) (-2085 (($) NIL) (($ (-634 (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)))) NIL)) (-4168 (((-763) (-1 (-121) (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|))) $) NIL (|has| $ (-6 -4519))) (((-763) (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (-1090)))) (((-763) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090)))) (((-763) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-3863 (($ $) NIL)) (-4278 (((-541) $) NIL (|has| (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (-609 (-541))))) (-4287 (($ (-634 (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)))) NIL)) (-2745 (((-850) $) NIL (-2198 (|has| (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (-1090)) (|has| |#1| (-1090))))) (-2367 (($ (-634 (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)))) NIL)) (-1319 (((-121) (-1 (-121) (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|))) $) NIL (|has| $ (-6 -4519))) (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-1717 (((-121) $ $) NIL (-2198 (|has| (-2 (|:| -3649 (-1143)) (|:| -4083 |#1|)) (-1090)) (|has| |#1| (-1090))))) (-1697 (((-763) $) NIL (|has| $ (-6 -4519))))) +(((-1144 |#1|) (-13 (-1172 (-1143) |#1|) (-10 -7 (-6 -4519))) (-1090)) (T -1144)) +NIL +(-13 (-1172 (-1143) |#1|) (-10 -7 (-6 -4519))) +((-2129 (((-1141 |#1|) (-1141 |#1|)) 77)) (-2925 (((-3 (-1141 |#1|) "failed") (-1141 |#1|)) 37)) (-1973 (((-1141 |#1|) (-409 (-568)) (-1141 |#1|)) 117 (|has| |#1| (-43 (-409 (-568)))))) (-3741 (((-1141 |#1|) |#1| (-1141 |#1|)) 121 (|has| |#1| (-365)))) (-2011 (((-1141 |#1|) (-1141 |#1|)) 90)) (-2509 (((-1141 (-568)) (-568)) 57)) (-1976 (((-1141 |#1|) (-1141 (-1141 |#1|))) 108 (|has| |#1| (-43 (-409 (-568)))))) (-2651 (((-1141 |#1|) (-568) (-568) (-1141 |#1|)) 95)) (-2354 (((-1141 |#1|) |#1| (-568)) 45)) (-1276 (((-1141 |#1|) (-1141 |#1|) (-1141 |#1|)) 60)) (-3095 (((-1141 |#1|) (-1141 |#1|) (-1141 |#1|)) 119 (|has| |#1| (-365)))) (-3358 (((-1141 |#1|) |#1| (-1 (-1141 |#1|))) 107 (|has| |#1| (-43 (-409 (-568)))))) (-3749 (((-1141 |#1|) (-1 |#1| (-568)) |#1| (-1 (-1141 |#1|))) 120 (|has| |#1| (-365)))) (-3730 (((-1141 |#1|) (-1141 |#1|)) 89)) (-2608 (((-1141 |#1|) (-1141 |#1|)) 76)) (-4053 (((-1141 |#1|) (-568) (-568) (-1141 |#1|)) 96)) (-3837 (((-1141 |#1|) |#1| (-1141 |#1|)) 105 (|has| |#1| (-43 (-409 (-568)))))) (-2185 (((-1141 (-568)) (-568)) 56)) (-2178 (((-1141 |#1|) |#1|) 59)) (-2224 (((-1141 |#1|) (-1141 |#1|) (-568) (-568)) 92)) (-3771 (((-1141 |#1|) (-1 |#1| (-568)) (-1141 |#1|)) 66)) (-2595 (((-3 (-1141 |#1|) "failed") (-1141 |#1|) (-1141 |#1|)) 35)) (-2372 (((-1141 |#1|) (-1141 |#1|)) 91)) (-1339 (((-1141 |#1|) (-1141 |#1|) |#1|) 71)) (-2023 (((-1141 |#1|) (-1141 |#1|)) 62)) (-1474 (((-1141 |#1|) (-1141 |#1|) (-1141 |#1|)) 72)) (-2745 (((-1141 |#1|) |#1|) 67)) (-3099 (((-1141 |#1|) (-1141 (-1141 |#1|))) 82)) (-1779 (((-1141 |#1|) (-1141 |#1|) (-1141 |#1|)) 36)) (-1773 (((-1141 |#1|) (-1141 |#1|)) 21) (((-1141 |#1|) (-1141 |#1|) (-1141 |#1|)) 23)) (-1767 (((-1141 |#1|) (-1141 |#1|) (-1141 |#1|)) 17)) (* (((-1141 |#1|) (-1141 |#1|) |#1|) 29) (((-1141 |#1|) |#1| (-1141 |#1|)) 26) (((-1141 |#1|) (-1141 |#1|) (-1141 |#1|)) 27))) +(((-1145 |#1|) (-10 -7 (-15 -1767 ((-1141 |#1|) (-1141 |#1|) (-1141 |#1|))) (-15 -1773 ((-1141 |#1|) (-1141 |#1|) (-1141 |#1|))) (-15 -1773 ((-1141 |#1|) (-1141 |#1|))) (-15 * ((-1141 |#1|) (-1141 |#1|) (-1141 |#1|))) (-15 * ((-1141 |#1|) |#1| (-1141 |#1|))) (-15 * ((-1141 |#1|) (-1141 |#1|) |#1|)) (-15 -2595 ((-3 (-1141 |#1|) "failed") (-1141 |#1|) (-1141 |#1|))) (-15 -1779 ((-1141 |#1|) (-1141 |#1|) (-1141 |#1|))) (-15 -2925 ((-3 (-1141 |#1|) "failed") (-1141 |#1|))) (-15 -2354 ((-1141 |#1|) |#1| (-568))) (-15 -2185 ((-1141 (-568)) (-568))) (-15 -2509 ((-1141 (-568)) (-568))) (-15 -2178 ((-1141 |#1|) |#1|)) (-15 -1276 ((-1141 |#1|) (-1141 |#1|) (-1141 |#1|))) (-15 -2023 ((-1141 |#1|) (-1141 |#1|))) (-15 -3771 ((-1141 |#1|) (-1 |#1| (-568)) (-1141 |#1|))) (-15 -2745 ((-1141 |#1|) |#1|)) (-15 -1339 ((-1141 |#1|) (-1141 |#1|) |#1|)) (-15 -1474 ((-1141 |#1|) (-1141 |#1|) (-1141 |#1|))) (-15 -2608 ((-1141 |#1|) (-1141 |#1|))) (-15 -2129 ((-1141 |#1|) (-1141 |#1|))) (-15 -3099 ((-1141 |#1|) (-1141 (-1141 |#1|)))) (-15 -3730 ((-1141 |#1|) (-1141 |#1|))) (-15 -2011 ((-1141 |#1|) (-1141 |#1|))) (-15 -2372 ((-1141 |#1|) (-1141 |#1|))) (-15 -2224 ((-1141 |#1|) (-1141 |#1|) (-568) (-568))) (-15 -2651 ((-1141 |#1|) (-568) (-568) (-1141 |#1|))) (-15 -4053 ((-1141 |#1|) (-568) (-568) (-1141 |#1|))) (IF (|has| |#1| (-43 (-409 (-568)))) (PROGN (-15 -3837 ((-1141 |#1|) |#1| (-1141 |#1|))) (-15 -3358 ((-1141 |#1|) |#1| (-1 (-1141 |#1|)))) (-15 -1976 ((-1141 |#1|) (-1141 (-1141 |#1|)))) (-15 -1973 ((-1141 |#1|) (-409 (-568)) (-1141 |#1|)))) |noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -3095 ((-1141 |#1|) (-1141 |#1|) (-1141 |#1|))) (-15 -3749 ((-1141 |#1|) (-1 |#1| (-568)) |#1| (-1 (-1141 |#1|)))) (-15 -3741 ((-1141 |#1|) |#1| (-1141 |#1|)))) |noBranch|)) (-1047)) (T -1145)) +((-3741 (*1 *2 *3 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-365)) (-4 *3 (-1047)) (-5 *1 (-1145 *3)))) (-3749 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-568))) (-5 *5 (-1 (-1141 *4))) (-4 *4 (-365)) (-4 *4 (-1047)) (-5 *2 (-1141 *4)) (-5 *1 (-1145 *4)))) (-3095 (*1 *2 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-365)) (-4 *3 (-1047)) (-5 *1 (-1145 *3)))) (-1973 (*1 *2 *3 *2) (-12 (-5 *2 (-1141 *4)) (-4 *4 (-43 *3)) (-4 *4 (-1047)) (-5 *3 (-409 (-568))) (-5 *1 (-1145 *4)))) (-1976 (*1 *2 *3) (-12 (-5 *3 (-1141 (-1141 *4))) (-5 *2 (-1141 *4)) (-5 *1 (-1145 *4)) (-4 *4 (-43 (-409 (-568)))) (-4 *4 (-1047)))) (-3358 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1141 *3))) (-5 *2 (-1141 *3)) (-5 *1 (-1145 *3)) (-4 *3 (-43 (-409 (-568)))) (-4 *3 (-1047)))) (-3837 (*1 *2 *3 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-4 *3 (-1047)) (-5 *1 (-1145 *3)))) (-4053 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1141 *4)) (-5 *3 (-568)) (-4 *4 (-1047)) (-5 *1 (-1145 *4)))) (-2651 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1141 *4)) (-5 *3 (-568)) (-4 *4 (-1047)) (-5 *1 (-1145 *4)))) (-2224 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1141 *4)) (-5 *3 (-568)) (-4 *4 (-1047)) (-5 *1 (-1145 *4)))) (-2372 (*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-1047)) (-5 *1 (-1145 *3)))) (-2011 (*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-1047)) (-5 *1 (-1145 *3)))) (-3730 (*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-1047)) (-5 *1 (-1145 *3)))) (-3099 (*1 *2 *3) (-12 (-5 *3 (-1141 (-1141 *4))) (-5 *2 (-1141 *4)) (-5 *1 (-1145 *4)) (-4 *4 (-1047)))) (-2129 (*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-1047)) (-5 *1 (-1145 *3)))) (-2608 (*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-1047)) (-5 *1 (-1145 *3)))) (-1474 (*1 *2 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-1047)) (-5 *1 (-1145 *3)))) (-1339 (*1 *2 *2 *3) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-1047)) (-5 *1 (-1145 *3)))) (-2745 (*1 *2 *3) (-12 (-5 *2 (-1141 *3)) (-5 *1 (-1145 *3)) (-4 *3 (-1047)))) (-3771 (*1 *2 *3 *2) (-12 (-5 *2 (-1141 *4)) (-5 *3 (-1 *4 (-568))) (-4 *4 (-1047)) (-5 *1 (-1145 *4)))) (-2023 (*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-1047)) (-5 *1 (-1145 *3)))) (-1276 (*1 *2 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-1047)) (-5 *1 (-1145 *3)))) (-2178 (*1 *2 *3) (-12 (-5 *2 (-1141 *3)) (-5 *1 (-1145 *3)) (-4 *3 (-1047)))) (-2509 (*1 *2 *3) (-12 (-5 *2 (-1141 (-568))) (-5 *1 (-1145 *4)) (-4 *4 (-1047)) (-5 *3 (-568)))) (-2185 (*1 *2 *3) (-12 (-5 *2 (-1141 (-568))) (-5 *1 (-1145 *4)) (-4 *4 (-1047)) (-5 *3 (-568)))) (-2354 (*1 *2 *3 *4) (-12 (-5 *4 (-568)) (-5 *2 (-1141 *3)) (-5 *1 (-1145 *3)) (-4 *3 (-1047)))) (-2925 (*1 *2 *2) (|partial| -12 (-5 *2 (-1141 *3)) (-4 *3 (-1047)) (-5 *1 (-1145 *3)))) (-1779 (*1 *2 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-1047)) (-5 *1 (-1145 *3)))) (-2595 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1141 *3)) (-4 *3 (-1047)) (-5 *1 (-1145 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-1047)) (-5 *1 (-1145 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-1047)) (-5 *1 (-1145 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-1047)) (-5 *1 (-1145 *3)))) (-1773 (*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-1047)) (-5 *1 (-1145 *3)))) (-1773 (*1 *2 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-1047)) (-5 *1 (-1145 *3)))) (-1767 (*1 *2 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-1047)) (-5 *1 (-1145 *3))))) +(-10 -7 (-15 -1767 ((-1141 |#1|) (-1141 |#1|) (-1141 |#1|))) (-15 -1773 ((-1141 |#1|) (-1141 |#1|) (-1141 |#1|))) (-15 -1773 ((-1141 |#1|) (-1141 |#1|))) (-15 * ((-1141 |#1|) (-1141 |#1|) (-1141 |#1|))) (-15 * ((-1141 |#1|) |#1| (-1141 |#1|))) (-15 * ((-1141 |#1|) (-1141 |#1|) |#1|)) (-15 -2595 ((-3 (-1141 |#1|) "failed") (-1141 |#1|) (-1141 |#1|))) (-15 -1779 ((-1141 |#1|) (-1141 |#1|) (-1141 |#1|))) (-15 -2925 ((-3 (-1141 |#1|) "failed") (-1141 |#1|))) (-15 -2354 ((-1141 |#1|) |#1| (-568))) (-15 -2185 ((-1141 (-568)) (-568))) (-15 -2509 ((-1141 (-568)) (-568))) (-15 -2178 ((-1141 |#1|) |#1|)) (-15 -1276 ((-1141 |#1|) (-1141 |#1|) (-1141 |#1|))) (-15 -2023 ((-1141 |#1|) (-1141 |#1|))) (-15 -3771 ((-1141 |#1|) (-1 |#1| (-568)) (-1141 |#1|))) (-15 -2745 ((-1141 |#1|) |#1|)) (-15 -1339 ((-1141 |#1|) (-1141 |#1|) |#1|)) (-15 -1474 ((-1141 |#1|) (-1141 |#1|) (-1141 |#1|))) (-15 -2608 ((-1141 |#1|) (-1141 |#1|))) (-15 -2129 ((-1141 |#1|) (-1141 |#1|))) (-15 -3099 ((-1141 |#1|) (-1141 (-1141 |#1|)))) (-15 -3730 ((-1141 |#1|) (-1141 |#1|))) (-15 -2011 ((-1141 |#1|) (-1141 |#1|))) (-15 -2372 ((-1141 |#1|) (-1141 |#1|))) (-15 -2224 ((-1141 |#1|) (-1141 |#1|) (-568) (-568))) (-15 -2651 ((-1141 |#1|) (-568) (-568) (-1141 |#1|))) (-15 -4053 ((-1141 |#1|) (-568) (-568) (-1141 |#1|))) (IF (|has| |#1| (-43 (-409 (-568)))) (PROGN (-15 -3837 ((-1141 |#1|) |#1| (-1141 |#1|))) (-15 -3358 ((-1141 |#1|) |#1| (-1 (-1141 |#1|)))) (-15 -1976 ((-1141 |#1|) (-1141 (-1141 |#1|)))) (-15 -1973 ((-1141 |#1|) (-409 (-568)) (-1141 |#1|)))) |noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -3095 ((-1141 |#1|) (-1141 |#1|) (-1141 |#1|))) (-15 -3749 ((-1141 |#1|) (-1 |#1| (-568)) |#1| (-1 (-1141 |#1|)))) (-15 -3741 ((-1141 |#1|) |#1| (-1141 |#1|)))) |noBranch|)) +((-1982 (((-1141 |#1|) (-1141 |#1|)) 57)) (-1933 (((-1141 |#1|) (-1141 |#1|)) 39)) (-1974 (((-1141 |#1|) (-1141 |#1|)) 53)) (-2786 (((-1141 |#1|) (-1141 |#1|)) 35)) (-1990 (((-1141 |#1|) (-1141 |#1|)) 60)) (-1941 (((-1141 |#1|) (-1141 |#1|)) 42)) (-4416 (((-1141 |#1|) (-1141 |#1|)) 31)) (-1892 (((-1141 |#1|) (-1141 |#1|)) 27)) (-1994 (((-1141 |#1|) (-1141 |#1|)) 61)) (-1945 (((-1141 |#1|) (-1141 |#1|)) 43)) (-1986 (((-1141 |#1|) (-1141 |#1|)) 58)) (-1937 (((-1141 |#1|) (-1141 |#1|)) 40)) (-1978 (((-1141 |#1|) (-1141 |#1|)) 55)) (-2790 (((-1141 |#1|) (-1141 |#1|)) 37)) (-2006 (((-1141 |#1|) (-1141 |#1|)) 65)) (-1958 (((-1141 |#1|) (-1141 |#1|)) 47)) (-1998 (((-1141 |#1|) (-1141 |#1|)) 63)) (-1949 (((-1141 |#1|) (-1141 |#1|)) 45)) (-2014 (((-1141 |#1|) (-1141 |#1|)) 68)) (-1966 (((-1141 |#1|) (-1141 |#1|)) 50)) (-4023 (((-1141 |#1|) (-1141 |#1|)) 69)) (-1970 (((-1141 |#1|) (-1141 |#1|)) 51)) (-2010 (((-1141 |#1|) (-1141 |#1|)) 67)) (-1962 (((-1141 |#1|) (-1141 |#1|)) 49)) (-2002 (((-1141 |#1|) (-1141 |#1|)) 66)) (-1953 (((-1141 |#1|) (-1141 |#1|)) 48)) (** (((-1141 |#1|) (-1141 |#1|) (-1141 |#1|)) 33))) +(((-1146 |#1|) (-10 -7 (-15 -1892 ((-1141 |#1|) (-1141 |#1|))) (-15 -4416 ((-1141 |#1|) (-1141 |#1|))) (-15 ** ((-1141 |#1|) (-1141 |#1|) (-1141 |#1|))) (-15 -2786 ((-1141 |#1|) (-1141 |#1|))) (-15 -2790 ((-1141 |#1|) (-1141 |#1|))) (-15 -1933 ((-1141 |#1|) (-1141 |#1|))) (-15 -1937 ((-1141 |#1|) (-1141 |#1|))) (-15 -1941 ((-1141 |#1|) (-1141 |#1|))) (-15 -1945 ((-1141 |#1|) (-1141 |#1|))) (-15 -1949 ((-1141 |#1|) (-1141 |#1|))) (-15 -1953 ((-1141 |#1|) (-1141 |#1|))) (-15 -1958 ((-1141 |#1|) (-1141 |#1|))) (-15 -1962 ((-1141 |#1|) (-1141 |#1|))) (-15 -1966 ((-1141 |#1|) (-1141 |#1|))) (-15 -1970 ((-1141 |#1|) (-1141 |#1|))) (-15 -1974 ((-1141 |#1|) (-1141 |#1|))) (-15 -1978 ((-1141 |#1|) (-1141 |#1|))) (-15 -1982 ((-1141 |#1|) (-1141 |#1|))) (-15 -1986 ((-1141 |#1|) (-1141 |#1|))) (-15 -1990 ((-1141 |#1|) (-1141 |#1|))) (-15 -1994 ((-1141 |#1|) (-1141 |#1|))) (-15 -1998 ((-1141 |#1|) (-1141 |#1|))) (-15 -2002 ((-1141 |#1|) (-1141 |#1|))) (-15 -2006 ((-1141 |#1|) (-1141 |#1|))) (-15 -2010 ((-1141 |#1|) (-1141 |#1|))) (-15 -2014 ((-1141 |#1|) (-1141 |#1|))) (-15 -4023 ((-1141 |#1|) (-1141 |#1|)))) (-43 (-409 (-568)))) (T -1146)) +((-4023 (*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1146 *3)))) (-2014 (*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1146 *3)))) (-2010 (*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1146 *3)))) (-2006 (*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1146 *3)))) (-2002 (*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1146 *3)))) (-1998 (*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1146 *3)))) (-1994 (*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1146 *3)))) (-1990 (*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1146 *3)))) (-1986 (*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1146 *3)))) (-1982 (*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1146 *3)))) (-1978 (*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1146 *3)))) (-1974 (*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1146 *3)))) (-1970 (*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1146 *3)))) (-1966 (*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1146 *3)))) (-1962 (*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1146 *3)))) (-1958 (*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1146 *3)))) (-1953 (*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1146 *3)))) (-1949 (*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1146 *3)))) (-1945 (*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1146 *3)))) (-1941 (*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1146 *3)))) (-1937 (*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1146 *3)))) (-1933 (*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1146 *3)))) (-2790 (*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1146 *3)))) (-2786 (*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1146 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1146 *3)))) (-4416 (*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1146 *3)))) (-1892 (*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1146 *3))))) +(-10 -7 (-15 -1892 ((-1141 |#1|) (-1141 |#1|))) (-15 -4416 ((-1141 |#1|) (-1141 |#1|))) (-15 ** ((-1141 |#1|) (-1141 |#1|) (-1141 |#1|))) (-15 -2786 ((-1141 |#1|) (-1141 |#1|))) (-15 -2790 ((-1141 |#1|) (-1141 |#1|))) (-15 -1933 ((-1141 |#1|) (-1141 |#1|))) (-15 -1937 ((-1141 |#1|) (-1141 |#1|))) (-15 -1941 ((-1141 |#1|) (-1141 |#1|))) (-15 -1945 ((-1141 |#1|) (-1141 |#1|))) (-15 -1949 ((-1141 |#1|) (-1141 |#1|))) (-15 -1953 ((-1141 |#1|) (-1141 |#1|))) (-15 -1958 ((-1141 |#1|) (-1141 |#1|))) (-15 -1962 ((-1141 |#1|) (-1141 |#1|))) (-15 -1966 ((-1141 |#1|) (-1141 |#1|))) (-15 -1970 ((-1141 |#1|) (-1141 |#1|))) (-15 -1974 ((-1141 |#1|) (-1141 |#1|))) (-15 -1978 ((-1141 |#1|) (-1141 |#1|))) (-15 -1982 ((-1141 |#1|) (-1141 |#1|))) (-15 -1986 ((-1141 |#1|) (-1141 |#1|))) (-15 -1990 ((-1141 |#1|) (-1141 |#1|))) (-15 -1994 ((-1141 |#1|) (-1141 |#1|))) (-15 -1998 ((-1141 |#1|) (-1141 |#1|))) (-15 -2002 ((-1141 |#1|) (-1141 |#1|))) (-15 -2006 ((-1141 |#1|) (-1141 |#1|))) (-15 -2010 ((-1141 |#1|) (-1141 |#1|))) (-15 -2014 ((-1141 |#1|) (-1141 |#1|))) (-15 -4023 ((-1141 |#1|) (-1141 |#1|)))) +((-1982 (((-1141 |#1|) (-1141 |#1|)) 100)) (-1933 (((-1141 |#1|) (-1141 |#1|)) 64)) (-2127 (((-2 (|:| -1974 (-1141 |#1|)) (|:| -1978 (-1141 |#1|))) (-1141 |#1|)) 96)) (-1974 (((-1141 |#1|) (-1141 |#1|)) 97)) (-1431 (((-2 (|:| -2786 (-1141 |#1|)) (|:| -2790 (-1141 |#1|))) (-1141 |#1|)) 53)) (-2786 (((-1141 |#1|) (-1141 |#1|)) 54)) (-1990 (((-1141 |#1|) (-1141 |#1|)) 102)) (-1941 (((-1141 |#1|) (-1141 |#1|)) 71)) (-4416 (((-1141 |#1|) (-1141 |#1|)) 39)) (-1892 (((-1141 |#1|) (-1141 |#1|)) 36)) (-1994 (((-1141 |#1|) (-1141 |#1|)) 103)) (-1945 (((-1141 |#1|) (-1141 |#1|)) 72)) (-1986 (((-1141 |#1|) (-1141 |#1|)) 101)) (-1937 (((-1141 |#1|) (-1141 |#1|)) 67)) (-1978 (((-1141 |#1|) (-1141 |#1|)) 98)) (-2790 (((-1141 |#1|) (-1141 |#1|)) 55)) (-2006 (((-1141 |#1|) (-1141 |#1|)) 111)) (-1958 (((-1141 |#1|) (-1141 |#1|)) 86)) (-1998 (((-1141 |#1|) (-1141 |#1|)) 105)) (-1949 (((-1141 |#1|) (-1141 |#1|)) 82)) (-2014 (((-1141 |#1|) (-1141 |#1|)) 115)) (-1966 (((-1141 |#1|) (-1141 |#1|)) 90)) (-4023 (((-1141 |#1|) (-1141 |#1|)) 117)) (-1970 (((-1141 |#1|) (-1141 |#1|)) 92)) (-2010 (((-1141 |#1|) (-1141 |#1|)) 113)) (-1962 (((-1141 |#1|) (-1141 |#1|)) 88)) (-2002 (((-1141 |#1|) (-1141 |#1|)) 107)) (-1953 (((-1141 |#1|) (-1141 |#1|)) 84)) (** (((-1141 |#1|) (-1141 |#1|) (-1141 |#1|)) 40))) +(((-1147 |#1|) (-10 -7 (-15 -1892 ((-1141 |#1|) (-1141 |#1|))) (-15 -4416 ((-1141 |#1|) (-1141 |#1|))) (-15 ** ((-1141 |#1|) (-1141 |#1|) (-1141 |#1|))) (-15 -1431 ((-2 (|:| -2786 (-1141 |#1|)) (|:| -2790 (-1141 |#1|))) (-1141 |#1|))) (-15 -2786 ((-1141 |#1|) (-1141 |#1|))) (-15 -2790 ((-1141 |#1|) (-1141 |#1|))) (-15 -1933 ((-1141 |#1|) (-1141 |#1|))) (-15 -1937 ((-1141 |#1|) (-1141 |#1|))) (-15 -1941 ((-1141 |#1|) (-1141 |#1|))) (-15 -1945 ((-1141 |#1|) (-1141 |#1|))) (-15 -1949 ((-1141 |#1|) (-1141 |#1|))) (-15 -1953 ((-1141 |#1|) (-1141 |#1|))) (-15 -1958 ((-1141 |#1|) (-1141 |#1|))) (-15 -1962 ((-1141 |#1|) (-1141 |#1|))) (-15 -1966 ((-1141 |#1|) (-1141 |#1|))) (-15 -1970 ((-1141 |#1|) (-1141 |#1|))) (-15 -2127 ((-2 (|:| -1974 (-1141 |#1|)) (|:| -1978 (-1141 |#1|))) (-1141 |#1|))) (-15 -1974 ((-1141 |#1|) (-1141 |#1|))) (-15 -1978 ((-1141 |#1|) (-1141 |#1|))) (-15 -1982 ((-1141 |#1|) (-1141 |#1|))) (-15 -1986 ((-1141 |#1|) (-1141 |#1|))) (-15 -1990 ((-1141 |#1|) (-1141 |#1|))) (-15 -1994 ((-1141 |#1|) (-1141 |#1|))) (-15 -1998 ((-1141 |#1|) (-1141 |#1|))) (-15 -2002 ((-1141 |#1|) (-1141 |#1|))) (-15 -2006 ((-1141 |#1|) (-1141 |#1|))) (-15 -2010 ((-1141 |#1|) (-1141 |#1|))) (-15 -2014 ((-1141 |#1|) (-1141 |#1|))) (-15 -4023 ((-1141 |#1|) (-1141 |#1|)))) (-43 (-409 (-568)))) (T -1147)) +((-4023 (*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1147 *3)))) (-2014 (*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1147 *3)))) (-2010 (*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1147 *3)))) (-2006 (*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1147 *3)))) (-2002 (*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1147 *3)))) (-1998 (*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1147 *3)))) (-1994 (*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1147 *3)))) (-1990 (*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1147 *3)))) (-1986 (*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1147 *3)))) (-1982 (*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1147 *3)))) (-1978 (*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1147 *3)))) (-1974 (*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1147 *3)))) (-2127 (*1 *2 *3) (-12 (-4 *4 (-43 (-409 (-568)))) (-5 *2 (-2 (|:| -1974 (-1141 *4)) (|:| -1978 (-1141 *4)))) (-5 *1 (-1147 *4)) (-5 *3 (-1141 *4)))) (-1970 (*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1147 *3)))) (-1966 (*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1147 *3)))) (-1962 (*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1147 *3)))) (-1958 (*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1147 *3)))) (-1953 (*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1147 *3)))) (-1949 (*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1147 *3)))) (-1945 (*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1147 *3)))) (-1941 (*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1147 *3)))) (-1937 (*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1147 *3)))) (-1933 (*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1147 *3)))) (-2790 (*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1147 *3)))) (-2786 (*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1147 *3)))) (-1431 (*1 *2 *3) (-12 (-4 *4 (-43 (-409 (-568)))) (-5 *2 (-2 (|:| -2786 (-1141 *4)) (|:| -2790 (-1141 *4)))) (-5 *1 (-1147 *4)) (-5 *3 (-1141 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1147 *3)))) (-4416 (*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1147 *3)))) (-1892 (*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1147 *3))))) +(-10 -7 (-15 -1892 ((-1141 |#1|) (-1141 |#1|))) (-15 -4416 ((-1141 |#1|) (-1141 |#1|))) (-15 ** ((-1141 |#1|) (-1141 |#1|) (-1141 |#1|))) (-15 -1431 ((-2 (|:| -2786 (-1141 |#1|)) (|:| -2790 (-1141 |#1|))) (-1141 |#1|))) (-15 -2786 ((-1141 |#1|) (-1141 |#1|))) (-15 -2790 ((-1141 |#1|) (-1141 |#1|))) (-15 -1933 ((-1141 |#1|) (-1141 |#1|))) (-15 -1937 ((-1141 |#1|) (-1141 |#1|))) (-15 -1941 ((-1141 |#1|) (-1141 |#1|))) (-15 -1945 ((-1141 |#1|) (-1141 |#1|))) (-15 -1949 ((-1141 |#1|) (-1141 |#1|))) (-15 -1953 ((-1141 |#1|) (-1141 |#1|))) (-15 -1958 ((-1141 |#1|) (-1141 |#1|))) (-15 -1962 ((-1141 |#1|) (-1141 |#1|))) (-15 -1966 ((-1141 |#1|) (-1141 |#1|))) (-15 -1970 ((-1141 |#1|) (-1141 |#1|))) (-15 -2127 ((-2 (|:| -1974 (-1141 |#1|)) (|:| -1978 (-1141 |#1|))) (-1141 |#1|))) (-15 -1974 ((-1141 |#1|) (-1141 |#1|))) (-15 -1978 ((-1141 |#1|) (-1141 |#1|))) (-15 -1982 ((-1141 |#1|) (-1141 |#1|))) (-15 -1986 ((-1141 |#1|) (-1141 |#1|))) (-15 -1990 ((-1141 |#1|) (-1141 |#1|))) (-15 -1994 ((-1141 |#1|) (-1141 |#1|))) (-15 -1998 ((-1141 |#1|) (-1141 |#1|))) (-15 -2002 ((-1141 |#1|) (-1141 |#1|))) (-15 -2006 ((-1141 |#1|) (-1141 |#1|))) (-15 -2010 ((-1141 |#1|) (-1141 |#1|))) (-15 -2014 ((-1141 |#1|) (-1141 |#1|))) (-15 -4023 ((-1141 |#1|) (-1141 |#1|)))) +((-1971 (((-958 |#2|) |#2| |#2|) 35)) (-3250 ((|#2| |#2| |#1|) 19 (|has| |#1| (-301))))) +(((-1148 |#1| |#2|) (-10 -7 (-15 -1971 ((-958 |#2|) |#2| |#2|)) (IF (|has| |#1| (-301)) (-15 -3250 (|#2| |#2| |#1|)) |noBranch|)) (-558) (-1219 |#1|)) (T -1148)) +((-3250 (*1 *2 *2 *3) (-12 (-4 *3 (-301)) (-4 *3 (-558)) (-5 *1 (-1148 *3 *2)) (-4 *2 (-1219 *3)))) (-1971 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-958 *3)) (-5 *1 (-1148 *4 *3)) (-4 *3 (-1219 *4))))) +(-10 -7 (-15 -1971 ((-958 |#2|) |#2| |#2|)) (IF (|has| |#1| (-301)) (-15 -3250 (|#2| |#2| |#1|)) |noBranch|)) +((-2447 (((-121) $ $) NIL)) (-1409 (($ $ (-634 (-763))) 66)) (-2141 (($) 25)) (-1684 (($ $) 41)) (-1619 (((-634 $) $) 50)) (-2793 (((-121) $) 16)) (-2804 (((-634 (-944 |#2|)) $) 73)) (-4492 (($ $) 67)) (-2680 (((-763) $) 36)) (-1849 (($) 24)) (-2026 (($ $ (-634 (-763)) (-944 |#2|)) 59) (($ $ (-634 (-763)) (-763)) 60) (($ $ (-763) (-944 |#2|)) 62)) (-1347 (($ $ $) 47) (($ (-634 $)) 49)) (-2467 (((-763) $) 74)) (-1651 (((-121) $) 15)) (-4487 (((-1143) $) NIL)) (-2171 (((-121) $) 17)) (-4022 (((-1108) $) NIL)) (-3221 (((-171) $) 72)) (-2103 (((-944 |#2|) $) 68)) (-1365 (((-763) $) 69)) (-4055 (((-121) $) 71)) (-1900 (($ $ (-634 (-763)) (-171)) 65)) (-2778 (($ $) 42)) (-2745 (((-850) $) 84)) (-2877 (($ $ (-634 (-763)) (-121)) 64)) (-4339 (((-634 $) $) 11)) (-3309 (($ $ (-763)) 35)) (-1400 (($ $) 31)) (-2835 (($ $ $ (-944 |#2|) (-763)) 55)) (-1758 (($ $ (-944 |#2|)) 54)) (-4470 (($ $ (-634 (-763)) (-944 |#2|)) 53) (($ $ (-634 (-763)) (-763)) 57) (((-763) $ (-944 |#2|)) 58)) (-1717 (((-121) $ $) 78))) +(((-1149 |#1| |#2|) (-13 (-1090) (-10 -8 (-15 -1651 ((-121) $)) (-15 -2793 ((-121) $)) (-15 -2171 ((-121) $)) (-15 -1849 ($)) (-15 -2141 ($)) (-15 -1400 ($ $)) (-15 -3309 ($ $ (-763))) (-15 -4339 ((-634 $) $)) (-15 -2680 ((-763) $)) (-15 -1684 ($ $)) (-15 -2778 ($ $)) (-15 -1347 ($ $ $)) (-15 -1347 ($ (-634 $))) (-15 -1619 ((-634 $) $)) (-15 -4470 ($ $ (-634 (-763)) (-944 |#2|))) (-15 -1758 ($ $ (-944 |#2|))) (-15 -2835 ($ $ $ (-944 |#2|) (-763))) (-15 -2026 ($ $ (-634 (-763)) (-944 |#2|))) (-15 -4470 ($ $ (-634 (-763)) (-763))) (-15 -2026 ($ $ (-634 (-763)) (-763))) (-15 -4470 ((-763) $ (-944 |#2|))) (-15 -2026 ($ $ (-763) (-944 |#2|))) (-15 -2877 ($ $ (-634 (-763)) (-121))) (-15 -1900 ($ $ (-634 (-763)) (-171))) (-15 -1409 ($ $ (-634 (-763)))) (-15 -2103 ((-944 |#2|) $)) (-15 -1365 ((-763) $)) (-15 -4055 ((-121) $)) (-15 -3221 ((-171) $)) (-15 -2467 ((-763) $)) (-15 -4492 ($ $)) (-15 -2804 ((-634 (-944 |#2|)) $)))) (-917) (-1047)) (T -1149)) +((-1651 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1149 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1047)))) (-2793 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1149 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1047)))) (-2171 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1149 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1047)))) (-1849 (*1 *1) (-12 (-5 *1 (-1149 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1047)))) (-2141 (*1 *1) (-12 (-5 *1 (-1149 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1047)))) (-1400 (*1 *1 *1) (-12 (-5 *1 (-1149 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1047)))) (-3309 (*1 *1 *1 *2) (-12 (-5 *2 (-763)) (-5 *1 (-1149 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1047)))) (-4339 (*1 *2 *1) (-12 (-5 *2 (-634 (-1149 *3 *4))) (-5 *1 (-1149 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1047)))) (-2680 (*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-1149 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1047)))) (-1684 (*1 *1 *1) (-12 (-5 *1 (-1149 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1047)))) (-2778 (*1 *1 *1) (-12 (-5 *1 (-1149 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1047)))) (-1347 (*1 *1 *1 *1) (-12 (-5 *1 (-1149 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1047)))) (-1347 (*1 *1 *2) (-12 (-5 *2 (-634 (-1149 *3 *4))) (-5 *1 (-1149 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1047)))) (-1619 (*1 *2 *1) (-12 (-5 *2 (-634 (-1149 *3 *4))) (-5 *1 (-1149 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1047)))) (-4470 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-634 (-763))) (-5 *3 (-944 *5)) (-4 *5 (-1047)) (-5 *1 (-1149 *4 *5)) (-14 *4 (-917)))) (-1758 (*1 *1 *1 *2) (-12 (-5 *2 (-944 *4)) (-4 *4 (-1047)) (-5 *1 (-1149 *3 *4)) (-14 *3 (-917)))) (-2835 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-944 *5)) (-5 *3 (-763)) (-4 *5 (-1047)) (-5 *1 (-1149 *4 *5)) (-14 *4 (-917)))) (-2026 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-634 (-763))) (-5 *3 (-944 *5)) (-4 *5 (-1047)) (-5 *1 (-1149 *4 *5)) (-14 *4 (-917)))) (-4470 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-634 (-763))) (-5 *3 (-763)) (-5 *1 (-1149 *4 *5)) (-14 *4 (-917)) (-4 *5 (-1047)))) (-2026 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-634 (-763))) (-5 *3 (-763)) (-5 *1 (-1149 *4 *5)) (-14 *4 (-917)) (-4 *5 (-1047)))) (-4470 (*1 *2 *1 *3) (-12 (-5 *3 (-944 *5)) (-4 *5 (-1047)) (-5 *2 (-763)) (-5 *1 (-1149 *4 *5)) (-14 *4 (-917)))) (-2026 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-763)) (-5 *3 (-944 *5)) (-4 *5 (-1047)) (-5 *1 (-1149 *4 *5)) (-14 *4 (-917)))) (-2877 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-634 (-763))) (-5 *3 (-121)) (-5 *1 (-1149 *4 *5)) (-14 *4 (-917)) (-4 *5 (-1047)))) (-1900 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-634 (-763))) (-5 *3 (-171)) (-5 *1 (-1149 *4 *5)) (-14 *4 (-917)) (-4 *5 (-1047)))) (-1409 (*1 *1 *1 *2) (-12 (-5 *2 (-634 (-763))) (-5 *1 (-1149 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1047)))) (-2103 (*1 *2 *1) (-12 (-5 *2 (-944 *4)) (-5 *1 (-1149 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1047)))) (-1365 (*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-1149 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1047)))) (-4055 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1149 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1047)))) (-3221 (*1 *2 *1) (-12 (-5 *2 (-171)) (-5 *1 (-1149 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1047)))) (-2467 (*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-1149 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1047)))) (-4492 (*1 *1 *1) (-12 (-5 *1 (-1149 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1047)))) (-2804 (*1 *2 *1) (-12 (-5 *2 (-634 (-944 *4))) (-5 *1 (-1149 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1047))))) +(-13 (-1090) (-10 -8 (-15 -1651 ((-121) $)) (-15 -2793 ((-121) $)) (-15 -2171 ((-121) $)) (-15 -1849 ($)) (-15 -2141 ($)) (-15 -1400 ($ $)) (-15 -3309 ($ $ (-763))) (-15 -4339 ((-634 $) $)) (-15 -2680 ((-763) $)) (-15 -1684 ($ $)) (-15 -2778 ($ $)) (-15 -1347 ($ $ $)) (-15 -1347 ($ (-634 $))) (-15 -1619 ((-634 $) $)) (-15 -4470 ($ $ (-634 (-763)) (-944 |#2|))) (-15 -1758 ($ $ (-944 |#2|))) (-15 -2835 ($ $ $ (-944 |#2|) (-763))) (-15 -2026 ($ $ (-634 (-763)) (-944 |#2|))) (-15 -4470 ($ $ (-634 (-763)) (-763))) (-15 -2026 ($ $ (-634 (-763)) (-763))) (-15 -4470 ((-763) $ (-944 |#2|))) (-15 -2026 ($ $ (-763) (-944 |#2|))) (-15 -2877 ($ $ (-634 (-763)) (-121))) (-15 -1900 ($ $ (-634 (-763)) (-171))) (-15 -1409 ($ $ (-634 (-763)))) (-15 -2103 ((-944 |#2|) $)) (-15 -1365 ((-763) $)) (-15 -4055 ((-121) $)) (-15 -3221 ((-171) $)) (-15 -2467 ((-763) $)) (-15 -4492 ($ $)) (-15 -2804 ((-634 (-944 |#2|)) $)))) +((-2447 (((-121) $ $) NIL)) (-2107 ((|#2| $) 11)) (-1466 ((|#1| $) 10)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-4287 (($ |#1| |#2|) 9)) (-2745 (((-850) $) 16)) (-1717 (((-121) $ $) NIL))) +(((-1150 |#1| |#2|) (-13 (-1090) (-10 -8 (-15 -4287 ($ |#1| |#2|)) (-15 -1466 (|#1| $)) (-15 -2107 (|#2| $)))) (-1090) (-1090)) (T -1150)) +((-4287 (*1 *1 *2 *3) (-12 (-5 *1 (-1150 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-1090)))) (-1466 (*1 *2 *1) (-12 (-4 *2 (-1090)) (-5 *1 (-1150 *2 *3)) (-4 *3 (-1090)))) (-2107 (*1 *2 *1) (-12 (-4 *2 (-1090)) (-5 *1 (-1150 *3 *2)) (-4 *3 (-1090))))) +(-13 (-1090) (-10 -8 (-15 -4287 ($ |#1| |#2|)) (-15 -1466 (|#1| $)) (-15 -2107 (|#2| $)))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-1492 (((-1159 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-301)) (|has| |#1| (-365))))) (-2055 (((-634 (-1075)) $) NIL)) (-1305 (((-1161) $) 11)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL (-2198 (-12 (|has| (-1159 |#1| |#2| |#3|) (-815)) (|has| |#1| (-365))) (-12 (|has| (-1159 |#1| |#2| |#3|) (-904)) (|has| |#1| (-365))) (|has| |#1| (-558))))) (-2227 (($ $) NIL (-2198 (-12 (|has| (-1159 |#1| |#2| |#3|) (-815)) (|has| |#1| (-365))) (-12 (|has| (-1159 |#1| |#2| |#3|) (-904)) (|has| |#1| (-365))) (|has| |#1| (-558))))) (-1573 (((-121) $) NIL (-2198 (-12 (|has| (-1159 |#1| |#2| |#3|) (-815)) (|has| |#1| (-365))) (-12 (|has| (-1159 |#1| |#2| |#3|) (-904)) (|has| |#1| (-365))) (|has| |#1| (-558))))) (-2617 (($ $ (-568)) NIL) (($ $ (-568) (-568)) 66)) (-2583 (((-1141 (-2 (|:| |k| (-568)) (|:| |c| |#1|))) $) NIL)) (-3613 (((-1159 |#1| |#2| |#3|) $) 36)) (-4016 (((-3 (-1159 |#1| |#2| |#3|) "failed") $) 29)) (-2065 (((-1159 |#1| |#2| |#3|) $) 30)) (-1982 (($ $) 107 (|has| |#1| (-43 (-409 (-568)))))) (-1933 (($ $) 83 (|has| |#1| (-43 (-409 (-568)))))) (-3134 (((-3 $ "failed") $ $) NIL)) (-1750 (((-420 (-1157 $)) (-1157 $)) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-904)) (|has| |#1| (-365))))) (-4305 (($ $) NIL (|has| |#1| (-365)))) (-1678 (((-420 $) $) NIL (|has| |#1| (-365)))) (-1902 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1858 (((-3 (-634 (-1157 $)) "failed") (-634 (-1157 $)) (-1157 $)) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-904)) (|has| |#1| (-365))))) (-1497 (((-121) $ $) NIL (|has| |#1| (-365)))) (-1974 (($ $) 103 (|has| |#1| (-43 (-409 (-568)))))) (-2786 (($ $) 79 (|has| |#1| (-43 (-409 (-568)))))) (-3662 (((-568) $) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-815)) (|has| |#1| (-365))))) (-3728 (($ (-1141 (-2 (|:| |k| (-568)) (|:| |c| |#1|)))) NIL)) (-1990 (($ $) 111 (|has| |#1| (-43 (-409 (-568)))))) (-1941 (($ $) 87 (|has| |#1| (-43 (-409 (-568)))))) (-2671 (($) NIL T CONST)) (-3666 (((-3 (-1159 |#1| |#2| |#3|) "failed") $) 31) (((-3 (-1161) "failed") $) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-1037 (-1161))) (|has| |#1| (-365)))) (((-3 (-409 (-568)) "failed") $) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-1037 (-568))) (|has| |#1| (-365)))) (((-3 (-568) "failed") $) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-1037 (-568))) (|has| |#1| (-365))))) (-2854 (((-1159 |#1| |#2| |#3|) $) 131) (((-1161) $) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-1037 (-1161))) (|has| |#1| (-365)))) (((-409 (-568)) $) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-1037 (-568))) (|has| |#1| (-365)))) (((-568) $) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-1037 (-568))) (|has| |#1| (-365))))) (-1429 (($ $) 34) (($ (-568) $) 35)) (-2401 (($ $ $) NIL (|has| |#1| (-365)))) (-2114 (($ $) NIL)) (-3164 (((-679 (-1159 |#1| |#2| |#3|)) (-679 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -2928 (-679 (-1159 |#1| |#2| |#3|))) (|:| |vec| (-1244 (-1159 |#1| |#2| |#3|)))) (-679 $) (-1244 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-630 (-568))) (|has| |#1| (-365)))) (((-679 (-568)) (-679 $)) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-630 (-568))) (|has| |#1| (-365))))) (-2925 (((-3 $ "failed") $) 48)) (-4446 (((-409 (-953 |#1|)) $ (-568)) 65 (|has| |#1| (-558))) (((-409 (-953 |#1|)) $ (-568) (-568)) 67 (|has| |#1| (-558)))) (-1731 (($) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-550)) (|has| |#1| (-365))))) (-2412 (($ $ $) NIL (|has| |#1| (-365)))) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) NIL (|has| |#1| (-365)))) (-3927 (((-121) $) NIL (|has| |#1| (-365)))) (-2033 (((-121) $) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-815)) (|has| |#1| (-365))))) (-3992 (((-121) $) 25)) (-1897 (($) NIL (|has| |#1| (-43 (-409 (-568)))))) (-4410 (((-884 (-568) $) $ (-887 (-568)) (-884 (-568) $)) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-881 (-568))) (|has| |#1| (-365)))) (((-884 (-381) $) $ (-887 (-381)) (-884 (-381) $)) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-881 (-381))) (|has| |#1| (-365))))) (-4477 (((-568) $) NIL) (((-568) $ (-568)) 24)) (-2735 (((-121) $) NIL)) (-1332 (($ $) NIL (|has| |#1| (-365)))) (-2317 (((-1159 |#1| |#2| |#3|) $) 38 (|has| |#1| (-365)))) (-4044 (($ $ (-568)) NIL (|has| |#1| (-43 (-409 (-568)))))) (-3038 (((-3 $ "failed") $) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-1136)) (|has| |#1| (-365))))) (-2245 (((-121) $) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-815)) (|has| |#1| (-365))))) (-3536 (($ $ (-917)) NIL)) (-1716 (($ (-1 |#1| (-568)) $) NIL)) (-3562 (((-3 (-634 $) "failed") (-634 $) $) NIL (|has| |#1| (-365)))) (-3921 (((-121) $) NIL)) (-2047 (($ |#1| (-568)) 18) (($ $ (-1075) (-568)) NIL) (($ $ (-634 (-1075)) (-634 (-568))) NIL)) (-2521 (($ $ $) NIL (-2198 (-12 (|has| (-1159 |#1| |#2| |#3|) (-815)) (|has| |#1| (-365))) (-12 (|has| (-1159 |#1| |#2| |#3|) (-842)) (|has| |#1| (-365)))))) (-3268 (($ $ $) NIL (-2198 (-12 (|has| (-1159 |#1| |#2| |#3|) (-815)) (|has| |#1| (-365))) (-12 (|has| (-1159 |#1| |#2| |#3|) (-842)) (|has| |#1| (-365)))))) (-2795 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1159 |#1| |#2| |#3|) (-1159 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-365)))) (-4416 (($ $) 72 (|has| |#1| (-43 (-409 (-568)))))) (-2097 (($ $) NIL)) (-2102 ((|#1| $) NIL)) (-2495 (($ (-634 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2070 (($ (-568) (-1159 |#1| |#2| |#3|)) 33)) (-4487 (((-1143) $) NIL)) (-2081 (($ $) NIL (|has| |#1| (-365)))) (-3837 (($ $) 70 (|has| |#1| (-43 (-409 (-568))))) (($ $ (-1161)) NIL (-2198 (-12 (|has| |#1| (-15 -3837 (|#1| |#1| (-1161)))) (|has| |#1| (-15 -2055 ((-634 (-1161)) |#1|))) (|has| |#1| (-43 (-409 (-568))))) (-12 (|has| |#1| (-29 (-568))) (|has| |#1| (-43 (-409 (-568)))) (|has| |#1| (-959)) (|has| |#1| (-1181))))) (($ $ (-1240 |#2|)) 71 (|has| |#1| (-43 (-409 (-568)))))) (-4434 (($) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-1136)) (|has| |#1| (-365))) CONST)) (-4022 (((-1108) $) NIL)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL (|has| |#1| (-365)))) (-2721 (($ (-634 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3880 (($ $) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-301)) (|has| |#1| (-365))))) (-1519 (((-1159 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-550)) (|has| |#1| (-365))))) (-2905 (((-420 (-1157 $)) (-1157 $)) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-904)) (|has| |#1| (-365))))) (-3545 (((-420 (-1157 $)) (-1157 $)) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-904)) (|has| |#1| (-365))))) (-3848 (((-420 $) $) NIL (|has| |#1| (-365)))) (-4497 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL (|has| |#1| (-365)))) (-1807 (($ $ (-568)) 145)) (-2595 (((-3 $ "failed") $ $) 49 (-2198 (-12 (|has| (-1159 |#1| |#2| |#3|) (-815)) (|has| |#1| (-365))) (-12 (|has| (-1159 |#1| |#2| |#3|) (-904)) (|has| |#1| (-365))) (|has| |#1| (-558))))) (-2344 (((-3 (-634 $) "failed") (-634 $) $) NIL (|has| |#1| (-365)))) (-1892 (($ $) 73 (|has| |#1| (-43 (-409 (-568)))))) (-1339 (((-1141 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-568))))) (($ $ (-1161) (-1159 |#1| |#2| |#3|)) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-523 (-1161) (-1159 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-634 (-1161)) (-634 (-1159 |#1| |#2| |#3|))) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-523 (-1161) (-1159 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-634 (-288 (-1159 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-303 (-1159 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-288 (-1159 |#1| |#2| |#3|))) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-303 (-1159 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-1159 |#1| |#2| |#3|) (-1159 |#1| |#2| |#3|)) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-303 (-1159 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-634 (-1159 |#1| |#2| |#3|)) (-634 (-1159 |#1| |#2| |#3|))) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-303 (-1159 |#1| |#2| |#3|))) (|has| |#1| (-365))))) (-2709 (((-763) $) NIL (|has| |#1| (-365)))) (-2779 ((|#1| $ (-568)) NIL) (($ $ $) 54 (|has| (-568) (-1102))) (($ $ (-1159 |#1| |#2| |#3|)) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-281 (-1159 |#1| |#2| |#3|) (-1159 |#1| |#2| |#3|))) (|has| |#1| (-365))))) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL (|has| |#1| (-365)))) (-4189 (($ $ (-1 (-1159 |#1| |#2| |#3|) (-1159 |#1| |#2| |#3|))) NIL (|has| |#1| (-365))) (($ $ (-1 (-1159 |#1| |#2| |#3|) (-1159 |#1| |#2| |#3|)) (-763)) NIL (|has| |#1| (-365))) (($ $ (-1240 |#2|)) 51) (($ $ (-763)) NIL (-2198 (-12 (|has| (-1159 |#1| |#2| |#3|) (-225)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-568) |#1|))))) (($ $) 50 (-2198 (-12 (|has| (-1159 |#1| |#2| |#3|) (-225)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-568) |#1|))))) (($ $ (-634 (-1161)) (-634 (-763))) NIL (-2198 (-12 (|has| (-1159 |#1| |#2| |#3|) (-895 (-1161))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-568) |#1|))) (|has| |#1| (-895 (-1161)))))) (($ $ (-1161) (-763)) NIL (-2198 (-12 (|has| (-1159 |#1| |#2| |#3|) (-895 (-1161))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-568) |#1|))) (|has| |#1| (-895 (-1161)))))) (($ $ (-634 (-1161))) NIL (-2198 (-12 (|has| (-1159 |#1| |#2| |#3|) (-895 (-1161))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-568) |#1|))) (|has| |#1| (-895 (-1161)))))) (($ $ (-1161)) NIL (-2198 (-12 (|has| (-1159 |#1| |#2| |#3|) (-895 (-1161))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-568) |#1|))) (|has| |#1| (-895 (-1161))))))) (-3013 (($ $) NIL (|has| |#1| (-365)))) (-2324 (((-1159 |#1| |#2| |#3|) $) 41 (|has| |#1| (-365)))) (-3206 (((-568) $) 37)) (-1994 (($ $) 113 (|has| |#1| (-43 (-409 (-568)))))) (-1945 (($ $) 89 (|has| |#1| (-43 (-409 (-568)))))) (-1986 (($ $) 109 (|has| |#1| (-43 (-409 (-568)))))) (-1937 (($ $) 85 (|has| |#1| (-43 (-409 (-568)))))) (-1978 (($ $) 105 (|has| |#1| (-43 (-409 (-568)))))) (-2790 (($ $) 81 (|has| |#1| (-43 (-409 (-568)))))) (-4278 (((-541) $) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-609 (-541))) (|has| |#1| (-365)))) (((-381) $) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-1021)) (|has| |#1| (-365)))) (((-215) $) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-1021)) (|has| |#1| (-365)))) (((-887 (-381)) $) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-609 (-887 (-381)))) (|has| |#1| (-365)))) (((-887 (-568)) $) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-609 (-887 (-568)))) (|has| |#1| (-365))))) (-2979 (((-3 (-1244 $) "failed") (-679 $)) NIL (-12 (|has| $ (-148)) (|has| (-1159 |#1| |#2| |#3|) (-904)) (|has| |#1| (-365))))) (-1811 (($ $) NIL)) (-2745 (((-850) $) 149) (($ (-568)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1159 |#1| |#2| |#3|)) 27) (($ (-1240 |#2|)) 23) (($ (-1161)) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-1037 (-1161))) (|has| |#1| (-365)))) (($ $) NIL (-2198 (-12 (|has| (-1159 |#1| |#2| |#3|) (-815)) (|has| |#1| (-365))) (-12 (|has| (-1159 |#1| |#2| |#3|) (-904)) (|has| |#1| (-365))) (|has| |#1| (-558)))) (($ (-409 (-568))) NIL (-2198 (-12 (|has| (-1159 |#1| |#2| |#3|) (-1037 (-568))) (|has| |#1| (-365))) (|has| |#1| (-43 (-409 (-568))))))) (-2604 ((|#1| $ (-568)) 68)) (-4371 (((-3 $ "failed") $) NIL (-2198 (-12 (|has| $ (-148)) (|has| (-1159 |#1| |#2| |#3|) (-904)) (|has| |#1| (-365))) (-12 (|has| (-1159 |#1| |#2| |#3|) (-148)) (|has| |#1| (-365))) (|has| |#1| (-148))))) (-4078 (((-763)) NIL)) (-1374 ((|#1| $) 12)) (-2285 (((-1159 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-550)) (|has| |#1| (-365))))) (-2006 (($ $) 119 (|has| |#1| (-43 (-409 (-568)))))) (-1958 (($ $) 95 (|has| |#1| (-43 (-409 (-568)))))) (-1826 (((-121) $ $) NIL (-2198 (-12 (|has| (-1159 |#1| |#2| |#3|) (-815)) (|has| |#1| (-365))) (-12 (|has| (-1159 |#1| |#2| |#3|) (-904)) (|has| |#1| (-365))) (|has| |#1| (-558))))) (-1998 (($ $) 115 (|has| |#1| (-43 (-409 (-568)))))) (-1949 (($ $) 91 (|has| |#1| (-43 (-409 (-568)))))) (-2014 (($ $) 123 (|has| |#1| (-43 (-409 (-568)))))) (-1966 (($ $) 99 (|has| |#1| (-43 (-409 (-568)))))) (-3996 ((|#1| $ (-568)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-568)))) (|has| |#1| (-15 -2745 (|#1| (-1161))))))) (-4023 (($ $) 125 (|has| |#1| (-43 (-409 (-568)))))) (-1970 (($ $) 101 (|has| |#1| (-43 (-409 (-568)))))) (-2010 (($ $) 121 (|has| |#1| (-43 (-409 (-568)))))) (-1962 (($ $) 97 (|has| |#1| (-43 (-409 (-568)))))) (-2002 (($ $) 117 (|has| |#1| (-43 (-409 (-568)))))) (-1953 (($ $) 93 (|has| |#1| (-43 (-409 (-568)))))) (-2897 (($ $) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-815)) (|has| |#1| (-365))))) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL (|has| |#1| (-365)))) (-3056 (($) 20 T CONST)) (-1556 (($) 16 T CONST)) (-3190 (($ $ (-1 (-1159 |#1| |#2| |#3|) (-1159 |#1| |#2| |#3|))) NIL (|has| |#1| (-365))) (($ $ (-1 (-1159 |#1| |#2| |#3|) (-1159 |#1| |#2| |#3|)) (-763)) NIL (|has| |#1| (-365))) (($ $ (-763)) NIL (-2198 (-12 (|has| (-1159 |#1| |#2| |#3|) (-225)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-568) |#1|))))) (($ $) NIL (-2198 (-12 (|has| (-1159 |#1| |#2| |#3|) (-225)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-568) |#1|))))) (($ $ (-634 (-1161)) (-634 (-763))) NIL (-2198 (-12 (|has| (-1159 |#1| |#2| |#3|) (-895 (-1161))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-568) |#1|))) (|has| |#1| (-895 (-1161)))))) (($ $ (-1161) (-763)) NIL (-2198 (-12 (|has| (-1159 |#1| |#2| |#3|) (-895 (-1161))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-568) |#1|))) (|has| |#1| (-895 (-1161)))))) (($ $ (-634 (-1161))) NIL (-2198 (-12 (|has| (-1159 |#1| |#2| |#3|) (-895 (-1161))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-568) |#1|))) (|has| |#1| (-895 (-1161)))))) (($ $ (-1161)) NIL (-2198 (-12 (|has| (-1159 |#1| |#2| |#3|) (-895 (-1161))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-568) |#1|))) (|has| |#1| (-895 (-1161))))))) (-1751 (((-121) $ $) NIL (-2198 (-12 (|has| (-1159 |#1| |#2| |#3|) (-815)) (|has| |#1| (-365))) (-12 (|has| (-1159 |#1| |#2| |#3|) (-842)) (|has| |#1| (-365)))))) (-1738 (((-121) $ $) NIL (-2198 (-12 (|has| (-1159 |#1| |#2| |#3|) (-815)) (|has| |#1| (-365))) (-12 (|has| (-1159 |#1| |#2| |#3|) (-842)) (|has| |#1| (-365)))))) (-1717 (((-121) $ $) NIL)) (-1745 (((-121) $ $) NIL (-2198 (-12 (|has| (-1159 |#1| |#2| |#3|) (-815)) (|has| |#1| (-365))) (-12 (|has| (-1159 |#1| |#2| |#3|) (-842)) (|has| |#1| (-365)))))) (-1732 (((-121) $ $) NIL (-2198 (-12 (|has| (-1159 |#1| |#2| |#3|) (-815)) (|has| |#1| (-365))) (-12 (|has| (-1159 |#1| |#2| |#3|) (-842)) (|has| |#1| (-365)))))) (-1779 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) 44 (|has| |#1| (-365))) (($ (-1159 |#1| |#2| |#3|) (-1159 |#1| |#2| |#3|)) 45 (|has| |#1| (-365)))) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) 21)) (** (($ $ (-917)) NIL) (($ $ (-763)) 53) (($ $ (-568)) NIL (|has| |#1| (-365))) (($ $ $) 74 (|has| |#1| (-43 (-409 (-568))))) (($ $ (-409 (-568))) 128 (|has| |#1| (-43 (-409 (-568)))))) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1159 |#1| |#2| |#3|)) 43 (|has| |#1| (-365))) (($ (-1159 |#1| |#2| |#3|) $) 42 (|has| |#1| (-365))) (($ (-409 (-568)) $) NIL (|has| |#1| (-43 (-409 (-568))))) (($ $ (-409 (-568))) NIL (|has| |#1| (-43 (-409 (-568))))))) +(((-1151 |#1| |#2| |#3|) (-13 (-1205 |#1| (-1159 |#1| |#2| |#3|)) (-10 -8 (-15 -2745 ($ (-1240 |#2|))) (-15 -4189 ($ $ (-1240 |#2|))) (IF (|has| |#1| (-43 (-409 (-568)))) (-15 -3837 ($ $ (-1240 |#2|))) |noBranch|))) (-1047) (-1161) |#1|) (T -1151)) +((-2745 (*1 *1 *2) (-12 (-5 *2 (-1240 *4)) (-14 *4 (-1161)) (-5 *1 (-1151 *3 *4 *5)) (-4 *3 (-1047)) (-14 *5 *3))) (-4189 (*1 *1 *1 *2) (-12 (-5 *2 (-1240 *4)) (-14 *4 (-1161)) (-5 *1 (-1151 *3 *4 *5)) (-4 *3 (-1047)) (-14 *5 *3))) (-3837 (*1 *1 *1 *2) (-12 (-5 *2 (-1240 *4)) (-14 *4 (-1161)) (-5 *1 (-1151 *3 *4 *5)) (-4 *3 (-43 (-409 (-568)))) (-4 *3 (-1047)) (-14 *5 *3)))) +(-13 (-1205 |#1| (-1159 |#1| |#2| |#3|)) (-10 -8 (-15 -2745 ($ (-1240 |#2|))) (-15 -4189 ($ $ (-1240 |#2|))) (IF (|has| |#1| (-43 (-409 (-568)))) (-15 -3837 ($ $ (-1240 |#2|))) |noBranch|))) +((-2627 ((|#2| |#2| (-1082 |#2|)) 26) ((|#2| |#2| (-1161)) 28))) +(((-1152 |#1| |#2|) (-10 -7 (-15 -2627 (|#2| |#2| (-1161))) (-15 -2627 (|#2| |#2| (-1082 |#2|)))) (-13 (-558) (-842) (-1037 (-568)) (-630 (-568))) (-13 (-432 |#1|) (-161) (-27) (-1181))) (T -1152)) +((-2627 (*1 *2 *2 *3) (-12 (-5 *3 (-1082 *2)) (-4 *2 (-13 (-432 *4) (-161) (-27) (-1181))) (-4 *4 (-13 (-558) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *1 (-1152 *4 *2)))) (-2627 (*1 *2 *2 *3) (-12 (-5 *3 (-1161)) (-4 *4 (-13 (-558) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *1 (-1152 *4 *2)) (-4 *2 (-13 (-432 *4) (-161) (-27) (-1181)))))) +(-10 -7 (-15 -2627 (|#2| |#2| (-1161))) (-15 -2627 (|#2| |#2| (-1082 |#2|)))) +((-2627 (((-3 (-409 (-953 |#1|)) (-310 |#1|)) (-409 (-953 |#1|)) (-1082 (-409 (-953 |#1|)))) 30) (((-409 (-953 |#1|)) (-953 |#1|) (-1082 (-953 |#1|))) 44) (((-3 (-409 (-953 |#1|)) (-310 |#1|)) (-409 (-953 |#1|)) (-1161)) 32) (((-409 (-953 |#1|)) (-953 |#1|) (-1161)) 36))) +(((-1153 |#1|) (-10 -7 (-15 -2627 ((-409 (-953 |#1|)) (-953 |#1|) (-1161))) (-15 -2627 ((-3 (-409 (-953 |#1|)) (-310 |#1|)) (-409 (-953 |#1|)) (-1161))) (-15 -2627 ((-409 (-953 |#1|)) (-953 |#1|) (-1082 (-953 |#1|)))) (-15 -2627 ((-3 (-409 (-953 |#1|)) (-310 |#1|)) (-409 (-953 |#1|)) (-1082 (-409 (-953 |#1|)))))) (-13 (-558) (-842) (-1037 (-568)))) (T -1153)) +((-2627 (*1 *2 *3 *4) (-12 (-5 *4 (-1082 (-409 (-953 *5)))) (-5 *3 (-409 (-953 *5))) (-4 *5 (-13 (-558) (-842) (-1037 (-568)))) (-5 *2 (-3 *3 (-310 *5))) (-5 *1 (-1153 *5)))) (-2627 (*1 *2 *3 *4) (-12 (-5 *4 (-1082 (-953 *5))) (-5 *3 (-953 *5)) (-4 *5 (-13 (-558) (-842) (-1037 (-568)))) (-5 *2 (-409 *3)) (-5 *1 (-1153 *5)))) (-2627 (*1 *2 *3 *4) (-12 (-5 *4 (-1161)) (-4 *5 (-13 (-558) (-842) (-1037 (-568)))) (-5 *2 (-3 (-409 (-953 *5)) (-310 *5))) (-5 *1 (-1153 *5)) (-5 *3 (-409 (-953 *5))))) (-2627 (*1 *2 *3 *4) (-12 (-5 *4 (-1161)) (-4 *5 (-13 (-558) (-842) (-1037 (-568)))) (-5 *2 (-409 (-953 *5))) (-5 *1 (-1153 *5)) (-5 *3 (-953 *5))))) +(-10 -7 (-15 -2627 ((-409 (-953 |#1|)) (-953 |#1|) (-1161))) (-15 -2627 ((-3 (-409 (-953 |#1|)) (-310 |#1|)) (-409 (-953 |#1|)) (-1161))) (-15 -2627 ((-409 (-953 |#1|)) (-953 |#1|) (-1082 (-953 |#1|)))) (-15 -2627 ((-3 (-409 (-953 |#1|)) (-310 |#1|)) (-409 (-953 |#1|)) (-1082 (-409 (-953 |#1|)))))) +((-2795 (((-1157 |#2|) (-1 |#2| |#1|) (-1157 |#1|)) 13))) +(((-1154 |#1| |#2|) (-10 -7 (-15 -2795 ((-1157 |#2|) (-1 |#2| |#1|) (-1157 |#1|)))) (-1047) (-1047)) (T -1154)) +((-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1157 *5)) (-4 *5 (-1047)) (-4 *6 (-1047)) (-5 *2 (-1157 *6)) (-5 *1 (-1154 *5 *6))))) +(-10 -7 (-15 -2795 ((-1157 |#2|) (-1 |#2| |#1|) (-1157 |#1|)))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-2572 (((-1244 |#1|) $ (-763)) NIL)) (-2055 (((-634 (-1075)) $) NIL)) (-3197 (($ (-1157 |#1|)) NIL)) (-3839 (((-1157 $) $ (-1075)) NIL) (((-1157 |#1|) $) NIL)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-2227 (($ $) NIL (|has| |#1| (-558)))) (-1573 (((-121) $) NIL (|has| |#1| (-558)))) (-2773 (((-763) $) NIL) (((-763) $ (-634 (-1075))) NIL)) (-1982 (($ $) NIL (|has| |#1| (-1181)))) (-1933 (($ $) NIL (|has| |#1| (-1181)))) (-3134 (((-3 $ "failed") $ $) NIL)) (-3809 (($ $ $) NIL (|has| |#1| (-558)))) (-1750 (((-420 (-1157 $)) (-1157 $)) NIL (|has| |#1| (-904)))) (-4305 (($ $) NIL (|has| |#1| (-453)))) (-1678 (((-420 $) $) NIL (|has| |#1| (-453)))) (-1858 (((-3 (-634 (-1157 $)) "failed") (-634 (-1157 $)) (-1157 $)) NIL (|has| |#1| (-904)))) (-1497 (((-121) $ $) NIL (|has| |#1| (-365)))) (-1974 (($ $) NIL (|has| |#1| (-1181)))) (-2786 (($ $) 22 (|has| |#1| (-1181)))) (-3151 (($ $ (-763)) NIL)) (-3772 (($ $ (-763)) NIL)) (-1619 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-453)))) (-1990 (($ $) NIL (|has| |#1| (-1181)))) (-1941 (($ $) NIL (|has| |#1| (-1181)))) (-2671 (($) NIL T CONST)) (-3666 (((-3 |#1| "failed") $) NIL) (((-3 (-409 (-568)) "failed") $) NIL (|has| |#1| (-1037 (-409 (-568))))) (((-3 (-568) "failed") $) NIL (|has| |#1| (-1037 (-568)))) (((-3 (-1075) "failed") $) NIL)) (-2854 ((|#1| $) NIL) (((-409 (-568)) $) NIL (|has| |#1| (-1037 (-409 (-568))))) (((-568) $) NIL (|has| |#1| (-1037 (-568)))) (((-1075) $) NIL)) (-4265 (($ $ $ (-1075)) NIL (|has| |#1| (-172))) ((|#1| $ $) NIL (|has| |#1| (-172)))) (-2401 (($ $ $) NIL (|has| |#1| (-365)))) (-2114 (($ $) NIL)) (-3164 (((-679 (-568)) (-679 $)) NIL (|has| |#1| (-630 (-568)))) (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) NIL (|has| |#1| (-630 (-568)))) (((-2 (|:| -2928 (-679 |#1|)) (|:| |vec| (-1244 |#1|))) (-679 $) (-1244 $)) NIL) (((-679 |#1|) (-679 $)) NIL)) (-2925 (((-3 $ "failed") $) NIL)) (-2412 (($ $ $) NIL (|has| |#1| (-365)))) (-3002 (($ $ $) NIL)) (-3581 (($ $ $) NIL (|has| |#1| (-558)))) (-4144 (((-2 (|:| -2348 |#1|) (|:| -3961 $) (|:| -1500 $)) $ $) NIL (|has| |#1| (-558)))) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) NIL (|has| |#1| (-365)))) (-3250 (($ $) NIL (|has| |#1| (-453))) (($ $ (-1075)) NIL (|has| |#1| (-453)))) (-2108 (((-634 $) $) NIL)) (-3927 (((-121) $) NIL (|has| |#1| (-904)))) (-3088 (($ $ |#1| (-763) $) NIL)) (-1897 (($) NIL (|has| |#1| (-1181)))) (-4410 (((-884 (-381) $) $ (-887 (-381)) (-884 (-381) $)) NIL (-12 (|has| (-1075) (-881 (-381))) (|has| |#1| (-881 (-381))))) (((-884 (-568) $) $ (-887 (-568)) (-884 (-568) $)) NIL (-12 (|has| (-1075) (-881 (-568))) (|has| |#1| (-881 (-568)))))) (-4477 (((-763) $ $) NIL (|has| |#1| (-558)))) (-2735 (((-121) $) NIL)) (-4178 (((-763) $) NIL)) (-3038 (((-3 $ "failed") $) NIL (|has| |#1| (-1136)))) (-2051 (($ (-1157 |#1|) (-1075)) NIL) (($ (-1157 $) (-1075)) NIL)) (-3536 (($ $ (-763)) NIL)) (-3562 (((-3 (-634 $) "failed") (-634 $) $) NIL (|has| |#1| (-365)))) (-2976 (((-634 $) $) NIL)) (-3921 (((-121) $) NIL)) (-2047 (($ |#1| (-763)) NIL) (($ $ (-1075) (-763)) NIL) (($ $ (-634 (-1075)) (-634 (-763))) NIL)) (-3379 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $ (-1075)) NIL) (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL)) (-2144 (((-763) $) NIL) (((-763) $ (-1075)) NIL) (((-634 (-763)) $ (-634 (-1075))) NIL)) (-2521 (($ $ $) NIL (|has| |#1| (-842)))) (-3268 (($ $ $) NIL (|has| |#1| (-842)))) (-3842 (($ (-1 (-763) (-763)) $) NIL)) (-2795 (($ (-1 |#1| |#1|) $) NIL)) (-3764 (((-1157 |#1|) $) NIL)) (-2244 (((-3 (-1075) "failed") $) NIL)) (-4416 (($ $) 18 (|has| |#1| (-1181)))) (-2097 (($ $) NIL)) (-2102 ((|#1| $) NIL)) (-2495 (($ (-634 $)) NIL (|has| |#1| (-453))) (($ $ $) NIL (|has| |#1| (-453)))) (-4487 (((-1143) $) NIL)) (-1643 (((-2 (|:| -3961 $) (|:| -1500 $)) $ (-763)) NIL)) (-3324 (((-3 (-634 $) "failed") $) NIL)) (-1794 (((-3 (-634 $) "failed") $) NIL)) (-3751 (((-3 (-2 (|:| |var| (-1075)) (|:| -3438 (-763))) "failed") $) NIL)) (-3837 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-4434 (($) NIL (|has| |#1| (-1136)) CONST)) (-4022 (((-1108) $) NIL)) (-2086 (((-121) $) 8)) (-2091 ((|#1| $) 9)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL (|has| |#1| (-453)))) (-2721 (($ (-634 $)) NIL (|has| |#1| (-453))) (($ $ $) NIL (|has| |#1| (-453)))) (-2905 (((-420 (-1157 $)) (-1157 $)) NIL (|has| |#1| (-904)))) (-3545 (((-420 (-1157 $)) (-1157 $)) NIL (|has| |#1| (-904)))) (-3848 (((-420 $) $) NIL (|has| |#1| (-904)))) (-4497 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL (|has| |#1| (-365)))) (-2595 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-2344 (((-3 (-634 $) "failed") (-634 $) $) NIL (|has| |#1| (-365)))) (-1892 (($ $) 20 (|has| |#1| (-1181)))) (-1339 (($ $ (-634 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-634 $) (-634 $)) NIL) (($ $ (-1075) |#1|) NIL) (($ $ (-634 (-1075)) (-634 |#1|)) NIL) (($ $ (-1075) $) NIL) (($ $ (-634 (-1075)) (-634 $)) NIL)) (-2709 (((-763) $) NIL (|has| |#1| (-365)))) (-2779 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-409 $) (-409 $) (-409 $)) NIL (|has| |#1| (-558))) ((|#1| (-409 $) |#1|) NIL (|has| |#1| (-365))) (((-409 $) $ (-409 $)) NIL (|has| |#1| (-558)))) (-2167 (((-3 $ "failed") $ (-763)) NIL)) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL (|has| |#1| (-365)))) (-2217 (($ $ (-1075)) NIL (|has| |#1| (-172))) ((|#1| $) NIL (|has| |#1| (-172)))) (-4189 (($ $ (-1075)) NIL) (($ $ (-634 (-1075))) NIL) (($ $ (-1075) (-763)) NIL) (($ $ (-634 (-1075)) (-634 (-763))) NIL) (($ $ (-763)) NIL) (($ $) NIL) (($ $ (-1161)) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-634 (-1161))) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-1161) (-763)) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-634 (-1161)) (-634 (-763))) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-1 |#1| |#1|) (-763)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3206 (((-763) $) NIL) (((-763) $ (-1075)) NIL) (((-634 (-763)) $ (-634 (-1075))) NIL)) (-1994 (($ $) NIL (|has| |#1| (-1181)))) (-1945 (($ $) NIL (|has| |#1| (-1181)))) (-1986 (($ $) NIL (|has| |#1| (-1181)))) (-1937 (($ $) NIL (|has| |#1| (-1181)))) (-1978 (($ $) NIL (|has| |#1| (-1181)))) (-2790 (($ $) 26 (|has| |#1| (-1181)))) (-4278 (((-887 (-381)) $) NIL (-12 (|has| (-1075) (-609 (-887 (-381)))) (|has| |#1| (-609 (-887 (-381)))))) (((-887 (-568)) $) NIL (-12 (|has| (-1075) (-609 (-887 (-568)))) (|has| |#1| (-609 (-887 (-568)))))) (((-541) $) NIL (-12 (|has| (-1075) (-609 (-541))) (|has| |#1| (-609 (-541)))))) (-3367 ((|#1| $) NIL (|has| |#1| (-453))) (($ $ (-1075)) NIL (|has| |#1| (-453)))) (-2979 (((-3 (-1244 $) "failed") (-679 $)) NIL (-12 (|has| $ (-148)) (|has| |#1| (-904))))) (-3950 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558))) (((-3 (-409 $) "failed") (-409 $) $) NIL (|has| |#1| (-558)))) (-2745 (((-850) $) 13) (($ (-568)) NIL) (($ |#1|) 11) (($ (-1075)) NIL) (($ (-409 (-568))) NIL (-2198 (|has| |#1| (-43 (-409 (-568)))) (|has| |#1| (-1037 (-409 (-568)))))) (($ $) NIL (|has| |#1| (-558)))) (-1302 (((-634 |#1|) $) NIL)) (-2604 ((|#1| $ (-763)) NIL) (($ $ (-1075) (-763)) NIL) (($ $ (-634 (-1075)) (-634 (-763))) NIL)) (-4371 (((-3 $ "failed") $) NIL (-2198 (-12 (|has| $ (-148)) (|has| |#1| (-904))) (|has| |#1| (-148))))) (-4078 (((-763)) NIL)) (-4171 (($ $ $ (-763)) NIL (|has| |#1| (-172)))) (-2006 (($ $) NIL (|has| |#1| (-1181)))) (-1958 (($ $) NIL (|has| |#1| (-1181)))) (-1826 (((-121) $ $) NIL (|has| |#1| (-558)))) (-1998 (($ $) NIL (|has| |#1| (-1181)))) (-1949 (($ $) 24 (|has| |#1| (-1181)))) (-2014 (($ $) NIL (|has| |#1| (-1181)))) (-1966 (($ $) NIL (|has| |#1| (-1181)))) (-4023 (($ $) NIL (|has| |#1| (-1181)))) (-1970 (($ $) NIL (|has| |#1| (-1181)))) (-2010 (($ $) NIL (|has| |#1| (-1181)))) (-1962 (($ $) NIL (|has| |#1| (-1181)))) (-2002 (($ $) NIL (|has| |#1| (-1181)))) (-1953 (($ $) 28 (|has| |#1| (-1181)))) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (-3056 (($) NIL T CONST)) (-1556 (($) NIL T CONST)) (-3190 (($ $ (-1075)) NIL) (($ $ (-634 (-1075))) NIL) (($ $ (-1075) (-763)) NIL) (($ $ (-634 (-1075)) (-634 (-763))) NIL) (($ $ (-763)) NIL) (($ $) NIL) (($ $ (-1161)) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-634 (-1161))) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-1161) (-763)) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-634 (-1161)) (-634 (-763))) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-1 |#1| |#1|) (-763)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1751 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1738 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1717 (((-121) $ $) NIL)) (-1745 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1732 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1779 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ $) NIL (|has| |#1| (-1181)))) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) NIL) (($ $ (-409 (-568))) NIL (|has| |#1| (-43 (-409 (-568))))) (($ (-409 (-568)) $) NIL (|has| |#1| (-43 (-409 (-568))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-1155 |#1|) (-13 (-1219 |#1|) (-10 -7 (IF (|has| |#1| (-1181)) (-6 (-1181)) |noBranch|))) (-1047)) (T -1155)) +NIL +(-13 (-1219 |#1|) (-10 -7 (IF (|has| |#1| (-1181)) (-6 (-1181)) |noBranch|))) +((-1678 (((-420 (-1157 (-409 |#4|))) (-1157 (-409 |#4|))) 50)) (-3848 (((-420 (-1157 (-409 |#4|))) (-1157 (-409 |#4|))) 51))) +(((-1156 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3848 ((-420 (-1157 (-409 |#4|))) (-1157 (-409 |#4|)))) (-15 -1678 ((-420 (-1157 (-409 |#4|))) (-1157 (-409 |#4|))))) (-788) (-842) (-453) (-950 |#3| |#1| |#2|)) (T -1156)) +((-1678 (*1 *2 *3) (-12 (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-453)) (-4 *7 (-950 *6 *4 *5)) (-5 *2 (-420 (-1157 (-409 *7)))) (-5 *1 (-1156 *4 *5 *6 *7)) (-5 *3 (-1157 (-409 *7))))) (-3848 (*1 *2 *3) (-12 (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-453)) (-4 *7 (-950 *6 *4 *5)) (-5 *2 (-420 (-1157 (-409 *7)))) (-5 *1 (-1156 *4 *5 *6 *7)) (-5 *3 (-1157 (-409 *7)))))) +(-10 -7 (-15 -3848 ((-420 (-1157 (-409 |#4|))) (-1157 (-409 |#4|)))) (-15 -1678 ((-420 (-1157 (-409 |#4|))) (-1157 (-409 |#4|))))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) 30)) (-2572 (((-1244 |#1|) $ (-763)) NIL)) (-2055 (((-634 (-1075)) $) NIL)) (-3197 (($ (-1157 |#1|)) NIL)) (-3839 (((-1157 $) $ (-1075)) 59) (((-1157 |#1|) $) 48)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-2227 (($ $) 132 (|has| |#1| (-558)))) (-1573 (((-121) $) NIL (|has| |#1| (-558)))) (-2773 (((-763) $) NIL) (((-763) $ (-634 (-1075))) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-3809 (($ $ $) 126 (|has| |#1| (-558)))) (-1750 (((-420 (-1157 $)) (-1157 $)) 72 (|has| |#1| (-904)))) (-4305 (($ $) NIL (|has| |#1| (-453)))) (-1678 (((-420 $) $) NIL (|has| |#1| (-453)))) (-1858 (((-3 (-634 (-1157 $)) "failed") (-634 (-1157 $)) (-1157 $)) 92 (|has| |#1| (-904)))) (-1497 (((-121) $ $) NIL (|has| |#1| (-365)))) (-3151 (($ $ (-763)) 42)) (-3772 (($ $ (-763)) 43)) (-1619 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-453)))) (-2671 (($) NIL T CONST)) (-3666 (((-3 |#1| "failed") $) NIL) (((-3 (-409 (-568)) "failed") $) NIL (|has| |#1| (-1037 (-409 (-568))))) (((-3 (-568) "failed") $) NIL (|has| |#1| (-1037 (-568)))) (((-3 (-1075) "failed") $) NIL)) (-2854 ((|#1| $) NIL) (((-409 (-568)) $) NIL (|has| |#1| (-1037 (-409 (-568))))) (((-568) $) NIL (|has| |#1| (-1037 (-568)))) (((-1075) $) NIL)) (-4265 (($ $ $ (-1075)) NIL (|has| |#1| (-172))) ((|#1| $ $) 128 (|has| |#1| (-172)))) (-2401 (($ $ $) NIL (|has| |#1| (-365)))) (-2114 (($ $) 57)) (-3164 (((-679 (-568)) (-679 $)) NIL (|has| |#1| (-630 (-568)))) (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) NIL (|has| |#1| (-630 (-568)))) (((-2 (|:| -2928 (-679 |#1|)) (|:| |vec| (-1244 |#1|))) (-679 $) (-1244 $)) NIL) (((-679 |#1|) (-679 $)) NIL)) (-2925 (((-3 $ "failed") $) NIL)) (-2412 (($ $ $) NIL (|has| |#1| (-365)))) (-3002 (($ $ $) 104)) (-3581 (($ $ $) NIL (|has| |#1| (-558)))) (-4144 (((-2 (|:| -2348 |#1|) (|:| -3961 $) (|:| -1500 $)) $ $) NIL (|has| |#1| (-558)))) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) NIL (|has| |#1| (-365)))) (-3250 (($ $) 133 (|has| |#1| (-453))) (($ $ (-1075)) NIL (|has| |#1| (-453)))) (-2108 (((-634 $) $) NIL)) (-3927 (((-121) $) NIL (|has| |#1| (-904)))) (-3088 (($ $ |#1| (-763) $) 46)) (-4410 (((-884 (-381) $) $ (-887 (-381)) (-884 (-381) $)) NIL (-12 (|has| (-1075) (-881 (-381))) (|has| |#1| (-881 (-381))))) (((-884 (-568) $) $ (-887 (-568)) (-884 (-568) $)) NIL (-12 (|has| (-1075) (-881 (-568))) (|has| |#1| (-881 (-568)))))) (-3680 (((-850) $ (-850)) 117)) (-4477 (((-763) $ $) NIL (|has| |#1| (-558)))) (-2735 (((-121) $) 32)) (-4178 (((-763) $) NIL)) (-3038 (((-3 $ "failed") $) NIL (|has| |#1| (-1136)))) (-2051 (($ (-1157 |#1|) (-1075)) 50) (($ (-1157 $) (-1075)) 66)) (-3536 (($ $ (-763)) 34)) (-3562 (((-3 (-634 $) "failed") (-634 $) $) NIL (|has| |#1| (-365)))) (-2976 (((-634 $) $) NIL)) (-3921 (((-121) $) NIL)) (-2047 (($ |#1| (-763)) 64) (($ $ (-1075) (-763)) NIL) (($ $ (-634 (-1075)) (-634 (-763))) NIL)) (-3379 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $ (-1075)) NIL) (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) 121)) (-2144 (((-763) $) NIL) (((-763) $ (-1075)) NIL) (((-634 (-763)) $ (-634 (-1075))) NIL)) (-2521 (($ $ $) NIL (|has| |#1| (-842)))) (-3268 (($ $ $) NIL (|has| |#1| (-842)))) (-3842 (($ (-1 (-763) (-763)) $) NIL)) (-2795 (($ (-1 |#1| |#1|) $) NIL)) (-3764 (((-1157 |#1|) $) NIL)) (-2244 (((-3 (-1075) "failed") $) NIL)) (-2097 (($ $) NIL)) (-2102 ((|#1| $) 53)) (-2495 (($ (-634 $)) NIL (|has| |#1| (-453))) (($ $ $) NIL (|has| |#1| (-453)))) (-4487 (((-1143) $) NIL)) (-1643 (((-2 (|:| -3961 $) (|:| -1500 $)) $ (-763)) 41)) (-3324 (((-3 (-634 $) "failed") $) NIL)) (-1794 (((-3 (-634 $) "failed") $) NIL)) (-3751 (((-3 (-2 (|:| |var| (-1075)) (|:| -3438 (-763))) "failed") $) NIL)) (-3837 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-4434 (($) NIL (|has| |#1| (-1136)) CONST)) (-4022 (((-1108) $) NIL)) (-2086 (((-121) $) 33)) (-2091 ((|#1| $) NIL)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) 80 (|has| |#1| (-453)))) (-2721 (($ (-634 $)) NIL (|has| |#1| (-453))) (($ $ $) 135 (|has| |#1| (-453)))) (-4285 (($ $ (-763) |#1| $) 99)) (-2905 (((-420 (-1157 $)) (-1157 $)) 78 (|has| |#1| (-904)))) (-3545 (((-420 (-1157 $)) (-1157 $)) 77 (|has| |#1| (-904)))) (-3848 (((-420 $) $) 85 (|has| |#1| (-904)))) (-4497 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL (|has| |#1| (-365)))) (-2595 (((-3 $ "failed") $ |#1|) 131 (|has| |#1| (-558))) (((-3 $ "failed") $ $) 100 (|has| |#1| (-558)))) (-2344 (((-3 (-634 $) "failed") (-634 $) $) NIL (|has| |#1| (-365)))) (-1339 (($ $ (-634 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-634 $) (-634 $)) NIL) (($ $ (-1075) |#1|) NIL) (($ $ (-634 (-1075)) (-634 |#1|)) NIL) (($ $ (-1075) $) NIL) (($ $ (-634 (-1075)) (-634 $)) NIL)) (-2709 (((-763) $) NIL (|has| |#1| (-365)))) (-2779 ((|#1| $ |#1|) 119) (($ $ $) 120) (((-409 $) (-409 $) (-409 $)) NIL (|has| |#1| (-558))) ((|#1| (-409 $) |#1|) NIL (|has| |#1| (-365))) (((-409 $) $ (-409 $)) NIL (|has| |#1| (-558)))) (-2167 (((-3 $ "failed") $ (-763)) 37)) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) 137 (|has| |#1| (-365)))) (-2217 (($ $ (-1075)) NIL (|has| |#1| (-172))) ((|#1| $) 124 (|has| |#1| (-172)))) (-4189 (($ $ (-1075)) NIL) (($ $ (-634 (-1075))) NIL) (($ $ (-1075) (-763)) NIL) (($ $ (-634 (-1075)) (-634 (-763))) NIL) (($ $ (-763)) NIL) (($ $) NIL) (($ $ (-1161)) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-634 (-1161))) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-1161) (-763)) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-634 (-1161)) (-634 (-763))) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-1 |#1| |#1|) (-763)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3206 (((-763) $) 55) (((-763) $ (-1075)) NIL) (((-634 (-763)) $ (-634 (-1075))) NIL)) (-4278 (((-887 (-381)) $) NIL (-12 (|has| (-1075) (-609 (-887 (-381)))) (|has| |#1| (-609 (-887 (-381)))))) (((-887 (-568)) $) NIL (-12 (|has| (-1075) (-609 (-887 (-568)))) (|has| |#1| (-609 (-887 (-568)))))) (((-541) $) NIL (-12 (|has| (-1075) (-609 (-541))) (|has| |#1| (-609 (-541)))))) (-3367 ((|#1| $) 130 (|has| |#1| (-453))) (($ $ (-1075)) NIL (|has| |#1| (-453)))) (-2979 (((-3 (-1244 $) "failed") (-679 $)) NIL (-12 (|has| $ (-148)) (|has| |#1| (-904))))) (-3950 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558))) (((-3 (-409 $) "failed") (-409 $) $) NIL (|has| |#1| (-558)))) (-2745 (((-850) $) 118) (($ (-568)) NIL) (($ |#1|) 54) (($ (-1075)) NIL) (($ (-409 (-568))) NIL (-2198 (|has| |#1| (-43 (-409 (-568)))) (|has| |#1| (-1037 (-409 (-568)))))) (($ $) NIL (|has| |#1| (-558)))) (-1302 (((-634 |#1|) $) NIL)) (-2604 ((|#1| $ (-763)) NIL) (($ $ (-1075) (-763)) NIL) (($ $ (-634 (-1075)) (-634 (-763))) NIL)) (-4371 (((-3 $ "failed") $) NIL (-2198 (-12 (|has| $ (-148)) (|has| |#1| (-904))) (|has| |#1| (-148))))) (-4078 (((-763)) NIL)) (-4171 (($ $ $ (-763)) 28 (|has| |#1| (-172)))) (-1826 (((-121) $ $) NIL (|has| |#1| (-558)))) (-1887 (($ $ (-917)) 15) (($ $ (-763)) 16)) (-3056 (($) 17 T CONST)) (-1556 (($) 18 T CONST)) (-3190 (($ $ (-1075)) NIL) (($ $ (-634 (-1075))) NIL) (($ $ (-1075) (-763)) NIL) (($ $ (-634 (-1075)) (-634 (-763))) NIL) (($ $ (-763)) NIL) (($ $) NIL) (($ $ (-1161)) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-634 (-1161))) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-1161) (-763)) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-634 (-1161)) (-634 (-763))) NIL (|has| |#1| (-895 (-1161)))) (($ $ (-1 |#1| |#1|) (-763)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1751 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1738 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1717 (((-121) $ $) 97)) (-1745 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1732 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1779 (($ $ |#1|) 138 (|has| |#1| (-365)))) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) 67)) (** (($ $ (-917)) 14) (($ $ (-763)) 12)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) 27) (($ $ (-409 (-568))) NIL (|has| |#1| (-43 (-409 (-568))))) (($ (-409 (-568)) $) NIL (|has| |#1| (-43 (-409 (-568))))) (($ |#1| $) 102) (($ $ |#1|) NIL))) +(((-1157 |#1|) (-13 (-1219 |#1|) (-10 -8 (-15 -3680 ((-850) $ (-850))) (-15 -4285 ($ $ (-763) |#1| $)))) (-1047)) (T -1157)) +((-3680 (*1 *2 *1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1157 *3)) (-4 *3 (-1047)))) (-4285 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-763)) (-5 *1 (-1157 *3)) (-4 *3 (-1047))))) +(-13 (-1219 |#1|) (-10 -8 (-15 -3680 ((-850) $ (-850))) (-15 -4285 ($ $ (-763) |#1| $)))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-2055 (((-634 (-1075)) $) NIL)) (-1305 (((-1161) $) 11)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-2227 (($ $) NIL (|has| |#1| (-558)))) (-1573 (((-121) $) NIL (|has| |#1| (-558)))) (-2617 (($ $ (-409 (-568))) NIL) (($ $ (-409 (-568)) (-409 (-568))) NIL)) (-2583 (((-1141 (-2 (|:| |k| (-409 (-568))) (|:| |c| |#1|))) $) NIL)) (-1982 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1933 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-3134 (((-3 $ "failed") $ $) NIL)) (-4305 (($ $) NIL (|has| |#1| (-365)))) (-1678 (((-420 $) $) NIL (|has| |#1| (-365)))) (-1902 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1497 (((-121) $ $) NIL (|has| |#1| (-365)))) (-1974 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-2786 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-3728 (($ (-763) (-1141 (-2 (|:| |k| (-409 (-568))) (|:| |c| |#1|)))) NIL)) (-1990 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1941 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-2671 (($) NIL T CONST)) (-3666 (((-3 (-1151 |#1| |#2| |#3|) "failed") $) 32) (((-3 (-1159 |#1| |#2| |#3|) "failed") $) 35)) (-2854 (((-1151 |#1| |#2| |#3|) $) NIL) (((-1159 |#1| |#2| |#3|) $) NIL)) (-2401 (($ $ $) NIL (|has| |#1| (-365)))) (-2114 (($ $) NIL)) (-2925 (((-3 $ "failed") $) NIL)) (-3533 (((-409 (-568)) $) 55)) (-2412 (($ $ $) NIL (|has| |#1| (-365)))) (-2075 (($ (-409 (-568)) (-1151 |#1| |#2| |#3|)) NIL)) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) NIL (|has| |#1| (-365)))) (-3927 (((-121) $) NIL (|has| |#1| (-365)))) (-3992 (((-121) $) NIL)) (-1897 (($) NIL (|has| |#1| (-43 (-409 (-568)))))) (-4477 (((-409 (-568)) $) NIL) (((-409 (-568)) $ (-409 (-568))) NIL)) (-2735 (((-121) $) NIL)) (-4044 (($ $ (-568)) NIL (|has| |#1| (-43 (-409 (-568)))))) (-3536 (($ $ (-917)) NIL) (($ $ (-409 (-568))) NIL)) (-3562 (((-3 (-634 $) "failed") (-634 $) $) NIL (|has| |#1| (-365)))) (-3921 (((-121) $) NIL)) (-2047 (($ |#1| (-409 (-568))) 19) (($ $ (-1075) (-409 (-568))) NIL) (($ $ (-634 (-1075)) (-634 (-409 (-568)))) NIL)) (-2795 (($ (-1 |#1| |#1|) $) NIL)) (-4416 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-2097 (($ $) NIL)) (-2102 ((|#1| $) NIL)) (-2495 (($ (-634 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3429 (((-1151 |#1| |#2| |#3|) $) 40)) (-3074 (((-3 (-1151 |#1| |#2| |#3|) "failed") $) NIL)) (-2070 (((-1151 |#1| |#2| |#3|) $) NIL)) (-4487 (((-1143) $) NIL)) (-2081 (($ $) NIL (|has| |#1| (-365)))) (-3837 (($ $) 38 (|has| |#1| (-43 (-409 (-568))))) (($ $ (-1161)) NIL (-2198 (-12 (|has| |#1| (-15 -3837 (|#1| |#1| (-1161)))) (|has| |#1| (-15 -2055 ((-634 (-1161)) |#1|))) (|has| |#1| (-43 (-409 (-568))))) (-12 (|has| |#1| (-29 (-568))) (|has| |#1| (-43 (-409 (-568)))) (|has| |#1| (-959)) (|has| |#1| (-1181))))) (($ $ (-1240 |#2|)) 39 (|has| |#1| (-43 (-409 (-568)))))) (-4022 (((-1108) $) NIL)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL (|has| |#1| (-365)))) (-2721 (($ (-634 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3848 (((-420 $) $) NIL (|has| |#1| (-365)))) (-4497 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL (|has| |#1| (-365)))) (-1807 (($ $ (-409 (-568))) NIL)) (-2595 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-2344 (((-3 (-634 $) "failed") (-634 $) $) NIL (|has| |#1| (-365)))) (-1892 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1339 (((-1141 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-409 (-568))))))) (-2709 (((-763) $) NIL (|has| |#1| (-365)))) (-2779 ((|#1| $ (-409 (-568))) NIL) (($ $ $) NIL (|has| (-409 (-568)) (-1102)))) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL (|has| |#1| (-365)))) (-4189 (($ $ (-634 (-1161)) (-634 (-763))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-1161) (-763)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-634 (-1161))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-1161)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-763)) NIL (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|)))) (($ $) 36 (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|)))) (($ $ (-1240 |#2|)) 37)) (-3206 (((-409 (-568)) $) NIL)) (-1994 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1945 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1986 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1937 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1978 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-2790 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1811 (($ $) NIL)) (-2745 (((-850) $) 58) (($ (-568)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1151 |#1| |#2| |#3|)) 29) (($ (-1159 |#1| |#2| |#3|)) 30) (($ (-1240 |#2|)) 25) (($ (-409 (-568))) NIL (|has| |#1| (-43 (-409 (-568))))) (($ $) NIL (|has| |#1| (-558)))) (-2604 ((|#1| $ (-409 (-568))) NIL)) (-4371 (((-3 $ "failed") $) NIL (|has| |#1| (-148)))) (-4078 (((-763)) NIL)) (-1374 ((|#1| $) 12)) (-2006 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1958 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1826 (((-121) $ $) NIL (|has| |#1| (-558)))) (-1998 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1949 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-2014 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1966 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-3996 ((|#1| $ (-409 (-568))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-409 (-568))))) (|has| |#1| (-15 -2745 (|#1| (-1161))))))) (-4023 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1970 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-2010 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1962 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-2002 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1953 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL (|has| |#1| (-365)))) (-3056 (($) 21 T CONST)) (-1556 (($) 16 T CONST)) (-3190 (($ $ (-634 (-1161)) (-634 (-763))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-1161) (-763)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-634 (-1161))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-1161)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-763)) NIL (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))))) (-1717 (((-121) $ $) NIL)) (-1779 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) 23)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-43 (-409 (-568))))) (($ $ (-409 (-568))) NIL (|has| |#1| (-43 (-409 (-568)))))) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-409 (-568)) $) NIL (|has| |#1| (-43 (-409 (-568))))) (($ $ (-409 (-568))) NIL (|has| |#1| (-43 (-409 (-568))))))) +(((-1158 |#1| |#2| |#3|) (-13 (-1226 |#1| (-1151 |#1| |#2| |#3|)) (-1037 (-1159 |#1| |#2| |#3|)) (-10 -8 (-15 -2745 ($ (-1240 |#2|))) (-15 -4189 ($ $ (-1240 |#2|))) (IF (|has| |#1| (-43 (-409 (-568)))) (-15 -3837 ($ $ (-1240 |#2|))) |noBranch|))) (-1047) (-1161) |#1|) (T -1158)) +((-2745 (*1 *1 *2) (-12 (-5 *2 (-1240 *4)) (-14 *4 (-1161)) (-5 *1 (-1158 *3 *4 *5)) (-4 *3 (-1047)) (-14 *5 *3))) (-4189 (*1 *1 *1 *2) (-12 (-5 *2 (-1240 *4)) (-14 *4 (-1161)) (-5 *1 (-1158 *3 *4 *5)) (-4 *3 (-1047)) (-14 *5 *3))) (-3837 (*1 *1 *1 *2) (-12 (-5 *2 (-1240 *4)) (-14 *4 (-1161)) (-5 *1 (-1158 *3 *4 *5)) (-4 *3 (-43 (-409 (-568)))) (-4 *3 (-1047)) (-14 *5 *3)))) +(-13 (-1226 |#1| (-1151 |#1| |#2| |#3|)) (-1037 (-1159 |#1| |#2| |#3|)) (-10 -8 (-15 -2745 ($ (-1240 |#2|))) (-15 -4189 ($ $ (-1240 |#2|))) (IF (|has| |#1| (-43 (-409 (-568)))) (-15 -3837 ($ $ (-1240 |#2|))) |noBranch|))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) 124)) (-2055 (((-634 (-1075)) $) NIL)) (-1305 (((-1161) $) 115)) (-3196 (((-1216 |#2| |#1|) $ (-763)) 62)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-2227 (($ $) NIL (|has| |#1| (-558)))) (-1573 (((-121) $) NIL (|has| |#1| (-558)))) (-2617 (($ $ (-763)) 78) (($ $ (-763) (-763)) 75)) (-2583 (((-1141 (-2 (|:| |k| (-763)) (|:| |c| |#1|))) $) 101)) (-1982 (($ $) 168 (|has| |#1| (-43 (-409 (-568)))))) (-1933 (($ $) 144 (|has| |#1| (-43 (-409 (-568)))))) (-3134 (((-3 $ "failed") $ $) NIL)) (-1902 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1974 (($ $) 164 (|has| |#1| (-43 (-409 (-568)))))) (-2786 (($ $) 140 (|has| |#1| (-43 (-409 (-568)))))) (-3728 (($ (-1141 (-2 (|:| |k| (-763)) (|:| |c| |#1|)))) 114) (($ (-1141 |#1|)) 109)) (-1990 (($ $) 172 (|has| |#1| (-43 (-409 (-568)))))) (-1941 (($ $) 148 (|has| |#1| (-43 (-409 (-568)))))) (-2671 (($) NIL T CONST)) (-2114 (($ $) NIL)) (-2925 (((-3 $ "failed") $) 23)) (-3490 (($ $) 26)) (-1367 (((-953 |#1|) $ (-763)) 74) (((-953 |#1|) $ (-763) (-763)) 76)) (-3992 (((-121) $) 119)) (-1897 (($) NIL (|has| |#1| (-43 (-409 (-568)))))) (-4477 (((-763) $) 121) (((-763) $ (-763)) 123)) (-2735 (((-121) $) NIL)) (-4044 (($ $ (-568)) NIL (|has| |#1| (-43 (-409 (-568)))))) (-3536 (($ $ (-917)) NIL)) (-1716 (($ (-1 |#1| (-568)) $) NIL)) (-3921 (((-121) $) NIL)) (-2047 (($ |#1| (-763)) 13) (($ $ (-1075) (-763)) NIL) (($ $ (-634 (-1075)) (-634 (-763))) NIL)) (-2795 (($ (-1 |#1| |#1|) $) NIL)) (-4416 (($ $) 130 (|has| |#1| (-43 (-409 (-568)))))) (-2097 (($ $) NIL)) (-2102 ((|#1| $) NIL)) (-4487 (((-1143) $) NIL)) (-3837 (($ $) 128 (|has| |#1| (-43 (-409 (-568))))) (($ $ (-1161)) NIL (-2198 (-12 (|has| |#1| (-15 -3837 (|#1| |#1| (-1161)))) (|has| |#1| (-15 -2055 ((-634 (-1161)) |#1|))) (|has| |#1| (-43 (-409 (-568))))) (-12 (|has| |#1| (-29 (-568))) (|has| |#1| (-43 (-409 (-568)))) (|has| |#1| (-959)) (|has| |#1| (-1181))))) (($ $ (-1240 |#2|)) 129 (|has| |#1| (-43 (-409 (-568)))))) (-4022 (((-1108) $) NIL)) (-1807 (($ $ (-763)) 15)) (-2595 (((-3 $ "failed") $ $) 24 (|has| |#1| (-558)))) (-1892 (($ $) 132 (|has| |#1| (-43 (-409 (-568)))))) (-1339 (((-1141 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-763)))))) (-2779 ((|#1| $ (-763)) 118) (($ $ $) 127 (|has| (-763) (-1102)))) (-4189 (($ $ (-634 (-1161)) (-634 (-763))) NIL (-12 (|has| |#1| (-15 * (|#1| (-763) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-1161) (-763)) NIL (-12 (|has| |#1| (-15 * (|#1| (-763) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-634 (-1161))) NIL (-12 (|has| |#1| (-15 * (|#1| (-763) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-1161)) NIL (-12 (|has| |#1| (-15 * (|#1| (-763) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-763)) NIL (|has| |#1| (-15 * (|#1| (-763) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-763) |#1|)))) (($ $ (-1240 |#2|)) 29)) (-3206 (((-763) $) NIL)) (-1994 (($ $) 174 (|has| |#1| (-43 (-409 (-568)))))) (-1945 (($ $) 150 (|has| |#1| (-43 (-409 (-568)))))) (-1986 (($ $) 170 (|has| |#1| (-43 (-409 (-568)))))) (-1937 (($ $) 146 (|has| |#1| (-43 (-409 (-568)))))) (-1978 (($ $) 166 (|has| |#1| (-43 (-409 (-568)))))) (-2790 (($ $) 142 (|has| |#1| (-43 (-409 (-568)))))) (-1811 (($ $) NIL)) (-2745 (((-850) $) 200) (($ (-568)) NIL) (($ (-409 (-568))) NIL (|has| |#1| (-43 (-409 (-568))))) (($ $) NIL (|has| |#1| (-558))) (($ |#1|) 125 (|has| |#1| (-172))) (($ (-1216 |#2| |#1|)) 50) (($ (-1240 |#2|)) 32)) (-1302 (((-1141 |#1|) $) 97)) (-2604 ((|#1| $ (-763)) 117)) (-4371 (((-3 $ "failed") $) NIL (|has| |#1| (-148)))) (-4078 (((-763)) NIL)) (-1374 ((|#1| $) 53)) (-2006 (($ $) 180 (|has| |#1| (-43 (-409 (-568)))))) (-1958 (($ $) 156 (|has| |#1| (-43 (-409 (-568)))))) (-1826 (((-121) $ $) NIL (|has| |#1| (-558)))) (-1998 (($ $) 176 (|has| |#1| (-43 (-409 (-568)))))) (-1949 (($ $) 152 (|has| |#1| (-43 (-409 (-568)))))) (-2014 (($ $) 184 (|has| |#1| (-43 (-409 (-568)))))) (-1966 (($ $) 160 (|has| |#1| (-43 (-409 (-568)))))) (-3996 ((|#1| $ (-763)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-763)))) (|has| |#1| (-15 -2745 (|#1| (-1161))))))) (-4023 (($ $) 186 (|has| |#1| (-43 (-409 (-568)))))) (-1970 (($ $) 162 (|has| |#1| (-43 (-409 (-568)))))) (-2010 (($ $) 182 (|has| |#1| (-43 (-409 (-568)))))) (-1962 (($ $) 158 (|has| |#1| (-43 (-409 (-568)))))) (-2002 (($ $) 178 (|has| |#1| (-43 (-409 (-568)))))) (-1953 (($ $) 154 (|has| |#1| (-43 (-409 (-568)))))) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (-3056 (($) 17 T CONST)) (-1556 (($) 19 T CONST)) (-3190 (($ $ (-634 (-1161)) (-634 (-763))) NIL (-12 (|has| |#1| (-15 * (|#1| (-763) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-1161) (-763)) NIL (-12 (|has| |#1| (-15 * (|#1| (-763) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-634 (-1161))) NIL (-12 (|has| |#1| (-15 * (|#1| (-763) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-1161)) NIL (-12 (|has| |#1| (-15 * (|#1| (-763) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-763)) NIL (|has| |#1| (-15 * (|#1| (-763) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-763) |#1|))))) (-1717 (((-121) $ $) NIL)) (-1779 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-1773 (($ $) NIL) (($ $ $) 193)) (-1767 (($ $ $) 31)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ |#1|) 197 (|has| |#1| (-365))) (($ $ $) 133 (|has| |#1| (-43 (-409 (-568))))) (($ $ (-409 (-568))) 136 (|has| |#1| (-43 (-409 (-568)))))) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) 131) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-409 (-568)) $) NIL (|has| |#1| (-43 (-409 (-568))))) (($ $ (-409 (-568))) NIL (|has| |#1| (-43 (-409 (-568))))))) +(((-1159 |#1| |#2| |#3|) (-13 (-1234 |#1|) (-10 -8 (-15 -2745 ($ (-1216 |#2| |#1|))) (-15 -3196 ((-1216 |#2| |#1|) $ (-763))) (-15 -2745 ($ (-1240 |#2|))) (-15 -4189 ($ $ (-1240 |#2|))) (IF (|has| |#1| (-43 (-409 (-568)))) (-15 -3837 ($ $ (-1240 |#2|))) |noBranch|))) (-1047) (-1161) |#1|) (T -1159)) +((-2745 (*1 *1 *2) (-12 (-5 *2 (-1216 *4 *3)) (-4 *3 (-1047)) (-14 *4 (-1161)) (-14 *5 *3) (-5 *1 (-1159 *3 *4 *5)))) (-3196 (*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-5 *2 (-1216 *5 *4)) (-5 *1 (-1159 *4 *5 *6)) (-4 *4 (-1047)) (-14 *5 (-1161)) (-14 *6 *4))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-1240 *4)) (-14 *4 (-1161)) (-5 *1 (-1159 *3 *4 *5)) (-4 *3 (-1047)) (-14 *5 *3))) (-4189 (*1 *1 *1 *2) (-12 (-5 *2 (-1240 *4)) (-14 *4 (-1161)) (-5 *1 (-1159 *3 *4 *5)) (-4 *3 (-1047)) (-14 *5 *3))) (-3837 (*1 *1 *1 *2) (-12 (-5 *2 (-1240 *4)) (-14 *4 (-1161)) (-5 *1 (-1159 *3 *4 *5)) (-4 *3 (-43 (-409 (-568)))) (-4 *3 (-1047)) (-14 *5 *3)))) +(-13 (-1234 |#1|) (-10 -8 (-15 -2745 ($ (-1216 |#2| |#1|))) (-15 -3196 ((-1216 |#2| |#1|) $ (-763))) (-15 -2745 ($ (-1240 |#2|))) (-15 -4189 ($ $ (-1240 |#2|))) (IF (|has| |#1| (-43 (-409 (-568)))) (-15 -3837 ($ $ (-1240 |#2|))) |noBranch|))) +((-2745 (((-850) $) 22) (($ (-1161)) 24)) (-2198 (($ (-3 (|:| I (-310 (-568))) (|:| -1478 (-310 (-381))) (|:| CF (-310 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-310 (-568))) (|:| -1478 (-310 (-381))) (|:| CF (-310 (-169 (-381)))) (|:| |switch| $))) 35)) (-2192 (($ (-3 (|:| I (-310 (-568))) (|:| -1478 (-310 (-381))) (|:| CF (-310 (-169 (-381)))) (|:| |switch| $))) 28) (($ $) 29)) (-2571 (($ (-3 (|:| I (-310 (-568))) (|:| -1478 (-310 (-381))) (|:| CF (-310 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-310 (-568))) (|:| -1478 (-310 (-381))) (|:| CF (-310 (-169 (-381)))) (|:| |switch| $))) 30)) (-2684 (($ (-3 (|:| I (-310 (-568))) (|:| -1478 (-310 (-381))) (|:| CF (-310 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-310 (-568))) (|:| -1478 (-310 (-381))) (|:| CF (-310 (-169 (-381)))) (|:| |switch| $))) 32)) (-2723 (($ (-3 (|:| I (-310 (-568))) (|:| -1478 (-310 (-381))) (|:| CF (-310 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-310 (-568))) (|:| -1478 (-310 (-381))) (|:| CF (-310 (-169 (-381)))) (|:| |switch| $))) 31)) (-2774 (($ (-3 (|:| I (-310 (-568))) (|:| -1478 (-310 (-381))) (|:| CF (-310 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-310 (-568))) (|:| -1478 (-310 (-381))) (|:| CF (-310 (-169 (-381)))) (|:| |switch| $))) 33)) (-2993 (($ (-3 (|:| I (-310 (-568))) (|:| -1478 (-310 (-381))) (|:| CF (-310 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-310 (-568))) (|:| -1478 (-310 (-381))) (|:| CF (-310 (-169 (-381)))) (|:| |switch| $))) 36)) (-12 (($ (-3 (|:| I (-310 (-568))) (|:| -1478 (-310 (-381))) (|:| CF (-310 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-310 (-568))) (|:| -1478 (-310 (-381))) (|:| CF (-310 (-169 (-381)))) (|:| |switch| $))) 34))) +(((-1160) (-13 (-608 (-850)) (-10 -8 (-15 -2745 ($ (-1161))) (-15 -2571 ($ (-3 (|:| I (-310 (-568))) (|:| -1478 (-310 (-381))) (|:| CF (-310 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-310 (-568))) (|:| -1478 (-310 (-381))) (|:| CF (-310 (-169 (-381)))) (|:| |switch| $)))) (-15 -2723 ($ (-3 (|:| I (-310 (-568))) (|:| -1478 (-310 (-381))) (|:| CF (-310 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-310 (-568))) (|:| -1478 (-310 (-381))) (|:| CF (-310 (-169 (-381)))) (|:| |switch| $)))) (-15 -2684 ($ (-3 (|:| I (-310 (-568))) (|:| -1478 (-310 (-381))) (|:| CF (-310 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-310 (-568))) (|:| -1478 (-310 (-381))) (|:| CF (-310 (-169 (-381)))) (|:| |switch| $)))) (-15 -2774 ($ (-3 (|:| I (-310 (-568))) (|:| -1478 (-310 (-381))) (|:| CF (-310 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-310 (-568))) (|:| -1478 (-310 (-381))) (|:| CF (-310 (-169 (-381)))) (|:| |switch| $)))) (-15 -2198 ($ (-3 (|:| I (-310 (-568))) (|:| -1478 (-310 (-381))) (|:| CF (-310 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-310 (-568))) (|:| -1478 (-310 (-381))) (|:| CF (-310 (-169 (-381)))) (|:| |switch| $)))) (-15 -2993 ($ (-3 (|:| I (-310 (-568))) (|:| -1478 (-310 (-381))) (|:| CF (-310 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-310 (-568))) (|:| -1478 (-310 (-381))) (|:| CF (-310 (-169 (-381)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-310 (-568))) (|:| -1478 (-310 (-381))) (|:| CF (-310 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-310 (-568))) (|:| -1478 (-310 (-381))) (|:| CF (-310 (-169 (-381)))) (|:| |switch| $)))) (-15 -2192 ($ (-3 (|:| I (-310 (-568))) (|:| -1478 (-310 (-381))) (|:| CF (-310 (-169 (-381)))) (|:| |switch| $)))) (-15 -2192 ($ $))))) (T -1160)) +((-2745 (*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-1160)))) (-2571 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-310 (-568))) (|:| -1478 (-310 (-381))) (|:| CF (-310 (-169 (-381)))) (|:| |switch| (-1160)))) (-5 *1 (-1160)))) (-2723 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-310 (-568))) (|:| -1478 (-310 (-381))) (|:| CF (-310 (-169 (-381)))) (|:| |switch| (-1160)))) (-5 *1 (-1160)))) (-2684 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-310 (-568))) (|:| -1478 (-310 (-381))) (|:| CF (-310 (-169 (-381)))) (|:| |switch| (-1160)))) (-5 *1 (-1160)))) (-2774 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-310 (-568))) (|:| -1478 (-310 (-381))) (|:| CF (-310 (-169 (-381)))) (|:| |switch| (-1160)))) (-5 *1 (-1160)))) (-2198 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-310 (-568))) (|:| -1478 (-310 (-381))) (|:| CF (-310 (-169 (-381)))) (|:| |switch| (-1160)))) (-5 *1 (-1160)))) (-2993 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-310 (-568))) (|:| -1478 (-310 (-381))) (|:| CF (-310 (-169 (-381)))) (|:| |switch| (-1160)))) (-5 *1 (-1160)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-310 (-568))) (|:| -1478 (-310 (-381))) (|:| CF (-310 (-169 (-381)))) (|:| |switch| (-1160)))) (-5 *1 (-1160)))) (-2192 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-310 (-568))) (|:| -1478 (-310 (-381))) (|:| CF (-310 (-169 (-381)))) (|:| |switch| (-1160)))) (-5 *1 (-1160)))) (-2192 (*1 *1 *1) (-5 *1 (-1160)))) +(-13 (-608 (-850)) (-10 -8 (-15 -2745 ($ (-1161))) (-15 -2571 ($ (-3 (|:| I (-310 (-568))) (|:| -1478 (-310 (-381))) (|:| CF (-310 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-310 (-568))) (|:| -1478 (-310 (-381))) (|:| CF (-310 (-169 (-381)))) (|:| |switch| $)))) (-15 -2723 ($ (-3 (|:| I (-310 (-568))) (|:| -1478 (-310 (-381))) (|:| CF (-310 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-310 (-568))) (|:| -1478 (-310 (-381))) (|:| CF (-310 (-169 (-381)))) (|:| |switch| $)))) (-15 -2684 ($ (-3 (|:| I (-310 (-568))) (|:| -1478 (-310 (-381))) (|:| CF (-310 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-310 (-568))) (|:| -1478 (-310 (-381))) (|:| CF (-310 (-169 (-381)))) (|:| |switch| $)))) (-15 -2774 ($ (-3 (|:| I (-310 (-568))) (|:| -1478 (-310 (-381))) (|:| CF (-310 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-310 (-568))) (|:| -1478 (-310 (-381))) (|:| CF (-310 (-169 (-381)))) (|:| |switch| $)))) (-15 -2198 ($ (-3 (|:| I (-310 (-568))) (|:| -1478 (-310 (-381))) (|:| CF (-310 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-310 (-568))) (|:| -1478 (-310 (-381))) (|:| CF (-310 (-169 (-381)))) (|:| |switch| $)))) (-15 -2993 ($ (-3 (|:| I (-310 (-568))) (|:| -1478 (-310 (-381))) (|:| CF (-310 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-310 (-568))) (|:| -1478 (-310 (-381))) (|:| CF (-310 (-169 (-381)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-310 (-568))) (|:| -1478 (-310 (-381))) (|:| CF (-310 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-310 (-568))) (|:| -1478 (-310 (-381))) (|:| CF (-310 (-169 (-381)))) (|:| |switch| $)))) (-15 -2192 ($ (-3 (|:| I (-310 (-568))) (|:| -1478 (-310 (-381))) (|:| CF (-310 (-169 (-381)))) (|:| |switch| $)))) (-15 -2192 ($ $)))) +((-2447 (((-121) $ $) NIL)) (-3510 (($ $ (-634 (-850))) 58)) (-1389 (($ $ (-634 (-850))) 56)) (-1742 (((-1143) $) 82)) (-3687 (((-2 (|:| -2553 (-634 (-850))) (|:| -1462 (-634 (-850))) (|:| |presup| (-634 (-850))) (|:| -3785 (-634 (-850))) (|:| |args| (-634 (-850)))) $) 85)) (-2502 (((-121) $) 21)) (-3174 (($ $ (-634 (-634 (-850)))) 54) (($ $ (-2 (|:| -2553 (-634 (-850))) (|:| -1462 (-634 (-850))) (|:| |presup| (-634 (-850))) (|:| -3785 (-634 (-850))) (|:| |args| (-634 (-850))))) 80)) (-2671 (($) 122 T CONST)) (-1636 (((-1249)) 103)) (-4410 (((-884 (-568) $) $ (-887 (-568)) (-884 (-568) $)) 65) (((-884 (-381) $) $ (-887 (-381)) (-884 (-381) $)) 71)) (-1849 (($) 92) (($ $) 98)) (-3391 (($ $) 81)) (-2521 (($ $ $) NIL)) (-3268 (($ $ $) NIL)) (-3896 (((-634 $) $) 104)) (-4487 (((-1143) $) 87)) (-4022 (((-1108) $) NIL)) (-2779 (($ $ (-634 (-850))) 57)) (-4278 (((-541) $) 45) (((-1161) $) 46) (((-887 (-568)) $) 75) (((-887 (-381)) $) 73)) (-2745 (((-850) $) 52) (($ (-1143)) 47)) (-1436 (($ $ (-634 (-850))) 59)) (-3754 (((-1143) $) 33) (((-1143) $ (-121)) 34) (((-1249) (-817) $) 35) (((-1249) (-817) $ (-121)) 36)) (-1751 (((-121) $ $) NIL)) (-1738 (((-121) $ $) NIL)) (-1717 (((-121) $ $) 48)) (-1745 (((-121) $ $) NIL)) (-1732 (((-121) $ $) 49))) +(((-1161) (-13 (-842) (-609 (-541)) (-823) (-609 (-1161)) (-609 (-887 (-568))) (-609 (-887 (-381))) (-881 (-568)) (-881 (-381)) (-10 -8 (-15 -1849 ($)) (-15 -1849 ($ $)) (-15 -1636 ((-1249))) (-15 -2745 ($ (-1143))) (-15 -3391 ($ $)) (-15 -2502 ((-121) $)) (-15 -3687 ((-2 (|:| -2553 (-634 (-850))) (|:| -1462 (-634 (-850))) (|:| |presup| (-634 (-850))) (|:| -3785 (-634 (-850))) (|:| |args| (-634 (-850)))) $)) (-15 -3174 ($ $ (-634 (-634 (-850))))) (-15 -3174 ($ $ (-2 (|:| -2553 (-634 (-850))) (|:| -1462 (-634 (-850))) (|:| |presup| (-634 (-850))) (|:| -3785 (-634 (-850))) (|:| |args| (-634 (-850)))))) (-15 -1389 ($ $ (-634 (-850)))) (-15 -3510 ($ $ (-634 (-850)))) (-15 -1436 ($ $ (-634 (-850)))) (-15 -2779 ($ $ (-634 (-850)))) (-15 -1742 ((-1143) $)) (-15 -3896 ((-634 $) $)) (-15 -2671 ($) -3495)))) (T -1161)) +((-1849 (*1 *1) (-5 *1 (-1161))) (-1849 (*1 *1 *1) (-5 *1 (-1161))) (-1636 (*1 *2) (-12 (-5 *2 (-1249)) (-5 *1 (-1161)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-1161)))) (-3391 (*1 *1 *1) (-5 *1 (-1161))) (-2502 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1161)))) (-3687 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2553 (-634 (-850))) (|:| -1462 (-634 (-850))) (|:| |presup| (-634 (-850))) (|:| -3785 (-634 (-850))) (|:| |args| (-634 (-850))))) (-5 *1 (-1161)))) (-3174 (*1 *1 *1 *2) (-12 (-5 *2 (-634 (-634 (-850)))) (-5 *1 (-1161)))) (-3174 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2553 (-634 (-850))) (|:| -1462 (-634 (-850))) (|:| |presup| (-634 (-850))) (|:| -3785 (-634 (-850))) (|:| |args| (-634 (-850))))) (-5 *1 (-1161)))) (-1389 (*1 *1 *1 *2) (-12 (-5 *2 (-634 (-850))) (-5 *1 (-1161)))) (-3510 (*1 *1 *1 *2) (-12 (-5 *2 (-634 (-850))) (-5 *1 (-1161)))) (-1436 (*1 *1 *1 *2) (-12 (-5 *2 (-634 (-850))) (-5 *1 (-1161)))) (-2779 (*1 *1 *1 *2) (-12 (-5 *2 (-634 (-850))) (-5 *1 (-1161)))) (-1742 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1161)))) (-3896 (*1 *2 *1) (-12 (-5 *2 (-634 (-1161))) (-5 *1 (-1161)))) (-2671 (*1 *1) (-5 *1 (-1161)))) +(-13 (-842) (-609 (-541)) (-823) (-609 (-1161)) (-609 (-887 (-568))) (-609 (-887 (-381))) (-881 (-568)) (-881 (-381)) (-10 -8 (-15 -1849 ($)) (-15 -1849 ($ $)) (-15 -1636 ((-1249))) (-15 -2745 ($ (-1143))) (-15 -3391 ($ $)) (-15 -2502 ((-121) $)) (-15 -3687 ((-2 (|:| -2553 (-634 (-850))) (|:| -1462 (-634 (-850))) (|:| |presup| (-634 (-850))) (|:| -3785 (-634 (-850))) (|:| |args| (-634 (-850)))) $)) (-15 -3174 ($ $ (-634 (-634 (-850))))) (-15 -3174 ($ $ (-2 (|:| -2553 (-634 (-850))) (|:| -1462 (-634 (-850))) (|:| |presup| (-634 (-850))) (|:| -3785 (-634 (-850))) (|:| |args| (-634 (-850)))))) (-15 -1389 ($ $ (-634 (-850)))) (-15 -3510 ($ $ (-634 (-850)))) (-15 -1436 ($ $ (-634 (-850)))) (-15 -2779 ($ $ (-634 (-850)))) (-15 -1742 ((-1143) $)) (-15 -3896 ((-634 $) $)) (-15 -2671 ($) -3495))) +((-2685 (((-1244 |#1|) |#1| (-917)) 16) (((-1244 |#1|) (-634 |#1|)) 20))) +(((-1162 |#1|) (-10 -7 (-15 -2685 ((-1244 |#1|) (-634 |#1|))) (-15 -2685 ((-1244 |#1|) |#1| (-917)))) (-1047)) (T -1162)) +((-2685 (*1 *2 *3 *4) (-12 (-5 *4 (-917)) (-5 *2 (-1244 *3)) (-5 *1 (-1162 *3)) (-4 *3 (-1047)))) (-2685 (*1 *2 *3) (-12 (-5 *3 (-634 *4)) (-4 *4 (-1047)) (-5 *2 (-1244 *4)) (-5 *1 (-1162 *4))))) +(-10 -7 (-15 -2685 ((-1244 |#1|) (-634 |#1|))) (-15 -2685 ((-1244 |#1|) |#1| (-917)))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-2227 (($ $) NIL (|has| |#1| (-558)))) (-1573 (((-121) $) NIL (|has| |#1| (-558)))) (-3134 (((-3 $ "failed") $ $) NIL)) (-2671 (($) NIL T CONST)) (-3666 (((-3 (-568) "failed") $) NIL (|has| |#1| (-1037 (-568)))) (((-3 (-409 (-568)) "failed") $) NIL (|has| |#1| (-1037 (-409 (-568))))) (((-3 |#1| "failed") $) NIL)) (-2854 (((-568) $) NIL (|has| |#1| (-1037 (-568)))) (((-409 (-568)) $) NIL (|has| |#1| (-1037 (-409 (-568))))) ((|#1| $) NIL)) (-2114 (($ $) NIL)) (-2925 (((-3 $ "failed") $) NIL)) (-3250 (($ $) NIL (|has| |#1| (-453)))) (-3088 (($ $ |#1| (-972) $) NIL)) (-2735 (((-121) $) NIL)) (-4178 (((-763) $) NIL)) (-3921 (((-121) $) NIL)) (-2047 (($ |#1| (-972)) NIL)) (-2144 (((-972) $) NIL)) (-3842 (($ (-1 (-972) (-972)) $) NIL)) (-2795 (($ (-1 |#1| |#1|) $) NIL)) (-2097 (($ $) NIL)) (-2102 ((|#1| $) NIL)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2086 (((-121) $) NIL)) (-2091 ((|#1| $) NIL)) (-4285 (($ $ (-972) |#1| $) NIL (-12 (|has| (-972) (-137)) (|has| |#1| (-558))))) (-2595 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558)))) (-3206 (((-972) $) NIL)) (-3367 ((|#1| $) NIL (|has| |#1| (-453)))) (-2745 (((-850) $) NIL) (($ (-568)) NIL) (($ $) NIL (|has| |#1| (-558))) (($ |#1|) NIL) (($ (-409 (-568))) NIL (-2198 (|has| |#1| (-43 (-409 (-568)))) (|has| |#1| (-1037 (-409 (-568))))))) (-1302 (((-634 |#1|) $) NIL)) (-2604 ((|#1| $ (-972)) NIL)) (-4371 (((-3 $ "failed") $) NIL (|has| |#1| (-148)))) (-4078 (((-763)) NIL)) (-4171 (($ $ $ (-763)) NIL (|has| |#1| (-172)))) (-1826 (((-121) $ $) NIL (|has| |#1| (-558)))) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (-3056 (($) 9 T CONST)) (-1556 (($) 14 T CONST)) (-1717 (((-121) $ $) 16)) (-1779 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) 19)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-409 (-568)) $) NIL (|has| |#1| (-43 (-409 (-568))))) (($ $ (-409 (-568))) NIL (|has| |#1| (-43 (-409 (-568))))))) +(((-1163 |#1|) (-13 (-324 |#1| (-972)) (-10 -8 (IF (|has| |#1| (-558)) (IF (|has| (-972) (-137)) (-15 -4285 ($ $ (-972) |#1| $)) |noBranch|) |noBranch|) (IF (|has| |#1| (-6 -4517)) (-6 -4517) |noBranch|))) (-1047)) (T -1163)) +((-4285 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-972)) (-4 *2 (-137)) (-5 *1 (-1163 *3)) (-4 *3 (-558)) (-4 *3 (-1047))))) +(-13 (-324 |#1| (-972)) (-10 -8 (IF (|has| |#1| (-558)) (IF (|has| (-972) (-137)) (-15 -4285 ($ $ (-972) |#1| $)) |noBranch|) |noBranch|) (IF (|has| |#1| (-6 -4517)) (-6 -4517) |noBranch|))) +((-1506 (((-1165) (-1161) $) 24)) (-3240 (($) 28)) (-4057 (((-3 (|:| |fst| (-436)) (|:| -3611 "void")) (-1161) $) 21)) (-2069 (((-1249) (-1161) (-3 (|:| |fst| (-436)) (|:| -3611 "void")) $) 40) (((-1249) (-1161) (-3 (|:| |fst| (-436)) (|:| -3611 "void"))) 41) (((-1249) (-3 (|:| |fst| (-436)) (|:| -3611 "void"))) 42)) (-3783 (((-1249) (-1161)) 57)) (-4283 (((-1249) (-1161) $) 54) (((-1249) (-1161)) 55) (((-1249)) 56)) (-2579 (((-1249) (-1161)) 36)) (-3330 (((-1161)) 35)) (-3248 (($) 33)) (-3813 (((-439) (-1161) (-439) (-1161) $) 44) (((-439) (-634 (-1161)) (-439) (-1161) $) 48) (((-439) (-1161) (-439)) 45) (((-439) (-1161) (-439) (-1161)) 49)) (-2508 (((-1161)) 34)) (-2745 (((-850) $) 27)) (-4457 (((-1249)) 29) (((-1249) (-1161)) 32)) (-1660 (((-634 (-1161)) (-1161) $) 23)) (-4063 (((-1249) (-1161) (-634 (-1161)) $) 37) (((-1249) (-1161) (-634 (-1161))) 38) (((-1249) (-634 (-1161))) 39))) +(((-1164) (-13 (-608 (-850)) (-10 -8 (-15 -3240 ($)) (-15 -4457 ((-1249))) (-15 -4457 ((-1249) (-1161))) (-15 -3813 ((-439) (-1161) (-439) (-1161) $)) (-15 -3813 ((-439) (-634 (-1161)) (-439) (-1161) $)) (-15 -3813 ((-439) (-1161) (-439))) (-15 -3813 ((-439) (-1161) (-439) (-1161))) (-15 -2579 ((-1249) (-1161))) (-15 -2508 ((-1161))) (-15 -3330 ((-1161))) (-15 -4063 ((-1249) (-1161) (-634 (-1161)) $)) (-15 -4063 ((-1249) (-1161) (-634 (-1161)))) (-15 -4063 ((-1249) (-634 (-1161)))) (-15 -2069 ((-1249) (-1161) (-3 (|:| |fst| (-436)) (|:| -3611 "void")) $)) (-15 -2069 ((-1249) (-1161) (-3 (|:| |fst| (-436)) (|:| -3611 "void")))) (-15 -2069 ((-1249) (-3 (|:| |fst| (-436)) (|:| -3611 "void")))) (-15 -4283 ((-1249) (-1161) $)) (-15 -4283 ((-1249) (-1161))) (-15 -4283 ((-1249))) (-15 -3783 ((-1249) (-1161))) (-15 -3248 ($)) (-15 -4057 ((-3 (|:| |fst| (-436)) (|:| -3611 "void")) (-1161) $)) (-15 -1660 ((-634 (-1161)) (-1161) $)) (-15 -1506 ((-1165) (-1161) $))))) (T -1164)) +((-3240 (*1 *1) (-5 *1 (-1164))) (-4457 (*1 *2) (-12 (-5 *2 (-1249)) (-5 *1 (-1164)))) (-4457 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1249)) (-5 *1 (-1164)))) (-3813 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-439)) (-5 *3 (-1161)) (-5 *1 (-1164)))) (-3813 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-439)) (-5 *3 (-634 (-1161))) (-5 *4 (-1161)) (-5 *1 (-1164)))) (-3813 (*1 *2 *3 *2) (-12 (-5 *2 (-439)) (-5 *3 (-1161)) (-5 *1 (-1164)))) (-3813 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-439)) (-5 *3 (-1161)) (-5 *1 (-1164)))) (-2579 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1249)) (-5 *1 (-1164)))) (-2508 (*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-1164)))) (-3330 (*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-1164)))) (-4063 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-634 (-1161))) (-5 *3 (-1161)) (-5 *2 (-1249)) (-5 *1 (-1164)))) (-4063 (*1 *2 *3 *4) (-12 (-5 *4 (-634 (-1161))) (-5 *3 (-1161)) (-5 *2 (-1249)) (-5 *1 (-1164)))) (-4063 (*1 *2 *3) (-12 (-5 *3 (-634 (-1161))) (-5 *2 (-1249)) (-5 *1 (-1164)))) (-2069 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1161)) (-5 *4 (-3 (|:| |fst| (-436)) (|:| -3611 "void"))) (-5 *2 (-1249)) (-5 *1 (-1164)))) (-2069 (*1 *2 *3 *4) (-12 (-5 *3 (-1161)) (-5 *4 (-3 (|:| |fst| (-436)) (|:| -3611 "void"))) (-5 *2 (-1249)) (-5 *1 (-1164)))) (-2069 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-436)) (|:| -3611 "void"))) (-5 *2 (-1249)) (-5 *1 (-1164)))) (-4283 (*1 *2 *3 *1) (-12 (-5 *3 (-1161)) (-5 *2 (-1249)) (-5 *1 (-1164)))) (-4283 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1249)) (-5 *1 (-1164)))) (-4283 (*1 *2) (-12 (-5 *2 (-1249)) (-5 *1 (-1164)))) (-3783 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1249)) (-5 *1 (-1164)))) (-3248 (*1 *1) (-5 *1 (-1164))) (-4057 (*1 *2 *3 *1) (-12 (-5 *3 (-1161)) (-5 *2 (-3 (|:| |fst| (-436)) (|:| -3611 "void"))) (-5 *1 (-1164)))) (-1660 (*1 *2 *3 *1) (-12 (-5 *2 (-634 (-1161))) (-5 *1 (-1164)) (-5 *3 (-1161)))) (-1506 (*1 *2 *3 *1) (-12 (-5 *3 (-1161)) (-5 *2 (-1165)) (-5 *1 (-1164))))) +(-13 (-608 (-850)) (-10 -8 (-15 -3240 ($)) (-15 -4457 ((-1249))) (-15 -4457 ((-1249) (-1161))) (-15 -3813 ((-439) (-1161) (-439) (-1161) $)) (-15 -3813 ((-439) (-634 (-1161)) (-439) (-1161) $)) (-15 -3813 ((-439) (-1161) (-439))) (-15 -3813 ((-439) (-1161) (-439) (-1161))) (-15 -2579 ((-1249) (-1161))) (-15 -2508 ((-1161))) (-15 -3330 ((-1161))) (-15 -4063 ((-1249) (-1161) (-634 (-1161)) $)) (-15 -4063 ((-1249) (-1161) (-634 (-1161)))) (-15 -4063 ((-1249) (-634 (-1161)))) (-15 -2069 ((-1249) (-1161) (-3 (|:| |fst| (-436)) (|:| -3611 "void")) $)) (-15 -2069 ((-1249) (-1161) (-3 (|:| |fst| (-436)) (|:| -3611 "void")))) (-15 -2069 ((-1249) (-3 (|:| |fst| (-436)) (|:| -3611 "void")))) (-15 -4283 ((-1249) (-1161) $)) (-15 -4283 ((-1249) (-1161))) (-15 -4283 ((-1249))) (-15 -3783 ((-1249) (-1161))) (-15 -3248 ($)) (-15 -4057 ((-3 (|:| |fst| (-436)) (|:| -3611 "void")) (-1161) $)) (-15 -1660 ((-634 (-1161)) (-1161) $)) (-15 -1506 ((-1165) (-1161) $)))) +((-1635 (((-634 (-634 (-3 (|:| -3391 (-1161)) (|:| |bounds| (-634 (-3 (|:| S (-1161)) (|:| P (-953 (-568))))))))) $) 57)) (-2478 (((-634 (-3 (|:| -3391 (-1161)) (|:| |bounds| (-634 (-3 (|:| S (-1161)) (|:| P (-953 (-568)))))))) (-436) $) 40)) (-4099 (($ (-634 (-2 (|:| -3649 (-1161)) (|:| -4083 (-439))))) 15)) (-3783 (((-1249) $) 65)) (-2939 (((-634 (-1161)) $) 20)) (-4332 (((-1094) $) 53)) (-2540 (((-439) (-1161) $) 27)) (-4156 (((-634 (-1161)) $) 30)) (-3248 (($) 17)) (-3813 (((-439) (-634 (-1161)) (-439) $) 25) (((-439) (-1161) (-439) $) 24)) (-2745 (((-850) $) 9) (((-1169 (-1161) (-439)) $) 11))) +(((-1165) (-13 (-608 (-850)) (-10 -8 (-15 -2745 ((-1169 (-1161) (-439)) $)) (-15 -3248 ($)) (-15 -3813 ((-439) (-634 (-1161)) (-439) $)) (-15 -3813 ((-439) (-1161) (-439) $)) (-15 -2540 ((-439) (-1161) $)) (-15 -2939 ((-634 (-1161)) $)) (-15 -2478 ((-634 (-3 (|:| -3391 (-1161)) (|:| |bounds| (-634 (-3 (|:| S (-1161)) (|:| P (-953 (-568)))))))) (-436) $)) (-15 -4156 ((-634 (-1161)) $)) (-15 -1635 ((-634 (-634 (-3 (|:| -3391 (-1161)) (|:| |bounds| (-634 (-3 (|:| S (-1161)) (|:| P (-953 (-568))))))))) $)) (-15 -4332 ((-1094) $)) (-15 -3783 ((-1249) $)) (-15 -4099 ($ (-634 (-2 (|:| -3649 (-1161)) (|:| -4083 (-439))))))))) (T -1165)) +((-2745 (*1 *2 *1) (-12 (-5 *2 (-1169 (-1161) (-439))) (-5 *1 (-1165)))) (-3248 (*1 *1) (-5 *1 (-1165))) (-3813 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-439)) (-5 *3 (-634 (-1161))) (-5 *1 (-1165)))) (-3813 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-439)) (-5 *3 (-1161)) (-5 *1 (-1165)))) (-2540 (*1 *2 *3 *1) (-12 (-5 *3 (-1161)) (-5 *2 (-439)) (-5 *1 (-1165)))) (-2939 (*1 *2 *1) (-12 (-5 *2 (-634 (-1161))) (-5 *1 (-1165)))) (-2478 (*1 *2 *3 *1) (-12 (-5 *3 (-436)) (-5 *2 (-634 (-3 (|:| -3391 (-1161)) (|:| |bounds| (-634 (-3 (|:| S (-1161)) (|:| P (-953 (-568))))))))) (-5 *1 (-1165)))) (-4156 (*1 *2 *1) (-12 (-5 *2 (-634 (-1161))) (-5 *1 (-1165)))) (-1635 (*1 *2 *1) (-12 (-5 *2 (-634 (-634 (-3 (|:| -3391 (-1161)) (|:| |bounds| (-634 (-3 (|:| S (-1161)) (|:| P (-953 (-568)))))))))) (-5 *1 (-1165)))) (-4332 (*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-1165)))) (-3783 (*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-1165)))) (-4099 (*1 *1 *2) (-12 (-5 *2 (-634 (-2 (|:| -3649 (-1161)) (|:| -4083 (-439))))) (-5 *1 (-1165))))) +(-13 (-608 (-850)) (-10 -8 (-15 -2745 ((-1169 (-1161) (-439)) $)) (-15 -3248 ($)) (-15 -3813 ((-439) (-634 (-1161)) (-439) $)) (-15 -3813 ((-439) (-1161) (-439) $)) (-15 -2540 ((-439) (-1161) $)) (-15 -2939 ((-634 (-1161)) $)) (-15 -2478 ((-634 (-3 (|:| -3391 (-1161)) (|:| |bounds| (-634 (-3 (|:| S (-1161)) (|:| P (-953 (-568)))))))) (-436) $)) (-15 -4156 ((-634 (-1161)) $)) (-15 -1635 ((-634 (-634 (-3 (|:| -3391 (-1161)) (|:| |bounds| (-634 (-3 (|:| S (-1161)) (|:| P (-953 (-568))))))))) $)) (-15 -4332 ((-1094) $)) (-15 -3783 ((-1249) $)) (-15 -4099 ($ (-634 (-2 (|:| -3649 (-1161)) (|:| -4083 (-439)))))))) +((-4227 (((-634 (-634 (-953 |#1|))) (-634 (-409 (-953 |#1|))) (-634 (-1161))) 55)) (-4351 (((-634 (-288 (-409 (-953 |#1|)))) (-288 (-409 (-953 |#1|)))) 66) (((-634 (-288 (-409 (-953 |#1|)))) (-409 (-953 |#1|))) 62) (((-634 (-288 (-409 (-953 |#1|)))) (-288 (-409 (-953 |#1|))) (-1161)) 67) (((-634 (-288 (-409 (-953 |#1|)))) (-409 (-953 |#1|)) (-1161)) 61) (((-634 (-634 (-288 (-409 (-953 |#1|))))) (-634 (-288 (-409 (-953 |#1|))))) 91) (((-634 (-634 (-288 (-409 (-953 |#1|))))) (-634 (-409 (-953 |#1|)))) 90) (((-634 (-634 (-288 (-409 (-953 |#1|))))) (-634 (-288 (-409 (-953 |#1|)))) (-634 (-1161))) 92) (((-634 (-634 (-288 (-409 (-953 |#1|))))) (-634 (-409 (-953 |#1|))) (-634 (-1161))) 89))) +(((-1166 |#1|) (-10 -7 (-15 -4351 ((-634 (-634 (-288 (-409 (-953 |#1|))))) (-634 (-409 (-953 |#1|))) (-634 (-1161)))) (-15 -4351 ((-634 (-634 (-288 (-409 (-953 |#1|))))) (-634 (-288 (-409 (-953 |#1|)))) (-634 (-1161)))) (-15 -4351 ((-634 (-634 (-288 (-409 (-953 |#1|))))) (-634 (-409 (-953 |#1|))))) (-15 -4351 ((-634 (-634 (-288 (-409 (-953 |#1|))))) (-634 (-288 (-409 (-953 |#1|)))))) (-15 -4351 ((-634 (-288 (-409 (-953 |#1|)))) (-409 (-953 |#1|)) (-1161))) (-15 -4351 ((-634 (-288 (-409 (-953 |#1|)))) (-288 (-409 (-953 |#1|))) (-1161))) (-15 -4351 ((-634 (-288 (-409 (-953 |#1|)))) (-409 (-953 |#1|)))) (-15 -4351 ((-634 (-288 (-409 (-953 |#1|)))) (-288 (-409 (-953 |#1|))))) (-15 -4227 ((-634 (-634 (-953 |#1|))) (-634 (-409 (-953 |#1|))) (-634 (-1161))))) (-558)) (T -1166)) +((-4227 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-953 *5)))) (-5 *4 (-634 (-1161))) (-4 *5 (-558)) (-5 *2 (-634 (-634 (-953 *5)))) (-5 *1 (-1166 *5)))) (-4351 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-634 (-288 (-409 (-953 *4))))) (-5 *1 (-1166 *4)) (-5 *3 (-288 (-409 (-953 *4)))))) (-4351 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-634 (-288 (-409 (-953 *4))))) (-5 *1 (-1166 *4)) (-5 *3 (-409 (-953 *4))))) (-4351 (*1 *2 *3 *4) (-12 (-5 *4 (-1161)) (-4 *5 (-558)) (-5 *2 (-634 (-288 (-409 (-953 *5))))) (-5 *1 (-1166 *5)) (-5 *3 (-288 (-409 (-953 *5)))))) (-4351 (*1 *2 *3 *4) (-12 (-5 *4 (-1161)) (-4 *5 (-558)) (-5 *2 (-634 (-288 (-409 (-953 *5))))) (-5 *1 (-1166 *5)) (-5 *3 (-409 (-953 *5))))) (-4351 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-634 (-634 (-288 (-409 (-953 *4)))))) (-5 *1 (-1166 *4)) (-5 *3 (-634 (-288 (-409 (-953 *4))))))) (-4351 (*1 *2 *3) (-12 (-5 *3 (-634 (-409 (-953 *4)))) (-4 *4 (-558)) (-5 *2 (-634 (-634 (-288 (-409 (-953 *4)))))) (-5 *1 (-1166 *4)))) (-4351 (*1 *2 *3 *4) (-12 (-5 *4 (-634 (-1161))) (-4 *5 (-558)) (-5 *2 (-634 (-634 (-288 (-409 (-953 *5)))))) (-5 *1 (-1166 *5)) (-5 *3 (-634 (-288 (-409 (-953 *5))))))) (-4351 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-953 *5)))) (-5 *4 (-634 (-1161))) (-4 *5 (-558)) (-5 *2 (-634 (-634 (-288 (-409 (-953 *5)))))) (-5 *1 (-1166 *5))))) +(-10 -7 (-15 -4351 ((-634 (-634 (-288 (-409 (-953 |#1|))))) (-634 (-409 (-953 |#1|))) (-634 (-1161)))) (-15 -4351 ((-634 (-634 (-288 (-409 (-953 |#1|))))) (-634 (-288 (-409 (-953 |#1|)))) (-634 (-1161)))) (-15 -4351 ((-634 (-634 (-288 (-409 (-953 |#1|))))) (-634 (-409 (-953 |#1|))))) (-15 -4351 ((-634 (-634 (-288 (-409 (-953 |#1|))))) (-634 (-288 (-409 (-953 |#1|)))))) (-15 -4351 ((-634 (-288 (-409 (-953 |#1|)))) (-409 (-953 |#1|)) (-1161))) (-15 -4351 ((-634 (-288 (-409 (-953 |#1|)))) (-288 (-409 (-953 |#1|))) (-1161))) (-15 -4351 ((-634 (-288 (-409 (-953 |#1|)))) (-409 (-953 |#1|)))) (-15 -4351 ((-634 (-288 (-409 (-953 |#1|)))) (-288 (-409 (-953 |#1|))))) (-15 -4227 ((-634 (-634 (-953 |#1|))) (-634 (-409 (-953 |#1|))) (-634 (-1161))))) +((-2544 (((-634 (-634 |#1|)) (-634 (-634 |#1|)) (-634 (-634 (-634 |#1|)))) 38)) (-3952 (((-634 (-634 (-634 |#1|))) (-634 (-634 |#1|))) 24)) (-4421 (((-1168 (-634 |#1|)) (-634 |#1|)) 34)) (-2493 (((-634 (-634 |#1|)) (-634 |#1|)) 30)) (-1475 (((-2 (|:| |f1| (-634 |#1|)) (|:| |f2| (-634 (-634 (-634 |#1|)))) (|:| |f3| (-634 (-634 |#1|))) (|:| |f4| (-634 (-634 (-634 |#1|))))) (-634 (-634 (-634 |#1|)))) 37)) (-1596 (((-2 (|:| |f1| (-634 |#1|)) (|:| |f2| (-634 (-634 (-634 |#1|)))) (|:| |f3| (-634 (-634 |#1|))) (|:| |f4| (-634 (-634 (-634 |#1|))))) (-634 |#1|) (-634 (-634 (-634 |#1|))) (-634 (-634 |#1|)) (-634 (-634 (-634 |#1|))) (-634 (-634 (-634 |#1|))) (-634 (-634 (-634 |#1|)))) 36)) (-3152 (((-634 (-634 |#1|)) (-634 (-634 |#1|))) 28)) (-3140 (((-634 |#1|) (-634 |#1|)) 31)) (-4074 (((-634 (-634 (-634 |#1|))) (-634 |#1|) (-634 (-634 (-634 |#1|)))) 18)) (-2516 (((-634 (-634 (-634 |#1|))) (-1 (-121) |#1| |#1|) (-634 |#1|) (-634 (-634 (-634 |#1|)))) 15)) (-2677 (((-2 (|:| |fs| (-121)) (|:| |sd| (-634 |#1|)) (|:| |td| (-634 (-634 |#1|)))) (-1 (-121) |#1| |#1|) (-634 |#1|) (-634 (-634 |#1|))) 13)) (-1734 (((-634 (-634 |#1|)) (-634 (-634 (-634 |#1|)))) 39)) (-2174 (((-634 (-634 |#1|)) (-1168 (-634 |#1|))) 41))) +(((-1167 |#1|) (-10 -7 (-15 -2677 ((-2 (|:| |fs| (-121)) (|:| |sd| (-634 |#1|)) (|:| |td| (-634 (-634 |#1|)))) (-1 (-121) |#1| |#1|) (-634 |#1|) (-634 (-634 |#1|)))) (-15 -2516 ((-634 (-634 (-634 |#1|))) (-1 (-121) |#1| |#1|) (-634 |#1|) (-634 (-634 (-634 |#1|))))) (-15 -4074 ((-634 (-634 (-634 |#1|))) (-634 |#1|) (-634 (-634 (-634 |#1|))))) (-15 -2544 ((-634 (-634 |#1|)) (-634 (-634 |#1|)) (-634 (-634 (-634 |#1|))))) (-15 -1734 ((-634 (-634 |#1|)) (-634 (-634 (-634 |#1|))))) (-15 -2174 ((-634 (-634 |#1|)) (-1168 (-634 |#1|)))) (-15 -3952 ((-634 (-634 (-634 |#1|))) (-634 (-634 |#1|)))) (-15 -4421 ((-1168 (-634 |#1|)) (-634 |#1|))) (-15 -3152 ((-634 (-634 |#1|)) (-634 (-634 |#1|)))) (-15 -2493 ((-634 (-634 |#1|)) (-634 |#1|))) (-15 -3140 ((-634 |#1|) (-634 |#1|))) (-15 -1596 ((-2 (|:| |f1| (-634 |#1|)) (|:| |f2| (-634 (-634 (-634 |#1|)))) (|:| |f3| (-634 (-634 |#1|))) (|:| |f4| (-634 (-634 (-634 |#1|))))) (-634 |#1|) (-634 (-634 (-634 |#1|))) (-634 (-634 |#1|)) (-634 (-634 (-634 |#1|))) (-634 (-634 (-634 |#1|))) (-634 (-634 (-634 |#1|))))) (-15 -1475 ((-2 (|:| |f1| (-634 |#1|)) (|:| |f2| (-634 (-634 (-634 |#1|)))) (|:| |f3| (-634 (-634 |#1|))) (|:| |f4| (-634 (-634 (-634 |#1|))))) (-634 (-634 (-634 |#1|)))))) (-842)) (T -1167)) +((-1475 (*1 *2 *3) (-12 (-4 *4 (-842)) (-5 *2 (-2 (|:| |f1| (-634 *4)) (|:| |f2| (-634 (-634 (-634 *4)))) (|:| |f3| (-634 (-634 *4))) (|:| |f4| (-634 (-634 (-634 *4)))))) (-5 *1 (-1167 *4)) (-5 *3 (-634 (-634 (-634 *4)))))) (-1596 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-842)) (-5 *3 (-634 *6)) (-5 *5 (-634 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-634 *5)) (|:| |f3| *5) (|:| |f4| (-634 *5)))) (-5 *1 (-1167 *6)) (-5 *4 (-634 *5)))) (-3140 (*1 *2 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-842)) (-5 *1 (-1167 *3)))) (-2493 (*1 *2 *3) (-12 (-4 *4 (-842)) (-5 *2 (-634 (-634 *4))) (-5 *1 (-1167 *4)) (-5 *3 (-634 *4)))) (-3152 (*1 *2 *2) (-12 (-5 *2 (-634 (-634 *3))) (-4 *3 (-842)) (-5 *1 (-1167 *3)))) (-4421 (*1 *2 *3) (-12 (-4 *4 (-842)) (-5 *2 (-1168 (-634 *4))) (-5 *1 (-1167 *4)) (-5 *3 (-634 *4)))) (-3952 (*1 *2 *3) (-12 (-4 *4 (-842)) (-5 *2 (-634 (-634 (-634 *4)))) (-5 *1 (-1167 *4)) (-5 *3 (-634 (-634 *4))))) (-2174 (*1 *2 *3) (-12 (-5 *3 (-1168 (-634 *4))) (-4 *4 (-842)) (-5 *2 (-634 (-634 *4))) (-5 *1 (-1167 *4)))) (-1734 (*1 *2 *3) (-12 (-5 *3 (-634 (-634 (-634 *4)))) (-5 *2 (-634 (-634 *4))) (-5 *1 (-1167 *4)) (-4 *4 (-842)))) (-2544 (*1 *2 *2 *3) (-12 (-5 *3 (-634 (-634 (-634 *4)))) (-5 *2 (-634 (-634 *4))) (-4 *4 (-842)) (-5 *1 (-1167 *4)))) (-4074 (*1 *2 *3 *2) (-12 (-5 *2 (-634 (-634 (-634 *4)))) (-5 *3 (-634 *4)) (-4 *4 (-842)) (-5 *1 (-1167 *4)))) (-2516 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-634 (-634 (-634 *5)))) (-5 *3 (-1 (-121) *5 *5)) (-5 *4 (-634 *5)) (-4 *5 (-842)) (-5 *1 (-1167 *5)))) (-2677 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-121) *6 *6)) (-4 *6 (-842)) (-5 *4 (-634 *6)) (-5 *2 (-2 (|:| |fs| (-121)) (|:| |sd| *4) (|:| |td| (-634 *4)))) (-5 *1 (-1167 *6)) (-5 *5 (-634 *4))))) +(-10 -7 (-15 -2677 ((-2 (|:| |fs| (-121)) (|:| |sd| (-634 |#1|)) (|:| |td| (-634 (-634 |#1|)))) (-1 (-121) |#1| |#1|) (-634 |#1|) (-634 (-634 |#1|)))) (-15 -2516 ((-634 (-634 (-634 |#1|))) (-1 (-121) |#1| |#1|) (-634 |#1|) (-634 (-634 (-634 |#1|))))) (-15 -4074 ((-634 (-634 (-634 |#1|))) (-634 |#1|) (-634 (-634 (-634 |#1|))))) (-15 -2544 ((-634 (-634 |#1|)) (-634 (-634 |#1|)) (-634 (-634 (-634 |#1|))))) (-15 -1734 ((-634 (-634 |#1|)) (-634 (-634 (-634 |#1|))))) (-15 -2174 ((-634 (-634 |#1|)) (-1168 (-634 |#1|)))) (-15 -3952 ((-634 (-634 (-634 |#1|))) (-634 (-634 |#1|)))) (-15 -4421 ((-1168 (-634 |#1|)) (-634 |#1|))) (-15 -3152 ((-634 (-634 |#1|)) (-634 (-634 |#1|)))) (-15 -2493 ((-634 (-634 |#1|)) (-634 |#1|))) (-15 -3140 ((-634 |#1|) (-634 |#1|))) (-15 -1596 ((-2 (|:| |f1| (-634 |#1|)) (|:| |f2| (-634 (-634 (-634 |#1|)))) (|:| |f3| (-634 (-634 |#1|))) (|:| |f4| (-634 (-634 (-634 |#1|))))) (-634 |#1|) (-634 (-634 (-634 |#1|))) (-634 (-634 |#1|)) (-634 (-634 (-634 |#1|))) (-634 (-634 (-634 |#1|))) (-634 (-634 (-634 |#1|))))) (-15 -1475 ((-2 (|:| |f1| (-634 |#1|)) (|:| |f2| (-634 (-634 (-634 |#1|)))) (|:| |f3| (-634 (-634 |#1|))) (|:| |f4| (-634 (-634 (-634 |#1|))))) (-634 (-634 (-634 |#1|)))))) +((-2472 (($ (-634 (-634 |#1|))) 9)) (-3208 (((-634 (-634 |#1|)) $) 10)) (-2745 (((-850) $) 25))) +(((-1168 |#1|) (-10 -8 (-15 -2472 ($ (-634 (-634 |#1|)))) (-15 -3208 ((-634 (-634 |#1|)) $)) (-15 -2745 ((-850) $))) (-1090)) (T -1168)) +((-2745 (*1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-1168 *3)) (-4 *3 (-1090)))) (-3208 (*1 *2 *1) (-12 (-5 *2 (-634 (-634 *3))) (-5 *1 (-1168 *3)) (-4 *3 (-1090)))) (-2472 (*1 *1 *2) (-12 (-5 *2 (-634 (-634 *3))) (-4 *3 (-1090)) (-5 *1 (-1168 *3))))) +(-10 -8 (-15 -2472 ($ (-634 (-634 |#1|)))) (-15 -3208 ((-634 (-634 |#1|)) $)) (-15 -2745 ((-850) $))) +((-2447 (((-121) $ $) NIL (-2198 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-2986 (($) NIL) (($ (-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) NIL)) (-1868 (((-1249) $ |#1| |#1|) NIL (|has| $ (-6 -4520)))) (-2510 (((-121) $ (-763)) NIL)) (-2436 ((|#2| $ |#1| |#2|) NIL)) (-3507 (($ (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519)))) (-2801 (($ (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519)))) (-2674 (((-3 |#2| "failed") |#1| $) NIL)) (-2671 (($) NIL T CONST)) (-3924 (($ $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090))))) (-3405 (($ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) NIL (|has| $ (-6 -4519))) (($ (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519))) (((-3 |#2| "failed") |#1| $) NIL)) (-4328 (($ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (($ (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519)))) (-3092 (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) NIL (|has| $ (-6 -4519))) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519)))) (-3989 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4520)))) (-2602 ((|#2| $ |#1|) NIL)) (-4360 (((-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519))) (((-634 |#2|) $) NIL (|has| $ (-6 -4519)))) (-1737 (((-121) $ (-763)) NIL)) (-1881 ((|#1| $) NIL (|has| |#1| (-842)))) (-1979 (((-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519))) (((-634 |#2|) $) NIL (|has| $ (-6 -4519)))) (-3109 (((-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (((-121) |#2| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#2| (-1090))))) (-2223 ((|#1| $) NIL (|has| |#1| (-842)))) (-3674 (($ (-1 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4520))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4520)))) (-2795 (($ (-1 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2166 (((-121) $ (-763)) NIL)) (-4487 (((-1143) $) NIL (-2198 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-1946 (((-634 |#1|) $) NIL)) (-3548 (((-121) |#1| $) NIL)) (-1890 (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) NIL)) (-4450 (($ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) NIL)) (-4174 (((-634 |#1|) $) NIL)) (-3578 (((-121) |#1| $) NIL)) (-4022 (((-1108) $) NIL (-2198 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-3876 ((|#2| $) NIL (|has| |#1| (-842)))) (-3775 (((-3 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) "failed") (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL)) (-3724 (($ $ |#2|) NIL (|has| $ (-6 -4520)))) (-1315 (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) NIL)) (-1387 (((-121) (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519))) (((-121) (-1 (-121) |#2|) $) NIL (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))))) NIL (-12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (($ $ (-288 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) NIL (-12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (($ $ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) NIL (-12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (($ $ (-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) (-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) NIL (-12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (($ $ (-634 |#2|) (-634 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090)))) (($ $ (-634 (-288 |#2|))) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090))))) (-3171 (((-121) $ $) NIL)) (-4467 (((-121) |#2| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#2| (-1090))))) (-2041 (((-634 |#2|) $) NIL)) (-3084 (((-121) $) NIL)) (-3248 (($) NIL)) (-2779 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2085 (($) NIL) (($ (-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) NIL)) (-4168 (((-763) (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519))) (((-763) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) NIL (-12 (|has| $ (-6 -4519)) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (((-763) |#2| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#2| (-1090)))) (((-763) (-1 (-121) |#2|) $) NIL (|has| $ (-6 -4519)))) (-3863 (($ $) NIL)) (-4278 (((-541) $) NIL (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-609 (-541))))) (-4287 (($ (-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) NIL)) (-2745 (((-850) $) NIL (-2198 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-2367 (($ (-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) NIL)) (-1319 (((-121) (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) NIL (|has| $ (-6 -4519))) (((-121) (-1 (-121) |#2|) $) NIL (|has| $ (-6 -4519)))) (-1717 (((-121) $ $) NIL (-2198 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)) (|has| |#2| (-1090))))) (-1697 (((-763) $) NIL (|has| $ (-6 -4519))))) +(((-1169 |#1| |#2|) (-13 (-1172 |#1| |#2|) (-10 -7 (-6 -4519))) (-1090) (-1090)) (T -1169)) +NIL +(-13 (-1172 |#1| |#2|) (-10 -7 (-6 -4519))) +((-2056 ((|#1| (-634 |#1|)) 32)) (-3576 ((|#1| |#1| (-568)) 18)) (-3411 (((-1157 |#1|) |#1| (-917)) 15))) +(((-1170 |#1|) (-10 -7 (-15 -2056 (|#1| (-634 |#1|))) (-15 -3411 ((-1157 |#1|) |#1| (-917))) (-15 -3576 (|#1| |#1| (-568)))) (-365)) (T -1170)) +((-3576 (*1 *2 *2 *3) (-12 (-5 *3 (-568)) (-5 *1 (-1170 *2)) (-4 *2 (-365)))) (-3411 (*1 *2 *3 *4) (-12 (-5 *4 (-917)) (-5 *2 (-1157 *3)) (-5 *1 (-1170 *3)) (-4 *3 (-365)))) (-2056 (*1 *2 *3) (-12 (-5 *3 (-634 *2)) (-5 *1 (-1170 *2)) (-4 *2 (-365))))) +(-10 -7 (-15 -2056 (|#1| (-634 |#1|))) (-15 -3411 ((-1157 |#1|) |#1| (-917))) (-15 -3576 (|#1| |#1| (-568)))) +((-2986 (($) 10) (($ (-634 (-2 (|:| -3649 |#2|) (|:| -4083 |#3|)))) 14)) (-3405 (($ (-2 (|:| -3649 |#2|) (|:| -4083 |#3|)) $) 60) (($ (-1 (-121) (-2 (|:| -3649 |#2|) (|:| -4083 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-4360 (((-634 (-2 (|:| -3649 |#2|) (|:| -4083 |#3|))) $) 39) (((-634 |#3|) $) 41)) (-3674 (($ (-1 (-2 (|:| -3649 |#2|) (|:| -4083 |#3|)) (-2 (|:| -3649 |#2|) (|:| -4083 |#3|))) $) 52) (($ (-1 |#3| |#3|) $) 33)) (-2795 (($ (-1 (-2 (|:| -3649 |#2|) (|:| -4083 |#3|)) (-2 (|:| -3649 |#2|) (|:| -4083 |#3|))) $) 50) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-1890 (((-2 (|:| -3649 |#2|) (|:| -4083 |#3|)) $) 53)) (-4450 (($ (-2 (|:| -3649 |#2|) (|:| -4083 |#3|)) $) 16)) (-4174 (((-634 |#2|) $) 19)) (-3578 (((-121) |#2| $) 58)) (-3775 (((-3 (-2 (|:| -3649 |#2|) (|:| -4083 |#3|)) "failed") (-1 (-121) (-2 (|:| -3649 |#2|) (|:| -4083 |#3|))) $) 57)) (-1315 (((-2 (|:| -3649 |#2|) (|:| -4083 |#3|)) $) 62)) (-1387 (((-121) (-1 (-121) (-2 (|:| -3649 |#2|) (|:| -4083 |#3|))) $) NIL) (((-121) (-1 (-121) |#3|) $) 65)) (-2041 (((-634 |#3|) $) 43)) (-2779 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-4168 (((-763) (-1 (-121) (-2 (|:| -3649 |#2|) (|:| -4083 |#3|))) $) NIL) (((-763) (-2 (|:| -3649 |#2|) (|:| -4083 |#3|)) $) NIL) (((-763) |#3| $) NIL) (((-763) (-1 (-121) |#3|) $) 66)) (-2745 (((-850) $) 27)) (-1319 (((-121) (-1 (-121) (-2 (|:| -3649 |#2|) (|:| -4083 |#3|))) $) NIL) (((-121) (-1 (-121) |#3|) $) 64)) (-1717 (((-121) $ $) 48))) +(((-1171 |#1| |#2| |#3|) (-10 -8 (-15 -1717 ((-121) |#1| |#1|)) (-15 -2745 ((-850) |#1|)) (-15 -2795 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -2986 (|#1| (-634 (-2 (|:| -3649 |#2|) (|:| -4083 |#3|))))) (-15 -2986 (|#1|)) (-15 -2795 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3674 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1319 ((-121) (-1 (-121) |#3|) |#1|)) (-15 -1387 ((-121) (-1 (-121) |#3|) |#1|)) (-15 -4168 ((-763) (-1 (-121) |#3|) |#1|)) (-15 -4360 ((-634 |#3|) |#1|)) (-15 -4168 ((-763) |#3| |#1|)) (-15 -2779 (|#3| |#1| |#2| |#3|)) (-15 -2779 (|#3| |#1| |#2|)) (-15 -2041 ((-634 |#3|) |#1|)) (-15 -3578 ((-121) |#2| |#1|)) (-15 -4174 ((-634 |#2|) |#1|)) (-15 -3405 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3405 (|#1| (-1 (-121) (-2 (|:| -3649 |#2|) (|:| -4083 |#3|))) |#1|)) (-15 -3405 (|#1| (-2 (|:| -3649 |#2|) (|:| -4083 |#3|)) |#1|)) (-15 -3775 ((-3 (-2 (|:| -3649 |#2|) (|:| -4083 |#3|)) "failed") (-1 (-121) (-2 (|:| -3649 |#2|) (|:| -4083 |#3|))) |#1|)) (-15 -1890 ((-2 (|:| -3649 |#2|) (|:| -4083 |#3|)) |#1|)) (-15 -4450 (|#1| (-2 (|:| -3649 |#2|) (|:| -4083 |#3|)) |#1|)) (-15 -1315 ((-2 (|:| -3649 |#2|) (|:| -4083 |#3|)) |#1|)) (-15 -4168 ((-763) (-2 (|:| -3649 |#2|) (|:| -4083 |#3|)) |#1|)) (-15 -4360 ((-634 (-2 (|:| -3649 |#2|) (|:| -4083 |#3|))) |#1|)) (-15 -4168 ((-763) (-1 (-121) (-2 (|:| -3649 |#2|) (|:| -4083 |#3|))) |#1|)) (-15 -1387 ((-121) (-1 (-121) (-2 (|:| -3649 |#2|) (|:| -4083 |#3|))) |#1|)) (-15 -1319 ((-121) (-1 (-121) (-2 (|:| -3649 |#2|) (|:| -4083 |#3|))) |#1|)) (-15 -3674 (|#1| (-1 (-2 (|:| -3649 |#2|) (|:| -4083 |#3|)) (-2 (|:| -3649 |#2|) (|:| -4083 |#3|))) |#1|)) (-15 -2795 (|#1| (-1 (-2 (|:| -3649 |#2|) (|:| -4083 |#3|)) (-2 (|:| -3649 |#2|) (|:| -4083 |#3|))) |#1|))) (-1172 |#2| |#3|) (-1090) (-1090)) (T -1171)) +NIL +(-10 -8 (-15 -1717 ((-121) |#1| |#1|)) (-15 -2745 ((-850) |#1|)) (-15 -2795 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -2986 (|#1| (-634 (-2 (|:| -3649 |#2|) (|:| -4083 |#3|))))) (-15 -2986 (|#1|)) (-15 -2795 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3674 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1319 ((-121) (-1 (-121) |#3|) |#1|)) (-15 -1387 ((-121) (-1 (-121) |#3|) |#1|)) (-15 -4168 ((-763) (-1 (-121) |#3|) |#1|)) (-15 -4360 ((-634 |#3|) |#1|)) (-15 -4168 ((-763) |#3| |#1|)) (-15 -2779 (|#3| |#1| |#2| |#3|)) (-15 -2779 (|#3| |#1| |#2|)) (-15 -2041 ((-634 |#3|) |#1|)) (-15 -3578 ((-121) |#2| |#1|)) (-15 -4174 ((-634 |#2|) |#1|)) (-15 -3405 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3405 (|#1| (-1 (-121) (-2 (|:| -3649 |#2|) (|:| -4083 |#3|))) |#1|)) (-15 -3405 (|#1| (-2 (|:| -3649 |#2|) (|:| -4083 |#3|)) |#1|)) (-15 -3775 ((-3 (-2 (|:| -3649 |#2|) (|:| -4083 |#3|)) "failed") (-1 (-121) (-2 (|:| -3649 |#2|) (|:| -4083 |#3|))) |#1|)) (-15 -1890 ((-2 (|:| -3649 |#2|) (|:| -4083 |#3|)) |#1|)) (-15 -4450 (|#1| (-2 (|:| -3649 |#2|) (|:| -4083 |#3|)) |#1|)) (-15 -1315 ((-2 (|:| -3649 |#2|) (|:| -4083 |#3|)) |#1|)) (-15 -4168 ((-763) (-2 (|:| -3649 |#2|) (|:| -4083 |#3|)) |#1|)) (-15 -4360 ((-634 (-2 (|:| -3649 |#2|) (|:| -4083 |#3|))) |#1|)) (-15 -4168 ((-763) (-1 (-121) (-2 (|:| -3649 |#2|) (|:| -4083 |#3|))) |#1|)) (-15 -1387 ((-121) (-1 (-121) (-2 (|:| -3649 |#2|) (|:| -4083 |#3|))) |#1|)) (-15 -1319 ((-121) (-1 (-121) (-2 (|:| -3649 |#2|) (|:| -4083 |#3|))) |#1|)) (-15 -3674 (|#1| (-1 (-2 (|:| -3649 |#2|) (|:| -4083 |#3|)) (-2 (|:| -3649 |#2|) (|:| -4083 |#3|))) |#1|)) (-15 -2795 (|#1| (-1 (-2 (|:| -3649 |#2|) (|:| -4083 |#3|)) (-2 (|:| -3649 |#2|) (|:| -4083 |#3|))) |#1|))) +((-2447 (((-121) $ $) 18 (-2198 (|has| |#2| (-1090)) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090))))) (-2986 (($) 66) (($ (-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) 65)) (-1868 (((-1249) $ |#1| |#1|) 93 (|has| $ (-6 -4520)))) (-2510 (((-121) $ (-763)) 8)) (-2436 ((|#2| $ |#1| |#2|) 67)) (-3507 (($ (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) 42 (|has| $ (-6 -4519)))) (-2801 (($ (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) 52 (|has| $ (-6 -4519)))) (-2674 (((-3 |#2| "failed") |#1| $) 57)) (-2671 (($) 7 T CONST)) (-3924 (($ $) 55 (-12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)) (|has| $ (-6 -4519))))) (-3405 (($ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) 44 (|has| $ (-6 -4519))) (($ (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) 43 (|has| $ (-6 -4519))) (((-3 |#2| "failed") |#1| $) 58)) (-4328 (($ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) 54 (-12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)) (|has| $ (-6 -4519)))) (($ (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) 51 (|has| $ (-6 -4519)))) (-3092 (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) 53 (-12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)) (|has| $ (-6 -4519)))) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) 50 (|has| $ (-6 -4519))) (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) 49 (|has| $ (-6 -4519)))) (-3989 ((|#2| $ |#1| |#2|) 81 (|has| $ (-6 -4520)))) (-2602 ((|#2| $ |#1|) 82)) (-4360 (((-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) 30 (|has| $ (-6 -4519))) (((-634 |#2|) $) 73 (|has| $ (-6 -4519)))) (-1737 (((-121) $ (-763)) 9)) (-1881 ((|#1| $) 90 (|has| |#1| (-842)))) (-1979 (((-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) 29 (|has| $ (-6 -4519))) (((-634 |#2|) $) 74 (|has| $ (-6 -4519)))) (-3109 (((-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)) (|has| $ (-6 -4519)))) (((-121) |#2| $) 76 (-12 (|has| |#2| (-1090)) (|has| $ (-6 -4519))))) (-2223 ((|#1| $) 89 (|has| |#1| (-842)))) (-3674 (($ (-1 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) 34 (|has| $ (-6 -4520))) (($ (-1 |#2| |#2|) $) 69 (|has| $ (-6 -4520)))) (-2795 (($ (-1 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 68) (($ (-1 |#2| |#2| |#2|) $ $) 64)) (-2166 (((-121) $ (-763)) 10)) (-4487 (((-1143) $) 22 (-2198 (|has| |#2| (-1090)) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090))))) (-1946 (((-634 |#1|) $) 59)) (-3548 (((-121) |#1| $) 60)) (-1890 (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) 36)) (-4450 (($ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) 37)) (-4174 (((-634 |#1|) $) 87)) (-3578 (((-121) |#1| $) 86)) (-4022 (((-1108) $) 21 (-2198 (|has| |#2| (-1090)) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090))))) (-3876 ((|#2| $) 91 (|has| |#1| (-842)))) (-3775 (((-3 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) "failed") (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) 48)) (-3724 (($ $ |#2|) 92 (|has| $ (-6 -4520)))) (-1315 (((-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) 38)) (-1387 (((-121) (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) 32 (|has| $ (-6 -4519))) (((-121) (-1 (-121) |#2|) $) 71 (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))))) 26 (-12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (($ $ (-288 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) 25 (-12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (($ $ (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) 24 (-12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (($ $ (-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) (-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) 23 (-12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)))) (($ $ (-634 |#2|) (-634 |#2|)) 80 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090)))) (($ $ |#2| |#2|) 79 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090)))) (($ $ (-288 |#2|)) 78 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090)))) (($ $ (-634 (-288 |#2|))) 77 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090))))) (-3171 (((-121) $ $) 14)) (-4467 (((-121) |#2| $) 88 (-12 (|has| $ (-6 -4519)) (|has| |#2| (-1090))))) (-2041 (((-634 |#2|) $) 85)) (-3084 (((-121) $) 11)) (-3248 (($) 12)) (-2779 ((|#2| $ |#1|) 84) ((|#2| $ |#1| |#2|) 83)) (-2085 (($) 46) (($ (-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) 45)) (-4168 (((-763) (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) 31 (|has| $ (-6 -4519))) (((-763) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090)) (|has| $ (-6 -4519)))) (((-763) |#2| $) 75 (-12 (|has| |#2| (-1090)) (|has| $ (-6 -4519)))) (((-763) (-1 (-121) |#2|) $) 72 (|has| $ (-6 -4519)))) (-3863 (($ $) 13)) (-4278 (((-541) $) 56 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-609 (-541))))) (-4287 (($ (-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) 47)) (-2745 (((-850) $) 20 (-2198 (|has| |#2| (-1090)) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090))))) (-2367 (($ (-634 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) 39)) (-1319 (((-121) (-1 (-121) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) $) 33 (|has| $ (-6 -4519))) (((-121) (-1 (-121) |#2|) $) 70 (|has| $ (-6 -4519)))) (-1717 (((-121) $ $) 19 (-2198 (|has| |#2| (-1090)) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090))))) (-1697 (((-763) $) 6 (|has| $ (-6 -4519))))) +(((-1172 |#1| |#2|) (-1275) (-1090) (-1090)) (T -1172)) +((-2436 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1172 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-1090)))) (-2986 (*1 *1) (-12 (-4 *1 (-1172 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-1090)))) (-2986 (*1 *1 *2) (-12 (-5 *2 (-634 (-2 (|:| -3649 *3) (|:| -4083 *4)))) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *1 (-1172 *3 *4)))) (-2795 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1172 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090))))) +(-13 (-605 |t#1| |t#2|) (-601 |t#1| |t#2|) (-10 -8 (-15 -2436 (|t#2| $ |t#1| |t#2|)) (-15 -2986 ($)) (-15 -2986 ($ (-634 (-2 (|:| -3649 |t#1|) (|:| -4083 |t#2|))))) (-15 -2795 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) +(((-39) . T) ((-111 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) . T) ((-105) -2198 (|has| |#2| (-1090)) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090))) ((-608 (-850)) -2198 (|has| |#2| (-1090)) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090))) ((-154 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) . T) ((-609 (-541)) |has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-609 (-541))) ((-221 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) . T) ((-227 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) . T) ((-281 |#1| |#2|) . T) ((-283 |#1| |#2|) . T) ((-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) -12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090))) ((-303 |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090))) ((-499 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) . T) ((-499 |#2|) . T) ((-601 |#1| |#2|) . T) ((-523 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-2 (|:| -3649 |#1|) (|:| -4083 |#2|))) -12 (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-303 (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)))) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090))) ((-523 |#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1090))) ((-605 |#1| |#2|) . T) ((-1090) -2198 (|has| |#2| (-1090)) (|has| (-2 (|:| -3649 |#1|) (|:| -4083 |#2|)) (-1090))) ((-1195) . T)) +((-3460 (((-121)) 24)) (-4384 (((-1249) (-1143)) 26)) (-2248 (((-121)) 36)) (-4417 (((-1249)) 34)) (-4160 (((-1249) (-1143) (-1143)) 25)) (-1420 (((-121)) 37)) (-4450 (((-1249) |#1| |#2|) 44)) (-1609 (((-1249)) 20)) (-3608 (((-3 |#2| "failed") |#1|) 42)) (-4277 (((-1249)) 35))) +(((-1173 |#1| |#2|) (-10 -7 (-15 -1609 ((-1249))) (-15 -4160 ((-1249) (-1143) (-1143))) (-15 -4384 ((-1249) (-1143))) (-15 -4417 ((-1249))) (-15 -4277 ((-1249))) (-15 -3460 ((-121))) (-15 -2248 ((-121))) (-15 -1420 ((-121))) (-15 -3608 ((-3 |#2| "failed") |#1|)) (-15 -4450 ((-1249) |#1| |#2|))) (-1090) (-1090)) (T -1173)) +((-4450 (*1 *2 *3 *4) (-12 (-5 *2 (-1249)) (-5 *1 (-1173 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090)))) (-3608 (*1 *2 *3) (|partial| -12 (-4 *2 (-1090)) (-5 *1 (-1173 *3 *2)) (-4 *3 (-1090)))) (-1420 (*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-1173 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090)))) (-2248 (*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-1173 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090)))) (-3460 (*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-1173 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090)))) (-4277 (*1 *2) (-12 (-5 *2 (-1249)) (-5 *1 (-1173 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090)))) (-4417 (*1 *2) (-12 (-5 *2 (-1249)) (-5 *1 (-1173 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090)))) (-4384 (*1 *2 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-1249)) (-5 *1 (-1173 *4 *5)) (-4 *4 (-1090)) (-4 *5 (-1090)))) (-4160 (*1 *2 *3 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-1249)) (-5 *1 (-1173 *4 *5)) (-4 *4 (-1090)) (-4 *5 (-1090)))) (-1609 (*1 *2) (-12 (-5 *2 (-1249)) (-5 *1 (-1173 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090))))) +(-10 -7 (-15 -1609 ((-1249))) (-15 -4160 ((-1249) (-1143) (-1143))) (-15 -4384 ((-1249) (-1143))) (-15 -4417 ((-1249))) (-15 -4277 ((-1249))) (-15 -3460 ((-121))) (-15 -2248 ((-121))) (-15 -1420 ((-121))) (-15 -3608 ((-3 |#2| "failed") |#1|)) (-15 -4450 ((-1249) |#1| |#2|))) +((-1792 (((-1143) (-1143)) 18)) (-3616 (((-57) (-1143)) 21))) +(((-1174) (-10 -7 (-15 -3616 ((-57) (-1143))) (-15 -1792 ((-1143) (-1143))))) (T -1174)) +((-1792 (*1 *2 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-1174)))) (-3616 (*1 *2 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-57)) (-5 *1 (-1174))))) +(-10 -7 (-15 -3616 ((-57) (-1143))) (-15 -1792 ((-1143) (-1143)))) +((-2745 (((-1176) |#1|) 11))) +(((-1175 |#1|) (-10 -7 (-15 -2745 ((-1176) |#1|))) (-1090)) (T -1175)) +((-2745 (*1 *2 *3) (-12 (-5 *2 (-1176)) (-5 *1 (-1175 *3)) (-4 *3 (-1090))))) +(-10 -7 (-15 -2745 ((-1176) |#1|))) +((-2447 (((-121) $ $) NIL)) (-3394 (((-634 (-1143)) $) 33)) (-2271 (((-634 (-1143)) $ (-634 (-1143))) 36)) (-1688 (((-634 (-1143)) $ (-634 (-1143))) 35)) (-3371 (((-634 (-1143)) $ (-634 (-1143))) 37)) (-1538 (((-634 (-1143)) $) 32)) (-1849 (($) 22)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-3224 (((-634 (-1143)) $) 34)) (-4125 (((-1249) $ (-568)) 29) (((-1249) $) 30)) (-4278 (($ (-850) (-568)) 26) (($ (-850) (-568) (-850)) NIL)) (-2745 (((-850) $) 39) (($ (-850)) 24)) (-1717 (((-121) $ $) NIL))) +(((-1176) (-13 (-1090) (-10 -8 (-15 -2745 ($ (-850))) (-15 -4278 ($ (-850) (-568))) (-15 -4278 ($ (-850) (-568) (-850))) (-15 -4125 ((-1249) $ (-568))) (-15 -4125 ((-1249) $)) (-15 -3224 ((-634 (-1143)) $)) (-15 -3394 ((-634 (-1143)) $)) (-15 -1849 ($)) (-15 -1538 ((-634 (-1143)) $)) (-15 -3371 ((-634 (-1143)) $ (-634 (-1143)))) (-15 -2271 ((-634 (-1143)) $ (-634 (-1143)))) (-15 -1688 ((-634 (-1143)) $ (-634 (-1143))))))) (T -1176)) +((-2745 (*1 *1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1176)))) (-4278 (*1 *1 *2 *3) (-12 (-5 *2 (-850)) (-5 *3 (-568)) (-5 *1 (-1176)))) (-4278 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-850)) (-5 *3 (-568)) (-5 *1 (-1176)))) (-4125 (*1 *2 *1 *3) (-12 (-5 *3 (-568)) (-5 *2 (-1249)) (-5 *1 (-1176)))) (-4125 (*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-1176)))) (-3224 (*1 *2 *1) (-12 (-5 *2 (-634 (-1143))) (-5 *1 (-1176)))) (-3394 (*1 *2 *1) (-12 (-5 *2 (-634 (-1143))) (-5 *1 (-1176)))) (-1849 (*1 *1) (-5 *1 (-1176))) (-1538 (*1 *2 *1) (-12 (-5 *2 (-634 (-1143))) (-5 *1 (-1176)))) (-3371 (*1 *2 *1 *2) (-12 (-5 *2 (-634 (-1143))) (-5 *1 (-1176)))) (-2271 (*1 *2 *1 *2) (-12 (-5 *2 (-634 (-1143))) (-5 *1 (-1176)))) (-1688 (*1 *2 *1 *2) (-12 (-5 *2 (-634 (-1143))) (-5 *1 (-1176))))) +(-13 (-1090) (-10 -8 (-15 -2745 ($ (-850))) (-15 -4278 ($ (-850) (-568))) (-15 -4278 ($ (-850) (-568) (-850))) (-15 -4125 ((-1249) $ (-568))) (-15 -4125 ((-1249) $)) (-15 -3224 ((-634 (-1143)) $)) (-15 -3394 ((-634 (-1143)) $)) (-15 -1849 ($)) (-15 -1538 ((-634 (-1143)) $)) (-15 -3371 ((-634 (-1143)) $ (-634 (-1143)))) (-15 -2271 ((-634 (-1143)) $ (-634 (-1143)))) (-15 -1688 ((-634 (-1143)) $ (-634 (-1143)))))) +((-2447 (((-121) $ $) NIL)) (-1406 (((-1143) $ (-1143)) 15) (((-1143) $) 14)) (-1705 (((-1143) $ (-1143)) 13)) (-2511 (($ $ (-1143)) NIL)) (-2457 (((-3 (-1143) "failed") $) 11)) (-3225 (((-1143) $) 8)) (-3861 (((-3 (-1143) "failed") $) 12)) (-3327 (((-1143) $) 9)) (-1798 (($ (-390)) NIL) (($ (-390) (-1143)) NIL)) (-3391 (((-390) $) NIL)) (-4487 (((-1143) $) NIL)) (-3305 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-4169 (((-1249) $) NIL)) (-4235 (((-121) $) 17)) (-2745 (((-850) $) NIL)) (-3637 (($ $) NIL)) (-1717 (((-121) $ $) NIL))) +(((-1177) (-13 (-366 (-390) (-1143)) (-10 -8 (-15 -1406 ((-1143) $ (-1143))) (-15 -1406 ((-1143) $)) (-15 -3225 ((-1143) $)) (-15 -2457 ((-3 (-1143) "failed") $)) (-15 -3861 ((-3 (-1143) "failed") $)) (-15 -4235 ((-121) $))))) (T -1177)) +((-1406 (*1 *2 *1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-1177)))) (-1406 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1177)))) (-3225 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1177)))) (-2457 (*1 *2 *1) (|partial| -12 (-5 *2 (-1143)) (-5 *1 (-1177)))) (-3861 (*1 *2 *1) (|partial| -12 (-5 *2 (-1143)) (-5 *1 (-1177)))) (-4235 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1177))))) +(-13 (-366 (-390) (-1143)) (-10 -8 (-15 -1406 ((-1143) $ (-1143))) (-15 -1406 ((-1143) $)) (-15 -3225 ((-1143) $)) (-15 -2457 ((-3 (-1143) "failed") $)) (-15 -3861 ((-3 (-1143) "failed") $)) (-15 -4235 ((-121) $)))) +((-3662 (((-3 (-568) "failed") |#1|) 19)) (-1712 (((-3 (-568) "failed") |#1|) 13)) (-2923 (((-568) (-1143)) 28))) +(((-1178 |#1|) (-10 -7 (-15 -3662 ((-3 (-568) "failed") |#1|)) (-15 -1712 ((-3 (-568) "failed") |#1|)) (-15 -2923 ((-568) (-1143)))) (-1047)) (T -1178)) +((-2923 (*1 *2 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-568)) (-5 *1 (-1178 *4)) (-4 *4 (-1047)))) (-1712 (*1 *2 *3) (|partial| -12 (-5 *2 (-568)) (-5 *1 (-1178 *3)) (-4 *3 (-1047)))) (-3662 (*1 *2 *3) (|partial| -12 (-5 *2 (-568)) (-5 *1 (-1178 *3)) (-4 *3 (-1047))))) +(-10 -7 (-15 -3662 ((-3 (-568) "failed") |#1|)) (-15 -1712 ((-3 (-568) "failed") |#1|)) (-15 -2923 ((-568) (-1143)))) +((-2079 (((-1121 (-215))) 8))) +(((-1179) (-10 -7 (-15 -2079 ((-1121 (-215)))))) (T -1179)) +((-2079 (*1 *2) (-12 (-5 *2 (-1121 (-215))) (-5 *1 (-1179))))) +(-10 -7 (-15 -2079 ((-1121 (-215))))) +((-1897 (($) 11)) (-2006 (($ $) 35)) (-1998 (($ $) 33)) (-1949 (($ $) 25)) (-2014 (($ $) 17)) (-4023 (($ $) 15)) (-2010 (($ $) 19)) (-1962 (($ $) 30)) (-2002 (($ $) 34)) (-1953 (($ $) 29))) +(((-1180 |#1|) (-10 -8 (-15 -1897 (|#1|)) (-15 -2006 (|#1| |#1|)) (-15 -1998 (|#1| |#1|)) (-15 -2014 (|#1| |#1|)) (-15 -4023 (|#1| |#1|)) (-15 -2010 (|#1| |#1|)) (-15 -2002 (|#1| |#1|)) (-15 -1949 (|#1| |#1|)) (-15 -1962 (|#1| |#1|)) (-15 -1953 (|#1| |#1|))) (-1181)) (T -1180)) +NIL +(-10 -8 (-15 -1897 (|#1|)) (-15 -2006 (|#1| |#1|)) (-15 -1998 (|#1| |#1|)) (-15 -2014 (|#1| |#1|)) (-15 -4023 (|#1| |#1|)) (-15 -2010 (|#1| |#1|)) (-15 -2002 (|#1| |#1|)) (-15 -1949 (|#1| |#1|)) (-15 -1962 (|#1| |#1|)) (-15 -1953 (|#1| |#1|))) +((-1982 (($ $) 26)) (-1933 (($ $) 11)) (-1974 (($ $) 27)) (-2786 (($ $) 10)) (-1990 (($ $) 28)) (-1941 (($ $) 9)) (-1897 (($) 16)) (-4416 (($ $) 19)) (-1892 (($ $) 18)) (-1994 (($ $) 29)) (-1945 (($ $) 8)) (-1986 (($ $) 30)) (-1937 (($ $) 7)) (-1978 (($ $) 31)) (-2790 (($ $) 6)) (-2006 (($ $) 20)) (-1958 (($ $) 32)) (-1998 (($ $) 21)) (-1949 (($ $) 33)) (-2014 (($ $) 22)) (-1966 (($ $) 34)) (-4023 (($ $) 23)) (-1970 (($ $) 35)) (-2010 (($ $) 24)) (-1962 (($ $) 36)) (-2002 (($ $) 25)) (-1953 (($ $) 37)) (** (($ $ $) 17))) +(((-1181) (-1275)) (T -1181)) +((-1897 (*1 *1) (-4 *1 (-1181)))) +(-13 (-1184) (-98) (-502) (-40) (-279) (-10 -8 (-15 -1897 ($)))) +(((-40) . T) ((-98) . T) ((-279) . T) ((-502) . T) ((-1184) . T)) +((-2447 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-2850 ((|#1| $) 17)) (-3399 (($ |#1| (-634 $)) 23) (($ (-634 |#1|)) 27) (($ |#1|) 25)) (-2510 (((-121) $ (-763)) 46)) (-1659 ((|#1| $ |#1|) 14 (|has| $ (-6 -4520)))) (-2436 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4520)))) (-3827 (($ $ (-634 $)) 13 (|has| $ (-6 -4520)))) (-2671 (($) NIL T CONST)) (-4360 (((-634 |#1|) $) 50 (|has| $ (-6 -4519)))) (-2287 (((-634 $) $) 41)) (-1700 (((-121) $ $) 32 (|has| |#1| (-1090)))) (-1737 (((-121) $ (-763)) 39)) (-1979 (((-634 |#1|) $) 51 (|has| $ (-6 -4519)))) (-3109 (((-121) |#1| $) 49 (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-3674 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#1| |#1|) $) 22)) (-2166 (((-121) $ (-763)) 38)) (-2869 (((-634 |#1|) $) 36)) (-1651 (((-121) $) 35)) (-4487 (((-1143) $) NIL (|has| |#1| (-1090)))) (-4022 (((-1108) $) NIL (|has| |#1| (-1090)))) (-1387 (((-121) (-1 (-121) |#1|) $) 48 (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-634 |#1|) (-634 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))))) (-3171 (((-121) $ $) 73)) (-3084 (((-121) $) 9)) (-3248 (($) 10)) (-2779 ((|#1| $ "value") NIL)) (-4075 (((-568) $ $) 31)) (-1566 (((-634 $) $) 57)) (-3022 (((-121) $ $) 75)) (-2856 (((-634 $) $) 70)) (-4310 (($ $) 71)) (-3790 (((-121) $) 54)) (-4168 (((-763) (-1 (-121) |#1|) $) 20 (|has| $ (-6 -4519))) (((-763) |#1| $) 16 (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-3863 (($ $) 56)) (-2745 (((-850) $) 59 (|has| |#1| (-1090)))) (-4339 (((-634 $) $) 12)) (-3491 (((-121) $ $) 29 (|has| |#1| (-1090)))) (-1319 (((-121) (-1 (-121) |#1|) $) 47 (|has| $ (-6 -4519)))) (-1717 (((-121) $ $) 28 (|has| |#1| (-1090)))) (-1697 (((-763) $) 37 (|has| $ (-6 -4519))))) +(((-1182 |#1|) (-13 (-1010 |#1|) (-10 -8 (-6 -4519) (-6 -4520) (-15 -3399 ($ |#1| (-634 $))) (-15 -3399 ($ (-634 |#1|))) (-15 -3399 ($ |#1|)) (-15 -3790 ((-121) $)) (-15 -4310 ($ $)) (-15 -2856 ((-634 $) $)) (-15 -3022 ((-121) $ $)) (-15 -1566 ((-634 $) $)))) (-1090)) (T -1182)) +((-3790 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1182 *3)) (-4 *3 (-1090)))) (-3399 (*1 *1 *2 *3) (-12 (-5 *3 (-634 (-1182 *2))) (-5 *1 (-1182 *2)) (-4 *2 (-1090)))) (-3399 (*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-1090)) (-5 *1 (-1182 *3)))) (-3399 (*1 *1 *2) (-12 (-5 *1 (-1182 *2)) (-4 *2 (-1090)))) (-4310 (*1 *1 *1) (-12 (-5 *1 (-1182 *2)) (-4 *2 (-1090)))) (-2856 (*1 *2 *1) (-12 (-5 *2 (-634 (-1182 *3))) (-5 *1 (-1182 *3)) (-4 *3 (-1090)))) (-3022 (*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1182 *3)) (-4 *3 (-1090)))) (-1566 (*1 *2 *1) (-12 (-5 *2 (-634 (-1182 *3))) (-5 *1 (-1182 *3)) (-4 *3 (-1090))))) +(-13 (-1010 |#1|) (-10 -8 (-6 -4519) (-6 -4520) (-15 -3399 ($ |#1| (-634 $))) (-15 -3399 ($ (-634 |#1|))) (-15 -3399 ($ |#1|)) (-15 -3790 ((-121) $)) (-15 -4310 ($ $)) (-15 -2856 ((-634 $) $)) (-15 -3022 ((-121) $ $)) (-15 -1566 ((-634 $) $)))) +((-1933 (($ $) 15)) (-1941 (($ $) 12)) (-1945 (($ $) 10)) (-1937 (($ $) 17))) +(((-1183 |#1|) (-10 -8 (-15 -1937 (|#1| |#1|)) (-15 -1945 (|#1| |#1|)) (-15 -1941 (|#1| |#1|)) (-15 -1933 (|#1| |#1|))) (-1184)) (T -1183)) +NIL +(-10 -8 (-15 -1937 (|#1| |#1|)) (-15 -1945 (|#1| |#1|)) (-15 -1941 (|#1| |#1|)) (-15 -1933 (|#1| |#1|))) +((-1933 (($ $) 11)) (-2786 (($ $) 10)) (-1941 (($ $) 9)) (-1945 (($ $) 8)) (-1937 (($ $) 7)) (-2790 (($ $) 6))) +(((-1184) (-1275)) (T -1184)) +((-1933 (*1 *1 *1) (-4 *1 (-1184))) (-2786 (*1 *1 *1) (-4 *1 (-1184))) (-1941 (*1 *1 *1) (-4 *1 (-1184))) (-1945 (*1 *1 *1) (-4 *1 (-1184))) (-1937 (*1 *1 *1) (-4 *1 (-1184))) (-2790 (*1 *1 *1) (-4 *1 (-1184)))) +(-13 (-10 -8 (-15 -2790 ($ $)) (-15 -1937 ($ $)) (-15 -1945 ($ $)) (-15 -1941 ($ $)) (-15 -2786 ($ $)) (-15 -1933 ($ $)))) +((-3755 ((|#2| |#2|) 85)) (-2636 (((-121) |#2|) 25)) (-3857 ((|#2| |#2|) 29)) (-3866 ((|#2| |#2|) 31)) (-2818 ((|#2| |#2| (-1161)) 79) ((|#2| |#2|) 80)) (-3145 (((-169 |#2|) |#2|) 27)) (-2582 ((|#2| |#2| (-1161)) 81) ((|#2| |#2|) 82))) +(((-1185 |#1| |#2|) (-10 -7 (-15 -2818 (|#2| |#2|)) (-15 -2818 (|#2| |#2| (-1161))) (-15 -2582 (|#2| |#2|)) (-15 -2582 (|#2| |#2| (-1161))) (-15 -3755 (|#2| |#2|)) (-15 -3857 (|#2| |#2|)) (-15 -3866 (|#2| |#2|)) (-15 -2636 ((-121) |#2|)) (-15 -3145 ((-169 |#2|) |#2|))) (-13 (-453) (-842) (-1037 (-568)) (-630 (-568))) (-13 (-27) (-1181) (-432 |#1|))) (T -1185)) +((-3145 (*1 *2 *3) (-12 (-4 *4 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-169 *3)) (-5 *1 (-1185 *4 *3)) (-4 *3 (-13 (-27) (-1181) (-432 *4))))) (-2636 (*1 *2 *3) (-12 (-4 *4 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-121)) (-5 *1 (-1185 *4 *3)) (-4 *3 (-13 (-27) (-1181) (-432 *4))))) (-3866 (*1 *2 *2) (-12 (-4 *3 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *1 (-1185 *3 *2)) (-4 *2 (-13 (-27) (-1181) (-432 *3))))) (-3857 (*1 *2 *2) (-12 (-4 *3 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *1 (-1185 *3 *2)) (-4 *2 (-13 (-27) (-1181) (-432 *3))))) (-3755 (*1 *2 *2) (-12 (-4 *3 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *1 (-1185 *3 *2)) (-4 *2 (-13 (-27) (-1181) (-432 *3))))) (-2582 (*1 *2 *2 *3) (-12 (-5 *3 (-1161)) (-4 *4 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *1 (-1185 *4 *2)) (-4 *2 (-13 (-27) (-1181) (-432 *4))))) (-2582 (*1 *2 *2) (-12 (-4 *3 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *1 (-1185 *3 *2)) (-4 *2 (-13 (-27) (-1181) (-432 *3))))) (-2818 (*1 *2 *2 *3) (-12 (-5 *3 (-1161)) (-4 *4 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *1 (-1185 *4 *2)) (-4 *2 (-13 (-27) (-1181) (-432 *4))))) (-2818 (*1 *2 *2) (-12 (-4 *3 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *1 (-1185 *3 *2)) (-4 *2 (-13 (-27) (-1181) (-432 *3)))))) +(-10 -7 (-15 -2818 (|#2| |#2|)) (-15 -2818 (|#2| |#2| (-1161))) (-15 -2582 (|#2| |#2|)) (-15 -2582 (|#2| |#2| (-1161))) (-15 -3755 (|#2| |#2|)) (-15 -3857 (|#2| |#2|)) (-15 -3866 (|#2| |#2|)) (-15 -2636 ((-121) |#2|)) (-15 -3145 ((-169 |#2|) |#2|))) +((-2149 ((|#4| |#4| |#1|) 27)) (-2300 ((|#4| |#4| |#1|) 28))) +(((-1186 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2149 (|#4| |#4| |#1|)) (-15 -2300 (|#4| |#4| |#1|))) (-558) (-375 |#1|) (-375 |#1|) (-677 |#1| |#2| |#3|)) (T -1186)) +((-2300 (*1 *2 *2 *3) (-12 (-4 *3 (-558)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-1186 *3 *4 *5 *2)) (-4 *2 (-677 *3 *4 *5)))) (-2149 (*1 *2 *2 *3) (-12 (-4 *3 (-558)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-1186 *3 *4 *5 *2)) (-4 *2 (-677 *3 *4 *5))))) +(-10 -7 (-15 -2149 (|#4| |#4| |#1|)) (-15 -2300 (|#4| |#4| |#1|))) +((-3706 ((|#2| |#2|) 132)) (-2561 ((|#2| |#2|) 129)) (-3854 ((|#2| |#2|) 120)) (-2594 ((|#2| |#2|) 117)) (-2044 ((|#2| |#2|) 125)) (-2716 ((|#2| |#2|) 113)) (-1710 ((|#2| |#2|) 42)) (-2237 ((|#2| |#2|) 93)) (-4352 ((|#2| |#2|) 73)) (-2240 ((|#2| |#2|) 127)) (-3619 ((|#2| |#2|) 115)) (-2951 ((|#2| |#2|) 137)) (-4139 ((|#2| |#2|) 135)) (-3505 ((|#2| |#2|) 136)) (-1317 ((|#2| |#2|) 134)) (-1571 ((|#2| |#2|) 146)) (-4163 ((|#2| |#2|) 30 (-12 (|has| |#2| (-609 (-887 |#1|))) (|has| |#2| (-881 |#1|)) (|has| |#1| (-609 (-887 |#1|))) (|has| |#1| (-881 |#1|))))) (-4113 ((|#2| |#2|) 74)) (-3897 ((|#2| |#2|) 138)) (-2789 ((|#2| |#2|) 139)) (-2435 ((|#2| |#2|) 126)) (-4359 ((|#2| |#2|) 114)) (-3008 ((|#2| |#2|) 133)) (-2481 ((|#2| |#2|) 131)) (-3133 ((|#2| |#2|) 121)) (-3528 ((|#2| |#2|) 119)) (-3019 ((|#2| |#2|) 123)) (-1661 ((|#2| |#2|) 111))) +(((-1187 |#1| |#2|) (-10 -7 (-15 -2789 (|#2| |#2|)) (-15 -4352 (|#2| |#2|)) (-15 -1571 (|#2| |#2|)) (-15 -2237 (|#2| |#2|)) (-15 -1710 (|#2| |#2|)) (-15 -4113 (|#2| |#2|)) (-15 -3897 (|#2| |#2|)) (-15 -1661 (|#2| |#2|)) (-15 -3019 (|#2| |#2|)) (-15 -3133 (|#2| |#2|)) (-15 -3008 (|#2| |#2|)) (-15 -4359 (|#2| |#2|)) (-15 -2435 (|#2| |#2|)) (-15 -3619 (|#2| |#2|)) (-15 -2240 (|#2| |#2|)) (-15 -2716 (|#2| |#2|)) (-15 -2044 (|#2| |#2|)) (-15 -3854 (|#2| |#2|)) (-15 -3706 (|#2| |#2|)) (-15 -2594 (|#2| |#2|)) (-15 -2561 (|#2| |#2|)) (-15 -3528 (|#2| |#2|)) (-15 -2481 (|#2| |#2|)) (-15 -1317 (|#2| |#2|)) (-15 -4139 (|#2| |#2|)) (-15 -3505 (|#2| |#2|)) (-15 -2951 (|#2| |#2|)) (IF (|has| |#1| (-881 |#1|)) (IF (|has| |#1| (-609 (-887 |#1|))) (IF (|has| |#2| (-609 (-887 |#1|))) (IF (|has| |#2| (-881 |#1|)) (-15 -4163 (|#2| |#2|)) |noBranch|) |noBranch|) |noBranch|) |noBranch|)) (-13 (-842) (-453)) (-13 (-432 |#1|) (-1181))) (T -1187)) +((-4163 (*1 *2 *2) (-12 (-4 *3 (-609 (-887 *3))) (-4 *3 (-881 *3)) (-4 *3 (-13 (-842) (-453))) (-5 *1 (-1187 *3 *2)) (-4 *2 (-609 (-887 *3))) (-4 *2 (-881 *3)) (-4 *2 (-13 (-432 *3) (-1181))))) (-2951 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-453))) (-5 *1 (-1187 *3 *2)) (-4 *2 (-13 (-432 *3) (-1181))))) (-3505 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-453))) (-5 *1 (-1187 *3 *2)) (-4 *2 (-13 (-432 *3) (-1181))))) (-4139 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-453))) (-5 *1 (-1187 *3 *2)) (-4 *2 (-13 (-432 *3) (-1181))))) (-1317 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-453))) (-5 *1 (-1187 *3 *2)) (-4 *2 (-13 (-432 *3) (-1181))))) (-2481 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-453))) (-5 *1 (-1187 *3 *2)) (-4 *2 (-13 (-432 *3) (-1181))))) (-3528 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-453))) (-5 *1 (-1187 *3 *2)) (-4 *2 (-13 (-432 *3) (-1181))))) (-2561 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-453))) (-5 *1 (-1187 *3 *2)) (-4 *2 (-13 (-432 *3) (-1181))))) (-2594 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-453))) (-5 *1 (-1187 *3 *2)) (-4 *2 (-13 (-432 *3) (-1181))))) (-3706 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-453))) (-5 *1 (-1187 *3 *2)) (-4 *2 (-13 (-432 *3) (-1181))))) (-3854 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-453))) (-5 *1 (-1187 *3 *2)) (-4 *2 (-13 (-432 *3) (-1181))))) (-2044 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-453))) (-5 *1 (-1187 *3 *2)) (-4 *2 (-13 (-432 *3) (-1181))))) (-2716 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-453))) (-5 *1 (-1187 *3 *2)) (-4 *2 (-13 (-432 *3) (-1181))))) (-2240 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-453))) (-5 *1 (-1187 *3 *2)) (-4 *2 (-13 (-432 *3) (-1181))))) (-3619 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-453))) (-5 *1 (-1187 *3 *2)) (-4 *2 (-13 (-432 *3) (-1181))))) (-2435 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-453))) (-5 *1 (-1187 *3 *2)) (-4 *2 (-13 (-432 *3) (-1181))))) (-4359 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-453))) (-5 *1 (-1187 *3 *2)) (-4 *2 (-13 (-432 *3) (-1181))))) (-3008 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-453))) (-5 *1 (-1187 *3 *2)) (-4 *2 (-13 (-432 *3) (-1181))))) (-3133 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-453))) (-5 *1 (-1187 *3 *2)) (-4 *2 (-13 (-432 *3) (-1181))))) (-3019 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-453))) (-5 *1 (-1187 *3 *2)) (-4 *2 (-13 (-432 *3) (-1181))))) (-1661 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-453))) (-5 *1 (-1187 *3 *2)) (-4 *2 (-13 (-432 *3) (-1181))))) (-3897 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-453))) (-5 *1 (-1187 *3 *2)) (-4 *2 (-13 (-432 *3) (-1181))))) (-4113 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-453))) (-5 *1 (-1187 *3 *2)) (-4 *2 (-13 (-432 *3) (-1181))))) (-1710 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-453))) (-5 *1 (-1187 *3 *2)) (-4 *2 (-13 (-432 *3) (-1181))))) (-2237 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-453))) (-5 *1 (-1187 *3 *2)) (-4 *2 (-13 (-432 *3) (-1181))))) (-1571 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-453))) (-5 *1 (-1187 *3 *2)) (-4 *2 (-13 (-432 *3) (-1181))))) (-4352 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-453))) (-5 *1 (-1187 *3 *2)) (-4 *2 (-13 (-432 *3) (-1181))))) (-2789 (*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-453))) (-5 *1 (-1187 *3 *2)) (-4 *2 (-13 (-432 *3) (-1181)))))) +(-10 -7 (-15 -2789 (|#2| |#2|)) (-15 -4352 (|#2| |#2|)) (-15 -1571 (|#2| |#2|)) (-15 -2237 (|#2| |#2|)) (-15 -1710 (|#2| |#2|)) (-15 -4113 (|#2| |#2|)) (-15 -3897 (|#2| |#2|)) (-15 -1661 (|#2| |#2|)) (-15 -3019 (|#2| |#2|)) (-15 -3133 (|#2| |#2|)) (-15 -3008 (|#2| |#2|)) (-15 -4359 (|#2| |#2|)) (-15 -2435 (|#2| |#2|)) (-15 -3619 (|#2| |#2|)) (-15 -2240 (|#2| |#2|)) (-15 -2716 (|#2| |#2|)) (-15 -2044 (|#2| |#2|)) (-15 -3854 (|#2| |#2|)) (-15 -3706 (|#2| |#2|)) (-15 -2594 (|#2| |#2|)) (-15 -2561 (|#2| |#2|)) (-15 -3528 (|#2| |#2|)) (-15 -2481 (|#2| |#2|)) (-15 -1317 (|#2| |#2|)) (-15 -4139 (|#2| |#2|)) (-15 -3505 (|#2| |#2|)) (-15 -2951 (|#2| |#2|)) (IF (|has| |#1| (-881 |#1|)) (IF (|has| |#1| (-609 (-887 |#1|))) (IF (|has| |#2| (-609 (-887 |#1|))) (IF (|has| |#2| (-881 |#1|)) (-15 -4163 (|#2| |#2|)) |noBranch|) |noBranch|) |noBranch|) |noBranch|)) +((-3300 (((-121) |#5| $) 59) (((-121) $) 101)) (-2819 ((|#5| |#5| $) 74)) (-2801 (($ (-1 (-121) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 118)) (-4275 (((-634 |#5|) (-634 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-121) |#5| |#5|)) 72)) (-3666 (((-3 $ "failed") (-634 |#5|)) 125)) (-3935 (((-3 $ "failed") $) 111)) (-2062 ((|#5| |#5| $) 93)) (-1281 (((-121) |#5| $ (-1 (-121) |#5| |#5|)) 30)) (-4079 ((|#5| |#5| $) 97)) (-3092 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-121) |#5| |#5|)) 68)) (-3635 (((-2 (|:| -4092 (-634 |#5|)) (|:| -1798 (-634 |#5|))) $) 54)) (-1362 (((-121) |#5| $) 57) (((-121) $) 102)) (-2356 ((|#4| $) 107)) (-4162 (((-3 |#5| "failed") $) 109)) (-1377 (((-634 |#5|) $) 48)) (-1415 (((-121) |#5| $) 66) (((-121) $) 106)) (-2682 ((|#5| |#5| $) 80)) (-2644 (((-121) $ $) 26)) (-4347 (((-121) |#5| $) 62) (((-121) $) 104)) (-4025 ((|#5| |#5| $) 77)) (-3876 (((-3 |#5| "failed") $) 108)) (-1807 (($ $ |#5|) 126)) (-3206 (((-763) $) 51)) (-4287 (($ (-634 |#5|)) 123)) (-1290 (($ $ |#4|) 121)) (-3732 (($ $ |#4|) 120)) (-1567 (($ $) 119)) (-2745 (((-850) $) NIL) (((-634 |#5|) $) 112)) (-1878 (((-763) $) 129)) (-3556 (((-3 (-2 (|:| |bas| $) (|:| -2616 (-634 |#5|))) "failed") (-634 |#5|) (-1 (-121) |#5| |#5|)) 42) (((-3 (-2 (|:| |bas| $) (|:| -2616 (-634 |#5|))) "failed") (-634 |#5|) (-1 (-121) |#5|) (-1 (-121) |#5| |#5|)) 44)) (-3292 (((-121) $ (-1 (-121) |#5| (-634 |#5|))) 99)) (-2739 (((-634 |#4|) $) 114)) (-4390 (((-121) |#4| $) 117)) (-1717 (((-121) $ $) 19))) +(((-1188 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1878 ((-763) |#1|)) (-15 -1807 (|#1| |#1| |#5|)) (-15 -2801 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4390 ((-121) |#4| |#1|)) (-15 -2739 ((-634 |#4|) |#1|)) (-15 -3935 ((-3 |#1| "failed") |#1|)) (-15 -4162 ((-3 |#5| "failed") |#1|)) (-15 -3876 ((-3 |#5| "failed") |#1|)) (-15 -4079 (|#5| |#5| |#1|)) (-15 -1567 (|#1| |#1|)) (-15 -2062 (|#5| |#5| |#1|)) (-15 -2682 (|#5| |#5| |#1|)) (-15 -4025 (|#5| |#5| |#1|)) (-15 -2819 (|#5| |#5| |#1|)) (-15 -4275 ((-634 |#5|) (-634 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-121) |#5| |#5|))) (-15 -3092 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-121) |#5| |#5|))) (-15 -1415 ((-121) |#1|)) (-15 -4347 ((-121) |#1|)) (-15 -3300 ((-121) |#1|)) (-15 -3292 ((-121) |#1| (-1 (-121) |#5| (-634 |#5|)))) (-15 -1415 ((-121) |#5| |#1|)) (-15 -4347 ((-121) |#5| |#1|)) (-15 -3300 ((-121) |#5| |#1|)) (-15 -1281 ((-121) |#5| |#1| (-1 (-121) |#5| |#5|))) (-15 -1362 ((-121) |#1|)) (-15 -1362 ((-121) |#5| |#1|)) (-15 -3635 ((-2 (|:| -4092 (-634 |#5|)) (|:| -1798 (-634 |#5|))) |#1|)) (-15 -3206 ((-763) |#1|)) (-15 -1377 ((-634 |#5|) |#1|)) (-15 -3556 ((-3 (-2 (|:| |bas| |#1|) (|:| -2616 (-634 |#5|))) "failed") (-634 |#5|) (-1 (-121) |#5|) (-1 (-121) |#5| |#5|))) (-15 -3556 ((-3 (-2 (|:| |bas| |#1|) (|:| -2616 (-634 |#5|))) "failed") (-634 |#5|) (-1 (-121) |#5| |#5|))) (-15 -2644 ((-121) |#1| |#1|)) (-15 -1290 (|#1| |#1| |#4|)) (-15 -3732 (|#1| |#1| |#4|)) (-15 -2356 (|#4| |#1|)) (-15 -3666 ((-3 |#1| "failed") (-634 |#5|))) (-15 -2745 ((-634 |#5|) |#1|)) (-15 -4287 (|#1| (-634 |#5|))) (-15 -3092 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3092 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2801 (|#1| (-1 (-121) |#5|) |#1|)) (-15 -3092 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2745 ((-850) |#1|)) (-15 -1717 ((-121) |#1| |#1|))) (-1189 |#2| |#3| |#4| |#5|) (-558) (-788) (-842) (-1061 |#2| |#3| |#4|)) (T -1188)) +NIL +(-10 -8 (-15 -1878 ((-763) |#1|)) (-15 -1807 (|#1| |#1| |#5|)) (-15 -2801 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4390 ((-121) |#4| |#1|)) (-15 -2739 ((-634 |#4|) |#1|)) (-15 -3935 ((-3 |#1| "failed") |#1|)) (-15 -4162 ((-3 |#5| "failed") |#1|)) (-15 -3876 ((-3 |#5| "failed") |#1|)) (-15 -4079 (|#5| |#5| |#1|)) (-15 -1567 (|#1| |#1|)) (-15 -2062 (|#5| |#5| |#1|)) (-15 -2682 (|#5| |#5| |#1|)) (-15 -4025 (|#5| |#5| |#1|)) (-15 -2819 (|#5| |#5| |#1|)) (-15 -4275 ((-634 |#5|) (-634 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-121) |#5| |#5|))) (-15 -3092 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-121) |#5| |#5|))) (-15 -1415 ((-121) |#1|)) (-15 -4347 ((-121) |#1|)) (-15 -3300 ((-121) |#1|)) (-15 -3292 ((-121) |#1| (-1 (-121) |#5| (-634 |#5|)))) (-15 -1415 ((-121) |#5| |#1|)) (-15 -4347 ((-121) |#5| |#1|)) (-15 -3300 ((-121) |#5| |#1|)) (-15 -1281 ((-121) |#5| |#1| (-1 (-121) |#5| |#5|))) (-15 -1362 ((-121) |#1|)) (-15 -1362 ((-121) |#5| |#1|)) (-15 -3635 ((-2 (|:| -4092 (-634 |#5|)) (|:| -1798 (-634 |#5|))) |#1|)) (-15 -3206 ((-763) |#1|)) (-15 -1377 ((-634 |#5|) |#1|)) (-15 -3556 ((-3 (-2 (|:| |bas| |#1|) (|:| -2616 (-634 |#5|))) "failed") (-634 |#5|) (-1 (-121) |#5|) (-1 (-121) |#5| |#5|))) (-15 -3556 ((-3 (-2 (|:| |bas| |#1|) (|:| -2616 (-634 |#5|))) "failed") (-634 |#5|) (-1 (-121) |#5| |#5|))) (-15 -2644 ((-121) |#1| |#1|)) (-15 -1290 (|#1| |#1| |#4|)) (-15 -3732 (|#1| |#1| |#4|)) (-15 -2356 (|#4| |#1|)) (-15 -3666 ((-3 |#1| "failed") (-634 |#5|))) (-15 -2745 ((-634 |#5|) |#1|)) (-15 -4287 (|#1| (-634 |#5|))) (-15 -3092 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3092 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2801 (|#1| (-1 (-121) |#5|) |#1|)) (-15 -3092 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2745 ((-850) |#1|)) (-15 -1717 ((-121) |#1| |#1|))) +((-2447 (((-121) $ $) 7)) (-2387 (((-634 (-2 (|:| -4092 $) (|:| -1798 (-634 |#4|)))) (-634 |#4|)) 78)) (-2415 (((-634 $) (-634 |#4|)) 79)) (-2055 (((-634 |#3|) $) 32)) (-4211 (((-121) $) 25)) (-3824 (((-121) $) 16 (|has| |#1| (-558)))) (-3300 (((-121) |#4| $) 94) (((-121) $) 90)) (-2819 ((|#4| |#4| $) 85)) (-3644 (((-2 (|:| |under| $) (|:| -1519 $) (|:| |upper| $)) $ |#3|) 26)) (-2510 (((-121) $ (-763)) 43)) (-2801 (($ (-1 (-121) |#4|) $) 64 (|has| $ (-6 -4519))) (((-3 |#4| "failed") $ |#3|) 72)) (-2671 (($) 44 T CONST)) (-1565 (((-121) $) 21 (|has| |#1| (-558)))) (-3846 (((-121) $ $) 23 (|has| |#1| (-558)))) (-3106 (((-121) $ $) 22 (|has| |#1| (-558)))) (-3695 (((-121) $) 24 (|has| |#1| (-558)))) (-4275 (((-634 |#4|) (-634 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-121) |#4| |#4|)) 86)) (-2355 (((-634 |#4|) (-634 |#4|) $) 17 (|has| |#1| (-558)))) (-2492 (((-634 |#4|) (-634 |#4|) $) 18 (|has| |#1| (-558)))) (-3666 (((-3 $ "failed") (-634 |#4|)) 35)) (-2854 (($ (-634 |#4|)) 34)) (-3935 (((-3 $ "failed") $) 75)) (-2062 ((|#4| |#4| $) 82)) (-3924 (($ $) 67 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4519))))) (-4328 (($ |#4| $) 66 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4519)))) (($ (-1 (-121) |#4|) $) 63 (|has| $ (-6 -4519)))) (-1500 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 19 (|has| |#1| (-558)))) (-1281 (((-121) |#4| $ (-1 (-121) |#4| |#4|)) 95)) (-4079 ((|#4| |#4| $) 80)) (-3092 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 65 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4519)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 62 (|has| $ (-6 -4519))) ((|#4| (-1 |#4| |#4| |#4|) $) 61 (|has| $ (-6 -4519))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-121) |#4| |#4|)) 87)) (-3635 (((-2 (|:| -4092 (-634 |#4|)) (|:| -1798 (-634 |#4|))) $) 98)) (-4360 (((-634 |#4|) $) 51 (|has| $ (-6 -4519)))) (-1362 (((-121) |#4| $) 97) (((-121) $) 96)) (-2356 ((|#3| $) 33)) (-1737 (((-121) $ (-763)) 42)) (-1979 (((-634 |#4|) $) 52 (|has| $ (-6 -4519)))) (-3109 (((-121) |#4| $) 54 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4519))))) (-3674 (($ (-1 |#4| |#4|) $) 47 (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#4| |#4|) $) 46)) (-1432 (((-634 |#3|) $) 31)) (-3392 (((-121) |#3| $) 30)) (-2166 (((-121) $ (-763)) 41)) (-4487 (((-1143) $) 9)) (-4162 (((-3 |#4| "failed") $) 76)) (-1377 (((-634 |#4|) $) 100)) (-1415 (((-121) |#4| $) 92) (((-121) $) 88)) (-2682 ((|#4| |#4| $) 83)) (-2644 (((-121) $ $) 103)) (-2705 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-558)))) (-4347 (((-121) |#4| $) 93) (((-121) $) 89)) (-4025 ((|#4| |#4| $) 84)) (-4022 (((-1108) $) 10)) (-3876 (((-3 |#4| "failed") $) 77)) (-3775 (((-3 |#4| "failed") (-1 (-121) |#4|) $) 60)) (-1665 (((-3 $ "failed") $ |#4|) 71)) (-1807 (($ $ |#4|) 70)) (-1387 (((-121) (-1 (-121) |#4|) $) 49 (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 |#4|) (-634 |#4|)) 58 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090)))) (($ $ |#4| |#4|) 57 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090)))) (($ $ (-288 |#4|)) 56 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090)))) (($ $ (-634 (-288 |#4|))) 55 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090))))) (-3171 (((-121) $ $) 37)) (-3084 (((-121) $) 40)) (-3248 (($) 39)) (-3206 (((-763) $) 99)) (-4168 (((-763) |#4| $) 53 (-12 (|has| |#4| (-1090)) (|has| $ (-6 -4519)))) (((-763) (-1 (-121) |#4|) $) 50 (|has| $ (-6 -4519)))) (-3863 (($ $) 38)) (-4278 (((-541) $) 68 (|has| |#4| (-609 (-541))))) (-4287 (($ (-634 |#4|)) 59)) (-1290 (($ $ |#3|) 27)) (-3732 (($ $ |#3|) 29)) (-1567 (($ $) 81)) (-3944 (($ $ |#3|) 28)) (-2745 (((-850) $) 11) (((-634 |#4|) $) 36)) (-1878 (((-763) $) 69 (|has| |#3| (-370)))) (-3556 (((-3 (-2 (|:| |bas| $) (|:| -2616 (-634 |#4|))) "failed") (-634 |#4|) (-1 (-121) |#4| |#4|)) 102) (((-3 (-2 (|:| |bas| $) (|:| -2616 (-634 |#4|))) "failed") (-634 |#4|) (-1 (-121) |#4|) (-1 (-121) |#4| |#4|)) 101)) (-3292 (((-121) $ (-1 (-121) |#4| (-634 |#4|))) 91)) (-1319 (((-121) (-1 (-121) |#4|) $) 48 (|has| $ (-6 -4519)))) (-2739 (((-634 |#3|) $) 74)) (-4390 (((-121) |#3| $) 73)) (-1717 (((-121) $ $) 6)) (-1697 (((-763) $) 45 (|has| $ (-6 -4519))))) +(((-1189 |#1| |#2| |#3| |#4|) (-1275) (-558) (-788) (-842) (-1061 |t#1| |t#2| |t#3|)) (T -1189)) +((-2644 (*1 *2 *1 *1) (-12 (-4 *1 (-1189 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1061 *3 *4 *5)) (-5 *2 (-121)))) (-3556 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-121) *8 *8)) (-4 *8 (-1061 *5 *6 *7)) (-4 *5 (-558)) (-4 *6 (-788)) (-4 *7 (-842)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2616 (-634 *8)))) (-5 *3 (-634 *8)) (-4 *1 (-1189 *5 *6 *7 *8)))) (-3556 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-121) *9)) (-5 *5 (-1 (-121) *9 *9)) (-4 *9 (-1061 *6 *7 *8)) (-4 *6 (-558)) (-4 *7 (-788)) (-4 *8 (-842)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2616 (-634 *9)))) (-5 *3 (-634 *9)) (-4 *1 (-1189 *6 *7 *8 *9)))) (-1377 (*1 *2 *1) (-12 (-4 *1 (-1189 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1061 *3 *4 *5)) (-5 *2 (-634 *6)))) (-3206 (*1 *2 *1) (-12 (-4 *1 (-1189 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1061 *3 *4 *5)) (-5 *2 (-763)))) (-3635 (*1 *2 *1) (-12 (-4 *1 (-1189 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1061 *3 *4 *5)) (-5 *2 (-2 (|:| -4092 (-634 *6)) (|:| -1798 (-634 *6)))))) (-1362 (*1 *2 *3 *1) (-12 (-4 *1 (-1189 *4 *5 *6 *3)) (-4 *4 (-558)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *3 (-1061 *4 *5 *6)) (-5 *2 (-121)))) (-1362 (*1 *2 *1) (-12 (-4 *1 (-1189 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1061 *3 *4 *5)) (-5 *2 (-121)))) (-1281 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-121) *3 *3)) (-4 *1 (-1189 *5 *6 *7 *3)) (-4 *5 (-558)) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *3 (-1061 *5 *6 *7)) (-5 *2 (-121)))) (-3300 (*1 *2 *3 *1) (-12 (-4 *1 (-1189 *4 *5 *6 *3)) (-4 *4 (-558)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *3 (-1061 *4 *5 *6)) (-5 *2 (-121)))) (-4347 (*1 *2 *3 *1) (-12 (-4 *1 (-1189 *4 *5 *6 *3)) (-4 *4 (-558)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *3 (-1061 *4 *5 *6)) (-5 *2 (-121)))) (-1415 (*1 *2 *3 *1) (-12 (-4 *1 (-1189 *4 *5 *6 *3)) (-4 *4 (-558)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *3 (-1061 *4 *5 *6)) (-5 *2 (-121)))) (-3292 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-121) *7 (-634 *7))) (-4 *1 (-1189 *4 *5 *6 *7)) (-4 *4 (-558)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *7 (-1061 *4 *5 *6)) (-5 *2 (-121)))) (-3300 (*1 *2 *1) (-12 (-4 *1 (-1189 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1061 *3 *4 *5)) (-5 *2 (-121)))) (-4347 (*1 *2 *1) (-12 (-4 *1 (-1189 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1061 *3 *4 *5)) (-5 *2 (-121)))) (-1415 (*1 *2 *1) (-12 (-4 *1 (-1189 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1061 *3 *4 *5)) (-5 *2 (-121)))) (-3092 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-121) *2 *2)) (-4 *1 (-1189 *5 *6 *7 *2)) (-4 *5 (-558)) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *2 (-1061 *5 *6 *7)))) (-4275 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-634 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-121) *8 *8)) (-4 *1 (-1189 *5 *6 *7 *8)) (-4 *5 (-558)) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *8 (-1061 *5 *6 *7)))) (-2819 (*1 *2 *2 *1) (-12 (-4 *1 (-1189 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *2 (-1061 *3 *4 *5)))) (-4025 (*1 *2 *2 *1) (-12 (-4 *1 (-1189 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *2 (-1061 *3 *4 *5)))) (-2682 (*1 *2 *2 *1) (-12 (-4 *1 (-1189 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *2 (-1061 *3 *4 *5)))) (-2062 (*1 *2 *2 *1) (-12 (-4 *1 (-1189 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *2 (-1061 *3 *4 *5)))) (-1567 (*1 *1 *1) (-12 (-4 *1 (-1189 *2 *3 *4 *5)) (-4 *2 (-558)) (-4 *3 (-788)) (-4 *4 (-842)) (-4 *5 (-1061 *2 *3 *4)))) (-4079 (*1 *2 *2 *1) (-12 (-4 *1 (-1189 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *2 (-1061 *3 *4 *5)))) (-2415 (*1 *2 *3) (-12 (-5 *3 (-634 *7)) (-4 *7 (-1061 *4 *5 *6)) (-4 *4 (-558)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-634 *1)) (-4 *1 (-1189 *4 *5 *6 *7)))) (-2387 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *7 (-1061 *4 *5 *6)) (-5 *2 (-634 (-2 (|:| -4092 *1) (|:| -1798 (-634 *7))))) (-5 *3 (-634 *7)) (-4 *1 (-1189 *4 *5 *6 *7)))) (-3876 (*1 *2 *1) (|partial| -12 (-4 *1 (-1189 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *2 (-1061 *3 *4 *5)))) (-4162 (*1 *2 *1) (|partial| -12 (-4 *1 (-1189 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *2 (-1061 *3 *4 *5)))) (-3935 (*1 *1 *1) (|partial| -12 (-4 *1 (-1189 *2 *3 *4 *5)) (-4 *2 (-558)) (-4 *3 (-788)) (-4 *4 (-842)) (-4 *5 (-1061 *2 *3 *4)))) (-2739 (*1 *2 *1) (-12 (-4 *1 (-1189 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1061 *3 *4 *5)) (-5 *2 (-634 *5)))) (-4390 (*1 *2 *3 *1) (-12 (-4 *1 (-1189 *4 *5 *3 *6)) (-4 *4 (-558)) (-4 *5 (-788)) (-4 *3 (-842)) (-4 *6 (-1061 *4 *5 *3)) (-5 *2 (-121)))) (-2801 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1189 *4 *5 *3 *2)) (-4 *4 (-558)) (-4 *5 (-788)) (-4 *3 (-842)) (-4 *2 (-1061 *4 *5 *3)))) (-1665 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1189 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *2 (-1061 *3 *4 *5)))) (-1807 (*1 *1 *1 *2) (-12 (-4 *1 (-1189 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *2 (-1061 *3 *4 *5)))) (-1878 (*1 *2 *1) (-12 (-4 *1 (-1189 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1061 *3 *4 *5)) (-4 *5 (-370)) (-5 *2 (-763))))) +(-13 (-977 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4519) (-6 -4520) (-15 -2644 ((-121) $ $)) (-15 -3556 ((-3 (-2 (|:| |bas| $) (|:| -2616 (-634 |t#4|))) "failed") (-634 |t#4|) (-1 (-121) |t#4| |t#4|))) (-15 -3556 ((-3 (-2 (|:| |bas| $) (|:| -2616 (-634 |t#4|))) "failed") (-634 |t#4|) (-1 (-121) |t#4|) (-1 (-121) |t#4| |t#4|))) (-15 -1377 ((-634 |t#4|) $)) (-15 -3206 ((-763) $)) (-15 -3635 ((-2 (|:| -4092 (-634 |t#4|)) (|:| -1798 (-634 |t#4|))) $)) (-15 -1362 ((-121) |t#4| $)) (-15 -1362 ((-121) $)) (-15 -1281 ((-121) |t#4| $ (-1 (-121) |t#4| |t#4|))) (-15 -3300 ((-121) |t#4| $)) (-15 -4347 ((-121) |t#4| $)) (-15 -1415 ((-121) |t#4| $)) (-15 -3292 ((-121) $ (-1 (-121) |t#4| (-634 |t#4|)))) (-15 -3300 ((-121) $)) (-15 -4347 ((-121) $)) (-15 -1415 ((-121) $)) (-15 -3092 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-121) |t#4| |t#4|))) (-15 -4275 ((-634 |t#4|) (-634 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-121) |t#4| |t#4|))) (-15 -2819 (|t#4| |t#4| $)) (-15 -4025 (|t#4| |t#4| $)) (-15 -2682 (|t#4| |t#4| $)) (-15 -2062 (|t#4| |t#4| $)) (-15 -1567 ($ $)) (-15 -4079 (|t#4| |t#4| $)) (-15 -2415 ((-634 $) (-634 |t#4|))) (-15 -2387 ((-634 (-2 (|:| -4092 $) (|:| -1798 (-634 |t#4|)))) (-634 |t#4|))) (-15 -3876 ((-3 |t#4| "failed") $)) (-15 -4162 ((-3 |t#4| "failed") $)) (-15 -3935 ((-3 $ "failed") $)) (-15 -2739 ((-634 |t#3|) $)) (-15 -4390 ((-121) |t#3| $)) (-15 -2801 ((-3 |t#4| "failed") $ |t#3|)) (-15 -1665 ((-3 $ "failed") $ |t#4|)) (-15 -1807 ($ $ |t#4|)) (IF (|has| |t#3| (-370)) (-15 -1878 ((-763) $)) |noBranch|))) +(((-39) . T) ((-105) . T) ((-608 (-634 |#4|)) . T) ((-608 (-850)) . T) ((-154 |#4|) . T) ((-609 (-541)) |has| |#4| (-609 (-541))) ((-303 |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090))) ((-499 |#4|) . T) ((-523 |#4| |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090))) ((-977 |#1| |#2| |#3| |#4|) . T) ((-1090) . T) ((-1195) . T)) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-2055 (((-634 (-1161)) $) NIL)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-2227 (($ $) NIL (|has| |#1| (-558)))) (-1573 (((-121) $) NIL (|has| |#1| (-558)))) (-1982 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1933 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-3134 (((-3 $ "failed") $ $) NIL)) (-1902 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1974 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-2786 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1990 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1941 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-2671 (($) NIL T CONST)) (-2114 (($ $) NIL)) (-2925 (((-3 $ "failed") $) NIL)) (-1367 (((-953 |#1|) $ (-763)) 16) (((-953 |#1|) $ (-763) (-763)) NIL)) (-3992 (((-121) $) NIL)) (-1897 (($) NIL (|has| |#1| (-43 (-409 (-568)))))) (-4477 (((-763) $ (-1161)) NIL) (((-763) $ (-1161) (-763)) NIL)) (-2735 (((-121) $) NIL)) (-4044 (($ $ (-568)) NIL (|has| |#1| (-43 (-409 (-568)))))) (-3921 (((-121) $) NIL)) (-2047 (($ $ (-634 (-1161)) (-634 (-534 (-1161)))) NIL) (($ $ (-1161) (-534 (-1161))) NIL) (($ |#1| (-534 (-1161))) NIL) (($ $ (-1161) (-763)) NIL) (($ $ (-634 (-1161)) (-634 (-763))) NIL)) (-2795 (($ (-1 |#1| |#1|) $) NIL)) (-4416 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-2097 (($ $) NIL)) (-2102 ((|#1| $) NIL)) (-4487 (((-1143) $) NIL)) (-3837 (($ $ (-1161)) NIL (|has| |#1| (-43 (-409 (-568))))) (($ $ (-1161) |#1|) NIL (|has| |#1| (-43 (-409 (-568)))))) (-4022 (((-1108) $) NIL)) (-2225 (($ (-1 $) (-1161) |#1|) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1807 (($ $ (-763)) NIL)) (-2595 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-1892 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1339 (($ $ (-1161) $) NIL) (($ $ (-634 (-1161)) (-634 $)) NIL) (($ $ (-634 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-634 $) (-634 $)) NIL)) (-4189 (($ $ (-1161)) NIL) (($ $ (-634 (-1161))) NIL) (($ $ (-1161) (-763)) NIL) (($ $ (-634 (-1161)) (-634 (-763))) NIL)) (-3206 (((-534 (-1161)) $) NIL)) (-1994 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1945 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1986 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1937 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1978 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-2790 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1811 (($ $) NIL)) (-2745 (((-850) $) NIL) (($ (-568)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ $) NIL (|has| |#1| (-558))) (($ (-409 (-568))) NIL (|has| |#1| (-43 (-409 (-568))))) (($ (-1161)) NIL) (($ (-953 |#1|)) NIL)) (-2604 ((|#1| $ (-534 (-1161))) NIL) (($ $ (-1161) (-763)) NIL) (($ $ (-634 (-1161)) (-634 (-763))) NIL) (((-953 |#1|) $ (-763)) NIL)) (-4371 (((-3 $ "failed") $) NIL (|has| |#1| (-148)))) (-4078 (((-763)) NIL)) (-2006 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1958 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1826 (((-121) $ $) NIL (|has| |#1| (-558)))) (-1998 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1949 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-2014 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1966 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-4023 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1970 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-2010 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1962 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-2002 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1953 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (-3056 (($) NIL T CONST)) (-1556 (($) NIL T CONST)) (-3190 (($ $ (-1161)) NIL) (($ $ (-634 (-1161))) NIL) (($ $ (-1161) (-763)) NIL) (($ $ (-634 (-1161)) (-634 (-763))) NIL)) (-1717 (((-121) $ $) NIL)) (-1779 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ $) NIL (|has| |#1| (-43 (-409 (-568))))) (($ $ (-409 (-568))) NIL (|has| |#1| (-43 (-409 (-568)))))) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) NIL) (($ $ (-409 (-568))) NIL (|has| |#1| (-43 (-409 (-568))))) (($ (-409 (-568)) $) NIL (|has| |#1| (-43 (-409 (-568))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-1190 |#1|) (-13 (-730 |#1| (-1161)) (-10 -8 (-15 -2604 ((-953 |#1|) $ (-763))) (-15 -2745 ($ (-1161))) (-15 -2745 ($ (-953 |#1|))) (IF (|has| |#1| (-43 (-409 (-568)))) (PROGN (-15 -3837 ($ $ (-1161) |#1|)) (-15 -2225 ($ (-1 $) (-1161) |#1|))) |noBranch|))) (-1047)) (T -1190)) +((-2604 (*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-5 *2 (-953 *4)) (-5 *1 (-1190 *4)) (-4 *4 (-1047)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-1190 *3)) (-4 *3 (-1047)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-953 *3)) (-4 *3 (-1047)) (-5 *1 (-1190 *3)))) (-3837 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *1 (-1190 *3)) (-4 *3 (-43 (-409 (-568)))) (-4 *3 (-1047)))) (-2225 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1190 *4))) (-5 *3 (-1161)) (-5 *1 (-1190 *4)) (-4 *4 (-43 (-409 (-568)))) (-4 *4 (-1047))))) +(-13 (-730 |#1| (-1161)) (-10 -8 (-15 -2604 ((-953 |#1|) $ (-763))) (-15 -2745 ($ (-1161))) (-15 -2745 ($ (-953 |#1|))) (IF (|has| |#1| (-43 (-409 (-568)))) (PROGN (-15 -3837 ($ $ (-1161) |#1|)) (-15 -2225 ($ (-1 $) (-1161) |#1|))) |noBranch|))) +((-3368 (($ |#1| (-634 (-634 (-944 (-215)))) (-121)) 15)) (-4353 (((-121) $ (-121)) 14)) (-3868 (((-121) $) 13)) (-3209 (((-634 (-634 (-944 (-215)))) $) 10)) (-1774 ((|#1| $) 8)) (-3336 (((-121) $) 12))) +(((-1191 |#1|) (-10 -8 (-15 -1774 (|#1| $)) (-15 -3209 ((-634 (-634 (-944 (-215)))) $)) (-15 -3336 ((-121) $)) (-15 -3868 ((-121) $)) (-15 -4353 ((-121) $ (-121))) (-15 -3368 ($ |#1| (-634 (-634 (-944 (-215)))) (-121)))) (-975)) (T -1191)) +((-3368 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-634 (-634 (-944 (-215))))) (-5 *4 (-121)) (-5 *1 (-1191 *2)) (-4 *2 (-975)))) (-4353 (*1 *2 *1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-1191 *3)) (-4 *3 (-975)))) (-3868 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1191 *3)) (-4 *3 (-975)))) (-3336 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1191 *3)) (-4 *3 (-975)))) (-3209 (*1 *2 *1) (-12 (-5 *2 (-634 (-634 (-944 (-215))))) (-5 *1 (-1191 *3)) (-4 *3 (-975)))) (-1774 (*1 *2 *1) (-12 (-5 *1 (-1191 *2)) (-4 *2 (-975))))) +(-10 -8 (-15 -1774 (|#1| $)) (-15 -3209 ((-634 (-634 (-944 (-215)))) $)) (-15 -3336 ((-121) $)) (-15 -3868 ((-121) $)) (-15 -4353 ((-121) $ (-121))) (-15 -3368 ($ |#1| (-634 (-634 (-944 (-215)))) (-121)))) +((-1394 (((-944 (-215)) (-944 (-215))) 25)) (-4203 (((-944 (-215)) (-215) (-215) (-215) (-215)) 10)) (-3583 (((-634 (-944 (-215))) (-944 (-215)) (-944 (-215)) (-944 (-215)) (-215) (-634 (-634 (-215)))) 35)) (-3682 (((-215) (-944 (-215)) (-944 (-215))) 21)) (-2748 (((-944 (-215)) (-944 (-215)) (-944 (-215))) 22)) (-3743 (((-634 (-634 (-215))) (-568)) 31)) (-1773 (((-944 (-215)) (-944 (-215)) (-944 (-215))) 20)) (-1767 (((-944 (-215)) (-944 (-215)) (-944 (-215))) 19)) (* (((-944 (-215)) (-215) (-944 (-215))) 18))) +(((-1192) (-10 -7 (-15 -4203 ((-944 (-215)) (-215) (-215) (-215) (-215))) (-15 * ((-944 (-215)) (-215) (-944 (-215)))) (-15 -1767 ((-944 (-215)) (-944 (-215)) (-944 (-215)))) (-15 -1773 ((-944 (-215)) (-944 (-215)) (-944 (-215)))) (-15 -3682 ((-215) (-944 (-215)) (-944 (-215)))) (-15 -2748 ((-944 (-215)) (-944 (-215)) (-944 (-215)))) (-15 -1394 ((-944 (-215)) (-944 (-215)))) (-15 -3743 ((-634 (-634 (-215))) (-568))) (-15 -3583 ((-634 (-944 (-215))) (-944 (-215)) (-944 (-215)) (-944 (-215)) (-215) (-634 (-634 (-215))))))) (T -1192)) +((-3583 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-634 (-634 (-215)))) (-5 *4 (-215)) (-5 *2 (-634 (-944 *4))) (-5 *1 (-1192)) (-5 *3 (-944 *4)))) (-3743 (*1 *2 *3) (-12 (-5 *3 (-568)) (-5 *2 (-634 (-634 (-215)))) (-5 *1 (-1192)))) (-1394 (*1 *2 *2) (-12 (-5 *2 (-944 (-215))) (-5 *1 (-1192)))) (-2748 (*1 *2 *2 *2) (-12 (-5 *2 (-944 (-215))) (-5 *1 (-1192)))) (-3682 (*1 *2 *3 *3) (-12 (-5 *3 (-944 (-215))) (-5 *2 (-215)) (-5 *1 (-1192)))) (-1773 (*1 *2 *2 *2) (-12 (-5 *2 (-944 (-215))) (-5 *1 (-1192)))) (-1767 (*1 *2 *2 *2) (-12 (-5 *2 (-944 (-215))) (-5 *1 (-1192)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-944 (-215))) (-5 *3 (-215)) (-5 *1 (-1192)))) (-4203 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-944 (-215))) (-5 *1 (-1192)) (-5 *3 (-215))))) +(-10 -7 (-15 -4203 ((-944 (-215)) (-215) (-215) (-215) (-215))) (-15 * ((-944 (-215)) (-215) (-944 (-215)))) (-15 -1767 ((-944 (-215)) (-944 (-215)) (-944 (-215)))) (-15 -1773 ((-944 (-215)) (-944 (-215)) (-944 (-215)))) (-15 -3682 ((-215) (-944 (-215)) (-944 (-215)))) (-15 -2748 ((-944 (-215)) (-944 (-215)) (-944 (-215)))) (-15 -1394 ((-944 (-215)) (-944 (-215)))) (-15 -3743 ((-634 (-634 (-215))) (-568))) (-15 -3583 ((-634 (-944 (-215))) (-944 (-215)) (-944 (-215)) (-944 (-215)) (-215) (-634 (-634 (-215)))))) +((-2447 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-2801 ((|#1| $ (-763)) 13)) (-3678 (((-763) $) 12)) (-4487 (((-1143) $) NIL (|has| |#1| (-1090)))) (-4022 (((-1108) $) NIL (|has| |#1| (-1090)))) (-2745 (((-958 |#1|) $) 10) (($ (-958 |#1|)) 9) (((-850) $) 23 (|has| |#1| (-1090)))) (-1717 (((-121) $ $) 16 (|has| |#1| (-1090))))) +(((-1193 |#1|) (-13 (-608 (-958 |#1|)) (-10 -8 (-15 -2745 ($ (-958 |#1|))) (-15 -2801 (|#1| $ (-763))) (-15 -3678 ((-763) $)) (IF (|has| |#1| (-1090)) (-6 (-1090)) |noBranch|))) (-1195)) (T -1193)) +((-2745 (*1 *1 *2) (-12 (-5 *2 (-958 *3)) (-4 *3 (-1195)) (-5 *1 (-1193 *3)))) (-2801 (*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-5 *1 (-1193 *2)) (-4 *2 (-1195)))) (-3678 (*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-1193 *3)) (-4 *3 (-1195))))) +(-13 (-608 (-958 |#1|)) (-10 -8 (-15 -2745 ($ (-958 |#1|))) (-15 -2801 (|#1| $ (-763))) (-15 -3678 ((-763) $)) (IF (|has| |#1| (-1090)) (-6 (-1090)) |noBranch|))) +((-2298 (((-420 (-1157 (-1157 |#1|))) (-1157 (-1157 |#1|)) (-568)) 79)) (-3816 (((-420 (-1157 (-1157 |#1|))) (-1157 (-1157 |#1|))) 73)) (-3395 (((-420 (-1157 (-1157 |#1|))) (-1157 (-1157 |#1|))) 58))) +(((-1194 |#1|) (-10 -7 (-15 -3816 ((-420 (-1157 (-1157 |#1|))) (-1157 (-1157 |#1|)))) (-15 -3395 ((-420 (-1157 (-1157 |#1|))) (-1157 (-1157 |#1|)))) (-15 -2298 ((-420 (-1157 (-1157 |#1|))) (-1157 (-1157 |#1|)) (-568)))) (-350)) (T -1194)) +((-2298 (*1 *2 *3 *4) (-12 (-5 *4 (-568)) (-4 *5 (-350)) (-5 *2 (-420 (-1157 (-1157 *5)))) (-5 *1 (-1194 *5)) (-5 *3 (-1157 (-1157 *5))))) (-3395 (*1 *2 *3) (-12 (-4 *4 (-350)) (-5 *2 (-420 (-1157 (-1157 *4)))) (-5 *1 (-1194 *4)) (-5 *3 (-1157 (-1157 *4))))) (-3816 (*1 *2 *3) (-12 (-4 *4 (-350)) (-5 *2 (-420 (-1157 (-1157 *4)))) (-5 *1 (-1194 *4)) (-5 *3 (-1157 (-1157 *4)))))) +(-10 -7 (-15 -3816 ((-420 (-1157 (-1157 |#1|))) (-1157 (-1157 |#1|)))) (-15 -3395 ((-420 (-1157 (-1157 |#1|))) (-1157 (-1157 |#1|)))) (-15 -2298 ((-420 (-1157 (-1157 |#1|))) (-1157 (-1157 |#1|)) (-568)))) +NIL +(((-1195) (-1275)) (T -1195)) +NIL +(-13 (-10 -7 (-6 -3973))) +((-3636 (((-121)) 14)) (-2743 (((-1249) (-634 |#1|) (-634 |#1|)) 18) (((-1249) (-634 |#1|)) 19)) (-1737 (((-121) |#1| |#1|) 30 (|has| |#1| (-842)))) (-2166 (((-121) |#1| |#1| (-1 (-121) |#1| |#1|)) 26) (((-3 (-121) "failed") |#1| |#1|) 24)) (-4385 ((|#1| (-634 |#1|)) 31 (|has| |#1| (-842))) ((|#1| (-634 |#1|) (-1 (-121) |#1| |#1|)) 27)) (-2172 (((-2 (|:| -4100 (-634 |#1|)) (|:| -2971 (-634 |#1|)))) 16))) +(((-1196 |#1|) (-10 -7 (-15 -2743 ((-1249) (-634 |#1|))) (-15 -2743 ((-1249) (-634 |#1|) (-634 |#1|))) (-15 -2172 ((-2 (|:| -4100 (-634 |#1|)) (|:| -2971 (-634 |#1|))))) (-15 -2166 ((-3 (-121) "failed") |#1| |#1|)) (-15 -2166 ((-121) |#1| |#1| (-1 (-121) |#1| |#1|))) (-15 -4385 (|#1| (-634 |#1|) (-1 (-121) |#1| |#1|))) (-15 -3636 ((-121))) (IF (|has| |#1| (-842)) (PROGN (-15 -4385 (|#1| (-634 |#1|))) (-15 -1737 ((-121) |#1| |#1|))) |noBranch|)) (-1090)) (T -1196)) +((-1737 (*1 *2 *3 *3) (-12 (-5 *2 (-121)) (-5 *1 (-1196 *3)) (-4 *3 (-842)) (-4 *3 (-1090)))) (-4385 (*1 *2 *3) (-12 (-5 *3 (-634 *2)) (-4 *2 (-1090)) (-4 *2 (-842)) (-5 *1 (-1196 *2)))) (-3636 (*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-1196 *3)) (-4 *3 (-1090)))) (-4385 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *2)) (-5 *4 (-1 (-121) *2 *2)) (-5 *1 (-1196 *2)) (-4 *2 (-1090)))) (-2166 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-121) *3 *3)) (-4 *3 (-1090)) (-5 *2 (-121)) (-5 *1 (-1196 *3)))) (-2166 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-121)) (-5 *1 (-1196 *3)) (-4 *3 (-1090)))) (-2172 (*1 *2) (-12 (-5 *2 (-2 (|:| -4100 (-634 *3)) (|:| -2971 (-634 *3)))) (-5 *1 (-1196 *3)) (-4 *3 (-1090)))) (-2743 (*1 *2 *3 *3) (-12 (-5 *3 (-634 *4)) (-4 *4 (-1090)) (-5 *2 (-1249)) (-5 *1 (-1196 *4)))) (-2743 (*1 *2 *3) (-12 (-5 *3 (-634 *4)) (-4 *4 (-1090)) (-5 *2 (-1249)) (-5 *1 (-1196 *4))))) +(-10 -7 (-15 -2743 ((-1249) (-634 |#1|))) (-15 -2743 ((-1249) (-634 |#1|) (-634 |#1|))) (-15 -2172 ((-2 (|:| -4100 (-634 |#1|)) (|:| -2971 (-634 |#1|))))) (-15 -2166 ((-3 (-121) "failed") |#1| |#1|)) (-15 -2166 ((-121) |#1| |#1| (-1 (-121) |#1| |#1|))) (-15 -4385 (|#1| (-634 |#1|) (-1 (-121) |#1| |#1|))) (-15 -3636 ((-121))) (IF (|has| |#1| (-842)) (PROGN (-15 -4385 (|#1| (-634 |#1|))) (-15 -1737 ((-121) |#1| |#1|))) |noBranch|)) +((-1980 (((-1249) (-634 (-1161)) (-634 (-1161))) 12) (((-1249) (-634 (-1161))) 10)) (-2520 (((-1249)) 13)) (-1769 (((-2 (|:| -2971 (-634 (-1161))) (|:| -4100 (-634 (-1161))))) 17))) +(((-1197) (-10 -7 (-15 -1980 ((-1249) (-634 (-1161)))) (-15 -1980 ((-1249) (-634 (-1161)) (-634 (-1161)))) (-15 -1769 ((-2 (|:| -2971 (-634 (-1161))) (|:| -4100 (-634 (-1161)))))) (-15 -2520 ((-1249))))) (T -1197)) +((-2520 (*1 *2) (-12 (-5 *2 (-1249)) (-5 *1 (-1197)))) (-1769 (*1 *2) (-12 (-5 *2 (-2 (|:| -2971 (-634 (-1161))) (|:| -4100 (-634 (-1161))))) (-5 *1 (-1197)))) (-1980 (*1 *2 *3 *3) (-12 (-5 *3 (-634 (-1161))) (-5 *2 (-1249)) (-5 *1 (-1197)))) (-1980 (*1 *2 *3) (-12 (-5 *3 (-634 (-1161))) (-5 *2 (-1249)) (-5 *1 (-1197))))) +(-10 -7 (-15 -1980 ((-1249) (-634 (-1161)))) (-15 -1980 ((-1249) (-634 (-1161)) (-634 (-1161)))) (-15 -1769 ((-2 (|:| -2971 (-634 (-1161))) (|:| -4100 (-634 (-1161)))))) (-15 -2520 ((-1249)))) +((-4305 (($ $) 16)) (-3927 (((-121) $) 23))) +(((-1198 |#1|) (-10 -8 (-15 -4305 (|#1| |#1|)) (-15 -3927 ((-121) |#1|))) (-1199)) (T -1198)) +NIL +(-10 -8 (-15 -4305 (|#1| |#1|)) (-15 -3927 ((-121) |#1|))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) 40)) (-2227 (($ $) 39)) (-1573 (((-121) $) 37)) (-3134 (((-3 $ "failed") $ $) 18)) (-4305 (($ $) 49)) (-1678 (((-420 $) $) 50)) (-2671 (($) 16 T CONST)) (-2925 (((-3 $ "failed") $) 33)) (-3927 (((-121) $) 51)) (-2735 (((-121) $) 30)) (-2495 (($ $ $) 45) (($ (-634 $)) 44)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) 43)) (-2721 (($ $ $) 47) (($ (-634 $)) 46)) (-3848 (((-420 $) $) 48)) (-2595 (((-3 $ "failed") $ $) 41)) (-2745 (((-850) $) 11) (($ (-568)) 27) (($ $) 42)) (-4078 (((-763)) 28)) (-1826 (((-121) $ $) 38)) (-1887 (($ $ (-917)) 25) (($ $ (-763)) 32)) (-3056 (($) 17 T CONST)) (-1556 (($) 29 T CONST)) (-1717 (((-121) $ $) 6)) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 24) (($ $ (-763)) 31)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 23))) +(((-1199) (-1275)) (T -1199)) +((-3927 (*1 *2 *1) (-12 (-4 *1 (-1199)) (-5 *2 (-121)))) (-1678 (*1 *2 *1) (-12 (-5 *2 (-420 *1)) (-4 *1 (-1199)))) (-4305 (*1 *1 *1) (-4 *1 (-1199))) (-3848 (*1 *2 *1) (-12 (-5 *2 (-420 *1)) (-4 *1 (-1199))))) +(-13 (-453) (-10 -8 (-15 -3927 ((-121) $)) (-15 -1678 ((-420 $) $)) (-15 -4305 ($ $)) (-15 -3848 ((-420 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-43 $) . T) ((-105) . T) ((-120 $ $) . T) ((-137) . T) ((-608 (-850)) . T) ((-172) . T) ((-285) . T) ((-453) . T) ((-558) . T) ((-637 $) . T) ((-707 $) . T) ((-716) . T) ((-1053 $) . T) ((-1047) . T) ((-1054) . T) ((-1102) . T) ((-1090) . T)) +((-1775 (((-1201 |#1|) (-1201 |#1|) (-1201 |#1|)) 15))) +(((-1200 |#1|) (-10 -7 (-15 -1775 ((-1201 |#1|) (-1201 |#1|) (-1201 |#1|)))) (-1047)) (T -1200)) +((-1775 (*1 *2 *2 *2) (-12 (-5 *2 (-1201 *3)) (-4 *3 (-1047)) (-5 *1 (-1200 *3))))) +(-10 -7 (-15 -1775 ((-1201 |#1|) (-1201 |#1|) (-1201 |#1|)))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-2055 (((-634 (-1075)) $) NIL)) (-1305 (((-1161) $) NIL)) (-3196 (((-1216 (QUOTE |x|) |#1|) $ (-763)) NIL)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-2227 (($ $) NIL (|has| |#1| (-558)))) (-1573 (((-121) $) NIL (|has| |#1| (-558)))) (-2617 (($ $ (-763)) NIL) (($ $ (-763) (-763)) NIL)) (-2583 (((-1141 (-2 (|:| |k| (-763)) (|:| |c| |#1|))) $) NIL)) (-1982 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1933 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-3134 (((-3 $ "failed") $ $) NIL)) (-1902 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1974 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-2786 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-3728 (($ (-1141 (-2 (|:| |k| (-763)) (|:| |c| |#1|)))) NIL) (($ (-1141 |#1|)) NIL)) (-1990 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1941 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-2671 (($) NIL T CONST)) (-2129 (($ $) NIL)) (-2114 (($ $) NIL)) (-2925 (((-3 $ "failed") $) NIL)) (-3490 (($ $) NIL)) (-1367 (((-953 |#1|) $ (-763)) NIL) (((-953 |#1|) $ (-763) (-763)) NIL)) (-3992 (((-121) $) NIL)) (-1897 (($) NIL (|has| |#1| (-43 (-409 (-568)))))) (-4477 (((-763) $) NIL) (((-763) $ (-763)) NIL)) (-2735 (((-121) $) NIL)) (-2011 (($ $) NIL)) (-4044 (($ $ (-568)) NIL (|has| |#1| (-43 (-409 (-568)))))) (-2651 (($ (-568) (-568) $) NIL)) (-3536 (($ $ (-917)) NIL)) (-1716 (($ (-1 |#1| (-568)) $) NIL)) (-3921 (((-121) $) NIL)) (-2047 (($ |#1| (-763)) NIL) (($ $ (-1075) (-763)) NIL) (($ $ (-634 (-1075)) (-634 (-763))) NIL)) (-2795 (($ (-1 |#1| |#1|) $) NIL)) (-4416 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-2097 (($ $) NIL)) (-2102 ((|#1| $) NIL)) (-4487 (((-1143) $) NIL)) (-3730 (($ $) NIL)) (-2608 (($ $) NIL)) (-4053 (($ (-568) (-568) $) NIL)) (-3837 (($ $) NIL (|has| |#1| (-43 (-409 (-568))))) (($ $ (-1161)) NIL (-2198 (-12 (|has| |#1| (-15 -3837 (|#1| |#1| (-1161)))) (|has| |#1| (-15 -2055 ((-634 (-1161)) |#1|))) (|has| |#1| (-43 (-409 (-568))))) (-12 (|has| |#1| (-29 (-568))) (|has| |#1| (-43 (-409 (-568)))) (|has| |#1| (-959)) (|has| |#1| (-1181))))) (($ $ (-1240 (QUOTE |x|))) NIL (|has| |#1| (-43 (-409 (-568)))))) (-4022 (((-1108) $) NIL)) (-2224 (($ $ (-568) (-568)) NIL)) (-1807 (($ $ (-763)) NIL)) (-2595 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-1892 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-2372 (($ $) NIL)) (-1339 (((-1141 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-763)))))) (-2779 ((|#1| $ (-763)) NIL) (($ $ $) NIL (|has| (-763) (-1102)))) (-4189 (($ $ (-634 (-1161)) (-634 (-763))) NIL (-12 (|has| |#1| (-15 * (|#1| (-763) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-1161) (-763)) NIL (-12 (|has| |#1| (-15 * (|#1| (-763) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-634 (-1161))) NIL (-12 (|has| |#1| (-15 * (|#1| (-763) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-1161)) NIL (-12 (|has| |#1| (-15 * (|#1| (-763) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-763)) NIL (|has| |#1| (-15 * (|#1| (-763) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-763) |#1|)))) (($ $ (-1240 (QUOTE |x|))) NIL)) (-3206 (((-763) $) NIL)) (-1994 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1945 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1986 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1937 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1978 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-2790 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1811 (($ $) NIL)) (-2745 (((-850) $) NIL) (($ (-568)) NIL) (($ (-409 (-568))) NIL (|has| |#1| (-43 (-409 (-568))))) (($ $) NIL (|has| |#1| (-558))) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1216 (QUOTE |x|) |#1|)) NIL) (($ (-1240 (QUOTE |x|))) NIL)) (-1302 (((-1141 |#1|) $) NIL)) (-2604 ((|#1| $ (-763)) NIL)) (-4371 (((-3 $ "failed") $) NIL (|has| |#1| (-148)))) (-4078 (((-763)) NIL)) (-1374 ((|#1| $) NIL)) (-2006 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1958 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1826 (((-121) $ $) NIL (|has| |#1| (-558)))) (-1998 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1949 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-2014 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1966 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-3996 ((|#1| $ (-763)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-763)))) (|has| |#1| (-15 -2745 (|#1| (-1161))))))) (-4023 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1970 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-2010 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1962 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-2002 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1953 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (-3056 (($) NIL T CONST)) (-1556 (($) NIL T CONST)) (-3190 (($ $ (-634 (-1161)) (-634 (-763))) NIL (-12 (|has| |#1| (-15 * (|#1| (-763) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-1161) (-763)) NIL (-12 (|has| |#1| (-15 * (|#1| (-763) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-634 (-1161))) NIL (-12 (|has| |#1| (-15 * (|#1| (-763) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-1161)) NIL (-12 (|has| |#1| (-15 * (|#1| (-763) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-763)) NIL (|has| |#1| (-15 * (|#1| (-763) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-763) |#1|))))) (-1717 (((-121) $ $) NIL)) (-1779 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-43 (-409 (-568))))) (($ $ (-409 (-568))) NIL (|has| |#1| (-43 (-409 (-568)))))) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-409 (-568)) $) NIL (|has| |#1| (-43 (-409 (-568))))) (($ $ (-409 (-568))) NIL (|has| |#1| (-43 (-409 (-568))))))) +(((-1201 |#1|) (-13 (-1234 |#1|) (-10 -8 (-15 -2745 ($ (-1216 (QUOTE |x|) |#1|))) (-15 -3196 ((-1216 (QUOTE |x|) |#1|) $ (-763))) (-15 -2745 ($ (-1240 (QUOTE |x|)))) (-15 -4189 ($ $ (-1240 (QUOTE |x|)))) (-15 -2608 ($ $)) (-15 -3730 ($ $)) (-15 -2011 ($ $)) (-15 -2372 ($ $)) (-15 -2224 ($ $ (-568) (-568))) (-15 -2129 ($ $)) (-15 -2651 ($ (-568) (-568) $)) (-15 -4053 ($ (-568) (-568) $)) (IF (|has| |#1| (-43 (-409 (-568)))) (-15 -3837 ($ $ (-1240 (QUOTE |x|)))) |noBranch|))) (-1047)) (T -1201)) +((-2745 (*1 *1 *2) (-12 (-5 *2 (-1216 (QUOTE |x|) *3)) (-4 *3 (-1047)) (-5 *1 (-1201 *3)))) (-3196 (*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-5 *2 (-1216 (QUOTE |x|) *4)) (-5 *1 (-1201 *4)) (-4 *4 (-1047)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-1240 (QUOTE |x|))) (-5 *1 (-1201 *3)) (-4 *3 (-1047)))) (-4189 (*1 *1 *1 *2) (-12 (-5 *2 (-1240 (QUOTE |x|))) (-5 *1 (-1201 *3)) (-4 *3 (-1047)))) (-2608 (*1 *1 *1) (-12 (-5 *1 (-1201 *2)) (-4 *2 (-1047)))) (-3730 (*1 *1 *1) (-12 (-5 *1 (-1201 *2)) (-4 *2 (-1047)))) (-2011 (*1 *1 *1) (-12 (-5 *1 (-1201 *2)) (-4 *2 (-1047)))) (-2372 (*1 *1 *1) (-12 (-5 *1 (-1201 *2)) (-4 *2 (-1047)))) (-2224 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-1201 *3)) (-4 *3 (-1047)))) (-2129 (*1 *1 *1) (-12 (-5 *1 (-1201 *2)) (-4 *2 (-1047)))) (-2651 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-568)) (-5 *1 (-1201 *3)) (-4 *3 (-1047)))) (-4053 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-568)) (-5 *1 (-1201 *3)) (-4 *3 (-1047)))) (-3837 (*1 *1 *1 *2) (-12 (-5 *2 (-1240 (QUOTE |x|))) (-5 *1 (-1201 *3)) (-4 *3 (-43 (-409 (-568)))) (-4 *3 (-1047))))) +(-13 (-1234 |#1|) (-10 -8 (-15 -2745 ($ (-1216 (QUOTE |x|) |#1|))) (-15 -3196 ((-1216 (QUOTE |x|) |#1|) $ (-763))) (-15 -2745 ($ (-1240 (QUOTE |x|)))) (-15 -4189 ($ $ (-1240 (QUOTE |x|)))) (-15 -2608 ($ $)) (-15 -3730 ($ $)) (-15 -2011 ($ $)) (-15 -2372 ($ $)) (-15 -2224 ($ $ (-568) (-568))) (-15 -2129 ($ $)) (-15 -2651 ($ (-568) (-568) $)) (-15 -4053 ($ (-568) (-568) $)) (IF (|has| |#1| (-43 (-409 (-568)))) (-15 -3837 ($ $ (-1240 (QUOTE |x|)))) |noBranch|))) +((-2795 (((-1207 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1207 |#1| |#3| |#5|)) 23))) +(((-1202 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2795 ((-1207 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1207 |#1| |#3| |#5|)))) (-1047) (-1047) (-1161) (-1161) |#1| |#2|) (T -1202)) +((-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1207 *5 *7 *9)) (-4 *5 (-1047)) (-4 *6 (-1047)) (-14 *7 (-1161)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1207 *6 *8 *10)) (-5 *1 (-1202 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1161))))) +(-10 -7 (-15 -2795 ((-1207 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1207 |#1| |#3| |#5|)))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-2055 (((-634 (-1075)) $) 70)) (-1305 (((-1161) $) 98)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) 50 (|has| |#1| (-558)))) (-2227 (($ $) 51 (|has| |#1| (-558)))) (-1573 (((-121) $) 53 (|has| |#1| (-558)))) (-2617 (($ $ (-568)) 93) (($ $ (-568) (-568)) 92)) (-2583 (((-1141 (-2 (|:| |k| (-568)) (|:| |c| |#1|))) $) 100)) (-1982 (($ $) 127 (|has| |#1| (-43 (-409 (-568)))))) (-1933 (($ $) 110 (|has| |#1| (-43 (-409 (-568)))))) (-3134 (((-3 $ "failed") $ $) 18)) (-4305 (($ $) 154 (|has| |#1| (-365)))) (-1678 (((-420 $) $) 155 (|has| |#1| (-365)))) (-1902 (($ $) 109 (|has| |#1| (-43 (-409 (-568)))))) (-1497 (((-121) $ $) 145 (|has| |#1| (-365)))) (-1974 (($ $) 126 (|has| |#1| (-43 (-409 (-568)))))) (-2786 (($ $) 111 (|has| |#1| (-43 (-409 (-568)))))) (-3728 (($ (-1141 (-2 (|:| |k| (-568)) (|:| |c| |#1|)))) 166)) (-1990 (($ $) 125 (|has| |#1| (-43 (-409 (-568)))))) (-1941 (($ $) 112 (|has| |#1| (-43 (-409 (-568)))))) (-2671 (($) 16 T CONST)) (-2401 (($ $ $) 149 (|has| |#1| (-365)))) (-2114 (($ $) 59)) (-2925 (((-3 $ "failed") $) 33)) (-4446 (((-409 (-953 |#1|)) $ (-568)) 164 (|has| |#1| (-558))) (((-409 (-953 |#1|)) $ (-568) (-568)) 163 (|has| |#1| (-558)))) (-2412 (($ $ $) 148 (|has| |#1| (-365)))) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) 143 (|has| |#1| (-365)))) (-3927 (((-121) $) 156 (|has| |#1| (-365)))) (-3992 (((-121) $) 69)) (-1897 (($) 137 (|has| |#1| (-43 (-409 (-568)))))) (-4477 (((-568) $) 95) (((-568) $ (-568)) 94)) (-2735 (((-121) $) 30)) (-4044 (($ $ (-568)) 108 (|has| |#1| (-43 (-409 (-568)))))) (-3536 (($ $ (-917)) 96)) (-1716 (($ (-1 |#1| (-568)) $) 165)) (-3562 (((-3 (-634 $) "failed") (-634 $) $) 152 (|has| |#1| (-365)))) (-3921 (((-121) $) 61)) (-2047 (($ |#1| (-568)) 60) (($ $ (-1075) (-568)) 72) (($ $ (-634 (-1075)) (-634 (-568))) 71)) (-2795 (($ (-1 |#1| |#1|) $) 62)) (-4416 (($ $) 134 (|has| |#1| (-43 (-409 (-568)))))) (-2097 (($ $) 64)) (-2102 ((|#1| $) 65)) (-2495 (($ (-634 $)) 141 (|has| |#1| (-365))) (($ $ $) 140 (|has| |#1| (-365)))) (-4487 (((-1143) $) 9)) (-2081 (($ $) 157 (|has| |#1| (-365)))) (-3837 (($ $) 162 (|has| |#1| (-43 (-409 (-568))))) (($ $ (-1161)) 161 (-2198 (-12 (|has| |#1| (-29 (-568))) (|has| |#1| (-959)) (|has| |#1| (-1181)) (|has| |#1| (-43 (-409 (-568))))) (-12 (|has| |#1| (-15 -2055 ((-634 (-1161)) |#1|))) (|has| |#1| (-15 -3837 (|#1| |#1| (-1161)))) (|has| |#1| (-43 (-409 (-568)))))))) (-4022 (((-1108) $) 10)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) 142 (|has| |#1| (-365)))) (-2721 (($ (-634 $)) 139 (|has| |#1| (-365))) (($ $ $) 138 (|has| |#1| (-365)))) (-3848 (((-420 $) $) 153 (|has| |#1| (-365)))) (-4497 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 151 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) 150 (|has| |#1| (-365)))) (-1807 (($ $ (-568)) 90)) (-2595 (((-3 $ "failed") $ $) 49 (|has| |#1| (-558)))) (-2344 (((-3 (-634 $) "failed") (-634 $) $) 144 (|has| |#1| (-365)))) (-1892 (($ $) 135 (|has| |#1| (-43 (-409 (-568)))))) (-1339 (((-1141 |#1|) $ |#1|) 89 (|has| |#1| (-15 ** (|#1| |#1| (-568)))))) (-2709 (((-763) $) 146 (|has| |#1| (-365)))) (-2779 ((|#1| $ (-568)) 99) (($ $ $) 76 (|has| (-568) (-1102)))) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) 147 (|has| |#1| (-365)))) (-4189 (($ $ (-634 (-1161)) (-634 (-763))) 84 (-12 (|has| |#1| (-895 (-1161))) (|has| |#1| (-15 * (|#1| (-568) |#1|))))) (($ $ (-1161) (-763)) 83 (-12 (|has| |#1| (-895 (-1161))) (|has| |#1| (-15 * (|#1| (-568) |#1|))))) (($ $ (-634 (-1161))) 82 (-12 (|has| |#1| (-895 (-1161))) (|has| |#1| (-15 * (|#1| (-568) |#1|))))) (($ $ (-1161)) 81 (-12 (|has| |#1| (-895 (-1161))) (|has| |#1| (-15 * (|#1| (-568) |#1|))))) (($ $ (-763)) 79 (|has| |#1| (-15 * (|#1| (-568) |#1|)))) (($ $) 77 (|has| |#1| (-15 * (|#1| (-568) |#1|))))) (-3206 (((-568) $) 63)) (-1994 (($ $) 124 (|has| |#1| (-43 (-409 (-568)))))) (-1945 (($ $) 113 (|has| |#1| (-43 (-409 (-568)))))) (-1986 (($ $) 123 (|has| |#1| (-43 (-409 (-568)))))) (-1937 (($ $) 114 (|has| |#1| (-43 (-409 (-568)))))) (-1978 (($ $) 122 (|has| |#1| (-43 (-409 (-568)))))) (-2790 (($ $) 115 (|has| |#1| (-43 (-409 (-568)))))) (-1811 (($ $) 68)) (-2745 (((-850) $) 11) (($ (-568)) 27) (($ |#1|) 46 (|has| |#1| (-172))) (($ (-409 (-568))) 56 (|has| |#1| (-43 (-409 (-568))))) (($ $) 48 (|has| |#1| (-558)))) (-2604 ((|#1| $ (-568)) 58)) (-4371 (((-3 $ "failed") $) 47 (|has| |#1| (-148)))) (-4078 (((-763)) 28)) (-1374 ((|#1| $) 97)) (-2006 (($ $) 133 (|has| |#1| (-43 (-409 (-568)))))) (-1958 (($ $) 121 (|has| |#1| (-43 (-409 (-568)))))) (-1826 (((-121) $ $) 52 (|has| |#1| (-558)))) (-1998 (($ $) 132 (|has| |#1| (-43 (-409 (-568)))))) (-1949 (($ $) 120 (|has| |#1| (-43 (-409 (-568)))))) (-2014 (($ $) 131 (|has| |#1| (-43 (-409 (-568)))))) (-1966 (($ $) 119 (|has| |#1| (-43 (-409 (-568)))))) (-3996 ((|#1| $ (-568)) 91 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-568)))) (|has| |#1| (-15 -2745 (|#1| (-1161))))))) (-4023 (($ $) 130 (|has| |#1| (-43 (-409 (-568)))))) (-1970 (($ $) 118 (|has| |#1| (-43 (-409 (-568)))))) (-2010 (($ $) 129 (|has| |#1| (-43 (-409 (-568)))))) (-1962 (($ $) 117 (|has| |#1| (-43 (-409 (-568)))))) (-2002 (($ $) 128 (|has| |#1| (-43 (-409 (-568)))))) (-1953 (($ $) 116 (|has| |#1| (-43 (-409 (-568)))))) (-1887 (($ $ (-917)) 25) (($ $ (-763)) 32) (($ $ (-568)) 158 (|has| |#1| (-365)))) (-3056 (($) 17 T CONST)) (-1556 (($) 29 T CONST)) (-3190 (($ $ (-634 (-1161)) (-634 (-763))) 88 (-12 (|has| |#1| (-895 (-1161))) (|has| |#1| (-15 * (|#1| (-568) |#1|))))) (($ $ (-1161) (-763)) 87 (-12 (|has| |#1| (-895 (-1161))) (|has| |#1| (-15 * (|#1| (-568) |#1|))))) (($ $ (-634 (-1161))) 86 (-12 (|has| |#1| (-895 (-1161))) (|has| |#1| (-15 * (|#1| (-568) |#1|))))) (($ $ (-1161)) 85 (-12 (|has| |#1| (-895 (-1161))) (|has| |#1| (-15 * (|#1| (-568) |#1|))))) (($ $ (-763)) 80 (|has| |#1| (-15 * (|#1| (-568) |#1|)))) (($ $) 78 (|has| |#1| (-15 * (|#1| (-568) |#1|))))) (-1717 (((-121) $ $) 6)) (-1779 (($ $ |#1|) 57 (|has| |#1| (-365))) (($ $ $) 160 (|has| |#1| (-365)))) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 24) (($ $ (-763)) 31) (($ $ (-568)) 159 (|has| |#1| (-365))) (($ $ $) 136 (|has| |#1| (-43 (-409 (-568))))) (($ $ (-409 (-568))) 107 (|has| |#1| (-43 (-409 (-568)))))) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 23) (($ $ |#1|) 67) (($ |#1| $) 66) (($ (-409 (-568)) $) 55 (|has| |#1| (-43 (-409 (-568))))) (($ $ (-409 (-568))) 54 (|has| |#1| (-43 (-409 (-568))))))) +(((-1203 |#1|) (-1275) (-1047)) (T -1203)) +((-3728 (*1 *1 *2) (-12 (-5 *2 (-1141 (-2 (|:| |k| (-568)) (|:| |c| *3)))) (-4 *3 (-1047)) (-4 *1 (-1203 *3)))) (-1716 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-568))) (-4 *1 (-1203 *3)) (-4 *3 (-1047)))) (-4446 (*1 *2 *1 *3) (-12 (-5 *3 (-568)) (-4 *1 (-1203 *4)) (-4 *4 (-1047)) (-4 *4 (-558)) (-5 *2 (-409 (-953 *4))))) (-4446 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-568)) (-4 *1 (-1203 *4)) (-4 *4 (-1047)) (-4 *4 (-558)) (-5 *2 (-409 (-953 *4))))) (-3837 (*1 *1 *1) (-12 (-4 *1 (-1203 *2)) (-4 *2 (-1047)) (-4 *2 (-43 (-409 (-568)))))) (-3837 (*1 *1 *1 *2) (-2198 (-12 (-5 *2 (-1161)) (-4 *1 (-1203 *3)) (-4 *3 (-1047)) (-12 (-4 *3 (-29 (-568))) (-4 *3 (-959)) (-4 *3 (-1181)) (-4 *3 (-43 (-409 (-568)))))) (-12 (-5 *2 (-1161)) (-4 *1 (-1203 *3)) (-4 *3 (-1047)) (-12 (|has| *3 (-15 -2055 ((-634 *2) *3))) (|has| *3 (-15 -3837 (*3 *3 *2))) (-4 *3 (-43 (-409 (-568))))))))) +(-13 (-1221 |t#1| (-568)) (-10 -8 (-15 -3728 ($ (-1141 (-2 (|:| |k| (-568)) (|:| |c| |t#1|))))) (-15 -1716 ($ (-1 |t#1| (-568)) $)) (IF (|has| |t#1| (-558)) (PROGN (-15 -4446 ((-409 (-953 |t#1|)) $ (-568))) (-15 -4446 ((-409 (-953 |t#1|)) $ (-568) (-568)))) |noBranch|) (IF (|has| |t#1| (-43 (-409 (-568)))) (PROGN (-15 -3837 ($ $)) (IF (|has| |t#1| (-15 -3837 (|t#1| |t#1| (-1161)))) (IF (|has| |t#1| (-15 -2055 ((-634 (-1161)) |t#1|))) (-15 -3837 ($ $ (-1161))) |noBranch|) |noBranch|) (IF (|has| |t#1| (-1181)) (IF (|has| |t#1| (-959)) (IF (|has| |t#1| (-29 (-568))) (-15 -3837 ($ $ (-1161))) |noBranch|) |noBranch|) |noBranch|) (-6 (-1002)) (-6 (-1181))) |noBranch|) (IF (|has| |t#1| (-365)) (-6 (-365)) |noBranch|))) +(((-21) . T) ((-23) . T) ((-52 |#1| (-568)) . T) ((-25) . T) ((-43 (-409 (-568))) -2198 (|has| |#1| (-365)) (|has| |#1| (-43 (-409 (-568))))) ((-43 |#1|) |has| |#1| (-172)) ((-43 $) -2198 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-40) |has| |#1| (-43 (-409 (-568)))) ((-98) |has| |#1| (-43 (-409 (-568)))) ((-105) . T) ((-120 (-409 (-568)) (-409 (-568))) -2198 (|has| |#1| (-365)) (|has| |#1| (-43 (-409 (-568))))) ((-120 |#1| |#1|) . T) ((-120 $ $) -2198 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-137) . T) ((-148) |has| |#1| (-148)) ((-150) |has| |#1| (-150)) ((-608 (-850)) . T) ((-172) -2198 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-225) |has| |#1| (-15 * (|#1| (-568) |#1|))) ((-238) |has| |#1| (-365)) ((-279) |has| |#1| (-43 (-409 (-568)))) ((-281 $ $) |has| (-568) (-1102)) ((-285) -2198 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-301) |has| |#1| (-365)) ((-365) |has| |#1| (-365)) ((-453) |has| |#1| (-365)) ((-502) |has| |#1| (-43 (-409 (-568)))) ((-558) -2198 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-637 (-409 (-568))) -2198 (|has| |#1| (-365)) (|has| |#1| (-43 (-409 (-568))))) ((-637 |#1|) . T) ((-637 $) . T) ((-707 (-409 (-568))) -2198 (|has| |#1| (-365)) (|has| |#1| (-43 (-409 (-568))))) ((-707 |#1|) |has| |#1| (-172)) ((-707 $) -2198 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-716) . T) ((-895 (-1161)) -12 (|has| |#1| (-15 * (|#1| (-568) |#1|))) (|has| |#1| (-895 (-1161)))) ((-974 |#1| (-568) (-1075)) . T) ((-916) |has| |#1| (-365)) ((-1002) |has| |#1| (-43 (-409 (-568)))) ((-1053 (-409 (-568))) -2198 (|has| |#1| (-365)) (|has| |#1| (-43 (-409 (-568))))) ((-1053 |#1|) . T) ((-1053 $) -2198 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1047) . T) ((-1054) . T) ((-1102) . T) ((-1090) . T) ((-1181) |has| |#1| (-43 (-409 (-568)))) ((-1184) |has| |#1| (-43 (-409 (-568)))) ((-1199) |has| |#1| (-365)) ((-1221 |#1| (-568)) . T)) +((-2537 (((-121) $) 12)) (-3666 (((-3 |#3| "failed") $) 17) (((-3 (-1161) "failed") $) NIL) (((-3 (-409 (-568)) "failed") $) NIL) (((-3 (-568) "failed") $) NIL)) (-2854 ((|#3| $) 14) (((-1161) $) NIL) (((-409 (-568)) $) NIL) (((-568) $) NIL))) +(((-1204 |#1| |#2| |#3|) (-10 -8 (-15 -2854 ((-568) |#1|)) (-15 -3666 ((-3 (-568) "failed") |#1|)) (-15 -2854 ((-409 (-568)) |#1|)) (-15 -3666 ((-3 (-409 (-568)) "failed") |#1|)) (-15 -2854 ((-1161) |#1|)) (-15 -3666 ((-3 (-1161) "failed") |#1|)) (-15 -2854 (|#3| |#1|)) (-15 -3666 ((-3 |#3| "failed") |#1|)) (-15 -2537 ((-121) |#1|))) (-1205 |#2| |#3|) (-1047) (-1234 |#2|)) (T -1204)) +NIL +(-10 -8 (-15 -2854 ((-568) |#1|)) (-15 -3666 ((-3 (-568) "failed") |#1|)) (-15 -2854 ((-409 (-568)) |#1|)) (-15 -3666 ((-3 (-409 (-568)) "failed") |#1|)) (-15 -2854 ((-1161) |#1|)) (-15 -3666 ((-3 (-1161) "failed") |#1|)) (-15 -2854 (|#3| |#1|)) (-15 -3666 ((-3 |#3| "failed") |#1|)) (-15 -2537 ((-121) |#1|))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-1492 ((|#2| $) 219 (-2139 (|has| |#2| (-301)) (|has| |#1| (-365))))) (-2055 (((-634 (-1075)) $) 70)) (-1305 (((-1161) $) 98)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) 50 (|has| |#1| (-558)))) (-2227 (($ $) 51 (|has| |#1| (-558)))) (-1573 (((-121) $) 53 (|has| |#1| (-558)))) (-2617 (($ $ (-568)) 93) (($ $ (-568) (-568)) 92)) (-2583 (((-1141 (-2 (|:| |k| (-568)) (|:| |c| |#1|))) $) 100)) (-3613 ((|#2| $) 255)) (-4016 (((-3 |#2| "failed") $) 251)) (-2065 ((|#2| $) 252)) (-1982 (($ $) 127 (|has| |#1| (-43 (-409 (-568)))))) (-1933 (($ $) 110 (|has| |#1| (-43 (-409 (-568)))))) (-3134 (((-3 $ "failed") $ $) 18)) (-1750 (((-420 (-1157 $)) (-1157 $)) 228 (-2139 (|has| |#2| (-904)) (|has| |#1| (-365))))) (-4305 (($ $) 154 (|has| |#1| (-365)))) (-1678 (((-420 $) $) 155 (|has| |#1| (-365)))) (-1902 (($ $) 109 (|has| |#1| (-43 (-409 (-568)))))) (-1858 (((-3 (-634 (-1157 $)) "failed") (-634 (-1157 $)) (-1157 $)) 225 (-2139 (|has| |#2| (-904)) (|has| |#1| (-365))))) (-1497 (((-121) $ $) 145 (|has| |#1| (-365)))) (-1974 (($ $) 126 (|has| |#1| (-43 (-409 (-568)))))) (-2786 (($ $) 111 (|has| |#1| (-43 (-409 (-568)))))) (-3662 (((-568) $) 237 (-2139 (|has| |#2| (-815)) (|has| |#1| (-365))))) (-3728 (($ (-1141 (-2 (|:| |k| (-568)) (|:| |c| |#1|)))) 166)) (-1990 (($ $) 125 (|has| |#1| (-43 (-409 (-568)))))) (-1941 (($ $) 112 (|has| |#1| (-43 (-409 (-568)))))) (-2671 (($) 16 T CONST)) (-3666 (((-3 |#2| "failed") $) 258) (((-3 (-568) "failed") $) 247 (-2139 (|has| |#2| (-1037 (-568))) (|has| |#1| (-365)))) (((-3 (-409 (-568)) "failed") $) 245 (-2139 (|has| |#2| (-1037 (-568))) (|has| |#1| (-365)))) (((-3 (-1161) "failed") $) 230 (-2139 (|has| |#2| (-1037 (-1161))) (|has| |#1| (-365))))) (-2854 ((|#2| $) 257) (((-568) $) 248 (-2139 (|has| |#2| (-1037 (-568))) (|has| |#1| (-365)))) (((-409 (-568)) $) 246 (-2139 (|has| |#2| (-1037 (-568))) (|has| |#1| (-365)))) (((-1161) $) 231 (-2139 (|has| |#2| (-1037 (-1161))) (|has| |#1| (-365))))) (-1429 (($ $) 254) (($ (-568) $) 253)) (-2401 (($ $ $) 149 (|has| |#1| (-365)))) (-2114 (($ $) 59)) (-3164 (((-679 |#2|) (-679 $)) 209 (|has| |#1| (-365))) (((-2 (|:| -2928 (-679 |#2|)) (|:| |vec| (-1244 |#2|))) (-679 $) (-1244 $)) 208 (|has| |#1| (-365))) (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) 207 (-2139 (|has| |#2| (-630 (-568))) (|has| |#1| (-365)))) (((-679 (-568)) (-679 $)) 206 (-2139 (|has| |#2| (-630 (-568))) (|has| |#1| (-365))))) (-2925 (((-3 $ "failed") $) 33)) (-4446 (((-409 (-953 |#1|)) $ (-568)) 164 (|has| |#1| (-558))) (((-409 (-953 |#1|)) $ (-568) (-568)) 163 (|has| |#1| (-558)))) (-1731 (($) 221 (-2139 (|has| |#2| (-550)) (|has| |#1| (-365))))) (-2412 (($ $ $) 148 (|has| |#1| (-365)))) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) 143 (|has| |#1| (-365)))) (-3927 (((-121) $) 156 (|has| |#1| (-365)))) (-2033 (((-121) $) 235 (-2139 (|has| |#2| (-815)) (|has| |#1| (-365))))) (-3992 (((-121) $) 69)) (-1897 (($) 137 (|has| |#1| (-43 (-409 (-568)))))) (-4410 (((-884 (-381) $) $ (-887 (-381)) (-884 (-381) $)) 213 (-2139 (|has| |#2| (-881 (-381))) (|has| |#1| (-365)))) (((-884 (-568) $) $ (-887 (-568)) (-884 (-568) $)) 212 (-2139 (|has| |#2| (-881 (-568))) (|has| |#1| (-365))))) (-4477 (((-568) $) 95) (((-568) $ (-568)) 94)) (-2735 (((-121) $) 30)) (-1332 (($ $) 217 (|has| |#1| (-365)))) (-2317 ((|#2| $) 215 (|has| |#1| (-365)))) (-4044 (($ $ (-568)) 108 (|has| |#1| (-43 (-409 (-568)))))) (-3038 (((-3 $ "failed") $) 249 (-2139 (|has| |#2| (-1136)) (|has| |#1| (-365))))) (-2245 (((-121) $) 236 (-2139 (|has| |#2| (-815)) (|has| |#1| (-365))))) (-3536 (($ $ (-917)) 96)) (-1716 (($ (-1 |#1| (-568)) $) 165)) (-3562 (((-3 (-634 $) "failed") (-634 $) $) 152 (|has| |#1| (-365)))) (-3921 (((-121) $) 61)) (-2047 (($ |#1| (-568)) 60) (($ $ (-1075) (-568)) 72) (($ $ (-634 (-1075)) (-634 (-568))) 71)) (-2521 (($ $ $) 239 (-2139 (|has| |#2| (-842)) (|has| |#1| (-365))))) (-3268 (($ $ $) 240 (-2139 (|has| |#2| (-842)) (|has| |#1| (-365))))) (-2795 (($ (-1 |#1| |#1|) $) 62) (($ (-1 |#2| |#2|) $) 201 (|has| |#1| (-365)))) (-4416 (($ $) 134 (|has| |#1| (-43 (-409 (-568)))))) (-2097 (($ $) 64)) (-2102 ((|#1| $) 65)) (-2495 (($ (-634 $)) 141 (|has| |#1| (-365))) (($ $ $) 140 (|has| |#1| (-365)))) (-2070 (($ (-568) |#2|) 256)) (-4487 (((-1143) $) 9)) (-2081 (($ $) 157 (|has| |#1| (-365)))) (-3837 (($ $) 162 (|has| |#1| (-43 (-409 (-568))))) (($ $ (-1161)) 161 (-2198 (-12 (|has| |#1| (-29 (-568))) (|has| |#1| (-959)) (|has| |#1| (-1181)) (|has| |#1| (-43 (-409 (-568))))) (-12 (|has| |#1| (-15 -2055 ((-634 (-1161)) |#1|))) (|has| |#1| (-15 -3837 (|#1| |#1| (-1161)))) (|has| |#1| (-43 (-409 (-568)))))))) (-4434 (($) 250 (-2139 (|has| |#2| (-1136)) (|has| |#1| (-365))) CONST)) (-4022 (((-1108) $) 10)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) 142 (|has| |#1| (-365)))) (-2721 (($ (-634 $)) 139 (|has| |#1| (-365))) (($ $ $) 138 (|has| |#1| (-365)))) (-3880 (($ $) 220 (-2139 (|has| |#2| (-301)) (|has| |#1| (-365))))) (-1519 ((|#2| $) 223 (-2139 (|has| |#2| (-550)) (|has| |#1| (-365))))) (-2905 (((-420 (-1157 $)) (-1157 $)) 226 (-2139 (|has| |#2| (-904)) (|has| |#1| (-365))))) (-3545 (((-420 (-1157 $)) (-1157 $)) 227 (-2139 (|has| |#2| (-904)) (|has| |#1| (-365))))) (-3848 (((-420 $) $) 153 (|has| |#1| (-365)))) (-4497 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 151 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) 150 (|has| |#1| (-365)))) (-1807 (($ $ (-568)) 90)) (-2595 (((-3 $ "failed") $ $) 49 (|has| |#1| (-558)))) (-2344 (((-3 (-634 $) "failed") (-634 $) $) 144 (|has| |#1| (-365)))) (-1892 (($ $) 135 (|has| |#1| (-43 (-409 (-568)))))) (-1339 (((-1141 |#1|) $ |#1|) 89 (|has| |#1| (-15 ** (|#1| |#1| (-568))))) (($ $ (-1161) |#2|) 200 (-2139 (|has| |#2| (-523 (-1161) |#2|)) (|has| |#1| (-365)))) (($ $ (-634 (-1161)) (-634 |#2|)) 199 (-2139 (|has| |#2| (-523 (-1161) |#2|)) (|has| |#1| (-365)))) (($ $ (-634 (-288 |#2|))) 198 (-2139 (|has| |#2| (-303 |#2|)) (|has| |#1| (-365)))) (($ $ (-288 |#2|)) 197 (-2139 (|has| |#2| (-303 |#2|)) (|has| |#1| (-365)))) (($ $ |#2| |#2|) 196 (-2139 (|has| |#2| (-303 |#2|)) (|has| |#1| (-365)))) (($ $ (-634 |#2|) (-634 |#2|)) 195 (-2139 (|has| |#2| (-303 |#2|)) (|has| |#1| (-365))))) (-2709 (((-763) $) 146 (|has| |#1| (-365)))) (-2779 ((|#1| $ (-568)) 99) (($ $ $) 76 (|has| (-568) (-1102))) (($ $ |#2|) 194 (-2139 (|has| |#2| (-281 |#2| |#2|)) (|has| |#1| (-365))))) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) 147 (|has| |#1| (-365)))) (-4189 (($ $ (-1 |#2| |#2|)) 205 (|has| |#1| (-365))) (($ $ (-1 |#2| |#2|) (-763)) 204 (|has| |#1| (-365))) (($ $ (-763)) 79 (-2198 (-2139 (|has| |#2| (-225)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-568) |#1|))))) (($ $) 77 (-2198 (-2139 (|has| |#2| (-225)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-568) |#1|))))) (($ $ (-634 (-1161)) (-634 (-763))) 84 (-2198 (-2139 (|has| |#2| (-895 (-1161))) (|has| |#1| (-365))) (-12 (|has| |#1| (-895 (-1161))) (|has| |#1| (-15 * (|#1| (-568) |#1|)))))) (($ $ (-1161) (-763)) 83 (-2198 (-2139 (|has| |#2| (-895 (-1161))) (|has| |#1| (-365))) (-12 (|has| |#1| (-895 (-1161))) (|has| |#1| (-15 * (|#1| (-568) |#1|)))))) (($ $ (-634 (-1161))) 82 (-2198 (-2139 (|has| |#2| (-895 (-1161))) (|has| |#1| (-365))) (-12 (|has| |#1| (-895 (-1161))) (|has| |#1| (-15 * (|#1| (-568) |#1|)))))) (($ $ (-1161)) 81 (-2198 (-2139 (|has| |#2| (-895 (-1161))) (|has| |#1| (-365))) (-12 (|has| |#1| (-895 (-1161))) (|has| |#1| (-15 * (|#1| (-568) |#1|))))))) (-3013 (($ $) 218 (|has| |#1| (-365)))) (-2324 ((|#2| $) 216 (|has| |#1| (-365)))) (-3206 (((-568) $) 63)) (-1994 (($ $) 124 (|has| |#1| (-43 (-409 (-568)))))) (-1945 (($ $) 113 (|has| |#1| (-43 (-409 (-568)))))) (-1986 (($ $) 123 (|has| |#1| (-43 (-409 (-568)))))) (-1937 (($ $) 114 (|has| |#1| (-43 (-409 (-568)))))) (-1978 (($ $) 122 (|has| |#1| (-43 (-409 (-568)))))) (-2790 (($ $) 115 (|has| |#1| (-43 (-409 (-568)))))) (-4278 (((-215) $) 234 (-2139 (|has| |#2| (-1021)) (|has| |#1| (-365)))) (((-381) $) 233 (-2139 (|has| |#2| (-1021)) (|has| |#1| (-365)))) (((-541) $) 232 (-2139 (|has| |#2| (-609 (-541))) (|has| |#1| (-365)))) (((-887 (-381)) $) 211 (-2139 (|has| |#2| (-609 (-887 (-381)))) (|has| |#1| (-365)))) (((-887 (-568)) $) 210 (-2139 (|has| |#2| (-609 (-887 (-568)))) (|has| |#1| (-365))))) (-2979 (((-3 (-1244 $) "failed") (-679 $)) 224 (-2139 (-2139 (|has| $ (-148)) (|has| |#2| (-904))) (|has| |#1| (-365))))) (-1811 (($ $) 68)) (-2745 (((-850) $) 11) (($ (-568)) 27) (($ |#1|) 46 (|has| |#1| (-172))) (($ |#2|) 259) (($ (-1161)) 229 (-2139 (|has| |#2| (-1037 (-1161))) (|has| |#1| (-365)))) (($ (-409 (-568))) 56 (|has| |#1| (-43 (-409 (-568))))) (($ $) 48 (|has| |#1| (-558)))) (-2604 ((|#1| $ (-568)) 58)) (-4371 (((-3 $ "failed") $) 47 (-2198 (-2139 (-2198 (|has| |#2| (-148)) (-2139 (|has| $ (-148)) (|has| |#2| (-904)))) (|has| |#1| (-365))) (|has| |#1| (-148))))) (-4078 (((-763)) 28)) (-1374 ((|#1| $) 97)) (-2285 ((|#2| $) 222 (-2139 (|has| |#2| (-550)) (|has| |#1| (-365))))) (-2006 (($ $) 133 (|has| |#1| (-43 (-409 (-568)))))) (-1958 (($ $) 121 (|has| |#1| (-43 (-409 (-568)))))) (-1826 (((-121) $ $) 52 (|has| |#1| (-558)))) (-1998 (($ $) 132 (|has| |#1| (-43 (-409 (-568)))))) (-1949 (($ $) 120 (|has| |#1| (-43 (-409 (-568)))))) (-2014 (($ $) 131 (|has| |#1| (-43 (-409 (-568)))))) (-1966 (($ $) 119 (|has| |#1| (-43 (-409 (-568)))))) (-3996 ((|#1| $ (-568)) 91 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-568)))) (|has| |#1| (-15 -2745 (|#1| (-1161))))))) (-4023 (($ $) 130 (|has| |#1| (-43 (-409 (-568)))))) (-1970 (($ $) 118 (|has| |#1| (-43 (-409 (-568)))))) (-2010 (($ $) 129 (|has| |#1| (-43 (-409 (-568)))))) (-1962 (($ $) 117 (|has| |#1| (-43 (-409 (-568)))))) (-2002 (($ $) 128 (|has| |#1| (-43 (-409 (-568)))))) (-1953 (($ $) 116 (|has| |#1| (-43 (-409 (-568)))))) (-2897 (($ $) 238 (-2139 (|has| |#2| (-815)) (|has| |#1| (-365))))) (-1887 (($ $ (-917)) 25) (($ $ (-763)) 32) (($ $ (-568)) 158 (|has| |#1| (-365)))) (-3056 (($) 17 T CONST)) (-1556 (($) 29 T CONST)) (-3190 (($ $ (-1 |#2| |#2|)) 203 (|has| |#1| (-365))) (($ $ (-1 |#2| |#2|) (-763)) 202 (|has| |#1| (-365))) (($ $ (-763)) 80 (-2198 (-2139 (|has| |#2| (-225)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-568) |#1|))))) (($ $) 78 (-2198 (-2139 (|has| |#2| (-225)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-568) |#1|))))) (($ $ (-634 (-1161)) (-634 (-763))) 88 (-2198 (-2139 (|has| |#2| (-895 (-1161))) (|has| |#1| (-365))) (-12 (|has| |#1| (-895 (-1161))) (|has| |#1| (-15 * (|#1| (-568) |#1|)))))) (($ $ (-1161) (-763)) 87 (-2198 (-2139 (|has| |#2| (-895 (-1161))) (|has| |#1| (-365))) (-12 (|has| |#1| (-895 (-1161))) (|has| |#1| (-15 * (|#1| (-568) |#1|)))))) (($ $ (-634 (-1161))) 86 (-2198 (-2139 (|has| |#2| (-895 (-1161))) (|has| |#1| (-365))) (-12 (|has| |#1| (-895 (-1161))) (|has| |#1| (-15 * (|#1| (-568) |#1|)))))) (($ $ (-1161)) 85 (-2198 (-2139 (|has| |#2| (-895 (-1161))) (|has| |#1| (-365))) (-12 (|has| |#1| (-895 (-1161))) (|has| |#1| (-15 * (|#1| (-568) |#1|))))))) (-1751 (((-121) $ $) 242 (-2139 (|has| |#2| (-842)) (|has| |#1| (-365))))) (-1738 (((-121) $ $) 243 (-2139 (|has| |#2| (-842)) (|has| |#1| (-365))))) (-1717 (((-121) $ $) 6)) (-1745 (((-121) $ $) 241 (-2139 (|has| |#2| (-842)) (|has| |#1| (-365))))) (-1732 (((-121) $ $) 244 (-2139 (|has| |#2| (-842)) (|has| |#1| (-365))))) (-1779 (($ $ |#1|) 57 (|has| |#1| (-365))) (($ $ $) 160 (|has| |#1| (-365))) (($ |#2| |#2|) 214 (|has| |#1| (-365)))) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 24) (($ $ (-763)) 31) (($ $ (-568)) 159 (|has| |#1| (-365))) (($ $ $) 136 (|has| |#1| (-43 (-409 (-568))))) (($ $ (-409 (-568))) 107 (|has| |#1| (-43 (-409 (-568)))))) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 23) (($ $ |#1|) 67) (($ |#1| $) 66) (($ $ |#2|) 193 (|has| |#1| (-365))) (($ |#2| $) 192 (|has| |#1| (-365))) (($ (-409 (-568)) $) 55 (|has| |#1| (-43 (-409 (-568))))) (($ $ (-409 (-568))) 54 (|has| |#1| (-43 (-409 (-568))))))) +(((-1205 |#1| |#2|) (-1275) (-1047) (-1234 |t#1|)) (T -1205)) +((-3206 (*1 *2 *1) (-12 (-4 *1 (-1205 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-1234 *3)) (-5 *2 (-568)))) (-2745 (*1 *1 *2) (-12 (-4 *3 (-1047)) (-4 *1 (-1205 *3 *2)) (-4 *2 (-1234 *3)))) (-2070 (*1 *1 *2 *3) (-12 (-5 *2 (-568)) (-4 *4 (-1047)) (-4 *1 (-1205 *4 *3)) (-4 *3 (-1234 *4)))) (-3613 (*1 *2 *1) (-12 (-4 *1 (-1205 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-1234 *3)))) (-1429 (*1 *1 *1) (-12 (-4 *1 (-1205 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-1234 *2)))) (-1429 (*1 *1 *2 *1) (-12 (-5 *2 (-568)) (-4 *1 (-1205 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-1234 *3)))) (-2065 (*1 *2 *1) (-12 (-4 *1 (-1205 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-1234 *3)))) (-4016 (*1 *2 *1) (|partial| -12 (-4 *1 (-1205 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-1234 *3))))) +(-13 (-1203 |t#1|) (-1037 |t#2|) (-10 -8 (-15 -2070 ($ (-568) |t#2|)) (-15 -3206 ((-568) $)) (-15 -3613 (|t#2| $)) (-15 -1429 ($ $)) (-15 -1429 ($ (-568) $)) (-15 -2745 ($ |t#2|)) (-15 -2065 (|t#2| $)) (-15 -4016 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-365)) (-6 (-993 |t#2|)) |noBranch|))) +(((-21) . T) ((-23) . T) ((-52 |#1| (-568)) . T) ((-25) . T) ((-43 (-409 (-568))) -2198 (|has| |#1| (-365)) (|has| |#1| (-43 (-409 (-568))))) ((-43 |#1|) |has| |#1| (-172)) ((-43 |#2|) |has| |#1| (-365)) ((-43 $) -2198 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-40) |has| |#1| (-43 (-409 (-568)))) ((-98) |has| |#1| (-43 (-409 (-568)))) ((-105) . T) ((-120 (-409 (-568)) (-409 (-568))) -2198 (|has| |#1| (-365)) (|has| |#1| (-43 (-409 (-568))))) ((-120 |#1| |#1|) . T) ((-120 |#2| |#2|) |has| |#1| (-365)) ((-120 $ $) -2198 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-137) . T) ((-148) -2198 (-12 (|has| |#1| (-365)) (|has| |#2| (-148))) (|has| |#1| (-148))) ((-150) -2198 (-12 (|has| |#1| (-365)) (|has| |#2| (-150))) (|has| |#1| (-150))) ((-608 (-850)) . T) ((-172) -2198 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-609 (-215)) -12 (|has| |#1| (-365)) (|has| |#2| (-1021))) ((-609 (-381)) -12 (|has| |#1| (-365)) (|has| |#2| (-1021))) ((-609 (-541)) -12 (|has| |#1| (-365)) (|has| |#2| (-609 (-541)))) ((-609 (-887 (-381))) -12 (|has| |#1| (-365)) (|has| |#2| (-609 (-887 (-381))))) ((-609 (-887 (-568))) -12 (|has| |#1| (-365)) (|has| |#2| (-609 (-887 (-568))))) ((-223 |#2|) |has| |#1| (-365)) ((-225) -2198 (-12 (|has| |#1| (-365)) (|has| |#2| (-225))) (|has| |#1| (-15 * (|#1| (-568) |#1|)))) ((-238) |has| |#1| (-365)) ((-279) |has| |#1| (-43 (-409 (-568)))) ((-281 |#2| $) -12 (|has| |#1| (-365)) (|has| |#2| (-281 |#2| |#2|))) ((-281 $ $) |has| (-568) (-1102)) ((-285) -2198 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-301) |has| |#1| (-365)) ((-303 |#2|) -12 (|has| |#1| (-365)) (|has| |#2| (-303 |#2|))) ((-365) |has| |#1| (-365)) ((-336 |#2|) |has| |#1| (-365)) ((-379 |#2|) |has| |#1| (-365)) ((-402 |#2|) |has| |#1| (-365)) ((-453) |has| |#1| (-365)) ((-502) |has| |#1| (-43 (-409 (-568)))) ((-523 (-1161) |#2|) -12 (|has| |#1| (-365)) (|has| |#2| (-523 (-1161) |#2|))) ((-523 |#2| |#2|) -12 (|has| |#1| (-365)) (|has| |#2| (-303 |#2|))) ((-558) -2198 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-637 (-409 (-568))) -2198 (|has| |#1| (-365)) (|has| |#1| (-43 (-409 (-568))))) ((-637 |#1|) . T) ((-637 |#2|) |has| |#1| (-365)) ((-637 $) . T) ((-630 (-568)) -12 (|has| |#1| (-365)) (|has| |#2| (-630 (-568)))) ((-630 |#2|) |has| |#1| (-365)) ((-707 (-409 (-568))) -2198 (|has| |#1| (-365)) (|has| |#1| (-43 (-409 (-568))))) ((-707 |#1|) |has| |#1| (-172)) ((-707 |#2|) |has| |#1| (-365)) ((-707 $) -2198 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-716) . T) ((-786) -12 (|has| |#1| (-365)) (|has| |#2| (-815))) ((-787) -12 (|has| |#1| (-365)) (|has| |#2| (-815))) ((-789) -12 (|has| |#1| (-365)) (|has| |#2| (-815))) ((-790) -12 (|has| |#1| (-365)) (|has| |#2| (-815))) ((-815) -12 (|has| |#1| (-365)) (|has| |#2| (-815))) ((-840) -12 (|has| |#1| (-365)) (|has| |#2| (-815))) ((-842) -2198 (-12 (|has| |#1| (-365)) (|has| |#2| (-842))) (-12 (|has| |#1| (-365)) (|has| |#2| (-815)))) ((-895 (-1161)) -2198 (-12 (|has| |#1| (-365)) (|has| |#2| (-895 (-1161)))) (-12 (|has| |#1| (-15 * (|#1| (-568) |#1|))) (|has| |#1| (-895 (-1161))))) ((-881 (-381)) -12 (|has| |#1| (-365)) (|has| |#2| (-881 (-381)))) ((-881 (-568)) -12 (|has| |#1| (-365)) (|has| |#2| (-881 (-568)))) ((-879 |#2|) |has| |#1| (-365)) ((-904) -12 (|has| |#1| (-365)) (|has| |#2| (-904))) ((-974 |#1| (-568) (-1075)) . T) ((-916) |has| |#1| (-365)) ((-993 |#2|) |has| |#1| (-365)) ((-1002) |has| |#1| (-43 (-409 (-568)))) ((-1021) -12 (|has| |#1| (-365)) (|has| |#2| (-1021))) ((-1037 (-409 (-568))) -12 (|has| |#1| (-365)) (|has| |#2| (-1037 (-568)))) ((-1037 (-568)) -12 (|has| |#1| (-365)) (|has| |#2| (-1037 (-568)))) ((-1037 (-1161)) -12 (|has| |#1| (-365)) (|has| |#2| (-1037 (-1161)))) ((-1037 |#2|) . T) ((-1053 (-409 (-568))) -2198 (|has| |#1| (-365)) (|has| |#1| (-43 (-409 (-568))))) ((-1053 |#1|) . T) ((-1053 |#2|) |has| |#1| (-365)) ((-1053 $) -2198 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1047) . T) ((-1054) . T) ((-1102) . T) ((-1090) . T) ((-1136) -12 (|has| |#1| (-365)) (|has| |#2| (-1136))) ((-1181) |has| |#1| (-43 (-409 (-568)))) ((-1184) |has| |#1| (-43 (-409 (-568)))) ((-1195) |has| |#1| (-365)) ((-1199) |has| |#1| (-365)) ((-1203 |#1|) . T) ((-1221 |#1| (-568)) . T)) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) 70)) (-1492 ((|#2| $) NIL (-12 (|has| |#2| (-301)) (|has| |#1| (-365))))) (-2055 (((-634 (-1075)) $) NIL)) (-1305 (((-1161) $) 88)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-2227 (($ $) NIL (|has| |#1| (-558)))) (-1573 (((-121) $) NIL (|has| |#1| (-558)))) (-2617 (($ $ (-568)) 97) (($ $ (-568) (-568)) 99)) (-2583 (((-1141 (-2 (|:| |k| (-568)) (|:| |c| |#1|))) $) 47)) (-3613 ((|#2| $) 11)) (-4016 (((-3 |#2| "failed") $) 30)) (-2065 ((|#2| $) 31)) (-1982 (($ $) 192 (|has| |#1| (-43 (-409 (-568)))))) (-1933 (($ $) 168 (|has| |#1| (-43 (-409 (-568)))))) (-3134 (((-3 $ "failed") $ $) NIL)) (-1750 (((-420 (-1157 $)) (-1157 $)) NIL (-12 (|has| |#2| (-904)) (|has| |#1| (-365))))) (-4305 (($ $) NIL (|has| |#1| (-365)))) (-1678 (((-420 $) $) NIL (|has| |#1| (-365)))) (-1902 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1858 (((-3 (-634 (-1157 $)) "failed") (-634 (-1157 $)) (-1157 $)) NIL (-12 (|has| |#2| (-904)) (|has| |#1| (-365))))) (-1497 (((-121) $ $) NIL (|has| |#1| (-365)))) (-1974 (($ $) 188 (|has| |#1| (-43 (-409 (-568)))))) (-2786 (($ $) 164 (|has| |#1| (-43 (-409 (-568)))))) (-3662 (((-568) $) NIL (-12 (|has| |#2| (-815)) (|has| |#1| (-365))))) (-3728 (($ (-1141 (-2 (|:| |k| (-568)) (|:| |c| |#1|)))) 57)) (-1990 (($ $) 196 (|has| |#1| (-43 (-409 (-568)))))) (-1941 (($ $) 172 (|has| |#1| (-43 (-409 (-568)))))) (-2671 (($) NIL T CONST)) (-3666 (((-3 |#2| "failed") $) 144) (((-3 (-568) "failed") $) NIL (-12 (|has| |#2| (-1037 (-568))) (|has| |#1| (-365)))) (((-3 (-409 (-568)) "failed") $) NIL (-12 (|has| |#2| (-1037 (-568))) (|has| |#1| (-365)))) (((-3 (-1161) "failed") $) NIL (-12 (|has| |#2| (-1037 (-1161))) (|has| |#1| (-365))))) (-2854 ((|#2| $) 143) (((-568) $) NIL (-12 (|has| |#2| (-1037 (-568))) (|has| |#1| (-365)))) (((-409 (-568)) $) NIL (-12 (|has| |#2| (-1037 (-568))) (|has| |#1| (-365)))) (((-1161) $) NIL (-12 (|has| |#2| (-1037 (-1161))) (|has| |#1| (-365))))) (-1429 (($ $) 61) (($ (-568) $) 24)) (-2401 (($ $ $) NIL (|has| |#1| (-365)))) (-2114 (($ $) NIL)) (-3164 (((-679 |#2|) (-679 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -2928 (-679 |#2|)) (|:| |vec| (-1244 |#2|))) (-679 $) (-1244 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) NIL (-12 (|has| |#2| (-630 (-568))) (|has| |#1| (-365)))) (((-679 (-568)) (-679 $)) NIL (-12 (|has| |#2| (-630 (-568))) (|has| |#1| (-365))))) (-2925 (((-3 $ "failed") $) 77)) (-4446 (((-409 (-953 |#1|)) $ (-568)) 112 (|has| |#1| (-558))) (((-409 (-953 |#1|)) $ (-568) (-568)) 114 (|has| |#1| (-558)))) (-1731 (($) NIL (-12 (|has| |#2| (-550)) (|has| |#1| (-365))))) (-2412 (($ $ $) NIL (|has| |#1| (-365)))) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) NIL (|has| |#1| (-365)))) (-3927 (((-121) $) NIL (|has| |#1| (-365)))) (-2033 (((-121) $) NIL (-12 (|has| |#2| (-815)) (|has| |#1| (-365))))) (-3992 (((-121) $) 64)) (-1897 (($) NIL (|has| |#1| (-43 (-409 (-568)))))) (-4410 (((-884 (-381) $) $ (-887 (-381)) (-884 (-381) $)) NIL (-12 (|has| |#2| (-881 (-381))) (|has| |#1| (-365)))) (((-884 (-568) $) $ (-887 (-568)) (-884 (-568) $)) NIL (-12 (|has| |#2| (-881 (-568))) (|has| |#1| (-365))))) (-4477 (((-568) $) 93) (((-568) $ (-568)) 95)) (-2735 (((-121) $) NIL)) (-1332 (($ $) NIL (|has| |#1| (-365)))) (-2317 ((|#2| $) 151 (|has| |#1| (-365)))) (-4044 (($ $ (-568)) NIL (|has| |#1| (-43 (-409 (-568)))))) (-3038 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1136)) (|has| |#1| (-365))))) (-2245 (((-121) $) NIL (-12 (|has| |#2| (-815)) (|has| |#1| (-365))))) (-3536 (($ $ (-917)) 136)) (-1716 (($ (-1 |#1| (-568)) $) 132)) (-3562 (((-3 (-634 $) "failed") (-634 $) $) NIL (|has| |#1| (-365)))) (-3921 (((-121) $) NIL)) (-2047 (($ |#1| (-568)) 19) (($ $ (-1075) (-568)) NIL) (($ $ (-634 (-1075)) (-634 (-568))) NIL)) (-2521 (($ $ $) NIL (-12 (|has| |#2| (-842)) (|has| |#1| (-365))))) (-3268 (($ $ $) NIL (-12 (|has| |#2| (-842)) (|has| |#1| (-365))))) (-2795 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-365)))) (-4416 (($ $) 162 (|has| |#1| (-43 (-409 (-568)))))) (-2097 (($ $) NIL)) (-2102 ((|#1| $) NIL)) (-2495 (($ (-634 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2070 (($ (-568) |#2|) 10)) (-4487 (((-1143) $) NIL)) (-2081 (($ $) 145 (|has| |#1| (-365)))) (-3837 (($ $) 214 (|has| |#1| (-43 (-409 (-568))))) (($ $ (-1161)) 219 (-2198 (-12 (|has| |#1| (-15 -3837 (|#1| |#1| (-1161)))) (|has| |#1| (-15 -2055 ((-634 (-1161)) |#1|))) (|has| |#1| (-43 (-409 (-568))))) (-12 (|has| |#1| (-29 (-568))) (|has| |#1| (-43 (-409 (-568)))) (|has| |#1| (-959)) (|has| |#1| (-1181)))))) (-4434 (($) NIL (-12 (|has| |#2| (-1136)) (|has| |#1| (-365))) CONST)) (-4022 (((-1108) $) NIL)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL (|has| |#1| (-365)))) (-2721 (($ (-634 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3880 (($ $) NIL (-12 (|has| |#2| (-301)) (|has| |#1| (-365))))) (-1519 ((|#2| $) NIL (-12 (|has| |#2| (-550)) (|has| |#1| (-365))))) (-2905 (((-420 (-1157 $)) (-1157 $)) NIL (-12 (|has| |#2| (-904)) (|has| |#1| (-365))))) (-3545 (((-420 (-1157 $)) (-1157 $)) NIL (-12 (|has| |#2| (-904)) (|has| |#1| (-365))))) (-3848 (((-420 $) $) NIL (|has| |#1| (-365)))) (-4497 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL (|has| |#1| (-365)))) (-1807 (($ $ (-568)) 126)) (-2595 (((-3 $ "failed") $ $) 116 (|has| |#1| (-558)))) (-2344 (((-3 (-634 $) "failed") (-634 $) $) NIL (|has| |#1| (-365)))) (-1892 (($ $) 160 (|has| |#1| (-43 (-409 (-568)))))) (-1339 (((-1141 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-568))))) (($ $ (-1161) |#2|) NIL (-12 (|has| |#2| (-523 (-1161) |#2|)) (|has| |#1| (-365)))) (($ $ (-634 (-1161)) (-634 |#2|)) NIL (-12 (|has| |#2| (-523 (-1161) |#2|)) (|has| |#1| (-365)))) (($ $ (-634 (-288 |#2|))) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#1| (-365)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#1| (-365)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#1| (-365)))) (($ $ (-634 |#2|) (-634 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#1| (-365))))) (-2709 (((-763) $) NIL (|has| |#1| (-365)))) (-2779 ((|#1| $ (-568)) 91) (($ $ $) 79 (|has| (-568) (-1102))) (($ $ |#2|) NIL (-12 (|has| |#2| (-281 |#2| |#2|)) (|has| |#1| (-365))))) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL (|has| |#1| (-365)))) (-4189 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-365))) (($ $ (-1 |#2| |#2|) (-763)) NIL (|has| |#1| (-365))) (($ $ (-763)) NIL (-2198 (-12 (|has| |#2| (-225)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-568) |#1|))))) (($ $) 137 (-2198 (-12 (|has| |#2| (-225)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-568) |#1|))))) (($ $ (-634 (-1161)) (-634 (-763))) NIL (-2198 (-12 (|has| |#2| (-895 (-1161))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-568) |#1|))) (|has| |#1| (-895 (-1161)))))) (($ $ (-1161) (-763)) NIL (-2198 (-12 (|has| |#2| (-895 (-1161))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-568) |#1|))) (|has| |#1| (-895 (-1161)))))) (($ $ (-634 (-1161))) NIL (-2198 (-12 (|has| |#2| (-895 (-1161))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-568) |#1|))) (|has| |#1| (-895 (-1161)))))) (($ $ (-1161)) 140 (-2198 (-12 (|has| |#2| (-895 (-1161))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-568) |#1|))) (|has| |#1| (-895 (-1161))))))) (-3013 (($ $) NIL (|has| |#1| (-365)))) (-2324 ((|#2| $) 152 (|has| |#1| (-365)))) (-3206 (((-568) $) 12)) (-1994 (($ $) 198 (|has| |#1| (-43 (-409 (-568)))))) (-1945 (($ $) 174 (|has| |#1| (-43 (-409 (-568)))))) (-1986 (($ $) 194 (|has| |#1| (-43 (-409 (-568)))))) (-1937 (($ $) 170 (|has| |#1| (-43 (-409 (-568)))))) (-1978 (($ $) 190 (|has| |#1| (-43 (-409 (-568)))))) (-2790 (($ $) 166 (|has| |#1| (-43 (-409 (-568)))))) (-4278 (((-215) $) NIL (-12 (|has| |#2| (-1021)) (|has| |#1| (-365)))) (((-381) $) NIL (-12 (|has| |#2| (-1021)) (|has| |#1| (-365)))) (((-541) $) NIL (-12 (|has| |#2| (-609 (-541))) (|has| |#1| (-365)))) (((-887 (-381)) $) NIL (-12 (|has| |#2| (-609 (-887 (-381)))) (|has| |#1| (-365)))) (((-887 (-568)) $) NIL (-12 (|has| |#2| (-609 (-887 (-568)))) (|has| |#1| (-365))))) (-2979 (((-3 (-1244 $) "failed") (-679 $)) NIL (-12 (|has| $ (-148)) (|has| |#2| (-904)) (|has| |#1| (-365))))) (-1811 (($ $) 124)) (-2745 (((-850) $) 242) (($ (-568)) 23) (($ |#1|) 21 (|has| |#1| (-172))) (($ |#2|) 20) (($ (-1161)) NIL (-12 (|has| |#2| (-1037 (-1161))) (|has| |#1| (-365)))) (($ (-409 (-568))) 155 (|has| |#1| (-43 (-409 (-568))))) (($ $) NIL (|has| |#1| (-558)))) (-2604 ((|#1| $ (-568)) 74)) (-4371 (((-3 $ "failed") $) NIL (-2198 (-12 (|has| $ (-148)) (|has| |#2| (-904)) (|has| |#1| (-365))) (-12 (|has| |#2| (-148)) (|has| |#1| (-365))) (|has| |#1| (-148))))) (-4078 (((-763)) 142)) (-1374 ((|#1| $) 90)) (-2285 ((|#2| $) NIL (-12 (|has| |#2| (-550)) (|has| |#1| (-365))))) (-2006 (($ $) 204 (|has| |#1| (-43 (-409 (-568)))))) (-1958 (($ $) 180 (|has| |#1| (-43 (-409 (-568)))))) (-1826 (((-121) $ $) NIL (|has| |#1| (-558)))) (-1998 (($ $) 200 (|has| |#1| (-43 (-409 (-568)))))) (-1949 (($ $) 176 (|has| |#1| (-43 (-409 (-568)))))) (-2014 (($ $) 208 (|has| |#1| (-43 (-409 (-568)))))) (-1966 (($ $) 184 (|has| |#1| (-43 (-409 (-568)))))) (-3996 ((|#1| $ (-568)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-568)))) (|has| |#1| (-15 -2745 (|#1| (-1161))))))) (-4023 (($ $) 210 (|has| |#1| (-43 (-409 (-568)))))) (-1970 (($ $) 186 (|has| |#1| (-43 (-409 (-568)))))) (-2010 (($ $) 206 (|has| |#1| (-43 (-409 (-568)))))) (-1962 (($ $) 182 (|has| |#1| (-43 (-409 (-568)))))) (-2002 (($ $) 202 (|has| |#1| (-43 (-409 (-568)))))) (-1953 (($ $) 178 (|has| |#1| (-43 (-409 (-568)))))) (-2897 (($ $) NIL (-12 (|has| |#2| (-815)) (|has| |#1| (-365))))) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL (|has| |#1| (-365)))) (-3056 (($) 13 T CONST)) (-1556 (($) 17 T CONST)) (-3190 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-365))) (($ $ (-1 |#2| |#2|) (-763)) NIL (|has| |#1| (-365))) (($ $ (-763)) NIL (-2198 (-12 (|has| |#2| (-225)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-568) |#1|))))) (($ $) NIL (-2198 (-12 (|has| |#2| (-225)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-568) |#1|))))) (($ $ (-634 (-1161)) (-634 (-763))) NIL (-2198 (-12 (|has| |#2| (-895 (-1161))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-568) |#1|))) (|has| |#1| (-895 (-1161)))))) (($ $ (-1161) (-763)) NIL (-2198 (-12 (|has| |#2| (-895 (-1161))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-568) |#1|))) (|has| |#1| (-895 (-1161)))))) (($ $ (-634 (-1161))) NIL (-2198 (-12 (|has| |#2| (-895 (-1161))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-568) |#1|))) (|has| |#1| (-895 (-1161)))))) (($ $ (-1161)) NIL (-2198 (-12 (|has| |#2| (-895 (-1161))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-568) |#1|))) (|has| |#1| (-895 (-1161))))))) (-1751 (((-121) $ $) NIL (-12 (|has| |#2| (-842)) (|has| |#1| (-365))))) (-1738 (((-121) $ $) NIL (-12 (|has| |#2| (-842)) (|has| |#1| (-365))))) (-1717 (((-121) $ $) 63)) (-1745 (((-121) $ $) NIL (-12 (|has| |#2| (-842)) (|has| |#1| (-365))))) (-1732 (((-121) $ $) NIL (-12 (|has| |#2| (-842)) (|has| |#1| (-365))))) (-1779 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) 149 (|has| |#1| (-365))) (($ |#2| |#2|) 150 (|has| |#1| (-365)))) (-1773 (($ $) 213) (($ $ $) 68)) (-1767 (($ $ $) 66)) (** (($ $ (-917)) NIL) (($ $ (-763)) 73) (($ $ (-568)) 146 (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-43 (-409 (-568))))) (($ $ (-409 (-568))) 158 (|has| |#1| (-43 (-409 (-568)))))) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-365))) (($ |#2| $) 147 (|has| |#1| (-365))) (($ (-409 (-568)) $) NIL (|has| |#1| (-43 (-409 (-568))))) (($ $ (-409 (-568))) NIL (|has| |#1| (-43 (-409 (-568))))))) +(((-1206 |#1| |#2|) (-1205 |#1| |#2|) (-1047) (-1234 |#1|)) (T -1206)) +NIL +(-1205 |#1| |#2|) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-1492 (((-1235 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1235 |#1| |#2| |#3|) (-301)) (|has| |#1| (-365))))) (-2055 (((-634 (-1075)) $) NIL)) (-1305 (((-1161) $) 10)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL (-2198 (-12 (|has| (-1235 |#1| |#2| |#3|) (-815)) (|has| |#1| (-365))) (-12 (|has| (-1235 |#1| |#2| |#3|) (-904)) (|has| |#1| (-365))) (|has| |#1| (-558))))) (-2227 (($ $) NIL (-2198 (-12 (|has| (-1235 |#1| |#2| |#3|) (-815)) (|has| |#1| (-365))) (-12 (|has| (-1235 |#1| |#2| |#3|) (-904)) (|has| |#1| (-365))) (|has| |#1| (-558))))) (-1573 (((-121) $) NIL (-2198 (-12 (|has| (-1235 |#1| |#2| |#3|) (-815)) (|has| |#1| (-365))) (-12 (|has| (-1235 |#1| |#2| |#3|) (-904)) (|has| |#1| (-365))) (|has| |#1| (-558))))) (-2617 (($ $ (-568)) NIL) (($ $ (-568) (-568)) NIL)) (-2583 (((-1141 (-2 (|:| |k| (-568)) (|:| |c| |#1|))) $) NIL)) (-3613 (((-1235 |#1| |#2| |#3|) $) NIL)) (-4016 (((-3 (-1235 |#1| |#2| |#3|) "failed") $) NIL)) (-2065 (((-1235 |#1| |#2| |#3|) $) NIL)) (-1982 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1933 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-3134 (((-3 $ "failed") $ $) NIL)) (-1750 (((-420 (-1157 $)) (-1157 $)) NIL (-12 (|has| (-1235 |#1| |#2| |#3|) (-904)) (|has| |#1| (-365))))) (-4305 (($ $) NIL (|has| |#1| (-365)))) (-1678 (((-420 $) $) NIL (|has| |#1| (-365)))) (-1902 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1858 (((-3 (-634 (-1157 $)) "failed") (-634 (-1157 $)) (-1157 $)) NIL (-12 (|has| (-1235 |#1| |#2| |#3|) (-904)) (|has| |#1| (-365))))) (-1497 (((-121) $ $) NIL (|has| |#1| (-365)))) (-1974 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-2786 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-3662 (((-568) $) NIL (-12 (|has| (-1235 |#1| |#2| |#3|) (-815)) (|has| |#1| (-365))))) (-3728 (($ (-1141 (-2 (|:| |k| (-568)) (|:| |c| |#1|)))) NIL)) (-1990 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1941 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-2671 (($) NIL T CONST)) (-3666 (((-3 (-1235 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1161) "failed") $) NIL (-12 (|has| (-1235 |#1| |#2| |#3|) (-1037 (-1161))) (|has| |#1| (-365)))) (((-3 (-409 (-568)) "failed") $) NIL (-12 (|has| (-1235 |#1| |#2| |#3|) (-1037 (-568))) (|has| |#1| (-365)))) (((-3 (-568) "failed") $) NIL (-12 (|has| (-1235 |#1| |#2| |#3|) (-1037 (-568))) (|has| |#1| (-365))))) (-2854 (((-1235 |#1| |#2| |#3|) $) NIL) (((-1161) $) NIL (-12 (|has| (-1235 |#1| |#2| |#3|) (-1037 (-1161))) (|has| |#1| (-365)))) (((-409 (-568)) $) NIL (-12 (|has| (-1235 |#1| |#2| |#3|) (-1037 (-568))) (|has| |#1| (-365)))) (((-568) $) NIL (-12 (|has| (-1235 |#1| |#2| |#3|) (-1037 (-568))) (|has| |#1| (-365))))) (-1429 (($ $) NIL) (($ (-568) $) NIL)) (-2401 (($ $ $) NIL (|has| |#1| (-365)))) (-2114 (($ $) NIL)) (-3164 (((-679 (-1235 |#1| |#2| |#3|)) (-679 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -2928 (-679 (-1235 |#1| |#2| |#3|))) (|:| |vec| (-1244 (-1235 |#1| |#2| |#3|)))) (-679 $) (-1244 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) NIL (-12 (|has| (-1235 |#1| |#2| |#3|) (-630 (-568))) (|has| |#1| (-365)))) (((-679 (-568)) (-679 $)) NIL (-12 (|has| (-1235 |#1| |#2| |#3|) (-630 (-568))) (|has| |#1| (-365))))) (-2925 (((-3 $ "failed") $) NIL)) (-4446 (((-409 (-953 |#1|)) $ (-568)) NIL (|has| |#1| (-558))) (((-409 (-953 |#1|)) $ (-568) (-568)) NIL (|has| |#1| (-558)))) (-1731 (($) NIL (-12 (|has| (-1235 |#1| |#2| |#3|) (-550)) (|has| |#1| (-365))))) (-2412 (($ $ $) NIL (|has| |#1| (-365)))) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) NIL (|has| |#1| (-365)))) (-3927 (((-121) $) NIL (|has| |#1| (-365)))) (-2033 (((-121) $) NIL (-12 (|has| (-1235 |#1| |#2| |#3|) (-815)) (|has| |#1| (-365))))) (-3992 (((-121) $) NIL)) (-1897 (($) NIL (|has| |#1| (-43 (-409 (-568)))))) (-4410 (((-884 (-568) $) $ (-887 (-568)) (-884 (-568) $)) NIL (-12 (|has| (-1235 |#1| |#2| |#3|) (-881 (-568))) (|has| |#1| (-365)))) (((-884 (-381) $) $ (-887 (-381)) (-884 (-381) $)) NIL (-12 (|has| (-1235 |#1| |#2| |#3|) (-881 (-381))) (|has| |#1| (-365))))) (-4477 (((-568) $) NIL) (((-568) $ (-568)) NIL)) (-2735 (((-121) $) NIL)) (-1332 (($ $) NIL (|has| |#1| (-365)))) (-2317 (((-1235 |#1| |#2| |#3|) $) NIL (|has| |#1| (-365)))) (-4044 (($ $ (-568)) NIL (|has| |#1| (-43 (-409 (-568)))))) (-3038 (((-3 $ "failed") $) NIL (-12 (|has| (-1235 |#1| |#2| |#3|) (-1136)) (|has| |#1| (-365))))) (-2245 (((-121) $) NIL (-12 (|has| (-1235 |#1| |#2| |#3|) (-815)) (|has| |#1| (-365))))) (-3536 (($ $ (-917)) NIL)) (-1716 (($ (-1 |#1| (-568)) $) NIL)) (-3562 (((-3 (-634 $) "failed") (-634 $) $) NIL (|has| |#1| (-365)))) (-3921 (((-121) $) NIL)) (-2047 (($ |#1| (-568)) 17) (($ $ (-1075) (-568)) NIL) (($ $ (-634 (-1075)) (-634 (-568))) NIL)) (-2521 (($ $ $) NIL (-2198 (-12 (|has| (-1235 |#1| |#2| |#3|) (-815)) (|has| |#1| (-365))) (-12 (|has| (-1235 |#1| |#2| |#3|) (-842)) (|has| |#1| (-365)))))) (-3268 (($ $ $) NIL (-2198 (-12 (|has| (-1235 |#1| |#2| |#3|) (-815)) (|has| |#1| (-365))) (-12 (|has| (-1235 |#1| |#2| |#3|) (-842)) (|has| |#1| (-365)))))) (-2795 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1235 |#1| |#2| |#3|) (-1235 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-365)))) (-4416 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-2097 (($ $) NIL)) (-2102 ((|#1| $) NIL)) (-2495 (($ (-634 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2070 (($ (-568) (-1235 |#1| |#2| |#3|)) NIL)) (-4487 (((-1143) $) NIL)) (-2081 (($ $) NIL (|has| |#1| (-365)))) (-3837 (($ $) 25 (|has| |#1| (-43 (-409 (-568))))) (($ $ (-1161)) NIL (-2198 (-12 (|has| |#1| (-15 -3837 (|#1| |#1| (-1161)))) (|has| |#1| (-15 -2055 ((-634 (-1161)) |#1|))) (|has| |#1| (-43 (-409 (-568))))) (-12 (|has| |#1| (-29 (-568))) (|has| |#1| (-43 (-409 (-568)))) (|has| |#1| (-959)) (|has| |#1| (-1181))))) (($ $ (-1240 |#2|)) 26 (|has| |#1| (-43 (-409 (-568)))))) (-4434 (($) NIL (-12 (|has| (-1235 |#1| |#2| |#3|) (-1136)) (|has| |#1| (-365))) CONST)) (-4022 (((-1108) $) NIL)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL (|has| |#1| (-365)))) (-2721 (($ (-634 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3880 (($ $) NIL (-12 (|has| (-1235 |#1| |#2| |#3|) (-301)) (|has| |#1| (-365))))) (-1519 (((-1235 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1235 |#1| |#2| |#3|) (-550)) (|has| |#1| (-365))))) (-2905 (((-420 (-1157 $)) (-1157 $)) NIL (-12 (|has| (-1235 |#1| |#2| |#3|) (-904)) (|has| |#1| (-365))))) (-3545 (((-420 (-1157 $)) (-1157 $)) NIL (-12 (|has| (-1235 |#1| |#2| |#3|) (-904)) (|has| |#1| (-365))))) (-3848 (((-420 $) $) NIL (|has| |#1| (-365)))) (-4497 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL (|has| |#1| (-365)))) (-1807 (($ $ (-568)) NIL)) (-2595 (((-3 $ "failed") $ $) NIL (-2198 (-12 (|has| (-1235 |#1| |#2| |#3|) (-815)) (|has| |#1| (-365))) (-12 (|has| (-1235 |#1| |#2| |#3|) (-904)) (|has| |#1| (-365))) (|has| |#1| (-558))))) (-2344 (((-3 (-634 $) "failed") (-634 $) $) NIL (|has| |#1| (-365)))) (-1892 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1339 (((-1141 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-568))))) (($ $ (-1161) (-1235 |#1| |#2| |#3|)) NIL (-12 (|has| (-1235 |#1| |#2| |#3|) (-523 (-1161) (-1235 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-634 (-1161)) (-634 (-1235 |#1| |#2| |#3|))) NIL (-12 (|has| (-1235 |#1| |#2| |#3|) (-523 (-1161) (-1235 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-634 (-288 (-1235 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1235 |#1| |#2| |#3|) (-303 (-1235 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-288 (-1235 |#1| |#2| |#3|))) NIL (-12 (|has| (-1235 |#1| |#2| |#3|) (-303 (-1235 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-1235 |#1| |#2| |#3|) (-1235 |#1| |#2| |#3|)) NIL (-12 (|has| (-1235 |#1| |#2| |#3|) (-303 (-1235 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-634 (-1235 |#1| |#2| |#3|)) (-634 (-1235 |#1| |#2| |#3|))) NIL (-12 (|has| (-1235 |#1| |#2| |#3|) (-303 (-1235 |#1| |#2| |#3|))) (|has| |#1| (-365))))) (-2709 (((-763) $) NIL (|has| |#1| (-365)))) (-2779 ((|#1| $ (-568)) NIL) (($ $ $) NIL (|has| (-568) (-1102))) (($ $ (-1235 |#1| |#2| |#3|)) NIL (-12 (|has| (-1235 |#1| |#2| |#3|) (-281 (-1235 |#1| |#2| |#3|) (-1235 |#1| |#2| |#3|))) (|has| |#1| (-365))))) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL (|has| |#1| (-365)))) (-4189 (($ $ (-1 (-1235 |#1| |#2| |#3|) (-1235 |#1| |#2| |#3|))) NIL (|has| |#1| (-365))) (($ $ (-1 (-1235 |#1| |#2| |#3|) (-1235 |#1| |#2| |#3|)) (-763)) NIL (|has| |#1| (-365))) (($ $ (-1240 |#2|)) 24) (($ $ (-763)) NIL (-2198 (-12 (|has| (-1235 |#1| |#2| |#3|) (-225)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-568) |#1|))))) (($ $) 23 (-2198 (-12 (|has| (-1235 |#1| |#2| |#3|) (-225)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-568) |#1|))))) (($ $ (-634 (-1161)) (-634 (-763))) NIL (-2198 (-12 (|has| (-1235 |#1| |#2| |#3|) (-895 (-1161))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-568) |#1|))) (|has| |#1| (-895 (-1161)))))) (($ $ (-1161) (-763)) NIL (-2198 (-12 (|has| (-1235 |#1| |#2| |#3|) (-895 (-1161))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-568) |#1|))) (|has| |#1| (-895 (-1161)))))) (($ $ (-634 (-1161))) NIL (-2198 (-12 (|has| (-1235 |#1| |#2| |#3|) (-895 (-1161))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-568) |#1|))) (|has| |#1| (-895 (-1161)))))) (($ $ (-1161)) NIL (-2198 (-12 (|has| (-1235 |#1| |#2| |#3|) (-895 (-1161))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-568) |#1|))) (|has| |#1| (-895 (-1161))))))) (-3013 (($ $) NIL (|has| |#1| (-365)))) (-2324 (((-1235 |#1| |#2| |#3|) $) NIL (|has| |#1| (-365)))) (-3206 (((-568) $) NIL)) (-1994 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1945 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1986 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1937 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1978 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-2790 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-4278 (((-541) $) NIL (-12 (|has| (-1235 |#1| |#2| |#3|) (-609 (-541))) (|has| |#1| (-365)))) (((-381) $) NIL (-12 (|has| (-1235 |#1| |#2| |#3|) (-1021)) (|has| |#1| (-365)))) (((-215) $) NIL (-12 (|has| (-1235 |#1| |#2| |#3|) (-1021)) (|has| |#1| (-365)))) (((-887 (-381)) $) NIL (-12 (|has| (-1235 |#1| |#2| |#3|) (-609 (-887 (-381)))) (|has| |#1| (-365)))) (((-887 (-568)) $) NIL (-12 (|has| (-1235 |#1| |#2| |#3|) (-609 (-887 (-568)))) (|has| |#1| (-365))))) (-2979 (((-3 (-1244 $) "failed") (-679 $)) NIL (-12 (|has| $ (-148)) (|has| (-1235 |#1| |#2| |#3|) (-904)) (|has| |#1| (-365))))) (-1811 (($ $) NIL)) (-2745 (((-850) $) NIL) (($ (-568)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1235 |#1| |#2| |#3|)) NIL) (($ (-1240 |#2|)) 22) (($ (-1161)) NIL (-12 (|has| (-1235 |#1| |#2| |#3|) (-1037 (-1161))) (|has| |#1| (-365)))) (($ $) NIL (-2198 (-12 (|has| (-1235 |#1| |#2| |#3|) (-815)) (|has| |#1| (-365))) (-12 (|has| (-1235 |#1| |#2| |#3|) (-904)) (|has| |#1| (-365))) (|has| |#1| (-558)))) (($ (-409 (-568))) NIL (-2198 (-12 (|has| (-1235 |#1| |#2| |#3|) (-1037 (-568))) (|has| |#1| (-365))) (|has| |#1| (-43 (-409 (-568))))))) (-2604 ((|#1| $ (-568)) NIL)) (-4371 (((-3 $ "failed") $) NIL (-2198 (-12 (|has| $ (-148)) (|has| (-1235 |#1| |#2| |#3|) (-904)) (|has| |#1| (-365))) (-12 (|has| (-1235 |#1| |#2| |#3|) (-148)) (|has| |#1| (-365))) (|has| |#1| (-148))))) (-4078 (((-763)) NIL)) (-1374 ((|#1| $) 11)) (-2285 (((-1235 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1235 |#1| |#2| |#3|) (-550)) (|has| |#1| (-365))))) (-2006 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1958 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1826 (((-121) $ $) NIL (-2198 (-12 (|has| (-1235 |#1| |#2| |#3|) (-815)) (|has| |#1| (-365))) (-12 (|has| (-1235 |#1| |#2| |#3|) (-904)) (|has| |#1| (-365))) (|has| |#1| (-558))))) (-1998 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1949 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-2014 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1966 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-3996 ((|#1| $ (-568)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-568)))) (|has| |#1| (-15 -2745 (|#1| (-1161))))))) (-4023 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1970 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-2010 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1962 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-2002 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1953 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-2897 (($ $) NIL (-12 (|has| (-1235 |#1| |#2| |#3|) (-815)) (|has| |#1| (-365))))) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL (|has| |#1| (-365)))) (-3056 (($) 19 T CONST)) (-1556 (($) 15 T CONST)) (-3190 (($ $ (-1 (-1235 |#1| |#2| |#3|) (-1235 |#1| |#2| |#3|))) NIL (|has| |#1| (-365))) (($ $ (-1 (-1235 |#1| |#2| |#3|) (-1235 |#1| |#2| |#3|)) (-763)) NIL (|has| |#1| (-365))) (($ $ (-763)) NIL (-2198 (-12 (|has| (-1235 |#1| |#2| |#3|) (-225)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-568) |#1|))))) (($ $) NIL (-2198 (-12 (|has| (-1235 |#1| |#2| |#3|) (-225)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-568) |#1|))))) (($ $ (-634 (-1161)) (-634 (-763))) NIL (-2198 (-12 (|has| (-1235 |#1| |#2| |#3|) (-895 (-1161))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-568) |#1|))) (|has| |#1| (-895 (-1161)))))) (($ $ (-1161) (-763)) NIL (-2198 (-12 (|has| (-1235 |#1| |#2| |#3|) (-895 (-1161))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-568) |#1|))) (|has| |#1| (-895 (-1161)))))) (($ $ (-634 (-1161))) NIL (-2198 (-12 (|has| (-1235 |#1| |#2| |#3|) (-895 (-1161))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-568) |#1|))) (|has| |#1| (-895 (-1161)))))) (($ $ (-1161)) NIL (-2198 (-12 (|has| (-1235 |#1| |#2| |#3|) (-895 (-1161))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-568) |#1|))) (|has| |#1| (-895 (-1161))))))) (-1751 (((-121) $ $) NIL (-2198 (-12 (|has| (-1235 |#1| |#2| |#3|) (-815)) (|has| |#1| (-365))) (-12 (|has| (-1235 |#1| |#2| |#3|) (-842)) (|has| |#1| (-365)))))) (-1738 (((-121) $ $) NIL (-2198 (-12 (|has| (-1235 |#1| |#2| |#3|) (-815)) (|has| |#1| (-365))) (-12 (|has| (-1235 |#1| |#2| |#3|) (-842)) (|has| |#1| (-365)))))) (-1717 (((-121) $ $) NIL)) (-1745 (((-121) $ $) NIL (-2198 (-12 (|has| (-1235 |#1| |#2| |#3|) (-815)) (|has| |#1| (-365))) (-12 (|has| (-1235 |#1| |#2| |#3|) (-842)) (|has| |#1| (-365)))))) (-1732 (((-121) $ $) NIL (-2198 (-12 (|has| (-1235 |#1| |#2| |#3|) (-815)) (|has| |#1| (-365))) (-12 (|has| (-1235 |#1| |#2| |#3|) (-842)) (|has| |#1| (-365)))))) (-1779 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365))) (($ (-1235 |#1| |#2| |#3|) (-1235 |#1| |#2| |#3|)) NIL (|has| |#1| (-365)))) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) 20)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-43 (-409 (-568))))) (($ $ (-409 (-568))) NIL (|has| |#1| (-43 (-409 (-568)))))) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1235 |#1| |#2| |#3|)) NIL (|has| |#1| (-365))) (($ (-1235 |#1| |#2| |#3|) $) NIL (|has| |#1| (-365))) (($ (-409 (-568)) $) NIL (|has| |#1| (-43 (-409 (-568))))) (($ $ (-409 (-568))) NIL (|has| |#1| (-43 (-409 (-568))))))) +(((-1207 |#1| |#2| |#3|) (-13 (-1205 |#1| (-1235 |#1| |#2| |#3|)) (-10 -8 (-15 -2745 ($ (-1240 |#2|))) (-15 -4189 ($ $ (-1240 |#2|))) (IF (|has| |#1| (-43 (-409 (-568)))) (-15 -3837 ($ $ (-1240 |#2|))) |noBranch|))) (-1047) (-1161) |#1|) (T -1207)) +((-2745 (*1 *1 *2) (-12 (-5 *2 (-1240 *4)) (-14 *4 (-1161)) (-5 *1 (-1207 *3 *4 *5)) (-4 *3 (-1047)) (-14 *5 *3))) (-4189 (*1 *1 *1 *2) (-12 (-5 *2 (-1240 *4)) (-14 *4 (-1161)) (-5 *1 (-1207 *3 *4 *5)) (-4 *3 (-1047)) (-14 *5 *3))) (-3837 (*1 *1 *1 *2) (-12 (-5 *2 (-1240 *4)) (-14 *4 (-1161)) (-5 *1 (-1207 *3 *4 *5)) (-4 *3 (-43 (-409 (-568)))) (-4 *3 (-1047)) (-14 *5 *3)))) +(-13 (-1205 |#1| (-1235 |#1| |#2| |#3|)) (-10 -8 (-15 -2745 ($ (-1240 |#2|))) (-15 -4189 ($ $ (-1240 |#2|))) (IF (|has| |#1| (-43 (-409 (-568)))) (-15 -3837 ($ $ (-1240 |#2|))) |noBranch|))) +((-2954 (((-2 (|:| |contp| (-568)) (|:| -3276 (-634 (-2 (|:| |irr| |#1|) (|:| -3959 (-568)))))) |#1| (-121)) 10)) (-2630 (((-420 |#1|) |#1|) 21)) (-3848 (((-420 |#1|) |#1|) 20))) +(((-1208 |#1|) (-10 -7 (-15 -3848 ((-420 |#1|) |#1|)) (-15 -2630 ((-420 |#1|) |#1|)) (-15 -2954 ((-2 (|:| |contp| (-568)) (|:| -3276 (-634 (-2 (|:| |irr| |#1|) (|:| -3959 (-568)))))) |#1| (-121)))) (-1219 (-568))) (T -1208)) +((-2954 (*1 *2 *3 *4) (-12 (-5 *4 (-121)) (-5 *2 (-2 (|:| |contp| (-568)) (|:| -3276 (-634 (-2 (|:| |irr| *3) (|:| -3959 (-568))))))) (-5 *1 (-1208 *3)) (-4 *3 (-1219 (-568))))) (-2630 (*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-1208 *3)) (-4 *3 (-1219 (-568))))) (-3848 (*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-1208 *3)) (-4 *3 (-1219 (-568)))))) +(-10 -7 (-15 -3848 ((-420 |#1|) |#1|)) (-15 -2630 ((-420 |#1|) |#1|)) (-15 -2954 ((-2 (|:| |contp| (-568)) (|:| -3276 (-634 (-2 (|:| |irr| |#1|) (|:| -3959 (-568)))))) |#1| (-121)))) +((-2795 (((-1141 |#2|) (-1 |#2| |#1|) (-1210 |#1|)) 23 (|has| |#1| (-840))) (((-1210 |#2|) (-1 |#2| |#1|) (-1210 |#1|)) 17))) +(((-1209 |#1| |#2|) (-10 -7 (-15 -2795 ((-1210 |#2|) (-1 |#2| |#1|) (-1210 |#1|))) (IF (|has| |#1| (-840)) (-15 -2795 ((-1141 |#2|) (-1 |#2| |#1|) (-1210 |#1|))) |noBranch|)) (-1195) (-1195)) (T -1209)) +((-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1210 *5)) (-4 *5 (-840)) (-4 *5 (-1195)) (-4 *6 (-1195)) (-5 *2 (-1141 *6)) (-5 *1 (-1209 *5 *6)))) (-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1210 *5)) (-4 *5 (-1195)) (-4 *6 (-1195)) (-5 *2 (-1210 *6)) (-5 *1 (-1209 *5 *6))))) +(-10 -7 (-15 -2795 ((-1210 |#2|) (-1 |#2| |#1|) (-1210 |#1|))) (IF (|has| |#1| (-840)) (-15 -2795 ((-1141 |#2|) (-1 |#2| |#1|) (-1210 |#1|))) |noBranch|)) +((-2447 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-2463 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-2795 (((-1141 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-840)))) (-4100 ((|#1| $) 14)) (-2746 ((|#1| $) 10)) (-4487 (((-1143) $) NIL (|has| |#1| (-1090)))) (-2751 (((-568) $) 18)) (-2971 ((|#1| $) 17)) (-2754 ((|#1| $) 11)) (-4022 (((-1108) $) NIL (|has| |#1| (-1090)))) (-4000 (((-121) $) 16)) (-2789 (((-1141 |#1|) $) 38 (|has| |#1| (-840))) (((-1141 |#1|) (-634 $)) 37 (|has| |#1| (-840)))) (-4278 (($ |#1|) 25)) (-2745 (($ (-1084 |#1|)) 24) (((-850) $) 34 (|has| |#1| (-1090)))) (-4253 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-4143 (($ $ (-568)) 13)) (-1717 (((-121) $ $) 27 (|has| |#1| (-1090))))) +(((-1210 |#1|) (-13 (-1083 |#1|) (-10 -8 (-15 -4253 ($ |#1|)) (-15 -2463 ($ |#1|)) (-15 -2745 ($ (-1084 |#1|))) (-15 -4000 ((-121) $)) (IF (|has| |#1| (-1090)) (-6 (-1090)) |noBranch|) (IF (|has| |#1| (-840)) (-6 (-1085 |#1| (-1141 |#1|))) |noBranch|))) (-1195)) (T -1210)) +((-4253 (*1 *1 *2) (-12 (-5 *1 (-1210 *2)) (-4 *2 (-1195)))) (-2463 (*1 *1 *2) (-12 (-5 *1 (-1210 *2)) (-4 *2 (-1195)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-1084 *3)) (-4 *3 (-1195)) (-5 *1 (-1210 *3)))) (-4000 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1210 *3)) (-4 *3 (-1195))))) +(-13 (-1083 |#1|) (-10 -8 (-15 -4253 ($ |#1|)) (-15 -2463 ($ |#1|)) (-15 -2745 ($ (-1084 |#1|))) (-15 -4000 ((-121) $)) (IF (|has| |#1| (-1090)) (-6 (-1090)) |noBranch|) (IF (|has| |#1| (-840)) (-6 (-1085 |#1| (-1141 |#1|))) |noBranch|))) +((-2795 (((-1216 |#3| |#4|) (-1 |#4| |#2|) (-1216 |#1| |#2|)) 15))) +(((-1211 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2795 ((-1216 |#3| |#4|) (-1 |#4| |#2|) (-1216 |#1| |#2|)))) (-1161) (-1047) (-1161) (-1047)) (T -1211)) +((-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1216 *5 *6)) (-14 *5 (-1161)) (-4 *6 (-1047)) (-4 *8 (-1047)) (-5 *2 (-1216 *7 *8)) (-5 *1 (-1211 *5 *6 *7 *8)) (-14 *7 (-1161))))) +(-10 -7 (-15 -2795 ((-1216 |#3| |#4|) (-1 |#4| |#2|) (-1216 |#1| |#2|)))) +((-4114 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-3093 ((|#1| |#3|) 13)) (-2469 ((|#3| |#3|) 19))) +(((-1212 |#1| |#2| |#3|) (-10 -7 (-15 -3093 (|#1| |#3|)) (-15 -2469 (|#3| |#3|)) (-15 -4114 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-558) (-993 |#1|) (-1219 |#2|)) (T -1212)) +((-4114 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-993 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1212 *4 *5 *3)) (-4 *3 (-1219 *5)))) (-2469 (*1 *2 *2) (-12 (-4 *3 (-558)) (-4 *4 (-993 *3)) (-5 *1 (-1212 *3 *4 *2)) (-4 *2 (-1219 *4)))) (-3093 (*1 *2 *3) (-12 (-4 *4 (-993 *2)) (-4 *2 (-558)) (-5 *1 (-1212 *2 *4 *3)) (-4 *3 (-1219 *4))))) +(-10 -7 (-15 -3093 (|#1| |#3|)) (-15 -2469 (|#3| |#3|)) (-15 -4114 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-3076 (((-3 |#2| "failed") |#2| (-763) |#1|) 29)) (-2162 (((-3 |#2| "failed") |#2| (-763)) 30)) (-2518 (((-3 (-2 (|:| -3028 |#2|) (|:| -3284 |#2|)) "failed") |#2|) 42)) (-2101 (((-634 |#2|) |#2|) 44)) (-1603 (((-3 |#2| "failed") |#2| |#2|) 39))) +(((-1213 |#1| |#2|) (-10 -7 (-15 -2162 ((-3 |#2| "failed") |#2| (-763))) (-15 -3076 ((-3 |#2| "failed") |#2| (-763) |#1|)) (-15 -1603 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2518 ((-3 (-2 (|:| -3028 |#2|) (|:| -3284 |#2|)) "failed") |#2|)) (-15 -2101 ((-634 |#2|) |#2|))) (-13 (-558) (-150)) (-1219 |#1|)) (T -1213)) +((-2101 (*1 *2 *3) (-12 (-4 *4 (-13 (-558) (-150))) (-5 *2 (-634 *3)) (-5 *1 (-1213 *4 *3)) (-4 *3 (-1219 *4)))) (-2518 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-558) (-150))) (-5 *2 (-2 (|:| -3028 *3) (|:| -3284 *3))) (-5 *1 (-1213 *4 *3)) (-4 *3 (-1219 *4)))) (-1603 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-558) (-150))) (-5 *1 (-1213 *3 *2)) (-4 *2 (-1219 *3)))) (-3076 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-763)) (-4 *4 (-13 (-558) (-150))) (-5 *1 (-1213 *4 *2)) (-4 *2 (-1219 *4)))) (-2162 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-763)) (-4 *4 (-13 (-558) (-150))) (-5 *1 (-1213 *4 *2)) (-4 *2 (-1219 *4))))) +(-10 -7 (-15 -2162 ((-3 |#2| "failed") |#2| (-763))) (-15 -3076 ((-3 |#2| "failed") |#2| (-763) |#1|)) (-15 -1603 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2518 ((-3 (-2 (|:| -3028 |#2|) (|:| -3284 |#2|)) "failed") |#2|)) (-15 -2101 ((-634 |#2|) |#2|))) +((-1827 (((-3 (-2 (|:| -3961 |#2|) (|:| -1500 |#2|)) "failed") |#2| |#2|) 31))) +(((-1214 |#1| |#2|) (-10 -7 (-15 -1827 ((-3 (-2 (|:| -3961 |#2|) (|:| -1500 |#2|)) "failed") |#2| |#2|))) (-558) (-1219 |#1|)) (T -1214)) +((-1827 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-558)) (-5 *2 (-2 (|:| -3961 *3) (|:| -1500 *3))) (-5 *1 (-1214 *4 *3)) (-4 *3 (-1219 *4))))) +(-10 -7 (-15 -1827 ((-3 (-2 (|:| -3961 |#2|) (|:| -1500 |#2|)) "failed") |#2| |#2|))) +((-2154 ((|#2| |#2| |#2|) 19)) (-4404 ((|#2| |#2| |#2|) 30)) (-1456 ((|#2| |#2| |#2| (-763) (-763)) 36))) +(((-1215 |#1| |#2|) (-10 -7 (-15 -2154 (|#2| |#2| |#2|)) (-15 -4404 (|#2| |#2| |#2|)) (-15 -1456 (|#2| |#2| |#2| (-763) (-763)))) (-1047) (-1219 |#1|)) (T -1215)) +((-1456 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-763)) (-4 *4 (-1047)) (-5 *1 (-1215 *4 *2)) (-4 *2 (-1219 *4)))) (-4404 (*1 *2 *2 *2) (-12 (-4 *3 (-1047)) (-5 *1 (-1215 *3 *2)) (-4 *2 (-1219 *3)))) (-2154 (*1 *2 *2 *2) (-12 (-4 *3 (-1047)) (-5 *1 (-1215 *3 *2)) (-4 *2 (-1219 *3))))) +(-10 -7 (-15 -2154 (|#2| |#2| |#2|)) (-15 -4404 (|#2| |#2| |#2|)) (-15 -1456 (|#2| |#2| |#2| (-763) (-763)))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-2572 (((-1244 |#2|) $ (-763)) NIL)) (-2055 (((-634 (-1075)) $) NIL)) (-3197 (($ (-1157 |#2|)) NIL)) (-3839 (((-1157 $) $ (-1075)) NIL) (((-1157 |#2|) $) NIL)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL (|has| |#2| (-558)))) (-2227 (($ $) NIL (|has| |#2| (-558)))) (-1573 (((-121) $) NIL (|has| |#2| (-558)))) (-2773 (((-763) $) NIL) (((-763) $ (-634 (-1075))) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-3809 (($ $ $) NIL (|has| |#2| (-558)))) (-1750 (((-420 (-1157 $)) (-1157 $)) NIL (|has| |#2| (-904)))) (-4305 (($ $) NIL (|has| |#2| (-453)))) (-1678 (((-420 $) $) NIL (|has| |#2| (-453)))) (-1858 (((-3 (-634 (-1157 $)) "failed") (-634 (-1157 $)) (-1157 $)) NIL (|has| |#2| (-904)))) (-1497 (((-121) $ $) NIL (|has| |#2| (-365)))) (-3151 (($ $ (-763)) NIL)) (-3772 (($ $ (-763)) NIL)) (-1619 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-453)))) (-2671 (($) NIL T CONST)) (-3666 (((-3 |#2| "failed") $) NIL) (((-3 (-409 (-568)) "failed") $) NIL (|has| |#2| (-1037 (-409 (-568))))) (((-3 (-568) "failed") $) NIL (|has| |#2| (-1037 (-568)))) (((-3 (-1075) "failed") $) NIL)) (-2854 ((|#2| $) NIL) (((-409 (-568)) $) NIL (|has| |#2| (-1037 (-409 (-568))))) (((-568) $) NIL (|has| |#2| (-1037 (-568)))) (((-1075) $) NIL)) (-4265 (($ $ $ (-1075)) NIL (|has| |#2| (-172))) ((|#2| $ $) NIL (|has| |#2| (-172)))) (-2401 (($ $ $) NIL (|has| |#2| (-365)))) (-2114 (($ $) NIL)) (-3164 (((-679 (-568)) (-679 $)) NIL (|has| |#2| (-630 (-568)))) (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) NIL (|has| |#2| (-630 (-568)))) (((-2 (|:| -2928 (-679 |#2|)) (|:| |vec| (-1244 |#2|))) (-679 $) (-1244 $)) NIL) (((-679 |#2|) (-679 $)) NIL)) (-2925 (((-3 $ "failed") $) NIL)) (-2412 (($ $ $) NIL (|has| |#2| (-365)))) (-3002 (($ $ $) NIL)) (-3581 (($ $ $) NIL (|has| |#2| (-558)))) (-4144 (((-2 (|:| -2348 |#2|) (|:| -3961 $) (|:| -1500 $)) $ $) NIL (|has| |#2| (-558)))) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) NIL (|has| |#2| (-365)))) (-3250 (($ $) NIL (|has| |#2| (-453))) (($ $ (-1075)) NIL (|has| |#2| (-453)))) (-2108 (((-634 $) $) NIL)) (-3927 (((-121) $) NIL (|has| |#2| (-904)))) (-3088 (($ $ |#2| (-763) $) NIL)) (-4410 (((-884 (-381) $) $ (-887 (-381)) (-884 (-381) $)) NIL (-12 (|has| (-1075) (-881 (-381))) (|has| |#2| (-881 (-381))))) (((-884 (-568) $) $ (-887 (-568)) (-884 (-568) $)) NIL (-12 (|has| (-1075) (-881 (-568))) (|has| |#2| (-881 (-568)))))) (-4477 (((-763) $ $) NIL (|has| |#2| (-558)))) (-2735 (((-121) $) NIL)) (-4178 (((-763) $) NIL)) (-3038 (((-3 $ "failed") $) NIL (|has| |#2| (-1136)))) (-2051 (($ (-1157 |#2|) (-1075)) NIL) (($ (-1157 $) (-1075)) NIL)) (-3536 (($ $ (-763)) NIL)) (-3562 (((-3 (-634 $) "failed") (-634 $) $) NIL (|has| |#2| (-365)))) (-2976 (((-634 $) $) NIL)) (-3921 (((-121) $) NIL)) (-2047 (($ |#2| (-763)) 17) (($ $ (-1075) (-763)) NIL) (($ $ (-634 (-1075)) (-634 (-763))) NIL)) (-3379 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $ (-1075)) NIL) (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL)) (-2144 (((-763) $) NIL) (((-763) $ (-1075)) NIL) (((-634 (-763)) $ (-634 (-1075))) NIL)) (-2521 (($ $ $) NIL (|has| |#2| (-842)))) (-3268 (($ $ $) NIL (|has| |#2| (-842)))) (-3842 (($ (-1 (-763) (-763)) $) NIL)) (-2795 (($ (-1 |#2| |#2|) $) NIL)) (-3764 (((-1157 |#2|) $) NIL)) (-2244 (((-3 (-1075) "failed") $) NIL)) (-2097 (($ $) NIL)) (-2102 ((|#2| $) NIL)) (-2495 (($ (-634 $)) NIL (|has| |#2| (-453))) (($ $ $) NIL (|has| |#2| (-453)))) (-4487 (((-1143) $) NIL)) (-1643 (((-2 (|:| -3961 $) (|:| -1500 $)) $ (-763)) NIL)) (-3324 (((-3 (-634 $) "failed") $) NIL)) (-1794 (((-3 (-634 $) "failed") $) NIL)) (-3751 (((-3 (-2 (|:| |var| (-1075)) (|:| -3438 (-763))) "failed") $) NIL)) (-3837 (($ $) NIL (|has| |#2| (-43 (-409 (-568)))))) (-4434 (($) NIL (|has| |#2| (-1136)) CONST)) (-4022 (((-1108) $) NIL)) (-2086 (((-121) $) NIL)) (-2091 ((|#2| $) NIL)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL (|has| |#2| (-453)))) (-2721 (($ (-634 $)) NIL (|has| |#2| (-453))) (($ $ $) NIL (|has| |#2| (-453)))) (-4285 (($ $ (-763) |#2| $) NIL)) (-2905 (((-420 (-1157 $)) (-1157 $)) NIL (|has| |#2| (-904)))) (-3545 (((-420 (-1157 $)) (-1157 $)) NIL (|has| |#2| (-904)))) (-3848 (((-420 $) $) NIL (|has| |#2| (-904)))) (-4497 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL (|has| |#2| (-365)))) (-2595 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-558))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-558)))) (-2344 (((-3 (-634 $) "failed") (-634 $) $) NIL (|has| |#2| (-365)))) (-1339 (($ $ (-634 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-634 $) (-634 $)) NIL) (($ $ (-1075) |#2|) NIL) (($ $ (-634 (-1075)) (-634 |#2|)) NIL) (($ $ (-1075) $) NIL) (($ $ (-634 (-1075)) (-634 $)) NIL)) (-2709 (((-763) $) NIL (|has| |#2| (-365)))) (-2779 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-409 $) (-409 $) (-409 $)) NIL (|has| |#2| (-558))) ((|#2| (-409 $) |#2|) NIL (|has| |#2| (-365))) (((-409 $) $ (-409 $)) NIL (|has| |#2| (-558)))) (-2167 (((-3 $ "failed") $ (-763)) NIL)) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL (|has| |#2| (-365)))) (-2217 (($ $ (-1075)) NIL (|has| |#2| (-172))) ((|#2| $) NIL (|has| |#2| (-172)))) (-4189 (($ $ (-1075)) NIL) (($ $ (-634 (-1075))) NIL) (($ $ (-1075) (-763)) NIL) (($ $ (-634 (-1075)) (-634 (-763))) NIL) (($ $ (-763)) NIL) (($ $) NIL) (($ $ (-1161)) NIL (|has| |#2| (-895 (-1161)))) (($ $ (-634 (-1161))) NIL (|has| |#2| (-895 (-1161)))) (($ $ (-1161) (-763)) NIL (|has| |#2| (-895 (-1161)))) (($ $ (-634 (-1161)) (-634 (-763))) NIL (|has| |#2| (-895 (-1161)))) (($ $ (-1 |#2| |#2|) (-763)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-3206 (((-763) $) NIL) (((-763) $ (-1075)) NIL) (((-634 (-763)) $ (-634 (-1075))) NIL)) (-4278 (((-887 (-381)) $) NIL (-12 (|has| (-1075) (-609 (-887 (-381)))) (|has| |#2| (-609 (-887 (-381)))))) (((-887 (-568)) $) NIL (-12 (|has| (-1075) (-609 (-887 (-568)))) (|has| |#2| (-609 (-887 (-568)))))) (((-541) $) NIL (-12 (|has| (-1075) (-609 (-541))) (|has| |#2| (-609 (-541)))))) (-3367 ((|#2| $) NIL (|has| |#2| (-453))) (($ $ (-1075)) NIL (|has| |#2| (-453)))) (-2979 (((-3 (-1244 $) "failed") (-679 $)) NIL (-12 (|has| $ (-148)) (|has| |#2| (-904))))) (-3950 (((-3 $ "failed") $ $) NIL (|has| |#2| (-558))) (((-3 (-409 $) "failed") (-409 $) $) NIL (|has| |#2| (-558)))) (-2745 (((-850) $) 13) (($ (-568)) NIL) (($ |#2|) NIL) (($ (-1075)) NIL) (($ (-1240 |#1|)) 19) (($ (-409 (-568))) NIL (-2198 (|has| |#2| (-43 (-409 (-568)))) (|has| |#2| (-1037 (-409 (-568)))))) (($ $) NIL (|has| |#2| (-558)))) (-1302 (((-634 |#2|) $) NIL)) (-2604 ((|#2| $ (-763)) NIL) (($ $ (-1075) (-763)) NIL) (($ $ (-634 (-1075)) (-634 (-763))) NIL)) (-4371 (((-3 $ "failed") $) NIL (-2198 (-12 (|has| $ (-148)) (|has| |#2| (-904))) (|has| |#2| (-148))))) (-4078 (((-763)) NIL)) (-4171 (($ $ $ (-763)) NIL (|has| |#2| (-172)))) (-1826 (((-121) $ $) NIL (|has| |#2| (-558)))) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (-3056 (($) NIL T CONST)) (-1556 (($) 14 T CONST)) (-3190 (($ $ (-1075)) NIL) (($ $ (-634 (-1075))) NIL) (($ $ (-1075) (-763)) NIL) (($ $ (-634 (-1075)) (-634 (-763))) NIL) (($ $ (-763)) NIL) (($ $) NIL) (($ $ (-1161)) NIL (|has| |#2| (-895 (-1161)))) (($ $ (-634 (-1161))) NIL (|has| |#2| (-895 (-1161)))) (($ $ (-1161) (-763)) NIL (|has| |#2| (-895 (-1161)))) (($ $ (-634 (-1161)) (-634 (-763))) NIL (|has| |#2| (-895 (-1161)))) (($ $ (-1 |#2| |#2|) (-763)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1751 (((-121) $ $) NIL (|has| |#2| (-842)))) (-1738 (((-121) $ $) NIL (|has| |#2| (-842)))) (-1717 (((-121) $ $) NIL)) (-1745 (((-121) $ $) NIL (|has| |#2| (-842)))) (-1732 (((-121) $ $) NIL (|has| |#2| (-842)))) (-1779 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) NIL) (($ $ (-409 (-568))) NIL (|has| |#2| (-43 (-409 (-568))))) (($ (-409 (-568)) $) NIL (|has| |#2| (-43 (-409 (-568))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-1216 |#1| |#2|) (-13 (-1219 |#2|) (-10 -8 (-15 -2745 ($ (-1240 |#1|))) (-15 -4285 ($ $ (-763) |#2| $)))) (-1161) (-1047)) (T -1216)) +((-2745 (*1 *1 *2) (-12 (-5 *2 (-1240 *3)) (-14 *3 (-1161)) (-5 *1 (-1216 *3 *4)) (-4 *4 (-1047)))) (-4285 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-763)) (-5 *1 (-1216 *4 *3)) (-14 *4 (-1161)) (-4 *3 (-1047))))) +(-13 (-1219 |#2|) (-10 -8 (-15 -2745 ($ (-1240 |#1|))) (-15 -4285 ($ $ (-763) |#2| $)))) +((-2795 ((|#4| (-1 |#3| |#1|) |#2|) 22))) +(((-1217 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2795 (|#4| (-1 |#3| |#1|) |#2|))) (-1047) (-1219 |#1|) (-1047) (-1219 |#3|)) (T -1217)) +((-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1047)) (-4 *6 (-1047)) (-4 *2 (-1219 *6)) (-5 *1 (-1217 *5 *4 *6 *2)) (-4 *4 (-1219 *5))))) +(-10 -7 (-15 -2795 (|#4| (-1 |#3| |#1|) |#2|))) +((-2572 (((-1244 |#2|) $ (-763)) 113)) (-2055 (((-634 (-1075)) $) 15)) (-3197 (($ (-1157 |#2|)) 66)) (-2773 (((-763) $) NIL) (((-763) $ (-634 (-1075))) 18)) (-1750 (((-420 (-1157 $)) (-1157 $)) 183)) (-4305 (($ $) 173)) (-1678 (((-420 $) $) 171)) (-1858 (((-3 (-634 (-1157 $)) "failed") (-634 (-1157 $)) (-1157 $)) 81)) (-3151 (($ $ (-763)) 70)) (-3772 (($ $ (-763)) 72)) (-1619 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 129)) (-3666 (((-3 |#2| "failed") $) 116) (((-3 (-409 (-568)) "failed") $) NIL) (((-3 (-568) "failed") $) NIL) (((-3 (-1075) "failed") $) NIL)) (-2854 ((|#2| $) 114) (((-409 (-568)) $) NIL) (((-568) $) NIL) (((-1075) $) NIL)) (-3581 (($ $ $) 150)) (-4144 (((-2 (|:| -2348 |#2|) (|:| -3961 $) (|:| -1500 $)) $ $) 152)) (-4477 (((-763) $ $) 168)) (-3038 (((-3 $ "failed") $) 122)) (-2047 (($ |#2| (-763)) NIL) (($ $ (-1075) (-763)) 46) (($ $ (-634 (-1075)) (-634 (-763))) NIL)) (-2144 (((-763) $) NIL) (((-763) $ (-1075)) 41) (((-634 (-763)) $ (-634 (-1075))) 42)) (-3764 (((-1157 |#2|) $) 58)) (-2244 (((-3 (-1075) "failed") $) 39)) (-1643 (((-2 (|:| -3961 $) (|:| -1500 $)) $ (-763)) 69)) (-3837 (($ $) 194)) (-4434 (($) 118)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) 180)) (-2905 (((-420 (-1157 $)) (-1157 $)) 87)) (-3545 (((-420 (-1157 $)) (-1157 $)) 85)) (-3848 (((-420 $) $) 105)) (-1339 (($ $ (-634 (-288 $))) 38) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-634 $) (-634 $)) NIL) (($ $ (-1075) |#2|) 31) (($ $ (-634 (-1075)) (-634 |#2|)) 28) (($ $ (-1075) $) 25) (($ $ (-634 (-1075)) (-634 $)) 23)) (-2709 (((-763) $) 186)) (-2779 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-409 $) (-409 $) (-409 $)) 146) ((|#2| (-409 $) |#2|) 185) (((-409 $) $ (-409 $)) 167)) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) 189)) (-4189 (($ $ (-1075)) 139) (($ $ (-634 (-1075))) NIL) (($ $ (-1075) (-763)) NIL) (($ $ (-634 (-1075)) (-634 (-763))) NIL) (($ $ (-763)) NIL) (($ $) 137) (($ $ (-1161)) NIL) (($ $ (-634 (-1161))) NIL) (($ $ (-1161) (-763)) NIL) (($ $ (-634 (-1161)) (-634 (-763))) NIL) (($ $ (-1 |#2| |#2|) (-763)) NIL) (($ $ (-1 |#2| |#2|)) 136) (($ $ (-1 |#2| |#2|) $) 133)) (-3206 (((-763) $) NIL) (((-763) $ (-1075)) 16) (((-634 (-763)) $ (-634 (-1075))) 20)) (-3367 ((|#2| $) NIL) (($ $ (-1075)) 124)) (-3950 (((-3 $ "failed") $ $) 160) (((-3 (-409 $) "failed") (-409 $) $) 156)) (-2745 (((-850) $) NIL) (($ (-568)) NIL) (($ |#2|) NIL) (($ (-1075)) 50) (($ (-409 (-568))) NIL) (($ $) NIL))) +(((-1218 |#1| |#2|) (-10 -8 (-15 -2745 (|#1| |#1|)) (-15 -2155 ((-1157 |#1|) (-1157 |#1|) (-1157 |#1|))) (-15 -1678 ((-420 |#1|) |#1|)) (-15 -4305 (|#1| |#1|)) (-15 -2745 (|#1| (-409 (-568)))) (-15 -4434 (|#1|)) (-15 -3038 ((-3 |#1| "failed") |#1|)) (-15 -2779 ((-409 |#1|) |#1| (-409 |#1|))) (-15 -2709 ((-763) |#1|)) (-15 -3210 ((-2 (|:| -3961 |#1|) (|:| -1500 |#1|)) |#1| |#1|)) (-15 -3837 (|#1| |#1|)) (-15 -2779 (|#2| (-409 |#1|) |#2|)) (-15 -1619 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -4144 ((-2 (|:| -2348 |#2|) (|:| -3961 |#1|) (|:| -1500 |#1|)) |#1| |#1|)) (-15 -3581 (|#1| |#1| |#1|)) (-15 -3950 ((-3 (-409 |#1|) "failed") (-409 |#1|) |#1|)) (-15 -3950 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4477 ((-763) |#1| |#1|)) (-15 -2779 ((-409 |#1|) (-409 |#1|) (-409 |#1|))) (-15 -4189 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3772 (|#1| |#1| (-763))) (-15 -3151 (|#1| |#1| (-763))) (-15 -1643 ((-2 (|:| -3961 |#1|) (|:| -1500 |#1|)) |#1| (-763))) (-15 -3197 (|#1| (-1157 |#2|))) (-15 -3764 ((-1157 |#2|) |#1|)) (-15 -2572 ((-1244 |#2|) |#1| (-763))) (-15 -4189 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4189 (|#1| |#1| (-1 |#2| |#2|) (-763))) (-15 -4189 (|#1| |#1| (-634 (-1161)) (-634 (-763)))) (-15 -4189 (|#1| |#1| (-1161) (-763))) (-15 -4189 (|#1| |#1| (-634 (-1161)))) (-15 -4189 (|#1| |#1| (-1161))) (-15 -4189 (|#1| |#1|)) (-15 -4189 (|#1| |#1| (-763))) (-15 -2779 (|#1| |#1| |#1|)) (-15 -2779 (|#2| |#1| |#2|)) (-15 -3848 ((-420 |#1|) |#1|)) (-15 -1750 ((-420 (-1157 |#1|)) (-1157 |#1|))) (-15 -3545 ((-420 (-1157 |#1|)) (-1157 |#1|))) (-15 -2905 ((-420 (-1157 |#1|)) (-1157 |#1|))) (-15 -1858 ((-3 (-634 (-1157 |#1|)) "failed") (-634 (-1157 |#1|)) (-1157 |#1|))) (-15 -3367 (|#1| |#1| (-1075))) (-15 -2055 ((-634 (-1075)) |#1|)) (-15 -2773 ((-763) |#1| (-634 (-1075)))) (-15 -2773 ((-763) |#1|)) (-15 -2047 (|#1| |#1| (-634 (-1075)) (-634 (-763)))) (-15 -2047 (|#1| |#1| (-1075) (-763))) (-15 -2144 ((-634 (-763)) |#1| (-634 (-1075)))) (-15 -2144 ((-763) |#1| (-1075))) (-15 -2244 ((-3 (-1075) "failed") |#1|)) (-15 -3206 ((-634 (-763)) |#1| (-634 (-1075)))) (-15 -3206 ((-763) |#1| (-1075))) (-15 -2854 ((-1075) |#1|)) (-15 -3666 ((-3 (-1075) "failed") |#1|)) (-15 -2745 (|#1| (-1075))) (-15 -1339 (|#1| |#1| (-634 (-1075)) (-634 |#1|))) (-15 -1339 (|#1| |#1| (-1075) |#1|)) (-15 -1339 (|#1| |#1| (-634 (-1075)) (-634 |#2|))) (-15 -1339 (|#1| |#1| (-1075) |#2|)) (-15 -1339 (|#1| |#1| (-634 |#1|) (-634 |#1|))) (-15 -1339 (|#1| |#1| |#1| |#1|)) (-15 -1339 (|#1| |#1| (-288 |#1|))) (-15 -1339 (|#1| |#1| (-634 (-288 |#1|)))) (-15 -3206 ((-763) |#1|)) (-15 -2047 (|#1| |#2| (-763))) (-15 -2854 ((-568) |#1|)) (-15 -3666 ((-3 (-568) "failed") |#1|)) (-15 -2854 ((-409 (-568)) |#1|)) (-15 -3666 ((-3 (-409 (-568)) "failed") |#1|)) (-15 -2745 (|#1| |#2|)) (-15 -3666 ((-3 |#2| "failed") |#1|)) (-15 -2854 (|#2| |#1|)) (-15 -2144 ((-763) |#1|)) (-15 -3367 (|#2| |#1|)) (-15 -4189 (|#1| |#1| (-634 (-1075)) (-634 (-763)))) (-15 -4189 (|#1| |#1| (-1075) (-763))) (-15 -4189 (|#1| |#1| (-634 (-1075)))) (-15 -4189 (|#1| |#1| (-1075))) (-15 -2745 (|#1| (-568))) (-15 -2745 ((-850) |#1|))) (-1219 |#2|) (-1047)) (T -1218)) +NIL +(-10 -8 (-15 -2745 (|#1| |#1|)) (-15 -2155 ((-1157 |#1|) (-1157 |#1|) (-1157 |#1|))) (-15 -1678 ((-420 |#1|) |#1|)) (-15 -4305 (|#1| |#1|)) (-15 -2745 (|#1| (-409 (-568)))) (-15 -4434 (|#1|)) (-15 -3038 ((-3 |#1| "failed") |#1|)) (-15 -2779 ((-409 |#1|) |#1| (-409 |#1|))) (-15 -2709 ((-763) |#1|)) (-15 -3210 ((-2 (|:| -3961 |#1|) (|:| -1500 |#1|)) |#1| |#1|)) (-15 -3837 (|#1| |#1|)) (-15 -2779 (|#2| (-409 |#1|) |#2|)) (-15 -1619 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -4144 ((-2 (|:| -2348 |#2|) (|:| -3961 |#1|) (|:| -1500 |#1|)) |#1| |#1|)) (-15 -3581 (|#1| |#1| |#1|)) (-15 -3950 ((-3 (-409 |#1|) "failed") (-409 |#1|) |#1|)) (-15 -3950 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4477 ((-763) |#1| |#1|)) (-15 -2779 ((-409 |#1|) (-409 |#1|) (-409 |#1|))) (-15 -4189 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3772 (|#1| |#1| (-763))) (-15 -3151 (|#1| |#1| (-763))) (-15 -1643 ((-2 (|:| -3961 |#1|) (|:| -1500 |#1|)) |#1| (-763))) (-15 -3197 (|#1| (-1157 |#2|))) (-15 -3764 ((-1157 |#2|) |#1|)) (-15 -2572 ((-1244 |#2|) |#1| (-763))) (-15 -4189 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4189 (|#1| |#1| (-1 |#2| |#2|) (-763))) (-15 -4189 (|#1| |#1| (-634 (-1161)) (-634 (-763)))) (-15 -4189 (|#1| |#1| (-1161) (-763))) (-15 -4189 (|#1| |#1| (-634 (-1161)))) (-15 -4189 (|#1| |#1| (-1161))) (-15 -4189 (|#1| |#1|)) (-15 -4189 (|#1| |#1| (-763))) (-15 -2779 (|#1| |#1| |#1|)) (-15 -2779 (|#2| |#1| |#2|)) (-15 -3848 ((-420 |#1|) |#1|)) (-15 -1750 ((-420 (-1157 |#1|)) (-1157 |#1|))) (-15 -3545 ((-420 (-1157 |#1|)) (-1157 |#1|))) (-15 -2905 ((-420 (-1157 |#1|)) (-1157 |#1|))) (-15 -1858 ((-3 (-634 (-1157 |#1|)) "failed") (-634 (-1157 |#1|)) (-1157 |#1|))) (-15 -3367 (|#1| |#1| (-1075))) (-15 -2055 ((-634 (-1075)) |#1|)) (-15 -2773 ((-763) |#1| (-634 (-1075)))) (-15 -2773 ((-763) |#1|)) (-15 -2047 (|#1| |#1| (-634 (-1075)) (-634 (-763)))) (-15 -2047 (|#1| |#1| (-1075) (-763))) (-15 -2144 ((-634 (-763)) |#1| (-634 (-1075)))) (-15 -2144 ((-763) |#1| (-1075))) (-15 -2244 ((-3 (-1075) "failed") |#1|)) (-15 -3206 ((-634 (-763)) |#1| (-634 (-1075)))) (-15 -3206 ((-763) |#1| (-1075))) (-15 -2854 ((-1075) |#1|)) (-15 -3666 ((-3 (-1075) "failed") |#1|)) (-15 -2745 (|#1| (-1075))) (-15 -1339 (|#1| |#1| (-634 (-1075)) (-634 |#1|))) (-15 -1339 (|#1| |#1| (-1075) |#1|)) (-15 -1339 (|#1| |#1| (-634 (-1075)) (-634 |#2|))) (-15 -1339 (|#1| |#1| (-1075) |#2|)) (-15 -1339 (|#1| |#1| (-634 |#1|) (-634 |#1|))) (-15 -1339 (|#1| |#1| |#1| |#1|)) (-15 -1339 (|#1| |#1| (-288 |#1|))) (-15 -1339 (|#1| |#1| (-634 (-288 |#1|)))) (-15 -3206 ((-763) |#1|)) (-15 -2047 (|#1| |#2| (-763))) (-15 -2854 ((-568) |#1|)) (-15 -3666 ((-3 (-568) "failed") |#1|)) (-15 -2854 ((-409 (-568)) |#1|)) (-15 -3666 ((-3 (-409 (-568)) "failed") |#1|)) (-15 -2745 (|#1| |#2|)) (-15 -3666 ((-3 |#2| "failed") |#1|)) (-15 -2854 (|#2| |#1|)) (-15 -2144 ((-763) |#1|)) (-15 -3367 (|#2| |#1|)) (-15 -4189 (|#1| |#1| (-634 (-1075)) (-634 (-763)))) (-15 -4189 (|#1| |#1| (-1075) (-763))) (-15 -4189 (|#1| |#1| (-634 (-1075)))) (-15 -4189 (|#1| |#1| (-1075))) (-15 -2745 (|#1| (-568))) (-15 -2745 ((-850) |#1|))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-2572 (((-1244 |#1|) $ (-763)) 217)) (-2055 (((-634 (-1075)) $) 108)) (-3197 (($ (-1157 |#1|)) 215)) (-3839 (((-1157 $) $ (-1075)) 123) (((-1157 |#1|) $) 122)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) 85 (|has| |#1| (-558)))) (-2227 (($ $) 86 (|has| |#1| (-558)))) (-1573 (((-121) $) 88 (|has| |#1| (-558)))) (-2773 (((-763) $) 110) (((-763) $ (-634 (-1075))) 109)) (-3134 (((-3 $ "failed") $ $) 18)) (-3809 (($ $ $) 202 (|has| |#1| (-558)))) (-1750 (((-420 (-1157 $)) (-1157 $)) 98 (|has| |#1| (-904)))) (-4305 (($ $) 96 (|has| |#1| (-453)))) (-1678 (((-420 $) $) 95 (|has| |#1| (-453)))) (-1858 (((-3 (-634 (-1157 $)) "failed") (-634 (-1157 $)) (-1157 $)) 101 (|has| |#1| (-904)))) (-1497 (((-121) $ $) 187 (|has| |#1| (-365)))) (-3151 (($ $ (-763)) 210)) (-3772 (($ $ (-763)) 209)) (-1619 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 197 (|has| |#1| (-453)))) (-2671 (($) 16 T CONST)) (-3666 (((-3 |#1| "failed") $) 162) (((-3 (-409 (-568)) "failed") $) 160 (|has| |#1| (-1037 (-409 (-568))))) (((-3 (-568) "failed") $) 158 (|has| |#1| (-1037 (-568)))) (((-3 (-1075) "failed") $) 134)) (-2854 ((|#1| $) 163) (((-409 (-568)) $) 159 (|has| |#1| (-1037 (-409 (-568))))) (((-568) $) 157 (|has| |#1| (-1037 (-568)))) (((-1075) $) 133)) (-4265 (($ $ $ (-1075)) 106 (|has| |#1| (-172))) ((|#1| $ $) 205 (|has| |#1| (-172)))) (-2401 (($ $ $) 191 (|has| |#1| (-365)))) (-2114 (($ $) 152)) (-3164 (((-679 (-568)) (-679 $)) 132 (|has| |#1| (-630 (-568)))) (((-2 (|:| -2928 (-679 (-568))) (|:| |vec| (-1244 (-568)))) (-679 $) (-1244 $)) 131 (|has| |#1| (-630 (-568)))) (((-2 (|:| -2928 (-679 |#1|)) (|:| |vec| (-1244 |#1|))) (-679 $) (-1244 $)) 130) (((-679 |#1|) (-679 $)) 129)) (-2925 (((-3 $ "failed") $) 33)) (-2412 (($ $ $) 190 (|has| |#1| (-365)))) (-3002 (($ $ $) 208)) (-3581 (($ $ $) 199 (|has| |#1| (-558)))) (-4144 (((-2 (|:| -2348 |#1|) (|:| -3961 $) (|:| -1500 $)) $ $) 198 (|has| |#1| (-558)))) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) 185 (|has| |#1| (-365)))) (-3250 (($ $) 174 (|has| |#1| (-453))) (($ $ (-1075)) 103 (|has| |#1| (-453)))) (-2108 (((-634 $) $) 107)) (-3927 (((-121) $) 94 (|has| |#1| (-904)))) (-3088 (($ $ |#1| (-763) $) 170)) (-4410 (((-884 (-381) $) $ (-887 (-381)) (-884 (-381) $)) 82 (-12 (|has| (-1075) (-881 (-381))) (|has| |#1| (-881 (-381))))) (((-884 (-568) $) $ (-887 (-568)) (-884 (-568) $)) 81 (-12 (|has| (-1075) (-881 (-568))) (|has| |#1| (-881 (-568)))))) (-4477 (((-763) $ $) 203 (|has| |#1| (-558)))) (-2735 (((-121) $) 30)) (-4178 (((-763) $) 167)) (-3038 (((-3 $ "failed") $) 183 (|has| |#1| (-1136)))) (-2051 (($ (-1157 |#1|) (-1075)) 115) (($ (-1157 $) (-1075)) 114)) (-3536 (($ $ (-763)) 214)) (-3562 (((-3 (-634 $) "failed") (-634 $) $) 194 (|has| |#1| (-365)))) (-2976 (((-634 $) $) 124)) (-3921 (((-121) $) 150)) (-2047 (($ |#1| (-763)) 151) (($ $ (-1075) (-763)) 117) (($ $ (-634 (-1075)) (-634 (-763))) 116)) (-3379 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $ (-1075)) 118) (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) 212)) (-2144 (((-763) $) 168) (((-763) $ (-1075)) 120) (((-634 (-763)) $ (-634 (-1075))) 119)) (-2521 (($ $ $) 77 (|has| |#1| (-842)))) (-3268 (($ $ $) 76 (|has| |#1| (-842)))) (-3842 (($ (-1 (-763) (-763)) $) 169)) (-2795 (($ (-1 |#1| |#1|) $) 149)) (-3764 (((-1157 |#1|) $) 216)) (-2244 (((-3 (-1075) "failed") $) 121)) (-2097 (($ $) 147)) (-2102 ((|#1| $) 146)) (-2495 (($ (-634 $)) 92 (|has| |#1| (-453))) (($ $ $) 91 (|has| |#1| (-453)))) (-4487 (((-1143) $) 9)) (-1643 (((-2 (|:| -3961 $) (|:| -1500 $)) $ (-763)) 211)) (-3324 (((-3 (-634 $) "failed") $) 112)) (-1794 (((-3 (-634 $) "failed") $) 113)) (-3751 (((-3 (-2 (|:| |var| (-1075)) (|:| -3438 (-763))) "failed") $) 111)) (-3837 (($ $) 195 (|has| |#1| (-43 (-409 (-568)))))) (-4434 (($) 182 (|has| |#1| (-1136)) CONST)) (-4022 (((-1108) $) 10)) (-2086 (((-121) $) 164)) (-2091 ((|#1| $) 165)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) 93 (|has| |#1| (-453)))) (-2721 (($ (-634 $)) 90 (|has| |#1| (-453))) (($ $ $) 89 (|has| |#1| (-453)))) (-2905 (((-420 (-1157 $)) (-1157 $)) 100 (|has| |#1| (-904)))) (-3545 (((-420 (-1157 $)) (-1157 $)) 99 (|has| |#1| (-904)))) (-3848 (((-420 $) $) 97 (|has| |#1| (-904)))) (-4497 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 193 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) 192 (|has| |#1| (-365)))) (-2595 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-558))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-558)))) (-2344 (((-3 (-634 $) "failed") (-634 $) $) 186 (|has| |#1| (-365)))) (-1339 (($ $ (-634 (-288 $))) 143) (($ $ (-288 $)) 142) (($ $ $ $) 141) (($ $ (-634 $) (-634 $)) 140) (($ $ (-1075) |#1|) 139) (($ $ (-634 (-1075)) (-634 |#1|)) 138) (($ $ (-1075) $) 137) (($ $ (-634 (-1075)) (-634 $)) 136)) (-2709 (((-763) $) 188 (|has| |#1| (-365)))) (-2779 ((|#1| $ |#1|) 235) (($ $ $) 234) (((-409 $) (-409 $) (-409 $)) 204 (|has| |#1| (-558))) ((|#1| (-409 $) |#1|) 196 (|has| |#1| (-365))) (((-409 $) $ (-409 $)) 184 (|has| |#1| (-558)))) (-2167 (((-3 $ "failed") $ (-763)) 213)) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) 189 (|has| |#1| (-365)))) (-2217 (($ $ (-1075)) 105 (|has| |#1| (-172))) ((|#1| $) 206 (|has| |#1| (-172)))) (-4189 (($ $ (-1075)) 41) (($ $ (-634 (-1075))) 40) (($ $ (-1075) (-763)) 39) (($ $ (-634 (-1075)) (-634 (-763))) 38) (($ $ (-763)) 232) (($ $) 230) (($ $ (-1161)) 229 (|has| |#1| (-895 (-1161)))) (($ $ (-634 (-1161))) 228 (|has| |#1| (-895 (-1161)))) (($ $ (-1161) (-763)) 227 (|has| |#1| (-895 (-1161)))) (($ $ (-634 (-1161)) (-634 (-763))) 226 (|has| |#1| (-895 (-1161)))) (($ $ (-1 |#1| |#1|) (-763)) 219) (($ $ (-1 |#1| |#1|)) 218) (($ $ (-1 |#1| |#1|) $) 207)) (-3206 (((-763) $) 148) (((-763) $ (-1075)) 128) (((-634 (-763)) $ (-634 (-1075))) 127)) (-4278 (((-887 (-381)) $) 80 (-12 (|has| (-1075) (-609 (-887 (-381)))) (|has| |#1| (-609 (-887 (-381)))))) (((-887 (-568)) $) 79 (-12 (|has| (-1075) (-609 (-887 (-568)))) (|has| |#1| (-609 (-887 (-568)))))) (((-541) $) 78 (-12 (|has| (-1075) (-609 (-541))) (|has| |#1| (-609 (-541)))))) (-3367 ((|#1| $) 173 (|has| |#1| (-453))) (($ $ (-1075)) 104 (|has| |#1| (-453)))) (-2979 (((-3 (-1244 $) "failed") (-679 $)) 102 (-2139 (|has| $ (-148)) (|has| |#1| (-904))))) (-3950 (((-3 $ "failed") $ $) 201 (|has| |#1| (-558))) (((-3 (-409 $) "failed") (-409 $) $) 200 (|has| |#1| (-558)))) (-2745 (((-850) $) 11) (($ (-568)) 27) (($ |#1|) 161) (($ (-1075)) 135) (($ (-409 (-568))) 70 (-2198 (|has| |#1| (-1037 (-409 (-568)))) (|has| |#1| (-43 (-409 (-568)))))) (($ $) 83 (|has| |#1| (-558)))) (-1302 (((-634 |#1|) $) 166)) (-2604 ((|#1| $ (-763)) 153) (($ $ (-1075) (-763)) 126) (($ $ (-634 (-1075)) (-634 (-763))) 125)) (-4371 (((-3 $ "failed") $) 71 (-2198 (-2139 (|has| $ (-148)) (|has| |#1| (-904))) (|has| |#1| (-148))))) (-4078 (((-763)) 28)) (-4171 (($ $ $ (-763)) 171 (|has| |#1| (-172)))) (-1826 (((-121) $ $) 87 (|has| |#1| (-558)))) (-1887 (($ $ (-917)) 25) (($ $ (-763)) 32)) (-3056 (($) 17 T CONST)) (-1556 (($) 29 T CONST)) (-3190 (($ $ (-1075)) 37) (($ $ (-634 (-1075))) 36) (($ $ (-1075) (-763)) 35) (($ $ (-634 (-1075)) (-634 (-763))) 34) (($ $ (-763)) 233) (($ $) 231) (($ $ (-1161)) 225 (|has| |#1| (-895 (-1161)))) (($ $ (-634 (-1161))) 224 (|has| |#1| (-895 (-1161)))) (($ $ (-1161) (-763)) 223 (|has| |#1| (-895 (-1161)))) (($ $ (-634 (-1161)) (-634 (-763))) 222 (|has| |#1| (-895 (-1161)))) (($ $ (-1 |#1| |#1|) (-763)) 221) (($ $ (-1 |#1| |#1|)) 220)) (-1751 (((-121) $ $) 74 (|has| |#1| (-842)))) (-1738 (((-121) $ $) 73 (|has| |#1| (-842)))) (-1717 (((-121) $ $) 6)) (-1745 (((-121) $ $) 75 (|has| |#1| (-842)))) (-1732 (((-121) $ $) 72 (|has| |#1| (-842)))) (-1779 (($ $ |#1|) 154 (|has| |#1| (-365)))) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 24) (($ $ (-763)) 31)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 23) (($ $ (-409 (-568))) 156 (|has| |#1| (-43 (-409 (-568))))) (($ (-409 (-568)) $) 155 (|has| |#1| (-43 (-409 (-568))))) (($ |#1| $) 145) (($ $ |#1|) 144))) +(((-1219 |#1|) (-1275) (-1047)) (T -1219)) +((-2572 (*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-4 *1 (-1219 *4)) (-4 *4 (-1047)) (-5 *2 (-1244 *4)))) (-3764 (*1 *2 *1) (-12 (-4 *1 (-1219 *3)) (-4 *3 (-1047)) (-5 *2 (-1157 *3)))) (-3197 (*1 *1 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1047)) (-4 *1 (-1219 *3)))) (-3536 (*1 *1 *1 *2) (-12 (-5 *2 (-763)) (-4 *1 (-1219 *3)) (-4 *3 (-1047)))) (-2167 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-763)) (-4 *1 (-1219 *3)) (-4 *3 (-1047)))) (-3379 (*1 *2 *1 *1) (-12 (-4 *3 (-1047)) (-5 *2 (-2 (|:| -3961 *1) (|:| -1500 *1))) (-4 *1 (-1219 *3)))) (-1643 (*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-4 *4 (-1047)) (-5 *2 (-2 (|:| -3961 *1) (|:| -1500 *1))) (-4 *1 (-1219 *4)))) (-3151 (*1 *1 *1 *2) (-12 (-5 *2 (-763)) (-4 *1 (-1219 *3)) (-4 *3 (-1047)))) (-3772 (*1 *1 *1 *2) (-12 (-5 *2 (-763)) (-4 *1 (-1219 *3)) (-4 *3 (-1047)))) (-3002 (*1 *1 *1 *1) (-12 (-4 *1 (-1219 *2)) (-4 *2 (-1047)))) (-4189 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1219 *3)) (-4 *3 (-1047)))) (-2217 (*1 *2 *1) (-12 (-4 *1 (-1219 *2)) (-4 *2 (-1047)) (-4 *2 (-172)))) (-4265 (*1 *2 *1 *1) (-12 (-4 *1 (-1219 *2)) (-4 *2 (-1047)) (-4 *2 (-172)))) (-2779 (*1 *2 *2 *2) (-12 (-5 *2 (-409 *1)) (-4 *1 (-1219 *3)) (-4 *3 (-1047)) (-4 *3 (-558)))) (-4477 (*1 *2 *1 *1) (-12 (-4 *1 (-1219 *3)) (-4 *3 (-1047)) (-4 *3 (-558)) (-5 *2 (-763)))) (-3809 (*1 *1 *1 *1) (-12 (-4 *1 (-1219 *2)) (-4 *2 (-1047)) (-4 *2 (-558)))) (-3950 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1219 *2)) (-4 *2 (-1047)) (-4 *2 (-558)))) (-3950 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-409 *1)) (-4 *1 (-1219 *3)) (-4 *3 (-1047)) (-4 *3 (-558)))) (-3581 (*1 *1 *1 *1) (-12 (-4 *1 (-1219 *2)) (-4 *2 (-1047)) (-4 *2 (-558)))) (-4144 (*1 *2 *1 *1) (-12 (-4 *3 (-558)) (-4 *3 (-1047)) (-5 *2 (-2 (|:| -2348 *3) (|:| -3961 *1) (|:| -1500 *1))) (-4 *1 (-1219 *3)))) (-1619 (*1 *2 *1 *1) (-12 (-4 *3 (-453)) (-4 *3 (-1047)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1219 *3)))) (-2779 (*1 *2 *3 *2) (-12 (-5 *3 (-409 *1)) (-4 *1 (-1219 *2)) (-4 *2 (-1047)) (-4 *2 (-365)))) (-3837 (*1 *1 *1) (-12 (-4 *1 (-1219 *2)) (-4 *2 (-1047)) (-4 *2 (-43 (-409 (-568))))))) +(-13 (-950 |t#1| (-763) (-1075)) (-281 |t#1| |t#1|) (-281 $ $) (-225) (-223 |t#1|) (-10 -8 (-15 -2572 ((-1244 |t#1|) $ (-763))) (-15 -3764 ((-1157 |t#1|) $)) (-15 -3197 ($ (-1157 |t#1|))) (-15 -3536 ($ $ (-763))) (-15 -2167 ((-3 $ "failed") $ (-763))) (-15 -3379 ((-2 (|:| -3961 $) (|:| -1500 $)) $ $)) (-15 -1643 ((-2 (|:| -3961 $) (|:| -1500 $)) $ (-763))) (-15 -3151 ($ $ (-763))) (-15 -3772 ($ $ (-763))) (-15 -3002 ($ $ $)) (-15 -4189 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1136)) (-6 (-1136)) |noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-15 -2217 (|t#1| $)) (-15 -4265 (|t#1| $ $))) |noBranch|) (IF (|has| |t#1| (-558)) (PROGN (-6 (-281 (-409 $) (-409 $))) (-15 -2779 ((-409 $) (-409 $) (-409 $))) (-15 -4477 ((-763) $ $)) (-15 -3809 ($ $ $)) (-15 -3950 ((-3 $ "failed") $ $)) (-15 -3950 ((-3 (-409 $) "failed") (-409 $) $)) (-15 -3581 ($ $ $)) (-15 -4144 ((-2 (|:| -2348 |t#1|) (|:| -3961 $) (|:| -1500 $)) $ $))) |noBranch|) (IF (|has| |t#1| (-453)) (-15 -1619 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |noBranch|) (IF (|has| |t#1| (-365)) (PROGN (-6 (-301)) (-6 -4515) (-15 -2779 (|t#1| (-409 $) |t#1|))) |noBranch|) (IF (|has| |t#1| (-43 (-409 (-568)))) (-15 -3837 ($ $)) |noBranch|))) +(((-21) . T) ((-23) . T) ((-52 |#1| (-763)) . T) ((-25) . T) ((-43 (-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((-43 |#1|) |has| |#1| (-172)) ((-43 $) -2198 (|has| |#1| (-904)) (|has| |#1| (-558)) (|has| |#1| (-453)) (|has| |#1| (-365))) ((-105) . T) ((-120 (-409 (-568)) (-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((-120 |#1| |#1|) . T) ((-120 $ $) -2198 (|has| |#1| (-904)) (|has| |#1| (-558)) (|has| |#1| (-453)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-137) . T) ((-148) |has| |#1| (-148)) ((-150) |has| |#1| (-150)) ((-608 (-850)) . T) ((-172) -2198 (|has| |#1| (-904)) (|has| |#1| (-558)) (|has| |#1| (-453)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-609 (-541)) -12 (|has| (-1075) (-609 (-541))) (|has| |#1| (-609 (-541)))) ((-609 (-887 (-381))) -12 (|has| (-1075) (-609 (-887 (-381)))) (|has| |#1| (-609 (-887 (-381))))) ((-609 (-887 (-568))) -12 (|has| (-1075) (-609 (-887 (-568)))) (|has| |#1| (-609 (-887 (-568))))) ((-223 |#1|) . T) ((-225) . T) ((-281 (-409 $) (-409 $)) |has| |#1| (-558)) ((-281 |#1| |#1|) . T) ((-281 $ $) . T) ((-285) -2198 (|has| |#1| (-904)) (|has| |#1| (-558)) (|has| |#1| (-453)) (|has| |#1| (-365))) ((-301) |has| |#1| (-365)) ((-303 $) . T) ((-324 |#1| (-763)) . T) ((-379 |#1|) . T) ((-413 |#1|) . T) ((-453) -2198 (|has| |#1| (-904)) (|has| |#1| (-453)) (|has| |#1| (-365))) ((-523 (-1075) |#1|) . T) ((-523 (-1075) $) . T) ((-523 $ $) . T) ((-558) -2198 (|has| |#1| (-904)) (|has| |#1| (-558)) (|has| |#1| (-453)) (|has| |#1| (-365))) ((-637 (-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((-637 |#1|) . T) ((-637 $) . T) ((-630 (-568)) |has| |#1| (-630 (-568))) ((-630 |#1|) . T) ((-707 (-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((-707 |#1|) |has| |#1| (-172)) ((-707 $) -2198 (|has| |#1| (-904)) (|has| |#1| (-558)) (|has| |#1| (-453)) (|has| |#1| (-365))) ((-716) . T) ((-842) |has| |#1| (-842)) ((-895 (-1075)) . T) ((-895 (-1161)) |has| |#1| (-895 (-1161))) ((-881 (-381)) -12 (|has| (-1075) (-881 (-381))) (|has| |#1| (-881 (-381)))) ((-881 (-568)) -12 (|has| (-1075) (-881 (-568))) (|has| |#1| (-881 (-568)))) ((-950 |#1| (-763) (-1075)) . T) ((-904) |has| |#1| (-904)) ((-916) |has| |#1| (-365)) ((-1037 (-409 (-568))) |has| |#1| (-1037 (-409 (-568)))) ((-1037 (-568)) |has| |#1| (-1037 (-568))) ((-1037 (-1075)) . T) ((-1037 |#1|) . T) ((-1053 (-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((-1053 |#1|) . T) ((-1053 $) -2198 (|has| |#1| (-904)) (|has| |#1| (-558)) (|has| |#1| (-453)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1047) . T) ((-1054) . T) ((-1102) . T) ((-1090) . T) ((-1136) |has| |#1| (-1136)) ((-1199) |has| |#1| (-904))) +((-2055 (((-634 (-1075)) $) 28)) (-2114 (($ $) 25)) (-2047 (($ |#2| |#3|) NIL) (($ $ (-1075) |#3|) 22) (($ $ (-634 (-1075)) (-634 |#3|)) 20)) (-2097 (($ $) 14)) (-2102 ((|#2| $) 12)) (-3206 ((|#3| $) 10))) +(((-1220 |#1| |#2| |#3|) (-10 -8 (-15 -2055 ((-634 (-1075)) |#1|)) (-15 -2047 (|#1| |#1| (-634 (-1075)) (-634 |#3|))) (-15 -2047 (|#1| |#1| (-1075) |#3|)) (-15 -2114 (|#1| |#1|)) (-15 -2047 (|#1| |#2| |#3|)) (-15 -3206 (|#3| |#1|)) (-15 -2097 (|#1| |#1|)) (-15 -2102 (|#2| |#1|))) (-1221 |#2| |#3|) (-1047) (-787)) (T -1220)) +NIL +(-10 -8 (-15 -2055 ((-634 (-1075)) |#1|)) (-15 -2047 (|#1| |#1| (-634 (-1075)) (-634 |#3|))) (-15 -2047 (|#1| |#1| (-1075) |#3|)) (-15 -2114 (|#1| |#1|)) (-15 -2047 (|#1| |#2| |#3|)) (-15 -3206 (|#3| |#1|)) (-15 -2097 (|#1| |#1|)) (-15 -2102 (|#2| |#1|))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-2055 (((-634 (-1075)) $) 70)) (-1305 (((-1161) $) 98)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) 50 (|has| |#1| (-558)))) (-2227 (($ $) 51 (|has| |#1| (-558)))) (-1573 (((-121) $) 53 (|has| |#1| (-558)))) (-2617 (($ $ |#2|) 93) (($ $ |#2| |#2|) 92)) (-2583 (((-1141 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 100)) (-3134 (((-3 $ "failed") $ $) 18)) (-2671 (($) 16 T CONST)) (-2114 (($ $) 59)) (-2925 (((-3 $ "failed") $) 33)) (-3992 (((-121) $) 69)) (-4477 ((|#2| $) 95) ((|#2| $ |#2|) 94)) (-2735 (((-121) $) 30)) (-3536 (($ $ (-917)) 96)) (-3921 (((-121) $) 61)) (-2047 (($ |#1| |#2|) 60) (($ $ (-1075) |#2|) 72) (($ $ (-634 (-1075)) (-634 |#2|)) 71)) (-2795 (($ (-1 |#1| |#1|) $) 62)) (-2097 (($ $) 64)) (-2102 ((|#1| $) 65)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-1807 (($ $ |#2|) 90)) (-2595 (((-3 $ "failed") $ $) 49 (|has| |#1| (-558)))) (-1339 (((-1141 |#1|) $ |#1|) 89 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-2779 ((|#1| $ |#2|) 99) (($ $ $) 76 (|has| |#2| (-1102)))) (-4189 (($ $ (-634 (-1161)) (-634 (-763))) 84 (-12 (|has| |#1| (-895 (-1161))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1161) (-763)) 83 (-12 (|has| |#1| (-895 (-1161))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-634 (-1161))) 82 (-12 (|has| |#1| (-895 (-1161))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1161)) 81 (-12 (|has| |#1| (-895 (-1161))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-763)) 79 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 77 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3206 ((|#2| $) 63)) (-1811 (($ $) 68)) (-2745 (((-850) $) 11) (($ (-568)) 27) (($ (-409 (-568))) 56 (|has| |#1| (-43 (-409 (-568))))) (($ $) 48 (|has| |#1| (-558))) (($ |#1|) 46 (|has| |#1| (-172)))) (-2604 ((|#1| $ |#2|) 58)) (-4371 (((-3 $ "failed") $) 47 (|has| |#1| (-148)))) (-4078 (((-763)) 28)) (-1374 ((|#1| $) 97)) (-1826 (((-121) $ $) 52 (|has| |#1| (-558)))) (-3996 ((|#1| $ |#2|) 91 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -2745 (|#1| (-1161))))))) (-1887 (($ $ (-917)) 25) (($ $ (-763)) 32)) (-3056 (($) 17 T CONST)) (-1556 (($) 29 T CONST)) (-3190 (($ $ (-634 (-1161)) (-634 (-763))) 88 (-12 (|has| |#1| (-895 (-1161))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1161) (-763)) 87 (-12 (|has| |#1| (-895 (-1161))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-634 (-1161))) 86 (-12 (|has| |#1| (-895 (-1161))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1161)) 85 (-12 (|has| |#1| (-895 (-1161))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-763)) 80 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 78 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-1717 (((-121) $ $) 6)) (-1779 (($ $ |#1|) 57 (|has| |#1| (-365)))) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 24) (($ $ (-763)) 31)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 23) (($ $ |#1|) 67) (($ |#1| $) 66) (($ (-409 (-568)) $) 55 (|has| |#1| (-43 (-409 (-568))))) (($ $ (-409 (-568))) 54 (|has| |#1| (-43 (-409 (-568))))))) +(((-1221 |#1| |#2|) (-1275) (-1047) (-787)) (T -1221)) +((-2583 (*1 *2 *1) (-12 (-4 *1 (-1221 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-787)) (-5 *2 (-1141 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-2779 (*1 *2 *1 *3) (-12 (-4 *1 (-1221 *2 *3)) (-4 *3 (-787)) (-4 *2 (-1047)))) (-1305 (*1 *2 *1) (-12 (-4 *1 (-1221 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-787)) (-5 *2 (-1161)))) (-1374 (*1 *2 *1) (-12 (-4 *1 (-1221 *2 *3)) (-4 *3 (-787)) (-4 *2 (-1047)))) (-3536 (*1 *1 *1 *2) (-12 (-5 *2 (-917)) (-4 *1 (-1221 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-787)))) (-4477 (*1 *2 *1) (-12 (-4 *1 (-1221 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-787)))) (-4477 (*1 *2 *1 *2) (-12 (-4 *1 (-1221 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-787)))) (-2617 (*1 *1 *1 *2) (-12 (-4 *1 (-1221 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-787)))) (-2617 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1221 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-787)))) (-3996 (*1 *2 *1 *3) (-12 (-4 *1 (-1221 *2 *3)) (-4 *3 (-787)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2745 (*2 (-1161)))) (-4 *2 (-1047)))) (-1807 (*1 *1 *1 *2) (-12 (-4 *1 (-1221 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-787)))) (-1339 (*1 *2 *1 *3) (-12 (-4 *1 (-1221 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-787)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1141 *3))))) +(-13 (-974 |t#1| |t#2| (-1075)) (-10 -8 (-15 -2583 ((-1141 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -2779 (|t#1| $ |t#2|)) (-15 -1305 ((-1161) $)) (-15 -1374 (|t#1| $)) (-15 -3536 ($ $ (-917))) (-15 -4477 (|t#2| $)) (-15 -4477 (|t#2| $ |t#2|)) (-15 -2617 ($ $ |t#2|)) (-15 -2617 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -2745 (|t#1| (-1161)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3996 (|t#1| $ |t#2|)) |noBranch|) |noBranch|) (-15 -1807 ($ $ |t#2|)) (IF (|has| |t#2| (-1102)) (-6 (-281 $ $)) |noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-225)) (IF (|has| |t#1| (-895 (-1161))) (-6 (-895 (-1161))) |noBranch|)) |noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -1339 ((-1141 |t#1|) $ |t#1|)) |noBranch|))) +(((-21) . T) ((-23) . T) ((-52 |#1| |#2|) . T) ((-25) . T) ((-43 (-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((-43 |#1|) |has| |#1| (-172)) ((-43 $) |has| |#1| (-558)) ((-105) . T) ((-120 (-409 (-568)) (-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((-120 |#1| |#1|) . T) ((-120 $ $) -2198 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-137) . T) ((-148) |has| |#1| (-148)) ((-150) |has| |#1| (-150)) ((-608 (-850)) . T) ((-172) -2198 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-225) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-281 $ $) |has| |#2| (-1102)) ((-285) |has| |#1| (-558)) ((-558) |has| |#1| (-558)) ((-637 (-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((-637 |#1|) . T) ((-637 $) . T) ((-707 (-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((-707 |#1|) |has| |#1| (-172)) ((-707 $) |has| |#1| (-558)) ((-716) . T) ((-895 (-1161)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-895 (-1161)))) ((-974 |#1| |#2| (-1075)) . T) ((-1053 (-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((-1053 |#1|) . T) ((-1053 $) -2198 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-1047) . T) ((-1054) . T) ((-1102) . T) ((-1090) . T)) +((-4305 ((|#2| |#2|) 12)) (-1678 (((-420 |#2|) |#2|) 14)) (-1699 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-568))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-568)))) 30))) +(((-1222 |#1| |#2|) (-10 -7 (-15 -1678 ((-420 |#2|) |#2|)) (-15 -4305 (|#2| |#2|)) (-15 -1699 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-568))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-568)))))) (-558) (-13 (-1219 |#1|) (-558) (-10 -8 (-15 -2721 ($ $ $))))) (T -1222)) +((-1699 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-568)))) (-4 *4 (-13 (-1219 *3) (-558) (-10 -8 (-15 -2721 ($ $ $))))) (-4 *3 (-558)) (-5 *1 (-1222 *3 *4)))) (-4305 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-1219 *3) (-558) (-10 -8 (-15 -2721 ($ $ $))))))) (-1678 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-420 *3)) (-5 *1 (-1222 *4 *3)) (-4 *3 (-13 (-1219 *4) (-558) (-10 -8 (-15 -2721 ($ $ $)))))))) +(-10 -7 (-15 -1678 ((-420 |#2|) |#2|)) (-15 -4305 (|#2| |#2|)) (-15 -1699 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-568))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-568)))))) +((-2795 (((-1228 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1228 |#1| |#3| |#5|)) 23))) +(((-1223 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2795 ((-1228 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1228 |#1| |#3| |#5|)))) (-1047) (-1047) (-1161) (-1161) |#1| |#2|) (T -1223)) +((-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1228 *5 *7 *9)) (-4 *5 (-1047)) (-4 *6 (-1047)) (-14 *7 (-1161)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1228 *6 *8 *10)) (-5 *1 (-1223 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1161))))) +(-10 -7 (-15 -2795 ((-1228 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1228 |#1| |#3| |#5|)))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-2055 (((-634 (-1075)) $) 70)) (-1305 (((-1161) $) 98)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) 50 (|has| |#1| (-558)))) (-2227 (($ $) 51 (|has| |#1| (-558)))) (-1573 (((-121) $) 53 (|has| |#1| (-558)))) (-2617 (($ $ (-409 (-568))) 93) (($ $ (-409 (-568)) (-409 (-568))) 92)) (-2583 (((-1141 (-2 (|:| |k| (-409 (-568))) (|:| |c| |#1|))) $) 100)) (-1982 (($ $) 127 (|has| |#1| (-43 (-409 (-568)))))) (-1933 (($ $) 110 (|has| |#1| (-43 (-409 (-568)))))) (-3134 (((-3 $ "failed") $ $) 18)) (-4305 (($ $) 154 (|has| |#1| (-365)))) (-1678 (((-420 $) $) 155 (|has| |#1| (-365)))) (-1902 (($ $) 109 (|has| |#1| (-43 (-409 (-568)))))) (-1497 (((-121) $ $) 145 (|has| |#1| (-365)))) (-1974 (($ $) 126 (|has| |#1| (-43 (-409 (-568)))))) (-2786 (($ $) 111 (|has| |#1| (-43 (-409 (-568)))))) (-3728 (($ (-763) (-1141 (-2 (|:| |k| (-409 (-568))) (|:| |c| |#1|)))) 164)) (-1990 (($ $) 125 (|has| |#1| (-43 (-409 (-568)))))) (-1941 (($ $) 112 (|has| |#1| (-43 (-409 (-568)))))) (-2671 (($) 16 T CONST)) (-2401 (($ $ $) 149 (|has| |#1| (-365)))) (-2114 (($ $) 59)) (-2925 (((-3 $ "failed") $) 33)) (-2412 (($ $ $) 148 (|has| |#1| (-365)))) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) 143 (|has| |#1| (-365)))) (-3927 (((-121) $) 156 (|has| |#1| (-365)))) (-3992 (((-121) $) 69)) (-1897 (($) 137 (|has| |#1| (-43 (-409 (-568)))))) (-4477 (((-409 (-568)) $) 95) (((-409 (-568)) $ (-409 (-568))) 94)) (-2735 (((-121) $) 30)) (-4044 (($ $ (-568)) 108 (|has| |#1| (-43 (-409 (-568)))))) (-3536 (($ $ (-917)) 96) (($ $ (-409 (-568))) 163)) (-3562 (((-3 (-634 $) "failed") (-634 $) $) 152 (|has| |#1| (-365)))) (-3921 (((-121) $) 61)) (-2047 (($ |#1| (-409 (-568))) 60) (($ $ (-1075) (-409 (-568))) 72) (($ $ (-634 (-1075)) (-634 (-409 (-568)))) 71)) (-2795 (($ (-1 |#1| |#1|) $) 62)) (-4416 (($ $) 134 (|has| |#1| (-43 (-409 (-568)))))) (-2097 (($ $) 64)) (-2102 ((|#1| $) 65)) (-2495 (($ (-634 $)) 141 (|has| |#1| (-365))) (($ $ $) 140 (|has| |#1| (-365)))) (-4487 (((-1143) $) 9)) (-2081 (($ $) 157 (|has| |#1| (-365)))) (-3837 (($ $) 162 (|has| |#1| (-43 (-409 (-568))))) (($ $ (-1161)) 161 (-2198 (-12 (|has| |#1| (-29 (-568))) (|has| |#1| (-959)) (|has| |#1| (-1181)) (|has| |#1| (-43 (-409 (-568))))) (-12 (|has| |#1| (-15 -2055 ((-634 (-1161)) |#1|))) (|has| |#1| (-15 -3837 (|#1| |#1| (-1161)))) (|has| |#1| (-43 (-409 (-568)))))))) (-4022 (((-1108) $) 10)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) 142 (|has| |#1| (-365)))) (-2721 (($ (-634 $)) 139 (|has| |#1| (-365))) (($ $ $) 138 (|has| |#1| (-365)))) (-3848 (((-420 $) $) 153 (|has| |#1| (-365)))) (-4497 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 151 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) 150 (|has| |#1| (-365)))) (-1807 (($ $ (-409 (-568))) 90)) (-2595 (((-3 $ "failed") $ $) 49 (|has| |#1| (-558)))) (-2344 (((-3 (-634 $) "failed") (-634 $) $) 144 (|has| |#1| (-365)))) (-1892 (($ $) 135 (|has| |#1| (-43 (-409 (-568)))))) (-1339 (((-1141 |#1|) $ |#1|) 89 (|has| |#1| (-15 ** (|#1| |#1| (-409 (-568))))))) (-2709 (((-763) $) 146 (|has| |#1| (-365)))) (-2779 ((|#1| $ (-409 (-568))) 99) (($ $ $) 76 (|has| (-409 (-568)) (-1102)))) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) 147 (|has| |#1| (-365)))) (-4189 (($ $ (-634 (-1161)) (-634 (-763))) 84 (-12 (|has| |#1| (-895 (-1161))) (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))))) (($ $ (-1161) (-763)) 83 (-12 (|has| |#1| (-895 (-1161))) (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))))) (($ $ (-634 (-1161))) 82 (-12 (|has| |#1| (-895 (-1161))) (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))))) (($ $ (-1161)) 81 (-12 (|has| |#1| (-895 (-1161))) (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))))) (($ $ (-763)) 79 (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|)))) (($ $) 77 (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))))) (-3206 (((-409 (-568)) $) 63)) (-1994 (($ $) 124 (|has| |#1| (-43 (-409 (-568)))))) (-1945 (($ $) 113 (|has| |#1| (-43 (-409 (-568)))))) (-1986 (($ $) 123 (|has| |#1| (-43 (-409 (-568)))))) (-1937 (($ $) 114 (|has| |#1| (-43 (-409 (-568)))))) (-1978 (($ $) 122 (|has| |#1| (-43 (-409 (-568)))))) (-2790 (($ $) 115 (|has| |#1| (-43 (-409 (-568)))))) (-1811 (($ $) 68)) (-2745 (((-850) $) 11) (($ (-568)) 27) (($ |#1|) 46 (|has| |#1| (-172))) (($ (-409 (-568))) 56 (|has| |#1| (-43 (-409 (-568))))) (($ $) 48 (|has| |#1| (-558)))) (-2604 ((|#1| $ (-409 (-568))) 58)) (-4371 (((-3 $ "failed") $) 47 (|has| |#1| (-148)))) (-4078 (((-763)) 28)) (-1374 ((|#1| $) 97)) (-2006 (($ $) 133 (|has| |#1| (-43 (-409 (-568)))))) (-1958 (($ $) 121 (|has| |#1| (-43 (-409 (-568)))))) (-1826 (((-121) $ $) 52 (|has| |#1| (-558)))) (-1998 (($ $) 132 (|has| |#1| (-43 (-409 (-568)))))) (-1949 (($ $) 120 (|has| |#1| (-43 (-409 (-568)))))) (-2014 (($ $) 131 (|has| |#1| (-43 (-409 (-568)))))) (-1966 (($ $) 119 (|has| |#1| (-43 (-409 (-568)))))) (-3996 ((|#1| $ (-409 (-568))) 91 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-409 (-568))))) (|has| |#1| (-15 -2745 (|#1| (-1161))))))) (-4023 (($ $) 130 (|has| |#1| (-43 (-409 (-568)))))) (-1970 (($ $) 118 (|has| |#1| (-43 (-409 (-568)))))) (-2010 (($ $) 129 (|has| |#1| (-43 (-409 (-568)))))) (-1962 (($ $) 117 (|has| |#1| (-43 (-409 (-568)))))) (-2002 (($ $) 128 (|has| |#1| (-43 (-409 (-568)))))) (-1953 (($ $) 116 (|has| |#1| (-43 (-409 (-568)))))) (-1887 (($ $ (-917)) 25) (($ $ (-763)) 32) (($ $ (-568)) 158 (|has| |#1| (-365)))) (-3056 (($) 17 T CONST)) (-1556 (($) 29 T CONST)) (-3190 (($ $ (-634 (-1161)) (-634 (-763))) 88 (-12 (|has| |#1| (-895 (-1161))) (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))))) (($ $ (-1161) (-763)) 87 (-12 (|has| |#1| (-895 (-1161))) (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))))) (($ $ (-634 (-1161))) 86 (-12 (|has| |#1| (-895 (-1161))) (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))))) (($ $ (-1161)) 85 (-12 (|has| |#1| (-895 (-1161))) (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))))) (($ $ (-763)) 80 (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|)))) (($ $) 78 (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))))) (-1717 (((-121) $ $) 6)) (-1779 (($ $ |#1|) 57 (|has| |#1| (-365))) (($ $ $) 160 (|has| |#1| (-365)))) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 24) (($ $ (-763)) 31) (($ $ (-568)) 159 (|has| |#1| (-365))) (($ $ $) 136 (|has| |#1| (-43 (-409 (-568))))) (($ $ (-409 (-568))) 107 (|has| |#1| (-43 (-409 (-568)))))) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 23) (($ $ |#1|) 67) (($ |#1| $) 66) (($ (-409 (-568)) $) 55 (|has| |#1| (-43 (-409 (-568))))) (($ $ (-409 (-568))) 54 (|has| |#1| (-43 (-409 (-568))))))) +(((-1224 |#1|) (-1275) (-1047)) (T -1224)) +((-3728 (*1 *1 *2 *3) (-12 (-5 *2 (-763)) (-5 *3 (-1141 (-2 (|:| |k| (-409 (-568))) (|:| |c| *4)))) (-4 *4 (-1047)) (-4 *1 (-1224 *4)))) (-3536 (*1 *1 *1 *2) (-12 (-5 *2 (-409 (-568))) (-4 *1 (-1224 *3)) (-4 *3 (-1047)))) (-3837 (*1 *1 *1) (-12 (-4 *1 (-1224 *2)) (-4 *2 (-1047)) (-4 *2 (-43 (-409 (-568)))))) (-3837 (*1 *1 *1 *2) (-2198 (-12 (-5 *2 (-1161)) (-4 *1 (-1224 *3)) (-4 *3 (-1047)) (-12 (-4 *3 (-29 (-568))) (-4 *3 (-959)) (-4 *3 (-1181)) (-4 *3 (-43 (-409 (-568)))))) (-12 (-5 *2 (-1161)) (-4 *1 (-1224 *3)) (-4 *3 (-1047)) (-12 (|has| *3 (-15 -2055 ((-634 *2) *3))) (|has| *3 (-15 -3837 (*3 *3 *2))) (-4 *3 (-43 (-409 (-568))))))))) +(-13 (-1221 |t#1| (-409 (-568))) (-10 -8 (-15 -3728 ($ (-763) (-1141 (-2 (|:| |k| (-409 (-568))) (|:| |c| |t#1|))))) (-15 -3536 ($ $ (-409 (-568)))) (IF (|has| |t#1| (-43 (-409 (-568)))) (PROGN (-15 -3837 ($ $)) (IF (|has| |t#1| (-15 -3837 (|t#1| |t#1| (-1161)))) (IF (|has| |t#1| (-15 -2055 ((-634 (-1161)) |t#1|))) (-15 -3837 ($ $ (-1161))) |noBranch|) |noBranch|) (IF (|has| |t#1| (-1181)) (IF (|has| |t#1| (-959)) (IF (|has| |t#1| (-29 (-568))) (-15 -3837 ($ $ (-1161))) |noBranch|) |noBranch|) |noBranch|) (-6 (-1002)) (-6 (-1181))) |noBranch|) (IF (|has| |t#1| (-365)) (-6 (-365)) |noBranch|))) +(((-21) . T) ((-23) . T) ((-52 |#1| (-409 (-568))) . T) ((-25) . T) ((-43 (-409 (-568))) -2198 (|has| |#1| (-365)) (|has| |#1| (-43 (-409 (-568))))) ((-43 |#1|) |has| |#1| (-172)) ((-43 $) -2198 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-40) |has| |#1| (-43 (-409 (-568)))) ((-98) |has| |#1| (-43 (-409 (-568)))) ((-105) . T) ((-120 (-409 (-568)) (-409 (-568))) -2198 (|has| |#1| (-365)) (|has| |#1| (-43 (-409 (-568))))) ((-120 |#1| |#1|) . T) ((-120 $ $) -2198 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-137) . T) ((-148) |has| |#1| (-148)) ((-150) |has| |#1| (-150)) ((-608 (-850)) . T) ((-172) -2198 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-225) |has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))) ((-238) |has| |#1| (-365)) ((-279) |has| |#1| (-43 (-409 (-568)))) ((-281 $ $) |has| (-409 (-568)) (-1102)) ((-285) -2198 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-301) |has| |#1| (-365)) ((-365) |has| |#1| (-365)) ((-453) |has| |#1| (-365)) ((-502) |has| |#1| (-43 (-409 (-568)))) ((-558) -2198 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-637 (-409 (-568))) -2198 (|has| |#1| (-365)) (|has| |#1| (-43 (-409 (-568))))) ((-637 |#1|) . T) ((-637 $) . T) ((-707 (-409 (-568))) -2198 (|has| |#1| (-365)) (|has| |#1| (-43 (-409 (-568))))) ((-707 |#1|) |has| |#1| (-172)) ((-707 $) -2198 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-716) . T) ((-895 (-1161)) -12 (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))) (|has| |#1| (-895 (-1161)))) ((-974 |#1| (-409 (-568)) (-1075)) . T) ((-916) |has| |#1| (-365)) ((-1002) |has| |#1| (-43 (-409 (-568)))) ((-1053 (-409 (-568))) -2198 (|has| |#1| (-365)) (|has| |#1| (-43 (-409 (-568))))) ((-1053 |#1|) . T) ((-1053 $) -2198 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1047) . T) ((-1054) . T) ((-1102) . T) ((-1090) . T) ((-1181) |has| |#1| (-43 (-409 (-568)))) ((-1184) |has| |#1| (-43 (-409 (-568)))) ((-1199) |has| |#1| (-365)) ((-1221 |#1| (-409 (-568))) . T)) +((-2537 (((-121) $) 12)) (-3666 (((-3 |#3| "failed") $) 17)) (-2854 ((|#3| $) 14))) +(((-1225 |#1| |#2| |#3|) (-10 -8 (-15 -2854 (|#3| |#1|)) (-15 -3666 ((-3 |#3| "failed") |#1|)) (-15 -2537 ((-121) |#1|))) (-1226 |#2| |#3|) (-1047) (-1203 |#2|)) (T -1225)) +NIL +(-10 -8 (-15 -2854 (|#3| |#1|)) (-15 -3666 ((-3 |#3| "failed") |#1|)) (-15 -2537 ((-121) |#1|))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-2055 (((-634 (-1075)) $) 70)) (-1305 (((-1161) $) 98)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) 50 (|has| |#1| (-558)))) (-2227 (($ $) 51 (|has| |#1| (-558)))) (-1573 (((-121) $) 53 (|has| |#1| (-558)))) (-2617 (($ $ (-409 (-568))) 93) (($ $ (-409 (-568)) (-409 (-568))) 92)) (-2583 (((-1141 (-2 (|:| |k| (-409 (-568))) (|:| |c| |#1|))) $) 100)) (-1982 (($ $) 127 (|has| |#1| (-43 (-409 (-568)))))) (-1933 (($ $) 110 (|has| |#1| (-43 (-409 (-568)))))) (-3134 (((-3 $ "failed") $ $) 18)) (-4305 (($ $) 154 (|has| |#1| (-365)))) (-1678 (((-420 $) $) 155 (|has| |#1| (-365)))) (-1902 (($ $) 109 (|has| |#1| (-43 (-409 (-568)))))) (-1497 (((-121) $ $) 145 (|has| |#1| (-365)))) (-1974 (($ $) 126 (|has| |#1| (-43 (-409 (-568)))))) (-2786 (($ $) 111 (|has| |#1| (-43 (-409 (-568)))))) (-3728 (($ (-763) (-1141 (-2 (|:| |k| (-409 (-568))) (|:| |c| |#1|)))) 164)) (-1990 (($ $) 125 (|has| |#1| (-43 (-409 (-568)))))) (-1941 (($ $) 112 (|has| |#1| (-43 (-409 (-568)))))) (-2671 (($) 16 T CONST)) (-3666 (((-3 |#2| "failed") $) 172)) (-2854 ((|#2| $) 171)) (-2401 (($ $ $) 149 (|has| |#1| (-365)))) (-2114 (($ $) 59)) (-2925 (((-3 $ "failed") $) 33)) (-3533 (((-409 (-568)) $) 169)) (-2412 (($ $ $) 148 (|has| |#1| (-365)))) (-2075 (($ (-409 (-568)) |#2|) 170)) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) 143 (|has| |#1| (-365)))) (-3927 (((-121) $) 156 (|has| |#1| (-365)))) (-3992 (((-121) $) 69)) (-1897 (($) 137 (|has| |#1| (-43 (-409 (-568)))))) (-4477 (((-409 (-568)) $) 95) (((-409 (-568)) $ (-409 (-568))) 94)) (-2735 (((-121) $) 30)) (-4044 (($ $ (-568)) 108 (|has| |#1| (-43 (-409 (-568)))))) (-3536 (($ $ (-917)) 96) (($ $ (-409 (-568))) 163)) (-3562 (((-3 (-634 $) "failed") (-634 $) $) 152 (|has| |#1| (-365)))) (-3921 (((-121) $) 61)) (-2047 (($ |#1| (-409 (-568))) 60) (($ $ (-1075) (-409 (-568))) 72) (($ $ (-634 (-1075)) (-634 (-409 (-568)))) 71)) (-2795 (($ (-1 |#1| |#1|) $) 62)) (-4416 (($ $) 134 (|has| |#1| (-43 (-409 (-568)))))) (-2097 (($ $) 64)) (-2102 ((|#1| $) 65)) (-2495 (($ (-634 $)) 141 (|has| |#1| (-365))) (($ $ $) 140 (|has| |#1| (-365)))) (-3429 ((|#2| $) 168)) (-3074 (((-3 |#2| "failed") $) 166)) (-2070 ((|#2| $) 167)) (-4487 (((-1143) $) 9)) (-2081 (($ $) 157 (|has| |#1| (-365)))) (-3837 (($ $) 162 (|has| |#1| (-43 (-409 (-568))))) (($ $ (-1161)) 161 (-2198 (-12 (|has| |#1| (-29 (-568))) (|has| |#1| (-959)) (|has| |#1| (-1181)) (|has| |#1| (-43 (-409 (-568))))) (-12 (|has| |#1| (-15 -2055 ((-634 (-1161)) |#1|))) (|has| |#1| (-15 -3837 (|#1| |#1| (-1161)))) (|has| |#1| (-43 (-409 (-568)))))))) (-4022 (((-1108) $) 10)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) 142 (|has| |#1| (-365)))) (-2721 (($ (-634 $)) 139 (|has| |#1| (-365))) (($ $ $) 138 (|has| |#1| (-365)))) (-3848 (((-420 $) $) 153 (|has| |#1| (-365)))) (-4497 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 151 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) 150 (|has| |#1| (-365)))) (-1807 (($ $ (-409 (-568))) 90)) (-2595 (((-3 $ "failed") $ $) 49 (|has| |#1| (-558)))) (-2344 (((-3 (-634 $) "failed") (-634 $) $) 144 (|has| |#1| (-365)))) (-1892 (($ $) 135 (|has| |#1| (-43 (-409 (-568)))))) (-1339 (((-1141 |#1|) $ |#1|) 89 (|has| |#1| (-15 ** (|#1| |#1| (-409 (-568))))))) (-2709 (((-763) $) 146 (|has| |#1| (-365)))) (-2779 ((|#1| $ (-409 (-568))) 99) (($ $ $) 76 (|has| (-409 (-568)) (-1102)))) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) 147 (|has| |#1| (-365)))) (-4189 (($ $ (-634 (-1161)) (-634 (-763))) 84 (-12 (|has| |#1| (-895 (-1161))) (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))))) (($ $ (-1161) (-763)) 83 (-12 (|has| |#1| (-895 (-1161))) (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))))) (($ $ (-634 (-1161))) 82 (-12 (|has| |#1| (-895 (-1161))) (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))))) (($ $ (-1161)) 81 (-12 (|has| |#1| (-895 (-1161))) (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))))) (($ $ (-763)) 79 (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|)))) (($ $) 77 (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))))) (-3206 (((-409 (-568)) $) 63)) (-1994 (($ $) 124 (|has| |#1| (-43 (-409 (-568)))))) (-1945 (($ $) 113 (|has| |#1| (-43 (-409 (-568)))))) (-1986 (($ $) 123 (|has| |#1| (-43 (-409 (-568)))))) (-1937 (($ $) 114 (|has| |#1| (-43 (-409 (-568)))))) (-1978 (($ $) 122 (|has| |#1| (-43 (-409 (-568)))))) (-2790 (($ $) 115 (|has| |#1| (-43 (-409 (-568)))))) (-1811 (($ $) 68)) (-2745 (((-850) $) 11) (($ (-568)) 27) (($ |#1|) 46 (|has| |#1| (-172))) (($ |#2|) 173) (($ (-409 (-568))) 56 (|has| |#1| (-43 (-409 (-568))))) (($ $) 48 (|has| |#1| (-558)))) (-2604 ((|#1| $ (-409 (-568))) 58)) (-4371 (((-3 $ "failed") $) 47 (|has| |#1| (-148)))) (-4078 (((-763)) 28)) (-1374 ((|#1| $) 97)) (-2006 (($ $) 133 (|has| |#1| (-43 (-409 (-568)))))) (-1958 (($ $) 121 (|has| |#1| (-43 (-409 (-568)))))) (-1826 (((-121) $ $) 52 (|has| |#1| (-558)))) (-1998 (($ $) 132 (|has| |#1| (-43 (-409 (-568)))))) (-1949 (($ $) 120 (|has| |#1| (-43 (-409 (-568)))))) (-2014 (($ $) 131 (|has| |#1| (-43 (-409 (-568)))))) (-1966 (($ $) 119 (|has| |#1| (-43 (-409 (-568)))))) (-3996 ((|#1| $ (-409 (-568))) 91 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-409 (-568))))) (|has| |#1| (-15 -2745 (|#1| (-1161))))))) (-4023 (($ $) 130 (|has| |#1| (-43 (-409 (-568)))))) (-1970 (($ $) 118 (|has| |#1| (-43 (-409 (-568)))))) (-2010 (($ $) 129 (|has| |#1| (-43 (-409 (-568)))))) (-1962 (($ $) 117 (|has| |#1| (-43 (-409 (-568)))))) (-2002 (($ $) 128 (|has| |#1| (-43 (-409 (-568)))))) (-1953 (($ $) 116 (|has| |#1| (-43 (-409 (-568)))))) (-1887 (($ $ (-917)) 25) (($ $ (-763)) 32) (($ $ (-568)) 158 (|has| |#1| (-365)))) (-3056 (($) 17 T CONST)) (-1556 (($) 29 T CONST)) (-3190 (($ $ (-634 (-1161)) (-634 (-763))) 88 (-12 (|has| |#1| (-895 (-1161))) (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))))) (($ $ (-1161) (-763)) 87 (-12 (|has| |#1| (-895 (-1161))) (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))))) (($ $ (-634 (-1161))) 86 (-12 (|has| |#1| (-895 (-1161))) (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))))) (($ $ (-1161)) 85 (-12 (|has| |#1| (-895 (-1161))) (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))))) (($ $ (-763)) 80 (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|)))) (($ $) 78 (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))))) (-1717 (((-121) $ $) 6)) (-1779 (($ $ |#1|) 57 (|has| |#1| (-365))) (($ $ $) 160 (|has| |#1| (-365)))) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 24) (($ $ (-763)) 31) (($ $ (-568)) 159 (|has| |#1| (-365))) (($ $ $) 136 (|has| |#1| (-43 (-409 (-568))))) (($ $ (-409 (-568))) 107 (|has| |#1| (-43 (-409 (-568)))))) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 23) (($ $ |#1|) 67) (($ |#1| $) 66) (($ (-409 (-568)) $) 55 (|has| |#1| (-43 (-409 (-568))))) (($ $ (-409 (-568))) 54 (|has| |#1| (-43 (-409 (-568))))))) +(((-1226 |#1| |#2|) (-1275) (-1047) (-1203 |t#1|)) (T -1226)) +((-3206 (*1 *2 *1) (-12 (-4 *1 (-1226 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-1203 *3)) (-5 *2 (-409 (-568))))) (-2745 (*1 *1 *2) (-12 (-4 *3 (-1047)) (-4 *1 (-1226 *3 *2)) (-4 *2 (-1203 *3)))) (-2075 (*1 *1 *2 *3) (-12 (-5 *2 (-409 (-568))) (-4 *4 (-1047)) (-4 *1 (-1226 *4 *3)) (-4 *3 (-1203 *4)))) (-3533 (*1 *2 *1) (-12 (-4 *1 (-1226 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-1203 *3)) (-5 *2 (-409 (-568))))) (-3429 (*1 *2 *1) (-12 (-4 *1 (-1226 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-1203 *3)))) (-2070 (*1 *2 *1) (-12 (-4 *1 (-1226 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-1203 *3)))) (-3074 (*1 *2 *1) (|partial| -12 (-4 *1 (-1226 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-1203 *3))))) +(-13 (-1224 |t#1|) (-1037 |t#2|) (-10 -8 (-15 -2075 ($ (-409 (-568)) |t#2|)) (-15 -3533 ((-409 (-568)) $)) (-15 -3429 (|t#2| $)) (-15 -3206 ((-409 (-568)) $)) (-15 -2745 ($ |t#2|)) (-15 -2070 (|t#2| $)) (-15 -3074 ((-3 |t#2| "failed") $)))) +(((-21) . T) ((-23) . T) ((-52 |#1| (-409 (-568))) . T) ((-25) . T) ((-43 (-409 (-568))) -2198 (|has| |#1| (-365)) (|has| |#1| (-43 (-409 (-568))))) ((-43 |#1|) |has| |#1| (-172)) ((-43 $) -2198 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-40) |has| |#1| (-43 (-409 (-568)))) ((-98) |has| |#1| (-43 (-409 (-568)))) ((-105) . T) ((-120 (-409 (-568)) (-409 (-568))) -2198 (|has| |#1| (-365)) (|has| |#1| (-43 (-409 (-568))))) ((-120 |#1| |#1|) . T) ((-120 $ $) -2198 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-137) . T) ((-148) |has| |#1| (-148)) ((-150) |has| |#1| (-150)) ((-608 (-850)) . T) ((-172) -2198 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-225) |has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))) ((-238) |has| |#1| (-365)) ((-279) |has| |#1| (-43 (-409 (-568)))) ((-281 $ $) |has| (-409 (-568)) (-1102)) ((-285) -2198 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-301) |has| |#1| (-365)) ((-365) |has| |#1| (-365)) ((-453) |has| |#1| (-365)) ((-502) |has| |#1| (-43 (-409 (-568)))) ((-558) -2198 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-637 (-409 (-568))) -2198 (|has| |#1| (-365)) (|has| |#1| (-43 (-409 (-568))))) ((-637 |#1|) . T) ((-637 $) . T) ((-707 (-409 (-568))) -2198 (|has| |#1| (-365)) (|has| |#1| (-43 (-409 (-568))))) ((-707 |#1|) |has| |#1| (-172)) ((-707 $) -2198 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-716) . T) ((-895 (-1161)) -12 (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))) (|has| |#1| (-895 (-1161)))) ((-974 |#1| (-409 (-568)) (-1075)) . T) ((-916) |has| |#1| (-365)) ((-1002) |has| |#1| (-43 (-409 (-568)))) ((-1037 |#2|) . T) ((-1053 (-409 (-568))) -2198 (|has| |#1| (-365)) (|has| |#1| (-43 (-409 (-568))))) ((-1053 |#1|) . T) ((-1053 $) -2198 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1047) . T) ((-1054) . T) ((-1102) . T) ((-1090) . T) ((-1181) |has| |#1| (-43 (-409 (-568)))) ((-1184) |has| |#1| (-43 (-409 (-568)))) ((-1199) |has| |#1| (-365)) ((-1221 |#1| (-409 (-568))) . T) ((-1224 |#1|) . T)) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-2055 (((-634 (-1075)) $) NIL)) (-1305 (((-1161) $) 96)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-2227 (($ $) NIL (|has| |#1| (-558)))) (-1573 (((-121) $) NIL (|has| |#1| (-558)))) (-2617 (($ $ (-409 (-568))) 106) (($ $ (-409 (-568)) (-409 (-568))) 108)) (-2583 (((-1141 (-2 (|:| |k| (-409 (-568))) (|:| |c| |#1|))) $) 51)) (-1982 (($ $) 179 (|has| |#1| (-43 (-409 (-568)))))) (-1933 (($ $) 155 (|has| |#1| (-43 (-409 (-568)))))) (-3134 (((-3 $ "failed") $ $) NIL)) (-4305 (($ $) NIL (|has| |#1| (-365)))) (-1678 (((-420 $) $) NIL (|has| |#1| (-365)))) (-1902 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1497 (((-121) $ $) NIL (|has| |#1| (-365)))) (-1974 (($ $) 175 (|has| |#1| (-43 (-409 (-568)))))) (-2786 (($ $) 151 (|has| |#1| (-43 (-409 (-568)))))) (-3728 (($ (-763) (-1141 (-2 (|:| |k| (-409 (-568))) (|:| |c| |#1|)))) 61)) (-1990 (($ $) 183 (|has| |#1| (-43 (-409 (-568)))))) (-1941 (($ $) 159 (|has| |#1| (-43 (-409 (-568)))))) (-2671 (($) NIL T CONST)) (-3666 (((-3 |#2| "failed") $) NIL)) (-2854 ((|#2| $) NIL)) (-2401 (($ $ $) NIL (|has| |#1| (-365)))) (-2114 (($ $) NIL)) (-2925 (((-3 $ "failed") $) 79)) (-3533 (((-409 (-568)) $) 12)) (-2412 (($ $ $) NIL (|has| |#1| (-365)))) (-2075 (($ (-409 (-568)) |#2|) 10)) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) NIL (|has| |#1| (-365)))) (-3927 (((-121) $) NIL (|has| |#1| (-365)))) (-3992 (((-121) $) 68)) (-1897 (($) NIL (|has| |#1| (-43 (-409 (-568)))))) (-4477 (((-409 (-568)) $) 103) (((-409 (-568)) $ (-409 (-568))) 104)) (-2735 (((-121) $) NIL)) (-4044 (($ $ (-568)) NIL (|has| |#1| (-43 (-409 (-568)))))) (-3536 (($ $ (-917)) 120) (($ $ (-409 (-568))) 118)) (-3562 (((-3 (-634 $) "failed") (-634 $) $) NIL (|has| |#1| (-365)))) (-3921 (((-121) $) NIL)) (-2047 (($ |#1| (-409 (-568))) 31) (($ $ (-1075) (-409 (-568))) NIL) (($ $ (-634 (-1075)) (-634 (-409 (-568)))) NIL)) (-2795 (($ (-1 |#1| |#1|) $) 115)) (-4416 (($ $) 149 (|has| |#1| (-43 (-409 (-568)))))) (-2097 (($ $) NIL)) (-2102 ((|#1| $) NIL)) (-2495 (($ (-634 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3429 ((|#2| $) 11)) (-3074 (((-3 |#2| "failed") $) 41)) (-2070 ((|#2| $) 42)) (-4487 (((-1143) $) NIL)) (-2081 (($ $) 93 (|has| |#1| (-365)))) (-3837 (($ $) 135 (|has| |#1| (-43 (-409 (-568))))) (($ $ (-1161)) 140 (-2198 (-12 (|has| |#1| (-15 -3837 (|#1| |#1| (-1161)))) (|has| |#1| (-15 -2055 ((-634 (-1161)) |#1|))) (|has| |#1| (-43 (-409 (-568))))) (-12 (|has| |#1| (-29 (-568))) (|has| |#1| (-43 (-409 (-568)))) (|has| |#1| (-959)) (|has| |#1| (-1181)))))) (-4022 (((-1108) $) NIL)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL (|has| |#1| (-365)))) (-2721 (($ (-634 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3848 (((-420 $) $) NIL (|has| |#1| (-365)))) (-4497 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL (|has| |#1| (-365)))) (-1807 (($ $ (-409 (-568))) 112)) (-2595 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-2344 (((-3 (-634 $) "failed") (-634 $) $) NIL (|has| |#1| (-365)))) (-1892 (($ $) 147 (|has| |#1| (-43 (-409 (-568)))))) (-1339 (((-1141 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-409 (-568))))))) (-2709 (((-763) $) NIL (|has| |#1| (-365)))) (-2779 ((|#1| $ (-409 (-568))) 100) (($ $ $) 86 (|has| (-409 (-568)) (-1102)))) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL (|has| |#1| (-365)))) (-4189 (($ $ (-634 (-1161)) (-634 (-763))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-1161) (-763)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-634 (-1161))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-1161)) 127 (-12 (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-763)) NIL (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))))) (-3206 (((-409 (-568)) $) 16)) (-1994 (($ $) 185 (|has| |#1| (-43 (-409 (-568)))))) (-1945 (($ $) 161 (|has| |#1| (-43 (-409 (-568)))))) (-1986 (($ $) 181 (|has| |#1| (-43 (-409 (-568)))))) (-1937 (($ $) 157 (|has| |#1| (-43 (-409 (-568)))))) (-1978 (($ $) 177 (|has| |#1| (-43 (-409 (-568)))))) (-2790 (($ $) 153 (|has| |#1| (-43 (-409 (-568)))))) (-1811 (($ $) 110)) (-2745 (((-850) $) NIL) (($ (-568)) 35) (($ |#1|) 27 (|has| |#1| (-172))) (($ |#2|) 32) (($ (-409 (-568))) 128 (|has| |#1| (-43 (-409 (-568))))) (($ $) NIL (|has| |#1| (-558)))) (-2604 ((|#1| $ (-409 (-568))) 99)) (-4371 (((-3 $ "failed") $) NIL (|has| |#1| (-148)))) (-4078 (((-763)) 117)) (-1374 ((|#1| $) 98)) (-2006 (($ $) 191 (|has| |#1| (-43 (-409 (-568)))))) (-1958 (($ $) 167 (|has| |#1| (-43 (-409 (-568)))))) (-1826 (((-121) $ $) NIL (|has| |#1| (-558)))) (-1998 (($ $) 187 (|has| |#1| (-43 (-409 (-568)))))) (-1949 (($ $) 163 (|has| |#1| (-43 (-409 (-568)))))) (-2014 (($ $) 195 (|has| |#1| (-43 (-409 (-568)))))) (-1966 (($ $) 171 (|has| |#1| (-43 (-409 (-568)))))) (-3996 ((|#1| $ (-409 (-568))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-409 (-568))))) (|has| |#1| (-15 -2745 (|#1| (-1161))))))) (-4023 (($ $) 197 (|has| |#1| (-43 (-409 (-568)))))) (-1970 (($ $) 173 (|has| |#1| (-43 (-409 (-568)))))) (-2010 (($ $) 193 (|has| |#1| (-43 (-409 (-568)))))) (-1962 (($ $) 169 (|has| |#1| (-43 (-409 (-568)))))) (-2002 (($ $) 189 (|has| |#1| (-43 (-409 (-568)))))) (-1953 (($ $) 165 (|has| |#1| (-43 (-409 (-568)))))) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL (|has| |#1| (-365)))) (-3056 (($) 21 T CONST)) (-1556 (($) 17 T CONST)) (-3190 (($ $ (-634 (-1161)) (-634 (-763))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-1161) (-763)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-634 (-1161))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-1161)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-763)) NIL (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))))) (-1717 (((-121) $ $) 66)) (-1779 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) 92 (|has| |#1| (-365)))) (-1773 (($ $) 131) (($ $ $) 72)) (-1767 (($ $ $) 70)) (** (($ $ (-917)) NIL) (($ $ (-763)) 76) (($ $ (-568)) 144 (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-43 (-409 (-568))))) (($ $ (-409 (-568))) 145 (|has| |#1| (-43 (-409 (-568)))))) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-409 (-568)) $) NIL (|has| |#1| (-43 (-409 (-568))))) (($ $ (-409 (-568))) NIL (|has| |#1| (-43 (-409 (-568))))))) +(((-1227 |#1| |#2|) (-1226 |#1| |#2|) (-1047) (-1203 |#1|)) (T -1227)) +NIL +(-1226 |#1| |#2|) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-2055 (((-634 (-1075)) $) NIL)) (-1305 (((-1161) $) 11)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-2227 (($ $) NIL (|has| |#1| (-558)))) (-1573 (((-121) $) NIL (|has| |#1| (-558)))) (-2617 (($ $ (-409 (-568))) NIL) (($ $ (-409 (-568)) (-409 (-568))) NIL)) (-2583 (((-1141 (-2 (|:| |k| (-409 (-568))) (|:| |c| |#1|))) $) NIL)) (-1982 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1933 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-3134 (((-3 $ "failed") $ $) NIL)) (-4305 (($ $) NIL (|has| |#1| (-365)))) (-1678 (((-420 $) $) NIL (|has| |#1| (-365)))) (-1902 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1497 (((-121) $ $) NIL (|has| |#1| (-365)))) (-1974 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-2786 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-3728 (($ (-763) (-1141 (-2 (|:| |k| (-409 (-568))) (|:| |c| |#1|)))) NIL)) (-1990 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1941 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-2671 (($) NIL T CONST)) (-3666 (((-3 (-1207 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1235 |#1| |#2| |#3|) "failed") $) 22)) (-2854 (((-1207 |#1| |#2| |#3|) $) NIL) (((-1235 |#1| |#2| |#3|) $) NIL)) (-2401 (($ $ $) NIL (|has| |#1| (-365)))) (-2114 (($ $) NIL)) (-2925 (((-3 $ "failed") $) NIL)) (-3533 (((-409 (-568)) $) 57)) (-2412 (($ $ $) NIL (|has| |#1| (-365)))) (-2075 (($ (-409 (-568)) (-1207 |#1| |#2| |#3|)) NIL)) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) NIL (|has| |#1| (-365)))) (-3927 (((-121) $) NIL (|has| |#1| (-365)))) (-3992 (((-121) $) NIL)) (-1897 (($) NIL (|has| |#1| (-43 (-409 (-568)))))) (-4477 (((-409 (-568)) $) NIL) (((-409 (-568)) $ (-409 (-568))) NIL)) (-2735 (((-121) $) NIL)) (-4044 (($ $ (-568)) NIL (|has| |#1| (-43 (-409 (-568)))))) (-3536 (($ $ (-917)) NIL) (($ $ (-409 (-568))) NIL)) (-3562 (((-3 (-634 $) "failed") (-634 $) $) NIL (|has| |#1| (-365)))) (-3921 (((-121) $) NIL)) (-2047 (($ |#1| (-409 (-568))) 29) (($ $ (-1075) (-409 (-568))) NIL) (($ $ (-634 (-1075)) (-634 (-409 (-568)))) NIL)) (-2795 (($ (-1 |#1| |#1|) $) NIL)) (-4416 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-2097 (($ $) NIL)) (-2102 ((|#1| $) NIL)) (-2495 (($ (-634 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3429 (((-1207 |#1| |#2| |#3|) $) 60)) (-3074 (((-3 (-1207 |#1| |#2| |#3|) "failed") $) NIL)) (-2070 (((-1207 |#1| |#2| |#3|) $) NIL)) (-4487 (((-1143) $) NIL)) (-2081 (($ $) NIL (|has| |#1| (-365)))) (-3837 (($ $) 38 (|has| |#1| (-43 (-409 (-568))))) (($ $ (-1161)) NIL (-2198 (-12 (|has| |#1| (-15 -3837 (|#1| |#1| (-1161)))) (|has| |#1| (-15 -2055 ((-634 (-1161)) |#1|))) (|has| |#1| (-43 (-409 (-568))))) (-12 (|has| |#1| (-29 (-568))) (|has| |#1| (-43 (-409 (-568)))) (|has| |#1| (-959)) (|has| |#1| (-1181))))) (($ $ (-1240 |#2|)) 39 (|has| |#1| (-43 (-409 (-568)))))) (-4022 (((-1108) $) NIL)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) NIL (|has| |#1| (-365)))) (-2721 (($ (-634 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3848 (((-420 $) $) NIL (|has| |#1| (-365)))) (-4497 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) NIL (|has| |#1| (-365)))) (-1807 (($ $ (-409 (-568))) NIL)) (-2595 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-2344 (((-3 (-634 $) "failed") (-634 $) $) NIL (|has| |#1| (-365)))) (-1892 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1339 (((-1141 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-409 (-568))))))) (-2709 (((-763) $) NIL (|has| |#1| (-365)))) (-2779 ((|#1| $ (-409 (-568))) NIL) (($ $ $) NIL (|has| (-409 (-568)) (-1102)))) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) NIL (|has| |#1| (-365)))) (-4189 (($ $ (-634 (-1161)) (-634 (-763))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-1161) (-763)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-634 (-1161))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-1161)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-763)) NIL (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|)))) (($ $) 36 (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|)))) (($ $ (-1240 |#2|)) 37)) (-3206 (((-409 (-568)) $) NIL)) (-1994 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1945 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1986 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1937 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1978 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-2790 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1811 (($ $) NIL)) (-2745 (((-850) $) 87) (($ (-568)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1207 |#1| |#2| |#3|)) 16) (($ (-1235 |#1| |#2| |#3|)) 17) (($ (-1240 |#2|)) 35) (($ (-409 (-568))) NIL (|has| |#1| (-43 (-409 (-568))))) (($ $) NIL (|has| |#1| (-558)))) (-2604 ((|#1| $ (-409 (-568))) NIL)) (-4371 (((-3 $ "failed") $) NIL (|has| |#1| (-148)))) (-4078 (((-763)) NIL)) (-1374 ((|#1| $) 12)) (-2006 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1958 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1826 (((-121) $ $) NIL (|has| |#1| (-558)))) (-1998 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1949 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-2014 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1966 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-3996 ((|#1| $ (-409 (-568))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-409 (-568))))) (|has| |#1| (-15 -2745 (|#1| (-1161))))))) (-4023 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1970 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-2010 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1962 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-2002 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1953 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL (|has| |#1| (-365)))) (-3056 (($) 31 T CONST)) (-1556 (($) 26 T CONST)) (-3190 (($ $ (-634 (-1161)) (-634 (-763))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-1161) (-763)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-634 (-1161))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-1161)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-763)) NIL (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-409 (-568)) |#1|))))) (-1717 (((-121) $ $) NIL)) (-1779 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) 33)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ (-568)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-43 (-409 (-568))))) (($ $ (-409 (-568))) NIL (|has| |#1| (-43 (-409 (-568)))))) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-409 (-568)) $) NIL (|has| |#1| (-43 (-409 (-568))))) (($ $ (-409 (-568))) NIL (|has| |#1| (-43 (-409 (-568))))))) +(((-1228 |#1| |#2| |#3|) (-13 (-1226 |#1| (-1207 |#1| |#2| |#3|)) (-1037 (-1235 |#1| |#2| |#3|)) (-10 -8 (-15 -2745 ($ (-1240 |#2|))) (-15 -4189 ($ $ (-1240 |#2|))) (IF (|has| |#1| (-43 (-409 (-568)))) (-15 -3837 ($ $ (-1240 |#2|))) |noBranch|))) (-1047) (-1161) |#1|) (T -1228)) +((-2745 (*1 *1 *2) (-12 (-5 *2 (-1240 *4)) (-14 *4 (-1161)) (-5 *1 (-1228 *3 *4 *5)) (-4 *3 (-1047)) (-14 *5 *3))) (-4189 (*1 *1 *1 *2) (-12 (-5 *2 (-1240 *4)) (-14 *4 (-1161)) (-5 *1 (-1228 *3 *4 *5)) (-4 *3 (-1047)) (-14 *5 *3))) (-3837 (*1 *1 *1 *2) (-12 (-5 *2 (-1240 *4)) (-14 *4 (-1161)) (-5 *1 (-1228 *3 *4 *5)) (-4 *3 (-43 (-409 (-568)))) (-4 *3 (-1047)) (-14 *5 *3)))) +(-13 (-1226 |#1| (-1207 |#1| |#2| |#3|)) (-1037 (-1235 |#1| |#2| |#3|)) (-10 -8 (-15 -2745 ($ (-1240 |#2|))) (-15 -4189 ($ $ (-1240 |#2|))) (IF (|has| |#1| (-43 (-409 (-568)))) (-15 -3837 ($ $ (-1240 |#2|))) |noBranch|))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) 32)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL)) (-2227 (($ $) NIL)) (-1573 (((-121) $) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-2671 (($) NIL T CONST)) (-3666 (((-3 (-568) "failed") $) NIL (|has| (-1228 |#2| |#3| |#4|) (-1037 (-568)))) (((-3 (-409 (-568)) "failed") $) NIL (|has| (-1228 |#2| |#3| |#4|) (-1037 (-409 (-568))))) (((-3 (-1228 |#2| |#3| |#4|) "failed") $) 20)) (-2854 (((-568) $) NIL (|has| (-1228 |#2| |#3| |#4|) (-1037 (-568)))) (((-409 (-568)) $) NIL (|has| (-1228 |#2| |#3| |#4|) (-1037 (-409 (-568))))) (((-1228 |#2| |#3| |#4|) $) NIL)) (-2114 (($ $) 33)) (-2925 (((-3 $ "failed") $) 25)) (-3250 (($ $) NIL (|has| (-1228 |#2| |#3| |#4|) (-453)))) (-3088 (($ $ (-1228 |#2| |#3| |#4|) (-314 |#2| |#3| |#4|) $) NIL)) (-2735 (((-121) $) NIL)) (-4178 (((-763) $) 11)) (-3921 (((-121) $) NIL)) (-2047 (($ (-1228 |#2| |#3| |#4|) (-314 |#2| |#3| |#4|)) 23)) (-2144 (((-314 |#2| |#3| |#4|) $) NIL)) (-3842 (($ (-1 (-314 |#2| |#3| |#4|) (-314 |#2| |#3| |#4|)) $) NIL)) (-2795 (($ (-1 (-1228 |#2| |#3| |#4|) (-1228 |#2| |#3| |#4|)) $) NIL)) (-2620 (((-3 (-835 |#2|) "failed") $) 72)) (-2097 (($ $) NIL)) (-2102 (((-1228 |#2| |#3| |#4|) $) 18)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2086 (((-121) $) NIL)) (-2091 (((-1228 |#2| |#3| |#4|) $) NIL)) (-2595 (((-3 $ "failed") $ (-1228 |#2| |#3| |#4|)) NIL (|has| (-1228 |#2| |#3| |#4|) (-558))) (((-3 $ "failed") $ $) NIL)) (-3660 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1228 |#2| |#3| |#4|)) (|:| |%expon| (-314 |#2| |#3| |#4|)) (|:| |%expTerms| (-634 (-2 (|:| |k| (-409 (-568))) (|:| |c| |#2|)))))) (|:| |%type| (-1143))) "failed") $) 55)) (-3206 (((-314 |#2| |#3| |#4|) $) 14)) (-3367 (((-1228 |#2| |#3| |#4|) $) NIL (|has| (-1228 |#2| |#3| |#4|) (-453)))) (-2745 (((-850) $) NIL) (($ (-568)) NIL) (($ (-1228 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-409 (-568))) NIL (-2198 (|has| (-1228 |#2| |#3| |#4|) (-43 (-409 (-568)))) (|has| (-1228 |#2| |#3| |#4|) (-1037 (-409 (-568))))))) (-1302 (((-634 (-1228 |#2| |#3| |#4|)) $) NIL)) (-2604 (((-1228 |#2| |#3| |#4|) $ (-314 |#2| |#3| |#4|)) NIL)) (-4371 (((-3 $ "failed") $) NIL (|has| (-1228 |#2| |#3| |#4|) (-148)))) (-4078 (((-763)) NIL)) (-4171 (($ $ $ (-763)) NIL (|has| (-1228 |#2| |#3| |#4|) (-172)))) (-1826 (((-121) $ $) NIL)) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (-3056 (($) 60 T CONST)) (-1556 (($) NIL T CONST)) (-1717 (((-121) $ $) NIL)) (-1779 (($ $ (-1228 |#2| |#3| |#4|)) NIL (|has| (-1228 |#2| |#3| |#4|) (-365)))) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) NIL) (($ $ (-1228 |#2| |#3| |#4|)) NIL) (($ (-1228 |#2| |#3| |#4|) $) NIL) (($ (-409 (-568)) $) NIL (|has| (-1228 |#2| |#3| |#4|) (-43 (-409 (-568))))) (($ $ (-409 (-568))) NIL (|has| (-1228 |#2| |#3| |#4|) (-43 (-409 (-568))))))) +(((-1229 |#1| |#2| |#3| |#4|) (-13 (-324 (-1228 |#2| |#3| |#4|) (-314 |#2| |#3| |#4|)) (-558) (-10 -8 (-15 -2620 ((-3 (-835 |#2|) "failed") $)) (-15 -3660 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1228 |#2| |#3| |#4|)) (|:| |%expon| (-314 |#2| |#3| |#4|)) (|:| |%expTerms| (-634 (-2 (|:| |k| (-409 (-568))) (|:| |c| |#2|)))))) (|:| |%type| (-1143))) "failed") $)))) (-13 (-842) (-1037 (-568)) (-630 (-568)) (-453)) (-13 (-27) (-1181) (-432 |#1|)) (-1161) |#2|) (T -1229)) +((-2620 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-842) (-1037 (-568)) (-630 (-568)) (-453))) (-5 *2 (-835 *4)) (-5 *1 (-1229 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1181) (-432 *3))) (-14 *5 (-1161)) (-14 *6 *4))) (-3660 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-842) (-1037 (-568)) (-630 (-568)) (-453))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1228 *4 *5 *6)) (|:| |%expon| (-314 *4 *5 *6)) (|:| |%expTerms| (-634 (-2 (|:| |k| (-409 (-568))) (|:| |c| *4)))))) (|:| |%type| (-1143)))) (-5 *1 (-1229 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1181) (-432 *3))) (-14 *5 (-1161)) (-14 *6 *4)))) +(-13 (-324 (-1228 |#2| |#3| |#4|) (-314 |#2| |#3| |#4|)) (-558) (-10 -8 (-15 -2620 ((-3 (-835 |#2|) "failed") $)) (-15 -3660 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1228 |#2| |#3| |#4|)) (|:| |%expon| (-314 |#2| |#3| |#4|)) (|:| |%expTerms| (-634 (-2 (|:| |k| (-409 (-568))) (|:| |c| |#2|)))))) (|:| |%type| (-1143))) "failed") $)))) +((-2850 ((|#2| $) 28)) (-2235 ((|#2| $) 18)) (-2796 (($ $) 35)) (-3910 (($ $ (-568)) 63)) (-2510 (((-121) $ (-763)) 32)) (-1659 ((|#2| $ |#2|) 60)) (-2395 ((|#2| $ |#2|) 58)) (-2436 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 51) (($ $ "rest" $) 55) ((|#2| $ "last" |#2|) 53)) (-3827 (($ $ (-634 $)) 59)) (-1679 ((|#2| $) 17)) (-3935 (($ $) NIL) (($ $ (-763)) 41)) (-2287 (((-634 $) $) 25)) (-1700 (((-121) $ $) 49)) (-1737 (((-121) $ (-763)) 31)) (-2166 (((-121) $ (-763)) 30)) (-1651 (((-121) $) 27)) (-4162 ((|#2| $) 23) (($ $ (-763)) 45)) (-2779 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-3790 (((-121) $) 21)) (-2340 (($ $) 38)) (-2714 (($ $) 64)) (-2775 (((-763) $) 40)) (-3335 (($ $) 39)) (-2768 (($ $ $) 57) (($ |#2| $) NIL)) (-4339 (((-634 $) $) 26)) (-1717 (((-121) $ $) 47)) (-1697 (((-763) $) 34))) +(((-1230 |#1| |#2|) (-10 -8 (-15 -3910 (|#1| |#1| (-568))) (-15 -2436 (|#2| |#1| "last" |#2|)) (-15 -2395 (|#2| |#1| |#2|)) (-15 -2436 (|#1| |#1| "rest" |#1|)) (-15 -2436 (|#2| |#1| "first" |#2|)) (-15 -2714 (|#1| |#1|)) (-15 -2340 (|#1| |#1|)) (-15 -2775 ((-763) |#1|)) (-15 -3335 (|#1| |#1|)) (-15 -2235 (|#2| |#1|)) (-15 -1679 (|#2| |#1|)) (-15 -2796 (|#1| |#1|)) (-15 -4162 (|#1| |#1| (-763))) (-15 -2779 (|#2| |#1| "last")) (-15 -4162 (|#2| |#1|)) (-15 -3935 (|#1| |#1| (-763))) (-15 -2779 (|#1| |#1| "rest")) (-15 -3935 (|#1| |#1|)) (-15 -2779 (|#2| |#1| "first")) (-15 -2768 (|#1| |#2| |#1|)) (-15 -2768 (|#1| |#1| |#1|)) (-15 -1659 (|#2| |#1| |#2|)) (-15 -2436 (|#2| |#1| "value" |#2|)) (-15 -3827 (|#1| |#1| (-634 |#1|))) (-15 -1700 ((-121) |#1| |#1|)) (-15 -3790 ((-121) |#1|)) (-15 -2779 (|#2| |#1| "value")) (-15 -2850 (|#2| |#1|)) (-15 -1651 ((-121) |#1|)) (-15 -2287 ((-634 |#1|) |#1|)) (-15 -4339 ((-634 |#1|) |#1|)) (-15 -1717 ((-121) |#1| |#1|)) (-15 -1697 ((-763) |#1|)) (-15 -2510 ((-121) |#1| (-763))) (-15 -1737 ((-121) |#1| (-763))) (-15 -2166 ((-121) |#1| (-763)))) (-1231 |#2|) (-1195)) (T -1230)) +NIL +(-10 -8 (-15 -3910 (|#1| |#1| (-568))) (-15 -2436 (|#2| |#1| "last" |#2|)) (-15 -2395 (|#2| |#1| |#2|)) (-15 -2436 (|#1| |#1| "rest" |#1|)) (-15 -2436 (|#2| |#1| "first" |#2|)) (-15 -2714 (|#1| |#1|)) (-15 -2340 (|#1| |#1|)) (-15 -2775 ((-763) |#1|)) (-15 -3335 (|#1| |#1|)) (-15 -2235 (|#2| |#1|)) (-15 -1679 (|#2| |#1|)) (-15 -2796 (|#1| |#1|)) (-15 -4162 (|#1| |#1| (-763))) (-15 -2779 (|#2| |#1| "last")) (-15 -4162 (|#2| |#1|)) (-15 -3935 (|#1| |#1| (-763))) (-15 -2779 (|#1| |#1| "rest")) (-15 -3935 (|#1| |#1|)) (-15 -2779 (|#2| |#1| "first")) (-15 -2768 (|#1| |#2| |#1|)) (-15 -2768 (|#1| |#1| |#1|)) (-15 -1659 (|#2| |#1| |#2|)) (-15 -2436 (|#2| |#1| "value" |#2|)) (-15 -3827 (|#1| |#1| (-634 |#1|))) (-15 -1700 ((-121) |#1| |#1|)) (-15 -3790 ((-121) |#1|)) (-15 -2779 (|#2| |#1| "value")) (-15 -2850 (|#2| |#1|)) (-15 -1651 ((-121) |#1|)) (-15 -2287 ((-634 |#1|) |#1|)) (-15 -4339 ((-634 |#1|) |#1|)) (-15 -1717 ((-121) |#1| |#1|)) (-15 -1697 ((-763) |#1|)) (-15 -2510 ((-121) |#1| (-763))) (-15 -1737 ((-121) |#1| (-763))) (-15 -2166 ((-121) |#1| (-763)))) +((-2447 (((-121) $ $) 18 (|has| |#1| (-1090)))) (-2850 ((|#1| $) 45)) (-2235 ((|#1| $) 62)) (-2796 (($ $) 64)) (-3910 (($ $ (-568)) 49 (|has| $ (-6 -4520)))) (-2510 (((-121) $ (-763)) 8)) (-1659 ((|#1| $ |#1|) 36 (|has| $ (-6 -4520)))) (-3869 (($ $ $) 53 (|has| $ (-6 -4520)))) (-2395 ((|#1| $ |#1|) 51 (|has| $ (-6 -4520)))) (-2517 ((|#1| $ |#1|) 55 (|has| $ (-6 -4520)))) (-2436 ((|#1| $ "value" |#1|) 37 (|has| $ (-6 -4520))) ((|#1| $ "first" |#1|) 54 (|has| $ (-6 -4520))) (($ $ "rest" $) 52 (|has| $ (-6 -4520))) ((|#1| $ "last" |#1|) 50 (|has| $ (-6 -4520)))) (-3827 (($ $ (-634 $)) 38 (|has| $ (-6 -4520)))) (-1679 ((|#1| $) 63)) (-2671 (($) 7 T CONST)) (-3935 (($ $) 70) (($ $ (-763)) 68)) (-4360 (((-634 |#1|) $) 30 (|has| $ (-6 -4519)))) (-2287 (((-634 $) $) 47)) (-1700 (((-121) $ $) 39 (|has| |#1| (-1090)))) (-1737 (((-121) $ (-763)) 9)) (-1979 (((-634 |#1|) $) 29 (|has| $ (-6 -4519)))) (-3109 (((-121) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-3674 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#1| |#1|) $) 35)) (-2166 (((-121) $ (-763)) 10)) (-2869 (((-634 |#1|) $) 42)) (-1651 (((-121) $) 46)) (-4487 (((-1143) $) 22 (|has| |#1| (-1090)))) (-4162 ((|#1| $) 67) (($ $ (-763)) 65)) (-4022 (((-1108) $) 21 (|has| |#1| (-1090)))) (-3876 ((|#1| $) 73) (($ $ (-763)) 71)) (-1387 (((-121) (-1 (-121) |#1|) $) 32 (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-634 |#1|) (-634 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))))) (-3171 (((-121) $ $) 14)) (-3084 (((-121) $) 11)) (-3248 (($) 12)) (-2779 ((|#1| $ "value") 44) ((|#1| $ "first") 72) (($ $ "rest") 69) ((|#1| $ "last") 66)) (-4075 (((-568) $ $) 41)) (-3790 (((-121) $) 43)) (-2340 (($ $) 59)) (-2714 (($ $) 56 (|has| $ (-6 -4520)))) (-2775 (((-763) $) 60)) (-3335 (($ $) 61)) (-4168 (((-763) (-1 (-121) |#1|) $) 31 (|has| $ (-6 -4519))) (((-763) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-3863 (($ $) 13)) (-3845 (($ $ $) 58 (|has| $ (-6 -4520))) (($ $ |#1|) 57 (|has| $ (-6 -4520)))) (-2768 (($ $ $) 75) (($ |#1| $) 74)) (-2745 (((-850) $) 20 (|has| |#1| (-1090)))) (-4339 (((-634 $) $) 48)) (-3491 (((-121) $ $) 40 (|has| |#1| (-1090)))) (-1319 (((-121) (-1 (-121) |#1|) $) 33 (|has| $ (-6 -4519)))) (-1717 (((-121) $ $) 19 (|has| |#1| (-1090)))) (-1697 (((-763) $) 6 (|has| $ (-6 -4519))))) +(((-1231 |#1|) (-1275) (-1195)) (T -1231)) +((-2768 (*1 *1 *1 *1) (-12 (-4 *1 (-1231 *2)) (-4 *2 (-1195)))) (-2768 (*1 *1 *2 *1) (-12 (-4 *1 (-1231 *2)) (-4 *2 (-1195)))) (-3876 (*1 *2 *1) (-12 (-4 *1 (-1231 *2)) (-4 *2 (-1195)))) (-2779 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1231 *2)) (-4 *2 (-1195)))) (-3876 (*1 *1 *1 *2) (-12 (-5 *2 (-763)) (-4 *1 (-1231 *3)) (-4 *3 (-1195)))) (-3935 (*1 *1 *1) (-12 (-4 *1 (-1231 *2)) (-4 *2 (-1195)))) (-2779 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1231 *3)) (-4 *3 (-1195)))) (-3935 (*1 *1 *1 *2) (-12 (-5 *2 (-763)) (-4 *1 (-1231 *3)) (-4 *3 (-1195)))) (-4162 (*1 *2 *1) (-12 (-4 *1 (-1231 *2)) (-4 *2 (-1195)))) (-2779 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1231 *2)) (-4 *2 (-1195)))) (-4162 (*1 *1 *1 *2) (-12 (-5 *2 (-763)) (-4 *1 (-1231 *3)) (-4 *3 (-1195)))) (-2796 (*1 *1 *1) (-12 (-4 *1 (-1231 *2)) (-4 *2 (-1195)))) (-1679 (*1 *2 *1) (-12 (-4 *1 (-1231 *2)) (-4 *2 (-1195)))) (-2235 (*1 *2 *1) (-12 (-4 *1 (-1231 *2)) (-4 *2 (-1195)))) (-3335 (*1 *1 *1) (-12 (-4 *1 (-1231 *2)) (-4 *2 (-1195)))) (-2775 (*1 *2 *1) (-12 (-4 *1 (-1231 *3)) (-4 *3 (-1195)) (-5 *2 (-763)))) (-2340 (*1 *1 *1) (-12 (-4 *1 (-1231 *2)) (-4 *2 (-1195)))) (-3845 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4520)) (-4 *1 (-1231 *2)) (-4 *2 (-1195)))) (-3845 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4520)) (-4 *1 (-1231 *2)) (-4 *2 (-1195)))) (-2714 (*1 *1 *1) (-12 (|has| *1 (-6 -4520)) (-4 *1 (-1231 *2)) (-4 *2 (-1195)))) (-2517 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4520)) (-4 *1 (-1231 *2)) (-4 *2 (-1195)))) (-2436 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4520)) (-4 *1 (-1231 *2)) (-4 *2 (-1195)))) (-3869 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4520)) (-4 *1 (-1231 *2)) (-4 *2 (-1195)))) (-2436 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4520)) (-4 *1 (-1231 *3)) (-4 *3 (-1195)))) (-2395 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4520)) (-4 *1 (-1231 *2)) (-4 *2 (-1195)))) (-2436 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4520)) (-4 *1 (-1231 *2)) (-4 *2 (-1195)))) (-3910 (*1 *1 *1 *2) (-12 (-5 *2 (-568)) (|has| *1 (-6 -4520)) (-4 *1 (-1231 *3)) (-4 *3 (-1195))))) +(-13 (-1010 |t#1|) (-10 -8 (-15 -2768 ($ $ $)) (-15 -2768 ($ |t#1| $)) (-15 -3876 (|t#1| $)) (-15 -2779 (|t#1| $ "first")) (-15 -3876 ($ $ (-763))) (-15 -3935 ($ $)) (-15 -2779 ($ $ "rest")) (-15 -3935 ($ $ (-763))) (-15 -4162 (|t#1| $)) (-15 -2779 (|t#1| $ "last")) (-15 -4162 ($ $ (-763))) (-15 -2796 ($ $)) (-15 -1679 (|t#1| $)) (-15 -2235 (|t#1| $)) (-15 -3335 ($ $)) (-15 -2775 ((-763) $)) (-15 -2340 ($ $)) (IF (|has| $ (-6 -4520)) (PROGN (-15 -3845 ($ $ $)) (-15 -3845 ($ $ |t#1|)) (-15 -2714 ($ $)) (-15 -2517 (|t#1| $ |t#1|)) (-15 -2436 (|t#1| $ "first" |t#1|)) (-15 -3869 ($ $ $)) (-15 -2436 ($ $ "rest" $)) (-15 -2395 (|t#1| $ |t#1|)) (-15 -2436 (|t#1| $ "last" |t#1|)) (-15 -3910 ($ $ (-568)))) |noBranch|))) +(((-39) . T) ((-105) |has| |#1| (-1090)) ((-608 (-850)) |has| |#1| (-1090)) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))) ((-499 |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))) ((-1010 |#1|) . T) ((-1090) |has| |#1| (-1090)) ((-1195) . T)) +((-2795 ((|#4| (-1 |#2| |#1|) |#3|) 17))) +(((-1232 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2795 (|#4| (-1 |#2| |#1|) |#3|))) (-1047) (-1047) (-1234 |#1|) (-1234 |#2|)) (T -1232)) +((-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1047)) (-4 *6 (-1047)) (-4 *2 (-1234 *6)) (-5 *1 (-1232 *5 *6 *4 *2)) (-4 *4 (-1234 *5))))) +(-10 -7 (-15 -2795 (|#4| (-1 |#2| |#1|) |#3|))) +((-2537 (((-121) $) 15)) (-1982 (($ $) 90)) (-1933 (($ $) 66)) (-1974 (($ $) 86)) (-2786 (($ $) 62)) (-1990 (($ $) 94)) (-1941 (($ $) 70)) (-4416 (($ $) 60)) (-1892 (($ $) 58)) (-1994 (($ $) 96)) (-1945 (($ $) 72)) (-1986 (($ $) 92)) (-1937 (($ $) 68)) (-1978 (($ $) 88)) (-2790 (($ $) 64)) (-2745 (((-850) $) 46) (($ (-568)) NIL) (($ (-409 (-568))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-2006 (($ $) 102)) (-1958 (($ $) 78)) (-1998 (($ $) 98)) (-1949 (($ $) 74)) (-2014 (($ $) 106)) (-1966 (($ $) 82)) (-4023 (($ $) 108)) (-1970 (($ $) 84)) (-2010 (($ $) 104)) (-1962 (($ $) 80)) (-2002 (($ $) 100)) (-1953 (($ $) 76)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ |#2|) 50) (($ $ $) 53) (($ $ (-409 (-568))) 56))) +(((-1233 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-409 (-568)))) (-15 -1933 (|#1| |#1|)) (-15 -2786 (|#1| |#1|)) (-15 -1941 (|#1| |#1|)) (-15 -1945 (|#1| |#1|)) (-15 -1937 (|#1| |#1|)) (-15 -2790 (|#1| |#1|)) (-15 -1953 (|#1| |#1|)) (-15 -1962 (|#1| |#1|)) (-15 -1970 (|#1| |#1|)) (-15 -1966 (|#1| |#1|)) (-15 -1949 (|#1| |#1|)) (-15 -1958 (|#1| |#1|)) (-15 -1978 (|#1| |#1|)) (-15 -1986 (|#1| |#1|)) (-15 -1994 (|#1| |#1|)) (-15 -1990 (|#1| |#1|)) (-15 -1974 (|#1| |#1|)) (-15 -1982 (|#1| |#1|)) (-15 -2002 (|#1| |#1|)) (-15 -2010 (|#1| |#1|)) (-15 -4023 (|#1| |#1|)) (-15 -2014 (|#1| |#1|)) (-15 -1998 (|#1| |#1|)) (-15 -2006 (|#1| |#1|)) (-15 -4416 (|#1| |#1|)) (-15 -1892 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2745 (|#1| |#2|)) (-15 -2745 (|#1| |#1|)) (-15 -2745 (|#1| (-409 (-568)))) (-15 -2745 (|#1| (-568))) (-15 ** (|#1| |#1| (-763))) (-15 ** (|#1| |#1| (-917))) (-15 -2537 ((-121) |#1|)) (-15 -2745 ((-850) |#1|))) (-1234 |#2|) (-1047)) (T -1233)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-409 (-568)))) (-15 -1933 (|#1| |#1|)) (-15 -2786 (|#1| |#1|)) (-15 -1941 (|#1| |#1|)) (-15 -1945 (|#1| |#1|)) (-15 -1937 (|#1| |#1|)) (-15 -2790 (|#1| |#1|)) (-15 -1953 (|#1| |#1|)) (-15 -1962 (|#1| |#1|)) (-15 -1970 (|#1| |#1|)) (-15 -1966 (|#1| |#1|)) (-15 -1949 (|#1| |#1|)) (-15 -1958 (|#1| |#1|)) (-15 -1978 (|#1| |#1|)) (-15 -1986 (|#1| |#1|)) (-15 -1994 (|#1| |#1|)) (-15 -1990 (|#1| |#1|)) (-15 -1974 (|#1| |#1|)) (-15 -1982 (|#1| |#1|)) (-15 -2002 (|#1| |#1|)) (-15 -2010 (|#1| |#1|)) (-15 -4023 (|#1| |#1|)) (-15 -2014 (|#1| |#1|)) (-15 -1998 (|#1| |#1|)) (-15 -2006 (|#1| |#1|)) (-15 -4416 (|#1| |#1|)) (-15 -1892 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2745 (|#1| |#2|)) (-15 -2745 (|#1| |#1|)) (-15 -2745 (|#1| (-409 (-568)))) (-15 -2745 (|#1| (-568))) (-15 ** (|#1| |#1| (-763))) (-15 ** (|#1| |#1| (-917))) (-15 -2537 ((-121) |#1|)) (-15 -2745 ((-850) |#1|))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-2055 (((-634 (-1075)) $) 70)) (-1305 (((-1161) $) 98)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) 50 (|has| |#1| (-558)))) (-2227 (($ $) 51 (|has| |#1| (-558)))) (-1573 (((-121) $) 53 (|has| |#1| (-558)))) (-2617 (($ $ (-763)) 93) (($ $ (-763) (-763)) 92)) (-2583 (((-1141 (-2 (|:| |k| (-763)) (|:| |c| |#1|))) $) 100)) (-1982 (($ $) 127 (|has| |#1| (-43 (-409 (-568)))))) (-1933 (($ $) 110 (|has| |#1| (-43 (-409 (-568)))))) (-3134 (((-3 $ "failed") $ $) 18)) (-1902 (($ $) 109 (|has| |#1| (-43 (-409 (-568)))))) (-1974 (($ $) 126 (|has| |#1| (-43 (-409 (-568)))))) (-2786 (($ $) 111 (|has| |#1| (-43 (-409 (-568)))))) (-3728 (($ (-1141 (-2 (|:| |k| (-763)) (|:| |c| |#1|)))) 147) (($ (-1141 |#1|)) 145)) (-1990 (($ $) 125 (|has| |#1| (-43 (-409 (-568)))))) (-1941 (($ $) 112 (|has| |#1| (-43 (-409 (-568)))))) (-2671 (($) 16 T CONST)) (-2114 (($ $) 59)) (-2925 (((-3 $ "failed") $) 33)) (-3490 (($ $) 144)) (-1367 (((-953 |#1|) $ (-763)) 142) (((-953 |#1|) $ (-763) (-763)) 141)) (-3992 (((-121) $) 69)) (-1897 (($) 137 (|has| |#1| (-43 (-409 (-568)))))) (-4477 (((-763) $) 95) (((-763) $ (-763)) 94)) (-2735 (((-121) $) 30)) (-4044 (($ $ (-568)) 108 (|has| |#1| (-43 (-409 (-568)))))) (-3536 (($ $ (-917)) 96)) (-1716 (($ (-1 |#1| (-568)) $) 143)) (-3921 (((-121) $) 61)) (-2047 (($ |#1| (-763)) 60) (($ $ (-1075) (-763)) 72) (($ $ (-634 (-1075)) (-634 (-763))) 71)) (-2795 (($ (-1 |#1| |#1|) $) 62)) (-4416 (($ $) 134 (|has| |#1| (-43 (-409 (-568)))))) (-2097 (($ $) 64)) (-2102 ((|#1| $) 65)) (-4487 (((-1143) $) 9)) (-3837 (($ $) 139 (|has| |#1| (-43 (-409 (-568))))) (($ $ (-1161)) 138 (-2198 (-12 (|has| |#1| (-29 (-568))) (|has| |#1| (-959)) (|has| |#1| (-1181)) (|has| |#1| (-43 (-409 (-568))))) (-12 (|has| |#1| (-15 -2055 ((-634 (-1161)) |#1|))) (|has| |#1| (-15 -3837 (|#1| |#1| (-1161)))) (|has| |#1| (-43 (-409 (-568)))))))) (-4022 (((-1108) $) 10)) (-1807 (($ $ (-763)) 90)) (-2595 (((-3 $ "failed") $ $) 49 (|has| |#1| (-558)))) (-1892 (($ $) 135 (|has| |#1| (-43 (-409 (-568)))))) (-1339 (((-1141 |#1|) $ |#1|) 89 (|has| |#1| (-15 ** (|#1| |#1| (-763)))))) (-2779 ((|#1| $ (-763)) 99) (($ $ $) 76 (|has| (-763) (-1102)))) (-4189 (($ $ (-634 (-1161)) (-634 (-763))) 84 (-12 (|has| |#1| (-895 (-1161))) (|has| |#1| (-15 * (|#1| (-763) |#1|))))) (($ $ (-1161) (-763)) 83 (-12 (|has| |#1| (-895 (-1161))) (|has| |#1| (-15 * (|#1| (-763) |#1|))))) (($ $ (-634 (-1161))) 82 (-12 (|has| |#1| (-895 (-1161))) (|has| |#1| (-15 * (|#1| (-763) |#1|))))) (($ $ (-1161)) 81 (-12 (|has| |#1| (-895 (-1161))) (|has| |#1| (-15 * (|#1| (-763) |#1|))))) (($ $ (-763)) 79 (|has| |#1| (-15 * (|#1| (-763) |#1|)))) (($ $) 77 (|has| |#1| (-15 * (|#1| (-763) |#1|))))) (-3206 (((-763) $) 63)) (-1994 (($ $) 124 (|has| |#1| (-43 (-409 (-568)))))) (-1945 (($ $) 113 (|has| |#1| (-43 (-409 (-568)))))) (-1986 (($ $) 123 (|has| |#1| (-43 (-409 (-568)))))) (-1937 (($ $) 114 (|has| |#1| (-43 (-409 (-568)))))) (-1978 (($ $) 122 (|has| |#1| (-43 (-409 (-568)))))) (-2790 (($ $) 115 (|has| |#1| (-43 (-409 (-568)))))) (-1811 (($ $) 68)) (-2745 (((-850) $) 11) (($ (-568)) 27) (($ (-409 (-568))) 56 (|has| |#1| (-43 (-409 (-568))))) (($ $) 48 (|has| |#1| (-558))) (($ |#1|) 46 (|has| |#1| (-172)))) (-1302 (((-1141 |#1|) $) 146)) (-2604 ((|#1| $ (-763)) 58)) (-4371 (((-3 $ "failed") $) 47 (|has| |#1| (-148)))) (-4078 (((-763)) 28)) (-1374 ((|#1| $) 97)) (-2006 (($ $) 133 (|has| |#1| (-43 (-409 (-568)))))) (-1958 (($ $) 121 (|has| |#1| (-43 (-409 (-568)))))) (-1826 (((-121) $ $) 52 (|has| |#1| (-558)))) (-1998 (($ $) 132 (|has| |#1| (-43 (-409 (-568)))))) (-1949 (($ $) 120 (|has| |#1| (-43 (-409 (-568)))))) (-2014 (($ $) 131 (|has| |#1| (-43 (-409 (-568)))))) (-1966 (($ $) 119 (|has| |#1| (-43 (-409 (-568)))))) (-3996 ((|#1| $ (-763)) 91 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-763)))) (|has| |#1| (-15 -2745 (|#1| (-1161))))))) (-4023 (($ $) 130 (|has| |#1| (-43 (-409 (-568)))))) (-1970 (($ $) 118 (|has| |#1| (-43 (-409 (-568)))))) (-2010 (($ $) 129 (|has| |#1| (-43 (-409 (-568)))))) (-1962 (($ $) 117 (|has| |#1| (-43 (-409 (-568)))))) (-2002 (($ $) 128 (|has| |#1| (-43 (-409 (-568)))))) (-1953 (($ $) 116 (|has| |#1| (-43 (-409 (-568)))))) (-1887 (($ $ (-917)) 25) (($ $ (-763)) 32)) (-3056 (($) 17 T CONST)) (-1556 (($) 29 T CONST)) (-3190 (($ $ (-634 (-1161)) (-634 (-763))) 88 (-12 (|has| |#1| (-895 (-1161))) (|has| |#1| (-15 * (|#1| (-763) |#1|))))) (($ $ (-1161) (-763)) 87 (-12 (|has| |#1| (-895 (-1161))) (|has| |#1| (-15 * (|#1| (-763) |#1|))))) (($ $ (-634 (-1161))) 86 (-12 (|has| |#1| (-895 (-1161))) (|has| |#1| (-15 * (|#1| (-763) |#1|))))) (($ $ (-1161)) 85 (-12 (|has| |#1| (-895 (-1161))) (|has| |#1| (-15 * (|#1| (-763) |#1|))))) (($ $ (-763)) 80 (|has| |#1| (-15 * (|#1| (-763) |#1|)))) (($ $) 78 (|has| |#1| (-15 * (|#1| (-763) |#1|))))) (-1717 (((-121) $ $) 6)) (-1779 (($ $ |#1|) 57 (|has| |#1| (-365)))) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 24) (($ $ (-763)) 31) (($ $ |#1|) 140 (|has| |#1| (-365))) (($ $ $) 136 (|has| |#1| (-43 (-409 (-568))))) (($ $ (-409 (-568))) 107 (|has| |#1| (-43 (-409 (-568)))))) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 23) (($ $ |#1|) 67) (($ |#1| $) 66) (($ (-409 (-568)) $) 55 (|has| |#1| (-43 (-409 (-568))))) (($ $ (-409 (-568))) 54 (|has| |#1| (-43 (-409 (-568))))))) +(((-1234 |#1|) (-1275) (-1047)) (T -1234)) +((-3728 (*1 *1 *2) (-12 (-5 *2 (-1141 (-2 (|:| |k| (-763)) (|:| |c| *3)))) (-4 *3 (-1047)) (-4 *1 (-1234 *3)))) (-1302 (*1 *2 *1) (-12 (-4 *1 (-1234 *3)) (-4 *3 (-1047)) (-5 *2 (-1141 *3)))) (-3728 (*1 *1 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-1047)) (-4 *1 (-1234 *3)))) (-3490 (*1 *1 *1) (-12 (-4 *1 (-1234 *2)) (-4 *2 (-1047)))) (-1716 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-568))) (-4 *1 (-1234 *3)) (-4 *3 (-1047)))) (-1367 (*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-4 *1 (-1234 *4)) (-4 *4 (-1047)) (-5 *2 (-953 *4)))) (-1367 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-763)) (-4 *1 (-1234 *4)) (-4 *4 (-1047)) (-5 *2 (-953 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1234 *2)) (-4 *2 (-1047)) (-4 *2 (-365)))) (-3837 (*1 *1 *1) (-12 (-4 *1 (-1234 *2)) (-4 *2 (-1047)) (-4 *2 (-43 (-409 (-568)))))) (-3837 (*1 *1 *1 *2) (-2198 (-12 (-5 *2 (-1161)) (-4 *1 (-1234 *3)) (-4 *3 (-1047)) (-12 (-4 *3 (-29 (-568))) (-4 *3 (-959)) (-4 *3 (-1181)) (-4 *3 (-43 (-409 (-568)))))) (-12 (-5 *2 (-1161)) (-4 *1 (-1234 *3)) (-4 *3 (-1047)) (-12 (|has| *3 (-15 -2055 ((-634 *2) *3))) (|has| *3 (-15 -3837 (*3 *3 *2))) (-4 *3 (-43 (-409 (-568))))))))) +(-13 (-1221 |t#1| (-763)) (-10 -8 (-15 -3728 ($ (-1141 (-2 (|:| |k| (-763)) (|:| |c| |t#1|))))) (-15 -1302 ((-1141 |t#1|) $)) (-15 -3728 ($ (-1141 |t#1|))) (-15 -3490 ($ $)) (-15 -1716 ($ (-1 |t#1| (-568)) $)) (-15 -1367 ((-953 |t#1|) $ (-763))) (-15 -1367 ((-953 |t#1|) $ (-763) (-763))) (IF (|has| |t#1| (-365)) (-15 ** ($ $ |t#1|)) |noBranch|) (IF (|has| |t#1| (-43 (-409 (-568)))) (PROGN (-15 -3837 ($ $)) (IF (|has| |t#1| (-15 -3837 (|t#1| |t#1| (-1161)))) (IF (|has| |t#1| (-15 -2055 ((-634 (-1161)) |t#1|))) (-15 -3837 ($ $ (-1161))) |noBranch|) |noBranch|) (IF (|has| |t#1| (-1181)) (IF (|has| |t#1| (-959)) (IF (|has| |t#1| (-29 (-568))) (-15 -3837 ($ $ (-1161))) |noBranch|) |noBranch|) |noBranch|) (-6 (-1002)) (-6 (-1181))) |noBranch|))) +(((-21) . T) ((-23) . T) ((-52 |#1| (-763)) . T) ((-25) . T) ((-43 (-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((-43 |#1|) |has| |#1| (-172)) ((-43 $) |has| |#1| (-558)) ((-40) |has| |#1| (-43 (-409 (-568)))) ((-98) |has| |#1| (-43 (-409 (-568)))) ((-105) . T) ((-120 (-409 (-568)) (-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((-120 |#1| |#1|) . T) ((-120 $ $) -2198 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-137) . T) ((-148) |has| |#1| (-148)) ((-150) |has| |#1| (-150)) ((-608 (-850)) . T) ((-172) -2198 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-225) |has| |#1| (-15 * (|#1| (-763) |#1|))) ((-279) |has| |#1| (-43 (-409 (-568)))) ((-281 $ $) |has| (-763) (-1102)) ((-285) |has| |#1| (-558)) ((-502) |has| |#1| (-43 (-409 (-568)))) ((-558) |has| |#1| (-558)) ((-637 (-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((-637 |#1|) . T) ((-637 $) . T) ((-707 (-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((-707 |#1|) |has| |#1| (-172)) ((-707 $) |has| |#1| (-558)) ((-716) . T) ((-895 (-1161)) -12 (|has| |#1| (-15 * (|#1| (-763) |#1|))) (|has| |#1| (-895 (-1161)))) ((-974 |#1| (-763) (-1075)) . T) ((-1002) |has| |#1| (-43 (-409 (-568)))) ((-1053 (-409 (-568))) |has| |#1| (-43 (-409 (-568)))) ((-1053 |#1|) . T) ((-1053 $) -2198 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-1047) . T) ((-1054) . T) ((-1102) . T) ((-1090) . T) ((-1181) |has| |#1| (-43 (-409 (-568)))) ((-1184) |has| |#1| (-43 (-409 (-568)))) ((-1221 |#1| (-763)) . T)) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-2055 (((-634 (-1075)) $) NIL)) (-1305 (((-1161) $) 86)) (-3196 (((-1216 |#2| |#1|) $ (-763)) 73)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-2227 (($ $) NIL (|has| |#1| (-558)))) (-1573 (((-121) $) 135 (|has| |#1| (-558)))) (-2617 (($ $ (-763)) 120) (($ $ (-763) (-763)) 122)) (-2583 (((-1141 (-2 (|:| |k| (-763)) (|:| |c| |#1|))) $) 42)) (-1982 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1933 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-3134 (((-3 $ "failed") $ $) NIL)) (-1902 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1974 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-2786 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-3728 (($ (-1141 (-2 (|:| |k| (-763)) (|:| |c| |#1|)))) 53) (($ (-1141 |#1|)) NIL)) (-1990 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1941 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-2671 (($) NIL T CONST)) (-2129 (($ $) 126)) (-2114 (($ $) NIL)) (-2925 (((-3 $ "failed") $) NIL)) (-3490 (($ $) 133)) (-1367 (((-953 |#1|) $ (-763)) 63) (((-953 |#1|) $ (-763) (-763)) 65)) (-3992 (((-121) $) NIL)) (-1897 (($) NIL (|has| |#1| (-43 (-409 (-568)))))) (-4477 (((-763) $) NIL) (((-763) $ (-763)) NIL)) (-2735 (((-121) $) NIL)) (-2011 (($ $) 110)) (-4044 (($ $ (-568)) NIL (|has| |#1| (-43 (-409 (-568)))))) (-2651 (($ (-568) (-568) $) 128)) (-3536 (($ $ (-917)) 132)) (-1716 (($ (-1 |#1| (-568)) $) 104)) (-3921 (((-121) $) NIL)) (-2047 (($ |#1| (-763)) 15) (($ $ (-1075) (-763)) NIL) (($ $ (-634 (-1075)) (-634 (-763))) NIL)) (-2795 (($ (-1 |#1| |#1|) $) 92)) (-4416 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-2097 (($ $) NIL)) (-2102 ((|#1| $) NIL)) (-4487 (((-1143) $) NIL)) (-3730 (($ $) 108)) (-2608 (($ $) 106)) (-4053 (($ (-568) (-568) $) 130)) (-3837 (($ $) 143 (|has| |#1| (-43 (-409 (-568))))) (($ $ (-1161)) 149 (-2198 (-12 (|has| |#1| (-15 -3837 (|#1| |#1| (-1161)))) (|has| |#1| (-15 -2055 ((-634 (-1161)) |#1|))) (|has| |#1| (-43 (-409 (-568))))) (-12 (|has| |#1| (-29 (-568))) (|has| |#1| (-43 (-409 (-568)))) (|has| |#1| (-959)) (|has| |#1| (-1181))))) (($ $ (-1240 |#2|)) 144 (|has| |#1| (-43 (-409 (-568)))))) (-4022 (((-1108) $) NIL)) (-2224 (($ $ (-568) (-568)) 114)) (-1807 (($ $ (-763)) 116)) (-2595 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-1892 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-2372 (($ $) 112)) (-1339 (((-1141 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-763)))))) (-2779 ((|#1| $ (-763)) 89) (($ $ $) 124 (|has| (-763) (-1102)))) (-4189 (($ $ (-634 (-1161)) (-634 (-763))) NIL (-12 (|has| |#1| (-15 * (|#1| (-763) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-1161) (-763)) NIL (-12 (|has| |#1| (-15 * (|#1| (-763) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-634 (-1161))) NIL (-12 (|has| |#1| (-15 * (|#1| (-763) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-1161)) 101 (-12 (|has| |#1| (-15 * (|#1| (-763) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-763)) NIL (|has| |#1| (-15 * (|#1| (-763) |#1|)))) (($ $) 96 (|has| |#1| (-15 * (|#1| (-763) |#1|)))) (($ $ (-1240 |#2|)) 97)) (-3206 (((-763) $) NIL)) (-1994 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1945 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1986 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1937 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1978 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-2790 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1811 (($ $) 118)) (-2745 (((-850) $) NIL) (($ (-568)) 24) (($ (-409 (-568))) 141 (|has| |#1| (-43 (-409 (-568))))) (($ $) NIL (|has| |#1| (-558))) (($ |#1|) 23 (|has| |#1| (-172))) (($ (-1216 |#2| |#1|)) 79) (($ (-1240 |#2|)) 20)) (-1302 (((-1141 |#1|) $) NIL)) (-2604 ((|#1| $ (-763)) 88)) (-4371 (((-3 $ "failed") $) NIL (|has| |#1| (-148)))) (-4078 (((-763)) NIL)) (-1374 ((|#1| $) 87)) (-2006 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1958 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1826 (((-121) $ $) NIL (|has| |#1| (-558)))) (-1998 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1949 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-2014 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1966 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-3996 ((|#1| $ (-763)) 85 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-763)))) (|has| |#1| (-15 -2745 (|#1| (-1161))))))) (-4023 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1970 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-2010 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1962 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-2002 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1953 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (-3056 (($) 17 T CONST)) (-1556 (($) 13 T CONST)) (-3190 (($ $ (-634 (-1161)) (-634 (-763))) NIL (-12 (|has| |#1| (-15 * (|#1| (-763) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-1161) (-763)) NIL (-12 (|has| |#1| (-15 * (|#1| (-763) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-634 (-1161))) NIL (-12 (|has| |#1| (-15 * (|#1| (-763) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-1161)) NIL (-12 (|has| |#1| (-15 * (|#1| (-763) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-763)) NIL (|has| |#1| (-15 * (|#1| (-763) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-763) |#1|))))) (-1717 (((-121) $ $) NIL)) (-1779 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-1773 (($ $) NIL) (($ $ $) 100)) (-1767 (($ $ $) 18)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ |#1|) 138 (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-43 (-409 (-568))))) (($ $ (-409 (-568))) NIL (|has| |#1| (-43 (-409 (-568)))))) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 99) (($ (-409 (-568)) $) NIL (|has| |#1| (-43 (-409 (-568))))) (($ $ (-409 (-568))) NIL (|has| |#1| (-43 (-409 (-568))))))) +(((-1235 |#1| |#2| |#3|) (-13 (-1234 |#1|) (-10 -8 (-15 -2745 ($ (-1216 |#2| |#1|))) (-15 -3196 ((-1216 |#2| |#1|) $ (-763))) (-15 -2745 ($ (-1240 |#2|))) (-15 -4189 ($ $ (-1240 |#2|))) (-15 -2608 ($ $)) (-15 -3730 ($ $)) (-15 -2011 ($ $)) (-15 -2372 ($ $)) (-15 -2224 ($ $ (-568) (-568))) (-15 -2129 ($ $)) (-15 -2651 ($ (-568) (-568) $)) (-15 -4053 ($ (-568) (-568) $)) (IF (|has| |#1| (-43 (-409 (-568)))) (-15 -3837 ($ $ (-1240 |#2|))) |noBranch|))) (-1047) (-1161) |#1|) (T -1235)) +((-2745 (*1 *1 *2) (-12 (-5 *2 (-1216 *4 *3)) (-4 *3 (-1047)) (-14 *4 (-1161)) (-14 *5 *3) (-5 *1 (-1235 *3 *4 *5)))) (-3196 (*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-5 *2 (-1216 *5 *4)) (-5 *1 (-1235 *4 *5 *6)) (-4 *4 (-1047)) (-14 *5 (-1161)) (-14 *6 *4))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-1240 *4)) (-14 *4 (-1161)) (-5 *1 (-1235 *3 *4 *5)) (-4 *3 (-1047)) (-14 *5 *3))) (-4189 (*1 *1 *1 *2) (-12 (-5 *2 (-1240 *4)) (-14 *4 (-1161)) (-5 *1 (-1235 *3 *4 *5)) (-4 *3 (-1047)) (-14 *5 *3))) (-2608 (*1 *1 *1) (-12 (-5 *1 (-1235 *2 *3 *4)) (-4 *2 (-1047)) (-14 *3 (-1161)) (-14 *4 *2))) (-3730 (*1 *1 *1) (-12 (-5 *1 (-1235 *2 *3 *4)) (-4 *2 (-1047)) (-14 *3 (-1161)) (-14 *4 *2))) (-2011 (*1 *1 *1) (-12 (-5 *1 (-1235 *2 *3 *4)) (-4 *2 (-1047)) (-14 *3 (-1161)) (-14 *4 *2))) (-2372 (*1 *1 *1) (-12 (-5 *1 (-1235 *2 *3 *4)) (-4 *2 (-1047)) (-14 *3 (-1161)) (-14 *4 *2))) (-2224 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-1235 *3 *4 *5)) (-4 *3 (-1047)) (-14 *4 (-1161)) (-14 *5 *3))) (-2129 (*1 *1 *1) (-12 (-5 *1 (-1235 *2 *3 *4)) (-4 *2 (-1047)) (-14 *3 (-1161)) (-14 *4 *2))) (-2651 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-568)) (-5 *1 (-1235 *3 *4 *5)) (-4 *3 (-1047)) (-14 *4 (-1161)) (-14 *5 *3))) (-4053 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-568)) (-5 *1 (-1235 *3 *4 *5)) (-4 *3 (-1047)) (-14 *4 (-1161)) (-14 *5 *3))) (-3837 (*1 *1 *1 *2) (-12 (-5 *2 (-1240 *4)) (-14 *4 (-1161)) (-5 *1 (-1235 *3 *4 *5)) (-4 *3 (-43 (-409 (-568)))) (-4 *3 (-1047)) (-14 *5 *3)))) +(-13 (-1234 |#1|) (-10 -8 (-15 -2745 ($ (-1216 |#2| |#1|))) (-15 -3196 ((-1216 |#2| |#1|) $ (-763))) (-15 -2745 ($ (-1240 |#2|))) (-15 -4189 ($ $ (-1240 |#2|))) (-15 -2608 ($ $)) (-15 -3730 ($ $)) (-15 -2011 ($ $)) (-15 -2372 ($ $)) (-15 -2224 ($ $ (-568) (-568))) (-15 -2129 ($ $)) (-15 -2651 ($ (-568) (-568) $)) (-15 -4053 ($ (-568) (-568) $)) (IF (|has| |#1| (-43 (-409 (-568)))) (-15 -3837 ($ $ (-1240 |#2|))) |noBranch|))) +((-3118 (((-1 (-1141 |#1|) (-634 (-1141 |#1|))) (-1 |#2| (-634 |#2|))) 24)) (-1531 (((-1 (-1141 |#1|) (-1141 |#1|) (-1141 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-1817 (((-1 (-1141 |#1|) (-1141 |#1|)) (-1 |#2| |#2|)) 13)) (-2565 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-1886 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-2765 ((|#2| (-1 |#2| (-634 |#2|)) (-634 |#1|)) 54)) (-1797 (((-634 |#2|) (-634 |#1|) (-634 (-1 |#2| (-634 |#2|)))) 61)) (-4398 ((|#2| |#2| |#2|) 43))) +(((-1236 |#1| |#2|) (-10 -7 (-15 -1817 ((-1 (-1141 |#1|) (-1141 |#1|)) (-1 |#2| |#2|))) (-15 -1531 ((-1 (-1141 |#1|) (-1141 |#1|) (-1141 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3118 ((-1 (-1141 |#1|) (-634 (-1141 |#1|))) (-1 |#2| (-634 |#2|)))) (-15 -4398 (|#2| |#2| |#2|)) (-15 -1886 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2565 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2765 (|#2| (-1 |#2| (-634 |#2|)) (-634 |#1|))) (-15 -1797 ((-634 |#2|) (-634 |#1|) (-634 (-1 |#2| (-634 |#2|)))))) (-43 (-409 (-568))) (-1234 |#1|)) (T -1236)) +((-1797 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *5)) (-5 *4 (-634 (-1 *6 (-634 *6)))) (-4 *5 (-43 (-409 (-568)))) (-4 *6 (-1234 *5)) (-5 *2 (-634 *6)) (-5 *1 (-1236 *5 *6)))) (-2765 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-634 *2))) (-5 *4 (-634 *5)) (-4 *5 (-43 (-409 (-568)))) (-4 *2 (-1234 *5)) (-5 *1 (-1236 *5 *2)))) (-2565 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1234 *4)) (-5 *1 (-1236 *4 *2)) (-4 *4 (-43 (-409 (-568)))))) (-1886 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1234 *4)) (-5 *1 (-1236 *4 *2)) (-4 *4 (-43 (-409 (-568)))))) (-4398 (*1 *2 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1236 *3 *2)) (-4 *2 (-1234 *3)))) (-3118 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-634 *5))) (-4 *5 (-1234 *4)) (-4 *4 (-43 (-409 (-568)))) (-5 *2 (-1 (-1141 *4) (-634 (-1141 *4)))) (-5 *1 (-1236 *4 *5)))) (-1531 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1234 *4)) (-4 *4 (-43 (-409 (-568)))) (-5 *2 (-1 (-1141 *4) (-1141 *4) (-1141 *4))) (-5 *1 (-1236 *4 *5)))) (-1817 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1234 *4)) (-4 *4 (-43 (-409 (-568)))) (-5 *2 (-1 (-1141 *4) (-1141 *4))) (-5 *1 (-1236 *4 *5))))) +(-10 -7 (-15 -1817 ((-1 (-1141 |#1|) (-1141 |#1|)) (-1 |#2| |#2|))) (-15 -1531 ((-1 (-1141 |#1|) (-1141 |#1|) (-1141 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3118 ((-1 (-1141 |#1|) (-634 (-1141 |#1|))) (-1 |#2| (-634 |#2|)))) (-15 -4398 (|#2| |#2| |#2|)) (-15 -1886 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2565 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2765 (|#2| (-1 |#2| (-634 |#2|)) (-634 |#1|))) (-15 -1797 ((-634 |#2|) (-634 |#1|) (-634 (-1 |#2| (-634 |#2|)))))) +((-3462 ((|#2| |#4| (-763)) 30)) (-1905 ((|#4| |#2|) 25)) (-1512 ((|#4| (-409 |#2|)) 51 (|has| |#1| (-558)))) (-3068 (((-1 |#4| (-634 |#4|)) |#3|) 45))) +(((-1237 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1905 (|#4| |#2|)) (-15 -3462 (|#2| |#4| (-763))) (-15 -3068 ((-1 |#4| (-634 |#4|)) |#3|)) (IF (|has| |#1| (-558)) (-15 -1512 (|#4| (-409 |#2|))) |noBranch|)) (-1047) (-1219 |#1|) (-646 |#2|) (-1234 |#1|)) (T -1237)) +((-1512 (*1 *2 *3) (-12 (-5 *3 (-409 *5)) (-4 *5 (-1219 *4)) (-4 *4 (-558)) (-4 *4 (-1047)) (-4 *2 (-1234 *4)) (-5 *1 (-1237 *4 *5 *6 *2)) (-4 *6 (-646 *5)))) (-3068 (*1 *2 *3) (-12 (-4 *4 (-1047)) (-4 *5 (-1219 *4)) (-5 *2 (-1 *6 (-634 *6))) (-5 *1 (-1237 *4 *5 *3 *6)) (-4 *3 (-646 *5)) (-4 *6 (-1234 *4)))) (-3462 (*1 *2 *3 *4) (-12 (-5 *4 (-763)) (-4 *5 (-1047)) (-4 *2 (-1219 *5)) (-5 *1 (-1237 *5 *2 *6 *3)) (-4 *6 (-646 *2)) (-4 *3 (-1234 *5)))) (-1905 (*1 *2 *3) (-12 (-4 *4 (-1047)) (-4 *3 (-1219 *4)) (-4 *2 (-1234 *4)) (-5 *1 (-1237 *4 *3 *5 *2)) (-4 *5 (-646 *3))))) +(-10 -7 (-15 -1905 (|#4| |#2|)) (-15 -3462 (|#2| |#4| (-763))) (-15 -3068 ((-1 |#4| (-634 |#4|)) |#3|)) (IF (|has| |#1| (-558)) (-15 -1512 (|#4| (-409 |#2|))) |noBranch|)) +((-4251 ((|#2| (-1 |#3| |#3|) (-634 |#1|)) 67))) +(((-1238 |#1| |#2| |#3|) (-10 -7 (-15 -4251 (|#2| (-1 |#3| |#3|) (-634 |#1|)))) (-365) (-1234 |#1|) (-1234 (-1155 |#1|))) (T -1238)) +((-4251 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *6)) (-5 *4 (-634 *5)) (-4 *5 (-365)) (-4 *6 (-1234 (-1155 *5))) (-4 *2 (-1234 *5)) (-5 *1 (-1238 *5 *2 *6))))) +(-10 -7 (-15 -4251 (|#2| (-1 |#3| |#3|) (-634 |#1|)))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-2055 (((-634 (-1075)) $) NIL)) (-1305 (((-1161) $) 79)) (-3196 (((-1216 |#2| |#1|) $ (-763)) 68)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-2227 (($ $) NIL (|has| |#1| (-558)))) (-1573 (((-121) $) 128 (|has| |#1| (-558)))) (-2617 (($ $ (-763)) 113) (($ $ (-763) (-763)) 115)) (-2583 (((-1141 (-2 (|:| |k| (-763)) (|:| |c| |#1|))) $) 38)) (-1982 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1933 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-3134 (((-3 $ "failed") $ $) NIL)) (-1902 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1974 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-2786 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-3728 (($ (-1141 (-2 (|:| |k| (-763)) (|:| |c| |#1|)))) 51) (($ (-1141 |#1|)) NIL)) (-1990 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1941 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-2671 (($) NIL T CONST)) (-2129 (($ $) 119)) (-2114 (($ $) NIL)) (-2925 (((-3 $ "failed") $) NIL)) (-3490 (($ $) 126)) (-1367 (((-953 |#1|) $ (-763)) 59) (((-953 |#1|) $ (-763) (-763)) 61)) (-3992 (((-121) $) NIL)) (-1897 (($) NIL (|has| |#1| (-43 (-409 (-568)))))) (-4477 (((-763) $) NIL) (((-763) $ (-763)) NIL)) (-2735 (((-121) $) NIL)) (-2011 (($ $) 103)) (-4044 (($ $ (-568)) NIL (|has| |#1| (-43 (-409 (-568)))))) (-2651 (($ (-568) (-568) $) 121)) (-3536 (($ $ (-917)) 125)) (-1716 (($ (-1 |#1| (-568)) $) 97)) (-3921 (((-121) $) NIL)) (-2047 (($ |#1| (-763)) 12) (($ $ (-1075) (-763)) NIL) (($ $ (-634 (-1075)) (-634 (-763))) NIL)) (-2795 (($ (-1 |#1| |#1|) $) 85)) (-4416 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-2097 (($ $) NIL)) (-2102 ((|#1| $) NIL)) (-4487 (((-1143) $) NIL)) (-3730 (($ $) 101)) (-2608 (($ $) 99)) (-4053 (($ (-568) (-568) $) 123)) (-3837 (($ $) 136 (|has| |#1| (-43 (-409 (-568))))) (($ $ (-1161)) 139 (-2198 (-12 (|has| |#1| (-15 -3837 (|#1| |#1| (-1161)))) (|has| |#1| (-15 -2055 ((-634 (-1161)) |#1|))) (|has| |#1| (-43 (-409 (-568))))) (-12 (|has| |#1| (-29 (-568))) (|has| |#1| (-43 (-409 (-568)))) (|has| |#1| (-959)) (|has| |#1| (-1181))))) (($ $ (-1240 |#2|)) 137 (|has| |#1| (-43 (-409 (-568)))))) (-4022 (((-1108) $) NIL)) (-2224 (($ $ (-568) (-568)) 107)) (-1807 (($ $ (-763)) 109)) (-2595 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-1892 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-2372 (($ $) 105)) (-1339 (((-1141 |#1|) $ |#1|) 87 (|has| |#1| (-15 ** (|#1| |#1| (-763)))))) (-2779 ((|#1| $ (-763)) 82) (($ $ $) 117 (|has| (-763) (-1102)))) (-4189 (($ $ (-634 (-1161)) (-634 (-763))) NIL (-12 (|has| |#1| (-15 * (|#1| (-763) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-1161) (-763)) NIL (-12 (|has| |#1| (-15 * (|#1| (-763) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-634 (-1161))) NIL (-12 (|has| |#1| (-15 * (|#1| (-763) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-1161)) 92 (-12 (|has| |#1| (-15 * (|#1| (-763) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-763)) NIL (|has| |#1| (-15 * (|#1| (-763) |#1|)))) (($ $) 89 (|has| |#1| (-15 * (|#1| (-763) |#1|)))) (($ $ (-1240 |#2|)) 90)) (-3206 (((-763) $) NIL)) (-1994 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1945 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1986 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1937 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1978 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-2790 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1811 (($ $) 111)) (-2745 (((-850) $) NIL) (($ (-568)) 18) (($ (-409 (-568))) 134 (|has| |#1| (-43 (-409 (-568))))) (($ $) NIL (|has| |#1| (-558))) (($ |#1|) 17 (|has| |#1| (-172))) (($ (-1216 |#2| |#1|)) 73) (($ (-1240 |#2|)) 14)) (-1302 (((-1141 |#1|) $) NIL)) (-2604 ((|#1| $ (-763)) 81)) (-4371 (((-3 $ "failed") $) NIL (|has| |#1| (-148)))) (-4078 (((-763)) NIL)) (-1374 ((|#1| $) 80)) (-2006 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1958 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1826 (((-121) $ $) NIL (|has| |#1| (-558)))) (-1998 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1949 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-2014 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1966 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-3996 ((|#1| $ (-763)) 78 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-763)))) (|has| |#1| (-15 -2745 (|#1| (-1161))))))) (-4023 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1970 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-2010 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1962 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-2002 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1953 (($ $) NIL (|has| |#1| (-43 (-409 (-568)))))) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (-3056 (($) 44 T CONST)) (-1556 (($) 9 T CONST)) (-3190 (($ $ (-634 (-1161)) (-634 (-763))) NIL (-12 (|has| |#1| (-15 * (|#1| (-763) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-1161) (-763)) NIL (-12 (|has| |#1| (-15 * (|#1| (-763) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-634 (-1161))) NIL (-12 (|has| |#1| (-15 * (|#1| (-763) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-1161)) NIL (-12 (|has| |#1| (-15 * (|#1| (-763) |#1|))) (|has| |#1| (-895 (-1161))))) (($ $ (-763)) NIL (|has| |#1| (-15 * (|#1| (-763) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-763) |#1|))))) (-1717 (((-121) $ $) NIL)) (-1779 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-1773 (($ $) NIL) (($ $ $) 94)) (-1767 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL) (($ $ |#1|) 131 (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-43 (-409 (-568))))) (($ $ (-409 (-568))) NIL (|has| |#1| (-43 (-409 (-568)))))) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) 93) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-409 (-568)) $) NIL (|has| |#1| (-43 (-409 (-568))))) (($ $ (-409 (-568))) NIL (|has| |#1| (-43 (-409 (-568))))))) +(((-1239 |#1| |#2|) (-13 (-1234 |#1|) (-10 -8 (-15 -2745 ($ (-1216 |#2| |#1|))) (-15 -3196 ((-1216 |#2| |#1|) $ (-763))) (-15 -2745 ($ (-1240 |#2|))) (-15 -4189 ($ $ (-1240 |#2|))) (-15 -2608 ($ $)) (-15 -3730 ($ $)) (-15 -2011 ($ $)) (-15 -2372 ($ $)) (-15 -2224 ($ $ (-568) (-568))) (-15 -2129 ($ $)) (-15 -2651 ($ (-568) (-568) $)) (-15 -4053 ($ (-568) (-568) $)) (IF (|has| |#1| (-43 (-409 (-568)))) (-15 -3837 ($ $ (-1240 |#2|))) |noBranch|))) (-1047) (-1161)) (T -1239)) +((-2745 (*1 *1 *2) (-12 (-5 *2 (-1216 *4 *3)) (-4 *3 (-1047)) (-14 *4 (-1161)) (-5 *1 (-1239 *3 *4)))) (-3196 (*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-5 *2 (-1216 *5 *4)) (-5 *1 (-1239 *4 *5)) (-4 *4 (-1047)) (-14 *5 (-1161)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-1240 *4)) (-14 *4 (-1161)) (-5 *1 (-1239 *3 *4)) (-4 *3 (-1047)))) (-4189 (*1 *1 *1 *2) (-12 (-5 *2 (-1240 *4)) (-14 *4 (-1161)) (-5 *1 (-1239 *3 *4)) (-4 *3 (-1047)))) (-2608 (*1 *1 *1) (-12 (-5 *1 (-1239 *2 *3)) (-4 *2 (-1047)) (-14 *3 (-1161)))) (-3730 (*1 *1 *1) (-12 (-5 *1 (-1239 *2 *3)) (-4 *2 (-1047)) (-14 *3 (-1161)))) (-2011 (*1 *1 *1) (-12 (-5 *1 (-1239 *2 *3)) (-4 *2 (-1047)) (-14 *3 (-1161)))) (-2372 (*1 *1 *1) (-12 (-5 *1 (-1239 *2 *3)) (-4 *2 (-1047)) (-14 *3 (-1161)))) (-2224 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-1239 *3 *4)) (-4 *3 (-1047)) (-14 *4 (-1161)))) (-2129 (*1 *1 *1) (-12 (-5 *1 (-1239 *2 *3)) (-4 *2 (-1047)) (-14 *3 (-1161)))) (-2651 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-568)) (-5 *1 (-1239 *3 *4)) (-4 *3 (-1047)) (-14 *4 (-1161)))) (-4053 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-568)) (-5 *1 (-1239 *3 *4)) (-4 *3 (-1047)) (-14 *4 (-1161)))) (-3837 (*1 *1 *1 *2) (-12 (-5 *2 (-1240 *4)) (-14 *4 (-1161)) (-5 *1 (-1239 *3 *4)) (-4 *3 (-43 (-409 (-568)))) (-4 *3 (-1047))))) +(-13 (-1234 |#1|) (-10 -8 (-15 -2745 ($ (-1216 |#2| |#1|))) (-15 -3196 ((-1216 |#2| |#1|) $ (-763))) (-15 -2745 ($ (-1240 |#2|))) (-15 -4189 ($ $ (-1240 |#2|))) (-15 -2608 ($ $)) (-15 -3730 ($ $)) (-15 -2011 ($ $)) (-15 -2372 ($ $)) (-15 -2224 ($ $ (-568) (-568))) (-15 -2129 ($ $)) (-15 -2651 ($ (-568) (-568) $)) (-15 -4053 ($ (-568) (-568) $)) (IF (|has| |#1| (-43 (-409 (-568)))) (-15 -3837 ($ $ (-1240 |#2|))) |noBranch|))) +((-2447 (((-121) $ $) NIL)) (-1305 (((-1161)) 12)) (-4487 (((-1143) $) 17)) (-4022 (((-1108) $) NIL)) (-2745 (((-850) $) 11) (((-1161) $) 8)) (-1717 (((-121) $ $) 14))) +(((-1240 |#1|) (-13 (-1090) (-608 (-1161)) (-10 -8 (-15 -2745 ((-1161) $)) (-15 -1305 ((-1161))))) (-1161)) (T -1240)) +((-2745 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-1240 *3)) (-14 *3 *2))) (-1305 (*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-1240 *3)) (-14 *3 *2)))) +(-13 (-1090) (-608 (-1161)) (-10 -8 (-15 -2745 ((-1161) $)) (-15 -1305 ((-1161))))) +((-3205 (($ (-763)) 16)) (-1802 (((-679 |#2|) $ $) 37)) (-1550 ((|#2| $) 46)) (-3678 ((|#2| $) 45)) (-3682 ((|#2| $ $) 33)) (-2748 (($ $ $) 42)) (-1773 (($ $) 20) (($ $ $) 26)) (-1767 (($ $ $) 13)) (* (($ (-568) $) 23) (($ |#2| $) 29) (($ $ |#2|) 28))) +(((-1241 |#1| |#2|) (-10 -8 (-15 -1550 (|#2| |#1|)) (-15 -3678 (|#2| |#1|)) (-15 -2748 (|#1| |#1| |#1|)) (-15 -1802 ((-679 |#2|) |#1| |#1|)) (-15 -3682 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-568) |#1|)) (-15 -1773 (|#1| |#1| |#1|)) (-15 -1773 (|#1| |#1|)) (-15 -3205 (|#1| (-763))) (-15 -1767 (|#1| |#1| |#1|))) (-1242 |#2|) (-1195)) (T -1241)) +NIL +(-10 -8 (-15 -1550 (|#2| |#1|)) (-15 -3678 (|#2| |#1|)) (-15 -2748 (|#1| |#1| |#1|)) (-15 -1802 ((-679 |#2|) |#1| |#1|)) (-15 -3682 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-568) |#1|)) (-15 -1773 (|#1| |#1| |#1|)) (-15 -1773 (|#1| |#1|)) (-15 -3205 (|#1| (-763))) (-15 -1767 (|#1| |#1| |#1|))) +((-2447 (((-121) $ $) 18 (|has| |#1| (-1090)))) (-3205 (($ (-763)) 105 (|has| |#1| (-23)))) (-1868 (((-1249) $ (-568) (-568)) 37 (|has| $ (-6 -4520)))) (-2016 (((-121) (-1 (-121) |#1| |#1|) $) 91) (((-121) $) 85 (|has| |#1| (-842)))) (-3908 (($ (-1 (-121) |#1| |#1|) $) 82 (|has| $ (-6 -4520))) (($ $) 81 (-12 (|has| |#1| (-842)) (|has| $ (-6 -4520))))) (-3644 (($ (-1 (-121) |#1| |#1|) $) 92) (($ $) 86 (|has| |#1| (-842)))) (-2510 (((-121) $ (-763)) 8)) (-2436 ((|#1| $ (-568) |#1|) 49 (|has| $ (-6 -4520))) ((|#1| $ (-1210 (-568)) |#1|) 53 (|has| $ (-6 -4520)))) (-2801 (($ (-1 (-121) |#1|) $) 70 (|has| $ (-6 -4519)))) (-2671 (($) 7 T CONST)) (-1578 (($ $) 83 (|has| $ (-6 -4520)))) (-3943 (($ $) 93)) (-3924 (($ $) 73 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-4328 (($ |#1| $) 72 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519)))) (($ (-1 (-121) |#1|) $) 69 (|has| $ (-6 -4519)))) (-3092 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 71 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 68 (|has| $ (-6 -4519))) ((|#1| (-1 |#1| |#1| |#1|) $) 67 (|has| $ (-6 -4519)))) (-3989 ((|#1| $ (-568) |#1|) 50 (|has| $ (-6 -4520)))) (-2602 ((|#1| $ (-568)) 48)) (-2764 (((-568) (-1 (-121) |#1|) $) 90) (((-568) |#1| $) 89 (|has| |#1| (-1090))) (((-568) |#1| $ (-568)) 88 (|has| |#1| (-1090)))) (-4360 (((-634 |#1|) $) 30 (|has| $ (-6 -4519)))) (-1802 (((-679 |#1|) $ $) 98 (|has| |#1| (-1047)))) (-1849 (($ (-763) |#1|) 64)) (-1737 (((-121) $ (-763)) 9)) (-1881 (((-568) $) 40 (|has| (-568) (-842)))) (-2521 (($ $ $) 80 (|has| |#1| (-842)))) (-1347 (($ (-1 (-121) |#1| |#1|) $ $) 94) (($ $ $) 87 (|has| |#1| (-842)))) (-1979 (((-634 |#1|) $) 29 (|has| $ (-6 -4519)))) (-3109 (((-121) |#1| $) 27 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-2223 (((-568) $) 41 (|has| (-568) (-842)))) (-3268 (($ $ $) 79 (|has| |#1| (-842)))) (-3674 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 59)) (-1550 ((|#1| $) 95 (-12 (|has| |#1| (-1047)) (|has| |#1| (-1002))))) (-2166 (((-121) $ (-763)) 10)) (-3678 ((|#1| $) 96 (-12 (|has| |#1| (-1047)) (|has| |#1| (-1002))))) (-4487 (((-1143) $) 22 (|has| |#1| (-1090)))) (-4122 (($ |#1| $ (-568)) 55) (($ $ $ (-568)) 54)) (-4174 (((-634 (-568)) $) 43)) (-3578 (((-121) (-568) $) 44)) (-4022 (((-1108) $) 21 (|has| |#1| (-1090)))) (-3876 ((|#1| $) 39 (|has| (-568) (-842)))) (-3775 (((-3 |#1| "failed") (-1 (-121) |#1|) $) 66)) (-3724 (($ $ |#1|) 38 (|has| $ (-6 -4520)))) (-1387 (((-121) (-1 (-121) |#1|) $) 32 (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-634 |#1|) (-634 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))))) (-3171 (((-121) $ $) 14)) (-4467 (((-121) |#1| $) 42 (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-2041 (((-634 |#1|) $) 45)) (-3084 (((-121) $) 11)) (-3248 (($) 12)) (-2779 ((|#1| $ (-568) |#1|) 47) ((|#1| $ (-568)) 46) (($ $ (-1210 (-568))) 58)) (-3682 ((|#1| $ $) 99 (|has| |#1| (-1047)))) (-2826 (($ $ (-568)) 57) (($ $ (-1210 (-568))) 56)) (-2748 (($ $ $) 97 (|has| |#1| (-1047)))) (-4168 (((-763) (-1 (-121) |#1|) $) 31 (|has| $ (-6 -4519))) (((-763) |#1| $) 28 (-12 (|has| |#1| (-1090)) (|has| $ (-6 -4519))))) (-2256 (($ $ $ (-568)) 84 (|has| $ (-6 -4520)))) (-3863 (($ $) 13)) (-4278 (((-541) $) 74 (|has| |#1| (-609 (-541))))) (-4287 (($ (-634 |#1|)) 65)) (-2768 (($ $ |#1|) 63) (($ |#1| $) 62) (($ $ $) 61) (($ (-634 $)) 60)) (-2745 (((-850) $) 20 (|has| |#1| (-1090)))) (-1319 (((-121) (-1 (-121) |#1|) $) 33 (|has| $ (-6 -4519)))) (-1751 (((-121) $ $) 77 (|has| |#1| (-842)))) (-1738 (((-121) $ $) 76 (|has| |#1| (-842)))) (-1717 (((-121) $ $) 19 (|has| |#1| (-1090)))) (-1745 (((-121) $ $) 78 (|has| |#1| (-842)))) (-1732 (((-121) $ $) 75 (|has| |#1| (-842)))) (-1773 (($ $) 104 (|has| |#1| (-21))) (($ $ $) 103 (|has| |#1| (-21)))) (-1767 (($ $ $) 106 (|has| |#1| (-25)))) (* (($ (-568) $) 102 (|has| |#1| (-21))) (($ |#1| $) 101 (|has| |#1| (-716))) (($ $ |#1|) 100 (|has| |#1| (-716)))) (-1697 (((-763) $) 6 (|has| $ (-6 -4519))))) +(((-1242 |#1|) (-1275) (-1195)) (T -1242)) +((-1767 (*1 *1 *1 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1195)) (-4 *2 (-25)))) (-3205 (*1 *1 *2) (-12 (-5 *2 (-763)) (-4 *1 (-1242 *3)) (-4 *3 (-23)) (-4 *3 (-1195)))) (-1773 (*1 *1 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1195)) (-4 *2 (-21)))) (-1773 (*1 *1 *1 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1195)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-568)) (-4 *1 (-1242 *3)) (-4 *3 (-1195)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1195)) (-4 *2 (-716)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1195)) (-4 *2 (-716)))) (-3682 (*1 *2 *1 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1195)) (-4 *2 (-1047)))) (-1802 (*1 *2 *1 *1) (-12 (-4 *1 (-1242 *3)) (-4 *3 (-1195)) (-4 *3 (-1047)) (-5 *2 (-679 *3)))) (-2748 (*1 *1 *1 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1195)) (-4 *2 (-1047)))) (-3678 (*1 *2 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1195)) (-4 *2 (-1002)) (-4 *2 (-1047)))) (-1550 (*1 *2 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1195)) (-4 *2 (-1002)) (-4 *2 (-1047))))) +(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -1767 ($ $ $)) |noBranch|) (IF (|has| |t#1| (-23)) (-15 -3205 ($ (-763))) |noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -1773 ($ $)) (-15 -1773 ($ $ $)) (-15 * ($ (-568) $))) |noBranch|) (IF (|has| |t#1| (-716)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |noBranch|) (IF (|has| |t#1| (-1047)) (PROGN (-15 -3682 (|t#1| $ $)) (-15 -1802 ((-679 |t#1|) $ $)) (-15 -2748 ($ $ $))) |noBranch|) (IF (|has| |t#1| (-1002)) (IF (|has| |t#1| (-1047)) (PROGN (-15 -3678 (|t#1| $)) (-15 -1550 (|t#1| $))) |noBranch|) |noBranch|))) +(((-39) . T) ((-105) -2198 (|has| |#1| (-1090)) (|has| |#1| (-842))) ((-608 (-850)) -2198 (|has| |#1| (-1090)) (|has| |#1| (-842))) ((-154 |#1|) . T) ((-609 (-541)) |has| |#1| (-609 (-541))) ((-281 (-568) |#1|) . T) ((-283 (-568) |#1|) . T) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))) ((-375 |#1|) . T) ((-499 |#1|) . T) ((-601 (-568) |#1|) . T) ((-523 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))) ((-640 |#1|) . T) ((-19 |#1|) . T) ((-842) |has| |#1| (-842)) ((-1090) -2198 (|has| |#1| (-1090)) (|has| |#1| (-842))) ((-1195) . T)) +((-2512 (((-1244 |#2|) (-1 |#2| |#1| |#2|) (-1244 |#1|) |#2|) 13)) (-3092 ((|#2| (-1 |#2| |#1| |#2|) (-1244 |#1|) |#2|) 15)) (-2795 (((-3 (-1244 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1244 |#1|)) 28) (((-1244 |#2|) (-1 |#2| |#1|) (-1244 |#1|)) 18))) +(((-1243 |#1| |#2|) (-10 -7 (-15 -2512 ((-1244 |#2|) (-1 |#2| |#1| |#2|) (-1244 |#1|) |#2|)) (-15 -3092 (|#2| (-1 |#2| |#1| |#2|) (-1244 |#1|) |#2|)) (-15 -2795 ((-1244 |#2|) (-1 |#2| |#1|) (-1244 |#1|))) (-15 -2795 ((-3 (-1244 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1244 |#1|)))) (-1195) (-1195)) (T -1243)) +((-2795 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1244 *5)) (-4 *5 (-1195)) (-4 *6 (-1195)) (-5 *2 (-1244 *6)) (-5 *1 (-1243 *5 *6)))) (-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1244 *5)) (-4 *5 (-1195)) (-4 *6 (-1195)) (-5 *2 (-1244 *6)) (-5 *1 (-1243 *5 *6)))) (-3092 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1244 *5)) (-4 *5 (-1195)) (-4 *2 (-1195)) (-5 *1 (-1243 *5 *2)))) (-2512 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1244 *6)) (-4 *6 (-1195)) (-4 *5 (-1195)) (-5 *2 (-1244 *5)) (-5 *1 (-1243 *6 *5))))) +(-10 -7 (-15 -2512 ((-1244 |#2|) (-1 |#2| |#1| |#2|) (-1244 |#1|) |#2|)) (-15 -3092 (|#2| (-1 |#2| |#1| |#2|) (-1244 |#1|) |#2|)) (-15 -2795 ((-1244 |#2|) (-1 |#2| |#1|) (-1244 |#1|))) (-15 -2795 ((-3 (-1244 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1244 |#1|)))) +((-2447 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-3205 (($ (-763)) NIL (|has| |#1| (-23)))) (-4209 (($ (-634 |#1|)) 9)) (-1868 (((-1249) $ (-568) (-568)) NIL (|has| $ (-6 -4520)))) (-2016 (((-121) (-1 (-121) |#1| |#1|) $) NIL) (((-121) $) NIL (|has| |#1| (-842)))) (-3908 (($ (-1 (-121) |#1| |#1|) $) NIL (|has| $ (-6 -4520))) (($ $) NIL (-12 (|has| $ (-6 -4520)) (|has| |#1| (-842))))) (-3644 (($ (-1 (-121) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-842)))) (-2510 (((-121) $ (-763)) NIL)) (-2436 ((|#1| $ (-568) |#1|) NIL (|has| $ (-6 -4520))) ((|#1| $ (-1210 (-568)) |#1|) NIL (|has| $ (-6 -4520)))) (-2801 (($ (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-2671 (($) NIL T CONST)) (-1578 (($ $) NIL (|has| $ (-6 -4520)))) (-3943 (($ $) NIL)) (-3924 (($ $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-4328 (($ |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090)))) (($ (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-3092 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4519))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4519)))) (-3989 ((|#1| $ (-568) |#1|) NIL (|has| $ (-6 -4520)))) (-2602 ((|#1| $ (-568)) NIL)) (-2764 (((-568) (-1 (-121) |#1|) $) NIL) (((-568) |#1| $) NIL (|has| |#1| (-1090))) (((-568) |#1| $ (-568)) NIL (|has| |#1| (-1090)))) (-4360 (((-634 |#1|) $) 15 (|has| $ (-6 -4519)))) (-1802 (((-679 |#1|) $ $) NIL (|has| |#1| (-1047)))) (-1849 (($ (-763) |#1|) NIL)) (-1737 (((-121) $ (-763)) NIL)) (-1881 (((-568) $) NIL (|has| (-568) (-842)))) (-2521 (($ $ $) NIL (|has| |#1| (-842)))) (-1347 (($ (-1 (-121) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-842)))) (-1979 (((-634 |#1|) $) NIL (|has| $ (-6 -4519)))) (-3109 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-2223 (((-568) $) NIL (|has| (-568) (-842)))) (-3268 (($ $ $) NIL (|has| |#1| (-842)))) (-3674 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1550 ((|#1| $) NIL (-12 (|has| |#1| (-1002)) (|has| |#1| (-1047))))) (-2166 (((-121) $ (-763)) NIL)) (-3678 ((|#1| $) NIL (-12 (|has| |#1| (-1002)) (|has| |#1| (-1047))))) (-4487 (((-1143) $) NIL (|has| |#1| (-1090)))) (-4122 (($ |#1| $ (-568)) NIL) (($ $ $ (-568)) NIL)) (-4174 (((-634 (-568)) $) NIL)) (-3578 (((-121) (-568) $) NIL)) (-4022 (((-1108) $) NIL (|has| |#1| (-1090)))) (-3876 ((|#1| $) NIL (|has| (-568) (-842)))) (-3775 (((-3 |#1| "failed") (-1 (-121) |#1|) $) NIL)) (-3724 (($ $ |#1|) NIL (|has| $ (-6 -4520)))) (-1387 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090)))) (($ $ (-634 |#1|) (-634 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1090))))) (-3171 (((-121) $ $) NIL)) (-4467 (((-121) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-2041 (((-634 |#1|) $) NIL)) (-3084 (((-121) $) NIL)) (-3248 (($) NIL)) (-2779 ((|#1| $ (-568) |#1|) NIL) ((|#1| $ (-568)) NIL) (($ $ (-1210 (-568))) NIL)) (-3682 ((|#1| $ $) NIL (|has| |#1| (-1047)))) (-2826 (($ $ (-568)) NIL) (($ $ (-1210 (-568))) NIL)) (-2748 (($ $ $) NIL (|has| |#1| (-1047)))) (-4168 (((-763) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519))) (((-763) |#1| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#1| (-1090))))) (-2256 (($ $ $ (-568)) NIL (|has| $ (-6 -4520)))) (-3863 (($ $) NIL)) (-4278 (((-541) $) 19 (|has| |#1| (-609 (-541))))) (-4287 (($ (-634 |#1|)) 8)) (-2768 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-634 $)) NIL)) (-2745 (((-850) $) NIL (|has| |#1| (-1090)))) (-1319 (((-121) (-1 (-121) |#1|) $) NIL (|has| $ (-6 -4519)))) (-1751 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1738 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1717 (((-121) $ $) NIL (|has| |#1| (-1090)))) (-1745 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1732 (((-121) $ $) NIL (|has| |#1| (-842)))) (-1773 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1767 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-568) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-716))) (($ $ |#1|) NIL (|has| |#1| (-716)))) (-1697 (((-763) $) NIL (|has| $ (-6 -4519))))) +(((-1244 |#1|) (-13 (-1242 |#1|) (-10 -8 (-15 -4209 ($ (-634 |#1|))))) (-1195)) (T -1244)) +((-4209 (*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-1195)) (-5 *1 (-1244 *3))))) +(-13 (-1242 |#1|) (-10 -8 (-15 -4209 ($ (-634 |#1|))))) +((-2447 (((-121) $ $) NIL)) (-2323 (((-1143) $ (-1143)) 87) (((-1143) $ (-1143) (-1143)) 85) (((-1143) $ (-1143) (-634 (-1143))) 84)) (-2638 (($) 56)) (-2967 (((-1249) $ (-473) (-917)) 42)) (-2832 (((-1249) $ (-917) (-1143)) 70) (((-1249) $ (-917) (-869)) 71)) (-1859 (((-1249) $ (-917) (-381) (-381)) 45)) (-1784 (((-1249) $ (-1143)) 66)) (-1647 (((-1249) $ (-917) (-1143)) 75)) (-3646 (((-1249) $ (-917) (-381) (-381)) 46)) (-1476 (((-1249) $ (-917) (-917)) 43)) (-2316 (((-1249) $) 67)) (-1419 (((-1249) $ (-917) (-1143)) 74)) (-1502 (((-1249) $ (-473) (-917)) 30)) (-1526 (((-1249) $ (-917) (-1143)) 73)) (-1480 (((-634 (-256)) $) 22) (($ $ (-634 (-256))) 23)) (-2618 (((-1249) $ (-763) (-763)) 40)) (-3202 (($ $) 57) (($ (-473) (-634 (-256))) 58)) (-4487 (((-1143) $) NIL)) (-3649 (((-568) $) 37)) (-4022 (((-1108) $) NIL)) (-2978 (((-1244 (-3 (-473) "undefined")) $) 36)) (-3150 (((-1244 (-2 (|:| |scaleX| (-215)) (|:| |scaleY| (-215)) (|:| |deltaX| (-215)) (|:| |deltaY| (-215)) (|:| -1526 (-568)) (|:| -4257 (-568)) (|:| |spline| (-568)) (|:| -1718 (-568)) (|:| |axesColor| (-869)) (|:| -2832 (-568)) (|:| |unitsColor| (-869)) (|:| |showing| (-568)))) $) 35)) (-2549 (((-1249) $ (-917) (-215) (-215) (-215) (-215) (-568) (-568) (-568) (-568) (-869) (-568) (-869) (-568)) 65)) (-2935 (((-634 (-944 (-215))) $) NIL)) (-2799 (((-473) $ (-917)) 32)) (-3523 (((-1249) $ (-763) (-763) (-917) (-917)) 39)) (-3299 (((-1249) $ (-1143)) 76)) (-4257 (((-1249) $ (-917) (-1143)) 72)) (-2745 (((-850) $) 82)) (-4092 (((-1249) $) 77)) (-1718 (((-1249) $ (-917) (-1143)) 68) (((-1249) $ (-917) (-869)) 69)) (-1717 (((-121) $ $) NIL))) +(((-1245) (-13 (-1090) (-10 -8 (-15 -2935 ((-634 (-944 (-215))) $)) (-15 -2638 ($)) (-15 -3202 ($ $)) (-15 -1480 ((-634 (-256)) $)) (-15 -1480 ($ $ (-634 (-256)))) (-15 -3202 ($ (-473) (-634 (-256)))) (-15 -2549 ((-1249) $ (-917) (-215) (-215) (-215) (-215) (-568) (-568) (-568) (-568) (-869) (-568) (-869) (-568))) (-15 -3150 ((-1244 (-2 (|:| |scaleX| (-215)) (|:| |scaleY| (-215)) (|:| |deltaX| (-215)) (|:| |deltaY| (-215)) (|:| -1526 (-568)) (|:| -4257 (-568)) (|:| |spline| (-568)) (|:| -1718 (-568)) (|:| |axesColor| (-869)) (|:| -2832 (-568)) (|:| |unitsColor| (-869)) (|:| |showing| (-568)))) $)) (-15 -2978 ((-1244 (-3 (-473) "undefined")) $)) (-15 -1784 ((-1249) $ (-1143))) (-15 -1502 ((-1249) $ (-473) (-917))) (-15 -2799 ((-473) $ (-917))) (-15 -1718 ((-1249) $ (-917) (-1143))) (-15 -1718 ((-1249) $ (-917) (-869))) (-15 -2832 ((-1249) $ (-917) (-1143))) (-15 -2832 ((-1249) $ (-917) (-869))) (-15 -1526 ((-1249) $ (-917) (-1143))) (-15 -1419 ((-1249) $ (-917) (-1143))) (-15 -4257 ((-1249) $ (-917) (-1143))) (-15 -3299 ((-1249) $ (-1143))) (-15 -4092 ((-1249) $)) (-15 -3523 ((-1249) $ (-763) (-763) (-917) (-917))) (-15 -3646 ((-1249) $ (-917) (-381) (-381))) (-15 -1859 ((-1249) $ (-917) (-381) (-381))) (-15 -1647 ((-1249) $ (-917) (-1143))) (-15 -2618 ((-1249) $ (-763) (-763))) (-15 -2967 ((-1249) $ (-473) (-917))) (-15 -1476 ((-1249) $ (-917) (-917))) (-15 -2323 ((-1143) $ (-1143))) (-15 -2323 ((-1143) $ (-1143) (-1143))) (-15 -2323 ((-1143) $ (-1143) (-634 (-1143)))) (-15 -2316 ((-1249) $)) (-15 -3649 ((-568) $)) (-15 -2745 ((-850) $))))) (T -1245)) +((-2745 (*1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-1245)))) (-2935 (*1 *2 *1) (-12 (-5 *2 (-634 (-944 (-215)))) (-5 *1 (-1245)))) (-2638 (*1 *1) (-5 *1 (-1245))) (-3202 (*1 *1 *1) (-5 *1 (-1245))) (-1480 (*1 *2 *1) (-12 (-5 *2 (-634 (-256))) (-5 *1 (-1245)))) (-1480 (*1 *1 *1 *2) (-12 (-5 *2 (-634 (-256))) (-5 *1 (-1245)))) (-3202 (*1 *1 *2 *3) (-12 (-5 *2 (-473)) (-5 *3 (-634 (-256))) (-5 *1 (-1245)))) (-2549 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-917)) (-5 *4 (-215)) (-5 *5 (-568)) (-5 *6 (-869)) (-5 *2 (-1249)) (-5 *1 (-1245)))) (-3150 (*1 *2 *1) (-12 (-5 *2 (-1244 (-2 (|:| |scaleX| (-215)) (|:| |scaleY| (-215)) (|:| |deltaX| (-215)) (|:| |deltaY| (-215)) (|:| -1526 (-568)) (|:| -4257 (-568)) (|:| |spline| (-568)) (|:| -1718 (-568)) (|:| |axesColor| (-869)) (|:| -2832 (-568)) (|:| |unitsColor| (-869)) (|:| |showing| (-568))))) (-5 *1 (-1245)))) (-2978 (*1 *2 *1) (-12 (-5 *2 (-1244 (-3 (-473) "undefined"))) (-5 *1 (-1245)))) (-1784 (*1 *2 *1 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-1249)) (-5 *1 (-1245)))) (-1502 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-473)) (-5 *4 (-917)) (-5 *2 (-1249)) (-5 *1 (-1245)))) (-2799 (*1 *2 *1 *3) (-12 (-5 *3 (-917)) (-5 *2 (-473)) (-5 *1 (-1245)))) (-1718 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-917)) (-5 *4 (-1143)) (-5 *2 (-1249)) (-5 *1 (-1245)))) (-1718 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-917)) (-5 *4 (-869)) (-5 *2 (-1249)) (-5 *1 (-1245)))) (-2832 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-917)) (-5 *4 (-1143)) (-5 *2 (-1249)) (-5 *1 (-1245)))) (-2832 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-917)) (-5 *4 (-869)) (-5 *2 (-1249)) (-5 *1 (-1245)))) (-1526 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-917)) (-5 *4 (-1143)) (-5 *2 (-1249)) (-5 *1 (-1245)))) (-1419 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-917)) (-5 *4 (-1143)) (-5 *2 (-1249)) (-5 *1 (-1245)))) (-4257 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-917)) (-5 *4 (-1143)) (-5 *2 (-1249)) (-5 *1 (-1245)))) (-3299 (*1 *2 *1 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-1249)) (-5 *1 (-1245)))) (-4092 (*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-1245)))) (-3523 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-763)) (-5 *4 (-917)) (-5 *2 (-1249)) (-5 *1 (-1245)))) (-3646 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-917)) (-5 *4 (-381)) (-5 *2 (-1249)) (-5 *1 (-1245)))) (-1859 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-917)) (-5 *4 (-381)) (-5 *2 (-1249)) (-5 *1 (-1245)))) (-1647 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-917)) (-5 *4 (-1143)) (-5 *2 (-1249)) (-5 *1 (-1245)))) (-2618 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-763)) (-5 *2 (-1249)) (-5 *1 (-1245)))) (-2967 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-473)) (-5 *4 (-917)) (-5 *2 (-1249)) (-5 *1 (-1245)))) (-1476 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1249)) (-5 *1 (-1245)))) (-2323 (*1 *2 *1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-1245)))) (-2323 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-1245)))) (-2323 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-634 (-1143))) (-5 *2 (-1143)) (-5 *1 (-1245)))) (-2316 (*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-1245)))) (-3649 (*1 *2 *1) (-12 (-5 *2 (-568)) (-5 *1 (-1245))))) +(-13 (-1090) (-10 -8 (-15 -2935 ((-634 (-944 (-215))) $)) (-15 -2638 ($)) (-15 -3202 ($ $)) (-15 -1480 ((-634 (-256)) $)) (-15 -1480 ($ $ (-634 (-256)))) (-15 -3202 ($ (-473) (-634 (-256)))) (-15 -2549 ((-1249) $ (-917) (-215) (-215) (-215) (-215) (-568) (-568) (-568) (-568) (-869) (-568) (-869) (-568))) (-15 -3150 ((-1244 (-2 (|:| |scaleX| (-215)) (|:| |scaleY| (-215)) (|:| |deltaX| (-215)) (|:| |deltaY| (-215)) (|:| -1526 (-568)) (|:| -4257 (-568)) (|:| |spline| (-568)) (|:| -1718 (-568)) (|:| |axesColor| (-869)) (|:| -2832 (-568)) (|:| |unitsColor| (-869)) (|:| |showing| (-568)))) $)) (-15 -2978 ((-1244 (-3 (-473) "undefined")) $)) (-15 -1784 ((-1249) $ (-1143))) (-15 -1502 ((-1249) $ (-473) (-917))) (-15 -2799 ((-473) $ (-917))) (-15 -1718 ((-1249) $ (-917) (-1143))) (-15 -1718 ((-1249) $ (-917) (-869))) (-15 -2832 ((-1249) $ (-917) (-1143))) (-15 -2832 ((-1249) $ (-917) (-869))) (-15 -1526 ((-1249) $ (-917) (-1143))) (-15 -1419 ((-1249) $ (-917) (-1143))) (-15 -4257 ((-1249) $ (-917) (-1143))) (-15 -3299 ((-1249) $ (-1143))) (-15 -4092 ((-1249) $)) (-15 -3523 ((-1249) $ (-763) (-763) (-917) (-917))) (-15 -3646 ((-1249) $ (-917) (-381) (-381))) (-15 -1859 ((-1249) $ (-917) (-381) (-381))) (-15 -1647 ((-1249) $ (-917) (-1143))) (-15 -2618 ((-1249) $ (-763) (-763))) (-15 -2967 ((-1249) $ (-473) (-917))) (-15 -1476 ((-1249) $ (-917) (-917))) (-15 -2323 ((-1143) $ (-1143))) (-15 -2323 ((-1143) $ (-1143) (-1143))) (-15 -2323 ((-1143) $ (-1143) (-634 (-1143)))) (-15 -2316 ((-1249) $)) (-15 -3649 ((-568) $)) (-15 -2745 ((-850) $)))) +((-2447 (((-121) $ $) NIL)) (-2868 (((-1249) $ (-381)) 138) (((-1249) $ (-381) (-381) (-381)) 139)) (-2323 (((-1143) $ (-1143)) 146) (((-1143) $ (-1143) (-1143)) 144) (((-1143) $ (-1143) (-634 (-1143))) 143)) (-3482 (($) 49)) (-2501 (((-1249) $ (-381) (-381) (-381) (-381) (-381)) 114) (((-2 (|:| |theta| (-215)) (|:| |phi| (-215)) (|:| -3646 (-215)) (|:| |scaleX| (-215)) (|:| |scaleY| (-215)) (|:| |scaleZ| (-215)) (|:| |deltaX| (-215)) (|:| |deltaY| (-215))) $) 112) (((-1249) $ (-2 (|:| |theta| (-215)) (|:| |phi| (-215)) (|:| -3646 (-215)) (|:| |scaleX| (-215)) (|:| |scaleY| (-215)) (|:| |scaleZ| (-215)) (|:| |deltaX| (-215)) (|:| |deltaY| (-215)))) 113) (((-1249) $ (-568) (-568) (-381) (-381) (-381)) 115) (((-1249) $ (-381) (-381)) 116) (((-1249) $ (-381) (-381) (-381)) 123)) (-2474 (((-381)) 96) (((-381) (-381)) 97)) (-3397 (((-381)) 91) (((-381) (-381)) 93)) (-2194 (((-381)) 94) (((-381) (-381)) 95)) (-1598 (((-381)) 100) (((-381) (-381)) 101)) (-1479 (((-381)) 98) (((-381) (-381)) 99)) (-1859 (((-1249) $ (-381) (-381)) 140)) (-1784 (((-1249) $ (-1143)) 124)) (-2141 (((-1121 (-215)) $) 50) (($ $ (-1121 (-215))) 51)) (-3707 (((-1249) $ (-1143)) 152)) (-2358 (((-1249) $ (-1143)) 153)) (-1646 (((-1249) $ (-381) (-381)) 122) (((-1249) $ (-568) (-568)) 137)) (-1476 (((-1249) $ (-917) (-917)) 130)) (-2316 (((-1249) $) 110)) (-1931 (((-1249) $ (-1143)) 151)) (-4072 (((-1249) $ (-1143)) 107)) (-1480 (((-634 (-256)) $) 52) (($ $ (-634 (-256))) 53)) (-2618 (((-1249) $ (-763) (-763)) 129)) (-1524 (((-1249) $ (-763) (-944 (-215))) 158)) (-4215 (($ $) 56) (($ (-1121 (-215)) (-1143)) 57) (($ (-1121 (-215)) (-634 (-256))) 58)) (-2557 (((-1249) $ (-381) (-381) (-381)) 104)) (-4487 (((-1143) $) NIL)) (-3649 (((-568) $) 102)) (-3997 (((-1249) $ (-381)) 141)) (-3012 (((-1249) $ (-381)) 156)) (-4022 (((-1108) $) NIL)) (-3321 (((-1249) $ (-381)) 155)) (-2105 (((-1249) $ (-1143)) 109)) (-3523 (((-1249) $ (-763) (-763) (-917) (-917)) 128)) (-1839 (((-1249) $ (-1143)) 106)) (-3299 (((-1249) $ (-1143)) 108)) (-3941 (((-1249) $ (-158) (-158)) 127)) (-2745 (((-850) $) 135)) (-4092 (((-1249) $) 111)) (-2147 (((-1249) $ (-1143)) 154)) (-1718 (((-1249) $ (-1143)) 105)) (-1717 (((-121) $ $) NIL))) +(((-1246) (-13 (-1090) (-10 -8 (-15 -3397 ((-381))) (-15 -3397 ((-381) (-381))) (-15 -2194 ((-381))) (-15 -2194 ((-381) (-381))) (-15 -2474 ((-381))) (-15 -2474 ((-381) (-381))) (-15 -1479 ((-381))) (-15 -1479 ((-381) (-381))) (-15 -1598 ((-381))) (-15 -1598 ((-381) (-381))) (-15 -3482 ($)) (-15 -4215 ($ $)) (-15 -4215 ($ (-1121 (-215)) (-1143))) (-15 -4215 ($ (-1121 (-215)) (-634 (-256)))) (-15 -2141 ((-1121 (-215)) $)) (-15 -2141 ($ $ (-1121 (-215)))) (-15 -1524 ((-1249) $ (-763) (-944 (-215)))) (-15 -1480 ((-634 (-256)) $)) (-15 -1480 ($ $ (-634 (-256)))) (-15 -2618 ((-1249) $ (-763) (-763))) (-15 -1476 ((-1249) $ (-917) (-917))) (-15 -1784 ((-1249) $ (-1143))) (-15 -3523 ((-1249) $ (-763) (-763) (-917) (-917))) (-15 -2501 ((-1249) $ (-381) (-381) (-381) (-381) (-381))) (-15 -2501 ((-2 (|:| |theta| (-215)) (|:| |phi| (-215)) (|:| -3646 (-215)) (|:| |scaleX| (-215)) (|:| |scaleY| (-215)) (|:| |scaleZ| (-215)) (|:| |deltaX| (-215)) (|:| |deltaY| (-215))) $)) (-15 -2501 ((-1249) $ (-2 (|:| |theta| (-215)) (|:| |phi| (-215)) (|:| -3646 (-215)) (|:| |scaleX| (-215)) (|:| |scaleY| (-215)) (|:| |scaleZ| (-215)) (|:| |deltaX| (-215)) (|:| |deltaY| (-215))))) (-15 -2501 ((-1249) $ (-568) (-568) (-381) (-381) (-381))) (-15 -2501 ((-1249) $ (-381) (-381))) (-15 -2501 ((-1249) $ (-381) (-381) (-381))) (-15 -3299 ((-1249) $ (-1143))) (-15 -1718 ((-1249) $ (-1143))) (-15 -1839 ((-1249) $ (-1143))) (-15 -4072 ((-1249) $ (-1143))) (-15 -2105 ((-1249) $ (-1143))) (-15 -1646 ((-1249) $ (-381) (-381))) (-15 -1646 ((-1249) $ (-568) (-568))) (-15 -2868 ((-1249) $ (-381))) (-15 -2868 ((-1249) $ (-381) (-381) (-381))) (-15 -1859 ((-1249) $ (-381) (-381))) (-15 -1931 ((-1249) $ (-1143))) (-15 -3321 ((-1249) $ (-381))) (-15 -3012 ((-1249) $ (-381))) (-15 -3707 ((-1249) $ (-1143))) (-15 -2358 ((-1249) $ (-1143))) (-15 -2147 ((-1249) $ (-1143))) (-15 -2557 ((-1249) $ (-381) (-381) (-381))) (-15 -3997 ((-1249) $ (-381))) (-15 -2316 ((-1249) $)) (-15 -3941 ((-1249) $ (-158) (-158))) (-15 -2323 ((-1143) $ (-1143))) (-15 -2323 ((-1143) $ (-1143) (-1143))) (-15 -2323 ((-1143) $ (-1143) (-634 (-1143)))) (-15 -4092 ((-1249) $)) (-15 -3649 ((-568) $))))) (T -1246)) +((-3397 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1246)))) (-3397 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1246)))) (-2194 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1246)))) (-2194 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1246)))) (-2474 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1246)))) (-2474 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1246)))) (-1479 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1246)))) (-1479 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1246)))) (-1598 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1246)))) (-1598 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1246)))) (-3482 (*1 *1) (-5 *1 (-1246))) (-4215 (*1 *1 *1) (-5 *1 (-1246))) (-4215 (*1 *1 *2 *3) (-12 (-5 *2 (-1121 (-215))) (-5 *3 (-1143)) (-5 *1 (-1246)))) (-4215 (*1 *1 *2 *3) (-12 (-5 *2 (-1121 (-215))) (-5 *3 (-634 (-256))) (-5 *1 (-1246)))) (-2141 (*1 *2 *1) (-12 (-5 *2 (-1121 (-215))) (-5 *1 (-1246)))) (-2141 (*1 *1 *1 *2) (-12 (-5 *2 (-1121 (-215))) (-5 *1 (-1246)))) (-1524 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-763)) (-5 *4 (-944 (-215))) (-5 *2 (-1249)) (-5 *1 (-1246)))) (-1480 (*1 *2 *1) (-12 (-5 *2 (-634 (-256))) (-5 *1 (-1246)))) (-1480 (*1 *1 *1 *2) (-12 (-5 *2 (-634 (-256))) (-5 *1 (-1246)))) (-2618 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-763)) (-5 *2 (-1249)) (-5 *1 (-1246)))) (-1476 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1249)) (-5 *1 (-1246)))) (-1784 (*1 *2 *1 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-1249)) (-5 *1 (-1246)))) (-3523 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-763)) (-5 *4 (-917)) (-5 *2 (-1249)) (-5 *1 (-1246)))) (-2501 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1249)) (-5 *1 (-1246)))) (-2501 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-215)) (|:| |phi| (-215)) (|:| -3646 (-215)) (|:| |scaleX| (-215)) (|:| |scaleY| (-215)) (|:| |scaleZ| (-215)) (|:| |deltaX| (-215)) (|:| |deltaY| (-215)))) (-5 *1 (-1246)))) (-2501 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-215)) (|:| |phi| (-215)) (|:| -3646 (-215)) (|:| |scaleX| (-215)) (|:| |scaleY| (-215)) (|:| |scaleZ| (-215)) (|:| |deltaX| (-215)) (|:| |deltaY| (-215)))) (-5 *2 (-1249)) (-5 *1 (-1246)))) (-2501 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-568)) (-5 *4 (-381)) (-5 *2 (-1249)) (-5 *1 (-1246)))) (-2501 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1249)) (-5 *1 (-1246)))) (-2501 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1249)) (-5 *1 (-1246)))) (-3299 (*1 *2 *1 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-1249)) (-5 *1 (-1246)))) (-1718 (*1 *2 *1 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-1249)) (-5 *1 (-1246)))) (-1839 (*1 *2 *1 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-1249)) (-5 *1 (-1246)))) (-4072 (*1 *2 *1 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-1249)) (-5 *1 (-1246)))) (-2105 (*1 *2 *1 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-1249)) (-5 *1 (-1246)))) (-1646 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1249)) (-5 *1 (-1246)))) (-1646 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-568)) (-5 *2 (-1249)) (-5 *1 (-1246)))) (-2868 (*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1249)) (-5 *1 (-1246)))) (-2868 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1249)) (-5 *1 (-1246)))) (-1859 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1249)) (-5 *1 (-1246)))) (-1931 (*1 *2 *1 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-1249)) (-5 *1 (-1246)))) (-3321 (*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1249)) (-5 *1 (-1246)))) (-3012 (*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1249)) (-5 *1 (-1246)))) (-3707 (*1 *2 *1 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-1249)) (-5 *1 (-1246)))) (-2358 (*1 *2 *1 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-1249)) (-5 *1 (-1246)))) (-2147 (*1 *2 *1 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-1249)) (-5 *1 (-1246)))) (-2557 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1249)) (-5 *1 (-1246)))) (-3997 (*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1249)) (-5 *1 (-1246)))) (-2316 (*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-1246)))) (-3941 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-158)) (-5 *2 (-1249)) (-5 *1 (-1246)))) (-2323 (*1 *2 *1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-1246)))) (-2323 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-1246)))) (-2323 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-634 (-1143))) (-5 *2 (-1143)) (-5 *1 (-1246)))) (-4092 (*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-1246)))) (-3649 (*1 *2 *1) (-12 (-5 *2 (-568)) (-5 *1 (-1246))))) +(-13 (-1090) (-10 -8 (-15 -3397 ((-381))) (-15 -3397 ((-381) (-381))) (-15 -2194 ((-381))) (-15 -2194 ((-381) (-381))) (-15 -2474 ((-381))) (-15 -2474 ((-381) (-381))) (-15 -1479 ((-381))) (-15 -1479 ((-381) (-381))) (-15 -1598 ((-381))) (-15 -1598 ((-381) (-381))) (-15 -3482 ($)) (-15 -4215 ($ $)) (-15 -4215 ($ (-1121 (-215)) (-1143))) (-15 -4215 ($ (-1121 (-215)) (-634 (-256)))) (-15 -2141 ((-1121 (-215)) $)) (-15 -2141 ($ $ (-1121 (-215)))) (-15 -1524 ((-1249) $ (-763) (-944 (-215)))) (-15 -1480 ((-634 (-256)) $)) (-15 -1480 ($ $ (-634 (-256)))) (-15 -2618 ((-1249) $ (-763) (-763))) (-15 -1476 ((-1249) $ (-917) (-917))) (-15 -1784 ((-1249) $ (-1143))) (-15 -3523 ((-1249) $ (-763) (-763) (-917) (-917))) (-15 -2501 ((-1249) $ (-381) (-381) (-381) (-381) (-381))) (-15 -2501 ((-2 (|:| |theta| (-215)) (|:| |phi| (-215)) (|:| -3646 (-215)) (|:| |scaleX| (-215)) (|:| |scaleY| (-215)) (|:| |scaleZ| (-215)) (|:| |deltaX| (-215)) (|:| |deltaY| (-215))) $)) (-15 -2501 ((-1249) $ (-2 (|:| |theta| (-215)) (|:| |phi| (-215)) (|:| -3646 (-215)) (|:| |scaleX| (-215)) (|:| |scaleY| (-215)) (|:| |scaleZ| (-215)) (|:| |deltaX| (-215)) (|:| |deltaY| (-215))))) (-15 -2501 ((-1249) $ (-568) (-568) (-381) (-381) (-381))) (-15 -2501 ((-1249) $ (-381) (-381))) (-15 -2501 ((-1249) $ (-381) (-381) (-381))) (-15 -3299 ((-1249) $ (-1143))) (-15 -1718 ((-1249) $ (-1143))) (-15 -1839 ((-1249) $ (-1143))) (-15 -4072 ((-1249) $ (-1143))) (-15 -2105 ((-1249) $ (-1143))) (-15 -1646 ((-1249) $ (-381) (-381))) (-15 -1646 ((-1249) $ (-568) (-568))) (-15 -2868 ((-1249) $ (-381))) (-15 -2868 ((-1249) $ (-381) (-381) (-381))) (-15 -1859 ((-1249) $ (-381) (-381))) (-15 -1931 ((-1249) $ (-1143))) (-15 -3321 ((-1249) $ (-381))) (-15 -3012 ((-1249) $ (-381))) (-15 -3707 ((-1249) $ (-1143))) (-15 -2358 ((-1249) $ (-1143))) (-15 -2147 ((-1249) $ (-1143))) (-15 -2557 ((-1249) $ (-381) (-381) (-381))) (-15 -3997 ((-1249) $ (-381))) (-15 -2316 ((-1249) $)) (-15 -3941 ((-1249) $ (-158) (-158))) (-15 -2323 ((-1143) $ (-1143))) (-15 -2323 ((-1143) $ (-1143) (-1143))) (-15 -2323 ((-1143) $ (-1143) (-634 (-1143)))) (-15 -4092 ((-1249) $)) (-15 -3649 ((-568) $)))) +((-4233 (((-634 (-1143)) (-634 (-1143))) 94) (((-634 (-1143))) 89)) (-1376 (((-634 (-1143))) 87)) (-4365 (((-634 (-917)) (-634 (-917))) 62) (((-634 (-917))) 59)) (-3096 (((-634 (-763)) (-634 (-763))) 56) (((-634 (-763))) 52)) (-3655 (((-1249)) 64)) (-2015 (((-917) (-917)) 80) (((-917)) 79)) (-2398 (((-917) (-917)) 78) (((-917)) 77)) (-3645 (((-869) (-869)) 74) (((-869)) 73)) (-4008 (((-215)) 84) (((-215) (-381)) 86)) (-2431 (((-917)) 81) (((-917) (-917)) 82)) (-3756 (((-917) (-917)) 76) (((-917)) 75)) (-2486 (((-869) (-869)) 68) (((-869)) 66)) (-2852 (((-869) (-869)) 70) (((-869)) 69)) (-1321 (((-869) (-869)) 72) (((-869)) 71))) +(((-1247) (-10 -7 (-15 -2486 ((-869))) (-15 -2486 ((-869) (-869))) (-15 -2852 ((-869))) (-15 -2852 ((-869) (-869))) (-15 -1321 ((-869))) (-15 -1321 ((-869) (-869))) (-15 -3645 ((-869))) (-15 -3645 ((-869) (-869))) (-15 -3756 ((-917))) (-15 -3756 ((-917) (-917))) (-15 -3096 ((-634 (-763)))) (-15 -3096 ((-634 (-763)) (-634 (-763)))) (-15 -4365 ((-634 (-917)))) (-15 -4365 ((-634 (-917)) (-634 (-917)))) (-15 -3655 ((-1249))) (-15 -4233 ((-634 (-1143)))) (-15 -4233 ((-634 (-1143)) (-634 (-1143)))) (-15 -1376 ((-634 (-1143)))) (-15 -2398 ((-917))) (-15 -2015 ((-917))) (-15 -2398 ((-917) (-917))) (-15 -2015 ((-917) (-917))) (-15 -2431 ((-917) (-917))) (-15 -2431 ((-917))) (-15 -4008 ((-215) (-381))) (-15 -4008 ((-215))))) (T -1247)) +((-4008 (*1 *2) (-12 (-5 *2 (-215)) (-5 *1 (-1247)))) (-4008 (*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-215)) (-5 *1 (-1247)))) (-2431 (*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1247)))) (-2431 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1247)))) (-2015 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1247)))) (-2398 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1247)))) (-2015 (*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1247)))) (-2398 (*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1247)))) (-1376 (*1 *2) (-12 (-5 *2 (-634 (-1143))) (-5 *1 (-1247)))) (-4233 (*1 *2 *2) (-12 (-5 *2 (-634 (-1143))) (-5 *1 (-1247)))) (-4233 (*1 *2) (-12 (-5 *2 (-634 (-1143))) (-5 *1 (-1247)))) (-3655 (*1 *2) (-12 (-5 *2 (-1249)) (-5 *1 (-1247)))) (-4365 (*1 *2 *2) (-12 (-5 *2 (-634 (-917))) (-5 *1 (-1247)))) (-4365 (*1 *2) (-12 (-5 *2 (-634 (-917))) (-5 *1 (-1247)))) (-3096 (*1 *2 *2) (-12 (-5 *2 (-634 (-763))) (-5 *1 (-1247)))) (-3096 (*1 *2) (-12 (-5 *2 (-634 (-763))) (-5 *1 (-1247)))) (-3756 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1247)))) (-3756 (*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1247)))) (-3645 (*1 *2 *2) (-12 (-5 *2 (-869)) (-5 *1 (-1247)))) (-3645 (*1 *2) (-12 (-5 *2 (-869)) (-5 *1 (-1247)))) (-1321 (*1 *2 *2) (-12 (-5 *2 (-869)) (-5 *1 (-1247)))) (-1321 (*1 *2) (-12 (-5 *2 (-869)) (-5 *1 (-1247)))) (-2852 (*1 *2 *2) (-12 (-5 *2 (-869)) (-5 *1 (-1247)))) (-2852 (*1 *2) (-12 (-5 *2 (-869)) (-5 *1 (-1247)))) (-2486 (*1 *2 *2) (-12 (-5 *2 (-869)) (-5 *1 (-1247)))) (-2486 (*1 *2) (-12 (-5 *2 (-869)) (-5 *1 (-1247))))) +(-10 -7 (-15 -2486 ((-869))) (-15 -2486 ((-869) (-869))) (-15 -2852 ((-869))) (-15 -2852 ((-869) (-869))) (-15 -1321 ((-869))) (-15 -1321 ((-869) (-869))) (-15 -3645 ((-869))) (-15 -3645 ((-869) (-869))) (-15 -3756 ((-917))) (-15 -3756 ((-917) (-917))) (-15 -3096 ((-634 (-763)))) (-15 -3096 ((-634 (-763)) (-634 (-763)))) (-15 -4365 ((-634 (-917)))) (-15 -4365 ((-634 (-917)) (-634 (-917)))) (-15 -3655 ((-1249))) (-15 -4233 ((-634 (-1143)))) (-15 -4233 ((-634 (-1143)) (-634 (-1143)))) (-15 -1376 ((-634 (-1143)))) (-15 -2398 ((-917))) (-15 -2015 ((-917))) (-15 -2398 ((-917) (-917))) (-15 -2015 ((-917) (-917))) (-15 -2431 ((-917) (-917))) (-15 -2431 ((-917))) (-15 -4008 ((-215) (-381))) (-15 -4008 ((-215)))) +((-3623 (((-473) (-634 (-634 (-944 (-215)))) (-634 (-256))) 17) (((-473) (-634 (-634 (-944 (-215))))) 16) (((-473) (-634 (-634 (-944 (-215)))) (-869) (-869) (-917) (-634 (-256))) 15)) (-3317 (((-1245) (-634 (-634 (-944 (-215)))) (-634 (-256))) 23) (((-1245) (-634 (-634 (-944 (-215)))) (-869) (-869) (-917) (-634 (-256))) 22)) (-2745 (((-1245) (-473)) 34))) +(((-1248) (-10 -7 (-15 -3623 ((-473) (-634 (-634 (-944 (-215)))) (-869) (-869) (-917) (-634 (-256)))) (-15 -3623 ((-473) (-634 (-634 (-944 (-215)))))) (-15 -3623 ((-473) (-634 (-634 (-944 (-215)))) (-634 (-256)))) (-15 -3317 ((-1245) (-634 (-634 (-944 (-215)))) (-869) (-869) (-917) (-634 (-256)))) (-15 -3317 ((-1245) (-634 (-634 (-944 (-215)))) (-634 (-256)))) (-15 -2745 ((-1245) (-473))))) (T -1248)) +((-2745 (*1 *2 *3) (-12 (-5 *3 (-473)) (-5 *2 (-1245)) (-5 *1 (-1248)))) (-3317 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-634 (-944 (-215))))) (-5 *4 (-634 (-256))) (-5 *2 (-1245)) (-5 *1 (-1248)))) (-3317 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-634 (-634 (-944 (-215))))) (-5 *4 (-869)) (-5 *5 (-917)) (-5 *6 (-634 (-256))) (-5 *2 (-1245)) (-5 *1 (-1248)))) (-3623 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-634 (-944 (-215))))) (-5 *4 (-634 (-256))) (-5 *2 (-473)) (-5 *1 (-1248)))) (-3623 (*1 *2 *3) (-12 (-5 *3 (-634 (-634 (-944 (-215))))) (-5 *2 (-473)) (-5 *1 (-1248)))) (-3623 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-634 (-634 (-944 (-215))))) (-5 *4 (-869)) (-5 *5 (-917)) (-5 *6 (-634 (-256))) (-5 *2 (-473)) (-5 *1 (-1248))))) +(-10 -7 (-15 -3623 ((-473) (-634 (-634 (-944 (-215)))) (-869) (-869) (-917) (-634 (-256)))) (-15 -3623 ((-473) (-634 (-634 (-944 (-215)))))) (-15 -3623 ((-473) (-634 (-634 (-944 (-215)))) (-634 (-256)))) (-15 -3317 ((-1245) (-634 (-634 (-944 (-215)))) (-869) (-869) (-917) (-634 (-256)))) (-15 -3317 ((-1245) (-634 (-634 (-944 (-215)))) (-634 (-256)))) (-15 -2745 ((-1245) (-473)))) +((-3611 (($) 7)) (-2745 (((-850) $) 10))) +(((-1249) (-10 -8 (-15 -3611 ($)) (-15 -2745 ((-850) $)))) (T -1249)) +((-2745 (*1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-1249)))) (-3611 (*1 *1) (-5 *1 (-1249)))) +(-10 -8 (-15 -3611 ($)) (-15 -2745 ((-850) $))) +((-1779 (($ $ |#2|) 10))) +(((-1250 |#1| |#2|) (-10 -8 (-15 -1779 (|#1| |#1| |#2|))) (-1251 |#2|) (-365)) (T -1250)) +NIL +(-10 -8 (-15 -1779 (|#1| |#1| |#2|))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-3134 (((-3 $ "failed") $ $) 18)) (-2671 (($) 16 T CONST)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-4321 (((-139)) 25)) (-2745 (((-850) $) 11)) (-3056 (($) 17 T CONST)) (-1717 (((-121) $ $) 6)) (-1779 (($ $ |#1|) 26)) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ |#1| $) 22) (($ $ |#1|) 24))) +(((-1251 |#1|) (-1275) (-365)) (T -1251)) +((-1779 (*1 *1 *1 *2) (-12 (-4 *1 (-1251 *2)) (-4 *2 (-365)))) (-4321 (*1 *2) (-12 (-4 *1 (-1251 *3)) (-4 *3 (-365)) (-5 *2 (-139))))) +(-13 (-707 |t#1|) (-10 -8 (-15 -1779 ($ $ |t#1|)) (-15 -4321 ((-139))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-105) . T) ((-120 |#1| |#1|) . T) ((-137) . T) ((-608 (-850)) . T) ((-637 |#1|) . T) ((-707 |#1|) . T) ((-1053 |#1|) . T) ((-1090) . T)) +((-1740 (((-634 (-1190 |#1|)) (-1161) (-1190 |#1|)) 78)) (-2619 (((-1141 (-1141 (-953 |#1|))) (-1161) (-1141 (-953 |#1|))) 57)) (-1363 (((-1 (-1141 (-1190 |#1|)) (-1141 (-1190 |#1|))) (-763) (-1190 |#1|) (-1141 (-1190 |#1|))) 68)) (-2809 (((-1 (-1141 (-953 |#1|)) (-1141 (-953 |#1|))) (-763)) 59)) (-4259 (((-1 (-1157 (-953 |#1|)) (-953 |#1|)) (-1161)) 27)) (-1405 (((-1 (-1141 (-953 |#1|)) (-1141 (-953 |#1|))) (-763)) 58))) +(((-1252 |#1|) (-10 -7 (-15 -2809 ((-1 (-1141 (-953 |#1|)) (-1141 (-953 |#1|))) (-763))) (-15 -1405 ((-1 (-1141 (-953 |#1|)) (-1141 (-953 |#1|))) (-763))) (-15 -2619 ((-1141 (-1141 (-953 |#1|))) (-1161) (-1141 (-953 |#1|)))) (-15 -4259 ((-1 (-1157 (-953 |#1|)) (-953 |#1|)) (-1161))) (-15 -1740 ((-634 (-1190 |#1|)) (-1161) (-1190 |#1|))) (-15 -1363 ((-1 (-1141 (-1190 |#1|)) (-1141 (-1190 |#1|))) (-763) (-1190 |#1|) (-1141 (-1190 |#1|))))) (-365)) (T -1252)) +((-1363 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-763)) (-4 *6 (-365)) (-5 *4 (-1190 *6)) (-5 *2 (-1 (-1141 *4) (-1141 *4))) (-5 *1 (-1252 *6)) (-5 *5 (-1141 *4)))) (-1740 (*1 *2 *3 *4) (-12 (-5 *3 (-1161)) (-4 *5 (-365)) (-5 *2 (-634 (-1190 *5))) (-5 *1 (-1252 *5)) (-5 *4 (-1190 *5)))) (-4259 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1 (-1157 (-953 *4)) (-953 *4))) (-5 *1 (-1252 *4)) (-4 *4 (-365)))) (-2619 (*1 *2 *3 *4) (-12 (-5 *3 (-1161)) (-4 *5 (-365)) (-5 *2 (-1141 (-1141 (-953 *5)))) (-5 *1 (-1252 *5)) (-5 *4 (-1141 (-953 *5))))) (-1405 (*1 *2 *3) (-12 (-5 *3 (-763)) (-5 *2 (-1 (-1141 (-953 *4)) (-1141 (-953 *4)))) (-5 *1 (-1252 *4)) (-4 *4 (-365)))) (-2809 (*1 *2 *3) (-12 (-5 *3 (-763)) (-5 *2 (-1 (-1141 (-953 *4)) (-1141 (-953 *4)))) (-5 *1 (-1252 *4)) (-4 *4 (-365))))) +(-10 -7 (-15 -2809 ((-1 (-1141 (-953 |#1|)) (-1141 (-953 |#1|))) (-763))) (-15 -1405 ((-1 (-1141 (-953 |#1|)) (-1141 (-953 |#1|))) (-763))) (-15 -2619 ((-1141 (-1141 (-953 |#1|))) (-1161) (-1141 (-953 |#1|)))) (-15 -4259 ((-1 (-1157 (-953 |#1|)) (-953 |#1|)) (-1161))) (-15 -1740 ((-634 (-1190 |#1|)) (-1161) (-1190 |#1|))) (-15 -1363 ((-1 (-1141 (-1190 |#1|)) (-1141 (-1190 |#1|))) (-763) (-1190 |#1|) (-1141 (-1190 |#1|))))) +((-3714 (((-2 (|:| -3746 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|))) |#2|) 74)) (-3661 (((-2 (|:| -3746 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|)))) 73))) +(((-1253 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3661 ((-2 (|:| -3746 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|))))) (-15 -3714 ((-2 (|:| -3746 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|))) |#2|))) (-350) (-1219 |#1|) (-1219 |#2|) (-411 |#2| |#3|)) (T -1253)) +((-3714 (*1 *2 *3) (-12 (-4 *4 (-350)) (-4 *3 (-1219 *4)) (-4 *5 (-1219 *3)) (-5 *2 (-2 (|:| -3746 (-679 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-679 *3)))) (-5 *1 (-1253 *4 *3 *5 *6)) (-4 *6 (-411 *3 *5)))) (-3661 (*1 *2) (-12 (-4 *3 (-350)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 *4)) (-5 *2 (-2 (|:| -3746 (-679 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-679 *4)))) (-5 *1 (-1253 *3 *4 *5 *6)) (-4 *6 (-411 *4 *5))))) +(-10 -7 (-15 -3661 ((-2 (|:| -3746 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|))))) (-15 -3714 ((-2 (|:| -3746 (-679 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-679 |#2|))) |#2|))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) 41)) (-3134 (((-3 $ "failed") $ $) NIL)) (-2671 (($) NIL T CONST)) (-2925 (((-3 $ "failed") $) NIL)) (-2735 (((-121) $) NIL)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2745 (((-850) $) 62) (($ (-568)) NIL) ((|#4| $) 52) (($ |#4|) 47) (($ |#1|) NIL (|has| |#1| (-172)))) (-4078 (((-763)) NIL)) (-4366 (((-1249) (-763)) 16)) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (-3056 (($) 26 T CONST)) (-1556 (($) 65 T CONST)) (-1717 (((-121) $ $) 67)) (-1779 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-1773 (($ $) 69) (($ $ $) NIL)) (-1767 (($ $ $) 45)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) 71) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))))) +(((-1254 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1047) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-43 |#1|)) |noBranch|) (-15 -2745 (|#4| $)) (IF (|has| |#1| (-365)) (-15 -1779 ((-3 $ "failed") $ $)) |noBranch|) (-15 -2745 ($ |#4|)) (-15 -4366 ((-1249) (-763))))) (-1047) (-842) (-788) (-950 |#1| |#3| |#2|) (-634 |#2|) (-634 (-763)) (-763)) (T -1254)) +((-2745 (*1 *2 *1) (-12 (-4 *2 (-950 *3 *5 *4)) (-5 *1 (-1254 *3 *4 *5 *2 *6 *7 *8)) (-4 *3 (-1047)) (-4 *4 (-842)) (-4 *5 (-788)) (-14 *6 (-634 *4)) (-14 *7 (-634 (-763))) (-14 *8 (-763)))) (-1779 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-365)) (-4 *2 (-1047)) (-4 *3 (-842)) (-4 *4 (-788)) (-14 *6 (-634 *3)) (-5 *1 (-1254 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-950 *2 *4 *3)) (-14 *7 (-634 (-763))) (-14 *8 (-763)))) (-2745 (*1 *1 *2) (-12 (-4 *3 (-1047)) (-4 *4 (-842)) (-4 *5 (-788)) (-14 *6 (-634 *4)) (-5 *1 (-1254 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-950 *3 *5 *4)) (-14 *7 (-634 (-763))) (-14 *8 (-763)))) (-4366 (*1 *2 *3) (-12 (-5 *3 (-763)) (-4 *4 (-1047)) (-4 *5 (-842)) (-4 *6 (-788)) (-14 *8 (-634 *5)) (-5 *2 (-1249)) (-5 *1 (-1254 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-950 *4 *6 *5)) (-14 *9 (-634 *3)) (-14 *10 *3)))) +(-13 (-1047) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-43 |#1|)) |noBranch|) (-15 -2745 (|#4| $)) (IF (|has| |#1| (-365)) (-15 -1779 ((-3 $ "failed") $ $)) |noBranch|) (-15 -2745 ($ |#4|)) (-15 -4366 ((-1249) (-763))))) +((-2447 (((-121) $ $) NIL)) (-2387 (((-634 (-2 (|:| -4092 $) (|:| -1798 (-634 |#4|)))) (-634 |#4|)) NIL)) (-2415 (((-634 $) (-634 |#4|)) 87)) (-2055 (((-634 |#3|) $) NIL)) (-4211 (((-121) $) NIL)) (-3824 (((-121) $) NIL (|has| |#1| (-558)))) (-3300 (((-121) |#4| $) NIL) (((-121) $) NIL)) (-2819 ((|#4| |#4| $) NIL)) (-3644 (((-2 (|:| |under| $) (|:| -1519 $) (|:| |upper| $)) $ |#3|) NIL)) (-2510 (((-121) $ (-763)) NIL)) (-2801 (($ (-1 (-121) |#4|) $) NIL (|has| $ (-6 -4519))) (((-3 |#4| "failed") $ |#3|) NIL)) (-2671 (($) NIL T CONST)) (-1565 (((-121) $) NIL (|has| |#1| (-558)))) (-3846 (((-121) $ $) NIL (|has| |#1| (-558)))) (-3106 (((-121) $ $) NIL (|has| |#1| (-558)))) (-3695 (((-121) $) NIL (|has| |#1| (-558)))) (-4275 (((-634 |#4|) (-634 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-121) |#4| |#4|)) 27)) (-2355 (((-634 |#4|) (-634 |#4|) $) 24 (|has| |#1| (-558)))) (-2492 (((-634 |#4|) (-634 |#4|) $) NIL (|has| |#1| (-558)))) (-3666 (((-3 $ "failed") (-634 |#4|)) NIL)) (-2854 (($ (-634 |#4|)) NIL)) (-3935 (((-3 $ "failed") $) 69)) (-2062 ((|#4| |#4| $) 74)) (-3924 (($ $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#4| (-1090))))) (-4328 (($ |#4| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#4| (-1090)))) (($ (-1 (-121) |#4|) $) NIL (|has| $ (-6 -4519)))) (-1500 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-558)))) (-1281 (((-121) |#4| $ (-1 (-121) |#4| |#4|)) NIL)) (-4079 ((|#4| |#4| $) NIL)) (-3092 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4519)) (|has| |#4| (-1090)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4519))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4519))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-121) |#4| |#4|)) NIL)) (-3635 (((-2 (|:| -4092 (-634 |#4|)) (|:| -1798 (-634 |#4|))) $) NIL)) (-4360 (((-634 |#4|) $) NIL (|has| $ (-6 -4519)))) (-1362 (((-121) |#4| $) NIL) (((-121) $) NIL)) (-2356 ((|#3| $) 75)) (-1737 (((-121) $ (-763)) NIL)) (-1979 (((-634 |#4|) $) 28 (|has| $ (-6 -4519)))) (-3109 (((-121) |#4| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#4| (-1090))))) (-3942 (((-3 $ "failed") (-634 |#4|) (-1 (-121) |#4| |#4|) (-1 |#4| |#4| |#4|)) 31) (((-3 $ "failed") (-634 |#4|)) 34)) (-3674 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4520)))) (-2795 (($ (-1 |#4| |#4|) $) NIL)) (-1432 (((-634 |#3|) $) NIL)) (-3392 (((-121) |#3| $) NIL)) (-2166 (((-121) $ (-763)) NIL)) (-4487 (((-1143) $) NIL)) (-4162 (((-3 |#4| "failed") $) NIL)) (-1377 (((-634 |#4|) $) 49)) (-1415 (((-121) |#4| $) NIL) (((-121) $) NIL)) (-2682 ((|#4| |#4| $) 73)) (-2644 (((-121) $ $) 84)) (-2705 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-558)))) (-4347 (((-121) |#4| $) NIL) (((-121) $) NIL)) (-4025 ((|#4| |#4| $) NIL)) (-4022 (((-1108) $) NIL)) (-3876 (((-3 |#4| "failed") $) 68)) (-3775 (((-3 |#4| "failed") (-1 (-121) |#4|) $) NIL)) (-1665 (((-3 $ "failed") $ |#4|) NIL)) (-1807 (($ $ |#4|) NIL)) (-1387 (((-121) (-1 (-121) |#4|) $) NIL (|has| $ (-6 -4519)))) (-1339 (($ $ (-634 |#4|) (-634 |#4|)) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090)))) (($ $ (-288 |#4|)) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090)))) (($ $ (-634 (-288 |#4|))) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1090))))) (-3171 (((-121) $ $) NIL)) (-3084 (((-121) $) 66)) (-3248 (($) 41)) (-3206 (((-763) $) NIL)) (-4168 (((-763) |#4| $) NIL (-12 (|has| $ (-6 -4519)) (|has| |#4| (-1090)))) (((-763) (-1 (-121) |#4|) $) NIL (|has| $ (-6 -4519)))) (-3863 (($ $) NIL)) (-4278 (((-541) $) NIL (|has| |#4| (-609 (-541))))) (-4287 (($ (-634 |#4|)) NIL)) (-1290 (($ $ |#3|) NIL)) (-3732 (($ $ |#3|) NIL)) (-1567 (($ $) NIL)) (-3944 (($ $ |#3|) NIL)) (-2745 (((-850) $) NIL) (((-634 |#4|) $) 56)) (-1878 (((-763) $) NIL (|has| |#3| (-370)))) (-3884 (((-3 $ "failed") (-634 |#4|) (-1 (-121) |#4| |#4|) (-1 |#4| |#4| |#4|)) 39) (((-3 $ "failed") (-634 |#4|)) 40)) (-2598 (((-634 $) (-634 |#4|) (-1 (-121) |#4| |#4|) (-1 |#4| |#4| |#4|)) 64) (((-634 $) (-634 |#4|)) 65)) (-3556 (((-3 (-2 (|:| |bas| $) (|:| -2616 (-634 |#4|))) "failed") (-634 |#4|) (-1 (-121) |#4| |#4|)) 23) (((-3 (-2 (|:| |bas| $) (|:| -2616 (-634 |#4|))) "failed") (-634 |#4|) (-1 (-121) |#4|) (-1 (-121) |#4| |#4|)) NIL)) (-3292 (((-121) $ (-1 (-121) |#4| (-634 |#4|))) NIL)) (-1319 (((-121) (-1 (-121) |#4|) $) NIL (|has| $ (-6 -4519)))) (-2739 (((-634 |#3|) $) NIL)) (-4390 (((-121) |#3| $) NIL)) (-1717 (((-121) $ $) NIL)) (-1697 (((-763) $) NIL (|has| $ (-6 -4519))))) +(((-1255 |#1| |#2| |#3| |#4|) (-13 (-1189 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3942 ((-3 $ "failed") (-634 |#4|) (-1 (-121) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3942 ((-3 $ "failed") (-634 |#4|))) (-15 -3884 ((-3 $ "failed") (-634 |#4|) (-1 (-121) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3884 ((-3 $ "failed") (-634 |#4|))) (-15 -2598 ((-634 $) (-634 |#4|) (-1 (-121) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2598 ((-634 $) (-634 |#4|))))) (-558) (-788) (-842) (-1061 |#1| |#2| |#3|)) (T -1255)) +((-3942 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-634 *8)) (-5 *3 (-1 (-121) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1061 *5 *6 *7)) (-4 *5 (-558)) (-4 *6 (-788)) (-4 *7 (-842)) (-5 *1 (-1255 *5 *6 *7 *8)))) (-3942 (*1 *1 *2) (|partial| -12 (-5 *2 (-634 *6)) (-4 *6 (-1061 *3 *4 *5)) (-4 *3 (-558)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *1 (-1255 *3 *4 *5 *6)))) (-3884 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-634 *8)) (-5 *3 (-1 (-121) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1061 *5 *6 *7)) (-4 *5 (-558)) (-4 *6 (-788)) (-4 *7 (-842)) (-5 *1 (-1255 *5 *6 *7 *8)))) (-3884 (*1 *1 *2) (|partial| -12 (-5 *2 (-634 *6)) (-4 *6 (-1061 *3 *4 *5)) (-4 *3 (-558)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *1 (-1255 *3 *4 *5 *6)))) (-2598 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-634 *9)) (-5 *4 (-1 (-121) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1061 *6 *7 *8)) (-4 *6 (-558)) (-4 *7 (-788)) (-4 *8 (-842)) (-5 *2 (-634 (-1255 *6 *7 *8 *9))) (-5 *1 (-1255 *6 *7 *8 *9)))) (-2598 (*1 *2 *3) (-12 (-5 *3 (-634 *7)) (-4 *7 (-1061 *4 *5 *6)) (-4 *4 (-558)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-634 (-1255 *4 *5 *6 *7))) (-5 *1 (-1255 *4 *5 *6 *7))))) +(-13 (-1189 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3942 ((-3 $ "failed") (-634 |#4|) (-1 (-121) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3942 ((-3 $ "failed") (-634 |#4|))) (-15 -3884 ((-3 $ "failed") (-634 |#4|) (-1 (-121) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3884 ((-3 $ "failed") (-634 |#4|))) (-15 -2598 ((-634 $) (-634 |#4|) (-1 (-121) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2598 ((-634 $) (-634 |#4|))))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-3134 (((-3 $ "failed") $ $) 18)) (-2671 (($) 16 T CONST)) (-2925 (((-3 $ "failed") $) 33)) (-2735 (((-121) $) 30)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-2745 (((-850) $) 11) (($ (-568)) 27) (($ |#1|) 37)) (-4078 (((-763)) 28)) (-1887 (($ $ (-917)) 25) (($ $ (-763)) 32)) (-3056 (($) 17 T CONST)) (-1556 (($) 29 T CONST)) (-1717 (((-121) $ $) 6)) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 24) (($ $ (-763)) 31)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 23) (($ $ |#1|) 39) (($ |#1| $) 38))) +(((-1256 |#1|) (-1275) (-1047)) (T -1256)) +((-2745 (*1 *1 *2) (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1047))))) +(-13 (-1047) (-120 |t#1| |t#1|) (-10 -8 (-15 -2745 ($ |t#1|)) (IF (|has| |t#1| (-172)) (-6 (-43 |t#1|)) |noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-43 |#1|) |has| |#1| (-172)) ((-105) . T) ((-120 |#1| |#1|) . T) ((-137) . T) ((-608 (-850)) . T) ((-637 |#1|) . T) ((-637 $) . T) ((-707 |#1|) |has| |#1| (-172)) ((-716) . T) ((-1053 |#1|) . T) ((-1047) . T) ((-1054) . T) ((-1102) . T) ((-1090) . T)) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-3595 (((-634 |#1|) $) 45)) (-2821 (($ $ (-763)) 39)) (-3134 (((-3 $ "failed") $ $) NIL)) (-2238 (($ $ (-763)) 17 (|has| |#2| (-172))) (($ $ $) 18 (|has| |#2| (-172)))) (-2671 (($) NIL T CONST)) (-2628 (($ $ $) 61) (($ $ (-814 |#1|)) 48) (($ $ |#1|) 52)) (-3666 (((-3 (-814 |#1|) "failed") $) NIL)) (-2854 (((-814 |#1|) $) NIL)) (-2114 (($ $) 32)) (-2925 (((-3 $ "failed") $) NIL)) (-3363 (((-121) $) NIL)) (-2207 (($ $) NIL)) (-2735 (((-121) $) NIL)) (-4178 (((-763) $) NIL)) (-2976 (((-634 $) $) NIL)) (-3921 (((-121) $) NIL)) (-2354 (($ (-814 |#1|) |#2|) 31)) (-2407 (($ $) 33)) (-3169 (((-2 (|:| |k| (-814 |#1|)) (|:| |c| |#2|)) $) 11)) (-2018 (((-814 |#1|) $) NIL)) (-1666 (((-814 |#1|) $) 34)) (-2795 (($ (-1 |#2| |#2|) $) NIL)) (-2532 (($ $ $) 60) (($ $ (-814 |#1|)) 50) (($ $ |#1|) 54)) (-4297 (((-634 (-2 (|:| |k| (-814 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2315 (((-2 (|:| |k| (-814 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2097 (((-814 |#1|) $) 28)) (-2102 ((|#2| $) 30)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-3206 (((-763) $) 36)) (-1867 (((-121) $) 40)) (-3495 ((|#2| $) NIL)) (-2745 (((-850) $) NIL) (($ (-814 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-568)) NIL)) (-1302 (((-634 |#2|) $) NIL)) (-2604 ((|#2| $ (-814 |#1|)) NIL)) (-2348 ((|#2| $ $) 63) ((|#2| $ (-814 |#1|)) NIL)) (-4078 (((-763)) NIL)) (-1887 (($ $ (-763)) NIL) (($ $ (-917)) NIL)) (-3056 (($) 12 T CONST)) (-1556 (($) 14 T CONST)) (-1717 (((-121) $ $) 38)) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) 21)) (** (($ $ (-763)) NIL) (($ $ (-917)) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ |#2| $) 20) (($ $ |#2|) 59) (($ |#2| (-814 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL))) +(((-1257 |#1| |#2|) (-13 (-384 |#2| (-814 |#1|)) (-1263 |#1| |#2|)) (-842) (-1047)) (T -1257)) +NIL +(-13 (-384 |#2| (-814 |#1|)) (-1263 |#1| |#2|)) +((-4416 ((|#3| |#3| (-763)) 23)) (-1892 ((|#3| |#3| (-763)) 28)) (-2665 ((|#3| |#3| |#3| (-763)) 29))) +(((-1258 |#1| |#2| |#3|) (-10 -7 (-15 -1892 (|#3| |#3| (-763))) (-15 -4416 (|#3| |#3| (-763))) (-15 -2665 (|#3| |#3| |#3| (-763)))) (-13 (-1047) (-707 (-409 (-568)))) (-842) (-1263 |#2| |#1|)) (T -1258)) +((-2665 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-763)) (-4 *4 (-13 (-1047) (-707 (-409 (-568))))) (-4 *5 (-842)) (-5 *1 (-1258 *4 *5 *2)) (-4 *2 (-1263 *5 *4)))) (-4416 (*1 *2 *2 *3) (-12 (-5 *3 (-763)) (-4 *4 (-13 (-1047) (-707 (-409 (-568))))) (-4 *5 (-842)) (-5 *1 (-1258 *4 *5 *2)) (-4 *2 (-1263 *5 *4)))) (-1892 (*1 *2 *2 *3) (-12 (-5 *3 (-763)) (-4 *4 (-13 (-1047) (-707 (-409 (-568))))) (-4 *5 (-842)) (-5 *1 (-1258 *4 *5 *2)) (-4 *2 (-1263 *5 *4))))) +(-10 -7 (-15 -1892 (|#3| |#3| (-763))) (-15 -4416 (|#3| |#3| (-763))) (-15 -2665 (|#3| |#3| |#3| (-763)))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-3595 (((-634 |#1|) $) 39)) (-3134 (((-3 $ "failed") $ $) 18)) (-2238 (($ $ $) 42 (|has| |#2| (-172))) (($ $ (-763)) 41 (|has| |#2| (-172)))) (-2671 (($) 16 T CONST)) (-2628 (($ $ |#1|) 53) (($ $ (-814 |#1|)) 52) (($ $ $) 51)) (-3666 (((-3 (-814 |#1|) "failed") $) 63)) (-2854 (((-814 |#1|) $) 62)) (-2925 (((-3 $ "failed") $) 33)) (-3363 (((-121) $) 44)) (-2207 (($ $) 43)) (-2735 (((-121) $) 30)) (-3921 (((-121) $) 49)) (-2354 (($ (-814 |#1|) |#2|) 50)) (-2407 (($ $) 48)) (-3169 (((-2 (|:| |k| (-814 |#1|)) (|:| |c| |#2|)) $) 59)) (-2018 (((-814 |#1|) $) 60)) (-2795 (($ (-1 |#2| |#2|) $) 40)) (-2532 (($ $ |#1|) 56) (($ $ (-814 |#1|)) 55) (($ $ $) 54)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-1867 (((-121) $) 46)) (-3495 ((|#2| $) 45)) (-2745 (((-850) $) 11) (($ (-568)) 27) (($ |#2|) 67) (($ (-814 |#1|)) 64) (($ |#1|) 47)) (-2348 ((|#2| $ (-814 |#1|)) 58) ((|#2| $ $) 57)) (-4078 (((-763)) 28)) (-1887 (($ $ (-917)) 25) (($ $ (-763)) 32)) (-3056 (($) 17 T CONST)) (-1556 (($) 29 T CONST)) (-1717 (((-121) $ $) 6)) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 24) (($ $ (-763)) 31)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 23) (($ |#2| $) 66) (($ $ |#2|) 65) (($ |#1| $) 61))) +(((-1259 |#1| |#2|) (-1275) (-842) (-1047)) (T -1259)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-1259 *3 *2)) (-4 *3 (-842)) (-4 *2 (-1047)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1259 *2 *3)) (-4 *2 (-842)) (-4 *3 (-1047)))) (-2018 (*1 *2 *1) (-12 (-4 *1 (-1259 *3 *4)) (-4 *3 (-842)) (-4 *4 (-1047)) (-5 *2 (-814 *3)))) (-3169 (*1 *2 *1) (-12 (-4 *1 (-1259 *3 *4)) (-4 *3 (-842)) (-4 *4 (-1047)) (-5 *2 (-2 (|:| |k| (-814 *3)) (|:| |c| *4))))) (-2348 (*1 *2 *1 *3) (-12 (-5 *3 (-814 *4)) (-4 *1 (-1259 *4 *2)) (-4 *4 (-842)) (-4 *2 (-1047)))) (-2348 (*1 *2 *1 *1) (-12 (-4 *1 (-1259 *3 *2)) (-4 *3 (-842)) (-4 *2 (-1047)))) (-2532 (*1 *1 *1 *2) (-12 (-4 *1 (-1259 *2 *3)) (-4 *2 (-842)) (-4 *3 (-1047)))) (-2532 (*1 *1 *1 *2) (-12 (-5 *2 (-814 *3)) (-4 *1 (-1259 *3 *4)) (-4 *3 (-842)) (-4 *4 (-1047)))) (-2532 (*1 *1 *1 *1) (-12 (-4 *1 (-1259 *2 *3)) (-4 *2 (-842)) (-4 *3 (-1047)))) (-2628 (*1 *1 *1 *2) (-12 (-4 *1 (-1259 *2 *3)) (-4 *2 (-842)) (-4 *3 (-1047)))) (-2628 (*1 *1 *1 *2) (-12 (-5 *2 (-814 *3)) (-4 *1 (-1259 *3 *4)) (-4 *3 (-842)) (-4 *4 (-1047)))) (-2628 (*1 *1 *1 *1) (-12 (-4 *1 (-1259 *2 *3)) (-4 *2 (-842)) (-4 *3 (-1047)))) (-2354 (*1 *1 *2 *3) (-12 (-5 *2 (-814 *4)) (-4 *4 (-842)) (-4 *1 (-1259 *4 *3)) (-4 *3 (-1047)))) (-3921 (*1 *2 *1) (-12 (-4 *1 (-1259 *3 *4)) (-4 *3 (-842)) (-4 *4 (-1047)) (-5 *2 (-121)))) (-2407 (*1 *1 *1) (-12 (-4 *1 (-1259 *2 *3)) (-4 *2 (-842)) (-4 *3 (-1047)))) (-2745 (*1 *1 *2) (-12 (-4 *1 (-1259 *2 *3)) (-4 *2 (-842)) (-4 *3 (-1047)))) (-1867 (*1 *2 *1) (-12 (-4 *1 (-1259 *3 *4)) (-4 *3 (-842)) (-4 *4 (-1047)) (-5 *2 (-121)))) (-3495 (*1 *2 *1) (-12 (-4 *1 (-1259 *3 *2)) (-4 *3 (-842)) (-4 *2 (-1047)))) (-3363 (*1 *2 *1) (-12 (-4 *1 (-1259 *3 *4)) (-4 *3 (-842)) (-4 *4 (-1047)) (-5 *2 (-121)))) (-2207 (*1 *1 *1) (-12 (-4 *1 (-1259 *2 *3)) (-4 *2 (-842)) (-4 *3 (-1047)))) (-2238 (*1 *1 *1 *1) (-12 (-4 *1 (-1259 *2 *3)) (-4 *2 (-842)) (-4 *3 (-1047)) (-4 *3 (-172)))) (-2238 (*1 *1 *1 *2) (-12 (-5 *2 (-763)) (-4 *1 (-1259 *3 *4)) (-4 *3 (-842)) (-4 *4 (-1047)) (-4 *4 (-172)))) (-2795 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1259 *3 *4)) (-4 *3 (-842)) (-4 *4 (-1047)))) (-3595 (*1 *2 *1) (-12 (-4 *1 (-1259 *3 *4)) (-4 *3 (-842)) (-4 *4 (-1047)) (-5 *2 (-634 *3))))) +(-13 (-1047) (-1256 |t#2|) (-1037 (-814 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -2018 ((-814 |t#1|) $)) (-15 -3169 ((-2 (|:| |k| (-814 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -2348 (|t#2| $ (-814 |t#1|))) (-15 -2348 (|t#2| $ $)) (-15 -2532 ($ $ |t#1|)) (-15 -2532 ($ $ (-814 |t#1|))) (-15 -2532 ($ $ $)) (-15 -2628 ($ $ |t#1|)) (-15 -2628 ($ $ (-814 |t#1|))) (-15 -2628 ($ $ $)) (-15 -2354 ($ (-814 |t#1|) |t#2|)) (-15 -3921 ((-121) $)) (-15 -2407 ($ $)) (-15 -2745 ($ |t#1|)) (-15 -1867 ((-121) $)) (-15 -3495 (|t#2| $)) (-15 -3363 ((-121) $)) (-15 -2207 ($ $)) (IF (|has| |t#2| (-172)) (PROGN (-15 -2238 ($ $ $)) (-15 -2238 ($ $ (-763)))) |noBranch|) (-15 -2795 ($ (-1 |t#2| |t#2|) $)) (-15 -3595 ((-634 |t#1|) $)) (IF (|has| |t#2| (-6 -4512)) (-6 -4512) |noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-43 |#2|) |has| |#2| (-172)) ((-105) . T) ((-120 |#2| |#2|) . T) ((-137) . T) ((-608 (-850)) . T) ((-637 |#2|) . T) ((-637 $) . T) ((-707 |#2|) |has| |#2| (-172)) ((-716) . T) ((-1037 (-814 |#1|)) . T) ((-1053 |#2|) . T) ((-1047) . T) ((-1054) . T) ((-1102) . T) ((-1090) . T) ((-1256 |#2|) . T)) +((-2615 (((-121) $) 13)) (-4390 (((-121) $) 12)) (-1316 (($ $) 17) (($ $ (-763)) 18))) +(((-1260 |#1| |#2|) (-10 -8 (-15 -1316 (|#1| |#1| (-763))) (-15 -1316 (|#1| |#1|)) (-15 -2615 ((-121) |#1|)) (-15 -4390 ((-121) |#1|))) (-1261 |#2|) (-365)) (T -1260)) +NIL +(-10 -8 (-15 -1316 (|#1| |#1| (-763))) (-15 -1316 (|#1| |#1|)) (-15 -2615 ((-121) |#1|)) (-15 -4390 ((-121) |#1|))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-3712 (((-2 (|:| -2295 $) (|:| -4506 $) (|:| |associate| $)) $) 40)) (-2227 (($ $) 39)) (-1573 (((-121) $) 37)) (-2615 (((-121) $) 90)) (-1739 (((-763)) 86)) (-3134 (((-3 $ "failed") $ $) 18)) (-4305 (($ $) 71)) (-1678 (((-420 $) $) 70)) (-1497 (((-121) $ $) 57)) (-2671 (($) 16 T CONST)) (-3666 (((-3 |#1| "failed") $) 97)) (-2854 ((|#1| $) 96)) (-2401 (($ $ $) 53)) (-2925 (((-3 $ "failed") $) 33)) (-2412 (($ $ $) 54)) (-1983 (((-2 (|:| -2348 (-634 $)) (|:| -2704 $)) (-634 $)) 49)) (-3218 (($ $ (-763)) 83 (-2198 (|has| |#1| (-148)) (|has| |#1| (-370)))) (($ $) 82 (-2198 (|has| |#1| (-148)) (|has| |#1| (-370))))) (-3927 (((-121) $) 69)) (-4477 (((-828 (-917)) $) 80 (-2198 (|has| |#1| (-148)) (|has| |#1| (-370))))) (-2735 (((-121) $) 30)) (-3562 (((-3 (-634 $) "failed") (-634 $) $) 50)) (-2495 (($ $ $) 45) (($ (-634 $)) 44)) (-4487 (((-1143) $) 9)) (-2081 (($ $) 68)) (-2864 (((-121) $) 89)) (-4022 (((-1108) $) 10)) (-2155 (((-1157 $) (-1157 $) (-1157 $)) 43)) (-2721 (($ $ $) 47) (($ (-634 $)) 46)) (-3848 (((-420 $) $) 72)) (-1553 (((-828 (-917))) 87)) (-4497 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2704 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2595 (((-3 $ "failed") $ $) 41)) (-2344 (((-3 (-634 $) "failed") (-634 $) $) 48)) (-2709 (((-763) $) 56)) (-3210 (((-2 (|:| -3961 $) (|:| -1500 $)) $ $) 55)) (-3143 (((-3 (-763) "failed") $ $) 81 (-2198 (|has| |#1| (-148)) (|has| |#1| (-370))))) (-4321 (((-139)) 95)) (-3206 (((-828 (-917)) $) 88)) (-2745 (((-850) $) 11) (($ (-568)) 27) (($ $) 42) (($ (-409 (-568))) 63) (($ |#1|) 98)) (-4371 (((-3 $ "failed") $) 79 (-2198 (|has| |#1| (-148)) (|has| |#1| (-370))))) (-4078 (((-763)) 28)) (-1826 (((-121) $ $) 38)) (-4390 (((-121) $) 91)) (-1887 (($ $ (-917)) 25) (($ $ (-763)) 32) (($ $ (-568)) 67)) (-3056 (($) 17 T CONST)) (-1556 (($) 29 T CONST)) (-1316 (($ $) 85 (|has| |#1| (-370))) (($ $ (-763)) 84 (|has| |#1| (-370)))) (-1717 (((-121) $ $) 6)) (-1779 (($ $ $) 62) (($ $ |#1|) 94)) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 24) (($ $ (-763)) 31) (($ $ (-568)) 66)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 23) (($ $ (-409 (-568))) 65) (($ (-409 (-568)) $) 64) (($ $ |#1|) 93) (($ |#1| $) 92))) +(((-1261 |#1|) (-1275) (-365)) (T -1261)) +((-4390 (*1 *2 *1) (-12 (-4 *1 (-1261 *3)) (-4 *3 (-365)) (-5 *2 (-121)))) (-2615 (*1 *2 *1) (-12 (-4 *1 (-1261 *3)) (-4 *3 (-365)) (-5 *2 (-121)))) (-2864 (*1 *2 *1) (-12 (-4 *1 (-1261 *3)) (-4 *3 (-365)) (-5 *2 (-121)))) (-3206 (*1 *2 *1) (-12 (-4 *1 (-1261 *3)) (-4 *3 (-365)) (-5 *2 (-828 (-917))))) (-1553 (*1 *2) (-12 (-4 *1 (-1261 *3)) (-4 *3 (-365)) (-5 *2 (-828 (-917))))) (-1739 (*1 *2) (-12 (-4 *1 (-1261 *3)) (-4 *3 (-365)) (-5 *2 (-763)))) (-1316 (*1 *1 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-365)) (-4 *2 (-370)))) (-1316 (*1 *1 *1 *2) (-12 (-5 *2 (-763)) (-4 *1 (-1261 *3)) (-4 *3 (-365)) (-4 *3 (-370))))) +(-13 (-365) (-1037 |t#1|) (-1251 |t#1|) (-10 -8 (IF (|has| |t#1| (-150)) (-6 (-150)) |noBranch|) (IF (|has| |t#1| (-148)) (-6 (-404)) |noBranch|) (-15 -4390 ((-121) $)) (-15 -2615 ((-121) $)) (-15 -2864 ((-121) $)) (-15 -3206 ((-828 (-917)) $)) (-15 -1553 ((-828 (-917)))) (-15 -1739 ((-763))) (IF (|has| |t#1| (-370)) (PROGN (-6 (-404)) (-15 -1316 ($ $)) (-15 -1316 ($ $ (-763)))) |noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-43 (-409 (-568))) . T) ((-43 $) . T) ((-105) . T) ((-120 (-409 (-568)) (-409 (-568))) . T) ((-120 |#1| |#1|) . T) ((-120 $ $) . T) ((-137) . T) ((-148) -2198 (|has| |#1| (-370)) (|has| |#1| (-148))) ((-150) |has| |#1| (-150)) ((-608 (-850)) . T) ((-172) . T) ((-238) . T) ((-285) . T) ((-301) . T) ((-365) . T) ((-404) -2198 (|has| |#1| (-370)) (|has| |#1| (-148))) ((-453) . T) ((-558) . T) ((-637 (-409 (-568))) . T) ((-637 |#1|) . T) ((-637 $) . T) ((-707 (-409 (-568))) . T) ((-707 |#1|) . T) ((-707 $) . T) ((-716) . T) ((-916) . T) ((-1037 |#1|) . T) ((-1053 (-409 (-568))) . T) ((-1053 |#1|) . T) ((-1053 $) . T) ((-1047) . T) ((-1054) . T) ((-1102) . T) ((-1090) . T) ((-1199) . T) ((-1251 |#1|) . T)) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-3595 (((-634 |#1|) $) 84)) (-2821 (($ $ (-763)) 87)) (-3134 (((-3 $ "failed") $ $) NIL)) (-2238 (($ $ $) NIL (|has| |#2| (-172))) (($ $ (-763)) NIL (|has| |#2| (-172)))) (-2671 (($) NIL T CONST)) (-2628 (($ $ |#1|) NIL) (($ $ (-814 |#1|)) NIL) (($ $ $) NIL)) (-3666 (((-3 (-814 |#1|) "failed") $) NIL) (((-3 (-888 |#1|) "failed") $) NIL)) (-2854 (((-814 |#1|) $) NIL) (((-888 |#1|) $) NIL)) (-2114 (($ $) 86)) (-2925 (((-3 $ "failed") $) NIL)) (-3363 (((-121) $) 75)) (-2207 (($ $) 79)) (-3272 (($ $ $ (-763)) 88)) (-2735 (((-121) $) NIL)) (-4178 (((-763) $) NIL)) (-2976 (((-634 $) $) NIL)) (-3921 (((-121) $) NIL)) (-2354 (($ (-814 |#1|) |#2|) NIL) (($ (-888 |#1|) |#2|) 25)) (-2407 (($ $) 101)) (-3169 (((-2 (|:| |k| (-814 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2018 (((-814 |#1|) $) NIL)) (-1666 (((-814 |#1|) $) NIL)) (-2795 (($ (-1 |#2| |#2|) $) NIL)) (-2532 (($ $ |#1|) NIL) (($ $ (-814 |#1|)) NIL) (($ $ $) NIL)) (-4416 (($ $ (-763)) 95 (|has| |#2| (-707 (-409 (-568)))))) (-4297 (((-634 (-2 (|:| |k| (-888 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2315 (((-2 (|:| |k| (-888 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2097 (((-888 |#1|) $) 69)) (-2102 ((|#2| $) NIL)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-1892 (($ $ (-763)) 92 (|has| |#2| (-707 (-409 (-568)))))) (-3206 (((-763) $) 85)) (-1867 (((-121) $) 70)) (-3495 ((|#2| $) 74)) (-2745 (((-850) $) 56) (($ (-568)) NIL) (($ |#2|) 50) (($ (-814 |#1|)) NIL) (($ |#1|) 58) (($ (-888 |#1|)) NIL) (($ (-656 |#1| |#2|)) 42) (((-1257 |#1| |#2|) $) 63) (((-1266 |#1| |#2|) $) 68)) (-1302 (((-634 |#2|) $) NIL)) (-2604 ((|#2| $ (-888 |#1|)) NIL)) (-2348 ((|#2| $ (-814 |#1|)) NIL) ((|#2| $ $) NIL)) (-4078 (((-763)) NIL)) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (-3056 (($) 21 T CONST)) (-1556 (($) 24 T CONST)) (-2253 (((-3 (-656 |#1| |#2|) "failed") $) 100)) (-1717 (((-121) $ $) 64)) (-1773 (($ $) 94) (($ $ $) 93)) (-1767 (($ $ $) 20)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) 43) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-888 |#1|)) NIL))) +(((-1262 |#1| |#2|) (-13 (-1263 |#1| |#2|) (-384 |#2| (-888 |#1|)) (-10 -8 (-15 -2745 ($ (-656 |#1| |#2|))) (-15 -2745 ((-1257 |#1| |#2|) $)) (-15 -2745 ((-1266 |#1| |#2|) $)) (-15 -2253 ((-3 (-656 |#1| |#2|) "failed") $)) (-15 -3272 ($ $ $ (-763))) (IF (|has| |#2| (-707 (-409 (-568)))) (PROGN (-15 -1892 ($ $ (-763))) (-15 -4416 ($ $ (-763)))) |noBranch|))) (-842) (-172)) (T -1262)) +((-2745 (*1 *1 *2) (-12 (-5 *2 (-656 *3 *4)) (-4 *3 (-842)) (-4 *4 (-172)) (-5 *1 (-1262 *3 *4)))) (-2745 (*1 *2 *1) (-12 (-5 *2 (-1257 *3 *4)) (-5 *1 (-1262 *3 *4)) (-4 *3 (-842)) (-4 *4 (-172)))) (-2745 (*1 *2 *1) (-12 (-5 *2 (-1266 *3 *4)) (-5 *1 (-1262 *3 *4)) (-4 *3 (-842)) (-4 *4 (-172)))) (-2253 (*1 *2 *1) (|partial| -12 (-5 *2 (-656 *3 *4)) (-5 *1 (-1262 *3 *4)) (-4 *3 (-842)) (-4 *4 (-172)))) (-3272 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-763)) (-5 *1 (-1262 *3 *4)) (-4 *3 (-842)) (-4 *4 (-172)))) (-1892 (*1 *1 *1 *2) (-12 (-5 *2 (-763)) (-5 *1 (-1262 *3 *4)) (-4 *4 (-707 (-409 (-568)))) (-4 *3 (-842)) (-4 *4 (-172)))) (-4416 (*1 *1 *1 *2) (-12 (-5 *2 (-763)) (-5 *1 (-1262 *3 *4)) (-4 *4 (-707 (-409 (-568)))) (-4 *3 (-842)) (-4 *4 (-172))))) +(-13 (-1263 |#1| |#2|) (-384 |#2| (-888 |#1|)) (-10 -8 (-15 -2745 ($ (-656 |#1| |#2|))) (-15 -2745 ((-1257 |#1| |#2|) $)) (-15 -2745 ((-1266 |#1| |#2|) $)) (-15 -2253 ((-3 (-656 |#1| |#2|) "failed") $)) (-15 -3272 ($ $ $ (-763))) (IF (|has| |#2| (-707 (-409 (-568)))) (PROGN (-15 -1892 ($ $ (-763))) (-15 -4416 ($ $ (-763)))) |noBranch|))) +((-2447 (((-121) $ $) 7)) (-2537 (((-121) $) 15)) (-3595 (((-634 |#1|) $) 39)) (-2821 (($ $ (-763)) 68)) (-3134 (((-3 $ "failed") $ $) 18)) (-2238 (($ $ $) 42 (|has| |#2| (-172))) (($ $ (-763)) 41 (|has| |#2| (-172)))) (-2671 (($) 16 T CONST)) (-2628 (($ $ |#1|) 53) (($ $ (-814 |#1|)) 52) (($ $ $) 51)) (-3666 (((-3 (-814 |#1|) "failed") $) 63)) (-2854 (((-814 |#1|) $) 62)) (-2925 (((-3 $ "failed") $) 33)) (-3363 (((-121) $) 44)) (-2207 (($ $) 43)) (-2735 (((-121) $) 30)) (-3921 (((-121) $) 49)) (-2354 (($ (-814 |#1|) |#2|) 50)) (-2407 (($ $) 48)) (-3169 (((-2 (|:| |k| (-814 |#1|)) (|:| |c| |#2|)) $) 59)) (-2018 (((-814 |#1|) $) 60)) (-1666 (((-814 |#1|) $) 70)) (-2795 (($ (-1 |#2| |#2|) $) 40)) (-2532 (($ $ |#1|) 56) (($ $ (-814 |#1|)) 55) (($ $ $) 54)) (-4487 (((-1143) $) 9)) (-4022 (((-1108) $) 10)) (-3206 (((-763) $) 69)) (-1867 (((-121) $) 46)) (-3495 ((|#2| $) 45)) (-2745 (((-850) $) 11) (($ (-568)) 27) (($ |#2|) 67) (($ (-814 |#1|)) 64) (($ |#1|) 47)) (-2348 ((|#2| $ (-814 |#1|)) 58) ((|#2| $ $) 57)) (-4078 (((-763)) 28)) (-1887 (($ $ (-917)) 25) (($ $ (-763)) 32)) (-3056 (($) 17 T CONST)) (-1556 (($) 29 T CONST)) (-1717 (((-121) $ $) 6)) (-1773 (($ $) 21) (($ $ $) 20)) (-1767 (($ $ $) 13)) (** (($ $ (-917)) 24) (($ $ (-763)) 31)) (* (($ (-917) $) 12) (($ (-763) $) 14) (($ (-568) $) 19) (($ $ $) 23) (($ |#2| $) 66) (($ $ |#2|) 65) (($ |#1| $) 61))) +(((-1263 |#1| |#2|) (-1275) (-842) (-1047)) (T -1263)) +((-1666 (*1 *2 *1) (-12 (-4 *1 (-1263 *3 *4)) (-4 *3 (-842)) (-4 *4 (-1047)) (-5 *2 (-814 *3)))) (-3206 (*1 *2 *1) (-12 (-4 *1 (-1263 *3 *4)) (-4 *3 (-842)) (-4 *4 (-1047)) (-5 *2 (-763)))) (-2821 (*1 *1 *1 *2) (-12 (-5 *2 (-763)) (-4 *1 (-1263 *3 *4)) (-4 *3 (-842)) (-4 *4 (-1047))))) +(-13 (-1259 |t#1| |t#2|) (-10 -8 (-15 -1666 ((-814 |t#1|) $)) (-15 -3206 ((-763) $)) (-15 -2821 ($ $ (-763))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-43 |#2|) |has| |#2| (-172)) ((-105) . T) ((-120 |#2| |#2|) . T) ((-137) . T) ((-608 (-850)) . T) ((-637 |#2|) . T) ((-637 $) . T) ((-707 |#2|) |has| |#2| (-172)) ((-716) . T) ((-1037 (-814 |#1|)) . T) ((-1053 |#2|) . T) ((-1047) . T) ((-1054) . T) ((-1102) . T) ((-1090) . T) ((-1256 |#2|) . T) ((-1259 |#1| |#2|) . T)) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-3595 (((-634 (-1161)) $) NIL)) (-2703 (($ (-1257 (-1161) |#1|)) NIL)) (-2821 (($ $ (-763)) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-2238 (($ $ $) NIL (|has| |#1| (-172))) (($ $ (-763)) NIL (|has| |#1| (-172)))) (-2671 (($) NIL T CONST)) (-2628 (($ $ (-1161)) NIL) (($ $ (-814 (-1161))) NIL) (($ $ $) NIL)) (-3666 (((-3 (-814 (-1161)) "failed") $) NIL)) (-2854 (((-814 (-1161)) $) NIL)) (-2925 (((-3 $ "failed") $) NIL)) (-3363 (((-121) $) NIL)) (-2207 (($ $) NIL)) (-2735 (((-121) $) NIL)) (-3921 (((-121) $) NIL)) (-2354 (($ (-814 (-1161)) |#1|) NIL)) (-2407 (($ $) NIL)) (-3169 (((-2 (|:| |k| (-814 (-1161))) (|:| |c| |#1|)) $) NIL)) (-2018 (((-814 (-1161)) $) NIL)) (-1666 (((-814 (-1161)) $) NIL)) (-2795 (($ (-1 |#1| |#1|) $) NIL)) (-2532 (($ $ (-1161)) NIL) (($ $ (-814 (-1161))) NIL) (($ $ $) NIL)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2789 (((-1257 (-1161) |#1|) $) NIL)) (-3206 (((-763) $) NIL)) (-1867 (((-121) $) NIL)) (-3495 ((|#1| $) NIL)) (-2745 (((-850) $) NIL) (($ (-568)) NIL) (($ |#1|) NIL) (($ (-814 (-1161))) NIL) (($ (-1161)) NIL)) (-2348 ((|#1| $ (-814 (-1161))) NIL) ((|#1| $ $) NIL)) (-4078 (((-763)) NIL)) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (-3056 (($) NIL T CONST)) (-3788 (((-634 (-2 (|:| |k| (-1161)) (|:| |c| $))) $) NIL)) (-1556 (($) NIL T CONST)) (-1717 (((-121) $ $) NIL)) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1161) $) NIL))) +(((-1264 |#1|) (-13 (-1263 (-1161) |#1|) (-10 -8 (-15 -2789 ((-1257 (-1161) |#1|) $)) (-15 -2703 ($ (-1257 (-1161) |#1|))) (-15 -3788 ((-634 (-2 (|:| |k| (-1161)) (|:| |c| $))) $)))) (-1047)) (T -1264)) +((-2789 (*1 *2 *1) (-12 (-5 *2 (-1257 (-1161) *3)) (-5 *1 (-1264 *3)) (-4 *3 (-1047)))) (-2703 (*1 *1 *2) (-12 (-5 *2 (-1257 (-1161) *3)) (-4 *3 (-1047)) (-5 *1 (-1264 *3)))) (-3788 (*1 *2 *1) (-12 (-5 *2 (-634 (-2 (|:| |k| (-1161)) (|:| |c| (-1264 *3))))) (-5 *1 (-1264 *3)) (-4 *3 (-1047))))) +(-13 (-1263 (-1161) |#1|) (-10 -8 (-15 -2789 ((-1257 (-1161) |#1|) $)) (-15 -2703 ($ (-1257 (-1161) |#1|))) (-15 -3788 ((-634 (-2 (|:| |k| (-1161)) (|:| |c| $))) $)))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-3134 (((-3 $ "failed") $ $) NIL)) (-2671 (($) NIL T CONST)) (-3666 (((-3 |#2| "failed") $) NIL)) (-2854 ((|#2| $) NIL)) (-2114 (($ $) NIL)) (-2925 (((-3 $ "failed") $) 34)) (-3363 (((-121) $) 29)) (-2207 (($ $) 30)) (-2735 (((-121) $) NIL)) (-4178 (((-763) $) NIL)) (-2976 (((-634 $) $) NIL)) (-3921 (((-121) $) NIL)) (-2354 (($ |#2| |#1|) NIL)) (-2018 ((|#2| $) 19)) (-1666 ((|#2| $) 16)) (-2795 (($ (-1 |#1| |#1|) $) NIL)) (-4297 (((-634 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-2315 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-2097 ((|#2| $) NIL)) (-2102 ((|#1| $) NIL)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-1867 (((-121) $) 27)) (-3495 ((|#1| $) 28)) (-2745 (((-850) $) 53) (($ (-568)) 38) (($ |#1|) 33) (($ |#2|) NIL)) (-1302 (((-634 |#1|) $) NIL)) (-2604 ((|#1| $ |#2|) NIL)) (-2348 ((|#1| $ |#2|) 24)) (-4078 (((-763)) 14)) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (-3056 (($) 25 T CONST)) (-1556 (($) 11 T CONST)) (-1717 (((-121) $ $) 26)) (-1779 (($ $ |#1|) 55 (|has| |#1| (-365)))) (-1773 (($ $) NIL) (($ $ $) NIL)) (-1767 (($ $ $) 42)) (** (($ $ (-917)) NIL) (($ $ (-763)) 44)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) NIL) (($ $ $) 43) (($ |#1| $) 39) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-1697 (((-763) $) 15))) +(((-1265 |#1| |#2|) (-13 (-1047) (-1256 |#1|) (-384 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -1697 ((-763) $)) (-15 -2745 ($ |#2|)) (-15 -1666 (|#2| $)) (-15 -2018 (|#2| $)) (-15 -2114 ($ $)) (-15 -2348 (|#1| $ |#2|)) (-15 -1867 ((-121) $)) (-15 -3495 (|#1| $)) (-15 -3363 ((-121) $)) (-15 -2207 ($ $)) (-15 -2795 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-365)) (-15 -1779 ($ $ |#1|)) |noBranch|) (IF (|has| |#1| (-6 -4512)) (-6 -4512) |noBranch|) (IF (|has| |#1| (-6 -4516)) (-6 -4516) |noBranch|) (IF (|has| |#1| (-6 -4517)) (-6 -4517) |noBranch|))) (-1047) (-838)) (T -1265)) +((* (*1 *1 *1 *2) (-12 (-5 *1 (-1265 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-838)))) (-2114 (*1 *1 *1) (-12 (-5 *1 (-1265 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-838)))) (-2795 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1047)) (-5 *1 (-1265 *3 *4)) (-4 *4 (-838)))) (-2745 (*1 *1 *2) (-12 (-5 *1 (-1265 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-838)))) (-1697 (*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-1265 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-838)))) (-1666 (*1 *2 *1) (-12 (-4 *2 (-838)) (-5 *1 (-1265 *3 *2)) (-4 *3 (-1047)))) (-2018 (*1 *2 *1) (-12 (-4 *2 (-838)) (-5 *1 (-1265 *3 *2)) (-4 *3 (-1047)))) (-2348 (*1 *2 *1 *3) (-12 (-4 *2 (-1047)) (-5 *1 (-1265 *2 *3)) (-4 *3 (-838)))) (-1867 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1265 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-838)))) (-3495 (*1 *2 *1) (-12 (-4 *2 (-1047)) (-5 *1 (-1265 *2 *3)) (-4 *3 (-838)))) (-3363 (*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1265 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-838)))) (-2207 (*1 *1 *1) (-12 (-5 *1 (-1265 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-838)))) (-1779 (*1 *1 *1 *2) (-12 (-5 *1 (-1265 *2 *3)) (-4 *2 (-365)) (-4 *2 (-1047)) (-4 *3 (-838))))) +(-13 (-1047) (-1256 |#1|) (-384 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -1697 ((-763) $)) (-15 -2745 ($ |#2|)) (-15 -1666 (|#2| $)) (-15 -2018 (|#2| $)) (-15 -2114 ($ $)) (-15 -2348 (|#1| $ |#2|)) (-15 -1867 ((-121) $)) (-15 -3495 (|#1| $)) (-15 -3363 ((-121) $)) (-15 -2207 ($ $)) (-15 -2795 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-365)) (-15 -1779 ($ $ |#1|)) |noBranch|) (IF (|has| |#1| (-6 -4512)) (-6 -4512) |noBranch|) (IF (|has| |#1| (-6 -4516)) (-6 -4516) |noBranch|) (IF (|has| |#1| (-6 -4517)) (-6 -4517) |noBranch|))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) NIL)) (-3595 (((-634 |#1|) $) 119)) (-2703 (($ (-1257 |#1| |#2|)) 43)) (-2821 (($ $ (-763)) 31)) (-3134 (((-3 $ "failed") $ $) NIL)) (-2238 (($ $ $) 47 (|has| |#2| (-172))) (($ $ (-763)) 45 (|has| |#2| (-172)))) (-2671 (($) NIL T CONST)) (-2628 (($ $ |#1|) 101) (($ $ (-814 |#1|)) 102) (($ $ $) 25)) (-3666 (((-3 (-814 |#1|) "failed") $) NIL)) (-2854 (((-814 |#1|) $) NIL)) (-2925 (((-3 $ "failed") $) 109)) (-3363 (((-121) $) 104)) (-2207 (($ $) 105)) (-2735 (((-121) $) NIL)) (-3921 (((-121) $) NIL)) (-2354 (($ (-814 |#1|) |#2|) 19)) (-2407 (($ $) NIL)) (-3169 (((-2 (|:| |k| (-814 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2018 (((-814 |#1|) $) 110)) (-1666 (((-814 |#1|) $) 113)) (-2795 (($ (-1 |#2| |#2|) $) 118)) (-2532 (($ $ |#1|) 99) (($ $ (-814 |#1|)) 100) (($ $ $) 55)) (-4487 (((-1143) $) NIL)) (-4022 (((-1108) $) NIL)) (-2789 (((-1257 |#1| |#2|) $) 83)) (-3206 (((-763) $) 116)) (-1867 (((-121) $) 69)) (-3495 ((|#2| $) 27)) (-2745 (((-850) $) 62) (($ (-568)) 76) (($ |#2|) 73) (($ (-814 |#1|)) 17) (($ |#1|) 72)) (-2348 ((|#2| $ (-814 |#1|)) 103) ((|#2| $ $) 26)) (-4078 (((-763)) 107)) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (-3056 (($) 14 T CONST)) (-3788 (((-634 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 52)) (-1556 (($) 28 T CONST)) (-1717 (((-121) $ $) 13)) (-1773 (($ $) 87) (($ $ $) 90)) (-1767 (($ $ $) 54)) (** (($ $ (-917)) NIL) (($ $ (-763)) 48)) (* (($ (-917) $) NIL) (($ (-763) $) 46) (($ (-568) $) 93) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 81))) +(((-1266 |#1| |#2|) (-13 (-1263 |#1| |#2|) (-10 -8 (-15 -2789 ((-1257 |#1| |#2|) $)) (-15 -2703 ($ (-1257 |#1| |#2|))) (-15 -3788 ((-634 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-842) (-1047)) (T -1266)) +((-2789 (*1 *2 *1) (-12 (-5 *2 (-1257 *3 *4)) (-5 *1 (-1266 *3 *4)) (-4 *3 (-842)) (-4 *4 (-1047)))) (-2703 (*1 *1 *2) (-12 (-5 *2 (-1257 *3 *4)) (-4 *3 (-842)) (-4 *4 (-1047)) (-5 *1 (-1266 *3 *4)))) (-3788 (*1 *2 *1) (-12 (-5 *2 (-634 (-2 (|:| |k| *3) (|:| |c| (-1266 *3 *4))))) (-5 *1 (-1266 *3 *4)) (-4 *3 (-842)) (-4 *4 (-1047))))) +(-13 (-1263 |#1| |#2|) (-10 -8 (-15 -2789 ((-1257 |#1| |#2|) $)) (-15 -2703 ($ (-1257 |#1| |#2|))) (-15 -3788 ((-634 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) +((-2926 (((-634 (-1141 |#1|)) (-1 (-634 (-1141 |#1|)) (-634 (-1141 |#1|))) (-568)) 15) (((-1141 |#1|) (-1 (-1141 |#1|) (-1141 |#1|))) 11))) +(((-1267 |#1|) (-10 -7 (-15 -2926 ((-1141 |#1|) (-1 (-1141 |#1|) (-1141 |#1|)))) (-15 -2926 ((-634 (-1141 |#1|)) (-1 (-634 (-1141 |#1|)) (-634 (-1141 |#1|))) (-568)))) (-1195)) (T -1267)) +((-2926 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-634 (-1141 *5)) (-634 (-1141 *5)))) (-5 *4 (-568)) (-5 *2 (-634 (-1141 *5))) (-5 *1 (-1267 *5)) (-4 *5 (-1195)))) (-2926 (*1 *2 *3) (-12 (-5 *3 (-1 (-1141 *4) (-1141 *4))) (-5 *2 (-1141 *4)) (-5 *1 (-1267 *4)) (-4 *4 (-1195))))) +(-10 -7 (-15 -2926 ((-1141 |#1|) (-1 (-1141 |#1|) (-1141 |#1|)))) (-15 -2926 ((-634 (-1141 |#1|)) (-1 (-634 (-1141 |#1|)) (-634 (-1141 |#1|))) (-568)))) +((-3328 (((-634 (-2 (|:| -3471 (-1157 |#1|)) (|:| -4073 (-634 (-953 |#1|))))) (-634 (-953 |#1|))) 145) (((-634 (-2 (|:| -3471 (-1157 |#1|)) (|:| -4073 (-634 (-953 |#1|))))) (-634 (-953 |#1|)) (-121)) 144) (((-634 (-2 (|:| -3471 (-1157 |#1|)) (|:| -4073 (-634 (-953 |#1|))))) (-634 (-953 |#1|)) (-121) (-121)) 143) (((-634 (-2 (|:| -3471 (-1157 |#1|)) (|:| -4073 (-634 (-953 |#1|))))) (-634 (-953 |#1|)) (-121) (-121) (-121)) 142) (((-634 (-2 (|:| -3471 (-1157 |#1|)) (|:| -4073 (-634 (-953 |#1|))))) (-1044 |#1| |#2|)) 127)) (-2009 (((-634 (-1044 |#1| |#2|)) (-634 (-953 |#1|))) 70) (((-634 (-1044 |#1| |#2|)) (-634 (-953 |#1|)) (-121)) 69) (((-634 (-1044 |#1| |#2|)) (-634 (-953 |#1|)) (-121) (-121)) 68)) (-1678 (((-634 (-1131 |#1| (-534 (-852 |#3|)) (-852 |#3|) (-775 |#1| (-852 |#3|)))) (-1044 |#1| |#2|)) 59)) (-3105 (((-634 (-634 (-1023 (-409 |#1|)))) (-634 (-953 |#1|))) 112) (((-634 (-634 (-1023 (-409 |#1|)))) (-634 (-953 |#1|)) (-121)) 111) (((-634 (-634 (-1023 (-409 |#1|)))) (-634 (-953 |#1|)) (-121) (-121)) 110) (((-634 (-634 (-1023 (-409 |#1|)))) (-634 (-953 |#1|)) (-121) (-121) (-121)) 109) (((-634 (-634 (-1023 (-409 |#1|)))) (-1044 |#1| |#2|)) 104)) (-2040 (((-634 (-634 (-1023 (-409 |#1|)))) (-634 (-953 |#1|))) 117) (((-634 (-634 (-1023 (-409 |#1|)))) (-634 (-953 |#1|)) (-121)) 116) (((-634 (-634 (-1023 (-409 |#1|)))) (-634 (-953 |#1|)) (-121) (-121)) 115) (((-634 (-634 (-1023 (-409 |#1|)))) (-1044 |#1| |#2|)) 114)) (-4278 (((-634 (-775 |#1| (-852 |#3|))) (-1131 |#1| (-534 (-852 |#3|)) (-852 |#3|) (-775 |#1| (-852 |#3|)))) 96) (((-1157 (-1023 (-409 |#1|))) (-1157 |#1|)) 87) (((-953 (-1023 (-409 |#1|))) (-775 |#1| (-852 |#3|))) 94) (((-953 (-1023 (-409 |#1|))) (-953 |#1|)) 92) (((-775 |#1| (-852 |#3|)) (-775 |#1| (-852 |#2|))) 32))) +(((-1268 |#1| |#2| |#3|) (-10 -7 (-15 -2009 ((-634 (-1044 |#1| |#2|)) (-634 (-953 |#1|)) (-121) (-121))) (-15 -2009 ((-634 (-1044 |#1| |#2|)) (-634 (-953 |#1|)) (-121))) (-15 -2009 ((-634 (-1044 |#1| |#2|)) (-634 (-953 |#1|)))) (-15 -3328 ((-634 (-2 (|:| -3471 (-1157 |#1|)) (|:| -4073 (-634 (-953 |#1|))))) (-1044 |#1| |#2|))) (-15 -3328 ((-634 (-2 (|:| -3471 (-1157 |#1|)) (|:| -4073 (-634 (-953 |#1|))))) (-634 (-953 |#1|)) (-121) (-121) (-121))) (-15 -3328 ((-634 (-2 (|:| -3471 (-1157 |#1|)) (|:| -4073 (-634 (-953 |#1|))))) (-634 (-953 |#1|)) (-121) (-121))) (-15 -3328 ((-634 (-2 (|:| -3471 (-1157 |#1|)) (|:| -4073 (-634 (-953 |#1|))))) (-634 (-953 |#1|)) (-121))) (-15 -3328 ((-634 (-2 (|:| -3471 (-1157 |#1|)) (|:| -4073 (-634 (-953 |#1|))))) (-634 (-953 |#1|)))) (-15 -3105 ((-634 (-634 (-1023 (-409 |#1|)))) (-1044 |#1| |#2|))) (-15 -3105 ((-634 (-634 (-1023 (-409 |#1|)))) (-634 (-953 |#1|)) (-121) (-121) (-121))) (-15 -3105 ((-634 (-634 (-1023 (-409 |#1|)))) (-634 (-953 |#1|)) (-121) (-121))) (-15 -3105 ((-634 (-634 (-1023 (-409 |#1|)))) (-634 (-953 |#1|)) (-121))) (-15 -3105 ((-634 (-634 (-1023 (-409 |#1|)))) (-634 (-953 |#1|)))) (-15 -2040 ((-634 (-634 (-1023 (-409 |#1|)))) (-1044 |#1| |#2|))) (-15 -2040 ((-634 (-634 (-1023 (-409 |#1|)))) (-634 (-953 |#1|)) (-121) (-121))) (-15 -2040 ((-634 (-634 (-1023 (-409 |#1|)))) (-634 (-953 |#1|)) (-121))) (-15 -2040 ((-634 (-634 (-1023 (-409 |#1|)))) (-634 (-953 |#1|)))) (-15 -1678 ((-634 (-1131 |#1| (-534 (-852 |#3|)) (-852 |#3|) (-775 |#1| (-852 |#3|)))) (-1044 |#1| |#2|))) (-15 -4278 ((-775 |#1| (-852 |#3|)) (-775 |#1| (-852 |#2|)))) (-15 -4278 ((-953 (-1023 (-409 |#1|))) (-953 |#1|))) (-15 -4278 ((-953 (-1023 (-409 |#1|))) (-775 |#1| (-852 |#3|)))) (-15 -4278 ((-1157 (-1023 (-409 |#1|))) (-1157 |#1|))) (-15 -4278 ((-634 (-775 |#1| (-852 |#3|))) (-1131 |#1| (-534 (-852 |#3|)) (-852 |#3|) (-775 |#1| (-852 |#3|)))))) (-13 (-840) (-301) (-150) (-1021)) (-634 (-1161)) (-634 (-1161))) (T -1268)) +((-4278 (*1 *2 *3) (-12 (-5 *3 (-1131 *4 (-534 (-852 *6)) (-852 *6) (-775 *4 (-852 *6)))) (-4 *4 (-13 (-840) (-301) (-150) (-1021))) (-14 *6 (-634 (-1161))) (-5 *2 (-634 (-775 *4 (-852 *6)))) (-5 *1 (-1268 *4 *5 *6)) (-14 *5 (-634 (-1161))))) (-4278 (*1 *2 *3) (-12 (-5 *3 (-1157 *4)) (-4 *4 (-13 (-840) (-301) (-150) (-1021))) (-5 *2 (-1157 (-1023 (-409 *4)))) (-5 *1 (-1268 *4 *5 *6)) (-14 *5 (-634 (-1161))) (-14 *6 (-634 (-1161))))) (-4278 (*1 *2 *3) (-12 (-5 *3 (-775 *4 (-852 *6))) (-4 *4 (-13 (-840) (-301) (-150) (-1021))) (-14 *6 (-634 (-1161))) (-5 *2 (-953 (-1023 (-409 *4)))) (-5 *1 (-1268 *4 *5 *6)) (-14 *5 (-634 (-1161))))) (-4278 (*1 *2 *3) (-12 (-5 *3 (-953 *4)) (-4 *4 (-13 (-840) (-301) (-150) (-1021))) (-5 *2 (-953 (-1023 (-409 *4)))) (-5 *1 (-1268 *4 *5 *6)) (-14 *5 (-634 (-1161))) (-14 *6 (-634 (-1161))))) (-4278 (*1 *2 *3) (-12 (-5 *3 (-775 *4 (-852 *5))) (-4 *4 (-13 (-840) (-301) (-150) (-1021))) (-14 *5 (-634 (-1161))) (-5 *2 (-775 *4 (-852 *6))) (-5 *1 (-1268 *4 *5 *6)) (-14 *6 (-634 (-1161))))) (-1678 (*1 *2 *3) (-12 (-5 *3 (-1044 *4 *5)) (-4 *4 (-13 (-840) (-301) (-150) (-1021))) (-14 *5 (-634 (-1161))) (-5 *2 (-634 (-1131 *4 (-534 (-852 *6)) (-852 *6) (-775 *4 (-852 *6))))) (-5 *1 (-1268 *4 *5 *6)) (-14 *6 (-634 (-1161))))) (-2040 (*1 *2 *3) (-12 (-5 *3 (-634 (-953 *4))) (-4 *4 (-13 (-840) (-301) (-150) (-1021))) (-5 *2 (-634 (-634 (-1023 (-409 *4))))) (-5 *1 (-1268 *4 *5 *6)) (-14 *5 (-634 (-1161))) (-14 *6 (-634 (-1161))))) (-2040 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-953 *5))) (-5 *4 (-121)) (-4 *5 (-13 (-840) (-301) (-150) (-1021))) (-5 *2 (-634 (-634 (-1023 (-409 *5))))) (-5 *1 (-1268 *5 *6 *7)) (-14 *6 (-634 (-1161))) (-14 *7 (-634 (-1161))))) (-2040 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-634 (-953 *5))) (-5 *4 (-121)) (-4 *5 (-13 (-840) (-301) (-150) (-1021))) (-5 *2 (-634 (-634 (-1023 (-409 *5))))) (-5 *1 (-1268 *5 *6 *7)) (-14 *6 (-634 (-1161))) (-14 *7 (-634 (-1161))))) (-2040 (*1 *2 *3) (-12 (-5 *3 (-1044 *4 *5)) (-4 *4 (-13 (-840) (-301) (-150) (-1021))) (-14 *5 (-634 (-1161))) (-5 *2 (-634 (-634 (-1023 (-409 *4))))) (-5 *1 (-1268 *4 *5 *6)) (-14 *6 (-634 (-1161))))) (-3105 (*1 *2 *3) (-12 (-5 *3 (-634 (-953 *4))) (-4 *4 (-13 (-840) (-301) (-150) (-1021))) (-5 *2 (-634 (-634 (-1023 (-409 *4))))) (-5 *1 (-1268 *4 *5 *6)) (-14 *5 (-634 (-1161))) (-14 *6 (-634 (-1161))))) (-3105 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-953 *5))) (-5 *4 (-121)) (-4 *5 (-13 (-840) (-301) (-150) (-1021))) (-5 *2 (-634 (-634 (-1023 (-409 *5))))) (-5 *1 (-1268 *5 *6 *7)) (-14 *6 (-634 (-1161))) (-14 *7 (-634 (-1161))))) (-3105 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-634 (-953 *5))) (-5 *4 (-121)) (-4 *5 (-13 (-840) (-301) (-150) (-1021))) (-5 *2 (-634 (-634 (-1023 (-409 *5))))) (-5 *1 (-1268 *5 *6 *7)) (-14 *6 (-634 (-1161))) (-14 *7 (-634 (-1161))))) (-3105 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-634 (-953 *5))) (-5 *4 (-121)) (-4 *5 (-13 (-840) (-301) (-150) (-1021))) (-5 *2 (-634 (-634 (-1023 (-409 *5))))) (-5 *1 (-1268 *5 *6 *7)) (-14 *6 (-634 (-1161))) (-14 *7 (-634 (-1161))))) (-3105 (*1 *2 *3) (-12 (-5 *3 (-1044 *4 *5)) (-4 *4 (-13 (-840) (-301) (-150) (-1021))) (-14 *5 (-634 (-1161))) (-5 *2 (-634 (-634 (-1023 (-409 *4))))) (-5 *1 (-1268 *4 *5 *6)) (-14 *6 (-634 (-1161))))) (-3328 (*1 *2 *3) (-12 (-4 *4 (-13 (-840) (-301) (-150) (-1021))) (-5 *2 (-634 (-2 (|:| -3471 (-1157 *4)) (|:| -4073 (-634 (-953 *4)))))) (-5 *1 (-1268 *4 *5 *6)) (-5 *3 (-634 (-953 *4))) (-14 *5 (-634 (-1161))) (-14 *6 (-634 (-1161))))) (-3328 (*1 *2 *3 *4) (-12 (-5 *4 (-121)) (-4 *5 (-13 (-840) (-301) (-150) (-1021))) (-5 *2 (-634 (-2 (|:| -3471 (-1157 *5)) (|:| -4073 (-634 (-953 *5)))))) (-5 *1 (-1268 *5 *6 *7)) (-5 *3 (-634 (-953 *5))) (-14 *6 (-634 (-1161))) (-14 *7 (-634 (-1161))))) (-3328 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-121)) (-4 *5 (-13 (-840) (-301) (-150) (-1021))) (-5 *2 (-634 (-2 (|:| -3471 (-1157 *5)) (|:| -4073 (-634 (-953 *5)))))) (-5 *1 (-1268 *5 *6 *7)) (-5 *3 (-634 (-953 *5))) (-14 *6 (-634 (-1161))) (-14 *7 (-634 (-1161))))) (-3328 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-121)) (-4 *5 (-13 (-840) (-301) (-150) (-1021))) (-5 *2 (-634 (-2 (|:| -3471 (-1157 *5)) (|:| -4073 (-634 (-953 *5)))))) (-5 *1 (-1268 *5 *6 *7)) (-5 *3 (-634 (-953 *5))) (-14 *6 (-634 (-1161))) (-14 *7 (-634 (-1161))))) (-3328 (*1 *2 *3) (-12 (-5 *3 (-1044 *4 *5)) (-4 *4 (-13 (-840) (-301) (-150) (-1021))) (-14 *5 (-634 (-1161))) (-5 *2 (-634 (-2 (|:| -3471 (-1157 *4)) (|:| -4073 (-634 (-953 *4)))))) (-5 *1 (-1268 *4 *5 *6)) (-14 *6 (-634 (-1161))))) (-2009 (*1 *2 *3) (-12 (-5 *3 (-634 (-953 *4))) (-4 *4 (-13 (-840) (-301) (-150) (-1021))) (-5 *2 (-634 (-1044 *4 *5))) (-5 *1 (-1268 *4 *5 *6)) (-14 *5 (-634 (-1161))) (-14 *6 (-634 (-1161))))) (-2009 (*1 *2 *3 *4) (-12 (-5 *3 (-634 (-953 *5))) (-5 *4 (-121)) (-4 *5 (-13 (-840) (-301) (-150) (-1021))) (-5 *2 (-634 (-1044 *5 *6))) (-5 *1 (-1268 *5 *6 *7)) (-14 *6 (-634 (-1161))) (-14 *7 (-634 (-1161))))) (-2009 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-634 (-953 *5))) (-5 *4 (-121)) (-4 *5 (-13 (-840) (-301) (-150) (-1021))) (-5 *2 (-634 (-1044 *5 *6))) (-5 *1 (-1268 *5 *6 *7)) (-14 *6 (-634 (-1161))) (-14 *7 (-634 (-1161)))))) +(-10 -7 (-15 -2009 ((-634 (-1044 |#1| |#2|)) (-634 (-953 |#1|)) (-121) (-121))) (-15 -2009 ((-634 (-1044 |#1| |#2|)) (-634 (-953 |#1|)) (-121))) (-15 -2009 ((-634 (-1044 |#1| |#2|)) (-634 (-953 |#1|)))) (-15 -3328 ((-634 (-2 (|:| -3471 (-1157 |#1|)) (|:| -4073 (-634 (-953 |#1|))))) (-1044 |#1| |#2|))) (-15 -3328 ((-634 (-2 (|:| -3471 (-1157 |#1|)) (|:| -4073 (-634 (-953 |#1|))))) (-634 (-953 |#1|)) (-121) (-121) (-121))) (-15 -3328 ((-634 (-2 (|:| -3471 (-1157 |#1|)) (|:| -4073 (-634 (-953 |#1|))))) (-634 (-953 |#1|)) (-121) (-121))) (-15 -3328 ((-634 (-2 (|:| -3471 (-1157 |#1|)) (|:| -4073 (-634 (-953 |#1|))))) (-634 (-953 |#1|)) (-121))) (-15 -3328 ((-634 (-2 (|:| -3471 (-1157 |#1|)) (|:| -4073 (-634 (-953 |#1|))))) (-634 (-953 |#1|)))) (-15 -3105 ((-634 (-634 (-1023 (-409 |#1|)))) (-1044 |#1| |#2|))) (-15 -3105 ((-634 (-634 (-1023 (-409 |#1|)))) (-634 (-953 |#1|)) (-121) (-121) (-121))) (-15 -3105 ((-634 (-634 (-1023 (-409 |#1|)))) (-634 (-953 |#1|)) (-121) (-121))) (-15 -3105 ((-634 (-634 (-1023 (-409 |#1|)))) (-634 (-953 |#1|)) (-121))) (-15 -3105 ((-634 (-634 (-1023 (-409 |#1|)))) (-634 (-953 |#1|)))) (-15 -2040 ((-634 (-634 (-1023 (-409 |#1|)))) (-1044 |#1| |#2|))) (-15 -2040 ((-634 (-634 (-1023 (-409 |#1|)))) (-634 (-953 |#1|)) (-121) (-121))) (-15 -2040 ((-634 (-634 (-1023 (-409 |#1|)))) (-634 (-953 |#1|)) (-121))) (-15 -2040 ((-634 (-634 (-1023 (-409 |#1|)))) (-634 (-953 |#1|)))) (-15 -1678 ((-634 (-1131 |#1| (-534 (-852 |#3|)) (-852 |#3|) (-775 |#1| (-852 |#3|)))) (-1044 |#1| |#2|))) (-15 -4278 ((-775 |#1| (-852 |#3|)) (-775 |#1| (-852 |#2|)))) (-15 -4278 ((-953 (-1023 (-409 |#1|))) (-953 |#1|))) (-15 -4278 ((-953 (-1023 (-409 |#1|))) (-775 |#1| (-852 |#3|)))) (-15 -4278 ((-1157 (-1023 (-409 |#1|))) (-1157 |#1|))) (-15 -4278 ((-634 (-775 |#1| (-852 |#3|))) (-1131 |#1| (-534 (-852 |#3|)) (-852 |#3|) (-775 |#1| (-852 |#3|)))))) +((-3634 (((-3 (-1244 (-409 (-568))) "failed") (-1244 |#1|) |#1|) 17)) (-2970 (((-121) (-1244 |#1|)) 11)) (-4378 (((-3 (-1244 (-568)) "failed") (-1244 |#1|)) 14))) +(((-1269 |#1|) (-10 -7 (-15 -2970 ((-121) (-1244 |#1|))) (-15 -4378 ((-3 (-1244 (-568)) "failed") (-1244 |#1|))) (-15 -3634 ((-3 (-1244 (-409 (-568))) "failed") (-1244 |#1|) |#1|))) (-630 (-568))) (T -1269)) +((-3634 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1244 *4)) (-4 *4 (-630 (-568))) (-5 *2 (-1244 (-409 (-568)))) (-5 *1 (-1269 *4)))) (-4378 (*1 *2 *3) (|partial| -12 (-5 *3 (-1244 *4)) (-4 *4 (-630 (-568))) (-5 *2 (-1244 (-568))) (-5 *1 (-1269 *4)))) (-2970 (*1 *2 *3) (-12 (-5 *3 (-1244 *4)) (-4 *4 (-630 (-568))) (-5 *2 (-121)) (-5 *1 (-1269 *4))))) +(-10 -7 (-15 -2970 ((-121) (-1244 |#1|))) (-15 -4378 ((-3 (-1244 (-568)) "failed") (-1244 |#1|))) (-15 -3634 ((-3 (-1244 (-409 (-568))) "failed") (-1244 |#1|) |#1|))) +((-2447 (((-121) $ $) NIL)) (-2537 (((-121) $) 11)) (-3134 (((-3 $ "failed") $ $) NIL)) (-3983 (((-763)) 8)) (-2671 (($) NIL T CONST)) (-2925 (((-3 $ "failed") $) 43)) (-1731 (($) 36)) (-2735 (((-121) $) NIL)) (-3038 (((-3 $ "failed") $) 29)) (-3683 (((-917) $) 15)) (-4487 (((-1143) $) NIL)) (-4434 (($) 25 T CONST)) (-4355 (($ (-917)) 37)) (-4022 (((-1108) $) NIL)) (-4278 (((-568) $) 13)) (-2745 (((-850) $) 22) (($ (-568)) 19)) (-4078 (((-763)) 9)) (-1887 (($ $ (-917)) NIL) (($ $ (-763)) NIL)) (-3056 (($) 23 T CONST)) (-1556 (($) 24 T CONST)) (-1717 (((-121) $ $) 27)) (-1773 (($ $) 38) (($ $ $) 35)) (-1767 (($ $ $) 26)) (** (($ $ (-917)) NIL) (($ $ (-763)) 40)) (* (($ (-917) $) NIL) (($ (-763) $) NIL) (($ (-568) $) 32) (($ $ $) 31))) +(((-1270 |#1|) (-13 (-172) (-370) (-609 (-568)) (-1136)) (-917)) (T -1270)) +NIL +(-13 (-172) (-370) (-609 (-568)) (-1136)) +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +((-1275 3579006 3579011 3579016 "NIL" NIL T NIL (NIL) NIL NIL NIL) (-3 3578991 3578996 3579001 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (-2 3578976 3578981 3578986 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (-1 3578961 3578966 3578971 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (0 3578946 3578951 3578956 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (-1270 3578076 3578821 3578898 "ZMOD" 3578903 NIL ZMOD (NIL NIL) -8 NIL NIL) (-1269 3577186 3577350 3577559 "ZLINDEP" 3577908 NIL ZLINDEP (NIL T) -7 NIL NIL) (-1268 3566490 3568254 3570226 "ZDSOLVE" 3575316 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL) (-1267 3565736 3565877 3566066 "YSTREAM" 3566336 NIL YSTREAM (NIL T) -7 NIL NIL) (-1266 3563501 3565037 3565241 "XRPOLY" 3565579 NIL XRPOLY (NIL T T) -8 NIL NIL) (-1265 3559955 3561284 3561864 "XPR" 3562968 NIL XPR (NIL T T) -8 NIL NIL) (-1264 3557665 3559286 3559490 "XPOLY" 3559786 NIL XPOLY (NIL T) -8 NIL NIL) (-1263 3555469 3556847 3556903 "XPOLYC" 3557191 NIL XPOLYC (NIL T T) -9 NIL 3557304) (-1262 3551843 3553988 3554375 "XPBWPOLY" 3555128 NIL XPBWPOLY (NIL T T) -8 NIL NIL) (-1261 3547721 3550031 3550074 "XF" 3550695 NIL XF (NIL T) -9 NIL 3551092) (-1260 3547342 3547430 3547599 "XF-" 3547604 NIL XF- (NIL T T) -8 NIL NIL) (-1259 3542691 3543990 3544046 "XFALG" 3546218 NIL XFALG (NIL T T) -9 NIL 3547005) (-1258 3541824 3541928 3542133 "XEXPPKG" 3542583 NIL XEXPPKG (NIL T T T) -7 NIL NIL) (-1257 3539921 3541674 3541770 "XDPOLY" 3541775 NIL XDPOLY (NIL T T) -8 NIL NIL) (-1256 3538793 3539403 3539447 "XALG" 3539510 NIL XALG (NIL T) -9 NIL 3539629) (-1255 3532262 3536770 3537264 "WUTSET" 3538385 NIL WUTSET (NIL T T T T) -8 NIL NIL) (-1254 3530071 3530878 3531229 "WP" 3532045 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL) (-1253 3528957 3529155 3529450 "WFFINTBS" 3529868 NIL WFFINTBS (NIL T T T T) -7 NIL NIL) (-1252 3526861 3527288 3527750 "WEIER" 3528529 NIL WEIER (NIL T) -7 NIL NIL) (-1251 3526007 3526431 3526474 "VSPACE" 3526610 NIL VSPACE (NIL T) -9 NIL 3526684) (-1250 3525845 3525872 3525963 "VSPACE-" 3525968 NIL VSPACE- (NIL T T) -8 NIL NIL) (-1249 3525591 3525634 3525705 "VOID" 3525796 T VOID (NIL) -8 NIL NIL) (-1248 3523727 3524086 3524492 "VIEW" 3525207 T VIEW (NIL) -7 NIL NIL) (-1247 3520152 3520790 3521527 "VIEWDEF" 3523012 T VIEWDEF (NIL) -7 NIL NIL) (-1246 3509491 3511700 3513873 "VIEW3D" 3518001 T VIEW3D (NIL) -8 NIL NIL) (-1245 3501773 3503402 3504981 "VIEW2D" 3507934 T VIEW2D (NIL) -8 NIL NIL) (-1244 3497181 3501543 3501635 "VECTOR" 3501716 NIL VECTOR (NIL T) -8 NIL NIL) (-1243 3495758 3496017 3496335 "VECTOR2" 3496911 NIL VECTOR2 (NIL T T) -7 NIL NIL) (-1242 3489323 3493569 3493613 "VECTCAT" 3494608 NIL VECTCAT (NIL T) -9 NIL 3495188) (-1241 3488337 3488591 3488981 "VECTCAT-" 3488986 NIL VECTCAT- (NIL T T) -8 NIL NIL) (-1240 3487818 3487988 3488108 "VARIABLE" 3488252 NIL VARIABLE (NIL NIL) -8 NIL NIL) (-1239 3479860 3485651 3486129 "UTSZ" 3487388 NIL UTSZ (NIL T NIL) -8 NIL NIL) (-1238 3479466 3479516 3479650 "UTSSOL" 3479804 NIL UTSSOL (NIL T T T) -7 NIL NIL) (-1237 3478298 3478452 3478713 "UTSODETL" 3479293 NIL UTSODETL (NIL T T T T) -7 NIL NIL) (-1236 3475738 3476198 3476722 "UTSODE" 3477839 NIL UTSODE (NIL T T) -7 NIL NIL) (-1235 3467571 3473366 3473854 "UTS" 3475308 NIL UTS (NIL T NIL NIL) -8 NIL NIL) (-1234 3458857 3464217 3464261 "UTSCAT" 3465373 NIL UTSCAT (NIL T) -9 NIL 3466124) (-1233 3456212 3456927 3457916 "UTSCAT-" 3457921 NIL UTSCAT- (NIL T T) -8 NIL NIL) (-1232 3455839 3455882 3456015 "UTS2" 3456163 NIL UTS2 (NIL T T T T) -7 NIL NIL) (-1231 3450153 3452712 3452756 "URAGG" 3454826 NIL URAGG (NIL T) -9 NIL 3455548) (-1230 3447092 3447955 3449078 "URAGG-" 3449083 NIL URAGG- (NIL T T) -8 NIL NIL) (-1229 3442770 3445706 3446178 "UPXSSING" 3446756 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL) (-1228 3434657 3441887 3442168 "UPXS" 3442547 NIL UPXS (NIL T NIL NIL) -8 NIL NIL) (-1227 3427685 3434561 3434633 "UPXSCONS" 3434638 NIL UPXSCONS (NIL T T) -8 NIL NIL) (-1226 3417897 3424722 3424785 "UPXSCCA" 3425441 NIL UPXSCCA (NIL T T) -9 NIL 3425683) (-1225 3417535 3417620 3417794 "UPXSCCA-" 3417799 NIL UPXSCCA- (NIL T T T) -8 NIL NIL) (-1224 3407679 3414277 3414321 "UPXSCAT" 3414969 NIL UPXSCAT (NIL T) -9 NIL 3415571) (-1223 3407109 3407188 3407367 "UPXS2" 3407594 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1222 3405763 3406016 3406367 "UPSQFREE" 3406852 NIL UPSQFREE (NIL T T) -7 NIL NIL) (-1221 3399598 3402648 3402704 "UPSCAT" 3403865 NIL UPSCAT (NIL T T) -9 NIL 3404633) (-1220 3398802 3399009 3399336 "UPSCAT-" 3399341 NIL UPSCAT- (NIL T T T) -8 NIL NIL) (-1219 3384791 3392831 3392875 "UPOLYC" 3394976 NIL UPOLYC (NIL T) -9 NIL 3396191) (-1218 3376120 3378545 3381692 "UPOLYC-" 3381697 NIL UPOLYC- (NIL T T) -8 NIL NIL) (-1217 3375747 3375790 3375923 "UPOLYC2" 3376071 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL) (-1216 3367158 3375313 3375451 "UP" 3375657 NIL UP (NIL NIL T) -8 NIL NIL) (-1215 3366497 3366604 3366768 "UPMP" 3367047 NIL UPMP (NIL T T) -7 NIL NIL) (-1214 3366050 3366131 3366270 "UPDIVP" 3366410 NIL UPDIVP (NIL T T) -7 NIL NIL) (-1213 3364618 3364867 3365183 "UPDECOMP" 3365799 NIL UPDECOMP (NIL T T) -7 NIL NIL) (-1212 3363853 3363965 3364150 "UPCDEN" 3364502 NIL UPCDEN (NIL T T T) -7 NIL NIL) (-1211 3363372 3363441 3363590 "UP2" 3363778 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL) (-1210 3361893 3362580 3362855 "UNISEG" 3363132 NIL UNISEG (NIL T) -8 NIL NIL) (-1209 3361110 3361237 3361441 "UNISEG2" 3361737 NIL UNISEG2 (NIL T T) -7 NIL NIL) (-1208 3360170 3360350 3360576 "UNIFACT" 3360926 NIL UNIFACT (NIL T) -7 NIL NIL) (-1207 3344054 3359349 3359599 "ULS" 3359978 NIL ULS (NIL T NIL NIL) -8 NIL NIL) (-1206 3332009 3343958 3344030 "ULSCONS" 3344035 NIL ULSCONS (NIL T T) -8 NIL NIL) (-1205 3314676 3326693 3326756 "ULSCCAT" 3327476 NIL ULSCCAT (NIL T T) -9 NIL 3327772) (-1204 3313726 3313971 3314359 "ULSCCAT-" 3314364 NIL ULSCCAT- (NIL T T T) -8 NIL NIL) (-1203 3303662 3310174 3310218 "ULSCAT" 3311081 NIL ULSCAT (NIL T) -9 NIL 3311804) (-1202 3303092 3303171 3303350 "ULS2" 3303577 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1201 3295230 3301083 3301583 "UFPS" 3302627 NIL UFPS (NIL T) -8 NIL NIL) (-1200 3294927 3294984 3295082 "UFPS1" 3295167 NIL UFPS1 (NIL T) -7 NIL NIL) (-1199 3293320 3294287 3294318 "UFD" 3294530 T UFD (NIL) -9 NIL 3294644) (-1198 3293114 3293160 3293255 "UFD-" 3293260 NIL UFD- (NIL T) -8 NIL NIL) (-1197 3292196 3292379 3292595 "UDVO" 3292920 T UDVO (NIL) -7 NIL NIL) (-1196 3290014 3290423 3290893 "UDPO" 3291761 NIL UDPO (NIL T) -7 NIL NIL) (-1195 3289946 3289951 3289982 "TYPE" 3289987 T TYPE (NIL) -9 NIL NIL) (-1194 3288917 3289119 3289359 "TWOFACT" 3289740 NIL TWOFACT (NIL T) -7 NIL NIL) (-1193 3287989 3288320 3288519 "TUPLE" 3288753 NIL TUPLE (NIL T) -8 NIL NIL) (-1192 3285680 3286199 3286738 "TUBETOOL" 3287472 T TUBETOOL (NIL) -7 NIL NIL) (-1191 3284529 3284734 3284975 "TUBE" 3285473 NIL TUBE (NIL T) -8 NIL NIL) (-1190 3279249 3283503 3283785 "TS" 3284282 NIL TS (NIL T) -8 NIL NIL) (-1189 3267923 3272008 3272106 "TSETCAT" 3277375 NIL TSETCAT (NIL T T T T) -9 NIL 3278905) (-1188 3262658 3264255 3266146 "TSETCAT-" 3266151 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL) (-1187 3256929 3257775 3258713 "TRMANIP" 3261798 NIL TRMANIP (NIL T T) -7 NIL NIL) (-1186 3256370 3256433 3256596 "TRIMAT" 3256861 NIL TRIMAT (NIL T T T T) -7 NIL NIL) (-1185 3254166 3254403 3254767 "TRIGMNIP" 3256119 NIL TRIGMNIP (NIL T T) -7 NIL NIL) (-1184 3253685 3253798 3253829 "TRIGCAT" 3254042 T TRIGCAT (NIL) -9 NIL NIL) (-1183 3253354 3253433 3253574 "TRIGCAT-" 3253579 NIL TRIGCAT- (NIL T) -8 NIL NIL) (-1182 3250257 3252212 3252493 "TREE" 3253108 NIL TREE (NIL T) -8 NIL NIL) (-1181 3249530 3250058 3250089 "TRANFUN" 3250124 T TRANFUN (NIL) -9 NIL 3250190) (-1180 3248809 3249000 3249280 "TRANFUN-" 3249285 NIL TRANFUN- (NIL T) -8 NIL NIL) (-1179 3248613 3248645 3248706 "TOPSP" 3248770 T TOPSP (NIL) -7 NIL NIL) (-1178 3247961 3248076 3248230 "TOOLSIGN" 3248494 NIL TOOLSIGN (NIL T) -7 NIL NIL) (-1177 3246596 3247138 3247377 "TEXTFILE" 3247744 T TEXTFILE (NIL) -8 NIL NIL) (-1176 3244461 3244975 3245413 "TEX" 3246180 T TEX (NIL) -8 NIL NIL) (-1175 3244242 3244273 3244345 "TEX1" 3244424 NIL TEX1 (NIL T) -7 NIL NIL) (-1174 3243890 3243953 3244043 "TEMUTL" 3244174 T TEMUTL (NIL) -7 NIL NIL) (-1173 3242044 3242324 3242649 "TBCMPPK" 3243613 NIL TBCMPPK (NIL T T) -7 NIL NIL) (-1172 3233789 3240049 3240106 "TBAGG" 3240506 NIL TBAGG (NIL T T) -9 NIL 3240717) (-1171 3228859 3230347 3232101 "TBAGG-" 3232106 NIL TBAGG- (NIL T T T) -8 NIL NIL) (-1170 3228243 3228350 3228495 "TANEXP" 3228748 NIL TANEXP (NIL T) -7 NIL NIL) (-1169 3221756 3228100 3228193 "TABLE" 3228198 NIL TABLE (NIL T T) -8 NIL NIL) (-1168 3221169 3221267 3221405 "TABLEAU" 3221653 NIL TABLEAU (NIL T) -8 NIL NIL) (-1167 3215777 3216997 3218245 "TABLBUMP" 3219955 NIL TABLBUMP (NIL T) -7 NIL NIL) (-1166 3212240 3212935 3213718 "SYSSOLP" 3215028 NIL SYSSOLP (NIL T) -7 NIL NIL) (-1165 3209374 3209982 3210620 "SYMTAB" 3211624 T SYMTAB (NIL) -8 NIL NIL) (-1164 3204623 3205525 3206508 "SYMS" 3208413 T SYMS (NIL) -8 NIL NIL) (-1163 3201855 3204087 3204314 "SYMPOLY" 3204431 NIL SYMPOLY (NIL T) -8 NIL NIL) (-1162 3201372 3201447 3201570 "SYMFUNC" 3201767 NIL SYMFUNC (NIL T) -7 NIL NIL) (-1161 3197350 3198609 3199431 "SYMBOL" 3200572 T SYMBOL (NIL) -8 NIL NIL) (-1160 3190889 3192578 3194298 "SWITCH" 3195652 T SWITCH (NIL) -8 NIL NIL) (-1159 3184115 3189712 3190014 "SUTS" 3190645 NIL SUTS (NIL T NIL NIL) -8 NIL NIL) (-1158 3176001 3183232 3183513 "SUPXS" 3183892 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL) (-1157 3167486 3175619 3175745 "SUP" 3175910 NIL SUP (NIL T) -8 NIL NIL) (-1156 3166645 3166772 3166989 "SUPFRACF" 3167354 NIL SUPFRACF (NIL T T T T) -7 NIL NIL) (-1155 3157217 3166447 3166561 "SUPEXPR" 3166566 NIL SUPEXPR (NIL T) -8 NIL NIL) (-1154 3156838 3156897 3157010 "SUP2" 3157152 NIL SUP2 (NIL T T) -7 NIL NIL) (-1153 3155251 3155525 3155888 "SUMRF" 3156537 NIL SUMRF (NIL T) -7 NIL NIL) (-1152 3154565 3154631 3154830 "SUMFS" 3155172 NIL SUMFS (NIL T T) -7 NIL NIL) (-1151 3138489 3153744 3153994 "SULS" 3154373 NIL SULS (NIL T NIL NIL) -8 NIL NIL) (-1150 3137811 3138014 3138154 "SUCH" 3138397 NIL SUCH (NIL T T) -8 NIL NIL) (-1149 3131705 3132717 3133676 "SUBSPACE" 3136899 NIL SUBSPACE (NIL NIL T) -8 NIL NIL) (-1148 3131137 3131227 3131390 "SUBRESP" 3131594 NIL SUBRESP (NIL T T) -7 NIL NIL) (-1147 3124506 3125802 3127113 "STTF" 3129873 NIL STTF (NIL T) -7 NIL NIL) (-1146 3118679 3119799 3120946 "STTFNC" 3123406 NIL STTFNC (NIL T) -7 NIL NIL) (-1145 3109998 3111865 3113657 "STTAYLOR" 3116922 NIL STTAYLOR (NIL T) -7 NIL NIL) (-1144 3103254 3109862 3109945 "STRTBL" 3109950 NIL STRTBL (NIL T) -8 NIL NIL) (-1143 3098645 3103209 3103240 "STRING" 3103245 T STRING (NIL) -8 NIL NIL) (-1142 3093509 3097987 3098018 "STRICAT" 3098077 T STRICAT (NIL) -9 NIL 3098139) (-1141 3086236 3091036 3091654 "STREAM" 3092926 NIL STREAM (NIL T) -8 NIL NIL) (-1140 3085746 3085823 3085967 "STREAM3" 3086153 NIL STREAM3 (NIL T T T) -7 NIL NIL) (-1139 3084728 3084911 3085146 "STREAM2" 3085559 NIL STREAM2 (NIL T T) -7 NIL NIL) (-1138 3084416 3084468 3084561 "STREAM1" 3084670 NIL STREAM1 (NIL T) -7 NIL NIL) (-1137 3083432 3083613 3083844 "STINPROD" 3084232 NIL STINPROD (NIL T) -7 NIL NIL) (-1136 3083009 3083193 3083224 "STEP" 3083304 T STEP (NIL) -9 NIL 3083382) (-1135 3076564 3082908 3082985 "STBL" 3082990 NIL STBL (NIL T T NIL) -8 NIL NIL) (-1134 3071778 3075816 3075860 "STAGG" 3076013 NIL STAGG (NIL T) -9 NIL 3076102) (-1133 3069480 3070082 3070954 "STAGG-" 3070959 NIL STAGG- (NIL T T) -8 NIL NIL) (-1132 3062972 3064541 3065656 "STACK" 3068400 NIL STACK (NIL T) -8 NIL NIL) (-1131 3055697 3061113 3061569 "SREGSET" 3062602 NIL SREGSET (NIL T T T T) -8 NIL NIL) (-1130 3048123 3049491 3051004 "SRDCMPK" 3054303 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL) (-1129 3041101 3045561 3045592 "SRAGG" 3046895 T SRAGG (NIL) -9 NIL 3047503) (-1128 3040118 3040373 3040752 "SRAGG-" 3040757 NIL SRAGG- (NIL T) -8 NIL NIL) (-1127 3034566 3039041 3039465 "SQMATRIX" 3039741 NIL SQMATRIX (NIL NIL T) -8 NIL NIL) (-1126 3028322 3031284 3032011 "SPLTREE" 3033911 NIL SPLTREE (NIL T T) -8 NIL NIL) (-1125 3024312 3024978 3025624 "SPLNODE" 3027748 NIL SPLNODE (NIL T T) -8 NIL NIL) (-1124 3023358 3023591 3023622 "SPFCAT" 3024066 T SPFCAT (NIL) -9 NIL NIL) (-1123 3022095 3022305 3022569 "SPECOUT" 3023116 T SPECOUT (NIL) -7 NIL NIL) (-1122 3014065 3015812 3015856 "SPACEC" 3020229 NIL SPACEC (NIL T) -9 NIL 3022045) (-1121 3012236 3013997 3014046 "SPACE3" 3014051 NIL SPACE3 (NIL T) -8 NIL NIL) (-1120 3010990 3011161 3011451 "SORTPAK" 3012042 NIL SORTPAK (NIL T T) -7 NIL NIL) (-1119 3009040 3009343 3009762 "SOLVETRA" 3010654 NIL SOLVETRA (NIL T) -7 NIL NIL) (-1118 3008051 3008273 3008547 "SOLVESER" 3008813 NIL SOLVESER (NIL T) -7 NIL NIL) (-1117 3003271 3004152 3005154 "SOLVERAD" 3007103 NIL SOLVERAD (NIL T) -7 NIL NIL) (-1116 2999086 2999695 3000424 "SOLVEFOR" 3002638 NIL SOLVEFOR (NIL T T) -7 NIL NIL) (-1115 2993389 2998434 2998532 "SNTSCAT" 2998537 NIL SNTSCAT (NIL T T T T) -9 NIL 2998607) (-1114 2987487 2991714 2992104 "SMTS" 2993080 NIL SMTS (NIL T T T) -8 NIL NIL) (-1113 2981891 2987375 2987452 "SMP" 2987457 NIL SMP (NIL T T) -8 NIL NIL) (-1112 2980050 2980351 2980749 "SMITH" 2981588 NIL SMITH (NIL T T T T) -7 NIL NIL) (-1111 2972992 2977190 2977294 "SMATCAT" 2978645 NIL SMATCAT (NIL NIL T T T) -9 NIL 2979192) (-1110 2969932 2970755 2971933 "SMATCAT-" 2971938 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL) (-1109 2967685 2969202 2969246 "SKAGG" 2969507 NIL SKAGG (NIL T) -9 NIL 2969642) (-1108 2963743 2966789 2967067 "SINT" 2967429 T SINT (NIL) -8 NIL NIL) (-1107 2963515 2963553 2963619 "SIMPAN" 2963699 T SIMPAN (NIL) -7 NIL NIL) (-1106 2962353 2962574 2962849 "SIGNRF" 2963274 NIL SIGNRF (NIL T) -7 NIL NIL) (-1105 2961158 2961309 2961600 "SIGNEF" 2962182 NIL SIGNEF (NIL T T) -7 NIL NIL) (-1104 2958850 2959304 2959809 "SHP" 2960700 NIL SHP (NIL T NIL) -7 NIL NIL) (-1103 2952674 2958751 2958827 "SHDP" 2958832 NIL SHDP (NIL NIL NIL T) -8 NIL NIL) (-1102 2952162 2952354 2952385 "SGROUP" 2952537 T SGROUP (NIL) -9 NIL 2952624) (-1101 2951932 2951984 2952088 "SGROUP-" 2952093 NIL SGROUP- (NIL T) -8 NIL NIL) (-1100 2948768 2949465 2950188 "SGCF" 2951231 T SGCF (NIL) -7 NIL NIL) (-1099 2943169 2948214 2948312 "SFRTCAT" 2948317 NIL SFRTCAT (NIL T T T T) -9 NIL 2948356) (-1098 2936593 2937608 2938744 "SFRGCD" 2942152 NIL SFRGCD (NIL T T T T T) -7 NIL NIL) (-1097 2929721 2930792 2931978 "SFQCMPK" 2935526 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL) (-1096 2929343 2929432 2929542 "SFORT" 2929662 NIL SFORT (NIL T T) -8 NIL NIL) (-1095 2928488 2929183 2929304 "SEXOF" 2929309 NIL SEXOF (NIL T T T T T) -8 NIL NIL) (-1094 2927622 2928369 2928437 "SEX" 2928442 T SEX (NIL) -8 NIL NIL) (-1093 2922397 2923086 2923182 "SEXCAT" 2926953 NIL SEXCAT (NIL T T T T T) -9 NIL 2927572) (-1092 2919577 2922331 2922379 "SET" 2922384 NIL SET (NIL T) -8 NIL NIL) (-1091 2917828 2918290 2918595 "SETMN" 2919318 NIL SETMN (NIL NIL NIL) -8 NIL NIL) (-1090 2917433 2917559 2917590 "SETCAT" 2917707 T SETCAT (NIL) -9 NIL 2917792) (-1089 2917213 2917265 2917364 "SETCAT-" 2917369 NIL SETCAT- (NIL T) -8 NIL NIL) (-1088 2916876 2917026 2917057 "SETCATD" 2917116 T SETCATD (NIL) -9 NIL 2917163) (-1087 2913262 2915336 2915380 "SETAGG" 2916250 NIL SETAGG (NIL T) -9 NIL 2916590) (-1086 2912720 2912836 2913073 "SETAGG-" 2913078 NIL SETAGG- (NIL T T) -8 NIL NIL) (-1085 2911923 2912216 2912278 "SEGXCAT" 2912564 NIL SEGXCAT (NIL T T) -9 NIL 2912684) (-1084 2910983 2911593 2911773 "SEG" 2911778 NIL SEG (NIL T) -8 NIL NIL) (-1083 2909889 2910102 2910146 "SEGCAT" 2910728 NIL SEGCAT (NIL T) -9 NIL 2910966) (-1082 2908940 2909270 2909469 "SEGBIND" 2909725 NIL SEGBIND (NIL T) -8 NIL NIL) (-1081 2908561 2908620 2908733 "SEGBIND2" 2908875 NIL SEGBIND2 (NIL T T) -7 NIL NIL) (-1080 2907782 2907908 2908111 "SEG2" 2908406 NIL SEG2 (NIL T T) -7 NIL NIL) (-1079 2907219 2907717 2907764 "SDVAR" 2907769 NIL SDVAR (NIL T) -8 NIL NIL) (-1078 2899463 2906989 2907119 "SDPOL" 2907124 NIL SDPOL (NIL T) -8 NIL NIL) (-1077 2898056 2898322 2898641 "SCPKG" 2899178 NIL SCPKG (NIL T) -7 NIL NIL) (-1076 2897277 2897410 2897589 "SCACHE" 2897911 NIL SCACHE (NIL T) -7 NIL NIL) (-1075 2896716 2897037 2897122 "SAOS" 2897214 T SAOS (NIL) -8 NIL NIL) (-1074 2896281 2896316 2896489 "SAERFFC" 2896675 NIL SAERFFC (NIL T T T) -7 NIL NIL) (-1073 2890170 2896178 2896258 "SAE" 2896263 NIL SAE (NIL T T NIL) -8 NIL NIL) (-1072 2889763 2889798 2889957 "SAEFACT" 2890129 NIL SAEFACT (NIL T T T) -7 NIL NIL) (-1071 2888084 2888398 2888799 "RURPK" 2889429 NIL RURPK (NIL T NIL) -7 NIL NIL) (-1070 2886720 2886999 2887311 "RULESET" 2887918 NIL RULESET (NIL T T T) -8 NIL NIL) (-1069 2883907 2884410 2884875 "RULE" 2886401 NIL RULE (NIL T T T) -8 NIL NIL) (-1068 2883546 2883701 2883784 "RULECOLD" 2883859 NIL RULECOLD (NIL NIL) -8 NIL NIL) (-1067 2878395 2879189 2880109 "RSETGCD" 2882745 NIL RSETGCD (NIL T T T T T) -7 NIL NIL) (-1066 2867658 2872703 2872801 "RSETCAT" 2876920 NIL RSETCAT (NIL T T T T) -9 NIL 2878017) (-1065 2865585 2866124 2866948 "RSETCAT-" 2866953 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL) (-1064 2857972 2859347 2860867 "RSDCMPK" 2864184 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL) (-1063 2855976 2856417 2856492 "RRCC" 2857578 NIL RRCC (NIL T T) -9 NIL 2857922) (-1062 2855327 2855501 2855780 "RRCC-" 2855785 NIL RRCC- (NIL T T T) -8 NIL NIL) (-1061 2829474 2839103 2839171 "RPOLCAT" 2849835 NIL RPOLCAT (NIL T T T) -9 NIL 2852983) (-1060 2820974 2823312 2826434 "RPOLCAT-" 2826439 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL) (-1059 2812033 2819185 2819667 "ROUTINE" 2820514 T ROUTINE (NIL) -8 NIL NIL) (-1058 2808733 2811584 2811733 "ROMAN" 2811906 T ROMAN (NIL) -8 NIL NIL) (-1057 2807008 2807593 2807853 "ROIRC" 2808538 NIL ROIRC (NIL T T) -8 NIL NIL) (-1056 2803346 2805646 2805677 "RNS" 2805981 T RNS (NIL) -9 NIL 2806255) (-1055 2801855 2802238 2802772 "RNS-" 2802847 NIL RNS- (NIL T) -8 NIL NIL) (-1054 2801277 2801685 2801716 "RNG" 2801721 T RNG (NIL) -9 NIL 2801742) (-1053 2800668 2801030 2801074 "RMODULE" 2801136 NIL RMODULE (NIL T) -9 NIL 2801178) (-1052 2799504 2799598 2799934 "RMCAT2" 2800569 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL) (-1051 2796213 2798682 2799005 "RMATRIX" 2799240 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL) (-1050 2789159 2791393 2791509 "RMATCAT" 2794868 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2795845) (-1049 2788534 2788681 2788988 "RMATCAT-" 2788993 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL) (-1048 2788101 2788176 2788304 "RINTERP" 2788453 NIL RINTERP (NIL NIL T) -7 NIL NIL) (-1047 2787144 2787708 2787739 "RING" 2787851 T RING (NIL) -9 NIL 2787946) (-1046 2786936 2786980 2787077 "RING-" 2787082 NIL RING- (NIL T) -8 NIL NIL) (-1045 2785777 2786014 2786272 "RIDIST" 2786700 T RIDIST (NIL) -7 NIL NIL) (-1044 2777093 2785245 2785451 "RGCHAIN" 2785625 NIL RGCHAIN (NIL T NIL) -8 NIL NIL) (-1043 2775893 2776134 2776413 "RFP" 2776848 NIL RFP (NIL T) -7 NIL NIL) (-1042 2772887 2773501 2774171 "RF" 2775257 NIL RF (NIL T) -7 NIL NIL) (-1041 2772533 2772596 2772699 "RFFACTOR" 2772818 NIL RFFACTOR (NIL T) -7 NIL NIL) (-1040 2772258 2772293 2772390 "RFFACT" 2772492 NIL RFFACT (NIL T) -7 NIL NIL) (-1039 2770375 2770739 2771121 "RFDIST" 2771898 T RFDIST (NIL) -7 NIL NIL) (-1038 2769828 2769920 2770083 "RETSOL" 2770277 NIL RETSOL (NIL T T) -7 NIL NIL) (-1037 2769415 2769495 2769539 "RETRACT" 2769732 NIL RETRACT (NIL T) -9 NIL NIL) (-1036 2769264 2769289 2769376 "RETRACT-" 2769381 NIL RETRACT- (NIL T T) -8 NIL NIL) (-1035 2762130 2768917 2769044 "RESULT" 2769159 T RESULT (NIL) -8 NIL NIL) (-1034 2760710 2761399 2761598 "RESRING" 2762033 NIL RESRING (NIL T T T T NIL) -8 NIL NIL) (-1033 2760346 2760395 2760493 "RESLATC" 2760647 NIL RESLATC (NIL T) -7 NIL NIL) (-1032 2760052 2760086 2760193 "REPSQ" 2760305 NIL REPSQ (NIL T) -7 NIL NIL) (-1031 2757474 2758054 2758656 "REP" 2759472 T REP (NIL) -7 NIL NIL) (-1030 2757172 2757206 2757317 "REPDB" 2757433 NIL REPDB (NIL T) -7 NIL NIL) (-1029 2751090 2752469 2753688 "REP2" 2755988 NIL REP2 (NIL T) -7 NIL NIL) (-1028 2747471 2748152 2748958 "REP1" 2750319 NIL REP1 (NIL T) -7 NIL NIL) (-1027 2740197 2745612 2746068 "REGSET" 2747101 NIL REGSET (NIL T T T T) -8 NIL NIL) (-1026 2739012 2739347 2739596 "REF" 2739983 NIL REF (NIL T) -8 NIL NIL) (-1025 2738389 2738492 2738659 "REDORDER" 2738896 NIL REDORDER (NIL T T) -7 NIL NIL) (-1024 2735251 2735717 2736326 "RECOP" 2737923 NIL RECOP (NIL T T) -7 NIL NIL) (-1023 2731191 2734464 2734691 "RECLOS" 2735079 NIL RECLOS (NIL T) -8 NIL NIL) (-1022 2730243 2730424 2730639 "REALSOLV" 2730998 T REALSOLV (NIL) -7 NIL NIL) (-1021 2730088 2730129 2730160 "REAL" 2730165 T REAL (NIL) -9 NIL 2730200) (-1020 2726571 2727373 2728257 "REAL0Q" 2729253 NIL REAL0Q (NIL T) -7 NIL NIL) (-1019 2722172 2723160 2724221 "REAL0" 2725552 NIL REAL0 (NIL T) -7 NIL NIL) (-1018 2721577 2721649 2721856 "RDIV" 2722094 NIL RDIV (NIL T T T T T) -7 NIL NIL) (-1017 2720645 2720819 2721032 "RDIST" 2721399 NIL RDIST (NIL T) -7 NIL NIL) (-1016 2719242 2719529 2719901 "RDETRS" 2720353 NIL RDETRS (NIL T T) -7 NIL NIL) (-1015 2717054 2717508 2718046 "RDETR" 2718784 NIL RDETR (NIL T T) -7 NIL NIL) (-1014 2715665 2715943 2716347 "RDEEFS" 2716770 NIL RDEEFS (NIL T T) -7 NIL NIL) (-1013 2714160 2714466 2714898 "RDEEF" 2715353 NIL RDEEF (NIL T T) -7 NIL NIL) (-1012 2708351 2711286 2711317 "RCFIELD" 2712612 T RCFIELD (NIL) -9 NIL 2713343) (-1011 2706415 2706919 2707615 "RCFIELD-" 2707690 NIL RCFIELD- (NIL T) -8 NIL NIL) (-1010 2702773 2704552 2704596 "RCAGG" 2705680 NIL RCAGG (NIL T) -9 NIL 2706143) (-1009 2702401 2702495 2702658 "RCAGG-" 2702663 NIL RCAGG- (NIL T T) -8 NIL NIL) (-1008 2701737 2701848 2702013 "RATRET" 2702285 NIL RATRET (NIL T) -7 NIL NIL) (-1007 2701290 2701357 2701478 "RATFACT" 2701665 NIL RATFACT (NIL T) -7 NIL NIL) (-1006 2700598 2700718 2700870 "RANDSRC" 2701160 T RANDSRC (NIL) -7 NIL NIL) (-1005 2700332 2700376 2700449 "RADUTIL" 2700547 T RADUTIL (NIL) -7 NIL NIL) (-1004 2693320 2699065 2699384 "RADIX" 2700047 NIL RADIX (NIL NIL) -8 NIL NIL) (-1003 2684883 2693162 2693292 "RADFF" 2693297 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL) (-1002 2684529 2684604 2684635 "RADCAT" 2684795 T RADCAT (NIL) -9 NIL NIL) (-1001 2684311 2684359 2684459 "RADCAT-" 2684464 NIL RADCAT- (NIL T) -8 NIL NIL) (-1000 2677558 2679176 2680329 "QUEUE" 2683193 NIL QUEUE (NIL T) -8 NIL NIL) (-999 2674049 2677495 2677540 "QUAT" 2677545 NIL QUAT (NIL T) -8 NIL NIL) (-998 2673687 2673730 2673857 "QUATCT2" 2674000 NIL QUATCT2 (NIL T T T T) -7 NIL NIL) (-997 2667424 2670808 2670849 "QUATCAT" 2671629 NIL QUATCAT (NIL T) -9 NIL 2672387) (-996 2663568 2664605 2665992 "QUATCAT-" 2666086 NIL QUATCAT- (NIL T T) -8 NIL NIL) (-995 2661128 2662686 2662728 "QUAGG" 2663103 NIL QUAGG (NIL T) -9 NIL 2663278) (-994 2660053 2660526 2660698 "QFORM" 2661000 NIL QFORM (NIL NIL T) -8 NIL NIL) (-993 2651280 2656547 2656588 "QFCAT" 2657246 NIL QFCAT (NIL T) -9 NIL 2658235) (-992 2646852 2648053 2649644 "QFCAT-" 2649738 NIL QFCAT- (NIL T T) -8 NIL NIL) (-991 2646490 2646533 2646660 "QFCAT2" 2646803 NIL QFCAT2 (NIL T T T T) -7 NIL NIL) (-990 2645950 2646060 2646190 "QEQUAT" 2646380 T QEQUAT (NIL) -8 NIL NIL) (-989 2639098 2640169 2641353 "QCMPACK" 2644883 NIL QCMPACK (NIL T T T T T) -7 NIL NIL) (-988 2636678 2637099 2637525 "QALGSET" 2638755 NIL QALGSET (NIL T T T T) -8 NIL NIL) (-987 2635923 2636097 2636329 "QALGSET2" 2636498 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL) (-986 2634614 2634837 2635154 "PWFFINTB" 2635696 NIL PWFFINTB (NIL T T T T) -7 NIL NIL) (-985 2632796 2632964 2633318 "PUSHVAR" 2634428 NIL PUSHVAR (NIL T T T T) -7 NIL NIL) (-984 2628713 2629767 2629809 "PTRANFN" 2631693 NIL PTRANFN (NIL T) -9 NIL NIL) (-983 2627115 2627406 2627728 "PTPACK" 2628424 NIL PTPACK (NIL T) -7 NIL NIL) (-982 2626747 2626804 2626913 "PTFUNC2" 2627052 NIL PTFUNC2 (NIL T T) -7 NIL NIL) (-981 2621247 2625581 2625623 "PTCAT" 2625996 NIL PTCAT (NIL T) -9 NIL 2626158) (-980 2620905 2620940 2621064 "PSQFR" 2621206 NIL PSQFR (NIL T T T T) -7 NIL NIL) (-979 2619492 2619792 2620128 "PSEUDLIN" 2620601 NIL PSEUDLIN (NIL T) -7 NIL NIL) (-978 2606268 2608632 2610953 "PSETPK" 2617255 NIL PSETPK (NIL T T T T) -7 NIL NIL) (-977 2599312 2602026 2602123 "PSETCAT" 2605144 NIL PSETCAT (NIL T T T T) -9 NIL 2605957) (-976 2597148 2597782 2598603 "PSETCAT-" 2598608 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL) (-975 2596497 2596661 2596690 "PSCURVE" 2596958 T PSCURVE (NIL) -9 NIL 2597125) (-974 2592886 2594412 2594478 "PSCAT" 2595322 NIL PSCAT (NIL T T T) -9 NIL 2595562) (-973 2591949 2592165 2592565 "PSCAT-" 2592570 NIL PSCAT- (NIL T T T T) -8 NIL NIL) (-972 2590602 2591234 2591448 "PRTITION" 2591755 T PRTITION (NIL) -8 NIL NIL) (-971 2587766 2588415 2588456 "PRSPCAT" 2589970 NIL PRSPCAT (NIL T) -9 NIL 2590538) (-970 2576866 2579072 2581259 "PRS" 2585629 NIL PRS (NIL T T) -7 NIL NIL) (-969 2574764 2576250 2576291 "PRQAGG" 2576474 NIL PRQAGG (NIL T) -9 NIL 2576576) (-968 2574033 2574689 2574746 "PROJSP" 2574751 NIL PROJSP (NIL NIL T) -8 NIL NIL) (-967 2573215 2573956 2574008 "PROJPLPS" 2574013 NIL PROJPLPS (NIL T) -8 NIL NIL) (-966 2572474 2573152 2573197 "PROJPL" 2573202 NIL PROJPL (NIL T) -8 NIL NIL) (-965 2566280 2570672 2571476 "PRODUCT" 2571716 NIL PRODUCT (NIL T T) -8 NIL NIL) (-964 2563555 2565744 2565975 "PR" 2566094 NIL PR (NIL T T) -8 NIL NIL) (-963 2562107 2562264 2562559 "PRJALGPK" 2563395 NIL PRJALGPK (NIL T NIL T T T) -7 NIL NIL) (-962 2561903 2561935 2561994 "PRINT" 2562068 T PRINT (NIL) -7 NIL NIL) (-961 2561243 2561360 2561512 "PRIMES" 2561783 NIL PRIMES (NIL T) -7 NIL NIL) (-960 2559308 2559709 2560175 "PRIMELT" 2560822 NIL PRIMELT (NIL T) -7 NIL NIL) (-959 2559036 2559085 2559114 "PRIMCAT" 2559238 T PRIMCAT (NIL) -9 NIL NIL) (-958 2555203 2558974 2559019 "PRIMARR" 2559024 NIL PRIMARR (NIL T) -8 NIL NIL) (-957 2554210 2554388 2554616 "PRIMARR2" 2555021 NIL PRIMARR2 (NIL T T) -7 NIL NIL) (-956 2553853 2553909 2554020 "PREASSOC" 2554148 NIL PREASSOC (NIL T T) -7 NIL NIL) (-955 2553328 2553460 2553489 "PPCURVE" 2553694 T PPCURVE (NIL) -9 NIL 2553830) (-954 2550689 2551088 2551679 "POLYROOT" 2552910 NIL POLYROOT (NIL T T T T T) -7 NIL NIL) (-953 2544590 2550295 2550454 "POLY" 2550563 NIL POLY (NIL T) -8 NIL NIL) (-952 2543973 2544031 2544265 "POLYLIFT" 2544526 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL) (-951 2540248 2540697 2541326 "POLYCATQ" 2543518 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL) (-950 2527210 2532610 2532676 "POLYCAT" 2536190 NIL POLYCAT (NIL T T T) -9 NIL 2538103) (-949 2520660 2522521 2524905 "POLYCAT-" 2524910 NIL POLYCAT- (NIL T T T T) -8 NIL NIL) (-948 2520247 2520315 2520435 "POLY2UP" 2520586 NIL POLY2UP (NIL NIL T) -7 NIL NIL) (-947 2519879 2519936 2520045 "POLY2" 2520184 NIL POLY2 (NIL T T) -7 NIL NIL) (-946 2518566 2518805 2519080 "POLUTIL" 2519654 NIL POLUTIL (NIL T T) -7 NIL NIL) (-945 2516921 2517198 2517529 "POLTOPOL" 2518288 NIL POLTOPOL (NIL NIL T) -7 NIL NIL) (-944 2512443 2516857 2516903 "POINT" 2516908 NIL POINT (NIL T) -8 NIL NIL) (-943 2510630 2510987 2511362 "PNTHEORY" 2512088 T PNTHEORY (NIL) -7 NIL NIL) (-942 2509049 2509346 2509758 "PMTOOLS" 2510328 NIL PMTOOLS (NIL T T T) -7 NIL NIL) (-941 2508642 2508720 2508837 "PMSYM" 2508965 NIL PMSYM (NIL T) -7 NIL NIL) (-940 2508152 2508221 2508395 "PMQFCAT" 2508567 NIL PMQFCAT (NIL T T T) -7 NIL NIL) (-939 2507507 2507617 2507773 "PMPRED" 2508029 NIL PMPRED (NIL T) -7 NIL NIL) (-938 2506903 2506989 2507150 "PMPREDFS" 2507408 NIL PMPREDFS (NIL T T T) -7 NIL NIL) (-937 2505548 2505756 2506140 "PMPLCAT" 2506666 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL) (-936 2505080 2505159 2505311 "PMLSAGG" 2505463 NIL PMLSAGG (NIL T T T) -7 NIL NIL) (-935 2504555 2504631 2504812 "PMKERNEL" 2504998 NIL PMKERNEL (NIL T T) -7 NIL NIL) (-934 2504172 2504247 2504360 "PMINS" 2504474 NIL PMINS (NIL T) -7 NIL NIL) (-933 2503600 2503669 2503885 "PMFS" 2504097 NIL PMFS (NIL T T T) -7 NIL NIL) (-932 2502828 2502946 2503151 "PMDOWN" 2503477 NIL PMDOWN (NIL T T T) -7 NIL NIL) (-931 2501991 2502150 2502332 "PMASS" 2502666 T PMASS (NIL) -7 NIL NIL) (-930 2501265 2501376 2501539 "PMASSFS" 2501877 NIL PMASSFS (NIL T T) -7 NIL NIL) (-929 2499025 2499278 2499661 "PLPKCRV" 2500989 NIL PLPKCRV (NIL T T T NIL T) -7 NIL NIL) (-928 2498680 2498748 2498842 "PLOTTOOL" 2498951 T PLOTTOOL (NIL) -7 NIL NIL) (-927 2493302 2494491 2495639 "PLOT" 2497552 T PLOT (NIL) -8 NIL NIL) (-926 2489116 2490150 2491071 "PLOT3D" 2492401 T PLOT3D (NIL) -8 NIL NIL) (-925 2488028 2488205 2488440 "PLOT1" 2488920 NIL PLOT1 (NIL T) -7 NIL NIL) (-924 2463423 2468094 2472945 "PLEQN" 2483294 NIL PLEQN (NIL T T T T) -7 NIL NIL) (-923 2462663 2463333 2463400 "PLCS" 2463405 NIL PLCS (NIL T T) -8 NIL NIL) (-922 2461814 2462548 2462619 "PLACESPS" 2462624 NIL PLACESPS (NIL T) -8 NIL NIL) (-921 2461021 2461727 2461784 "PLACES" 2461789 NIL PLACES (NIL T) -8 NIL NIL) (-920 2457745 2458409 2458468 "PLACESC" 2460386 NIL PLACESC (NIL T T) -9 NIL 2460957) (-919 2457063 2457185 2457365 "PINTERP" 2457610 NIL PINTERP (NIL NIL T) -7 NIL NIL) (-918 2456756 2456803 2456906 "PINTERPA" 2457010 NIL PINTERPA (NIL T T) -7 NIL NIL) (-917 2455983 2456550 2456643 "PI" 2456683 T PI (NIL) -8 NIL NIL) (-916 2454370 2455355 2455384 "PID" 2455566 T PID (NIL) -9 NIL 2455700) (-915 2454095 2454132 2454220 "PICOERCE" 2454327 NIL PICOERCE (NIL T) -7 NIL NIL) (-914 2453416 2453554 2453730 "PGROEB" 2453951 NIL PGROEB (NIL T) -7 NIL NIL) (-913 2449003 2449817 2450722 "PGE" 2452531 T PGE (NIL) -7 NIL NIL) (-912 2447127 2447373 2447739 "PGCD" 2448720 NIL PGCD (NIL T T T T) -7 NIL NIL) (-911 2446465 2446568 2446729 "PFRPAC" 2447011 NIL PFRPAC (NIL T) -7 NIL NIL) (-910 2443080 2445013 2445366 "PFR" 2446144 NIL PFR (NIL T) -8 NIL NIL) (-909 2441469 2441713 2442038 "PFOTOOLS" 2442827 NIL PFOTOOLS (NIL T T) -7 NIL NIL) (-908 2436334 2436999 2437748 "PFORP" 2440811 NIL PFORP (NIL T T T NIL) -7 NIL NIL) (-907 2434867 2435106 2435457 "PFOQ" 2436091 NIL PFOQ (NIL T T T) -7 NIL NIL) (-906 2433340 2433552 2433915 "PFO" 2434651 NIL PFO (NIL T T T T T) -7 NIL NIL) (-905 2429863 2433229 2433298 "PF" 2433303 NIL PF (NIL NIL) -8 NIL NIL) (-904 2427288 2428569 2428598 "PFECAT" 2429183 T PFECAT (NIL) -9 NIL 2429566) (-903 2426733 2426887 2427101 "PFECAT-" 2427106 NIL PFECAT- (NIL T) -8 NIL NIL) (-902 2425337 2425588 2425889 "PFBRU" 2426482 NIL PFBRU (NIL T T) -7 NIL NIL) (-901 2423204 2423555 2423987 "PFBR" 2424988 NIL PFBR (NIL T T T T) -7 NIL NIL) (-900 2419060 2420584 2421258 "PERM" 2422563 NIL PERM (NIL T) -8 NIL NIL) (-899 2414327 2415267 2416137 "PERMGRP" 2418223 NIL PERMGRP (NIL T) -8 NIL NIL) (-898 2412398 2413391 2413433 "PERMCAT" 2413879 NIL PERMCAT (NIL T) -9 NIL 2414182) (-897 2412051 2412092 2412216 "PERMAN" 2412351 NIL PERMAN (NIL NIL T) -7 NIL NIL) (-896 2409497 2411620 2411751 "PENDTREE" 2411953 NIL PENDTREE (NIL T) -8 NIL NIL) (-895 2407565 2408343 2408385 "PDRING" 2409042 NIL PDRING (NIL T) -9 NIL 2409328) (-894 2406668 2406886 2407248 "PDRING-" 2407253 NIL PDRING- (NIL T T) -8 NIL NIL) (-893 2403810 2404560 2405251 "PDEPROB" 2405997 T PDEPROB (NIL) -8 NIL NIL) (-892 2401357 2401859 2402414 "PDEPACK" 2403275 T PDEPACK (NIL) -7 NIL NIL) (-891 2400269 2400459 2400710 "PDECOMP" 2401156 NIL PDECOMP (NIL T T) -7 NIL NIL) (-890 2397873 2398690 2398719 "PDECAT" 2399506 T PDECAT (NIL) -9 NIL 2400219) (-889 2397624 2397657 2397747 "PCOMP" 2397834 NIL PCOMP (NIL T T) -7 NIL NIL) (-888 2395829 2396425 2396722 "PBWLB" 2397353 NIL PBWLB (NIL T) -8 NIL NIL) (-887 2388334 2389902 2391240 "PATTERN" 2394512 NIL PATTERN (NIL T) -8 NIL NIL) (-886 2387966 2388023 2388132 "PATTERN2" 2388271 NIL PATTERN2 (NIL T T) -7 NIL NIL) (-885 2385723 2386111 2386568 "PATTERN1" 2387555 NIL PATTERN1 (NIL T T) -7 NIL NIL) (-884 2383118 2383672 2384153 "PATRES" 2385288 NIL PATRES (NIL T T) -8 NIL NIL) (-883 2382682 2382749 2382881 "PATRES2" 2383045 NIL PATRES2 (NIL T T T) -7 NIL NIL) (-882 2380565 2380970 2381377 "PATMATCH" 2382349 NIL PATMATCH (NIL T T T) -7 NIL NIL) (-881 2380100 2380283 2380325 "PATMAB" 2380432 NIL PATMAB (NIL T) -9 NIL 2380515) (-880 2378645 2378954 2379212 "PATLRES" 2379905 NIL PATLRES (NIL T T T) -8 NIL NIL) (-879 2378192 2378315 2378357 "PATAB" 2378362 NIL PATAB (NIL T) -9 NIL 2378532) (-878 2375673 2376205 2376778 "PARTPERM" 2377639 T PARTPERM (NIL) -7 NIL NIL) (-877 2375294 2375357 2375459 "PARSURF" 2375604 NIL PARSURF (NIL T) -8 NIL NIL) (-876 2374926 2374983 2375092 "PARSU2" 2375231 NIL PARSU2 (NIL T T) -7 NIL NIL) (-875 2374547 2374610 2374712 "PARSCURV" 2374857 NIL PARSCURV (NIL T) -8 NIL NIL) (-874 2374179 2374236 2374345 "PARSC2" 2374484 NIL PARSC2 (NIL T T) -7 NIL NIL) (-873 2373818 2373876 2373973 "PARPCURV" 2374115 NIL PARPCURV (NIL T) -8 NIL NIL) (-872 2373450 2373507 2373616 "PARPC2" 2373755 NIL PARPC2 (NIL T T) -7 NIL NIL) (-871 2371930 2372048 2372367 "PARAMP" 2373305 NIL PARAMP (NIL T NIL T T T T T) -7 NIL NIL) (-870 2371450 2371536 2371655 "PAN2EXPR" 2371831 T PAN2EXPR (NIL) -7 NIL NIL) (-869 2370256 2370571 2370799 "PALETTE" 2371242 T PALETTE (NIL) -8 NIL NIL) (-868 2357889 2360055 2362171 "PAFF" 2368204 NIL PAFF (NIL T NIL T) -7 NIL NIL) (-867 2344885 2347213 2349424 "PAFFFF" 2355742 NIL PAFFFF (NIL T NIL T) -7 NIL NIL) (-866 2338726 2344144 2344338 "PADICRC" 2344740 NIL PADICRC (NIL NIL T) -8 NIL NIL) (-865 2331925 2338072 2338256 "PADICRAT" 2338574 NIL PADICRAT (NIL NIL) -8 NIL NIL) (-864 2330229 2331862 2331907 "PADIC" 2331912 NIL PADIC (NIL NIL) -8 NIL NIL) (-863 2327429 2329003 2329044 "PADICCT" 2329625 NIL PADICCT (NIL NIL) -9 NIL 2329907) (-862 2326386 2326586 2326854 "PADEPAC" 2327216 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL) (-861 2325598 2325731 2325937 "PADE" 2326248 NIL PADE (NIL T T T) -7 NIL NIL) (-860 2322075 2325216 2325335 "PACRAT" 2325499 T PACRAT (NIL) -8 NIL NIL) (-859 2318136 2321186 2321215 "PACRATC" 2321220 T PACRATC (NIL) -9 NIL 2321300) (-858 2314258 2316223 2316252 "PACPERC" 2317198 T PACPERC (NIL) -9 NIL 2317638) (-857 2310928 2314032 2314123 "PACOFF" 2314199 NIL PACOFF (NIL T) -8 NIL NIL) (-856 2307623 2310283 2310312 "PACFFC" 2310317 T PACFFC (NIL) -9 NIL 2310338) (-855 2303713 2307306 2307407 "PACEXT" 2307554 NIL PACEXT (NIL NIL) -8 NIL NIL) (-854 2299091 2302608 2302637 "PACEXTC" 2302642 T PACEXTC (NIL) -9 NIL 2302686) (-853 2297099 2297931 2298246 "OWP" 2298860 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL) (-852 2296208 2296704 2296876 "OVAR" 2296967 NIL OVAR (NIL NIL) -8 NIL NIL) (-851 2295472 2295593 2295754 "OUT" 2296067 T OUT (NIL) -7 NIL NIL) (-850 2284518 2286697 2288867 "OUTFORM" 2293322 T OUTFORM (NIL) -8 NIL NIL) (-849 2283926 2284247 2284336 "OSI" 2284449 T OSI (NIL) -8 NIL NIL) (-848 2282673 2282900 2283184 "ORTHPOL" 2283674 NIL ORTHPOL (NIL T) -7 NIL NIL) (-847 2280035 2282330 2282470 "OREUP" 2282616 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL) (-846 2277422 2279724 2279852 "ORESUP" 2279977 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL) (-845 2274930 2275436 2276001 "OREPCTO" 2276907 NIL OREPCTO (NIL T T) -7 NIL NIL) (-844 2268800 2271011 2271053 "OREPCAT" 2273401 NIL OREPCAT (NIL T) -9 NIL 2274501) (-843 2265947 2266729 2267787 "OREPCAT-" 2267792 NIL OREPCAT- (NIL T T) -8 NIL NIL) (-842 2265123 2265395 2265424 "ORDSET" 2265733 T ORDSET (NIL) -9 NIL 2265897) (-841 2264642 2264764 2264957 "ORDSET-" 2264962 NIL ORDSET- (NIL T) -8 NIL NIL) (-840 2263251 2264052 2264081 "ORDRING" 2264283 T ORDRING (NIL) -9 NIL 2264408) (-839 2262896 2262990 2263134 "ORDRING-" 2263139 NIL ORDRING- (NIL T) -8 NIL NIL) (-838 2262270 2262751 2262780 "ORDMON" 2262785 T ORDMON (NIL) -9 NIL 2262806) (-837 2261432 2261579 2261774 "ORDFUNS" 2262119 NIL ORDFUNS (NIL NIL T) -7 NIL NIL) (-836 2260942 2261301 2261330 "ORDFIN" 2261335 T ORDFIN (NIL) -9 NIL 2261356) (-835 2257454 2259534 2259940 "ORDCOMP" 2260569 NIL ORDCOMP (NIL T) -8 NIL NIL) (-834 2256720 2256847 2257033 "ORDCOMP2" 2257314 NIL ORDCOMP2 (NIL T T) -7 NIL NIL) (-833 2253228 2254110 2254947 "OPTPROB" 2255903 T OPTPROB (NIL) -8 NIL NIL) (-832 2250030 2250669 2251373 "OPTPACK" 2252544 T OPTPACK (NIL) -7 NIL NIL) (-831 2247742 2248482 2248511 "OPTCAT" 2249330 T OPTCAT (NIL) -9 NIL 2249980) (-830 2247510 2247549 2247615 "OPQUERY" 2247696 T OPQUERY (NIL) -7 NIL NIL) (-829 2244636 2245827 2246328 "OP" 2247042 NIL OP (NIL T) -8 NIL NIL) (-828 2241401 2243439 2243805 "ONECOMP" 2244303 NIL ONECOMP (NIL T) -8 NIL NIL) (-827 2240706 2240821 2240995 "ONECOMP2" 2241273 NIL ONECOMP2 (NIL T T) -7 NIL NIL) (-826 2240125 2240231 2240361 "OMSERVER" 2240596 T OMSERVER (NIL) -7 NIL NIL) (-825 2237012 2239564 2239605 "OMSAGG" 2239666 NIL OMSAGG (NIL T) -9 NIL 2239730) (-824 2235635 2235898 2236180 "OMPKG" 2236750 T OMPKG (NIL) -7 NIL NIL) (-823 2235064 2235167 2235196 "OM" 2235495 T OM (NIL) -9 NIL NIL) (-822 2233602 2234615 2234783 "OMLO" 2234946 NIL OMLO (NIL T T) -8 NIL NIL) (-821 2232527 2232674 2232901 "OMEXPR" 2233428 NIL OMEXPR (NIL T) -7 NIL NIL) (-820 2231845 2232073 2232209 "OMERR" 2232411 T OMERR (NIL) -8 NIL NIL) (-819 2231023 2231266 2231426 "OMERRK" 2231705 T OMERRK (NIL) -8 NIL NIL) (-818 2230501 2230700 2230808 "OMENC" 2230935 T OMENC (NIL) -8 NIL NIL) (-817 2224396 2225581 2226752 "OMDEV" 2229350 T OMDEV (NIL) -8 NIL NIL) (-816 2223465 2223636 2223830 "OMCONN" 2224222 T OMCONN (NIL) -8 NIL NIL) (-815 2222076 2223062 2223091 "OINTDOM" 2223096 T OINTDOM (NIL) -9 NIL 2223117) (-814 2217727 2218982 2219726 "OFMONOID" 2221364 NIL OFMONOID (NIL T) -8 NIL NIL) (-813 2217165 2217664 2217709 "ODVAR" 2217714 NIL ODVAR (NIL T) -8 NIL NIL) (-812 2214292 2216664 2216848 "ODR" 2217041 NIL ODR (NIL T T NIL) -8 NIL NIL) (-811 2206590 2214068 2214194 "ODPOL" 2214199 NIL ODPOL (NIL T) -8 NIL NIL) (-810 2200384 2206462 2206567 "ODP" 2206572 NIL ODP (NIL NIL T NIL) -8 NIL NIL) (-809 2199150 2199365 2199640 "ODETOOLS" 2200158 NIL ODETOOLS (NIL T T) -7 NIL NIL) (-808 2196119 2196775 2197491 "ODESYS" 2198483 NIL ODESYS (NIL T T) -7 NIL NIL) (-807 2191003 2191911 2192935 "ODERTRIC" 2195195 NIL ODERTRIC (NIL T T) -7 NIL NIL) (-806 2190429 2190511 2190705 "ODERED" 2190915 NIL ODERED (NIL T T T T T) -7 NIL NIL) (-805 2187317 2187865 2188542 "ODERAT" 2189852 NIL ODERAT (NIL T T) -7 NIL NIL) (-804 2184277 2184741 2185338 "ODEPRRIC" 2186846 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL) (-803 2182148 2182715 2183224 "ODEPROB" 2183788 T ODEPROB (NIL) -8 NIL NIL) (-802 2178670 2179153 2179800 "ODEPRIM" 2181627 NIL ODEPRIM (NIL T T T T) -7 NIL NIL) (-801 2177919 2178021 2178281 "ODEPAL" 2178562 NIL ODEPAL (NIL T T T T) -7 NIL NIL) (-800 2174081 2174872 2175736 "ODEPACK" 2177075 T ODEPACK (NIL) -7 NIL NIL) (-799 2173114 2173221 2173450 "ODEINT" 2173970 NIL ODEINT (NIL T T) -7 NIL NIL) (-798 2167215 2168640 2170087 "ODEIFTBL" 2171687 T ODEIFTBL (NIL) -8 NIL NIL) (-797 2162550 2163336 2164295 "ODEEF" 2166374 NIL ODEEF (NIL T T) -7 NIL NIL) (-796 2161885 2161974 2162204 "ODECONST" 2162455 NIL ODECONST (NIL T T T) -7 NIL NIL) (-795 2160035 2160670 2160699 "ODECAT" 2161304 T ODECAT (NIL) -9 NIL 2161835) (-794 2156896 2159747 2159866 "OCT" 2159948 NIL OCT (NIL T) -8 NIL NIL) (-793 2156534 2156577 2156704 "OCTCT2" 2156847 NIL OCTCT2 (NIL T T T T) -7 NIL NIL) (-792 2151358 2153802 2153843 "OC" 2154940 NIL OC (NIL T) -9 NIL 2155790) (-791 2148585 2149333 2150323 "OC-" 2150417 NIL OC- (NIL T T) -8 NIL NIL) (-790 2147962 2148404 2148433 "OCAMON" 2148438 T OCAMON (NIL) -9 NIL 2148459) (-789 2147414 2147821 2147850 "OASGP" 2147855 T OASGP (NIL) -9 NIL 2147875) (-788 2146700 2147163 2147192 "OAMONS" 2147232 T OAMONS (NIL) -9 NIL 2147275) (-787 2146139 2146546 2146575 "OAMON" 2146580 T OAMON (NIL) -9 NIL 2146600) (-786 2145442 2145934 2145963 "OAGROUP" 2145968 T OAGROUP (NIL) -9 NIL 2145988) (-785 2145132 2145182 2145270 "NUMTUBE" 2145386 NIL NUMTUBE (NIL T) -7 NIL NIL) (-784 2138705 2140223 2141759 "NUMQUAD" 2143616 T NUMQUAD (NIL) -7 NIL NIL) (-783 2134461 2135449 2136474 "NUMODE" 2137700 T NUMODE (NIL) -7 NIL NIL) (-782 2131841 2132695 2132724 "NUMINT" 2133647 T NUMINT (NIL) -9 NIL 2134411) (-781 2130789 2130986 2131204 "NUMFMT" 2131643 T NUMFMT (NIL) -7 NIL NIL) (-780 2117167 2120109 2122633 "NUMERIC" 2128304 NIL NUMERIC (NIL T) -7 NIL NIL) (-779 2111570 2116615 2116711 "NTSCAT" 2116716 NIL NTSCAT (NIL T T T T) -9 NIL 2116755) (-778 2110766 2110931 2111123 "NTPOLFN" 2111410 NIL NTPOLFN (NIL T) -7 NIL NIL) (-777 2098562 2107593 2108404 "NSUP" 2109988 NIL NSUP (NIL T) -8 NIL NIL) (-776 2098194 2098251 2098360 "NSUP2" 2098499 NIL NSUP2 (NIL T T) -7 NIL NIL) (-775 2088145 2097968 2098101 "NSMP" 2098106 NIL NSMP (NIL T T) -8 NIL NIL) (-774 2076237 2087727 2087891 "NSDPS" 2088013 NIL NSDPS (NIL T) -8 NIL NIL) (-773 2074669 2074970 2075327 "NREP" 2075925 NIL NREP (NIL T) -7 NIL NIL) (-772 2071758 2072306 2072955 "NPOLYGON" 2074111 NIL NPOLYGON (NIL T T T NIL) -7 NIL NIL) (-771 2070349 2070601 2070959 "NPCOEF" 2071501 NIL NPCOEF (NIL T T T T T) -7 NIL NIL) (-770 2069631 2070133 2070217 "NOTTING" 2070297 NIL NOTTING (NIL T) -8 NIL NIL) (-769 2068697 2068812 2069028 "NORMRETR" 2069512 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL) (-768 2066738 2067028 2067437 "NORMPK" 2068405 NIL NORMPK (NIL T T T T T) -7 NIL NIL) (-767 2066423 2066451 2066575 "NORMMA" 2066704 NIL NORMMA (NIL T T T T) -7 NIL NIL) (-766 2066250 2066380 2066409 "NONE" 2066414 T NONE (NIL) -8 NIL NIL) (-765 2066039 2066068 2066137 "NONE1" 2066214 NIL NONE1 (NIL T) -7 NIL NIL) (-764 2065522 2065584 2065770 "NODE1" 2065971 NIL NODE1 (NIL T T) -7 NIL NIL) (-763 2063816 2064685 2064940 "NNI" 2065287 T NNI (NIL) -8 NIL NIL) (-762 2062236 2062549 2062913 "NLINSOL" 2063484 NIL NLINSOL (NIL T) -7 NIL NIL) (-761 2058404 2059371 2060293 "NIPROB" 2061334 T NIPROB (NIL) -8 NIL NIL) (-760 2057161 2057395 2057697 "NFINTBAS" 2058166 NIL NFINTBAS (NIL T T) -7 NIL NIL) (-759 2056890 2056933 2057014 "NEWTON" 2057112 NIL NEWTON (NIL T) -7 NIL NIL) (-758 2055598 2055829 2056110 "NCODIV" 2056658 NIL NCODIV (NIL T T) -7 NIL NIL) (-757 2055360 2055397 2055472 "NCNTFRAC" 2055555 NIL NCNTFRAC (NIL T) -7 NIL NIL) (-756 2053540 2053904 2054324 "NCEP" 2054985 NIL NCEP (NIL T) -7 NIL NIL) (-755 2052450 2053189 2053218 "NASRING" 2053328 T NASRING (NIL) -9 NIL 2053402) (-754 2052245 2052289 2052383 "NASRING-" 2052388 NIL NASRING- (NIL T) -8 NIL NIL) (-753 2051397 2051896 2051925 "NARNG" 2052042 T NARNG (NIL) -9 NIL 2052133) (-752 2051089 2051156 2051290 "NARNG-" 2051295 NIL NARNG- (NIL T) -8 NIL NIL) (-751 2049968 2050175 2050410 "NAGSP" 2050874 T NAGSP (NIL) -7 NIL NIL) (-750 2041240 2042924 2044597 "NAGS" 2048315 T NAGS (NIL) -7 NIL NIL) (-749 2039788 2040096 2040427 "NAGF07" 2040929 T NAGF07 (NIL) -7 NIL NIL) (-748 2034326 2035617 2036924 "NAGF04" 2038501 T NAGF04 (NIL) -7 NIL NIL) (-747 2027294 2028908 2030541 "NAGF02" 2032713 T NAGF02 (NIL) -7 NIL NIL) (-746 2022518 2023618 2024735 "NAGF01" 2026197 T NAGF01 (NIL) -7 NIL NIL) (-745 2016146 2017712 2019297 "NAGE04" 2020953 T NAGE04 (NIL) -7 NIL NIL) (-744 2007315 2009436 2011566 "NAGE02" 2014036 T NAGE02 (NIL) -7 NIL NIL) (-743 2003268 2004215 2005179 "NAGE01" 2006371 T NAGE01 (NIL) -7 NIL NIL) (-742 2001063 2001597 2002155 "NAGD03" 2002730 T NAGD03 (NIL) -7 NIL NIL) (-741 1992813 1994741 1996695 "NAGD02" 1999129 T NAGD02 (NIL) -7 NIL NIL) (-740 1986624 1988049 1989489 "NAGD01" 1991393 T NAGD01 (NIL) -7 NIL NIL) (-739 1982833 1983655 1984492 "NAGC06" 1985807 T NAGC06 (NIL) -7 NIL NIL) (-738 1981298 1981630 1981986 "NAGC05" 1982497 T NAGC05 (NIL) -7 NIL NIL) (-737 1980674 1980793 1980937 "NAGC02" 1981174 T NAGC02 (NIL) -7 NIL NIL) (-736 1979733 1980290 1980331 "NAALG" 1980410 NIL NAALG (NIL T) -9 NIL 1980471) (-735 1979568 1979597 1979687 "NAALG-" 1979692 NIL NAALG- (NIL T T) -8 NIL NIL) (-734 1970444 1978684 1978959 "MYUP" 1979339 NIL MYUP (NIL NIL T) -8 NIL NIL) (-733 1960807 1968900 1969271 "MYEXPR" 1970139 NIL MYEXPR (NIL NIL T) -8 NIL NIL) (-732 1954757 1955865 1957052 "MULTSQFR" 1959703 NIL MULTSQFR (NIL T T T T) -7 NIL NIL) (-731 1954076 1954151 1954335 "MULTFACT" 1954669 NIL MULTFACT (NIL T T T T) -7 NIL NIL) (-730 1947201 1951110 1951164 "MTSCAT" 1952234 NIL MTSCAT (NIL T T) -9 NIL 1952748) (-729 1946913 1946967 1947059 "MTHING" 1947141 NIL MTHING (NIL T) -7 NIL NIL) (-728 1946705 1946738 1946798 "MSYSCMD" 1946873 T MSYSCMD (NIL) -7 NIL NIL) (-727 1942817 1945460 1945780 "MSET" 1946418 NIL MSET (NIL T) -8 NIL NIL) (-726 1939911 1942377 1942419 "MSETAGG" 1942424 NIL MSETAGG (NIL T) -9 NIL 1942458) (-725 1935760 1937302 1938041 "MRING" 1939217 NIL MRING (NIL T T) -8 NIL NIL) (-724 1935326 1935393 1935524 "MRF2" 1935687 NIL MRF2 (NIL T T T) -7 NIL NIL) (-723 1934944 1934979 1935123 "MRATFAC" 1935285 NIL MRATFAC (NIL T T T T) -7 NIL NIL) (-722 1932556 1932851 1933282 "MPRFF" 1934649 NIL MPRFF (NIL T T T T) -7 NIL NIL) (-721 1926570 1932410 1932507 "MPOLY" 1932512 NIL MPOLY (NIL NIL T) -8 NIL NIL) (-720 1926060 1926095 1926303 "MPCPF" 1926529 NIL MPCPF (NIL T T T T) -7 NIL NIL) (-719 1925574 1925617 1925801 "MPC3" 1926011 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL) (-718 1924769 1924850 1925071 "MPC2" 1925489 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL) (-717 1923070 1923407 1923797 "MONOTOOL" 1924429 NIL MONOTOOL (NIL T T) -7 NIL NIL) (-716 1922193 1922528 1922557 "MONOID" 1922834 T MONOID (NIL) -9 NIL 1923006) (-715 1921571 1921734 1921977 "MONOID-" 1921982 NIL MONOID- (NIL T) -8 NIL NIL) (-714 1912497 1918482 1918542 "MONOGEN" 1919216 NIL MONOGEN (NIL T T) -9 NIL 1919669) (-713 1909715 1910450 1911450 "MONOGEN-" 1911569 NIL MONOGEN- (NIL T T T) -8 NIL NIL) (-712 1908573 1908993 1909022 "MONADWU" 1909414 T MONADWU (NIL) -9 NIL 1909652) (-711 1907945 1908104 1908352 "MONADWU-" 1908357 NIL MONADWU- (NIL T) -8 NIL NIL) (-710 1907329 1907547 1907576 "MONAD" 1907783 T MONAD (NIL) -9 NIL 1907895) (-709 1907014 1907092 1907224 "MONAD-" 1907229 NIL MONAD- (NIL T) -8 NIL NIL) (-708 1905265 1905927 1906206 "MOEBIUS" 1906767 NIL MOEBIUS (NIL T) -8 NIL NIL) (-707 1904656 1905034 1905075 "MODULE" 1905080 NIL MODULE (NIL T) -9 NIL 1905106) (-706 1904224 1904320 1904510 "MODULE-" 1904515 NIL MODULE- (NIL T T) -8 NIL NIL) (-705 1901893 1902588 1902915 "MODRING" 1904048 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL) (-704 1898839 1900004 1900522 "MODOP" 1901425 NIL MODOP (NIL T T) -8 NIL NIL) (-703 1897026 1897478 1897819 "MODMONOM" 1898638 NIL MODMONOM (NIL T T NIL) -8 NIL NIL) (-702 1886691 1895222 1895643 "MODMON" 1896656 NIL MODMON (NIL T T) -8 NIL NIL) (-701 1883817 1885535 1885811 "MODFIELD" 1886566 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL) (-700 1882821 1883098 1883288 "MMLFORM" 1883647 T MMLFORM (NIL) -8 NIL NIL) (-699 1882347 1882390 1882569 "MMAP" 1882772 NIL MMAP (NIL T T T T T T) -7 NIL NIL) (-698 1880572 1881349 1881391 "MLO" 1881814 NIL MLO (NIL T) -9 NIL 1882055) (-697 1877939 1878454 1879056 "MLIFT" 1880053 NIL MLIFT (NIL T T T T) -7 NIL NIL) (-696 1877330 1877414 1877568 "MKUCFUNC" 1877850 NIL MKUCFUNC (NIL T T T) -7 NIL NIL) (-695 1876929 1876999 1877122 "MKRECORD" 1877253 NIL MKRECORD (NIL T T) -7 NIL NIL) (-694 1875977 1876138 1876366 "MKFUNC" 1876740 NIL MKFUNC (NIL T) -7 NIL NIL) (-693 1875365 1875469 1875625 "MKFLCFN" 1875860 NIL MKFLCFN (NIL T) -7 NIL NIL) (-692 1874791 1875158 1875247 "MKCHSET" 1875309 NIL MKCHSET (NIL T) -8 NIL NIL) (-691 1874068 1874170 1874355 "MKBCFUNC" 1874684 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL) (-690 1870752 1873622 1873758 "MINT" 1873952 T MINT (NIL) -8 NIL NIL) (-689 1869564 1869807 1870084 "MHROWRED" 1870507 NIL MHROWRED (NIL T) -7 NIL NIL) (-688 1864831 1868005 1868431 "MFLOAT" 1869158 T MFLOAT (NIL) -8 NIL NIL) (-687 1864188 1864264 1864435 "MFINFACT" 1864743 NIL MFINFACT (NIL T T T T) -7 NIL NIL) (-686 1860503 1861351 1862235 "MESH" 1863324 T MESH (NIL) -7 NIL NIL) (-685 1858893 1859205 1859558 "MDDFACT" 1860190 NIL MDDFACT (NIL T) -7 NIL NIL) (-684 1855775 1858086 1858128 "MDAGG" 1858383 NIL MDAGG (NIL T) -9 NIL 1858526) (-683 1845463 1855068 1855275 "MCMPLX" 1855588 T MCMPLX (NIL) -8 NIL NIL) (-682 1844604 1844750 1844950 "MCDEN" 1845312 NIL MCDEN (NIL T T) -7 NIL NIL) (-681 1842494 1842764 1843144 "MCALCFN" 1844334 NIL MCALCFN (NIL T T T T) -7 NIL NIL) (-680 1840106 1840629 1841191 "MATSTOR" 1841965 NIL MATSTOR (NIL T) -7 NIL NIL) (-679 1836020 1839482 1839728 "MATRIX" 1839893 NIL MATRIX (NIL T) -8 NIL NIL) (-678 1831796 1832499 1833232 "MATLIN" 1835380 NIL MATLIN (NIL T T T T) -7 NIL NIL) (-677 1821561 1824782 1824860 "MATCAT" 1829990 NIL MATCAT (NIL T T T) -9 NIL 1831497) (-676 1817760 1818828 1820239 "MATCAT-" 1820244 NIL MATCAT- (NIL T T T T) -8 NIL NIL) (-675 1816354 1816507 1816840 "MATCAT2" 1817595 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-674 1815094 1815360 1815675 "MAPPKG4" 1816085 NIL MAPPKG4 (NIL T T) -7 NIL NIL) (-673 1813206 1813530 1813914 "MAPPKG3" 1814769 NIL MAPPKG3 (NIL T T T) -7 NIL NIL) (-672 1812187 1812360 1812582 "MAPPKG2" 1813030 NIL MAPPKG2 (NIL T T) -7 NIL NIL) (-671 1810686 1810970 1811297 "MAPPKG1" 1811893 NIL MAPPKG1 (NIL T) -7 NIL NIL) (-670 1810297 1810355 1810478 "MAPHACK3" 1810622 NIL MAPHACK3 (NIL T T T) -7 NIL NIL) (-669 1809889 1809950 1810064 "MAPHACK2" 1810229 NIL MAPHACK2 (NIL T T) -7 NIL NIL) (-668 1809327 1809430 1809572 "MAPHACK1" 1809780 NIL MAPHACK1 (NIL T) -7 NIL NIL) (-667 1807433 1808027 1808331 "MAGMA" 1809055 NIL MAGMA (NIL T) -8 NIL NIL) (-666 1803908 1805674 1806134 "M3D" 1807006 NIL M3D (NIL T) -8 NIL NIL) (-665 1798102 1802308 1802350 "LZSTAGG" 1803132 NIL LZSTAGG (NIL T) -9 NIL 1803427) (-664 1794076 1795233 1796690 "LZSTAGG-" 1796695 NIL LZSTAGG- (NIL T T) -8 NIL NIL) (-663 1791190 1791967 1792454 "LWORD" 1793621 NIL LWORD (NIL T) -8 NIL NIL) (-662 1784345 1790961 1791095 "LSQM" 1791100 NIL LSQM (NIL NIL T) -8 NIL NIL) (-661 1783569 1783708 1783936 "LSPP" 1784200 NIL LSPP (NIL T T T T) -7 NIL NIL) (-660 1781381 1781682 1782138 "LSMP" 1783258 NIL LSMP (NIL T T T T) -7 NIL NIL) (-659 1778160 1778834 1779564 "LSMP1" 1780683 NIL LSMP1 (NIL T) -7 NIL NIL) (-658 1772117 1777350 1777392 "LSAGG" 1777454 NIL LSAGG (NIL T) -9 NIL 1777532) (-657 1768812 1769736 1770949 "LSAGG-" 1770954 NIL LSAGG- (NIL T T) -8 NIL NIL) (-656 1766438 1767956 1768205 "LPOLY" 1768607 NIL LPOLY (NIL T T) -8 NIL NIL) (-655 1766020 1766105 1766228 "LPEFRAC" 1766347 NIL LPEFRAC (NIL T) -7 NIL NIL) (-654 1763584 1763833 1764265 "LPARSPT" 1765762 NIL LPARSPT (NIL T NIL T T T T T) -7 NIL NIL) (-653 1762059 1762386 1762746 "LOP" 1763256 NIL LOP (NIL T) -7 NIL NIL) (-652 1760408 1761155 1761407 "LO" 1761892 NIL LO (NIL T T T) -8 NIL NIL) (-651 1760059 1760171 1760200 "LOGIC" 1760311 T LOGIC (NIL) -9 NIL 1760392) (-650 1759921 1759944 1760015 "LOGIC-" 1760020 NIL LOGIC- (NIL T) -8 NIL NIL) (-649 1759114 1759254 1759447 "LODOOPS" 1759777 NIL LODOOPS (NIL T T) -7 NIL NIL) (-648 1756526 1759030 1759096 "LODO" 1759101 NIL LODO (NIL T NIL) -8 NIL NIL) (-647 1755066 1755301 1755653 "LODOF" 1756274 NIL LODOF (NIL T T) -7 NIL NIL) (-646 1751465 1753906 1753948 "LODOCAT" 1754386 NIL LODOCAT (NIL T) -9 NIL 1754596) (-645 1751198 1751256 1751383 "LODOCAT-" 1751388 NIL LODOCAT- (NIL T T) -8 NIL NIL) (-644 1748507 1751039 1751157 "LODO2" 1751162 NIL LODO2 (NIL T T) -8 NIL NIL) (-643 1745931 1748444 1748489 "LODO1" 1748494 NIL LODO1 (NIL T) -8 NIL NIL) (-642 1744791 1744956 1745268 "LODEEF" 1745754 NIL LODEEF (NIL T T T) -7 NIL NIL) (-641 1737618 1741783 1741824 "LOCPOWC" 1743286 NIL LOCPOWC (NIL T) -9 NIL 1743863) (-640 1732942 1735780 1735822 "LNAGG" 1736769 NIL LNAGG (NIL T) -9 NIL 1737212) (-639 1732089 1732303 1732645 "LNAGG-" 1732650 NIL LNAGG- (NIL T T) -8 NIL NIL) (-638 1728252 1729014 1729653 "LMOPS" 1731504 NIL LMOPS (NIL T T NIL) -8 NIL NIL) (-637 1727646 1728008 1728050 "LMODULE" 1728111 NIL LMODULE (NIL T) -9 NIL 1728153) (-636 1724898 1727291 1727414 "LMDICT" 1727556 NIL LMDICT (NIL T) -8 NIL NIL) (-635 1724055 1724189 1724376 "LISYSER" 1724760 NIL LISYSER (NIL T T) -7 NIL NIL) (-634 1717292 1723005 1723301 "LIST" 1723792 NIL LIST (NIL T) -8 NIL NIL) (-633 1716817 1716891 1717030 "LIST3" 1717212 NIL LIST3 (NIL T T T) -7 NIL NIL) (-632 1715824 1716002 1716230 "LIST2" 1716635 NIL LIST2 (NIL T T) -7 NIL NIL) (-631 1713958 1714270 1714669 "LIST2MAP" 1715471 NIL LIST2MAP (NIL T T) -7 NIL NIL) (-630 1712663 1713343 1713385 "LINEXP" 1713640 NIL LINEXP (NIL T) -9 NIL 1713789) (-629 1711310 1711570 1711867 "LINDEP" 1712415 NIL LINDEP (NIL T T) -7 NIL NIL) (-628 1708077 1708796 1709573 "LIMITRF" 1710565 NIL LIMITRF (NIL T) -7 NIL NIL) (-627 1706354 1706648 1707064 "LIMITPS" 1707772 NIL LIMITPS (NIL T T) -7 NIL NIL) (-626 1700813 1705869 1706095 "LIE" 1706177 NIL LIE (NIL T T) -8 NIL NIL) (-625 1699862 1700305 1700346 "LIECAT" 1700486 NIL LIECAT (NIL T) -9 NIL 1700636) (-624 1699703 1699730 1699818 "LIECAT-" 1699823 NIL LIECAT- (NIL T T) -8 NIL NIL) (-623 1692237 1699082 1699265 "LIB" 1699540 T LIB (NIL) -8 NIL NIL) (-622 1687874 1688755 1689690 "LGROBP" 1691354 NIL LGROBP (NIL NIL T) -7 NIL NIL) (-621 1685729 1686003 1686366 "LF" 1687595 NIL LF (NIL T T) -7 NIL NIL) (-620 1684568 1685260 1685289 "LFCAT" 1685496 T LFCAT (NIL) -9 NIL 1685635) (-619 1681472 1682100 1682788 "LEXTRIPK" 1683932 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL) (-618 1678178 1679042 1679545 "LEXP" 1681052 NIL LEXP (NIL T T NIL) -8 NIL NIL) (-617 1676576 1676889 1677290 "LEADCDET" 1677860 NIL LEADCDET (NIL T T T T) -7 NIL NIL) (-616 1675766 1675840 1676069 "LAZM3PK" 1676497 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL) (-615 1670682 1673849 1674384 "LAUPOL" 1675281 NIL LAUPOL (NIL T T) -8 NIL NIL) (-614 1670247 1670291 1670459 "LAPLACE" 1670632 NIL LAPLACE (NIL T T) -7 NIL NIL) (-613 1668177 1669350 1669600 "LA" 1670081 NIL LA (NIL T T T) -8 NIL NIL) (-612 1667233 1667827 1667869 "LALG" 1667931 NIL LALG (NIL T) -9 NIL 1667990) (-611 1666947 1667006 1667142 "LALG-" 1667147 NIL LALG- (NIL T T) -8 NIL NIL) (-610 1665851 1666038 1666337 "KOVACIC" 1666747 NIL KOVACIC (NIL T T) -7 NIL NIL) (-609 1665685 1665709 1665751 "KONVERT" 1665813 NIL KONVERT (NIL T) -9 NIL NIL) (-608 1665519 1665543 1665585 "KOERCE" 1665647 NIL KOERCE (NIL T) -9 NIL NIL) (-607 1663255 1664015 1664407 "KERNEL" 1665159 NIL KERNEL (NIL T) -8 NIL NIL) (-606 1662757 1662838 1662968 "KERNEL2" 1663169 NIL KERNEL2 (NIL T T) -7 NIL NIL) (-605 1656440 1661122 1661177 "KDAGG" 1661554 NIL KDAGG (NIL T T) -9 NIL 1661760) (-604 1655969 1656093 1656298 "KDAGG-" 1656303 NIL KDAGG- (NIL T T T) -8 NIL NIL) (-603 1649118 1655630 1655785 "KAFILE" 1655847 NIL KAFILE (NIL T) -8 NIL NIL) (-602 1643577 1648633 1648859 "JORDAN" 1648941 NIL JORDAN (NIL T T) -8 NIL NIL) (-601 1639920 1641820 1641875 "IXAGG" 1642804 NIL IXAGG (NIL T T) -9 NIL 1643259) (-600 1638839 1639145 1639564 "IXAGG-" 1639569 NIL IXAGG- (NIL T T T) -8 NIL NIL) (-599 1634423 1638761 1638820 "IVECTOR" 1638825 NIL IVECTOR (NIL T NIL) -8 NIL NIL) (-598 1633189 1633426 1633692 "ITUPLE" 1634190 NIL ITUPLE (NIL T) -8 NIL NIL) (-597 1631613 1631790 1632098 "ITRIGMNP" 1633011 NIL ITRIGMNP (NIL T T T) -7 NIL NIL) (-596 1630358 1630562 1630845 "ITFUN3" 1631389 NIL ITFUN3 (NIL T T T) -7 NIL NIL) (-595 1629990 1630047 1630156 "ITFUN2" 1630295 NIL ITFUN2 (NIL T T) -7 NIL NIL) (-594 1627783 1628854 1629152 "ITAYLOR" 1629725 NIL ITAYLOR (NIL T) -8 NIL NIL) (-593 1616722 1621922 1623084 "ISUPS" 1626654 NIL ISUPS (NIL T) -8 NIL NIL) (-592 1615826 1615966 1616202 "ISUMP" 1616569 NIL ISUMP (NIL T T T T) -7 NIL NIL) (-591 1611096 1615627 1615706 "ISTRING" 1615779 NIL ISTRING (NIL NIL) -8 NIL NIL) (-590 1610306 1610387 1610603 "IRURPK" 1611010 NIL IRURPK (NIL T T T T T) -7 NIL NIL) (-589 1609242 1609443 1609683 "IRSN" 1610086 T IRSN (NIL) -7 NIL NIL) (-588 1607273 1607628 1608063 "IRRF2F" 1608881 NIL IRRF2F (NIL T) -7 NIL NIL) (-587 1607020 1607058 1607134 "IRREDFFX" 1607229 NIL IRREDFFX (NIL T) -7 NIL NIL) (-586 1605635 1605894 1606193 "IROOT" 1606753 NIL IROOT (NIL T) -7 NIL NIL) (-585 1602271 1603323 1604013 "IR" 1604977 NIL IR (NIL T) -8 NIL NIL) (-584 1599884 1600379 1600945 "IR2" 1601749 NIL IR2 (NIL T T) -7 NIL NIL) (-583 1598956 1599069 1599290 "IR2F" 1599767 NIL IR2F (NIL T T) -7 NIL NIL) (-582 1598747 1598781 1598841 "IPRNTPK" 1598916 T IPRNTPK (NIL) -7 NIL NIL) (-581 1595301 1598636 1598705 "IPF" 1598710 NIL IPF (NIL NIL) -8 NIL NIL) (-580 1593618 1595226 1595283 "IPADIC" 1595288 NIL IPADIC (NIL NIL NIL) -8 NIL NIL) (-579 1593115 1593173 1593363 "INVLAPLA" 1593554 NIL INVLAPLA (NIL T T) -7 NIL NIL) (-578 1582764 1585117 1587503 "INTTR" 1590779 NIL INTTR (NIL T T) -7 NIL NIL) (-577 1579122 1579864 1580721 "INTTOOLS" 1581956 NIL INTTOOLS (NIL T T) -7 NIL NIL) (-576 1578708 1578799 1578916 "INTSLPE" 1579025 T INTSLPE (NIL) -7 NIL NIL) (-575 1576658 1578631 1578690 "INTRVL" 1578695 NIL INTRVL (NIL T) -8 NIL NIL) (-574 1574260 1574772 1575347 "INTRF" 1576143 NIL INTRF (NIL T) -7 NIL NIL) (-573 1573671 1573768 1573910 "INTRET" 1574158 NIL INTRET (NIL T) -7 NIL NIL) (-572 1571668 1572057 1572527 "INTRAT" 1573279 NIL INTRAT (NIL T T) -7 NIL NIL) (-571 1568904 1569487 1570109 "INTPM" 1571157 NIL INTPM (NIL T T) -7 NIL NIL) (-570 1565609 1566208 1566952 "INTPAF" 1568291 NIL INTPAF (NIL T T T) -7 NIL NIL) (-569 1560788 1561750 1562801 "INTPACK" 1564578 T INTPACK (NIL) -7 NIL NIL) (-568 1557642 1560517 1560644 "INT" 1560681 T INT (NIL) -8 NIL NIL) (-567 1556894 1557046 1557254 "INTHERTR" 1557484 NIL INTHERTR (NIL T T) -7 NIL NIL) (-566 1556333 1556413 1556601 "INTHERAL" 1556808 NIL INTHERAL (NIL T T T T) -7 NIL NIL) (-565 1554179 1554622 1555079 "INTHEORY" 1555896 T INTHEORY (NIL) -7 NIL NIL) (-564 1545490 1547110 1548888 "INTG0" 1552532 NIL INTG0 (NIL T T T) -7 NIL NIL) (-563 1526063 1530853 1535663 "INTFTBL" 1540700 T INTFTBL (NIL) -8 NIL NIL) (-562 1524100 1524307 1524708 "INTFRSP" 1525853 NIL INTFRSP (NIL T NIL T T T T T T) -7 NIL NIL) (-561 1523349 1523487 1523660 "INTFACT" 1523959 NIL INTFACT (NIL T) -7 NIL NIL) (-560 1522939 1522981 1523132 "INTERGB" 1523301 NIL INTERGB (NIL T NIL T T T) -7 NIL NIL) (-559 1520324 1520770 1521334 "INTEF" 1522493 NIL INTEF (NIL T T) -7 NIL NIL) (-558 1518781 1519530 1519559 "INTDOM" 1519860 T INTDOM (NIL) -9 NIL 1520067) (-557 1518150 1518324 1518566 "INTDOM-" 1518571 NIL INTDOM- (NIL T) -8 NIL NIL) (-556 1516754 1516859 1517249 "INTDIVP" 1518040 NIL INTDIVP (NIL T NIL T T T T T T T T T) -7 NIL NIL) (-555 1513240 1515170 1515225 "INTCAT" 1516024 NIL INTCAT (NIL T) -9 NIL 1516345) (-554 1512713 1512815 1512943 "INTBIT" 1513132 T INTBIT (NIL) -7 NIL NIL) (-553 1511384 1511538 1511852 "INTALG" 1512558 NIL INTALG (NIL T T T T T) -7 NIL NIL) (-552 1510841 1510931 1511101 "INTAF" 1511288 NIL INTAF (NIL T T) -7 NIL NIL) (-551 1504307 1510651 1510791 "INTABL" 1510796 NIL INTABL (NIL T T T) -8 NIL NIL) (-550 1499252 1501978 1502007 "INS" 1502975 T INS (NIL) -9 NIL 1503658) (-549 1496492 1497263 1498237 "INS-" 1498310 NIL INS- (NIL T) -8 NIL NIL) (-548 1495267 1495494 1495792 "INPSIGN" 1496245 NIL INPSIGN (NIL T T) -7 NIL NIL) (-547 1494385 1494502 1494699 "INPRODPF" 1495147 NIL INPRODPF (NIL T T) -7 NIL NIL) (-546 1493279 1493396 1493633 "INPRODFF" 1494265 NIL INPRODFF (NIL T T T T) -7 NIL NIL) (-545 1492279 1492431 1492691 "INNMFACT" 1493115 NIL INNMFACT (NIL T T T T) -7 NIL NIL) (-544 1491476 1491573 1491761 "INMODGCD" 1492178 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL) (-543 1489985 1490229 1490553 "INFSP" 1491221 NIL INFSP (NIL T T T) -7 NIL NIL) (-542 1489169 1489286 1489469 "INFPROD0" 1489865 NIL INFPROD0 (NIL T T) -7 NIL NIL) (-541 1486050 1487234 1487749 "INFORM" 1488662 T INFORM (NIL) -8 NIL NIL) (-540 1485660 1485720 1485818 "INFORM1" 1485985 NIL INFORM1 (NIL T) -7 NIL NIL) (-539 1485183 1485272 1485386 "INFINITY" 1485566 T INFINITY (NIL) -7 NIL NIL) (-538 1482866 1483863 1484206 "INFCLSPT" 1485043 NIL INFCLSPT (NIL T NIL T T T T T T T) -8 NIL NIL) (-537 1480743 1481988 1482282 "INFCLSPS" 1482636 NIL INFCLSPS (NIL T NIL T) -8 NIL NIL) (-536 1473293 1474216 1474437 "INFCLCT" 1479868 NIL INFCLCT (NIL T NIL T T T T T T T) -9 NIL 1480679) (-535 1471911 1472159 1472480 "INEP" 1473041 NIL INEP (NIL T T T) -7 NIL NIL) (-534 1471187 1471808 1471873 "INDE" 1471878 NIL INDE (NIL T) -8 NIL NIL) (-533 1470751 1470819 1470936 "INCRMAPS" 1471114 NIL INCRMAPS (NIL T) -7 NIL NIL) (-532 1466062 1466987 1467931 "INBFF" 1469839 NIL INBFF (NIL T) -7 NIL NIL) (-531 1462457 1465906 1466010 "IMATRIX" 1466015 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL) (-530 1461171 1461294 1461608 "IMATQF" 1462314 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL) (-529 1459393 1459620 1459956 "IMATLIN" 1460928 NIL IMATLIN (NIL T T T T) -7 NIL NIL) (-528 1454025 1459317 1459375 "ILIST" 1459380 NIL ILIST (NIL T NIL) -8 NIL NIL) (-527 1451984 1453885 1453998 "IIARRAY2" 1454003 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL) (-526 1447352 1451895 1451959 "IFF" 1451964 NIL IFF (NIL NIL NIL) -8 NIL NIL) (-525 1442401 1446644 1446832 "IFARRAY" 1447209 NIL IFARRAY (NIL T NIL) -8 NIL NIL) (-524 1441608 1442305 1442378 "IFAMON" 1442383 NIL IFAMON (NIL T T NIL) -8 NIL NIL) (-523 1441191 1441256 1441311 "IEVALAB" 1441518 NIL IEVALAB (NIL T T) -9 NIL NIL) (-522 1440866 1440934 1441094 "IEVALAB-" 1441099 NIL IEVALAB- (NIL T T T) -8 NIL NIL) (-521 1440524 1440780 1440843 "IDPO" 1440848 NIL IDPO (NIL T T) -8 NIL NIL) (-520 1439801 1440413 1440488 "IDPOAMS" 1440493 NIL IDPOAMS (NIL T T) -8 NIL NIL) (-519 1439135 1439690 1439765 "IDPOAM" 1439770 NIL IDPOAM (NIL T T) -8 NIL NIL) (-518 1438219 1438469 1438523 "IDPC" 1438936 NIL IDPC (NIL T T) -9 NIL 1439085) (-517 1437715 1438111 1438184 "IDPAM" 1438189 NIL IDPAM (NIL T T) -8 NIL NIL) (-516 1437118 1437607 1437680 "IDPAG" 1437685 NIL IDPAG (NIL T T) -8 NIL NIL) (-515 1433373 1434221 1435116 "IDECOMP" 1436275 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL) (-514 1426249 1427298 1428344 "IDEAL" 1432410 NIL IDEAL (NIL T T T T) -8 NIL NIL) (-513 1424266 1425413 1425686 "ICP" 1426040 NIL ICP (NIL T NIL T) -8 NIL NIL) (-512 1423430 1423542 1423741 "ICDEN" 1424150 NIL ICDEN (NIL T T T T) -7 NIL NIL) (-511 1422529 1422910 1423057 "ICARD" 1423303 T ICARD (NIL) -8 NIL NIL) (-510 1420589 1420902 1421307 "IBPTOOLS" 1422206 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL) (-509 1416203 1420209 1420322 "IBITS" 1420508 NIL IBITS (NIL NIL) -8 NIL NIL) (-508 1412926 1413502 1414197 "IBATOOL" 1415620 NIL IBATOOL (NIL T T T) -7 NIL NIL) (-507 1410706 1411167 1411700 "IBACHIN" 1412461 NIL IBACHIN (NIL T T T) -7 NIL NIL) (-506 1408589 1410552 1410655 "IARRAY2" 1410660 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL) (-505 1404748 1408515 1408572 "IARRAY1" 1408577 NIL IARRAY1 (NIL T NIL) -8 NIL NIL) (-504 1398678 1403160 1403641 "IAN" 1404287 T IAN (NIL) -8 NIL NIL) (-503 1398189 1398246 1398419 "IALGFACT" 1398615 NIL IALGFACT (NIL T T T T) -7 NIL NIL) (-502 1397716 1397829 1397858 "HYPCAT" 1398065 T HYPCAT (NIL) -9 NIL NIL) (-501 1397254 1397371 1397557 "HYPCAT-" 1397562 NIL HYPCAT- (NIL T) -8 NIL NIL) (-500 1396258 1396535 1396725 "HTMLFORM" 1397084 T HTMLFORM (NIL) -8 NIL NIL) (-499 1393047 1394372 1394414 "HOAGG" 1395395 NIL HOAGG (NIL T) -9 NIL 1396004) (-498 1391641 1392040 1392566 "HOAGG-" 1392571 NIL HOAGG- (NIL T T) -8 NIL NIL) (-497 1385459 1391079 1391246 "HEXADEC" 1391494 T HEXADEC (NIL) -8 NIL NIL) (-496 1384207 1384429 1384692 "HEUGCD" 1385236 NIL HEUGCD (NIL T) -7 NIL NIL) (-495 1383310 1384044 1384174 "HELLFDIV" 1384179 NIL HELLFDIV (NIL T T T T) -8 NIL NIL) (-494 1377027 1378570 1379651 "HEAP" 1382261 NIL HEAP (NIL T) -8 NIL NIL) (-493 1370865 1376942 1377004 "HDP" 1377009 NIL HDP (NIL NIL T) -8 NIL NIL) (-492 1364570 1370500 1370652 "HDMP" 1370766 NIL HDMP (NIL NIL T) -8 NIL NIL) (-491 1363895 1364034 1364198 "HB" 1364426 T HB (NIL) -7 NIL NIL) (-490 1357404 1363741 1363845 "HASHTBL" 1363850 NIL HASHTBL (NIL T T NIL) -8 NIL NIL) (-489 1355151 1357026 1357208 "HACKPI" 1357242 T HACKPI (NIL) -8 NIL NIL) (-488 1337299 1341168 1345171 "GUESSUP" 1351181 NIL GUESSUP (NIL NIL) -7 NIL NIL) (-487 1308396 1315437 1322133 "GUESSP" 1330623 T GUESSP (NIL) -7 NIL NIL) (-486 1275211 1280482 1285866 "GUESS" 1303340 NIL GUESS (NIL T T T T NIL NIL) -7 NIL NIL) (-485 1248716 1255113 1261249 "GUESSINT" 1269095 T GUESSINT (NIL) -7 NIL NIL) (-484 1224087 1229537 1235104 "GUESSF" 1243201 NIL GUESSF (NIL T) -7 NIL NIL) (-483 1223809 1223846 1223941 "GUESSF1" 1224044 NIL GUESSF1 (NIL T) -7 NIL NIL) (-482 1199970 1205504 1211119 "GUESSAN" 1218214 T GUESSAN (NIL) -7 NIL NIL) (-481 1195665 1199823 1199936 "GTSET" 1199941 NIL GTSET (NIL T T T T) -8 NIL NIL) (-480 1189203 1195543 1195641 "GSTBL" 1195646 NIL GSTBL (NIL T T T NIL) -8 NIL NIL) (-479 1181433 1188236 1188500 "GSERIES" 1188995 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL) (-478 1180454 1180907 1180936 "GROUP" 1181197 T GROUP (NIL) -9 NIL 1181356) (-477 1179570 1179793 1180137 "GROUP-" 1180142 NIL GROUP- (NIL T) -8 NIL NIL) (-476 1177939 1178258 1178645 "GROEBSOL" 1179247 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL) (-475 1176878 1177140 1177192 "GRMOD" 1177721 NIL GRMOD (NIL T T) -9 NIL 1177889) (-474 1176646 1176682 1176810 "GRMOD-" 1176815 NIL GRMOD- (NIL T T T) -8 NIL NIL) (-473 1171975 1173000 1174000 "GRIMAGE" 1175666 T GRIMAGE (NIL) -8 NIL NIL) (-472 1170442 1170702 1171026 "GRDEF" 1171671 T GRDEF (NIL) -7 NIL NIL) (-471 1169886 1170002 1170143 "GRAY" 1170321 T GRAY (NIL) -7 NIL NIL) (-470 1169116 1169496 1169548 "GRALG" 1169701 NIL GRALG (NIL T T) -9 NIL 1169794) (-469 1168777 1168850 1169013 "GRALG-" 1169018 NIL GRALG- (NIL T T T) -8 NIL NIL) (-468 1165581 1168362 1168540 "GPOLSET" 1168684 NIL GPOLSET (NIL T T T T) -8 NIL NIL) (-467 1147784 1149274 1150863 "GPAFF" 1164272 NIL GPAFF (NIL T NIL T T T T T T T T T) -7 NIL NIL) (-466 1147138 1147195 1147453 "GOSPER" 1147721 NIL GOSPER (NIL T T T T T) -7 NIL NIL) (-465 1144531 1145125 1145614 "GOPT" 1146669 T GOPT (NIL) -8 NIL NIL) (-464 1141752 1142393 1142930 "GOPT0" 1144014 T GOPT0 (NIL) -8 NIL NIL) (-463 1137511 1138190 1138716 "GMODPOL" 1141451 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL) (-462 1136516 1136700 1136938 "GHENSEL" 1137323 NIL GHENSEL (NIL T T) -7 NIL NIL) (-461 1130567 1131410 1132437 "GENUPS" 1135600 NIL GENUPS (NIL T T) -7 NIL NIL) (-460 1130264 1130315 1130404 "GENUFACT" 1130510 NIL GENUFACT (NIL T) -7 NIL NIL) (-459 1129676 1129753 1129918 "GENPGCD" 1130182 NIL GENPGCD (NIL T T T T) -7 NIL NIL) (-458 1129150 1129185 1129398 "GENMFACT" 1129635 NIL GENMFACT (NIL T T T T T) -7 NIL NIL) (-457 1127718 1127973 1128280 "GENEEZ" 1128893 NIL GENEEZ (NIL T T) -7 NIL NIL) (-456 1126262 1126539 1126863 "GDRAW" 1127414 T GDRAW (NIL) -7 NIL NIL) (-455 1120129 1125873 1126035 "GDMP" 1126185 NIL GDMP (NIL NIL T T) -8 NIL NIL) (-454 1109513 1113902 1115007 "GCNAALG" 1119113 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL) (-453 1107930 1108802 1108831 "GCDDOM" 1109086 T GCDDOM (NIL) -9 NIL 1109243) (-452 1107400 1107527 1107742 "GCDDOM-" 1107747 NIL GCDDOM- (NIL T) -8 NIL NIL) (-451 1106074 1106259 1106562 "GB" 1107180 NIL GB (NIL T T T T) -7 NIL NIL) (-450 1094694 1097020 1099412 "GBINTERN" 1103765 NIL GBINTERN (NIL T T T T) -7 NIL NIL) (-449 1092531 1092823 1093244 "GBF" 1094369 NIL GBF (NIL T T T T) -7 NIL NIL) (-448 1091312 1091477 1091744 "GBEUCLID" 1092347 NIL GBEUCLID (NIL T T T T) -7 NIL NIL) (-447 1090661 1090786 1090935 "GAUSSFAC" 1091183 T GAUSSFAC (NIL) -7 NIL NIL) (-446 1089030 1089332 1089645 "GALUTIL" 1090381 NIL GALUTIL (NIL T) -7 NIL NIL) (-445 1087338 1087612 1087936 "GALPOLYU" 1088757 NIL GALPOLYU (NIL T T) -7 NIL NIL) (-444 1084703 1084993 1085400 "GALFACTU" 1087035 NIL GALFACTU (NIL T T T) -7 NIL NIL) (-443 1076509 1078008 1079616 "GALFACT" 1083135 NIL GALFACT (NIL T) -7 NIL NIL) (-442 1073897 1074554 1074583 "FVFUN" 1075739 T FVFUN (NIL) -9 NIL 1076459) (-441 1073163 1073344 1073373 "FVC" 1073664 T FVC (NIL) -9 NIL 1073847) (-440 1072805 1072960 1073041 "FUNCTION" 1073115 NIL FUNCTION (NIL NIL) -8 NIL NIL) (-439 1070475 1071026 1071515 "FT" 1072336 T FT (NIL) -8 NIL NIL) (-438 1069267 1069776 1069979 "FTEM" 1070292 T FTEM (NIL) -8 NIL NIL) (-437 1067525 1067814 1068217 "FSUPFACT" 1068959 NIL FSUPFACT (NIL T T T) -7 NIL NIL) (-436 1065922 1066211 1066543 "FST" 1067213 T FST (NIL) -8 NIL NIL) (-435 1065093 1065199 1065394 "FSRED" 1065804 NIL FSRED (NIL T T) -7 NIL NIL) (-434 1063774 1064029 1064382 "FSPRMELT" 1064809 NIL FSPRMELT (NIL T T) -7 NIL NIL) (-433 1059140 1059845 1060602 "FSPECF" 1063079 NIL FSPECF (NIL T T) -7 NIL NIL) (-432 1041398 1049987 1050028 "FS" 1053876 NIL FS (NIL T) -9 NIL 1056154) (-431 1030048 1033038 1037094 "FS-" 1037391 NIL FS- (NIL T T) -8 NIL NIL) (-430 1029562 1029616 1029793 "FSINT" 1029989 NIL FSINT (NIL T T) -7 NIL NIL) (-429 1027847 1028559 1028860 "FSERIES" 1029343 NIL FSERIES (NIL T T) -8 NIL NIL) (-428 1026861 1026977 1027208 "FSCINT" 1027727 NIL FSCINT (NIL T T) -7 NIL NIL) (-427 1023096 1025806 1025848 "FSAGG" 1026218 NIL FSAGG (NIL T) -9 NIL 1026475) (-426 1020858 1021459 1022255 "FSAGG-" 1022350 NIL FSAGG- (NIL T T) -8 NIL NIL) (-425 1019900 1020043 1020270 "FSAGG2" 1020711 NIL FSAGG2 (NIL T T T T) -7 NIL NIL) (-424 1017555 1017834 1018388 "FS2UPS" 1019618 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL) (-423 1017137 1017180 1017335 "FS2" 1017506 NIL FS2 (NIL T T T T) -7 NIL NIL) (-422 1015994 1016165 1016474 "FS2EXPXP" 1016962 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL) (-421 1015420 1015535 1015687 "FRUTIL" 1015874 NIL FRUTIL (NIL T) -7 NIL NIL) (-420 1006846 1010931 1012281 "FR" 1014102 NIL FR (NIL T) -8 NIL NIL) (-419 1001926 1004564 1004605 "FRNAALG" 1006001 NIL FRNAALG (NIL T) -9 NIL 1006607) (-418 997605 998675 999950 "FRNAALG-" 1000700 NIL FRNAALG- (NIL T T) -8 NIL NIL) (-417 997243 997286 997413 "FRNAAF2" 997556 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL) (-416 995606 996099 996393 "FRMOD" 997056 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL) (-415 993321 993989 994306 "FRIDEAL" 995397 NIL FRIDEAL (NIL T T T T) -8 NIL NIL) (-414 992516 992603 992892 "FRIDEAL2" 993228 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL) (-413 991759 992173 992215 "FRETRCT" 992220 NIL FRETRCT (NIL T) -9 NIL 992394) (-412 990871 991102 991453 "FRETRCT-" 991458 NIL FRETRCT- (NIL T T) -8 NIL NIL) (-411 988076 989296 989356 "FRAMALG" 990238 NIL FRAMALG (NIL T T) -9 NIL 990530) (-410 986209 986665 987295 "FRAMALG-" 987518 NIL FRAMALG- (NIL T T T) -8 NIL NIL) (-409 980112 985694 985965 "FRAC" 985970 NIL FRAC (NIL T) -8 NIL NIL) (-408 979748 979805 979912 "FRAC2" 980049 NIL FRAC2 (NIL T T) -7 NIL NIL) (-407 979384 979441 979548 "FR2" 979685 NIL FR2 (NIL T T) -7 NIL NIL) (-406 974006 976915 976944 "FPS" 978063 T FPS (NIL) -9 NIL 978617) (-405 973455 973564 973728 "FPS-" 973874 NIL FPS- (NIL T) -8 NIL NIL) (-404 970851 972548 972577 "FPC" 972802 T FPC (NIL) -9 NIL 972944) (-403 970644 970684 970781 "FPC-" 970786 NIL FPC- (NIL T) -8 NIL NIL) (-402 969523 970133 970175 "FPATMAB" 970180 NIL FPATMAB (NIL T) -9 NIL 970330) (-401 967223 967699 968125 "FPARFRAC" 969160 NIL FPARFRAC (NIL T T) -8 NIL NIL) (-400 962618 963115 963797 "FORTRAN" 966655 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL) (-399 960334 960834 961373 "FORT" 962099 T FORT (NIL) -7 NIL NIL) (-398 958010 958571 958600 "FORTFN" 959660 T FORTFN (NIL) -9 NIL 960284) (-397 957773 957823 957852 "FORTCAT" 957911 T FORTCAT (NIL) -9 NIL 957973) (-396 955833 956316 956715 "FORMULA" 957394 T FORMULA (NIL) -8 NIL NIL) (-395 955621 955651 955720 "FORMULA1" 955797 NIL FORMULA1 (NIL T) -7 NIL NIL) (-394 955144 955196 955369 "FORDER" 955563 NIL FORDER (NIL T T T T) -7 NIL NIL) (-393 954240 954404 954597 "FOP" 954971 T FOP (NIL) -7 NIL NIL) (-392 952848 953520 953694 "FNLA" 954122 NIL FNLA (NIL NIL NIL T) -8 NIL NIL) (-391 951515 951904 951933 "FNCAT" 952505 T FNCAT (NIL) -9 NIL 952798) (-390 951081 951474 951502 "FNAME" 951507 T FNAME (NIL) -8 NIL NIL) (-389 949734 950707 950736 "FMTC" 950741 T FMTC (NIL) -9 NIL 950777) (-388 946052 947259 947887 "FMONOID" 949139 NIL FMONOID (NIL T) -8 NIL NIL) (-387 945273 945796 945944 "FM" 945949 NIL FM (NIL T T) -8 NIL NIL) (-386 942697 943342 943371 "FMFUN" 944515 T FMFUN (NIL) -9 NIL 945223) (-385 941966 942146 942175 "FMC" 942465 T FMC (NIL) -9 NIL 942647) (-384 939178 940012 940067 "FMCAT" 941262 NIL FMCAT (NIL T T) -9 NIL 941756) (-383 938071 938944 939044 "FM1" 939123 NIL FM1 (NIL T T) -8 NIL NIL) (-382 935845 936261 936755 "FLOATRP" 937622 NIL FLOATRP (NIL T) -7 NIL NIL) (-381 929332 933501 934131 "FLOAT" 935235 T FLOAT (NIL) -8 NIL NIL) (-380 926770 927270 927848 "FLOATCP" 928799 NIL FLOATCP (NIL T) -7 NIL NIL) (-379 925555 926403 926445 "FLINEXP" 926450 NIL FLINEXP (NIL T) -9 NIL 926542) (-378 924709 924944 925272 "FLINEXP-" 925277 NIL FLINEXP- (NIL T T) -8 NIL NIL) (-377 923785 923929 924153 "FLASORT" 924561 NIL FLASORT (NIL T T) -7 NIL NIL) (-376 921001 921843 921896 "FLALG" 923123 NIL FLALG (NIL T T) -9 NIL 923590) (-375 914820 918514 918556 "FLAGG" 919818 NIL FLAGG (NIL T) -9 NIL 920466) (-374 913546 913885 914375 "FLAGG-" 914380 NIL FLAGG- (NIL T T) -8 NIL NIL) (-373 912588 912731 912958 "FLAGG2" 913399 NIL FLAGG2 (NIL T T T T) -7 NIL NIL) (-372 909559 910577 910637 "FINRALG" 911765 NIL FINRALG (NIL T T) -9 NIL 912270) (-371 908719 908948 909287 "FINRALG-" 909292 NIL FINRALG- (NIL T T T) -8 NIL NIL) (-370 908124 908337 908366 "FINITE" 908562 T FINITE (NIL) -9 NIL 908669) (-369 900582 902743 902784 "FINAALG" 906451 NIL FINAALG (NIL T) -9 NIL 907903) (-368 895922 896964 898108 "FINAALG-" 899487 NIL FINAALG- (NIL T T) -8 NIL NIL) (-367 895292 895677 895780 "FILE" 895852 NIL FILE (NIL T) -8 NIL NIL) (-366 893832 894169 894224 "FILECAT" 895002 NIL FILECAT (NIL T T) -9 NIL 895242) (-365 891642 893198 893227 "FIELD" 893267 T FIELD (NIL) -9 NIL 893347) (-364 890262 890647 891158 "FIELD-" 891163 NIL FIELD- (NIL T) -8 NIL NIL) (-363 888075 888897 889244 "FGROUP" 889948 NIL FGROUP (NIL T) -8 NIL NIL) (-362 887165 887329 887549 "FGLMICPK" 887907 NIL FGLMICPK (NIL T NIL) -7 NIL NIL) (-361 882967 887090 887147 "FFX" 887152 NIL FFX (NIL T NIL) -8 NIL NIL) (-360 882507 882574 882696 "FFSQFR" 882895 NIL FFSQFR (NIL T T) -7 NIL NIL) (-359 882108 882169 882304 "FFSLPE" 882440 NIL FFSLPE (NIL T T T) -7 NIL NIL) (-358 878104 878880 879676 "FFPOLY" 881344 NIL FFPOLY (NIL T) -7 NIL NIL) (-357 877608 877644 877853 "FFPOLY2" 878062 NIL FFPOLY2 (NIL T T) -7 NIL NIL) (-356 873430 877527 877590 "FFP" 877595 NIL FFP (NIL T NIL) -8 NIL NIL) (-355 868798 873341 873405 "FF" 873410 NIL FF (NIL NIL NIL) -8 NIL NIL) (-354 863894 868141 868331 "FFNBX" 868652 NIL FFNBX (NIL T NIL) -8 NIL NIL) (-353 858804 863029 863287 "FFNBP" 863748 NIL FFNBP (NIL T NIL) -8 NIL NIL) (-352 853407 858088 858299 "FFNB" 858637 NIL FFNB (NIL NIL NIL) -8 NIL NIL) (-351 852239 852437 852752 "FFINTBAS" 853204 NIL FFINTBAS (NIL T T T) -7 NIL NIL) (-350 848415 850650 850679 "FFIELDC" 851299 T FFIELDC (NIL) -9 NIL 851675) (-349 847078 847448 847945 "FFIELDC-" 847950 NIL FFIELDC- (NIL T) -8 NIL NIL) (-348 846648 846693 846817 "FFHOM" 847020 NIL FFHOM (NIL T T T) -7 NIL NIL) (-347 844346 844830 845347 "FFF" 846163 NIL FFF (NIL T) -7 NIL NIL) (-346 840042 840807 841651 "FFFG" 843570 NIL FFFG (NIL T T) -7 NIL NIL) (-345 838768 838977 839299 "FFFGF" 839820 NIL FFFGF (NIL T T T) -7 NIL NIL) (-344 837519 837716 837964 "FFFACTSE" 838570 NIL FFFACTSE (NIL T T) -7 NIL NIL) (-343 833107 837261 837362 "FFCGX" 837462 NIL FFCGX (NIL T NIL) -8 NIL NIL) (-342 828709 832839 832946 "FFCGP" 833050 NIL FFCGP (NIL T NIL) -8 NIL NIL) (-341 823862 828436 828544 "FFCG" 828645 NIL FFCG (NIL NIL NIL) -8 NIL NIL) (-340 805651 814773 814860 "FFCAT" 820025 NIL FFCAT (NIL T T T) -9 NIL 821510) (-339 800849 801896 803210 "FFCAT-" 804440 NIL FFCAT- (NIL T T T T) -8 NIL NIL) (-338 800260 800303 800538 "FFCAT2" 800800 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-337 789430 793236 794454 "FEXPR" 799114 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL) (-336 788432 788867 788909 "FEVALAB" 788993 NIL FEVALAB (NIL T) -9 NIL 789251) (-335 787591 787801 788139 "FEVALAB-" 788144 NIL FEVALAB- (NIL T T) -8 NIL NIL) (-334 786184 786974 787177 "FDIV" 787490 NIL FDIV (NIL T T T T) -8 NIL NIL) (-333 783249 783964 784080 "FDIVCAT" 785648 NIL FDIVCAT (NIL T T T T) -9 NIL 786085) (-332 783011 783038 783208 "FDIVCAT-" 783213 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL) (-331 782231 782318 782595 "FDIV2" 782918 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL) (-330 780917 781176 781465 "FCPAK1" 781962 T FCPAK1 (NIL) -7 NIL NIL) (-329 780045 780417 780558 "FCOMP" 780808 NIL FCOMP (NIL T) -8 NIL NIL) (-328 763673 767088 770651 "FC" 776502 T FC (NIL) -8 NIL NIL) (-327 756217 760260 760301 "FAXF" 762103 NIL FAXF (NIL T) -9 NIL 762794) (-326 753497 754151 754976 "FAXF-" 755441 NIL FAXF- (NIL T T) -8 NIL NIL) (-325 748603 752873 753049 "FARRAY" 753354 NIL FARRAY (NIL T) -8 NIL NIL) (-324 743921 745997 746051 "FAMR" 747074 NIL FAMR (NIL T T) -9 NIL 747531) (-323 742811 743113 743548 "FAMR-" 743553 NIL FAMR- (NIL T T T) -8 NIL NIL) (-322 742399 742442 742593 "FAMR2" 742762 NIL FAMR2 (NIL T T T T T) -7 NIL NIL) (-321 741595 742321 742374 "FAMONOID" 742379 NIL FAMONOID (NIL T) -8 NIL NIL) (-320 739425 740109 740163 "FAMONC" 741104 NIL FAMONC (NIL T T) -9 NIL 741489) (-319 738119 739181 739317 "FAGROUP" 739322 NIL FAGROUP (NIL T) -8 NIL NIL) (-318 735914 736233 736636 "FACUTIL" 737800 NIL FACUTIL (NIL T T T T) -7 NIL NIL) (-317 735330 735439 735585 "FACTRN" 735800 NIL FACTRN (NIL T) -7 NIL NIL) (-316 734429 734614 734836 "FACTFUNC" 735140 NIL FACTFUNC (NIL T) -7 NIL NIL) (-315 733845 733954 734100 "FACTEXT" 734315 NIL FACTEXT (NIL T) -7 NIL NIL) (-314 726165 733096 733308 "EXPUPXS" 733701 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL) (-313 723648 724188 724774 "EXPRTUBE" 725599 T EXPRTUBE (NIL) -7 NIL NIL) (-312 722819 722914 723134 "EXPRSOL" 723548 NIL EXPRSOL (NIL T T T T) -7 NIL NIL) (-311 719013 719605 720342 "EXPRODE" 722158 NIL EXPRODE (NIL T T) -7 NIL NIL) (-310 704114 717674 718099 "EXPR" 718620 NIL EXPR (NIL T) -8 NIL NIL) (-309 698521 699108 699921 "EXPR2UPS" 703412 NIL EXPR2UPS (NIL T T) -7 NIL NIL) (-308 698157 698214 698321 "EXPR2" 698458 NIL EXPR2 (NIL T T) -7 NIL NIL) (-307 689497 697289 697586 "EXPEXPAN" 697994 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL) (-306 689209 689260 689337 "EXP3D" 689440 T EXP3D (NIL) -7 NIL NIL) (-305 689036 689166 689195 "EXIT" 689200 T EXIT (NIL) -8 NIL NIL) (-304 688663 688725 688838 "EVALCYC" 688968 NIL EVALCYC (NIL T) -7 NIL NIL) (-303 688205 688321 688363 "EVALAB" 688533 NIL EVALAB (NIL T) -9 NIL 688637) (-302 687686 687808 688029 "EVALAB-" 688034 NIL EVALAB- (NIL T T) -8 NIL NIL) (-301 685144 686456 686485 "EUCDOM" 687040 T EUCDOM (NIL) -9 NIL 687390) (-300 683549 683991 684581 "EUCDOM-" 684586 NIL EUCDOM- (NIL T) -8 NIL NIL) (-299 671089 673847 676597 "ESTOOLS" 680819 T ESTOOLS (NIL) -7 NIL NIL) (-298 670721 670778 670887 "ESTOOLS2" 671026 NIL ESTOOLS2 (NIL T T) -7 NIL NIL) (-297 670472 670514 670594 "ESTOOLS1" 670673 NIL ESTOOLS1 (NIL T) -7 NIL NIL) (-296 664398 666126 666155 "ES" 668923 T ES (NIL) -9 NIL 670330) (-295 659346 660632 662449 "ES-" 662613 NIL ES- (NIL T) -8 NIL NIL) (-294 655721 656481 657261 "ESCONT" 658586 T ESCONT (NIL) -7 NIL NIL) (-293 655466 655498 655580 "ESCONT1" 655683 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL) (-292 655141 655191 655291 "ES2" 655410 NIL ES2 (NIL T T) -7 NIL NIL) (-291 654771 654829 654938 "ES1" 655077 NIL ES1 (NIL T T) -7 NIL NIL) (-290 653987 654116 654292 "ERROR" 654615 T ERROR (NIL) -7 NIL NIL) (-289 647502 653846 653937 "EQTBL" 653942 NIL EQTBL (NIL T T) -8 NIL NIL) (-288 639961 642844 644279 "EQ" 646100 NIL -2993 (NIL T) -8 NIL NIL) (-287 639593 639650 639759 "EQ2" 639898 NIL EQ2 (NIL T T) -7 NIL NIL) (-286 634885 635931 637024 "EP" 638532 NIL EP (NIL T) -7 NIL NIL) (-285 634039 634603 634632 "ENTIRER" 634637 T ENTIRER (NIL) -9 NIL 634683) (-284 630495 631994 632364 "EMR" 633838 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL) (-283 629641 629824 629879 "ELTAGG" 630259 NIL ELTAGG (NIL T T) -9 NIL 630469) (-282 629360 629422 629563 "ELTAGG-" 629568 NIL ELTAGG- (NIL T T T) -8 NIL NIL) (-281 629148 629177 629232 "ELTAB" 629316 NIL ELTAB (NIL T T) -9 NIL NIL) (-280 628274 628420 628619 "ELFUTS" 628999 NIL ELFUTS (NIL T T) -7 NIL NIL) (-279 628015 628071 628100 "ELEMFUN" 628205 T ELEMFUN (NIL) -9 NIL NIL) (-278 627885 627906 627974 "ELEMFUN-" 627979 NIL ELEMFUN- (NIL T) -8 NIL NIL) (-277 622815 626018 626060 "ELAGG" 627000 NIL ELAGG (NIL T) -9 NIL 627461) (-276 621100 621534 622197 "ELAGG-" 622202 NIL ELAGG- (NIL T T) -8 NIL NIL) (-275 613970 615769 616595 "EFUPXS" 620377 NIL EFUPXS (NIL T T T T) -8 NIL NIL) (-274 607422 609223 610032 "EFULS" 613247 NIL EFULS (NIL T T T) -8 NIL NIL) (-273 604844 605202 605681 "EFSTRUC" 607054 NIL EFSTRUC (NIL T T) -7 NIL NIL) (-272 593856 595421 596982 "EF" 603359 NIL EF (NIL T T) -7 NIL NIL) (-271 592957 593341 593490 "EAB" 593727 T EAB (NIL) -8 NIL NIL) (-270 592166 592916 592944 "E04UCFA" 592949 T E04UCFA (NIL) -8 NIL NIL) (-269 591375 592125 592153 "E04NAFA" 592158 T E04NAFA (NIL) -8 NIL NIL) (-268 590584 591334 591362 "E04MBFA" 591367 T E04MBFA (NIL) -8 NIL NIL) (-267 589793 590543 590571 "E04JAFA" 590576 T E04JAFA (NIL) -8 NIL NIL) (-266 589004 589752 589780 "E04GCFA" 589785 T E04GCFA (NIL) -8 NIL NIL) (-265 588215 588963 588991 "E04FDFA" 588996 T E04FDFA (NIL) -8 NIL NIL) (-264 587424 588174 588202 "E04DGFA" 588207 T E04DGFA (NIL) -8 NIL NIL) (-263 581603 582949 584313 "E04AGNT" 586080 T E04AGNT (NIL) -7 NIL NIL) (-262 580326 580806 580847 "DVARCAT" 581322 NIL DVARCAT (NIL T) -9 NIL 581521) (-261 579530 579742 580056 "DVARCAT-" 580061 NIL DVARCAT- (NIL T T) -8 NIL NIL) (-260 572499 572981 573730 "DTP" 579061 NIL DTP (NIL T NIL T T T T T T T T T) -7 NIL NIL) (-259 569948 571921 572078 "DSTREE" 572375 NIL DSTREE (NIL T) -8 NIL NIL) (-258 567417 569262 569304 "DSTRCAT" 569523 NIL DSTRCAT (NIL T) -9 NIL 569657) (-257 560271 567216 567345 "DSMP" 567350 NIL DSMP (NIL T T T) -8 NIL NIL) (-256 555081 556216 557284 "DROPT" 559223 T DROPT (NIL) -8 NIL NIL) (-255 554746 554805 554903 "DROPT1" 555016 NIL DROPT1 (NIL T) -7 NIL NIL) (-254 549861 550987 552124 "DROPT0" 553629 T DROPT0 (NIL) -7 NIL NIL) (-253 548206 548531 548917 "DRAWPT" 549495 T DRAWPT (NIL) -7 NIL NIL) (-252 542793 543716 544795 "DRAW" 547180 NIL DRAW (NIL T) -7 NIL NIL) (-251 542426 542479 542597 "DRAWHACK" 542734 NIL DRAWHACK (NIL T) -7 NIL NIL) (-250 541157 541426 541717 "DRAWCX" 542155 T DRAWCX (NIL) -7 NIL NIL) (-249 540673 540741 540892 "DRAWCURV" 541083 NIL DRAWCURV (NIL T T) -7 NIL NIL) (-248 531145 533103 535218 "DRAWCFUN" 538578 T DRAWCFUN (NIL) -7 NIL NIL) (-247 527998 529874 529916 "DQAGG" 530545 NIL DQAGG (NIL T) -9 NIL 530818) (-246 516426 523167 523251 "DPOLCAT" 525103 NIL DPOLCAT (NIL T T T T) -9 NIL 525647) (-245 511265 512611 514569 "DPOLCAT-" 514574 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL) (-244 504004 511126 511224 "DPMO" 511229 NIL DPMO (NIL NIL T T) -8 NIL NIL) (-243 496646 503784 503951 "DPMM" 503956 NIL DPMM (NIL NIL T T T) -8 NIL NIL) (-242 490351 496281 496433 "DMP" 496547 NIL DMP (NIL NIL T) -8 NIL NIL) (-241 489951 490007 490151 "DLP" 490289 NIL DLP (NIL T) -7 NIL NIL) (-240 483601 489052 489279 "DLIST" 489756 NIL DLIST (NIL T) -8 NIL NIL) (-239 480486 482489 482531 "DLAGG" 483081 NIL DLAGG (NIL T) -9 NIL 483310) (-238 479143 479835 479864 "DIVRING" 480014 T DIVRING (NIL) -9 NIL 480122) (-237 478131 478384 478777 "DIVRING-" 478782 NIL DIVRING- (NIL T) -8 NIL NIL) (-236 476559 477724 477860 "DIV" 478028 NIL DIV (NIL T) -8 NIL NIL) (-235 474053 475121 475163 "DIVCAT" 475997 NIL DIVCAT (NIL T) -9 NIL 476328) (-234 472155 472512 472918 "DISPLAY" 473667 T DISPLAY (NIL) -7 NIL NIL) (-233 469648 470861 471243 "DIRRING" 471806 NIL DIRRING (NIL T) -8 NIL NIL) (-232 463508 469562 469625 "DIRPROD" 469630 NIL DIRPROD (NIL NIL T) -8 NIL NIL) (-231 462356 462559 462824 "DIRPROD2" 463301 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL) (-230 451920 457949 458003 "DIRPCAT" 458261 NIL DIRPCAT (NIL NIL T) -9 NIL 459105) (-229 449246 449888 450769 "DIRPCAT-" 451106 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL) (-228 448533 448693 448879 "DIOSP" 449080 T DIOSP (NIL) -7 NIL NIL) (-227 445276 447480 447522 "DIOPS" 447956 NIL DIOPS (NIL T) -9 NIL 448184) (-226 444825 444939 445130 "DIOPS-" 445135 NIL DIOPS- (NIL T T) -8 NIL NIL) (-225 443692 444330 444359 "DIFRING" 444546 T DIFRING (NIL) -9 NIL 444656) (-224 443338 443415 443567 "DIFRING-" 443572 NIL DIFRING- (NIL T) -8 NIL NIL) (-223 441120 442402 442444 "DIFEXT" 442807 NIL DIFEXT (NIL T) -9 NIL 443099) (-222 439405 439833 440499 "DIFEXT-" 440504 NIL DIFEXT- (NIL T T) -8 NIL NIL) (-221 436767 438971 439013 "DIAGG" 439018 NIL DIAGG (NIL T) -9 NIL 439038) (-220 436151 436308 436560 "DIAGG-" 436565 NIL DIAGG- (NIL T T) -8 NIL NIL) (-219 431521 435110 435387 "DHMATRIX" 435920 NIL DHMATRIX (NIL T) -8 NIL NIL) (-218 426732 431335 431409 "DFVEC" 431467 T DFVEC (NIL) -8 NIL NIL) (-217 420616 421905 423286 "DFSFUN" 425371 T DFSFUN (NIL) -7 NIL NIL) (-216 416877 420387 420481 "DFMAT" 420542 T DFMAT (NIL) -8 NIL NIL) (-215 411154 415331 415764 "DFLOAT" 416464 T DFLOAT (NIL) -8 NIL NIL) (-214 409382 409663 410059 "DFINTTLS" 410862 NIL DFINTTLS (NIL T T) -7 NIL NIL) (-213 406401 407403 407803 "DERHAM" 409048 NIL DERHAM (NIL T NIL) -8 NIL NIL) (-212 398014 399931 401366 "DEQUEUE" 404999 NIL DEQUEUE (NIL T) -8 NIL NIL) (-211 397229 397362 397558 "DEGRED" 397876 NIL DEGRED (NIL T T) -7 NIL NIL) (-210 393624 394369 395222 "DEFINTRF" 396457 NIL DEFINTRF (NIL T) -7 NIL NIL) (-209 391151 391620 392219 "DEFINTEF" 393143 NIL DEFINTEF (NIL T T) -7 NIL NIL) (-208 384969 390589 390756 "DECIMAL" 391004 T DECIMAL (NIL) -8 NIL NIL) (-207 382481 382939 383445 "DDFACT" 384513 NIL DDFACT (NIL T T) -7 NIL NIL) (-206 382077 382120 382271 "DBLRESP" 382432 NIL DBLRESP (NIL T T T T) -7 NIL NIL) (-205 379787 380121 380490 "DBASE" 381835 NIL DBASE (NIL T) -8 NIL NIL) (-204 378920 379746 379774 "D03FAFA" 379779 T D03FAFA (NIL) -8 NIL NIL) (-203 378054 378879 378907 "D03EEFA" 378912 T D03EEFA (NIL) -8 NIL NIL) (-202 376004 376470 376959 "D03AGNT" 377585 T D03AGNT (NIL) -7 NIL NIL) (-201 375320 375963 375991 "D02EJFA" 375996 T D02EJFA (NIL) -8 NIL NIL) (-200 374636 375279 375307 "D02CJFA" 375312 T D02CJFA (NIL) -8 NIL NIL) (-199 373952 374595 374623 "D02BHFA" 374628 T D02BHFA (NIL) -8 NIL NIL) (-198 373268 373911 373939 "D02BBFA" 373944 T D02BBFA (NIL) -8 NIL NIL) (-197 366467 368054 369660 "D02AGNT" 371682 T D02AGNT (NIL) -7 NIL NIL) (-196 364236 364758 365304 "D01WGTS" 365941 T D01WGTS (NIL) -7 NIL NIL) (-195 363331 364195 364223 "D01TRNS" 364228 T D01TRNS (NIL) -8 NIL NIL) (-194 362426 363290 363318 "D01GBFA" 363323 T D01GBFA (NIL) -8 NIL NIL) (-193 361521 362385 362413 "D01FCFA" 362418 T D01FCFA (NIL) -8 NIL NIL) (-192 360616 361480 361508 "D01ASFA" 361513 T D01ASFA (NIL) -8 NIL NIL) (-191 359711 360575 360603 "D01AQFA" 360608 T D01AQFA (NIL) -8 NIL NIL) (-190 358806 359670 359698 "D01APFA" 359703 T D01APFA (NIL) -8 NIL NIL) (-189 357901 358765 358793 "D01ANFA" 358798 T D01ANFA (NIL) -8 NIL NIL) (-188 356996 357860 357888 "D01AMFA" 357893 T D01AMFA (NIL) -8 NIL NIL) (-187 356091 356955 356983 "D01ALFA" 356988 T D01ALFA (NIL) -8 NIL NIL) (-186 355186 356050 356078 "D01AKFA" 356083 T D01AKFA (NIL) -8 NIL NIL) (-185 354281 355145 355173 "D01AJFA" 355178 T D01AJFA (NIL) -8 NIL NIL) (-184 347578 349129 350690 "D01AGNT" 352740 T D01AGNT (NIL) -7 NIL NIL) (-183 346915 347043 347195 "CYCLOTOM" 347446 T CYCLOTOM (NIL) -7 NIL NIL) (-182 343650 344363 345090 "CYCLES" 346208 T CYCLES (NIL) -7 NIL NIL) (-181 342962 343096 343267 "CVMP" 343511 NIL CVMP (NIL T) -7 NIL NIL) (-180 340734 340991 341367 "CTRIGMNP" 342690 NIL CTRIGMNP (NIL T T) -7 NIL NIL) (-179 340108 340207 340360 "CSTTOOLS" 340631 NIL CSTTOOLS (NIL T T) -7 NIL NIL) (-178 335907 336564 337322 "CRFP" 339420 NIL CRFP (NIL T T) -7 NIL NIL) (-177 334954 335139 335367 "CRAPACK" 335711 NIL CRAPACK (NIL T) -7 NIL NIL) (-176 334340 334441 334644 "CPMATCH" 334831 NIL CPMATCH (NIL T T T) -7 NIL NIL) (-175 334065 334093 334199 "CPIMA" 334306 NIL CPIMA (NIL T T T) -7 NIL NIL) (-174 330413 331085 331804 "COORDSYS" 333400 NIL COORDSYS (NIL T) -7 NIL NIL) (-173 326274 328416 328908 "CONTFRAC" 329953 NIL CONTFRAC (NIL T) -8 NIL NIL) (-172 325422 325986 326015 "COMRING" 326020 T COMRING (NIL) -9 NIL 326072) (-171 324503 324780 324964 "COMPPROP" 325258 T COMPPROP (NIL) -8 NIL NIL) (-170 324164 324199 324327 "COMPLPAT" 324462 NIL COMPLPAT (NIL T T T) -7 NIL NIL) (-169 314135 323975 324083 "COMPLEX" 324088 NIL COMPLEX (NIL T) -8 NIL NIL) (-168 313771 313828 313935 "COMPLEX2" 314072 NIL COMPLEX2 (NIL T T) -7 NIL NIL) (-167 313489 313524 313622 "COMPFACT" 313730 NIL COMPFACT (NIL T T) -7 NIL NIL) (-166 297741 308041 308082 "COMPCAT" 309086 NIL COMPCAT (NIL T) -9 NIL 310467) (-165 287257 290180 293807 "COMPCAT-" 294163 NIL COMPCAT- (NIL T T) -8 NIL NIL) (-164 286986 287014 287117 "COMMUPC" 287223 NIL COMMUPC (NIL T T T) -7 NIL NIL) (-163 286781 286814 286873 "COMMONOP" 286947 T COMMONOP (NIL) -7 NIL NIL) (-162 286364 286532 286619 "COMM" 286714 T COMM (NIL) -8 NIL NIL) (-161 285612 285806 285835 "COMBOPC" 286173 T COMBOPC (NIL) -9 NIL 286348) (-160 284508 284718 284960 "COMBINAT" 285402 NIL COMBINAT (NIL T) -7 NIL NIL) (-159 280706 281279 281919 "COMBF" 283930 NIL COMBF (NIL T T) -7 NIL NIL) (-158 279492 279822 280057 "COLOR" 280491 T COLOR (NIL) -8 NIL NIL) (-157 279132 279179 279304 "CMPLXRT" 279439 NIL CMPLXRT (NIL T T) -7 NIL NIL) (-156 274634 275662 276742 "CLIP" 278072 T CLIP (NIL) -7 NIL NIL) (-155 272970 273740 273979 "CLIF" 274461 NIL CLIF (NIL NIL T NIL) -8 NIL NIL) (-154 269235 271153 271195 "CLAGG" 272124 NIL CLAGG (NIL T) -9 NIL 272657) (-153 267657 268114 268697 "CLAGG-" 268702 NIL CLAGG- (NIL T T) -8 NIL NIL) (-152 267201 267286 267426 "CINTSLPE" 267566 NIL CINTSLPE (NIL T T) -7 NIL NIL) (-151 264702 265173 265721 "CHVAR" 266729 NIL CHVAR (NIL T T T) -7 NIL NIL) (-150 263920 264484 264513 "CHARZ" 264518 T CHARZ (NIL) -9 NIL 264533) (-149 263674 263714 263792 "CHARPOL" 263874 NIL CHARPOL (NIL T) -7 NIL NIL) (-148 262776 263373 263402 "CHARNZ" 263449 T CHARNZ (NIL) -9 NIL 263505) (-147 260799 261466 261801 "CHAR" 262461 T CHAR (NIL) -8 NIL NIL) (-146 260524 260585 260614 "CFCAT" 260725 T CFCAT (NIL) -9 NIL NIL) (-145 254657 260181 260299 "CDFVEC" 260426 T CDFVEC (NIL) -8 NIL NIL) (-144 250372 254414 254515 "CDFMAT" 254576 T CDFMAT (NIL) -8 NIL NIL) (-143 249617 249728 249910 "CDEN" 250256 NIL CDEN (NIL T T T) -7 NIL NIL) (-142 245609 248770 249050 "CCLASS" 249357 T CCLASS (NIL) -8 NIL NIL) (-141 240662 241638 242391 "CARTEN" 244912 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL) (-140 239770 239918 240139 "CARTEN2" 240509 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL) (-139 238065 238920 239177 "CARD" 239533 T CARD (NIL) -8 NIL NIL) (-138 237436 237764 237793 "CACHSET" 237925 T CACHSET (NIL) -9 NIL 238002) (-137 236931 237227 237256 "CABMON" 237306 T CABMON (NIL) -9 NIL 237362) (-136 234494 236623 236730 "BTREE" 236857 NIL BTREE (NIL T) -8 NIL NIL) (-135 231998 234142 234264 "BTOURN" 234404 NIL BTOURN (NIL T) -8 NIL NIL) (-134 229455 231502 231544 "BTCAT" 231612 NIL BTCAT (NIL T) -9 NIL 231689) (-133 229122 229202 229351 "BTCAT-" 229356 NIL BTCAT- (NIL T T) -8 NIL NIL) (-132 224312 228182 228211 "BTAGG" 228467 T BTAGG (NIL) -9 NIL 228646) (-131 223735 223879 224109 "BTAGG-" 224114 NIL BTAGG- (NIL T) -8 NIL NIL) (-130 220785 223013 223228 "BSTREE" 223552 NIL BSTREE (NIL T) -8 NIL NIL) (-129 219923 220049 220233 "BRILL" 220641 NIL BRILL (NIL T) -7 NIL NIL) (-128 216663 218684 218726 "BRAGG" 219375 NIL BRAGG (NIL T) -9 NIL 219632) (-127 215192 215598 216153 "BRAGG-" 216158 NIL BRAGG- (NIL T T) -8 NIL NIL) (-126 208391 214538 214722 "BPADICRT" 215040 NIL BPADICRT (NIL NIL) -8 NIL NIL) (-125 206695 208328 208373 "BPADIC" 208378 NIL BPADIC (NIL NIL) -8 NIL NIL) (-124 206393 206423 206537 "BOUNDZRO" 206659 NIL BOUNDZRO (NIL T T) -7 NIL NIL) (-123 201908 202999 203866 "BOP" 205546 T BOP (NIL) -8 NIL NIL) (-122 199531 199975 200494 "BOP1" 201422 NIL BOP1 (NIL T) -7 NIL NIL) (-121 197884 198574 198868 "BOOLEAN" 199257 T BOOLEAN (NIL) -8 NIL NIL) (-120 197245 197623 197678 "BMODULE" 197683 NIL BMODULE (NIL T T) -9 NIL 197748) (-119 193588 194258 195044 "BLUPPACK" 196577 NIL BLUPPACK (NIL T NIL T T T) -7 NIL NIL) (-118 192980 193465 193534 "BLQT" 193539 T BLQT (NIL) -8 NIL NIL) (-117 191409 191884 191913 "BLMETCT" 192558 T BLMETCT (NIL) -9 NIL 192930) (-116 190808 191290 191357 "BLHN" 191362 T BLHN (NIL) -8 NIL NIL) (-115 189626 189885 190168 "BLAS1" 190545 T BLAS1 (NIL) -7 NIL NIL) (-114 185436 189424 189497 "BITS" 189573 T BITS (NIL) -8 NIL NIL) (-113 184507 184968 185120 "BINFILE" 185304 T BINFILE (NIL) -8 NIL NIL) (-112 178329 183948 184114 "BINARY" 184361 T BINARY (NIL) -8 NIL NIL) (-111 176196 177618 177660 "BGAGG" 177920 NIL BGAGG (NIL T) -9 NIL 178057) (-110 176027 176059 176150 "BGAGG-" 176155 NIL BGAGG- (NIL T T) -8 NIL NIL) (-109 175125 175411 175616 "BFUNCT" 175842 T BFUNCT (NIL) -8 NIL NIL) (-108 173817 173995 174282 "BEZOUT" 174950 NIL BEZOUT (NIL T T T T T) -7 NIL NIL) (-107 172780 173002 173261 "BEZIER" 173591 NIL BEZIER (NIL T) -7 NIL NIL) (-106 169303 171632 171962 "BBTREE" 172483 NIL BBTREE (NIL T) -8 NIL NIL) (-105 169036 169089 169118 "BASTYPE" 169237 T BASTYPE (NIL) -9 NIL NIL) (-104 168889 168917 168990 "BASTYPE-" 168995 NIL BASTYPE- (NIL T) -8 NIL NIL) (-103 168323 168399 168551 "BALFACT" 168800 NIL BALFACT (NIL T T) -7 NIL NIL) (-102 167687 167810 167958 "AXSERV" 168195 T AXSERV (NIL) -7 NIL NIL) (-101 166500 167097 167285 "AUTOMOR" 167532 NIL AUTOMOR (NIL T) -8 NIL NIL) (-100 166212 166217 166246 "ATTREG" 166251 T ATTREG (NIL) -9 NIL NIL) (-99 164491 164909 165261 "ATTRBUT" 165878 T ATTRBUT (NIL) -8 NIL NIL) (-98 164026 164139 164166 "ATRIG" 164367 T ATRIG (NIL) -9 NIL NIL) (-97 163835 163876 163963 "ATRIG-" 163968 NIL ATRIG- (NIL T) -8 NIL NIL) (-96 157395 158964 160075 "ASTACK" 162755 NIL ASTACK (NIL T) -8 NIL NIL) (-95 155902 156199 156563 "ASSOCEQ" 157078 NIL ASSOCEQ (NIL T T) -7 NIL NIL) (-94 154934 155561 155685 "ASP9" 155809 NIL ASP9 (NIL NIL) -8 NIL NIL) (-93 154698 154882 154921 "ASP8" 154926 NIL ASP8 (NIL NIL) -8 NIL NIL) (-92 153568 154303 154445 "ASP80" 154587 NIL ASP80 (NIL NIL) -8 NIL NIL) (-91 152467 153203 153335 "ASP7" 153467 NIL ASP7 (NIL NIL) -8 NIL NIL) (-90 151423 152144 152262 "ASP78" 152380 NIL ASP78 (NIL NIL) -8 NIL NIL) (-89 150394 151103 151220 "ASP77" 151337 NIL ASP77 (NIL NIL) -8 NIL NIL) (-88 149309 150032 150163 "ASP74" 150294 NIL ASP74 (NIL NIL) -8 NIL NIL) (-87 148210 148944 149076 "ASP73" 149208 NIL ASP73 (NIL NIL) -8 NIL NIL) (-86 147165 147887 148005 "ASP6" 148123 NIL ASP6 (NIL NIL) -8 NIL NIL) (-85 146114 146842 146960 "ASP55" 147078 NIL ASP55 (NIL NIL) -8 NIL NIL) (-84 145064 145788 145907 "ASP50" 146026 NIL ASP50 (NIL NIL) -8 NIL NIL) (-83 144152 144765 144875 "ASP4" 144985 NIL ASP4 (NIL NIL) -8 NIL NIL) (-82 143240 143853 143963 "ASP49" 144073 NIL ASP49 (NIL NIL) -8 NIL NIL) (-81 142025 142779 142947 "ASP42" 143129 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL) (-80 140803 141558 141728 "ASP41" 141912 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL) (-79 139755 140480 140598 "ASP35" 140716 NIL ASP35 (NIL NIL) -8 NIL NIL) (-78 139520 139703 139742 "ASP34" 139747 NIL ASP34 (NIL NIL) -8 NIL NIL) (-77 139257 139324 139400 "ASP33" 139475 NIL ASP33 (NIL NIL) -8 NIL NIL) (-76 138153 138892 139024 "ASP31" 139156 NIL ASP31 (NIL NIL) -8 NIL NIL) (-75 137918 138101 138140 "ASP30" 138145 NIL ASP30 (NIL NIL) -8 NIL NIL) (-74 137653 137722 137798 "ASP29" 137873 NIL ASP29 (NIL NIL) -8 NIL NIL) (-73 137418 137601 137640 "ASP28" 137645 NIL ASP28 (NIL NIL) -8 NIL NIL) (-72 137183 137366 137405 "ASP27" 137410 NIL ASP27 (NIL NIL) -8 NIL NIL) (-71 136267 136881 136992 "ASP24" 137103 NIL ASP24 (NIL NIL) -8 NIL NIL) (-70 135184 135908 136038 "ASP20" 136168 NIL ASP20 (NIL NIL) -8 NIL NIL) (-69 134272 134885 134995 "ASP1" 135105 NIL ASP1 (NIL NIL) -8 NIL NIL) (-68 133216 133946 134065 "ASP19" 134184 NIL ASP19 (NIL NIL) -8 NIL NIL) (-67 132953 133020 133096 "ASP12" 133171 NIL ASP12 (NIL NIL) -8 NIL NIL) (-66 131806 132552 132696 "ASP10" 132840 NIL ASP10 (NIL NIL) -8 NIL NIL) (-65 129711 131650 131741 "ARRAY2" 131746 NIL ARRAY2 (NIL T) -8 NIL NIL) (-64 125533 129359 129473 "ARRAY1" 129628 NIL ARRAY1 (NIL T) -8 NIL NIL) (-63 124565 124738 124959 "ARRAY12" 125356 NIL ARRAY12 (NIL T T) -7 NIL NIL) (-62 118964 120829 120905 "ARR2CAT" 123535 NIL ARR2CAT (NIL T T T) -9 NIL 124293) (-61 116398 117142 118096 "ARR2CAT-" 118101 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL) (-60 115146 115298 115604 "APPRULE" 116234 NIL APPRULE (NIL T T T) -7 NIL NIL) (-59 114797 114845 114964 "APPLYORE" 115092 NIL APPLYORE (NIL T T T) -7 NIL NIL) (-58 114321 114409 114519 "API" 114705 T API (NIL) -7 NIL NIL) (-57 113295 113586 113781 "ANY" 114144 T ANY (NIL) -8 NIL NIL) (-56 112573 112696 112853 "ANY1" 113169 NIL ANY1 (NIL T) -7 NIL NIL) (-55 110092 111010 111337 "ANTISYM" 112297 NIL ANTISYM (NIL T NIL) -8 NIL NIL) (-54 109919 110051 110078 "ANON" 110083 T ANON (NIL) -8 NIL NIL) (-53 103986 108458 108912 "AN" 109483 T AN (NIL) -8 NIL NIL) (-52 100281 101679 101731 "AMR" 102479 NIL AMR (NIL T T) -9 NIL 103073) (-51 99393 99614 99977 "AMR-" 99982 NIL AMR- (NIL T T T) -8 NIL NIL) (-50 83955 99310 99371 "ALIST" 99376 NIL ALIST (NIL T T) -8 NIL NIL) (-49 80792 83549 83718 "ALGSC" 83873 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL) (-48 77350 77904 78510 "ALGPKG" 80233 NIL ALGPKG (NIL T T) -7 NIL NIL) (-47 76627 76728 76912 "ALGMFACT" 77236 NIL ALGMFACT (NIL T T T) -7 NIL NIL) (-46 72375 73059 73710 "ALGMANIP" 76154 NIL ALGMANIP (NIL T T) -7 NIL NIL) (-45 63689 72001 72151 "ALGFF" 72308 NIL ALGFF (NIL T T T NIL) -8 NIL NIL) (-44 62885 63016 63195 "ALGFACT" 63547 NIL ALGFACT (NIL T) -7 NIL NIL) (-43 61870 62480 62519 "ALGEBRA" 62579 NIL ALGEBRA (NIL T) -9 NIL 62638) (-42 61588 61647 61779 "ALGEBRA-" 61784 NIL ALGEBRA- (NIL T T) -8 NIL NIL) (-41 43395 59120 59173 "ALAGG" 59309 NIL ALAGG (NIL T T) -9 NIL 59470) (-40 42930 43043 43070 "AHYP" 43271 T AHYP (NIL) -9 NIL NIL) (-39 41861 42109 42136 "AGG" 42635 T AGG (NIL) -9 NIL 42913) (-38 41295 41457 41671 "AGG-" 41676 NIL AGG- (NIL T) -8 NIL NIL) (-37 38844 39425 39464 "AFSPCAT" 40736 NIL AFSPCAT (NIL T) -9 NIL 41231) (-36 36523 36945 37362 "AF" 38487 NIL AF (NIL T T) -7 NIL NIL) (-35 35863 36452 36506 "AFFSP" 36511 NIL AFFSP (NIL NIL T) -8 NIL NIL) (-34 35120 35790 35839 "AFFPLPS" 35844 NIL AFFPLPS (NIL T) -8 NIL NIL) (-33 34454 35061 35103 "AFFPL" 35108 NIL AFFPL (NIL T) -8 NIL NIL) (-32 31167 31654 32282 "AFALGRES" 33959 NIL AFALGRES (NIL T NIL T T T) -7 NIL NIL) (-31 29813 29990 30304 "AFALGGRO" 30986 NIL AFALGGRO (NIL T NIL T T T) -7 NIL NIL) (-30 29082 29340 29496 "ACPLOT" 29675 T ACPLOT (NIL) -8 NIL NIL) (-29 18442 26425 26477 "ACFS" 27188 NIL ACFS (NIL T) -9 NIL 27427) (-28 16456 16946 17721 "ACFS-" 17726 NIL ACFS- (NIL T T) -8 NIL NIL) (-27 12669 14625 14652 "ACF" 15531 T ACF (NIL) -9 NIL 15944) (-26 11373 11707 12200 "ACF-" 12205 NIL ACF- (NIL T) -8 NIL NIL) (-25 10970 11139 11166 "ABELSG" 11258 T ABELSG (NIL) -9 NIL 11323) (-24 10837 10862 10928 "ABELSG-" 10933 NIL ABELSG- (NIL T) -8 NIL NIL) (-23 10205 10466 10493 "ABELMON" 10663 T ABELMON (NIL) -9 NIL 10775) (-22 9869 9953 10091 "ABELMON-" 10096 NIL ABELMON- (NIL T) -8 NIL NIL) (-21 9202 9548 9575 "ABELGRP" 9700 T ABELGRP (NIL) -9 NIL 9782) (-20 8665 8794 9010 "ABELGRP-" 9015 NIL ABELGRP- (NIL T) -8 NIL NIL) (-19 4333 8027 8067 "A1AGG" 8072 NIL A1AGG (NIL T) -9 NIL 8112) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL)) \ No newline at end of file diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase index e0fe1db..e804043 100644 --- a/src/share/algebra/operation.daase +++ b/src/share/algebra/operation.daase @@ -1,3221 +1,3227 @@ -(827688 . 3483827109) -(((*1 *2 *2 *3 *3) (-12 (-5 *3 (-1153)) (-4 *4 (-13 (-296) (-834) (-148) (-1029 (-560)) (-622 (-560)))) (-5 *1 (-606 *4 *2)) (-4 *2 (-13 (-1173) (-951) (-29 *4)))))) -(((*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1153)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-626 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-626 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2962 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1173) (-27) (-426 *8))) (-4 *8 (-13 (-447) (-834) (-148) (-1029 *3) (-622 *3))) (-5 *3 (-560)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3437 *4) (|:| |sol?| (-121)))) (-5 *1 (-1005 *8 *4))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-403 (-945 *3))) (-5 *1 (-448 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *3 (-170)) (-14 *4 (-909)) (-14 *5 (-626 (-1153))) (-14 *6 (-1236 (-671 *3)))))) -(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1149 *9)) (-5 *4 (-626 *7)) (-4 *7 (-834)) (-4 *9 (-942 *8 *6 *7)) (-4 *6 (-780)) (-4 *8 (-296)) (-5 *2 (-626 (-755))) (-5 *1 (-724 *6 *7 *8 *9)) (-5 *5 (-755))))) -(((*1 *2 *1) (-12 (-5 *2 (-1084 (-1084 *3))) (-5 *1 (-891 *3)) (-4 *3 (-1082))))) -(((*1 *2 *3) (-12 (-4 *4 (-1187)) (-5 *2 (-755)) (-5 *1 (-177 *4 *3)) (-4 *3 (-657 *4))))) -(((*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-121)) (-5 *1 (-362 *3 *4)) (-4 *3 (-363 *4)))) ((*1 *2) (-12 (-4 *1 (-363 *3)) (-4 *3 (-170)) (-5 *2 (-121))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-626 (-945 *3))) (-4 *3 (-447)) (-5 *1 (-356 *3 *4)) (-14 *4 (-626 (-1153))))) ((*1 *2 *2) (|partial| -12 (-5 *2 (-626 (-767 *3 (-844 *4)))) (-4 *3 (-447)) (-14 *4 (-626 (-1153))) (-5 *1 (-611 *3 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-1149 *7)) (-4 *7 (-942 *6 *4 *5)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1039)) (-5 *2 (-1149 *6)) (-5 *1 (-312 *4 *5 *6 *7))))) -(((*1 *2 *3) (-12 (-4 *4 (-834)) (-5 *2 (-2 (|:| |f1| (-626 *4)) (|:| |f2| (-626 (-626 (-626 *4)))) (|:| |f3| (-626 (-626 *4))) (|:| |f4| (-626 (-626 (-626 *4)))))) (-5 *1 (-1159 *4)) (-5 *3 (-626 (-626 (-626 *4))))))) -(((*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-626 *5))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-626 (-842))) (-5 *1 (-1153))))) -(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1153)) (-5 *5 (-1076 (-213))) (-5 *2 (-919)) (-5 *1 (-917 *3)) (-4 *3 (-601 (-533))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1153)) (-5 *2 (-919)) (-5 *1 (-917 *3)) (-4 *3 (-601 (-533))))) ((*1 *1 *2) (-12 (-5 *2 (-1 (-213) (-213))) (-5 *1 (-919)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1 (-213) (-213))) (-5 *3 (-1076 (-213))) (-5 *1 (-919))))) -(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-55 *3 *4)) (-4 *3 (-1039)) (-14 *4 (-626 (-1153))))) ((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-211 *3 *4)) (-4 *3 (-13 (-1039) (-834))) (-14 *4 (-626 (-1153)))))) -(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-811))))) -(((*1 *2 *3 *2) (|partial| -12 (-5 *3 (-909)) (-5 *1 (-437 *2)) (-4 *2 (-1211 (-560))))) ((*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-909)) (-5 *4 (-755)) (-5 *1 (-437 *2)) (-4 *2 (-1211 (-560))))) ((*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-909)) (-5 *4 (-626 (-755))) (-5 *1 (-437 *2)) (-4 *2 (-1211 (-560))))) ((*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-909)) (-5 *4 (-626 (-755))) (-5 *5 (-755)) (-5 *1 (-437 *2)) (-4 *2 (-1211 (-560))))) ((*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-909)) (-5 *4 (-626 (-755))) (-5 *5 (-755)) (-5 *6 (-121)) (-5 *1 (-437 *2)) (-4 *2 (-1211 (-560))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-909)) (-5 *4 (-414 *2)) (-4 *2 (-1211 *5)) (-5 *1 (-439 *5 *2)) (-4 *5 (-1039))))) -(((*1 *2) (-12 (-5 *2 (-1241)) (-5 *1 (-1165 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082))))) -(((*1 *2 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-909)) (-5 *2 (-1236 (-626 (-2 (|:| -2981 *4) (|:| -1330 (-1100)))))) (-5 *1 (-341 *4)) (-4 *4 (-344))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-123)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-834)) (-5 *1 (-922 *4 *2)) (-4 *2 (-426 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1153)) (-5 *4 (-1135)) (-5 *2 (-304 (-560))) (-5 *1 (-923))))) -(((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-755)) (-5 *1 (-726 *4 *3)) (-14 *4 (-1153)) (-4 *3 (-1039)))) ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-755)) (-5 *1 (-769 *3)) (-4 *3 (-1039)))) ((*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-956 *3 *2)) (-4 *2 (-137)) (-4 *3 (-550)) (-4 *3 (-1039)) (-4 *2 (-779)))) ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-755)) (-5 *1 (-1149 *3)) (-4 *3 (-1039)))) ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-964)) (-4 *2 (-137)) (-5 *1 (-1155 *3)) (-4 *3 (-550)) (-4 *3 (-1039)))) ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-755)) (-5 *1 (-1208 *4 *3)) (-14 *4 (-1153)) (-4 *3 (-1039))))) -(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1169))))) -(((*1 *1 *1 *1) (-5 *1 (-842))) ((*1 *1 *1) (-5 *1 (-842))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1149 (-560))) (-5 *3 (-560)) (-4 *1 (-855 *4))))) -(((*1 *1 *1) (-5 *1 (-1051)))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-121)) (-5 *1 (-981 *4 *5 *6 *7 *3)) (-4 *3 (-1058 *4 *5 *6 *7)))) ((*1 *2 *3 *3) (-12 (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-121)) (-5 *1 (-1089 *4 *5 *6 *7 *3)) (-4 *3 (-1058 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-626 (-2 (|:| -3655 (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (|:| -2371 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1133 (-213))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1396 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-555)))) ((*1 *2 *1) (-12 (-4 *1 (-593 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1187)) (-5 *2 (-626 *4))))) -(((*1 *2) (-12 (-5 *2 (-1241)) (-5 *1 (-99))))) -(((*1 *2 *3) (-12 (-4 *4 (-13 (-550) (-834) (-1029 (-560)))) (-4 *5 (-426 *4)) (-5 *2 (-414 *3)) (-5 *1 (-431 *4 *5 *3)) (-4 *3 (-1211 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-557))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-304 (-213)))) (-5 *4 (-755)) (-5 *2 (-671 (-213))) (-5 *1 (-258))))) -(((*1 *2 *3) (-12 (-4 *4 (-1039)) (-4 *3 (-1211 *4)) (-4 *2 (-1226 *4)) (-5 *1 (-1229 *4 *3 *5 *2)) (-4 *5 (-638 *3))))) -(((*1 *1 *1) (-4 *1 (-1121)))) -(((*1 *1 *2) (-12 (-5 *2 (-626 (-842))) (-5 *1 (-842)))) ((*1 *1 *1 *1) (-5 *1 (-842)))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1236 *5)) (-4 *5 (-779)) (-5 *2 (-121)) (-5 *1 (-829 *4 *5)) (-14 *4 (-755))))) -(((*1 *2 *1) (-12 (-5 *1 (-1183 *2)) (-4 *2 (-967))))) -(((*1 *2 *2 *3 *3) (-12 (-5 *3 (-403 *5)) (-4 *4 (-1191)) (-4 *5 (-1211 *4)) (-5 *1 (-149 *4 *5 *2)) (-4 *2 (-1211 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-1155 (-403 (-560)))) (-5 *2 (-403 (-560))) (-5 *1 (-180)))) ((*1 *2 *2 *3 *4) (-12 (-5 *2 (-671 (-304 (-213)))) (-5 *3 (-626 (-1153))) (-5 *4 (-1236 (-304 (-213)))) (-5 *1 (-195)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-626 (-283 *3))) (-4 *3 (-298 *3)) (-4 *3 (-1082)) (-4 *3 (-1187)) (-5 *1 (-283 *3)))) ((*1 *1 *1 *1) (-12 (-4 *2 (-298 *2)) (-4 *2 (-1082)) (-4 *2 (-1187)) (-5 *1 (-283 *2)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-123)) (-5 *3 (-1 *1 *1)) (-4 *1 (-291)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-123)) (-5 *3 (-1 *1 (-626 *1))) (-4 *1 (-291)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-626 (-123))) (-5 *3 (-626 (-1 *1 (-626 *1)))) (-4 *1 (-291)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-626 (-123))) (-5 *3 (-626 (-1 *1 *1))) (-4 *1 (-291)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-1 *1 *1)) (-4 *1 (-291)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-1 *1 (-626 *1))) (-4 *1 (-291)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-626 (-1153))) (-5 *3 (-626 (-1 *1 (-626 *1)))) (-4 *1 (-291)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-626 (-1153))) (-5 *3 (-626 (-1 *1 *1))) (-4 *1 (-291)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-626 (-283 *3))) (-4 *1 (-298 *3)) (-4 *3 (-1082)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-283 *3)) (-4 *1 (-298 *3)) (-4 *3 (-1082)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-560))) (-5 *4 (-1155 (-403 (-560)))) (-5 *1 (-299 *2)) (-4 *2 (-43 (-403 (-560)))))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-626 *4)) (-5 *3 (-626 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-834)) (-4 *5 (-170)))) ((*1 *1 *1 *2 *1) (-12 (-4 *1 (-370 *2 *3)) (-4 *2 (-834)) (-4 *3 (-170)))) ((*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1153)) (-5 *3 (-755)) (-5 *4 (-1 *1 *1)) (-4 *1 (-426 *5)) (-4 *5 (-834)) (-4 *5 (-1039)))) ((*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1153)) (-5 *3 (-755)) (-5 *4 (-1 *1 (-626 *1))) (-4 *1 (-426 *5)) (-4 *5 (-834)) (-4 *5 (-1039)))) ((*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-626 (-1153))) (-5 *3 (-626 (-755))) (-5 *4 (-626 (-1 *1 (-626 *1)))) (-4 *1 (-426 *5)) (-4 *5 (-834)) (-4 *5 (-1039)))) ((*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-626 (-1153))) (-5 *3 (-626 (-755))) (-5 *4 (-626 (-1 *1 *1))) (-4 *1 (-426 *5)) (-4 *5 (-834)) (-4 *5 (-1039)))) ((*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-626 (-123))) (-5 *3 (-626 *1)) (-5 *4 (-1153)) (-4 *1 (-426 *5)) (-4 *5 (-834)) (-4 *5 (-601 (-533))))) ((*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-123)) (-5 *3 (-1153)) (-4 *1 (-426 *4)) (-4 *4 (-834)) (-4 *4 (-601 (-533))))) ((*1 *1 *1) (-12 (-4 *1 (-426 *2)) (-4 *2 (-834)) (-4 *2 (-601 (-533))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-626 (-1153))) (-4 *1 (-426 *3)) (-4 *3 (-834)) (-4 *3 (-601 (-533))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1153)) (-4 *1 (-426 *3)) (-4 *3 (-834)) (-4 *3 (-601 (-533))))) ((*1 *2 *3 *4) (-12 (-14 *5 (-626 (-1153))) (-4 *3 (-942 *2 *6 (-844 *5))) (-4 *6 (-226 (-2271 *5) (-755))) (-4 *7 (-963 *2)) (-4 *8 (-633 *2)) (-4 *4 (-912 *2 *8)) (-4 *9 (-230 *4)) (-4 *10 (-528 *2 *5 *3 *6 *7 *8 *4 *9 *12)) (-4 *12 (-117)) (-4 *2 (-359)) (-5 *1 (-460 *2 *5 *3 *6 *7 *8 *4 *9 *10 *11 *12)) (-4 *11 (-253 *10)))) ((*1 *2 *3 *3 *4) (-12 (-14 *5 (-626 (-1153))) (-4 *3 (-942 *2 *6 (-844 *5))) (-4 *6 (-226 (-2271 *5) (-755))) (-4 *7 (-963 *2)) (-4 *8 (-633 *2)) (-4 *4 (-912 *2 *8)) (-4 *9 (-230 *4)) (-4 *10 (-528 *2 *5 *3 *6 *7 *8 *4 *9 *12)) (-4 *12 (-117)) (-4 *2 (-359)) (-5 *1 (-460 *2 *5 *3 *6 *7 *8 *4 *9 *10 *11 *12)) (-4 *11 (-253 *10)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-403 *6)) (-4 *6 (-942 *2 *7 (-844 *5))) (-4 *7 (-226 (-2271 *5) (-755))) (-14 *5 (-626 (-1153))) (-4 *8 (-963 *2)) (-4 *9 (-633 *2)) (-4 *4 (-912 *2 *9)) (-4 *10 (-230 *4)) (-4 *11 (-528 *2 *5 *6 *7 *8 *9 *4 *10 *13)) (-4 *13 (-117)) (-4 *2 (-359)) (-5 *1 (-460 *2 *5 *6 *7 *8 *9 *4 *10 *11 *12 *13)) (-4 *12 (-253 *11)))) ((*1 *1 *1 *2 *3) (-12 (-4 *1 (-515 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-1187)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-626 *4)) (-5 *3 (-626 *5)) (-4 *1 (-515 *4 *5)) (-4 *4 (-1082)) (-4 *5 (-1187)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-820 *3)) (-4 *3 (-359)) (-5 *1 (-700 *3)))) ((*1 *2 *1 *2) (-12 (-5 *1 (-700 *2)) (-4 *2 (-359)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-237 *5 *2)) (-5 *4 (-914 *2)) (-14 *5 (-626 (-1153))) (-4 *2 (-344)) (-5 *1 (-859 *2 *5 *6)) (-4 *6 (-117)))) ((*1 *2 *3 *3 *4) (-12 (-5 *3 (-237 *5 *2)) (-5 *4 (-914 *2)) (-14 *5 (-626 (-1153))) (-4 *2 (-344)) (-5 *1 (-859 *2 *5 *6)) (-4 *6 (-117)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-403 (-237 *5 *2))) (-5 *4 (-914 *2)) (-14 *5 (-626 (-1153))) (-4 *2 (-344)) (-5 *1 (-859 *2 *5 *6)) (-4 *6 (-117)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-237 *5 *2)) (-5 *4 (-913 *2)) (-14 *5 (-626 (-1153))) (-4 *2 (-359)) (-5 *1 (-860 *2 *5 *6)) (-4 *6 (-117)))) ((*1 *2 *3 *3 *4) (-12 (-5 *3 (-237 *5 *2)) (-5 *4 (-913 *2)) (-14 *5 (-626 (-1153))) (-4 *2 (-359)) (-5 *1 (-860 *2 *5 *6)) (-4 *6 (-117)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-403 (-237 *5 *2))) (-5 *4 (-913 *2)) (-14 *5 (-626 (-1153))) (-4 *2 (-359)) (-5 *1 (-860 *2 *5 *6)) (-4 *6 (-117)))) ((*1 *2 *1 *2) (-12 (-4 *1 (-890 *2)) (-4 *2 (-1082)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-226 *6 (-755))) (-14 *6 (-755)) (-4 *2 (-359)) (-5 *1 (-921 *2 *3 *5 *6 *4)) (-4 *3 (-318 *2 *5)) (-4 *4 (-963 *2)))) ((*1 *2 *2 *3 *2) (-12 (-5 *2 (-403 (-945 *4))) (-5 *3 (-1153)) (-4 *4 (-550)) (-5 *1 (-1034 *4)))) ((*1 *2 *2 *3 *4) (-12 (-5 *3 (-626 (-1153))) (-5 *4 (-626 (-403 (-945 *5)))) (-5 *2 (-403 (-945 *5))) (-4 *5 (-550)) (-5 *1 (-1034 *5)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-283 (-403 (-945 *4)))) (-5 *2 (-403 (-945 *4))) (-4 *4 (-550)) (-5 *1 (-1034 *4)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-626 (-283 (-403 (-945 *4))))) (-5 *2 (-403 (-945 *4))) (-4 *4 (-550)) (-5 *1 (-1034 *4)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-1039)) (-5 *1 (-1137 *3)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-1213 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-779)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1133 *3))))) -(((*1 *1 *1 *1) (-5 *1 (-842)))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1149 *1)) (-5 *3 (-1153)) (-4 *1 (-27)))) ((*1 *1 *2) (-12 (-5 *2 (-1149 *1)) (-4 *1 (-27)))) ((*1 *1 *2) (-12 (-5 *2 (-945 *1)) (-4 *1 (-27)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1153)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-834) (-550))))) ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-834) (-550)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1173))))) -(((*1 *1 *1) (-12 (-4 *2 (-359)) (-4 *3 (-780)) (-4 *4 (-834)) (-5 *1 (-506 *2 *3 *4 *5)) (-4 *5 (-942 *2 *3 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-296)) (-5 *2 (-755))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-1153)) (-4 *4 (-13 (-834) (-296) (-1029 (-560)) (-622 (-560)) (-148))) (-5 *1 (-791 *4 *2)) (-4 *2 (-13 (-29 *4) (-1173) (-951)))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-403 (-560))) (-4 *4 (-1029 (-560))) (-4 *4 (-13 (-834) (-550))) (-5 *1 (-36 *4 *2)) (-4 *2 (-426 *4)))) ((*1 *1 *1 *1) (-5 *1 (-139))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-157 *3 *2)) (-4 *2 (-426 *3)))) ((*1 *1 *1 *1) (-5 *1 (-213))) ((*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-560)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-403 (-560))) (-4 *4 (-359)) (-4 *4 (-43 *3)) (-4 *5 (-1226 *4)) (-5 *1 (-269 *4 *5 *2)) (-4 *2 (-1197 *4 *5)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-403 (-560))) (-4 *4 (-359)) (-4 *4 (-43 *3)) (-4 *5 (-1195 *4)) (-5 *1 (-270 *4 *5 *2 *6)) (-4 *2 (-1218 *4 *5)) (-4 *6 (-976 *5)))) ((*1 *1 *1 *1) (-4 *1 (-274))) ((*1 *1 *2 *3) (-12 (-5 *3 (-560)) (-5 *1 (-357 *2)) (-4 *2 (-1082)))) ((*1 *1 *1 *1) (-5 *1 (-375))) ((*1 *1 *2 *3) (-12 (-5 *3 (-755)) (-5 *1 (-382 *2)) (-4 *2 (-1082)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-755)) (-4 *1 (-426 *3)) (-4 *3 (-834)) (-4 *3 (-1094)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-471)) (-5 *2 (-560)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-755)) (-4 *3 (-359)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-942 *3 *4 *5)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1236 *4)) (-5 *3 (-560)) (-4 *4 (-344)) (-5 *1 (-524 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-533)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-755)) (-5 *1 (-533)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-755)) (-4 *4 (-1082)) (-5 *1 (-663 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)) (-4 *3 (-359)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-755)) (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-671 *4)) (-5 *3 (-755)) (-4 *4 (-1039)) (-5 *1 (-672 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-4 *3 (-1039)) (-5 *1 (-696 *3 *4)) (-4 *4 (-629 *3)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-123)) (-5 *3 (-560)) (-4 *4 (-1039)) (-5 *1 (-696 *4 *5)) (-4 *5 (-629 *4)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-702)) (-5 *2 (-909)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-704)) (-5 *2 (-755)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-708)) (-5 *2 (-755)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-725 *2 *3)) (-14 *2 (-1153)) (-4 *3 (-13 (-1039) (-834) (-550))))) ((*1 *1 *2 *3) (-12 (-5 *3 (-755)) (-5 *1 (-806 *2)) (-4 *2 (-834)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-821 *3)) (-4 *3 (-1039)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-123)) (-5 *3 (-560)) (-5 *1 (-821 *4)) (-4 *4 (-1039)))) ((*1 *1 *1 *1) (-5 *1 (-842))) ((*1 *1 *1 *1) (-12 (-5 *1 (-879 *2)) (-4 *2 (-1082)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-755)) (-5 *1 (-879 *3)) (-4 *3 (-1082)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-994)) (-5 *2 (-403 (-560))))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1094)) (-5 *2 (-909)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-1103 *3 *4 *5 *6)) (-4 *4 (-1039)) (-4 *5 (-226 *3 *4)) (-4 *6 (-226 *3 *4)) (-4 *4 (-359)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1138 *3)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1139 *3)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1226 *2)) (-4 *2 (-1039)) (-4 *2 (-359))))) -(((*1 *2 *3) (-12 (-4 *4 (-13 (-550) (-834) (-1029 (-560)))) (-5 *2 (-121)) (-5 *1 (-178 *4 *3)) (-4 *3 (-13 (-27) (-1173) (-426 (-167 *4)))))) ((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-430)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-121)) (-5 *1 (-1177 *4 *3)) (-4 *3 (-13 (-27) (-1173) (-426 *4)))))) -(((*1 *2) (-12 (-5 *2 (-1241)) (-5 *1 (-743))))) -(((*1 *1 *2) (-12 (-5 *2 (-626 *1)) (-4 *1 (-447)))) ((*1 *1 *1 *1) (-4 *1 (-447))) ((*1 *2 *3) (-12 (-5 *3 (-626 *2)) (-5 *1 (-489 *2)) (-4 *2 (-1211 (-560))))) ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-560)) (-5 *1 (-677 *2)) (-4 *2 (-1211 *3)))) ((*1 *1 *1 *1) (-5 *1 (-755))) ((*1 *2 *2 *2) (-12 (-4 *3 (-780)) (-4 *4 (-834)) (-4 *5 (-296)) (-5 *1 (-904 *3 *4 *5 *2)) (-4 *2 (-942 *5 *3 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-626 *2)) (-4 *2 (-942 *6 *4 *5)) (-5 *1 (-904 *4 *5 *6 *2)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-296)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1149 *6)) (-4 *6 (-942 *5 *3 *4)) (-4 *3 (-780)) (-4 *4 (-834)) (-4 *5 (-296)) (-5 *1 (-904 *3 *4 *5 *6)))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-1149 *7))) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-296)) (-5 *2 (-1149 *7)) (-5 *1 (-904 *4 *5 *6 *7)) (-4 *7 (-942 *6 *4 *5)))) ((*1 *1 *1 *1) (-5 *1 (-909))) ((*1 *2 *2 *2) (-12 (-4 *3 (-447)) (-4 *3 (-550)) (-5 *1 (-962 *3 *2)) (-4 *2 (-1211 *3)))) ((*1 *2 *2 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-780)) (-4 *4 (-834)) (-4 *2 (-447))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1039)) (-4 *7 (-1039)) (-4 *6 (-1211 *5)) (-5 *2 (-1149 (-1149 *7))) (-5 *1 (-502 *5 *6 *4 *7)) (-4 *4 (-1211 *6))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-909)) (-5 *4 (-414 *6)) (-4 *6 (-1211 *5)) (-4 *5 (-1039)) (-5 *2 (-626 *6)) (-5 *1 (-439 *5 *6))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-296)) (-5 *1 (-175 *3))))) -(((*1 *2 *2) (-12 (-4 *3 (-550)) (-4 *4 (-985 *3)) (-5 *1 (-143 *3 *4 *2)) (-4 *2 (-369 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-550)) (-4 *5 (-985 *4)) (-4 *2 (-369 *4)) (-5 *1 (-504 *4 *5 *2 *3)) (-4 *3 (-369 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-671 *5)) (-4 *5 (-985 *4)) (-4 *4 (-550)) (-5 *2 (-671 *4)) (-5 *1 (-674 *4 *5)))) ((*1 *2 *2) (-12 (-4 *3 (-550)) (-4 *4 (-985 *3)) (-5 *1 (-1204 *3 *4 *2)) (-4 *2 (-1211 *4))))) -(((*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-755)) (-4 *3 (-550)) (-5 *1 (-962 *3 *2)) (-4 *2 (-1211 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1236 (-626 (-2 (|:| -2981 *4) (|:| -1330 (-1100)))))) (-4 *4 (-344)) (-5 *2 (-671 *4)) (-5 *1 (-341 *4))))) -(((*1 *2 *1) (-12 (-5 *1 (-210 *2)) (-4 *2 (-1082)))) ((*1 *2 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-1187)))) ((*1 *2 *1) (-12 (-5 *1 (-992 *2)) (-4 *2 (-1082))))) -(((*1 *1 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1187))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-560)) (-4 *5 (-344)) (-5 *2 (-414 (-1149 (-1149 *5)))) (-5 *1 (-1186 *5)) (-5 *3 (-1149 (-1149 *5)))))) -(((*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-755)) (-4 *3 (-13 (-708) (-364) (-10 -7 (-15 ** (*3 *3 (-560)))))) (-5 *1 (-236 *3))))) -(((*1 *2 *1) (-12 (-4 *4 (-1082)) (-5 *2 (-876 *3 *5)) (-5 *1 (-872 *3 *4 *5)) (-4 *3 (-1082)) (-4 *5 (-650 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-809))))) -(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1149 *9)) (-5 *4 (-626 *7)) (-5 *5 (-626 (-626 *8))) (-4 *7 (-834)) (-4 *8 (-296)) (-4 *9 (-942 *8 *6 *7)) (-4 *6 (-780)) (-5 *2 (-2 (|:| |upol| (-1149 *8)) (|:| |Lval| (-626 *8)) (|:| |Lfact| (-626 (-2 (|:| -1601 (-1149 *8)) (|:| -4034 (-560))))) (|:| |ctpol| *8))) (-5 *1 (-724 *6 *7 *8 *9))))) -(((*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1153)) (-4 *5 (-601 (-879 (-560)))) (-4 *5 (-873 (-560))) (-4 *5 (-13 (-834) (-1029 (-560)) (-447) (-622 (-560)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-563 *5 *3)) (-4 *3 (-612)) (-4 *3 (-13 (-27) (-1173) (-426 *5))))) ((*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1153)) (-5 *4 (-827 *2)) (-4 *2 (-1116)) (-4 *2 (-13 (-27) (-1173) (-426 *5))) (-4 *5 (-601 (-879 (-560)))) (-4 *5 (-873 (-560))) (-4 *5 (-13 (-834) (-1029 (-560)) (-447) (-622 (-560)))) (-5 *1 (-563 *5 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-213)) (-5 *2 (-403 (-560))) (-5 *1 (-294))))) -(((*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-834)) (-4 *5 (-780)) (-4 *6 (-550)) (-4 *7 (-942 *6 *5 *3)) (-5 *1 (-459 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1029 (-403 (-560))) (-359) (-10 -8 (-15 -2801 ($ *7)) (-15 -2132 (*7 $)) (-15 -2139 (*7 $)))))))) -(((*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1241)) (-5 *1 (-1115)))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-842))) (-5 *2 (-1241)) (-5 *1 (-1115))))) -(((*1 *1 *1) (-4 *1 (-1048)))) -(((*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-599 *3)) (-5 *5 (-1 (-1149 *3) (-1149 *3))) (-4 *3 (-13 (-27) (-426 *6))) (-4 *6 (-13 (-834) (-550))) (-5 *2 (-577 *3)) (-5 *1 (-544 *6 *3))))) -(((*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-359) (-10 -8 (-15 ** ($ $ (-403 (-560))))))) (-5 *1 (-1108 *3 *2)) (-4 *3 (-1211 *2))))) -(((*1 *1 *2) (-12 (-5 *2 (-626 (-626 *3))) (-4 *3 (-1082)) (-4 *1 (-890 *3))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-626 (-560))) (-5 *2 (-671 (-560))) (-5 *1 (-1092))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-369 *2)) (-4 *4 (-369 *2))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-626 (-283 *4))) (-5 *1 (-610 *3 *4 *5)) (-4 *3 (-834)) (-4 *4 (-13 (-170) (-699 (-403 (-560))))) (-14 *5 (-909))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-909)) (-5 *2 (-466)) (-5 *1 (-1237))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1027)) (-5 *3 (-1153)) (-5 *1 (-258))))) -(((*1 *2 *2) (-12 (-5 *1 (-953 *2)) (-4 *2 (-542))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-755)) (-5 *1 (-842)))) ((*1 *1 *1) (-5 *1 (-842)))) -(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1202 *3)) (-4 *3 (-1187))))) -(((*1 *1 *1) (-12 (|has| *1 (-6 -4506)) (-4 *1 (-369 *2)) (-4 *2 (-1187)) (-4 *2 (-834)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-121) *3 *3)) (|has| *1 (-6 -4506)) (-4 *1 (-369 *3)) (-4 *3 (-1187))))) -(((*1 *2 *3) (-12 (-5 *3 (-909)) (-5 *2 (-1149 *4)) (-5 *1 (-352 *4)) (-4 *4 (-344))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-550)) (-5 *1 (-962 *3 *2)) (-4 *2 (-1211 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-780)) (-4 *4 (-834)) (-4 *2 (-550)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1211 *2)) (-4 *2 (-1039)) (-4 *2 (-550))))) -(((*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-665 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-4 *4 (-344)) (-5 *2 (-950 (-1149 *4))) (-5 *1 (-352 *4)) (-5 *3 (-1149 *4))))) -(((*1 *2 *3) (-12 (-5 *2 (-626 (-626 (-560)))) (-5 *1 (-964)) (-5 *3 (-626 (-560)))))) -(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-145))))) -(((*1 *2 *2) (-12 (-5 *2 (-123)) (-4 *3 (-13 (-834) (-550))) (-5 *1 (-36 *3 *4)) (-4 *4 (-426 *3)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-755)) (-5 *1 (-123)))) ((*1 *1 *2) (-12 (-5 *2 (-1153)) (-5 *1 (-123)))) ((*1 *2 *2) (-12 (-5 *2 (-123)) (-4 *3 (-13 (-834) (-550))) (-5 *1 (-157 *3 *4)) (-4 *4 (-426 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-123)) (-5 *1 (-161)))) ((*1 *2 *2) (-12 (-5 *2 (-123)) (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *4)) (-4 *4 (-13 (-426 *3) (-994))))) ((*1 *2 *2) (-12 (-5 *2 (-123)) (-5 *1 (-290 *3)) (-4 *3 (-291)))) ((*1 *2 *2) (-12 (-4 *1 (-291)) (-5 *2 (-123)))) ((*1 *2 *2) (-12 (-5 *2 (-123)) (-4 *4 (-834)) (-5 *1 (-425 *3 *4)) (-4 *3 (-426 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-123)) (-4 *3 (-13 (-834) (-550))) (-5 *1 (-427 *3 *4)) (-4 *4 (-426 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-123)) (-5 *1 (-599 *3)) (-4 *3 (-834)))) ((*1 *2 *2) (-12 (-5 *2 (-123)) (-4 *3 (-13 (-834) (-550))) (-5 *1 (-613 *3 *4)) (-4 *4 (-13 (-426 *3) (-994) (-1173)))))) -(((*1 *2 *2) (-12 (-5 *2 (-375)) (-5 *1 (-1238)))) ((*1 *2) (-12 (-5 *2 (-375)) (-5 *1 (-1238))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-542)))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994)))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1226 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1195 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-976 *4)))) ((*1 *1 *1) (-4 *1 (-274))) ((*1 *2 *3) (-12 (-5 *3 (-414 *4)) (-4 *4 (-550)) (-5 *2 (-626 (-2 (|:| -2169 (-755)) (|:| |logand| *4)))) (-5 *1 (-310 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-626 (-1153))) (-14 *3 (-626 (-1153))) (-4 *4 (-383)))) ((*1 *2 *1) (-12 (-5 *2 (-648 *3 *4)) (-5 *1 (-610 *3 *4 *5)) (-4 *3 (-834)) (-4 *4 (-13 (-170) (-699 (-403 (-560))))) (-14 *5 (-909)))) ((*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1138 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1139 *3)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-755)) (-4 *4 (-13 (-1039) (-699 (-403 (-560))))) (-4 *5 (-834)) (-5 *1 (-1250 *4 *5 *2)) (-4 *2 (-1255 *5 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-755)) (-5 *1 (-1254 *3 *4)) (-4 *4 (-699 (-403 (-560)))) (-4 *3 (-834)) (-4 *4 (-170))))) -(((*1 *1) (-5 *1 (-810)))) -(((*1 *2 *3 *1) (-12 (-4 *1 (-969 *4 *5 *6 *3)) (-4 *4 (-1039)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *3 (-1053 *4 *5 *6)) (-4 *4 (-550)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) -(((*1 *2) (-12 (-4 *3 (-1039)) (-5 *2 (-950 (-694 *3 *4))) (-5 *1 (-694 *3 *4)) (-4 *4 (-1211 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1169)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-1169))))) -(((*1 *1 *1) (-12 (-5 *1 (-902 *2)) (-4 *2 (-296))))) -(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1141 *3 *4)) (-14 *3 (-909)) (-4 *4 (-1039))))) -(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-755)) (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *3 (-550))))) -(((*1 *2 *1) (-12 (-4 *1 (-1114 *3)) (-4 *3 (-1039)) (-5 *2 (-1141 3 *3)))) ((*1 *1) (-12 (-5 *1 (-1141 *2 *3)) (-14 *2 (-909)) (-4 *3 (-1039)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1113 (-213))) (-5 *1 (-1238)))) ((*1 *2 *1) (-12 (-5 *2 (-1113 (-213))) (-5 *1 (-1238))))) -(((*1 *2 *3) (-12 (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *3 (-942 *4 *6 (-844 *5))) (-4 *6 (-226 (-2271 *5) *2)) (-4 *7 (-963 *4)) (-4 *8 (-633 *4)) (-4 *9 (-912 *4 *8)) (-4 *10 (-230 *9)) (-4 *11 (-528 *4 *5 *3 *6 *7 *8 *9 *10 *13)) (-4 *13 (-117)) (-5 *2 (-755)) (-5 *1 (-255 *4 *5 *3 *6 *7 *8 *9 *10 *11 *12 *13)) (-4 *12 (-253 *11)))) ((*1 *2) (-12 (-4 *4 (-1191)) (-4 *5 (-1211 *4)) (-4 *6 (-1211 (-403 *5))) (-5 *2 (-755)) (-5 *1 (-333 *3 *4 *5 *6)) (-4 *3 (-334 *4 *5 *6)))) ((*1 *2) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1191)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-403 *4))) (-5 *2 (-755)))) ((*1 *2) (-12 (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *6 (-226 (-2271 *4) *2)) (-4 *7 (-963 *3)) (-4 *8 (-633 *3)) (-4 *9 (-912 *3 *8)) (-4 *10 (-230 *9)) (-4 *11 (-528 *3 *4 *5 *6 *7 *8 *9 *10 *13)) (-4 *13 (-117)) (-5 *2 (-755)) (-5 *1 (-460 *3 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13)) (-4 *12 (-253 *11)))) ((*1 *2) (-12 (-5 *2 (-755)) (-5 *1 (-859 *3 *4 *5)) (-4 *3 (-344)) (-14 *4 (-626 (-1153))) (-4 *5 (-117)))) ((*1 *2) (-12 (-5 *2 (-755)) (-5 *1 (-860 *3 *4 *5)) (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *5 (-117))))) -(((*1 *1 *1 *1) (-4 *1 (-542)))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-291)) (-5 *3 (-1153)) (-5 *2 (-121)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-291)) (-5 *2 (-121))))) -(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-145))))) -(((*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-599 *4)) (-5 *6 (-1153)) (-4 *4 (-13 (-426 *7) (-27) (-1173))) (-4 *7 (-13 (-447) (-1029 (-560)) (-834) (-148) (-622 (-560)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4374 (-626 *4)))) (-5 *1 (-562 *7 *4 *3)) (-4 *3 (-638 *4)) (-4 *3 (-1082))))) -(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-626 (-304 (-213)))) (|:| -1394 (-626 (-213))))) (-5 *2 (-375)) (-5 *1 (-258)))) ((*1 *2 *3) (-12 (-5 *3 (-1236 (-304 (-213)))) (-5 *2 (-375)) (-5 *1 (-294))))) -(((*1 *2 *3 *4) (-12 (-4 *5 (-359)) (-5 *2 (-2 (|:| A (-671 *5)) (|:| |eqs| (-626 (-2 (|:| C (-671 *5)) (|:| |g| (-1236 *5)) (|:| -2654 *6) (|:| |rh| *5)))))) (-5 *1 (-800 *5 *6)) (-5 *3 (-671 *5)) (-5 *4 (-1236 *5)) (-4 *6 (-638 *5)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-359)) (-4 *6 (-638 *5)) (-5 *2 (-2 (|:| -3818 (-671 *6)) (|:| |vec| (-1236 *5)))) (-5 *1 (-800 *5 *6)) (-5 *3 (-671 *6)) (-5 *4 (-1236 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-755)) (-5 *2 (-1241)) (-5 *1 (-375))))) -(((*1 *1 *2) (|partial| -12 (-5 *2 (-626 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *1 (-1247 *3 *4 *5 *6)))) ((*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-626 *8)) (-5 *3 (-1 (-121) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-550)) (-4 *6 (-780)) (-4 *7 (-834)) (-5 *1 (-1247 *5 *6 *7 *8))))) -(((*1 *2 *3) (-12 (-5 *3 (-328 *5 *6 *7 *8)) (-4 *5 (-426 *4)) (-4 *6 (-1211 *5)) (-4 *7 (-1211 (-403 *6))) (-4 *8 (-334 *5 *6 *7)) (-4 *4 (-13 (-834) (-550) (-1029 (-560)))) (-5 *2 (-121)) (-5 *1 (-898 *4 *5 *6 *7 *8)))) ((*1 *2 *3) (-12 (-5 *3 (-328 (-403 (-560)) *4 *5 *6)) (-4 *4 (-1211 (-403 (-560)))) (-4 *5 (-1211 (-403 *4))) (-4 *6 (-334 (-403 (-560)) *4 *5)) (-5 *2 (-121)) (-5 *1 (-899 *4 *5 *6))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-1039)) (-5 *1 (-439 *3 *2)) (-4 *2 (-1211 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-385)) (-5 *2 (-1135))))) -(((*1 *2 *3) (-12 (-4 *4 (-1039)) (-4 *2 (-13 (-400) (-1029 *4) (-359) (-1173) (-274))) (-5 *1 (-438 *4 *3 *2)) (-4 *3 (-1211 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-1027))))) -(((*1 *2 *3) (-12 (-4 *4 (-344)) (-5 *2 (-414 (-1149 (-1149 *4)))) (-5 *1 (-1186 *4)) (-5 *3 (-1149 (-1149 *4)))))) -(((*1 *2 *2) (-12 (-5 *2 (-213)) (-5 *1 (-214)))) ((*1 *2 *2) (-12 (-5 *2 (-167 (-213))) (-5 *1 (-214))))) -(((*1 *2 *2) (-12 (-5 *2 (-1236 *4)) (-4 *4 (-413 *3)) (-4 *3 (-296)) (-4 *3 (-550)) (-5 *1 (-48 *3 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-909)) (-4 *4 (-359)) (-5 *2 (-1236 *1)) (-4 *1 (-321 *4)))) ((*1 *2) (-12 (-4 *3 (-359)) (-5 *2 (-1236 *1)) (-4 *1 (-321 *3)))) ((*1 *2) (-12 (-4 *3 (-170)) (-4 *4 (-1211 *3)) (-5 *2 (-1236 *1)) (-4 *1 (-405 *3 *4)))) ((*1 *2 *1) (-12 (-4 *3 (-296)) (-4 *4 (-985 *3)) (-4 *5 (-1211 *4)) (-5 *2 (-1236 *6)) (-5 *1 (-409 *3 *4 *5 *6)) (-4 *6 (-13 (-405 *4 *5) (-1029 *4))))) ((*1 *2 *1) (-12 (-4 *3 (-296)) (-4 *4 (-985 *3)) (-4 *5 (-1211 *4)) (-5 *2 (-1236 *6)) (-5 *1 (-410 *3 *4 *5 *6 *7)) (-4 *6 (-405 *4 *5)) (-14 *7 *2))) ((*1 *2) (-12 (-4 *3 (-170)) (-5 *2 (-1236 *1)) (-4 *1 (-413 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-909)) (-5 *2 (-1236 (-1236 *4))) (-5 *1 (-524 *4)) (-4 *4 (-344))))) -(((*1 *2 *3) (-12 (-4 *3 (-1211 (-403 (-560)))) (-5 *2 (-2 (|:| |den| (-560)) (|:| |gcdnum| (-560)))) (-5 *1 (-901 *3 *4)) (-4 *4 (-1211 (-403 *3))))) ((*1 *2 *3) (-12 (-4 *4 (-1211 (-403 *2))) (-5 *2 (-560)) (-5 *1 (-901 *4 *3)) (-4 *3 (-1211 (-403 *4)))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-945 *4)) (-4 *4 (-1039)) (-4 *4 (-601 *2)) (-5 *2 (-375)) (-5 *1 (-772 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-945 *5)) (-5 *4 (-909)) (-4 *5 (-1039)) (-4 *5 (-601 *2)) (-5 *2 (-375)) (-5 *1 (-772 *5)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-403 (-945 *4))) (-4 *4 (-550)) (-4 *4 (-601 *2)) (-5 *2 (-375)) (-5 *1 (-772 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-403 (-945 *5))) (-5 *4 (-909)) (-4 *5 (-550)) (-4 *5 (-601 *2)) (-5 *2 (-375)) (-5 *1 (-772 *5)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-304 *4)) (-4 *4 (-550)) (-4 *4 (-834)) (-4 *4 (-601 *2)) (-5 *2 (-375)) (-5 *1 (-772 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-304 *5)) (-5 *4 (-909)) (-4 *5 (-550)) (-4 *5 (-834)) (-4 *5 (-601 *2)) (-5 *2 (-375)) (-5 *1 (-772 *5))))) -(((*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-213) (-213) (-213))) (-5 *4 (-3 (-1 (-213) (-213) (-213) (-213)) "undefined")) (-5 *5 (-1076 (-213))) (-5 *6 (-626 (-251))) (-5 *2 (-1113 (-213))) (-5 *1 (-678))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-121))))) -(((*1 *2 *1) (-12 (-4 *1 (-385)) (-5 *2 (-121))))) -(((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-626 (-1149 *4))) (-5 *3 (-1149 *4)) (-4 *4 (-896)) (-5 *1 (-647 *4))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-827 (-213)))) (-5 *4 (-213)) (-5 *2 (-626 *4)) (-5 *1 (-258))))) -(((*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-740))))) -(((*1 *1 *2) (-12 (-5 *2 (-626 (-626 *3))) (-4 *3 (-1082)) (-5 *1 (-892 *3))))) -(((*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-599 *3)) (-4 *3 (-13 (-426 *5) (-27) (-1173))) (-4 *5 (-13 (-447) (-1029 (-560)) (-834) (-148) (-622 (-560)))) (-5 *2 (-2 (|:| -2962 *3) (|:| |coeff| *3))) (-5 *1 (-562 *5 *3 *6)) (-4 *6 (-1082))))) -(((*1 *2 *3 *3 *4) (-12 (-5 *4 (-121)) (-4 *5 (-13 (-359) (-832))) (-5 *2 (-626 (-2 (|:| -3025 (-626 *3)) (|:| -2301 *5)))) (-5 *1 (-176 *5 *3)) (-4 *3 (-1211 (-167 *5))))) ((*1 *2 *3 *3) (-12 (-4 *4 (-13 (-359) (-832))) (-5 *2 (-626 (-2 (|:| -3025 (-626 *3)) (|:| -2301 *4)))) (-5 *1 (-176 *4 *3)) (-4 *3 (-1211 (-167 *4)))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-909)) (-5 *2 (-1149 *3)) (-5 *1 (-1162 *3)) (-4 *3 (-359))))) -(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-213)) (-5 *5 (-560)) (-5 *2 (-1183 *3)) (-5 *1 (-777 *3)) (-4 *3 (-967)))) ((*1 *1 *2 *3 *4) (-12 (-5 *3 (-626 (-626 (-936 (-213))))) (-5 *4 (-121)) (-5 *1 (-1183 *2)) (-4 *2 (-967))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994)))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-375) (-375))) (-5 *4 (-375)) (-5 *2 (-2 (|:| -2981 *4) (|:| -2301 *4) (|:| |totalpts| (-560)) (|:| |success| (-121)))) (-5 *1 (-776)) (-5 *5 (-560))))) -(((*1 *2 *3 *4 *5) (-12 (-5 *5 (-121)) (-4 *4 (-13 (-359) (-832))) (-5 *2 (-414 *3)) (-5 *1 (-176 *4 *3)) (-4 *3 (-1211 (-167 *4))))) ((*1 *2 *3 *4) (-12 (-4 *4 (-13 (-359) (-832))) (-5 *2 (-414 *3)) (-5 *1 (-176 *4 *3)) (-4 *3 (-1211 (-167 *4)))))) -(((*1 *2 *3) (-12 (-4 *1 (-344)) (-5 *3 (-560)) (-5 *2 (-1161 (-909) (-755)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-121) (-123) (-123))) (-5 *1 (-123))))) -(((*1 *2 *2) (-12 (-5 *2 (-375)) (-5 *1 (-1238)))) ((*1 *2) (-12 (-5 *2 (-375)) (-5 *1 (-1238))))) -(((*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-740))))) -(((*1 *2 *1) (-12 (-5 *2 (-1100)) (-5 *1 (-96 *3)) (-4 *3 (-1082)) (-4 *3 (-1082)))) ((*1 *2 *1) (-12 (-5 *2 (-1100)) (-5 *1 (-210 *3)) (-4 *3 (-1082)) (-4 *3 (-1082)))) ((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-213)))) ((*1 *2 *1) (-12 (-5 *2 (-1100)) (-5 *1 (-487 *3)) (-4 *3 (-1082)) (-4 *3 (-834)))) ((*1 *1 *1) (-4 *1 (-542))) ((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-583 *3)) (-14 *3 *2))) ((*1 *2 *1) (-12 (-5 *2 (-1100)) (-5 *1 (-992 *3)) (-4 *3 (-1082)) (-4 *3 (-1082)))) ((*1 *2 *1) (-12 (-4 *1 (-1082)) (-5 *2 (-1100)))) ((*1 *2 *1) (-12 (-5 *2 (-1100)) (-5 *1 (-1124 *3)) (-4 *3 (-1082)) (-4 *3 (-1082))))) -(((*1 *2 *3) (-12 (-5 *3 (-755)) (-5 *2 (-1241)) (-5 *1 (-375)))) ((*1 *2) (-12 (-5 *2 (-1241)) (-5 *1 (-375))))) -(((*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-834)) (-5 *1 (-235 *3))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-755)) (-4 *1 (-722 *4 *5)) (-4 *4 (-1039)) (-4 *5 (-834)) (-5 *2 (-945 *4)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-4 *1 (-722 *4 *5)) (-4 *4 (-1039)) (-4 *5 (-834)) (-5 *2 (-945 *4)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-755)) (-4 *1 (-1226 *4)) (-4 *4 (-1039)) (-5 *2 (-945 *4)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-4 *1 (-1226 *4)) (-4 *4 (-1039)) (-5 *2 (-945 *4))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-909)) (-5 *2 (-755)) (-5 *1 (-1083 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-359)) (-5 *2 (-2 (|:| -2583 *3) (|:| -4397 *3))) (-5 *1 (-750 *3 *4)) (-4 *3 (-690 *4)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-359)) (-4 *3 (-1039)) (-5 *2 (-2 (|:| -2583 *1) (|:| -4397 *1))) (-4 *1 (-836 *3)))) ((*1 *2 *3 *3 *4) (-12 (-5 *4 (-101 *5)) (-4 *5 (-359)) (-4 *5 (-1039)) (-5 *2 (-2 (|:| -2583 *3) (|:| -4397 *3))) (-5 *1 (-837 *5 *3)) (-4 *3 (-836 *5))))) -(((*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-671 (-213))) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-740))))) -(((*1 *2 *3) (-12 (-4 *1 (-334 *4 *3 *5)) (-4 *4 (-1191)) (-4 *3 (-1211 *4)) (-4 *5 (-1211 (-403 *3))) (-5 *2 (-121)))) ((*1 *2 *3) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1191)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-403 *4))) (-5 *2 (-121))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-96 *2)) (-4 *2 (-1082)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-111 *2)) (-4 *2 (-1187)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-130 *2)) (-4 *2 (-834)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-135 *2)) (-4 *2 (-834)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-210 *2)) (-4 *2 (-1082)))) ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-272 *3)) (-4 *3 (-1187)))) ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *1 (-272 *2)) (-4 *2 (-1187)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-487 *2)) (-4 *2 (-834)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3655 (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (|:| -2371 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1133 (-213))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1396 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-555)))) ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-755)) (-4 *1 (-676 *2)) (-4 *2 (-1082)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3655 (-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (|:| -2371 (-2 (|:| |stiffness| (-375)) (|:| |stability| (-375)) (|:| |expense| (-375)) (|:| |accuracy| (-375)) (|:| |intermediateResults| (-375)))))) (-5 *1 (-790)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-992 *2)) (-4 *2 (-1082)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-1124 *2)) (-4 *2 (-1082)))) ((*1 *2 *3 *4) (-12 (-5 *2 (-1241)) (-5 *1 (-1165 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-542)))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-626 *2)) (-5 *4 (-1 (-121) *2 *2)) (-5 *1 (-1188 *2)) (-4 *2 (-1082)))) ((*1 *2 *3) (-12 (-5 *3 (-626 *2)) (-4 *2 (-1082)) (-4 *2 (-834)) (-5 *1 (-1188 *2))))) -(((*1 *2 *3 *3) (|partial| -12 (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-121)) (-5 *1 (-981 *4 *5 *6 *7 *3)) (-4 *3 (-1058 *4 *5 *6 *7)))) ((*1 *2 *3 *3) (|partial| -12 (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-121)) (-5 *1 (-1089 *4 *5 *6 *7 *3)) (-4 *3 (-1058 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-671 (-213))) (-5 *5 (-671 (-560))) (-5 *3 (-560)) (-5 *2 (-1027)) (-5 *1 (-740))))) -(((*1 *2 *1) (-12 (-4 *3 (-221)) (-4 *3 (-1039)) (-4 *4 (-834)) (-4 *5 (-257 *4)) (-4 *6 (-780)) (-5 *2 (-1 *1 (-755))) (-4 *1 (-241 *3 *4 *5 *6)))) ((*1 *2 *3) (-12 (-4 *4 (-1039)) (-4 *3 (-834)) (-4 *5 (-257 *3)) (-4 *6 (-780)) (-5 *2 (-1 *1 (-755))) (-4 *1 (-241 *4 *3 *5 *6)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-755)) (-4 *1 (-257 *2)) (-4 *2 (-834))))) -(((*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-626 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-121) *8 *8)) (-4 *1 (-1181 *5 *6 *7 *8)) (-4 *5 (-550)) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *8 (-1053 *5 *6 *7))))) -(((*1 *1 *2) (-12 (-5 *2 (-304 *3)) (-4 *3 (-13 (-1039) (-834))) (-5 *1 (-211 *3 *4)) (-14 *4 (-626 (-1153)))))) -(((*1 *2 *1) (-12 (-5 *2 (-626 (-626 (-936 (-213))))) (-5 *1 (-466))))) -(((*1 *2 *1) (-12 (-4 *1 (-1075 *2)) (-4 *2 (-1187))))) -(((*1 *2 *2) (-12 (-4 *3 (-601 (-879 *3))) (-4 *3 (-873 *3)) (-4 *3 (-13 (-834) (-447))) (-5 *1 (-1179 *3 *2)) (-4 *2 (-601 (-879 *3))) (-4 *2 (-873 *3)) (-4 *2 (-13 (-426 *3) (-1173)))))) -(((*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-740))))) -(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-626 (-304 (-213)))) (|:| |constraints| (-626 (-2 (|:| |start| (-213)) (|:| |finish| (-213)) (|:| |grid| (-755)) (|:| |boundaryType| (-560)) (|:| |dStart| (-671 (-213))) (|:| |dFinish| (-671 (-213)))))) (|:| |f| (-626 (-626 (-304 (-213))))) (|:| |st| (-1135)) (|:| |tol| (-213)))) (-5 *2 (-121)) (-5 *1 (-200))))) -(((*1 *1 *1) (-5 *1 (-1051)))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-1211 *2)) (-4 *2 (-1191)) (-5 *1 (-149 *2 *4 *3)) (-4 *3 (-1211 (-403 *4)))))) -(((*1 *1 *1) (-4 *1 (-1048))) ((*1 *1 *1 *2 *2) (-12 (-4 *1 (-1213 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-779)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1213 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-779))))) -(((*1 *1 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1082)))) ((*1 *2 *1) (-12 (-4 *1 (-1075 *3)) (-4 *3 (-1187)) (-5 *2 (-560))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-550) (-834) (-1029 (-560)))) (-5 *1 (-178 *3 *2)) (-4 *2 (-13 (-27) (-1173) (-426 (-167 *3)))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1153)) (-4 *4 (-13 (-550) (-834) (-1029 (-560)))) (-5 *1 (-178 *4 *2)) (-4 *2 (-13 (-27) (-1173) (-426 (-167 *4)))))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-27) (-1173) (-426 *3))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1153)) (-4 *4 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *1 (-1177 *4 *2)) (-4 *2 (-13 (-27) (-1173) (-426 *4)))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-359) (-10 -8 (-15 ** ($ $ (-403 (-560))))))) (-5 *2 (-2 (|:| |solns| (-626 *5)) (|:| |maps| (-626 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1108 *3 *5)) (-4 *3 (-1211 *5))))) -(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-560)) (-5 *5 (-671 (-213))) (-5 *4 (-213)) (-5 *2 (-1027)) (-5 *1 (-740))))) -(((*1 *1) (-12 (-4 *1 (-400)) (-3186 (|has| *1 (-6 -4496))) (-3186 (|has| *1 (-6 -4488))))) ((*1 *2 *1) (-12 (-4 *1 (-421 *2)) (-4 *2 (-1082)) (-4 *2 (-834)))) ((*1 *2 *1) (-12 (-4 *1 (-817 *2)) (-4 *2 (-834)))) ((*1 *1 *1 *1) (-4 *1 (-834))) ((*1 *1) (-5 *1 (-1100)))) -(((*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-375)) (-5 *1 (-99)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-375)) (-5 *1 (-99))))) -(((*1 *1 *1 *2) (-12 (-5 *1 (-1117 *3 *2)) (-4 *3 (-13 (-1082) (-39))) (-4 *2 (-13 (-1082) (-39)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1075 *2)) (-4 *2 (-1187))))) -(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-671 (-213))) (-5 *5 (-671 (-560))) (-5 *3 (-560)) (-5 *2 (-1027)) (-5 *1 (-740))))) -(((*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-1082)) (-5 *1 (-719 *3)))) ((*1 *1 *2) (-12 (-5 *1 (-719 *2)) (-4 *2 (-1082)))) ((*1 *1) (-12 (-5 *1 (-719 *2)) (-4 *2 (-1082))))) -(((*1 *2 *3 *4) (-12 (-5 *2 (-626 (-167 *4))) (-5 *1 (-155 *3 *4)) (-4 *3 (-1211 (-167 (-560)))) (-4 *4 (-13 (-359) (-832))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-359) (-832))) (-5 *2 (-626 (-167 *4))) (-5 *1 (-176 *4 *3)) (-4 *3 (-1211 (-167 *4))))) ((*1 *2 *3 *4) (-12 (-4 *4 (-13 (-359) (-832))) (-5 *2 (-626 (-167 *4))) (-5 *1 (-176 *4 *3)) (-4 *3 (-1211 (-167 *4)))))) -(((*1 *2 *2 *1) (-12 (-5 *2 (-626 *6)) (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550))))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-1039)) (-4 *2 (-669 *4 *5 *6)) (-5 *1 (-108 *4 *3 *2 *5 *6)) (-4 *3 (-1211 *4)) (-4 *5 (-369 *4)) (-4 *6 (-369 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-550)) (-4 *2 (-542)))) ((*1 *1 *1) (-4 *1 (-1048)))) -(((*1 *1 *2) (|partial| -12 (-5 *2 (-1249 *3 *4)) (-4 *3 (-834)) (-4 *4 (-170)) (-5 *1 (-648 *3 *4)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-648 *3 *4)) (-5 *1 (-1254 *3 *4)) (-4 *3 (-834)) (-4 *4 (-170))))) -(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *5 (-121)) (-5 *6 (-213)) (-5 *7 (-3 (|:| |fn| (-384)) (|:| |fp| (-73 APROD)))) (-5 *8 (-3 (|:| |fn| (-384)) (|:| |fp| (-78 MSOLVE)))) (-5 *2 (-1027)) (-5 *1 (-740))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-626 (-844 *5))) (-14 *5 (-626 (-1153))) (-4 *6 (-447)) (-5 *2 (-626 (-626 (-237 *5 *6)))) (-5 *1 (-469 *5 *6 *7)) (-5 *3 (-626 (-237 *5 *6))) (-4 *7 (-447))))) -(((*1 *2 *3) (-12 (-5 *2 (-1133 (-560))) (-5 *1 (-1137 *4)) (-4 *4 (-1039)) (-5 *3 (-560))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1149 *1)) (-4 *1 (-447)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1149 *6)) (-4 *6 (-942 *5 *3 *4)) (-4 *3 (-780)) (-4 *4 (-834)) (-4 *5 (-896)) (-5 *1 (-452 *3 *4 *5 *6)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1149 *1)) (-4 *1 (-896))))) -(((*1 *1 *2 *1) (-12 (|has| *1 (-6 -4505)) (-4 *1 (-152 *2)) (-4 *2 (-1187)) (-4 *2 (-1082)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-121) *3)) (|has| *1 (-6 -4505)) (-4 *1 (-152 *3)) (-4 *3 (-1187)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-121) *3)) (-4 *1 (-657 *3)) (-4 *3 (-1187)))) ((*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-121) *4)) (-5 *3 (-560)) (-4 *4 (-1082)) (-5 *1 (-719 *4)))) ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-560)) (-5 *1 (-719 *2)) (-4 *2 (-1082)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1117 *3 *4)) (-4 *3 (-13 (-1082) (-39))) (-4 *4 (-13 (-1082) (-39))) (-5 *1 (-1118 *3 *4))))) -(((*1 *2 *3 *3) (-12 (-5 *2 (-1133 (-626 (-560)))) (-5 *1 (-870)) (-5 *3 (-626 (-560))))) ((*1 *2 *3) (-12 (-5 *2 (-1133 (-626 (-560)))) (-5 *1 (-870)) (-5 *3 (-626 (-560)))))) -(((*1 *1 *2) (-12 (-5 *2 (-626 *1)) (-4 *1 (-291)))) ((*1 *1 *1) (-4 *1 (-291))) ((*1 *1 *1) (-5 *1 (-842)))) -(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-671 (-213))) (-5 *5 (-671 (-560))) (-5 *3 (-560)) (-5 *2 (-1027)) (-5 *1 (-740))))) -(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-628 *3)) (-4 *3 (-1082))))) -(((*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-322))))) -(((*1 *2 *3) (-12 (-4 *4 (-550)) (-5 *2 (-1236 (-671 *4))) (-5 *1 (-95 *4 *5)) (-5 *3 (-671 *4)) (-4 *5 (-638 *4))))) -(((*1 *2 *3) (-12 (-4 *4 (-447)) (-5 *2 (-626 (-2 (|:| |eigval| (-3 (-403 (-945 *4)) (-1142 (-1153) (-945 *4)))) (|:| |eigmult| (-755)) (|:| |eigvec| (-626 (-671 (-403 (-945 *4)))))))) (-5 *1 (-281 *4)) (-5 *3 (-671 (-403 (-945 *4))))))) -(((*1 *2 *1) (-12 (-5 *2 (-403 (-560))) (-5 *1 (-112)))) ((*1 *2 *1) (-12 (-5 *2 (-403 (-560))) (-5 *1 (-206)))) ((*1 *2 *1) (-12 (-5 *2 (-403 (-560))) (-5 *1 (-490)))) ((*1 *1 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-550)) (-4 *2 (-296)))) ((*1 *2 *1) (-12 (-5 *2 (-403 (-560))) (-5 *1 (-996 *3)) (-14 *3 (-560)))) ((*1 *1 *1) (-4 *1 (-1048)))) -(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-626 *3)) (-4 *3 (-1187))))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-560)) (-5 *5 (-671 (-213))) (-5 *6 (-3 (|:| |fn| (-384)) (|:| |fp| (-75 APROD)))) (-5 *4 (-213)) (-5 *2 (-1027)) (-5 *1 (-740))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-121)) (-5 *3 (-626 (-251))) (-5 *1 (-249)))) ((*1 *1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-251)))) ((*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-465)))) ((*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-465))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-560)) (-5 *1 (-414 *2)) (-4 *2 (-550))))) -(((*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-1039)) (-5 *1 (-1137 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-1193 *2)) (-4 *2 (-1039)))) ((*1 *1 *1) (-12 (-5 *1 (-1227 *2 *3 *4)) (-4 *2 (-1039)) (-14 *3 (-1153)) (-14 *4 *2))) ((*1 *1 *1) (-12 (-5 *1 (-1231 *2 *3)) (-4 *2 (-1039)) (-14 *3 (-1153))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-626 *7)) (|:| -3249 *8))) (-4 *7 (-1053 *4 *5 *6)) (-4 *8 (-1058 *4 *5 *6 *7)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-121)) (-5 *1 (-981 *4 *5 *6 *7 *8)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-626 *7)) (|:| -3249 *8))) (-4 *7 (-1053 *4 *5 *6)) (-4 *8 (-1058 *4 *5 *6 *7)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-121)) (-5 *1 (-1089 *4 *5 *6 *7 *8))))) -(((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1236 *4)) (-4 *4 (-622 (-560))) (-5 *2 (-1236 (-403 (-560)))) (-5 *1 (-1261 *4))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-742))))) -(((*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-809))))) -(((*1 *2 *1) (-12 (-4 *1 (-400)) (-5 *2 (-560)))) ((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-680))))) +(830305 . 3487447481) +(((*1 *1 *2) (-12 (-5 *2 (-634 *1)) (-4 *1 (-296)))) ((*1 *1 *1) (-4 *1 (-296))) ((*1 *1 *2) (-12 (-5 *2 (-634 (-850))) (-5 *1 (-850)))) ((*1 *1 *1) (-5 *1 (-850)))) +(((*1 *2 *3) (-12 (-5 *3 (-944 *2)) (-5 *1 (-983 *2)) (-4 *2 (-1047))))) +(((*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-301)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2704 *1))) (-4 *1 (-301))))) +(((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-691 *4 *5 *6 *7)) (-4 *4 (-609 (-541))) (-4 *5 (-1195)) (-4 *6 (-1195)) (-4 *7 (-1195))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-409 *6)) (-4 *5 (-1199)) (-4 *6 (-1219 *5)) (-5 *2 (-2 (|:| -3438 (-763)) (|:| -2348 *3) (|:| |radicand| *6))) (-5 *1 (-151 *5 *6 *7)) (-5 *4 (-763)) (-4 *7 (-1219 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-55 *3 *4)) (-4 *3 (-1047)) (-14 *4 (-634 (-1161))))) ((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-213 *3 *4)) (-4 *3 (-13 (-1047) (-842))) (-14 *4 (-634 (-1161)))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 *1)) (-4 *1 (-641 *3)) (-4 *3 (-365)))) ((*1 *1 *2) (-12 (-5 *2 (-1 (-1141 *3))) (-5 *1 (-1141 *3)) (-4 *3 (-1195))))) +(((*1 *1 *1) (-12 (-5 *1 (-1149 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1047))))) +(((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-310 (-381))) (-5 *4 (-1082 (-381))) (-5 *5 (-1143)) (-5 *6 (-634 (-256))) (-5 *2 (-1249)) (-5 *1 (-456)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-310 (-381))) (-5 *4 (-1082 (-381))) (-5 *5 (-1143)) (-5 *2 (-1249)) (-5 *1 (-456)))) ((*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-310 (-381))) (-5 *4 (-1082 (-381))) (-5 *5 (-1143)) (-5 *6 (-634 (-256))) (-5 *2 (-1249)) (-5 *1 (-456)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-310 (-381))) (-5 *4 (-1082 (-381))) (-5 *5 (-1143)) (-5 *2 (-1249)) (-5 *1 (-456))))) +(((*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-43 (-409 (-568)))) (-4 *2 (-1047))))) +(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-819))))) +(((*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-443 *3)) (-4 *3 (-1219 (-568))))) ((*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-443 *3)) (-4 *3 (-1219 (-568)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-96 *3)) (-4 *3 (-1090)) (-4 *3 (-1090)))) ((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-212 *3)) (-4 *3 (-1090)) (-4 *3 (-1090)))) ((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-494 *3)) (-4 *3 (-1090)) (-4 *3 (-842)))) ((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1000 *3)) (-4 *3 (-1090)) (-4 *3 (-1090)))) ((*1 *2 *1) (-12 (-4 *1 (-1090)) (-5 *2 (-1143)))) ((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1132 *3)) (-4 *3 (-1090)) (-4 *3 (-1090))))) +(((*1 *2 *1) (-12 (-4 *1 (-117)) (-5 *2 (-568))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-679 *5)) (-5 *4 (-1244 *5)) (-4 *5 (-365)) (-5 *2 (-121)) (-5 *1 (-659 *5)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4520)))) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4520)))) (-5 *2 (-121)) (-5 *1 (-660 *5 *6 *4 *3)) (-4 *3 (-677 *5 *6 *4))))) +(((*1 *2 *3) (-12 (-4 *4 (-350)) (-5 *2 (-420 *3)) (-5 *1 (-360 *4 *3)) (-4 *3 (-1219 *4))))) +(((*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-679 *4)) (-5 *3 (-763)) (-4 *4 (-1047)) (-5 *1 (-680 *4))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-634 *5) *6)) (-4 *5 (-13 (-365) (-150) (-1037 (-409 (-568))))) (-4 *6 (-1219 *5)) (-5 *2 (-634 (-2 (|:| |poly| *6) (|:| -1853 *3)))) (-5 *1 (-804 *5 *6 *3 *7)) (-4 *3 (-646 *6)) (-4 *7 (-646 (-409 *6))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-634 *5) *6)) (-4 *5 (-13 (-365) (-150) (-1037 (-568)) (-1037 (-409 (-568))))) (-4 *6 (-1219 *5)) (-5 *2 (-634 (-2 (|:| |poly| *6) (|:| -1853 (-644 *6 (-409 *6)))))) (-5 *1 (-807 *5 *6)) (-5 *3 (-644 *6 (-409 *6)))))) +(((*1 *2 *3) (-12 (-4 *1 (-340 *4 *3 *5)) (-4 *4 (-1199)) (-4 *3 (-1219 *4)) (-4 *5 (-1219 (-409 *3))) (-5 *2 (-121)))) ((*1 *2 *3) (-12 (-4 *1 (-340 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 (-409 *4))) (-5 *2 (-121))))) +(((*1 *2 *3) (-12 (-5 *3 (-1216 *5 *4)) (-4 *4 (-815)) (-14 *5 (-1161)) (-5 *2 (-568)) (-5 *1 (-1104 *4 *5))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-565))))) +(((*1 *2 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-365)) (-5 *1 (-1043 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-842)) (-4 *5 (-262 *4)) (-4 *6 (-788)) (-5 *2 (-763)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1047)) (-4 *3 (-842)) (-4 *5 (-262 *3)) (-4 *6 (-788)) (-5 *2 (-763)))) ((*1 *2 *1) (-12 (-4 *1 (-262 *3)) (-4 *3 (-842)) (-5 *2 (-763)))) ((*1 *2 *1) (-12 (-4 *1 (-350)) (-5 *2 (-917)))) ((*1 *2 *3) (-12 (-5 *3 (-334 *4 *5 *6 *7)) (-4 *4 (-13 (-370) (-365))) (-4 *5 (-1219 *4)) (-4 *6 (-1219 (-409 *5))) (-4 *7 (-340 *4 *5 *6)) (-5 *2 (-763)) (-5 *1 (-394 *4 *5 *6 *7)))) ((*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-828 (-917))))) ((*1 *2 *1) (-12 (-4 *1 (-406)) (-5 *2 (-568)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-763)) (-5 *1 (-594 *3)) (-4 *3 (-1047)))) ((*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-594 *3)) (-4 *3 (-1047)))) ((*1 *2 *1) (-12 (-4 *3 (-558)) (-5 *2 (-568)) (-5 *1 (-615 *3 *4)) (-4 *4 (-1219 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-641 *3)) (-4 *3 (-365)) (-5 *2 (-568)))) ((*1 *2 *1) (-12 (-4 *1 (-641 *3)) (-4 *3 (-365)) (-5 *2 (-568)))) ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-763)) (-4 *1 (-730 *4 *3)) (-4 *4 (-1047)) (-4 *3 (-842)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-730 *4 *3)) (-4 *4 (-1047)) (-4 *3 (-842)) (-5 *2 (-763)))) ((*1 *2 *1) (-12 (-4 *1 (-863 *3)) (-5 *2 (-763)))) ((*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-899 *3)) (-4 *3 (-1090)))) ((*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-900 *3)) (-4 *3 (-1090)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-334 *5 *6 *7 *8)) (-4 *5 (-432 *4)) (-4 *6 (-1219 *5)) (-4 *7 (-1219 (-409 *6))) (-4 *8 (-340 *5 *6 *7)) (-4 *4 (-13 (-842) (-558) (-1037 (-568)))) (-5 *2 (-763)) (-5 *1 (-906 *4 *5 *6 *7 *8)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-334 (-409 (-568)) *4 *5 *6)) (-4 *4 (-1219 (-409 (-568)))) (-4 *5 (-1219 (-409 *4))) (-4 *6 (-340 (-409 (-568)) *4 *5)) (-5 *2 (-763)) (-5 *1 (-907 *4 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-334 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-365)) (-4 *7 (-1219 *6)) (-4 *4 (-1219 (-409 *7))) (-4 *8 (-340 *6 *7 *4)) (-4 *9 (-13 (-370) (-365))) (-5 *2 (-763)) (-5 *1 (-1018 *6 *7 *4 *8 *9)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-1219 *3)) (-4 *3 (-1047)) (-4 *3 (-558)) (-5 *2 (-763)))) ((*1 *2 *1 *2) (-12 (-4 *1 (-1221 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-787)))) ((*1 *2 *1) (-12 (-4 *1 (-1221 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-787))))) +(((*1 *2 *1 *2) (-12 (-4 *1 (-536 *3 *4 *5 *6 *7 *8 *9 *2 *10)) (-4 *3 (-365)) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *6 (-230 (-1697 *4) (-763))) (-4 *7 (-971 *3)) (-4 *8 (-641 *3)) (-4 *9 (-920 *3 *8)) (-4 *2 (-235 *9)) (-4 *10 (-117))))) +(((*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-763)) (-5 *6 (-121)) (-4 *7 (-453)) (-4 *8 (-788)) (-4 *9 (-842)) (-4 *3 (-1061 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-634 *4)) (|:| |todo| (-634 (-2 (|:| |val| (-634 *3)) (|:| -3001 *4)))))) (-5 *1 (-1064 *7 *8 *9 *3 *4)) (-4 *4 (-1066 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *5 (-763)) (-4 *6 (-453)) (-4 *7 (-788)) (-4 *8 (-842)) (-4 *3 (-1061 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-634 *4)) (|:| |todo| (-634 (-2 (|:| |val| (-634 *3)) (|:| -3001 *4)))))) (-5 *1 (-1064 *6 *7 *8 *3 *4)) (-4 *4 (-1066 *6 *7 *8 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *3 (-1061 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-634 *4)) (|:| |todo| (-634 (-2 (|:| |val| (-634 *3)) (|:| -3001 *4)))))) (-5 *1 (-1064 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-763)) (-5 *6 (-121)) (-4 *7 (-453)) (-4 *8 (-788)) (-4 *9 (-842)) (-4 *3 (-1061 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-634 *4)) (|:| |todo| (-634 (-2 (|:| |val| (-634 *3)) (|:| -3001 *4)))))) (-5 *1 (-1130 *7 *8 *9 *3 *4)) (-4 *4 (-1099 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *5 (-763)) (-4 *6 (-453)) (-4 *7 (-788)) (-4 *8 (-842)) (-4 *3 (-1061 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-634 *4)) (|:| |todo| (-634 (-2 (|:| |val| (-634 *3)) (|:| -3001 *4)))))) (-5 *1 (-1130 *6 *7 *8 *3 *4)) (-4 *4 (-1099 *6 *7 *8 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *3 (-1061 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-634 *4)) (|:| |todo| (-634 (-2 (|:| |val| (-634 *3)) (|:| -3001 *4)))))) (-5 *1 (-1130 *5 *6 *7 *3 *4)) (-4 *4 (-1099 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) (|partial| -12 (-5 *4 (-634 (-409 *6))) (-5 *3 (-409 *6)) (-4 *6 (-1219 *5)) (-4 *5 (-13 (-365) (-150) (-1037 (-568)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-634 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-572 *5 *6))))) +(((*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-550)))) ((*1 *1 *2) (-12 (-5 *2 (-634 (-568))) (-5 *1 (-972))))) +(((*1 *2) (-12 (-4 *1 (-340 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 (-409 *4))) (-5 *2 (-679 (-409 *4)))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-568))) (-4 *3 (-1047)) (-5 *1 (-101 *3)))) ((*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1047)) (-5 *1 (-101 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1047)) (-5 *1 (-101 *3))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-944 *5)) (-4 *5 (-1047)) (-5 *2 (-763)) (-5 *1 (-1149 *4 *5)) (-14 *4 (-917)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-634 (-763))) (-5 *3 (-763)) (-5 *1 (-1149 *4 *5)) (-14 *4 (-917)) (-4 *5 (-1047)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-634 (-763))) (-5 *3 (-944 *5)) (-4 *5 (-1047)) (-5 *1 (-1149 *4 *5)) (-14 *4 (-917))))) +(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-436)))) ((*1 *2 *3) (-12 (-5 *2 (-121)) (-5 *1 (-573 *3)) (-4 *3 (-1037 (-568))))) ((*1 *2 *1) (-12 (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-121))))) +(((*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-5 *2 (-634 (-2 (|:| C (-679 *5)) (|:| |g| (-1244 *5))))) (-5 *1 (-979 *5)) (-5 *3 (-679 *5)) (-5 *4 (-1244 *5))))) +(((*1 *2 *3 *1) (-12 (|has| *1 (-6 -4519)) (-4 *1 (-601 *4 *3)) (-4 *4 (-1090)) (-4 *3 (-1195)) (-4 *3 (-1090)) (-5 *2 (-121))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 (-2 (|:| |den| (-568)) (|:| |gcdnum| (-568))))) (-4 *4 (-1219 (-409 *2))) (-5 *2 (-568)) (-5 *1 (-909 *4 *5)) (-4 *5 (-1219 (-409 *4)))))) +(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-1082 (-953 (-568)))) (-5 *3 (-953 (-568))) (-5 *1 (-328)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1082 (-953 (-568)))) (-5 *1 (-328))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-1244 (-634 (-2 (|:| -2850 *4) (|:| -4355 (-1108)))))) (-4 *4 (-350)) (-5 *2 (-1249)) (-5 *1 (-532 *4))))) +(((*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-43 (-409 (-568)))) (-4 *2 (-1047))))) +(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-887 *3)) (-4 *3 (-1090))))) +(((*1 *2 *1) (|partial| -12 (-4 *1 (-1012)) (-5 *2 (-850))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-409 (-568))) (-4 *4 (-1037 (-568))) (-4 *4 (-13 (-842) (-558))) (-5 *1 (-36 *4 *2)) (-4 *2 (-432 *4)))) ((*1 *1 *1 *1) (-5 *1 (-139))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-159 *3 *2)) (-4 *2 (-432 *3)))) ((*1 *1 *1 *1) (-5 *1 (-215))) ((*1 *1 *1 *2) (-12 (-4 *1 (-238)) (-5 *2 (-568)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-409 (-568))) (-4 *4 (-365)) (-4 *4 (-43 *3)) (-4 *5 (-1234 *4)) (-5 *1 (-274 *4 *5 *2)) (-4 *2 (-1205 *4 *5)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-409 (-568))) (-4 *4 (-365)) (-4 *4 (-43 *3)) (-4 *5 (-1203 *4)) (-5 *1 (-275 *4 *5 *2 *6)) (-4 *2 (-1226 *4 *5)) (-4 *6 (-984 *5)))) ((*1 *1 *1 *1) (-4 *1 (-279))) ((*1 *1 *2 *3) (-12 (-5 *3 (-568)) (-5 *1 (-363 *2)) (-4 *2 (-1090)))) ((*1 *1 *1 *1) (-5 *1 (-381))) ((*1 *1 *2 *3) (-12 (-5 *3 (-763)) (-5 *1 (-388 *2)) (-4 *2 (-1090)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-763)) (-4 *1 (-432 *3)) (-4 *3 (-842)) (-4 *3 (-1102)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-478)) (-5 *2 (-568)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-763)) (-4 *3 (-365)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-950 *3 *4 *5)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1244 *4)) (-5 *3 (-568)) (-4 *4 (-350)) (-5 *1 (-532 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-541)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-763)) (-5 *1 (-541)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-763)) (-4 *4 (-1090)) (-5 *1 (-671 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-568)) (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-4 *3 (-365)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-763)) (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-679 *4)) (-5 *3 (-763)) (-4 *4 (-1047)) (-5 *1 (-680 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-568)) (-4 *3 (-1047)) (-5 *1 (-704 *3 *4)) (-4 *4 (-637 *3)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-123)) (-5 *3 (-568)) (-4 *4 (-1047)) (-5 *1 (-704 *4 *5)) (-4 *5 (-637 *4)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-710)) (-5 *2 (-917)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-712)) (-5 *2 (-763)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-716)) (-5 *2 (-763)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-733 *2 *3)) (-14 *2 (-1161)) (-4 *3 (-13 (-1047) (-842) (-558))))) ((*1 *1 *2 *3) (-12 (-5 *3 (-763)) (-5 *1 (-814 *2)) (-4 *2 (-842)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-829 *3)) (-4 *3 (-1047)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-123)) (-5 *3 (-568)) (-5 *1 (-829 *4)) (-4 *4 (-1047)))) ((*1 *1 *1 *1) (-5 *1 (-850))) ((*1 *1 *1 *1) (-12 (-5 *1 (-887 *2)) (-4 *2 (-1090)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-763)) (-5 *1 (-887 *3)) (-4 *3 (-1090)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1002)) (-5 *2 (-409 (-568))))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1102)) (-5 *2 (-917)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-568)) (-4 *1 (-1111 *3 *4 *5 *6)) (-4 *4 (-1047)) (-4 *5 (-230 *3 *4)) (-4 *6 (-230 *3 *4)) (-4 *4 (-365)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1146 *3)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1147 *3)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1234 *2)) (-4 *2 (-1047)) (-4 *2 (-365))))) +(((*1 *2 *1) (-12 (-4 *1 (-536 *3 *4 *5 *6 *7 *8 *9 *10 *11)) (-4 *3 (-365)) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *6 (-230 (-1697 *4) (-763))) (-4 *7 (-971 *3)) (-4 *8 (-641 *3)) (-4 *9 (-920 *3 *8)) (-4 *10 (-235 *9)) (-4 *11 (-117)) (-5 *2 (-242 (-4287 (QUOTE X) (QUOTE -2926)) *3))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-1161)) (-5 *2 (-1 (-215) (-215))) (-5 *1 (-693 *3)) (-4 *3 (-609 (-541))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-1161)) (-5 *2 (-1 (-215) (-215) (-215))) (-5 *1 (-693 *3)) (-4 *3 (-609 (-541)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1249)) (-5 *1 (-1164)))) ((*1 *2) (-12 (-5 *2 (-1249)) (-5 *1 (-1164))))) +(((*1 *2 *1) (-12 (-4 *1 (-350)) (-5 *2 (-121)))) ((*1 *2 *3) (-12 (-5 *3 (-1157 *4)) (-4 *4 (-350)) (-5 *2 (-121)) (-5 *1 (-358 *4))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-409 (-568))) (-4 *4 (-13 (-558) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *1 (-273 *4 *2)) (-4 *2 (-13 (-27) (-1181) (-432 *4)))))) +(((*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1157 (-953 *4))) (-5 *1 (-418 *3 *4)) (-4 *3 (-419 *4)))) ((*1 *2) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-4 *3 (-365)) (-5 *2 (-1157 (-953 *3))))) ((*1 *2) (-12 (-5 *2 (-1157 (-409 (-953 *3)))) (-5 *1 (-454 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-634 (-1161))) (-14 *6 (-1244 (-679 *3)))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-381)) (-5 *1 (-1059))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-1161)) (-4 *4 (-13 (-842) (-558))) (-5 *1 (-159 *4 *2)) (-4 *2 (-432 *4)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1082 *2)) (-4 *2 (-432 *4)) (-4 *4 (-13 (-842) (-558))) (-5 *1 (-159 *4 *2)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1082 *1)) (-4 *1 (-161)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1161))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-953 *6))) (-5 *4 (-634 (-1161))) (-4 *6 (-13 (-558) (-1037 *5))) (-4 *5 (-558)) (-5 *2 (-634 (-634 (-288 (-409 (-953 *6)))))) (-5 *1 (-1038 *5 *6))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-96 *2)) (-4 *2 (-1090)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-111 *2)) (-4 *2 (-1195)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-130 *2)) (-4 *2 (-842)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-135 *2)) (-4 *2 (-842)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-212 *2)) (-4 *2 (-1090)))) ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-568)) (-4 *1 (-277 *3)) (-4 *3 (-1195)))) ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-568)) (-4 *1 (-277 *2)) (-4 *2 (-1195)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-494 *2)) (-4 *2 (-842)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3649 (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (|:| -4083 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1141 (-215))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1338 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-563)))) ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-763)) (-4 *1 (-684 *2)) (-4 *2 (-1090)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3649 (-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (|:| -4083 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))))) (-5 *1 (-798)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-1000 *2)) (-4 *2 (-1090)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-1132 *2)) (-4 *2 (-1090)))) ((*1 *2 *3 *4) (-12 (-5 *2 (-1249)) (-5 *1 (-1173 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090))))) +(((*1 *2) (-12 (-4 *1 (-340 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 (-409 *4))) (-5 *2 (-121))))) +(((*1 *2 *3 *2) (|partial| -12 (-5 *3 (-917)) (-5 *1 (-443 *2)) (-4 *2 (-1219 (-568))))) ((*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-917)) (-5 *4 (-763)) (-5 *1 (-443 *2)) (-4 *2 (-1219 (-568))))) ((*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-917)) (-5 *4 (-634 (-763))) (-5 *1 (-443 *2)) (-4 *2 (-1219 (-568))))) ((*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-917)) (-5 *4 (-634 (-763))) (-5 *5 (-763)) (-5 *1 (-443 *2)) (-4 *2 (-1219 (-568))))) ((*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-917)) (-5 *4 (-634 (-763))) (-5 *5 (-763)) (-5 *6 (-121)) (-5 *1 (-443 *2)) (-4 *2 (-1219 (-568))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-917)) (-5 *4 (-420 *2)) (-4 *2 (-1219 *5)) (-5 *1 (-445 *5 *2)) (-4 *5 (-1047))))) +(((*1 *2 *1) (-12 (-4 *1 (-641 *2)) (-4 *2 (-365))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-568)) (-4 *1 (-1203 *4)) (-4 *4 (-1047)) (-4 *4 (-558)) (-5 *2 (-409 (-953 *4))))) ((*1 *2 *1 *3) (-12 (-5 *3 (-568)) (-4 *1 (-1203 *4)) (-4 *4 (-1047)) (-4 *4 (-558)) (-5 *2 (-409 (-953 *4)))))) +(((*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-944 (-215))) (-5 *4 (-869)) (-5 *5 (-917)) (-5 *2 (-1249)) (-5 *1 (-473)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-944 (-215))) (-5 *2 (-1249)) (-5 *1 (-473)))) ((*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-634 (-944 (-215)))) (-5 *4 (-869)) (-5 *5 (-917)) (-5 *2 (-1249)) (-5 *1 (-473))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1181))))) +(((*1 *2 *3) (-12 (-5 *2 (-121)) (-5 *1 (-586 *3)) (-4 *3 (-550))))) +(((*1 *2 *1) (-12 (-5 *2 (-1141 (-409 *3))) (-5 *1 (-173 *3)) (-4 *3 (-301))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-634 *6)) (-5 *4 (-634 (-1141 *7))) (-4 *6 (-842)) (-4 *7 (-950 *5 (-534 *6) *6)) (-4 *5 (-1047)) (-5 *2 (-1 (-1141 *7) *7)) (-5 *1 (-1114 *5 *6 *7))))) +(((*1 *2 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-215))))) +(((*1 *2 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-1219 (-568))) (-5 *1 (-496 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-215)) (-5 *1 (-817))))) +(((*1 *2) (-12 (-5 *2 (-1132 (-1143))) (-5 *1 (-393))))) +(((*1 *2 *1) (-12 (-4 *1 (-536 *3 *4 *5 *6 *7 *8 *9 *10 *11)) (-4 *3 (-365)) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *6 (-230 (-1697 *4) (-763))) (-4 *7 (-971 *3)) (-4 *8 (-641 *3)) (-4 *9 (-920 *3 *8)) (-4 *10 (-235 *9)) (-4 *11 (-117)) (-5 *2 (-1161))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-850))) ((*1 *1 *1 *1) (-5 *1 (-850))) ((*1 *1 *1) (-5 *1 (-850)))) +(((*1 *1 *1) (-12 (-4 *1 (-1061 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-788)) (-4 *4 (-842)))) ((*1 *1) (-4 *1 (-1136)))) +(((*1 *2 *3) (-12 (-5 *3 (-1244 (-634 (-2 (|:| -2850 *4) (|:| -4355 (-1108)))))) (-4 *4 (-350)) (-5 *2 (-763)) (-5 *1 (-347 *4)))) ((*1 *2) (-12 (-5 *2 (-763)) (-5 *1 (-352 *3 *4)) (-14 *3 (-917)) (-14 *4 (-917)))) ((*1 *2) (-12 (-5 *2 (-763)) (-5 *1 (-353 *3 *4)) (-4 *3 (-350)) (-14 *4 (-3 (-1157 *3) (-1244 (-634 (-2 (|:| -2850 *3) (|:| -4355 (-1108))))))))) ((*1 *2) (-12 (-5 *2 (-763)) (-5 *1 (-354 *3 *4)) (-4 *3 (-350)) (-14 *4 (-917))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-123)) (-4 *4 (-1047)) (-5 *1 (-704 *4 *2)) (-4 *2 (-637 *4)))) ((*1 *2 *3 *2) (-12 (-5 *3 (-123)) (-5 *1 (-829 *2)) (-4 *2 (-1047))))) +(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-329 *3)) (-4 *3 (-842))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-873 *2)) (-4 *2 (-1195)))) ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-875 *2)) (-4 *2 (-1195)))) ((*1 *2 *1) (-12 (-4 *1 (-1122 *3)) (-4 *3 (-1047)) (-5 *2 (-634 (-944 *3))))) ((*1 *1 *2) (-12 (-5 *2 (-634 (-944 *3))) (-4 *3 (-1047)) (-4 *1 (-1122 *3)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-634 (-634 *3))) (-4 *1 (-1122 *3)) (-4 *3 (-1047)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-634 (-944 *3))) (-4 *1 (-1122 *3)) (-4 *3 (-1047))))) +(((*1 *2 *3) (-12 (-14 *4 (-634 (-1161))) (-14 *5 (-763)) (-5 *2 (-634 (-514 (-409 (-568)) (-232 *5 (-763)) (-852 *4) (-242 *4 (-409 (-568)))))) (-5 *1 (-515 *4 *5)) (-5 *3 (-514 (-409 (-568)) (-232 *5 (-763)) (-852 *4) (-242 *4 (-409 (-568)))))))) +(((*1 *2 *2) (-12 (-5 *2 (-634 (-634 *6))) (-4 *6 (-950 *3 *5 *4)) (-4 *3 (-13 (-301) (-150))) (-4 *4 (-13 (-842) (-609 (-1161)))) (-4 *5 (-788)) (-5 *1 (-924 *3 *4 *5 *6))))) +(((*1 *2 *3 *2 *3 *2 *3) (-12 (-5 *2 (-958 (-215))) (-5 *3 (-1108)) (-5 *1 (-115))))) +(((*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-817))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-634 (-568))) (-5 *1 (-242 *3 *4)) (-14 *3 (-634 (-1161))) (-4 *4 (-1047)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-634 (-568))) (-14 *3 (-634 (-1161))) (-5 *1 (-455 *3 *4 *5)) (-4 *4 (-1047)) (-4 *5 (-230 (-1697 *3) (-763))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-634 (-568))) (-5 *1 (-492 *3 *4)) (-14 *3 (-634 (-1161))) (-4 *4 (-1047))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-634 *13)) (-4 *13 (-258 *12)) (-4 *12 (-536 *4 *5 *6 *7 *8 *9 *10 *11 *14)) (-4 *14 (-117)) (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *6 (-950 *4 *7 (-852 *5))) (-4 *7 (-230 (-1697 *5) *2)) (-4 *8 (-971 *4)) (-4 *9 (-641 *4)) (-4 *10 (-920 *4 *9)) (-4 *11 (-235 *10)) (-5 *2 (-763)) (-5 *1 (-260 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13 *14))))) +(((*1 *2 *1) (-12 (-5 *2 (-1141 *3)) (-5 *1 (-173 *3)) (-4 *3 (-301))))) +(((*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-57))))) +(((*1 *2 *3) (-12 (-4 *4 (-842)) (-5 *2 (-1168 (-634 *4))) (-5 *1 (-1167 *4)) (-5 *3 (-634 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-1157 *4)) (-4 *4 (-350)) (-5 *2 (-1244 (-634 (-2 (|:| -2850 *4) (|:| -4355 (-1108)))))) (-5 *1 (-347 *4))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-550)))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-777 *2)) (-4 *2 (-1047))))) +(((*1 *2) (-12 (-5 *2 (-1249)) (-5 *1 (-1173 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1234 *3)) (-5 *1 (-274 *3 *4 *2)) (-4 *2 (-1205 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1203 *3)) (-5 *1 (-275 *3 *4 *2 *5)) (-4 *2 (-1226 *3 *4)) (-4 *5 (-984 *4)))) ((*1 *1 *1) (-4 *1 (-279))) ((*1 *2 *3) (-12 (-5 *3 (-420 *4)) (-4 *4 (-558)) (-5 *2 (-634 (-2 (|:| -2348 (-763)) (|:| |logand| *4)))) (-5 *1 (-316 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-337 *2 *3 *4)) (-14 *2 (-634 (-1161))) (-14 *3 (-634 (-1161))) (-4 *4 (-389)))) ((*1 *2 *1) (-12 (-5 *2 (-656 *3 *4)) (-5 *1 (-618 *3 *4 *5)) (-4 *3 (-842)) (-4 *4 (-13 (-172) (-707 (-409 (-568))))) (-14 *5 (-917)))) ((*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1146 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1147 *3)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-763)) (-4 *4 (-13 (-1047) (-707 (-409 (-568))))) (-4 *5 (-842)) (-5 *1 (-1258 *4 *5 *2)) (-4 *2 (-1263 *5 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-763)) (-5 *1 (-1262 *3 *4)) (-4 *4 (-707 (-409 (-568)))) (-4 *3 (-842)) (-4 *4 (-172))))) +(((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-634 *7)) (-5 *4 (-1 *7 (-763) (-763) *8)) (-5 *5 (-1244 *9)) (-5 *6 (-634 (-763))) (-4 *7 (-13 (-558) (-453))) (-4 *8 (-324 *7 (-763))) (-4 *9 (-324 (-409 *7) (-763))) (-5 *2 (-679 (-1157 *7))) (-5 *1 (-345 *7 *8 *9)))) ((*1 *2 *3 *4 *5 *6 *6) (-12 (-5 *3 (-634 *7)) (-5 *4 (-1 *7 (-763) (-763) *8)) (-5 *5 (-1244 *9)) (-5 *6 (-763)) (-4 *7 (-13 (-558) (-453))) (-4 *8 (-324 *7 *6)) (-4 *9 (-324 (-409 *7) *6)) (-5 *2 (-1141 (-679 (-1157 *7)))) (-5 *1 (-345 *7 *8 *9)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-634 *7)) (-5 *4 (-1 *7 (-763) (-763) *8)) (-5 *5 (-1244 *8)) (-5 *6 (-634 (-763))) (-4 *7 (-13 (-558) (-453))) (-4 *8 (-52 *7 (-763))) (-5 *2 (-679 (-1157 *7))) (-5 *1 (-346 *7 *8)))) ((*1 *2 *3 *4 *5 *6 *6) (-12 (-5 *3 (-634 *7)) (-5 *4 (-1 *7 (-763) (-763) *8)) (-5 *5 (-1244 *8)) (-5 *6 (-763)) (-4 *7 (-13 (-558) (-453))) (-4 *8 (-52 *7 *6)) (-5 *2 (-1141 (-679 (-1157 *7)))) (-5 *1 (-346 *7 *8))))) +(((*1 *2 *3) (-12 (-5 *3 (-568)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *2 (-1047)) (-5 *1 (-318 *4 *5 *2 *6)) (-4 *6 (-950 *2 *4 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-944 *3)) (-4 *3 (-13 (-365) (-1181) (-1002))) (-5 *1 (-174 *3))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-643 (-409 *6))) (-5 *4 (-1 (-634 *5) *6)) (-4 *5 (-13 (-365) (-150) (-1037 (-568)) (-1037 (-409 (-568))))) (-4 *6 (-1219 *5)) (-5 *2 (-634 (-409 *6))) (-5 *1 (-807 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-643 (-409 *7))) (-5 *4 (-1 (-634 *6) *7)) (-5 *5 (-1 (-420 *7) *7)) (-4 *6 (-13 (-365) (-150) (-1037 (-568)) (-1037 (-409 (-568))))) (-4 *7 (-1219 *6)) (-5 *2 (-634 (-409 *7))) (-5 *1 (-807 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-644 *6 (-409 *6))) (-5 *4 (-1 (-634 *5) *6)) (-4 *5 (-13 (-365) (-150) (-1037 (-568)) (-1037 (-409 (-568))))) (-4 *6 (-1219 *5)) (-5 *2 (-634 (-409 *6))) (-5 *1 (-807 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-644 *7 (-409 *7))) (-5 *4 (-1 (-634 *6) *7)) (-5 *5 (-1 (-420 *7) *7)) (-4 *6 (-13 (-365) (-150) (-1037 (-568)) (-1037 (-409 (-568))))) (-4 *7 (-1219 *6)) (-5 *2 (-634 (-409 *7))) (-5 *1 (-807 *6 *7)))) ((*1 *2 *3) (-12 (-5 *3 (-643 (-409 *5))) (-4 *5 (-1219 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-365) (-150) (-1037 (-568)) (-1037 (-409 (-568))))) (-5 *2 (-634 (-409 *5))) (-5 *1 (-807 *4 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-643 (-409 *6))) (-5 *4 (-1 (-420 *6) *6)) (-4 *6 (-1219 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-365) (-150) (-1037 (-568)) (-1037 (-409 (-568))))) (-5 *2 (-634 (-409 *6))) (-5 *1 (-807 *5 *6)))) ((*1 *2 *3) (-12 (-5 *3 (-644 *5 (-409 *5))) (-4 *5 (-1219 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-365) (-150) (-1037 (-568)) (-1037 (-409 (-568))))) (-5 *2 (-634 (-409 *5))) (-5 *1 (-807 *4 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-644 *6 (-409 *6))) (-5 *4 (-1 (-420 *6) *6)) (-4 *6 (-1219 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-365) (-150) (-1037 (-568)) (-1037 (-409 (-568))))) (-5 *2 (-634 (-409 *6))) (-5 *1 (-807 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *2 (-1157 (-568))) (-5 *1 (-183)) (-5 *3 (-568)))) ((*1 *2 *3 *2) (-12 (-5 *3 (-763)) (-5 *1 (-778 *2)) (-4 *2 (-172)))) ((*1 *2 *3) (-12 (-5 *2 (-1157 (-568))) (-5 *1 (-943)) (-5 *3 (-568))))) +(((*1 *2 *3 *4 *2) (-12 (-5 *2 (-884 *5 *3)) (-5 *4 (-887 *5)) (-4 *5 (-1090)) (-4 *3 (-166 *6)) (-4 (-953 *6) (-881 *5)) (-4 *6 (-13 (-881 *5) (-172))) (-5 *1 (-176 *5 *6 *3)))) ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-884 *4 *1)) (-5 *3 (-887 *4)) (-4 *1 (-881 *4)) (-4 *4 (-1090)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-884 *5 *6)) (-5 *4 (-887 *5)) (-4 *5 (-1090)) (-4 *6 (-13 (-1090) (-1037 *3))) (-4 *3 (-881 *5)) (-5 *1 (-932 *5 *3 *6)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-884 *5 *3)) (-4 *5 (-1090)) (-4 *3 (-13 (-432 *6) (-609 *4) (-881 *5) (-1037 (-607 $)))) (-5 *4 (-887 *5)) (-4 *6 (-13 (-558) (-842) (-881 *5))) (-5 *1 (-933 *5 *6 *3)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-884 (-568) *3)) (-5 *4 (-887 (-568))) (-4 *3 (-550)) (-5 *1 (-934 *3)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-884 *5 *6)) (-5 *3 (-607 *6)) (-4 *5 (-1090)) (-4 *6 (-13 (-842) (-1037 (-607 $)) (-609 *4) (-881 *5))) (-5 *4 (-887 *5)) (-5 *1 (-935 *5 *6)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-880 *5 *6 *3)) (-5 *4 (-887 *5)) (-4 *5 (-1090)) (-4 *6 (-881 *5)) (-4 *3 (-658 *6)) (-5 *1 (-936 *5 *6 *3)))) ((*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-884 *6 *3) *8 (-887 *6) (-884 *6 *3))) (-4 *8 (-842)) (-5 *2 (-884 *6 *3)) (-5 *4 (-887 *6)) (-4 *6 (-1090)) (-4 *3 (-13 (-950 *9 *7 *8) (-609 *4))) (-4 *7 (-788)) (-4 *9 (-13 (-1047) (-842) (-881 *6))) (-5 *1 (-937 *6 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-884 *5 *3)) (-4 *5 (-1090)) (-4 *3 (-13 (-950 *8 *6 *7) (-609 *4))) (-5 *4 (-887 *5)) (-4 *7 (-881 *5)) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *8 (-13 (-1047) (-842) (-881 *5))) (-5 *1 (-937 *5 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-884 *5 *3)) (-4 *5 (-1090)) (-4 *3 (-993 *6)) (-4 *6 (-13 (-558) (-881 *5) (-609 *4))) (-5 *4 (-887 *5)) (-5 *1 (-940 *5 *6 *3)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-884 *5 (-1161))) (-5 *3 (-1161)) (-5 *4 (-887 *5)) (-4 *5 (-1090)) (-5 *1 (-941 *5)))) ((*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-634 (-887 *7))) (-5 *5 (-1 *9 (-634 *9))) (-5 *6 (-1 (-884 *7 *9) *9 (-887 *7) (-884 *7 *9))) (-4 *7 (-1090)) (-4 *9 (-13 (-1047) (-609 (-887 *7)) (-1037 *8))) (-5 *2 (-884 *7 *9)) (-5 *3 (-634 *9)) (-4 *8 (-13 (-1047) (-842))) (-5 *1 (-942 *7 *8 *9))))) +(((*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172))))) +(((*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1157 (-953 *4))) (-5 *1 (-418 *3 *4)) (-4 *3 (-419 *4)))) ((*1 *2) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-4 *3 (-365)) (-5 *2 (-1157 (-953 *3))))) ((*1 *2) (-12 (-5 *2 (-1157 (-409 (-953 *3)))) (-5 *1 (-454 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-634 (-1161))) (-14 *6 (-1244 (-679 *3)))))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-815)) (-14 *5 (-1161)) (-5 *2 (-634 (-1216 *5 *4))) (-5 *1 (-1104 *4 *5)) (-5 *3 (-1216 *5 *4))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-634 *6)) (-5 *4 (-634 (-1161))) (-4 *6 (-365)) (-5 *2 (-634 (-288 (-953 *6)))) (-5 *1 (-543 *5 *6 *7)) (-4 *5 (-453)) (-4 *7 (-13 (-365) (-840)))))) +(((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-679 *3)) (|:| |invmval| (-679 *3)) (|:| |genIdeal| (-514 *3 *4 *5 *6)))) (-4 *3 (-365)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-950 *3 *4 *5))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-1047)) (-5 *1 (-1215 *3 *2)) (-4 *2 (-1219 *3))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1129)) (-5 *2 (-142)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1129)) (-5 *2 (-147))))) +(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-147))))) (((*1 *1 *1) (-5 *1 (-121)))) -(((*1 *1 *1 *1) (-4 *1 (-291))) ((*1 *1 *1) (-4 *1 (-291)))) -(((*1 *2 *3 *4) (-12 (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-626 *4)) (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1058 *5 *6 *7 *3))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-375) (-375))) (-5 *4 (-375)) (-5 *2 (-2 (|:| -2981 *4) (|:| -2301 *4) (|:| |totalpts| (-560)) (|:| |success| (-121)))) (-5 *1 (-776)) (-5 *5 (-560))))) -(((*1 *2 *2 *3) (-12 (-4 *4 (-780)) (-4 *3 (-13 (-834) (-10 -8 (-15 -4255 ((-1153) $))))) (-4 *5 (-550)) (-5 *1 (-714 *4 *3 *5 *2)) (-4 *2 (-942 (-403 (-945 *5)) *4 *3)))) ((*1 *2 *2 *3) (-12 (-4 *4 (-1039)) (-4 *5 (-780)) (-4 *3 (-13 (-834) (-10 -8 (-15 -4255 ((-1153) $)) (-15 -1395 ((-3 $ "failed") (-1153)))))) (-5 *1 (-977 *4 *5 *3 *2)) (-4 *2 (-942 (-945 *4) *5 *3)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-626 *6)) (-4 *6 (-13 (-834) (-10 -8 (-15 -4255 ((-1153) $)) (-15 -1395 ((-3 $ "failed") (-1153)))))) (-4 *4 (-1039)) (-4 *5 (-780)) (-5 *1 (-977 *4 *5 *6 *2)) (-4 *2 (-942 (-945 *4) *5 *6))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-755)) (-5 *1 (-1141 *3 *4)) (-14 *3 (-909)) (-4 *4 (-1039))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-742))))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-13 (-359) (-148) (-1029 (-560)))) (-4 *5 (-1211 *4)) (-5 *2 (-2 (|:| |ans| (-403 *5)) (|:| |nosol| (-121)))) (-5 *1 (-1007 *4 *5)) (-5 *3 (-403 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-626 (-506 *3 *4 *5 *6))) (-4 *3 (-359)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-942 *3 *4 *5)))) ((*1 *1 *1 *1) (-12 (-4 *2 (-359)) (-4 *3 (-780)) (-4 *4 (-834)) (-5 *1 (-506 *2 *3 *4 *5)) (-4 *5 (-942 *2 *3 *4)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-626 *1)) (-4 *1 (-1058 *4 *5 *6 *3)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *3 (-1053 *4 *5 *6)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-626 *1)) (-5 *3 (-626 *7)) (-4 *1 (-1058 *4 *5 *6 *7)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *7 (-1053 *4 *5 *6)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-626 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-626 *1)) (-4 *1 (-1058 *4 *5 *6 *7)))) ((*1 *2 *3 *1) (-12 (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-626 *1)) (-4 *1 (-1058 *4 *5 *6 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1079 *2)) (-4 *2 (-1082))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1117 *4 *5)) (-4 *4 (-13 (-1082) (-39))) (-4 *5 (-13 (-1082) (-39))) (-5 *2 (-121)) (-5 *1 (-1118 *4 *5))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-742))))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-550)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4440 *3))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1211 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-671 (-403 (-945 (-560))))) (-5 *2 (-626 (-304 (-560)))) (-5 *1 (-1023))))) -(((*1 *2 *1) (-12 (-5 *2 (-1133 (-2 (|:| |k| (-560)) (|:| |c| *3)))) (-5 *1 (-585 *3)) (-4 *3 (-1039))))) -(((*1 *2 *1) (-12 (-4 *1 (-1181 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1053 *3 *4 *5)) (-4 *5 (-364)) (-5 *2 (-755))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 (-1153))) (-4 *4 (-13 (-296) (-148))) (-4 *5 (-13 (-834) (-601 (-1153)))) (-4 *6 (-780)) (-5 *2 (-626 (-403 (-945 *4)))) (-5 *1 (-916 *4 *5 *6 *7)) (-4 *7 (-942 *4 *6 *5))))) -(((*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-755)) (-4 *5 (-359)) (-5 *2 (-403 *6)) (-5 *1 (-853 *5 *4 *6)) (-4 *4 (-1226 *5)) (-4 *6 (-1211 *5)))) ((*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-755)) (-5 *4 (-1227 *5 *6 *7)) (-4 *5 (-359)) (-14 *6 (-1153)) (-14 *7 *5) (-5 *2 (-403 (-1208 *6 *5))) (-5 *1 (-854 *5 *6 *7)))) ((*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-755)) (-5 *4 (-1227 *5 *6 *7)) (-4 *5 (-359)) (-14 *6 (-1153)) (-14 *7 *5) (-5 *2 (-403 (-1208 *6 *5))) (-5 *1 (-854 *5 *6 *7))))) -(((*1 *2 *3 *4 *4) (-12 (-5 *4 (-121)) (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *8 (-1053 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-626 *8)) (|:| |towers| (-626 (-1019 *5 *6 *7 *8))))) (-5 *1 (-1019 *5 *6 *7 *8)) (-5 *3 (-626 *8)))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-121)) (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *8 (-1053 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-626 *8)) (|:| |towers| (-626 (-1123 *5 *6 *7 *8))))) (-5 *1 (-1123 *5 *6 *7 *8)) (-5 *3 (-626 *8))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 (-560))) (-5 *2 (-891 (-560))) (-5 *1 (-905)))) ((*1 *2 *3) (-12 (-5 *3 (-964)) (-5 *2 (-891 (-560))) (-5 *1 (-905))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-742))))) -(((*1 *1) (-5 *1 (-142)))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-626 (-1135))) (-5 *1 (-390)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-626 (-1135))) (-5 *1 (-1168))))) -(((*1 *2 *1) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1191)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-403 *4))) (-5 *2 (-2 (|:| |num| (-1236 *4)) (|:| |den| *4)))))) -(((*1 *2) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1191)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-403 *4))) (-5 *2 (-671 (-403 *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-809))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-671 (-167 (-403 (-560))))) (-5 *2 (-626 (-2 (|:| |outval| (-167 *4)) (|:| |outmult| (-560)) (|:| |outvect| (-626 (-671 (-167 *4))))))) (-5 *1 (-748 *4)) (-4 *4 (-13 (-359) (-832)))))) -(((*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-167 (-213))) (-5 *5 (-560)) (-5 *6 (-1135)) (-5 *3 (-213)) (-5 *2 (-1027)) (-5 *1 (-742))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-630 *2 *3 *4)) (-4 *2 (-1082)) (-4 *3 (-23)) (-14 *4 *3))) ((*1 *1 *2 *3 *1) (-12 (-5 *1 (-630 *2 *3 *4)) (-4 *2 (-1082)) (-4 *3 (-23)) (-14 *4 *3))) ((*1 *1 *1 *1) (-12 (-5 *1 (-658 *2)) (-4 *2 (-1039)) (-4 *2 (-1082))))) -(((*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-626 (-1236 *4))) (-5 *1 (-362 *3 *4)) (-4 *3 (-363 *4)))) ((*1 *2) (-12 (-4 *1 (-363 *3)) (-4 *3 (-170)) (-4 *3 (-550)) (-5 *2 (-626 (-1236 *3)))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-1039)) (-5 *1 (-881 *2 *3)) (-4 *2 (-1211 *3)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-1039)) (-5 *1 (-1137 *3))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-869 *2)) (-4 *2 (-1187))))) -(((*1 *1 *1) (-5 *1 (-533)))) -(((*1 *1 *2) (-12 (-5 *2 (-909)) (-4 *1 (-226 *3 *4)) (-4 *4 (-1039)) (-4 *4 (-1187)))) ((*1 *1 *2) (-12 (-14 *3 (-626 (-1153))) (-4 *4 (-170)) (-4 *5 (-226 (-2271 *3) (-755))) (-14 *6 (-1 (-121) (-2 (|:| -1330 *2) (|:| -4034 *5)) (-2 (|:| -1330 *2) (|:| -4034 *5)))) (-5 *1 (-456 *3 *4 *2 *5 *6 *7)) (-4 *2 (-834)) (-4 *7 (-942 *4 *5 (-844 *3))))) ((*1 *2 *2) (-12 (-5 *2 (-936 (-213))) (-5 *1 (-1184))))) -(((*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-167 (-213))) (-5 *5 (-560)) (-5 *6 (-1135)) (-5 *3 (-213)) (-5 *2 (-1027)) (-5 *1 (-742))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-1153)) (-5 *4 (-945 (-560))) (-5 *2 (-322)) (-5 *1 (-324))))) -(((*1 *2 *3 *4) (-12 (-4 *5 (-1082)) (-4 *6 (-873 *5)) (-5 *2 (-872 *5 *6 (-626 *6))) (-5 *1 (-874 *5 *6 *4)) (-5 *3 (-626 *6)) (-4 *4 (-601 (-879 *5))))) ((*1 *2 *3 *4) (-12 (-4 *5 (-1082)) (-5 *2 (-626 (-283 *3))) (-5 *1 (-874 *5 *3 *4)) (-4 *3 (-1029 (-1153))) (-4 *3 (-873 *5)) (-4 *4 (-601 (-879 *5))))) ((*1 *2 *3 *4) (-12 (-4 *5 (-1082)) (-5 *2 (-626 (-283 (-945 *3)))) (-5 *1 (-874 *5 *3 *4)) (-4 *3 (-1039)) (-3186 (-4 *3 (-1029 (-1153)))) (-4 *3 (-873 *5)) (-4 *4 (-601 (-879 *5))))) ((*1 *2 *3 *4) (-12 (-4 *5 (-1082)) (-5 *2 (-876 *5 *3)) (-5 *1 (-874 *5 *3 *4)) (-3186 (-4 *3 (-1029 (-1153)))) (-3186 (-4 *3 (-1039))) (-4 *3 (-873 *5)) (-4 *4 (-601 (-879 *5)))))) -(((*1 *2 *3) (-12 (-4 *5 (-13 (-601 *2) (-170))) (-5 *2 (-879 *4)) (-5 *1 (-168 *4 *5 *3)) (-4 *4 (-1082)) (-4 *3 (-164 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-1076 (-827 (-375))))) (-5 *2 (-626 (-1076 (-827 (-213))))) (-5 *1 (-294)))) ((*1 *1 *2) (-12 (-5 *2 (-213)) (-5 *1 (-375)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-842)) (-5 *3 (-560)) (-5 *1 (-390)))) ((*1 *1 *2) (-12 (-5 *2 (-1236 *3)) (-4 *3 (-170)) (-4 *1 (-405 *3 *4)) (-4 *4 (-1211 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-405 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1211 *3)) (-5 *2 (-1236 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1236 *3)) (-4 *3 (-170)) (-4 *1 (-413 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-413 *3)) (-4 *3 (-170)) (-5 *2 (-1236 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-414 *1)) (-4 *1 (-426 *3)) (-4 *3 (-550)) (-4 *3 (-834)))) ((*1 *1 *2) (-12 (-5 *2 (-626 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *1 (-461 *3 *4 *5 *6)))) ((*1 *1 *2) (-12 (-5 *2 (-1086)) (-5 *1 (-533)))) ((*1 *2 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-1187)))) ((*1 *1 *2) (-12 (-4 *3 (-170)) (-4 *1 (-706 *3 *2)) (-4 *2 (-1211 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-626 (-879 *3))) (-5 *1 (-879 *3)) (-4 *3 (-1082)))) ((*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-1039)) (-4 *1 (-973 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1153)) (-5 *1 (-1050)))) ((*1 *1 *2) (-12 (-5 *2 (-945 *3)) (-4 *3 (-1039)) (-4 *1 (-1053 *3 *4 *5)) (-4 *5 (-601 (-1153))) (-4 *4 (-780)) (-4 *5 (-834)))) ((*1 *1 *2) (-2318 (-12 (-5 *2 (-945 (-560))) (-4 *1 (-1053 *3 *4 *5)) (-12 (-3186 (-4 *3 (-43 (-403 (-560))))) (-4 *3 (-43 (-560))) (-4 *5 (-601 (-1153)))) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834))) (-12 (-5 *2 (-945 (-560))) (-4 *1 (-1053 *3 *4 *5)) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *5 (-601 (-1153)))) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834))))) ((*1 *1 *2) (-12 (-5 *2 (-945 (-403 (-560)))) (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-43 (-403 (-560)))) (-4 *5 (-601 (-1153))) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)))) ((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-626 *7)) (|:| -3249 *8))) (-4 *7 (-1053 *4 *5 *6)) (-4 *8 (-1058 *4 *5 *6 *7)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-1135)) (-5 *1 (-1056 *4 *5 *6 *7 *8)))) ((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-1067)))) ((*1 *1 *2) (-12 (-4 *1 (-1075 *2)) (-4 *2 (-1187)))) ((*1 *1 *2) (-12 (-4 *1 (-1085 *3 *4 *5 *6 *2)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *2 (-1082)))) ((*1 *1 *2) (-12 (-4 *1 (-1085 *3 *4 *5 *2 *6)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *2 (-1082)) (-4 *6 (-1082)))) ((*1 *1 *2) (-12 (-4 *1 (-1085 *3 *4 *2 *5 *6)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *2 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)))) ((*1 *1 *2) (-12 (-4 *1 (-1085 *3 *2 *4 *5 *6)) (-4 *3 (-1082)) (-4 *2 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)))) ((*1 *1 *2) (-12 (-4 *1 (-1085 *2 *3 *4 *5 *6)) (-4 *2 (-1082)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)))) ((*1 *1 *2) (-12 (-5 *2 (-626 *1)) (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)))) ((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-626 *7)) (|:| -3249 *8))) (-4 *7 (-1053 *4 *5 *6)) (-4 *8 (-1091 *4 *5 *6 *7)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-1135)) (-5 *1 (-1122 *4 *5 *6 *7 *8)))) ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-842)) (-5 *3 (-560)) (-5 *1 (-1168)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-842)) (-5 *3 (-560)) (-5 *1 (-1168)))) ((*1 *2 *3) (-12 (-5 *3 (-767 *4 (-844 *5))) (-4 *4 (-13 (-832) (-296) (-148) (-1013))) (-14 *5 (-626 (-1153))) (-5 *2 (-767 *4 (-844 *6))) (-5 *1 (-1260 *4 *5 *6)) (-14 *6 (-626 (-1153))))) ((*1 *2 *3) (-12 (-5 *3 (-945 *4)) (-4 *4 (-13 (-832) (-296) (-148) (-1013))) (-5 *2 (-945 (-1015 (-403 *4)))) (-5 *1 (-1260 *4 *5 *6)) (-14 *5 (-626 (-1153))) (-14 *6 (-626 (-1153))))) ((*1 *2 *3) (-12 (-5 *3 (-767 *4 (-844 *6))) (-4 *4 (-13 (-832) (-296) (-148) (-1013))) (-14 *6 (-626 (-1153))) (-5 *2 (-945 (-1015 (-403 *4)))) (-5 *1 (-1260 *4 *5 *6)) (-14 *5 (-626 (-1153))))) ((*1 *2 *3) (-12 (-5 *3 (-1149 *4)) (-4 *4 (-13 (-832) (-296) (-148) (-1013))) (-5 *2 (-1149 (-1015 (-403 *4)))) (-5 *1 (-1260 *4 *5 *6)) (-14 *5 (-626 (-1153))) (-14 *6 (-626 (-1153))))) ((*1 *2 *3) (-12 (-5 *3 (-1123 *4 (-526 (-844 *6)) (-844 *6) (-767 *4 (-844 *6)))) (-4 *4 (-13 (-832) (-296) (-148) (-1013))) (-14 *6 (-626 (-1153))) (-5 *2 (-626 (-767 *4 (-844 *6)))) (-5 *1 (-1260 *4 *5 *6)) (-14 *5 (-626 (-1153)))))) -(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-626 (-560))) (-5 *1 (-1092)) (-5 *3 (-560))))) -(((*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-121)) (-5 *1 (-362 *3 *4)) (-4 *3 (-363 *4)))) ((*1 *2) (-12 (-4 *1 (-363 *3)) (-4 *3 (-170)) (-5 *2 (-121))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-560)) (-5 *3 (-909)) (-5 *1 (-680)))) ((*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-671 *5)) (-5 *3 (-101 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-359)) (-5 *1 (-971 *5))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *5 (-3 (|:| |fn| (-384)) (|:| |fp| (-69 -1333)))) (-5 *2 (-1027)) (-5 *1 (-732))))) -(((*1 *1 *2) (-12 (-5 *2 (-755)) (-5 *1 (-55 *3 *4)) (-4 *3 (-1039)) (-14 *4 (-626 (-1153))))) ((*1 *1 *2) (-12 (-5 *2 (-755)) (-5 *1 (-211 *3 *4)) (-4 *3 (-13 (-1039) (-834))) (-14 *4 (-626 (-1153))))) ((*1 *1) (-12 (-4 *1 (-321 *2)) (-4 *2 (-364)) (-4 *2 (-359)))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-327 *3 *4 *5 *2)) (-4 *3 (-359)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-403 *4))) (-4 *2 (-334 *3 *4 *5)))) ((*1 *1 *2) (-12 (-5 *2 (-755)) (-5 *1 (-386 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-170)))) ((*1 *1) (-12 (-4 *2 (-170)) (-4 *1 (-706 *2 *3)) (-4 *3 (-1211 *2))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-626 *5)) (-5 *4 (-909)) (-4 *5 (-834)) (-5 *2 (-64 (-626 (-655 *5)))) (-5 *1 (-655 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-384)) (-5 *1 (-432)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-384)) (-5 *1 (-432))))) -(((*1 *1 *1) (-4 *1 (-542)))) -(((*1 *2 *3 *3) (-12 (-5 *2 (-1133 (-626 (-560)))) (-5 *1 (-870)) (-5 *3 (-626 (-560)))))) -(((*1 *1 *1) (-5 *1 (-1051)))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1173))))) -(((*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-809))))) -(((*1 *2 *1) (-12 (-4 *1 (-1218 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-1195 *3))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-742))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-121)) (-5 *1 (-123))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-172 *3)) (-4 *3 (-13 (-359) (-1173) (-994)))))) -(((*1 *2 *1) (-12 (-5 *2 (-809)) (-5 *1 (-808))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *5 (-3 (|:| |fn| (-384)) (|:| |fp| (-69 -1333)))) (-5 *2 (-1027)) (-5 *1 (-732))))) -(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-39))) ((*1 *1) (-12 (-5 *1 (-96 *2)) (-4 *2 (-1082)))) ((*1 *1) (-12 (-5 *1 (-141 *2 *3 *4)) (-14 *2 (-560)) (-14 *3 (-755)) (-4 *4 (-170)))) ((*1 *1) (-12 (-5 *1 (-210 *2)) (-4 *2 (-1082)))) ((*1 *1) (-12 (-5 *1 (-487 *2)) (-4 *2 (-834)))) ((*1 *1) (-4 *1 (-708))) ((*1 *1) (-12 (-5 *1 (-992 *2)) (-4 *2 (-1082)))) ((*1 *1) (-12 (-5 *1 (-1124 *2)) (-4 *2 (-1082)))) ((*1 *1) (-5 *1 (-1153)))) -(((*1 *2 *1) (-12 (-4 *1 (-832)) (-5 *2 (-560)))) ((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-892 *3)) (-4 *3 (-1082)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-1055 *4 *3)) (-4 *4 (-13 (-832) (-359))) (-4 *3 (-1211 *4)) (-5 *2 (-560)))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-550) (-834) (-1029 *2) (-622 *2) (-447))) (-5 *2 (-560)) (-5 *1 (-1097 *4 *3)) (-4 *3 (-13 (-27) (-1173) (-426 *4))))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1153)) (-5 *5 (-827 *3)) (-4 *3 (-13 (-27) (-1173) (-426 *6))) (-4 *6 (-13 (-550) (-834) (-1029 *2) (-622 *2) (-447))) (-5 *2 (-560)) (-5 *1 (-1097 *6 *3)))) ((*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1153)) (-5 *5 (-1135)) (-4 *6 (-13 (-550) (-834) (-1029 *2) (-622 *2) (-447))) (-5 *2 (-560)) (-5 *1 (-1097 *6 *3)) (-4 *3 (-13 (-27) (-1173) (-426 *6))))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-403 (-945 *4))) (-4 *4 (-447)) (-5 *2 (-560)) (-5 *1 (-1098 *4)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1153)) (-5 *5 (-827 (-403 (-945 *6)))) (-5 *3 (-403 (-945 *6))) (-4 *6 (-447)) (-5 *2 (-560)) (-5 *1 (-1098 *6)))) ((*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-403 (-945 *6))) (-5 *4 (-1153)) (-5 *5 (-1135)) (-4 *6 (-447)) (-5 *2 (-560)) (-5 *1 (-1098 *6)))) ((*1 *2 *3) (|partial| -12 (-5 *2 (-560)) (-5 *1 (-1170 *3)) (-4 *3 (-1039))))) -(((*1 *1) (-5 *1 (-156)))) -(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-671 *3)) (-4 *3 (-1039)) (-5 *1 (-672 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-919)) (-5 *2 (-2 (|:| |brans| (-626 (-626 (-936 (-213))))) (|:| |xValues| (-1076 (-213))) (|:| |yValues| (-1076 (-213))))) (-5 *1 (-154)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-919)) (-5 *4 (-403 (-560))) (-5 *2 (-2 (|:| |brans| (-626 (-626 (-936 (-213))))) (|:| |xValues| (-1076 (-213))) (|:| |yValues| (-1076 (-213))))) (-5 *1 (-154)))) ((*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-626 (-626 (-936 (-213))))) (|:| |xValues| (-1076 (-213))) (|:| |yValues| (-1076 (-213))))) (-5 *1 (-154)) (-5 *3 (-626 (-936 (-213)))))) ((*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-626 (-626 (-936 (-213))))) (|:| |xValues| (-1076 (-213))) (|:| |yValues| (-1076 (-213))))) (-5 *1 (-154)) (-5 *3 (-626 (-626 (-936 (-213))))))) ((*1 *1 *2) (-12 (-5 *2 (-626 (-1076 (-375)))) (-5 *1 (-251)))) ((*1 *1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-251))))) -(((*1 *2) (-12 (-5 *2 (-626 (-755))) (-5 *1 (-1239)))) ((*1 *2 *2) (-12 (-5 *2 (-626 (-755))) (-5 *1 (-1239))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-742))))) -(((*1 *2 *2) (-12 (-5 *2 (-1236 *1)) (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1191)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-403 *4)))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1149 *7)) (-4 *5 (-1039)) (-4 *7 (-1039)) (-4 *2 (-1211 *5)) (-5 *1 (-502 *5 *2 *6 *7)) (-4 *6 (-1211 *2)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1039)) (-4 *7 (-1039)) (-4 *4 (-1211 *5)) (-5 *2 (-1149 *7)) (-5 *1 (-502 *5 *4 *6 *7)) (-4 *6 (-1211 *4))))) -(((*1 *1 *1) (-5 *1 (-842))) ((*1 *1 *1 *1) (-5 *1 (-842))) ((*1 *1 *2 *2) (-12 (-4 *1 (-1075 *2)) (-4 *2 (-1187)))) ((*1 *1 *2) (-12 (-5 *1 (-1202 *2)) (-4 *2 (-1187))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-1039))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -1882 (-123)) (|:| |arg| (-626 (-879 *3))))) (-5 *1 (-879 *3)) (-4 *3 (-1082)))) ((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-123)) (-5 *2 (-626 (-879 *4))) (-5 *1 (-879 *4)) (-4 *4 (-1082))))) -(((*1 *2 *1) (-12 (-5 *1 (-96 *2)) (-4 *2 (-1082)))) ((*1 *2 *1) (-12 (-5 *1 (-210 *2)) (-4 *2 (-1082)))) ((*1 *2 *1) (-12 (-4 *1 (-1101 *2)) (-4 *2 (-1187)))) ((*1 *2 *1) (-12 (-5 *1 (-1124 *2)) (-4 *2 (-1082))))) -(((*1 *2 *3) (-12 (-5 *3 (-671 (-403 (-945 (-560))))) (-5 *2 (-626 (-671 (-304 (-560))))) (-5 *1 (-1023))))) -(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-560)) (-5 *5 (-671 (-213))) (-5 *6 (-3 (|:| |fn| (-384)) (|:| |fp| (-69 -1333)))) (-5 *3 (-213)) (-5 *2 (-1027)) (-5 *1 (-732))))) -(((*1 *1 *1 *1) (-5 *1 (-842)))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-599 *1)) (-4 *1 (-291))))) -(((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-121))))) -(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *5 (-3 (|:| |fn| (-384)) (|:| |fp| (-69 -1333)))) (-5 *2 (-1027)) (-5 *1 (-732))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-909)) (-5 *3 (-626 (-251))) (-5 *1 (-249)))) ((*1 *1 *2) (-12 (-5 *2 (-909)) (-5 *1 (-251))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 *2)) (-4 *2 (-426 *4)) (-5 *1 (-157 *4 *2)) (-4 *4 (-13 (-834) (-550)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-809))))) -(((*1 *2 *3) (-12 (-4 *4 (-550)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-121)) (-5 *1 (-970 *4 *5 *6 *3)) (-4 *3 (-1053 *4 *5 *6))))) -(((*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1211 *6)) (-4 *6 (-13 (-359) (-148) (-1029 *4))) (-5 *4 (-560)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-121)))) (|:| -2654 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1007 *6 *3))))) -(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *5 (-3 (|:| |fn| (-384)) (|:| |fp| (-69 G)))) (-5 *2 (-1027)) (-5 *1 (-732))))) -(((*1 *2 *2) (-12 (-5 *2 (-755)) (-5 *1 (-440 *3)) (-4 *3 (-1039)))) ((*1 *2) (-12 (-5 *2 (-755)) (-5 *1 (-440 *3)) (-4 *3 (-1039))))) -(((*1 *2 *3) (-12 (-5 *3 (-671 (-304 (-213)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-375)) (|:| |stabilityFactor| (-375)))) (-5 *1 (-195))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-638 *2)) (-4 *2 (-1039)) (-4 *2 (-359)))) ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-359)) (-5 *1 (-641 *4 *2)) (-4 *2 (-638 *4))))) -(((*1 *1 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1187))))) -(((*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-809))))) -(((*1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-780)) (-4 *4 (-834)) (-4 *2 (-447))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-742))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *1 (-416 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1173) (-426 *3))) (-14 *4 (-1153)) (-14 *5 *2))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-4 *2 (-13 (-27) (-1173) (-426 *3) (-10 -8 (-15 -2801 ($ *4))))) (-4 *4 (-832)) (-4 *5 (-13 (-1213 *2 *4) (-359) (-1173) (-10 -8 (-15 -2443 ($ $)) (-15 -2376 ($ $))))) (-5 *1 (-418 *3 *2 *4 *5 *6 *7)) (-4 *6 (-976 *5)) (-14 *7 (-1153))))) -(((*1 *1) (-5 *1 (-1156)))) -(((*1 *2 *1) (-12 (-5 *2 (-626 (-626 (-936 (-213))))) (-5 *1 (-1183 *3)) (-4 *3 (-967))))) -(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-811))))) -(((*1 *2 *2) (-12 (-5 *2 (-626 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *1 (-970 *3 *4 *5 *6))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *5 (-3 (|:| |fn| (-384)) (|:| |fp| (-69 G)))) (-5 *2 (-1027)) (-5 *1 (-732))))) -(((*1 *1 *1) (-12 (-4 *2 (-344)) (-4 *2 (-1039)) (-5 *1 (-694 *2 *3)) (-4 *3 (-1211 *2))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-447))) (-5 *1 (-1179 *3 *2)) (-4 *2 (-13 (-426 *3) (-1173)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-809))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550)) (-5 *2 (-121))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-742))))) -(((*1 *1 *2) (-12 (-5 *2 (-861)) (-5 *1 (-251)))) ((*1 *1 *2) (-12 (-5 *2 (-375)) (-5 *1 (-251))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *5 (-3 (|:| |fn| (-384)) (|:| |fp| (-69 G)))) (-5 *2 (-1027)) (-5 *1 (-732))))) -(((*1 *2 *1) (-12 (-4 *1 (-39)) (-5 *2 (-121)))) ((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-96 *3)) (-4 *3 (-1082)))) ((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-210 *3)) (-4 *3 (-1082)))) ((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-487 *3)) (-4 *3 (-834)))) ((*1 *2 *1) (-12 (-4 *3 (-447)) (-4 *4 (-834)) (-4 *5 (-780)) (-5 *2 (-121)) (-5 *1 (-980 *3 *4 *5 *6)) (-4 *6 (-942 *3 *5 *4)))) ((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-992 *3)) (-4 *3 (-1082)))) ((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1117 *3 *4)) (-4 *3 (-13 (-1082) (-39))) (-4 *4 (-13 (-1082) (-39))))) ((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1124 *3)) (-4 *3 (-1082))))) -(((*1 *2) (-12 (-5 *2 (-820 (-560))) (-5 *1 (-531)))) ((*1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-1082))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-542)) (-5 *2 (-121))))) -(((*1 *2 *3) (-12 (-5 *3 (-909)) (-4 *4 (-364)) (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *6 (-942 *4 *7 (-844 *5))) (-4 *7 (-226 (-2271 *5) (-755))) (-4 *8 (-963 *4)) (-4 *9 (-633 *4)) (-4 *10 (-912 *4 *9)) (-4 *11 (-230 *10)) (-4 *12 (-528 *4 *5 *6 *7 *8 *9 *10 *11 *14)) (-4 *14 (-117)) (-5 *2 (-560)) (-5 *1 (-460 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13 *14)) (-4 *13 (-253 *12)))) ((*1 *2 *3) (-12 (-5 *3 (-909)) (-5 *2 (-560)) (-5 *1 (-859 *4 *5 *6)) (-4 (-849 *4) (-364)) (-4 *4 (-344)) (-14 *5 (-626 (-1153))) (-4 *6 (-117)))) ((*1 *2 *3) (-12 (-5 *3 (-909)) (-5 *2 (-560)) (-5 *1 (-860 *4 *5 *6)) (-4 *4 (-364)) (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *6 (-117))))) -(((*1 *2 *3) (|partial| -12 (-4 *5 (-1029 (-53))) (-4 *4 (-13 (-550) (-834) (-1029 (-560)))) (-4 *5 (-426 *4)) (-5 *2 (-414 (-1149 (-53)))) (-5 *1 (-431 *4 *5 *3)) (-4 *3 (-1211 *5))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1211 *5)) (-4 *5 (-359)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-570 *5 *3))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-742))))) -(((*1 *2 *1) (-12 (-5 *1 (-210 *2)) (-4 *2 (-1082)))) ((*1 *2 *1) (-12 (-4 *1 (-242 *2)) (-4 *2 (-1187))))) -(((*1 *1) (-12 (-5 *1 (-141 *2 *3 *4)) (-14 *2 (-560)) (-14 *3 (-755)) (-4 *4 (-170))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-626 (-1061 *4 *5 *2))) (-4 *4 (-1082)) (-4 *5 (-13 (-1039) (-873 *4) (-834) (-601 (-879 *4)))) (-4 *2 (-13 (-426 *5) (-873 *4) (-601 (-879 *4)))) (-5 *1 (-60 *4 *5 *2)))) ((*1 *2 *3 *2 *4) (-12 (-5 *3 (-626 (-1061 *5 *6 *2))) (-5 *4 (-909)) (-4 *5 (-1082)) (-4 *6 (-13 (-1039) (-873 *5) (-834) (-601 (-879 *5)))) (-4 *2 (-13 (-426 *6) (-873 *5) (-601 (-879 *5)))) (-5 *1 (-60 *5 *6 *2))))) -(((*1 *2 *3) (-12 (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *6 (-942 *4 *7 (-844 *5))) (-4 *7 (-226 (-2271 *5) (-755))) (-4 *3 (-963 *4)) (-4 *8 (-633 *4)) (-4 *9 (-912 *4 *8)) (-4 *10 (-230 *9)) (-4 *11 (-528 *4 *5 *6 *7 *3 *8 *9 *10 *13)) (-4 *13 (-117)) (-5 *2 (-626 *9)) (-5 *1 (-460 *4 *5 *6 *7 *3 *8 *9 *10 *11 *12 *13)) (-4 *12 (-253 *11)))) ((*1 *2 *3) (-12 (-5 *3 (-959 *4)) (-4 *4 (-344)) (-5 *2 (-626 (-914 *4))) (-5 *1 (-859 *4 *5 *6)) (-14 *5 (-626 (-1153))) (-4 *6 (-117)))) ((*1 *2 *3) (-12 (-5 *3 (-958 *4)) (-4 *4 (-359)) (-5 *2 (-626 (-913 *4))) (-5 *1 (-860 *4 *5 *6)) (-14 *5 (-626 (-1153))) (-4 *6 (-117))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-359)) (-5 *1 (-750 *2 *3)) (-4 *2 (-690 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-836 *2)) (-4 *2 (-1039)) (-4 *2 (-359))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-296)) (-5 *2 (-121))))) -(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-671 (-213))) (-5 *6 (-671 (-560))) (-5 *3 (-560)) (-5 *4 (-213)) (-5 *2 (-1027)) (-5 *1 (-736))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-626 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-755)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-780)) (-4 *3 (-942 *4 *5 *6)) (-4 *4 (-447)) (-4 *6 (-834)) (-5 *1 (-444 *4 *5 *6 *3))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-626 *2)) (-4 *2 (-942 *4 *5 *6)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *1 (-444 *4 *5 *6 *2))))) -(((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-321 *3)) (-4 *3 (-359)) (-4 *3 (-364)) (-5 *2 (-1149 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-321 *3)) (-4 *3 (-359)) (-4 *3 (-364)) (-5 *2 (-1149 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-626 (-560))) (-5 *1 (-996 *3)) (-14 *3 (-560))))) -(((*1 *2 *3) (-12 (-5 *3 (-909)) (-4 *4 (-364)) (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *6 (-942 *4 *7 (-844 *5))) (-4 *7 (-226 (-2271 *5) (-755))) (-4 *8 (-963 *4)) (-4 *9 (-633 *4)) (-4 *10 (-912 *4 *9)) (-4 *11 (-230 *10)) (-4 *12 (-528 *4 *5 *6 *7 *8 *9 *10 *11 *14)) (-4 *14 (-117)) (-5 *2 (-626 *10)) (-5 *1 (-460 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13 *14)) (-4 *13 (-253 *12)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-909)) (-5 *5 (-626 *9)) (-4 *9 (-963 *6)) (-4 *6 (-359)) (-14 *7 (-626 (-1153))) (-4 *4 (-942 *6 *8 (-844 *7))) (-4 *8 (-226 (-2271 *7) (-755))) (-4 *10 (-633 *6)) (-4 *11 (-912 *6 *10)) (-4 *12 (-230 *11)) (-4 *13 (-528 *6 *7 *4 *8 *9 *10 *11 *12 *15)) (-4 *15 (-117)) (-5 *2 (-1241)) (-5 *1 (-548 *6 *7 *4 *8 *9 *10 *11 *12 *13 *14 *15)) (-4 *14 (-253 *13)))) ((*1 *2 *3) (-12 (-5 *3 (-909)) (-5 *2 (-626 (-914 *4))) (-5 *1 (-859 *4 *5 *6)) (-4 (-849 *4) (-364)) (-4 *4 (-344)) (-14 *5 (-626 (-1153))) (-4 *6 (-117)))) ((*1 *2 *3) (-12 (-5 *3 (-909)) (-5 *2 (-626 (-913 *4))) (-5 *1 (-860 *4 *5 *6)) (-4 *4 (-364)) (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *6 (-117))))) -(((*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-121)) (-5 *1 (-362 *3 *4)) (-4 *3 (-363 *4)))) ((*1 *2) (-12 (-4 *1 (-363 *3)) (-4 *3 (-170)) (-5 *2 (-121))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-742))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 (-560))) (-5 *2 (-755)) (-5 *1 (-581))))) -(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-123))))) -(((*1 *2 *3) (-12 (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *6 (-942 *4 *7 (-844 *5))) (-4 *7 (-226 (-2271 *5) (-755))) (-4 *8 (-633 *4)) (-4 *3 (-912 *4 *8)) (-4 *9 (-230 *3)) (-4 *10 (-528 *4 *5 *6 *7 *2 *8 *3 *9 *12)) (-4 *12 (-117)) (-4 *2 (-963 *4)) (-5 *1 (-460 *4 *5 *6 *7 *2 *8 *3 *9 *10 *11 *12)) (-4 *11 (-253 *10)))) ((*1 *2 *3) (-12 (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *7 (-226 (-2271 *5) (-755))) (-4 *8 (-633 *4)) (-4 *2 (-963 *4)) (-5 *1 (-646 *4 *5 *6 *7 *2 *8 *3)) (-4 *6 (-942 *4 *7 (-844 *5))) (-4 *3 (-912 *4 *8)))) ((*1 *2 *3) (-12 (-5 *3 (-914 *4)) (-4 *4 (-344)) (-5 *2 (-959 *4)) (-5 *1 (-859 *4 *5 *6)) (-14 *5 (-626 (-1153))) (-4 *6 (-117)))) ((*1 *2 *3) (-12 (-5 *3 (-913 *4)) (-4 *4 (-359)) (-5 *2 (-958 *4)) (-5 *1 (-860 *4 *5 *6)) (-14 *5 (-626 (-1153))) (-4 *6 (-117))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-626 *5) *6)) (-4 *5 (-13 (-359) (-148) (-1029 (-403 (-560))))) (-4 *6 (-1211 *5)) (-5 *2 (-626 (-2 (|:| |poly| *6) (|:| -2654 *3)))) (-5 *1 (-796 *5 *6 *3 *7)) (-4 *3 (-638 *6)) (-4 *7 (-638 (-403 *6))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-626 *5) *6)) (-4 *5 (-13 (-359) (-148) (-1029 (-560)) (-1029 (-403 (-560))))) (-4 *6 (-1211 *5)) (-5 *2 (-626 (-2 (|:| |poly| *6) (|:| -2654 (-636 *6 (-403 *6)))))) (-5 *1 (-799 *5 *6)) (-5 *3 (-636 *6 (-403 *6)))))) -(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-879 *3)) (-4 *3 (-1082))))) -(((*1 *2 *3 *3 *4) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-742))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-626 *6)) (-5 *4 (-626 (-1133 *7))) (-4 *6 (-834)) (-4 *7 (-942 *5 (-526 *6) *6)) (-4 *5 (-1039)) (-5 *2 (-1 (-1133 *7) *7)) (-5 *1 (-1106 *5 *6 *7))))) -(((*1 *2 *3) (-12 (-5 *3 (-1149 *4)) (-4 *4 (-344)) (-5 *2 (-1236 (-626 (-2 (|:| -2981 *4) (|:| -1330 (-1100)))))) (-5 *1 (-341 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-1187)) (-4 *1 (-152 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-626 (-2 (|:| -4034 (-755)) (|:| -1341 *4) (|:| |num| *4)))) (-4 *4 (-1211 *3)) (-4 *3 (-13 (-359) (-148))) (-5 *1 (-395 *3 *4)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-430)) (|:| -2303 "void"))) (-5 *3 (-626 (-945 (-560)))) (-5 *4 (-121)) (-5 *1 (-433)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-430)) (|:| -2303 "void"))) (-5 *3 (-626 (-1153))) (-5 *4 (-121)) (-5 *1 (-433)))) ((*1 *2 *1) (-12 (-5 *2 (-1133 *3)) (-5 *1 (-590 *3)) (-4 *3 (-1187)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-170)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-834)) (-5 *1 (-648 *3 *4)) (-4 *4 (-170)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-655 *3)) (-4 *3 (-834)) (-5 *1 (-648 *3 *4)) (-4 *4 (-170)))) ((*1 *1 *2 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-834)) (-5 *1 (-648 *3 *4)) (-4 *4 (-170)))) ((*1 *1 *2) (-12 (-5 *2 (-626 (-626 (-626 *3)))) (-4 *3 (-1082)) (-5 *1 (-658 *3)))) ((*1 *1 *2 *3) (-12 (-5 *1 (-695 *2 *3 *4)) (-4 *2 (-834)) (-4 *3 (-1082)) (-14 *4 (-1 (-121) (-2 (|:| -1330 *2) (|:| -4034 *3)) (-2 (|:| -1330 *2) (|:| -4034 *3)))))) ((*1 *1 *2) (-12 (-5 *2 (-626 (-2 (|:| -3655 (-1153)) (|:| -2371 *4)))) (-4 *4 (-1082)) (-5 *1 (-876 *3 *4)) (-4 *3 (-1082)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-626 *5)) (-4 *5 (-13 (-1082) (-39))) (-5 *2 (-626 (-1117 *3 *5))) (-5 *1 (-1117 *3 *5)) (-4 *3 (-13 (-1082) (-39))))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-2 (|:| |val| *4) (|:| -3249 *5)))) (-4 *4 (-13 (-1082) (-39))) (-4 *5 (-13 (-1082) (-39))) (-5 *2 (-626 (-1117 *4 *5))) (-5 *1 (-1117 *4 *5)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3249 *4))) (-4 *3 (-13 (-1082) (-39))) (-4 *4 (-13 (-1082) (-39))) (-5 *1 (-1117 *3 *4)))) ((*1 *1 *2 *3) (-12 (-5 *1 (-1117 *2 *3)) (-4 *2 (-13 (-1082) (-39))) (-4 *3 (-13 (-1082) (-39))))) ((*1 *1 *2 *3 *4) (-12 (-5 *4 (-121)) (-5 *1 (-1117 *2 *3)) (-4 *2 (-13 (-1082) (-39))) (-4 *3 (-13 (-1082) (-39))))) ((*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-626 *3)) (-4 *3 (-13 (-1082) (-39))) (-5 *1 (-1118 *2 *3)) (-4 *2 (-13 (-1082) (-39))))) ((*1 *1 *2 *3 *4) (-12 (-5 *4 (-626 (-1117 *2 *3))) (-4 *2 (-13 (-1082) (-39))) (-4 *3 (-13 (-1082) (-39))) (-5 *1 (-1118 *2 *3)))) ((*1 *1 *2 *3 *4) (-12 (-5 *4 (-626 (-1118 *2 *3))) (-5 *1 (-1118 *2 *3)) (-4 *2 (-13 (-1082) (-39))) (-4 *3 (-13 (-1082) (-39))))) ((*1 *1 *2) (-12 (-5 *2 (-1117 *3 *4)) (-4 *3 (-13 (-1082) (-39))) (-4 *4 (-13 (-1082) (-39))) (-5 *1 (-1118 *3 *4)))) ((*1 *1 *2 *3) (-12 (-5 *1 (-1142 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-1082))))) -(((*1 *2) (-12 (-4 *3 (-364)) (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *6 (-226 (-2271 *4) (-755))) (-4 *7 (-963 *3)) (-4 *8 (-633 *3)) (-4 *9 (-912 *3 *8)) (-4 *10 (-230 *9)) (-4 *11 (-528 *3 *4 *5 *6 *7 *8 *9 *10 *13)) (-4 *13 (-117)) (-5 *2 (-626 *9)) (-5 *1 (-460 *3 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13)) (-4 *12 (-253 *11)))) ((*1 *2) (-12 (-5 *2 (-626 (-914 *3))) (-5 *1 (-859 *3 *4 *5)) (-4 *3 (-344)) (-14 *4 (-626 (-1153))) (-4 *5 (-117)))) ((*1 *2) (-12 (-5 *2 (-626 (-913 *3))) (-5 *1 (-860 *3 *4 *5)) (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *5 (-117))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 (-560))) (-5 *2 (-560)) (-5 *1 (-489 *4)) (-4 *4 (-1211 *2))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-945 (-560))))) (-5 *2 (-626 (-626 (-283 (-945 *4))))) (-5 *1 (-376 *4)) (-4 *4 (-13 (-832) (-359))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-283 (-403 (-945 (-560)))))) (-5 *2 (-626 (-626 (-283 (-945 *4))))) (-5 *1 (-376 *4)) (-4 *4 (-13 (-832) (-359))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-403 (-945 (-560)))) (-5 *2 (-626 (-283 (-945 *4)))) (-5 *1 (-376 *4)) (-4 *4 (-13 (-832) (-359))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-283 (-403 (-945 (-560))))) (-5 *2 (-626 (-283 (-945 *4)))) (-5 *1 (-376 *4)) (-4 *4 (-13 (-832) (-359))))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1153)) (-4 *6 (-13 (-834) (-296) (-1029 (-560)) (-622 (-560)) (-148))) (-4 *4 (-13 (-29 *6) (-1173) (-951))) (-5 *2 (-2 (|:| |particular| *4) (|:| -4374 (-626 *4)))) (-5 *1 (-634 *6 *4 *3)) (-4 *3 (-638 *4)))) ((*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1153)) (-5 *5 (-626 *2)) (-4 *2 (-13 (-29 *6) (-1173) (-951))) (-4 *6 (-13 (-834) (-296) (-1029 (-560)) (-622 (-560)) (-148))) (-5 *1 (-634 *6 *2 *3)) (-4 *3 (-638 *2)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-671 *5)) (-4 *5 (-359)) (-5 *2 (-2 (|:| |particular| (-3 (-1236 *5) "failed")) (|:| -4374 (-626 (-1236 *5))))) (-5 *1 (-651 *5)) (-5 *4 (-1236 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-626 *5))) (-4 *5 (-359)) (-5 *2 (-2 (|:| |particular| (-3 (-1236 *5) "failed")) (|:| -4374 (-626 (-1236 *5))))) (-5 *1 (-651 *5)) (-5 *4 (-1236 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-671 *5)) (-4 *5 (-359)) (-5 *2 (-626 (-2 (|:| |particular| (-3 (-1236 *5) "failed")) (|:| -4374 (-626 (-1236 *5)))))) (-5 *1 (-651 *5)) (-5 *4 (-626 (-1236 *5))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-626 *5))) (-4 *5 (-359)) (-5 *2 (-626 (-2 (|:| |particular| (-3 (-1236 *5) "failed")) (|:| -4374 (-626 (-1236 *5)))))) (-5 *1 (-651 *5)) (-5 *4 (-626 (-1236 *5))))) ((*1 *2 *3 *4) (-12 (-4 *5 (-359)) (-4 *6 (-13 (-369 *5) (-10 -7 (-6 -4506)))) (-4 *4 (-13 (-369 *5) (-10 -7 (-6 -4506)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4374 (-626 *4)))) (-5 *1 (-652 *5 *6 *4 *3)) (-4 *3 (-669 *5 *6 *4)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-359)) (-4 *6 (-13 (-369 *5) (-10 -7 (-6 -4506)))) (-4 *7 (-13 (-369 *5) (-10 -7 (-6 -4506)))) (-5 *2 (-626 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -4374 (-626 *7))))) (-5 *1 (-652 *5 *6 *7 *3)) (-5 *4 (-626 *7)) (-4 *3 (-669 *5 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-945 *5))) (-5 *4 (-626 (-1153))) (-4 *5 (-550)) (-5 *2 (-626 (-626 (-283 (-403 (-945 *5)))))) (-5 *1 (-754 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-945 *4))) (-4 *4 (-550)) (-5 *2 (-626 (-626 (-283 (-403 (-945 *4)))))) (-5 *1 (-754 *4)))) ((*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-123)) (-5 *4 (-1153)) (-4 *5 (-13 (-834) (-296) (-1029 (-560)) (-622 (-560)) (-148))) (-5 *1 (-756 *5 *2)) (-4 *2 (-13 (-29 *5) (-1173) (-951))))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-671 *7)) (-5 *5 (-1153)) (-4 *7 (-13 (-29 *6) (-1173) (-951))) (-4 *6 (-13 (-834) (-296) (-1029 (-560)) (-622 (-560)) (-148))) (-5 *2 (-2 (|:| |particular| (-1236 *7)) (|:| -4374 (-626 (-1236 *7))))) (-5 *1 (-789 *6 *7)) (-5 *4 (-1236 *7)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-671 *6)) (-5 *4 (-1153)) (-4 *6 (-13 (-29 *5) (-1173) (-951))) (-4 *5 (-13 (-834) (-296) (-1029 (-560)) (-622 (-560)) (-148))) (-5 *2 (-626 (-1236 *6))) (-5 *1 (-789 *5 *6)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-626 (-283 *7))) (-5 *4 (-626 (-123))) (-5 *5 (-1153)) (-4 *7 (-13 (-29 *6) (-1173) (-951))) (-4 *6 (-13 (-834) (-296) (-1029 (-560)) (-622 (-560)) (-148))) (-5 *2 (-2 (|:| |particular| (-1236 *7)) (|:| -4374 (-626 (-1236 *7))))) (-5 *1 (-789 *6 *7)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-626 *7)) (-5 *4 (-626 (-123))) (-5 *5 (-1153)) (-4 *7 (-13 (-29 *6) (-1173) (-951))) (-4 *6 (-13 (-834) (-296) (-1029 (-560)) (-622 (-560)) (-148))) (-5 *2 (-2 (|:| |particular| (-1236 *7)) (|:| -4374 (-626 (-1236 *7))))) (-5 *1 (-789 *6 *7)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-283 *7)) (-5 *4 (-123)) (-5 *5 (-1153)) (-4 *7 (-13 (-29 *6) (-1173) (-951))) (-4 *6 (-13 (-834) (-296) (-1029 (-560)) (-622 (-560)) (-148))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -4374 (-626 *7))) *7 "failed")) (-5 *1 (-789 *6 *7)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-123)) (-5 *5 (-1153)) (-4 *6 (-13 (-834) (-296) (-1029 (-560)) (-622 (-560)) (-148))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -4374 (-626 *3))) *3 "failed")) (-5 *1 (-789 *6 *3)) (-4 *3 (-13 (-29 *6) (-1173) (-951))))) ((*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-283 *2)) (-5 *4 (-123)) (-5 *5 (-626 *2)) (-4 *2 (-13 (-29 *6) (-1173) (-951))) (-5 *1 (-789 *6 *2)) (-4 *6 (-13 (-834) (-296) (-1029 (-560)) (-622 (-560)) (-148))))) ((*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-123)) (-5 *4 (-283 *2)) (-5 *5 (-626 *2)) (-4 *2 (-13 (-29 *6) (-1173) (-951))) (-4 *6 (-13 (-834) (-296) (-1029 (-560)) (-622 (-560)) (-148))) (-5 *1 (-789 *6 *2)))) ((*1 *2 *3) (-12 (-5 *3 (-795)) (-5 *2 (-1027)) (-5 *1 (-792)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-795)) (-5 *4 (-1051)) (-5 *2 (-1027)) (-5 *1 (-792)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1236 (-304 (-375)))) (-5 *4 (-375)) (-5 *5 (-626 *4)) (-5 *2 (-1027)) (-5 *1 (-792)))) ((*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1236 (-304 (-375)))) (-5 *4 (-375)) (-5 *5 (-626 *4)) (-5 *2 (-1027)) (-5 *1 (-792)))) ((*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1236 (-304 *4))) (-5 *5 (-626 (-375))) (-5 *6 (-304 (-375))) (-5 *4 (-375)) (-5 *2 (-1027)) (-5 *1 (-792)))) ((*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1236 (-304 (-375)))) (-5 *4 (-375)) (-5 *5 (-626 *4)) (-5 *2 (-1027)) (-5 *1 (-792)))) ((*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1236 (-304 *4))) (-5 *5 (-626 (-375))) (-5 *6 (-304 (-375))) (-5 *4 (-375)) (-5 *2 (-1027)) (-5 *1 (-792)))) ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1236 (-304 *4))) (-5 *5 (-626 (-375))) (-5 *6 (-304 (-375))) (-5 *4 (-375)) (-5 *2 (-1027)) (-5 *1 (-792)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -4374 (-626 *6))) "failed") *7 *6)) (-4 *6 (-359)) (-4 *7 (-638 *6)) (-5 *2 (-2 (|:| |particular| (-1236 *6)) (|:| -4374 (-671 *6)))) (-5 *1 (-800 *6 *7)) (-5 *3 (-671 *6)) (-5 *4 (-1236 *6)))) ((*1 *2 *3) (-12 (-5 *3 (-885)) (-5 *2 (-1027)) (-5 *1 (-884)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-885)) (-5 *4 (-1051)) (-5 *2 (-1027)) (-5 *1 (-884)))) ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-755)) (-5 *6 (-626 (-626 (-304 *3)))) (-5 *7 (-1135)) (-5 *8 (-213)) (-5 *5 (-626 (-304 (-375)))) (-5 *3 (-375)) (-5 *2 (-1027)) (-5 *1 (-884)))) ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-755)) (-5 *6 (-626 (-626 (-304 *3)))) (-5 *7 (-1135)) (-5 *5 (-626 (-304 (-375)))) (-5 *3 (-375)) (-5 *2 (-1027)) (-5 *1 (-884)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-945 (-403 (-560)))) (-5 *2 (-626 (-375))) (-5 *1 (-1014)) (-5 *4 (-375)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-945 (-560))) (-5 *2 (-626 (-375))) (-5 *1 (-1014)) (-5 *4 (-375)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-359) (-10 -8 (-15 ** ($ $ (-403 (-560))))))) (-5 *2 (-626 *4)) (-5 *1 (-1108 *3 *4)) (-4 *3 (-1211 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-834) (-296) (-1029 (-560)) (-622 (-560)) (-148))) (-5 *2 (-626 (-283 (-304 *4)))) (-5 *1 (-1111 *4)) (-5 *3 (-304 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-834) (-296) (-1029 (-560)) (-622 (-560)) (-148))) (-5 *2 (-626 (-283 (-304 *4)))) (-5 *1 (-1111 *4)) (-5 *3 (-283 (-304 *4))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1153)) (-4 *5 (-13 (-834) (-296) (-1029 (-560)) (-622 (-560)) (-148))) (-5 *2 (-626 (-283 (-304 *5)))) (-5 *1 (-1111 *5)) (-5 *3 (-283 (-304 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1153)) (-4 *5 (-13 (-834) (-296) (-1029 (-560)) (-622 (-560)) (-148))) (-5 *2 (-626 (-283 (-304 *5)))) (-5 *1 (-1111 *5)) (-5 *3 (-304 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-626 (-1153))) (-4 *5 (-13 (-834) (-296) (-1029 (-560)) (-622 (-560)) (-148))) (-5 *2 (-626 (-626 (-283 (-304 *5))))) (-5 *1 (-1111 *5)) (-5 *3 (-626 (-283 (-304 *5)))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-945 *5)))) (-5 *4 (-626 (-1153))) (-4 *5 (-550)) (-5 *2 (-626 (-626 (-283 (-403 (-945 *5)))))) (-5 *1 (-1158 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-626 (-1153))) (-4 *5 (-550)) (-5 *2 (-626 (-626 (-283 (-403 (-945 *5)))))) (-5 *1 (-1158 *5)) (-5 *3 (-626 (-283 (-403 (-945 *5))))))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-403 (-945 *4)))) (-4 *4 (-550)) (-5 *2 (-626 (-626 (-283 (-403 (-945 *4)))))) (-5 *1 (-1158 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-550)) (-5 *2 (-626 (-626 (-283 (-403 (-945 *4)))))) (-5 *1 (-1158 *4)) (-5 *3 (-626 (-283 (-403 (-945 *4))))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1153)) (-4 *5 (-550)) (-5 *2 (-626 (-283 (-403 (-945 *5))))) (-5 *1 (-1158 *5)) (-5 *3 (-403 (-945 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1153)) (-4 *5 (-550)) (-5 *2 (-626 (-283 (-403 (-945 *5))))) (-5 *1 (-1158 *5)) (-5 *3 (-283 (-403 (-945 *5)))))) ((*1 *2 *3) (-12 (-4 *4 (-550)) (-5 *2 (-626 (-283 (-403 (-945 *4))))) (-5 *1 (-1158 *4)) (-5 *3 (-403 (-945 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-550)) (-5 *2 (-626 (-283 (-403 (-945 *4))))) (-5 *1 (-1158 *4)) (-5 *3 (-283 (-403 (-945 *4))))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-626 *8)) (-5 *4 (-141 *5 *6 *7)) (-14 *5 (-560)) (-14 *6 (-755)) (-4 *7 (-170)) (-4 *8 (-170)) (-5 *2 (-141 *5 *6 *8)) (-5 *1 (-140 *5 *6 *7 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 *9)) (-4 *9 (-1039)) (-4 *5 (-834)) (-4 *6 (-780)) (-4 *8 (-1039)) (-4 *2 (-942 *9 *7 *5)) (-5 *1 (-710 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-780)) (-4 *4 (-942 *8 *6 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-1220 *3 *4 *5)) (-4 *3 (-13 (-359) (-834))) (-14 *4 (-1153)) (-14 *5 *3) (-5 *1 (-308 *3 *4 *5)))) ((*1 *2 *3) (-12 (-5 *2 (-1 (-375))) (-5 *1 (-1031)) (-5 *3 (-375))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-626 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-121)) (-5 *1 (-981 *4 *5 *6 *7 *8)) (-4 *8 (-1058 *4 *5 *6 *7)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-626 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-121)) (-5 *1 (-1089 *4 *5 *6 *7 *8)) (-4 *8 (-1058 *4 *5 *6 *7))))) -(((*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-742))))) -(((*1 *2 *2) (-12 (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *2 (-942 *3 *5 (-844 *4))) (-4 *5 (-226 (-2271 *4) (-755))) (-4 *6 (-963 *3)) (-4 *7 (-633 *3)) (-4 *8 (-912 *3 *7)) (-4 *9 (-230 *8)) (-4 *10 (-528 *3 *4 *2 *5 *6 *7 *8 *9 *12)) (-4 *12 (-117)) (-5 *1 (-460 *3 *4 *2 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *11 (-253 *10)))) ((*1 *2 *2) (-12 (-5 *2 (-237 *4 *3)) (-4 *3 (-344)) (-14 *4 (-626 (-1153))) (-5 *1 (-859 *3 *4 *5)) (-4 *5 (-117)))) ((*1 *2 *2) (-12 (-5 *2 (-237 *4 *3)) (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-5 *1 (-860 *3 *4 *5)) (-4 *5 (-117))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-1153)) (-5 *4 (-945 (-560))) (-5 *2 (-322)) (-5 *1 (-324))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-945 *5)))) (-5 *4 (-626 (-1153))) (-4 *5 (-550)) (-5 *2 (-626 (-626 (-945 *5)))) (-5 *1 (-1158 *5))))) -(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-936 (-213))) (-5 *4 (-861)) (-5 *2 (-1241)) (-5 *1 (-466)))) ((*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-1039)) (-4 *1 (-973 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-1114 *3)) (-4 *3 (-1039)) (-5 *2 (-936 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-936 *3)) (-4 *3 (-1039)) (-4 *1 (-1114 *3)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-755)) (-4 *1 (-1114 *3)) (-4 *3 (-1039)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *1 (-1114 *3)) (-4 *3 (-1039)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-936 *3)) (-4 *1 (-1114 *3)) (-4 *3 (-1039)))) ((*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-936 (-213))) (-5 *1 (-1184)) (-5 *3 (-213))))) -(((*1 *1 *2) (-12 (-5 *2 (-626 (-2 (|:| -3655 (-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (|:| -2371 (-2 (|:| |stiffness| (-375)) (|:| |stability| (-375)) (|:| |expense| (-375)) (|:| |accuracy| (-375)) (|:| |intermediateResults| (-375))))))) (-5 *1 (-790))))) -(((*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-742))))) -(((*1 *2 *2) (-12 (-5 *2 (-626 *7)) (-4 *7 (-963 *3)) (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *6 (-226 (-2271 *4) (-755))) (-4 *8 (-633 *3)) (-4 *9 (-912 *3 *8)) (-4 *10 (-230 *9)) (-4 *11 (-528 *3 *4 *5 *6 *7 *8 *9 *10 *13)) (-4 *13 (-117)) (-5 *1 (-460 *3 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13)) (-4 *12 (-253 *11)))) ((*1 *2 *2) (-12 (-5 *2 (-626 (-959 *3))) (-4 *3 (-344)) (-5 *1 (-859 *3 *4 *5)) (-14 *4 (-626 (-1153))) (-4 *5 (-117)))) ((*1 *2 *2) (-12 (-5 *2 (-626 (-958 *3))) (-4 *3 (-359)) (-5 *1 (-860 *3 *4 *5)) (-14 *4 (-626 (-1153))) (-4 *5 (-117))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-599 *2)) (-4 *2 (-13 (-27) (-1173) (-426 *4))) (-4 *4 (-13 (-550) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *1 (-268 *4 *2))))) -(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-1037))))) -(((*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-742))))) -(((*1 *2 *2) (-12 (-4 *3 (-447)) (-4 *3 (-834)) (-4 *3 (-1029 (-560))) (-4 *3 (-550)) (-5 *1 (-46 *3 *2)) (-4 *2 (-426 *3)) (-4 *2 (-13 (-359) (-291) (-10 -8 (-15 -2132 ((-1105 *3 (-599 $)) $)) (-15 -2139 ((-1105 *3 (-599 $)) $)) (-15 -2801 ($ (-1105 *3 (-599 $)))))))))) -(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-1133 *4)) (-5 *3 (-560)) (-4 *4 (-1039)) (-5 *1 (-1137 *4)))) ((*1 *1 *2 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-1193 *3)) (-4 *3 (-1039)))) ((*1 *1 *2 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-1227 *3 *4 *5)) (-4 *3 (-1039)) (-14 *4 (-1153)) (-14 *5 *3))) ((*1 *1 *2 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-1231 *3 *4)) (-4 *3 (-1039)) (-14 *4 (-1153))))) -(((*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-918))))) -(((*1 *2) (-12 (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *5 (-226 (-2271 *4) (-755))) (-4 *6 (-963 *3)) (-4 *7 (-633 *3)) (-4 *8 (-912 *3 *7)) (-4 *9 (-230 *8)) (-4 *10 (-528 *3 *4 *2 *5 *6 *7 *8 *9 *12)) (-4 *12 (-117)) (-4 *2 (-942 *3 *5 (-844 *4))) (-5 *1 (-460 *3 *4 *2 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *11 (-253 *10)))) ((*1 *2) (-12 (-5 *2 (-237 *4 *3)) (-5 *1 (-859 *3 *4 *5)) (-4 *3 (-344)) (-14 *4 (-626 (-1153))) (-4 *5 (-117)))) ((*1 *2) (-12 (-5 *2 (-237 *4 *3)) (-5 *1 (-860 *3 *4 *5)) (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *5 (-117))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-167 (-213))) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-742))))) -(((*1 *2 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1187)))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-1181 *3 *4 *5 *2)) (-4 *3 (-550)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *2 (-1053 *3 *4 *5)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-755)) (-4 *1 (-1223 *3)) (-4 *3 (-1187)))) ((*1 *2 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1187))))) -(((*1 *2 *1) (-12 (-4 *1 (-314 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-137)) (-5 *2 (-626 (-2 (|:| |gen| *3) (|:| -2469 *4)))))) ((*1 *2 *1) (-12 (-5 *2 (-626 (-2 (|:| -2169 *3) (|:| -2175 *4)))) (-5 *1 (-717 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-708)))) ((*1 *2 *1) (-12 (-4 *1 (-1213 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-779)) (-5 *2 (-1133 (-2 (|:| |k| *4) (|:| |c| *3))))))) -(((*1 *2 *2) (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-359) (-1173) (-994))) (-5 *1 (-172 *3))))) -(((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-918))))) -(((*1 *2 *2 *1) (-12 (-5 *2 (-1258 *3 *4)) (-4 *1 (-370 *3 *4)) (-4 *3 (-834)) (-4 *4 (-170)))) ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-382 *2)) (-4 *2 (-1082)))) ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-806 *2)) (-4 *2 (-834)))) ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-806 *2)) (-4 *2 (-834)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1251 *2 *3)) (-4 *2 (-834)) (-4 *3 (-1039)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-806 *3)) (-4 *1 (-1251 *3 *4)) (-4 *3 (-834)) (-4 *4 (-1039)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1251 *2 *3)) (-4 *2 (-834)) (-4 *3 (-1039))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-742))))) -(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4506)) (-4 *1 (-1223 *2)) (-4 *2 (-1187))))) -(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1153))))) -(((*1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-43 (-403 (-560)))) (-4 *2 (-1039))))) -(((*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-861))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-414 *4)) (-4 *4 (-550))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-742))))) -(((*1 *2 *1) (-12 (-4 *1 (-421 *3)) (-4 *3 (-1082)) (-5 *2 (-755))))) -(((*1 *1 *2) (-12 (-5 *2 (-626 (-322))) (-5 *1 (-322))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-626 (-626 *3))) (-4 *3 (-318 *4 *5)) (-4 *5 (-226 *6 (-755))) (-14 *6 (-755)) (-4 *4 (-1039)) (-5 *1 (-764 *4 *3 *5 *6))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-1075 *3)) (-4 *3 (-1187))))) -(((*1 *2) (-12 (-5 *2 (-1241)) (-5 *1 (-440 *3)) (-4 *3 (-1039))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-283 *2)) (-4 *2 (-291)) (-4 *2 (-1187)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-626 (-599 *1))) (-5 *3 (-626 *1)) (-4 *1 (-291)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-626 (-283 *1))) (-4 *1 (-291)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-283 *1)) (-4 *1 (-291))))) -(((*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-809))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-742))))) -(((*1 *2 *1) (-12 (-4 *3 (-1039)) (-5 *2 (-1236 *3)) (-5 *1 (-694 *3 *4)) (-4 *4 (-1211 *3))))) -(((*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-560)) (-5 *5 (-3 "left" "center" "right" "vertical" "horizontal")) (-4 *6 (-1039)) (-4 *7 (-226 *8 (-755))) (-14 *8 (-755)) (-5 *2 (-626 (-626 *3))) (-5 *1 (-764 *6 *3 *7 *8)) (-4 *3 (-318 *6 *7))))) -(((*1 *2 *1) (-12 (-4 *1 (-1114 *3)) (-4 *3 (-1039)) (-5 *2 (-121))))) -(((*1 *2 *3) (-12 (-5 *3 (-213)) (-5 *2 (-1135)) (-5 *1 (-182)))) ((*1 *2 *3) (-12 (-5 *3 (-213)) (-5 *2 (-1135)) (-5 *1 (-289)))) ((*1 *2 *3) (-12 (-5 *3 (-213)) (-5 *2 (-1135)) (-5 *1 (-294))))) -(((*1 *2 *3) (-12 (-5 *3 (-671 (-403 (-945 (-560))))) (-5 *2 (-626 (-2 (|:| |radval| (-304 (-560))) (|:| |radmult| (-560)) (|:| |radvect| (-626 (-671 (-304 (-560)))))))) (-5 *1 (-1023))))) -(((*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-1165 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-742))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-414 *2)) (-4 *2 (-296)) (-5 *1 (-902 *2)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-403 (-945 *5))) (-5 *4 (-1153)) (-4 *5 (-13 (-296) (-148))) (-5 *2 (-57)) (-5 *1 (-903 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-414 (-945 *6))) (-5 *5 (-1153)) (-5 *3 (-945 *6)) (-4 *6 (-13 (-296) (-148))) (-5 *2 (-57)) (-5 *1 (-903 *6))))) -(((*1 *2 *3 *4) (-12 (-4 *5 (-359)) (-14 *6 (-626 (-1153))) (-4 *3 (-942 *5 *7 (-844 *6))) (-4 *7 (-226 (-2271 *6) (-755))) (-4 *8 (-963 *5)) (-4 *4 (-912 *5 *2)) (-4 *9 (-230 *4)) (-4 *10 (-528 *5 *6 *3 *7 *8 *2 *4 *9 *12)) (-4 *12 (-117)) (-4 *2 (-633 *5)) (-5 *1 (-460 *5 *6 *3 *7 *8 *2 *4 *9 *10 *11 *12)) (-4 *11 (-253 *10)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-237 *6 *5)) (-5 *4 (-914 *5)) (-4 *5 (-344)) (-14 *6 (-626 (-1153))) (-5 *2 (-766 (-849 *5))) (-5 *1 (-859 *5 *6 *7)) (-4 *7 (-117)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-237 *6 *5)) (-5 *4 (-913 *5)) (-4 *5 (-359)) (-14 *6 (-626 (-1153))) (-5 *2 (-766 *5)) (-5 *1 (-860 *5 *6 *7)) (-4 *7 (-117)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-626 *2)) (-4 *5 (-359)) (-14 *6 (-626 (-1153))) (-4 *7 (-226 (-2271 *6) (-755))) (-4 *2 (-633 *5)) (-5 *1 (-863 *5 *6 *3 *7 *8 *2 *9)) (-4 *3 (-942 *5 *7 (-844 *6))) (-4 *8 (-963 *5)) (-4 *9 (-912 *5 *2)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-359)) (-14 *6 (-626 (-1153))) (-4 *7 (-226 (-2271 *6) (-755))) (-4 *2 (-633 *5)) (-5 *1 (-863 *5 *6 *3 *7 *8 *2 *4)) (-4 *3 (-942 *5 *7 (-844 *6))) (-4 *8 (-963 *5)) (-4 *4 (-912 *5 *2)))) ((*1 *2 *3 *3 *4) (-12 (-4 *5 (-359)) (-14 *6 (-626 (-1153))) (-4 *7 (-226 (-2271 *6) (-755))) (-4 *2 (-633 *5)) (-5 *1 (-863 *5 *6 *3 *7 *8 *2 *4)) (-4 *3 (-942 *5 *7 (-844 *6))) (-4 *8 (-963 *5)) (-4 *4 (-912 *5 *2)))) ((*1 *2 *3 *4 *5) (-12 (-5 *5 (-560)) (-4 *6 (-359)) (-14 *7 (-626 (-1153))) (-4 *8 (-226 (-2271 *7) (-755))) (-4 *2 (-633 *6)) (-5 *1 (-863 *6 *7 *3 *8 *9 *2 *4)) (-4 *3 (-942 *6 *8 (-844 *7))) (-4 *9 (-963 *6)) (-4 *4 (-912 *6 *2))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994)))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-742))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-909)) (-4 *4 (-364)) (-4 *4 (-359)) (-5 *2 (-1149 *1)) (-4 *1 (-321 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-321 *3)) (-4 *3 (-359)) (-5 *2 (-1149 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-366 *3 *2)) (-4 *3 (-170)) (-4 *3 (-359)) (-4 *2 (-1211 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-1236 *4)) (-4 *4 (-344)) (-5 *2 (-1149 *4)) (-5 *1 (-524 *4))))) -(((*1 *2) (-12 (-4 *1 (-344)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-842) (-842))) (-5 *1 (-123)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-842) (-626 (-842)))) (-5 *1 (-123)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-842) (-626 (-842)))) (-5 *1 (-123)))) ((*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-203 *3)) (-4 *3 (-13 (-834) (-10 -8 (-15 -2778 ((-1135) $ (-1153))) (-15 -4106 (*2 $)) (-15 -1489 (*2 $))))))) ((*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-390)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-5 *2 (-1241)) (-5 *1 (-390)))) ((*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-503)))) ((*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1241)) (-5 *1 (-692)))) ((*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-1168)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-5 *2 (-1241)) (-5 *1 (-1168))))) -(((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-919))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-671 (-403 (-945 (-560))))) (-5 *2 (-626 (-671 (-304 (-560))))) (-5 *1 (-1023)) (-5 *3 (-304 (-560)))))) -(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-632 *3)) (-4 *3 (-1187)))) ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *1 (-632 *2)) (-4 *2 (-1187))))) -(((*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-742))))) -(((*1 *2 *3) (-12 (-4 *4 (-296)) (-4 *5 (-369 *4)) (-4 *6 (-369 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1104 *4 *5 *6 *3)) (-4 *3 (-669 *4 *5 *6))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-1153)) (-4 *5 (-13 (-447) (-834) (-148) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-577 *3)) (-5 *1 (-551 *5 *3)) (-4 *3 (-13 (-27) (-1173) (-426 *5)))))) -(((*1 *2 *1) (-12 (-4 *1 (-593 *2 *3)) (-4 *3 (-1187)) (-4 *2 (-1082)) (-4 *2 (-834))))) -(((*1 *2 *2) (-12 (-5 *2 (-213)) (-5 *1 (-214)))) ((*1 *2 *2) (-12 (-5 *2 (-167 (-213))) (-5 *1 (-214)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-427 *3 *2)) (-4 *2 (-426 *3)))) ((*1 *1 *1) (-4 *1 (-1116)))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *1 (-62 *4 *2 *5)) (-4 *4 (-1187)) (-4 *5 (-369 *4)) (-4 *2 (-369 *4)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *1 (-1042 *4 *5 *6 *2 *7)) (-4 *6 (-1039)) (-4 *7 (-226 *4 *6)) (-4 *2 (-226 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 (-458))) (-5 *2 (-1153)) (-5 *1 (-457)))) ((*1 *1 *2) (-12 (-5 *2 (-1153)) (-5 *1 (-458))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-742))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1202 (-560))) (-4 *1 (-272 *3)) (-4 *3 (-1187)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-272 *3)) (-4 *3 (-1187))))) -(((*1 *2 *1) (-12 (-5 *2 (-626 (-1135))) (-5 *1 (-1168))))) -(((*1 *2) (-12 (-4 *2 (-13 (-426 *3) (-994))) (-5 *1 (-267 *3 *2)) (-4 *3 (-13 (-834) (-550)))))) -(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-1236 (-560))) (-5 *3 (-560)) (-5 *1 (-1092)))) ((*1 *2 *3 *2 *4) (-12 (-5 *2 (-1236 (-560))) (-5 *3 (-626 (-560))) (-5 *4 (-560)) (-5 *1 (-1092))))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-1039)) (-4 *5 (-226 *6 (-755))) (-14 *6 (-755)) (-5 *2 (-2 (|:| -3165 (-560)) (|:| -2871 (-560)) (|:| -2583 (-560)) (|:| |reste| (-560)) (|:| -2248 (-3 "left" "center" "right" "vertical" "horizontal")))) (-5 *1 (-764 *4 *3 *5 *6)) (-4 *3 (-318 *4 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-626 *5)) (-4 *5 (-318 *4 *6)) (-4 *6 (-226 *7 (-755))) (-14 *7 (-755)) (-4 *4 (-1039)) (-5 *2 (-2 (|:| -3165 (-560)) (|:| -2871 (-560)) (|:| -2583 (-560)) (|:| |reste| (-560)) (|:| -2248 (-3 "left" "center" "right" "vertical" "horizontal")))) (-5 *1 (-764 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-755)) (-5 *5 (-626 *3)) (-4 *3 (-296)) (-4 *6 (-834)) (-4 *7 (-780)) (-5 *2 (-121)) (-5 *1 (-609 *6 *7 *3 *8)) (-4 *8 (-942 *3 *7 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-560)) (|has| *1 (-6 -4496)) (-4 *1 (-400)) (-5 *2 (-909))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-542))))) -(((*1 *2 *3) (-12 (-4 *4 (-896)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *7 (-942 *4 *5 *6)) (-5 *2 (-414 (-1149 *7))) (-5 *1 (-893 *4 *5 *6 *7)) (-5 *3 (-1149 *7)))) ((*1 *2 *3) (-12 (-4 *4 (-896)) (-4 *5 (-1211 *4)) (-5 *2 (-414 (-1149 *5))) (-5 *1 (-894 *4 *5)) (-5 *3 (-1149 *5))))) -(((*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-834) (-1029 (-560)) (-622 (-560)) (-447))) (-5 *2 (-827 *4)) (-5 *1 (-301 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1173) (-426 *3))) (-14 *5 (-1153)) (-14 *6 *4))) ((*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-834) (-1029 (-560)) (-622 (-560)) (-447))) (-5 *2 (-827 *4)) (-5 *1 (-1221 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1173) (-426 *3))) (-14 *5 (-1153)) (-14 *6 *4)))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-742))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994)))))) -(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-909)) (-5 *4 (-213)) (-5 *5 (-560)) (-5 *6 (-861)) (-5 *2 (-1241)) (-5 *1 (-1237))))) -(((*1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-43 (-403 (-560)))) (-4 *2 (-1039))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-121)) (-4 *5 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-3 (|:| |%expansion| (-301 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1135)) (|:| |prob| (-1135)))))) (-5 *1 (-416 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1173) (-426 *5))) (-14 *6 (-1153)) (-14 *7 *3)))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-560)) (-4 *1 (-62 *4 *5 *3)) (-4 *4 (-1187)) (-4 *5 (-369 *4)) (-4 *3 (-369 *4))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-626 (-626 (-936 (-213))))) (-5 *3 (-626 (-861))) (-5 *1 (-466))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-742))))) -(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-430))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-304 *3)) (-4 *3 (-550)) (-4 *3 (-834))))) -(((*1 *2 *1) (-12 (-5 *2 (-626 (-57))) (-5 *1 (-879 *3)) (-4 *3 (-1082))))) -(((*1 *2 *3 *1) (-12 (-4 *1 (-1058 *4 *5 *6 *3)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-121))))) -(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-560)) (|has| *1 (-6 -4506)) (-4 *1 (-369 *3)) (-4 *3 (-1187))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-169)))) ((*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-1237)))) ((*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-1238))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-742))))) -(((*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-163 *3 *2)) (-4 *3 (-164 *2)))) ((*1 *2 *3) (-12 (-5 *3 (-1236 *1)) (-4 *1 (-366 *2 *4)) (-4 *4 (-1211 *2)) (-4 *2 (-170)))) ((*1 *2) (-12 (-4 *4 (-1211 *2)) (-4 *2 (-170)) (-5 *1 (-404 *3 *2 *4)) (-4 *3 (-405 *2 *4)))) ((*1 *2) (-12 (-4 *1 (-405 *2 *3)) (-4 *3 (-1211 *2)) (-4 *2 (-170)))) ((*1 *2) (-12 (-4 *3 (-1211 *2)) (-5 *2 (-560)) (-5 *1 (-752 *3 *4)) (-4 *4 (-405 *2 *3)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-942 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *2 (-834)) (-4 *3 (-170)))) ((*1 *2 *3) (-12 (-4 *2 (-550)) (-5 *1 (-962 *2 *3)) (-4 *3 (-1211 *2)))) ((*1 *2 *1) (-12 (-4 *1 (-1211 *2)) (-4 *2 (-1039)) (-4 *2 (-170))))) -(((*1 *2 *1) (-12 (-5 *2 (-626 (-892 *3))) (-5 *1 (-891 *3)) (-4 *3 (-1082))))) -(((*1 *2 *3) (-12 (-5 *3 (-671 (-304 (-213)))) (-5 *2 (-375)) (-5 *1 (-195))))) -(((*1 *2 *1) (-12 (-4 *1 (-1251 *3 *4)) (-4 *3 (-834)) (-4 *4 (-1039)) (-5 *2 (-2 (|:| |k| (-806 *3)) (|:| |c| *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1084 *3)) (-5 *1 (-892 *3)) (-4 *3 (-364)) (-4 *3 (-1082))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-825)) (-5 *4 (-1051)) (-5 *2 (-1027)) (-5 *1 (-824)))) ((*1 *2 *3) (-12 (-5 *3 (-825)) (-5 *2 (-1027)) (-5 *1 (-824)))) ((*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-626 (-375))) (-5 *5 (-626 (-827 (-375)))) (-5 *6 (-626 (-304 (-375)))) (-5 *3 (-304 (-375))) (-5 *2 (-1027)) (-5 *1 (-824)))) ((*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-304 (-375))) (-5 *4 (-626 (-375))) (-5 *5 (-626 (-827 (-375)))) (-5 *2 (-1027)) (-5 *1 (-824)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-304 (-375))) (-5 *4 (-626 (-375))) (-5 *2 (-1027)) (-5 *1 (-824)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-304 (-375)))) (-5 *4 (-626 (-375))) (-5 *2 (-1027)) (-5 *1 (-824))))) -(((*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-809))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-780)) (-4 *4 (-834)) (-4 *2 (-550)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-780)) (-4 *4 (-834)) (-4 *2 (-550))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-742))))) -(((*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-304 (-213))) (|:| -1394 (-626 (-213))) (|:| |lb| (-626 (-827 (-213)))) (|:| |cf| (-626 (-304 (-213)))) (|:| |ub| (-626 (-827 (-213)))))) (-5 *1 (-258))))) -(((*1 *2) (-12 (-4 *3 (-550)) (-5 *2 (-626 *4)) (-5 *1 (-48 *3 *4)) (-4 *4 (-413 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-808))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-1135)) (-5 *2 (-375)) (-5 *1 (-773))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4440 (-769 *3)) (|:| |coef2| (-769 *3)))) (-5 *1 (-769 *3)) (-4 *3 (-550)) (-4 *3 (-1039)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-550)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-2 (|:| -4440 *1) (|:| |coef2| *1))) (-4 *1 (-1053 *3 *4 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-671 *5)) (-4 *5 (-1039)) (-5 *1 (-1043 *3 *4 *5)) (-14 *3 (-755)) (-14 *4 (-755))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-742))))) -(((*1 *2 *3) (-12 (-5 *3 (-1236 (-304 (-213)))) (-5 *2 (-1236 (-304 (-375)))) (-5 *1 (-294))))) -(((*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-842))))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-550)) (-5 *2 (-2 (|:| -2169 *4) (|:| -2583 *3) (|:| -4397 *3))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1211 *4)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-2 (|:| -2583 *1) (|:| -4397 *1))) (-4 *1 (-1053 *3 *4 *5)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-550)) (-4 *3 (-1039)) (-5 *2 (-2 (|:| -2169 *3) (|:| -2583 *1) (|:| -4397 *1))) (-4 *1 (-1211 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-626 (-2 (|:| -3655 *3) (|:| -2371 *4)))) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *1 (-1164 *3 *4)))) ((*1 *1) (-12 (-4 *1 (-1164 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-1082))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-742))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-1181 *3 *4 *5 *2)) (-4 *3 (-550)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *2 (-1053 *3 *4 *5))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-780)) (-4 *4 (-834)))) ((*1 *2 *2 *1) (-12 (-4 *1 (-1181 *3 *4 *5 *2)) (-4 *3 (-550)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *2 (-1053 *3 *4 *5))))) -(((*1 *2 *3) (-12 (-4 *4 (-834)) (-5 *2 (-626 (-626 (-626 *4)))) (-5 *1 (-1159 *4)) (-5 *3 (-626 (-626 *4)))))) -(((*1 *1) (-5 *1 (-433)))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-742))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-626 *1)) (|has| *1 (-6 -4506)) (-4 *1 (-1002 *3)) (-4 *3 (-1187))))) -(((*1 *2) (-12 (-5 *2 (-909)) (-5 *1 (-1239)))) ((*1 *2 *2) (-12 (-5 *2 (-909)) (-5 *1 (-1239))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-1153)) (-5 *1 (-577 *2)) (-4 *2 (-1029 *3)) (-4 *2 (-359)))) ((*1 *1 *2 *2) (-12 (-5 *1 (-577 *2)) (-4 *2 (-359)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1153)) (-4 *4 (-13 (-834) (-550))) (-5 *1 (-613 *4 *2)) (-4 *2 (-13 (-426 *4) (-994) (-1173))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1074 *2)) (-4 *2 (-13 (-426 *4) (-994) (-1173))) (-4 *4 (-13 (-834) (-550))) (-5 *1 (-613 *4 *2)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-951)) (-5 *2 (-1153)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1074 *1)) (-4 *1 (-951))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1121)) (-5 *3 (-145)) (-5 *2 (-121))))) -(((*1 *2 *2) (-12 (-4 *3 (-550)) (-5 *1 (-46 *3 *2)) (-4 *2 (-13 (-359) (-291) (-10 -8 (-15 -2132 ((-1105 *3 (-599 $)) $)) (-15 -2139 ((-1105 *3 (-599 $)) $)) (-15 -2801 ($ (-1105 *3 (-599 $)))))))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-742))))) -(((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1153)) (-5 *5 (-626 (-403 (-945 *6)))) (-5 *3 (-403 (-945 *6))) (-4 *6 (-13 (-550) (-1029 (-560)) (-148))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-626 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-566 *6))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-447))) (-5 *1 (-1179 *3 *2)) (-4 *2 (-13 (-426 *3) (-1173)))))) -(((*1 *2 *3 *1) (-12 (|has| $ (-6 -4505)) (-5 *2 (-755)) (-5 *1 (-96 *3)) (-4 *3 (-1082)) (-4 *3 (-1082)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| $ (-6 -4505)) (-4 *4 (-1082)) (-5 *2 (-755)) (-5 *1 (-96 *4)))) ((*1 *2 *3 *1) (-12 (|has| $ (-6 -4505)) (-5 *2 (-755)) (-5 *1 (-210 *3)) (-4 *3 (-1082)) (-4 *3 (-1082)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| $ (-6 -4505)) (-4 *4 (-1082)) (-5 *2 (-755)) (-5 *1 (-210 *4)))) ((*1 *2 *3 *1) (-12 (|has| $ (-6 -4505)) (-5 *2 (-755)) (-5 *1 (-487 *3)) (-4 *3 (-1082)) (-4 *3 (-834)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| $ (-6 -4505)) (-4 *4 (-834)) (-5 *2 (-755)) (-5 *1 (-487 *4)))) ((*1 *2 *3 *1) (-12 (|has| *1 (-6 -4505)) (-4 *1 (-492 *3)) (-4 *3 (-1187)) (-4 *3 (-1082)) (-5 *2 (-755)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| *1 (-6 -4505)) (-4 *1 (-492 *4)) (-4 *4 (-1187)) (-5 *2 (-755)))) ((*1 *2 *3 *1) (-12 (|has| $ (-6 -4505)) (-5 *2 (-755)) (-5 *1 (-992 *3)) (-4 *3 (-1082)) (-4 *3 (-1082)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| $ (-6 -4505)) (-4 *4 (-1082)) (-5 *2 (-755)) (-5 *1 (-992 *4)))) ((*1 *2 *3 *1) (-12 (|has| $ (-6 -4505)) (-5 *2 (-755)) (-5 *1 (-1124 *3)) (-4 *3 (-1082)) (-4 *3 (-1082)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| $ (-6 -4505)) (-4 *4 (-1082)) (-5 *2 (-755)) (-5 *1 (-1124 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1220 *3 *4 *5)) (-5 *1 (-308 *3 *4 *5)) (-4 *3 (-13 (-359) (-834))) (-14 *4 (-1153)) (-14 *5 *3))) ((*1 *2 *1) (-12 (-4 *1 (-400)) (-5 *2 (-560)))) ((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-414 *3)) (-4 *3 (-550)))) ((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-680)))) ((*1 *2 *1) (-12 (-4 *2 (-1082)) (-5 *1 (-695 *3 *2 *4)) (-4 *3 (-834)) (-14 *4 (-1 (-121) (-2 (|:| -1330 *3) (|:| -4034 *2)) (-2 (|:| -1330 *3) (|:| -4034 *2))))))) -(((*1 *2 *3) (-12 (-5 *3 (-375)) (-5 *2 (-213)) (-5 *1 (-294))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-742))))) -(((*1 *2 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170)))) ((*1 *2 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-170))))) -(((*1 *1 *1) (-12 (-5 *1 (-210 *2)) (-4 *2 (-1082)))) ((*1 *1 *1) (-12 (-4 *1 (-242 *2)) (-4 *2 (-1187)))) ((*1 *1 *1) (-12 (|has| *1 (-6 -4506)) (-4 *1 (-369 *2)) (-4 *2 (-1187)))) ((*1 *1 *1) (-12 (-5 *1 (-630 *2 *3 *4)) (-4 *2 (-1082)) (-4 *3 (-23)) (-14 *4 *3)))) -(((*1 *2 *1) (-12 (-5 *2 (-626 (-1135))) (-5 *1 (-390)))) ((*1 *2 *1) (-12 (-5 *2 (-626 (-1135))) (-5 *1 (-1168))))) -(((*1 *2 *1) (-12 (-4 *1 (-1114 *3)) (-4 *3 (-1039)) (-5 *2 (-121))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-322))))) -(((*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-167 (-213))) (-5 *5 (-560)) (-5 *6 (-1135)) (-5 *3 (-213)) (-5 *2 (-1027)) (-5 *1 (-742))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-359)) (-5 *1 (-750 *2 *3)) (-4 *2 (-690 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-836 *2)) (-4 *2 (-1039)) (-4 *2 (-359))))) -(((*1 *1 *1) (-12 (-5 *1 (-171 *2)) (-4 *2 (-296))))) -(((*1 *2 *1) (-12 (-5 *2 (-755)) (-5 *1 (-96 *3)) (-4 *3 (-1082)))) ((*1 *2 *1) (-12 (-5 *2 (-755)) (-5 *1 (-210 *3)) (-4 *3 (-1082)))) ((*1 *2 *1) (-12 (-5 *2 (-755)) (-5 *1 (-879 *3)) (-4 *3 (-1082)))) ((*1 *2 *1) (-12 (-4 *1 (-1101 *3)) (-4 *3 (-1187)) (-5 *2 (-755)))) ((*1 *2 *1) (-12 (-5 *2 (-755)) (-5 *1 (-1124 *3)) (-4 *3 (-1082))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-2 (|:| |eqzro| (-626 *8)) (|:| |neqzro| (-626 *8)) (|:| |wcond| (-626 (-945 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1236 (-403 (-945 *5)))) (|:| -4374 (-626 (-1236 (-403 (-945 *5)))))))))) (-5 *4 (-1135)) (-4 *5 (-13 (-296) (-148))) (-4 *8 (-942 *5 *7 *6)) (-4 *6 (-13 (-834) (-601 (-1153)))) (-4 *7 (-780)) (-5 *2 (-560)) (-5 *1 (-916 *5 *6 *7 *8))))) -(((*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-671 *4)) (-5 *3 (-755)) (-4 *4 (-1039)) (-5 *1 (-672 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-633 *2)) (-4 *2 (-359))))) -(((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-671 *3)) (|:| |invmval| (-671 *3)) (|:| |genIdeal| (-506 *3 *4 *5 *6)))) (-4 *3 (-359)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-942 *3 *4 *5))))) -(((*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-167 (-213))) (-5 *5 (-560)) (-5 *6 (-1135)) (-5 *3 (-213)) (-5 *2 (-1027)) (-5 *1 (-742))))) -(((*1 *2) (-12 (-5 *2 (-626 (-909))) (-5 *1 (-1239)))) ((*1 *2 *2) (-12 (-5 *2 (-626 (-909))) (-5 *1 (-1239))))) -(((*1 *2) (-12 (-14 *4 (-755)) (-4 *5 (-1187)) (-5 *2 (-139)) (-5 *1 (-225 *3 *4 *5)) (-4 *3 (-226 *4 *5)))) ((*1 *2) (-12 (-4 *4 (-359)) (-5 *2 (-139)) (-5 *1 (-320 *3 *4)) (-4 *3 (-321 *4)))) ((*1 *2) (-12 (-5 *2 (-755)) (-5 *1 (-386 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-170)))) ((*1 *2 *1) (-12 (-4 *3 (-359)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-560)) (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-942 *3 *4 *5)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-626 *6)) (-4 *6 (-834)) (-4 *4 (-359)) (-4 *5 (-780)) (-5 *2 (-560)) (-5 *1 (-506 *4 *5 *6 *7)) (-4 *7 (-942 *4 *5 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-973 *3)) (-4 *3 (-1039)) (-5 *2 (-909)))) ((*1 *2) (-12 (-4 *1 (-1243 *3)) (-4 *3 (-359)) (-5 *2 (-139))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-633 *3)) (-4 *3 (-359))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-1117 *3 *4)) (-4 *3 (-13 (-1082) (-39))) (-4 *4 (-13 (-1082) (-39)))))) -(((*1 *2 *3) (-12 (-5 *3 (-375)) (-5 *2 (-1135)) (-5 *1 (-294))))) -(((*1 *2 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-731))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 (-2 (|:| |deg| (-755)) (|:| -2487 *5)))) (-4 *5 (-1211 *4)) (-4 *4 (-344)) (-5 *2 (-626 *5)) (-5 *1 (-205 *4 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-2 (|:| -1601 *5) (|:| -3662 (-560))))) (-5 *4 (-560)) (-4 *5 (-1211 *4)) (-5 *2 (-626 *5)) (-5 *1 (-677 *5))))) -(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-145))) ((*1 *1 *1) (-4 *1 (-1121)))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-447))) (-5 *1 (-1179 *3 *2)) (-4 *2 (-13 (-426 *3) (-1173)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1251 *3 *4)) (-4 *3 (-834)) (-4 *4 (-1039)) (-5 *2 (-806 *3)))) ((*1 *2 *1) (-12 (-4 *2 (-830)) (-5 *1 (-1257 *3 *2)) (-4 *3 (-1039))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *1 (-633 *2)) (-4 *2 (-359))))) -(((*1 *2 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-731))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-1236 *4)) (-5 *3 (-560)) (-4 *4 (-344)) (-5 *1 (-524 *4))))) -(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-322)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-322))))) -(((*1 *2 *3) (-12 (-5 *3 (-909)) (-5 *2 (-1135)) (-5 *1 (-773))))) -(((*1 *2 *2) (-12 (-5 *2 (-626 (-304 (-213)))) (-5 *1 (-258))))) -(((*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-731))))) -(((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-836 *2)) (-4 *2 (-1039)) (-4 *2 (-359))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1173))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1236 (-1153))) (-5 *3 (-1236 (-448 *4 *5 *6 *7))) (-5 *1 (-448 *4 *5 *6 *7)) (-4 *4 (-170)) (-14 *5 (-909)) (-14 *6 (-626 (-1153))) (-14 *7 (-1236 (-671 *4))))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-1236 (-448 *4 *5 *6 *7))) (-5 *1 (-448 *4 *5 *6 *7)) (-4 *4 (-170)) (-14 *5 (-909)) (-14 *6 (-626 *2)) (-14 *7 (-1236 (-671 *4))))) ((*1 *1 *2) (-12 (-5 *2 (-1236 (-448 *3 *4 *5 *6))) (-5 *1 (-448 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-909)) (-14 *5 (-626 (-1153))) (-14 *6 (-1236 (-671 *3))))) ((*1 *1 *2) (-12 (-5 *2 (-1236 (-1153))) (-5 *1 (-448 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-909)) (-14 *5 (-626 (-1153))) (-14 *6 (-1236 (-671 *3))))) ((*1 *1 *2) (-12 (-5 *2 (-1153)) (-5 *1 (-448 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-909)) (-14 *5 (-626 *2)) (-14 *6 (-1236 (-671 *3))))) ((*1 *1) (-12 (-5 *1 (-448 *2 *3 *4 *5)) (-4 *2 (-170)) (-14 *3 (-909)) (-14 *4 (-626 (-1153))) (-14 *5 (-1236 (-671 *2)))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-1135)) (-4 *1 (-360 *2 *4)) (-4 *2 (-1082)) (-4 *4 (-1082)))) ((*1 *1 *2) (-12 (-4 *1 (-360 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-1082))))) -(((*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-731))))) -(((*1 *2 *3) (-12 (-5 *3 (-671 (-403 (-945 *4)))) (-4 *4 (-447)) (-5 *2 (-626 (-3 (-403 (-945 *4)) (-1142 (-1153) (-945 *4))))) (-5 *1 (-281 *4))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-560))) (-4 *3 (-1039)) (-5 *1 (-585 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-560))) (-4 *1 (-1195 *3)) (-4 *3 (-1039)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-560))) (-4 *1 (-1226 *3)) (-4 *3 (-1039))))) -(((*1 *2 *1 *3) (-12 (-5 *2 (-2 (|:| |k| (-560)) (|:| |c| *4))) (-5 *1 (-766 *4)) (-4 *4 (-359)) (-5 *3 (-560))))) -(((*1 *2 *1) (-12 (-4 *1 (-912 *3 *4)) (-4 *3 (-359)) (-5 *2 (-121)))) ((*1 *2 *1) (-12 (-4 *1 (-1002 *3)) (-4 *3 (-1187)) (-5 *2 (-121)))) ((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1141 *3 *4)) (-14 *3 (-909)) (-4 *4 (-1039))))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-671 (-213))) (-5 *5 (-671 (-560))) (-5 *6 (-213)) (-5 *3 (-560)) (-5 *2 (-1027)) (-5 *1 (-735))))) -(((*1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-43 (-403 (-560)))) (-4 *2 (-1039))))) -(((*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-560)) (-5 *4 (-1135)) (-5 *5 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-731))))) -(((*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1153)) (-4 *5 (-601 (-879 (-560)))) (-4 *5 (-873 (-560))) (-4 *5 (-13 (-834) (-1029 (-560)) (-447) (-622 (-560)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-563 *5 *3)) (-4 *3 (-612)) (-4 *3 (-13 (-27) (-1173) (-426 *5)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-755)) (-4 *1 (-638 *3)) (-4 *3 (-1039)) (-4 *3 (-359)))) ((*1 *2 *2 *3 *4) (-12 (-5 *3 (-755)) (-5 *4 (-1 *5 *5)) (-4 *5 (-359)) (-5 *1 (-641 *5 *2)) (-4 *2 (-638 *5))))) -(((*1 *1 *2 *3 *4) (-12 (-5 *2 (-626 *1)) (-5 *3 (-626 (-755))) (-5 *4 (-560)) (-4 *1 (-633 *5)) (-4 *5 (-359))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-626 (-1153))) (-5 *3 (-57)) (-5 *1 (-879 *4)) (-4 *4 (-1082))))) -(((*1 *2 *2) (-12 (-4 *3 (-1039)) (-4 *4 (-1211 *3)) (-5 *1 (-162 *3 *4 *2)) (-4 *2 (-1211 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-283 *2)) (-4 *2 (-1187))))) -(((*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-560)) (-5 *4 (-1135)) (-5 *5 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-731))))) -(((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1153)) (-5 *3 (-430)) (-4 *5 (-834)) (-5 *1 (-1088 *5 *4)) (-4 *4 (-426 *5))))) -(((*1 *1 *1 *1) (-5 *1 (-842)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-671 *3)) (-4 *3 (-1039)) (-5 *1 (-1020 *3)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-626 (-671 *3))) (-4 *3 (-1039)) (-5 *1 (-1020 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-671 *3)) (-4 *3 (-1039)) (-5 *1 (-1020 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-626 (-671 *3))) (-4 *3 (-1039)) (-5 *1 (-1020 *3))))) -(((*1 *2 *2 *1) (-12 (-5 *2 (-626 *6)) (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550))))) -(((*1 *2 *1) (|partial| -12 (-4 *1 (-633 *3)) (-4 *3 (-359)) (-5 *2 (-560))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-560)) (-5 *4 (-1135)) (-5 *5 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-731))))) -(((*1 *1 *1) (-12 (-4 *1 (-633 *2)) (-4 *2 (-359))))) -(((*1 *2 *3) (-12 (-4 *4 (-550)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-626 (-2 (|:| -4071 *1) (|:| -3997 (-626 *7))))) (-5 *3 (-626 *7)) (-4 *1 (-1181 *4 *5 *6 *7))))) -(((*1 *2 *2) (-12 (-5 *2 (-167 (-213))) (-5 *1 (-214)))) ((*1 *2 *2) (-12 (-5 *2 (-213)) (-5 *1 (-214)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-427 *3 *2)) (-4 *2 (-426 *3)))) ((*1 *1 *1) (-4 *1 (-1116)))) -(((*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-437 *3)) (-4 *3 (-1211 (-560)))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-560)) (-5 *4 (-1135)) (-5 *5 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-731))))) -(((*1 *2 *1) (-12 (-4 *3 (-1187)) (-5 *2 (-626 *1)) (-4 *1 (-1002 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-633 *2)) (-4 *2 (-359))))) -(((*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-121)) (-4 *6 (-447)) (-4 *7 (-780)) (-4 *8 (-834)) (-4 *3 (-1053 *6 *7 *8)) (-5 *2 (-626 (-2 (|:| |val| *3) (|:| -3249 *4)))) (-5 *1 (-1059 *6 *7 *8 *3 *4)) (-4 *4 (-1058 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-626 (-2 (|:| |val| (-626 *8)) (|:| -3249 *9)))) (-5 *5 (-121)) (-4 *8 (-1053 *6 *7 *4)) (-4 *9 (-1058 *6 *7 *4 *8)) (-4 *6 (-447)) (-4 *7 (-780)) (-4 *4 (-834)) (-5 *2 (-626 (-2 (|:| |val| *8) (|:| -3249 *9)))) (-5 *1 (-1059 *6 *7 *4 *8 *9))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-560))) (-5 *4 (-892 (-560))) (-5 *2 (-671 (-560))) (-5 *1 (-581)))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-560))) (-5 *2 (-626 (-671 (-560)))) (-5 *1 (-581)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-560))) (-5 *4 (-626 (-892 (-560)))) (-5 *2 (-626 (-671 (-560)))) (-5 *1 (-581))))) -(((*1 *2 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-731))))) -(((*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-626 *11)) (-5 *5 (-626 (-1149 *9))) (-5 *6 (-626 *9)) (-5 *7 (-626 *12)) (-5 *8 (-626 (-755))) (-4 *11 (-834)) (-4 *9 (-296)) (-4 *12 (-942 *9 *10 *11)) (-4 *10 (-780)) (-5 *2 (-626 (-1149 *12))) (-5 *1 (-689 *10 *11 *9 *12)) (-5 *3 (-1149 *12))))) -(((*1 *2 *1) (-12 (-4 *1 (-1075 *2)) (-4 *2 (-1187))))) -(((*1 *2 *3) (-12 (-5 *2 (-560)) (-5 *1 (-440 *3)) (-4 *3 (-400)) (-4 *3 (-1039))))) -(((*1 *2 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-731))))) -(((*1 *2 *3) (-12 (-5 *3 (-755)) (-5 *2 (-1 (-375))) (-5 *1 (-1031))))) -(((*1 *2) (-12 (-5 *2 (-375)) (-5 *1 (-1031))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-633 *2)) (-4 *2 (-359))))) -(((*1 *2 *3) (-12 (-4 *4 (-13 (-550) (-148))) (-5 *2 (-626 *3)) (-5 *1 (-1205 *4 *3)) (-4 *3 (-1211 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-1082)) (-4 *1 (-223 *3)))) ((*1 *1) (-12 (-4 *1 (-223 *2)) (-4 *2 (-1082))))) -(((*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-731))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-1092))))) -(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-755)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-780)) (-4 *2 (-942 *4 *5 *6)) (-5 *1 (-444 *4 *5 *6 *2)) (-4 *4 (-447)) (-4 *6 (-834))))) -(((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-919))))) -(((*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-731))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -3981 (-626 (-842))) (|:| -2280 (-626 (-842))) (|:| |presup| (-626 (-842))) (|:| -4221 (-626 (-842))) (|:| |args| (-626 (-842))))) (-5 *1 (-1153)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-626 (-626 (-842)))) (-5 *1 (-1153))))) -(((*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-809))))) -(((*1 *2 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-121)) (-5 *1 (-212 *4 *5)) (-4 *5 (-13 (-1173) (-29 *4)))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-1149 (-945 *6))) (-4 *6 (-550)) (-4 *2 (-942 (-403 (-945 *6)) *5 *4)) (-5 *1 (-714 *5 *4 *6 *2)) (-4 *5 (-780)) (-4 *4 (-13 (-834) (-10 -8 (-15 -4255 ((-1153) $)))))))) -(((*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *5 (-3 (|:| |fn| (-384)) (|:| |fp| (-69 -1333)))) (-5 *2 (-1027)) (-5 *1 (-730))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1079 *3)) (-4 *3 (-1082)) (-5 *2 (-121))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-755)) (-5 *3 (-936 *5)) (-4 *5 (-1039)) (-5 *1 (-1141 *4 *5)) (-14 *4 (-909)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-626 (-755))) (-5 *3 (-755)) (-5 *1 (-1141 *4 *5)) (-14 *4 (-909)) (-4 *5 (-1039)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-626 (-755))) (-5 *3 (-936 *5)) (-4 *5 (-1039)) (-5 *1 (-1141 *4 *5)) (-14 *4 (-909))))) -(((*1 *2 *3) (-12 (-4 *4 (-550)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-121)) (-5 *1 (-970 *4 *5 *6 *3)) (-4 *3 (-1053 *4 *5 *6))))) -(((*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *5 (-213)) (-5 *6 (-3 (|:| |fn| (-384)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1027)) (-5 *1 (-730))))) -(((*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-809))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-1153)) (-4 *5 (-13 (-296) (-834) (-148) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-577 *3)) (-5 *1 (-422 *5 *3)) (-4 *3 (-13 (-1173) (-29 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1153)) (-4 *5 (-13 (-550) (-1029 (-560)) (-148))) (-5 *2 (-577 (-403 (-945 *5)))) (-5 *1 (-566 *5)) (-5 *3 (-403 (-945 *5)))))) -(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2962 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-359)) (-4 *7 (-1211 *6)) (-5 *2 (-2 (|:| |answer| (-577 (-403 *7))) (|:| |a0| *6))) (-5 *1 (-570 *6 *7)) (-5 *3 (-403 *7))))) -(((*1 *2 *1) (-12 (-4 *1 (-241 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-834)) (-4 *5 (-257 *4)) (-4 *6 (-780)) (-5 *2 (-121))))) -(((*1 *2 *1) (-12 (-4 *3 (-1039)) (-5 *2 (-1236 *3)) (-5 *1 (-694 *3 *4)) (-4 *4 (-1211 *3))))) -(((*1 *2 *3) (-12 (-4 *1 (-334 *4 *3 *5)) (-4 *4 (-1191)) (-4 *3 (-1211 *4)) (-4 *5 (-1211 (-403 *3))) (-5 *2 (-121)))) ((*1 *2 *3) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1191)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-403 *4))) (-5 *2 (-121))))) -(((*1 *2 *2 *3 *4) (-12 (-5 *3 (-123)) (-5 *4 (-1153)) (-4 *5 (-13 (-834) (-550) (-601 (-533)))) (-4 *2 (-426 *5)) (-5 *1 (-306 *5 *2 *6 *7)) (-4 *6 (-1226 *2)) (-4 *7 (-1226 (-1147 *2)))))) -(((*1 *2 *1) (-12 (-4 *4 (-1082)) (-5 *2 (-121)) (-5 *1 (-872 *3 *4 *5)) (-4 *3 (-1082)) (-4 *5 (-650 *4)))) ((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-876 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082))))) -(((*1 *2 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170)))) ((*1 *2 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-170))))) -(((*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1153)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-626 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-626 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2962 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1173) (-27) (-426 *8))) (-4 *8 (-13 (-447) (-834) (-148) (-1029 *3) (-622 *3))) (-5 *3 (-560)) (-5 *2 (-626 *4)) (-5 *1 (-1006 *8 *4))))) -(((*1 *2 *1) (-12 (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-626 *1)) (-4 *1 (-1053 *3 *4 *5))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-671 *4)) (-5 *3 (-909)) (|has| *4 (-6 (-4507 "*"))) (-4 *4 (-1039)) (-5 *1 (-1020 *4)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-626 (-671 *4))) (-5 *3 (-909)) (|has| *4 (-6 (-4507 "*"))) (-4 *4 (-1039)) (-5 *1 (-1020 *4))))) -(((*1 *2 *3) (-12 (-5 *2 (-414 (-1149 (-560)))) (-5 *1 (-181)) (-5 *3 (-560))))) -(((*1 *2 *3) (-12 (-5 *3 (-909)) (-5 *2 (-1236 (-1236 (-560)))) (-5 *1 (-464))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-560)) (-5 *1 (-414 *2)) (-4 *2 (-550))))) -(((*1 *2 *3) (-12 (-5 *3 (-304 (-213))) (-5 *2 (-304 (-403 (-560)))) (-5 *1 (-294))))) -(((*1 *2 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-1166))))) -(((*1 *2) (-12 (-5 *2 (-2 (|:| -1451 (-626 (-1153))) (|:| -3965 (-626 (-1153))))) (-5 *1 (-1189))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 (-458))) (-5 *2 (-121)) (-5 *1 (-457)))) ((*1 *1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-458)))) ((*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-919))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-1153)) (-4 *5 (-359)) (-5 *2 (-626 (-1182 *5))) (-5 *1 (-1244 *5)) (-5 *4 (-1182 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 (-458))) (-5 *2 (-121)) (-5 *1 (-457)))) ((*1 *1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-458))))) -(((*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-304 (-560))) (-5 *4 (-1 (-213) (-213))) (-5 *5 (-1076 (-213))) (-5 *6 (-560)) (-5 *2 (-1183 (-918))) (-5 *1 (-307)))) ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-304 (-560))) (-5 *4 (-1 (-213) (-213))) (-5 *5 (-1076 (-213))) (-5 *6 (-560)) (-5 *7 (-1135)) (-5 *2 (-1183 (-918))) (-5 *1 (-307)))) ((*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-304 (-560))) (-5 *4 (-1 (-213) (-213))) (-5 *5 (-1076 (-213))) (-5 *6 (-213)) (-5 *7 (-560)) (-5 *2 (-1183 (-918))) (-5 *1 (-307)))) ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-304 (-560))) (-5 *4 (-1 (-213) (-213))) (-5 *5 (-1076 (-213))) (-5 *6 (-213)) (-5 *7 (-560)) (-5 *8 (-1135)) (-5 *2 (-1183 (-918))) (-5 *1 (-307))))) -(((*1 *2 *3 *4) (-12 (-4 *5 (-780)) (-4 *6 (-834)) (-4 *7 (-550)) (-4 *3 (-942 *7 *5 *6)) (-5 *2 (-2 (|:| -4034 (-755)) (|:| -2169 *3) (|:| |radicand| (-626 *3)))) (-5 *1 (-946 *5 *6 *7 *3 *8)) (-5 *4 (-755)) (-4 *8 (-13 (-359) (-10 -8 (-15 -2132 (*3 $)) (-15 -2139 (*3 $)) (-15 -2801 ($ *3)))))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 *4)) (-4 *4 (-834)) (-5 *2 (-626 (-648 *4 *5))) (-5 *1 (-610 *4 *5 *6)) (-4 *5 (-13 (-170) (-699 (-403 (-560))))) (-14 *6 (-909))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-578 *2)) (-4 *2 (-542))))) -(((*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1241)) (-5 *1 (-229)))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-1135))) (-5 *2 (-1241)) (-5 *1 (-229))))) -(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-141 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-755)) (-4 *5 (-170)))) ((*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-141 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-755)) (-4 *5 (-170)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-506 (-403 (-560)) (-228 *5 (-755)) (-844 *4) (-237 *4 (-403 (-560))))) (-5 *3 (-626 (-844 *4))) (-14 *4 (-626 (-1153))) (-14 *5 (-755)) (-5 *1 (-507 *4 *5))))) -(((*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-560)) (-5 *2 (-121)) (-5 *1 (-484))))) -(((*1 *2 *2) (-12 (-4 *3 (-447)) (-4 *3 (-834)) (-4 *3 (-1029 (-560))) (-4 *3 (-550)) (-5 *1 (-46 *3 *2)) (-4 *2 (-426 *3)) (-4 *2 (-13 (-359) (-291) (-10 -8 (-15 -2132 ((-1105 *3 (-599 $)) $)) (-15 -2139 ((-1105 *3 (-599 $)) $)) (-15 -2801 ($ (-1105 *3 (-599 $)))))))))) -(((*1 *2 *3 *4) (-12 (-4 *4 (-846)) (-5 *2 (-414 (-1149 *4))) (-5 *1 (-309 *4)) (-5 *3 (-1149 *4)))) ((*1 *2 *3 *4) (-12 (-4 *4 (-851)) (-5 *2 (-414 (-1149 *4))) (-5 *1 (-311 *4)) (-5 *3 (-1149 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1253 *3)) (-4 *3 (-359)) (-5 *2 (-121))))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-447)) (-4 *4 (-550)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3350 *4))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1211 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1076 (-213))) (-5 *1 (-918)))) ((*1 *2 *1) (-12 (-5 *2 (-1076 (-213))) (-5 *1 (-919))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-626 (-626 *8))) (-5 *3 (-626 *8)) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-550)) (-4 *6 (-780)) (-4 *7 (-834)) (-5 *2 (-121)) (-5 *1 (-970 *5 *6 *7 *8))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-39)) (-5 *3 (-755)) (-5 *2 (-121)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *2 (-121)) (-5 *1 (-96 *4)) (-4 *4 (-1082)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *2 (-121)) (-5 *1 (-210 *4)) (-4 *4 (-1082)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *2 (-121)) (-5 *1 (-487 *4)) (-4 *4 (-834)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *2 (-121)) (-5 *1 (-992 *4)) (-4 *4 (-1082)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *2 (-121)) (-5 *1 (-1124 *4)) (-4 *4 (-1082))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 (-485 *4 *5))) (-14 *4 (-626 (-1153))) (-4 *5 (-447)) (-5 *2 (-2 (|:| |gblist| (-626 (-237 *4 *5))) (|:| |gvlist| (-626 (-560))))) (-5 *1 (-614 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 (-458))) (-5 *2 (-1241)) (-5 *1 (-458))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-304 (-213))) (-5 *1 (-258))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-1149 *1)) (-5 *4 (-1153)) (-4 *1 (-27)) (-5 *2 (-626 *1)))) ((*1 *2 *3) (-12 (-5 *3 (-1149 *1)) (-4 *1 (-27)) (-5 *2 (-626 *1)))) ((*1 *2 *3) (-12 (-5 *3 (-945 *1)) (-4 *1 (-27)) (-5 *2 (-626 *1)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1153)) (-4 *4 (-13 (-834) (-550))) (-5 *2 (-626 *1)) (-4 *1 (-29 *4)))) ((*1 *2 *1) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *2 (-626 *1)) (-4 *1 (-29 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-304 (-213))) (-5 *4 (-626 (-1153))) (-5 *5 (-1076 (-827 (-213)))) (-5 *2 (-1133 (-213))) (-5 *1 (-289))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1173))))) -(((*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-121))))) -(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-430))))) -(((*1 *2 *1) (-12 (-4 *3 (-1082)) (-4 *4 (-13 (-1039) (-873 *3) (-834) (-601 (-879 *3)))) (-5 *2 (-626 (-1153))) (-5 *1 (-1061 *3 *4 *5)) (-4 *5 (-13 (-426 *4) (-873 *3) (-601 (-879 *3))))))) -(((*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-304 (-560))) (-5 *4 (-1 (-213) (-213))) (-5 *5 (-1076 (-213))) (-5 *6 (-626 (-251))) (-5 *2 (-1113 (-213))) (-5 *1 (-678))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-671 *5))) (-4 *5 (-296)) (-4 *5 (-1039)) (-5 *2 (-1236 (-1236 *5))) (-5 *1 (-1021 *5)) (-5 *4 (-1236 *5))))) -(((*1 *2 *2 *2) (-12 (-4 *2 (-13 (-359) (-10 -8 (-15 ** ($ $ (-403 (-560))))))) (-5 *1 (-1108 *3 *2)) (-4 *3 (-1211 *2))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1241)) (-5 *1 (-1237)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1241)) (-5 *1 (-1238))))) -(((*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-1173)))) ((*1 *2 *1) (-12 (-5 *1 (-323 *2)) (-4 *2 (-834)))) ((*1 *2 *1) (-12 (-5 *2 (-626 *3)) (-5 *1 (-599 *3)) (-4 *3 (-834))))) -(((*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-560)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-755)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-780)) (-4 *4 (-942 *5 *6 *7)) (-4 *5 (-447)) (-4 *7 (-834)) (-5 *1 (-444 *5 *6 *7 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (-5 *2 (-375)) (-5 *1 (-195))))) -(((*1 *2 *3) (-12 (-4 *4 (-13 (-550) (-834) (-1029 (-560)))) (-5 *2 (-167 (-304 *4))) (-5 *1 (-178 *4 *3)) (-4 *3 (-13 (-27) (-1173) (-426 (-167 *4)))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-167 *3)) (-5 *1 (-1177 *4 *3)) (-4 *3 (-13 (-27) (-1173) (-426 *4)))))) -(((*1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-43 (-403 (-560)))) (-4 *2 (-1039))))) -(((*1 *2 *3) (-12 (-5 *3 (-1133 (-1133 *4))) (-5 *2 (-1133 *4)) (-5 *1 (-1137 *4)) (-4 *4 (-1039))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-560)) (-5 *5 (-671 (-213))) (-5 *4 (-213)) (-5 *2 (-1027)) (-5 *1 (-734))))) -(((*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-809))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 (-458))) (-5 *2 (-121)) (-5 *1 (-457)))) ((*1 *1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-458))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-550) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-27) (-1173) (-426 *3))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1153)) (-4 *4 (-13 (-550) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *1 (-268 *4 *2)) (-4 *2 (-13 (-27) (-1173) (-426 *4)))))) -(((*1 *2 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-743))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-861)) (-5 *3 (-626 (-251))) (-5 *1 (-249))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *5 (-1135)) (-5 *6 (-3 (|:| |fn| (-384)) (|:| |fp| (-87 PDEF)))) (-5 *7 (-3 (|:| |fn| (-384)) (|:| |fp| (-88 BNDY)))) (-5 *2 (-1027)) (-5 *1 (-734))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1082)) (-4 *4 (-1082)) (-4 *6 (-1082)) (-5 *2 (-1 *6 *5)) (-5 *1 (-665 *5 *4 *6))))) -(((*1 *2 *3 *3 *4) (-12 (-5 *4 (-755)) (-4 *5 (-550)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-962 *5 *3)) (-4 *3 (-1211 *5))))) -(((*1 *2 *2 *1) (-12 (-5 *1 (-96 *2)) (-4 *2 (-1082)))) ((*1 *2 *2 *1) (-12 (-5 *1 (-210 *2)) (-4 *2 (-1082)))) ((*1 *2 *2 *1) (-12 (-4 *1 (-1101 *2)) (-4 *2 (-1187)))) ((*1 *2 *2 *1) (-12 (-5 *1 (-1124 *2)) (-4 *2 (-1082))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-626 *8)) (-5 *4 (-626 *7)) (-4 *7 (-834)) (-4 *8 (-942 *5 *6 *7)) (-4 *5 (-550)) (-4 *6 (-780)) (-5 *2 (-2 (|:| |particular| (-3 (-1236 (-403 *8)) "failed")) (|:| -4374 (-626 (-1236 (-403 *8)))))) (-5 *1 (-653 *5 *6 *7 *8))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 (-458))) (-5 *2 (-121)) (-5 *1 (-457)))) ((*1 *1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-458))))) -(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-560)) (-5 *5 (-671 (-213))) (-5 *6 (-658 (-213))) (-5 *3 (-213)) (-5 *2 (-1027)) (-5 *1 (-734))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1018 (-827 (-560)))) (-5 *3 (-1133 (-2 (|:| |k| (-560)) (|:| |c| *4)))) (-4 *4 (-1039)) (-5 *1 (-585 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 (-458))) (-5 *2 (-1153)) (-5 *1 (-457)))) ((*1 *1 *2) (-12 (-5 *2 (-1153)) (-5 *1 (-458))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-375)) (-5 *1 (-195)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-626 (-375))) (-5 *2 (-375)) (-5 *1 (-195))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-755)) (-5 *1 (-840 *2)) (-4 *2 (-170))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-375)) (-5 *1 (-99))))) -(((*1 *1 *2) (-12 (-5 *2 (-403 (-560))) (-5 *1 (-206))))) -(((*1 *2 *3 *4 *5) (-12 (-5 *5 (-755)) (-4 *6 (-1082)) (-4 *3 (-887 *6)) (-5 *2 (-671 *3)) (-5 *1 (-673 *6 *3 *7 *4)) (-4 *7 (-369 *3)) (-4 *4 (-13 (-369 *6) (-10 -7 (-6 -4505))))))) -(((*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1211 *5)) (-4 *5 (-359)) (-5 *2 (-2 (|:| -2962 (-403 *6)) (|:| |coeff| (-403 *6)))) (-5 *1 (-570 *5 *6)) (-5 *3 (-403 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 (-458))) (-5 *2 (-560)) (-5 *1 (-457)))) ((*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-458))))) -(((*1 *2 *3) (-12 (-5 *3 (-304 (-375))) (-5 *2 (-304 (-213))) (-5 *1 (-294))))) -(((*1 *2 *1) (-12 (-4 *1 (-947)) (-5 *2 (-1076 (-213))))) ((*1 *2 *1) (-12 (-4 *1 (-967)) (-5 *2 (-1076 (-213)))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-671 *3)) (-4 *3 (-296)) (-5 *1 (-681 *3))))) -(((*1 *2 *1 *1) (-12 (-4 *3 (-550)) (-4 *3 (-1039)) (-5 *2 (-2 (|:| -2583 *1) (|:| -4397 *1))) (-4 *1 (-836 *3)))) ((*1 *2 *3 *3 *4) (-12 (-5 *4 (-101 *5)) (-4 *5 (-550)) (-4 *5 (-1039)) (-5 *2 (-2 (|:| -2583 *3) (|:| -4397 *3))) (-5 *1 (-837 *5 *3)) (-4 *3 (-836 *5))))) -(((*1 *1) (-5 *1 (-156)))) -(((*1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-43 (-403 (-560)))) (-4 *2 (-1039))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 (-458))) (-5 *2 (-560)) (-5 *1 (-457)))) ((*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-458))))) -(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-626 *7) *7 (-1149 *7))) (-5 *5 (-1 (-414 *7) *7)) (-4 *7 (-1211 *6)) (-4 *6 (-13 (-359) (-148) (-1029 (-403 (-560))))) (-5 *2 (-626 (-2 (|:| |frac| (-403 *7)) (|:| -2654 *3)))) (-5 *1 (-796 *6 *7 *3 *8)) (-4 *3 (-638 *7)) (-4 *8 (-638 (-403 *7))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-414 *6) *6)) (-4 *6 (-1211 *5)) (-4 *5 (-13 (-359) (-148) (-1029 (-560)) (-1029 (-403 (-560))))) (-5 *2 (-626 (-2 (|:| |frac| (-403 *6)) (|:| -2654 (-636 *6 (-403 *6)))))) (-5 *1 (-799 *5 *6)) (-5 *3 (-636 *6 (-403 *6)))))) -(((*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-626 (-560))) (|:| |cols| (-626 (-560))))) (-5 *4 (-671 *12)) (-5 *5 (-626 (-403 (-945 *9)))) (-5 *6 (-626 (-626 *12))) (-5 *7 (-755)) (-5 *8 (-560)) (-4 *9 (-13 (-296) (-148))) (-4 *12 (-942 *9 *11 *10)) (-4 *10 (-13 (-834) (-601 (-1153)))) (-4 *11 (-780)) (-5 *2 (-2 (|:| |eqzro| (-626 *12)) (|:| |neqzro| (-626 *12)) (|:| |wcond| (-626 (-945 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1236 (-403 (-945 *9)))) (|:| -4374 (-626 (-1236 (-403 (-945 *9))))))))) (-5 *1 (-916 *9 *10 *11 *12))))) -(((*1 *2 *2) (-12 (-4 *2 (-13 (-359) (-832))) (-5 *1 (-176 *2 *3)) (-4 *3 (-1211 (-167 *2)))))) -(((*1 *1) (-5 *1 (-121)))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-560)) (-5 *5 (-671 (-213))) (-5 *4 (-213)) (-5 *2 (-1027)) (-5 *1 (-736))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-626 *1)) (-4 *1 (-296))))) -(((*1 *2 *3 *1) (-12 (-4 *1 (-597 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-5 *2 (-121))))) -(((*1 *2 *1) (-12 (-4 *2 (-690 *3)) (-5 *1 (-814 *2 *3)) (-4 *3 (-1039))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 (-458))) (-5 *2 (-560)) (-5 *1 (-457)))) ((*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-458))))) -(((*1 *2 *3) (-12 (-5 *3 (-1236 *1)) (-4 *1 (-363 *4)) (-4 *4 (-170)) (-5 *2 (-671 *4)))) ((*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-671 *4)) (-5 *1 (-412 *3 *4)) (-4 *3 (-413 *4)))) ((*1 *2) (-12 (-4 *1 (-413 *3)) (-4 *3 (-170)) (-5 *2 (-671 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-626 (-626 *3))) (-4 *3 (-1039)) (-4 *1 (-669 *3 *4 *5)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-626 (-626 (-842)))) (-5 *1 (-842)))) ((*1 *2 *1) (-12 (-5 *2 (-1119 *3 *4)) (-5 *1 (-986 *3 *4)) (-14 *3 (-909)) (-4 *4 (-359)))) ((*1 *1 *2) (-12 (-5 *2 (-626 (-626 *5))) (-4 *5 (-1039)) (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *6 (-226 *4 *5)) (-4 *7 (-226 *3 *5))))) -(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-560)) (-5 *5 (-671 (-213))) (-5 *6 (-3 (|:| |fn| (-384)) (|:| |fp| (-91 FCN)))) (-5 *7 (-3 (|:| |fn| (-384)) (|:| |fp| (-93 OUTPUT)))) (-5 *3 (-213)) (-5 *2 (-1027)) (-5 *1 (-733))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 (-560))) (-5 *2 (-891 (-560))) (-5 *1 (-905)))) ((*1 *2) (-12 (-5 *2 (-891 (-560))) (-5 *1 (-905))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1121)) (-5 *2 (-121))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-909)) (-4 *5 (-226 *6 (-755))) (-14 *6 (-755)) (-4 *2 (-1039)) (-5 *1 (-900 *2 *3 *5 *6)) (-4 *3 (-318 *2 *5))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-447))) (-5 *1 (-1179 *3 *2)) (-4 *2 (-13 (-426 *3) (-1173)))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-121)) (-5 *3 (-626 (-251))) (-5 *1 (-249))))) -(((*1 *2 *3 *2 *4) (-12 (-5 *3 (-123)) (-5 *4 (-755)) (-4 *5 (-447)) (-4 *5 (-834)) (-4 *5 (-1029 (-560))) (-4 *5 (-550)) (-5 *1 (-46 *5 *2)) (-4 *2 (-426 *5)) (-4 *2 (-13 (-359) (-291) (-10 -8 (-15 -2132 ((-1105 *5 (-599 $)) $)) (-15 -2139 ((-1105 *5 (-599 $)) $)) (-15 -2801 ($ (-1105 *5 (-599 $)))))))))) -(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-560)) (-5 *5 (-671 (-213))) (-5 *6 (-3 (|:| |fn| (-384)) (|:| |fp| (-94 G)))) (-5 *7 (-3 (|:| |fn| (-384)) (|:| |fp| (-91 FCN)))) (-5 *3 (-213)) (-5 *2 (-1027)) (-5 *1 (-733))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1121)) (-5 *3 (-560)) (-5 *2 (-121))))) -(((*1 *2 *2 *3) (-12 (-4 *4 (-1082)) (-4 *2 (-887 *4)) (-5 *1 (-673 *4 *2 *5 *3)) (-4 *5 (-369 *2)) (-4 *3 (-13 (-369 *4) (-10 -7 (-6 -4505))))))) -(((*1 *2 *1) (-12 (-4 *1 (-1181 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-626 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)) (-5 *2 (-121)))) ((*1 *2 *1) (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039)) (-4 *6 (-226 *4 *5)) (-4 *7 (-226 *3 *5)) (-5 *2 (-121))))) -(((*1 *2 *3) (-12 (-4 *4 (-1039)) (-4 *5 (-226 *6 *2)) (-14 *6 *2) (-5 *2 (-755)) (-5 *1 (-900 *4 *3 *5 *6)) (-4 *3 (-318 *4 *5))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-403 (-560))) (-4 *4 (-13 (-550) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *1 (-268 *4 *2)) (-4 *2 (-13 (-27) (-1173) (-426 *4)))))) -(((*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-687 *3 *4)) (-4 *3 (-1187)) (-4 *4 (-1187))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-560)) (-5 *5 (-1135)) (-5 *6 (-671 (-213))) (-5 *7 (-3 (|:| |fn| (-384)) (|:| |fp| (-94 G)))) (-5 *8 (-3 (|:| |fn| (-384)) (|:| |fp| (-91 FCN)))) (-5 *9 (-3 (|:| |fn| (-384)) (|:| |fp| (-93 OUTPUT)))) (-5 *3 (-213)) (-5 *2 (-1027)) (-5 *1 (-733))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-375)) (-5 *1 (-1051))))) -(((*1 *2 *3) (-12 (-5 *2 (-1149 (-560))) (-5 *1 (-181)) (-5 *3 (-560)))) ((*1 *2 *3 *2) (-12 (-5 *3 (-755)) (-5 *1 (-770 *2)) (-4 *2 (-170)))) ((*1 *2 *3) (-12 (-5 *2 (-1149 (-560))) (-5 *1 (-935)) (-5 *3 (-560))))) -(((*1 *2 *2 *2 *3) (-12 (-5 *3 (-755)) (-4 *4 (-550)) (-5 *1 (-962 *4 *2)) (-4 *2 (-1211 *4))))) -(((*1 *2 *3) (-12 (-4 *4 (-1039)) (-4 *2 (-226 *5 (-755))) (-5 *1 (-900 *4 *3 *2 *5)) (-4 *3 (-318 *4 *2)) (-14 *5 (-755))))) -(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-1236 *4)) (-5 *3 (-1100)) (-4 *4 (-344)) (-5 *1 (-524 *4))))) -(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-560)) (-5 *5 (-1135)) (-5 *6 (-671 (-213))) (-5 *7 (-3 (|:| |fn| (-384)) (|:| |fp| (-94 G)))) (-5 *8 (-3 (|:| |fn| (-384)) (|:| |fp| (-91 FCN)))) (-5 *9 (-3 (|:| |fn| (-384)) (|:| |fp| (-76 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-384)) (|:| |fp| (-93 OUTPUT)))) (-5 *3 (-213)) (-5 *2 (-1027)) (-5 *1 (-733))))) -(((*1 *2 *3) (-12 (-5 *3 (-879 *4)) (-4 *4 (-1082)) (-5 *2 (-626 *5)) (-5 *1 (-877 *4 *5)) (-4 *5 (-1187))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-3 (-121) "failed")) (-4 *3 (-447)) (-4 *4 (-834)) (-4 *5 (-780)) (-5 *1 (-980 *3 *4 *5 *6)) (-4 *6 (-942 *3 *5 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *3 (-369 *2)) (-4 *4 (-369 *2)) (|has| *2 (-6 (-4507 "*"))) (-4 *2 (-1039)))) ((*1 *2 *3) (-12 (-4 *4 (-369 *2)) (-4 *5 (-369 *2)) (-4 *2 (-170)) (-5 *1 (-670 *2 *4 *5 *3)) (-4 *3 (-669 *2 *4 *5)))) ((*1 *2 *1) (-12 (-4 *1 (-1103 *3 *2 *4 *5)) (-4 *4 (-226 *3 *2)) (-4 *5 (-226 *3 *2)) (|has| *2 (-6 (-4507 "*"))) (-4 *2 (-1039))))) -(((*1 *2 *3) (-12 (-5 *3 (-755)) (-4 *4 (-1039)) (-4 *6 (-226 *7 *3)) (-14 *7 *3) (-5 *2 (-626 *5)) (-5 *1 (-900 *4 *5 *6 *7)) (-4 *5 (-318 *4 *6))))) -(((*1 *2 *3) (-12 (-4 *4 (-13 (-359) (-10 -8 (-15 ** ($ $ (-403 (-560))))))) (-5 *2 (-626 *4)) (-5 *1 (-1108 *3 *4)) (-4 *3 (-1211 *4)))) ((*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-359) (-10 -8 (-15 ** ($ $ (-403 (-560))))))) (-5 *2 (-626 *3)) (-5 *1 (-1108 *4 *3)) (-4 *4 (-1211 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-1076 (-827 (-213)))) (-5 *1 (-294))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-671 (-213))) (-5 *4 (-560)) (-5 *5 (-213)) (-5 *6 (-3 (|:| |fn| (-384)) (|:| |fp| (-91 FCN)))) (-5 *2 (-1027)) (-5 *1 (-733))))) -(((*1 *2 *1) (-12 (-4 *2 (-942 *3 *5 *4)) (-5 *1 (-980 *3 *4 *5 *2)) (-4 *3 (-447)) (-4 *4 (-834)) (-4 *5 (-780))))) -(((*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-1082)) (-5 *1 (-892 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-560)) (-4 *4 (-1039)) (-4 *6 (-226 *7 (-755))) (-14 *7 (-755)) (-5 *2 (-626 *6)) (-5 *1 (-900 *4 *5 *6 *7)) (-4 *5 (-318 *4 *6))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-213))) (-5 *4 (-755)) (-5 *2 (-671 (-213))) (-5 *1 (-294))))) -(((*1 *2 *3) (-12 (-4 *1 (-896)) (-5 *2 (-414 (-1149 *1))) (-5 *3 (-1149 *1))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1155 (-403 (-560)))) (-5 *1 (-180))))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-560)) (-5 *5 (-671 (-213))) (-5 *6 (-3 (|:| |fn| (-384)) (|:| |fp| (-89 FCNF)))) (-5 *7 (-3 (|:| |fn| (-384)) (|:| |fp| (-90 FCNG)))) (-5 *3 (-213)) (-5 *2 (-1027)) (-5 *1 (-733))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994)))))) -(((*1 *2) (-12 (-4 *3 (-1039)) (-4 *5 (-226 *6 (-755))) (-14 *6 (-755)) (-5 *2 (-626 *4)) (-5 *1 (-900 *3 *4 *5 *6)) (-4 *4 (-318 *3 *5))))) -(((*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-359) (-148) (-1029 (-560)))) (-4 *5 (-1211 *4)) (-5 *2 (-626 (-403 *5))) (-5 *1 (-1008 *4 *5)) (-5 *3 (-403 *5))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-375) (-375))) (-5 *4 (-375)) (-5 *2 (-2 (|:| -2981 *4) (|:| -2301 *4) (|:| |totalpts| (-560)) (|:| |success| (-121)))) (-5 *1 (-776)) (-5 *5 (-560))))) -(((*1 *2 *3 *1) (-12 (-4 *4 (-359)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-121)) (-5 *1 (-506 *4 *5 *6 *3)) (-4 *3 (-942 *4 *5 *6))))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-671 (-213))) (-5 *4 (-560)) (-5 *5 (-213)) (-5 *6 (-3 (|:| |fn| (-384)) (|:| |fp| (-66 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-384)) (|:| |fp| (-92 BDYVAL)))) (-5 *2 (-1027)) (-5 *1 (-733)))) ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-671 (-213))) (-5 *4 (-560)) (-5 *5 (-213)) (-5 *6 (-3 (|:| |fn| (-384)) (|:| |fp| (-66 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-384)) (|:| |fp| (-92 BDYVAL)))) (-5 *8 (-384)) (-5 *2 (-1027)) (-5 *1 (-733))))) -(((*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-57))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1241)) (-5 *1 (-1165 *4 *5)) (-4 *4 (-1082)) (-4 *5 (-1082))))) -(((*1 *1 *2) (-12 (-5 *2 (-1141 3 *3)) (-4 *3 (-1039)) (-4 *1 (-1114 *3)))) ((*1 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1039))))) -(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-626 (-560))) (-5 *3 (-121)) (-5 *1 (-1092))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-560)) (-4 *4 (-1039)) (-4 *5 (-226 *6 (-755))) (-14 *6 (-755)) (-5 *1 (-900 *4 *2 *5 *6)) (-4 *2 (-318 *4 *5))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-1149 *3)) (-4 *3 (-344)) (-5 *1 (-352 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-121) *3)) (|has| *1 (-6 -4505)) (-4 *1 (-152 *3)) (-4 *3 (-1187)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-121) *3)) (-4 *3 (-1187)) (-5 *1 (-590 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-121) *3)) (-4 *1 (-657 *3)) (-4 *3 (-1187)))) ((*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1181 *4 *5 *3 *2)) (-4 *4 (-550)) (-4 *5 (-780)) (-4 *3 (-834)) (-4 *2 (-1053 *4 *5 *3)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *1 (-1185 *2)) (-4 *2 (-1187))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-560)) (-5 *5 (-671 (-213))) (-5 *6 (-3 (|:| |fn| (-384)) (|:| |fp| (-80 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-384)) (|:| |fp| (-81 G JACOBG JACGEP)))) (-5 *4 (-213)) (-5 *2 (-1027)) (-5 *1 (-733))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-172 *3)) (-4 *3 (-13 (-359) (-1173) (-994)))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-560)) (-4 *4 (-1039)) (-4 *5 (-226 *6 (-755))) (-14 *6 (-755)) (-5 *1 (-900 *4 *2 *5 *6)) (-4 *2 (-318 *4 *5))))) -(((*1 *2 *3 *1) (|partial| -12 (-5 *3 (-879 *4)) (-4 *4 (-1082)) (-4 *2 (-1082)) (-5 *1 (-876 *4 *2))))) -(((*1 *2 *3) (-12 (-5 *2 (-2 (|:| -4412 (-560)) (|:| -3025 (-626 *3)))) (-5 *1 (-437 *3)) (-4 *3 (-1211 (-560)))))) -(((*1 *1 *1) (-12 (-5 *1 (-414 *2)) (-4 *2 (-550))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-121) *3)) (-4 *3 (-1187)) (-5 *1 (-590 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-121) *3)) (-4 *3 (-1187)) (-5 *1 (-1133 *3))))) -(((*1 *2 *3) (-12 (-4 *4 (-550)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-626 *7)) (|:| |badPols| (-626 *7)))) (-5 *1 (-970 *4 *5 *6 *7)) (-5 *3 (-626 *7))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1100)) (-5 *1 (-113)))) ((*1 *2 *1) (|partial| -12 (-5 *1 (-361 *2)) (-4 *2 (-1082)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-1135)) (-5 *1 (-1169))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-1039)) (-4 *4 (-226 *5 (-755))) (-14 *5 (-755)) (-5 *1 (-900 *3 *2 *4 *5)) (-4 *2 (-318 *3 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-842))))) -(((*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1039))))) -(((*1 *2 *3) (-12 (-5 *2 (-1155 (-403 (-560)))) (-5 *1 (-180)) (-5 *3 (-560))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-121) *3)) (-4 *3 (-1187)) (-5 *1 (-590 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-121) *3)) (-4 *3 (-1187)) (-5 *1 (-1133 *3))))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *5 (-3 (|:| |fn| (-384)) (|:| |fp| (-69 G)))) (-5 *2 (-1027)) (-5 *1 (-732))))) -(((*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-121) *2)) (-4 *1 (-152 *2)) (-4 *2 (-1187))))) -(((*1 *2 *1 *1) (-12 (-4 *3 (-359)) (-4 *3 (-1039)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4250 *1))) (-4 *1 (-836 *3))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-1039)) (-4 *4 (-226 *5 (-755))) (-14 *5 (-755)) (-5 *1 (-900 *3 *2 *4 *5)) (-4 *2 (-318 *3 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-1153)) (-4 *4 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-57)) (-5 *1 (-303 *4 *5)) (-4 *5 (-13 (-27) (-1173) (-426 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-57)) (-5 *1 (-303 *4 *3)) (-4 *3 (-13 (-27) (-1173) (-426 *4))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-403 (-560))) (-4 *5 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-57)) (-5 *1 (-303 *5 *3)) (-4 *3 (-13 (-27) (-1173) (-426 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-283 *3)) (-4 *3 (-13 (-27) (-1173) (-426 *5))) (-4 *5 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-57)) (-5 *1 (-303 *5 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-283 *3)) (-5 *5 (-403 (-560))) (-4 *3 (-13 (-27) (-1173) (-426 *6))) (-4 *6 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-57)) (-5 *1 (-303 *6 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-560))) (-5 *4 (-283 *6)) (-4 *6 (-13 (-27) (-1173) (-426 *5))) (-4 *5 (-13 (-550) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-57)) (-5 *1 (-454 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1153)) (-5 *5 (-283 *3)) (-4 *3 (-13 (-27) (-1173) (-426 *6))) (-4 *6 (-13 (-550) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-57)) (-5 *1 (-454 *6 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-560))) (-5 *4 (-283 *7)) (-5 *5 (-1202 (-560))) (-4 *7 (-13 (-27) (-1173) (-426 *6))) (-4 *6 (-13 (-550) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-57)) (-5 *1 (-454 *6 *7)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1153)) (-5 *5 (-283 *3)) (-5 *6 (-1202 (-560))) (-4 *3 (-13 (-27) (-1173) (-426 *7))) (-4 *7 (-13 (-550) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-57)) (-5 *1 (-454 *7 *3)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-403 (-560)))) (-5 *4 (-283 *8)) (-5 *5 (-1202 (-403 (-560)))) (-5 *6 (-403 (-560))) (-4 *8 (-13 (-27) (-1173) (-426 *7))) (-4 *7 (-13 (-550) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-57)) (-5 *1 (-454 *7 *8)))) ((*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1153)) (-5 *5 (-283 *3)) (-5 *6 (-1202 (-403 (-560)))) (-5 *7 (-403 (-560))) (-4 *3 (-13 (-27) (-1173) (-426 *8))) (-4 *8 (-13 (-550) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-57)) (-5 *1 (-454 *8 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1133 (-2 (|:| |k| (-560)) (|:| |c| *3)))) (-4 *3 (-1039)) (-5 *1 (-585 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-1039)) (-5 *1 (-586 *3)))) ((*1 *1 *2 *3 *1) (-12 (-5 *2 (-560)) (-4 *1 (-633 *3)) (-4 *3 (-359)))) ((*1 *1 *2) (-12 (-5 *2 (-1133 (-2 (|:| |k| (-560)) (|:| |c| *3)))) (-4 *3 (-1039)) (-4 *1 (-1195 *3)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-755)) (-5 *3 (-1133 (-2 (|:| |k| (-403 (-560))) (|:| |c| *4)))) (-4 *4 (-1039)) (-4 *1 (-1216 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-1039)) (-4 *1 (-1226 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1133 (-2 (|:| |k| (-755)) (|:| |c| *3)))) (-4 *3 (-1039)) (-4 *1 (-1226 *3))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1241)) (-5 *1 (-1238))))) -(((*1 *2 *2) (-12 (-5 *2 (-1236 *1)) (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1191)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-403 *4)))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-909)) (-4 *6 (-13 (-550) (-834))) (-5 *2 (-626 (-304 *6))) (-5 *1 (-209 *5 *6)) (-5 *3 (-304 *6)) (-4 *5 (-1039)))) ((*1 *2 *1) (-12 (-5 *1 (-414 *2)) (-4 *2 (-550)))) ((*1 *2 *3) (-12 (-5 *3 (-577 *5)) (-4 *5 (-13 (-29 *4) (-1173))) (-4 *4 (-13 (-447) (-1029 (-560)) (-834) (-622 (-560)))) (-5 *2 (-626 *5)) (-5 *1 (-575 *4 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-577 (-403 (-945 *4)))) (-4 *4 (-13 (-447) (-1029 (-560)) (-834) (-622 (-560)))) (-5 *2 (-626 (-304 *4))) (-5 *1 (-580 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-1077 *3 *2)) (-4 *3 (-832)) (-4 *2 (-1126 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-626 *1)) (-4 *1 (-1077 *4 *2)) (-4 *4 (-832)) (-4 *2 (-1126 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-447))) (-5 *1 (-1179 *3 *2)) (-4 *2 (-13 (-426 *3) (-1173))))) ((*1 *2 *1) (-12 (-5 *2 (-1249 (-1153) *3)) (-5 *1 (-1256 *3)) (-4 *3 (-1039)))) ((*1 *2 *1) (-12 (-5 *2 (-1249 *3 *4)) (-5 *1 (-1258 *3 *4)) (-4 *3 (-834)) (-4 *4 (-1039))))) -(((*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-213)) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-732))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-62 *3 *4 *5)) (-4 *3 (-1187)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| $ (-6 -4506)) (-4 *3 (-1082)) (-5 *1 (-96 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| $ (-6 -4506)) (-4 *3 (-1082)) (-5 *1 (-210 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| $ (-6 -4506)) (-4 *3 (-834)) (-5 *1 (-487 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4506)) (-4 *1 (-492 *3)) (-4 *3 (-1187)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| $ (-6 -4506)) (-4 *3 (-1082)) (-5 *1 (-992 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| $ (-6 -4506)) (-4 *3 (-1082)) (-5 *1 (-1124 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-213)) (-5 *1 (-214)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-167 (-213))) (-5 *1 (-214)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-427 *3 *2)) (-4 *2 (-426 *3)))) ((*1 *1 *1 *1) (-4 *1 (-1116)))) -(((*1 *2 *2 *2 *3) (-12 (-5 *3 (-560)) (-4 *4 (-1039)) (-4 *5 (-226 *6 (-755))) (-14 *6 (-755)) (-5 *1 (-900 *4 *2 *5 *6)) (-4 *2 (-318 *4 *5))))) -(((*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-626 (-626 (-936 (-213))))) (-5 *4 (-861)) (-5 *5 (-909)) (-5 *6 (-626 (-251))) (-5 *2 (-466)) (-5 *1 (-1240)))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-626 (-936 (-213))))) (-5 *2 (-466)) (-5 *1 (-1240)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-626 (-936 (-213))))) (-5 *4 (-626 (-251))) (-5 *2 (-466)) (-5 *1 (-1240))))) -(((*1 *2 *3) (|partial| -12 (-4 *2 (-1082)) (-5 *1 (-1165 *3 *2)) (-4 *3 (-1082))))) -(((*1 *2 *3) (-12 (-5 *3 (-909)) (-5 *2 (-1135)) (-5 *1 (-773))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-525 *3)) (-4 *3 (-13 (-708) (-25)))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *5 (-213)) (-5 *6 (-3 (|:| |fn| (-384)) (|:| |fp| (-83 FUNCTN)))) (-5 *2 (-1027)) (-5 *1 (-732))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-861)) (-5 *3 (-626 (-251))) (-5 *1 (-249))))) -(((*1 *2 *3 *4) (-12 (-4 *7 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *7 (-550)) (-4 *8 (-942 *7 *5 *6)) (-5 *2 (-2 (|:| -4034 (-755)) (|:| -2169 *3) (|:| |radicand| *3))) (-5 *1 (-946 *5 *6 *7 *8 *3)) (-5 *4 (-755)) (-4 *3 (-13 (-359) (-10 -8 (-15 -2132 (*8 $)) (-15 -2139 (*8 $)) (-15 -2801 ($ *8)))))))) -(((*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-671 *11)) (-5 *4 (-626 (-403 (-945 *8)))) (-5 *5 (-755)) (-5 *6 (-1135)) (-4 *8 (-13 (-296) (-148))) (-4 *11 (-942 *8 *10 *9)) (-4 *9 (-13 (-834) (-601 (-1153)))) (-4 *10 (-780)) (-5 *2 (-2 (|:| |rgl| (-626 (-2 (|:| |eqzro| (-626 *11)) (|:| |neqzro| (-626 *11)) (|:| |wcond| (-626 (-945 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1236 (-403 (-945 *8)))) (|:| -4374 (-626 (-1236 (-403 (-945 *8)))))))))) (|:| |rgsz| (-560)))) (-5 *1 (-916 *8 *9 *10 *11)) (-5 *7 (-560))))) -(((*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-319 *3)) (-4 *3 (-1187)))) ((*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-517 *3 *4)) (-4 *3 (-1187)) (-14 *4 (-560))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 (-458))) (-5 *2 (-560)) (-5 *1 (-457)))) ((*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-458))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-755)) (-5 *2 (-1236 (-626 (-560)))) (-5 *1 (-484)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1187)) (-5 *1 (-590 *3)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1187)) (-5 *1 (-1133 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1187)) (-5 *1 (-1133 *3))))) -(((*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-671 (-213))) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-732))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-121) *3)) (|has| *1 (-6 -4505)) (-4 *1 (-223 *3)) (-4 *3 (-1082)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-121) *3)) (-4 *1 (-272 *3)) (-4 *3 (-1187))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1121)) (-5 *2 (-121))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1002 *3)) (-4 *3 (-1187)) (-4 *3 (-1082)) (-5 *2 (-121))))) -(((*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-121)) (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-5 *2 (-626 (-1019 *5 *6 *7 *3))) (-5 *1 (-1019 *5 *6 *7 *3)) (-4 *3 (-1053 *5 *6 *7)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-626 *6)) (-4 *1 (-1058 *3 *4 *5 *6)) (-4 *3 (-447)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1053 *3 *4 *5)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-1058 *3 *4 *5 *2)) (-4 *3 (-447)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *2 (-1053 *3 *4 *5)))) ((*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-121)) (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-5 *2 (-626 (-1123 *5 *6 *7 *3))) (-5 *1 (-1123 *5 *6 *7 *3)) (-4 *3 (-1053 *5 *6 *7))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-102)))) ((*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-203 (-503))) (-5 *1 (-822))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *5 (-213)) (-5 *6 (-3 (|:| |fn| (-384)) (|:| |fp| (-83 FUNCTN)))) (-5 *2 (-1027)) (-5 *1 (-732))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1049 (-1015 *4) (-1149 (-1015 *4)))) (-5 *3 (-842)) (-5 *1 (-1015 *4)) (-4 *4 (-13 (-832) (-359) (-1013)))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 (-458))) (-5 *2 (-560)) (-5 *1 (-457)))) ((*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-458))))) -(((*1 *2 *1) (-12 (-4 *1 (-62 *3 *4 *5)) (-4 *3 (-1187)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)) (-5 *2 (-560)))) ((*1 *2 *1) (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039)) (-4 *6 (-226 *4 *5)) (-4 *7 (-226 *3 *5)) (-5 *2 (-560))))) -(((*1 *2 *3) (-12 (-5 *3 (-1236 *4)) (-4 *4 (-1039)) (-4 *2 (-1211 *4)) (-5 *1 (-439 *4 *2)))) ((*1 *2 *3 *2 *4) (-12 (-5 *2 (-403 (-1149 (-304 *5)))) (-5 *3 (-1236 (-304 *5))) (-5 *4 (-560)) (-4 *5 (-13 (-550) (-834))) (-5 *1 (-1110 *5))))) -(((*1 *2 *3) (-12 (-5 *2 (-121)) (-5 *1 (-437 *3)) (-4 *3 (-1211 (-560)))))) -(((*1 *2 *3) (-12 (-5 *2 (-1149 (-560))) (-5 *1 (-935)) (-5 *3 (-560))))) -(((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-557))))) -(((*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-550) (-148))) (-5 *1 (-1205 *3 *2)) (-4 *2 (-1211 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-780)) (-4 *4 (-834))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 (-458))) (-5 *2 (-755)) (-5 *1 (-457)))) ((*1 *1 *2) (-12 (-5 *2 (-755)) (-5 *1 (-458))))) -(((*1 *1 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1187))))) -(((*1 *1 *1) (-12 (-4 *1 (-1181 *2 *3 *4 *5)) (-4 *2 (-550)) (-4 *3 (-780)) (-4 *4 (-834)) (-4 *5 (-1053 *2 *3 *4))))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-13 (-296) (-148))) (-4 *5 (-13 (-834) (-601 (-1153)))) (-4 *6 (-780)) (-4 *7 (-942 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-121)) (|:| |z0| (-626 *7)) (|:| |n0| (-626 *7)))) (-5 *1 (-916 *4 *5 *6 *7)) (-5 *3 (-626 *7))))) -(((*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-560)) (-4 *3 (-170)) (-4 *5 (-369 *3)) (-4 *6 (-369 *3)) (-5 *1 (-670 *3 *5 *6 *2)) (-4 *2 (-669 *3 *5 *6))))) -(((*1 *1 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-1187)) (-4 *2 (-834)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-121) *3 *3)) (-4 *1 (-369 *3)) (-4 *3 (-1187)))) ((*1 *2 *2) (-12 (-5 *2 (-626 (-892 *3))) (-5 *1 (-892 *3)) (-4 *3 (-1082)))) ((*1 *2 *1 *3) (-12 (-4 *4 (-1039)) (-4 *5 (-780)) (-4 *3 (-834)) (-4 *6 (-1053 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -2150 *1) (|:| |upper| *1))) (-4 *1 (-969 *4 *5 *3 *6))))) -(((*1 *2 *3) (-12 (-4 *4 (-13 (-296) (-148))) (-4 *5 (-13 (-834) (-601 (-1153)))) (-4 *6 (-780)) (-5 *2 (-626 *3)) (-5 *1 (-916 *4 *5 *6 *3)) (-4 *3 (-942 *4 *6 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-533)) (-5 *1 (-532 *2)) (-4 *2 (-1187)))) ((*1 *2 *1) (-12 (-5 *2 (-57)) (-5 *1 (-533))))) -(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-466)) (-5 *4 (-909)) (-5 *2 (-1241)) (-5 *1 (-1237))))) -(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-626 (-560))) (-5 *1 (-1092)) (-5 *3 (-560))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-909)) (-5 *2 (-1241)) (-5 *1 (-1237)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-909)) (-5 *2 (-1241)) (-5 *1 (-1238))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-560)) (-5 *3 (-909)) (-4 *1 (-400)))) ((*1 *1 *2 *2) (-12 (-5 *2 (-560)) (-4 *1 (-400)))) ((*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *5 *2 *6)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *2 (-1082))))) -(((*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-809))))) -(((*1 *2 *1) (-12 (-14 *3 (-626 (-1153))) (-4 *4 (-170)) (-4 *5 (-226 (-2271 *3) (-755))) (-14 *6 (-1 (-121) (-2 (|:| -1330 *2) (|:| -4034 *5)) (-2 (|:| -1330 *2) (|:| -4034 *5)))) (-4 *2 (-834)) (-5 *1 (-456 *3 *4 *2 *5 *6 *7)) (-4 *7 (-942 *4 *5 (-844 *3)))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-671 *5))) (-5 *4 (-560)) (-4 *5 (-359)) (-4 *5 (-1039)) (-5 *2 (-121)) (-5 *1 (-1021 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-671 *4))) (-4 *4 (-359)) (-4 *4 (-1039)) (-5 *2 (-121)) (-5 *1 (-1021 *4))))) -(((*1 *2 *3 *4) (-12 (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-121)) (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1058 *5 *6 *7 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-626 (-2 (|:| |val| (-121)) (|:| -3249 *4)))) (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1058 *5 *6 *7 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 (-458))) (-5 *2 (-1153)) (-5 *1 (-457)))) ((*1 *1 *2) (-12 (-5 *2 (-1153)) (-5 *1 (-458))))) -(((*1 *2 *1) (-12 (-4 *1 (-528 *3 *4 *5 *6 *7 *8 *9 *10 *2)) (-4 *3 (-359)) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *6 (-226 (-2271 *4) (-755))) (-4 *8 (-633 *3)) (-4 *9 (-912 *3 *8)) (-4 *10 (-230 *9)) (-4 *2 (-117))))) -(((*1 *2 *1) (-12 (-4 *1 (-363 *3)) (-4 *3 (-170)) (-4 *3 (-550)) (-5 *2 (-1149 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-130 *2)) (-4 *2 (-834))))) -(((*1 *2 *3) (-12 (-5 *3 (-909)) (-5 *2 (-1149 *4)) (-5 *1 (-579 *4)) (-4 *4 (-344))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1236 (-403 (-945 *4)))) (|:| -4374 (-626 (-1236 (-403 (-945 *4))))))) (-5 *3 (-626 *7)) (-4 *4 (-13 (-296) (-148))) (-4 *7 (-942 *4 *6 *5)) (-4 *5 (-13 (-834) (-601 (-1153)))) (-4 *6 (-780)) (-5 *1 (-916 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-811))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-626 (-1135))) (-5 *1 (-390))))) -(((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-755)) (-4 *2 (-1082)) (-5 *1 (-660 *2))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-1039)) (-5 *1 (-1137 *3))))) -(((*1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-43 (-403 (-560)))) (-4 *2 (-1039))))) -(((*1 *2 *3) (-12 (-5 *3 (-1208 *5 *4)) (-4 *4 (-807)) (-14 *5 (-1153)) (-5 *2 (-560)) (-5 *1 (-1096 *4 *5))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-936 *5)) (-4 *5 (-1039)) (-5 *2 (-755)) (-5 *1 (-1141 *4 *5)) (-14 *4 (-909)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-626 (-755))) (-5 *3 (-755)) (-5 *1 (-1141 *4 *5)) (-14 *4 (-909)) (-4 *5 (-1039)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-626 (-755))) (-5 *3 (-936 *5)) (-4 *5 (-1039)) (-5 *1 (-1141 *4 *5)) (-14 *4 (-909))))) -(((*1 *2 *1) (-12 (-4 *1 (-528 *3 *4 *5 *6 *7 *8 *9 *10 *11)) (-4 *3 (-359)) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *6 (-226 (-2271 *4) (-755))) (-4 *8 (-633 *3)) (-4 *9 (-912 *3 *8)) (-4 *10 (-230 *9)) (-4 *11 (-117)) (-5 *2 (-237 (-4162 (QUOTE X) (QUOTE -3095)) *3))))) -(((*1 *2) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1191)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-403 *4))) (-5 *2 (-121))))) -(((*1 *2 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-1211 (-560))) (-5 *1 (-489 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-626 (-626 *6))) (-4 *6 (-942 *3 *5 *4)) (-4 *3 (-13 (-296) (-148))) (-4 *4 (-13 (-834) (-601 (-1153)))) (-4 *5 (-780)) (-5 *1 (-916 *3 *4 *5 *6))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-769 *2)) (-4 *2 (-1039))))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-807)) (-14 *5 (-1153)) (-5 *2 (-626 (-1208 *5 *4))) (-5 *1 (-1096 *4 *5)) (-5 *3 (-1208 *5 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-528 *3 *4 *5 *6 *7 *8 *9 *2 *10)) (-4 *3 (-359)) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *6 (-226 (-2271 *4) (-755))) (-4 *8 (-633 *3)) (-4 *9 (-912 *3 *8)) (-4 *10 (-117)) (-4 *2 (-230 *9))))) -(((*1 *2) (-12 (-5 *2 (-827 (-560))) (-5 *1 (-531)))) ((*1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-1082))))) -(((*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1241)) (-5 *1 (-1165 *4 *5)) (-4 *4 (-1082)) (-4 *5 (-1082))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-909)) (-4 *1 (-728 *3)) (-4 *3 (-170))))) -(((*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-560)) (-5 *1 (-229)))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-1135))) (-5 *2 (-560)) (-5 *1 (-229))))) -(((*1 *2 *3) (-12 (-5 *3 (-304 (-213))) (-5 *2 (-213)) (-5 *1 (-294))))) -(((*1 *2) (-12 (-5 *2 (-827 (-560))) (-5 *1 (-531)))) ((*1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-1082))))) -(((*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-909)) (-5 *1 (-1083 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) -(((*1 *2 *3) (-12 (-5 *3 (-626 *2)) (-5 *1 (-489 *2)) (-4 *2 (-1211 (-560)))))) -(((*1 *2 *1) (-12 (-5 *2 (-403 (-945 *3))) (-5 *1 (-448 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *3 (-170)) (-14 *4 (-909)) (-14 *5 (-626 (-1153))) (-14 *6 (-1236 (-671 *3)))))) -(((*1 *1 *1) (-5 *1 (-213))) ((*1 *1 *1) (-5 *1 (-375))) ((*1 *1) (-5 *1 (-375)))) -(((*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-736))))) -(((*1 *2 *3 *1) (-12 (-4 *1 (-1058 *4 *5 *6 *3)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-121))))) -(((*1 *2 *3) (-12 (|has| *6 (-6 -4506)) (-4 *4 (-359)) (-4 *5 (-369 *4)) (-4 *6 (-369 *4)) (-5 *2 (-626 *6)) (-5 *1 (-521 *4 *5 *6 *3)) (-4 *3 (-669 *4 *5 *6)))) ((*1 *2 *3) (-12 (|has| *9 (-6 -4506)) (-4 *4 (-550)) (-4 *5 (-369 *4)) (-4 *6 (-369 *4)) (-4 *7 (-985 *4)) (-4 *8 (-369 *7)) (-4 *9 (-369 *7)) (-5 *2 (-626 *6)) (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-669 *4 *5 *6)) (-4 *10 (-669 *7 *8 *9)))) ((*1 *2 *1) (-12 (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)) (-4 *3 (-550)) (-5 *2 (-626 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-550)) (-4 *4 (-170)) (-4 *5 (-369 *4)) (-4 *6 (-369 *4)) (-5 *2 (-626 *6)) (-5 *1 (-670 *4 *5 *6 *3)) (-4 *3 (-669 *4 *5 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039)) (-4 *6 (-226 *4 *5)) (-4 *7 (-226 *3 *5)) (-4 *5 (-550)) (-5 *2 (-626 *7))))) -(((*1 *1 *1) (-12 (-4 *1 (-1251 *2 *3)) (-4 *2 (-834)) (-4 *3 (-1039)))) ((*1 *1 *1) (-12 (-5 *1 (-1257 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-830))))) -(((*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-599 *3)) (-5 *5 (-1149 *3)) (-4 *3 (-13 (-426 *6) (-27) (-1173))) (-4 *6 (-13 (-447) (-1029 (-560)) (-834) (-148) (-622 (-560)))) (-5 *2 (-577 *3)) (-5 *1 (-556 *6 *3 *7)) (-4 *7 (-1082)))) ((*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-599 *3)) (-5 *5 (-403 (-1149 *3))) (-4 *3 (-13 (-426 *6) (-27) (-1173))) (-4 *6 (-13 (-447) (-1029 (-560)) (-834) (-148) (-622 (-560)))) (-5 *2 (-577 *3)) (-5 *1 (-556 *6 *3 *7)) (-4 *7 (-1082))))) -(((*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-254 *3)) (-4 *3 (-1082)))) ((*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-505 *3 *4 *5)) (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *5 (-117)))) ((*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-529 *3 *4 *5)) (-4 *3 (-344)) (-14 *4 (-626 (-1153))) (-4 *5 (-117)))) ((*1 *2 *1) (-12 (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *6 (-226 (-2271 *4) (-755))) (-4 *8 (-633 *3)) (-4 *9 (-912 *3 *8)) (-5 *2 (-842)) (-5 *1 (-530 *3 *4 *5 *6 *7 *8 *9 *10 *11)) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *7 (-963 *3)) (-4 *10 (-230 *9)) (-4 *11 (-117))))) -(((*1 *2 *2) (-12 (-5 *2 (-626 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *1 (-970 *3 *4 *5 *6)))) ((*1 *2 *3 *3) (-12 (-4 *4 (-550)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-626 *3)) (-5 *1 (-970 *4 *5 *6 *3)) (-4 *3 (-1053 *4 *5 *6)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-626 *3)) (-4 *3 (-1053 *4 *5 *6)) (-4 *4 (-550)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *1 (-970 *4 *5 *6 *3)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-626 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *1 (-970 *3 *4 *5 *6)))) ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-626 *7) (-626 *7))) (-5 *2 (-626 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-550)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *1 (-970 *4 *5 *6 *7))))) -(((*1 *2 *2) (-12 (-5 *2 (-626 *7)) (-4 *7 (-1058 *3 *4 *5 *6)) (-4 *3 (-447)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1053 *3 *4 *5)) (-5 *1 (-981 *3 *4 *5 *6 *7)))) ((*1 *2 *2) (-12 (-5 *2 (-626 *7)) (-4 *7 (-1058 *3 *4 *5 *6)) (-4 *3 (-447)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1053 *3 *4 *5)) (-5 *1 (-1089 *3 *4 *5 *6 *7))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-1039)) (-5 *1 (-1207 *3 *2)) (-4 *2 (-1211 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-318 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-779)))) ((*1 *2 *1) (-12 (-4 *1 (-690 *3)) (-4 *3 (-1039)) (-5 *2 (-755)))) ((*1 *2 *1) (-12 (-4 *1 (-836 *3)) (-4 *3 (-1039)) (-5 *2 (-755)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-626 *6)) (-4 *1 (-942 *4 *5 *6)) (-4 *4 (-1039)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-626 (-755))))) ((*1 *2 *1 *3) (-12 (-4 *1 (-942 *4 *5 *3)) (-4 *4 (-1039)) (-4 *5 (-780)) (-4 *3 (-834)) (-5 *2 (-755))))) -(((*1 *2 *1) (-12 (-4 *1 (-528 *3 *4 *5 *6 *7 *8 *9 *10 *11)) (-4 *3 (-359)) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *6 (-226 (-2271 *4) (-755))) (-4 *8 (-633 *3)) (-4 *9 (-912 *3 *8)) (-4 *10 (-230 *9)) (-4 *11 (-117)) (-5 *2 (-626 *8))))) -(((*1 *2 *2 *3) (|partial| -12 (-5 *3 (-626 (-2 (|:| |func| *2) (|:| |pole| (-121))))) (-4 *2 (-13 (-426 *4) (-994))) (-4 *4 (-13 (-834) (-550))) (-5 *1 (-267 *4 *2))))) -(((*1 *1 *1 *1) (-5 *1 (-842)))) -(((*1 *1 *1) (-4 *1 (-40))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1226 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1195 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-976 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1138 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1139 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-557)))) ((*1 *2 *3) (-12 (-5 *2 (-1149 (-403 (-560)))) (-5 *1 (-935)) (-5 *3 (-560))))) -(((*1 *2 *3) (-12 (-5 *3 (-909)) (-5 *2 (-891 (-560))) (-5 *1 (-905)))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-560))) (-5 *2 (-891 (-560))) (-5 *1 (-905))))) -(((*1 *2 *1) (-12 (-4 *1 (-528 *3 *4 *5 *6 *7 *8 *9 *10 *11)) (-4 *3 (-359)) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *6 (-226 (-2271 *4) (-755))) (-4 *8 (-633 *3)) (-4 *9 (-912 *3 *8)) (-4 *10 (-230 *9)) (-4 *11 (-117)) (-5 *2 (-33 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (-5 *2 (-375)) (-5 *1 (-195))))) -(((*1 *2) (-12 (-4 *4 (-1191)) (-4 *5 (-1211 *4)) (-4 *6 (-1211 (-403 *5))) (-5 *2 (-755)) (-5 *1 (-333 *3 *4 *5 *6)) (-4 *3 (-334 *4 *5 *6)))) ((*1 *2) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1191)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-403 *4))) (-5 *2 (-755)))) ((*1 *2 *1) (-12 (-4 *1 (-1114 *3)) (-4 *3 (-1039)) (-5 *2 (-755))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-945 (-167 (-560)))))) (-5 *2 (-626 (-626 (-283 (-945 (-167 *4)))))) (-5 *1 (-374 *4)) (-4 *4 (-13 (-359) (-832))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-283 (-403 (-945 (-167 (-560))))))) (-5 *2 (-626 (-626 (-283 (-945 (-167 *4)))))) (-5 *1 (-374 *4)) (-4 *4 (-13 (-359) (-832))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-403 (-945 (-167 (-560))))) (-5 *2 (-626 (-283 (-945 (-167 *4))))) (-5 *1 (-374 *4)) (-4 *4 (-13 (-359) (-832))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-283 (-403 (-945 (-167 (-560)))))) (-5 *2 (-626 (-283 (-945 (-167 *4))))) (-5 *1 (-374 *4)) (-4 *4 (-13 (-359) (-832)))))) -(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1183 *3)) (-4 *3 (-967))))) -(((*1 *2 *2) (-12 (-4 *3 (-1211 (-403 (-560)))) (-5 *1 (-901 *3 *2)) (-4 *2 (-1211 (-403 *3)))))) -(((*1 *2 *1) (-12 (-4 *1 (-528 *3 *4 *5 *6 *7 *8 *9 *10 *11)) (-4 *3 (-359)) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *6 (-226 (-2271 *4) *2)) (-4 *8 (-633 *3)) (-4 *9 (-912 *3 *8)) (-4 *10 (-230 *9)) (-4 *11 (-117)) (-5 *2 (-755))))) -(((*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-755)) (-5 *1 (-658 *2)) (-4 *2 (-1082))))) -(((*1 *2) (-12 (-4 *3 (-359)) (-5 *2 (-626 *1)) (-4 *1 (-912 *3 *4))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *1 (-62 *4 *5 *2)) (-4 *4 (-1187)) (-4 *5 (-369 *4)) (-4 *2 (-369 *4)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *1 (-1042 *4 *5 *6 *7 *2)) (-4 *6 (-1039)) (-4 *7 (-226 *5 *6)) (-4 *2 (-226 *4 *6))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-403 (-560))) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *7 (-550)) (-4 *8 (-942 *7 *5 *6)) (-5 *2 (-2 (|:| -4034 (-755)) (|:| -2169 *9) (|:| |radicand| *9))) (-5 *1 (-946 *5 *6 *7 *8 *9)) (-5 *4 (-755)) (-4 *9 (-13 (-359) (-10 -8 (-15 -2132 (*8 $)) (-15 -2139 (*8 $)) (-15 -2801 ($ *8)))))))) -(((*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-560)) (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-528 *3 *4 *5 *6 *2 *7 *8 *9 *10)) (-4 *3 (-359)) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *6 (-226 (-2271 *4) (-755))) (-4 *7 (-633 *3)) (-4 *8 (-912 *3 *7)) (-4 *9 (-230 *8)) (-4 *10 (-117))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-447))) (-5 *1 (-1179 *3 *2)) (-4 *2 (-13 (-426 *3) (-1173)))))) -(((*1 *2 *1) (-12 (-4 *1 (-912 *3 *4)) (-4 *3 (-359)) (-5 *2 (-1241))))) -(((*1 *2 *1) (-12 (-4 *1 (-657 *3)) (-4 *3 (-1187)) (-5 *2 (-121))))) -(((*1 *2 *1 *2) (-12 (-4 *1 (-528 *3 *4 *5 *6 *7 *8 *9 *10 *2)) (-4 *3 (-359)) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *6 (-226 (-2271 *4) (-755))) (-4 *8 (-633 *3)) (-4 *9 (-912 *3 *8)) (-4 *10 (-230 *9)) (-4 *2 (-117))))) -(((*1 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-322))))) -(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-375)) (|:| |stabilityFactor| (-375)))) (-5 *1 (-195))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-626 *2)) (-4 *2 (-1053 *4 *5 *6)) (-4 *4 (-550)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *1 (-970 *4 *5 *6 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-912 *3 *4)) (-4 *3 (-359)) (-5 *2 (-626 *4))))) -(((*1 *2 *1) (|partial| -12 (-4 *3 (-1094)) (-4 *3 (-834)) (-5 *2 (-626 *1)) (-4 *1 (-426 *3)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-626 (-879 *3))) (-5 *1 (-879 *3)) (-4 *3 (-1082)))) ((*1 *2 *1) (|partial| -12 (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-626 *1)) (-4 *1 (-942 *3 *4 *5)))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1039)) (-4 *7 (-942 *6 *4 *5)) (-5 *2 (-626 *3)) (-5 *1 (-943 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-359) (-10 -8 (-15 -2801 ($ *7)) (-15 -2132 (*7 $)) (-15 -2139 (*7 $)))))))) -(((*1 *2 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-1211 (-560))) (-5 *1 (-489 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 *7)) (-4 *7 (-942 *4 *5 *6)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-1241)) (-5 *1 (-444 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-4 *1 (-52 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-755)) (-5 *1 (-55 *3 *4)) (-4 *3 (-1039)) (-14 *4 (-626 (-1153))))) ((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-211 *3 *4)) (-4 *3 (-13 (-1039) (-834))) (-14 *4 (-626 (-1153))))) ((*1 *2 *1) (-12 (-4 *1 (-230 *3)) (-4 *3 (-1082)) (-5 *2 (-560)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-241 *4 *3 *5 *6)) (-4 *4 (-1039)) (-4 *3 (-834)) (-4 *5 (-257 *3)) (-4 *6 (-780)) (-5 *2 (-755)))) ((*1 *2 *1) (-12 (-5 *2 (-755)) (-5 *1 (-266)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1149 *8)) (-5 *4 (-626 *6)) (-4 *6 (-834)) (-4 *8 (-942 *7 *5 *6)) (-4 *5 (-780)) (-4 *7 (-1039)) (-5 *2 (-626 (-755))) (-5 *1 (-312 *5 *6 *7 *8)))) ((*1 *2 *1) (-12 (-4 *1 (-321 *3)) (-4 *3 (-359)) (-5 *2 (-909)))) ((*1 *2 *1) (-12 (-4 *1 (-370 *3 *4)) (-4 *3 (-834)) (-4 *4 (-170)) (-5 *2 (-755)))) ((*1 *2 *1) (-12 (-4 *1 (-468 *3 *2)) (-4 *3 (-170)) (-4 *2 (-23)))) ((*1 *2 *1) (-12 (-4 *3 (-550)) (-5 *2 (-560)) (-5 *1 (-607 *3 *4)) (-4 *4 (-1211 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-690 *3)) (-4 *3 (-1039)) (-5 *2 (-755)))) ((*1 *2 *1) (-12 (-4 *1 (-836 *3)) (-4 *3 (-1039)) (-5 *2 (-755)))) ((*1 *2 *1) (-12 (-5 *2 (-755)) (-5 *1 (-891 *3)) (-4 *3 (-1082)))) ((*1 *2 *1) (-12 (-5 *2 (-755)) (-5 *1 (-892 *3)) (-4 *3 (-1082)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-560)) (-4 *5 (-1039)) (-4 *6 (-226 *7 *2)) (-14 *7 *2) (-5 *2 (-755)) (-5 *1 (-900 *5 *3 *6 *7)) (-4 *3 (-318 *5 *6)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-626 *6)) (-4 *1 (-942 *4 *5 *6)) (-4 *4 (-1039)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-626 (-755))))) ((*1 *2 *1 *3) (-12 (-4 *1 (-942 *4 *5 *3)) (-4 *4 (-1039)) (-4 *5 (-780)) (-4 *3 (-834)) (-5 *2 (-755)))) ((*1 *2 *1) (-12 (-4 *1 (-966 *3 *2 *4)) (-4 *3 (-1039)) (-4 *4 (-834)) (-4 *2 (-779)))) ((*1 *2 *1) (-12 (-4 *1 (-1080)) (-5 *2 (-909)))) ((*1 *2 *1) (-12 (-4 *1 (-1181 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-755)))) ((*1 *2 *1) (-12 (-4 *1 (-1197 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-1226 *3)) (-5 *2 (-560)))) ((*1 *2 *1) (-12 (-4 *1 (-1218 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-1195 *3)) (-5 *2 (-403 (-560))))) ((*1 *2 *1) (-12 (-4 *1 (-1253 *3)) (-4 *3 (-359)) (-5 *2 (-820 (-909))))) ((*1 *2 *1) (-12 (-4 *1 (-1255 *3 *4)) (-4 *3 (-834)) (-4 *4 (-1039)) (-5 *2 (-755))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-909)) (-4 *1 (-912 *4 *5)) (-4 *4 (-359)) (-5 *2 (-1241))))) -(((*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-1082)) (-5 *1 (-1124 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-550)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-121)) (-5 *1 (-970 *4 *5 *6 *7))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-237 (-4162 (QUOTE X) (QUOTE -3095)) *3)) (-4 *1 (-528 *3 *4 *5 *6 *7 *8 *9 *10 *11)) (-4 *3 (-359)) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *6 (-226 (-2271 *4) (-755))) (-4 *8 (-633 *3)) (-4 *9 (-912 *3 *8)) (-4 *10 (-230 *9)) (-4 *11 (-117))))) -(((*1 *1) (-5 *1 (-433)))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| $ (-6 -4505)) (-4 *4 (-1082)) (-5 *2 (-121)) (-5 *1 (-96 *4)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| $ (-6 -4505)) (-4 *4 (-1082)) (-5 *2 (-121)) (-5 *1 (-210 *4)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| $ (-6 -4505)) (-4 *4 (-834)) (-5 *2 (-121)) (-5 *1 (-487 *4)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| *1 (-6 -4505)) (-4 *1 (-492 *4)) (-4 *4 (-1187)) (-5 *2 (-121)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| $ (-6 -4505)) (-4 *4 (-1082)) (-5 *2 (-121)) (-5 *1 (-992 *4)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| $ (-6 -4505)) (-4 *4 (-1082)) (-5 *2 (-121)) (-5 *1 (-1124 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-466)))) ((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-1237)))) ((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-1238))))) -(((*1 *2) (-12 (-4 *3 (-359)) (-5 *2 (-626 *1)) (-4 *1 (-912 *3 *4))))) -(((*1 *2 *1 *2) (-12 (-4 *1 (-528 *3 *4 *5 *6 *7 *8 *9 *2 *10)) (-4 *3 (-359)) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *6 (-226 (-2271 *4) (-755))) (-4 *8 (-633 *3)) (-4 *9 (-912 *3 *8)) (-4 *2 (-230 *9)) (-4 *10 (-117))))) -(((*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-936 (-213))) (-5 *4 (-861)) (-5 *5 (-909)) (-5 *2 (-1241)) (-5 *1 (-466)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-936 (-213))) (-5 *2 (-1241)) (-5 *1 (-466)))) ((*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-626 (-936 (-213)))) (-5 *4 (-861)) (-5 *5 (-909)) (-5 *2 (-1241)) (-5 *1 (-466))))) -(((*1 *2 *2) (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-359) (-1173) (-994))) (-5 *1 (-172 *3))))) -(((*1 *1) (-12 (-5 *1 (-141 *2 *3 *4)) (-14 *2 (-560)) (-14 *3 (-755)) (-4 *4 (-170))))) -(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-560)) (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-626 *5)) (-4 *1 (-912 *4 *5)) (-4 *4 (-359)) (-5 *2 (-1241))))) -(((*1 *2 *3) (-12 (-4 *4 (-13 (-834) (-550) (-1029 (-560)))) (-5 *2 (-403 (-560))) (-5 *1 (-429 *4 *3)) (-4 *3 (-426 *4)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-599 *3)) (-4 *3 (-426 *5)) (-4 *5 (-13 (-834) (-550) (-1029 (-560)))) (-5 *2 (-1149 (-403 (-560)))) (-5 *1 (-429 *5 *3))))) -(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-626 (-403 (-945 (-560))))) (-5 *4 (-626 (-1153))) (-5 *2 (-626 (-626 *5))) (-5 *1 (-376 *5)) (-4 *5 (-13 (-832) (-359))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-403 (-945 (-560)))) (-5 *2 (-626 *4)) (-5 *1 (-376 *4)) (-4 *4 (-13 (-832) (-359)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-2 (|:| |zeros| (-1133 (-213))) (|:| |ones| (-1133 (-213))) (|:| |singularities| (-1133 (-213))))) (-5 *1 (-109))))) -(((*1 *2 *1) (-12 (-4 *3 (-359)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-403 *4))) (-5 *2 (-1236 *6)) (-5 *1 (-328 *3 *4 *5 *6)) (-4 *6 (-334 *3 *4 *5))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-447))) (-5 *1 (-1179 *3 *2)) (-4 *2 (-13 (-426 *3) (-1173)))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-671 *2)) (-4 *2 (-170)) (-5 *1 (-147 *2)))) ((*1 *2 *3) (-12 (-4 *4 (-170)) (-4 *2 (-1211 *4)) (-5 *1 (-173 *4 *2 *3)) (-4 *3 (-706 *4 *2)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-671 (-403 (-945 *5)))) (-5 *4 (-1153)) (-5 *2 (-945 *5)) (-5 *1 (-281 *5)) (-4 *5 (-447)))) ((*1 *2 *3) (-12 (-5 *3 (-671 (-403 (-945 *4)))) (-5 *2 (-945 *4)) (-5 *1 (-281 *4)) (-4 *4 (-447)))) ((*1 *2 *1) (-12 (-4 *1 (-366 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1211 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-671 (-167 (-403 (-560))))) (-5 *2 (-945 (-167 (-403 (-560))))) (-5 *1 (-748 *4)) (-4 *4 (-13 (-359) (-832))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-671 (-167 (-403 (-560))))) (-5 *4 (-1153)) (-5 *2 (-945 (-167 (-403 (-560))))) (-5 *1 (-748 *5)) (-4 *5 (-13 (-359) (-832))))) ((*1 *2 *3) (-12 (-5 *3 (-671 (-403 (-560)))) (-5 *2 (-945 (-403 (-560)))) (-5 *1 (-765 *4)) (-4 *4 (-13 (-359) (-832))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-671 (-403 (-560)))) (-5 *4 (-1153)) (-5 *2 (-945 (-403 (-560)))) (-5 *1 (-765 *5)) (-4 *5 (-13 (-359) (-832)))))) -(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-430))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994)))))) -(((*1 *2 *1) (-12 (-5 *2 (-626 (-2 (|:| |scalar| (-403 (-560))) (|:| |coeff| (-1149 *3)) (|:| |logand| (-1149 *3))))) (-5 *1 (-577 *3)) (-4 *3 (-359))))) -(((*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-809))))) -(((*1 *2 *3 *4 *2) (-12 (-5 *2 (-626 (-626 (-626 *5)))) (-5 *3 (-1 (-121) *5 *5)) (-5 *4 (-626 *5)) (-4 *5 (-834)) (-5 *1 (-1159 *5))))) -(((*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1153)) (-4 *4 (-13 (-296) (-834) (-148) (-1029 (-560)) (-622 (-560)))) (-5 *1 (-571 *4 *2)) (-4 *2 (-13 (-1173) (-951) (-1116) (-29 *4)))))) -(((*1 *2 *3) (-12 (-4 *4 (-780)) (-4 *5 (-13 (-834) (-10 -8 (-15 -4255 ((-1153) $))))) (-4 *6 (-550)) (-5 *2 (-2 (|:| -2280 (-945 *6)) (|:| -2289 (-945 *6)))) (-5 *1 (-714 *4 *5 *6 *3)) (-4 *3 (-942 (-403 (-945 *6)) *4 *5))))) -(((*1 *1 *1 *1) (-4 *1 (-144))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-157 *3 *2)) (-4 *2 (-426 *3)))) ((*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-542))))) -(((*1 *2 *1) (-12 (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-626 *1)) (-4 *1 (-1053 *3 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1241)) (-5 *1 (-843)))) ((*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1241)) (-5 *1 (-843)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1135)) (-5 *4 (-842)) (-5 *2 (-1241)) (-5 *1 (-843)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-560)) (-5 *2 (-1241)) (-5 *1 (-1133 *4)) (-4 *4 (-1082)) (-4 *4 (-1187))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-172 *3)) (-4 *3 (-13 (-359) (-1173) (-994)))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1211 *5)) (-4 *5 (-359)) (-5 *2 (-2 (|:| -2828 (-414 *3)) (|:| |special| (-414 *3)))) (-5 *1 (-709 *5 *3))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-769 *3)) (|:| |polden| *3) (|:| -2001 (-755)))) (-5 *1 (-769 *3)) (-4 *3 (-1039)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -2001 (-755)))) (-4 *1 (-1053 *3 *4 *5))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-626 *8)) (-4 *1 (-528 *3 *4 *5 *6 *7 *8 *9 *10 *11)) (-4 *3 (-359)) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *6 (-226 (-2271 *4) (-755))) (-4 *8 (-633 *3)) (-4 *9 (-912 *3 *8)) (-4 *10 (-230 *9)) (-4 *11 (-117))))) -(((*1 *1 *2) (-12 (-5 *2 (-626 (-842))) (-5 *1 (-322))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-671 (-403 (-560)))) (-5 *2 (-626 *4)) (-5 *1 (-765 *4)) (-4 *4 (-13 (-359) (-832)))))) -(((*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-359) (-148) (-1029 (-560)))) (-4 *5 (-1211 *4)) (-5 *2 (-2 (|:| -2962 (-403 *5)) (|:| |coeff| (-403 *5)))) (-5 *1 (-564 *4 *5)) (-5 *3 (-403 *5))))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-560)) (-5 *6 (-1 (-1241) (-1236 *5) (-1236 *5) (-375))) (-5 *3 (-1236 (-375))) (-5 *5 (-375)) (-5 *2 (-1241)) (-5 *1 (-775))))) -(((*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-599 *4)) (-5 *6 (-1149 *4)) (-4 *4 (-13 (-426 *7) (-27) (-1173))) (-4 *7 (-13 (-447) (-1029 (-560)) (-834) (-148) (-622 (-560)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4374 (-626 *4)))) (-5 *1 (-556 *7 *4 *3)) (-4 *3 (-638 *4)) (-4 *3 (-1082)))) ((*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-599 *4)) (-5 *6 (-403 (-1149 *4))) (-4 *4 (-13 (-426 *7) (-27) (-1173))) (-4 *7 (-13 (-447) (-1029 (-560)) (-834) (-148) (-622 (-560)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4374 (-626 *4)))) (-5 *1 (-556 *7 *4 *3)) (-4 *3 (-638 *4)) (-4 *3 (-1082))))) -(((*1 *2 *3) (-12 (-5 *2 (-626 (-1135))) (-5 *1 (-229)) (-5 *3 (-1135)))) ((*1 *2 *2) (-12 (-5 *2 (-626 (-1135))) (-5 *1 (-229)))) ((*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-861))))) -(((*1 *2 *2) (-12 (-4 *3 (-550)) (-5 *1 (-46 *3 *2)) (-4 *2 (-13 (-359) (-291) (-10 -8 (-15 -2132 ((-1105 *3 (-599 $)) $)) (-15 -2139 ((-1105 *3 (-599 $)) $)) (-15 -2801 ($ (-1105 *3 (-599 $))))))))) ((*1 *2 *2 *2) (-12 (-4 *3 (-550)) (-5 *1 (-46 *3 *2)) (-4 *2 (-13 (-359) (-291) (-10 -8 (-15 -2132 ((-1105 *3 (-599 $)) $)) (-15 -2139 ((-1105 *3 (-599 $)) $)) (-15 -2801 ($ (-1105 *3 (-599 $))))))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-626 *2)) (-4 *2 (-13 (-359) (-291) (-10 -8 (-15 -2132 ((-1105 *4 (-599 $)) $)) (-15 -2139 ((-1105 *4 (-599 $)) $)) (-15 -2801 ($ (-1105 *4 (-599 $))))))) (-4 *4 (-550)) (-5 *1 (-46 *4 *2)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-626 (-599 *2))) (-4 *2 (-13 (-359) (-291) (-10 -8 (-15 -2132 ((-1105 *4 (-599 $)) $)) (-15 -2139 ((-1105 *4 (-599 $)) $)) (-15 -2801 ($ (-1105 *4 (-599 $))))))) (-4 *4 (-550)) (-5 *1 (-46 *4 *2))))) -(((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-465)))) ((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-465)))) ((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-919))))) -(((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-430)) (|:| -2303 "void"))) (-5 *1 (-433))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-758)) (-5 *1 (-123))))) -(((*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550)) (-5 *2 (-121))))) -(((*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-842))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 (-2 (|:| -2981 *4) (|:| -1400 (-560))))) (-4 *4 (-1082)) (-5 *2 (-1 *4)) (-5 *1 (-1009 *4))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-33 *3)) (-4 *1 (-528 *3 *4 *5 *6 *7 *8 *9 *10 *11)) (-4 *3 (-359)) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *6 (-226 (-2271 *4) (-755))) (-4 *8 (-633 *3)) (-4 *9 (-912 *3 *8)) (-4 *10 (-230 *9)) (-4 *11 (-117))))) -(((*1 *2 *1) (-12 (-4 *1 (-363 *3)) (-4 *3 (-170)) (-5 *2 (-1149 *3))))) -(((*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-213) (-213) (-213))) (-5 *4 (-1 (-213) (-213) (-213) (-213))) (-5 *2 (-1 (-936 (-213)) (-213) (-213))) (-5 *1 (-678))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 *7)) (-4 *7 (-942 *4 *6 *5)) (-4 *4 (-13 (-296) (-148))) (-4 *5 (-13 (-834) (-601 (-1153)))) (-4 *6 (-780)) (-5 *2 (-121)) (-5 *1 (-916 *4 *5 *6 *7)))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-945 *4))) (-4 *4 (-13 (-296) (-148))) (-4 *5 (-13 (-834) (-601 (-1153)))) (-4 *6 (-780)) (-5 *2 (-121)) (-5 *1 (-916 *4 *5 *6 *7)) (-4 *7 (-942 *4 *6 *5))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-375)) (-5 *3 (-626 (-251))) (-5 *1 (-249)))) ((*1 *1 *2) (-12 (-5 *2 (-375)) (-5 *1 (-251))))) -(((*1 *1 *2) (-12 (-5 *2 (-1119 *3 *4)) (-14 *3 (-909)) (-4 *4 (-359)) (-5 *1 (-986 *3 *4))))) -(((*1 *2 *1 *2) (-12 (-4 *1 (-528 *3 *4 *5 *6 *7 *8 *9 *10 *11)) (-4 *3 (-359)) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *6 (-226 (-2271 *4) *2)) (-4 *8 (-633 *3)) (-4 *9 (-912 *3 *8)) (-4 *10 (-230 *9)) (-4 *11 (-117)) (-5 *2 (-755))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *3 (-755)) (-4 *4 (-344)) (-5 *1 (-205 *4 *2)) (-4 *2 (-1211 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-322))))) -(((*1 *1 *1) (-12 (-4 *1 (-318 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-779)) (-4 *2 (-447)))) ((*1 *1 *1) (-12 (-4 *1 (-334 *2 *3 *4)) (-4 *2 (-1191)) (-4 *3 (-1211 *2)) (-4 *4 (-1211 (-403 *3))))) ((*1 *1 *1) (-12 (-4 *1 (-836 *2)) (-4 *2 (-1039)) (-4 *2 (-447)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-942 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *2 (-834)) (-4 *3 (-447)))) ((*1 *1 *1) (-12 (-4 *1 (-942 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-780)) (-4 *4 (-834)) (-4 *2 (-447)))) ((*1 *2 *2 *3) (-12 (-4 *3 (-296)) (-4 *3 (-550)) (-5 *1 (-1140 *3 *2)) (-4 *2 (-1211 *3))))) -(((*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-465)))) ((*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-465))))) -(((*1 *2 *2) (-12 (-5 *2 (-304 (-213))) (-5 *1 (-258))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4506)) (-4 *1 (-234 *2)) (-4 *2 (-1187)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-272 *2)) (-4 *2 (-1187)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-272 *2)) (-4 *2 (-1187)))) ((*1 *1 *1 *2) (-12 (|has| *1 (-6 -4506)) (-4 *1 (-1223 *2)) (-4 *2 (-1187)))) ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4506)) (-4 *1 (-1223 *2)) (-4 *2 (-1187))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-809))))) -(((*1 *2 *2 *1) (-12 (-5 *1 (-210 *2)) (-4 *2 (-1082)))) ((*1 *2 *2 *1) (-12 (-4 *1 (-242 *2)) (-4 *2 (-1187))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 (-2 (|:| -1601 (-1149 *6)) (|:| -4034 (-560))))) (-4 *6 (-296)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-560)) (-5 *1 (-724 *4 *5 *6 *7)) (-4 *7 (-942 *6 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-156)))) ((*1 *2 *1) (-12 (-5 *2 (-156)) (-5 *1 (-861)))) ((*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1039))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-909)) (-5 *3 (-626 (-251))) (-5 *1 (-249)))) ((*1 *1 *2) (-12 (-5 *2 (-909)) (-5 *1 (-251))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-671 (-403 (-560)))) (-5 *2 (-626 (-2 (|:| |outval| *4) (|:| |outmult| (-560)) (|:| |outvect| (-626 (-671 *4)))))) (-5 *1 (-765 *4)) (-4 *4 (-13 (-359) (-832)))))) -(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-909)) (-5 *4 (-861)) (-5 *2 (-1241)) (-5 *1 (-1237)))) ((*1 *2 *1 *3 *4) (-12 (-5 *3 (-909)) (-5 *4 (-1135)) (-5 *2 (-1241)) (-5 *1 (-1237)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1241)) (-5 *1 (-1238))))) -(((*1 *1 *1) (-12 (-5 *1 (-1141 *2 *3)) (-14 *2 (-909)) (-4 *3 (-1039))))) -(((*1 *2 *1 *1) (-12 (-4 *3 (-359)) (-4 *3 (-1039)) (-5 *2 (-2 (|:| -2583 *1) (|:| -4397 *1))) (-4 *1 (-836 *3)))) ((*1 *2 *3 *3 *4) (-12 (-5 *4 (-101 *5)) (-4 *5 (-359)) (-4 *5 (-1039)) (-5 *2 (-2 (|:| -2583 *3) (|:| -4397 *3))) (-5 *1 (-837 *5 *3)) (-4 *3 (-836 *5))))) -(((*1 *2 *2) (-12 (-4 *3 (-1029 (-560))) (-4 *3 (-13 (-834) (-550))) (-5 *1 (-36 *3 *2)) (-4 *2 (-426 *3)))) ((*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-1149 *4)) (-5 *1 (-163 *3 *4)) (-4 *3 (-164 *4)))) ((*1 *1 *1) (-12 (-4 *1 (-1039)) (-4 *1 (-291)))) ((*1 *2) (-12 (-4 *1 (-321 *3)) (-4 *3 (-359)) (-5 *2 (-1149 *3)))) ((*1 *2) (-12 (-4 *1 (-706 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1211 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-1149 *1)) (-4 *1 (-850)))) ((*1 *2) (-12 (-5 *2 (-1149 *1)) (-4 *1 (-850)))) ((*1 *2 *1) (-12 (-4 *1 (-1055 *3 *2)) (-4 *3 (-13 (-832) (-359))) (-4 *2 (-1211 *3))))) -(((*1 *2 *1 *2) (-12 (-4 *1 (-528 *3 *4 *5 *6 *2 *7 *8 *9 *10)) (-4 *3 (-359)) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *6 (-226 (-2271 *4) (-755))) (-4 *7 (-633 *3)) (-4 *8 (-912 *3 *7)) (-4 *9 (-230 *8)) (-4 *10 (-117))))) -(((*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-842)))) ((*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1241)) (-5 *1 (-954))))) -(((*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-577 *3) *3 (-1153))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1153))) (-4 *3 (-274)) (-4 *3 (-612)) (-4 *3 (-1029 *4)) (-4 *3 (-426 *7)) (-5 *4 (-1153)) (-4 *7 (-601 (-879 (-560)))) (-4 *7 (-447)) (-4 *7 (-873 (-560))) (-4 *7 (-834)) (-5 *2 (-577 *3)) (-5 *1 (-569 *7 *3))))) -(((*1 *2 *3) (-12 (-5 *2 (-1155 (-403 (-560)))) (-5 *1 (-180)) (-5 *3 (-560))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1153)) (-5 *2 (-1157)) (-5 *1 (-1156))))) -(((*1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-229))))) -(((*1 *2 *3) (-12 (-4 *4 (-43 (-403 (-560)))) (-5 *2 (-2 (|:| -2790 (-1133 *4)) (|:| -2795 (-1133 *4)))) (-5 *1 (-1139 *4)) (-5 *3 (-1133 *4))))) -(((*1 *2 *3 *4) (-12 (-4 *6 (-550)) (-4 *2 (-942 *3 *5 *4)) (-5 *1 (-714 *5 *4 *6 *2)) (-5 *3 (-403 (-945 *6))) (-4 *5 (-780)) (-4 *4 (-13 (-834) (-10 -8 (-15 -4255 ((-1153) $)))))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-635 *4)) (-4 *4 (-334 *5 *6 *7)) (-4 *5 (-13 (-359) (-148) (-1029 (-560)) (-1029 (-403 (-560))))) (-4 *6 (-1211 *5)) (-4 *7 (-1211 (-403 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4374 (-626 *4)))) (-5 *1 (-793 *5 *6 *7 *4))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-780)) (-4 *4 (-834)) (-4 *5 (-296)) (-5 *1 (-904 *3 *4 *5 *2)) (-4 *2 (-942 *5 *3 *4)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1149 *6)) (-4 *6 (-942 *5 *3 *4)) (-4 *3 (-780)) (-4 *4 (-834)) (-4 *5 (-296)) (-5 *1 (-904 *3 *4 *5 *6)))) ((*1 *2 *3) (-12 (-5 *3 (-626 *2)) (-4 *2 (-942 *6 *4 *5)) (-5 *1 (-904 *4 *5 *6 *2)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-296))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1133 *3))) (-5 *2 (-1133 *3)) (-5 *1 (-1137 *3)) (-4 *3 (-43 (-403 (-560)))) (-4 *3 (-1039))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1173))))) -(((*1 *2 *1) (-12 (-5 *2 (-626 (-945 (-560)))) (-5 *1 (-433)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1153)) (-5 *4 (-671 (-213))) (-5 *2 (-1086)) (-5 *1 (-743)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1153)) (-5 *4 (-671 (-560))) (-5 *2 (-1086)) (-5 *1 (-743))))) -(((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1169))))) -(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-304 *3)) (-4 *3 (-550)) (-4 *3 (-834))))) -(((*1 *2 *2) (-12 (-5 *2 (-626 (-626 *3))) (-4 *3 (-834)) (-5 *1 (-1159 *3))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1121)) (-5 *2 (-142)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1121)) (-5 *2 (-145))))) -(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-671 (-560))) (-5 *3 (-626 (-560))) (-5 *1 (-1092))))) -(((*1 *2 *3) (-12 (-4 *4 (-550)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4069 *4))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1211 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-919))))) -(((*1 *2 *1 *2) (-12 (-4 *1 (-528 *3 *4 *5 *6 *7 *8 *9 *10 *11)) (-4 *3 (-359)) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *6 (-226 (-2271 *4) *2)) (-4 *8 (-633 *3)) (-4 *9 (-912 *3 *8)) (-4 *10 (-230 *9)) (-4 *11 (-117)) (-5 *2 (-755))))) -(((*1 *1) (-12 (-4 *1 (-421 *2)) (-4 *2 (-364)) (-4 *2 (-1082))))) -(((*1 *1 *1) (-12 (-4 *1 (-272 *2)) (-4 *2 (-1187)) (-4 *2 (-1082)))) ((*1 *1 *1) (-12 (-4 *1 (-676 *2)) (-4 *2 (-1082))))) -(((*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1135)) (-5 *1 (-692))))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-13 (-296) (-148))) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *7 (-942 *4 *5 *6)) (-5 *2 (-626 (-626 *7))) (-5 *1 (-443 *4 *5 *6 *7)) (-5 *3 (-626 *7)))) ((*1 *2 *3 *3 *4) (-12 (-5 *4 (-121)) (-4 *5 (-13 (-296) (-148))) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *8 (-942 *5 *6 *7)) (-5 *2 (-626 (-626 *8))) (-5 *1 (-443 *5 *6 *7 *8)) (-5 *3 (-626 *8)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-296) (-148))) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *7 (-942 *4 *5 *6)) (-5 *2 (-626 (-626 *7))) (-5 *1 (-443 *4 *5 *6 *7)) (-5 *3 (-626 *7)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-121)) (-4 *5 (-13 (-296) (-148))) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *8 (-942 *5 *6 *7)) (-5 *2 (-626 (-626 *8))) (-5 *1 (-443 *5 *6 *7 *8)) (-5 *3 (-626 *8))))) -(((*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1082)) (-5 *2 (-1 *5 *4)) (-5 *1 (-664 *4 *5)) (-4 *4 (-1082)))) ((*1 *2 *3) (-12 (-4 *4 (-226 *5 (-755))) (-14 *5 (-755)) (-4 *2 (-1039)) (-5 *1 (-900 *2 *3 *4 *5)) (-4 *3 (-318 *2 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-834)) (-5 *1 (-922 *3 *2)) (-4 *2 (-426 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-304 (-560))) (-5 *1 (-923)))) ((*1 *2 *1) (-12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-834)) (-4 *2 (-1039)))) ((*1 *2 *1) (-12 (-4 *2 (-1039)) (-5 *1 (-1257 *2 *3)) (-4 *3 (-830))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-626 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-121)) (-5 *1 (-981 *4 *5 *6 *7 *8)) (-4 *8 (-1058 *4 *5 *6 *7)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-121)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-626 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-121)) (-5 *1 (-1089 *4 *5 *6 *7 *8)) (-4 *8 (-1058 *4 *5 *6 *7)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-1181 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-121))))) -(((*1 *2) (-12 (-5 *2 (-1241)) (-5 *1 (-1239))))) -(((*1 *2 *3 *4 *2 *2 *2 *5) (-12 (-5 *3 (-123)) (-5 *5 (-626 *2)) (-4 *2 (-13 (-426 *6) (-23) (-1029 (-560)) (-1029 *4) (-887 *4) (-159))) (-5 *4 (-1153)) (-4 *6 (-13 (-834) (-550) (-601 (-533)))) (-5 *1 (-1016 *6 *2))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-121) *3)) (|has| *1 (-6 -4505)) (-4 *1 (-223 *3)) (-4 *3 (-1082)))) ((*1 *1 *2 *1) (-12 (|has| *1 (-6 -4505)) (-4 *1 (-223 *2)) (-4 *2 (-1082)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-272 *2)) (-4 *2 (-1187)) (-4 *2 (-1082)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-121) *3)) (-4 *1 (-272 *3)) (-4 *3 (-1187)))) ((*1 *2 *3 *1) (|partial| -12 (-4 *1 (-597 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-1082)))) ((*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-121) *4)) (-5 *3 (-560)) (-4 *4 (-1082)) (-5 *1 (-719 *4)))) ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-560)) (-5 *1 (-719 *2)) (-4 *2 (-1082)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1117 *3 *4)) (-4 *3 (-13 (-1082) (-39))) (-4 *4 (-13 (-1082) (-39))) (-5 *1 (-1118 *3 *4))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-755)) (-4 *5 (-344)) (-5 *2 (-626 *3)) (-5 *1 (-338 *5 *3)) (-4 *3 (-1211 *5))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4506)) (-4 *1 (-128 *2)) (-4 *2 (-1187))))) -(((*1 *2 *3 *4 *2 *2 *2 *5) (-12 (-5 *3 (-123)) (-5 *5 (-626 *2)) (-4 *2 (-13 (-426 *6) (-23) (-1029 (-560)) (-1029 *4) (-887 *4) (-159))) (-5 *4 (-1153)) (-4 *6 (-13 (-834) (-550) (-601 (-533)))) (-5 *1 (-1016 *6 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-1253 *3)) (-4 *3 (-359)) (-5 *2 (-121))))) -(((*1 *2 *3) (-12 (-4 *4 (-344)) (-5 *2 (-414 *3)) (-5 *1 (-338 *4 *3)) (-4 *3 (-1211 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *1 (-1117 *2 *3)) (-4 *2 (-13 (-1082) (-39))) (-4 *3 (-13 (-1082) (-39)))))) -(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-121)) (-4 *6 (-447)) (-4 *7 (-780)) (-4 *8 (-834)) (-4 *9 (-1053 *6 *7 *8)) (-5 *2 (-2 (|:| -2654 (-626 *9)) (|:| -3249 *4) (|:| |ineq| (-626 *9)))) (-5 *1 (-981 *6 *7 *8 *9 *4)) (-5 *3 (-626 *9)) (-4 *4 (-1058 *6 *7 *8 *9)))) ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-121)) (-4 *6 (-447)) (-4 *7 (-780)) (-4 *8 (-834)) (-4 *9 (-1053 *6 *7 *8)) (-5 *2 (-2 (|:| -2654 (-626 *9)) (|:| -3249 *4) (|:| |ineq| (-626 *9)))) (-5 *1 (-1089 *6 *7 *8 *9 *4)) (-5 *3 (-626 *9)) (-4 *4 (-1058 *6 *7 *8 *9))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550) (-601 (-533)))) (-5 *1 (-1016 *3 *2)) (-4 *2 (-13 (-426 *3) (-23) (-1029 (-560)) (-1029 (-1153)) (-887 (-1153)) (-159)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1076 (-827 (-213)))) (-5 *2 (-213)) (-5 *1 (-182)))) ((*1 *2 *3) (-12 (-5 *3 (-1076 (-827 (-213)))) (-5 *2 (-213)) (-5 *1 (-289)))) ((*1 *2 *3) (-12 (-5 *3 (-1076 (-827 (-213)))) (-5 *2 (-213)) (-5 *1 (-294))))) -(((*1 *2 *3) (-12 (-4 *4 (-344)) (-5 *2 (-414 *3)) (-5 *1 (-338 *4 *3)) (-4 *3 (-1211 *4))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-599 *4)) (-4 *4 (-834)) (-4 *2 (-834)) (-5 *1 (-598 *2 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-755)) (-4 *1 (-1211 *3)) (-4 *3 (-1039)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-909)) (-4 *1 (-1213 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-779)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-403 (-560))) (-4 *1 (-1216 *3)) (-4 *3 (-1039))))) -(((*1 *2 *3) (-12 (-4 *4 (-13 (-834) (-550) (-601 (-533)))) (-5 *2 (-123)) (-5 *1 (-1016 *4 *3)) (-4 *3 (-13 (-426 *4) (-23) (-1029 (-560)) (-1029 (-1153)) (-887 (-1153)) (-159)))))) -(((*1 *1 *1) (-12 (-5 *1 (-210 *2)) (-4 *2 (-1082)))) ((*1 *1 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-1187)))) ((*1 *1 *1) (-12 (-5 *1 (-992 *2)) (-4 *2 (-1082))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1149 *1)) (-4 *1 (-1004))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-755)) (-5 *2 (-121)) (-5 *1 (-578 *3)) (-4 *3 (-542))))) -(((*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-123)) (-5 *4 (-599 *7)) (-4 *7 (-13 (-426 *6) (-23) (-1029 *2) (-1029 *5) (-887 *5) (-159))) (-5 *5 (-1153)) (-4 *6 (-1039)) (-4 *6 (-13 (-834) (-550) (-601 (-533)))) (-5 *2 (-560)) (-5 *1 (-1016 *6 *7))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-808)) (-5 *4 (-57)) (-5 *2 (-1241)) (-5 *1 (-818))))) -(((*1 *2 *1) (-12 (-4 *1 (-363 *2)) (-4 *2 (-170))))) -(((*1 *1 *1 *1) (-5 *1 (-842)))) -(((*1 *2 *2 *3 *4 *5) (-12 (-5 *3 (-123)) (-5 *2 (-560)) (-5 *4 (-1153)) (-4 *6 (-13 (-834) (-550) (-601 (-533)))) (-5 *1 (-1016 *6 *5)) (-4 *5 (-13 (-426 *6) (-23) (-1029 *2) (-1029 *4) (-887 *4) (-159)))))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-550)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4440 *3))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1211 *4))))) -(((*1 *2) (-12 (-5 *2 (-375)) (-5 *1 (-1031))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-466)) (-5 *3 (-626 (-251))) (-5 *1 (-1237)))) ((*1 *1 *1) (-5 *1 (-1237)))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-121)) (-4 *5 (-344)) (-5 *2 (-2 (|:| |cont| *5) (|:| -3025 (-626 (-2 (|:| |irr| *3) (|:| -2678 (-560))))))) (-5 *1 (-205 *5 *3)) (-4 *3 (-1211 *5))))) -(((*1 *2 *3 *3 *4) (-12 (-5 *3 (-755)) (-4 *2 (-13 (-550) (-447))) (-5 *1 (-340 *2 *4)) (-4 *4 (-52 *2 *3))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-138)) (-5 *3 (-755)) (-5 *2 (-1241))))) -(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-658 *3)) (-4 *3 (-1082))))) -(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-123)) (-5 *4 (-1153)) (-4 *6 (-1039)) (-4 *6 (-13 (-834) (-550) (-601 (-533)))) (-5 *2 (-2 (|:| -2501 (-3 (-560) "failed")) (|:| -1943 (-3 (-560) "failed")) (|:| |ker| (-599 *5)))) (-5 *1 (-1016 *6 *5)) (-4 *5 (-13 (-426 *6) (-23) (-1029 (-560)) (-1029 *4) (-887 *4) (-159)))))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-626 (-121))) (-5 *7 (-671 (-213))) (-5 *8 (-671 (-560))) (-5 *3 (-560)) (-5 *4 (-213)) (-5 *5 (-121)) (-5 *2 (-1027)) (-5 *1 (-738))))) -(((*1 *2 *3) (-12 (-5 *3 (-755)) (-4 *4 (-13 (-550) (-447))) (-5 *2 (-626 *4)) (-5 *1 (-340 *4 *5)) (-4 *5 (-52 *4 *3))))) -(((*1 *1 *1) (-12 (-5 *1 (-211 *2 *3)) (-4 *2 (-13 (-1039) (-834))) (-14 *3 (-626 (-1153)))))) -(((*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-560)) (-5 *6 (-2 (|:| |try| (-375)) (|:| |did| (-375)) (|:| -3747 (-375)))) (-5 *7 (-1 (-1241) (-1236 *5) (-1236 *5) (-375))) (-5 *3 (-1236 (-375))) (-5 *5 (-375)) (-5 *2 (-1241)) (-5 *1 (-775)))) ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-560)) (-5 *6 (-2 (|:| |try| (-375)) (|:| |did| (-375)) (|:| -3747 (-375)))) (-5 *7 (-1 (-1241) (-1236 *5) (-1236 *5) (-375))) (-5 *3 (-1236 (-375))) (-5 *5 (-375)) (-5 *2 (-1241)) (-5 *1 (-775))))) -(((*1 *2 *2) (-12 (-5 *2 (-626 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *1 (-970 *3 *4 *5 *6))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-671 (-560))) (-5 *5 (-121)) (-5 *7 (-671 (-213))) (-5 *3 (-560)) (-5 *6 (-213)) (-5 *2 (-1027)) (-5 *1 (-738))))) -(((*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1135)) (-5 *1 (-692))))) -(((*1 *2 *3 *3 *4) (-12 (-5 *3 (-755)) (-4 *2 (-13 (-550) (-447))) (-5 *1 (-340 *2 *4)) (-4 *4 (-52 *2 *3))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-375) (-375))) (-5 *4 (-375)) (-5 *2 (-2 (|:| -2981 *4) (|:| -2301 *4) (|:| |totalpts| (-560)) (|:| |success| (-121)))) (-5 *1 (-776)) (-5 *5 (-560))))) -(((*1 *2 *1) (-12 (-4 *1 (-1029 (-560))) (-4 *1 (-291)) (-5 *2 (-121)))) ((*1 *2 *1) (-12 (-4 *1 (-542)) (-5 *2 (-121)))) ((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-892 *3)) (-4 *3 (-1082))))) -(((*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1135)) (-5 *1 (-692))))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-626 (-121))) (-5 *5 (-671 (-213))) (-5 *6 (-671 (-560))) (-5 *7 (-213)) (-5 *3 (-560)) (-5 *2 (-1027)) (-5 *1 (-738))))) -(((*1 *2 *3) (-12 (-5 *3 (-755)) (-4 *4 (-13 (-550) (-447))) (-5 *2 (-626 *4)) (-5 *1 (-340 *4 *5)) (-4 *5 (-52 *4 *3))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-1153)) (-4 *5 (-13 (-550) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-626 (-599 *3))) (|:| |vals| (-626 *3)))) (-5 *1 (-268 *5 *3)) (-4 *3 (-13 (-27) (-1173) (-426 *5)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-909)) (-5 *1 (-773))))) -(((*1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-322))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-1153)) (-4 *1 (-528 *3 *4 *5 *6 *7 *8 *9 *10 *11)) (-4 *3 (-359)) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *6 (-226 (-2271 *4) (-755))) (-4 *8 (-633 *3)) (-4 *9 (-912 *3 *8)) (-4 *10 (-230 *9)) (-4 *11 (-117))))) -(((*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-671 (-213))) (-5 *5 (-671 (-560))) (-5 *3 (-560)) (-5 *2 (-1027)) (-5 *1 (-738))))) -(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-626 *6)) (-5 *4 (-1 *6 (-755) (-1236 (-1149 *6)))) (-5 *5 (-626 (-755))) (-4 *6 (-13 (-550) (-447))) (-5 *2 (-671 (-1149 *6))) (-5 *1 (-340 *6 *7)) (-4 *7 (-52 *6 (-755)))))) -(((*1 *2 *3) (-12 (-4 *4 (-550)) (-5 *2 (-755)) (-5 *1 (-48 *4 *3)) (-4 *3 (-413 *4))))) -(((*1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-43 (-403 (-560)))) (-4 *2 (-1039))))) -(((*1 *2 *1) (-12 (-4 *1 (-657 *3)) (-4 *3 (-1187)) (-5 *2 (-121))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1049 (-1015 *3) (-1149 (-1015 *3)))) (-5 *1 (-1015 *3)) (-4 *3 (-13 (-832) (-359) (-1013)))))) -(((*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-738))))) -(((*1 *2 *1) (-12 (-4 *1 (-528 *3 *4 *5 *6 *7 *8 *9 *10 *11)) (-4 *3 (-359)) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *6 (-226 (-2271 *4) *2)) (-4 *8 (-633 *3)) (-4 *9 (-912 *3 *8)) (-4 *10 (-230 *9)) (-4 *11 (-117)) (-5 *2 (-755))))) -(((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *2 (-755) (-755) *7)) (-5 *4 (-1236 *7)) (-5 *5 (-755)) (-5 *6 (-1236 (-1149 *2))) (-4 *7 (-52 *2 *5)) (-4 *2 (-13 (-550) (-447))) (-5 *1 (-340 *2 *7))))) -(((*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-296)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4250 *1))) (-4 *1 (-296))))) -(((*1 *2 *1) (-12 (-4 *1 (-241 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-834)) (-4 *5 (-257 *4)) (-4 *6 (-780)) (-5 *2 (-755)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-241 *4 *3 *5 *6)) (-4 *4 (-1039)) (-4 *3 (-834)) (-4 *5 (-257 *3)) (-4 *6 (-780)) (-5 *2 (-755)))) ((*1 *2 *1) (-12 (-4 *1 (-257 *3)) (-4 *3 (-834)) (-5 *2 (-755)))) ((*1 *2 *1) (-12 (-4 *1 (-344)) (-5 *2 (-909)))) ((*1 *2 *3) (-12 (-5 *3 (-328 *4 *5 *6 *7)) (-4 *4 (-13 (-364) (-359))) (-4 *5 (-1211 *4)) (-4 *6 (-1211 (-403 *5))) (-4 *7 (-334 *4 *5 *6)) (-5 *2 (-755)) (-5 *1 (-388 *4 *5 *6 *7)))) ((*1 *2 *1) (-12 (-4 *1 (-398)) (-5 *2 (-820 (-909))))) ((*1 *2 *1) (-12 (-4 *1 (-400)) (-5 *2 (-560)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-755)) (-5 *1 (-586 *3)) (-4 *3 (-1039)))) ((*1 *2 *1) (-12 (-5 *2 (-755)) (-5 *1 (-586 *3)) (-4 *3 (-1039)))) ((*1 *2 *1) (-12 (-4 *3 (-550)) (-5 *2 (-560)) (-5 *1 (-607 *3 *4)) (-4 *4 (-1211 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-633 *3)) (-4 *3 (-359)) (-5 *2 (-560)))) ((*1 *2 *1) (-12 (-4 *1 (-633 *3)) (-4 *3 (-359)) (-5 *2 (-560)))) ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-755)) (-4 *1 (-722 *4 *3)) (-4 *4 (-1039)) (-4 *3 (-834)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-722 *4 *3)) (-4 *4 (-1039)) (-4 *3 (-834)) (-5 *2 (-755)))) ((*1 *2 *1) (-12 (-4 *1 (-855 *3)) (-5 *2 (-755)))) ((*1 *2 *1) (-12 (-5 *2 (-755)) (-5 *1 (-891 *3)) (-4 *3 (-1082)))) ((*1 *2 *1) (-12 (-5 *2 (-755)) (-5 *1 (-892 *3)) (-4 *3 (-1082)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-328 *5 *6 *7 *8)) (-4 *5 (-426 *4)) (-4 *6 (-1211 *5)) (-4 *7 (-1211 (-403 *6))) (-4 *8 (-334 *5 *6 *7)) (-4 *4 (-13 (-834) (-550) (-1029 (-560)))) (-5 *2 (-755)) (-5 *1 (-898 *4 *5 *6 *7 *8)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-328 (-403 (-560)) *4 *5 *6)) (-4 *4 (-1211 (-403 (-560)))) (-4 *5 (-1211 (-403 *4))) (-4 *6 (-334 (-403 (-560)) *4 *5)) (-5 *2 (-755)) (-5 *1 (-899 *4 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-328 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-359)) (-4 *7 (-1211 *6)) (-4 *4 (-1211 (-403 *7))) (-4 *8 (-334 *6 *7 *4)) (-4 *9 (-13 (-364) (-359))) (-5 *2 (-755)) (-5 *1 (-1010 *6 *7 *4 *8 *9)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-1211 *3)) (-4 *3 (-1039)) (-4 *3 (-550)) (-5 *2 (-755)))) ((*1 *2 *1 *2) (-12 (-4 *1 (-1213 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-779)))) ((*1 *2 *1) (-12 (-4 *1 (-1213 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-779))))) -(((*1 *2 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-1241)) (-5 *1 (-1156)))) ((*1 *2) (-12 (-5 *2 (-1241)) (-5 *1 (-1156))))) -(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1135)) (-5 *4 (-560)) (-5 *5 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-738))))) -(((*1 *2 *1) (-12 (-4 *1 (-528 *3 *4 *5 *6 *7 *8 *9 *10 *11)) (-4 *3 (-359)) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *6 (-226 (-2271 *4) (-755))) (-4 *8 (-633 *3)) (-4 *9 (-912 *3 *8)) (-4 *10 (-230 *9)) (-4 *11 (-117)) (-5 *2 (-1153))))) -(((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-626 *7)) (-5 *4 (-1 *7 (-755) (-755) *8)) (-5 *5 (-1236 *9)) (-5 *6 (-626 (-755))) (-4 *7 (-13 (-550) (-447))) (-4 *8 (-318 *7 (-755))) (-4 *9 (-318 (-403 *7) (-755))) (-5 *2 (-671 (-1149 *7))) (-5 *1 (-339 *7 *8 *9)))) ((*1 *2 *3 *4 *5 *6 *6) (-12 (-5 *3 (-626 *7)) (-5 *4 (-1 *7 (-755) (-755) *8)) (-5 *5 (-1236 *9)) (-5 *6 (-755)) (-4 *7 (-13 (-550) (-447))) (-4 *8 (-318 *7 *6)) (-4 *9 (-318 (-403 *7) *6)) (-5 *2 (-1133 (-671 (-1149 *7)))) (-5 *1 (-339 *7 *8 *9)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-626 *7)) (-5 *4 (-1 *7 (-755) (-755) *8)) (-5 *5 (-1236 *8)) (-5 *6 (-626 (-755))) (-4 *7 (-13 (-550) (-447))) (-4 *8 (-52 *7 (-755))) (-5 *2 (-671 (-1149 *7))) (-5 *1 (-340 *7 *8)))) ((*1 *2 *3 *4 *5 *6 *6) (-12 (-5 *3 (-626 *7)) (-5 *4 (-1 *7 (-755) (-755) *8)) (-5 *5 (-1236 *8)) (-5 *6 (-755)) (-4 *7 (-13 (-550) (-447))) (-4 *8 (-52 *7 *6)) (-5 *2 (-1133 (-671 (-1149 *7)))) (-5 *1 (-340 *7 *8))))) -(((*1 *1 *2) (-12 (-5 *2 (-626 (-1061 *3 *4 *5))) (-4 *3 (-1082)) (-4 *4 (-13 (-1039) (-873 *3) (-834) (-601 (-879 *3)))) (-4 *5 (-13 (-426 *4) (-873 *3) (-601 (-879 *3)))) (-5 *1 (-1062 *3 *4 *5))))) -(((*1 *1 *1) (-12 (-4 *1 (-638 *2)) (-4 *2 (-1039)))) ((*1 *2 *3) (-12 (-4 *4 (-550)) (-4 *4 (-170)) (-4 *5 (-369 *4)) (-4 *6 (-369 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-670 *4 *5 *6 *3)) (-4 *3 (-669 *4 *5 *6)))) ((*1 *1 *1 *1) (-12 (-4 *2 (-170)) (-4 *2 (-1039)) (-5 *1 (-696 *2 *3)) (-4 *3 (-629 *2)))) ((*1 *1 *1) (-12 (-4 *2 (-170)) (-4 *2 (-1039)) (-5 *1 (-696 *2 *3)) (-4 *3 (-629 *2)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-170)) (-4 *2 (-1039)))) ((*1 *1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-170)) (-4 *2 (-1039))))) -(((*1 *2) (-12 (-4 *1 (-363 *3)) (-4 *3 (-170)) (-5 *2 (-121))))) -(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-879 *3)) (-4 *3 (-1082))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1135)) (-5 *4 (-560)) (-5 *5 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-738))))) -(((*1 *2 *2 *3 *3 *4) (-12 (-5 *3 (-755)) (-4 *2 (-13 (-550) (-447))) (-5 *1 (-340 *2 *4)) (-4 *4 (-52 *2 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-626 (-1135))) (-5 *1 (-390))))) -(((*1 *2 *3) (-12 (-5 *3 (-403 (-945 *4))) (-4 *4 (-296)) (-5 *2 (-403 (-414 (-945 *4)))) (-5 *1 (-1033 *4))))) -(((*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-626 (-1149 *11))) (-5 *3 (-1149 *11)) (-5 *4 (-626 *10)) (-5 *5 (-626 *8)) (-5 *6 (-626 (-755))) (-5 *7 (-1236 (-626 (-1149 *8)))) (-4 *10 (-834)) (-4 *8 (-296)) (-4 *11 (-942 *8 *9 *10)) (-4 *9 (-780)) (-5 *1 (-689 *9 *10 *8 *11))))) -(((*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-167 (-213)))) (-5 *2 (-1027)) (-5 *1 (-738))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 *2)) (-4 *2 (-426 *4)) (-5 *1 (-427 *4 *2)) (-4 *4 (-13 (-834) (-550)))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-755)) (-4 *3 (-13 (-550) (-447))) (-5 *2 (-626 *3)) (-5 *1 (-340 *3 *5)) (-4 *5 (-52 *3 *4))))) -(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-755)) (-4 *1 (-318 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-779)) (-4 *3 (-170))))) -(((*1 *2 *3 *4) (-12 (-4 *5 (-1082)) (-4 *3 (-887 *5)) (-5 *2 (-671 *3)) (-5 *1 (-673 *5 *3 *6 *4)) (-4 *6 (-369 *3)) (-4 *4 (-13 (-369 *5) (-10 -7 (-6 -4505))))))) -(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1135)) (-5 *4 (-560)) (-5 *5 (-671 (-167 (-213)))) (-5 *2 (-1027)) (-5 *1 (-738))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *3 (-626 (-1153))) (-4 *4 (-1082)) (-4 *5 (-13 (-1039) (-873 *4) (-834) (-601 (-879 *4)))) (-5 *1 (-1061 *4 *5 *2)) (-4 *2 (-13 (-426 *5) (-873 *4) (-601 (-879 *4)))))) ((*1 *1 *2 *2) (-12 (-4 *3 (-1082)) (-4 *4 (-13 (-1039) (-873 *3) (-834) (-601 (-879 *3)))) (-5 *1 (-1061 *3 *4 *2)) (-4 *2 (-13 (-426 *4) (-873 *3) (-601 (-879 *3))))))) -(((*1 *2 *3 *1) (-12 (-4 *4 (-13 (-832) (-359))) (-5 *2 (-121)) (-5 *1 (-1049 *4 *3)) (-4 *3 (-1211 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-385)) (-5 *2 (-121))))) -(((*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-57)) (-5 *1 (-816))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1135)) (-5 *4 (-560)) (-5 *5 (-671 (-167 (-213)))) (-5 *2 (-1027)) (-5 *1 (-738))))) -(((*1 *2 *1) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1191)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-403 *4))) (-5 *2 (-2 (|:| |num| (-1236 *4)) (|:| |den| *4)))))) -(((*1 *2 *2 *3) (-12 (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *2 (-1053 *4 *5 *6)) (-5 *1 (-760 *4 *5 *6 *2 *3)) (-4 *3 (-1058 *4 *5 *6 *2))))) -(((*1 *1) (|partial| -12 (-4 *1 (-363 *2)) (-4 *2 (-550)) (-4 *2 (-170))))) -(((*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1241)) (-5 *1 (-720))))) -(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-560)) (-5 *5 (-121)) (-5 *6 (-671 (-213))) (-5 *7 (-3 (|:| |fn| (-384)) (|:| |fp| (-82 OBJFUN)))) (-5 *4 (-213)) (-5 *2 (-1027)) (-5 *1 (-737))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-945 *5))) (-5 *4 (-626 (-1153))) (-4 *5 (-550)) (-5 *2 (-626 (-626 (-283 (-403 (-945 *5)))))) (-5 *1 (-754 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-945 *4))) (-4 *4 (-550)) (-5 *2 (-626 (-626 (-283 (-403 (-945 *4)))))) (-5 *1 (-754 *4)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-671 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -4374 (-626 *6))) *7 *6)) (-4 *6 (-359)) (-4 *7 (-638 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1236 *6) "failed")) (|:| -4374 (-626 (-1236 *6))))) (-5 *1 (-800 *6 *7)) (-5 *4 (-1236 *6))))) -(((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-375)) (-5 *2 (-1241)) (-5 *1 (-1238))))) -(((*1 *2 *3) (-12 (-5 *2 (-403 (-560))) (-5 *1 (-557)) (-5 *3 (-560)))) ((*1 *2 *3) (-12 (-5 *2 (-1149 (-403 (-560)))) (-5 *1 (-935)) (-5 *3 (-560))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *5 (-3 (|:| |fn| (-384)) (|:| |fp| (-84 LSFUN1)))) (-5 *2 (-1027)) (-5 *1 (-737))))) -(((*1 *2 *3 *4 *4) (-12 (-5 *3 (-626 *5)) (-5 *4 (-560)) (-4 *5 (-832)) (-4 *5 (-359)) (-5 *2 (-755)) (-5 *1 (-938 *5 *6)) (-4 *6 (-1211 *5))))) -(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-64 *6)) (-4 *6 (-1187)) (-4 *5 (-1187)) (-5 *2 (-64 *5)) (-5 *1 (-63 *6 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-228 *6 *7)) (-14 *6 (-755)) (-4 *7 (-1187)) (-4 *5 (-1187)) (-5 *2 (-228 *6 *5)) (-5 *1 (-227 *6 *7 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1187)) (-4 *5 (-1187)) (-4 *2 (-369 *5)) (-5 *1 (-367 *6 *4 *5 *2)) (-4 *4 (-369 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1082)) (-4 *5 (-1082)) (-4 *2 (-421 *5)) (-5 *1 (-419 *6 *4 *5 *2)) (-4 *4 (-421 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-626 *6)) (-4 *6 (-1187)) (-4 *5 (-1187)) (-5 *2 (-626 *5)) (-5 *1 (-624 *6 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-950 *6)) (-4 *6 (-1187)) (-4 *5 (-1187)) (-5 *2 (-950 *5)) (-5 *1 (-949 *6 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1133 *6)) (-4 *6 (-1187)) (-4 *3 (-1187)) (-5 *2 (-1133 *3)) (-5 *1 (-1131 *6 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1236 *6)) (-4 *6 (-1187)) (-4 *5 (-1187)) (-5 *2 (-1236 *5)) (-5 *1 (-1235 *6 *5))))) -(((*1 *2 *3 *4 *5) (-12 (-5 *5 (-755)) (-4 *6 (-447)) (-4 *7 (-780)) (-4 *8 (-834)) (-4 *3 (-1053 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-626 *4)) (|:| |todo| (-626 (-2 (|:| |val| (-626 *3)) (|:| -3249 *4)))))) (-5 *1 (-1056 *6 *7 *8 *3 *4)) (-4 *4 (-1058 *6 *7 *8 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-626 *4)) (|:| |todo| (-626 (-2 (|:| |val| (-626 *3)) (|:| -3249 *4)))))) (-5 *1 (-1056 *5 *6 *7 *3 *4)) (-4 *4 (-1058 *5 *6 *7 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *5 (-755)) (-4 *6 (-447)) (-4 *7 (-780)) (-4 *8 (-834)) (-4 *3 (-1053 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-626 *4)) (|:| |todo| (-626 (-2 (|:| |val| (-626 *3)) (|:| -3249 *4)))))) (-5 *1 (-1122 *6 *7 *8 *3 *4)) (-4 *4 (-1091 *6 *7 *8 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-626 *4)) (|:| |todo| (-626 (-2 (|:| |val| (-626 *3)) (|:| -3249 *4)))))) (-5 *1 (-1122 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *5 (-3 (|:| |fn| (-384)) (|:| |fp| (-68 LSFUN2)))) (-5 *2 (-1027)) (-5 *1 (-737))))) -(((*1 *2 *3 *3 *4) (-12 (-5 *4 (-755)) (-4 *5 (-550)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-962 *5 *3)) (-4 *3 (-1211 *5))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-902 *3)) (-4 *3 (-296))))) -(((*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-599 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1153))) (-5 *5 (-1149 *2)) (-4 *2 (-13 (-426 *6) (-27) (-1173))) (-4 *6 (-13 (-447) (-1029 (-560)) (-834) (-148) (-622 (-560)))) (-5 *1 (-556 *6 *2 *7)) (-4 *7 (-1082)))) ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-599 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1153))) (-5 *5 (-403 (-1149 *2))) (-4 *2 (-13 (-426 *6) (-27) (-1173))) (-4 *6 (-13 (-447) (-1029 (-560)) (-834) (-148) (-622 (-560)))) (-5 *1 (-556 *6 *2 *7)) (-4 *7 (-1082))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *5 (-3 (|:| |fn| (-384)) (|:| |fp| (-71 FUNCT1)))) (-5 *2 (-1027)) (-5 *1 (-737))))) -(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (-5 *2 (-375)) (-5 *1 (-195))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-357 *3)) (-4 *3 (-1082)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-5 *2 (-755)) (-5 *1 (-382 *4)) (-4 *4 (-1082)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *2 (-23)) (-5 *1 (-630 *4 *2 *5)) (-4 *4 (-1082)) (-14 *5 *2))) ((*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-5 *2 (-755)) (-5 *1 (-806 *4)) (-4 *4 (-834))))) -(((*1 *2 *3) (-12 (-4 *4 (-550)) (-5 *2 (-1149 *3)) (-5 *1 (-46 *4 *3)) (-4 *3 (-13 (-359) (-291) (-10 -8 (-15 -2132 ((-1105 *4 (-599 $)) $)) (-15 -2139 ((-1105 *4 (-599 $)) $)) (-15 -2801 ($ (-1105 *4 (-599 $)))))))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *5 (-121)) (-5 *2 (-1027)) (-5 *1 (-737))))) -(((*1 *2 *3) (-12 (-5 *3 (-755)) (-5 *2 (-1149 *4)) (-5 *1 (-524 *4)) (-4 *4 (-344))))) -(((*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-755)) (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *3 (-550))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-626 *1)) (-4 *1 (-908))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-671 (-213))) (-5 *6 (-121)) (-5 *7 (-671 (-560))) (-5 *8 (-3 (|:| |fn| (-384)) (|:| |fp| (-70 QPHESS)))) (-5 *3 (-560)) (-5 *4 (-213)) (-5 *2 (-1027)) (-5 *1 (-737))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1155 (-403 (-560)))) (-5 *1 (-180))))) -(((*1 *1 *1) (|partial| -12 (-5 *1 (-283 *2)) (-4 *2 (-708)) (-4 *2 (-1187))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-1149 *2)) (-4 *2 (-942 (-403 (-945 *6)) *5 *4)) (-5 *1 (-714 *5 *4 *6 *2)) (-4 *5 (-780)) (-4 *4 (-13 (-834) (-10 -8 (-15 -4255 ((-1153) $))))) (-4 *6 (-550))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-357 (-123))) (-4 *2 (-1039)) (-5 *1 (-696 *2 *4)) (-4 *4 (-629 *2)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-357 (-123))) (-5 *1 (-821 *2)) (-4 *2 (-1039))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-671 (-213))) (-5 *5 (-121)) (-5 *6 (-213)) (-5 *7 (-671 (-560))) (-5 *8 (-3 (|:| |fn| (-384)) (|:| |fp| (-85 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-384)) (|:| |fp| (-82 OBJFUN)))) (-5 *3 (-560)) (-5 *2 (-1027)) (-5 *1 (-737))))) -(((*1 *2 *2 *2) (|partial| -12 (-4 *3 (-359)) (-5 *1 (-750 *2 *3)) (-4 *2 (-690 *3)))) ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-836 *2)) (-4 *2 (-1039)) (-4 *2 (-359))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-1082)) (-5 *1 (-106 *3))))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-447)) (-4 *4 (-550)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3350 *4))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1211 *4))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-5 *2 (-1 *5)) (-5 *1 (-664 *4 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-533))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-560)) (-5 *5 (-671 (-213))) (-5 *4 (-213)) (-5 *2 (-1027)) (-5 *1 (-737))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-501 *2)) (-14 *2 (-560)))) ((*1 *1 *1 *1) (-5 *1 (-1100)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-671 *3)) (-4 *3 (-13 (-296) (-10 -8 (-15 -2953 ((-414 $) $))))) (-4 *4 (-1211 *3)) (-5 *1 (-500 *3 *4 *5)) (-4 *5 (-405 *3 *4))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-39)) (-5 *3 (-755)) (-5 *2 (-121)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *2 (-121)) (-5 *1 (-96 *4)) (-4 *4 (-1082)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *2 (-121)) (-5 *1 (-210 *4)) (-4 *4 (-1082)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *2 (-121)) (-5 *1 (-487 *4)) (-4 *4 (-834)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *2 (-121)) (-5 *1 (-992 *4)) (-4 *4 (-1082)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *2 (-121)) (-5 *1 (-1124 *4)) (-4 *4 (-1082)))) ((*1 *2 *3 *3) (|partial| -12 (-5 *2 (-121)) (-5 *1 (-1188 *3)) (-4 *3 (-1082)))) ((*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-121) *3 *3)) (-4 *3 (-1082)) (-5 *2 (-121)) (-5 *1 (-1188 *3))))) -(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-671 *3)) (-4 *3 (-1039)) (-5 *1 (-672 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1173))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-560)) (-5 *5 (-671 (-213))) (-5 *4 (-213)) (-5 *2 (-1027)) (-5 *1 (-736))))) -(((*1 *1 *1) (-12 (-4 *1 (-128 *2)) (-4 *2 (-1187)))) ((*1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-834)))) ((*1 *1 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-834)))) ((*1 *1 *1) (-5 *1 (-842))) ((*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-842)))) ((*1 *2 *1) (-12 (-4 *2 (-13 (-832) (-359))) (-5 *1 (-1049 *2 *3)) (-4 *3 (-1211 *2))))) -(((*1 *2 *3) (-12 (-4 *4 (-359)) (-4 *5 (-369 *4)) (-4 *6 (-369 *4)) (-5 *2 (-755)) (-5 *1 (-521 *4 *5 *6 *3)) (-4 *3 (-669 *4 *5 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)) (-4 *3 (-550)) (-5 *2 (-755)))) ((*1 *2 *3) (-12 (-4 *4 (-550)) (-4 *4 (-170)) (-4 *5 (-369 *4)) (-4 *6 (-369 *4)) (-5 *2 (-755)) (-5 *1 (-670 *4 *5 *6 *3)) (-4 *3 (-669 *4 *5 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039)) (-4 *6 (-226 *4 *5)) (-4 *7 (-226 *3 *5)) (-4 *5 (-550)) (-5 *2 (-755))))) -(((*1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-780)) (-4 *4 (-834))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 *5)) (-4 *5 (-426 *4)) (-4 *4 (-13 (-834) (-550))) (-5 *2 (-842)) (-5 *1 (-36 *4 *5))))) -(((*1 *2 *3 *4) (-12 (-4 *5 (-1082)) (-4 *3 (-887 *5)) (-5 *2 (-1236 *3)) (-5 *1 (-673 *5 *3 *6 *4)) (-4 *6 (-369 *3)) (-4 *4 (-13 (-369 *5) (-10 -7 (-6 -4505))))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *5 (-671 (-213))) (-5 *4 (-213)) (-5 *2 (-1027)) (-5 *1 (-736))))) -(((*1 *1 *1) (-5 *1 (-1051)))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1173))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994)))))) -(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-304 (-213))) (-5 *4 (-1153)) (-5 *5 (-1076 (-827 (-213)))) (-5 *2 (-626 (-213))) (-5 *1 (-182)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-304 (-213))) (-5 *4 (-1153)) (-5 *5 (-1076 (-827 (-213)))) (-5 *2 (-626 (-213))) (-5 *1 (-289))))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-736))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 (-560))) (-5 *2 (-891 (-560))) (-5 *1 (-905)))) ((*1 *2) (-12 (-5 *2 (-891 (-560))) (-5 *1 (-905))))) -(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-433))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-447))) (-5 *1 (-1179 *3 *2)) (-4 *2 (-13 (-426 *3) (-1173)))))) -(((*1 *1) (-5 *1 (-145)))) -(((*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *5 (-213)) (-5 *2 (-1027)) (-5 *1 (-736))))) -(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-879 *4)) (-4 *4 (-1082)) (-5 *1 (-876 *4 *3)) (-4 *3 (-1082))))) -(((*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-121)) (-5 *1 (-816))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-1149 *5)) (-4 *5 (-359)) (-5 *2 (-626 *6)) (-5 *1 (-527 *5 *6 *4)) (-4 *6 (-359)) (-4 *4 (-13 (-359) (-832)))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-626 (-626 (-626 *4)))) (-5 *2 (-626 (-626 *4))) (-4 *4 (-834)) (-5 *1 (-1159 *4))))) -(((*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *5 (-213)) (-5 *2 (-1027)) (-5 *1 (-736))))) -(((*1 *1 *1) (-12 (-5 *1 (-501 *2)) (-14 *2 (-560)))) ((*1 *1 *1) (-5 *1 (-1100)))) -(((*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-359) (-148) (-1029 (-560)) (-1029 (-403 (-560))))) (-4 *5 (-1211 *4)) (-5 *2 (-626 (-635 (-403 *5)))) (-5 *1 (-639 *4 *5)) (-5 *3 (-635 (-403 *5)))))) -(((*1 *2 *1) (-12 (-5 *2 (-809)) (-5 *1 (-808))))) -(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-182))))) -(((*1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-43 (-403 (-560)))) (-4 *2 (-1039))))) -(((*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-945 (-560))) (-5 *3 (-1153)) (-5 *4 (-1076 (-403 (-560)))) (-5 *1 (-30))))) -(((*1 *1 *1) (-12 (-4 *2 (-447)) (-4 *3 (-834)) (-4 *4 (-780)) (-5 *1 (-980 *2 *3 *4 *5)) (-4 *5 (-942 *2 *4 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 (-213))) (-5 *2 (-626 (-1135))) (-5 *1 (-182)))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-213))) (-5 *2 (-626 (-1135))) (-5 *1 (-289)))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-213))) (-5 *2 (-626 (-1135))) (-5 *1 (-294))))) -(((*1 *2 *2) (-12 (-5 *2 (-626 *7)) (-4 *7 (-1058 *3 *4 *5 *6)) (-4 *3 (-447)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1053 *3 *4 *5)) (-5 *1 (-981 *3 *4 *5 *6 *7)))) ((*1 *2 *2) (-12 (-5 *2 (-626 *7)) (-4 *7 (-1058 *3 *4 *5 *6)) (-4 *3 (-447)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1053 *3 *4 *5)) (-5 *1 (-1089 *3 *4 *5 *6 *7))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1211 *5)) (-4 *5 (-359)) (-5 *2 (-2 (|:| |ir| (-577 (-403 *6))) (|:| |specpart| (-403 *6)) (|:| |polypart| *6))) (-5 *1 (-570 *5 *6)) (-5 *3 (-403 *6))))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-121)) (-5 *1 (-981 *4 *5 *6 *7 *3)) (-4 *3 (-1058 *4 *5 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-626 *3)) (-4 *3 (-1058 *5 *6 *7 *8)) (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *8 (-1053 *5 *6 *7)) (-5 *2 (-121)) (-5 *1 (-981 *5 *6 *7 *8 *3)))) ((*1 *2 *3 *3) (-12 (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-121)) (-5 *1 (-1089 *4 *5 *6 *7 *3)) (-4 *3 (-1058 *4 *5 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-626 *3)) (-4 *3 (-1058 *5 *6 *7 *8)) (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *8 (-1053 *5 *6 *7)) (-5 *2 (-121)) (-5 *1 (-1089 *5 *6 *7 *8 *3))))) -(((*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-755)) (-4 *4 (-296)) (-4 *6 (-1211 *4)) (-5 *2 (-1236 (-626 *6))) (-5 *1 (-450 *4 *6)) (-5 *5 (-626 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-57))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-626 (-879 *3))) (-5 *1 (-879 *3)) (-4 *3 (-1082))))) -(((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-245))))) -(((*1 *2 *3) (-12 (-4 *4 (-985 *2)) (-4 *2 (-550)) (-5 *1 (-143 *2 *4 *3)) (-4 *3 (-369 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-985 *2)) (-4 *2 (-550)) (-5 *1 (-504 *2 *4 *5 *3)) (-4 *5 (-369 *2)) (-4 *3 (-369 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-671 *4)) (-4 *4 (-985 *2)) (-4 *2 (-550)) (-5 *1 (-674 *2 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-985 *2)) (-4 *2 (-550)) (-5 *1 (-1204 *2 *4 *3)) (-4 *3 (-1211 *4))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-1149 *4))) (-4 *4 (-359)) (-5 *2 (-2 (|:| |zeros| (-626 *4)) (|:| -3394 (-560)))) (-5 *1 (-1035 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-1236 *1)) (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1191)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-403 *4)))))) -(((*1 *2 *3) (-12 (-5 *2 (-1155 (-403 (-560)))) (-5 *1 (-180)) (-5 *3 (-560)))) ((*1 *2 *1) (-12 (-5 *2 (-1236 (-3 (-466) "undefined"))) (-5 *1 (-1237))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1004)) (-5 *2 (-842))))) -(((*1 *1 *1 *1) (-5 *1 (-842)))) -(((*1 *2 *3 *4) (-12 (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-626 (-2 (|:| |val| (-121)) (|:| -3249 *4)))) (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1058 *5 *6 *7 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-850)) (-5 *2 (-909))))) -(((*1 *2 *3) (-12 (-5 *3 (-755)) (-5 *2 (-1 (-1133 (-945 *4)) (-1133 (-945 *4)))) (-5 *1 (-1244 *4)) (-4 *4 (-359))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994)))))) -(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-879 *4)) (-4 *4 (-1082)) (-5 *1 (-876 *4 *3)) (-4 *3 (-1082))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-936 (-213)) (-936 (-213)))) (-5 *1 (-251)))) ((*1 *2 *3) (-12 (-5 *3 (-1236 *1)) (-4 *1 (-321 *4)) (-4 *4 (-359)) (-5 *2 (-671 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-321 *3)) (-4 *3 (-359)) (-5 *2 (-1236 *3)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-1236 *1)) (-4 *1 (-363 *4)) (-4 *4 (-170)) (-5 *2 (-671 *4)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1236 *1)) (-4 *1 (-363 *4)) (-4 *4 (-170)) (-5 *2 (-1236 *4)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-1236 *1)) (-4 *1 (-366 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1211 *4)) (-5 *2 (-671 *4)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1236 *1)) (-4 *1 (-366 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1211 *4)) (-5 *2 (-1236 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-1236 *1)) (-4 *1 (-405 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1211 *4)) (-5 *2 (-671 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-405 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1211 *3)) (-5 *2 (-1236 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-1236 *1)) (-4 *1 (-413 *4)) (-4 *4 (-170)) (-5 *2 (-671 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-413 *3)) (-4 *3 (-170)) (-5 *2 (-1236 *3)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-626 (-671 *5))) (-5 *3 (-671 *5)) (-4 *5 (-359)) (-5 *2 (-1236 *5)) (-5 *1 (-1069 *5))))) -(((*1 *2 *1) (|partial| -12 (-4 *1 (-1197 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-1226 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1082)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-969 *3 *4 *2 *5)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *2 (-834)) (-4 *5 (-1053 *3 *4 *2))))) -(((*1 *2 *3) (-12 (-4 *4 (-13 (-359) (-148) (-1029 (-403 (-560))))) (-4 *5 (-1211 *4)) (-5 *2 (-626 (-2 (|:| |deg| (-755)) (|:| -2654 *5)))) (-5 *1 (-796 *4 *5 *3 *6)) (-4 *3 (-638 *5)) (-4 *6 (-638 (-403 *5)))))) -(((*1 *2) (-12 (-4 *3 (-447)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-1241)) (-5 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *7 (-1058 *3 *4 *5 *6)))) ((*1 *2) (-12 (-4 *3 (-447)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-1241)) (-5 *1 (-1090 *3 *4 *5 *6 *7)) (-4 *7 (-1058 *3 *4 *5 *6))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-359)) (-5 *1 (-750 *2 *3)) (-4 *2 (-690 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-836 *2)) (-4 *2 (-1039)) (-4 *2 (-359))))) -(((*1 *2) (-12 (-5 *2 (-375)) (-5 *1 (-1031))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1149 *1)) (-4 *1 (-850)) (-5 *2 (-626 *1)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1149 *4)) (-4 *4 (-359)) (-5 *2 (-2 (|:| |zeros| (-626 *4)) (|:| -3394 (-560)))) (-5 *1 (-1035 *4))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-755)) (-4 *3 (-1039)) (-4 *1 (-669 *3 *4 *5)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-755)) (-4 *1 (-1234 *3)) (-4 *3 (-23)) (-4 *3 (-1187))))) -(((*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-121)) (-5 *3 (-945 *6)) (-5 *4 (-1153)) (-5 *5 (-827 *7)) (-4 *6 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-4 *7 (-13 (-1173) (-29 *6))) (-5 *1 (-212 *6 *7)))) ((*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-121)) (-5 *3 (-1149 *6)) (-5 *4 (-827 *6)) (-4 *6 (-13 (-1173) (-29 *5))) (-4 *5 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *1 (-212 *5 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-1236 *3)) (-4 *3 (-359)) (-4 *1 (-321 *3)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1236 *3)) (-4 *3 (-1211 *4)) (-4 *4 (-1191)) (-4 *1 (-334 *4 *3 *5)) (-4 *5 (-1211 (-403 *3))))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1236 *4)) (-5 *3 (-1236 *1)) (-4 *4 (-170)) (-4 *1 (-363 *4)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1236 *4)) (-5 *3 (-1236 *1)) (-4 *4 (-170)) (-4 *1 (-366 *4 *5)) (-4 *5 (-1211 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-1236 *3)) (-4 *3 (-170)) (-4 *1 (-405 *3 *4)) (-4 *4 (-1211 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1236 *3)) (-4 *3 (-170)) (-4 *1 (-413 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 (-458))) (-5 *2 (-2 (|:| |guessStream| (-1 (-1133 (-1193 (-53))) (-1193 (-53)))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-53)))) (-1193 (-1149 (-53))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 (-53) (-755) (-755) (-1149 (-53)))) (|:| AF (-1 (-1149 (-53)) (-755) (-755) (-1193 (-1149 (-53))))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 (-53)) (-755))))) (-5 *1 (-475)))) ((*1 *2 *3) (-12 (-4 (-53) (-1029 *3)) (-5 *3 (-1153)) (-5 *2 (-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 (-53))) (-1193 (-53)))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-53)))) (-1193 (-1149 (-53))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) *3)) (|:| A (-1 (-53) (-755) (-755) (-1149 (-53)))) (|:| AF (-1 (-1149 (-53)) (-755) (-755) (-1193 (-1149 (-53))))) (|:| AX (-1 (-304 (-560)) (-755) *3 (-304 (-560)))) (|:| C (-1 (-626 (-53)) (-755)))) (-626 (-458)))) (-5 *1 (-475)))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-458))) (-5 *2 (-2 (|:| |guessStream| (-1 (-1133 (-1193 *4)) (-1193 *4))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 *4))) (-1193 (-1149 *4)))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 *4 (-755) (-755) (-1149 *4))) (|:| AF (-1 (-1149 *4) (-755) (-755) (-1193 (-1149 *4)))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 *4) (-755))))) (-5 *1 (-477 *4)) (-4 *4 (-13 (-344) (-601 (-560)))))) ((*1 *2 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 *4)) (-1193 *4))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 *4))) (-1193 (-1149 *4)))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) *3)) (|:| A (-1 *4 (-755) (-755) (-1149 *4))) (|:| AF (-1 (-1149 *4) (-755) (-755) (-1193 (-1149 *4)))) (|:| AX (-1 (-304 (-560)) (-755) *3 (-304 (-560)))) (|:| C (-1 (-626 *4) (-755)))) (-626 (-458)))) (-5 *1 (-477 *4)) (-4 *4 (-1029 *3)) (-4 *4 (-13 (-344) (-601 (-560)))))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-458))) (-5 *2 (-2 (|:| |guessStream| (-1 (-1133 (-1193 (-403 (-560)))) (-1193 (-403 (-560))))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-403 (-560))))) (-1193 (-1149 (-403 (-560)))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 (-560) (-755) (-755) (-1149 (-560)))) (|:| AF (-1 (-1149 (-403 (-560))) (-755) (-755) (-1193 (-1149 (-403 (-560)))))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 (-560)) (-755))))) (-5 *1 (-478)))) ((*1 *2 *3) (-12 (-4 (-403 (-560)) (-1029 *3)) (-4 (-560) (-1029 *3)) (-5 *3 (-1153)) (-5 *2 (-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 (-403 (-560)))) (-1193 (-403 (-560))))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-403 (-560))))) (-1193 (-1149 (-403 (-560)))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) *3)) (|:| A (-1 (-560) (-755) (-755) (-1149 (-560)))) (|:| AF (-1 (-1149 (-403 (-560))) (-755) (-755) (-1193 (-1149 (-403 (-560)))))) (|:| AX (-1 (-304 (-560)) (-755) *3 (-304 (-560)))) (|:| C (-1 (-626 (-560)) (-755)))) (-626 (-458)))) (-5 *1 (-478)))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-458))) (-4 *7 (-13 (-834) (-550))) (-14 *8 (-1 *4 *7)) (-5 *2 (-2 (|:| |guessStream| (-1 (-1133 (-1193 *4)) (-1193 *4))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 *4))) (-1193 (-1149 *4)))) (|:| |exprStream| (-1 (-1133 *6) *6 (-1153))) (|:| A (-1 *5 (-755) (-755) (-1149 *5))) (|:| AF (-1 (-1149 *4) (-755) (-755) (-1193 (-1149 *4)))) (|:| AX (-1 *6 (-755) (-1153) *6)) (|:| C (-1 (-626 *5) (-755))))) (-5 *1 (-479 *4 *5 *6 *7 *8 *9)) (-4 *4 (-359)) (-4 *5 (-447)) (-4 *6 (-13 (-426 (-560)) (-550) (-1029 *7) (-1029 (-1153)) (-1029 (-560)) (-159) (-887 (-1153)) (-10 -8 (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -1540 ($ $)) (-15 -1646 ($ $)) (-15 -1704 ((-121) $))))) (-14 *9 (-1 *6 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-1153)) (-4 *7 (-13 (-834) (-550))) (-14 *8 (-1 *4 *7)) (-5 *2 (-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 *4)) (-1193 *4))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 *4))) (-1193 (-1149 *4)))) (|:| |exprStream| (-1 (-1133 *6) *6 *3)) (|:| A (-1 *5 (-755) (-755) (-1149 *5))) (|:| AF (-1 (-1149 *4) (-755) (-755) (-1193 (-1149 *4)))) (|:| AX (-1 *6 (-755) *3 *6)) (|:| C (-1 (-626 *5) (-755)))) (-626 (-458)))) (-5 *1 (-479 *4 *5 *6 *7 *8 *9)) (-4 *4 (-1029 *3)) (-4 *5 (-1029 *3)) (-4 *4 (-359)) (-4 *5 (-447)) (-4 *6 (-13 (-426 (-560)) (-550) (-1029 *7) (-1029 *3) (-1029 (-560)) (-159) (-887 *3) (-10 -8 (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -1540 ($ $)) (-15 -1646 ($ $)) (-15 -1704 ((-121) $))))) (-14 *9 (-1 *6 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-458))) (-5 *2 (-2 (|:| |guessStream| (-1 (-1133 (-1193 (-403 (-945 (-560))))) (-1193 (-403 (-945 (-560)))))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-403 (-945 (-560)))))) (-1193 (-1149 (-403 (-945 (-560))))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 (-945 (-560)) (-755) (-755) (-1149 (-945 (-560))))) (|:| AF (-1 (-1149 (-403 (-945 (-560)))) (-755) (-755) (-1193 (-1149 (-403 (-945 (-560))))))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 (-945 (-560))) (-755))))) (-5 *1 (-480)))) ((*1 *2 *3) (-12 (-4 (-403 (-945 (-560))) (-1029 *3)) (-4 (-945 (-560)) (-1029 *3)) (-5 *3 (-1153)) (-5 *2 (-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 (-403 (-945 (-560))))) (-1193 (-403 (-945 (-560)))))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-403 (-945 (-560)))))) (-1193 (-1149 (-403 (-945 (-560))))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) *3)) (|:| A (-1 (-945 (-560)) (-755) (-755) (-1149 (-945 (-560))))) (|:| AF (-1 (-1149 (-403 (-945 (-560)))) (-755) (-755) (-1193 (-1149 (-403 (-945 (-560))))))) (|:| AX (-1 (-304 (-560)) (-755) *3 (-304 (-560)))) (|:| C (-1 (-626 (-945 (-560))) (-755)))) (-626 (-458)))) (-5 *1 (-480)))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-458))) (-5 *2 HPSPEC) (-5 *1 (-481 *4)) (-14 *4 (-1153)))) ((*1 *2 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-1 HPSPEC (-626 (-458)))) (-5 *1 (-481 *4)) (-14 *4 *3)))) -(((*1 *2 *1) (-12 (-4 *1 (-1251 *3 *4)) (-4 *3 (-834)) (-4 *4 (-1039)) (-5 *2 (-121)))) ((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1257 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-830))))) -(((*1 *2) (-12 (-5 *2 (-626 *3)) (-5 *1 (-1035 *3)) (-4 *3 (-359))))) -(((*1 *2 *1) (-12 (-4 *1 (-550)) (-5 *2 (-121))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-172 *3)) (-4 *3 (-13 (-359) (-1173) (-994)))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 (-458))) (-5 *2 (-121)) (-5 *1 (-457)))) ((*1 *1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-458))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-626 *2)) (-4 *2 (-942 *4 *5 *6)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *1 (-444 *4 *5 *6 *2))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-626 (-626 *8))) (-5 *3 (-626 *8)) (-4 *8 (-942 *5 *7 *6)) (-4 *5 (-13 (-296) (-148))) (-4 *6 (-13 (-834) (-601 (-1153)))) (-4 *7 (-780)) (-5 *2 (-121)) (-5 *1 (-916 *5 *6 *7 *8))))) -(((*1 *2) (-12 (-5 *2 (-626 (-1135))) (-5 *1 (-1239))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-626 *4)) (-4 *4 (-359)) (-4 *2 (-1211 *4)) (-5 *1 (-910 *4 *2))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-969 *3 *4 *2 *5)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *2 (-834)) (-4 *5 (-1053 *3 *4 *2))))) -(((*1 *2 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-359)) (-5 *1 (-1035 *3))))) -(((*1 *1 *1 *1) (-5 *1 (-121))) ((*1 *1 *1 *1) (-4 *1 (-132))) ((*1 *1 *1 *1) (-5 *1 (-842)))) -(((*1 *2 *1) (-12 (-5 *2 (-1133 (-403 *3))) (-5 *1 (-171 *3)) (-4 *3 (-296))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1228 *3 *2)) (-4 *2 (-1226 *3))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-447))) (-5 *1 (-1179 *3 *2)) (-4 *2 (-13 (-426 *3) (-1173)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1236 (-304 (-213)))) (-5 *2 (-2 (|:| |additions| (-560)) (|:| |multiplications| (-560)) (|:| |exponentiations| (-560)) (|:| |functionCalls| (-560)))) (-5 *1 (-294))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-626 *2)) (-4 *2 (-542)) (-5 *1 (-158 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-1085 *3 *2 *4 *5 *6)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *2 (-1082))))) -(((*1 *2 *3) (-12 (-4 *4 (-13 (-550) (-834))) (-4 *2 (-13 (-426 (-167 *4)) (-994) (-1173))) (-5 *1 (-589 *4 *3 *2)) (-4 *3 (-13 (-426 *4) (-994) (-1173)))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-359)) (-5 *1 (-275 *3 *2)) (-4 *2 (-1226 *3))))) -(((*1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-43 (-403 (-560)))) (-4 *2 (-1039))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-121)) (-4 *5 (-13 (-296) (-148))) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *8 (-1053 *5 *6 *7)) (-5 *2 (-626 *3)) (-5 *1 (-582 *5 *6 *7 *8 *3)) (-4 *3 (-1091 *5 *6 *7 *8)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-121)) (-4 *5 (-13 (-296) (-148))) (-5 *2 (-626 (-2 (|:| -1807 (-1149 *5)) (|:| -3390 (-626 (-945 *5)))))) (-5 *1 (-1063 *5 *6)) (-5 *3 (-626 (-945 *5))) (-14 *6 (-626 (-1153))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-296) (-148))) (-5 *2 (-626 (-2 (|:| -1807 (-1149 *4)) (|:| -3390 (-626 (-945 *4)))))) (-5 *1 (-1063 *4 *5)) (-5 *3 (-626 (-945 *4))) (-14 *5 (-626 (-1153))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-121)) (-4 *5 (-13 (-296) (-148))) (-5 *2 (-626 (-2 (|:| -1807 (-1149 *5)) (|:| -3390 (-626 (-945 *5)))))) (-5 *1 (-1063 *5 *6)) (-5 *3 (-626 (-945 *5))) (-14 *6 (-626 (-1153)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1036 *4 *5)) (-4 *4 (-13 (-832) (-296) (-148) (-1013))) (-14 *5 (-626 (-1153))) (-5 *2 (-626 (-626 (-1015 (-403 *4))))) (-5 *1 (-1260 *4 *5 *6)) (-14 *6 (-626 (-1153))))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-626 (-945 *5))) (-5 *4 (-121)) (-4 *5 (-13 (-832) (-296) (-148) (-1013))) (-5 *2 (-626 (-626 (-1015 (-403 *5))))) (-5 *1 (-1260 *5 *6 *7)) (-14 *6 (-626 (-1153))) (-14 *7 (-626 (-1153))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-945 *5))) (-5 *4 (-121)) (-4 *5 (-13 (-832) (-296) (-148) (-1013))) (-5 *2 (-626 (-626 (-1015 (-403 *5))))) (-5 *1 (-1260 *5 *6 *7)) (-14 *6 (-626 (-1153))) (-14 *7 (-626 (-1153))))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-945 *4))) (-4 *4 (-13 (-832) (-296) (-148) (-1013))) (-5 *2 (-626 (-626 (-1015 (-403 *4))))) (-5 *1 (-1260 *4 *5 *6)) (-14 *5 (-626 (-1153))) (-14 *6 (-626 (-1153)))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 *6)) (-4 *6 (-942 *4 *7 (-844 *5))) (-4 *7 (-226 (-2271 *5) (-755))) (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-5 *2 (-3 (-626 *8) "failed" "Infinite" (-560))) (-5 *1 (-31 *4 *5 *6 *7 *8)) (-4 *8 (-963 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-626 *6)) (-4 *6 (-942 *4 *7 (-844 *5))) (-4 *7 (-226 (-2271 *5) (-755))) (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-5 *2 (-3 (-626 *8) "failed" "Infinite" (-560))) (-5 *1 (-32 *4 *5 *6 *7 *8)) (-4 *8 (-963 *4))))) -(((*1 *2 *3) (-12 (-4 *1 (-908)) (-5 *2 (-2 (|:| -2169 (-626 *1)) (|:| -4250 *1))) (-5 *3 (-626 *1))))) -(((*1 *2) (-12 (-5 *2 (-403 (-945 *3))) (-5 *1 (-448 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *3 (-170)) (-14 *4 (-909)) (-14 *5 (-626 (-1153))) (-14 *6 (-1236 (-671 *3)))))) -(((*1 *2 *3) (-12 (-4 *4 (-550)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-626 *7)) (|:| |badPols| (-626 *7)))) (-5 *1 (-970 *4 *5 *6 *7)) (-5 *3 (-626 *7))))) -(((*1 *2 *3) (-12 (-5 *3 (-1133 (-213))) (-5 *2 (-626 (-1135))) (-5 *1 (-182)))) ((*1 *2 *3) (-12 (-5 *3 (-1133 (-213))) (-5 *2 (-626 (-1135))) (-5 *1 (-289)))) ((*1 *2 *3) (-12 (-5 *3 (-1133 (-213))) (-5 *2 (-626 (-1135))) (-5 *1 (-294))))) -(((*1 *2 *3 *3) (-12 (-4 *2 (-550)) (-4 *2 (-447)) (-5 *1 (-962 *2 *3)) (-4 *3 (-1211 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 (-1149 (-1149 *4)))) (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *7 (-226 (-2271 *5) (-755))) (-5 *2 (-3 (-626 *8) "failed" "Infinite" (-560))) (-5 *1 (-32 *4 *5 *6 *7 *8)) (-4 *6 (-942 *4 *7 (-844 *5))) (-4 *8 (-963 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1029 (-560))) (-4 *1 (-291)) (-5 *2 (-121)))) ((*1 *2 *1) (-12 (-4 *1 (-542)) (-5 *2 (-121)))) ((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-892 *3)) (-4 *3 (-1082))))) -(((*1 *2 *2 *3) (|partial| -12 (-5 *3 (-755)) (-5 *1 (-578 *2)) (-4 *2 (-542)))) ((*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2871 *3) (|:| -4034 (-755)))) (-5 *1 (-578 *3)) (-4 *3 (-542))))) -(((*1 *2 *3 *4) (-12 (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-121)) (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1058 *5 *6 *7 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-626 (-2 (|:| |val| (-121)) (|:| -3249 *4)))) (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1058 *5 *6 *7 *3))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-447))) (-5 *1 (-1179 *3 *2)) (-4 *2 (-13 (-426 *3) (-1173)))))) -(((*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-121)) (-4 *6 (-447)) (-4 *7 (-780)) (-4 *8 (-834)) (-4 *3 (-1053 *6 *7 *8)) (-5 *2 (-626 (-2 (|:| |val| *3) (|:| -3249 *4)))) (-5 *1 (-1090 *6 *7 *8 *3 *4)) (-4 *4 (-1058 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-626 (-2 (|:| |val| (-626 *8)) (|:| -3249 *9)))) (-5 *5 (-121)) (-4 *8 (-1053 *6 *7 *4)) (-4 *9 (-1058 *6 *7 *4 *8)) (-4 *6 (-447)) (-4 *7 (-780)) (-4 *4 (-834)) (-5 *2 (-626 (-2 (|:| |val| *8) (|:| -3249 *9)))) (-5 *1 (-1090 *6 *7 *4 *8 *9))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 (-53))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-475)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-53))) (-5 *4 (-626 (-458))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-475)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-626 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458))))) (-5 *5 (-626 (-1153))) (-5 *3 (-626 (-53))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-475)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-626 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458))))) (-5 *5 (-626 (-1153))) (-5 *6 (-626 (-458))) (-5 *3 (-626 (-53))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-475)))) ((*1 *2 *3) (-12 (-5 *3 (-626 *4)) (-4 *4 (-13 (-344) (-601 (-560)))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-477 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 *5)) (-5 *4 (-626 (-458))) (-4 *5 (-13 (-344) (-601 (-560)))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-477 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-626 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 *6) (-626 (-458))))) (-5 *5 (-626 (-1153))) (-5 *3 (-626 *6)) (-4 *6 (-13 (-344) (-601 (-560)))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-477 *6)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-626 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 *7) (-626 (-458))))) (-5 *5 (-626 (-1153))) (-5 *6 (-626 (-458))) (-5 *3 (-626 *7)) (-4 *7 (-13 (-344) (-601 (-560)))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-477 *7)))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-403 (-560)))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-478)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-560)))) (-5 *4 (-626 (-458))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-478)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-626 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458))))) (-5 *5 (-626 (-1153))) (-5 *3 (-626 (-403 (-560)))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-478)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-626 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458))))) (-5 *5 (-626 (-1153))) (-5 *6 (-626 (-458))) (-5 *3 (-626 (-403 (-560)))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-478)))) ((*1 *2 *3) (-12 (-5 *3 (-626 *4)) (-4 *4 (-359)) (-14 *9 (-1 *6 *4)) (-4 *7 (-13 (-834) (-550))) (-14 *8 (-1 *4 *7)) (-5 *2 (-626 (-2 (|:| -1843 *6) (|:| -3504 (-755))))) (-5 *1 (-479 *4 *5 *6 *7 *8 *9)) (-4 *5 (-447)) (-4 *6 (-13 (-426 (-560)) (-550) (-1029 *7) (-1029 (-1153)) (-1029 (-560)) (-159) (-887 (-1153)) (-10 -8 (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -1540 ($ $)) (-15 -1646 ($ $)) (-15 -1704 ((-121) $))))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 *5)) (-5 *4 (-626 (-458))) (-4 *5 (-359)) (-14 *10 (-1 *7 *5)) (-4 *8 (-13 (-834) (-550))) (-14 *9 (-1 *5 *8)) (-5 *2 (-626 (-2 (|:| -1843 *7) (|:| -3504 (-755))))) (-5 *1 (-479 *5 *6 *7 *8 *9 *10)) (-4 *6 (-447)) (-4 *7 (-13 (-426 (-560)) (-550) (-1029 *8) (-1029 (-1153)) (-1029 (-560)) (-159) (-887 (-1153)) (-10 -8 (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -1540 ($ $)) (-15 -1646 ($ $)) (-15 -1704 ((-121) $))))))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-626 (-1 (-626 (-2 (|:| -1843 *8) (|:| -3504 (-755)))) (-626 *6) (-626 (-458))))) (-5 *5 (-626 (-1153))) (-5 *3 (-626 *6)) (-4 *6 (-359)) (-14 *11 (-1 *8 *6)) (-4 *9 (-13 (-834) (-550))) (-14 *10 (-1 *6 *9)) (-5 *2 (-626 (-2 (|:| -1843 *8) (|:| -3504 (-755))))) (-5 *1 (-479 *6 *7 *8 *9 *10 *11)) (-4 *7 (-447)) (-4 *8 (-13 (-426 (-560)) (-550) (-1029 *9) (-1029 (-1153)) (-1029 (-560)) (-159) (-887 (-1153)) (-10 -8 (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -1540 ($ $)) (-15 -1646 ($ $)) (-15 -1704 ((-121) $))))))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-626 (-1 (-626 (-2 (|:| -1843 *9) (|:| -3504 (-755)))) (-626 *7) (-626 (-458))))) (-5 *5 (-626 (-1153))) (-5 *6 (-626 (-458))) (-5 *3 (-626 *7)) (-4 *7 (-359)) (-14 *12 (-1 *9 *7)) (-4 *10 (-13 (-834) (-550))) (-14 *11 (-1 *7 *10)) (-5 *2 (-626 (-2 (|:| -1843 *9) (|:| -3504 (-755))))) (-5 *1 (-479 *7 *8 *9 *10 *11 *12)) (-4 *8 (-447)) (-4 *9 (-13 (-426 (-560)) (-550) (-1029 *10) (-1029 (-1153)) (-1029 (-560)) (-159) (-887 (-1153)) (-10 -8 (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -1540 ($ $)) (-15 -1646 ($ $)) (-15 -1704 ((-121) $))))))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-403 (-945 (-560))))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-480)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-945 (-560))))) (-5 *4 (-626 (-458))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-480)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-626 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458))))) (-5 *5 (-626 (-1153))) (-5 *3 (-626 (-403 (-945 (-560))))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-480)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-626 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458))))) (-5 *5 (-626 (-1153))) (-5 *6 (-626 (-458))) (-5 *3 (-626 (-403 (-945 (-560))))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-480)))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-403 (-726 *4 (-560))))) (-14 *4 (-1153)) (-5 *2 (-626 (-2 (|:| -1843 (-725 *4 (-560))) (|:| -3504 (-755))))) (-5 *1 (-481 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-726 *5 (-560))))) (-5 *4 (-626 (-458))) (-14 *5 (-1153)) (-5 *2 (-626 (-2 (|:| -1843 (-725 *5 (-560))) (|:| -3504 (-755))))) (-5 *1 (-481 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-626 (-1 (-626 (-2 (|:| -1843 (-725 *6 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 *6 (-560)))) (-626 (-458))))) (-5 *5 (-626 (-1153))) (-5 *3 (-626 (-403 (-726 *6 (-560))))) (-14 *6 (-1153)) (-5 *2 (-626 (-2 (|:| -1843 (-725 *6 (-560))) (|:| -3504 (-755))))) (-5 *1 (-481 *6)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-626 (-1 (-626 (-2 (|:| -1843 (-725 *7 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 *7 (-560)))) (-626 (-458))))) (-5 *5 (-626 (-1153))) (-5 *6 (-626 (-458))) (-5 *3 (-626 (-403 (-726 *7 (-560))))) (-14 *7 (-1153)) (-5 *2 (-626 (-2 (|:| -1843 (-725 *7 (-560))) (|:| -3504 (-755))))) (-5 *1 (-481 *7))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-909)) (-4 *5 (-359)) (-14 *6 (-626 (-1153))) (-4 *7 (-226 (-2271 *6) (-755))) (-5 *2 (-626 *8)) (-5 *1 (-31 *5 *6 *3 *7 *8)) (-4 *3 (-942 *5 *7 (-844 *6))) (-4 *8 (-963 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-909)) (-4 *5 (-359)) (-14 *6 (-626 (-1153))) (-4 *7 (-226 (-2271 *6) (-755))) (-5 *2 (-3 (-626 *8) "failed" "Infinite" (-560))) (-5 *1 (-32 *5 *6 *3 *7 *8)) (-4 *3 (-942 *5 *7 (-844 *6))) (-4 *8 (-963 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-626 (-945 *3))) (-4 *3 (-447)) (-5 *1 (-356 *3 *4)) (-14 *4 (-626 (-1153))))) ((*1 *2 *2) (-12 (-5 *2 (-626 *6)) (-4 *6 (-942 *3 *4 *5)) (-4 *3 (-447)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *1 (-445 *3 *4 *5 *6)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-626 *7)) (-5 *3 (-1135)) (-4 *7 (-942 *4 *5 *6)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *1 (-445 *4 *5 *6 *7)))) ((*1 *2 *2 *3 *3) (-12 (-5 *2 (-626 *7)) (-5 *3 (-1135)) (-4 *7 (-942 *4 *5 *6)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *1 (-445 *4 *5 *6 *7)))) ((*1 *1 *1) (-12 (-4 *2 (-359)) (-4 *3 (-780)) (-4 *4 (-834)) (-5 *1 (-506 *2 *3 *4 *5)) (-4 *5 (-942 *2 *3 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-626 *7)) (-4 *7 (-942 *3 *5 *6)) (-4 *3 (-359)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *1 (-552 *3 *4 *5 *6 *7)) (-14 *4 (-626 (-1153))))) ((*1 *2 *2) (-12 (-5 *2 (-626 (-767 *3 (-844 *4)))) (-4 *3 (-447)) (-14 *4 (-626 (-1153))) (-5 *1 (-611 *3 *4))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-626 *7)) (-4 *7 (-834)) (-4 *5 (-896)) (-4 *6 (-780)) (-4 *8 (-942 *5 *6 *7)) (-5 *2 (-414 (-1149 *8))) (-5 *1 (-893 *5 *6 *7 *8)) (-5 *4 (-1149 *8)))) ((*1 *2 *3) (-12 (-4 *4 (-896)) (-4 *5 (-1211 *4)) (-5 *2 (-414 (-1149 *5))) (-5 *1 (-894 *4 *5)) (-5 *3 (-1149 *5))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-626 (-599 (-53)))) (-5 *1 (-53)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-599 (-53))) (-5 *1 (-53)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1149 (-53))) (-5 *3 (-626 (-599 (-53)))) (-5 *1 (-53)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1149 (-53))) (-5 *3 (-599 (-53))) (-5 *1 (-53)))) ((*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) ((*1 *2 *3) (-12 (-4 *2 (-13 (-359) (-832))) (-5 *1 (-176 *2 *3)) (-4 *3 (-1211 (-167 *2))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-909)) (-4 *1 (-321 *3)) (-4 *3 (-359)) (-4 *3 (-364)))) ((*1 *2 *1) (-12 (-4 *1 (-321 *2)) (-4 *2 (-359)))) ((*1 *2 *1) (-12 (-4 *1 (-366 *2 *3)) (-4 *3 (-1211 *2)) (-4 *2 (-170)))) ((*1 *2 *1) (-12 (-4 *4 (-1211 *2)) (-4 *2 (-985 *3)) (-5 *1 (-409 *3 *2 *4 *5)) (-4 *3 (-296)) (-4 *5 (-13 (-405 *2 *4) (-1029 *2))))) ((*1 *2 *1) (-12 (-4 *4 (-1211 *2)) (-4 *2 (-985 *3)) (-5 *1 (-410 *3 *2 *4 *5 *6)) (-4 *3 (-296)) (-4 *5 (-405 *2 *4)) (-14 *6 (-1236 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-909)) (-4 *5 (-1039)) (-4 *2 (-13 (-400) (-1029 *5) (-359) (-1173) (-274))) (-5 *1 (-438 *5 *3 *2)) (-4 *3 (-1211 *5)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-626 (-599 (-496)))) (-5 *1 (-496)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-599 (-496))) (-5 *1 (-496)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1149 (-496))) (-5 *3 (-626 (-599 (-496)))) (-5 *1 (-496)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1149 (-496))) (-5 *3 (-599 (-496))) (-5 *1 (-496)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1236 *4)) (-5 *3 (-909)) (-4 *4 (-344)) (-5 *1 (-524 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-447)) (-4 *5 (-706 *4 *2)) (-4 *2 (-1211 *4)) (-5 *1 (-759 *4 *2 *5 *3)) (-4 *3 (-1211 *5)))) ((*1 *2 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170)))) ((*1 *2 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-170)))) ((*1 *1 *1) (-4 *1 (-1048)))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-1153)) (-4 *5 (-359)) (-5 *2 (-1133 (-1133 (-945 *5)))) (-5 *1 (-1244 *5)) (-5 *4 (-1133 (-945 *5)))))) -(((*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-560)) (-4 *3 (-170)) (-4 *5 (-369 *3)) (-4 *6 (-369 *3)) (-5 *1 (-670 *3 *5 *6 *2)) (-4 *2 (-669 *3 *5 *6))))) -(((*1 *2 *3) (-12 (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *6 (-226 (-2271 *5) (-755))) (-5 *2 (-3 (-626 *7) "failed" "Infinite" (-560))) (-5 *1 (-31 *4 *5 *3 *6 *7)) (-4 *3 (-942 *4 *6 (-844 *5))) (-4 *7 (-963 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *6 (-226 (-2271 *5) (-755))) (-5 *2 (-3 (-626 *7) "failed" "Infinite" (-560))) (-5 *1 (-32 *4 *5 *3 *6 *7)) (-4 *3 (-942 *4 *6 (-844 *5))) (-4 *7 (-963 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-1149 (-1149 *4))) (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *7 (-226 (-2271 *5) (-755))) (-5 *2 (-3 (-626 *8) "failed" "Infinite" (-560))) (-5 *1 (-32 *4 *5 *6 *7 *8)) (-4 *6 (-942 *4 *7 (-844 *5))) (-4 *8 (-963 *4))))) -(((*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-550) (-148))) (-5 *2 (-2 (|:| -3156 *3) (|:| -3437 *3))) (-5 *1 (-1205 *4 *3)) (-4 *3 (-1211 *4))))) -(((*1 *1 *1 *1) (-5 *1 (-121))) ((*1 *1 *1 *1) (-4 *1 (-132)))) -(((*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-121)) (-5 *1 (-362 *3 *4)) (-4 *3 (-363 *4)))) ((*1 *2) (-12 (-4 *1 (-363 *3)) (-4 *3 (-170)) (-5 *2 (-121))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-626 *8)) (-5 *4 (-121)) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-5 *2 (-626 *10)) (-5 *1 (-608 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1058 *5 *6 *7 *8)) (-4 *10 (-1091 *5 *6 *7 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-767 *5 (-844 *6)))) (-5 *4 (-121)) (-4 *5 (-447)) (-14 *6 (-626 (-1153))) (-5 *2 (-626 (-1036 *5 *6))) (-5 *1 (-611 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-767 *5 (-844 *6)))) (-5 *4 (-121)) (-4 *5 (-447)) (-14 *6 (-626 (-1153))) (-5 *2 (-626 (-1123 *5 (-526 (-844 *6)) (-844 *6) (-767 *5 (-844 *6))))) (-5 *1 (-611 *5 *6)))) ((*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-626 *8)) (-5 *4 (-121)) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-5 *2 (-626 (-1019 *5 *6 *7 *8))) (-5 *1 (-1019 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-626 *8)) (-5 *4 (-121)) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-5 *2 (-626 (-1019 *5 *6 *7 *8))) (-5 *1 (-1019 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-626 (-767 *5 (-844 *6)))) (-5 *4 (-121)) (-4 *5 (-447)) (-14 *6 (-626 (-1153))) (-5 *2 (-626 (-1036 *5 *6))) (-5 *1 (-1036 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 *8)) (-5 *4 (-121)) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-5 *2 (-626 *1)) (-4 *1 (-1058 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-626 *8)) (-5 *4 (-121)) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-5 *2 (-626 (-1123 *5 *6 *7 *8))) (-5 *1 (-1123 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-626 *8)) (-5 *4 (-121)) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-5 *2 (-626 (-1123 *5 *6 *7 *8))) (-5 *1 (-1123 *5 *6 *7 *8)))) ((*1 *2 *3) (-12 (-5 *3 (-626 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-550)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-626 *1)) (-4 *1 (-1181 *4 *5 *6 *7))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-755)) (-4 *5 (-1039)) (-5 *2 (-560)) (-5 *1 (-438 *5 *3 *6)) (-4 *3 (-1211 *5)) (-4 *6 (-13 (-400) (-1029 *5) (-359) (-1173) (-274))))) ((*1 *2 *3) (-12 (-4 *4 (-1039)) (-5 *2 (-560)) (-5 *1 (-438 *4 *3 *5)) (-4 *3 (-1211 *4)) (-4 *5 (-13 (-400) (-1029 *4) (-359) (-1173) (-274)))))) -(((*1 *2 *3) (-12 (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *7 (-226 (-2271 *5) (-755))) (-5 *2 (-626 (-626 (-1149 (-1149 *4))))) (-5 *1 (-32 *4 *5 *6 *7 *8)) (-5 *3 (-626 (-1149 (-1149 *4)))) (-4 *6 (-942 *4 *7 (-844 *5))) (-4 *8 (-963 *4))))) -(((*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-560)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-755)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-780)) (-4 *4 (-942 *5 *6 *7)) (-4 *5 (-447)) (-4 *7 (-834)) (-5 *1 (-444 *5 *6 *7 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-626 *1)) (-4 *3 (-1039)) (-4 *1 (-669 *3 *4 *5)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-1039)) (-4 *1 (-669 *3 *4 *5)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1236 *3)) (-4 *3 (-1039)) (-5 *1 (-671 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-626 *4)) (-4 *4 (-1039)) (-4 *1 (-1103 *3 *4 *5 *6)) (-4 *5 (-226 *3 *4)) (-4 *6 (-226 *3 *4))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-626 (-769 *3))) (-5 *1 (-769 *3)) (-4 *3 (-550)) (-4 *3 (-1039))))) -(((*1 *2 *1) (-12 (-5 *1 (-210 *2)) (-4 *2 (-1082)))) ((*1 *2 *1) (-12 (-4 *1 (-242 *2)) (-4 *2 (-1187))))) -(((*1 *1 *2) (-12 (-5 *2 (-755)) (-5 *1 (-658 *3)) (-4 *3 (-1039)) (-4 *3 (-1082))))) -(((*1 *2 *3) (-12 (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *6 (-226 (-2271 *5) (-755))) (-5 *2 (-1149 (-1149 *4))) (-5 *1 (-32 *4 *5 *3 *6 *7)) (-4 *3 (-942 *4 *6 (-844 *5))) (-4 *7 (-963 *4))))) -(((*1 *2 *1) (-12 (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-626 *1)) (-4 *1 (-1053 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-121))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-626 (-57))) (-5 *1 (-879 *3)) (-4 *3 (-1082))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-1149 *6)) (-5 *3 (-560)) (-4 *6 (-296)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *1 (-724 *4 *5 *6 *7)) (-4 *7 (-942 *6 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-167 (-560))) (-5 *2 (-121)) (-5 *1 (-441)))) ((*1 *2 *3) (-12 (-5 *3 (-506 (-403 (-560)) (-228 *5 (-755)) (-844 *4) (-237 *4 (-403 (-560))))) (-14 *4 (-626 (-1153))) (-14 *5 (-755)) (-5 *2 (-121)) (-5 *1 (-507 *4 *5)))) ((*1 *2 *3) (-12 (-5 *2 (-121)) (-5 *1 (-953 *3)) (-4 *3 (-542)))) ((*1 *2 *1) (-12 (-4 *1 (-1191)) (-5 *2 (-121))))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-807)) (-14 *5 (-1153)) (-5 *2 (-626 (-1208 *5 *4))) (-5 *1 (-1096 *4 *5)) (-5 *3 (-1208 *5 *4))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-1187)) (-5 *1 (-177 *3 *2)) (-4 *2 (-657 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-1002 *3)) (-4 *3 (-1187)) (-5 *2 (-121)))) ((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1174 *3)) (-4 *3 (-1082))))) -(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170)))) ((*1 *1 *2 *2) (-12 (-5 *2 (-991 *3)) (-4 *3 (-170)) (-5 *1 (-786 *3))))) -(((*1 *1 *1 *1) (|partial| -12 (-4 *2 (-170)) (-5 *1 (-279 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1211 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-693 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-697 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 (-53))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-475)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-53))) (-5 *4 (-626 (-458))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-475)))) ((*1 *2 *3) (-12 (-4 (-53) (-1029 *3)) (-5 *3 (-1153)) (-5 *2 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458)))) (-5 *1 (-475)))) ((*1 *2 *3) (-12 (-5 *3 (-626 *4)) (-4 *4 (-13 (-344) (-601 (-560)))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-477 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 *5)) (-5 *4 (-626 (-458))) (-4 *5 (-13 (-344) (-601 (-560)))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-477 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 *4) (-626 (-458)))) (-5 *1 (-477 *4)) (-4 *4 (-1029 *3)) (-4 *4 (-13 (-344) (-601 (-560)))))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-403 (-560)))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-478)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-560)))) (-5 *4 (-626 (-458))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-478)))) ((*1 *2 *3) (-12 (-4 (-403 (-560)) (-1029 *3)) (-4 (-560) (-1029 *3)) (-5 *3 (-1153)) (-5 *2 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458)))) (-5 *1 (-478)))) ((*1 *2 *3) (-12 (-5 *3 (-626 *4)) (-4 *4 (-359)) (-14 *9 (-1 *6 *4)) (-4 *7 (-13 (-834) (-550))) (-14 *8 (-1 *4 *7)) (-5 *2 (-626 (-2 (|:| -1843 *6) (|:| -3504 (-755))))) (-5 *1 (-479 *4 *5 *6 *7 *8 *9)) (-4 *5 (-447)) (-4 *6 (-13 (-426 (-560)) (-550) (-1029 *7) (-1029 (-1153)) (-1029 (-560)) (-159) (-887 (-1153)) (-10 -8 (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -1540 ($ $)) (-15 -1646 ($ $)) (-15 -1704 ((-121) $))))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 *5)) (-5 *4 (-626 (-458))) (-4 *5 (-359)) (-14 *10 (-1 *7 *5)) (-4 *8 (-13 (-834) (-550))) (-14 *9 (-1 *5 *8)) (-5 *2 (-626 (-2 (|:| -1843 *7) (|:| -3504 (-755))))) (-5 *1 (-479 *5 *6 *7 *8 *9 *10)) (-4 *6 (-447)) (-4 *7 (-13 (-426 (-560)) (-550) (-1029 *8) (-1029 (-1153)) (-1029 (-560)) (-159) (-887 (-1153)) (-10 -8 (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -1540 ($ $)) (-15 -1646 ($ $)) (-15 -1704 ((-121) $))))))) ((*1 *2 *3) (-12 (-5 *3 (-1153)) (-4 *7 (-13 (-834) (-550))) (-14 *8 (-1 *4 *7)) (-5 *2 (-1 (-626 (-2 (|:| -1843 *6) (|:| -3504 (-755)))) (-626 *4) (-626 (-458)))) (-5 *1 (-479 *4 *5 *6 *7 *8 *9)) (-4 *4 (-1029 *3)) (-4 *5 (-1029 *3)) (-4 *4 (-359)) (-4 *5 (-447)) (-4 *6 (-13 (-426 (-560)) (-550) (-1029 *7) (-1029 *3) (-1029 (-560)) (-159) (-887 *3) (-10 -8 (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -1540 ($ $)) (-15 -1646 ($ $)) (-15 -1704 ((-121) $))))) (-14 *9 (-1 *6 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-403 (-945 (-560))))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-480)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-945 (-560))))) (-5 *4 (-626 (-458))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-480)))) ((*1 *2 *3) (-12 (-4 (-403 (-945 (-560))) (-1029 *3)) (-4 (-945 (-560)) (-1029 *3)) (-5 *3 (-1153)) (-5 *2 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458)))) (-5 *1 (-480)))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-403 (-726 *4 (-560))))) (-14 *4 (-1153)) (-5 *2 (-626 (-2 (|:| -1843 (-725 *4 (-560))) (|:| -3504 (-755))))) (-5 *1 (-481 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-726 *5 (-560))))) (-5 *4 (-626 (-458))) (-14 *5 (-1153)) (-5 *2 (-626 (-2 (|:| -1843 (-725 *5 (-560))) (|:| -3504 (-755))))) (-5 *1 (-481 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-1 (-626 (-2 (|:| -1843 (-725 *4 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 *4 (-560)))) (-626 (-458)))) (-5 *1 (-481 *4)) (-14 *4 *3)))) -(((*1 *2 *1) (-12 (-4 *1 (-321 *3)) (-4 *3 (-359)) (-4 *3 (-364)) (-5 *2 (-1149 *3))))) -(((*1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-43 (-403 (-560)))) (-4 *2 (-1039))))) -(((*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-1039)) (-5 *1 (-1137 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 (-53))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-475)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-53))) (-5 *4 (-626 (-458))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-475)))) ((*1 *2 *3) (-12 (-5 *3 (-626 *4)) (-4 *4 (-13 (-344) (-601 (-560)))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-477 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 *5)) (-5 *4 (-626 (-458))) (-4 *5 (-13 (-344) (-601 (-560)))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-477 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-403 (-560)))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-478)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-560)))) (-5 *4 (-626 (-458))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-478)))) ((*1 *2 *3) (-12 (-5 *3 (-626 *4)) (-4 *4 (-359)) (-14 *9 (-1 *6 *4)) (-4 *7 (-13 (-834) (-550))) (-14 *8 (-1 *4 *7)) (-5 *2 (-626 (-2 (|:| -1843 *6) (|:| -3504 (-755))))) (-5 *1 (-479 *4 *5 *6 *7 *8 *9)) (-4 *5 (-447)) (-4 *6 (-13 (-426 (-560)) (-550) (-1029 *7) (-1029 (-1153)) (-1029 (-560)) (-159) (-887 (-1153)) (-10 -8 (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -1540 ($ $)) (-15 -1646 ($ $)) (-15 -1704 ((-121) $))))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 *5)) (-5 *4 (-626 (-458))) (-4 *5 (-359)) (-14 *10 (-1 *7 *5)) (-4 *8 (-13 (-834) (-550))) (-14 *9 (-1 *5 *8)) (-5 *2 (-626 (-2 (|:| -1843 *7) (|:| -3504 (-755))))) (-5 *1 (-479 *5 *6 *7 *8 *9 *10)) (-4 *6 (-447)) (-4 *7 (-13 (-426 (-560)) (-550) (-1029 *8) (-1029 (-1153)) (-1029 (-560)) (-159) (-887 (-1153)) (-10 -8 (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -1540 ($ $)) (-15 -1646 ($ $)) (-15 -1704 ((-121) $))))))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-403 (-945 (-560))))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-480)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-945 (-560))))) (-5 *4 (-626 (-458))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-480)))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-403 (-726 *4 (-560))))) (-14 *4 (-1153)) (-5 *2 (-626 (-2 (|:| -1843 (-725 *4 (-560))) (|:| -3504 (-755))))) (-5 *1 (-481 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-726 *5 (-560))))) (-5 *4 (-626 (-458))) (-14 *5 (-1153)) (-5 *2 (-626 (-2 (|:| -1843 (-725 *5 (-560))) (|:| -3504 (-755))))) (-5 *1 (-481 *5))))) -(((*1 *2 *3 *4 *4) (-12 (-5 *3 (-626 (-945 *5))) (-5 *4 (-121)) (-4 *5 (-13 (-832) (-296) (-148) (-1013))) (-5 *2 (-626 (-1036 *5 *6))) (-5 *1 (-1260 *5 *6 *7)) (-14 *6 (-626 (-1153))) (-14 *7 (-626 (-1153))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-945 *5))) (-5 *4 (-121)) (-4 *5 (-13 (-832) (-296) (-148) (-1013))) (-5 *2 (-626 (-1036 *5 *6))) (-5 *1 (-1260 *5 *6 *7)) (-14 *6 (-626 (-1153))) (-14 *7 (-626 (-1153))))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-945 *4))) (-4 *4 (-13 (-832) (-296) (-148) (-1013))) (-5 *2 (-626 (-1036 *4 *5))) (-5 *1 (-1260 *4 *5 *6)) (-14 *5 (-626 (-1153))) (-14 *6 (-626 (-1153)))))) -(((*1 *2 *3) (-12 (-5 *3 (-909)) (-5 *2 (-3 (-1149 *4) (-1236 (-626 (-2 (|:| -2981 *4) (|:| -1330 (-1100))))))) (-5 *1 (-341 *4)) (-4 *4 (-344))))) -(((*1 *2 *3) (-12 (-5 *2 (-820 (-213))) (-5 *1 (-214)) (-5 *3 (-213))))) -(((*1 *2 *3 *3) (-12 (-5 *2 (-1149 *3)) (-5 *1 (-902 *3)) (-4 *3 (-296))))) -(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) ((*1 *1) (-5 *1 (-533))) ((*1 *1) (-12 (-5 *1 (-879 *2)) (-4 *2 (-1082))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1133 *4)) (-4 *4 (-43 *3)) (-4 *4 (-1039)) (-5 *3 (-403 (-560))) (-5 *1 (-1137 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 (-53))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-475)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-53))) (-5 *4 (-626 (-458))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-475)))) ((*1 *2 *3) (-12 (-4 (-53) (-1029 *3)) (-5 *3 (-1153)) (-5 *2 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458)))) (-5 *1 (-475)))) ((*1 *2 *3) (-12 (-5 *3 (-626 *4)) (-4 *4 (-13 (-344) (-601 (-560)))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-477 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 *5)) (-5 *4 (-626 (-458))) (-4 *5 (-13 (-344) (-601 (-560)))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-477 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 *4) (-626 (-458)))) (-5 *1 (-477 *4)) (-4 *4 (-1029 *3)) (-4 *4 (-13 (-344) (-601 (-560)))))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-403 (-560)))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-478)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-560)))) (-5 *4 (-626 (-458))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-478)))) ((*1 *2 *3) (-12 (-4 (-403 (-560)) (-1029 *3)) (-4 (-560) (-1029 *3)) (-5 *3 (-1153)) (-5 *2 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458)))) (-5 *1 (-478)))) ((*1 *2 *3) (-12 (-5 *3 (-626 *4)) (-4 *4 (-359)) (-14 *9 (-1 *6 *4)) (-4 *7 (-13 (-834) (-550))) (-14 *8 (-1 *4 *7)) (-5 *2 (-626 (-2 (|:| -1843 *6) (|:| -3504 (-755))))) (-5 *1 (-479 *4 *5 *6 *7 *8 *9)) (-4 *5 (-447)) (-4 *6 (-13 (-426 (-560)) (-550) (-1029 *7) (-1029 (-1153)) (-1029 (-560)) (-159) (-887 (-1153)) (-10 -8 (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -1540 ($ $)) (-15 -1646 ($ $)) (-15 -1704 ((-121) $))))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 *5)) (-5 *4 (-626 (-458))) (-4 *5 (-359)) (-14 *10 (-1 *7 *5)) (-4 *8 (-13 (-834) (-550))) (-14 *9 (-1 *5 *8)) (-5 *2 (-626 (-2 (|:| -1843 *7) (|:| -3504 (-755))))) (-5 *1 (-479 *5 *6 *7 *8 *9 *10)) (-4 *6 (-447)) (-4 *7 (-13 (-426 (-560)) (-550) (-1029 *8) (-1029 (-1153)) (-1029 (-560)) (-159) (-887 (-1153)) (-10 -8 (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -1540 ($ $)) (-15 -1646 ($ $)) (-15 -1704 ((-121) $))))))) ((*1 *2 *3) (-12 (-5 *3 (-1153)) (-4 *7 (-13 (-834) (-550))) (-14 *8 (-1 *4 *7)) (-5 *2 (-1 (-626 (-2 (|:| -1843 *6) (|:| -3504 (-755)))) (-626 *4) (-626 (-458)))) (-5 *1 (-479 *4 *5 *6 *7 *8 *9)) (-4 *4 (-1029 *3)) (-4 *5 (-1029 *3)) (-4 *4 (-359)) (-4 *5 (-447)) (-4 *6 (-13 (-426 (-560)) (-550) (-1029 *7) (-1029 *3) (-1029 (-560)) (-159) (-887 *3) (-10 -8 (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -1540 ($ $)) (-15 -1646 ($ $)) (-15 -1704 ((-121) $))))) (-14 *9 (-1 *6 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-403 (-945 (-560))))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-480)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-945 (-560))))) (-5 *4 (-626 (-458))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-480)))) ((*1 *2 *3) (-12 (-4 (-403 (-945 (-560))) (-1029 *3)) (-4 (-945 (-560)) (-1029 *3)) (-5 *3 (-1153)) (-5 *2 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458)))) (-5 *1 (-480)))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-403 (-726 *4 (-560))))) (-14 *4 (-1153)) (-5 *2 (-626 (-2 (|:| -1843 (-725 *4 (-560))) (|:| -3504 (-755))))) (-5 *1 (-481 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-726 *5 (-560))))) (-5 *4 (-626 (-458))) (-14 *5 (-1153)) (-5 *2 (-626 (-2 (|:| -1843 (-725 *5 (-560))) (|:| -3504 (-755))))) (-5 *1 (-481 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-1 (-626 (-2 (|:| -1843 (-725 *4 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 *4 (-560)))) (-626 (-458)))) (-5 *1 (-481 *4)) (-14 *4 *3)))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-769 *2)) (-4 *2 (-1039))))) -(((*1 *2) (-12 (-5 *2 (-950 (-1100))) (-5 *1 (-335 *3 *4)) (-14 *3 (-909)) (-14 *4 (-909)))) ((*1 *2) (-12 (-5 *2 (-950 (-1100))) (-5 *1 (-336 *3 *4)) (-4 *3 (-344)) (-14 *4 (-1149 *3)))) ((*1 *2) (-12 (-5 *2 (-950 (-1100))) (-5 *1 (-337 *3 *4)) (-4 *3 (-344)) (-14 *4 (-909))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-626 (-1153))) (-5 *2 (-1153)) (-5 *1 (-322))))) -(((*1 *2 *1) (-12 (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)) (-5 *2 (-121)))) ((*1 *2 *1) (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039)) (-4 *6 (-226 *4 *5)) (-4 *7 (-226 *3 *5)) (-5 *2 (-121))))) -(((*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-304 (-213))) (|:| -1394 (-626 (-213))) (|:| |lb| (-626 (-827 (-213)))) (|:| |cf| (-626 (-304 (-213)))) (|:| |ub| (-626 (-827 (-213)))))) (|:| |lsa| (-2 (|:| |lfn| (-626 (-304 (-213)))) (|:| -1394 (-626 (-213))))))) (-5 *2 (-626 (-1135))) (-5 *1 (-258))))) -(((*1 *1 *1 *1) (-4 *1 (-542)))) -(((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-533))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 (-53))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-475)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-53))) (-5 *4 (-626 (-458))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-475)))) ((*1 *2 *3) (-12 (-4 (-53) (-1029 *3)) (-5 *3 (-1153)) (-5 *2 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458)))) (-5 *1 (-475)))) ((*1 *2 *3) (-12 (-5 *3 (-626 *4)) (-4 *4 (-13 (-344) (-601 (-560)))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-477 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 *5)) (-5 *4 (-626 (-458))) (-4 *5 (-13 (-344) (-601 (-560)))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-477 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 *4) (-626 (-458)))) (-5 *1 (-477 *4)) (-4 *4 (-1029 *3)) (-4 *4 (-13 (-344) (-601 (-560)))))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-403 (-560)))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-478)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-560)))) (-5 *4 (-626 (-458))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-478)))) ((*1 *2 *3) (-12 (-4 (-403 (-560)) (-1029 *3)) (-4 (-560) (-1029 *3)) (-5 *3 (-1153)) (-5 *2 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458)))) (-5 *1 (-478)))) ((*1 *2 *3) (-12 (-5 *3 (-626 *4)) (-4 *4 (-359)) (-14 *9 (-1 *6 *4)) (-4 *7 (-13 (-834) (-550))) (-14 *8 (-1 *4 *7)) (-5 *2 (-626 (-2 (|:| -1843 *6) (|:| -3504 (-755))))) (-5 *1 (-479 *4 *5 *6 *7 *8 *9)) (-4 *5 (-447)) (-4 *6 (-13 (-426 (-560)) (-550) (-1029 *7) (-1029 (-1153)) (-1029 (-560)) (-159) (-887 (-1153)) (-10 -8 (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -1540 ($ $)) (-15 -1646 ($ $)) (-15 -1704 ((-121) $))))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 *5)) (-5 *4 (-626 (-458))) (-4 *5 (-359)) (-14 *10 (-1 *7 *5)) (-4 *8 (-13 (-834) (-550))) (-14 *9 (-1 *5 *8)) (-5 *2 (-626 (-2 (|:| -1843 *7) (|:| -3504 (-755))))) (-5 *1 (-479 *5 *6 *7 *8 *9 *10)) (-4 *6 (-447)) (-4 *7 (-13 (-426 (-560)) (-550) (-1029 *8) (-1029 (-1153)) (-1029 (-560)) (-159) (-887 (-1153)) (-10 -8 (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -1540 ($ $)) (-15 -1646 ($ $)) (-15 -1704 ((-121) $))))))) ((*1 *2 *3) (-12 (-5 *3 (-1153)) (-4 *7 (-13 (-834) (-550))) (-14 *8 (-1 *4 *7)) (-5 *2 (-1 (-626 (-2 (|:| -1843 *6) (|:| -3504 (-755)))) (-626 *4) (-626 (-458)))) (-5 *1 (-479 *4 *5 *6 *7 *8 *9)) (-4 *4 (-1029 *3)) (-4 *5 (-1029 *3)) (-4 *4 (-359)) (-4 *5 (-447)) (-4 *6 (-13 (-426 (-560)) (-550) (-1029 *7) (-1029 *3) (-1029 (-560)) (-159) (-887 *3) (-10 -8 (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -1540 ($ $)) (-15 -1646 ($ $)) (-15 -1704 ((-121) $))))) (-14 *9 (-1 *6 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-403 (-945 (-560))))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-480)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-945 (-560))))) (-5 *4 (-626 (-458))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-480)))) ((*1 *2 *3) (-12 (-4 (-403 (-945 (-560))) (-1029 *3)) (-4 (-945 (-560)) (-1029 *3)) (-5 *3 (-1153)) (-5 *2 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458)))) (-5 *1 (-480)))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-403 (-726 *4 (-560))))) (-14 *4 (-1153)) (-5 *2 (-626 (-2 (|:| -1843 (-725 *4 (-560))) (|:| -3504 (-755))))) (-5 *1 (-481 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-726 *5 (-560))))) (-5 *4 (-626 (-458))) (-14 *5 (-1153)) (-5 *2 (-626 (-2 (|:| -1843 (-725 *5 (-560))) (|:| -3504 (-755))))) (-5 *1 (-481 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-1 (-626 (-2 (|:| -1843 (-725 *4 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 *4 (-560)))) (-626 (-458)))) (-5 *1 (-481 *4)) (-14 *4 *3)))) -(((*1 *2 *1) (-12 (-5 *1 (-210 *2)) (-4 *2 (-1082)))) ((*1 *2 *1) (-12 (-4 *1 (-242 *2)) (-4 *2 (-1187))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-171 *3)) (-4 *3 (-296)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-657 *3)) (-4 *3 (-1187)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-755)) (-4 *1 (-722 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-834)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-855 *3)) (-5 *2 (-560)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *1 (-973 *3)) (-4 *3 (-1039)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-626 *1)) (-5 *3 (-626 *7)) (-4 *1 (-1058 *4 *5 *6 *7)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *7 (-1053 *4 *5 *6)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-626 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-626 *1)) (-4 *1 (-1058 *4 *5 *6 *7)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-626 *1)) (-4 *1 (-1058 *4 *5 *6 *3)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *3 (-1053 *4 *5 *6)))) ((*1 *2 *3 *1) (-12 (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-626 *1)) (-4 *1 (-1058 *4 *5 *6 *3)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1181 *3 *4 *5 *2)) (-4 *3 (-550)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *2 (-1053 *3 *4 *5)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1213 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-779))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-755)) (-5 *4 (-1236 *2)) (-4 *5 (-296)) (-4 *6 (-985 *5)) (-4 *2 (-13 (-405 *6 *7) (-1029 *6))) (-5 *1 (-409 *5 *6 *7 *2)) (-4 *7 (-1211 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 (-53))) (-1193 (-53)))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-53)))) (-1193 (-1149 (-53))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 (-53) (-755) (-755) (-1149 (-53)))) (|:| AF (-1 (-1149 (-53)) (-755) (-755) (-1193 (-1149 (-53))))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 (-53)) (-755)))) (-626 (-458)))) (-5 *2 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458)))) (-5 *1 (-475)))) ((*1 *2 *3) (-12 (-5 *3 (-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 *4)) (-1193 *4))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 *4))) (-1193 (-1149 *4)))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 *4 (-755) (-755) (-1149 *4))) (|:| AF (-1 (-1149 *4) (-755) (-755) (-1193 (-1149 *4)))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 *4) (-755)))) (-626 (-458)))) (-4 *4 (-13 (-344) (-601 (-560)))) (-5 *2 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 *4) (-626 (-458)))) (-5 *1 (-477 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 (-403 (-560)))) (-1193 (-403 (-560))))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-403 (-560))))) (-1193 (-1149 (-403 (-560)))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 (-560) (-755) (-755) (-1149 (-560)))) (|:| AF (-1 (-1149 (-403 (-560))) (-755) (-755) (-1193 (-1149 (-403 (-560)))))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 (-560)) (-755)))) (-626 (-458)))) (-5 *2 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458)))) (-5 *1 (-478)))) ((*1 *2 *3) (-12 (-5 *3 (-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 *4)) (-1193 *4))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 *4))) (-1193 (-1149 *4)))) (|:| |exprStream| (-1 (-1133 *6) *6 (-1153))) (|:| A (-1 *5 (-755) (-755) (-1149 *5))) (|:| AF (-1 (-1149 *4) (-755) (-755) (-1193 (-1149 *4)))) (|:| AX (-1 *6 (-755) (-1153) *6)) (|:| C (-1 (-626 *5) (-755)))) (-626 (-458)))) (-4 *4 (-359)) (-4 *5 (-447)) (-4 *6 (-13 (-426 (-560)) (-550) (-1029 *7) (-1029 (-1153)) (-1029 (-560)) (-159) (-887 (-1153)) (-10 -8 (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -1540 ($ $)) (-15 -1646 ($ $)) (-15 -1704 ((-121) $))))) (-4 *7 (-13 (-834) (-550))) (-14 *8 (-1 *4 *7)) (-14 *9 (-1 *6 *4)) (-5 *2 (-1 (-626 (-2 (|:| -1843 *6) (|:| -3504 (-755)))) (-626 *4) (-626 (-458)))) (-5 *1 (-479 *4 *5 *6 *7 *8 *9)))) ((*1 *2 *3) (-12 (-5 *3 (-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 (-403 (-945 (-560))))) (-1193 (-403 (-945 (-560)))))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-403 (-945 (-560)))))) (-1193 (-1149 (-403 (-945 (-560))))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 (-945 (-560)) (-755) (-755) (-1149 (-945 (-560))))) (|:| AF (-1 (-1149 (-403 (-945 (-560)))) (-755) (-755) (-1193 (-1149 (-403 (-945 (-560))))))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 (-945 (-560))) (-755)))) (-626 (-458)))) (-5 *2 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458)))) (-5 *1 (-480)))) ((*1 *2 *3) (-12 (-5 *3 (-1 HPSPEC (-626 (-458)))) (-5 *2 (-1 (-626 (-2 (|:| -1843 (-725 *4 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 *4 (-560)))) (-626 (-458)))) (-5 *1 (-481 *4)) (-14 *4 (-1153))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 (-626 (-626 *4)))) (-5 *2 (-626 (-626 *4))) (-5 *1 (-1159 *4)) (-4 *4 (-834))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994)))))) -(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (-5 *2 (-560)) (-5 *1 (-194))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-626 *2)) (-5 *1 (-175 *2)) (-4 *2 (-296)))) ((*1 *2 *3 *2) (-12 (-5 *3 (-626 (-626 *4))) (-5 *2 (-626 *4)) (-4 *4 (-296)) (-5 *1 (-175 *4)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-626 *8)) (-5 *4 (-626 (-2 (|:| -4374 (-671 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-671 *7))))) (-5 *5 (-755)) (-4 *8 (-1211 *7)) (-4 *7 (-1211 *6)) (-4 *6 (-344)) (-5 *2 (-2 (|:| -4374 (-671 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-671 *7)))) (-5 *1 (-499 *6 *7 *8)))) ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-557))))) -(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-121)) (-4 *6 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-4 *3 (-13 (-27) (-1173) (-426 *6) (-10 -8 (-15 -2801 ($ *7))))) (-4 *7 (-832)) (-4 *8 (-13 (-1213 *3 *7) (-359) (-1173) (-10 -8 (-15 -2443 ($ $)) (-15 -2376 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1135)) (|:| |prob| (-1135)))))) (-5 *1 (-418 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1135)) (-4 *9 (-976 *8)) (-14 *10 (-1153))))) -(((*1 *2 *1) (-12 (-4 *1 (-1181 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-626 *5))))) -(((*1 *2 *3 *3 *1) (-12 (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-3 *3 (-626 *1))) (-4 *1 (-1058 *4 *5 *6 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-755)) (-5 *2 (-1 (-375))) (-5 *1 (-1031))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 (-53))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-475)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-53))) (-5 *4 (-626 (-458))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-475)))) ((*1 *2 *3) (-12 (-5 *3 (-626 *4)) (-4 *4 (-13 (-344) (-601 (-560)))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-477 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 *5)) (-5 *4 (-626 (-458))) (-4 *5 (-13 (-344) (-601 (-560)))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-477 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-403 (-560)))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-478)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-560)))) (-5 *4 (-626 (-458))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-478)))) ((*1 *2 *3) (-12 (-5 *3 (-626 *4)) (-4 *4 (-359)) (-14 *9 (-1 *6 *4)) (-4 *7 (-13 (-834) (-550))) (-14 *8 (-1 *4 *7)) (-5 *2 (-626 (-2 (|:| -1843 *6) (|:| -3504 (-755))))) (-5 *1 (-479 *4 *5 *6 *7 *8 *9)) (-4 *5 (-447)) (-4 *6 (-13 (-426 (-560)) (-550) (-1029 *7) (-1029 (-1153)) (-1029 (-560)) (-159) (-887 (-1153)) (-10 -8 (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -1540 ($ $)) (-15 -1646 ($ $)) (-15 -1704 ((-121) $))))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 *5)) (-5 *4 (-626 (-458))) (-4 *5 (-359)) (-14 *10 (-1 *7 *5)) (-4 *8 (-13 (-834) (-550))) (-14 *9 (-1 *5 *8)) (-5 *2 (-626 (-2 (|:| -1843 *7) (|:| -3504 (-755))))) (-5 *1 (-479 *5 *6 *7 *8 *9 *10)) (-4 *6 (-447)) (-4 *7 (-13 (-426 (-560)) (-550) (-1029 *8) (-1029 (-1153)) (-1029 (-560)) (-159) (-887 (-1153)) (-10 -8 (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -1540 ($ $)) (-15 -1646 ($ $)) (-15 -1704 ((-121) $))))))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-403 (-945 (-560))))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-480)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-945 (-560))))) (-5 *4 (-626 (-458))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-480)))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-403 (-726 *4 (-560))))) (-14 *4 (-1153)) (-5 *2 (-626 (-2 (|:| -1843 (-725 *4 (-560))) (|:| -3504 (-755))))) (-5 *1 (-481 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-726 *5 (-560))))) (-5 *4 (-626 (-458))) (-14 *5 (-1153)) (-5 *2 (-626 (-2 (|:| -1843 (-725 *5 (-560))) (|:| -3504 (-755))))) (-5 *1 (-481 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-359)) (-4 *1 (-37 *3))))) -(((*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-121)) (-5 *5 (-560)) (-4 *6 (-359)) (-4 *6 (-364)) (-4 *6 (-1039)) (-5 *2 (-626 (-626 (-671 *6)))) (-5 *1 (-1021 *6)) (-5 *3 (-626 (-671 *6))))) ((*1 *2 *3) (-12 (-4 *4 (-359)) (-4 *4 (-364)) (-4 *4 (-1039)) (-5 *2 (-626 (-626 (-671 *4)))) (-5 *1 (-1021 *4)) (-5 *3 (-626 (-671 *4))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-121)) (-4 *5 (-359)) (-4 *5 (-364)) (-4 *5 (-1039)) (-5 *2 (-626 (-626 (-671 *5)))) (-5 *1 (-1021 *5)) (-5 *3 (-626 (-671 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-909)) (-4 *5 (-359)) (-4 *5 (-364)) (-4 *5 (-1039)) (-5 *2 (-626 (-626 (-671 *5)))) (-5 *1 (-1021 *5)) (-5 *3 (-626 (-671 *5)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1173))))) -(((*1 *2 *1) (-12 (-4 *1 (-947)) (-5 *2 (-626 (-626 (-936 (-213))))))) ((*1 *2 *1) (-12 (-4 *1 (-967)) (-5 *2 (-626 (-626 (-936 (-213)))))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-375) (-375))) (-5 *4 (-375)) (-5 *2 (-2 (|:| -2981 *4) (|:| -2301 *4) (|:| |totalpts| (-560)) (|:| |success| (-121)))) (-5 *1 (-776)) (-5 *5 (-560))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-560) (-560))) (-5 *1 (-357 *3)) (-4 *3 (-1082)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-755) (-755))) (-5 *1 (-382 *3)) (-4 *3 (-1082)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-630 *3 *4 *5)) (-4 *3 (-1082))))) -(((*1 *1) (-12 (-4 *1 (-37 *2)) (-4 *2 (-359))))) -(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-139))))) -(((*1 *2 *1) (-12 (-4 *1 (-1114 *3)) (-4 *3 (-1039)) (-5 *2 (-626 (-626 (-626 (-755)))))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-755)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-780)) (-4 *7 (-942 *4 *5 *6)) (-4 *4 (-447)) (-4 *6 (-834)) (-5 *2 (-121)) (-5 *1 (-444 *4 *5 *6 *7))))) -(((*1 *2 *3) (-12 (-5 *2 (-626 (-1149 (-560)))) (-5 *1 (-181)) (-5 *3 (-560))))) -(((*1 *2 *3 *1) (-12 (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-626 *1)) (-4 *1 (-1058 *4 *5 *6 *3))))) -(((*1 *2) (-12 (-5 *2 (-626 *3)) (-5 *1 (-1068 *3)) (-4 *3 (-138))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-842))) ((*1 *1 *1 *2) (-12 (-5 *2 (-626 (-842))) (-5 *1 (-842))))) -(((*1 *2 *3) (-12 (-5 *3 (-1236 *5)) (-4 *5 (-622 *4)) (-4 *4 (-550)) (-5 *2 (-121)) (-5 *1 (-621 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-879 *3)) (-4 *3 (-1082))))) -(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-1133 *4)) (-5 *3 (-560)) (-4 *4 (-1039)) (-5 *1 (-1137 *4)))) ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-1193 *3)) (-4 *3 (-1039)))) ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-1227 *3 *4 *5)) (-4 *3 (-1039)) (-14 *4 (-1153)) (-14 *5 *3))) ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-1231 *3 *4)) (-4 *3 (-1039)) (-14 *4 (-1153))))) -(((*1 *2 *3) (-12 (-5 *3 (-1036 *4 *5)) (-4 *4 (-13 (-832) (-296) (-148) (-1013))) (-14 *5 (-626 (-1153))) (-5 *2 (-626 (-2 (|:| -1807 (-1149 *4)) (|:| -3390 (-626 (-945 *4)))))) (-5 *1 (-1260 *4 *5 *6)) (-14 *6 (-626 (-1153))))) ((*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-121)) (-4 *5 (-13 (-832) (-296) (-148) (-1013))) (-5 *2 (-626 (-2 (|:| -1807 (-1149 *5)) (|:| -3390 (-626 (-945 *5)))))) (-5 *1 (-1260 *5 *6 *7)) (-5 *3 (-626 (-945 *5))) (-14 *6 (-626 (-1153))) (-14 *7 (-626 (-1153))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-121)) (-4 *5 (-13 (-832) (-296) (-148) (-1013))) (-5 *2 (-626 (-2 (|:| -1807 (-1149 *5)) (|:| -3390 (-626 (-945 *5)))))) (-5 *1 (-1260 *5 *6 *7)) (-5 *3 (-626 (-945 *5))) (-14 *6 (-626 (-1153))) (-14 *7 (-626 (-1153))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-121)) (-4 *5 (-13 (-832) (-296) (-148) (-1013))) (-5 *2 (-626 (-2 (|:| -1807 (-1149 *5)) (|:| -3390 (-626 (-945 *5)))))) (-5 *1 (-1260 *5 *6 *7)) (-5 *3 (-626 (-945 *5))) (-14 *6 (-626 (-1153))) (-14 *7 (-626 (-1153))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-832) (-296) (-148) (-1013))) (-5 *2 (-626 (-2 (|:| -1807 (-1149 *4)) (|:| -3390 (-626 (-945 *4)))))) (-5 *1 (-1260 *4 *5 *6)) (-5 *3 (-626 (-945 *4))) (-14 *5 (-626 (-1153))) (-14 *6 (-626 (-1153)))))) -(((*1 *2 *3) (-12 (-5 *3 (-753)) (-5 *2 (-2 (|:| -3262 (-375)) (|:| -1337 (-1135)) (|:| |explanations| (-626 (-1135))) (|:| |extra| (-1027)))) (-5 *1 (-561)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-753)) (-5 *4 (-1051)) (-5 *2 (-2 (|:| -3262 (-375)) (|:| -1337 (-1135)) (|:| |explanations| (-626 (-1135))) (|:| |extra| (-1027)))) (-5 *1 (-561)))) ((*1 *2 *3 *4) (-12 (-4 *1 (-774)) (-5 *3 (-1051)) (-5 *4 (-2 (|:| |fn| (-304 (-213))) (|:| -1396 (-626 (-1076 (-827 (-213))))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (-5 *2 (-2 (|:| -3262 (-375)) (|:| |explanations| (-1135)) (|:| |extra| (-1027)))))) ((*1 *2 *3 *4) (-12 (-4 *1 (-774)) (-5 *3 (-1051)) (-5 *4 (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (-5 *2 (-2 (|:| -3262 (-375)) (|:| |explanations| (-1135)) (|:| |extra| (-1027)))))) ((*1 *2 *3 *4) (-12 (-4 *1 (-787)) (-5 *3 (-1051)) (-5 *4 (-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (-5 *2 (-2 (|:| -3262 (-375)) (|:| |explanations| (-1135)))))) ((*1 *2 *3) (-12 (-5 *3 (-795)) (-5 *2 (-2 (|:| -3262 (-375)) (|:| -1337 (-1135)) (|:| |explanations| (-626 (-1135))))) (-5 *1 (-792)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-795)) (-5 *4 (-1051)) (-5 *2 (-2 (|:| -3262 (-375)) (|:| -1337 (-1135)) (|:| |explanations| (-626 (-1135))))) (-5 *1 (-792)))) ((*1 *2 *3 *4) (-12 (-4 *1 (-823)) (-5 *3 (-1051)) (-5 *4 (-2 (|:| |lfn| (-626 (-304 (-213)))) (|:| -1394 (-626 (-213))))) (-5 *2 (-2 (|:| -3262 (-375)) (|:| |explanations| (-1135)))))) ((*1 *2 *3 *4) (-12 (-4 *1 (-823)) (-5 *3 (-1051)) (-5 *4 (-2 (|:| |fn| (-304 (-213))) (|:| -1394 (-626 (-213))) (|:| |lb| (-626 (-827 (-213)))) (|:| |cf| (-626 (-304 (-213)))) (|:| |ub| (-626 (-827 (-213)))))) (-5 *2 (-2 (|:| -3262 (-375)) (|:| |explanations| (-1135)))))) ((*1 *2 *3) (-12 (-5 *3 (-825)) (-5 *2 (-2 (|:| -3262 (-375)) (|:| -1337 (-1135)) (|:| |explanations| (-626 (-1135))))) (-5 *1 (-824)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-825)) (-5 *4 (-1051)) (-5 *2 (-2 (|:| -3262 (-375)) (|:| -1337 (-1135)) (|:| |explanations| (-626 (-1135))))) (-5 *1 (-824)))) ((*1 *2 *3 *4) (-12 (-4 *1 (-882)) (-5 *3 (-1051)) (-5 *4 (-2 (|:| |pde| (-626 (-304 (-213)))) (|:| |constraints| (-626 (-2 (|:| |start| (-213)) (|:| |finish| (-213)) (|:| |grid| (-755)) (|:| |boundaryType| (-560)) (|:| |dStart| (-671 (-213))) (|:| |dFinish| (-671 (-213)))))) (|:| |f| (-626 (-626 (-304 (-213))))) (|:| |st| (-1135)) (|:| |tol| (-213)))) (-5 *2 (-2 (|:| -3262 (-375)) (|:| |explanations| (-1135)))))) ((*1 *2 *3) (-12 (-5 *3 (-885)) (-5 *2 (-2 (|:| -3262 (-375)) (|:| -1337 (-1135)) (|:| |explanations| (-626 (-1135))))) (-5 *1 (-884)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-885)) (-5 *4 (-1051)) (-5 *2 (-2 (|:| -3262 (-375)) (|:| -1337 (-1135)) (|:| |explanations| (-626 (-1135))))) (-5 *1 (-884))))) -(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-626 (-1149 *13))) (-5 *3 (-1149 *13)) (-5 *4 (-626 *12)) (-5 *5 (-626 *10)) (-5 *6 (-626 *13)) (-5 *7 (-626 (-626 (-2 (|:| -2710 (-755)) (|:| |pcoef| *13))))) (-5 *8 (-626 (-755))) (-5 *9 (-1236 (-626 (-1149 *10)))) (-4 *12 (-834)) (-4 *10 (-296)) (-4 *13 (-942 *10 *11 *12)) (-4 *11 (-780)) (-5 *1 (-689 *11 *12 *10 *13))))) -(((*1 *1) (-4 *1 (-39))) ((*1 *1) (-12 (-5 *1 (-96 *2)) (-4 *2 (-1082)))) ((*1 *1) (-12 (-5 *1 (-210 *2)) (-4 *2 (-1082)))) ((*1 *1) (-12 (-5 *1 (-487 *2)) (-4 *2 (-834)))) ((*1 *1) (-5 *1 (-842))) ((*1 *1) (-12 (-4 *2 (-447)) (-4 *3 (-834)) (-4 *4 (-780)) (-5 *1 (-980 *2 *3 *4 *5)) (-4 *5 (-942 *2 *4 *3)))) ((*1 *1) (-12 (-5 *1 (-992 *2)) (-4 *2 (-1082)))) ((*1 *1) (-12 (-5 *1 (-1117 *2 *3)) (-4 *2 (-13 (-1082) (-39))) (-4 *3 (-13 (-1082) (-39))))) ((*1 *1) (-12 (-5 *1 (-1124 *2)) (-4 *2 (-1082)))) ((*1 *1) (-5 *1 (-1156))) ((*1 *1) (-5 *1 (-1157)))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-1149 *2)) (-4 *2 (-426 *4)) (-4 *4 (-13 (-834) (-550))) (-5 *1 (-36 *4 *2))))) -(((*1 *2 *2) (-12 (-5 *2 (-671 (-304 (-560)))) (-5 *1 (-1023))))) -(((*1 *2 *2) (|partial| -12 (-4 *3 (-359)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)) (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-669 *3 *4 *5)))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-550)) (-4 *5 (-369 *4)) (-4 *6 (-369 *4)) (-4 *7 (-985 *4)) (-4 *2 (-669 *7 *8 *9)) (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-669 *4 *5 *6)) (-4 *8 (-369 *7)) (-4 *9 (-369 *7)))) ((*1 *1 *1) (|partial| -12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-369 *2)) (-4 *4 (-369 *2)) (-4 *2 (-359)))) ((*1 *2 *2) (|partial| -12 (-4 *3 (-359)) (-4 *3 (-170)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)) (-5 *1 (-670 *3 *4 *5 *2)) (-4 *2 (-669 *3 *4 *5)))) ((*1 *1 *1) (|partial| -12 (-5 *1 (-671 *2)) (-4 *2 (-359)) (-4 *2 (-1039)))) ((*1 *1 *1) (|partial| -12 (-4 *1 (-1103 *2 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-226 *2 *3)) (-4 *5 (-226 *2 *3)) (-4 *3 (-359)))) ((*1 *2 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-834)) (-5 *1 (-1159 *3))))) -(((*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-739))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-121) *2)) (-4 *2 (-138)) (-5 *1 (-1068 *2)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-560) *2 *2)) (-4 *2 (-138)) (-5 *1 (-1068 *2))))) -(((*1 *2 *1) (-12 (-4 *3 (-170)) (-4 *2 (-23)) (-5 *1 (-279 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1211 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) ((*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-693 *3 *2 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) ((*1 *2) (-12 (-4 *2 (-1211 *3)) (-5 *1 (-694 *3 *2)) (-4 *3 (-1039)))) ((*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-697 *3 *2 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) ((*1 *2) (-12 (-4 *1 (-855 *3)) (-5 *2 (-560))))) -(((*1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-780)) (-4 *4 (-834)) (-4 *2 (-550))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 *2)) (-4 *2 (-1211 *4)) (-5 *1 (-536 *4 *2 *5 *6)) (-4 *4 (-296)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-755)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1076 (-827 (-375)))) (-5 *2 (-1076 (-827 (-213)))) (-5 *1 (-294))))) -(((*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-671 (-213))) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-739))))) -(((*1 *2 *1) (-12 (-5 *2 (-626 (-599 *1))) (-4 *1 (-291))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-671 *1)) (-4 *1 (-344)) (-5 *2 (-1236 *1)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-671 *1)) (-4 *1 (-146)) (-4 *1 (-896)) (-5 *2 (-1236 *1))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-121)) (-5 *2 (-2 (|:| |contp| (-560)) (|:| -3025 (-626 (-2 (|:| |irr| *3) (|:| -2678 (-560))))))) (-5 *1 (-437 *3)) (-4 *3 (-1211 (-560))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-121)) (-5 *2 (-2 (|:| |contp| (-560)) (|:| -3025 (-626 (-2 (|:| |irr| *3) (|:| -2678 (-560))))))) (-5 *1 (-1200 *3)) (-4 *3 (-1211 (-560)))))) -(((*1 *2 *1) (-12 (-5 *2 (-626 (-936 (-213)))) (-5 *1 (-1237))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-834)) (-5 *1 (-721 *3))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-739))))) -(((*1 *2 *3) (-12 (-4 *4 (-550)) (-5 *2 (-755)) (-5 *1 (-48 *4 *3)) (-4 *3 (-413 *4))))) -(((*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1153)) (-4 *4 (-13 (-447) (-834) (-148) (-1029 (-560)) (-622 (-560)))) (-5 *1 (-551 *4 *2)) (-4 *2 (-13 (-27) (-1173) (-426 *4)))))) -(((*1 *2 *3 *3 *4) (-12 (-5 *4 (-755)) (-4 *5 (-550)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-962 *5 *3)) (-4 *3 (-1211 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 (-2 (|:| -3143 (-755)) (|:| |eqns| (-626 (-2 (|:| |det| *7) (|:| |rows| (-626 (-560))) (|:| |cols| (-626 (-560)))))) (|:| |fgb| (-626 *7))))) (-4 *7 (-942 *4 *6 *5)) (-4 *4 (-13 (-296) (-148))) (-4 *5 (-13 (-834) (-601 (-1153)))) (-4 *6 (-780)) (-5 *2 (-755)) (-5 *1 (-916 *4 *5 *6 *7))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-755)) (-4 *1 (-370 *3 *4)) (-4 *3 (-834)) (-4 *4 (-170)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-755)) (-4 *1 (-1255 *3 *4)) (-4 *3 (-834)) (-4 *4 (-1039))))) -(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-626 (-560))) (-5 *1 (-1092)) (-5 *3 (-560))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-739))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-53))) (-5 *4 (-626 (-458))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-475)))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-53))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-475)))) ((*1 *2 *3) (-12 (-4 (-53) (-1029 *3)) (-5 *3 (-1153)) (-5 *2 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458)))) (-5 *1 (-475)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 *5)) (-5 *4 (-626 (-458))) (-4 *5 (-13 (-344) (-601 (-560)))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-477 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-626 *4)) (-4 *4 (-13 (-344) (-601 (-560)))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-477 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 *4) (-626 (-458)))) (-5 *1 (-477 *4)) (-4 *4 (-1029 *3)) (-4 *4 (-13 (-344) (-601 (-560)))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-560)))) (-5 *4 (-626 (-458))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-478)))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-403 (-560)))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-478)))) ((*1 *2 *3) (-12 (-4 (-403 (-560)) (-1029 *3)) (-4 (-560) (-1029 *3)) (-5 *3 (-1153)) (-5 *2 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458)))) (-5 *1 (-478)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 *5)) (-5 *4 (-626 (-458))) (-4 *5 (-359)) (-14 *10 (-1 *7 *5)) (-4 *8 (-13 (-834) (-550))) (-14 *9 (-1 *5 *8)) (-5 *2 (-626 (-2 (|:| -1843 *7) (|:| -3504 (-755))))) (-5 *1 (-479 *5 *6 *7 *8 *9 *10)) (-4 *6 (-447)) (-4 *7 (-13 (-426 (-560)) (-550) (-1029 *8) (-1029 (-1153)) (-1029 (-560)) (-159) (-887 (-1153)) (-10 -8 (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -1540 ($ $)) (-15 -1646 ($ $)) (-15 -1704 ((-121) $))))))) ((*1 *2 *3) (-12 (-5 *3 (-626 *4)) (-4 *4 (-359)) (-14 *9 (-1 *6 *4)) (-4 *7 (-13 (-834) (-550))) (-14 *8 (-1 *4 *7)) (-5 *2 (-626 (-2 (|:| -1843 *6) (|:| -3504 (-755))))) (-5 *1 (-479 *4 *5 *6 *7 *8 *9)) (-4 *5 (-447)) (-4 *6 (-13 (-426 (-560)) (-550) (-1029 *7) (-1029 (-1153)) (-1029 (-560)) (-159) (-887 (-1153)) (-10 -8 (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -1540 ($ $)) (-15 -1646 ($ $)) (-15 -1704 ((-121) $))))))) ((*1 *2 *3) (-12 (-5 *3 (-1153)) (-4 *7 (-13 (-834) (-550))) (-14 *8 (-1 *4 *7)) (-5 *2 (-1 (-626 (-2 (|:| -1843 *6) (|:| -3504 (-755)))) (-626 *4) (-626 (-458)))) (-5 *1 (-479 *4 *5 *6 *7 *8 *9)) (-4 *4 (-1029 *3)) (-4 *5 (-1029 *3)) (-4 *4 (-359)) (-4 *5 (-447)) (-4 *6 (-13 (-426 (-560)) (-550) (-1029 *7) (-1029 *3) (-1029 (-560)) (-159) (-887 *3) (-10 -8 (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -1540 ($ $)) (-15 -1646 ($ $)) (-15 -1704 ((-121) $))))) (-14 *9 (-1 *6 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-945 (-560))))) (-5 *4 (-626 (-458))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-480)))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-403 (-945 (-560))))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-480)))) ((*1 *2 *3) (-12 (-4 (-403 (-945 (-560))) (-1029 *3)) (-4 (-945 (-560)) (-1029 *3)) (-5 *3 (-1153)) (-5 *2 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458)))) (-5 *1 (-480)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-726 *5 (-560))))) (-5 *4 (-626 (-458))) (-14 *5 (-1153)) (-5 *2 (-626 (-2 (|:| -1843 (-725 *5 (-560))) (|:| -3504 (-755))))) (-5 *1 (-481 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-403 (-726 *4 (-560))))) (-14 *4 (-1153)) (-5 *2 (-626 (-2 (|:| -1843 (-725 *4 (-560))) (|:| -3504 (-755))))) (-5 *1 (-481 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-1 (-626 (-2 (|:| -1843 (-725 *4 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 *4 (-560)))) (-626 (-458)))) (-5 *1 (-481 *4)) (-14 *4 *3)))) -(((*1 *2 *1) (-12 (-4 *1 (-318 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-779)) (-5 *2 (-755)))) ((*1 *2 *1) (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-1082)) (-5 *2 (-755)))) ((*1 *2 *1) (-12 (-5 *2 (-755)) (-5 *1 (-717 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-708))))) -(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-145))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-53))) (-5 *4 (-626 (-458))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-475)))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-53))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-475)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 *5)) (-5 *4 (-626 (-458))) (-4 *5 (-13 (-344) (-601 (-560)))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-477 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-626 *4)) (-4 *4 (-13 (-344) (-601 (-560)))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-477 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-560)))) (-5 *4 (-626 (-458))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-478)))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-403 (-560)))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-478)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 *5)) (-5 *4 (-626 (-458))) (-4 *5 (-359)) (-14 *10 (-1 *7 *5)) (-4 *8 (-13 (-834) (-550))) (-14 *9 (-1 *5 *8)) (-5 *2 (-626 (-2 (|:| -1843 *7) (|:| -3504 (-755))))) (-5 *1 (-479 *5 *6 *7 *8 *9 *10)) (-4 *6 (-447)) (-4 *7 (-13 (-426 (-560)) (-550) (-1029 *8) (-1029 (-1153)) (-1029 (-560)) (-159) (-887 (-1153)) (-10 -8 (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -1540 ($ $)) (-15 -1646 ($ $)) (-15 -1704 ((-121) $))))))) ((*1 *2 *3) (-12 (-5 *3 (-626 *4)) (-4 *4 (-359)) (-14 *9 (-1 *6 *4)) (-4 *7 (-13 (-834) (-550))) (-14 *8 (-1 *4 *7)) (-5 *2 (-626 (-2 (|:| -1843 *6) (|:| -3504 (-755))))) (-5 *1 (-479 *4 *5 *6 *7 *8 *9)) (-4 *5 (-447)) (-4 *6 (-13 (-426 (-560)) (-550) (-1029 *7) (-1029 (-1153)) (-1029 (-560)) (-159) (-887 (-1153)) (-10 -8 (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -1540 ($ $)) (-15 -1646 ($ $)) (-15 -1704 ((-121) $))))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-945 (-560))))) (-5 *4 (-626 (-458))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-480)))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-403 (-945 (-560))))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-480)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-726 *5 (-560))))) (-5 *4 (-626 (-458))) (-14 *5 (-1153)) (-5 *2 (-626 (-2 (|:| -1843 (-725 *5 (-560))) (|:| -3504 (-755))))) (-5 *1 (-481 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-403 (-726 *4 (-560))))) (-14 *4 (-1153)) (-5 *2 (-626 (-2 (|:| -1843 (-725 *4 (-560))) (|:| -3504 (-755))))) (-5 *1 (-481 *4))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-626 (-626 (-626 *4)))) (-5 *3 (-626 *4)) (-4 *4 (-834)) (-5 *1 (-1159 *4))))) -(((*1 *2 *3 *4 *3 *5) (-12 (-4 *6 (-359)) (-14 *7 (-626 (-1153))) (-4 *8 (-226 (-2271 *7) (-755))) (-4 *9 (-633 *6)) (-5 *2 (-2 (|:| |fnc| *3) (|:| |crv| *3) (|:| |chart| (-626 (-560))))) (-5 *1 (-646 *6 *7 *3 *8 *4 *9 *10)) (-5 *5 (-560)) (-4 *3 (-942 *6 *8 (-844 *7))) (-4 *4 (-963 *6)) (-4 *10 (-912 *6 *9))))) -(((*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-739))))) -(((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-167 (-213)) (-167 (-213)))) (-5 *4 (-1076 (-213))) (-5 *5 (-121)) (-5 *2 (-1238)) (-5 *1 (-245))))) -(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (-5 *2 (-375)) (-5 *1 (-195))))) -(((*1 *1 *1) (-5 *1 (-213))) ((*1 *2 *2) (-12 (-5 *2 (-213)) (-5 *1 (-214)))) ((*1 *2 *2) (-12 (-5 *2 (-167 (-213))) (-5 *1 (-214)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-427 *3 *2)) (-4 *2 (-426 *3)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-427 *3 *2)) (-4 *2 (-426 *3)))) ((*1 *1 *1) (-4 *1 (-1116))) ((*1 *1 *1 *1) (-4 *1 (-1116)))) -(((*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-834)) (-4 *1 (-370 *3 *4)) (-4 *4 (-170))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550)) (-5 *2 (-121))))) -(((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-671 (-1149 *8))) (-4 *5 (-1039)) (-4 *8 (-1039)) (-4 *6 (-1211 *5)) (-5 *2 (-671 *6)) (-5 *1 (-502 *5 *6 *7 *8)) (-4 *7 (-1211 *6))))) -(((*1 *2 *3) (-12 (-5 *2 (-403 (-560))) (-5 *1 (-557)) (-5 *3 (-560))))) -(((*1 *2 *1) (-12 (-4 *1 (-1114 *3)) (-4 *3 (-1039)) (-5 *2 (-626 (-626 (-936 *3)))))) ((*1 *1 *2 *3 *3) (-12 (-5 *2 (-626 (-626 (-936 *4)))) (-5 *3 (-121)) (-4 *4 (-1039)) (-4 *1 (-1114 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-626 (-626 (-936 *3)))) (-4 *3 (-1039)) (-4 *1 (-1114 *3)))) ((*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-626 (-626 (-626 *4)))) (-5 *3 (-121)) (-4 *1 (-1114 *4)) (-4 *4 (-1039)))) ((*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-626 (-626 (-936 *4)))) (-5 *3 (-121)) (-4 *1 (-1114 *4)) (-4 *4 (-1039)))) ((*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-626 (-626 (-626 *5)))) (-5 *3 (-626 (-169))) (-5 *4 (-169)) (-4 *1 (-1114 *5)) (-4 *5 (-1039)))) ((*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-626 (-626 (-936 *5)))) (-5 *3 (-626 (-169))) (-5 *4 (-169)) (-4 *1 (-1114 *5)) (-4 *5 (-1039))))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-550)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-626 *3)) (-5 *1 (-970 *4 *5 *6 *3)) (-4 *3 (-1053 *4 *5 *6))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-403 (-945 *5))) (-5 *4 (-1153)) (-4 *5 (-13 (-296) (-834) (-148))) (-5 *2 (-626 (-283 (-304 *5)))) (-5 *1 (-1109 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-403 (-945 *4))) (-4 *4 (-13 (-296) (-834) (-148))) (-5 *2 (-626 (-283 (-304 *4)))) (-5 *1 (-1109 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-283 (-403 (-945 *5)))) (-5 *4 (-1153)) (-4 *5 (-13 (-296) (-834) (-148))) (-5 *2 (-626 (-283 (-304 *5)))) (-5 *1 (-1109 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-283 (-403 (-945 *4)))) (-4 *4 (-13 (-296) (-834) (-148))) (-5 *2 (-626 (-283 (-304 *4)))) (-5 *1 (-1109 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-945 *5)))) (-5 *4 (-626 (-1153))) (-4 *5 (-13 (-296) (-834) (-148))) (-5 *2 (-626 (-626 (-283 (-304 *5))))) (-5 *1 (-1109 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-403 (-945 *4)))) (-4 *4 (-13 (-296) (-834) (-148))) (-5 *2 (-626 (-626 (-283 (-304 *4))))) (-5 *1 (-1109 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-283 (-403 (-945 *5))))) (-5 *4 (-626 (-1153))) (-4 *5 (-13 (-296) (-834) (-148))) (-5 *2 (-626 (-626 (-283 (-304 *5))))) (-5 *1 (-1109 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-283 (-403 (-945 *4))))) (-4 *4 (-13 (-296) (-834) (-148))) (-5 *2 (-626 (-626 (-283 (-304 *4))))) (-5 *1 (-1109 *4))))) -(((*1 *2) (|partial| -12 (-4 *4 (-1191)) (-4 *5 (-1211 (-403 *2))) (-4 *2 (-1211 *4)) (-5 *1 (-333 *3 *4 *2 *5)) (-4 *3 (-334 *4 *2 *5)))) ((*1 *2) (|partial| -12 (-4 *1 (-334 *3 *2 *4)) (-4 *3 (-1191)) (-4 *4 (-1211 (-403 *2))) (-4 *2 (-1211 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-626 (-57))) (-5 *1 (-879 *3)) (-4 *3 (-1082))))) -(((*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-739))))) -(((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-322))))) -(((*1 *1 *1) (-12 (-5 *1 (-595 *2)) (-4 *2 (-1082)))) ((*1 *1 *1) (-5 *1 (-615)))) -(((*1 *2 *2 *3) (|partial| -12 (-5 *3 (-755)) (-4 *1 (-976 *2)) (-4 *2 (-1173))))) -(((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-842))))) -(((*1 *2 *1) (-12 (-5 *2 (-626 (-1174 *3))) (-5 *1 (-1174 *3)) (-4 *3 (-1082))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-304 (-560))) (|:| -1333 (-304 (-375))) (|:| CF (-304 (-167 (-375)))) (|:| |switch| (-1152)))) (-5 *1 (-1152))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-739))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-626 *1)) (-4 *1 (-426 *4)) (-4 *4 (-834)))) ((*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1153)) (-4 *1 (-426 *3)) (-4 *3 (-834)))) ((*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1153)) (-4 *1 (-426 *3)) (-4 *3 (-834)))) ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1153)) (-4 *1 (-426 *3)) (-4 *3 (-834)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1153)) (-4 *1 (-426 *3)) (-4 *3 (-834))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-359)) (-5 *1 (-275 *3 *2)) (-4 *2 (-1226 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-560)) (-5 *2 (-1241)) (-5 *1 (-998))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-53))) (-5 *4 (-626 (-458))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-475)))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-53))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-475)))) ((*1 *2 *3) (-12 (-4 (-53) (-1029 *3)) (-5 *3 (-1153)) (-5 *2 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458)))) (-5 *1 (-475)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 *5)) (-5 *4 (-626 (-458))) (-4 *5 (-13 (-344) (-601 (-560)))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-477 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-626 *4)) (-4 *4 (-13 (-344) (-601 (-560)))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-477 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 *4) (-626 (-458)))) (-5 *1 (-477 *4)) (-4 *4 (-1029 *3)) (-4 *4 (-13 (-344) (-601 (-560)))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-560)))) (-5 *4 (-626 (-458))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-478)))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-403 (-560)))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-478)))) ((*1 *2 *3) (-12 (-4 (-403 (-560)) (-1029 *3)) (-4 (-560) (-1029 *3)) (-5 *3 (-1153)) (-5 *2 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458)))) (-5 *1 (-478)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 *5)) (-5 *4 (-626 (-458))) (-4 *5 (-359)) (-14 *10 (-1 *7 *5)) (-4 *8 (-13 (-834) (-550))) (-14 *9 (-1 *5 *8)) (-5 *2 (-626 (-2 (|:| -1843 *7) (|:| -3504 (-755))))) (-5 *1 (-479 *5 *6 *7 *8 *9 *10)) (-4 *6 (-447)) (-4 *7 (-13 (-426 (-560)) (-550) (-1029 *8) (-1029 (-1153)) (-1029 (-560)) (-159) (-887 (-1153)) (-10 -8 (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -1540 ($ $)) (-15 -1646 ($ $)) (-15 -1704 ((-121) $))))))) ((*1 *2 *3) (-12 (-5 *3 (-626 *4)) (-4 *4 (-359)) (-14 *9 (-1 *6 *4)) (-4 *7 (-13 (-834) (-550))) (-14 *8 (-1 *4 *7)) (-5 *2 (-626 (-2 (|:| -1843 *6) (|:| -3504 (-755))))) (-5 *1 (-479 *4 *5 *6 *7 *8 *9)) (-4 *5 (-447)) (-4 *6 (-13 (-426 (-560)) (-550) (-1029 *7) (-1029 (-1153)) (-1029 (-560)) (-159) (-887 (-1153)) (-10 -8 (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -1540 ($ $)) (-15 -1646 ($ $)) (-15 -1704 ((-121) $))))))) ((*1 *2 *3) (-12 (-5 *3 (-1153)) (-4 *7 (-13 (-834) (-550))) (-14 *8 (-1 *4 *7)) (-5 *2 (-1 (-626 (-2 (|:| -1843 *6) (|:| -3504 (-755)))) (-626 *4) (-626 (-458)))) (-5 *1 (-479 *4 *5 *6 *7 *8 *9)) (-4 *4 (-1029 *3)) (-4 *5 (-1029 *3)) (-4 *4 (-359)) (-4 *5 (-447)) (-4 *6 (-13 (-426 (-560)) (-550) (-1029 *7) (-1029 *3) (-1029 (-560)) (-159) (-887 *3) (-10 -8 (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -1540 ($ $)) (-15 -1646 ($ $)) (-15 -1704 ((-121) $))))) (-14 *9 (-1 *6 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-945 (-560))))) (-5 *4 (-626 (-458))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-480)))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-403 (-945 (-560))))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-480)))) ((*1 *2 *3) (-12 (-4 (-403 (-945 (-560))) (-1029 *3)) (-4 (-945 (-560)) (-1029 *3)) (-5 *3 (-1153)) (-5 *2 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458)))) (-5 *1 (-480)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-726 *5 (-560))))) (-5 *4 (-626 (-458))) (-14 *5 (-1153)) (-5 *2 (-626 (-2 (|:| -1843 (-725 *5 (-560))) (|:| -3504 (-755))))) (-5 *1 (-481 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-403 (-726 *4 (-560))))) (-14 *4 (-1153)) (-5 *2 (-626 (-2 (|:| -1843 (-725 *4 (-560))) (|:| -3504 (-755))))) (-5 *1 (-481 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-1 (-626 (-2 (|:| -1843 (-725 *4 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 *4 (-560)))) (-626 (-458)))) (-5 *1 (-481 *4)) (-14 *4 *3)))) -(((*1 *2 *2 *1) (-12 (-5 *1 (-210 *2)) (-4 *2 (-1082)))) ((*1 *2 *2 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-1187)))) ((*1 *2 *2 *1) (-12 (-5 *1 (-992 *2)) (-4 *2 (-1082))))) -(((*1 *2 *2) (-12 (-5 *2 (-626 *6)) (-4 *6 (-942 *3 *4 *5)) (-4 *3 (-296)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *1 (-442 *3 *4 *5 *6)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-626 *7)) (-5 *3 (-1135)) (-4 *7 (-942 *4 *5 *6)) (-4 *4 (-296)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *1 (-442 *4 *5 *6 *7)))) ((*1 *2 *2 *3 *3) (-12 (-5 *2 (-626 *7)) (-5 *3 (-1135)) (-4 *7 (-942 *4 *5 *6)) (-4 *4 (-296)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *1 (-442 *4 *5 *6 *7))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-739))))) -(((*1 *2 *3) (-12 (-5 *3 (-1153)) (-4 *5 (-1191)) (-4 *6 (-1211 *5)) (-4 *7 (-1211 (-403 *6))) (-5 *2 (-626 (-945 *5))) (-5 *1 (-333 *4 *5 *6 *7)) (-4 *4 (-334 *5 *6 *7)))) ((*1 *2 *3) (-12 (-5 *3 (-1153)) (-4 *1 (-334 *4 *5 *6)) (-4 *4 (-1191)) (-4 *5 (-1211 *4)) (-4 *6 (-1211 (-403 *5))) (-4 *4 (-359)) (-5 *2 (-626 (-945 *4)))))) -(((*1 *2 *3) (-12 (-4 *4 (-344)) (-5 *2 (-414 *3)) (-5 *1 (-354 *4 *3)) (-4 *3 (-1211 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-57))))) -(((*1 *2 *3) (-12 (-5 *3 (-755)) (-4 *4 (-359)) (-4 *5 (-1211 *4)) (-5 *2 (-1241)) (-5 *1 (-45 *4 *5 *6 *7)) (-4 *6 (-1211 (-403 *5))) (-14 *7 *6)))) -(((*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-919))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 (-53))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-475)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-53))) (-5 *4 (-626 (-458))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-475)))) ((*1 *2 *3) (-12 (-4 (-53) (-1029 *3)) (-5 *3 (-1153)) (-5 *2 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-53)) (-626 (-458)))) (-5 *1 (-475)))) ((*1 *2 *3) (-12 (-5 *3 (-626 *4)) (-4 *4 (-13 (-344) (-601 (-560)))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-477 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 *5)) (-5 *4 (-626 (-458))) (-4 *5 (-13 (-344) (-601 (-560)))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-477 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 *4) (-626 (-458)))) (-5 *1 (-477 *4)) (-4 *4 (-1029 *3)) (-4 *4 (-13 (-344) (-601 (-560)))))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-403 (-560)))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-478)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-560)))) (-5 *4 (-626 (-458))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-478)))) ((*1 *2 *3) (-12 (-4 (-403 (-560)) (-1029 *3)) (-4 (-560) (-1029 *3)) (-5 *3 (-1153)) (-5 *2 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-560))) (-626 (-458)))) (-5 *1 (-478)))) ((*1 *2 *3) (-12 (-5 *3 (-626 *4)) (-4 *4 (-359)) (-14 *9 (-1 *6 *4)) (-4 *7 (-13 (-834) (-550))) (-14 *8 (-1 *4 *7)) (-5 *2 (-626 (-2 (|:| -1843 *6) (|:| -3504 (-755))))) (-5 *1 (-479 *4 *5 *6 *7 *8 *9)) (-4 *5 (-447)) (-4 *6 (-13 (-426 (-560)) (-550) (-1029 *7) (-1029 (-1153)) (-1029 (-560)) (-159) (-887 (-1153)) (-10 -8 (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -1540 ($ $)) (-15 -1646 ($ $)) (-15 -1704 ((-121) $))))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 *5)) (-5 *4 (-626 (-458))) (-4 *5 (-359)) (-14 *10 (-1 *7 *5)) (-4 *8 (-13 (-834) (-550))) (-14 *9 (-1 *5 *8)) (-5 *2 (-626 (-2 (|:| -1843 *7) (|:| -3504 (-755))))) (-5 *1 (-479 *5 *6 *7 *8 *9 *10)) (-4 *6 (-447)) (-4 *7 (-13 (-426 (-560)) (-550) (-1029 *8) (-1029 (-1153)) (-1029 (-560)) (-159) (-887 (-1153)) (-10 -8 (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -1540 ($ $)) (-15 -1646 ($ $)) (-15 -1704 ((-121) $))))))) ((*1 *2 *3) (-12 (-5 *3 (-1153)) (-4 *7 (-13 (-834) (-550))) (-14 *8 (-1 *4 *7)) (-5 *2 (-1 (-626 (-2 (|:| -1843 *6) (|:| -3504 (-755)))) (-626 *4) (-626 (-458)))) (-5 *1 (-479 *4 *5 *6 *7 *8 *9)) (-4 *4 (-1029 *3)) (-4 *5 (-1029 *3)) (-4 *4 (-359)) (-4 *5 (-447)) (-4 *6 (-13 (-426 (-560)) (-550) (-1029 *7) (-1029 *3) (-1029 (-560)) (-159) (-887 *3) (-10 -8 (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -1540 ($ $)) (-15 -1646 ($ $)) (-15 -1704 ((-121) $))))) (-14 *9 (-1 *6 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-403 (-945 (-560))))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-480)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-945 (-560))))) (-5 *4 (-626 (-458))) (-5 *2 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755))))) (-5 *1 (-480)))) ((*1 *2 *3) (-12 (-4 (-403 (-945 (-560))) (-1029 *3)) (-4 (-945 (-560)) (-1029 *3)) (-5 *3 (-1153)) (-5 *2 (-1 (-626 (-2 (|:| -1843 (-304 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-945 (-560)))) (-626 (-458)))) (-5 *1 (-480)))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-403 (-726 *4 (-560))))) (-14 *4 (-1153)) (-5 *2 (-626 (-2 (|:| -1843 (-725 *4 (-560))) (|:| -3504 (-755))))) (-5 *1 (-481 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-726 *5 (-560))))) (-5 *4 (-626 (-458))) (-14 *5 (-1153)) (-5 *2 (-626 (-2 (|:| -1843 (-725 *5 (-560))) (|:| -3504 (-755))))) (-5 *1 (-481 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-1 (-626 (-2 (|:| -1843 (-725 *4 (-560))) (|:| -3504 (-755)))) (-626 (-403 (-726 *4 (-560)))) (-626 (-458)))) (-5 *1 (-481 *4)) (-14 *4 *3)))) -(((*1 *2) (-12 (-5 *2 (-1241)) (-5 *1 (-1165 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-739))))) -(((*1 *2) (-12 (-4 *2 (-13 (-426 *3) (-994))) (-5 *1 (-267 *3 *2)) (-4 *3 (-13 (-834) (-550)))))) -(((*1 *2 *3) (-12 (-4 *4 (-344)) (-5 *2 (-414 *3)) (-5 *1 (-354 *4 *3)) (-4 *3 (-1211 *4))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *1 (-865 *2)) (-4 *2 (-1187)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *1 (-867 *2)) (-4 *2 (-1187)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *1 (-869 *2)) (-4 *2 (-1187))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-626 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-447)) (-4 *3 (-550)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *1 (-970 *3 *4 *5 *6))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1173))))) -(((*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-1187)) (-4 *3 (-834)) (-5 *2 (-121)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4 *4)) (-4 *1 (-369 *4)) (-4 *4 (-1187)) (-5 *2 (-121))))) -(((*1 *2 *3) (-12 (-5 *3 (-577 *2)) (-4 *2 (-13 (-29 *4) (-1173))) (-5 *1 (-575 *4 *2)) (-4 *4 (-13 (-447) (-1029 (-560)) (-834) (-622 (-560)))))) ((*1 *2 *3) (-12 (-5 *3 (-577 (-403 (-945 *4)))) (-4 *4 (-13 (-447) (-1029 (-560)) (-834) (-622 (-560)))) (-5 *2 (-304 *4)) (-5 *1 (-580 *4))))) -(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-671 (-213))) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-739))))) -(((*1 *1 *1) (-5 *1 (-121))) ((*1 *1 *1) (-4 *1 (-132))) ((*1 *1 *1) (-5 *1 (-842))) ((*1 *1 *1) (-5 *1 (-1100)))) -(((*1 *2 *1) (-12 (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)) (-5 *2 (-121)))) ((*1 *2 *1) (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039)) (-4 *6 (-226 *4 *5)) (-4 *7 (-226 *3 *5)) (-5 *2 (-121))))) -(((*1 *2 *2) (-12 (-5 *2 (-1133 (-626 (-560)))) (-5 *1 (-870))))) -(((*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-560)) (-5 *1 (-1170 *4)) (-4 *4 (-1039))))) -(((*1 *1 *1) (-4 *1 (-612))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-613 *3 *2)) (-4 *2 (-13 (-426 *3) (-994) (-1173)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-808))))) -(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-560)) (-5 *5 (-671 (-213))) (-5 *4 (-213)) (-5 *2 (-1027)) (-5 *1 (-739))))) -(((*1 *2 *2) (-12 (-5 *2 (-626 *6)) (-4 *6 (-942 *3 *4 *5)) (-4 *3 (-447)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *1 (-444 *3 *4 *5 *6))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-121)) (-5 *1 (-123)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-291)) (-5 *3 (-1153)) (-5 *2 (-121)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-291)) (-5 *3 (-123)) (-5 *2 (-121)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-121)) (-5 *1 (-599 *4)) (-4 *4 (-834)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-123)) (-5 *2 (-121)) (-5 *1 (-599 *4)) (-4 *4 (-834)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-1082)) (-5 *2 (-121)) (-5 *1 (-874 *5 *3 *4)) (-4 *3 (-873 *5)) (-4 *4 (-601 (-879 *5))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 *6)) (-4 *6 (-873 *5)) (-4 *5 (-1082)) (-5 *2 (-121)) (-5 *1 (-874 *5 *6 *4)) (-4 *4 (-601 (-879 *5)))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-1181 *3 *4 *5 *2)) (-4 *3 (-550)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *2 (-1053 *3 *4 *5))))) -(((*1 *2 *3 *3 *4) (-12 (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-626 (-2 (|:| |val| (-626 *3)) (|:| -3249 *4)))) (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1058 *5 *6 *7 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1173))))) -(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-466)) (-5 *4 (-909)) (-5 *2 (-1241)) (-5 *1 (-1237))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-560)) (-5 *5 (-121)) (-5 *6 (-671 (-213))) (-5 *4 (-213)) (-5 *2 (-1027)) (-5 *1 (-739))))) -(((*1 *2 *2) (-12 (-4 *3 (-834)) (-5 *1 (-922 *3 *2)) (-4 *2 (-426 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-304 (-560))) (-5 *1 (-923))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 *2)) (-4 *2 (-426 *4)) (-5 *1 (-157 *4 *2)) (-4 *4 (-13 (-834) (-550)))))) -(((*1 *1 *1) (-12 (-5 *1 (-283 *2)) (-4 *2 (-21)) (-4 *2 (-1187))))) -(((*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-213) (-213) (-213))) (-5 *4 (-3 (-1 (-213) (-213) (-213) (-213)) "undefined")) (-5 *5 (-1076 (-213))) (-5 *6 (-626 (-251))) (-5 *2 (-1113 (-213))) (-5 *1 (-678)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-936 (-213)) (-213) (-213))) (-5 *4 (-1076 (-213))) (-5 *5 (-626 (-251))) (-5 *2 (-1113 (-213))) (-5 *1 (-678)))) ((*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1113 (-213))) (-5 *3 (-1 (-936 (-213)) (-213) (-213))) (-5 *4 (-1076 (-213))) (-5 *5 (-626 (-251))) (-5 *1 (-678))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 (-458))) (-5 *2 (-2 (|:| |guessStream| (-1 (-1133 (-1193 (-53))) (-1193 (-53)))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-53)))) (-1193 (-1149 (-53))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 (-53) (-755) (-755) (-1149 (-53)))) (|:| AF (-1 (-1149 (-53)) (-755) (-755) (-1193 (-1149 (-53))))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 (-53)) (-755))))) (-5 *1 (-475)))) ((*1 *2 *3) (-12 (-4 (-53) (-1029 *3)) (-5 *3 (-1153)) (-5 *2 (-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 (-53))) (-1193 (-53)))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-53)))) (-1193 (-1149 (-53))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) *3)) (|:| A (-1 (-53) (-755) (-755) (-1149 (-53)))) (|:| AF (-1 (-1149 (-53)) (-755) (-755) (-1193 (-1149 (-53))))) (|:| AX (-1 (-304 (-560)) (-755) *3 (-304 (-560)))) (|:| C (-1 (-626 (-53)) (-755)))) (-626 (-458)))) (-5 *1 (-475)))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-458))) (-5 *2 (-2 (|:| |guessStream| (-1 (-1133 (-1193 *4)) (-1193 *4))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 *4))) (-1193 (-1149 *4)))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 *4 (-755) (-755) (-1149 *4))) (|:| AF (-1 (-1149 *4) (-755) (-755) (-1193 (-1149 *4)))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 *4) (-755))))) (-5 *1 (-477 *4)) (-4 *4 (-13 (-344) (-601 (-560)))))) ((*1 *2 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 *4)) (-1193 *4))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 *4))) (-1193 (-1149 *4)))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) *3)) (|:| A (-1 *4 (-755) (-755) (-1149 *4))) (|:| AF (-1 (-1149 *4) (-755) (-755) (-1193 (-1149 *4)))) (|:| AX (-1 (-304 (-560)) (-755) *3 (-304 (-560)))) (|:| C (-1 (-626 *4) (-755)))) (-626 (-458)))) (-5 *1 (-477 *4)) (-4 *4 (-1029 *3)) (-4 *4 (-13 (-344) (-601 (-560)))))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-458))) (-5 *2 (-2 (|:| |guessStream| (-1 (-1133 (-1193 (-403 (-560)))) (-1193 (-403 (-560))))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-403 (-560))))) (-1193 (-1149 (-403 (-560)))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 (-560) (-755) (-755) (-1149 (-560)))) (|:| AF (-1 (-1149 (-403 (-560))) (-755) (-755) (-1193 (-1149 (-403 (-560)))))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 (-560)) (-755))))) (-5 *1 (-478)))) ((*1 *2 *3) (-12 (-4 (-403 (-560)) (-1029 *3)) (-4 (-560) (-1029 *3)) (-5 *3 (-1153)) (-5 *2 (-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 (-403 (-560)))) (-1193 (-403 (-560))))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-403 (-560))))) (-1193 (-1149 (-403 (-560)))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) *3)) (|:| A (-1 (-560) (-755) (-755) (-1149 (-560)))) (|:| AF (-1 (-1149 (-403 (-560))) (-755) (-755) (-1193 (-1149 (-403 (-560)))))) (|:| AX (-1 (-304 (-560)) (-755) *3 (-304 (-560)))) (|:| C (-1 (-626 (-560)) (-755)))) (-626 (-458)))) (-5 *1 (-478)))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-458))) (-4 *7 (-13 (-834) (-550))) (-14 *8 (-1 *4 *7)) (-5 *2 (-2 (|:| |guessStream| (-1 (-1133 (-1193 *4)) (-1193 *4))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 *4))) (-1193 (-1149 *4)))) (|:| |exprStream| (-1 (-1133 *6) *6 (-1153))) (|:| A (-1 *5 (-755) (-755) (-1149 *5))) (|:| AF (-1 (-1149 *4) (-755) (-755) (-1193 (-1149 *4)))) (|:| AX (-1 *6 (-755) (-1153) *6)) (|:| C (-1 (-626 *5) (-755))))) (-5 *1 (-479 *4 *5 *6 *7 *8 *9)) (-4 *4 (-359)) (-4 *5 (-447)) (-4 *6 (-13 (-426 (-560)) (-550) (-1029 *7) (-1029 (-1153)) (-1029 (-560)) (-159) (-887 (-1153)) (-10 -8 (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -1540 ($ $)) (-15 -1646 ($ $)) (-15 -1704 ((-121) $))))) (-14 *9 (-1 *6 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-1153)) (-4 *7 (-13 (-834) (-550))) (-14 *8 (-1 *4 *7)) (-5 *2 (-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 *4)) (-1193 *4))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 *4))) (-1193 (-1149 *4)))) (|:| |exprStream| (-1 (-1133 *6) *6 *3)) (|:| A (-1 *5 (-755) (-755) (-1149 *5))) (|:| AF (-1 (-1149 *4) (-755) (-755) (-1193 (-1149 *4)))) (|:| AX (-1 *6 (-755) *3 *6)) (|:| C (-1 (-626 *5) (-755)))) (-626 (-458)))) (-5 *1 (-479 *4 *5 *6 *7 *8 *9)) (-4 *4 (-1029 *3)) (-4 *5 (-1029 *3)) (-4 *4 (-359)) (-4 *5 (-447)) (-4 *6 (-13 (-426 (-560)) (-550) (-1029 *7) (-1029 *3) (-1029 (-560)) (-159) (-887 *3) (-10 -8 (-15 * ($ $ $)) (-15 -1733 ($ $ $)) (-15 ** ($ $ $)) (-15 -1540 ($ $)) (-15 -1646 ($ $)) (-15 -1704 ((-121) $))))) (-14 *9 (-1 *6 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-458))) (-5 *2 (-2 (|:| |guessStream| (-1 (-1133 (-1193 (-403 (-945 (-560))))) (-1193 (-403 (-945 (-560)))))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-403 (-945 (-560)))))) (-1193 (-1149 (-403 (-945 (-560))))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) (-1153))) (|:| A (-1 (-945 (-560)) (-755) (-755) (-1149 (-945 (-560))))) (|:| AF (-1 (-1149 (-403 (-945 (-560)))) (-755) (-755) (-1193 (-1149 (-403 (-945 (-560))))))) (|:| AX (-1 (-304 (-560)) (-755) (-1153) (-304 (-560)))) (|:| C (-1 (-626 (-945 (-560))) (-755))))) (-5 *1 (-480)))) ((*1 *2 *3) (-12 (-4 (-403 (-945 (-560))) (-1029 *3)) (-4 (-945 (-560)) (-1029 *3)) (-5 *3 (-1153)) (-5 *2 (-1 (-2 (|:| |guessStream| (-1 (-1133 (-1193 (-403 (-945 (-560))))) (-1193 (-403 (-945 (-560)))))) (|:| |degreeStream| (-1133 (-755))) (|:| |testStream| (-1 (-1133 (-1193 (-1149 (-403 (-945 (-560)))))) (-1193 (-1149 (-403 (-945 (-560))))))) (|:| |exprStream| (-1 (-1133 (-304 (-560))) (-304 (-560)) *3)) (|:| A (-1 (-945 (-560)) (-755) (-755) (-1149 (-945 (-560))))) (|:| AF (-1 (-1149 (-403 (-945 (-560)))) (-755) (-755) (-1193 (-1149 (-403 (-945 (-560))))))) (|:| AX (-1 (-304 (-560)) (-755) *3 (-304 (-560)))) (|:| C (-1 (-626 (-945 (-560))) (-755)))) (-626 (-458)))) (-5 *1 (-480)))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-458))) (-5 *2 HPSPEC) (-5 *1 (-481 *4)) (-14 *4 (-1153)))) ((*1 *2 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-1 HPSPEC (-626 (-458)))) (-5 *1 (-481 *4)) (-14 *4 *3)))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1153)) (-5 *2 (-3 (|:| |fst| (-430)) (|:| -2303 "void"))) (-5 *1 (-1156))))) -(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-560)) (-5 *5 (-671 (-213))) (-5 *6 (-3 (|:| |fn| (-384)) (|:| |fp| (-72 DOT)))) (-5 *7 (-3 (|:| |fn| (-384)) (|:| |fp| (-73 IMAGE)))) (-5 *4 (-213)) (-5 *2 (-1027)) (-5 *1 (-739)))) ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-560)) (-5 *5 (-671 (-213))) (-5 *6 (-3 (|:| |fn| (-384)) (|:| |fp| (-72 DOT)))) (-5 *7 (-3 (|:| |fn| (-384)) (|:| |fp| (-73 IMAGE)))) (-5 *8 (-384)) (-5 *4 (-213)) (-5 *2 (-1027)) (-5 *1 (-739))))) -(((*1 *2 *1) (-12 (-5 *2 (-755)) (-5 *1 (-210 *3)) (-4 *3 (-1082)))) ((*1 *2 *1) (-12 (-4 *1 (-242 *3)) (-4 *3 (-1187)) (-5 *2 (-755)))) ((*1 *2 *1) (-12 (-4 *1 (-291)) (-5 *2 (-755)))) ((*1 *2 *3) (-12 (-4 *4 (-1039)) (-4 *2 (-13 (-400) (-1029 *4) (-359) (-1173) (-274))) (-5 *1 (-438 *4 *3 *2)) (-4 *3 (-1211 *4)))) ((*1 *2 *1) (-12 (-5 *2 (-755)) (-5 *1 (-599 *3)) (-4 *3 (-834)))) ((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-842)))) ((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-842))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-560)) (-4 *2 (-426 *3)) (-5 *1 (-36 *3 *2)) (-4 *3 (-1029 *4)) (-4 *3 (-13 (-834) (-550)))))) -(((*1 *2 *2) (-12 (-4 *3 (-834)) (-5 *1 (-922 *3 *2)) (-4 *2 (-426 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-304 (-560))) (-5 *1 (-923))))) -(((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-919))))) +(((*1 *2 *3 *4) (-12 (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *3 (-1061 *5 *6 *7)) (-5 *2 (-634 *4)) (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -2850 *4) (|:| -2183 *4) (|:| |totalpts| (-568)) (|:| |success| (-121)))) (-5 *1 (-784)) (-5 *5 (-568))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1236 *3 *2)) (-4 *2 (-1234 *3))))) +(((*1 *2) (-12 (-4 *3 (-370)) (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *6 (-230 (-1697 *4) (-763))) (-4 *7 (-971 *3)) (-4 *8 (-641 *3)) (-4 *9 (-920 *3 *8)) (-4 *10 (-235 *9)) (-4 *11 (-536 *3 *4 *5 *6 *7 *8 *9 *10 *13)) (-4 *13 (-117)) (-5 *2 (-634 *9)) (-5 *1 (-467 *3 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13)) (-4 *12 (-258 *11)))) ((*1 *2) (-12 (-5 *2 (-634 (-922 *3))) (-5 *1 (-867 *3 *4 *5)) (-4 *3 (-350)) (-14 *4 (-634 (-1161))) (-4 *5 (-117)))) ((*1 *2) (-12 (-5 *2 (-634 (-921 *3))) (-5 *1 (-868 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *5 (-117))))) +(((*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1061 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-788)) (-4 *4 (-842)) (-4 *2 (-558))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-541) (-634 (-541)))) (-5 *1 (-123)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-541) (-634 (-541)))) (-5 *1 (-123))))) +(((*1 *2 *1) (-12 (-4 *1 (-536 *3 *4 *5 *6 *7 *8 *9 *2 *10)) (-4 *3 (-365)) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *6 (-230 (-1697 *4) (-763))) (-4 *7 (-971 *3)) (-4 *8 (-641 *3)) (-4 *9 (-920 *3 *8)) (-4 *10 (-117)) (-4 *2 (-235 *9))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-1161)) (-4 *5 (-13 (-842) (-1037 (-568)) (-453) (-630 (-568)))) (-5 *2 (-2 (|:| -1841 *3) (|:| |nconst| *3))) (-5 *1 (-571 *5 *3)) (-4 *3 (-13 (-27) (-1181) (-432 *5)))))) +(((*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-763)) (-4 *6 (-1090)) (-4 *7 (-895 *6)) (-5 *2 (-679 *7)) (-5 *1 (-681 *6 *7 *3 *4)) (-4 *3 (-375 *7)) (-4 *4 (-13 (-375 *6) (-10 -7 (-6 -4519))))))) +(((*1 *1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1047)))) ((*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *4 (-172)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-678 *4 *5 *6 *3)) (-4 *3 (-677 *4 *5 *6)))) ((*1 *1 *1 *1) (-12 (-4 *2 (-172)) (-4 *2 (-1047)) (-5 *1 (-704 *2 *3)) (-4 *3 (-637 *2)))) ((*1 *1 *1) (-12 (-4 *2 (-172)) (-4 *2 (-1047)) (-5 *1 (-704 *2 *3)) (-4 *3 (-637 *2)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-829 *2)) (-4 *2 (-172)) (-4 *2 (-1047)))) ((*1 *1 *1) (-12 (-5 *1 (-829 *2)) (-4 *2 (-172)) (-4 *2 (-1047))))) +(((*1 *2 *3 *1) (-12 (-4 *1 (-1189 *4 *5 *3 *6)) (-4 *4 (-558)) (-4 *5 (-788)) (-4 *3 (-842)) (-4 *6 (-1061 *4 *5 *3)) (-5 *2 (-121)))) ((*1 *2 *1) (-12 (-4 *1 (-1261 *3)) (-4 *3 (-365)) (-5 *2 (-121))))) +(((*1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-393))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-634 *7)) (-4 *7 (-950 *5 *8 (-852 *6))) (-4 *8 (-230 (-1697 *6) (-763))) (-4 *5 (-365)) (-14 *6 (-634 (-1161))) (-4 *10 (-641 *5)) (-4 *11 (-920 *5 *10)) (-5 *2 (-634 (-1244 *5))) (-5 *1 (-562 *5 *6 *7 *8 *9 *10 *11 *3)) (-4 *9 (-971 *5)) (-4 *3 (-235 *11))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-1244 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-365)) (-4 *1 (-714 *5 *6)) (-4 *5 (-172)) (-4 *6 (-1219 *5)) (-5 *2 (-679 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-568)) (-5 *1 (-869)))) ((*1 *2 *3) (-12 (-5 *3 (-944 *2)) (-5 *1 (-983 *2)) (-4 *2 (-1047))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-634 *2)) (-5 *4 (-1 (-121) *2 *2)) (-5 *1 (-1196 *2)) (-4 *2 (-1090)))) ((*1 *2 *3) (-12 (-5 *3 (-634 *2)) (-4 *2 (-1090)) (-4 *2 (-842)) (-5 *1 (-1196 *2))))) +(((*1 *2 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-1249)) (-5 *1 (-1173 *4 *5)) (-4 *4 (-1090)) (-4 *5 (-1090))))) +(((*1 *2 *3) (-12 (-5 *3 (-763)) (-4 *4 (-365)) (-4 *5 (-1219 *4)) (-5 *2 (-1249)) (-5 *1 (-45 *4 *5 *6 *7)) (-4 *6 (-1219 (-409 *5))) (-14 *7 *6)))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1090)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1090))))) +(((*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1143)) (-4 *6 (-453)) (-4 *7 (-788)) (-4 *8 (-842)) (-4 *4 (-1061 *6 *7 *8)) (-5 *2 (-1249)) (-5 *1 (-768 *6 *7 *8 *4 *5)) (-4 *5 (-1066 *6 *7 *8 *4))))) +(((*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-748))))) +(((*1 *1) (-12 (-5 *1 (-141 *2 *3 *4)) (-14 *2 (-568)) (-14 *3 (-763)) (-4 *4 (-172))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-1244 *4)) (-4 *4 (-630 (-568))) (-5 *2 (-1244 (-568))) (-5 *1 (-1269 *4))))) +(((*1 *2 *2 *2 *3) (-12 (-5 *3 (-763)) (-4 *4 (-558)) (-5 *1 (-970 *4 *2)) (-4 *2 (-1219 *4))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-679 *8)) (-4 *8 (-950 *5 *7 *6)) (-4 *5 (-13 (-301) (-150))) (-4 *6 (-13 (-842) (-609 (-1161)))) (-4 *7 (-788)) (-5 *2 (-634 (-2 (|:| |eqzro| (-634 *8)) (|:| |neqzro| (-634 *8)) (|:| |wcond| (-634 (-953 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1244 (-409 (-953 *5)))) (|:| -3746 (-634 (-1244 (-409 (-953 *5)))))))))) (-5 *1 (-924 *5 *6 *7 *8)) (-5 *4 (-634 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-679 *8)) (-5 *4 (-634 (-1161))) (-4 *8 (-950 *5 *7 *6)) (-4 *5 (-13 (-301) (-150))) (-4 *6 (-13 (-842) (-609 (-1161)))) (-4 *7 (-788)) (-5 *2 (-634 (-2 (|:| |eqzro| (-634 *8)) (|:| |neqzro| (-634 *8)) (|:| |wcond| (-634 (-953 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1244 (-409 (-953 *5)))) (|:| -3746 (-634 (-1244 (-409 (-953 *5)))))))))) (-5 *1 (-924 *5 *6 *7 *8)))) ((*1 *2 *3) (-12 (-5 *3 (-679 *7)) (-4 *7 (-950 *4 *6 *5)) (-4 *4 (-13 (-301) (-150))) (-4 *5 (-13 (-842) (-609 (-1161)))) (-4 *6 (-788)) (-5 *2 (-634 (-2 (|:| |eqzro| (-634 *7)) (|:| |neqzro| (-634 *7)) (|:| |wcond| (-634 (-953 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1244 (-409 (-953 *4)))) (|:| -3746 (-634 (-1244 (-409 (-953 *4)))))))))) (-5 *1 (-924 *4 *5 *6 *7)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-679 *9)) (-5 *5 (-917)) (-4 *9 (-950 *6 *8 *7)) (-4 *6 (-13 (-301) (-150))) (-4 *7 (-13 (-842) (-609 (-1161)))) (-4 *8 (-788)) (-5 *2 (-634 (-2 (|:| |eqzro| (-634 *9)) (|:| |neqzro| (-634 *9)) (|:| |wcond| (-634 (-953 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1244 (-409 (-953 *6)))) (|:| -3746 (-634 (-1244 (-409 (-953 *6)))))))))) (-5 *1 (-924 *6 *7 *8 *9)) (-5 *4 (-634 *9)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-679 *9)) (-5 *4 (-634 (-1161))) (-5 *5 (-917)) (-4 *9 (-950 *6 *8 *7)) (-4 *6 (-13 (-301) (-150))) (-4 *7 (-13 (-842) (-609 (-1161)))) (-4 *8 (-788)) (-5 *2 (-634 (-2 (|:| |eqzro| (-634 *9)) (|:| |neqzro| (-634 *9)) (|:| |wcond| (-634 (-953 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1244 (-409 (-953 *6)))) (|:| -3746 (-634 (-1244 (-409 (-953 *6)))))))))) (-5 *1 (-924 *6 *7 *8 *9)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-679 *8)) (-5 *4 (-917)) (-4 *8 (-950 *5 *7 *6)) (-4 *5 (-13 (-301) (-150))) (-4 *6 (-13 (-842) (-609 (-1161)))) (-4 *7 (-788)) (-5 *2 (-634 (-2 (|:| |eqzro| (-634 *8)) (|:| |neqzro| (-634 *8)) (|:| |wcond| (-634 (-953 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1244 (-409 (-953 *5)))) (|:| -3746 (-634 (-1244 (-409 (-953 *5)))))))))) (-5 *1 (-924 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-679 *9)) (-5 *4 (-634 *9)) (-5 *5 (-1143)) (-4 *9 (-950 *6 *8 *7)) (-4 *6 (-13 (-301) (-150))) (-4 *7 (-13 (-842) (-609 (-1161)))) (-4 *8 (-788)) (-5 *2 (-568)) (-5 *1 (-924 *6 *7 *8 *9)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-679 *9)) (-5 *4 (-634 (-1161))) (-5 *5 (-1143)) (-4 *9 (-950 *6 *8 *7)) (-4 *6 (-13 (-301) (-150))) (-4 *7 (-13 (-842) (-609 (-1161)))) (-4 *8 (-788)) (-5 *2 (-568)) (-5 *1 (-924 *6 *7 *8 *9)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-679 *8)) (-5 *4 (-1143)) (-4 *8 (-950 *5 *7 *6)) (-4 *5 (-13 (-301) (-150))) (-4 *6 (-13 (-842) (-609 (-1161)))) (-4 *7 (-788)) (-5 *2 (-568)) (-5 *1 (-924 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-679 *10)) (-5 *4 (-634 *10)) (-5 *5 (-917)) (-5 *6 (-1143)) (-4 *10 (-950 *7 *9 *8)) (-4 *7 (-13 (-301) (-150))) (-4 *8 (-13 (-842) (-609 (-1161)))) (-4 *9 (-788)) (-5 *2 (-568)) (-5 *1 (-924 *7 *8 *9 *10)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-679 *10)) (-5 *4 (-634 (-1161))) (-5 *5 (-917)) (-5 *6 (-1143)) (-4 *10 (-950 *7 *9 *8)) (-4 *7 (-13 (-301) (-150))) (-4 *8 (-13 (-842) (-609 (-1161)))) (-4 *9 (-788)) (-5 *2 (-568)) (-5 *1 (-924 *7 *8 *9 *10)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-679 *9)) (-5 *4 (-917)) (-5 *5 (-1143)) (-4 *9 (-950 *6 *8 *7)) (-4 *6 (-13 (-301) (-150))) (-4 *7 (-13 (-842) (-609 (-1161)))) (-4 *8 (-788)) (-5 *2 (-568)) (-5 *1 (-924 *6 *7 *8 *9))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 (-568))) (-5 *2 (-568)) (-5 *1 (-496 *4)) (-4 *4 (-1219 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-634 (-1161))) (-5 *1 (-820))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-917)) (-4 *1 (-736 *3)) (-4 *3 (-172))))) +(((*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-927))))) +(((*1 *1 *1) (|partial| -4 *1 (-148))) ((*1 *1 *1) (-4 *1 (-350))) ((*1 *1 *1) (|partial| -12 (-4 *1 (-148)) (-4 *1 (-904))))) +(((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-121))))) +(((*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-748))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1244 *3)) (-4 *3 (-1219 *4)) (-4 *4 (-1199)) (-4 *1 (-340 *4 *3 *5)) (-4 *5 (-1219 (-409 *3)))))) +(((*1 *2 *1) (-12 (-4 *3 (-13 (-365) (-150))) (-5 *2 (-634 (-2 (|:| -3438 (-763)) (|:| -1374 *4) (|:| |num| *4)))) (-5 *1 (-401 *3 *4)) (-4 *4 (-1219 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-763)) (-5 *2 (-1249)) (-5 *1 (-853 *4 *5 *6 *7)) (-4 *4 (-1047)) (-14 *5 (-634 (-1161))) (-14 *6 (-634 *3)) (-14 *7 *3))) ((*1 *2 *3) (-12 (-5 *3 (-763)) (-4 *4 (-1047)) (-4 *5 (-842)) (-4 *6 (-788)) (-14 *8 (-634 *5)) (-5 *2 (-1249)) (-5 *1 (-1254 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-950 *4 *6 *5)) (-14 *9 (-634 *3)) (-14 *10 *3)))) +(((*1 *2) (-12 (-5 *2 (-634 (-917))) (-5 *1 (-1247)))) ((*1 *2 *2) (-12 (-5 *2 (-634 (-917))) (-5 *1 (-1247))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 (-310 (-215)))) (-5 *2 (-121)) (-5 *1 (-263)))) ((*1 *2 *3) (-12 (-5 *3 (-310 (-215))) (-5 *2 (-121)) (-5 *1 (-263)))) ((*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-121)) (-5 *1 (-978 *4 *5 *6 *3)) (-4 *3 (-1061 *4 *5 *6))))) +(((*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-679 (-215))) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-748))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-634 *3)) (-4 *3 (-1219 *5)) (-4 *5 (-301)) (-5 *2 (-763)) (-5 *1 (-457 *5 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-568)) (-5 *1 (-234)))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-1143))) (-5 *2 (-568)) (-5 *1 (-234))))) +(((*1 *2 *1) (-12 (-4 *1 (-62 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-634 *3)))) ((*1 *2 *1) (-12 (|has| $ (-6 -4519)) (-5 *2 (-634 *3)) (-5 *1 (-96 *3)) (-4 *3 (-1090)))) ((*1 *2 *1) (-12 (|has| $ (-6 -4519)) (-5 *2 (-634 *3)) (-5 *1 (-212 *3)) (-4 *3 (-1090)))) ((*1 *2 *1) (-12 (|has| $ (-6 -4519)) (-5 *2 (-634 *3)) (-5 *1 (-494 *3)) (-4 *3 (-842)))) ((*1 *2 *1) (-12 (|has| *1 (-6 -4519)) (-4 *1 (-499 *3)) (-4 *3 (-1195)) (-5 *2 (-634 *3)))) ((*1 *2 *1) (-12 (|has| $ (-6 -4519)) (-5 *2 (-634 *3)) (-5 *1 (-1000 *3)) (-4 *3 (-1090)))) ((*1 *2 *1) (-12 (|has| $ (-6 -4519)) (-5 *2 (-634 *3)) (-5 *1 (-1132 *3)) (-4 *3 (-1090))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-453))) (-5 *1 (-1187 *3 *2)) (-4 *2 (-13 (-432 *3) (-1181)))))) +(((*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-1035))))) +(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-679 (-215))) (-5 *5 (-679 (-568))) (-5 *3 (-568)) (-5 *2 (-1035)) (-5 *1 (-748))))) +(((*1 *2 *2 *3 *4) (-12 (-5 *3 (-634 (-607 *6))) (-5 *4 (-1161)) (-5 *2 (-607 *6)) (-4 *6 (-432 *5)) (-4 *5 (-842)) (-5 *1 (-577 *5 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-917)) (-4 *1 (-370)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1244 *4)) (-5 *1 (-532 *4)) (-4 *4 (-350)))) ((*1 *2 *1) (-12 (-4 *2 (-842)) (-5 *1 (-703 *2 *3 *4)) (-4 *3 (-1090)) (-14 *4 (-1 (-121) (-2 (|:| -4355 *2) (|:| -3438 *3)) (-2 (|:| -4355 *2) (|:| -3438 *3))))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-634 *7)) (-4 *7 (-1061 *4 *5 *6)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-121)) (-5 *1 (-989 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-634 *7)) (-4 *7 (-1061 *4 *5 *6)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-121)) (-5 *1 (-1097 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-1191 *3)) (-4 *3 (-975))))) +(((*1 *1 *1) (-12 (-4 *2 (-150)) (-4 *2 (-301)) (-4 *2 (-453)) (-4 *3 (-842)) (-4 *4 (-788)) (-5 *1 (-988 *2 *3 *4 *5)) (-4 *5 (-950 *2 *4 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-53)) (-5 *2 (-310 (-568))) (-5 *1 (-1107)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-453))) (-5 *1 (-1187 *3 *2)) (-4 *2 (-13 (-432 *3) (-1181)))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-953 (-568))))) (-5 *2 (-634 (-634 (-288 (-953 *4))))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-840) (-365))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-288 (-409 (-953 (-568)))))) (-5 *2 (-634 (-634 (-288 (-953 *4))))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-840) (-365))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-409 (-953 (-568)))) (-5 *2 (-634 (-288 (-953 *4)))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-840) (-365))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-288 (-409 (-953 (-568))))) (-5 *2 (-634 (-288 (-953 *4)))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-840) (-365))))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1161)) (-4 *6 (-13 (-842) (-301) (-1037 (-568)) (-630 (-568)) (-150))) (-4 *4 (-13 (-29 *6) (-1181) (-959))) (-5 *2 (-2 (|:| |particular| *4) (|:| -3746 (-634 *4)))) (-5 *1 (-642 *6 *4 *3)) (-4 *3 (-646 *4)))) ((*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1161)) (-5 *5 (-634 *2)) (-4 *2 (-13 (-29 *6) (-1181) (-959))) (-4 *6 (-13 (-842) (-301) (-1037 (-568)) (-630 (-568)) (-150))) (-5 *1 (-642 *6 *2 *3)) (-4 *3 (-646 *2)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-679 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |particular| (-3 (-1244 *5) "failed")) (|:| -3746 (-634 (-1244 *5))))) (-5 *1 (-659 *5)) (-5 *4 (-1244 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-634 *5))) (-4 *5 (-365)) (-5 *2 (-2 (|:| |particular| (-3 (-1244 *5) "failed")) (|:| -3746 (-634 (-1244 *5))))) (-5 *1 (-659 *5)) (-5 *4 (-1244 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-679 *5)) (-4 *5 (-365)) (-5 *2 (-634 (-2 (|:| |particular| (-3 (-1244 *5) "failed")) (|:| -3746 (-634 (-1244 *5)))))) (-5 *1 (-659 *5)) (-5 *4 (-634 (-1244 *5))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-634 *5))) (-4 *5 (-365)) (-5 *2 (-634 (-2 (|:| |particular| (-3 (-1244 *5) "failed")) (|:| -3746 (-634 (-1244 *5)))))) (-5 *1 (-659 *5)) (-5 *4 (-634 (-1244 *5))))) ((*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4520)))) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4520)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3746 (-634 *4)))) (-5 *1 (-660 *5 *6 *4 *3)) (-4 *3 (-677 *5 *6 *4)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4520)))) (-4 *7 (-13 (-375 *5) (-10 -7 (-6 -4520)))) (-5 *2 (-634 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -3746 (-634 *7))))) (-5 *1 (-660 *5 *6 *7 *3)) (-5 *4 (-634 *7)) (-4 *3 (-677 *5 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-953 *5))) (-5 *4 (-634 (-1161))) (-4 *5 (-558)) (-5 *2 (-634 (-634 (-288 (-409 (-953 *5)))))) (-5 *1 (-762 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-953 *4))) (-4 *4 (-558)) (-5 *2 (-634 (-634 (-288 (-409 (-953 *4)))))) (-5 *1 (-762 *4)))) ((*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-123)) (-5 *4 (-1161)) (-4 *5 (-13 (-842) (-301) (-1037 (-568)) (-630 (-568)) (-150))) (-5 *1 (-764 *5 *2)) (-4 *2 (-13 (-29 *5) (-1181) (-959))))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-679 *7)) (-5 *5 (-1161)) (-4 *7 (-13 (-29 *6) (-1181) (-959))) (-4 *6 (-13 (-842) (-301) (-1037 (-568)) (-630 (-568)) (-150))) (-5 *2 (-2 (|:| |particular| (-1244 *7)) (|:| -3746 (-634 (-1244 *7))))) (-5 *1 (-797 *6 *7)) (-5 *4 (-1244 *7)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-679 *6)) (-5 *4 (-1161)) (-4 *6 (-13 (-29 *5) (-1181) (-959))) (-4 *5 (-13 (-842) (-301) (-1037 (-568)) (-630 (-568)) (-150))) (-5 *2 (-634 (-1244 *6))) (-5 *1 (-797 *5 *6)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-634 (-288 *7))) (-5 *4 (-634 (-123))) (-5 *5 (-1161)) (-4 *7 (-13 (-29 *6) (-1181) (-959))) (-4 *6 (-13 (-842) (-301) (-1037 (-568)) (-630 (-568)) (-150))) (-5 *2 (-2 (|:| |particular| (-1244 *7)) (|:| -3746 (-634 (-1244 *7))))) (-5 *1 (-797 *6 *7)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-634 *7)) (-5 *4 (-634 (-123))) (-5 *5 (-1161)) (-4 *7 (-13 (-29 *6) (-1181) (-959))) (-4 *6 (-13 (-842) (-301) (-1037 (-568)) (-630 (-568)) (-150))) (-5 *2 (-2 (|:| |particular| (-1244 *7)) (|:| -3746 (-634 (-1244 *7))))) (-5 *1 (-797 *6 *7)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-288 *7)) (-5 *4 (-123)) (-5 *5 (-1161)) (-4 *7 (-13 (-29 *6) (-1181) (-959))) (-4 *6 (-13 (-842) (-301) (-1037 (-568)) (-630 (-568)) (-150))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -3746 (-634 *7))) *7 "failed")) (-5 *1 (-797 *6 *7)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-123)) (-5 *5 (-1161)) (-4 *6 (-13 (-842) (-301) (-1037 (-568)) (-630 (-568)) (-150))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -3746 (-634 *3))) *3 "failed")) (-5 *1 (-797 *6 *3)) (-4 *3 (-13 (-29 *6) (-1181) (-959))))) ((*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-288 *2)) (-5 *4 (-123)) (-5 *5 (-634 *2)) (-4 *2 (-13 (-29 *6) (-1181) (-959))) (-5 *1 (-797 *6 *2)) (-4 *6 (-13 (-842) (-301) (-1037 (-568)) (-630 (-568)) (-150))))) ((*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-123)) (-5 *4 (-288 *2)) (-5 *5 (-634 *2)) (-4 *2 (-13 (-29 *6) (-1181) (-959))) (-4 *6 (-13 (-842) (-301) (-1037 (-568)) (-630 (-568)) (-150))) (-5 *1 (-797 *6 *2)))) ((*1 *2 *3) (-12 (-5 *3 (-803)) (-5 *2 (-1035)) (-5 *1 (-800)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-803)) (-5 *4 (-1059)) (-5 *2 (-1035)) (-5 *1 (-800)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1244 (-310 (-381)))) (-5 *4 (-381)) (-5 *5 (-634 *4)) (-5 *2 (-1035)) (-5 *1 (-800)))) ((*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1244 (-310 (-381)))) (-5 *4 (-381)) (-5 *5 (-634 *4)) (-5 *2 (-1035)) (-5 *1 (-800)))) ((*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1244 (-310 *4))) (-5 *5 (-634 (-381))) (-5 *6 (-310 (-381))) (-5 *4 (-381)) (-5 *2 (-1035)) (-5 *1 (-800)))) ((*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1244 (-310 (-381)))) (-5 *4 (-381)) (-5 *5 (-634 *4)) (-5 *2 (-1035)) (-5 *1 (-800)))) ((*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1244 (-310 *4))) (-5 *5 (-634 (-381))) (-5 *6 (-310 (-381))) (-5 *4 (-381)) (-5 *2 (-1035)) (-5 *1 (-800)))) ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1244 (-310 *4))) (-5 *5 (-634 (-381))) (-5 *6 (-310 (-381))) (-5 *4 (-381)) (-5 *2 (-1035)) (-5 *1 (-800)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -3746 (-634 *6))) "failed") *7 *6)) (-4 *6 (-365)) (-4 *7 (-646 *6)) (-5 *2 (-2 (|:| |particular| (-1244 *6)) (|:| -3746 (-679 *6)))) (-5 *1 (-808 *6 *7)) (-5 *3 (-679 *6)) (-5 *4 (-1244 *6)))) ((*1 *2 *3) (-12 (-5 *3 (-893)) (-5 *2 (-1035)) (-5 *1 (-892)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-893)) (-5 *4 (-1059)) (-5 *2 (-1035)) (-5 *1 (-892)))) ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-763)) (-5 *6 (-634 (-634 (-310 *3)))) (-5 *7 (-1143)) (-5 *8 (-215)) (-5 *5 (-634 (-310 (-381)))) (-5 *3 (-381)) (-5 *2 (-1035)) (-5 *1 (-892)))) ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-763)) (-5 *6 (-634 (-634 (-310 *3)))) (-5 *7 (-1143)) (-5 *5 (-634 (-310 (-381)))) (-5 *3 (-381)) (-5 *2 (-1035)) (-5 *1 (-892)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-953 (-409 (-568)))) (-5 *2 (-634 (-381))) (-5 *1 (-1022)) (-5 *4 (-381)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-953 (-568))) (-5 *2 (-634 (-381))) (-5 *1 (-1022)) (-5 *4 (-381)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-568))))))) (-5 *2 (-634 *4)) (-5 *1 (-1116 *3 *4)) (-4 *3 (-1219 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-842) (-301) (-1037 (-568)) (-630 (-568)) (-150))) (-5 *2 (-634 (-288 (-310 *4)))) (-5 *1 (-1119 *4)) (-5 *3 (-310 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-842) (-301) (-1037 (-568)) (-630 (-568)) (-150))) (-5 *2 (-634 (-288 (-310 *4)))) (-5 *1 (-1119 *4)) (-5 *3 (-288 (-310 *4))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1161)) (-4 *5 (-13 (-842) (-301) (-1037 (-568)) (-630 (-568)) (-150))) (-5 *2 (-634 (-288 (-310 *5)))) (-5 *1 (-1119 *5)) (-5 *3 (-288 (-310 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1161)) (-4 *5 (-13 (-842) (-301) (-1037 (-568)) (-630 (-568)) (-150))) (-5 *2 (-634 (-288 (-310 *5)))) (-5 *1 (-1119 *5)) (-5 *3 (-310 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-634 (-1161))) (-4 *5 (-13 (-842) (-301) (-1037 (-568)) (-630 (-568)) (-150))) (-5 *2 (-634 (-634 (-288 (-310 *5))))) (-5 *1 (-1119 *5)) (-5 *3 (-634 (-288 (-310 *5)))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-953 *5)))) (-5 *4 (-634 (-1161))) (-4 *5 (-558)) (-5 *2 (-634 (-634 (-288 (-409 (-953 *5)))))) (-5 *1 (-1166 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-634 (-1161))) (-4 *5 (-558)) (-5 *2 (-634 (-634 (-288 (-409 (-953 *5)))))) (-5 *1 (-1166 *5)) (-5 *3 (-634 (-288 (-409 (-953 *5))))))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-409 (-953 *4)))) (-4 *4 (-558)) (-5 *2 (-634 (-634 (-288 (-409 (-953 *4)))))) (-5 *1 (-1166 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-634 (-634 (-288 (-409 (-953 *4)))))) (-5 *1 (-1166 *4)) (-5 *3 (-634 (-288 (-409 (-953 *4))))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1161)) (-4 *5 (-558)) (-5 *2 (-634 (-288 (-409 (-953 *5))))) (-5 *1 (-1166 *5)) (-5 *3 (-409 (-953 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1161)) (-4 *5 (-558)) (-5 *2 (-634 (-288 (-409 (-953 *5))))) (-5 *1 (-1166 *5)) (-5 *3 (-288 (-409 (-953 *5)))))) ((*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-634 (-288 (-409 (-953 *4))))) (-5 *1 (-1166 *4)) (-5 *3 (-409 (-953 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-634 (-288 (-409 (-953 *4))))) (-5 *1 (-1166 *4)) (-5 *3 (-288 (-409 (-953 *4))))))) +(((*1 *2 *3 *3) (|partial| -12 (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *7 (-1061 *4 *5 *6)) (-5 *2 (-121)) (-5 *1 (-989 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))) ((*1 *2 *3 *3) (|partial| -12 (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *7 (-1061 *4 *5 *6)) (-5 *2 (-121)) (-5 *1 (-1097 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7))))) +(((*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-748))))) +(((*1 *2 *3) (-12 (-5 *3 (-310 (-215))) (-5 *2 (-215)) (-5 *1 (-299))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-634 *1)) (-4 *1 (-1061 *4 *5 *6)) (-4 *4 (-1047)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-121)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-1061 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-121)))) ((*1 *2 *1) (-12 (-4 *1 (-1189 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1061 *3 *4 *5)) (-5 *2 (-121)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-1189 *4 *5 *6 *3)) (-4 *4 (-558)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *3 (-1061 *4 *5 *6)) (-5 *2 (-121))))) +(((*1 *2 *3 *4) (-12 (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *3 (-1061 *5 *6 *7)) (-5 *2 (-634 (-2 (|:| |val| *3) (|:| -3001 *4)))) (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-887 *3)) (-4 *3 (-1090))))) +(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-568)) (-5 *5 (-679 (-215))) (-5 *4 (-215)) (-5 *2 (-1035)) (-5 *1 (-748))))) +(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-568)) (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-869))))) +(((*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-172))))) +(((*1 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-926))))) +(((*1 *2 *1) (-12 (-4 *3 (-1195)) (-5 *2 (-634 *1)) (-4 *1 (-1010 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-634 (-1149 *3 *4))) (-5 *1 (-1149 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1047))))) +(((*1 *2 *3) (-12 (-5 *3 (-643 (-409 *2))) (-4 *2 (-1219 *4)) (-5 *1 (-805 *4 *2)) (-4 *4 (-13 (-365) (-150) (-1037 (-568)) (-1037 (-409 (-568))))))) ((*1 *2 *3) (-12 (-5 *3 (-644 *2 (-409 *2))) (-4 *2 (-1219 *4)) (-5 *1 (-805 *4 *2)) (-4 *4 (-13 (-365) (-150) (-1037 (-568)) (-1037 (-409 (-568)))))))) +(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-679 (-215))) (-5 *5 (-679 (-568))) (-5 *3 (-568)) (-5 *2 (-1035)) (-5 *1 (-748))))) +(((*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-917)) (-5 *1 (-1091 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) +(((*1 *2 *3) (-12 (-4 *4 (-1047)) (-4 *2 (-230 *5 (-763))) (-5 *1 (-908 *4 *3 *2 *5)) (-4 *3 (-324 *4 *2)) (-14 *5 (-763))))) +(((*1 *1 *1) (-12 (-5 *1 (-1125 *2 *3)) (-4 *2 (-13 (-1090) (-39))) (-4 *3 (-13 (-1090) (-39)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1244 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-679 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-679 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-1165))))) +(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *5 (-121)) (-5 *6 (-215)) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-73 APROD)))) (-5 *8 (-3 (|:| |fn| (-390)) (|:| |fp| (-78 MSOLVE)))) (-5 *2 (-1035)) (-5 *1 (-748))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-777 *2)) (-4 *2 (-558)) (-4 *2 (-1047)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-970 *3 *2)) (-4 *2 (-1219 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1061 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-788)) (-4 *4 (-842)) (-4 *2 (-558)))) ((*1 *2 *3 *3 *1) (-12 (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *3 (-1061 *4 *5 *6)) (-5 *2 (-634 (-2 (|:| |val| *3) (|:| -3001 *1)))) (-4 *1 (-1066 *4 *5 *6 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 (-53))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-482)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-53))) (-5 *4 (-634 (-465))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-482)))) ((*1 *2 *3) (-12 (-4 (-53) (-1037 *3)) (-5 *3 (-1161)) (-5 *2 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465)))) (-5 *1 (-482)))) ((*1 *2 *3) (-12 (-5 *3 (-634 *4)) (-4 *4 (-13 (-350) (-609 (-568)))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-484 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 *5)) (-5 *4 (-634 (-465))) (-4 *5 (-13 (-350) (-609 (-568)))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-484 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 *4) (-634 (-465)))) (-5 *1 (-484 *4)) (-4 *4 (-1037 *3)) (-4 *4 (-13 (-350) (-609 (-568)))))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-409 (-568)))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-485)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-568)))) (-5 *4 (-634 (-465))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-485)))) ((*1 *2 *3) (-12 (-4 (-409 (-568)) (-1037 *3)) (-4 (-568) (-1037 *3)) (-5 *3 (-1161)) (-5 *2 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465)))) (-5 *1 (-485)))) ((*1 *2 *3) (-12 (-5 *3 (-634 *4)) (-4 *4 (-365)) (-14 *9 (-1 *6 *4)) (-4 *7 (-13 (-842) (-558))) (-14 *8 (-1 *4 *7)) (-5 *2 (-634 (-2 (|:| -1864 *6) (|:| -4477 (-763))))) (-5 *1 (-486 *4 *5 *6 *7 *8 *9)) (-4 *5 (-453)) (-4 *6 (-13 (-432 (-568)) (-558) (-1037 *7) (-1037 (-1161)) (-1037 (-568)) (-161) (-895 (-1161)) (-10 -8 (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -1332 ($ $)) (-15 -3013 ($ $)) (-15 -2086 ((-121) $))))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 *5)) (-5 *4 (-634 (-465))) (-4 *5 (-365)) (-14 *10 (-1 *7 *5)) (-4 *8 (-13 (-842) (-558))) (-14 *9 (-1 *5 *8)) (-5 *2 (-634 (-2 (|:| -1864 *7) (|:| -4477 (-763))))) (-5 *1 (-486 *5 *6 *7 *8 *9 *10)) (-4 *6 (-453)) (-4 *7 (-13 (-432 (-568)) (-558) (-1037 *8) (-1037 (-1161)) (-1037 (-568)) (-161) (-895 (-1161)) (-10 -8 (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -1332 ($ $)) (-15 -3013 ($ $)) (-15 -2086 ((-121) $))))))) ((*1 *2 *3) (-12 (-5 *3 (-1161)) (-4 *7 (-13 (-842) (-558))) (-14 *8 (-1 *4 *7)) (-5 *2 (-1 (-634 (-2 (|:| -1864 *6) (|:| -4477 (-763)))) (-634 *4) (-634 (-465)))) (-5 *1 (-486 *4 *5 *6 *7 *8 *9)) (-4 *4 (-1037 *3)) (-4 *5 (-1037 *3)) (-4 *4 (-365)) (-4 *5 (-453)) (-4 *6 (-13 (-432 (-568)) (-558) (-1037 *7) (-1037 *3) (-1037 (-568)) (-161) (-895 *3) (-10 -8 (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -1332 ($ $)) (-15 -3013 ($ $)) (-15 -2086 ((-121) $))))) (-14 *9 (-1 *6 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-409 (-953 (-568))))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-487)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-953 (-568))))) (-5 *4 (-634 (-465))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-487)))) ((*1 *2 *3) (-12 (-4 (-409 (-953 (-568))) (-1037 *3)) (-4 (-953 (-568)) (-1037 *3)) (-5 *3 (-1161)) (-5 *2 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465)))) (-5 *1 (-487)))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-409 (-734 *4 (-568))))) (-14 *4 (-1161)) (-5 *2 (-634 (-2 (|:| -1864 (-733 *4 (-568))) (|:| -4477 (-763))))) (-5 *1 (-488 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-734 *5 (-568))))) (-5 *4 (-634 (-465))) (-14 *5 (-1161)) (-5 *2 (-634 (-2 (|:| -1864 (-733 *5 (-568))) (|:| -4477 (-763))))) (-5 *1 (-488 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1 (-634 (-2 (|:| -1864 (-733 *4 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 *4 (-568)))) (-634 (-465)))) (-5 *1 (-488 *4)) (-14 *4 *3)))) +(((*1 *1 *2 *1) (-12 (|has| *1 (-6 -4519)) (-4 *1 (-154 *2)) (-4 *2 (-1195)) (-4 *2 (-1090)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-121) *3)) (|has| *1 (-6 -4519)) (-4 *1 (-154 *3)) (-4 *3 (-1195)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-121) *3)) (-4 *1 (-665 *3)) (-4 *3 (-1195)))) ((*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-121) *4)) (-5 *3 (-568)) (-4 *4 (-1090)) (-5 *1 (-727 *4)))) ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-568)) (-5 *1 (-727 *2)) (-4 *2 (-1090)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1125 *3 *4)) (-4 *3 (-13 (-1090) (-39))) (-4 *4 (-13 (-1090) (-39))) (-5 *1 (-1126 *3 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-1228 *3 *4 *5)) (-4 *3 (-13 (-365) (-842))) (-14 *4 (-1161)) (-14 *5 *3) (-5 *1 (-314 *3 *4 *5)))) ((*1 *2 *3) (-12 (-5 *2 (-1 (-381))) (-5 *1 (-1039)) (-5 *3 (-381))))) +(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-679 (-215))) (-5 *5 (-679 (-568))) (-5 *3 (-568)) (-5 *2 (-1035)) (-5 *1 (-748))))) +(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-679 *6)) (-5 *5 (-1 (-420 (-1157 *6)) (-1157 *6))) (-4 *6 (-365)) (-5 *2 (-634 (-2 (|:| |outval| *7) (|:| |outmult| (-568)) (|:| |outvect| (-634 (-679 *7)))))) (-5 *1 (-535 *6 *7 *4)) (-4 *7 (-365)) (-4 *4 (-13 (-365) (-840)))))) +(((*1 *2 *3) (-12 (-5 *2 (-310 (-568))) (-5 *1 (-483 *3)) (-4 *3 (-13 (-350) (-609 (-568))))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 *2)) (-5 *1 (-496 *2)) (-4 *2 (-1219 (-568)))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-900 *4)) (-4 *4 (-1090)) (-5 *2 (-634 (-763))) (-5 *1 (-899 *4))))) +(((*1 *2) (-12 (-14 *4 (-763)) (-4 *5 (-1195)) (-5 *2 (-139)) (-5 *1 (-229 *3 *4 *5)) (-4 *3 (-230 *4 *5)))) ((*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-139)) (-5 *1 (-326 *3 *4)) (-4 *3 (-327 *4)))) ((*1 *2) (-12 (-5 *2 (-763)) (-5 *1 (-392 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-172)))) ((*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-568)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-950 *3 *4 *5)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-634 *6)) (-4 *6 (-842)) (-4 *4 (-365)) (-4 *5 (-788)) (-5 *2 (-568)) (-5 *1 (-514 *4 *5 *6 *7)) (-4 *7 (-950 *4 *5 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-981 *3)) (-4 *3 (-1047)) (-5 *2 (-917)))) ((*1 *2) (-12 (-4 *1 (-1251 *3)) (-4 *3 (-365)) (-5 *2 (-139))))) +(((*1 *2 *2 *3 *3 *4) (-12 (-5 *3 (-763)) (-4 *2 (-13 (-558) (-453))) (-5 *1 (-346 *2 *4)) (-4 *4 (-52 *2 *3))))) +(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-568)) (-5 *5 (-679 (-215))) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-75 APROD)))) (-5 *4 (-215)) (-5 *2 (-1035)) (-5 *1 (-748))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-634 (-852 *5))) (-14 *5 (-634 (-1161))) (-4 *6 (-453)) (-5 *2 (-2 (|:| |dpolys| (-634 (-242 *5 *6))) (|:| |coords| (-634 (-568))))) (-5 *1 (-476 *5 *6 *7)) (-5 *3 (-634 (-242 *5 *6))) (-4 *7 (-453))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-763)) (-5 *1 (-778 *2)) (-4 *2 (-43 (-409 (-568)))) (-4 *2 (-172))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1181))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-671 *3)) (-4 *3 (-1090))))) +(((*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1244 *4)) (-5 *3 (-679 *4)) (-4 *4 (-365)) (-5 *1 (-659 *4)))) ((*1 *2 *3 *2) (|partial| -12 (-4 *4 (-365)) (-4 *5 (-13 (-375 *4) (-10 -7 (-6 -4520)))) (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4520)))) (-5 *1 (-660 *4 *5 *2 *3)) (-4 *3 (-677 *4 *5 *2)))) ((*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-634 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-365)) (-5 *1 (-809 *2 *3)) (-4 *3 (-646 *2)))) ((*1 *2 *3) (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-568))))))) (-5 *1 (-1116 *3 *2)) (-4 *3 (-1219 *2))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-634 *5)) (-4 *1 (-920 *4 *5)) (-4 *4 (-365)) (-4 *5 (-641 *4)) (-5 *2 (-1249))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-750))))) +(((*1 *2 *1) (-12 (-5 *2 (-409 (-953 *3))) (-5 *1 (-454 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-634 (-1161))) (-14 *6 (-1244 (-679 *3)))))) +(((*1 *1 *1) (-12 (-5 *1 (-1182 *2)) (-4 *2 (-1090))))) +(((*1 *2 *3) (-12 (-5 *3 (-953 (-568))) (-5 *2 (-634 *1)) (-4 *1 (-1012)))) ((*1 *2 *3) (-12 (-5 *3 (-953 (-409 (-568)))) (-5 *2 (-634 *1)) (-4 *1 (-1012)))) ((*1 *2 *3) (-12 (-5 *3 (-953 *1)) (-4 *1 (-1012)) (-5 *2 (-634 *1)))) ((*1 *2 *3) (-12 (-5 *3 (-1157 (-568))) (-5 *2 (-634 *1)) (-4 *1 (-1012)))) ((*1 *2 *3) (-12 (-5 *3 (-1157 (-409 (-568)))) (-5 *2 (-634 *1)) (-4 *1 (-1012)))) ((*1 *2 *3) (-12 (-5 *3 (-1157 *1)) (-4 *1 (-1012)) (-5 *2 (-634 *1)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-840) (-365))) (-4 *3 (-1219 *4)) (-5 *2 (-634 *1)) (-4 *1 (-1063 *4 *3))))) +(((*1 *2 *2 *1) (-12 (-5 *1 (-212 *2)) (-4 *2 (-1090)))) ((*1 *2 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1195))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-750))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002)))))) +(((*1 *1 *1) (-12 (-4 *1 (-950 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-788)) (-4 *4 (-842)) (-4 *2 (-453)))) ((*1 *2 *3 *1) (-12 (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *3 (-1061 *4 *5 *6)) (-5 *2 (-634 (-2 (|:| |val| *3) (|:| -3001 *1)))) (-4 *1 (-1066 *4 *5 *6 *3)))) ((*1 *1 *1) (-4 *1 (-1199))) ((*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-1222 *3 *2)) (-4 *2 (-13 (-1219 *3) (-558) (-10 -8 (-15 -2721 ($ $ $)))))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-763)) (-5 *1 (-586 *2)) (-4 *2 (-550))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-763)) (-4 *4 (-365)) (-5 *1 (-891 *2 *4)) (-4 *2 (-1219 *4))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-634 *7)) (-4 *7 (-1061 *4 *5 *6)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-121)) (-5 *1 (-989 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-634 *7)) (-4 *7 (-1061 *4 *5 *6)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-121)) (-5 *1 (-1097 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-750))))) +(((*1 *2 *1) (-12 (-4 *3 (-225)) (-4 *3 (-1047)) (-4 *4 (-842)) (-4 *5 (-262 *4)) (-4 *6 (-788)) (-5 *2 (-1 *1 (-763))) (-4 *1 (-246 *3 *4 *5 *6)))) ((*1 *2 *3) (-12 (-4 *4 (-1047)) (-4 *3 (-842)) (-4 *5 (-262 *3)) (-4 *6 (-788)) (-5 *2 (-1 *1 (-763))) (-4 *1 (-246 *4 *3 *5 *6)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-763)) (-4 *1 (-262 *2)) (-4 *2 (-842))))) +(((*1 *1 *1) (-5 *1 (-215))) ((*1 *1 *1) (-5 *1 (-381))) ((*1 *1) (-5 *1 (-381)))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-917)) (-5 *2 (-1244 (-634 (-2 (|:| -2850 *4) (|:| -4355 (-1108)))))) (-5 *1 (-347 *4)) (-4 *4 (-350))))) +(((*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-1090)) (-5 *2 (-634 (-2 (|:| |k| *4) (|:| |c| *3)))))) ((*1 *2 *1) (-12 (-5 *2 (-634 (-2 (|:| |k| (-888 *3)) (|:| |c| *4)))) (-5 *1 (-618 *3 *4 *5)) (-4 *3 (-842)) (-4 *4 (-13 (-172) (-707 (-409 (-568))))) (-14 *5 (-917)))) ((*1 *2 *1) (-12 (-5 *2 (-634 (-663 *3))) (-5 *1 (-888 *3)) (-4 *3 (-842))))) +(((*1 *2 *1) (-12 (-5 *2 (-634 (-1143))) (-5 *1 (-396))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-634 *8)) (-5 *4 (-634 *9)) (-4 *8 (-1061 *5 *6 *7)) (-4 *9 (-1066 *5 *6 *7 *8)) (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-5 *2 (-763)) (-5 *1 (-1064 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 *8)) (-5 *4 (-634 *9)) (-4 *8 (-1061 *5 *6 *7)) (-4 *9 (-1099 *5 *6 *7 *8)) (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-5 *2 (-763)) (-5 *1 (-1130 *5 *6 *7 *8 *9))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-750))))) +(((*1 *1 *1 *1 *2) (-12 (-4 *1 (-1061 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *2 (-842)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1061 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-788)) (-4 *4 (-842))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-917)) (-5 *2 (-121)) (-5 *1 (-233 *4)) (-4 *4 (-1047))))) +(((*1 *1 *2) (-12 (-5 *2 (-634 (-568))) (-5 *1 (-1004 *3)) (-14 *3 (-568))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568)))))) (-5 *2 (-634 (-215))) (-5 *1 (-299))))) +(((*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-215))) (-5 *5 (-568)) (-5 *6 (-1143)) (-5 *3 (-215)) (-5 *2 (-1035)) (-5 *1 (-750))))) +(((*1 *2 *1) (-12 (-4 *1 (-117)) (-5 *2 (-121))))) +(((*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-1195)) (-4 *1 (-154 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-634 (-2 (|:| -3438 (-763)) (|:| -1374 *4) (|:| |num| *4)))) (-4 *4 (-1219 *3)) (-4 *3 (-13 (-365) (-150))) (-5 *1 (-401 *3 *4)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-436)) (|:| -3611 "void"))) (-5 *3 (-634 (-953 (-568)))) (-5 *4 (-121)) (-5 *1 (-439)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-436)) (|:| -3611 "void"))) (-5 *3 (-634 (-1161))) (-5 *4 (-121)) (-5 *1 (-439)))) ((*1 *2 *1) (-12 (-5 *2 (-1141 *3)) (-5 *1 (-598 *3)) (-4 *3 (-1195)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-625 *2)) (-4 *2 (-172)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-842)) (-5 *1 (-656 *3 *4)) (-4 *4 (-172)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-663 *3)) (-4 *3 (-842)) (-5 *1 (-656 *3 *4)) (-4 *4 (-172)))) ((*1 *1 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-842)) (-5 *1 (-656 *3 *4)) (-4 *4 (-172)))) ((*1 *1 *2) (-12 (-5 *2 (-634 (-634 (-634 *3)))) (-4 *3 (-1090)) (-5 *1 (-666 *3)))) ((*1 *1 *2 *3) (-12 (-5 *1 (-703 *2 *3 *4)) (-4 *2 (-842)) (-4 *3 (-1090)) (-14 *4 (-1 (-121) (-2 (|:| -4355 *2) (|:| -3438 *3)) (-2 (|:| -4355 *2) (|:| -3438 *3)))))) ((*1 *1 *2) (-12 (-5 *2 (-634 (-2 (|:| -3649 (-1161)) (|:| -4083 *4)))) (-4 *4 (-1090)) (-5 *1 (-884 *3 *4)) (-4 *3 (-1090)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-634 *5)) (-4 *5 (-13 (-1090) (-39))) (-5 *2 (-634 (-1125 *3 *5))) (-5 *1 (-1125 *3 *5)) (-4 *3 (-13 (-1090) (-39))))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-2 (|:| |val| *4) (|:| -3001 *5)))) (-4 *4 (-13 (-1090) (-39))) (-4 *5 (-13 (-1090) (-39))) (-5 *2 (-634 (-1125 *4 *5))) (-5 *1 (-1125 *4 *5)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3001 *4))) (-4 *3 (-13 (-1090) (-39))) (-4 *4 (-13 (-1090) (-39))) (-5 *1 (-1125 *3 *4)))) ((*1 *1 *2 *3) (-12 (-5 *1 (-1125 *2 *3)) (-4 *2 (-13 (-1090) (-39))) (-4 *3 (-13 (-1090) (-39))))) ((*1 *1 *2 *3 *4) (-12 (-5 *4 (-121)) (-5 *1 (-1125 *2 *3)) (-4 *2 (-13 (-1090) (-39))) (-4 *3 (-13 (-1090) (-39))))) ((*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-634 *3)) (-4 *3 (-13 (-1090) (-39))) (-5 *1 (-1126 *2 *3)) (-4 *2 (-13 (-1090) (-39))))) ((*1 *1 *2 *3 *4) (-12 (-5 *4 (-634 (-1125 *2 *3))) (-4 *2 (-13 (-1090) (-39))) (-4 *3 (-13 (-1090) (-39))) (-5 *1 (-1126 *2 *3)))) ((*1 *1 *2 *3 *4) (-12 (-5 *4 (-634 (-1126 *2 *3))) (-5 *1 (-1126 *2 *3)) (-4 *2 (-13 (-1090) (-39))) (-4 *3 (-13 (-1090) (-39))))) ((*1 *1 *2) (-12 (-5 *2 (-1125 *3 *4)) (-4 *3 (-13 (-1090) (-39))) (-4 *4 (-13 (-1090) (-39))) (-5 *1 (-1126 *3 *4)))) ((*1 *1 *2 *3) (-12 (-5 *1 (-1150 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-1090))))) +(((*1 *2 *3 *1) (-12 (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *3 (-1061 *4 *5 *6)) (-5 *2 (-121))))) +(((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-763)) (-5 *1 (-734 *4 *3)) (-14 *4 (-1161)) (-4 *3 (-1047)))) ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-763)) (-5 *1 (-777 *3)) (-4 *3 (-1047)))) ((*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-964 *3 *2)) (-4 *2 (-137)) (-4 *3 (-558)) (-4 *3 (-1047)) (-4 *2 (-787)))) ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-763)) (-5 *1 (-1157 *3)) (-4 *3 (-1047)))) ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-972)) (-4 *2 (-137)) (-5 *1 (-1163 *3)) (-4 *3 (-558)) (-4 *3 (-1047)))) ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-763)) (-5 *1 (-1216 *4 *3)) (-14 *4 (-1161)) (-4 *3 (-1047))))) +(((*1 *1 *1) (-5 *1 (-541)))) +(((*1 *2) (-12 (-5 *2 (-1249)) (-5 *1 (-1164)))) ((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1249)) (-5 *1 (-1164)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1161)) (-5 *2 (-1249)) (-5 *1 (-1164))))) +(((*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-215))) (-5 *5 (-568)) (-5 *6 (-1143)) (-5 *3 (-215)) (-5 *2 (-1035)) (-5 *1 (-750))))) +(((*1 *2 *3) (-12 (-5 *3 (-1244 (-310 (-215)))) (-5 *2 (-2 (|:| |additions| (-568)) (|:| |multiplications| (-568)) (|:| |exponentiations| (-568)) (|:| |functionCalls| (-568)))) (-5 *1 (-299))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-634 *2) *2 *2 *2)) (-4 *2 (-1090)) (-5 *1 (-106 *2)))) ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1090)) (-5 *1 (-106 *2))))) +(((*1 *2 *1) (-12 (-4 *2 (-13 (-840) (-365))) (-5 *1 (-1057 *2 *3)) (-4 *3 (-1219 *2))))) +(((*1 *2 *3) (-12 (-4 *5 (-13 (-609 *2) (-172))) (-5 *2 (-887 *4)) (-5 *1 (-170 *4 *5 *3)) (-4 *4 (-1090)) (-4 *3 (-166 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-1084 (-835 (-381))))) (-5 *2 (-634 (-1084 (-835 (-215))))) (-5 *1 (-299)))) ((*1 *1 *2) (-12 (-5 *2 (-215)) (-5 *1 (-381)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-850)) (-5 *3 (-568)) (-5 *1 (-396)))) ((*1 *1 *2) (-12 (-5 *2 (-1244 *3)) (-4 *3 (-172)) (-4 *1 (-411 *3 *4)) (-4 *4 (-1219 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-411 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1219 *3)) (-5 *2 (-1244 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1244 *3)) (-4 *3 (-172)) (-4 *1 (-419 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-1244 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-420 *1)) (-4 *1 (-432 *3)) (-4 *3 (-558)) (-4 *3 (-842)))) ((*1 *1 *2) (-12 (-5 *2 (-634 *6)) (-4 *6 (-1061 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *1 (-468 *3 *4 *5 *6)))) ((*1 *1 *2) (-12 (-5 *2 (-1094)) (-5 *1 (-541)))) ((*1 *2 *1) (-12 (-4 *1 (-609 *2)) (-4 *2 (-1195)))) ((*1 *1 *2) (-12 (-4 *3 (-172)) (-4 *1 (-714 *3 *2)) (-4 *2 (-1219 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-634 (-887 *3))) (-5 *1 (-887 *3)) (-4 *3 (-1090)))) ((*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-1047)) (-4 *1 (-981 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-1058)))) ((*1 *1 *2) (-12 (-5 *2 (-953 *3)) (-4 *3 (-1047)) (-4 *1 (-1061 *3 *4 *5)) (-4 *5 (-609 (-1161))) (-4 *4 (-788)) (-4 *5 (-842)))) ((*1 *1 *2) (-2198 (-12 (-5 *2 (-953 (-568))) (-4 *1 (-1061 *3 *4 *5)) (-12 (-3044 (-4 *3 (-43 (-409 (-568))))) (-4 *3 (-43 (-568))) (-4 *5 (-609 (-1161)))) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842))) (-12 (-5 *2 (-953 (-568))) (-4 *1 (-1061 *3 *4 *5)) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *5 (-609 (-1161)))) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842))))) ((*1 *1 *2) (-12 (-5 *2 (-953 (-409 (-568)))) (-4 *1 (-1061 *3 *4 *5)) (-4 *3 (-43 (-409 (-568)))) (-4 *5 (-609 (-1161))) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)))) ((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-634 *7)) (|:| -3001 *8))) (-4 *7 (-1061 *4 *5 *6)) (-4 *8 (-1066 *4 *5 *6 *7)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-1143)) (-5 *1 (-1064 *4 *5 *6 *7 *8)))) ((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-1075)))) ((*1 *1 *2) (-12 (-4 *1 (-1083 *2)) (-4 *2 (-1195)))) ((*1 *1 *2) (-12 (-4 *1 (-1093 *3 *4 *5 *6 *2)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *2 (-1090)))) ((*1 *1 *2) (-12 (-4 *1 (-1093 *3 *4 *5 *2 *6)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *2 (-1090)) (-4 *6 (-1090)))) ((*1 *1 *2) (-12 (-4 *1 (-1093 *3 *4 *2 *5 *6)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *2 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)))) ((*1 *1 *2) (-12 (-4 *1 (-1093 *3 *2 *4 *5 *6)) (-4 *3 (-1090)) (-4 *2 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)))) ((*1 *1 *2) (-12 (-4 *1 (-1093 *2 *3 *4 *5 *6)) (-4 *2 (-1090)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)))) ((*1 *1 *2) (-12 (-5 *2 (-634 *1)) (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)))) ((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-634 *7)) (|:| -3001 *8))) (-4 *7 (-1061 *4 *5 *6)) (-4 *8 (-1099 *4 *5 *6 *7)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-1143)) (-5 *1 (-1130 *4 *5 *6 *7 *8)))) ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-850)) (-5 *3 (-568)) (-5 *1 (-1176)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-850)) (-5 *3 (-568)) (-5 *1 (-1176)))) ((*1 *2 *3) (-12 (-5 *3 (-775 *4 (-852 *5))) (-4 *4 (-13 (-840) (-301) (-150) (-1021))) (-14 *5 (-634 (-1161))) (-5 *2 (-775 *4 (-852 *6))) (-5 *1 (-1268 *4 *5 *6)) (-14 *6 (-634 (-1161))))) ((*1 *2 *3) (-12 (-5 *3 (-953 *4)) (-4 *4 (-13 (-840) (-301) (-150) (-1021))) (-5 *2 (-953 (-1023 (-409 *4)))) (-5 *1 (-1268 *4 *5 *6)) (-14 *5 (-634 (-1161))) (-14 *6 (-634 (-1161))))) ((*1 *2 *3) (-12 (-5 *3 (-775 *4 (-852 *6))) (-4 *4 (-13 (-840) (-301) (-150) (-1021))) (-14 *6 (-634 (-1161))) (-5 *2 (-953 (-1023 (-409 *4)))) (-5 *1 (-1268 *4 *5 *6)) (-14 *5 (-634 (-1161))))) ((*1 *2 *3) (-12 (-5 *3 (-1157 *4)) (-4 *4 (-13 (-840) (-301) (-150) (-1021))) (-5 *2 (-1157 (-1023 (-409 *4)))) (-5 *1 (-1268 *4 *5 *6)) (-14 *5 (-634 (-1161))) (-14 *6 (-634 (-1161))))) ((*1 *2 *3) (-12 (-5 *3 (-1131 *4 (-534 (-852 *6)) (-852 *6) (-775 *4 (-852 *6)))) (-4 *4 (-13 (-840) (-301) (-150) (-1021))) (-14 *6 (-634 (-1161))) (-5 *2 (-634 (-775 *4 (-852 *6)))) (-5 *1 (-1268 *4 *5 *6)) (-14 *5 (-634 (-1161)))))) +(((*1 *2) (-12 (-5 *2 (-1249)) (-5 *1 (-1173 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090))))) +(((*1 *2 *2) (-12 (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *2 (-950 *3 *5 (-852 *4))) (-4 *5 (-230 (-1697 *4) (-763))) (-4 *6 (-971 *3)) (-4 *7 (-641 *3)) (-4 *8 (-920 *3 *7)) (-4 *9 (-235 *8)) (-4 *10 (-536 *3 *4 *2 *5 *6 *7 *8 *9 *12)) (-4 *12 (-117)) (-5 *1 (-467 *3 *4 *2 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *11 (-258 *10)))) ((*1 *2 *2) (-12 (-5 *2 (-242 *4 *3)) (-4 *3 (-350)) (-14 *4 (-634 (-1161))) (-5 *1 (-867 *3 *4 *5)) (-4 *5 (-117)))) ((*1 *2 *2) (-12 (-5 *2 (-242 *4 *3)) (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-5 *1 (-868 *3 *4 *5)) (-4 *5 (-117))))) +(((*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-634 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-121) *8 *8)) (-4 *1 (-1189 *5 *6 *7 *8)) (-4 *5 (-558)) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *8 (-1061 *5 *6 *7))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-69 -1478)))) (-5 *2 (-1035)) (-5 *1 (-740))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-568)) (-4 *1 (-641 *3)) (-4 *3 (-365))))) +(((*1 *2 *3) (-12 (|has| *6 (-6 -4520)) (-4 *4 (-365)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-634 *6)) (-5 *1 (-529 *4 *5 *6 *3)) (-4 *3 (-677 *4 *5 *6)))) ((*1 *2 *3) (-12 (|has| *9 (-6 -4520)) (-4 *4 (-558)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-4 *7 (-993 *4)) (-4 *8 (-375 *7)) (-4 *9 (-375 *7)) (-5 *2 (-634 *6)) (-5 *1 (-530 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-677 *4 *5 *6)) (-4 *10 (-677 *7 *8 *9)))) ((*1 *2 *1) (-12 (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-4 *3 (-558)) (-5 *2 (-634 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *4 (-172)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-634 *6)) (-5 *1 (-678 *4 *5 *6 *3)) (-4 *3 (-677 *4 *5 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-1050 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-4 *5 (-558)) (-5 *2 (-634 *7))))) +(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-1244 *4)) (-5 *3 (-1108)) (-4 *4 (-350)) (-5 *1 (-532 *4))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002)))))) +(((*1 *2 *3) (-12 (-5 *3 (-409 (-953 *4))) (-4 *4 (-301)) (-5 *2 (-409 (-420 (-953 *4)))) (-5 *1 (-1041 *4))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-750))))) +(((*1 *2 *3) (-12 (-4 *4 (-13 (-842) (-558) (-1037 (-568)))) (-5 *2 (-409 (-568))) (-5 *1 (-435 *4 *3)) (-4 *3 (-432 *4)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-607 *3)) (-4 *3 (-432 *5)) (-4 *5 (-13 (-842) (-558) (-1037 (-568)))) (-5 *2 (-1157 (-409 (-568)))) (-5 *1 (-435 *5 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-840)) (-5 *1 (-297 *3))))) +(((*1 *1 *1 *1 *2) (-12 (-4 *1 (-950 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *2 (-842)) (-4 *3 (-172)))) ((*1 *2 *3 *3) (-12 (-4 *2 (-558)) (-5 *1 (-970 *2 *3)) (-4 *3 (-1219 *2)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1061 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-788)) (-4 *4 (-842)) (-4 *2 (-558)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-1219 *2)) (-4 *2 (-1047)) (-4 *2 (-172))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 (-57))) (-5 *2 (-1249)) (-5 *1 (-851))))) +(((*1 *2 *3) (-12 (-5 *3 (-817)) (-5 *2 (-57)) (-5 *1 (-824))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-69 -1478)))) (-5 *2 (-1035)) (-5 *1 (-740))))) +(((*1 *2 *2) (-12 (-5 *2 (-944 *3)) (-4 *3 (-13 (-365) (-1181) (-1002))) (-5 *1 (-174 *3))))) +(((*1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-926))))) +(((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1 (-1157 (-953 *4)) (-953 *4))) (-5 *1 (-1252 *4)) (-4 *4 (-365))))) +(((*1 *2 *3) (-12 (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-763)) (-5 *1 (-450 *4 *5 *6 *3)) (-4 *3 (-950 *4 *5 *6))))) +(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-917)) (-5 *4 (-1143)) (-5 *2 (-1249)) (-5 *1 (-1245))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-750))))) +(((*1 *2 *3) (-12 (-5 *3 (-1244 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1219 *4)) (-5 *2 (-679 *4)))) ((*1 *2) (-12 (-4 *4 (-172)) (-4 *5 (-1219 *4)) (-5 *2 (-679 *4)) (-5 *1 (-410 *3 *4 *5)) (-4 *3 (-411 *4 *5)))) ((*1 *2) (-12 (-4 *1 (-411 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1219 *3)) (-5 *2 (-679 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-817))))) +(((*1 *1 *1) (-5 *1 (-850))) ((*1 *1 *1 *1) (-5 *1 (-850))) ((*1 *1 *2 *2) (-12 (-4 *1 (-1083 *2)) (-4 *2 (-1195)))) ((*1 *1 *2) (-12 (-5 *1 (-1210 *2)) (-4 *2 (-1195))))) +(((*1 *2 *3 *4 *5) (-12 (-5 *5 (-568)) (-4 *6 (-365)) (-14 *7 (-634 (-1161))) (-4 *8 (-230 (-1697 *7) (-763))) (-4 *9 (-641 *6)) (-5 *2 (-634 *9)) (-5 *1 (-654 *6 *7 *4 *8 *3 *9 *10)) (-4 *4 (-950 *6 *8 (-852 *7))) (-4 *3 (-971 *6)) (-4 *10 (-920 *6 *9))))) +(((*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-288 *6)) (-5 *4 (-123)) (-4 *6 (-432 *5)) (-4 *5 (-13 (-842) (-558) (-609 (-541)))) (-5 *2 (-57)) (-5 *1 (-311 *5 *6)))) ((*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-288 *7)) (-5 *4 (-123)) (-5 *5 (-634 *7)) (-4 *7 (-432 *6)) (-4 *6 (-13 (-842) (-558) (-609 (-541)))) (-5 *2 (-57)) (-5 *1 (-311 *6 *7)))) ((*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-634 (-288 *7))) (-5 *4 (-634 (-123))) (-5 *5 (-288 *7)) (-4 *7 (-432 *6)) (-4 *6 (-13 (-842) (-558) (-609 (-541)))) (-5 *2 (-57)) (-5 *1 (-311 *6 *7)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-634 (-288 *8))) (-5 *4 (-634 (-123))) (-5 *5 (-288 *8)) (-5 *6 (-634 *8)) (-4 *8 (-432 *7)) (-4 *7 (-13 (-842) (-558) (-609 (-541)))) (-5 *2 (-57)) (-5 *1 (-311 *7 *8)))) ((*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-634 *7)) (-5 *4 (-634 (-123))) (-5 *5 (-288 *7)) (-4 *7 (-432 *6)) (-4 *6 (-13 (-842) (-558) (-609 (-541)))) (-5 *2 (-57)) (-5 *1 (-311 *6 *7)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-634 *8)) (-5 *4 (-634 (-123))) (-5 *6 (-634 (-288 *8))) (-4 *8 (-432 *7)) (-5 *5 (-288 *8)) (-4 *7 (-13 (-842) (-558) (-609 (-541)))) (-5 *2 (-57)) (-5 *1 (-311 *7 *8)))) ((*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-288 *5)) (-5 *4 (-123)) (-4 *5 (-432 *6)) (-4 *6 (-13 (-842) (-558) (-609 (-541)))) (-5 *2 (-57)) (-5 *1 (-311 *6 *5)))) ((*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-123)) (-5 *5 (-288 *3)) (-4 *3 (-432 *6)) (-4 *6 (-13 (-842) (-558) (-609 (-541)))) (-5 *2 (-57)) (-5 *1 (-311 *6 *3)))) ((*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-123)) (-5 *5 (-288 *3)) (-4 *3 (-432 *6)) (-4 *6 (-13 (-842) (-558) (-609 (-541)))) (-5 *2 (-57)) (-5 *1 (-311 *6 *3)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-123)) (-5 *5 (-288 *3)) (-5 *6 (-634 *3)) (-4 *3 (-432 *7)) (-4 *7 (-13 (-842) (-558) (-609 (-541)))) (-5 *2 (-57)) (-5 *1 (-311 *7 *3)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-123)) (-5 *5 (-1161)) (-5 *6 (-634 *3)) (-4 *3 (-432 *7)) (-4 *7 (-13 (-842) (-558) (-609 (-541)))) (-4 *2 (-1234 *3)) (-5 *1 (-312 *7 *3 *2 *8)) (-4 *8 (-1234 (-1155 *3))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *6)) (-5 *4 (-634 *5)) (-4 *5 (-365)) (-4 *6 (-1234 (-1155 *5))) (-4 *2 (-1234 *5)) (-5 *1 (-1238 *5 *2 *6))))) +(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-568)) (-5 *5 (-679 (-215))) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-69 -1478)))) (-5 *3 (-215)) (-5 *2 (-1035)) (-5 *1 (-740))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-1161)) (-5 *4 (-953 (-568))) (-5 *2 (-328)) (-5 *1 (-330))))) +(((*1 *2 *1) (-12 (-4 *1 (-536 *2 *3 *4 *5 *6 *7 *8 *9 *10)) (-4 *4 (-950 *2 *5 (-852 *3))) (-4 *5 (-230 (-1697 *3) (-763))) (-4 *6 (-971 *2)) (-4 *7 (-641 *2)) (-4 *8 (-920 *2 *7)) (-4 *9 (-235 *8)) (-4 *10 (-117)) (-4 *2 (-365))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002)))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-638 *3 *4 *5)) (-4 *3 (-1090)) (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-634 (-1157 *11))) (-5 *3 (-1157 *11)) (-5 *4 (-634 *10)) (-5 *5 (-634 *8)) (-5 *6 (-634 (-763))) (-5 *7 (-1244 (-634 (-1157 *8)))) (-4 *10 (-842)) (-4 *8 (-301)) (-4 *11 (-950 *8 *9 *10)) (-4 *9 (-788)) (-5 *1 (-697 *9 *10 *8 *11))))) +(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-69 -1478)))) (-5 *2 (-1035)) (-5 *1 (-740))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 *7)) (-4 *7 (-950 *4 *5 *6)) (-4 *6 (-609 (-1161))) (-4 *4 (-365)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-1150 (-634 (-953 *4)) (-634 (-288 (-953 *4))))) (-5 *1 (-514 *4 *5 *6 *7))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-634 *5)) (-5 *4 (-917)) (-4 *5 (-842)) (-5 *2 (-634 (-663 *5))) (-5 *1 (-663 *5))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-917)) (-5 *2 (-121)) (-5 *1 (-233 *4)) (-4 *4 (-1047))))) +(((*1 *1 *1 *2) (-12 (-5 *1 (-593 *2)) (-4 *2 (-43 (-409 (-568)))) (-4 *2 (-1047))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-634 (-57))) (-5 *1 (-887 *3)) (-4 *3 (-1090))))) +(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-69 G)))) (-5 *2 (-1035)) (-5 *1 (-740))))) +(((*1 *1 *2) (-12 (-5 *2 (-310 *3)) (-4 *3 (-13 (-1047) (-842))) (-5 *1 (-213 *3 *4)) (-14 *4 (-634 (-1161)))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -2850 *4) (|:| -2183 *4) (|:| |totalpts| (-568)) (|:| |success| (-121)))) (-5 *1 (-784)) (-5 *5 (-568))))) +(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1177))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-1125 *3 *4)) (-4 *3 (-13 (-1090) (-39))) (-4 *4 (-13 (-1090) (-39)))))) +(((*1 *2) (-12 (-5 *2 (-634 (-1143))) (-5 *1 (-1247)))) ((*1 *2 *2) (-12 (-5 *2 (-634 (-1143))) (-5 *1 (-1247))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-750))))) +(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-634 (-409 (-953 (-568))))) (-5 *4 (-634 (-1161))) (-5 *2 (-634 (-634 *5))) (-5 *1 (-382 *5)) (-4 *5 (-13 (-840) (-365))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-409 (-953 (-568)))) (-5 *2 (-634 *4)) (-5 *1 (-382 *4)) (-4 *4 (-13 (-840) (-365)))))) +(((*1 *2 *3 *3 *4) (-12 (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *3 (-1061 *5 *6 *7)) (-5 *2 (-634 (-2 (|:| |val| (-634 *3)) (|:| -3001 *4)))) (-5 *1 (-1067 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-887 *4)) (-4 *4 (-1090)) (-5 *2 (-634 *5)) (-5 *1 (-885 *4 *5)) (-4 *5 (-1195))))) +(((*1 *2 *1) (-12 (-5 *2 (-634 (-634 (-215)))) (-5 *1 (-926))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-953 *5)))) (-5 *4 (-634 (-1161))) (-4 *5 (-558)) (-5 *2 (-634 (-634 (-953 *5)))) (-5 *1 (-1166 *5))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-69 G)))) (-5 *2 (-1035)) (-5 *1 (-740))))) +(((*1 *2 *1) (-12 (-5 *2 (-634 (-568))) (-5 *1 (-215))))) +(((*1 *1 *2 *3) (-12 (-5 *1 (-429 *3 *2)) (-4 *3 (-13 (-172) (-43 (-409 (-568))))) (-4 *2 (-13 (-842) (-21)))))) +(((*1 *1 *1) (-5 *1 (-1059)))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-710)) (-5 *2 (-917)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-712)) (-5 *2 (-763))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 *2)) (-4 *2 (-432 *4)) (-5 *1 (-433 *4 *2)) (-4 *4 (-13 (-842) (-558)))))) +(((*1 *1) (-4 *1 (-350))) ((*1 *2 *3) (-12 (-5 *3 (-634 *5)) (-4 *5 (-432 *4)) (-4 *4 (-13 (-558) (-842) (-150))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-634 (-1157 *5))) (|:| |prim| (-1157 *5)))) (-5 *1 (-434 *4 *5)))) ((*1 *2 *3 *3) (-12 (-4 *4 (-13 (-558) (-842) (-150))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1157 *3)) (|:| |pol2| (-1157 *3)) (|:| |prim| (-1157 *3)))) (-5 *1 (-434 *4 *3)) (-4 *3 (-27)) (-4 *3 (-432 *4)))) ((*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-953 *5)) (-5 *4 (-1161)) (-4 *5 (-13 (-365) (-150))) (-5 *2 (-2 (|:| |coef1| (-568)) (|:| |coef2| (-568)) (|:| |prim| (-1157 *5)))) (-5 *1 (-960 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-953 *5))) (-5 *4 (-634 (-1161))) (-4 *5 (-13 (-365) (-150))) (-5 *2 (-2 (|:| -2348 (-634 (-568))) (|:| |poly| (-634 (-1157 *5))) (|:| |prim| (-1157 *5)))) (-5 *1 (-960 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-634 (-953 *6))) (-5 *4 (-634 (-1161))) (-5 *5 (-1161)) (-4 *6 (-13 (-365) (-150))) (-5 *2 (-2 (|:| -2348 (-634 (-568))) (|:| |poly| (-634 (-1157 *6))) (|:| |prim| (-1157 *6)))) (-5 *1 (-960 *6))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-750))))) +(((*1 *2 *3) (-12 (-5 *3 (-492 *4 *5)) (-14 *4 (-634 (-1161))) (-4 *5 (-1047)) (-5 *2 (-242 *4 *5)) (-5 *1 (-945 *4 *5))))) +(((*1 *2 *3) (-12 (-4 *4 (-13 (-558) (-842))) (-4 *2 (-13 (-432 (-169 *4)) (-1002) (-1181))) (-5 *1 (-597 *4 *3 *2)) (-4 *3 (-13 (-432 *4) (-1002) (-1181)))))) +(((*1 *2 *2 *3 *3) (-12 (-5 *3 (-568)) (-4 *4 (-13 (-558) (-150))) (-5 *1 (-542 *4 *2)) (-4 *2 (-1234 *4)))) ((*1 *2 *2 *3 *3) (-12 (-5 *3 (-568)) (-4 *4 (-13 (-365) (-370) (-609 *3))) (-4 *5 (-1219 *4)) (-4 *6 (-714 *4 *5)) (-5 *1 (-546 *4 *5 *6 *2)) (-4 *2 (-1234 *6)))) ((*1 *2 *2 *3 *3) (-12 (-5 *3 (-568)) (-4 *4 (-13 (-365) (-370) (-609 *3))) (-5 *1 (-547 *4 *2)) (-4 *2 (-1234 *4)))) ((*1 *2 *2 *3 *3) (-12 (-5 *2 (-1141 *4)) (-5 *3 (-568)) (-4 *4 (-13 (-558) (-150))) (-5 *1 (-1137 *4))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1121 (-215))) (-5 *3 (-634 (-256))) (-5 *1 (-1246)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1121 (-215))) (-5 *3 (-1143)) (-5 *1 (-1246)))) ((*1 *1 *1) (-5 *1 (-1246)))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-69 G)))) (-5 *2 (-1035)) (-5 *1 (-740))))) +(((*1 *2 *3 *1) (-12 (-4 *4 (-365)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-121)) (-5 *1 (-514 *4 *5 *6 *3)) (-4 *3 (-950 *4 *5 *6))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-1249)) (-5 *1 (-817))))) +(((*1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1061 *3 *4 *5)) (-5 *2 (-121))))) +(((*1 *2 *3) (-12 (-5 *3 (-1244 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-679 *4)))) ((*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-679 *4)) (-5 *1 (-418 *3 *4)) (-4 *3 (-419 *4)))) ((*1 *2) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-679 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-634 (-169 (-215)))) (-5 *1 (-145)))) ((*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-1195)) (-5 *1 (-1244 *3))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-750))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-634 *14)) (-4 *14 (-258 *13)) (-4 *13 (-536 *5 *6 *7 *8 *9 *10 *11 *12 *15)) (-4 *15 (-117)) (-4 *5 (-365)) (-14 *6 (-634 (-1161))) (-4 *7 (-950 *5 *8 (-852 *6))) (-4 *8 (-230 (-1697 *6) *3)) (-4 *9 (-971 *5)) (-4 *10 (-641 *5)) (-4 *11 (-920 *5 *10)) (-4 *12 (-235 *11)) (-5 *3 (-763)) (-5 *2 (-568)) (-5 *1 (-260 *5 *6 *7 *8 *9 *10 *11 *12 *13 *14 *15))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1181))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 (-944 *3) (-944 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-365) (-1181) (-1002)))))) +(((*1 *1 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1090))))) +(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-944 (-215))) (-5 *4 (-869)) (-5 *2 (-1249)) (-5 *1 (-473)))) ((*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-1047)) (-4 *1 (-981 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-1122 *3)) (-4 *3 (-1047)) (-5 *2 (-944 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-944 *3)) (-4 *3 (-1047)) (-4 *1 (-1122 *3)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-763)) (-4 *1 (-1122 *3)) (-4 *3 (-1047)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *1 (-1122 *3)) (-4 *3 (-1047)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-944 *3)) (-4 *1 (-1122 *3)) (-4 *3 (-1047)))) ((*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-944 (-215))) (-5 *1 (-1192)) (-5 *3 (-215))))) +(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-679 (-215))) (-5 *6 (-679 (-568))) (-5 *3 (-568)) (-5 *4 (-215)) (-5 *2 (-1035)) (-5 *1 (-744))))) +(((*1 *2 *1) (-12 (-5 *2 (-634 (-634 (-944 (-215))))) (-5 *1 (-473))))) +(((*1 *2 *2 *3) (-12 (-4 *4 (-13 (-365) (-150) (-1037 (-409 (-568))))) (-4 *3 (-1219 *4)) (-5 *1 (-804 *4 *3 *2 *5)) (-4 *2 (-646 *3)) (-4 *5 (-646 (-409 *3))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-409 *5)) (-4 *4 (-13 (-365) (-150) (-1037 (-409 (-568))))) (-4 *5 (-1219 *4)) (-5 *1 (-804 *4 *5 *2 *6)) (-4 *2 (-646 *5)) (-4 *6 (-646 *3))))) +(((*1 *2) (-12 (-4 *1 (-340 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 (-409 *4))) (-5 *2 (-121))))) +(((*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1143)) (-5 *1 (-299))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-763)) (-4 *3 (-13 (-558) (-453))) (-5 *2 (-634 *3)) (-5 *1 (-346 *3 *5)) (-4 *5 (-52 *3 *4))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-750))))) +(((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-2 (|:| |zeros| (-1141 (-215))) (|:| |ones| (-1141 (-215))) (|:| |singularities| (-1141 (-215))))) (-5 *1 (-109))))) +(((*1 *1) (-5 *1 (-147))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-256))) (-5 *2 (-1121 (-215))) (-5 *1 (-254)))) ((*1 *1 *2) (-12 (-5 *2 (-1121 (-215))) (-5 *1 (-256))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-381)) (-5 *1 (-99))))) +(((*1 *1 *2) (-12 (-4 *3 (-1047)) (-5 *1 (-822 *2 *3)) (-4 *2 (-698 *3))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-365)) (-5 *1 (-280 *3 *2)) (-4 *2 (-1234 *3))))) +(((*1 *2 *1) (-12 (-5 *1 (-212 *2)) (-4 *2 (-1090)))) ((*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1195)))) ((*1 *2 *1) (-12 (-5 *1 (-1000 *2)) (-4 *2 (-1090))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-763)) (-4 *1 (-223 *4)) (-4 *4 (-1047)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-223 *3)) (-4 *3 (-1047)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-225)) (-5 *2 (-763)))) ((*1 *1 *1) (-4 *1 (-225))) ((*1 *1 *1 *2) (-12 (-5 *2 (-763)) (-4 *1 (-262 *3)) (-4 *3 (-842)))) ((*1 *1 *1) (-12 (-4 *1 (-262 *2)) (-4 *2 (-842)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-340 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 (-409 *4))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-763)) (-4 *3 (-13 (-365) (-150))) (-5 *1 (-401 *3 *4)) (-4 *4 (-1219 *3)))) ((*1 *1 *1) (-12 (-4 *2 (-13 (-365) (-150))) (-5 *1 (-401 *2 *3)) (-4 *3 (-1219 *2)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1240 *4)) (-14 *4 (-1161)) (-5 *1 (-479 *3 *4 *5)) (-4 *3 (-1047)) (-14 *5 *3))) ((*1 *2 *1 *3) (-12 (-4 *2 (-365)) (-4 *2 (-895 *3)) (-5 *1 (-585 *2)) (-5 *3 (-1161)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-585 *2)) (-4 *2 (-365)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-763)) (-5 *1 (-850)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-634 *4)) (-5 *3 (-634 (-763))) (-4 *1 (-895 *4)) (-4 *4 (-1090)))) ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-763)) (-4 *1 (-895 *2)) (-4 *2 (-1090)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *1 (-895 *3)) (-4 *3 (-1090)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-895 *2)) (-4 *2 (-1090)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1240 *4)) (-14 *4 (-1161)) (-5 *1 (-1151 *3 *4 *5)) (-4 *3 (-1047)) (-14 *5 *3))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1240 *4)) (-14 *4 (-1161)) (-5 *1 (-1158 *3 *4 *5)) (-4 *3 (-1047)) (-14 *5 *3))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1240 *4)) (-14 *4 (-1161)) (-5 *1 (-1159 *3 *4 *5)) (-4 *3 (-1047)) (-14 *5 *3))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1240 (QUOTE |x|))) (-5 *1 (-1201 *3)) (-4 *3 (-1047)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1240 *4)) (-14 *4 (-1161)) (-5 *1 (-1207 *3 *4 *5)) (-4 *3 (-1047)) (-14 *5 *3))) ((*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1219 *3)) (-4 *3 (-1047)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1240 *4)) (-14 *4 (-1161)) (-5 *1 (-1228 *3 *4 *5)) (-4 *3 (-1047)) (-14 *5 *3))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1240 *4)) (-14 *4 (-1161)) (-5 *1 (-1235 *3 *4 *5)) (-4 *3 (-1047)) (-14 *5 *3))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1240 *4)) (-14 *4 (-1161)) (-5 *1 (-1239 *3 *4)) (-4 *3 (-1047))))) +(((*1 *2 *3 *3 *4) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-750))))) +(((*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-43 (-409 (-568)))) (-4 *2 (-1047))))) +(((*1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-57))))) +(((*1 *1 *2) (-12 (-5 *2 (-409 (-568))) (-5 *1 (-208))))) +(((*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-172)))) ((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-634 *8)) (-5 *4 (-141 *5 *6 *7)) (-14 *5 (-568)) (-14 *6 (-763)) (-4 *7 (-172)) (-4 *8 (-172)) (-5 *2 (-141 *5 *6 *8)) (-5 *1 (-140 *5 *6 *7 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 *9)) (-4 *9 (-1047)) (-4 *5 (-842)) (-4 *6 (-788)) (-4 *8 (-1047)) (-4 *2 (-950 *9 *7 *5)) (-5 *1 (-718 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-788)) (-4 *4 (-950 *8 *6 *5))))) +(((*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-750))))) +(((*1 *2) (-12 (-5 *2 (-679 (-905 *3))) (-5 *1 (-352 *3 *4)) (-14 *3 (-917)) (-14 *4 (-917)))) ((*1 *2) (-12 (-5 *2 (-679 *3)) (-5 *1 (-353 *3 *4)) (-4 *3 (-350)) (-14 *4 (-3 (-1157 *3) (-1244 (-634 (-2 (|:| -2850 *3) (|:| -4355 (-1108))))))))) ((*1 *2) (-12 (-5 *2 (-679 *3)) (-5 *1 (-354 *3 *4)) (-4 *3 (-350)) (-14 *4 (-917))))) +(((*1 *1 *1) (-12 (-4 *1 (-246 *2 *3 *4 *5)) (-4 *2 (-1047)) (-4 *3 (-842)) (-4 *4 (-262 *3)) (-4 *5 (-788))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 *2)) (-4 *2 (-432 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-13 (-842) (-558)))))) +(((*1 *2 *1) (-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-787)) (-5 *2 (-763)))) ((*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-1090)) (-5 *2 (-763)))) ((*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-725 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-716))))) +(((*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-121)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-121))))) +(((*1 *1 *2) (-12 (-5 *2 (-634 (-2 (|:| -3649 (-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (|:| -4083 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))))) (-5 *1 (-798))))) +(((*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-750))))) +(((*1 *2 *1) (-12 (-4 *1 (-601 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1195)) (-5 *2 (-634 *3))))) +(((*1 *2 *3) (-12 (-4 *4 (-13 (-558) (-842))) (-5 *2 (-169 *5)) (-5 *1 (-597 *4 *5 *3)) (-4 *5 (-13 (-432 *4) (-1002) (-1181))) (-4 *3 (-13 (-432 (-169 *4)) (-1002) (-1181)))))) +(((*1 *1 *2) (-12 (-5 *2 (-1244 *3)) (-4 *3 (-1047)) (-5 *1 (-702 *3 *4)) (-4 *4 (-1219 *3))))) +(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-763)) (-4 *1 (-324 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-787)) (-4 *3 (-172))))) +(((*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-750))))) +(((*1 *2 *1) (-12 (-4 *1 (-366 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-5 *2 (-1249))))) +(((*1 *2 *3 *1) (-12 (|has| $ (-6 -4519)) (-5 *2 (-763)) (-5 *1 (-96 *3)) (-4 *3 (-1090)) (-4 *3 (-1090)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| $ (-6 -4519)) (-4 *4 (-1090)) (-5 *2 (-763)) (-5 *1 (-96 *4)))) ((*1 *2 *3 *1) (-12 (|has| $ (-6 -4519)) (-5 *2 (-763)) (-5 *1 (-212 *3)) (-4 *3 (-1090)) (-4 *3 (-1090)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| $ (-6 -4519)) (-4 *4 (-1090)) (-5 *2 (-763)) (-5 *1 (-212 *4)))) ((*1 *2 *3 *1) (-12 (|has| $ (-6 -4519)) (-5 *2 (-763)) (-5 *1 (-494 *3)) (-4 *3 (-1090)) (-4 *3 (-842)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| $ (-6 -4519)) (-4 *4 (-842)) (-5 *2 (-763)) (-5 *1 (-494 *4)))) ((*1 *2 *3 *1) (-12 (|has| *1 (-6 -4519)) (-4 *1 (-499 *3)) (-4 *3 (-1195)) (-4 *3 (-1090)) (-5 *2 (-763)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| *1 (-6 -4519)) (-4 *1 (-499 *4)) (-4 *4 (-1195)) (-5 *2 (-763)))) ((*1 *2 *3 *1) (-12 (|has| $ (-6 -4519)) (-5 *2 (-763)) (-5 *1 (-1000 *3)) (-4 *3 (-1090)) (-4 *3 (-1090)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| $ (-6 -4519)) (-4 *4 (-1090)) (-5 *2 (-763)) (-5 *1 (-1000 *4)))) ((*1 *2 *3 *1) (-12 (|has| $ (-6 -4519)) (-5 *2 (-763)) (-5 *1 (-1132 *3)) (-4 *3 (-1090)) (-4 *3 (-1090)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| $ (-6 -4519)) (-4 *4 (-1090)) (-5 *2 (-763)) (-5 *1 (-1132 *4))))) +(((*1 *2 *2) (-12 (-4 *3 (-365)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-529 *3 *4 *5 *2)) (-4 *2 (-677 *3 *4 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-4 *7 (-993 *4)) (-4 *2 (-677 *7 *8 *9)) (-5 *1 (-530 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-677 *4 *5 *6)) (-4 *8 (-375 *7)) (-4 *9 (-375 *7)))) ((*1 *1 *1) (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (-4 *2 (-301)))) ((*1 *2 *2) (-12 (-4 *3 (-301)) (-4 *3 (-172)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-678 *3 *4 *5 *2)) (-4 *2 (-677 *3 *4 *5)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-679 *3)) (-4 *3 (-301)) (-5 *1 (-689 *3)))) ((*1 *1 *1) (-12 (-4 *1 (-1050 *2 *3 *4 *5 *6)) (-4 *4 (-1047)) (-4 *5 (-230 *3 *4)) (-4 *6 (-230 *2 *4)) (-4 *4 (-301))))) +(((*1 *2 *3) (-12 (-5 *3 (-944 *2)) (-5 *1 (-983 *2)) (-4 *2 (-1047))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1035)) (-5 *3 (-1161)) (-5 *1 (-263))))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4265 *4))) (-5 *1 (-970 *4 *3)) (-4 *3 (-1219 *4))))) +(((*1 *2 *2) (-12 (-4 *3 (-609 (-887 *3))) (-4 *3 (-881 *3)) (-4 *3 (-13 (-842) (-453))) (-5 *1 (-1187 *3 *2)) (-4 *2 (-609 (-887 *3))) (-4 *2 (-881 *3)) (-4 *2 (-13 (-432 *3) (-1181)))))) +(((*1 *2 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1195)))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-1189 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *2 (-1061 *3 *4 *5)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-763)) (-4 *1 (-1231 *3)) (-4 *3 (-1195)))) ((*1 *2 *1) (-12 (-4 *1 (-1231 *2)) (-4 *2 (-1195))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-169 (-215))) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-750))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-1249)) (-5 *1 (-1173 *4 *5)) (-4 *4 (-1090)) (-4 *5 (-1090))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-568)) (-4 *1 (-62 *4 *3 *5)) (-4 *4 (-1195)) (-4 *3 (-375 *4)) (-4 *5 (-375 *4))))) +(((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-634 (-409 *7))) (-4 *7 (-1219 *6)) (-5 *3 (-409 *7)) (-4 *6 (-365)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-634 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-578 *6 *7))))) +(((*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-150) (-1037 (-409 (-568))))) (-4 *5 (-1219 *4)) (-5 *2 (-634 (-2 (|:| -1374 *5) (|:| -2783 *5)))) (-5 *1 (-802 *4 *5 *3 *6)) (-4 *3 (-646 *5)) (-4 *6 (-646 (-409 *5))))) ((*1 *2 *3 *4) (-12 (-4 *5 (-13 (-365) (-150) (-1037 (-409 (-568))))) (-4 *4 (-1219 *5)) (-5 *2 (-634 (-2 (|:| -1374 *4) (|:| -2783 *4)))) (-5 *1 (-802 *5 *4 *3 *6)) (-4 *3 (-646 *4)) (-4 *6 (-646 (-409 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-150) (-1037 (-409 (-568))))) (-4 *5 (-1219 *4)) (-5 *2 (-634 (-2 (|:| -1374 *5) (|:| -2783 *5)))) (-5 *1 (-802 *4 *5 *6 *3)) (-4 *6 (-646 *5)) (-4 *3 (-646 (-409 *5))))) ((*1 *2 *3 *4) (-12 (-4 *5 (-13 (-365) (-150) (-1037 (-409 (-568))))) (-4 *4 (-1219 *5)) (-5 *2 (-634 (-2 (|:| -1374 *4) (|:| -2783 *4)))) (-5 *1 (-802 *5 *4 *6 *3)) (-4 *6 (-646 *4)) (-4 *3 (-646 (-409 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-634 (-1161))) (-5 *1 (-1165))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-750))))) +(((*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-96 *3)) (-4 *3 (-1090)))) ((*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-212 *3)) (-4 *3 (-1090)))) ((*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-887 *3)) (-4 *3 (-1090)))) ((*1 *2 *1) (-12 (-4 *1 (-1109 *3)) (-4 *3 (-1195)) (-5 *2 (-763)))) ((*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-1132 *3)) (-4 *3 (-1090))))) +(((*1 *1 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-21)) (-4 *2 (-1195))))) +(((*1 *2 *3 *4 *5) (-12 (-5 *5 (-763)) (-4 *6 (-1090)) (-4 *3 (-895 *6)) (-5 *2 (-679 *3)) (-5 *1 (-681 *6 *3 *7 *4)) (-4 *7 (-375 *3)) (-4 *4 (-13 (-375 *6) (-10 -7 (-6 -4519))))))) +(((*1 *2 *1) (-12 (-4 *1 (-1093 *3 *4 *5 *6 *2)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *2 (-1090))))) +(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-147))))) +(((*1 *2 *2) (-12 (-5 *2 (-634 *7)) (-4 *7 (-971 *3)) (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *6 (-230 (-1697 *4) (-763))) (-4 *8 (-641 *3)) (-4 *9 (-920 *3 *8)) (-4 *10 (-235 *9)) (-4 *11 (-536 *3 *4 *5 *6 *7 *8 *9 *10 *13)) (-4 *13 (-117)) (-5 *1 (-467 *3 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13)) (-4 *12 (-258 *11)))) ((*1 *2 *2) (-12 (-5 *2 (-634 (-967 *3))) (-4 *3 (-350)) (-5 *1 (-867 *3 *4 *5)) (-14 *4 (-634 (-1161))) (-4 *5 (-117)))) ((*1 *2 *2) (-12 (-5 *2 (-634 (-966 *3))) (-4 *3 (-365)) (-5 *1 (-868 *3 *4 *5)) (-14 *4 (-634 (-1161))) (-4 *5 (-117))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-750))))) +(((*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 (-409 *4))) (-5 *2 (-1244 *6)) (-5 *1 (-334 *3 *4 *5 *6)) (-4 *6 (-340 *3 *4 *5))))) +(((*1 *2 *3 *4 *5) (-12 (-5 *5 (-1161)) (-4 *6 (-13 (-842) (-301) (-1037 (-568)) (-630 (-568)) (-150))) (-4 *4 (-13 (-29 *6) (-1181) (-959))) (-5 *2 (-2 (|:| |particular| *4) (|:| -3746 (-634 *4)))) (-5 *1 (-796 *6 *4 *3)) (-4 *3 (-646 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-147))))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| -2348 *4) (|:| -3961 *3) (|:| -1500 *3))) (-5 *1 (-970 *4 *3)) (-4 *3 (-1219 *4)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-2 (|:| -3961 *1) (|:| -1500 *1))) (-4 *1 (-1061 *3 *4 *5)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-558)) (-4 *3 (-1047)) (-5 *2 (-2 (|:| -2348 *3) (|:| -3961 *1) (|:| -1500 *1))) (-4 *1 (-1219 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-568)) (-4 *1 (-1083 *3)) (-4 *3 (-1195))))) +(((*1 *2 *3 *4) (-12 (-4 *5 (-1090)) (-4 *3 (-895 *5)) (-5 *2 (-679 *3)) (-5 *1 (-681 *5 *3 *6 *4)) (-4 *6 (-375 *3)) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4519))))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-1249)) (-5 *1 (-817))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-750))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-453))) (-5 *1 (-1187 *3 *2)) (-4 *2 (-13 (-432 *3) (-1181)))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-634 (-953 *4))) (-5 *3 (-634 (-1161))) (-4 *4 (-453)) (-5 *1 (-914 *4))))) +(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-887 *4)) (-4 *4 (-1090)) (-5 *1 (-884 *4 *3)) (-4 *3 (-1090))))) +(((*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1157 *4)) (-5 *1 (-358 *4)) (-4 *4 (-350))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-750))))) +(((*1 *1 *2) (-12 (-5 *2 (-763)) (-5 *1 (-271))))) +(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-328)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-328))))) +(((*1 *1 *2) (-12 (-5 *2 (-1149 3 *3)) (-4 *3 (-1047)) (-4 *1 (-1122 *3)))) ((*1 *1) (-12 (-4 *1 (-1122 *2)) (-4 *2 (-1047))))) +(((*1 *2 *1) (-12 (-4 *1 (-971 *3)) (-4 *3 (-365)) (-5 *2 (-568))))) +(((*1 *2 *2) (-12 (-5 *1 (-961 *2)) (-4 *2 (-550))))) +(((*1 *1) (-5 *1 (-473)))) +(((*1 *2) (-12 (-5 *2 (-1249)) (-5 *1 (-67 *3)) (-14 *3 (-1161)))) ((*1 *2) (-12 (-5 *2 (-1249)) (-5 *1 (-74 *3)) (-14 *3 (-1161)))) ((*1 *2) (-12 (-5 *2 (-1249)) (-5 *1 (-77 *3)) (-14 *3 (-1161)))) ((*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-1249)))) ((*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1249)) (-5 *1 (-399)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1143)) (-5 *4 (-850)) (-5 *2 (-1249)) (-5 *1 (-1123)))) ((*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1249)) (-5 *1 (-1123)))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-850))) (-5 *2 (-1249)) (-5 *1 (-1123))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-750))))) +(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-381)) (-5 *3 (-1143)) (-5 *1 (-99)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-381)) (-5 *3 (-1143)) (-5 *1 (-99))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-850) (-850))) (-5 *1 (-123)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-850) (-634 (-850)))) (-5 *1 (-123)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-850) (-634 (-850)))) (-5 *1 (-123)))) ((*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-205 *3)) (-4 *3 (-13 (-842) (-10 -8 (-15 -2779 ((-1143) $ (-1161))) (-15 -4125 (*2 $)) (-15 -1352 (*2 $))))))) ((*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-396)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-568)) (-5 *2 (-1249)) (-5 *1 (-396)))) ((*1 *2 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-1249)) (-5 *1 (-500)))) ((*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-511)))) ((*1 *2 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-1249)) (-5 *1 (-700)))) ((*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-1176)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-568)) (-5 *2 (-1249)) (-5 *1 (-1176))))) +(((*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-215) (-215) (-215))) (-5 *4 (-3 (-1 (-215) (-215) (-215) (-215)) "undefined")) (-5 *5 (-1084 (-215))) (-5 *6 (-634 (-256))) (-5 *2 (-1121 (-215))) (-5 *1 (-686)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-944 (-215)) (-215) (-215))) (-5 *4 (-1084 (-215))) (-5 *5 (-634 (-256))) (-5 *2 (-1121 (-215))) (-5 *1 (-686)))) ((*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1121 (-215))) (-5 *3 (-1 (-944 (-215)) (-215) (-215))) (-5 *4 (-1084 (-215))) (-5 *5 (-634 (-256))) (-5 *1 (-686))))) +(((*1 *2 *1 *1) (-12 (-4 *3 (-558)) (-4 *3 (-1047)) (-5 *2 (-2 (|:| -3961 *1) (|:| -1500 *1))) (-4 *1 (-844 *3)))) ((*1 *2 *3 *3 *4) (-12 (-5 *4 (-101 *5)) (-4 *5 (-558)) (-4 *5 (-1047)) (-5 *2 (-2 (|:| -3961 *3) (|:| -1500 *3))) (-5 *1 (-845 *5 *3)) (-4 *3 (-844 *5))))) +(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-568)) (-4 *1 (-640 *3)) (-4 *3 (-1195)))) ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-568)) (-4 *1 (-640 *2)) (-4 *2 (-1195))))) +(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-136 *2)) (-4 *2 (-1090)))) ((*1 *1 *2) (-12 (-5 *1 (-136 *2)) (-4 *2 (-1090))))) +(((*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-750))))) +(((*1 *2) (-12 (-5 *2 (-1249)) (-5 *1 (-393))))) +(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-634 (-310 (-215)))) (|:| |constraints| (-634 (-2 (|:| |start| (-215)) (|:| |finish| (-215)) (|:| |grid| (-763)) (|:| |boundaryType| (-568)) (|:| |dStart| (-679 (-215))) (|:| |dFinish| (-679 (-215)))))) (|:| |f| (-634 (-634 (-310 (-215))))) (|:| |st| (-1143)) (|:| |tol| (-215)))) (-5 *2 (-121)) (-5 *1 (-202))))) +(((*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-472)))) ((*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-472))))) +(((*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1219 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| -1924 (-409 *6)) (|:| |coeff| (-409 *6)))) (-5 *1 (-578 *5 *6)) (-5 *3 (-409 *6))))) +(((*1 *2 *3 *1 *4) (-12 (-5 *3 (-1125 *5 *6)) (-5 *4 (-1 (-121) *6 *6)) (-4 *5 (-13 (-1090) (-39))) (-4 *6 (-13 (-1090) (-39))) (-5 *2 (-121)) (-5 *1 (-1126 *5 *6))))) +(((*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-993 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-143 *4 *5 *3)) (-4 *3 (-375 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-993 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-512 *4 *5 *6 *3)) (-4 *6 (-375 *4)) (-4 *3 (-375 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-679 *5)) (-4 *5 (-993 *4)) (-4 *4 (-558)) (-5 *2 (-2 (|:| |num| (-679 *4)) (|:| |den| *4))) (-5 *1 (-682 *4 *5)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-13 (-365) (-150) (-1037 (-409 (-568))))) (-4 *6 (-1219 *5)) (-5 *2 (-2 (|:| -1853 *7) (|:| |rh| (-634 (-409 *6))))) (-5 *1 (-802 *5 *6 *7 *3)) (-5 *4 (-634 (-409 *6))) (-4 *7 (-646 *6)) (-4 *3 (-646 (-409 *6))))) ((*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-993 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1212 *4 *5 *3)) (-4 *3 (-1219 *5))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-453))) (-5 *1 (-1187 *3 *2)) (-4 *2 (-13 (-432 *3) (-1181)))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-750))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1143)) (-4 *1 (-391))))) +(((*1 *2 *3) (-12 (-4 *1 (-795)) (-5 *3 (-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (-5 *2 (-1035))))) +(((*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-634 (-1125 *4 *5))) (-5 *3 (-1 (-121) *5 *5)) (-4 *4 (-13 (-1090) (-39))) (-4 *5 (-13 (-1090) (-39))) (-5 *1 (-1126 *4 *5)))) ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-634 (-1125 *3 *4))) (-4 *3 (-13 (-1090) (-39))) (-4 *4 (-13 (-1090) (-39))) (-5 *1 (-1126 *3 *4))))) +(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-763)) (|:| -2700 *4))) (-5 *5 (-763)) (-4 *4 (-950 *6 *7 *8)) (-4 *6 (-453)) (-4 *7 (-788)) (-4 *8 (-842)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-450 *6 *7 *8 *4))))) +(((*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-121)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-121))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-634 (-568))) (-5 *1 (-1004 *3)) (-14 *3 (-568))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-750))))) +(((*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1249)) (-5 *1 (-393)))) ((*1 *2 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-1249)) (-5 *1 (-393))))) +(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-634 (-568))) (-5 *3 (-121)) (-5 *1 (-1100))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-53))) (-5 *4 (-634 (-465))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-482)))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-53))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-482)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 *5)) (-5 *4 (-634 (-465))) (-4 *5 (-13 (-350) (-609 (-568)))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-484 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-634 *4)) (-4 *4 (-13 (-350) (-609 (-568)))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-484 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-568)))) (-5 *4 (-634 (-465))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-485)))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-409 (-568)))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-485)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 *5)) (-5 *4 (-634 (-465))) (-4 *5 (-365)) (-14 *10 (-1 *7 *5)) (-4 *8 (-13 (-842) (-558))) (-14 *9 (-1 *5 *8)) (-5 *2 (-634 (-2 (|:| -1864 *7) (|:| -4477 (-763))))) (-5 *1 (-486 *5 *6 *7 *8 *9 *10)) (-4 *6 (-453)) (-4 *7 (-13 (-432 (-568)) (-558) (-1037 *8) (-1037 (-1161)) (-1037 (-568)) (-161) (-895 (-1161)) (-10 -8 (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -1332 ($ $)) (-15 -3013 ($ $)) (-15 -2086 ((-121) $))))))) ((*1 *2 *3) (-12 (-5 *3 (-634 *4)) (-4 *4 (-365)) (-14 *9 (-1 *6 *4)) (-4 *7 (-13 (-842) (-558))) (-14 *8 (-1 *4 *7)) (-5 *2 (-634 (-2 (|:| -1864 *6) (|:| -4477 (-763))))) (-5 *1 (-486 *4 *5 *6 *7 *8 *9)) (-4 *5 (-453)) (-4 *6 (-13 (-432 (-568)) (-558) (-1037 *7) (-1037 (-1161)) (-1037 (-568)) (-161) (-895 (-1161)) (-10 -8 (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -1332 ($ $)) (-15 -3013 ($ $)) (-15 -2086 ((-121) $))))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-953 (-568))))) (-5 *4 (-634 (-465))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-487)))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-409 (-953 (-568))))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-487)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-734 *5 (-568))))) (-5 *4 (-634 (-465))) (-14 *5 (-1161)) (-5 *2 (-634 (-2 (|:| -1864 (-733 *5 (-568))) (|:| -4477 (-763))))) (-5 *1 (-488 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-409 (-734 *4 (-568))))) (-14 *4 (-1161)) (-5 *2 (-634 (-2 (|:| -1864 (-733 *4 (-568))) (|:| -4477 (-763))))) (-5 *1 (-488 *4))))) +(((*1 *1) (-5 *1 (-439)))) +(((*1 *2 *1) (-12 (-4 *1 (-1083 *2)) (-4 *2 (-1195))))) +(((*1 *1 *2) (-12 (-5 *2 (-634 (-2 (|:| -3649 (-1161)) (|:| -4083 (-439))))) (-5 *1 (-1165))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-750))))) +(((*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1161)) (-5 *6 (-121)) (-4 *7 (-13 (-301) (-842) (-150) (-1037 (-568)) (-630 (-568)))) (-4 *3 (-13 (-1181) (-959) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-835 *3)) (|:| |f2| (-634 (-835 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-209 *7 *3)) (-5 *5 (-835 *3))))) +(((*1 *2 *3 *2 *4) (-12 (-5 *3 (-679 *2)) (-5 *4 (-763)) (-4 *2 (-13 (-301) (-10 -8 (-15 -1678 ((-420 $) $))))) (-4 *5 (-1219 *2)) (-5 *1 (-508 *2 *5 *6)) (-4 *6 (-411 *2 *5))))) +(((*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-927))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-638 *2 *3 *4)) (-4 *2 (-1090)) (-4 *3 (-23)) (-14 *4 *3)))) +(((*1 *2 *1) (-12 (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-634 *1)) (-4 *1 (-1061 *3 *4 *5))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-171)))) ((*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-1245)))) ((*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-1246))))) +(((*1 *2 *1) (-12 (-4 *2 (-1090)) (-5 *1 (-965 *2 *3)) (-4 *3 (-1090))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-750))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 (-465))) (-5 *2 (-2 (|:| |guessStream| (-1 (-1141 (-1201 (-53))) (-1201 (-53)))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-53)))) (-1201 (-1157 (-53))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 (-53) (-763) (-763) (-1157 (-53)))) (|:| AF (-1 (-1157 (-53)) (-763) (-763) (-1201 (-1157 (-53))))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 (-53)) (-763))))) (-5 *1 (-482)))) ((*1 *2 *3) (-12 (-4 (-53) (-1037 *3)) (-5 *3 (-1161)) (-5 *2 (-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 (-53))) (-1201 (-53)))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-53)))) (-1201 (-1157 (-53))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) *3)) (|:| A (-1 (-53) (-763) (-763) (-1157 (-53)))) (|:| AF (-1 (-1157 (-53)) (-763) (-763) (-1201 (-1157 (-53))))) (|:| AX (-1 (-310 (-568)) (-763) *3 (-310 (-568)))) (|:| C (-1 (-634 (-53)) (-763)))) (-634 (-465)))) (-5 *1 (-482)))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-465))) (-5 *2 (-2 (|:| |guessStream| (-1 (-1141 (-1201 *4)) (-1201 *4))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 *4))) (-1201 (-1157 *4)))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 *4 (-763) (-763) (-1157 *4))) (|:| AF (-1 (-1157 *4) (-763) (-763) (-1201 (-1157 *4)))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 *4) (-763))))) (-5 *1 (-484 *4)) (-4 *4 (-13 (-350) (-609 (-568)))))) ((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 *4)) (-1201 *4))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 *4))) (-1201 (-1157 *4)))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) *3)) (|:| A (-1 *4 (-763) (-763) (-1157 *4))) (|:| AF (-1 (-1157 *4) (-763) (-763) (-1201 (-1157 *4)))) (|:| AX (-1 (-310 (-568)) (-763) *3 (-310 (-568)))) (|:| C (-1 (-634 *4) (-763)))) (-634 (-465)))) (-5 *1 (-484 *4)) (-4 *4 (-1037 *3)) (-4 *4 (-13 (-350) (-609 (-568)))))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-465))) (-5 *2 (-2 (|:| |guessStream| (-1 (-1141 (-1201 (-409 (-568)))) (-1201 (-409 (-568))))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-409 (-568))))) (-1201 (-1157 (-409 (-568)))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 (-568) (-763) (-763) (-1157 (-568)))) (|:| AF (-1 (-1157 (-409 (-568))) (-763) (-763) (-1201 (-1157 (-409 (-568)))))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 (-568)) (-763))))) (-5 *1 (-485)))) ((*1 *2 *3) (-12 (-4 (-409 (-568)) (-1037 *3)) (-4 (-568) (-1037 *3)) (-5 *3 (-1161)) (-5 *2 (-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 (-409 (-568)))) (-1201 (-409 (-568))))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-409 (-568))))) (-1201 (-1157 (-409 (-568)))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) *3)) (|:| A (-1 (-568) (-763) (-763) (-1157 (-568)))) (|:| AF (-1 (-1157 (-409 (-568))) (-763) (-763) (-1201 (-1157 (-409 (-568)))))) (|:| AX (-1 (-310 (-568)) (-763) *3 (-310 (-568)))) (|:| C (-1 (-634 (-568)) (-763)))) (-634 (-465)))) (-5 *1 (-485)))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-465))) (-4 *7 (-13 (-842) (-558))) (-14 *8 (-1 *4 *7)) (-5 *2 (-2 (|:| |guessStream| (-1 (-1141 (-1201 *4)) (-1201 *4))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 *4))) (-1201 (-1157 *4)))) (|:| |exprStream| (-1 (-1141 *6) *6 (-1161))) (|:| A (-1 *5 (-763) (-763) (-1157 *5))) (|:| AF (-1 (-1157 *4) (-763) (-763) (-1201 (-1157 *4)))) (|:| AX (-1 *6 (-763) (-1161) *6)) (|:| C (-1 (-634 *5) (-763))))) (-5 *1 (-486 *4 *5 *6 *7 *8 *9)) (-4 *4 (-365)) (-4 *5 (-453)) (-4 *6 (-13 (-432 (-568)) (-558) (-1037 *7) (-1037 (-1161)) (-1037 (-568)) (-161) (-895 (-1161)) (-10 -8 (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -1332 ($ $)) (-15 -3013 ($ $)) (-15 -2086 ((-121) $))))) (-14 *9 (-1 *6 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-1161)) (-4 *7 (-13 (-842) (-558))) (-14 *8 (-1 *4 *7)) (-5 *2 (-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 *4)) (-1201 *4))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 *4))) (-1201 (-1157 *4)))) (|:| |exprStream| (-1 (-1141 *6) *6 *3)) (|:| A (-1 *5 (-763) (-763) (-1157 *5))) (|:| AF (-1 (-1157 *4) (-763) (-763) (-1201 (-1157 *4)))) (|:| AX (-1 *6 (-763) *3 *6)) (|:| C (-1 (-634 *5) (-763)))) (-634 (-465)))) (-5 *1 (-486 *4 *5 *6 *7 *8 *9)) (-4 *4 (-1037 *3)) (-4 *5 (-1037 *3)) (-4 *4 (-365)) (-4 *5 (-453)) (-4 *6 (-13 (-432 (-568)) (-558) (-1037 *7) (-1037 *3) (-1037 (-568)) (-161) (-895 *3) (-10 -8 (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -1332 ($ $)) (-15 -3013 ($ $)) (-15 -2086 ((-121) $))))) (-14 *9 (-1 *6 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-465))) (-5 *2 (-2 (|:| |guessStream| (-1 (-1141 (-1201 (-409 (-953 (-568))))) (-1201 (-409 (-953 (-568)))))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-409 (-953 (-568)))))) (-1201 (-1157 (-409 (-953 (-568))))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 (-953 (-568)) (-763) (-763) (-1157 (-953 (-568))))) (|:| AF (-1 (-1157 (-409 (-953 (-568)))) (-763) (-763) (-1201 (-1157 (-409 (-953 (-568))))))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 (-953 (-568))) (-763))))) (-5 *1 (-487)))) ((*1 *2 *3) (-12 (-4 (-409 (-953 (-568))) (-1037 *3)) (-4 (-953 (-568)) (-1037 *3)) (-5 *3 (-1161)) (-5 *2 (-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 (-409 (-953 (-568))))) (-1201 (-409 (-953 (-568)))))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-409 (-953 (-568)))))) (-1201 (-1157 (-409 (-953 (-568))))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) *3)) (|:| A (-1 (-953 (-568)) (-763) (-763) (-1157 (-953 (-568))))) (|:| AF (-1 (-1157 (-409 (-953 (-568)))) (-763) (-763) (-1201 (-1157 (-409 (-953 (-568))))))) (|:| AX (-1 (-310 (-568)) (-763) *3 (-310 (-568)))) (|:| C (-1 (-634 (-953 (-568))) (-763)))) (-634 (-465)))) (-5 *1 (-487)))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-465))) (-5 *2 HPSPEC) (-5 *1 (-488 *4)) (-14 *4 (-1161)))) ((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1 HPSPEC (-634 (-465)))) (-5 *1 (-488 *4)) (-14 *4 *3)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-420 *3)) (-4 *3 (-558)) (-5 *1 (-421 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-310 (-215))) (-5 *2 (-121)) (-5 *1 (-263))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-833)) (-5 *4 (-1059)) (-5 *2 (-1035)) (-5 *1 (-832)))) ((*1 *2 *3) (-12 (-5 *3 (-833)) (-5 *2 (-1035)) (-5 *1 (-832)))) ((*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-634 (-381))) (-5 *5 (-634 (-835 (-381)))) (-5 *6 (-634 (-310 (-381)))) (-5 *3 (-310 (-381))) (-5 *2 (-1035)) (-5 *1 (-832)))) ((*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-310 (-381))) (-5 *4 (-634 (-381))) (-5 *5 (-634 (-835 (-381)))) (-5 *2 (-1035)) (-5 *1 (-832)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-310 (-381))) (-5 *4 (-634 (-381))) (-5 *2 (-1035)) (-5 *1 (-832)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-310 (-381)))) (-5 *4 (-634 (-381))) (-5 *2 (-1035)) (-5 *1 (-832))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-1244 *5)) (-4 *5 (-630 *4)) (-4 *4 (-558)) (-5 *2 (-1244 *4)) (-5 *1 (-629 *4 *5))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-750))))) +(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1141 (-215))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1338 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-563))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-328))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-663 *3)) (-4 *3 (-842)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-667 *3)) (-4 *3 (-842)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-814 *3)) (-4 *3 (-842))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 (-465))) (-5 *2 (-568)) (-5 *1 (-464)))) ((*1 *1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-465))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-1189 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *2 (-1061 *3 *4 *5))))) +(((*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-763)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) ((*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1195)) (-5 *2 (-763)) (-5 *1 (-229 *3 *4 *5)) (-4 *3 (-230 *4 *5)))) ((*1 *2) (-12 (-4 *4 (-842)) (-5 *2 (-763)) (-5 *1 (-431 *3 *4)) (-4 *3 (-432 *4)))) ((*1 *2) (-12 (-5 *2 (-763)) (-5 *1 (-549 *3)) (-4 *3 (-550)))) ((*1 *2) (-12 (-4 *1 (-755)) (-5 *2 (-763)))) ((*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-763)) (-5 *1 (-791 *3 *4)) (-4 *3 (-792 *4)))) ((*1 *2) (-12 (-4 *4 (-558)) (-5 *2 (-763)) (-5 *1 (-992 *3 *4)) (-4 *3 (-993 *4)))) ((*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-763)) (-5 *1 (-996 *3 *4)) (-4 *3 (-997 *4)))) ((*1 *2) (-12 (-5 *2 (-763)) (-5 *1 (-1011 *3)) (-4 *3 (-1012)))) ((*1 *2) (-12 (-4 *1 (-1047)) (-5 *2 (-763)))) ((*1 *2) (-12 (-5 *2 (-763)) (-5 *1 (-1055 *3)) (-4 *3 (-1056))))) +(((*1 *1 *1) (-5 *1 (-1059)))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-750))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1195)) (-5 *2 (-568))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-634 (-634 (-634 *4)))) (-5 *3 (-634 *4)) (-4 *4 (-842)) (-5 *1 (-1167 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-944 (-215)) (-944 (-215)))) (-5 *1 (-256)))) ((*1 *2 *3) (-12 (-5 *3 (-1244 *1)) (-4 *1 (-327 *4)) (-4 *4 (-365)) (-5 *2 (-679 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-327 *3)) (-4 *3 (-365)) (-5 *2 (-1244 *3)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-1244 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-679 *4)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1244 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-1244 *4)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-1244 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1219 *4)) (-5 *2 (-679 *4)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1244 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1219 *4)) (-5 *2 (-1244 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-1244 *1)) (-4 *1 (-411 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1219 *4)) (-5 *2 (-679 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-411 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1219 *3)) (-5 *2 (-1244 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-1244 *1)) (-4 *1 (-419 *4)) (-4 *4 (-172)) (-5 *2 (-679 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-1244 *3)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-634 (-679 *5))) (-5 *3 (-679 *5)) (-4 *5 (-365)) (-5 *2 (-1244 *5)) (-5 *1 (-1077 *5))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-1249)) (-5 *1 (-1246))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-750))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-679 (-169 (-409 (-568))))) (-5 *2 (-634 (-169 *4))) (-5 *1 (-756 *4)) (-4 *4 (-13 (-365) (-840)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-215)) (-5 *1 (-30)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-420 *4) *4)) (-4 *4 (-558)) (-5 *2 (-420 *4)) (-5 *1 (-421 *4)))) ((*1 *1 *1) (-5 *1 (-926))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1084 (-215))) (-5 *1 (-926)))) ((*1 *1 *1) (-5 *1 (-927))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1084 (-215))) (-5 *1 (-927)))) ((*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568))))) (-5 *4 (-409 (-568))) (-5 *1 (-1019 *3)) (-4 *3 (-1219 (-568))))) ((*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568))))) (-5 *1 (-1019 *3)) (-4 *3 (-1219 (-568))))) ((*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568))))) (-5 *4 (-409 (-568))) (-5 *1 (-1020 *3)) (-4 *3 (-1219 *4)))) ((*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568))))) (-5 *1 (-1020 *3)) (-4 *3 (-1219 (-409 (-568)))))) ((*1 *1 *1) (-12 (-4 *2 (-13 (-840) (-365))) (-5 *1 (-1057 *2 *3)) (-4 *3 (-1219 *2))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-763)) (-5 *1 (-850)))) ((*1 *1 *1) (-5 *1 (-850)))) +(((*1 *2 *3) (-12 (-4 *4 (-350)) (-5 *2 (-121)) (-5 *1 (-207 *4 *3)) (-4 *3 (-1219 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-350)) (-5 *2 (-121)) (-5 *1 (-344 *4 *3)) (-4 *3 (-1219 *4))))) +(((*1 *2) (-12 (-5 *2 (-1132 (-1143))) (-5 *1 (-393))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-750))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-568)) (-4 *4 (-1047)) (-4 *5 (-230 *6 (-763))) (-14 *6 (-763)) (-5 *1 (-908 *4 *2 *5 *6)) (-4 *2 (-324 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 (-1161))) (-5 *2 (-1249)) (-5 *1 (-1164)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-634 (-1161))) (-5 *3 (-1161)) (-5 *2 (-1249)) (-5 *1 (-1164)))) ((*1 *2 *3 *4 *1) (-12 (-5 *4 (-634 (-1161))) (-5 *3 (-1161)) (-5 *2 (-1249)) (-5 *1 (-1164))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1129)) (-5 *3 (-147)) (-5 *2 (-121))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1 (-944 (-215)) (-944 (-215)))) (-5 *3 (-634 (-256))) (-5 *1 (-254)))) ((*1 *1 *2) (-12 (-5 *2 (-1 (-944 (-215)) (-944 (-215)))) (-5 *1 (-256)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-634 (-492 *5 *6))) (-5 *3 (-492 *5 *6)) (-14 *5 (-634 (-1161))) (-4 *6 (-453)) (-5 *2 (-1244 *6)) (-5 *1 (-622 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *2 (-568)) (-5 *1 (-446 *3)) (-4 *3 (-406)) (-4 *3 (-1047))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-296)) (-5 *3 (-1161)) (-5 *2 (-121)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-296)) (-5 *2 (-121))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-750))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1161)) (-5 *2 (-3 (|:| |fst| (-436)) (|:| -3611 "void"))) (-5 *1 (-1164))))) +(((*1 *2 *3) (-12 (-14 *4 (-634 (-1161))) (-4 *5 (-453)) (-5 *2 (-2 (|:| |glbase| (-634 (-242 *4 *5))) (|:| |glval| (-634 (-568))))) (-5 *1 (-622 *4 *5)) (-5 *3 (-634 (-242 *4 *5)))))) +(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1149 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1047))))) +(((*1 *2 *1) (-12 (-4 *1 (-1061 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-121))))) +(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-1141 *4)) (-5 *3 (-568)) (-4 *4 (-1047)) (-5 *1 (-1145 *4)))) ((*1 *1 *2 *2 *1) (-12 (-5 *2 (-568)) (-5 *1 (-1201 *3)) (-4 *3 (-1047)))) ((*1 *1 *2 *2 *1) (-12 (-5 *2 (-568)) (-5 *1 (-1235 *3 *4 *5)) (-4 *3 (-1047)) (-14 *4 (-1161)) (-14 *5 *3))) ((*1 *1 *2 *2 *1) (-12 (-5 *2 (-568)) (-5 *1 (-1239 *3 *4)) (-4 *3 (-1047)) (-14 *4 (-1161))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-750))))) +(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-99))))) +(((*1 *2 *3) (-12 (-5 *3 (-310 (-381))) (-5 *2 (-310 (-215))) (-5 *1 (-299))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1061 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-788)) (-4 *4 (-842)) (-4 *2 (-558)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1061 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-788)) (-4 *4 (-842)) (-4 *2 (-558))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-634 *7)) (-4 *7 (-1061 *4 *5 *6)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-121)) (-5 *1 (-989 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-634 *7)) (-4 *7 (-1061 *4 *5 *6)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-121)) (-5 *1 (-1097 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7))))) +(((*1 *1 *1 *1) (-5 *1 (-850)))) +(((*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-215))) (-5 *5 (-568)) (-5 *6 (-1143)) (-5 *3 (-215)) (-5 *2 (-1035)) (-5 *1 (-750))))) +(((*1 *2 *3 *3) (-12 (-4 *3 (-301)) (-4 *3 (-172)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-2 (|:| -3961 *3) (|:| -1500 *3))) (-5 *1 (-678 *3 *4 *5 *6)) (-4 *6 (-677 *3 *4 *5)))) ((*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -3961 *3) (|:| -1500 *3))) (-5 *1 (-689 *3)) (-4 *3 (-301))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-420 *5)) (-4 *5 (-558)) (-5 *2 (-2 (|:| -3438 (-763)) (|:| -2348 *5) (|:| |radicand| (-634 *5)))) (-5 *1 (-316 *5)) (-5 *4 (-763)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1002)) (-5 *2 (-568))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-763)) (-5 *1 (-848 *2)) (-4 *2 (-43 (-409 (-568)))) (-4 *2 (-172))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-763)) (-5 *3 (-121)) (-5 *1 (-114)))) ((*1 *2 *2) (-12 (-5 *2 (-917)) (|has| *1 (-6 -4510)) (-4 *1 (-406)))) ((*1 *2) (-12 (-4 *1 (-406)) (-5 *2 (-917))))) +(((*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-607 *4)) (-5 *6 (-1161)) (-4 *4 (-13 (-432 *7) (-27) (-1181))) (-4 *7 (-13 (-453) (-1037 (-568)) (-842) (-150) (-630 (-568)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3746 (-634 *4)))) (-5 *1 (-570 *7 *4 *3)) (-4 *3 (-646 *4)) (-4 *3 (-1090))))) +(((*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-215))) (-5 *5 (-568)) (-5 *6 (-1143)) (-5 *3 (-215)) (-5 *2 (-1035)) (-5 *1 (-750))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-1157 *3)) (-4 *3 (-350)) (-5 *1 (-358 *3))))) +(((*1 *1 *1 *1) (-5 *1 (-850)))) +(((*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1143)) (-5 *1 (-299))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-763)) (-5 *2 (-409 (-568))) (-5 *1 (-215)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-5 *2 (-409 (-568))) (-5 *1 (-215)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-763)) (-5 *2 (-409 (-568))) (-5 *1 (-381)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-5 *2 (-409 (-568))) (-5 *1 (-381))))) +(((*1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-472)))) ((*1 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-472)))) ((*1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-927))))) +(((*1 *2 *3 *4 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-739))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-568)) (-4 *2 (-432 *3)) (-5 *1 (-36 *3 *2)) (-4 *3 (-1037 *4)) (-4 *3 (-13 (-842) (-558)))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-634 *8)) (-5 *4 (-634 *9)) (-4 *8 (-1061 *5 *6 *7)) (-4 *9 (-1066 *5 *6 *7 *8)) (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-5 *2 (-763)) (-5 *1 (-1064 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 *8)) (-5 *4 (-634 *9)) (-4 *8 (-1061 *5 *6 *7)) (-4 *9 (-1099 *5 *6 *7 *8)) (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-5 *2 (-763)) (-5 *1 (-1130 *5 *6 *7 *8 *9))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-1108)) (-5 *1 (-113))))) +(((*1 *2 *3) (-12 (-4 *1 (-890)) (-5 *3 (-2 (|:| |pde| (-634 (-310 (-215)))) (|:| |constraints| (-634 (-2 (|:| |start| (-215)) (|:| |finish| (-215)) (|:| |grid| (-763)) (|:| |boundaryType| (-568)) (|:| |dStart| (-679 (-215))) (|:| |dFinish| (-679 (-215)))))) (|:| |f| (-634 (-634 (-310 (-215))))) (|:| |st| (-1143)) (|:| |tol| (-215)))) (-5 *2 (-1035))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 (-634 *5))) (-4 *5 (-324 *4 *6)) (-4 *6 (-230 *7 *2)) (-14 *7 *2) (-4 *4 (-1047)) (-5 *2 (-763)) (-5 *1 (-772 *4 *5 *6 *7)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-230 *7 *2)) (-14 *7 *2) (-5 *2 (-763)) (-5 *1 (-929 *5 *3 *6 *7 *4)) (-4 *3 (-324 *5 *6)) (-4 *4 (-971 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *5 (-568)) (-4 *6 (-365)) (-4 *7 (-230 *8 *2)) (-14 *8 *2) (-5 *2 (-763)) (-5 *1 (-929 *6 *3 *7 *8 *4)) (-4 *3 (-324 *6 *7)) (-4 *4 (-971 *6))))) +(((*1 *2 *3 *4 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-739))))) +(((*1 *2 *2) (-12 (-5 *2 (-514 (-409 (-568)) (-232 *4 (-763)) (-852 *3) (-242 *3 (-409 (-568))))) (-14 *3 (-634 (-1161))) (-14 *4 (-763)) (-5 *1 (-515 *3 *4))))) +(((*1 *2 *3 *4 *3 *5) (-12 (-4 *6 (-365)) (-14 *7 (-634 (-1161))) (-4 *8 (-230 (-1697 *7) (-763))) (-4 *9 (-641 *6)) (-5 *2 (-2 (|:| |fnc| *3) (|:| |crv| *3) (|:| |chart| (-634 (-568))))) (-5 *1 (-654 *6 *7 *3 *8 *4 *9 *10)) (-5 *5 (-568)) (-4 *3 (-950 *6 *8 (-852 *7))) (-4 *4 (-971 *6)) (-4 *10 (-920 *6 *9))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1061 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-788)) (-4 *4 (-842)))) ((*1 *2 *2 *1) (-12 (-4 *1 (-1189 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *2 (-1061 *3 *4 *5))))) +(((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1039))))) +(((*1 *1 *1) (-4 *1 (-40))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1234 *3)) (-5 *1 (-274 *3 *4 *2)) (-4 *2 (-1205 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1203 *3)) (-5 *1 (-275 *3 *4 *2 *5)) (-4 *2 (-1226 *3 *4)) (-4 *5 (-984 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1146 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1147 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-96 *3)) (-4 *3 (-1090)) (-4 *3 (-1090)))) ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-212 *3)) (-4 *3 (-1090)) (-4 *3 (-1090)))) ((*1 *2 *1) (-12 (-5 *2 (-568)) (-5 *1 (-215)))) ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-494 *3)) (-4 *3 (-1090)) (-4 *3 (-842)))) ((*1 *1 *1) (-4 *1 (-550))) ((*1 *2 *1) (-12 (-5 *2 (-568)) (-5 *1 (-591 *3)) (-14 *3 *2))) ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1000 *3)) (-4 *3 (-1090)) (-4 *3 (-1090)))) ((*1 *2 *1) (-12 (-4 *1 (-1090)) (-5 *2 (-1108)))) ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1132 *3)) (-4 *3 (-1090)) (-4 *3 (-1090))))) +(((*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-739))))) +(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-636 *3)) (-4 *3 (-1090))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 (-465))) (-5 *2 (-121)) (-5 *1 (-464)))) ((*1 *1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-465)))) ((*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-927))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 (-944 *3) (-944 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-365) (-1181) (-1002)))))) +(((*1 *2 *1) (-12 (-4 *1 (-955)) (-5 *2 (-1084 (-215))))) ((*1 *2 *1) (-12 (-4 *1 (-975)) (-5 *2 (-1084 (-215)))))) +(((*1 *2 *1) (|partial| -12 (-4 *1 (-1205 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-1234 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-634 (-57))) (-5 *1 (-887 *3)) (-4 *3 (-1090))))) +(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-634 (-310 (-215)))) (|:| -4434 (-634 (-215))))) (-5 *2 (-381)) (-5 *1 (-263)))) ((*1 *2 *3) (-12 (-5 *3 (-1244 (-310 (-215)))) (-5 *2 (-381)) (-5 *1 (-299))))) +(((*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-46 *3 *2)) (-4 *2 (-13 (-365) (-296) (-10 -8 (-15 -2317 ((-1113 *3 (-607 $)) $)) (-15 -2324 ((-1113 *3 (-607 $)) $)) (-15 -2745 ($ (-1113 *3 (-607 $))))))))) ((*1 *2 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-46 *3 *2)) (-4 *2 (-13 (-365) (-296) (-10 -8 (-15 -2317 ((-1113 *3 (-607 $)) $)) (-15 -2324 ((-1113 *3 (-607 $)) $)) (-15 -2745 ($ (-1113 *3 (-607 $))))))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-634 *2)) (-4 *2 (-13 (-365) (-296) (-10 -8 (-15 -2317 ((-1113 *4 (-607 $)) $)) (-15 -2324 ((-1113 *4 (-607 $)) $)) (-15 -2745 ($ (-1113 *4 (-607 $))))))) (-4 *4 (-558)) (-5 *1 (-46 *4 *2)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-634 (-607 *2))) (-4 *2 (-13 (-365) (-296) (-10 -8 (-15 -2317 ((-1113 *4 (-607 $)) $)) (-15 -2324 ((-1113 *4 (-607 $)) $)) (-15 -2745 ($ (-1113 *4 (-607 $))))))) (-4 *4 (-558)) (-5 *1 (-46 *4 *2))))) +(((*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-739))))) +(((*1 *2 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-1249)) (-5 *1 (-234)))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-1143))) (-5 *2 (-1249)) (-5 *1 (-234))))) +(((*1 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-927))))) +(((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-169 (-215)) (-169 (-215)))) (-5 *4 (-1084 (-215))) (-5 *5 (-121)) (-5 *2 (-1246)) (-5 *1 (-250))))) +(((*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-215)) (-5 *1 (-1247)))) ((*1 *2) (-12 (-5 *2 (-215)) (-5 *1 (-1247))))) +(((*1 *2) (-12 (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *6 (-230 (-1697 *4) (-763))) (-4 *7 (-971 *3)) (-4 *8 (-641 *3)) (-4 *9 (-920 *3 *8)) (-4 *10 (-235 *9)) (-4 *11 (-536 *3 *4 *5 *6 *7 *8 *9 *10 *13)) (-4 *13 (-117)) (-5 *2 (-634 *12)) (-5 *1 (-467 *3 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13)) (-4 *12 (-258 *11)))) ((*1 *2) (-12 (-5 *2 (-634 (-259 (-537 *3 *4 *5)))) (-5 *1 (-867 *3 *4 *5)) (-4 *3 (-350)) (-14 *4 (-634 (-1161))) (-4 *5 (-117)))) ((*1 *2) (-12 (-5 *2 (-634 (-259 (-513 *3 *4 *5)))) (-5 *1 (-868 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *5 (-117))))) +(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568))))) (-5 *2 (-409 (-568))) (-5 *1 (-1019 *4)) (-4 *4 (-1219 (-568)))))) +(((*1 *2 *2) (-12 (-5 *2 (-828 (-215))) (-5 *1 (-217))))) +(((*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-568)) (-5 *4 (-1143)) (-5 *5 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-739))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-634 *2)) (-4 *2 (-950 *4 *5 *6)) (-4 *4 (-301)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *1 (-448 *4 *5 *6 *2))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-1 (-121) *4 *4)) (-4 *4 (-1195)) (-5 *1 (-377 *4 *2)) (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4520))))))) +(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1210 *3)) (-4 *3 (-1195))))) +(((*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3284 *6) (|:| |sol?| (-121))) (-568) *6)) (-4 *6 (-365)) (-4 *7 (-1219 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-409 *7)) (|:| |a0| *6)) (-2 (|:| -1924 (-409 *7)) (|:| |coeff| (-409 *7))) "failed")) (-5 *1 (-578 *6 *7)) (-5 *3 (-409 *7))))) +(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-121)) (-4 *6 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-4 *3 (-13 (-27) (-1181) (-432 *6) (-10 -8 (-15 -2745 ($ *7))))) (-4 *7 (-840)) (-4 *8 (-13 (-1221 *3 *7) (-365) (-1181) (-10 -8 (-15 -4189 ($ $)) (-15 -3837 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1143)) (|:| |prob| (-1143)))))) (-5 *1 (-424 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1143)) (-4 *9 (-984 *8)) (-14 *10 (-1161))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1249)) (-5 *1 (-1246))))) +(((*1 *2 *1 *3) (-12 (-5 *2 (-409 (-568))) (-5 *1 (-126 *4)) (-14 *4 *3) (-5 *3 (-568)))) ((*1 *2 *1 *2) (-12 (-4 *1 (-863 *3)) (-5 *2 (-568)))) ((*1 *2 *1 *3) (-12 (-5 *2 (-409 (-568))) (-5 *1 (-865 *4)) (-14 *4 *3) (-5 *3 (-568)))) ((*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-409 (-568))) (-5 *1 (-866 *4 *5)) (-5 *3 (-568)) (-4 *5 (-863 *4)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-1012)) (-5 *2 (-409 (-568))))) ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1063 *2 *3)) (-4 *2 (-13 (-840) (-365))) (-4 *3 (-1219 *2)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-1221 *2 *3)) (-4 *3 (-787)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2745 (*2 (-1161)))) (-4 *2 (-1047))))) +(((*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-568)) (-5 *4 (-1143)) (-5 *5 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-739))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-568)) (-4 *4 (-1047)) (-4 *5 (-230 *6 (-763))) (-14 *6 (-763)) (-5 *1 (-908 *4 *2 *5 *6)) (-4 *2 (-324 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *2 (-634 (-568))) (-5 *1 (-447)) (-5 *3 (-568))))) +(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-594 *3)) (-4 *3 (-1047)))) ((*1 *2 *1) (-12 (-4 *1 (-974 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-787)) (-4 *5 (-842)) (-5 *2 (-121))))) +(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-636 *2)) (-4 *2 (-1090))))) +(((*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-5 *2 (-2 (|:| A (-679 *5)) (|:| |eqs| (-634 (-2 (|:| C (-679 *5)) (|:| |g| (-1244 *5)) (|:| -1853 *6) (|:| |rh| *5)))))) (-5 *1 (-808 *5 *6)) (-5 *3 (-679 *5)) (-5 *4 (-1244 *5)) (-4 *6 (-646 *5)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-646 *5)) (-5 *2 (-2 (|:| -2928 (-679 *6)) (|:| |vec| (-1244 *5)))) (-5 *1 (-808 *5 *6)) (-5 *3 (-679 *6)) (-5 *4 (-1244 *5))))) +(((*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-568)) (-4 *1 (-62 *2 *4 *5)) (-4 *2 (-1195)) (-4 *4 (-375 *2)) (-4 *5 (-375 *2)))) ((*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4520)) (-4 *1 (-283 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-1195))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-568)) (-5 *4 (-1143)) (-5 *5 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-739))))) +(((*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-634 (-607 *2))) (-5 *4 (-1161)) (-4 *2 (-13 (-27) (-1181) (-432 *5))) (-4 *5 (-13 (-558) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *1 (-273 *5 *2))))) (((*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-139))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-213)) (-5 *2 (-1241)) (-5 *1 (-809))))) -(((*1 *1 *1) (-5 *1 (-1051)))) -(((*1 *2 *3) (-12 (-5 *3 (-1236 *1)) (-4 *1 (-363 *2)) (-4 *2 (-170)))) ((*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-412 *3 *2)) (-4 *3 (-413 *2)))) ((*1 *2) (-12 (-4 *1 (-413 *2)) (-4 *2 (-170))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-560)) (-5 *4 (-121)) (-5 *5 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-739))))) -(((*1 *1 *1) (-12 (-4 *1 (-128 *2)) (-4 *2 (-1187)))) ((*1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-834)))) ((*1 *1 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-834)))) ((*1 *1 *1) (-5 *1 (-842))) ((*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-842)))) ((*1 *2 *1) (-12 (-4 *2 (-13 (-832) (-359))) (-5 *1 (-1049 *2 *3)) (-4 *3 (-1211 *2))))) -(((*1 *1) (-5 *1 (-1051)))) -(((*1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-43 (-403 (-560)))) (-4 *2 (-1039))))) -(((*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-755))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-403 (-560))) (-5 *1 (-1015 *3)) (-4 *3 (-13 (-832) (-359) (-1013))))) ((*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-832) (-359))) (-5 *1 (-1049 *2 *3)) (-4 *3 (-1211 *2)))) ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1055 *2 *3)) (-4 *2 (-13 (-832) (-359))) (-4 *3 (-1211 *2))))) -(((*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-1187)) (-5 *1 (-319 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-1187)) (-5 *1 (-517 *3 *4)) (-14 *4 (-560))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-560)) (-5 *4 (-121)) (-5 *5 (-671 (-167 (-213)))) (-5 *2 (-1027)) (-5 *1 (-739))))) -(((*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1135)) (|:| -1337 (-1135)))) (-5 *1 (-809))))) -(((*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1039))))) -(((*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-447)) (-4 *3 (-780)) (-4 *5 (-834)) (-5 *2 (-121)) (-5 *1 (-444 *4 *3 *5 *6)) (-4 *6 (-942 *4 *3 *5))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-484))))) -(((*1 *2 *3) (-12 (-4 *4 (-550)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-626 *7)) (|:| |badPols| (-626 *7)))) (-5 *1 (-970 *4 *5 *6 *7)) (-5 *3 (-626 *7))))) -(((*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1135)) (-5 *4 (-167 (-213))) (-5 *5 (-560)) (-5 *2 (-1027)) (-5 *1 (-742))))) -(((*1 *2 *1) (-12 (-5 *2 (-755)) (-5 *1 (-141 *3 *4 *5)) (-14 *3 (-560)) (-14 *4 *2) (-4 *5 (-170)))) ((*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-909)) (-5 *1 (-163 *3 *4)) (-4 *3 (-164 *4)))) ((*1 *2) (-12 (-4 *1 (-363 *3)) (-4 *3 (-170)) (-5 *2 (-909)))) ((*1 *2) (-12 (-4 *1 (-366 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1211 *3)) (-5 *2 (-909)))) ((*1 *2 *3) (-12 (-4 *4 (-359)) (-4 *5 (-369 *4)) (-4 *6 (-369 *4)) (-5 *2 (-755)) (-5 *1 (-521 *4 *5 *6 *3)) (-4 *3 (-669 *4 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-671 *5)) (-5 *4 (-1236 *5)) (-4 *5 (-359)) (-5 *2 (-755)) (-5 *1 (-651 *5)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-359)) (-4 *6 (-13 (-369 *5) (-10 -7 (-6 -4506)))) (-4 *4 (-13 (-369 *5) (-10 -7 (-6 -4506)))) (-5 *2 (-755)) (-5 *1 (-652 *5 *6 *4 *3)) (-4 *3 (-669 *5 *6 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)) (-4 *3 (-550)) (-5 *2 (-755)))) ((*1 *2 *3) (-12 (-4 *4 (-550)) (-4 *4 (-170)) (-4 *5 (-369 *4)) (-4 *6 (-369 *4)) (-5 *2 (-755)) (-5 *1 (-670 *4 *5 *6 *3)) (-4 *3 (-669 *4 *5 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039)) (-4 *6 (-226 *4 *5)) (-4 *7 (-226 *3 *5)) (-4 *5 (-550)) (-5 *2 (-755))))) -(((*1 *2 *1) (-12 (-4 *1 (-364)) (-5 *2 (-909)))) ((*1 *2 *3) (-12 (-5 *3 (-1236 *4)) (-4 *4 (-344)) (-5 *2 (-909)) (-5 *1 (-524 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-964))))) -(((*1 *2 *3) (-12 (-5 *3 (-919)) (-5 *2 (-2 (|:| |brans| (-626 (-626 (-936 (-213))))) (|:| |xValues| (-1076 (-213))) (|:| |yValues| (-1076 (-213))))) (-5 *1 (-154)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-919)) (-5 *4 (-403 (-560))) (-5 *2 (-2 (|:| |brans| (-626 (-626 (-936 (-213))))) (|:| |xValues| (-1076 (-213))) (|:| |yValues| (-1076 (-213))))) (-5 *1 (-154))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 (-560))) (-5 *2 (-891 (-560))) (-5 *1 (-905)))) ((*1 *2) (-12 (-5 *2 (-891 (-560))) (-5 *1 (-905))))) -(((*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1135)) (-5 *4 (-167 (-213))) (-5 *5 (-560)) (-5 *2 (-1027)) (-5 *1 (-742))))) -(((*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-57)) (-5 *1 (-1166))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 *4)) (-4 *4 (-359)) (-5 *2 (-671 *4)) (-5 *1 (-801 *4 *5)) (-4 *5 (-638 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 *5)) (-5 *4 (-755)) (-4 *5 (-359)) (-5 *2 (-671 *5)) (-5 *1 (-801 *5 *6)) (-4 *6 (-638 *5))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-626 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-447)) (-4 *3 (-550)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *1 (-970 *3 *4 *5 *6))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-1 (-121) *8))) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-550)) (-4 *6 (-780)) (-4 *7 (-834)) (-5 *2 (-2 (|:| |goodPols| (-626 *8)) (|:| |badPols| (-626 *8)))) (-5 *1 (-970 *5 *6 *7 *8)) (-5 *4 (-626 *8))))) -(((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-121) *9)) (-5 *5 (-1 (-121) *9 *9)) (-4 *9 (-1053 *6 *7 *8)) (-4 *6 (-550)) (-4 *7 (-780)) (-4 *8 (-834)) (-5 *2 (-2 (|:| |bas| *1) (|:| -4224 (-626 *9)))) (-5 *3 (-626 *9)) (-4 *1 (-1181 *6 *7 *8 *9)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-121) *8 *8)) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-550)) (-4 *6 (-780)) (-4 *7 (-834)) (-5 *2 (-2 (|:| |bas| *1) (|:| -4224 (-626 *8)))) (-5 *3 (-626 *8)) (-4 *1 (-1181 *5 *6 *7 *8))))) -(((*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-560)) (-5 *5 (-167 (-213))) (-5 *6 (-1135)) (-5 *4 (-213)) (-5 *2 (-1027)) (-5 *1 (-742))))) -(((*1 *2 *3 *2) (-12 (-5 *1 (-661 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-1082))))) -(((*1 *2 *3) (-12 (-5 *2 (-1155 (-403 (-560)))) (-5 *1 (-180)) (-5 *3 (-560))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-447))) (-5 *1 (-1179 *3 *2)) (-4 *2 (-13 (-426 *3) (-1173)))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-671 *4)) (-5 *3 (-909)) (-4 *4 (-1039)) (-5 *1 (-1020 *4)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-626 (-671 *4))) (-5 *3 (-909)) (-4 *4 (-1039)) (-5 *1 (-1020 *4))))) -(((*1 *1 *1 *1) (-4 *1 (-745)))) -(((*1 *1) (-5 *1 (-1238)))) -(((*1 *2 *2 *3) (-12 (-5 *1 (-661 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-1082))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-501 *2)) (-14 *2 (-560)))) ((*1 *1 *1 *1) (-5 *1 (-1100)))) -(((*1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-43 (-403 (-560)))) (-4 *2 (-1039))))) -(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-139)))) ((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-820 *3)) (-4 *3 (-1082)))) ((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-827 *3)) (-4 *3 (-1082))))) -(((*1 *2 *1 *2) (-12 (-5 *1 (-1018 *2)) (-4 *2 (-1187))))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-359)) (-5 *2 (-626 *3)) (-5 *1 (-938 *4 *3)) (-4 *3 (-1211 *4))))) -(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4506)) (-4 *1 (-1002 *2)) (-4 *2 (-1187))))) -(((*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-741))))) -(((*1 *2 *3) (-12 (-5 *3 (-213)) (-5 *2 (-304 (-375))) (-5 *1 (-294))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-547 *3)) (-4 *3 (-13 (-400) (-1173))) (-5 *2 (-121))))) -(((*1 *2 *2) (-12 (-4 *3 (-550)) (-4 *3 (-170)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)) (-5 *1 (-670 *3 *4 *5 *2)) (-4 *2 (-669 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-121))))) -(((*1 *2 *2) (-12 (-5 *2 (-626 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-447)) (-4 *3 (-550)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *1 (-970 *3 *4 *5 *6)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-626 *7)) (-5 *3 (-121)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-447)) (-4 *4 (-550)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *1 (-970 *4 *5 *6 *7))))) -(((*1 *2 *2) (-12 (-5 *2 (-626 (-485 *3 *4))) (-14 *3 (-626 (-1153))) (-4 *4 (-447)) (-5 *1 (-614 *3 *4))))) -(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1135)) (-5 *5 (-671 (-213))) (-5 *6 (-671 (-560))) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-741))))) -(((*1 *2 *3) (-12 (-4 *4 (-1039)) (-5 *2 (-560)) (-5 *1 (-438 *4 *3 *5)) (-4 *3 (-1211 *4)) (-4 *5 (-13 (-400) (-1029 *4) (-359) (-1173) (-274)))))) -(((*1 *2 *1) (-12 (-4 *3 (-1082)) (-4 *4 (-13 (-1039) (-873 *3) (-834) (-601 *2))) (-5 *2 (-879 *3)) (-5 *1 (-1061 *3 *4 *5)) (-4 *5 (-13 (-426 *4) (-873 *3) (-601 *2)))))) -(((*1 *2 *3) (-12 (-5 *2 (-123)) (-5 *1 (-122 *3)) (-4 *3 (-834)) (-4 *3 (-1082))))) -(((*1 *2 *2) (-12 (-5 *2 (-671 *3)) (-4 *3 (-296)) (-5 *1 (-681 *3))))) -(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-626 *7)) (-5 *3 (-560)) (-4 *7 (-942 *4 *5 *6)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *1 (-444 *4 *5 *6 *7))))) -(((*1 *1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1187))))) -(((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1135)) (-5 *4 (-560)) (-5 *5 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-741))))) -(((*1 *2 *3) (-12 (-5 *2 (-1084 (-1153))) (-5 *1 (-58)) (-5 *3 (-1153))))) -(((*1 *2) (-12 (-5 *2 (-1241)) (-5 *1 (-555))))) -(((*1 *1 *1) (-12 (-4 *1 (-37 *2)) (-4 *2 (-359)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-755)) (-4 *1 (-37 *3)) (-4 *3 (-359)))) ((*1 *1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) ((*1 *1 *1 *1) (-4 *1 (-471))) ((*1 *1 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170)))) ((*1 *1 *1) (-4 *1 (-850))) ((*1 *2 *2) (-12 (-5 *2 (-626 (-560))) (-5 *1 (-870)))) ((*1 *1 *1) (-12 (-4 *1 (-963 *2)) (-4 *2 (-359)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-755)) (-4 *1 (-963 *3)) (-4 *3 (-359)))) ((*1 *1 *1) (-5 *1 (-964))) ((*1 *1 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-170))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994)))))) -(((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-902 *3)) (-4 *3 (-296))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-626 *1)) (-4 *1 (-1053 *4 *5 *6)) (-4 *4 (-1039)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-121)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-121)))) ((*1 *2 *1) (-12 (-4 *1 (-1181 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-121)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-1181 *4 *5 *6 *3)) (-4 *4 (-550)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-121))))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1135)) (-5 *4 (-560)) (-5 *5 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-741))))) -(((*1 *2 *1) (-12 (-4 *3 (-359)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-121)) (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-942 *3 *4 *5)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-626 *6)) (-4 *6 (-834)) (-4 *4 (-359)) (-4 *5 (-780)) (-5 *2 (-121)) (-5 *1 (-506 *4 *5 *6 *7)) (-4 *7 (-942 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-1 (-1133 *4) (-1133 *4))) (-5 *2 (-1133 *4)) (-5 *1 (-1259 *4)) (-4 *4 (-1187)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 (-626 (-1133 *5)) (-626 (-1133 *5)))) (-5 *4 (-560)) (-5 *2 (-626 (-1133 *5))) (-5 *1 (-1259 *5)) (-4 *5 (-1187))))) -(((*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-101 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1039)) (-5 *1 (-837 *5 *2)) (-4 *2 (-836 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-755)) (-5 *1 (-1141 *3 *4)) (-14 *3 (-909)) (-4 *4 (-1039))))) -(((*1 *2 *1) (-12 (-4 *1 (-947)) (-5 *2 (-1076 (-213))))) ((*1 *2 *1) (-12 (-4 *1 (-967)) (-5 *2 (-1076 (-213)))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 *2)) (-4 *2 (-1211 *4)) (-5 *1 (-536 *4 *2 *5 *6)) (-4 *4 (-296)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-755)))))) -(((*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-145)))) ((*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-145))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-1153)) (-4 *5 (-13 (-296) (-834) (-148) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-577 *3)) (-5 *1 (-422 *5 *3)) (-4 *3 (-13 (-1173) (-29 *5)))))) -(((*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-560)) (-5 *6 (-1 (-1241) (-1236 *5) (-1236 *5) (-375))) (-5 *3 (-1236 (-375))) (-5 *5 (-375)) (-5 *2 (-1241)) (-5 *1 (-775))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4440 (-769 *3)) (|:| |coef1| (-769 *3)) (|:| |coef2| (-769 *3)))) (-5 *1 (-769 *3)) (-4 *3 (-550)) (-4 *3 (-1039)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-550)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-2 (|:| -4440 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1053 *3 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-560)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-1241)) (-5 *1 (-444 *4 *5 *6 *7)) (-4 *7 (-942 *4 *5 *6))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-403 *6)) (-4 *5 (-1191)) (-4 *6 (-1211 *5)) (-5 *2 (-2 (|:| -4034 (-755)) (|:| -2169 *3) (|:| |radicand| *6))) (-5 *1 (-149 *5 *6 *7)) (-5 *4 (-755)) (-4 *7 (-1211 *3))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-671 *5)) (-5 *4 (-1236 *5)) (-4 *5 (-359)) (-5 *2 (-121)) (-5 *1 (-651 *5)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-359)) (-4 *6 (-13 (-369 *5) (-10 -7 (-6 -4506)))) (-4 *4 (-13 (-369 *5) (-10 -7 (-6 -4506)))) (-5 *2 (-121)) (-5 *1 (-652 *5 *6 *4 *3)) (-4 *3 (-669 *5 *6 *4))))) -(((*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-755)) (-5 *6 (-121)) (-4 *7 (-447)) (-4 *8 (-780)) (-4 *9 (-834)) (-4 *3 (-1053 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-626 *4)) (|:| |todo| (-626 (-2 (|:| |val| (-626 *3)) (|:| -3249 *4)))))) (-5 *1 (-1056 *7 *8 *9 *3 *4)) (-4 *4 (-1058 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *5 (-755)) (-4 *6 (-447)) (-4 *7 (-780)) (-4 *8 (-834)) (-4 *3 (-1053 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-626 *4)) (|:| |todo| (-626 (-2 (|:| |val| (-626 *3)) (|:| -3249 *4)))))) (-5 *1 (-1056 *6 *7 *8 *3 *4)) (-4 *4 (-1058 *6 *7 *8 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-626 *4)) (|:| |todo| (-626 (-2 (|:| |val| (-626 *3)) (|:| -3249 *4)))))) (-5 *1 (-1056 *5 *6 *7 *3 *4)) (-4 *4 (-1058 *5 *6 *7 *3)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-755)) (-5 *6 (-121)) (-4 *7 (-447)) (-4 *8 (-780)) (-4 *9 (-834)) (-4 *3 (-1053 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-626 *4)) (|:| |todo| (-626 (-2 (|:| |val| (-626 *3)) (|:| -3249 *4)))))) (-5 *1 (-1122 *7 *8 *9 *3 *4)) (-4 *4 (-1091 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *5 (-755)) (-4 *6 (-447)) (-4 *7 (-780)) (-4 *8 (-834)) (-4 *3 (-1053 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-626 *4)) (|:| |todo| (-626 (-2 (|:| |val| (-626 *3)) (|:| -3249 *4)))))) (-5 *1 (-1122 *6 *7 *8 *3 *4)) (-4 *4 (-1091 *6 *7 *8 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-626 *4)) (|:| |todo| (-626 (-2 (|:| |val| (-626 *3)) (|:| -3249 *4)))))) (-5 *1 (-1122 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3))))) -(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-1074 (-945 (-560)))) (-5 *3 (-945 (-560))) (-5 *1 (-322)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1074 (-945 (-560)))) (-5 *1 (-322))))) -(((*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-1149 (-945 *4))) (-5 *1 (-412 *3 *4)) (-4 *3 (-413 *4)))) ((*1 *2) (-12 (-4 *1 (-413 *3)) (-4 *3 (-170)) (-4 *3 (-359)) (-5 *2 (-1149 (-945 *3))))) ((*1 *2) (-12 (-5 *2 (-1149 (-403 (-945 *3)))) (-5 *1 (-448 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *3 (-170)) (-14 *4 (-909)) (-14 *5 (-626 (-1153))) (-14 *6 (-1236 (-671 *3)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1173))))) -(((*1 *2 *3) (-12 (-5 *3 (-1236 (-626 (-2 (|:| -2981 *4) (|:| -1330 (-1100)))))) (-4 *4 (-344)) (-5 *2 (-755)) (-5 *1 (-341 *4)))) ((*1 *2) (-12 (-5 *2 (-755)) (-5 *1 (-346 *3 *4)) (-14 *3 (-909)) (-14 *4 (-909)))) ((*1 *2) (-12 (-5 *2 (-755)) (-5 *1 (-347 *3 *4)) (-4 *3 (-344)) (-14 *4 (-3 (-1149 *3) (-1236 (-626 (-2 (|:| -2981 *3) (|:| -1330 (-1100))))))))) ((*1 *2) (-12 (-5 *2 (-755)) (-5 *1 (-348 *3 *4)) (-4 *3 (-344)) (-14 *4 (-909))))) -(((*1 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-322))))) -(((*1 *2 *1) (-12 (-5 *2 (-1133 *3)) (-5 *1 (-171 *3)) (-4 *3 (-296))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-635 (-403 *6))) (-5 *4 (-1 (-626 *5) *6)) (-4 *5 (-13 (-359) (-148) (-1029 (-560)) (-1029 (-403 (-560))))) (-4 *6 (-1211 *5)) (-5 *2 (-626 (-403 *6))) (-5 *1 (-799 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-635 (-403 *7))) (-5 *4 (-1 (-626 *6) *7)) (-5 *5 (-1 (-414 *7) *7)) (-4 *6 (-13 (-359) (-148) (-1029 (-560)) (-1029 (-403 (-560))))) (-4 *7 (-1211 *6)) (-5 *2 (-626 (-403 *7))) (-5 *1 (-799 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-636 *6 (-403 *6))) (-5 *4 (-1 (-626 *5) *6)) (-4 *5 (-13 (-359) (-148) (-1029 (-560)) (-1029 (-403 (-560))))) (-4 *6 (-1211 *5)) (-5 *2 (-626 (-403 *6))) (-5 *1 (-799 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-636 *7 (-403 *7))) (-5 *4 (-1 (-626 *6) *7)) (-5 *5 (-1 (-414 *7) *7)) (-4 *6 (-13 (-359) (-148) (-1029 (-560)) (-1029 (-403 (-560))))) (-4 *7 (-1211 *6)) (-5 *2 (-626 (-403 *7))) (-5 *1 (-799 *6 *7)))) ((*1 *2 *3) (-12 (-5 *3 (-635 (-403 *5))) (-4 *5 (-1211 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-359) (-148) (-1029 (-560)) (-1029 (-403 (-560))))) (-5 *2 (-626 (-403 *5))) (-5 *1 (-799 *4 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-635 (-403 *6))) (-5 *4 (-1 (-414 *6) *6)) (-4 *6 (-1211 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-359) (-148) (-1029 (-560)) (-1029 (-403 (-560))))) (-5 *2 (-626 (-403 *6))) (-5 *1 (-799 *5 *6)))) ((*1 *2 *3) (-12 (-5 *3 (-636 *5 (-403 *5))) (-4 *5 (-1211 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-359) (-148) (-1029 (-560)) (-1029 (-403 (-560))))) (-5 *2 (-626 (-403 *5))) (-5 *1 (-799 *4 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-636 *6 (-403 *6))) (-5 *4 (-1 (-414 *6) *6)) (-4 *6 (-1211 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-359) (-148) (-1029 (-560)) (-1029 (-403 (-560))))) (-5 *2 (-626 (-403 *6))) (-5 *1 (-799 *5 *6))))) -(((*1 *2 *3 *4) (-12 (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-626 *4)) (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1058 *5 *6 *7 *3))))) -(((*1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-387))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-1236 *4)) (-4 *4 (-622 (-560))) (-5 *2 (-1236 (-560))) (-5 *1 (-1261 *4))))) -(((*1 *2 *1) (-12 (-4 *3 (-13 (-359) (-148))) (-5 *2 (-626 (-2 (|:| -4034 (-755)) (|:| -1341 *4) (|:| |num| *4)))) (-5 *1 (-395 *3 *4)) (-4 *4 (-1211 *3))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-626 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-121)) (-5 *1 (-981 *4 *5 *6 *7 *8)) (-4 *8 (-1058 *4 *5 *6 *7)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-626 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-121)) (-5 *1 (-1089 *4 *5 *6 *7 *8)) (-4 *8 (-1058 *4 *5 *6 *7))))) -(((*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-861))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-769 *2)) (-4 *2 (-550)) (-4 *2 (-1039)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-550)) (-5 *1 (-962 *3 *2)) (-4 *2 (-1211 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-780)) (-4 *4 (-834)) (-4 *2 (-550)))) ((*1 *2 *3 *3 *1) (-12 (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-626 (-2 (|:| |val| *3) (|:| -3249 *1)))) (-4 *1 (-1058 *4 *5 *6 *3))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-755)) (-5 *1 (-770 *2)) (-4 *2 (-43 (-403 (-560)))) (-4 *2 (-170))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-909)) (-5 *1 (-1022 *2)) (-4 *2 (-13 (-1082) (-10 -8 (-15 -1716 ($ $ $)))))))) -(((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-626 (-251))) (-5 *4 (-1153)) (-5 *1 (-250 *2)) (-4 *2 (-1187)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-626 (-251))) (-5 *4 (-1153)) (-5 *2 (-57)) (-5 *1 (-251)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-626 (-458))) (-5 *4 (-1153)) (-5 *2 (-57)) (-5 *1 (-458))))) -(((*1 *1 *1) (-12 (-4 *1 (-942 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-780)) (-4 *4 (-834)) (-4 *2 (-447)))) ((*1 *2 *3 *1) (-12 (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-626 (-2 (|:| |val| *3) (|:| -3249 *1)))) (-4 *1 (-1058 *4 *5 *6 *3)))) ((*1 *1 *1) (-4 *1 (-1191))) ((*1 *2 *2) (-12 (-4 *3 (-550)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-1211 *3) (-550) (-10 -8 (-15 -4440 ($ $ $)))))))) -(((*1 *1 *1 *1 *2) (-12 (-4 *1 (-1053 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *2 (-834)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-780)) (-4 *4 (-834))))) -(((*1 *2 *1) (-12 (-4 *2 (-13 (-832) (-359))) (-5 *1 (-1049 *2 *3)) (-4 *3 (-1211 *2))))) -(((*1 *2 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-832)) (-5 *1 (-292 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-879 *3)) (-4 *3 (-1082))))) -(((*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-121)) (-5 *1 (-362 *3 *4)) (-4 *3 (-363 *4)))) ((*1 *2) (-12 (-4 *1 (-363 *3)) (-4 *3 (-170)) (-5 *2 (-121))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-1153)) (-4 *4 (-13 (-834) (-296) (-1029 (-560)) (-622 (-560)) (-148))) (-5 *1 (-791 *4 *2)) (-4 *2 (-13 (-29 *4) (-1173) (-951))))) ((*1 *1 *1 *1 *1) (-5 *1 (-842))) ((*1 *1 *1 *1) (-5 *1 (-842))) ((*1 *1 *1) (-5 *1 (-842))) ((*1 *2 *3) (-12 (-5 *2 (-1133 *3)) (-5 *1 (-1137 *3)) (-4 *3 (-1039))))) -(((*1 *2 *2) (-12 (-5 *2 (-626 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-755)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-780)) (-4 *6 (-942 *3 *4 *5)) (-4 *3 (-447)) (-4 *5 (-834)) (-5 *1 (-444 *3 *4 *5 *6))))) -(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3437 *6) (|:| |sol?| (-121))) (-560) *6)) (-4 *6 (-359)) (-4 *7 (-1211 *6)) (-5 *2 (-2 (|:| |answer| (-577 (-403 *7))) (|:| |a0| *6))) (-5 *1 (-570 *6 *7)) (-5 *3 (-403 *7))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-550)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)) (-5 *1 (-1178 *3 *4 *5 *2)) (-4 *2 (-669 *3 *4 *5))))) -(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-167 (-213)))) (-5 *2 (-1027)) (-5 *1 (-740))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994)))))) -(((*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-1039)) (-5 *1 (-1137 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-1193 *2)) (-4 *2 (-1039)))) ((*1 *1 *1) (-12 (-5 *1 (-1227 *2 *3 *4)) (-4 *2 (-1039)) (-14 *3 (-1153)) (-14 *4 *2))) ((*1 *1 *1) (-12 (-5 *1 (-1231 *2 *3)) (-4 *2 (-1039)) (-14 *3 (-1153))))) -(((*1 *2) (-12 (-5 *2 (-626 (-1135))) (-5 *1 (-816))))) -(((*1 *2 *1) (-12 (-5 *1 (-283 *2)) (-4 *2 (-1187)))) ((*1 *2 *1) (-12 (-4 *3 (-1082)) (-4 *2 (-13 (-426 *4) (-873 *3) (-601 (-879 *3)))) (-5 *1 (-1061 *3 *4 *2)) (-4 *4 (-13 (-1039) (-873 *3) (-834) (-601 (-879 *3)))))) ((*1 *2 *1) (-12 (-4 *2 (-1082)) (-5 *1 (-1142 *3 *2)) (-4 *3 (-1082))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1208 *5 *4)) (-4 *4 (-807)) (-14 *5 (-1153)) (-5 *2 (-560)) (-5 *1 (-1096 *4 *5))))) -(((*1 *2) (-12 (-5 *2 (-1113 (-213))) (-5 *1 (-1171))))) -(((*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-430)) (|:| -2303 "void"))) (-5 *2 (-1241)) (-5 *1 (-1156)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1153)) (-5 *4 (-3 (|:| |fst| (-430)) (|:| -2303 "void"))) (-5 *2 (-1241)) (-5 *1 (-1156)))) ((*1 *2 *3 *4 *1) (-12 (-5 *3 (-1153)) (-5 *4 (-3 (|:| |fst| (-430)) (|:| -2303 "void"))) (-5 *2 (-1241)) (-5 *1 (-1156))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-755)) (-4 *3 (-13 (-296) (-10 -8 (-15 -2953 ((-414 $) $))))) (-4 *4 (-1211 *3)) (-5 *1 (-500 *3 *4 *5)) (-4 *5 (-405 *3 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1114 *3)) (-4 *3 (-1039)) (-5 *2 (-121))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-1153)) (-4 *4 (-447)) (-4 *4 (-834)) (-5 *1 (-569 *4 *2)) (-4 *2 (-274)) (-4 *2 (-426 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1191)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-403 *4))) (-5 *2 (-121))))) -(((*1 *2 *1) (-12 (-5 *1 (-210 *2)) (-4 *2 (-1082)))) ((*1 *2 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-1187)))) ((*1 *2 *1) (-12 (-5 *1 (-992 *2)) (-4 *2 (-1082))))) -(((*1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-626 *3)) (-4 *3 (-942 *5 *6 *7)) (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-444 *5 *6 *7 *3))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1133 *4)) (-5 *3 (-1 *4 (-560))) (-4 *4 (-1039)) (-5 *1 (-1137 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-304 *4)) (-4 *4 (-13 (-815) (-834) (-1039))) (-5 *2 (-1135)) (-5 *1 (-813 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-304 *5)) (-5 *4 (-121)) (-4 *5 (-13 (-815) (-834) (-1039))) (-5 *2 (-1135)) (-5 *1 (-813 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-809)) (-5 *4 (-304 *5)) (-4 *5 (-13 (-815) (-834) (-1039))) (-5 *2 (-1241)) (-5 *1 (-813 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-809)) (-5 *4 (-304 *6)) (-5 *5 (-121)) (-4 *6 (-13 (-815) (-834) (-1039))) (-5 *2 (-1241)) (-5 *1 (-813 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-815)) (-5 *2 (-1135)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-815)) (-5 *3 (-121)) (-5 *2 (-1135)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-815)) (-5 *3 (-809)) (-5 *2 (-1241)))) ((*1 *2 *3 *1 *4) (-12 (-4 *1 (-815)) (-5 *3 (-809)) (-5 *4 (-121)) (-5 *2 (-1241))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-62 *2 *3 *4)) (-4 *2 (-1187)) (-4 *3 (-369 *2)) (-4 *4 (-369 *2)))) ((*1 *1 *1 *2) (-12 (|has| *1 (-6 -4506)) (-4 *1 (-593 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-1187))))) -(((*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-121)) (-5 *1 (-585 *3)) (-4 *3 (-1039))))) -(((*1 *1) (-5 *1 (-142)))) -(((*1 *2 *1) (-12 (-4 *1 (-1181 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-2 (|:| -4071 (-626 *6)) (|:| -3997 (-626 *6))))))) -(((*1 *2 *3) (-12 (-4 *2 (-1211 *4)) (-5 *1 (-796 *4 *2 *3 *5)) (-4 *4 (-13 (-359) (-148) (-1029 (-403 (-560))))) (-4 *3 (-638 *2)) (-4 *5 (-638 (-403 *2)))))) -(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-879 *3)) (-4 *3 (-1082))))) -(((*1 *2 *3) (-12 (-5 *2 (-414 (-1149 *1))) (-5 *1 (-304 *4)) (-5 *3 (-1149 *1)) (-4 *4 (-447)) (-4 *4 (-550)) (-4 *4 (-834)))) ((*1 *2 *3) (-12 (-4 *1 (-896)) (-5 *2 (-414 (-1149 *1))) (-5 *3 (-1149 *1))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1173))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-121) *4 *4)) (-4 *4 (-1187)) (-5 *1 (-1112 *4 *2)) (-4 *2 (-13 (-593 (-560) *4) (-10 -7 (-6 -4505) (-6 -4506)))))) ((*1 *2 *2) (-12 (-4 *3 (-834)) (-4 *3 (-1187)) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-593 (-560) *3) (-10 -7 (-6 -4505) (-6 -4506))))))) -(((*1 *1 *2) (-12 (-5 *2 (-671 *4)) (-4 *4 (-1039)) (-5 *1 (-1119 *3 *4)) (-14 *3 (-755))))) -(((*1 *2 *3) (-12 (-4 *4 (-344)) (-5 *2 (-414 (-1149 (-1149 *4)))) (-5 *1 (-1186 *4)) (-5 *3 (-1149 (-1149 *4)))))) -(((*1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-43 (-403 (-560)))) (-4 *2 (-1039))))) -(((*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-626 (-626 (-936 (-213))))) (-5 *4 (-861)) (-5 *5 (-909)) (-5 *6 (-626 (-251))) (-5 *2 (-1237)) (-5 *1 (-1240)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-626 (-936 (-213))))) (-5 *4 (-626 (-251))) (-5 *2 (-1237)) (-5 *1 (-1240))))) -(((*1 *2 *1) (-12 (-5 *2 (-626 (-2 (|:| |gen| *3) (|:| -2469 (-560))))) (-5 *1 (-357 *3)) (-4 *3 (-1082)))) ((*1 *2 *1) (-12 (-5 *2 (-626 (-2 (|:| |gen| *3) (|:| -2469 (-755))))) (-5 *1 (-382 *3)) (-4 *3 (-1082)))) ((*1 *2 *1) (-12 (-5 *2 (-626 (-2 (|:| -1601 *3) (|:| -4034 (-560))))) (-5 *1 (-414 *3)) (-4 *3 (-550)))) ((*1 *2 *1) (-12 (-5 *2 (-626 (-2 (|:| |gen| *3) (|:| -2469 (-755))))) (-5 *1 (-806 *3)) (-4 *3 (-834))))) -(((*1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-43 (-403 (-560)))) (-4 *2 (-1039))))) -(((*1 *1 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1039)) (-4 *1 (-1211 *3))))) -(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1082)) (-5 *1 (-106 *3)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-106 *2)) (-4 *2 (-1082))))) -(((*1 *2 *1) (-12 (-5 *1 (-283 *2)) (-4 *2 (-1187)))) ((*1 *2 *1) (-12 (-4 *3 (-1082)) (-4 *2 (-13 (-426 *4) (-873 *3) (-601 (-879 *3)))) (-5 *1 (-1061 *3 *4 *2)) (-4 *4 (-13 (-1039) (-873 *3) (-834) (-601 (-879 *3)))))) ((*1 *2 *1) (-12 (-4 *2 (-1082)) (-5 *1 (-1142 *2 *3)) (-4 *3 (-1082))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-126 *3)) (-14 *3 *2))) ((*1 *1 *1) (-12 (-5 *1 (-126 *2)) (-14 *2 (-560)))) ((*1 *1 *1) (-12 (-4 *1 (-633 *2)) (-4 *2 (-359)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-560)) (-4 *1 (-633 *3)) (-4 *3 (-359)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-857 *3)) (-14 *3 *2))) ((*1 *1 *1) (-12 (-5 *1 (-857 *2)) (-14 *2 (-560)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-560)) (-14 *3 *2) (-5 *1 (-858 *3 *4)) (-4 *4 (-855 *3)))) ((*1 *1 *1) (-12 (-14 *2 (-560)) (-5 *1 (-858 *2 *3)) (-4 *3 (-855 *2)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-560)) (-4 *1 (-1197 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-1226 *3)))) ((*1 *1 *1) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-1226 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-879 *4)) (-4 *4 (-1082)) (-5 *2 (-1 (-121) *5)) (-5 *1 (-877 *4 *5)) (-4 *5 (-1187))))) -(((*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2962 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-359)) (-4 *7 (-1211 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-403 *7)) (|:| |a0| *6)) (-2 (|:| -2962 (-403 *7)) (|:| |coeff| (-403 *7))) "failed")) (-5 *1 (-570 *6 *7)) (-5 *3 (-403 *7))))) -(((*1 *2) (-12 (-4 *3 (-550)) (-5 *2 (-626 *4)) (-5 *1 (-48 *3 *4)) (-4 *4 (-413 *3))))) -(((*1 *1 *1 *1) (-4 *1 (-542)))) -(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-560))) (-4 *3 (-1039)) (-5 *1 (-101 *3)))) ((*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1039)) (-5 *1 (-101 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1039)) (-5 *1 (-101 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-213))))) -(((*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-1149 (-945 *4))) (-5 *1 (-412 *3 *4)) (-4 *3 (-413 *4)))) ((*1 *2) (-12 (-4 *1 (-413 *3)) (-4 *3 (-170)) (-4 *3 (-359)) (-5 *2 (-1149 (-945 *3))))) ((*1 *2) (-12 (-5 *2 (-1149 (-403 (-945 *3)))) (-5 *1 (-448 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *3 (-170)) (-14 *4 (-909)) (-14 *5 (-626 (-1153))) (-14 *6 (-1236 (-671 *3)))))) -(((*1 *2 *1) (-12 (-5 *2 (-626 (-1153))) (-5 *1 (-812))))) -(((*1 *2 *3) (-12 (-5 *3 (-635 (-403 *2))) (-4 *2 (-1211 *4)) (-5 *1 (-797 *4 *2)) (-4 *4 (-13 (-359) (-148) (-1029 (-560)) (-1029 (-403 (-560))))))) ((*1 *2 *3) (-12 (-5 *3 (-636 *2 (-403 *2))) (-4 *2 (-1211 *4)) (-5 *1 (-797 *4 *2)) (-4 *4 (-13 (-359) (-148) (-1029 (-560)) (-1029 (-403 (-560)))))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994)))))) -(((*1 *2 *2) (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-359) (-1173) (-994))) (-5 *1 (-172 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-626 (-560))) (-5 *1 (-213))))) -(((*1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-43 (-403 (-560)))) (-4 *2 (-1039))))) -(((*1 *2 *1) (-12 (-5 *2 (-626 (-1153))) (-5 *1 (-1157))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-626 (-560))) (-5 *1 (-996 *3)) (-14 *3 (-560))))) -(((*1 *2 *1) (|partial| -12 (-4 *3 (-1039)) (-4 *3 (-834)) (-5 *2 (-2 (|:| |val| *1) (|:| -4034 (-560)))) (-4 *1 (-426 *3)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-879 *3)) (|:| -4034 (-879 *3)))) (-5 *1 (-879 *3)) (-4 *3 (-1082)))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1039)) (-4 *7 (-942 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -4034 (-560)))) (-5 *1 (-943 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-359) (-10 -8 (-15 -2801 ($ *7)) (-15 -2132 (*7 $)) (-15 -2139 (*7 $)))))))) -(((*1 *2 *1) (-12 (-5 *2 (-626 (-626 (-755)))) (-5 *1 (-891 *3)) (-4 *3 (-1082))))) -(((*1 *2 *1) (-12 (-5 *2 (-403 (-560))) (-5 *1 (-213))))) -(((*1 *2 *3) (-12 (-5 *3 (-57)) (-5 *1 (-56 *2)) (-4 *2 (-1187)))) ((*1 *1 *2) (-12 (-5 *2 (-945 (-375))) (-5 *1 (-331 *3 *4 *5)) (-4 *5 (-1029 (-375))) (-14 *3 (-626 (-1153))) (-14 *4 (-626 (-1153))) (-4 *5 (-383)))) ((*1 *1 *2) (-12 (-5 *2 (-403 (-945 (-375)))) (-5 *1 (-331 *3 *4 *5)) (-4 *5 (-1029 (-375))) (-14 *3 (-626 (-1153))) (-14 *4 (-626 (-1153))) (-4 *5 (-383)))) ((*1 *1 *2) (-12 (-5 *2 (-304 (-375))) (-5 *1 (-331 *3 *4 *5)) (-4 *5 (-1029 (-375))) (-14 *3 (-626 (-1153))) (-14 *4 (-626 (-1153))) (-4 *5 (-383)))) ((*1 *1 *2) (-12 (-5 *2 (-945 (-560))) (-5 *1 (-331 *3 *4 *5)) (-4 *5 (-1029 (-560))) (-14 *3 (-626 (-1153))) (-14 *4 (-626 (-1153))) (-4 *5 (-383)))) ((*1 *1 *2) (-12 (-5 *2 (-403 (-945 (-560)))) (-5 *1 (-331 *3 *4 *5)) (-4 *5 (-1029 (-560))) (-14 *3 (-626 (-1153))) (-14 *4 (-626 (-1153))) (-4 *5 (-383)))) ((*1 *1 *2) (-12 (-5 *2 (-304 (-560))) (-5 *1 (-331 *3 *4 *5)) (-4 *5 (-1029 (-560))) (-14 *3 (-626 (-1153))) (-14 *4 (-626 (-1153))) (-4 *5 (-383)))) ((*1 *1 *2) (-12 (-5 *2 (-1153)) (-5 *1 (-331 *3 *4 *5)) (-14 *3 (-626 *2)) (-14 *4 (-626 *2)) (-4 *5 (-383)))) ((*1 *1 *2) (-12 (-5 *2 (-304 *5)) (-4 *5 (-383)) (-5 *1 (-331 *3 *4 *5)) (-14 *3 (-626 (-1153))) (-14 *4 (-626 (-1153))))) ((*1 *1 *2) (-12 (-5 *2 (-671 (-403 (-945 (-560))))) (-4 *1 (-380)))) ((*1 *1 *2) (-12 (-5 *2 (-671 (-403 (-945 (-375))))) (-4 *1 (-380)))) ((*1 *1 *2) (-12 (-5 *2 (-671 (-945 (-560)))) (-4 *1 (-380)))) ((*1 *1 *2) (-12 (-5 *2 (-671 (-945 (-375)))) (-4 *1 (-380)))) ((*1 *1 *2) (-12 (-5 *2 (-671 (-304 (-560)))) (-4 *1 (-380)))) ((*1 *1 *2) (-12 (-5 *2 (-671 (-304 (-375)))) (-4 *1 (-380)))) ((*1 *1 *2) (-12 (-5 *2 (-403 (-945 (-560)))) (-4 *1 (-392)))) ((*1 *1 *2) (-12 (-5 *2 (-403 (-945 (-375)))) (-4 *1 (-392)))) ((*1 *1 *2) (-12 (-5 *2 (-945 (-560))) (-4 *1 (-392)))) ((*1 *1 *2) (-12 (-5 *2 (-945 (-375))) (-4 *1 (-392)))) ((*1 *1 *2) (-12 (-5 *2 (-304 (-560))) (-4 *1 (-392)))) ((*1 *1 *2) (-12 (-5 *2 (-304 (-375))) (-4 *1 (-392)))) ((*1 *1 *2) (-12 (-5 *2 (-1236 (-403 (-945 (-560))))) (-4 *1 (-436)))) ((*1 *1 *2) (-12 (-5 *2 (-1236 (-403 (-945 (-375))))) (-4 *1 (-436)))) ((*1 *1 *2) (-12 (-5 *2 (-1236 (-945 (-560)))) (-4 *1 (-436)))) ((*1 *1 *2) (-12 (-5 *2 (-1236 (-945 (-375)))) (-4 *1 (-436)))) ((*1 *1 *2) (-12 (-5 *2 (-1236 (-304 (-560)))) (-4 *1 (-436)))) ((*1 *1 *2) (-12 (-5 *2 (-1236 (-304 (-375)))) (-4 *1 (-436)))) ((*1 *2 *1) (-12 (-5 *2 (-403 (-726 *3 *4))) (-5 *1 (-725 *3 *4)) (-14 *3 (-1153)) (-4 *4 (-13 (-1039) (-834) (-550))))) ((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (|:| |mdnia| (-2 (|:| |fn| (-304 (-213))) (|:| -1396 (-626 (-1076 (-827 (-213))))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))))) (-5 *1 (-753)))) ((*1 *1 *2) (-12 (-5 *2 (-1193 *3)) (-4 *3 (-344)) (-5 *1 (-762 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (-5 *1 (-795)))) ((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-304 (-213))) (|:| -1394 (-626 (-213))) (|:| |lb| (-626 (-827 (-213)))) (|:| |cf| (-626 (-304 (-213)))) (|:| |ub| (-626 (-827 (-213)))))) (|:| |lsa| (-2 (|:| |lfn| (-626 (-304 (-213)))) (|:| -1394 (-626 (-213))))))) (-5 *1 (-825)))) ((*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-626 (-304 (-213)))) (|:| |constraints| (-626 (-2 (|:| |start| (-213)) (|:| |finish| (-213)) (|:| |grid| (-755)) (|:| |boundaryType| (-560)) (|:| |dStart| (-671 (-213))) (|:| |dFinish| (-671 (-213)))))) (|:| |f| (-626 (-626 (-304 (-213))))) (|:| |st| (-1135)) (|:| |tol| (-213)))) (-5 *1 (-885)))) ((*1 *1 *2) (-12 (-5 *2 (-626 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *1 (-969 *3 *4 *5 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-1029 *2)) (-4 *2 (-1187)))) ((*1 *1 *2) (-2318 (-12 (-5 *2 (-945 *3)) (-12 (-3186 (-4 *3 (-43 (-403 (-560))))) (-3186 (-4 *3 (-43 (-560)))) (-4 *5 (-601 (-1153)))) (-4 *3 (-1039)) (-4 *1 (-1053 *3 *4 *5)) (-4 *4 (-780)) (-4 *5 (-834))) (-12 (-5 *2 (-945 *3)) (-12 (-3186 (-4 *3 (-542))) (-3186 (-4 *3 (-43 (-403 (-560))))) (-4 *3 (-43 (-560))) (-4 *5 (-601 (-1153)))) (-4 *3 (-1039)) (-4 *1 (-1053 *3 *4 *5)) (-4 *4 (-780)) (-4 *5 (-834))) (-12 (-5 *2 (-945 *3)) (-12 (-3186 (-4 *3 (-985 (-560)))) (-4 *3 (-43 (-403 (-560)))) (-4 *5 (-601 (-1153)))) (-4 *3 (-1039)) (-4 *1 (-1053 *3 *4 *5)) (-4 *4 (-780)) (-4 *5 (-834))))) ((*1 *1 *2) (-2318 (-12 (-5 *2 (-945 (-560))) (-4 *1 (-1053 *3 *4 *5)) (-12 (-3186 (-4 *3 (-43 (-403 (-560))))) (-4 *3 (-43 (-560))) (-4 *5 (-601 (-1153)))) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834))) (-12 (-5 *2 (-945 (-560))) (-4 *1 (-1053 *3 *4 *5)) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *5 (-601 (-1153)))) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834))))) ((*1 *1 *2) (-12 (-5 *2 (-945 (-403 (-560)))) (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-43 (-403 (-560)))) (-4 *5 (-601 (-1153))) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-1236 *1)) (-4 *1 (-850)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-4 *1 (-1211 *4)) (-4 *4 (-1039)) (-5 *2 (-1236 *4))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-755)) (-5 *1 (-770 *2)) (-4 *2 (-43 (-403 (-560)))) (-4 *2 (-170))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1135)) (-4 *1 (-360 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-430)) (-5 *2 (-626 (-3 (|:| -1337 (-1153)) (|:| |bounds| (-626 (-3 (|:| S (-1153)) (|:| P (-945 (-560))))))))) (-5 *1 (-1157))))) -(((*1 *2 *1) (-12 (-4 *3 (-359)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-403 *4))) (-5 *2 (-1236 *6)) (-5 *1 (-328 *3 *4 *5 *6)) (-4 *6 (-334 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-50 (-1135) (-758))) (-5 *1 (-123))))) -(((*1 *1 *1) (-12 (-4 *1 (-370 *2 *3)) (-4 *2 (-834)) (-4 *3 (-170)))) ((*1 *1 *1) (-12 (-5 *1 (-610 *2 *3 *4)) (-4 *2 (-834)) (-4 *3 (-13 (-170) (-699 (-403 (-560))))) (-14 *4 (-909)))) ((*1 *1 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-834)))) ((*1 *1 *1) (-12 (-5 *1 (-806 *2)) (-4 *2 (-834)))) ((*1 *1 *1) (-12 (-4 *1 (-1251 *2 *3)) (-4 *2 (-834)) (-4 *3 (-1039))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-213)) (-5 *1 (-214)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-167 (-213))) (-5 *1 (-214)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-427 *3 *2)) (-4 *2 (-426 *3)))) ((*1 *1 *1 *1) (-4 *1 (-1116)))) -(((*1 *1 *1) (-4 *1 (-542)))) -(((*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-909)) (-5 *1 (-773))))) -(((*1 *2 *2) (-12 (-5 *2 (-626 (-671 (-304 (-560))))) (-5 *1 (-1023))))) -(((*1 *2 *2) (-12 (-5 *2 (-820 (-213))) (-5 *1 (-214))))) +(((*1 *2 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-381)) (-5 *1 (-781))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1181))))) +(((*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1195)) (-5 *2 (-763)) (-5 *1 (-229 *3 *4 *5)) (-4 *3 (-230 *4 *5)))) ((*1 *2 *1) (-12 (-4 *1 (-320 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-137)) (-5 *2 (-763)))) ((*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-763)) (-5 *1 (-326 *3 *4)) (-4 *3 (-327 *4)))) ((*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-363 *3)) (-4 *3 (-1090)))) ((*1 *2) (-12 (-4 *1 (-370)) (-5 *2 (-763)))) ((*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-388 *3)) (-4 *3 (-1090)))) ((*1 *2) (-12 (-4 *4 (-1090)) (-5 *2 (-763)) (-5 *1 (-426 *3 *4)) (-4 *3 (-427 *4)))) ((*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-638 *3 *4 *5)) (-4 *3 (-1090)) (-4 *4 (-23)) (-14 *5 *4))) ((*1 *2) (-12 (-4 *4 (-172)) (-4 *5 (-1219 *4)) (-5 *2 (-763)) (-5 *1 (-713 *3 *4 *5)) (-4 *3 (-714 *4 *5)))) ((*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-814 *3)) (-4 *3 (-842)))) ((*1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-1006)))) ((*1 *2 *1) (-12 (-4 *2 (-13 (-840) (-365))) (-5 *1 (-1057 *2 *3)) (-4 *3 (-1219 *2))))) +(((*1 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-565)))) ((*1 *2 *3) (-12 (-5 *2 (-1157 (-409 (-568)))) (-5 *1 (-943)) (-5 *3 (-568))))) +(((*1 *2 *3) (|partial| -12 (-5 *2 (-568)) (-5 *1 (-573 *3)) (-4 *3 (-1037 *2))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-568)) (-5 *4 (-1143)) (-5 *5 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-739))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-1047)) (-5 *1 (-445 *3 *2)) (-4 *2 (-1219 *3))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-763)) (-5 *1 (-848 *2)) (-4 *2 (-172)))) ((*1 *2 *3) (-12 (-5 *2 (-1157 (-568))) (-5 *1 (-943)) (-5 *3 (-568))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-679 *3)) (-4 *3 (-301)) (-5 *1 (-689 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-641 *2)) (-4 *2 (-365))))) +(((*1 *1 *1) (-4 *1 (-863 *2)))) +(((*1 *1) (-12 (-5 *1 (-634 *2)) (-4 *2 (-1195))))) +(((*1 *2 *3 *4 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-739))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-634 *2)) (-4 *2 (-1090)) (-4 *2 (-1195))))) +(((*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-1244 (-679 *4))) (-5 *1 (-95 *4 *5)) (-5 *3 (-679 *4)) (-4 *5 (-646 *4))))) +(((*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-44 *3)) (-4 *3 (-1219 (-53))))) ((*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-130 *3)) (|:| |greater| (-130 *3)))) (-5 *1 (-130 *3)) (-4 *3 (-842)))) ((*1 *2 *1) (-12 (-4 *3 (-1090)) (-5 *2 (-634 *1)) (-4 *1 (-235 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-585 *4)) (-4 *4 (-13 (-29 *3) (-1181))) (-4 *3 (-13 (-453) (-1037 (-568)) (-842) (-630 (-568)))) (-5 *1 (-583 *3 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-585 (-409 (-953 *3)))) (-4 *3 (-13 (-453) (-1037 (-568)) (-842) (-630 (-568)))) (-5 *1 (-588 *3)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1219 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| -2242 *3) (|:| |special| *3))) (-5 *1 (-717 *5 *3)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1244 *5)) (-4 *5 (-365)) (-4 *5 (-1047)) (-5 *2 (-634 (-634 (-679 *5)))) (-5 *1 (-1029 *5)) (-5 *3 (-634 (-679 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1244 (-1244 *5))) (-4 *5 (-365)) (-4 *5 (-1047)) (-5 *2 (-634 (-634 (-679 *5)))) (-5 *1 (-1029 *5)) (-5 *3 (-634 (-679 *5))))) ((*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-634 *1)) (-4 *1 (-1129)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-147)) (-5 *2 (-634 *1)) (-4 *1 (-1129))))) +(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (-5 *2 (-381)) (-5 *1 (-197))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 (-215) (-215))) (-5 *1 (-313)) (-5 *3 (-215))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-1157 *6)) (-5 *3 (-568)) (-4 *6 (-301)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *1 (-732 *4 *5 *6 *7)) (-4 *7 (-950 *6 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-899 (-568))) (-5 *1 (-913)))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-568))) (-5 *2 (-899 (-568))) (-5 *1 (-913))))) +(((*1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-472)))) ((*1 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-472)))) ((*1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-927))))) +(((*1 *2 *3 *4 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-739))))) +(((*1 *2 *3 *1) (|partial| -12 (-5 *3 (-887 *4)) (-4 *4 (-1090)) (-4 *2 (-1090)) (-5 *1 (-884 *4 *2))))) +(((*1 *1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *1 (-514 *3 *4 *5 *2)) (-4 *2 (-950 *3 *4 *5)))) ((*1 *1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-788)) (-4 *4 (-842)) (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-950 *2 *3 *4))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-634 *2)) (-4 *2 (-1090)) (-4 *2 (-1195))))) +(((*1 *2) (-12 (-4 *3 (-1047)) (-5 *2 (-958 (-702 *3 *4))) (-5 *1 (-702 *3 *4)) (-4 *4 (-1219 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-763)) (-5 *2 (-1249)) (-5 *1 (-381))))) +(((*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1143)) (-5 *3 (-568)) (-5 *1 (-1059))))) +(((*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-739))))) +(((*1 *2) (-12 (-4 *3 (-558)) (-5 *2 (-634 *4)) (-5 *1 (-48 *3 *4)) (-4 *4 (-419 *3))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-215)) (-5 *2 (-1249)) (-5 *1 (-817))))) +(((*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-634 (-953 *6))) (-5 *4 (-634 (-1161))) (-4 *6 (-453)) (-5 *2 (-634 (-634 *7))) (-5 *1 (-543 *6 *7 *5)) (-4 *7 (-365)) (-4 *5 (-13 (-365) (-840)))))) +(((*1 *2 *3) (-12 (-4 *4 (-842)) (-5 *2 (-634 (-634 (-634 *4)))) (-5 *1 (-1167 *4)) (-5 *3 (-634 (-634 *4)))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-634 *2)) (-4 *2 (-1090)) (-4 *2 (-1195))))) +(((*1 *1 *2) (-12 (-5 *2 (-634 *1)) (-4 *1 (-1122 *3)) (-4 *3 (-1047)))) ((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-409 *1)) (-4 *1 (-1219 *3)) (-4 *3 (-1047)) (-4 *3 (-558)))) ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1219 *2)) (-4 *2 (-1047)) (-4 *2 (-558))))) +(((*1 *2 *1) (-12 (-4 *1 (-1122 *3)) (-4 *3 (-1047)) (-5 *2 (-634 (-944 *3))))) ((*1 *1 *2) (-12 (-5 *2 (-634 (-944 *3))) (-4 *3 (-1047)) (-4 *1 (-1122 *3)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-634 (-634 *3))) (-4 *1 (-1122 *3)) (-4 *3 (-1047)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-634 (-944 *3))) (-4 *1 (-1122 *3)) (-4 *3 (-1047))))) +(((*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-739))))) +(((*1 *1 *2 *3 *1) (-12 (-14 *4 (-634 (-1161))) (-4 *2 (-172)) (-4 *3 (-230 (-1697 *4) (-763))) (-14 *6 (-1 (-121) (-2 (|:| -4355 *5) (|:| -3438 *3)) (-2 (|:| -4355 *5) (|:| -3438 *3)))) (-5 *1 (-463 *4 *2 *5 *3 *6 *7)) (-4 *5 (-842)) (-4 *7 (-950 *2 *3 (-852 *4)))))) +(((*1 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-927))))) +(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2928 (-679 (-409 (-953 *4)))) (|:| |vec| (-634 (-409 (-953 *4)))) (|:| -3700 (-763)) (|:| |rows| (-634 (-568))) (|:| |cols| (-634 (-568))))) (-4 *4 (-13 (-301) (-150))) (-4 *5 (-13 (-842) (-609 (-1161)))) (-4 *6 (-788)) (-5 *2 (-2 (|:| |partsol| (-1244 (-409 (-953 *4)))) (|:| -3746 (-634 (-1244 (-409 (-953 *4))))))) (-5 *1 (-924 *4 *5 *6 *7)) (-4 *7 (-950 *4 *6 *5))))) +(((*1 *1 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1090)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-977 *3 *4 *2 *5)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *2 (-842)) (-4 *5 (-1061 *3 *4 *2))))) +(((*1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1195)))) ((*1 *2 *2) (-12 (-4 *3 (-1047)) (-5 *1 (-445 *3 *2)) (-4 *2 (-1219 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-638 *2 *3 *4)) (-4 *2 (-1090)) (-4 *3 (-23)) (-14 *4 *3)))) +(((*1 *1 *2) (|partial| -12 (-5 *2 (-634 *6)) (-4 *6 (-1061 *3 *4 *5)) (-4 *3 (-558)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *1 (-1255 *3 *4 *5 *6)))) ((*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-634 *8)) (-5 *3 (-1 (-121) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1061 *5 *6 *7)) (-4 *5 (-558)) (-4 *6 (-788)) (-4 *7 (-842)) (-5 *1 (-1255 *5 *6 *7 *8))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-158)) (-5 *2 (-1249)) (-5 *1 (-1246))))) +(((*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-69 -1478)))) (-5 *2 (-1035)) (-5 *1 (-738))))) +(((*1 *1 *1) (-12 (-5 *1 (-55 *2 *3)) (-4 *2 (-1047)) (-14 *3 (-634 (-1161))))) ((*1 *1 *1) (-12 (-5 *1 (-213 *2 *3)) (-4 *2 (-13 (-1047) (-842))) (-14 *3 (-634 (-1161)))))) +(((*1 *2 *3) (-12 (-5 *2 (-2 (|:| -4068 (-568)) (|:| -3276 (-634 *3)))) (-5 *1 (-443 *3)) (-4 *3 (-1219 (-568)))))) +(((*1 *2 *1 *1) (-12 (-4 *3 (-558)) (-4 *3 (-1047)) (-5 *2 (-2 (|:| -3961 *1) (|:| -1500 *1))) (-4 *1 (-844 *3)))) ((*1 *2 *3 *3 *4) (-12 (-5 *4 (-101 *5)) (-4 *5 (-558)) (-4 *5 (-1047)) (-5 *2 (-2 (|:| -3961 *3) (|:| -1500 *3))) (-5 *1 (-845 *5 *3)) (-4 *3 (-844 *5))))) +(((*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-259 *3)) (-4 *3 (-1090)))) ((*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-259 *3)) (-4 *3 (-1090)))) ((*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-513 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *5 (-117)))) ((*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-513 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *5 (-117)))) ((*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-537 *3 *4 *5)) (-4 *3 (-350)) (-14 *4 (-634 (-1161))) (-4 *5 (-117)))) ((*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-537 *3 *4 *5)) (-4 *3 (-350)) (-14 *4 (-634 (-1161))) (-4 *5 (-117)))) ((*1 *2) (-12 (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *6 (-230 (-1697 *4) (-763))) (-4 *8 (-641 *3)) (-4 *9 (-920 *3 *8)) (-5 *2 (-121)) (-5 *1 (-538 *3 *4 *5 *6 *7 *8 *9 *10 *11)) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *7 (-971 *3)) (-4 *10 (-235 *9)) (-4 *11 (-117)))) ((*1 *2 *2) (-12 (-5 *2 (-121)) (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *6 (-230 (-1697 *4) (-763))) (-4 *8 (-641 *3)) (-4 *9 (-920 *3 *8)) (-5 *1 (-538 *3 *4 *5 *6 *7 *8 *9 *10 *11)) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *7 (-971 *3)) (-4 *10 (-235 *9)) (-4 *11 (-117)))) ((*1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-855 *3)) (-14 *3 (-860)))) ((*1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-857 *3)) (-4 *3 (-350)))) ((*1 *2 *1) (-12 (-4 *1 (-858)) (-5 *2 (-850)))) ((*1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-860))))) +(((*1 *1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-842)))) ((*1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-842)))) ((*1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-842)))) ((*1 *1 *1) (|partial| -12 (-4 *1 (-1189 *2 *3 *4 *5)) (-4 *2 (-558)) (-4 *3 (-788)) (-4 *4 (-842)) (-4 *5 (-1061 *2 *3 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-763)) (-4 *1 (-1231 *3)) (-4 *3 (-1195)))) ((*1 *1 *1) (-12 (-4 *1 (-1231 *2)) (-4 *2 (-1195))))) +(((*1 *2 *1) (-12 (-4 *1 (-536 *3 *4 *5 *6 *7 *8 *9 *10 *11)) (-4 *3 (-365)) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *6 (-230 (-1697 *4) (-763))) (-4 *7 (-971 *3)) (-4 *8 (-641 *3)) (-4 *9 (-920 *3 *8)) (-4 *10 (-235 *9)) (-4 *11 (-117)) (-5 *2 (-33 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 *4)) (-4 *4 (-558)) (-5 *2 (-1157 *4)) (-5 *1 (-759 *4))))) +(((*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *5 (-215)) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1035)) (-5 *1 (-738))))) +(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (-5 *2 (-121)) (-5 *1 (-294))))) +(((*1 *1 *1) (-5 *1 (-1059)))) +(((*1 *1 *1) (-5 *1 (-215))) ((*1 *2 *2) (-12 (-5 *2 (-215)) (-5 *1 (-217)))) ((*1 *2 *2) (-12 (-5 *2 (-169 (-215))) (-5 *1 (-217)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) ((*1 *1 *1) (-4 *1 (-1124))) ((*1 *1 *1 *1) (-4 *1 (-1124)))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1181))))) +(((*1 *2 *3) (-12 (-5 *3 (-169 (-568))) (-5 *2 (-121)) (-5 *1 (-447)))) ((*1 *2 *3) (-12 (-5 *3 (-514 (-409 (-568)) (-232 *5 (-763)) (-852 *4) (-242 *4 (-409 (-568))))) (-14 *4 (-634 (-1161))) (-14 *5 (-763)) (-5 *2 (-121)) (-5 *1 (-515 *4 *5)))) ((*1 *2 *3) (-12 (-5 *2 (-121)) (-5 *1 (-961 *3)) (-4 *3 (-550)))) ((*1 *2 *1) (-12 (-4 *1 (-1199)) (-5 *2 (-121))))) +(((*1 *2) (-12 (-4 *1 (-340 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 (-409 *4))) (-5 *2 (-121))))) +(((*1 *2 *3) (-12 (-4 *4 (-453)) (-5 *2 (-634 (-2 (|:| |eigval| (-3 (-409 (-953 *4)) (-1150 (-1161) (-953 *4)))) (|:| |eigmult| (-763)) (|:| |eigvec| (-634 (-679 (-409 (-953 *4)))))))) (-5 *1 (-286 *4)) (-5 *3 (-679 (-409 (-953 *4))))))) +(((*1 *1 *1) (-12 (|has| *1 (-6 -4519)) (-4 *1 (-154 *2)) (-4 *2 (-1195)) (-4 *2 (-1090))))) +(((*1 *2 *1) (-12 (-5 *1 (-212 *2)) (-4 *2 (-1090)))) ((*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1195))))) +(((*1 *2 *1) (-12 (-5 *2 (-1141 *3)) (-5 *1 (-173 *3)) (-4 *3 (-301))))) +(((*1 *2 *1) (-12 (-4 *1 (-52 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-787)) (-5 *2 (-121)))) ((*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-1090)) (-5 *2 (-121)))) ((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-593 *3)) (-4 *3 (-1047)))) ((*1 *2 *1) (-12 (-4 *3 (-558)) (-5 *2 (-121)) (-5 *1 (-615 *3 *4)) (-4 *4 (-1219 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-725 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-716)))) ((*1 *2 *1) (-12 (-4 *1 (-1259 *3 *4)) (-4 *3 (-842)) (-4 *4 (-1047)) (-5 *2 (-121))))) +(((*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1249)) (-5 *1 (-1123)))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-850))) (-5 *2 (-1249)) (-5 *1 (-1123))))) +(((*1 *2 *3) (-12 (-5 *3 (-334 *5 *6 *7 *8)) (-4 *5 (-432 *4)) (-4 *6 (-1219 *5)) (-4 *7 (-1219 (-409 *6))) (-4 *8 (-340 *5 *6 *7)) (-4 *4 (-13 (-842) (-558) (-1037 (-568)))) (-5 *2 (-121)) (-5 *1 (-906 *4 *5 *6 *7 *8)))) ((*1 *2 *3) (-12 (-5 *3 (-334 (-409 (-568)) *4 *5 *6)) (-4 *4 (-1219 (-409 (-568)))) (-4 *5 (-1219 (-409 *4))) (-4 *6 (-340 (-409 (-568)) *4 *5)) (-5 *2 (-121)) (-5 *1 (-907 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-436)) (|:| -3611 "void"))) (-5 *1 (-439))))) +(((*1 *2 *1) (-12 (-4 *1 (-327 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-121)))) ((*1 *2 *3) (-12 (-5 *3 (-1157 *4)) (-4 *4 (-350)) (-5 *2 (-121)) (-5 *1 (-358 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-1244 *4)) (-4 *4 (-350)) (-5 *2 (-121)) (-5 *1 (-532 *4))))) +(((*1 *2) (-12 (-4 *3 (-558)) (-5 *2 (-634 *4)) (-5 *1 (-48 *3 *4)) (-4 *4 (-419 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-172))))) +(((*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1219 *5)) (-4 *5 (-13 (-27) (-432 *4))) (-4 *4 (-13 (-842) (-558) (-1037 (-568)))) (-4 *7 (-1219 (-409 *6))) (-5 *1 (-553 *4 *5 *6 *7 *2)) (-4 *2 (-340 *5 *6 *7))))) +(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (-5 *2 (-381)) (-5 *1 (-197))))) +(((*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-121) *5 *5)) (-5 *4 (-1 (-121) *6 *6)) (-4 *5 (-13 (-1090) (-39))) (-4 *6 (-13 (-1090) (-39))) (-5 *2 (-121)) (-5 *1 (-1125 *5 *6))))) +(((*1 *1) (-5 *1 (-121)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-568)) (|has| *1 (-6 -4520)) (-4 *1 (-1231 *3)) (-4 *3 (-1195))))) +(((*1 *2 *1 *1) (-12 (-4 *3 (-558)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-634 *1)) (-4 *1 (-1061 *3 *4 *5))))) +(((*1 *1 *1) (-12 (|has| *1 (-6 -4520)) (-4 *1 (-375 *2)) (-4 *2 (-1195)) (-4 *2 (-842)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-121) *3 *3)) (|has| *1 (-6 -4520)) (-4 *1 (-375 *3)) (-4 *3 (-1195))))) +(((*1 *2) (-12 (-4 *3 (-558)) (-5 *2 (-634 *4)) (-5 *1 (-48 *3 *4)) (-4 *4 (-419 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-887 *3)) (-4 *3 (-1090))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-634 *6)) (-5 *4 (-568)) (-4 *6 (-641 *5)) (-4 *5 (-365)) (-5 *2 (-679 *5)) (-5 *1 (-635 *5 *6))))) +(((*1 *1 *1) (-12 (-5 *1 (-420 *2)) (-4 *2 (-558))))) +(((*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-842)) (-4 *1 (-376 *3 *4)) (-4 *4 (-172))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1047)) (-4 *3 (-842)) (-4 *5 (-262 *3)) (-4 *6 (-788)) (-5 *2 (-634 (-763))))) ((*1 *2 *1) (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-842)) (-4 *5 (-262 *4)) (-4 *6 (-788)) (-5 *2 (-634 (-763)))))) +(((*1 *1 *2) (-12 (-5 *2 (-634 (-900 *3))) (-4 *3 (-1090)) (-5 *1 (-899 *3))))) +(((*1 *2) (-12 (-4 *4 (-1199)) (-4 *5 (-1219 *4)) (-4 *6 (-1219 (-409 *5))) (-5 *2 (-763)) (-5 *1 (-339 *3 *4 *5 *6)) (-4 *3 (-340 *4 *5 *6)))) ((*1 *2) (-12 (-4 *1 (-340 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 (-409 *4))) (-5 *2 (-763)))) ((*1 *2 *1) (-12 (-4 *1 (-1122 *3)) (-4 *3 (-1047)) (-5 *2 (-763))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -2850 *4) (|:| -2183 *4) (|:| |totalpts| (-568)) (|:| |success| (-121)))) (-5 *1 (-784)) (-5 *5 (-568))))) +(((*1 *2 *3) (-12 (-5 *3 (-1244 *1)) (-4 *1 (-369 *2)) (-4 *2 (-172)))) ((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-418 *3 *2)) (-4 *3 (-419 *2)))) ((*1 *2) (-12 (-4 *1 (-419 *2)) (-4 *2 (-172))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-453))) (-5 *1 (-1187 *3 *2)) (-4 *2 (-13 (-432 *3) (-1181)))))) +(((*1 *2 *1) (-12 (-4 *1 (-37 *3)) (-4 *3 (-365)) (-5 *2 (-634 *3)))) ((*1 *1 *2) (-12 (-4 *1 (-658 *2)) (-4 *2 (-1195)))) ((*1 *2 *1) (-12 (-4 *1 (-971 *3)) (-4 *3 (-365)) (-5 *2 (-634 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-634 (-1161))) (-5 *1 (-1161))))) +(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-634 (-568))) (-5 *1 (-1100)) (-5 *3 (-568))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-1047)) (-5 *1 (-445 *3 *2)) (-4 *2 (-1219 *3))))) +(((*1 *1 *2 *3 *4) (-12 (-5 *3 (-634 (-2 (|:| |scalar| (-409 (-568))) (|:| |coeff| (-1157 *2)) (|:| |logand| (-1157 *2))))) (-5 *4 (-634 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-365)) (-5 *1 (-585 *2))))) +(((*1 *1) (-5 *1 (-439)))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *7 (-1061 *4 *5 *6)) (-5 *2 (-121)) (-5 *1 (-989 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))) ((*1 *2 *3 *3) (-12 (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *7 (-1061 *4 *5 *6)) (-5 *2 (-121)) (-5 *1 (-1097 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-4 *1 (-37 *3)) (-4 *3 (-365)) (-5 *2 (-634 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-971 *3)) (-4 *3 (-365)) (-5 *2 (-634 *3))))) +(((*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-150) (-1037 (-409 (-568))))) (-4 *5 (-1219 *4)) (-5 *2 (-634 (-2 (|:| |deg| (-763)) (|:| -1853 *5)))) (-5 *1 (-804 *4 *5 *3 *6)) (-4 *3 (-646 *5)) (-4 *6 (-646 (-409 *5)))))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-815)) (-14 *5 (-1161)) (-5 *2 (-634 (-1216 *5 *4))) (-5 *1 (-1104 *4 *5)) (-5 *3 (-1216 *5 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-391)) (-5 *2 (-1143))))) +(((*1 *2 *2 *3) (-12 (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *6 (-230 (-1697 *5) (-763))) (-5 *1 (-119 *4 *5 *2 *6 *3)) (-4 *2 (-324 *4 *6)) (-4 *3 (-117))))) +(((*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *7 (-1061 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-634 *7)) (|:| |badPols| (-634 *7)))) (-5 *1 (-978 *4 *5 *6 *7)) (-5 *3 (-634 *7))))) +(((*1 *1 *2) (|partial| -12 (-5 *2 (-634 *6)) (-4 *6 (-1061 *3 *4 *5)) (-4 *3 (-558)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *1 (-1255 *3 *4 *5 *6)))) ((*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-634 *8)) (-5 *3 (-1 (-121) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1061 *5 *6 *7)) (-4 *5 (-558)) (-4 *6 (-788)) (-4 *7 (-842)) (-5 *1 (-1255 *5 *6 *7 *8))))) +(((*1 *2 *1) (-12 (-4 *1 (-1122 *3)) (-4 *3 (-1047)) (-5 *2 (-121))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-753)))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-953 (-169 (-568)))))) (-5 *2 (-634 (-634 (-288 (-953 (-169 *4)))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-365) (-840))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-288 (-409 (-953 (-169 (-568))))))) (-5 *2 (-634 (-634 (-288 (-953 (-169 *4)))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-365) (-840))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-409 (-953 (-169 (-568))))) (-5 *2 (-634 (-288 (-953 (-169 *4))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-365) (-840))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-288 (-409 (-953 (-169 (-568)))))) (-5 *2 (-634 (-288 (-953 (-169 *4))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-365) (-840)))))) +(((*1 *2 *1) (-12 (-5 *2 (-409 (-568))) (-5 *1 (-112)))) ((*1 *2 *1) (-12 (-5 *2 (-409 (-568))) (-5 *1 (-208)))) ((*1 *2 *1) (-12 (-5 *2 (-409 (-568))) (-5 *1 (-497)))) ((*1 *1 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-558)) (-4 *2 (-301)))) ((*1 *2 *1) (-12 (-5 *2 (-409 (-568))) (-5 *1 (-1004 *3)) (-14 *3 (-568)))) ((*1 *1 *1) (-4 *1 (-1056)))) +(((*1 *1) (-5 *1 (-1059)))) +(((*1 *2 *1) (-12 (-5 *2 (-173 (-409 (-568)))) (-5 *1 (-126 *3)) (-14 *3 (-568)))) ((*1 *1 *2 *3 *3) (-12 (-5 *3 (-1141 *2)) (-4 *2 (-301)) (-5 *1 (-173 *2)))) ((*1 *1 *2) (-12 (-5 *2 (-409 *3)) (-4 *3 (-301)) (-5 *1 (-173 *3)))) ((*1 *2 *3) (-12 (-5 *2 (-173 (-568))) (-5 *1 (-757 *3)) (-4 *3 (-406)))) ((*1 *2 *1) (-12 (-5 *2 (-173 (-409 (-568)))) (-5 *1 (-865 *3)) (-14 *3 (-568)))) ((*1 *2 *1) (-12 (-14 *3 (-568)) (-5 *2 (-173 (-409 (-568)))) (-5 *1 (-866 *3 *4)) (-4 *4 (-863 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-555 *2)) (-4 *2 (-13 (-406) (-1181))))) ((*1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-850)))) ((*1 *2 *1) (-12 (-5 *2 (-568)) (-5 *1 (-850))))) +(((*1 *2 *1) (-12 (-4 *1 (-601 *3 *2)) (-4 *3 (-1090)) (-4 *3 (-842)) (-4 *2 (-1195)))) ((*1 *2 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-842)))) ((*1 *2 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-842)))) ((*1 *2 *1) (-12 (-5 *2 (-663 *3)) (-5 *1 (-888 *3)) (-4 *3 (-842)))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-1189 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *2 (-1061 *3 *4 *5)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-763)) (-4 *1 (-1231 *3)) (-4 *3 (-1195)))) ((*1 *2 *1) (-12 (-4 *1 (-1231 *2)) (-4 *2 (-1195))))) +(((*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -3276 (-634 (-2 (|:| |irr| *10) (|:| -3959 (-568))))))) (-5 *6 (-634 *3)) (-5 *7 (-634 *8)) (-4 *8 (-842)) (-4 *3 (-301)) (-4 *10 (-950 *3 *9 *8)) (-4 *9 (-788)) (-5 *2 (-2 (|:| |polfac| (-634 *10)) (|:| |correct| *3) (|:| |corrfact| (-634 (-1157 *3))))) (-5 *1 (-617 *8 *9 *3 *10)) (-5 *4 (-634 (-1157 *3)))))) +(((*1 *2 *1) (-12 (-4 *1 (-340 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 (-409 *4))) (-5 *2 (-121))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1143)) (-5 *3 (-766)) (-5 *1 (-123))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-301) (-150))) (-4 *4 (-13 (-842) (-609 (-1161)))) (-4 *5 (-788)) (-5 *1 (-924 *3 *4 *5 *2)) (-4 *2 (-950 *3 *5 *4))))) +(((*1 *1) (-5 *1 (-158)))) +(((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1161)) (-5 *3 (-634 (-953 (-568)))) (-5 *4 (-310 (-169 (-381)))) (-5 *1 (-328)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1161)) (-5 *3 (-634 (-953 (-568)))) (-5 *4 (-310 (-381))) (-5 *1 (-328)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1161)) (-5 *3 (-634 (-953 (-568)))) (-5 *4 (-310 (-568))) (-5 *1 (-328)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-1244 (-310 (-169 (-381))))) (-5 *1 (-328)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-1244 (-310 (-381)))) (-5 *1 (-328)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-1244 (-310 (-568)))) (-5 *1 (-328)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-679 (-310 (-169 (-381))))) (-5 *1 (-328)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-679 (-310 (-381)))) (-5 *1 (-328)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-679 (-310 (-568)))) (-5 *1 (-328)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-310 (-169 (-381)))) (-5 *1 (-328)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-310 (-381))) (-5 *1 (-328)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-310 (-568))) (-5 *1 (-328)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1161)) (-5 *3 (-634 (-953 (-568)))) (-5 *4 (-310 (-683))) (-5 *1 (-328)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1161)) (-5 *3 (-634 (-953 (-568)))) (-5 *4 (-310 (-688))) (-5 *1 (-328)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1161)) (-5 *3 (-634 (-953 (-568)))) (-5 *4 (-310 (-690))) (-5 *1 (-328)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-1244 (-310 (-683)))) (-5 *1 (-328)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-1244 (-310 (-688)))) (-5 *1 (-328)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-1244 (-310 (-690)))) (-5 *1 (-328)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-679 (-310 (-683)))) (-5 *1 (-328)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-679 (-310 (-688)))) (-5 *1 (-328)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-679 (-310 (-690)))) (-5 *1 (-328)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-1244 (-683))) (-5 *1 (-328)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-1244 (-688))) (-5 *1 (-328)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-1244 (-690))) (-5 *1 (-328)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-679 (-683))) (-5 *1 (-328)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-679 (-688))) (-5 *1 (-328)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-679 (-690))) (-5 *1 (-328)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-310 (-683))) (-5 *1 (-328)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-310 (-688))) (-5 *1 (-328)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-310 (-690))) (-5 *1 (-328)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-1143)) (-5 *1 (-328)))) ((*1 *1 *1 *1) (-5 *1 (-850)))) +(((*1 *1 *1 *2 *1) (-12 (-5 *2 (-568)) (-5 *1 (-1141 *3)) (-4 *3 (-1195)))) ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4520)) (-4 *1 (-1231 *2)) (-4 *2 (-1195))))) +(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1191 *3)) (-4 *3 (-975))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-555 *2)) (-4 *2 (-13 (-406) (-1181)))))) +(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-558) (-842) (-1037 (-568)))) (-5 *2 (-310 *4)) (-5 *1 (-180 *4 *3)) (-4 *3 (-13 (-27) (-1181) (-432 (-169 *4)))))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *1 (-1185 *3 *2)) (-4 *2 (-13 (-27) (-1181) (-432 *3)))))) +(((*1 *1 *1 *2) (-12 (-5 *1 (-1125 *2 *3)) (-4 *2 (-13 (-1090) (-39))) (-4 *3 (-13 (-1090) (-39)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1181))))) +(((*1 *1 *1) (-4 *1 (-39))) ((*1 *1 *1) (-12 (-5 *1 (-96 *2)) (-4 *2 (-1090)))) ((*1 *1 *1) (-5 *1 (-123))) ((*1 *1 *1) (-5 *1 (-171))) ((*1 *1 *1) (-12 (-5 *1 (-212 *2)) (-4 *2 (-1090)))) ((*1 *1 *1) (-12 (-5 *1 (-494 *2)) (-4 *2 (-842)))) ((*1 *1 *1) (-4 *1 (-550))) ((*1 *1 *1) (-12 (-5 *1 (-887 *2)) (-4 *2 (-1090)))) ((*1 *1 *1) (-12 (-5 *1 (-1000 *2)) (-4 *2 (-1090)))) ((*1 *1 *1) (-12 (-4 *1 (-1122 *2)) (-4 *2 (-1047)))) ((*1 *1 *1) (-12 (-5 *1 (-1125 *2 *3)) (-4 *2 (-13 (-1090) (-39))) (-4 *3 (-13 (-1090) (-39))))) ((*1 *1 *1) (-12 (-5 *1 (-1132 *2)) (-4 *2 (-1090))))) +(((*1 *2 *1) (-12 (-5 *1 (-910 *2)) (-4 *2 (-301))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1108)) (-5 *1 (-113)))) ((*1 *2 *1) (|partial| -12 (-5 *1 (-367 *2)) (-4 *2 (-1090)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-1143)) (-5 *1 (-1177))))) +(((*1 *2 *1) (-12 (-5 *1 (-212 *2)) (-4 *2 (-1090)))) ((*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1195)))) ((*1 *2 *1) (-12 (-5 *1 (-1000 *2)) (-4 *2 (-1090))))) +(((*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-671 *2)) (-4 *2 (-1090)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 (-634 *5) (-634 *5))) (-5 *4 (-568)) (-5 *2 (-634 *5)) (-5 *1 (-671 *5)) (-4 *5 (-1090))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-215) (-215) (-215) (-215))) (-5 *1 (-256)))) ((*1 *1 *2) (-12 (-5 *2 (-1 (-215) (-215) (-215))) (-5 *1 (-256)))) ((*1 *1 *2) (-12 (-5 *2 (-1 (-215) (-215))) (-5 *1 (-256))))) +(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-558) (-842) (-1037 (-568)))) (-5 *2 (-310 *4)) (-5 *1 (-180 *4 *3)) (-4 *3 (-13 (-27) (-1181) (-432 (-169 *4)))))) ((*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-172)))) ((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *1 (-1185 *3 *2)) (-4 *2 (-13 (-27) (-1181) (-432 *3)))))) +(((*1 *1 *1) (-12 (-5 *1 (-887 *2)) (-4 *2 (-1090))))) +(((*1 *2 *3 *3 *4) (-12 (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *3 (-1061 *5 *6 *7)) (-5 *2 (-634 (-2 (|:| |val| *3) (|:| -3001 *4)))) (-5 *1 (-1067 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-453))) (-5 *1 (-1187 *3 *2)) (-4 *2 (-13 (-432 *3) (-1181)))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-634 *2)) (-4 *2 (-1195)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-1141 *2)) (-4 *2 (-1195))))) +(((*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-43 (-409 (-568)))) (-4 *2 (-1047))))) +(((*1 *2 *1) (-12 (-4 *1 (-665 *3)) (-4 *3 (-1195)) (-5 *2 (-121))))) +(((*1 *1 *1) (-4 *1 (-550)))) +(((*1 *2 *3) (-12 (-4 *4 (-1047)) (-4 *2 (-13 (-406) (-1037 *4) (-365) (-1181) (-279))) (-5 *1 (-444 *4 *3 *2)) (-4 *3 (-1219 *4))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-634 (-53))) (-5 *2 (-420 *3)) (-5 *1 (-44 *3)) (-4 *3 (-1219 (-53))))) ((*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-44 *3)) (-4 *3 (-1219 (-53))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-634 (-53))) (-4 *5 (-842)) (-4 *6 (-788)) (-5 *2 (-420 *3)) (-5 *1 (-47 *5 *6 *3)) (-4 *3 (-950 (-53) *6 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-634 (-53))) (-4 *5 (-842)) (-4 *6 (-788)) (-4 *7 (-950 (-53) *6 *5)) (-5 *2 (-420 (-1157 *7))) (-5 *1 (-47 *5 *6 *7)) (-5 *3 (-1157 *7)))) ((*1 *2 *3) (-12 (-4 *4 (-301)) (-5 *2 (-420 *3)) (-5 *1 (-167 *4 *3)) (-4 *3 (-1219 (-169 *4))))) ((*1 *2 *3 *4 *5) (-12 (-5 *5 (-121)) (-4 *4 (-13 (-365) (-840))) (-5 *2 (-420 *3)) (-5 *1 (-178 *4 *3)) (-4 *3 (-1219 (-169 *4))))) ((*1 *2 *3 *4) (-12 (-4 *4 (-13 (-365) (-840))) (-5 *2 (-420 *3)) (-5 *1 (-178 *4 *3)) (-4 *3 (-1219 (-169 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-840))) (-5 *2 (-420 *3)) (-5 *1 (-178 *4 *3)) (-4 *3 (-1219 (-169 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-350)) (-5 *2 (-420 *3)) (-5 *1 (-207 *4 *3)) (-4 *3 (-1219 *4)))) ((*1 *2 *3 *4) (-12 (-4 *4 (-854)) (-5 *2 (-420 (-1157 *4))) (-5 *1 (-315 *4)) (-5 *3 (-1157 *4)))) ((*1 *2 *3 *4) (-12 (-4 *4 (-859)) (-5 *2 (-420 (-1157 *4))) (-5 *1 (-317 *4)) (-5 *3 (-1157 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-350)) (-5 *2 (-420 *3)) (-5 *1 (-344 *4 *3)) (-4 *3 (-1219 *4)))) ((*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-443 *3)) (-4 *3 (-1219 (-568))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-763)) (-5 *2 (-420 *3)) (-5 *1 (-443 *3)) (-4 *3 (-1219 (-568))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-634 (-763))) (-5 *2 (-420 *3)) (-5 *1 (-443 *3)) (-4 *3 (-1219 (-568))))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-634 (-763))) (-5 *5 (-763)) (-5 *2 (-420 *3)) (-5 *1 (-443 *3)) (-4 *3 (-1219 (-568))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-763)) (-5 *2 (-420 *3)) (-5 *1 (-443 *3)) (-4 *3 (-1219 (-568))))) ((*1 *2 *3) (-12 (-5 *2 (-420 (-169 (-568)))) (-5 *1 (-447)) (-5 *3 (-169 (-568))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-842) (-10 -8 (-15 -4278 ((-1161) $)) (-15 -1305 ((-3 $ "failed") (-1161)))))) (-4 *5 (-788)) (-4 *7 (-558)) (-5 *2 (-420 *3)) (-5 *1 (-458 *4 *5 *6 *7 *3)) (-4 *6 (-558)) (-4 *3 (-950 *7 *5 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-301)) (-5 *2 (-420 (-1157 *4))) (-5 *1 (-460 *4)) (-5 *3 (-1157 *4)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-420 *6) *6)) (-4 *6 (-1219 *5)) (-4 *5 (-365)) (-4 *7 (-13 (-365) (-150) (-714 *5 *6))) (-5 *2 (-420 *3)) (-5 *1 (-503 *5 *6 *7 *3)) (-4 *3 (-1219 *7)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-420 (-1157 *7)) (-1157 *7))) (-4 *7 (-13 (-301) (-150))) (-4 *5 (-842)) (-4 *6 (-788)) (-5 *2 (-420 *3)) (-5 *1 (-545 *5 *6 *7 *3)) (-4 *3 (-950 *7 *6 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-420 (-1157 *7)) (-1157 *7))) (-4 *7 (-13 (-301) (-150))) (-4 *5 (-842)) (-4 *6 (-788)) (-4 *8 (-950 *7 *6 *5)) (-5 *2 (-420 (-1157 *8))) (-5 *1 (-545 *5 *6 *7 *8)) (-5 *3 (-1157 *8)))) ((*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-561 *3)) (-4 *3 (-550)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-634 *5) *6)) (-4 *5 (-13 (-365) (-150) (-1037 (-568)) (-1037 (-409 (-568))))) (-4 *6 (-1219 *5)) (-5 *2 (-634 (-643 (-409 *6)))) (-5 *1 (-647 *5 *6)) (-5 *3 (-643 (-409 *6))))) ((*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-365) (-150) (-1037 (-568)) (-1037 (-409 (-568))))) (-4 *5 (-1219 *4)) (-5 *2 (-634 (-643 (-409 *5)))) (-5 *1 (-647 *4 *5)) (-5 *3 (-643 (-409 *5))))) ((*1 *2 *3) (-12 (-5 *3 (-814 *4)) (-4 *4 (-842)) (-5 *2 (-634 (-663 *4))) (-5 *1 (-663 *4)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-568)) (-5 *2 (-634 *3)) (-5 *1 (-685 *3)) (-4 *3 (-1219 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-842)) (-4 *5 (-788)) (-4 *6 (-350)) (-5 *2 (-420 *3)) (-5 *1 (-687 *4 *5 *6 *3)) (-4 *3 (-950 *6 *5 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-842)) (-4 *5 (-788)) (-4 *6 (-350)) (-4 *7 (-950 *6 *5 *4)) (-5 *2 (-420 (-1157 *7))) (-5 *1 (-687 *4 *5 *6 *7)) (-5 *3 (-1157 *7)))) ((*1 *2 *3) (-12 (-4 *4 (-788)) (-4 *5 (-13 (-842) (-10 -8 (-15 -4278 ((-1161) $)) (-15 -1305 ((-3 $ "failed") (-1161)))))) (-4 *6 (-301)) (-5 *2 (-420 *3)) (-5 *1 (-720 *4 *5 *6 *3)) (-4 *3 (-950 (-953 *6) *4 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-788)) (-4 *5 (-13 (-842) (-10 -8 (-15 -4278 ((-1161) $))))) (-4 *6 (-558)) (-5 *2 (-420 *3)) (-5 *1 (-722 *4 *5 *6 *3)) (-4 *3 (-950 (-409 (-953 *6)) *4 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-13 (-301) (-150))) (-5 *2 (-420 *3)) (-5 *1 (-723 *4 *5 *6 *3)) (-4 *3 (-950 (-409 *6) *4 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-842)) (-4 *5 (-788)) (-4 *6 (-13 (-301) (-150))) (-5 *2 (-420 *3)) (-5 *1 (-731 *4 *5 *6 *3)) (-4 *3 (-950 *6 *5 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-842)) (-4 *5 (-788)) (-4 *6 (-13 (-301) (-150))) (-4 *7 (-950 *6 *5 *4)) (-5 *2 (-420 (-1157 *7))) (-5 *1 (-731 *4 *5 *6 *7)) (-5 *3 (-1157 *7)))) ((*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-1007 *3)) (-4 *3 (-1219 (-409 (-568)))))) ((*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-1040 *3)) (-4 *3 (-1219 (-409 (-953 (-568))))))) ((*1 *2 *3) (-12 (-4 *4 (-1219 (-409 (-568)))) (-4 *5 (-13 (-365) (-150) (-714 (-409 (-568)) *4))) (-5 *2 (-420 *3)) (-5 *1 (-1072 *4 *5 *3)) (-4 *3 (-1219 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-1219 (-409 (-953 (-568))))) (-4 *5 (-13 (-365) (-150) (-714 (-409 (-953 (-568))) *4))) (-5 *2 (-420 *3)) (-5 *1 (-1074 *4 *5 *3)) (-4 *3 (-1219 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-453)) (-4 *7 (-950 *6 *4 *5)) (-5 *2 (-420 (-1157 (-409 *7)))) (-5 *1 (-1156 *4 *5 *6 *7)) (-5 *3 (-1157 (-409 *7))))) ((*1 *2 *1) (-12 (-5 *2 (-420 *1)) (-4 *1 (-1199)))) ((*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-1208 *3)) (-4 *3 (-1219 (-568)))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-1 (-121) *8))) (-4 *8 (-1061 *5 *6 *7)) (-4 *5 (-558)) (-4 *6 (-788)) (-4 *7 (-842)) (-5 *2 (-2 (|:| |goodPols| (-634 *8)) (|:| |badPols| (-634 *8)))) (-5 *1 (-978 *5 *6 *7 *8)) (-5 *4 (-634 *8))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1061 *3 *4 *5)) (-4 *3 (-558)) (-5 *2 (-121))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4520)) (-4 *1 (-239 *2)) (-4 *2 (-1195)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-1195)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-277 *2)) (-4 *2 (-1195)))) ((*1 *1 *1 *2) (-12 (|has| *1 (-6 -4520)) (-4 *1 (-1231 *2)) (-4 *2 (-1195)))) ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4520)) (-4 *1 (-1231 *2)) (-4 *2 (-1195))))) +(((*1 *1 *2) (-12 (-5 *2 (-634 (-850))) (-5 *1 (-850)))) ((*1 *1 *1) (-5 *1 (-850))) ((*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-1090)) (-4 *1 (-1087 *3)))) ((*1 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1090))))) +(((*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-1035))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-324 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-787)))) ((*1 *2 *3 *2) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-230 *6 (-763))) (-14 *6 (-763)) (-4 *4 (-1047)) (-5 *1 (-908 *4 *2 *5 *6)) (-4 *2 (-324 *4 *5))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-1047)) (-4 *4 (-230 *5 (-763))) (-14 *5 (-763)) (-5 *1 (-908 *3 *2 *4 *5)) (-4 *2 (-324 *3 *4))))) +(((*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-121)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-121))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-607 *1)) (-4 *1 (-432 *4)) (-4 *4 (-842)) (-4 *4 (-558)) (-5 *2 (-409 (-1157 *1))))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-607 *3)) (-4 *3 (-13 (-432 *6) (-27) (-1181))) (-4 *6 (-13 (-453) (-1037 (-568)) (-842) (-150) (-630 (-568)))) (-5 *2 (-1157 (-409 (-1157 *3)))) (-5 *1 (-564 *6 *3 *7)) (-5 *5 (-1157 *3)) (-4 *7 (-1090)))) ((*1 *2 *3) (-12 (-4 *4 (-1047)) (-4 *5 (-230 *6 (-763))) (-14 *6 (-763)) (-5 *2 (-1157 *4)) (-5 *1 (-908 *4 *3 *5 *6)) (-4 *3 (-324 *4 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1240 *5)) (-14 *5 (-1161)) (-4 *6 (-1047)) (-5 *2 (-1216 *5 (-953 *6))) (-5 *1 (-948 *5 *6)) (-5 *3 (-953 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-950 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-1157 *3)))) ((*1 *2 *1 *3) (-12 (-4 *4 (-1047)) (-4 *5 (-788)) (-4 *3 (-842)) (-5 *2 (-1157 *1)) (-4 *1 (-950 *4 *5 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-788)) (-4 *4 (-842)) (-4 *6 (-1047)) (-4 *7 (-950 *6 *5 *4)) (-5 *2 (-409 (-1157 *3))) (-5 *1 (-951 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -2745 ($ *7)) (-15 -2317 (*7 $)) (-15 -2324 (*7 $))))))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -2745 ($ *7)) (-15 -2317 (*7 $)) (-15 -2324 (*7 $))))) (-4 *7 (-950 *6 *5 *4)) (-4 *5 (-788)) (-4 *4 (-842)) (-4 *6 (-1047)) (-5 *1 (-951 *5 *4 *6 *7 *3)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1161)) (-4 *5 (-558)) (-5 *2 (-409 (-1157 (-409 (-953 *5))))) (-5 *1 (-1042 *5)) (-5 *3 (-409 (-953 *5)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1061 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-763))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-1082 (-835 *3))) (-4 *3 (-13 (-1181) (-959) (-29 *5))) (-4 *5 (-13 (-301) (-842) (-150) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-3 (|:| |f1| (-835 *3)) (|:| |f2| (-634 (-835 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-209 *5 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1082 (-835 *3))) (-5 *5 (-1143)) (-4 *3 (-13 (-1181) (-959) (-29 *6))) (-4 *6 (-13 (-301) (-842) (-150) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-3 (|:| |f1| (-835 *3)) (|:| |f2| (-634 (-835 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-209 *6 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-409 (-953 *5))) (-5 *4 (-1082 (-835 (-310 *5)))) (-4 *5 (-13 (-301) (-842) (-150) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-3 (|:| |f1| (-835 (-310 *5))) (|:| |f2| (-634 (-835 (-310 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-210 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-409 (-953 *6))) (-5 *4 (-1082 (-835 (-310 *6)))) (-5 *5 (-1143)) (-4 *6 (-13 (-301) (-842) (-150) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-3 (|:| |f1| (-835 (-310 *6))) (|:| |f2| (-634 (-835 (-310 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-210 *6)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1082 (-835 (-409 (-953 *5))))) (-5 *3 (-409 (-953 *5))) (-4 *5 (-13 (-301) (-842) (-150) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-3 (|:| |f1| (-835 (-310 *5))) (|:| |f2| (-634 (-835 (-310 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-210 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1082 (-835 (-409 (-953 *6))))) (-5 *5 (-1143)) (-5 *3 (-409 (-953 *6))) (-4 *6 (-13 (-301) (-842) (-150) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-3 (|:| |f1| (-835 (-310 *6))) (|:| |f2| (-634 (-835 (-310 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-210 *6)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1161)) (-4 *5 (-13 (-301) (-842) (-150) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-3 *3 (-634 *3))) (-5 *1 (-430 *5 *3)) (-4 *3 (-13 (-1181) (-959) (-29 *5))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1240 *4)) (-14 *4 (-1161)) (-5 *1 (-479 *3 *4 *5)) (-4 *3 (-43 (-409 (-568)))) (-4 *3 (-1047)) (-14 *5 *3))) ((*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-310 (-381))) (-5 *4 (-1084 (-835 (-381)))) (-5 *5 (-381)) (-5 *6 (-1059)) (-5 *2 (-1035)) (-5 *1 (-569)))) ((*1 *2 *3) (-12 (-5 *3 (-761)) (-5 *2 (-1035)) (-5 *1 (-569)))) ((*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-310 (-381))) (-5 *4 (-1084 (-835 (-381)))) (-5 *5 (-381)) (-5 *2 (-1035)) (-5 *1 (-569)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-310 (-381))) (-5 *4 (-1084 (-835 (-381)))) (-5 *5 (-381)) (-5 *2 (-1035)) (-5 *1 (-569)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-310 (-381))) (-5 *4 (-1084 (-835 (-381)))) (-5 *2 (-1035)) (-5 *1 (-569)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-310 (-381))) (-5 *4 (-634 (-1084 (-835 (-381))))) (-5 *2 (-1035)) (-5 *1 (-569)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-310 (-381))) (-5 *4 (-634 (-1084 (-835 (-381))))) (-5 *5 (-381)) (-5 *2 (-1035)) (-5 *1 (-569)))) ((*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-310 (-381))) (-5 *4 (-634 (-1084 (-835 (-381))))) (-5 *5 (-381)) (-5 *2 (-1035)) (-5 *1 (-569)))) ((*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-310 (-381))) (-5 *4 (-634 (-1084 (-835 (-381))))) (-5 *5 (-381)) (-5 *6 (-1059)) (-5 *2 (-1035)) (-5 *1 (-569)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-310 (-381))) (-5 *4 (-1082 (-835 (-381)))) (-5 *5 (-1143)) (-5 *2 (-1035)) (-5 *1 (-569)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-310 (-381))) (-5 *4 (-1082 (-835 (-381)))) (-5 *5 (-1161)) (-5 *2 (-1035)) (-5 *1 (-569)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-150) (-1037 (-568)))) (-4 *5 (-1219 *4)) (-5 *2 (-585 (-409 *5))) (-5 *1 (-572 *4 *5)) (-5 *3 (-409 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-409 (-953 *5))) (-5 *4 (-1161)) (-4 *5 (-150)) (-4 *5 (-13 (-453) (-1037 (-568)) (-842) (-630 (-568)))) (-5 *2 (-3 (-310 *5) (-634 (-310 *5)))) (-5 *1 (-588 *5)))) ((*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-43 (-409 (-568)))) (-4 *2 (-1047)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-730 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-842)) (-4 *3 (-43 (-409 (-568)))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-953 *3)) (-4 *3 (-43 (-409 (-568)))) (-4 *3 (-1047)))) ((*1 *1 *1 *2 *3) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *3 (-1047)) (-4 *2 (-842)) (-5 *1 (-1114 *3 *2 *4)) (-4 *4 (-950 *3 (-534 *2) *2)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-4 *3 (-1047)) (-5 *1 (-1145 *3)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1240 *4)) (-14 *4 (-1161)) (-5 *1 (-1151 *3 *4 *5)) (-4 *3 (-43 (-409 (-568)))) (-4 *3 (-1047)) (-14 *5 *3))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1240 *4)) (-14 *4 (-1161)) (-5 *1 (-1158 *3 *4 *5)) (-4 *3 (-43 (-409 (-568)))) (-4 *3 (-1047)) (-14 *5 *3))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1240 *4)) (-14 *4 (-1161)) (-5 *1 (-1159 *3 *4 *5)) (-4 *3 (-43 (-409 (-568)))) (-4 *3 (-1047)) (-14 *5 *3))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *1 (-1190 *3)) (-4 *3 (-43 (-409 (-568)))) (-4 *3 (-1047)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1240 (QUOTE |x|))) (-5 *1 (-1201 *3)) (-4 *3 (-43 (-409 (-568)))) (-4 *3 (-1047)))) ((*1 *1 *1 *2) (-2198 (-12 (-5 *2 (-1161)) (-4 *1 (-1203 *3)) (-4 *3 (-1047)) (-12 (-4 *3 (-29 (-568))) (-4 *3 (-959)) (-4 *3 (-1181)) (-4 *3 (-43 (-409 (-568)))))) (-12 (-5 *2 (-1161)) (-4 *1 (-1203 *3)) (-4 *3 (-1047)) (-12 (|has| *3 (-15 -2055 ((-634 *2) *3))) (|has| *3 (-15 -3837 (*3 *3 *2))) (-4 *3 (-43 (-409 (-568)))))))) ((*1 *1 *1) (-12 (-4 *1 (-1203 *2)) (-4 *2 (-1047)) (-4 *2 (-43 (-409 (-568)))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1240 *4)) (-14 *4 (-1161)) (-5 *1 (-1207 *3 *4 *5)) (-4 *3 (-43 (-409 (-568)))) (-4 *3 (-1047)) (-14 *5 *3))) ((*1 *1 *1) (-12 (-4 *1 (-1219 *2)) (-4 *2 (-1047)) (-4 *2 (-43 (-409 (-568)))))) ((*1 *1 *1 *2) (-2198 (-12 (-5 *2 (-1161)) (-4 *1 (-1224 *3)) (-4 *3 (-1047)) (-12 (-4 *3 (-29 (-568))) (-4 *3 (-959)) (-4 *3 (-1181)) (-4 *3 (-43 (-409 (-568)))))) (-12 (-5 *2 (-1161)) (-4 *1 (-1224 *3)) (-4 *3 (-1047)) (-12 (|has| *3 (-15 -2055 ((-634 *2) *3))) (|has| *3 (-15 -3837 (*3 *3 *2))) (-4 *3 (-43 (-409 (-568)))))))) ((*1 *1 *1) (-12 (-4 *1 (-1224 *2)) (-4 *2 (-1047)) (-4 *2 (-43 (-409 (-568)))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1240 *4)) (-14 *4 (-1161)) (-5 *1 (-1228 *3 *4 *5)) (-4 *3 (-43 (-409 (-568)))) (-4 *3 (-1047)) (-14 *5 *3))) ((*1 *1 *1 *2) (-2198 (-12 (-5 *2 (-1161)) (-4 *1 (-1234 *3)) (-4 *3 (-1047)) (-12 (-4 *3 (-29 (-568))) (-4 *3 (-959)) (-4 *3 (-1181)) (-4 *3 (-43 (-409 (-568)))))) (-12 (-5 *2 (-1161)) (-4 *1 (-1234 *3)) (-4 *3 (-1047)) (-12 (|has| *3 (-15 -2055 ((-634 *2) *3))) (|has| *3 (-15 -3837 (*3 *3 *2))) (-4 *3 (-43 (-409 (-568)))))))) ((*1 *1 *1) (-12 (-4 *1 (-1234 *2)) (-4 *2 (-1047)) (-4 *2 (-43 (-409 (-568)))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1240 *4)) (-14 *4 (-1161)) (-5 *1 (-1235 *3 *4 *5)) (-4 *3 (-43 (-409 (-568)))) (-4 *3 (-1047)) (-14 *5 *3))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1240 *4)) (-14 *4 (-1161)) (-5 *1 (-1239 *3 *4)) (-4 *3 (-43 (-409 (-568)))) (-4 *3 (-1047))))) +(((*1 *2 *1) (-12 (-4 *1 (-665 *3)) (-4 *3 (-1195)) (-5 *2 (-763))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-679 *3)) (-4 *3 (-1047)) (-5 *1 (-680 *3)))) ((*1 *2 *2 *2 *2) (-12 (-5 *2 (-679 *3)) (-4 *3 (-1047)) (-5 *1 (-680 *3))))) +(((*1 *2 *2) (-12 (-4 *3 (-1219 (-409 (-568)))) (-5 *1 (-909 *3 *2)) (-4 *2 (-1219 (-409 *3)))))) +(((*1 *1 *1) (-4 *1 (-620))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-621 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002) (-1181)))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-568)) (-5 *5 (-679 (-215))) (-5 *4 (-215)) (-5 *2 (-1035)) (-5 *1 (-742))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-121)) (-5 *3 (-634 (-256))) (-5 *1 (-254)))) ((*1 *1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-256)))) ((*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-472)))) ((*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-472))))) +(((*1 *2 *3) (-12 (-5 *3 (-679 (-409 (-953 (-568))))) (-5 *2 (-634 (-679 (-310 (-568))))) (-5 *1 (-1031))))) +(((*1 *1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-850))))) +(((*1 *2 *2) (-12 (-5 *2 (-215)) (-5 *1 (-217)))) ((*1 *2 *2) (-12 (-5 *2 (-169 (-215))) (-5 *1 (-217)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) ((*1 *1 *1) (-4 *1 (-1124)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-634 *1)) (|has| *1 (-6 -4520)) (-4 *1 (-1010 *3)) (-4 *3 (-1195))))) +(((*1 *2 *1) (-12 (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-121))))) +(((*1 *2 *3) (-12 (-5 *3 (-679 (-409 (-953 (-568))))) (-5 *2 (-634 (-310 (-568)))) (-5 *1 (-1031))))) +(((*1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1061 *3 *4 *5)) (-4 *3 (-558)) (-5 *2 (-121))))) +(((*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-637 *5)) (-4 *5 (-1047)) (-5 *1 (-59 *5 *2 *3)) (-4 *3 (-844 *5)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-679 *3)) (-4 *1 (-419 *3)) (-4 *3 (-172)))) ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-844 *2)) (-4 *2 (-1047)))) ((*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-101 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1047)) (-5 *1 (-845 *2 *3)) (-4 *3 (-844 *2))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *5 (-1143)) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-87 PDEF)))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-88 BNDY)))) (-5 *2 (-1035)) (-5 *1 (-742))))) +(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-121)) (-4 *6 (-453)) (-4 *7 (-788)) (-4 *8 (-842)) (-4 *9 (-1061 *6 *7 *8)) (-5 *2 (-2 (|:| -1853 (-634 *9)) (|:| -3001 *4) (|:| |ineq| (-634 *9)))) (-5 *1 (-989 *6 *7 *8 *9 *4)) (-5 *3 (-634 *9)) (-4 *4 (-1066 *6 *7 *8 *9)))) ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-121)) (-4 *6 (-453)) (-4 *7 (-788)) (-4 *8 (-842)) (-4 *9 (-1061 *6 *7 *8)) (-5 *2 (-2 (|:| -1853 (-634 *9)) (|:| -3001 *4) (|:| |ineq| (-634 *9)))) (-5 *1 (-1097 *6 *7 *8 *9 *4)) (-5 *3 (-634 *9)) (-4 *4 (-1066 *6 *7 *8 *9))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-409 (-568))) (-5 *1 (-1023 *3)) (-4 *3 (-13 (-840) (-365) (-1021))))) ((*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-840) (-365))) (-5 *1 (-1057 *2 *3)) (-4 *3 (-1219 *2)))) ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1063 *2 *3)) (-4 *2 (-13 (-840) (-365))) (-4 *3 (-1219 *2))))) +(((*1 *2 *3) (-12 (-5 *2 (-169 (-381))) (-5 *1 (-780 *3)) (-4 *3 (-609 (-381))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-917)) (-5 *2 (-169 (-381))) (-5 *1 (-780 *3)) (-4 *3 (-609 (-381))))) ((*1 *2 *3) (-12 (-5 *3 (-169 *4)) (-4 *4 (-172)) (-4 *4 (-609 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-780 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-169 *5)) (-5 *4 (-917)) (-4 *5 (-172)) (-4 *5 (-609 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-780 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-953 (-169 *4))) (-4 *4 (-172)) (-4 *4 (-609 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-780 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-953 (-169 *5))) (-5 *4 (-917)) (-4 *5 (-172)) (-4 *5 (-609 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-780 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-953 *4)) (-4 *4 (-1047)) (-4 *4 (-609 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-780 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-953 *5)) (-5 *4 (-917)) (-4 *5 (-1047)) (-4 *5 (-609 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-780 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-409 (-953 *4))) (-4 *4 (-558)) (-4 *4 (-609 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-780 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-409 (-953 *5))) (-5 *4 (-917)) (-4 *5 (-558)) (-4 *5 (-609 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-780 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-409 (-953 (-169 *4)))) (-4 *4 (-558)) (-4 *4 (-609 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-780 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-409 (-953 (-169 *5)))) (-5 *4 (-917)) (-4 *5 (-558)) (-4 *5 (-609 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-780 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-310 *4)) (-4 *4 (-558)) (-4 *4 (-842)) (-4 *4 (-609 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-780 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-310 *5)) (-5 *4 (-917)) (-4 *5 (-558)) (-4 *5 (-842)) (-4 *5 (-609 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-780 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-310 (-169 *4))) (-4 *4 (-558)) (-4 *4 (-842)) (-4 *4 (-609 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-780 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-310 (-169 *5))) (-5 *4 (-917)) (-4 *5 (-558)) (-4 *5 (-842)) (-4 *5 (-609 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-780 *5))))) +(((*1 *2) (-12 (-4 *3 (-453)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1061 *3 *4 *5)) (-5 *2 (-1249)) (-5 *1 (-1067 *3 *4 *5 *6 *7)) (-4 *7 (-1066 *3 *4 *5 *6)))) ((*1 *2) (-12 (-4 *3 (-453)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1061 *3 *4 *5)) (-5 *2 (-1249)) (-5 *1 (-1098 *3 *4 *5 *6 *7)) (-4 *7 (-1066 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-172))))) +(((*1 *2 *3) (-12 (-4 *4 (-350)) (-5 *2 (-420 (-1157 (-1157 *4)))) (-5 *1 (-1194 *4)) (-5 *3 (-1157 (-1157 *4)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1111 *3 *4 *2 *5)) (-4 *4 (-1047)) (-4 *5 (-230 *3 *4)) (-4 *2 (-230 *3 *4))))) +(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-568)) (-5 *5 (-679 (-215))) (-5 *6 (-666 (-215))) (-5 *3 (-215)) (-5 *2 (-1035)) (-5 *1 (-742))))) +(((*1 *2 *3 *2 *3) (-12 (-5 *2 (-439)) (-5 *3 (-1161)) (-5 *1 (-1164)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-439)) (-5 *3 (-1161)) (-5 *1 (-1164)))) ((*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-439)) (-5 *3 (-634 (-1161))) (-5 *4 (-1161)) (-5 *1 (-1164)))) ((*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-439)) (-5 *3 (-1161)) (-5 *1 (-1164)))) ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-439)) (-5 *3 (-1161)) (-5 *1 (-1165)))) ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-439)) (-5 *3 (-634 (-1161))) (-5 *1 (-1165))))) +(((*1 *1 *1 *1) (-5 *1 (-850)))) +(((*1 *2 *3) (-12 (-5 *3 (-944 *2)) (-5 *1 (-983 *2)) (-4 *2 (-1047))))) +(((*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-43 (-409 (-568)))) (-4 *2 (-1047))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-970 *3 *2)) (-4 *2 (-1219 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1061 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-788)) (-4 *4 (-842)) (-4 *2 (-558)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1219 *2)) (-4 *2 (-1047)) (-4 *2 (-558))))) +(((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-679 (-1157 *8))) (-4 *5 (-1047)) (-4 *8 (-1047)) (-4 *6 (-1219 *5)) (-5 *2 (-679 *6)) (-5 *1 (-510 *5 *6 *7 *8)) (-4 *7 (-1219 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-536 *3 *4 *5 *6 *7 *8 *9 *10 *11)) (-4 *3 (-365)) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *6 (-230 (-1697 *4) *2)) (-4 *7 (-971 *3)) (-4 *8 (-641 *3)) (-4 *9 (-920 *3 *8)) (-4 *10 (-235 *9)) (-4 *11 (-117)) (-5 *2 (-763))))) +(((*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-533 *3)) (-4 *3 (-13 (-716) (-25)))))) +(((*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1157 *4)) (-5 *1 (-358 *4)) (-4 *4 (-350))))) +(((*1 *2 *1) (-12 (-5 *2 (-634 (-607 *1))) (-4 *1 (-296))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 (-917))) (-5 *2 (-899 (-568))) (-5 *1 (-913))))) +(((*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-1195)) (-5 *1 (-325 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-1195)) (-5 *1 (-525 *3 *4)) (-14 *4 (-568))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1161)) (-5 *1 (-607 *3)) (-4 *3 (-842))))) +(((*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-121) *5 *5)) (-4 *5 (-13 (-1090) (-39))) (-5 *2 (-121)) (-5 *1 (-1125 *4 *5)) (-4 *4 (-13 (-1090) (-39)))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-568)) (-5 *3 (-917)) (-5 *1 (-688)))) ((*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-679 *5)) (-5 *3 (-101 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-365)) (-5 *1 (-979 *5))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-634 *3)) (-4 *3 (-950 *5 *6 *7)) (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-450 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1219 *5)) (-4 *5 (-365)) (-4 *7 (-1219 (-409 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2577 *3))) (-5 *1 (-566 *5 *6 *7 *3)) (-4 *3 (-340 *5 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1219 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |answer| (-409 *6)) (|:| -2577 (-409 *6)) (|:| |specpart| (-409 *6)) (|:| |polypart| *6))) (-5 *1 (-567 *5 *6)) (-5 *3 (-409 *6))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002)))))) +(((*1 *2 *1) (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-842)) (-4 *5 (-262 *4)) (-4 *6 (-788)) (-5 *2 (-634 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-828 *3)) (-4 *3 (-1090)))) ((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-835 *3)) (-4 *3 (-1090))))) +(((*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-835 *4)) (-5 *3 (-607 *4)) (-5 *5 (-121)) (-4 *4 (-13 (-1181) (-29 *6))) (-4 *6 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *1 (-214 *6 *4))))) +(((*1 *1 *1 *1) (-5 *1 (-215))) ((*1 *2 *2 *2) (-12 (-5 *2 (-215)) (-5 *1 (-217)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-215))) (-5 *1 (-217)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-763)) (-5 *2 (-1 (-381))) (-5 *1 (-1039)))) ((*1 *1 *1 *1) (-4 *1 (-1124)))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-1161)) (-4 *4 (-558)) (-4 *4 (-842)) (-5 *1 (-577 *4 *2)) (-4 *2 (-432 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1195)) (-5 *2 (-121)))) ((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1182 *3)) (-4 *3 (-1090))))) +(((*1 *2 *2) (-12 (-5 *2 (-215)) (-5 *1 (-217)))) ((*1 *2 *2) (-12 (-5 *2 (-169 (-215))) (-5 *1 (-217))))) +(((*1 *2 *1) (-12 (-5 *2 (-634 (-2 (|:| |k| (-1161)) (|:| |c| (-1264 *3))))) (-5 *1 (-1264 *3)) (-4 *3 (-1047)))) ((*1 *2 *1) (-12 (-5 *2 (-634 (-2 (|:| |k| *3) (|:| |c| (-1266 *3 *4))))) (-5 *1 (-1266 *3 *4)) (-4 *3 (-842)) (-4 *4 (-1047))))) +(((*1 *2 *3) (-12 (-5 *2 (-1163 (-409 (-568)))) (-5 *1 (-182)) (-5 *3 (-568))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-1195)) (-5 *1 (-179 *3 *2)) (-4 *2 (-665 *3))))) +(((*1 *1 *1 *1) (-5 *1 (-850)))) +(((*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1143)) (|:| -3391 (-1143)))) (-5 *1 (-817))))) +(((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1249)) (-5 *1 (-1164)))) ((*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-1165))))) +(((*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-917)) (-4 *5 (-301)) (-4 *3 (-1219 *5)) (-5 *2 (-2 (|:| |plist| (-634 *3)) (|:| |modulo| *5))) (-5 *1 (-462 *5 *3)) (-5 *4 (-634 *3))))) +(((*1 *2 *3 *4) (|partial| -12 (-14 *5 (-634 (-1161))) (-4 *3 (-950 *2 *6 (-852 *5))) (-4 *6 (-230 (-1697 *5) (-763))) (-4 *7 (-971 *2)) (-4 *8 (-641 *2)) (-4 *4 (-920 *2 *8)) (-4 *9 (-235 *4)) (-4 *10 (-536 *2 *5 *3 *6 *7 *8 *4 *9 *12)) (-4 *12 (-117)) (-4 *2 (-365)) (-5 *1 (-467 *2 *5 *3 *6 *7 *8 *4 *9 *10 *11 *12)) (-4 *11 (-258 *10)))) ((*1 *2 *3 *3 *4) (|partial| -12 (-14 *5 (-634 (-1161))) (-4 *3 (-950 *2 *6 (-852 *5))) (-4 *6 (-230 (-1697 *5) (-763))) (-4 *7 (-971 *2)) (-4 *8 (-641 *2)) (-4 *4 (-920 *2 *8)) (-4 *9 (-235 *4)) (-4 *10 (-536 *2 *5 *3 *6 *7 *8 *4 *9 *12)) (-4 *12 (-117)) (-4 *2 (-365)) (-5 *1 (-467 *2 *5 *3 *6 *7 *8 *4 *9 *10 *11 *12)) (-4 *11 (-258 *10)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-409 *6)) (-4 *6 (-950 *2 *7 (-852 *5))) (-4 *7 (-230 (-1697 *5) (-763))) (-14 *5 (-634 (-1161))) (-4 *8 (-971 *2)) (-4 *9 (-641 *2)) (-4 *4 (-920 *2 *9)) (-4 *10 (-235 *4)) (-4 *11 (-536 *2 *5 *6 *7 *8 *9 *4 *10 *13)) (-4 *13 (-117)) (-4 *2 (-365)) (-5 *1 (-467 *2 *5 *6 *7 *8 *9 *4 *10 *11 *12 *13)) (-4 *12 (-258 *11)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-242 *5 *2)) (-5 *4 (-922 *2)) (-14 *5 (-634 (-1161))) (-4 *2 (-350)) (-5 *1 (-867 *2 *5 *6)) (-4 *6 (-117)))) ((*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-242 *5 *2)) (-5 *4 (-922 *2)) (-14 *5 (-634 (-1161))) (-4 *2 (-350)) (-5 *1 (-867 *2 *5 *6)) (-4 *6 (-117)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-409 (-242 *5 *2))) (-5 *4 (-922 *2)) (-14 *5 (-634 (-1161))) (-4 *2 (-350)) (-5 *1 (-867 *2 *5 *6)) (-4 *6 (-117)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-242 *5 *2)) (-5 *4 (-921 *2)) (-14 *5 (-634 (-1161))) (-4 *2 (-365)) (-5 *1 (-868 *2 *5 *6)) (-4 *6 (-117)))) ((*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-242 *5 *2)) (-5 *4 (-921 *2)) (-14 *5 (-634 (-1161))) (-4 *2 (-365)) (-5 *1 (-868 *2 *5 *6)) (-4 *6 (-117)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-409 (-242 *5 *2))) (-5 *4 (-921 *2)) (-14 *5 (-634 (-1161))) (-4 *2 (-365)) (-5 *1 (-868 *2 *5 *6)) (-4 *6 (-117))))) +(((*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-763)) (-5 *1 (-666 *2)) (-4 *2 (-1090))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-568)) (-5 *1 (-420 *2)) (-4 *2 (-558))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-568)) (-5 *5 (-679 (-215))) (-5 *4 (-215)) (-5 *2 (-1035)) (-5 *1 (-744))))) +(((*1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558) (-609 (-541)))) (-5 *1 (-1024 *3 *2)) (-4 *2 (-13 (-432 *3) (-23) (-1037 (-568)) (-1037 (-1161)) (-895 (-1161)) (-161)))))) +(((*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-121) *2)) (-4 *1 (-154 *2)) (-4 *2 (-1195))))) +(((*1 *1 *1 *1 *2) (-12 (-4 *1 (-1061 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *2 (-842)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1061 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-788)) (-4 *4 (-842))))) +(((*1 *1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1195))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-763)) (-4 *1 (-1219 *3)) (-4 *3 (-1047))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1141 *4)) (-5 *3 (-1 *4 (-568))) (-4 *4 (-1047)) (-5 *1 (-1145 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-850))))) +(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-568)) (-5 *5 (-679 (-215))) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-91 FCN)))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-93 OUTPUT)))) (-5 *3 (-215)) (-5 *2 (-1035)) (-5 *1 (-741))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-568)) (-5 *3 (-917)) (-4 *1 (-406)))) ((*1 *1 *2 *2) (-12 (-5 *2 (-568)) (-4 *1 (-406)))) ((*1 *2 *1) (-12 (-4 *1 (-1093 *3 *4 *5 *2 *6)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *2 (-1090))))) +(((*1 *2 *3) (-12 (-5 *3 (-944 *2)) (-5 *1 (-983 *2)) (-4 *2 (-1047))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-121))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 (-465))) (-5 *2 (-568)) (-5 *1 (-464)))) ((*1 *1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-465))))) +(((*1 *2 *1) (-12 (-4 *1 (-1219 *3)) (-4 *3 (-1047)) (-5 *2 (-1157 *3))))) +(((*1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-641 *3)) (-5 *2 (-634 *1)) (-4 *1 (-920 *3 *4))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-365)) (-5 *1 (-280 *3 *2)) (-4 *2 (-1234 *3))))) +(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-568)) (-5 *5 (-679 (-215))) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-94 G)))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-91 FCN)))) (-5 *3 (-215)) (-5 *2 (-1035)) (-5 *1 (-741))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1129)) (-5 *3 (-568)) (-5 *2 (-121))))) +(((*1 *2) (-12 (-4 *3 (-558)) (-5 *2 (-634 (-679 *3))) (-5 *1 (-48 *3 *4)) (-4 *4 (-419 *3))))) +(((*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *3 (-1047)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2704 *1))) (-4 *1 (-844 *3))))) +(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-634 *7) *7 (-1157 *7))) (-5 *5 (-1 (-420 *7) *7)) (-4 *7 (-1219 *6)) (-4 *6 (-13 (-365) (-150) (-1037 (-409 (-568))))) (-5 *2 (-634 (-2 (|:| |frac| (-409 *7)) (|:| -1853 *3)))) (-5 *1 (-804 *6 *7 *3 *8)) (-4 *3 (-646 *7)) (-4 *8 (-646 (-409 *7))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-420 *6) *6)) (-4 *6 (-1219 *5)) (-4 *5 (-13 (-365) (-150) (-1037 (-568)) (-1037 (-409 (-568))))) (-5 *2 (-634 (-2 (|:| |frac| (-409 *6)) (|:| -1853 (-644 *6 (-409 *6)))))) (-5 *1 (-807 *5 *6)) (-5 *3 (-644 *6 (-409 *6)))))) +(((*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1247)))) ((*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1247))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-558) (-842) (-1037 (-568)))) (-5 *1 (-180 *3 *2)) (-4 *2 (-13 (-27) (-1181) (-432 (-169 *3)))))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *1 (-1185 *3 *2)) (-4 *2 (-13 (-27) (-1181) (-432 *3)))))) +(((*1 *2 *3) (-12 (-5 *3 (-310 *4)) (-4 *4 (-13 (-823) (-842) (-1047))) (-5 *2 (-1143)) (-5 *1 (-821 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-310 *5)) (-5 *4 (-121)) (-4 *5 (-13 (-823) (-842) (-1047))) (-5 *2 (-1143)) (-5 *1 (-821 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-817)) (-5 *4 (-310 *5)) (-4 *5 (-13 (-823) (-842) (-1047))) (-5 *2 (-1249)) (-5 *1 (-821 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-817)) (-5 *4 (-310 *6)) (-5 *5 (-121)) (-4 *6 (-13 (-823) (-842) (-1047))) (-5 *2 (-1249)) (-5 *1 (-821 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-823)) (-5 *2 (-1143)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-823)) (-5 *3 (-121)) (-5 *2 (-1143)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-823)) (-5 *3 (-817)) (-5 *2 (-1249)))) ((*1 *2 *3 *1 *4) (-12 (-4 *1 (-823)) (-5 *3 (-817)) (-5 *4 (-121)) (-5 *2 (-1249))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-763)) (-5 *1 (-848 *2)) (-4 *2 (-172)))) ((*1 *2 *3) (-12 (-5 *2 (-1157 (-568))) (-5 *1 (-943)) (-5 *3 (-568))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-568)) (-5 *5 (-1143)) (-5 *6 (-679 (-215))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-94 G)))) (-5 *8 (-3 (|:| |fn| (-390)) (|:| |fp| (-91 FCN)))) (-5 *9 (-3 (|:| |fn| (-390)) (|:| |fp| (-93 OUTPUT)))) (-5 *3 (-215)) (-5 *2 (-1035)) (-5 *1 (-741))))) +(((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1161)) (-4 *4 (-1047)) (-4 *4 (-842)) (-5 *2 (-2 (|:| |var| (-607 *1)) (|:| -3438 (-568)))) (-4 *1 (-432 *4)))) ((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-123)) (-4 *4 (-1047)) (-4 *4 (-842)) (-5 *2 (-2 (|:| |var| (-607 *1)) (|:| -3438 (-568)))) (-4 *1 (-432 *4)))) ((*1 *2 *1) (|partial| -12 (-4 *3 (-1102)) (-4 *3 (-842)) (-5 *2 (-2 (|:| |var| (-607 *1)) (|:| -3438 (-568)))) (-4 *1 (-432 *3)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-887 *3)) (|:| -3438 (-763)))) (-5 *1 (-887 *3)) (-4 *3 (-1090)))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-950 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-2 (|:| |var| *5) (|:| -3438 (-763)))))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1047)) (-4 *7 (-950 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -3438 (-568)))) (-5 *1 (-951 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -2745 ($ *7)) (-15 -2317 (*7 $)) (-15 -2324 (*7 $)))))))) +(((*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-453)) (-4 *3 (-788)) (-4 *5 (-842)) (-5 *2 (-121)) (-5 *1 (-450 *4 *3 *5 *6)) (-4 *6 (-950 *4 *3 *5))))) +(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-568))) (-5 *5 (-1 (-1141 *4))) (-4 *4 (-365)) (-4 *4 (-1047)) (-5 *2 (-1141 *4)) (-5 *1 (-1145 *4))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-365)) (-5 *1 (-758 *2 *3)) (-4 *2 (-698 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-844 *2)) (-4 *2 (-1047)) (-4 *2 (-365))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-634 *5)) (-5 *4 (-917)) (-4 *5 (-842)) (-5 *2 (-64 (-634 (-663 *5)))) (-5 *1 (-663 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-1244 *4)) (-4 *4 (-419 *3)) (-4 *3 (-301)) (-4 *3 (-558)) (-5 *1 (-48 *3 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-917)) (-4 *4 (-365)) (-5 *2 (-1244 *1)) (-4 *1 (-327 *4)))) ((*1 *2) (-12 (-4 *3 (-365)) (-5 *2 (-1244 *1)) (-4 *1 (-327 *3)))) ((*1 *2) (-12 (-4 *3 (-172)) (-4 *4 (-1219 *3)) (-5 *2 (-1244 *1)) (-4 *1 (-411 *3 *4)))) ((*1 *2 *1) (-12 (-4 *3 (-301)) (-4 *4 (-993 *3)) (-4 *5 (-1219 *4)) (-5 *2 (-1244 *6)) (-5 *1 (-415 *3 *4 *5 *6)) (-4 *6 (-13 (-411 *4 *5) (-1037 *4))))) ((*1 *2 *1) (-12 (-4 *3 (-301)) (-4 *4 (-993 *3)) (-4 *5 (-1219 *4)) (-5 *2 (-1244 *6)) (-5 *1 (-416 *3 *4 *5 *6 *7)) (-4 *6 (-411 *4 *5)) (-14 *7 *2))) ((*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1244 *1)) (-4 *1 (-419 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1244 (-1244 *4))) (-5 *1 (-532 *4)) (-4 *4 (-350))))) +(((*1 *2 *3 *3 *3) (-12 (-5 *3 (-634 (-568))) (-5 *2 (-679 (-568))) (-5 *1 (-1100))))) +(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-568)) (-5 *5 (-1143)) (-5 *6 (-679 (-215))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-94 G)))) (-5 *8 (-3 (|:| |fn| (-390)) (|:| |fp| (-91 FCN)))) (-5 *9 (-3 (|:| |fn| (-390)) (|:| |fp| (-76 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-390)) (|:| |fp| (-93 OUTPUT)))) (-5 *3 (-215)) (-5 *2 (-1035)) (-5 *1 (-741))))) +(((*1 *2 *3) (-12 (-5 *3 (-568)) (-5 *2 (-634 (-634 (-215)))) (-5 *1 (-1192))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-1047)) (-4 *4 (-230 *5 (-763))) (-14 *5 (-763)) (-5 *1 (-908 *3 *2 *4 *5)) (-4 *2 (-324 *3 *4))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-365)) (-4 *3 (-1047)) (-5 *1 (-1145 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-673 *4 *5 *6))))) +(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-792 *2)) (-4 *2 (-172)))) ((*1 *1 *2 *2) (-12 (-5 *2 (-999 *3)) (-4 *3 (-172)) (-5 *1 (-794 *3))))) +(((*1 *2 *3) (-12 (-4 *3 (-1219 (-409 (-568)))) (-5 *2 (-2 (|:| |den| (-568)) (|:| |gcdnum| (-568)))) (-5 *1 (-909 *3 *4)) (-4 *4 (-1219 (-409 *3))))) ((*1 *2 *3) (-12 (-4 *4 (-1219 (-409 *2))) (-5 *2 (-568)) (-5 *1 (-909 *4 *3)) (-4 *3 (-1219 (-409 *4)))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-215)) (-5 *1 (-217)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-215))) (-5 *1 (-217)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) ((*1 *1 *1 *1) (-4 *1 (-1124)))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-679 (-215))) (-5 *4 (-568)) (-5 *5 (-215)) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-91 FCN)))) (-5 *2 (-1035)) (-5 *1 (-741))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-491))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-634 *6)) (-4 *6 (-324 *5 *7)) (-4 *7 (-230 *8 (-763))) (-14 *8 (-763)) (-4 *5 (-365)) (-5 *2 (-121)) (-5 *1 (-929 *5 *6 *7 *8 *4)) (-4 *4 (-971 *5))))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4265 *4))) (-5 *1 (-970 *4 *3)) (-4 *3 (-1219 *4))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-977 *3 *4 *2 *5)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *2 (-842)) (-4 *5 (-1061 *3 *4 *2))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-568)) (-4 *1 (-62 *4 *5 *2)) (-4 *4 (-1195)) (-4 *5 (-375 *4)) (-4 *2 (-375 *4)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-568)) (-4 *1 (-1050 *4 *5 *6 *7 *2)) (-4 *6 (-1047)) (-4 *7 (-230 *5 *6)) (-4 *2 (-230 *4 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-1047)) (-5 *1 (-1145 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-1201 *2)) (-4 *2 (-1047)))) ((*1 *1 *1) (-12 (-5 *1 (-1235 *2 *3 *4)) (-4 *2 (-1047)) (-14 *3 (-1161)) (-14 *4 *2))) ((*1 *1 *1) (-12 (-5 *1 (-1239 *2 *3)) (-4 *2 (-1047)) (-14 *3 (-1161))))) +(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-568)) (-5 *5 (-679 (-215))) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-89 FCNF)))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-90 FCNG)))) (-5 *3 (-215)) (-5 *2 (-1035)) (-5 *1 (-741))))) +(((*1 *2 *3) (-12 (-5 *3 (-1161)) (-4 *4 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-57)) (-5 *1 (-309 *4 *5)) (-4 *5 (-13 (-27) (-1181) (-432 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-57)) (-5 *1 (-309 *4 *3)) (-4 *3 (-13 (-27) (-1181) (-432 *4))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-409 (-568))) (-4 *5 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-57)) (-5 *1 (-309 *5 *3)) (-4 *3 (-13 (-27) (-1181) (-432 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-288 *3)) (-4 *3 (-13 (-27) (-1181) (-432 *5))) (-4 *5 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-57)) (-5 *1 (-309 *5 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-288 *3)) (-5 *5 (-409 (-568))) (-4 *3 (-13 (-27) (-1181) (-432 *6))) (-4 *6 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-57)) (-5 *1 (-309 *6 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-568))) (-5 *4 (-288 *6)) (-4 *6 (-13 (-27) (-1181) (-432 *5))) (-4 *5 (-13 (-558) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-57)) (-5 *1 (-461 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1161)) (-5 *5 (-288 *3)) (-4 *3 (-13 (-27) (-1181) (-432 *6))) (-4 *6 (-13 (-558) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-57)) (-5 *1 (-461 *6 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-568))) (-5 *4 (-288 *7)) (-5 *5 (-1210 (-568))) (-4 *7 (-13 (-27) (-1181) (-432 *6))) (-4 *6 (-13 (-558) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-57)) (-5 *1 (-461 *6 *7)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1161)) (-5 *5 (-288 *3)) (-5 *6 (-1210 (-568))) (-4 *3 (-13 (-27) (-1181) (-432 *7))) (-4 *7 (-13 (-558) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-57)) (-5 *1 (-461 *7 *3)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-409 (-568)))) (-5 *4 (-288 *8)) (-5 *5 (-1210 (-409 (-568)))) (-5 *6 (-409 (-568))) (-4 *8 (-13 (-27) (-1181) (-432 *7))) (-4 *7 (-13 (-558) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-57)) (-5 *1 (-461 *7 *8)))) ((*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1161)) (-5 *5 (-288 *3)) (-5 *6 (-1210 (-409 (-568)))) (-5 *7 (-409 (-568))) (-4 *3 (-13 (-27) (-1181) (-432 *8))) (-4 *8 (-13 (-558) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-57)) (-5 *1 (-461 *8 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1141 (-2 (|:| |k| (-568)) (|:| |c| *3)))) (-4 *3 (-1047)) (-5 *1 (-593 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-1047)) (-5 *1 (-594 *3)))) ((*1 *1 *2 *3 *1) (-12 (-5 *2 (-568)) (-4 *1 (-641 *3)) (-4 *3 (-365)))) ((*1 *1 *2) (-12 (-5 *2 (-1141 (-2 (|:| |k| (-568)) (|:| |c| *3)))) (-4 *3 (-1047)) (-4 *1 (-1203 *3)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-763)) (-5 *3 (-1141 (-2 (|:| |k| (-409 (-568))) (|:| |c| *4)))) (-4 *4 (-1047)) (-4 *1 (-1224 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-1047)) (-4 *1 (-1234 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1141 (-2 (|:| |k| (-763)) (|:| |c| *3)))) (-4 *3 (-1047)) (-4 *1 (-1234 *3))))) +(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-679 *3)) (-4 *3 (-301)) (-5 *1 (-689 *3))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-634 (-634 *4))) (-5 *3 (-634 *4)) (-4 *4 (-365)) (-5 *1 (-653 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-328))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-62 *2 *3 *4)) (-4 *2 (-1195)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) ((*1 *1 *1 *2) (-12 (|has| *1 (-6 -4520)) (-4 *1 (-601 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-1195))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 (-2 (|:| -2850 *4) (|:| -1551 (-568))))) (-4 *4 (-1090)) (-5 *2 (-1 *4)) (-5 *1 (-1017 *4))))) +(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-679 (-215))) (-5 *4 (-568)) (-5 *5 (-215)) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-66 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-92 BDYVAL)))) (-5 *2 (-1035)) (-5 *1 (-741)))) ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-679 (-215))) (-5 *4 (-568)) (-5 *5 (-215)) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-66 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-92 BDYVAL)))) (-5 *8 (-390)) (-5 *2 (-1035)) (-5 *1 (-741))))) +(((*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *7 (-1061 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-634 *7)) (|:| |badPols| (-634 *7)))) (-5 *1 (-978 *4 *5 *6 *7)) (-5 *3 (-634 *7))))) +(((*1 *2 *3) (-12 (-5 *2 (-409 (-568))) (-5 *1 (-565)) (-5 *3 (-568))))) +(((*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-817))))) +(((*1 *2 *3) (-12 (-4 *4 (-13 (-301) (-150))) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *7 (-950 *4 *5 *6)) (-5 *2 (-634 (-634 *7))) (-5 *1 (-449 *4 *5 *6 *7)) (-5 *3 (-634 *7)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-121)) (-4 *5 (-13 (-301) (-150))) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *8 (-950 *5 *6 *7)) (-5 *2 (-634 (-634 *8))) (-5 *1 (-449 *5 *6 *7 *8)) (-5 *3 (-634 *8))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-953 *4)) (-4 *4 (-1047)) (-4 *4 (-609 *2)) (-5 *2 (-381)) (-5 *1 (-780 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-953 *5)) (-5 *4 (-917)) (-4 *5 (-1047)) (-4 *5 (-609 *2)) (-5 *2 (-381)) (-5 *1 (-780 *5)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-409 (-953 *4))) (-4 *4 (-558)) (-4 *4 (-609 *2)) (-5 *2 (-381)) (-5 *1 (-780 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-409 (-953 *5))) (-5 *4 (-917)) (-4 *5 (-558)) (-4 *5 (-609 *2)) (-5 *2 (-381)) (-5 *1 (-780 *5)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-310 *4)) (-4 *4 (-558)) (-4 *4 (-842)) (-4 *4 (-609 *2)) (-5 *2 (-381)) (-5 *1 (-780 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-310 *5)) (-5 *4 (-917)) (-4 *5 (-558)) (-4 *5 (-842)) (-4 *5 (-609 *2)) (-5 *2 (-381)) (-5 *1 (-780 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-828 (-215))) (-5 *1 (-217))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-568)) (-5 *5 (-679 (-215))) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-80 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-81 G JACOBG JACGEP)))) (-5 *4 (-215)) (-5 *2 (-1035)) (-5 *1 (-741))))) +(((*1 *2 *3) (-12 (-4 *3 (-13 (-301) (-10 -8 (-15 -1678 ((-420 $) $))))) (-4 *4 (-1219 *3)) (-5 *2 (-2 (|:| -3746 (-679 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-679 *3)))) (-5 *1 (-351 *3 *4 *5)) (-4 *5 (-411 *3 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-568)) (-4 *4 (-1219 *3)) (-5 *2 (-2 (|:| -3746 (-679 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-679 *3)))) (-5 *1 (-760 *4 *5)) (-4 *5 (-411 *3 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-350)) (-4 *3 (-1219 *4)) (-4 *5 (-1219 *3)) (-5 *2 (-2 (|:| -3746 (-679 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-679 *3)))) (-5 *1 (-986 *4 *3 *5 *6)) (-4 *6 (-714 *3 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-350)) (-4 *3 (-1219 *4)) (-4 *5 (-1219 *3)) (-5 *2 (-2 (|:| -3746 (-679 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-679 *3)))) (-5 *1 (-1253 *4 *3 *5 *6)) (-4 *6 (-411 *3 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-1122 *3)) (-4 *3 (-1047)) (-5 *2 (-634 (-634 (-944 *3)))))) ((*1 *1 *2 *3 *3) (-12 (-5 *2 (-634 (-634 (-944 *4)))) (-5 *3 (-121)) (-4 *4 (-1047)) (-4 *1 (-1122 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-634 (-634 (-944 *3)))) (-4 *3 (-1047)) (-4 *1 (-1122 *3)))) ((*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-634 (-634 (-634 *4)))) (-5 *3 (-121)) (-4 *1 (-1122 *4)) (-4 *4 (-1047)))) ((*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-634 (-634 (-944 *4)))) (-5 *3 (-121)) (-4 *1 (-1122 *4)) (-4 *4 (-1047)))) ((*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-634 (-634 (-634 *5)))) (-5 *3 (-634 (-171))) (-5 *4 (-171)) (-4 *1 (-1122 *5)) (-4 *5 (-1047)))) ((*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-634 (-634 (-944 *5)))) (-5 *3 (-634 (-171))) (-5 *4 (-171)) (-4 *1 (-1122 *5)) (-4 *5 (-1047))))) +(((*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2295 *1) (|:| -4506 *1) (|:| |associate| *1))) (-4 *1 (-558))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1143)) (-5 *3 (-818)) (-5 *1 (-817))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-409 (-568))) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *7 (-558)) (-4 *8 (-950 *7 *5 *6)) (-5 *2 (-2 (|:| -3438 (-763)) (|:| -2348 *9) (|:| |radicand| *9))) (-5 *1 (-954 *5 *6 *7 *8 *9)) (-5 *4 (-763)) (-4 *9 (-13 (-365) (-10 -8 (-15 -2317 (*8 $)) (-15 -2324 (*8 $)) (-15 -2745 ($ *8)))))))) +(((*1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-1006)))) ((*1 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-1006))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-3 (-409 (-953 *5)) (-1150 (-1161) (-953 *5)))) (-4 *5 (-453)) (-5 *2 (-634 (-679 (-409 (-953 *5))))) (-5 *1 (-286 *5)) (-5 *4 (-679 (-409 (-953 *5))))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-1249)) (-5 *1 (-1246))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-453))) (-5 *1 (-1187 *3 *2)) (-4 *2 (-13 (-432 *3) (-1181)))))) +(((*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -1924 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-365)) (-5 *1 (-578 *4 *2)) (-4 *2 (-1219 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-438)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-438))))) +(((*1 *2 *3) (-12 (-5 *3 (-1092 *4)) (-4 *4 (-1090)) (-5 *2 (-1 *4)) (-5 *1 (-1017 *4)))) ((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-381))) (-5 *1 (-1039)) (-5 *3 (-381)))) ((*1 *2 *3) (-12 (-5 *3 (-1084 (-568))) (-5 *2 (-1 (-568))) (-5 *1 (-1045))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 (-568))) (-5 *2 (-899 (-568))) (-5 *1 (-913)))) ((*1 *2) (-12 (-5 *2 (-899 (-568))) (-5 *1 (-913))))) +(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-69 G)))) (-5 *2 (-1035)) (-5 *1 (-740))))) +(((*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-141 *3 *4 *5)) (-14 *3 (-568)) (-14 *4 *2) (-4 *5 (-172)))) ((*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-917)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-917)))) ((*1 *2) (-12 (-4 *1 (-372 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1219 *3)) (-5 *2 (-917)))) ((*1 *2 *3) (-12 (-4 *4 (-365)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-763)) (-5 *1 (-529 *4 *5 *6 *3)) (-4 *3 (-677 *4 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-679 *5)) (-5 *4 (-1244 *5)) (-4 *5 (-365)) (-5 *2 (-763)) (-5 *1 (-659 *5)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4520)))) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4520)))) (-5 *2 (-763)) (-5 *1 (-660 *5 *6 *4 *3)) (-4 *3 (-677 *5 *6 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-4 *3 (-558)) (-5 *2 (-763)))) ((*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *4 (-172)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-763)) (-5 *1 (-678 *4 *5 *6 *3)) (-4 *3 (-677 *4 *5 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-1050 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-4 *5 (-558)) (-5 *2 (-763))))) +(((*1 *2 *3) (-12 (-5 *3 (-953 *5)) (-4 *5 (-1047)) (-5 *2 (-492 *4 *5)) (-5 *1 (-945 *4 *5)) (-14 *4 (-634 (-1161)))))) +(((*1 *2 *3) (-12 (-5 *2 (-169 *4)) (-5 *1 (-178 *4 *3)) (-4 *4 (-13 (-365) (-840))) (-4 *3 (-1219 *2))))) +(((*1 *1 *1 *1) (|partial| -12 (-4 *2 (-172)) (-5 *1 (-284 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1219 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-701 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-705 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(((*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-121)) (-5 *1 (-593 *3)) (-4 *3 (-1047))))) +(((*1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1061 *3 *4 *5)) (-4 *3 (-558)) (-5 *2 (-121))))) +(((*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-215)) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-740))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-607 *1)) (-4 *1 (-296))))) +(((*1 *2 *2) (-12 (-5 *2 (-1244 *1)) (-4 *1 (-340 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 (-409 *4)))))) +(((*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-634 (-568))) (|:| |cols| (-634 (-568))))) (-5 *4 (-679 *12)) (-5 *5 (-634 (-409 (-953 *9)))) (-5 *6 (-634 (-634 *12))) (-5 *7 (-763)) (-5 *8 (-568)) (-4 *9 (-13 (-301) (-150))) (-4 *12 (-950 *9 *11 *10)) (-4 *10 (-13 (-842) (-609 (-1161)))) (-4 *11 (-788)) (-5 *2 (-2 (|:| |eqzro| (-634 *12)) (|:| |neqzro| (-634 *12)) (|:| |wcond| (-634 (-953 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1244 (-409 (-953 *9)))) (|:| -3746 (-634 (-1244 (-409 (-953 *9))))))))) (-5 *1 (-924 *9 *10 *11 *12))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *1 (-585 *2)) (-4 *2 (-1037 *3)) (-4 *2 (-365)))) ((*1 *1 *2 *2) (-12 (-5 *1 (-585 *2)) (-4 *2 (-365)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1161)) (-4 *4 (-13 (-842) (-558))) (-5 *1 (-621 *4 *2)) (-4 *2 (-13 (-432 *4) (-1002) (-1181))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1082 *2)) (-4 *2 (-13 (-432 *4) (-1002) (-1181))) (-4 *4 (-13 (-842) (-558))) (-5 *1 (-621 *4 *2)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-959)) (-5 *2 (-1161)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1082 *1)) (-4 *1 (-959))))) +(((*1 *2 *1) (-12 (-5 *2 (-1026 (-835 (-568)))) (-5 *1 (-593 *3)) (-4 *3 (-1047))))) +(((*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-215) (-215) (-215))) (-5 *4 (-3 (-1 (-215) (-215) (-215) (-215)) "undefined")) (-5 *5 (-1084 (-215))) (-5 *6 (-634 (-256))) (-5 *2 (-1121 (-215))) (-5 *1 (-686))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-634 (-850))) (-5 *1 (-850)))) ((*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2553 (-634 (-850))) (|:| -1462 (-634 (-850))) (|:| |presup| (-634 (-850))) (|:| -3785 (-634 (-850))) (|:| |args| (-634 (-850))))) (-5 *1 (-1161))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-634 *7)) (|:| -3001 *8))) (-4 *7 (-1061 *4 *5 *6)) (-4 *8 (-1066 *4 *5 *6 *7)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-121)) (-5 *1 (-989 *4 *5 *6 *7 *8)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-634 *7)) (|:| -3001 *8))) (-4 *7 (-1061 *4 *5 *6)) (-4 *8 (-1066 *4 *5 *6 *7)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-121)) (-5 *1 (-1097 *4 *5 *6 *7 *8))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *5 (-215)) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-83 FUNCTN)))) (-5 *2 (-1035)) (-5 *1 (-740))))) +(((*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1161)) (-4 *5 (-13 (-558) (-1037 (-568)) (-150))) (-5 *2 (-2 (|:| -1924 (-409 (-953 *5))) (|:| |coeff| (-409 (-953 *5))))) (-5 *1 (-574 *5)) (-5 *3 (-409 (-953 *5)))))) +(((*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-917)))) ((*1 *2 *3) (-12 (-5 *3 (-1244 *4)) (-4 *4 (-350)) (-5 *2 (-917)) (-5 *1 (-532 *4))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-230 *3 *2)) (-4 *2 (-1195)) (-4 *2 (-1047)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-763)) (-5 *1 (-850)))) ((*1 *1 *1) (-5 *1 (-850))) ((*1 *2 *3 *3) (-12 (-5 *3 (-944 (-215))) (-5 *2 (-215)) (-5 *1 (-1192)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1195)) (-4 *2 (-1047))))) +(((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1039))))) +(((*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-850) (-850) (-850))) (-5 *4 (-568)) (-5 *2 (-850)) (-5 *1 (-638 *5 *6 *7)) (-4 *5 (-1090)) (-4 *6 (-23)) (-14 *7 *6))) ((*1 *2 *1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-846 *3 *4 *5)) (-4 *3 (-1047)) (-14 *4 (-101 *3)) (-14 *5 (-1 *3 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-215)) (-5 *1 (-850)))) ((*1 *1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-850)))) ((*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-850)))) ((*1 *1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-850)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1157 *3)) (-4 *3 (-1047))))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-634 (-763))) (-5 *1 (-970 *4 *3)) (-4 *3 (-1219 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-212 *3)) (-4 *3 (-1090)))) ((*1 *2 *3) (-12 (-4 *4 (-1047)) (-4 *2 (-13 (-406) (-1037 *4) (-365) (-1181) (-279))) (-5 *1 (-444 *4 *3 *2)) (-4 *3 (-1219 *4)))) ((*1 *1 *1) (-4 *1 (-550))) ((*1 *2 *1) (-12 (-5 *2 (-917)) (-5 *1 (-663 *3)) (-4 *3 (-842)))) ((*1 *2 *1) (-12 (-5 *2 (-917)) (-5 *1 (-667 *3)) (-4 *3 (-842)))) ((*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-814 *3)) (-4 *3 (-842)))) ((*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-888 *3)) (-4 *3 (-842)))) ((*1 *2 *1) (-12 (-4 *1 (-995 *3)) (-4 *3 (-1195)) (-5 *2 (-763)))) ((*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-1000 *3)) (-4 *3 (-1090)))) ((*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-1193 *3)) (-4 *3 (-1195)))) ((*1 *2 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1195)) (-4 *2 (-1002)) (-4 *2 (-1047))))) +(((*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-679 (-215))) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-740))))) +(((*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-568)) (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-33 *3)) (-4 *1 (-536 *3 *4 *5 *6 *7 *8 *9 *10 *11)) (-4 *3 (-365)) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *6 (-230 (-1697 *4) (-763))) (-4 *7 (-971 *3)) (-4 *8 (-641 *3)) (-4 *9 (-920 *3 *8)) (-4 *10 (-235 *9)) (-4 *11 (-117))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-62 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| $ (-6 -4520)) (-4 *3 (-1090)) (-5 *1 (-96 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| $ (-6 -4520)) (-4 *3 (-1090)) (-5 *1 (-212 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| $ (-6 -4520)) (-4 *3 (-842)) (-5 *1 (-494 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4520)) (-4 *1 (-499 *3)) (-4 *3 (-1195)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| $ (-6 -4520)) (-4 *3 (-1090)) (-5 *1 (-1000 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| $ (-6 -4520)) (-4 *3 (-1090)) (-5 *1 (-1132 *3))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-121))))) +(((*1 *2 *1) (-12 (-4 *1 (-1122 *3)) (-4 *3 (-1047)) (-5 *2 (-121))))) +(((*1 *2 *3) (-12 (-4 *4 (-350)) (-5 *2 (-958 (-1157 *4))) (-5 *1 (-358 *4)) (-5 *3 (-1157 *4))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-568)) (-5 *1 (-381))))) +(((*1 *2 *3) (-12 (-5 *3 (-1157 *6)) (-4 *6 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-1157 *7)) (-5 *1 (-318 *4 *5 *6 *7)) (-4 *7 (-950 *6 *4 *5))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *5 (-215)) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-83 FUNCTN)))) (-5 *2 (-1035)) (-5 *1 (-740))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002)))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-57)) (-5 *1 (-56 *2)) (-4 *2 (-1195)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-953 (-381))) (-5 *1 (-337 *3 *4 *5)) (-4 *5 (-1037 (-381))) (-14 *3 (-634 (-1161))) (-14 *4 (-634 (-1161))) (-4 *5 (-389)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-409 (-953 (-381)))) (-5 *1 (-337 *3 *4 *5)) (-4 *5 (-1037 (-381))) (-14 *3 (-634 (-1161))) (-14 *4 (-634 (-1161))) (-4 *5 (-389)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-310 (-381))) (-5 *1 (-337 *3 *4 *5)) (-4 *5 (-1037 (-381))) (-14 *3 (-634 (-1161))) (-14 *4 (-634 (-1161))) (-4 *5 (-389)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-953 (-568))) (-5 *1 (-337 *3 *4 *5)) (-4 *5 (-1037 (-568))) (-14 *3 (-634 (-1161))) (-14 *4 (-634 (-1161))) (-4 *5 (-389)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-409 (-953 (-568)))) (-5 *1 (-337 *3 *4 *5)) (-4 *5 (-1037 (-568))) (-14 *3 (-634 (-1161))) (-14 *4 (-634 (-1161))) (-4 *5 (-389)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-310 (-568))) (-5 *1 (-337 *3 *4 *5)) (-4 *5 (-1037 (-568))) (-14 *3 (-634 (-1161))) (-14 *4 (-634 (-1161))) (-4 *5 (-389)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1161)) (-5 *1 (-337 *3 *4 *5)) (-14 *3 (-634 *2)) (-14 *4 (-634 *2)) (-4 *5 (-389)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-310 *5)) (-4 *5 (-389)) (-5 *1 (-337 *3 *4 *5)) (-14 *3 (-634 (-1161))) (-14 *4 (-634 (-1161))))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-679 (-409 (-953 (-568))))) (-4 *1 (-386)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-679 (-409 (-953 (-381))))) (-4 *1 (-386)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-679 (-953 (-568)))) (-4 *1 (-386)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-679 (-953 (-381)))) (-4 *1 (-386)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-679 (-310 (-568)))) (-4 *1 (-386)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-679 (-310 (-381)))) (-4 *1 (-386)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-409 (-953 (-568)))) (-4 *1 (-398)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-409 (-953 (-381)))) (-4 *1 (-398)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-953 (-568))) (-4 *1 (-398)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-953 (-381))) (-4 *1 (-398)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-310 (-568))) (-4 *1 (-398)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-310 (-381))) (-4 *1 (-398)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1244 (-409 (-953 (-568))))) (-4 *1 (-442)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1244 (-409 (-953 (-381))))) (-4 *1 (-442)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1244 (-953 (-568)))) (-4 *1 (-442)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1244 (-953 (-381)))) (-4 *1 (-442)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1244 (-310 (-568)))) (-4 *1 (-442)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1244 (-310 (-381)))) (-4 *1 (-442)))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-350)) (-4 *5 (-327 *4)) (-4 *6 (-1219 *5)) (-5 *2 (-1157 (-1157 *4))) (-5 *1 (-769 *4 *5 *6 *3 *7)) (-4 *3 (-1219 *6)) (-14 *7 (-917)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-634 *6)) (-4 *6 (-1061 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *1 (-977 *3 *4 *5 *6)))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-1037 *2)) (-4 *2 (-1195)))) ((*1 *1 *2) (|partial| -2198 (-12 (-5 *2 (-953 *3)) (-12 (-3044 (-4 *3 (-43 (-409 (-568))))) (-3044 (-4 *3 (-43 (-568)))) (-4 *5 (-609 (-1161)))) (-4 *3 (-1047)) (-4 *1 (-1061 *3 *4 *5)) (-4 *4 (-788)) (-4 *5 (-842))) (-12 (-5 *2 (-953 *3)) (-12 (-3044 (-4 *3 (-550))) (-3044 (-4 *3 (-43 (-409 (-568))))) (-4 *3 (-43 (-568))) (-4 *5 (-609 (-1161)))) (-4 *3 (-1047)) (-4 *1 (-1061 *3 *4 *5)) (-4 *4 (-788)) (-4 *5 (-842))) (-12 (-5 *2 (-953 *3)) (-12 (-3044 (-4 *3 (-993 (-568)))) (-4 *3 (-43 (-409 (-568)))) (-4 *5 (-609 (-1161)))) (-4 *3 (-1047)) (-4 *1 (-1061 *3 *4 *5)) (-4 *4 (-788)) (-4 *5 (-842))))) ((*1 *1 *2) (|partial| -2198 (-12 (-5 *2 (-953 (-568))) (-4 *1 (-1061 *3 *4 *5)) (-12 (-3044 (-4 *3 (-43 (-409 (-568))))) (-4 *3 (-43 (-568))) (-4 *5 (-609 (-1161)))) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842))) (-12 (-5 *2 (-953 (-568))) (-4 *1 (-1061 *3 *4 *5)) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *5 (-609 (-1161)))) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842))))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-953 (-409 (-568)))) (-4 *1 (-1061 *3 *4 *5)) (-4 *3 (-43 (-409 (-568)))) (-4 *5 (-609 (-1161))) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842))))) +(((*1 *2 *1) (-12 (-5 *2 (-568)) (-5 *1 (-972))))) +(((*1 *2 *2) (-12 (-4 *2 (-13 (-365) (-840))) (-5 *1 (-178 *2 *3)) (-4 *3 (-1219 (-169 *2)))))) +(((*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1219 *5)) (-4 *5 (-13 (-365) (-150) (-1037 (-568)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-409 *6)) (|:| |c| (-409 *6)) (|:| -3492 *6))) (-5 *1 (-1015 *5 *6)) (-5 *3 (-409 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-840)) (-5 *2 (-568)))) ((*1 *2 *1) (-12 (-5 *2 (-568)) (-5 *1 (-900 *3)) (-4 *3 (-1090)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-1063 *4 *3)) (-4 *4 (-13 (-840) (-365))) (-4 *3 (-1219 *4)) (-5 *2 (-568)))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-558) (-842) (-1037 *2) (-630 *2) (-453))) (-5 *2 (-568)) (-5 *1 (-1105 *4 *3)) (-4 *3 (-13 (-27) (-1181) (-432 *4))))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1161)) (-5 *5 (-835 *3)) (-4 *3 (-13 (-27) (-1181) (-432 *6))) (-4 *6 (-13 (-558) (-842) (-1037 *2) (-630 *2) (-453))) (-5 *2 (-568)) (-5 *1 (-1105 *6 *3)))) ((*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1161)) (-5 *5 (-1143)) (-4 *6 (-13 (-558) (-842) (-1037 *2) (-630 *2) (-453))) (-5 *2 (-568)) (-5 *1 (-1105 *6 *3)) (-4 *3 (-13 (-27) (-1181) (-432 *6))))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-409 (-953 *4))) (-4 *4 (-453)) (-5 *2 (-568)) (-5 *1 (-1106 *4)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1161)) (-5 *5 (-835 (-409 (-953 *6)))) (-5 *3 (-409 (-953 *6))) (-4 *6 (-453)) (-5 *2 (-568)) (-5 *1 (-1106 *6)))) ((*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-409 (-953 *6))) (-5 *4 (-1161)) (-5 *5 (-1143)) (-4 *6 (-453)) (-5 *2 (-568)) (-5 *1 (-1106 *6)))) ((*1 *2 *3) (|partial| -12 (-5 *2 (-568)) (-5 *1 (-1178 *3)) (-4 *3 (-1047))))) +(((*1 *2) (-12 (-4 *3 (-1199)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 (-409 *4))) (-5 *2 (-1244 *1)) (-4 *1 (-340 *3 *4 *5)))) ((*1 *2) (-12 (-4 *3 (-13 (-301) (-10 -8 (-15 -1678 ((-420 $) $))))) (-4 *4 (-1219 *3)) (-5 *2 (-2 (|:| -3746 (-679 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-679 *3)))) (-5 *1 (-351 *3 *4 *5)) (-4 *5 (-411 *3 *4)))) ((*1 *2) (-12 (-4 *3 (-1219 (-568))) (-5 *2 (-2 (|:| -3746 (-679 (-568))) (|:| |basisDen| (-568)) (|:| |basisInv| (-679 (-568))))) (-5 *1 (-760 *3 *4)) (-4 *4 (-411 (-568) *3)))) ((*1 *2) (-12 (-4 *3 (-350)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 *4)) (-5 *2 (-2 (|:| -3746 (-679 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-679 *4)))) (-5 *1 (-986 *3 *4 *5 *6)) (-4 *6 (-714 *4 *5)))) ((*1 *2) (-12 (-4 *3 (-350)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 *4)) (-5 *2 (-2 (|:| -3746 (-679 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-679 *4)))) (-5 *1 (-1253 *3 *4 *5 *6)) (-4 *6 (-411 *4 *5))))) +(((*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-842) (-1037 (-568)) (-630 (-568)) (-453))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1228 *4 *5 *6)) (|:| |%expon| (-314 *4 *5 *6)) (|:| |%expTerms| (-634 (-2 (|:| |k| (-409 (-568))) (|:| |c| *4)))))) (|:| |%type| (-1143)))) (-5 *1 (-1229 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1181) (-432 *3))) (-14 *5 (-1161)) (-14 *6 *4)))) (((*1 *1) (-5 *1 (-142)))) -(((*1 *2 *3) (-12 (-5 *3 (-1160 (-626 *4))) (-4 *4 (-834)) (-5 *2 (-626 (-626 *4))) (-5 *1 (-1159 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-123))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-909)) (-5 *3 (-626 (-251))) (-5 *1 (-249)))) ((*1 *1 *2) (-12 (-5 *2 (-909)) (-5 *1 (-251))))) -(((*1 *2 *1) (-12 (-4 *1 (-62 *3 *4 *5)) (-4 *3 (-1187)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)) (-5 *2 (-560)))) ((*1 *2 *1) (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039)) (-4 *6 (-226 *4 *5)) (-4 *7 (-226 *3 *5)) (-5 *2 (-560))))) -(((*1 *2 *2) (-12 (-5 *2 (-820 (-213))) (-5 *1 (-214))))) -(((*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1135)) (-5 *3 (-560)) (-5 *1 (-1051))))) -(((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-841)))) ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-982)))) ((*1 *2 *1) (-12 (-4 *1 (-1002 *2)) (-4 *2 (-1187)))) ((*1 *2 *1) (-12 (-4 *2 (-13 (-1082) (-39))) (-5 *1 (-1117 *2 *3)) (-4 *3 (-13 (-1082) (-39)))))) -(((*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-121) *5 *5)) (-5 *4 (-1 (-121) *6 *6)) (-4 *5 (-13 (-1082) (-39))) (-4 *6 (-13 (-1082) (-39))) (-5 *2 (-121)) (-5 *1 (-1117 *5 *6))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-547 *2)) (-4 *2 (-13 (-400) (-1173)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *2 *5)) (-4 *4 (-1039)) (-4 *5 (-226 *3 *4)) (-4 *2 (-226 *3 *4))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-359)) (-5 *1 (-275 *3 *2)) (-4 *2 (-1226 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-820 (-213))) (-5 *1 (-214))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994)))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-359) (-832))) (-5 *1 (-176 *3 *2)) (-4 *2 (-1211 (-167 *3)))))) -(((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-546))))) -(((*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-1082)) (-5 *1 (-992 *3))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994)))))) -(((*1 *2 *2) (-12 (-5 *2 (-820 (-213))) (-5 *1 (-214))))) -(((*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-121)) (-5 *1 (-362 *3 *4)) (-4 *3 (-363 *4)))) ((*1 *2) (-12 (-4 *1 (-363 *3)) (-4 *3 (-170)) (-5 *2 (-121))))) -(((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-755) *2)) (-5 *4 (-755)) (-4 *2 (-1082)) (-5 *1 (-660 *2)))) ((*1 *2 *2) (-12 (-5 *2 (-1 *3 (-755) *3)) (-4 *3 (-1082)) (-5 *1 (-663 *3))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1 (-121) *7 (-626 *7))) (-4 *1 (-1181 *4 *5 *6 *7)) (-4 *4 (-550)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-121))))) -(((*1 *1 *1) (|partial| -12 (-4 *1 (-363 *2)) (-4 *2 (-170)) (-4 *2 (-550)))) ((*1 *1 *1) (|partial| -4 *1 (-704)))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *2 (-1208 *5 *4)) (-5 *1 (-1151 *4 *5 *6)) (-4 *4 (-1039)) (-14 *5 (-1153)) (-14 *6 *4))) ((*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *2 (-1208 (QUOTE |x|) *4)) (-5 *1 (-1193 *4)) (-4 *4 (-1039)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *2 (-1208 *5 *4)) (-5 *1 (-1227 *4 *5 *6)) (-4 *4 (-1039)) (-14 *5 (-1153)) (-14 *6 *4))) ((*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *2 (-1208 *5 *4)) (-5 *1 (-1231 *4 *5)) (-4 *4 (-1039)) (-14 *5 (-1153))))) -(((*1 *2 *2) (-12 (-5 *2 (-820 (-213))) (-5 *1 (-214))))) -(((*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-626 *9)) (-5 *3 (-1 (-121) *9)) (-5 *4 (-1 (-121) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1053 *6 *7 *8)) (-4 *6 (-550)) (-4 *7 (-780)) (-4 *8 (-834)) (-5 *1 (-970 *6 *7 *8 *9))))) -(((*1 *2 *1) (-12 (-5 *1 (-577 *2)) (-4 *2 (-359))))) -(((*1 *2 *1) (-12 (-5 *2 (-626 (-560))) (-5 *1 (-266))))) -(((*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4506)) (-4 *1 (-593 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1187)) (-5 *2 (-1241))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1241)) (-5 *1 (-1238))))) -(((*1 *2 *2) (-12 (-5 *2 (-820 (-213))) (-5 *1 (-214))))) -(((*1 *2 *1) (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1187)) (-5 *2 (-121))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-375)))) ((*1 *1 *1 *1) (-4 *1 (-542))) ((*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-633 *3)) (-4 *3 (-359)))) ((*1 *1 *1 *2) (-12 (-5 *1 (-700 *2)) (-4 *2 (-359)))) ((*1 *1 *2) (-12 (-5 *1 (-700 *2)) (-4 *2 (-359)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-755))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-560)) (-5 *3 (-755)) (-5 *1 (-557))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1236 *1)) (-4 *1 (-366 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1211 *4)) (-5 *2 (-671 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-405 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1211 *3)) (-5 *2 (-671 *3))))) -(((*1 *2 *3) (-12 (-5 *2 (-414 *3)) (-5 *1 (-553 *3)) (-4 *3 (-542)))) ((*1 *2 *3) (-12 (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-296)) (-5 *2 (-414 *3)) (-5 *1 (-724 *4 *5 *6 *3)) (-4 *3 (-942 *6 *4 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-296)) (-4 *7 (-942 *6 *4 *5)) (-5 *2 (-414 (-1149 *7))) (-5 *1 (-724 *4 *5 *6 *7)) (-5 *3 (-1149 *7)))) ((*1 *2 *1) (-12 (-4 *3 (-447)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-414 *1)) (-4 *1 (-942 *3 *4 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-834)) (-4 *5 (-780)) (-4 *6 (-447)) (-5 *2 (-414 *3)) (-5 *1 (-972 *4 *5 *6 *3)) (-4 *3 (-942 *6 *5 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-447)) (-4 *7 (-942 *6 *4 *5)) (-5 *2 (-414 (-1149 (-403 *7)))) (-5 *1 (-1148 *4 *5 *6 *7)) (-5 *3 (-1149 (-403 *7))))) ((*1 *2 *1) (-12 (-5 *2 (-414 *1)) (-4 *1 (-1191)))) ((*1 *2 *3) (-12 (-4 *4 (-550)) (-5 *2 (-414 *3)) (-5 *1 (-1214 *4 *3)) (-4 *3 (-13 (-1211 *4) (-550) (-10 -8 (-15 -4440 ($ $ $))))))) ((*1 *2 *3) (-12 (-5 *3 (-1036 *4 *5)) (-4 *4 (-13 (-832) (-296) (-148) (-1013))) (-14 *5 (-626 (-1153))) (-5 *2 (-626 (-1123 *4 (-526 (-844 *6)) (-844 *6) (-767 *4 (-844 *6))))) (-5 *1 (-1260 *4 *5 *6)) (-14 *6 (-626 (-1153)))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-626 *3)) (-4 *3 (-296)) (-5 *1 (-175 *3))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-560)) (-5 *2 (-820 (-213))) (-5 *1 (-214)) (-5 *4 (-213))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-626 (-936 *4))) (-4 *1 (-1114 *4)) (-4 *4 (-1039)) (-5 *2 (-755))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1202 (-560))) (-4 *1 (-632 *3)) (-4 *3 (-1187)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-632 *3)) (-4 *3 (-1187))))) -(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-626 *6) "failed") (-560) *6 *6)) (-4 *6 (-359)) (-4 *7 (-1211 *6)) (-5 *2 (-2 (|:| |answer| (-577 (-403 *7))) (|:| |a0| *6))) (-5 *1 (-570 *6 *7)) (-5 *3 (-403 *7))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-560)) (-5 *1 (-414 *2)) (-4 *2 (-550))))) -(((*1 *2 *3) (-12 (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-1241)) (-5 *1 (-444 *4 *5 *6 *3)) (-4 *3 (-942 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-169))))) -(((*1 *2 *3) (-12 (-4 *4 (-1039)) (-4 *2 (-13 (-400) (-1029 *4) (-359) (-1173) (-274))) (-5 *1 (-438 *4 *3 *2)) (-4 *3 (-1211 *4)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-909)) (-4 *5 (-1039)) (-4 *2 (-13 (-400) (-1029 *5) (-359) (-1173) (-274))) (-5 *1 (-438 *5 *3 *2)) (-4 *3 (-1211 *5))))) -(((*1 *1) (-5 *1 (-433)))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-375)) (-5 *1 (-1051))))) -(((*1 *2 *3 *4 *4) (-12 (-5 *4 (-755)) (-4 *5 (-344)) (-4 *6 (-1211 *5)) (-5 *2 (-626 (-2 (|:| -4374 (-671 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-671 *6))))) (-5 *1 (-499 *5 *6 *7)) (-5 *3 (-2 (|:| -4374 (-671 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-671 *6)))) (-4 *7 (-1211 *6))))) -(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-1027)) (-5 *3 (-1153)) (-5 *1 (-182))))) -(((*1 *1) (-12 (-5 *1 (-215 *2)) (-4 *2 (-13 (-359) (-1173)))))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-550)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1979 *4))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1211 *4))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-398)) (-5 *2 (-755)))) ((*1 *1 *1) (-4 *1 (-398)))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1208 *5 *4)) (-4 *4 (-447)) (-4 *4 (-807)) (-14 *5 (-1153)) (-5 *2 (-560)) (-5 *1 (-1096 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-344)) (-5 *2 (-755)))) ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-398)) (-5 *2 (-755))))) -(((*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-403 (-945 *6)) (-1142 (-1153) (-945 *6)))) (-5 *5 (-755)) (-4 *6 (-447)) (-5 *2 (-626 (-671 (-403 (-945 *6))))) (-5 *1 (-281 *6)) (-5 *4 (-671 (-403 (-945 *6)))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-403 (-945 *5)) (-1142 (-1153) (-945 *5)))) (|:| |eigmult| (-755)) (|:| |eigvec| (-626 *4)))) (-4 *5 (-447)) (-5 *2 (-626 (-671 (-403 (-945 *5))))) (-5 *1 (-281 *5)) (-5 *4 (-671 (-403 (-945 *5))))))) -(((*1 *1 *2) (-12 (-5 *1 (-215 *2)) (-4 *2 (-13 (-359) (-1173)))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-382 *2)) (-4 *2 (-1082)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-806 *2)) (-4 *2 (-834))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-671 *3)) (-4 *3 (-13 (-296) (-10 -8 (-15 -2953 ((-414 $) $))))) (-4 *4 (-1211 *3)) (-5 *1 (-500 *3 *4 *5)) (-4 *5 (-405 *3 *4)))) ((*1 *2 *2 *2 *3) (-12 (-5 *2 (-671 *3)) (-4 *3 (-13 (-296) (-10 -8 (-15 -2953 ((-414 $) $))))) (-4 *4 (-1211 *3)) (-5 *1 (-500 *3 *4 *5)) (-4 *5 (-405 *3 *4))))) -(((*1 *2 *3 *4) (|partial| -12 (-5 *4 (-909)) (-4 *5 (-550)) (-5 *2 (-671 *5)) (-5 *1 (-948 *5 *3)) (-4 *3 (-638 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-599 *5)) (-4 *5 (-426 *4)) (-4 *4 (-1029 (-560))) (-4 *4 (-13 (-834) (-550))) (-5 *2 (-1149 *5)) (-5 *1 (-36 *4 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-599 *1)) (-4 *1 (-1039)) (-4 *1 (-291)) (-5 *2 (-1149 *1))))) -(((*1 *2 *3) (-12 (-5 *3 (-945 (-213))) (-5 *2 (-213)) (-5 *1 (-294))))) -(((*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-599 *3)) (-5 *5 (-626 *3)) (-5 *6 (-1149 *3)) (-4 *3 (-13 (-426 *7) (-27) (-1173))) (-4 *7 (-13 (-447) (-1029 (-560)) (-834) (-148) (-622 (-560)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-626 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-556 *7 *3 *8)) (-4 *8 (-1082)))) ((*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-599 *3)) (-5 *5 (-626 *3)) (-5 *6 (-403 (-1149 *3))) (-4 *3 (-13 (-426 *7) (-27) (-1173))) (-4 *7 (-13 (-447) (-1029 (-560)) (-834) (-148) (-622 (-560)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-626 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-556 *7 *3 *8)) (-4 *8 (-1082))))) -(((*1 *1) (-5 *1 (-1237)))) -(((*1 *2) (-12 (-5 *2 (-861)) (-5 *1 (-1239)))) ((*1 *2 *2) (-12 (-5 *2 (-861)) (-5 *1 (-1239))))) -(((*1 *2 *3) (-12 (-5 *3 (-506 (-403 (-560)) (-228 *5 (-755)) (-844 *4) (-237 *4 (-403 (-560))))) (-14 *4 (-626 (-1153))) (-14 *5 (-755)) (-5 *2 (-121)) (-5 *1 (-507 *4 *5))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *4 (-1039)) (-4 *5 (-780)) (-4 *3 (-834)) (-5 *2 (-2 (|:| -2583 *1) (|:| -4397 *1))) (-4 *1 (-942 *4 *5 *3)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-1039)) (-5 *2 (-2 (|:| -2583 *1) (|:| -4397 *1))) (-4 *1 (-1211 *3))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-533) (-626 (-533)))) (-5 *1 (-123)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-533) (-626 (-533)))) (-5 *1 (-123))))) -(((*1 *2 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1187))))) -(((*1 *2 *1) (|partial| -12 (-4 *1 (-1218 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-1195 *3))))) -(((*1 *2 *3 *4) (-12 (-4 *5 (-1082)) (-4 *2 (-887 *5)) (-5 *1 (-673 *5 *2 *3 *4)) (-4 *3 (-369 *2)) (-4 *4 (-13 (-369 *5) (-10 -7 (-6 -4505))))))) -(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-628 *2)) (-4 *2 (-1082))))) -(((*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-809))))) -(((*1 *2 *3 *4) (|partial| -12 (-5 *4 (-283 (-820 *3))) (-4 *5 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-820 *3)) (-5 *1 (-619 *5 *3)) (-4 *3 (-13 (-27) (-1173) (-426 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-283 (-820 (-945 *5)))) (-4 *5 (-447)) (-5 *2 (-820 (-403 (-945 *5)))) (-5 *1 (-620 *5)) (-5 *3 (-403 (-945 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-283 (-403 (-945 *5)))) (-5 *3 (-403 (-945 *5))) (-4 *5 (-447)) (-5 *2 (-820 *3)) (-5 *1 (-620 *5))))) -(((*1 *1 *1) (-12 (-5 *1 (-879 *2)) (-4 *2 (-1082))))) -(((*1 *1 *1 *1) (-5 *1 (-842)))) -(((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1153)) (-4 *4 (-1039)) (-4 *4 (-834)) (-5 *2 (-2 (|:| |var| (-599 *1)) (|:| -4034 (-560)))) (-4 *1 (-426 *4)))) ((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-123)) (-4 *4 (-1039)) (-4 *4 (-834)) (-5 *2 (-2 (|:| |var| (-599 *1)) (|:| -4034 (-560)))) (-4 *1 (-426 *4)))) ((*1 *2 *1) (|partial| -12 (-4 *3 (-1094)) (-4 *3 (-834)) (-5 *2 (-2 (|:| |var| (-599 *1)) (|:| -4034 (-560)))) (-4 *1 (-426 *3)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-879 *3)) (|:| -4034 (-755)))) (-5 *1 (-879 *3)) (-4 *3 (-1082)))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-942 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-2 (|:| |var| *5) (|:| -4034 (-755)))))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1039)) (-4 *7 (-942 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -4034 (-560)))) (-5 *1 (-943 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-359) (-10 -8 (-15 -2801 ($ *7)) (-15 -2132 (*7 $)) (-15 -2139 (*7 $)))))))) -(((*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1187)) (-5 *2 (-755)) (-5 *1 (-225 *3 *4 *5)) (-4 *3 (-226 *4 *5)))) ((*1 *2 *1) (-12 (-4 *1 (-314 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-137)) (-5 *2 (-755)))) ((*1 *2) (-12 (-4 *4 (-359)) (-5 *2 (-755)) (-5 *1 (-320 *3 *4)) (-4 *3 (-321 *4)))) ((*1 *2 *1) (-12 (-5 *2 (-755)) (-5 *1 (-357 *3)) (-4 *3 (-1082)))) ((*1 *2) (-12 (-4 *1 (-364)) (-5 *2 (-755)))) ((*1 *2 *1) (-12 (-5 *2 (-755)) (-5 *1 (-382 *3)) (-4 *3 (-1082)))) ((*1 *2) (-12 (-4 *4 (-1082)) (-5 *2 (-755)) (-5 *1 (-420 *3 *4)) (-4 *3 (-421 *4)))) ((*1 *2 *1) (-12 (-5 *2 (-755)) (-5 *1 (-630 *3 *4 *5)) (-4 *3 (-1082)) (-4 *4 (-23)) (-14 *5 *4))) ((*1 *2) (-12 (-4 *4 (-170)) (-4 *5 (-1211 *4)) (-5 *2 (-755)) (-5 *1 (-705 *3 *4 *5)) (-4 *3 (-706 *4 *5)))) ((*1 *2 *1) (-12 (-5 *2 (-755)) (-5 *1 (-806 *3)) (-4 *3 (-834)))) ((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-998)))) ((*1 *2 *1) (-12 (-4 *2 (-13 (-832) (-359))) (-5 *1 (-1049 *2 *3)) (-4 *3 (-1211 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 (-945 *4))) (-4 *4 (-447)) (-5 *2 (-121)) (-5 *1 (-356 *4 *5)) (-14 *5 (-626 (-1153))))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-767 *4 (-844 *5)))) (-4 *4 (-447)) (-14 *5 (-626 (-1153))) (-5 *2 (-121)) (-5 *1 (-611 *4 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-557))))) -(((*1 *2 *3 *1) (|partial| -12 (-4 *1 (-41 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-5 *2 (-2 (|:| -3655 *3) (|:| -2371 *4)))))) -(((*1 *2) (-12 (-5 *2 (-1236 (-1083 *3 *4))) (-5 *1 (-1083 *3 *4)) (-14 *3 (-909)) (-14 *4 (-909))))) -(((*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1133 (-2 (|:| |k| (-560)) (|:| |c| *6)))) (-5 *4 (-1018 (-827 (-560)))) (-5 *5 (-1153)) (-5 *7 (-403 (-560))) (-4 *6 (-1039)) (-5 *2 (-842)) (-5 *1 (-585 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-506 (-403 (-560)) (-228 *5 (-755)) (-844 *4) (-237 *4 (-403 (-560))))) (-14 *4 (-626 (-1153))) (-14 *5 (-755)) (-5 *2 (-121)) (-5 *1 (-507 *4 *5))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-626 *2)) (-4 *2 (-1082)) (-4 *2 (-1187))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-560)) (-5 *2 (-121)) (-5 *1 (-546))))) -(((*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-121)) (-5 *1 (-362 *3 *4)) (-4 *3 (-363 *4)))) ((*1 *2) (-12 (-4 *1 (-363 *3)) (-4 *3 (-170)) (-5 *2 (-121))))) -(((*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-1082)) (-4 *1 (-253 *3)))) ((*1 *1 *2) (-12 (-4 *1 (-253 *2)) (-4 *2 (-1082)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-626 *1)) (-4 *1 (-253 *2)) (-4 *2 (-1082)))) ((*1 *1 *2) (-12 (-5 *1 (-1174 *2)) (-4 *2 (-1082)))) ((*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-1082)) (-5 *1 (-1174 *3)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-626 (-1174 *2))) (-5 *1 (-1174 *2)) (-4 *2 (-1082))))) -(((*1 *1) (-5 *1 (-555)))) -(((*1 *2 *3) (-12 (-5 *3 (-485 *4 *5)) (-14 *4 (-626 (-1153))) (-4 *5 (-1039)) (-5 *2 (-945 *5)) (-5 *1 (-937 *4 *5))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-375)) (-5 *2 (-1241)) (-5 *1 (-1238))))) -(((*1 *2 *1) (-12 (-4 *1 (-1181 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-121)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-1181 *4 *5 *6 *3)) (-4 *4 (-550)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-121))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 *2)) (-4 *2 (-426 *4)) (-5 *1 (-157 *4 *2)) (-4 *4 (-13 (-834) (-550)))))) -(((*1 *2 *3) (-12 (-5 *3 (-945 (-213))) (-5 *2 (-304 (-375))) (-5 *1 (-294))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1211 *4)) (-4 *4 (-1191)) (-4 *6 (-1211 (-403 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-334 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-1058 *3 *4 *5 *6)) (-4 *3 (-447)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-121)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-1058 *4 *5 *6 *3)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-121))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-626 *2)) (-4 *2 (-1082)) (-4 *2 (-1187))))) -(((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-607 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3437 *4) (|:| |sol?| (-121))) (-560) *4)) (-4 *4 (-359)) (-4 *5 (-1211 *4)) (-5 *1 (-570 *4 *5))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-755)) (-4 *1 (-1211 *3)) (-4 *3 (-1039))))) +(((*1 *2 *3 *4 *3) (-12 (-5 *3 (-1108)) (-5 *4 (-958 (-215))) (-5 *2 (-215)) (-5 *1 (-115))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-215)) (-5 *1 (-217)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-215))) (-5 *1 (-217)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) ((*1 *1 *1 *1) (-4 *1 (-1124)))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-634 *3)) (-5 *1 (-978 *4 *5 *6 *3)) (-4 *3 (-1061 *4 *5 *6))))) +(((*1 *2) (-12 (-5 *2 (-1249)) (-5 *1 (-1247))))) +(((*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-43 (-409 (-568)))) (-4 *2 (-1047))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1061 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-121))))) +(((*1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-688)))) ((*1 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-688))))) +(((*1 *1 *1) (-4 *1 (-550)))) +(((*1 *1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1195))))) +(((*1 *2 *1) (-12 (-5 *2 (-568)) (-5 *1 (-473)))) ((*1 *2 *1) (-12 (-5 *2 (-568)) (-5 *1 (-1245)))) ((*1 *2 *1) (-12 (-5 *2 (-568)) (-5 *1 (-1246))))) +(((*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-2 (|:| |brans| (-634 (-634 (-944 (-215))))) (|:| |xValues| (-1084 (-215))) (|:| |yValues| (-1084 (-215))))) (-5 *1 (-156)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-927)) (-5 *4 (-409 (-568))) (-5 *2 (-2 (|:| |brans| (-634 (-634 (-944 (-215))))) (|:| |xValues| (-1084 (-215))) (|:| |yValues| (-1084 (-215))))) (-5 *1 (-156))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 (-607 *5))) (-4 *4 (-842)) (-5 *2 (-607 *5)) (-5 *1 (-577 *4 *5)) (-4 *5 (-432 *4))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-219 *2)) (-4 *2 (-13 (-365) (-1181))))) ((*1 *1 *1 *2) (-12 (-5 *1 (-708 *2)) (-4 *2 (-365)))) ((*1 *1 *2) (-12 (-5 *1 (-708 *2)) (-4 *2 (-365)))) ((*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-917)) (-5 *4 (-381)) (-5 *2 (-1249)) (-5 *1 (-1245))))) +(((*1 *2) (-12 (-5 *2 (-869)) (-5 *1 (-1247)))) ((*1 *2 *2) (-12 (-5 *2 (-869)) (-5 *1 (-1247))))) +(((*1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1195)) (-4 *2 (-842)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-121) *3 *3)) (-4 *1 (-375 *3)) (-4 *3 (-1195)))) ((*1 *2 *2) (-12 (-5 *2 (-634 (-900 *3))) (-5 *1 (-900 *3)) (-4 *3 (-1090)))) ((*1 *2 *1 *3) (-12 (-4 *4 (-1047)) (-4 *5 (-788)) (-4 *3 (-842)) (-4 *6 (-1061 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -1519 *1) (|:| |upper| *1))) (-4 *1 (-977 *4 *5 *3 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-541)) (-5 *1 (-540 *2)) (-4 *2 (-1195)))) ((*1 *2 *1) (-12 (-5 *2 (-57)) (-5 *1 (-541))))) +(((*1 *2 *1) (-12 (-4 *1 (-536 *3 *4 *5 *6 *2 *7 *8 *9 *10)) (-4 *3 (-365)) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *6 (-230 (-1697 *4) (-763))) (-4 *7 (-641 *3)) (-4 *8 (-920 *3 *7)) (-4 *9 (-235 *8)) (-4 *10 (-117)) (-4 *2 (-971 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 (-53))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-482)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-53))) (-5 *4 (-634 (-465))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-482)))) ((*1 *2 *3) (-12 (-4 (-53) (-1037 *3)) (-5 *3 (-1161)) (-5 *2 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465)))) (-5 *1 (-482)))) ((*1 *2 *3) (-12 (-5 *3 (-634 *4)) (-4 *4 (-13 (-350) (-609 (-568)))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-484 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 *5)) (-5 *4 (-634 (-465))) (-4 *5 (-13 (-350) (-609 (-568)))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-484 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 *4) (-634 (-465)))) (-5 *1 (-484 *4)) (-4 *4 (-1037 *3)) (-4 *4 (-13 (-350) (-609 (-568)))))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-409 (-568)))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-485)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-568)))) (-5 *4 (-634 (-465))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-485)))) ((*1 *2 *3) (-12 (-4 (-409 (-568)) (-1037 *3)) (-4 (-568) (-1037 *3)) (-5 *3 (-1161)) (-5 *2 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465)))) (-5 *1 (-485)))) ((*1 *2 *3) (-12 (-5 *3 (-634 *4)) (-4 *4 (-365)) (-14 *9 (-1 *6 *4)) (-4 *7 (-13 (-842) (-558))) (-14 *8 (-1 *4 *7)) (-5 *2 (-634 (-2 (|:| -1864 *6) (|:| -4477 (-763))))) (-5 *1 (-486 *4 *5 *6 *7 *8 *9)) (-4 *5 (-453)) (-4 *6 (-13 (-432 (-568)) (-558) (-1037 *7) (-1037 (-1161)) (-1037 (-568)) (-161) (-895 (-1161)) (-10 -8 (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -1332 ($ $)) (-15 -3013 ($ $)) (-15 -2086 ((-121) $))))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 *5)) (-5 *4 (-634 (-465))) (-4 *5 (-365)) (-14 *10 (-1 *7 *5)) (-4 *8 (-13 (-842) (-558))) (-14 *9 (-1 *5 *8)) (-5 *2 (-634 (-2 (|:| -1864 *7) (|:| -4477 (-763))))) (-5 *1 (-486 *5 *6 *7 *8 *9 *10)) (-4 *6 (-453)) (-4 *7 (-13 (-432 (-568)) (-558) (-1037 *8) (-1037 (-1161)) (-1037 (-568)) (-161) (-895 (-1161)) (-10 -8 (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -1332 ($ $)) (-15 -3013 ($ $)) (-15 -2086 ((-121) $))))))) ((*1 *2 *3) (-12 (-5 *3 (-1161)) (-4 *7 (-13 (-842) (-558))) (-14 *8 (-1 *4 *7)) (-5 *2 (-1 (-634 (-2 (|:| -1864 *6) (|:| -4477 (-763)))) (-634 *4) (-634 (-465)))) (-5 *1 (-486 *4 *5 *6 *7 *8 *9)) (-4 *4 (-1037 *3)) (-4 *5 (-1037 *3)) (-4 *4 (-365)) (-4 *5 (-453)) (-4 *6 (-13 (-432 (-568)) (-558) (-1037 *7) (-1037 *3) (-1037 (-568)) (-161) (-895 *3) (-10 -8 (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -1332 ($ $)) (-15 -3013 ($ $)) (-15 -2086 ((-121) $))))) (-14 *9 (-1 *6 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-409 (-953 (-568))))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-487)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-953 (-568))))) (-5 *4 (-634 (-465))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-487)))) ((*1 *2 *3) (-12 (-4 (-409 (-953 (-568))) (-1037 *3)) (-4 (-953 (-568)) (-1037 *3)) (-5 *3 (-1161)) (-5 *2 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465)))) (-5 *1 (-487)))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-409 (-734 *4 (-568))))) (-14 *4 (-1161)) (-5 *2 (-634 (-2 (|:| -1864 (-733 *4 (-568))) (|:| -4477 (-763))))) (-5 *1 (-488 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-734 *5 (-568))))) (-5 *4 (-634 (-465))) (-14 *5 (-1161)) (-5 *2 (-634 (-2 (|:| -1864 (-733 *5 (-568))) (|:| -4477 (-763))))) (-5 *1 (-488 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1 (-634 (-2 (|:| -1864 (-733 *4 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 *4 (-568)))) (-634 (-465)))) (-5 *1 (-488 *4)) (-14 *4 *3)))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-242 (-4287 (QUOTE X) (QUOTE -2926)) *5)) (-4 *5 (-365)) (-14 *6 (-634 (-1161))) (-4 *2 (-324 *5 *7)) (-5 *1 (-119 *5 *6 *2 *7 *4)) (-4 *7 (-230 (-1697 *6) (-763))) (-4 *4 (-117))))) +(((*1 *2 *2 *2 *3) (-12 (-5 *3 (-568)) (-4 *4 (-1047)) (-4 *5 (-230 *6 (-763))) (-14 *6 (-763)) (-5 *1 (-908 *4 *2 *5 *6)) (-4 *2 (-324 *4 *5))))) +(((*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-763)) (-4 *5 (-365)) (-5 *2 (-173 *6)) (-5 *1 (-861 *5 *4 *6)) (-4 *4 (-1234 *5)) (-4 *6 (-1219 *5))))) +(((*1 *1 *1) (-12 (-4 *1 (-366 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-1090)))) ((*1 *1 *1) (-5 *1 (-623)))) +(((*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-1196 *3)) (-4 *3 (-1090))))) +(((*1 *2 *1) (-12 (-4 *1 (-1189 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1061 *3 *4 *5)) (-5 *2 (-2 (|:| -4092 (-634 *6)) (|:| -1798 (-634 *6))))))) +(((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1244 *4)) (-4 *4 (-630 (-568))) (-5 *2 (-1244 (-409 (-568)))) (-5 *1 (-1269 *4))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 (-944 *3) (-944 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-365) (-1181) (-1002))))) ((*1 *2) (|partial| -12 (-4 *4 (-1199)) (-4 *5 (-1219 (-409 *2))) (-4 *2 (-1219 *4)) (-5 *1 (-339 *3 *4 *2 *5)) (-4 *3 (-340 *4 *2 *5)))) ((*1 *2) (|partial| -12 (-4 *1 (-340 *3 *2 *4)) (-4 *3 (-1199)) (-4 *4 (-1219 (-409 *2))) (-4 *2 (-1219 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1084 (-835 (-215)))) (-5 *2 (-215)) (-5 *1 (-184)))) ((*1 *2 *3) (-12 (-5 *3 (-1084 (-835 (-215)))) (-5 *2 (-215)) (-5 *1 (-294)))) ((*1 *2 *3) (-12 (-5 *3 (-1084 (-835 (-215)))) (-5 *2 (-215)) (-5 *1 (-299))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 (-568))) (-5 *2 (-899 (-568))) (-5 *1 (-913)))) ((*1 *2) (-12 (-5 *2 (-899 (-568))) (-5 *1 (-913))))) +(((*1 *1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-1058)))) ((*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-1058))))) +(((*1 *2) (-12 (-4 *3 (-788)) (-4 *4 (-842)) (-4 *2 (-904)) (-5 *1 (-459 *3 *4 *2 *5)) (-4 *5 (-950 *2 *3 *4)))) ((*1 *2) (-12 (-4 *3 (-788)) (-4 *4 (-842)) (-4 *2 (-904)) (-5 *1 (-901 *2 *3 *4 *5)) (-4 *5 (-950 *2 *3 *4)))) ((*1 *2) (-12 (-4 *2 (-904)) (-5 *1 (-902 *2 *3)) (-4 *3 (-1219 *2))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-558) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *1 (-273 *3 *2)) (-4 *2 (-13 (-27) (-1181) (-432 *3))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1161)) (-4 *4 (-13 (-558) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *1 (-273 *4 *2)) (-4 *2 (-13 (-27) (-1181) (-432 *4))))) ((*1 *1 *1) (-5 *1 (-381))) ((*1 *2 *3 *4) (-12 (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *3 (-1061 *5 *6 *7)) (-5 *2 (-634 (-2 (|:| |val| *3) (|:| -3001 *4)))) (-5 *1 (-768 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-301)) (-5 *1 (-457 *3 *2)) (-4 *2 (-1219 *3)))) ((*1 *2 *2 *3) (-12 (-4 *3 (-301)) (-5 *1 (-462 *3 *2)) (-4 *2 (-1219 *3)))) ((*1 *2 *2 *3) (-12 (-4 *3 (-301)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-763))) (-5 *1 (-544 *3 *2 *4 *5)) (-4 *2 (-1219 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-1157 *3))))) +(((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-944 *3) (-944 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-365) (-1181) (-1002)))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 (-953 *4))) (-4 *4 (-453)) (-5 *2 (-121)) (-5 *1 (-362 *4 *5)) (-14 *5 (-634 (-1161))))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-775 *4 (-852 *5)))) (-4 *4 (-453)) (-14 *5 (-634 (-1161))) (-5 *2 (-121)) (-5 *1 (-619 *4 *5))))) +(((*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-634 (-634 (-944 (-215))))) (-5 *4 (-869)) (-5 *5 (-917)) (-5 *6 (-634 (-256))) (-5 *2 (-473)) (-5 *1 (-1248)))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-634 (-944 (-215))))) (-5 *2 (-473)) (-5 *1 (-1248)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-634 (-944 (-215))))) (-5 *4 (-634 (-256))) (-5 *2 (-473)) (-5 *1 (-1248))))) +(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-568)) (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3))))) +(((*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-46 *3 *2)) (-4 *2 (-13 (-365) (-296) (-10 -8 (-15 -2317 ((-1113 *3 (-607 $)) $)) (-15 -2324 ((-1113 *3 (-607 $)) $)) (-15 -2745 ($ (-1113 *3 (-607 $)))))))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4265 *3) (|:| |coef2| (-777 *3)))) (-5 *1 (-777 *3)) (-4 *3 (-558)) (-4 *3 (-1047))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-453))) (-5 *1 (-1187 *3 *2)) (-4 *2 (-13 (-432 *3) (-1181)))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-840))) (-5 *1 (-178 *3 *2)) (-4 *2 (-1219 (-169 *3)))))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-1047)) (-5 *2 (-1 (-634 *4) *4)) (-5 *1 (-107 *4)) (-5 *3 (-634 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-57)) (-5 *1 (-1174))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-144)))) ((*1 *1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-145)))) ((*1 *1 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-216)))) ((*1 *1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-218))))) +(((*1 *1 *2) (-12 (-5 *2 (-634 *1)) (-4 *1 (-858))))) +(((*1 *2 *1) (-12 (-4 *1 (-1205 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-1234 *3))))) +(((*1 *2 *3) (-12 (-4 *2 (-1219 *4)) (-5 *1 (-804 *4 *2 *3 *5)) (-4 *4 (-13 (-365) (-150) (-1037 (-409 (-568))))) (-4 *3 (-646 *2)) (-4 *5 (-646 (-409 *2)))))) +(((*1 *1) (-5 *1 (-1249)))) +(((*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-337 *3 *4 *5)) (-14 *3 (-634 (-1161))) (-14 *4 (-634 (-1161))) (-4 *5 (-389)))) ((*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-337 *3 *4 *5)) (-14 *3 (-634 (-1161))) (-14 *4 (-634 (-1161))) (-4 *5 (-389))))) +(((*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-1090)) (-5 *1 (-96 *3))))) +(((*1 *2 *3) (|partial| -12 (-4 *2 (-1090)) (-5 *1 (-1173 *3 *2)) (-4 *3 (-1090))))) +(((*1 *2 *2 *3 *3) (-12 (-5 *3 (-1161)) (-4 *4 (-13 (-301) (-842) (-150) (-1037 (-568)) (-630 (-568)))) (-5 *1 (-614 *4 *2)) (-4 *2 (-13 (-1181) (-959) (-29 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-887 *3)) (-4 *3 (-1090))))) +(((*1 *2 *3 *3) (-12 (-5 *2 (-1141 (-634 (-568)))) (-5 *1 (-878)) (-5 *3 (-634 (-568)))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-409 (-953 *3))) (-5 *1 (-454 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-634 (-1161))) (-14 *6 (-1244 (-679 *3)))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 *2)) (-4 *2 (-432 *4)) (-5 *1 (-433 *4 *2)) (-4 *4 (-13 (-842) (-558)))))) +(((*1 *2) (-12 (-5 *2 (-835 (-568))) (-5 *1 (-539)))) ((*1 *1) (-12 (-5 *1 (-835 *2)) (-4 *2 (-1090))))) +(((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1061 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-121))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 *4)) (-4 *4 (-365)) (-5 *2 (-679 *4)) (-5 *1 (-809 *4 *5)) (-4 *5 (-646 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 *5)) (-5 *4 (-763)) (-4 *5 (-365)) (-5 *2 (-679 *5)) (-5 *1 (-809 *5 *6)) (-4 *6 (-646 *5))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-409 (-953 *5))) (-5 *4 (-1161)) (-4 *5 (-13 (-301) (-842) (-150))) (-5 *2 (-634 (-288 (-310 *5)))) (-5 *1 (-1117 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-409 (-953 *4))) (-4 *4 (-13 (-301) (-842) (-150))) (-5 *2 (-634 (-288 (-310 *4)))) (-5 *1 (-1117 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-288 (-409 (-953 *5)))) (-5 *4 (-1161)) (-4 *5 (-13 (-301) (-842) (-150))) (-5 *2 (-634 (-288 (-310 *5)))) (-5 *1 (-1117 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-288 (-409 (-953 *4)))) (-4 *4 (-13 (-301) (-842) (-150))) (-5 *2 (-634 (-288 (-310 *4)))) (-5 *1 (-1117 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-953 *5)))) (-5 *4 (-634 (-1161))) (-4 *5 (-13 (-301) (-842) (-150))) (-5 *2 (-634 (-634 (-288 (-310 *5))))) (-5 *1 (-1117 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-409 (-953 *4)))) (-4 *4 (-13 (-301) (-842) (-150))) (-5 *2 (-634 (-634 (-288 (-310 *4))))) (-5 *1 (-1117 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-288 (-409 (-953 *5))))) (-5 *4 (-634 (-1161))) (-4 *5 (-13 (-301) (-842) (-150))) (-5 *2 (-634 (-634 (-288 (-310 *5))))) (-5 *1 (-1117 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-288 (-409 (-953 *4))))) (-4 *4 (-13 (-301) (-842) (-150))) (-5 *2 (-634 (-634 (-288 (-310 *4))))) (-5 *1 (-1117 *4))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1157 *1)) (-4 *1 (-858)) (-5 *2 (-634 *1)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1157 *4)) (-4 *4 (-365)) (-5 *2 (-2 (|:| |zeros| (-634 *4)) (|:| -2842 (-568)))) (-5 *1 (-1043 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-436))))) +(((*1 *2 *1) (-12 (-4 *1 (-391)) (-5 *2 (-121))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-763)) (-5 *2 (-634 (-1161))) (-5 *1 (-202)) (-5 *3 (-1161)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-310 (-215))) (-5 *4 (-763)) (-5 *2 (-634 (-1161))) (-5 *1 (-263)))) ((*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-842)) (-4 *4 (-172)) (-5 *2 (-634 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-634 *3)) (-5 *1 (-618 *3 *4 *5)) (-4 *3 (-842)) (-4 *4 (-13 (-172) (-707 (-409 (-568))))) (-14 *5 (-917)))) ((*1 *2 *1) (-12 (-5 *2 (-634 *3)) (-5 *1 (-663 *3)) (-4 *3 (-842)))) ((*1 *2 *1) (-12 (-5 *2 (-634 *3)) (-5 *1 (-667 *3)) (-4 *3 (-842)))) ((*1 *2 *1) (-12 (-5 *2 (-634 *3)) (-5 *1 (-814 *3)) (-4 *3 (-842)))) ((*1 *2 *1) (-12 (-5 *2 (-634 *3)) (-5 *1 (-888 *3)) (-4 *3 (-842)))) ((*1 *2 *1) (-12 (-4 *1 (-1259 *3 *4)) (-4 *3 (-842)) (-4 *4 (-1047)) (-5 *2 (-634 *3))))) +(((*1 *2) (-12 (-5 *2 (-835 (-568))) (-5 *1 (-539)))) ((*1 *1) (-12 (-5 *1 (-835 *2)) (-4 *2 (-1090))))) +(((*1 *2 *3) (-12 (-4 *4 (-350)) (-5 *2 (-420 *3)) (-5 *1 (-344 *4 *3)) (-4 *3 (-1219 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1143)) (-5 *1 (-781))))) +(((*1 *2 *3 *2 *2) (-12 (-5 *2 (-634 (-492 *4 *5))) (-5 *3 (-852 *4)) (-14 *4 (-634 (-1161))) (-4 *5 (-453)) (-5 *1 (-622 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *2 (-634 (-634 (-568)))) (-5 *1 (-972)) (-5 *3 (-634 (-568)))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-679 *8)) (-5 *4 (-763)) (-4 *8 (-950 *5 *7 *6)) (-4 *5 (-13 (-301) (-150))) (-4 *6 (-13 (-842) (-609 (-1161)))) (-4 *7 (-788)) (-5 *2 (-634 (-2 (|:| |det| *8) (|:| |rows| (-634 (-568))) (|:| |cols| (-634 (-568)))))) (-5 *1 (-924 *5 *6 *7 *8))))) +(((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-634 (-1157 *4))) (-5 *3 (-1157 *4)) (-4 *4 (-904)) (-5 *1 (-655 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-817))))) +(((*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-744))))) +(((*1 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-565))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-634 *6)) (-4 *6 (-1061 *3 *4 *5)) (-4 *3 (-453)) (-4 *3 (-558)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *1 (-978 *3 *4 *5 *6))))) +(((*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-634 (-634 (-215)))) (-5 *4 (-215)) (-5 *2 (-634 (-944 *4))) (-5 *1 (-1192)) (-5 *3 (-944 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-555 *2)) (-4 *2 (-13 (-406) (-1181)))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1219 *2)) (-4 *2 (-1047)) (-4 *2 (-558))))) +(((*1 *2 *1) (-12 (-4 *1 (-920 *3 *4)) (-4 *3 (-365)) (-4 *4 (-641 *3)) (-5 *2 (-1249))))) +(((*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-215) (-215) (-215))) (-5 *4 (-1 (-215) (-215) (-215) (-215))) (-5 *2 (-1 (-944 (-215)) (-215) (-215))) (-5 *1 (-686))))) +(((*1 *2 *3 *1) (-12 (-4 *1 (-601 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1195)) (-5 *2 (-121))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-869)) (-5 *3 (-634 (-256))) (-5 *1 (-254))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-568)) (-5 *1 (-1170 *2)) (-4 *2 (-365))))) +(((*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-325 *3)) (-4 *3 (-1195)))) ((*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-525 *3 *4)) (-4 *3 (-1195)) (-14 *4 (-568))))) +(((*1 *1 *2) (-12 (-5 *2 (-869)) (-5 *1 (-256)))) ((*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-256))))) +(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-887 *3)) (-4 *3 (-1090))))) +(((*1 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-554))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-917)) (-5 *3 (-634 (-256))) (-5 *1 (-254)))) ((*1 *1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-256))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-1 (-121) *8))) (-4 *8 (-1061 *5 *6 *7)) (-4 *5 (-558)) (-4 *6 (-788)) (-4 *7 (-842)) (-5 *2 (-2 (|:| |goodPols| (-634 *8)) (|:| |badPols| (-634 *8)))) (-5 *1 (-978 *5 *6 *7 *8)) (-5 *4 (-634 *8))))) +(((*1 *2 *3) (-12 (-5 *3 (-1244 *1)) (-4 *1 (-369 *2)) (-4 *2 (-172)))) ((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-418 *3 *2)) (-4 *3 (-419 *2)))) ((*1 *2) (-12 (-4 *1 (-419 *2)) (-4 *2 (-172))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-50 (-1143) (-766))) (-5 *1 (-123))))) +(((*1 *1 *1) (-5 *1 (-1059)))) +(((*1 *2 *1) (-12 (-5 *2 (-634 (-568))) (-5 *1 (-1004 *3)) (-14 *3 (-568))))) +(((*1 *1 *2) (-12 (-5 *2 (-634 (-147))) (-5 *1 (-142)))) ((*1 *1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-142))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-607 *4)) (-4 *4 (-842)) (-4 *2 (-842)) (-5 *1 (-606 *2 *4))))) +(((*1 *2 *3 *4) (-12 (-4 *7 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *7 (-558)) (-4 *8 (-950 *7 *5 *6)) (-5 *2 (-2 (|:| -3438 (-763)) (|:| -2348 *3) (|:| |radicand| *3))) (-5 *1 (-954 *5 *6 *7 *8 *3)) (-5 *4 (-763)) (-4 *3 (-13 (-365) (-10 -8 (-15 -2317 (*8 $)) (-15 -2324 (*8 $)) (-15 -2745 ($ *8)))))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-634 *1)) (-4 *1 (-301))))) +(((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1161)) (-5 *5 (-634 (-409 (-953 *6)))) (-5 *3 (-409 (-953 *6))) (-4 *6 (-13 (-558) (-1037 (-568)) (-150))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-634 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-574 *6))))) +(((*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2217 *4))) (-5 *1 (-970 *4 *3)) (-4 *3 (-1219 *4))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-835 (-215)))) (-5 *4 (-215)) (-5 *2 (-634 *4)) (-5 *1 (-263))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 *2)) (-4 *2 (-432 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-13 (-842) (-558)))))) +(((*1 *2) (-12 (-5 *2 (-1244 (-1091 *3 *4))) (-5 *1 (-1091 *3 *4)) (-14 *3 (-917)) (-14 *4 (-917))))) +(((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-121) *9)) (-5 *5 (-1 (-121) *9 *9)) (-4 *9 (-1061 *6 *7 *8)) (-4 *6 (-558)) (-4 *7 (-788)) (-4 *8 (-842)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2616 (-634 *9)))) (-5 *3 (-634 *9)) (-4 *1 (-1189 *6 *7 *8 *9)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-121) *8 *8)) (-4 *8 (-1061 *5 *6 *7)) (-4 *5 (-558)) (-4 *6 (-788)) (-4 *7 (-842)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2616 (-634 *8)))) (-5 *3 (-634 *8)) (-4 *1 (-1189 *5 *6 *7 *8))))) +(((*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1161)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-634 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-634 *4))) (-5 *7 (-1 (-3 (-2 (|:| -1924 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1181) (-27) (-432 *8))) (-4 *8 (-13 (-453) (-842) (-150) (-1037 *3) (-630 *3))) (-5 *3 (-568)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3284 *4) (|:| |sol?| (-121)))) (-5 *1 (-1013 *8 *4))))) +(((*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-121)) (-5 *3 (-953 *6)) (-5 *4 (-1161)) (-5 *5 (-835 *7)) (-4 *6 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-4 *7 (-13 (-1181) (-29 *6))) (-5 *1 (-214 *6 *7)))) ((*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-121)) (-5 *3 (-1157 *6)) (-5 *4 (-835 *6)) (-4 *6 (-13 (-1181) (-29 *5))) (-4 *5 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *1 (-214 *5 *6))))) +(((*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-634 *10)) (-5 *5 (-121)) (-4 *10 (-1066 *6 *7 *8 *9)) (-4 *6 (-453)) (-4 *7 (-788)) (-4 *8 (-842)) (-4 *9 (-1061 *6 *7 *8)) (-5 *2 (-634 (-2 (|:| -1853 (-634 *9)) (|:| -3001 *10) (|:| |ineq| (-634 *9))))) (-5 *1 (-989 *6 *7 *8 *9 *10)) (-5 *3 (-634 *9)))) ((*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-634 *10)) (-5 *5 (-121)) (-4 *10 (-1066 *6 *7 *8 *9)) (-4 *6 (-453)) (-4 *7 (-788)) (-4 *8 (-842)) (-4 *9 (-1061 *6 *7 *8)) (-5 *2 (-634 (-2 (|:| -1853 (-634 *9)) (|:| -3001 *10) (|:| |ineq| (-634 *9))))) (-5 *1 (-1097 *6 *7 *8 *9 *10)) (-5 *3 (-634 *9))))) +(((*1 *2 *1) (-12 (-4 *1 (-665 *3)) (-4 *3 (-1195)) (-5 *2 (-121))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-710)) (-5 *2 (-917)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-712)) (-5 *2 (-763))))) +(((*1 *1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-558)))) ((*1 *1 *1) (|partial| -4 *1 (-712)))) +(((*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-679 *11)) (-5 *4 (-634 (-409 (-953 *8)))) (-5 *5 (-763)) (-5 *6 (-1143)) (-4 *8 (-13 (-301) (-150))) (-4 *11 (-950 *8 *10 *9)) (-4 *9 (-13 (-842) (-609 (-1161)))) (-4 *10 (-788)) (-5 *2 (-2 (|:| |rgl| (-634 (-2 (|:| |eqzro| (-634 *11)) (|:| |neqzro| (-634 *11)) (|:| |wcond| (-634 (-953 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1244 (-409 (-953 *8)))) (|:| -3746 (-634 (-1244 (-409 (-953 *8)))))))))) (|:| |rgsz| (-568)))) (-5 *1 (-924 *8 *9 *10 *11)) (-5 *7 (-568))))) +(((*1 *2 *3 *1) (-12 (-4 *1 (-605 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-5 *2 (-121))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2348 *3) (|:| |gap| (-763)) (|:| -3961 (-777 *3)) (|:| -1500 (-777 *3)))) (-5 *1 (-777 *3)) (-4 *3 (-1047)))) ((*1 *2 *1 *1 *3) (-12 (-4 *4 (-1047)) (-4 *5 (-788)) (-4 *3 (-842)) (-5 *2 (-2 (|:| -2348 *1) (|:| |gap| (-763)) (|:| -3961 *1) (|:| -1500 *1))) (-4 *1 (-1061 *4 *5 *3)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-2 (|:| -2348 *1) (|:| |gap| (-763)) (|:| -3961 *1) (|:| -1500 *1))) (-4 *1 (-1061 *3 *4 *5))))) +(((*1 *1 *1 *1) (-5 *1 (-850)))) +(((*1 *2 *3) (-12 (-5 *2 (-420 (-1157 *1))) (-5 *1 (-310 *4)) (-5 *3 (-1157 *1)) (-4 *4 (-453)) (-4 *4 (-558)) (-4 *4 (-842)))) ((*1 *2 *3) (-12 (-4 *1 (-904)) (-5 *2 (-420 (-1157 *1))) (-5 *3 (-1157 *1))))) +(((*1 *2 *1) (-12 (-4 *1 (-406)) (-5 *2 (-568)))) ((*1 *2 *1) (-12 (-5 *2 (-568)) (-5 *1 (-688))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 *2)) (-4 *2 (-432 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-13 (-842) (-558)))))) +(((*1 *2 *3) (-12 (-5 *2 (-1163 (-409 (-568)))) (-5 *1 (-182)) (-5 *3 (-568))))) +(((*1 *2) (|partial| -12 (-4 *4 (-1199)) (-4 *5 (-1219 (-409 *2))) (-4 *2 (-1219 *4)) (-5 *1 (-339 *3 *4 *2 *5)) (-4 *3 (-340 *4 *2 *5)))) ((*1 *2) (|partial| -12 (-4 *1 (-340 *3 *2 *4)) (-4 *3 (-1199)) (-4 *4 (-1219 (-409 *2))) (-4 *2 (-1219 *3))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1249)) (-5 *1 (-817))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1012)) (-5 *2 (-850))))) +(((*1 *2 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-1249)) (-5 *1 (-438))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 *7)) (-4 *7 (-950 *4 *6 *5)) (-4 *4 (-13 (-301) (-150))) (-4 *5 (-13 (-842) (-609 (-1161)))) (-4 *6 (-788)) (-5 *2 (-121)) (-5 *1 (-924 *4 *5 *6 *7)))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-953 *4))) (-4 *4 (-13 (-301) (-150))) (-4 *5 (-13 (-842) (-609 (-1161)))) (-4 *6 (-788)) (-5 *2 (-121)) (-5 *1 (-924 *4 *5 *6 *7)) (-4 *7 (-950 *4 *6 *5))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-763)) (-4 *1 (-1219 *3)) (-4 *3 (-1047)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-917)) (-4 *1 (-1221 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-787)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-409 (-568))) (-4 *1 (-1224 *3)) (-4 *3 (-1047))))) +(((*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-325 *3)) (-4 *3 (-1195)))) ((*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-525 *3 *4)) (-4 *3 (-1195)) (-14 *4 (-568))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 (-857 *4))) (-4 *4 (-350)) (-5 *2 (-967 *4)) (-5 *1 (-867 *4 *5 *6)) (-14 *5 (-634 (-1161))) (-4 *6 (-117)))) ((*1 *2 *3) (-12 (-5 *3 (-634 *4)) (-4 *4 (-365)) (-5 *2 (-966 *4)) (-5 *1 (-868 *4 *5 *6)) (-14 *5 (-634 (-1161))) (-4 *6 (-117)))) ((*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-365)) (-4 *1 (-971 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1226 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-1203 *3)) (-5 *2 (-409 (-568)))))) +(((*1 *2) (-12 (-5 *2 (-763)) (-5 *1 (-446 *3)) (-4 *3 (-1047))))) +(((*1 *1 *2) (-12 (-5 *2 (-634 (-634 *3))) (-4 *3 (-1090)) (-5 *1 (-900 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-1090)) (-5 *1 (-1000 *3))))) +(((*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1141 (-2 (|:| |k| (-568)) (|:| |c| *6)))) (-5 *4 (-1026 (-835 (-568)))) (-5 *5 (-1161)) (-5 *7 (-409 (-568))) (-4 *6 (-1047)) (-5 *2 (-850)) (-5 *1 (-593 *6))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-453))) (-5 *1 (-1187 *3 *2)) (-4 *2 (-13 (-432 *3) (-1181)))))) +(((*1 *1 *1 *1) (-5 *1 (-850)))) +(((*1 *2 *3) (-12 (-5 *2 (-634 (-568))) (-5 *1 (-565)) (-5 *3 (-568))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1181))))) +(((*1 *2 *1 *2) (-12 (-4 *1 (-536 *3 *4 *5 *6 *7 *8 *9 *10 *2)) (-4 *3 (-365)) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *6 (-230 (-1697 *4) (-763))) (-4 *7 (-971 *3)) (-4 *8 (-641 *3)) (-4 *9 (-920 *3 *8)) (-4 *10 (-235 *9)) (-4 *2 (-117))))) +(((*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-763)) (-5 *4 (-917)) (-5 *2 (-1249)) (-5 *1 (-1245)))) ((*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-763)) (-5 *4 (-917)) (-5 *2 (-1249)) (-5 *1 (-1246))))) +(((*1 *2 *3 *3 *4) (-12 (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *3 (-1061 *5 *6 *7)) (-5 *2 (-634 (-2 (|:| |val| *3) (|:| -3001 *4)))) (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 (-465))) (-5 *2 (-568)) (-5 *1 (-464)))) ((*1 *1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-465))))) +(((*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-358 *3)) (-4 *3 (-350))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4520)) (-4 *1 (-239 *2)) (-4 *2 (-1195))))) +(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-927))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1181))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-634 *4)) (-4 *4 (-1090)) (-4 *4 (-1195)) (-5 *2 (-121)) (-5 *1 (-1141 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-817))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-679 *4)) (-5 *3 (-917)) (-4 *4 (-1047)) (-5 *1 (-1028 *4)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-634 (-679 *4))) (-5 *3 (-917)) (-4 *4 (-1047)) (-5 *1 (-1028 *4))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002)))))) +(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-147))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1181))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-634 (-850))) (-5 *1 (-1161))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1181))))) +(((*1 *2 *3) (-12 (-4 *4 (-13 (-842) (-558) (-609 (-541)))) (-5 *2 (-123)) (-5 *1 (-1024 *4 *3)) (-4 *3 (-13 (-432 *4) (-23) (-1037 (-568)) (-1037 (-1161)) (-895 (-1161)) (-161)))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-121) *3)) (|has| *1 (-6 -4519)) (-4 *1 (-227 *3)) (-4 *3 (-1090)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-121) *3)) (-4 *1 (-277 *3)) (-4 *3 (-1195))))) +(((*1 *2 *1) (-12 (-4 *2 (-698 *3)) (-5 *1 (-822 *2 *3)) (-4 *3 (-1047))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-453))) (-5 *1 (-1187 *3 *2)) (-4 *2 (-13 (-432 *3) (-1181)))))) +(((*1 *2 *3 *3 *4) (-12 (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *3 (-1061 *5 *6 *7)) (-5 *2 (-634 (-2 (|:| |val| *3) (|:| -3001 *4)))) (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-1090)) (-4 *1 (-898 *3))))) +(((*1 *1 *1 *1) (-4 *1 (-296))) ((*1 *1 *1) (-4 *1 (-296)))) +(((*1 *2 *3) (-12 (-5 *3 (-514 (-409 (-568)) (-232 *5 (-763)) (-852 *4) (-242 *4 (-409 (-568))))) (-14 *4 (-634 (-1161))) (-14 *5 (-763)) (-5 *2 (-121)) (-5 *1 (-515 *4 *5))))) +(((*1 *1 *1 *1) (-4 *1 (-753)))) +(((*1 *2 *1) (-12 (-5 *2 (-634 (-57))) (-5 *1 (-887 *3)) (-4 *3 (-1090))))) +(((*1 *1 *2) (-12 (-5 *2 (-1244 *3)) (-4 *3 (-365)) (-4 *1 (-327 *3)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1244 *3)) (-4 *3 (-1219 *4)) (-4 *4 (-1199)) (-4 *1 (-340 *4 *3 *5)) (-4 *5 (-1219 (-409 *3))))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1244 *4)) (-5 *3 (-1244 *1)) (-4 *4 (-172)) (-4 *1 (-369 *4)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1244 *4)) (-5 *3 (-1244 *1)) (-4 *4 (-172)) (-4 *1 (-372 *4 *5)) (-4 *5 (-1219 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-1244 *3)) (-4 *3 (-172)) (-4 *1 (-411 *3 *4)) (-4 *4 (-1219 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1244 *3)) (-4 *3 (-172)) (-4 *1 (-419 *3))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4520)) (-4 *1 (-128 *2)) (-4 *2 (-1195))))) +(((*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-607 *3)) (-4 *3 (-13 (-432 *5) (-27) (-1181))) (-4 *5 (-13 (-453) (-1037 (-568)) (-842) (-150) (-630 (-568)))) (-5 *2 (-2 (|:| -1924 *3) (|:| |coeff| *3))) (-5 *1 (-570 *5 *3 *6)) (-4 *6 (-1090))))) +(((*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1090)) (-5 *2 (-1 *5 *4)) (-5 *1 (-672 *4 *5)) (-4 *4 (-1090)))) ((*1 *2 *3) (-12 (-4 *4 (-230 *5 (-763))) (-14 *5 (-763)) (-4 *2 (-1047)) (-5 *1 (-908 *2 *3 *4 *5)) (-4 *3 (-324 *2 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-842)) (-5 *1 (-930 *3 *2)) (-4 *2 (-432 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-310 (-568))) (-5 *1 (-931)))) ((*1 *2 *1) (-12 (-4 *1 (-1259 *3 *2)) (-4 *3 (-842)) (-4 *2 (-1047)))) ((*1 *2 *1) (-12 (-4 *2 (-1047)) (-5 *1 (-1265 *2 *3)) (-4 *3 (-838))))) +(((*1 *2 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-1249)) (-5 *1 (-851)))) ((*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1249)) (-5 *1 (-851)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1143)) (-5 *4 (-850)) (-5 *2 (-1249)) (-5 *1 (-851)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-568)) (-5 *2 (-1249)) (-5 *1 (-1141 *4)) (-4 *4 (-1090)) (-4 *4 (-1195))))) +(((*1 *2 *3) (-12 (-5 *3 (-953 *5)) (-4 *5 (-1047)) (-5 *2 (-242 *4 *5)) (-5 *1 (-945 *4 *5)) (-14 *4 (-634 (-1161)))))) +(((*1 *2 *3) (-12 (-5 *3 (-763)) (-5 *2 (-1 (-381))) (-5 *1 (-1039))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1195)) (-4 *3 (-1090)) (-5 *2 (-121))))) +(((*1 *1 *1) (-12 (-4 *1 (-1234 *2)) (-4 *2 (-1047))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-679 *3)) (-4 *3 (-1047)) (-5 *1 (-680 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-123)) (-4 *3 (-13 (-842) (-558))) (-5 *1 (-36 *3 *4)) (-4 *4 (-432 *3)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-763)) (-5 *1 (-123)))) ((*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-123)))) ((*1 *2 *2) (-12 (-5 *2 (-123)) (-4 *3 (-13 (-842) (-558))) (-5 *1 (-159 *3 *4)) (-4 *4 (-432 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-123)) (-5 *1 (-163)))) ((*1 *2 *2) (-12 (-5 *2 (-123)) (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *4)) (-4 *4 (-13 (-432 *3) (-1002))))) ((*1 *2 *2) (-12 (-5 *2 (-123)) (-5 *1 (-295 *3)) (-4 *3 (-296)))) ((*1 *2 *2) (-12 (-4 *1 (-296)) (-5 *2 (-123)))) ((*1 *2 *2) (-12 (-5 *2 (-123)) (-4 *4 (-842)) (-5 *1 (-431 *3 *4)) (-4 *3 (-432 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-123)) (-4 *3 (-13 (-842) (-558))) (-5 *1 (-433 *3 *4)) (-4 *4 (-432 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-123)) (-5 *1 (-607 *3)) (-4 *3 (-842)))) ((*1 *2 *2) (-12 (-5 *2 (-123)) (-4 *3 (-13 (-842) (-558))) (-5 *1 (-621 *3 *4)) (-4 *4 (-13 (-432 *3) (-1002) (-1181)))))) +(((*1 *1 *2) (-12 (-5 *2 (-1108)) (-5 *1 (-328))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002)))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-381)) (-5 *3 (-634 (-256))) (-5 *1 (-254)))) ((*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-256))))) +(((*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-121)) (-5 *1 (-978 *4 *5 *6 *3)) (-4 *3 (-1061 *4 *5 *6))))) +(((*1 *1) (-12 (-4 *3 (-1090)) (-5 *1 (-880 *2 *3 *4)) (-4 *2 (-1090)) (-4 *4 (-658 *3)))) ((*1 *1) (-12 (-5 *1 (-884 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-1090))))) +(((*1 *1) (-5 *1 (-1246)))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-242 *6 *5)) (-5 *4 (-967 *5)) (-4 *5 (-350)) (-14 *6 (-634 (-1161))) (-5 *2 (-242 *6 (-857 *5))) (-5 *1 (-867 *5 *6 *7)) (-4 *7 (-117)))) ((*1 *2 *2 *3 *4) (-12 (-5 *4 (-568)) (-4 *5 (-365)) (-4 *6 (-230 *7 (-763))) (-14 *7 (-763)) (-5 *1 (-929 *5 *2 *6 *7 *3)) (-4 *2 (-324 *5 *6)) (-4 *3 (-971 *5)))) ((*1 *2 *2 *3) (-12 (-4 *4 (-365)) (-4 *5 (-230 *6 (-763))) (-14 *6 (-763)) (-5 *1 (-929 *4 *2 *5 *6 *3)) (-4 *2 (-324 *4 *5)) (-4 *3 (-971 *4))))) +(((*1 *1) (-5 *1 (-328)))) +(((*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-817))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-121) *4 *4)) (-4 *4 (-1195)) (-5 *1 (-1120 *4 *2)) (-4 *2 (-13 (-601 (-568) *4) (-10 -7 (-6 -4519) (-6 -4520)))))) ((*1 *2 *2) (-12 (-4 *3 (-842)) (-4 *3 (-1195)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-601 (-568) *3) (-10 -7 (-6 -4519) (-6 -4520))))))) +(((*1 *2 *1) (-12 (-5 *2 (-634 (-2 (|:| |val| *3) (|:| -3001 *4)))) (-5 *1 (-1126 *3 *4)) (-4 *3 (-13 (-1090) (-39))) (-4 *4 (-13 (-1090) (-39)))))) +(((*1 *1) (-5 *1 (-158)))) +(((*1 *1 *1) (-12 (-5 *1 (-212 *2)) (-4 *2 (-1090)))) ((*1 *1 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1195)))) ((*1 *1 *1) (-12 (-5 *1 (-1000 *2)) (-4 *2 (-1090))))) +(((*1 *2 *3) (-12 (-5 *2 (-634 (-1143))) (-5 *1 (-234)) (-5 *3 (-1143)))) ((*1 *2 *2) (-12 (-5 *2 (-634 (-1143))) (-5 *1 (-234)))) ((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-869))))) +(((*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-121)) (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-5 *2 (-634 (-1027 *5 *6 *7 *3))) (-5 *1 (-1027 *5 *6 *7 *3)) (-4 *3 (-1061 *5 *6 *7)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-634 *6)) (-4 *1 (-1066 *3 *4 *5 *6)) (-4 *3 (-453)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1061 *3 *4 *5)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *2)) (-4 *3 (-453)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *2 (-1061 *3 *4 *5)))) ((*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-121)) (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-5 *2 (-634 (-1131 *5 *6 *7 *3))) (-5 *1 (-1131 *5 *6 *7 *3)) (-4 *3 (-1061 *5 *6 *7))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-634 (-1161))) (-5 *1 (-541))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-409 (-953 (-169 (-568))))) (-5 *2 (-634 (-169 *4))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-365) (-840))))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-634 (-409 (-953 (-169 (-568)))))) (-5 *4 (-634 (-1161))) (-5 *2 (-634 (-634 (-169 *5)))) (-5 *1 (-380 *5)) (-4 *5 (-13 (-365) (-840)))))) +(((*1 *2 *1 *2) (-12 (-4 *1 (-536 *3 *4 *5 *6 *7 *8 *9 *10 *11)) (-4 *3 (-365)) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *6 (-230 (-1697 *4) *2)) (-4 *7 (-971 *3)) (-4 *8 (-641 *3)) (-4 *9 (-920 *3 *8)) (-4 *10 (-235 *9)) (-4 *11 (-117)) (-5 *2 (-763))))) +(((*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-817))))) +(((*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-43 (-409 (-568)))) (-4 *2 (-1047))))) +(((*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4521 "*"))) (-4 *5 (-375 *2)) (-4 *6 (-375 *2)) (-4 *2 (-1047)) (-5 *1 (-108 *2 *3 *4 *5 *6)) (-4 *3 (-1219 *2)) (-4 *4 (-677 *2 *5 *6))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-568)) (-5 *2 (-121)) (-5 *1 (-554))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1094)) (-5 *3 (-766)) (-5 *1 (-57))))) +(((*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-43 (-409 (-568)))) (-4 *2 (-1047))))) +(((*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-679 *2)) (-5 *4 (-568)) (-4 *2 (-13 (-301) (-10 -8 (-15 -1678 ((-420 $) $))))) (-4 *5 (-1219 *2)) (-5 *1 (-508 *2 *5 *6)) (-4 *6 (-411 *2 *5))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-763)) (-4 *5 (-1047)) (-4 *2 (-1219 *5)) (-5 *1 (-1237 *5 *2 *6 *3)) (-4 *6 (-646 *2)) (-4 *3 (-1234 *5))))) +(((*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1219 *5)) (-4 *5 (-13 (-365) (-150) (-1037 (-568)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-409 *6)) (|:| |h| *6) (|:| |c1| (-409 *6)) (|:| |c2| (-409 *6)) (|:| -3492 *6))) (-5 *1 (-1016 *5 *6)) (-5 *3 (-409 *6))))) +(((*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-1173 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090))))) +(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (-5 *2 (-381)) (-5 *1 (-184))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1181))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-102)))) ((*1 *2 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-205 (-511))) (-5 *1 (-830))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-409 (-953 *3))) (-5 *1 (-454 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-634 (-1161))) (-14 *6 (-1244 (-679 *3)))))) +(((*1 *2 *3 *4 *2 *2 *2 *5) (-12 (-5 *3 (-123)) (-5 *5 (-634 *2)) (-4 *2 (-13 (-432 *6) (-23) (-1037 (-568)) (-1037 *4) (-895 *4) (-161))) (-5 *4 (-1161)) (-4 *6 (-13 (-842) (-558) (-609 (-541)))) (-5 *1 (-1024 *6 *2))))) +(((*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-634 (-1157 *7))) (-5 *3 (-1157 *7)) (-4 *7 (-950 *5 *6 *4)) (-4 *5 (-904)) (-4 *6 (-788)) (-4 *4 (-842)) (-5 *1 (-901 *5 *6 *4 *7))))) +(((*1 *2 *3) (-12 (-5 *3 (-409 (-568))) (-5 *2 (-215)) (-5 *1 (-299))))) +(((*1 *2 *3 *4) (-12 (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *3 (-1061 *5 *6 *7)) (-5 *2 (-634 *4)) (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3))))) +(((*1 *2 *3 *3 *4) (-12 (-5 *4 (-121)) (-4 *5 (-13 (-365) (-840))) (-5 *2 (-634 (-2 (|:| -3276 (-634 *3)) (|:| -2183 *5)))) (-5 *1 (-178 *5 *3)) (-4 *3 (-1219 (-169 *5))))) ((*1 *2 *3 *3) (-12 (-4 *4 (-13 (-365) (-840))) (-5 *2 (-634 (-2 (|:| -3276 (-634 *3)) (|:| -2183 *4)))) (-5 *1 (-178 *4 *3)) (-4 *3 (-1219 (-169 *4)))))) +(((*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1219 *6)) (-4 *6 (-13 (-365) (-150) (-1037 *4))) (-5 *4 (-568)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-121)))) (|:| -1853 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1015 *6 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-139)))) ((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-828 *3)) (-4 *3 (-1090)))) ((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-835 *3)) (-4 *3 (-1090))))) +(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1157 *9)) (-5 *4 (-634 *7)) (-4 *7 (-842)) (-4 *9 (-950 *8 *6 *7)) (-4 *6 (-788)) (-4 *8 (-301)) (-5 *2 (-634 (-763))) (-5 *1 (-732 *6 *7 *8 *9)) (-5 *5 (-763))))) +(((*1 *2 *3) (-12 (-5 *3 (-514 (-409 (-568)) (-232 *5 (-763)) (-852 *4) (-242 *4 (-409 (-568))))) (-14 *4 (-634 (-1161))) (-14 *5 (-763)) (-5 *2 (-121)) (-5 *1 (-515 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-585 *3)) (-4 *3 (-365))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002)))))) +(((*1 *1 *2) (-12 (-5 *2 (-1127 *3 *4)) (-14 *3 (-917)) (-4 *4 (-365)) (-5 *1 (-994 *3 *4))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-123)) (-5 *3 (-634 *1)) (-4 *1 (-296)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-296)) (-5 *2 (-123)))) ((*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-607 *3)) (-4 *3 (-842)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-123)) (-5 *3 (-634 *5)) (-5 *4 (-763)) (-4 *5 (-842)) (-5 *1 (-607 *5))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1157 *1)) (-4 *1 (-1012))))) +(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381)))) (-5 *1 (-197))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1057 (-1023 *4) (-1157 (-1023 *4)))) (-5 *3 (-850)) (-5 *1 (-1023 *4)) (-4 *4 (-13 (-840) (-365) (-1021)))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 (-465))) (-5 *2 (-568)) (-5 *1 (-464)))) ((*1 *1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-465))))) +(((*1 *2 *1) (-12 (-5 *2 (-1228 *3 *4 *5)) (-5 *1 (-314 *3 *4 *5)) (-4 *3 (-13 (-365) (-842))) (-14 *4 (-1161)) (-14 *5 *3))) ((*1 *2 *1) (-12 (-4 *1 (-406)) (-5 *2 (-568)))) ((*1 *2 *1) (-12 (-5 *2 (-568)) (-5 *1 (-420 *3)) (-4 *3 (-558)))) ((*1 *2 *1) (-12 (-5 *2 (-568)) (-5 *1 (-688)))) ((*1 *2 *1) (-12 (-4 *2 (-1090)) (-5 *1 (-703 *3 *2 *4)) (-4 *3 (-842)) (-14 *4 (-1 (-121) (-2 (|:| -4355 *3) (|:| -3438 *2)) (-2 (|:| -4355 *3) (|:| -3438 *2))))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-634 (-1084 (-381)))) (-5 *3 (-634 (-256))) (-5 *1 (-254)))) ((*1 *1 *2) (-12 (-5 *2 (-634 (-1084 (-381)))) (-5 *1 (-256)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-634 (-1084 (-381)))) (-5 *1 (-473)))) ((*1 *2 *1) (-12 (-5 *2 (-634 (-1084 (-381)))) (-5 *1 (-473))))) +(((*1 *1 *2) (-12 (-5 *2 (-679 *4)) (-4 *4 (-1047)) (-5 *1 (-1127 *3 *4)) (-14 *3 (-763))))) +(((*1 *2 *2) (-12 (-5 *2 (-828 (-215))) (-5 *1 (-217))))) +(((*1 *2 *1) (-12 (-5 *2 (-1141 *3)) (-5 *1 (-173 *3)) (-4 *3 (-301))))) +(((*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-121)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-121))))) +(((*1 *2 *1 *2) (-12 (-5 *1 (-1026 *2)) (-4 *2 (-1195))))) +(((*1 *1 *1) (-12 (-4 *1 (-1061 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-788)) (-4 *4 (-842)) (-4 *2 (-558))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 (-465))) (-5 *2 (-2 (|:| |guessStream| (-1 (-1141 (-1201 (-53))) (-1201 (-53)))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-53)))) (-1201 (-1157 (-53))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 (-53) (-763) (-763) (-1157 (-53)))) (|:| AF (-1 (-1157 (-53)) (-763) (-763) (-1201 (-1157 (-53))))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 (-53)) (-763))))) (-5 *1 (-482)))) ((*1 *2 *3) (-12 (-4 (-53) (-1037 *3)) (-5 *3 (-1161)) (-5 *2 (-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 (-53))) (-1201 (-53)))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-53)))) (-1201 (-1157 (-53))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) *3)) (|:| A (-1 (-53) (-763) (-763) (-1157 (-53)))) (|:| AF (-1 (-1157 (-53)) (-763) (-763) (-1201 (-1157 (-53))))) (|:| AX (-1 (-310 (-568)) (-763) *3 (-310 (-568)))) (|:| C (-1 (-634 (-53)) (-763)))) (-634 (-465)))) (-5 *1 (-482)))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-465))) (-5 *2 (-2 (|:| |guessStream| (-1 (-1141 (-1201 *4)) (-1201 *4))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 *4))) (-1201 (-1157 *4)))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 *4 (-763) (-763) (-1157 *4))) (|:| AF (-1 (-1157 *4) (-763) (-763) (-1201 (-1157 *4)))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 *4) (-763))))) (-5 *1 (-484 *4)) (-4 *4 (-13 (-350) (-609 (-568)))))) ((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 *4)) (-1201 *4))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 *4))) (-1201 (-1157 *4)))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) *3)) (|:| A (-1 *4 (-763) (-763) (-1157 *4))) (|:| AF (-1 (-1157 *4) (-763) (-763) (-1201 (-1157 *4)))) (|:| AX (-1 (-310 (-568)) (-763) *3 (-310 (-568)))) (|:| C (-1 (-634 *4) (-763)))) (-634 (-465)))) (-5 *1 (-484 *4)) (-4 *4 (-1037 *3)) (-4 *4 (-13 (-350) (-609 (-568)))))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-465))) (-5 *2 (-2 (|:| |guessStream| (-1 (-1141 (-1201 (-409 (-568)))) (-1201 (-409 (-568))))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-409 (-568))))) (-1201 (-1157 (-409 (-568)))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 (-568) (-763) (-763) (-1157 (-568)))) (|:| AF (-1 (-1157 (-409 (-568))) (-763) (-763) (-1201 (-1157 (-409 (-568)))))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 (-568)) (-763))))) (-5 *1 (-485)))) ((*1 *2 *3) (-12 (-4 (-409 (-568)) (-1037 *3)) (-4 (-568) (-1037 *3)) (-5 *3 (-1161)) (-5 *2 (-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 (-409 (-568)))) (-1201 (-409 (-568))))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-409 (-568))))) (-1201 (-1157 (-409 (-568)))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) *3)) (|:| A (-1 (-568) (-763) (-763) (-1157 (-568)))) (|:| AF (-1 (-1157 (-409 (-568))) (-763) (-763) (-1201 (-1157 (-409 (-568)))))) (|:| AX (-1 (-310 (-568)) (-763) *3 (-310 (-568)))) (|:| C (-1 (-634 (-568)) (-763)))) (-634 (-465)))) (-5 *1 (-485)))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-465))) (-4 *7 (-13 (-842) (-558))) (-14 *8 (-1 *4 *7)) (-5 *2 (-2 (|:| |guessStream| (-1 (-1141 (-1201 *4)) (-1201 *4))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 *4))) (-1201 (-1157 *4)))) (|:| |exprStream| (-1 (-1141 *6) *6 (-1161))) (|:| A (-1 *5 (-763) (-763) (-1157 *5))) (|:| AF (-1 (-1157 *4) (-763) (-763) (-1201 (-1157 *4)))) (|:| AX (-1 *6 (-763) (-1161) *6)) (|:| C (-1 (-634 *5) (-763))))) (-5 *1 (-486 *4 *5 *6 *7 *8 *9)) (-4 *4 (-365)) (-4 *5 (-453)) (-4 *6 (-13 (-432 (-568)) (-558) (-1037 *7) (-1037 (-1161)) (-1037 (-568)) (-161) (-895 (-1161)) (-10 -8 (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -1332 ($ $)) (-15 -3013 ($ $)) (-15 -2086 ((-121) $))))) (-14 *9 (-1 *6 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-1161)) (-4 *7 (-13 (-842) (-558))) (-14 *8 (-1 *4 *7)) (-5 *2 (-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 *4)) (-1201 *4))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 *4))) (-1201 (-1157 *4)))) (|:| |exprStream| (-1 (-1141 *6) *6 *3)) (|:| A (-1 *5 (-763) (-763) (-1157 *5))) (|:| AF (-1 (-1157 *4) (-763) (-763) (-1201 (-1157 *4)))) (|:| AX (-1 *6 (-763) *3 *6)) (|:| C (-1 (-634 *5) (-763)))) (-634 (-465)))) (-5 *1 (-486 *4 *5 *6 *7 *8 *9)) (-4 *4 (-1037 *3)) (-4 *5 (-1037 *3)) (-4 *4 (-365)) (-4 *5 (-453)) (-4 *6 (-13 (-432 (-568)) (-558) (-1037 *7) (-1037 *3) (-1037 (-568)) (-161) (-895 *3) (-10 -8 (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -1332 ($ $)) (-15 -3013 ($ $)) (-15 -2086 ((-121) $))))) (-14 *9 (-1 *6 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-465))) (-5 *2 (-2 (|:| |guessStream| (-1 (-1141 (-1201 (-409 (-953 (-568))))) (-1201 (-409 (-953 (-568)))))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-409 (-953 (-568)))))) (-1201 (-1157 (-409 (-953 (-568))))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 (-953 (-568)) (-763) (-763) (-1157 (-953 (-568))))) (|:| AF (-1 (-1157 (-409 (-953 (-568)))) (-763) (-763) (-1201 (-1157 (-409 (-953 (-568))))))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 (-953 (-568))) (-763))))) (-5 *1 (-487)))) ((*1 *2 *3) (-12 (-4 (-409 (-953 (-568))) (-1037 *3)) (-4 (-953 (-568)) (-1037 *3)) (-5 *3 (-1161)) (-5 *2 (-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 (-409 (-953 (-568))))) (-1201 (-409 (-953 (-568)))))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-409 (-953 (-568)))))) (-1201 (-1157 (-409 (-953 (-568))))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) *3)) (|:| A (-1 (-953 (-568)) (-763) (-763) (-1157 (-953 (-568))))) (|:| AF (-1 (-1157 (-409 (-953 (-568)))) (-763) (-763) (-1201 (-1157 (-409 (-953 (-568))))))) (|:| AX (-1 (-310 (-568)) (-763) *3 (-310 (-568)))) (|:| C (-1 (-634 (-953 (-568))) (-763)))) (-634 (-465)))) (-5 *1 (-487)))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-465))) (-5 *2 HPSPEC) (-5 *1 (-488 *4)) (-14 *4 (-1161)))) ((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1 HPSPEC (-634 (-465)))) (-5 *1 (-488 *4)) (-14 *4 *3)))) +(((*1 *2 *1) (-12 (-4 *1 (-1226 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-1203 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-325 *3)) (-4 *3 (-1195)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-525 *3 *4)) (-4 *3 (-1195)) (-14 *4 *2)))) +(((*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-14 *6 (-634 (-1161))) (-4 *7 (-230 (-1697 *6) (-763))) (-4 *2 (-920 *5 *8)) (-5 *1 (-654 *5 *6 *4 *7 *3 *8 *2)) (-4 *4 (-950 *5 *7 (-852 *6))) (-4 *3 (-971 *5)) (-4 *8 (-641 *5))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-634 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-763)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-788)) (-4 *6 (-950 *4 *3 *5)) (-4 *4 (-453)) (-4 *5 (-842)) (-5 *1 (-450 *4 *3 *5 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-409 *4)) (-4 *4 (-1219 *3)) (-4 *3 (-13 (-365) (-150))) (-5 *1 (-401 *3 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-391)) (-5 *2 (-1143))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 (-465))) (-5 *2 (-568)) (-5 *1 (-464)))) ((*1 *1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-465))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-763)) (-4 *3 (-1047)) (-4 *1 (-677 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) ((*1 *1 *2) (-12 (-4 *2 (-1047)) (-4 *1 (-1111 *3 *2 *4 *5)) (-4 *4 (-230 *3 *2)) (-4 *5 (-230 *3 *2))))) +(((*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *7 (-1219 *5)) (-4 *4 (-714 *5 *7)) (-5 *2 (-2 (|:| -2928 (-679 *6)) (|:| |vec| (-1244 *5)))) (-5 *1 (-806 *5 *6 *7 *4 *3)) (-4 *6 (-646 *5)) (-4 *3 (-646 *4))))) +(((*1 *2 *3) (-12 (-4 *4 (-904)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *7 (-950 *4 *5 *6)) (-5 *2 (-420 (-1157 *7))) (-5 *1 (-901 *4 *5 *6 *7)) (-5 *3 (-1157 *7)))) ((*1 *2 *3) (-12 (-4 *4 (-904)) (-4 *5 (-1219 *4)) (-5 *2 (-420 (-1157 *5))) (-5 *1 (-902 *4 *5)) (-5 *3 (-1157 *5))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-775 *5 (-852 *6)))) (-5 *4 (-121)) (-4 *5 (-453)) (-14 *6 (-634 (-1161))) (-5 *2 (-634 (-1131 *5 (-534 (-852 *6)) (-852 *6) (-775 *5 (-852 *6))))) (-5 *1 (-619 *5 *6))))) +(((*1 *2 *3 *4) (-12 (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *3 (-1061 *5 *6 *7)) (-5 *2 (-634 (-2 (|:| |val| *3) (|:| -3001 *4)))) (-5 *1 (-1067 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-850)))) ((*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1249)) (-5 *1 (-962))))) +(((*1 *2 *2) (-12 (-5 *2 (-763)) (-5 *1 (-446 *3)) (-4 *3 (-1047)))) ((*1 *2) (-12 (-5 *2 (-763)) (-5 *1 (-446 *3)) (-4 *3 (-1047))))) +(((*1 *1) (-12 (-4 *1 (-427 *2)) (-4 *2 (-370)) (-4 *2 (-1090))))) +(((*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-1047))))) +(((*1 *1 *1 *1 *2) (-12 (-4 *1 (-1061 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *2 (-842)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1061 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-788)) (-4 *4 (-842))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-1059))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-917)) (-5 *2 (-1157 *3)) (-5 *1 (-1170 *3)) (-4 *3 (-365))))) +(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-679 *3)) (-4 *3 (-1047)) (-5 *1 (-680 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-242 (-4287 (QUOTE X) (QUOTE -2926)) *4)) (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *7 (-230 (-1697 *5) (-763))) (-5 *2 (-634 (-634 (-763)))) (-5 *1 (-119 *4 *5 *6 *7 *8)) (-4 *6 (-324 *4 *7)) (-4 *8 (-117))))) +(((*1 *2 *3 *4) (-12 (-4 *5 (-1090)) (-4 *6 (-881 *5)) (-5 *2 (-880 *5 *6 (-634 *6))) (-5 *1 (-882 *5 *6 *4)) (-5 *3 (-634 *6)) (-4 *4 (-609 (-887 *5))))) ((*1 *2 *3 *4) (-12 (-4 *5 (-1090)) (-5 *2 (-634 (-288 *3))) (-5 *1 (-882 *5 *3 *4)) (-4 *3 (-1037 (-1161))) (-4 *3 (-881 *5)) (-4 *4 (-609 (-887 *5))))) ((*1 *2 *3 *4) (-12 (-4 *5 (-1090)) (-5 *2 (-634 (-288 (-953 *3)))) (-5 *1 (-882 *5 *3 *4)) (-4 *3 (-1047)) (-3044 (-4 *3 (-1037 (-1161)))) (-4 *3 (-881 *5)) (-4 *4 (-609 (-887 *5))))) ((*1 *2 *3 *4) (-12 (-4 *5 (-1090)) (-5 *2 (-884 *5 *3)) (-5 *1 (-882 *5 *3 *4)) (-3044 (-4 *3 (-1037 (-1161)))) (-3044 (-4 *3 (-1047))) (-4 *3 (-881 *5)) (-4 *4 (-609 (-887 *5)))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-763)) (-5 *2 (-121)) (-5 *1 (-586 *3)) (-4 *3 (-550))))) +(((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-328))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-121) *3)) (|has| *1 (-6 -4519)) (-4 *1 (-227 *3)) (-4 *3 (-1090)))) ((*1 *1 *2 *1) (-12 (|has| *1 (-6 -4519)) (-4 *1 (-227 *2)) (-4 *2 (-1090)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-1195)) (-4 *2 (-1090)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-121) *3)) (-4 *1 (-277 *3)) (-4 *3 (-1195)))) ((*1 *2 *3 *1) (|partial| -12 (-4 *1 (-605 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-1090)))) ((*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-121) *4)) (-5 *3 (-568)) (-4 *4 (-1090)) (-5 *1 (-727 *4)))) ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-568)) (-5 *1 (-727 *2)) (-4 *2 (-1090)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1125 *3 *4)) (-4 *3 (-13 (-1090) (-39))) (-4 *4 (-13 (-1090) (-39))) (-5 *1 (-1126 *3 *4))))) +(((*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-634 *11)) (|:| |todo| (-634 (-2 (|:| |val| *3) (|:| -3001 *11)))))) (-5 *6 (-763)) (-5 *2 (-634 (-2 (|:| |val| (-634 *10)) (|:| -3001 *11)))) (-5 *3 (-634 *10)) (-5 *4 (-634 *11)) (-4 *10 (-1061 *7 *8 *9)) (-4 *11 (-1066 *7 *8 *9 *10)) (-4 *7 (-453)) (-4 *8 (-788)) (-4 *9 (-842)) (-5 *1 (-1064 *7 *8 *9 *10 *11)))) ((*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-634 *11)) (|:| |todo| (-634 (-2 (|:| |val| *3) (|:| -3001 *11)))))) (-5 *6 (-763)) (-5 *2 (-634 (-2 (|:| |val| (-634 *10)) (|:| -3001 *11)))) (-5 *3 (-634 *10)) (-5 *4 (-634 *11)) (-4 *10 (-1061 *7 *8 *9)) (-4 *11 (-1099 *7 *8 *9 *10)) (-4 *7 (-453)) (-4 *8 (-788)) (-4 *9 (-842)) (-5 *1 (-1130 *7 *8 *9 *10 *11))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-634 *2)) (-4 *2 (-1061 *4 *5 *6)) (-4 *4 (-558)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *1 (-978 *4 *5 *6 *2))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -2850 *4) (|:| -2183 *4) (|:| |totalpts| (-568)) (|:| |success| (-121)))) (-5 *1 (-784)) (-5 *5 (-568))))) +(((*1 *2 *1) (-12 (-14 *3 (-634 (-1161))) (-4 *4 (-172)) (-14 *6 (-1 (-121) (-2 (|:| -4355 *5) (|:| -3438 *2)) (-2 (|:| -4355 *5) (|:| -3438 *2)))) (-4 *2 (-230 (-1697 *3) (-763))) (-5 *1 (-463 *3 *4 *5 *2 *6 *7)) (-4 *5 (-842)) (-4 *7 (-950 *4 *2 (-852 *3)))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-788)) (-4 *4 (-842)) (-4 *5 (-301)) (-5 *1 (-912 *3 *4 *5 *2)) (-4 *2 (-950 *5 *3 *4)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1157 *6)) (-4 *6 (-950 *5 *3 *4)) (-4 *3 (-788)) (-4 *4 (-842)) (-4 *5 (-301)) (-5 *1 (-912 *3 *4 *5 *6)))) ((*1 *2 *3) (-12 (-5 *3 (-634 *2)) (-4 *2 (-950 *6 *4 *5)) (-5 *1 (-912 *4 *5 *6 *2)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-301))))) +(((*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-1090)) (-4 *1 (-258 *3)))) ((*1 *1 *2) (-12 (-4 *1 (-258 *2)) (-4 *2 (-1090)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-634 *1)) (-4 *1 (-258 *2)) (-4 *2 (-1090)))) ((*1 *1 *2) (-12 (-5 *1 (-1182 *2)) (-4 *2 (-1090)))) ((*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-1090)) (-5 *1 (-1182 *3)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-634 (-1182 *2))) (-5 *1 (-1182 *2)) (-4 *2 (-1090))))) +(((*1 *2 *3 *4 *2 *3 *2 *3) (-12 (-5 *2 (-958 (-215))) (-5 *3 (-1108)) (-5 *4 (-215)) (-5 *1 (-115))))) +(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1246)))) ((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1246))))) +(((*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-405 *3)) (-4 *3 (-406)))) ((*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-405 *3)) (-4 *3 (-406)))) ((*1 *2 *2) (-12 (-5 *2 (-917)) (|has| *1 (-6 -4510)) (-4 *1 (-406)))) ((*1 *2) (-12 (-4 *1 (-406)) (-5 *2 (-917)))) ((*1 *2 *1) (-12 (-4 *1 (-863 *3)) (-5 *2 (-1141 (-568)))))) +(((*1 *2 *3) (-12 (-4 *4 (-350)) (-5 *2 (-420 (-1157 (-1157 *4)))) (-5 *1 (-1194 *4)) (-5 *3 (-1157 (-1157 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-634 (-1143))) (-5 *1 (-1176))))) +(((*1 *2 *1 *2) (-12 (-4 *1 (-536 *3 *4 *5 *6 *7 *8 *9 *10 *11)) (-4 *3 (-365)) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *6 (-230 (-1697 *4) *2)) (-4 *7 (-971 *3)) (-4 *8 (-641 *3)) (-4 *9 (-920 *3 *8)) (-4 *10 (-235 *9)) (-4 *11 (-117)) (-5 *2 (-763))))) +(((*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *5 *3 *6)) (-4 *4 (-1047)) (-4 *5 (-788)) (-4 *3 (-842)) (-4 *6 (-1061 *4 *5 *3)) (-5 *2 (-121))))) +(((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-123)))) ((*1 *2 *1) (-12 (-4 *1 (-366 *2 *3)) (-4 *3 (-1090)) (-4 *2 (-1090)))) ((*1 *2 *1) (-12 (-4 *1 (-391)) (-5 *2 (-1143)))) ((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-440 *3)) (-14 *3 *2))) ((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-607 *3)) (-4 *3 (-842)))) ((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-1068 *3)) (-14 *3 *2))) ((*1 *1 *1) (-5 *1 (-1161)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-634 (-850))) (-5 *1 (-850))))) +(((*1 *2 *1) (-12 (-5 *2 (-1092 (-1092 *3))) (-5 *1 (-899 *3)) (-4 *3 (-1090))))) +(((*1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-1141 *3)) (-4 *3 (-1090)) (-4 *3 (-1195))))) +(((*1 *2 *3 *4 *4) (-12 (-5 *4 (-763)) (-4 *5 (-350)) (-4 *6 (-1219 *5)) (-5 *2 (-634 (-2 (|:| -3746 (-679 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-679 *6))))) (-5 *1 (-507 *5 *6 *7)) (-5 *3 (-2 (|:| -3746 (-679 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-679 *6)))) (-4 *7 (-1219 *6))))) +(((*1 *2 *2 *2) (|partial| -12 (-4 *3 (-365)) (-5 *1 (-891 *2 *3)) (-4 *2 (-1219 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-634 (-1069 *3 *4 *5))) (-4 *3 (-1090)) (-4 *4 (-13 (-1047) (-881 *3) (-842) (-609 (-887 *3)))) (-4 *5 (-13 (-432 *4) (-881 *3) (-609 (-887 *3)))) (-5 *1 (-1070 *3 *4 *5))))) +(((*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-121)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-121))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-1157 *3)) (-4 *3 (-350)) (-5 *1 (-358 *3))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1129)) (-5 *2 (-142)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1129)) (-5 *2 (-147))))) +(((*1 *2 *3) (-12 (-5 *3 (-679 (-310 (-215)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381)))) (-5 *1 (-197))))) +(((*1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-1090)))) ((*1 *1 *1) (-5 *1 (-623)))) +(((*1 *2 *1 *1 *3) (-12 (-4 *4 (-1047)) (-4 *5 (-788)) (-4 *3 (-842)) (-5 *2 (-2 (|:| -3961 *1) (|:| -1500 *1))) (-4 *1 (-950 *4 *5 *3)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-1047)) (-5 *2 (-2 (|:| -3961 *1) (|:| -1500 *1))) (-4 *1 (-1219 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-1056)) (-4 *3 (-1181)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) +(((*1 *2 *1) (-12 (-4 *1 (-391)) (-5 *2 (-121))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-1 (-121) *4 *4)) (-4 *4 (-1195)) (-5 *1 (-377 *4 *2)) (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4520))))))) +(((*1 *2) (-12 (-5 *2 (-763)) (-5 *1 (-129 *3)) (-4 *3 (-1219 (-568))))) ((*1 *2 *2) (-12 (-5 *2 (-763)) (-5 *1 (-129 *3)) (-4 *3 (-1219 (-568)))))) +(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-55 *3 *4)) (-4 *3 (-1047)) (-14 *4 (-634 (-1161))))) ((*1 *2 *3) (-12 (-5 *3 (-57)) (-5 *2 (-121)) (-5 *1 (-56 *4)) (-4 *4 (-1195)))) ((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-213 *3 *4)) (-4 *3 (-13 (-1047) (-842))) (-14 *4 (-634 (-1161))))) ((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-663 *3)) (-4 *3 (-842)))) ((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-667 *3)) (-4 *3 (-842)))) ((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-888 *3)) (-4 *3 (-842))))) +(((*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-123)) (-5 *4 (-607 *7)) (-4 *7 (-13 (-432 *6) (-23) (-1037 *2) (-1037 *5) (-895 *5) (-161))) (-5 *5 (-1161)) (-4 *6 (-1047)) (-4 *6 (-13 (-842) (-558) (-609 (-541)))) (-5 *2 (-568)) (-5 *1 (-1024 *6 *7))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-121)) (-5 *1 (-123))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-634 (-1143))) (-5 *1 (-396)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-634 (-1143))) (-5 *1 (-1176))))) +(((*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-215)) (-5 *1 (-299))))) +(((*1 *1 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-1195)) (-4 *2 (-1090)))) ((*1 *1 *1) (-12 (-4 *1 (-684 *2)) (-4 *2 (-1090))))) +(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-215)) (-5 *5 (-568)) (-5 *2 (-1191 *3)) (-5 *1 (-785 *3)) (-4 *3 (-975)))) ((*1 *1 *2 *3 *4) (-12 (-5 *3 (-634 (-634 (-944 (-215))))) (-5 *4 (-121)) (-5 *1 (-1191 *2)) (-4 *2 (-975))))) +(((*1 *2 *1) (-12 (-4 *1 (-324 *2 *3)) (-4 *3 (-787)) (-4 *2 (-1047)) (-4 *2 (-453)))) ((*1 *2 *3) (-12 (-5 *3 (-634 *4)) (-4 *4 (-1219 (-568))) (-5 *2 (-634 (-568))) (-5 *1 (-496 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-844 *2)) (-4 *2 (-1047)) (-4 *2 (-453)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-950 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *2 (-842)) (-4 *3 (-453))))) +(((*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-558)) (-5 *1 (-970 *3 *2)) (-4 *2 (-1219 *3))))) +(((*1 *1) (-5 *1 (-563)))) +(((*1 *2 *1) (-12 (-4 *1 (-62 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-568)))) ((*1 *2 *1) (-12 (-4 *1 (-1050 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-5 *2 (-568))))) +(((*1 *2 *1) (-12 (-4 *1 (-1259 *3 *4)) (-4 *3 (-842)) (-4 *4 (-1047)) (-5 *2 (-121)))) ((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1265 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-838))))) +(((*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-443 *3)) (-4 *3 (-1219 (-568)))))) +(((*1 *2 *1) (-12 (-4 *1 (-920 *3 *4)) (-4 *3 (-365)) (-4 *4 (-641 *3)) (-5 *2 (-634 *4))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *3 (-634 (-1161))) (-4 *4 (-1090)) (-4 *5 (-13 (-1047) (-881 *4) (-842) (-609 (-887 *4)))) (-5 *1 (-1069 *4 *5 *2)) (-4 *2 (-13 (-432 *5) (-881 *4) (-609 (-887 *4)))))) ((*1 *1 *2 *2) (-12 (-4 *3 (-1090)) (-4 *4 (-13 (-1047) (-881 *3) (-842) (-609 (-887 *3)))) (-5 *1 (-1069 *3 *4 *2)) (-4 *2 (-13 (-432 *4) (-881 *3) (-609 (-887 *3))))))) +(((*1 *2 *2) (-12 (-5 *2 (-917)) (|has| *1 (-6 -4510)) (-4 *1 (-406)))) ((*1 *2) (-12 (-4 *1 (-406)) (-5 *2 (-917)))) ((*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-688)))) ((*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-688))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1141 *3))) (-5 *2 (-1141 *3)) (-5 *1 (-1145 *3)) (-4 *3 (-43 (-409 (-568)))) (-4 *3 (-1047))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1047)) (-4 *2 (-365)))) ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-365)) (-5 *1 (-649 *4 *2)) (-4 *2 (-646 *4))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-1157 *3)) (-4 *3 (-350)) (-5 *1 (-358 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1157 *1)) (-5 *3 (-1161)) (-4 *1 (-858)))) ((*1 *1 *2 *1 *3) (-12 (-5 *2 (-1157 *1)) (-5 *3 (-1161)) (-4 *1 (-858)))) ((*1 *1 *2 *2 *3 *1 *4) (-12 (-5 *2 (-1157 (-860))) (-5 *3 (-917)) (-5 *4 (-1161)) (-5 *1 (-860))))) +(((*1 *2 *3) (-12 (-5 *3 (-917)) (-4 *4 (-370)) (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *6 (-950 *4 *7 (-852 *5))) (-4 *7 (-230 (-1697 *5) (-763))) (-4 *8 (-971 *4)) (-4 *9 (-641 *4)) (-4 *10 (-920 *4 *9)) (-4 *11 (-235 *10)) (-4 *12 (-536 *4 *5 *6 *7 *8 *9 *10 *11 *14)) (-4 *14 (-117)) (-5 *2 (-568)) (-5 *1 (-467 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13 *14)) (-4 *13 (-258 *12)))) ((*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-568)) (-5 *1 (-867 *4 *5 *6)) (-4 (-857 *4) (-370)) (-4 *4 (-350)) (-14 *5 (-634 (-1161))) (-4 *6 (-117)))) ((*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-568)) (-5 *1 (-868 *4 *5 *6)) (-4 *4 (-370)) (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *6 (-117))))) +(((*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-43 (-409 (-568)))) (-4 *2 (-1047))))) +(((*1 *2 *2 *3) (-12 (-4 *4 (-788)) (-4 *3 (-13 (-842) (-10 -8 (-15 -4278 ((-1161) $))))) (-4 *5 (-558)) (-5 *1 (-722 *4 *3 *5 *2)) (-4 *2 (-950 (-409 (-953 *5)) *4 *3)))) ((*1 *2 *2 *3) (-12 (-4 *4 (-1047)) (-4 *5 (-788)) (-4 *3 (-13 (-842) (-10 -8 (-15 -4278 ((-1161) $)) (-15 -1305 ((-3 $ "failed") (-1161)))))) (-5 *1 (-985 *4 *5 *3 *2)) (-4 *2 (-950 (-953 *4) *5 *3)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-634 *6)) (-4 *6 (-13 (-842) (-10 -8 (-15 -4278 ((-1161) $)) (-15 -1305 ((-3 $ "failed") (-1161)))))) (-4 *4 (-1047)) (-4 *5 (-788)) (-5 *1 (-985 *4 *5 *6 *2)) (-4 *2 (-950 (-953 *4) *5 *6))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002)))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-816)) (-5 *4 (-57)) (-5 *2 (-1249)) (-5 *1 (-826))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-1195)) (-4 *2 (-842)))) ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-121) *3 *3)) (-4 *1 (-277 *3)) (-4 *3 (-1195)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-494 *2)) (-4 *2 (-842)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-842))))) +(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-1035)) (-5 *3 (-1161)) (-5 *1 (-184))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2))))) +(((*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1143)) (-5 *1 (-500)))) ((*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1143)) (-5 *1 (-700))))) +(((*1 *2 *3 *3 *4) (-12 (-5 *4 (-763)) (-4 *5 (-558)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-970 *5 *3)) (-4 *3 (-1219 *5))))) +(((*1 *2 *2 *3 *2) (-12 (-5 *3 (-763)) (-4 *4 (-350)) (-5 *1 (-207 *4 *2)) (-4 *2 (-1219 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-492 *4 *5)) (-14 *4 (-634 (-1161))) (-4 *5 (-1047)) (-5 *2 (-953 *5)) (-5 *1 (-945 *4 *5))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (-5 *2 (-2 (|:| -4192 (-123)) (|:| |w| (-215)))) (-5 *1 (-196))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-134 *2)) (-4 *2 (-1090))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-4 *4 (-365)) (-5 *2 (-634 *1)) (-4 *1 (-37 *4)))) ((*1 *2 *1) (-12 (-4 *3 (-365)) (-5 *2 (-634 *1)) (-4 *1 (-37 *3)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-898 *3)) (-4 *3 (-1090)) (-5 *2 (-1092 *3)))) ((*1 *2 *1 *3) (-12 (-4 *4 (-1090)) (-5 *2 (-1092 (-634 *4))) (-5 *1 (-899 *4)) (-5 *3 (-634 *4)))) ((*1 *2 *1 *3) (-12 (-4 *4 (-1090)) (-5 *2 (-1092 (-1092 *4))) (-5 *1 (-899 *4)) (-5 *3 (-1092 *4)))) ((*1 *2 *1 *3) (-12 (-5 *2 (-1092 *3)) (-5 *1 (-899 *3)) (-4 *3 (-1090)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-4 *4 (-365)) (-5 *2 (-634 *1)) (-4 *1 (-971 *4)))) ((*1 *2 *1) (-12 (-4 *3 (-365)) (-5 *2 (-634 *1)) (-4 *1 (-971 *3))))) +(((*1 *1 *1 *1) (-5 *1 (-121))) ((*1 *1 *1 *1) (-4 *1 (-132)))) +(((*1 *1 *1) (-12 (-4 *2 (-301)) (-4 *3 (-993 *2)) (-4 *4 (-1219 *3)) (-5 *1 (-415 *2 *3 *4 *5)) (-4 *5 (-13 (-411 *3 *4) (-1037 *3)))))) +(((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-763) *2)) (-5 *4 (-763)) (-4 *2 (-1090)) (-5 *1 (-668 *2)))) ((*1 *2 *2) (-12 (-5 *2 (-1 *3 (-763) *3)) (-4 *3 (-1090)) (-5 *1 (-671 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-171)))) ((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1191 *3)) (-4 *3 (-975))))) +(((*1 *1 *1) (-12 (-4 *1 (-1231 *2)) (-4 *2 (-1195))))) +(((*1 *2 *2 *2) (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-568))))))) (-5 *1 (-1116 *3 *2)) (-4 *3 (-1219 *2))))) +(((*1 *2 *2 *3 *2) (-12 (-5 *3 (-763)) (-4 *4 (-350)) (-5 *1 (-207 *4 *2)) (-4 *2 (-1219 *4)))) ((*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-568)) (-5 *1 (-685 *2)) (-4 *2 (-1219 *3))))) +(((*1 *2 *3) (|partial| -12 (-4 *5 (-1037 (-53))) (-4 *4 (-13 (-558) (-842) (-1037 (-568)))) (-4 *5 (-432 *4)) (-5 *2 (-420 (-1157 (-53)))) (-5 *1 (-437 *4 *5 *3)) (-4 *3 (-1219 *5))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002)))))) +(((*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-1164))))) +(((*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172))))) +(((*1 *2 *3) (-12 (-5 *3 (-1044 *4 *5)) (-4 *4 (-13 (-840) (-301) (-150) (-1021))) (-14 *5 (-634 (-1161))) (-5 *2 (-634 (-2 (|:| -3471 (-1157 *4)) (|:| -4073 (-634 (-953 *4)))))) (-5 *1 (-1268 *4 *5 *6)) (-14 *6 (-634 (-1161))))) ((*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-121)) (-4 *5 (-13 (-840) (-301) (-150) (-1021))) (-5 *2 (-634 (-2 (|:| -3471 (-1157 *5)) (|:| -4073 (-634 (-953 *5)))))) (-5 *1 (-1268 *5 *6 *7)) (-5 *3 (-634 (-953 *5))) (-14 *6 (-634 (-1161))) (-14 *7 (-634 (-1161))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-121)) (-4 *5 (-13 (-840) (-301) (-150) (-1021))) (-5 *2 (-634 (-2 (|:| -3471 (-1157 *5)) (|:| -4073 (-634 (-953 *5)))))) (-5 *1 (-1268 *5 *6 *7)) (-5 *3 (-634 (-953 *5))) (-14 *6 (-634 (-1161))) (-14 *7 (-634 (-1161))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-121)) (-4 *5 (-13 (-840) (-301) (-150) (-1021))) (-5 *2 (-634 (-2 (|:| -3471 (-1157 *5)) (|:| -4073 (-634 (-953 *5)))))) (-5 *1 (-1268 *5 *6 *7)) (-5 *3 (-634 (-953 *5))) (-14 *6 (-634 (-1161))) (-14 *7 (-634 (-1161))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-840) (-301) (-150) (-1021))) (-5 *2 (-634 (-2 (|:| -3471 (-1157 *4)) (|:| -4073 (-634 (-953 *4)))))) (-5 *1 (-1268 *4 *5 *6)) (-5 *3 (-634 (-953 *4))) (-14 *5 (-634 (-1161))) (-14 *6 (-634 (-1161)))))) +(((*1 *2 *1) (-12 (-4 *1 (-366 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-1090))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-550)))) +(((*1 *2 *3 *3 *4) (-12 (-5 *3 (-763)) (-4 *2 (-13 (-558) (-453))) (-5 *1 (-346 *2 *4)) (-4 *4 (-52 *2 *3))))) +(((*1 *2 *1) (|partial| -12 (-4 *3 (-1102)) (-4 *3 (-842)) (-5 *2 (-634 *1)) (-4 *1 (-432 *3)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-634 (-887 *3))) (-5 *1 (-887 *3)) (-4 *3 (-1090)))) ((*1 *2 *1) (|partial| -12 (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-634 *1)) (-4 *1 (-950 *3 *4 *5)))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1047)) (-4 *7 (-950 *6 *4 *5)) (-5 *2 (-634 *3)) (-5 *1 (-951 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -2745 ($ *7)) (-15 -2317 (*7 $)) (-15 -2324 (*7 $)))))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 *2)) (-4 *2 (-432 *4)) (-5 *1 (-433 *4 *2)) (-4 *4 (-13 (-842) (-558)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1181))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1249)) (-5 *1 (-1246))))) +(((*1 *2 *3) (-12 (-5 *3 (-763)) (-5 *2 (-679 (-953 *4))) (-5 *1 (-1028 *4)) (-4 *4 (-1047))))) +(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-436))))) +(((*1 *2 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-1249)) (-5 *1 (-438))))) +(((*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-634 (-634 (-944 (-215))))) (-5 *4 (-869)) (-5 *5 (-917)) (-5 *6 (-634 (-256))) (-5 *2 (-1245)) (-5 *1 (-1248)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-634 (-944 (-215))))) (-5 *4 (-634 (-256))) (-5 *2 (-1245)) (-5 *1 (-1248))))) +(((*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *5 (-558)) (-5 *2 (-2 (|:| |minor| (-634 (-917))) (|:| -1853 *3) (|:| |minors| (-634 (-634 (-917)))) (|:| |ops| (-634 *3)))) (-5 *1 (-95 *5 *3)) (-5 *4 (-917)) (-4 *3 (-646 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-817))))) +(((*1 *2 *3) (-12 (-5 *2 (-634 (-1143))) (-5 *1 (-824)) (-5 *3 (-1143))))) +(((*1 *1) (-12 (-5 *1 (-219 *2)) (-4 *2 (-13 (-365) (-1181)))))) +(((*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-172)))) ((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1219 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-578 *5 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-944 *2)) (-5 *1 (-983 *2)) (-4 *2 (-1047))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-763)) (-5 *1 (-1149 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1047))))) +(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-634 (-121))) (-5 *7 (-679 (-215))) (-5 *8 (-679 (-568))) (-5 *3 (-568)) (-5 *4 (-215)) (-5 *5 (-121)) (-5 *2 (-1035)) (-5 *1 (-746))))) +(((*1 *2 *3) (-12 (-5 *2 (-1141 (-634 (-568)))) (-5 *1 (-878)) (-5 *3 (-568))))) +(((*1 *1 *1 *1) (-5 *1 (-850)))) +(((*1 *2 *1) (-12 (-4 *1 (-366 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-5 *2 (-1143))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -2850 *4) (|:| -2183 *4) (|:| |totalpts| (-568)) (|:| |success| (-121)))) (-5 *1 (-784)) (-5 *5 (-568))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-679 (-568))) (-5 *5 (-121)) (-5 *7 (-679 (-215))) (-5 *3 (-568)) (-5 *6 (-215)) (-5 *2 (-1035)) (-5 *1 (-746))))) +(((*1 *2) (-12 (-5 *2 (-634 *3)) (-5 *1 (-1076 *3)) (-4 *3 (-138))))) +(((*1 *2 *2) (-12 (-5 *2 (-1108)) (-5 *1 (-328))))) +(((*1 *2 *1) (-12 (-4 *1 (-1189 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1061 *3 *4 *5)) (-5 *2 (-121)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-1189 *4 *5 *6 *3)) (-4 *4 (-558)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *3 (-1061 *4 *5 *6)) (-5 *2 (-121))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-1249)) (-5 *1 (-1245)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-1249)) (-5 *1 (-1246))))) +(((*1 *2 *1) (-12 (-5 *2 (-634 (-900 *3))) (-5 *1 (-899 *3)) (-4 *3 (-1090))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-953 (-169 *4))) (-4 *4 (-172)) (-4 *4 (-609 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-780 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-953 (-169 *5))) (-5 *4 (-917)) (-4 *5 (-172)) (-4 *5 (-609 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-780 *5)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-953 *4)) (-4 *4 (-1047)) (-4 *4 (-609 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-780 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-953 *5)) (-5 *4 (-917)) (-4 *5 (-1047)) (-4 *5 (-609 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-780 *5)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-409 (-953 *4))) (-4 *4 (-558)) (-4 *4 (-609 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-780 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-409 (-953 *5))) (-5 *4 (-917)) (-4 *5 (-558)) (-4 *5 (-609 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-780 *5)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-409 (-953 (-169 *4)))) (-4 *4 (-558)) (-4 *4 (-609 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-780 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-409 (-953 (-169 *5)))) (-5 *4 (-917)) (-4 *5 (-558)) (-4 *5 (-609 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-780 *5)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-310 *4)) (-4 *4 (-558)) (-4 *4 (-842)) (-4 *4 (-609 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-780 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-310 *5)) (-5 *4 (-917)) (-4 *5 (-558)) (-4 *5 (-842)) (-4 *5 (-609 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-780 *5)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-310 (-169 *4))) (-4 *4 (-558)) (-4 *4 (-842)) (-4 *4 (-609 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-780 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-310 (-169 *5))) (-5 *4 (-917)) (-4 *5 (-558)) (-4 *5 (-842)) (-4 *5 (-609 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-780 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-296)) (-5 *2 (-634 (-123)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1244 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-634 (-953 *4))))) ((*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-634 (-953 *4))) (-5 *1 (-418 *3 *4)) (-4 *3 (-419 *4)))) ((*1 *2) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-634 (-953 *3))))) ((*1 *2) (-12 (-5 *2 (-634 (-953 *3))) (-5 *1 (-454 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-634 (-1161))) (-14 *6 (-1244 (-679 *3))))) ((*1 *2 *3) (-12 (-5 *3 (-1244 (-454 *4 *5 *6 *7))) (-5 *2 (-634 (-953 *4))) (-5 *1 (-454 *4 *5 *6 *7)) (-4 *4 (-558)) (-4 *4 (-172)) (-14 *5 (-917)) (-14 *6 (-634 (-1161))) (-14 *7 (-1244 (-679 *4)))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -2850 *4) (|:| -2183 *4) (|:| |totalpts| (-568)) (|:| |success| (-121)))) (-5 *1 (-784)) (-5 *5 (-568))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-509 *2)) (-14 *2 (-568)))) ((*1 *1 *1 *1) (-5 *1 (-1108)))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1 (-121) *7 (-634 *7))) (-4 *1 (-1189 *4 *5 *6 *7)) (-4 *4 (-558)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *7 (-1061 *4 *5 *6)) (-5 *2 (-121))))) +(((*1 *2 *3 *3 *4) (-12 (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *3 (-1061 *5 *6 *7)) (-5 *2 (-634 (-2 (|:| |val| (-634 *3)) (|:| -3001 *4)))) (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-1061 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-788)) (-4 *4 (-842)) (-4 *2 (-453))))) +(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-634 (-121))) (-5 *5 (-679 (-215))) (-5 *6 (-679 (-568))) (-5 *7 (-215)) (-5 *3 (-568)) (-5 *2 (-1035)) (-5 *1 (-746))))) +(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-634 (-1157 *13))) (-5 *3 (-1157 *13)) (-5 *4 (-634 *12)) (-5 *5 (-634 *10)) (-5 *6 (-634 *13)) (-5 *7 (-634 (-634 (-2 (|:| -1876 (-763)) (|:| |pcoef| *13))))) (-5 *8 (-634 (-763))) (-5 *9 (-1244 (-634 (-1157 *10)))) (-4 *12 (-842)) (-4 *10 (-301)) (-4 *13 (-950 *10 *11 *12)) (-4 *11 (-788)) (-5 *1 (-697 *11 *12 *10 *13))))) +(((*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-763)) (-4 *4 (-301)) (-4 *6 (-1219 *4)) (-5 *2 (-1244 (-634 *6))) (-5 *1 (-457 *4 *6)) (-5 *5 (-634 *6))))) +(((*1 *2 *1) (-12 (-5 *1 (-212 *2)) (-4 *2 (-1090)))) ((*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1195))))) +(((*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-679 (-215))) (-5 *5 (-679 (-568))) (-5 *3 (-568)) (-5 *2 (-1035)) (-5 *1 (-746))))) +(((*1 *1 *1) (-12 (-4 *1 (-128 *2)) (-4 *2 (-1195)))) ((*1 *1 *1) (-12 (-5 *1 (-663 *2)) (-4 *2 (-842)))) ((*1 *1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-842)))) ((*1 *1 *1) (-5 *1 (-850))) ((*1 *1 *1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-850)))) ((*1 *2 *1) (-12 (-4 *2 (-13 (-840) (-365))) (-5 *1 (-1057 *2 *3)) (-4 *3 (-1219 *2))))) +(((*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-568)) (-5 *6 (-1 (-1249) (-1244 *5) (-1244 *5) (-381))) (-5 *3 (-1244 (-381))) (-5 *5 (-381)) (-5 *2 (-1249)) (-5 *1 (-783)))) ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-568)) (-5 *6 (-1 (-1249) (-1244 *5) (-1244 *5) (-381))) (-5 *3 (-1244 (-381))) (-5 *5 (-381)) (-5 *2 (-1249)) (-5 *1 (-783))))) +(((*1 *2 *2 *3 *4 *5) (-12 (-5 *3 (-123)) (-5 *2 (-568)) (-5 *4 (-1161)) (-4 *6 (-13 (-842) (-558) (-609 (-541)))) (-5 *1 (-1024 *6 *5)) (-4 *5 (-13 (-432 *6) (-23) (-1037 *2) (-1037 *4) (-895 *4) (-161)))))) +(((*1 *2 *3) (-12 (-5 *3 (-917)) (-4 *4 (-370)) (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *6 (-950 *4 *7 (-852 *5))) (-4 *7 (-230 (-1697 *5) (-763))) (-4 *8 (-971 *4)) (-4 *9 (-641 *4)) (-4 *10 (-920 *4 *9)) (-4 *11 (-235 *10)) (-4 *12 (-536 *4 *5 *6 *7 *8 *9 *10 *11 *14)) (-4 *14 (-117)) (-5 *2 (-568)) (-5 *1 (-467 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13 *14)) (-4 *13 (-258 *12)))) ((*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-568)) (-5 *1 (-867 *4 *5 *6)) (-4 (-857 *4) (-370)) (-4 *4 (-350)) (-14 *5 (-634 (-1161))) (-4 *6 (-117)))) ((*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-568)) (-5 *1 (-868 *4 *5 *6)) (-4 *4 (-370)) (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *6 (-117))))) +(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1157 *9)) (-5 *4 (-634 *7)) (-5 *5 (-634 (-634 *8))) (-4 *7 (-842)) (-4 *8 (-301)) (-4 *9 (-950 *8 *6 *7)) (-4 *6 (-788)) (-5 *2 (-2 (|:| |upol| (-1157 *8)) (|:| |Lval| (-634 *8)) (|:| |Lfact| (-634 (-2 (|:| -3848 (-1157 *8)) (|:| -3438 (-568))))) (|:| |ctpol| *8))) (-5 *1 (-732 *6 *7 *8 *9))))) +(((*1 *2 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-1219 (-568))) (-5 *1 (-496 *3))))) +(((*1 *2 *2) (-12 (-4 *3 (-453)) (-4 *3 (-842)) (-4 *3 (-1037 (-568))) (-4 *3 (-558)) (-5 *1 (-46 *3 *2)) (-4 *2 (-432 *3)) (-4 *2 (-13 (-365) (-296) (-10 -8 (-15 -2317 ((-1113 *3 (-607 $)) $)) (-15 -2324 ((-1113 *3 (-607 $)) $)) (-15 -2745 ($ (-1113 *3 (-607 $)))))))))) +(((*1 *2 *1) (-12 (-4 *1 (-1037 (-568))) (-4 *1 (-296)) (-5 *2 (-121)))) ((*1 *2 *1) (-12 (-4 *1 (-550)) (-5 *2 (-121)))) ((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-900 *3)) (-4 *3 (-1090))))) +(((*1 *2 *1) (-12 (-5 *2 (-634 (-2 (|:| |gen| *3) (|:| -1892 (-568))))) (-5 *1 (-363 *3)) (-4 *3 (-1090)))) ((*1 *2 *1) (-12 (-5 *2 (-634 (-2 (|:| |gen| *3) (|:| -1892 (-763))))) (-5 *1 (-388 *3)) (-4 *3 (-1090)))) ((*1 *2 *1) (-12 (-5 *2 (-634 (-2 (|:| -3848 *3) (|:| -3438 (-568))))) (-5 *1 (-420 *3)) (-4 *3 (-558)))) ((*1 *2 *1) (-12 (-5 *2 (-634 (-2 (|:| |gen| *3) (|:| -1892 (-763))))) (-5 *1 (-814 *3)) (-4 *3 (-842))))) +(((*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-746))))) +(((*1 *2 *2) (-12 (-5 *2 (-944 *3)) (-4 *3 (-13 (-365) (-1181) (-1002))) (-5 *1 (-174 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-634 (-953 (-568)))) (-5 *1 (-439)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1161)) (-5 *4 (-679 (-215))) (-5 *2 (-1094)) (-5 *1 (-751)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1161)) (-5 *4 (-679 (-568))) (-5 *2 (-1094)) (-5 *1 (-751))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-141 *2 *3 *4)) (-14 *2 (-568)) (-14 *3 (-763)) (-4 *4 (-172)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1161)) (-4 *4 (-13 (-842) (-558))) (-5 *1 (-159 *4 *2)) (-4 *2 (-432 *4)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1082 *2)) (-4 *2 (-432 *4)) (-4 *4 (-13 (-842) (-558))) (-5 *1 (-159 *4 *2)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1082 *1)) (-4 *1 (-161)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1161)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-763)) (-5 *1 (-1262 *3 *4)) (-4 *3 (-842)) (-4 *4 (-172))))) +(((*1 *2 *3) (-12 (-5 *3 (-1127 *4 *2)) (-14 *4 (-917)) (-4 *2 (-13 (-1047) (-10 -7 (-6 (-4521 "*"))))) (-5 *1 (-897 *4 *2))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 *2)) (-4 *2 (-432 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-13 (-842) (-558)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1181))))) +(((*1 *1) (-12 (-4 *1 (-406)) (-3044 (|has| *1 (-6 -4510))) (-3044 (|has| *1 (-6 -4502))))) ((*1 *2 *1) (-12 (-4 *1 (-427 *2)) (-4 *2 (-1090)) (-4 *2 (-842)))) ((*1 *2 *1) (-12 (-5 *1 (-494 *2)) (-4 *2 (-842)))) ((*1 *1 *1 *1) (-4 *1 (-842))) ((*1 *2 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-842)))) ((*1 *1) (-5 *1 (-1108)))) +(((*1 *2 *3) (-12 (-5 *3 (-953 *4)) (-4 *4 (-13 (-301) (-150))) (-4 *2 (-950 *4 *6 *5)) (-5 *1 (-924 *4 *5 *6 *2)) (-4 *5 (-13 (-842) (-609 (-1161)))) (-4 *6 (-788))))) +(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1143)) (-5 *4 (-568)) (-5 *5 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-746))))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4265 *4))) (-5 *1 (-970 *4 *3)) (-4 *3 (-1219 *4))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-708 *2)) (-4 *2 (-365))))) +(((*1 *2 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-57)) (-5 *1 (-824))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *1 (-422 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1181) (-432 *3))) (-14 *4 (-1161)) (-14 *5 *2))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-4 *2 (-13 (-27) (-1181) (-432 *3) (-10 -8 (-15 -2745 ($ *4))))) (-4 *4 (-840)) (-4 *5 (-13 (-1221 *2 *4) (-365) (-1181) (-10 -8 (-15 -4189 ($ $)) (-15 -3837 ($ $))))) (-5 *1 (-424 *3 *2 *4 *5 *6 *7)) (-4 *6 (-984 *5)) (-14 *7 (-1161))))) +(((*1 *1) (-12 (-5 *1 (-141 *2 *3 *4)) (-14 *2 (-568)) (-14 *3 (-763)) (-4 *4 (-172))))) +(((*1 *2 *3) (-12 (-5 *3 (-242 *4 *5)) (-14 *4 (-634 (-1161))) (-4 *5 (-1047)) (-5 *2 (-953 *5)) (-5 *1 (-945 *4 *5))))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-13 (-365) (-150) (-1037 (-568)))) (-4 *5 (-1219 *4)) (-5 *2 (-2 (|:| |ans| (-409 *5)) (|:| |nosol| (-121)))) (-5 *1 (-1015 *4 *5)) (-5 *3 (-409 *5))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1143)) (-5 *4 (-568)) (-5 *5 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-746))))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2721 *3))) (-5 *1 (-970 *4 *3)) (-4 *3 (-1219 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1181)))) ((*1 *2 *1) (-12 (-5 *1 (-329 *2)) (-4 *2 (-842)))) ((*1 *2 *1) (-12 (-5 *2 (-634 *3)) (-5 *1 (-607 *3)) (-4 *3 (-842))))) +(((*1 *2 *2) (|partial| -12 (-4 *3 (-558)) (-4 *3 (-172)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-678 *3 *4 *5 *2)) (-4 *2 (-677 *3 *4 *5))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-121)) (-5 *3 (-634 (-256))) (-5 *1 (-254)))) ((*1 *1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-256))))) +(((*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1143)) (-5 *1 (-500)))) ((*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1143)) (-5 *1 (-700))))) +(((*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-169 (-215)))) (-5 *2 (-1035)) (-5 *1 (-746))))) +(((*1 *1 *1) (-12 (-5 *1 (-509 *2)) (-14 *2 (-568)))) ((*1 *1 *1) (-5 *1 (-1108)))) +(((*1 *1 *1) (-12 (-4 *1 (-324 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-787)) (-4 *2 (-453)))) ((*1 *1 *1) (-12 (-4 *1 (-340 *2 *3 *4)) (-4 *2 (-1199)) (-4 *3 (-1219 *2)) (-4 *4 (-1219 (-409 *3))))) ((*1 *1 *1) (-12 (-4 *1 (-844 *2)) (-4 *2 (-1047)) (-4 *2 (-453)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-950 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *2 (-842)) (-4 *3 (-453)))) ((*1 *1 *1) (-12 (-4 *1 (-950 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-788)) (-4 *4 (-842)) (-4 *2 (-453)))) ((*1 *2 *2 *3) (-12 (-4 *3 (-301)) (-4 *3 (-558)) (-5 *1 (-1148 *3 *2)) (-4 *2 (-1219 *3))))) +(((*1 *1 *1) (-5 *1 (-1059)))) +(((*1 *1) (-4 *1 (-39))) ((*1 *1) (-12 (-5 *1 (-96 *2)) (-4 *2 (-1090)))) ((*1 *1) (-12 (-5 *1 (-212 *2)) (-4 *2 (-1090)))) ((*1 *1) (-12 (-5 *1 (-494 *2)) (-4 *2 (-842)))) ((*1 *1) (-5 *1 (-850))) ((*1 *1) (-12 (-4 *2 (-453)) (-4 *3 (-842)) (-4 *4 (-788)) (-5 *1 (-988 *2 *3 *4 *5)) (-4 *5 (-950 *2 *4 *3)))) ((*1 *1) (-12 (-5 *1 (-1000 *2)) (-4 *2 (-1090)))) ((*1 *1) (-12 (-5 *1 (-1125 *2 *3)) (-4 *2 (-13 (-1090) (-39))) (-4 *3 (-13 (-1090) (-39))))) ((*1 *1) (-12 (-5 *1 (-1132 *2)) (-4 *2 (-1090)))) ((*1 *1) (-5 *1 (-1164))) ((*1 *1) (-5 *1 (-1165)))) +(((*1 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-565))))) +(((*1 *2 *3) (-12 (-5 *3 (-953 (-215))) (-5 *2 (-310 (-381))) (-5 *1 (-299))))) +(((*1 *2 *3 *4 *5) (-12 (-5 *5 (-121)) (-4 *4 (-13 (-365) (-840))) (-5 *2 (-420 *3)) (-5 *1 (-178 *4 *3)) (-4 *3 (-1219 (-169 *4))))) ((*1 *2 *3 *4) (-12 (-4 *4 (-13 (-365) (-840))) (-5 *2 (-420 *3)) (-5 *1 (-178 *4 *3)) (-4 *3 (-1219 (-169 *4)))))) +(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1143)) (-5 *4 (-568)) (-5 *5 (-679 (-169 (-215)))) (-5 *2 (-1035)) (-5 *1 (-746))))) +(((*1 *1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-558)))) ((*1 *1 *1) (|partial| -4 *1 (-712)))) +(((*1 *2 *3) (-12 (-5 *3 (-634 *7)) (-4 *7 (-950 *4 *5 *6)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-1249)) (-5 *1 (-450 *4 *5 *6 *7))))) +(((*1 *2 *3) (-12 (-5 *3 (-679 *2)) (-4 *4 (-1219 *2)) (-4 *2 (-13 (-301) (-10 -8 (-15 -1678 ((-420 $) $))))) (-5 *1 (-508 *2 *4 *5)) (-4 *5 (-411 *2 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-1111 *3 *2 *4 *5)) (-4 *4 (-230 *3 *2)) (-4 *5 (-230 *3 *2)) (-4 *2 (-1047))))) +(((*1 *1) (-5 *1 (-1164)))) +(((*1 *1 *1) (|partial| -12 (-5 *1 (-1126 *2 *3)) (-4 *2 (-13 (-1090) (-39))) (-4 *3 (-13 (-1090) (-39)))))) +(((*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-763)) (-5 *1 (-48 *4 *3)) (-4 *3 (-419 *4))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1143)) (-5 *4 (-568)) (-5 *5 (-679 (-169 (-215)))) (-5 *2 (-1035)) (-5 *1 (-746))))) +(((*1 *2 *2 *3 *4) (-12 (-5 *2 (-634 *8)) (-5 *3 (-1 (-121) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1061 *5 *6 *7)) (-4 *5 (-558)) (-4 *6 (-788)) (-4 *7 (-842)) (-5 *1 (-978 *5 *6 *7 *8))))) +(((*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-43 (-409 (-568)))) (-4 *2 (-1047))))) +(((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1039))))) +(((*1 *2 *1) (-12 (-4 *1 (-37 *2)) (-4 *2 (-365)))) ((*1 *2 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-365))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-568)) (-4 *5 (-365)) (-5 *2 (-634 *5)) (-5 *1 (-635 *5 *3)) (-4 *3 (-641 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-679 (-310 (-215)))) (-5 *2 (-381)) (-5 *1 (-197))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-634 *7)) (-4 *7 (-1061 *4 *5 *6)) (-4 *4 (-558)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-121)) (-5 *1 (-978 *4 *5 *6 *7))))) +(((*1 *2 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-1249)) (-5 *1 (-728))))) +(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-568)) (-5 *5 (-121)) (-5 *6 (-679 (-215))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-82 OBJFUN)))) (-5 *4 (-215)) (-5 *2 (-1035)) (-5 *1 (-745))))) +(((*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-634 (-1161))) (|:| |pred| (-57)))) (-5 *1 (-887 *3)) (-4 *3 (-1090))))) +(((*1 *1) (-5 *1 (-158)))) +(((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1177))))) +(((*1 *2 *1) (-12 (-5 *2 (-634 (-1143))) (-5 *1 (-396)))) ((*1 *2 *1) (-12 (-5 *2 (-634 (-1143))) (-5 *1 (-1176))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1219 *4)) (-4 *4 (-1199)) (-4 *6 (-1219 (-409 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-340 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-57))))) +(((*1 *2 *1) (-12 (-5 *2 (-171)) (-5 *1 (-1149 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1047))))) +(((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1161)) (-5 *3 (-436)) (-4 *5 (-842)) (-5 *1 (-1096 *5 *4)) (-4 *4 (-432 *5))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-84 LSFUN1)))) (-5 *2 (-1035)) (-5 *1 (-745))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-763)))) ((*1 *1 *1) (-4 *1 (-404)))) +(((*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-568)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-763)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-788)) (-4 *4 (-950 *5 *6 *7)) (-4 *5 (-453)) (-4 *7 (-842)) (-5 *1 (-450 *5 *6 *7 *4))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-1 (-121) *8)) (-4 *8 (-1061 *5 *6 *7)) (-4 *5 (-558)) (-4 *6 (-788)) (-4 *7 (-842)) (-5 *2 (-2 (|:| |goodPols| (-634 *8)) (|:| |badPols| (-634 *8)))) (-5 *1 (-978 *5 *6 *7 *8)) (-5 *4 (-634 *8))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002)))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-1157 *1)) (-5 *4 (-1161)) (-4 *1 (-27)) (-5 *2 (-634 *1)))) ((*1 *2 *3) (-12 (-5 *3 (-1157 *1)) (-4 *1 (-27)) (-5 *2 (-634 *1)))) ((*1 *2 *3) (-12 (-5 *3 (-953 *1)) (-4 *1 (-27)) (-5 *2 (-634 *1)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1161)) (-4 *4 (-13 (-842) (-558))) (-5 *2 (-634 *1)) (-4 *1 (-29 *4)))) ((*1 *2 *1) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *2 (-634 *1)) (-4 *1 (-29 *3))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-68 LSFUN2)))) (-5 *2 (-1035)) (-5 *1 (-745))))) +(((*1 *1 *2) (-12 (-5 *2 (-634 (-514 *3 *4 *5 *6))) (-4 *3 (-365)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-950 *3 *4 *5)))) ((*1 *1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-788)) (-4 *4 (-842)) (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-950 *2 *3 *4)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-634 *1)) (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *3 (-1061 *4 *5 *6)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-634 *1)) (-5 *3 (-634 *7)) (-4 *1 (-1066 *4 *5 *6 *7)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *7 (-1061 *4 *5 *6)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-634 *7)) (-4 *7 (-1061 *4 *5 *6)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-634 *1)) (-4 *1 (-1066 *4 *5 *6 *7)))) ((*1 *2 *3 *1) (-12 (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *3 (-1061 *4 *5 *6)) (-5 *2 (-634 *1)) (-4 *1 (-1066 *4 *5 *6 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1090))))) +(((*1 *2 *3) (-12 (-4 *1 (-350)) (-5 *3 (-568)) (-5 *2 (-1169 (-917) (-763)))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3961 *1) (|:| -1500 *1))) (-4 *1 (-301)))) ((*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-388 *3)) (|:| |rm| (-388 *3)))) (-5 *1 (-388 *3)) (-4 *3 (-1090)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3961 (-763)) (|:| -1500 (-763)))) (-5 *1 (-763)))) ((*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-3 (-814 *3) "failed")) (|:| |rm| (-3 (-814 *3) "failed")))) (-5 *1 (-814 *3)) (-4 *3 (-842)))) ((*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| -3961 *3) (|:| -1500 *3))) (-5 *1 (-970 *4 *3)) (-4 *3 (-1219 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-634 (-634 (-944 (-215))))) (-5 *1 (-1191 *3)) (-4 *3 (-975))))) +(((*1 *2 *1) (-12 (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-634 (-634 *3))))) ((*1 *2 *1) (-12 (-4 *1 (-1050 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-5 *2 (-634 (-634 *5))))) ((*1 *2 *1) (-12 (-5 *2 (-634 (-634 *3))) (-5 *1 (-1168 *3)) (-4 *3 (-1090))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-1157 *2)) (-4 *2 (-432 *4)) (-4 *4 (-13 (-842) (-558))) (-5 *1 (-36 *4 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-52 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-787)))) ((*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-55 *3 *4)) (-4 *3 (-1047)) (-14 *4 (-634 (-1161))))) ((*1 *2 *1) (-12 (-5 *2 (-568)) (-5 *1 (-213 *3 *4)) (-4 *3 (-13 (-1047) (-842))) (-14 *4 (-634 (-1161))))) ((*1 *2 *1) (-12 (-4 *1 (-235 *3)) (-4 *3 (-1090)) (-5 *2 (-568)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1047)) (-4 *3 (-842)) (-4 *5 (-262 *3)) (-4 *6 (-788)) (-5 *2 (-763)))) ((*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-271)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1157 *8)) (-5 *4 (-634 *6)) (-4 *6 (-842)) (-4 *8 (-950 *7 *5 *6)) (-4 *5 (-788)) (-4 *7 (-1047)) (-5 *2 (-634 (-763))) (-5 *1 (-318 *5 *6 *7 *8)))) ((*1 *2 *1) (-12 (-4 *1 (-327 *3)) (-4 *3 (-365)) (-5 *2 (-917)))) ((*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-842)) (-4 *4 (-172)) (-5 *2 (-763)))) ((*1 *2 *1) (-12 (-4 *1 (-475 *3 *2)) (-4 *3 (-172)) (-4 *2 (-23)))) ((*1 *2 *1) (-12 (-4 *3 (-558)) (-5 *2 (-568)) (-5 *1 (-615 *3 *4)) (-4 *4 (-1219 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-698 *3)) (-4 *3 (-1047)) (-5 *2 (-763)))) ((*1 *2 *1) (-12 (-4 *1 (-844 *3)) (-4 *3 (-1047)) (-5 *2 (-763)))) ((*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-899 *3)) (-4 *3 (-1090)))) ((*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-900 *3)) (-4 *3 (-1090)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-568)) (-4 *5 (-1047)) (-4 *6 (-230 *7 *2)) (-14 *7 *2) (-5 *2 (-763)) (-5 *1 (-908 *5 *3 *6 *7)) (-4 *3 (-324 *5 *6)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-634 *6)) (-4 *1 (-950 *4 *5 *6)) (-4 *4 (-1047)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-634 (-763))))) ((*1 *2 *1 *3) (-12 (-4 *1 (-950 *4 *5 *3)) (-4 *4 (-1047)) (-4 *5 (-788)) (-4 *3 (-842)) (-5 *2 (-763)))) ((*1 *2 *1) (-12 (-4 *1 (-974 *3 *2 *4)) (-4 *3 (-1047)) (-4 *4 (-842)) (-4 *2 (-787)))) ((*1 *2 *1) (-12 (-4 *1 (-1088)) (-5 *2 (-917)))) ((*1 *2 *1) (-12 (-4 *1 (-1189 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1061 *3 *4 *5)) (-5 *2 (-763)))) ((*1 *2 *1) (-12 (-4 *1 (-1205 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-1234 *3)) (-5 *2 (-568)))) ((*1 *2 *1) (-12 (-4 *1 (-1226 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-1203 *3)) (-5 *2 (-409 (-568))))) ((*1 *2 *1) (-12 (-4 *1 (-1261 *3)) (-4 *3 (-365)) (-5 *2 (-828 (-917))))) ((*1 *2 *1) (-12 (-4 *1 (-1263 *3 *4)) (-4 *3 (-842)) (-4 *4 (-1047)) (-5 *2 (-763))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-763)) (-4 *3 (-1047)) (-4 *1 (-677 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-763)) (-4 *1 (-1242 *3)) (-4 *3 (-23)) (-4 *3 (-1195))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-71 FUNCT1)))) (-5 *2 (-1035)) (-5 *1 (-745))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2721 (-777 *3)) (|:| |coef1| (-777 *3)))) (-5 *1 (-777 *3)) (-4 *3 (-558)) (-4 *3 (-1047)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-558)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-2 (|:| -2721 *1) (|:| |coef1| *1))) (-4 *1 (-1061 *3 *4 *5))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-473)) (-5 *3 (-634 (-256))) (-5 *1 (-1245)))) ((*1 *1 *1) (-5 *1 (-1245)))) +(((*1 *2 *2 *3 *4) (-12 (-5 *3 (-634 (-607 *2))) (-5 *4 (-634 (-1161))) (-4 *2 (-13 (-432 (-169 *5)) (-1002) (-1181))) (-4 *5 (-13 (-558) (-842))) (-5 *1 (-597 *5 *6 *2)) (-4 *6 (-13 (-432 *5) (-1002) (-1181)))))) +(((*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-472)))) ((*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-472))))) +(((*1 *2 *3) (-12 (-4 *4 (-1047)) (-5 *2 (-568)) (-5 *1 (-444 *4 *3 *5)) (-4 *3 (-1219 *4)) (-4 *5 (-13 (-406) (-1037 *4) (-365) (-1181) (-279)))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 (-568))) (-5 *2 (-1163 (-409 (-568)))) (-5 *1 (-182))))) +(((*1 *1 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1047)) (-4 *1 (-1219 *3))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-5 *2 (-1216 *5 *4)) (-5 *1 (-1159 *4 *5 *6)) (-4 *4 (-1047)) (-14 *5 (-1161)) (-14 *6 *4))) ((*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-5 *2 (-1216 (QUOTE |x|) *4)) (-5 *1 (-1201 *4)) (-4 *4 (-1047)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-5 *2 (-1216 *5 *4)) (-5 *1 (-1235 *4 *5 *6)) (-4 *4 (-1047)) (-14 *5 (-1161)) (-14 *6 *4))) ((*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-5 *2 (-1216 *5 *4)) (-5 *1 (-1239 *4 *5)) (-4 *4 (-1047)) (-14 *5 (-1161))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *5 (-121)) (-5 *2 (-1035)) (-5 *1 (-745))))) +(((*1 *2 *3 *3 *3) (-12 (-5 *3 (-1143)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *7 (-1061 *4 *5 *6)) (-5 *2 (-1249)) (-5 *1 (-1067 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-1143)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *7 (-1061 *4 *5 *6)) (-5 *2 (-1249)) (-5 *1 (-1098 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6)) (-4 *3 (-453)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1061 *3 *4 *5)) (-5 *2 (-121)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *3 (-1061 *4 *5 *6)) (-5 *2 (-121))))) +(((*1 *2 *1) (-12 (-5 *2 (-1092 *3)) (-5 *1 (-899 *3)) (-4 *3 (-1090)))) ((*1 *2 *1) (-12 (-5 *2 (-1092 *3)) (-5 *1 (-900 *3)) (-4 *3 (-1090))))) +(((*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1161)) (-4 *5 (-609 (-887 (-568)))) (-4 *5 (-881 (-568))) (-4 *5 (-13 (-842) (-1037 (-568)) (-453) (-630 (-568)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-571 *5 *3)) (-4 *3 (-620)) (-4 *3 (-13 (-27) (-1181) (-432 *5))))) ((*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1161)) (-5 *4 (-835 *2)) (-4 *2 (-1124)) (-4 *2 (-13 (-27) (-1181) (-432 *5))) (-4 *5 (-609 (-887 (-568)))) (-4 *5 (-881 (-568))) (-4 *5 (-13 (-842) (-1037 (-568)) (-453) (-630 (-568)))) (-5 *1 (-571 *5 *2))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-763)) (-4 *1 (-223 *4)) (-4 *4 (-1047)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-223 *3)) (-4 *3 (-1047)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-225)) (-5 *2 (-763)))) ((*1 *1 *1) (-4 *1 (-225))) ((*1 *1 *1 *2) (-12 (-5 *2 (-763)) (-4 *3 (-13 (-365) (-150))) (-5 *1 (-401 *3 *4)) (-4 *4 (-1219 *3)))) ((*1 *1 *1) (-12 (-4 *2 (-13 (-365) (-150))) (-5 *1 (-401 *2 *3)) (-4 *3 (-1219 *2)))) ((*1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1047)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-634 *4)) (-5 *3 (-634 (-763))) (-4 *1 (-895 *4)) (-4 *4 (-1090)))) ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-763)) (-4 *1 (-895 *2)) (-4 *2 (-1090)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *1 (-895 *3)) (-4 *3 (-1090)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-895 *2)) (-4 *2 (-1090))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 (-465))) (-5 *2 (-121)) (-5 *1 (-464)))) ((*1 *1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-465))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-679 (-215))) (-5 *6 (-121)) (-5 *7 (-679 (-568))) (-5 *8 (-3 (|:| |fn| (-390)) (|:| |fp| (-70 QPHESS)))) (-5 *3 (-568)) (-5 *4 (-215)) (-5 *2 (-1035)) (-5 *1 (-745))))) +(((*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -1924 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-634 (-409 *8))) (-4 *7 (-365)) (-4 *8 (-1219 *7)) (-5 *3 (-409 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-634 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-578 *7 *8))))) +(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-819))))) +(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-310 *3)) (-4 *3 (-558)) (-4 *3 (-842))))) +(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-679 *3)) (-4 *3 (-1047)) (-5 *1 (-680 *3))))) +(((*1 *1 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-21)) (-4 *2 (-1195))))) +(((*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-2 (|:| |brans| (-634 (-634 (-944 (-215))))) (|:| |xValues| (-1084 (-215))) (|:| |yValues| (-1084 (-215))))) (-5 *1 (-156)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-927)) (-5 *4 (-409 (-568))) (-5 *2 (-2 (|:| |brans| (-634 (-634 (-944 (-215))))) (|:| |xValues| (-1084 (-215))) (|:| |yValues| (-1084 (-215))))) (-5 *1 (-156)))) ((*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-634 (-634 (-944 (-215))))) (|:| |xValues| (-1084 (-215))) (|:| |yValues| (-1084 (-215))))) (-5 *1 (-156)) (-5 *3 (-634 (-944 (-215)))))) ((*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-634 (-634 (-944 (-215))))) (|:| |xValues| (-1084 (-215))) (|:| |yValues| (-1084 (-215))))) (-5 *1 (-156)) (-5 *3 (-634 (-634 (-944 (-215))))))) ((*1 *1 *2) (-12 (-5 *2 (-634 (-1084 (-381)))) (-5 *1 (-256)))) ((*1 *1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-256))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-679 (-215))) (-5 *5 (-121)) (-5 *6 (-215)) (-5 *7 (-679 (-568))) (-5 *8 (-3 (|:| |fn| (-390)) (|:| |fp| (-85 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-390)) (|:| |fp| (-82 OBJFUN)))) (-5 *3 (-568)) (-5 *2 (-1035)) (-5 *1 (-745))))) +(((*1 *2 *1) (-12 (-4 *1 (-1093 *3 *2 *4 *5 *6)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *2 (-1090))))) +(((*1 *2 *3 *3 *3) (-12 (-5 *3 (-1143)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *7 (-1061 *4 *5 *6)) (-5 *2 (-1249)) (-5 *1 (-1067 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-1143)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *7 (-1061 *4 *5 *6)) (-5 *2 (-1249)) (-5 *1 (-1098 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1216 *5 *4)) (-4 *4 (-453)) (-4 *4 (-815)) (-14 *5 (-1161)) (-5 *2 (-568)) (-5 *1 (-1104 *4 *5))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-121)) (-4 *5 (-350)) (-5 *2 (-2 (|:| |cont| *5) (|:| -3276 (-634 (-2 (|:| |irr| *3) (|:| -3959 (-568))))))) (-5 *1 (-207 *5 *3)) (-4 *3 (-1219 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-310 (-215))) (-5 *1 (-202))))) +(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (-5 *2 (-381)) (-5 *1 (-197))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2553 (-634 (-850))) (|:| -1462 (-634 (-850))) (|:| |presup| (-634 (-850))) (|:| -3785 (-634 (-850))) (|:| |args| (-634 (-850))))) (-5 *1 (-1161)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-634 (-634 (-850)))) (-5 *1 (-1161))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-568)) (-5 *5 (-679 (-215))) (-5 *4 (-215)) (-5 *2 (-1035)) (-5 *1 (-745))))) +(((*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-14 *6 (-634 (-1161))) (-4 *7 (-230 (-1697 *6) (-763))) (-5 *2 (-242 (-4287 (QUOTE X) (QUOTE -2926)) *5)) (-5 *1 (-119 *5 *6 *3 *7 *4)) (-4 *3 (-324 *5 *7)) (-4 *4 (-117))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-39)) (-5 *2 (-121)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-96 *3)) (-4 *3 (-1090)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-212 *3)) (-4 *3 (-1090)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-494 *3)) (-4 *3 (-842)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1000 *3)) (-4 *3 (-1090)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1132 *3)) (-4 *3 (-1090))))) +(((*1 *2 *2) (-12 (-5 *2 (-679 (-310 (-568)))) (-5 *1 (-1031))))) +(((*1 *2 *1) (-12 (-4 *1 (-1259 *3 *4)) (-4 *3 (-842)) (-4 *4 (-1047)) (-5 *2 (-2 (|:| |k| (-814 *3)) (|:| |c| *4)))))) +(((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-615 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3284 *4) (|:| |sol?| (-121))) (-568) *4)) (-4 *4 (-365)) (-4 *5 (-1219 *4)) (-5 *1 (-578 *4 *5))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-568)) (-5 *5 (-679 (-215))) (-5 *4 (-215)) (-5 *2 (-1035)) (-5 *1 (-744))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1125 *4 *5)) (-4 *4 (-13 (-1090) (-39))) (-4 *5 (-13 (-1090) (-39))) (-5 *2 (-121)) (-5 *1 (-1126 *4 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-634 *6)) (-4 *6 (-1061 *3 *4 *5)) (-4 *3 (-558)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *1 (-978 *3 *4 *5 *6))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-679 *1)) (-5 *4 (-1244 *1)) (-4 *1 (-630 *5)) (-4 *5 (-1047)) (-5 *2 (-2 (|:| -2928 (-679 *5)) (|:| |vec| (-1244 *5)))))) ((*1 *2 *3) (-12 (-5 *3 (-679 *1)) (-4 *1 (-630 *4)) (-4 *4 (-1047)) (-5 *2 (-679 *4))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-634 (-887 *3))) (-5 *1 (-887 *3)) (-4 *3 (-1090))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-763)) (-4 *5 (-350)) (-5 *2 (-634 *3)) (-5 *1 (-344 *5 *3)) (-4 *3 (-1219 *5))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-568)) (-5 *5 (-679 (-215))) (-5 *4 (-215)) (-5 *2 (-1035)) (-5 *1 (-744))))) +(((*1 *2 *2) (-12 (-5 *2 (-310 (-215))) (-5 *1 (-263))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-634 (-242 *4 *5))) (-5 *2 (-242 *4 *5)) (-14 *4 (-634 (-1161))) (-4 *5 (-453)) (-5 *1 (-622 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-420 *3)) (-4 *3 (-558)))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-2 (|:| -3848 *4) (|:| -3206 (-568))))) (-4 *4 (-1219 (-568))) (-5 *2 (-763)) (-5 *1 (-443 *4))))) +(((*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-150) (-27) (-1037 (-568)) (-1037 (-409 (-568))))) (-4 *5 (-1219 *4)) (-5 *2 (-1157 (-409 *5))) (-5 *1 (-610 *4 *5)) (-5 *3 (-409 *5)))) ((*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-420 *6) *6)) (-4 *6 (-1219 *5)) (-4 *5 (-13 (-150) (-27) (-1037 (-568)) (-1037 (-409 (-568))))) (-5 *2 (-1157 (-409 *6))) (-5 *1 (-610 *5 *6)) (-5 *3 (-409 *6))))) +(((*1 *2 *3 *3 *4) (-12 (-5 *3 (-763)) (-4 *2 (-13 (-558) (-453))) (-5 *1 (-346 *2 *4)) (-4 *4 (-52 *2 *3))))) +(((*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-744))))) +(((*1 *2 *2) (-12 (-5 *2 (-828 (-215))) (-5 *1 (-217))))) +(((*1 *2 *2) (-12 (-5 *2 (-634 (-634 *3))) (-4 *3 (-842)) (-5 *1 (-1167 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-763)) (-4 *1 (-1219 *3)) (-4 *3 (-1047))))) +(((*1 *2 *1) (-12 (-5 *2 (-1244 (-2 (|:| |scaleX| (-215)) (|:| |scaleY| (-215)) (|:| |deltaX| (-215)) (|:| |deltaY| (-215)) (|:| -1526 (-568)) (|:| -4257 (-568)) (|:| |spline| (-568)) (|:| -1718 (-568)) (|:| |axesColor| (-869)) (|:| -2832 (-568)) (|:| |unitsColor| (-869)) (|:| |showing| (-568))))) (-5 *1 (-1245))))) +(((*1 *2 *3) (-12 (-5 *3 (-215)) (-5 *2 (-409 (-568))) (-5 *1 (-299))))) +(((*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *5 (-215)) (-5 *2 (-1035)) (-5 *1 (-744))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-1244 (-310 (-215)))) (-5 *4 (-634 (-1161))) (-5 *2 (-679 (-310 (-215)))) (-5 *1 (-197)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-1090)) (-4 *6 (-895 *5)) (-5 *2 (-679 *6)) (-5 *1 (-681 *5 *6 *3 *4)) (-4 *3 (-375 *6)) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4519))))))) +(((*1 *1 *1) (-12 (-4 *2 (-350)) (-4 *2 (-1047)) (-5 *1 (-702 *2 *3)) (-4 *3 (-1219 *2))))) +(((*1 *2 *3) (-12 (-4 *4 (-13 (-558) (-842) (-1037 (-568)))) (-5 *2 (-169 (-310 *4))) (-5 *1 (-180 *4 *3)) (-4 *3 (-13 (-27) (-1181) (-432 (-169 *4)))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-169 *3)) (-5 *1 (-1185 *4 *3)) (-4 *3 (-13 (-27) (-1181) (-432 *4)))))) +(((*1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-472)))) ((*1 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-472)))) ((*1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-927))))) +(((*1 *2 *1) (-12 (-4 *1 (-350)) (-5 *2 (-763)))) ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-404)) (-5 *2 (-763))))) +(((*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *5 (-215)) (-5 *2 (-1035)) (-5 *1 (-744))))) +(((*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-899 (-568))) (-5 *1 (-913)))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-568))) (-5 *2 (-899 (-568))) (-5 *1 (-913))))) +(((*1 *2 *2) (|partial| -12 (-4 *3 (-365)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-529 *3 *4 *5 *2)) (-4 *2 (-677 *3 *4 *5)))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-558)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-4 *7 (-993 *4)) (-4 *2 (-677 *7 *8 *9)) (-5 *1 (-530 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-677 *4 *5 *6)) (-4 *8 (-375 *7)) (-4 *9 (-375 *7)))) ((*1 *1 *1) (|partial| -12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (-4 *2 (-365)))) ((*1 *2 *2) (|partial| -12 (-4 *3 (-365)) (-4 *3 (-172)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-678 *3 *4 *5 *2)) (-4 *2 (-677 *3 *4 *5)))) ((*1 *1 *1) (|partial| -12 (-5 *1 (-679 *2)) (-4 *2 (-365)) (-4 *2 (-1047)))) ((*1 *1 *1) (|partial| -12 (-4 *1 (-1111 *2 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-230 *2 *3)) (-4 *5 (-230 *2 *3)) (-4 *3 (-365)))) ((*1 *2 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-842)) (-5 *1 (-1167 *3))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4520)) (-4 *1 (-239 *2)) (-4 *2 (-1195))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-138)) (-5 *3 (-763)) (-5 *2 (-1249))))) +(((*1 *2 *3) (-12 (-4 *4 (-301)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1112 *4 *5 *6 *3)) (-4 *3 (-677 *4 *5 *6))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-634 *6)) (-4 *6 (-1061 *3 *4 *5)) (-4 *3 (-150)) (-4 *3 (-301)) (-4 *3 (-558)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *1 (-978 *3 *4 *5 *6))))) (((*1 *1) (-5 *1 (-142)))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-892 (-560))) (-5 *4 (-560)) (-5 *2 (-671 *4)) (-5 *1 (-1020 *5)) (-4 *5 (-1039)))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-560))) (-5 *2 (-671 (-560))) (-5 *1 (-1020 *4)) (-4 *4 (-1039)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-892 (-560)))) (-5 *4 (-560)) (-5 *2 (-626 (-671 *4))) (-5 *1 (-1020 *5)) (-4 *5 (-1039)))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-626 (-560)))) (-5 *2 (-626 (-671 (-560)))) (-5 *1 (-1020 *4)) (-4 *4 (-1039))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-626 *2)) (-4 *2 (-1082)) (-4 *2 (-1187))))) -(((*1 *2 *2) (-12 (-5 *2 (-626 (-304 (-213)))) (-5 *1 (-258))))) +(((*1 *1 *1 *1) (|partial| -4 *1 (-137)))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-453))) (-5 *1 (-1187 *3 *2)) (-4 *2 (-13 (-432 *3) (-1181)))))) +(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))) (-5 *2 (-1035)) (-5 *1 (-299))))) +(((*1 *2 *1) (-12 (-5 *2 (-1092 *3)) (-5 *1 (-900 *3)) (-4 *3 (-370)) (-4 *3 (-1090))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 *2)) (-4 *2 (-432 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-13 (-842) (-558)))))) +(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-679 (-568))) (-5 *3 (-634 (-568))) (-5 *1 (-1100))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1244 *5)) (-4 *5 (-787)) (-5 *2 (-121)) (-5 *1 (-837 *4 *5)) (-14 *4 (-763))))) +(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-666 *3)) (-4 *3 (-1090))))) +(((*1 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-250))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-900 (-568))) (-5 *4 (-568)) (-5 *2 (-679 *4)) (-5 *1 (-1028 *5)) (-4 *5 (-1047)))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-568))) (-5 *2 (-679 (-568))) (-5 *1 (-1028 *4)) (-4 *4 (-1047)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-900 (-568)))) (-5 *4 (-568)) (-5 *2 (-634 (-679 *4))) (-5 *1 (-1028 *5)) (-4 *5 (-1047)))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-634 (-568)))) (-5 *2 (-634 (-679 (-568)))) (-5 *1 (-1028 *4)) (-4 *4 (-1047))))) +(((*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-43 (-409 (-568)))) (-4 *2 (-1047))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-554))))) +(((*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-409 (-953 *6)) (-1150 (-1161) (-953 *6)))) (-5 *5 (-763)) (-4 *6 (-453)) (-5 *2 (-634 (-679 (-409 (-953 *6))))) (-5 *1 (-286 *6)) (-5 *4 (-679 (-409 (-953 *6)))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-409 (-953 *5)) (-1150 (-1161) (-953 *5)))) (|:| |eigmult| (-763)) (|:| |eigvec| (-634 *4)))) (-4 *5 (-453)) (-5 *2 (-634 (-679 (-409 (-953 *5))))) (-5 *1 (-286 *5)) (-5 *4 (-679 (-409 (-953 *5))))))) +(((*1 *2 *1) (-12 (-4 *1 (-665 *2)) (-4 *2 (-1195))))) +(((*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-817))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-121) *2)) (-4 *2 (-138)) (-5 *1 (-1076 *2)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-568) *2 *2)) (-4 *2 (-138)) (-5 *1 (-1076 *2))))) +(((*1 *2 *3) (-12 (-5 *3 (-1 *5 (-634 *5))) (-4 *5 (-1234 *4)) (-4 *4 (-43 (-409 (-568)))) (-5 *2 (-1 (-1141 *4) (-634 (-1141 *4)))) (-5 *1 (-1236 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-172))))) +(((*1 *2) (|partial| -12 (-4 *3 (-558)) (-4 *3 (-172)) (-5 *2 (-2 (|:| |particular| *1) (|:| -3746 (-634 *1)))) (-4 *1 (-369 *3)))) ((*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-454 *3 *4 *5 *6)) (|:| -3746 (-634 (-454 *3 *4 *5 *6))))) (-5 *1 (-454 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-634 (-1161))) (-14 *6 (-1244 (-679 *3)))))) +(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-123)) (-5 *4 (-1161)) (-4 *6 (-1047)) (-4 *6 (-13 (-842) (-558) (-609 (-541)))) (-5 *2 (-2 (|:| -3268 (-3 (-568) "failed")) (|:| -1379 (-3 (-568) "failed")) (|:| |ker| (-607 *5)))) (-5 *1 (-1024 *6 *5)) (-4 *5 (-13 (-432 *6) (-23) (-1037 (-568)) (-1037 *4) (-895 *4) (-161)))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-917)) (-4 *4 (-370)) (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *6 (-950 *4 *7 (-852 *5))) (-4 *7 (-230 (-1697 *5) (-763))) (-4 *8 (-971 *4)) (-4 *9 (-641 *4)) (-4 *10 (-920 *4 *9)) (-4 *11 (-235 *10)) (-4 *12 (-536 *4 *5 *6 *7 *8 *9 *10 *11 *14)) (-4 *14 (-117)) (-5 *2 (-568)) (-5 *1 (-467 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13 *14)) (-4 *13 (-258 *12)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-917)) (-5 *2 (-568)) (-5 *1 (-867 *4 *5 *6)) (-4 (-857 *4) (-370)) (-4 *4 (-350)) (-14 *5 (-634 (-1161))) (-4 *6 (-117)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-917)) (-5 *2 (-568)) (-5 *1 (-868 *4 *5 *6)) (-4 *4 (-370)) (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *6 (-117))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568)))))) (-5 *2 (-634 (-409 (-568)))) (-5 *1 (-1019 *4)) (-4 *4 (-1219 (-568)))))) +(((*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-568) "failed") *5)) (-4 *5 (-1047)) (-5 *2 (-568)) (-5 *1 (-548 *5 *3)) (-4 *3 (-1219 *5)))) ((*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-568) "failed") *4)) (-4 *4 (-1047)) (-5 *2 (-568)) (-5 *1 (-548 *4 *3)) (-4 *3 (-1219 *4)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-568) "failed") *4)) (-4 *4 (-1047)) (-5 *2 (-568)) (-5 *1 (-548 *4 *3)) (-4 *3 (-1219 *4))))) +(((*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-121)) (-5 *1 (-887 *4)) (-4 *4 (-1090))))) +(((*1 *2 *2) (-12 (-5 *2 (-634 (-310 (-215)))) (-5 *1 (-263))))) +(((*1 *2 *3 *1) (-12 (|has| $ (-6 -4519)) (-5 *2 (-121)) (-5 *1 (-96 *3)) (-4 *3 (-1090)) (-4 *3 (-1090)))) ((*1 *2 *3 *1) (-12 (|has| $ (-6 -4519)) (-5 *2 (-121)) (-5 *1 (-212 *3)) (-4 *3 (-1090)) (-4 *3 (-1090)))) ((*1 *2 *3 *1) (-12 (|has| $ (-6 -4519)) (-5 *2 (-121)) (-5 *1 (-494 *3)) (-4 *3 (-1090)) (-4 *3 (-842)))) ((*1 *2 *3 *1) (-12 (|has| *1 (-6 -4519)) (-4 *1 (-499 *3)) (-4 *3 (-1195)) (-4 *3 (-1090)) (-5 *2 (-121)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-900 *4)) (-4 *4 (-1090)) (-5 *2 (-121)) (-5 *1 (-899 *4)))) ((*1 *2 *3 *1) (-12 (|has| $ (-6 -4519)) (-5 *2 (-121)) (-5 *1 (-1000 *3)) (-4 *3 (-1090)) (-4 *3 (-1090)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-917)) (-5 *2 (-121)) (-5 *1 (-1091 *4 *5)) (-14 *4 *3) (-14 *5 *3))) ((*1 *2 *3 *1) (-12 (|has| $ (-6 -4519)) (-5 *2 (-121)) (-5 *1 (-1132 *3)) (-4 *3 (-1090)) (-4 *3 (-1090))))) +(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-634 *3)) (-4 *3 (-365)) (-5 *1 (-653 *3))))) +(((*1 *2 *3 *4 *5 *6) (-12 (-4 *6 (-365)) (-14 *7 (-634 (-1161))) (-4 *9 (-230 (-1697 *7) (-763))) (-5 *2 (-2 (|:| |mult| (-763)) (|:| |subMult| (-763)) (|:| |blUpRec| (-634 (-2 (|:| |recTransStr| (-242 (-4287 (QUOTE X) (QUOTE -2926)) *6)) (|:| |recPoint| (-33 *6)) (|:| |recChart| *5) (|:| |definingExtension| *6)))))) (-5 *1 (-119 *6 *7 *8 *9 *5)) (-5 *3 (-242 (-4287 (QUOTE X) (QUOTE -2926)) *6)) (-5 *4 (-33 *6)) (-4 *8 (-324 *6 *9)) (-4 *5 (-117))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1061 *3 *4 *5)) (-4 *3 (-558)) (-5 *2 (-121))))) +(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-634 (-953 (-568)))) (-5 *4 (-634 (-1161))) (-5 *2 (-634 (-634 (-381)))) (-5 *1 (-1022)) (-5 *5 (-381)))) ((*1 *2 *3) (-12 (-5 *3 (-1044 *4 *5)) (-4 *4 (-13 (-840) (-301) (-150) (-1021))) (-14 *5 (-634 (-1161))) (-5 *2 (-634 (-634 (-1023 (-409 *4))))) (-5 *1 (-1268 *4 *5 *6)) (-14 *6 (-634 (-1161))))) ((*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-634 (-953 *5))) (-5 *4 (-121)) (-4 *5 (-13 (-840) (-301) (-150) (-1021))) (-5 *2 (-634 (-634 (-1023 (-409 *5))))) (-5 *1 (-1268 *5 *6 *7)) (-14 *6 (-634 (-1161))) (-14 *7 (-634 (-1161))))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-634 (-953 *5))) (-5 *4 (-121)) (-4 *5 (-13 (-840) (-301) (-150) (-1021))) (-5 *2 (-634 (-634 (-1023 (-409 *5))))) (-5 *1 (-1268 *5 *6 *7)) (-14 *6 (-634 (-1161))) (-14 *7 (-634 (-1161))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-953 *5))) (-5 *4 (-121)) (-4 *5 (-13 (-840) (-301) (-150) (-1021))) (-5 *2 (-634 (-634 (-1023 (-409 *5))))) (-5 *1 (-1268 *5 *6 *7)) (-14 *6 (-634 (-1161))) (-14 *7 (-634 (-1161))))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-953 *4))) (-4 *4 (-13 (-840) (-301) (-150) (-1021))) (-5 *2 (-634 (-634 (-1023 (-409 *4))))) (-5 *1 (-1268 *4 *5 *6)) (-14 *5 (-634 (-1161))) (-14 *6 (-634 (-1161)))))) +(((*1 *1 *1 *1) (-5 *1 (-121))) ((*1 *1 *1 *1) (-4 *1 (-132))) ((*1 *1 *1 *1) (-5 *1 (-850)))) +(((*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-842)) (-4 *5 (-788)) (-4 *6 (-558)) (-4 *7 (-950 *6 *5 *3)) (-5 *1 (-466 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1037 (-409 (-568))) (-365) (-10 -8 (-15 -2745 ($ *7)) (-15 -2317 (*7 $)) (-15 -2324 (*7 $)))))))) +(((*1 *2 *1) (-12 (-5 *2 (-409 (-953 *3))) (-5 *1 (-454 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-634 (-1161))) (-14 *6 (-1244 (-679 *3)))))) +(((*1 *1 *2) (-12 (-5 *1 (-219 *2)) (-4 *2 (-13 (-365) (-1181)))))) +(((*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-43 (-409 (-568)))) (-4 *2 (-1047))))) +(((*1 *2 *3) (-12 (-5 *3 (-1141 (-1141 *4))) (-5 *2 (-1141 *4)) (-5 *1 (-1145 *4)) (-4 *4 (-1047))))) +(((*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-817))))) +(((*1 *2 *3) (-12 (-5 *3 (-763)) (-4 *4 (-13 (-558) (-453))) (-5 *2 (-634 *4)) (-5 *1 (-346 *4 *5)) (-4 *5 (-52 *4 *3))))) +(((*1 *2) (-12 (-5 *2 (-634 (-763))) (-5 *1 (-1247)))) ((*1 *2 *2) (-12 (-5 *2 (-634 (-763))) (-5 *1 (-1247))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-365)) (-4 *3 (-1047)) (-5 *1 (-1145 *3))))) +(((*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-23)) (-5 *1 (-284 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1219 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) ((*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-701 *3 *2 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) ((*1 *2) (-12 (-4 *2 (-1219 *3)) (-5 *1 (-702 *3 *2)) (-4 *3 (-1047)))) ((*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-705 *3 *2 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) ((*1 *2) (-12 (-4 *1 (-863 *3)) (-5 *2 (-568))))) +(((*1 *2 *3) (-12 (-4 *4 (-993 *2)) (-4 *2 (-558)) (-5 *1 (-143 *2 *4 *3)) (-4 *3 (-375 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-993 *2)) (-4 *2 (-558)) (-5 *1 (-512 *2 *4 *5 *3)) (-4 *5 (-375 *2)) (-4 *3 (-375 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-679 *4)) (-4 *4 (-993 *2)) (-4 *2 (-558)) (-5 *1 (-682 *2 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-993 *2)) (-4 *2 (-558)) (-5 *1 (-1212 *2 *4 *3)) (-4 *3 (-1219 *4))))) +(((*1 *1 *1) (-5 *1 (-53))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-64 *5)) (-4 *5 (-1195)) (-4 *2 (-1195)) (-5 *1 (-63 *5 *2)))) ((*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1090)) (|has| *1 (-6 -4519)) (-4 *1 (-154 *2)) (-4 *2 (-1195)))) ((*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4519)) (-4 *1 (-154 *2)) (-4 *2 (-1195)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4519)) (-4 *1 (-154 *2)) (-4 *2 (-1195)))) ((*1 *2 *3) (-12 (-4 *4 (-1047)) (-5 *2 (-2 (|:| -2700 (-1157 *4)) (|:| |deg| (-917)))) (-5 *1 (-211 *4 *5)) (-5 *3 (-1157 *4)) (-4 *5 (-13 (-558) (-842))))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-232 *5 *6)) (-14 *5 (-763)) (-4 *6 (-1195)) (-4 *2 (-1195)) (-5 *1 (-231 *5 *6 *2)))) ((*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-284 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1219 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-310 *2)) (-4 *2 (-558)) (-4 *2 (-842)))) ((*1 *1 *1) (-12 (-4 *1 (-333 *2 *3 *4 *5)) (-4 *2 (-365)) (-4 *3 (-1219 *2)) (-4 *4 (-1219 (-409 *3))) (-4 *5 (-340 *2 *3 *4)))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1195)) (-4 *2 (-1195)) (-5 *1 (-373 *5 *4 *2 *6)) (-4 *4 (-375 *5)) (-4 *6 (-375 *2)))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1090)) (-4 *2 (-1090)) (-5 *1 (-425 *5 *4 *2 *6)) (-4 *4 (-427 *5)) (-4 *6 (-427 *2)))) ((*1 *1 *1) (-5 *1 (-504))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-634 *5)) (-4 *5 (-1195)) (-4 *2 (-1195)) (-5 *1 (-632 *5 *2)))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1047)) (-4 *2 (-1047)) (-4 *6 (-375 *5)) (-4 *7 (-375 *5)) (-4 *8 (-375 *2)) (-4 *9 (-375 *2)) (-5 *1 (-675 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-677 *5 *6 *7)) (-4 *10 (-677 *2 *8 *9)))) ((*1 *1 *2 *3) (-12 (-5 *1 (-701 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) (-12 (-4 *3 (-1047)) (-5 *1 (-702 *3 *2)) (-4 *2 (-1219 *3)))) ((*1 *1 *2 *3) (-12 (-5 *1 (-705 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-409 *4)) (-4 *4 (-1219 *3)) (-4 *3 (-365)) (-4 *3 (-172)) (-4 *1 (-714 *3 *4)))) ((*1 *1 *2) (-12 (-4 *3 (-172)) (-4 *1 (-714 *3 *2)) (-4 *2 (-1219 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1157 *1)) (-4 *1 (-858)))) ((*1 *2 *3) (-12 (-5 *3 (-634 *1)) (-4 *1 (-920 *4 *5)) (-4 *4 (-365)) (-4 *5 (-641 *4)) (-5 *2 (-236 *1)))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-958 *5)) (-4 *5 (-1195)) (-4 *2 (-1195)) (-5 *1 (-957 *5 *2)))) ((*1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *1 (-1034 *3 *4 *5 *2 *6)) (-4 *2 (-950 *3 *4 *5)) (-14 *6 (-634 *2)))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1047)) (-4 *2 (-1047)) (-14 *5 (-763)) (-14 *6 (-763)) (-4 *8 (-230 *6 *7)) (-4 *9 (-230 *5 *7)) (-4 *10 (-230 *6 *2)) (-4 *11 (-230 *5 *2)) (-5 *1 (-1052 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1050 *5 *6 *7 *8 *9)) (-4 *12 (-1050 *5 *6 *2 *10 *11)))) ((*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1141 *5)) (-4 *5 (-1195)) (-4 *2 (-1195)) (-5 *1 (-1139 *5 *2)))) ((*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-121) *2 *2)) (-4 *1 (-1189 *5 *6 *7 *2)) (-4 *5 (-558)) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *2 (-1061 *5 *6 *7)))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1244 *5)) (-4 *5 (-1195)) (-4 *2 (-1195)) (-5 *1 (-1243 *5 *2))))) +(((*1 *1 *1 *1) (-5 *1 (-121))) ((*1 *1 *1 *1) (-4 *1 (-132))) ((*1 *1 *1 *1) (-5 *1 (-1108)))) (((*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-139))))) -(((*1 *2 *3) (-12 (-5 *3 (-827 (-375))) (-5 *2 (-827 (-213))) (-5 *1 (-294))))) -(((*1 *1 *2) (-12 (-5 *2 (-626 (-2 (|:| -3655 (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (|:| -2371 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1133 (-213))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1396 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-555))))) -(((*1 *1 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-1187)))) ((*1 *2 *2) (-12 (-4 *3 (-1039)) (-5 *1 (-439 *3 *2)) (-4 *2 (-1211 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-630 *2 *3 *4)) (-4 *2 (-1082)) (-4 *3 (-23)) (-14 *4 *3)))) -(((*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-437 *3)) (-4 *3 (-1211 (-560)))))) -(((*1 *1 *1 *1) (-5 *1 (-121))) ((*1 *1 *1 *1) (-4 *1 (-132)))) -(((*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1241)) (-5 *1 (-432))))) -(((*1 *2 *3) (-12 (-5 *3 (-1236 *1)) (-4 *1 (-363 *4)) (-4 *4 (-170)) (-5 *2 (-626 (-945 *4))))) ((*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-626 (-945 *4))) (-5 *1 (-412 *3 *4)) (-4 *3 (-413 *4)))) ((*1 *2) (-12 (-4 *1 (-413 *3)) (-4 *3 (-170)) (-5 *2 (-626 (-945 *3))))) ((*1 *2) (-12 (-5 *2 (-626 (-945 *3))) (-5 *1 (-448 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *3 (-170)) (-14 *4 (-909)) (-14 *5 (-626 (-1153))) (-14 *6 (-1236 (-671 *3))))) ((*1 *2 *3) (-12 (-5 *3 (-1236 (-448 *4 *5 *6 *7))) (-5 *2 (-626 (-945 *4))) (-5 *1 (-448 *4 *5 *6 *7)) (-4 *4 (-550)) (-4 *4 (-170)) (-14 *5 (-909)) (-14 *6 (-626 (-1153))) (-14 *7 (-1236 (-671 *4)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1173))))) -(((*1 *1 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-834)))) ((*1 *1 *1) (-12 (-5 *1 (-806 *2)) (-4 *2 (-834)))) ((*1 *1 *1) (-12 (-5 *1 (-880 *2)) (-4 *2 (-834)))) ((*1 *1 *1) (|partial| -12 (-4 *1 (-1181 *2 *3 *4 *5)) (-4 *2 (-550)) (-4 *3 (-780)) (-4 *4 (-834)) (-4 *5 (-1053 *2 *3 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-755)) (-4 *1 (-1223 *3)) (-4 *3 (-1187)))) ((*1 *1 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1187))))) -(((*1 *2 *1) (-12 (-5 *2 (-811)) (-5 *1 (-812))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1211 *6)) (-4 *6 (-13 (-27) (-426 *5))) (-4 *5 (-13 (-834) (-550) (-1029 (-560)))) (-4 *8 (-1211 (-403 *7))) (-5 *2 (-577 *3)) (-5 *1 (-545 *5 *6 *7 *8 *3)) (-4 *3 (-334 *6 *7 *8))))) -(((*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-121)) (-5 *1 (-362 *3 *4)) (-4 *3 (-363 *4)))) ((*1 *2) (-12 (-4 *1 (-363 *3)) (-4 *3 (-170)) (-5 *2 (-121))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 (-626 (-936 (-213))))) (-5 *2 (-626 (-213))) (-5 *1 (-466))))) -(((*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-121))))) -(((*1 *2) (-12 (-4 *1 (-400)) (-5 *2 (-909)))) ((*1 *1) (-4 *1 (-542))) ((*1 *2 *2) (-12 (-5 *2 (-909)) (-5 *1 (-680)))) ((*1 *2) (-12 (-5 *2 (-909)) (-5 *1 (-680)))) ((*1 *2 *1) (-12 (-5 *2 (-626 *3)) (-5 *1 (-891 *3)) (-4 *3 (-1082))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-626 (-842))) (-5 *1 (-1153))))) -(((*1 *1 *2) (-12 (-5 *2 (-909)) (-5 *1 (-153 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-359)) (-14 *5 (-986 *3 *4))))) -(((*1 *1 *1) (-12 (|has| *1 (-6 -4505)) (-4 *1 (-152 *2)) (-4 *2 (-1187)) (-4 *2 (-1082))))) -(((*1 *2 *1) (-12 (-4 *3 (-359)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-121)) (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-942 *3 *4 *5))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-304 (-560))) (|:| -1333 (-304 (-375))) (|:| CF (-304 (-167 (-375)))) (|:| |switch| (-1152)))) (-5 *1 (-1152))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| $ (-6 -4505)) (-4 *4 (-1082)) (-5 *2 (-121)) (-5 *1 (-96 *4)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| $ (-6 -4505)) (-4 *4 (-1082)) (-5 *2 (-121)) (-5 *1 (-210 *4)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| $ (-6 -4505)) (-4 *4 (-834)) (-5 *2 (-121)) (-5 *1 (-487 *4)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| *1 (-6 -4505)) (-4 *1 (-492 *4)) (-4 *4 (-1187)) (-5 *2 (-121)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| $ (-6 -4505)) (-4 *4 (-1082)) (-5 *2 (-121)) (-5 *1 (-992 *4)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| $ (-6 -4505)) (-4 *4 (-1082)) (-5 *2 (-121)) (-5 *1 (-1124 *4))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-626 *1)) (-4 *1 (-1053 *4 *5 *6)) (-4 *4 (-1039)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-121)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-121)))) ((*1 *2 *1) (-12 (-4 *1 (-1181 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-121)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-1181 *4 *5 *6 *3)) (-4 *4 (-550)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-121))))) -(((*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-809))))) -(((*1 *2) (|partial| -12 (-4 *3 (-550)) (-4 *3 (-170)) (-5 *2 (-2 (|:| |particular| *1) (|:| -4374 (-626 *1)))) (-4 *1 (-363 *3)))) ((*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-448 *3 *4 *5 *6)) (|:| -4374 (-626 (-448 *3 *4 *5 *6))))) (-5 *1 (-448 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-909)) (-14 *5 (-626 (-1153))) (-14 *6 (-1236 (-671 *3)))))) -(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1236 *6)) (-5 *4 (-1236 (-560))) (-5 *5 (-560)) (-4 *6 (-1082)) (-5 *2 (-1 *6)) (-5 *1 (-1009 *6))))) -(((*1 *1 *1) (-12 (-5 *1 (-1141 *2 *3)) (-14 *2 (-909)) (-4 *3 (-1039))))) -(((*1 *2) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1191)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-403 *4))) (-5 *2 (-671 (-403 *4)))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-945 *6))) (-5 *4 (-626 (-1153))) (-4 *6 (-13 (-550) (-1029 *5))) (-4 *5 (-550)) (-5 *2 (-626 (-626 (-283 (-403 (-945 *6)))))) (-5 *1 (-1030 *5 *6))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-865 *2)) (-4 *2 (-1187)))) ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-867 *2)) (-4 *2 (-1187)))) ((*1 *2 *1) (-12 (-4 *1 (-1114 *3)) (-4 *3 (-1039)) (-5 *2 (-626 (-936 *3))))) ((*1 *1 *2) (-12 (-5 *2 (-626 (-936 *3))) (-4 *3 (-1039)) (-4 *1 (-1114 *3)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-626 (-626 *3))) (-4 *1 (-1114 *3)) (-4 *3 (-1039)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-626 (-936 *3))) (-4 *1 (-1114 *3)) (-4 *3 (-1039))))) -(((*1 *2 *1) (-12 (-4 *1 (-363 *2)) (-4 *2 (-170))))) -(((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-861)))) ((*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1039))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 (-304 (-213)))) (-5 *2 (-121)) (-5 *1 (-258)))) ((*1 *2 *3) (-12 (-5 *3 (-304 (-213))) (-5 *2 (-121)) (-5 *1 (-258)))) ((*1 *2 *3) (-12 (-4 *4 (-550)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-121)) (-5 *1 (-970 *4 *5 *6 *3)) (-4 *3 (-1053 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *3 (-1187)) (-5 *2 (-626 *1)) (-4 *1 (-1002 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-626 (-1141 *3 *4))) (-5 *1 (-1141 *3 *4)) (-14 *3 (-909)) (-4 *4 (-1039))))) -(((*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1236 *4)) (-5 *3 (-671 *4)) (-4 *4 (-359)) (-5 *1 (-651 *4)))) ((*1 *2 *3 *2) (|partial| -12 (-4 *4 (-359)) (-4 *5 (-13 (-369 *4) (-10 -7 (-6 -4506)))) (-4 *2 (-13 (-369 *4) (-10 -7 (-6 -4506)))) (-5 *1 (-652 *4 *5 *2 *3)) (-4 *3 (-669 *4 *5 *2)))) ((*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-626 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-359)) (-5 *1 (-801 *2 *3)) (-4 *3 (-638 *2)))) ((*1 *2 *3) (-12 (-4 *2 (-13 (-359) (-10 -8 (-15 ** ($ $ (-403 (-560))))))) (-5 *1 (-1108 *3 *2)) (-4 *3 (-1211 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560)))))) (-5 *2 (-626 (-213))) (-5 *1 (-294))))) -(((*1 *2 *3) (-12 (-5 *3 (-809)) (-5 *2 (-57)) (-5 *1 (-816))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1082)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1027)) (-5 *1 (-294)))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-1027))) (-5 *2 (-1027)) (-5 *1 (-294)))) ((*1 *1 *2) (-12 (-5 *2 (-626 *1)) (-4 *1 (-632 *3)) (-4 *3 (-1187)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1187)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1187)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1187)))) ((*1 *1 *1 *1) (-5 *1 (-1051))) ((*1 *2 *3) (-12 (-5 *3 (-1133 (-1133 *4))) (-5 *2 (-1133 *4)) (-5 *1 (-1130 *4)) (-4 *4 (-1187)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1187)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1187))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-626 (-57))) (-5 *1 (-879 *3)) (-4 *3 (-1082))))) -(((*1 *2 *2 *3 *3) (-12 (-5 *3 (-560)) (-4 *4 (-13 (-550) (-148))) (-5 *1 (-534 *4 *2)) (-4 *2 (-1226 *4)))) ((*1 *2 *2 *3 *3) (-12 (-5 *3 (-560)) (-4 *4 (-13 (-359) (-364) (-601 *3))) (-4 *5 (-1211 *4)) (-4 *6 (-706 *4 *5)) (-5 *1 (-538 *4 *5 *6 *2)) (-4 *2 (-1226 *6)))) ((*1 *2 *2 *3 *3) (-12 (-5 *3 (-560)) (-4 *4 (-13 (-359) (-364) (-601 *3))) (-5 *1 (-539 *4 *2)) (-4 *2 (-1226 *4)))) ((*1 *2 *2 *3 *3) (-12 (-5 *2 (-1133 *4)) (-5 *3 (-560)) (-4 *4 (-13 (-550) (-148))) (-5 *1 (-1129 *4))))) -(((*1 *2 *1) (-12 (-5 *1 (-210 *2)) (-4 *2 (-1082)))) ((*1 *2 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-1187)))) ((*1 *2 *1) (-12 (-5 *1 (-992 *2)) (-4 *2 (-1082))))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-550)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1979 *4))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1211 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-909)) (-5 *2 (-1149 *4)) (-5 *1 (-352 *4)) (-4 *4 (-344))))) -(((*1 *2 *1) (-12 (-4 *1 (-37 *3)) (-4 *3 (-359)) (-5 *2 (-626 *3)))) ((*1 *1 *2) (-12 (-4 *1 (-650 *2)) (-4 *2 (-1187)))) ((*1 *2 *1) (-12 (-4 *1 (-963 *3)) (-4 *3 (-359)) (-5 *2 (-626 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-626 (-1153))) (-5 *1 (-1153))))) -(((*1 *1 *2) (-12 (-5 *2 (-1249 (-1153) *3)) (-4 *3 (-1039)) (-5 *1 (-1256 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1249 *3 *4)) (-4 *3 (-834)) (-4 *4 (-1039)) (-5 *1 (-1258 *3 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 *4)) (-4 *4 (-1039)) (-5 *2 (-1236 *4)) (-5 *1 (-1154 *4)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-909)) (-5 *2 (-1236 *3)) (-5 *1 (-1154 *3)) (-4 *3 (-1039))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-626 *5)) (-5 *4 (-626 *6)) (-4 *5 (-1082)) (-4 *6 (-1187)) (-5 *2 (-1 *6 *5)) (-5 *1 (-623 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-626 *5)) (-5 *4 (-626 *2)) (-4 *5 (-1082)) (-4 *2 (-1187)) (-5 *1 (-623 *5 *2)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-626 *6)) (-5 *4 (-626 *5)) (-4 *6 (-1082)) (-4 *5 (-1187)) (-5 *2 (-1 *5 *6)) (-5 *1 (-623 *6 *5)))) ((*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-626 *5)) (-5 *4 (-626 *2)) (-4 *5 (-1082)) (-4 *2 (-1187)) (-5 *1 (-623 *5 *2)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-626 *5)) (-5 *4 (-626 *6)) (-4 *5 (-1082)) (-4 *6 (-1187)) (-5 *1 (-623 *5 *6)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-626 *5)) (-5 *4 (-626 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1082)) (-4 *2 (-1187)) (-5 *1 (-623 *5 *2)))) ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1121)) (-5 *3 (-145)) (-5 *2 (-755))))) -(((*1 *2 *1) (-12 (-5 *2 (-1100)) (-5 *1 (-113)))) ((*1 *2 *1) (-12 (-4 *1 (-138)) (-5 *2 (-755)))) ((*1 *2 *3 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-369 *3)) (-4 *3 (-1187)) (-4 *3 (-1082)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-1187)) (-4 *3 (-1082)) (-5 *2 (-560)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (-4 *1 (-369 *4)) (-4 *4 (-1187)) (-5 *2 (-560)))) ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1121)) (-5 *2 (-560)) (-5 *3 (-142)))) ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1121)) (-5 *2 (-560))))) -(((*1 *1) (-12 (-5 *1 (-630 *2 *3 *4)) (-4 *2 (-1082)) (-4 *3 (-23)) (-14 *4 *3)))) -(((*1 *2 *3) (-12 (-5 *3 (-626 (-533))) (-5 *2 (-1153)) (-5 *1 (-533))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-755)) (-5 *2 (-1241)) (-5 *1 (-1237)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-755)) (-5 *2 (-1241)) (-5 *1 (-1238))))) -(((*1 *1) (|partial| -12 (-4 *1 (-363 *2)) (-4 *2 (-550)) (-4 *2 (-170))))) -(((*1 *2 *3) (-12 (-5 *3 (-560)) (|has| *1 (-6 -4496)) (-4 *1 (-400)) (-5 *2 (-909))))) -(((*1 *1 *2) (-12 (-5 *2 (-626 (-2 (|:| |gen| *3) (|:| -2469 *4)))) (-4 *3 (-1082)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-630 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-121)))) ((*1 *2 *1) (-12 (-4 *3 (-359)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-121)) (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-942 *3 *4 *5)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-1055 *4 *3)) (-4 *4 (-13 (-832) (-359))) (-4 *3 (-1211 *4)) (-5 *2 (-121))))) -(((*1 *2 *3 *4) (|partial| -12 (-5 *4 (-403 *2)) (-4 *2 (-1211 *5)) (-5 *1 (-794 *5 *2 *3 *6)) (-4 *5 (-13 (-359) (-148) (-1029 (-403 (-560))))) (-4 *3 (-638 *2)) (-4 *6 (-638 *4)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-626 (-403 *2))) (-4 *2 (-1211 *5)) (-5 *1 (-794 *5 *2 *3 *6)) (-4 *5 (-13 (-359) (-148) (-1029 (-403 (-560))))) (-4 *3 (-638 *2)) (-4 *6 (-638 (-403 *2)))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-769 *2)) (-4 *2 (-1039)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-780)) (-4 *4 (-834))))) -(((*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-121))))) -(((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-375))) (-5 *1 (-1031)) (-5 *3 (-375))))) -(((*1 *1 *2) (-12 (-5 *2 (-626 (-842))) (-5 *1 (-842)))) ((*1 *1 *1 *1) (-5 *1 (-842)))) -(((*1 *2 *3) (-12 (-5 *3 (-909)) (-5 *2 (-1149 *4)) (-5 *1 (-352 *4)) (-4 *4 (-344))))) -(((*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1039))))) -(((*1 *2 *1) (-12 (-4 *1 (-593 *3 *2)) (-4 *3 (-1082)) (-4 *3 (-834)) (-4 *2 (-1187)))) ((*1 *2 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-834)))) ((*1 *2 *1) (-12 (-5 *1 (-806 *2)) (-4 *2 (-834)))) ((*1 *2 *1) (-12 (-5 *2 (-655 *3)) (-5 *1 (-880 *3)) (-4 *3 (-834)))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-1181 *3 *4 *5 *2)) (-4 *3 (-550)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *2 (-1053 *3 *4 *5)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-755)) (-4 *1 (-1223 *3)) (-4 *3 (-1187)))) ((*1 *2 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1187))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-836 *2)) (-4 *2 (-1039)) (-4 *2 (-359))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-382 *2)) (-4 *2 (-1082)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-806 *2)) (-4 *2 (-834))))) -(((*1 *2 *1) (-12 (-4 *1 (-1114 *3)) (-4 *3 (-1039)) (-5 *2 (-626 (-936 *3)))))) -(((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-626 (-485 *4 *5))) (-5 *3 (-626 (-844 *4))) (-14 *4 (-626 (-1153))) (-4 *5 (-447)) (-5 *1 (-469 *4 *5 *6)) (-4 *6 (-447))))) -(((*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *2 *5)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-1053 *3 *4 *2)) (-4 *2 (-834)))) ((*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *2 (-834))))) -(((*1 *1 *2 *3) (-12 (-5 *1 (-957 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-1082))))) -(((*1 *2) (-12 (-5 *2 (-891 (-560))) (-5 *1 (-905))))) -(((*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-5 *2 (-1 *5 *4)) (-5 *1 (-664 *4 *5))))) -(((*1 *2 *3) (-12 (-4 *4 (-344)) (-4 *5 (-321 *4)) (-4 *6 (-1211 *5)) (-5 *2 (-626 *3)) (-5 *1 (-761 *4 *5 *6 *3 *7)) (-4 *3 (-1211 *6)) (-14 *7 (-909))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-626 (-1135))) (-5 *1 (-1168))))) -(((*1 *1 *1) (-4 *1 (-39))) ((*1 *1 *1) (-12 (-5 *1 (-96 *2)) (-4 *2 (-1082)))) ((*1 *1 *1) (-5 *1 (-123))) ((*1 *1 *1) (-5 *1 (-169))) ((*1 *1 *1) (-12 (-5 *1 (-210 *2)) (-4 *2 (-1082)))) ((*1 *1 *1) (-12 (-5 *1 (-487 *2)) (-4 *2 (-834)))) ((*1 *1 *1) (-4 *1 (-542))) ((*1 *1 *1) (-12 (-5 *1 (-879 *2)) (-4 *2 (-1082)))) ((*1 *1 *1) (-12 (-5 *1 (-992 *2)) (-4 *2 (-1082)))) ((*1 *1 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1039)))) ((*1 *1 *1) (-12 (-5 *1 (-1117 *2 *3)) (-4 *2 (-13 (-1082) (-39))) (-4 *3 (-13 (-1082) (-39))))) ((*1 *1 *1) (-12 (-5 *1 (-1124 *2)) (-4 *2 (-1082))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-403 (-945 *5))) (-5 *4 (-1153)) (-4 *5 (-13 (-296) (-834) (-148))) (-5 *2 (-626 (-304 *5))) (-5 *1 (-1109 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-403 (-945 *5)))) (-5 *4 (-626 (-1153))) (-4 *5 (-13 (-296) (-834) (-148))) (-5 *2 (-626 (-626 (-304 *5)))) (-5 *1 (-1109 *5))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-447))) (-5 *1 (-1179 *3 *2)) (-4 *2 (-13 (-426 *3) (-1173)))))) -(((*1 *2 *1) (-12 (-5 *2 (-626 *4)) (-5 *1 (-1118 *3 *4)) (-4 *3 (-13 (-1082) (-39))) (-4 *4 (-13 (-1082) (-39)))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-755)) (-5 *1 (-106 *3)) (-4 *3 (-1082))))) -(((*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-1082)) (-4 *1 (-1079 *3)))) ((*1 *1) (-12 (-4 *1 (-1079 *2)) (-4 *2 (-1082))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-626 *2)) (-4 *2 (-1187)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-1133 *2)) (-4 *2 (-1187))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-403 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1211 *5)) (-5 *1 (-709 *5 *2)) (-4 *5 (-359))))) -(((*1 *2 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-1 *6 *5)) (-5 *1 (-688 *4 *5 *6)) (-4 *4 (-601 (-533))) (-4 *5 (-1187)) (-4 *6 (-1187))))) -(((*1 *2) (-12 (-5 *2 (-1241)) (-5 *1 (-432))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-52 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-779)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1039)) (-5 *1 (-55 *3 *4)) (-14 *4 (-626 (-1153))))) ((*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-62 *3 *4 *5)) (-4 *3 (-1187)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)))) ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-62 *3 *4 *5)) (-4 *3 (-1187)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-62 *3 *4 *5)) (-4 *3 (-1187)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-64 *5)) (-4 *5 (-1187)) (-4 *6 (-1187)) (-5 *2 (-64 *6)) (-5 *1 (-63 *5 *6)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1082)) (-5 *1 (-96 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-141 *5 *6 *7)) (-14 *5 (-560)) (-14 *6 (-755)) (-4 *7 (-170)) (-4 *8 (-170)) (-5 *2 (-141 *5 *6 *8)) (-5 *1 (-140 *5 *6 *7 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-167 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-5 *2 (-167 *6)) (-5 *1 (-166 *5 *6)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1082)) (-5 *1 (-210 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-304 *3) (-304 *3))) (-4 *3 (-13 (-1039) (-834))) (-5 *1 (-211 *3 *4)) (-14 *4 (-626 (-1153))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-228 *5 *6)) (-14 *5 (-755)) (-4 *6 (-1187)) (-4 *7 (-1187)) (-5 *2 (-228 *5 *7)) (-5 *1 (-227 *5 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-283 *5)) (-4 *5 (-1187)) (-4 *6 (-1187)) (-5 *2 (-283 *6)) (-5 *1 (-282 *5 *6)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1187)) (-5 *1 (-283 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1135)) (-5 *5 (-599 *6)) (-4 *6 (-291)) (-4 *2 (-1187)) (-5 *1 (-286 *6 *2)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-599 *5)) (-4 *5 (-291)) (-4 *2 (-291)) (-5 *1 (-287 *5 *2)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-599 *1)) (-4 *1 (-291)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-671 *5)) (-4 *5 (-1039)) (-4 *6 (-1039)) (-5 *2 (-671 *6)) (-5 *1 (-293 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-304 *5)) (-4 *5 (-834)) (-4 *6 (-834)) (-5 *2 (-304 *6)) (-5 *1 (-302 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-4 *6 (-1039)) (-4 *7 (-1039)) (-4 *5 (-779)) (-4 *2 (-318 *7 *5)) (-5 *1 (-316 *5 *6 *4 *7 *2)) (-4 *4 (-318 *6 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-328 *5 *6 *7 *8)) (-4 *5 (-359)) (-4 *6 (-1211 *5)) (-4 *7 (-1211 (-403 *6))) (-4 *8 (-334 *5 *6 *7)) (-4 *9 (-359)) (-4 *10 (-1211 *9)) (-4 *11 (-1211 (-403 *10))) (-5 *2 (-328 *9 *10 *11 *12)) (-5 *1 (-325 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-334 *9 *10 *11)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-330 *3)) (-4 *3 (-1082)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1191)) (-4 *8 (-1191)) (-4 *6 (-1211 *5)) (-4 *7 (-1211 (-403 *6))) (-4 *9 (-1211 *8)) (-4 *2 (-334 *8 *9 *10)) (-5 *1 (-332 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-334 *5 *6 *7)) (-4 *10 (-1211 (-403 *9))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1187)) (-4 *6 (-1187)) (-4 *2 (-369 *6)) (-5 *1 (-367 *5 *4 *6 *2)) (-4 *4 (-369 *5)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-378 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-1082)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-414 *5)) (-4 *5 (-550)) (-4 *6 (-550)) (-5 *2 (-414 *6)) (-5 *1 (-401 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-403 *5)) (-4 *5 (-550)) (-4 *6 (-550)) (-5 *2 (-403 *6)) (-5 *1 (-402 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-409 *5 *6 *7 *8)) (-4 *5 (-296)) (-4 *6 (-985 *5)) (-4 *7 (-1211 *6)) (-4 *8 (-13 (-405 *6 *7) (-1029 *6))) (-4 *9 (-296)) (-4 *10 (-985 *9)) (-4 *11 (-1211 *10)) (-5 *2 (-409 *9 *10 *11 *12)) (-5 *1 (-408 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-405 *10 *11) (-1029 *10))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-4 *2 (-413 *6)) (-5 *1 (-411 *4 *5 *2 *6)) (-4 *4 (-413 *5)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-550)) (-5 *1 (-414 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1039) (-834))) (-4 *6 (-13 (-1039) (-834))) (-4 *2 (-426 *6)) (-5 *1 (-417 *5 *4 *6 *2)) (-4 *4 (-426 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *2 (-421 *6)) (-5 *1 (-419 *5 *4 *6 *2)) (-4 *4 (-421 *5)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-834)) (-5 *1 (-487 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-492 *3)) (-4 *3 (-1187)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-510 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-834)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-577 *5)) (-4 *5 (-359)) (-4 *6 (-359)) (-5 *2 (-577 *6)) (-5 *1 (-576 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2962 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-359)) (-4 *6 (-359)) (-5 *2 (-2 (|:| -2962 *6) (|:| |coeff| *6))) (-5 *1 (-576 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-359)) (-4 *2 (-359)) (-5 *1 (-576 *5 *2)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-626 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-359)) (-4 *6 (-359)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-626 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-576 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-590 *5)) (-4 *5 (-1187)) (-4 *6 (-1187)) (-5 *2 (-590 *6)) (-5 *1 (-587 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-590 *6)) (-5 *5 (-590 *7)) (-4 *6 (-1187)) (-4 *7 (-1187)) (-4 *8 (-1187)) (-5 *2 (-590 *8)) (-5 *1 (-588 *6 *7 *8)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1133 *6)) (-5 *5 (-590 *7)) (-4 *6 (-1187)) (-4 *7 (-1187)) (-4 *8 (-1187)) (-5 *2 (-1133 *8)) (-5 *1 (-588 *6 *7 *8)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-590 *6)) (-5 *5 (-1133 *7)) (-4 *6 (-1187)) (-4 *7 (-1187)) (-4 *8 (-1187)) (-5 *2 (-1133 *8)) (-5 *1 (-588 *6 *7 *8)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1187)) (-5 *1 (-590 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-626 *5)) (-4 *5 (-1187)) (-4 *6 (-1187)) (-5 *2 (-626 *6)) (-5 *1 (-624 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-626 *6)) (-5 *5 (-626 *7)) (-4 *6 (-1187)) (-4 *7 (-1187)) (-4 *8 (-1187)) (-5 *2 (-626 *8)) (-5 *1 (-625 *6 *7 *8)))) ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-632 *3)) (-4 *3 (-1187)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1039)) (-4 *8 (-1039)) (-4 *6 (-369 *5)) (-4 *7 (-369 *5)) (-4 *2 (-669 *8 *9 *10)) (-5 *1 (-667 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-669 *5 *6 *7)) (-4 *9 (-369 *8)) (-4 *10 (-369 *8)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1039)) (-4 *8 (-1039)) (-4 *6 (-369 *5)) (-4 *7 (-369 *5)) (-4 *2 (-669 *8 *9 *10)) (-5 *1 (-667 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-669 *5 *6 *7)) (-4 *9 (-369 *8)) (-4 *10 (-369 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-550)) (-4 *7 (-550)) (-4 *6 (-1211 *5)) (-4 *2 (-1211 (-403 *8))) (-5 *1 (-691 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1211 (-403 *6))) (-4 *8 (-1211 *7)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1039)) (-4 *9 (-1039)) (-4 *5 (-834)) (-4 *6 (-780)) (-4 *2 (-942 *9 *7 *5)) (-5 *1 (-710 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-780)) (-4 *4 (-942 *8 *6 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-834)) (-4 *6 (-834)) (-4 *7 (-780)) (-4 *9 (-1039)) (-4 *2 (-942 *9 *8 *6)) (-5 *1 (-711 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-780)) (-4 *4 (-942 *9 *7 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-717 *5 *7)) (-4 *5 (-1039)) (-4 *6 (-1039)) (-4 *7 (-708)) (-5 *2 (-717 *6 *7)) (-5 *1 (-716 *5 *6 *7)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1039)) (-5 *1 (-717 *3 *4)) (-4 *4 (-708)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-769 *5)) (-4 *5 (-1039)) (-4 *6 (-1039)) (-5 *2 (-769 *6)) (-5 *1 (-768 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-4 *2 (-784 *6)) (-5 *1 (-785 *4 *5 *2 *6)) (-4 *4 (-784 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-820 *5)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-5 *2 (-820 *6)) (-5 *1 (-819 *5 *6)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-820 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-820 *5)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-5 *1 (-819 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-827 *5)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-5 *2 (-827 *6)) (-5 *1 (-826 *5 *6)))) ((*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-827 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-827 *5)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-5 *1 (-826 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-865 *5)) (-4 *5 (-1187)) (-4 *6 (-1187)) (-5 *2 (-865 *6)) (-5 *1 (-864 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-867 *5)) (-4 *5 (-1187)) (-4 *6 (-1187)) (-5 *2 (-867 *6)) (-5 *1 (-866 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-869 *5)) (-4 *5 (-1187)) (-4 *6 (-1187)) (-5 *2 (-869 *6)) (-5 *1 (-868 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-876 *5 *6)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-876 *5 *7)) (-5 *1 (-875 *5 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-879 *5)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-5 *2 (-879 *6)) (-5 *1 (-878 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-945 *5)) (-4 *5 (-1039)) (-4 *6 (-1039)) (-5 *2 (-945 *6)) (-5 *1 (-939 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-834)) (-4 *8 (-1039)) (-4 *6 (-780)) (-4 *2 (-13 (-1082) (-10 -8 (-15 -1716 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-755)))))) (-5 *1 (-944 *6 *7 *8 *5 *2)) (-4 *5 (-942 *8 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-950 *5)) (-4 *5 (-1187)) (-4 *6 (-1187)) (-5 *2 (-950 *6)) (-5 *1 (-949 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-936 *5)) (-4 *5 (-1039)) (-4 *6 (-1039)) (-5 *2 (-936 *6)) (-5 *1 (-974 *5 *6)))) ((*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-945 *4))) (-4 *4 (-1039)) (-4 *2 (-942 (-945 *4) *5 *6)) (-4 *5 (-780)) (-4 *6 (-13 (-834) (-10 -8 (-15 -4255 ((-1153) $)) (-15 -1395 ((-3 $ "failed") (-1153)))))) (-5 *1 (-977 *4 *5 *6 *2)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-550)) (-4 *6 (-550)) (-4 *2 (-985 *6)) (-5 *1 (-983 *5 *6 *4 *2)) (-4 *4 (-985 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-4 *2 (-989 *6)) (-5 *1 (-990 *4 *5 *2 *6)) (-4 *4 (-989 *5)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1082)) (-5 *1 (-992 *3)))) ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039)) (-4 *6 (-226 *4 *5)) (-4 *7 (-226 *3 *5)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039)) (-4 *6 (-226 *4 *5)) (-4 *7 (-226 *3 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1039)) (-4 *10 (-1039)) (-14 *5 (-755)) (-14 *6 (-755)) (-4 *8 (-226 *6 *7)) (-4 *9 (-226 *5 *7)) (-4 *2 (-1042 *5 *6 *10 *11 *12)) (-5 *1 (-1044 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1042 *5 *6 *7 *8 *9)) (-4 *11 (-226 *6 *10)) (-4 *12 (-226 *5 *10)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1076 *5)) (-4 *5 (-1187)) (-4 *6 (-1187)) (-5 *2 (-1076 *6)) (-5 *1 (-1072 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1076 *5)) (-4 *5 (-832)) (-4 *5 (-1187)) (-4 *6 (-1187)) (-5 *2 (-626 *6)) (-5 *1 (-1072 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1074 *5)) (-4 *5 (-1187)) (-4 *6 (-1187)) (-5 *2 (-1074 *6)) (-5 *1 (-1073 *5 *6)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1077 *4 *2)) (-4 *4 (-832)) (-4 *2 (-1126 *4)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1082)) (-5 *1 (-1124 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1133 *5)) (-4 *5 (-1187)) (-4 *6 (-1187)) (-5 *2 (-1133 *6)) (-5 *1 (-1131 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1133 *6)) (-5 *5 (-1133 *7)) (-4 *6 (-1187)) (-4 *7 (-1187)) (-4 *8 (-1187)) (-5 *2 (-1133 *8)) (-5 *1 (-1132 *6 *7 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1149 *5)) (-4 *5 (-1039)) (-4 *6 (-1039)) (-5 *2 (-1149 *6)) (-5 *1 (-1146 *5 *6)))) ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1164 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1199 *5 *7 *9)) (-4 *5 (-1039)) (-4 *6 (-1039)) (-14 *7 (-1153)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1199 *6 *8 *10)) (-5 *1 (-1194 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1153)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1202 *5)) (-4 *5 (-1187)) (-4 *6 (-1187)) (-5 *2 (-1202 *6)) (-5 *1 (-1201 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1202 *5)) (-4 *5 (-832)) (-4 *5 (-1187)) (-4 *6 (-1187)) (-5 *2 (-1133 *6)) (-5 *1 (-1201 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1208 *5 *6)) (-14 *5 (-1153)) (-4 *6 (-1039)) (-4 *8 (-1039)) (-5 *2 (-1208 *7 *8)) (-5 *1 (-1203 *5 *6 *7 *8)) (-14 *7 (-1153)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1039)) (-4 *6 (-1039)) (-4 *2 (-1211 *6)) (-5 *1 (-1209 *5 *4 *6 *2)) (-4 *4 (-1211 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1220 *5 *7 *9)) (-4 *5 (-1039)) (-4 *6 (-1039)) (-14 *7 (-1153)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1220 *6 *8 *10)) (-5 *1 (-1215 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1153)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1039)) (-4 *6 (-1039)) (-4 *2 (-1226 *6)) (-5 *1 (-1224 *5 *6 *4 *2)) (-4 *4 (-1226 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1236 *5)) (-4 *5 (-1187)) (-4 *6 (-1187)) (-5 *2 (-1236 *6)) (-5 *1 (-1235 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1236 *5)) (-4 *5 (-1187)) (-4 *6 (-1187)) (-5 *2 (-1236 *6)) (-5 *1 (-1235 *5 *6)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1251 *3 *4)) (-4 *3 (-834)) (-4 *4 (-1039)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1039)) (-5 *1 (-1257 *3 *4)) (-4 *4 (-830))))) -(((*1 *2 *3) (-12 (-5 *2 (-626 (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560)))))) (-5 *1 (-1011 *3)) (-4 *3 (-1211 (-560))))) ((*1 *2 *3 *4) (-12 (-5 *2 (-626 (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560)))))) (-5 *1 (-1011 *3)) (-4 *3 (-1211 (-560))) (-5 *4 (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560))))))) ((*1 *2 *3 *4) (-12 (-5 *2 (-626 (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560)))))) (-5 *1 (-1011 *3)) (-4 *3 (-1211 (-560))) (-5 *4 (-403 (-560))))) ((*1 *2 *3 *4 *5) (-12 (-5 *5 (-403 (-560))) (-5 *2 (-626 (-2 (|:| -3156 *5) (|:| -3437 *5)))) (-5 *1 (-1011 *3)) (-4 *3 (-1211 (-560))) (-5 *4 (-2 (|:| -3156 *5) (|:| -3437 *5))))) ((*1 *2 *3) (-12 (-5 *2 (-626 (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560)))))) (-5 *1 (-1012 *3)) (-4 *3 (-1211 (-403 (-560)))))) ((*1 *2 *3 *4) (-12 (-5 *2 (-626 (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560)))))) (-5 *1 (-1012 *3)) (-4 *3 (-1211 (-403 (-560)))) (-5 *4 (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560))))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-403 (-560))) (-5 *2 (-626 (-2 (|:| -3156 *4) (|:| -3437 *4)))) (-5 *1 (-1012 *3)) (-4 *3 (-1211 *4)))) ((*1 *2 *3 *4 *5) (-12 (-5 *5 (-403 (-560))) (-5 *2 (-626 (-2 (|:| -3156 *5) (|:| -3437 *5)))) (-5 *1 (-1012 *3)) (-4 *3 (-1211 *5)) (-5 *4 (-2 (|:| -3156 *5) (|:| -3437 *5)))))) -(((*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-359)) (-4 *1 (-37 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-37 *3)) (-4 *3 (-359)) (-5 *2 (-626 *3)))) ((*1 *1 *2) (-12 (-4 *1 (-43 *2)) (-4 *2 (-170)))) ((*1 *1 *2) (-12 (-5 *2 (-1236 *3)) (-4 *3 (-359)) (-14 *6 (-1236 (-671 *3))) (-5 *1 (-49 *3 *4 *5 *6)) (-14 *4 (-909)) (-14 *5 (-626 (-1153))))) ((*1 *1 *2) (-12 (-5 *2 (-1105 (-560) (-599 (-53)))) (-5 *1 (-53)))) ((*1 *2 *3) (-12 (-5 *2 (-57)) (-5 *1 (-56 *3)) (-4 *3 (-1187)))) ((*1 *1 *2) (-12 (-5 *2 (-1236 (-331 (-4162 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4162) (-680)))) (-5 *1 (-66 *3)) (-14 *3 (-1153)))) ((*1 *1 *2) (-12 (-5 *2 (-1236 (-331 (-4162) (-4162 (QUOTE XC)) (-680)))) (-5 *1 (-68 *3)) (-14 *3 (-1153)))) ((*1 *1 *2) (-12 (-5 *2 (-331 (-4162 (QUOTE X)) (-4162) (-680))) (-5 *1 (-69 *3)) (-14 *3 (-1153)))) ((*1 *1 *2) (-12 (-5 *2 (-671 (-331 (-4162) (-4162 (QUOTE X) (QUOTE HESS)) (-680)))) (-5 *1 (-70 *3)) (-14 *3 (-1153)))) ((*1 *1 *2) (-12 (-5 *2 (-331 (-4162) (-4162 (QUOTE XC)) (-680))) (-5 *1 (-71 *3)) (-14 *3 (-1153)))) ((*1 *1 *2) (-12 (-5 *2 (-1236 (-331 (-4162 (QUOTE X)) (-4162 (QUOTE -3095)) (-680)))) (-5 *1 (-76 *3)) (-14 *3 (-1153)))) ((*1 *1 *2) (-12 (-5 *2 (-1236 (-331 (-4162) (-4162 (QUOTE X)) (-680)))) (-5 *1 (-79 *3)) (-14 *3 (-1153)))) ((*1 *1 *2) (-12 (-5 *2 (-1236 (-331 (-4162 (QUOTE X) (QUOTE EPS)) (-4162 (QUOTE -3095)) (-680)))) (-5 *1 (-80 *3 *4 *5)) (-14 *3 (-1153)) (-14 *4 (-1153)) (-14 *5 (-1153)))) ((*1 *1 *2) (-12 (-5 *2 (-1236 (-331 (-4162 (QUOTE EPS)) (-4162 (QUOTE YA) (QUOTE YB)) (-680)))) (-5 *1 (-81 *3 *4 *5)) (-14 *3 (-1153)) (-14 *4 (-1153)) (-14 *5 (-1153)))) ((*1 *1 *2) (-12 (-5 *2 (-331 (-4162) (-4162 (QUOTE X)) (-680))) (-5 *1 (-82 *3)) (-14 *3 (-1153)))) ((*1 *1 *2) (-12 (-5 *2 (-331 (-4162) (-4162 (QUOTE X)) (-680))) (-5 *1 (-83 *3)) (-14 *3 (-1153)))) ((*1 *1 *2) (-12 (-5 *2 (-1236 (-331 (-4162) (-4162 (QUOTE XC)) (-680)))) (-5 *1 (-84 *3)) (-14 *3 (-1153)))) ((*1 *1 *2) (-12 (-5 *2 (-1236 (-331 (-4162) (-4162 (QUOTE X)) (-680)))) (-5 *1 (-85 *3)) (-14 *3 (-1153)))) ((*1 *1 *2) (-12 (-5 *2 (-1236 (-331 (-4162) (-4162 (QUOTE X)) (-680)))) (-5 *1 (-86 *3)) (-14 *3 (-1153)))) ((*1 *1 *2) (-12 (-5 *2 (-1236 (-331 (-4162 (QUOTE X) (QUOTE -3095)) (-4162) (-680)))) (-5 *1 (-87 *3)) (-14 *3 (-1153)))) ((*1 *1 *2) (-12 (-5 *2 (-671 (-331 (-4162 (QUOTE X) (QUOTE -3095)) (-4162) (-680)))) (-5 *1 (-88 *3)) (-14 *3 (-1153)))) ((*1 *1 *2) (-12 (-5 *2 (-671 (-331 (-4162 (QUOTE X)) (-4162) (-680)))) (-5 *1 (-89 *3)) (-14 *3 (-1153)))) ((*1 *1 *2) (-12 (-5 *2 (-1236 (-331 (-4162 (QUOTE X)) (-4162) (-680)))) (-5 *1 (-90 *3)) (-14 *3 (-1153)))) ((*1 *1 *2) (-12 (-5 *2 (-1236 (-331 (-4162 (QUOTE X)) (-4162 (QUOTE -3095)) (-680)))) (-5 *1 (-91 *3)) (-14 *3 (-1153)))) ((*1 *1 *2) (-12 (-5 *2 (-671 (-331 (-4162 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4162) (-680)))) (-5 *1 (-92 *3)) (-14 *3 (-1153)))) ((*1 *1 *2) (-12 (-5 *2 (-331 (-4162 (QUOTE X)) (-4162 (QUOTE -3095)) (-680))) (-5 *1 (-94 *3)) (-14 *3 (-1153)))) ((*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-96 *3)) (-4 *3 (-1082)) (-4 *3 (-1082)))) ((*1 *2 *1) (-12 (-5 *2 (-996 2)) (-5 *1 (-112)))) ((*1 *2 *1) (-12 (-5 *2 (-403 (-560))) (-5 *1 (-112)))) ((*1 *1 *2) (-12 (-5 *2 (-626 (-560))) (-4 *1 (-117)))) ((*1 *1 *2) (-12 (-5 *2 (-626 (-141 *3 *4 *5))) (-5 *1 (-141 *3 *4 *5)) (-14 *3 (-560)) (-14 *4 (-755)) (-4 *5 (-170)))) ((*1 *1 *2) (-12 (-5 *2 (-626 *5)) (-4 *5 (-170)) (-5 *1 (-141 *3 *4 *5)) (-14 *3 (-560)) (-14 *4 (-755)))) ((*1 *1 *2) (-12 (-5 *2 (-1119 *4 *5)) (-14 *4 (-755)) (-4 *5 (-170)) (-5 *1 (-141 *3 *4 *5)) (-14 *3 (-560)))) ((*1 *1 *2) (-12 (-5 *2 (-228 *4 *5)) (-14 *4 (-755)) (-4 *5 (-170)) (-5 *1 (-141 *3 *4 *5)) (-14 *3 (-560)))) ((*1 *2 *3) (-12 (-5 *3 (-1236 (-671 *4))) (-4 *4 (-170)) (-5 *2 (-1236 (-671 (-403 (-945 *4))))) (-5 *1 (-179 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-13 (-834) (-10 -8 (-15 -2778 ((-1135) $ (-1153))) (-15 -4106 ((-1241) $)) (-15 -1489 ((-1241) $))))) (-5 *1 (-203 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-996 10)) (-5 *1 (-206)))) ((*1 *2 *1) (-12 (-5 *2 (-403 (-560))) (-5 *1 (-206)))) ((*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-210 *3)) (-4 *3 (-1082)) (-4 *3 (-1082)))) ((*1 *2 *1) (-12 (-5 *2 (-626 *3)) (-5 *1 (-235 *3)) (-4 *3 (-834)))) ((*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-834)) (-5 *1 (-235 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-1074 (-304 *4))) (-4 *4 (-13 (-834) (-550) (-601 (-375)))) (-5 *2 (-1074 (-375))) (-5 *1 (-246 *4)))) ((*1 *1 *2) (-12 (-4 *1 (-257 *2)) (-4 *2 (-834)))) ((*1 *1 *2) (-12 (-5 *2 (-626 (-560))) (-5 *1 (-266)))) ((*1 *2 *1) (-12 (-4 *2 (-1211 *3)) (-5 *1 (-279 *3 *2 *4 *5 *6 *7)) (-4 *3 (-170)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-1220 *4 *5 *6)) (-4 *4 (-13 (-27) (-1173) (-426 *3))) (-14 *5 (-1153)) (-14 *6 *4) (-4 *3 (-13 (-834) (-1029 (-560)) (-622 (-560)) (-447))) (-5 *1 (-301 *3 *4 *5 *6)))) ((*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-322)))) ((*1 *2 *1) (-12 (-5 *2 (-304 *5)) (-5 *1 (-331 *3 *4 *5)) (-14 *3 (-626 (-1153))) (-14 *4 (-626 (-1153))) (-4 *5 (-383)))) ((*1 *2 *3) (-12 (-4 *4 (-344)) (-4 *2 (-321 *4)) (-5 *1 (-342 *3 *4 *2)) (-4 *3 (-321 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-344)) (-4 *2 (-321 *4)) (-5 *1 (-342 *2 *4 *3)) (-4 *3 (-321 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-370 *3 *4)) (-4 *3 (-834)) (-4 *4 (-170)) (-5 *2 (-1258 *3 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-370 *3 *4)) (-4 *3 (-834)) (-4 *4 (-170)) (-5 *2 (-1249 *3 *4)))) ((*1 *1 *2) (-12 (-4 *1 (-370 *2 *3)) (-4 *2 (-834)) (-4 *3 (-170)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1157)) (|:| -2111 (-626 (-322))))) (-4 *1 (-379)))) ((*1 *1 *2) (-12 (-5 *2 (-322)) (-4 *1 (-379)))) ((*1 *1 *2) (-12 (-5 *2 (-626 (-322))) (-4 *1 (-379)))) ((*1 *1 *2) (-12 (-5 *2 (-671 (-680))) (-4 *1 (-379)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1157)) (|:| -2111 (-626 (-322))))) (-4 *1 (-380)))) ((*1 *1 *2) (-12 (-5 *2 (-322)) (-4 *1 (-380)))) ((*1 *1 *2) (-12 (-5 *2 (-626 (-322))) (-4 *1 (-380)))) ((*1 *2 *1) (-12 (-4 *1 (-385)) (-5 *2 (-1135)))) ((*1 *1 *2) (-12 (-5 *2 (-1135)) (-4 *1 (-385)))) ((*1 *2 *3) (-12 (-5 *2 (-390)) (-5 *1 (-389 *3)) (-4 *3 (-1082)))) ((*1 *1 *2) (-12 (-5 *2 (-842)) (-5 *1 (-390)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1157)) (|:| -2111 (-626 (-322))))) (-4 *1 (-392)))) ((*1 *1 *2) (-12 (-5 *2 (-322)) (-4 *1 (-392)))) ((*1 *1 *2) (-12 (-5 *2 (-626 (-322))) (-4 *1 (-392)))) ((*1 *1 *2) (-12 (-5 *2 (-283 (-304 (-167 (-375))))) (-5 *1 (-394 *3 *4 *5 *6)) (-14 *3 (-1153)) (-14 *4 (-3 (|:| |fst| (-430)) (|:| -2303 "void"))) (-14 *5 (-626 (-1153))) (-14 *6 (-1157)))) ((*1 *1 *2) (-12 (-5 *2 (-283 (-304 (-375)))) (-5 *1 (-394 *3 *4 *5 *6)) (-14 *3 (-1153)) (-14 *4 (-3 (|:| |fst| (-430)) (|:| -2303 "void"))) (-14 *5 (-626 (-1153))) (-14 *6 (-1157)))) ((*1 *1 *2) (-12 (-5 *2 (-283 (-304 (-560)))) (-5 *1 (-394 *3 *4 *5 *6)) (-14 *3 (-1153)) (-14 *4 (-3 (|:| |fst| (-430)) (|:| -2303 "void"))) (-14 *5 (-626 (-1153))) (-14 *6 (-1157)))) ((*1 *1 *2) (-12 (-5 *2 (-304 (-167 (-375)))) (-5 *1 (-394 *3 *4 *5 *6)) (-14 *3 (-1153)) (-14 *4 (-3 (|:| |fst| (-430)) (|:| -2303 "void"))) (-14 *5 (-626 (-1153))) (-14 *6 (-1157)))) ((*1 *1 *2) (-12 (-5 *2 (-304 (-375))) (-5 *1 (-394 *3 *4 *5 *6)) (-14 *3 (-1153)) (-14 *4 (-3 (|:| |fst| (-430)) (|:| -2303 "void"))) (-14 *5 (-626 (-1153))) (-14 *6 (-1157)))) ((*1 *1 *2) (-12 (-5 *2 (-304 (-560))) (-5 *1 (-394 *3 *4 *5 *6)) (-14 *3 (-1153)) (-14 *4 (-3 (|:| |fst| (-430)) (|:| -2303 "void"))) (-14 *5 (-626 (-1153))) (-14 *6 (-1157)))) ((*1 *1 *2) (-12 (-5 *2 (-283 (-304 (-675)))) (-5 *1 (-394 *3 *4 *5 *6)) (-14 *3 (-1153)) (-14 *4 (-3 (|:| |fst| (-430)) (|:| -2303 "void"))) (-14 *5 (-626 (-1153))) (-14 *6 (-1157)))) ((*1 *1 *2) (-12 (-5 *2 (-283 (-304 (-680)))) (-5 *1 (-394 *3 *4 *5 *6)) (-14 *3 (-1153)) (-14 *4 (-3 (|:| |fst| (-430)) (|:| -2303 "void"))) (-14 *5 (-626 (-1153))) (-14 *6 (-1157)))) ((*1 *1 *2) (-12 (-5 *2 (-283 (-304 (-682)))) (-5 *1 (-394 *3 *4 *5 *6)) (-14 *3 (-1153)) (-14 *4 (-3 (|:| |fst| (-430)) (|:| -2303 "void"))) (-14 *5 (-626 (-1153))) (-14 *6 (-1157)))) ((*1 *1 *2) (-12 (-5 *2 (-304 (-675))) (-5 *1 (-394 *3 *4 *5 *6)) (-14 *3 (-1153)) (-14 *4 (-3 (|:| |fst| (-430)) (|:| -2303 "void"))) (-14 *5 (-626 (-1153))) (-14 *6 (-1157)))) ((*1 *1 *2) (-12 (-5 *2 (-304 (-680))) (-5 *1 (-394 *3 *4 *5 *6)) (-14 *3 (-1153)) (-14 *4 (-3 (|:| |fst| (-430)) (|:| -2303 "void"))) (-14 *5 (-626 (-1153))) (-14 *6 (-1157)))) ((*1 *1 *2) (-12 (-5 *2 (-304 (-682))) (-5 *1 (-394 *3 *4 *5 *6)) (-14 *3 (-1153)) (-14 *4 (-3 (|:| |fst| (-430)) (|:| -2303 "void"))) (-14 *5 (-626 (-1153))) (-14 *6 (-1157)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1157)) (|:| -2111 (-626 (-322))))) (-5 *1 (-394 *3 *4 *5 *6)) (-14 *3 (-1153)) (-14 *4 (-3 (|:| |fst| (-430)) (|:| -2303 "void"))) (-14 *5 (-626 (-1153))) (-14 *6 (-1157)))) ((*1 *1 *2) (-12 (-5 *2 (-626 (-322))) (-5 *1 (-394 *3 *4 *5 *6)) (-14 *3 (-1153)) (-14 *4 (-3 (|:| |fst| (-430)) (|:| -2303 "void"))) (-14 *5 (-626 (-1153))) (-14 *6 (-1157)))) ((*1 *1 *2) (-12 (-5 *2 (-322)) (-5 *1 (-394 *3 *4 *5 *6)) (-14 *3 (-1153)) (-14 *4 (-3 (|:| |fst| (-430)) (|:| -2303 "void"))) (-14 *5 (-626 (-1153))) (-14 *6 (-1157)))) ((*1 *1 *2) (-12 (-5 *2 (-323 *4)) (-4 *4 (-13 (-834) (-21))) (-5 *1 (-423 *3 *4)) (-4 *3 (-13 (-170) (-43 (-403 (-560))))))) ((*1 *1 *2) (-12 (-5 *1 (-423 *2 *3)) (-4 *2 (-13 (-170) (-43 (-403 (-560))))) (-4 *3 (-13 (-834) (-21))))) ((*1 *1 *2) (-12 (-5 *2 (-403 (-945 (-403 *3)))) (-4 *3 (-550)) (-4 *3 (-834)) (-4 *1 (-426 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-945 (-403 *3))) (-4 *3 (-550)) (-4 *3 (-834)) (-4 *1 (-426 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-403 *3)) (-4 *3 (-550)) (-4 *3 (-834)) (-4 *1 (-426 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1105 *3 (-599 *1))) (-4 *3 (-1039)) (-4 *3 (-834)) (-4 *1 (-426 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-430)))) ((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-430)))) ((*1 *1 *2) (-12 (-5 *2 (-1153)) (-5 *1 (-430)))) ((*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-430)))) ((*1 *1 *2) (-12 (-5 *2 (-430)) (-5 *1 (-433)))) ((*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-433)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1157)) (|:| -2111 (-626 (-322))))) (-4 *1 (-435)))) ((*1 *1 *2) (-12 (-5 *2 (-322)) (-4 *1 (-435)))) ((*1 *1 *2) (-12 (-5 *2 (-626 (-322))) (-4 *1 (-435)))) ((*1 *1 *2) (-12 (-5 *2 (-1236 (-680))) (-4 *1 (-435)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1157)) (|:| -2111 (-626 (-322))))) (-4 *1 (-436)))) ((*1 *1 *2) (-12 (-5 *2 (-322)) (-4 *1 (-436)))) ((*1 *1 *2) (-12 (-5 *2 (-626 (-322))) (-4 *1 (-436)))) ((*1 *1 *2) (-12 (-5 *2 (-1236 (-403 (-945 *3)))) (-4 *3 (-170)) (-14 *6 (-1236 (-671 *3))) (-5 *1 (-448 *3 *4 *5 *6)) (-14 *4 (-909)) (-14 *5 (-626 (-1153))))) ((*1 *1 *2) (-12 (-5 *2 (-626 (-626 (-936 (-213))))) (-5 *1 (-466)))) ((*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-466)))) ((*1 *1 *2) (-12 (-5 *2 (-1220 *3 *4 *5)) (-4 *3 (-1039)) (-14 *4 (-1153)) (-14 *5 *3) (-5 *1 (-472 *3 *4 *5)))) ((*1 *1 *2) (-12 (-5 *2 (-1232 *4)) (-14 *4 (-1153)) (-5 *1 (-472 *3 *4 *5)) (-4 *3 (-1039)) (-14 *5 *3))) ((*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-487 *3)) (-4 *3 (-1082)) (-4 *3 (-834)))) ((*1 *2 *1) (-12 (-5 *2 (-996 16)) (-5 *1 (-490)))) ((*1 *2 *1) (-12 (-5 *2 (-403 (-560))) (-5 *1 (-490)))) ((*1 *1 *2) (-12 (-5 *2 (-1105 (-560) (-599 (-496)))) (-5 *1 (-496)))) ((*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-503)))) ((*1 *1 *2) (-12 (-5 *2 (-626 *6)) (-4 *6 (-942 *3 *4 *5)) (-4 *3 (-359)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *1 (-506 *3 *4 *5 *6)))) ((*1 *1 *2) (-12 (-4 *3 (-170)) (-5 *1 (-594 *3 *2)) (-4 *2 (-728 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-1187)))) ((*1 *1 *2) (-12 (-4 *1 (-604 *2)) (-4 *2 (-1039)))) ((*1 *2 *1) (-12 (-5 *2 (-1254 *3 *4)) (-5 *1 (-610 *3 *4 *5)) (-4 *3 (-834)) (-4 *4 (-13 (-170) (-699 (-403 (-560))))) (-14 *5 (-909)))) ((*1 *2 *1) (-12 (-5 *2 (-1249 *3 *4)) (-5 *1 (-610 *3 *4 *5)) (-4 *3 (-834)) (-4 *4 (-13 (-170) (-699 (-403 (-560))))) (-14 *5 (-909)))) ((*1 *1 *2) (-12 (-4 *3 (-170)) (-5 *1 (-618 *3 *2)) (-4 *2 (-728 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-633 *3)) (-4 *3 (-359)) (-5 *2 (-1133 (-2 (|:| |k| (-560)) (|:| |c| *3)))))) ((*1 *1 *2) (-12 (-5 *2 (-1133 (-2 (|:| |k| (-560)) (|:| |c| *3)))) (-4 *3 (-359)) (-4 *1 (-633 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-659 *3)) (-5 *1 (-655 *3)) (-4 *3 (-834)))) ((*1 *2 *1) (-12 (-5 *2 (-806 *3)) (-5 *1 (-655 *3)) (-4 *3 (-834)))) ((*1 *2 *1) (-12 (-5 *2 (-950 (-950 (-950 *3)))) (-5 *1 (-658 *3)) (-4 *3 (-1082)))) ((*1 *1 *2) (-12 (-5 *2 (-950 (-950 (-950 *3)))) (-4 *3 (-1082)) (-5 *1 (-658 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-806 *3)) (-5 *1 (-659 *3)) (-4 *3 (-834)))) ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-663 *3)) (-4 *3 (-1082)))) ((*1 *1 *2) (-12 (-4 *3 (-1039)) (-4 *1 (-669 *3 *4 *2)) (-4 *4 (-369 *3)) (-4 *2 (-369 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-167 (-375))) (-5 *1 (-675)))) ((*1 *1 *2) (-12 (-5 *2 (-167 (-682))) (-5 *1 (-675)))) ((*1 *1 *2) (-12 (-5 *2 (-167 (-680))) (-5 *1 (-675)))) ((*1 *1 *2) (-12 (-5 *2 (-167 (-560))) (-5 *1 (-675)))) ((*1 *1 *2) (-12 (-5 *2 (-167 (-375))) (-5 *1 (-675)))) ((*1 *1 *2) (-12 (-5 *2 (-682)) (-5 *1 (-680)))) ((*1 *2 *1) (-12 (-5 *2 (-375)) (-5 *1 (-680)))) ((*1 *2 *3) (-12 (-5 *3 (-304 (-560))) (-5 *2 (-304 (-682))) (-5 *1 (-682)))) ((*1 *1 *2) (-12 (-5 *1 (-684 *2)) (-4 *2 (-1082)))) ((*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1135)) (-5 *1 (-692)))) ((*1 *2 *1) (-12 (-4 *2 (-170)) (-5 *1 (-693 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) (-12 (-4 *3 (-1039)) (-5 *1 (-694 *3 *2)) (-4 *2 (-1211 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1330 *3) (|:| -4034 *4))) (-5 *1 (-695 *3 *4 *5)) (-4 *3 (-834)) (-4 *4 (-1082)) (-14 *5 (-1 (-121) *2 *2)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| -1330 *3) (|:| -4034 *4))) (-4 *3 (-834)) (-4 *4 (-1082)) (-5 *1 (-695 *3 *4 *5)) (-14 *5 (-1 (-121) *2 *2)))) ((*1 *2 *1) (-12 (-4 *2 (-170)) (-5 *1 (-697 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-626 (-2 (|:| -2169 *3) (|:| -2175 *4)))) (-4 *3 (-1039)) (-4 *4 (-708)) (-5 *1 (-717 *3 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-403 (-726 *3 *4))) (-14 *3 (-1153)) (-4 *4 (-13 (-1039) (-834) (-550))) (-5 *1 (-725 *3 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-945 *4)) (-4 *4 (-1039)) (-5 *1 (-726 *3 *4)) (-14 *3 (-1153)))) ((*1 *1 *2) (-12 (-5 *2 (-1232 *3)) (-14 *3 (-1153)) (-5 *1 (-726 *3 *4)) (-4 *4 (-1039)))) ((*1 *1 *2) (-12 (-5 *1 (-726 *3 *2)) (-14 *3 (-1153)) (-4 *2 (-1039)))) ((*1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-747)))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (|:| |mdnia| (-2 (|:| |fn| (-304 (-213))) (|:| -1396 (-626 (-1076 (-827 (-213))))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))))) (-5 *1 (-753)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-304 (-213))) (|:| -1396 (-626 (-1076 (-827 (-213))))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (-5 *1 (-753)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (-5 *1 (-753)))) ((*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-753)))) ((*1 *2 *3) (-12 (-5 *2 (-758)) (-5 *1 (-757 *3)) (-4 *3 (-1187)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (-5 *1 (-795)))) ((*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-795)))) ((*1 *2 *1) (-12 (-4 *2 (-887 *3)) (-5 *1 (-804 *3 *2 *4)) (-4 *3 (-1082)) (-14 *4 *3))) ((*1 *1 *2) (-12 (-4 *3 (-1082)) (-14 *4 *3) (-5 *1 (-804 *3 *2 *4)) (-4 *2 (-887 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1153)) (-5 *1 (-811)))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-304 (-213))) (|:| -1394 (-626 (-213))) (|:| |lb| (-626 (-827 (-213)))) (|:| |cf| (-626 (-304 (-213)))) (|:| |ub| (-626 (-827 (-213)))))) (|:| |lsa| (-2 (|:| |lfn| (-626 (-304 (-213)))) (|:| -1394 (-626 (-213))))))) (-5 *1 (-825)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-626 (-304 (-213)))) (|:| -1394 (-626 (-213))))) (-5 *1 (-825)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-304 (-213))) (|:| -1394 (-626 (-213))) (|:| |lb| (-626 (-827 (-213)))) (|:| |cf| (-626 (-304 (-213)))) (|:| |ub| (-626 (-827 (-213)))))) (-5 *1 (-825)))) ((*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-825)))) ((*1 *1 *2) (-12 (-5 *2 (-1232 *3)) (-14 *3 (-1153)) (-5 *1 (-839 *3 *4 *5 *6)) (-4 *4 (-1039)) (-14 *5 (-101 *4)) (-14 *6 (-1 *4 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-841)))) ((*1 *1 *2) (-12 (-5 *2 (-945 *3)) (-4 *3 (-1039)) (-5 *1 (-845 *3 *4 *5 *6)) (-14 *4 (-626 (-1153))) (-14 *5 (-626 (-755))) (-14 *6 (-755)))) ((*1 *2 *1) (-12 (-5 *2 (-945 *3)) (-5 *1 (-845 *3 *4 *5 *6)) (-4 *3 (-1039)) (-14 *4 (-626 (-1153))) (-14 *5 (-626 (-755))) (-14 *6 (-755)))) ((*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-861)))) ((*1 *2 *3) (-12 (-5 *3 (-945 (-53))) (-5 *2 (-304 (-560))) (-5 *1 (-862)))) ((*1 *2 *3) (-12 (-5 *3 (-403 (-945 (-53)))) (-5 *2 (-304 (-560))) (-5 *1 (-862)))) ((*1 *1 *2) (-12 (-5 *1 (-880 *2)) (-4 *2 (-834)))) ((*1 *2 *1) (-12 (-5 *2 (-806 *3)) (-5 *1 (-880 *3)) (-4 *3 (-834)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-626 (-304 (-213)))) (|:| |constraints| (-626 (-2 (|:| |start| (-213)) (|:| |finish| (-213)) (|:| |grid| (-755)) (|:| |boundaryType| (-560)) (|:| |dStart| (-671 (-213))) (|:| |dFinish| (-671 (-213)))))) (|:| |f| (-626 (-626 (-304 (-213))))) (|:| |st| (-1135)) (|:| |tol| (-213)))) (-5 *1 (-885)))) ((*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-885)))) ((*1 *2 *1) (-12 (-5 *2 (-1174 *3)) (-5 *1 (-888 *3)) (-4 *3 (-1082)))) ((*1 *1 *2) (-12 (-5 *2 (-626 (-892 *3))) (-4 *3 (-1082)) (-5 *1 (-891 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-626 (-892 *3))) (-5 *1 (-891 *3)) (-4 *3 (-1082)))) ((*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-1082)) (-5 *1 (-892 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-626 (-626 *3))) (-4 *3 (-1082)) (-5 *1 (-892 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-403 (-414 *3))) (-4 *3 (-296)) (-5 *1 (-902 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-403 *3)) (-5 *1 (-902 *3)) (-4 *3 (-296)))) ((*1 *2 *3) (-12 (-5 *3 (-482)) (-5 *2 (-304 *4)) (-5 *1 (-907 *4)) (-4 *4 (-13 (-834) (-550))))) ((*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-359)) (-4 *1 (-963 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-963 *3)) (-4 *3 (-359)) (-5 *2 (-626 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-626 (-560))) (-5 *1 (-964)))) ((*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-992 *3)) (-4 *3 (-1082)) (-4 *3 (-1082)))) ((*1 *2 *1) (-12 (-5 *2 (-403 (-560))) (-5 *1 (-996 *3)) (-14 *3 (-560)))) ((*1 *2 *3) (-12 (-5 *2 (-1241)) (-5 *1 (-1025 *3)) (-4 *3 (-1187)))) ((*1 *2 *3) (-12 (-5 *3 (-300)) (-5 *1 (-1025 *2)) (-4 *2 (-1187)))) ((*1 *1 *2) (-12 (-4 *3 (-359)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *1 (-1026 *3 *4 *5 *2 *6)) (-4 *2 (-942 *3 *4 *5)) (-14 *6 (-626 *2)))) ((*1 *1 *2) (-12 (-4 *1 (-1029 *2)) (-4 *2 (-1187)))) ((*1 *2 *3) (-12 (-5 *2 (-403 (-945 *3))) (-5 *1 (-1034 *3)) (-4 *3 (-550)))) ((*1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-1039)))) ((*1 *2 *1) (-12 (-5 *2 (-671 *5)) (-5 *1 (-1043 *3 *4 *5)) (-14 *3 (-755)) (-14 *4 (-755)) (-4 *5 (-1039)))) ((*1 *1 *2) (-12 (-4 *3 (-1039)) (-4 *4 (-834)) (-5 *1 (-1106 *3 *4 *2)) (-4 *2 (-942 *3 (-526 *4) *4)))) ((*1 *1 *2) (-12 (-4 *3 (-1039)) (-4 *2 (-834)) (-5 *1 (-1106 *3 *2 *4)) (-4 *4 (-942 *3 (-526 *2) *2)))) ((*1 *2 *1) (-12 (-4 *1 (-1114 *3)) (-4 *3 (-1039)) (-5 *2 (-842)))) ((*1 *2 *1) (-12 (-5 *2 (-671 *4)) (-5 *1 (-1119 *3 *4)) (-14 *3 (-755)) (-4 *4 (-1039)))) ((*1 *1 *2) (-12 (-5 *2 (-145)) (-4 *1 (-1121)))) ((*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-1124 *3)) (-4 *3 (-1082)) (-4 *3 (-1082)))) ((*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-1187)) (-5 *1 (-1133 *3)))) ((*1 *2 *3) (-12 (-5 *2 (-1133 *3)) (-5 *1 (-1137 *3)) (-4 *3 (-1039)))) ((*1 *1 *2) (-12 (-5 *2 (-1232 *4)) (-14 *4 (-1153)) (-5 *1 (-1143 *3 *4 *5)) (-4 *3 (-1039)) (-14 *5 *3))) ((*1 *1 *2) (-12 (-5 *2 (-1232 *4)) (-14 *4 (-1153)) (-5 *1 (-1150 *3 *4 *5)) (-4 *3 (-1039)) (-14 *5 *3))) ((*1 *1 *2) (-12 (-5 *2 (-1232 *4)) (-14 *4 (-1153)) (-5 *1 (-1151 *3 *4 *5)) (-4 *3 (-1039)) (-14 *5 *3))) ((*1 *1 *2) (-12 (-5 *2 (-1208 *4 *3)) (-4 *3 (-1039)) (-14 *4 (-1153)) (-14 *5 *3) (-5 *1 (-1151 *3 *4 *5)))) ((*1 *1 *2) (-12 (-5 *2 (-1153)) (-5 *1 (-1152)))) ((*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-1153)))) ((*1 *2 *1) (-12 (-5 *2 (-1161 (-1153) (-433))) (-5 *1 (-1157)))) ((*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-1160 *3)) (-4 *3 (-1082)))) ((*1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *1 (-1167 *3)) (-4 *3 (-1082)))) ((*1 *1 *2) (-12 (-5 *2 (-842)) (-5 *1 (-1168)))) ((*1 *1 *2) (-12 (-5 *2 (-945 *3)) (-4 *3 (-1039)) (-5 *1 (-1182 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1153)) (-5 *1 (-1182 *3)) (-4 *3 (-1039)))) ((*1 *1 *2) (-12 (-5 *2 (-950 *3)) (-4 *3 (-1187)) (-5 *1 (-1185 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1232 (QUOTE |x|))) (-5 *1 (-1193 *3)) (-4 *3 (-1039)))) ((*1 *1 *2) (-12 (-5 *2 (-1208 (QUOTE |x|) *3)) (-4 *3 (-1039)) (-5 *1 (-1193 *3)))) ((*1 *1 *2) (-12 (-4 *3 (-1039)) (-4 *1 (-1197 *3 *2)) (-4 *2 (-1226 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1232 *4)) (-14 *4 (-1153)) (-5 *1 (-1199 *3 *4 *5)) (-4 *3 (-1039)) (-14 *5 *3))) ((*1 *1 *2) (-12 (-5 *2 (-1076 *3)) (-4 *3 (-1187)) (-5 *1 (-1202 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1232 *3)) (-14 *3 (-1153)) (-5 *1 (-1208 *3 *4)) (-4 *4 (-1039)))) ((*1 *1 *2) (-12 (-4 *3 (-1039)) (-4 *1 (-1218 *3 *2)) (-4 *2 (-1195 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1232 *4)) (-14 *4 (-1153)) (-5 *1 (-1220 *3 *4 *5)) (-4 *3 (-1039)) (-14 *5 *3))) ((*1 *1 *2) (-12 (-5 *2 (-1232 *4)) (-14 *4 (-1153)) (-5 *1 (-1227 *3 *4 *5)) (-4 *3 (-1039)) (-14 *5 *3))) ((*1 *1 *2) (-12 (-5 *2 (-1208 *4 *3)) (-4 *3 (-1039)) (-14 *4 (-1153)) (-14 *5 *3) (-5 *1 (-1227 *3 *4 *5)))) ((*1 *1 *2) (-12 (-5 *2 (-1232 *4)) (-14 *4 (-1153)) (-5 *1 (-1231 *3 *4)) (-4 *3 (-1039)))) ((*1 *1 *2) (-12 (-5 *2 (-1208 *4 *3)) (-4 *3 (-1039)) (-14 *4 (-1153)) (-5 *1 (-1231 *3 *4)))) ((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-1232 *3)) (-14 *3 *2))) ((*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-1237)))) ((*1 *2 *3) (-12 (-5 *3 (-466)) (-5 *2 (-1237)) (-5 *1 (-1240)))) ((*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-1241)))) ((*1 *1 *2) (-12 (-4 *3 (-1039)) (-4 *4 (-834)) (-4 *5 (-780)) (-14 *6 (-626 *4)) (-5 *1 (-1246 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-942 *3 *5 *4)) (-14 *7 (-626 (-755))) (-14 *8 (-755)))) ((*1 *2 *1) (-12 (-4 *2 (-942 *3 *5 *4)) (-5 *1 (-1246 *3 *4 *5 *2 *6 *7 *8)) (-4 *3 (-1039)) (-4 *4 (-834)) (-4 *5 (-780)) (-14 *6 (-626 *4)) (-14 *7 (-626 (-755))) (-14 *8 (-755)))) ((*1 *1 *2) (-12 (-4 *1 (-1248 *2)) (-4 *2 (-1039)))) ((*1 *1 *2) (-12 (-4 *1 (-1251 *2 *3)) (-4 *2 (-834)) (-4 *3 (-1039)))) ((*1 *2 *1) (-12 (-5 *2 (-1258 *3 *4)) (-5 *1 (-1254 *3 *4)) (-4 *3 (-834)) (-4 *4 (-170)))) ((*1 *2 *1) (-12 (-5 *2 (-1249 *3 *4)) (-5 *1 (-1254 *3 *4)) (-4 *3 (-834)) (-4 *4 (-170)))) ((*1 *1 *2) (-12 (-5 *2 (-648 *3 *4)) (-4 *3 (-834)) (-4 *4 (-170)) (-5 *1 (-1254 *3 *4)))) ((*1 *1 *2) (-12 (-5 *1 (-1257 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-830))))) -(((*1 *2 *3) (-12 (-5 *2 (-1155 (-403 (-560)))) (-5 *1 (-180)) (-5 *3 (-560))))) -(((*1 *1 *2) (-12 (-5 *2 (-626 (-842))) (-5 *1 (-842)))) ((*1 *1 *1) (-5 *1 (-842))) ((*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-1082)) (-4 *1 (-1079 *3)))) ((*1 *1) (-12 (-4 *1 (-1079 *2)) (-4 *2 (-1082))))) -(((*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-1187)) (-5 *1 (-1133 *3))))) -(((*1 *2) (-12 (-5 *2 (-1124 (-1135))) (-5 *1 (-387))))) -(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-1133 *4)) (-5 *3 (-560)) (-4 *4 (-1039)) (-5 *1 (-1137 *4)))) ((*1 *1 *2 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-1193 *3)) (-4 *3 (-1039)))) ((*1 *1 *2 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-1227 *3 *4 *5)) (-4 *3 (-1039)) (-14 *4 (-1153)) (-14 *5 *3))) ((*1 *1 *2 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-1231 *3 *4)) (-4 *3 (-1039)) (-14 *4 (-1153))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1226 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1195 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-976 *4)))) ((*1 *1 *2) (-12 (-5 *1 (-323 *2)) (-4 *2 (-834)))) ((*1 *1 *1) (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-626 (-1153))) (-14 *3 (-626 (-1153))) (-4 *4 (-383)))) ((*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1138 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1139 *3)))) ((*1 *1 *1) (-4 *1 (-1176)))) -(((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-465)))) ((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-465)))) ((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-919))))) -(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560))))) (-5 *2 (-403 (-560))) (-5 *1 (-1011 *4)) (-4 *4 (-1211 (-560)))))) -(((*1 *1 *1) (-4 *1 (-855 *2)))) -(((*1 *1 *2) (-12 (-5 *2 (-626 *1)) (-4 *1 (-1114 *3)) (-4 *3 (-1039)))) ((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-403 *1)) (-4 *1 (-1211 *3)) (-4 *3 (-1039)) (-4 *3 (-550)))) ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1211 *2)) (-4 *2 (-1039)) (-4 *2 (-550))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1226 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1195 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-976 *4)))) ((*1 *1 *2) (-12 (-5 *1 (-323 *2)) (-4 *2 (-834)))) ((*1 *1 *1) (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-626 (-1153))) (-14 *3 (-626 (-1153))) (-4 *4 (-383)))) ((*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1138 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1139 *3)))) ((*1 *1 *1) (-4 *1 (-1176)))) -(((*1 *2) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1191)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-403 *4))) (-5 *2 (-121))))) -(((*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-629 *5)) (-4 *5 (-1039)) (-5 *1 (-59 *5 *2 *3)) (-4 *3 (-836 *5)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-671 *3)) (-4 *1 (-413 *3)) (-4 *3 (-170)))) ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-836 *2)) (-4 *2 (-1039)))) ((*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-101 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1039)) (-5 *1 (-837 *2 *3)) (-4 *3 (-836 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-879 *3)) (-4 *3 (-1082))))) -(((*1 *2 *3) (-12 (-5 *3 (-909)) (-5 *2 (-1149 *4)) (-5 *1 (-352 *4)) (-4 *4 (-344))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-283 *2)) (-4 *2 (-1187)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-1135)) (-5 *1 (-982)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-1076 *4)) (-4 *4 (-1187)) (-5 *1 (-1074 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-852)) (-5 *1 (-847 *3)) (-14 *3 *2)))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-836 *2)) (-4 *2 (-1039)) (-4 *2 (-359))))) -(((*1 *2 *3) (-12 (-5 *3 (-825)) (-5 *2 (-1027)) (-5 *1 (-824)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-304 (-375)))) (-5 *4 (-626 (-375))) (-5 *2 (-1027)) (-5 *1 (-824))))) -(((*1 *2 *1) (-12 (-5 *2 (-626 *5)) (-5 *1 (-141 *3 *4 *5)) (-14 *3 (-560)) (-14 *4 (-755)) (-4 *5 (-170))))) -(((*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-1039)) (-5 *1 (-1137 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-1193 *2)) (-4 *2 (-1039)))) ((*1 *1 *1) (-12 (-5 *1 (-1227 *2 *3 *4)) (-4 *2 (-1039)) (-14 *3 (-1153)) (-14 *4 *2))) ((*1 *1 *1) (-12 (-5 *1 (-1231 *2 *3)) (-4 *2 (-1039)) (-14 *3 (-1153))))) -(((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-809))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *1 (-37 *2)) (-4 *2 (-359)))) ((*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-560)) (-4 *1 (-62 *2 *4 *5)) (-4 *2 (-1187)) (-4 *4 (-369 *2)) (-4 *5 (-369 *2)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-560)) (-4 *1 (-62 *2 *4 *5)) (-4 *4 (-369 *2)) (-4 *5 (-369 *2)) (-4 *2 (-1187)))) ((*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-128 *3)) (-4 *3 (-1187)))) ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-128 *3)) (-4 *3 (-1187)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-626 (-560))) (-4 *2 (-170)) (-5 *1 (-141 *4 *5 *2)) (-14 *4 (-560)) (-14 *5 (-755)))) ((*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-560)) (-4 *2 (-170)) (-5 *1 (-141 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-755)))) ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-560)) (-4 *2 (-170)) (-5 *1 (-141 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-755)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-560)) (-4 *2 (-170)) (-5 *1 (-141 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-755)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *2 (-170)) (-5 *1 (-141 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-755)))) ((*1 *2 *1) (-12 (-4 *2 (-170)) (-5 *1 (-141 *3 *4 *2)) (-14 *3 (-560)) (-14 *4 (-755)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-235 (-1135))) (-5 *1 (-203 *4)) (-4 *4 (-13 (-834) (-10 -8 (-15 -2778 ((-1135) $ *3)) (-15 -4106 ((-1241) $)) (-15 -1489 ((-1241) $))))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-982)) (-5 *1 (-203 *3)) (-4 *3 (-13 (-834) (-10 -8 (-15 -2778 ((-1135) $ (-1153))) (-15 -4106 ((-1241) $)) (-15 -1489 ((-1241) $))))))) ((*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-755)) (-5 *1 (-235 *4)) (-4 *4 (-834)))) ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-235 *3)) (-4 *3 (-834)))) ((*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-235 *3)) (-4 *3 (-834)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-276 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-1187)))) ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-278 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-1187)))) ((*1 *2 *1 *2) (-12 (-4 *3 (-170)) (-5 *1 (-279 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1211 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-123)) (-5 *3 (-626 *1)) (-4 *1 (-291)))) ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-291)) (-5 *2 (-123)))) ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-291)) (-5 *2 (-123)))) ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-291)) (-5 *2 (-123)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-291)) (-5 *2 (-123)))) ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-334 *2 *3 *4)) (-4 *2 (-1191)) (-4 *3 (-1211 *2)) (-4 *4 (-1211 (-403 *3))))) ((*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *1 (-413 *2)) (-4 *2 (-170)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-1135)) (-5 *1 (-503)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-57)) (-5 *1 (-615)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1202 (-560))) (-4 *1 (-632 *3)) (-4 *3 (-1187)))) ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-755)) (-5 *1 (-658 *2)) (-4 *2 (-1082)))) ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-626 (-560))) (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-626 (-842))) (-5 *1 (-842)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-123)) (-5 *3 (-626 (-879 *4))) (-5 *1 (-879 *4)) (-4 *4 (-1082)))) ((*1 *2 *1 *2) (-12 (-4 *1 (-890 *2)) (-4 *2 (-1082)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *2 (-892 *4)) (-5 *1 (-891 *4)) (-4 *4 (-1082)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *1 (-912 *2 *4)) (-4 *2 (-359)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *1 (-963 *2)) (-4 *2 (-359)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-228 *4 *2)) (-14 *4 (-909)) (-4 *2 (-359)) (-5 *1 (-986 *4 *2)))) ((*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1002 *2)) (-4 *2 (-1187)))) ((*1 *2 *1) (-12 (-5 *1 (-1018 *2)) (-4 *2 (-1187)))) ((*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-560)) (-4 *1 (-1042 *4 *5 *2 *6 *7)) (-4 *2 (-1039)) (-4 *6 (-226 *5 *2)) (-4 *7 (-226 *4 *2)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-560)) (-4 *1 (-1042 *4 *5 *2 *6 *7)) (-4 *6 (-226 *5 *2)) (-4 *7 (-226 *4 *2)) (-4 *2 (-1039)))) ((*1 *2 *1 *2 *3) (-12 (-5 *3 (-909)) (-4 *4 (-1082)) (-4 *5 (-13 (-1039) (-873 *4) (-834) (-601 (-879 *4)))) (-5 *1 (-1061 *4 *5 *2)) (-4 *2 (-13 (-426 *5) (-873 *4) (-601 (-879 *4)))))) ((*1 *2 *1 *2 *3) (-12 (-5 *3 (-909)) (-4 *4 (-1082)) (-4 *5 (-13 (-1039) (-873 *4) (-834) (-601 (-879 *4)))) (-5 *1 (-1062 *4 *5 *2)) (-4 *2 (-13 (-426 *5) (-873 *4) (-601 (-879 *4)))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-626 (-560))) (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)))) ((*1 *1 *1 *1) (-4 *1 (-1121))) ((*1 *1 *1 *2) (-12 (-5 *2 (-626 (-842))) (-5 *1 (-1153)))) ((*1 *2 *3 *2) (-12 (-5 *3 (-403 *1)) (-4 *1 (-1211 *2)) (-4 *2 (-1039)) (-4 *2 (-359)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-403 *1)) (-4 *1 (-1211 *3)) (-4 *3 (-1039)) (-4 *3 (-550)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-1213 *2 *3)) (-4 *3 (-779)) (-4 *2 (-1039)))) ((*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1223 *2)) (-4 *2 (-1187)))) ((*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1223 *3)) (-4 *3 (-1187)))) ((*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1223 *2)) (-4 *2 (-1187))))) -(((*1 *1) (-5 *1 (-145))) ((*1 *1 *1) (-5 *1 (-842)))) -(((*1 *2 *1) (-12 (-4 *1 (-967)) (-5 *2 (-1076 (-213)))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-447))) (-5 *1 (-1179 *3 *2)) (-4 *2 (-13 (-426 *3) (-1173)))))) -(((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-918))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-172 *3)) (-4 *3 (-13 (-359) (-1173) (-994)))))) -(((*1 *1 *2 *3) (-12 (-4 *4 (-359)) (-4 *6 (-226 (-2271 *5) (-755))) (-4 *7 (-633 *4)) (-4 *8 (-912 *4 *7)) (-4 *1 (-528 *4 *5 *3 *6 *2 *7 *8 *9 *10)) (-4 *3 (-942 *4 *6 (-844 *5))) (-4 *9 (-230 *8)) (-4 *10 (-117)))) ((*1 *1 *2 *3 *4 *5 *6 *5 *7 *8 *9) (-12 (-5 *3 (-237 (-4162 (QUOTE X) (QUOTE -3095)) *8)) (-5 *4 (-33 *8)) (-5 *9 (-1153)) (-4 *8 (-359)) (-5 *5 (-755)) (-4 *12 (-226 (-2271 *10) *5)) (-4 *13 (-633 *8)) (-4 *14 (-912 *8 *13)) (-4 *1 (-528 *8 *10 *11 *12 *2 *13 *14 *7 *6)) (-4 *11 (-942 *8 *12 (-844 *10))) (-4 *7 (-230 *14)) (-4 *6 (-117)))) ((*1 *1 *2) (-12 (-5 *2 (-1153)) (-4 *1 (-912 *3 *4)) (-4 *3 (-359)))) ((*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-359)) (-4 *1 (-912 *3 *4)))) ((*1 *1) (-5 *1 (-1067)))) -(((*1 *2 *2) (-12 (-5 *2 (-626 (-1135))) (-5 *1 (-393))))) -(((*1 *2 *1) (-12 (-4 *1 (-1114 *3)) (-4 *3 (-1039)) (-5 *2 (-626 (-626 (-169))))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-304 (-560))) (|:| -1333 (-304 (-375))) (|:| CF (-304 (-167 (-375)))) (|:| |switch| (-1152)))) (-5 *1 (-1152))))) -(((*1 *2 *3) (-12 (-5 *3 (-1236 (-1236 *4))) (-4 *4 (-1039)) (-5 *2 (-671 *4)) (-5 *1 (-1021 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-593 *2 *3)) (-4 *3 (-1187)) (-4 *2 (-1082)) (-4 *2 (-834))))) -(((*1 *2 *3) (-12 (-4 *4 (-1191)) (-4 *5 (-1211 *4)) (-5 *2 (-2 (|:| -2169 (-403 *5)) (|:| |poly| *3))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1211 (-403 *5)))))) -(((*1 *2 *2) (|partial| -12 (-4 *3 (-550)) (-4 *3 (-170)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)) (-5 *1 (-670 *3 *4 *5 *2)) (-4 *2 (-669 *3 *4 *5))))) -(((*1 *2 *1 *3 *2) (-12 (-5 *3 (-560)) (-4 *1 (-37 *2)) (-4 *2 (-359)))) ((*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-560)) (-4 *1 (-62 *2 *4 *5)) (-4 *2 (-1187)) (-4 *4 (-369 *2)) (-4 *5 (-369 *2)))) ((*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4506)) (-4 *1 (-128 *3)) (-4 *3 (-1187)))) ((*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4506)) (-4 *1 (-128 *3)) (-4 *3 (-1187)))) ((*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4506)) (-4 *1 (-278 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-1187)))) ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-57)) (-5 *3 (-1153)) (-5 *1 (-615)))) ((*1 *2 *1 *3 *2) (-12 (-5 *3 (-1202 (-560))) (|has| *1 (-6 -4506)) (-4 *1 (-632 *2)) (-4 *2 (-1187)))) ((*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-626 (-560))) (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)))) ((*1 *2 *1 *3 *2) (-12 (-5 *3 (-560)) (-4 *1 (-963 *2)) (-4 *2 (-359)))) ((*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4506)) (-4 *1 (-1002 *2)) (-4 *2 (-1187)))) ((*1 *2 *1 *2) (-12 (-5 *1 (-1018 *2)) (-4 *2 (-1187)))) ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-1164 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-1082)))) ((*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4506)) (-4 *1 (-1223 *2)) (-4 *2 (-1187)))) ((*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4506)) (-4 *1 (-1223 *3)) (-4 *3 (-1187)))) ((*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4506)) (-4 *1 (-1223 *2)) (-4 *2 (-1187))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-1 (-121) *8)) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-550)) (-4 *6 (-780)) (-4 *7 (-834)) (-5 *2 (-2 (|:| |goodPols| (-626 *8)) (|:| |badPols| (-626 *8)))) (-5 *1 (-970 *5 *6 *7 *8)) (-5 *4 (-626 *8))))) -(((*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-148) (-27) (-1029 (-560)) (-1029 (-403 (-560))))) (-4 *5 (-1211 *4)) (-5 *2 (-1149 (-403 *5))) (-5 *1 (-602 *4 *5)) (-5 *3 (-403 *5)))) ((*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-414 *6) *6)) (-4 *6 (-1211 *5)) (-4 *5 (-13 (-148) (-27) (-1029 (-560)) (-1029 (-403 (-560))))) (-5 *2 (-1149 (-403 *6))) (-5 *1 (-602 *5 *6)) (-5 *3 (-403 *6))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-546))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 (-560))) (-5 *2 (-891 (-560))) (-5 *1 (-905)))) ((*1 *2) (-12 (-5 *2 (-891 (-560))) (-5 *1 (-905))))) -(((*1 *1 *2) (-12 (-5 *2 (-806 *3)) (-4 *3 (-834)) (-5 *1 (-655 *3))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-375)) (-5 *2 (-1241)) (-5 *1 (-1238))))) -(((*1 *2 *3 *4) (-12 (-4 *2 (-1211 *4)) (-5 *1 (-794 *4 *2 *3 *5)) (-4 *4 (-13 (-359) (-148) (-1029 (-403 (-560))))) (-4 *3 (-638 *2)) (-4 *5 (-638 (-403 *2))))) ((*1 *2 *3 *4) (-12 (-4 *2 (-1211 *4)) (-5 *1 (-794 *4 *2 *5 *3)) (-4 *4 (-13 (-359) (-148) (-1029 (-403 (-560))))) (-4 *5 (-638 *2)) (-4 *3 (-638 (-403 *2)))))) -(((*1 *2 *1) (-12 (-4 *4 (-1082)) (-5 *2 (-876 *3 *4)) (-5 *1 (-872 *3 *4 *5)) (-4 *3 (-1082)) (-4 *5 (-650 *4))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-1153)) (-4 *4 (-13 (-296) (-834) (-148) (-1029 (-560)) (-622 (-560)))) (-5 *1 (-422 *4 *2)) (-4 *2 (-13 (-1173) (-29 *4))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-403 (-945 *5))) (-5 *4 (-1153)) (-4 *5 (-148)) (-4 *5 (-13 (-447) (-1029 (-560)) (-834) (-622 (-560)))) (-5 *2 (-304 *5)) (-5 *1 (-580 *5))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-989 *2)) (-4 *2 (-170))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-876 *4 *5)) (-5 *3 (-876 *4 *6)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-650 *5)) (-5 *1 (-872 *4 *5 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-861))))) -(((*1 *2 *1) (-12 (-4 *1 (-1223 *3)) (-4 *3 (-1187)) (-5 *2 (-755))))) -(((*1 *2 *3) (-12 (-5 *3 (-304 (-213))) (-5 *2 (-121)) (-5 *1 (-258))))) -(((*1 *2 *3) (-12 (-5 *3 (-375)) (-5 *2 (-1135)) (-5 *1 (-294))))) -(((*1 *2 *3) (-12 (-5 *3 (-375)) (-5 *2 (-213)) (-5 *1 (-1239)))) ((*1 *2) (-12 (-5 *2 (-213)) (-5 *1 (-1239))))) -(((*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-254 *3)) (-4 *3 (-1082)))) ((*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-254 *3)) (-4 *3 (-1082)))) ((*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-505 *3 *4 *5)) (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *5 (-117)))) ((*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-505 *3 *4 *5)) (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *5 (-117)))) ((*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-529 *3 *4 *5)) (-4 *3 (-344)) (-14 *4 (-626 (-1153))) (-4 *5 (-117)))) ((*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-529 *3 *4 *5)) (-4 *3 (-344)) (-14 *4 (-626 (-1153))) (-4 *5 (-117)))) ((*1 *2) (-12 (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *6 (-226 (-2271 *4) (-755))) (-4 *8 (-633 *3)) (-4 *9 (-912 *3 *8)) (-5 *2 (-121)) (-5 *1 (-530 *3 *4 *5 *6 *7 *8 *9 *10 *11)) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *7 (-963 *3)) (-4 *10 (-230 *9)) (-4 *11 (-117)))) ((*1 *2 *2) (-12 (-5 *2 (-121)) (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *6 (-226 (-2271 *4) (-755))) (-4 *8 (-633 *3)) (-4 *9 (-912 *3 *8)) (-5 *1 (-530 *3 *4 *5 *6 *7 *8 *9 *10 *11)) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *7 (-963 *3)) (-4 *10 (-230 *9)) (-4 *11 (-117)))) ((*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-847 *3)) (-14 *3 (-852)))) ((*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-849 *3)) (-4 *3 (-344)))) ((*1 *2 *1) (-12 (-4 *1 (-850)) (-5 *2 (-842)))) ((*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-852))))) -(((*1 *2 *1) (-12 (-4 *1 (-1114 *3)) (-4 *3 (-1039)) (-5 *2 (-121))))) -(((*1 *1 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1187))))) -(((*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1917 *1) (|:| -4492 *1) (|:| |associate| *1))) (-4 *1 (-550))))) -(((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-172 *3)) (-4 *3 (-13 (-359) (-1173) (-994)))))) -(((*1 *1 *2) (-12 (-5 *2 (-626 *1)) (-4 *1 (-850))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2169 *3) (|:| |gap| (-755)) (|:| -2583 (-769 *3)) (|:| -4397 (-769 *3)))) (-5 *1 (-769 *3)) (-4 *3 (-1039)))) ((*1 *2 *1 *1 *3) (-12 (-4 *4 (-1039)) (-4 *5 (-780)) (-4 *3 (-834)) (-5 *2 (-2 (|:| -2169 *1) (|:| |gap| (-755)) (|:| -2583 *1) (|:| -4397 *1))) (-4 *1 (-1053 *4 *5 *3)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-2 (|:| -2169 *1) (|:| |gap| (-755)) (|:| -2583 *1) (|:| -4397 *1))) (-4 *1 (-1053 *3 *4 *5))))) -(((*1 *1) (-5 *1 (-322)))) -(((*1 *2 *3) (-12 (-4 *4 (-896)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *7 (-942 *4 *5 *6)) (-5 *2 (-414 (-1149 *7))) (-5 *1 (-893 *4 *5 *6 *7)) (-5 *3 (-1149 *7)))) ((*1 *2 *3) (-12 (-4 *4 (-896)) (-4 *5 (-1211 *4)) (-5 *2 (-414 (-1149 *5))) (-5 *1 (-894 *4 *5)) (-5 *3 (-1149 *5))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1149 *1)) (-5 *3 (-1153)) (-4 *1 (-850)))) ((*1 *1 *2 *1 *3) (-12 (-5 *2 (-1149 *1)) (-5 *3 (-1153)) (-4 *1 (-850)))) ((*1 *1 *2 *2 *3 *1 *4) (-12 (-5 *2 (-1149 (-852))) (-5 *3 (-909)) (-5 *4 (-1153)) (-5 *1 (-852))))) -(((*1 *2 *1) (-12 (-4 *1 (-1126 *3)) (-4 *3 (-1187)) (-5 *2 (-121))))) -(((*1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-57))))) -(((*1 *2 *2) (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-359) (-1173) (-994))) (-5 *1 (-172 *3))))) -(((*1 *2 *1 *1) (-12 (-4 *3 (-359)) (-4 *3 (-1039)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4250 *1))) (-4 *1 (-836 *3))))) -(((*1 *1 *1) (-4 *1 (-850)))) -(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-909)) (-5 *4 (-1135)) (-5 *2 (-1241)) (-5 *1 (-1237))))) -(((*1 *2 *3 *4) (-12 (-4 *5 (-550)) (-5 *2 (-2 (|:| -3818 (-671 *5)) (|:| |vec| (-1236 (-626 (-909)))))) (-5 *1 (-95 *5 *3)) (-5 *4 (-909)) (-4 *3 (-638 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-403 (-945 *3))) (-5 *1 (-448 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *3 (-170)) (-14 *4 (-909)) (-14 *5 (-626 (-1153))) (-14 *6 (-1236 (-671 *3)))))) -(((*1 *2 *1) (-12 (-4 *1 (-850)) (-5 *2 (-1241))))) -(((*1 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-542)))) ((*1 *1 *2) (-12 (-5 *2 (-626 (-560))) (-5 *1 (-964))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-304 (-560))) (|:| -1333 (-304 (-375))) (|:| CF (-304 (-167 (-375)))) (|:| |switch| (-1152)))) (-5 *1 (-1152))))) -(((*1 *2) (-12 (-5 *2 (-1124 (-1135))) (-5 *1 (-387))))) -(((*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-755)) (-4 *6 (-1082)) (-4 *7 (-887 *6)) (-5 *2 (-671 *7)) (-5 *1 (-673 *6 *7 *3 *4)) (-4 *3 (-369 *7)) (-4 *4 (-13 (-369 *6) (-10 -7 (-6 -4505))))))) -(((*1 *2 *3) (-12 (-5 *2 (-304 (-560))) (-5 *1 (-476 *3)) (-4 *3 (-13 (-344) (-601 (-560))))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-663 *3)) (-4 *3 (-1082))))) -(((*1 *2 *3 *1) (|partial| -12 (-4 *1 (-597 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-1082))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994)))))) -(((*1 *2 *1) (-12 (-5 *2 (-626 (-626 (-213)))) (-5 *1 (-918))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (-5 *2 (-626 (-213))) (-5 *1 (-194))))) -(((*1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-780)) (-4 *4 (-834)) (-4 *2 (-447))))) -(((*1 *2 *2 *2 *3) (-12 (-5 *3 (-755)) (-4 *4 (-550)) (-5 *1 (-962 *4 *2)) (-4 *2 (-1211 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-237 *4 *5)) (-14 *4 (-626 (-1153))) (-4 *5 (-447)) (-5 *2 (-485 *4 *5)) (-5 *1 (-614 *4 *5))))) -(((*1 *2) (-12 (-5 *2 (-909)) (-5 *1 (-1239)))) ((*1 *2 *2) (-12 (-5 *2 (-909)) (-5 *1 (-1239))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-550) (-148))) (-5 *1 (-534 *3 *2)) (-4 *2 (-1226 *3)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-359) (-364) (-601 (-560)))) (-4 *4 (-1211 *3)) (-4 *5 (-706 *3 *4)) (-5 *1 (-538 *3 *4 *5 *2)) (-4 *2 (-1226 *5)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-359) (-364) (-601 (-560)))) (-5 *1 (-539 *3 *2)) (-4 *2 (-1226 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-13 (-550) (-148))) (-5 *1 (-1129 *3))))) -(((*1 *2 *3) (-12 (-4 *4 (-447)) (-4 *4 (-550)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-626 *3)) (-5 *1 (-970 *4 *5 *6 *3)) (-4 *3 (-1053 *4 *5 *6))))) -(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-1133 (-626 (-560)))) (-5 *1 (-870)) (-5 *3 (-560)))) ((*1 *2 *3) (-12 (-5 *2 (-1133 (-626 (-560)))) (-5 *1 (-870)) (-5 *3 (-560)))) ((*1 *2 *3 *3) (-12 (-5 *2 (-1133 (-626 (-560)))) (-5 *1 (-870)) (-5 *3 (-560))))) -(((*1 *1 *1) (-5 *1 (-213))) ((*1 *1 *1) (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-626 (-1153))) (-14 *3 (-626 (-1153))) (-4 *4 (-383)))) ((*1 *1 *1) (-5 *1 (-375))) ((*1 *1) (-5 *1 (-375)))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-909)) (-5 *1 (-1024 *2)) (-4 *2 (-13 (-1082) (-10 -8 (-15 * ($ $ $)))))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-403 (-560))) (-5 *4 (-560)) (-5 *2 (-57)) (-5 *1 (-997))))) -(((*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1226 *4)) (-4 *4 (-43 (-403 (-560)))) (-5 *2 (-1 (-1133 *4) (-1133 *4))) (-5 *1 (-1228 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-121))))) -(((*1 *2 *3 *4 *5) (-12 (-5 *5 (-560)) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *8 (-296)) (-4 *9 (-942 *8 *6 *7)) (-5 *2 (-2 (|:| -1558 (-1149 *9)) (|:| |polval| (-1149 *8)))) (-5 *1 (-724 *6 *7 *8 *9)) (-5 *3 (-1149 *9)) (-5 *4 (-1149 *8))))) -(((*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-560)))) (-4 *4 (-13 (-1211 *3) (-550) (-10 -8 (-15 -4440 ($ $ $))))) (-4 *3 (-550)) (-5 *1 (-1214 *3 *4))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4520)) (-4 *1 (-128 *2)) (-4 *2 (-1195))))) +(((*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-324 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-787))))) +(((*1 *2 *1) (-12 (-5 *2 (-409 (-953 *3))) (-5 *1 (-454 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-634 (-1161))) (-14 *6 (-1244 (-679 *3)))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 (-568))) (-5 *2 (-899 (-568))) (-5 *1 (-913)))) ((*1 *2) (-12 (-5 *2 (-899 (-568))) (-5 *1 (-913))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-607 *6)) (-4 *6 (-13 (-432 *5) (-27) (-1181))) (-4 *5 (-13 (-453) (-1037 (-568)) (-842) (-150) (-630 (-568)))) (-5 *2 (-1157 (-409 (-1157 *6)))) (-5 *1 (-564 *5 *6 *7)) (-5 *3 (-1157 *6)) (-4 *7 (-1090)))) ((*1 *2 *1) (-12 (-4 *2 (-1219 *3)) (-5 *1 (-702 *3 *2)) (-4 *3 (-1047)))) ((*1 *2 *1) (-12 (-4 *1 (-714 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1219 *3)))) ((*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1157 *11)) (-5 *6 (-634 *10)) (-5 *7 (-634 (-763))) (-5 *8 (-634 *11)) (-4 *10 (-842)) (-4 *11 (-301)) (-4 *9 (-788)) (-4 *5 (-950 *11 *9 *10)) (-5 *2 (-634 (-1157 *5))) (-5 *1 (-732 *9 *10 *11 *5)) (-5 *3 (-1157 *5)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-1157 *1)) (-4 *1 (-858)))) ((*1 *2 *1) (-12 (-5 *2 (-1157 *1)) (-4 *1 (-858)))) ((*1 *2 *1) (-12 (-4 *2 (-950 *3 *4 *5)) (-5 *1 (-1034 *3 *4 *5 *2 *6)) (-4 *3 (-365)) (-4 *4 (-788)) (-4 *5 (-842)) (-14 *6 (-634 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-39)) (-5 *2 (-121)))) ((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-96 *3)) (-4 *3 (-1090)))) ((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-212 *3)) (-4 *3 (-1090)))) ((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-494 *3)) (-4 *3 (-842)))) ((*1 *2 *1) (-12 (-4 *3 (-453)) (-4 *4 (-842)) (-4 *5 (-788)) (-5 *2 (-121)) (-5 *1 (-988 *3 *4 *5 *6)) (-4 *6 (-950 *3 *5 *4)))) ((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1000 *3)) (-4 *3 (-1090)))) ((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1125 *3 *4)) (-4 *3 (-13 (-1090) (-39))) (-4 *4 (-13 (-1090) (-39))))) ((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1132 *3)) (-4 *3 (-1090))))) +(((*1 *1 *2) (-12 (-5 *2 (-869)) (-5 *1 (-256)))) ((*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-256))))) +(((*1 *2 *1) (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (|has| *2 (-6 (-4521 "*"))) (-4 *2 (-1047)))) ((*1 *2 *3) (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-172)) (-5 *1 (-678 *2 *4 *5 *3)) (-4 *3 (-677 *2 *4 *5)))) ((*1 *2 *1) (-12 (-4 *1 (-1111 *3 *2 *4 *5)) (-4 *4 (-230 *3 *2)) (-4 *5 (-230 *3 *2)) (|has| *2 (-6 (-4521 "*"))) (-4 *2 (-1047))))) +(((*1 *1 *2) (-12 (-5 *2 (-634 (-850))) (-5 *1 (-850))))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-13 (-301) (-150))) (-4 *5 (-13 (-842) (-609 (-1161)))) (-4 *6 (-788)) (-5 *2 (-634 (-634 (-568)))) (-5 *1 (-924 *4 *5 *6 *7)) (-5 *3 (-568)) (-4 *7 (-950 *4 *6 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-835 (-381))) (-5 *2 (-835 (-215))) (-5 *1 (-299))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-1090)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-842))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-409 (-568))) (-5 *1 (-593 *3)) (-4 *3 (-43 *2)) (-4 *3 (-1047))))) +(((*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-763)) (-4 *4 (-13 (-558) (-150))) (-5 *1 (-1213 *4 *2)) (-4 *2 (-1219 *4))))) +(((*1 *1 *1) (-12 (-5 *1 (-213 *2 *3)) (-4 *2 (-13 (-1047) (-842))) (-14 *3 (-634 (-1161)))))) +(((*1 *2 *1) (|partial| -12 (-4 *1 (-1226 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-1203 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-899 (-568))) (-5 *1 (-913)))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-568))) (-5 *2 (-899 (-568))) (-5 *1 (-913))))) +(((*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-817))))) +(((*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1249)) (-5 *1 (-1123)))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-850))) (-5 *2 (-1249)) (-5 *1 (-1123))))) +(((*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-817))))) +(((*1 *1 *1) (-12 (-4 *1 (-1061 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-788)) (-4 *4 (-842)) (-4 *2 (-558))))) +(((*1 *2 *3) (-12 (-4 *4 (-1047)) (-4 *5 (-1219 *4)) (-5 *2 (-1 *6 (-634 *6))) (-5 *1 (-1237 *4 *5 *3 *6)) (-4 *3 (-646 *5)) (-4 *6 (-1234 *4))))) +(((*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-158))))) +(((*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-926))))) +(((*1 *1) (-4 *1 (-350)))) +(((*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-568))) (-5 *1 (-1045))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-917)) (-5 *1 (-1030 *2)) (-4 *2 (-13 (-1090) (-10 -8 (-15 -1767 ($ $ $)))))))) +(((*1 *2 *3) (-12 (-5 *3 (-763)) (-4 *4 (-1047)) (-4 *6 (-230 *7 *3)) (-14 *7 *3) (-5 *2 (-634 *5)) (-5 *1 (-908 *4 *5 *6 *7)) (-4 *5 (-324 *4 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-310 (-215))) (-5 *2 (-310 (-381))) (-5 *1 (-299))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 *2)) (-4 *2 (-432 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-13 (-842) (-558)))))) +(((*1 *2) (-12 (-5 *2 (-828 (-568))) (-5 *1 (-539)))) ((*1 *1) (-12 (-5 *1 (-828 *2)) (-4 *2 (-1090))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-634 *1)) (-4 *1 (-432 *4)) (-4 *4 (-842)))) ((*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1161)) (-4 *1 (-432 *3)) (-4 *3 (-842)))) ((*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1161)) (-4 *1 (-432 *3)) (-4 *3 (-842)))) ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1161)) (-4 *1 (-432 *3)) (-4 *3 (-842)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1161)) (-4 *1 (-432 *3)) (-4 *3 (-842))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-679 *3)) (-4 *3 (-13 (-301) (-10 -8 (-15 -1678 ((-420 $) $))))) (-4 *4 (-1219 *3)) (-5 *1 (-508 *3 *4 *5)) (-4 *5 (-411 *3 *4)))) ((*1 *2 *2 *2 *3) (-12 (-5 *2 (-679 *3)) (-4 *3 (-13 (-301) (-10 -8 (-15 -1678 ((-420 $) $))))) (-4 *4 (-1219 *3)) (-5 *1 (-508 *3 *4 *5)) (-4 *5 (-411 *3 *4))))) +(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) ((*1 *1) (-5 *1 (-541))) ((*1 *1) (-12 (-5 *1 (-887 *2)) (-4 *2 (-1090))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1061 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-788)) (-4 *4 (-842)) (-4 *2 (-558)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1061 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-788)) (-4 *4 (-842)) (-4 *2 (-558))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-944 (-215))) (-5 *2 (-1249)) (-5 *1 (-473))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1181))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 (-465))) (-5 *2 (-121)) (-5 *1 (-464)))) ((*1 *1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-465))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-1157 *4))) (-4 *4 (-365)) (-5 *2 (-2 (|:| |zeros| (-634 *4)) (|:| -2842 (-568)))) (-5 *1 (-1043 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-634 *3)) (|:| |image| (-634 *3)))) (-5 *1 (-900 *3)) (-4 *3 (-1090))))) +(((*1 *2 *1) (-12 (-4 *1 (-1122 *3)) (-4 *3 (-1047)) (-5 *2 (-634 (-171)))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 *2)) (-4 *2 (-1219 *4)) (-5 *1 (-544 *4 *2 *5 *6)) (-4 *4 (-301)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-763)))))) +(((*1 *1 *1) (-4 *1 (-1056)))) +(((*1 *2 *3) (-12 (-5 *3 (-634 (-465))) (-5 *2 (-1161)) (-5 *1 (-464)))) ((*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-465))))) +(((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-817))))) +(((*1 *1 *1) (-5 *1 (-121))) ((*1 *1 *1) (-4 *1 (-132))) ((*1 *1 *1) (-5 *1 (-850))) ((*1 *1 *1) (-5 *1 (-1108)))) +(((*1 *2 *1) (-12 (-4 *1 (-62 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-763)))) ((*1 *2 *1) (-12 (-4 *1 (-1050 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-5 *2 (-763))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1244 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-679 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-679 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1157 (-568))) (-5 *2 (-568)) (-5 *1 (-943))))) +(((*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-568))))))) (-5 *2 (-634 *4)) (-5 *1 (-1116 *3 *4)) (-4 *3 (-1219 *4)))) ((*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-568))))))) (-5 *2 (-634 *3)) (-5 *1 (-1116 *4 *3)) (-4 *4 (-1219 *3))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-568)) (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *2 (-950 *4 *6 (-852 *5))) (-4 *6 (-230 (-1697 *5) (-763))) (-4 *7 (-971 *4)) (-4 *8 (-641 *4)) (-4 *9 (-920 *4 *8)) (-4 *10 (-235 *9)) (-4 *11 (-536 *4 *5 *2 *6 *7 *8 *9 *10 *13)) (-4 *13 (-117)) (-5 *1 (-467 *4 *5 *2 *6 *7 *8 *9 *10 *11 *12 *13)) (-4 *12 (-258 *11)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-242 *5 *4)) (-5 *3 (-568)) (-4 *4 (-350)) (-14 *5 (-634 (-1161))) (-5 *1 (-867 *4 *5 *6)) (-4 *6 (-117)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-242 *5 *4)) (-5 *3 (-568)) (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-5 *1 (-868 *4 *5 *6)) (-4 *6 (-117)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-568)) (-4 *4 (-1047)) (-4 *5 (-230 *6 (-763))) (-14 *6 (-763)) (-5 *1 (-908 *4 *2 *5 *6)) (-4 *2 (-324 *4 *5)))) ((*1 *1 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-365)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-568)) (-4 *1 (-971 *3)) (-4 *3 (-365))))) +(((*1 *1 *1) (|partial| -4 *1 (-1136)))) +(((*1 *2 *2) (-12 (-4 *3 (-842)) (-5 *1 (-930 *3 *2)) (-4 *2 (-432 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-310 (-568))) (-5 *1 (-931))))) +(((*1 *2) (-12 (-4 *1 (-340 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 (-409 *4))) (-5 *2 (-679 (-409 *4)))))) +(((*1 *2 *3) (-12 (-5 *3 (-215)) (-5 *2 (-688)) (-5 *1 (-299))))) +(((*1 *1 *2) (-12 (-5 *2 (-814 *3)) (-4 *3 (-842)) (-5 *1 (-663 *3))))) +(((*1 *2 *2) (-12 (-4 *3 (-842)) (-5 *1 (-930 *3 *2)) (-4 *2 (-432 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-310 (-568))) (-5 *1 (-931))))) +(((*1 *2 *3 *4) (|partial| -12 (-5 *4 (-917)) (-4 *5 (-558)) (-5 *2 (-679 *5)) (-5 *1 (-956 *5 *3)) (-4 *3 (-646 *5))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-558) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *1 (-273 *3 *2)) (-4 *2 (-13 (-27) (-1181) (-432 *3))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1161)) (-4 *4 (-13 (-558) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *1 (-273 *4 *2)) (-4 *2 (-13 (-27) (-1181) (-432 *4)))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-634 (-607 *5))) (-5 *3 (-1161)) (-4 *5 (-432 *4)) (-4 *4 (-842)) (-5 *1 (-577 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-761)) (-5 *2 (-2 (|:| -3029 (-381)) (|:| -3391 (-1143)) (|:| |explanations| (-634 (-1143))) (|:| |extra| (-1035)))) (-5 *1 (-569)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-761)) (-5 *4 (-1059)) (-5 *2 (-2 (|:| -3029 (-381)) (|:| -3391 (-1143)) (|:| |explanations| (-634 (-1143))) (|:| |extra| (-1035)))) (-5 *1 (-569)))) ((*1 *2 *3 *4) (-12 (-4 *1 (-782)) (-5 *3 (-1059)) (-5 *4 (-2 (|:| |fn| (-310 (-215))) (|:| -1338 (-634 (-1084 (-835 (-215))))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (-5 *2 (-2 (|:| -3029 (-381)) (|:| |explanations| (-1143)) (|:| |extra| (-1035)))))) ((*1 *2 *3 *4) (-12 (-4 *1 (-782)) (-5 *3 (-1059)) (-5 *4 (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (-5 *2 (-2 (|:| -3029 (-381)) (|:| |explanations| (-1143)) (|:| |extra| (-1035)))))) ((*1 *2 *3 *4) (-12 (-4 *1 (-795)) (-5 *3 (-1059)) (-5 *4 (-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (-5 *2 (-2 (|:| -3029 (-381)) (|:| |explanations| (-1143)))))) ((*1 *2 *3) (-12 (-5 *3 (-803)) (-5 *2 (-2 (|:| -3029 (-381)) (|:| -3391 (-1143)) (|:| |explanations| (-634 (-1143))))) (-5 *1 (-800)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-803)) (-5 *4 (-1059)) (-5 *2 (-2 (|:| -3029 (-381)) (|:| -3391 (-1143)) (|:| |explanations| (-634 (-1143))))) (-5 *1 (-800)))) ((*1 *2 *3 *4) (-12 (-4 *1 (-831)) (-5 *3 (-1059)) (-5 *4 (-2 (|:| |lfn| (-634 (-310 (-215)))) (|:| -4434 (-634 (-215))))) (-5 *2 (-2 (|:| -3029 (-381)) (|:| |explanations| (-1143)))))) ((*1 *2 *3 *4) (-12 (-4 *1 (-831)) (-5 *3 (-1059)) (-5 *4 (-2 (|:| |fn| (-310 (-215))) (|:| -4434 (-634 (-215))) (|:| |lb| (-634 (-835 (-215)))) (|:| |cf| (-634 (-310 (-215)))) (|:| |ub| (-634 (-835 (-215)))))) (-5 *2 (-2 (|:| -3029 (-381)) (|:| |explanations| (-1143)))))) ((*1 *2 *3) (-12 (-5 *3 (-833)) (-5 *2 (-2 (|:| -3029 (-381)) (|:| -3391 (-1143)) (|:| |explanations| (-634 (-1143))))) (-5 *1 (-832)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-833)) (-5 *4 (-1059)) (-5 *2 (-2 (|:| -3029 (-381)) (|:| -3391 (-1143)) (|:| |explanations| (-634 (-1143))))) (-5 *1 (-832)))) ((*1 *2 *3 *4) (-12 (-4 *1 (-890)) (-5 *3 (-1059)) (-5 *4 (-2 (|:| |pde| (-634 (-310 (-215)))) (|:| |constraints| (-634 (-2 (|:| |start| (-215)) (|:| |finish| (-215)) (|:| |grid| (-763)) (|:| |boundaryType| (-568)) (|:| |dStart| (-679 (-215))) (|:| |dFinish| (-679 (-215)))))) (|:| |f| (-634 (-634 (-310 (-215))))) (|:| |st| (-1143)) (|:| |tol| (-215)))) (-5 *2 (-2 (|:| -3029 (-381)) (|:| |explanations| (-1143)))))) ((*1 *2 *3) (-12 (-5 *3 (-893)) (-5 *2 (-2 (|:| -3029 (-381)) (|:| -3391 (-1143)) (|:| |explanations| (-634 (-1143))))) (-5 *1 (-892)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-893)) (-5 *4 (-1059)) (-5 *2 (-2 (|:| -3029 (-381)) (|:| -3391 (-1143)) (|:| |explanations| (-634 (-1143))))) (-5 *1 (-892))))) +(((*1 *1 *1) (-12 (-4 *1 (-128 *2)) (-4 *2 (-1195)))) ((*1 *1 *1) (-12 (-5 *1 (-663 *2)) (-4 *2 (-842)))) ((*1 *1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-842)))) ((*1 *1 *1) (-5 *1 (-850))) ((*1 *1 *1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-850)))) ((*1 *2 *1) (-12 (-4 *2 (-13 (-840) (-365))) (-5 *1 (-1057 *2 *3)) (-4 *3 (-1219 *2))))) +(((*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3284 *7) (|:| |sol?| (-121))) (-568) *7)) (-5 *6 (-634 (-409 *8))) (-4 *7 (-365)) (-4 *8 (-1219 *7)) (-5 *3 (-409 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-634 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-578 *7 *8))))) +(((*1 *2 *3) (-12 (-5 *3 (-1084 (-835 (-381)))) (-5 *2 (-1084 (-835 (-215)))) (-5 *1 (-299))))) +(((*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-558) (-842) (-1037 (-568)))) (-4 *5 (-432 *4)) (-5 *2 (-420 (-1157 (-409 (-568))))) (-5 *1 (-437 *4 *5 *3)) (-4 *3 (-1219 *5))))) +(((*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-747))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-819)) (-5 *3 (-634 (-1161))) (-5 *1 (-820))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1182 *3)) (-4 *3 (-1090))))) +(((*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-310 (-215))) (|:| -4434 (-634 (-215))) (|:| |lb| (-634 (-835 (-215)))) (|:| |cf| (-634 (-310 (-215)))) (|:| |ub| (-634 (-835 (-215)))))) (-5 *1 (-263))))) +(((*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-679 (-215))) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-747))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-453))) (-5 *1 (-1187 *3 *2)) (-4 *2 (-13 (-432 *3) (-1181)))))) +(((*1 *2 *3 *1) (-12 (-4 *4 (-365)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-121)) (-5 *1 (-514 *4 *5 *6 *3)) (-4 *3 (-950 *4 *5 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-1244 *1)) (-4 *1 (-340 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 (-409 *4)))))) +(((*1 *2 *2) (-12 (-5 *2 (-1244 *1)) (-4 *1 (-340 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 (-409 *4)))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-747))))) +(((*1 *2 *2) (-12 (-5 *2 (-1084 (-835 (-215)))) (-5 *1 (-299))))) +(((*1 *1 *1) (-12 (-4 *1 (-432 *2)) (-4 *2 (-842)) (-4 *2 (-558)))) ((*1 *1 *1) (-12 (-5 *1 (-733 *2 *3)) (-14 *2 (-1161)) (-4 *3 (-13 (-1047) (-842) (-558))))) ((*1 *1 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-558))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1249)) (-5 *1 (-1246))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-747))))) +(((*1 *2 *2) (-12 (-4 *3 (-1047)) (-5 *1 (-702 *3 *2)) (-4 *2 (-1219 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-751))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-453))) (-5 *1 (-1187 *3 *2)) (-4 *2 (-13 (-432 *3) (-1181)))))) +(((*1 *2 *3) (-12 (-5 *3 (-607 *5)) (-4 *5 (-432 *4)) (-4 *4 (-1037 (-568))) (-4 *4 (-13 (-842) (-558))) (-5 *2 (-1157 *5)) (-5 *1 (-36 *4 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-607 *1)) (-4 *1 (-1047)) (-4 *1 (-296)) (-5 *2 (-1157 *1))))) +(((*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-747))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-509 *2)) (-14 *2 (-568)))) ((*1 *1 *1 *1) (-5 *1 (-1108)))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -4192 (-123)) (|:| |arg| (-634 (-887 *3))))) (-5 *1 (-887 *3)) (-4 *3 (-1090)))) ((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-123)) (-5 *2 (-634 (-887 *4))) (-5 *1 (-887 *4)) (-4 *4 (-1090))))) +(((*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-607 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1161))) (-4 *2 (-13 (-432 *5) (-27) (-1181))) (-4 *5 (-13 (-453) (-1037 (-568)) (-842) (-150) (-630 (-568)))) (-5 *1 (-570 *5 *2 *6)) (-4 *6 (-1090))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1219 *2)) (-4 *2 (-1047))))) +(((*1 *2 *1) (-12 (-5 *2 (-634 (-607 *1))) (-4 *1 (-296))))) +(((*1 *1 *1 *1) (-5 *1 (-162))) ((*1 *1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-162))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-634 (-850))) (-5 *1 (-850))))) +(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-679 *3)) (-4 *3 (-1047)) (-5 *1 (-680 *3))))) +(((*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-747))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002)))))) +(((*1 *1 *1) (-5 *1 (-1059)))) +(((*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-607 *3)) (-5 *5 (-1 (-1157 *3) (-1157 *3))) (-4 *3 (-13 (-27) (-432 *6))) (-4 *6 (-13 (-842) (-558))) (-5 *2 (-585 *3)) (-5 *1 (-552 *6 *3))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-310 (-568))) (|:| -1478 (-310 (-381))) (|:| CF (-310 (-169 (-381)))) (|:| |switch| (-1160)))) (-5 *1 (-1160))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-747))))) +(((*1 *2 *1) (-12 (-4 *2 (-950 *3 *5 *4)) (-5 *1 (-988 *3 *4 *5 *2)) (-4 *3 (-453)) (-4 *4 (-842)) (-4 *5 (-788))))) +(((*1 *2 *3 *3 *4) (-12 (-5 *3 (-634 (-492 *5 *6))) (-5 *4 (-852 *5)) (-14 *5 (-634 (-1161))) (-5 *2 (-492 *5 *6)) (-5 *1 (-622 *5 *6)) (-4 *6 (-453)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-492 *5 *6))) (-5 *4 (-852 *5)) (-14 *5 (-634 (-1161))) (-5 *2 (-492 *5 *6)) (-5 *1 (-622 *5 *6)) (-4 *6 (-453))))) +(((*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-1157 *3))))) +(((*1 *2 *3 *4 *2 *2 *2 *5) (-12 (-5 *3 (-123)) (-5 *5 (-634 *2)) (-4 *2 (-13 (-432 *6) (-23) (-1037 (-568)) (-1037 *4) (-895 *4) (-161))) (-5 *4 (-1161)) (-4 *6 (-13 (-842) (-558) (-609 (-541)))) (-5 *1 (-1024 *6 *2))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-747))))) +(((*1 *1 *2) (-12 (-5 *2 (-634 (-2 (|:| -3649 *3) (|:| -4083 *4)))) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *1 (-1172 *3 *4)))) ((*1 *1) (-12 (-4 *1 (-1172 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-1090))))) +(((*1 *2 *3) (-12 (-5 *3 (-953 (-215))) (-5 *2 (-215)) (-5 *1 (-299))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-869)) (-5 *3 (-634 (-256))) (-5 *1 (-254))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-1141 *2)) (-4 *2 (-301)) (-5 *1 (-173 *2))))) +(((*1 *2 *3 *4) (-12 (-4 *5 (-1090)) (-4 *2 (-895 *5)) (-5 *1 (-681 *5 *2 *3 *4)) (-4 *3 (-375 *2)) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4519))))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-747))))) +(((*1 *2 *3) (-12 (-4 *4 (-13 (-558) (-842))) (-4 *2 (-13 (-432 *4) (-1002) (-1181))) (-5 *1 (-597 *4 *2 *3)) (-4 *3 (-13 (-432 (-169 *4)) (-1002) (-1181)))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-679 *1)) (-4 *1 (-350)) (-5 *2 (-1244 *1)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-679 *1)) (-4 *1 (-148)) (-4 *1 (-904)) (-5 *2 (-1244 *1))))) +(((*1 *2 *3) (-12 (-5 *2 (-1163 (-409 (-568)))) (-5 *1 (-182)) (-5 *3 (-568)))) ((*1 *2 *1) (-12 (-5 *2 (-1244 (-3 (-473) "undefined"))) (-5 *1 (-1245))))) +(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-679 (-215))) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-747))))) +(((*1 *2 *1) (-12 (-4 *3 (-1047)) (-4 *4 (-1090)) (-5 *2 (-634 *1)) (-4 *1 (-384 *3 *4)))) ((*1 *2 *1) (-12 (-5 *2 (-634 (-725 *3 *4))) (-5 *1 (-725 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-716)))) ((*1 *2 *3) (-12 (-4 *4 (-1047)) (-4 *5 (-230 *6 (-763))) (-14 *6 (-763)) (-5 *2 (-634 *3)) (-5 *1 (-908 *4 *3 *5 *6)) (-4 *3 (-324 *4 *5)))) ((*1 *2 *1) (-12 (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-634 *1)) (-4 *1 (-950 *3 *4 *5))))) +(((*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-568))))))) (-5 *2 (-634 *4)) (-5 *1 (-1116 *3 *4)) (-4 *3 (-1219 *4)))) ((*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-568))))))) (-5 *2 (-634 *3)) (-5 *1 (-1116 *4 *3)) (-4 *4 (-1219 *3))))) +(((*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-568))))))) (-5 *1 (-1116 *3 *2)) (-4 *3 (-1219 *2))))) +(((*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-1047)) (-5 *2 (-1 (-634 *4) *4)) (-5 *1 (-107 *4)) (-5 *3 (-634 *4))))) +(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-568)) (-5 *5 (-679 (-215))) (-5 *4 (-215)) (-5 *2 (-1035)) (-5 *1 (-747))))) +(((*1 *2 *1) (-12 (-4 *1 (-1083 *2)) (-4 *2 (-1195))))) +(((*1 *2 *3) (-12 (-5 *3 (-1244 *4)) (-4 *4 (-630 (-568))) (-5 *2 (-121)) (-5 *1 (-1269 *4))))) +(((*1 *2 *3 *4) (-12 (-4 *2 (-1219 *4)) (-5 *1 (-802 *4 *2 *3 *5)) (-4 *4 (-13 (-365) (-150) (-1037 (-409 (-568))))) (-4 *3 (-646 *2)) (-4 *5 (-646 (-409 *2))))) ((*1 *2 *3 *4) (-12 (-4 *2 (-1219 *4)) (-5 *1 (-802 *4 *2 *5 *3)) (-4 *4 (-13 (-365) (-150) (-1037 (-409 (-568))))) (-4 *5 (-646 *2)) (-4 *3 (-646 (-409 *2)))))) +(((*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-607 *3)) (-5 *5 (-1157 *3)) (-4 *3 (-13 (-432 *6) (-27) (-1181))) (-4 *6 (-13 (-453) (-1037 (-568)) (-842) (-150) (-630 (-568)))) (-5 *2 (-2 (|:| -1924 *3) (|:| |coeff| *3))) (-5 *1 (-564 *6 *3 *7)) (-4 *7 (-1090)))) ((*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-607 *3)) (-5 *5 (-409 (-1157 *3))) (-4 *3 (-13 (-432 *6) (-27) (-1181))) (-4 *6 (-13 (-453) (-1037 (-568)) (-842) (-150) (-630 (-568)))) (-5 *2 (-2 (|:| -1924 *3) (|:| |coeff| *3))) (-5 *1 (-564 *6 *3 *7)) (-4 *7 (-1090))))) +(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-473)) (-5 *4 (-917)) (-5 *2 (-1249)) (-5 *1 (-1245))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-568)) (-5 *5 (-121)) (-5 *6 (-679 (-215))) (-5 *4 (-215)) (-5 *2 (-1035)) (-5 *1 (-747))))) +(((*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-1090)) (-5 *1 (-900 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-568)) (-5 *1 (-817))))) +(((*1 *2 *3 *3) (-12 (-4 *2 (-558)) (-5 *1 (-970 *2 *3)) (-4 *3 (-1219 *2))))) +(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-568)) (-5 *5 (-679 (-215))) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-72 DOT)))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-73 IMAGE)))) (-5 *4 (-215)) (-5 *2 (-1035)) (-5 *1 (-747)))) ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-568)) (-5 *5 (-679 (-215))) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-72 DOT)))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-73 IMAGE)))) (-5 *8 (-390)) (-5 *4 (-215)) (-5 *2 (-1035)) (-5 *1 (-747))))) +(((*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-212 *3)) (-4 *3 (-1090)))) ((*1 *2 *1) (-12 (-4 *1 (-247 *3)) (-4 *3 (-1195)) (-5 *2 (-763)))) ((*1 *2 *1) (-12 (-4 *1 (-296)) (-5 *2 (-763)))) ((*1 *2 *3) (-12 (-4 *4 (-1047)) (-4 *2 (-13 (-406) (-1037 *4) (-365) (-1181) (-279))) (-5 *1 (-444 *4 *3 *2)) (-4 *3 (-1219 *4)))) ((*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-607 *3)) (-4 *3 (-842)))) ((*1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-850)))) ((*1 *2 *1) (-12 (-5 *2 (-568)) (-5 *1 (-850))))) +(((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-634 (-256))) (-5 *4 (-1161)) (-5 *1 (-255 *2)) (-4 *2 (-1195)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-634 (-256))) (-5 *4 (-1161)) (-5 *2 (-57)) (-5 *1 (-256)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-634 (-465))) (-5 *4 (-1161)) (-5 *2 (-57)) (-5 *1 (-465))))) +(((*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-607 *3)) (-5 *5 (-634 *3)) (-5 *6 (-1157 *3)) (-4 *3 (-13 (-432 *7) (-27) (-1181))) (-4 *7 (-13 (-453) (-1037 (-568)) (-842) (-150) (-630 (-568)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-634 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-564 *7 *3 *8)) (-4 *8 (-1090)))) ((*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-607 *3)) (-5 *5 (-634 *3)) (-5 *6 (-409 (-1157 *3))) (-4 *3 (-13 (-432 *7) (-27) (-1181))) (-4 *7 (-13 (-453) (-1037 (-568)) (-842) (-150) (-630 (-568)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-634 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-564 *7 *3 *8)) (-4 *8 (-1090))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1090)) (-4 *4 (-1090)) (-4 *6 (-1090)) (-5 *2 (-1 *6 *5)) (-5 *1 (-673 *5 *4 *6))))) +(((*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-43 (-409 (-568)))) (-4 *2 (-1047))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-568)) (-5 *4 (-121)) (-5 *5 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-747))))) +(((*1 *1 *2 *3) (-12 (-5 *1 (-638 *2 *3 *4)) (-4 *2 (-1090)) (-4 *3 (-23)) (-14 *4 *3)))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-121)) (-5 *2 (-2 (|:| |contp| (-568)) (|:| -3276 (-634 (-2 (|:| |irr| *3) (|:| -3959 (-568))))))) (-5 *1 (-443 *3)) (-4 *3 (-1219 (-568))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-121)) (-5 *2 (-2 (|:| |contp| (-568)) (|:| -3276 (-634 (-2 (|:| |irr| *3) (|:| -3959 (-568))))))) (-5 *1 (-1208 *3)) (-4 *3 (-1219 (-568)))))) +(((*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-121)) (-5 *5 (-1092 (-763))) (-5 *6 (-763)) (-5 *2 (-2 (|:| |contp| (-568)) (|:| -3276 (-634 (-2 (|:| |irr| *3) (|:| -3959 (-568))))))) (-5 *1 (-443 *3)) (-4 *3 (-1219 (-568)))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-568)) (-5 *4 (-121)) (-5 *5 (-679 (-169 (-215)))) (-5 *2 (-1035)) (-5 *1 (-747))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-453))) (-5 *1 (-1187 *3 *2)) (-4 *2 (-13 (-432 *3) (-1181)))))) +(((*1 *2 *2) (-12 (-5 *2 (-988 (-409 (-568)) (-852 *3) (-232 *4 (-763)) (-242 *3 (-409 (-568))))) (-14 *3 (-634 (-1161))) (-14 *4 (-763)) (-5 *1 (-987 *3 *4))))) +(((*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-634 (-634 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-634 (-3 (|:| |array| (-634 *3)) (|:| |scalar| (-1161))))) (-5 *6 (-634 (-1161))) (-5 *3 (-1161)) (-5 *2 (-1094)) (-5 *1 (-399)))) ((*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-634 (-634 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-634 (-3 (|:| |array| (-634 *3)) (|:| |scalar| (-1161))))) (-5 *6 (-634 (-1161))) (-5 *3 (-1161)) (-5 *2 (-1094)) (-5 *1 (-399)))) ((*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-634 (-1161))) (-5 *5 (-1164)) (-5 *3 (-1161)) (-5 *2 (-1094)) (-5 *1 (-399))))) +(((*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1143)) (-5 *4 (-169 (-215))) (-5 *5 (-568)) (-5 *2 (-1035)) (-5 *1 (-750))))) +(((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1244 *4)) (-4 *4 (-630 *5)) (-4 *5 (-365)) (-4 *5 (-558)) (-5 *2 (-1244 *5)) (-5 *1 (-629 *5 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1244 *4)) (-4 *4 (-630 *5)) (-3044 (-4 *5 (-365))) (-4 *5 (-558)) (-5 *2 (-1244 (-409 *5))) (-5 *1 (-629 *5 *4))))) +(((*1 *2 *3) (|partial| -12 (-4 *4 (-558)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *7 (-1061 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-481 *4 *5 *6 *7)) (|:| -2616 (-634 *7)))) (-5 *1 (-978 *4 *5 *6 *7)) (-5 *3 (-634 *7))))) +(((*1 *2) (-12 (-4 *3 (-558)) (-5 *2 (-634 *4)) (-5 *1 (-48 *3 *4)) (-4 *4 (-419 *3))))) +(((*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1143)) (-5 *4 (-169 (-215))) (-5 *5 (-568)) (-5 *2 (-1035)) (-5 *1 (-750))))) +(((*1 *2 *3) (-12 (-5 *3 (-568)) (-4 *4 (-1047)) (-4 *6 (-230 *7 (-763))) (-14 *7 (-763)) (-5 *2 (-634 *6)) (-5 *1 (-908 *4 *5 *6 *7)) (-4 *5 (-324 *4 *6))))) +(((*1 *2 *3) (-12 (-5 *2 (-381)) (-5 *1 (-780 *3)) (-4 *3 (-609 *2)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-917)) (-5 *2 (-381)) (-5 *1 (-780 *3)) (-4 *3 (-609 *2)))) ((*1 *2 *3) (-12 (-5 *3 (-953 *4)) (-4 *4 (-1047)) (-4 *4 (-609 *2)) (-5 *2 (-381)) (-5 *1 (-780 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-953 *5)) (-5 *4 (-917)) (-4 *5 (-1047)) (-4 *5 (-609 *2)) (-5 *2 (-381)) (-5 *1 (-780 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-409 (-953 *4))) (-4 *4 (-558)) (-4 *4 (-609 *2)) (-5 *2 (-381)) (-5 *1 (-780 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-409 (-953 *5))) (-5 *4 (-917)) (-4 *5 (-558)) (-4 *5 (-609 *2)) (-5 *2 (-381)) (-5 *1 (-780 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-310 *4)) (-4 *4 (-558)) (-4 *4 (-842)) (-4 *4 (-609 *2)) (-5 *2 (-381)) (-5 *1 (-780 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-310 *5)) (-5 *4 (-917)) (-4 *5 (-558)) (-4 *5 (-842)) (-4 *5 (-609 *2)) (-5 *2 (-381)) (-5 *1 (-780 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-1108)) (-5 *1 (-816))))) +(((*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-568)) (-5 *5 (-169 (-215))) (-5 *6 (-1143)) (-5 *4 (-215)) (-5 *2 (-1035)) (-5 *1 (-750))))) +(((*1 *2 *1) (-12 (-5 *2 (-634 (-1161))) (-5 *1 (-1165))))) +(((*1 *2 *3 *3 *4) (-12 (-5 *4 (-763)) (-4 *5 (-558)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-970 *5 *3)) (-4 *3 (-1219 *5))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1012)) (-5 *2 (-850))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-634 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-568))))) (-4 *2 (-558)) (-5 *1 (-420 *2)))) ((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-568)) (|:| -3276 (-634 (-2 (|:| |irr| *4) (|:| -3959 (-568))))))) (-4 *4 (-1219 (-568))) (-5 *2 (-420 *4)) (-5 *1 (-443 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-634 (-944 (-215)))) (-5 *1 (-1245))))) +(((*1 *2 *1) (-12 (-4 *4 (-1090)) (-5 *2 (-884 *3 *4)) (-5 *1 (-880 *3 *4 *5)) (-4 *3 (-1090)) (-4 *5 (-658 *4))))) +(((*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-749))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1157 *1)) (-5 *3 (-1161)) (-4 *1 (-27)))) ((*1 *1 *2) (-12 (-5 *2 (-1157 *1)) (-4 *1 (-27)))) ((*1 *1 *2) (-12 (-5 *2 (-953 *1)) (-4 *1 (-27)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1161)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-842) (-558))))) ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-842) (-558))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1157 *2)) (-5 *4 (-1161)) (-4 *2 (-432 *5)) (-5 *1 (-36 *5 *2)) (-4 *5 (-13 (-842) (-558))))) ((*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1157 *1)) (-5 *3 (-917)) (-4 *1 (-1012)))) ((*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1157 *1)) (-5 *3 (-917)) (-5 *4 (-850)) (-4 *1 (-1012)))) ((*1 *1 *2 *3) (|partial| -12 (-5 *3 (-917)) (-4 *4 (-13 (-840) (-365))) (-4 *1 (-1063 *4 *2)) (-4 *2 (-1219 *4))))) +(((*1 *2 *2) (-12 (-4 *3 (-301)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-1112 *3 *4 *5 *2)) (-4 *2 (-677 *3 *4 *5))))) +(((*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-121)) (|:| -3390 (-763)) (|:| |period| (-763)))) (-5 *1 (-1141 *4)) (-4 *4 (-1195)) (-5 *3 (-763))))) +(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1143)) (-5 *5 (-679 (-215))) (-5 *6 (-679 (-568))) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-749))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-215))) (-5 *4 (-763)) (-5 *2 (-679 (-215))) (-5 *1 (-299))))) +(((*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-899 (-568))) (-5 *1 (-913)))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-568))) (-5 *2 (-899 (-568))) (-5 *1 (-913))))) +(((*1 *2 *3) (-12 (-5 *3 (-1 (-1141 *4) (-1141 *4))) (-5 *2 (-1141 *4)) (-5 *1 (-1267 *4)) (-4 *4 (-1195)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 (-634 (-1141 *5)) (-634 (-1141 *5)))) (-5 *4 (-568)) (-5 *2 (-634 (-1141 *5))) (-5 *1 (-1267 *5)) (-4 *5 (-1195))))) +(((*1 *1 *1) (|partial| -12 (-5 *1 (-155 *2 *3 *4)) (-14 *2 (-917)) (-4 *3 (-365)) (-14 *4 (-994 *2 *3)))) ((*1 *1 *1) (|partial| -12 (-4 *2 (-172)) (-5 *1 (-284 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1219 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-558)))) ((*1 *1 *1) (|partial| -12 (-5 *1 (-705 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-708 *2)) (-4 *2 (-365)))) ((*1 *1) (-12 (-5 *1 (-708 *2)) (-4 *2 (-365)))) ((*1 *1 *1) (|partial| -4 *1 (-712))) ((*1 *1 *1) (|partial| -4 *1 (-716))) ((*1 *2 *3 *4) (-12 (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *3 (-1061 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-768 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) ((*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1063 *3 *2)) (-4 *3 (-13 (-840) (-365))) (-4 *2 (-1219 *3)))) ((*1 *2 *2) (|partial| -12 (-5 *2 (-1141 *3)) (-4 *3 (-1047)) (-5 *1 (-1145 *3))))) +(((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1143)) (-5 *4 (-568)) (-5 *5 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-749))))) +(((*1 *2 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-568)) (-5 *1 (-1178 *4)) (-4 *4 (-1047))))) +(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-953 (-409 (-568)))) (-5 *4 (-1161)) (-5 *5 (-1084 (-835 (-215)))) (-5 *2 (-634 (-215))) (-5 *1 (-294))))) +(((*1 *1 *2) (-12 (-5 *2 (-634 (-634 *3))) (-4 *3 (-1090)) (-4 *1 (-898 *3))))) +(((*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1143)) (-5 *4 (-568)) (-5 *5 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-749))))) +(((*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-121)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-121))))) +(((*1 *2 *2 *1) (-12 (-5 *1 (-96 *2)) (-4 *2 (-1090)))) ((*1 *2 *2 *1) (-12 (-5 *1 (-212 *2)) (-4 *2 (-1090)))) ((*1 *2 *2 *1) (-12 (-4 *1 (-1109 *2)) (-4 *2 (-1195)))) ((*1 *2 *2 *1) (-12 (-5 *1 (-1132 *2)) (-4 *2 (-1090))))) +(((*1 *2 *2 *3) (-12 (-4 *4 (-788)) (-4 *3 (-13 (-842) (-10 -8 (-15 -4278 ((-1161) $))))) (-4 *5 (-558)) (-5 *1 (-722 *4 *3 *5 *2)) (-4 *2 (-950 (-409 (-953 *5)) *4 *3)))) ((*1 *2 *2 *3) (-12 (-4 *4 (-1047)) (-4 *5 (-788)) (-4 *3 (-13 (-842) (-10 -8 (-15 -4278 ((-1161) $)) (-15 -1305 ((-3 $ "failed") (-1161)))))) (-5 *1 (-985 *4 *5 *3 *2)) (-4 *2 (-950 (-953 *4) *5 *3)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-634 *6)) (-4 *6 (-13 (-842) (-10 -8 (-15 -4278 ((-1161) $)) (-15 -1305 ((-3 $ "failed") (-1161)))))) (-4 *4 (-1047)) (-4 *5 (-788)) (-5 *1 (-985 *4 *5 *6 *2)) (-4 *2 (-950 (-953 *4) *5 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-147)))) ((*1 *1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-147))))) +(((*1 *2 *1) (-12 (-5 *1 (-1026 *2)) (-4 *2 (-1195))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-842)) (-5 *1 (-729 *3))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-305)) (-5 *1 (-824))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-679 (-409 (-953 (-568))))) (-5 *2 (-679 (-310 (-568)))) (-5 *1 (-1031))))) +(((*1 *2 *1) (-12 (-4 *2 (-1090)) (-5 *1 (-965 *3 *2)) (-4 *3 (-1090))))) +(((*1 *2 *2) (-12 (-5 *2 (-634 (-634 *3))) (-4 *3 (-365)) (-5 *1 (-653 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-1108)) (-5 *1 (-328))))) +(((*1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-751))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-320 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-137))))) +(((*1 *1 *1 *1) (-5 *1 (-850)))) +(((*1 *2 *3) (-12 (-4 *1 (-904)) (-5 *2 (-420 (-1157 *1))) (-5 *3 (-1157 *1))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1141 (-634 (-568)))) (-5 *3 (-634 (-568))) (-5 *1 (-878))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-634 (-568))) (-5 *2 (-679 (-568))) (-5 *1 (-1100))))) +(((*1 *1 *1) (-4 *1 (-620))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-621 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002) (-1181)))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-634 *8)) (-5 *4 (-634 *7)) (-4 *7 (-842)) (-4 *8 (-950 *5 *6 *7)) (-4 *5 (-558)) (-4 *6 (-788)) (-5 *2 (-2 (|:| |particular| (-3 (-1244 (-409 *8)) "failed")) (|:| -3746 (-634 (-1244 (-409 *8)))))) (-5 *1 (-661 *5 *6 *7 *8))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-1143)) (-5 *2 (-381)) (-5 *1 (-781))))) +(((*1 *2 *1) (-12 (-5 *1 (-96 *2)) (-4 *2 (-1090)))) ((*1 *2 *1) (-12 (-5 *1 (-212 *2)) (-4 *2 (-1090)))) ((*1 *2 *1) (-12 (-4 *1 (-1109 *2)) (-4 *2 (-1195)))) ((*1 *2 *1) (-12 (-5 *1 (-1132 *2)) (-4 *2 (-1090))))) +(((*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-763)) (-5 *1 (-48 *4 *3)) (-4 *3 (-419 *4))))) +(((*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1056)))) ((*1 *1 *1) (-12 (-5 *1 (-337 *2 *3 *4)) (-14 *2 (-634 (-1161))) (-14 *3 (-634 (-1161))) (-4 *4 (-389)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-172)) (-4 *2 (-1056)))) ((*1 *1 *1) (-4 *1 (-840))) ((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172)) (-4 *2 (-1056)))) ((*1 *1 *1) (-4 *1 (-1056))) ((*1 *1 *1) (-4 *1 (-1124)))) +(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-169 (-215)))) (-5 *2 (-1035)) (-5 *1 (-748))))) +(((*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-763)) (-5 *1 (-48 *4 *3)) (-4 *3 (-419 *4))))) +(((*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1244 (-634 *3))) (-4 *4 (-301)) (-5 *2 (-634 *3)) (-5 *1 (-457 *4 *3)) (-4 *3 (-1219 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-62 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-568)))) ((*1 *2 *1) (-12 (-4 *1 (-1050 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-5 *2 (-568))))) +(((*1 *1 *1) (-12 (-4 *1 (-665 *2)) (-4 *2 (-1195))))) +(((*1 *2 *1) (-12 (-4 *1 (-971 *3)) (-4 *3 (-365)) (-5 *2 (-568))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-1161)) (-4 *4 (-13 (-301) (-842) (-150) (-1037 (-568)) (-630 (-568)))) (-5 *1 (-428 *4 *2)) (-4 *2 (-13 (-1181) (-29 *4))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-409 (-953 *5))) (-5 *4 (-1161)) (-4 *5 (-150)) (-4 *5 (-13 (-453) (-1037 (-568)) (-842) (-630 (-568)))) (-5 *2 (-310 *5)) (-5 *1 (-588 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172))))) +(((*1 *2 *1) (-12 (-5 *2 (-1141 (-568))) (-5 *1 (-1004 *3)) (-14 *3 (-568))))) +(((*1 *2 *3) (-12 (-5 *3 (-123)) (-4 *4 (-13 (-842) (-558))) (-5 *2 (-121)) (-5 *1 (-36 *4 *5)) (-4 *5 (-432 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-123)) (-4 *4 (-13 (-842) (-558))) (-5 *2 (-121)) (-5 *1 (-159 *4 *5)) (-4 *5 (-432 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-123)) (-4 *4 (-13 (-842) (-558))) (-5 *2 (-121)) (-5 *1 (-272 *4 *5)) (-4 *5 (-13 (-432 *4) (-1002))))) ((*1 *2 *3) (-12 (-5 *3 (-123)) (-5 *2 (-121)) (-5 *1 (-295 *4)) (-4 *4 (-296)))) ((*1 *2 *3) (-12 (-4 *1 (-296)) (-5 *3 (-123)) (-5 *2 (-121)))) ((*1 *2 *3) (-12 (-5 *3 (-123)) (-4 *5 (-842)) (-5 *2 (-121)) (-5 *1 (-431 *4 *5)) (-4 *4 (-432 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-123)) (-4 *4 (-13 (-842) (-558))) (-5 *2 (-121)) (-5 *1 (-433 *4 *5)) (-4 *5 (-432 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-123)) (-4 *4 (-13 (-842) (-558))) (-5 *2 (-121)) (-5 *1 (-621 *4 *5)) (-4 *5 (-13 (-432 *4) (-1002) (-1181)))))) +(((*1 *2 *1) (-12 (-4 *1 (-333 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 (-409 *4))) (-4 *6 (-340 *3 *4 *5)) (-5 *2 (-121))))) +(((*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-816))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 (-465))) (-5 *2 (-121)) (-5 *1 (-464)))) ((*1 *1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-465))))) +(((*1 *1) (-12 (-4 *1 (-327 *2)) (-4 *2 (-370)) (-4 *2 (-365)))) ((*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1244 *4)) (-5 *1 (-532 *4)) (-4 *4 (-350))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-568)) (-4 *1 (-320 *2 *4)) (-4 *4 (-137)) (-4 *2 (-1090)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-568)) (-5 *1 (-363 *2)) (-4 *2 (-1090)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-568)) (-5 *1 (-388 *2)) (-4 *2 (-1090)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-568)) (-5 *1 (-420 *2)) (-4 *2 (-558)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-568)) (-4 *2 (-1090)) (-5 *1 (-638 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) ((*1 *2 *1 *3) (-12 (-5 *3 (-568)) (-5 *1 (-814 *2)) (-4 *2 (-842))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1163 (-409 (-568)))) (-5 *1 (-182))))) +(((*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1161)) (-4 *4 (-13 (-453) (-842) (-150) (-1037 (-568)) (-630 (-568)))) (-5 *1 (-559 *4 *2)) (-4 *2 (-13 (-27) (-1181) (-432 *4)))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2721 (-777 *3)) (|:| |coef2| (-777 *3)))) (-5 *1 (-777 *3)) (-4 *3 (-558)) (-4 *3 (-1047)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-558)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-2 (|:| -2721 *1) (|:| |coef2| *1))) (-4 *1 (-1061 *3 *4 *5))))) +(((*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-1037 (-409 *2)))) (-5 *2 (-568)) (-5 *1 (-124 *4 *3)) (-4 *3 (-1219 *4))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-634 (-763))) (-5 *3 (-121)) (-5 *1 (-1149 *4 *5)) (-14 *4 (-917)) (-4 *5 (-1047))))) +(((*1 *2 *3 *4) (-12 (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *3 (-1061 *5 *6 *7)) (-5 *2 (-634 (-2 (|:| |val| (-121)) (|:| -3001 *4)))) (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3))))) +(((*1 *1 *1 *1 *2) (-12 (-4 *1 (-1061 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *2 (-842)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1061 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-788)) (-4 *4 (-842))))) +(((*1 *2 *1) (-12 (-5 *2 (-1141 *3)) (-5 *1 (-173 *3)) (-4 *3 (-301))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172))))) (((*1 *1 *1 *1) (-5 *1 (-121)))) -(((*1 *2 *3 *1) (-12 (-5 *2 (-626 (-1153))) (-5 *1 (-1156)) (-5 *3 (-1153))))) -(((*1 *2) (-12 (-4 *3 (-364)) (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *6 (-226 (-2271 *4) (-755))) (-4 *7 (-963 *3)) (-4 *8 (-633 *3)) (-4 *9 (-912 *3 *8)) (-4 *10 (-230 *9)) (-4 *11 (-528 *3 *4 *5 *6 *7 *8 *9 *10 *13)) (-4 *13 (-117)) (-5 *2 (-1149 (-560))) (-5 *1 (-460 *3 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13)) (-4 *12 (-253 *11)))) ((*1 *2 *3) (-12 (-5 *3 (-909)) (-4 *4 (-364)) (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *6 (-942 *4 *7 (-844 *5))) (-4 *7 (-226 (-2271 *5) (-755))) (-4 *8 (-963 *4)) (-4 *9 (-633 *4)) (-4 *10 (-912 *4 *9)) (-4 *11 (-230 *10)) (-4 *12 (-528 *4 *5 *6 *7 *8 *9 *10 *11 *14)) (-4 *14 (-117)) (-5 *2 (-1149 (-560))) (-5 *1 (-460 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13 *14)) (-4 *13 (-253 *12)))) ((*1 *2) (-12 (-5 *2 (-1149 (-560))) (-5 *1 (-859 *3 *4 *5)) (-4 (-849 *3) (-364)) (-4 *3 (-344)) (-14 *4 (-626 (-1153))) (-4 *5 (-117)))) ((*1 *2 *3) (-12 (-5 *3 (-909)) (-5 *2 (-1149 (-560))) (-5 *1 (-859 *4 *5 *6)) (-4 (-849 *4) (-364)) (-4 *4 (-344)) (-14 *5 (-626 (-1153))) (-4 *6 (-117)))) ((*1 *2) (-12 (-5 *2 (-1149 (-560))) (-5 *1 (-860 *3 *4 *5)) (-4 *3 (-364)) (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *5 (-117)))) ((*1 *2 *3) (-12 (-5 *3 (-909)) (-5 *2 (-1149 (-560))) (-5 *1 (-860 *4 *5 *6)) (-4 *4 (-364)) (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *6 (-117))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-1153)) (-5 *4 (-945 (-560))) (-5 *2 (-322)) (-5 *1 (-324))))) -(((*1 *2 *3 *4 *5) (-12 (-5 *5 (-1076 *3)) (-4 *3 (-942 *7 *6 *4)) (-4 *6 (-780)) (-4 *4 (-834)) (-4 *7 (-550)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-560)))) (-5 *1 (-584 *6 *4 *7 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-780)) (-4 *4 (-834)) (-4 *6 (-550)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-560)))) (-5 *1 (-584 *5 *4 *6 *3)) (-4 *3 (-942 *6 *5 *4)))) ((*1 *1 *1 *1 *1) (-5 *1 (-842))) ((*1 *1 *1 *1) (-5 *1 (-842))) ((*1 *1 *1) (-5 *1 (-842))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1153)) (-4 *4 (-13 (-550) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *1 (-1144 *4 *2)) (-4 *2 (-13 (-426 *4) (-159) (-27) (-1173))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1074 *2)) (-4 *2 (-13 (-426 *4) (-159) (-27) (-1173))) (-4 *4 (-13 (-550) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *1 (-1144 *4 *2)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1153)) (-4 *5 (-13 (-550) (-834) (-1029 (-560)))) (-5 *2 (-403 (-945 *5))) (-5 *1 (-1145 *5)) (-5 *3 (-945 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1153)) (-4 *5 (-13 (-550) (-834) (-1029 (-560)))) (-5 *2 (-3 (-403 (-945 *5)) (-304 *5))) (-5 *1 (-1145 *5)) (-5 *3 (-403 (-945 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1074 (-945 *5))) (-5 *3 (-945 *5)) (-4 *5 (-13 (-550) (-834) (-1029 (-560)))) (-5 *2 (-403 *3)) (-5 *1 (-1145 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1074 (-403 (-945 *5)))) (-5 *3 (-403 (-945 *5))) (-4 *5 (-13 (-550) (-834) (-1029 (-560)))) (-5 *2 (-3 *3 (-304 *5))) (-5 *1 (-1145 *5))))) -(((*1 *1 *1) (-12 (-5 *1 (-902 *2)) (-4 *2 (-296))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-542)))) -(((*1 *2 *1) (-12 (-5 *2 (-626 (-560))) (-5 *1 (-996 *3)) (-14 *3 (-560))))) -(((*1 *2) (-12 (-4 *3 (-364)) (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *6 (-226 (-2271 *4) (-755))) (-4 *7 (-963 *3)) (-4 *8 (-633 *3)) (-4 *9 (-912 *3 *8)) (-4 *10 (-230 *9)) (-4 *11 (-528 *3 *4 *5 *6 *7 *8 *9 *10 *13)) (-4 *13 (-117)) (-5 *2 (-1231 (-560) -3962)) (-5 *1 (-460 *3 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13)) (-4 *12 (-253 *11)))) ((*1 *2 *3) (-12 (-5 *3 (-909)) (-4 *4 (-364)) (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *6 (-942 *4 *7 (-844 *5))) (-4 *7 (-226 (-2271 *5) (-755))) (-4 *8 (-963 *4)) (-4 *9 (-633 *4)) (-4 *10 (-912 *4 *9)) (-4 *11 (-230 *10)) (-4 *12 (-528 *4 *5 *6 *7 *8 *9 *10 *11 *14)) (-4 *14 (-117)) (-5 *2 (-1231 (-560) -3962)) (-5 *1 (-460 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13 *14)) (-4 *13 (-253 *12)))) ((*1 *2) (-12 (-5 *2 (-1231 (-560) -3962)) (-5 *1 (-859 *3 *4 *5)) (-4 (-849 *3) (-364)) (-4 *3 (-344)) (-14 *4 (-626 (-1153))) (-4 *5 (-117)))) ((*1 *2 *3) (-12 (-5 *3 (-909)) (-5 *2 (-1231 (-560) -3962)) (-5 *1 (-859 *4 *5 *6)) (-4 (-849 *4) (-364)) (-4 *4 (-344)) (-14 *5 (-626 (-1153))) (-4 *6 (-117)))) ((*1 *2) (-12 (-5 *2 (-1231 (-560) -3962)) (-5 *1 (-860 *3 *4 *5)) (-4 *3 (-364)) (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *5 (-117)))) ((*1 *2 *3) (-12 (-5 *3 (-909)) (-5 *2 (-1231 (-560) -3962)) (-5 *1 (-860 *4 *5 *6)) (-4 *4 (-364)) (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *6 (-117))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-626 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *1 (-970 *3 *4 *5 *6)))) ((*1 *2 *2 *2 *3) (-12 (-5 *2 (-626 *7)) (-5 *3 (-121)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-550)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *1 (-970 *4 *5 *6 *7))))) -(((*1 *1 *1 *2) (-12 (-5 *1 (-630 *2 *3 *4)) (-4 *2 (-1082)) (-4 *3 (-23)) (-14 *4 *3)))) -(((*1 *2 *1) (-12 (-5 *2 (-626 (-2 (|:| |gen| *3) (|:| -2469 *4)))) (-5 *1 (-630 *3 *4 *5)) (-4 *3 (-1082)) (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *3) (-12 (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *6 (-942 *4 *7 (-844 *5))) (-4 *7 (-226 (-2271 *5) (-755))) (-4 *8 (-963 *4)) (-4 *9 (-633 *4)) (-4 *10 (-912 *4 *9)) (-4 *11 (-528 *4 *5 *6 *7 *8 *9 *10 *2 *12)) (-4 *12 (-117)) (-4 *2 (-230 *10)) (-5 *1 (-255 *4 *5 *6 *7 *8 *9 *10 *2 *11 *3 *12)) (-4 *3 (-253 *11)))) ((*1 *2) (-12 (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *6 (-226 (-2271 *4) (-755))) (-4 *7 (-963 *3)) (-4 *8 (-633 *3)) (-4 *9 (-912 *3 *8)) (-4 *10 (-528 *3 *4 *5 *6 *7 *8 *9 *2 *12)) (-4 *12 (-117)) (-4 *2 (-230 *9)) (-5 *1 (-460 *3 *4 *5 *6 *7 *8 *9 *2 *10 *11 *12)) (-4 *11 (-253 *10)))) ((*1 *2) (-12 (-5 *2 (-231 (-914 *3))) (-5 *1 (-859 *3 *4 *5)) (-4 *3 (-344)) (-14 *4 (-626 (-1153))) (-4 *5 (-117)))) ((*1 *2) (-12 (-5 *2 (-231 (-913 *3))) (-5 *1 (-860 *3 *4 *5)) (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *5 (-117))))) -(((*1 *1 *1) (-4 *1 (-144))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-157 *3 *2)) (-4 *2 (-426 *3)))) ((*1 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-542))))) -(((*1 *2 *3) (-12 (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-296)) (-5 *2 (-626 (-755))) (-5 *1 (-763 *3 *4 *5 *6 *7)) (-4 *3 (-1211 *6)) (-4 *7 (-942 *6 *4 *5))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-1 (-121) *4 *4)) (-4 *4 (-1187)) (-5 *1 (-371 *4 *2)) (-4 *2 (-13 (-369 *4) (-10 -7 (-6 -4506))))))) -(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1133 (-213))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1396 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1027)) (-5 *1 (-294))))) -(((*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-809))))) -(((*1 *2) (-12 (-4 *3 (-364)) (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *6 (-226 (-2271 *4) (-755))) (-4 *7 (-963 *3)) (-4 *8 (-633 *3)) (-4 *9 (-912 *3 *8)) (-4 *10 (-230 *9)) (-4 *11 (-528 *3 *4 *5 *6 *7 *8 *9 *10 *13)) (-4 *13 (-117)) (-5 *2 (-560)) (-5 *1 (-460 *3 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13)) (-4 *12 (-253 *11)))) ((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-859 *3 *4 *5)) (-4 (-849 *3) (-364)) (-4 *3 (-344)) (-14 *4 (-626 (-1153))) (-4 *5 (-117)))) ((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-860 *3 *4 *5)) (-4 *3 (-364)) (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *5 (-117))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-671 *7)) (-5 *3 (-626 *7)) (-4 *7 (-942 *4 *6 *5)) (-4 *4 (-13 (-296) (-148))) (-4 *5 (-13 (-834) (-601 (-1153)))) (-4 *6 (-780)) (-5 *1 (-916 *4 *5 *6 *7))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 (-1135))) (-5 *2 (-1135)) (-5 *1 (-182)))) ((*1 *1 *2) (-12 (-5 *2 (-626 (-842))) (-5 *1 (-842))))) -(((*1 *2 *3) (-12 (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *3 (-942 *4 *6 (-844 *5))) (-4 *6 (-226 (-2271 *5) (-755))) (-4 *7 (-963 *4)) (-4 *8 (-633 *4)) (-4 *9 (-912 *4 *8)) (-4 *10 (-230 *9)) (-4 *11 (-528 *4 *5 *3 *6 *7 *8 *9 *10 *13)) (-4 *13 (-117)) (-5 *2 (-626 *12)) (-5 *1 (-255 *4 *5 *3 *6 *7 *8 *9 *10 *11 *12 *13)) (-4 *12 (-253 *11)))) ((*1 *2) (-12 (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *6 (-226 (-2271 *4) (-755))) (-4 *7 (-963 *3)) (-4 *8 (-633 *3)) (-4 *9 (-912 *3 *8)) (-4 *10 (-230 *9)) (-4 *11 (-528 *3 *4 *5 *6 *7 *8 *9 *10 *13)) (-4 *13 (-117)) (-5 *2 (-626 *12)) (-5 *1 (-460 *3 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13)) (-4 *12 (-253 *11)))) ((*1 *2) (-12 (-5 *2 (-626 (-254 (-529 *3 *4 *5)))) (-5 *1 (-859 *3 *4 *5)) (-4 *3 (-344)) (-14 *4 (-626 (-1153))) (-4 *5 (-117)))) ((*1 *2) (-12 (-5 *2 (-626 (-254 (-505 *3 *4 *5)))) (-5 *1 (-860 *3 *4 *5)) (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *5 (-117))))) -(((*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-121)) (-5 *1 (-362 *3 *4)) (-4 *3 (-363 *4)))) ((*1 *2) (-12 (-4 *1 (-363 *3)) (-4 *3 (-170)) (-5 *2 (-121))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-1236 *5)) (-4 *5 (-622 *4)) (-4 *4 (-550)) (-5 *2 (-1236 *4)) (-5 *1 (-621 *4 *5))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-626 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-121)) (-5 *1 (-981 *4 *5 *6 *7 *8)) (-4 *8 (-1058 *4 *5 *6 *7)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-626 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-121)) (-5 *1 (-1089 *4 *5 *6 *7 *8)) (-4 *8 (-1058 *4 *5 *6 *7))))) -(((*1 *2) (-12 (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *6 (-226 (-2271 *4) (-755))) (-4 *7 (-963 *3)) (-4 *8 (-633 *3)) (-4 *9 (-912 *3 *8)) (-4 *10 (-230 *9)) (-4 *11 (-528 *3 *4 *5 *6 *7 *8 *9 *10 *13)) (-4 *13 (-117)) (-5 *2 (-626 *12)) (-5 *1 (-460 *3 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13)) (-4 *12 (-253 *11)))) ((*1 *2) (-12 (-5 *2 (-626 (-254 (-529 *3 *4 *5)))) (-5 *1 (-859 *3 *4 *5)) (-4 *3 (-344)) (-14 *4 (-626 (-1153))) (-4 *5 (-117)))) ((*1 *2) (-12 (-5 *2 (-626 (-254 (-505 *3 *4 *5)))) (-5 *1 (-860 *3 *4 *5)) (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *5 (-117))))) -(((*1 *2) (-12 (-4 *3 (-1039)) (-5 *2 (-950 (-694 *3 *4))) (-5 *1 (-694 *3 *4)) (-4 *4 (-1211 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1241)) (-5 *1 (-1115)))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-842))) (-5 *2 (-1241)) (-5 *1 (-1115))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-745)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-671 *3)) (-4 *3 (-1039)) (-5 *1 (-672 *3)))) ((*1 *2 *2 *2 *2) (-12 (-5 *2 (-671 *3)) (-4 *3 (-1039)) (-5 *1 (-672 *3))))) -(((*1 *2 *3 *4) (|partial| -12 (-14 *5 (-626 (-1153))) (-4 *3 (-942 *2 *6 (-844 *5))) (-4 *6 (-226 (-2271 *5) (-755))) (-4 *7 (-963 *2)) (-4 *8 (-633 *2)) (-4 *4 (-912 *2 *8)) (-4 *9 (-230 *4)) (-4 *10 (-528 *2 *5 *3 *6 *7 *8 *4 *9 *12)) (-4 *12 (-117)) (-4 *2 (-359)) (-5 *1 (-460 *2 *5 *3 *6 *7 *8 *4 *9 *10 *11 *12)) (-4 *11 (-253 *10)))) ((*1 *2 *3 *3 *4) (|partial| -12 (-14 *5 (-626 (-1153))) (-4 *3 (-942 *2 *6 (-844 *5))) (-4 *6 (-226 (-2271 *5) (-755))) (-4 *7 (-963 *2)) (-4 *8 (-633 *2)) (-4 *4 (-912 *2 *8)) (-4 *9 (-230 *4)) (-4 *10 (-528 *2 *5 *3 *6 *7 *8 *4 *9 *12)) (-4 *12 (-117)) (-4 *2 (-359)) (-5 *1 (-460 *2 *5 *3 *6 *7 *8 *4 *9 *10 *11 *12)) (-4 *11 (-253 *10)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-403 *6)) (-4 *6 (-942 *2 *7 (-844 *5))) (-4 *7 (-226 (-2271 *5) (-755))) (-14 *5 (-626 (-1153))) (-4 *8 (-963 *2)) (-4 *9 (-633 *2)) (-4 *4 (-912 *2 *9)) (-4 *10 (-230 *4)) (-4 *11 (-528 *2 *5 *6 *7 *8 *9 *4 *10 *13)) (-4 *13 (-117)) (-4 *2 (-359)) (-5 *1 (-460 *2 *5 *6 *7 *8 *9 *4 *10 *11 *12 *13)) (-4 *12 (-253 *11)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-237 *5 *2)) (-5 *4 (-914 *2)) (-14 *5 (-626 (-1153))) (-4 *2 (-344)) (-5 *1 (-859 *2 *5 *6)) (-4 *6 (-117)))) ((*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-237 *5 *2)) (-5 *4 (-914 *2)) (-14 *5 (-626 (-1153))) (-4 *2 (-344)) (-5 *1 (-859 *2 *5 *6)) (-4 *6 (-117)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-403 (-237 *5 *2))) (-5 *4 (-914 *2)) (-14 *5 (-626 (-1153))) (-4 *2 (-344)) (-5 *1 (-859 *2 *5 *6)) (-4 *6 (-117)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-237 *5 *2)) (-5 *4 (-913 *2)) (-14 *5 (-626 (-1153))) (-4 *2 (-359)) (-5 *1 (-860 *2 *5 *6)) (-4 *6 (-117)))) ((*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-237 *5 *2)) (-5 *4 (-913 *2)) (-14 *5 (-626 (-1153))) (-4 *2 (-359)) (-5 *1 (-860 *2 *5 *6)) (-4 *6 (-117)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-403 (-237 *5 *2))) (-5 *4 (-913 *2)) (-14 *5 (-626 (-1153))) (-4 *2 (-359)) (-5 *1 (-860 *2 *5 *6)) (-4 *6 (-117))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-969 *3 *4 *2 *5)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *2 (-834)) (-4 *5 (-1053 *3 *4 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-1018 (-827 (-560)))) (-5 *1 (-585 *3)) (-4 *3 (-1039))))) -(((*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-1188 *3)) (-4 *3 (-1082))))) -(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-430))))) -(((*1 *2) (-12 (-5 *2 (-755)) (-5 *1 (-440 *3)) (-4 *3 (-1039))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1173))))) -(((*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1211 *5)) (-4 *5 (-13 (-359) (-148) (-1029 (-560)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-403 *6)) (|:| |h| *6) (|:| |c1| (-403 *6)) (|:| |c2| (-403 *6)) (|:| -3962 *6))) (-5 *1 (-1008 *5 *6)) (-5 *3 (-403 *6))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1153)) (-5 *1 (-1051))))) -(((*1 *2 *3 *4 *4) (-12 (-4 *5 (-359)) (-14 *6 (-626 (-1153))) (-4 *7 (-942 *5 *8 (-844 *6))) (-4 *8 (-226 (-2271 *6) (-755))) (-4 *9 (-963 *5)) (-4 *10 (-633 *5)) (-4 *11 (-912 *5 *10)) (-4 *3 (-230 *11)) (-4 *12 (-528 *5 *6 *7 *8 *9 *10 *11 *3 *14)) (-4 *14 (-117)) (-5 *2 (-2 (|:| -1943 (-560)) (|:| |num| *7) (|:| |den| *7) (|:| |upTo| (-560)))) (-5 *1 (-460 *5 *6 *7 *8 *9 *10 *11 *3 *12 *13 *14)) (-5 *4 (-560)) (-4 *13 (-253 *12)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-231 (-914 *5))) (-4 *5 (-344)) (-5 *2 (-2 (|:| -1943 (-560)) (|:| |num| (-237 *6 *5)) (|:| |den| (-237 *6 *5)) (|:| |upTo| (-560)))) (-5 *1 (-859 *5 *6 *7)) (-5 *4 (-560)) (-14 *6 (-626 (-1153))) (-4 *7 (-117)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-231 (-913 *5))) (-4 *5 (-359)) (-5 *2 (-2 (|:| -1943 (-560)) (|:| |num| (-237 *6 *5)) (|:| |den| (-237 *6 *5)) (|:| |upTo| (-560)))) (-5 *1 (-860 *5 *6 *7)) (-5 *4 (-560)) (-14 *6 (-626 (-1153))) (-4 *7 (-117))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-427 *3 *2)) (-4 *2 (-426 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1173))))) -(((*1 *2 *2) (-12 (-5 *2 (-820 (-213))) (-5 *1 (-214)))) ((*1 *1 *1) (-4 *1 (-612))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-613 *3 *2)) (-4 *2 (-13 (-426 *3) (-994) (-1173)))))) -(((*1 *1 *1) (-12 (-5 *1 (-1118 *2 *3)) (-4 *2 (-13 (-1082) (-39))) (-4 *3 (-13 (-1082) (-39)))))) -(((*1 *2) (-12 (-5 *2 (-1241)) (-5 *1 (-859 *3 *4 *5)) (-4 *3 (-344)) (-14 *4 (-626 (-1153))) (-4 *5 (-117)))) ((*1 *2) (-12 (-5 *2 (-1241)) (-5 *1 (-860 *3 *4 *5)) (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *5 (-117))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1241)) (-5 *1 (-1238))))) -(((*1 *2 *2 *3 *3) (-12 (-5 *3 (-560)) (-4 *4 (-170)) (-4 *5 (-369 *4)) (-4 *6 (-369 *4)) (-5 *1 (-670 *4 *5 *6 *2)) (-4 *2 (-669 *4 *5 *6))))) -(((*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-437 *3)) (-4 *3 (-1211 (-560)))))) -(((*1 *2) (-12 (-5 *2 (-1241)) (-5 *1 (-859 *3 *4 *5)) (-4 *3 (-344)) (-14 *4 (-626 (-1153))) (-4 *5 (-117)))) ((*1 *2) (-12 (-5 *2 (-1241)) (-5 *1 (-860 *3 *4 *5)) (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *5 (-117))))) -(((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-245))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-121))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-304 (-560))) (|:| -1333 (-304 (-375))) (|:| CF (-304 (-167 (-375)))) (|:| |switch| (-1152)))) (-5 *1 (-1152))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-496))))) -(((*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-936 (-213)) (-213))) (-5 *3 (-1076 (-213))) (-5 *1 (-918)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1 (-936 (-213)) (-213))) (-5 *3 (-1076 (-213))) (-5 *1 (-918)))) ((*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-936 (-213)) (-213))) (-5 *3 (-1076 (-213))) (-5 *1 (-919)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1 (-936 (-213)) (-213))) (-5 *3 (-1076 (-213))) (-5 *1 (-919))))) -(((*1 *2 *3) (-12 (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *3 (-942 *4 *6 (-844 *5))) (-4 *6 (-226 (-2271 *5) (-755))) (-4 *7 (-963 *4)) (-4 *8 (-633 *4)) (-4 *9 (-912 *4 *8)) (-4 *10 (-230 *9)) (-4 *11 (-528 *4 *5 *3 *6 *7 *8 *9 *10 *13)) (-4 *13 (-117)) (-5 *2 (-560)) (-5 *1 (-255 *4 *5 *3 *6 *7 *8 *9 *10 *11 *12 *13)) (-4 *12 (-253 *11)))) ((*1 *2) (-12 (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *6 (-226 (-2271 *4) (-755))) (-4 *7 (-963 *3)) (-4 *8 (-633 *3)) (-4 *9 (-912 *3 *8)) (-4 *10 (-230 *9)) (-4 *11 (-528 *3 *4 *5 *6 *7 *8 *9 *10 *13)) (-4 *13 (-117)) (-5 *2 (-560)) (-5 *1 (-460 *3 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13)) (-4 *12 (-253 *11)))) ((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-859 *3 *4 *5)) (-4 *3 (-344)) (-14 *4 (-626 (-1153))) (-4 *5 (-117)))) ((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-860 *3 *4 *5)) (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *5 (-117))))) -(((*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-560)) (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-936 *4)) (-4 *4 (-1039)) (-5 *1 (-1141 *3 *4)) (-14 *3 (-909))))) -(((*1 *1 *2) (-12 (-5 *2 (-409 *3 *4 *5 *6)) (-4 *6 (-1029 *4)) (-4 *3 (-296)) (-4 *4 (-985 *3)) (-4 *5 (-1211 *4)) (-4 *6 (-405 *4 *5)) (-14 *7 (-1236 *6)) (-5 *1 (-410 *3 *4 *5 *6 *7)))) ((*1 *1 *2) (-12 (-5 *2 (-1236 *6)) (-4 *6 (-405 *4 *5)) (-4 *4 (-985 *3)) (-4 *5 (-1211 *4)) (-4 *3 (-296)) (-5 *1 (-410 *3 *4 *5 *6 *7)) (-14 *7 *2)))) -(((*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-121)) (-5 *1 (-362 *3 *4)) (-4 *3 (-363 *4)))) ((*1 *2) (-12 (-4 *1 (-363 *3)) (-4 *3 (-170)) (-5 *2 (-121))))) -(((*1 *1 *1) (-12 (-5 *1 (-1141 *2 *3)) (-14 *2 (-909)) (-4 *3 (-1039))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-231 (-914 *4))) (-4 *4 (-344)) (-5 *2 (-671 *4)) (-5 *1 (-859 *4 *5 *6)) (-14 *5 (-626 (-1153))) (-4 *6 (-117)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-231 (-914 *5))) (-5 *4 (-626 (-914 *5))) (-4 *5 (-344)) (-5 *2 (-671 *5)) (-5 *1 (-859 *5 *6 *7)) (-14 *6 (-626 (-1153))) (-4 *7 (-117)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-231 (-913 *4))) (-4 *4 (-359)) (-5 *2 (-671 *4)) (-5 *1 (-860 *4 *5 *6)) (-14 *5 (-626 (-1153))) (-4 *6 (-117)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-231 (-913 *5))) (-5 *4 (-626 (-913 *5))) (-4 *5 (-359)) (-5 *2 (-671 *5)) (-5 *1 (-860 *5 *6 *7)) (-14 *6 (-626 (-1153))) (-4 *7 (-117))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-810)) (-5 *2 (-1241)) (-5 *1 (-809))))) -(((*1 *2 *1) (-12 (-4 *3 (-359)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-121)) (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-942 *3 *4 *5)))) ((*1 *2 *1) (-12 (-4 *1 (-704)) (-5 *2 (-121)))) ((*1 *2 *1) (-12 (-4 *1 (-708)) (-5 *2 (-121))))) -(((*1 *1 *1) (-12 (|has| *1 (-6 -4506)) (-4 *1 (-1223 *2)) (-4 *2 (-1187))))) -(((*1 *2 *1) (-12 (-4 *3 (-1039)) (-5 *2 (-626 *1)) (-4 *1 (-1114 *3))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-755)) (-4 *5 (-359)) (-14 *6 (-626 (-1153))) (-4 *7 (-942 *5 *8 (-844 *6))) (-4 *8 (-226 (-2271 *6) *4)) (-4 *9 (-963 *5)) (-4 *10 (-633 *5)) (-4 *11 (-912 *5 *10)) (-4 *3 (-230 *11)) (-4 *12 (-528 *5 *6 *7 *8 *9 *10 *11 *3 *14)) (-4 *14 (-117)) (-5 *2 (-626 *7)) (-5 *1 (-460 *5 *6 *7 *8 *9 *10 *11 *3 *12 *13 *14)) (-4 *13 (-253 *12)))) ((*1 *2 *3 *4 *5 *2) (-12 (-5 *2 (-626 *5)) (-4 *5 (-942 *6 *8 (-844 *7))) (-4 *8 (-226 (-2271 *7) *4)) (-5 *4 (-755)) (-4 *6 (-359)) (-14 *7 (-626 (-1153))) (-4 *10 (-633 *6)) (-4 *11 (-912 *6 *10)) (-5 *1 (-554 *6 *7 *5 *8 *9 *10 *11 *3)) (-4 *9 (-963 *6)) (-4 *3 (-230 *11)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-231 (-914 *5))) (-5 *4 (-755)) (-4 *5 (-344)) (-5 *2 (-626 (-237 *6 *5))) (-5 *1 (-859 *5 *6 *7)) (-14 *6 (-626 (-1153))) (-4 *7 (-117)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-231 (-913 *5))) (-5 *4 (-755)) (-4 *5 (-359)) (-5 *2 (-626 (-237 *6 *5))) (-5 *1 (-860 *5 *6 *7)) (-14 *6 (-626 (-1153))) (-4 *7 (-117))))) -(((*1 *2 *3 *1) (-12 (-4 *1 (-1058 *4 *5 *6 *3)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-121)))) ((*1 *2 *3 *1) (-12 (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-626 (-2 (|:| |val| (-121)) (|:| -3249 *1)))) (-4 *1 (-1058 *4 *5 *6 *3))))) -(((*1 *2 *1) (-12 (-4 *3 (-1082)) (-4 *4 (-13 (-1039) (-873 *3) (-834) (-601 (-879 *3)))) (-5 *2 (-626 (-1061 *3 *4 *5))) (-5 *1 (-1062 *3 *4 *5)) (-4 *5 (-13 (-426 *4) (-873 *3) (-601 (-879 *3))))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-52 *2 *3)) (-4 *3 (-779)) (-4 *2 (-1039)))) ((*1 *2 *1 *1) (-12 (-4 *2 (-1039)) (-5 *1 (-55 *2 *3)) (-14 *3 (-626 (-1153))))) ((*1 *2 *1 *3) (-12 (-5 *3 (-626 (-909))) (-4 *2 (-359)) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-909)) (-14 *5 (-986 *4 *2)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-304 *3)) (-5 *1 (-211 *3 *4)) (-4 *3 (-13 (-1039) (-834))) (-14 *4 (-626 (-1153))))) ((*1 *2 *3 *1) (-12 (-4 *1 (-314 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-137)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-378 *2 *3)) (-4 *3 (-1082)) (-4 *2 (-1039)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *2 (-550)) (-5 *1 (-607 *2 *4)) (-4 *4 (-1211 *2)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-4 *1 (-690 *2)) (-4 *2 (-1039)))) ((*1 *2 *1 *3) (-12 (-4 *2 (-1039)) (-5 *1 (-717 *2 *3)) (-4 *3 (-708)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-626 *5)) (-5 *3 (-626 (-755))) (-4 *1 (-722 *4 *5)) (-4 *4 (-1039)) (-4 *5 (-834)))) ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-755)) (-4 *1 (-722 *4 *2)) (-4 *4 (-1039)) (-4 *2 (-834)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-4 *1 (-836 *2)) (-4 *2 (-1039)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-626 *6)) (-5 *3 (-626 (-755))) (-4 *1 (-942 *4 *5 *6)) (-4 *4 (-1039)) (-4 *5 (-780)) (-4 *6 (-834)))) ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-755)) (-4 *1 (-942 *4 *5 *2)) (-4 *4 (-1039)) (-4 *5 (-780)) (-4 *2 (-834)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-4 *2 (-942 *4 (-526 *5) *5)) (-5 *1 (-1106 *4 *5 *2)) (-4 *4 (-1039)) (-4 *5 (-834)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *2 (-945 *4)) (-5 *1 (-1182 *4)) (-4 *4 (-1039))))) -(((*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-386 *3 *4 *5)) (-14 *3 (-755)) (-14 *4 (-755)) (-4 *5 (-170))))) -(((*1 *2 *1) (-12 (-4 *1 (-62 *3 *4 *5)) (-4 *3 (-1187)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)) (-5 *2 (-755)))) ((*1 *2 *1) (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039)) (-4 *6 (-226 *4 *5)) (-4 *7 (-226 *3 *5)) (-5 *2 (-755))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-626 *6)) (-4 *6 (-942 *4 *7 (-844 *5))) (-4 *7 (-226 (-2271 *5) (-755))) (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *8 (-963 *4)) (-4 *9 (-633 *4)) (-4 *10 (-912 *4 *9)) (-4 *3 (-230 *10)) (-4 *11 (-528 *4 *5 *6 *7 *8 *9 *10 *3 *13)) (-4 *13 (-117)) (-5 *1 (-460 *4 *5 *6 *7 *8 *9 *10 *3 *11 *12 *13)) (-4 *12 (-253 *11)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-626 *6)) (-4 *6 (-942 *4 *7 (-844 *5))) (-4 *7 (-226 (-2271 *5) (-755))) (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *9 (-633 *4)) (-4 *10 (-912 *4 *9)) (-5 *1 (-554 *4 *5 *6 *7 *8 *9 *10 *3)) (-4 *8 (-963 *4)) (-4 *3 (-230 *10)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-231 (-914 *5))) (-5 *4 (-626 (-237 *6 *5))) (-4 *5 (-344)) (-14 *6 (-626 (-1153))) (-5 *2 (-626 (-237 *6 (-849 *5)))) (-5 *1 (-859 *5 *6 *7)) (-4 *7 (-117)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-626 (-237 *5 *4))) (-5 *3 (-231 (-913 *4))) (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-5 *1 (-860 *4 *5 *6)) (-4 *6 (-117))))) -(((*1 *2 *1) (|partial| -12 (-4 *3 (-447)) (-4 *4 (-834)) (-4 *5 (-780)) (-5 *2 (-121)) (-5 *1 (-980 *3 *4 *5 *6)) (-4 *6 (-942 *3 *5 *4)))) ((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1117 *3 *4)) (-4 *3 (-13 (-1082) (-39))) (-4 *4 (-13 (-1082) (-39)))))) -(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-879 *3)) (-4 *3 (-1082)))) ((*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-121))))) -(((*1 *2 *3) (-12 (-5 *3 (-755)) (-5 *2 (-1241)) (-5 *1 (-375)))) ((*1 *2) (-12 (-5 *2 (-1241)) (-5 *1 (-375))))) -(((*1 *2 *3) (-12 (-5 *3 (-909)) (-5 *2 (-1149 *4)) (-5 *1 (-352 *4)) (-4 *4 (-344))))) -(((*1 *2 *3) (-12 (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *3 (-942 *4 *6 (-844 *5))) (-4 *6 (-226 (-2271 *5) (-755))) (-4 *7 (-963 *4)) (-4 *8 (-633 *4)) (-4 *9 (-912 *4 *8)) (-4 *10 (-528 *4 *5 *3 *6 *7 *8 *9 *2 *12)) (-4 *12 (-117)) (-4 *2 (-230 *9)) (-5 *1 (-460 *4 *5 *3 *6 *7 *8 *9 *2 *10 *11 *12)) (-4 *11 (-253 *10)))) ((*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-626 *13)) (-5 *5 (-626 *9)) (-4 *9 (-963 *6)) (-4 *13 (-253 *12)) (-4 *6 (-359)) (-4 *12 (-528 *6 *7 *3 *8 *9 *10 *11 *2 *14)) (-4 *14 (-117)) (-14 *7 (-626 (-1153))) (-4 *3 (-942 *6 *8 (-844 *7))) (-4 *8 (-226 (-2271 *7) (-755))) (-4 *10 (-633 *6)) (-4 *11 (-912 *6 *10)) (-4 *2 (-230 *11)) (-5 *1 (-548 *6 *7 *3 *8 *9 *10 *11 *2 *12 *13 *14)))) ((*1 *2 *3) (-12 (-5 *3 (-237 *5 *4)) (-4 *4 (-344)) (-14 *5 (-626 (-1153))) (-5 *2 (-231 (-914 *4))) (-5 *1 (-859 *4 *5 *6)) (-4 *6 (-117)))) ((*1 *2 *3) (-12 (-5 *3 (-237 *5 *4)) (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-5 *2 (-231 (-913 *4))) (-5 *1 (-860 *4 *5 *6)) (-4 *6 (-117))))) -(((*1 *2 *3) (-12 (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-296)) (-5 *2 (-414 *3)) (-5 *1 (-724 *4 *5 *6 *3)) (-4 *3 (-942 *6 *4 *5))))) -(((*1 *2 *3 *3 *4) (-12 (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-626 (-2 (|:| |val| *3) (|:| -3249 *4)))) (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1058 *5 *6 *7 *3))))) -(((*1 *2 *2 *3 *4) (-12 (-5 *2 (-1236 *5)) (-5 *3 (-755)) (-5 *4 (-1100)) (-4 *5 (-344)) (-5 *1 (-524 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-809))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-626 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-447)) (-4 *3 (-550)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *1 (-970 *3 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *6 (-942 *4 *7 (-844 *5))) (-4 *7 (-226 (-2271 *5) (-755))) (-4 *8 (-963 *4)) (-4 *9 (-633 *4)) (-4 *10 (-912 *4 *9)) (-4 *3 (-230 *10)) (-4 *11 (-528 *4 *5 *6 *7 *8 *9 *10 *3 *13)) (-4 *13 (-117)) (-5 *2 (-2 (|:| |num| (-626 *6)) (|:| |den| *6))) (-5 *1 (-460 *4 *5 *6 *7 *8 *9 *10 *3 *11 *12 *13)) (-4 *12 (-253 *11)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-231 (-914 *5))) (-5 *4 (-755)) (-4 *5 (-344)) (-5 *2 (-626 (-403 (-237 *6 *5)))) (-5 *1 (-859 *5 *6 *7)) (-14 *6 (-626 (-1153))) (-4 *7 (-117)))) ((*1 *2 *3) (-12 (-5 *3 (-231 (-914 *4))) (-4 *4 (-344)) (-5 *2 (-2 (|:| |num| (-626 (-237 *5 *4))) (|:| |den| (-237 *5 *4)))) (-5 *1 (-859 *4 *5 *6)) (-14 *5 (-626 (-1153))) (-4 *6 (-117)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-231 (-913 *5))) (-5 *4 (-755)) (-4 *5 (-359)) (-5 *2 (-626 (-403 (-237 *6 *5)))) (-5 *1 (-860 *5 *6 *7)) (-14 *6 (-626 (-1153))) (-4 *7 (-117)))) ((*1 *2 *3) (-12 (-5 *3 (-231 (-913 *4))) (-4 *4 (-359)) (-5 *2 (-2 (|:| |num| (-626 (-237 *5 *4))) (|:| |den| (-237 *5 *4)))) (-5 *1 (-860 *4 *5 *6)) (-14 *5 (-626 (-1153))) (-4 *6 (-117))))) -(((*1 *2 *3) (-12 (-4 *4 (-550)) (-5 *2 (-755)) (-5 *1 (-48 *4 *3)) (-4 *3 (-413 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-755)) (-5 *2 (-671 (-945 *4))) (-5 *1 (-1020 *4)) (-4 *4 (-1039))))) -(((*1 *2 *3) (-12 (-5 *3 (-909)) (-4 *4 (-364)) (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *6 (-942 *4 *7 (-844 *5))) (-4 *7 (-226 (-2271 *5) (-755))) (-4 *8 (-963 *4)) (-4 *9 (-633 *4)) (-4 *10 (-912 *4 *9)) (-4 *11 (-230 *10)) (-4 *12 (-528 *4 *5 *6 *7 *8 *9 *10 *11 *14)) (-4 *14 (-117)) (-5 *2 (-560)) (-5 *1 (-460 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13 *14)) (-4 *13 (-253 *12)))) ((*1 *2 *3) (-12 (-5 *3 (-909)) (-5 *2 (-560)) (-5 *1 (-859 *4 *5 *6)) (-4 (-849 *4) (-364)) (-4 *4 (-344)) (-14 *5 (-626 (-1153))) (-4 *6 (-117)))) ((*1 *2 *3) (-12 (-5 *3 (-909)) (-5 *2 (-560)) (-5 *1 (-860 *4 *5 *6)) (-4 *4 (-364)) (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *6 (-117))))) -(((*1 *2 *3) (-12 (-4 *4 (-550)) (-5 *2 (-755)) (-5 *1 (-48 *4 *3)) (-4 *3 (-413 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 (-560))) (-5 *2 (-1155 (-403 (-560)))) (-5 *1 (-180))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-671 *1)) (-5 *4 (-1236 *1)) (-4 *1 (-622 *5)) (-4 *5 (-1039)) (-5 *2 (-2 (|:| -3818 (-671 *5)) (|:| |vec| (-1236 *5)))))) ((*1 *2 *3) (-12 (-5 *3 (-671 *1)) (-4 *1 (-622 *4)) (-4 *4 (-1039)) (-5 *2 (-671 *4))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-626 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-296)) (-4 *3 (-550)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *1 (-970 *3 *4 *5 *6))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-909)) (-4 *4 (-364)) (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *6 (-942 *4 *7 (-844 *5))) (-4 *7 (-226 (-2271 *5) (-755))) (-4 *8 (-963 *4)) (-4 *9 (-633 *4)) (-4 *10 (-912 *4 *9)) (-4 *11 (-230 *10)) (-4 *12 (-528 *4 *5 *6 *7 *8 *9 *10 *11 *14)) (-4 *14 (-117)) (-5 *2 (-560)) (-5 *1 (-460 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13 *14)) (-4 *13 (-253 *12)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-909)) (-5 *2 (-560)) (-5 *1 (-859 *4 *5 *6)) (-4 (-849 *4) (-364)) (-4 *4 (-344)) (-14 *5 (-626 (-1153))) (-4 *6 (-117)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-909)) (-5 *2 (-560)) (-5 *1 (-860 *4 *5 *6)) (-4 *4 (-364)) (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *6 (-117))))) -(((*1 *2 *1) (-12 (-5 *2 (-403 (-945 *3))) (-5 *1 (-448 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *3 (-170)) (-14 *4 (-909)) (-14 *5 (-626 (-1153))) (-14 *6 (-1236 (-671 *3)))))) -(((*1 *1) (-4 *1 (-344)))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1236 *1)) (-4 *1 (-363 *4)) (-4 *4 (-170)) (-5 *2 (-671 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-413 *3)) (-4 *3 (-170)) (-5 *2 (-671 *3))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1174 *3)) (-4 *3 (-1082))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-626 (-842))) (-5 *1 (-842))))) -(((*1 *1 *1) (-4 *1 (-40))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1226 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1195 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-976 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1138 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1139 *3))))) -(((*1 *2 *3) (-12 (-4 *4 (-13 (-359) (-10 -8 (-15 ** ($ $ (-403 (-560))))))) (-5 *2 (-626 *4)) (-5 *1 (-1108 *3 *4)) (-4 *3 (-1211 *4)))) ((*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-359) (-10 -8 (-15 ** ($ $ (-403 (-560))))))) (-5 *2 (-626 *3)) (-5 *1 (-1108 *4 *3)) (-4 *4 (-1211 *3))))) -(((*1 *2 *3) (-12 (-5 *2 (-375)) (-5 *1 (-772 *3)) (-4 *3 (-601 *2)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-909)) (-5 *2 (-375)) (-5 *1 (-772 *3)) (-4 *3 (-601 *2)))) ((*1 *2 *3) (-12 (-5 *3 (-945 *4)) (-4 *4 (-1039)) (-4 *4 (-601 *2)) (-5 *2 (-375)) (-5 *1 (-772 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-945 *5)) (-5 *4 (-909)) (-4 *5 (-1039)) (-4 *5 (-601 *2)) (-5 *2 (-375)) (-5 *1 (-772 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-403 (-945 *4))) (-4 *4 (-550)) (-4 *4 (-601 *2)) (-5 *2 (-375)) (-5 *1 (-772 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-403 (-945 *5))) (-5 *4 (-909)) (-4 *5 (-550)) (-4 *5 (-601 *2)) (-5 *2 (-375)) (-5 *1 (-772 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-304 *4)) (-4 *4 (-550)) (-4 *4 (-834)) (-4 *4 (-601 *2)) (-5 *2 (-375)) (-5 *1 (-772 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-304 *5)) (-5 *4 (-909)) (-4 *5 (-550)) (-4 *5 (-834)) (-4 *5 (-601 *2)) (-5 *2 (-375)) (-5 *1 (-772 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-909)) (-5 *2 (-891 (-560))) (-5 *1 (-905)))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-560))) (-5 *2 (-891 (-560))) (-5 *1 (-905))))) -(((*1 *1 *1) (-4 *1 (-40))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1226 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1195 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-976 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1138 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1139 *3))))) -(((*1 *2 *1) (-12 (-4 *2 (-1082)) (-5 *1 (-957 *3 *2)) (-4 *3 (-1082))))) -(((*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1236 (-626 *3))) (-4 *4 (-296)) (-5 *2 (-626 *3)) (-5 *1 (-450 *4 *3)) (-4 *3 (-1211 *4))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-96 *3)) (-4 *3 (-1082)) (-4 *3 (-1082)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-105)) (-5 *2 (-121)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-210 *3)) (-4 *3 (-1082)) (-4 *3 (-1082)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-487 *3)) (-4 *3 (-1082)) (-4 *3 (-834)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-992 *3)) (-4 *3 (-1082)) (-4 *3 (-1082)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1124 *3)) (-4 *3 (-1082)) (-4 *3 (-1082))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-626 (-755))) (-5 *3 (-121)) (-5 *1 (-1141 *4 *5)) (-14 *4 (-909)) (-4 *5 (-1039))))) -(((*1 *2 *3) (-12 (-4 *1 (-823)) (-5 *3 (-2 (|:| |fn| (-304 (-213))) (|:| -1394 (-626 (-213))) (|:| |lb| (-626 (-827 (-213)))) (|:| |cf| (-626 (-304 (-213)))) (|:| |ub| (-626 (-827 (-213)))))) (-5 *2 (-1027)))) ((*1 *2 *3) (-12 (-4 *1 (-823)) (-5 *3 (-2 (|:| |lfn| (-626 (-304 (-213)))) (|:| -1394 (-626 (-213))))) (-5 *2 (-1027))))) -(((*1 *1 *1) (-4 *1 (-40))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1226 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1195 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-976 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1138 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1139 *3))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-1236 *4)) (-5 *3 (-755)) (-4 *4 (-344)) (-5 *1 (-524 *4))))) -(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1149 *9)) (-5 *4 (-626 *7)) (-5 *5 (-626 *8)) (-4 *7 (-834)) (-4 *8 (-1039)) (-4 *9 (-942 *8 *6 *7)) (-4 *6 (-780)) (-5 *2 (-1149 *8)) (-5 *1 (-312 *6 *7 *8 *9))))) +(((*1 *2 *3) (-12 (-5 *3 (-679 *4)) (-4 *4 (-365)) (-5 *2 (-1157 *4)) (-5 *1 (-535 *4 *5 *6)) (-4 *5 (-365)) (-4 *6 (-13 (-365) (-840)))))) +(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-141 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-763)) (-4 *5 (-172)))) ((*1 *1 *1) (-12 (-5 *1 (-141 *2 *3 *4)) (-14 *2 (-568)) (-14 *3 (-763)) (-4 *4 (-172)))) ((*1 *1 *1) (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) ((*1 *1 *2) (-12 (-4 *3 (-1047)) (-4 *1 (-677 *3 *2 *4)) (-4 *2 (-375 *3)) (-4 *4 (-375 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-1127 *2 *3)) (-14 *2 (-763)) (-4 *3 (-1047))))) +(((*1 *2 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1195)) (-5 *2 (-634 *3))))) +(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1084 (-215))) (-5 *1 (-926)))) ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1084 (-215))) (-5 *1 (-927)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1084 (-215))) (-5 *1 (-927)))) ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1249)) (-5 *1 (-1246)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1249)) (-5 *1 (-1246))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002)))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1026 (-835 (-568)))) (-5 *3 (-1141 (-2 (|:| |k| (-568)) (|:| |c| *4)))) (-4 *4 (-1047)) (-5 *1 (-593 *4))))) +(((*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-634 *6)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-950 *3 *4 *5)))) ((*1 *2 *1) (-12 (-5 *2 (-634 (-900 *3))) (-5 *1 (-899 *3)) (-4 *3 (-1090))))) +(((*1 *2 *1) (-12 (-4 *1 (-1261 *3)) (-4 *3 (-365)) (-5 *2 (-121))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 (-944 *3) (-944 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-365) (-1181) (-1002)))))) +(((*1 *2 *1) (-12 (-5 *2 (-50 (-1143) (-766))) (-5 *1 (-123))))) +(((*1 *2 *2) (-12 (-5 *2 (-634 *6)) (-4 *6 (-950 *3 *4 *5)) (-4 *3 (-453)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *1 (-450 *3 *4 *5 *6))))) +(((*1 *2 *3 *3 *4) (-12 (-5 *4 (-763)) (-4 *5 (-558)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-970 *5 *3)) (-4 *3 (-1219 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-817))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2))))) +(((*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1143)) (-5 *1 (-500)))) ((*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1143)) (-5 *1 (-700))))) +(((*1 *2 *1) (-12 (-5 *2 (-634 (-1182 *3))) (-5 *1 (-1182 *3)) (-4 *3 (-1090))))) +(((*1 *2 *3) (-12 (-4 *1 (-831)) (-5 *3 (-2 (|:| |fn| (-310 (-215))) (|:| -4434 (-634 (-215))) (|:| |lb| (-634 (-835 (-215)))) (|:| |cf| (-634 (-310 (-215)))) (|:| |ub| (-634 (-835 (-215)))))) (-5 *2 (-1035)))) ((*1 *2 *3) (-12 (-4 *1 (-831)) (-5 *3 (-2 (|:| |lfn| (-634 (-310 (-215)))) (|:| -4434 (-634 (-215))))) (-5 *2 (-1035))))) +(((*1 *2 *3) (-12 (-5 *3 (-57)) (-5 *1 (-56 *2)) (-4 *2 (-1195)))) ((*1 *1 *2) (-12 (-5 *2 (-953 (-381))) (-5 *1 (-337 *3 *4 *5)) (-4 *5 (-1037 (-381))) (-14 *3 (-634 (-1161))) (-14 *4 (-634 (-1161))) (-4 *5 (-389)))) ((*1 *1 *2) (-12 (-5 *2 (-409 (-953 (-381)))) (-5 *1 (-337 *3 *4 *5)) (-4 *5 (-1037 (-381))) (-14 *3 (-634 (-1161))) (-14 *4 (-634 (-1161))) (-4 *5 (-389)))) ((*1 *1 *2) (-12 (-5 *2 (-310 (-381))) (-5 *1 (-337 *3 *4 *5)) (-4 *5 (-1037 (-381))) (-14 *3 (-634 (-1161))) (-14 *4 (-634 (-1161))) (-4 *5 (-389)))) ((*1 *1 *2) (-12 (-5 *2 (-953 (-568))) (-5 *1 (-337 *3 *4 *5)) (-4 *5 (-1037 (-568))) (-14 *3 (-634 (-1161))) (-14 *4 (-634 (-1161))) (-4 *5 (-389)))) ((*1 *1 *2) (-12 (-5 *2 (-409 (-953 (-568)))) (-5 *1 (-337 *3 *4 *5)) (-4 *5 (-1037 (-568))) (-14 *3 (-634 (-1161))) (-14 *4 (-634 (-1161))) (-4 *5 (-389)))) ((*1 *1 *2) (-12 (-5 *2 (-310 (-568))) (-5 *1 (-337 *3 *4 *5)) (-4 *5 (-1037 (-568))) (-14 *3 (-634 (-1161))) (-14 *4 (-634 (-1161))) (-4 *5 (-389)))) ((*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-337 *3 *4 *5)) (-14 *3 (-634 *2)) (-14 *4 (-634 *2)) (-4 *5 (-389)))) ((*1 *1 *2) (-12 (-5 *2 (-310 *5)) (-4 *5 (-389)) (-5 *1 (-337 *3 *4 *5)) (-14 *3 (-634 (-1161))) (-14 *4 (-634 (-1161))))) ((*1 *1 *2) (-12 (-5 *2 (-679 (-409 (-953 (-568))))) (-4 *1 (-386)))) ((*1 *1 *2) (-12 (-5 *2 (-679 (-409 (-953 (-381))))) (-4 *1 (-386)))) ((*1 *1 *2) (-12 (-5 *2 (-679 (-953 (-568)))) (-4 *1 (-386)))) ((*1 *1 *2) (-12 (-5 *2 (-679 (-953 (-381)))) (-4 *1 (-386)))) ((*1 *1 *2) (-12 (-5 *2 (-679 (-310 (-568)))) (-4 *1 (-386)))) ((*1 *1 *2) (-12 (-5 *2 (-679 (-310 (-381)))) (-4 *1 (-386)))) ((*1 *1 *2) (-12 (-5 *2 (-409 (-953 (-568)))) (-4 *1 (-398)))) ((*1 *1 *2) (-12 (-5 *2 (-409 (-953 (-381)))) (-4 *1 (-398)))) ((*1 *1 *2) (-12 (-5 *2 (-953 (-568))) (-4 *1 (-398)))) ((*1 *1 *2) (-12 (-5 *2 (-953 (-381))) (-4 *1 (-398)))) ((*1 *1 *2) (-12 (-5 *2 (-310 (-568))) (-4 *1 (-398)))) ((*1 *1 *2) (-12 (-5 *2 (-310 (-381))) (-4 *1 (-398)))) ((*1 *1 *2) (-12 (-5 *2 (-1244 (-409 (-953 (-568))))) (-4 *1 (-442)))) ((*1 *1 *2) (-12 (-5 *2 (-1244 (-409 (-953 (-381))))) (-4 *1 (-442)))) ((*1 *1 *2) (-12 (-5 *2 (-1244 (-953 (-568)))) (-4 *1 (-442)))) ((*1 *1 *2) (-12 (-5 *2 (-1244 (-953 (-381)))) (-4 *1 (-442)))) ((*1 *1 *2) (-12 (-5 *2 (-1244 (-310 (-568)))) (-4 *1 (-442)))) ((*1 *1 *2) (-12 (-5 *2 (-1244 (-310 (-381)))) (-4 *1 (-442)))) ((*1 *2 *1) (-12 (-5 *2 (-409 (-734 *3 *4))) (-5 *1 (-733 *3 *4)) (-14 *3 (-1161)) (-4 *4 (-13 (-1047) (-842) (-558))))) ((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (|:| |mdnia| (-2 (|:| |fn| (-310 (-215))) (|:| -1338 (-634 (-1084 (-835 (-215))))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))))) (-5 *1 (-761)))) ((*1 *1 *2) (-12 (-5 *2 (-1201 *3)) (-4 *3 (-350)) (-5 *1 (-770 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (-5 *1 (-803)))) ((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-310 (-215))) (|:| -4434 (-634 (-215))) (|:| |lb| (-634 (-835 (-215)))) (|:| |cf| (-634 (-310 (-215)))) (|:| |ub| (-634 (-835 (-215)))))) (|:| |lsa| (-2 (|:| |lfn| (-634 (-310 (-215)))) (|:| -4434 (-634 (-215))))))) (-5 *1 (-833)))) ((*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-634 (-310 (-215)))) (|:| |constraints| (-634 (-2 (|:| |start| (-215)) (|:| |finish| (-215)) (|:| |grid| (-763)) (|:| |boundaryType| (-568)) (|:| |dStart| (-679 (-215))) (|:| |dFinish| (-679 (-215)))))) (|:| |f| (-634 (-634 (-310 (-215))))) (|:| |st| (-1143)) (|:| |tol| (-215)))) (-5 *1 (-893)))) ((*1 *1 *2) (-12 (-5 *2 (-634 *6)) (-4 *6 (-1061 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *1 (-977 *3 *4 *5 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-1037 *2)) (-4 *2 (-1195)))) ((*1 *1 *2) (-2198 (-12 (-5 *2 (-953 *3)) (-12 (-3044 (-4 *3 (-43 (-409 (-568))))) (-3044 (-4 *3 (-43 (-568)))) (-4 *5 (-609 (-1161)))) (-4 *3 (-1047)) (-4 *1 (-1061 *3 *4 *5)) (-4 *4 (-788)) (-4 *5 (-842))) (-12 (-5 *2 (-953 *3)) (-12 (-3044 (-4 *3 (-550))) (-3044 (-4 *3 (-43 (-409 (-568))))) (-4 *3 (-43 (-568))) (-4 *5 (-609 (-1161)))) (-4 *3 (-1047)) (-4 *1 (-1061 *3 *4 *5)) (-4 *4 (-788)) (-4 *5 (-842))) (-12 (-5 *2 (-953 *3)) (-12 (-3044 (-4 *3 (-993 (-568)))) (-4 *3 (-43 (-409 (-568)))) (-4 *5 (-609 (-1161)))) (-4 *3 (-1047)) (-4 *1 (-1061 *3 *4 *5)) (-4 *4 (-788)) (-4 *5 (-842))))) ((*1 *1 *2) (-2198 (-12 (-5 *2 (-953 (-568))) (-4 *1 (-1061 *3 *4 *5)) (-12 (-3044 (-4 *3 (-43 (-409 (-568))))) (-4 *3 (-43 (-568))) (-4 *5 (-609 (-1161)))) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842))) (-12 (-5 *2 (-953 (-568))) (-4 *1 (-1061 *3 *4 *5)) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *5 (-609 (-1161)))) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842))))) ((*1 *1 *2) (-12 (-5 *2 (-953 (-409 (-568)))) (-4 *1 (-1061 *3 *4 *5)) (-4 *3 (-43 (-409 (-568)))) (-4 *5 (-609 (-1161))) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842))))) +(((*1 *2 *3 *2 *4) (-12 (-5 *3 (-634 *6)) (-5 *4 (-634 (-242 *5 *6))) (-4 *6 (-453)) (-5 *2 (-242 *5 *6)) (-14 *5 (-634 (-1161))) (-5 *1 (-622 *5 *6))))) +(((*1 *2) (-12 (-5 *2 (-869)) (-5 *1 (-1247)))) ((*1 *2 *2) (-12 (-5 *2 (-869)) (-5 *1 (-1247))))) +(((*1 *1) (-5 *1 (-439)))) +(((*1 *2 *1) (-12 (-5 *2 (-568)) (-5 *1 (-849)))) ((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-990)))) ((*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1195)))) ((*1 *2 *1) (-12 (-4 *2 (-13 (-1090) (-39))) (-5 *1 (-1125 *2 *3)) (-4 *3 (-13 (-1090) (-39)))))) +(((*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-365)) (-4 *3 (-1219 *4)) (-4 *5 (-1219 (-409 *3))) (-4 *1 (-333 *4 *3 *5 *2)) (-4 *2 (-340 *4 *3 *5)))) ((*1 *1 *2 *2 *3) (-12 (-5 *3 (-568)) (-4 *2 (-365)) (-4 *4 (-1219 *2)) (-4 *5 (-1219 (-409 *4))) (-4 *1 (-333 *2 *4 *5 *6)) (-4 *6 (-340 *2 *4 *5)))) ((*1 *1 *2 *2) (-12 (-4 *2 (-365)) (-4 *3 (-1219 *2)) (-4 *4 (-1219 (-409 *3))) (-4 *1 (-333 *2 *3 *4 *5)) (-4 *5 (-340 *2 *3 *4)))) ((*1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 (-409 *4))) (-4 *1 (-333 *3 *4 *5 *2)) (-4 *2 (-340 *3 *4 *5)))) ((*1 *1 *2) (-12 (-5 *2 (-415 *4 (-409 *4) *5 *6)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 (-409 *4))) (-4 *6 (-340 *3 *4 *5)) (-4 *3 (-365)) (-4 *1 (-333 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *2 (-1219 *3)) (-5 *1 (-401 *3 *2)) (-4 *3 (-13 (-365) (-150)))))) +(((*1 *2 *1) (-12 (-4 *1 (-333 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 (-409 *4))) (-4 *6 (-340 *3 *4 *5)) (-5 *2 (-2 (|:| -1713 (-415 *4 (-409 *4) *5 *6)) (|:| |principalPart| *6))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1219 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |poly| *6) (|:| -2242 (-409 *6)) (|:| |special| (-409 *6)))) (-5 *1 (-717 *5 *6)) (-5 *3 (-409 *6)))) ((*1 *2 *3) (-12 (-4 *4 (-365)) (-5 *2 (-634 *3)) (-5 *1 (-891 *3 *4)) (-4 *3 (-1219 *4)))) ((*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-763)) (-4 *5 (-365)) (-5 *2 (-2 (|:| -3028 *3) (|:| -3284 *3))) (-5 *1 (-891 *3 *5)) (-4 *3 (-1219 *5)))) ((*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-634 *9)) (-5 *3 (-634 *8)) (-5 *4 (-121)) (-4 *8 (-1061 *5 *6 *7)) (-4 *9 (-1066 *5 *6 *7 *8)) (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-5 *1 (-1064 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-634 *9)) (-5 *3 (-634 *8)) (-5 *4 (-121)) (-4 *8 (-1061 *5 *6 *7)) (-4 *9 (-1066 *5 *6 *7 *8)) (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-5 *1 (-1064 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-634 *9)) (-5 *3 (-634 *8)) (-5 *4 (-121)) (-4 *8 (-1061 *5 *6 *7)) (-4 *9 (-1099 *5 *6 *7 *8)) (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-5 *1 (-1130 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-634 *9)) (-5 *3 (-634 *8)) (-5 *4 (-121)) (-4 *8 (-1061 *5 *6 *7)) (-4 *9 (-1099 *5 *6 *7 *8)) (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-5 *1 (-1130 *5 *6 *7 *8 *9))))) +(((*1 *1 *2) (-12 (-5 *2 (-679 *5)) (-4 *5 (-1047)) (-5 *1 (-1051 *3 *4 *5)) (-14 *3 (-763)) (-14 *4 (-763))))) +(((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1161)) (|:| |arrayIndex| (-634 (-953 (-568)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-121)) (|:| -4151 (-850)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1161)) (|:| |rand| (-850)) (|:| |ints2Floats?| (-121)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1160)) (|:| |thenClause| (-328)) (|:| |elseClause| (-328)))) (|:| |returnBranch| (-2 (|:| -3084 (-121)) (|:| -2850 (-2 (|:| |ints2Floats?| (-121)) (|:| -4151 (-850)))))) (|:| |blockBranch| (-634 (-328))) (|:| |commentBranch| (-634 (-1143))) (|:| |callBranch| (-1143)) (|:| |forBranch| (-2 (|:| -1338 (-1082 (-953 (-568)))) (|:| |span| (-953 (-568))) (|:| |body| (-328)))) (|:| |labelBranch| (-1108)) (|:| |loopBranch| (-2 (|:| |switch| (-1160)) (|:| |body| (-328)))) (|:| |commonBranch| (-2 (|:| -3391 (-1161)) (|:| |contents| (-634 (-1161))))) (|:| |printBranch| (-634 (-850))))) (-5 *1 (-328))))) +(((*1 *2) (-12 (-4 *3 (-1047)) (-4 *5 (-230 *6 (-763))) (-14 *6 (-763)) (-5 *2 (-634 *4)) (-5 *1 (-908 *3 *4 *5 *6)) (-4 *4 (-324 *3 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 (-2 (|:| -3700 (-763)) (|:| |eqns| (-634 (-2 (|:| |det| *7) (|:| |rows| (-634 (-568))) (|:| |cols| (-634 (-568)))))) (|:| |fgb| (-634 *7))))) (-4 *7 (-950 *4 *6 *5)) (-4 *4 (-13 (-301) (-150))) (-4 *5 (-13 (-842) (-609 (-1161)))) (-4 *6 (-788)) (-5 *2 (-763)) (-5 *1 (-924 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-4 *1 (-858)) (-5 *2 (-917))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-121)) (-5 *1 (-123)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-296)) (-5 *3 (-1161)) (-5 *2 (-121)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-296)) (-5 *3 (-123)) (-5 *2 (-121)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-121)) (-5 *1 (-607 *4)) (-4 *4 (-842)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-123)) (-5 *2 (-121)) (-5 *1 (-607 *4)) (-4 *4 (-842)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-1090)) (-5 *2 (-121)) (-5 *1 (-882 *5 *3 *4)) (-4 *3 (-881 *5)) (-4 *4 (-609 (-887 *5))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 *6)) (-4 *6 (-881 *5)) (-4 *5 (-1090)) (-5 *2 (-121)) (-5 *1 (-882 *5 *6 *4)) (-4 *4 (-609 (-887 *5)))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-1244 *4)) (-5 *3 (-763)) (-4 *4 (-350)) (-5 *1 (-532 *4))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-884 *4 *5)) (-5 *3 (-884 *4 *6)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-658 *5)) (-5 *1 (-880 *4 *5 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-155 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-365)) (-14 *5 (-994 *3 *4))))) +(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-634 *7)) (-5 *5 (-634 (-634 *8))) (-4 *7 (-842)) (-4 *8 (-301)) (-4 *6 (-788)) (-4 *9 (-950 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-634 (-2 (|:| -3848 (-1157 *9)) (|:| -3438 (-568))))))) (-5 *1 (-732 *6 *7 *8 *9)) (-5 *3 (-1157 *9))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 (-465))) (-5 *2 (-1161)) (-5 *1 (-464)))) ((*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-465))))) +(((*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-944 *5)) (-5 *3 (-763)) (-4 *5 (-1047)) (-5 *1 (-1149 *4 *5)) (-14 *4 (-917))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-1244 *5))) (-5 *4 (-568)) (-5 *2 (-1244 *5)) (-5 *1 (-1029 *5)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1047))))) +(((*1 *2 *3 *4) (-12 (-4 *4 (-365)) (-5 *2 (-634 (-1141 *4))) (-5 *1 (-280 *4 *5)) (-5 *3 (-1141 *4)) (-4 *5 (-1234 *4))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-634 (-381))) (-5 *3 (-634 (-256))) (-5 *1 (-254)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-634 (-381))) (-5 *1 (-473)))) ((*1 *2 *1) (-12 (-5 *2 (-634 (-381))) (-5 *1 (-473)))) ((*1 *2 *1 *3 *4) (-12 (-5 *3 (-917)) (-5 *4 (-869)) (-5 *2 (-1249)) (-5 *1 (-1245)))) ((*1 *2 *1 *3 *4) (-12 (-5 *3 (-917)) (-5 *4 (-1143)) (-5 *2 (-1249)) (-5 *1 (-1245))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-634 (-288 *4))) (-5 *1 (-618 *3 *4 *5)) (-4 *3 (-842)) (-4 *4 (-13 (-172) (-707 (-409 (-568))))) (-14 *5 (-917))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-634 *3)) (-4 *3 (-950 *4 *6 *5)) (-4 *4 (-453)) (-4 *5 (-842)) (-4 *6 (-788)) (-5 *1 (-988 *4 *5 *6 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-288 (-953 (-568)))) (-5 *2 (-2 (|:| |varOrder| (-634 (-1161))) (|:| |inhom| (-3 (-634 (-1244 (-763))) "failed")) (|:| |hom| (-634 (-1244 (-763)))))) (-5 *1 (-228))))) +(((*1 *2 *3 *3) (-12 (-5 *2 (-634 *3)) (-5 *1 (-961 *3)) (-4 *3 (-550))))) +(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-409 (-1157 (-310 *3)))) (-4 *3 (-13 (-558) (-842))) (-5 *1 (-1118 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1210 (-568))) (-4 *1 (-640 *3)) (-4 *3 (-1195)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-568)) (-4 *1 (-640 *3)) (-4 *3 (-1195))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-568)) (-5 *1 (-420 *2)) (-4 *2 (-558))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-197)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-634 (-381))) (-5 *2 (-381)) (-5 *1 (-197))))) +(((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1143)) (-5 *2 (-766)) (-5 *1 (-123))))) +(((*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-365) (-150) (-1037 (-568)))) (-4 *5 (-1219 *4)) (-5 *2 (-634 (-409 *5))) (-5 *1 (-1016 *4 *5)) (-5 *3 (-409 *5))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-763)) (-4 *1 (-376 *3 *4)) (-4 *3 (-842)) (-4 *4 (-172)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-763)) (-4 *1 (-1263 *3 *4)) (-4 *3 (-842)) (-4 *4 (-1047))))) +(((*1 *2 *3 *4 *4) (-12 (-5 *3 (-1161)) (-5 *4 (-953 (-568))) (-5 *2 (-328)) (-5 *1 (-330)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-1161)) (-5 *4 (-1082 (-953 (-568)))) (-5 *2 (-328)) (-5 *1 (-330)))) ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-763)) (-5 *1 (-666 *3)) (-4 *3 (-1047)) (-4 *3 (-1090))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-1189 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *2 (-1061 *3 *4 *5))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-558) (-842) (-1037 (-568)))) (-5 *1 (-180 *3 *2)) (-4 *2 (-13 (-27) (-1181) (-432 (-169 *3)))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1161)) (-4 *4 (-13 (-558) (-842) (-1037 (-568)))) (-5 *1 (-180 *4 *2)) (-4 *2 (-13 (-27) (-1181) (-432 (-169 *4)))))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *1 (-1185 *3 *2)) (-4 *2 (-13 (-27) (-1181) (-432 *3))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1161)) (-4 *4 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *1 (-1185 *4 *2)) (-4 *2 (-13 (-27) (-1181) (-432 *4)))))) +(((*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-695 *3 *4)) (-4 *3 (-1195)) (-4 *4 (-1195))))) +(((*1 *2 *2 *3 *2) (-12 (-5 *3 (-763)) (-4 *4 (-350)) (-5 *1 (-207 *4 *2)) (-4 *2 (-1219 *4))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-763)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-788)) (-4 *7 (-950 *4 *5 *6)) (-4 *4 (-453)) (-4 *6 (-842)) (-5 *2 (-121)) (-5 *1 (-450 *4 *5 *6 *7))))) +(((*1 *1 *2) (-12 (-5 *2 (-634 (-634 *3))) (-4 *3 (-1090)) (-5 *1 (-900 *3))))) +(((*1 *2 *1) (|partial| -12 (-4 *3 (-453)) (-4 *4 (-842)) (-4 *5 (-788)) (-5 *2 (-121)) (-5 *1 (-988 *3 *4 *5 *6)) (-4 *6 (-950 *3 *5 *4)))) ((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1125 *3 *4)) (-4 *3 (-13 (-1090) (-39))) (-4 *4 (-13 (-1090) (-39)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1244 (-310 (-215)))) (-5 *2 (-1244 (-310 (-381)))) (-5 *1 (-299))))) +(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1157 *9)) (-5 *4 (-634 *7)) (-5 *5 (-634 *8)) (-4 *7 (-842)) (-4 *8 (-1047)) (-4 *9 (-950 *8 *6 *7)) (-4 *6 (-788)) (-5 *2 (-1157 *8)) (-5 *1 (-318 *6 *7 *8 *9))))) +(((*1 *2 *3) (-12 (-5 *3 (-763)) (-5 *2 (-1 (-1141 (-953 *4)) (-1141 (-953 *4)))) (-5 *1 (-1252 *4)) (-4 *4 (-365))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-763)) (-5 *1 (-848 *2)) (-4 *2 (-172))))) +(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-869))))) +(((*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-568)) (-5 *6 (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3650 (-381)))) (-5 *7 (-1 (-1249) (-1244 *5) (-1244 *5) (-381))) (-5 *3 (-1244 (-381))) (-5 *5 (-381)) (-5 *2 (-1249)) (-5 *1 (-783)))) ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-568)) (-5 *6 (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3650 (-381)))) (-5 *7 (-1 (-1249) (-1244 *5) (-1244 *5) (-381))) (-5 *3 (-1244 (-381))) (-5 *5 (-381)) (-5 *2 (-1249)) (-5 *1 (-783))))) +(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-634 (-568))) (-5 *1 (-1100)) (-5 *3 (-568))))) +(((*1 *2 *1) (-12 (-5 *2 (-634 (-944 *4))) (-5 *1 (-1149 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1047))))) +(((*1 *1 *2) (-12 (-5 *2 (-634 (-2 (|:| -3649 (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (|:| -4083 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1141 (-215))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1338 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-563))))) +(((*1 *2 *3 *1) (|partial| -12 (-4 *1 (-41 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-5 *2 (-2 (|:| -3649 *3) (|:| -4083 *4)))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-121) *3)) (|has| *1 (-6 -4519)) (-4 *1 (-154 *3)) (-4 *3 (-1195)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-121) *3)) (-4 *3 (-1195)) (-5 *1 (-598 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-121) *3)) (-4 *1 (-665 *3)) (-4 *3 (-1195)))) ((*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1189 *4 *5 *3 *2)) (-4 *4 (-558)) (-4 *5 (-788)) (-4 *3 (-842)) (-4 *2 (-1061 *4 *5 *3)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-5 *1 (-1193 *2)) (-4 *2 (-1195))))) (((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-121) (-123) (-123))) (-5 *1 (-123))))) -(((*1 *1 *1) (-4 *1 (-40))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1226 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1195 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-976 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1138 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1139 *3))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1241)) (-5 *1 (-809))))) -(((*1 *1 *2) (-12 (-5 *2 (-1236 *3)) (-4 *3 (-1039)) (-5 *1 (-694 *3 *4)) (-4 *4 (-1211 *3))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-626 (-945 *4))) (-5 *3 (-626 (-1153))) (-4 *4 (-447)) (-5 *1 (-906 *4))))) -(((*1 *1 *1) (-4 *1 (-40))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1226 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1195 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-976 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1138 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1139 *3))))) -(((*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-626 (-1117 *4 *5))) (-5 *3 (-1 (-121) *5 *5)) (-4 *4 (-13 (-1082) (-39))) (-4 *5 (-13 (-1082) (-39))) (-5 *1 (-1118 *4 *5)))) ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-626 (-1117 *3 *4))) (-4 *3 (-13 (-1082) (-39))) (-4 *4 (-13 (-1082) (-39))) (-5 *1 (-1118 *3 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-213)) (-5 *1 (-30)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-414 *4) *4)) (-4 *4 (-550)) (-5 *2 (-414 *4)) (-5 *1 (-415 *4)))) ((*1 *1 *1) (-5 *1 (-918))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1076 (-213))) (-5 *1 (-918)))) ((*1 *1 *1) (-5 *1 (-919))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1076 (-213))) (-5 *1 (-919)))) ((*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560))))) (-5 *4 (-403 (-560))) (-5 *1 (-1011 *3)) (-4 *3 (-1211 (-560))))) ((*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560))))) (-5 *1 (-1011 *3)) (-4 *3 (-1211 (-560))))) ((*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560))))) (-5 *4 (-403 (-560))) (-5 *1 (-1012 *3)) (-4 *3 (-1211 *4)))) ((*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560))))) (-5 *1 (-1012 *3)) (-4 *3 (-1211 (-403 (-560)))))) ((*1 *1 *1) (-12 (-4 *2 (-13 (-832) (-359))) (-5 *1 (-1049 *2 *3)) (-4 *3 (-1211 *2))))) -(((*1 *1 *1 *1) (-4 *1 (-643))) ((*1 *1 *1 *1) (-5 *1 (-1100)))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-414 *5)) (-4 *5 (-550)) (-5 *2 (-2 (|:| -4034 (-755)) (|:| -2169 *5) (|:| |radicand| (-626 *5)))) (-5 *1 (-310 *5)) (-5 *4 (-755)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-994)) (-5 *2 (-560))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1226 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1195 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-976 *4)))) ((*1 *1 *1) (-4 *1 (-494))) ((*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1138 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1139 *3))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-1 (-121) *4 *4)) (-4 *4 (-1187)) (-5 *1 (-371 *4 *2)) (-4 *2 (-13 (-369 *4) (-10 -7 (-6 -4506))))))) -(((*1 *1 *1 *2) (-12 (-4 *3 (-359)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *1 (-506 *3 *4 *5 *2)) (-4 *2 (-942 *3 *4 *5)))) ((*1 *1 *1 *1) (-12 (-4 *2 (-359)) (-4 *3 (-780)) (-4 *4 (-834)) (-5 *1 (-506 *2 *3 *4 *5)) (-4 *5 (-942 *2 *3 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-626 *1)) (-4 *1 (-447)))) ((*1 *1 *1 *1) (-4 *1 (-447)))) -(((*1 *1 *1 *1) (-4 *1 (-643))) ((*1 *1 *1 *1) (-5 *1 (-1100)))) -(((*1 *2 *1) (-12 (-5 *2 (-1133 *3)) (-5 *1 (-171 *3)) (-4 *3 (-296))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1226 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1195 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-976 *4)))) ((*1 *1 *1) (-4 *1 (-494))) ((*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1138 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1139 *3))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-447))) (-5 *1 (-1179 *3 *2)) (-4 *2 (-13 (-426 *3) (-1173)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1173))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1153)) (-5 *1 (-599 *3)) (-4 *3 (-834))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1226 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1195 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-976 *4)))) ((*1 *1 *1) (-4 *1 (-494))) ((*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1138 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1139 *3))))) -(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-560))) (-5 *5 (-1 (-1133 *4))) (-4 *4 (-359)) (-4 *4 (-1039)) (-5 *2 (-1133 *4)) (-5 *1 (-1137 *4))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-447))) (-5 *1 (-1179 *3 *2)) (-4 *2 (-13 (-426 *3) (-1173)))))) -(((*1 *1 *1 *1) (-4 *1 (-296))) ((*1 *1 *1 *1) (-5 *1 (-755))) ((*1 *1 *1 *1) (-5 *1 (-842)))) -(((*1 *2 *3) (-12 (-5 *3 (-626 (-599 *5))) (-4 *4 (-834)) (-5 *2 (-599 *5)) (-5 *1 (-569 *4 *5)) (-4 *5 (-426 *4))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1226 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1195 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-976 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-626 (-1153))) (-14 *3 (-626 (-1153))) (-4 *4 (-383)))) ((*1 *1 *1) (-4 *1 (-494))) ((*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1138 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1139 *3))))) -(((*1 *2 *3 *2 *2) (-12 (-5 *2 (-626 (-485 *4 *5))) (-5 *3 (-844 *4)) (-14 *4 (-626 (-1153))) (-4 *5 (-447)) (-5 *1 (-614 *4 *5))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994)))))) -(((*1 *1 *1) (-12 (-4 *1 (-1226 *2)) (-4 *2 (-1039))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1226 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1195 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-976 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-626 (-1153))) (-14 *3 (-626 (-1153))) (-4 *4 (-383)))) ((*1 *1 *1) (-4 *1 (-494))) ((*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1138 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1139 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-780)) (-4 *4 (-834)) (-4 *2 (-550))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-626 (-1135))) (-5 *1 (-390)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-626 (-1135))) (-5 *1 (-1168))))) -(((*1 *1 *1 *1) (-4 *1 (-296))) ((*1 *1 *1 *1) (-5 *1 (-755))) ((*1 *1 *1 *1) (-5 *1 (-842)))) -(((*1 *2 *3) (-12 (-4 *4 (-359)) (-4 *4 (-550)) (-4 *5 (-1211 *4)) (-5 *2 (-2 (|:| -1445 (-607 *4 *5)) (|:| -3072 (-403 *5)))) (-5 *1 (-607 *4 *5)) (-5 *3 (-403 *5)))) ((*1 *2 *1) (-12 (-5 *2 (-626 (-1141 *3 *4))) (-5 *1 (-1141 *3 *4)) (-14 *3 (-909)) (-4 *4 (-1039)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-447)) (-4 *3 (-1039)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1211 *3))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1226 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1195 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-976 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-626 (-1153))) (-14 *3 (-626 (-1153))) (-4 *4 (-383)))) ((*1 *1 *1) (-4 *1 (-494))) ((*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1138 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1139 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-375)) (-5 *1 (-1238)))) ((*1 *2) (-12 (-5 *2 (-375)) (-5 *1 (-1238))))) -(((*1 *2) (-12 (-4 *3 (-13 (-834) (-550) (-1029 (-560)))) (-5 *2 (-1241)) (-5 *1 (-429 *3 *4)) (-4 *4 (-426 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-755)) (-5 *1 (-1141 *3 *4)) (-14 *3 (-909)) (-4 *4 (-1039))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-251))) (-5 *4 (-1153)) (-5 *2 (-121)) (-5 *1 (-251)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-458))) (-5 *4 (-1153)) (-5 *2 (-121)) (-5 *1 (-458))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170))))) -(((*1 *2 *1) (-12 (-5 *2 (-1076 *3)) (-5 *1 (-1074 *3)) (-4 *3 (-1187)))) ((*1 *1 *2 *2) (-12 (-4 *1 (-1075 *2)) (-4 *2 (-1187)))) ((*1 *1 *2) (-12 (-5 *1 (-1202 *2)) (-4 *2 (-1187))))) -(((*1 *1 *1) (-4 *1 (-98))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1226 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1195 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-976 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1138 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1139 *3))))) -(((*1 *2 *2) (-12 (-4 *3 (-359)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)) (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-669 *3 *4 *5))))) -(((*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-1165 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -4374 (-671 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-671 *3)))) (-4 *3 (-13 (-296) (-10 -8 (-15 -2953 ((-414 $) $))))) (-4 *4 (-1211 *3)) (-5 *1 (-500 *3 *4 *5)) (-4 *5 (-405 *3 *4))))) -(((*1 *2 *1 *3) (-12 (-5 *2 (-403 (-560))) (-5 *1 (-126 *4)) (-14 *4 *3) (-5 *3 (-560)))) ((*1 *2 *1 *2) (-12 (-4 *1 (-855 *3)) (-5 *2 (-560)))) ((*1 *2 *1 *3) (-12 (-5 *2 (-403 (-560))) (-5 *1 (-857 *4)) (-14 *4 *3) (-5 *3 (-560)))) ((*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-403 (-560))) (-5 *1 (-858 *4 *5)) (-5 *3 (-560)) (-4 *5 (-855 *4)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-1004)) (-5 *2 (-403 (-560))))) ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1055 *2 *3)) (-4 *2 (-13 (-832) (-359))) (-4 *3 (-1211 *2)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-1213 *2 *3)) (-4 *3 (-779)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2801 (*2 (-1153)))) (-4 *2 (-1039))))) -(((*1 *1 *1) (-4 *1 (-98))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1226 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1195 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-976 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1138 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1139 *3))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-1149 *3)) (-4 *3 (-344)) (-5 *1 (-352 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-557)))) ((*1 *2 *3) (-12 (-5 *2 (-1149 (-403 (-560)))) (-5 *1 (-935)) (-5 *3 (-560))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-557))))) -(((*1 *1 *1) (-4 *1 (-98))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1226 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1195 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-976 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1138 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1139 *3))))) -(((*1 *2 *3) (-12 (-5 *2 (-121)) (-5 *1 (-578 *3)) (-4 *3 (-542))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-626 *6)) (-5 *4 (-626 (-1153))) (-4 *6 (-359)) (-5 *2 (-626 (-283 (-945 *6)))) (-5 *1 (-535 *5 *6 *7)) (-4 *5 (-447)) (-4 *7 (-13 (-359) (-832)))))) -(((*1 *2 *3) (-12 (-5 *3 (-755)) (-5 *2 (-1241)) (-5 *1 (-845 *4 *5 *6 *7)) (-4 *4 (-1039)) (-14 *5 (-626 (-1153))) (-14 *6 (-626 *3)) (-14 *7 *3))) ((*1 *2 *3) (-12 (-5 *3 (-755)) (-4 *4 (-1039)) (-4 *5 (-834)) (-4 *6 (-780)) (-14 *8 (-626 *5)) (-5 *2 (-1241)) (-5 *1 (-1246 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-942 *4 *6 *5)) (-14 *9 (-626 *3)) (-14 *10 *3)))) -(((*1 *1 *1) (-4 *1 (-98))) ((*1 *1 *1 *1) (-5 *1 (-213))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1226 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1195 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-976 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-626 (-1153))) (-14 *3 (-626 (-1153))) (-4 *4 (-383)))) ((*1 *1 *1 *1) (-5 *1 (-375))) ((*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1138 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1139 *3))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-892 *4)) (-4 *4 (-1082)) (-5 *2 (-626 (-755))) (-5 *1 (-891 *4))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994)))))) -(((*1 *1 *1) (-5 *1 (-1051)))) -(((*1 *1) (-12 (-5 *1 (-626 *2)) (-4 *2 (-1187))))) -(((*1 *1 *1) (-4 *1 (-98))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1226 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1195 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-976 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-626 (-1153))) (-14 *3 (-626 (-1153))) (-4 *4 (-383)))) ((*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1138 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1139 *3))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1135)) (-5 *3 (-560)) (-5 *1 (-229))))) -(((*1 *1) (-5 *1 (-810)))) -(((*1 *2 *3) (-12 (-5 *3 (-1153)) (-4 *4 (-13 (-834) (-296) (-1029 (-560)) (-622 (-560)) (-148))) (-5 *2 (-1 *5 *5)) (-5 *1 (-791 *4 *5)) (-4 *5 (-13 (-29 *4) (-1173) (-951)))))) -(((*1 *1 *1) (-4 *1 (-98))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1226 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1195 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-976 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-626 (-1153))) (-14 *3 (-626 (-1153))) (-4 *4 (-383)))) ((*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1138 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1139 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 (-2 (|:| -3143 (-755)) (|:| |eqns| (-626 (-2 (|:| |det| *7) (|:| |rows| (-626 (-560))) (|:| |cols| (-626 (-560)))))) (|:| |fgb| (-626 *7))))) (-4 *7 (-942 *4 *6 *5)) (-4 *4 (-13 (-296) (-148))) (-4 *5 (-13 (-834) (-601 (-1153)))) (-4 *6 (-780)) (-5 *2 (-755)) (-5 *1 (-916 *4 *5 *6 *7))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-836 *2)) (-4 *2 (-1039)) (-4 *2 (-359))))) -(((*1 *2 *1) (-12 (-4 *1 (-1114 *3)) (-4 *3 (-1039)) (-5 *2 (-626 (-936 *3))))) ((*1 *1 *2) (-12 (-5 *2 (-626 (-936 *3))) (-4 *3 (-1039)) (-4 *1 (-1114 *3)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-626 (-626 *3))) (-4 *1 (-1114 *3)) (-4 *3 (-1039)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-626 (-936 *3))) (-4 *1 (-1114 *3)) (-4 *3 (-1039))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1226 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1195 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-976 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1138 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1139 *3)))) ((*1 *1 *1) (-4 *1 (-1176)))) -(((*1 *2 *3) (-12 (-4 *4 (-447)) (-5 *2 (-626 (-2 (|:| |eigval| (-3 (-403 (-945 *4)) (-1142 (-1153) (-945 *4)))) (|:| |geneigvec| (-626 (-671 (-403 (-945 *4)))))))) (-5 *1 (-281 *4)) (-5 *3 (-671 (-403 (-945 *4))))))) -(((*1 *2 *3) (-12 (-4 *4 (-13 (-834) (-550))) (-5 *2 (-121)) (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-426 *4) (-994)))))) -(((*1 *2 *1) (-12 (-5 *1 (-96 *2)) (-4 *2 (-1082)))) ((*1 *2 *1) (-12 (-4 *1 (-111 *2)) (-4 *2 (-1187)))) ((*1 *2 *1) (-12 (-5 *1 (-210 *2)) (-4 *2 (-1082)))) ((*1 *2 *1) (-12 (-5 *1 (-487 *2)) (-4 *2 (-834)))) ((*1 *2 *1) (-12 (-5 *1 (-992 *2)) (-4 *2 (-1082)))) ((*1 *2 *1) (-12 (-5 *1 (-1124 *2)) (-4 *2 (-1082))))) -(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-879 *3)) (-4 *3 (-1082)))) ((*1 *2 *1) (-12 (-4 *1 (-1251 *3 *4)) (-4 *3 (-834)) (-4 *4 (-1039)) (-5 *2 (-121)))) ((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1257 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-830))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1226 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1195 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-976 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1138 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1139 *3)))) ((*1 *1 *1) (-4 *1 (-1176)))) -(((*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-437 *3)) (-4 *3 (-1211 (-560)))))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-550)) (-5 *2 (-626 *3)) (-5 *1 (-962 *4 *3)) (-4 *3 (-1211 *4))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-314 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-137)) (-4 *3 (-779))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1226 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1195 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-976 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1138 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1139 *3)))) ((*1 *1 *1) (-4 *1 (-1176)))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-382 *3)) (|:| |mm| (-382 *3)) (|:| |rm| (-382 *3)))) (-5 *1 (-382 *3)) (-4 *3 (-1082)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-806 *3)) (|:| |mm| (-806 *3)) (|:| |rm| (-806 *3)))) (-5 *1 (-806 *3)) (-4 *3 (-834))))) -(((*1 *2 *3 *4 *5) (-12 (-5 *5 (-121)) (-4 *6 (-447)) (-4 *7 (-780)) (-4 *8 (-834)) (-4 *3 (-1053 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-626 *4)) (|:| |todo| (-626 (-2 (|:| |val| (-626 *3)) (|:| -3249 *4)))))) (-5 *1 (-1056 *6 *7 *8 *3 *4)) (-4 *4 (-1058 *6 *7 *8 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-626 *4)) (|:| |todo| (-626 (-2 (|:| |val| (-626 *3)) (|:| -3249 *4)))))) (-5 *1 (-1122 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-384)) (-5 *1 (-615))))) -(((*1 *2 *3) (-12 (-5 *3 (-1084 *4)) (-4 *4 (-1082)) (-5 *2 (-1 *4)) (-5 *1 (-1009 *4)))) ((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-375))) (-5 *1 (-1031)) (-5 *3 (-375)))) ((*1 *2 *3) (-12 (-5 *3 (-1076 (-560))) (-5 *2 (-1 (-560))) (-5 *1 (-1037))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1226 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1195 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-976 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-626 (-1153))) (-14 *3 (-626 (-1153))) (-4 *4 (-383)))) ((*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1138 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1139 *3)))) ((*1 *1 *1) (-4 *1 (-1176)))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-560)) (-5 *1 (-375))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-296)) (-5 *1 (-450 *3 *2)) (-4 *2 (-1211 *3)))) ((*1 *2 *2 *3) (-12 (-4 *3 (-296)) (-5 *1 (-455 *3 *2)) (-4 *2 (-1211 *3)))) ((*1 *2 *2 *3) (-12 (-4 *3 (-296)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-755))) (-5 *1 (-536 *3 *2 *4 *5)) (-4 *2 (-1211 *3))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-403 (-945 *3))) (-5 *1 (-448 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *3 (-170)) (-14 *4 (-909)) (-14 *5 (-626 (-1153))) (-14 *6 (-1236 (-671 *3)))))) -(((*1 *1 *1) (-4 *1 (-612))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-613 *3 *2)) (-4 *2 (-13 (-426 *3) (-994) (-1173)))))) -(((*1 *2 *1) (-12 (-5 *2 (-626 (-560))) (-5 *1 (-996 *3)) (-14 *3 (-560))))) -(((*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1241)) (-5 *1 (-432))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-626 (-842))) (-5 *1 (-1153))))) -(((*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-809))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-319 *3)) (-4 *3 (-1187)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-517 *3 *4)) (-4 *3 (-1187)) (-14 *4 *2)))) -(((*1 *2 *2 *2) (|partial| -12 (-4 *3 (-359)) (-5 *1 (-883 *2 *3)) (-4 *2 (-1211 *3))))) -(((*1 *2 *3 *3 *4) (-12 (-5 *4 (-755)) (-4 *5 (-550)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-962 *5 *3)) (-4 *3 (-1211 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1039))))) -(((*1 *1) (-12 (-4 *1 (-400)) (-3186 (|has| *1 (-6 -4496))) (-3186 (|has| *1 (-6 -4488))))) ((*1 *2 *1) (-12 (-4 *1 (-421 *2)) (-4 *2 (-1082)) (-4 *2 (-834)))) ((*1 *2 *1) (-12 (-5 *1 (-487 *2)) (-4 *2 (-834)))) ((*1 *1 *1 *1) (-4 *1 (-834))) ((*1 *2 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-834)))) ((*1 *1) (-5 *1 (-1100)))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-755)) (-4 *1 (-219 *4)) (-4 *4 (-1039)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-219 *3)) (-4 *3 (-1039)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-221)) (-5 *2 (-755)))) ((*1 *1 *1) (-4 *1 (-221))) ((*1 *1 *1 *2) (-12 (-5 *2 (-755)) (-4 *3 (-13 (-359) (-148))) (-5 *1 (-395 *3 *4)) (-4 *4 (-1211 *3)))) ((*1 *1 *1) (-12 (-4 *2 (-13 (-359) (-148))) (-5 *1 (-395 *2 *3)) (-4 *3 (-1211 *2)))) ((*1 *1) (-12 (-4 *1 (-638 *2)) (-4 *2 (-1039)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-626 *4)) (-5 *3 (-626 (-755))) (-4 *1 (-887 *4)) (-4 *4 (-1082)))) ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-755)) (-4 *1 (-887 *2)) (-4 *2 (-1082)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *1 (-887 *3)) (-4 *3 (-1082)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-887 *2)) (-4 *2 (-1082))))) -(((*1 *1) (-5 *1 (-156)))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1079 *2)) (-4 *2 (-1082))))) -(((*1 *2 *3) (-12 (-4 *4 (-1039)) (-4 *2 (-13 (-400) (-1029 *4) (-359) (-1173) (-274))) (-5 *1 (-438 *4 *3 *2)) (-4 *3 (-1211 *4))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-121)) (-5 *1 (-808))))) -(((*1 *2 *2) (-12 (-4 *3 (-447)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *1 (-444 *3 *4 *5 *2)) (-4 *2 (-942 *3 *4 *5))))) -(((*1 *1 *1) (-4 *1 (-612))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-613 *3 *2)) (-4 *2 (-13 (-426 *3) (-994) (-1173)))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1121)) (-5 *2 (-1202 (-560)))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-1187)) (-4 *2 (-834)))) ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-121) *3 *3)) (-4 *1 (-369 *3)) (-4 *3 (-1187)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-487 *2)) (-4 *2 (-834)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-834)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1039)))) ((*1 *1 *2) (-12 (-5 *2 (-626 *1)) (-4 *1 (-1114 *3)) (-4 *3 (-1039)))) ((*1 *1 *2) (-12 (-5 *2 (-626 (-1141 *3 *4))) (-5 *1 (-1141 *3 *4)) (-14 *3 (-909)) (-4 *4 (-1039)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-1141 *2 *3)) (-14 *2 (-909)) (-4 *3 (-1039))))) -(((*1 *2 *3) (-12 (-5 *2 (-1149 (-560))) (-5 *1 (-935)) (-5 *3 (-560)))) ((*1 *2 *2) (-12 (-4 *3 (-296)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)) (-5 *1 (-1104 *3 *4 *5 *2)) (-4 *2 (-669 *3 *4 *5))))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-121)) (-5 *1 (-981 *4 *5 *6 *7 *3)) (-4 *3 (-1058 *4 *5 *6 *7)))) ((*1 *2 *3 *3) (-12 (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-121)) (-5 *1 (-1089 *4 *5 *6 *7 *3)) (-4 *3 (-1058 *4 *5 *6 *7))))) -(((*1 *1 *1) (-4 *1 (-612))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-613 *3 *2)) (-4 *2 (-13 (-426 *3) (-994) (-1173)))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 (-2 (|:| |den| (-560)) (|:| |gcdnum| (-560))))) (-4 *4 (-1211 (-403 *2))) (-5 *2 (-560)) (-5 *1 (-901 *4 *5)) (-4 *5 (-1211 (-403 *4)))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-842))) ((*1 *1 *1 *1) (-5 *1 (-842))) ((*1 *1 *1) (-5 *1 (-842)))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1121)) (-5 *2 (-142)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1121)) (-5 *2 (-145))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1236 *3)) (-4 *3 (-1211 *4)) (-4 *4 (-1191)) (-4 *1 (-334 *4 *3 *5)) (-4 *5 (-1211 (-403 *3)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-1157))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-626 *2) *2 *2 *2)) (-4 *2 (-1082)) (-5 *1 (-106 *2)))) ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1082)) (-5 *1 (-106 *2))))) -(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-909)) (-5 *4 (-1135)) (-5 *2 (-1241)) (-5 *1 (-1237))))) -(((*1 *1) (-4 *1 (-344))) ((*1 *2 *3) (-12 (-5 *3 (-626 *5)) (-4 *5 (-426 *4)) (-4 *4 (-13 (-550) (-834) (-148))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-626 (-1149 *5))) (|:| |prim| (-1149 *5)))) (-5 *1 (-428 *4 *5)))) ((*1 *2 *3 *3) (-12 (-4 *4 (-13 (-550) (-834) (-148))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1149 *3)) (|:| |pol2| (-1149 *3)) (|:| |prim| (-1149 *3)))) (-5 *1 (-428 *4 *3)) (-4 *3 (-27)) (-4 *3 (-426 *4)))) ((*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-945 *5)) (-5 *4 (-1153)) (-4 *5 (-13 (-359) (-148))) (-5 *2 (-2 (|:| |coef1| (-560)) (|:| |coef2| (-560)) (|:| |prim| (-1149 *5)))) (-5 *1 (-952 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-945 *5))) (-5 *4 (-626 (-1153))) (-4 *5 (-13 (-359) (-148))) (-5 *2 (-2 (|:| -2169 (-626 (-560))) (|:| |poly| (-626 (-1149 *5))) (|:| |prim| (-1149 *5)))) (-5 *1 (-952 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-626 (-945 *6))) (-5 *4 (-626 (-1153))) (-5 *5 (-1153)) (-4 *6 (-13 (-359) (-148))) (-5 *2 (-2 (|:| -2169 (-626 (-560))) (|:| |poly| (-626 (-1149 *6))) (|:| |prim| (-1149 *6)))) (-5 *1 (-952 *6))))) -(((*1 *2) (-12 (-5 *2 (-671 (-897 *3))) (-5 *1 (-346 *3 *4)) (-14 *3 (-909)) (-14 *4 (-909)))) ((*1 *2) (-12 (-5 *2 (-671 *3)) (-5 *1 (-347 *3 *4)) (-4 *3 (-344)) (-14 *4 (-3 (-1149 *3) (-1236 (-626 (-2 (|:| -2981 *3) (|:| -1330 (-1100))))))))) ((*1 *2) (-12 (-5 *2 (-671 *3)) (-5 *1 (-348 *3 *4)) (-4 *3 (-344)) (-14 *4 (-909))))) -(((*1 *1 *1) (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-626 (-1153))) (-14 *3 (-626 (-1153))) (-4 *4 (-383)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-855 *3)) (-5 *2 (-560)))) ((*1 *1 *1) (-4 *1 (-994))) ((*1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-1004)))) ((*1 *1 *2) (-12 (-5 *2 (-403 (-560))) (-4 *1 (-1004)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1004)) (-5 *2 (-755)))) ((*1 *1 *1) (-4 *1 (-1004)))) -(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-375)) (-5 *3 (-1135)) (-5 *1 (-99)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-375)) (-5 *3 (-1135)) (-5 *1 (-99))))) -(((*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1153)) (-5 *6 (-121)) (-4 *7 (-13 (-296) (-834) (-148) (-1029 (-560)) (-622 (-560)))) (-4 *3 (-13 (-1173) (-951) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-827 *3)) (|:| |f2| (-626 (-827 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-207 *7 *3)) (-5 *5 (-827 *3))))) -(((*1 *2 *2 *2 *3) (-12 (-5 *3 (-755)) (-4 *4 (-13 (-1039) (-699 (-403 (-560))))) (-4 *5 (-834)) (-5 *1 (-1250 *4 *5 *2)) (-4 *2 (-1255 *5 *4))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-626 *2)) (-4 *2 (-942 *4 *5 *6)) (-4 *4 (-359)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *1 (-445 *4 *5 *6 *2)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-101 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-359)) (-5 *2 (-2 (|:| R (-671 *6)) (|:| A (-671 *6)) (|:| |Ainv| (-671 *6)))) (-5 *1 (-971 *6)) (-5 *3 (-671 *6))))) -(((*1 *2) (-12 (-4 *2 (-13 (-426 *3) (-994))) (-5 *1 (-267 *3 *2)) (-4 *3 (-13 (-834) (-550))))) ((*1 *1) (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-626 (-1153))) (-14 *3 (-626 (-1153))) (-4 *4 (-383)))) ((*1 *1) (-5 *1 (-482))) ((*1 *1) (-4 *1 (-1173)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-626 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-755)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-780)) (-4 *6 (-942 *3 *4 *5)) (-4 *3 (-447)) (-4 *5 (-834)) (-5 *1 (-444 *3 *4 *5 *6))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-755)) (-5 *1 (-840 *2)) (-4 *2 (-170)))) ((*1 *2 *3 *3 *2) (-12 (-5 *3 (-755)) (-5 *1 (-840 *2)) (-4 *2 (-170))))) -(((*1 *2 *3) (|partial| -12 (-4 *4 (-1191)) (-4 *5 (-1211 *4)) (-5 *2 (-2 (|:| |radicand| (-403 *5)) (|:| |deg| (-755)))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1211 (-403 *5)))))) -(((*1 *2 *3) (-12 (-4 *4 (-13 (-359) (-832))) (-5 *2 (-2 (|:| |start| *3) (|:| -3025 (-414 *3)))) (-5 *1 (-176 *4 *3)) (-4 *3 (-1211 (-167 *4)))))) -(((*1 *1 *2) (-12 (-5 *2 (-626 (-560))) (-5 *1 (-55 *3 *4)) (-4 *3 (-1039)) (-14 *4 (-626 (-1153))))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994))))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1226 *3)) (-5 *1 (-269 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *4 (-1195 *3)) (-5 *1 (-270 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-976 *4)))) ((*1 *1 *1) (-4 *1 (-274))) ((*1 *1 *1) (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-626 (-1153))) (-14 *3 (-626 (-1153))) (-4 *4 (-383)))) ((*1 *1 *2) (-12 (-5 *2 (-648 *3 *4)) (-4 *3 (-834)) (-4 *4 (-13 (-170) (-699 (-403 (-560))))) (-5 *1 (-610 *3 *4 *5)) (-14 *5 (-909)))) ((*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1138 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-5 *1 (-1139 *3)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-755)) (-4 *4 (-13 (-1039) (-699 (-403 (-560))))) (-4 *5 (-834)) (-5 *1 (-1250 *4 *5 *2)) (-4 *2 (-1255 *5 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-755)) (-5 *1 (-1254 *3 *4)) (-4 *4 (-699 (-403 (-560)))) (-4 *3 (-834)) (-4 *4 (-170))))) -(((*1 *1 *2) (-12 (-5 *2 (-626 (-626 *3))) (-4 *3 (-1082)) (-5 *1 (-1160 *3))))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-550)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1211 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1082)) (-4 *6 (-1082)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-665 *4 *5 *6)) (-4 *5 (-1082))))) -(((*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-809))))) -(((*1 *1 *1) (-5 *1 (-121))) ((*1 *1 *1) (-4 *1 (-132))) ((*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-560)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-471)) (-5 *2 (-560)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-708)) (-5 *2 (-755)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1094)) (-5 *2 (-909))))) -(((*1 *1 *2) (-12 (-5 *2 (-403 (-560))) (-5 *1 (-490))))) -(((*1 *2 *1) (-12 (-5 *2 (-403 (-560))) (-5 *1 (-308 *3 *4 *5)) (-4 *3 (-13 (-359) (-834))) (-14 *4 (-1153)) (-14 *5 *3)))) -(((*1 *2) (-12 (-4 *3 (-447)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-1241)) (-5 *1 (-1059 *3 *4 *5 *6 *7)) (-4 *7 (-1058 *3 *4 *5 *6)))) ((*1 *2) (-12 (-4 *3 (-447)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-1241)) (-5 *1 (-1090 *3 *4 *5 *6 *7)) (-4 *7 (-1058 *3 *4 *5 *6))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1173))))) -(((*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-1187)) (-5 *1 (-1236 *3))))) -(((*1 *2) (-12 (-4 *3 (-550)) (-5 *2 (-626 *4)) (-5 *1 (-48 *3 *4)) (-4 *4 (-413 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-626 (-560))) (-5 *1 (-141 *3 *4 *5)) (-14 *3 (-560)) (-14 *4 (-755)) (-4 *5 (-170))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-626 *6)) (-5 *4 (-560)) (-4 *6 (-633 *5)) (-4 *5 (-359)) (-5 *2 (-671 *5)) (-5 *1 (-627 *5 *6))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-364)) (-4 *1 (-321 *3)) (-4 *3 (-359))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-629 *3)) (-4 *3 (-1039)) (-5 *1 (-696 *3 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1039)) (-5 *1 (-821 *3))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-375)) (-5 *2 (-1241)) (-5 *1 (-1238))))) -(((*1 *2 *1) (-12 (-4 *1 (-1114 *3)) (-4 *3 (-1039)) (-5 *2 (-626 (-936 *3))))) ((*1 *1 *2) (-12 (-5 *2 (-626 (-936 *3))) (-4 *3 (-1039)) (-4 *1 (-1114 *3)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-626 (-626 *3))) (-4 *1 (-1114 *3)) (-4 *3 (-1039)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-626 (-936 *3))) (-4 *1 (-1114 *3)) (-4 *3 (-1039))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-626 *6)) (-5 *4 (-560)) (-4 *6 (-633 *5)) (-4 *5 (-359)) (-5 *2 (-671 *5)) (-5 *1 (-627 *5 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-213) (-213) (-213) (-213))) (-5 *1 (-251)))) ((*1 *1 *2) (-12 (-5 *2 (-1 (-213) (-213) (-213))) (-5 *1 (-251)))) ((*1 *1 *2) (-12 (-5 *2 (-1 (-213) (-213))) (-5 *1 (-251))))) -(((*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-525 *3)) (-4 *3 (-13 (-708) (-25)))))) -(((*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-1082)) (-4 *1 (-890 *3))))) -(((*1 *2 *2) (-12 (-4 *3 (-447)) (-4 *3 (-834)) (-4 *3 (-1029 (-560))) (-4 *3 (-550)) (-5 *1 (-46 *3 *2)) (-4 *2 (-426 *3)) (-4 *2 (-13 (-359) (-291) (-10 -8 (-15 -2132 ((-1105 *3 (-599 $)) $)) (-15 -2139 ((-1105 *3 (-599 $)) $)) (-15 -2801 ($ (-1105 *3 (-599 $)))))))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-560)) (-4 *5 (-359)) (-5 *2 (-626 *5)) (-5 *1 (-627 *5 *3)) (-4 *3 (-633 *5))))) -(((*1 *2) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1191)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-403 *4))) (-5 *2 (-671 (-403 *4)))))) -(((*1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-743))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-755)) (-4 *1 (-219 *4)) (-4 *4 (-1039)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-219 *3)) (-4 *3 (-1039)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-221)) (-5 *2 (-755)))) ((*1 *1 *1) (-4 *1 (-221))) ((*1 *1 *1 *2) (-12 (-5 *2 (-755)) (-4 *1 (-257 *3)) (-4 *3 (-834)))) ((*1 *1 *1) (-12 (-4 *1 (-257 *2)) (-4 *2 (-834)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1191)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-403 *4))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-755)) (-4 *3 (-13 (-359) (-148))) (-5 *1 (-395 *3 *4)) (-4 *4 (-1211 *3)))) ((*1 *1 *1) (-12 (-4 *2 (-13 (-359) (-148))) (-5 *1 (-395 *2 *3)) (-4 *3 (-1211 *2)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1232 *4)) (-14 *4 (-1153)) (-5 *1 (-472 *3 *4 *5)) (-4 *3 (-1039)) (-14 *5 *3))) ((*1 *2 *1 *3) (-12 (-4 *2 (-359)) (-4 *2 (-887 *3)) (-5 *1 (-577 *2)) (-5 *3 (-1153)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-577 *2)) (-4 *2 (-359)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-755)) (-5 *1 (-842)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-626 *4)) (-5 *3 (-626 (-755))) (-4 *1 (-887 *4)) (-4 *4 (-1082)))) ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-755)) (-4 *1 (-887 *2)) (-4 *2 (-1082)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *1 (-887 *3)) (-4 *3 (-1082)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-887 *2)) (-4 *2 (-1082)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1232 *4)) (-14 *4 (-1153)) (-5 *1 (-1143 *3 *4 *5)) (-4 *3 (-1039)) (-14 *5 *3))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1232 *4)) (-14 *4 (-1153)) (-5 *1 (-1150 *3 *4 *5)) (-4 *3 (-1039)) (-14 *5 *3))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1232 *4)) (-14 *4 (-1153)) (-5 *1 (-1151 *3 *4 *5)) (-4 *3 (-1039)) (-14 *5 *3))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1232 (QUOTE |x|))) (-5 *1 (-1193 *3)) (-4 *3 (-1039)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1232 *4)) (-14 *4 (-1153)) (-5 *1 (-1199 *3 *4 *5)) (-4 *3 (-1039)) (-14 *5 *3))) ((*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1211 *3)) (-4 *3 (-1039)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1232 *4)) (-14 *4 (-1153)) (-5 *1 (-1220 *3 *4 *5)) (-4 *3 (-1039)) (-14 *5 *3))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1232 *4)) (-14 *4 (-1153)) (-5 *1 (-1227 *3 *4 *5)) (-4 *3 (-1039)) (-14 *5 *3))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1232 *4)) (-14 *4 (-1153)) (-5 *1 (-1231 *3 *4)) (-4 *3 (-1039))))) -(((*1 *2 *1) (-12 (-4 *1 (-363 *2)) (-4 *2 (-170))))) -(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-626 *7)) (-5 *5 (-626 (-626 *8))) (-4 *7 (-834)) (-4 *8 (-296)) (-4 *6 (-780)) (-4 *9 (-942 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-626 (-2 (|:| -1601 (-1149 *9)) (|:| -4034 (-560))))))) (-5 *1 (-724 *6 *7 *8 *9)) (-5 *3 (-1149 *9))))) -(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-755)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-780)) (-4 *7 (-942 *4 *5 *6)) (-4 *4 (-447)) (-4 *6 (-834)) (-5 *2 (-121)) (-5 *1 (-444 *4 *5 *6 *7))))) -(((*1 *2 *3 *2 *4) (-12 (-5 *3 (-671 *2)) (-5 *4 (-755)) (-4 *2 (-13 (-296) (-10 -8 (-15 -2953 ((-414 $) $))))) (-4 *5 (-1211 *2)) (-5 *1 (-500 *2 *5 *6)) (-4 *6 (-405 *2 *5))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-671 (-167 (-403 (-560))))) (-5 *2 (-626 (-167 *4))) (-5 *1 (-748 *4)) (-4 *4 (-13 (-359) (-832)))))) -(((*1 *2 *3) (-12 (-5 *2 (-414 *3)) (-5 *1 (-44 *3)) (-4 *3 (-1211 (-53))))) ((*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-130 *3)) (|:| |greater| (-130 *3)))) (-5 *1 (-130 *3)) (-4 *3 (-834)))) ((*1 *2 *1) (-12 (-4 *3 (-1082)) (-5 *2 (-626 *1)) (-4 *1 (-230 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-577 *4)) (-4 *4 (-13 (-29 *3) (-1173))) (-4 *3 (-13 (-447) (-1029 (-560)) (-834) (-622 (-560)))) (-5 *1 (-575 *3 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-577 (-403 (-945 *3)))) (-4 *3 (-13 (-447) (-1029 (-560)) (-834) (-622 (-560)))) (-5 *1 (-580 *3)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1211 *5)) (-4 *5 (-359)) (-5 *2 (-2 (|:| -2828 *3) (|:| |special| *3))) (-5 *1 (-709 *5 *3)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1236 *5)) (-4 *5 (-359)) (-4 *5 (-1039)) (-5 *2 (-626 (-626 (-671 *5)))) (-5 *1 (-1021 *5)) (-5 *3 (-626 (-671 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1236 (-1236 *5))) (-4 *5 (-359)) (-4 *5 (-1039)) (-5 *2 (-626 (-626 (-671 *5)))) (-5 *1 (-1021 *5)) (-5 *3 (-626 (-671 *5))))) ((*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-626 *1)) (-4 *1 (-1121)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-145)) (-5 *2 (-626 *1)) (-4 *1 (-1121))))) -(((*1 *2 *1) (-12 (-5 *1 (-210 *2)) (-4 *2 (-1082)))) ((*1 *2 *1) (-12 (-4 *1 (-242 *2)) (-4 *2 (-1187))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-560)) (|has| *1 (-6 -4506)) (-4 *1 (-1223 *3)) (-4 *3 (-1187))))) -(((*1 *2 *3) (-12 (-4 *3 (-13 (-296) (-10 -8 (-15 -2953 ((-414 $) $))))) (-4 *4 (-1211 *3)) (-5 *2 (-2 (|:| -4374 (-671 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-671 *3)))) (-5 *1 (-345 *3 *4 *5)) (-4 *5 (-405 *3 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-560)) (-4 *4 (-1211 *3)) (-5 *2 (-2 (|:| -4374 (-671 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-671 *3)))) (-5 *1 (-752 *4 *5)) (-4 *5 (-405 *3 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-344)) (-4 *3 (-1211 *4)) (-4 *5 (-1211 *3)) (-5 *2 (-2 (|:| -4374 (-671 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-671 *3)))) (-5 *1 (-978 *4 *3 *5 *6)) (-4 *6 (-706 *3 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-344)) (-4 *3 (-1211 *4)) (-4 *5 (-1211 *3)) (-5 *2 (-2 (|:| -4374 (-671 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-671 *3)))) (-5 *1 (-1245 *4 *3 *5 *6)) (-4 *6 (-405 *3 *5))))) -(((*1 *2) (-12 (-5 *2 (-1241)) (-5 *1 (-1153))))) -(((*1 *2 *3) (-12 (-4 *4 (-550)) (-5 *2 (-626 *3)) (-5 *1 (-48 *4 *3)) (-4 *3 (-413 *4))))) -(((*1 *1 *1) (-12 (-4 *1 (-638 *2)) (-4 *2 (-1039)) (-4 *2 (-359))))) -(((*1 *2 *3) (-12 (-4 *4 (-550)) (-5 *2 (-626 *3)) (-5 *1 (-48 *4 *3)) (-4 *3 (-413 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1234 *2)) (-4 *2 (-1187)) (-4 *2 (-994)) (-4 *2 (-1039))))) -(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-145))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-375) (-375))) (-5 *4 (-375)) (-5 *2 (-2 (|:| -2981 *4) (|:| -2301 *4) (|:| |totalpts| (-560)) (|:| |success| (-121)))) (-5 *1 (-776)) (-5 *5 (-560))))) -(((*1 *2) (-12 (-5 *2 (-909)) (-5 *1 (-682)))) ((*1 *2 *2) (-12 (-5 *2 (-909)) (-5 *1 (-682))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1173))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-447))) (-5 *1 (-1179 *3 *2)) (-4 *2 (-13 (-426 *3) (-1173)))))) -(((*1 *2 *1) (-12 (-4 *1 (-318 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-779)) (-5 *2 (-626 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-1082)) (-5 *2 (-626 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-1133 *3)) (-5 *1 (-586 *3)) (-4 *3 (-1039)))) ((*1 *2 *1) (-12 (-5 *2 (-626 *3)) (-5 *1 (-717 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-708)))) ((*1 *2 *1) (-12 (-4 *1 (-836 *3)) (-4 *3 (-1039)) (-5 *2 (-626 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-1226 *3)) (-4 *3 (-1039)) (-5 *2 (-1133 *3))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1082)))) ((*1 *1 *2) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1082))))) -(((*1 *2 *3) (-12 (-5 *3 (-237 *4 *5)) (-14 *4 (-626 (-1153))) (-4 *5 (-1039)) (-5 *2 (-485 *4 *5)) (-5 *1 (-937 *4 *5))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1002 *3)) (-4 *3 (-1187)) (-4 *3 (-1082)) (-5 *2 (-121))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-447))) (-5 *1 (-1179 *3 *2)) (-4 *2 (-13 (-426 *3) (-1173)))))) -(((*1 *2) (-12 (-5 *2 (-1236 (-626 (-2 (|:| -2981 (-897 *3)) (|:| -1330 (-1100)))))) (-5 *1 (-346 *3 *4)) (-14 *3 (-909)) (-14 *4 (-909)))) ((*1 *2) (-12 (-5 *2 (-1236 (-626 (-2 (|:| -2981 *3) (|:| -1330 (-1100)))))) (-5 *1 (-347 *3 *4)) (-4 *3 (-344)) (-14 *4 (-3 (-1149 *3) *2)))) ((*1 *2) (-12 (-5 *2 (-1236 (-626 (-2 (|:| -2981 *3) (|:| -1330 (-1100)))))) (-5 *1 (-348 *3 *4)) (-4 *3 (-344)) (-14 *4 (-909))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-671 *8)) (-4 *8 (-942 *5 *7 *6)) (-4 *5 (-13 (-296) (-148))) (-4 *6 (-13 (-834) (-601 (-1153)))) (-4 *7 (-780)) (-5 *2 (-626 (-2 (|:| -3143 (-755)) (|:| |eqns| (-626 (-2 (|:| |det| *8) (|:| |rows| (-626 (-560))) (|:| |cols| (-626 (-560)))))) (|:| |fgb| (-626 *8))))) (-5 *1 (-916 *5 *6 *7 *8)) (-5 *4 (-755))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1208 *5 *4)) (-4 *4 (-807)) (-14 *5 (-1153)) (-5 *2 (-626 *4)) (-5 *1 (-1096 *4 *5))))) -(((*1 *2 *3 *3 *4) (-12 (-5 *4 (-626 (-304 (-213)))) (-5 *3 (-213)) (-5 *2 (-121)) (-5 *1 (-200))))) -(((*1 *1 *1) (|partial| -12 (-5 *1 (-1118 *2 *3)) (-4 *2 (-13 (-1082) (-39))) (-4 *3 (-13 (-1082) (-39)))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-671 *3)) (-4 *3 (-1039)) (-5 *1 (-672 *3))))) -(((*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-560))) (-5 *1 (-1037))))) -(((*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-550) (-834) (-1029 (-560)))) (-4 *5 (-426 *4)) (-5 *2 (-414 (-1149 (-403 (-560))))) (-5 *1 (-431 *4 *5 *3)) (-4 *3 (-1211 *5))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-300)) (-5 *1 (-816))))) -(((*1 *2 *3) (-12 (-5 *3 (-123)) (-4 *4 (-13 (-834) (-550))) (-5 *2 (-121)) (-5 *1 (-36 *4 *5)) (-4 *5 (-426 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-123)) (-4 *4 (-13 (-834) (-550))) (-5 *2 (-121)) (-5 *1 (-157 *4 *5)) (-4 *5 (-426 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-123)) (-4 *4 (-13 (-834) (-550))) (-5 *2 (-121)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-426 *4) (-994))))) ((*1 *2 *3) (-12 (-5 *3 (-123)) (-5 *2 (-121)) (-5 *1 (-290 *4)) (-4 *4 (-291)))) ((*1 *2 *3) (-12 (-4 *1 (-291)) (-5 *3 (-123)) (-5 *2 (-121)))) ((*1 *2 *3) (-12 (-5 *3 (-123)) (-4 *5 (-834)) (-5 *2 (-121)) (-5 *1 (-425 *4 *5)) (-4 *4 (-426 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-123)) (-4 *4 (-13 (-834) (-550))) (-5 *2 (-121)) (-5 *1 (-427 *4 *5)) (-4 *5 (-426 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-123)) (-4 *4 (-13 (-834) (-550))) (-5 *2 (-121)) (-5 *1 (-613 *4 *5)) (-4 *5 (-13 (-426 *4) (-994) (-1173)))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-1100)) (-5 *1 (-113))))) -(((*1 *2 *3 *4 *4) (-12 (-5 *3 (-1153)) (-5 *4 (-945 (-560))) (-5 *2 (-322)) (-5 *1 (-324)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-1153)) (-5 *4 (-1074 (-945 (-560)))) (-5 *2 (-322)) (-5 *1 (-324)))) ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-755)) (-5 *1 (-658 *3)) (-4 *3 (-1039)) (-4 *3 (-1082))))) -(((*1 *1 *1 *1) (-4 *1 (-144))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-157 *3 *2)) (-4 *2 (-426 *3)))) ((*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-542)))) ((*1 *1 *1 *1) (-5 *1 (-842))) ((*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-560))) (-5 *1 (-1037)) (-5 *3 (-560))))) -(((*1 *2) (-12 (-5 *2 (-1241)) (-5 *1 (-67 *3)) (-14 *3 (-1153)))) ((*1 *2) (-12 (-5 *2 (-1241)) (-5 *1 (-74 *3)) (-14 *3 (-1153)))) ((*1 *2) (-12 (-5 *2 (-1241)) (-5 *1 (-77 *3)) (-14 *3 (-1153)))) ((*1 *2 *1) (-12 (-4 *1 (-391)) (-5 *2 (-1241)))) ((*1 *2 *3) (-12 (-5 *3 (-384)) (-5 *2 (-1241)) (-5 *1 (-393)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1135)) (-5 *4 (-842)) (-5 *2 (-1241)) (-5 *1 (-1115)))) ((*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1241)) (-5 *1 (-1115)))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-842))) (-5 *2 (-1241)) (-5 *1 (-1115))))) -(((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-626 (-403 *7))) (-4 *7 (-1211 *6)) (-5 *3 (-403 *7)) (-4 *6 (-359)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-626 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-570 *6 *7))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-630 *2 *3 *4)) (-4 *2 (-1082)) (-4 *3 (-23)) (-14 *4 *3)))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-241 *4 *3 *5 *6)) (-4 *4 (-1039)) (-4 *3 (-834)) (-4 *5 (-257 *3)) (-4 *6 (-780)) (-5 *2 (-626 (-755))))) ((*1 *2 *1) (-12 (-4 *1 (-241 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-834)) (-4 *5 (-257 *4)) (-4 *6 (-780)) (-5 *2 (-626 (-755)))))) -(((*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2962 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-359)) (-5 *1 (-570 *4 *2)) (-4 *2 (-1211 *4))))) -(((*1 *2) (-12 (-5 *2 (-1241)) (-5 *1 (-387))))) -(((*1 *2 *3 *4 *2) (-12 (-5 *2 (-876 *5 *3)) (-5 *4 (-879 *5)) (-4 *5 (-1082)) (-4 *3 (-164 *6)) (-4 (-945 *6) (-873 *5)) (-4 *6 (-13 (-873 *5) (-170))) (-5 *1 (-174 *5 *6 *3)))) ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-876 *4 *1)) (-5 *3 (-879 *4)) (-4 *1 (-873 *4)) (-4 *4 (-1082)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-876 *5 *6)) (-5 *4 (-879 *5)) (-4 *5 (-1082)) (-4 *6 (-13 (-1082) (-1029 *3))) (-4 *3 (-873 *5)) (-5 *1 (-924 *5 *3 *6)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-876 *5 *3)) (-4 *5 (-1082)) (-4 *3 (-13 (-426 *6) (-601 *4) (-873 *5) (-1029 (-599 $)))) (-5 *4 (-879 *5)) (-4 *6 (-13 (-550) (-834) (-873 *5))) (-5 *1 (-925 *5 *6 *3)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-876 (-560) *3)) (-5 *4 (-879 (-560))) (-4 *3 (-542)) (-5 *1 (-926 *3)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-876 *5 *6)) (-5 *3 (-599 *6)) (-4 *5 (-1082)) (-4 *6 (-13 (-834) (-1029 (-599 $)) (-601 *4) (-873 *5))) (-5 *4 (-879 *5)) (-5 *1 (-927 *5 *6)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-872 *5 *6 *3)) (-5 *4 (-879 *5)) (-4 *5 (-1082)) (-4 *6 (-873 *5)) (-4 *3 (-650 *6)) (-5 *1 (-928 *5 *6 *3)))) ((*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-876 *6 *3) *8 (-879 *6) (-876 *6 *3))) (-4 *8 (-834)) (-5 *2 (-876 *6 *3)) (-5 *4 (-879 *6)) (-4 *6 (-1082)) (-4 *3 (-13 (-942 *9 *7 *8) (-601 *4))) (-4 *7 (-780)) (-4 *9 (-13 (-1039) (-834) (-873 *6))) (-5 *1 (-929 *6 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-876 *5 *3)) (-4 *5 (-1082)) (-4 *3 (-13 (-942 *8 *6 *7) (-601 *4))) (-5 *4 (-879 *5)) (-4 *7 (-873 *5)) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *8 (-13 (-1039) (-834) (-873 *5))) (-5 *1 (-929 *5 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-876 *5 *3)) (-4 *5 (-1082)) (-4 *3 (-985 *6)) (-4 *6 (-13 (-550) (-873 *5) (-601 *4))) (-5 *4 (-879 *5)) (-5 *1 (-932 *5 *6 *3)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-876 *5 (-1153))) (-5 *3 (-1153)) (-5 *4 (-879 *5)) (-4 *5 (-1082)) (-5 *1 (-933 *5)))) ((*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-626 (-879 *7))) (-5 *5 (-1 *9 (-626 *9))) (-5 *6 (-1 (-876 *7 *9) *9 (-879 *7) (-876 *7 *9))) (-4 *7 (-1082)) (-4 *9 (-13 (-1039) (-601 (-879 *7)) (-1029 *8))) (-5 *2 (-876 *7 *9)) (-5 *3 (-626 *9)) (-4 *8 (-13 (-1039) (-834))) (-5 *1 (-934 *7 *8 *9))))) -(((*1 *1 *1 *2) (-12 (-5 *1 (-585 *2)) (-4 *2 (-43 (-403 (-560)))) (-4 *2 (-1039))))) -(((*1 *2 *3) (-12 (-4 *4 (-43 (-403 (-560)))) (-5 *2 (-2 (|:| -2561 (-1133 *4)) (|:| -2566 (-1133 *4)))) (-5 *1 (-1139 *4)) (-5 *3 (-1133 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-755)) (-5 *1 (-440 *3)) (-4 *3 (-400)) (-4 *3 (-1039)))) ((*1 *2) (-12 (-5 *2 (-755)) (-5 *1 (-440 *3)) (-4 *3 (-400)) (-4 *3 (-1039))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1135)) (-4 *1 (-385))))) -(((*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-121)) (-5 *1 (-362 *3 *4)) (-4 *3 (-363 *4)))) ((*1 *2) (-12 (-4 *1 (-363 *3)) (-4 *3 (-170)) (-5 *2 (-121))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-626 (-671 *4))) (-5 *2 (-671 *4)) (-4 *4 (-1039)) (-5 *1 (-1021 *4))))) -(((*1 *2 *2) (-12 (-4 *2 (-170)) (-4 *2 (-1039)) (-5 *1 (-696 *2 *3)) (-4 *3 (-629 *2)))) ((*1 *2 *2) (-12 (-5 *1 (-821 *2)) (-4 *2 (-170)) (-4 *2 (-1039))))) -(((*1 *2 *3) (-12 (-5 *3 (-121)) (-5 *2 (-1135)) (-5 *1 (-57))))) -(((*1 *2 *3) (-12 (-5 *3 (-384)) (-5 *2 (-1241)) (-5 *1 (-387)))) ((*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1241)) (-5 *1 (-387))))) -(((*1 *2 *3) (-12 (|has| *2 (-6 (-4507 "*"))) (-4 *5 (-369 *2)) (-4 *6 (-369 *2)) (-4 *2 (-1039)) (-5 *1 (-108 *2 *3 *4 *5 *6)) (-4 *3 (-1211 *2)) (-4 *4 (-669 *2 *5 *6))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-560)) (-5 *1 (-677 *2)) (-4 *2 (-1211 *3))))) -(((*1 *2 *3) (-12 (-4 *4 (-344)) (-5 *2 (-414 *3)) (-5 *1 (-205 *4 *3)) (-4 *3 (-1211 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-344)) (-5 *2 (-626 *3)) (-5 *1 (-338 *4 *3)) (-4 *3 (-1211 *4)))) ((*1 *2 *3) (-12 (-5 *2 (-414 *3)) (-5 *1 (-437 *3)) (-4 *3 (-1211 (-560))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-755)) (-5 *2 (-414 *3)) (-5 *1 (-437 *3)) (-4 *3 (-1211 (-560))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-626 (-755))) (-5 *2 (-414 *3)) (-5 *1 (-437 *3)) (-4 *3 (-1211 (-560))))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-626 (-755))) (-5 *5 (-755)) (-5 *2 (-414 *3)) (-5 *1 (-437 *3)) (-4 *3 (-1211 (-560))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-755)) (-5 *2 (-414 *3)) (-5 *1 (-437 *3)) (-4 *3 (-1211 (-560))))) ((*1 *2 *3) (-12 (-5 *2 (-414 *3)) (-5 *1 (-999 *3)) (-4 *3 (-1211 (-403 (-560)))))) ((*1 *2 *3) (-12 (-5 *2 (-414 *3)) (-5 *1 (-1200 *3)) (-4 *3 (-1211 (-560)))))) -(((*1 *2 *2) (-12 (-4 *3 (-1039)) (-4 *4 (-226 *5 (-755))) (-14 *5 (-755)) (-5 *1 (-900 *3 *2 *4 *5)) (-4 *2 (-318 *3 *4)))) ((*1 *2 *2 *3) (-12 (-4 *4 (-359)) (-4 *5 (-226 *6 (-755))) (-14 *6 (-755)) (-5 *1 (-921 *4 *2 *5 *6 *3)) (-4 *2 (-318 *4 *5)) (-4 *3 (-963 *4)))) ((*1 *2 *2 *3 *4) (-12 (-5 *4 (-560)) (-4 *5 (-359)) (-4 *6 (-226 *7 (-755))) (-14 *7 (-755)) (-5 *1 (-921 *5 *2 *6 *7 *3)) (-4 *2 (-318 *5 *6)) (-4 *3 (-963 *5))))) -(((*1 *2) (-12 (-4 *1 (-344)) (-5 *2 (-626 (-2 (|:| -1601 (-560)) (|:| -4034 (-560)))))))) -(((*1 *1 *2) (-12 (-5 *2 (-626 (-2 (|:| -3655 (-1153)) (|:| -2371 (-433))))) (-5 *1 (-1157))))) -(((*1 *1 *1 *2) (|partial| -12 (-5 *2 (-909)) (-5 *1 (-1083 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-909)) (-5 *1 (-352 *3)) (-4 *3 (-344))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-314 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-137)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1082)) (-5 *1 (-357 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1082)) (-5 *1 (-382 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1082)) (-5 *1 (-630 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *3) (-12 (-5 *3 (-626 (-626 *5))) (-4 *5 (-318 *4 *6)) (-4 *6 (-226 *7 *2)) (-14 *7 *2) (-4 *4 (-1039)) (-5 *2 (-755)) (-5 *1 (-764 *4 *5 *6 *7)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-359)) (-4 *6 (-226 *7 *2)) (-14 *7 *2) (-5 *2 (-755)) (-5 *1 (-921 *5 *3 *6 *7 *4)) (-4 *3 (-318 *5 *6)) (-4 *4 (-963 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *5 (-560)) (-4 *6 (-359)) (-4 *7 (-226 *8 *2)) (-14 *8 *2) (-5 *2 (-755)) (-5 *1 (-921 *6 *3 *7 *8 *4)) (-4 *3 (-318 *6 *7)) (-4 *4 (-963 *6))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-304 (-213))) (-5 *1 (-294)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-879 *3)) (|:| |den| (-879 *3)))) (-5 *1 (-879 *3)) (-4 *3 (-1082))))) -(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-121)) (-4 *6 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-4 *3 (-13 (-27) (-1173) (-426 *6) (-10 -8 (-15 -2801 ($ *7))))) (-4 *7 (-832)) (-4 *8 (-13 (-1213 *3 *7) (-359) (-1173) (-10 -8 (-15 -2443 ($ $)) (-15 -2376 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1135)) (|:| |prob| (-1135)))))) (-5 *1 (-418 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1135)) (-4 *9 (-976 *8)) (-14 *10 (-1153))))) -(((*1 *1 *2) (|partial| -12 (-5 *2 (-626 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *1 (-1247 *3 *4 *5 *6)))) ((*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-626 *8)) (-5 *3 (-1 (-121) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-550)) (-4 *6 (-780)) (-4 *7 (-834)) (-5 *1 (-1247 *5 *6 *7 *8))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-1074 (-827 *3))) (-4 *3 (-13 (-1173) (-951) (-29 *5))) (-4 *5 (-13 (-296) (-834) (-148) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-3 (|:| |f1| (-827 *3)) (|:| |f2| (-626 (-827 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-207 *5 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1074 (-827 *3))) (-5 *5 (-1135)) (-4 *3 (-13 (-1173) (-951) (-29 *6))) (-4 *6 (-13 (-296) (-834) (-148) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-3 (|:| |f1| (-827 *3)) (|:| |f2| (-626 (-827 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-207 *6 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-403 (-945 *5))) (-5 *4 (-1074 (-827 (-304 *5)))) (-4 *5 (-13 (-296) (-834) (-148) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-3 (|:| |f1| (-827 (-304 *5))) (|:| |f2| (-626 (-827 (-304 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-208 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-403 (-945 *6))) (-5 *4 (-1074 (-827 (-304 *6)))) (-5 *5 (-1135)) (-4 *6 (-13 (-296) (-834) (-148) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-3 (|:| |f1| (-827 (-304 *6))) (|:| |f2| (-626 (-827 (-304 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-208 *6)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1074 (-827 (-403 (-945 *5))))) (-5 *3 (-403 (-945 *5))) (-4 *5 (-13 (-296) (-834) (-148) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-3 (|:| |f1| (-827 (-304 *5))) (|:| |f2| (-626 (-827 (-304 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-208 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1074 (-827 (-403 (-945 *6))))) (-5 *5 (-1135)) (-5 *3 (-403 (-945 *6))) (-4 *6 (-13 (-296) (-834) (-148) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-3 (|:| |f1| (-827 (-304 *6))) (|:| |f2| (-626 (-827 (-304 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-208 *6)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1153)) (-4 *5 (-13 (-296) (-834) (-148) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-3 *3 (-626 *3))) (-5 *1 (-424 *5 *3)) (-4 *3 (-13 (-1173) (-951) (-29 *5))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1232 *4)) (-14 *4 (-1153)) (-5 *1 (-472 *3 *4 *5)) (-4 *3 (-43 (-403 (-560)))) (-4 *3 (-1039)) (-14 *5 *3))) ((*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-304 (-375))) (-5 *4 (-1076 (-827 (-375)))) (-5 *5 (-375)) (-5 *6 (-1051)) (-5 *2 (-1027)) (-5 *1 (-561)))) ((*1 *2 *3) (-12 (-5 *3 (-753)) (-5 *2 (-1027)) (-5 *1 (-561)))) ((*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-304 (-375))) (-5 *4 (-1076 (-827 (-375)))) (-5 *5 (-375)) (-5 *2 (-1027)) (-5 *1 (-561)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-304 (-375))) (-5 *4 (-1076 (-827 (-375)))) (-5 *5 (-375)) (-5 *2 (-1027)) (-5 *1 (-561)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-304 (-375))) (-5 *4 (-1076 (-827 (-375)))) (-5 *2 (-1027)) (-5 *1 (-561)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-304 (-375))) (-5 *4 (-626 (-1076 (-827 (-375))))) (-5 *2 (-1027)) (-5 *1 (-561)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-304 (-375))) (-5 *4 (-626 (-1076 (-827 (-375))))) (-5 *5 (-375)) (-5 *2 (-1027)) (-5 *1 (-561)))) ((*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-304 (-375))) (-5 *4 (-626 (-1076 (-827 (-375))))) (-5 *5 (-375)) (-5 *2 (-1027)) (-5 *1 (-561)))) ((*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-304 (-375))) (-5 *4 (-626 (-1076 (-827 (-375))))) (-5 *5 (-375)) (-5 *6 (-1051)) (-5 *2 (-1027)) (-5 *1 (-561)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-304 (-375))) (-5 *4 (-1074 (-827 (-375)))) (-5 *5 (-1135)) (-5 *2 (-1027)) (-5 *1 (-561)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-304 (-375))) (-5 *4 (-1074 (-827 (-375)))) (-5 *5 (-1153)) (-5 *2 (-1027)) (-5 *1 (-561)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-359) (-148) (-1029 (-560)))) (-4 *5 (-1211 *4)) (-5 *2 (-577 (-403 *5))) (-5 *1 (-564 *4 *5)) (-5 *3 (-403 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-403 (-945 *5))) (-5 *4 (-1153)) (-4 *5 (-148)) (-4 *5 (-13 (-447) (-1029 (-560)) (-834) (-622 (-560)))) (-5 *2 (-3 (-304 *5) (-626 (-304 *5)))) (-5 *1 (-580 *5)))) ((*1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-43 (-403 (-560)))) (-4 *2 (-1039)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-722 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-834)) (-4 *3 (-43 (-403 (-560)))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1153)) (-5 *1 (-945 *3)) (-4 *3 (-43 (-403 (-560)))) (-4 *3 (-1039)))) ((*1 *1 *1 *2 *3) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *3 (-1039)) (-4 *2 (-834)) (-5 *1 (-1106 *3 *2 *4)) (-4 *4 (-942 *3 (-526 *2) *2)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-43 (-403 (-560)))) (-4 *3 (-1039)) (-5 *1 (-1137 *3)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1232 *4)) (-14 *4 (-1153)) (-5 *1 (-1143 *3 *4 *5)) (-4 *3 (-43 (-403 (-560)))) (-4 *3 (-1039)) (-14 *5 *3))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1232 *4)) (-14 *4 (-1153)) (-5 *1 (-1150 *3 *4 *5)) (-4 *3 (-43 (-403 (-560)))) (-4 *3 (-1039)) (-14 *5 *3))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1232 *4)) (-14 *4 (-1153)) (-5 *1 (-1151 *3 *4 *5)) (-4 *3 (-43 (-403 (-560)))) (-4 *3 (-1039)) (-14 *5 *3))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *1 (-1182 *3)) (-4 *3 (-43 (-403 (-560)))) (-4 *3 (-1039)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1232 (QUOTE |x|))) (-5 *1 (-1193 *3)) (-4 *3 (-43 (-403 (-560)))) (-4 *3 (-1039)))) ((*1 *1 *1 *2) (-2318 (-12 (-5 *2 (-1153)) (-4 *1 (-1195 *3)) (-4 *3 (-1039)) (-12 (-4 *3 (-29 (-560))) (-4 *3 (-951)) (-4 *3 (-1173)) (-4 *3 (-43 (-403 (-560)))))) (-12 (-5 *2 (-1153)) (-4 *1 (-1195 *3)) (-4 *3 (-1039)) (-12 (|has| *3 (-15 -1654 ((-626 *2) *3))) (|has| *3 (-15 -2376 (*3 *3 *2))) (-4 *3 (-43 (-403 (-560)))))))) ((*1 *1 *1) (-12 (-4 *1 (-1195 *2)) (-4 *2 (-1039)) (-4 *2 (-43 (-403 (-560)))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1232 *4)) (-14 *4 (-1153)) (-5 *1 (-1199 *3 *4 *5)) (-4 *3 (-43 (-403 (-560)))) (-4 *3 (-1039)) (-14 *5 *3))) ((*1 *1 *1) (-12 (-4 *1 (-1211 *2)) (-4 *2 (-1039)) (-4 *2 (-43 (-403 (-560)))))) ((*1 *1 *1 *2) (-2318 (-12 (-5 *2 (-1153)) (-4 *1 (-1216 *3)) (-4 *3 (-1039)) (-12 (-4 *3 (-29 (-560))) (-4 *3 (-951)) (-4 *3 (-1173)) (-4 *3 (-43 (-403 (-560)))))) (-12 (-5 *2 (-1153)) (-4 *1 (-1216 *3)) (-4 *3 (-1039)) (-12 (|has| *3 (-15 -1654 ((-626 *2) *3))) (|has| *3 (-15 -2376 (*3 *3 *2))) (-4 *3 (-43 (-403 (-560)))))))) ((*1 *1 *1) (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1039)) (-4 *2 (-43 (-403 (-560)))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1232 *4)) (-14 *4 (-1153)) (-5 *1 (-1220 *3 *4 *5)) (-4 *3 (-43 (-403 (-560)))) (-4 *3 (-1039)) (-14 *5 *3))) ((*1 *1 *1 *2) (-2318 (-12 (-5 *2 (-1153)) (-4 *1 (-1226 *3)) (-4 *3 (-1039)) (-12 (-4 *3 (-29 (-560))) (-4 *3 (-951)) (-4 *3 (-1173)) (-4 *3 (-43 (-403 (-560)))))) (-12 (-5 *2 (-1153)) (-4 *1 (-1226 *3)) (-4 *3 (-1039)) (-12 (|has| *3 (-15 -1654 ((-626 *2) *3))) (|has| *3 (-15 -2376 (*3 *3 *2))) (-4 *3 (-43 (-403 (-560)))))))) ((*1 *1 *1) (-12 (-4 *1 (-1226 *2)) (-4 *2 (-1039)) (-4 *2 (-43 (-403 (-560)))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1232 *4)) (-14 *4 (-1153)) (-5 *1 (-1227 *3 *4 *5)) (-4 *3 (-43 (-403 (-560)))) (-4 *3 (-1039)) (-14 *5 *3))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1232 *4)) (-14 *4 (-1153)) (-5 *1 (-1231 *3 *4)) (-4 *3 (-43 (-403 (-560)))) (-4 *3 (-1039))))) -(((*1 *2 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-1241)) (-5 *1 (-1156)))) ((*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-1157))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-560)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-755)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-909)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-141 *2 *3 *4)) (-14 *2 (-560)) (-14 *3 (-755)) (-4 *4 (-170)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-213)) (-5 *1 (-156)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-909)) (-5 *1 (-156)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-359) (-1173))) (-5 *1 (-215 *3)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-283 *2)) (-4 *2 (-1094)) (-4 *2 (-1187)))) ((*1 *1 *1 *2) (-12 (-5 *1 (-283 *2)) (-4 *2 (-1094)) (-4 *2 (-1187)))) ((*1 *1 *2 *3) (-12 (-4 *1 (-314 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-137)))) ((*1 *1 *1 *2) (-12 (-5 *1 (-357 *2)) (-4 *2 (-1082)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-357 *2)) (-4 *2 (-1082)))) ((*1 *1 *2 *3) (-12 (-5 *1 (-377 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-834)))) ((*1 *1 *2 *3) (-12 (-4 *1 (-378 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-1082)))) ((*1 *1 *1 *2) (-12 (-5 *1 (-382 *2)) (-4 *2 (-1082)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-382 *2)) (-4 *2 (-1082)))) ((*1 *1 *2 *1) (-12 (-14 *3 (-626 (-1153))) (-4 *4 (-170)) (-4 *6 (-226 (-2271 *3) (-755))) (-14 *7 (-1 (-121) (-2 (|:| -1330 *5) (|:| -4034 *6)) (-2 (|:| -1330 *5) (|:| -4034 *6)))) (-5 *1 (-456 *3 *4 *5 *6 *7 *2)) (-4 *5 (-834)) (-4 *2 (-942 *4 *6 (-844 *3))))) ((*1 *1 *1 *2) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) ((*1 *1 *1 *1) (-12 (-4 *2 (-359)) (-4 *3 (-780)) (-4 *4 (-834)) (-5 *1 (-506 *2 *3 *4 *5)) (-4 *5 (-942 *2 *3 *4)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1236 *3)) (-4 *3 (-344)) (-5 *1 (-524 *3)))) ((*1 *1 *1 *1) (-5 *1 (-533))) ((*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-586 *3)) (-4 *3 (-1039)))) ((*1 *1 *1 *2) (-12 (-5 *1 (-586 *2)) (-4 *2 (-1039)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-586 *2)) (-4 *2 (-1039)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-629 *2)) (-4 *2 (-1046)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-834)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-1 *7 *5)) (-5 *1 (-665 *5 *6 *7)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1 *4 *3)) (-4 *3 (-1082)) (-4 *4 (-1039)) (-5 *1 (-666 *3 *4)))) ((*1 *2 *2 *1) (-12 (-4 *1 (-669 *3 *2 *4)) (-4 *3 (-1039)) (-4 *2 (-369 *3)) (-4 *4 (-369 *3)))) ((*1 *2 *1 *2) (-12 (-4 *1 (-669 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-369 *3)) (-4 *2 (-369 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-560)) (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-369 *2)) (-4 *4 (-369 *2)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-369 *2)) (-4 *4 (-369 *2)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-369 *2)) (-4 *4 (-369 *2)))) ((*1 *1 *1 *1) (-4 *1 (-702))) ((*1 *1 *1 *1) (-12 (-5 *1 (-725 *2 *3)) (-14 *2 (-1153)) (-4 *3 (-13 (-1039) (-834) (-550))))) ((*1 *1 *1 *2) (-12 (-5 *1 (-806 *2)) (-4 *2 (-834)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-806 *2)) (-4 *2 (-834)))) ((*1 *1 *1 *1) (-5 *1 (-842))) ((*1 *1 *1 *1) (-12 (-5 *1 (-879 *2)) (-4 *2 (-1082)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-560)) (-4 *4 (-359)) (-5 *2 (-231 *1)) (-4 *1 (-912 *4 *5)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-1236 *4)) (-4 *4 (-1211 *3)) (-4 *3 (-550)) (-5 *1 (-962 *3 *4)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1045 *2)) (-4 *2 (-1046)))) ((*1 *1 *1 *1) (-4 *1 (-1094))) ((*1 *2 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *2 *5)) (-4 *4 (-1039)) (-4 *2 (-226 *3 *4)) (-4 *5 (-226 *3 *4)))) ((*1 *2 *1 *2) (-12 (-4 *1 (-1103 *3 *4 *5 *2)) (-4 *4 (-1039)) (-4 *5 (-226 *3 *4)) (-4 *2 (-226 *3 *4)))) ((*1 *1 *2 *1) (-12 (-4 *3 (-1039)) (-4 *4 (-834)) (-5 *1 (-1106 *3 *4 *2)) (-4 *2 (-942 *3 (-526 *4) *4)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-1039)) (-5 *1 (-1137 *3)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-1039)) (-5 *1 (-1137 *3)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-1039)) (-5 *1 (-1137 *3)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-936 (-213))) (-5 *3 (-213)) (-5 *1 (-1184)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1234 *2)) (-4 *2 (-1187)) (-4 *2 (-708)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-1234 *2)) (-4 *2 (-1187)) (-4 *2 (-708)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-560)) (-4 *1 (-1234 *3)) (-4 *3 (-1187)) (-4 *3 (-21)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-1251 *2 *3)) (-4 *2 (-834)) (-4 *3 (-1039)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-834)) (-4 *2 (-1039)))) ((*1 *1 *1 *2) (-12 (-5 *1 (-1257 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-830))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-626 *6)) (-4 *6 (-318 *5 *7)) (-4 *7 (-226 *8 (-755))) (-14 *8 (-755)) (-4 *5 (-359)) (-5 *2 (-121)) (-5 *1 (-921 *5 *6 *7 *8 *4)) (-4 *4 (-963 *5))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-226 *3 *2)) (-4 *2 (-1187)) (-4 *2 (-1039)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-755)) (-5 *1 (-842)))) ((*1 *1 *1) (-5 *1 (-842))) ((*1 *2 *3 *3) (-12 (-5 *3 (-936 (-213))) (-5 *2 (-213)) (-5 *1 (-1184)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-1234 *2)) (-4 *2 (-1187)) (-4 *2 (-1039))))) -(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1133 (-213))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1396 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-555))))) -(((*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-1050)))) ((*1 *1 *2) (-12 (-5 *2 (-1153)) (-5 *1 (-1050))))) -(((*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-626 (-626 (-213)))) (-5 *4 (-213)) (-5 *2 (-626 (-936 *4))) (-5 *1 (-1184)) (-5 *3 (-936 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-909)) (-5 *1 (-352 *3)) (-4 *3 (-344))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-237 *6 *5)) (-5 *4 (-959 *5)) (-4 *5 (-344)) (-14 *6 (-626 (-1153))) (-5 *2 (-237 *6 (-849 *5))) (-5 *1 (-859 *5 *6 *7)) (-4 *7 (-117)))) ((*1 *2 *2 *3 *4) (-12 (-5 *4 (-560)) (-4 *5 (-359)) (-4 *6 (-226 *7 (-755))) (-14 *7 (-755)) (-5 *1 (-921 *5 *2 *6 *7 *3)) (-4 *2 (-318 *5 *6)) (-4 *3 (-963 *5)))) ((*1 *2 *2 *3) (-12 (-4 *4 (-359)) (-4 *5 (-226 *6 (-755))) (-14 *6 (-755)) (-5 *1 (-921 *4 *2 *5 *6 *3)) (-4 *2 (-318 *4 *5)) (-4 *3 (-963 *4))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-755)) (-4 *3 (-1039)) (-4 *1 (-669 *3 *4 *5)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)))) ((*1 *1 *2) (-12 (-4 *2 (-1039)) (-4 *1 (-1103 *3 *2 *4 *5)) (-4 *4 (-226 *3 *2)) (-4 *5 (-226 *3 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-626 (-626 (-3 (|:| -1337 (-1153)) (|:| |bounds| (-626 (-3 (|:| S (-1153)) (|:| P (-945 (-560)))))))))) (-5 *1 (-1157))))) -(((*1 *1 *2) (-12 (-5 *2 (-626 (-909))) (-5 *1 (-1083 *3 *4)) (-14 *3 (-909)) (-14 *4 (-909))))) -(((*1 *2 *3 *2) (-12 (-4 *2 (-13 (-359) (-832))) (-5 *1 (-176 *2 *3)) (-4 *3 (-1211 (-167 *2))))) ((*1 *2 *3) (-12 (-4 *2 (-13 (-359) (-832))) (-5 *1 (-176 *2 *3)) (-4 *3 (-1211 (-167 *2)))))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-550)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1979 *4))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1211 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-626 (-842))) (-5 *1 (-842))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-542)))) -(((*1 *1) (-5 *1 (-322)))) -(((*1 *2 *3) (-12 (-5 *2 (-121)) (-5 *1 (-44 *3)) (-4 *3 (-1211 (-53)))))) -(((*1 *1 *1 *1) (-5 *1 (-842)))) -(((*1 *2 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-13 (-296) (-148))) (-4 *5 (-13 (-834) (-601 (-1153)))) (-4 *6 (-780)) (-5 *2 (-626 (-2 (|:| |eqzro| (-626 *7)) (|:| |neqzro| (-626 *7)) (|:| |wcond| (-626 (-945 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1236 (-403 (-945 *4)))) (|:| -4374 (-626 (-1236 (-403 (-945 *4)))))))))) (-5 *1 (-916 *4 *5 *6 *7)) (-4 *7 (-942 *4 *6 *5))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-626 (-842))) (-5 *1 (-842)))) ((*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3981 (-626 (-842))) (|:| -2280 (-626 (-842))) (|:| |presup| (-626 (-842))) (|:| -4221 (-626 (-842))) (|:| |args| (-626 (-842))))) (-5 *1 (-1153))))) -(((*1 *2 *1 *2 *3) (-12 (-5 *3 (-626 (-1135))) (-5 *2 (-1135)) (-5 *1 (-1237)))) ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-1237)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-1237)))) ((*1 *2 *1 *2 *3) (-12 (-5 *3 (-626 (-1135))) (-5 *2 (-1135)) (-5 *1 (-1238)))) ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-1238)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-1238))))) -(((*1 *2 *2) (-12 (-4 *3 (-344)) (-4 *4 (-321 *3)) (-4 *5 (-1211 *4)) (-5 *1 (-761 *3 *4 *5 *2 *6)) (-4 *2 (-1211 *5)) (-14 *6 (-909)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-755)) (-4 *1 (-1253 *3)) (-4 *3 (-359)) (-4 *3 (-364)))) ((*1 *1 *1) (-12 (-4 *1 (-1253 *2)) (-4 *2 (-359)) (-4 *2 (-364))))) -(((*1 *1 *2) (-12 (-5 *2 (-626 *1)) (-4 *1 (-291)))) ((*1 *1 *1) (-4 *1 (-291))) ((*1 *1 *2) (-12 (-5 *2 (-626 (-842))) (-5 *1 (-842)))) ((*1 *1 *1) (-5 *1 (-842)))) -(((*1 *2 *3 *4) (|partial| -12 (-5 *4 (-626 (-403 *6))) (-5 *3 (-403 *6)) (-4 *6 (-1211 *5)) (-4 *5 (-13 (-359) (-148) (-1029 (-560)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-626 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-564 *5 *6))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-123)) (-4 *4 (-1039)) (-5 *1 (-696 *4 *2)) (-4 *2 (-629 *4)))) ((*1 *2 *3 *2) (-12 (-5 *3 (-123)) (-5 *1 (-821 *2)) (-4 *2 (-1039))))) -(((*1 *2 *1) (-12 (-5 *2 (-755)) (-5 *1 (-210 *3)) (-4 *3 (-1082)))) ((*1 *2 *3) (-12 (-4 *4 (-1039)) (-4 *2 (-13 (-400) (-1029 *4) (-359) (-1173) (-274))) (-5 *1 (-438 *4 *3 *2)) (-4 *3 (-1211 *4)))) ((*1 *1 *1) (-4 *1 (-542))) ((*1 *2 *1) (-12 (-5 *2 (-909)) (-5 *1 (-655 *3)) (-4 *3 (-834)))) ((*1 *2 *1) (-12 (-5 *2 (-909)) (-5 *1 (-659 *3)) (-4 *3 (-834)))) ((*1 *2 *1) (-12 (-5 *2 (-755)) (-5 *1 (-806 *3)) (-4 *3 (-834)))) ((*1 *2 *1) (-12 (-5 *2 (-755)) (-5 *1 (-880 *3)) (-4 *3 (-834)))) ((*1 *2 *1) (-12 (-4 *1 (-987 *3)) (-4 *3 (-1187)) (-5 *2 (-755)))) ((*1 *2 *1) (-12 (-5 *2 (-755)) (-5 *1 (-992 *3)) (-4 *3 (-1082)))) ((*1 *2 *1) (-12 (-5 *2 (-755)) (-5 *1 (-1185 *3)) (-4 *3 (-1187)))) ((*1 *2 *1) (-12 (-4 *1 (-1234 *2)) (-4 *2 (-1187)) (-4 *2 (-994)) (-4 *2 (-1039))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-626 *7)) (-4 *7 (-942 *5 *8 (-844 *6))) (-4 *8 (-226 (-2271 *6) (-755))) (-4 *5 (-359)) (-14 *6 (-626 (-1153))) (-4 *10 (-633 *5)) (-4 *11 (-912 *5 *10)) (-5 *2 (-626 (-1236 *5))) (-5 *1 (-554 *5 *6 *7 *8 *9 *10 *11 *3)) (-4 *9 (-963 *5)) (-4 *3 (-230 *11))))) -(((*1 *2) (-12 (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *6 (-226 (-2271 *4) (-755))) (-4 *7 (-963 *3)) (-4 *8 (-633 *3)) (-4 *9 (-912 *3 *8)) (-4 *10 (-230 *9)) (-4 *11 (-528 *3 *4 *5 *6 *7 *8 *9 *10 *13)) (-4 *13 (-117)) (-5 *2 (-1241)) (-5 *1 (-460 *3 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13)) (-4 *12 (-253 *11)))) ((*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-1237)))) ((*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-1238))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-1183 *3)) (-4 *3 (-967))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1173))))) -(((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-918))))) -(((*1 *1 *1 *1) (-5 *1 (-842)))) -(((*1 *1 *1) (-5 *1 (-53))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-64 *5)) (-4 *5 (-1187)) (-4 *2 (-1187)) (-5 *1 (-63 *5 *2)))) ((*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1082)) (|has| *1 (-6 -4505)) (-4 *1 (-152 *2)) (-4 *2 (-1187)))) ((*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4505)) (-4 *1 (-152 *2)) (-4 *2 (-1187)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4505)) (-4 *1 (-152 *2)) (-4 *2 (-1187)))) ((*1 *2 *3) (-12 (-4 *4 (-1039)) (-5 *2 (-2 (|:| -1558 (-1149 *4)) (|:| |deg| (-909)))) (-5 *1 (-209 *4 *5)) (-5 *3 (-1149 *4)) (-4 *5 (-13 (-550) (-834))))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-228 *5 *6)) (-14 *5 (-755)) (-4 *6 (-1187)) (-4 *2 (-1187)) (-5 *1 (-227 *5 *6 *2)))) ((*1 *1 *2 *3) (-12 (-4 *4 (-170)) (-5 *1 (-279 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1211 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-550)) (-4 *2 (-834)))) ((*1 *1 *1) (-12 (-4 *1 (-327 *2 *3 *4 *5)) (-4 *2 (-359)) (-4 *3 (-1211 *2)) (-4 *4 (-1211 (-403 *3))) (-4 *5 (-334 *2 *3 *4)))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1187)) (-4 *2 (-1187)) (-5 *1 (-367 *5 *4 *2 *6)) (-4 *4 (-369 *5)) (-4 *6 (-369 *2)))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1082)) (-4 *2 (-1082)) (-5 *1 (-419 *5 *4 *2 *6)) (-4 *4 (-421 *5)) (-4 *6 (-421 *2)))) ((*1 *1 *1) (-5 *1 (-496))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-626 *5)) (-4 *5 (-1187)) (-4 *2 (-1187)) (-5 *1 (-624 *5 *2)))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1039)) (-4 *2 (-1039)) (-4 *6 (-369 *5)) (-4 *7 (-369 *5)) (-4 *8 (-369 *2)) (-4 *9 (-369 *2)) (-5 *1 (-667 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-669 *5 *6 *7)) (-4 *10 (-669 *2 *8 *9)))) ((*1 *1 *2 *3) (-12 (-5 *1 (-693 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) (-12 (-4 *3 (-1039)) (-5 *1 (-694 *3 *2)) (-4 *2 (-1211 *3)))) ((*1 *1 *2 *3) (-12 (-5 *1 (-697 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-403 *4)) (-4 *4 (-1211 *3)) (-4 *3 (-359)) (-4 *3 (-170)) (-4 *1 (-706 *3 *4)))) ((*1 *1 *2) (-12 (-4 *3 (-170)) (-4 *1 (-706 *3 *2)) (-4 *2 (-1211 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1149 *1)) (-4 *1 (-850)))) ((*1 *2 *3) (-12 (-5 *3 (-626 *1)) (-4 *1 (-912 *4 *5)) (-4 *4 (-359)) (-5 *2 (-231 *1)))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-950 *5)) (-4 *5 (-1187)) (-4 *2 (-1187)) (-5 *1 (-949 *5 *2)))) ((*1 *1 *2) (-12 (-4 *3 (-359)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *1 (-1026 *3 *4 *5 *2 *6)) (-4 *2 (-942 *3 *4 *5)) (-14 *6 (-626 *2)))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1039)) (-4 *2 (-1039)) (-14 *5 (-755)) (-14 *6 (-755)) (-4 *8 (-226 *6 *7)) (-4 *9 (-226 *5 *7)) (-4 *10 (-226 *6 *2)) (-4 *11 (-226 *5 *2)) (-5 *1 (-1044 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1042 *5 *6 *7 *8 *9)) (-4 *12 (-1042 *5 *6 *2 *10 *11)))) ((*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1133 *5)) (-4 *5 (-1187)) (-4 *2 (-1187)) (-5 *1 (-1131 *5 *2)))) ((*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-121) *2 *2)) (-4 *1 (-1181 *5 *6 *7 *2)) (-4 *5 (-550)) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *2 (-1053 *5 *6 *7)))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1236 *5)) (-4 *5 (-1187)) (-4 *2 (-1187)) (-5 *1 (-1235 *5 *2))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-626 *7)) (-4 *7 (-942 *5 *8 (-844 *6))) (-4 *8 (-226 (-2271 *6) (-755))) (-4 *5 (-359)) (-14 *6 (-626 (-1153))) (-4 *10 (-633 *5)) (-4 *11 (-912 *5 *10)) (-5 *2 (-626 (-1236 *5))) (-5 *1 (-554 *5 *6 *7 *8 *9 *10 *11 *3)) (-4 *9 (-963 *5)) (-4 *3 (-230 *11))))) -(((*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-344)) (-5 *1 (-352 *3))))) -(((*1 *1) (-5 *1 (-213))) ((*1 *1) (-5 *1 (-375)))) -(((*1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-780)) (-4 *4 (-834)) (-4 *2 (-447))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-755)) (-5 *4 (-560)) (-5 *1 (-440 *2)) (-4 *2 (-1039))))) -(((*1 *1 *1 *2) (|partial| -12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-550)))) ((*1 *1 *1 *2) (|partial| -12 (-4 *1 (-318 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-779)) (-4 *2 (-550)))) ((*1 *1 *1 *1) (|partial| -4 *1 (-550))) ((*1 *1 *1 *2) (|partial| -12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-369 *2)) (-4 *4 (-369 *2)) (-4 *2 (-550)))) ((*1 *1 *1 *1) (|partial| -5 *1 (-755))) ((*1 *1 *1 *2) (|partial| -12 (-4 *1 (-836 *2)) (-4 *2 (-1039)) (-4 *2 (-550)))) ((*1 *1 *1 *1) (-5 *1 (-842))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1236 *4)) (-4 *4 (-1211 *3)) (-4 *3 (-550)) (-5 *1 (-962 *3 *4)))) ((*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1042 *3 *4 *2 *5 *6)) (-4 *2 (-1039)) (-4 *5 (-226 *4 *2)) (-4 *6 (-226 *3 *2)) (-4 *2 (-550)))) ((*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1133 *3)) (-4 *3 (-1039)) (-5 *1 (-1137 *3))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-599 *6)) (-4 *6 (-13 (-426 *5) (-27) (-1173))) (-4 *5 (-13 (-447) (-1029 (-560)) (-834) (-148) (-622 (-560)))) (-5 *2 (-1149 (-403 (-1149 *6)))) (-5 *1 (-556 *5 *6 *7)) (-5 *3 (-1149 *6)) (-4 *7 (-1082)))) ((*1 *2 *1) (-12 (-4 *2 (-1211 *3)) (-5 *1 (-694 *3 *2)) (-4 *3 (-1039)))) ((*1 *2 *1) (-12 (-4 *1 (-706 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1211 *3)))) ((*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1149 *11)) (-5 *6 (-626 *10)) (-5 *7 (-626 (-755))) (-5 *8 (-626 *11)) (-4 *10 (-834)) (-4 *11 (-296)) (-4 *9 (-780)) (-4 *5 (-942 *11 *9 *10)) (-5 *2 (-626 (-1149 *5))) (-5 *1 (-724 *9 *10 *11 *5)) (-5 *3 (-1149 *5)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-1149 *1)) (-4 *1 (-850)))) ((*1 *2 *1) (-12 (-5 *2 (-1149 *1)) (-4 *1 (-850)))) ((*1 *2 *1) (-12 (-4 *2 (-942 *3 *4 *5)) (-5 *1 (-1026 *3 *4 *5 *2 *6)) (-4 *3 (-359)) (-4 *4 (-780)) (-4 *5 (-834)) (-14 *6 (-626 *2))))) -(((*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-626 (-671 *6))) (-5 *4 (-121)) (-5 *5 (-560)) (-5 *2 (-671 *6)) (-5 *1 (-1021 *6)) (-4 *6 (-359)) (-4 *6 (-1039)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-626 (-671 *4))) (-5 *2 (-671 *4)) (-5 *1 (-1021 *4)) (-4 *4 (-359)) (-4 *4 (-1039)))) ((*1 *2 *3 *3 *4) (-12 (-5 *3 (-626 (-671 *5))) (-5 *4 (-560)) (-5 *2 (-671 *5)) (-5 *1 (-1021 *5)) (-4 *5 (-359)) (-4 *5 (-1039))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 (-1153))) (-5 *2 (-1241)) (-5 *1 (-1189)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-626 (-1153))) (-5 *2 (-1241)) (-5 *1 (-1189))))) -(((*1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-43 (-403 (-560)))) (-4 *2 (-1039))))) -(((*1 *2 *1) (-12 (-4 *1 (-855 *3)) (-5 *2 (-560))))) -(((*1 *2) (-12 (-4 *4 (-1191)) (-4 *5 (-1211 *4)) (-4 *6 (-1211 (-403 *5))) (-5 *2 (-626 (-626 *4))) (-5 *1 (-333 *3 *4 *5 *6)) (-4 *3 (-334 *4 *5 *6)))) ((*1 *2) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1191)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-403 *4))) (-4 *3 (-364)) (-5 *2 (-626 (-626 *3))))) ((*1 *2) (-12 (-4 *3 (-364)) (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *6 (-226 (-2271 *4) (-755))) (-4 *7 (-963 *3)) (-4 *8 (-633 *3)) (-4 *9 (-912 *3 *8)) (-4 *10 (-230 *9)) (-4 *11 (-528 *3 *4 *5 *6 *7 *8 *9 *10 *13)) (-4 *13 (-117)) (-5 *2 (-626 *7)) (-5 *1 (-460 *3 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13)) (-4 *12 (-253 *11)))) ((*1 *2) (-12 (-5 *2 (-626 (-959 *3))) (-5 *1 (-859 *3 *4 *5)) (-4 *3 (-344)) (-14 *4 (-626 (-1153))) (-4 *5 (-117)))) ((*1 *2) (-12 (-5 *2 (-626 (-958 *3))) (-5 *1 (-860 *3 *4 *5)) (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *5 (-117)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-909)) (-4 *5 (-359)) (-14 *6 (-626 (-1153))) (-4 *7 (-226 (-2271 *6) (-755))) (-5 *2 (-626 *8)) (-5 *1 (-955 *5 *6 *3 *7 *8)) (-4 *3 (-942 *5 *7 (-844 *6))) (-4 *8 (-963 *5))))) -(((*1 *2 *3 *1) (-12 (-4 *1 (-1058 *4 *5 *6 *3)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-121))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-917)) (-5 *2 (-473)) (-5 *1 (-1245))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-121) *3)) (-4 *3 (-1195)) (-5 *1 (-598 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-121) *3)) (-4 *3 (-1195)) (-5 *1 (-1141 *3))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1195)))) ((*1 *1 *1) (-12 (-4 *1 (-1061 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-788)) (-4 *4 (-842)))) ((*1 *1 *1) (-12 (-4 *1 (-1231 *2)) (-4 *2 (-1195))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-52 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-787)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1047)) (-5 *1 (-55 *3 *4)) (-14 *4 (-634 (-1161))))) ((*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-62 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-62 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-62 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-64 *5)) (-4 *5 (-1195)) (-4 *6 (-1195)) (-5 *2 (-64 *6)) (-5 *1 (-63 *5 *6)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1090)) (-5 *1 (-96 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-141 *5 *6 *7)) (-14 *5 (-568)) (-14 *6 (-763)) (-4 *7 (-172)) (-4 *8 (-172)) (-5 *2 (-141 *5 *6 *8)) (-5 *1 (-140 *5 *6 *7 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-169 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-5 *2 (-169 *6)) (-5 *1 (-168 *5 *6)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1090)) (-5 *1 (-212 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-310 *3) (-310 *3))) (-4 *3 (-13 (-1047) (-842))) (-5 *1 (-213 *3 *4)) (-14 *4 (-634 (-1161))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-232 *5 *6)) (-14 *5 (-763)) (-4 *6 (-1195)) (-4 *7 (-1195)) (-5 *2 (-232 *5 *7)) (-5 *1 (-231 *5 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-288 *5)) (-4 *5 (-1195)) (-4 *6 (-1195)) (-5 *2 (-288 *6)) (-5 *1 (-287 *5 *6)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1195)) (-5 *1 (-288 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1143)) (-5 *5 (-607 *6)) (-4 *6 (-296)) (-4 *2 (-1195)) (-5 *1 (-291 *6 *2)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-607 *5)) (-4 *5 (-296)) (-4 *2 (-296)) (-5 *1 (-292 *5 *2)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-607 *1)) (-4 *1 (-296)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-679 *5)) (-4 *5 (-1047)) (-4 *6 (-1047)) (-5 *2 (-679 *6)) (-5 *1 (-298 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-310 *5)) (-4 *5 (-842)) (-4 *6 (-842)) (-5 *2 (-310 *6)) (-5 *1 (-308 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-4 *6 (-1047)) (-4 *7 (-1047)) (-4 *5 (-787)) (-4 *2 (-324 *7 *5)) (-5 *1 (-322 *5 *6 *4 *7 *2)) (-4 *4 (-324 *6 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-334 *5 *6 *7 *8)) (-4 *5 (-365)) (-4 *6 (-1219 *5)) (-4 *7 (-1219 (-409 *6))) (-4 *8 (-340 *5 *6 *7)) (-4 *9 (-365)) (-4 *10 (-1219 *9)) (-4 *11 (-1219 (-409 *10))) (-5 *2 (-334 *9 *10 *11 *12)) (-5 *1 (-331 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-340 *9 *10 *11)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-336 *3)) (-4 *3 (-1090)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1199)) (-4 *8 (-1199)) (-4 *6 (-1219 *5)) (-4 *7 (-1219 (-409 *6))) (-4 *9 (-1219 *8)) (-4 *2 (-340 *8 *9 *10)) (-5 *1 (-338 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-340 *5 *6 *7)) (-4 *10 (-1219 (-409 *9))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1195)) (-4 *6 (-1195)) (-4 *2 (-375 *6)) (-5 *1 (-373 *5 *4 *6 *2)) (-4 *4 (-375 *5)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-384 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-1090)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-420 *5)) (-4 *5 (-558)) (-4 *6 (-558)) (-5 *2 (-420 *6)) (-5 *1 (-407 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-409 *5)) (-4 *5 (-558)) (-4 *6 (-558)) (-5 *2 (-409 *6)) (-5 *1 (-408 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-415 *5 *6 *7 *8)) (-4 *5 (-301)) (-4 *6 (-993 *5)) (-4 *7 (-1219 *6)) (-4 *8 (-13 (-411 *6 *7) (-1037 *6))) (-4 *9 (-301)) (-4 *10 (-993 *9)) (-4 *11 (-1219 *10)) (-5 *2 (-415 *9 *10 *11 *12)) (-5 *1 (-414 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-411 *10 *11) (-1037 *10))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-419 *6)) (-5 *1 (-417 *4 *5 *2 *6)) (-4 *4 (-419 *5)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-558)) (-5 *1 (-420 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1047) (-842))) (-4 *6 (-13 (-1047) (-842))) (-4 *2 (-432 *6)) (-5 *1 (-423 *5 *4 *6 *2)) (-4 *4 (-432 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *2 (-427 *6)) (-5 *1 (-425 *5 *4 *6 *2)) (-4 *4 (-427 *5)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-842)) (-5 *1 (-494 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-499 *3)) (-4 *3 (-1195)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-518 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-842)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-585 *5)) (-4 *5 (-365)) (-4 *6 (-365)) (-5 *2 (-585 *6)) (-5 *1 (-584 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -1924 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-365)) (-4 *6 (-365)) (-5 *2 (-2 (|:| -1924 *6) (|:| |coeff| *6))) (-5 *1 (-584 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-365)) (-4 *2 (-365)) (-5 *1 (-584 *5 *2)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-634 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-365)) (-4 *6 (-365)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-634 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-584 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-598 *5)) (-4 *5 (-1195)) (-4 *6 (-1195)) (-5 *2 (-598 *6)) (-5 *1 (-595 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-598 *6)) (-5 *5 (-598 *7)) (-4 *6 (-1195)) (-4 *7 (-1195)) (-4 *8 (-1195)) (-5 *2 (-598 *8)) (-5 *1 (-596 *6 *7 *8)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1141 *6)) (-5 *5 (-598 *7)) (-4 *6 (-1195)) (-4 *7 (-1195)) (-4 *8 (-1195)) (-5 *2 (-1141 *8)) (-5 *1 (-596 *6 *7 *8)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-598 *6)) (-5 *5 (-1141 *7)) (-4 *6 (-1195)) (-4 *7 (-1195)) (-4 *8 (-1195)) (-5 *2 (-1141 *8)) (-5 *1 (-596 *6 *7 *8)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1195)) (-5 *1 (-598 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-634 *5)) (-4 *5 (-1195)) (-4 *6 (-1195)) (-5 *2 (-634 *6)) (-5 *1 (-632 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-634 *6)) (-5 *5 (-634 *7)) (-4 *6 (-1195)) (-4 *7 (-1195)) (-4 *8 (-1195)) (-5 *2 (-634 *8)) (-5 *1 (-633 *6 *7 *8)))) ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-640 *3)) (-4 *3 (-1195)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1047)) (-4 *8 (-1047)) (-4 *6 (-375 *5)) (-4 *7 (-375 *5)) (-4 *2 (-677 *8 *9 *10)) (-5 *1 (-675 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-677 *5 *6 *7)) (-4 *9 (-375 *8)) (-4 *10 (-375 *8)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1047)) (-4 *8 (-1047)) (-4 *6 (-375 *5)) (-4 *7 (-375 *5)) (-4 *2 (-677 *8 *9 *10)) (-5 *1 (-675 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-677 *5 *6 *7)) (-4 *9 (-375 *8)) (-4 *10 (-375 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-558)) (-4 *7 (-558)) (-4 *6 (-1219 *5)) (-4 *2 (-1219 (-409 *8))) (-5 *1 (-699 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1219 (-409 *6))) (-4 *8 (-1219 *7)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1047)) (-4 *9 (-1047)) (-4 *5 (-842)) (-4 *6 (-788)) (-4 *2 (-950 *9 *7 *5)) (-5 *1 (-718 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-788)) (-4 *4 (-950 *8 *6 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-842)) (-4 *6 (-842)) (-4 *7 (-788)) (-4 *9 (-1047)) (-4 *2 (-950 *9 *8 *6)) (-5 *1 (-719 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-788)) (-4 *4 (-950 *9 *7 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-725 *5 *7)) (-4 *5 (-1047)) (-4 *6 (-1047)) (-4 *7 (-716)) (-5 *2 (-725 *6 *7)) (-5 *1 (-724 *5 *6 *7)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1047)) (-5 *1 (-725 *3 *4)) (-4 *4 (-716)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-777 *5)) (-4 *5 (-1047)) (-4 *6 (-1047)) (-5 *2 (-777 *6)) (-5 *1 (-776 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-792 *6)) (-5 *1 (-793 *4 *5 *2 *6)) (-4 *4 (-792 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-828 *5)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-5 *2 (-828 *6)) (-5 *1 (-827 *5 *6)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-828 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-828 *5)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-5 *1 (-827 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-835 *5)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-5 *2 (-835 *6)) (-5 *1 (-834 *5 *6)))) ((*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-835 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-835 *5)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-5 *1 (-834 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-873 *5)) (-4 *5 (-1195)) (-4 *6 (-1195)) (-5 *2 (-873 *6)) (-5 *1 (-872 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-875 *5)) (-4 *5 (-1195)) (-4 *6 (-1195)) (-5 *2 (-875 *6)) (-5 *1 (-874 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-877 *5)) (-4 *5 (-1195)) (-4 *6 (-1195)) (-5 *2 (-877 *6)) (-5 *1 (-876 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-884 *5 *6)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-884 *5 *7)) (-5 *1 (-883 *5 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-887 *5)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-5 *2 (-887 *6)) (-5 *1 (-886 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-953 *5)) (-4 *5 (-1047)) (-4 *6 (-1047)) (-5 *2 (-953 *6)) (-5 *1 (-947 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-842)) (-4 *8 (-1047)) (-4 *6 (-788)) (-4 *2 (-13 (-1090) (-10 -8 (-15 -1767 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-763)))))) (-5 *1 (-952 *6 *7 *8 *5 *2)) (-4 *5 (-950 *8 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-958 *5)) (-4 *5 (-1195)) (-4 *6 (-1195)) (-5 *2 (-958 *6)) (-5 *1 (-957 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-944 *5)) (-4 *5 (-1047)) (-4 *6 (-1047)) (-5 *2 (-944 *6)) (-5 *1 (-982 *5 *6)))) ((*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-953 *4))) (-4 *4 (-1047)) (-4 *2 (-950 (-953 *4) *5 *6)) (-4 *5 (-788)) (-4 *6 (-13 (-842) (-10 -8 (-15 -4278 ((-1161) $)) (-15 -1305 ((-3 $ "failed") (-1161)))))) (-5 *1 (-985 *4 *5 *6 *2)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-558)) (-4 *6 (-558)) (-4 *2 (-993 *6)) (-5 *1 (-991 *5 *6 *4 *2)) (-4 *4 (-993 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-997 *6)) (-5 *1 (-998 *4 *5 *2 *6)) (-4 *4 (-997 *5)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1090)) (-5 *1 (-1000 *3)))) ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1050 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1050 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1047)) (-4 *10 (-1047)) (-14 *5 (-763)) (-14 *6 (-763)) (-4 *8 (-230 *6 *7)) (-4 *9 (-230 *5 *7)) (-4 *2 (-1050 *5 *6 *10 *11 *12)) (-5 *1 (-1052 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1050 *5 *6 *7 *8 *9)) (-4 *11 (-230 *6 *10)) (-4 *12 (-230 *5 *10)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1084 *5)) (-4 *5 (-1195)) (-4 *6 (-1195)) (-5 *2 (-1084 *6)) (-5 *1 (-1080 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1084 *5)) (-4 *5 (-840)) (-4 *5 (-1195)) (-4 *6 (-1195)) (-5 *2 (-634 *6)) (-5 *1 (-1080 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1082 *5)) (-4 *5 (-1195)) (-4 *6 (-1195)) (-5 *2 (-1082 *6)) (-5 *1 (-1081 *5 *6)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1085 *4 *2)) (-4 *4 (-840)) (-4 *2 (-1134 *4)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1090)) (-5 *1 (-1132 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1141 *5)) (-4 *5 (-1195)) (-4 *6 (-1195)) (-5 *2 (-1141 *6)) (-5 *1 (-1139 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1141 *6)) (-5 *5 (-1141 *7)) (-4 *6 (-1195)) (-4 *7 (-1195)) (-4 *8 (-1195)) (-5 *2 (-1141 *8)) (-5 *1 (-1140 *6 *7 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1157 *5)) (-4 *5 (-1047)) (-4 *6 (-1047)) (-5 *2 (-1157 *6)) (-5 *1 (-1154 *5 *6)))) ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1172 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1207 *5 *7 *9)) (-4 *5 (-1047)) (-4 *6 (-1047)) (-14 *7 (-1161)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1207 *6 *8 *10)) (-5 *1 (-1202 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1161)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1210 *5)) (-4 *5 (-1195)) (-4 *6 (-1195)) (-5 *2 (-1210 *6)) (-5 *1 (-1209 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1210 *5)) (-4 *5 (-840)) (-4 *5 (-1195)) (-4 *6 (-1195)) (-5 *2 (-1141 *6)) (-5 *1 (-1209 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1216 *5 *6)) (-14 *5 (-1161)) (-4 *6 (-1047)) (-4 *8 (-1047)) (-5 *2 (-1216 *7 *8)) (-5 *1 (-1211 *5 *6 *7 *8)) (-14 *7 (-1161)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1047)) (-4 *6 (-1047)) (-4 *2 (-1219 *6)) (-5 *1 (-1217 *5 *4 *6 *2)) (-4 *4 (-1219 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1228 *5 *7 *9)) (-4 *5 (-1047)) (-4 *6 (-1047)) (-14 *7 (-1161)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1228 *6 *8 *10)) (-5 *1 (-1223 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1161)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1047)) (-4 *6 (-1047)) (-4 *2 (-1234 *6)) (-5 *1 (-1232 *5 *6 *4 *2)) (-4 *4 (-1234 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1244 *5)) (-4 *5 (-1195)) (-4 *6 (-1195)) (-5 *2 (-1244 *6)) (-5 *1 (-1243 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1244 *5)) (-4 *5 (-1195)) (-4 *6 (-1195)) (-5 *2 (-1244 *6)) (-5 *1 (-1243 *5 *6)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1259 *3 *4)) (-4 *3 (-842)) (-4 *4 (-1047)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1047)) (-5 *1 (-1265 *3 *4)) (-4 *4 (-838))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-121) *3)) (-4 *3 (-1195)) (-5 *1 (-598 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-121) *3)) (-4 *3 (-1195)) (-5 *1 (-1141 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1149 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1047))))) +(((*1 *2 *3 *4 *5) (-12 (-4 *6 (-1219 *9)) (-4 *7 (-788)) (-4 *8 (-842)) (-4 *9 (-301)) (-4 *10 (-950 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-634 (-1157 *10))) (|:| |dterm| (-634 (-634 (-2 (|:| -1876 (-763)) (|:| |pcoef| *10))))) (|:| |nfacts| (-634 *6)) (|:| |nlead| (-634 *10)))) (-5 *1 (-771 *6 *7 *8 *9 *10)) (-5 *3 (-1157 *10)) (-5 *4 (-634 *6)) (-5 *5 (-634 *10))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-550)) (-5 *2 (-121))))) -(((*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-834)) (-5 *2 (-626 *1)) (-4 *1 (-426 *3)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-626 (-879 *3))) (-5 *1 (-879 *3)) (-4 *3 (-1082)))) ((*1 *2 *1) (|partial| -12 (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-626 *1)) (-4 *1 (-942 *3 *4 *5)))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1039)) (-4 *7 (-942 *6 *4 *5)) (-5 *2 (-626 *3)) (-5 *1 (-943 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-359) (-10 -8 (-15 -2801 ($ *7)) (-15 -2132 (*7 $)) (-15 -2139 (*7 $)))))))) -(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-811))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-4 *4 (-1039)) (-5 *2 (-2 (|:| -2583 *1) (|:| -4397 *1))) (-4 *1 (-1211 *4))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-5 *2 (-1 *6 *5)) (-5 *1 (-665 *4 *5 *6))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-304 (-560))) (|:| -1333 (-304 (-375))) (|:| CF (-304 (-167 (-375)))) (|:| |switch| (-1152)))) (-5 *1 (-1152))))) -(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-626 (-560))) (-5 *3 (-671 (-560))) (-5 *1 (-1092))))) -(((*1 *2 *3) (-12 (-4 *4 (-13 (-550) (-834) (-1029 (-560)))) (-4 *5 (-426 *4)) (-5 *2 (-3 (|:| |overq| (-1149 (-403 (-560)))) (|:| |overan| (-1149 (-53))) (|:| -1384 (-121)))) (-5 *1 (-431 *4 *5 *3)) (-4 *3 (-1211 *5))))) -(((*1 *2) (-12 (-5 *2 (-403 (-945 *3))) (-5 *1 (-448 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *3 (-170)) (-14 *4 (-909)) (-14 *5 (-626 (-1153))) (-14 *6 (-1236 (-671 *3)))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-626 (-626 *3))) (-4 *3 (-359)) (-5 *1 (-645 *3))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-304 (-560))) (|:| -1333 (-304 (-375))) (|:| CF (-304 (-167 (-375)))) (|:| |switch| (-1152)))) (-5 *1 (-1152))))) -(((*1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-43 (-403 (-560)))) (-4 *2 (-1039))))) -(((*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-57)) (-5 *1 (-816))))) -(((*1 *2 *2 *3 *4) (-12 (-5 *3 (-626 (-599 *2))) (-5 *4 (-626 (-1153))) (-4 *2 (-13 (-426 (-167 *5)) (-994) (-1173))) (-4 *5 (-13 (-550) (-834))) (-5 *1 (-589 *5 *6 *2)) (-4 *6 (-13 (-426 *5) (-994) (-1173)))))) -(((*1 *1 *1 *1) (|partial| -4 *1 (-137)))) -(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-626 *3)) (-4 *3 (-359)) (-5 *1 (-645 *3))))) -(((*1 *1 *1) (-5 *1 (-1152))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-304 (-560))) (|:| -1333 (-304 (-375))) (|:| CF (-304 (-167 (-375)))) (|:| |switch| (-1152)))) (-5 *1 (-1152))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 *2)) (-4 *2 (-426 *4)) (-5 *1 (-157 *4 *2)) (-4 *4 (-13 (-834) (-550)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1149 (-560))) (-5 *2 (-560)) (-5 *1 (-935))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1211 *2)) (-4 *2 (-1039))))) -(((*1 *1 *1) (-5 *1 (-842))) ((*1 *2 *1) (-12 (-4 *1 (-1085 *2 *3 *4 *5 *6)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *2 (-1082)))) ((*1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-1134)))) ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1153))))) -(((*1 *2 *3 *3) (-12 (-4 *2 (-550)) (-5 *1 (-962 *2 *3)) (-4 *3 (-1211 *2))))) -(((*1 *2 *2) (-12 (-5 *2 (-626 (-626 *3))) (-4 *3 (-359)) (-5 *1 (-645 *3))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *3 (-755)) (-4 *4 (-344)) (-5 *1 (-205 *4 *2)) (-4 *2 (-1211 *4))))) -(((*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-359)) (-4 *3 (-1211 *4)) (-4 *5 (-1211 (-403 *3))) (-4 *1 (-327 *4 *3 *5 *2)) (-4 *2 (-334 *4 *3 *5)))) ((*1 *1 *2 *2 *3) (-12 (-5 *3 (-560)) (-4 *2 (-359)) (-4 *4 (-1211 *2)) (-4 *5 (-1211 (-403 *4))) (-4 *1 (-327 *2 *4 *5 *6)) (-4 *6 (-334 *2 *4 *5)))) ((*1 *1 *2 *2) (-12 (-4 *2 (-359)) (-4 *3 (-1211 *2)) (-4 *4 (-1211 (-403 *3))) (-4 *1 (-327 *2 *3 *4 *5)) (-4 *5 (-334 *2 *3 *4)))) ((*1 *1 *2) (-12 (-4 *3 (-359)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-403 *4))) (-4 *1 (-327 *3 *4 *5 *2)) (-4 *2 (-334 *3 *4 *5)))) ((*1 *1 *2) (-12 (-5 *2 (-409 *4 (-403 *4) *5 *6)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-403 *4))) (-4 *6 (-334 *3 *4 *5)) (-4 *3 (-359)) (-4 *1 (-327 *3 *4 *5 *6))))) -(((*1 *1) (-5 *1 (-1241)))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-560)) (-5 *1 (-414 *2)) (-4 *2 (-550))))) -(((*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-300)) (-5 *1 (-285)))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-1135))) (-5 *2 (-300)) (-5 *1 (-285)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-300)) (-5 *1 (-285)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-626 (-1135))) (-5 *3 (-1135)) (-5 *2 (-300)) (-5 *1 (-285))))) -(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-145))))) -(((*1 *2 *1) (-12 (-5 *2 (-964)) (-5 *1 (-892 *3)) (-4 *3 (-1082))))) -(((*1 *2 *3 *1 *4) (-12 (-5 *3 (-1117 *5 *6)) (-5 *4 (-1 (-121) *6 *6)) (-4 *5 (-13 (-1082) (-39))) (-4 *6 (-13 (-1082) (-39))) (-5 *2 (-121)) (-5 *1 (-1118 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1141 *3 *4)) (-14 *3 (-909)) (-4 *4 (-1039))))) -(((*1 *1 *1) (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-369 *2)) (-4 *4 (-369 *2))))) -(((*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-827 *4)) (-5 *3 (-599 *4)) (-5 *5 (-121)) (-4 *4 (-13 (-1173) (-29 *6))) (-4 *6 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *1 (-212 *6 *4))))) -(((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1153)) (-5 *3 (-626 (-945 (-560)))) (-5 *4 (-304 (-167 (-375)))) (-5 *1 (-322)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1153)) (-5 *3 (-626 (-945 (-560)))) (-5 *4 (-304 (-375))) (-5 *1 (-322)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1153)) (-5 *3 (-626 (-945 (-560)))) (-5 *4 (-304 (-560))) (-5 *1 (-322)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-1236 (-304 (-167 (-375))))) (-5 *1 (-322)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-1236 (-304 (-375)))) (-5 *1 (-322)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-1236 (-304 (-560)))) (-5 *1 (-322)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-671 (-304 (-167 (-375))))) (-5 *1 (-322)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-671 (-304 (-375)))) (-5 *1 (-322)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-671 (-304 (-560)))) (-5 *1 (-322)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-304 (-167 (-375)))) (-5 *1 (-322)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-304 (-375))) (-5 *1 (-322)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-304 (-560))) (-5 *1 (-322)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1153)) (-5 *3 (-626 (-945 (-560)))) (-5 *4 (-304 (-675))) (-5 *1 (-322)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1153)) (-5 *3 (-626 (-945 (-560)))) (-5 *4 (-304 (-680))) (-5 *1 (-322)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1153)) (-5 *3 (-626 (-945 (-560)))) (-5 *4 (-304 (-682))) (-5 *1 (-322)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-1236 (-304 (-675)))) (-5 *1 (-322)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-1236 (-304 (-680)))) (-5 *1 (-322)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-1236 (-304 (-682)))) (-5 *1 (-322)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-671 (-304 (-675)))) (-5 *1 (-322)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-671 (-304 (-680)))) (-5 *1 (-322)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-671 (-304 (-682)))) (-5 *1 (-322)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-1236 (-675))) (-5 *1 (-322)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-1236 (-680))) (-5 *1 (-322)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-1236 (-682))) (-5 *1 (-322)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-671 (-675))) (-5 *1 (-322)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-671 (-680))) (-5 *1 (-322)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-671 (-682))) (-5 *1 (-322)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-304 (-675))) (-5 *1 (-322)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-304 (-680))) (-5 *1 (-322)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-304 (-682))) (-5 *1 (-322)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-1135)) (-5 *1 (-322)))) ((*1 *1 *1 *1) (-5 *1 (-842)))) -(((*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-121) *5 *5)) (-4 *5 (-13 (-1082) (-39))) (-5 *2 (-121)) (-5 *1 (-1117 *4 *5)) (-4 *4 (-13 (-1082) (-39)))))) -(((*1 *2 *3) (-12 (-5 *2 (-560)) (-5 *1 (-565 *3)) (-4 *3 (-1029 *2)))) ((*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *2 *5 *6)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *2 (-1082))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-626 (-626 *4))) (-5 *3 (-626 *4)) (-4 *4 (-359)) (-5 *1 (-645 *4))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-172 *3)) (-4 *3 (-13 (-359) (-1173) (-994))))) ((*1 *2) (|partial| -12 (-4 *4 (-1191)) (-4 *5 (-1211 (-403 *2))) (-4 *2 (-1211 *4)) (-5 *1 (-333 *3 *4 *2 *5)) (-4 *3 (-334 *4 *2 *5)))) ((*1 *2) (|partial| -12 (-4 *1 (-334 *3 *2 *4)) (-4 *3 (-1191)) (-4 *4 (-1211 (-403 *2))) (-4 *2 (-1211 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-547 *2)) (-4 *2 (-13 (-400) (-1173)))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4506)) (-4 *1 (-234 *2)) (-4 *2 (-1187))))) -(((*1 *2 *2) (-12 (-5 *1 (-663 *2)) (-4 *2 (-1082))))) -(((*1 *2 *3) (-12 (-5 *3 (-403 (-560))) (-5 *2 (-213)) (-5 *1 (-294))))) -(((*1 *2 *1) (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-1048)) (-4 *3 (-1173)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *3 (-755)) (-4 *4 (-344)) (-5 *1 (-205 *4 *2)) (-4 *2 (-1211 *4)))) ((*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-560)) (-5 *1 (-677 *2)) (-4 *2 (-1211 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-671 *3)) (-4 *3 (-359)) (-5 *1 (-645 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-334 *4 *5 *6)) (-4 *4 (-1191)) (-4 *5 (-1211 *4)) (-4 *6 (-1211 (-403 *5))) (-5 *2 (-2 (|:| |num| (-671 *5)) (|:| |den| *5)))))) -(((*1 *1 *2) (-12 (-5 *1 (-1018 *2)) (-4 *2 (-1187))))) -(((*1 *2 *1) (-12 (-4 *1 (-547 *2)) (-4 *2 (-13 (-400) (-1173))))) ((*1 *1 *1 *1) (-4 *1 (-780)))) -(((*1 *1 *2) (-12 (-5 *2 (-626 (-1135))) (-5 *1 (-322)))) ((*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-322))))) -(((*1 *2 *2) (-12 (-5 *2 (-671 *3)) (-4 *3 (-359)) (-5 *1 (-645 *3))))) -(((*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1153)) (-5 *6 (-626 (-599 *3))) (-5 *5 (-599 *3)) (-4 *3 (-13 (-27) (-1173) (-426 *7))) (-4 *7 (-13 (-447) (-834) (-148) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-2 (|:| -2962 *3) (|:| |coeff| *3))) (-5 *1 (-551 *7 *3))))) -(((*1 *2) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1191)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-403 *4))) (-5 *2 (-671 (-403 *4)))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 *1)) (-4 *1 (-633 *3)) (-4 *3 (-359)))) ((*1 *1 *2) (-12 (-5 *2 (-1 (-1133 *3))) (-5 *1 (-1133 *3)) (-4 *3 (-1187))))) -(((*1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-43 (-403 (-560)))) (-4 *2 (-1039))))) -(((*1 *2 *3) (-12 (-5 *3 (-560)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *2 (-1039)) (-5 *1 (-312 *4 *5 *2 *6)) (-4 *6 (-942 *2 *4 *5))))) -(((*1 *1 *1) (|partial| -4 *1 (-146))) ((*1 *1 *1) (-4 *1 (-344))) ((*1 *1 *1) (|partial| -12 (-4 *1 (-146)) (-4 *1 (-896))))) -(((*1 *2 *1) (-12 (|has| *1 (-6 -4505)) (-4 *1 (-39)) (-5 *2 (-755)))) ((*1 *2 *1) (-12 (|has| $ (-6 -4505)) (-5 *2 (-755)) (-5 *1 (-96 *3)) (-4 *3 (-1082)))) ((*1 *2 *1) (-12 (|has| $ (-6 -4505)) (-5 *2 (-755)) (-5 *1 (-210 *3)) (-4 *3 (-1082)))) ((*1 *2 *1) (-12 (|has| $ (-6 -4505)) (-5 *2 (-755)) (-5 *1 (-487 *3)) (-4 *3 (-834)))) ((*1 *2 *1) (-12 (|has| $ (-6 -4505)) (-5 *2 (-755)) (-5 *1 (-992 *3)) (-4 *3 (-1082)))) ((*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-560)))) ((*1 *2 *1) (-12 (|has| $ (-6 -4505)) (-5 *2 (-755)) (-5 *1 (-1124 *3)) (-4 *3 (-1082)))) ((*1 *2 *1) (-12 (-5 *2 (-755)) (-5 *1 (-1257 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-830))))) -(((*1 *1 *1) (-12 (-5 *1 (-1117 *2 *3)) (-4 *2 (-13 (-1082) (-39))) (-4 *3 (-13 (-1082) (-39)))))) -(((*1 *1 *2) (-12 (-5 *2 (-626 (-560))) (-5 *1 (-996 *3)) (-14 *3 (-560))))) -(((*1 *2 *3 *4 *5) (-12 (-5 *5 (-560)) (-4 *6 (-359)) (-14 *7 (-626 (-1153))) (-4 *8 (-226 (-2271 *7) (-755))) (-4 *9 (-633 *6)) (-5 *2 (-626 *9)) (-5 *1 (-646 *6 *7 *4 *8 *3 *9 *10)) (-4 *4 (-942 *6 *8 (-844 *7))) (-4 *3 (-963 *6)) (-4 *10 (-912 *6 *9))))) -(((*1 *1 *2) (-12 (-5 *2 (-755)) (-5 *1 (-139))))) -(((*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-121)) (-5 *1 (-362 *3 *4)) (-4 *3 (-363 *4)))) ((*1 *2) (-12 (-4 *1 (-363 *3)) (-4 *3 (-170)) (-5 *2 (-121))))) -(((*1 *2 *3 *4) (-12 (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-626 (-2 (|:| |val| (-121)) (|:| -3249 *4)))) (-5 *1 (-760 *5 *6 *7 *3 *4)) (-4 *4 (-1058 *5 *6 *7 *3))))) -(((*1 *2 *3) (-12 (-4 *4 (-550)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-626 *7)) (|:| |badPols| (-626 *7)))) (-5 *1 (-970 *4 *5 *6 *7)) (-5 *3 (-626 *7))))) -(((*1 *2 *1) (-12 (-4 *1 (-241 *3 *4 *2 *5)) (-4 *3 (-1039)) (-4 *4 (-834)) (-4 *5 (-780)) (-4 *2 (-257 *4))))) -(((*1 *2) (-12 (-4 *3 (-550)) (-5 *2 (-626 (-671 *3))) (-5 *1 (-48 *3 *4)) (-4 *4 (-413 *3))))) -(((*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-213)) (-5 *2 (-2 (|:| |brans| (-626 (-626 (-936 *4)))) (|:| |xValues| (-1076 *4)) (|:| |yValues| (-1076 *4)))) (-5 *1 (-154)) (-5 *3 (-626 (-626 (-936 *4))))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1979 *3) (|:| |coef1| (-769 *3)))) (-5 *1 (-769 *3)) (-4 *3 (-550)) (-4 *3 (-1039))))) -(((*1 *2 *1) (-12 (-4 *1 (-1114 *3)) (-4 *3 (-1039)) (-5 *2 (-755))))) -(((*1 *1 *2 *3 *4) (-12 (-5 *3 (-626 (-2 (|:| |scalar| (-403 (-560))) (|:| |coeff| (-1149 *2)) (|:| |logand| (-1149 *2))))) (-5 *4 (-626 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-359)) (-5 *1 (-577 *2))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-1149 *1)) (-5 *4 (-1153)) (-4 *1 (-27)) (-5 *2 (-626 *1)))) ((*1 *2 *3) (-12 (-5 *3 (-1149 *1)) (-4 *1 (-27)) (-5 *2 (-626 *1)))) ((*1 *2 *3) (-12 (-5 *3 (-945 *1)) (-4 *1 (-27)) (-5 *2 (-626 *1)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1153)) (-4 *4 (-13 (-834) (-550))) (-5 *2 (-626 *1)) (-4 *1 (-29 *4)))) ((*1 *2 *1) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *2 (-626 *1)) (-4 *1 (-29 *3))))) -(((*1 *1 *1 *1) (-5 *1 (-121))) ((*1 *1 *1 *1) (-4 *1 (-132))) ((*1 *1 *1 *1) (-5 *1 (-842)))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-755)) (-5 *1 (-840 *2)) (-4 *2 (-170)))) ((*1 *2 *3) (-12 (-5 *2 (-1149 (-560))) (-5 *1 (-935)) (-5 *3 (-560))))) -(((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-998)))) ((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-998))))) -(((*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-834) (-1029 (-560)) (-622 (-560)) (-447))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1220 *4 *5 *6)) (|:| |%expon| (-308 *4 *5 *6)) (|:| |%expTerms| (-626 (-2 (|:| |k| (-403 (-560))) (|:| |c| *4)))))) (|:| |%type| (-1135)))) (-5 *1 (-1221 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1173) (-426 *3))) (-14 *5 (-1153)) (-14 *6 *4)))) -(((*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-331 *3 *4 *5)) (-14 *3 (-626 (-1153))) (-14 *4 (-626 (-1153))) (-4 *5 (-383)))) ((*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-331 *3 *4 *5)) (-14 *3 (-626 (-1153))) (-14 *4 (-626 (-1153))) (-4 *5 (-383))))) -(((*1 *1 *2) (-12 (-5 *2 (-626 (-145))) (-5 *1 (-142)))) ((*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-142))))) -(((*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-755)) (-5 *4 (-909)) (-5 *2 (-1241)) (-5 *1 (-1237)))) ((*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-755)) (-5 *4 (-909)) (-5 *2 (-1241)) (-5 *1 (-1238))))) -(((*1 *2 *1) (-12 (-5 *2 (-626 (-2 (|:| |val| *3) (|:| -3249 *4)))) (-5 *1 (-1118 *3 *4)) (-4 *3 (-13 (-1082) (-39))) (-4 *4 (-13 (-1082) (-39)))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1234 *3)) (-5 *1 (-274 *3 *4 *2)) (-4 *2 (-1205 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1203 *3)) (-5 *1 (-275 *3 *4 *2 *5)) (-4 *2 (-1226 *3 *4)) (-4 *5 (-984 *4)))) ((*1 *1 *2) (-12 (-5 *1 (-329 *2)) (-4 *2 (-842)))) ((*1 *1 *1) (-12 (-5 *1 (-337 *2 *3 *4)) (-14 *2 (-634 (-1161))) (-14 *3 (-634 (-1161))) (-4 *4 (-389)))) ((*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1146 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1147 *3)))) ((*1 *1 *1) (-4 *1 (-1184)))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-917)) (-4 *6 (-13 (-558) (-842))) (-5 *2 (-634 (-310 *6))) (-5 *1 (-211 *5 *6)) (-5 *3 (-310 *6)) (-4 *5 (-1047)))) ((*1 *2 *1) (-12 (-5 *1 (-420 *2)) (-4 *2 (-558)))) ((*1 *2 *3) (-12 (-5 *3 (-585 *5)) (-4 *5 (-13 (-29 *4) (-1181))) (-4 *4 (-13 (-453) (-1037 (-568)) (-842) (-630 (-568)))) (-5 *2 (-634 *5)) (-5 *1 (-583 *4 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-585 (-409 (-953 *4)))) (-4 *4 (-13 (-453) (-1037 (-568)) (-842) (-630 (-568)))) (-5 *2 (-634 (-310 *4))) (-5 *1 (-588 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-1085 *3 *2)) (-4 *3 (-840)) (-4 *2 (-1134 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-634 *1)) (-4 *1 (-1085 *4 *2)) (-4 *4 (-840)) (-4 *2 (-1134 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-453))) (-5 *1 (-1187 *3 *2)) (-4 *2 (-13 (-432 *3) (-1181))))) ((*1 *2 *1) (-12 (-5 *2 (-1257 (-1161) *3)) (-5 *1 (-1264 *3)) (-4 *3 (-1047)))) ((*1 *2 *1) (-12 (-5 *2 (-1257 *3 *4)) (-5 *1 (-1266 *3 *4)) (-4 *3 (-842)) (-4 *4 (-1047))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-53))) (-5 *4 (-634 (-465))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-482)))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-53))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-482)))) ((*1 *2 *3) (-12 (-4 (-53) (-1037 *3)) (-5 *3 (-1161)) (-5 *2 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465)))) (-5 *1 (-482)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 *5)) (-5 *4 (-634 (-465))) (-4 *5 (-13 (-350) (-609 (-568)))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-484 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-634 *4)) (-4 *4 (-13 (-350) (-609 (-568)))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-484 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 *4) (-634 (-465)))) (-5 *1 (-484 *4)) (-4 *4 (-1037 *3)) (-4 *4 (-13 (-350) (-609 (-568)))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-568)))) (-5 *4 (-634 (-465))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-485)))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-409 (-568)))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-485)))) ((*1 *2 *3) (-12 (-4 (-409 (-568)) (-1037 *3)) (-4 (-568) (-1037 *3)) (-5 *3 (-1161)) (-5 *2 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465)))) (-5 *1 (-485)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 *5)) (-5 *4 (-634 (-465))) (-4 *5 (-365)) (-14 *10 (-1 *7 *5)) (-4 *8 (-13 (-842) (-558))) (-14 *9 (-1 *5 *8)) (-5 *2 (-634 (-2 (|:| -1864 *7) (|:| -4477 (-763))))) (-5 *1 (-486 *5 *6 *7 *8 *9 *10)) (-4 *6 (-453)) (-4 *7 (-13 (-432 (-568)) (-558) (-1037 *8) (-1037 (-1161)) (-1037 (-568)) (-161) (-895 (-1161)) (-10 -8 (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -1332 ($ $)) (-15 -3013 ($ $)) (-15 -2086 ((-121) $))))))) ((*1 *2 *3) (-12 (-5 *3 (-634 *4)) (-4 *4 (-365)) (-14 *9 (-1 *6 *4)) (-4 *7 (-13 (-842) (-558))) (-14 *8 (-1 *4 *7)) (-5 *2 (-634 (-2 (|:| -1864 *6) (|:| -4477 (-763))))) (-5 *1 (-486 *4 *5 *6 *7 *8 *9)) (-4 *5 (-453)) (-4 *6 (-13 (-432 (-568)) (-558) (-1037 *7) (-1037 (-1161)) (-1037 (-568)) (-161) (-895 (-1161)) (-10 -8 (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -1332 ($ $)) (-15 -3013 ($ $)) (-15 -2086 ((-121) $))))))) ((*1 *2 *3) (-12 (-5 *3 (-1161)) (-4 *7 (-13 (-842) (-558))) (-14 *8 (-1 *4 *7)) (-5 *2 (-1 (-634 (-2 (|:| -1864 *6) (|:| -4477 (-763)))) (-634 *4) (-634 (-465)))) (-5 *1 (-486 *4 *5 *6 *7 *8 *9)) (-4 *4 (-1037 *3)) (-4 *5 (-1037 *3)) (-4 *4 (-365)) (-4 *5 (-453)) (-4 *6 (-13 (-432 (-568)) (-558) (-1037 *7) (-1037 *3) (-1037 (-568)) (-161) (-895 *3) (-10 -8 (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -1332 ($ $)) (-15 -3013 ($ $)) (-15 -2086 ((-121) $))))) (-14 *9 (-1 *6 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-953 (-568))))) (-5 *4 (-634 (-465))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-487)))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-409 (-953 (-568))))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-487)))) ((*1 *2 *3) (-12 (-4 (-409 (-953 (-568))) (-1037 *3)) (-4 (-953 (-568)) (-1037 *3)) (-5 *3 (-1161)) (-5 *2 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465)))) (-5 *1 (-487)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-734 *5 (-568))))) (-5 *4 (-634 (-465))) (-14 *5 (-1161)) (-5 *2 (-634 (-2 (|:| -1864 (-733 *5 (-568))) (|:| -4477 (-763))))) (-5 *1 (-488 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-409 (-734 *4 (-568))))) (-14 *4 (-1161)) (-5 *2 (-634 (-2 (|:| -1864 (-733 *4 (-568))) (|:| -4477 (-763))))) (-5 *1 (-488 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1 (-634 (-2 (|:| -1864 (-733 *4 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 *4 (-568)))) (-634 (-465)))) (-5 *1 (-488 *4)) (-14 *4 *3)))) +(((*1 *1 *1 *1) (-4 *1 (-146))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-159 *3 *2)) (-4 *2 (-432 *3)))) ((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-550)))) ((*1 *1 *1 *1) (-5 *1 (-850))) ((*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-568))) (-5 *1 (-1045)) (-5 *3 (-568))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1234 *3)) (-5 *1 (-274 *3 *4 *2)) (-4 *2 (-1205 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1203 *3)) (-5 *1 (-275 *3 *4 *2 *5)) (-4 *2 (-1226 *3 *4)) (-4 *5 (-984 *4)))) ((*1 *1 *2) (-12 (-5 *1 (-329 *2)) (-4 *2 (-842)))) ((*1 *1 *1) (-12 (-5 *1 (-337 *2 *3 *4)) (-14 *2 (-634 (-1161))) (-14 *3 (-634 (-1161))) (-4 *4 (-389)))) ((*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1146 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1147 *3)))) ((*1 *1 *1) (-4 *1 (-1184)))) +(((*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-533 *3)) (-4 *3 (-13 (-716) (-25)))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-159 *3 *2)) (-4 *2 (-432 *3)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1161)) (-4 *4 (-13 (-842) (-558))) (-5 *1 (-159 *4 *2)) (-4 *2 (-432 *4)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1161)))) ((*1 *1 *1) (-4 *1 (-161)))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1195)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-1143)) (-5 *1 (-990)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-1084 *4)) (-4 *4 (-1195)) (-5 *1 (-1082 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (-5 *2 (-568)) (-5 *1 (-196))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-763)) (-5 *2 (-1244 (-634 (-568)))) (-5 *1 (-491)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1195)) (-5 *1 (-598 *3)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1195)) (-5 *1 (-1141 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1195)) (-5 *1 (-1141 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-850))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-568)) (-4 *1 (-37 *2)) (-4 *2 (-365)))) ((*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-568)) (-4 *1 (-62 *2 *4 *5)) (-4 *2 (-1195)) (-4 *4 (-375 *2)) (-4 *5 (-375 *2)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-568)) (-4 *1 (-62 *2 *4 *5)) (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-1195)))) ((*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-128 *3)) (-4 *3 (-1195)))) ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-128 *3)) (-4 *3 (-1195)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-634 (-568))) (-4 *2 (-172)) (-5 *1 (-141 *4 *5 *2)) (-14 *4 (-568)) (-14 *5 (-763)))) ((*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-568)) (-4 *2 (-172)) (-5 *1 (-141 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-763)))) ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-568)) (-4 *2 (-172)) (-5 *1 (-141 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-763)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-568)) (-4 *2 (-172)) (-5 *1 (-141 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-763)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-568)) (-4 *2 (-172)) (-5 *1 (-141 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-763)))) ((*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-141 *3 *4 *2)) (-14 *3 (-568)) (-14 *4 (-763)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-240 (-1143))) (-5 *1 (-205 *4)) (-4 *4 (-13 (-842) (-10 -8 (-15 -2779 ((-1143) $ *3)) (-15 -4125 ((-1249) $)) (-15 -1352 ((-1249) $))))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-990)) (-5 *1 (-205 *3)) (-4 *3 (-13 (-842) (-10 -8 (-15 -2779 ((-1143) $ (-1161))) (-15 -4125 ((-1249) $)) (-15 -1352 ((-1249) $))))))) ((*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-763)) (-5 *1 (-240 *4)) (-4 *4 (-842)))) ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-240 *3)) (-4 *3 (-842)))) ((*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-240 *3)) (-4 *3 (-842)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-281 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-1195)))) ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-283 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-1195)))) ((*1 *2 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-284 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1219 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-123)) (-5 *3 (-634 *1)) (-4 *1 (-296)))) ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-296)) (-5 *2 (-123)))) ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-296)) (-5 *2 (-123)))) ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-296)) (-5 *2 (-123)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-296)) (-5 *2 (-123)))) ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-340 *2 *3 *4)) (-4 *2 (-1199)) (-4 *3 (-1219 *2)) (-4 *4 (-1219 (-409 *3))))) ((*1 *2 *1 *3) (-12 (-5 *3 (-568)) (-4 *1 (-419 *2)) (-4 *2 (-172)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1143)) (-5 *1 (-511)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-57)) (-5 *1 (-623)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1210 (-568))) (-4 *1 (-640 *3)) (-4 *3 (-1195)))) ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-763)) (-5 *1 (-666 *2)) (-4 *2 (-1090)))) ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-634 (-568))) (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-634 (-850))) (-5 *1 (-850)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-123)) (-5 *3 (-634 (-887 *4))) (-5 *1 (-887 *4)) (-4 *4 (-1090)))) ((*1 *2 *1 *2) (-12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-5 *2 (-900 *4)) (-5 *1 (-899 *4)) (-4 *4 (-1090)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-568)) (-4 *1 (-920 *2 *4)) (-4 *4 (-641 *2)) (-4 *2 (-365)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-568)) (-4 *1 (-971 *2)) (-4 *2 (-365)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-232 *4 *2)) (-14 *4 (-917)) (-4 *2 (-365)) (-5 *1 (-994 *4 *2)))) ((*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1010 *2)) (-4 *2 (-1195)))) ((*1 *2 *1) (-12 (-5 *1 (-1026 *2)) (-4 *2 (-1195)))) ((*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-568)) (-4 *1 (-1050 *4 *5 *2 *6 *7)) (-4 *2 (-1047)) (-4 *6 (-230 *5 *2)) (-4 *7 (-230 *4 *2)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-568)) (-4 *1 (-1050 *4 *5 *2 *6 *7)) (-4 *6 (-230 *5 *2)) (-4 *7 (-230 *4 *2)) (-4 *2 (-1047)))) ((*1 *2 *1 *2 *3) (-12 (-5 *3 (-917)) (-4 *4 (-1090)) (-4 *5 (-13 (-1047) (-881 *4) (-842) (-609 (-887 *4)))) (-5 *1 (-1069 *4 *5 *2)) (-4 *2 (-13 (-432 *5) (-881 *4) (-609 (-887 *4)))))) ((*1 *2 *1 *2 *3) (-12 (-5 *3 (-917)) (-4 *4 (-1090)) (-4 *5 (-13 (-1047) (-881 *4) (-842) (-609 (-887 *4)))) (-5 *1 (-1070 *4 *5 *2)) (-4 *2 (-13 (-432 *5) (-881 *4) (-609 (-887 *4)))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-634 (-568))) (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-568)) (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)))) ((*1 *1 *1 *1) (-4 *1 (-1129))) ((*1 *1 *1 *2) (-12 (-5 *2 (-634 (-850))) (-5 *1 (-1161)))) ((*1 *2 *3 *2) (-12 (-5 *3 (-409 *1)) (-4 *1 (-1219 *2)) (-4 *2 (-1047)) (-4 *2 (-365)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-409 *1)) (-4 *1 (-1219 *3)) (-4 *3 (-1047)) (-4 *3 (-558)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-1221 *2 *3)) (-4 *3 (-787)) (-4 *2 (-1047)))) ((*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1231 *2)) (-4 *2 (-1195)))) ((*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1231 *3)) (-4 *3 (-1195)))) ((*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1231 *2)) (-4 *2 (-1195))))) +(((*1 *1 *1) (-12 (-5 *1 (-1149 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1047))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1244 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-1244 (-679 *4))))) ((*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1244 (-679 *4))) (-5 *1 (-418 *3 *4)) (-4 *3 (-419 *4)))) ((*1 *2) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-1244 (-679 *3))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-1161))) (-4 *5 (-365)) (-5 *2 (-1244 (-679 (-409 (-953 *5))))) (-5 *1 (-1077 *5)) (-5 *4 (-679 (-409 (-953 *5)))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-1161))) (-4 *5 (-365)) (-5 *2 (-1244 (-679 (-953 *5)))) (-5 *1 (-1077 *5)) (-5 *4 (-679 (-953 *5))))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-679 *4))) (-4 *4 (-365)) (-5 *2 (-1244 (-679 *4))) (-5 *1 (-1077 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-1231 *3)) (-4 *3 (-1195)) (-5 *2 (-763))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-310 (-568))) (|:| -1478 (-310 (-381))) (|:| CF (-310 (-169 (-381)))) (|:| |switch| (-1160)))) (-5 *1 (-1160))))) +(((*1 *2 *3) (-12 (-4 *4 (-1047)) (-4 *5 (-230 *6 *2)) (-14 *6 *2) (-5 *2 (-763)) (-5 *1 (-908 *4 *3 *5 *6)) (-4 *3 (-324 *4 *5)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-634 *6)) (-4 *1 (-950 *4 *5 *6)) (-4 *4 (-1047)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-763)))) ((*1 *2 *1) (-12 (-4 *1 (-950 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-763))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-900 *4)) (-4 *4 (-1090)) (-5 *2 (-634 (-763))) (-5 *1 (-899 *4))))) +(((*1 *2 *3 *4) (-12 (-4 *5 (-788)) (-4 *6 (-842)) (-4 *7 (-558)) (-4 *3 (-950 *7 *5 *6)) (-5 *2 (-2 (|:| -3438 (-763)) (|:| -2348 *3) (|:| |radicand| (-634 *3)))) (-5 *1 (-954 *5 *6 *7 *3 *8)) (-5 *4 (-763)) (-4 *8 (-13 (-365) (-10 -8 (-15 -2317 (*3 $)) (-15 -2324 (*3 $)) (-15 -2745 ($ *3)))))))) +(((*1 *2 *1) (-12 (-5 *2 (-972)) (-5 *1 (-900 *3)) (-4 *3 (-1090))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-634 *2)) (-5 *1 (-177 *2)) (-4 *2 (-301)))) ((*1 *2 *3 *2) (-12 (-5 *3 (-634 (-634 *4))) (-5 *2 (-634 *4)) (-4 *4 (-301)) (-5 *1 (-177 *4)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-634 *8)) (-5 *4 (-634 (-2 (|:| -3746 (-679 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-679 *7))))) (-5 *5 (-763)) (-4 *8 (-1219 *7)) (-4 *7 (-1219 *6)) (-4 *6 (-350)) (-5 *2 (-2 (|:| -3746 (-679 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-679 *7)))) (-5 *1 (-507 *6 *7 *8)))) ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-565))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1090)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1035)) (-5 *1 (-299)))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-1035))) (-5 *2 (-1035)) (-5 *1 (-299)))) ((*1 *1 *2) (-12 (-5 *2 (-634 *1)) (-4 *1 (-640 *3)) (-4 *3 (-1195)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-640 *2)) (-4 *2 (-1195)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-640 *2)) (-4 *2 (-1195)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-640 *2)) (-4 *2 (-1195)))) ((*1 *1 *1 *1) (-5 *1 (-1059))) ((*1 *2 *3) (-12 (-5 *3 (-1141 (-1141 *4))) (-5 *2 (-1141 *4)) (-5 *1 (-1138 *4)) (-4 *4 (-1195)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-1231 *2)) (-4 *2 (-1195)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1231 *2)) (-4 *2 (-1195))))) +(((*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-121)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-121))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-236 (-922 *4))) (-4 *4 (-350)) (-5 *2 (-679 *4)) (-5 *1 (-867 *4 *5 *6)) (-14 *5 (-634 (-1161))) (-4 *6 (-117)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-236 (-922 *5))) (-5 *4 (-634 (-922 *5))) (-4 *5 (-350)) (-5 *2 (-679 *5)) (-5 *1 (-867 *5 *6 *7)) (-14 *6 (-634 (-1161))) (-4 *7 (-117)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-236 (-921 *4))) (-4 *4 (-365)) (-5 *2 (-679 *4)) (-5 *1 (-868 *4 *5 *6)) (-14 *5 (-634 (-1161))) (-4 *6 (-117)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-236 (-921 *5))) (-5 *4 (-634 (-921 *5))) (-4 *5 (-365)) (-5 *2 (-679 *5)) (-5 *1 (-868 *5 *6 *7)) (-14 *6 (-634 (-1161))) (-4 *7 (-117))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-634 *2))) (-5 *4 (-634 *5)) (-4 *5 (-43 (-409 (-568)))) (-4 *2 (-1234 *5)) (-5 *1 (-1236 *5 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-113)))) ((*1 *2 *1) (-12 (-4 *1 (-138)) (-5 *2 (-763)))) ((*1 *2 *3 *1 *2) (-12 (-5 *2 (-568)) (-4 *1 (-375 *3)) (-4 *3 (-1195)) (-4 *3 (-1090)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-375 *3)) (-4 *3 (-1195)) (-4 *3 (-1090)) (-5 *2 (-568)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (-4 *1 (-375 *4)) (-4 *4 (-1195)) (-5 *2 (-568)))) ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1129)) (-5 *2 (-568)) (-5 *3 (-142)))) ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1129)) (-5 *2 (-568))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-288 (-835 *3))) (-4 *3 (-13 (-27) (-1181) (-432 *5))) (-4 *5 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-3 (-835 *3) (-2 (|:| |leftHandLimit| (-3 (-835 *3) "failed")) (|:| |rightHandLimit| (-3 (-835 *3) "failed"))) "failed")) (-5 *1 (-627 *5 *3)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-288 *3)) (-5 *5 (-1143)) (-4 *3 (-13 (-27) (-1181) (-432 *6))) (-4 *6 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-835 *3)) (-5 *1 (-627 *6 *3)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-288 (-835 (-953 *5)))) (-4 *5 (-453)) (-5 *2 (-3 (-835 (-409 (-953 *5))) (-2 (|:| |leftHandLimit| (-3 (-835 (-409 (-953 *5))) "failed")) (|:| |rightHandLimit| (-3 (-835 (-409 (-953 *5))) "failed"))) "failed")) (-5 *1 (-628 *5)) (-5 *3 (-409 (-953 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-288 (-409 (-953 *5)))) (-5 *3 (-409 (-953 *5))) (-4 *5 (-453)) (-5 *2 (-3 (-835 *3) (-2 (|:| |leftHandLimit| (-3 (-835 *3) "failed")) (|:| |rightHandLimit| (-3 (-835 *3) "failed"))) "failed")) (-5 *1 (-628 *5)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-288 (-409 (-953 *6)))) (-5 *5 (-1143)) (-5 *3 (-409 (-953 *6))) (-4 *6 (-453)) (-5 *2 (-835 *3)) (-5 *1 (-628 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 (-541))) (-5 *2 (-1161)) (-5 *1 (-541))))) +(((*1 *2 *3) (-12 (-5 *3 (-763)) (-5 *2 (-1249)) (-5 *1 (-381)))) ((*1 *2) (-12 (-5 *2 (-1249)) (-5 *1 (-381))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-561 *2)) (-4 *2 (-550))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 *4)) (-4 *4 (-842)) (-5 *2 (-634 (-656 *4 *5))) (-5 *1 (-618 *4 *5 *6)) (-4 *5 (-13 (-172) (-707 (-409 (-568))))) (-14 *6 (-917))))) +(((*1 *2) (-12 (-5 *2 (-1244 (-634 (-2 (|:| -2850 (-905 *3)) (|:| -4355 (-1108)))))) (-5 *1 (-352 *3 *4)) (-14 *3 (-917)) (-14 *4 (-917)))) ((*1 *2) (-12 (-5 *2 (-1244 (-634 (-2 (|:| -2850 *3) (|:| -4355 (-1108)))))) (-5 *1 (-353 *3 *4)) (-4 *3 (-350)) (-14 *4 (-3 (-1157 *3) *2)))) ((*1 *2) (-12 (-5 *2 (-1244 (-634 (-2 (|:| -2850 *3) (|:| -4355 (-1108)))))) (-5 *1 (-354 *3 *4)) (-4 *3 (-350)) (-14 *4 (-917))))) +(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-121)) (-4 *6 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-4 *3 (-13 (-27) (-1181) (-432 *6) (-10 -8 (-15 -2745 ($ *7))))) (-4 *7 (-840)) (-4 *8 (-13 (-1221 *3 *7) (-365) (-1181) (-10 -8 (-15 -4189 ($ $)) (-15 -3837 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1143)) (|:| |prob| (-1143)))))) (-5 *1 (-424 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1143)) (-4 *9 (-984 *8)) (-14 *10 (-1161))))) +(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-763)) (-5 *5 (-634 *3)) (-4 *3 (-301)) (-4 *6 (-842)) (-4 *7 (-788)) (-5 *2 (-121)) (-5 *1 (-617 *6 *7 *3 *8)) (-4 *8 (-950 *3 *7 *6))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-818)) (-5 *2 (-1249)) (-5 *1 (-817))))) +(((*1 *2 *1) (-12 (-4 *1 (-1083 *2)) (-4 *2 (-1195))))) +(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-439))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1163 (-409 (-568)))) (-5 *2 (-409 (-568))) (-5 *1 (-182))))) +(((*1 *1 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1090)))) ((*1 *2 *1) (-12 (-4 *1 (-1083 *3)) (-4 *3 (-1195)) (-5 *2 (-568))))) +(((*1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-788)) (-4 *4 (-842)) (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-950 *2 *3 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-1090)) (-4 *1 (-1087 *3)))) ((*1 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1090))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-981 *2)) (-4 *2 (-1047)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-944 (-215))) (-5 *1 (-1192)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1195)) (-4 *2 (-1047))))) +(((*1 *2 *3 *3 *3) (-12 (-4 *4 (-1047)) (-5 *2 (-1 (-634 *4) *4)) (-5 *1 (-107 *4)) (-5 *3 (-634 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-1083 *2)) (-4 *2 (-1195))))) +(((*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-365)) (-4 *1 (-37 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-37 *3)) (-4 *3 (-365)) (-5 *2 (-634 *3)))) ((*1 *1 *2) (-12 (-4 *1 (-43 *2)) (-4 *2 (-172)))) ((*1 *1 *2) (-12 (-5 *2 (-1244 *3)) (-4 *3 (-365)) (-14 *6 (-1244 (-679 *3))) (-5 *1 (-49 *3 *4 *5 *6)) (-14 *4 (-917)) (-14 *5 (-634 (-1161))))) ((*1 *1 *2) (-12 (-5 *2 (-1113 (-568) (-607 (-53)))) (-5 *1 (-53)))) ((*1 *2 *3) (-12 (-5 *2 (-57)) (-5 *1 (-56 *3)) (-4 *3 (-1195)))) ((*1 *1 *2) (-12 (-5 *2 (-1244 (-337 (-4287 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4287) (-688)))) (-5 *1 (-66 *3)) (-14 *3 (-1161)))) ((*1 *1 *2) (-12 (-5 *2 (-1244 (-337 (-4287) (-4287 (QUOTE XC)) (-688)))) (-5 *1 (-68 *3)) (-14 *3 (-1161)))) ((*1 *1 *2) (-12 (-5 *2 (-337 (-4287 (QUOTE X)) (-4287) (-688))) (-5 *1 (-69 *3)) (-14 *3 (-1161)))) ((*1 *1 *2) (-12 (-5 *2 (-679 (-337 (-4287) (-4287 (QUOTE X) (QUOTE HESS)) (-688)))) (-5 *1 (-70 *3)) (-14 *3 (-1161)))) ((*1 *1 *2) (-12 (-5 *2 (-337 (-4287) (-4287 (QUOTE XC)) (-688))) (-5 *1 (-71 *3)) (-14 *3 (-1161)))) ((*1 *1 *2) (-12 (-5 *2 (-1244 (-337 (-4287 (QUOTE X)) (-4287 (QUOTE -2926)) (-688)))) (-5 *1 (-76 *3)) (-14 *3 (-1161)))) ((*1 *1 *2) (-12 (-5 *2 (-1244 (-337 (-4287) (-4287 (QUOTE X)) (-688)))) (-5 *1 (-79 *3)) (-14 *3 (-1161)))) ((*1 *1 *2) (-12 (-5 *2 (-1244 (-337 (-4287 (QUOTE X) (QUOTE EPS)) (-4287 (QUOTE -2926)) (-688)))) (-5 *1 (-80 *3 *4 *5)) (-14 *3 (-1161)) (-14 *4 (-1161)) (-14 *5 (-1161)))) ((*1 *1 *2) (-12 (-5 *2 (-1244 (-337 (-4287 (QUOTE EPS)) (-4287 (QUOTE YA) (QUOTE YB)) (-688)))) (-5 *1 (-81 *3 *4 *5)) (-14 *3 (-1161)) (-14 *4 (-1161)) (-14 *5 (-1161)))) ((*1 *1 *2) (-12 (-5 *2 (-337 (-4287) (-4287 (QUOTE X)) (-688))) (-5 *1 (-82 *3)) (-14 *3 (-1161)))) ((*1 *1 *2) (-12 (-5 *2 (-337 (-4287) (-4287 (QUOTE X)) (-688))) (-5 *1 (-83 *3)) (-14 *3 (-1161)))) ((*1 *1 *2) (-12 (-5 *2 (-1244 (-337 (-4287) (-4287 (QUOTE XC)) (-688)))) (-5 *1 (-84 *3)) (-14 *3 (-1161)))) ((*1 *1 *2) (-12 (-5 *2 (-1244 (-337 (-4287) (-4287 (QUOTE X)) (-688)))) (-5 *1 (-85 *3)) (-14 *3 (-1161)))) ((*1 *1 *2) (-12 (-5 *2 (-1244 (-337 (-4287) (-4287 (QUOTE X)) (-688)))) (-5 *1 (-86 *3)) (-14 *3 (-1161)))) ((*1 *1 *2) (-12 (-5 *2 (-1244 (-337 (-4287 (QUOTE X) (QUOTE -2926)) (-4287) (-688)))) (-5 *1 (-87 *3)) (-14 *3 (-1161)))) ((*1 *1 *2) (-12 (-5 *2 (-679 (-337 (-4287 (QUOTE X) (QUOTE -2926)) (-4287) (-688)))) (-5 *1 (-88 *3)) (-14 *3 (-1161)))) ((*1 *1 *2) (-12 (-5 *2 (-679 (-337 (-4287 (QUOTE X)) (-4287) (-688)))) (-5 *1 (-89 *3)) (-14 *3 (-1161)))) ((*1 *1 *2) (-12 (-5 *2 (-1244 (-337 (-4287 (QUOTE X)) (-4287) (-688)))) (-5 *1 (-90 *3)) (-14 *3 (-1161)))) ((*1 *1 *2) (-12 (-5 *2 (-1244 (-337 (-4287 (QUOTE X)) (-4287 (QUOTE -2926)) (-688)))) (-5 *1 (-91 *3)) (-14 *3 (-1161)))) ((*1 *1 *2) (-12 (-5 *2 (-679 (-337 (-4287 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4287) (-688)))) (-5 *1 (-92 *3)) (-14 *3 (-1161)))) ((*1 *1 *2) (-12 (-5 *2 (-337 (-4287 (QUOTE X)) (-4287 (QUOTE -2926)) (-688))) (-5 *1 (-94 *3)) (-14 *3 (-1161)))) ((*1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-96 *3)) (-4 *3 (-1090)) (-4 *3 (-1090)))) ((*1 *2 *1) (-12 (-5 *2 (-1004 2)) (-5 *1 (-112)))) ((*1 *2 *1) (-12 (-5 *2 (-409 (-568))) (-5 *1 (-112)))) ((*1 *1 *2) (-12 (-5 *2 (-634 (-568))) (-4 *1 (-117)))) ((*1 *1 *2) (-12 (-5 *2 (-634 (-141 *3 *4 *5))) (-5 *1 (-141 *3 *4 *5)) (-14 *3 (-568)) (-14 *4 (-763)) (-4 *5 (-172)))) ((*1 *1 *2) (-12 (-5 *2 (-634 *5)) (-4 *5 (-172)) (-5 *1 (-141 *3 *4 *5)) (-14 *3 (-568)) (-14 *4 (-763)))) ((*1 *1 *2) (-12 (-5 *2 (-1127 *4 *5)) (-14 *4 (-763)) (-4 *5 (-172)) (-5 *1 (-141 *3 *4 *5)) (-14 *3 (-568)))) ((*1 *1 *2) (-12 (-5 *2 (-232 *4 *5)) (-14 *4 (-763)) (-4 *5 (-172)) (-5 *1 (-141 *3 *4 *5)) (-14 *3 (-568)))) ((*1 *2 *3) (-12 (-5 *3 (-1244 (-679 *4))) (-4 *4 (-172)) (-5 *2 (-1244 (-679 (-409 (-953 *4))))) (-5 *1 (-181 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-13 (-842) (-10 -8 (-15 -2779 ((-1143) $ (-1161))) (-15 -4125 ((-1249) $)) (-15 -1352 ((-1249) $))))) (-5 *1 (-205 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-1004 10)) (-5 *1 (-208)))) ((*1 *2 *1) (-12 (-5 *2 (-409 (-568))) (-5 *1 (-208)))) ((*1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-212 *3)) (-4 *3 (-1090)) (-4 *3 (-1090)))) ((*1 *2 *1) (-12 (-5 *2 (-1141 *3)) (-5 *1 (-233 *3)) (-4 *3 (-1047)))) ((*1 *1 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-1047)) (-5 *1 (-233 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-1 *3 (-917))) (-5 *1 (-233 *3)) (-4 *3 (-1047)))) ((*1 *1 *2) (-12 (-5 *2 (-1 *3 (-917))) (-4 *3 (-1047)) (-5 *1 (-233 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-634 *3)) (-5 *1 (-240 *3)) (-4 *3 (-842)))) ((*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-842)) (-5 *1 (-240 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-1082 (-310 *4))) (-4 *4 (-13 (-842) (-558) (-609 (-381)))) (-5 *2 (-1082 (-381))) (-5 *1 (-251 *4)))) ((*1 *1 *2) (-12 (-4 *1 (-262 *2)) (-4 *2 (-842)))) ((*1 *1 *2) (-12 (-5 *2 (-634 (-568))) (-5 *1 (-271)))) ((*1 *2 *1) (-12 (-4 *2 (-1219 *3)) (-5 *1 (-284 *3 *2 *4 *5 *6 *7)) (-4 *3 (-172)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-1228 *4 *5 *6)) (-4 *4 (-13 (-27) (-1181) (-432 *3))) (-14 *5 (-1161)) (-14 *6 *4) (-4 *3 (-13 (-842) (-1037 (-568)) (-630 (-568)) (-453))) (-5 *1 (-307 *3 *4 *5 *6)))) ((*1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-328)))) ((*1 *2 *1) (-12 (-5 *2 (-310 *5)) (-5 *1 (-337 *3 *4 *5)) (-14 *3 (-634 (-1161))) (-14 *4 (-634 (-1161))) (-4 *5 (-389)))) ((*1 *2 *3) (-12 (-4 *4 (-350)) (-4 *2 (-327 *4)) (-5 *1 (-348 *3 *4 *2)) (-4 *3 (-327 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-350)) (-4 *2 (-327 *4)) (-5 *1 (-348 *2 *4 *3)) (-4 *3 (-327 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-842)) (-4 *4 (-172)) (-5 *2 (-1266 *3 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-842)) (-4 *4 (-172)) (-5 *2 (-1257 *3 *4)))) ((*1 *1 *2) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-842)) (-4 *3 (-172)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1165)) (|:| -2845 (-634 (-328))))) (-4 *1 (-385)))) ((*1 *1 *2) (-12 (-5 *2 (-328)) (-4 *1 (-385)))) ((*1 *1 *2) (-12 (-5 *2 (-634 (-328))) (-4 *1 (-385)))) ((*1 *1 *2) (-12 (-5 *2 (-679 (-688))) (-4 *1 (-385)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1165)) (|:| -2845 (-634 (-328))))) (-4 *1 (-386)))) ((*1 *1 *2) (-12 (-5 *2 (-328)) (-4 *1 (-386)))) ((*1 *1 *2) (-12 (-5 *2 (-634 (-328))) (-4 *1 (-386)))) ((*1 *2 *1) (-12 (-4 *1 (-391)) (-5 *2 (-1143)))) ((*1 *1 *2) (-12 (-5 *2 (-1143)) (-4 *1 (-391)))) ((*1 *2 *3) (-12 (-5 *2 (-396)) (-5 *1 (-395 *3)) (-4 *3 (-1090)))) ((*1 *1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-396)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1165)) (|:| -2845 (-634 (-328))))) (-4 *1 (-398)))) ((*1 *1 *2) (-12 (-5 *2 (-328)) (-4 *1 (-398)))) ((*1 *1 *2) (-12 (-5 *2 (-634 (-328))) (-4 *1 (-398)))) ((*1 *1 *2) (-12 (-5 *2 (-288 (-310 (-169 (-381))))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1161)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -3611 "void"))) (-14 *5 (-634 (-1161))) (-14 *6 (-1165)))) ((*1 *1 *2) (-12 (-5 *2 (-288 (-310 (-381)))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1161)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -3611 "void"))) (-14 *5 (-634 (-1161))) (-14 *6 (-1165)))) ((*1 *1 *2) (-12 (-5 *2 (-288 (-310 (-568)))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1161)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -3611 "void"))) (-14 *5 (-634 (-1161))) (-14 *6 (-1165)))) ((*1 *1 *2) (-12 (-5 *2 (-310 (-169 (-381)))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1161)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -3611 "void"))) (-14 *5 (-634 (-1161))) (-14 *6 (-1165)))) ((*1 *1 *2) (-12 (-5 *2 (-310 (-381))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1161)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -3611 "void"))) (-14 *5 (-634 (-1161))) (-14 *6 (-1165)))) ((*1 *1 *2) (-12 (-5 *2 (-310 (-568))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1161)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -3611 "void"))) (-14 *5 (-634 (-1161))) (-14 *6 (-1165)))) ((*1 *1 *2) (-12 (-5 *2 (-288 (-310 (-683)))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1161)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -3611 "void"))) (-14 *5 (-634 (-1161))) (-14 *6 (-1165)))) ((*1 *1 *2) (-12 (-5 *2 (-288 (-310 (-688)))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1161)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -3611 "void"))) (-14 *5 (-634 (-1161))) (-14 *6 (-1165)))) ((*1 *1 *2) (-12 (-5 *2 (-288 (-310 (-690)))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1161)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -3611 "void"))) (-14 *5 (-634 (-1161))) (-14 *6 (-1165)))) ((*1 *1 *2) (-12 (-5 *2 (-310 (-683))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1161)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -3611 "void"))) (-14 *5 (-634 (-1161))) (-14 *6 (-1165)))) ((*1 *1 *2) (-12 (-5 *2 (-310 (-688))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1161)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -3611 "void"))) (-14 *5 (-634 (-1161))) (-14 *6 (-1165)))) ((*1 *1 *2) (-12 (-5 *2 (-310 (-690))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1161)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -3611 "void"))) (-14 *5 (-634 (-1161))) (-14 *6 (-1165)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1165)) (|:| -2845 (-634 (-328))))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1161)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -3611 "void"))) (-14 *5 (-634 (-1161))) (-14 *6 (-1165)))) ((*1 *1 *2) (-12 (-5 *2 (-634 (-328))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1161)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -3611 "void"))) (-14 *5 (-634 (-1161))) (-14 *6 (-1165)))) ((*1 *1 *2) (-12 (-5 *2 (-328)) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1161)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -3611 "void"))) (-14 *5 (-634 (-1161))) (-14 *6 (-1165)))) ((*1 *1 *2) (-12 (-5 *2 (-329 *4)) (-4 *4 (-13 (-842) (-21))) (-5 *1 (-429 *3 *4)) (-4 *3 (-13 (-172) (-43 (-409 (-568))))))) ((*1 *1 *2) (-12 (-5 *1 (-429 *2 *3)) (-4 *2 (-13 (-172) (-43 (-409 (-568))))) (-4 *3 (-13 (-842) (-21))))) ((*1 *1 *2) (-12 (-5 *2 (-409 (-953 (-409 *3)))) (-4 *3 (-558)) (-4 *3 (-842)) (-4 *1 (-432 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-953 (-409 *3))) (-4 *3 (-558)) (-4 *3 (-842)) (-4 *1 (-432 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-409 *3)) (-4 *3 (-558)) (-4 *3 (-842)) (-4 *1 (-432 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1113 *3 (-607 *1))) (-4 *3 (-1047)) (-4 *3 (-842)) (-4 *1 (-432 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-436)))) ((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-436)))) ((*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-436)))) ((*1 *1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-436)))) ((*1 *1 *2) (-12 (-5 *2 (-436)) (-5 *1 (-439)))) ((*1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-439)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1165)) (|:| -2845 (-634 (-328))))) (-4 *1 (-441)))) ((*1 *1 *2) (-12 (-5 *2 (-328)) (-4 *1 (-441)))) ((*1 *1 *2) (-12 (-5 *2 (-634 (-328))) (-4 *1 (-441)))) ((*1 *1 *2) (-12 (-5 *2 (-1244 (-688))) (-4 *1 (-441)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1165)) (|:| -2845 (-634 (-328))))) (-4 *1 (-442)))) ((*1 *1 *2) (-12 (-5 *2 (-328)) (-4 *1 (-442)))) ((*1 *1 *2) (-12 (-5 *2 (-634 (-328))) (-4 *1 (-442)))) ((*1 *1 *2) (-12 (-5 *2 (-1244 (-409 (-953 *3)))) (-4 *3 (-172)) (-14 *6 (-1244 (-679 *3))) (-5 *1 (-454 *3 *4 *5 *6)) (-14 *4 (-917)) (-14 *5 (-634 (-1161))))) ((*1 *1 *2) (-12 (-5 *2 (-634 (-634 (-944 (-215))))) (-5 *1 (-473)))) ((*1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-473)))) ((*1 *1 *2) (-12 (-5 *2 (-1228 *3 *4 *5)) (-4 *3 (-1047)) (-14 *4 (-1161)) (-14 *5 *3) (-5 *1 (-479 *3 *4 *5)))) ((*1 *1 *2) (-12 (-5 *2 (-1240 *4)) (-14 *4 (-1161)) (-5 *1 (-479 *3 *4 *5)) (-4 *3 (-1047)) (-14 *5 *3))) ((*1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-494 *3)) (-4 *3 (-1090)) (-4 *3 (-842)))) ((*1 *2 *1) (-12 (-5 *2 (-1004 16)) (-5 *1 (-497)))) ((*1 *2 *1) (-12 (-5 *2 (-409 (-568))) (-5 *1 (-497)))) ((*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1143)) (-5 *1 (-500)))) ((*1 *1 *2) (-12 (-5 *2 (-1113 (-568) (-607 (-504)))) (-5 *1 (-504)))) ((*1 *1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-511)))) ((*1 *1 *2) (-12 (-5 *2 (-634 *6)) (-4 *6 (-950 *3 *4 *5)) (-4 *3 (-365)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *1 (-514 *3 *4 *5 *6)))) ((*1 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-602 *3 *2)) (-4 *2 (-736 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-608 *2)) (-4 *2 (-1195)))) ((*1 *1 *2) (-12 (-4 *1 (-612 *2)) (-4 *2 (-1047)))) ((*1 *2 *1) (-12 (-5 *2 (-1262 *3 *4)) (-5 *1 (-618 *3 *4 *5)) (-4 *3 (-842)) (-4 *4 (-13 (-172) (-707 (-409 (-568))))) (-14 *5 (-917)))) ((*1 *2 *1) (-12 (-5 *2 (-1257 *3 *4)) (-5 *1 (-618 *3 *4 *5)) (-4 *3 (-842)) (-4 *4 (-13 (-172) (-707 (-409 (-568))))) (-14 *5 (-917)))) ((*1 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-626 *3 *2)) (-4 *2 (-736 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-641 *3)) (-4 *3 (-365)) (-5 *2 (-1141 (-2 (|:| |k| (-568)) (|:| |c| *3)))))) ((*1 *1 *2) (-12 (-5 *2 (-1141 (-2 (|:| |k| (-568)) (|:| |c| *3)))) (-4 *3 (-365)) (-4 *1 (-641 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-667 *3)) (-5 *1 (-663 *3)) (-4 *3 (-842)))) ((*1 *2 *1) (-12 (-5 *2 (-814 *3)) (-5 *1 (-663 *3)) (-4 *3 (-842)))) ((*1 *2 *1) (-12 (-5 *2 (-958 (-958 (-958 *3)))) (-5 *1 (-666 *3)) (-4 *3 (-1090)))) ((*1 *1 *2) (-12 (-5 *2 (-958 (-958 (-958 *3)))) (-4 *3 (-1090)) (-5 *1 (-666 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-814 *3)) (-5 *1 (-667 *3)) (-4 *3 (-842)))) ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-671 *3)) (-4 *3 (-1090)))) ((*1 *1 *2) (-12 (-4 *3 (-1047)) (-4 *1 (-677 *3 *4 *2)) (-4 *4 (-375 *3)) (-4 *2 (-375 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-169 (-381))) (-5 *1 (-683)))) ((*1 *1 *2) (-12 (-5 *2 (-169 (-690))) (-5 *1 (-683)))) ((*1 *1 *2) (-12 (-5 *2 (-169 (-688))) (-5 *1 (-683)))) ((*1 *1 *2) (-12 (-5 *2 (-169 (-568))) (-5 *1 (-683)))) ((*1 *1 *2) (-12 (-5 *2 (-169 (-381))) (-5 *1 (-683)))) ((*1 *1 *2) (-12 (-5 *2 (-690)) (-5 *1 (-688)))) ((*1 *2 *1) (-12 (-5 *2 (-381)) (-5 *1 (-688)))) ((*1 *2 *3) (-12 (-5 *3 (-310 (-568))) (-5 *2 (-310 (-690))) (-5 *1 (-690)))) ((*1 *1 *2) (-12 (-5 *1 (-692 *2)) (-4 *2 (-1090)))) ((*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1143)) (-5 *1 (-700)))) ((*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-701 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) (-12 (-4 *3 (-1047)) (-5 *1 (-702 *3 *2)) (-4 *2 (-1219 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-2 (|:| -4355 *3) (|:| -3438 *4))) (-5 *1 (-703 *3 *4 *5)) (-4 *3 (-842)) (-4 *4 (-1090)) (-14 *5 (-1 (-121) *2 *2)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4355 *3) (|:| -3438 *4))) (-4 *3 (-842)) (-4 *4 (-1090)) (-5 *1 (-703 *3 *4 *5)) (-14 *5 (-1 (-121) *2 *2)))) ((*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-705 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-634 (-2 (|:| -2348 *3) (|:| -2354 *4)))) (-4 *3 (-1047)) (-4 *4 (-716)) (-5 *1 (-725 *3 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-409 (-734 *3 *4))) (-14 *3 (-1161)) (-4 *4 (-13 (-1047) (-842) (-558))) (-5 *1 (-733 *3 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-953 *4)) (-4 *4 (-1047)) (-5 *1 (-734 *3 *4)) (-14 *3 (-1161)))) ((*1 *1 *2) (-12 (-5 *2 (-1240 *3)) (-14 *3 (-1161)) (-5 *1 (-734 *3 *4)) (-4 *4 (-1047)))) ((*1 *1 *2) (-12 (-5 *1 (-734 *3 *2)) (-14 *3 (-1161)) (-4 *2 (-1047)))) ((*1 *1 *2) (-12 (-5 *2 (-568)) (-4 *1 (-755)))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (|:| |mdnia| (-2 (|:| |fn| (-310 (-215))) (|:| -1338 (-634 (-1084 (-835 (-215))))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))))) (-5 *1 (-761)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-310 (-215))) (|:| -1338 (-634 (-1084 (-835 (-215))))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (-5 *1 (-761)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (-5 *1 (-761)))) ((*1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-761)))) ((*1 *2 *3) (-12 (-5 *2 (-766)) (-5 *1 (-765 *3)) (-4 *3 (-1195)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (-5 *1 (-803)))) ((*1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-803)))) ((*1 *2 *1) (-12 (-4 *2 (-895 *3)) (-5 *1 (-812 *3 *2 *4)) (-4 *3 (-1090)) (-14 *4 *3))) ((*1 *1 *2) (-12 (-4 *3 (-1090)) (-14 *4 *3) (-5 *1 (-812 *3 *2 *4)) (-4 *2 (-895 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-819)))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-310 (-215))) (|:| -4434 (-634 (-215))) (|:| |lb| (-634 (-835 (-215)))) (|:| |cf| (-634 (-310 (-215)))) (|:| |ub| (-634 (-835 (-215)))))) (|:| |lsa| (-2 (|:| |lfn| (-634 (-310 (-215)))) (|:| -4434 (-634 (-215))))))) (-5 *1 (-833)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-634 (-310 (-215)))) (|:| -4434 (-634 (-215))))) (-5 *1 (-833)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-310 (-215))) (|:| -4434 (-634 (-215))) (|:| |lb| (-634 (-835 (-215)))) (|:| |cf| (-634 (-310 (-215)))) (|:| |ub| (-634 (-835 (-215)))))) (-5 *1 (-833)))) ((*1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-833)))) ((*1 *1 *2) (-12 (-5 *2 (-1240 *3)) (-14 *3 (-1161)) (-5 *1 (-847 *3 *4 *5 *6)) (-4 *4 (-1047)) (-14 *5 (-101 *4)) (-14 *6 (-1 *4 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-849)))) ((*1 *1 *2) (-12 (-5 *2 (-953 *3)) (-4 *3 (-1047)) (-5 *1 (-853 *3 *4 *5 *6)) (-14 *4 (-634 (-1161))) (-14 *5 (-634 (-763))) (-14 *6 (-763)))) ((*1 *2 *1) (-12 (-5 *2 (-953 *3)) (-5 *1 (-853 *3 *4 *5 *6)) (-4 *3 (-1047)) (-14 *4 (-634 (-1161))) (-14 *5 (-634 (-763))) (-14 *6 (-763)))) ((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-869)))) ((*1 *2 *3) (-12 (-5 *3 (-953 (-53))) (-5 *2 (-310 (-568))) (-5 *1 (-870)))) ((*1 *2 *3) (-12 (-5 *3 (-409 (-953 (-53)))) (-5 *2 (-310 (-568))) (-5 *1 (-870)))) ((*1 *1 *2) (-12 (-5 *1 (-888 *2)) (-4 *2 (-842)))) ((*1 *2 *1) (-12 (-5 *2 (-814 *3)) (-5 *1 (-888 *3)) (-4 *3 (-842)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-634 (-310 (-215)))) (|:| |constraints| (-634 (-2 (|:| |start| (-215)) (|:| |finish| (-215)) (|:| |grid| (-763)) (|:| |boundaryType| (-568)) (|:| |dStart| (-679 (-215))) (|:| |dFinish| (-679 (-215)))))) (|:| |f| (-634 (-634 (-310 (-215))))) (|:| |st| (-1143)) (|:| |tol| (-215)))) (-5 *1 (-893)))) ((*1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-893)))) ((*1 *2 *1) (-12 (-5 *2 (-1182 *3)) (-5 *1 (-896 *3)) (-4 *3 (-1090)))) ((*1 *1 *2) (-12 (-5 *2 (-634 (-900 *3))) (-4 *3 (-1090)) (-5 *1 (-899 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-634 (-900 *3))) (-5 *1 (-899 *3)) (-4 *3 (-1090)))) ((*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-1090)) (-5 *1 (-900 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-634 (-634 *3))) (-4 *3 (-1090)) (-5 *1 (-900 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-409 (-420 *3))) (-4 *3 (-301)) (-5 *1 (-910 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-409 *3)) (-5 *1 (-910 *3)) (-4 *3 (-301)))) ((*1 *2 *3) (-12 (-5 *3 (-489)) (-5 *2 (-310 *4)) (-5 *1 (-915 *4)) (-4 *4 (-13 (-842) (-558))))) ((*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-365)) (-4 *1 (-971 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-971 *3)) (-4 *3 (-365)) (-5 *2 (-634 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-634 (-568))) (-5 *1 (-972)))) ((*1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-1000 *3)) (-4 *3 (-1090)) (-4 *3 (-1090)))) ((*1 *2 *1) (-12 (-5 *2 (-409 (-568))) (-5 *1 (-1004 *3)) (-14 *3 (-568)))) ((*1 *2 *3) (-12 (-5 *2 (-1249)) (-5 *1 (-1033 *3)) (-4 *3 (-1195)))) ((*1 *2 *3) (-12 (-5 *3 (-305)) (-5 *1 (-1033 *2)) (-4 *2 (-1195)))) ((*1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *1 (-1034 *3 *4 *5 *2 *6)) (-4 *2 (-950 *3 *4 *5)) (-14 *6 (-634 *2)))) ((*1 *1 *2) (-12 (-4 *1 (-1037 *2)) (-4 *2 (-1195)))) ((*1 *2 *3) (-12 (-5 *2 (-409 (-953 *3))) (-5 *1 (-1042 *3)) (-4 *3 (-558)))) ((*1 *1 *2) (-12 (-5 *2 (-568)) (-4 *1 (-1047)))) ((*1 *2 *1) (-12 (-5 *2 (-679 *5)) (-5 *1 (-1051 *3 *4 *5)) (-14 *3 (-763)) (-14 *4 (-763)) (-4 *5 (-1047)))) ((*1 *1 *2) (-12 (-4 *3 (-1047)) (-4 *4 (-842)) (-5 *1 (-1114 *3 *4 *2)) (-4 *2 (-950 *3 (-534 *4) *4)))) ((*1 *1 *2) (-12 (-4 *3 (-1047)) (-4 *2 (-842)) (-5 *1 (-1114 *3 *2 *4)) (-4 *4 (-950 *3 (-534 *2) *2)))) ((*1 *2 *1) (-12 (-4 *1 (-1122 *3)) (-4 *3 (-1047)) (-5 *2 (-850)))) ((*1 *2 *1) (-12 (-5 *2 (-679 *4)) (-5 *1 (-1127 *3 *4)) (-14 *3 (-763)) (-4 *4 (-1047)))) ((*1 *1 *2) (-12 (-5 *2 (-147)) (-4 *1 (-1129)))) ((*1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-1132 *3)) (-4 *3 (-1090)) (-4 *3 (-1090)))) ((*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-1195)) (-5 *1 (-1141 *3)))) ((*1 *2 *3) (-12 (-5 *2 (-1141 *3)) (-5 *1 (-1145 *3)) (-4 *3 (-1047)))) ((*1 *1 *2) (-12 (-5 *2 (-1240 *4)) (-14 *4 (-1161)) (-5 *1 (-1151 *3 *4 *5)) (-4 *3 (-1047)) (-14 *5 *3))) ((*1 *1 *2) (-12 (-5 *2 (-1240 *4)) (-14 *4 (-1161)) (-5 *1 (-1158 *3 *4 *5)) (-4 *3 (-1047)) (-14 *5 *3))) ((*1 *1 *2) (-12 (-5 *2 (-1240 *4)) (-14 *4 (-1161)) (-5 *1 (-1159 *3 *4 *5)) (-4 *3 (-1047)) (-14 *5 *3))) ((*1 *1 *2) (-12 (-5 *2 (-1216 *4 *3)) (-4 *3 (-1047)) (-14 *4 (-1161)) (-14 *5 *3) (-5 *1 (-1159 *3 *4 *5)))) ((*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-1160)))) ((*1 *1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-1161)))) ((*1 *2 *1) (-12 (-5 *2 (-1169 (-1161) (-439))) (-5 *1 (-1165)))) ((*1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-1168 *3)) (-4 *3 (-1090)))) ((*1 *2 *3) (-12 (-5 *2 (-1176)) (-5 *1 (-1175 *3)) (-4 *3 (-1090)))) ((*1 *1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1176)))) ((*1 *1 *2) (-12 (-5 *2 (-953 *3)) (-4 *3 (-1047)) (-5 *1 (-1190 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-1190 *3)) (-4 *3 (-1047)))) ((*1 *1 *2) (-12 (-5 *2 (-958 *3)) (-4 *3 (-1195)) (-5 *1 (-1193 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1240 (QUOTE |x|))) (-5 *1 (-1201 *3)) (-4 *3 (-1047)))) ((*1 *1 *2) (-12 (-5 *2 (-1216 (QUOTE |x|) *3)) (-4 *3 (-1047)) (-5 *1 (-1201 *3)))) ((*1 *1 *2) (-12 (-4 *3 (-1047)) (-4 *1 (-1205 *3 *2)) (-4 *2 (-1234 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1240 *4)) (-14 *4 (-1161)) (-5 *1 (-1207 *3 *4 *5)) (-4 *3 (-1047)) (-14 *5 *3))) ((*1 *1 *2) (-12 (-5 *2 (-1084 *3)) (-4 *3 (-1195)) (-5 *1 (-1210 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1240 *3)) (-14 *3 (-1161)) (-5 *1 (-1216 *3 *4)) (-4 *4 (-1047)))) ((*1 *1 *2) (-12 (-4 *3 (-1047)) (-4 *1 (-1226 *3 *2)) (-4 *2 (-1203 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1240 *4)) (-14 *4 (-1161)) (-5 *1 (-1228 *3 *4 *5)) (-4 *3 (-1047)) (-14 *5 *3))) ((*1 *1 *2) (-12 (-5 *2 (-1240 *4)) (-14 *4 (-1161)) (-5 *1 (-1235 *3 *4 *5)) (-4 *3 (-1047)) (-14 *5 *3))) ((*1 *1 *2) (-12 (-5 *2 (-1216 *4 *3)) (-4 *3 (-1047)) (-14 *4 (-1161)) (-14 *5 *3) (-5 *1 (-1235 *3 *4 *5)))) ((*1 *1 *2) (-12 (-5 *2 (-1240 *4)) (-14 *4 (-1161)) (-5 *1 (-1239 *3 *4)) (-4 *3 (-1047)))) ((*1 *1 *2) (-12 (-5 *2 (-1216 *4 *3)) (-4 *3 (-1047)) (-14 *4 (-1161)) (-5 *1 (-1239 *3 *4)))) ((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-1240 *3)) (-14 *3 *2))) ((*1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-1245)))) ((*1 *2 *3) (-12 (-5 *3 (-473)) (-5 *2 (-1245)) (-5 *1 (-1248)))) ((*1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-1249)))) ((*1 *1 *2) (-12 (-4 *3 (-1047)) (-4 *4 (-842)) (-4 *5 (-788)) (-14 *6 (-634 *4)) (-5 *1 (-1254 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-950 *3 *5 *4)) (-14 *7 (-634 (-763))) (-14 *8 (-763)))) ((*1 *2 *1) (-12 (-4 *2 (-950 *3 *5 *4)) (-5 *1 (-1254 *3 *4 *5 *2 *6 *7 *8)) (-4 *3 (-1047)) (-4 *4 (-842)) (-4 *5 (-788)) (-14 *6 (-634 *4)) (-14 *7 (-634 (-763))) (-14 *8 (-763)))) ((*1 *1 *2) (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1047)))) ((*1 *1 *2) (-12 (-4 *1 (-1259 *2 *3)) (-4 *2 (-842)) (-4 *3 (-1047)))) ((*1 *2 *1) (-12 (-5 *2 (-1266 *3 *4)) (-5 *1 (-1262 *3 *4)) (-4 *3 (-842)) (-4 *4 (-172)))) ((*1 *2 *1) (-12 (-5 *2 (-1257 *3 *4)) (-5 *1 (-1262 *3 *4)) (-4 *3 (-842)) (-4 *4 (-172)))) ((*1 *1 *2) (-12 (-5 *2 (-656 *3 *4)) (-4 *3 (-842)) (-4 *4 (-172)) (-5 *1 (-1262 *3 *4)))) ((*1 *1 *2) (-12 (-5 *1 (-1265 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-838))))) +(((*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1157 *4)) (-5 *1 (-358 *4)) (-4 *4 (-350))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 *4)) (-4 *4 (-1090)) (-5 *2 (-1249)) (-5 *1 (-1196 *4)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-634 *4)) (-4 *4 (-1090)) (-5 *2 (-1249)) (-5 *1 (-1196 *4))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-586 *2)) (-4 *2 (-550))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-1149 3 (-215))) (-5 *4 (-1143)) (-5 *2 (-1249)) (-5 *1 (-306))))) +(((*1 *2 *1) (-12 (-4 *1 (-235 *3)) (-4 *3 (-1090)) (-5 *2 (-634 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1189 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1061 *3 *4 *5)) (-5 *2 (-634 *5))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-5 *2 (-1 *6 *5)) (-5 *1 (-673 *4 *5 *6))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-568)) (-5 *1 (-685 *2)) (-4 *2 (-1219 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-634 (-2 (|:| |val| (-634 *6)) (|:| -3001 *7)))) (-4 *6 (-1061 *3 *4 *5)) (-4 *7 (-1066 *3 *4 *5 *6)) (-4 *3 (-453)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *1 (-989 *3 *4 *5 *6 *7)))) ((*1 *2 *2) (-12 (-5 *2 (-634 (-2 (|:| |val| (-634 *6)) (|:| -3001 *7)))) (-4 *6 (-1061 *3 *4 *5)) (-4 *7 (-1066 *3 *4 *5 *6)) (-4 *3 (-453)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *1 (-1097 *3 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-121)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-950 *3 *4 *5)))) ((*1 *2 *1) (-12 (-4 *1 (-712)) (-5 *2 (-121)))) ((*1 *2 *1) (-12 (-4 *1 (-716)) (-5 *2 (-121))))) +(((*1 *1 *1) (-12 (-4 *1 (-1061 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-788)) (-4 *4 (-842))))) +(((*1 *2 *1) (-12 (-5 *2 (-634 *5)) (-5 *1 (-141 *3 *4 *5)) (-14 *3 (-568)) (-14 *4 (-763)) (-4 *5 (-172))))) +(((*1 *2 *3) (-12 (|has| *2 (-6 (-4521 "*"))) (-4 *5 (-375 *2)) (-4 *6 (-375 *2)) (-4 *2 (-1047)) (-5 *1 (-108 *2 *3 *4 *5 *6)) (-4 *3 (-1219 *2)) (-4 *4 (-677 *2 *5 *6))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002)))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-679 *8)) (-4 *8 (-950 *5 *7 *6)) (-4 *5 (-13 (-301) (-150))) (-4 *6 (-13 (-842) (-609 (-1161)))) (-4 *7 (-788)) (-5 *2 (-634 (-2 (|:| -3700 (-763)) (|:| |eqns| (-634 (-2 (|:| |det| *8) (|:| |rows| (-634 (-568))) (|:| |cols| (-634 (-568)))))) (|:| |fgb| (-634 *8))))) (-5 *1 (-924 *5 *6 *7 *8)) (-5 *4 (-763))))) +(((*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1161)) (-4 *5 (-609 (-887 (-568)))) (-4 *5 (-881 (-568))) (-4 *5 (-13 (-842) (-1037 (-568)) (-453) (-630 (-568)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-571 *5 *3)) (-4 *3 (-620)) (-4 *3 (-13 (-27) (-1181) (-432 *5)))))) +(((*1 *2 *1) (-12 (-5 *2 (-817)) (-5 *1 (-816))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (-5 *2 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))) (-5 *1 (-798))))) +(((*1 *2 *1) (-12 (-5 *2 (-1157 (-409 (-953 *3)))) (-5 *1 (-454 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-634 (-1161))) (-14 *6 (-1244 (-679 *3)))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-634 *3)) (-4 *3 (-950 *5 *7 (-852 *6))) (-4 *7 (-230 (-1697 *6) (-763))) (-4 *5 (-365)) (-14 *6 (-634 (-1161))) (-5 *2 (-634 *8)) (-5 *1 (-963 *5 *6 *3 *7 *8)) (-4 *8 (-971 *5))))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-13 (-301) (-150))) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *7 (-950 *4 *5 *6)) (-5 *2 (-634 (-634 *7))) (-5 *1 (-449 *4 *5 *6 *7)) (-5 *3 (-634 *7)))) ((*1 *2 *3 *3 *4) (-12 (-5 *4 (-121)) (-4 *5 (-13 (-301) (-150))) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *8 (-950 *5 *6 *7)) (-5 *2 (-634 (-634 *8))) (-5 *1 (-449 *5 *6 *7 *8)) (-5 *3 (-634 *8)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-301) (-150))) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *7 (-950 *4 *5 *6)) (-5 *2 (-634 (-634 *7))) (-5 *1 (-449 *4 *5 *6 *7)) (-5 *3 (-634 *7)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-121)) (-4 *5 (-13 (-301) (-150))) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *8 (-950 *5 *6 *7)) (-5 *2 (-634 (-634 *8))) (-5 *1 (-449 *5 *6 *7 *8)) (-5 *3 (-634 *8))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-310 (-568))) (|:| -1478 (-310 (-381))) (|:| CF (-310 (-169 (-381)))) (|:| |switch| (-1160)))) (-5 *1 (-1160))))) +(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-141 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-763)) (-4 *5 (-172)))) ((*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-141 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-763)) (-4 *5 (-172)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-514 (-409 (-568)) (-232 *5 (-763)) (-852 *4) (-242 *4 (-409 (-568))))) (-5 *3 (-634 (-852 *4))) (-14 *4 (-634 (-1161))) (-14 *5 (-763)) (-5 *1 (-515 *4 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-634 *1)) (-4 *1 (-453)))) ((*1 *1 *1 *1) (-4 *1 (-453))) ((*1 *2 *3) (-12 (-5 *3 (-634 *2)) (-5 *1 (-496 *2)) (-4 *2 (-1219 (-568))))) ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-568)) (-5 *1 (-685 *2)) (-4 *2 (-1219 *3)))) ((*1 *1 *1 *1) (-5 *1 (-763))) ((*1 *2 *2 *2) (-12 (-4 *3 (-788)) (-4 *4 (-842)) (-4 *5 (-301)) (-5 *1 (-912 *3 *4 *5 *2)) (-4 *2 (-950 *5 *3 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-634 *2)) (-4 *2 (-950 *6 *4 *5)) (-5 *1 (-912 *4 *5 *6 *2)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-301)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1157 *6)) (-4 *6 (-950 *5 *3 *4)) (-4 *3 (-788)) (-4 *4 (-842)) (-4 *5 (-301)) (-5 *1 (-912 *3 *4 *5 *6)))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-1157 *7))) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-301)) (-5 *2 (-1157 *7)) (-5 *1 (-912 *4 *5 *6 *7)) (-4 *7 (-950 *6 *4 *5)))) ((*1 *1 *1 *1) (-5 *1 (-917))) ((*1 *2 *2 *2) (-12 (-4 *3 (-453)) (-4 *3 (-558)) (-5 *1 (-970 *3 *2)) (-4 *2 (-1219 *3)))) ((*1 *2 *2 *1) (-12 (-4 *1 (-1061 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-788)) (-4 *4 (-842)) (-4 *2 (-453))))) +(((*1 *1 *1) (-12 (-5 *1 (-910 *2)) (-4 *2 (-301))))) +(((*1 *2 *3) (-12 (-5 *3 (-568)) (|has| *1 (-6 -4510)) (-4 *1 (-406)) (-5 *2 (-917))))) +(((*1 *2 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-381)) (-5 *1 (-99)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-381)) (-5 *1 (-99))))) +(((*1 *2 *3 *3 *1) (-12 (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *3 (-1061 *4 *5 *6)) (-5 *2 (-3 *3 (-634 *1))) (-4 *1 (-1066 *4 *5 *6 *3))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-453))) (-5 *1 (-1187 *3 *2)) (-4 *2 (-13 (-432 *3) (-1181)))))) +(((*1 *2 *2) (-12 (-5 *2 (-634 (-953 *3))) (-4 *3 (-453)) (-5 *1 (-362 *3 *4)) (-14 *4 (-634 (-1161))))) ((*1 *2 *2) (-12 (-5 *2 (-634 *6)) (-4 *6 (-950 *3 *4 *5)) (-4 *3 (-453)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *1 (-451 *3 *4 *5 *6)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-634 *7)) (-5 *3 (-1143)) (-4 *7 (-950 *4 *5 *6)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *1 (-451 *4 *5 *6 *7)))) ((*1 *2 *2 *3 *3) (-12 (-5 *2 (-634 *7)) (-5 *3 (-1143)) (-4 *7 (-950 *4 *5 *6)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *1 (-451 *4 *5 *6 *7)))) ((*1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-788)) (-4 *4 (-842)) (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-950 *2 *3 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-634 *7)) (-4 *7 (-950 *3 *5 *6)) (-4 *3 (-365)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *1 (-560 *3 *4 *5 *6 *7)) (-14 *4 (-634 (-1161))))) ((*1 *2 *2) (-12 (-5 *2 (-634 (-775 *3 (-852 *4)))) (-4 *3 (-453)) (-14 *4 (-634 (-1161))) (-5 *1 (-619 *3 *4))))) +(((*1 *1 *1) (-12 (|has| *1 (-6 -4520)) (-4 *1 (-1231 *2)) (-4 *2 (-1195))))) +(((*1 *2 *1) (-12 (-5 *2 (-860)) (-5 *1 (-855 *3)) (-14 *3 *2)))) +(((*1 *2 *3) (-12 (-4 *1 (-340 *4 *3 *5)) (-4 *4 (-1199)) (-4 *3 (-1219 *4)) (-4 *5 (-1219 (-409 *3))) (-5 *2 (-121)))) ((*1 *2 *3) (-12 (-4 *1 (-340 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 (-409 *4))) (-5 *2 (-121))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-607 *2)) (-4 *2 (-13 (-27) (-1181) (-432 *4))) (-4 *4 (-13 (-558) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *1 (-273 *4 *2))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-558) (-150))) (-5 *1 (-542 *3 *2)) (-4 *2 (-1234 *3)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-609 (-568)))) (-4 *4 (-1219 *3)) (-4 *5 (-714 *3 *4)) (-5 *1 (-546 *3 *4 *5 *2)) (-4 *2 (-1234 *5)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-609 (-568)))) (-5 *1 (-547 *3 *2)) (-4 *2 (-1234 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-13 (-558) (-150))) (-5 *1 (-1137 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-763))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-1157 *7)) (-5 *3 (-568)) (-4 *7 (-950 *6 *4 *5)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1047)) (-5 *1 (-318 *4 *5 *6 *7))))) +(((*1 *2 *3 *1) (-12 (-4 *4 (-13 (-840) (-365))) (-5 *2 (-121)) (-5 *1 (-1057 *4 *3)) (-4 *3 (-1219 *4))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-409 *4)) (-4 *4 (-1219 *3)) (-4 *3 (-13 (-365) (-150) (-1037 (-568)))) (-5 *1 (-572 *3 *4))))) +(((*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *5 *6 *3)) (-4 *4 (-1047)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *3 (-1061 *4 *5 *6)) (-4 *4 (-558)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) +(((*1 *1 *2) (-12 (-5 *2 (-763)) (-5 *1 (-55 *3 *4)) (-4 *3 (-1047)) (-14 *4 (-634 (-1161))))) ((*1 *1 *2) (-12 (-5 *2 (-763)) (-5 *1 (-213 *3 *4)) (-4 *3 (-13 (-1047) (-842))) (-14 *4 (-634 (-1161))))) ((*1 *1) (-12 (-4 *1 (-327 *2)) (-4 *2 (-370)) (-4 *2 (-365)))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-333 *3 *4 *5 *2)) (-4 *3 (-365)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 (-409 *4))) (-4 *2 (-340 *3 *4 *5)))) ((*1 *1 *2) (-12 (-5 *2 (-763)) (-5 *1 (-392 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-172)))) ((*1 *1) (-12 (-4 *2 (-172)) (-4 *1 (-714 *2 *3)) (-4 *3 (-1219 *2))))) +(((*1 *1 *2) (-12 (-5 *2 (-1257 (-1161) *3)) (-4 *3 (-1047)) (-5 *1 (-1264 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1257 *3 *4)) (-4 *3 (-842)) (-4 *4 (-1047)) (-5 *1 (-1266 *3 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-121)) (-5 *2 (-1143)) (-5 *1 (-57))))) +(((*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-568)) (-5 *2 (-121)) (-5 *1 (-491))))) +(((*1 *2 *3) (-12 (-5 *3 (-1244 *4)) (-4 *4 (-350)) (-5 *2 (-1157 *4)) (-5 *1 (-532 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-763)) (-4 *1 (-646 *3)) (-4 *3 (-1047)) (-4 *3 (-365)))) ((*1 *2 *2 *3 *4) (-12 (-5 *3 (-763)) (-5 *4 (-1 *5 *5)) (-4 *5 (-365)) (-5 *1 (-649 *5 *2)) (-4 *2 (-646 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-835 *3)) (-4 *3 (-1090))))) +(((*1 *2 *1) (-12 (-4 *3 (-1047)) (-5 *2 (-634 *1)) (-4 *1 (-1122 *3))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1216 *5 *4)) (-4 *4 (-815)) (-14 *5 (-1161)) (-5 *2 (-634 *4)) (-5 *1 (-1104 *4 *5))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-634 *7)) (-4 *7 (-842)) (-4 *5 (-904)) (-4 *6 (-788)) (-4 *8 (-950 *5 *6 *7)) (-5 *2 (-420 (-1157 *8))) (-5 *1 (-901 *5 *6 *7 *8)) (-5 *4 (-1157 *8)))) ((*1 *2 *3) (-12 (-4 *4 (-904)) (-4 *5 (-1219 *4)) (-5 *2 (-420 (-1157 *5))) (-5 *1 (-902 *4 *5)) (-5 *3 (-1157 *5))))) +(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-1045))))) +(((*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-634 *8)) (-5 *4 (-634 (-887 *6))) (-5 *5 (-1 (-884 *6 *8) *8 (-887 *6) (-884 *6 *8))) (-4 *6 (-1090)) (-4 *8 (-13 (-1047) (-609 (-887 *6)) (-1037 *7))) (-5 *2 (-884 *6 *8)) (-4 *7 (-13 (-1047) (-842))) (-5 *1 (-942 *6 *7 *8))))) +(((*1 *2 *3) (-12 (-5 *3 (-763)) (-5 *2 (-1 (-381))) (-5 *1 (-1039))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-550))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-550)))) +(((*1 *2 *1) (-12 (-4 *1 (-391)) (-5 *2 (-121))))) +(((*1 *2 *1) (-12 (-4 *1 (-37 *3)) (-4 *3 (-365)) (-5 *2 (-121)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-4 *1 (-37 *4)) (-4 *4 (-365)) (-5 *2 (-121)))) ((*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-550)) (-5 *2 (-121)))) ((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-420 *3)) (-4 *3 (-550)) (-4 *3 (-558)))) ((*1 *2 *1) (-12 (-4 *1 (-550)) (-5 *2 (-121)))) ((*1 *2 *1) (-12 (-4 *1 (-792 *3)) (-4 *3 (-172)) (-4 *3 (-550)) (-5 *2 (-121)))) ((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-828 *3)) (-4 *3 (-550)) (-4 *3 (-1090)))) ((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-835 *3)) (-4 *3 (-550)) (-4 *3 (-1090)))) ((*1 *2 *1) (-12 (-4 *1 (-971 *3)) (-4 *3 (-365)) (-5 *2 (-121)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-4 *1 (-971 *4)) (-4 *4 (-365)) (-5 *2 (-121)))) ((*1 *2 *1) (-12 (-4 *1 (-997 *3)) (-4 *3 (-172)) (-4 *3 (-550)) (-5 *2 (-121)))) ((*1 *2 *3) (-12 (-5 *2 (-121)) (-5 *1 (-1008 *3)) (-4 *3 (-1037 (-409 (-568))))))) +(((*1 *1) (-5 *1 (-147)))) +(((*1 *2 *3 *4) (-12 (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *3 (-1061 *5 *6 *7)) (-5 *2 (-634 *4)) (-5 *1 (-1067 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 *4)) (-4 *4 (-1047)) (-5 *2 (-1244 *4)) (-5 *1 (-1162 *4)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-917)) (-5 *2 (-1244 *3)) (-5 *1 (-1162 *3)) (-4 *3 (-1047))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-310 (-568))) (|:| -1478 (-310 (-381))) (|:| CF (-310 (-169 (-381)))) (|:| |switch| (-1160)))) (-5 *1 (-1160))))) +(((*1 *1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-328))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1061 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-788)) (-4 *4 (-842)))) ((*1 *2 *2 *1) (-12 (-4 *1 (-1189 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *2 (-1061 *3 *4 *5))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-844 *2)) (-4 *2 (-1047)) (-4 *2 (-365))))) +(((*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-1149 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1047))))) +(((*1 *2 *1 *3) (-12 (-5 *2 (-634 (-1143))) (-5 *1 (-1059)) (-5 *3 (-1143))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-679 *2)) (-4 *2 (-172)) (-5 *1 (-149 *2)))) ((*1 *2 *3) (-12 (-4 *4 (-172)) (-4 *2 (-1219 *4)) (-5 *1 (-175 *4 *2 *3)) (-4 *3 (-714 *4 *2)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-679 (-409 (-953 *5)))) (-5 *4 (-1161)) (-5 *2 (-953 *5)) (-5 *1 (-286 *5)) (-4 *5 (-453)))) ((*1 *2 *3) (-12 (-5 *3 (-679 (-409 (-953 *4)))) (-5 *2 (-953 *4)) (-5 *1 (-286 *4)) (-4 *4 (-453)))) ((*1 *2 *1) (-12 (-4 *1 (-372 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1219 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-679 (-169 (-409 (-568))))) (-5 *2 (-953 (-169 (-409 (-568))))) (-5 *1 (-756 *4)) (-4 *4 (-13 (-365) (-840))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-679 (-169 (-409 (-568))))) (-5 *4 (-1161)) (-5 *2 (-953 (-169 (-409 (-568))))) (-5 *1 (-756 *5)) (-4 *5 (-13 (-365) (-840))))) ((*1 *2 *3) (-12 (-5 *3 (-679 (-409 (-568)))) (-5 *2 (-953 (-409 (-568)))) (-5 *1 (-773 *4)) (-4 *4 (-13 (-365) (-840))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-679 (-409 (-568)))) (-5 *4 (-1161)) (-5 *2 (-953 (-409 (-568)))) (-5 *1 (-773 *5)) (-4 *5 (-13 (-365) (-840)))))) +(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-121) *6 *6)) (-4 *6 (-842)) (-5 *4 (-634 *6)) (-5 *2 (-2 (|:| |fs| (-121)) (|:| |sd| *4) (|:| |td| (-634 *4)))) (-5 *1 (-1167 *6)) (-5 *5 (-634 *4))))) +(((*1 *1 *1 *2) (|partial| -12 (-5 *2 (-917)) (-5 *1 (-1091 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-1161)) (-4 *4 (-13 (-842) (-301) (-1037 (-568)) (-630 (-568)) (-150))) (-5 *1 (-799 *4 *2)) (-4 *2 (-13 (-29 *4) (-1181) (-959)))))) +(((*1 *2 *3 *1) (|partial| -12 (-4 *1 (-605 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-1090))))) +(((*1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-392 *3 *4 *5)) (-14 *3 (-763)) (-14 *4 (-763)) (-4 *5 (-172))))) +(((*1 *2 *1) (|partial| -12 (-4 *3 (-1047)) (-4 *3 (-842)) (-5 *2 (-2 (|:| |val| *1) (|:| -3438 (-568)))) (-4 *1 (-432 *3)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-887 *3)) (|:| -3438 (-887 *3)))) (-5 *1 (-887 *3)) (-4 *3 (-1090)))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1047)) (-4 *7 (-950 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -3438 (-568)))) (-5 *1 (-951 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -2745 ($ *7)) (-15 -2317 (*7 $)) (-15 -2324 (*7 $)))))))) +(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-39))) ((*1 *1) (-12 (-5 *1 (-96 *2)) (-4 *2 (-1090)))) ((*1 *1) (-12 (-5 *1 (-141 *2 *3 *4)) (-14 *2 (-568)) (-14 *3 (-763)) (-4 *4 (-172)))) ((*1 *1) (-12 (-5 *1 (-212 *2)) (-4 *2 (-1090)))) ((*1 *1) (-12 (-5 *1 (-494 *2)) (-4 *2 (-842)))) ((*1 *1) (-4 *1 (-716))) ((*1 *1) (-12 (-5 *1 (-1000 *2)) (-4 *2 (-1090)))) ((*1 *1) (-12 (-5 *1 (-1132 *2)) (-4 *2 (-1090)))) ((*1 *1) (-5 *1 (-1161)))) +(((*1 *2 *2) (-12 (-4 *3 (-453)) (-4 *3 (-842)) (-4 *3 (-1037 (-568))) (-4 *3 (-558)) (-5 *1 (-46 *3 *2)) (-4 *2 (-432 *3)) (-4 *2 (-13 (-365) (-296) (-10 -8 (-15 -2317 ((-1113 *3 (-607 $)) $)) (-15 -2324 ((-1113 *3 (-607 $)) $)) (-15 -2745 ($ (-1113 *3 (-607 $)))))))))) +(((*1 *2 *2) (-12 (-4 *3 (-453)) (-4 *3 (-842)) (-4 *3 (-1037 (-568))) (-4 *3 (-558)) (-5 *1 (-46 *3 *2)) (-4 *2 (-432 *3)) (-4 *2 (-13 (-365) (-296) (-10 -8 (-15 -2317 ((-1113 *3 (-607 $)) $)) (-15 -2324 ((-1113 *3 (-607 $)) $)) (-15 -2745 ($ (-1113 *3 (-607 $)))))))))) +(((*1 *1 *2) (-12 (-5 *2 (-409 (-568))) (-4 *1 (-555 *3)) (-4 *3 (-13 (-406) (-1181))))) ((*1 *1 *2) (-12 (-4 *1 (-555 *2)) (-4 *2 (-13 (-406) (-1181))))) ((*1 *1 *2 *2) (-12 (-4 *1 (-555 *2)) (-4 *2 (-13 (-406) (-1181)))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-917)) (-4 *5 (-365)) (-14 *6 (-634 (-1161))) (-4 *7 (-230 (-1697 *6) (-763))) (-5 *2 (-634 *8)) (-5 *1 (-31 *5 *6 *3 *7 *8)) (-4 *3 (-950 *5 *7 (-852 *6))) (-4 *8 (-971 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-917)) (-4 *5 (-365)) (-14 *6 (-634 (-1161))) (-4 *7 (-230 (-1697 *6) (-763))) (-5 *2 (-3 (-634 *8) "failed" "Infinite" (-568))) (-5 *1 (-32 *5 *6 *3 *7 *8)) (-4 *3 (-950 *5 *7 (-852 *6))) (-4 *8 (-971 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-57)) (-5 *1 (-824))))) +(((*1 *2 *2 *2 *3) (-12 (-5 *3 (-763)) (-4 *4 (-13 (-1047) (-707 (-409 (-568))))) (-4 *5 (-842)) (-5 *1 (-1258 *4 *5 *2)) (-4 *2 (-1263 *5 *4))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-763)) (-4 *5 (-365)) (-14 *6 (-634 (-1161))) (-4 *7 (-950 *5 *8 (-852 *6))) (-4 *8 (-230 (-1697 *6) *4)) (-4 *9 (-971 *5)) (-4 *10 (-641 *5)) (-4 *11 (-920 *5 *10)) (-4 *3 (-235 *11)) (-4 *12 (-536 *5 *6 *7 *8 *9 *10 *11 *3 *14)) (-4 *14 (-117)) (-5 *2 (-634 *7)) (-5 *1 (-467 *5 *6 *7 *8 *9 *10 *11 *3 *12 *13 *14)) (-4 *13 (-258 *12)))) ((*1 *2 *3 *4 *5 *2) (-12 (-5 *2 (-634 *5)) (-4 *5 (-950 *6 *8 (-852 *7))) (-4 *8 (-230 (-1697 *7) *4)) (-5 *4 (-763)) (-4 *6 (-365)) (-14 *7 (-634 (-1161))) (-4 *10 (-641 *6)) (-4 *11 (-920 *6 *10)) (-5 *1 (-562 *6 *7 *5 *8 *9 *10 *11 *3)) (-4 *9 (-971 *6)) (-4 *3 (-235 *11)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-236 (-922 *5))) (-5 *4 (-763)) (-4 *5 (-350)) (-5 *2 (-634 (-242 *6 *5))) (-5 *1 (-867 *5 *6 *7)) (-14 *6 (-634 (-1161))) (-4 *7 (-117)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-236 (-921 *5))) (-5 *4 (-763)) (-4 *5 (-365)) (-5 *2 (-634 (-242 *6 *5))) (-5 *1 (-868 *5 *6 *7)) (-14 *6 (-634 (-1161))) (-4 *7 (-117))))) +(((*1 *2 *3) (-12 (-5 *2 (-121)) (-5 *1 (-129 *3)) (-4 *3 (-1219 (-568))))) ((*1 *2 *3 *2) (-12 (-5 *2 (-121)) (-5 *1 (-129 *3)) (-4 *3 (-1219 (-568)))))) +(((*1 *1 *2 *3 *4) (-12 (-5 *2 (-634 *1)) (-5 *3 (-634 (-763))) (-5 *4 (-568)) (-4 *1 (-641 *5)) (-4 *5 (-365))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-634 *5)) (-5 *4 (-634 *6)) (-4 *5 (-1090)) (-4 *6 (-1195)) (-5 *2 (-1 *6 *5)) (-5 *1 (-631 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-634 *5)) (-5 *4 (-634 *2)) (-4 *5 (-1090)) (-4 *2 (-1195)) (-5 *1 (-631 *5 *2)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-634 *6)) (-5 *4 (-634 *5)) (-4 *6 (-1090)) (-4 *5 (-1195)) (-5 *2 (-1 *5 *6)) (-5 *1 (-631 *6 *5)))) ((*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-634 *5)) (-5 *4 (-634 *2)) (-4 *5 (-1090)) (-4 *2 (-1195)) (-5 *1 (-631 *5 *2)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-634 *5)) (-5 *4 (-634 *6)) (-4 *5 (-1090)) (-4 *6 (-1195)) (-5 *1 (-631 *5 *6)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-634 *5)) (-5 *4 (-634 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1090)) (-4 *2 (-1195)) (-5 *1 (-631 *5 *2)))) ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1129)) (-5 *3 (-147)) (-5 *2 (-763))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-420 *3)) (-4 *3 (-558))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 (-53))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-482)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-53))) (-5 *4 (-634 (-465))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-482)))) ((*1 *2 *3) (-12 (-5 *3 (-634 *4)) (-4 *4 (-13 (-350) (-609 (-568)))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-484 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 *5)) (-5 *4 (-634 (-465))) (-4 *5 (-13 (-350) (-609 (-568)))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-484 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-409 (-568)))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-485)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-568)))) (-5 *4 (-634 (-465))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-485)))) ((*1 *2 *3) (-12 (-5 *3 (-634 *4)) (-4 *4 (-365)) (-14 *9 (-1 *6 *4)) (-4 *7 (-13 (-842) (-558))) (-14 *8 (-1 *4 *7)) (-5 *2 (-634 (-2 (|:| -1864 *6) (|:| -4477 (-763))))) (-5 *1 (-486 *4 *5 *6 *7 *8 *9)) (-4 *5 (-453)) (-4 *6 (-13 (-432 (-568)) (-558) (-1037 *7) (-1037 (-1161)) (-1037 (-568)) (-161) (-895 (-1161)) (-10 -8 (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -1332 ($ $)) (-15 -3013 ($ $)) (-15 -2086 ((-121) $))))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 *5)) (-5 *4 (-634 (-465))) (-4 *5 (-365)) (-14 *10 (-1 *7 *5)) (-4 *8 (-13 (-842) (-558))) (-14 *9 (-1 *5 *8)) (-5 *2 (-634 (-2 (|:| -1864 *7) (|:| -4477 (-763))))) (-5 *1 (-486 *5 *6 *7 *8 *9 *10)) (-4 *6 (-453)) (-4 *7 (-13 (-432 (-568)) (-558) (-1037 *8) (-1037 (-1161)) (-1037 (-568)) (-161) (-895 (-1161)) (-10 -8 (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -1332 ($ $)) (-15 -3013 ($ $)) (-15 -2086 ((-121) $))))))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-409 (-953 (-568))))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-487)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-953 (-568))))) (-5 *4 (-634 (-465))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-487)))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-409 (-734 *4 (-568))))) (-14 *4 (-1161)) (-5 *2 (-634 (-2 (|:| -1864 (-733 *4 (-568))) (|:| -4477 (-763))))) (-5 *1 (-488 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-734 *5 (-568))))) (-5 *4 (-634 (-465))) (-14 *5 (-1161)) (-5 *2 (-634 (-2 (|:| -1864 (-733 *5 (-568))) (|:| -4477 (-763))))) (-5 *1 (-488 *5))))) +(((*1 *2 *3 *3 *4) (-12 (-5 *4 (-634 (-310 (-215)))) (-5 *3 (-215)) (-5 *2 (-121)) (-5 *1 (-202))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-634 (-607 (-53)))) (-5 *1 (-53)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-607 (-53))) (-5 *1 (-53)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1157 (-53))) (-5 *3 (-634 (-607 (-53)))) (-5 *1 (-53)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1157 (-53))) (-5 *3 (-607 (-53))) (-5 *1 (-53)))) ((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) ((*1 *2 *3) (-12 (-4 *2 (-13 (-365) (-840))) (-5 *1 (-178 *2 *3)) (-4 *3 (-1219 (-169 *2))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-917)) (-4 *1 (-327 *3)) (-4 *3 (-365)) (-4 *3 (-370)))) ((*1 *2 *1) (-12 (-4 *1 (-327 *2)) (-4 *2 (-365)))) ((*1 *2 *1) (-12 (-4 *1 (-372 *2 *3)) (-4 *3 (-1219 *2)) (-4 *2 (-172)))) ((*1 *2 *1) (-12 (-4 *4 (-1219 *2)) (-4 *2 (-993 *3)) (-5 *1 (-415 *3 *2 *4 *5)) (-4 *3 (-301)) (-4 *5 (-13 (-411 *2 *4) (-1037 *2))))) ((*1 *2 *1) (-12 (-4 *4 (-1219 *2)) (-4 *2 (-993 *3)) (-5 *1 (-416 *3 *2 *4 *5 *6)) (-4 *3 (-301)) (-4 *5 (-411 *2 *4)) (-14 *6 (-1244 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-917)) (-4 *5 (-1047)) (-4 *2 (-13 (-406) (-1037 *5) (-365) (-1181) (-279))) (-5 *1 (-444 *5 *3 *2)) (-4 *3 (-1219 *5)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-634 (-607 (-504)))) (-5 *1 (-504)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-607 (-504))) (-5 *1 (-504)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1157 (-504))) (-5 *3 (-634 (-607 (-504)))) (-5 *1 (-504)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1157 (-504))) (-5 *3 (-607 (-504))) (-5 *1 (-504)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1244 *4)) (-5 *3 (-917)) (-4 *4 (-350)) (-5 *1 (-532 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-453)) (-4 *5 (-714 *4 *2)) (-4 *2 (-1219 *4)) (-5 *1 (-767 *4 *2 *5 *3)) (-4 *3 (-1219 *5)))) ((*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-172)))) ((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172)))) ((*1 *1 *1) (-4 *1 (-1056)))) +(((*1 *2 *3) (-12 (-5 *3 (-634 (-215))) (-5 *2 (-1244 (-688))) (-5 *1 (-299))))) +(((*1 *2 *1) (-12 (-4 *1 (-117)) (-5 *2 (-568))))) +(((*1 *2 *3) (-12 (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-568)) (-5 *1 (-450 *4 *5 *6 *3)) (-4 *3 (-950 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-4 *4 (-904)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *7 (-950 *4 *5 *6)) (-5 *2 (-420 (-1157 *7))) (-5 *1 (-901 *4 *5 *6 *7)) (-5 *3 (-1157 *7)))) ((*1 *2 *3) (-12 (-4 *4 (-904)) (-4 *5 (-1219 *4)) (-5 *2 (-420 (-1157 *5))) (-5 *1 (-902 *4 *5)) (-5 *3 (-1157 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-634 (-568))) (-5 *1 (-1004 *3)) (-14 *3 (-568))))) +(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-1141 *4)) (-5 *3 (-568)) (-4 *4 (-1047)) (-5 *1 (-1145 *4)))) ((*1 *1 *2 *2 *1) (-12 (-5 *2 (-568)) (-5 *1 (-1201 *3)) (-4 *3 (-1047)))) ((*1 *1 *2 *2 *1) (-12 (-5 *2 (-568)) (-5 *1 (-1235 *3 *4 *5)) (-4 *3 (-1047)) (-14 *4 (-1161)) (-14 *5 *3))) ((*1 *1 *2 *2 *1) (-12 (-5 *2 (-568)) (-5 *1 (-1239 *3 *4)) (-4 *3 (-1047)) (-14 *4 (-1161))))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-1219 *2)) (-4 *2 (-1199)) (-5 *1 (-151 *2 *4 *3)) (-4 *3 (-1219 (-409 *4)))))) +(((*1 *2 *3) (-12 (-5 *2 (-1163 (-409 (-568)))) (-5 *1 (-182)) (-5 *3 (-568))))) +(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-887 *4)) (-4 *4 (-1090)) (-5 *1 (-884 *4 *3)) (-4 *3 (-1090))))) +(((*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-817))))) +(((*1 *2 *1) (-12 (-4 *1 (-340 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 (-409 *4))) (-5 *2 (-2 (|:| |num| (-1244 *4)) (|:| |den| *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-436))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-634 *7)) (-4 *7 (-1061 *4 *5 *6)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-121)) (-5 *1 (-989 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-1061 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-121)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-634 *7)) (-4 *7 (-1061 *4 *5 *6)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-121)) (-5 *1 (-1097 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-1189 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1061 *3 *4 *5)) (-5 *2 (-121))))) +(((*1 *2 *3 *4) (-12 (-4 *4 (-854)) (-5 *2 (-420 (-1157 *4))) (-5 *1 (-315 *4)) (-5 *3 (-1157 *4)))) ((*1 *2 *3 *4) (-12 (-4 *4 (-859)) (-5 *2 (-420 (-1157 *4))) (-5 *1 (-317 *4)) (-5 *3 (-1157 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-833)) (-5 *2 (-1035)) (-5 *1 (-832)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-310 (-381)))) (-5 *4 (-634 (-381))) (-5 *2 (-1035)) (-5 *1 (-832))))) +(((*1 *1) (-5 *1 (-798)))) +(((*1 *1) (-12 (-5 *1 (-638 *2 *3 *4)) (-4 *2 (-1090)) (-4 *3 (-23)) (-14 *4 *3)))) +(((*1 *2 *1) (-12 (-5 *2 (-634 (-634 (-763)))) (-5 *1 (-899 *3)) (-4 *3 (-1090))))) +(((*1 *1) (-5 *1 (-1245)))) +(((*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-365)) (-4 *1 (-37 *3))))) +(((*1 *2 *3) (-12 (-4 *4 (-13 (-558) (-842) (-1037 (-568)))) (-5 *2 (-121)) (-5 *1 (-180 *4 *3)) (-4 *3 (-13 (-27) (-1181) (-432 (-169 *4)))))) ((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-436)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-121)) (-5 *1 (-1185 *4 *3)) (-4 *3 (-13 (-27) (-1181) (-432 *4)))))) +(((*1 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-565))))) +(((*1 *2 *3) (-12 (-4 *4 (-365)) (-5 *2 (-634 *3)) (-5 *1 (-946 *4 *3)) (-4 *3 (-1219 *4))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-634 *2)) (-4 *2 (-950 *4 *5 *6)) (-4 *4 (-365)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *1 (-451 *4 *5 *6 *2)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-101 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-365)) (-5 *2 (-2 (|:| R (-679 *6)) (|:| A (-679 *6)) (|:| |Ainv| (-679 *6)))) (-5 *1 (-979 *6)) (-5 *3 (-679 *6))))) +(((*1 *2 *3 *1) (-12 (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *3 (-1061 *4 *5 *6)) (-5 *2 (-121)))) ((*1 *2 *3 *1) (-12 (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *3 (-1061 *4 *5 *6)) (-5 *2 (-634 (-2 (|:| |val| (-121)) (|:| -3001 *1)))) (-4 *1 (-1066 *4 *5 *6 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 *2)) (-4 *2 (-432 *4)) (-5 *1 (-433 *4 *2)) (-4 *4 (-13 (-842) (-558)))))) +(((*1 *2 *3) (-12 (-4 *4 (-350)) (-5 *2 (-420 *3)) (-5 *1 (-207 *4 *3)) (-4 *3 (-1219 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-350)) (-5 *2 (-634 *3)) (-5 *1 (-344 *4 *3)) (-4 *3 (-1219 *4)))) ((*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-443 *3)) (-4 *3 (-1219 (-568))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-763)) (-5 *2 (-420 *3)) (-5 *1 (-443 *3)) (-4 *3 (-1219 (-568))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-634 (-763))) (-5 *2 (-420 *3)) (-5 *1 (-443 *3)) (-4 *3 (-1219 (-568))))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-634 (-763))) (-5 *5 (-763)) (-5 *2 (-420 *3)) (-5 *1 (-443 *3)) (-4 *3 (-1219 (-568))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-763)) (-5 *2 (-420 *3)) (-5 *1 (-443 *3)) (-4 *3 (-1219 (-568))))) ((*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-1007 *3)) (-4 *3 (-1219 (-409 (-568)))))) ((*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-1208 *3)) (-4 *3 (-1219 (-568)))))) +(((*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-926))))) +(((*1 *2 *2 *1) (-12 (-5 *2 (-1266 *3 *4)) (-4 *1 (-376 *3 *4)) (-4 *3 (-842)) (-4 *4 (-172)))) ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-388 *2)) (-4 *2 (-1090)))) ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-814 *2)) (-4 *2 (-842)))) ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-814 *2)) (-4 *2 (-842)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1259 *2 *3)) (-4 *2 (-842)) (-4 *3 (-1047)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-814 *3)) (-4 *1 (-1259 *3 *4)) (-4 *3 (-842)) (-4 *4 (-1047)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1259 *2 *3)) (-4 *2 (-842)) (-4 *3 (-1047))))) +(((*1 *2 *3 *4 *5) (-12 (-5 *5 (-1084 *3)) (-4 *3 (-950 *7 *6 *4)) (-4 *6 (-788)) (-4 *4 (-842)) (-4 *7 (-558)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-568)))) (-5 *1 (-592 *6 *4 *7 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-788)) (-4 *4 (-842)) (-4 *6 (-558)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-568)))) (-5 *1 (-592 *5 *4 *6 *3)) (-4 *3 (-950 *6 *5 *4)))) ((*1 *1 *1 *1 *1) (-5 *1 (-850))) ((*1 *1 *1 *1) (-5 *1 (-850))) ((*1 *1 *1) (-5 *1 (-850))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1161)) (-4 *4 (-13 (-558) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *1 (-1152 *4 *2)) (-4 *2 (-13 (-432 *4) (-161) (-27) (-1181))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1082 *2)) (-4 *2 (-13 (-432 *4) (-161) (-27) (-1181))) (-4 *4 (-13 (-558) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *1 (-1152 *4 *2)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1161)) (-4 *5 (-13 (-558) (-842) (-1037 (-568)))) (-5 *2 (-409 (-953 *5))) (-5 *1 (-1153 *5)) (-5 *3 (-953 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1161)) (-4 *5 (-13 (-558) (-842) (-1037 (-568)))) (-5 *2 (-3 (-409 (-953 *5)) (-310 *5))) (-5 *1 (-1153 *5)) (-5 *3 (-409 (-953 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1082 (-953 *5))) (-5 *3 (-953 *5)) (-4 *5 (-13 (-558) (-842) (-1037 (-568)))) (-5 *2 (-409 *3)) (-5 *1 (-1153 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1082 (-409 (-953 *5)))) (-5 *3 (-409 (-953 *5))) (-4 *5 (-13 (-558) (-842) (-1037 (-568)))) (-5 *2 (-3 *3 (-310 *5))) (-5 *1 (-1153 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-1122 *3)) (-4 *3 (-1047)) (-5 *2 (-634 (-634 (-634 (-944 *3)))))))) +(((*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-14 *6 (-634 (-1161))) (-4 *4 (-950 *5 *7 (-852 *6))) (-4 *7 (-230 (-1697 *6) (-763))) (-4 *3 (-971 *5)) (-4 *8 (-641 *5)) (-4 *9 (-920 *5 *8)) (-4 *10 (-235 *9)) (-4 *12 (-117)) (-4 *2 (-258 *11)) (-5 *1 (-260 *5 *6 *4 *7 *3 *8 *9 *10 *11 *2 *12)) (-4 *11 (-536 *5 *6 *4 *7 *3 *8 *9 *10 *12))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-634 (-1161))) (-5 *3 (-57)) (-5 *1 (-887 *4)) (-4 *4 (-1090))))) +(((*1 *2 *2 *3) (-12 (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *2 (-1061 *4 *5 *6)) (-5 *1 (-768 *4 *5 *6 *2 *3)) (-4 *3 (-1066 *4 *5 *6 *2))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-840))) (-5 *1 (-178 *3 *2)) (-4 *2 (-1219 (-169 *3)))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-123)) (-4 *2 (-1090)) (-4 *2 (-842)) (-5 *1 (-122 *2))))) +(((*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-842) (-1037 (-568)) (-630 (-568)) (-453))) (-5 *2 (-835 *4)) (-5 *1 (-307 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1181) (-432 *3))) (-14 *5 (-1161)) (-14 *6 *4))) ((*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-842) (-1037 (-568)) (-630 (-568)) (-453))) (-5 *2 (-835 *4)) (-5 *1 (-1229 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1181) (-432 *3))) (-14 *5 (-1161)) (-14 *6 *4)))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-1161)) (-4 *5 (-365)) (-5 *2 (-1141 (-1141 (-953 *5)))) (-5 *1 (-1252 *5)) (-5 *4 (-1141 (-953 *5)))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-763)) (-5 *2 (-1249)) (-5 *1 (-1245)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-763)) (-5 *2 (-1249)) (-5 *1 (-1246))))) +(((*1 *1 *1) (-4 *1 (-1056))) ((*1 *1 *1 *2 *2) (-12 (-4 *1 (-1221 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-787)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1221 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-787))))) +(((*1 *2 *1) (-12 (-5 *1 (-96 *2)) (-4 *2 (-1090)))) ((*1 *2 *1) (-12 (-5 *1 (-212 *2)) (-4 *2 (-1090)))) ((*1 *2 *1) (-12 (-4 *1 (-1109 *2)) (-4 *2 (-1195)))) ((*1 *2 *1) (-12 (-5 *1 (-1132 *2)) (-4 *2 (-1090))))) +(((*1 *2 *1) (-12 (-4 *1 (-1261 *3)) (-4 *3 (-365)) (-5 *2 (-121))))) +(((*1 *2 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-121)) (-5 *1 (-824))))) +(((*1 *2 *3 *4) (-12 (-4 *5 (-788)) (-4 *6 (-842)) (-4 *3 (-558)) (-4 *7 (-950 *3 *5 *6)) (-5 *2 (-2 (|:| -3438 (-763)) (|:| -2348 *8) (|:| |radicand| *8))) (-5 *1 (-954 *5 *6 *3 *7 *8)) (-5 *4 (-763)) (-4 *8 (-13 (-365) (-10 -8 (-15 -2317 (*7 $)) (-15 -2324 (*7 $)) (-15 -2745 ($ *7)))))))) +(((*1 *1 *1 *1) (-5 *1 (-850)))) +(((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1161)) (-5 *5 (-634 *3)) (-4 *3 (-13 (-27) (-1181) (-432 *6))) (-4 *6 (-13 (-453) (-842) (-150) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-634 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-559 *6 *3))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002)))))) +(((*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-121)) (-5 *5 (-568)) (-4 *6 (-365)) (-4 *6 (-370)) (-4 *6 (-1047)) (-5 *2 (-634 (-634 (-679 *6)))) (-5 *1 (-1029 *6)) (-5 *3 (-634 (-679 *6))))) ((*1 *2 *3) (-12 (-4 *4 (-365)) (-4 *4 (-370)) (-4 *4 (-1047)) (-5 *2 (-634 (-634 (-679 *4)))) (-5 *1 (-1029 *4)) (-5 *3 (-634 (-679 *4))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-121)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1047)) (-5 *2 (-634 (-634 (-679 *5)))) (-5 *1 (-1029 *5)) (-5 *3 (-634 (-679 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-917)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1047)) (-5 *2 (-634 (-634 (-679 *5)))) (-5 *1 (-1029 *5)) (-5 *3 (-634 (-679 *5)))))) +(((*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-1047)) (-5 *1 (-1145 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-1201 *2)) (-4 *2 (-1047)))) ((*1 *1 *1) (-12 (-5 *1 (-1235 *2 *3 *4)) (-4 *2 (-1047)) (-14 *3 (-1161)) (-14 *4 *2))) ((*1 *1 *1) (-12 (-5 *1 (-1239 *2 *3)) (-4 *2 (-1047)) (-14 *3 (-1161))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-844 *2)) (-4 *2 (-1047)) (-4 *2 (-365))))) +(((*1 *2) (-12 (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *5 (-230 (-1697 *4) (-763))) (-4 *6 (-971 *3)) (-4 *7 (-641 *3)) (-4 *8 (-920 *3 *7)) (-4 *9 (-235 *8)) (-4 *10 (-536 *3 *4 *2 *5 *6 *7 *8 *9 *12)) (-4 *12 (-117)) (-4 *2 (-950 *3 *5 (-852 *4))) (-5 *1 (-467 *3 *4 *2 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *11 (-258 *10)))) ((*1 *2) (-12 (-5 *2 (-242 *4 *3)) (-5 *1 (-867 *3 *4 *5)) (-4 *3 (-350)) (-14 *4 (-634 (-1161))) (-4 *5 (-117)))) ((*1 *2) (-12 (-5 *2 (-242 *4 *3)) (-5 *1 (-868 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *5 (-117))))) +(((*1 *2 *1) (-12 (-5 *2 (-409 (-568))) (-5 *1 (-215))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-52 *2 *3)) (-4 *3 (-787)) (-4 *2 (-1047)))) ((*1 *2 *1 *1) (-12 (-4 *2 (-1047)) (-5 *1 (-55 *2 *3)) (-14 *3 (-634 (-1161))))) ((*1 *2 *1 *3) (-12 (-5 *3 (-634 (-917))) (-4 *2 (-365)) (-5 *1 (-155 *4 *2 *5)) (-14 *4 (-917)) (-14 *5 (-994 *4 *2)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-310 *3)) (-5 *1 (-213 *3 *4)) (-4 *3 (-13 (-1047) (-842))) (-14 *4 (-634 (-1161))))) ((*1 *2 *3 *1) (-12 (-4 *1 (-320 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-137)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-384 *2 *3)) (-4 *3 (-1090)) (-4 *2 (-1047)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-568)) (-4 *2 (-558)) (-5 *1 (-615 *2 *4)) (-4 *4 (-1219 *2)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-4 *1 (-698 *2)) (-4 *2 (-1047)))) ((*1 *2 *1 *3) (-12 (-4 *2 (-1047)) (-5 *1 (-725 *2 *3)) (-4 *3 (-716)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-634 *5)) (-5 *3 (-634 (-763))) (-4 *1 (-730 *4 *5)) (-4 *4 (-1047)) (-4 *5 (-842)))) ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-763)) (-4 *1 (-730 *4 *2)) (-4 *4 (-1047)) (-4 *2 (-842)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-4 *1 (-844 *2)) (-4 *2 (-1047)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-634 *6)) (-5 *3 (-634 (-763))) (-4 *1 (-950 *4 *5 *6)) (-4 *4 (-1047)) (-4 *5 (-788)) (-4 *6 (-842)))) ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-763)) (-4 *1 (-950 *4 *5 *2)) (-4 *4 (-1047)) (-4 *5 (-788)) (-4 *2 (-842)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-4 *2 (-950 *4 (-534 *5) *5)) (-5 *1 (-1114 *4 *5 *2)) (-4 *4 (-1047)) (-4 *5 (-842)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-5 *2 (-953 *4)) (-5 *1 (-1190 *4)) (-4 *4 (-1047))))) +(((*1 *2) (-12 (-5 *2 (-1249)) (-5 *1 (-751))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-568)) (-4 *1 (-62 *2 *4 *5)) (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-1195)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-283 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-1195)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-568)) (-4 *1 (-1050 *4 *5 *2 *6 *7)) (-4 *6 (-230 *5 *2)) (-4 *7 (-230 *4 *2)) (-4 *2 (-1047))))) +(((*1 *1 *1 *1) (-5 *1 (-850)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-634 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-763)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-788)) (-4 *6 (-950 *3 *4 *5)) (-4 *3 (-453)) (-4 *5 (-842)) (-5 *1 (-450 *3 *4 *5 *6))))) +(((*1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-558)) (-4 *2 (-172))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 *7)) (-4 *7 (-1061 *4 *5 *6)) (-4 *4 (-558)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-634 (-1255 *4 *5 *6 *7))) (-5 *1 (-1255 *4 *5 *6 *7)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-634 *9)) (-5 *4 (-1 (-121) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1061 *6 *7 *8)) (-4 *6 (-558)) (-4 *7 (-788)) (-4 *8 (-842)) (-5 *2 (-634 (-1255 *6 *7 *8 *9))) (-5 *1 (-1255 *6 *7 *8 *9))))) +(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-634 *3)) (-4 *3 (-1195))))) +(((*1 *2) (-12 (-4 *3 (-370)) (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *6 (-230 (-1697 *4) (-763))) (-4 *7 (-971 *3)) (-4 *8 (-641 *3)) (-4 *9 (-920 *3 *8)) (-4 *10 (-235 *9)) (-4 *11 (-536 *3 *4 *5 *6 *7 *8 *9 *10 *13)) (-4 *13 (-117)) (-5 *2 (-1239 (-568) -3492)) (-5 *1 (-467 *3 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13)) (-4 *12 (-258 *11)))) ((*1 *2 *3) (-12 (-5 *3 (-917)) (-4 *4 (-370)) (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *6 (-950 *4 *7 (-852 *5))) (-4 *7 (-230 (-1697 *5) (-763))) (-4 *8 (-971 *4)) (-4 *9 (-641 *4)) (-4 *10 (-920 *4 *9)) (-4 *11 (-235 *10)) (-4 *12 (-536 *4 *5 *6 *7 *8 *9 *10 *11 *14)) (-4 *14 (-117)) (-5 *2 (-1239 (-568) -3492)) (-5 *1 (-467 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13 *14)) (-4 *13 (-258 *12)))) ((*1 *2) (-12 (-5 *2 (-1239 (-568) -3492)) (-5 *1 (-867 *3 *4 *5)) (-4 (-857 *3) (-370)) (-4 *3 (-350)) (-14 *4 (-634 (-1161))) (-4 *5 (-117)))) ((*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1239 (-568) -3492)) (-5 *1 (-867 *4 *5 *6)) (-4 (-857 *4) (-370)) (-4 *4 (-350)) (-14 *5 (-634 (-1161))) (-4 *6 (-117)))) ((*1 *2) (-12 (-5 *2 (-1239 (-568) -3492)) (-5 *1 (-868 *3 *4 *5)) (-4 *3 (-370)) (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *5 (-117)))) ((*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1239 (-568) -3492)) (-5 *1 (-868 *4 *5 *6)) (-4 *4 (-370)) (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *6 (-117))))) +(((*1 *1 *1 *2) (|partial| -12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-558)))) ((*1 *1 *1 *2) (|partial| -12 (-4 *1 (-324 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-787)) (-4 *2 (-558)))) ((*1 *1 *1 *1) (|partial| -4 *1 (-558))) ((*1 *1 *1 *2) (|partial| -12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (-4 *2 (-558)))) ((*1 *1 *1 *1) (|partial| -5 *1 (-763))) ((*1 *1 *1 *2) (|partial| -12 (-4 *1 (-844 *2)) (-4 *2 (-1047)) (-4 *2 (-558)))) ((*1 *1 *1 *1) (-5 *1 (-850))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1244 *4)) (-4 *4 (-1219 *3)) (-4 *3 (-558)) (-5 *1 (-970 *3 *4)))) ((*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1050 *3 *4 *2 *5 *6)) (-4 *2 (-1047)) (-4 *5 (-230 *4 *2)) (-4 *6 (-230 *3 *2)) (-4 *2 (-558)))) ((*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1141 *3)) (-4 *3 (-1047)) (-5 *1 (-1145 *3))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-453))) (-5 *1 (-1187 *3 *2)) (-4 *2 (-13 (-432 *3) (-1181)))))) +(((*1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-558)) (-4 *2 (-172))))) +(((*1 *1 *2) (-12 (-5 *2 (-310 (-169 (-381)))) (-5 *1 (-328)))) ((*1 *1 *2) (-12 (-5 *2 (-310 (-568))) (-5 *1 (-328)))) ((*1 *1 *2) (-12 (-5 *2 (-310 (-381))) (-5 *1 (-328)))) ((*1 *1 *2) (-12 (-5 *2 (-310 (-683))) (-5 *1 (-328)))) ((*1 *1 *2) (-12 (-5 *2 (-310 (-690))) (-5 *1 (-328)))) ((*1 *1 *2) (-12 (-5 *2 (-310 (-688))) (-5 *1 (-328)))) ((*1 *1) (-5 *1 (-328)))) +(((*1 *1) (-5 *1 (-1059)))) +(((*1 *1 *2) (|partial| -12 (-5 *2 (-814 *3)) (-4 *3 (-842)) (-5 *1 (-663 *3))))) +(((*1 *2 *2) (-12 (-4 *3 (-1047)) (-4 *4 (-1219 *3)) (-5 *1 (-164 *3 *4 *2)) (-4 *2 (-1219 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1195))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1181))))) +(((*1 *2 *3) (-12 (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *6 (-950 *4 *7 (-852 *5))) (-4 *7 (-230 (-1697 *5) (-763))) (-4 *8 (-971 *4)) (-4 *9 (-641 *4)) (-4 *10 (-920 *4 *9)) (-4 *11 (-536 *4 *5 *6 *7 *8 *9 *10 *2 *12)) (-4 *12 (-117)) (-4 *2 (-235 *10)) (-5 *1 (-260 *4 *5 *6 *7 *8 *9 *10 *2 *11 *3 *12)) (-4 *3 (-258 *11))))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-453)) (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1880 *4))) (-5 *1 (-970 *4 *3)) (-4 *3 (-1219 *4))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002)))))) +(((*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-568)) (-4 *3 (-172)) (-4 *5 (-375 *3)) (-4 *6 (-375 *3)) (-5 *1 (-678 *3 *5 *6 *2)) (-4 *2 (-677 *3 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-320 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-137)) (-5 *2 (-634 (-2 (|:| |gen| *3) (|:| -1892 *4)))))) ((*1 *2 *1) (-12 (-5 *2 (-634 (-2 (|:| -2348 *3) (|:| -2354 *4)))) (-5 *1 (-725 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-716)))) ((*1 *2 *1) (-12 (-4 *1 (-1221 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-787)) (-5 *2 (-1141 (-2 (|:| |k| *4) (|:| |c| *3))))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-558) (-842) (-1037 (-568)))) (-5 *1 (-180 *3 *2)) (-4 *2 (-13 (-27) (-1181) (-432 (-169 *3)))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1161)) (-4 *4 (-13 (-558) (-842) (-1037 (-568)))) (-5 *1 (-180 *4 *2)) (-4 *2 (-13 (-27) (-1181) (-432 (-169 *4)))))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *1 (-1185 *3 *2)) (-4 *2 (-13 (-27) (-1181) (-432 *3))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1161)) (-4 *4 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *1 (-1185 *4 *2)) (-4 *2 (-13 (-27) (-1181) (-432 *4)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1181))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-1157 *5)) (-4 *5 (-365)) (-5 *2 (-634 *6)) (-5 *1 (-535 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-840)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1249)) (-5 *1 (-1164))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-953 *5))) (-5 *4 (-634 (-1161))) (-4 *5 (-558)) (-5 *2 (-634 (-634 (-288 (-409 (-953 *5)))))) (-5 *1 (-762 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-953 *4))) (-4 *4 (-558)) (-5 *2 (-634 (-634 (-288 (-409 (-953 *4)))))) (-5 *1 (-762 *4)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-679 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -3746 (-634 *6))) *7 *6)) (-4 *6 (-365)) (-4 *7 (-646 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1244 *6) "failed")) (|:| -3746 (-634 (-1244 *6))))) (-5 *1 (-808 *6 *7)) (-5 *4 (-1244 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-634 (-2 (|:| |scalar| (-409 (-568))) (|:| |coeff| (-1157 *3)) (|:| |logand| (-1157 *3))))) (-5 *1 (-585 *3)) (-4 *3 (-365))))) +(((*1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-392 *3 *4 *5)) (-14 *3 (-763)) (-14 *4 (-763)) (-4 *5 (-172))))) +(((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-817))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-634 *1)) (-5 *3 (-634 *7)) (-4 *1 (-1066 *4 *5 *6 *7)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *7 (-1061 *4 *5 *6)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-634 *7)) (-4 *7 (-1061 *4 *5 *6)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-634 *1)) (-4 *1 (-1066 *4 *5 *6 *7)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-634 *1)) (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *3 (-1061 *4 *5 *6)))) ((*1 *2 *3 *1) (-12 (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *3 (-1061 *4 *5 *6)) (-5 *2 (-634 *1)) (-4 *1 (-1066 *4 *5 *6 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-568)) (|has| *1 (-6 -4510)) (-4 *1 (-406)) (-5 *2 (-917))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-1244 *1)) (-4 *1 (-858)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-4 *1 (-1219 *4)) (-4 *4 (-1047)) (-5 *2 (-1244 *4))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-310 (-568))) (|:| -1478 (-310 (-381))) (|:| CF (-310 (-169 (-381)))) (|:| |switch| (-1160)))) (-5 *1 (-1160))))) +(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-869))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1047)) (-4 *7 (-1047)) (-4 *6 (-1219 *5)) (-5 *2 (-1157 (-1157 *7))) (-5 *1 (-510 *5 *6 *4 *7)) (-4 *4 (-1219 *6))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-634 *6)) (-4 *6 (-1061 *3 *4 *5)) (-4 *3 (-558)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *1 (-978 *3 *4 *5 *6)))) ((*1 *2 *2 *2 *3) (-12 (-5 *2 (-634 *7)) (-5 *3 (-121)) (-4 *7 (-1061 *4 *5 *6)) (-4 *4 (-558)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *1 (-978 *4 *5 *6 *7))))) +(((*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-568))))))) (-5 *1 (-1116 *3 *2)) (-4 *3 (-1219 *2))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-763)) (-5 *1 (-848 *2)) (-4 *2 (-172)))) ((*1 *2 *3 *3 *2) (-12 (-5 *3 (-763)) (-5 *1 (-848 *2)) (-4 *2 (-172))))) +(((*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1234 *4)) (-5 *1 (-1236 *4 *2)) (-4 *4 (-43 (-409 (-568))))))) +(((*1 *2 *1) (-12 (-5 *2 (-568)) (-5 *1 (-850))))) +(((*1 *2 *2) (-12 (-4 *3 (-1047)) (-4 *4 (-230 *5 (-763))) (-14 *5 (-763)) (-5 *1 (-908 *3 *2 *4 *5)) (-4 *2 (-324 *3 *4)))) ((*1 *2 *2 *3) (-12 (-4 *4 (-365)) (-4 *5 (-230 *6 (-763))) (-14 *6 (-763)) (-5 *1 (-929 *4 *2 *5 *6 *3)) (-4 *2 (-324 *4 *5)) (-4 *3 (-971 *4)))) ((*1 *2 *2 *3 *4) (-12 (-5 *4 (-568)) (-4 *5 (-365)) (-4 *6 (-230 *7 (-763))) (-14 *7 (-763)) (-5 *1 (-929 *5 *2 *6 *7 *3)) (-4 *2 (-324 *5 *6)) (-4 *3 (-971 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-944 *3)) (-4 *3 (-13 (-365) (-1181) (-1002))) (-5 *1 (-174 *3))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-453))) (-5 *1 (-1187 *3 *2)) (-4 *2 (-13 (-432 *3) (-1181)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1084 (-215))) (-5 *1 (-926)))) ((*1 *2 *1) (-12 (-5 *2 (-1084 (-215))) (-5 *1 (-927))))) +(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-634 (-568))) (-5 *3 (-679 (-568))) (-5 *1 (-1100))))) +(((*1 *2 *2) (-12 (-5 *1 (-586 *2)) (-4 *2 (-550))))) +(((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1249)) (-5 *1 (-1246))))) +(((*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-443 *3)) (-4 *3 (-1219 (-568)))))) +(((*1 *2 *1) (-12 (-4 *1 (-62 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-763)))) ((*1 *2 *1) (-12 (-4 *1 (-1050 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-5 *2 (-763))))) +(((*1 *2 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-1249)) (-5 *1 (-850))))) +(((*1 *1 *1 *1) (-5 *1 (-850)))) +(((*1 *1 *2) (-12 (-5 *2 (-634 (-2 (|:| |gen| *3) (|:| -1892 *4)))) (-4 *3 (-1090)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-638 *3 *4 *5))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-568))))))) (-5 *2 (-2 (|:| |solns| (-634 *5)) (|:| |maps| (-634 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1116 *3 *5)) (-4 *3 (-1219 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-955)) (-5 *2 (-634 (-634 (-944 (-215))))))) ((*1 *2 *1) (-12 (-4 *1 (-975)) (-5 *2 (-634 (-634 (-944 (-215)))))))) +(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-917)) (-5 *4 (-215)) (-5 *5 (-568)) (-5 *6 (-869)) (-5 *2 (-1249)) (-5 *1 (-1245))))) +(((*1 *2 *3) (-12 (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *6 (-230 (-1697 *5) (-763))) (-5 *2 (-3 (-634 *7) "failed" "Infinite" (-568))) (-5 *1 (-31 *4 *5 *3 *6 *7)) (-4 *3 (-950 *4 *6 (-852 *5))) (-4 *7 (-971 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *6 (-230 (-1697 *5) (-763))) (-5 *2 (-3 (-634 *7) "failed" "Infinite" (-568))) (-5 *1 (-32 *4 *5 *3 *6 *7)) (-4 *3 (-950 *4 *6 (-852 *5))) (-4 *7 (-971 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-1157 (-1157 *4))) (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *7 (-230 (-1697 *5) (-763))) (-5 *2 (-3 (-634 *8) "failed" "Infinite" (-568))) (-5 *1 (-32 *4 *5 *6 *7 *8)) (-4 *6 (-950 *4 *7 (-852 *5))) (-4 *8 (-971 *4))))) +(((*1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-926))))) +(((*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-817))))) +(((*1 *2 *2) (-12 (-5 *2 (-634 *6)) (-4 *6 (-1061 *3 *4 *5)) (-4 *3 (-558)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *1 (-978 *3 *4 *5 *6))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-634 (-634 (-634 *4)))) (-5 *2 (-634 (-634 *4))) (-4 *4 (-842)) (-5 *1 (-1167 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *1 (-638 *2 *3 *4)) (-4 *2 (-1090)) (-4 *3 (-23)) (-14 *4 *3)))) +(((*1 *2 *3) (-12 (-5 *2 (-409 (-568))) (-5 *1 (-565)) (-5 *3 (-568)))) ((*1 *2 *3) (-12 (-5 *2 (-1157 (-409 (-568)))) (-5 *1 (-943)) (-5 *3 (-568))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-763)) (-5 *1 (-778 *2)) (-4 *2 (-43 (-409 (-568)))) (-4 *2 (-172))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1161)) (-5 *2 (-439)) (-5 *1 (-1165))))) +(((*1 *1) (-5 *1 (-147))) ((*1 *1 *1) (-5 *1 (-850)))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2721 *3))) (-5 *1 (-970 *4 *3)) (-4 *3 (-1219 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-121)))) ((*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-121)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-950 *3 *4 *5)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-1063 *4 *3)) (-4 *4 (-13 (-840) (-365))) (-4 *3 (-1219 *4)) (-5 *2 (-121))))) +(((*1 *2 *3) (|partial| -12 (-4 *4 (-1199)) (-4 *5 (-1219 *4)) (-5 *2 (-2 (|:| |radicand| (-409 *5)) (|:| |deg| (-763)))) (-5 *1 (-151 *4 *5 *3)) (-4 *3 (-1219 (-409 *5)))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-634 (-634 *8))) (-5 *3 (-634 *8)) (-4 *8 (-1061 *5 *6 *7)) (-4 *5 (-558)) (-4 *6 (-788)) (-4 *7 (-842)) (-5 *2 (-121)) (-5 *1 (-978 *5 *6 *7 *8))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-917)) (-5 *4 (-420 *6)) (-4 *6 (-1219 *5)) (-4 *5 (-1047)) (-5 *2 (-634 *6)) (-5 *1 (-445 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-235 *3)) (-4 *3 (-1090)) (-5 *2 (-634 *3))))) +(((*1 *2 *2 *1) (-12 (-5 *2 (-1266 *3 *4)) (-4 *1 (-376 *3 *4)) (-4 *3 (-842)) (-4 *4 (-172)))) ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-388 *2)) (-4 *2 (-1090)))) ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-814 *2)) (-4 *2 (-842)))) ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-814 *2)) (-4 *2 (-842)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1259 *2 *3)) (-4 *2 (-842)) (-4 *3 (-1047)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-814 *3)) (-4 *1 (-1259 *3 *4)) (-4 *3 (-842)) (-4 *4 (-1047)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1259 *2 *3)) (-4 *2 (-842)) (-4 *3 (-1047))))) +(((*1 *1 *2) (-12 (-5 *1 (-219 *2)) (-4 *2 (-13 (-365) (-1181)))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -2850 *4) (|:| -2183 *4) (|:| |totalpts| (-568)) (|:| |success| (-121)))) (-5 *1 (-784)) (-5 *5 (-568))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1143)) (-5 *3 (-634 (-256))) (-5 *1 (-254)))) ((*1 *1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-256))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *3 (-634 *6)) (-4 *6 (-842)) (-4 *4 (-365)) (-4 *5 (-788)) (-5 *1 (-514 *4 *5 *6 *2)) (-4 *2 (-950 *4 *5 *6)))) ((*1 *1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *1 (-514 *3 *4 *5 *2)) (-4 *2 (-950 *3 *4 *5))))) +(((*1 *2 *3 *4 *4) (-12 (-5 *3 (-634 *5)) (-5 *4 (-568)) (-4 *5 (-840)) (-4 *5 (-365)) (-5 *2 (-763)) (-5 *1 (-946 *5 *6)) (-4 *6 (-1219 *5))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-887 *4)) (-4 *4 (-1090)) (-5 *1 (-885 *4 *3)) (-4 *3 (-1195)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-57)) (-5 *1 (-887 *3)) (-4 *3 (-1090))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-634 *6)) (-4 *6 (-950 *4 *7 (-852 *5))) (-4 *7 (-230 (-1697 *5) (-763))) (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *8 (-971 *4)) (-4 *9 (-641 *4)) (-4 *10 (-920 *4 *9)) (-4 *3 (-235 *10)) (-4 *11 (-536 *4 *5 *6 *7 *8 *9 *10 *3 *13)) (-4 *13 (-117)) (-5 *1 (-467 *4 *5 *6 *7 *8 *9 *10 *3 *11 *12 *13)) (-4 *12 (-258 *11)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-634 *6)) (-4 *6 (-950 *4 *7 (-852 *5))) (-4 *7 (-230 (-1697 *5) (-763))) (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *9 (-641 *4)) (-4 *10 (-920 *4 *9)) (-5 *1 (-562 *4 *5 *6 *7 *8 *9 *10 *3)) (-4 *8 (-971 *4)) (-4 *3 (-235 *10)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-236 (-922 *5))) (-5 *4 (-634 (-242 *6 *5))) (-4 *5 (-350)) (-14 *6 (-634 (-1161))) (-5 *2 (-634 (-242 *6 (-857 *5)))) (-5 *1 (-867 *5 *6 *7)) (-4 *7 (-117)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-634 (-242 *5 *4))) (-5 *3 (-236 (-921 *4))) (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-5 *1 (-868 *4 *5 *6)) (-4 *6 (-117))))) +(((*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-43 (-409 (-568)))) (-4 *2 (-1047))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-679 *3)) (-4 *3 (-1047)) (-5 *1 (-1028 *3)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-634 (-679 *3))) (-4 *3 (-1047)) (-5 *1 (-1028 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-679 *3)) (-4 *3 (-1047)) (-5 *1 (-1028 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-634 (-679 *3))) (-4 *3 (-1047)) (-5 *1 (-1028 *3))))) +(((*1 *2 *3 *4) (|partial| -12 (-5 *4 (-409 *2)) (-4 *2 (-1219 *5)) (-5 *1 (-802 *5 *2 *3 *6)) (-4 *5 (-13 (-365) (-150) (-1037 (-409 (-568))))) (-4 *3 (-646 *2)) (-4 *6 (-646 *4)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-634 (-409 *2))) (-4 *2 (-1219 *5)) (-5 *1 (-802 *5 *2 *3 *6)) (-4 *5 (-13 (-365) (-150) (-1037 (-409 (-568))))) (-4 *3 (-646 *2)) (-4 *6 (-646 (-409 *2)))))) +(((*1 *1) (-12 (-4 *1 (-406)) (-3044 (|has| *1 (-6 -4510))) (-3044 (|has| *1 (-6 -4502))))) ((*1 *2 *1) (-12 (-4 *1 (-427 *2)) (-4 *2 (-1090)) (-4 *2 (-842)))) ((*1 *2 *1) (-12 (-4 *1 (-825 *2)) (-4 *2 (-842)))) ((*1 *1 *1 *1) (-4 *1 (-842))) ((*1 *1) (-5 *1 (-1108)))) +(((*1 *2) (-12 (-5 *2 (-1249)) (-5 *1 (-1197))))) +(((*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-365) (-150) (-1037 (-568)) (-1037 (-409 (-568))))) (-4 *5 (-1219 *4)) (-5 *2 (-634 (-643 (-409 *5)))) (-5 *1 (-647 *4 *5)) (-5 *3 (-643 (-409 *5)))))) +(((*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-558) (-150))) (-5 *2 (-2 (|:| -3028 *3) (|:| -3284 *3))) (-5 *1 (-1213 *4 *3)) (-4 *3 (-1219 *4))))) +(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4520)) (-4 *1 (-1231 *2)) (-4 *2 (-1195))))) +(((*1 *2 *3 *4 *2) (-12 (-5 *2 (-634 (-634 (-634 *5)))) (-5 *3 (-1 (-121) *5 *5)) (-5 *4 (-634 *5)) (-4 *5 (-842)) (-5 *1 (-1167 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-568)) (-4 *4 (-1219 (-409 *3))) (-5 *2 (-917)) (-5 *1 (-909 *4 *5)) (-4 *5 (-1219 (-409 *4)))))) +(((*1 *2 *1) (-12 (-4 *1 (-975)) (-5 *2 (-1084 (-215)))))) +(((*1 *2 *1) (-12 (-5 *2 (-634 (-2 (|:| |gen| *3) (|:| -1892 *4)))) (-5 *1 (-638 *3 *4 *5)) (-4 *3 (-1090)) (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-64 *6)) (-4 *6 (-1195)) (-4 *5 (-1195)) (-5 *2 (-64 *5)) (-5 *1 (-63 *6 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-232 *6 *7)) (-14 *6 (-763)) (-4 *7 (-1195)) (-4 *5 (-1195)) (-5 *2 (-232 *6 *5)) (-5 *1 (-231 *6 *7 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1195)) (-4 *5 (-1195)) (-4 *2 (-375 *5)) (-5 *1 (-373 *6 *4 *5 *2)) (-4 *4 (-375 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1090)) (-4 *5 (-1090)) (-4 *2 (-427 *5)) (-5 *1 (-425 *6 *4 *5 *2)) (-4 *4 (-427 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-634 *6)) (-4 *6 (-1195)) (-4 *5 (-1195)) (-5 *2 (-634 *5)) (-5 *1 (-632 *6 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-958 *6)) (-4 *6 (-1195)) (-4 *5 (-1195)) (-5 *2 (-958 *5)) (-5 *1 (-957 *6 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1141 *6)) (-4 *6 (-1195)) (-4 *3 (-1195)) (-5 *2 (-1141 *3)) (-5 *1 (-1139 *6 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1244 *6)) (-4 *6 (-1195)) (-4 *5 (-1195)) (-5 *2 (-1244 *5)) (-5 *1 (-1243 *6 *5))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1143)) (-4 *1 (-366 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-39)) (-5 *3 (-763)) (-5 *2 (-121)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-5 *2 (-121)) (-5 *1 (-96 *4)) (-4 *4 (-1090)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-5 *2 (-121)) (-5 *1 (-212 *4)) (-4 *4 (-1090)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-5 *2 (-121)) (-5 *1 (-494 *4)) (-4 *4 (-842)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-5 *2 (-121)) (-5 *1 (-1000 *4)) (-4 *4 (-1090)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-5 *2 (-121)) (-5 *1 (-1132 *4)) (-4 *4 (-1090))))) +(((*1 *2 *3) (-12 (-5 *2 (-1141 (-568))) (-5 *1 (-1145 *4)) (-4 *4 (-1047)) (-5 *3 (-568))))) +(((*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-1164))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-777 *2)) (-4 *2 (-1047)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1061 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-788)) (-4 *4 (-842))))) +(((*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-840))) (-5 *2 (-2 (|:| |start| *3) (|:| -3276 (-420 *3)))) (-5 *1 (-178 *4 *3)) (-4 *3 (-1219 (-169 *4)))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-568) (-568))) (-5 *1 (-363 *3)) (-4 *3 (-1090)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-763) (-763))) (-5 *1 (-388 *3)) (-4 *3 (-1090)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-638 *3 *4 *5)) (-4 *3 (-1090))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-301)) (-5 *1 (-177 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-634 (-288 *3))) (-5 *1 (-288 *3)) (-4 *3 (-558)) (-4 *3 (-1195))))) +(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1161))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-215)) (|:| |phi| (-215)) (|:| -3646 (-215)) (|:| |scaleX| (-215)) (|:| |scaleY| (-215)) (|:| |scaleZ| (-215)) (|:| |deltaX| (-215)) (|:| |deltaY| (-215)))) (-5 *3 (-634 (-256))) (-5 *1 (-254)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-215)) (|:| |phi| (-215)) (|:| -3646 (-215)) (|:| |scaleX| (-215)) (|:| |scaleY| (-215)) (|:| |scaleZ| (-215)) (|:| |deltaX| (-215)) (|:| |deltaY| (-215)))) (-5 *1 (-256)))) ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1249)) (-5 *1 (-1246)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1249)) (-5 *1 (-1246)))) ((*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-568)) (-5 *4 (-381)) (-5 *2 (-1249)) (-5 *1 (-1246)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-215)) (|:| |phi| (-215)) (|:| -3646 (-215)) (|:| |scaleX| (-215)) (|:| |scaleY| (-215)) (|:| |scaleZ| (-215)) (|:| |deltaX| (-215)) (|:| |deltaY| (-215)))) (-5 *2 (-1249)) (-5 *1 (-1246)))) ((*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-215)) (|:| |phi| (-215)) (|:| -3646 (-215)) (|:| |scaleX| (-215)) (|:| |scaleY| (-215)) (|:| |scaleZ| (-215)) (|:| |deltaX| (-215)) (|:| |deltaY| (-215)))) (-5 *1 (-1246)))) ((*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1249)) (-5 *1 (-1246))))) +(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-887 *3)) (-4 *3 (-1090)))) ((*1 *2 *1) (-12 (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-121))))) +(((*1 *2 *3) (-12 (-4 *4 (-13 (-558) (-842) (-1037 (-568)))) (-4 *5 (-432 *4)) (-5 *2 (-3 (|:| |overq| (-1157 (-409 (-568)))) (|:| |overan| (-1157 (-53))) (|:| -3483 (-121)))) (-5 *1 (-437 *4 *5 *3)) (-4 *3 (-1219 *5))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-568)) (-5 *4 (-1 (-1249) (-1094))) (-5 *2 (-1249)) (-5 *1 (-102))))) +(((*1 *2 *3 *4 *5) (-12 (-5 *5 (-763)) (-4 *6 (-453)) (-4 *7 (-788)) (-4 *8 (-842)) (-4 *3 (-1061 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-634 *4)) (|:| |todo| (-634 (-2 (|:| |val| (-634 *3)) (|:| -3001 *4)))))) (-5 *1 (-1064 *6 *7 *8 *3 *4)) (-4 *4 (-1066 *6 *7 *8 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *3 (-1061 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-634 *4)) (|:| |todo| (-634 (-2 (|:| |val| (-634 *3)) (|:| -3001 *4)))))) (-5 *1 (-1064 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *5 (-763)) (-4 *6 (-453)) (-4 *7 (-788)) (-4 *8 (-842)) (-4 *3 (-1061 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-634 *4)) (|:| |todo| (-634 (-2 (|:| |val| (-634 *3)) (|:| -3001 *4)))))) (-5 *1 (-1130 *6 *7 *8 *3 *4)) (-4 *4 (-1099 *6 *7 *8 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *3 (-1061 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-634 *4)) (|:| |todo| (-634 (-2 (|:| |val| (-634 *3)) (|:| -3001 *4)))))) (-5 *1 (-1130 *5 *6 *7 *3 *4)) (-4 *4 (-1099 *5 *6 *7 *3))))) +(((*1 *1 *1) (-4 *1 (-1129)))) +(((*1 *1 *2) (-12 (-5 *2 (-634 *1)) (-4 *1 (-453)))) ((*1 *1 *1 *1) (-4 *1 (-453)))) +(((*1 *1 *2) (-12 (-5 *2 (-409 (-568))) (-5 *1 (-112)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-634 (-541))) (-5 *1 (-541))))) +(((*1 *2 *3) (-12 (-4 *4 (-842)) (-5 *2 (-634 (-634 *4))) (-5 *1 (-1167 *4)) (-5 *3 (-634 *4))))) +(((*1 *2 *2 *1) (-12 (-5 *2 (-634 *6)) (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1061 *3 *4 *5)) (-4 *3 (-558))))) +(((*1 *2 *1) (-12 (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-121))))) +(((*1 *2 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-381)) (-5 *1 (-99)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-381)) (-5 *1 (-99))))) +(((*1 *2 *3) (-12 (-5 *3 (-310 (-215))) (-5 *2 (-409 (-568))) (-5 *1 (-299))))) +(((*1 *2 *3) (-12 (-5 *2 (-568)) (-5 *1 (-446 *3)) (-4 *3 (-406)) (-4 *3 (-1047))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-121)) (-4 *5 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-3 (|:| |%expansion| (-307 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1143)) (|:| |prob| (-1143)))))) (-5 *1 (-422 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1181) (-432 *5))) (-14 *6 (-1161)) (-14 *7 *3)))) +(((*1 *2) (-12 (-5 *2 (-869)) (-5 *1 (-1247)))) ((*1 *2 *2) (-12 (-5 *2 (-869)) (-5 *1 (-1247))))) +(((*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-43 (-409 (-568)))) (-4 *2 (-1047))))) +(((*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1161)) (-4 *4 (-13 (-301) (-842) (-150) (-1037 (-568)) (-630 (-568)))) (-5 *1 (-579 *4 *2)) (-4 *2 (-13 (-1181) (-959) (-1124) (-29 *4)))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-1047))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 (-492 *4 *5))) (-14 *4 (-634 (-1161))) (-4 *5 (-453)) (-5 *2 (-2 (|:| |gblist| (-634 (-242 *4 *5))) (|:| |gvlist| (-634 (-568))))) (-5 *1 (-622 *4 *5))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-453))) (-5 *1 (-1187 *3 *2)) (-4 *2 (-13 (-432 *3) (-1181)))))) +(((*1 *2 *3) (-12 (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *6 (-950 *4 *7 (-852 *5))) (-4 *7 (-230 (-1697 *5) (-763))) (-4 *8 (-971 *4)) (-4 *9 (-641 *4)) (-4 *10 (-920 *4 *9)) (-4 *11 (-536 *4 *5 *6 *7 *8 *9 *10 *2 *12)) (-4 *12 (-117)) (-4 *2 (-235 *10)) (-5 *1 (-260 *4 *5 *6 *7 *8 *9 *10 *2 *11 *3 *12)) (-4 *3 (-258 *11)))) ((*1 *2) (-12 (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *6 (-230 (-1697 *4) (-763))) (-4 *7 (-971 *3)) (-4 *8 (-641 *3)) (-4 *9 (-920 *3 *8)) (-4 *10 (-536 *3 *4 *5 *6 *7 *8 *9 *2 *12)) (-4 *12 (-117)) (-4 *2 (-235 *9)) (-5 *1 (-467 *3 *4 *5 *6 *7 *8 *9 *2 *10 *11 *12)) (-4 *11 (-258 *10)))) ((*1 *2) (-12 (-5 *2 (-236 (-922 *3))) (-5 *1 (-867 *3 *4 *5)) (-4 *3 (-350)) (-14 *4 (-634 (-1161))) (-4 *5 (-117)))) ((*1 *2) (-12 (-5 *2 (-236 (-921 *3))) (-5 *1 (-868 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *5 (-117))))) +(((*1 *2 *3 *3 *4) (-12 (-5 *4 (-763)) (-4 *5 (-558)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-970 *5 *3)) (-4 *3 (-1219 *5))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-436)) (-5 *2 (-634 (-3 (|:| -3391 (-1161)) (|:| |bounds| (-634 (-3 (|:| S (-1161)) (|:| P (-953 (-568))))))))) (-5 *1 (-1165))))) +(((*1 *2 *3) (-12 (-4 *4 (-350)) (-5 *2 (-420 *3)) (-5 *1 (-344 *4 *3)) (-4 *3 (-1219 *4))))) +(((*1 *1) (-12 (-4 *1 (-37 *2)) (-4 *2 (-365))))) +(((*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-568))))))) (-5 *2 (-634 *4)) (-5 *1 (-1116 *3 *4)) (-4 *3 (-1219 *4)))) ((*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-568))))))) (-5 *2 (-634 *3)) (-5 *1 (-1116 *4 *3)) (-4 *4 (-1219 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1246)))) ((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1246))))) +(((*1 *1 *2) (-12 (-5 *2 (-634 (-850))) (-5 *1 (-850)))) ((*1 *1 *1 *1) (-5 *1 (-850)))) +(((*1 *1 *2) (-12 (-5 *2 (-634 (-634 *3))) (-4 *3 (-1090)) (-5 *1 (-1168 *3))))) +(((*1 *2 *3 *4) (|partial| -12 (-5 *4 (-288 (-828 *3))) (-4 *5 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-828 *3)) (-5 *1 (-627 *5 *3)) (-4 *3 (-13 (-27) (-1181) (-432 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-288 (-828 (-953 *5)))) (-4 *5 (-453)) (-5 *2 (-828 (-409 (-953 *5)))) (-5 *1 (-628 *5)) (-5 *3 (-409 (-953 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-288 (-409 (-953 *5)))) (-5 *3 (-409 (-953 *5))) (-4 *5 (-453)) (-5 *2 (-828 *3)) (-5 *1 (-628 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-763)) (-5 *2 (-1249)) (-5 *1 (-381)))) ((*1 *2) (-12 (-5 *2 (-1249)) (-5 *1 (-381))))) +(((*1 *2 *2) (-12 (-4 *3 (-558)) (-4 *4 (-993 *3)) (-5 *1 (-143 *3 *4 *2)) (-4 *2 (-375 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-993 *4)) (-4 *2 (-375 *4)) (-5 *1 (-512 *4 *5 *2 *3)) (-4 *3 (-375 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-679 *5)) (-4 *5 (-993 *4)) (-4 *4 (-558)) (-5 *2 (-679 *4)) (-5 *1 (-682 *4 *5)))) ((*1 *2 *2) (-12 (-4 *3 (-558)) (-4 *4 (-993 *3)) (-5 *1 (-1212 *3 *4 *2)) (-4 *2 (-1219 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 (-2 (|:| -3848 *4) (|:| -3206 (-568))))) (-4 *4 (-1219 (-568))) (-5 *2 (-727 (-763))) (-5 *1 (-443 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-420 *5)) (-4 *5 (-1219 *4)) (-4 *4 (-1047)) (-5 *2 (-727 (-763))) (-5 *1 (-445 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-1149 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1047))))) +(((*1 *1 *2) (-12 (-5 *2 (-634 (-850))) (-5 *1 (-850)))) ((*1 *1 *1) (-5 *1 (-850)))) +(((*1 *2 *3) (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-365)) (-5 *1 (-529 *2 *4 *5 *3)) (-4 *3 (-677 *2 *4 *5)))) ((*1 *2 *1) (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (|has| *2 (-6 (-4521 "*"))) (-4 *2 (-1047)))) ((*1 *2 *3) (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-172)) (-5 *1 (-678 *2 *4 *5 *3)) (-4 *3 (-677 *2 *4 *5)))) ((*1 *2 *1) (-12 (-4 *1 (-1111 *3 *2 *4 *5)) (-4 *4 (-230 *3 *2)) (-4 *5 (-230 *3 *2)) (|has| *2 (-6 (-4521 "*"))) (-4 *2 (-1047))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-910 *3)) (-4 *3 (-301))))) +(((*1 *2 *1) (-12 (-5 *2 (-1084 *3)) (-5 *1 (-1082 *3)) (-4 *3 (-1195)))) ((*1 *1 *2 *2) (-12 (-4 *1 (-1083 *2)) (-4 *2 (-1195)))) ((*1 *1 *2) (-12 (-5 *1 (-1210 *2)) (-4 *2 (-1195))))) +(((*1 *2 *1) (-12 (-4 *2 (-558)) (-5 *1 (-615 *2 *3)) (-4 *3 (-1219 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-817)) (-5 *1 (-816))))) +(((*1 *1 *1 *1) (-5 *1 (-121))) ((*1 *1 *1 *1) (-4 *1 (-132)))) +(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-869))))) +(((*1 *2 *1) (-12 (-4 *1 (-117)) (-5 *2 (-568))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1143)) (-5 *1 (-1177))))) +(((*1 *2 *1) (-12 (-4 *1 (-117)) (-5 *2 (-568))))) +(((*1 *2 *1) (|partial| -12 (-4 *1 (-641 *3)) (-4 *3 (-365)) (-5 *2 (-568))))) +(((*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1157 *4)) (-5 *1 (-358 *4)) (-4 *4 (-350))))) +(((*1 *1 *1 *2) (-12 (-5 *1 (-1125 *3 *2)) (-4 *3 (-13 (-1090) (-39))) (-4 *2 (-13 (-1090) (-39)))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 (-465))) (-5 *2 (-1249)) (-5 *1 (-465))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-568)) (-4 *1 (-62 *4 *5 *3)) (-4 *4 (-1195)) (-4 *5 (-375 *4)) (-4 *3 (-375 *4))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-365)) (-5 *1 (-758 *2 *3)) (-4 *2 (-698 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-844 *2)) (-4 *2 (-1047)) (-4 *2 (-365))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-568)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-420 *4)) (-4 *4 (-558))))) +(((*1 *2 *3) (-12 (-4 *4 (-788)) (-4 *5 (-13 (-842) (-10 -8 (-15 -4278 ((-1161) $))))) (-4 *6 (-558)) (-5 *2 (-2 (|:| -1462 (-953 *6)) (|:| -3582 (-953 *6)))) (-5 *1 (-722 *4 *5 *6 *3)) (-4 *3 (-950 (-409 (-953 *6)) *4 *5))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-96 *3)) (-4 *3 (-1090)) (-4 *3 (-1090)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-105)) (-5 *2 (-121)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-212 *3)) (-4 *3 (-1090)) (-4 *3 (-1090)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-494 *3)) (-4 *3 (-1090)) (-4 *3 (-842)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1000 *3)) (-4 *3 (-1090)) (-4 *3 (-1090)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1132 *3)) (-4 *3 (-1090)) (-4 *3 (-1090))))) +(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-139))))) +(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-184))))) +(((*1 *2 *3) (-12 (-5 *3 (-763)) (-5 *2 (-381)) (-5 *1 (-1039))))) +(((*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-607 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1161))) (-5 *5 (-1157 *2)) (-4 *2 (-13 (-432 *6) (-27) (-1181))) (-4 *6 (-13 (-453) (-1037 (-568)) (-842) (-150) (-630 (-568)))) (-5 *1 (-564 *6 *2 *7)) (-4 *7 (-1090)))) ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-607 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1161))) (-5 *5 (-409 (-1157 *2))) (-4 *2 (-13 (-432 *6) (-27) (-1181))) (-4 *6 (-13 (-453) (-1037 (-568)) (-842) (-150) (-630 (-568)))) (-5 *1 (-564 *6 *2 *7)) (-4 *7 (-1090))))) +(((*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 (-409 *4))) (-5 *2 (-1244 *6)) (-5 *1 (-334 *3 *4 *5 *6)) (-4 *6 (-340 *3 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1157 *4)) (-5 *1 (-358 *4)) (-4 *4 (-350))))) +(((*1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-926))))) +(((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-409 (-953 *4))) (-5 *3 (-1161)) (-4 *4 (-13 (-558) (-1037 (-568)) (-150))) (-5 *1 (-574 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-944 *2)) (-5 *1 (-983 *2)) (-4 *2 (-1047))))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-970 *4 *3)) (-4 *3 (-1219 *4))))) +(((*1 *2 *1 *3 *2) (-12 (-5 *3 (-568)) (-4 *1 (-37 *2)) (-4 *2 (-365)))) ((*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-568)) (-4 *1 (-62 *2 *4 *5)) (-4 *2 (-1195)) (-4 *4 (-375 *2)) (-4 *5 (-375 *2)))) ((*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4520)) (-4 *1 (-128 *3)) (-4 *3 (-1195)))) ((*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4520)) (-4 *1 (-128 *3)) (-4 *3 (-1195)))) ((*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4520)) (-4 *1 (-283 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-1195)))) ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-57)) (-5 *3 (-1161)) (-5 *1 (-623)))) ((*1 *2 *1 *3 *2) (-12 (-5 *3 (-1210 (-568))) (|has| *1 (-6 -4520)) (-4 *1 (-640 *2)) (-4 *2 (-1195)))) ((*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-634 (-568))) (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) ((*1 *2 *1 *3 *2) (-12 (-5 *3 (-568)) (-4 *1 (-971 *2)) (-4 *2 (-365)))) ((*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4520)) (-4 *1 (-1010 *2)) (-4 *2 (-1195)))) ((*1 *2 *1 *2) (-12 (-5 *1 (-1026 *2)) (-4 *2 (-1195)))) ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-1172 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-1090)))) ((*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4520)) (-4 *1 (-1231 *2)) (-4 *2 (-1195)))) ((*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4520)) (-4 *1 (-1231 *3)) (-4 *3 (-1195)))) ((*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4520)) (-4 *1 (-1231 *2)) (-4 *2 (-1195))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-453))) (-5 *1 (-1187 *3 *2)) (-4 *2 (-13 (-432 *3) (-1181)))))) +(((*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-763)) (-4 *3 (-558)) (-5 *1 (-970 *3 *2)) (-4 *2 (-1219 *3))))) +(((*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-121)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-121))))) +(((*1 *2 *1) (-12 (-4 *1 (-427 *3)) (-4 *3 (-1090)) (-5 *2 (-763))))) +(((*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1247)))) ((*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1247))))) +(((*1 *1 *1 *1) (-4 *1 (-651))) ((*1 *1 *1 *1) (-5 *1 (-1108)))) +(((*1 *1 *1) (-12 (-4 *1 (-1061 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-788)) (-4 *4 (-842))))) +(((*1 *2 *2) (-12 (-5 *2 (-944 *3)) (-4 *3 (-13 (-365) (-1181) (-1002))) (-5 *1 (-174 *3))))) +(((*1 *1 *1) (-4 *1 (-146))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-159 *3 *2)) (-4 *2 (-432 *3)))) ((*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-550))))) +(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (-5 *2 (-381)) (-5 *1 (-197))))) +(((*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-550)) (-5 *2 (-409 (-568))))) ((*1 *2 *1) (-12 (-5 *2 (-409 (-568))) (-5 *1 (-420 *3)) (-4 *3 (-550)) (-4 *3 (-558)))) ((*1 *2 *1) (-12 (-4 *1 (-550)) (-5 *2 (-409 (-568))))) ((*1 *2 *1) (-12 (-4 *1 (-792 *3)) (-4 *3 (-172)) (-4 *3 (-550)) (-5 *2 (-409 (-568))))) ((*1 *2 *1) (-12 (-5 *2 (-409 (-568))) (-5 *1 (-828 *3)) (-4 *3 (-550)) (-4 *3 (-1090)))) ((*1 *2 *1) (-12 (-5 *2 (-409 (-568))) (-5 *1 (-835 *3)) (-4 *3 (-550)) (-4 *3 (-1090)))) ((*1 *2 *1) (-12 (-4 *1 (-997 *3)) (-4 *3 (-172)) (-4 *3 (-550)) (-5 *2 (-409 (-568))))) ((*1 *2 *3) (-12 (-5 *2 (-409 (-568))) (-5 *1 (-1008 *3)) (-4 *3 (-1037 *2))))) +(((*1 *1 *1 *1) (-4 *1 (-651))) ((*1 *1 *1 *1) (-5 *1 (-1108)))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-310 (-215))) (-5 *1 (-263))))) +(((*1 *2 *1) (-12 (-4 *3 (-453)) (-4 *4 (-842)) (-4 *5 (-788)) (-5 *2 (-634 *6)) (-5 *1 (-988 *3 *4 *5 *6)) (-4 *6 (-950 *3 *5 *4))))) +(((*1 *1 *1) (-12 (-4 *1 (-641 *2)) (-4 *2 (-365))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-844 *2)) (-4 *2 (-1047)) (-4 *2 (-365))))) +(((*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-1090)) (-5 *1 (-727 *3)))) ((*1 *1 *2) (-12 (-5 *1 (-727 *2)) (-4 *2 (-1090)))) ((*1 *1) (-12 (-5 *1 (-727 *2)) (-4 *2 (-1090))))) +(((*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-623))))) +(((*1 *2 *1) (-12 (-4 *1 (-1122 *3)) (-4 *3 (-1047)) (-5 *2 (-634 (-634 (-634 (-763)))))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-634 (-634 (-944 (-215))))) (-5 *3 (-634 (-869))) (-5 *1 (-473))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-634 *8)) (-5 *4 (-121)) (-4 *8 (-1061 *5 *6 *7)) (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-5 *2 (-634 *10)) (-5 *1 (-616 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1066 *5 *6 *7 *8)) (-4 *10 (-1099 *5 *6 *7 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-775 *5 (-852 *6)))) (-5 *4 (-121)) (-4 *5 (-453)) (-14 *6 (-634 (-1161))) (-5 *2 (-634 (-1044 *5 *6))) (-5 *1 (-619 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-775 *5 (-852 *6)))) (-5 *4 (-121)) (-4 *5 (-453)) (-14 *6 (-634 (-1161))) (-5 *2 (-634 (-1131 *5 (-534 (-852 *6)) (-852 *6) (-775 *5 (-852 *6))))) (-5 *1 (-619 *5 *6)))) ((*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-634 *8)) (-5 *4 (-121)) (-4 *8 (-1061 *5 *6 *7)) (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-5 *2 (-634 (-1027 *5 *6 *7 *8))) (-5 *1 (-1027 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-634 *8)) (-5 *4 (-121)) (-4 *8 (-1061 *5 *6 *7)) (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-5 *2 (-634 (-1027 *5 *6 *7 *8))) (-5 *1 (-1027 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-634 (-775 *5 (-852 *6)))) (-5 *4 (-121)) (-4 *5 (-453)) (-14 *6 (-634 (-1161))) (-5 *2 (-634 (-1044 *5 *6))) (-5 *1 (-1044 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 *8)) (-5 *4 (-121)) (-4 *8 (-1061 *5 *6 *7)) (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-5 *2 (-634 *1)) (-4 *1 (-1066 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-634 *8)) (-5 *4 (-121)) (-4 *8 (-1061 *5 *6 *7)) (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-5 *2 (-634 (-1131 *5 *6 *7 *8))) (-5 *1 (-1131 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-634 *8)) (-5 *4 (-121)) (-4 *8 (-1061 *5 *6 *7)) (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-5 *2 (-634 (-1131 *5 *6 *7 *8))) (-5 *1 (-1131 *5 *6 *7 *8)))) ((*1 *2 *3) (-12 (-5 *3 (-634 *7)) (-4 *7 (-1061 *4 *5 *6)) (-4 *4 (-558)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-634 *1)) (-4 *1 (-1189 *4 *5 *6 *7))))) +(((*1 *1 *2) (-12 (-5 *2 (-634 (-328))) (-5 *1 (-328))))) +(((*1 *1 *1 *1) (-4 *1 (-146))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-159 *3 *2)) (-4 *2 (-432 *3)))) ((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-550))))) +(((*1 *1 *1 *1) (-4 *1 (-301))) ((*1 *1 *1 *1) (-5 *1 (-763))) ((*1 *1 *1 *1) (-5 *1 (-850)))) +(((*1 *2 *3) (-12 (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *3 (-950 *4 *6 (-852 *5))) (-4 *6 (-230 (-1697 *5) (-763))) (-4 *7 (-971 *4)) (-4 *8 (-641 *4)) (-4 *9 (-920 *4 *8)) (-4 *10 (-536 *4 *5 *3 *6 *7 *8 *9 *2 *12)) (-4 *12 (-117)) (-4 *2 (-235 *9)) (-5 *1 (-467 *4 *5 *3 *6 *7 *8 *9 *2 *10 *11 *12)) (-4 *11 (-258 *10)))) ((*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-634 *13)) (-5 *5 (-634 *9)) (-4 *9 (-971 *6)) (-4 *13 (-258 *12)) (-4 *6 (-365)) (-4 *12 (-536 *6 *7 *3 *8 *9 *10 *11 *2 *14)) (-4 *14 (-117)) (-14 *7 (-634 (-1161))) (-4 *3 (-950 *6 *8 (-852 *7))) (-4 *8 (-230 (-1697 *7) (-763))) (-4 *10 (-641 *6)) (-4 *11 (-920 *6 *10)) (-4 *2 (-235 *11)) (-5 *1 (-556 *6 *7 *3 *8 *9 *10 *11 *2 *12 *13 *14)))) ((*1 *2 *3) (-12 (-5 *3 (-242 *5 *4)) (-4 *4 (-350)) (-14 *5 (-634 (-1161))) (-5 *2 (-236 (-922 *4))) (-5 *1 (-867 *4 *5 *6)) (-4 *6 (-117)))) ((*1 *2 *3) (-12 (-5 *3 (-242 *5 *4)) (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-5 *2 (-236 (-921 *4))) (-5 *1 (-868 *4 *5 *6)) (-4 *6 (-117))))) +(((*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-43 (-409 (-568)))) (-4 *2 (-1047))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *4 (-1047)) (-4 *5 (-788)) (-4 *3 (-842)) (-5 *2 (-2 (|:| -2348 *1) (|:| |gap| (-763)) (|:| -1500 *1))) (-4 *1 (-1061 *4 *5 *3)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-2 (|:| -2348 *1) (|:| |gap| (-763)) (|:| -1500 *1))) (-4 *1 (-1061 *3 *4 *5))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-363 *3)) (-4 *3 (-1090)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-568)) (-5 *2 (-763)) (-5 *1 (-388 *4)) (-4 *4 (-1090)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-568)) (-4 *2 (-23)) (-5 *1 (-638 *4 *2 *5)) (-4 *4 (-1090)) (-14 *5 *2))) ((*1 *2 *1 *3) (-12 (-5 *3 (-568)) (-5 *2 (-763)) (-5 *1 (-814 *4)) (-4 *4 (-842))))) +(((*1 *1 *1) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-842)) (-4 *3 (-172)))) ((*1 *1 *1) (-12 (-5 *1 (-618 *2 *3 *4)) (-4 *2 (-842)) (-4 *3 (-13 (-172) (-707 (-409 (-568))))) (-14 *4 (-917)))) ((*1 *1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-842)))) ((*1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-842)))) ((*1 *1 *1) (-12 (-4 *1 (-1259 *2 *3)) (-4 *2 (-842)) (-4 *3 (-1047))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-775 *5 (-852 *6)))) (-5 *4 (-121)) (-4 *5 (-453)) (-14 *6 (-634 (-1161))) (-5 *2 (-634 (-1044 *5 *6))) (-5 *1 (-619 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-1244 (-634 (-2 (|:| -2850 *4) (|:| -4355 (-1108)))))) (-4 *4 (-350)) (-5 *2 (-679 *4)) (-5 *1 (-347 *4))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-381)) (-5 *1 (-1059))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-1090)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-842))))) +(((*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1090)) (-4 *6 (-1090)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-673 *4 *5 *6)) (-4 *5 (-1090))))) +(((*1 *1 *1 *1) (-4 *1 (-301))) ((*1 *1 *1 *1) (-5 *1 (-763))) ((*1 *1 *1 *1) (-5 *1 (-850)))) +(((*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-57))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1143)) (-5 *3 (-818)) (-5 *1 (-817))))) +(((*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1247)))) ((*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1247))))) +(((*1 *2 *3) (-12 (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-301)) (-5 *2 (-634 (-763))) (-5 *1 (-771 *3 *4 *5 *6 *7)) (-4 *3 (-1219 *6)) (-4 *7 (-950 *6 *4 *5))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-634 (-634 *3))) (-4 *3 (-324 *4 *5)) (-4 *5 (-230 *6 (-763))) (-14 *6 (-763)) (-4 *4 (-1047)) (-5 *1 (-772 *4 *3 *5 *6))))) +(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4520)) (-4 *1 (-1231 *2)) (-4 *2 (-1195))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-1157 *1)) (-5 *4 (-1161)) (-4 *1 (-27)) (-5 *2 (-634 *1)))) ((*1 *2 *3) (-12 (-5 *3 (-1157 *1)) (-4 *1 (-27)) (-5 *2 (-634 *1)))) ((*1 *2 *3) (-12 (-5 *3 (-953 *1)) (-4 *1 (-27)) (-5 *2 (-634 *1)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1161)) (-4 *4 (-13 (-842) (-558))) (-5 *2 (-634 *1)) (-4 *1 (-29 *4)))) ((*1 *2 *1) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *2 (-634 *1)) (-4 *1 (-29 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-310 (-215))) (-5 *4 (-634 (-1161))) (-5 *5 (-1084 (-835 (-215)))) (-5 *2 (-1141 (-215))) (-5 *1 (-294))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 (-944 *3) (-944 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-365) (-1181) (-1002)))))) +(((*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-842)) (-5 *2 (-2 (|:| -2348 (-568)) (|:| |var| (-607 *1)))) (-4 *1 (-432 *3))))) +(((*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-1157 *3)) (-5 *1 (-46 *4 *3)) (-4 *3 (-13 (-365) (-296) (-10 -8 (-15 -2317 ((-1113 *4 (-607 $)) $)) (-15 -2324 ((-1113 *4 (-607 $)) $)) (-15 -2745 ($ (-1113 *4 (-607 $)))))))))) +(((*1 *2 *3) (-12 (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *6 (-950 *4 *7 (-852 *5))) (-4 *7 (-230 (-1697 *5) (-763))) (-4 *8 (-971 *4)) (-4 *9 (-641 *4)) (-4 *10 (-920 *4 *9)) (-4 *11 (-235 *10)) (-4 *12 (-536 *4 *5 *6 *7 *8 *9 *10 *11 *13)) (-4 *13 (-117)) (-5 *2 (-1249)) (-5 *1 (-260 *4 *5 *6 *7 *8 *9 *10 *11 *12 *3 *13)) (-4 *3 (-258 *12))))) +(((*1 *2 *3) (-12 (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-301)) (-5 *2 (-420 *3)) (-5 *1 (-732 *4 *5 *6 *3)) (-4 *3 (-950 *6 *4 *5))))) +(((*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-14 *6 (-634 (-1161))) (-4 *3 (-950 *5 *7 (-852 *6))) (-4 *7 (-230 (-1697 *6) (-763))) (-4 *8 (-971 *5)) (-4 *9 (-641 *5)) (-4 *10 (-920 *5 *9)) (-4 *11 (-536 *5 *6 *3 *7 *8 *9 *10 *2 *12)) (-4 *12 (-117)) (-4 *2 (-235 *10)) (-5 *1 (-260 *5 *6 *3 *7 *8 *9 *10 *2 *11 *4 *12)) (-4 *4 (-258 *11))))) +(((*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *7 (-1061 *4 *5 *6)) (-5 *2 (-634 (-2 (|:| -4092 *1) (|:| -1798 (-634 *7))))) (-5 *3 (-634 *7)) (-4 *1 (-1189 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-4 *1 (-1122 *3)) (-4 *3 (-1047)) (-5 *2 (-634 (-944 *3)))))) +(((*1 *2 *3 *4) (-12 (-5 *2 (-634 (-169 *4))) (-5 *1 (-157 *3 *4)) (-4 *3 (-1219 (-169 (-568)))) (-4 *4 (-13 (-365) (-840))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-840))) (-5 *2 (-634 (-169 *4))) (-5 *1 (-178 *4 *3)) (-4 *3 (-1219 (-169 *4))))) ((*1 *2 *3 *4) (-12 (-4 *4 (-13 (-365) (-840))) (-5 *2 (-634 (-169 *4))) (-5 *1 (-178 *4 *3)) (-4 *3 (-1219 (-169 *4)))))) +(((*1 *2 *3) (-12 (-5 *2 (-607 *4)) (-5 *1 (-606 *3 *4)) (-4 *3 (-842)) (-4 *4 (-842))))) +(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-436))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-763)) (-4 *5 (-1047)) (-5 *2 (-568)) (-5 *1 (-444 *5 *3 *6)) (-4 *3 (-1219 *5)) (-4 *6 (-13 (-406) (-1037 *5) (-365) (-1181) (-279))))) ((*1 *2 *3) (-12 (-4 *4 (-1047)) (-5 *2 (-568)) (-5 *1 (-444 *4 *3 *5)) (-4 *3 (-1219 *4)) (-4 *5 (-13 (-406) (-1037 *4) (-365) (-1181) (-279)))))) +(((*1 *2) (-12 (-5 *2 (-1249)) (-5 *1 (-446 *3)) (-4 *3 (-1047))))) +(((*1 *2 *1) (-12 (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-634 *1)) (-4 *1 (-1061 *3 *4 *5))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4265 *3) (|:| |coef1| (-777 *3)) (|:| |coef2| (-777 *3)))) (-5 *1 (-777 *3)) (-4 *3 (-558)) (-4 *3 (-1047))))) +(((*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-953 (-568))) (-5 *3 (-1161)) (-5 *4 (-1084 (-409 (-568)))) (-5 *1 (-30))))) +(((*1 *2 *3) (-12 (-5 *3 (-1 (-121) *6)) (-4 *6 (-13 (-1090) (-1037 *5))) (-4 *5 (-881 *4)) (-4 *4 (-1090)) (-5 *2 (-1 (-121) *5)) (-5 *1 (-932 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-763)) (-5 *2 (-1157 *4)) (-5 *1 (-532 *4)) (-4 *4 (-350))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-215)) (-5 *1 (-217)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-215))) (-5 *1 (-217)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) ((*1 *1 *1 *1) (-4 *1 (-1124)))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-763)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-788)) (-4 *7 (-950 *4 *5 *6)) (-4 *4 (-453)) (-4 *6 (-842)) (-5 *2 (-121)) (-5 *1 (-450 *4 *5 *6 *7))))) +(((*1 *1 *2 *3) (-12 (-4 *4 (-365)) (-4 *6 (-230 (-1697 *5) (-763))) (-4 *7 (-641 *4)) (-4 *8 (-920 *4 *7)) (-4 *1 (-536 *4 *5 *3 *6 *2 *7 *8 *9 *10)) (-4 *3 (-950 *4 *6 (-852 *5))) (-4 *2 (-971 *4)) (-4 *9 (-235 *8)) (-4 *10 (-117)))) ((*1 *1 *2 *3 *4 *5 *6 *5 *7 *8 *9) (-12 (-5 *3 (-242 (-4287 (QUOTE X) (QUOTE -2926)) *8)) (-5 *4 (-33 *8)) (-5 *9 (-1161)) (-4 *8 (-365)) (-5 *5 (-763)) (-4 *12 (-230 (-1697 *10) *5)) (-4 *13 (-641 *8)) (-4 *14 (-920 *8 *13)) (-4 *1 (-536 *8 *10 *11 *12 *2 *13 *14 *7 *6)) (-4 *11 (-950 *8 *12 (-852 *10))) (-4 *2 (-971 *8)) (-4 *7 (-235 *14)) (-4 *6 (-117)))) ((*1 *1 *2) (-12 (-5 *2 (-1161)) (-4 *3 (-365)) (-4 *1 (-920 *3 *4)) (-4 *4 (-641 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-365)) (-4 *1 (-920 *3 *4)) (-4 *4 (-641 *3)))) ((*1 *1) (-5 *1 (-1075)))) +(((*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-1047)) (-5 *1 (-1145 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-1201 *2)) (-4 *2 (-1047)))) ((*1 *1 *1) (-12 (-5 *1 (-1235 *2 *3 *4)) (-4 *2 (-1047)) (-14 *3 (-1161)) (-14 *4 *2))) ((*1 *1 *1) (-12 (-5 *1 (-1239 *2 *3)) (-4 *2 (-1047)) (-14 *3 (-1161))))) +(((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-634 (-492 *4 *5))) (-5 *3 (-634 (-852 *4))) (-14 *4 (-634 (-1161))) (-4 *5 (-453)) (-5 *1 (-476 *4 *5 *6)) (-4 *6 (-453))))) +(((*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-817))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1181))))) +(((*1 *2 *1) (-12 (-5 *1 (-212 *2)) (-4 *2 (-1090)))) ((*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1195)))) ((*1 *2 *1) (-12 (-5 *1 (-1000 *2)) (-4 *2 (-1090))))) +(((*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-1090)) (-5 *1 (-96 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-1195)) (-4 *1 (-111 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-1090)) (-5 *1 (-212 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-842)) (-5 *1 (-494 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-1090)) (-5 *1 (-1000 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-1090)) (-5 *1 (-1132 *3))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-296)) (-4 *2 (-1195)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-634 (-607 *1))) (-5 *3 (-634 *1)) (-4 *1 (-296)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-634 (-288 *1))) (-4 *1 (-296)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-288 *1)) (-4 *1 (-296))))) +(((*1 *2 *1) (-12 (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-4 *3 (-301)) (-5 *2 (-634 *5))))) +(((*1 *2 *3 *3 *4) (-12 (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *3 (-1061 *5 *6 *7)) (-5 *2 (-634 (-2 (|:| |val| *3) (|:| -3001 *4)))) (-5 *1 (-1067 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3))))) +(((*1 *1 *1) (|partial| -12 (-5 *1 (-288 *2)) (-4 *2 (-716)) (-4 *2 (-1195))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-1 (-121) *4 *4)) (-4 *4 (-1195)) (-5 *1 (-377 *4 *2)) (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4520))))))) +(((*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-763)) (-4 *1 (-1061 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *3 (-558))))) +(((*1 *2 *1) (-12 (-5 *2 (-420 *3)) (-5 *1 (-910 *3)) (-4 *3 (-301))))) +(((*1 *2 *3) (-12 (-4 *2 (-365)) (-4 *2 (-840)) (-5 *1 (-946 *2 *3)) (-4 *3 (-1219 *2))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-1249)) (-5 *1 (-1246))))) +(((*1 *2 *2) (-12 (-5 *2 (-169 (-215))) (-5 *1 (-217)))) ((*1 *2 *2) (-12 (-5 *2 (-215)) (-5 *1 (-217)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) ((*1 *1 *1) (-4 *1 (-1124)))) +(((*1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *2 *5)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-1061 *3 *4 *2)) (-4 *2 (-842)))) ((*1 *2 *1) (-12 (-4 *1 (-1061 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *2 (-842))))) +(((*1 *2 *2 *1) (-12 (-5 *2 (-634 *6)) (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1061 *3 *4 *5)) (-4 *3 (-558))))) +(((*1 *1 *2 *3) (-12 (-4 *1 (-384 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-1090)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-568)) (-5 *2 (-1141 *3)) (-5 *1 (-1145 *3)) (-4 *3 (-1047)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-814 *4)) (-4 *4 (-842)) (-4 *1 (-1259 *4 *3)) (-4 *3 (-1047))))) +(((*1 *1 *1 *1) (-4 *1 (-478))) ((*1 *1 *1 *1) (-4 *1 (-753)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-310 *3)) (-4 *3 (-558)) (-4 *3 (-842))))) +(((*1 *2 *3) (-12 (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *7 (-230 (-1697 *5) (-763))) (-5 *2 (-634 (-634 (-1157 (-1157 *4))))) (-5 *1 (-32 *4 *5 *6 *7 *8)) (-5 *3 (-634 (-1157 (-1157 *4)))) (-4 *6 (-950 *4 *7 (-852 *5))) (-4 *8 (-971 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-817))))) +(((*1 *1 *1) (-4 *1 (-550)))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1266 *4 *2)) (-4 *1 (-376 *4 *2)) (-4 *4 (-842)) (-4 *2 (-172)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-1259 *3 *2)) (-4 *3 (-842)) (-4 *2 (-1047)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-814 *4)) (-4 *1 (-1259 *4 *2)) (-4 *4 (-842)) (-4 *2 (-1047)))) ((*1 *2 *1 *3) (-12 (-4 *2 (-1047)) (-5 *1 (-1265 *2 *3)) (-4 *3 (-838))))) +(((*1 *2 *3) (-12 (-5 *2 (-634 (-1157 (-568)))) (-5 *1 (-183)) (-5 *3 (-568))))) +(((*1 *1 *1) (-12 (-4 *2 (-453)) (-4 *3 (-842)) (-4 *4 (-788)) (-5 *1 (-988 *2 *3 *4 *5)) (-4 *5 (-950 *2 *4 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1141 (-215))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1338 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1035)) (-5 *1 (-299))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-634 *1)) (-4 *1 (-916))))) +(((*1 *1 *2) (-12 (-5 *2 (-409 (-568))) (-5 *1 (-497))))) +(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-875 (-1 (-215) (-215)))) (-5 *4 (-1084 (-381))) (-5 *5 (-634 (-256))) (-5 *2 (-1121 (-215))) (-5 *1 (-248)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-875 (-1 (-215) (-215)))) (-5 *4 (-1084 (-381))) (-5 *2 (-1121 (-215))) (-5 *1 (-248)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-944 (-215)) (-215))) (-5 *4 (-1084 (-381))) (-5 *5 (-634 (-256))) (-5 *2 (-1121 (-215))) (-5 *1 (-248)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 (-944 (-215)) (-215))) (-5 *4 (-1084 (-381))) (-5 *2 (-1121 (-215))) (-5 *1 (-248)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-215) (-215) (-215))) (-5 *4 (-1084 (-381))) (-5 *5 (-634 (-256))) (-5 *2 (-1121 (-215))) (-5 *1 (-248)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-215) (-215) (-215))) (-5 *4 (-1084 (-381))) (-5 *2 (-1121 (-215))) (-5 *1 (-248)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-944 (-215)) (-215) (-215))) (-5 *4 (-1084 (-381))) (-5 *5 (-634 (-256))) (-5 *2 (-1121 (-215))) (-5 *1 (-248)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-944 (-215)) (-215) (-215))) (-5 *4 (-1084 (-381))) (-5 *2 (-1121 (-215))) (-5 *1 (-248)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-877 (-1 (-215) (-215) (-215)))) (-5 *4 (-1084 (-381))) (-5 *5 (-634 (-256))) (-5 *2 (-1121 (-215))) (-5 *1 (-248)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-877 (-1 (-215) (-215) (-215)))) (-5 *4 (-1084 (-381))) (-5 *2 (-1121 (-215))) (-5 *1 (-248)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-875 *6)) (-5 *4 (-1082 (-381))) (-5 *5 (-634 (-256))) (-4 *6 (-13 (-609 (-541)) (-1090))) (-5 *2 (-1121 (-215))) (-5 *1 (-252 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-875 *5)) (-5 *4 (-1082 (-381))) (-4 *5 (-13 (-609 (-541)) (-1090))) (-5 *2 (-1121 (-215))) (-5 *1 (-252 *5)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1082 (-381))) (-5 *5 (-634 (-256))) (-5 *2 (-1121 (-215))) (-5 *1 (-252 *3)) (-4 *3 (-13 (-609 (-541)) (-1090))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-1082 (-381))) (-5 *2 (-1121 (-215))) (-5 *1 (-252 *3)) (-4 *3 (-13 (-609 (-541)) (-1090))))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-877 *6)) (-5 *4 (-1082 (-381))) (-5 *5 (-634 (-256))) (-4 *6 (-13 (-609 (-541)) (-1090))) (-5 *2 (-1121 (-215))) (-5 *1 (-252 *6)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-877 *5)) (-5 *4 (-1082 (-381))) (-4 *5 (-13 (-609 (-541)) (-1090))) (-5 *2 (-1121 (-215))) (-5 *1 (-252 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-121))))) +(((*1 *1 *1) (-12 (-4 *1 (-1231 *2)) (-4 *2 (-1195))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-1 (-944 (-215)) (-215) (-215))) (-5 *3 (-1 (-215) (-215) (-215) (-215))) (-5 *1 (-248))))) +(((*1 *1 *2 *3) (-12 (-5 *1 (-965 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-1090))))) +(((*1 *1) (-5 *1 (-439)))) +(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-215) (-215))) (-5 *4 (-1084 (-381))) (-5 *5 (-634 (-256))) (-5 *2 (-1245)) (-5 *1 (-248)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 (-215) (-215))) (-5 *4 (-1084 (-381))) (-5 *2 (-1245)) (-5 *1 (-248)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-873 (-1 (-215) (-215)))) (-5 *4 (-1084 (-381))) (-5 *5 (-634 (-256))) (-5 *2 (-1245)) (-5 *1 (-248)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-873 (-1 (-215) (-215)))) (-5 *4 (-1084 (-381))) (-5 *2 (-1245)) (-5 *1 (-248)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-875 (-1 (-215) (-215)))) (-5 *4 (-1084 (-381))) (-5 *5 (-634 (-256))) (-5 *2 (-1246)) (-5 *1 (-248)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-875 (-1 (-215) (-215)))) (-5 *4 (-1084 (-381))) (-5 *2 (-1246)) (-5 *1 (-248)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-944 (-215)) (-215))) (-5 *4 (-1084 (-381))) (-5 *5 (-634 (-256))) (-5 *2 (-1246)) (-5 *1 (-248)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 (-944 (-215)) (-215))) (-5 *4 (-1084 (-381))) (-5 *2 (-1246)) (-5 *1 (-248)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-215) (-215) (-215))) (-5 *4 (-1084 (-381))) (-5 *5 (-634 (-256))) (-5 *2 (-1246)) (-5 *1 (-248)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-215) (-215) (-215))) (-5 *4 (-1084 (-381))) (-5 *2 (-1246)) (-5 *1 (-248)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-944 (-215)) (-215) (-215))) (-5 *4 (-1084 (-381))) (-5 *5 (-634 (-256))) (-5 *2 (-1246)) (-5 *1 (-248)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-944 (-215)) (-215) (-215))) (-5 *4 (-1084 (-381))) (-5 *2 (-1246)) (-5 *1 (-248)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-877 (-1 (-215) (-215) (-215)))) (-5 *4 (-1084 (-381))) (-5 *5 (-634 (-256))) (-5 *2 (-1246)) (-5 *1 (-248)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-877 (-1 (-215) (-215) (-215)))) (-5 *4 (-1084 (-381))) (-5 *2 (-1246)) (-5 *1 (-248)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-288 *7)) (-5 *4 (-1161)) (-5 *5 (-634 (-256))) (-4 *7 (-432 *6)) (-4 *6 (-13 (-558) (-842) (-1037 (-568)))) (-5 *2 (-1245)) (-5 *1 (-249 *6 *7)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1082 (-381))) (-5 *5 (-634 (-256))) (-5 *2 (-1245)) (-5 *1 (-252 *3)) (-4 *3 (-13 (-609 (-541)) (-1090))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1082 (-381))) (-5 *2 (-1245)) (-5 *1 (-252 *3)) (-4 *3 (-13 (-609 (-541)) (-1090))))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-873 *6)) (-5 *4 (-1082 (-381))) (-5 *5 (-634 (-256))) (-4 *6 (-13 (-609 (-541)) (-1090))) (-5 *2 (-1245)) (-5 *1 (-252 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-873 *5)) (-5 *4 (-1082 (-381))) (-4 *5 (-13 (-609 (-541)) (-1090))) (-5 *2 (-1245)) (-5 *1 (-252 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-875 *6)) (-5 *4 (-1082 (-381))) (-5 *5 (-634 (-256))) (-4 *6 (-13 (-609 (-541)) (-1090))) (-5 *2 (-1246)) (-5 *1 (-252 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-875 *5)) (-5 *4 (-1082 (-381))) (-4 *5 (-13 (-609 (-541)) (-1090))) (-5 *2 (-1246)) (-5 *1 (-252 *5)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1082 (-381))) (-5 *5 (-634 (-256))) (-5 *2 (-1246)) (-5 *1 (-252 *3)) (-4 *3 (-13 (-609 (-541)) (-1090))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-1082 (-381))) (-5 *2 (-1246)) (-5 *1 (-252 *3)) (-4 *3 (-13 (-609 (-541)) (-1090))))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-877 *6)) (-5 *4 (-1082 (-381))) (-5 *5 (-634 (-256))) (-4 *6 (-13 (-609 (-541)) (-1090))) (-5 *2 (-1246)) (-5 *1 (-252 *6)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-877 *5)) (-5 *4 (-1082 (-381))) (-4 *5 (-13 (-609 (-541)) (-1090))) (-5 *2 (-1246)) (-5 *1 (-252 *5)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-634 (-215))) (-5 *2 (-1245)) (-5 *1 (-253)))) ((*1 *2 *3 *3 *4) (-12 (-5 *3 (-634 (-215))) (-5 *4 (-634 (-256))) (-5 *2 (-1245)) (-5 *1 (-253)))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-944 (-215)))) (-5 *2 (-1245)) (-5 *1 (-253)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-944 (-215)))) (-5 *4 (-634 (-256))) (-5 *2 (-1245)) (-5 *1 (-253)))) ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-634 (-215))) (-5 *2 (-1246)) (-5 *1 (-253)))) ((*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-634 (-215))) (-5 *4 (-634 (-256))) (-5 *2 (-1246)) (-5 *1 (-253))))) +(((*1 *2 *3 *1) (-12 (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *3 (-1061 *4 *5 *6)) (-5 *2 (-634 *1)) (-4 *1 (-1066 *4 *5 *6 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-634 (-1143))) (-5 *1 (-399))))) +(((*1 *2 *2) (-12 (-5 *2 (-634 *6)) (-4 *6 (-1061 *3 *4 *5)) (-4 *3 (-150)) (-4 *3 (-301)) (-4 *3 (-558)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *1 (-978 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *3 (-1047)) (-5 *2 (-1244 *3)) (-5 *1 (-702 *3 *4)) (-4 *4 (-1219 *3))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-568)) (-5 *4 (-420 *2)) (-4 *2 (-950 *7 *5 *6)) (-5 *1 (-732 *5 *6 *7 *2)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *7 (-301))))) +(((*1 *1) (-5 *1 (-328)))) +(((*1 *2 *2 *3 *4) (-12 (-5 *2 (-1244 *5)) (-5 *3 (-763)) (-5 *4 (-1108)) (-4 *5 (-350)) (-5 *1 (-532 *5))))) +(((*1 *2) (-12 (-4 *3 (-558)) (-5 *2 (-634 (-679 *3))) (-5 *1 (-48 *3 *4)) (-4 *4 (-419 *3))))) +(((*1 *2) (-12 (-5 *2 (-1249)) (-5 *1 (-798))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1163 (-409 (-568)))) (-5 *1 (-182))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 (-944 *3) (-944 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-365) (-1181) (-1002)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1113 (-568) (-607 (-53)))) (-5 *1 (-53)))) ((*1 *2 *1) (-12 (-4 *3 (-993 *2)) (-4 *4 (-1219 *3)) (-4 *2 (-301)) (-5 *1 (-415 *2 *3 *4 *5)) (-4 *5 (-13 (-411 *3 *4) (-1037 *3))))) ((*1 *2 *1) (-12 (-4 *3 (-558)) (-4 *3 (-842)) (-5 *2 (-1113 *3 (-607 *1))) (-4 *1 (-432 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-1113 (-568) (-607 (-504)))) (-5 *1 (-504)))) ((*1 *2 *1) (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-716) *4)) (-5 *1 (-613 *3 *4 *2)) (-4 *3 (-43 *4)))) ((*1 *2 *1) (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-716) *4)) (-5 *1 (-652 *3 *4 *2)) (-4 *3 (-707 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-558))))) +(((*1 *2 *1 *2 *3) (-12 (-5 *3 (-634 (-1143))) (-5 *2 (-1143)) (-5 *1 (-1245)))) ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-1245)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-1245)))) ((*1 *2 *1 *2 *3) (-12 (-5 *3 (-634 (-1143))) (-5 *2 (-1143)) (-5 *1 (-1246)))) ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-1246)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-1246))))) +(((*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-43 (-409 (-568)))) (-4 *2 (-1047))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-634 *6)) (-4 *6 (-842)) (-4 *4 (-365)) (-4 *5 (-788)) (-5 *2 (-2 (|:| |mval| (-679 *4)) (|:| |invmval| (-679 *4)) (|:| |genIdeal| (-514 *4 *5 *6 *7)))) (-5 *1 (-514 *4 *5 *6 *7)) (-4 *7 (-950 *4 *5 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-443 *3)) (-4 *3 (-1219 (-568)))))) +(((*1 *2) (-12 (-5 *2 (-899 (-568))) (-5 *1 (-913))))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-1047)) (-4 *2 (-677 *4 *5 *6)) (-5 *1 (-108 *4 *3 *2 *5 *6)) (-4 *3 (-1219 *4)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1113 (-568) (-607 (-53)))) (-5 *1 (-53)))) ((*1 *2 *1) (-12 (-4 *3 (-301)) (-4 *4 (-993 *3)) (-4 *5 (-1219 *4)) (-5 *2 (-1244 *6)) (-5 *1 (-415 *3 *4 *5 *6)) (-4 *6 (-13 (-411 *4 *5) (-1037 *4))))) ((*1 *2 *1) (-12 (-4 *3 (-1047)) (-4 *3 (-842)) (-5 *2 (-1113 *3 (-607 *1))) (-4 *1 (-432 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-1113 (-568) (-607 (-504)))) (-5 *1 (-504)))) ((*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-43 *3)) (-5 *1 (-613 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-716) *3)))) ((*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-707 *3)) (-5 *1 (-652 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-716) *3)))) ((*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-558))))) +(((*1 *2) (-12 (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *6 (-230 (-1697 *4) (-763))) (-4 *7 (-971 *3)) (-4 *8 (-641 *3)) (-4 *9 (-920 *3 *8)) (-4 *10 (-235 *9)) (-4 *11 (-536 *3 *4 *5 *6 *7 *8 *9 *10 *13)) (-4 *13 (-117)) (-5 *2 (-1249)) (-5 *1 (-467 *3 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13)) (-4 *12 (-258 *11)))) ((*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-1245)))) ((*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-1246))))) +(((*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-1090)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) +(((*1 *2 *1) (-12 (-5 *2 (-634 (-57))) (-5 *1 (-887 *3)) (-4 *3 (-1090))))) +(((*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-568)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-763)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-788)) (-4 *4 (-950 *5 *6 *7)) (-4 *5 (-453)) (-4 *7 (-842)) (-5 *1 (-450 *5 *6 *7 *4))))) +(((*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-568)) (-5 *5 (-3 "left" "center" "right" "vertical" "horizontal")) (-4 *6 (-1047)) (-4 *7 (-230 *8 (-763))) (-14 *8 (-763)) (-5 *2 (-634 (-634 *3))) (-5 *1 (-772 *6 *3 *7 *8)) (-4 *3 (-324 *6 *7))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1219 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| -2242 (-420 *3)) (|:| |special| (-420 *3)))) (-5 *1 (-717 *5 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-436))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 (-215))) (-5 *2 (-634 (-1143))) (-5 *1 (-184)))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-215))) (-5 *2 (-634 (-1143))) (-5 *1 (-294)))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-215))) (-5 *2 (-634 (-1143))) (-5 *1 (-299))))) +(((*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-817))))) +(((*1 *1 *1) (|partial| -12 (-5 *1 (-288 *2)) (-4 *2 (-716)) (-4 *2 (-1195))))) +(((*1 *2 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-917)) (-5 *1 (-781))))) +(((*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-817))))) +(((*1 *2 *1) (-12 (-4 *1 (-1122 *3)) (-4 *3 (-1047)) (-5 *2 (-634 (-634 (-171))))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-5 *2 (-1 *5 *4)) (-5 *1 (-672 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-409 (-568))) (-5 *1 (-314 *3 *4 *5)) (-4 *3 (-13 (-365) (-842))) (-14 *4 (-1161)) (-14 *5 *3)))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-558)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-1186 *3 *4 *5 *2)) (-4 *2 (-677 *3 *4 *5))))) +(((*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-887 *4)) (-4 *4 (-1090)) (-5 *1 (-884 *4 *3)) (-4 *3 (-1090))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-568)) (-4 *5 (-350)) (-5 *2 (-420 (-1157 (-1157 *5)))) (-5 *1 (-1194 *5)) (-5 *3 (-1157 (-1157 *5)))))) +(((*1 *1 *1) (-12 (-4 *1 (-1061 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-788)) (-4 *4 (-842)) (-4 *2 (-453))))) +(((*1 *2 *1) (-12 (-4 *1 (-1122 *3)) (-4 *3 (-1047)) (-5 *2 (-121))))) +(((*1 *1 *2) (-12 (-5 *2 (-634 (-381))) (-5 *1 (-256)))) ((*1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-558)) (-4 *2 (-172)))) ((*1 *2 *1) (-12 (-5 *1 (-420 *2)) (-4 *2 (-558))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-850))) ((*1 *1 *1 *2) (-12 (-5 *2 (-634 (-850))) (-5 *1 (-850))))) +(((*1 *2 *1) (-12 (-5 *2 (-634 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-585 *3)) (-4 *3 (-365))))) +(((*1 *2 *3) (-12 (-5 *3 (-1094)) (-5 *2 (-1249)) (-5 *1 (-102))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-1157 *2)) (-4 *2 (-950 (-409 (-953 *6)) *5 *4)) (-5 *1 (-722 *5 *4 *6 *2)) (-4 *5 (-788)) (-4 *4 (-13 (-842) (-10 -8 (-15 -4278 ((-1161) $))))) (-4 *6 (-558))))) +(((*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-169 (-215)) (-169 (-215)))) (-5 *4 (-1084 (-215))) (-5 *2 (-1246)) (-5 *1 (-250))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-171))))) +(((*1 *2 *3 *1) (-12 (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *3 (-1061 *4 *5 *6)) (-5 *2 (-121))))) +(((*1 *2 *1) (-12 (-4 *3 (-1195)) (-5 *2 (-634 *1)) (-4 *1 (-1010 *3))))) +(((*1 *2 *3) (-12 (-4 *4 (-350)) (-4 *5 (-327 *4)) (-4 *6 (-1219 *5)) (-5 *2 (-634 *3)) (-5 *1 (-769 *4 *5 *6 *3 *7)) (-4 *3 (-1219 *6)) (-14 *7 (-917))))) +(((*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-558)) (-4 *2 (-550)))) ((*1 *1 *1) (-4 *1 (-1056)))) +(((*1 *2 *1) (-12 (-4 *3 (-1090)) (-4 *4 (-13 (-1047) (-881 *3) (-842) (-609 (-887 *3)))) (-5 *2 (-634 (-1161))) (-5 *1 (-1069 *3 *4 *5)) (-4 *5 (-13 (-432 *4) (-881 *3) (-609 (-887 *3))))))) +(((*1 *2 *2) (-12 (-5 *2 (-634 *7)) (-4 *7 (-1066 *3 *4 *5 *6)) (-4 *3 (-453)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1061 *3 *4 *5)) (-5 *1 (-989 *3 *4 *5 *6 *7)))) ((*1 *2 *2) (-12 (-5 *2 (-634 *7)) (-4 *7 (-1066 *3 *4 *5 *6)) (-4 *3 (-453)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1061 *3 *4 *5)) (-5 *1 (-1097 *3 *4 *5 *6 *7))))) +(((*1 *1 *2) (-12 (-5 *2 (-634 *1)) (-4 *3 (-1047)) (-4 *1 (-677 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-1047)) (-4 *1 (-677 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1244 *3)) (-4 *3 (-1047)) (-5 *1 (-679 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-634 *4)) (-4 *4 (-1047)) (-4 *1 (-1111 *3 *4 *5 *6)) (-4 *5 (-230 *3 *4)) (-4 *6 (-230 *3 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-215)) (-5 *2 (-1143)) (-5 *1 (-184)))) ((*1 *2 *3) (-12 (-5 *3 (-215)) (-5 *2 (-1143)) (-5 *1 (-294)))) ((*1 *2 *3) (-12 (-5 *3 (-215)) (-5 *2 (-1143)) (-5 *1 (-299))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-777 *3)) (|:| |polden| *3) (|:| -3741 (-763)))) (-5 *1 (-777 *3)) (-4 *3 (-1047)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3741 (-763)))) (-4 *1 (-1061 *3 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-1244 *5)) (-4 *5 (-630 *4)) (-4 *4 (-558)) (-5 *2 (-121)) (-5 *1 (-629 *4 *5))))) +(((*1 *2 *3) (-12 (-4 *4 (-1047)) (-5 *2 (-121)) (-5 *1 (-445 *4 *3)) (-4 *3 (-1219 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-1061 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-121))))) +(((*1 *2) (-12 (-4 *3 (-370)) (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *6 (-230 (-1697 *4) (-763))) (-4 *7 (-971 *3)) (-4 *8 (-641 *3)) (-4 *9 (-920 *3 *8)) (-4 *10 (-235 *9)) (-4 *11 (-536 *3 *4 *5 *6 *7 *8 *9 *10 *13)) (-4 *13 (-117)) (-5 *2 (-568)) (-5 *1 (-467 *3 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13)) (-4 *12 (-258 *11)))) ((*1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-867 *3 *4 *5)) (-4 (-857 *3) (-370)) (-4 *3 (-350)) (-14 *4 (-634 (-1161))) (-4 *5 (-117)))) ((*1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-868 *3 *4 *5)) (-4 *3 (-370)) (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *5 (-117))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-363 (-123))) (-4 *2 (-1047)) (-5 *1 (-704 *2 *4)) (-4 *4 (-637 *2)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-363 (-123))) (-5 *1 (-829 *2)) (-4 *2 (-1047))))) +(((*1 *2 *2) (-12 (-5 *2 (-634 (-679 (-310 (-568))))) (-5 *1 (-1031))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-634 *6)) (-4 *6 (-1061 *3 *4 *5)) (-4 *3 (-453)) (-4 *3 (-558)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *1 (-978 *3 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-1244 (-1244 *4))) (-4 *4 (-1047)) (-5 *2 (-679 *4)) (-5 *1 (-1029 *4))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-121)) (-5 *1 (-824))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-634 (-1143))) (-5 *1 (-1176))))) +(((*1 *2) (-12 (-4 *3 (-453)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1061 *3 *4 *5)) (-5 *2 (-1249)) (-5 *1 (-1067 *3 *4 *5 *6 *7)) (-4 *7 (-1066 *3 *4 *5 *6)))) ((*1 *2) (-12 (-4 *3 (-453)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1061 *3 *4 *5)) (-5 *2 (-1249)) (-5 *1 (-1098 *3 *4 *5 *6 *7)) (-4 *7 (-1066 *3 *4 *5 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-634 (-634 *3))) (-4 *3 (-1047)) (-4 *1 (-677 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-634 (-634 (-850)))) (-5 *1 (-850)))) ((*1 *2 *1) (-12 (-5 *2 (-1127 *3 *4)) (-5 *1 (-994 *3 *4)) (-14 *3 (-917)) (-4 *4 (-365)))) ((*1 *1 *2) (-12 (-5 *2 (-634 (-634 *5))) (-4 *5 (-1047)) (-4 *1 (-1050 *3 *4 *5 *6 *7)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5))))) +(((*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-43 (-409 (-568)))) (-4 *2 (-1047))))) +(((*1 *2) (-12 (-5 *2 (-409 (-953 *3))) (-5 *1 (-454 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-634 (-1161))) (-14 *6 (-1244 (-679 *3)))))) +(((*1 *2 *3) (-12 (-5 *3 (-679 (-409 (-953 (-568))))) (-5 *2 (-634 (-2 (|:| |radval| (-310 (-568))) (|:| |radmult| (-568)) (|:| |radvect| (-634 (-679 (-310 (-568)))))))) (-5 *1 (-1031))))) +(((*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-558)) (-5 *2 (-1157 *3))))) +(((*1 *1 *2) (-12 (-5 *1 (-219 *2)) (-4 *2 (-13 (-365) (-1181)))))) +(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-1143)) (-5 *4 (-1108)) (-5 *2 (-121)) (-5 *1 (-816))))) +(((*1 *2) (-12 (-4 *4 (-1199)) (-4 *5 (-1219 *4)) (-4 *6 (-1219 (-409 *5))) (-5 *2 (-121)) (-5 *1 (-339 *3 *4 *5 *6)) (-4 *3 (-340 *4 *5 *6)))) ((*1 *2) (-12 (-4 *1 (-340 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 (-409 *4))) (-5 *2 (-121))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002)))))) +(((*1 *2 *2 *2) (|partial| -12 (-4 *3 (-365)) (-5 *1 (-758 *2 *3)) (-4 *2 (-698 *3)))) ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-844 *2)) (-4 *2 (-1047)) (-4 *2 (-365))))) +(((*1 *2 *1) (-12 (-4 *1 (-117)) (-5 *2 (-568))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-310 (-215))) (-5 *1 (-299)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-887 *3)) (|:| |den| (-887 *3)))) (-5 *1 (-887 *3)) (-4 *3 (-1090))))) +(((*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-310 (-568))) (-5 *4 (-1 (-215) (-215))) (-5 *5 (-1084 (-215))) (-5 *6 (-634 (-256))) (-5 *2 (-1121 (-215))) (-5 *1 (-686))))) +(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-568)) (|has| *1 (-6 -4520)) (-4 *1 (-375 *3)) (-4 *3 (-1195))))) +(((*1 *1 *1) (-12 (-4 *1 (-641 *2)) (-4 *2 (-365))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-568)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-763)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-917)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-141 *2 *3 *4)) (-14 *2 (-568)) (-14 *3 (-763)) (-4 *4 (-172)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-215)) (-5 *1 (-158)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-917)) (-5 *1 (-158)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-944 *3)) (-4 *3 (-13 (-365) (-1181))) (-5 *1 (-219 *3)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1102)) (-4 *2 (-1195)))) ((*1 *1 *1 *2) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1102)) (-4 *2 (-1195)))) ((*1 *1 *2 *3) (-12 (-4 *1 (-320 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-137)))) ((*1 *1 *1 *2) (-12 (-5 *1 (-363 *2)) (-4 *2 (-1090)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-363 *2)) (-4 *2 (-1090)))) ((*1 *1 *2 *3) (-12 (-5 *1 (-383 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-842)))) ((*1 *1 *2 *3) (-12 (-4 *1 (-384 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-1090)))) ((*1 *1 *1 *2) (-12 (-5 *1 (-388 *2)) (-4 *2 (-1090)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-1090)))) ((*1 *1 *2 *1) (-12 (-14 *3 (-634 (-1161))) (-4 *4 (-172)) (-4 *6 (-230 (-1697 *3) (-763))) (-14 *7 (-1 (-121) (-2 (|:| -4355 *5) (|:| -3438 *6)) (-2 (|:| -4355 *5) (|:| -3438 *6)))) (-5 *1 (-463 *3 *4 *5 *6 *7 *2)) (-4 *5 (-842)) (-4 *2 (-950 *4 *6 (-852 *3))))) ((*1 *1 *1 *2) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) ((*1 *1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-788)) (-4 *4 (-842)) (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-950 *2 *3 *4)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1244 *3)) (-4 *3 (-350)) (-5 *1 (-532 *3)))) ((*1 *1 *1 *1) (-5 *1 (-541))) ((*1 *1 *1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-594 *3)) (-4 *3 (-1047)))) ((*1 *1 *1 *2) (-12 (-5 *1 (-594 *2)) (-4 *2 (-1047)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-1047)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-637 *2)) (-4 *2 (-1054)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-842)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-1 *7 *5)) (-5 *1 (-673 *5 *6 *7)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1 *4 *3)) (-4 *3 (-1090)) (-4 *4 (-1047)) (-5 *1 (-674 *3 *4)))) ((*1 *2 *2 *1) (-12 (-4 *1 (-677 *3 *2 *4)) (-4 *3 (-1047)) (-4 *2 (-375 *3)) (-4 *4 (-375 *3)))) ((*1 *2 *1 *2) (-12 (-4 *1 (-677 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-375 *3)) (-4 *2 (-375 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-568)) (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) ((*1 *1 *1 *1) (-4 *1 (-710))) ((*1 *1 *1 *1) (-12 (-5 *1 (-733 *2 *3)) (-14 *2 (-1161)) (-4 *3 (-13 (-1047) (-842) (-558))))) ((*1 *1 *1 *2) (-12 (-5 *1 (-814 *2)) (-4 *2 (-842)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-842)))) ((*1 *1 *1 *1) (-5 *1 (-850))) ((*1 *1 *1 *1) (-12 (-5 *1 (-887 *2)) (-4 *2 (-1090)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-568)) (-4 *4 (-365)) (-4 *5 (-641 *4)) (-5 *2 (-236 *1)) (-4 *1 (-920 *4 *5)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-1244 *4)) (-4 *4 (-1219 *3)) (-4 *3 (-558)) (-5 *1 (-970 *3 *4)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1053 *2)) (-4 *2 (-1054)))) ((*1 *1 *1 *1) (-4 *1 (-1102))) ((*1 *2 *2 *1) (-12 (-4 *1 (-1111 *3 *4 *2 *5)) (-4 *4 (-1047)) (-4 *2 (-230 *3 *4)) (-4 *5 (-230 *3 *4)))) ((*1 *2 *1 *2) (-12 (-4 *1 (-1111 *3 *4 *5 *2)) (-4 *4 (-1047)) (-4 *5 (-230 *3 *4)) (-4 *2 (-230 *3 *4)))) ((*1 *1 *2 *1) (-12 (-4 *3 (-1047)) (-4 *4 (-842)) (-5 *1 (-1114 *3 *4 *2)) (-4 *2 (-950 *3 (-534 *4) *4)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-1047)) (-5 *1 (-1145 *3)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-1047)) (-5 *1 (-1145 *3)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-1047)) (-5 *1 (-1145 *3)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-944 (-215))) (-5 *3 (-215)) (-5 *1 (-1192)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1195)) (-4 *2 (-716)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1195)) (-4 *2 (-716)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-568)) (-4 *1 (-1242 *3)) (-4 *3 (-1195)) (-4 *3 (-21)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-1259 *2 *3)) (-4 *2 (-842)) (-4 *3 (-1047)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1259 *3 *2)) (-4 *3 (-842)) (-4 *2 (-1047)))) ((*1 *1 *1 *2) (-12 (-5 *1 (-1265 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-838))))) +(((*1 *1 *2) (|partial| -12 (-5 *2 (-1257 *3 *4)) (-4 *3 (-842)) (-4 *4 (-172)) (-5 *1 (-656 *3 *4)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-656 *3 *4)) (-5 *1 (-1262 *3 *4)) (-4 *3 (-842)) (-4 *4 (-172))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-409 (-953 *5))) (-5 *4 (-1161)) (-4 *5 (-13 (-301) (-842) (-150))) (-5 *2 (-634 (-310 *5))) (-5 *1 (-1117 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-953 *5)))) (-5 *4 (-634 (-1161))) (-4 *5 (-13 (-301) (-842) (-150))) (-5 *2 (-634 (-634 (-310 *5)))) (-5 *1 (-1117 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-887 *3)) (-4 *3 (-1090))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1219 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |ir| (-585 (-409 *6))) (|:| |specpart| (-409 *6)) (|:| |polypart| *6))) (-5 *1 (-578 *5 *6)) (-5 *3 (-409 *6))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-634 (-777 *3))) (-5 *1 (-777 *3)) (-4 *3 (-558)) (-4 *3 (-1047))))) +(((*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-1173 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-634 *8)) (-4 *1 (-536 *3 *4 *5 *6 *7 *8 *9 *10 *11)) (-4 *3 (-365)) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *6 (-230 (-1697 *4) (-763))) (-4 *7 (-971 *3)) (-4 *8 (-641 *3)) (-4 *9 (-920 *3 *8)) (-4 *10 (-235 *9)) (-4 *11 (-117))))) +(((*1 *2 *3) (-12 (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *6 (-950 *4 *7 (-852 *5))) (-4 *7 (-230 (-1697 *5) (-763))) (-4 *8 (-971 *4)) (-4 *9 (-641 *4)) (-4 *10 (-920 *4 *9)) (-4 *3 (-235 *10)) (-4 *11 (-536 *4 *5 *6 *7 *8 *9 *10 *3 *13)) (-4 *13 (-117)) (-5 *2 (-2 (|:| |num| (-634 *6)) (|:| |den| *6))) (-5 *1 (-467 *4 *5 *6 *7 *8 *9 *10 *3 *11 *12 *13)) (-4 *12 (-258 *11)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-236 (-922 *5))) (-5 *4 (-763)) (-4 *5 (-350)) (-5 *2 (-634 (-409 (-242 *6 *5)))) (-5 *1 (-867 *5 *6 *7)) (-14 *6 (-634 (-1161))) (-4 *7 (-117)))) ((*1 *2 *3) (-12 (-5 *3 (-236 (-922 *4))) (-4 *4 (-350)) (-5 *2 (-2 (|:| |num| (-634 (-242 *5 *4))) (|:| |den| (-242 *5 *4)))) (-5 *1 (-867 *4 *5 *6)) (-14 *5 (-634 (-1161))) (-4 *6 (-117)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-236 (-921 *5))) (-5 *4 (-763)) (-4 *5 (-365)) (-5 *2 (-634 (-409 (-242 *6 *5)))) (-5 *1 (-868 *5 *6 *7)) (-14 *6 (-634 (-1161))) (-4 *7 (-117)))) ((*1 *2 *3) (-12 (-5 *3 (-236 (-921 *4))) (-4 *4 (-365)) (-5 *2 (-2 (|:| |num| (-634 (-242 *5 *4))) (|:| |den| (-242 *5 *4)))) (-5 *1 (-868 *4 *5 *6)) (-14 *5 (-634 (-1161))) (-4 *6 (-117))))) +(((*1 *2 *1) (-12 (-4 *1 (-555 *3)) (-4 *3 (-13 (-406) (-1181))) (-5 *2 (-121)))) ((*1 *2 *1) (-12 (-4 *1 (-840)) (-5 *2 (-121)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-1063 *4 *3)) (-4 *4 (-13 (-840) (-365))) (-4 *3 (-1219 *4)) (-5 *2 (-121))))) +(((*1 *2 *1) (|partial| -12 (-4 *1 (-950 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *2 (-842)))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-788)) (-4 *5 (-1047)) (-4 *6 (-950 *5 *4 *2)) (-4 *2 (-842)) (-5 *1 (-951 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -2745 ($ *6)) (-15 -2317 (*6 $)) (-15 -2324 (*6 $))))))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-409 (-953 *4))) (-4 *4 (-558)) (-5 *2 (-1161)) (-5 *1 (-1042 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-1090)) (-5 *1 (-106 *3))))) +(((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-381))) (-5 *1 (-1039)) (-5 *3 (-381))))) +(((*1 *2 *2) (-12 (-5 *2 (-828 (-215))) (-5 *1 (-217))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-453))) (-5 *1 (-1187 *3 *2)) (-4 *2 (-13 (-432 *3) (-1181)))))) +(((*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-900 *3)) (-4 *3 (-1090))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-763)) (-4 *1 (-1259 *3 *4)) (-4 *3 (-842)) (-4 *4 (-1047)) (-4 *4 (-172)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1259 *2 *3)) (-4 *2 (-842)) (-4 *3 (-1047)) (-4 *3 (-172))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-453))) (-5 *1 (-1187 *3 *2)) (-4 *2 (-13 (-432 *3) (-1181)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1181))))) +(((*1 *2 *1) (-12 (-4 *1 (-1231 *2)) (-4 *2 (-1195))))) +(((*1 *2 *3 *3) (-12 (-4 *3 (-1199)) (-4 *5 (-1219 *3)) (-4 *6 (-1219 (-409 *5))) (-5 *2 (-121)) (-5 *1 (-339 *4 *3 *5 *6)) (-4 *4 (-340 *3 *5 *6)))) ((*1 *2 *3 *3) (-12 (-4 *1 (-340 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 (-409 *4))) (-5 *2 (-121))))) +(((*1 *2 *1) (-12 (-4 *4 (-1090)) (-5 *2 (-884 *3 *5)) (-5 *1 (-880 *3 *4 *5)) (-4 *3 (-1090)) (-4 *5 (-658 *4))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-679 *7)) (-5 *3 (-634 *7)) (-4 *7 (-950 *4 *6 *5)) (-4 *4 (-13 (-301) (-150))) (-4 *5 (-13 (-842) (-609 (-1161)))) (-4 *6 (-788)) (-5 *1 (-924 *4 *5 *6 *7))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-420 *2)) (-4 *2 (-301)) (-5 *1 (-910 *2)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-409 (-953 *5))) (-5 *4 (-1161)) (-4 *5 (-13 (-301) (-150))) (-5 *2 (-57)) (-5 *1 (-911 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-420 (-953 *6))) (-5 *5 (-1161)) (-5 *3 (-953 *6)) (-4 *6 (-13 (-301) (-150))) (-5 *2 (-57)) (-5 *1 (-911 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-121)))) ((*1 *2 *1) (-12 (-4 *1 (-1050 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-5 *2 (-121))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-679 *5))) (-4 *5 (-301)) (-4 *5 (-1047)) (-5 *2 (-1244 (-1244 *5))) (-5 *1 (-1029 *5)) (-5 *4 (-1244 *5))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-634 (-634 *3))) (-4 *3 (-365)) (-5 *1 (-653 *3))))) +(((*1 *1 *1) (-4 *1 (-558)))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-453)) (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1880 *4))) (-5 *1 (-970 *4 *3)) (-4 *3 (-1219 *4))))) +(((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1114 *4 *3 *5))) (-4 *4 (-43 (-409 (-568)))) (-4 *4 (-1047)) (-4 *3 (-842)) (-5 *1 (-1114 *4 *3 *5)) (-4 *5 (-950 *4 (-534 *3) *3)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1190 *4))) (-5 *3 (-1161)) (-5 *1 (-1190 *4)) (-4 *4 (-43 (-409 (-568)))) (-4 *4 (-1047))))) +(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-1141 *4)) (-5 *3 (-568)) (-4 *4 (-1047)) (-5 *1 (-1145 *4)))) ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-1201 *3)) (-4 *3 (-1047)))) ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-1235 *3 *4 *5)) (-4 *3 (-1047)) (-14 *4 (-1161)) (-14 *5 *3))) ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-1239 *3 *4)) (-4 *3 (-1047)) (-14 *4 (-1161))))) +(((*1 *2 *1) (-12 (-4 *1 (-601 *2 *3)) (-4 *3 (-1195)) (-4 *2 (-1090)) (-4 *2 (-842))))) +(((*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-121)) (-4 *6 (-453)) (-4 *7 (-788)) (-4 *8 (-842)) (-4 *3 (-1061 *6 *7 *8)) (-5 *2 (-634 (-2 (|:| |val| *3) (|:| -3001 *4)))) (-5 *1 (-1067 *6 *7 *8 *3 *4)) (-4 *4 (-1066 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-634 (-2 (|:| |val| (-634 *8)) (|:| -3001 *9)))) (-5 *5 (-121)) (-4 *8 (-1061 *6 *7 *4)) (-4 *9 (-1066 *6 *7 *4 *8)) (-4 *6 (-453)) (-4 *7 (-788)) (-4 *4 (-842)) (-5 *2 (-634 (-2 (|:| |val| *8) (|:| -3001 *9)))) (-5 *1 (-1067 *6 *7 *4 *8 *9))))) +(((*1 *2 *1) (-12 (-5 *2 (-634 *4)) (-5 *1 (-1126 *3 *4)) (-4 *3 (-13 (-1090) (-39))) (-4 *4 (-13 (-1090) (-39)))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-634 (-852 *5))) (-14 *5 (-634 (-1161))) (-4 *6 (-453)) (-5 *2 (-634 (-634 (-242 *5 *6)))) (-5 *1 (-476 *5 *6 *7)) (-5 *3 (-634 (-242 *5 *6))) (-4 *7 (-453))))) (((*1 *2 *1) (-12 (-4 *1 (-117)) (-5 *2 (-3 "left" "center" "right" "vertical" "horizontal"))))) -(((*1 *2 *3 *4) (-12 (-4 *5 (-359)) (-14 *6 (-626 (-1153))) (-4 *7 (-226 (-2271 *6) (-755))) (-4 *2 (-912 *5 *8)) (-5 *1 (-646 *5 *6 *4 *7 *3 *8 *2)) (-4 *4 (-942 *5 *7 (-844 *6))) (-4 *3 (-963 *5)) (-4 *8 (-633 *5))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-1 (-121) *4 *4)) (-4 *4 (-1187)) (-5 *1 (-371 *4 *2)) (-4 *2 (-13 (-369 *4) (-10 -7 (-6 -4506))))))) -(((*1 *2) (-12 (-5 *2 (-1153)) (-5 *1 (-1156))))) -(((*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-560)) (-5 *6 (-1 (-1241) (-1236 *5) (-1236 *5) (-375))) (-5 *3 (-1236 (-375))) (-5 *5 (-375)) (-5 *2 (-1241)) (-5 *1 (-775)))) ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-560)) (-5 *6 (-1 (-1241) (-1236 *5) (-1236 *5) (-375))) (-5 *3 (-1236 (-375))) (-5 *5 (-375)) (-5 *2 (-1241)) (-5 *1 (-775))))) -(((*1 *2 *1) (-12 (-4 *2 (-13 (-1082) (-39))) (-5 *1 (-1117 *3 *2)) (-4 *3 (-13 (-1082) (-39)))))) -(((*1 *2 *2 *3 *4) (-12 (-5 *2 (-626 *8)) (-5 *3 (-1 (-121) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-550)) (-4 *6 (-780)) (-4 *7 (-834)) (-5 *1 (-970 *5 *6 *7 *8))))) -(((*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2962 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-626 (-403 *8))) (-4 *7 (-359)) (-4 *8 (-1211 *7)) (-5 *3 (-403 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-626 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-570 *7 *8))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-1236 (-304 (-213)))) (-5 *4 (-626 (-1153))) (-5 *2 (-671 (-304 (-213)))) (-5 *1 (-195)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-1082)) (-4 *6 (-887 *5)) (-5 *2 (-671 *6)) (-5 *1 (-673 *5 *6 *3 *4)) (-4 *3 (-369 *6)) (-4 *4 (-13 (-369 *5) (-10 -7 (-6 -4505))))))) -(((*1 *2 *3) (-12 (-4 *3 (-1211 *2)) (-4 *2 (-1211 *4)) (-5 *1 (-978 *4 *2 *3 *5)) (-4 *4 (-344)) (-4 *5 (-706 *2 *3))))) -(((*1 *2 *2) (-12 (-4 *3 (-447)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1053 *3 *4 *5)) (-5 *1 (-608 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1058 *3 *4 *5 *6)) (-4 *2 (-1091 *3 *4 *5 *6))))) -(((*1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-43 (-403 (-560)))) (-4 *2 (-1039))))) -(((*1 *1 *2 *3 *4) (-12 (-14 *5 (-626 (-1153))) (-4 *2 (-170)) (-4 *4 (-226 (-2271 *5) (-755))) (-14 *6 (-1 (-121) (-2 (|:| -1330 *3) (|:| -4034 *4)) (-2 (|:| -1330 *3) (|:| -4034 *4)))) (-5 *1 (-456 *5 *2 *3 *4 *6 *7)) (-4 *3 (-834)) (-4 *7 (-942 *2 *4 (-844 *5)))))) -(((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-918))))) -(((*1 *1 *1) (-12 (-5 *1 (-171 *2)) (-4 *2 (-296)))) ((*1 *2 *3) (-12 (-5 *2 (-1155 (-403 (-560)))) (-5 *1 (-180)) (-5 *3 (-560)))) ((*1 *1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1187)))) ((*1 *1 *1) (-4 *1 (-855 *2))) ((*1 *1 *1) (-12 (-4 *1 (-966 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-779)) (-4 *4 (-834))))) -(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-145))))) -(((*1 *2 *3) (-12 (-5 *3 (-808)) (-5 *2 (-57)) (-5 *1 (-818))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-123)) (-5 *3 (-626 (-1 *4 (-626 *4)))) (-4 *4 (-1082)) (-5 *1 (-122 *4)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-123)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1082)) (-5 *1 (-122 *4)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-123)) (-5 *2 (-626 (-1 *4 (-626 *4)))) (-5 *1 (-122 *4)) (-4 *4 (-1082))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-626 *5)) (-4 *5 (-1211 *3)) (-4 *3 (-296)) (-5 *2 (-121)) (-5 *1 (-450 *3 *5))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-626 (-2 (|:| -1601 (-1149 *6)) (|:| -4034 (-560))))) (-4 *6 (-296)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-121)) (-5 *1 (-724 *4 *5 *6 *7)) (-4 *7 (-942 *6 *4 *5)))) ((*1 *1 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1039))))) -(((*1 *2 *2) (-12 (-5 *2 (-909)) (-5 *1 (-352 *3)) (-4 *3 (-344))))) -(((*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1241)) (-5 *1 (-574))))) -(((*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550)) (-5 *2 (-121))))) -(((*1 *2 *3) (-12 (-5 *2 (-121)) (-5 *1 (-129 *3)) (-4 *3 (-1211 (-560)))))) -(((*1 *2 *3) (-12 (-4 *4 (-1211 (-403 *2))) (-5 *2 (-560)) (-5 *1 (-901 *4 *3)) (-4 *3 (-1211 (-403 *4)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-665 *4 *5 *6)) (-4 *4 (-1082))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994)))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-359)) (-4 *6 (-1211 (-403 *2))) (-4 *2 (-1211 *5)) (-5 *1 (-204 *5 *2 *6 *3)) (-4 *3 (-334 *5 *2 *6))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-121) *4 *4)) (-4 *4 (-1187)) (-5 *1 (-1112 *4 *2)) (-4 *2 (-13 (-593 (-560) *4) (-10 -7 (-6 -4505) (-6 -4506)))))) ((*1 *2 *2) (-12 (-4 *3 (-834)) (-4 *3 (-1187)) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-593 (-560) *3) (-10 -7 (-6 -4505) (-6 -4506))))))) -(((*1 *2) (-12 (-5 *2 (-755)) (-5 *1 (-129 *3)) (-4 *3 (-1211 (-560))))) ((*1 *2 *2) (-12 (-5 *2 (-755)) (-5 *1 (-129 *3)) (-4 *3 (-1211 (-560)))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-134 *2)) (-4 *2 (-1082))))) -(((*1 *2 *3) (-12 (-5 *2 (-1133 (-626 (-560)))) (-5 *1 (-870)) (-5 *3 (-560))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-121)) (-5 *3 (-626 (-251))) (-5 *1 (-249)))) ((*1 *1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-251))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2583 *1) (|:| -4397 *1))) (-4 *1 (-296)))) ((*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-382 *3)) (|:| |rm| (-382 *3)))) (-5 *1 (-382 *3)) (-4 *3 (-1082)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2583 (-755)) (|:| -4397 (-755)))) (-5 *1 (-755)))) ((*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-3 (-806 *3) "failed")) (|:| |rm| (-3 (-806 *3) "failed")))) (-5 *1 (-806 *3)) (-4 *3 (-834)))) ((*1 *2 *3 *3) (-12 (-4 *4 (-550)) (-5 *2 (-2 (|:| -2583 *3) (|:| -4397 *3))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1211 *4))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-39)) (-5 *2 (-121)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-96 *3)) (-4 *3 (-1082)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-210 *3)) (-4 *3 (-1082)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-487 *3)) (-4 *3 (-834)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-992 *3)) (-4 *3 (-1082)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1124 *3)) (-4 *3 (-1082))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1086)) (-5 *3 (-758)) (-5 *1 (-57))))) -(((*1 *2 *3) (-12 (-5 *3 (-909)) (-5 *2 (-891 (-560))) (-5 *1 (-905)))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-560))) (-5 *2 (-891 (-560))) (-5 *1 (-905))))) -(((*1 *2 *3) (-12 (-5 *3 (-1 *5 (-626 *5))) (-4 *5 (-1226 *4)) (-4 *4 (-43 (-403 (-560)))) (-5 *2 (-1 (-1133 *4) (-626 (-1133 *4)))) (-5 *1 (-1228 *4 *5))))) -(((*1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-43 (-403 (-560)))) (-4 *2 (-1039))))) -(((*1 *2 *3) (-12 (-5 *3 (-909)) (-5 *2 (-891 (-560))) (-5 *1 (-905)))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-560))) (-5 *2 (-891 (-560))) (-5 *1 (-905))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1173))))) -(((*1 *2 *3 *2 *3) (-12 (-5 *2 (-433)) (-5 *3 (-1153)) (-5 *1 (-1156)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-433)) (-5 *3 (-1153)) (-5 *1 (-1156)))) ((*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-433)) (-5 *3 (-626 (-1153))) (-5 *4 (-1153)) (-5 *1 (-1156)))) ((*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-433)) (-5 *3 (-1153)) (-5 *1 (-1156)))) ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-433)) (-5 *3 (-1153)) (-5 *1 (-1157)))) ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-433)) (-5 *3 (-626 (-1153))) (-5 *1 (-1157))))) -(((*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3437 *7) (|:| |sol?| (-121))) (-560) *7)) (-5 *6 (-626 (-403 *8))) (-4 *7 (-359)) (-4 *8 (-1211 *7)) (-5 *3 (-403 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-626 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-570 *7 *8))))) -(((*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-599 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1153))) (-4 *2 (-13 (-426 *5) (-27) (-1173))) (-4 *5 (-13 (-447) (-1029 (-560)) (-834) (-148) (-622 (-560)))) (-5 *1 (-562 *5 *2 *6)) (-4 *6 (-1082))))) -(((*1 *2 *3) (-12 (-4 *4 (-13 (-550) (-834))) (-4 *2 (-13 (-426 *4) (-994) (-1173))) (-5 *1 (-589 *4 *2 *3)) (-4 *3 (-13 (-426 (-167 *4)) (-994) (-1173)))))) -(((*1 *1 *2 *3) (-12 (-5 *1 (-630 *2 *3 *4)) (-4 *2 (-1082)) (-4 *3 (-23)) (-14 *4 *3)))) -(((*1 *2 *1) (-12 (-5 *2 (-626 (-1153))) (-5 *1 (-1157))))) -(((*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-121)) (-5 *1 (-362 *3 *4)) (-4 *3 (-363 *4)))) ((*1 *2) (-12 (-4 *1 (-363 *3)) (-4 *3 (-170)) (-5 *2 (-121))))) -(((*1 *2 *1) (-12 (-5 *1 (-96 *2)) (-4 *2 (-1082)))) ((*1 *2 *1) (-12 (-5 *1 (-210 *2)) (-4 *2 (-1082)))) ((*1 *2 *1) (-12 (-4 *1 (-1101 *2)) (-4 *2 (-1187)))) ((*1 *2 *1) (-12 (-5 *1 (-1124 *2)) (-4 *2 (-1082))))) -(((*1 *2 *3) (-12 (-4 *4 (-13 (-359) (-1029 (-403 *2)))) (-5 *2 (-560)) (-5 *1 (-124 *4 *3)) (-4 *3 (-1211 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-626 (-1174 *3))) (-5 *1 (-1174 *3)) (-4 *3 (-1082))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-1236 *5))) (-5 *4 (-560)) (-5 *2 (-1236 *5)) (-5 *1 (-1021 *5)) (-4 *5 (-359)) (-4 *5 (-364)) (-4 *5 (-1039))))) -(((*1 *2 *3) (-12 (-5 *3 (-1236 *1)) (-4 *1 (-366 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1211 *4)) (-5 *2 (-671 *4)))) ((*1 *2) (-12 (-4 *4 (-170)) (-4 *5 (-1211 *4)) (-5 *2 (-671 *4)) (-5 *1 (-404 *3 *4 *5)) (-4 *3 (-405 *4 *5)))) ((*1 *2) (-12 (-4 *1 (-405 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1211 *3)) (-5 *2 (-671 *3))))) -(((*1 *2 *3) (-12 (-5 *2 (-1133 (-560))) (-5 *1 (-1137 *4)) (-4 *4 (-1039)) (-5 *3 (-560))))) -(((*1 *2 *3) (-12 (-4 *4 (-13 (-359) (-10 -8 (-15 ** ($ $ (-403 (-560))))))) (-5 *2 (-626 *4)) (-5 *1 (-1108 *3 *4)) (-4 *3 (-1211 *4)))) ((*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-359) (-10 -8 (-15 ** ($ $ (-403 (-560))))))) (-5 *2 (-626 *3)) (-5 *1 (-1108 *4 *3)) (-4 *4 (-1211 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-359) (-1173) (-994))) (-5 *1 (-172 *3))))) -(((*1 *2) (-12 (-5 *2 (-909)) (-5 *1 (-1239)))) ((*1 *2 *2) (-12 (-5 *2 (-909)) (-5 *1 (-1239))))) -(((*1 *1 *1) (|partial| -12 (-5 *1 (-283 *2)) (-4 *2 (-708)) (-4 *2 (-1187))))) -(((*1 *2) (-12 (-4 *3 (-550)) (-5 *2 (-626 (-671 *3))) (-5 *1 (-48 *3 *4)) (-4 *4 (-413 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-626 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-577 *3)) (-4 *3 (-359))))) -(((*1 *2 *3) (-12 (-4 *4 (-1039)) (-5 *2 (-121)) (-5 *1 (-439 *4 *3)) (-4 *3 (-1211 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-121))))) -(((*1 *2 *1) (-12 (-4 *1 (-547 *3)) (-4 *3 (-13 (-400) (-1173))) (-5 *2 (-121)))) ((*1 *2 *1) (-12 (-4 *1 (-832)) (-5 *2 (-121)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-1055 *4 *3)) (-4 *4 (-13 (-832) (-359))) (-4 *3 (-1211 *4)) (-5 *2 (-121))))) -(((*1 *2 *2) (|partial| -12 (-4 *3 (-1187)) (-5 *1 (-177 *3 *2)) (-4 *2 (-657 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1119 *4 *2)) (-14 *4 (-909)) (-4 *2 (-13 (-1039) (-10 -7 (-6 (-4507 "*"))))) (-5 *1 (-889 *4 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)) (-5 *2 (-626 (-626 *3))))) ((*1 *2 *1) (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039)) (-4 *6 (-226 *4 *5)) (-4 *7 (-226 *3 *5)) (-5 *2 (-626 (-626 *5))))) ((*1 *2 *1) (-12 (-5 *2 (-626 (-626 *3))) (-5 *1 (-1160 *3)) (-4 *3 (-1082))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4506)) (-4 *1 (-234 *2)) (-4 *2 (-1187))))) -(((*1 *2 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-123)) (-5 *3 (-626 *1)) (-4 *1 (-291)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-291)) (-5 *2 (-123)))) ((*1 *1 *2) (-12 (-5 *2 (-1153)) (-5 *1 (-599 *3)) (-4 *3 (-834)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-123)) (-5 *3 (-626 *5)) (-5 *4 (-755)) (-4 *5 (-834)) (-5 *1 (-599 *5))))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-13 (-296) (-148))) (-4 *5 (-13 (-834) (-601 (-1153)))) (-4 *6 (-780)) (-5 *2 (-626 (-626 (-560)))) (-5 *1 (-916 *4 *5 *6 *7)) (-5 *3 (-560)) (-4 *7 (-942 *4 *6 *5))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-626 (-599 *5))) (-5 *3 (-1153)) (-4 *5 (-426 *4)) (-4 *4 (-834)) (-5 *1 (-569 *4 *5))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-447))) (-5 *1 (-1179 *3 *2)) (-4 *2 (-13 (-426 *3) (-1173)))))) -(((*1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-43 (-403 (-560)))) (-4 *2 (-1039))))) -(((*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-121)) (|:| -1858 (-755)) (|:| |period| (-755)))) (-5 *1 (-1133 *4)) (-4 *4 (-1187)) (-5 *3 (-755))))) -(((*1 *1 *2 *3) (-12 (-4 *1 (-378 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-1082)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-560)) (-5 *2 (-1133 *3)) (-5 *1 (-1137 *3)) (-4 *3 (-1039)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-806 *4)) (-4 *4 (-834)) (-4 *1 (-1251 *4 *3)) (-4 *3 (-1039))))) -(((*1 *1) (-12 (-4 *1 (-321 *2)) (-4 *2 (-364)) (-4 *2 (-359)))) ((*1 *2 *3) (-12 (-5 *3 (-909)) (-5 *2 (-1236 *4)) (-5 *1 (-524 *4)) (-4 *4 (-344))))) -(((*1 *2 *1) (-12 (-4 *1 (-1002 *3)) (-4 *3 (-1187)) (-5 *2 (-626 *3))))) -(((*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-936 *5)) (-5 *3 (-755)) (-4 *5 (-1039)) (-5 *1 (-1141 *4 *5)) (-14 *4 (-909))))) -(((*1 *2 *1) (-12 (-5 *2 (-626 (-936 *4))) (-5 *1 (-1141 *3 *4)) (-14 *3 (-909)) (-4 *4 (-1039))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-892 *4)) (-4 *4 (-1082)) (-5 *2 (-626 (-755))) (-5 *1 (-891 *4))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1258 *4 *2)) (-4 *1 (-370 *4 *2)) (-4 *4 (-834)) (-4 *2 (-170)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-834)) (-4 *2 (-1039)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-806 *4)) (-4 *1 (-1251 *4 *2)) (-4 *4 (-834)) (-4 *2 (-1039)))) ((*1 *2 *1 *3) (-12 (-4 *2 (-1039)) (-5 *1 (-1257 *2 *3)) (-4 *3 (-830))))) -(((*1 *2 *1 *1) (-12 (-4 *3 (-550)) (-4 *3 (-1039)) (-5 *2 (-2 (|:| -2583 *1) (|:| -4397 *1))) (-4 *1 (-836 *3)))) ((*1 *2 *3 *3 *4) (-12 (-5 *4 (-101 *5)) (-4 *5 (-550)) (-4 *5 (-1039)) (-5 *2 (-2 (|:| -2583 *3) (|:| -4397 *3))) (-5 *1 (-837 *5 *3)) (-4 *3 (-836 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-385)) (-5 *2 (-1135))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1 (-936 (-213)) (-936 (-213)))) (-5 *3 (-626 (-251))) (-5 *1 (-249)))) ((*1 *1 *2) (-12 (-5 *2 (-1 (-936 (-213)) (-936 (-213)))) (-5 *1 (-251)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-626 (-485 *5 *6))) (-5 *3 (-485 *5 *6)) (-14 *5 (-626 (-1153))) (-4 *6 (-447)) (-5 *2 (-1236 *6)) (-5 *1 (-614 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 (-213) (-213))) (-5 *1 (-307)) (-5 *3 (-213))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1173))))) -(((*1 *2 *1) (-12 (-4 *1 (-547 *2)) (-4 *2 (-13 (-400) (-1173))))) ((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-842)))) ((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-842))))) -(((*1 *2) (-12 (-4 *3 (-550)) (-5 *2 (-626 (-671 *3))) (-5 *1 (-48 *3 *4)) (-4 *4 (-413 *3))))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-550)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1979 *4))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1211 *4))))) -(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-867 (-1 (-213) (-213)))) (-5 *4 (-1076 (-375))) (-5 *5 (-626 (-251))) (-5 *2 (-1113 (-213))) (-5 *1 (-243)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-867 (-1 (-213) (-213)))) (-5 *4 (-1076 (-375))) (-5 *2 (-1113 (-213))) (-5 *1 (-243)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-936 (-213)) (-213))) (-5 *4 (-1076 (-375))) (-5 *5 (-626 (-251))) (-5 *2 (-1113 (-213))) (-5 *1 (-243)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 (-936 (-213)) (-213))) (-5 *4 (-1076 (-375))) (-5 *2 (-1113 (-213))) (-5 *1 (-243)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-213) (-213) (-213))) (-5 *4 (-1076 (-375))) (-5 *5 (-626 (-251))) (-5 *2 (-1113 (-213))) (-5 *1 (-243)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-213) (-213) (-213))) (-5 *4 (-1076 (-375))) (-5 *2 (-1113 (-213))) (-5 *1 (-243)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-936 (-213)) (-213) (-213))) (-5 *4 (-1076 (-375))) (-5 *5 (-626 (-251))) (-5 *2 (-1113 (-213))) (-5 *1 (-243)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-936 (-213)) (-213) (-213))) (-5 *4 (-1076 (-375))) (-5 *2 (-1113 (-213))) (-5 *1 (-243)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-869 (-1 (-213) (-213) (-213)))) (-5 *4 (-1076 (-375))) (-5 *5 (-626 (-251))) (-5 *2 (-1113 (-213))) (-5 *1 (-243)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-869 (-1 (-213) (-213) (-213)))) (-5 *4 (-1076 (-375))) (-5 *2 (-1113 (-213))) (-5 *1 (-243)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-867 *6)) (-5 *4 (-1074 (-375))) (-5 *5 (-626 (-251))) (-4 *6 (-13 (-601 (-533)) (-1082))) (-5 *2 (-1113 (-213))) (-5 *1 (-247 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-867 *5)) (-5 *4 (-1074 (-375))) (-4 *5 (-13 (-601 (-533)) (-1082))) (-5 *2 (-1113 (-213))) (-5 *1 (-247 *5)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1074 (-375))) (-5 *5 (-626 (-251))) (-5 *2 (-1113 (-213))) (-5 *1 (-247 *3)) (-4 *3 (-13 (-601 (-533)) (-1082))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-1074 (-375))) (-5 *2 (-1113 (-213))) (-5 *1 (-247 *3)) (-4 *3 (-13 (-601 (-533)) (-1082))))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-869 *6)) (-5 *4 (-1074 (-375))) (-5 *5 (-626 (-251))) (-4 *6 (-13 (-601 (-533)) (-1082))) (-5 *2 (-1113 (-213))) (-5 *1 (-247 *6)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-869 *5)) (-5 *4 (-1074 (-375))) (-4 *5 (-13 (-601 (-533)) (-1082))) (-5 *2 (-1113 (-213))) (-5 *1 (-247 *5))))) -(((*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1211 *5)) (-4 *5 (-13 (-359) (-148) (-1029 (-560)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-403 *6)) (|:| |c| (-403 *6)) (|:| -3962 *6))) (-5 *1 (-1007 *5 *6)) (-5 *3 (-403 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-879 *3)) (-4 *3 (-1082))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-1241)) (-5 *1 (-809))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994)))))) -(((*1 *1 *1 *1 *2) (-12 (-4 *1 (-1053 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *2 (-834)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-780)) (-4 *4 (-834))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-369 *2)) (-4 *4 (-369 *2))))) -(((*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-834)) (-5 *3 (-626 *6)) (-5 *5 (-626 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-626 *5)) (|:| |f3| *5) (|:| |f4| (-626 *5)))) (-5 *1 (-1159 *6)) (-5 *4 (-626 *5))))) -(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-213) (-213))) (-5 *4 (-1076 (-375))) (-5 *5 (-626 (-251))) (-5 *2 (-1237)) (-5 *1 (-243)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 (-213) (-213))) (-5 *4 (-1076 (-375))) (-5 *2 (-1237)) (-5 *1 (-243)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-865 (-1 (-213) (-213)))) (-5 *4 (-1076 (-375))) (-5 *5 (-626 (-251))) (-5 *2 (-1237)) (-5 *1 (-243)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-865 (-1 (-213) (-213)))) (-5 *4 (-1076 (-375))) (-5 *2 (-1237)) (-5 *1 (-243)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-867 (-1 (-213) (-213)))) (-5 *4 (-1076 (-375))) (-5 *5 (-626 (-251))) (-5 *2 (-1238)) (-5 *1 (-243)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-867 (-1 (-213) (-213)))) (-5 *4 (-1076 (-375))) (-5 *2 (-1238)) (-5 *1 (-243)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-936 (-213)) (-213))) (-5 *4 (-1076 (-375))) (-5 *5 (-626 (-251))) (-5 *2 (-1238)) (-5 *1 (-243)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 (-936 (-213)) (-213))) (-5 *4 (-1076 (-375))) (-5 *2 (-1238)) (-5 *1 (-243)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-213) (-213) (-213))) (-5 *4 (-1076 (-375))) (-5 *5 (-626 (-251))) (-5 *2 (-1238)) (-5 *1 (-243)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-213) (-213) (-213))) (-5 *4 (-1076 (-375))) (-5 *2 (-1238)) (-5 *1 (-243)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-936 (-213)) (-213) (-213))) (-5 *4 (-1076 (-375))) (-5 *5 (-626 (-251))) (-5 *2 (-1238)) (-5 *1 (-243)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-936 (-213)) (-213) (-213))) (-5 *4 (-1076 (-375))) (-5 *2 (-1238)) (-5 *1 (-243)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-869 (-1 (-213) (-213) (-213)))) (-5 *4 (-1076 (-375))) (-5 *5 (-626 (-251))) (-5 *2 (-1238)) (-5 *1 (-243)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-869 (-1 (-213) (-213) (-213)))) (-5 *4 (-1076 (-375))) (-5 *2 (-1238)) (-5 *1 (-243)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-283 *7)) (-5 *4 (-1153)) (-5 *5 (-626 (-251))) (-4 *7 (-426 *6)) (-4 *6 (-13 (-550) (-834) (-1029 (-560)))) (-5 *2 (-1237)) (-5 *1 (-244 *6 *7)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1074 (-375))) (-5 *5 (-626 (-251))) (-5 *2 (-1237)) (-5 *1 (-247 *3)) (-4 *3 (-13 (-601 (-533)) (-1082))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1074 (-375))) (-5 *2 (-1237)) (-5 *1 (-247 *3)) (-4 *3 (-13 (-601 (-533)) (-1082))))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-865 *6)) (-5 *4 (-1074 (-375))) (-5 *5 (-626 (-251))) (-4 *6 (-13 (-601 (-533)) (-1082))) (-5 *2 (-1237)) (-5 *1 (-247 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-865 *5)) (-5 *4 (-1074 (-375))) (-4 *5 (-13 (-601 (-533)) (-1082))) (-5 *2 (-1237)) (-5 *1 (-247 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-867 *6)) (-5 *4 (-1074 (-375))) (-5 *5 (-626 (-251))) (-4 *6 (-13 (-601 (-533)) (-1082))) (-5 *2 (-1238)) (-5 *1 (-247 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-867 *5)) (-5 *4 (-1074 (-375))) (-4 *5 (-13 (-601 (-533)) (-1082))) (-5 *2 (-1238)) (-5 *1 (-247 *5)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1074 (-375))) (-5 *5 (-626 (-251))) (-5 *2 (-1238)) (-5 *1 (-247 *3)) (-4 *3 (-13 (-601 (-533)) (-1082))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-1074 (-375))) (-5 *2 (-1238)) (-5 *1 (-247 *3)) (-4 *3 (-13 (-601 (-533)) (-1082))))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-869 *6)) (-5 *4 (-1074 (-375))) (-5 *5 (-626 (-251))) (-4 *6 (-13 (-601 (-533)) (-1082))) (-5 *2 (-1238)) (-5 *1 (-247 *6)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-869 *5)) (-5 *4 (-1074 (-375))) (-4 *5 (-13 (-601 (-533)) (-1082))) (-5 *2 (-1238)) (-5 *1 (-247 *5)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-626 (-213))) (-5 *2 (-1237)) (-5 *1 (-248)))) ((*1 *2 *3 *3 *4) (-12 (-5 *3 (-626 (-213))) (-5 *4 (-626 (-251))) (-5 *2 (-1237)) (-5 *1 (-248)))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-936 (-213)))) (-5 *2 (-1237)) (-5 *1 (-248)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-936 (-213)))) (-5 *4 (-626 (-251))) (-5 *2 (-1237)) (-5 *1 (-248)))) ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-626 (-213))) (-5 *2 (-1238)) (-5 *1 (-248)))) ((*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-626 (-213))) (-5 *4 (-626 (-251))) (-5 *2 (-1238)) (-5 *1 (-248))))) -(((*1 *2 *2) (-12 (-5 *2 (-213)) (-5 *1 (-245))))) -(((*1 *2 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-550)) (-4 *2 (-542)))) ((*1 *1 *1) (-4 *1 (-1048)))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-283 (-403 (-945 *5)))) (-5 *4 (-1153)) (-4 *5 (-13 (-296) (-834) (-148))) (-5 *2 (-1142 (-626 (-304 *5)) (-626 (-283 (-304 *5))))) (-5 *1 (-1109 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-403 (-945 *5))) (-5 *4 (-1153)) (-4 *5 (-13 (-296) (-834) (-148))) (-5 *2 (-1142 (-626 (-304 *5)) (-626 (-283 (-304 *5))))) (-5 *1 (-1109 *5))))) -(((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-998))))) -(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-755)) (-4 *6 (-359)) (-5 *4 (-1182 *6)) (-5 *2 (-1 (-1133 *4) (-1133 *4))) (-5 *1 (-1244 *6)) (-5 *5 (-1133 *4))))) -(((*1 *2 *1) (-12 (-5 *1 (-96 *2)) (-4 *2 (-1082)))) ((*1 *2 *1) (-12 (-4 *1 (-111 *2)) (-4 *2 (-1187)))) ((*1 *2 *1) (-12 (-5 *1 (-210 *2)) (-4 *2 (-1082)))) ((*1 *2 *1) (-12 (-5 *1 (-487 *2)) (-4 *2 (-834)))) ((*1 *2 *1) (-12 (-5 *1 (-992 *2)) (-4 *2 (-1082)))) ((*1 *2 *1) (-12 (-5 *1 (-1124 *2)) (-4 *2 (-1082))))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-550)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1979 *4))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1211 *4))))) -(((*1 *2 *3 *4) (-12 (-4 *5 (-359)) (-5 *2 (-626 (-2 (|:| C (-671 *5)) (|:| |g| (-1236 *5))))) (-5 *1 (-971 *5)) (-5 *3 (-671 *5)) (-5 *4 (-1236 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-323 *3)) (-4 *3 (-834))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-1236 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-359)) (-4 *1 (-706 *5 *6)) (-4 *5 (-170)) (-4 *6 (-1211 *5)) (-5 *2 (-671 *5))))) -(((*1 *1 *1) (-12 (-4 *2 (-148)) (-4 *2 (-296)) (-4 *2 (-447)) (-4 *3 (-834)) (-4 *4 (-780)) (-5 *1 (-980 *2 *3 *4 *5)) (-4 *5 (-942 *2 *4 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-53)) (-5 *2 (-304 (-560))) (-5 *1 (-1099)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-447))) (-5 *1 (-1179 *3 *2)) (-4 *2 (-13 (-426 *3) (-1173)))))) -(((*1 *2 *3) (-12 (-5 *3 (-945 (-560))) (-5 *2 (-626 *1)) (-4 *1 (-1004)))) ((*1 *2 *3) (-12 (-5 *3 (-945 (-403 (-560)))) (-5 *2 (-626 *1)) (-4 *1 (-1004)))) ((*1 *2 *3) (-12 (-5 *3 (-945 *1)) (-4 *1 (-1004)) (-5 *2 (-626 *1)))) ((*1 *2 *3) (-12 (-5 *3 (-1149 (-560))) (-5 *2 (-626 *1)) (-4 *1 (-1004)))) ((*1 *2 *3) (-12 (-5 *3 (-1149 (-403 (-560)))) (-5 *2 (-626 *1)) (-4 *1 (-1004)))) ((*1 *2 *3) (-12 (-5 *3 (-1149 *1)) (-4 *1 (-1004)) (-5 *2 (-626 *1)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-832) (-359))) (-4 *3 (-1211 *4)) (-5 *2 (-626 *1)) (-4 *1 (-1055 *4 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1105 (-560) (-599 (-53)))) (-5 *1 (-53)))) ((*1 *2 *1) (-12 (-4 *3 (-985 *2)) (-4 *4 (-1211 *3)) (-4 *2 (-296)) (-5 *1 (-409 *2 *3 *4 *5)) (-4 *5 (-13 (-405 *3 *4) (-1029 *3))))) ((*1 *2 *1) (-12 (-4 *3 (-550)) (-4 *3 (-834)) (-5 *2 (-1105 *3 (-599 *1))) (-4 *1 (-426 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-1105 (-560) (-599 (-496)))) (-5 *1 (-496)))) ((*1 *2 *1) (-12 (-4 *4 (-170)) (-4 *2 (|SubsetCategory| (-708) *4)) (-5 *1 (-605 *3 *4 *2)) (-4 *3 (-43 *4)))) ((*1 *2 *1) (-12 (-4 *4 (-170)) (-4 *2 (|SubsetCategory| (-708) *4)) (-5 *1 (-644 *3 *4 *2)) (-4 *3 (-699 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-550))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 (-57))) (-5 *2 (-1241)) (-5 *1 (-843))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-702)) (-5 *2 (-909)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-704)) (-5 *2 (-755))))) -(((*1 *2 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170)))) ((*1 *2 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-170))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1241)) (-5 *1 (-1238))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-1181 *3 *4 *5 *2)) (-4 *3 (-550)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *2 (-1053 *3 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 *6)) (-4 *6 (-942 *4 *7 (-844 *5))) (-4 *7 (-226 (-2271 *5) (-755))) (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-5 *2 (-626 *8)) (-5 *1 (-955 *4 *5 *6 *7 *8)) (-4 *8 (-963 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1105 (-560) (-599 (-53)))) (-5 *1 (-53)))) ((*1 *2 *1) (-12 (-4 *3 (-296)) (-4 *4 (-985 *3)) (-4 *5 (-1211 *4)) (-5 *2 (-1236 *6)) (-5 *1 (-409 *3 *4 *5 *6)) (-4 *6 (-13 (-405 *4 *5) (-1029 *4))))) ((*1 *2 *1) (-12 (-4 *3 (-1039)) (-4 *3 (-834)) (-5 *2 (-1105 *3 (-599 *1))) (-4 *1 (-426 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-1105 (-560) (-599 (-496)))) (-5 *1 (-496)))) ((*1 *2 *1) (-12 (-4 *3 (-170)) (-4 *2 (-43 *3)) (-5 *1 (-605 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-708) *3)))) ((*1 *2 *1) (-12 (-4 *3 (-170)) (-4 *2 (-699 *3)) (-5 *1 (-644 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-708) *3)))) ((*1 *2 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-550))))) -(((*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-1039)) (-5 *1 (-1137 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-1193 *2)) (-4 *2 (-1039)))) ((*1 *1 *1) (-12 (-5 *1 (-1227 *2 *3 *4)) (-4 *2 (-1039)) (-14 *3 (-1153)) (-14 *4 *2))) ((*1 *1 *1) (-12 (-5 *1 (-1231 *2 *3)) (-4 *2 (-1039)) (-14 *3 (-1153))))) -(((*1 *2 *1) (-12 (|has| $ (-6 -4505)) (-5 *2 (-626 *3)) (-5 *1 (-96 *3)) (-4 *3 (-1082)))) ((*1 *2 *1) (-12 (|has| $ (-6 -4505)) (-5 *2 (-626 *3)) (-5 *1 (-210 *3)) (-4 *3 (-1082)))) ((*1 *2 *1) (-12 (|has| $ (-6 -4505)) (-5 *2 (-626 *3)) (-5 *1 (-487 *3)) (-4 *3 (-834)))) ((*1 *2 *1) (-12 (|has| *1 (-6 -4505)) (-4 *1 (-492 *3)) (-4 *3 (-1187)) (-5 *2 (-626 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-626 *3)) (-5 *1 (-719 *3)) (-4 *3 (-1082)))) ((*1 *2 *1) (-12 (|has| $ (-6 -4505)) (-5 *2 (-626 *3)) (-5 *1 (-992 *3)) (-4 *3 (-1082)))) ((*1 *2 *1) (-12 (|has| $ (-6 -4505)) (-5 *2 (-626 *3)) (-5 *1 (-1124 *3)) (-4 *3 (-1082))))) -(((*1 *1) (-5 *1 (-810)))) -(((*1 *1 *2 *3 *4) (-12 (-5 *3 (-560)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-414 *2)) (-4 *2 (-550))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 (-304 (-213)))) (-5 *2 (-121)) (-5 *1 (-258))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-755)) (-5 *1 (-123))))) -(((*1 *2) (-12 (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *6 (-226 (-2271 *4) (-755))) (-4 *7 (-963 *3)) (-4 *8 (-633 *3)) (-4 *9 (-912 *3 *8)) (-4 *10 (-230 *9)) (-4 *11 (-528 *3 *4 *5 *6 *7 *8 *9 *10 *13)) (-4 *13 (-117)) (-5 *2 (-626 *7)) (-5 *1 (-460 *3 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13)) (-4 *12 (-253 *11)))) ((*1 *2) (-12 (-5 *2 (-626 (-959 *3))) (-5 *1 (-859 *3 *4 *5)) (-4 *3 (-344)) (-14 *4 (-626 (-1153))) (-4 *5 (-117)))) ((*1 *2) (-12 (-5 *2 (-626 (-958 *3))) (-5 *1 (-860 *3 *4 *5)) (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *5 (-117)))) ((*1 *2 *3) (-12 (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *6 (-226 (-2271 *5) (-755))) (-5 *2 (-626 *7)) (-5 *1 (-955 *4 *5 *3 *6 *7)) (-4 *3 (-942 *4 *6 (-844 *5))) (-4 *7 (-963 *4))))) -(((*1 *2 *2) (-12 (-5 *1 (-953 *2)) (-4 *2 (-542))))) -(((*1 *2 *3 *4 *2) (-12 (-5 *2 (-626 (-2 (|:| |totdeg| (-755)) (|:| -1558 *3)))) (-5 *4 (-755)) (-4 *3 (-942 *5 *6 *7)) (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-5 *1 (-444 *5 *6 *7 *3))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-39)) (-5 *3 (-755)) (-5 *2 (-121)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *2 (-121)) (-5 *1 (-96 *4)) (-4 *4 (-1082)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *2 (-121)) (-5 *1 (-210 *4)) (-4 *4 (-1082)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *2 (-121)) (-5 *1 (-487 *4)) (-4 *4 (-834)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *2 (-121)) (-5 *1 (-992 *4)) (-4 *4 (-1082)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *2 (-121)) (-5 *1 (-1124 *4)) (-4 *4 (-1082)))) ((*1 *2 *3 *3) (-12 (-5 *2 (-121)) (-5 *1 (-1188 *3)) (-4 *3 (-834)) (-4 *3 (-1082))))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-550)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1211 *4))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-842))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-560)) (-5 *2 (-1241)) (-5 *1 (-1238)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-375)) (-5 *2 (-1241)) (-5 *1 (-1238))))) -(((*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-359) (-10 -8 (-15 ** ($ $ (-403 (-560))))))) (-5 *1 (-1108 *3 *2)) (-4 *3 (-1211 *2))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-626 *3)) (-4 *3 (-942 *5 *7 (-844 *6))) (-4 *7 (-226 (-2271 *6) (-755))) (-4 *5 (-359)) (-14 *6 (-626 (-1153))) (-5 *2 (-626 *8)) (-5 *1 (-955 *5 *6 *3 *7 *8)) (-4 *8 (-963 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-386 *3 *4 *5)) (-14 *3 (-755)) (-14 *4 (-755)) (-4 *5 (-170))))) -(((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-557))))) -(((*1 *2 *3 *4) (-12 (-4 *5 (-780)) (-4 *6 (-834)) (-4 *3 (-550)) (-4 *7 (-942 *3 *5 *6)) (-5 *2 (-2 (|:| -4034 (-755)) (|:| -2169 *8) (|:| |radicand| *8))) (-5 *1 (-946 *5 *6 *3 *7 *8)) (-5 *4 (-755)) (-4 *8 (-13 (-359) (-10 -8 (-15 -2132 (*7 $)) (-15 -2139 (*7 $)) (-15 -2801 ($ *7)))))))) -(((*1 *2 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-1241)) (-5 *1 (-1156))))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-550)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4440 *3))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1211 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1153)) (|:| |arrayIndex| (-626 (-945 (-560)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-121)) (|:| -1846 (-842)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1153)) (|:| |rand| (-842)) (|:| |ints2Floats?| (-121)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1152)) (|:| |thenClause| (-322)) (|:| |elseClause| (-322)))) (|:| |returnBranch| (-2 (|:| -4191 (-121)) (|:| -2981 (-2 (|:| |ints2Floats?| (-121)) (|:| -1846 (-842)))))) (|:| |blockBranch| (-626 (-322))) (|:| |commentBranch| (-626 (-1135))) (|:| |callBranch| (-1135)) (|:| |forBranch| (-2 (|:| -1396 (-1074 (-945 (-560)))) (|:| |span| (-945 (-560))) (|:| |body| (-322)))) (|:| |labelBranch| (-1100)) (|:| |loopBranch| (-2 (|:| |switch| (-1152)) (|:| |body| (-322)))) (|:| |commonBranch| (-2 (|:| -1337 (-1153)) (|:| |contents| (-626 (-1153))))) (|:| |printBranch| (-626 (-842))))) (-5 *1 (-322))))) -(((*1 *2 *2) (-12 (-5 *2 (-909)) (|has| *1 (-6 -4496)) (-4 *1 (-400)))) ((*1 *2) (-12 (-4 *1 (-400)) (-5 *2 (-909)))) ((*1 *2 *2) (-12 (-5 *2 (-909)) (-5 *1 (-680)))) ((*1 *2) (-12 (-5 *2 (-909)) (-5 *1 (-680))))) -(((*1 *2 *1) (-12 (-5 *2 (-626 (-283 *3))) (-5 *1 (-283 *3)) (-4 *3 (-550)) (-4 *3 (-1187))))) -(((*1 *2) (-12 (-5 *2 (-861)) (-5 *1 (-1239)))) ((*1 *2 *2) (-12 (-5 *2 (-861)) (-5 *1 (-1239))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-359)) (-5 *1 (-750 *2 *3)) (-4 *2 (-690 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-836 *2)) (-4 *2 (-1039)) (-4 *2 (-359))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *4 (-1039)) (-4 *5 (-780)) (-4 *3 (-834)) (-5 *2 (-2 (|:| -2169 *1) (|:| |gap| (-755)) (|:| -4397 *1))) (-4 *1 (-1053 *4 *5 *3)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-2 (|:| -2169 *1) (|:| |gap| (-755)) (|:| -4397 *1))) (-4 *1 (-1053 *3 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-1 (-121) *6)) (-4 *6 (-13 (-1082) (-1029 *5))) (-4 *5 (-873 *4)) (-4 *4 (-1082)) (-5 *2 (-1 (-121) *5)) (-5 *1 (-924 *4 *5 *6))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-1 (-936 (-213)) (-213) (-213))) (-5 *3 (-1 (-213) (-213) (-213) (-213))) (-5 *1 (-243))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-427 *3 *2)) (-4 *2 (-426 *3))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994)))))) -(((*1 *2 *1) (|partial| -12 (-4 *1 (-942 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *2 (-834)))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-780)) (-4 *5 (-1039)) (-4 *6 (-942 *5 *4 *2)) (-4 *2 (-834)) (-5 *1 (-943 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-359) (-10 -8 (-15 -2801 ($ *6)) (-15 -2132 (*6 $)) (-15 -2139 (*6 $))))))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-403 (-945 *4))) (-4 *4 (-550)) (-5 *2 (-1153)) (-5 *1 (-1034 *4))))) -(((*1 *2 *2 *2 *3) (-12 (-5 *3 (-755)) (-4 *2 (-550)) (-5 *1 (-962 *2 *4)) (-4 *4 (-1211 *2))))) -(((*1 *2) (-12 (-5 *2 (-2 (|:| -3965 (-626 *3)) (|:| -1451 (-626 *3)))) (-5 *1 (-1188 *3)) (-4 *3 (-1082))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1241)) (-5 *1 (-1238))))) -(((*1 *2 *3) (-12 (-4 *4 (-344)) (-5 *2 (-121)) (-5 *1 (-205 *4 *3)) (-4 *3 (-1211 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-344)) (-5 *2 (-121)) (-5 *1 (-338 *4 *3)) (-4 *3 (-1211 *4))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-755)) (-5 *3 (-121)) (-5 *1 (-114)))) ((*1 *2 *2) (-12 (-5 *2 (-909)) (|has| *1 (-6 -4496)) (-4 *1 (-400)))) ((*1 *2) (-12 (-4 *1 (-400)) (-5 *2 (-909))))) -(((*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3437 *6) (|:| |sol?| (-121))) (-560) *6)) (-4 *6 (-359)) (-4 *7 (-1211 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-403 *7)) (|:| |a0| *6)) (-2 (|:| -2962 (-403 *7)) (|:| |coeff| (-403 *7))) "failed")) (-5 *1 (-570 *6 *7)) (-5 *3 (-403 *7))))) -(((*1 *1 *2 *3 *1) (-12 (-14 *4 (-626 (-1153))) (-4 *2 (-170)) (-4 *3 (-226 (-2271 *4) (-755))) (-14 *6 (-1 (-121) (-2 (|:| -1330 *5) (|:| -4034 *3)) (-2 (|:| -1330 *5) (|:| -4034 *3)))) (-5 *1 (-456 *4 *2 *5 *3 *6 *7)) (-4 *5 (-834)) (-4 *7 (-942 *2 *3 (-844 *4)))))) -(((*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1211 *5)) (-4 *5 (-13 (-27) (-426 *4))) (-4 *4 (-13 (-834) (-550) (-1029 (-560)))) (-4 *7 (-1211 (-403 *6))) (-5 *1 (-545 *4 *5 *6 *7 *2)) (-4 *2 (-334 *5 *6 *7))))) -(((*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -3025 (-626 (-2 (|:| |irr| *10) (|:| -2678 (-560))))))) (-5 *6 (-626 *3)) (-5 *7 (-626 *8)) (-4 *8 (-834)) (-4 *3 (-296)) (-4 *10 (-942 *3 *9 *8)) (-4 *9 (-780)) (-5 *2 (-2 (|:| |polfac| (-626 *10)) (|:| |correct| *3) (|:| |corrfact| (-626 (-1149 *3))))) (-5 *1 (-609 *8 *9 *3 *10)) (-5 *4 (-626 (-1149 *3)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-121))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-755)) (-4 *1 (-1211 *3)) (-4 *3 (-1039))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-626 (-375))) (-5 *3 (-626 (-251))) (-5 *1 (-249)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-626 (-375))) (-5 *1 (-466)))) ((*1 *2 *1) (-12 (-5 *2 (-626 (-375))) (-5 *1 (-466)))) ((*1 *2 *1 *3 *4) (-12 (-5 *3 (-909)) (-5 *4 (-861)) (-5 *2 (-1241)) (-5 *1 (-1237)))) ((*1 *2 *1 *3 *4) (-12 (-5 *3 (-909)) (-5 *4 (-1135)) (-5 *2 (-1241)) (-5 *1 (-1237))))) -(((*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-322))))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-550)) (-5 *2 (-626 (-755))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1211 *4))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-550) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *1 (-268 *3 *2)) (-4 *2 (-13 (-27) (-1173) (-426 *3))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1153)) (-4 *4 (-13 (-550) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *1 (-268 *4 *2)) (-4 *2 (-13 (-27) (-1173) (-426 *4))))) ((*1 *1 *1) (-5 *1 (-375))) ((*1 *2 *3 *4) (-12 (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-626 (-2 (|:| |val| *3) (|:| -3249 *4)))) (-5 *1 (-760 *5 *6 *7 *3 *4)) (-4 *4 (-1058 *5 *6 *7 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-861)) (-5 *1 (-251)))) ((*1 *1 *2) (-12 (-5 *2 (-375)) (-5 *1 (-251))))) -(((*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-626 *10)) (-5 *5 (-121)) (-4 *10 (-1058 *6 *7 *8 *9)) (-4 *6 (-447)) (-4 *7 (-780)) (-4 *8 (-834)) (-4 *9 (-1053 *6 *7 *8)) (-5 *2 (-626 (-2 (|:| -2654 (-626 *9)) (|:| -3249 *10) (|:| |ineq| (-626 *9))))) (-5 *1 (-981 *6 *7 *8 *9 *10)) (-5 *3 (-626 *9)))) ((*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-626 *10)) (-5 *5 (-121)) (-4 *10 (-1058 *6 *7 *8 *9)) (-4 *6 (-447)) (-4 *7 (-780)) (-4 *8 (-834)) (-4 *9 (-1053 *6 *7 *8)) (-5 *2 (-626 (-2 (|:| -2654 (-626 *9)) (|:| -3249 *10) (|:| |ineq| (-626 *9))))) (-5 *1 (-1089 *6 *7 *8 *9 *10)) (-5 *3 (-626 *9))))) +(((*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-763)) (-5 *1 (-48 *4 *3)) (-4 *3 (-419 *4))))) +(((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-165 *3 *2)) (-4 *3 (-166 *2)))) ((*1 *2 *3) (-12 (-5 *3 (-1244 *1)) (-4 *1 (-372 *2 *4)) (-4 *4 (-1219 *2)) (-4 *2 (-172)))) ((*1 *2) (-12 (-4 *4 (-1219 *2)) (-4 *2 (-172)) (-5 *1 (-410 *3 *2 *4)) (-4 *3 (-411 *2 *4)))) ((*1 *2) (-12 (-4 *1 (-411 *2 *3)) (-4 *3 (-1219 *2)) (-4 *2 (-172)))) ((*1 *2) (-12 (-4 *3 (-1219 *2)) (-5 *2 (-568)) (-5 *1 (-760 *3 *4)) (-4 *4 (-411 *2 *3)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-950 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *2 (-842)) (-4 *3 (-172)))) ((*1 *2 *3) (-12 (-4 *2 (-558)) (-5 *1 (-970 *2 *3)) (-4 *3 (-1219 *2)))) ((*1 *2 *1) (-12 (-4 *1 (-1219 *2)) (-4 *2 (-1047)) (-4 *2 (-172))))) +(((*1 *2 *1) (-12 (-5 *1 (-212 *2)) (-4 *2 (-1090)))) ((*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1195))))) +(((*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-14 *6 (-634 (-1161))) (-4 *3 (-950 *5 *7 (-852 *6))) (-4 *7 (-230 (-1697 *6) (-763))) (-4 *8 (-971 *5)) (-4 *4 (-920 *5 *2)) (-4 *9 (-235 *4)) (-4 *10 (-536 *5 *6 *3 *7 *8 *2 *4 *9 *12)) (-4 *12 (-117)) (-4 *2 (-641 *5)) (-5 *1 (-467 *5 *6 *3 *7 *8 *2 *4 *9 *10 *11 *12)) (-4 *11 (-258 *10)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-242 *6 *5)) (-5 *4 (-922 *5)) (-4 *5 (-350)) (-14 *6 (-634 (-1161))) (-5 *2 (-774 (-857 *5))) (-5 *1 (-867 *5 *6 *7)) (-4 *7 (-117)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-242 *6 *5)) (-5 *4 (-921 *5)) (-4 *5 (-365)) (-14 *6 (-634 (-1161))) (-5 *2 (-774 *5)) (-5 *1 (-868 *5 *6 *7)) (-4 *7 (-117)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-634 *2)) (-4 *5 (-365)) (-14 *6 (-634 (-1161))) (-4 *7 (-230 (-1697 *6) (-763))) (-4 *2 (-641 *5)) (-5 *1 (-871 *5 *6 *3 *7 *8 *2 *9)) (-4 *3 (-950 *5 *7 (-852 *6))) (-4 *8 (-971 *5)) (-4 *9 (-920 *5 *2)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-14 *6 (-634 (-1161))) (-4 *7 (-230 (-1697 *6) (-763))) (-4 *2 (-641 *5)) (-5 *1 (-871 *5 *6 *3 *7 *8 *2 *4)) (-4 *3 (-950 *5 *7 (-852 *6))) (-4 *8 (-971 *5)) (-4 *4 (-920 *5 *2)))) ((*1 *2 *3 *3 *4) (-12 (-4 *5 (-365)) (-14 *6 (-634 (-1161))) (-4 *7 (-230 (-1697 *6) (-763))) (-4 *2 (-641 *5)) (-5 *1 (-871 *5 *6 *3 *7 *8 *2 *4)) (-4 *3 (-950 *5 *7 (-852 *6))) (-4 *8 (-971 *5)) (-4 *4 (-920 *5 *2)))) ((*1 *2 *3 *4 *5) (-12 (-5 *5 (-568)) (-4 *6 (-365)) (-14 *7 (-634 (-1161))) (-4 *8 (-230 (-1697 *7) (-763))) (-4 *2 (-641 *6)) (-5 *1 (-871 *6 *7 *3 *8 *9 *2 *4)) (-4 *3 (-950 *6 *8 (-852 *7))) (-4 *9 (-971 *6)) (-4 *4 (-920 *6 *2))))) +(((*1 *1 *2) (-12 (-5 *2 (-634 (-850))) (-5 *1 (-328))))) +(((*1 *2 *1) (-12 (-4 *2 (-13 (-1090) (-39))) (-5 *1 (-1125 *3 *2)) (-4 *3 (-13 (-1090) (-39)))))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *7 (-1061 *4 *5 *6)) (-5 *2 (-121)) (-5 *1 (-989 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-634 *3)) (-4 *3 (-1066 *5 *6 *7 *8)) (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *8 (-1061 *5 *6 *7)) (-5 *2 (-121)) (-5 *1 (-989 *5 *6 *7 *8 *3)))) ((*1 *2 *3 *3) (-12 (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *7 (-1061 *4 *5 *6)) (-5 *2 (-121)) (-5 *1 (-1097 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-634 *3)) (-4 *3 (-1066 *5 *6 *7 *8)) (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *8 (-1061 *5 *6 *7)) (-5 *2 (-121)) (-5 *1 (-1097 *5 *6 *7 *8 *3))))) +(((*1 *2 *2 *2 *3) (-12 (-5 *3 (-763)) (-4 *2 (-558)) (-5 *1 (-970 *2 *4)) (-4 *4 (-1219 *2))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-5 *2 (-1 *5)) (-5 *1 (-672 *4 *5))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-123)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1143)) (-4 *4 (-842)) (-5 *1 (-930 *4 *2)) (-4 *2 (-432 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1161)) (-5 *4 (-1143)) (-5 *2 (-310 (-568))) (-5 *1 (-931))))) +(((*1 *1) (-5 *1 (-142)))) +(((*1 *1 *1) (-12 (-4 *1 (-1259 *2 *3)) (-4 *2 (-842)) (-4 *3 (-1047)))) ((*1 *1 *1) (-12 (-5 *1 (-1265 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-838))))) +(((*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-817))))) +(((*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-568))))))) (-5 *2 (-634 *4)) (-5 *1 (-1116 *3 *4)) (-4 *3 (-1219 *4)))) ((*1 *2 *3 *3) (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-568))))))) (-5 *2 (-634 *3)) (-5 *1 (-1116 *4 *3)) (-4 *4 (-1219 *3))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-310 (-568))) (|:| -1478 (-310 (-381))) (|:| CF (-310 (-169 (-381)))) (|:| |switch| (-1160)))) (-5 *1 (-1160))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-763)) (-5 *1 (-106 *3)) (-4 *3 (-1090))))) +(((*1 *2) (-12 (-4 *3 (-558)) (-5 *2 (-634 *4)) (-5 *1 (-48 *3 *4)) (-4 *4 (-419 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-887 *3)) (-4 *3 (-1090))))) +(((*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-763)) (-4 *3 (-13 (-716) (-370) (-10 -7 (-15 ** (*3 *3 (-568)))))) (-5 *1 (-241 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 (-1143))) (-5 *2 (-1143)) (-5 *1 (-184)))) ((*1 *1 *2) (-12 (-5 *2 (-634 (-850))) (-5 *1 (-850))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-310 (-568))) (|:| -1478 (-310 (-381))) (|:| CF (-310 (-169 (-381)))) (|:| |switch| (-1160)))) (-5 *1 (-1160))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 (-492 *4 *5))) (-14 *4 (-634 (-1161))) (-4 *5 (-453)) (-5 *2 (-634 (-242 *4 *5))) (-5 *1 (-622 *4 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-541))))) +(((*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-607 *3)) (-5 *5 (-1157 *3)) (-4 *3 (-13 (-432 *6) (-27) (-1181))) (-4 *6 (-13 (-453) (-1037 (-568)) (-842) (-150) (-630 (-568)))) (-5 *2 (-585 *3)) (-5 *1 (-564 *6 *3 *7)) (-4 *7 (-1090)))) ((*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-607 *3)) (-5 *5 (-409 (-1157 *3))) (-4 *3 (-13 (-432 *6) (-27) (-1181))) (-4 *6 (-13 (-453) (-1037 (-568)) (-842) (-150) (-630 (-568)))) (-5 *2 (-585 *3)) (-5 *1 (-564 *6 *3 *7)) (-4 *7 (-1090))))) +(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1246)))) ((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1246))))) +(((*1 *2 *3) (-12 (-5 *3 (-814 *4)) (-4 *4 (-842)) (-5 *2 (-121)) (-5 *1 (-663 *4))))) +(((*1 *1 *1) (-5 *1 (-1160))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-310 (-568))) (|:| -1478 (-310 (-381))) (|:| CF (-310 (-169 (-381)))) (|:| |switch| (-1160)))) (-5 *1 (-1160))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-409 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1219 *5)) (-5 *1 (-717 *5 *2)) (-4 *5 (-365))))) +(((*1 *2 *3) (-12 (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *6 (-950 *4 *7 (-852 *5))) (-4 *7 (-230 (-1697 *5) (-763))) (-4 *8 (-971 *4)) (-4 *9 (-641 *4)) (-4 *10 (-920 *4 *9)) (-4 *11 (-235 *10)) (-4 *12 (-536 *4 *5 *6 *7 *8 *9 *10 *11 *13)) (-4 *13 (-117)) (-5 *2 (-1249)) (-5 *1 (-260 *4 *5 *6 *7 *8 *9 *10 *11 *12 *3 *13)) (-4 *3 (-258 *12)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-634 *7)) (-4 *7 (-950 *5 *8 (-852 *6))) (-4 *8 (-230 (-1697 *6) (-763))) (-4 *5 (-365)) (-14 *6 (-634 (-1161))) (-4 *9 (-971 *5)) (-4 *10 (-641 *5)) (-4 *11 (-920 *5 *10)) (-4 *12 (-235 *11)) (-4 *13 (-536 *5 *6 *7 *8 *9 *10 *11 *12 *14)) (-4 *14 (-117)) (-5 *2 (-1249)) (-5 *1 (-260 *5 *6 *7 *8 *9 *10 *11 *12 *13 *3 *14)) (-4 *3 (-258 *13))))) +(((*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-121)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-121))))) +(((*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-43 (-409 (-568)))) (-4 *2 (-1047))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-568))) (-5 *4 (-900 (-568))) (-5 *2 (-679 (-568))) (-5 *1 (-589)))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-568))) (-5 *2 (-634 (-679 (-568)))) (-5 *1 (-589)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-568))) (-5 *4 (-634 (-900 (-568)))) (-5 *2 (-634 (-679 (-568)))) (-5 *1 (-589))))) +(((*1 *1 *1) (-12 (-5 *1 (-910 *2)) (-4 *2 (-301))))) +(((*1 *2 *3) (-12 (-5 *2 (-1141 (-568))) (-5 *1 (-1145 *4)) (-4 *4 (-1047)) (-5 *3 (-568))))) +(((*1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-259 *3)) (-4 *3 (-1090)))) ((*1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-513 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *5 (-117)))) ((*1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-537 *3 *4 *5)) (-4 *3 (-350)) (-14 *4 (-634 (-1161))) (-4 *5 (-117)))) ((*1 *2 *1) (-12 (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *6 (-230 (-1697 *4) (-763))) (-4 *8 (-641 *3)) (-4 *9 (-920 *3 *8)) (-5 *2 (-850)) (-5 *1 (-538 *3 *4 *5 *6 *7 *8 *9 *10 *11)) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *7 (-971 *3)) (-4 *10 (-235 *9)) (-4 *11 (-117))))) +(((*1 *2 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-305)) (-5 *1 (-290)))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-1143))) (-5 *2 (-305)) (-5 *1 (-290)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-305)) (-5 *1 (-290)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-634 (-1143))) (-5 *3 (-1143)) (-5 *2 (-305)) (-5 *1 (-290))))) +(((*1 *2 *2) (|partial| -12 (-4 *3 (-1195)) (-5 *1 (-179 *3 *2)) (-4 *2 (-665 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-763)) (-5 *1 (-666 *3)) (-4 *3 (-1047)) (-4 *3 (-1090))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-679 *3)) (-4 *3 (-13 (-301) (-10 -8 (-15 -1678 ((-420 $) $))))) (-4 *4 (-1219 *3)) (-5 *1 (-508 *3 *4 *5)) (-4 *5 (-411 *3 *4))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-679 (-409 (-568)))) (-5 *2 (-634 *4)) (-5 *1 (-773 *4)) (-4 *4 (-13 (-365) (-840)))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-1161)) (-4 *4 (-13 (-842) (-301) (-1037 (-568)) (-630 (-568)) (-150))) (-5 *1 (-799 *4 *2)) (-4 *2 (-13 (-29 *4) (-1181) (-959))))) ((*1 *1 *1 *1 *1) (-5 *1 (-850))) ((*1 *1 *1 *1) (-5 *1 (-850))) ((*1 *1 *1) (-5 *1 (-850))) ((*1 *2 *3) (-12 (-5 *2 (-1141 *3)) (-5 *1 (-1145 *3)) (-4 *3 (-1047))))) +(((*1 *2 *3) (-12 (-4 *4 (-1199)) (-4 *5 (-1219 *4)) (-5 *2 (-2 (|:| -2348 (-409 *5)) (|:| |poly| *3))) (-5 *1 (-151 *4 *5 *3)) (-4 *3 (-1219 (-409 *5)))))) +(((*1 *2 *3) (-12 (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *3 (-950 *4 *6 (-852 *5))) (-4 *6 (-230 (-1697 *5) (-763))) (-4 *7 (-971 *4)) (-4 *8 (-641 *4)) (-4 *9 (-920 *4 *8)) (-4 *10 (-235 *9)) (-4 *11 (-536 *4 *5 *3 *6 *7 *8 *9 *10 *13)) (-4 *13 (-117)) (-5 *2 (-634 *12)) (-5 *1 (-260 *4 *5 *3 *6 *7 *8 *9 *10 *11 *12 *13)) (-4 *12 (-258 *11)))) ((*1 *2) (-12 (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *6 (-230 (-1697 *4) (-763))) (-4 *7 (-971 *3)) (-4 *8 (-641 *3)) (-4 *9 (-920 *3 *8)) (-4 *10 (-235 *9)) (-4 *11 (-536 *3 *4 *5 *6 *7 *8 *9 *10 *13)) (-4 *13 (-117)) (-5 *2 (-634 *12)) (-5 *1 (-467 *3 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13)) (-4 *12 (-258 *11)))) ((*1 *2) (-12 (-5 *2 (-634 (-259 (-537 *3 *4 *5)))) (-5 *1 (-867 *3 *4 *5)) (-4 *3 (-350)) (-14 *4 (-634 (-1161))) (-4 *5 (-117)))) ((*1 *2) (-12 (-5 *2 (-634 (-259 (-513 *3 *4 *5)))) (-5 *1 (-868 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *5 (-117))))) +(((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1 *6 *5)) (-5 *1 (-696 *4 *5 *6)) (-4 *4 (-609 (-541))) (-4 *5 (-1195)) (-4 *6 (-1195))))) +(((*1 *2 *3) (-12 (-5 *3 (-1168 (-634 *4))) (-4 *4 (-842)) (-5 *2 (-634 (-634 *4))) (-5 *1 (-1167 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-634 *6)) (-4 *6 (-1061 *3 *4 *5)) (-4 *3 (-558)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *1 (-978 *3 *4 *5 *6)))) ((*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-634 *3)) (-5 *1 (-978 *4 *5 *6 *3)) (-4 *3 (-1061 *4 *5 *6)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-634 *3)) (-4 *3 (-1061 *4 *5 *6)) (-4 *4 (-558)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *1 (-978 *4 *5 *6 *3)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-634 *6)) (-4 *6 (-1061 *3 *4 *5)) (-4 *3 (-558)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *1 (-978 *3 *4 *5 *6)))) ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-634 *7) (-634 *7))) (-5 *2 (-634 *7)) (-4 *7 (-1061 *4 *5 *6)) (-4 *4 (-558)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *1 (-978 *4 *5 *6 *7))))) +(((*1 *2) (-12 (-5 *2 (-2 (|:| -4100 (-634 *3)) (|:| -2971 (-634 *3)))) (-5 *1 (-1196 *3)) (-4 *3 (-1090))))) +(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1149 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1047))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-634 (-568))) (-5 *1 (-141 *3 *4 *5)) (-14 *3 (-568)) (-14 *4 (-763)) (-4 *5 (-172))))) +(((*1 *2 *2) (-12 (-5 *2 (-634 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-763)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-788)) (-4 *6 (-950 *3 *4 *5)) (-4 *3 (-453)) (-4 *5 (-842)) (-5 *1 (-450 *3 *4 *5 *6))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-634 *7)) (-4 *7 (-950 *5 *8 (-852 *6))) (-4 *8 (-230 (-1697 *6) (-763))) (-4 *5 (-365)) (-14 *6 (-634 (-1161))) (-4 *10 (-641 *5)) (-4 *11 (-920 *5 *10)) (-5 *2 (-634 (-1244 *5))) (-5 *1 (-562 *5 *6 *7 *8 *9 *10 *11 *3)) (-4 *9 (-971 *5)) (-4 *3 (-235 *11))))) +(((*1 *1 *1 *2) (|partial| -12 (-5 *2 (-763)) (-4 *1 (-1219 *3)) (-4 *3 (-1047))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-39)) (-5 *3 (-763)) (-5 *2 (-121)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-5 *2 (-121)) (-5 *1 (-96 *4)) (-4 *4 (-1090)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-5 *2 (-121)) (-5 *1 (-212 *4)) (-4 *4 (-1090)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-5 *2 (-121)) (-5 *1 (-494 *4)) (-4 *4 (-842)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-5 *2 (-121)) (-5 *1 (-1000 *4)) (-4 *4 (-1090)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-5 *2 (-121)) (-5 *1 (-1132 *4)) (-4 *4 (-1090)))) ((*1 *2 *3 *3) (|partial| -12 (-5 *2 (-121)) (-5 *1 (-1196 *3)) (-4 *3 (-1090)))) ((*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-121) *3 *3)) (-4 *3 (-1090)) (-5 *2 (-121)) (-5 *1 (-1196 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-215)) (-5 *1 (-217)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-215))) (-5 *1 (-217))))) +(((*1 *2 *2) (-12 (-5 *2 (-634 *7)) (-4 *7 (-1066 *3 *4 *5 *6)) (-4 *3 (-453)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1061 *3 *4 *5)) (-5 *1 (-989 *3 *4 *5 *6 *7)))) ((*1 *2 *2) (-12 (-5 *2 (-634 *7)) (-4 *7 (-1066 *3 *4 *5 *6)) (-4 *3 (-453)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1061 *3 *4 *5)) (-5 *1 (-1097 *3 *4 *5 *6 *7))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3))))) +(((*1 *2 *2 *3) (|partial| -12 (-5 *3 (-763)) (-4 *4 (-13 (-558) (-150))) (-5 *1 (-1213 *4 *2)) (-4 *2 (-1219 *4))))) +(((*1 *2) (-12 (-5 *2 (-1249)) (-5 *1 (-438))))) +(((*1 *1 *1) (-12 (-4 *1 (-427 *2)) (-4 *2 (-1090)) (-4 *2 (-370))))) +(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3284 *6) (|:| |sol?| (-121))) (-568) *6)) (-4 *6 (-365)) (-4 *7 (-1219 *6)) (-5 *2 (-2 (|:| |answer| (-585 (-409 *7))) (|:| |a0| *6))) (-5 *1 (-578 *6 *7)) (-5 *3 (-409 *7))))) +(((*1 *2) (-12 (-4 *2 (-13 (-432 *3) (-1002))) (-5 *1 (-272 *3 *2)) (-4 *3 (-13 (-842) (-558)))))) +(((*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-634 *11)) (-5 *5 (-634 (-1157 *9))) (-5 *6 (-634 *9)) (-5 *7 (-634 *12)) (-5 *8 (-634 (-763))) (-4 *11 (-842)) (-4 *9 (-301)) (-4 *12 (-950 *9 *10 *11)) (-4 *10 (-788)) (-5 *2 (-634 (-1157 *12))) (-5 *1 (-697 *10 *11 *9 *12)) (-5 *3 (-1157 *12))))) +(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-763)) (-4 *1 (-1061 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *3 (-558))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1157 *1)) (-4 *1 (-453)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1157 *6)) (-4 *6 (-950 *5 *3 *4)) (-4 *3 (-788)) (-4 *4 (-842)) (-4 *5 (-904)) (-5 *1 (-459 *3 *4 *5 *6)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1157 *1)) (-4 *1 (-904))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-1047)) (-5 *1 (-1215 *3 *2)) (-4 *2 (-1219 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-259 *3)) (-4 *3 (-1090))))) +(((*1 *2 *3) (-12 (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *6 (-230 (-1697 *5) (-763))) (-5 *2 (-1157 (-1157 *4))) (-5 *1 (-32 *4 *5 *3 *6 *7)) (-4 *3 (-950 *4 *6 (-852 *5))) (-4 *7 (-971 *4))))) +(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-679 *3)) (-4 *3 (-1047)) (-5 *1 (-680 *3))))) +(((*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-365) (-150) (-1037 (-568)))) (-4 *5 (-1219 *4)) (-5 *2 (-2 (|:| -1924 (-409 *5)) (|:| |coeff| (-409 *5)))) (-5 *1 (-572 *4 *5)) (-5 *3 (-409 *5))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-558)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-1186 *3 *4 *5 *2)) (-4 *2 (-677 *3 *4 *5))))) +(((*1 *1) (-12 (-5 *1 (-233 *2)) (-4 *2 (-1047))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-1249)) (-5 *1 (-1246))))) +(((*1 *2 *3) (-12 (-5 *2 (-634 (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568)))))) (-5 *1 (-1019 *3)) (-4 *3 (-1219 (-568))))) ((*1 *2 *3 *4) (-12 (-5 *2 (-634 (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568)))))) (-5 *1 (-1019 *3)) (-4 *3 (-1219 (-568))) (-5 *4 (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568))))))) ((*1 *2 *3 *4) (-12 (-5 *2 (-634 (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568)))))) (-5 *1 (-1019 *3)) (-4 *3 (-1219 (-568))) (-5 *4 (-409 (-568))))) ((*1 *2 *3 *4 *5) (-12 (-5 *5 (-409 (-568))) (-5 *2 (-634 (-2 (|:| -3028 *5) (|:| -3284 *5)))) (-5 *1 (-1019 *3)) (-4 *3 (-1219 (-568))) (-5 *4 (-2 (|:| -3028 *5) (|:| -3284 *5))))) ((*1 *2 *3) (-12 (-5 *2 (-634 (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568)))))) (-5 *1 (-1020 *3)) (-4 *3 (-1219 (-409 (-568)))))) ((*1 *2 *3 *4) (-12 (-5 *2 (-634 (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568)))))) (-5 *1 (-1020 *3)) (-4 *3 (-1219 (-409 (-568)))) (-5 *4 (-2 (|:| -3028 (-409 (-568))) (|:| -3284 (-409 (-568))))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-409 (-568))) (-5 *2 (-634 (-2 (|:| -3028 *4) (|:| -3284 *4)))) (-5 *1 (-1020 *3)) (-4 *3 (-1219 *4)))) ((*1 *2 *3 *4 *5) (-12 (-5 *5 (-409 (-568))) (-5 *2 (-634 (-2 (|:| -3028 *5) (|:| -3284 *5)))) (-5 *1 (-1020 *3)) (-4 *3 (-1219 *5)) (-5 *4 (-2 (|:| -3028 *5) (|:| -3284 *5)))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-634 *6)) (-5 *4 (-568)) (-4 *6 (-641 *5)) (-4 *5 (-365)) (-5 *2 (-679 *5)) (-5 *1 (-635 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-324 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-787)))) ((*1 *2 *1) (-12 (-4 *1 (-698 *3)) (-4 *3 (-1047)) (-5 *2 (-763)))) ((*1 *2 *1) (-12 (-4 *1 (-844 *3)) (-4 *3 (-1047)) (-5 *2 (-763)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-634 *6)) (-4 *1 (-950 *4 *5 *6)) (-4 *4 (-1047)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-634 (-763))))) ((*1 *2 *1 *3) (-12 (-4 *1 (-950 *4 *5 *3)) (-4 *4 (-1047)) (-4 *5 (-788)) (-4 *3 (-842)) (-5 *2 (-763))))) +(((*1 *1 *1 *1) (-5 *1 (-850))) ((*1 *1 *1) (-5 *1 (-850))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1157 (-568))) (-5 *3 (-568)) (-4 *1 (-863 *4))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-1157 *5)) (-4 *5 (-453)) (-5 *2 (-634 *6)) (-5 *1 (-543 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-840))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-953 *5)) (-4 *5 (-453)) (-5 *2 (-634 *6)) (-5 *1 (-543 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-840)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1122 *3)) (-4 *3 (-1047)) (-5 *2 (-1149 3 *3)))) ((*1 *1) (-12 (-5 *1 (-1149 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1047)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1121 (-215))) (-5 *1 (-1246)))) ((*1 *2 *1) (-12 (-5 *2 (-1121 (-215))) (-5 *1 (-1246))))) +(((*1 *1 *1 *1) (-5 *1 (-850)))) +(((*1 *1 *1 *1) (-5 *1 (-121))) ((*1 *1 *1 *1) (-4 *1 (-132))) ((*1 *1 *1 *1) (-5 *1 (-850)))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-3 (-121) "failed")) (-4 *3 (-453)) (-4 *4 (-842)) (-4 *5 (-788)) (-5 *1 (-988 *3 *4 *5 *6)) (-4 *6 (-950 *3 *5 *4))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1181))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1108)) (-5 *2 (-1249)) (-5 *1 (-826))))) +(((*1 *2 *1) (-12 (-4 *1 (-536 *3 *4 *5 *6 *7 *8 *9 *10 *11)) (-4 *3 (-365)) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *6 (-230 (-1697 *4) (-763))) (-4 *7 (-971 *3)) (-4 *8 (-641 *3)) (-4 *9 (-920 *3 *8)) (-4 *10 (-235 *9)) (-4 *11 (-117)) (-5 *2 (-634 *8))))) +(((*1 *2 *3) (-12 (-4 *4 (-350)) (-5 *2 (-420 *3)) (-5 *1 (-360 *4 *3)) (-4 *3 (-1219 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-235 *3)) (-4 *3 (-1090)) (-5 *2 (-121))))) +(((*1 *2 *3) (-12 (-5 *2 (-1163 (-409 (-568)))) (-5 *1 (-182)) (-5 *3 (-568))))) +(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-123))))) +(((*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-1047)) (-5 *1 (-1145 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-1201 *2)) (-4 *2 (-1047)))) ((*1 *1 *1) (-12 (-5 *1 (-1235 *2 *3 *4)) (-4 *2 (-1047)) (-14 *3 (-1161)) (-14 *4 *2))) ((*1 *1 *1) (-12 (-5 *1 (-1239 *2 *3)) (-4 *2 (-1047)) (-14 *3 (-1161))))) +(((*1 *1 *2 *3) (-12 (-5 *1 (-429 *3 *2)) (-4 *3 (-13 (-172) (-43 (-409 (-568))))) (-4 *2 (-13 (-842) (-21)))))) +(((*1 *2 *3) (-12 (-4 *4 (-43 (-409 (-568)))) (-5 *2 (-2 (|:| -1974 (-1141 *4)) (|:| -1978 (-1141 *4)))) (-5 *1 (-1147 *4)) (-5 *3 (-1141 *4))))) +(((*1 *2 *3) (-12 (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *3 (-950 *4 *6 (-852 *5))) (-4 *6 (-230 (-1697 *5) *2)) (-4 *7 (-971 *4)) (-4 *8 (-641 *4)) (-4 *9 (-920 *4 *8)) (-4 *10 (-235 *9)) (-4 *11 (-536 *4 *5 *3 *6 *7 *8 *9 *10 *13)) (-4 *13 (-117)) (-5 *2 (-763)) (-5 *1 (-260 *4 *5 *3 *6 *7 *8 *9 *10 *11 *12 *13)) (-4 *12 (-258 *11)))) ((*1 *2) (-12 (-4 *4 (-1199)) (-4 *5 (-1219 *4)) (-4 *6 (-1219 (-409 *5))) (-5 *2 (-763)) (-5 *1 (-339 *3 *4 *5 *6)) (-4 *3 (-340 *4 *5 *6)))) ((*1 *2) (-12 (-4 *1 (-340 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 (-409 *4))) (-5 *2 (-763)))) ((*1 *2) (-12 (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *6 (-230 (-1697 *4) *2)) (-4 *7 (-971 *3)) (-4 *8 (-641 *3)) (-4 *9 (-920 *3 *8)) (-4 *10 (-235 *9)) (-4 *11 (-536 *3 *4 *5 *6 *7 *8 *9 *10 *13)) (-4 *13 (-117)) (-5 *2 (-763)) (-5 *1 (-467 *3 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13)) (-4 *12 (-258 *11)))) ((*1 *2) (-12 (-5 *2 (-763)) (-5 *1 (-867 *3 *4 *5)) (-4 *3 (-350)) (-14 *4 (-634 (-1161))) (-4 *5 (-117)))) ((*1 *2) (-12 (-5 *2 (-763)) (-5 *1 (-868 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *5 (-117))))) +(((*1 *2 *3 *3) (-12 (-5 *2 (-1141 (-634 (-568)))) (-5 *1 (-878)) (-5 *3 (-634 (-568))))) ((*1 *2 *3) (-12 (-5 *2 (-1141 (-634 (-568)))) (-5 *1 (-878)) (-5 *3 (-634 (-568)))))) +(((*1 *2 *2 *3) (|partial| -12 (-5 *3 (-634 (-2 (|:| |func| *2) (|:| |pole| (-121))))) (-4 *2 (-13 (-432 *4) (-1002))) (-4 *4 (-13 (-842) (-558))) (-5 *1 (-272 *4 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-817))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (-5 *2 (-634 (-215))) (-5 *1 (-196))))) +(((*1 *2 *3) (-12 (-4 *4 (-365)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-763)) (-5 *1 (-529 *4 *5 *6 *3)) (-4 *3 (-677 *4 *5 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-4 *3 (-558)) (-5 *2 (-763)))) ((*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *4 (-172)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-763)) (-5 *1 (-678 *4 *5 *6 *3)) (-4 *3 (-677 *4 *5 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-1050 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-4 *5 (-558)) (-5 *2 (-763))))) +(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-568)) (-5 *6 (-1 (-1249) (-1244 *5) (-1244 *5) (-381))) (-5 *3 (-1244 (-381))) (-5 *5 (-381)) (-5 *2 (-1249)) (-5 *1 (-783))))) +(((*1 *2) (-12 (-5 *2 (-634 (-1143))) (-5 *1 (-824))))) +(((*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-350)) (-5 *1 (-358 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 (-2 (|:| |deg| (-763)) (|:| -4435 *5)))) (-4 *5 (-1219 *4)) (-4 *4 (-350)) (-5 *2 (-634 *5)) (-5 *1 (-207 *4 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-2 (|:| -3848 *5) (|:| -3206 (-568))))) (-5 *4 (-568)) (-4 *5 (-1219 *4)) (-5 *2 (-634 *5)) (-5 *1 (-685 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-1195)) (-5 *1 (-1141 *3))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-917)) (-5 *3 (-634 (-256))) (-5 *1 (-254)))) ((*1 *1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-256))))) +(((*1 *1 *1) (-12 (-4 *1 (-52 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-787)))) ((*1 *1 *1) (-12 (-5 *1 (-55 *2 *3)) (-4 *2 (-1047)) (-14 *3 (-634 (-1161))))) ((*1 *1 *1) (-12 (-5 *1 (-213 *2 *3)) (-4 *2 (-13 (-1047) (-842))) (-14 *3 (-634 (-1161))))) ((*1 *1 *1) (-12 (-5 *1 (-236 *2)) (-4 *2 (-1088)))) ((*1 *1 *1) (-12 (-4 *1 (-384 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-1090)))) ((*1 *1 *1) (-12 (-14 *2 (-634 (-1161))) (-4 *3 (-172)) (-4 *5 (-230 (-1697 *2) (-763))) (-14 *6 (-1 (-121) (-2 (|:| -4355 *4) (|:| -3438 *5)) (-2 (|:| -4355 *4) (|:| -3438 *5)))) (-5 *1 (-463 *2 *3 *4 *5 *6 *7)) (-4 *4 (-842)) (-4 *7 (-950 *3 *5 (-852 *2))))) ((*1 *1 *1) (-12 (-4 *1 (-518 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-842)))) ((*1 *1 *1) (-12 (-4 *2 (-558)) (-5 *1 (-615 *2 *3)) (-4 *3 (-1219 *2)))) ((*1 *1 *1) (-12 (-4 *1 (-698 *2)) (-4 *2 (-1047)))) ((*1 *1 *1) (-12 (-5 *1 (-725 *2 *3)) (-4 *3 (-842)) (-4 *2 (-1047)) (-4 *3 (-716)))) ((*1 *1 *1) (-12 (-4 *1 (-844 *2)) (-4 *2 (-1047)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1061 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *2 (-842)))) ((*1 *1 *1) (-12 (-5 *1 (-1265 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-838))))) +(((*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-358 *3)) (-4 *3 (-350))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1143)) (-5 *3 (-568)) (-5 *1 (-234))))) +(((*1 *1 *1) (-12 (-4 *1 (-1061 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-788)) (-4 *4 (-842)) (-4 *2 (-453))))) +(((*1 *1 *1 *1) (-4 *1 (-550)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-370)) (-4 *1 (-327 *3)) (-4 *3 (-365))))) +(((*1 *2 *1) (-12 (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-634 *1)) (-4 *1 (-950 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1195)))) ((*1 *2 *1) (-12 (-4 *3 (-1090)) (-4 *2 (-13 (-432 *4) (-881 *3) (-609 (-887 *3)))) (-5 *1 (-1069 *3 *4 *2)) (-4 *4 (-13 (-1047) (-881 *3) (-842) (-609 (-887 *3)))))) ((*1 *2 *1) (-12 (-4 *2 (-1090)) (-5 *1 (-1150 *3 *2)) (-4 *3 (-1090))))) +(((*1 *1 *1) (-5 *1 (-1059)))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-1249)) (-5 *1 (-1246))))) +(((*1 *1 *1) (-12 (-4 *1 (-1061 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-788)) (-4 *4 (-842))))) +(((*1 *2 *1) (-12 (-5 *2 (-944 *4)) (-5 *1 (-1149 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1047))))) +(((*1 *2 *1) (-12 (-4 *1 (-52 *2 *3)) (-4 *3 (-787)) (-4 *2 (-1047)))) ((*1 *2 *1) (-12 (-4 *2 (-1047)) (-5 *1 (-55 *2 *3)) (-14 *3 (-634 (-1161))))) ((*1 *2 *1) (-12 (-5 *2 (-310 *3)) (-5 *1 (-213 *3 *4)) (-4 *3 (-13 (-1047) (-842))) (-14 *4 (-634 (-1161))))) ((*1 *2 *1) (-12 (-4 *1 (-384 *2 *3)) (-4 *3 (-1090)) (-4 *2 (-1047)))) ((*1 *2 *1) (-12 (-14 *3 (-634 (-1161))) (-4 *5 (-230 (-1697 *3) (-763))) (-14 *6 (-1 (-121) (-2 (|:| -4355 *4) (|:| -3438 *5)) (-2 (|:| -4355 *4) (|:| -3438 *5)))) (-4 *2 (-172)) (-5 *1 (-463 *3 *2 *4 *5 *6 *7)) (-4 *4 (-842)) (-4 *7 (-950 *2 *5 (-852 *3))))) ((*1 *2 *1) (-12 (-4 *1 (-518 *2 *3)) (-4 *3 (-842)) (-4 *2 (-1090)))) ((*1 *2 *1) (-12 (-4 *2 (-558)) (-5 *1 (-615 *2 *3)) (-4 *3 (-1219 *2)))) ((*1 *2 *1) (-12 (-4 *1 (-698 *2)) (-4 *2 (-1047)))) ((*1 *2 *1) (-12 (-4 *2 (-1047)) (-5 *1 (-725 *2 *3)) (-4 *3 (-842)) (-4 *3 (-716)))) ((*1 *2 *1) (-12 (-4 *1 (-844 *2)) (-4 *2 (-1047)))) ((*1 *2 *1) (-12 (-4 *1 (-974 *2 *3 *4)) (-4 *3 (-787)) (-4 *4 (-842)) (-4 *2 (-1047)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1061 *3 *4 *2)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *2 (-842))))) +(((*1 *2 *3) (-12 (-4 *4 (-13 (-558) (-150))) (-5 *2 (-634 *3)) (-5 *1 (-1213 *4 *3)) (-4 *3 (-1219 *4))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-5 *1 (-873 *2)) (-4 *2 (-1195)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-5 *1 (-875 *2)) (-4 *2 (-1195)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-5 *1 (-877 *2)) (-4 *2 (-1195))))) +(((*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-634 *8)) (-5 *4 (-121)) (-4 *8 (-1061 *5 *6 *7)) (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-5 *2 (-634 (-1027 *5 *6 *7 *8))) (-5 *1 (-1027 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-634 *8)) (-5 *4 (-121)) (-4 *8 (-1061 *5 *6 *7)) (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-5 *2 (-634 (-1131 *5 *6 *7 *8))) (-5 *1 (-1131 *5 *6 *7 *8))))) +(((*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-817))))) +(((*1 *1 *1) (-12 (-4 *1 (-52 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-787)))) ((*1 *2 *1) (-12 (-4 *1 (-384 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-1090)))) ((*1 *2 *1) (-12 (-14 *3 (-634 (-1161))) (-4 *4 (-172)) (-4 *6 (-230 (-1697 *3) (-763))) (-14 *7 (-1 (-121) (-2 (|:| -4355 *5) (|:| -3438 *6)) (-2 (|:| -4355 *5) (|:| -3438 *6)))) (-5 *2 (-703 *5 *6 *7)) (-5 *1 (-463 *3 *4 *5 *6 *7 *8)) (-4 *5 (-842)) (-4 *8 (-950 *4 *6 (-852 *3))))) ((*1 *2 *1) (-12 (-4 *2 (-716)) (-4 *2 (-842)) (-5 *1 (-725 *3 *2)) (-4 *3 (-1047)))) ((*1 *1 *1) (-12 (-4 *1 (-974 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-787)) (-4 *4 (-842))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-320 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-137)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1090)) (-5 *1 (-363 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1090)) (-5 *1 (-388 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1090)) (-5 *1 (-638 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *1) (-5 *1 (-818)))) +(((*1 *2 *1) (-12 (-4 *3 (-1090)) (-4 *4 (-13 (-1047) (-881 *3) (-842) (-609 (-887 *3)))) (-5 *2 (-634 (-1069 *3 *4 *5))) (-5 *1 (-1070 *3 *4 *5)) (-4 *5 (-13 (-432 *4) (-881 *3) (-609 (-887 *3))))))) +(((*1 *2 *3 *4) (-12 (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *3 (-1061 *5 *6 *7)) (-5 *2 (-634 (-2 (|:| |val| (-121)) (|:| -3001 *4)))) (-5 *1 (-768 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-634 *1)) (-4 *1 (-296)))) ((*1 *1 *1) (-4 *1 (-296))) ((*1 *1 *1) (-5 *1 (-850)))) +(((*1 *2 *1) (-12 (-4 *1 (-324 *2 *3)) (-4 *3 (-787)) (-4 *2 (-1047)))) ((*1 *2 *1) (-12 (-4 *1 (-432 *2)) (-4 *2 (-842))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1216 *5 *4)) (-4 *4 (-815)) (-14 *5 (-1161)) (-5 *2 (-568)) (-5 *1 (-1104 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-817))))) +(((*1 *2 *1) (-12 (-5 *2 (-634 (-2 (|:| |k| (-663 *3)) (|:| |c| *4)))) (-5 *1 (-618 *3 *4 *5)) (-4 *3 (-842)) (-4 *4 (-13 (-172) (-707 (-409 (-568))))) (-14 *5 (-917))))) +(((*1 *2 *1) (-12 (-4 *1 (-62 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-568)))) ((*1 *2 *1) (-12 (-4 *1 (-1050 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-5 *2 (-568))))) +(((*1 *2 *1) (-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-787)) (-5 *2 (-121)))) ((*1 *2 *1) (-12 (-4 *1 (-432 *3)) (-4 *3 (-842)) (-5 *2 (-121)))) ((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-733 *3 *4)) (-14 *3 (-1161)) (-4 *4 (-13 (-1047) (-842) (-558))))) ((*1 *2 *1) (-12 (-4 *1 (-858)) (-5 *2 (-121))))) +(((*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-1090)) (-4 *1 (-227 *3)))) ((*1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1090))))) +(((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-817))))) +(((*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-43 (-409 (-568)))) (-4 *2 (-1047))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-637 *3)) (-4 *3 (-1047)) (-5 *1 (-704 *3 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1047)) (-5 *1 (-829 *3))))) +(((*1 *1 *1) (-4 *1 (-238))) ((*1 *1 *1) (-12 (-4 *2 (-172)) (-5 *1 (-284 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1219 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1) (-2198 (-12 (-5 *1 (-288 *2)) (-4 *2 (-365)) (-4 *2 (-1195))) (-12 (-5 *1 (-288 *2)) (-4 *2 (-478)) (-4 *2 (-1195))))) ((*1 *1 *1) (-4 *1 (-478))) ((*1 *2 *2) (-12 (-5 *2 (-1244 *3)) (-4 *3 (-350)) (-5 *1 (-532 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-705 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-172)) (-4 *2 (-365))))) (((*1 *1) (-5 *1 (-121)))) -(((*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4507 "*"))) (-4 *5 (-369 *2)) (-4 *6 (-369 *2)) (-4 *2 (-1039)) (-5 *1 (-108 *2 *3 *4 *5 *6)) (-4 *3 (-1211 *2)) (-4 *4 (-669 *2 *5 *6))))) -(((*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-626 (-1149 *7))) (-5 *3 (-1149 *7)) (-4 *7 (-942 *5 *6 *4)) (-4 *5 (-896)) (-4 *6 (-780)) (-4 *4 (-834)) (-5 *1 (-893 *5 *6 *4 *7))))) -(((*1 *2 *1) (-12 (-14 *3 (-626 (-1153))) (-4 *4 (-170)) (-14 *6 (-1 (-121) (-2 (|:| -1330 *5) (|:| -4034 *2)) (-2 (|:| -1330 *5) (|:| -4034 *2)))) (-4 *2 (-226 (-2271 *3) (-755))) (-5 *1 (-456 *3 *4 *5 *2 *6 *7)) (-4 *5 (-834)) (-4 *7 (-942 *4 *2 (-844 *3)))))) -(((*1 *2 *1) (-12 (-4 *1 (-327 *3 *4 *5 *6)) (-4 *3 (-359)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-403 *4))) (-4 *6 (-334 *3 *4 *5)) (-5 *2 (-121))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-973 *2)) (-4 *2 (-1039)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-936 (-213))) (-5 *1 (-1184)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1234 *2)) (-4 *2 (-1187)) (-4 *2 (-1039))))) -(((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1135)) (-5 *2 (-758)) (-5 *1 (-123))))) -(((*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-375)) (-5 *1 (-99)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-375)) (-5 *1 (-99))))) -(((*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1153)) (-4 *5 (-13 (-550) (-1029 (-560)) (-148))) (-5 *2 (-2 (|:| -2962 (-403 (-945 *5))) (|:| |coeff| (-403 (-945 *5))))) (-5 *1 (-566 *5)) (-5 *3 (-403 (-945 *5)))))) -(((*1 *1 *1) (-12 (-4 *1 (-360 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-1082)))) ((*1 *1 *1) (-5 *1 (-615)))) -(((*1 *2 *1) (-12 (-5 *2 (-1133 *3)) (-5 *1 (-171 *3)) (-4 *3 (-296))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994)))))) -(((*1 *2) (|partial| -12 (-4 *3 (-550)) (-4 *3 (-170)) (-5 *2 (-2 (|:| |particular| *1) (|:| -4374 (-626 *1)))) (-4 *1 (-363 *3)))) ((*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-448 *3 *4 *5 *6)) (|:| -4374 (-626 (-448 *3 *4 *5 *6))))) (-5 *1 (-448 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-909)) (-14 *5 (-626 (-1153))) (-14 *6 (-1236 (-671 *3)))))) -(((*1 *2) (-12 (-5 *2 (-909)) (-5 *1 (-156))))) -(((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1149 *7)) (-4 *5 (-1039)) (-4 *7 (-1039)) (-4 *2 (-1211 *5)) (-5 *1 (-502 *5 *2 *6 *7)) (-4 *6 (-1211 *2))))) -(((*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-626 (-626 (-936 (-213))))) (-5 *3 (-626 (-861))) (-5 *4 (-626 (-909))) (-5 *5 (-626 (-251))) (-5 *1 (-466)))) ((*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-626 (-626 (-936 (-213))))) (-5 *3 (-626 (-861))) (-5 *4 (-626 (-909))) (-5 *1 (-466)))) ((*1 *1 *2) (-12 (-5 *2 (-626 (-626 (-936 (-213))))) (-5 *1 (-466)))) ((*1 *1 *1) (-5 *1 (-466)))) -(((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-879 *4)) (-4 *4 (-1082)) (-5 *2 (-121)) (-5 *1 (-876 *4 *5)) (-4 *5 (-1082)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-879 *5)) (-4 *5 (-1082)) (-5 *2 (-121)) (-5 *1 (-877 *5 *3)) (-4 *3 (-1187)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 *6)) (-5 *4 (-879 *5)) (-4 *5 (-1082)) (-4 *6 (-1187)) (-5 *2 (-121)) (-5 *1 (-877 *5 *6))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-638 *2)) (-4 *2 (-1039)) (-4 *2 (-359)))) ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-359)) (-5 *1 (-641 *4 *2)) (-4 *2 (-638 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-213)) (-5 *2 (-121)) (-5 *1 (-288 *4 *5)) (-14 *4 *3) (-14 *5 *3))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1076 (-827 (-213)))) (-5 *3 (-213)) (-5 *2 (-121)) (-5 *1 (-294)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-359)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-121)) (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-942 *3 *4 *5))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-626 *5)) (-5 *4 (-626 (-1 *6 (-626 *6)))) (-4 *5 (-43 (-403 (-560)))) (-4 *6 (-1226 *5)) (-5 *2 (-626 *6)) (-5 *1 (-1228 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *2 (-414 *3)) (-5 *1 (-553 *3)) (-4 *3 (-542))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-626 (-1153))) (-4 *4 (-1082)) (-4 *5 (-13 (-1039) (-873 *4) (-834) (-601 (-879 *4)))) (-5 *1 (-60 *4 *5 *2)) (-4 *2 (-13 (-426 *5) (-873 *4) (-601 (-879 *4))))))) -(((*1 *2 *3 *1) (-12 (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-3 (-121) (-626 *1))) (-4 *1 (-1058 *4 *5 *6 *3))))) -(((*1 *2 *3 *4) (-12 (-4 *5 (-296)) (-4 *6 (-369 *5)) (-4 *4 (-369 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4374 (-626 *4)))) (-5 *1 (-1104 *5 *6 *4 *3)) (-4 *3 (-669 *5 *6 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-1236 *1)) (-4 *1 (-363 *4)) (-4 *4 (-170)) (-5 *2 (-1236 (-671 *4))))) ((*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-1236 (-671 *4))) (-5 *1 (-412 *3 *4)) (-4 *3 (-413 *4)))) ((*1 *2) (-12 (-4 *1 (-413 *3)) (-4 *3 (-170)) (-5 *2 (-1236 (-671 *3))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-1153))) (-4 *5 (-359)) (-5 *2 (-1236 (-671 (-403 (-945 *5))))) (-5 *1 (-1069 *5)) (-5 *4 (-671 (-403 (-945 *5)))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-1153))) (-4 *5 (-359)) (-5 *2 (-1236 (-671 (-945 *5)))) (-5 *1 (-1069 *5)) (-5 *4 (-671 (-945 *5))))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-671 *4))) (-4 *4 (-359)) (-5 *2 (-1236 (-671 *4))) (-5 *1 (-1069 *4))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-626 *2))) (-5 *4 (-626 *5)) (-4 *5 (-43 (-403 (-560)))) (-4 *2 (-1226 *5)) (-5 *1 (-1228 *5 *2))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1155 (-403 (-560)))) (-5 *2 (-403 (-560))) (-5 *1 (-180))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994)))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-550) (-148))) (-5 *1 (-534 *3 *2)) (-4 *2 (-1226 *3)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-359) (-364) (-601 (-560)))) (-4 *4 (-1211 *3)) (-4 *5 (-706 *3 *4)) (-5 *1 (-538 *3 *4 *5 *2)) (-4 *2 (-1226 *5)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-359) (-364) (-601 (-560)))) (-5 *1 (-539 *3 *2)) (-4 *2 (-1226 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-13 (-550) (-148))) (-5 *1 (-1129 *3))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-780)) (-4 *4 (-834)))) ((*1 *2 *2 *1) (-12 (-4 *1 (-1181 *3 *4 *5 *2)) (-4 *3 (-550)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *2 (-1053 *3 *4 *5))))) -(((*1 *2 *3) (-12 (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-560)) (-5 *1 (-444 *4 *5 *6 *3)) (-4 *3 (-942 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-1114 *3)) (-4 *3 (-1039)) (-5 *2 (-626 (-626 (-626 (-936 *3)))))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-550)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-626 (-1247 *4 *5 *6 *7))) (-5 *1 (-1247 *4 *5 *6 *7)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-626 *9)) (-5 *4 (-1 (-121) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1053 *6 *7 *8)) (-4 *6 (-550)) (-4 *7 (-780)) (-4 *8 (-834)) (-5 *2 (-626 (-1247 *6 *7 *8 *9))) (-5 *1 (-1247 *6 *7 *8 *9))))) -(((*1 *1 *2) (-12 (-5 *2 (-156)) (-5 *1 (-861))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1153)) (-5 *2 (-433)) (-5 *1 (-1157))))) -(((*1 *2) (-12 (-5 *2 (-1241)) (-5 *1 (-1189))))) -(((*1 *1 *2) (-12 (-5 *2 (-403 (-560))) (-5 *1 (-112)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-626 (-533))) (-5 *1 (-533))))) -(((*1 *2 *1) (-12 (-4 *2 (-550)) (-5 *1 (-607 *2 *3)) (-4 *3 (-1211 *2))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-447))) (-5 *1 (-1179 *3 *2)) (-4 *2 (-13 (-426 *3) (-1173)))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-767 *5 (-844 *6)))) (-5 *4 (-121)) (-4 *5 (-447)) (-14 *6 (-626 (-1153))) (-5 *2 (-626 (-1036 *5 *6))) (-5 *1 (-611 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *2 (-599 *4)) (-5 *1 (-598 *3 *4)) (-4 *3 (-834)) (-4 *4 (-834))))) -(((*1 *2 *3) (-12 (-4 *2 (-359)) (-4 *2 (-832)) (-5 *1 (-938 *2 *3)) (-4 *3 (-1211 *2))))) -(((*1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-43 (-403 (-560)))) (-4 *2 (-1039))))) -(((*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-879 *4)) (-4 *4 (-1082)) (-5 *1 (-876 *4 *3)) (-4 *3 (-1082))))) -(((*1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-43 (-403 (-560)))) (-4 *2 (-1039))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-447))) (-5 *1 (-1179 *3 *2)) (-4 *2 (-13 (-426 *3) (-1173)))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-272 *2)) (-4 *2 (-1187)) (-4 *2 (-834)))) ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-121) *3 *3)) (-4 *1 (-272 *3)) (-4 *3 (-1187)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-487 *2)) (-4 *2 (-834)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-834))))) -(((*1 *2 *3) (-12 (-5 *2 (-626 (-1135))) (-5 *1 (-816)) (-5 *3 (-1135))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-141 *2 *3 *4)) (-14 *2 (-560)) (-14 *3 (-755)) (-4 *4 (-170)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1153)) (-4 *4 (-13 (-834) (-550))) (-5 *1 (-157 *4 *2)) (-4 *2 (-426 *4)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1074 *2)) (-4 *2 (-426 *4)) (-4 *4 (-13 (-834) (-550))) (-5 *1 (-157 *4 *2)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1074 *1)) (-4 *1 (-159)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-159)) (-5 *2 (-1153)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-755)) (-5 *1 (-1254 *3 *4)) (-4 *3 (-834)) (-4 *4 (-170))))) -(((*1 *2 *1) (-12 (-4 *1 (-37 *2)) (-4 *2 (-359)))) ((*1 *2 *1) (-12 (-4 *1 (-963 *2)) (-4 *2 (-359))))) -(((*1 *2 *1) (-12 (-5 *2 (-1084 *3)) (-5 *1 (-891 *3)) (-4 *3 (-1082)))) ((*1 *2 *1) (-12 (-5 *2 (-1084 *3)) (-5 *1 (-892 *3)) (-4 *3 (-1082))))) -(((*1 *2 *1) (-12 (-5 *2 (-755)) (-5 *1 (-414 *3)) (-4 *3 (-550)))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-2 (|:| -1601 *4) (|:| -3662 (-560))))) (-4 *4 (-1211 (-560))) (-5 *2 (-755)) (-5 *1 (-437 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 *2)) (-4 *2 (-426 *4)) (-5 *1 (-157 *4 *2)) (-4 *4 (-13 (-834) (-550)))))) -(((*1 *2 *3 *1) (-12 (|has| $ (-6 -4505)) (-5 *2 (-121)) (-5 *1 (-96 *3)) (-4 *3 (-1082)) (-4 *3 (-1082)))) ((*1 *2 *3 *1) (-12 (|has| $ (-6 -4505)) (-5 *2 (-121)) (-5 *1 (-210 *3)) (-4 *3 (-1082)) (-4 *3 (-1082)))) ((*1 *2 *3 *1) (-12 (|has| $ (-6 -4505)) (-5 *2 (-121)) (-5 *1 (-487 *3)) (-4 *3 (-1082)) (-4 *3 (-834)))) ((*1 *2 *3 *1) (-12 (|has| *1 (-6 -4505)) (-4 *1 (-492 *3)) (-4 *3 (-1187)) (-4 *3 (-1082)) (-5 *2 (-121)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-892 *4)) (-4 *4 (-1082)) (-5 *2 (-121)) (-5 *1 (-891 *4)))) ((*1 *2 *3 *1) (-12 (|has| $ (-6 -4505)) (-5 *2 (-121)) (-5 *1 (-992 *3)) (-4 *3 (-1082)) (-4 *3 (-1082)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-909)) (-5 *2 (-121)) (-5 *1 (-1083 *4 *5)) (-14 *4 *3) (-14 *5 *3))) ((*1 *2 *3 *1) (-12 (|has| $ (-6 -4505)) (-5 *2 (-121)) (-5 *1 (-1124 *3)) (-4 *3 (-1082)) (-4 *3 (-1082))))) -(((*1 *1 *2) (-12 (-5 *2 (-626 (-842))) (-5 *1 (-842))))) -(((*1 *2 *3) (-12 (-5 *3 (-304 (-213))) (-5 *2 (-304 (-375))) (-5 *1 (-294))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-560)) (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *2 (-942 *4 *6 (-844 *5))) (-4 *6 (-226 (-2271 *5) (-755))) (-4 *7 (-963 *4)) (-4 *8 (-633 *4)) (-4 *9 (-912 *4 *8)) (-4 *10 (-230 *9)) (-4 *11 (-528 *4 *5 *2 *6 *7 *8 *9 *10 *13)) (-4 *13 (-117)) (-5 *1 (-460 *4 *5 *2 *6 *7 *8 *9 *10 *11 *12 *13)) (-4 *12 (-253 *11)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-237 *5 *4)) (-5 *3 (-560)) (-4 *4 (-344)) (-14 *5 (-626 (-1153))) (-5 *1 (-859 *4 *5 *6)) (-4 *6 (-117)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-237 *5 *4)) (-5 *3 (-560)) (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-5 *1 (-860 *4 *5 *6)) (-4 *6 (-117)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-560)) (-4 *4 (-1039)) (-4 *5 (-226 *6 (-755))) (-14 *6 (-755)) (-5 *1 (-900 *4 *2 *5 *6)) (-4 *2 (-318 *4 *5)))) ((*1 *1 *1) (-12 (-4 *1 (-963 *2)) (-4 *2 (-359)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-963 *3)) (-4 *3 (-359))))) -(((*1 *2 *3 *1) (-12 (-4 *4 (-359)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-121)) (-5 *1 (-506 *4 *5 *6 *3)) (-4 *3 (-942 *4 *5 *6))))) -(((*1 *1 *1) (-5 *1 (-1051)))) -(((*1 *2 *3) (-12 (-5 *3 (-1236 *4)) (-4 *4 (-622 (-560))) (-5 *2 (-121)) (-5 *1 (-1261 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-980 (-403 (-560)) (-844 *3) (-228 *4 (-755)) (-237 *3 (-403 (-560))))) (-14 *3 (-626 (-1153))) (-14 *4 (-755)) (-5 *1 (-979 *3 *4))))) -(((*1 *2 *2) (-12 (-4 *3 (-296)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)) (-5 *1 (-1104 *3 *4 *5 *2)) (-4 *2 (-669 *3 *4 *5))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-314 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-137))))) -(((*1 *2 *1) (-12 (-4 *1 (-963 *3)) (-4 *3 (-359)) (-5 *2 (-560))))) -(((*1 *2 *1) (-12 (-5 *2 (-1133 *3)) (-5 *1 (-171 *3)) (-4 *3 (-296))))) -(((*1 *1) (-5 *1 (-433)))) -(((*1 *2 *3 *4) (-12 (-4 *4 (-359)) (-5 *2 (-626 (-1133 *4))) (-5 *1 (-275 *4 *5)) (-5 *3 (-1133 *4)) (-4 *5 (-1226 *4))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-550) (-834) (-1029 (-560)))) (-5 *1 (-178 *3 *2)) (-4 *2 (-13 (-27) (-1173) (-426 (-167 *3)))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1153)) (-4 *4 (-13 (-550) (-834) (-1029 (-560)))) (-5 *1 (-178 *4 *2)) (-4 *2 (-13 (-27) (-1173) (-426 (-167 *4)))))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-27) (-1173) (-426 *3))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1153)) (-4 *4 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *1 (-1177 *4 *2)) (-4 *2 (-13 (-27) (-1173) (-426 *4)))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-427 *3 *2)) (-4 *2 (-426 *3))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 (-936 *3) (-936 *3))) (-5 *1 (-172 *3)) (-4 *3 (-13 (-359) (-1173) (-994)))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-560)) (-4 *1 (-62 *4 *3 *5)) (-4 *4 (-1187)) (-4 *3 (-369 *4)) (-4 *5 (-369 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-963 *3)) (-4 *3 (-359)) (-5 *2 (-560))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-414 *3)) (-4 *3 (-550)) (-5 *1 (-415 *3))))) -(((*1 *2 *3) (-12 (-14 *4 (-626 (-1153))) (-4 *5 (-447)) (-5 *2 (-2 (|:| |glbase| (-626 (-237 *4 *5))) (|:| |glval| (-626 (-560))))) (-5 *1 (-614 *4 *5)) (-5 *3 (-626 (-237 *4 *5)))))) -(((*1 *1 *1 *1) (-5 *1 (-842)))) -(((*1 *2 *3) (-12 (-5 *2 (-626 (-560))) (-5 *1 (-441)) (-5 *3 (-560))))) -(((*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-626 (-945 *6))) (-5 *4 (-626 (-1153))) (-4 *6 (-447)) (-5 *2 (-626 (-626 *7))) (-5 *1 (-535 *6 *7 *5)) (-4 *7 (-359)) (-4 *5 (-13 (-359) (-832)))))) -(((*1 *1 *1) (-12 (-4 *1 (-241 *2 *3 *4 *5)) (-4 *2 (-1039)) (-4 *3 (-834)) (-4 *4 (-257 *3)) (-4 *5 (-780))))) -(((*1 *2) (-12 (-4 *3 (-550)) (-5 *2 (-626 *4)) (-5 *1 (-48 *3 *4)) (-4 *4 (-413 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-37 *3)) (-4 *3 (-359)) (-5 *2 (-626 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-963 *3)) (-4 *3 (-359)) (-5 *2 (-626 *3))))) -(((*1 *2 *3 *3 *4) (-12 (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-626 (-2 (|:| |val| *3) (|:| -3249 *4)))) (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1058 *5 *6 *7 *3))))) -(((*1 *1 *1 *1) (-5 *1 (-213))) ((*1 *2 *2 *2) (-12 (-5 *2 (-213)) (-5 *1 (-214)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-167 (-213))) (-5 *1 (-214)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-427 *3 *2)) (-4 *2 (-426 *3)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-755)) (-5 *2 (-1 (-375))) (-5 *1 (-1031)))) ((*1 *1 *1 *1) (-4 *1 (-1116)))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-359)) (-4 *3 (-1039)) (-5 *1 (-1137 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-945 *5)) (-4 *5 (-1039)) (-5 *2 (-485 *4 *5)) (-5 *1 (-937 *4 *5)) (-14 *4 (-626 (-1153)))))) -(((*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-755)) (-4 *5 (-359)) (-5 *2 (-171 *6)) (-5 *1 (-853 *5 *4 *6)) (-4 *4 (-1226 *5)) (-4 *6 (-1211 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-1236 *1)) (-4 *1 (-363 *2)) (-4 *2 (-170)))) ((*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-412 *3 *2)) (-4 *3 (-413 *2)))) ((*1 *2) (-12 (-4 *1 (-413 *2)) (-4 *2 (-170))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 (-849 *4))) (-4 *4 (-344)) (-5 *2 (-959 *4)) (-5 *1 (-859 *4 *5 *6)) (-14 *5 (-626 (-1153))) (-4 *6 (-117)))) ((*1 *2 *3) (-12 (-5 *3 (-626 *4)) (-4 *4 (-359)) (-5 *2 (-958 *4)) (-5 *1 (-860 *4 *5 *6)) (-14 *5 (-626 (-1153))) (-4 *6 (-117)))) ((*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-359)) (-4 *1 (-963 *3))))) -(((*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-671 *2)) (-5 *4 (-560)) (-4 *2 (-13 (-296) (-10 -8 (-15 -2953 ((-414 $) $))))) (-4 *5 (-1211 *2)) (-5 *1 (-500 *2 *5 *6)) (-4 *6 (-405 *2 *5))))) -(((*1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-1039))))) -(((*1 *2 *1) (-12 (-4 *1 (-62 *3 *4 *5)) (-4 *3 (-1187)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)) (-5 *2 (-560)))) ((*1 *2 *1) (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039)) (-4 *6 (-226 *4 *5)) (-4 *7 (-226 *3 *5)) (-5 *2 (-560))))) -(((*1 *1 *2) (-12 (-5 *2 (-626 *6)) (-4 *6 (-942 *3 *4 *5)) (-4 *3 (-359)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *1 (-506 *3 *4 *5 *6))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-560)) (-5 *2 (-1241)) (-5 *1 (-891 *4)) (-4 *4 (-1082)))) ((*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-891 *3)) (-4 *3 (-1082))))) -(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (-5 *2 (-1133 (-213))) (-5 *1 (-182)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-304 (-213))) (-5 *4 (-626 (-1153))) (-5 *5 (-1076 (-827 (-213)))) (-5 *2 (-1133 (-213))) (-5 *1 (-289)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1236 (-304 (-213)))) (-5 *4 (-626 (-1153))) (-5 *5 (-1076 (-827 (-213)))) (-5 *2 (-1133 (-213))) (-5 *1 (-289))))) -(((*1 *2 *2) (-12 (-5 *2 (-626 *1)) (-4 *1 (-37 *3)) (-4 *3 (-359)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-626 *1)) (-5 *3 (-755)) (-4 *1 (-37 *4)) (-4 *4 (-359)))) ((*1 *2 *2) (-12 (-5 *2 (-626 *1)) (-4 *1 (-963 *3)) (-4 *3 (-359)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-626 *1)) (-5 *3 (-755)) (-4 *1 (-963 *4)) (-4 *4 (-359))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-1149 *3)) (-4 *3 (-344)) (-5 *1 (-352 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3262 (-375)) (|:| -1337 (-1135)) (|:| |explanations| (-626 (-1135))))) (-5 *2 (-1027)) (-5 *1 (-294)))) ((*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3262 (-375)) (|:| -1337 (-1135)) (|:| |explanations| (-626 (-1135))) (|:| |extra| (-1027)))) (-5 *2 (-1027)) (-5 *1 (-294))))) -(((*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-599 *3)) (-5 *5 (-626 *3)) (-4 *3 (-13 (-426 *6) (-27) (-1173))) (-4 *6 (-13 (-447) (-1029 (-560)) (-834) (-148) (-622 (-560)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-626 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-562 *6 *3 *7)) (-4 *7 (-1082))))) -(((*1 *2 *2) (-12 (-5 *2 (-626 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-296)) (-4 *3 (-550)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *1 (-970 *3 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 (-560))) (-5 *2 (-891 (-560))) (-5 *1 (-905)))) ((*1 *2) (-12 (-5 *2 (-891 (-560))) (-5 *1 (-905))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-1236 (-626 (-2 (|:| -2981 *4) (|:| -1330 (-1100)))))) (-4 *4 (-344)) (-5 *2 (-1241)) (-5 *1 (-524 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-213)) (-5 *1 (-809))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-375) (-375))) (-5 *4 (-375)) (-5 *2 (-2 (|:| -2981 *4) (|:| -2301 *4) (|:| |totalpts| (-560)) (|:| |success| (-121)))) (-5 *1 (-776)) (-5 *5 (-560))))) -(((*1 *2 *1) (-12 (-4 *1 (-62 *3 *4 *5)) (-4 *3 (-1187)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)) (-5 *2 (-626 *3)))) ((*1 *2 *1) (-12 (|has| $ (-6 -4505)) (-5 *2 (-626 *3)) (-5 *1 (-96 *3)) (-4 *3 (-1082)))) ((*1 *2 *1) (-12 (|has| $ (-6 -4505)) (-5 *2 (-626 *3)) (-5 *1 (-210 *3)) (-4 *3 (-1082)))) ((*1 *2 *1) (-12 (|has| $ (-6 -4505)) (-5 *2 (-626 *3)) (-5 *1 (-487 *3)) (-4 *3 (-834)))) ((*1 *2 *1) (-12 (|has| *1 (-6 -4505)) (-4 *1 (-492 *3)) (-4 *3 (-1187)) (-5 *2 (-626 *3)))) ((*1 *2 *1) (-12 (|has| $ (-6 -4505)) (-5 *2 (-626 *3)) (-5 *1 (-992 *3)) (-4 *3 (-1082)))) ((*1 *2 *1) (-12 (|has| $ (-6 -4505)) (-5 *2 (-626 *3)) (-5 *1 (-1124 *3)) (-4 *3 (-1082))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-755)) (-5 *1 (-578 *2)) (-4 *2 (-542))))) -(((*1 *1 *1 *1 *2) (-12 (-4 *1 (-942 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *2 (-834)) (-4 *3 (-170)))) ((*1 *2 *3 *3) (-12 (-4 *2 (-550)) (-5 *1 (-962 *2 *3)) (-4 *3 (-1211 *2)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-780)) (-4 *4 (-834)) (-4 *2 (-550)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-1211 *2)) (-4 *2 (-1039)) (-4 *2 (-170))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-427 *3 *2)) (-4 *2 (-426 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *1 (-423 *3 *2)) (-4 *3 (-13 (-170) (-43 (-403 (-560))))) (-4 *2 (-13 (-834) (-21)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-809))))) -(((*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-626 *4)) (-4 *4 (-359)) (-5 *2 (-1236 *4)) (-5 *1 (-801 *4 *3)) (-4 *3 (-638 *4))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1149 *1)) (-4 *1 (-1004))))) -(((*1 *2) (-12 (-4 *3 (-447)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-1241)) (-5 *1 (-981 *3 *4 *5 *6 *7)) (-4 *7 (-1058 *3 *4 *5 *6)))) ((*1 *2) (-12 (-4 *3 (-447)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-1241)) (-5 *1 (-1089 *3 *4 *5 *6 *7)) (-4 *7 (-1058 *3 *4 *5 *6))))) -(((*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-437 *3)) (-4 *3 (-1211 (-560)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1133 *3)) (-5 *1 (-171 *3)) (-4 *3 (-296))))) -(((*1 *2 *1) (-12 (-4 *3 (-1039)) (-5 *2 (-626 *1)) (-4 *1 (-1114 *3))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-626 (-755))) (-5 *3 (-169)) (-5 *1 (-1141 *4 *5)) (-14 *4 (-909)) (-4 *5 (-1039))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-560)) (-5 *2 (-626 (-2 (|:| -1601 *3) (|:| -3662 *4)))) (-5 *1 (-677 *3)) (-4 *3 (-1211 *4))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-359)) (-5 *1 (-1017 *3 *2)) (-4 *2 (-638 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-359)) (-5 *2 (-2 (|:| -2654 *3) (|:| -1882 (-626 *5)))) (-5 *1 (-1017 *5 *3)) (-5 *4 (-626 *5)) (-4 *3 (-638 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-626 (-842))) (-5 *1 (-842))))) -(((*1 *2 *3 *4 *4) (-12 (-5 *4 (-1153)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-683 *3 *5 *6 *7)) (-4 *3 (-601 (-533))) (-4 *5 (-1187)) (-4 *6 (-1187)) (-4 *7 (-1187)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1153)) (-5 *2 (-1 *6 *5)) (-5 *1 (-688 *3 *5 *6)) (-4 *3 (-601 (-533))) (-4 *5 (-1187)) (-4 *6 (-1187))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 *2)) (-4 *2 (-426 *4)) (-5 *1 (-427 *4 *2)) (-4 *4 (-13 (-834) (-550)))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-157 *3 *2)) (-4 *2 (-426 *3))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-553 *2)) (-4 *2 (-542))))) -(((*1 *2 *1) (-12 (-5 *2 (-1149 (-403 (-945 *3)))) (-5 *1 (-448 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *3 (-170)) (-14 *4 (-909)) (-14 *5 (-626 (-1153))) (-14 *6 (-1236 (-671 *3)))))) -(((*1 *2 *3 *1) (-12 (-4 *1 (-969 *4 *5 *6 *3)) (-4 *4 (-1039)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *3 (-1053 *4 *5 *6)) (-4 *4 (-550)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) -(((*1 *1 *2) (-12 (-5 *2 (-403 (-560))) (-4 *1 (-547 *3)) (-4 *3 (-13 (-400) (-1173))))) ((*1 *1 *2) (-12 (-4 *1 (-547 *2)) (-4 *2 (-13 (-400) (-1173))))) ((*1 *1 *2 *2) (-12 (-4 *1 (-547 *2)) (-4 *2 (-13 (-400) (-1173)))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 *2)) (-4 *2 (-426 *4)) (-5 *1 (-427 *4 *2)) (-4 *4 (-13 (-834) (-550)))))) -(((*1 *1 *2) (-12 (-5 *2 (-304 (-167 (-375)))) (-5 *1 (-322)))) ((*1 *1 *2) (-12 (-5 *2 (-304 (-560))) (-5 *1 (-322)))) ((*1 *1 *2) (-12 (-5 *2 (-304 (-375))) (-5 *1 (-322)))) ((*1 *1 *2) (-12 (-5 *2 (-304 (-675))) (-5 *1 (-322)))) ((*1 *1 *2) (-12 (-5 *2 (-304 (-682))) (-5 *1 (-322)))) ((*1 *1 *2) (-12 (-5 *2 (-304 (-680))) (-5 *1 (-322)))) ((*1 *1) (-5 *1 (-322)))) -(((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-842))))) -(((*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-1165 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-767 *5 (-844 *6)))) (-5 *4 (-121)) (-4 *5 (-447)) (-14 *6 (-626 (-1153))) (-5 *2 (-626 (-1123 *5 (-526 (-844 *6)) (-844 *6) (-767 *5 (-844 *6))))) (-5 *1 (-611 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-385)) (-5 *2 (-121))))) -(((*1 *1 *1) (-12 (-4 *2 (-296)) (-4 *3 (-985 *2)) (-4 *4 (-1211 *3)) (-5 *1 (-409 *2 *3 *4 *5)) (-4 *5 (-13 (-405 *3 *4) (-1029 *3)))))) -(((*1 *2 *1) (-12 (-4 *1 (-291)) (-5 *2 (-626 (-123)))))) -(((*1 *2 *3) (-12 (-5 *3 (-237 *4 *5)) (-14 *4 (-626 (-1153))) (-4 *5 (-1039)) (-5 *2 (-945 *5)) (-5 *1 (-937 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-169)) (-5 *1 (-1141 *3 *4)) (-14 *3 (-909)) (-4 *4 (-1039))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 *4)) (-4 *4 (-832)) (-4 *4 (-359)) (-5 *2 (-755)) (-5 *1 (-938 *4 *5)) (-4 *5 (-1211 *4))))) -(((*1 *2 *1) (-12 (-5 *1 (-171 *2)) (-4 *2 (-296)))) ((*1 *2 *1) (-12 (-5 *1 (-902 *2)) (-4 *2 (-296)))) ((*1 *2 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-550)) (-4 *2 (-296)))) ((*1 *2 *1) (-12 (-4 *1 (-1048)) (-5 *2 (-560))))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *5 (-213)) (-5 *2 (-1027)) (-5 *1 (-735))))) -(((*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-834)) (-5 *1 (-135 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-909)) (-4 *1 (-321 *3)) (-4 *3 (-359)) (-4 *3 (-364)))) ((*1 *2 *1) (-12 (-4 *1 (-321 *2)) (-4 *2 (-359)))) ((*1 *2 *1) (-12 (-4 *1 (-366 *2 *3)) (-4 *3 (-1211 *2)) (-4 *2 (-170)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1236 *4)) (-5 *3 (-909)) (-4 *4 (-344)) (-5 *1 (-524 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-1103 *3 *2 *4 *5)) (-4 *4 (-226 *3 *2)) (-4 *5 (-226 *3 *2)) (-4 *2 (-1039))))) -(((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-145))))) -(((*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-1133 *3)) (-4 *3 (-1082)) (-4 *3 (-1187))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-213)) (-5 *3 (-755)) (-5 *1 (-214)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-167 (-213))) (-5 *3 (-755)) (-5 *1 (-214)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-427 *3 *2)) (-4 *2 (-426 *3)))) ((*1 *1 *1 *1) (-4 *1 (-1116)))) -(((*1 *2 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-683 *4 *5 *6 *7)) (-4 *4 (-601 (-533))) (-4 *5 (-1187)) (-4 *6 (-1187)) (-4 *7 (-1187))))) -(((*1 *2 *1) (|partial| -12 (-4 *1 (-1004)) (-5 *2 (-842))))) -(((*1 *2 *3) (-12 (-14 *4 (-626 (-1153))) (-14 *5 (-755)) (-5 *2 (-626 (-506 (-403 (-560)) (-228 *5 (-755)) (-844 *4) (-237 *4 (-403 (-560)))))) (-5 *1 (-507 *4 *5)) (-5 *3 (-506 (-403 (-560)) (-228 *5 (-755)) (-844 *4) (-237 *4 (-403 (-560)))))))) -(((*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-780)) (-4 *4 (-834)) (-4 *2 (-550))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-626 *3)) (-4 *3 (-1211 *5)) (-4 *5 (-296)) (-5 *2 (-755)) (-5 *1 (-450 *5 *3))))) -(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-671 *6)) (-5 *5 (-1 (-414 (-1149 *6)) (-1149 *6))) (-4 *6 (-359)) (-5 *2 (-626 (-2 (|:| |outval| *7) (|:| |outmult| (-560)) (|:| |outvect| (-626 (-671 *7)))))) (-5 *1 (-527 *6 *7 *4)) (-4 *7 (-359)) (-4 *4 (-13 (-359) (-832)))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-626 *8)) (-5 *4 (-626 *9)) (-4 *8 (-1053 *5 *6 *7)) (-4 *9 (-1058 *5 *6 *7 *8)) (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-5 *2 (-755)) (-5 *1 (-1056 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 *8)) (-5 *4 (-626 *9)) (-4 *8 (-1053 *5 *6 *7)) (-4 *9 (-1091 *5 *6 *7 *8)) (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-5 *2 (-755)) (-5 *1 (-1122 *5 *6 *7 *8 *9))))) -(((*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-283 *6)) (-5 *4 (-123)) (-4 *6 (-426 *5)) (-4 *5 (-13 (-834) (-550) (-601 (-533)))) (-5 *2 (-57)) (-5 *1 (-305 *5 *6)))) ((*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-283 *7)) (-5 *4 (-123)) (-5 *5 (-626 *7)) (-4 *7 (-426 *6)) (-4 *6 (-13 (-834) (-550) (-601 (-533)))) (-5 *2 (-57)) (-5 *1 (-305 *6 *7)))) ((*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-626 (-283 *7))) (-5 *4 (-626 (-123))) (-5 *5 (-283 *7)) (-4 *7 (-426 *6)) (-4 *6 (-13 (-834) (-550) (-601 (-533)))) (-5 *2 (-57)) (-5 *1 (-305 *6 *7)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-626 (-283 *8))) (-5 *4 (-626 (-123))) (-5 *5 (-283 *8)) (-5 *6 (-626 *8)) (-4 *8 (-426 *7)) (-4 *7 (-13 (-834) (-550) (-601 (-533)))) (-5 *2 (-57)) (-5 *1 (-305 *7 *8)))) ((*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-626 *7)) (-5 *4 (-626 (-123))) (-5 *5 (-283 *7)) (-4 *7 (-426 *6)) (-4 *6 (-13 (-834) (-550) (-601 (-533)))) (-5 *2 (-57)) (-5 *1 (-305 *6 *7)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-626 *8)) (-5 *4 (-626 (-123))) (-5 *6 (-626 (-283 *8))) (-4 *8 (-426 *7)) (-5 *5 (-283 *8)) (-4 *7 (-13 (-834) (-550) (-601 (-533)))) (-5 *2 (-57)) (-5 *1 (-305 *7 *8)))) ((*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-283 *5)) (-5 *4 (-123)) (-4 *5 (-426 *6)) (-4 *6 (-13 (-834) (-550) (-601 (-533)))) (-5 *2 (-57)) (-5 *1 (-305 *6 *5)))) ((*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-123)) (-5 *5 (-283 *3)) (-4 *3 (-426 *6)) (-4 *6 (-13 (-834) (-550) (-601 (-533)))) (-5 *2 (-57)) (-5 *1 (-305 *6 *3)))) ((*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-123)) (-5 *5 (-283 *3)) (-4 *3 (-426 *6)) (-4 *6 (-13 (-834) (-550) (-601 (-533)))) (-5 *2 (-57)) (-5 *1 (-305 *6 *3)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-123)) (-5 *5 (-283 *3)) (-5 *6 (-626 *3)) (-4 *3 (-426 *7)) (-4 *7 (-13 (-834) (-550) (-601 (-533)))) (-5 *2 (-57)) (-5 *1 (-305 *7 *3)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-123)) (-5 *5 (-1153)) (-5 *6 (-626 *3)) (-4 *3 (-426 *7)) (-4 *7 (-13 (-834) (-550) (-601 (-533)))) (-4 *2 (-1226 *3)) (-5 *1 (-306 *7 *3 *2 *8)) (-4 *8 (-1226 (-1147 *3))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *6)) (-5 *4 (-626 *5)) (-4 *5 (-359)) (-4 *6 (-1226 (-1147 *5))) (-4 *2 (-1226 *5)) (-5 *1 (-1230 *5 *2 *6))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1113 (-213))) (-5 *3 (-626 (-251))) (-5 *1 (-1238)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1113 (-213))) (-5 *3 (-1135)) (-5 *1 (-1238)))) ((*1 *1 *1) (-5 *1 (-1238)))) -(((*1 *2 *1) (-12 (-4 *1 (-360 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-5 *2 (-1241))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1241)) (-5 *1 (-809))))) -(((*1 *2 *1) (-12 (-4 *2 (-1082)) (-5 *1 (-957 *2 *3)) (-4 *3 (-1082))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-414 *3)) (-4 *3 (-550))))) -(((*1 *2 *2 *1) (-12 (-5 *2 (-1258 *3 *4)) (-4 *1 (-370 *3 *4)) (-4 *3 (-834)) (-4 *4 (-170)))) ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-382 *2)) (-4 *2 (-1082)))) ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-806 *2)) (-4 *2 (-834)))) ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-806 *2)) (-4 *2 (-834)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1251 *2 *3)) (-4 *2 (-834)) (-4 *3 (-1039)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-806 *3)) (-4 *1 (-1251 *3 *4)) (-4 *3 (-834)) (-4 *4 (-1039)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1251 *2 *3)) (-4 *2 (-834)) (-4 *3 (-1039))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-447))) (-5 *1 (-1179 *3 *2)) (-4 *2 (-13 (-426 *3) (-1173)))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-447))) (-5 *1 (-1179 *3 *2)) (-4 *2 (-13 (-426 *3) (-1173)))))) -(((*1 *1 *2) (-12 (-5 *1 (-215 *2)) (-4 *2 (-13 (-359) (-1173)))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-213)) (|:| |phi| (-213)) (|:| -1407 (-213)) (|:| |scaleX| (-213)) (|:| |scaleY| (-213)) (|:| |scaleZ| (-213)) (|:| |deltaX| (-213)) (|:| |deltaY| (-213)))) (-5 *3 (-626 (-251))) (-5 *1 (-249)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-213)) (|:| |phi| (-213)) (|:| -1407 (-213)) (|:| |scaleX| (-213)) (|:| |scaleY| (-213)) (|:| |scaleZ| (-213)) (|:| |deltaX| (-213)) (|:| |deltaY| (-213)))) (-5 *1 (-251)))) ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-375)) (-5 *2 (-1241)) (-5 *1 (-1238)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-375)) (-5 *2 (-1241)) (-5 *1 (-1238)))) ((*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-560)) (-5 *4 (-375)) (-5 *2 (-1241)) (-5 *1 (-1238)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-213)) (|:| |phi| (-213)) (|:| -1407 (-213)) (|:| |scaleX| (-213)) (|:| |scaleY| (-213)) (|:| |scaleZ| (-213)) (|:| |deltaX| (-213)) (|:| |deltaY| (-213)))) (-5 *2 (-1241)) (-5 *1 (-1238)))) ((*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-213)) (|:| |phi| (-213)) (|:| -1407 (-213)) (|:| |scaleX| (-213)) (|:| |scaleY| (-213)) (|:| |scaleZ| (-213)) (|:| |deltaX| (-213)) (|:| |deltaY| (-213)))) (-5 *1 (-1238)))) ((*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-375)) (-5 *2 (-1241)) (-5 *1 (-1238))))) -(((*1 *1 *2) (-12 (-5 *2 (-626 (-842))) (-5 *1 (-842)))) ((*1 *1 *1) (-5 *1 (-842)))) -(((*1 *2 *2) (-12 (-5 *2 (-909)) (-5 *1 (-1239)))) ((*1 *2) (-12 (-5 *2 (-909)) (-5 *1 (-1239))))) -(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4506)) (-4 *1 (-1223 *2)) (-4 *2 (-1187))))) -(((*1 *2 *1) (-12 (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)) (-4 *3 (-296)) (-5 *2 (-626 *5))))) -(((*1 *1) (-5 *1 (-433)))) -(((*1 *1 *2) (-12 (-5 *2 (-626 (-375))) (-5 *1 (-251)))) ((*1 *1) (|partial| -12 (-4 *1 (-363 *2)) (-4 *2 (-550)) (-4 *2 (-170)))) ((*1 *2 *1) (-12 (-5 *1 (-414 *2)) (-4 *2 (-550))))) -(((*1 *1 *2) (-12 (-5 *1 (-215 *2)) (-4 *2 (-13 (-359) (-1173)))))) -(((*1 *2 *1) (-12 (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)) (-5 *2 (-121)))) ((*1 *2 *1) (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039)) (-4 *6 (-226 *4 *5)) (-4 *7 (-226 *3 *5)) (-5 *2 (-121))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 (-485 *4 *5))) (-14 *4 (-626 (-1153))) (-4 *5 (-447)) (-5 *2 (-626 (-237 *4 *5))) (-5 *1 (-614 *4 *5))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-213)) (-5 *1 (-214)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-167 (-213))) (-5 *1 (-214))))) -(((*1 *1 *1 *1) (-5 *1 (-842)))) -(((*1 *2 *1) (-12 (-5 *2 (-936 *4)) (-5 *1 (-1141 *3 *4)) (-14 *3 (-909)) (-4 *4 (-1039))))) -(((*1 *2 *1) (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *3 (-369 *2)) (-4 *4 (-369 *2)) (-4 *2 (-1039)) (-4 *2 (-170))))) -(((*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-626 (-599 *2))) (-5 *4 (-1153)) (-4 *2 (-13 (-27) (-1173) (-426 *5))) (-4 *5 (-13 (-550) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *1 (-268 *5 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 *4)) (-4 *4 (-550)) (-5 *2 (-1149 *4)) (-5 *1 (-751 *4))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-375) (-375))) (-5 *4 (-375)) (-5 *2 (-2 (|:| -2981 *4) (|:| -2301 *4) (|:| |totalpts| (-560)) (|:| |success| (-121)))) (-5 *1 (-776)) (-5 *5 (-560))))) -(((*1 *2 *1) (-12 (-4 *1 (-657 *3)) (-4 *3 (-1187)) (-5 *2 (-121))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1211 *5)) (-4 *5 (-359)) (-4 *7 (-1211 (-403 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -3639 *3))) (-5 *1 (-558 *5 *6 *7 *3)) (-4 *3 (-334 *5 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1211 *5)) (-4 *5 (-359)) (-5 *2 (-2 (|:| |answer| (-403 *6)) (|:| -3639 (-403 *6)) (|:| |specpart| (-403 *6)) (|:| |polypart| *6))) (-5 *1 (-559 *5 *6)) (-5 *3 (-403 *6))))) -(((*1 *2 *3 *3 *3) (-12 (-5 *3 (-626 (-560))) (-5 *2 (-671 (-560))) (-5 *1 (-1092))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 (-560))) (-5 *2 (-891 (-560))) (-5 *1 (-905)))) ((*1 *2) (-12 (-5 *2 (-891 (-560))) (-5 *1 (-905))))) -(((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-680)))) ((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-680))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 *2)) (-4 *2 (-426 *4)) (-5 *1 (-427 *4 *2)) (-4 *4 (-13 (-834) (-550)))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 *2)) (-4 *2 (-426 *4)) (-5 *1 (-157 *4 *2)) (-4 *4 (-13 (-834) (-550)))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-626 *4)) (-4 *4 (-1082)) (-4 *4 (-1187)) (-5 *2 (-121)) (-5 *1 (-1133 *4))))) -(((*1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-43 (-403 (-560)))) (-4 *2 (-1039))))) -(((*1 *2 *3 *4) (-12 (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-626 (-2 (|:| |val| *3) (|:| -3249 *4)))) (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1058 *5 *6 *7 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-318 *2 *3)) (-4 *3 (-779)) (-4 *2 (-1039)) (-4 *2 (-447)))) ((*1 *2 *3) (-12 (-5 *3 (-626 *4)) (-4 *4 (-1211 (-560))) (-5 *2 (-626 (-560))) (-5 *1 (-489 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-836 *2)) (-4 *2 (-1039)) (-4 *2 (-447)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-942 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *2 (-834)) (-4 *3 (-447))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 *2)) (-4 *2 (-426 *4)) (-5 *1 (-427 *4 *2)) (-4 *4 (-13 (-834) (-550)))))) -(((*1 *2 *2) (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-359) (-1173) (-994))) (-5 *1 (-172 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-626 (-1153))) (|:| |pred| (-57)))) (-5 *1 (-879 *3)) (-4 *3 (-1082))))) -(((*1 *2 *3 *3 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-1241)) (-5 *1 (-1059 *4 *5 *6 *7 *8)) (-4 *8 (-1058 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-1241)) (-5 *1 (-1090 *4 *5 *6 *7 *8)) (-4 *8 (-1058 *4 *5 *6 *7))))) -(((*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-834)) (-5 *1 (-487 *3))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-447))) (-5 *1 (-1179 *3 *2)) (-4 *2 (-13 (-426 *3) (-1173)))))) -(((*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1153)) (-4 *5 (-13 (-447) (-834) (-148) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-2 (|:| -2962 *3) (|:| |coeff| *3))) (-5 *1 (-551 *5 *3)) (-4 *3 (-13 (-27) (-1173) (-426 *5)))))) -(((*1 *2 *3) (-12 (-4 *4 (-344)) (-5 *2 (-626 (-2 (|:| |deg| (-755)) (|:| -2487 *3)))) (-5 *1 (-205 *4 *3)) (-4 *3 (-1211 *4))))) -(((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-626 (-1149 *5))) (-5 *3 (-1149 *5)) (-4 *5 (-164 *4)) (-4 *4 (-542)) (-5 *1 (-150 *4 *5)))) ((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-626 *3)) (-4 *3 (-1211 *5)) (-4 *5 (-1211 *4)) (-4 *4 (-344)) (-5 *1 (-353 *4 *5 *3)))) ((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-626 (-1149 (-560)))) (-5 *3 (-1149 (-560))) (-5 *1 (-568)))) ((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-626 (-1149 *1))) (-5 *3 (-1149 *1)) (-4 *1 (-896))))) -(((*1 *2 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1187))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1236 *5)) (-4 *5 (-779)) (-5 *2 (-121)) (-5 *1 (-829 *4 *5)) (-14 *4 (-755))))) -(((*1 *2 *1) (-12 (-5 *2 (-626 (-909))) (-5 *1 (-1083 *3 *4)) (-14 *3 (-909)) (-14 *4 (-909))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1193 *3)) (-4 *3 (-1039)) (-5 *1 (-1192 *3))))) -(((*1 *1 *2) (-12 (-4 *3 (-1039)) (-5 *1 (-814 *2 *3)) (-4 *2 (-690 *3))))) -(((*1 *2) (-12 (-4 *4 (-359)) (-5 *2 (-755)) (-5 *1 (-320 *3 *4)) (-4 *3 (-321 *4)))) ((*1 *2) (-12 (-4 *1 (-1253 *3)) (-4 *3 (-359)) (-5 *2 (-755))))) -(((*1 *2 *1 *2) (-12 (-4 *1 (-360 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-1082))))) -(((*1 *2 *1) (-12 (-5 *2 (-1133 (-403 *3))) (-5 *1 (-171 *3)) (-4 *3 (-296))))) +(((*1 *2) (-12 (-5 *2 (-1121 (-215))) (-5 *1 (-1179))))) +(((*1 *1) (-5 *1 (-215))) ((*1 *1) (-5 *1 (-381)))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-550))))) +(((*1 *2 *1) (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (-4 *2 (-1047)) (-4 *2 (-172))))) +(((*1 *2 *3) (-12 (-5 *3 (-1161)) (-4 *4 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-57)) (-5 *1 (-309 *4 *5)) (-4 *5 (-13 (-27) (-1181) (-432 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-57)) (-5 *1 (-309 *4 *3)) (-4 *3 (-13 (-27) (-1181) (-432 *4))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-409 (-568))) (-4 *5 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-57)) (-5 *1 (-309 *5 *3)) (-4 *3 (-13 (-27) (-1181) (-432 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-288 *3)) (-4 *3 (-13 (-27) (-1181) (-432 *5))) (-4 *5 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-57)) (-5 *1 (-309 *5 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-288 *3)) (-5 *5 (-409 (-568))) (-4 *3 (-13 (-27) (-1181) (-432 *6))) (-4 *6 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-57)) (-5 *1 (-309 *6 *3)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-409 (-568)))) (-5 *4 (-288 *8)) (-5 *5 (-1210 (-409 (-568)))) (-5 *6 (-409 (-568))) (-4 *8 (-13 (-27) (-1181) (-432 *7))) (-4 *7 (-13 (-558) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-57)) (-5 *1 (-461 *7 *8)))) ((*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1161)) (-5 *5 (-288 *3)) (-5 *6 (-1210 (-409 (-568)))) (-5 *7 (-409 (-568))) (-4 *3 (-13 (-27) (-1181) (-432 *8))) (-4 *8 (-13 (-558) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-57)) (-5 *1 (-461 *8 *3)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-409 (-568))) (-4 *4 (-1047)) (-4 *1 (-1226 *4 *3)) (-4 *3 (-1203 *4))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-1100))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002)))))) +(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-147))) ((*1 *1 *1) (-4 *1 (-1129)))) +(((*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-607 *4)) (-5 *6 (-1157 *4)) (-4 *4 (-13 (-432 *7) (-27) (-1181))) (-4 *7 (-13 (-453) (-1037 (-568)) (-842) (-150) (-630 (-568)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3746 (-634 *4)))) (-5 *1 (-564 *7 *4 *3)) (-4 *3 (-646 *4)) (-4 *3 (-1090)))) ((*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-607 *4)) (-5 *6 (-409 (-1157 *4))) (-4 *4 (-13 (-432 *7) (-27) (-1181))) (-4 *7 (-13 (-453) (-1037 (-568)) (-842) (-150) (-630 (-568)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3746 (-634 *4)))) (-5 *1 (-564 *7 *4 *3)) (-4 *3 (-646 *4)) (-4 *3 (-1090))))) +(((*1 *2 *3) (-12 (-5 *3 (-1161)) (-4 *4 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-57)) (-5 *1 (-309 *4 *5)) (-4 *5 (-13 (-27) (-1181) (-432 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-57)) (-5 *1 (-309 *4 *3)) (-4 *3 (-13 (-27) (-1181) (-432 *4))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-568)) (-4 *5 (-13 (-453) (-842) (-1037 *4) (-630 *4))) (-5 *2 (-57)) (-5 *1 (-309 *5 *3)) (-4 *3 (-13 (-27) (-1181) (-432 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-288 *3)) (-4 *3 (-13 (-27) (-1181) (-432 *5))) (-4 *5 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-57)) (-5 *1 (-309 *5 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-288 *3)) (-4 *3 (-13 (-27) (-1181) (-432 *6))) (-4 *6 (-13 (-453) (-842) (-1037 *5) (-630 *5))) (-5 *5 (-568)) (-5 *2 (-57)) (-5 *1 (-309 *6 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-568))) (-5 *4 (-288 *7)) (-5 *5 (-1210 (-568))) (-4 *7 (-13 (-27) (-1181) (-432 *6))) (-4 *6 (-13 (-558) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-57)) (-5 *1 (-461 *6 *7)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1161)) (-5 *5 (-288 *3)) (-5 *6 (-1210 (-568))) (-4 *3 (-13 (-27) (-1181) (-432 *7))) (-4 *7 (-13 (-558) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-57)) (-5 *1 (-461 *7 *3)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-568)) (-4 *4 (-1047)) (-4 *1 (-1205 *4 *3)) (-4 *3 (-1234 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-1226 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-1203 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-436)) (|:| -3611 "void"))) (-5 *2 (-1249)) (-5 *1 (-1164)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1161)) (-5 *4 (-3 (|:| |fst| (-436)) (|:| -3611 "void"))) (-5 *2 (-1249)) (-5 *1 (-1164)))) ((*1 *2 *3 *4 *1) (-12 (-5 *3 (-1161)) (-5 *4 (-3 (|:| |fst| (-436)) (|:| -3611 "void"))) (-5 *2 (-1249)) (-5 *1 (-1164))))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *7 (-1061 *4 *5 *6)) (-5 *2 (-121)) (-5 *1 (-989 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))) ((*1 *2 *3 *3) (-12 (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *7 (-1061 *4 *5 *6)) (-5 *2 (-121)) (-5 *1 (-1097 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-121)) (-4 *5 (-13 (-301) (-150))) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *8 (-1061 *5 *6 *7)) (-5 *2 (-634 *3)) (-5 *1 (-590 *5 *6 *7 *8 *3)) (-4 *3 (-1099 *5 *6 *7 *8)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-121)) (-4 *5 (-13 (-301) (-150))) (-5 *2 (-634 (-2 (|:| -3471 (-1157 *5)) (|:| -4073 (-634 (-953 *5)))))) (-5 *1 (-1071 *5 *6)) (-5 *3 (-634 (-953 *5))) (-14 *6 (-634 (-1161))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-301) (-150))) (-5 *2 (-634 (-2 (|:| -3471 (-1157 *4)) (|:| -4073 (-634 (-953 *4)))))) (-5 *1 (-1071 *4 *5)) (-5 *3 (-634 (-953 *4))) (-14 *5 (-634 (-1161))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-121)) (-4 *5 (-13 (-301) (-150))) (-5 *2 (-634 (-2 (|:| -3471 (-1157 *5)) (|:| -4073 (-634 (-953 *5)))))) (-5 *1 (-1071 *5 *6)) (-5 *3 (-634 (-953 *5))) (-14 *6 (-634 (-1161)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1084 (-835 (-215)))) (-5 *2 (-215)) (-5 *1 (-184)))) ((*1 *2 *3) (-12 (-5 *3 (-1084 (-835 (-215)))) (-5 *2 (-215)) (-5 *1 (-294)))) ((*1 *2 *3) (-12 (-5 *3 (-1084 (-835 (-215)))) (-5 *2 (-215)) (-5 *1 (-299))))) +(((*1 *2 *3) (-12 (-5 *3 (-1161)) (-4 *4 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-57)) (-5 *1 (-309 *4 *5)) (-4 *5 (-13 (-27) (-1181) (-432 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-57)) (-5 *1 (-309 *4 *3)) (-4 *3 (-13 (-27) (-1181) (-432 *4))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-763)) (-4 *5 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-57)) (-5 *1 (-309 *5 *3)) (-4 *3 (-13 (-27) (-1181) (-432 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-288 *3)) (-4 *3 (-13 (-27) (-1181) (-432 *5))) (-4 *5 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-57)) (-5 *1 (-309 *5 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-288 *3)) (-5 *5 (-763)) (-4 *3 (-13 (-27) (-1181) (-432 *6))) (-4 *6 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-57)) (-5 *1 (-309 *6 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-568))) (-5 *4 (-288 *6)) (-4 *6 (-13 (-27) (-1181) (-432 *5))) (-4 *5 (-13 (-558) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-57)) (-5 *1 (-461 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1161)) (-5 *5 (-288 *3)) (-4 *3 (-13 (-27) (-1181) (-432 *6))) (-4 *6 (-13 (-558) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-57)) (-5 *1 (-461 *6 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-568))) (-5 *4 (-288 *7)) (-5 *5 (-1210 (-763))) (-4 *7 (-13 (-27) (-1181) (-432 *6))) (-4 *6 (-13 (-558) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-57)) (-5 *1 (-461 *6 *7)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1161)) (-5 *5 (-288 *3)) (-5 *6 (-1210 (-763))) (-4 *3 (-13 (-27) (-1181) (-432 *7))) (-4 *7 (-13 (-558) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-57)) (-5 *1 (-461 *7 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-1205 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-1234 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-763)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-788)) (-4 *2 (-950 *4 *5 *6)) (-5 *1 (-450 *4 *5 *6 *2)) (-4 *4 (-453)) (-4 *6 (-842))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-634 *6)) (-4 *6 (-1061 *3 *4 *5)) (-4 *3 (-453)) (-4 *3 (-558)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *1 (-978 *3 *4 *5 *6))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-1189 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *2 (-1061 *3 *4 *5))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-763)) (-4 *3 (-13 (-301) (-10 -8 (-15 -1678 ((-420 $) $))))) (-4 *4 (-1219 *3)) (-5 *1 (-508 *3 *4 *5)) (-4 *5 (-411 *3 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-1161)) (-4 *4 (-13 (-842) (-301) (-1037 (-568)) (-630 (-568)) (-150))) (-5 *2 (-1 *5 *5)) (-5 *1 (-799 *4 *5)) (-4 *5 (-13 (-29 *4) (-1181) (-959)))))) +(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1161)) (-5 *5 (-1084 (-215))) (-5 *2 (-927)) (-5 *1 (-925 *3)) (-4 *3 (-609 (-541))))) ((*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1161)) (-5 *5 (-1084 (-215))) (-5 *2 (-927)) (-5 *1 (-925 *3)) (-4 *3 (-609 (-541))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1084 (-215))) (-5 *1 (-926)))) ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-215) (-215))) (-5 *3 (-1084 (-215))) (-5 *1 (-926)))) ((*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-215) (-215))) (-5 *3 (-1084 (-215))) (-5 *1 (-926)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1084 (-215))) (-5 *1 (-927)))) ((*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-215) (-215))) (-5 *3 (-1084 (-215))) (-5 *1 (-927)))) ((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-215) (-215))) (-5 *3 (-1084 (-215))) (-5 *1 (-927)))) ((*1 *1 *2 *3 *3) (-12 (-5 *2 (-634 (-1 (-215) (-215)))) (-5 *3 (-1084 (-215))) (-5 *1 (-927)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-634 (-1 (-215) (-215)))) (-5 *3 (-1084 (-215))) (-5 *1 (-927)))) ((*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-215) (-215))) (-5 *3 (-1084 (-215))) (-5 *1 (-927)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1 (-215) (-215))) (-5 *3 (-1084 (-215))) (-5 *1 (-927))))) +(((*1 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-927))))) +(((*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-634 *4)) (-4 *4 (-365)) (-5 *2 (-1244 *4)) (-5 *1 (-809 *4 *3)) (-4 *3 (-646 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 *2)) (-5 *1 (-1170 *2)) (-4 *2 (-365))))) +(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-634 (-310 (-215)))) (|:| -4434 (-634 (-215))))) (-5 *2 (-634 (-1161))) (-5 *1 (-263)))) ((*1 *2 *3) (-12 (-5 *3 (-1157 *7)) (-4 *7 (-950 *6 *4 *5)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1047)) (-5 *2 (-634 *5)) (-5 *1 (-318 *4 *5 *6 *7)))) ((*1 *2 *1) (-12 (-5 *2 (-634 (-1161))) (-5 *1 (-337 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-389)))) ((*1 *2 *1) (-12 (-4 *1 (-432 *3)) (-4 *3 (-842)) (-5 *2 (-634 (-1161))))) ((*1 *2 *1) (-12 (-5 *2 (-634 (-887 *3))) (-5 *1 (-887 *3)) (-4 *3 (-1090)))) ((*1 *2 *1) (-12 (-4 *1 (-950 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-634 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1047)) (-4 *7 (-950 *6 *4 *5)) (-5 *2 (-634 *5)) (-5 *1 (-951 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -2745 ($ *7)) (-15 -2317 (*7 $)) (-15 -2324 (*7 $))))))) ((*1 *2 *1) (-12 (-4 *1 (-974 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-787)) (-4 *5 (-842)) (-5 *2 (-634 *5)))) ((*1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1061 *3 *4 *5)) (-5 *2 (-634 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-409 (-953 *4))) (-4 *4 (-558)) (-5 *2 (-634 (-1161))) (-5 *1 (-1042 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-1122 *3)) (-4 *3 (-1047)) (-5 *2 (-121))))) +(((*1 *1 *1) (-12 (-4 *1 (-1061 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-788)) (-4 *4 (-842)) (-4 *2 (-453))))) +(((*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *7 (-1061 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-634 *7)) (|:| |badPols| (-634 *7)))) (-5 *1 (-978 *4 *5 *6 *7)) (-5 *3 (-634 *7))))) +(((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1157 (-409 (-1157 *2)))) (-5 *4 (-607 *2)) (-4 *2 (-13 (-432 *5) (-27) (-1181))) (-4 *5 (-13 (-453) (-1037 (-568)) (-842) (-150) (-630 (-568)))) (-5 *1 (-564 *5 *2 *6)) (-4 *6 (-1090)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1157 *1)) (-4 *1 (-950 *4 *5 *3)) (-4 *4 (-1047)) (-4 *5 (-788)) (-4 *3 (-842)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1157 *4)) (-4 *4 (-1047)) (-4 *1 (-950 *4 *5 *3)) (-4 *5 (-788)) (-4 *3 (-842)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-409 (-1157 *2))) (-4 *5 (-788)) (-4 *4 (-842)) (-4 *6 (-1047)) (-4 *2 (-13 (-365) (-10 -8 (-15 -2745 ($ *7)) (-15 -2317 (*7 $)) (-15 -2324 (*7 $))))) (-5 *1 (-951 *5 *4 *6 *7 *2)) (-4 *7 (-950 *6 *5 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-409 (-1157 (-409 (-953 *5))))) (-5 *4 (-1161)) (-5 *2 (-409 (-953 *5))) (-5 *1 (-1042 *5)) (-4 *5 (-558))))) +(((*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-817))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-558) (-150))) (-5 *1 (-542 *3 *2)) (-4 *2 (-1234 *3)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-609 (-568)))) (-4 *4 (-1219 *3)) (-4 *5 (-714 *3 *4)) (-5 *1 (-546 *3 *4 *5 *2)) (-4 *2 (-1234 *5)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-609 (-568)))) (-5 *1 (-547 *3 *2)) (-4 *2 (-1234 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-13 (-558) (-150))) (-5 *1 (-1137 *3))))) +(((*1 *2 *2 *2 *3) (-12 (-5 *3 (-763)) (-4 *4 (-558)) (-5 *1 (-970 *4 *2)) (-4 *2 (-1219 *4))))) +(((*1 *1 *2 *3) (-12 (-4 *1 (-52 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-787)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-634 (-917))) (-5 *1 (-155 *4 *2 *5)) (-14 *4 (-917)) (-4 *2 (-365)) (-14 *5 (-994 *4 *2)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-703 *5 *6 *7)) (-4 *5 (-842)) (-4 *6 (-230 (-1697 *4) (-763))) (-14 *7 (-1 (-121) (-2 (|:| -4355 *5) (|:| -3438 *6)) (-2 (|:| -4355 *5) (|:| -3438 *6)))) (-14 *4 (-634 (-1161))) (-4 *2 (-172)) (-5 *1 (-463 *4 *2 *5 *6 *7 *8)) (-4 *8 (-950 *2 *6 (-852 *4))))) ((*1 *1 *2 *3) (-12 (-4 *1 (-518 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-842)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-568)) (-4 *2 (-558)) (-5 *1 (-615 *2 *4)) (-4 *4 (-1219 *2)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-763)) (-4 *1 (-698 *2)) (-4 *2 (-1047)))) ((*1 *1 *2 *3) (-12 (-5 *1 (-725 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-716)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-634 *5)) (-5 *3 (-634 (-763))) (-4 *1 (-730 *4 *5)) (-4 *4 (-1047)) (-4 *5 (-842)))) ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-763)) (-4 *1 (-730 *4 *2)) (-4 *4 (-1047)) (-4 *2 (-842)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-763)) (-4 *1 (-844 *2)) (-4 *2 (-1047)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-634 *6)) (-5 *3 (-634 (-763))) (-4 *1 (-950 *4 *5 *6)) (-4 *4 (-1047)) (-4 *5 (-788)) (-4 *6 (-842)))) ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-763)) (-4 *1 (-950 *4 *5 *2)) (-4 *4 (-1047)) (-4 *5 (-788)) (-4 *2 (-842)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-634 *6)) (-5 *3 (-634 *5)) (-4 *1 (-974 *4 *5 *6)) (-4 *4 (-1047)) (-4 *5 (-787)) (-4 *6 (-842)))) ((*1 *1 *1 *2 *3) (-12 (-4 *1 (-974 *4 *3 *2)) (-4 *4 (-1047)) (-4 *3 (-787)) (-4 *2 (-842))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-1161)) (-4 *4 (-453)) (-4 *4 (-842)) (-5 *1 (-577 *4 *2)) (-4 *2 (-279)) (-4 *2 (-432 *4))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-917)) (-4 *4 (-370)) (-4 *4 (-365)) (-5 *2 (-1157 *1)) (-4 *1 (-327 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-327 *3)) (-4 *3 (-365)) (-5 *2 (-1157 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-372 *3 *2)) (-4 *3 (-172)) (-4 *3 (-365)) (-4 *2 (-1219 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-1244 *4)) (-4 *4 (-350)) (-5 *2 (-1157 *4)) (-5 *1 (-532 *4))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-453))) (-5 *1 (-1187 *3 *2)) (-4 *2 (-13 (-432 *3) (-1181)))))) +(((*1 *2 *1) (-12 (-5 *2 (-634 (-2 (|:| -3649 (-1161)) (|:| -4083 *4)))) (-5 *1 (-884 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090)))) ((*1 *2 *1) (-12 (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-634 *1)) (-4 *1 (-1093 *3 *4 *5 *6 *7))))) +(((*1 *2 *3) (-12 (-5 *3 (-1143)) (-4 *4 (-13 (-453) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-121)) (-5 *1 (-214 *4 *5)) (-4 *5 (-13 (-1181) (-29 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-634 (-2 (|:| -3649 (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (|:| -4083 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1141 (-215))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1338 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-563)))) ((*1 *2 *1) (-12 (-4 *1 (-601 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1195)) (-5 *2 (-634 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-1044 *4 *5)) (-4 *4 (-13 (-840) (-301) (-150) (-1021))) (-14 *5 (-634 (-1161))) (-5 *2 (-634 (-634 (-1023 (-409 *4))))) (-5 *1 (-1268 *4 *5 *6)) (-14 *6 (-634 (-1161))))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-634 (-953 *5))) (-5 *4 (-121)) (-4 *5 (-13 (-840) (-301) (-150) (-1021))) (-5 *2 (-634 (-634 (-1023 (-409 *5))))) (-5 *1 (-1268 *5 *6 *7)) (-14 *6 (-634 (-1161))) (-14 *7 (-634 (-1161))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-953 *5))) (-5 *4 (-121)) (-4 *5 (-13 (-840) (-301) (-150) (-1021))) (-5 *2 (-634 (-634 (-1023 (-409 *5))))) (-5 *1 (-1268 *5 *6 *7)) (-14 *6 (-634 (-1161))) (-14 *7 (-634 (-1161))))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-953 *4))) (-4 *4 (-13 (-840) (-301) (-150) (-1021))) (-5 *2 (-634 (-634 (-1023 (-409 *4))))) (-5 *1 (-1268 *4 *5 *6)) (-14 *5 (-634 (-1161))) (-14 *6 (-634 (-1161)))))) +(((*1 *1 *2) (-12 (-5 *2 (-1244 *4)) (-4 *4 (-1195)) (-4 *1 (-230 *3 *4))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-1157 (-953 *6))) (-4 *6 (-558)) (-4 *2 (-950 (-409 (-953 *6)) *5 *4)) (-5 *1 (-722 *5 *4 *6 *2)) (-4 *5 (-788)) (-4 *4 (-13 (-842) (-10 -8 (-15 -4278 ((-1161) $)))))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1181))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 *6)) (-4 *6 (-950 *4 *7 (-852 *5))) (-4 *7 (-230 (-1697 *5) (-763))) (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-5 *2 (-634 *8)) (-5 *1 (-963 *4 *5 *6 *7 *8)) (-4 *8 (-971 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-327 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-1157 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 (-2 (|:| -3700 (-763)) (|:| |eqns| (-634 (-2 (|:| |det| *7) (|:| |rows| (-634 (-568))) (|:| |cols| (-634 (-568)))))) (|:| |fgb| (-634 *7))))) (-4 *7 (-950 *4 *6 *5)) (-4 *4 (-13 (-301) (-150))) (-4 *5 (-13 (-842) (-609 (-1161)))) (-4 *6 (-788)) (-5 *2 (-763)) (-5 *1 (-924 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-4 *1 (-555 *3)) (-4 *3 (-13 (-406) (-1181))) (-5 *2 (-121)))) ((*1 *2 *1) (-12 (-4 *1 (-840)) (-5 *2 (-121)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-1063 *4 *3)) (-4 *4 (-13 (-840) (-365))) (-4 *3 (-1219 *4)) (-5 *2 (-121))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1087 *3)) (-4 *3 (-1090)) (-5 *2 (-121))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1157 *1)) (-4 *1 (-1012))))) +(((*1 *2 *3) (-12 (-5 *3 (-242 *4 *5)) (-14 *4 (-634 (-1161))) (-4 *5 (-453)) (-5 *2 (-492 *4 *5)) (-5 *1 (-622 *4 *5))))) +(((*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-43 (-409 (-568)))) (-4 *2 (-1047))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-763)) (-5 *4 (-568)) (-5 *1 (-446 *2)) (-4 *2 (-1047))))) +(((*1 *1) (-12 (-4 *1 (-327 *2)) (-4 *2 (-370)) (-4 *2 (-365))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-763)) (-5 *3 (-944 *5)) (-4 *5 (-1047)) (-5 *1 (-1149 *4 *5)) (-14 *4 (-917)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-634 (-763))) (-5 *3 (-763)) (-5 *1 (-1149 *4 *5)) (-14 *4 (-917)) (-4 *5 (-1047)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-634 (-763))) (-5 *3 (-944 *5)) (-4 *5 (-1047)) (-5 *1 (-1149 *4 *5)) (-14 *4 (-917))))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-13 (-453) (-150))) (-5 *2 (-420 *3)) (-5 *1 (-103 *4 *3)) (-4 *3 (-1219 *4)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-634 *3)) (-4 *3 (-1219 *5)) (-4 *5 (-13 (-453) (-150))) (-5 *2 (-420 *3)) (-5 *1 (-103 *5 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-763)) (-5 *1 (-446 *3)) (-4 *3 (-406)) (-4 *3 (-1047)))) ((*1 *2) (-12 (-5 *2 (-763)) (-5 *1 (-446 *3)) (-4 *3 (-406)) (-4 *3 (-1047))))) +(((*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-1047)) (-5 *1 (-1145 *3))))) +(((*1 *2) (-12 (-4 *1 (-350)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-634 *2)) (-4 *2 (-550)) (-5 *1 (-160 *2))))) +(((*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-121)) (-5 *1 (-978 *4 *5 *6 *3)) (-4 *3 (-1061 *4 *5 *6))))) +(((*1 *2) (-12 (-5 *2 (-1249)) (-5 *1 (-99))))) +(((*1 *2 *1) (-12 (-4 *1 (-1259 *3 *4)) (-4 *3 (-842)) (-4 *4 (-1047)) (-5 *2 (-814 *3)))) ((*1 *2 *1) (-12 (-4 *2 (-838)) (-5 *1 (-1265 *3 *2)) (-4 *3 (-1047))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 (-53))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-482)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-53))) (-5 *4 (-634 (-465))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-482)))) ((*1 *2 *3) (-12 (-5 *3 (-634 *4)) (-4 *4 (-13 (-350) (-609 (-568)))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-484 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 *5)) (-5 *4 (-634 (-465))) (-4 *5 (-13 (-350) (-609 (-568)))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-484 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-409 (-568)))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-485)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-568)))) (-5 *4 (-634 (-465))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-485)))) ((*1 *2 *3) (-12 (-5 *3 (-634 *4)) (-4 *4 (-365)) (-14 *9 (-1 *6 *4)) (-4 *7 (-13 (-842) (-558))) (-14 *8 (-1 *4 *7)) (-5 *2 (-634 (-2 (|:| -1864 *6) (|:| -4477 (-763))))) (-5 *1 (-486 *4 *5 *6 *7 *8 *9)) (-4 *5 (-453)) (-4 *6 (-13 (-432 (-568)) (-558) (-1037 *7) (-1037 (-1161)) (-1037 (-568)) (-161) (-895 (-1161)) (-10 -8 (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -1332 ($ $)) (-15 -3013 ($ $)) (-15 -2086 ((-121) $))))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 *5)) (-5 *4 (-634 (-465))) (-4 *5 (-365)) (-14 *10 (-1 *7 *5)) (-4 *8 (-13 (-842) (-558))) (-14 *9 (-1 *5 *8)) (-5 *2 (-634 (-2 (|:| -1864 *7) (|:| -4477 (-763))))) (-5 *1 (-486 *5 *6 *7 *8 *9 *10)) (-4 *6 (-453)) (-4 *7 (-13 (-432 (-568)) (-558) (-1037 *8) (-1037 (-1161)) (-1037 (-568)) (-161) (-895 (-1161)) (-10 -8 (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -1332 ($ $)) (-15 -3013 ($ $)) (-15 -2086 ((-121) $))))))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-409 (-953 (-568))))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-487)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-953 (-568))))) (-5 *4 (-634 (-465))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-487)))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-409 (-734 *4 (-568))))) (-14 *4 (-1161)) (-5 *2 (-634 (-2 (|:| -1864 (-733 *4 (-568))) (|:| -4477 (-763))))) (-5 *1 (-488 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-734 *5 (-568))))) (-5 *4 (-634 (-465))) (-14 *5 (-1161)) (-5 *2 (-634 (-2 (|:| -1864 (-733 *5 (-568))) (|:| -4477 (-763))))) (-5 *1 (-488 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-375 *3)) (-4 *3 (-1195)) (-4 *3 (-842)) (-5 *2 (-121)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4 *4)) (-4 *1 (-375 *4)) (-4 *4 (-1195)) (-5 *2 (-121))))) +(((*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1247)))) ((*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1247))))) +(((*1 *1 *1) (-4 *1 (-40))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1234 *3)) (-5 *1 (-274 *3 *4 *2)) (-4 *2 (-1205 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1203 *3)) (-5 *1 (-275 *3 *4 *2 *5)) (-4 *2 (-1226 *3 *4)) (-4 *5 (-984 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1146 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1147 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-817))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-844 *2)) (-4 *2 (-1047)) (-4 *2 (-365))))) +(((*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-1047)) (-5 *1 (-1145 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-1201 *2)) (-4 *2 (-1047)))) ((*1 *1 *1) (-12 (-5 *1 (-1235 *2 *3 *4)) (-4 *2 (-1047)) (-14 *3 (-1161)) (-14 *4 *2))) ((*1 *1 *1) (-12 (-5 *1 (-1239 *2 *3)) (-4 *2 (-1047)) (-14 *3 (-1161))))) +(((*1 *1 *1) (-4 *1 (-40))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1234 *3)) (-5 *1 (-274 *3 *4 *2)) (-4 *2 (-1205 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1203 *3)) (-5 *1 (-275 *3 *4 *2 *5)) (-4 *2 (-1226 *3 *4)) (-4 *5 (-984 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1146 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1147 *3))))) +(((*1 *2 *3 *4 *4) (-12 (-5 *3 (-634 (-953 *5))) (-5 *4 (-121)) (-4 *5 (-13 (-840) (-301) (-150) (-1021))) (-5 *2 (-634 (-1044 *5 *6))) (-5 *1 (-1268 *5 *6 *7)) (-14 *6 (-634 (-1161))) (-14 *7 (-634 (-1161))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-953 *5))) (-5 *4 (-121)) (-4 *5 (-13 (-840) (-301) (-150) (-1021))) (-5 *2 (-634 (-1044 *5 *6))) (-5 *1 (-1268 *5 *6 *7)) (-14 *6 (-634 (-1161))) (-14 *7 (-634 (-1161))))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-953 *4))) (-4 *4 (-13 (-840) (-301) (-150) (-1021))) (-5 *2 (-634 (-1044 *4 *5))) (-5 *1 (-1268 *4 *5 *6)) (-14 *5 (-634 (-1161))) (-14 *6 (-634 (-1161)))))) +(((*1 *2) (-12 (-4 *3 (-453)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1061 *3 *4 *5)) (-5 *2 (-1249)) (-5 *1 (-989 *3 *4 *5 *6 *7)) (-4 *7 (-1066 *3 *4 *5 *6)))) ((*1 *2) (-12 (-4 *3 (-453)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1061 *3 *4 *5)) (-5 *2 (-1249)) (-5 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *7 (-1066 *3 *4 *5 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-944 *3)) (-4 *3 (-13 (-365) (-1181) (-1002))) (-5 *1 (-174 *3))))) +(((*1 *1 *1) (-4 *1 (-40))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1234 *3)) (-5 *1 (-274 *3 *4 *2)) (-4 *2 (-1205 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1203 *3)) (-5 *1 (-275 *3 *4 *2 *5)) (-4 *2 (-1226 *3 *4)) (-4 *5 (-984 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1146 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1147 *3))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-1161)) (-4 *5 (-13 (-301) (-842) (-150) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-585 *3)) (-5 *1 (-428 *5 *3)) (-4 *3 (-13 (-1181) (-29 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1161)) (-4 *5 (-13 (-558) (-1037 (-568)) (-150))) (-5 *2 (-585 (-409 (-953 *5)))) (-5 *1 (-574 *5)) (-5 *3 (-409 (-953 *5)))))) +(((*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-634 (-679 *6))) (-5 *4 (-121)) (-5 *5 (-568)) (-5 *2 (-679 *6)) (-5 *1 (-1029 *6)) (-4 *6 (-365)) (-4 *6 (-1047)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-634 (-679 *4))) (-5 *2 (-679 *4)) (-5 *1 (-1029 *4)) (-4 *4 (-365)) (-4 *4 (-1047)))) ((*1 *2 *3 *3 *4) (-12 (-5 *3 (-634 (-679 *5))) (-5 *4 (-568)) (-5 *2 (-679 *5)) (-5 *1 (-1029 *5)) (-4 *5 (-365)) (-4 *5 (-1047))))) +(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-147))) ((*1 *1 *1) (-4 *1 (-1129)))) +(((*1 *1 *1) (-4 *1 (-40))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1234 *3)) (-5 *1 (-274 *3 *4 *2)) (-4 *2 (-1205 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1203 *3)) (-5 *1 (-275 *3 *4 *2 *5)) (-4 *2 (-1226 *3 *4)) (-4 *5 (-984 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1146 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1147 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-3 (-1157 *4) (-1244 (-634 (-2 (|:| -2850 *4) (|:| -4355 (-1108))))))) (-5 *1 (-347 *4)) (-4 *4 (-350))))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-1199)) (-4 *5 (-1219 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-409 *5)) (|:| |c2| (-409 *5)) (|:| |deg| (-763)))) (-5 *1 (-151 *4 *5 *3)) (-4 *3 (-1219 (-409 *5)))))) +(((*1 *1 *2) (-12 (-5 *2 (-763)) (-5 *1 (-139))))) +(((*1 *1 *1) (-4 *1 (-40))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1234 *3)) (-5 *1 (-274 *3 *4 *2)) (-4 *2 (-1205 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1203 *3)) (-5 *1 (-275 *3 *4 *2 *5)) (-4 *2 (-1226 *3 *4)) (-4 *5 (-984 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1146 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1147 *3))))) +(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -1924 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-365)) (-4 *7 (-1219 *6)) (-5 *2 (-2 (|:| |answer| (-585 (-409 *7))) (|:| |a0| *6))) (-5 *1 (-578 *6 *7)) (-5 *3 (-409 *7))))) +(((*1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-927))))) +(((*1 *2) (-12 (-4 *3 (-558)) (-5 *2 (-634 (-679 *3))) (-5 *1 (-48 *3 *4)) (-4 *4 (-419 *3))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1234 *3)) (-5 *1 (-274 *3 *4 *2)) (-4 *2 (-1205 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1203 *3)) (-5 *1 (-275 *3 *4 *2 *5)) (-4 *2 (-1226 *3 *4)) (-4 *5 (-984 *4)))) ((*1 *1 *1) (-4 *1 (-502))) ((*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1146 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1147 *3))))) +(((*1 *2 *3) (-12 (-5 *2 (-828 (-215))) (-5 *1 (-217)) (-5 *3 (-215))))) +(((*1 *2 *3) (-12 (-4 *4 (-13 (-558) (-842) (-1037 (-568)))) (-4 *5 (-432 *4)) (-5 *2 (-420 *3)) (-5 *1 (-437 *4 *5 *3)) (-4 *3 (-1219 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 *6)) (-4 *6 (-950 *4 *7 (-852 *5))) (-4 *7 (-230 (-1697 *5) (-763))) (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-5 *2 (-3 (-634 *8) "failed" "Infinite" (-568))) (-5 *1 (-31 *4 *5 *6 *7 *8)) (-4 *8 (-971 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-634 *6)) (-4 *6 (-950 *4 *7 (-852 *5))) (-4 *7 (-230 (-1697 *5) (-763))) (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-5 *2 (-3 (-634 *8) "failed" "Infinite" (-568))) (-5 *1 (-32 *4 *5 *6 *7 *8)) (-4 *8 (-971 *4))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1234 *3)) (-5 *1 (-274 *3 *4 *2)) (-4 *2 (-1205 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1203 *3)) (-5 *1 (-275 *3 *4 *2 *5)) (-4 *2 (-1226 *3 *4)) (-4 *5 (-984 *4)))) ((*1 *1 *1) (-4 *1 (-502))) ((*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1146 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1147 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-842)) (-4 *5 (-262 *4)) (-4 *6 (-788)) (-5 *2 (-121))))) +(((*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-13 (-29 *4) (-1181))) (-5 *1 (-583 *4 *2)) (-4 *4 (-13 (-453) (-1037 (-568)) (-842) (-630 (-568)))))) ((*1 *2 *3) (-12 (-5 *3 (-585 (-409 (-953 *4)))) (-4 *4 (-13 (-453) (-1037 (-568)) (-842) (-630 (-568)))) (-5 *2 (-310 *4)) (-5 *1 (-588 *4))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-568)) (-4 *1 (-641 *2)) (-4 *2 (-365))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1234 *3)) (-5 *1 (-274 *3 *4 *2)) (-4 *2 (-1205 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1203 *3)) (-5 *1 (-275 *3 *4 *2 *5)) (-4 *2 (-1226 *3 *4)) (-4 *5 (-984 *4)))) ((*1 *1 *1) (-4 *1 (-502))) ((*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1146 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1147 *3))))) +(((*1 *2 *3 *3) (-12 (-5 *2 (-1157 *3)) (-5 *1 (-910 *3)) (-4 *3 (-301))))) +(((*1 *2 *1) (-12 (-4 *1 (-1122 *3)) (-4 *3 (-1047)) (-5 *2 (-634 (-944 *3))))) ((*1 *1 *2) (-12 (-5 *2 (-634 (-944 *3))) (-4 *3 (-1047)) (-4 *1 (-1122 *3)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-634 (-634 *3))) (-4 *1 (-1122 *3)) (-4 *3 (-1047)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-634 (-944 *3))) (-4 *1 (-1122 *3)) (-4 *3 (-1047))))) +(((*1 *2 *3) (-12 (-4 *1 (-916)) (-5 *2 (-2 (|:| -2348 (-634 *1)) (|:| -2704 *1))) (-5 *3 (-634 *1))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1234 *3)) (-5 *1 (-274 *3 *4 *2)) (-4 *2 (-1205 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1203 *3)) (-5 *1 (-275 *3 *4 *2 *5)) (-4 *2 (-1226 *3 *4)) (-4 *5 (-984 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-337 *2 *3 *4)) (-14 *2 (-634 (-1161))) (-14 *3 (-634 (-1161))) (-4 *4 (-389)))) ((*1 *1 *1) (-4 *1 (-502))) ((*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1146 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1147 *3))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1181))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 (-1161))) (-5 *2 (-1249)) (-5 *1 (-1197)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-634 (-1161))) (-5 *2 (-1249)) (-5 *1 (-1197))))) +(((*1 *2 *1) (-12 (|has| $ (-6 -4519)) (-5 *2 (-634 *3)) (-5 *1 (-96 *3)) (-4 *3 (-1090)))) ((*1 *2 *1) (-12 (|has| $ (-6 -4519)) (-5 *2 (-634 *3)) (-5 *1 (-212 *3)) (-4 *3 (-1090)))) ((*1 *2 *1) (-12 (|has| $ (-6 -4519)) (-5 *2 (-634 *3)) (-5 *1 (-494 *3)) (-4 *3 (-842)))) ((*1 *2 *1) (-12 (|has| *1 (-6 -4519)) (-4 *1 (-499 *3)) (-4 *3 (-1195)) (-5 *2 (-634 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-634 *3)) (-5 *1 (-727 *3)) (-4 *3 (-1090)))) ((*1 *2 *1) (-12 (|has| $ (-6 -4519)) (-5 *2 (-634 *3)) (-5 *1 (-1000 *3)) (-4 *3 (-1090)))) ((*1 *2 *1) (-12 (|has| $ (-6 -4519)) (-5 *2 (-634 *3)) (-5 *1 (-1132 *3)) (-4 *3 (-1090))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1234 *3)) (-5 *1 (-274 *3 *4 *2)) (-4 *2 (-1205 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1203 *3)) (-5 *1 (-275 *3 *4 *2 *5)) (-4 *2 (-1226 *3 *4)) (-4 *5 (-984 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-337 *2 *3 *4)) (-14 *2 (-634 (-1161))) (-14 *3 (-634 (-1161))) (-4 *4 (-389)))) ((*1 *1 *1) (-4 *1 (-502))) ((*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1146 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1147 *3))))) +(((*1 *2 *1) (-12 (-4 *3 (-1047)) (-5 *2 (-1244 *3)) (-5 *1 (-702 *3 *4)) (-4 *4 (-1219 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1141 (-1141 *4))) (-5 *2 (-1141 *4)) (-5 *1 (-1145 *4)) (-4 *4 (-43 (-409 (-568)))) (-4 *4 (-1047))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-558) (-150))) (-5 *1 (-542 *3 *2)) (-4 *2 (-1234 *3)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-609 (-568)))) (-4 *4 (-1219 *3)) (-4 *5 (-714 *3 *4)) (-5 *1 (-546 *3 *4 *5 *2)) (-4 *2 (-1234 *5)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-609 (-568)))) (-5 *1 (-547 *3 *2)) (-4 *2 (-1234 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-13 (-558) (-150))) (-5 *1 (-1137 *3))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1234 *3)) (-5 *1 (-274 *3 *4 *2)) (-4 *2 (-1205 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1203 *3)) (-5 *1 (-275 *3 *4 *2 *5)) (-4 *2 (-1226 *3 *4)) (-4 *5 (-984 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-337 *2 *3 *4)) (-14 *2 (-634 (-1161))) (-14 *3 (-634 (-1161))) (-4 *4 (-389)))) ((*1 *1 *1) (-4 *1 (-502))) ((*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1146 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1147 *3))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1141 *4)) (-4 *4 (-43 *3)) (-4 *4 (-1047)) (-5 *3 (-409 (-568))) (-5 *1 (-1145 *4))))) +(((*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-443 *3)) (-4 *3 (-1219 (-568)))))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-958 *3)) (-5 *1 (-1148 *4 *3)) (-4 *3 (-1219 *4))))) +(((*1 *1 *1) (-4 *1 (-98))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1234 *3)) (-5 *1 (-274 *3 *4 *2)) (-4 *2 (-1205 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1203 *3)) (-5 *1 (-275 *3 *4 *2 *5)) (-4 *2 (-1226 *3 *4)) (-4 *5 (-984 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1146 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1147 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-828 (-215))) (-5 *1 (-217)))) ((*1 *1 *1) (-4 *1 (-620))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-621 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002) (-1181)))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-679 (-409 (-953 (-568))))) (-5 *2 (-634 (-679 (-310 (-568))))) (-5 *1 (-1031)) (-5 *3 (-310 (-568)))))) +(((*1 *2) (-12 (-5 *2 (-634 (-1161))) (-5 *1 (-109))))) +(((*1 *1 *1) (-4 *1 (-98))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1234 *3)) (-5 *1 (-274 *3 *4 *2)) (-4 *2 (-1205 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1203 *3)) (-5 *1 (-275 *3 *4 *2 *5)) (-4 *2 (-1226 *3 *4)) (-4 *5 (-984 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1146 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1147 *3))))) +(((*1 *2 *3) (-12 (-4 *1 (-340 *4 *3 *5)) (-4 *4 (-1199)) (-4 *3 (-1219 *4)) (-4 *5 (-1219 (-409 *3))) (-5 *2 (-121)))) ((*1 *2 *3) (-12 (-4 *1 (-340 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 (-409 *4))) (-5 *2 (-121))))) +(((*1 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-565))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-1244 *4)) (-5 *3 (-568)) (-4 *4 (-350)) (-5 *1 (-532 *4))))) +(((*1 *1 *1) (-4 *1 (-98))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1234 *3)) (-5 *1 (-274 *3 *4 *2)) (-4 *2 (-1205 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1203 *3)) (-5 *1 (-275 *3 *4 *2 *5)) (-4 *2 (-1226 *3 *4)) (-4 *5 (-984 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1146 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1147 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 (-53))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-482)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-53))) (-5 *4 (-634 (-465))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-482)))) ((*1 *2 *3) (-12 (-4 (-53) (-1037 *3)) (-5 *3 (-1161)) (-5 *2 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465)))) (-5 *1 (-482)))) ((*1 *2 *3) (-12 (-5 *3 (-634 *4)) (-4 *4 (-13 (-350) (-609 (-568)))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-484 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 *5)) (-5 *4 (-634 (-465))) (-4 *5 (-13 (-350) (-609 (-568)))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-484 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 *4) (-634 (-465)))) (-5 *1 (-484 *4)) (-4 *4 (-1037 *3)) (-4 *4 (-13 (-350) (-609 (-568)))))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-409 (-568)))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-485)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-568)))) (-5 *4 (-634 (-465))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-485)))) ((*1 *2 *3) (-12 (-4 (-409 (-568)) (-1037 *3)) (-4 (-568) (-1037 *3)) (-5 *3 (-1161)) (-5 *2 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465)))) (-5 *1 (-485)))) ((*1 *2 *3) (-12 (-5 *3 (-634 *4)) (-4 *4 (-365)) (-14 *9 (-1 *6 *4)) (-4 *7 (-13 (-842) (-558))) (-14 *8 (-1 *4 *7)) (-5 *2 (-634 (-2 (|:| -1864 *6) (|:| -4477 (-763))))) (-5 *1 (-486 *4 *5 *6 *7 *8 *9)) (-4 *5 (-453)) (-4 *6 (-13 (-432 (-568)) (-558) (-1037 *7) (-1037 (-1161)) (-1037 (-568)) (-161) (-895 (-1161)) (-10 -8 (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -1332 ($ $)) (-15 -3013 ($ $)) (-15 -2086 ((-121) $))))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 *5)) (-5 *4 (-634 (-465))) (-4 *5 (-365)) (-14 *10 (-1 *7 *5)) (-4 *8 (-13 (-842) (-558))) (-14 *9 (-1 *5 *8)) (-5 *2 (-634 (-2 (|:| -1864 *7) (|:| -4477 (-763))))) (-5 *1 (-486 *5 *6 *7 *8 *9 *10)) (-4 *6 (-453)) (-4 *7 (-13 (-432 (-568)) (-558) (-1037 *8) (-1037 (-1161)) (-1037 (-568)) (-161) (-895 (-1161)) (-10 -8 (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -1332 ($ $)) (-15 -3013 ($ $)) (-15 -2086 ((-121) $))))))) ((*1 *2 *3) (-12 (-5 *3 (-1161)) (-4 *7 (-13 (-842) (-558))) (-14 *8 (-1 *4 *7)) (-5 *2 (-1 (-634 (-2 (|:| -1864 *6) (|:| -4477 (-763)))) (-634 *4) (-634 (-465)))) (-5 *1 (-486 *4 *5 *6 *7 *8 *9)) (-4 *4 (-1037 *3)) (-4 *5 (-1037 *3)) (-4 *4 (-365)) (-4 *5 (-453)) (-4 *6 (-13 (-432 (-568)) (-558) (-1037 *7) (-1037 *3) (-1037 (-568)) (-161) (-895 *3) (-10 -8 (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -1332 ($ $)) (-15 -3013 ($ $)) (-15 -2086 ((-121) $))))) (-14 *9 (-1 *6 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-409 (-953 (-568))))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-487)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-953 (-568))))) (-5 *4 (-634 (-465))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-487)))) ((*1 *2 *3) (-12 (-4 (-409 (-953 (-568))) (-1037 *3)) (-4 (-953 (-568)) (-1037 *3)) (-5 *3 (-1161)) (-5 *2 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465)))) (-5 *1 (-487)))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-409 (-734 *4 (-568))))) (-14 *4 (-1161)) (-5 *2 (-634 (-2 (|:| -1864 (-733 *4 (-568))) (|:| -4477 (-763))))) (-5 *1 (-488 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-734 *5 (-568))))) (-5 *4 (-634 (-465))) (-14 *5 (-1161)) (-5 *2 (-634 (-2 (|:| -1864 (-733 *5 (-568))) (|:| -4477 (-763))))) (-5 *1 (-488 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1 (-634 (-2 (|:| -1864 (-733 *4 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 *4 (-568)))) (-634 (-465)))) (-5 *1 (-488 *4)) (-14 *4 *3)))) +(((*1 *2 *1) (-12 (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-121)))) ((*1 *2 *1) (-12 (-4 *1 (-1050 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-5 *2 (-121))))) +(((*1 *2 *3) (-12 (-4 *4 (-453)) (-4 *4 (-558)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-634 *3)) (-5 *1 (-978 *4 *5 *6 *3)) (-4 *3 (-1061 *4 *5 *6))))) +(((*1 *1 *1) (-4 *1 (-98))) ((*1 *1 *1 *1) (-5 *1 (-215))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1234 *3)) (-5 *1 (-274 *3 *4 *2)) (-4 *2 (-1205 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1203 *3)) (-5 *1 (-275 *3 *4 *2 *5)) (-4 *2 (-1226 *3 *4)) (-4 *5 (-984 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-337 *2 *3 *4)) (-14 *2 (-634 (-1161))) (-14 *3 (-634 (-1161))) (-4 *4 (-389)))) ((*1 *1 *1 *1) (-5 *1 (-381))) ((*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1146 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1147 *3))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1157 *7)) (-4 *5 (-1047)) (-4 *7 (-1047)) (-4 *2 (-1219 *5)) (-5 *1 (-510 *5 *2 *6 *7)) (-4 *6 (-1219 *2)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1047)) (-4 *7 (-1047)) (-4 *4 (-1219 *5)) (-5 *2 (-1157 *7)) (-5 *1 (-510 *5 *4 *6 *7)) (-4 *6 (-1219 *4))))) +(((*1 *1 *1) (-12 (-5 *1 (-1126 *2 *3)) (-4 *2 (-13 (-1090) (-39))) (-4 *3 (-13 (-1090) (-39)))))) +(((*1 *2 *3) (-12 (-4 *4 (-453)) (-5 *2 (-634 (-2 (|:| |eigval| (-3 (-409 (-953 *4)) (-1150 (-1161) (-953 *4)))) (|:| |geneigvec| (-634 (-679 (-409 (-953 *4)))))))) (-5 *1 (-286 *4)) (-5 *3 (-679 (-409 (-953 *4))))))) +(((*1 *1) (-5 *1 (-818)))) +(((*1 *1 *1) (-4 *1 (-98))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1234 *3)) (-5 *1 (-274 *3 *4 *2)) (-4 *2 (-1205 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1203 *3)) (-5 *1 (-275 *3 *4 *2 *5)) (-4 *2 (-1226 *3 *4)) (-4 *5 (-984 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-337 *2 *3 *4)) (-14 *2 (-634 (-1161))) (-14 *3 (-634 (-1161))) (-4 *4 (-389)))) ((*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1146 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1147 *3))))) +(((*1 *2 *2 *3 *4) (-12 (-5 *3 (-123)) (-5 *4 (-1161)) (-4 *5 (-13 (-842) (-558) (-609 (-541)))) (-4 *2 (-432 *5)) (-5 *1 (-312 *5 *2 *6 *7)) (-4 *6 (-1234 *2)) (-4 *7 (-1234 (-1155 *2)))))) +(((*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-43 (-409 (-568)))) (-4 *2 (-1047))))) +(((*1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-688)))) ((*1 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-688))))) +(((*1 *1 *1) (-4 *1 (-98))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1234 *3)) (-5 *1 (-274 *3 *4 *2)) (-4 *2 (-1205 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1203 *3)) (-5 *1 (-275 *3 *4 *2 *5)) (-4 *2 (-1226 *3 *4)) (-4 *5 (-984 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-337 *2 *3 *4)) (-14 *2 (-634 (-1161))) (-14 *3 (-634 (-1161))) (-4 *4 (-389)))) ((*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1146 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1147 *3))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-777 *2)) (-4 *2 (-1047))))) +(((*1 *2 *1) (-12 (-5 *2 (-1141 *3)) (-5 *1 (-173 *3)) (-4 *3 (-301))))) +(((*1 *2 *1) (-12 (-5 *2 (-634 (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215))))) (-5 *1 (-563)))) ((*1 *2 *1) (-12 (-4 *1 (-605 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-5 *2 (-634 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-634 (-2 (|:| |xinit| (-215)) (|:| |xend| (-215)) (|:| |fn| (-1244 (-310 (-215)))) (|:| |yinit| (-634 (-215))) (|:| |intvals| (-634 (-215))) (|:| |g| (-310 (-215))) (|:| |abserr| (-215)) (|:| |relerr| (-215))))) (-5 *1 (-798))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1234 *3)) (-5 *1 (-274 *3 *4 *2)) (-4 *2 (-1205 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1203 *3)) (-5 *1 (-275 *3 *4 *2 *5)) (-4 *2 (-1226 *3 *4)) (-4 *5 (-984 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1146 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1147 *3)))) ((*1 *1 *1) (-4 *1 (-1184)))) +(((*1 *2) (-12 (-5 *2 (-1249)) (-5 *1 (-867 *3 *4 *5)) (-4 *3 (-350)) (-14 *4 (-634 (-1161))) (-4 *5 (-117)))) ((*1 *2) (-12 (-5 *2 (-1249)) (-5 *1 (-868 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *5 (-117))))) +(((*1 *2) (-12 (-4 *3 (-558)) (-5 *2 (-634 *4)) (-5 *1 (-48 *3 *4)) (-4 *4 (-419 *3))))) +(((*1 *2) (-12 (-5 *2 (-409 (-953 *3))) (-5 *1 (-454 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-634 (-1161))) (-14 *6 (-1244 (-679 *3)))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1234 *3)) (-5 *1 (-274 *3 *4 *2)) (-4 *2 (-1205 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1203 *3)) (-5 *1 (-275 *3 *4 *2 *5)) (-4 *2 (-1226 *3 *4)) (-4 *5 (-984 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1146 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1147 *3)))) ((*1 *1 *1) (-4 *1 (-1184)))) +(((*1 *2 *1) (-12 (-4 *4 (-1090)) (-5 *2 (-121)) (-5 *1 (-880 *3 *4 *5)) (-4 *3 (-1090)) (-4 *5 (-658 *4)))) ((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-884 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090))))) +(((*1 *2 *3) (-12 (-4 *4 (-301)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1112 *4 *5 *6 *3)) (-4 *3 (-677 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1143)) (-5 *1 (-781))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1234 *3)) (-5 *1 (-274 *3 *4 *2)) (-4 *2 (-1205 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1203 *3)) (-5 *1 (-275 *3 *4 *2 *5)) (-4 *2 (-1226 *3 *4)) (-4 *5 (-984 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1146 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1147 *3)))) ((*1 *1 *1) (-4 *1 (-1184)))) +(((*1 *2) (-12 (-5 *2 (-958 (-1108))) (-5 *1 (-341 *3 *4)) (-14 *3 (-917)) (-14 *4 (-917)))) ((*1 *2) (-12 (-5 *2 (-958 (-1108))) (-5 *1 (-342 *3 *4)) (-4 *3 (-350)) (-14 *4 (-1157 *3)))) ((*1 *2) (-12 (-5 *2 (-958 (-1108))) (-5 *1 (-343 *3 *4)) (-4 *3 (-350)) (-14 *4 (-917))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-310 (-215)))) (-5 *4 (-763)) (-5 *2 (-679 (-215))) (-5 *1 (-263))))) +(((*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *7 (-1061 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-634 *7)) (|:| |badPols| (-634 *7)))) (-5 *1 (-978 *4 *5 *6 *7)) (-5 *3 (-634 *7))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1234 *3)) (-5 *1 (-274 *3 *4 *2)) (-4 *2 (-1205 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1203 *3)) (-5 *1 (-275 *3 *4 *2 *5)) (-4 *2 (-1226 *3 *4)) (-4 *5 (-984 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-337 *2 *3 *4)) (-14 *2 (-634 (-1161))) (-14 *3 (-634 (-1161))) (-4 *4 (-389)))) ((*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1146 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1147 *3)))) ((*1 *1 *1) (-4 *1 (-1184)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-917)) (-4 *1 (-327 *3)) (-4 *3 (-365)) (-4 *3 (-370)))) ((*1 *2 *1) (-12 (-4 *1 (-327 *2)) (-4 *2 (-365)))) ((*1 *2 *1) (-12 (-4 *1 (-372 *2 *3)) (-4 *3 (-1219 *2)) (-4 *2 (-172)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1244 *4)) (-5 *3 (-917)) (-4 *4 (-350)) (-5 *1 (-532 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-1111 *3 *2 *4 *5)) (-4 *4 (-230 *3 *2)) (-4 *5 (-230 *3 *2)) (-4 *2 (-1047))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-1249)) (-5 *1 (-1246))))) +(((*1 *2 *2) (-12 (-5 *2 (-1141 (-634 (-568)))) (-5 *1 (-878))))) +(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-1141 (-634 (-568)))) (-5 *1 (-878)) (-5 *3 (-568)))) ((*1 *2 *3) (-12 (-5 *2 (-1141 (-634 (-568)))) (-5 *1 (-878)) (-5 *3 (-568)))) ((*1 *2 *3 *3) (-12 (-5 *2 (-1141 (-634 (-568)))) (-5 *1 (-878)) (-5 *3 (-568))))) +(((*1 *1 *1) (-4 *1 (-620))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-621 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002) (-1181)))))) +(((*1 *2 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-172)))) ((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172))))) +(((*1 *2 *3) (-12 (-4 *4 (-13 (-842) (-558))) (-5 *2 (-121)) (-5 *1 (-272 *4 *3)) (-4 *3 (-13 (-432 *4) (-1002)))))) +(((*1 *1 *2 *3 *4) (-12 (-5 *3 (-568)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-420 *2)) (-4 *2 (-558))))) +(((*1 *2 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-365))))) +(((*1 *2 *1) (-12 (-4 *3 (-1047)) (-5 *2 (-634 *1)) (-4 *1 (-1122 *3))))) +(((*1 *1) (-5 *1 (-439)))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-634 (-1161))) (-5 *2 (-1161)) (-5 *1 (-328))))) +(((*1 *2 *2 *3 *3) (-12 (-5 *3 (-568)) (-4 *4 (-172)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *1 (-678 *4 *5 *6 *2)) (-4 *2 (-677 *4 *5 *6))))) +(((*1 *2 *3 *3 *4) (-12 (-5 *3 (-634 *5)) (-4 *5 (-13 (-558) (-453))) (-5 *4 (-763)) (-5 *2 (-409 (-1157 *5))) (-5 *1 (-346 *5 *6)) (-4 *6 (-52 *5 *4)))) ((*1 *2 *3 *3 *4) (-12 (-5 *3 (-634 (-409 *5))) (-4 *5 (-13 (-558) (-453))) (-5 *4 (-763)) (-5 *2 (-409 (-1157 *5))) (-5 *1 (-346 *5 *6)) (-4 *6 (-52 *5 *4)))) ((*1 *2 *2 *3 *3) (-12 (-5 *2 (-1216 *4 *5)) (-5 *3 (-634 *5)) (-14 *4 (-1161)) (-4 *5 (-365)) (-5 *1 (-919 *4 *5)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-634 *5)) (-4 *5 (-365)) (-5 *2 (-1157 *5)) (-5 *1 (-919 *4 *5)) (-14 *4 (-1161)))) ((*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-634 *6)) (-5 *4 (-763)) (-4 *6 (-365)) (-5 *2 (-409 (-953 *6))) (-5 *1 (-1048 *5 *6)) (-14 *5 (-1161))))) +(((*1 *2 *2) (-12 (-4 *3 (-453)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1061 *3 *4 *5)) (-5 *1 (-616 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1066 *3 *4 *5 *6)) (-4 *2 (-1099 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-235 *3)) (-4 *3 (-1090)) (-5 *2 (-634 *3))))) +(((*1 *1 *1) (-4 *1 (-620))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-621 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002) (-1181)))))) +(((*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1161)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-634 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-634 *4))) (-5 *7 (-1 (-3 (-2 (|:| -1924 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1181) (-27) (-432 *8))) (-4 *8 (-13 (-453) (-842) (-150) (-1037 *3) (-630 *3))) (-5 *3 (-568)) (-5 *2 (-634 *4)) (-5 *1 (-1014 *8 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-863 *3)) (-5 *2 (-568))))) +(((*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1161)) (-4 *5 (-13 (-453) (-842) (-150) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-2 (|:| -1924 *3) (|:| |coeff| *3))) (-5 *1 (-559 *5 *3)) (-4 *3 (-13 (-27) (-1181) (-432 *5)))))) +(((*1 *2 *2) (-12 (-5 *2 (-634 (-310 (-215)))) (-5 *1 (-263))))) +(((*1 *1 *1) (-4 *1 (-620))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-621 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002) (-1181)))))) +(((*1 *2 *1) (-12 (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-121)))) ((*1 *2 *1) (-12 (-4 *1 (-1050 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-5 *2 (-121))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-634 *6)) (-5 *4 (-1161)) (-4 *6 (-432 *5)) (-4 *5 (-842)) (-5 *2 (-634 (-607 *6))) (-5 *1 (-577 *5 *6))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-1161)) (-4 *5 (-13 (-453) (-842) (-150) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-585 *3)) (-5 *1 (-559 *5 *3)) (-4 *3 (-13 (-27) (-1181) (-432 *5)))))) +(((*1 *1 *1) (-5 *1 (-215))) ((*1 *1 *1) (-12 (-5 *1 (-337 *2 *3 *4)) (-14 *2 (-634 (-1161))) (-14 *3 (-634 (-1161))) (-4 *4 (-389)))) ((*1 *1 *1) (-5 *1 (-381))) ((*1 *1) (-5 *1 (-381)))) +(((*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-817))))) +(((*1 *2 *3) (-12 (-4 *4 (-1047)) (-4 *3 (-1219 *4)) (-4 *2 (-1234 *4)) (-5 *1 (-1237 *4 *3 *5 *2)) (-4 *5 (-646 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-443 *3)) (-4 *3 (-1219 (-568)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1141 (-215))) (-5 *2 (-634 (-1143))) (-5 *1 (-184)))) ((*1 *2 *3) (-12 (-5 *3 (-1141 (-215))) (-5 *2 (-634 (-1143))) (-5 *1 (-294)))) ((*1 *2 *3) (-12 (-5 *3 (-1141 (-215))) (-5 *2 (-634 (-1143))) (-5 *1 (-299))))) +(((*1 *1 *1) (-12 (-5 *1 (-337 *2 *3 *4)) (-14 *2 (-634 (-1161))) (-14 *3 (-634 (-1161))) (-4 *4 (-389)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-863 *3)) (-5 *2 (-568)))) ((*1 *1 *1) (-4 *1 (-1002))) ((*1 *1 *2) (-12 (-5 *2 (-568)) (-4 *1 (-1012)))) ((*1 *1 *2) (-12 (-5 *2 (-409 (-568))) (-4 *1 (-1012)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1012)) (-5 *2 (-763)))) ((*1 *1 *1) (-4 *1 (-1012)))) +(((*1 *2 *1) (-12 (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-634 *1)) (-4 *1 (-1061 *3 *4 *5))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-634 (-763))) (-5 *3 (-171)) (-5 *1 (-1149 *4 *5)) (-14 *4 (-917)) (-4 *5 (-1047))))) +(((*1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-926))))) +(((*1 *2 *1) (-12 (-5 *2 (-1141 (-2 (|:| |k| (-568)) (|:| |c| *3)))) (-5 *1 (-593 *3)) (-4 *3 (-1047))))) +(((*1 *2) (-12 (-4 *2 (-13 (-432 *3) (-1002))) (-5 *1 (-272 *3 *2)) (-4 *3 (-13 (-842) (-558))))) ((*1 *1) (-12 (-5 *1 (-337 *2 *3 *4)) (-14 *2 (-634 (-1161))) (-14 *3 (-634 (-1161))) (-4 *4 (-389)))) ((*1 *1) (-5 *1 (-489))) ((*1 *1) (-4 *1 (-1181)))) +(((*1 *2) (-12 (-5 *2 (-1249)) (-5 *1 (-867 *3 *4 *5)) (-4 *3 (-350)) (-14 *4 (-634 (-1161))) (-4 *5 (-117)))) ((*1 *2) (-12 (-5 *2 (-1249)) (-5 *1 (-868 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *5 (-117))))) +(((*1 *2) (-12 (-4 *4 (-1199)) (-4 *5 (-1219 *4)) (-4 *6 (-1219 (-409 *5))) (-5 *2 (-634 (-634 *4))) (-5 *1 (-339 *3 *4 *5 *6)) (-4 *3 (-340 *4 *5 *6)))) ((*1 *2) (-12 (-4 *1 (-340 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 (-409 *4))) (-4 *3 (-370)) (-5 *2 (-634 (-634 *3))))) ((*1 *2) (-12 (-4 *3 (-370)) (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *6 (-230 (-1697 *4) (-763))) (-4 *7 (-971 *3)) (-4 *8 (-641 *3)) (-4 *9 (-920 *3 *8)) (-4 *10 (-235 *9)) (-4 *11 (-536 *3 *4 *5 *6 *7 *8 *9 *10 *13)) (-4 *13 (-117)) (-5 *2 (-634 *7)) (-5 *1 (-467 *3 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13)) (-4 *12 (-258 *11)))) ((*1 *2) (-12 (-5 *2 (-634 (-967 *3))) (-5 *1 (-867 *3 *4 *5)) (-4 *3 (-350)) (-14 *4 (-634 (-1161))) (-4 *5 (-117)))) ((*1 *2) (-12 (-5 *2 (-634 (-966 *3))) (-5 *1 (-868 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *5 (-117)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-917)) (-4 *5 (-365)) (-14 *6 (-634 (-1161))) (-4 *7 (-230 (-1697 *6) (-763))) (-5 *2 (-634 *8)) (-5 *1 (-963 *5 *6 *3 *7 *8)) (-4 *3 (-950 *5 *7 (-852 *6))) (-4 *8 (-971 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-926))))) +(((*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-43 (-409 (-568)))) (-4 *2 (-1047))))) +(((*1 *1 *2) (-12 (-5 *2 (-634 (-568))) (-5 *1 (-55 *3 *4)) (-4 *3 (-1047)) (-14 *4 (-634 (-1161))))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1234 *3)) (-5 *1 (-274 *3 *4 *2)) (-4 *2 (-1205 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-43 (-409 (-568)))) (-4 *4 (-1203 *3)) (-5 *1 (-275 *3 *4 *2 *5)) (-4 *2 (-1226 *3 *4)) (-4 *5 (-984 *4)))) ((*1 *1 *1) (-4 *1 (-279))) ((*1 *1 *1) (-12 (-5 *1 (-337 *2 *3 *4)) (-14 *2 (-634 (-1161))) (-14 *3 (-634 (-1161))) (-4 *4 (-389)))) ((*1 *1 *2) (-12 (-5 *2 (-656 *3 *4)) (-4 *3 (-842)) (-4 *4 (-13 (-172) (-707 (-409 (-568))))) (-5 *1 (-618 *3 *4 *5)) (-14 *5 (-917)))) ((*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1146 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-43 (-409 (-568)))) (-5 *1 (-1147 *3)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-763)) (-4 *4 (-13 (-1047) (-707 (-409 (-568))))) (-4 *5 (-842)) (-5 *1 (-1258 *4 *5 *2)) (-4 *2 (-1263 *5 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-763)) (-5 *1 (-1262 *3 *4)) (-4 *4 (-707 (-409 (-568)))) (-4 *3 (-842)) (-4 *4 (-172))))) +(((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1157 *7)) (-4 *5 (-1047)) (-4 *7 (-1047)) (-4 *2 (-1219 *5)) (-5 *1 (-510 *5 *2 *6 *7)) (-4 *6 (-1219 *2))))) +(((*1 *2 *1) (-12 (-5 *1 (-96 *2)) (-4 *2 (-1090)))) ((*1 *2 *1) (-12 (-4 *1 (-111 *2)) (-4 *2 (-1195)))) ((*1 *2 *1) (-12 (-5 *1 (-212 *2)) (-4 *2 (-1090)))) ((*1 *2 *1) (-12 (-5 *1 (-494 *2)) (-4 *2 (-842)))) ((*1 *2 *1) (-12 (-5 *1 (-1000 *2)) (-4 *2 (-1090)))) ((*1 *2 *1) (-12 (-5 *1 (-1132 *2)) (-4 *2 (-1090))))) +(((*1 *2 *1) (-12 (-5 *2 (-634 (-568))) (-5 *1 (-271))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 (-310 (-215)))) (-5 *2 (-121)) (-5 *1 (-263))))) +(((*1 *1 *1) (-5 *1 (-121))) ((*1 *1 *1) (-4 *1 (-132))) ((*1 *1 *1 *2) (-12 (-4 *1 (-238)) (-5 *2 (-568)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-478)) (-5 *2 (-568)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-716)) (-5 *2 (-763)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1102)) (-5 *2 (-917))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1234 *4)) (-5 *1 (-1236 *4 *2)) (-4 *4 (-43 (-409 (-568))))))) +(((*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-310 (-215))) (|:| -4434 (-634 (-215))) (|:| |lb| (-634 (-835 (-215)))) (|:| |cf| (-634 (-310 (-215)))) (|:| |ub| (-634 (-835 (-215)))))) (|:| |lsa| (-2 (|:| |lfn| (-634 (-310 (-215)))) (|:| -4434 (-634 (-215))))))) (-5 *2 (-634 (-1143))) (-5 *1 (-263))))) +(((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-844 *2)) (-4 *2 (-1047)) (-4 *2 (-365))))) +(((*1 *2 *3) (-12 (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *6 (-950 *4 *7 (-852 *5))) (-4 *7 (-230 (-1697 *5) (-763))) (-4 *8 (-971 *4)) (-4 *9 (-641 *4)) (-4 *10 (-920 *4 *9)) (-4 *11 (-235 *10)) (-4 *3 (-536 *4 *5 *6 *7 *8 *9 *10 *11 *13)) (-4 *13 (-117)) (-5 *2 (-634 *3)) (-5 *1 (-260 *4 *5 *6 *7 *8 *9 *10 *11 *3 *12 *13)) (-4 *12 (-258 *3))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-679 *4)) (-5 *3 (-917)) (|has| *4 (-6 (-4521 "*"))) (-4 *4 (-1047)) (-5 *1 (-1028 *4)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-634 (-679 *4))) (-5 *3 (-917)) (|has| *4 (-6 (-4521 "*"))) (-4 *4 (-1047)) (-5 *1 (-1028 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-601 *2 *3)) (-4 *3 (-1195)) (-4 *2 (-1090)) (-4 *2 (-842))))) +(((*1 *2 *3 *3) (-12 (-4 *2 (-558)) (-4 *2 (-453)) (-5 *1 (-970 *2 *3)) (-4 *3 (-1219 *2))))) +(((*1 *2 *3) (-12 (-4 *4 (-350)) (-5 *2 (-634 (-2 (|:| |deg| (-763)) (|:| -4435 *3)))) (-5 *1 (-207 *4 *3)) (-4 *3 (-1219 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-1189 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1061 *3 *4 *5)) (-4 *5 (-370)) (-5 *2 (-763))))) +(((*1 *1 *1 *1) (-4 *1 (-550)))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-917)) (-5 *1 (-1032 *2)) (-4 *2 (-13 (-1090) (-10 -8 (-15 * ($ $ $)))))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 *5)) (-4 *5 (-432 *4)) (-4 *4 (-13 (-842) (-558))) (-5 *2 (-850)) (-5 *1 (-36 *4 *5))))) +(((*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-634 (-634 (-944 (-215))))) (-5 *3 (-634 (-869))) (-5 *4 (-634 (-917))) (-5 *5 (-634 (-256))) (-5 *1 (-473)))) ((*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-634 (-634 (-944 (-215))))) (-5 *3 (-634 (-869))) (-5 *4 (-634 (-917))) (-5 *1 (-473)))) ((*1 *1 *2) (-12 (-5 *2 (-634 (-634 (-944 (-215))))) (-5 *1 (-473)))) ((*1 *1 *1) (-5 *1 (-473)))) +(((*1 *1 *1) (-4 *1 (-1129)))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1219 *6)) (-4 *6 (-13 (-27) (-432 *5))) (-4 *5 (-13 (-842) (-558) (-1037 (-568)))) (-4 *8 (-1219 (-409 *7))) (-5 *2 (-585 *3)) (-5 *1 (-553 *5 *6 *7 *8 *3)) (-4 *3 (-340 *6 *7 *8))))) +(((*1 *2 *2 *1) (-12 (-5 *1 (-212 *2)) (-4 *2 (-1090)))) ((*1 *2 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1195))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-381)))) ((*1 *1 *1 *1) (-4 *1 (-550))) ((*1 *1 *1 *2) (-12 (-5 *2 (-568)) (-4 *1 (-641 *3)) (-4 *3 (-365)))) ((*1 *1 *1 *2) (-12 (-5 *1 (-708 *2)) (-4 *2 (-365)))) ((*1 *1 *2) (-12 (-5 *1 (-708 *2)) (-4 *2 (-365)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-763))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1129)) (-5 *2 (-142)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1129)) (-5 *2 (-147))))) +(((*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4520)) (-4 *1 (-601 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1195)) (-5 *2 (-1249))))) +(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-887 *3)) (-4 *3 (-1090)))) ((*1 *2 *1) (-12 (-4 *1 (-1259 *3 *4)) (-4 *3 (-842)) (-4 *4 (-1047)) (-5 *2 (-121)))) ((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1265 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-838))))) +(((*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172))))) +(((*1 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-250))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-634 (-1161))) (-5 *3 (-1161)) (-5 *1 (-541)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-694 *3)) (-4 *3 (-609 (-541))))) ((*1 *2 *3 *2 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-694 *3)) (-4 *3 (-609 (-541))))) ((*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-694 *3)) (-4 *3 (-609 (-541))))) ((*1 *2 *3 *2 *4) (-12 (-5 *4 (-634 (-1161))) (-5 *2 (-1161)) (-5 *1 (-694 *3)) (-4 *3 (-609 (-541)))))) +(((*1 *1 *2 *3 *4) (-12 (-14 *5 (-634 (-1161))) (-4 *2 (-172)) (-4 *4 (-230 (-1697 *5) (-763))) (-14 *6 (-1 (-121) (-2 (|:| -4355 *3) (|:| -3438 *4)) (-2 (|:| -4355 *3) (|:| -3438 *4)))) (-5 *1 (-463 *5 *2 *3 *4 *6 *7)) (-4 *3 (-842)) (-4 *7 (-950 *2 *4 (-852 *5)))))) +(((*1 *2 *3 *1) (-12 (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *3 (-1061 *4 *5 *6)) (-5 *2 (-121))))) +(((*1 *2 *3) (-12 (-5 *2 (-420 (-1157 (-568)))) (-5 *1 (-183)) (-5 *3 (-568))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-763)) (-5 *1 (-123))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-219 *2)) (-4 *2 (-13 (-365) (-1181))))) ((*1 *2 *2 *3 *4) (-12 (-5 *3 (-634 *5)) (-5 *4 (-568)) (-4 *5 (-1047)) (-4 *6 (-230 *7 (-763))) (-14 *7 (-763)) (-5 *1 (-908 *5 *2 *6 *7)) (-4 *2 (-324 *5 *6)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-634 *4)) (-4 *4 (-1047)) (-4 *5 (-230 *6 (-763))) (-14 *6 (-763)) (-5 *1 (-908 *4 *2 *5 *6)) (-4 *2 (-324 *4 *5)))) ((*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-917)) (-5 *4 (-381)) (-5 *2 (-1249)) (-5 *1 (-1245)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1249)) (-5 *1 (-1246))))) +(((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-634 (-1157 *5))) (-5 *3 (-1157 *5)) (-4 *5 (-166 *4)) (-4 *4 (-550)) (-5 *1 (-152 *4 *5)))) ((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-634 *3)) (-4 *3 (-1219 *5)) (-4 *5 (-1219 *4)) (-4 *4 (-350)) (-5 *1 (-359 *4 *5 *3)))) ((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-634 (-1157 (-568)))) (-5 *3 (-1157 (-568))) (-5 *1 (-576)))) ((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-634 (-1157 *1))) (-5 *3 (-1157 *1)) (-4 *1 (-904))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-568)) (-5 *2 (-634 (-2 (|:| -3848 *3) (|:| -3206 *4)))) (-5 *1 (-685 *3)) (-4 *3 (-1219 *4))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1181))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-634 *2)) (-4 *2 (-1195))))) +(((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-541))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-121))))) +(((*1 *2 *3) (-12 (-5 *3 (-1244 (-679 *4))) (-4 *4 (-172)) (-5 *2 (-1244 (-679 (-953 *4)))) (-5 *1 (-181 *4))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-409 (-568))) (-5 *4 (-568)) (-5 *2 (-57)) (-5 *1 (-1005))))) +(((*1 *2 *2 *3 *4) (-12 (-5 *2 (-242 (-4287 (QUOTE X) (QUOTE -2926)) *5)) (-4 *5 (-365)) (-5 *3 (-763)) (-14 *6 (-634 (-1161))) (-4 *8 (-230 (-1697 *6) *3)) (-5 *1 (-119 *5 *6 *7 *8 *4)) (-4 *7 (-324 *5 *8)) (-4 *4 (-117))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-763)) (-4 *3 (-1195)) (-4 *1 (-62 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) ((*1 *1) (-5 *1 (-171))) ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1143)) (-4 *1 (-391)))) ((*1 *1) (-5 *1 (-396))) ((*1 *1 *2 *3) (-12 (-5 *2 (-763)) (-4 *1 (-640 *3)) (-4 *3 (-1195)))) ((*1 *1) (-12 (-4 *3 (-1090)) (-5 *1 (-880 *2 *3 *4)) (-4 *2 (-1090)) (-4 *4 (-658 *3)))) ((*1 *1) (-12 (-5 *1 (-884 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-1090)))) ((*1 *1) (-12 (-5 *1 (-1149 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1047)))) ((*1 *1 *1) (-5 *1 (-1161))) ((*1 *1) (-5 *1 (-1161))) ((*1 *1) (-5 *1 (-1176)))) +(((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-887 *4)) (-4 *4 (-1090)) (-5 *2 (-121)) (-5 *1 (-884 *4 *5)) (-4 *5 (-1090)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-887 *5)) (-4 *5 (-1090)) (-5 *2 (-121)) (-5 *1 (-885 *5 *3)) (-4 *3 (-1195)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 *6)) (-5 *4 (-887 *5)) (-4 *5 (-1090)) (-4 *6 (-1195)) (-5 *2 (-121)) (-5 *1 (-885 *5 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-215)) (-5 *1 (-217)))) ((*1 *2 *2) (-12 (-5 *2 (-169 (-215))) (-5 *1 (-217)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) ((*1 *1 *1) (-4 *1 (-1124)))) +(((*1 *2) (-12 (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *6 (-230 (-1697 *4) (-763))) (-4 *7 (-971 *3)) (-4 *8 (-641 *3)) (-4 *9 (-920 *3 *8)) (-4 *10 (-235 *9)) (-4 *11 (-536 *3 *4 *5 *6 *7 *8 *9 *10 *13)) (-4 *13 (-117)) (-5 *2 (-634 *7)) (-5 *1 (-467 *3 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13)) (-4 *12 (-258 *11)))) ((*1 *2) (-12 (-5 *2 (-634 (-967 *3))) (-5 *1 (-867 *3 *4 *5)) (-4 *3 (-350)) (-14 *4 (-634 (-1161))) (-4 *5 (-117)))) ((*1 *2) (-12 (-5 *2 (-634 (-966 *3))) (-5 *1 (-868 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *5 (-117)))) ((*1 *2 *3) (-12 (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *6 (-230 (-1697 *5) (-763))) (-5 *2 (-634 *7)) (-5 *1 (-963 *4 *5 *3 *6 *7)) (-4 *3 (-950 *4 *6 (-852 *5))) (-4 *7 (-971 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 (-1161))) (-4 *4 (-13 (-301) (-150))) (-4 *5 (-13 (-842) (-609 (-1161)))) (-4 *6 (-788)) (-5 *2 (-634 (-409 (-953 *4)))) (-5 *1 (-924 *4 *5 *6 *7)) (-4 *7 (-950 *4 *6 *5))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-896 *2)) (-4 *2 (-1090)))) ((*1 *1 *2) (-12 (-5 *1 (-896 *2)) (-4 *2 (-1090))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 (-2 (|:| -3848 (-1157 *6)) (|:| -3438 (-568))))) (-4 *6 (-301)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-568)) (-5 *1 (-732 *4 *5 *6 *7)) (-4 *7 (-950 *6 *4 *5))))) +(((*1 *2 *3 *4) (-12 (-4 *5 (-1090)) (-4 *3 (-895 *5)) (-5 *2 (-1244 *3)) (-5 *1 (-681 *5 *3 *6 *4)) (-4 *6 (-375 *3)) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4519))))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-672 *4 *3)) (-4 *4 (-1090)) (-4 *3 (-1090))))) +(((*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1244 (-1244 (-568)))) (-5 *1 (-471))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-1249)) (-5 *1 (-1246))))) +(((*1 *1 *2) (-12 (-5 *2 (-634 (-850))) (-5 *1 (-850)))) ((*1 *1 *1 *1) (-5 *1 (-850)))) +(((*1 *1 *1) (-5 *1 (-850)))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-504))))) +(((*1 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-926))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1047)) (-4 *2 (-365)))) ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-365)) (-5 *1 (-649 *4 *2)) (-4 *2 (-646 *4))))) +(((*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-443 *3)) (-4 *3 (-1219 (-568)))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 (-1157 (-1157 *4)))) (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *7 (-230 (-1697 *5) (-763))) (-5 *2 (-3 (-634 *8) "failed" "Infinite" (-568))) (-5 *1 (-32 *4 *5 *6 *7 *8)) (-4 *6 (-950 *4 *7 (-852 *5))) (-4 *8 (-971 *4))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1244 *5)) (-4 *5 (-787)) (-5 *2 (-121)) (-5 *1 (-837 *4 *5)) (-14 *4 (-763))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-365)) (-5 *1 (-1025 *3 *2)) (-4 *2 (-646 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-5 *2 (-2 (|:| -1853 *3) (|:| -4192 (-634 *5)))) (-5 *1 (-1025 *5 *3)) (-5 *4 (-634 *5)) (-4 *3 (-646 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 (-53))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-482)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-53))) (-5 *4 (-634 (-465))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-482)))) ((*1 *2 *3) (-12 (-4 (-53) (-1037 *3)) (-5 *3 (-1161)) (-5 *2 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465)))) (-5 *1 (-482)))) ((*1 *2 *3) (-12 (-5 *3 (-634 *4)) (-4 *4 (-13 (-350) (-609 (-568)))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-484 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 *5)) (-5 *4 (-634 (-465))) (-4 *5 (-13 (-350) (-609 (-568)))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-484 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 *4) (-634 (-465)))) (-5 *1 (-484 *4)) (-4 *4 (-1037 *3)) (-4 *4 (-13 (-350) (-609 (-568)))))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-409 (-568)))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-485)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-568)))) (-5 *4 (-634 (-465))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-485)))) ((*1 *2 *3) (-12 (-4 (-409 (-568)) (-1037 *3)) (-4 (-568) (-1037 *3)) (-5 *3 (-1161)) (-5 *2 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465)))) (-5 *1 (-485)))) ((*1 *2 *3) (-12 (-5 *3 (-634 *4)) (-4 *4 (-365)) (-14 *9 (-1 *6 *4)) (-4 *7 (-13 (-842) (-558))) (-14 *8 (-1 *4 *7)) (-5 *2 (-634 (-2 (|:| -1864 *6) (|:| -4477 (-763))))) (-5 *1 (-486 *4 *5 *6 *7 *8 *9)) (-4 *5 (-453)) (-4 *6 (-13 (-432 (-568)) (-558) (-1037 *7) (-1037 (-1161)) (-1037 (-568)) (-161) (-895 (-1161)) (-10 -8 (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -1332 ($ $)) (-15 -3013 ($ $)) (-15 -2086 ((-121) $))))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 *5)) (-5 *4 (-634 (-465))) (-4 *5 (-365)) (-14 *10 (-1 *7 *5)) (-4 *8 (-13 (-842) (-558))) (-14 *9 (-1 *5 *8)) (-5 *2 (-634 (-2 (|:| -1864 *7) (|:| -4477 (-763))))) (-5 *1 (-486 *5 *6 *7 *8 *9 *10)) (-4 *6 (-453)) (-4 *7 (-13 (-432 (-568)) (-558) (-1037 *8) (-1037 (-1161)) (-1037 (-568)) (-161) (-895 (-1161)) (-10 -8 (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -1332 ($ $)) (-15 -3013 ($ $)) (-15 -2086 ((-121) $))))))) ((*1 *2 *3) (-12 (-5 *3 (-1161)) (-4 *7 (-13 (-842) (-558))) (-14 *8 (-1 *4 *7)) (-5 *2 (-1 (-634 (-2 (|:| -1864 *6) (|:| -4477 (-763)))) (-634 *4) (-634 (-465)))) (-5 *1 (-486 *4 *5 *6 *7 *8 *9)) (-4 *4 (-1037 *3)) (-4 *5 (-1037 *3)) (-4 *4 (-365)) (-4 *5 (-453)) (-4 *6 (-13 (-432 (-568)) (-558) (-1037 *7) (-1037 *3) (-1037 (-568)) (-161) (-895 *3) (-10 -8 (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -1332 ($ $)) (-15 -3013 ($ $)) (-15 -2086 ((-121) $))))) (-14 *9 (-1 *6 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-409 (-953 (-568))))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-487)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-953 (-568))))) (-5 *4 (-634 (-465))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-487)))) ((*1 *2 *3) (-12 (-4 (-409 (-953 (-568))) (-1037 *3)) (-4 (-953 (-568)) (-1037 *3)) (-5 *3 (-1161)) (-5 *2 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465)))) (-5 *1 (-487)))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-409 (-734 *4 (-568))))) (-14 *4 (-1161)) (-5 *2 (-634 (-2 (|:| -1864 (-733 *4 (-568))) (|:| -4477 (-763))))) (-5 *1 (-488 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-734 *5 (-568))))) (-5 *4 (-634 (-465))) (-14 *5 (-1161)) (-5 *2 (-634 (-2 (|:| -1864 (-733 *5 (-568))) (|:| -4477 (-763))))) (-5 *1 (-488 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1 (-634 (-2 (|:| -1864 (-733 *4 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 *4 (-568)))) (-634 (-465)))) (-5 *1 (-488 *4)) (-14 *4 *3)))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1244 (-1161))) (-5 *3 (-1244 (-454 *4 *5 *6 *7))) (-5 *1 (-454 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-917)) (-14 *6 (-634 (-1161))) (-14 *7 (-1244 (-679 *4))))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-1244 (-454 *4 *5 *6 *7))) (-5 *1 (-454 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-917)) (-14 *6 (-634 *2)) (-14 *7 (-1244 (-679 *4))))) ((*1 *1 *2) (-12 (-5 *2 (-1244 (-454 *3 *4 *5 *6))) (-5 *1 (-454 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-634 (-1161))) (-14 *6 (-1244 (-679 *3))))) ((*1 *1 *2) (-12 (-5 *2 (-1244 (-1161))) (-5 *1 (-454 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-634 (-1161))) (-14 *6 (-1244 (-679 *3))))) ((*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-454 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-634 *2)) (-14 *6 (-1244 (-679 *3))))) ((*1 *1) (-12 (-5 *1 (-454 *2 *3 *4 *5)) (-4 *2 (-172)) (-14 *3 (-917)) (-14 *4 (-634 (-1161))) (-14 *5 (-1244 (-679 *2)))))) +(((*1 *2 *3 *3) (|partial| -12 (-4 *4 (-558)) (-5 *2 (-2 (|:| -3961 *3) (|:| -1500 *3))) (-5 *1 (-1214 *4 *3)) (-4 *3 (-1219 *4))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-558)) (-5 *2 (-121))))) +(((*1 *2 *1) (-12 (-4 *1 (-1037 (-568))) (-4 *1 (-296)) (-5 *2 (-121)))) ((*1 *2 *1) (-12 (-4 *1 (-550)) (-5 *2 (-121)))) ((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-900 *3)) (-4 *3 (-1090))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-568)) (-5 *1 (-420 *2)) (-4 *2 (-558))))) +(((*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-944 (-215)) (-215))) (-5 *3 (-1084 (-215))) (-5 *1 (-926)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1 (-944 (-215)) (-215))) (-5 *3 (-1084 (-215))) (-5 *1 (-926)))) ((*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-944 (-215)) (-215))) (-5 *3 (-1084 (-215))) (-5 *1 (-927)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1 (-944 (-215)) (-215))) (-5 *3 (-1084 (-215))) (-5 *1 (-927))))) +(((*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-763)) (-4 *5 (-365)) (-5 *2 (-409 *6)) (-5 *1 (-861 *5 *4 *6)) (-4 *4 (-1234 *5)) (-4 *6 (-1219 *5)))) ((*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-763)) (-5 *4 (-1235 *5 *6 *7)) (-4 *5 (-365)) (-14 *6 (-1161)) (-14 *7 *5) (-5 *2 (-409 (-1216 *6 *5))) (-5 *1 (-862 *5 *6 *7)))) ((*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-763)) (-5 *4 (-1235 *5 *6 *7)) (-4 *5 (-365)) (-14 *6 (-1161)) (-14 *7 *5) (-5 *2 (-409 (-1216 *6 *5))) (-5 *1 (-862 *5 *6 *7))))) +(((*1 *2 *2) (-12 (-5 *1 (-961 *2)) (-4 *2 (-550))))) +(((*1 *2) (-12 (-4 *3 (-1199)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 (-409 *4))) (-5 *2 (-1244 *1)) (-4 *1 (-340 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-568)) (-5 *1 (-158)))) ((*1 *2 *1) (-12 (-5 *2 (-158)) (-5 *1 (-869)))) ((*1 *2 *3) (-12 (-5 *3 (-944 *2)) (-5 *1 (-983 *2)) (-4 *2 (-1047))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-568)) (-4 *1 (-62 *4 *2 *5)) (-4 *4 (-1195)) (-4 *5 (-375 *4)) (-4 *2 (-375 *4)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-568)) (-4 *1 (-1050 *4 *5 *6 *2 *7)) (-4 *6 (-1047)) (-4 *7 (-230 *4 *6)) (-4 *2 (-230 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1234 *4)) (-4 *4 (-43 (-409 (-568)))) (-5 *2 (-1 (-1141 *4) (-1141 *4))) (-5 *1 (-1236 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-215)) (-5 *2 (-121)) (-5 *1 (-293 *4 *5)) (-14 *4 *3) (-14 *5 *3))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1084 (-835 (-215)))) (-5 *3 (-215)) (-5 *2 (-121)) (-5 *1 (-299)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-121)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-950 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *1 (-212 *2)) (-4 *2 (-1090)))) ((*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1195))))) +(((*1 *1 *1) (-5 *1 (-1059)))) +(((*1 *1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-158)))) ((*1 *2 *3) (-12 (-5 *3 (-944 *2)) (-5 *1 (-983 *2)) (-4 *2 (-1047))))) +(((*1 *2 *2) (-12 (-5 *2 (-828 (-215))) (-5 *1 (-217))))) +(((*1 *1 *1) (-12 (-5 *1 (-173 *2)) (-4 *2 (-301)))) ((*1 *2 *3) (-12 (-5 *2 (-1163 (-409 (-568)))) (-5 *1 (-182)) (-5 *3 (-568)))) ((*1 *1 *1) (-12 (-4 *1 (-665 *2)) (-4 *2 (-1195)))) ((*1 *1 *1) (-4 *1 (-863 *2))) ((*1 *1 *1) (-12 (-4 *1 (-974 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-787)) (-4 *4 (-842))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1244 *5)) (-4 *5 (-787)) (-5 *2 (-121)) (-5 *1 (-837 *4 *5)) (-14 *4 (-763))))) +(((*1 *2 *3) (-12 (-5 *3 (-310 (-215))) (-5 *2 (-310 (-409 (-568)))) (-5 *1 (-299))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-123))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-173 *3)) (-4 *3 (-301)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-568)) (-4 *1 (-665 *3)) (-4 *3 (-1195)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-763)) (-4 *1 (-730 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-842)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-863 *3)) (-5 *2 (-568)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *1 (-981 *3)) (-4 *3 (-1047)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-634 *1)) (-5 *3 (-634 *7)) (-4 *1 (-1066 *4 *5 *6 *7)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *7 (-1061 *4 *5 *6)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-634 *7)) (-4 *7 (-1061 *4 *5 *6)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-634 *1)) (-4 *1 (-1066 *4 *5 *6 *7)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-634 *1)) (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *3 (-1061 *4 *5 *6)))) ((*1 *2 *3 *1) (-12 (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *3 (-1061 *4 *5 *6)) (-5 *2 (-634 *1)) (-4 *1 (-1066 *4 *5 *6 *3)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1189 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *2 (-1061 *3 *4 *5)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1221 *3 *2)) (-4 *3 (-1047)) (-4 *2 (-787))))) +(((*1 *2 *1) (-12 (-5 *2 (-634 (-917))) (-5 *1 (-1091 *3 *4)) (-14 *3 (-917)) (-14 *4 (-917))))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-634 *3)) (-5 *1 (-970 *4 *3)) (-4 *3 (-1219 *4))))) +(((*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-121)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-121))))) +(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-679 (-215))) (-5 *5 (-679 (-568))) (-5 *6 (-215)) (-5 *3 (-568)) (-5 *2 (-1035)) (-5 *1 (-743))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1242 *3)) (-4 *3 (-1195)) (-4 *3 (-1047)) (-5 *2 (-679 *3))))) +(((*1 *2 *3) (-12 (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *3 (-950 *4 *6 (-852 *5))) (-4 *6 (-230 (-1697 *5) (-763))) (-4 *7 (-971 *4)) (-4 *8 (-641 *4)) (-4 *9 (-920 *4 *8)) (-4 *10 (-235 *9)) (-4 *11 (-536 *4 *5 *3 *6 *7 *8 *9 *10 *13)) (-4 *13 (-117)) (-5 *2 (-568)) (-5 *1 (-260 *4 *5 *3 *6 *7 *8 *9 *10 *11 *12 *13)) (-4 *12 (-258 *11)))) ((*1 *2) (-12 (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *6 (-230 (-1697 *4) (-763))) (-4 *7 (-971 *3)) (-4 *8 (-641 *3)) (-4 *9 (-920 *3 *8)) (-4 *10 (-235 *9)) (-4 *11 (-536 *3 *4 *5 *6 *7 *8 *9 *10 *13)) (-4 *13 (-117)) (-5 *2 (-568)) (-5 *1 (-467 *3 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13)) (-4 *12 (-258 *11)))) ((*1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-867 *3 *4 *5)) (-4 *3 (-350)) (-14 *4 (-634 (-1161))) (-4 *5 (-117)))) ((*1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-868 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *5 (-117))))) +(((*1 *1 *2) (-12 (-5 *2 (-634 (-850))) (-5 *1 (-850))))) +(((*1 *2 *1) (-12 (-4 *1 (-684 *3)) (-4 *3 (-1090)) (-5 *2 (-634 (-2 (|:| -4083 *3) (|:| -4168 (-763)))))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-1143)) (-4 *1 (-366 *2 *4)) (-4 *2 (-1090)) (-4 *4 (-1090)))) ((*1 *1 *2) (-12 (-4 *1 (-366 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-1090))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-634 *5)) (-5 *4 (-634 (-1 *6 (-634 *6)))) (-4 *5 (-43 (-409 (-568)))) (-4 *6 (-1234 *5)) (-5 *2 (-634 *6)) (-5 *1 (-1236 *5 *6))))) +(((*1 *2 *3 *4 *4) (-12 (-5 *4 (-121)) (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *8 (-1061 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-634 *8)) (|:| |towers| (-634 (-1027 *5 *6 *7 *8))))) (-5 *1 (-1027 *5 *6 *7 *8)) (-5 *3 (-634 *8)))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-121)) (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *8 (-1061 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-634 *8)) (|:| |towers| (-634 (-1131 *5 *6 *7 *8))))) (-5 *1 (-1131 *5 *6 *7 *8)) (-5 *3 (-634 *8))))) +(((*1 *2 *1) (-12 (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-121))))) +(((*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-842)) (-5 *2 (-634 *1)) (-4 *1 (-432 *3)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-634 (-887 *3))) (-5 *1 (-887 *3)) (-4 *3 (-1090)))) ((*1 *2 *1) (|partial| -12 (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-634 *1)) (-4 *1 (-950 *3 *4 *5)))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1047)) (-4 *7 (-950 *6 *4 *5)) (-5 *2 (-634 *3)) (-5 *1 (-951 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -2745 ($ *7)) (-15 -2317 (*7 $)) (-15 -2324 (*7 $)))))))) +(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1143)) (-5 *5 (-679 (-215))) (-5 *6 (-215)) (-5 *7 (-679 (-568))) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-744))))) +(((*1 *2 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-1174))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-634 (-607 *4))) (-4 *4 (-432 *3)) (-4 *3 (-842)) (-5 *1 (-577 *3 *4)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-884 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-1090)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1090)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1090)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1090))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 (-634 (-944 (-215))))) (-5 *2 (-634 (-1084 (-215)))) (-5 *1 (-928))))) +(((*1 *2 *2 *3) (|partial| -12 (-5 *3 (-763)) (-5 *1 (-586 *2)) (-4 *2 (-550)))) ((*1 *2 *3) (-12 (-5 *2 (-2 (|:| -1461 *3) (|:| -3438 (-763)))) (-5 *1 (-586 *3)) (-4 *3 (-550))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-679 (-215))) (-5 *5 (-679 (-568))) (-5 *6 (-215)) (-5 *3 (-568)) (-5 *2 (-1035)) (-5 *1 (-744))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-917)) (-5 *3 (-634 (-256))) (-5 *1 (-254)))) ((*1 *1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-256))))) +(((*1 *2 *1) (-12 (-4 *1 (-1134 *3)) (-4 *3 (-1195)) (-5 *2 (-121))))) +(((*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-568)) (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1143)) (-5 *3 (-634 (-256))) (-5 *1 (-254)))) ((*1 *1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-256)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-1249)) (-5 *1 (-1245)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-1249)) (-5 *1 (-1246))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1210 (-568))) (-4 *1 (-277 *3)) (-4 *3 (-1195)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-568)) (-4 *1 (-277 *3)) (-4 *3 (-1195))))) +(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1143)) (-5 *5 (-679 (-215))) (-5 *6 (-215)) (-5 *7 (-679 (-568))) (-5 *4 (-568)) (-5 *2 (-1035)) (-5 *1 (-744))))) +(((*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-561 *3)) (-4 *3 (-550))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1181))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-52 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-787)) (-4 *2 (-365)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-215)))) ((*1 *1 *1 *1) (-2198 (-12 (-5 *1 (-288 *2)) (-4 *2 (-365)) (-4 *2 (-1195))) (-12 (-5 *1 (-288 *2)) (-4 *2 (-478)) (-4 *2 (-1195))))) ((*1 *1 *1 *1) (-4 *1 (-365))) ((*1 *1 *1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-381)))) ((*1 *1 *2 *2) (-12 (-5 *2 (-1113 *3 (-607 *1))) (-4 *3 (-558)) (-4 *3 (-842)) (-4 *1 (-432 *3)))) ((*1 *1 *1 *1) (-4 *1 (-478))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1244 *3)) (-4 *3 (-350)) (-5 *1 (-532 *3)))) ((*1 *1 *1 *1) (-5 *1 (-541))) ((*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-613 *2 *4 *3)) (-4 *2 (-43 *4)) (-4 *3 (|SubsetCategory| (-716) *4)))) ((*1 *1 *1 *2) (-12 (-4 *4 (-172)) (-5 *1 (-613 *3 *4 *2)) (-4 *3 (-43 *4)) (-4 *2 (|SubsetCategory| (-716) *4)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-625 *2)) (-4 *2 (-172)) (-4 *2 (-365)))) ((*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-652 *2 *4 *3)) (-4 *2 (-707 *4)) (-4 *3 (|SubsetCategory| (-716) *4)))) ((*1 *1 *1 *2) (-12 (-4 *4 (-172)) (-5 *1 (-652 *3 *4 *2)) (-4 *3 (-707 *4)) (-4 *2 (|SubsetCategory| (-716) *4)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1 (-310 (-568)) *3)) (-4 *3 (-1090)) (-5 *1 (-674 *3 *4)) (-4 *4 (-1047)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (-4 *2 (-365)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-733 *2 *3)) (-14 *2 (-1161)) (-4 *3 (-13 (-1047) (-842) (-558))))) ((*1 *1 *1 *1) (-5 *1 (-850))) ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-853 *2 *3 *4 *5)) (-4 *2 (-365)) (-4 *2 (-1047)) (-14 *3 (-634 (-1161))) (-14 *4 (-634 (-763))) (-14 *5 (-763)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-887 *2)) (-4 *2 (-1090)))) ((*1 *1 *2 *2) (-12 (-4 *1 (-993 *2)) (-4 *2 (-558)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1050 *3 *4 *2 *5 *6)) (-4 *2 (-1047)) (-4 *5 (-230 *4 *2)) (-4 *6 (-230 *3 *2)) (-4 *2 (-365)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-1047)) (-5 *1 (-1145 *3)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1251 *2)) (-4 *2 (-365)))) ((*1 *1 *1 *1) (|partial| -12 (-4 *2 (-365)) (-4 *2 (-1047)) (-4 *3 (-842)) (-4 *4 (-788)) (-14 *6 (-634 *3)) (-5 *1 (-1254 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-950 *2 *4 *3)) (-14 *7 (-634 (-763))) (-14 *8 (-763)))) ((*1 *1 *1 *2) (-12 (-5 *1 (-1265 *2 *3)) (-4 *2 (-365)) (-4 *2 (-1047)) (-4 *3 (-838))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1181))))) +(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1143)) (-5 *4 (-568)) (-5 *5 (-679 (-215))) (-5 *6 (-215)) (-5 *2 (-1035)) (-5 *1 (-744))))) +(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-147))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1201 *3)) (-4 *3 (-1047)) (-5 *1 (-1200 *3))))) +(((*1 *2 *1) (-12 (-5 *1 (-1191 *2)) (-4 *2 (-975))))) +(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1 *1) (|partial| -5 *1 (-139))) ((*1 *1 *1 *1) (-12 (-5 *1 (-205 *2)) (-4 *2 (-13 (-842) (-10 -8 (-15 -2779 ((-1143) $ (-1161))) (-15 -4125 ((-1249) $)) (-15 -1352 ((-1249) $))))))) ((*1 *1 *1 *2) (-12 (-5 *1 (-288 *2)) (-4 *2 (-21)) (-4 *2 (-1195)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-21)) (-4 *2 (-1195)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) ((*1 *1 *1) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1 *4 *3)) (-4 *3 (-1090)) (-4 *4 (-1047)) (-5 *1 (-674 *3 *4)))) ((*1 *1 *1) (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) ((*1 *1 *1) (-5 *1 (-850))) ((*1 *1 *1 *1) (-5 *1 (-850))) ((*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-641 *3)) (-5 *2 (-236 *1)) (-4 *1 (-920 *3 *4)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-236 *1)) (-4 *1 (-920 *3 *4)) (-4 *3 (-365)) (-4 *4 (-641 *3)))) ((*1 *2 *2 *1) (-12 (-5 *2 (-236 *1)) (-4 *1 (-920 *3 *4)) (-4 *3 (-365)) (-4 *4 (-641 *3)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *4 (-641 *3)) (-5 *2 (-236 *1)) (-4 *1 (-920 *3 *4)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-1047)) (-5 *1 (-1145 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-1047)) (-5 *1 (-1145 *3)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-944 (-215))) (-5 *1 (-1192)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1195)) (-4 *2 (-21)))) ((*1 *1 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1195)) (-4 *2 (-21))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-634 (-679 *4))) (-5 *2 (-679 *4)) (-4 *4 (-1047)) (-5 *1 (-1029 *4))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-744))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-763)) (-5 *4 (-1244 *2)) (-4 *5 (-301)) (-4 *6 (-993 *5)) (-4 *2 (-13 (-411 *6 *7) (-1037 *6))) (-5 *1 (-415 *5 *6 *7 *2)) (-4 *7 (-1219 *6))))) +(((*1 *2) (-12 (-5 *2 (-2 (|:| -2971 (-634 (-1161))) (|:| -4100 (-634 (-1161))))) (-5 *1 (-1197))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-634 *3)) (-4 *3 (-1099 *5 *6 *7 *8)) (-4 *5 (-13 (-301) (-150))) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *8 (-1061 *5 *6 *7)) (-5 *2 (-121)) (-5 *1 (-590 *5 *6 *7 *8 *3))))) +(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-158))) ((*1 *1 *1 *1) (-12 (-5 *1 (-205 *2)) (-4 *2 (-13 (-842) (-10 -8 (-15 -2779 ((-1143) $ (-1161))) (-15 -4125 ((-1249) $)) (-15 -1352 ((-1249) $))))))) ((*1 *1 *1 *2) (-12 (-5 *1 (-288 *2)) (-4 *2 (-25)) (-4 *2 (-1195)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-25)) (-4 *2 (-1195)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-320 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-137)))) ((*1 *1 *2 *1) (-12 (-4 *3 (-13 (-365) (-150))) (-5 *1 (-401 *3 *2)) (-4 *2 (-1219 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) ((*1 *1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-788)) (-4 *4 (-842)) (-5 *1 (-514 *2 *3 *4 *5)) (-4 *5 (-950 *2 *3 *4)))) ((*1 *1 *1 *1) (-5 *1 (-541))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1 *4 *3)) (-4 *3 (-1090)) (-4 *4 (-1047)) (-5 *1 (-674 *3 *4)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-677 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) ((*1 *1 *1 *1) (-5 *1 (-850))) ((*1 *1 *1 *1) (-12 (-5 *1 (-887 *2)) (-4 *2 (-1090)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-236 *1)) (-4 *1 (-920 *3 *4)) (-4 *3 (-365)) (-4 *4 (-641 *3)))) ((*1 *2 *2 *1) (-12 (-5 *2 (-236 *1)) (-4 *1 (-920 *3 *4)) (-4 *3 (-365)) (-4 *4 (-641 *3)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *4 (-641 *3)) (-5 *2 (-236 *1)) (-4 *1 (-920 *3 *4)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-1047)) (-5 *1 (-1145 *3)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-944 (-215))) (-5 *1 (-1192)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1195)) (-4 *2 (-25))))) +(((*1 *2 *3 *4 *2) (-12 (-5 *2 (-634 (-2 (|:| |totdeg| (-763)) (|:| -2700 *3)))) (-5 *4 (-763)) (-4 *3 (-950 *5 *6 *7)) (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-5 *1 (-450 *5 *6 *7 *3))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-744))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-320 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-137)) (-4 *3 (-787))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 (-568))) (-5 *2 (-899 (-568))) (-5 *1 (-913)))) ((*1 *2 *3) (-12 (-5 *3 (-972)) (-5 *2 (-899 (-568))) (-5 *1 (-913))))) +(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-819))))) +(((*1 *2 *3) (-12 (-5 *3 (-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 (-53))) (-1201 (-53)))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-53)))) (-1201 (-1157 (-53))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 (-53) (-763) (-763) (-1157 (-53)))) (|:| AF (-1 (-1157 (-53)) (-763) (-763) (-1201 (-1157 (-53))))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 (-53)) (-763)))) (-634 (-465)))) (-5 *2 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465)))) (-5 *1 (-482)))) ((*1 *2 *3) (-12 (-5 *3 (-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 *4)) (-1201 *4))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 *4))) (-1201 (-1157 *4)))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 *4 (-763) (-763) (-1157 *4))) (|:| AF (-1 (-1157 *4) (-763) (-763) (-1201 (-1157 *4)))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 *4) (-763)))) (-634 (-465)))) (-4 *4 (-13 (-350) (-609 (-568)))) (-5 *2 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 *4) (-634 (-465)))) (-5 *1 (-484 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 (-409 (-568)))) (-1201 (-409 (-568))))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-409 (-568))))) (-1201 (-1157 (-409 (-568)))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 (-568) (-763) (-763) (-1157 (-568)))) (|:| AF (-1 (-1157 (-409 (-568))) (-763) (-763) (-1201 (-1157 (-409 (-568)))))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 (-568)) (-763)))) (-634 (-465)))) (-5 *2 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465)))) (-5 *1 (-485)))) ((*1 *2 *3) (-12 (-5 *3 (-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 *4)) (-1201 *4))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 *4))) (-1201 (-1157 *4)))) (|:| |exprStream| (-1 (-1141 *6) *6 (-1161))) (|:| A (-1 *5 (-763) (-763) (-1157 *5))) (|:| AF (-1 (-1157 *4) (-763) (-763) (-1201 (-1157 *4)))) (|:| AX (-1 *6 (-763) (-1161) *6)) (|:| C (-1 (-634 *5) (-763)))) (-634 (-465)))) (-4 *4 (-365)) (-4 *5 (-453)) (-4 *6 (-13 (-432 (-568)) (-558) (-1037 *7) (-1037 (-1161)) (-1037 (-568)) (-161) (-895 (-1161)) (-10 -8 (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -1332 ($ $)) (-15 -3013 ($ $)) (-15 -2086 ((-121) $))))) (-4 *7 (-13 (-842) (-558))) (-14 *8 (-1 *4 *7)) (-14 *9 (-1 *6 *4)) (-5 *2 (-1 (-634 (-2 (|:| -1864 *6) (|:| -4477 (-763)))) (-634 *4) (-634 (-465)))) (-5 *1 (-486 *4 *5 *6 *7 *8 *9)))) ((*1 *2 *3) (-12 (-5 *3 (-1 (-2 (|:| |guessStream| (-1 (-1141 (-1201 (-409 (-953 (-568))))) (-1201 (-409 (-953 (-568)))))) (|:| |degreeStream| (-1141 (-763))) (|:| |testStream| (-1 (-1141 (-1201 (-1157 (-409 (-953 (-568)))))) (-1201 (-1157 (-409 (-953 (-568))))))) (|:| |exprStream| (-1 (-1141 (-310 (-568))) (-310 (-568)) (-1161))) (|:| A (-1 (-953 (-568)) (-763) (-763) (-1157 (-953 (-568))))) (|:| AF (-1 (-1157 (-409 (-953 (-568)))) (-763) (-763) (-1201 (-1157 (-409 (-953 (-568))))))) (|:| AX (-1 (-310 (-568)) (-763) (-1161) (-310 (-568)))) (|:| C (-1 (-634 (-953 (-568))) (-763)))) (-634 (-465)))) (-5 *2 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465)))) (-5 *1 (-487)))) ((*1 *2 *3) (-12 (-5 *3 (-1 HPSPEC (-634 (-465)))) (-5 *2 (-1 (-634 (-2 (|:| -1864 (-733 *4 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 *4 (-568)))) (-634 (-465)))) (-5 *1 (-488 *4)) (-14 *4 (-1161))))) +(((*1 *2 *3) (-12 (-5 *3 (-679 (-409 (-953 *4)))) (-4 *4 (-453)) (-5 *2 (-634 (-3 (-409 (-953 *4)) (-1150 (-1161) (-953 *4))))) (-5 *1 (-286 *4))))) +(((*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-568)) (-5 *5 (-679 (-215))) (-5 *4 (-215)) (-5 *2 (-1035)) (-5 *1 (-744))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-944 *4)) (-4 *4 (-1047)) (-5 *1 (-1149 *3 *4)) (-14 *3 (-917))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-679 (-409 (-568)))) (-5 *2 (-634 (-2 (|:| |outval| *4) (|:| |outmult| (-568)) (|:| |outvect| (-634 (-679 *4)))))) (-5 *1 (-773 *4)) (-4 *4 (-13 (-365) (-840)))))) +(((*1 *2 *3 *4) (-12 (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *3 (-1061 *5 *6 *7)) (-5 *2 (-121)) (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *3 (-1061 *5 *6 *7)) (-5 *2 (-634 (-2 (|:| |val| (-121)) (|:| -3001 *4)))) (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3))))) +(((*1 *2 *3 *4 *4) (-12 (-5 *4 (-1161)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-691 *3 *5 *6 *7)) (-4 *3 (-609 (-541))) (-4 *5 (-1195)) (-4 *6 (-1195)) (-4 *7 (-1195)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1161)) (-5 *2 (-1 *6 *5)) (-5 *1 (-696 *3 *5 *6)) (-4 *3 (-609 (-541))) (-4 *5 (-1195)) (-4 *6 (-1195))))) +(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-744))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-568)) (-5 *3 (-763)) (-5 *1 (-565))))) +(((*1 *2 *3) (-12 (-5 *3 (-242 *4 *5)) (-14 *4 (-634 (-1161))) (-4 *5 (-1047)) (-5 *2 (-492 *4 *5)) (-5 *1 (-945 *4 *5))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-842)) (-5 *2 (-121)))) ((*1 *1 *1 *1) (-5 *1 (-850)))) +(((*1 *2 *3) (-12 (-5 *2 (-420 (-1157 *1))) (-5 *1 (-310 *4)) (-5 *3 (-1157 *1)) (-4 *4 (-453)) (-4 *4 (-558)) (-4 *4 (-842)))) ((*1 *2 *3) (-12 (-4 *1 (-904)) (-5 *2 (-420 (-1157 *1))) (-5 *3 (-1157 *1))))) +(((*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-743))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-634 (-1161))) (-4 *4 (-1090)) (-4 *5 (-13 (-1047) (-881 *4) (-842) (-609 (-887 *4)))) (-5 *1 (-60 *4 *5 *2)) (-4 *2 (-13 (-432 *5) (-881 *4) (-609 (-887 *4))))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-334 *5 *6 *7 *8)) (-4 *5 (-432 *4)) (-4 *6 (-1219 *5)) (-4 *7 (-1219 (-409 *6))) (-4 *8 (-340 *5 *6 *7)) (-4 *4 (-13 (-842) (-558) (-1037 (-568)))) (-5 *2 (-2 (|:| -4477 (-763)) (|:| -1864 *8))) (-5 *1 (-906 *4 *5 *6 *7 *8)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-334 (-409 (-568)) *4 *5 *6)) (-4 *4 (-1219 (-409 (-568)))) (-4 *5 (-1219 (-409 *4))) (-4 *6 (-340 (-409 (-568)) *4 *5)) (-5 *2 (-2 (|:| -4477 (-763)) (|:| -1864 *6))) (-5 *1 (-907 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-57)) (-5 *1 (-826))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-235 *3)) (-4 *3 (-1090)) (-5 *2 (-121)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-842)) (-5 *2 (-121)))) ((*1 *1 *1 *1) (-5 *1 (-850))) ((*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-899 *3)) (-4 *3 (-1090))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-634 (-887 *3))) (-5 *1 (-887 *3)) (-4 *3 (-1090))))) +(((*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-743))))) +(((*1 *1 *1) (-5 *1 (-850))) ((*1 *2 *1) (-12 (-4 *1 (-1093 *2 *3 *4 *5 *6)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *2 (-1090)))) ((*1 *1 *2) (-12 (-5 *2 (-568)) (-4 *1 (-1142)))) ((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1161))))) +(((*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1244 *1)) (-4 *1 (-369 *3))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-1161)) (-4 *5 (-365)) (-5 *2 (-634 (-1190 *5))) (-5 *1 (-1252 *5)) (-5 *4 (-1190 *5))))) +(((*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-763)) (-5 *1 (-326 *3 *4)) (-4 *3 (-327 *4)))) ((*1 *2) (-12 (-4 *1 (-1261 *3)) (-4 *3 (-365)) (-5 *2 (-763))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-842)) (-5 *2 (-121)))) ((*1 *1 *1 *1) (-5 *1 (-850)))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-39)) (-5 *3 (-763)) (-5 *2 (-121)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-5 *2 (-121)) (-5 *1 (-96 *4)) (-4 *4 (-1090)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-5 *2 (-121)) (-5 *1 (-212 *4)) (-4 *4 (-1090)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-5 *2 (-121)) (-5 *1 (-494 *4)) (-4 *4 (-842)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-5 *2 (-121)) (-5 *1 (-1000 *4)) (-4 *4 (-1090)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-5 *2 (-121)) (-5 *1 (-1132 *4)) (-4 *4 (-1090)))) ((*1 *2 *3 *3) (-12 (-5 *2 (-121)) (-5 *1 (-1196 *3)) (-4 *3 (-842)) (-4 *3 (-1090))))) +(((*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-743))))) +(((*1 *2) (-12 (-4 *2 (-13 (-432 *3) (-1002))) (-5 *1 (-272 *3 *2)) (-4 *3 (-13 (-842) (-558)))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 (-634 (-634 *4)))) (-5 *2 (-634 (-634 *4))) (-5 *1 (-1167 *4)) (-4 *4 (-842))))) +(((*1 *2 *1) (-12 (-5 *2 (-2 (|:| |gen| *3) (|:| -1892 (-568)))) (-5 *1 (-236 *3)) (-4 *3 (-1088)))) ((*1 *1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1195)))) ((*1 *1 *1) (-12 (-4 *1 (-1061 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-788)) (-4 *4 (-842))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-842)) (-5 *2 (-121)))) ((*1 *1 *1 *1) (-5 *1 (-850))) ((*1 *2 *1 *1) (-12 (-4 *1 (-898 *3)) (-4 *3 (-1090)) (-5 *2 (-121)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-899 *3)) (-4 *3 (-1090)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-1087 *3)) (-4 *3 (-1090)) (-5 *2 (-121))))) +(((*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1157 *4)) (-5 *1 (-358 *4)) (-4 *4 (-350)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1157 *4)) (-5 *1 (-358 *4)) (-4 *4 (-350)))) ((*1 *1) (-4 *1 (-370))) ((*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1244 *4)) (-5 *1 (-532 *4)) (-4 *4 (-350)))) ((*1 *1 *1) (-4 *1 (-550))) ((*1 *1) (-4 *1 (-550))) ((*1 *1 *1) (-5 *1 (-568))) ((*1 *1 *1) (-5 *1 (-763))) ((*1 *2 *1) (-12 (-5 *2 (-900 *3)) (-5 *1 (-899 *3)) (-4 *3 (-1090)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-568)) (-5 *2 (-900 *4)) (-5 *1 (-899 *4)) (-4 *4 (-1090)))) ((*1 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-550)) (-4 *2 (-558))))) +(((*1 *2 *2) (-12 (-4 *2 (-172)) (-4 *2 (-1047)) (-5 *1 (-704 *2 *3)) (-4 *3 (-637 *2)))) ((*1 *2 *2) (-12 (-5 *1 (-829 *2)) (-4 *2 (-172)) (-4 *2 (-1047))))) +(((*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-743))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002)))))) +(((*1 *2 *3 *2) (-12 (-5 *1 (-669 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-1090))))) +(((*1 *1 *2) (-12 (-5 *2 (-415 *3 *4 *5 *6)) (-4 *6 (-1037 *4)) (-4 *3 (-301)) (-4 *4 (-993 *3)) (-4 *5 (-1219 *4)) (-4 *6 (-411 *4 *5)) (-14 *7 (-1244 *6)) (-5 *1 (-416 *3 *4 *5 *6 *7)))) ((*1 *1 *2) (-12 (-5 *2 (-1244 *6)) (-4 *6 (-411 *4 *5)) (-4 *4 (-993 *3)) (-4 *5 (-1219 *4)) (-4 *3 (-301)) (-5 *1 (-416 *3 *4 *5 *6 *7)) (-14 *7 *2)))) +(((*1 *1 *1 *1) (-5 *1 (-850)))) +(((*1 *2 *3 *4 *5) (-12 (-5 *5 (-568)) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *8 (-301)) (-4 *9 (-950 *8 *6 *7)) (-5 *2 (-2 (|:| -2700 (-1157 *9)) (|:| |polval| (-1157 *8)))) (-5 *1 (-732 *6 *7 *8 *9)) (-5 *3 (-1157 *9)) (-5 *4 (-1157 *8))))) +(((*1 *1) (-5 *1 (-142)))) +(((*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *5 (-215)) (-5 *2 (-1035)) (-5 *1 (-743))))) +(((*1 *2 *3) (-12 (-5 *2 (-568)) (-5 *1 (-573 *3)) (-4 *3 (-1037 *2)))) ((*1 *2 *1) (-12 (-4 *1 (-1093 *3 *4 *2 *5 *6)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *2 (-1090))))) +(((*1 *2 *2 *3) (-12 (-5 *1 (-669 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-1090))))) +(((*1 *2 *3 *1) (-12 (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *3 (-1061 *4 *5 *6)) (-5 *2 (-3 (-121) (-634 *1))) (-4 *1 (-1066 *4 *5 *6 *3))))) +(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-917)) (-5 *4 (-869)) (-5 *2 (-1249)) (-5 *1 (-1245)))) ((*1 *2 *1 *3 *4) (-12 (-5 *3 (-917)) (-5 *4 (-1143)) (-5 *2 (-1249)) (-5 *1 (-1245)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-1249)) (-5 *1 (-1246))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-96 *3)) (-4 *3 (-1090)) (-4 *3 (-1090)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-105)) (-5 *2 (-121)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-212 *3)) (-4 *3 (-1090)) (-4 *3 (-1090)))) ((*1 *1 *2 *2) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1195)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-436)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-494 *3)) (-4 *3 (-1090)) (-4 *3 (-842)))) ((*1 *1 *1 *1) (-5 *1 (-850))) ((*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1000 *3)) (-4 *3 (-1090)) (-4 *3 (-1090)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1026 *3)) (-4 *3 (-1195)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1132 *3)) (-4 *3 (-1090)) (-4 *3 (-1090))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-568))) (-4 *3 (-1047)) (-5 *1 (-593 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-568))) (-4 *1 (-1203 *3)) (-4 *3 (-1047)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-568))) (-4 *1 (-1234 *3)) (-4 *3 (-1047))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-388 *3)) (|:| |mm| (-388 *3)) (|:| |rm| (-388 *3)))) (-5 *1 (-388 *3)) (-4 *3 (-1090)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-814 *3)) (|:| |mm| (-814 *3)) (|:| |rm| (-814 *3)))) (-5 *1 (-814 *3)) (-4 *3 (-842))))) +(((*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-743))))) +(((*1 *2 *2) (-12 (-5 *1 (-671 *2)) (-4 *2 (-1090))))) +(((*1 *2 *3) (|partial| -12 (-5 *2 (-568)) (-5 *1 (-1178 *3)) (-4 *3 (-1047))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 *2)) (-4 *2 (-432 *4)) (-5 *1 (-433 *4 *2)) (-4 *4 (-13 (-842) (-558)))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-453))) (-5 *1 (-1187 *3 *2)) (-4 *2 (-13 (-432 *3) (-1181)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1244 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1219 *4)) (-5 *2 (-679 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-411 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1219 *3)) (-5 *2 (-679 *3))))) +(((*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-743))))) +(((*1 *1 *2) (-12 (-5 *2 (-634 (-1143))) (-5 *1 (-328)))) ((*1 *1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-328))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 (-465))) (-5 *2 (-121)) (-5 *1 (-464)))) ((*1 *1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-465))))) +(((*1 *2 *1 *2) (-12 (-4 *1 (-366 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-1090))))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-970 *4 *3)) (-4 *3 (-1219 *4))))) +(((*1 *2 *3) (-12 (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *6 (-950 *4 *7 (-852 *5))) (-4 *7 (-230 (-1697 *5) (-763))) (-4 *8 (-971 *4)) (-4 *9 (-641 *4)) (-4 *10 (-920 *4 *9)) (-4 *11 (-235 *10)) (-4 *12 (-536 *4 *5 *6 *7 *8 *9 *10 *11 *13)) (-4 *13 (-117)) (-5 *2 (-1249)) (-5 *1 (-260 *4 *5 *6 *7 *8 *9 *10 *11 *12 *3 *13)) (-4 *3 (-258 *12))))) +(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *5 (-215)) (-5 *2 (-1035)) (-5 *1 (-743))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002)))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1195)) (-4 *3 (-1090)) (-5 *2 (-121))))) +(((*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-568)))) (-4 *4 (-13 (-1219 *3) (-558) (-10 -8 (-15 -2721 ($ $ $))))) (-4 *3 (-558)) (-5 *1 (-1222 *3 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-842)) (-5 *1 (-130 *3))))) +(((*1 *2 *1) (-12 (|has| *1 (-6 -4519)) (-4 *1 (-39)) (-5 *2 (-763)))) ((*1 *2 *1) (-12 (|has| $ (-6 -4519)) (-5 *2 (-763)) (-5 *1 (-96 *3)) (-4 *3 (-1090)))) ((*1 *2 *1) (-12 (|has| $ (-6 -4519)) (-5 *2 (-763)) (-5 *1 (-212 *3)) (-4 *3 (-1090)))) ((*1 *2 *1) (-12 (|has| $ (-6 -4519)) (-5 *2 (-763)) (-5 *1 (-494 *3)) (-4 *3 (-842)))) ((*1 *2 *1) (-12 (|has| $ (-6 -4519)) (-5 *2 (-763)) (-5 *1 (-1000 *3)) (-4 *3 (-1090)))) ((*1 *2 *1) (-12 (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-568)))) ((*1 *2 *1) (-12 (|has| $ (-6 -4519)) (-5 *2 (-763)) (-5 *1 (-1132 *3)) (-4 *3 (-1090)))) ((*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-1265 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-838))))) +(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-850))))) +(((*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-121)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-121))))) +(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-1244 (-568))) (-5 *3 (-568)) (-5 *1 (-1100)))) ((*1 *2 *3 *2 *4) (-12 (-5 *2 (-1244 (-568))) (-5 *3 (-634 (-568))) (-5 *4 (-568)) (-5 *1 (-1100))))) +(((*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-634 *3)) (-5 *5 (-917)) (-4 *3 (-1219 *4)) (-4 *4 (-301)) (-5 *1 (-462 *4 *3))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-123)) (-5 *3 (-634 (-1 *4 (-634 *4)))) (-4 *4 (-1090)) (-5 *1 (-122 *4)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-123)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1090)) (-5 *1 (-122 *4)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-123)) (-5 *2 (-634 (-1 *4 (-634 *4)))) (-5 *1 (-122 *4)) (-4 *4 (-1090))))) +(((*1 *2) (-12 (-5 *2 (-1249)) (-5 *1 (-58))))) +(((*1 *2 *1) (-12 (-4 *1 (-246 *3 *4 *2 *5)) (-4 *3 (-1047)) (-4 *4 (-842)) (-4 *5 (-788)) (-4 *2 (-262 *4))))) +(((*1 *2 *3 *4) (-12 (-4 *5 (-301)) (-4 *6 (-375 *5)) (-4 *4 (-375 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3746 (-634 *4)))) (-5 *1 (-1112 *5 *6 *4 *3)) (-4 *3 (-677 *5 *6 *4))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-634 (-1143))) (-5 *1 (-396)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-634 (-1143))) (-5 *1 (-1176))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-634 (-541))) (-5 *1 (-541))))) +(((*1 *2 *1) (-12 (-5 *2 (-1157 (-409 (-953 *3)))) (-5 *1 (-454 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-634 (-1161))) (-14 *6 (-1244 (-679 *3)))))) +(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-310 (-215))) (-5 *4 (-1161)) (-5 *5 (-1084 (-835 (-215)))) (-5 *2 (-634 (-215))) (-5 *1 (-184)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-310 (-215))) (-5 *4 (-1161)) (-5 *5 (-1084 (-835 (-215)))) (-5 *2 (-634 (-215))) (-5 *1 (-294))))) +(((*1 *1 *1) (-12 (-5 *1 (-1149 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1047))))) +(((*1 *2 *3) (-12 (-5 *3 (-169 *5)) (-4 *5 (-13 (-432 *4) (-1002) (-1181))) (-4 *4 (-13 (-558) (-842))) (-4 *2 (-13 (-432 (-169 *4)) (-1002) (-1181))) (-5 *1 (-597 *4 *5 *2))))) +(((*1 *2 *1 *3) (-12 (-5 *2 (-2 (|:| |k| (-568)) (|:| |c| *4))) (-5 *1 (-774 *4)) (-4 *4 (-365)) (-5 *3 (-568))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1157 *1)) (-5 *3 (-1161)) (-4 *1 (-27)))) ((*1 *1 *2) (-12 (-5 *2 (-1157 *1)) (-4 *1 (-27)))) ((*1 *1 *2) (-12 (-5 *2 (-953 *1)) (-4 *1 (-27)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1161)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-842) (-558))))) ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-842) (-558)))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *5 (-215)) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-79 FCN)))) (-5 *2 (-1035)) (-5 *1 (-738))))) +(((*1 *2 *1) (-12 (-4 *1 (-1231 *2)) (-4 *2 (-1195))))) +(((*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-561 *3)) (-4 *3 (-550)))) ((*1 *2 *3) (-12 (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-301)) (-5 *2 (-420 *3)) (-5 *1 (-732 *4 *5 *6 *3)) (-4 *3 (-950 *6 *4 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-301)) (-4 *7 (-950 *6 *4 *5)) (-5 *2 (-420 (-1157 *7))) (-5 *1 (-732 *4 *5 *6 *7)) (-5 *3 (-1157 *7)))) ((*1 *2 *1) (-12 (-4 *3 (-453)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-420 *1)) (-4 *1 (-950 *3 *4 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-842)) (-4 *5 (-788)) (-4 *6 (-453)) (-5 *2 (-420 *3)) (-5 *1 (-980 *4 *5 *6 *3)) (-4 *3 (-950 *6 *5 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-453)) (-4 *7 (-950 *6 *4 *5)) (-5 *2 (-420 (-1157 (-409 *7)))) (-5 *1 (-1156 *4 *5 *6 *7)) (-5 *3 (-1157 (-409 *7))))) ((*1 *2 *1) (-12 (-5 *2 (-420 *1)) (-4 *1 (-1199)))) ((*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-420 *3)) (-5 *1 (-1222 *4 *3)) (-4 *3 (-13 (-1219 *4) (-558) (-10 -8 (-15 -2721 ($ $ $))))))) ((*1 *2 *3) (-12 (-5 *3 (-1044 *4 *5)) (-4 *4 (-13 (-840) (-301) (-150) (-1021))) (-14 *5 (-634 (-1161))) (-5 *2 (-634 (-1131 *4 (-534 (-852 *6)) (-852 *6) (-775 *4 (-852 *6))))) (-5 *1 (-1268 *4 *5 *6)) (-14 *6 (-634 (-1161)))))) +(((*1 *2 *3 *4 *5) (-12 (-5 *5 (-121)) (-4 *6 (-453)) (-4 *7 (-788)) (-4 *8 (-842)) (-4 *3 (-1061 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-634 *4)) (|:| |todo| (-634 (-2 (|:| |val| (-634 *3)) (|:| -3001 *4)))))) (-5 *1 (-1064 *6 *7 *8 *3 *4)) (-4 *4 (-1066 *6 *7 *8 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *3 (-1061 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-634 *4)) (|:| |todo| (-634 (-2 (|:| |val| (-634 *3)) (|:| -3001 *4)))))) (-5 *1 (-1130 *5 *6 *7 *3 *4)) (-4 *4 (-1099 *5 *6 *7 *3))))) +(((*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-121)) (-4 *6 (-453)) (-4 *7 (-788)) (-4 *8 (-842)) (-4 *3 (-1061 *6 *7 *8)) (-5 *2 (-634 (-2 (|:| |val| *3) (|:| -3001 *4)))) (-5 *1 (-1098 *6 *7 *8 *3 *4)) (-4 *4 (-1066 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-634 (-2 (|:| |val| (-634 *8)) (|:| -3001 *9)))) (-5 *5 (-121)) (-4 *8 (-1061 *6 *7 *4)) (-4 *9 (-1066 *6 *7 *4 *8)) (-4 *6 (-453)) (-4 *7 (-788)) (-4 *4 (-842)) (-5 *2 (-634 (-2 (|:| |val| *8) (|:| -3001 *9)))) (-5 *1 (-1098 *6 *7 *4 *8 *9))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1141 (-215))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1338 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-563))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *2 (-1035)) (-5 *1 (-744))))) +(((*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-310 (-568))) (-5 *4 (-1 (-215) (-215))) (-5 *5 (-1084 (-215))) (-5 *6 (-568)) (-5 *2 (-1191 (-926))) (-5 *1 (-313)))) ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-310 (-568))) (-5 *4 (-1 (-215) (-215))) (-5 *5 (-1084 (-215))) (-5 *6 (-568)) (-5 *7 (-1143)) (-5 *2 (-1191 (-926))) (-5 *1 (-313)))) ((*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-310 (-568))) (-5 *4 (-1 (-215) (-215))) (-5 *5 (-1084 (-215))) (-5 *6 (-215)) (-5 *7 (-568)) (-5 *2 (-1191 (-926))) (-5 *1 (-313)))) ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-310 (-568))) (-5 *4 (-1 (-215) (-215))) (-5 *5 (-1084 (-215))) (-5 *6 (-215)) (-5 *7 (-568)) (-5 *8 (-1143)) (-5 *2 (-1191 (-926))) (-5 *1 (-313))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-634 *5)) (-4 *5 (-1219 *3)) (-4 *3 (-301)) (-5 *2 (-121)) (-5 *1 (-457 *3 *5))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-159 *3 *2)) (-4 *2 (-432 *3))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-850))))) +(((*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-679 (-215))) (-5 *4 (-568)) (-5 *5 (-121)) (-5 *2 (-1035)) (-5 *1 (-737))))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-365)) (-5 *2 (-634 *3)) (-5 *1 (-946 *4 *3)) (-4 *3 (-1219 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1141 (-409 *3))) (-5 *1 (-173 *3)) (-4 *3 (-301))))) +(((*1 *2 *1) (-12 (-4 *1 (-1263 *3 *4)) (-4 *3 (-842)) (-4 *4 (-1047)) (-5 *2 (-814 *3)))) ((*1 *2 *1) (-12 (-4 *2 (-838)) (-5 *1 (-1265 *3 *2)) (-4 *3 (-1047))))) +(((*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1189 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *2 (-1061 *3 *4 *5))))) +(((*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-679 (-215))) (-5 *4 (-568)) (-5 *5 (-121)) (-5 *2 (-1035)) (-5 *1 (-737))))) +(((*1 *2 *1) (-12 (-4 *1 (-62 *3 *4 *5)) (-4 *3 (-1195)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-568)))) ((*1 *2 *1) (-12 (-4 *1 (-1050 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-5 *2 (-568))))) +(((*1 *1) (-5 *1 (-158)))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-453))) (-5 *1 (-1187 *3 *2)) (-4 *2 (-13 (-432 *3) (-1181)))))) +(((*1 *2 *3 *1) (-12 (-5 *2 (-634 (-1161))) (-5 *1 (-1164)) (-5 *3 (-1161))))) +(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4520)) (-4 *1 (-1010 *2)) (-4 *2 (-1195))))) +(((*1 *2 *1) (-12 (-4 *1 (-340 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 (-409 *4))) (-5 *2 (-2 (|:| |num| (-1244 *4)) (|:| |den| *4)))))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-1047)) (-4 *5 (-230 *6 (-763))) (-14 *6 (-763)) (-5 *2 (-2 (|:| -2961 (-568)) (|:| -1461 (-568)) (|:| -3961 (-568)) (|:| |reste| (-568)) (|:| -2219 (-3 "left" "center" "right" "vertical" "horizontal")))) (-5 *1 (-772 *4 *3 *5 *6)) (-4 *3 (-324 *4 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-634 *5)) (-4 *5 (-324 *4 *6)) (-4 *6 (-230 *7 (-763))) (-14 *7 (-763)) (-4 *4 (-1047)) (-5 *2 (-2 (|:| -2961 (-568)) (|:| -1461 (-568)) (|:| -3961 (-568)) (|:| |reste| (-568)) (|:| -2219 (-3 "left" "center" "right" "vertical" "horizontal")))) (-5 *1 (-772 *4 *5 *6 *7))))) +(((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-541)) (-5 *1 (-540 *4)) (-4 *4 (-1195))))) +(((*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *5 (-215)) (-5 *2 (-1035)) (-5 *1 (-744))))) +(((*1 *2 *3) (-12 (-5 *3 (-1244 *4)) (-4 *4 (-1047)) (-4 *2 (-1219 *4)) (-5 *1 (-445 *4 *2)))) ((*1 *2 *3 *2 *4) (-12 (-5 *2 (-409 (-1157 (-310 *5)))) (-5 *3 (-1244 (-310 *5))) (-5 *4 (-568)) (-4 *5 (-13 (-558) (-842))) (-5 *1 (-1118 *5))))) +(((*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *3 (-1047)) (-5 *2 (-2 (|:| -3961 *1) (|:| -1500 *1))) (-4 *1 (-844 *3)))) ((*1 *2 *3 *3 *4) (-12 (-5 *4 (-101 *5)) (-4 *5 (-365)) (-4 *5 (-1047)) (-5 *2 (-2 (|:| -3961 *3) (|:| -1500 *3))) (-5 *1 (-845 *5 *3)) (-4 *3 (-844 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 (-568))) (-5 *2 (-899 (-568))) (-5 *1 (-913)))) ((*1 *2) (-12 (-5 *2 (-899 (-568))) (-5 *1 (-913))))) +(((*1 *2 *1) (-12 (-4 *1 (-920 *3 *4)) (-4 *3 (-365)) (-4 *4 (-641 *3)) (-5 *2 (-121)))) ((*1 *2 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1195)) (-5 *2 (-121)))) ((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1149 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1047))))) +(((*1 *2 *3) (-12 (-5 *3 (-215)) (-5 *2 (-310 (-381))) (-5 *1 (-299))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-634 *3)) (-4 *3 (-301)) (-5 *1 (-177 *3))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1181))))) +(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-917)) (-5 *4 (-1143)) (-5 *2 (-1249)) (-5 *1 (-1245))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-568)) (-5 *2 (-1249)) (-5 *1 (-1246)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1249)) (-5 *1 (-1246))))) +(((*1 *2 *3) (-12 (-5 *2 (-121)) (-5 *1 (-443 *3)) (-4 *3 (-1219 (-568)))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-634 (-2 (|:| -3848 (-1157 *6)) (|:| -3438 (-568))))) (-4 *6 (-301)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-121)) (-5 *1 (-732 *4 *5 *6 *7)) (-4 *7 (-950 *6 *4 *5)))) ((*1 *1 *1) (-12 (-4 *1 (-1122 *2)) (-4 *2 (-1047))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-4 *4 (-1047)) (-5 *2 (-2 (|:| -3961 *1) (|:| -1500 *1))) (-4 *1 (-1219 *4))))) +(((*1 *2 *1) (|partial| -12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-550)) (-5 *2 (-409 (-568))))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-409 (-568))) (-5 *1 (-420 *3)) (-4 *3 (-550)) (-4 *3 (-558)))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-550)) (-5 *2 (-409 (-568))))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-792 *3)) (-4 *3 (-172)) (-4 *3 (-550)) (-5 *2 (-409 (-568))))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-409 (-568))) (-5 *1 (-828 *3)) (-4 *3 (-550)) (-4 *3 (-1090)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-409 (-568))) (-5 *1 (-835 *3)) (-4 *3 (-550)) (-4 *3 (-1090)))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-997 *3)) (-4 *3 (-172)) (-4 *3 (-550)) (-5 *2 (-409 (-568))))) ((*1 *2 *3) (|partial| -12 (-5 *2 (-409 (-568))) (-5 *1 (-1008 *3)) (-4 *3 (-1037 *2))))) +(((*1 *2) (-12 (-5 *2 (-1249)) (-5 *1 (-58))))) +(((*1 *2 *3 *4 *4) (-12 (-4 *5 (-365)) (-14 *6 (-634 (-1161))) (-4 *7 (-950 *5 *8 (-852 *6))) (-4 *8 (-230 (-1697 *6) (-763))) (-4 *9 (-971 *5)) (-4 *10 (-641 *5)) (-4 *11 (-920 *5 *10)) (-4 *3 (-235 *11)) (-4 *12 (-536 *5 *6 *7 *8 *9 *10 *11 *3 *14)) (-4 *14 (-117)) (-5 *2 (-2 (|:| -1379 (-568)) (|:| |num| *7) (|:| |den| *7) (|:| |upTo| (-568)))) (-5 *1 (-467 *5 *6 *7 *8 *9 *10 *11 *3 *12 *13 *14)) (-5 *4 (-568)) (-4 *13 (-258 *12)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-236 (-922 *5))) (-4 *5 (-350)) (-5 *2 (-2 (|:| -1379 (-568)) (|:| |num| (-242 *6 *5)) (|:| |den| (-242 *6 *5)) (|:| |upTo| (-568)))) (-5 *1 (-867 *5 *6 *7)) (-5 *4 (-568)) (-14 *6 (-634 (-1161))) (-4 *7 (-117)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-236 (-921 *5))) (-4 *5 (-365)) (-5 *2 (-2 (|:| -1379 (-568)) (|:| |num| (-242 *6 *5)) (|:| |den| (-242 *6 *5)) (|:| |upTo| (-568)))) (-5 *1 (-868 *5 *6 *7)) (-5 *4 (-568)) (-14 *6 (-634 (-1161))) (-4 *7 (-117))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-555 *3)) (-4 *3 (-13 (-406) (-1181))) (-5 *2 (-121))))) (((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-123))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-626 (-560))) (-5 *2 (-1155 (-403 (-560)))) (-5 *1 (-180))))) -(((*1 *2) (-12 (-5 *2 (-909)) (-5 *1 (-437 *3)) (-4 *3 (-1211 (-560))))) ((*1 *2 *2) (-12 (-5 *2 (-909)) (-5 *1 (-437 *3)) (-4 *3 (-1211 (-560)))))) -(((*1 *2 *3) (-12 (-4 *4 (-13 (-296) (-148))) (-4 *5 (-13 (-834) (-601 (-1153)))) (-4 *6 (-780)) (-5 *2 (-403 (-945 *4))) (-5 *1 (-916 *4 *5 *6 *3)) (-4 *3 (-942 *4 *6 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-671 *7)) (-4 *7 (-942 *4 *6 *5)) (-4 *4 (-13 (-296) (-148))) (-4 *5 (-13 (-834) (-601 (-1153)))) (-4 *6 (-780)) (-5 *2 (-671 (-403 (-945 *4)))) (-5 *1 (-916 *4 *5 *6 *7)))) ((*1 *2 *3) (-12 (-5 *3 (-626 *7)) (-4 *7 (-942 *4 *6 *5)) (-4 *4 (-13 (-296) (-148))) (-4 *5 (-13 (-834) (-601 (-1153)))) (-4 *6 (-780)) (-5 *2 (-626 (-403 (-945 *4)))) (-5 *1 (-916 *4 *5 *6 *7))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-626 (-945 *4))) (-5 *3 (-626 (-1153))) (-4 *4 (-447)) (-5 *1 (-906 *4))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-626 *5) *6)) (-4 *5 (-13 (-359) (-148) (-1029 (-403 (-560))))) (-4 *6 (-1211 *5)) (-5 *2 (-626 (-2 (|:| -3565 *5) (|:| -2654 *3)))) (-5 *1 (-796 *5 *6 *3 *7)) (-4 *3 (-638 *6)) (-4 *7 (-638 (-403 *6)))))) -(((*1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-743))))) -(((*1 *2 *3) (-12 (-5 *3 (-1149 *4)) (-4 *4 (-344)) (-4 *2 (-13 (-398) (-10 -7 (-15 -2801 (*2 *4)) (-15 -3142 ((-909) *2)) (-15 -4374 ((-1236 *2) (-909))) (-15 -2353 (*2 *2))))) (-5 *1 (-351 *2 *4))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-213)) (-5 *1 (-214)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-167 (-213))) (-5 *1 (-214)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-427 *3 *2)) (-4 *2 (-426 *3)))) ((*1 *1 *1 *1) (-4 *1 (-1116)))) -(((*1 *2 *3) (-12 (-5 *3 (-626 *2)) (-4 *2 (-426 *4)) (-5 *1 (-427 *4 *2)) (-4 *4 (-13 (-834) (-550)))))) -(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-55 *3 *4)) (-4 *3 (-1039)) (-14 *4 (-626 (-1153))))) ((*1 *2 *3) (-12 (-5 *3 (-57)) (-5 *2 (-121)) (-5 *1 (-56 *4)) (-4 *4 (-1187)))) ((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-211 *3 *4)) (-4 *3 (-13 (-1039) (-834))) (-14 *4 (-626 (-1153))))) ((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-655 *3)) (-4 *3 (-834)))) ((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-659 *3)) (-4 *3 (-834)))) ((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-880 *3)) (-4 *3 (-834))))) -(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-169)))) ((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1183 *3)) (-4 *3 (-967))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-945 (-167 *4))) (-4 *4 (-170)) (-4 *4 (-601 (-375))) (-5 *2 (-167 (-375))) (-5 *1 (-772 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-945 (-167 *5))) (-5 *4 (-909)) (-4 *5 (-170)) (-4 *5 (-601 (-375))) (-5 *2 (-167 (-375))) (-5 *1 (-772 *5)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-945 *4)) (-4 *4 (-1039)) (-4 *4 (-601 (-375))) (-5 *2 (-167 (-375))) (-5 *1 (-772 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-945 *5)) (-5 *4 (-909)) (-4 *5 (-1039)) (-4 *5 (-601 (-375))) (-5 *2 (-167 (-375))) (-5 *1 (-772 *5)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-403 (-945 *4))) (-4 *4 (-550)) (-4 *4 (-601 (-375))) (-5 *2 (-167 (-375))) (-5 *1 (-772 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-403 (-945 *5))) (-5 *4 (-909)) (-4 *5 (-550)) (-4 *5 (-601 (-375))) (-5 *2 (-167 (-375))) (-5 *1 (-772 *5)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-403 (-945 (-167 *4)))) (-4 *4 (-550)) (-4 *4 (-601 (-375))) (-5 *2 (-167 (-375))) (-5 *1 (-772 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-403 (-945 (-167 *5)))) (-5 *4 (-909)) (-4 *5 (-550)) (-4 *5 (-601 (-375))) (-5 *2 (-167 (-375))) (-5 *1 (-772 *5)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-304 *4)) (-4 *4 (-550)) (-4 *4 (-834)) (-4 *4 (-601 (-375))) (-5 *2 (-167 (-375))) (-5 *1 (-772 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-304 *5)) (-5 *4 (-909)) (-4 *5 (-550)) (-4 *5 (-834)) (-4 *5 (-601 (-375))) (-5 *2 (-167 (-375))) (-5 *1 (-772 *5)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-304 (-167 *4))) (-4 *4 (-550)) (-4 *4 (-834)) (-4 *4 (-601 (-375))) (-5 *2 (-167 (-375))) (-5 *1 (-772 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-304 (-167 *5))) (-5 *4 (-909)) (-4 *5 (-550)) (-4 *5 (-834)) (-4 *5 (-601 (-375))) (-5 *2 (-167 (-375))) (-5 *1 (-772 *5))))) -(((*1 *1 *1) (-5 *1 (-1051)))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4440 (-769 *3)) (|:| |coef1| (-769 *3)))) (-5 *1 (-769 *3)) (-4 *3 (-550)) (-4 *3 (-1039)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-550)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-2 (|:| -4440 *1) (|:| |coef1| *1))) (-4 *1 (-1053 *3 *4 *5))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-427 *3 *2)) (-4 *2 (-426 *3))))) -(((*1 *2 *3) (-12 (-4 *4 (-296)) (-4 *5 (-369 *4)) (-4 *6 (-369 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1104 *4 *5 *6 *3)) (-4 *3 (-669 *4 *5 *6))))) -(((*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-560) "failed") *5)) (-4 *5 (-1039)) (-5 *2 (-560)) (-5 *1 (-540 *5 *3)) (-4 *3 (-1211 *5)))) ((*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-560) "failed") *4)) (-4 *4 (-1039)) (-5 *2 (-560)) (-5 *1 (-540 *4 *3)) (-4 *3 (-1211 *4)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-560) "failed") *4)) (-4 *4 (-1039)) (-5 *2 (-560)) (-5 *1 (-540 *4 *3)) (-4 *3 (-1211 *4))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-359)) (-4 *3 (-1039)) (-5 *1 (-1137 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-809))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-626 (-842))) (-5 *1 (-842))))) -(((*1 *2 *1) (-12 (-4 *1 (-1114 *3)) (-4 *3 (-1039)) (-5 *2 (-626 (-169)))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-811)) (-5 *3 (-626 (-1153))) (-5 *1 (-812))))) -(((*1 *1 *1 *1) (-5 *1 (-160))) ((*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-160))))) -(((*1 *2 *1) (-12 (-4 *3 (-1039)) (-4 *4 (-1082)) (-5 *2 (-626 *1)) (-4 *1 (-378 *3 *4)))) ((*1 *2 *1) (-12 (-5 *2 (-626 (-717 *3 *4))) (-5 *1 (-717 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-708)))) ((*1 *2 *3) (-12 (-4 *4 (-1039)) (-4 *5 (-226 *6 (-755))) (-14 *6 (-755)) (-5 *2 (-626 *3)) (-5 *1 (-900 *4 *3 *5 *6)) (-4 *3 (-318 *4 *5)))) ((*1 *2 *1) (-12 (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-626 *1)) (-4 *1 (-942 *3 *4 *5))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-447))) (-5 *1 (-1179 *3 *2)) (-4 *2 (-13 (-426 *3) (-1173)))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-626 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-560))))) (-4 *2 (-550)) (-5 *1 (-414 *2)))) ((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-560)) (|:| -3025 (-626 (-2 (|:| |irr| *4) (|:| -2678 (-560))))))) (-4 *4 (-1211 (-560))) (-5 *2 (-414 *4)) (-5 *1 (-437 *4))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1121)) (-5 *2 (-142)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1121)) (-5 *2 (-145))))) -(((*1 *2 *1) (-12 (-5 *1 (-1018 *2)) (-4 *2 (-1187))))) -(((*1 *2 *3) (-12 (-4 *4 (-550)) (-5 *2 (-755)) (-5 *1 (-48 *4 *3)) (-4 *3 (-413 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-671 *4)) (-4 *4 (-359)) (-5 *2 (-1149 *4)) (-5 *1 (-527 *4 *5 *6)) (-4 *5 (-359)) (-4 *6 (-13 (-359) (-832)))))) -(((*1 *2) (-12 (-5 *2 (-861)) (-5 *1 (-1239)))) ((*1 *2 *2) (-12 (-5 *2 (-861)) (-5 *1 (-1239))))) -(((*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *5 *6 *2)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *2 (-1082))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-626 *3)) (-4 *3 (-942 *4 *6 *5)) (-4 *4 (-447)) (-4 *5 (-834)) (-4 *6 (-780)) (-5 *1 (-980 *4 *5 *6 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-528 *2 *3 *4 *5 *6 *7 *8 *9 *10)) (-4 *4 (-942 *2 *5 (-844 *3))) (-4 *5 (-226 (-2271 *3) (-755))) (-4 *7 (-633 *2)) (-4 *8 (-912 *2 *7)) (-4 *9 (-230 *8)) (-4 *10 (-117)) (-4 *2 (-359))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-626 (-1153))) (-5 *3 (-1153)) (-5 *1 (-533)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-1153)) (-5 *1 (-686 *3)) (-4 *3 (-601 (-533))))) ((*1 *2 *3 *2 *2) (-12 (-5 *2 (-1153)) (-5 *1 (-686 *3)) (-4 *3 (-601 (-533))))) ((*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1153)) (-5 *1 (-686 *3)) (-4 *3 (-601 (-533))))) ((*1 *2 *3 *2 *4) (-12 (-5 *4 (-626 (-1153))) (-5 *2 (-1153)) (-5 *1 (-686 *3)) (-4 *3 (-601 (-533)))))) -(((*1 *1 *2 *3) (-12 (-5 *1 (-423 *3 *2)) (-4 *3 (-13 (-170) (-43 (-403 (-560))))) (-4 *2 (-13 (-834) (-21)))))) -(((*1 *2 *2 *3) (-12 (-4 *4 (-13 (-359) (-148) (-1029 (-403 (-560))))) (-4 *3 (-1211 *4)) (-5 *1 (-796 *4 *3 *2 *5)) (-4 *2 (-638 *3)) (-4 *5 (-638 (-403 *3))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-403 *5)) (-4 *4 (-13 (-359) (-148) (-1029 (-403 (-560))))) (-4 *5 (-1211 *4)) (-5 *1 (-796 *4 *5 *2 *6)) (-4 *2 (-638 *5)) (-4 *6 (-638 *3))))) -(((*1 *2 *3) (-12 (-4 *4 (-13 (-550) (-834))) (-5 *2 (-167 *5)) (-5 *1 (-589 *4 *5 *3)) (-4 *5 (-13 (-426 *4) (-994) (-1173))) (-4 *3 (-13 (-426 (-167 *4)) (-994) (-1173)))))) -(((*1 *2 *3 *4 *5) (-12 (-5 *5 (-1153)) (-4 *6 (-13 (-834) (-296) (-1029 (-560)) (-622 (-560)) (-148))) (-4 *4 (-13 (-29 *6) (-1173) (-951))) (-5 *2 (-2 (|:| |particular| *4) (|:| -4374 (-626 *4)))) (-5 *1 (-788 *6 *4 *3)) (-4 *3 (-638 *4))))) -(((*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-465)))) ((*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-465))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-626 *2)) (-4 *2 (-1187))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-655 *3)) (-4 *3 (-834)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-659 *3)) (-4 *3 (-834)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-806 *3)) (-4 *3 (-834))))) -(((*1 *2 *2) (-12 (-5 *2 (-375)) (-5 *1 (-99))))) -(((*1 *2) (-12 (-4 *4 (-1191)) (-4 *5 (-1211 *4)) (-4 *6 (-1211 (-403 *5))) (-5 *2 (-121)) (-5 *1 (-333 *3 *4 *5 *6)) (-4 *3 (-334 *4 *5 *6)))) ((*1 *2) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1191)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-403 *4))) (-5 *2 (-121))))) -(((*1 *2 *1) (-12 (-5 *2 (-755)) (-5 *1 (-892 *3)) (-4 *3 (-1082))))) -(((*1 *2 *2) (-12 (-5 *2 (-375)) (-5 *1 (-1238)))) ((*1 *2) (-12 (-5 *2 (-375)) (-5 *1 (-1238))))) -(((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-557))))) -(((*1 *2 *2) (-12 (-5 *2 (-304 (-213))) (-5 *1 (-200))))) -(((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-465)))) ((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-465)))) ((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-919))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 (-2 (|:| -3156 (-403 (-560))) (|:| -3437 (-403 (-560)))))) (-5 *2 (-626 (-403 (-560)))) (-5 *1 (-1011 *4)) (-4 *4 (-1211 (-560)))))) -(((*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-755)) (-4 *4 (-13 (-550) (-148))) (-5 *1 (-1205 *4 *2)) (-4 *2 (-1211 *4))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-1133 *2)) (-4 *2 (-296)) (-5 *1 (-171 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-363 *3)) (-4 *3 (-170)) (-5 *2 (-1149 *3))))) -(((*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-626 (-626 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-626 (-3 (|:| |array| (-626 *3)) (|:| |scalar| (-1153))))) (-5 *6 (-626 (-1153))) (-5 *3 (-1153)) (-5 *2 (-1086)) (-5 *1 (-393)))) ((*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-626 (-626 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-626 (-3 (|:| |array| (-626 *3)) (|:| |scalar| (-1153))))) (-5 *6 (-626 (-1153))) (-5 *3 (-1153)) (-5 *2 (-1086)) (-5 *1 (-393)))) ((*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-626 (-1153))) (-5 *5 (-1156)) (-5 *3 (-1153)) (-5 *2 (-1086)) (-5 *1 (-393))))) -(((*1 *1 *1) (|partial| -12 (-5 *1 (-153 *2 *3 *4)) (-14 *2 (-909)) (-4 *3 (-359)) (-14 *4 (-986 *2 *3)))) ((*1 *1 *1) (|partial| -12 (-4 *2 (-170)) (-5 *1 (-279 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1211 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1) (|partial| -12 (-4 *1 (-363 *2)) (-4 *2 (-170)) (-4 *2 (-550)))) ((*1 *1 *1) (|partial| -12 (-5 *1 (-697 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-700 *2)) (-4 *2 (-359)))) ((*1 *1) (-12 (-5 *1 (-700 *2)) (-4 *2 (-359)))) ((*1 *1 *1) (|partial| -4 *1 (-704))) ((*1 *1 *1) (|partial| -4 *1 (-708))) ((*1 *2 *3 *4) (-12 (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-760 *5 *6 *7 *3 *4)) (-4 *4 (-1058 *5 *6 *7 *3)))) ((*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1055 *3 *2)) (-4 *3 (-13 (-832) (-359))) (-4 *2 (-1211 *3)))) ((*1 *2 *2) (|partial| -12 (-5 *2 (-1133 *3)) (-4 *3 (-1039)) (-5 *1 (-1137 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-1048)))) ((*1 *1 *1) (-12 (-5 *1 (-331 *2 *3 *4)) (-14 *2 (-626 (-1153))) (-14 *3 (-626 (-1153))) (-4 *4 (-383)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-427 *3 *2)) (-4 *2 (-426 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170)) (-4 *2 (-1048)))) ((*1 *1 *1) (-4 *1 (-832))) ((*1 *2 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-170)) (-4 *2 (-1048)))) ((*1 *1 *1) (-4 *1 (-1048))) ((*1 *1 *1) (-4 *1 (-1116)))) -(((*1 *2 *1) (-12 (-4 *3 (-359)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-626 *6)) (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-942 *3 *4 *5)))) ((*1 *2 *1) (-12 (-5 *2 (-626 (-892 *3))) (-5 *1 (-891 *3)) (-4 *3 (-1082))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-157 *3 *2)) (-4 *2 (-426 *3)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1153)) (-4 *4 (-13 (-834) (-550))) (-5 *1 (-157 *4 *2)) (-4 *2 (-426 *4)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-159)) (-5 *2 (-1153)))) ((*1 *1 *1) (-4 *1 (-159)))) -(((*1 *2 *3 *4 *5) (-12 (-4 *6 (-1211 *9)) (-4 *7 (-780)) (-4 *8 (-834)) (-4 *9 (-296)) (-4 *10 (-942 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-626 (-1149 *10))) (|:| |dterm| (-626 (-626 (-2 (|:| -2710 (-755)) (|:| |pcoef| *10))))) (|:| |nfacts| (-626 *6)) (|:| |nlead| (-626 *10)))) (-5 *1 (-763 *6 *7 *8 *9 *10)) (-5 *3 (-1149 *10)) (-5 *4 (-626 *6)) (-5 *5 (-626 *10))))) -(((*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-121)) (-5 *1 (-362 *3 *4)) (-4 *3 (-363 *4)))) ((*1 *2) (-12 (-4 *1 (-363 *3)) (-4 *3 (-170)) (-5 *2 (-121))))) -(((*1 *1) (-5 *1 (-433)))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-780)) (-4 *4 (-834)) (-4 *2 (-550)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-780)) (-4 *4 (-834)) (-4 *2 (-550))))) -(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-586 *3)) (-4 *3 (-1039)))) ((*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-779)) (-4 *5 (-834)) (-5 *2 (-121))))) -(((*1 *2 *1) (-12 (-4 *1 (-52 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-779)) (-5 *2 (-121)))) ((*1 *2 *1) (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-1082)) (-5 *2 (-121)))) ((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-585 *3)) (-4 *3 (-1039)))) ((*1 *2 *1) (-12 (-4 *3 (-550)) (-5 *2 (-121)) (-5 *1 (-607 *3 *4)) (-4 *4 (-1211 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-717 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-708)))) ((*1 *2 *1) (-12 (-4 *1 (-1251 *3 *4)) (-4 *3 (-834)) (-4 *4 (-1039)) (-5 *2 (-121))))) -(((*1 *1 *1) (-4 *1 (-542)))) -(((*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-909)) (-4 *5 (-296)) (-4 *3 (-1211 *5)) (-5 *2 (-2 (|:| |plist| (-626 *3)) (|:| |modulo| *5))) (-5 *1 (-455 *5 *3)) (-5 *4 (-626 *3))))) -(((*1 *2 *3) (-12 (-5 *2 (-167 *4)) (-5 *1 (-176 *4 *3)) (-4 *4 (-13 (-359) (-832))) (-4 *3 (-1211 *2))))) -(((*1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-43 (-403 (-560)))) (-4 *2 (-1039))))) -(((*1 *2 *1) (-12 (-5 *2 (-755)) (-5 *1 (-319 *3)) (-4 *3 (-1187)))) ((*1 *2 *1) (-12 (-5 *2 (-755)) (-5 *1 (-517 *3 *4)) (-4 *3 (-1187)) (-14 *4 (-560))))) -(((*1 *2 *1) (-12 (-4 *1 (-1218 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-1195 *3)) (-5 *2 (-403 (-560)))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-403 (-945 (-167 (-560))))) (-5 *2 (-626 (-167 *4))) (-5 *1 (-374 *4)) (-4 *4 (-13 (-359) (-832))))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-626 (-403 (-945 (-167 (-560)))))) (-5 *4 (-626 (-1153))) (-5 *2 (-626 (-626 (-167 *5)))) (-5 *1 (-374 *5)) (-4 *5 (-13 (-359) (-832)))))) -(((*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-626 *11)) (|:| |todo| (-626 (-2 (|:| |val| *3) (|:| -3249 *11)))))) (-5 *6 (-755)) (-5 *2 (-626 (-2 (|:| |val| (-626 *10)) (|:| -3249 *11)))) (-5 *3 (-626 *10)) (-5 *4 (-626 *11)) (-4 *10 (-1053 *7 *8 *9)) (-4 *11 (-1058 *7 *8 *9 *10)) (-4 *7 (-447)) (-4 *8 (-780)) (-4 *9 (-834)) (-5 *1 (-1056 *7 *8 *9 *10 *11)))) ((*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-626 *11)) (|:| |todo| (-626 (-2 (|:| |val| *3) (|:| -3249 *11)))))) (-5 *6 (-755)) (-5 *2 (-626 (-2 (|:| |val| (-626 *10)) (|:| -3249 *11)))) (-5 *3 (-626 *10)) (-5 *4 (-626 *11)) (-4 *10 (-1053 *7 *8 *9)) (-4 *11 (-1091 *7 *8 *9 *10)) (-4 *7 (-447)) (-4 *8 (-780)) (-4 *9 (-834)) (-5 *1 (-1122 *7 *8 *9 *10 *11))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-4 *4 (-359)) (-5 *2 (-626 *1)) (-4 *1 (-37 *4)))) ((*1 *2 *1) (-12 (-4 *3 (-359)) (-5 *2 (-626 *1)) (-4 *1 (-37 *3)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-890 *3)) (-4 *3 (-1082)) (-5 *2 (-1084 *3)))) ((*1 *2 *1 *3) (-12 (-4 *4 (-1082)) (-5 *2 (-1084 (-626 *4))) (-5 *1 (-891 *4)) (-5 *3 (-626 *4)))) ((*1 *2 *1 *3) (-12 (-4 *4 (-1082)) (-5 *2 (-1084 (-1084 *4))) (-5 *1 (-891 *4)) (-5 *3 (-1084 *4)))) ((*1 *2 *1 *3) (-12 (-5 *2 (-1084 *3)) (-5 *1 (-891 *3)) (-4 *3 (-1082)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-4 *4 (-359)) (-5 *2 (-626 *1)) (-4 *1 (-963 *4)))) ((*1 *2 *1) (-12 (-4 *3 (-359)) (-5 *2 (-626 *1)) (-4 *1 (-963 *3))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-671 *5))) (-5 *4 (-1236 *5)) (-4 *5 (-296)) (-4 *5 (-1039)) (-5 *2 (-671 *5)) (-5 *1 (-1021 *5))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-755)) (-5 *1 (-64 *3)) (-4 *3 (-1187)))) ((*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-1187)) (-5 *1 (-64 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-403 *5)) (-4 *5 (-1211 *4)) (-4 *4 (-550)) (-4 *4 (-1039)) (-4 *2 (-1226 *4)) (-5 *1 (-1229 *4 *5 *6 *2)) (-4 *6 (-638 *5))))) -(((*1 *1 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1082))))) -(((*1 *2 *1) (-12 (-5 *2 (-626 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-560))))) (-5 *1 (-414 *3)) (-4 *3 (-550)))) ((*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-755)) (-4 *3 (-344)) (-4 *5 (-1211 *3)) (-5 *2 (-626 (-1149 *3))) (-5 *1 (-499 *3 *5 *6)) (-4 *6 (-1211 *5))))) -(((*1 *1) (-5 *1 (-810)))) -(((*1 *2 *3 *4) (-12 (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-626 *4)) (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1058 *5 *6 *7 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1039))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-1153)) (-4 *4 (-13 (-834) (-550))) (-5 *1 (-157 *4 *2)) (-4 *2 (-426 *4)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1074 *2)) (-4 *2 (-426 *4)) (-4 *4 (-13 (-834) (-550))) (-5 *1 (-157 *4 *2)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1074 *1)) (-4 *1 (-159)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-159)) (-5 *2 (-1153))))) -(((*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-809))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1079 *2)) (-4 *2 (-1082)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1079 *2)) (-4 *2 (-1082))))) -(((*1 *2 *3 *4) (-12 (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-626 (-2 (|:| |val| *3) (|:| -3249 *4)))) (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1058 *5 *6 *7 *3))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-755)) (-4 *4 (-359)) (-5 *1 (-883 *2 *4)) (-4 *2 (-1211 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-1 (-1149 (-945 *4)) (-945 *4))) (-5 *1 (-1244 *4)) (-4 *4 (-359))))) -(((*1 *1 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1082))))) -(((*1 *2 *1) (-12 (-4 *1 (-230 *3)) (-4 *3 (-1082)) (-5 *2 (-121))))) -(((*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-626 *8)) (-5 *4 (-121)) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-5 *2 (-626 (-1019 *5 *6 *7 *8))) (-5 *1 (-1019 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-626 *8)) (-5 *4 (-121)) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-5 *2 (-626 (-1123 *5 *6 *7 *8))) (-5 *1 (-1123 *5 *6 *7 *8))))) -(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1153)) (-5 *5 (-1076 (-213))) (-5 *2 (-919)) (-5 *1 (-917 *3)) (-4 *3 (-601 (-533))))) ((*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1153)) (-5 *5 (-1076 (-213))) (-5 *2 (-919)) (-5 *1 (-917 *3)) (-4 *3 (-601 (-533))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1076 (-213))) (-5 *1 (-918)))) ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-213) (-213))) (-5 *3 (-1076 (-213))) (-5 *1 (-918)))) ((*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-213) (-213))) (-5 *3 (-1076 (-213))) (-5 *1 (-918)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1076 (-213))) (-5 *1 (-919)))) ((*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-213) (-213))) (-5 *3 (-1076 (-213))) (-5 *1 (-919)))) ((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-213) (-213))) (-5 *3 (-1076 (-213))) (-5 *1 (-919)))) ((*1 *1 *2 *3 *3) (-12 (-5 *2 (-626 (-1 (-213) (-213)))) (-5 *3 (-1076 (-213))) (-5 *1 (-919)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-626 (-1 (-213) (-213)))) (-5 *3 (-1076 (-213))) (-5 *1 (-919)))) ((*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-213) (-213))) (-5 *3 (-1076 (-213))) (-5 *1 (-919)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1 (-213) (-213))) (-5 *3 (-1076 (-213))) (-5 *1 (-919))))) -(((*1 *2 *1) (-12 (-4 *1 (-547 *3)) (-4 *3 (-13 (-400) (-1173))) (-5 *2 (-121)))) ((*1 *2 *1) (-12 (-4 *1 (-832)) (-5 *2 (-121)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-1055 *4 *3)) (-4 *4 (-13 (-832) (-359))) (-4 *3 (-1211 *4)) (-5 *2 (-121))))) -(((*1 *2 *2) (-12 (-5 *2 (-936 *3)) (-4 *3 (-13 (-359) (-1173) (-994))) (-5 *1 (-172 *3))))) -(((*1 *2) (-12 (-5 *2 (-626 (-1153))) (-5 *1 (-109))))) -(((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-680)))) ((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-680))))) -(((*1 *2 *1) (-12 (-4 *1 (-230 *3)) (-4 *3 (-1082)) (-5 *2 (-626 *3))))) -(((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-918))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1211 *6)) (-4 *6 (-13 (-27) (-426 *5))) (-4 *5 (-13 (-834) (-550) (-1029 (-560)))) (-4 *8 (-1211 (-403 *7))) (-5 *2 (-577 *3)) (-5 *1 (-545 *5 *6 *7 *8 *3)) (-4 *3 (-334 *6 *7 *8))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-664 *4 *3)) (-4 *4 (-1082)) (-4 *3 (-1082))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-123))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1135)) (-5 *3 (-626 (-251))) (-5 *1 (-249)))) ((*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-251)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1241)) (-5 *1 (-1237)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1241)) (-5 *1 (-1238))))) -(((*1 *2 *3) (-12 (-5 *2 (-414 (-1149 *1))) (-5 *1 (-304 *4)) (-5 *3 (-1149 *1)) (-4 *4 (-447)) (-4 *4 (-550)) (-4 *4 (-834)))) ((*1 *2 *3) (-12 (-4 *1 (-896)) (-5 *2 (-414 (-1149 *1))) (-5 *3 (-1149 *1))))) -(((*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-626 *3)) (-5 *5 (-909)) (-4 *3 (-1211 *4)) (-4 *4 (-296)) (-5 *1 (-455 *4 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-533)) (-5 *1 (-532 *4)) (-4 *4 (-1187))))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-447)) (-4 *3 (-780)) (-4 *5 (-834)) (-5 *2 (-121)) (-5 *1 (-444 *4 *3 *5 *6)) (-4 *6 (-942 *4 *3 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-230 *3)) (-4 *3 (-1082)) (-5 *2 (-626 *3))))) -(((*1 *2 *3) (-12 (-4 *1 (-334 *4 *3 *5)) (-4 *4 (-1191)) (-4 *3 (-1211 *4)) (-4 *5 (-1211 (-403 *3))) (-5 *2 (-121)))) ((*1 *2 *3) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1191)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-403 *4))) (-5 *2 (-121))))) -(((*1 *2 *3 *4) (-12 (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-626 *4)) (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1058 *5 *6 *7 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-809))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-836 *2)) (-4 *2 (-1039)) (-4 *2 (-359))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-626 *1)) (-5 *3 (-626 *7)) (-4 *1 (-1058 *4 *5 *6 *7)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *7 (-1053 *4 *5 *6)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-626 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-626 *1)) (-4 *1 (-1058 *4 *5 *6 *7)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-626 *1)) (-4 *1 (-1058 *4 *5 *6 *3)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *3 (-1053 *4 *5 *6)))) ((*1 *2 *3 *1) (-12 (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-626 *1)) (-4 *1 (-1058 *4 *5 *6 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-230 *3)) (-4 *3 (-1082)) (-5 *2 (-626 *3))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-560)) (-5 *4 (-1 (-1241) (-1086))) (-5 *2 (-1241)) (-5 *1 (-102))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1234 *3)) (-4 *3 (-1187)) (-4 *3 (-1039)) (-5 *2 (-671 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 (-2 (|:| -1601 *4) (|:| -3662 (-560))))) (-4 *4 (-1211 (-560))) (-5 *2 (-719 (-755))) (-5 *1 (-437 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-414 *5)) (-4 *5 (-1211 *4)) (-4 *4 (-1039)) (-5 *2 (-719 (-755))) (-5 *1 (-439 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-755)) (-5 *2 (-375)) (-5 *1 (-1031))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-375)) (-5 *1 (-1051))))) -(((*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-1039)) (-5 *1 (-1137 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-1193 *2)) (-4 *2 (-1039)))) ((*1 *1 *1) (-12 (-5 *1 (-1227 *2 *3 *4)) (-4 *2 (-1039)) (-14 *3 (-1153)) (-14 *4 *2))) ((*1 *1 *1) (-12 (-5 *1 (-1231 *2 *3)) (-4 *2 (-1039)) (-14 *3 (-1153))))) -(((*1 *2 *2) (-12 (-5 *2 (-626 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-296)) (-4 *3 (-550)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *1 (-970 *3 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-1086)) (-5 *2 (-1241)) (-5 *1 (-102))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-121)) (-5 *1 (-816))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-755)) (-4 *1 (-1251 *3 *4)) (-4 *3 (-834)) (-4 *4 (-1039)) (-4 *4 (-170)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1251 *2 *3)) (-4 *2 (-834)) (-4 *3 (-1039)) (-4 *3 (-170))))) -(((*1 *2 *3) (-12 (-4 *4 (-13 (-359) (-10 -8 (-15 ** ($ $ (-403 (-560))))))) (-5 *2 (-626 *4)) (-5 *1 (-1108 *3 *4)) (-4 *3 (-1211 *4)))) ((*1 *2 *3 *3) (-12 (-4 *3 (-13 (-359) (-10 -8 (-15 ** ($ $ (-403 (-560))))))) (-5 *2 (-626 *3)) (-5 *1 (-1108 *4 *3)) (-4 *4 (-1211 *3))))) -(((*1 *1 *1 *2) (|partial| -12 (-5 *2 (-755)) (-4 *1 (-1211 *3)) (-4 *3 (-1039))))) -(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1135)) (-5 *5 (-671 (-213))) (-5 *6 (-213)) (-5 *7 (-671 (-560))) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-736))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-1149 *5)) (-4 *5 (-447)) (-5 *2 (-626 *6)) (-5 *1 (-535 *5 *6 *4)) (-4 *6 (-359)) (-4 *4 (-13 (-359) (-832))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-945 *5)) (-4 *5 (-447)) (-5 *2 (-626 *6)) (-5 *1 (-535 *5 *6 *4)) (-4 *6 (-359)) (-4 *4 (-13 (-359) (-832)))))) -(((*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-755)) (-5 *1 (-163 *3 *4)) (-4 *3 (-164 *4)))) ((*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1187)) (-5 *2 (-755)) (-5 *1 (-225 *3 *4 *5)) (-4 *3 (-226 *4 *5)))) ((*1 *2) (-12 (-4 *4 (-834)) (-5 *2 (-755)) (-5 *1 (-425 *3 *4)) (-4 *3 (-426 *4)))) ((*1 *2) (-12 (-5 *2 (-755)) (-5 *1 (-541 *3)) (-4 *3 (-542)))) ((*1 *2) (-12 (-4 *1 (-747)) (-5 *2 (-755)))) ((*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-755)) (-5 *1 (-783 *3 *4)) (-4 *3 (-784 *4)))) ((*1 *2) (-12 (-4 *4 (-550)) (-5 *2 (-755)) (-5 *1 (-984 *3 *4)) (-4 *3 (-985 *4)))) ((*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-755)) (-5 *1 (-988 *3 *4)) (-4 *3 (-989 *4)))) ((*1 *2) (-12 (-5 *2 (-755)) (-5 *1 (-1003 *3)) (-4 *3 (-1004)))) ((*1 *2) (-12 (-4 *1 (-1039)) (-5 *2 (-755)))) ((*1 *2) (-12 (-5 *2 (-755)) (-5 *1 (-1047 *3)) (-4 *3 (-1048))))) -(((*1 *1 *1) (-12 (-4 *1 (-52 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-779)))) ((*1 *1 *1) (-12 (-5 *1 (-55 *2 *3)) (-4 *2 (-1039)) (-14 *3 (-626 (-1153))))) ((*1 *1 *1) (-12 (-5 *1 (-211 *2 *3)) (-4 *2 (-13 (-1039) (-834))) (-14 *3 (-626 (-1153))))) ((*1 *1 *1) (-12 (-5 *1 (-231 *2)) (-4 *2 (-1080)))) ((*1 *1 *1) (-12 (-4 *1 (-378 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-1082)))) ((*1 *1 *1) (-12 (-14 *2 (-626 (-1153))) (-4 *3 (-170)) (-4 *5 (-226 (-2271 *2) (-755))) (-14 *6 (-1 (-121) (-2 (|:| -1330 *4) (|:| -4034 *5)) (-2 (|:| -1330 *4) (|:| -4034 *5)))) (-5 *1 (-456 *2 *3 *4 *5 *6 *7)) (-4 *4 (-834)) (-4 *7 (-942 *3 *5 (-844 *2))))) ((*1 *1 *1) (-12 (-4 *1 (-510 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-834)))) ((*1 *1 *1) (-12 (-4 *2 (-550)) (-5 *1 (-607 *2 *3)) (-4 *3 (-1211 *2)))) ((*1 *1 *1) (-12 (-4 *1 (-690 *2)) (-4 *2 (-1039)))) ((*1 *1 *1) (-12 (-5 *1 (-717 *2 *3)) (-4 *3 (-834)) (-4 *2 (-1039)) (-4 *3 (-708)))) ((*1 *1 *1) (-12 (-4 *1 (-836 *2)) (-4 *2 (-1039)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1053 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *2 (-834)))) ((*1 *1 *1) (-12 (-5 *1 (-1257 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-830))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-626 (-599 *4))) (-4 *4 (-426 *3)) (-4 *3 (-834)) (-5 *1 (-569 *3 *4)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-876 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-1082)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-1079 *2)) (-4 *2 (-1082)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1079 *2)) (-4 *2 (-1082)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1079 *2)) (-4 *2 (-1082))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-755)) (-5 *2 (-403 (-560))) (-5 *1 (-213)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *2 (-403 (-560))) (-5 *1 (-213)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-755)) (-5 *2 (-403 (-560))) (-5 *1 (-375)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *2 (-403 (-560))) (-5 *1 (-375))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-671 (-213))) (-5 *5 (-671 (-560))) (-5 *6 (-213)) (-5 *3 (-560)) (-5 *2 (-1027)) (-5 *1 (-736))))) -(((*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-560)) (-4 *1 (-62 *2 *4 *5)) (-4 *2 (-1187)) (-4 *4 (-369 *2)) (-4 *5 (-369 *2)))) ((*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4506)) (-4 *1 (-278 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-1187))))) -(((*1 *1 *1) (-12 (-5 *1 (-55 *2 *3)) (-4 *2 (-1039)) (-14 *3 (-626 (-1153))))) ((*1 *1 *1) (-12 (-5 *1 (-211 *2 *3)) (-4 *2 (-13 (-1039) (-834))) (-14 *3 (-626 (-1153)))))) -(((*1 *2) (-12 (-4 *3 (-550)) (-5 *2 (-626 *4)) (-5 *1 (-48 *3 *4)) (-4 *4 (-413 *3))))) -(((*1 *2 *1) (-12 (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-626 *1)) (-4 *1 (-942 *3 *4 *5))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-215 *2)) (-4 *2 (-13 (-359) (-1173))))) ((*1 *2 *2 *3 *4) (-12 (-5 *3 (-626 *5)) (-5 *4 (-560)) (-4 *5 (-1039)) (-4 *6 (-226 *7 (-755))) (-14 *7 (-755)) (-5 *1 (-900 *5 *2 *6 *7)) (-4 *2 (-318 *5 *6)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-626 *4)) (-4 *4 (-1039)) (-4 *5 (-226 *6 (-755))) (-14 *6 (-755)) (-5 *1 (-900 *4 *2 *5 *6)) (-4 *2 (-318 *4 *5)))) ((*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-909)) (-5 *4 (-375)) (-5 *2 (-1241)) (-5 *1 (-1237)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-375)) (-5 *2 (-1241)) (-5 *1 (-1238))))) -(((*1 *1 *1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-1133 *3)) (-4 *3 (-1187)))) ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4506)) (-4 *1 (-1223 *2)) (-4 *2 (-1187))))) -(((*1 *2 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170))))) -(((*1 *2 *1) (-12 (-4 *1 (-1211 *3)) (-4 *3 (-1039)) (-5 *2 (-1149 *3))))) -(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1135)) (-5 *5 (-671 (-213))) (-5 *6 (-213)) (-5 *7 (-671 (-560))) (-5 *4 (-560)) (-5 *2 (-1027)) (-5 *1 (-736))))) -(((*1 *2 *3) (-12 (-4 *4 (-13 (-296) (-148))) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *7 (-942 *4 *5 *6)) (-5 *2 (-626 (-626 *7))) (-5 *1 (-443 *4 *5 *6 *7)) (-5 *3 (-626 *7)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-121)) (-4 *5 (-13 (-296) (-148))) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *8 (-942 *5 *6 *7)) (-5 *2 (-626 (-626 *8))) (-5 *1 (-443 *5 *6 *7 *8)) (-5 *3 (-626 *8))))) -(((*1 *2 *3) (-12 (-5 *3 (-1149 *6)) (-4 *6 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-1149 *7)) (-5 *1 (-312 *4 *5 *6 *7)) (-4 *7 (-942 *6 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-52 *2 *3)) (-4 *3 (-779)) (-4 *2 (-1039)))) ((*1 *2 *1) (-12 (-4 *2 (-1039)) (-5 *1 (-55 *2 *3)) (-14 *3 (-626 (-1153))))) ((*1 *2 *1) (-12 (-5 *2 (-304 *3)) (-5 *1 (-211 *3 *4)) (-4 *3 (-13 (-1039) (-834))) (-14 *4 (-626 (-1153))))) ((*1 *2 *1) (-12 (-4 *1 (-378 *2 *3)) (-4 *3 (-1082)) (-4 *2 (-1039)))) ((*1 *2 *1) (-12 (-14 *3 (-626 (-1153))) (-4 *5 (-226 (-2271 *3) (-755))) (-14 *6 (-1 (-121) (-2 (|:| -1330 *4) (|:| -4034 *5)) (-2 (|:| -1330 *4) (|:| -4034 *5)))) (-4 *2 (-170)) (-5 *1 (-456 *3 *2 *4 *5 *6 *7)) (-4 *4 (-834)) (-4 *7 (-942 *2 *5 (-844 *3))))) ((*1 *2 *1) (-12 (-4 *1 (-510 *2 *3)) (-4 *3 (-834)) (-4 *2 (-1082)))) ((*1 *2 *1) (-12 (-4 *2 (-550)) (-5 *1 (-607 *2 *3)) (-4 *3 (-1211 *2)))) ((*1 *2 *1) (-12 (-4 *1 (-690 *2)) (-4 *2 (-1039)))) ((*1 *2 *1) (-12 (-4 *2 (-1039)) (-5 *1 (-717 *2 *3)) (-4 *3 (-834)) (-4 *3 (-708)))) ((*1 *2 *1) (-12 (-4 *1 (-836 *2)) (-4 *2 (-1039)))) ((*1 *2 *1) (-12 (-4 *1 (-966 *2 *3 *4)) (-4 *3 (-779)) (-4 *4 (-834)) (-4 *2 (-1039)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1053 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *2 (-834))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1979 *3) (|:| |coef2| (-769 *3)))) (-5 *1 (-769 *3)) (-4 *3 (-550)) (-4 *3 (-1039))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-52 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-779)) (-4 *2 (-359)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-213)))) ((*1 *1 *1 *1) (-2318 (-12 (-5 *1 (-283 *2)) (-4 *2 (-359)) (-4 *2 (-1187))) (-12 (-5 *1 (-283 *2)) (-4 *2 (-471)) (-4 *2 (-1187))))) ((*1 *1 *1 *1) (-4 *1 (-359))) ((*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-375)))) ((*1 *1 *2 *2) (-12 (-5 *2 (-1105 *3 (-599 *1))) (-4 *3 (-550)) (-4 *3 (-834)) (-4 *1 (-426 *3)))) ((*1 *1 *1 *1) (-4 *1 (-471))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1236 *3)) (-4 *3 (-344)) (-5 *1 (-524 *3)))) ((*1 *1 *1 *1) (-5 *1 (-533))) ((*1 *1 *2 *3) (-12 (-4 *4 (-170)) (-5 *1 (-605 *2 *4 *3)) (-4 *2 (-43 *4)) (-4 *3 (|SubsetCategory| (-708) *4)))) ((*1 *1 *1 *2) (-12 (-4 *4 (-170)) (-5 *1 (-605 *3 *4 *2)) (-4 *3 (-43 *4)) (-4 *2 (|SubsetCategory| (-708) *4)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-617 *2)) (-4 *2 (-170)) (-4 *2 (-359)))) ((*1 *1 *2 *3) (-12 (-4 *4 (-170)) (-5 *1 (-644 *2 *4 *3)) (-4 *2 (-699 *4)) (-4 *3 (|SubsetCategory| (-708) *4)))) ((*1 *1 *1 *2) (-12 (-4 *4 (-170)) (-5 *1 (-644 *3 *4 *2)) (-4 *3 (-699 *4)) (-4 *2 (|SubsetCategory| (-708) *4)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1 (-304 (-560)) *3)) (-4 *3 (-1082)) (-5 *1 (-666 *3 *4)) (-4 *4 (-1039)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-369 *2)) (-4 *4 (-369 *2)) (-4 *2 (-359)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-725 *2 *3)) (-14 *2 (-1153)) (-4 *3 (-13 (-1039) (-834) (-550))))) ((*1 *1 *1 *1) (-5 *1 (-842))) ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-845 *2 *3 *4 *5)) (-4 *2 (-359)) (-4 *2 (-1039)) (-14 *3 (-626 (-1153))) (-14 *4 (-626 (-755))) (-14 *5 (-755)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-879 *2)) (-4 *2 (-1082)))) ((*1 *1 *2 *2) (-12 (-4 *1 (-985 *2)) (-4 *2 (-550)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1042 *3 *4 *2 *5 *6)) (-4 *2 (-1039)) (-4 *5 (-226 *4 *2)) (-4 *6 (-226 *3 *2)) (-4 *2 (-359)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-1039)) (-5 *1 (-1137 *3)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1243 *2)) (-4 *2 (-359)))) ((*1 *1 *1 *1) (|partial| -12 (-4 *2 (-359)) (-4 *2 (-1039)) (-4 *3 (-834)) (-4 *4 (-780)) (-14 *6 (-626 *3)) (-5 *1 (-1246 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-942 *2 *4 *3)) (-14 *7 (-626 (-755))) (-14 *8 (-755)))) ((*1 *1 *1 *2) (-12 (-5 *1 (-1257 *2 *3)) (-4 *2 (-359)) (-4 *2 (-1039)) (-4 *3 (-830))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-671 *8)) (-5 *4 (-755)) (-4 *8 (-942 *5 *7 *6)) (-4 *5 (-13 (-296) (-148))) (-4 *6 (-13 (-834) (-601 (-1153)))) (-4 *7 (-780)) (-5 *2 (-626 (-2 (|:| |det| *8) (|:| |rows| (-626 (-560))) (|:| |cols| (-626 (-560)))))) (-5 *1 (-916 *5 *6 *7 *8))))) -(((*1 *1 *1 *1) (-5 *1 (-842)))) -(((*1 *2 *3 *3 *4) (-12 (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-626 (-2 (|:| |val| *3) (|:| -3249 *4)))) (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1058 *5 *6 *7 *3))))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1135)) (-5 *4 (-560)) (-5 *5 (-671 (-213))) (-5 *6 (-213)) (-5 *2 (-1027)) (-5 *1 (-736))))) -(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-577 *3)) (-4 *3 (-359))))) -(((*1 *2 *2) (-12 (-5 *2 (-909)) (-5 *1 (-399 *3)) (-4 *3 (-400)))) ((*1 *2) (-12 (-5 *2 (-909)) (-5 *1 (-399 *3)) (-4 *3 (-400)))) ((*1 *2 *2) (-12 (-5 *2 (-909)) (|has| *1 (-6 -4496)) (-4 *1 (-400)))) ((*1 *2) (-12 (-4 *1 (-400)) (-5 *2 (-909)))) ((*1 *2 *1) (-12 (-4 *1 (-855 *3)) (-5 *2 (-1133 (-560)))))) -(((*1 *1 *1) (-12 (-4 *1 (-52 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-779)))) ((*1 *2 *1) (-12 (-4 *1 (-378 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-1082)))) ((*1 *2 *1) (-12 (-14 *3 (-626 (-1153))) (-4 *4 (-170)) (-4 *6 (-226 (-2271 *3) (-755))) (-14 *7 (-1 (-121) (-2 (|:| -1330 *5) (|:| -4034 *6)) (-2 (|:| -1330 *5) (|:| -4034 *6)))) (-5 *2 (-695 *5 *6 *7)) (-5 *1 (-456 *3 *4 *5 *6 *7 *8)) (-4 *5 (-834)) (-4 *8 (-942 *4 *6 (-844 *3))))) ((*1 *2 *1) (-12 (-4 *2 (-708)) (-4 *2 (-834)) (-5 *1 (-717 *3 *2)) (-4 *3 (-1039)))) ((*1 *1 *1) (-12 (-4 *1 (-966 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-779)) (-4 *4 (-834))))) -(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1 *1) (|partial| -5 *1 (-139))) ((*1 *1 *1 *1) (-12 (-5 *1 (-203 *2)) (-4 *2 (-13 (-834) (-10 -8 (-15 -2778 ((-1135) $ (-1153))) (-15 -4106 ((-1241) $)) (-15 -1489 ((-1241) $))))))) ((*1 *1 *1 *2) (-12 (-5 *1 (-283 *2)) (-4 *2 (-21)) (-4 *2 (-1187)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-283 *2)) (-4 *2 (-21)) (-4 *2 (-1187)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) ((*1 *1 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1 *4 *3)) (-4 *3 (-1082)) (-4 *4 (-1039)) (-5 *1 (-666 *3 *4)))) ((*1 *1 *1) (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-369 *2)) (-4 *4 (-369 *2)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-369 *2)) (-4 *4 (-369 *2)))) ((*1 *1 *1) (-5 *1 (-842))) ((*1 *1 *1 *1) (-5 *1 (-842))) ((*1 *2 *1) (-12 (-4 *3 (-359)) (-5 *2 (-231 *1)) (-4 *1 (-912 *3 *4)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-231 *1)) (-4 *1 (-912 *3 *4)) (-4 *3 (-359)))) ((*1 *2 *2 *1) (-12 (-5 *2 (-231 *1)) (-4 *1 (-912 *3 *4)) (-4 *3 (-359)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-359)) (-5 *2 (-231 *1)) (-4 *1 (-912 *3 *4)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-1039)) (-5 *1 (-1137 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-1039)) (-5 *1 (-1137 *3)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-936 (-213))) (-5 *1 (-1184)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1234 *2)) (-4 *2 (-1187)) (-4 *2 (-21)))) ((*1 *1 *1) (-12 (-4 *1 (-1234 *2)) (-4 *2 (-1187)) (-4 *2 (-21))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *1 (-314 *2 *4)) (-4 *4 (-137)) (-4 *2 (-1082)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-5 *1 (-357 *2)) (-4 *2 (-1082)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-5 *1 (-382 *2)) (-4 *2 (-1082)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-5 *1 (-414 *2)) (-4 *2 (-550)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *2 (-1082)) (-5 *1 (-630 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) ((*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-5 *1 (-806 *2)) (-4 *2 (-834))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 *4)) (-4 *4 (-1082)) (-5 *2 (-1241)) (-5 *1 (-1188 *4)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-626 *4)) (-4 *4 (-1082)) (-5 *2 (-1241)) (-5 *1 (-1188 *4))))) -(((*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-626 *8)) (-5 *4 (-626 (-879 *6))) (-5 *5 (-1 (-876 *6 *8) *8 (-879 *6) (-876 *6 *8))) (-4 *6 (-1082)) (-4 *8 (-13 (-1039) (-601 (-879 *6)) (-1029 *7))) (-5 *2 (-876 *6 *8)) (-4 *7 (-13 (-1039) (-834))) (-5 *1 (-934 *6 *7 *8))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-755)) (-4 *3 (-1187)) (-4 *1 (-62 *3 *4 *5)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)))) ((*1 *1) (-5 *1 (-169))) ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1135)) (-4 *1 (-385)))) ((*1 *1) (-5 *1 (-390))) ((*1 *1 *2 *3) (-12 (-5 *2 (-755)) (-4 *1 (-632 *3)) (-4 *3 (-1187)))) ((*1 *1) (-12 (-4 *3 (-1082)) (-5 *1 (-872 *2 *3 *4)) (-4 *2 (-1082)) (-4 *4 (-650 *3)))) ((*1 *1) (-12 (-5 *1 (-876 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-1082)))) ((*1 *1) (-12 (-5 *1 (-1141 *2 *3)) (-14 *2 (-909)) (-4 *3 (-1039)))) ((*1 *1 *1) (-5 *1 (-1153))) ((*1 *1) (-5 *1 (-1153))) ((*1 *1) (-5 *1 (-1168)))) -(((*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-842) (-842) (-842))) (-5 *4 (-560)) (-5 *2 (-842)) (-5 *1 (-630 *5 *6 *7)) (-4 *5 (-1082)) (-4 *6 (-23)) (-14 *7 *6))) ((*1 *2 *1 *2) (-12 (-5 *2 (-842)) (-5 *1 (-838 *3 *4 *5)) (-4 *3 (-1039)) (-14 *4 (-101 *3)) (-14 *5 (-1 *3 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-213)) (-5 *1 (-842)))) ((*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-842)))) ((*1 *1 *2) (-12 (-5 *2 (-1153)) (-5 *1 (-842)))) ((*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-842)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-842)) (-5 *1 (-1149 *3)) (-4 *3 (-1039))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-736))))) -(((*1 *2) (-12 (-4 *3 (-780)) (-4 *4 (-834)) (-4 *2 (-896)) (-5 *1 (-452 *3 *4 *2 *5)) (-4 *5 (-942 *2 *3 *4)))) ((*1 *2) (-12 (-4 *3 (-780)) (-4 *4 (-834)) (-4 *2 (-896)) (-5 *1 (-893 *2 *3 *4 *5)) (-4 *5 (-942 *2 *3 *4)))) ((*1 *2) (-12 (-4 *2 (-896)) (-5 *1 (-894 *2 *3)) (-4 *3 (-1211 *2))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-626 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-755)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-780)) (-4 *6 (-942 *4 *3 *5)) (-4 *4 (-447)) (-4 *5 (-834)) (-5 *1 (-444 *4 *3 *5 *6))))) -(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-156))) ((*1 *1 *1 *1) (-12 (-5 *1 (-203 *2)) (-4 *2 (-13 (-834) (-10 -8 (-15 -2778 ((-1135) $ (-1153))) (-15 -4106 ((-1241) $)) (-15 -1489 ((-1241) $))))))) ((*1 *1 *1 *2) (-12 (-5 *1 (-283 *2)) (-4 *2 (-25)) (-4 *2 (-1187)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-283 *2)) (-4 *2 (-25)) (-4 *2 (-1187)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-314 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-137)))) ((*1 *1 *2 *1) (-12 (-4 *3 (-13 (-359) (-148))) (-5 *1 (-395 *3 *2)) (-4 *2 (-1211 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) ((*1 *1 *1 *1) (-12 (-4 *2 (-359)) (-4 *3 (-780)) (-4 *4 (-834)) (-5 *1 (-506 *2 *3 *4 *5)) (-4 *5 (-942 *2 *3 *4)))) ((*1 *1 *1 *1) (-5 *1 (-533))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1 *4 *3)) (-4 *3 (-1082)) (-4 *4 (-1039)) (-5 *1 (-666 *3 *4)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-369 *2)) (-4 *4 (-369 *2)))) ((*1 *1 *1 *1) (-5 *1 (-842))) ((*1 *1 *1 *1) (-12 (-5 *1 (-879 *2)) (-4 *2 (-1082)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-231 *1)) (-4 *1 (-912 *3 *4)) (-4 *3 (-359)))) ((*1 *2 *2 *1) (-12 (-5 *2 (-231 *1)) (-4 *1 (-912 *3 *4)) (-4 *3 (-359)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-359)) (-5 *2 (-231 *1)) (-4 *1 (-912 *3 *4)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-1039)) (-5 *1 (-1137 *3)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-936 (-213))) (-5 *1 (-1184)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1234 *2)) (-4 *2 (-1187)) (-4 *2 (-25))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-626 *7)) (-4 *7 (-1053 *4 *5 *6)) (-4 *4 (-550)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-121)) (-5 *1 (-970 *4 *5 *6 *7))))) -(((*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-121)) (-5 *1 (-879 *4)) (-4 *4 (-1082))))) -(((*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-626 *3)) (|:| |image| (-626 *3)))) (-5 *1 (-892 *3)) (-4 *3 (-1082))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-736))))) -(((*1 *2 *1) (-12 (-4 *1 (-318 *2 *3)) (-4 *3 (-779)) (-4 *2 (-1039)))) ((*1 *2 *1) (-12 (-4 *1 (-426 *2)) (-4 *2 (-834))))) -(((*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-1039)) (-5 *2 (-1 (-626 *4) *4)) (-5 *1 (-107 *4)) (-5 *3 (-626 *4))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-550)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)) (-5 *1 (-1178 *3 *4 *5 *2)) (-4 *2 (-669 *3 *4 *5))))) -(((*1 *2 *3) (-12 (-4 *4 (-369 *2)) (-4 *5 (-369 *2)) (-4 *2 (-359)) (-5 *1 (-521 *2 *4 *5 *3)) (-4 *3 (-669 *2 *4 *5)))) ((*1 *2 *1) (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *3 (-369 *2)) (-4 *4 (-369 *2)) (|has| *2 (-6 (-4507 "*"))) (-4 *2 (-1039)))) ((*1 *2 *3) (-12 (-4 *4 (-369 *2)) (-4 *5 (-369 *2)) (-4 *2 (-170)) (-5 *1 (-670 *2 *4 *5 *3)) (-4 *3 (-669 *2 *4 *5)))) ((*1 *2 *1) (-12 (-4 *1 (-1103 *3 *2 *4 *5)) (-4 *4 (-226 *3 *2)) (-4 *5 (-226 *3 *2)) (|has| *2 (-6 (-4507 "*"))) (-4 *2 (-1039))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-1 (-121) *8))) (-4 *8 (-1053 *5 *6 *7)) (-4 *5 (-550)) (-4 *6 (-780)) (-4 *7 (-834)) (-5 *2 (-2 (|:| |goodPols| (-626 *8)) (|:| |badPols| (-626 *8)))) (-5 *1 (-970 *5 *6 *7 *8)) (-5 *4 (-626 *8))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 (-909))) (-5 *2 (-891 (-560))) (-5 *1 (-905))))) -(((*1 *2 *3) (-12 (-5 *3 (-560)) (-5 *2 (-626 (-626 (-213)))) (-5 *1 (-1184))))) -(((*1 *2 *1) (-12 (-4 *1 (-318 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-779)) (-5 *2 (-121)))) ((*1 *2 *1) (-12 (-4 *1 (-426 *3)) (-4 *3 (-834)) (-5 *2 (-121)))) ((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-725 *3 *4)) (-14 *3 (-1153)) (-4 *4 (-13 (-1039) (-834) (-550))))) ((*1 *2 *1) (-12 (-4 *1 (-850)) (-5 *2 (-121))))) -(((*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-560)) (-5 *5 (-671 (-213))) (-5 *4 (-213)) (-5 *2 (-1027)) (-5 *1 (-736))))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-1039)) (-5 *2 (-1 (-626 *4) *4)) (-5 *1 (-107 *4)) (-5 *3 (-626 *4))))) -(((*1 *1 *1) (-4 *1 (-233))) ((*1 *1 *1) (-12 (-4 *2 (-170)) (-5 *1 (-279 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1211 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1) (-2318 (-12 (-5 *1 (-283 *2)) (-4 *2 (-359)) (-4 *2 (-1187))) (-12 (-5 *1 (-283 *2)) (-4 *2 (-471)) (-4 *2 (-1187))))) ((*1 *1 *1) (-4 *1 (-471))) ((*1 *2 *2) (-12 (-5 *2 (-1236 *3)) (-4 *3 (-344)) (-5 *1 (-524 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-697 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170)) (-4 *2 (-359))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-328 *5 *6 *7 *8)) (-4 *5 (-426 *4)) (-4 *6 (-1211 *5)) (-4 *7 (-1211 (-403 *6))) (-4 *8 (-334 *5 *6 *7)) (-4 *4 (-13 (-834) (-550) (-1029 (-560)))) (-5 *2 (-2 (|:| -3504 (-755)) (|:| -1843 *8))) (-5 *1 (-898 *4 *5 *6 *7 *8)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-328 (-403 (-560)) *4 *5 *6)) (-4 *4 (-1211 (-403 (-560)))) (-4 *5 (-1211 (-403 *4))) (-4 *6 (-334 (-403 (-560)) *4 *5)) (-5 *2 (-2 (|:| -3504 (-755)) (|:| -1843 *6))) (-5 *1 (-899 *4 *5 *6))))) -(((*1 *2 *3) (|partial| -12 (-5 *2 (-560)) (-5 *1 (-1170 *3)) (-4 *3 (-1039))))) -(((*1 *2 *3) (-12 (-5 *3 (-167 *5)) (-4 *5 (-13 (-426 *4) (-994) (-1173))) (-4 *4 (-13 (-550) (-834))) (-4 *2 (-13 (-426 (-167 *4)) (-994) (-1173))) (-5 *1 (-589 *4 *5 *2))))) -(((*1 *2 *3) (-12 (-4 *4 (-1039)) (-4 *5 (-226 *6 *2)) (-14 *6 *2) (-5 *2 (-755)) (-5 *1 (-900 *4 *3 *5 *6)) (-4 *3 (-318 *4 *5)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-626 *6)) (-4 *1 (-942 *4 *5 *6)) (-4 *4 (-1039)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-755)))) ((*1 *2 *1) (-12 (-4 *1 (-942 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-755))))) -(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-736))))) -(((*1 *2 *3) (-12 (-5 *3 (-755)) (-5 *2 (-1241)) (-5 *1 (-375)))) ((*1 *2) (-12 (-5 *2 (-1241)) (-5 *1 (-375))))) -(((*1 *2 *3 *3 *3) (-12 (-4 *4 (-1039)) (-5 *2 (-1 (-626 *4) *4)) (-5 *1 (-107 *4)) (-5 *3 (-626 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-1153)) (-4 *4 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-57)) (-5 *1 (-303 *4 *5)) (-4 *5 (-13 (-27) (-1173) (-426 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-57)) (-5 *1 (-303 *4 *3)) (-4 *3 (-13 (-27) (-1173) (-426 *4))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-403 (-560))) (-4 *5 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-57)) (-5 *1 (-303 *5 *3)) (-4 *3 (-13 (-27) (-1173) (-426 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-283 *3)) (-4 *3 (-13 (-27) (-1173) (-426 *5))) (-4 *5 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-57)) (-5 *1 (-303 *5 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-283 *3)) (-5 *5 (-403 (-560))) (-4 *3 (-13 (-27) (-1173) (-426 *6))) (-4 *6 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-57)) (-5 *1 (-303 *6 *3)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-403 (-560)))) (-5 *4 (-283 *8)) (-5 *5 (-1202 (-403 (-560)))) (-5 *6 (-403 (-560))) (-4 *8 (-13 (-27) (-1173) (-426 *7))) (-4 *7 (-13 (-550) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-57)) (-5 *1 (-454 *7 *8)))) ((*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1153)) (-5 *5 (-283 *3)) (-5 *6 (-1202 (-403 (-560)))) (-5 *7 (-403 (-560))) (-4 *3 (-13 (-27) (-1173) (-426 *8))) (-4 *8 (-13 (-550) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-57)) (-5 *1 (-454 *8 *3)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-403 (-560))) (-4 *4 (-1039)) (-4 *1 (-1218 *4 *3)) (-4 *3 (-1195 *4))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (-5 *2 (-2 (|:| |stiffness| (-375)) (|:| |stability| (-375)) (|:| |expense| (-375)) (|:| |accuracy| (-375)) (|:| |intermediateResults| (-375)))) (-5 *1 (-790))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-834)) (-5 *2 (-121)))) ((*1 *1 *1 *1) (-5 *1 (-842)))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-403 *4)) (-4 *4 (-1211 *3)) (-4 *3 (-13 (-359) (-148) (-1029 (-560)))) (-5 *1 (-564 *3 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-37 *3)) (-4 *3 (-359)) (-5 *2 (-121)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-4 *1 (-37 *4)) (-4 *4 (-359)) (-5 *2 (-121)))) ((*1 *2 *1) (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-542)) (-5 *2 (-121)))) ((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-414 *3)) (-4 *3 (-542)) (-4 *3 (-550)))) ((*1 *2 *1) (-12 (-4 *1 (-542)) (-5 *2 (-121)))) ((*1 *2 *1) (-12 (-4 *1 (-784 *3)) (-4 *3 (-170)) (-4 *3 (-542)) (-5 *2 (-121)))) ((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-820 *3)) (-4 *3 (-542)) (-4 *3 (-1082)))) ((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-827 *3)) (-4 *3 (-542)) (-4 *3 (-1082)))) ((*1 *2 *1) (-12 (-4 *1 (-963 *3)) (-4 *3 (-359)) (-5 *2 (-121)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-4 *1 (-963 *4)) (-4 *4 (-359)) (-5 *2 (-121)))) ((*1 *2 *1) (-12 (-4 *1 (-989 *3)) (-4 *3 (-170)) (-4 *3 (-542)) (-5 *2 (-121)))) ((*1 *2 *3) (-12 (-5 *2 (-121)) (-5 *1 (-1000 *3)) (-4 *3 (-1029 (-403 (-560))))))) -(((*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-735))))) -(((*1 *2 *3) (-12 (-5 *2 (-1155 (-403 (-560)))) (-5 *1 (-180)) (-5 *3 (-560))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-123)) (-4 *2 (-1082)) (-4 *2 (-834)) (-5 *1 (-122 *2))))) -(((*1 *1) (-5 *1 (-1051)))) -(((*1 *2 *3) (-12 (-5 *3 (-1153)) (-4 *4 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-57)) (-5 *1 (-303 *4 *5)) (-4 *5 (-13 (-27) (-1173) (-426 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-57)) (-5 *1 (-303 *4 *3)) (-4 *3 (-13 (-27) (-1173) (-426 *4))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-560)) (-4 *5 (-13 (-447) (-834) (-1029 *4) (-622 *4))) (-5 *2 (-57)) (-5 *1 (-303 *5 *3)) (-4 *3 (-13 (-27) (-1173) (-426 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-283 *3)) (-4 *3 (-13 (-27) (-1173) (-426 *5))) (-4 *5 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-57)) (-5 *1 (-303 *5 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-283 *3)) (-4 *3 (-13 (-27) (-1173) (-426 *6))) (-4 *6 (-13 (-447) (-834) (-1029 *5) (-622 *5))) (-5 *5 (-560)) (-5 *2 (-57)) (-5 *1 (-303 *6 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-560))) (-5 *4 (-283 *7)) (-5 *5 (-1202 (-560))) (-4 *7 (-13 (-27) (-1173) (-426 *6))) (-4 *6 (-13 (-550) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-57)) (-5 *1 (-454 *6 *7)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1153)) (-5 *5 (-283 *3)) (-5 *6 (-1202 (-560))) (-4 *3 (-13 (-27) (-1173) (-426 *7))) (-4 *7 (-13 (-550) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-57)) (-5 *1 (-454 *7 *3)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-560)) (-4 *4 (-1039)) (-4 *1 (-1197 *4 *3)) (-4 *3 (-1226 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-1218 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-1195 *3))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-230 *3)) (-4 *3 (-1082)) (-5 *2 (-121)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-834)) (-5 *2 (-121)))) ((*1 *1 *1 *1) (-5 *1 (-842))) ((*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-891 *3)) (-4 *3 (-1082))))) -(((*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1226 *4)) (-5 *1 (-1228 *4 *2)) (-4 *4 (-43 (-403 (-560))))))) -(((*1 *2 *2) (-12 (-5 *2 (-626 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *1 (-970 *3 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-560)) (-4 *4 (-1211 (-403 *3))) (-5 *2 (-909)) (-5 *1 (-901 *4 *5)) (-4 *5 (-1211 (-403 *4)))))) -(((*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-735))))) -(((*1 *2 *3) (-12 (-5 *2 (-560)) (-5 *1 (-440 *3)) (-4 *3 (-400)) (-4 *3 (-1039))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1135)) (-5 *1 (-1169))))) -(((*1 *2 *3) (-12 (-5 *3 (-1153)) (-4 *4 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-57)) (-5 *1 (-303 *4 *5)) (-4 *5 (-13 (-27) (-1173) (-426 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-57)) (-5 *1 (-303 *4 *3)) (-4 *3 (-13 (-27) (-1173) (-426 *4))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-755)) (-4 *5 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-57)) (-5 *1 (-303 *5 *3)) (-4 *3 (-13 (-27) (-1173) (-426 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-283 *3)) (-4 *3 (-13 (-27) (-1173) (-426 *5))) (-4 *5 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-57)) (-5 *1 (-303 *5 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-283 *3)) (-5 *5 (-755)) (-4 *3 (-13 (-27) (-1173) (-426 *6))) (-4 *6 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-57)) (-5 *1 (-303 *6 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-560))) (-5 *4 (-283 *6)) (-4 *6 (-13 (-27) (-1173) (-426 *5))) (-4 *5 (-13 (-550) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-57)) (-5 *1 (-454 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1153)) (-5 *5 (-283 *3)) (-4 *3 (-13 (-27) (-1173) (-426 *6))) (-4 *6 (-13 (-550) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-57)) (-5 *1 (-454 *6 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-560))) (-5 *4 (-283 *7)) (-5 *5 (-1202 (-755))) (-4 *7 (-13 (-27) (-1173) (-426 *6))) (-4 *6 (-13 (-550) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-57)) (-5 *1 (-454 *6 *7)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1153)) (-5 *5 (-283 *3)) (-5 *6 (-1202 (-755))) (-4 *3 (-13 (-27) (-1173) (-426 *7))) (-4 *7 (-13 (-550) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-57)) (-5 *1 (-454 *7 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-1197 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-1226 *3))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-834)) (-5 *2 (-121)))) ((*1 *1 *1 *1) (-5 *1 (-842)))) -(((*1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-780)) (-4 *4 (-834))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-810)) (-5 *1 (-809))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1979 *3) (|:| |coef1| (-769 *3)) (|:| |coef2| (-769 *3)))) (-5 *1 (-769 *3)) (-4 *3 (-550)) (-4 *3 (-1039))))) -(((*1 *1 *1 *1) (-4 *1 (-471))) ((*1 *1 *1 *1) (-4 *1 (-745)))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-735))))) -(((*1 *2 *1) (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-1082)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-169))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-834)) (-5 *2 (-121)))) ((*1 *1 *1 *1) (-5 *1 (-842))) ((*1 *2 *1 *1) (-12 (-4 *1 (-890 *3)) (-4 *3 (-1082)) (-5 *2 (-121)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-891 *3)) (-4 *3 (-1082)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-1079 *3)) (-4 *3 (-1082)) (-5 *2 (-121))))) -(((*1 *2 *3) (-12 (-5 *3 (-909)) (-5 *2 (-1149 *4)) (-5 *1 (-352 *4)) (-4 *4 (-344)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-909)) (-5 *2 (-1149 *4)) (-5 *1 (-352 *4)) (-4 *4 (-344)))) ((*1 *1) (-4 *1 (-364))) ((*1 *2 *3) (-12 (-5 *3 (-909)) (-5 *2 (-1236 *4)) (-5 *1 (-524 *4)) (-4 *4 (-344)))) ((*1 *1 *1) (-4 *1 (-542))) ((*1 *1) (-4 *1 (-542))) ((*1 *1 *1) (-5 *1 (-560))) ((*1 *1 *1) (-5 *1 (-755))) ((*1 *2 *1) (-12 (-5 *2 (-892 *3)) (-5 *1 (-891 *3)) (-4 *3 (-1082)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-5 *2 (-892 *4)) (-5 *1 (-891 *4)) (-4 *4 (-1082)))) ((*1 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-542)) (-4 *2 (-550))))) -(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-1135)) (-5 *4 (-1100)) (-5 *2 (-121)) (-5 *1 (-808))))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-735))))) -(((*1 *2 *3 *3) (-12 (-4 *3 (-1191)) (-4 *5 (-1211 *3)) (-4 *6 (-1211 (-403 *5))) (-5 *2 (-121)) (-5 *1 (-333 *4 *3 *5 *6)) (-4 *4 (-334 *3 *5 *6)))) ((*1 *2 *3 *3) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1191)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-403 *4))) (-5 *2 (-121))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (-5 *2 (-2 (|:| -1882 (-123)) (|:| |w| (-213)))) (-5 *1 (-194))))) -(((*1 *2 *1) (-12 (-4 *1 (-360 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-5 *2 (-1135))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-700 *2)) (-4 *2 (-359))))) -(((*1 *2 *1) (-12 (-5 *2 (-626 (-1135))) (-5 *1 (-390)))) ((*1 *2 *1) (-12 (-5 *2 (-626 (-1135))) (-5 *1 (-1168))))) -(((*1 *1 *1) (-12 (-5 *1 (-283 *2)) (-4 *2 (-21)) (-4 *2 (-1187))))) -(((*1 *2 *1) (-12 (-5 *2 (-1236 (-2 (|:| |scaleX| (-213)) (|:| |scaleY| (-213)) (|:| |deltaX| (-213)) (|:| |deltaY| (-213)) (|:| -1471 (-560)) (|:| -2482 (-560)) (|:| |spline| (-560)) (|:| -3594 (-560)) (|:| |axesColor| (-861)) (|:| -2089 (-560)) (|:| |unitsColor| (-861)) (|:| |showing| (-560))))) (-5 *1 (-1237))))) -(((*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *5 (-213)) (-5 *2 (-1027)) (-5 *1 (-735))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1236 *5)) (-4 *5 (-779)) (-5 *2 (-121)) (-5 *1 (-829 *4 *5)) (-14 *4 (-755))))) -(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-626 (-304 (-213)))) (|:| -1394 (-626 (-213))))) (-5 *2 (-626 (-1153))) (-5 *1 (-258)))) ((*1 *2 *3) (-12 (-5 *3 (-1149 *7)) (-4 *7 (-942 *6 *4 *5)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1039)) (-5 *2 (-626 *5)) (-5 *1 (-312 *4 *5 *6 *7)))) ((*1 *2 *1) (-12 (-5 *2 (-626 (-1153))) (-5 *1 (-331 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-383)))) ((*1 *2 *1) (-12 (-4 *1 (-426 *3)) (-4 *3 (-834)) (-5 *2 (-626 (-1153))))) ((*1 *2 *1) (-12 (-5 *2 (-626 (-879 *3))) (-5 *1 (-879 *3)) (-4 *3 (-1082)))) ((*1 *2 *1) (-12 (-4 *1 (-942 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-626 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1039)) (-4 *7 (-942 *6 *4 *5)) (-5 *2 (-626 *5)) (-5 *1 (-943 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-359) (-10 -8 (-15 -2801 ($ *7)) (-15 -2132 (*7 $)) (-15 -2139 (*7 $))))))) ((*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-779)) (-4 *5 (-834)) (-5 *2 (-626 *5)))) ((*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-626 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-403 (-945 *4))) (-4 *4 (-550)) (-5 *2 (-626 (-1153))) (-5 *1 (-1034 *4))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-96 *3)) (-4 *3 (-1082)) (-4 *3 (-1082)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-105)) (-5 *2 (-121)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-210 *3)) (-4 *3 (-1082)) (-4 *3 (-1082)))) ((*1 *1 *2 *2) (-12 (-5 *1 (-283 *2)) (-4 *2 (-1187)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-430)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-487 *3)) (-4 *3 (-1082)) (-4 *3 (-834)))) ((*1 *1 *1 *1) (-5 *1 (-842))) ((*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-992 *3)) (-4 *3 (-1082)) (-4 *3 (-1082)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1018 *3)) (-4 *3 (-1187)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1124 *3)) (-4 *3 (-1082)) (-4 *3 (-1082))))) -(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-626 (-945 (-560)))) (-5 *4 (-626 (-1153))) (-5 *2 (-626 (-626 (-375)))) (-5 *1 (-1014)) (-5 *5 (-375)))) ((*1 *2 *3) (-12 (-5 *3 (-1036 *4 *5)) (-4 *4 (-13 (-832) (-296) (-148) (-1013))) (-14 *5 (-626 (-1153))) (-5 *2 (-626 (-626 (-1015 (-403 *4))))) (-5 *1 (-1260 *4 *5 *6)) (-14 *6 (-626 (-1153))))) ((*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-626 (-945 *5))) (-5 *4 (-121)) (-4 *5 (-13 (-832) (-296) (-148) (-1013))) (-5 *2 (-626 (-626 (-1015 (-403 *5))))) (-5 *1 (-1260 *5 *6 *7)) (-14 *6 (-626 (-1153))) (-14 *7 (-626 (-1153))))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-626 (-945 *5))) (-5 *4 (-121)) (-4 *5 (-13 (-832) (-296) (-148) (-1013))) (-5 *2 (-626 (-626 (-1015 (-403 *5))))) (-5 *1 (-1260 *5 *6 *7)) (-14 *6 (-626 (-1153))) (-14 *7 (-626 (-1153))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-945 *5))) (-5 *4 (-121)) (-4 *5 (-13 (-832) (-296) (-148) (-1013))) (-5 *2 (-626 (-626 (-1015 (-403 *5))))) (-5 *1 (-1260 *5 *6 *7)) (-14 *6 (-626 (-1153))) (-14 *7 (-626 (-1153))))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-945 *4))) (-4 *4 (-13 (-832) (-296) (-148) (-1013))) (-5 *2 (-626 (-626 (-1015 (-403 *4))))) (-5 *1 (-1260 *4 *5 *6)) (-14 *5 (-626 (-1153))) (-14 *6 (-626 (-1153)))))) -(((*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-735))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-403 (-560))) (-5 *1 (-585 *3)) (-4 *3 (-43 *2)) (-4 *3 (-1039))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-936 (-213))) (-5 *2 (-1241)) (-5 *1 (-466))))) -(((*1 *2 *3) (-12 (-5 *3 (-213)) (-5 *2 (-680)) (-5 *1 (-294))))) -(((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1149 (-403 (-1149 *2)))) (-5 *4 (-599 *2)) (-4 *2 (-13 (-426 *5) (-27) (-1173))) (-4 *5 (-13 (-447) (-1029 (-560)) (-834) (-148) (-622 (-560)))) (-5 *1 (-556 *5 *2 *6)) (-4 *6 (-1082)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1149 *1)) (-4 *1 (-942 *4 *5 *3)) (-4 *4 (-1039)) (-4 *5 (-780)) (-4 *3 (-834)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1149 *4)) (-4 *4 (-1039)) (-4 *1 (-942 *4 *5 *3)) (-4 *5 (-780)) (-4 *3 (-834)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-403 (-1149 *2))) (-4 *5 (-780)) (-4 *4 (-834)) (-4 *6 (-1039)) (-4 *2 (-13 (-359) (-10 -8 (-15 -2801 ($ *7)) (-15 -2132 (*7 $)) (-15 -2139 (*7 $))))) (-5 *1 (-943 *5 *4 *6 *7 *2)) (-4 *7 (-942 *6 *5 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-403 (-1149 (-403 (-945 *5))))) (-5 *4 (-1153)) (-5 *2 (-403 (-945 *5))) (-5 *1 (-1034 *5)) (-4 *5 (-550))))) -(((*1 *1 *1) (-12 (-4 *1 (-426 *2)) (-4 *2 (-834)) (-4 *2 (-550)))) ((*1 *1 *1) (-12 (-5 *1 (-725 *2 *3)) (-14 *2 (-1153)) (-4 *3 (-13 (-1039) (-834) (-550))))) ((*1 *1 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-550))))) -(((*1 *2 *3 *3 *4) (-12 (-5 *3 (-626 (-485 *5 *6))) (-5 *4 (-844 *5)) (-14 *5 (-626 (-1153))) (-5 *2 (-485 *5 *6)) (-5 *1 (-614 *5 *6)) (-4 *6 (-447)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-485 *5 *6))) (-5 *4 (-844 *5)) (-14 *5 (-626 (-1153))) (-5 *2 (-485 *5 *6)) (-5 *1 (-614 *5 *6)) (-4 *6 (-447))))) -(((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-809))))) -(((*1 *2 *3) (|partial| -12 (-4 *4 (-550)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-474 *4 *5 *6 *7)) (|:| -4224 (-626 *7)))) (-5 *1 (-970 *4 *5 *6 *7)) (-5 *3 (-626 *7))))) -(((*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-735))))) -(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-945 (-403 (-560)))) (-5 *4 (-1153)) (-5 *5 (-1076 (-827 (-213)))) (-5 *2 (-626 (-213))) (-5 *1 (-289))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1133 (-626 (-560)))) (-5 *3 (-626 (-560))) (-5 *1 (-870))))) -(((*1 *2 *1) (-12 (-5 *2 (-1133 (-560))) (-5 *1 (-996 *3)) (-14 *3 (-560))))) -(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-141 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-755)) (-4 *5 (-170)))) ((*1 *1 *1) (-12 (-5 *1 (-141 *2 *3 *4)) (-14 *2 (-560)) (-14 *3 (-755)) (-4 *4 (-170)))) ((*1 *1 *1) (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-369 *2)) (-4 *4 (-369 *2)))) ((*1 *1 *2) (-12 (-4 *3 (-1039)) (-4 *1 (-669 *3 *2 *4)) (-4 *2 (-369 *3)) (-4 *4 (-369 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-1119 *2 *3)) (-14 *2 (-755)) (-4 *3 (-1039))))) -(((*1 *1 *2 *3) (-12 (-4 *1 (-52 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-779)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-626 (-909))) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-909)) (-4 *2 (-359)) (-14 *5 (-986 *4 *2)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-695 *5 *6 *7)) (-4 *5 (-834)) (-4 *6 (-226 (-2271 *4) (-755))) (-14 *7 (-1 (-121) (-2 (|:| -1330 *5) (|:| -4034 *6)) (-2 (|:| -1330 *5) (|:| -4034 *6)))) (-14 *4 (-626 (-1153))) (-4 *2 (-170)) (-5 *1 (-456 *4 *2 *5 *6 *7 *8)) (-4 *8 (-942 *2 *6 (-844 *4))))) ((*1 *1 *2 *3) (-12 (-4 *1 (-510 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-834)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-560)) (-4 *2 (-550)) (-5 *1 (-607 *2 *4)) (-4 *4 (-1211 *2)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-755)) (-4 *1 (-690 *2)) (-4 *2 (-1039)))) ((*1 *1 *2 *3) (-12 (-5 *1 (-717 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-708)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-626 *5)) (-5 *3 (-626 (-755))) (-4 *1 (-722 *4 *5)) (-4 *4 (-1039)) (-4 *5 (-834)))) ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-755)) (-4 *1 (-722 *4 *2)) (-4 *4 (-1039)) (-4 *2 (-834)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-755)) (-4 *1 (-836 *2)) (-4 *2 (-1039)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-626 *6)) (-5 *3 (-626 (-755))) (-4 *1 (-942 *4 *5 *6)) (-4 *4 (-1039)) (-4 *5 (-780)) (-4 *6 (-834)))) ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-755)) (-4 *1 (-942 *4 *5 *2)) (-4 *4 (-1039)) (-4 *5 (-780)) (-4 *2 (-834)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-626 *6)) (-5 *3 (-626 *5)) (-4 *1 (-966 *4 *5 *6)) (-4 *4 (-1039)) (-4 *5 (-779)) (-4 *6 (-834)))) ((*1 *1 *1 *2 *3) (-12 (-4 *1 (-966 *4 *3 *2)) (-4 *4 (-1039)) (-4 *3 (-779)) (-4 *2 (-834))))) -(((*1 *2 *1) (-12 (-4 *1 (-327 *3 *4 *5 *6)) (-4 *3 (-359)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-403 *4))) (-4 *6 (-334 *3 *4 *5)) (-5 *2 (-2 (|:| -2287 (-409 *4 (-403 *4) *5 *6)) (|:| |principalPart| *6))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1211 *5)) (-4 *5 (-359)) (-5 *2 (-2 (|:| |poly| *6) (|:| -2828 (-403 *6)) (|:| |special| (-403 *6)))) (-5 *1 (-709 *5 *6)) (-5 *3 (-403 *6)))) ((*1 *2 *3) (-12 (-4 *4 (-359)) (-5 *2 (-626 *3)) (-5 *1 (-883 *3 *4)) (-4 *3 (-1211 *4)))) ((*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-755)) (-4 *5 (-359)) (-5 *2 (-2 (|:| -3156 *3) (|:| -3437 *3))) (-5 *1 (-883 *3 *5)) (-4 *3 (-1211 *5)))) ((*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-626 *9)) (-5 *3 (-626 *8)) (-5 *4 (-121)) (-4 *8 (-1053 *5 *6 *7)) (-4 *9 (-1058 *5 *6 *7 *8)) (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-5 *1 (-1056 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-626 *9)) (-5 *3 (-626 *8)) (-5 *4 (-121)) (-4 *8 (-1053 *5 *6 *7)) (-4 *9 (-1058 *5 *6 *7 *8)) (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-5 *1 (-1056 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-626 *9)) (-5 *3 (-626 *8)) (-5 *4 (-121)) (-4 *8 (-1053 *5 *6 *7)) (-4 *9 (-1091 *5 *6 *7 *8)) (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-5 *1 (-1122 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-626 *9)) (-5 *3 (-626 *8)) (-5 *4 (-121)) (-4 *8 (-1053 *5 *6 *7)) (-4 *9 (-1091 *5 *6 *7 *8)) (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-5 *1 (-1122 *5 *6 *7 *8 *9))))) -(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *5 (-213)) (-5 *2 (-1027)) (-5 *1 (-735))))) -(((*1 *2 *3) (-12 (-5 *3 (-283 (-945 (-560)))) (-5 *2 (-2 (|:| |varOrder| (-626 (-1153))) (|:| |inhom| (-3 (-626 (-1236 (-755))) "failed")) (|:| |hom| (-626 (-1236 (-755)))))) (-5 *1 (-224))))) -(((*1 *1 *2) (-12 (-5 *2 (-626 (-626 *3))) (-4 *3 (-1082)) (-5 *1 (-892 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-1141 *3 *4)) (-14 *3 (-909)) (-4 *4 (-1039))))) -(((*1 *2 *1) (-12 (-5 *2 (-626 (-2 (|:| -3655 (-1153)) (|:| -2371 *4)))) (-5 *1 (-876 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082)))) ((*1 *2 *1) (-12 (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-626 *1)) (-4 *1 (-1085 *3 *4 *5 *6 *7))))) -(((*1 *2) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1191)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-403 *4))) (-5 *2 (-121))))) -(((*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1039))))) -(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-842))))) -(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-136 *2)) (-4 *2 (-1082)))) ((*1 *1 *2) (-12 (-5 *1 (-136 *2)) (-4 *2 (-1082))))) -(((*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-919))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 (-1153))) (-5 *2 (-1241)) (-5 *1 (-1156)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-626 (-1153))) (-5 *3 (-1153)) (-5 *2 (-1241)) (-5 *1 (-1156)))) ((*1 *2 *3 *4 *1) (-12 (-5 *4 (-626 (-1153))) (-5 *3 (-1153)) (-5 *2 (-1241)) (-5 *1 (-1156))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-626 *8)) (-5 *4 (-626 *9)) (-4 *8 (-1053 *5 *6 *7)) (-4 *9 (-1058 *5 *6 *7 *8)) (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-5 *2 (-755)) (-5 *1 (-1056 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 *8)) (-5 *4 (-626 *9)) (-4 *8 (-1053 *5 *6 *7)) (-4 *9 (-1091 *5 *6 *7 *8)) (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-5 *2 (-755)) (-5 *1 (-1122 *5 *6 *7 *8 *9))))) -(((*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-375)) (-5 *1 (-773))))) -(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3818 (-671 (-403 (-945 *4)))) (|:| |vec| (-626 (-403 (-945 *4)))) (|:| -3143 (-755)) (|:| |rows| (-626 (-560))) (|:| |cols| (-626 (-560))))) (-4 *4 (-13 (-296) (-148))) (-4 *5 (-13 (-834) (-601 (-1153)))) (-4 *6 (-780)) (-5 *2 (-2 (|:| |partsol| (-1236 (-403 (-945 *4)))) (|:| -4374 (-626 (-1236 (-403 (-945 *4))))))) (-5 *1 (-916 *4 *5 *6 *7)) (-4 *7 (-942 *4 *6 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-1236 *4)) (-4 *4 (-1187)) (-4 *1 (-226 *3 *4))))) -(((*1 *2) (-12 (-5 *2 (-1241)) (-5 *1 (-58))))) -(((*1 *2 *1 *1) (-12 (-4 *3 (-550)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-626 *1)) (-4 *1 (-1053 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-550) (-834) (-1029 (-560)))) (-5 *2 (-304 *4)) (-5 *1 (-178 *4 *3)) (-4 *3 (-13 (-27) (-1173) (-426 (-167 *4)))))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-27) (-1173) (-426 *3)))))) -(((*1 *2 *1) (-12 (-5 *2 (-171 (-403 (-560)))) (-5 *1 (-126 *3)) (-14 *3 (-560)))) ((*1 *1 *2 *3 *3) (-12 (-5 *3 (-1133 *2)) (-4 *2 (-296)) (-5 *1 (-171 *2)))) ((*1 *1 *2) (-12 (-5 *2 (-403 *3)) (-4 *3 (-296)) (-5 *1 (-171 *3)))) ((*1 *2 *3) (-12 (-5 *2 (-171 (-560))) (-5 *1 (-749 *3)) (-4 *3 (-400)))) ((*1 *2 *1) (-12 (-5 *2 (-171 (-403 (-560)))) (-5 *1 (-857 *3)) (-14 *3 (-560)))) ((*1 *2 *1) (-12 (-14 *3 (-560)) (-5 *2 (-171 (-403 (-560)))) (-5 *1 (-858 *3 *4)) (-4 *4 (-855 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-213)) (-5 *1 (-214)))) ((*1 *2 *2) (-12 (-5 *2 (-167 (-213))) (-5 *1 (-214)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-427 *3 *2)) (-4 *2 (-426 *3)))) ((*1 *1 *1) (-4 *1 (-1116)))) -(((*1 *1 *1 *1 *2) (-12 (-4 *1 (-1053 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *2 (-834)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-780)) (-4 *4 (-834))))) -(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-671 *3)) (-4 *3 (-296)) (-5 *1 (-681 *3))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-1153)) (-5 *3 (-626 (-533))) (-5 *1 (-533))))) -(((*1 *2 *3 *4 *3) (-12 (-5 *3 (-1100)) (-5 *4 (-950 (-213))) (-5 *2 (-213)) (-5 *1 (-115))))) -(((*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-550) (-834) (-1029 (-560)))) (-5 *2 (-304 *4)) (-5 *1 (-178 *4 *3)) (-4 *3 (-13 (-27) (-1173) (-426 (-167 *4)))))) ((*1 *2 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170)))) ((*1 *2 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-170)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-27) (-1173) (-426 *3)))))) -(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-560)) (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-560)) (-5 *1 (-1162 *2)) (-4 *2 (-359))))) -(((*1 *1 *1 *1) (-5 *1 (-842)))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *5 (-213)) (-5 *6 (-3 (|:| |fn| (-384)) (|:| |fp| (-79 FCN)))) (-5 *2 (-1027)) (-5 *1 (-730))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-626 (-1153))) (-5 *1 (-533))))) -(((*1 *2 *3 *4 *2 *3 *2 *3) (-12 (-5 *2 (-950 (-213))) (-5 *3 (-1100)) (-5 *4 (-213)) (-5 *1 (-115))))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-1039)) (-4 *2 (-669 *4 *5 *6)) (-5 *1 (-108 *4 *3 *2 *5 *6)) (-4 *3 (-1211 *4)) (-4 *5 (-369 *4)) (-4 *6 (-369 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1187))))) -(((*1 *2) (-12 (-5 *2 (-1241)) (-5 *1 (-1165 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-626 (-53))) (-5 *2 (-414 *3)) (-5 *1 (-44 *3)) (-4 *3 (-1211 (-53))))) ((*1 *2 *3) (-12 (-5 *2 (-414 *3)) (-5 *1 (-44 *3)) (-4 *3 (-1211 (-53))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-626 (-53))) (-4 *5 (-834)) (-4 *6 (-780)) (-5 *2 (-414 *3)) (-5 *1 (-47 *5 *6 *3)) (-4 *3 (-942 (-53) *6 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-626 (-53))) (-4 *5 (-834)) (-4 *6 (-780)) (-4 *7 (-942 (-53) *6 *5)) (-5 *2 (-414 (-1149 *7))) (-5 *1 (-47 *5 *6 *7)) (-5 *3 (-1149 *7)))) ((*1 *2 *3) (-12 (-4 *4 (-296)) (-5 *2 (-414 *3)) (-5 *1 (-165 *4 *3)) (-4 *3 (-1211 (-167 *4))))) ((*1 *2 *3 *4 *5) (-12 (-5 *5 (-121)) (-4 *4 (-13 (-359) (-832))) (-5 *2 (-414 *3)) (-5 *1 (-176 *4 *3)) (-4 *3 (-1211 (-167 *4))))) ((*1 *2 *3 *4) (-12 (-4 *4 (-13 (-359) (-832))) (-5 *2 (-414 *3)) (-5 *1 (-176 *4 *3)) (-4 *3 (-1211 (-167 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-359) (-832))) (-5 *2 (-414 *3)) (-5 *1 (-176 *4 *3)) (-4 *3 (-1211 (-167 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-344)) (-5 *2 (-414 *3)) (-5 *1 (-205 *4 *3)) (-4 *3 (-1211 *4)))) ((*1 *2 *3 *4) (-12 (-4 *4 (-846)) (-5 *2 (-414 (-1149 *4))) (-5 *1 (-309 *4)) (-5 *3 (-1149 *4)))) ((*1 *2 *3 *4) (-12 (-4 *4 (-851)) (-5 *2 (-414 (-1149 *4))) (-5 *1 (-311 *4)) (-5 *3 (-1149 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-344)) (-5 *2 (-414 *3)) (-5 *1 (-338 *4 *3)) (-4 *3 (-1211 *4)))) ((*1 *2 *3) (-12 (-5 *2 (-414 *3)) (-5 *1 (-437 *3)) (-4 *3 (-1211 (-560))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-755)) (-5 *2 (-414 *3)) (-5 *1 (-437 *3)) (-4 *3 (-1211 (-560))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-626 (-755))) (-5 *2 (-414 *3)) (-5 *1 (-437 *3)) (-4 *3 (-1211 (-560))))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-626 (-755))) (-5 *5 (-755)) (-5 *2 (-414 *3)) (-5 *1 (-437 *3)) (-4 *3 (-1211 (-560))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-755)) (-5 *2 (-414 *3)) (-5 *1 (-437 *3)) (-4 *3 (-1211 (-560))))) ((*1 *2 *3) (-12 (-5 *2 (-414 (-167 (-560)))) (-5 *1 (-441)) (-5 *3 (-167 (-560))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-834) (-10 -8 (-15 -4255 ((-1153) $)) (-15 -1395 ((-3 $ "failed") (-1153)))))) (-4 *5 (-780)) (-4 *7 (-550)) (-5 *2 (-414 *3)) (-5 *1 (-451 *4 *5 *6 *7 *3)) (-4 *6 (-550)) (-4 *3 (-942 *7 *5 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-296)) (-5 *2 (-414 (-1149 *4))) (-5 *1 (-453 *4)) (-5 *3 (-1149 *4)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-414 *6) *6)) (-4 *6 (-1211 *5)) (-4 *5 (-359)) (-4 *7 (-13 (-359) (-148) (-706 *5 *6))) (-5 *2 (-414 *3)) (-5 *1 (-495 *5 *6 *7 *3)) (-4 *3 (-1211 *7)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-414 (-1149 *7)) (-1149 *7))) (-4 *7 (-13 (-296) (-148))) (-4 *5 (-834)) (-4 *6 (-780)) (-5 *2 (-414 *3)) (-5 *1 (-537 *5 *6 *7 *3)) (-4 *3 (-942 *7 *6 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-414 (-1149 *7)) (-1149 *7))) (-4 *7 (-13 (-296) (-148))) (-4 *5 (-834)) (-4 *6 (-780)) (-4 *8 (-942 *7 *6 *5)) (-5 *2 (-414 (-1149 *8))) (-5 *1 (-537 *5 *6 *7 *8)) (-5 *3 (-1149 *8)))) ((*1 *2 *3) (-12 (-5 *2 (-414 *3)) (-5 *1 (-553 *3)) (-4 *3 (-542)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-626 *5) *6)) (-4 *5 (-13 (-359) (-148) (-1029 (-560)) (-1029 (-403 (-560))))) (-4 *6 (-1211 *5)) (-5 *2 (-626 (-635 (-403 *6)))) (-5 *1 (-639 *5 *6)) (-5 *3 (-635 (-403 *6))))) ((*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-359) (-148) (-1029 (-560)) (-1029 (-403 (-560))))) (-4 *5 (-1211 *4)) (-5 *2 (-626 (-635 (-403 *5)))) (-5 *1 (-639 *4 *5)) (-5 *3 (-635 (-403 *5))))) ((*1 *2 *3) (-12 (-5 *3 (-806 *4)) (-4 *4 (-834)) (-5 *2 (-626 (-655 *4))) (-5 *1 (-655 *4)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-560)) (-5 *2 (-626 *3)) (-5 *1 (-677 *3)) (-4 *3 (-1211 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-834)) (-4 *5 (-780)) (-4 *6 (-344)) (-5 *2 (-414 *3)) (-5 *1 (-679 *4 *5 *6 *3)) (-4 *3 (-942 *6 *5 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-834)) (-4 *5 (-780)) (-4 *6 (-344)) (-4 *7 (-942 *6 *5 *4)) (-5 *2 (-414 (-1149 *7))) (-5 *1 (-679 *4 *5 *6 *7)) (-5 *3 (-1149 *7)))) ((*1 *2 *3) (-12 (-4 *4 (-780)) (-4 *5 (-13 (-834) (-10 -8 (-15 -4255 ((-1153) $)) (-15 -1395 ((-3 $ "failed") (-1153)))))) (-4 *6 (-296)) (-5 *2 (-414 *3)) (-5 *1 (-712 *4 *5 *6 *3)) (-4 *3 (-942 (-945 *6) *4 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-780)) (-4 *5 (-13 (-834) (-10 -8 (-15 -4255 ((-1153) $))))) (-4 *6 (-550)) (-5 *2 (-414 *3)) (-5 *1 (-714 *4 *5 *6 *3)) (-4 *3 (-942 (-403 (-945 *6)) *4 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-13 (-296) (-148))) (-5 *2 (-414 *3)) (-5 *1 (-715 *4 *5 *6 *3)) (-4 *3 (-942 (-403 *6) *4 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-834)) (-4 *5 (-780)) (-4 *6 (-13 (-296) (-148))) (-5 *2 (-414 *3)) (-5 *1 (-723 *4 *5 *6 *3)) (-4 *3 (-942 *6 *5 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-834)) (-4 *5 (-780)) (-4 *6 (-13 (-296) (-148))) (-4 *7 (-942 *6 *5 *4)) (-5 *2 (-414 (-1149 *7))) (-5 *1 (-723 *4 *5 *6 *7)) (-5 *3 (-1149 *7)))) ((*1 *2 *3) (-12 (-5 *2 (-414 *3)) (-5 *1 (-999 *3)) (-4 *3 (-1211 (-403 (-560)))))) ((*1 *2 *3) (-12 (-5 *2 (-414 *3)) (-5 *1 (-1032 *3)) (-4 *3 (-1211 (-403 (-945 (-560))))))) ((*1 *2 *3) (-12 (-4 *4 (-1211 (-403 (-560)))) (-4 *5 (-13 (-359) (-148) (-706 (-403 (-560)) *4))) (-5 *2 (-414 *3)) (-5 *1 (-1064 *4 *5 *3)) (-4 *3 (-1211 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-1211 (-403 (-945 (-560))))) (-4 *5 (-13 (-359) (-148) (-706 (-403 (-945 (-560))) *4))) (-5 *2 (-414 *3)) (-5 *1 (-1066 *4 *5 *3)) (-4 *3 (-1211 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-447)) (-4 *7 (-942 *6 *4 *5)) (-5 *2 (-414 (-1149 (-403 *7)))) (-5 *1 (-1148 *4 *5 *6 *7)) (-5 *3 (-1149 (-403 *7))))) ((*1 *2 *1) (-12 (-5 *2 (-414 *1)) (-4 *1 (-1191)))) ((*1 *2 *3) (-12 (-5 *2 (-414 *3)) (-5 *1 (-1200 *3)) (-4 *3 (-1211 (-560)))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-635 (-403 *6))) (-5 *4 (-403 *6)) (-4 *6 (-1211 *5)) (-4 *5 (-13 (-359) (-148) (-1029 (-560)) (-1029 (-403 (-560))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4374 (-626 *4)))) (-5 *1 (-797 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-635 (-403 *6))) (-4 *6 (-1211 *5)) (-4 *5 (-13 (-359) (-148) (-1029 (-560)) (-1029 (-403 (-560))))) (-5 *2 (-2 (|:| -4374 (-626 (-403 *6))) (|:| -3818 (-671 *5)))) (-5 *1 (-797 *5 *6)) (-5 *4 (-626 (-403 *6))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-636 *6 (-403 *6))) (-5 *4 (-403 *6)) (-4 *6 (-1211 *5)) (-4 *5 (-13 (-359) (-148) (-1029 (-560)) (-1029 (-403 (-560))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4374 (-626 *4)))) (-5 *1 (-797 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-636 *6 (-403 *6))) (-4 *6 (-1211 *5)) (-4 *5 (-13 (-359) (-148) (-1029 (-560)) (-1029 (-403 (-560))))) (-5 *2 (-2 (|:| -4374 (-626 (-403 *6))) (|:| -3818 (-671 *5)))) (-5 *1 (-797 *5 *6)) (-5 *4 (-626 (-403 *6)))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1133 (-213))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1396 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-555))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-375) (-375))) (-5 *4 (-375)) (-5 *2 (-2 (|:| -2981 *4) (|:| -2301 *4) (|:| |totalpts| (-560)) (|:| |success| (-121)))) (-5 *1 (-776)) (-5 *5 (-560))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *2 (-1027)) (-5 *1 (-736))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-334 *4 *3 *5)) (-4 *4 (-1191)) (-4 *3 (-1211 *4)) (-4 *5 (-1211 (-403 *3))) (-5 *2 (-121)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1191)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-403 *4))) (-5 *2 (-121)))) ((*1 *2 *1) (-12 (-4 *1 (-334 *3 *4 *5)) (-4 *3 (-1191)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-403 *4))) (-5 *2 (-121))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *1 (-314 *4 *2)) (-4 *4 (-1082)) (-4 *2 (-137))))) -(((*1 *2 *3) (-12 (-5 *3 (-167 (-213))) (-5 *2 (-213)) (-5 *1 (-115))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-599 *1)) (-4 *1 (-426 *4)) (-4 *4 (-834)) (-4 *4 (-550)) (-5 *2 (-403 (-1149 *1))))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-599 *3)) (-4 *3 (-13 (-426 *6) (-27) (-1173))) (-4 *6 (-13 (-447) (-1029 (-560)) (-834) (-148) (-622 (-560)))) (-5 *2 (-1149 (-403 (-1149 *3)))) (-5 *1 (-556 *6 *3 *7)) (-5 *5 (-1149 *3)) (-4 *7 (-1082)))) ((*1 *2 *3) (-12 (-4 *4 (-1039)) (-4 *5 (-226 *6 (-755))) (-14 *6 (-755)) (-5 *2 (-1149 *4)) (-5 *1 (-900 *4 *3 *5 *6)) (-4 *3 (-318 *4 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1232 *5)) (-14 *5 (-1153)) (-4 *6 (-1039)) (-5 *2 (-1208 *5 (-945 *6))) (-5 *1 (-940 *5 *6)) (-5 *3 (-945 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-942 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-1149 *3)))) ((*1 *2 *1 *3) (-12 (-4 *4 (-1039)) (-4 *5 (-780)) (-4 *3 (-834)) (-5 *2 (-1149 *1)) (-4 *1 (-942 *4 *5 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-780)) (-4 *4 (-834)) (-4 *6 (-1039)) (-4 *7 (-942 *6 *5 *4)) (-5 *2 (-403 (-1149 *3))) (-5 *1 (-943 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-359) (-10 -8 (-15 -2801 ($ *7)) (-15 -2132 (*7 $)) (-15 -2139 (*7 $))))))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-13 (-359) (-10 -8 (-15 -2801 ($ *7)) (-15 -2132 (*7 $)) (-15 -2139 (*7 $))))) (-4 *7 (-942 *6 *5 *4)) (-4 *5 (-780)) (-4 *4 (-834)) (-4 *6 (-1039)) (-5 *1 (-943 *5 *4 *6 *7 *3)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1153)) (-4 *5 (-550)) (-5 *2 (-403 (-1149 (-403 (-945 *5))))) (-5 *1 (-1034 *5)) (-5 *3 (-403 (-945 *5)))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 (-560))) (-5 *2 (-626 (-671 (-560)))) (-5 *1 (-1092))))) -(((*1 *2 *1) (-12 (-4 *1 (-510 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-834))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-626 *1)) (-4 *1 (-1053 *4 *5 *6)) (-4 *4 (-1039)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-121)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-121)))) ((*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-121) *3 *3)) (-4 *1 (-1181 *5 *6 *7 *3)) (-4 *5 (-550)) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-121))))) -(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-430)))) ((*1 *2 *3) (-12 (-5 *2 (-121)) (-5 *1 (-565 *3)) (-4 *3 (-1029 (-560))))) ((*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *5 *6 *7)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *7 (-1082)) (-5 *2 (-121))))) -(((*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-671 (-213))) (-5 *4 (-560)) (-5 *5 (-121)) (-5 *2 (-1027)) (-5 *1 (-729))))) -(((*1 *2 *3 *2 *3 *2 *3) (-12 (-5 *2 (-950 (-213))) (-5 *3 (-1100)) (-5 *1 (-115))))) -(((*1 *2 *1) (-12 (-5 *2 (-626 (-599 *1))) (-4 *1 (-291))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-1153)) (-4 *5 (-13 (-834) (-1029 (-560)) (-447) (-622 (-560)))) (-5 *2 (-2 (|:| -1779 *3) (|:| |nconst| *3))) (-5 *1 (-563 *5 *3)) (-4 *3 (-13 (-27) (-1173) (-426 *5)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-626 *1)) (-4 *1 (-1053 *4 *5 *6)) (-4 *4 (-1039)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-121)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *2 (-121)))) ((*1 *2 *1) (-12 (-4 *1 (-1181 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-121)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-1181 *4 *5 *6 *3)) (-4 *4 (-550)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *3 (-1053 *4 *5 *6)) (-5 *2 (-121))))) -(((*1 *1 *1) (-12 (-5 *1 (-1174 *2)) (-4 *2 (-1082))))) -(((*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-809))))) -(((*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-671 (-213))) (-5 *4 (-560)) (-5 *5 (-121)) (-5 *2 (-1027)) (-5 *1 (-729))))) -(((*1 *2 *3) (-12 (-5 *2 (-167 (-375))) (-5 *1 (-772 *3)) (-4 *3 (-601 (-375))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-909)) (-5 *2 (-167 (-375))) (-5 *1 (-772 *3)) (-4 *3 (-601 (-375))))) ((*1 *2 *3) (-12 (-5 *3 (-167 *4)) (-4 *4 (-170)) (-4 *4 (-601 (-375))) (-5 *2 (-167 (-375))) (-5 *1 (-772 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-167 *5)) (-5 *4 (-909)) (-4 *5 (-170)) (-4 *5 (-601 (-375))) (-5 *2 (-167 (-375))) (-5 *1 (-772 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-945 (-167 *4))) (-4 *4 (-170)) (-4 *4 (-601 (-375))) (-5 *2 (-167 (-375))) (-5 *1 (-772 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-945 (-167 *5))) (-5 *4 (-909)) (-4 *5 (-170)) (-4 *5 (-601 (-375))) (-5 *2 (-167 (-375))) (-5 *1 (-772 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-945 *4)) (-4 *4 (-1039)) (-4 *4 (-601 (-375))) (-5 *2 (-167 (-375))) (-5 *1 (-772 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-945 *5)) (-5 *4 (-909)) (-4 *5 (-1039)) (-4 *5 (-601 (-375))) (-5 *2 (-167 (-375))) (-5 *1 (-772 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-403 (-945 *4))) (-4 *4 (-550)) (-4 *4 (-601 (-375))) (-5 *2 (-167 (-375))) (-5 *1 (-772 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-403 (-945 *5))) (-5 *4 (-909)) (-4 *5 (-550)) (-4 *5 (-601 (-375))) (-5 *2 (-167 (-375))) (-5 *1 (-772 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-403 (-945 (-167 *4)))) (-4 *4 (-550)) (-4 *4 (-601 (-375))) (-5 *2 (-167 (-375))) (-5 *1 (-772 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-403 (-945 (-167 *5)))) (-5 *4 (-909)) (-4 *5 (-550)) (-4 *5 (-601 (-375))) (-5 *2 (-167 (-375))) (-5 *1 (-772 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-304 *4)) (-4 *4 (-550)) (-4 *4 (-834)) (-4 *4 (-601 (-375))) (-5 *2 (-167 (-375))) (-5 *1 (-772 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-304 *5)) (-5 *4 (-909)) (-4 *5 (-550)) (-4 *5 (-834)) (-4 *5 (-601 (-375))) (-5 *2 (-167 (-375))) (-5 *1 (-772 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-304 (-167 *4))) (-4 *4 (-550)) (-4 *4 (-834)) (-4 *4 (-601 (-375))) (-5 *2 (-167 (-375))) (-5 *1 (-772 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-304 (-167 *5))) (-5 *4 (-909)) (-4 *5 (-550)) (-4 *5 (-834)) (-4 *5 (-601 (-375))) (-5 *2 (-167 (-375))) (-5 *1 (-772 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-254 *3)) (-4 *3 (-1082))))) -(((*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-809))))) -(((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-809))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-550) (-148))) (-5 *1 (-534 *3 *2)) (-4 *2 (-1226 *3)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-359) (-364) (-601 (-560)))) (-4 *4 (-1211 *3)) (-4 *5 (-706 *3 *4)) (-5 *1 (-538 *3 *4 *5 *2)) (-4 *2 (-1226 *5)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-359) (-364) (-601 (-560)))) (-5 *1 (-539 *3 *2)) (-4 *2 (-1226 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1133 *3)) (-4 *3 (-13 (-550) (-148))) (-5 *1 (-1129 *3))))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-13 (-447) (-148))) (-5 *2 (-414 *3)) (-5 *1 (-103 *4 *3)) (-4 *3 (-1211 *4)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-626 *3)) (-4 *3 (-1211 *5)) (-4 *5 (-13 (-447) (-148))) (-5 *2 (-414 *3)) (-5 *1 (-103 *5 *3))))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-1191)) (-4 *5 (-1211 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-403 *5)) (|:| |c2| (-403 *5)) (|:| |deg| (-755)))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1211 (-403 *5)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1133 (-1133 *4))) (-5 *2 (-1133 *4)) (-5 *1 (-1137 *4)) (-4 *4 (-43 (-403 (-560)))) (-4 *4 (-1039))))) -(((*1 *2) (-12 (-4 *3 (-550)) (-5 *2 (-626 *4)) (-5 *1 (-48 *3 *4)) (-4 *4 (-413 *3))))) -(((*1 *2 *3 *3 *4) (-12 (-5 *3 (-626 *5)) (-4 *5 (-13 (-550) (-447))) (-5 *4 (-755)) (-5 *2 (-403 (-1149 *5))) (-5 *1 (-340 *5 *6)) (-4 *6 (-52 *5 *4)))) ((*1 *2 *3 *3 *4) (-12 (-5 *3 (-626 (-403 *5))) (-4 *5 (-13 (-550) (-447))) (-5 *4 (-755)) (-5 *2 (-403 (-1149 *5))) (-5 *1 (-340 *5 *6)) (-4 *6 (-52 *5 *4)))) ((*1 *2 *2 *3 *3) (-12 (-5 *2 (-1208 *4 *5)) (-5 *3 (-626 *5)) (-14 *4 (-1153)) (-4 *5 (-359)) (-5 *1 (-911 *4 *5)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-626 *5)) (-4 *5 (-359)) (-5 *2 (-1149 *5)) (-5 *1 (-911 *4 *5)) (-14 *4 (-1153)))) ((*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-626 *6)) (-5 *4 (-755)) (-4 *6 (-359)) (-5 *2 (-403 (-945 *6))) (-5 *1 (-1040 *5 *6)) (-14 *5 (-1153))))) -(((*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-560)) (-5 *4 (-671 (-213))) (-5 *5 (-213)) (-5 *2 (-1027)) (-5 *1 (-736))))) -(((*1 *2 *3) (-12 (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *6 (-942 *4 *7 (-844 *5))) (-4 *7 (-226 (-2271 *5) (-755))) (-4 *8 (-963 *4)) (-4 *9 (-633 *4)) (-4 *10 (-912 *4 *9)) (-4 *11 (-230 *10)) (-4 *3 (-528 *4 *5 *6 *7 *8 *9 *10 *11 *13)) (-4 *13 (-117)) (-5 *2 (-626 *3)) (-5 *1 (-255 *4 *5 *6 *7 *8 *9 *10 *11 *3 *12 *13)) (-4 *12 (-253 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1236 (-671 *4))) (-4 *4 (-170)) (-5 *2 (-1236 (-671 (-945 *4)))) (-5 *1 (-179 *4))))) -(((*1 *2) (-12 (-4 *3 (-1191)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-403 *4))) (-5 *2 (-1236 *1)) (-4 *1 (-334 *3 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 (-626 (-936 (-213))))) (-5 *2 (-626 (-1076 (-213)))) (-5 *1 (-920))))) -(((*1 *2) (-12 (-4 *3 (-170)) (-5 *2 (-1236 *1)) (-4 *1 (-363 *3))))) -(((*1 *1 *1 *1) (-5 *1 (-121))) ((*1 *1 *1 *1) (-4 *1 (-132))) ((*1 *1 *1 *1) (-5 *1 (-1100)))) -(((*1 *2 *3) (-12 (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *6 (-942 *4 *7 (-844 *5))) (-4 *7 (-226 (-2271 *5) (-755))) (-4 *8 (-963 *4)) (-4 *9 (-633 *4)) (-4 *10 (-912 *4 *9)) (-4 *11 (-230 *10)) (-4 *12 (-528 *4 *5 *6 *7 *8 *9 *10 *11 *13)) (-4 *13 (-117)) (-5 *2 (-1241)) (-5 *1 (-255 *4 *5 *6 *7 *8 *9 *10 *11 *12 *3 *13)) (-4 *3 (-253 *12))))) -(((*1 *2 *1) (-12 (-4 *1 (-1255 *3 *4)) (-4 *3 (-834)) (-4 *4 (-1039)) (-5 *2 (-806 *3)))) ((*1 *2 *1) (-12 (-4 *2 (-830)) (-5 *1 (-1257 *3 *2)) (-4 *3 (-1039))))) -(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-909)) (-5 *4 (-1135)) (-5 *2 (-1241)) (-5 *1 (-1237))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-283 (-827 *3))) (-4 *3 (-13 (-27) (-1173) (-426 *5))) (-4 *5 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-3 (-827 *3) (-2 (|:| |leftHandLimit| (-3 (-827 *3) "failed")) (|:| |rightHandLimit| (-3 (-827 *3) "failed"))) "failed")) (-5 *1 (-619 *5 *3)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-283 *3)) (-5 *5 (-1135)) (-4 *3 (-13 (-27) (-1173) (-426 *6))) (-4 *6 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-827 *3)) (-5 *1 (-619 *6 *3)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-283 (-827 (-945 *5)))) (-4 *5 (-447)) (-5 *2 (-3 (-827 (-403 (-945 *5))) (-2 (|:| |leftHandLimit| (-3 (-827 (-403 (-945 *5))) "failed")) (|:| |rightHandLimit| (-3 (-827 (-403 (-945 *5))) "failed"))) "failed")) (-5 *1 (-620 *5)) (-5 *3 (-403 (-945 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-283 (-403 (-945 *5)))) (-5 *3 (-403 (-945 *5))) (-4 *5 (-447)) (-5 *2 (-3 (-827 *3) (-2 (|:| |leftHandLimit| (-3 (-827 *3) "failed")) (|:| |rightHandLimit| (-3 (-827 *3) "failed"))) "failed")) (-5 *1 (-620 *5)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-283 (-403 (-945 *6)))) (-5 *5 (-1135)) (-5 *3 (-403 (-945 *6))) (-4 *6 (-447)) (-5 *2 (-827 *3)) (-5 *1 (-620 *6))))) -(((*1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-780)) (-4 *4 (-834))))) -(((*1 *2 *3) (-12 (-5 *3 (-1236 *4)) (-4 *4 (-344)) (-5 *2 (-1149 *4)) (-5 *1 (-524 *4))))) -(((*1 *2 *3) (-12 (-5 *2 (-121)) (-5 *1 (-129 *3)) (-4 *3 (-1211 (-560))))) ((*1 *2 *3 *2) (-12 (-5 *2 (-121)) (-5 *1 (-129 *3)) (-4 *3 (-1211 (-560)))))) -(((*1 *2 *3 *4) (-12 (-4 *5 (-359)) (-14 *6 (-626 (-1153))) (-4 *4 (-942 *5 *7 (-844 *6))) (-4 *7 (-226 (-2271 *6) (-755))) (-4 *3 (-963 *5)) (-4 *8 (-633 *5)) (-4 *9 (-912 *5 *8)) (-4 *10 (-230 *9)) (-4 *12 (-117)) (-4 *2 (-253 *11)) (-5 *1 (-255 *5 *6 *4 *7 *3 *8 *9 *10 *11 *2 *12)) (-4 *11 (-528 *5 *6 *4 *7 *3 *8 *9 *10 *12))))) -(((*1 *1 *2) (|partial| -12 (-5 *2 (-806 *3)) (-4 *3 (-834)) (-5 *1 (-655 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1241)) (-5 *1 (-842))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1135)) (-5 *3 (-626 (-251))) (-5 *1 (-249)))) ((*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-251))))) -(((*1 *2 *3) (-12 (-4 *4 (-834)) (-5 *2 (-626 (-626 *4))) (-5 *1 (-1159 *4)) (-5 *3 (-626 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-117)) (-5 *2 (-560))))) -(((*1 *2) (-12 (-5 *2 (-1241)) (-5 *1 (-58))))) -(((*1 *2 *1) (-12 (-4 *3 (-447)) (-4 *4 (-834)) (-4 *5 (-780)) (-5 *2 (-626 *6)) (-5 *1 (-980 *3 *4 *5 *6)) (-4 *6 (-942 *3 *5 *4))))) -(((*1 *2 *3 *4) (-12 (-4 *5 (-359)) (-14 *6 (-626 (-1153))) (-4 *3 (-942 *5 *7 (-844 *6))) (-4 *7 (-226 (-2271 *6) (-755))) (-4 *8 (-963 *5)) (-4 *9 (-633 *5)) (-4 *10 (-912 *5 *9)) (-4 *11 (-528 *5 *6 *3 *7 *8 *9 *10 *2 *12)) (-4 *12 (-117)) (-4 *2 (-230 *10)) (-5 *1 (-255 *5 *6 *3 *7 *8 *9 *10 *2 *11 *4 *12)) (-4 *4 (-253 *11))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1241)) (-5 *1 (-1238))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-626 *6)) (-4 *6 (-834)) (-4 *4 (-359)) (-4 *5 (-780)) (-5 *2 (-2 (|:| |mval| (-671 *4)) (|:| |invmval| (-671 *4)) (|:| |genIdeal| (-506 *4 *5 *6 *7)))) (-5 *1 (-506 *4 *5 *6 *7)) (-4 *7 (-942 *4 *5 *6))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-755)) (-5 *3 (-936 *4)) (-4 *1 (-1114 *4)) (-4 *4 (-1039)))) ((*1 *2 *1 *3 *4) (-12 (-5 *3 (-755)) (-5 *4 (-936 (-213))) (-5 *2 (-1241)) (-5 *1 (-1238))))) -(((*1 *1 *2 *2 *2 *2 *2 *3 *4) (-12 (-5 *2 (-560)) (-5 *3 (-121)) (-5 *4 (-3 "left" "center" "right" "vertical" "horizontal")) (-4 *1 (-117))))) -(((*1 *2 *3 *4 *4) (-12 (-5 *4 (-599 *3)) (-4 *3 (-13 (-426 *5) (-27) (-1173))) (-4 *5 (-13 (-447) (-1029 (-560)) (-834) (-148) (-622 (-560)))) (-5 *2 (-577 *3)) (-5 *1 (-562 *5 *3 *6)) (-4 *6 (-1082))))) -(((*1 *2 *3) (-12 (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *6 (-942 *4 *7 (-844 *5))) (-4 *7 (-226 (-2271 *5) (-755))) (-4 *8 (-963 *4)) (-4 *9 (-633 *4)) (-4 *10 (-912 *4 *9)) (-4 *11 (-230 *10)) (-4 *12 (-528 *4 *5 *6 *7 *8 *9 *10 *11 *13)) (-4 *13 (-117)) (-5 *2 (-1241)) (-5 *1 (-255 *4 *5 *6 *7 *8 *9 *10 *11 *12 *3 *13)) (-4 *3 (-253 *12))))) -(((*1 *2 *3 *3 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-1241)) (-5 *1 (-981 *4 *5 *6 *7 *8)) (-4 *8 (-1058 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-1241)) (-5 *1 (-1089 *4 *5 *6 *7 *8)) (-4 *8 (-1058 *4 *5 *6 *7))))) -(((*1 *1 *1) (-12 (-4 *1 (-426 *2)) (-4 *2 (-834)) (-4 *2 (-1039)))) ((*1 *1 *1) (-12 (-5 *1 (-725 *2 *3)) (-14 *2 (-1153)) (-4 *3 (-13 (-1039) (-834) (-550))))) ((*1 *1 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-550))))) -(((*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-560))) (-5 *1 (-1037))))) -(((*1 *2 *1) (-12 (-4 *1 (-117)) (-5 *2 (-560))))) -(((*1 *2 *1) (-12 (-4 *1 (-344)) (-5 *2 (-121)))) ((*1 *2 *3) (-12 (-5 *3 (-1149 *4)) (-4 *4 (-344)) (-5 *2 (-121)) (-5 *1 (-352 *4))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-626 *13)) (-4 *13 (-253 *12)) (-4 *12 (-528 *4 *5 *6 *7 *8 *9 *10 *11 *14)) (-4 *14 (-117)) (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *6 (-942 *4 *7 (-844 *5))) (-4 *7 (-226 (-2271 *5) *2)) (-4 *8 (-963 *4)) (-4 *9 (-633 *4)) (-4 *10 (-912 *4 *9)) (-4 *11 (-230 *10)) (-5 *2 (-755)) (-5 *1 (-255 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13 *14))))) -(((*1 *2 *3 *1) (-12 (-4 *1 (-1181 *4 *5 *3 *6)) (-4 *4 (-550)) (-4 *5 (-780)) (-4 *3 (-834)) (-4 *6 (-1053 *4 *5 *3)) (-5 *2 (-121)))) ((*1 *2 *1) (-12 (-4 *1 (-1253 *3)) (-4 *3 (-359)) (-5 *2 (-121))))) -(((*1 *2 *2 *3 *4) (-12 (-5 *3 (-626 (-599 *6))) (-5 *4 (-1153)) (-5 *2 (-599 *6)) (-4 *6 (-426 *5)) (-4 *5 (-834)) (-5 *1 (-569 *5 *6))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-626 (-844 *5))) (-14 *5 (-626 (-1153))) (-4 *6 (-447)) (-5 *2 (-2 (|:| |dpolys| (-626 (-237 *5 *6))) (|:| |coords| (-626 (-560))))) (-5 *1 (-469 *5 *6 *7)) (-5 *3 (-626 (-237 *5 *6))) (-4 *7 (-447))))) -(((*1 *2 *1) (-12 (-4 *1 (-117)) (-5 *2 (-121))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 *7)) (-4 *7 (-942 *4 *5 *6)) (-4 *6 (-601 (-1153))) (-4 *4 (-359)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-1142 (-626 (-945 *4)) (-626 (-283 (-945 *4))))) (-5 *1 (-506 *4 *5 *6 *7))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-626 *14)) (-4 *14 (-253 *13)) (-4 *13 (-528 *5 *6 *7 *8 *9 *10 *11 *12 *15)) (-4 *15 (-117)) (-4 *5 (-359)) (-14 *6 (-626 (-1153))) (-4 *7 (-942 *5 *8 (-844 *6))) (-4 *8 (-226 (-2271 *6) *3)) (-4 *9 (-963 *5)) (-4 *10 (-633 *5)) (-4 *11 (-912 *5 *10)) (-4 *12 (-230 *11)) (-5 *3 (-755)) (-5 *2 (-560)) (-5 *1 (-255 *5 *6 *7 *8 *9 *10 *11 *12 *13 *14 *15))))) -(((*1 *2 *1) (-12 (-4 *1 (-593 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1187)) (-5 *2 (-626 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-755)) (-5 *1 (-266))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-322))))) -(((*1 *2 *1) (-12 (-4 *1 (-117)) (-5 *2 (-560))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-359) (-832))) (-5 *1 (-176 *3 *2)) (-4 *2 (-1211 (-167 *3)))))) -(((*1 *2 *3) (-12 (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *6 (-942 *4 *7 (-844 *5))) (-4 *7 (-226 (-2271 *5) (-755))) (-4 *8 (-963 *4)) (-4 *9 (-633 *4)) (-4 *10 (-912 *4 *9)) (-4 *11 (-528 *4 *5 *6 *7 *8 *9 *10 *2 *12)) (-4 *12 (-117)) (-4 *2 (-230 *10)) (-5 *1 (-255 *4 *5 *6 *7 *8 *9 *10 *2 *11 *3 *12)) (-4 *3 (-253 *11))))) -(((*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-437 *3)) (-4 *3 (-1211 (-560)))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-879 *4)) (-4 *4 (-1082)) (-5 *1 (-877 *4 *3)) (-4 *3 (-1187)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-57)) (-5 *1 (-879 *3)) (-4 *3 (-1082))))) -(((*1 *1 *1) (-4 *1 (-1121)))) -(((*1 *2 *1) (-12 (-4 *1 (-117)) (-5 *2 (-560))))) -(((*1 *2 *1) (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-542)) (-5 *2 (-403 (-560))))) ((*1 *2 *1) (-12 (-5 *2 (-403 (-560))) (-5 *1 (-414 *3)) (-4 *3 (-542)) (-4 *3 (-550)))) ((*1 *2 *1) (-12 (-4 *1 (-542)) (-5 *2 (-403 (-560))))) ((*1 *2 *1) (-12 (-4 *1 (-784 *3)) (-4 *3 (-170)) (-4 *3 (-542)) (-5 *2 (-403 (-560))))) ((*1 *2 *1) (-12 (-5 *2 (-403 (-560))) (-5 *1 (-820 *3)) (-4 *3 (-542)) (-4 *3 (-1082)))) ((*1 *2 *1) (-12 (-5 *2 (-403 (-560))) (-5 *1 (-827 *3)) (-4 *3 (-542)) (-4 *3 (-1082)))) ((*1 *2 *1) (-12 (-4 *1 (-989 *3)) (-4 *3 (-170)) (-4 *3 (-542)) (-5 *2 (-403 (-560))))) ((*1 *2 *3) (-12 (-5 *2 (-403 (-560))) (-5 *1 (-1000 *3)) (-4 *3 (-1029 *2))))) -(((*1 *2 *3) (-12 (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *6 (-942 *4 *7 (-844 *5))) (-4 *7 (-226 (-2271 *5) (-755))) (-4 *8 (-963 *4)) (-4 *9 (-633 *4)) (-4 *10 (-912 *4 *9)) (-4 *11 (-230 *10)) (-4 *12 (-528 *4 *5 *6 *7 *8 *9 *10 *11 *13)) (-4 *13 (-117)) (-5 *2 (-1241)) (-5 *1 (-255 *4 *5 *6 *7 *8 *9 *10 *11 *12 *3 *13)) (-4 *3 (-253 *12))))) -(((*1 *2 *1) (-12 (-5 *2 (-414 *3)) (-5 *1 (-902 *3)) (-4 *3 (-296))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-560)) (-5 *4 (-414 *2)) (-4 *2 (-942 *7 *5 *6)) (-5 *1 (-724 *5 *6 *7 *2)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *7 (-296))))) -(((*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-167 (-213)) (-167 (-213)))) (-5 *4 (-1076 (-213))) (-5 *2 (-1238)) (-5 *1 (-245))))) -(((*1 *2 *1) (-12 (-4 *1 (-117)) (-5 *2 (-560))))) -(((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1106 *4 *3 *5))) (-4 *4 (-43 (-403 (-560)))) (-4 *4 (-1039)) (-4 *3 (-834)) (-5 *1 (-1106 *4 *3 *5)) (-4 *5 (-942 *4 (-526 *3) *3)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1182 *4))) (-5 *3 (-1153)) (-5 *1 (-1182 *4)) (-4 *4 (-43 (-403 (-560)))) (-4 *4 (-1039))))) -(((*1 *2 *3) (-12 (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *6 (-942 *4 *7 (-844 *5))) (-4 *7 (-226 (-2271 *5) (-755))) (-4 *8 (-963 *4)) (-4 *9 (-633 *4)) (-4 *10 (-912 *4 *9)) (-4 *11 (-230 *10)) (-4 *12 (-528 *4 *5 *6 *7 *8 *9 *10 *11 *13)) (-4 *13 (-117)) (-5 *2 (-1241)) (-5 *1 (-255 *4 *5 *6 *7 *8 *9 *10 *11 *12 *3 *13)) (-4 *3 (-253 *12)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-626 *7)) (-4 *7 (-942 *5 *8 (-844 *6))) (-4 *8 (-226 (-2271 *6) (-755))) (-4 *5 (-359)) (-14 *6 (-626 (-1153))) (-4 *9 (-963 *5)) (-4 *10 (-633 *5)) (-4 *11 (-912 *5 *10)) (-4 *12 (-230 *11)) (-4 *13 (-528 *5 *6 *7 *8 *9 *10 *11 *12 *14)) (-4 *14 (-117)) (-5 *2 (-1241)) (-5 *1 (-255 *5 *6 *7 *8 *9 *10 *11 *12 *13 *3 *14)) (-4 *3 (-253 *13))))) -(((*1 *1 *1) (-12 (-4 *1 (-421 *2)) (-4 *2 (-1082)) (-4 *2 (-364))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1100)) (-5 *2 (-1241)) (-5 *1 (-818))))) -(((*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-809))))) -(((*1 *2 *3) (-12 (-5 *3 (-1076 (-827 (-213)))) (-5 *2 (-213)) (-5 *1 (-182)))) ((*1 *2 *3) (-12 (-5 *3 (-1076 (-827 (-213)))) (-5 *2 (-213)) (-5 *1 (-289)))) ((*1 *2 *3) (-12 (-5 *3 (-1076 (-827 (-213)))) (-5 *2 (-213)) (-5 *1 (-294))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-1039)) (-5 *1 (-439 *3 *2)) (-4 *2 (-1211 *3))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-156)) (-5 *2 (-1241)) (-5 *1 (-1238))))) -(((*1 *2 *2 *3) (-12 (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *6 (-226 (-2271 *5) (-755))) (-5 *1 (-119 *4 *5 *2 *6 *3)) (-4 *2 (-318 *4 *6)) (-4 *3 (-117))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-318 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-779)))) ((*1 *2 *3 *2) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-226 *6 (-755))) (-14 *6 (-755)) (-4 *4 (-1039)) (-5 *1 (-900 *4 *2 *5 *6)) (-4 *2 (-318 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-626 (-2 (|:| |k| (-1153)) (|:| |c| (-1256 *3))))) (-5 *1 (-1256 *3)) (-4 *3 (-1039)))) ((*1 *2 *1) (-12 (-5 *2 (-626 (-2 (|:| |k| *3) (|:| |c| (-1258 *3 *4))))) (-5 *1 (-1258 *3 *4)) (-4 *3 (-834)) (-4 *4 (-1039))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-213)) (-5 *1 (-214)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-167 (-213))) (-5 *1 (-214)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-427 *3 *2)) (-4 *2 (-426 *3)))) ((*1 *1 *1 *1) (-4 *1 (-1116)))) -(((*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-550)) (-5 *2 (-121))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-237 (-4162 (QUOTE X) (QUOTE -3095)) *5)) (-4 *5 (-359)) (-14 *6 (-626 (-1153))) (-4 *2 (-318 *5 *7)) (-5 *1 (-119 *5 *6 *2 *7 *4)) (-4 *7 (-226 (-2271 *6) (-755))) (-4 *4 (-117))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-755)) (-5 *2 (-626 (-1153))) (-5 *1 (-200)) (-5 *3 (-1153)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-304 (-213))) (-5 *4 (-755)) (-5 *2 (-626 (-1153))) (-5 *1 (-258)))) ((*1 *2 *1) (-12 (-4 *1 (-370 *3 *4)) (-4 *3 (-834)) (-4 *4 (-170)) (-5 *2 (-626 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-626 *3)) (-5 *1 (-610 *3 *4 *5)) (-4 *3 (-834)) (-4 *4 (-13 (-170) (-699 (-403 (-560))))) (-14 *5 (-909)))) ((*1 *2 *1) (-12 (-5 *2 (-626 *3)) (-5 *1 (-655 *3)) (-4 *3 (-834)))) ((*1 *2 *1) (-12 (-5 *2 (-626 *3)) (-5 *1 (-659 *3)) (-4 *3 (-834)))) ((*1 *2 *1) (-12 (-5 *2 (-626 *3)) (-5 *1 (-806 *3)) (-4 *3 (-834)))) ((*1 *2 *1) (-12 (-5 *2 (-626 *3)) (-5 *1 (-880 *3)) (-4 *3 (-834)))) ((*1 *2 *1) (-12 (-4 *1 (-1251 *3 *4)) (-4 *3 (-834)) (-4 *4 (-1039)) (-5 *2 (-626 *3))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-702)) (-5 *2 (-909)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-704)) (-5 *2 (-755))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1173))))) -(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (-5 *2 (-375)) (-5 *1 (-182))))) -(((*1 *2 *3) (-12 (-5 *3 (-237 (-4162 (QUOTE X) (QUOTE -3095)) *4)) (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *7 (-226 (-2271 *5) (-755))) (-5 *2 (-626 (-626 (-755)))) (-5 *1 (-119 *4 *5 *6 *7 *8)) (-4 *6 (-318 *4 *7)) (-4 *8 (-117))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-1149 *3)) (-4 *3 (-344)) (-5 *1 (-352 *3))))) -(((*1 *2 *3 *4) (-12 (-4 *5 (-359)) (-4 *5 (-550)) (-5 *2 (-2 (|:| |minor| (-626 (-909))) (|:| -2654 *3) (|:| |minors| (-626 (-626 (-909)))) (|:| |ops| (-626 *3)))) (-5 *1 (-95 *5 *3)) (-5 *4 (-909)) (-4 *3 (-638 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-945 *4)) (-4 *4 (-13 (-296) (-148))) (-4 *2 (-942 *4 *6 *5)) (-5 *1 (-916 *4 *5 *6 *2)) (-4 *5 (-13 (-834) (-601 (-1153)))) (-4 *6 (-780))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994)))))) -(((*1 *2 *3 *4) (-12 (-4 *5 (-359)) (-14 *6 (-626 (-1153))) (-4 *7 (-226 (-2271 *6) (-755))) (-5 *2 (-237 (-4162 (QUOTE X) (QUOTE -3095)) *5)) (-5 *1 (-119 *5 *6 *3 *7 *4)) (-4 *3 (-318 *5 *7)) (-4 *4 (-117))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-909)) (-5 *2 (-1241)) (-5 *1 (-203 *4)) (-4 *4 (-13 (-834) (-10 -8 (-15 -2778 ((-1135) $ (-1153))) (-15 -4106 (*2 $)) (-15 -1489 (*2 $))))))) ((*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-203 *3)) (-4 *3 (-13 (-834) (-10 -8 (-15 -2778 ((-1135) $ (-1153))) (-15 -4106 (*2 $)) (-15 -1489 (*2 $))))))) ((*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-503))))) -(((*1 *1 *1) (-4 *1 (-612))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-613 *3 *2)) (-4 *2 (-13 (-426 *3) (-994) (-1173)))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-626 *6)) (-5 *4 (-1153)) (-4 *6 (-426 *5)) (-4 *5 (-834)) (-5 *2 (-626 (-599 *6))) (-5 *1 (-569 *5 *6))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1226 *4)) (-5 *1 (-1228 *4 *2)) (-4 *4 (-43 (-403 (-560))))))) -(((*1 *2 *2 *3 *4) (-12 (-5 *2 (-237 (-4162 (QUOTE X) (QUOTE -3095)) *5)) (-4 *5 (-359)) (-5 *3 (-755)) (-14 *6 (-626 (-1153))) (-4 *8 (-226 (-2271 *6) *3)) (-5 *1 (-119 *5 *6 *7 *8 *4)) (-4 *7 (-318 *5 *8)) (-4 *4 (-117))))) -(((*1 *2 *3 *3) (|partial| -12 (-4 *4 (-550)) (-5 *2 (-2 (|:| -2583 *3) (|:| -4397 *3))) (-5 *1 (-1206 *4 *3)) (-4 *3 (-1211 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-676 *3)) (-4 *3 (-1082)) (-5 *2 (-626 (-2 (|:| -2371 *3) (|:| -4035 (-755)))))))) -(((*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-743))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-626 *3)) (-4 *3 (-1091 *5 *6 *7 *8)) (-4 *5 (-13 (-296) (-148))) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *8 (-1053 *5 *6 *7)) (-5 *2 (-121)) (-5 *1 (-582 *5 *6 *7 *8 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-2 (|:| |gen| *3) (|:| -2469 (-560)))) (-5 *1 (-231 *3)) (-4 *3 (-1080)))) ((*1 *1 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1187)))) ((*1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-780)) (-4 *4 (-834))))) -(((*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-834)) (-5 *1 (-130 *3))))) -(((*1 *2) (-12 (-5 *2 (-1241)) (-5 *1 (-1068 *3)) (-4 *3 (-138))))) -(((*1 *1) (-5 *1 (-156)))) -(((*1 *2 *3) (-12 (-4 *4 (-550)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4069 *4))) (-5 *1 (-962 *4 *3)) (-4 *3 (-1211 *4))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-1236 (-1236 (-560)))) (-5 *3 (-909)) (-5 *1 (-464))))) -(((*1 *2 *3) (-12 (-5 *3 (-1208 *5 *4)) (-4 *4 (-447)) (-4 *4 (-807)) (-14 *5 (-1153)) (-5 *2 (-560)) (-5 *1 (-1096 *4 *5))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-57)) (-5 *1 (-56 *2)) (-4 *2 (-1187)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-945 (-375))) (-5 *1 (-331 *3 *4 *5)) (-4 *5 (-1029 (-375))) (-14 *3 (-626 (-1153))) (-14 *4 (-626 (-1153))) (-4 *5 (-383)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-403 (-945 (-375)))) (-5 *1 (-331 *3 *4 *5)) (-4 *5 (-1029 (-375))) (-14 *3 (-626 (-1153))) (-14 *4 (-626 (-1153))) (-4 *5 (-383)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-304 (-375))) (-5 *1 (-331 *3 *4 *5)) (-4 *5 (-1029 (-375))) (-14 *3 (-626 (-1153))) (-14 *4 (-626 (-1153))) (-4 *5 (-383)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-945 (-560))) (-5 *1 (-331 *3 *4 *5)) (-4 *5 (-1029 (-560))) (-14 *3 (-626 (-1153))) (-14 *4 (-626 (-1153))) (-4 *5 (-383)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-403 (-945 (-560)))) (-5 *1 (-331 *3 *4 *5)) (-4 *5 (-1029 (-560))) (-14 *3 (-626 (-1153))) (-14 *4 (-626 (-1153))) (-4 *5 (-383)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-304 (-560))) (-5 *1 (-331 *3 *4 *5)) (-4 *5 (-1029 (-560))) (-14 *3 (-626 (-1153))) (-14 *4 (-626 (-1153))) (-4 *5 (-383)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1153)) (-5 *1 (-331 *3 *4 *5)) (-14 *3 (-626 *2)) (-14 *4 (-626 *2)) (-4 *5 (-383)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-304 *5)) (-4 *5 (-383)) (-5 *1 (-331 *3 *4 *5)) (-14 *3 (-626 (-1153))) (-14 *4 (-626 (-1153))))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-671 (-403 (-945 (-560))))) (-4 *1 (-380)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-671 (-403 (-945 (-375))))) (-4 *1 (-380)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-671 (-945 (-560)))) (-4 *1 (-380)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-671 (-945 (-375)))) (-4 *1 (-380)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-671 (-304 (-560)))) (-4 *1 (-380)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-671 (-304 (-375)))) (-4 *1 (-380)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-403 (-945 (-560)))) (-4 *1 (-392)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-403 (-945 (-375)))) (-4 *1 (-392)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-945 (-560))) (-4 *1 (-392)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-945 (-375))) (-4 *1 (-392)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-304 (-560))) (-4 *1 (-392)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-304 (-375))) (-4 *1 (-392)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1236 (-403 (-945 (-560))))) (-4 *1 (-436)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1236 (-403 (-945 (-375))))) (-4 *1 (-436)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1236 (-945 (-560)))) (-4 *1 (-436)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1236 (-945 (-375)))) (-4 *1 (-436)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1236 (-304 (-560)))) (-4 *1 (-436)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1236 (-304 (-375)))) (-4 *1 (-436)))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-344)) (-4 *5 (-321 *4)) (-4 *6 (-1211 *5)) (-5 *2 (-1149 (-1149 *4))) (-5 *1 (-761 *4 *5 *6 *3 *7)) (-4 *3 (-1211 *6)) (-14 *7 (-909)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-626 *6)) (-4 *6 (-1053 *3 *4 *5)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *1 (-969 *3 *4 *5 *6)))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-1029 *2)) (-4 *2 (-1187)))) ((*1 *1 *2) (|partial| -2318 (-12 (-5 *2 (-945 *3)) (-12 (-3186 (-4 *3 (-43 (-403 (-560))))) (-3186 (-4 *3 (-43 (-560)))) (-4 *5 (-601 (-1153)))) (-4 *3 (-1039)) (-4 *1 (-1053 *3 *4 *5)) (-4 *4 (-780)) (-4 *5 (-834))) (-12 (-5 *2 (-945 *3)) (-12 (-3186 (-4 *3 (-542))) (-3186 (-4 *3 (-43 (-403 (-560))))) (-4 *3 (-43 (-560))) (-4 *5 (-601 (-1153)))) (-4 *3 (-1039)) (-4 *1 (-1053 *3 *4 *5)) (-4 *4 (-780)) (-4 *5 (-834))) (-12 (-5 *2 (-945 *3)) (-12 (-3186 (-4 *3 (-985 (-560)))) (-4 *3 (-43 (-403 (-560)))) (-4 *5 (-601 (-1153)))) (-4 *3 (-1039)) (-4 *1 (-1053 *3 *4 *5)) (-4 *4 (-780)) (-4 *5 (-834))))) ((*1 *1 *2) (|partial| -2318 (-12 (-5 *2 (-945 (-560))) (-4 *1 (-1053 *3 *4 *5)) (-12 (-3186 (-4 *3 (-43 (-403 (-560))))) (-4 *3 (-43 (-560))) (-4 *5 (-601 (-1153)))) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834))) (-12 (-5 *2 (-945 (-560))) (-4 *1 (-1053 *3 *4 *5)) (-12 (-4 *3 (-43 (-403 (-560)))) (-4 *5 (-601 (-1153)))) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834))))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-945 (-403 (-560)))) (-4 *1 (-1053 *3 *4 *5)) (-4 *3 (-43 (-403 (-560)))) (-4 *5 (-601 (-1153))) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834))))) -(((*1 *2) (-12 (-4 *4 (-359)) (-5 *2 (-909)) (-5 *1 (-320 *3 *4)) (-4 *3 (-321 *4)))) ((*1 *2) (-12 (-4 *4 (-359)) (-5 *2 (-820 (-909))) (-5 *1 (-320 *3 *4)) (-4 *3 (-321 *4)))) ((*1 *2) (-12 (-4 *1 (-321 *3)) (-4 *3 (-359)) (-5 *2 (-909)))) ((*1 *2) (-12 (-4 *1 (-1253 *3)) (-4 *3 (-359)) (-5 *2 (-820 (-909)))))) -(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-909)) (-5 *4 (-1135)) (-5 *2 (-1241)) (-5 *1 (-1237))))) -(((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-123)) (-5 *4 (-626 *2)) (-5 *1 (-122 *2)) (-4 *2 (-1082)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-123)) (-5 *3 (-1 *4 (-626 *4))) (-4 *4 (-1082)) (-5 *1 (-122 *4)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-123)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1082)) (-5 *1 (-122 *4)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-123)) (-5 *2 (-1 *4 (-626 *4))) (-5 *1 (-122 *4)) (-4 *4 (-1082)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-629 *3)) (-4 *3 (-1039)) (-5 *1 (-696 *3 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1039)) (-5 *1 (-821 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-1114 *3)) (-4 *3 (-1039)) (-5 *2 (-2 (|:| -1471 (-755)) (|:| |curves| (-755)) (|:| |polygons| (-755)) (|:| |constructs| (-755))))))) -(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-182))))) -(((*1 *2 *1) (-12 (-5 *2 (-1236 (-755))) (-5 *1 (-658 *3)) (-4 *3 (-1082))))) -(((*1 *2) (-12 (-5 *2 (-861)) (-5 *1 (-1239)))) ((*1 *2 *2) (-12 (-5 *2 (-861)) (-5 *1 (-1239))))) -(((*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-550)) (-5 *1 (-962 *3 *2)) (-4 *2 (-1211 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-360 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-1082))))) -(((*1 *2 *3 *3 *4) (-12 (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-626 (-2 (|:| |val| (-626 *3)) (|:| -3249 *4)))) (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1058 *5 *6 *7 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-671 *2)) (-4 *4 (-1211 *2)) (-4 *2 (-13 (-296) (-10 -8 (-15 -2953 ((-414 $) $))))) (-5 *1 (-500 *2 *4 *5)) (-4 *5 (-405 *2 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-1103 *3 *2 *4 *5)) (-4 *4 (-226 *3 *2)) (-4 *5 (-226 *3 *2)) (-4 *2 (-1039))))) -(((*1 *2 *3 *3 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-1241)) (-5 *1 (-1059 *4 *5 *6 *7 *8)) (-4 *8 (-1058 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-1135)) (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-1241)) (-5 *1 (-1090 *4 *5 *6 *7 *8)) (-4 *8 (-1058 *4 *5 *6 *7))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-626 (-237 *4 *5))) (-5 *2 (-237 *4 *5)) (-14 *4 (-626 (-1153))) (-4 *5 (-447)) (-5 *1 (-614 *4 *5))))) -(((*1 *1) (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) ((*1 *1) (-5 *1 (-533))) ((*1 *1) (-4 *1 (-704))) ((*1 *1) (-4 *1 (-708))) ((*1 *1) (-12 (-5 *1 (-879 *2)) (-4 *2 (-1082)))) ((*1 *1) (-12 (-5 *1 (-880 *2)) (-4 *2 (-834))))) -(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-375)) (|:| |stability| (-375)) (|:| |expense| (-375)) (|:| |accuracy| (-375)) (|:| |intermediateResults| (-375)))) (-5 *2 (-1027)) (-5 *1 (-294))))) -(((*1 *2 *3 *4 *5 *6) (-12 (-4 *6 (-359)) (-14 *7 (-626 (-1153))) (-4 *9 (-226 (-2271 *7) (-755))) (-5 *2 (-2 (|:| |mult| (-755)) (|:| |subMult| (-755)) (|:| |blUpRec| (-626 (-2 (|:| |recTransStr| (-237 (-4162 (QUOTE X) (QUOTE -3095)) *6)) (|:| |recPoint| (-33 *6)) (|:| |recChart| *5) (|:| |definingExtension| *6)))))) (-5 *1 (-119 *6 *7 *8 *9 *5)) (-5 *3 (-237 (-4162 (QUOTE X) (QUOTE -3095)) *6)) (-5 *4 (-33 *6)) (-4 *8 (-318 *6 *9)) (-4 *5 (-117))))) -(((*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-318 *2 *3)) (-4 *2 (-1039)) (-4 *3 (-779))))) -(((*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-918))))) -(((*1 *2 *1) (-12 (-4 *1 (-62 *3 *4 *5)) (-4 *3 (-1187)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)) (-5 *2 (-755)))) ((*1 *2 *1) (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039)) (-4 *6 (-226 *4 *5)) (-4 *7 (-226 *3 *5)) (-5 *2 (-755))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-447))) (-5 *1 (-1179 *3 *2)) (-4 *2 (-13 (-426 *3) (-1173)))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1075 *2)) (-4 *2 (-1187))))) -(((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1236 *4)) (-4 *4 (-622 *5)) (-4 *5 (-359)) (-4 *5 (-550)) (-5 *2 (-1236 *5)) (-5 *1 (-621 *5 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1236 *4)) (-4 *4 (-622 *5)) (-3186 (-4 *5 (-359))) (-4 *5 (-550)) (-5 *2 (-1236 (-403 *5))) (-5 *1 (-621 *5 *4))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1149 *1)) (-5 *3 (-1153)) (-4 *1 (-27)))) ((*1 *1 *2) (-12 (-5 *2 (-1149 *1)) (-4 *1 (-27)))) ((*1 *1 *2) (-12 (-5 *2 (-945 *1)) (-4 *1 (-27)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1153)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-834) (-550))))) ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-834) (-550))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1149 *2)) (-5 *4 (-1153)) (-4 *2 (-426 *5)) (-5 *1 (-36 *5 *2)) (-4 *5 (-13 (-834) (-550))))) ((*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1149 *1)) (-5 *3 (-909)) (-4 *1 (-1004)))) ((*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1149 *1)) (-5 *3 (-909)) (-5 *4 (-842)) (-4 *1 (-1004)))) ((*1 *1 *2 *3) (|partial| -12 (-5 *3 (-909)) (-4 *4 (-13 (-832) (-359))) (-4 *1 (-1055 *4 *2)) (-4 *2 (-1211 *4))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-671 (-403 (-945 (-560))))) (-5 *2 (-671 (-304 (-560)))) (-5 *1 (-1023))))) -(((*1 *1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1187))))) -(((*1 *1 *1 *1 *2) (-12 (-4 *1 (-1053 *3 *4 *2)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *2 (-834)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-780)) (-4 *4 (-834))))) -(((*1 *2 *1) (-12 (-4 *2 (-1211 *3)) (-5 *1 (-395 *3 *2)) (-4 *3 (-13 (-359) (-148)))))) -(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-403 (-1149 (-304 *3)))) (-4 *3 (-13 (-550) (-834))) (-5 *1 (-1110 *3))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-626 *5)) (-5 *4 (-909)) (-4 *5 (-834)) (-5 *2 (-626 (-655 *5))) (-5 *1 (-655 *5))))) -(((*1 *1 *1) (-12 (-4 *1 (-1085 *2 *3 *4 *5 *6)) (-4 *2 (-1082)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082))))) -(((*1 *2 *3) (-12 (-5 *3 (-485 *4 *5)) (-14 *4 (-626 (-1153))) (-4 *5 (-1039)) (-5 *2 (-237 *4 *5)) (-5 *1 (-937 *4 *5))))) -(((*1 *1) (-5 *1 (-145))) ((*1 *2 *3) (-12 (-5 *3 (-626 (-251))) (-5 *2 (-1113 (-213))) (-5 *1 (-249)))) ((*1 *1 *2) (-12 (-5 *2 (-1113 (-213))) (-5 *1 (-251))))) -(((*1 *2 *2) (-12 (-4 *3 (-359)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)) (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-669 *3 *4 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-550)) (-4 *5 (-369 *4)) (-4 *6 (-369 *4)) (-4 *7 (-985 *4)) (-4 *2 (-669 *7 *8 *9)) (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-669 *4 *5 *6)) (-4 *8 (-369 *7)) (-4 *9 (-369 *7)))) ((*1 *1 *1) (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-369 *2)) (-4 *4 (-369 *2)) (-4 *2 (-296)))) ((*1 *2 *2) (-12 (-4 *3 (-296)) (-4 *3 (-170)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)) (-5 *1 (-670 *3 *4 *5 *2)) (-4 *2 (-669 *3 *4 *5)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-671 *3)) (-4 *3 (-296)) (-5 *1 (-681 *3)))) ((*1 *1 *1) (-12 (-4 *1 (-1042 *2 *3 *4 *5 *6)) (-4 *4 (-1039)) (-4 *5 (-226 *3 *4)) (-4 *6 (-226 *2 *4)) (-4 *4 (-296))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-447))) (-5 *1 (-1179 *3 *2)) (-4 *2 (-13 (-426 *3) (-1173)))))) -(((*1 *1 *1) (-12 (-4 *1 (-1085 *2 *3 *4 *5 *6)) (-4 *2 (-1082)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-4 *5 (-1082)) (-4 *6 (-1082))))) -(((*1 *2 *3) (-12 (-4 *1 (-787)) (-5 *3 (-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (-5 *2 (-1027))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1002 *3)) (-4 *3 (-1187)) (-5 *2 (-560))))) -(((*1 *1 *1) (-4 *1 (-643))) ((*1 *1 *1) (-5 *1 (-1100)))) -(((*1 *2 *3 *3) (-12 (-4 *3 (-296)) (-4 *3 (-170)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)) (-5 *2 (-2 (|:| -2583 *3) (|:| -4397 *3))) (-5 *1 (-670 *3 *4 *5 *6)) (-4 *6 (-669 *3 *4 *5)))) ((*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -2583 *3) (|:| -4397 *3))) (-5 *1 (-681 *3)) (-4 *3 (-296))))) -(((*1 *2 *2) (-12 (-5 *2 (-506 (-403 (-560)) (-228 *4 (-755)) (-844 *3) (-237 *3 (-403 (-560))))) (-14 *3 (-626 (-1153))) (-14 *4 (-755)) (-5 *1 (-507 *3 *4))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-626 *2)) (-4 *2 (-942 *4 *5 *6)) (-4 *4 (-296)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *1 (-442 *4 *5 *6 *2))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-755)) (-5 *1 (-840 *2)) (-4 *2 (-170)))) ((*1 *2 *3) (-12 (-5 *2 (-1149 (-560))) (-5 *1 (-935)) (-5 *3 (-560))))) -(((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-919))))) -(((*1 *2 *1) (-12 (-4 *1 (-321 *3)) (-4 *3 (-359)) (-4 *3 (-364)) (-5 *2 (-121)))) ((*1 *2 *3) (-12 (-5 *3 (-1149 *4)) (-4 *4 (-344)) (-5 *2 (-121)) (-5 *1 (-352 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-1236 *4)) (-4 *4 (-344)) (-5 *2 (-121)) (-5 *1 (-524 *4))))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-121)) (-5 *1 (-981 *4 *5 *6 *7 *3)) (-4 *3 (-1058 *4 *5 *6 *7)))) ((*1 *2 *3 *3) (-12 (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-4 *7 (-1053 *4 *5 *6)) (-5 *2 (-121)) (-5 *1 (-1089 *4 *5 *6 *7 *3)) (-4 *3 (-1058 *4 *5 *6 *7))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-296) (-148))) (-4 *4 (-13 (-834) (-601 (-1153)))) (-4 *5 (-780)) (-5 *1 (-916 *3 *4 *5 *2)) (-4 *2 (-942 *3 *5 *4))))) -(((*1 *2 *3) (-12 (-4 *4 (-1039)) (-4 *5 (-1211 *4)) (-5 *2 (-1 *6 (-626 *6))) (-5 *1 (-1229 *4 *5 *3 *6)) (-4 *3 (-638 *5)) (-4 *6 (-1226 *4))))) -(((*1 *1 *1) (|partial| -4 *1 (-1128)))) -(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-671 *3)) (-4 *3 (-1039)) (-5 *1 (-672 *3))))) -(((*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-121)) (-5 *5 (-1084 (-755))) (-5 *6 (-755)) (-5 *2 (-2 (|:| |contp| (-560)) (|:| -3025 (-626 (-2 (|:| |irr| *3) (|:| -2678 (-560))))))) (-5 *1 (-437 *3)) (-4 *3 (-1211 (-560)))))) -(((*1 *2 *2 *3) (-12 (-4 *4 (-780)) (-4 *3 (-13 (-834) (-10 -8 (-15 -4255 ((-1153) $))))) (-4 *5 (-550)) (-5 *1 (-714 *4 *3 *5 *2)) (-4 *2 (-942 (-403 (-945 *5)) *4 *3)))) ((*1 *2 *2 *3) (-12 (-4 *4 (-1039)) (-4 *5 (-780)) (-4 *3 (-13 (-834) (-10 -8 (-15 -4255 ((-1153) $)) (-15 -1395 ((-3 $ "failed") (-1153)))))) (-5 *1 (-977 *4 *5 *3 *2)) (-4 *2 (-942 (-945 *4) *5 *3)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-626 *6)) (-4 *6 (-13 (-834) (-10 -8 (-15 -4255 ((-1153) $)) (-15 -1395 ((-3 $ "failed") (-1153)))))) (-4 *4 (-1039)) (-4 *5 (-780)) (-5 *1 (-977 *4 *5 *6 *2)) (-4 *2 (-942 (-945 *4) *5 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-62 *3 *4 *5)) (-4 *3 (-1187)) (-4 *4 (-369 *3)) (-4 *5 (-369 *3)) (-5 *2 (-560)))) ((*1 *2 *1) (-12 (-4 *1 (-1042 *3 *4 *5 *6 *7)) (-4 *5 (-1039)) (-4 *6 (-226 *4 *5)) (-4 *7 (-226 *3 *5)) (-5 *2 (-560))))) -(((*1 *2 *3 *2 *4) (-12 (-5 *3 (-626 *6)) (-5 *4 (-626 (-237 *5 *6))) (-4 *6 (-447)) (-5 *2 (-237 *5 *6)) (-14 *5 (-626 (-1153))) (-5 *1 (-614 *5 *6))))) -(((*1 *2 *3 *3) (-12 (-5 *2 (-626 *3)) (-5 *1 (-953 *3)) (-4 *3 (-542))))) -(((*1 *1 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1187)))) ((*1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-780)) (-4 *4 (-834)))) ((*1 *1 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1187))))) -(((*1 *2) (-12 (-4 *3 (-550)) (-5 *2 (-626 *4)) (-5 *1 (-48 *3 *4)) (-4 *4 (-413 *3))))) -(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-755)) (|:| -1558 *4))) (-5 *5 (-755)) (-4 *4 (-942 *6 *7 *8)) (-4 *6 (-447)) (-4 *7 (-780)) (-4 *8 (-834)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-444 *6 *7 *8 *4))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-755)) (-5 *1 (-840 *2)) (-4 *2 (-43 (-403 (-560)))) (-4 *2 (-170))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1173))))) -(((*1 *2 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-170))))) -(((*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-663 *2)) (-4 *2 (-1082)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 (-626 *5) (-626 *5))) (-5 *4 (-560)) (-5 *2 (-626 *5)) (-5 *1 (-663 *5)) (-4 *5 (-1082))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-1153)) (-4 *4 (-550)) (-4 *4 (-834)) (-5 *1 (-569 *4 *2)) (-4 *2 (-426 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-809))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-879 *4)) (-5 *3 (-1 (-121) *5)) (-4 *4 (-1082)) (-4 *5 (-1187)) (-5 *1 (-877 *4 *5)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-879 *4)) (-5 *3 (-626 (-1 (-121) *5))) (-4 *4 (-1082)) (-4 *5 (-1187)) (-5 *1 (-877 *4 *5)))) ((*1 *2 *2 *3 *4) (-12 (-5 *2 (-879 *5)) (-5 *3 (-626 (-1153))) (-5 *4 (-1 (-121) (-626 *6))) (-4 *5 (-1082)) (-4 *6 (-1187)) (-5 *1 (-877 *5 *6)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-121) *5)) (-4 *5 (-1187)) (-4 *4 (-834)) (-5 *1 (-930 *4 *2 *5)) (-4 *2 (-426 *4)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-626 (-1 (-121) *5))) (-4 *5 (-1187)) (-4 *4 (-834)) (-5 *1 (-930 *4 *2 *5)) (-4 *2 (-426 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1153)) (-5 *4 (-1 (-121) *5)) (-4 *5 (-1187)) (-5 *2 (-304 (-560))) (-5 *1 (-931 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1153)) (-5 *4 (-626 (-1 (-121) *5))) (-4 *5 (-1187)) (-5 *2 (-304 (-560))) (-5 *1 (-931 *5)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-626 (-1153))) (-5 *3 (-1 (-121) (-626 *6))) (-4 *6 (-13 (-426 *5) (-873 *4) (-601 (-879 *4)))) (-4 *4 (-1082)) (-4 *5 (-13 (-1039) (-873 *4) (-834) (-601 (-879 *4)))) (-5 *1 (-1061 *4 *5 *6))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-215 *2)) (-4 *2 (-13 (-359) (-1173))))) ((*1 *1 *1 *2) (-12 (-5 *1 (-700 *2)) (-4 *2 (-359)))) ((*1 *1 *2) (-12 (-5 *1 (-700 *2)) (-4 *2 (-359)))) ((*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-909)) (-5 *4 (-375)) (-5 *2 (-1241)) (-5 *1 (-1237))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-50 (-1135) (-758))) (-5 *1 (-123))))) -(((*1 *2 *3) (-12 (-5 *2 (-626 (-560))) (-5 *1 (-557)) (-5 *3 (-560))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-755)) (-4 *5 (-1039)) (-4 *2 (-1211 *5)) (-5 *1 (-1229 *5 *2 *6 *3)) (-4 *6 (-638 *2)) (-4 *3 (-1226 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-1133 *3)) (-4 *3 (-1082)) (-4 *3 (-1187))))) -(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-430))))) -(((*1 *2 *3 *4) (-12 (-4 *5 (-780)) (-4 *4 (-834)) (-4 *6 (-296)) (-5 *2 (-414 *3)) (-5 *1 (-724 *5 *4 *6 *3)) (-4 *3 (-942 *6 *5 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-755)) (-5 *1 (-123)))) ((*1 *2 *1) (-12 (-5 *2 (-755)) (-5 *1 (-123)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-241 *4 *3 *5 *6)) (-4 *4 (-1039)) (-4 *3 (-834)) (-4 *5 (-257 *3)) (-4 *6 (-780)) (-5 *2 (-755)))) ((*1 *2 *1) (-12 (-4 *1 (-241 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-834)) (-4 *5 (-257 *4)) (-4 *6 (-780)) (-5 *2 (-755)))) ((*1 *2 *1) (-12 (-4 *1 (-257 *3)) (-4 *3 (-834)) (-5 *2 (-755))))) -(((*1 *2 *3 *4) (-12 (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-626 (-2 (|:| |val| (-121)) (|:| -3249 *4)))) (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1058 *5 *6 *7 *3))))) -(((*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-755)) (-4 *4 (-1039)) (-5 *1 (-1207 *4 *2)) (-4 *2 (-1211 *4))))) -(((*1 *1 *1) (-12 (-5 *1 (-1141 *2 *3)) (-14 *2 (-909)) (-4 *3 (-1039))))) -(((*1 *1 *2) (-12 (-5 *2 (-626 (-1076 (-403 (-560))))) (-5 *1 (-251)))) ((*1 *1 *2) (-12 (-5 *2 (-626 (-1076 (-375)))) (-5 *1 (-251))))) -(((*1 *2 *1) (-12 (-4 *1 (-257 *2)) (-4 *2 (-834)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1153)) (-5 *1 (-844 *3)) (-14 *3 (-626 *2)))) ((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-982)))) ((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-1074 *3)) (-4 *3 (-1187)))) ((*1 *2 *1) (-12 (-4 *1 (-1213 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-779)) (-5 *2 (-1153)))) ((*1 *2) (-12 (-5 *2 (-1153)) (-5 *1 (-1232 *3)) (-14 *3 *2)))) -(((*1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-780)) (-4 *4 (-834)))) ((*1 *1) (-4 *1 (-1128)))) -(((*1 *2) (-12 (-5 *2 (-909)) (-5 *1 (-437 *3)) (-4 *3 (-1211 (-560))))) ((*1 *2 *2) (-12 (-5 *2 (-909)) (-5 *1 (-437 *3)) (-4 *3 (-1211 (-560)))))) -(((*1 *2 *3 *4) (-12 (-5 *4 (-1153)) (-5 *2 (-1 (-213) (-213))) (-5 *1 (-685 *3)) (-4 *3 (-601 (-533))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-1153)) (-5 *2 (-1 (-213) (-213) (-213))) (-5 *1 (-685 *3)) (-4 *3 (-601 (-533)))))) -(((*1 *2 *3) (-12 (-4 *4 (-834)) (-5 *2 (-1160 (-626 *4))) (-5 *1 (-1159 *4)) (-5 *3 (-626 *4))))) -(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1082)) (-4 *6 (-1082)) (-4 *2 (-1082)) (-5 *1 (-662 *5 *6 *2))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-671 *8)) (-4 *8 (-942 *5 *7 *6)) (-4 *5 (-13 (-296) (-148))) (-4 *6 (-13 (-834) (-601 (-1153)))) (-4 *7 (-780)) (-5 *2 (-626 (-2 (|:| |eqzro| (-626 *8)) (|:| |neqzro| (-626 *8)) (|:| |wcond| (-626 (-945 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1236 (-403 (-945 *5)))) (|:| -4374 (-626 (-1236 (-403 (-945 *5)))))))))) (-5 *1 (-916 *5 *6 *7 *8)) (-5 *4 (-626 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-671 *8)) (-5 *4 (-626 (-1153))) (-4 *8 (-942 *5 *7 *6)) (-4 *5 (-13 (-296) (-148))) (-4 *6 (-13 (-834) (-601 (-1153)))) (-4 *7 (-780)) (-5 *2 (-626 (-2 (|:| |eqzro| (-626 *8)) (|:| |neqzro| (-626 *8)) (|:| |wcond| (-626 (-945 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1236 (-403 (-945 *5)))) (|:| -4374 (-626 (-1236 (-403 (-945 *5)))))))))) (-5 *1 (-916 *5 *6 *7 *8)))) ((*1 *2 *3) (-12 (-5 *3 (-671 *7)) (-4 *7 (-942 *4 *6 *5)) (-4 *4 (-13 (-296) (-148))) (-4 *5 (-13 (-834) (-601 (-1153)))) (-4 *6 (-780)) (-5 *2 (-626 (-2 (|:| |eqzro| (-626 *7)) (|:| |neqzro| (-626 *7)) (|:| |wcond| (-626 (-945 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1236 (-403 (-945 *4)))) (|:| -4374 (-626 (-1236 (-403 (-945 *4)))))))))) (-5 *1 (-916 *4 *5 *6 *7)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-671 *9)) (-5 *5 (-909)) (-4 *9 (-942 *6 *8 *7)) (-4 *6 (-13 (-296) (-148))) (-4 *7 (-13 (-834) (-601 (-1153)))) (-4 *8 (-780)) (-5 *2 (-626 (-2 (|:| |eqzro| (-626 *9)) (|:| |neqzro| (-626 *9)) (|:| |wcond| (-626 (-945 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1236 (-403 (-945 *6)))) (|:| -4374 (-626 (-1236 (-403 (-945 *6)))))))))) (-5 *1 (-916 *6 *7 *8 *9)) (-5 *4 (-626 *9)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-671 *9)) (-5 *4 (-626 (-1153))) (-5 *5 (-909)) (-4 *9 (-942 *6 *8 *7)) (-4 *6 (-13 (-296) (-148))) (-4 *7 (-13 (-834) (-601 (-1153)))) (-4 *8 (-780)) (-5 *2 (-626 (-2 (|:| |eqzro| (-626 *9)) (|:| |neqzro| (-626 *9)) (|:| |wcond| (-626 (-945 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1236 (-403 (-945 *6)))) (|:| -4374 (-626 (-1236 (-403 (-945 *6)))))))))) (-5 *1 (-916 *6 *7 *8 *9)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-671 *8)) (-5 *4 (-909)) (-4 *8 (-942 *5 *7 *6)) (-4 *5 (-13 (-296) (-148))) (-4 *6 (-13 (-834) (-601 (-1153)))) (-4 *7 (-780)) (-5 *2 (-626 (-2 (|:| |eqzro| (-626 *8)) (|:| |neqzro| (-626 *8)) (|:| |wcond| (-626 (-945 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1236 (-403 (-945 *5)))) (|:| -4374 (-626 (-1236 (-403 (-945 *5)))))))))) (-5 *1 (-916 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-671 *9)) (-5 *4 (-626 *9)) (-5 *5 (-1135)) (-4 *9 (-942 *6 *8 *7)) (-4 *6 (-13 (-296) (-148))) (-4 *7 (-13 (-834) (-601 (-1153)))) (-4 *8 (-780)) (-5 *2 (-560)) (-5 *1 (-916 *6 *7 *8 *9)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-671 *9)) (-5 *4 (-626 (-1153))) (-5 *5 (-1135)) (-4 *9 (-942 *6 *8 *7)) (-4 *6 (-13 (-296) (-148))) (-4 *7 (-13 (-834) (-601 (-1153)))) (-4 *8 (-780)) (-5 *2 (-560)) (-5 *1 (-916 *6 *7 *8 *9)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-671 *8)) (-5 *4 (-1135)) (-4 *8 (-942 *5 *7 *6)) (-4 *5 (-13 (-296) (-148))) (-4 *6 (-13 (-834) (-601 (-1153)))) (-4 *7 (-780)) (-5 *2 (-560)) (-5 *1 (-916 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-671 *10)) (-5 *4 (-626 *10)) (-5 *5 (-909)) (-5 *6 (-1135)) (-4 *10 (-942 *7 *9 *8)) (-4 *7 (-13 (-296) (-148))) (-4 *8 (-13 (-834) (-601 (-1153)))) (-4 *9 (-780)) (-5 *2 (-560)) (-5 *1 (-916 *7 *8 *9 *10)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-671 *10)) (-5 *4 (-626 (-1153))) (-5 *5 (-909)) (-5 *6 (-1135)) (-4 *10 (-942 *7 *9 *8)) (-4 *7 (-13 (-296) (-148))) (-4 *8 (-13 (-834) (-601 (-1153)))) (-4 *9 (-780)) (-5 *2 (-560)) (-5 *1 (-916 *7 *8 *9 *10)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-671 *9)) (-5 *4 (-909)) (-5 *5 (-1135)) (-4 *9 (-942 *6 *8 *7)) (-4 *6 (-13 (-296) (-148))) (-4 *7 (-13 (-834) (-601 (-1153)))) (-4 *8 (-780)) (-5 *2 (-560)) (-5 *1 (-916 *6 *7 *8 *9))))) -(((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-918))))) -(((*1 *2 *1) (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-1039)) (-4 *4 (-1082)) (-5 *2 (-626 (-2 (|:| |k| *4) (|:| |c| *3)))))) ((*1 *2 *1) (-12 (-5 *2 (-626 (-2 (|:| |k| (-880 *3)) (|:| |c| *4)))) (-5 *1 (-610 *3 *4 *5)) (-4 *3 (-834)) (-4 *4 (-13 (-170) (-699 (-403 (-560))))) (-14 *5 (-909)))) ((*1 *2 *1) (-12 (-5 *2 (-626 (-655 *3))) (-5 *1 (-880 *3)) (-4 *3 (-834))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-121)) (-5 *1 (-630 *3 *4 *5)) (-4 *3 (-1082)) (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1053 *3 *4 *5)) (-5 *2 (-121))))) -(((*1 *1) (-12 (-4 *3 (-1082)) (-5 *1 (-872 *2 *3 *4)) (-4 *2 (-1082)) (-4 *4 (-650 *3)))) ((*1 *1) (-12 (-5 *1 (-876 *2 *3)) (-4 *2 (-1082)) (-4 *3 (-1082))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-158 *2)) (-4 *2 (-542))))) -(((*1 *2 *1) (-12 (-5 *2 (-626 (-2 (|:| |k| (-655 *3)) (|:| |c| *4)))) (-5 *1 (-610 *3 *4 *5)) (-4 *3 (-834)) (-4 *4 (-13 (-170) (-699 (-403 (-560))))) (-14 *5 (-909))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 *2)) (-5 *1 (-1162 *2)) (-4 *2 (-359))))) -(((*1 *1) (-12 (-4 *1 (-321 *2)) (-4 *2 (-364)) (-4 *2 (-359))))) -(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-145))) ((*1 *1 *1) (-4 *1 (-1121)))) -(((*1 *2 *3 *3) (-12 (-4 *4 (-550)) (-5 *2 (-950 *3)) (-5 *1 (-1140 *4 *3)) (-4 *3 (-1211 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-626 (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213))))) (-5 *1 (-555)))) ((*1 *2 *1) (-12 (-4 *1 (-597 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1082)) (-5 *2 (-626 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-626 (-2 (|:| |xinit| (-213)) (|:| |xend| (-213)) (|:| |fn| (-1236 (-304 (-213)))) (|:| |yinit| (-626 (-213))) (|:| |intvals| (-626 (-213))) (|:| |g| (-304 (-213))) (|:| |abserr| (-213)) (|:| |relerr| (-213))))) (-5 *1 (-790))))) -(((*1 *1) (-5 *1 (-433)))) -(((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-918))))) -(((*1 *2 *1) (-12 (-4 *1 (-363 *2)) (-4 *2 (-170))))) -(((*1 *1 *1) (-5 *1 (-842)))) -(((*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-156)))) ((*1 *2 *3) (-12 (-5 *3 (-936 *2)) (-5 *1 (-975 *2)) (-4 *2 (-1039))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1173))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-626 (-879 *3))) (-5 *1 (-879 *3)) (-4 *3 (-1082))))) -(((*1 *2 *1) (-12 (-5 *2 (-1149 (-403 (-945 *3)))) (-5 *1 (-448 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *3 (-170)) (-14 *4 (-909)) (-14 *5 (-626 (-1153))) (-14 *6 (-1236 (-671 *3)))))) -(((*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1181 *3 *4 *5 *2)) (-4 *3 (-550)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *2 (-1053 *3 *4 *5))))) -(((*1 *2 *1) (|partial| -12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-542)) (-5 *2 (-403 (-560))))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-403 (-560))) (-5 *1 (-414 *3)) (-4 *3 (-542)) (-4 *3 (-550)))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-542)) (-5 *2 (-403 (-560))))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-784 *3)) (-4 *3 (-170)) (-4 *3 (-542)) (-5 *2 (-403 (-560))))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-403 (-560))) (-5 *1 (-820 *3)) (-4 *3 (-542)) (-4 *3 (-1082)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-403 (-560))) (-5 *1 (-827 *3)) (-4 *3 (-542)) (-4 *3 (-1082)))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-989 *3)) (-4 *3 (-170)) (-4 *3 (-542)) (-5 *2 (-403 (-560))))) ((*1 *2 *3) (|partial| -12 (-5 *2 (-403 (-560))) (-5 *1 (-1000 *3)) (-4 *3 (-1029 *2))))) -(((*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-1082)) (-5 *1 (-210 *3)))) ((*1 *1) (-12 (-5 *1 (-210 *2)) (-4 *2 (-1082)))) ((*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-1187)) (-4 *1 (-242 *3)))) ((*1 *1) (-12 (-4 *1 (-242 *2)) (-4 *2 (-1187))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-1149 *7)) (-5 *3 (-560)) (-4 *7 (-942 *6 *4 *5)) (-4 *4 (-780)) (-4 *5 (-834)) (-4 *6 (-1039)) (-5 *1 (-312 *4 *5 *6 *7))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-626 (-755))) (-5 *1 (-1141 *3 *4)) (-14 *3 (-909)) (-4 *4 (-1039))))) -(((*1 *2 *1) (-12 (-5 *2 (-755)) (-5 *1 (-1141 *3 *4)) (-14 *3 (-909)) (-4 *4 (-1039))))) -(((*1 *1) (-5 *1 (-790)))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-560)) (-4 *1 (-62 *2 *4 *5)) (-4 *4 (-369 *2)) (-4 *5 (-369 *2)) (-4 *2 (-1187)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-278 *3 *2)) (-4 *3 (-1082)) (-4 *2 (-1187)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-560)) (-4 *1 (-1042 *4 *5 *2 *6 *7)) (-4 *6 (-226 *5 *2)) (-4 *7 (-226 *4 *2)) (-4 *2 (-1039))))) -(((*1 *2 *2) (-12 (-5 *1 (-578 *2)) (-4 *2 (-542))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *3 (-626 *6)) (-4 *6 (-834)) (-4 *4 (-359)) (-4 *5 (-780)) (-5 *1 (-506 *4 *5 *6 *2)) (-4 *2 (-942 *4 *5 *6)))) ((*1 *1 *1 *2) (-12 (-4 *3 (-359)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *1 (-506 *3 *4 *5 *2)) (-4 *2 (-942 *3 *4 *5))))) -(((*1 *2) (-12 (-5 *2 (-1153)) (-5 *1 (-1156))))) -(((*1 *2 *2) (-12 (-5 *2 (-375)) (-5 *1 (-1238)))) ((*1 *2) (-12 (-5 *2 (-375)) (-5 *1 (-1238))))) -(((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-403 (-945 *4))) (-5 *3 (-1153)) (-4 *4 (-13 (-550) (-1029 (-560)) (-148))) (-5 *1 (-566 *4))))) -(((*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-834)) (-5 *2 (-2 (|:| -2169 (-560)) (|:| |var| (-599 *1)))) (-4 *1 (-426 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-1082)) (-5 *1 (-96 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-1187)) (-4 *1 (-111 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-1082)) (-5 *1 (-210 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-834)) (-5 *1 (-487 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-1082)) (-5 *1 (-992 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-1082)) (-5 *1 (-1124 *3))))) -(((*1 *2) (-12 (-5 *2 (-1241)) (-5 *1 (-790))))) -(((*1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4)) (-4 *2 (-1039)) (-4 *3 (-780)) (-4 *4 (-834)) (-4 *2 (-447))))) -(((*1 *2 *1) (-12 (-4 *1 (-363 *3)) (-4 *3 (-170)) (-4 *3 (-550)) (-5 *2 (-1149 *3))))) -(((*1 *1 *1) (-4 *1 (-550)))) -(((*1 *2 *3) (-12 (-5 *3 (-806 *4)) (-4 *4 (-834)) (-5 *2 (-121)) (-5 *1 (-655 *4))))) -(((*1 *2 *2 *3) (|partial| -12 (-5 *3 (-755)) (-4 *4 (-13 (-550) (-148))) (-5 *1 (-1205 *4 *2)) (-4 *2 (-1211 *4))))) -(((*1 *2 *3) (-12 (-4 *4 (-550)) (-4 *5 (-985 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-143 *4 *5 *3)) (-4 *3 (-369 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-550)) (-4 *5 (-985 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-504 *4 *5 *6 *3)) (-4 *6 (-369 *4)) (-4 *3 (-369 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-671 *5)) (-4 *5 (-985 *4)) (-4 *4 (-550)) (-5 *2 (-2 (|:| |num| (-671 *4)) (|:| |den| *4))) (-5 *1 (-674 *4 *5)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-13 (-359) (-148) (-1029 (-403 (-560))))) (-4 *6 (-1211 *5)) (-5 *2 (-2 (|:| -2654 *7) (|:| |rh| (-626 (-403 *6))))) (-5 *1 (-794 *5 *6 *7 *3)) (-5 *4 (-626 (-403 *6))) (-4 *7 (-638 *6)) (-4 *3 (-638 (-403 *6))))) ((*1 *2 *3) (-12 (-4 *4 (-550)) (-4 *5 (-985 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1204 *4 *5 *3)) (-4 *3 (-1211 *5))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1135)) (-5 *2 (-1241)) (-5 *1 (-1238))))) -(((*1 *2 *3) (-12 (-4 *1 (-882)) (-5 *3 (-2 (|:| |pde| (-626 (-304 (-213)))) (|:| |constraints| (-626 (-2 (|:| |start| (-213)) (|:| |finish| (-213)) (|:| |grid| (-755)) (|:| |boundaryType| (-560)) (|:| |dStart| (-671 (-213))) (|:| |dFinish| (-671 (-213)))))) (|:| |f| (-626 (-626 (-304 (-213))))) (|:| |st| (-1135)) (|:| |tol| (-213)))) (-5 *2 (-1027))))) -(((*1 *2 *3) (|partial| -12 (-5 *2 (-560)) (-5 *1 (-565 *3)) (-4 *3 (-1029 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))) (-5 *2 (-121)) (-5 *1 (-289))))) -(((*1 *1 *2) (-12 (-5 *2 (-626 (-892 *3))) (-4 *3 (-1082)) (-5 *1 (-891 *3))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1135)) (-5 *3 (-560)) (-5 *1 (-229)))) ((*1 *2 *2 *3 *4) (-12 (-5 *2 (-626 (-1135))) (-5 *3 (-560)) (-5 *4 (-1135)) (-5 *1 (-229)))) ((*1 *1 *1) (-5 *1 (-842))) ((*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-842)))) ((*1 *2 *1) (-12 (-4 *1 (-1213 *2 *3)) (-4 *3 (-779)) (-4 *2 (-1039))))) -(((*1 *2 *1) (-12 (-5 *1 (-902 *2)) (-4 *2 (-296))))) -(((*1 *2 *1) (-12 (-4 *1 (-241 *3 *4 *5 *6)) (-4 *3 (-1039)) (-4 *4 (-834)) (-4 *5 (-257 *4)) (-4 *6 (-780)) (-5 *2 (-626 *4))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-550) (-834) (-1029 (-560)))) (-5 *1 (-178 *3 *2)) (-4 *2 (-13 (-27) (-1173) (-426 (-167 *3)))))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-447) (-834) (-1029 (-560)) (-622 (-560)))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-27) (-1173) (-426 *3)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-123)))) ((*1 *2 *1) (-12 (-4 *1 (-360 *2 *3)) (-4 *3 (-1082)) (-4 *2 (-1082)))) ((*1 *2 *1) (-12 (-4 *1 (-385)) (-5 *2 (-1135)))) ((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-434 *3)) (-14 *3 *2))) ((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-599 *3)) (-4 *3 (-834)))) ((*1 *2 *1) (-12 (-5 *2 (-1153)) (-5 *1 (-1060 *3)) (-14 *3 *2))) ((*1 *1 *1) (-5 *1 (-1153)))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-810)) (-5 *1 (-809))))) -(((*1 *2) (-12 (-4 *3 (-1191)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-403 *4))) (-5 *2 (-1236 *1)) (-4 *1 (-334 *3 *4 *5)))) ((*1 *2) (-12 (-4 *3 (-13 (-296) (-10 -8 (-15 -2953 ((-414 $) $))))) (-4 *4 (-1211 *3)) (-5 *2 (-2 (|:| -4374 (-671 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-671 *3)))) (-5 *1 (-345 *3 *4 *5)) (-4 *5 (-405 *3 *4)))) ((*1 *2) (-12 (-4 *3 (-1211 (-560))) (-5 *2 (-2 (|:| -4374 (-671 (-560))) (|:| |basisDen| (-560)) (|:| |basisInv| (-671 (-560))))) (-5 *1 (-752 *3 *4)) (-4 *4 (-405 (-560) *3)))) ((*1 *2) (-12 (-4 *3 (-344)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 *4)) (-5 *2 (-2 (|:| -4374 (-671 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-671 *4)))) (-5 *1 (-978 *3 *4 *5 *6)) (-4 *6 (-706 *4 *5)))) ((*1 *2) (-12 (-4 *3 (-344)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 *4)) (-5 *2 (-2 (|:| -4374 (-671 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-671 *4)))) (-5 *1 (-1245 *3 *4 *5 *6)) (-4 *6 (-405 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-1197 *3 *2)) (-4 *3 (-1039)) (-4 *2 (-1226 *3))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-755)) (-5 *2 (-1 (-375))) (-5 *1 (-1031))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1211 *2)) (-4 *2 (-1039)) (-4 *2 (-550))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1004)) (-5 *2 (-842))))) -(((*1 *1 *2) (-12 (-5 *2 (-909)) (-4 *1 (-364)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-909)) (-5 *2 (-1236 *4)) (-5 *1 (-524 *4)) (-4 *4 (-344)))) ((*1 *2 *1) (-12 (-4 *2 (-834)) (-5 *1 (-695 *2 *3 *4)) (-4 *3 (-1082)) (-14 *4 (-1 (-121) (-2 (|:| -1330 *2) (|:| -4034 *3)) (-2 (|:| -1330 *2) (|:| -4034 *3))))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4506)) (-4 *1 (-128 *2)) (-4 *2 (-1187))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-626 (-1076 (-375)))) (-5 *3 (-626 (-251))) (-5 *1 (-249)))) ((*1 *1 *2) (-12 (-5 *2 (-626 (-1076 (-375)))) (-5 *1 (-251)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-626 (-1076 (-375)))) (-5 *1 (-466)))) ((*1 *2 *1) (-12 (-5 *2 (-626 (-1076 (-375)))) (-5 *1 (-466))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-1149 *3)) (-4 *3 (-344)) (-5 *1 (-352 *3))))) -(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1076 (-213))) (-5 *1 (-918)))) ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1076 (-213))) (-5 *1 (-919)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1076 (-213))) (-5 *1 (-919)))) ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-375)) (-5 *2 (-1241)) (-5 *1 (-1238)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-375)) (-5 *2 (-1241)) (-5 *1 (-1238))))) -(((*1 *2 *2) (-12 (-5 *2 (-626 (-2 (|:| |val| (-626 *6)) (|:| -3249 *7)))) (-4 *6 (-1053 *3 *4 *5)) (-4 *7 (-1058 *3 *4 *5 *6)) (-4 *3 (-447)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *1 (-981 *3 *4 *5 *6 *7)))) ((*1 *2 *2) (-12 (-5 *2 (-626 (-2 (|:| |val| (-626 *6)) (|:| -3249 *7)))) (-4 *6 (-1053 *3 *4 *5)) (-4 *7 (-1058 *3 *4 *5 *6)) (-4 *3 (-447)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *1 (-1089 *3 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-121) *6 *6)) (-4 *6 (-834)) (-5 *4 (-626 *6)) (-5 *2 (-2 (|:| |fs| (-121)) (|:| |sd| *4) (|:| |td| (-626 *4)))) (-5 *1 (-1159 *6)) (-5 *5 (-626 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1114 *3)) (-4 *3 (-1039)) (-5 *2 (-121))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-671 *3)) (-4 *3 (-1039)) (-5 *1 (-672 *3))))) -(((*1 *2 *3 *4) (-12 (-4 *5 (-359)) (-4 *7 (-1211 *5)) (-4 *4 (-706 *5 *7)) (-5 *2 (-2 (|:| -3818 (-671 *6)) (|:| |vec| (-1236 *5)))) (-5 *1 (-798 *5 *6 *7 *4 *3)) (-4 *6 (-638 *5)) (-4 *3 (-638 *4))))) -(((*1 *2 *3) (-12 (-4 *4 (-1039)) (-5 *2 (-560)) (-5 *1 (-438 *4 *3 *5)) (-4 *3 (-1211 *4)) (-4 *5 (-13 (-400) (-1029 *4) (-359) (-1173) (-274)))))) -(((*1 *2 *1) (-12 (-5 *2 (-403 (-945 *3))) (-5 *1 (-448 *3 *4 *5 *6)) (-4 *3 (-550)) (-4 *3 (-170)) (-14 *4 (-909)) (-14 *5 (-626 (-1153))) (-14 *6 (-1236 (-671 *3)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-809))))) -(((*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-599 *3)) (-5 *5 (-1149 *3)) (-4 *3 (-13 (-426 *6) (-27) (-1173))) (-4 *6 (-13 (-447) (-1029 (-560)) (-834) (-148) (-622 (-560)))) (-5 *2 (-2 (|:| -2962 *3) (|:| |coeff| *3))) (-5 *1 (-556 *6 *3 *7)) (-4 *7 (-1082)))) ((*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-599 *3)) (-5 *5 (-403 (-1149 *3))) (-4 *3 (-13 (-426 *6) (-27) (-1173))) (-4 *6 (-13 (-447) (-1029 (-560)) (-834) (-148) (-622 (-560)))) (-5 *2 (-2 (|:| -2962 *3) (|:| |coeff| *3))) (-5 *1 (-556 *6 *3 *7)) (-4 *7 (-1082))))) -(((*1 *2 *3) (-12 (-5 *3 (-304 (-213))) (-5 *2 (-403 (-560))) (-5 *1 (-294))))) -(((*1 *2 *2) (-12 (-4 *3 (-1039)) (-5 *1 (-694 *3 *2)) (-4 *2 (-1211 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-657 *3)) (-4 *3 (-1187)) (-5 *2 (-755))))) -(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-820 *3)) (-4 *3 (-1082)))) ((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-827 *3)) (-4 *3 (-1082))))) -(((*1 *2 *3 *4) (-12 (-5 *3 (-3 (-403 (-945 *5)) (-1142 (-1153) (-945 *5)))) (-4 *5 (-447)) (-5 *2 (-626 (-671 (-403 (-945 *5))))) (-5 *1 (-281 *5)) (-5 *4 (-671 (-403 (-945 *5))))))) -(((*1 *1 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-1082)) (-5 *1 (-96 *3))))) -(((*1 *2 *3 *1) (-12 (-4 *1 (-593 *3 *4)) (-4 *3 (-1082)) (-4 *4 (-1187)) (-5 *2 (-121))))) -(((*1 *1 *1) (|partial| -12 (-4 *1 (-363 *2)) (-4 *2 (-170)) (-4 *2 (-550)))) ((*1 *1 *1) (|partial| -4 *1 (-704)))) -(((*1 *2 *3 *3 *4) (-12 (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-4 *3 (-1053 *5 *6 *7)) (-5 *2 (-626 (-2 (|:| |val| *3) (|:| -3249 *4)))) (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1058 *5 *6 *7 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-945 *5)) (-4 *5 (-1039)) (-5 *2 (-237 *4 *5)) (-5 *1 (-937 *4 *5)) (-14 *4 (-626 (-1153)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1173))))) -(((*1 *1 *2) (-12 (-5 *2 (-403 *4)) (-4 *4 (-1211 *3)) (-4 *3 (-13 (-359) (-148))) (-5 *1 (-395 *3 *4))))) -(((*1 *2 *3 *1) (-12 (-4 *1 (-969 *4 *5 *3 *6)) (-4 *4 (-1039)) (-4 *5 (-780)) (-4 *3 (-834)) (-4 *6 (-1053 *4 *5 *3)) (-5 *2 (-121))))) -(((*1 *2 *1) (-12 (-4 *1 (-327 *3 *4 *5 *6)) (-4 *3 (-359)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-403 *4))) (-4 *6 (-334 *3 *4 *5)) (-5 *2 (-409 *4 (-403 *4) *5 *6)))) ((*1 *1 *2) (-12 (-5 *2 (-1236 *6)) (-4 *6 (-13 (-405 *4 *5) (-1029 *4))) (-4 *4 (-985 *3)) (-4 *5 (-1211 *4)) (-4 *3 (-296)) (-5 *1 (-409 *3 *4 *5 *6)))) ((*1 *1 *2) (-12 (-5 *2 (-626 *6)) (-4 *6 (-942 *3 *4 *5)) (-4 *3 (-359)) (-4 *4 (-780)) (-4 *5 (-834)) (-5 *1 (-506 *3 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1226 *4)) (-4 *4 (-43 (-403 (-560)))) (-5 *2 (-1 (-1133 *4) (-1133 *4) (-1133 *4))) (-5 *1 (-1228 *4 *5))))) -(((*1 *2 *2) (-12 (-4 *3 (-13 (-834) (-550))) (-5 *1 (-267 *3 *2)) (-4 *2 (-13 (-426 *3) (-994)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-626 (-251))) (-5 *1 (-1237)))) ((*1 *2 *1) (-12 (-5 *2 (-626 (-251))) (-5 *1 (-1237)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-626 (-251))) (-5 *1 (-1238)))) ((*1 *2 *1) (-12 (-5 *2 (-626 (-251))) (-5 *1 (-1238))))) -(((*1 *2 *3) (-12 (-5 *3 (-1149 *4)) (-4 *4 (-344)) (-5 *2 (-950 (-1100))) (-5 *1 (-341 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-626 *5)) (-4 *5 (-170)) (-5 *1 (-141 *3 *4 *5)) (-14 *3 (-560)) (-14 *4 (-755))))) -(((*1 *2 *3) (-12 (-5 *3 (-755)) (-5 *2 (-1 (-1133 (-945 *4)) (-1133 (-945 *4)))) (-5 *1 (-1244 *4)) (-4 *4 (-359))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-5 *2 (-1241)) (-5 *1 (-809))))) -(((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-626 (-1149 *7))) (-5 *3 (-1149 *7)) (-4 *7 (-942 *4 *5 *6)) (-4 *4 (-896)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *1 (-893 *4 *5 *6 *7)))) ((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-626 (-1149 *5))) (-5 *3 (-1149 *5)) (-4 *5 (-1211 *4)) (-4 *4 (-896)) (-5 *1 (-894 *4 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-918))))) -(((*1 *2 *3 *2) (-12 (-4 *1 (-774)) (-5 *2 (-1027)) (-5 *3 (-2 (|:| |fn| (-304 (-213))) (|:| -1396 (-626 (-1076 (-827 (-213))))) (|:| |abserr| (-213)) (|:| |relerr| (-213)))))) ((*1 *2 *3 *2) (-12 (-4 *1 (-774)) (-5 *2 (-1027)) (-5 *3 (-2 (|:| |var| (-1153)) (|:| |fn| (-304 (-213))) (|:| -1396 (-1076 (-827 (-213)))) (|:| |abserr| (-213)) (|:| |relerr| (-213))))))) -(((*1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-43 (-403 (-560)))) (-4 *2 (-1039))))) -(((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-96 *3)) (-4 *3 (-1082)) (-4 *3 (-1082)))) ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-210 *3)) (-4 *3 (-1082)) (-4 *3 (-1082)))) ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-487 *3)) (-4 *3 (-1082)) (-4 *3 (-834)))) ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-992 *3)) (-4 *3 (-1082)) (-4 *3 (-1082)))) ((*1 *2 *1) (-12 (-4 *1 (-1082)) (-5 *2 (-1135)))) ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1124 *3)) (-4 *3 (-1082)) (-4 *3 (-1082))))) -(((*1 *2 *3 *1) (-12 (|has| *1 (-6 -4505)) (-4 *1 (-593 *4 *3)) (-4 *4 (-1082)) (-4 *3 (-1187)) (-4 *3 (-1082)) (-5 *2 (-121))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-560)) (-4 *1 (-1195 *4)) (-4 *4 (-1039)) (-4 *4 (-550)) (-5 *2 (-403 (-945 *4))))) ((*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *1 (-1195 *4)) (-4 *4 (-1039)) (-4 *4 (-550)) (-5 *2 (-403 (-945 *4)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-626 (-560))) (-5 *1 (-237 *3 *4)) (-14 *3 (-626 (-1153))) (-4 *4 (-1039)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-626 (-560))) (-14 *3 (-626 (-1153))) (-5 *1 (-449 *3 *4 *5)) (-4 *4 (-1039)) (-4 *5 (-226 (-2271 *3) (-755))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-626 (-560))) (-5 *1 (-485 *3 *4)) (-14 *3 (-626 (-1153))) (-4 *4 (-1039))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-1039)) (-5 *1 (-1207 *3 *2)) (-4 *2 (-1211 *3))))) -(((*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1135)) (-4 *6 (-447)) (-4 *7 (-780)) (-4 *8 (-834)) (-4 *4 (-1053 *6 *7 *8)) (-5 *2 (-1241)) (-5 *1 (-760 *6 *7 *8 *4 *5)) (-4 *5 (-1058 *6 *7 *8 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-1027))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1236 *1)) (-4 *1 (-363 *4)) (-4 *4 (-170)) (-5 *2 (-671 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-413 *3)) (-4 *3 (-170)) (-5 *2 (-671 *3))))) -(((*1 *2 *2 *1) (-12 (-5 *1 (-210 *2)) (-4 *2 (-1082)))) ((*1 *2 *2 *1) (-12 (-4 *1 (-242 *2)) (-4 *2 (-1187))))) -(((*1 *2) (-12 (-5 *2 (-1241)) (-5 *1 (-1156)))) ((*1 *2 *3) (-12 (-5 *3 (-1153)) (-5 *2 (-1241)) (-5 *1 (-1156)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1153)) (-5 *2 (-1241)) (-5 *1 (-1156))))) -(((*1 *2 *3) (-12 (-4 *4 (-447)) (-4 *5 (-780)) (-4 *6 (-834)) (-5 *2 (-755)) (-5 *1 (-444 *4 *5 *6 *3)) (-4 *3 (-942 *4 *5 *6))))) -(((*1 *2) (-12 (-5 *2 (-626 (-1135))) (-5 *1 (-1239)))) ((*1 *2 *2) (-12 (-5 *2 (-626 (-1135))) (-5 *1 (-1239))))) -(((*1 *2 *3) (-12 (-5 *3 (-1236 *1)) (-4 *1 (-363 *4)) (-4 *4 (-170)) (-5 *2 (-671 *4)))) ((*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-671 *4)) (-5 *1 (-412 *3 *4)) (-4 *3 (-413 *4)))) ((*1 *2) (-12 (-4 *1 (-413 *3)) (-4 *3 (-170)) (-5 *2 (-671 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-241 *2 *3 *4 *5)) (-4 *2 (-1039)) (-4 *3 (-834)) (-4 *4 (-257 *3)) (-4 *5 (-780))))) -(((*1 *2 *3) (-12 (-4 *4 (-13 (-359) (-148) (-1029 (-403 (-560))))) (-4 *5 (-1211 *4)) (-5 *2 (-626 (-2 (|:| -1341 *5) (|:| -2785 *5)))) (-5 *1 (-794 *4 *5 *3 *6)) (-4 *3 (-638 *5)) (-4 *6 (-638 (-403 *5))))) ((*1 *2 *3 *4) (-12 (-4 *5 (-13 (-359) (-148) (-1029 (-403 (-560))))) (-4 *4 (-1211 *5)) (-5 *2 (-626 (-2 (|:| -1341 *4) (|:| -2785 *4)))) (-5 *1 (-794 *5 *4 *3 *6)) (-4 *3 (-638 *4)) (-4 *6 (-638 (-403 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-359) (-148) (-1029 (-403 (-560))))) (-4 *5 (-1211 *4)) (-5 *2 (-626 (-2 (|:| -1341 *5) (|:| -2785 *5)))) (-5 *1 (-794 *4 *5 *6 *3)) (-4 *6 (-638 *5)) (-4 *3 (-638 (-403 *5))))) ((*1 *2 *3 *4) (-12 (-4 *5 (-13 (-359) (-148) (-1029 (-403 (-560))))) (-4 *4 (-1211 *5)) (-5 *2 (-626 (-2 (|:| -1341 *4) (|:| -2785 *4)))) (-5 *1 (-794 *5 *4 *6 *3)) (-4 *6 (-638 *4)) (-4 *3 (-638 (-403 *4)))))) -(((*1 *1) (-5 *1 (-466)))) -(((*1 *2 *1) (-12 (-5 *2 (-1100)) (-5 *1 (-827 *3)) (-4 *3 (-1082))))) -(((*1 *2 *1 *3) (-12 (-5 *2 (-626 (-1135))) (-5 *1 (-1051)) (-5 *3 (-1135))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 (-213))) (-5 *2 (-1236 (-680))) (-5 *1 (-294))))) -(((*1 *2 *3) (-12 (-4 *4 (-359)) (-5 *2 (-626 *3)) (-5 *1 (-938 *4 *3)) (-4 *3 (-1211 *4))))) -(((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1153)) (-5 *5 (-626 *3)) (-4 *3 (-13 (-27) (-1173) (-426 *6))) (-4 *6 (-13 (-447) (-834) (-148) (-1029 (-560)) (-622 (-560)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-626 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-551 *6 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-976 *2)) (-4 *2 (-1173))))) -(((*1 *2 *3) (-12 (-5 *3 (-626 (-121))) (-4 *4 (-359)) (-14 *5 (-626 (-1153))) (-4 *6 (-942 *4 *7 (-844 *5))) (-4 *7 (-226 (-2271 *5) (-755))) (-4 *8 (-963 *4)) (-4 *9 (-633 *4)) (-4 *10 (-912 *4 *9)) (-4 *11 (-230 *10)) (-4 *12 (-528 *4 *5 *6 *7 *8 *9 *10 *11 *14)) (-4 *14 (-117)) (-5 *2 (-1241)) (-5 *1 (-460 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13 *14)) (-4 *13 (-253 *12)))) ((*1 *2) (-12 (-4 *1 (-633 *3)) (-4 *3 (-359)) (-5 *2 (-121)))) ((*1 *2 *2) (-12 (-5 *2 (-121)) (-4 *1 (-633 *3)) (-4 *3 (-359)))) ((*1 *2 *2) (-12 (-5 *2 (-121)) (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *6 (-226 (-2271 *4) (-755))) (-4 *8 (-633 *3)) (-5 *1 (-646 *3 *4 *5 *6 *7 *8 *9)) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *7 (-963 *3)) (-4 *9 (-912 *3 *8)))) ((*1 *2) (-12 (-4 *3 (-359)) (-14 *4 (-626 (-1153))) (-4 *6 (-226 (-2271 *4) (-755))) (-4 *8 (-633 *3)) (-5 *2 (-121)) (-5 *1 (-646 *3 *4 *5 *6 *7 *8 *9)) (-4 *5 (-942 *3 *6 (-844 *4))) (-4 *7 (-963 *3)) (-4 *9 (-912 *3 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-2 (|:| |val| (-626 *8)) (|:| -3249 *9)))) (-5 *4 (-755)) (-4 *8 (-1053 *5 *6 *7)) (-4 *9 (-1058 *5 *6 *7 *8)) (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-5 *2 (-1241)) (-5 *1 (-1056 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-626 (-2 (|:| |val| (-626 *8)) (|:| -3249 *9)))) (-5 *4 (-755)) (-4 *8 (-1053 *5 *6 *7)) (-4 *9 (-1091 *5 *6 *7 *8)) (-4 *5 (-447)) (-4 *6 (-780)) (-4 *7 (-834)) (-5 *2 (-1241)) (-5 *1 (-1122 *5 *6 *7 *8 *9))))) -(((*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-359) (-10 -8 (-15 ** ($ $ (-403 (-560))))))) (-5 *1 (-1108 *3 *2)) (-4 *3 (-1211 *2))))) -((-1268 . 827554) (-1269 . 826112) (-1270 . 826046) (-1271 . 825751) (-1272 . 825656) (-1273 . 825574) (-1274 . 825494) (-1275 . 825422) (-1276 . 825394) (-1277 . 824553) (-1278 . 824440) (-1279 . 824193) (-1280 . 824077) (-1281 . 823944) (-1282 . 823756) (-1283 . 823641) (-1284 . 823476) (-1285 . 823423) (-1286 . 823232) (-1287 . 823150) (-1288 . 822796) (-1289 . 822566) (-1290 . 822435) (-1291 . 821957) (-1292 . 821873) (-1293 . 821505) (-1294 . 821453) (-1295 . 821145) (-1296 . 821074) (-1297 . 820954) (-1298 . 820843) (-1299 . 820746) (-1300 . 820509) (-1301 . 820407) (-1302 . 820248) (-1303 . 819793) (-1304 . 819655) (-1305 . 819547) (-1306 . 819481) (-1307 . 819359) (-1308 . 819152) (-1309 . 819034) (-1310 . 818941) (-1311 . 818868) (-1312 . 818683) (-1313 . 818544) (-1314 . 818473) (-1315 . 818395) (-1316 . 818314) (-1317 . 817765) (-1318 . 817712) (-1319 . 817541) (-1320 . 817391) (-1321 . 817187) (-1322 . 817110) (-1323 . 817038) (-1324 . 816848) (-1325 . 816436) (-1326 . 816100) (-1327 . 816016) (-1328 . 815729) (-1329 . 815648) (-1330 . 815342) (-1331 . 815286) (-1332 . 815211) (-1333 . 815135) (-1334 . 815056) (-1335 . 814138) (-1336 . 814067) (-1337 . 813664) (-1338 . 813397) (-1339 . 813266) (-1340 . 813211) (-1341 . 812891) (-1342 . 812810) (-1343 . 812622) (-1344 . 812538) (-1345 . 812181) (-1346 . 812108) (-1347 . 811288) (-1348 . 811169) (-1349 . 811081) (-1350 . 811050) (-1351 . 810961) (-1352 . 810853) (-1353 . 810803) (-1354 . 810375) (-1355 . 810242) (-1356 . 810105) (-1357 . 810005) (-1358 . 809954) (-1359 . 809694) (-1360 . 809639) (-1361 . 809317) (-1362 . 809289) (-1363 . 809198) (-1364 . 809097) (-1365 . 808941) (-1366 . 808696) (-1367 . 807942) (-1368 . 807809) (-1369 . 807630) (-1370 . 807539) (-1371 . 807473) (-1372 . 807350) (-1373 . 807319) (-1374 . 807264) (-1375 . 807212) (-1376 . 807184) (-1377 . 806660) (-1378 . 806561) (-1379 . 806476) (-1380 . 806409) (-1381 . 806335) (-1382 . 806163) (-1383 . 806105) (-1384 . 805943) (-1385 . 805808) (-1386 . 805702) (-1387 . 805335) (-1388 . 805283) (-1389 . 801545) (-1390 . 801407) (-1391 . 801307) (-1392 . 801084) (-1393 . 800934) (-1394 . 800815) (-1395 . 800407) (-1396 . 800269) (-1397 . 800193) (-1398 . 800090) (-1399 . 799882) (-1400 . 799458) (-1401 . 799319) (-1402 . 799267) (-1403 . 799179) (-1404 . 799039) (-1405 . 798965) (-1406 . 798896) (-1407 . 798624) (-1408 . 797523) (-1409 . 797470) (-1410 . 797360) (-1411 . 797163) (-1412 . 797108) (-1413 . 797042) (-1414 . 796941) (-1415 . 796671) (-1416 . 796581) (-1417 . 796381) (-1418 . 796305) (-1419 . 796150) (-1420 . 795915) (-1421 . 795317) (-1422 . 795100) (-1423 . 795020) (-1424 . 794978) (-1425 . 794830) (-1426 . 794678) (-1427 . 794344) (-1428 . 794087) (-1429 . 794035) (-1430 . 793890) (-1431 . 793751) (-1432 . 793588) (-1433 . 793305) (-1434 . 793245) (-1435 . 793170) (-1436 . 792904) (-1437 . 792771) (-1438 . 792667) (-1439 . 791890) (-1440 . 791726) (-1441 . 791601) (-1442 . 791468) (-1443 . 791352) (-1444 . 791244) (-1445 . 791154) (-1446 . 790962) (-1447 . 790906) (-1448 . 790793) (-1449 . 790048) (-1450 . 789752) (-1451 . 789695) (-1452 . 789593) (-1453 . 789489) (-1454 . 789254) (-1455 . 789202) (-1456 . 789119) (-1457 . 788662) (-1458 . 788464) (-1459 . 788221) (-1460 . 788087) (-1461 . 787712) (-1462 . 787448) (-1463 . 787234) (-1464 . 787159) (-1465 . 787073) (-1466 . 786973) (-1467 . 786894) (-1468 . 786452) (-1469 . 786291) (-1470 . 785727) (-1471 . 785636) (-1472 . 785320) (-1473 . 781145) (-1474 . 781017) (-1475 . 780931) (-1476 . 780792) (-1477 . 780764) (-1478 . 780695) (-1479 . 780622) (-1480 . 780376) (-1481 . 780177) (-1482 . 780128) (-1483 . 780018) (-1484 . 779884) (-1485 . 779657) (-1486 . 779544) (-1487 . 779406) (-1488 . 779268) (-1489 . 778888) (-1490 . 778675) (-1491 . 778573) (-1492 . 778403) (-1493 . 778181) (-1494 . 778097) (-1495 . 777858) (-1496 . 777670) (-1497 . 777604) (-1498 . 777497) (-1499 . 776714) (-1500 . 776501) (-1501 . 776351) (-1502 . 776116) (-1503 . 775871) (-1504 . 775629) (-1505 . 775466) (-1506 . 775391) (-1507 . 775310) (-1508 . 775070) (-1509 . 775017) (-1510 . 774945) (-1511 . 774874) (-1512 . 774148) (-1513 . 773847) (-1514 . 773795) (-1515 . 773672) (-1516 . 773518) (-1517 . 773445) (-1518 . 773093) (-1519 . 772419) (-1520 . 772367) (-1521 . 772335) (-1522 . 772169) (-1523 . 772091) (-1524 . 771758) (-1525 . 771661) (-1526 . 771609) (-1527 . 771553) (-1528 . 771501) (-1529 . 771408) (-1530 . 771018) (-1531 . 770802) (-1532 . 770750) (-1533 . 770517) (-1534 . 770376) (-1535 . 770170) (-1536 . 769799) (-1537 . 769661) (-1538 . 769609) (-1539 . 769526) (-1540 . 769310) (-1541 . 768936) (-1542 . 768584) (-1543 . 768378) (-1544 . 768232) (-1545 . 768042) (-1546 . 767805) (-1547 . 767732) (-1548 . 767396) (-1549 . 767260) (-1550 . 767211) (-1551 . 767159) (-1552 . 767060) (-1553 . 766932) (-1554 . 766863) (-1555 . 766780) (-1556 . 766445) (-1557 . 766289) (-1558 . 766196) (-1559 . 766103) (-1560 . 764919) (-1561 . 764828) (-1562 . 764663) (-1563 . 764311) (-1564 . 764214) (-1565 . 764143) (-1566 . 764040) (-1567 . 763917) (-1568 . 763803) (-1569 . 763450) (-1570 . 763336) (-1571 . 762650) (-1572 . 762560) (-1573 . 762429) (-1574 . 762213) (-1575 . 761976) (-1576 . 761553) (-1577 . 761500) (-1578 . 761447) (-1579 . 761375) (-1580 . 759338) (-1581 . 759224) (-1582 . 759171) (-1583 . 759114) (-1584 . 758610) (-1585 . 758407) (-1586 . 758345) (-1587 . 758258) (-1588 . 758144) (-1589 . 757872) (-1590 . 757471) (-1591 . 757397) (-1592 . 757308) (-1593 . 755843) (-1594 . 755769) (-1595 . 755677) (-1596 . 755311) (-1597 . 755203) (-1598 . 754998) (-1599 . 754055) (-1600 . 753082) (-1601 . 747593) (-1602 . 747504) (-1603 . 747447) (-1604 . 747297) (-1605 . 747192) (-1606 . 747129) (-1607 . 746954) (-1608 . 746920) (-1609 . 746846) (-1610 . 746727) (-1611 . 746286) (-1612 . 746190) (-1613 . 746112) (-1614 . 746033) (-1615 . 745841) (-1616 . 745618) (-1617 . 745127) (-1618 . 744790) (-1619 . 744661) (-1620 . 744612) (-1621 . 744534) (-1622 . 744126) (-1623 . 744058) (-1624 . 743651) (-1625 . 743385) (-1626 . 743336) (-1627 . 743221) (-1628 . 743169) (-1629 . 743095) (-1630 . 742976) (-1631 . 742698) (-1632 . 742607) (-1633 . 742526) (-1634 . 742331) (-1635 . 742202) (-1636 . 740712) (-1637 . 739165) (-1638 . 738702) (-1639 . 738623) (-1640 . 738531) (-1641 . 738391) (-1642 . 738289) (-1643 . 738076) (-1644 . 738024) (-1645 . 737720) (-1646 . 737505) (-1647 . 736689) (-1648 . 736622) (-1649 . 736544) (-1650 . 736446) (-1651 . 736341) (-1652 . 735141) (-1653 . 734441) (-1654 . 733224) (-1655 . 733113) (-1656 . 732990) (-1657 . 732671) (-1658 . 732601) (-1659 . 732483) (-1660 . 732419) (-1661 . 732328) (-1662 . 732096) (-1663 . 731822) (-1664 . 731714) (-1665 . 731624) (-1666 . 731002) (-1667 . 730702) (-1668 . 730647) (-1669 . 730533) (-1670 . 730425) (-1671 . 730360) (-1672 . 730210) (-1673 . 730136) (-1674 . 730043) (-1675 . 729957) (-1676 . 728223) (-1677 . 728159) (-1678 . 728073) (-1679 . 727974) (-1680 . 727849) (-1681 . 727712) (-1682 . 727593) (-1683 . 727365) (-1684 . 725935) (-1685 . 725906) (-1686 . 725810) (-1687 . 725728) (-1688 . 725623) (-1689 . 724692) (-1690 . 724559) (-1691 . 724473) (-1692 . 724068) (-1693 . 722606) (-1694 . 722500) (-1695 . 722385) (-1696 . 722268) (-1697 . 721905) (-1698 . 721728) (-1699 . 721646) (-1700 . 721151) (-1701 . 720445) (-1702 . 720342) (-1703 . 720219) (-1704 . 719906) (-1705 . 719824) (-1706 . 719743) (-1707 . 719507) (-1708 . 719006) (-1709 . 718878) (-1710 . 718769) (-1711 . 718643) (-1712 . 718520) (-1713 . 718400) (-1714 . 718304) (-1715 . 718149) (-1716 . 716696) (-1717 . 716483) (-1718 . 716185) (-1719 . 716071) (-1720 . 715524) (-1721 . 714919) (-1722 . 714653) (-1723 . 714471) (-1724 . 713994) (-1725 . 712467) (-1726 . 711862) (-1727 . 711551) (-1728 . 711481) (-1729 . 711312) (-1730 . 711105) (-1731 . 711071) (-1732 . 710794) (-1733 . 708498) (-1734 . 708372) (-1735 . 707257) (-1736 . 707100) (-1737 . 706737) (-1738 . 706543) (-1739 . 706467) (-1740 . 706412) (-1741 . 706255) (-1742 . 705710) (-1743 . 705600) (-1744 . 705510) (-1745 . 705335) (-1746 . 705114) (-1747 . 704945) (-1748 . 704640) (-1749 . 704290) (-1750 . 703157) (-1751 . 702336) (-1752 . 702052) (-1753 . 701873) (-1754 . 701788) (-1755 . 701508) (-1756 . 701310) (-1757 . 701239) (-1758 . 701170) (-1759 . 701003) (-1760 . 700710) (-1761 . 700638) (-1762 . 700570) (-1763 . 700316) (-1764 . 700222) (-1765 . 700122) (-1766 . 700048) (-1767 . 699457) (-1768 . 699383) (-1769 . 699330) (-1770 . 699158) (-1771 . 698917) (-1772 . 698843) (-1773 . 698707) (-1774 . 698620) (-1775 . 698501) (-1776 . 698292) (-1777 . 698024) (-1778 . 697968) (-1779 . 697874) (-1780 . 697640) (-1781 . 697591) (-1782 . 697517) (-1783 . 697419) (-1784 . 697362) (-1785 . 697268) (-1786 . 697029) (-1787 . 695910) (-1788 . 695519) (-1789 . 695448) (-1790 . 695392) (-1791 . 695279) (-1792 . 695184) (-1793 . 694980) (-1794 . 694863) (-1795 . 694810) (-1796 . 694485) (-1797 . 694411) (-1798 . 694239) (-1799 . 694211) (-1800 . 693908) (-1801 . 693852) (-1802 . 693697) (-1803 . 693554) (-1804 . 693417) (-1805 . 692748) (-1806 . 692005) (-1807 . 691704) (-1808 . 691603) (-1809 . 691445) (-1810 . 691361) (-1811 . 691253) (-1812 . 691079) (-1813 . 691048) (-1814 . 690543) (-1815 . 690368) (-1816 . 690149) (-1817 . 690121) (-1818 . 689969) (-1819 . 689598) (-1820 . 689323) (-1821 . 689109) (-1822 . 688624) (-1823 . 687486) (-1824 . 686912) (-1825 . 686838) (-1826 . 686761) (-1827 . 686639) (-1828 . 686474) (-1829 . 686330) (-1830 . 686271) (-1831 . 686219) (-1832 . 686119) (-1833 . 686048) (-1834 . 685786) (-1835 . 685735) (-1836 . 685522) (-1837 . 685463) (-1838 . 685365) (-1839 . 685120) (-1840 . 684943) (-1841 . 684607) (-1842 . 684493) (-1843 . 684064) (-1844 . 683847) (-1845 . 683708) (-1846 . 683575) (-1847 . 683475) (-1848 . 683334) (-1849 . 683244) (-1850 . 683187) (-1851 . 683078) (-1852 . 682748) (-1853 . 682644) (-1854 . 682203) (-1855 . 682120) (-1856 . 682042) (-1857 . 681963) (-1858 . 681901) (-1859 . 681848) (-1860 . 681754) (-1861 . 681319) (-1862 . 681145) (-1863 . 681056) (-1864 . 680770) (-1865 . 680738) (-1866 . 679007) (-1867 . 678887) (-1868 . 678400) (-1869 . 678293) (-1870 . 678058) (-1871 . 677855) (-1872 . 677805) (-1873 . 677565) (-1874 . 677459) (-1875 . 676884) (-1876 . 676734) (-1877 . 676642) (-1878 . 676590) (-1879 . 676509) (-1880 . 676431) (-1881 . 676278) (-1882 . 676201) (-1883 . 676122) (-1884 . 676024) (-1885 . 675913) (-1886 . 675856) (-1887 . 675403) (-1888 . 675272) (-1889 . 675050) (-1890 . 674946) (-1891 . 674873) (-1892 . 674498) (-1893 . 674383) (-1894 . 674289) (-1895 . 674182) (-1896 . 673818) (-1897 . 673614) (-1898 . 673530) (-1899 . 673421) (-1900 . 673314) (-1901 . 673207) (-1902 . 673109) (-1903 . 672975) (-1904 . 672887) (-1905 . 672465) (-1906 . 672394) (-1907 . 672189) (-1908 . 672097) (-1909 . 671902) (-1910 . 671789) (-1911 . 671695) (-1912 . 671661) (-1913 . 671547) (-1914 . 671409) (-1915 . 671173) (-1916 . 671104) (-1917 . 670919) (-1918 . 670891) (-1919 . 670760) (-1920 . 670678) (-1921 . 670578) (-1922 . 670491) (-1923 . 669254) (-1924 . 669185) (-1925 . 669081) (-1926 . 668977) (-1927 . 668440) (-1928 . 668367) (-1929 . 668292) (-1930 . 668220) (-1931 . 668129) (-1932 . 667937) (-1933 . 665826) (-1934 . 665419) (-1935 . 665155) (-1936 . 665042) (-1937 . 664925) (-1938 . 664675) (-1939 . 664612) (-1940 . 664455) (-1941 . 664190) (-1942 . 664105) (-1943 . 664053) (-1944 . 663645) (-1945 . 663572) (-1946 . 663443) (-1947 . 663219) (-1948 . 663094) (-1949 . 663003) (-1950 . 662881) (-1951 . 662822) (-1952 . 662683) (-1953 . 662631) (-1954 . 662423) (-1955 . 662335) (-1956 . 662283) (-1957 . 661912) (-1958 . 661805) (-1959 . 661579) (-1960 . 661398) (-1961 . 661219) (-1962 . 661154) (-1963 . 661065) (-1964 . 660958) (-1965 . 660660) (-1966 . 660601) (-1967 . 660376) (-1968 . 660249) (-1969 . 660130) (-1970 . 660055) (-1971 . 659981) (-1972 . 659906) (-1973 . 659582) (-1974 . 659515) (-1975 . 659386) (-1976 . 659333) (-1977 . 659219) (-1978 . 659130) (-1979 . 658760) (-1980 . 658687) (-1981 . 658020) (-1982 . 657818) (-1983 . 657766) (-1984 . 657629) (-1985 . 657495) (-1986 . 657328) (-1987 . 657009) (-1988 . 656708) (-1989 . 656624) (-1990 . 656307) (-1991 . 655827) (-1992 . 655665) (-1993 . 655529) (-1994 . 655294) (-1995 . 655238) (-1996 . 655055) (-1997 . 654709) (-1998 . 654516) (-1999 . 654365) (-2000 . 654243) (-2001 . 654149) (-2002 . 653810) (-2003 . 653603) (-2004 . 653461) (-2005 . 653371) (-2006 . 653258) (-2007 . 653072) (-2008 . 652998) (-2009 . 652964) (-2010 . 652778) (-2011 . 652702) (-2012 . 652632) (-2013 . 652514) (-2014 . 652405) (-2015 . 652316) (-2016 . 651747) (-2017 . 651622) (-2018 . 651594) (-2019 . 651520) (-2020 . 651450) (-2021 . 651354) (-2022 . 651229) (-2023 . 651066) (-2024 . 650969) (-2025 . 650937) (-2026 . 650801) (-2027 . 649913) (-2028 . 649832) (-2029 . 649773) (-2030 . 648935) (-2031 . 648828) (-2032 . 648629) (-2033 . 648482) (-2034 . 648376) (-2035 . 647794) (-2036 . 647718) (-2037 . 647449) (-2038 . 647345) (-2039 . 647261) (-2040 . 647159) (-2041 . 647075) (-2042 . 646983) (-2043 . 646892) (-2044 . 646728) (-2045 . 646624) (-2046 . 646547) (-2047 . 646429) (-2048 . 646378) (-2049 . 646306) (-2050 . 646254) (-2051 . 645857) (-2052 . 645761) (-2053 . 645628) (-2054 . 645412) (-2055 . 644989) (-2056 . 644887) (-2057 . 644795) (-2058 . 644657) (-2059 . 643994) (-2060 . 643795) (-2061 . 643642) (-2062 . 643448) (-2063 . 643375) (-2064 . 643212) (-2065 . 642885) (-2066 . 642713) (-2067 . 642358) (-2068 . 641986) (-2069 . 641802) (-2070 . 641753) (-2071 . 641395) (-2072 . 641293) (-2073 . 641219) (-2074 . 641116) (-2075 . 640903) (-2076 . 640769) (-2077 . 640688) (-2078 . 640496) (-2079 . 640348) (-2080 . 640084) (-2081 . 639905) (-2082 . 639727) (-2083 . 639699) (-2084 . 639113) (-2085 . 639012) (-2086 . 638492) (-2087 . 638390) (-2088 . 638337) (-2089 . 637963) (-2090 . 637888) (-2091 . 637740) (-2092 . 637351) (-2093 . 637125) (-2094 . 636855) (-2095 . 636537) (-2096 . 636350) (-2097 . 636169) (-2098 . 636096) (-2099 . 635985) (-2100 . 635887) (-2101 . 635465) (-2102 . 635363) (-2103 . 635274) (-2104 . 635152) (-2105 . 634993) (-2106 . 634677) (-2107 . 634527) (-2108 . 634427) (-2109 . 634331) (-2110 . 634116) (-2111 . 633158) (-2112 . 633016) (-2113 . 632946) (-2114 . 632653) (-2115 . 632601) (-2116 . 632493) (-2117 . 632281) (-2118 . 632150) (-2119 . 632003) (-2120 . 631948) (-2121 . 631797) (-2122 . 631212) (-2123 . 631016) (-2124 . 630961) (-2125 . 630186) (-2126 . 630124) (-2127 . 630043) (-2128 . 629925) (-2129 . 629897) (-2130 . 629271) (-2131 . 628978) (-2132 . 628306) (-2133 . 628097) (-2134 . 627974) (-2135 . 627901) (-2136 . 627794) (-2137 . 627687) (-2138 . 627613) (-2139 . 626961) (-2140 . 626393) (-2141 . 626073) (-2142 . 625922) (-2143 . 625852) (-2144 . 625698) (-2145 . 625573) (-2146 . 625253) (-2147 . 625103) (-2148 . 625054) (-2149 . 624696) (-2150 . 624597) (-2151 . 624545) (-2152 . 620679) (-2153 . 620471) (-2154 . 620370) (-2155 . 620178) (-2156 . 620076) (-2157 . 620004) (-2158 . 619933) (-2159 . 619693) (-2160 . 617458) (-2161 . 617316) (-2162 . 617219) (-2163 . 617055) (-2164 . 616989) (-2165 . 616910) (-2166 . 616582) (-2167 . 616529) (-2168 . 616256) (-2169 . 615915) (-2170 . 615816) (-2171 . 615715) (-2172 . 615597) (-2173 . 615522) (-2174 . 615369) (-2175 . 615107) (-2176 . 614956) (-2177 . 614872) (-2178 . 614768) (-2179 . 614648) (-2180 . 614449) (-2181 . 614150) (-2182 . 614095) (-2183 . 614014) (-2184 . 613679) (-2185 . 613550) (-2186 . 613463) (-2187 . 613224) (-2188 . 613026) (-2189 . 612912) (-2190 . 612815) (-2191 . 612734) (-2192 . 612634) (-2193 . 612540) (-2194 . 612254) (-2195 . 612159) (-2196 . 611843) (-2197 . 611693) (-2198 . 611610) (-2199 . 611494) (-2200 . 611278) (-2201 . 611126) (-2202 . 611065) (-2203 . 610974) (-2204 . 610815) (-2205 . 610564) (-2206 . 610194) (-2207 . 609726) (-2208 . 609660) (-2209 . 609508) (-2210 . 609424) (-2211 . 609265) (-2212 . 609113) (-2213 . 609043) (-2214 . 608635) (-2215 . 608075) (-2216 . 607949) (-2217 . 607867) (-2218 . 607805) (-2219 . 607655) (-2220 . 607370) (-2221 . 607215) (-2222 . 607113) (-2223 . 606978) (-2224 . 606868) (-2225 . 606790) (-2226 . 606640) (-2227 . 606571) (-2228 . 606501) (-2229 . 606249) (-2230 . 606136) (-2231 . 605828) (-2232 . 605762) (-2233 . 605710) (-2234 . 605403) (-2235 . 605351) (-2236 . 605081) (-2237 . 604997) (-2238 . 604816) (-2239 . 604693) (-2240 . 604408) (-2241 . 604049) (-2242 . 603858) (-2243 . 603758) (-2244 . 603413) (-2245 . 603362) (-2246 . 603230) (-2247 . 603009) (-2248 . 602911) (-2249 . 602761) (-2250 . 602572) (-2251 . 602463) (-2252 . 602221) (-2253 . 601854) (-2254 . 601756) (-2255 . 601611) (-2256 . 601515) (-2257 . 601101) (-2258 . 600881) (-2259 . 600809) (-2260 . 600683) (-2261 . 600482) (-2262 . 600385) (-2263 . 600272) (-2264 . 600069) (-2265 . 599862) (-2266 . 599710) (-2267 . 599658) (-2268 . 599399) (-2269 . 599321) (-2270 . 599221) (-2271 . 598472) (-2272 . 598344) (-2273 . 598210) (-2274 . 598126) (-2275 . 597977) (-2276 . 597848) (-2277 . 597580) (-2278 . 597507) (-2279 . 597397) (-2280 . 597297) (-2281 . 597240) (-2282 . 597064) (-2283 . 596991) (-2284 . 596813) (-2285 . 596685) (-2286 . 596611) (-2287 . 596555) (-2288 . 596474) (-2289 . 596405) (-2290 . 596047) (-2291 . 595946) (-2292 . 595742) (-2293 . 595595) (-2294 . 592929) (-2295 . 592725) (-2296 . 592627) (-2297 . 592536) (-2298 . 592367) (-2299 . 592296) (-2300 . 592244) (-2301 . 591945) (-2302 . 591872) (-2303 . 591843) (-2304 . 591120) (-2305 . 591022) (-2306 . 590942) (-2307 . 590862) (-2308 . 590600) (-2309 . 590540) (-2310 . 590465) (-2311 . 590358) (-2312 . 590177) (-2313 . 590098) (-2314 . 590054) (-2315 . 589841) (-2316 . 589774) (-2317 . 589690) (-2318 . 589535) (-2319 . 589452) (-2320 . 589284) (-2321 . 589061) (-2322 . 588973) (-12 . 588818) (-2324 . 588680) (-2325 . 588562) (-2326 . 588510) (-2327 . 587974) (-2328 . 587919) (-2329 . 587781) (-2330 . 586679) (-2331 . 586624) (-2332 . 586540) (-2333 . 586386) (-2334 . 585984) (-2335 . 585076) (-2336 . 584259) (-2337 . 584170) (-2338 . 584062) (-2339 . 584009) (-2340 . 583935) (-2341 . 583643) (-2342 . 580051) (-2343 . 580017) (-2344 . 579968) (-2345 . 579902) (-2346 . 579828) (-2347 . 579379) (-2348 . 579087) (-2349 . 578298) (-2350 . 578132) (-2351 . 577871) (-2352 . 577704) (-2353 . 577411) (-2354 . 577026) (-2355 . 576782) (-2356 . 576410) (-2357 . 576376) (-2358 . 576300) (-2359 . 576272) (-2360 . 576235) (-2361 . 576176) (-2362 . 576034) (-2363 . 575840) (-2364 . 575742) (-2365 . 575592) (-2366 . 575371) (-2367 . 574889) (-2368 . 574819) (-2369 . 574682) (-2370 . 574578) (-2371 . 573645) (-2372 . 573339) (-2373 . 573156) (* . 568669) (-2375 . 568548) (-2376 . 561708) (-2377 . 561361) (-2378 . 560910) (-2379 . 560721) (-2380 . 560236) (-2381 . 559883) (-2382 . 559813) (-2383 . 559717) (-2384 . 559620) (-2385 . 559528) (-2386 . 559089) (-2387 . 558241) (-2388 . 558164) (-2389 . 557989) (-2390 . 557855) (-2391 . 557788) (-2392 . 557628) (-2393 . 557525) (-2394 . 557373) (-2395 . 557314) (-2396 . 557148) (-2397 . 557001) (-2398 . 556914) (-2399 . 554767) (-2400 . 554717) (-2401 . 554557) (-2402 . 554287) (-2403 . 554196) (-2404 . 553941) (-2405 . 553401) (-2406 . 553094) (-2407 . 552807) (-2408 . 552751) (-2409 . 551886) (-2410 . 551815) (-2411 . 551642) (-2412 . 551559) (-2413 . 551479) (-2414 . 551369) (-2415 . 551267) (-2416 . 551148) (-2417 . 550805) (-2418 . 550389) (-2419 . 550285) (-2420 . 550194) (-2421 . 550069) (-2422 . 549957) (-2423 . 549470) (-2424 . 549366) (-2425 . 549300) (-2426 . 549202) (-2427 . 549000) (-2428 . 548948) (-2429 . 548860) (-2430 . 548767) (-2431 . 548696) (-2432 . 548603) (-2433 . 548552) (-2434 . 547747) (-2435 . 547650) (-2436 . 547541) (-2437 . 546413) (-2438 . 546281) (-2439 . 546101) (-2440 . 545883) (-2441 . 545595) (-2442 . 545540) (-2443 . 543295) (-2444 . 543245) (-2445 . 543116) (-2446 . 543004) (-2447 . 542731) (-2448 . 542657) (-2449 . 542574) (-2450 . 542367) (-2451 . 542237) (-2452 . 541912) (-2453 . 541840) (-2454 . 541666) (-2455 . 541574) (-2456 . 541444) (-2457 . 541326) (-2458 . 541236) (-2459 . 541161) (-2460 . 541095) (-2461 . 540770) (-2462 . 540645) (-2463 . 540586) (-2464 . 540318) (-2465 . 540265) (-2466 . 540130) (-2467 . 539996) (-2468 . 539914) (-2469 . 538765) (-2470 . 538616) (-2471 . 538440) (-2472 . 538294) (-2473 . 538081) (-2474 . 537828) (-2475 . 537489) (-2476 . 537341) (-2477 . 537022) (-2478 . 536882) (-2479 . 536501) (-2480 . 536168) (-2481 . 535102) (-2482 . 535011) (-2483 . 534836) (-2484 . 534782) (-2485 . 534653) (-2486 . 534544) (-2487 . 534448) (-2488 . 534277) (-2489 . 534139) (-2490 . 533805) (-2491 . 533608) (-2492 . 533032) (-2493 . 532965) (-2494 . 532827) (-2495 . 532709) (-2496 . 532638) (-2497 . 532503) (-2498 . 532443) (-2499 . 532415) (-2500 . 531619) (-2501 . 531296) (-2502 . 531222) (-2503 . 531070) (-2504 . 530980) (-2505 . 530820) (-2506 . 530767) (-2507 . 530704) (-2508 . 530635) (-2509 . 530557) (-2510 . 530419) (-2511 . 530245) (-2512 . 529966) (-2513 . 529911) (-2514 . 529259) (-2515 . 529016) (-2516 . 528964) (-2517 . 528445) (-2518 . 528179) (-2519 . 527633) (-2520 . 527541) (-2521 . 527443) (-2522 . 527368) (-2523 . 526822) (-2524 . 526577) (-2525 . 526257) (-2526 . 526140) (-2527 . 525921) (-2528 . 525375) (-2529 . 525050) (-2530 . 524976) (-2531 . 524654) (-2532 . 524004) (-2533 . 523824) (-2534 . 523796) (-2535 . 523725) (-2536 . 523075) (-2537 . 523022) (-2538 . 522990) (-2539 . 522888) (-2540 . 522789) (-2541 . 522077) (-2542 . 521717) (-2543 . 521537) (-2544 . 521467) (-2545 . 520923) (-2546 . 520868) (-2547 . 520734) (-2548 . 520650) (-2549 . 520106) (-2550 . 519464) (-2551 . 519238) (-2552 . 519150) (-2553 . 519026) (-2554 . 518482) (-2555 . 518295) (-2556 . 518237) (-2557 . 518054) (-2558 . 517963) (-2559 . 517846) (-2560 . 517746) (-2561 . 517095) (-2562 . 516695) (-2563 . 516599) (-2564 . 516475) (-2565 . 516367) (-2566 . 515716) (-2567 . 515659) (-2568 . 515557) (-2569 . 515423) (-2570 . 514772) (-2571 . 514653) (-2572 . 514557) (-2573 . 514453) (-2574 . 514309) (-2575 . 513764) (-2576 . 513683) (-2577 . 513617) (-2578 . 513513) (-2579 . 512968) (-2580 . 512894) (-2581 . 512828) (-2582 . 512742) (-2583 . 512503) (-2584 . 512371) (-2585 . 511826) (-2586 . 511609) (-2587 . 511543) (-2588 . 510531) (-2589 . 510235) (-2590 . 509691) (-2591 . 509585) (-2592 . 509488) (-2593 . 509413) (-2594 . 508869) (-2595 . 508795) (-2596 . 508596) (-2597 . 508504) (-2598 . 507960) (-2599 . 507625) (-2600 . 507506) (-2601 . 507017) (-2602 . 506880) (-2603 . 506805) (-2604 . 506261) (-2605 . 506109) (-2606 . 505230) (-2607 . 504947) (-2608 . 504403) (-2609 . 504341) (-2610 . 504266) (-2611 . 504101) (-2612 . 504073) (-2613 . 503902) (-2614 . 503219) (-2615 . 503049) (-2616 . 502806) (-2617 . 502717) (-2618 . 502627) (-2619 . 501953) (-2620 . 501856) (-2621 . 501766) (-2622 . 500647) (-2623 . 500492) (-2624 . 500439) (-2625 . 500328) (-2626 . 500121) (-2627 . 499985) (-2628 . 498986) (-2629 . 498897) (-2630 . 498782) (-2631 . 498566) (-2632 . 498311) (-2633 . 497354) (-2634 . 497119) (-2635 . 497011) (-2636 . 495493) (-2637 . 495291) (-2638 . 494979) (-2639 . 493992) (-2640 . 493917) (-2641 . 493838) (-2642 . 493607) (-2643 . 493536) (-2644 . 492911) (-2645 . 492835) (-2646 . 492683) (-2647 . 492339) (-2648 . 492242) (-2649 . 492120) (-2650 . 491210) (-2651 . 490816) (-2652 . 490761) (-2653 . 490606) (-2654 . 490455) (-2655 . 490403) (-2656 . 490180) (-2657 . 490102) (-2658 . 489957) (-2659 . 489884) (-2660 . 489661) (-2661 . 489561) (-2662 . 489367) (-2663 . 489301) (-2664 . 489212) (-2665 . 488280) (-2666 . 488223) (-2667 . 487945) (-2668 . 487879) (-2669 . 487811) (-2670 . 487759) (-2671 . 487690) (-2672 . 487604) (-2673 . 487481) (-2674 . 485517) (-2675 . 485363) (-2676 . 485326) (-2677 . 485184) (-2678 . 485081) (-2679 . 484467) (-2680 . 484097) (-2681 . 483973) (-2682 . 483821) (-2683 . 482857) (-2684 . 482725) (-2685 . 482534) (-2686 . 481918) (-2687 . 481865) (-2688 . 481052) (-2689 . 480920) (-2690 . 480758) (-2691 . 480589) (-2692 . 479693) (-2693 . 479555) (-2694 . 479464) (-2695 . 479169) (-2696 . 477798) (-2697 . 477720) (-2698 . 477683) (-2699 . 477628) (-2700 . 476231) (-2701 . 476138) (-2702 . 474803) (-2703 . 474723) (-2704 . 474689) (-2705 . 474474) (-2706 . 474235) (-2707 . 474087) (-2708 . 473942) (-2709 . 473851) (-2710 . 473745) (-2711 . 473555) (-2712 . 473306) (-2713 . 473154) (-2714 . 472731) (-2715 . 472631) (-2716 . 472507) (-2717 . 472409) (-2718 . 472301) (-2719 . 472096) (-2720 . 472030) (-2721 . 471928) (-2722 . 471840) (-2723 . 471768) (-2724 . 471671) (-2725 . 471484) (-2726 . 471426) (-2727 . 471271) (-2728 . 471160) (-2729 . 471107) (-2730 . 470936) (-2731 . 470774) (-2732 . 470683) (-2733 . 470652) (-2734 . 470516) (-2735 . 470422) (-2736 . 470370) (-2737 . 470298) (-2738 . 470048) (-2739 . 469766) (-2740 . 469738) (-2741 . 469245) (-2742 . 469190) (-2743 . 469078) (-2744 . 468977) (-2745 . 468921) (-2746 . 468849) (-2747 . 467495) (-2748 . 467380) (-2749 . 467312) (-2750 . 467238) (-2751 . 467166) (-2752 . 467114) (-2753 . 466973) (-2754 . 466909) (-2755 . 466581) (-2756 . 466464) (-2757 . 466139) (-2758 . 466067) (-2759 . 465994) (-2760 . 465860) (-2761 . 465805) (-2762 . 465407) (-2763 . 465178) (-2764 . 463793) (-2765 . 463644) (-2766 . 463486) (-2767 . 463396) (-2768 . 463294) (-2769 . 463139) (-2770 . 463053) (-2771 . 462993) (-2772 . 462259) (-2773 . 462150) (-2774 . 462101) (-2775 . 461997) (-2776 . 461937) (-2777 . 461881) (-2778 . 456801) (-2779 . 456748) (-2780 . 456455) (-2781 . 456344) (-2782 . 456172) (-2783 . 456098) (-2784 . 456031) (-2785 . 455811) (-2786 . 455722) (-2787 . 455651) (-2788 . 455274) (-2789 . 455155) (-2790 . 454451) (-2791 . 454194) (-2792 . 454160) (-2793 . 454009) (-2794 . 453865) (-2795 . 453161) (-2796 . 452784) (-2797 . 452726) (-2798 . 452651) (-2799 . 452441) (-2800 . 452359) (-2801 . 429217) (-2802 . 427882) (-2803 . 414051) (-2804 . 414001) (-2805 . 413866) (-2806 . 413749) (-2807 . 413633) (-2808 . 413507) (-2809 . 413433) (-2810 . 413315) (-2811 . 413211) (-2812 . 412903) (-2813 . 412321) (-2814 . 412257) (-2815 . 412100) (-2816 . 411984) (-2817 . 411928) (-2818 . 411850) (-2819 . 411640) (-2820 . 411474) (-2821 . 411392) (-2822 . 411278) (-2823 . 411204) (-2824 . 410687) (-2825 . 410613) (-2826 . 410524) (-2827 . 410434) (-2828 . 410358) (-2829 . 410210) (-2830 . 410058) (-2831 . 409687) (-2832 . 409400) (-2833 . 409262) (-2834 . 409173) (-2835 . 409096) (-2836 . 408949) (-2837 . 408874) (-2838 . 408789) (-2839 . 408289) (-2840 . 407452) (-2841 . 407267) (-2842 . 407089) (-2843 . 406836) (-2844 . 406747) (-2845 . 406622) (-2846 . 406460) (-2847 . 405961) (-2848 . 405881) (-2849 . 405211) (-2850 . 405145) (-2851 . 405014) (-2852 . 404475) (-2853 . 404298) (-2854 . 404015) (-2855 . 403892) (-2856 . 403837) (-2857 . 403397) (-2858 . 403209) (-2859 . 403080) (-2860 . 403004) (-2861 . 402868) (-2862 . 402510) (-2863 . 402457) (-2864 . 401953) (-2865 . 401260) (-2866 . 401105) (-2867 . 400972) (-2868 . 400878) (-2869 . 400768) (-2870 . 400705) (-2871 . 400465) (-2872 . 400317) (-2873 . 400222) (-2874 . 400070) (-2875 . 399836) (-2876 . 399784) (-2877 . 399372) (-2878 . 399306) (-2879 . 398670) (-2880 . 398601) (-2881 . 398536) (-2882 . 398461) (-2883 . 398245) (-2884 . 397284) (-2885 . 397203) (-2886 . 397151) (-2887 . 397085) (-2888 . 397010) (-2889 . 396559) (-2890 . 396531) (-2891 . 396456) (-2892 . 396267) (-2893 . 396192) (-2894 . 395922) (-2895 . 395716) (-2896 . 395635) (-2897 . 395528) (-2898 . 395258) (-2899 . 395186) (-2900 . 395064) (-2901 . 395036) (-2902 . 394626) (-2903 . 394474) (-2904 . 394404) (-2905 . 394329) (-2906 . 394151) (-2907 . 393949) (-2908 . 393846) (-2909 . 393716) (-2910 . 393664) (-2911 . 393413) (-2912 . 392456) (-2913 . 391494) (-2914 . 391460) (-2915 . 391404) (-2916 . 390936) (-2917 . 390883) (-2918 . 390821) (-2919 . 390673) (-2920 . 390584) (-2921 . 390528) (-2922 . 390376) (-2923 . 390135) (-2924 . 389957) (-2925 . 389857) (-2926 . 389828) (-2927 . 389133) (-2928 . 389059) (-2929 . 388824) (-2930 . 388702) (-2931 . 388378) (-2932 . 388264) (-2933 . 388195) (-2934 . 387739) (-2935 . 387625) (-2936 . 387494) (-2937 . 387411) (-2938 . 387286) (-2939 . 387220) (-2940 . 387145) (-2941 . 386854) (-2942 . 386779) (-2943 . 386751) (-2944 . 386466) (-2945 . 386414) (-2946 . 386280) (-2947 . 386207) (-2948 . 385978) (-2949 . 385825) (-2950 . 385725) (-2951 . 385633) (-2952 . 385557) (-2953 . 384343) (-2954 . 384134) (-2955 . 384064) (-2956 . 383749) (-2957 . 383677) (-2958 . 383618) (-2959 . 383545) (-2960 . 383426) (-2961 . 383367) (-2962 . 383312) (-2963 . 383095) (-2964 . 383036) (-2965 . 382558) (-2966 . 382440) (-2967 . 382269) (-2968 . 382087) (-2969 . 381935) (-2970 . 381876) (-2971 . 381774) (-2972 . 381700) (-2973 . 381648) (-2974 . 381551) (-2975 . 381449) (-2976 . 381390) (-2977 . 381310) (-2978 . 381202) (-2979 . 381130) (-2980 . 380954) (-2981 . 380701) (-2982 . 380616) (-2983 . 380557) (-2984 . 380322) (-2985 . 380196) (-2986 . 380144) (-2987 . 380037) (-2988 . 380009) (-2989 . 379950) (-2990 . 379876) (-2991 . 379808) (-2992 . 379777) (-2993 . 379542) (-2994 . 379177) (-2995 . 379111) (-2996 . 378959) (-2997 . 378798) (-2998 . 378704) (-2999 . 378603) (-3000 . 378453) (-3001 . 373391) (-3002 . 373332) (-3003 . 373247) (-3004 . 372736) (-3005 . 372655) (-3006 . 372594) (-3007 . 372510) (-3008 . 372451) (-3009 . 372357) (-3010 . 372255) (-3011 . 371951) (-3012 . 371891) (-3013 . 371529) (-3014 . 371476) (-3015 . 371247) (-3016 . 371213) (-3017 . 371123) (-3018 . 370816) (-3019 . 370700) (-3020 . 370003) (-3021 . 369707) (-3022 . 369539) (-3023 . 369463) (-3024 . 369379) (-3025 . 368950) (-3026 . 368684) (-3027 . 368600) (-3028 . 368483) (-3029 . 368389) (-3030 . 368104) (-3031 . 368038) (-3032 . 367829) (-3033 . 367758) (-3034 . 367597) (-3035 . 367420) (-3036 . 367392) (-3037 . 367305) (-3038 . 367108) (-3039 . 366333) (-3040 . 366231) (-3041 . 366047) (-3042 . 365995) (-3043 . 365833) (-3044 . 365711) (-3045 . 365586) (-3046 . 365514) (-3047 . 365355) (-3048 . 365005) (-3049 . 364947) (-3050 . 364831) (-3051 . 364535) (-3052 . 364478) (-3053 . 364185) (-3054 . 364083) (-3055 . 363965) (-3056 . 363837) (-3057 . 363580) (-3058 . 363370) (-3059 . 363040) (-3060 . 362888) (-3061 . 362817) (-3062 . 362744) (-3063 . 362653) (-3064 . 362461) (-3065 . 362038) (-3066 . 361733) (-3067 . 361623) (-3068 . 361522) (-3069 . 361090) (-3070 . 361038) (-3071 . 360668) (-3072 . 360509) (-3073 . 360394) (-3074 . 360344) (-3075 . 360172) (-3076 . 358477) (-3077 . 358403) (-3078 . 358350) (-3079 . 357903) (-3080 . 357837) (-3081 . 357475) (-3082 . 357313) (-3083 . 355708) (-3084 . 355407) (-3085 . 355204) (-3086 . 355055) (-3087 . 354728) (-3088 . 354557) (-3089 . 354382) (-3090 . 354280) (-3091 . 354140) (-3092 . 354023) (-3093 . 353932) (-3094 . 353809) (-3095 . 353551) (-3096 . 353267) (-3097 . 353143) (-3098 . 352639) (-3099 . 352569) (-3100 . 352467) (-3101 . 351923) (-3102 . 351873) (-3103 . 351797) (-3104 . 351682) (-3105 . 351626) (-3106 . 351469) (-3107 . 351396) (-3108 . 351310) (-3109 . 351136) (-3110 . 350986) (-3111 . 350837) (-3112 . 350727) (-3113 . 350408) (-3114 . 350260) (-3115 . 350121) (-3116 . 350034) (-3117 . 349960) (-3118 . 349861) (-3119 . 349779) (-3120 . 349681) (-3121 . 349621) (-3122 . 349433) (-3123 . 349349) (-3124 . 349258) (-3125 . 349180) (-3126 . 349151) (-3127 . 349117) (-3128 . 348927) (-3129 . 348823) (-3130 . 348741) (-3131 . 348663) (-3132 . 348527) (-3133 . 348050) (-3134 . 347814) (-3135 . 347659) (-3136 . 347420) (-3137 . 347352) (-3138 . 347237) (-3139 . 347103) (-3140 . 346740) (-3141 . 346688) (-3142 . 346550) (-3143 . 345363) (-3144 . 345248) (-3145 . 345045) (-3146 . 344990) (-3147 . 344848) (-3148 . 344774) (-3149 . 344685) (-3150 . 344540) (-3151 . 344376) (-3152 . 344086) (-3153 . 343978) (-3154 . 343894) (-3155 . 343865) (-3156 . 343537) (-3157 . 343399) (-3158 . 343206) (-3159 . 343174) (-3160 . 343103) (-3161 . 343054) (-3162 . 343002) (-3163 . 342854) (-3164 . 342729) (-3165 . 342247) (-3166 . 341732) (-3167 . 341624) (-3168 . 335235) (-3169 . 334713) (-3170 . 334643) (-3171 . 334536) (-3172 . 334388) (-3173 . 334244) (-3174 . 334154) (-3175 . 334088) (-3176 . 333874) (-3177 . 333751) (-3178 . 333116) (-3179 . 332980) (-3180 . 332854) (-3181 . 332801) (-3182 . 332663) (-3183 . 332575) (-3184 . 332508) (-3185 . 332272) (-3186 . 332156) (-3187 . 332045) (-3188 . 331752) (-3189 . 331569) (-3190 . 331503) (-3191 . 331348) (-3192 . 331132) (-3193 . 331037) (-3194 . 330938) (-3195 . 330833) (-3196 . 330744) (-3197 . 326820) (-3198 . 326768) (-3199 . 326617) (-3200 . 326566) (-3201 . 326471) (-3202 . 326136) (-3203 . 326025) (-3204 . 325582) (-3205 . 325411) (-3206 . 321487) (-3207 . 321419) (-3208 . 321339) (-3209 . 320945) (-3210 . 320840) (-3211 . 320685) (-3212 . 320602) (-3213 . 320550) (-3214 . 320466) (-3215 . 320382) (-3216 . 319914) (-3217 . 319809) (-3218 . 319732) (-3219 . 319480) (-3220 . 318263) (-3221 . 318123) (-3222 . 317357) (-3223 . 317283) (-3224 . 317074) (-3225 . 316921) (-3226 . 316830) (-3227 . 316458) (-3228 . 316193) (-3229 . 316052) (-3230 . 315953) (-3231 . 315638) (-3232 . 315529) (-3233 . 313092) (-3234 . 313040) (-3235 . 312778) (-3236 . 308854) (-3237 . 308746) (-3238 . 308665) (-3239 . 308484) (-3240 . 308162) (-3241 . 308010) (-3242 . 307836) (-3243 . 307746) (-3244 . 307641) (-3245 . 307565) (-3246 . 307498) (-3247 . 307154) (-3248 . 306974) (-3249 . 306912) (-3250 . 306810) (-3251 . 306713) (-3252 . 306573) (-3253 . 306465) (-3254 . 305785) (-3255 . 305621) (-3256 . 305522) (-3257 . 304622) (-3258 . 304555) (-3259 . 304445) (-3260 . 303886) (-3261 . 303497) (-3262 . 300542) (-3263 . 299319) (-3264 . 298942) (-3265 . 298871) (-3266 . 298761) (-3267 . 298665) (-3268 . 298594) (-3269 . 298453) (-3270 . 298371) (-3271 . 298150) (-3272 . 298057) (-3273 . 298005) (-3274 . 297954) (-3275 . 297678) (-3276 . 297473) (-3277 . 297330) (-3278 . 297264) (-3279 . 296622) (-3280 . 296550) (-3281 . 294113) (-3282 . 294040) (-3283 . 293888) (-3284 . 293750) (-3285 . 293299) (-3286 . 292761) (-3287 . 292573) (-3288 . 292471) (-3289 . 292358) (-3290 . 288677) (-3291 . 288501) (-3292 . 287356) (-3293 . 287247) (-3294 . 283323) (-3295 . 283270) (-3296 . 283236) (-3297 . 282923) (-3298 . 282687) (-3299 . 282608) (-3300 . 282327) (-3301 . 282268) (-3302 . 278344) (-3303 . 278226) (-3304 . 278058) (-3305 . 277981) (-3306 . 277907) (-3307 . 277758) (-3308 . 277149) (-3309 . 274712) (-3310 . 274636) (-3311 . 274552) (-3312 . 274463) (-3313 . 270539) (-3314 . 269941) (-3315 . 269792) (-3316 . 269651) (-3317 . 269571) (-3318 . 269441) (-3319 . 269075) (-3320 . 268920) (-3321 . 268840) (-3322 . 268732) (-3323 . 268621) (-3324 . 268422) (-3325 . 268335) (-3326 . 268226) (-3327 . 268127) (-3328 . 267703) (-3329 . 267467) (-3330 . 267220) (-3331 . 266905) (-3332 . 265036) (-3333 . 264884) (-3334 . 264819) (-3335 . 264675) (-3336 . 263988) (-3337 . 263840) (-3338 . 263705) (-3339 . 261993) (-3340 . 261690) (-3341 . 260754) (-3342 . 260309) (-3343 . 253778) (-3344 . 253274) (-3345 . 253170) (-3346 . 252796) (-3347 . 252614) (-3348 . 252422) (-3349 . 252166) (-3350 . 252071) (-3351 . 251828) (-3352 . 251625) (-3353 . 251457) (-3354 . 251352) (-3355 . 250875) (-3356 . 250036) (-3357 . 249228) (-3358 . 249144) (-3359 . 249064) (-3360 . 248905) (-3361 . 248772) (-3362 . 248696) (-3363 . 248500) (-3364 . 248396) (-3365 . 248302) (-3366 . 248221) (-3367 . 248125) (-3368 . 248051) (-3369 . 247928) (-3370 . 247830) (-3371 . 247772) (-3372 . 247559) (-3373 . 247420) (-3374 . 247297) (-3375 . 247188) (-3376 . 247136) (-3377 . 247065) (-3378 . 246888) (-3379 . 240499) (-3380 . 239927) (-3381 . 239508) (-3382 . 239309) (-3383 . 239101) (-3384 . 239051) (-3385 . 238901) (-3386 . 238576) (-3387 . 238361) (-3388 . 238185) (-3389 . 238096) (-3390 . 236962) (-3391 . 236863) (-3392 . 236761) (-3393 . 236641) (-3394 . 236589) (-3395 . 236381) (-3396 . 236347) (-3397 . 236291) (-3398 . 236134) (-3399 . 236008) (-3400 . 235867) (-3401 . 235468) (-3402 . 235416) (-3403 . 235325) (-3404 . 235274) (-3405 . 235122) (-3406 . 234421) (-3407 . 234216) (-3408 . 233882) (-3409 . 233642) (-3410 . 233524) (-3411 . 233408) (-3412 . 233324) (-3413 . 232820) (-3414 . 232768) (-3415 . 232570) (-3416 . 232485) (-3417 . 232365) (-3418 . 232249) (-3419 . 232105) (-3420 . 232037) (-3421 . 231938) (-3422 . 231821) (-3423 . 231793) (-3424 . 231689) (-3425 . 231637) (-3426 . 231503) (-3427 . 231395) (-3428 . 231132) (-3429 . 231030) (-3430 . 230964) (-3431 . 230932) (-3432 . 230806) (-3433 . 230639) (-3434 . 230518) (-3435 . 230425) (-3436 . 229872) (-3437 . 229544) (-3438 . 229412) (-3439 . 229346) (-3440 . 229266) (-3441 . 228585) (-3442 . 228423) (-3443 . 228332) (-3444 . 228206) (-3445 . 228153) (-3446 . 228040) (-3447 . 227900) (-3448 . 227823) (-3449 . 227653) (-3450 . 227275) (-3451 . 227095) (-3452 . 226902) (-3453 . 226821) (-3454 . 226751) (-3455 . 226485) (-3456 . 226417) (-3457 . 226285) (-3458 . 226196) (-3459 . 226049) (-3460 . 225828) (-3461 . 225480) (-3462 . 225215) (-3463 . 225046) (-3464 . 224493) (-3465 . 224420) (-3466 . 224251) (-3467 . 224088) (-3468 . 223053) (-3469 . 221922) (-3470 . 221776) (-3471 . 221613) (-3472 . 221460) (-3473 . 221382) (-3474 . 220822) (-3475 . 220605) (-3476 . 220536) (-3477 . 220459) (-3478 . 220306) (-3479 . 220148) (-3480 . 220014) (-3481 . 219947) (-3482 . 219895) (-3483 . 219786) (-3484 . 219417) (-3485 . 219274) (-3486 . 219108) (-3487 . 218998) (-3488 . 218871) (-3489 . 218764) (-3490 . 218655) (-3491 . 218364) (-3492 . 218251) (-3493 . 218191) (-3494 . 218076) (-3495 . 217949) (-3496 . 217878) (-3497 . 217811) (-3498 . 217250) (-3499 . 217048) (-3500 . 216101) (-3501 . 215866) (-3502 . 215730) (-3503 . 215612) (-3504 . 213328) (-3505 . 213129) (-3506 . 212935) (-3507 . 212705) (-3508 . 212603) (-3509 . 212470) (-3510 . 212399) (-3511 . 212315) (-3512 . 212225) (-3513 . 212016) (-3514 . 211892) (-3515 . 211654) (-3516 . 211601) (-3517 . 211533) (-3518 . 211294) (-3519 . 211170) (-3520 . 210991) (-3521 . 210923) (-3522 . 210731) (-3523 . 210529) (-3524 . 210417) (-3525 . 210349) (-3526 . 210171) (-3527 . 210034) (-3528 . 209528) (-3529 . 209432) (-3530 . 209308) (-3531 . 209111) (-3532 . 208798) (-3533 . 208720) (-3534 . 208649) (-3535 . 208537) (-3536 . 208355) (-3537 . 208248) (-3538 . 208198) (-3539 . 208073) (-3540 . 207863) (-3541 . 207829) (-3542 . 207774) (-3543 . 207689) (-3544 . 207438) (-3545 . 207350) (-3546 . 207283) (-3547 . 207121) (-3548 . 206937) (-3549 . 206693) (-3550 . 206592) (-3551 . 206497) (-3552 . 206257) (-3553 . 206088) (-3554 . 205516) (-3555 . 205413) (-3556 . 205318) (-3557 . 205247) (-3558 . 205024) (-3559 . 204943) (-3560 . 204830) (-3561 . 204119) (-3562 . 203896) (-3563 . 203845) (-3564 . 203232) (-3565 . 202709) (-3566 . 201980) (-3567 . 201912) (-3568 . 201787) (-3569 . 201719) (-3570 . 201486) (-3571 . 201434) (-3572 . 201312) (-3573 . 201224) (-3574 . 201115) (-3575 . 201034) (-3576 . 200949) (-3577 . 200895) (-3578 . 200647) (-3579 . 200581) (-3580 . 200450) (-3581 . 200059) (-3582 . 199784) (-3583 . 199599) (-3584 . 199452) (-3585 . 199402) (-3586 . 199329) (-3587 . 199247) (-3588 . 198896) (-3589 . 198778) (-3590 . 198558) (-3591 . 197978) (-3592 . 197705) (-3593 . 197629) (-3594 . 197381) (-3595 . 197187) (-3596 . 197061) (-3597 . 196889) (-3598 . 196694) (-3599 . 196579) (-3600 . 196526) (-3601 . 196424) (-3602 . 196073) (-3603 . 196014) (-3604 . 195916) (-3605 . 195351) (-3606 . 195298) (-3607 . 195200) (-3608 . 194967) (-3609 . 194871) (-3610 . 194745) (-3611 . 194371) (-3612 . 194209) (-3613 . 194135) (-3614 . 193896) (-3615 . 193769) (-3616 . 193716) (-3617 . 193566) (-3618 . 193492) (-3619 . 193404) (-3620 . 193260) (-3621 . 192409) (-3622 . 192227) (-3623 . 191610) (-3624 . 191433) (-3625 . 191238) (-3626 . 191120) (-3627 . 191061) (-3628 . 190821) (-3629 . 190526) (-3630 . 190366) (-3631 . 190257) (-3632 . 189935) (-3633 . 189824) (-3634 . 189646) (-3635 . 189418) (-3636 . 189233) (-3637 . 189095) (-3638 . 189042) (-3639 . 188887) (-3640 . 188785) (-3641 . 188733) (-3642 . 187704) (-3643 . 187600) (-3644 . 187448) (-3645 . 187288) (-3646 . 187015) (-3647 . 186737) (-3648 . 186642) (-3649 . 186523) (-3650 . 186433) (-3651 . 186339) (-3652 . 186026) (-3653 . 185806) (-3654 . 185733) (-3655 . 185581) (-3656 . 184888) (-3657 . 184860) (-3658 . 184588) (-3659 . 184436) (-3660 . 184361) (-3661 . 184269) (-3662 . 181979) (-3663 . 181827) (-3664 . 181746) (-3665 . 181208) (-3666 . 181132) (-3667 . 180992) (-3668 . 180667) (-3669 . 180614) (-3670 . 180394) (-3671 . 180323) (-3672 . 180249) (-3673 . 180145) (-3674 . 179928) (-3675 . 179803) (-3676 . 179488) (-3677 . 179247) (-3678 . 179174) (-3679 . 179091) (-3680 . 178861) (-3681 . 178762) (-3682 . 178691) (-3683 . 178074) (-3684 . 177743) (-3685 . 177478) (-3686 . 177242) (-3687 . 177090) (-3688 . 176959) (-3689 . 176415) (-3690 . 176381) (-3691 . 176210) (-3692 . 175973) (-3693 . 175524) (-3694 . 175442) (-3695 . 175108) (-3696 . 174387) (-3697 . 173819) (-3698 . 173350) (-3699 . 173203) (-3700 . 172363) (-3701 . 172225) (-3702 . 172126) (-3703 . 172042) (-3704 . 171871) (-3705 . 171790) (-3706 . 171691) (-3707 . 171585) (-3708 . 171511) (-3709 . 171371) (-3710 . 171298) (-3711 . 171190) (-3712 . 171084) (-3713 . 170867) (-3714 . 170737) (-3715 . 170678) (-3716 . 170501) (-3717 . 170420) (-3718 . 170301) (-3719 . 170032) (-3720 . 169685) (-3721 . 169572) (-3722 . 169488) (-3723 . 169409) (-3724 . 169313) (-3725 . 169250) (-3726 . 169198) (-3727 . 168927) (-3728 . 168838) (-3729 . 168780) (-3730 . 168691) (-3731 . 168474) (-3732 . 168349) (-3733 . 167975) (-3734 . 167736) (-3735 . 167472) (-3736 . 167419) (-3737 . 167164) (-3738 . 167017) (-3739 . 166936) (-3740 . 166846) (-3741 . 166727) (-3742 . 166557) (-3743 . 166144) (-3744 . 165996) (-3745 . 165747) (-3746 . 165627) (-3747 . 165571) (-3748 . 165448) (-3749 . 165355) (-3750 . 165251) (-3751 . 165199) (-3752 . 165124) (-3753 . 165046) (-3754 . 164803) (-3755 . 164568) (-3756 . 164445) (-3757 . 164304) (-3758 . 164117) (-3759 . 163989) (-3760 . 163358) (-3761 . 163267) (-3762 . 163211) (-3763 . 163028) (-3764 . 162929) (-3765 . 162623) (-3766 . 162500) (-3767 . 162342) (-3768 . 161833) (-3769 . 161525) (-3770 . 161448) (-3771 . 161264) (-3772 . 161178) (-3773 . 161110) (-3774 . 161024) (-3775 . 160674) (-3776 . 160526) (-3777 . 160291) (-3778 . 159596) (-3779 . 159498) (-3780 . 158539) (-3781 . 158413) (-3782 . 158340) (-3783 . 155501) (-3784 . 155371) (-3785 . 155235) (-3786 . 155143) (-3787 . 154986) (-3788 . 154824) (-3789 . 154742) (-3790 . 154668) (-3791 . 154616) (-3792 . 154486) (-3793 . 154299) (-3794 . 154096) (-3795 . 153934) (-3796 . 153879) (-3797 . 153762) (-3798 . 153656) (-3799 . 153511) (-3800 . 153402) (-3801 . 153119) (-3802 . 152655) (-3803 . 152571) (-3804 . 152426) (-3805 . 152345) (-3806 . 152216) (-3807 . 152105) (-3808 . 152054) (-3809 . 151534) (-3810 . 151398) (-3811 . 151196) (-3812 . 151031) (-3813 . 150889) (-3814 . 150787) (-3815 . 150534) (-3816 . 150464) (-3817 . 150382) (-3818 . 150283) (-3819 . 150123) (-3820 . 150049) (-3821 . 149931) (-3822 . 149738) (-3823 . 149671) (-3824 . 149382) (-3825 . 149230) (-3826 . 148850) (-3827 . 148700) (-3828 . 148589) (-3829 . 148218) (-3830 . 148122) (-3831 . 147995) (-3832 . 147897) (-3833 . 147680) (-3834 . 147605) (-3835 . 147297) (-3836 . 147172) (-3837 . 147009) (-3838 . 146875) (-3839 . 146639) (-3840 . 146501) (-3841 . 146353) (-3842 . 146279) (-3843 . 146045) (-3844 . 145736) (-3845 . 145659) (-3846 . 145555) (-3847 . 145410) (-3848 . 145354) (-3849 . 145220) (-3850 . 144981) (-3851 . 144569) (-3852 . 144322) (-3853 . 144199) (-3854 . 144122) (-3855 . 144029) (-3856 . 143961) (-3857 . 143832) (-3858 . 143804) (-3859 . 143707) (-3860 . 143140) (-3861 . 142596) (-3862 . 142473) (-3863 . 142389) (-3864 . 142361) (-3865 . 142088) (-3866 . 142012) (-3867 . 141895) (-3868 . 141814) (-3869 . 141691) (-3870 . 141502) (-3871 . 141318) (-3872 . 141259) (-3873 . 141189) (-3874 . 141116) (-3875 . 140987) (-3876 . 140862) (-3877 . 140722) (-3878 . 140526) (-3879 . 140403) (-3880 . 140145) (-3881 . 139917) (-3882 . 139748) (-3883 . 139610) (-3884 . 139375) (-3885 . 139298) (-3886 . 139245) (-3887 . 138953) (-3888 . 138830) (-3889 . 138777) (-3890 . 138645) (-3891 . 138542) (-3892 . 138458) (-3893 . 138148) (-3894 . 137883) (-3895 . 137650) (-3896 . 137457) (-3897 . 137314) (-3898 . 137189) (-3899 . 137043) (-3900 . 136874) (-3901 . 136681) (-3902 . 136629) (-3903 . 136481) (-3904 . 136415) (-3905 . 135863) (-3906 . 135794) (-3907 . 135719) (-3908 . 135532) (-3909 . 135034) (-3910 . 134854) (-3911 . 134737) (-3912 . 134580) (-3913 . 134509) (-3914 . 134306) (-3915 . 134033) (-3916 . 133957) (-3917 . 133549) (-3918 . 133407) (-3919 . 133342) (-3920 . 133177) (-3921 . 132877) (-3922 . 132158) (-3923 . 132035) (-3924 . 131915) (-3925 . 131743) (-3926 . 131641) (-3927 . 131587) (-3928 . 131499) (-3929 . 131426) (-3930 . 131343) (-3931 . 131261) (-3932 . 131015) (-3933 . 130904) (-3934 . 130487) (-3935 . 130380) (-3936 . 130182) (-3937 . 129990) (-3938 . 129749) (-3939 . 129652) (-3940 . 129524) (-3941 . 129278) (-3942 . 128947) (-3943 . 128894) (-3944 . 128722) (-3945 . 128588) (-3946 . 128238) (-3947 . 128163) (-3948 . 128011) (-3949 . 127811) (-3950 . 127649) (-3951 . 127596) (-3952 . 127341) (-3953 . 127242) (-3954 . 127190) (-3955 . 126987) (-3956 . 126931) (-3957 . 126832) (-3958 . 126708) (-3959 . 126599) (-3960 . 126541) (-3961 . 126491) (-3962 . 126418) (-3963 . 126322) (-3964 . 126236) (-3965 . 126179) (-3966 . 125874) (-3967 . 125778) (-3968 . 125470) (-3969 . 124966) (-3970 . 124911) (-3971 . 124836) (-3972 . 124709) (-3973 . 124631) (-3974 . 124408) (-3975 . 124213) (-3976 . 124158) (-3977 . 124034) (-3978 . 123954) (-3979 . 123798) (-3980 . 123487) (-3981 . 123453) (-3982 . 123339) (-3983 . 123218) (-3984 . 123065) (-3985 . 122966) (-3986 . 122850) (-3987 . 122648) (-3988 . 122362) (-3989 . 122241) (-3990 . 122157) (-3991 . 122006) (-3992 . 121776) (-3993 . 121660) (-3994 . 121418) (-3995 . 121268) (-3996 . 121166) (-3997 . 121000) (-3998 . 120051) (-3999 . 119985) (-4000 . 119901) (-4001 . 119802) (-4002 . 119736) (-4003 . 119668) (-4004 . 119556) (-4005 . 119464) (-4006 . 119368) (-4007 . 119295) (-4008 . 119130) (-4009 . 119026) (-4010 . 118941) (-4011 . 118646) (-4012 . 118550) (-4013 . 118482) (-4014 . 118364) (-4015 . 118291) (-4016 . 117587) (-4017 . 117473) (-4018 . 117340) (-4019 . 117124) (-4020 . 117069) (-4021 . 116968) (-4022 . 116578) (-4023 . 116234) (-4024 . 116179) (-4025 . 116029) (-4026 . 115896) (-4027 . 115840) (-4028 . 115768) (-4029 . 115650) (-4030 . 115381) (-4031 . 115274) (-4032 . 115188) (-4033 . 115121) (-4034 . 114663) (-4035 . 113322) (-4036 . 113218) (-4037 . 112946) (-4038 . 112860) (-4039 . 112658) (-4040 . 112584) (-4041 . 112072) (-4042 . 111972) (-4043 . 111872) (-4044 . 111786) (-4045 . 111758) (-4046 . 111645) (-4047 . 111429) (-4048 . 111306) (-4049 . 111220) (-4050 . 111024) (-4051 . 110620) (-4052 . 110568) (-4053 . 110471) (-4054 . 110385) (-4055 . 110272) (-4056 . 109986) (-4057 . 109908) (-4058 . 109855) (-4059 . 109765) (-4060 . 109568) (-4061 . 109482) (-4062 . 109263) (-4063 . 109210) (-4064 . 108561) (-4065 . 108471) (-4066 . 108350) (-4067 . 108269) (-4068 . 108188) (-4069 . 107514) (-4070 . 107428) (-4071 . 107271) (-4072 . 107172) (-4073 . 107034) (-4074 . 106957) (-4075 . 106869) (-4076 . 106817) (-4077 . 106731) (-4078 . 106633) (-4079 . 106515) (-4080 . 106209) (-4081 . 106125) (-4082 . 105972) (-4083 . 105870) (-4084 . 105784) (-4085 . 105384) (-4086 . 105102) (-4087 . 105044) (-4088 . 104955) (-4089 . 104783) (-4090 . 104199) (-4091 . 104016) (-4092 . 103917) (-4093 . 103856) (-4094 . 103703) (-4095 . 103617) (-4096 . 103492) (-4097 . 103251) (-4098 . 103028) (-4099 . 102938) (-4100 . 102756) (-4101 . 102558) (-4102 . 102466) (-4103 . 102315) (-4104 . 102180) (-4105 . 102131) (-4106 . 101408) (-4107 . 101322) (-4108 . 100965) (-4109 . 100879) (-4110 . 100777) (-4111 . 99211) (-4112 . 98868) (-4113 . 98782) (-4114 . 98694) (-4115 . 98504) (-4116 . 98306) (-4117 . 98234) (-4118 . 97997) (-4119 . 97900) (-4120 . 97814) (-4121 . 97761) (-4122 . 97487) (-4123 . 97418) (-4124 . 97343) (-4125 . 97188) (-4126 . 97129) (-4127 . 97058) (-4128 . 96972) (-4129 . 96857) (-4130 . 96805) (-4131 . 96721) (-4132 . 96668) (-4133 . 96586) (-4134 . 96500) (-4135 . 95963) (-4136 . 95914) (-4137 . 95820) (-4138 . 95456) (-4139 . 95147) (-4140 . 95054) (-4141 . 94496) (-4142 . 94447) (-4143 . 94070) (-4144 . 93797) (-4145 . 93702) (-4146 . 93640) (-4147 . 93481) (-4148 . 92885) (-4149 . 92793) (-4150 . 92370) (-4151 . 91756) (-4152 . 91610) (-4153 . 91517) (-4154 . 90950) (-4155 . 90858) (-4156 . 90488) (-4157 . 90290) (-4158 . 89909) (-4159 . 81016) (-4160 . 80920) (-4161 . 80318) (-4162 . 77780) (-4163 . 77643) (-4164 . 77460) (-4165 . 77371) (-4166 . 77300) (-4167 . 76810) (-4168 . 75998) (-4169 . 75946) (-4170 . 75872) (-4171 . 75786) (-4172 . 75634) (-4173 . 74542) (-4174 . 74464) (-4175 . 74276) (-4176 . 74137) (-4177 . 73924) (-4178 . 73752) (-4179 . 73697) (-4180 . 73547) (-4181 . 72915) (-4182 . 72494) (-4183 . 72404) (-4184 . 72295) (-4185 . 72209) (-4186 . 72059) (-4187 . 71872) (-4188 . 71198) (-4189 . 71143) (-4190 . 71037) (-4191 . 70405) (-4192 . 70248) (-4193 . 70147) (-4194 . 70061) (-4195 . 69908) (-4196 . 69855) (-4197 . 69751) (-4198 . 69658) (-4199 . 69495) (-4200 . 69358) (-4201 . 69306) (-4202 . 69214) (-4203 . 69185) (-4204 . 68699) (-4205 . 68613) (-4206 . 68505) (-4207 . 68452) (-4208 . 68395) (-4209 . 68223) (-4210 . 68082) (-4211 . 67946) (-4212 . 67786) (-4213 . 67483) (-4214 . 67349) (-4215 . 67296) (-4216 . 67189) (-4217 . 67063) (-4218 . 66905) (-4219 . 66784) (-4220 . 66719) (-4221 . 66685) (-4222 . 66499) (-4223 . 66389) (-4224 . 66173) (-4225 . 65940) (-4226 . 65881) (-4227 . 65708) (-4228 . 65391) (-4229 . 65265) (-4230 . 65179) (-4231 . 65065) (-4232 . 64222) (-4233 . 64142) (-4234 . 64114) (-4235 . 62844) (-4236 . 62406) (-4237 . 62248) (-4238 . 62196) (-4239 . 62087) (-4240 . 62016) (-4241 . 61930) (-4242 . 61851) (-4243 . 61798) (-4244 . 61732) (-4245 . 61700) (-4246 . 61608) (-4247 . 61577) (-4248 . 61473) (-4249 . 61351) (-4250 . 60774) (-4251 . 60616) (-4252 . 60427) (-4253 . 60275) (-4254 . 60194) (-4255 . 55786) (-4256 . 55108) (-4257 . 55015) (-4258 . 54882) (-4259 . 54474) (-4260 . 54443) (-4261 . 54381) (-4262 . 54224) (-4263 . 54035) (-4264 . 53781) (-4265 . 53648) (-4266 . 53433) (-4267 . 53380) (-4268 . 53251) (-4269 . 53093) (-4270 . 52969) (-4271 . 52941) (-4272 . 52855) (-4273 . 52703) (-4274 . 52234) (-4275 . 51736) (-4276 . 51529) (-4277 . 51379) (-4278 . 51272) (-4279 . 51169) (-4280 . 51044) (-4281 . 50958) (-4282 . 50818) (-4283 . 49903) (-4284 . 49720) (-4285 . 49634) (-4286 . 49540) (-4287 . 48942) (-4288 . 48740) (-4289 . 48568) (-4290 . 48506) (-4291 . 48475) (-4292 . 48374) (-4293 . 48321) (-4294 . 48235) (-4295 . 48110) (-4296 . 47676) (-4297 . 47383) (-4298 . 47310) (-4299 . 47089) (-4300 . 46894) (-4301 . 46823) (-4302 . 46481) (-4303 . 46242) (-4304 . 46123) (-4305 . 46070) (-4306 . 45999) (-4307 . 45857) (-4308 . 45746) (-4309 . 45568) (-4310 . 44998) (-4311 . 44746) (-4312 . 44651) (-4313 . 44460) (-4314 . 44198) (-4315 . 43991) (-4316 . 43892) (-4317 . 43742) (-4318 . 43586) (-4319 . 43216) (-4320 . 43039) (-4321 . 42888) (-4322 . 42831) (-4323 . 42728) (-4324 . 42594) (-4325 . 42323) (-4326 . 42197) (-4327 . 41961) (-4328 . 41392) (-4329 . 41267) (-4330 . 41082) (-4331 . 40972) (-4332 . 40940) (-4333 . 40584) (-4334 . 40479) (-4335 . 40289) (-4336 . 40232) (-4337 . 40159) (-4338 . 40045) (-4339 . 39850) (-4340 . 39496) (-4341 . 39363) (-4342 . 39009) (-4343 . 38818) (-4344 . 38781) (-4345 . 36655) (-4346 . 36414) (-4347 . 36309) (-4348 . 35917) (-4349 . 35813) (-4350 . 35410) (-4351 . 35337) (-4352 . 35222) (-4353 . 34603) (-4354 . 34501) (-4355 . 34401) (-4356 . 34327) (-4357 . 34245) (-4358 . 33994) (-4359 . 33792) (-4360 . 33690) (-4361 . 33470) (-4362 . 33377) (-4363 . 33048) (-4364 . 32802) (-4365 . 32721) (-4366 . 32619) (-4367 . 32517) (-4368 . 32404) (-4369 . 32352) (-4370 . 32241) (-4371 . 32032) (-4372 . 31251) (-4373 . 30991) (-4374 . 30168) (-4375 . 30060) (-4376 . 29943) (-4377 . 29890) (-4378 . 29755) (-4379 . 29702) (-4380 . 29621) (-4381 . 29210) (-4382 . 28863) (-4383 . 28795) (-4384 . 28385) (-4385 . 28182) (-4386 . 27883) (-4387 . 27831) (-4388 . 27708) (-4389 . 27674) (-4390 . 26513) (-4391 . 26246) (-4392 . 26117) (-4393 . 26026) (-4394 . 25971) (-4395 . 25863) (-4396 . 25760) (-4397 . 25560) (-4398 . 25532) (-4399 . 24357) (-4400 . 24255) (-4401 . 24218) (-4402 . 24118) (-4403 . 23123) (-4404 . 23071) (-4405 . 22983) (-4406 . 22883) (-4407 . 22745) (-4408 . 22485) (-4409 . 22396) (-4410 . 22199) (-4411 . 22127) (-4412 . 22044) (-4413 . 21989) (-4414 . 21917) (-4415 . 21846) (-4416 . 21699) (-4417 . 21598) (-4418 . 21513) (-4419 . 21432) (-4420 . 21304) (-4421 . 21123) (-4422 . 21091) (-4423 . 20949) (-4424 . 20687) (-4425 . 20613) (-4426 . 20072) (-4427 . 19741) (-4428 . 19688) (-4429 . 19571) (-4430 . 19439) (-4431 . 19304) (-4432 . 19247) (-4433 . 19085) (-4434 . 18949) (-4435 . 18848) (-4436 . 18431) (-4437 . 18355) (-4438 . 18223) (-4439 . 18055) (-4440 . 17004) (-4441 . 16954) (-4442 . 16608) (** . 13544) (-4444 . 13380) (-4445 . 13328) (-4446 . 13210) (-4447 . 13144) (-4448 . 12820) (-4449 . 12786) (-4450 . 6954) (-4451 . 6898) (-4452 . 6787) (-4453 . 6697) (-4454 . 6665) (-4455 . 6543) (-4456 . 6437) (-4457 . 6385) (-4458 . 6241) (-4459 . 6192) (-4460 . 5141) (-4461 . 4807) (-4462 . 4775) (-4463 . 4635) (-4464 . 4582) (-4465 . 4011) (-4466 . 3772) (-4467 . 3629) (-4468 . 3574) (-4469 . 3485) (-4470 . 2784) (-4471 . 2732) (-4472 . 2527) (-4473 . 2164) (-4474 . 2101) (-4475 . 1963) (-4476 . 1743) (-4477 . 1586) (-4478 . 1345) (-4479 . 1193) (-4480 . 1101) (-4481 . 1018) (-4482 . 820) (-4483 . 646) (-4484 . 197) (-4485 . 30)) \ No newline at end of file +(((*1 *2) (-12 (-4 *3 (-370)) (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *6 (-230 (-1697 *4) (-763))) (-4 *7 (-971 *3)) (-4 *8 (-641 *3)) (-4 *9 (-920 *3 *8)) (-4 *10 (-235 *9)) (-4 *11 (-536 *3 *4 *5 *6 *7 *8 *9 *10 *13)) (-4 *13 (-117)) (-5 *2 (-1157 (-568))) (-5 *1 (-467 *3 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13)) (-4 *12 (-258 *11)))) ((*1 *2 *3) (-12 (-5 *3 (-917)) (-4 *4 (-370)) (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *6 (-950 *4 *7 (-852 *5))) (-4 *7 (-230 (-1697 *5) (-763))) (-4 *8 (-971 *4)) (-4 *9 (-641 *4)) (-4 *10 (-920 *4 *9)) (-4 *11 (-235 *10)) (-4 *12 (-536 *4 *5 *6 *7 *8 *9 *10 *11 *14)) (-4 *14 (-117)) (-5 *2 (-1157 (-568))) (-5 *1 (-467 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13 *14)) (-4 *13 (-258 *12)))) ((*1 *2) (-12 (-5 *2 (-1157 (-568))) (-5 *1 (-867 *3 *4 *5)) (-4 (-857 *3) (-370)) (-4 *3 (-350)) (-14 *4 (-634 (-1161))) (-4 *5 (-117)))) ((*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1157 (-568))) (-5 *1 (-867 *4 *5 *6)) (-4 (-857 *4) (-370)) (-4 *4 (-350)) (-14 *5 (-634 (-1161))) (-4 *6 (-117)))) ((*1 *2) (-12 (-5 *2 (-1157 (-568))) (-5 *1 (-868 *3 *4 *5)) (-4 *3 (-370)) (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *5 (-117)))) ((*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1157 (-568))) (-5 *1 (-868 *4 *5 *6)) (-4 *4 (-370)) (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *6 (-117))))) +(((*1 *2) (-12 (-5 *2 (-1249)) (-5 *1 (-1161))))) +(((*1 *2 *1) (-12 (-5 *2 (-634 (-634 (-3 (|:| -3391 (-1161)) (|:| |bounds| (-634 (-3 (|:| S (-1161)) (|:| P (-953 (-568)))))))))) (-5 *1 (-1165))))) +(((*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2217 *4))) (-5 *1 (-970 *4 *3)) (-4 *3 (-1219 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 (-53))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-482)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-53))) (-5 *4 (-634 (-465))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-482)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-634 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465))))) (-5 *5 (-634 (-1161))) (-5 *3 (-634 (-53))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-482)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-634 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465))))) (-5 *5 (-634 (-1161))) (-5 *6 (-634 (-465))) (-5 *3 (-634 (-53))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-482)))) ((*1 *2 *3) (-12 (-5 *3 (-634 *4)) (-4 *4 (-13 (-350) (-609 (-568)))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-484 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 *5)) (-5 *4 (-634 (-465))) (-4 *5 (-13 (-350) (-609 (-568)))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-484 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-634 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 *6) (-634 (-465))))) (-5 *5 (-634 (-1161))) (-5 *3 (-634 *6)) (-4 *6 (-13 (-350) (-609 (-568)))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-484 *6)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-634 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 *7) (-634 (-465))))) (-5 *5 (-634 (-1161))) (-5 *6 (-634 (-465))) (-5 *3 (-634 *7)) (-4 *7 (-13 (-350) (-609 (-568)))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-484 *7)))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-409 (-568)))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-485)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-568)))) (-5 *4 (-634 (-465))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-485)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-634 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465))))) (-5 *5 (-634 (-1161))) (-5 *3 (-634 (-409 (-568)))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-485)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-634 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465))))) (-5 *5 (-634 (-1161))) (-5 *6 (-634 (-465))) (-5 *3 (-634 (-409 (-568)))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-485)))) ((*1 *2 *3) (-12 (-5 *3 (-634 *4)) (-4 *4 (-365)) (-14 *9 (-1 *6 *4)) (-4 *7 (-13 (-842) (-558))) (-14 *8 (-1 *4 *7)) (-5 *2 (-634 (-2 (|:| -1864 *6) (|:| -4477 (-763))))) (-5 *1 (-486 *4 *5 *6 *7 *8 *9)) (-4 *5 (-453)) (-4 *6 (-13 (-432 (-568)) (-558) (-1037 *7) (-1037 (-1161)) (-1037 (-568)) (-161) (-895 (-1161)) (-10 -8 (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -1332 ($ $)) (-15 -3013 ($ $)) (-15 -2086 ((-121) $))))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 *5)) (-5 *4 (-634 (-465))) (-4 *5 (-365)) (-14 *10 (-1 *7 *5)) (-4 *8 (-13 (-842) (-558))) (-14 *9 (-1 *5 *8)) (-5 *2 (-634 (-2 (|:| -1864 *7) (|:| -4477 (-763))))) (-5 *1 (-486 *5 *6 *7 *8 *9 *10)) (-4 *6 (-453)) (-4 *7 (-13 (-432 (-568)) (-558) (-1037 *8) (-1037 (-1161)) (-1037 (-568)) (-161) (-895 (-1161)) (-10 -8 (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -1332 ($ $)) (-15 -3013 ($ $)) (-15 -2086 ((-121) $))))))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-634 (-1 (-634 (-2 (|:| -1864 *8) (|:| -4477 (-763)))) (-634 *6) (-634 (-465))))) (-5 *5 (-634 (-1161))) (-5 *3 (-634 *6)) (-4 *6 (-365)) (-14 *11 (-1 *8 *6)) (-4 *9 (-13 (-842) (-558))) (-14 *10 (-1 *6 *9)) (-5 *2 (-634 (-2 (|:| -1864 *8) (|:| -4477 (-763))))) (-5 *1 (-486 *6 *7 *8 *9 *10 *11)) (-4 *7 (-453)) (-4 *8 (-13 (-432 (-568)) (-558) (-1037 *9) (-1037 (-1161)) (-1037 (-568)) (-161) (-895 (-1161)) (-10 -8 (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -1332 ($ $)) (-15 -3013 ($ $)) (-15 -2086 ((-121) $))))))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-634 (-1 (-634 (-2 (|:| -1864 *9) (|:| -4477 (-763)))) (-634 *7) (-634 (-465))))) (-5 *5 (-634 (-1161))) (-5 *6 (-634 (-465))) (-5 *3 (-634 *7)) (-4 *7 (-365)) (-14 *12 (-1 *9 *7)) (-4 *10 (-13 (-842) (-558))) (-14 *11 (-1 *7 *10)) (-5 *2 (-634 (-2 (|:| -1864 *9) (|:| -4477 (-763))))) (-5 *1 (-486 *7 *8 *9 *10 *11 *12)) (-4 *8 (-453)) (-4 *9 (-13 (-432 (-568)) (-558) (-1037 *10) (-1037 (-1161)) (-1037 (-568)) (-161) (-895 (-1161)) (-10 -8 (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -1332 ($ $)) (-15 -3013 ($ $)) (-15 -2086 ((-121) $))))))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-409 (-953 (-568))))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-487)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-953 (-568))))) (-5 *4 (-634 (-465))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-487)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-634 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465))))) (-5 *5 (-634 (-1161))) (-5 *3 (-634 (-409 (-953 (-568))))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-487)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-634 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465))))) (-5 *5 (-634 (-1161))) (-5 *6 (-634 (-465))) (-5 *3 (-634 (-409 (-953 (-568))))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-487)))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-409 (-734 *4 (-568))))) (-14 *4 (-1161)) (-5 *2 (-634 (-2 (|:| -1864 (-733 *4 (-568))) (|:| -4477 (-763))))) (-5 *1 (-488 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-734 *5 (-568))))) (-5 *4 (-634 (-465))) (-14 *5 (-1161)) (-5 *2 (-634 (-2 (|:| -1864 (-733 *5 (-568))) (|:| -4477 (-763))))) (-5 *1 (-488 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-634 (-1 (-634 (-2 (|:| -1864 (-733 *6 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 *6 (-568)))) (-634 (-465))))) (-5 *5 (-634 (-1161))) (-5 *3 (-634 (-409 (-734 *6 (-568))))) (-14 *6 (-1161)) (-5 *2 (-634 (-2 (|:| -1864 (-733 *6 (-568))) (|:| -4477 (-763))))) (-5 *1 (-488 *6)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-634 (-1 (-634 (-2 (|:| -1864 (-733 *7 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 *7 (-568)))) (-634 (-465))))) (-5 *5 (-634 (-1161))) (-5 *6 (-634 (-465))) (-5 *3 (-634 (-409 (-734 *7 (-568))))) (-14 *7 (-1161)) (-5 *2 (-634 (-2 (|:| -1864 (-733 *7 (-568))) (|:| -4477 (-763))))) (-5 *1 (-488 *7))))) +(((*1 *2 *3) (-12 (-5 *2 (-1157 (-568))) (-5 *1 (-943)) (-5 *3 (-568))))) +(((*1 *2 *3) (-12 (-5 *3 (-1244 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-679 *4)))) ((*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-679 *4)) (-5 *1 (-418 *3 *4)) (-4 *3 (-419 *4)))) ((*1 *2) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-679 *3))))) +(((*1 *2) (-12 (-4 *1 (-340 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 (-409 *4))) (-5 *2 (-679 (-409 *4)))))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-453)) (-4 *3 (-788)) (-4 *5 (-842)) (-5 *2 (-121)) (-5 *1 (-450 *4 *3 *5 *6)) (-4 *6 (-950 *4 *3 *5))))) +(((*1 *2 *2) (-12 (-4 *3 (-558)) (-4 *3 (-172)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-678 *3 *4 *5 *2)) (-4 *2 (-677 *3 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 (-568))) (-5 *2 (-899 (-568))) (-5 *1 (-913)))) ((*1 *2) (-12 (-5 *2 (-899 (-568))) (-5 *1 (-913))))) +(((*1 *2 *2) (-12 (-4 *3 (-1037 (-568))) (-4 *3 (-13 (-842) (-558))) (-5 *1 (-36 *3 *2)) (-4 *2 (-432 *3)))) ((*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1157 *4)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) ((*1 *1 *1) (-12 (-4 *1 (-1047)) (-4 *1 (-296)))) ((*1 *2) (-12 (-4 *1 (-327 *3)) (-4 *3 (-365)) (-5 *2 (-1157 *3)))) ((*1 *2) (-12 (-4 *1 (-714 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1219 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-1157 *1)) (-4 *1 (-858)))) ((*1 *2) (-12 (-5 *2 (-1157 *1)) (-4 *1 (-858)))) ((*1 *2 *1) (-12 (-4 *1 (-1063 *3 *2)) (-4 *3 (-13 (-840) (-365))) (-4 *2 (-1219 *3))))) +(((*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-43 (-409 (-568)))) (-4 *2 (-1047))))) +(((*1 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-565))))) +(((*1 *2 *2 *3) (|partial| -12 (-5 *3 (-763)) (-4 *1 (-984 *2)) (-4 *2 (-1181))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-568)) (-5 *2 (-828 (-215))) (-5 *1 (-217)) (-5 *4 (-215))))) +(((*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-568))))))) (-5 *1 (-1116 *3 *2)) (-4 *3 (-1219 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-121))))) +(((*1 *2 *3) (-12 (-4 *4 (-365)) (-4 *4 (-558)) (-4 *5 (-1219 *4)) (-5 *2 (-2 (|:| -2848 (-615 *4 *5)) (|:| -4367 (-409 *5)))) (-5 *1 (-615 *4 *5)) (-5 *3 (-409 *5)))) ((*1 *2 *1) (-12 (-5 *2 (-634 (-1149 *3 *4))) (-5 *1 (-1149 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1047)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-453)) (-4 *3 (-1047)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1219 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-634 *6)) (-4 *6 (-1061 *3 *4 *5)) (-4 *3 (-558)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *1 (-978 *3 *4 *5 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-358 *3)) (-4 *3 (-350))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-1161)) (-5 *4 (-953 (-568))) (-5 *2 (-328)) (-5 *1 (-330))))) +(((*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-215)) (-5 *2 (-2 (|:| |brans| (-634 (-634 (-944 *4)))) (|:| |xValues| (-1084 *4)) (|:| |yValues| (-1084 *4)))) (-5 *1 (-156)) (-5 *3 (-634 (-634 (-944 *4))))))) +(((*1 *1 *2) (-12 (-5 *2 (-634 (-917))) (-5 *1 (-1091 *3 *4)) (-14 *3 (-917)) (-14 *4 (-917))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-634 (-568))) (-5 *2 (-1163 (-409 (-568)))) (-5 *1 (-182))))) +(((*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-1090)) (-5 *1 (-212 *3)))) ((*1 *1) (-12 (-5 *1 (-212 *2)) (-4 *2 (-1090)))) ((*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-1195)) (-4 *1 (-247 *3)))) ((*1 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1195))))) +(((*1 *1 *1) (-4 *1 (-651))) ((*1 *1 *1) (-5 *1 (-1108)))) +(((*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-634 *3)) (-5 *1 (-48 *4 *3)) (-4 *3 (-419 *4))))) +(((*1 *2) (-12 (-5 *2 (-1249)) (-5 *1 (-1173 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-1244 (-1244 (-568)))) (-5 *3 (-917)) (-5 *1 (-471))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4265 *3) (|:| |coef1| (-777 *3)))) (-5 *1 (-777 *3)) (-4 *3 (-558)) (-4 *3 (-1047))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-917)) (-4 *5 (-230 *6 (-763))) (-14 *6 (-763)) (-4 *2 (-1047)) (-5 *1 (-908 *2 *3 *5 *6)) (-4 *3 (-324 *2 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-817))))) +(((*1 *2) (-12 (-5 *2 (-634 *3)) (-5 *1 (-1043 *3)) (-4 *3 (-365))))) +(((*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-558) (-150))) (-5 *1 (-1213 *3 *2)) (-4 *2 (-1219 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-568)) (-5 *1 (-850))))) +(((*1 *2 *1) (-12 (-4 *1 (-1134 *3)) (-4 *3 (-1195)) (-5 *2 (-121))))) +(((*1 *2 *1 *2) (-12 (-4 *1 (-536 *3 *4 *5 *6 *2 *7 *8 *9 *10)) (-4 *3 (-365)) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *6 (-230 (-1697 *4) (-763))) (-4 *2 (-971 *3)) (-4 *7 (-641 *3)) (-4 *8 (-920 *3 *7)) (-4 *9 (-235 *8)) (-4 *10 (-117))))) +(((*1 *2 *2) (-12 (-5 *2 (-634 *6)) (-4 *6 (-1061 *3 *4 *5)) (-4 *3 (-453)) (-4 *3 (-558)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *1 (-978 *3 *4 *5 *6)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-634 *7)) (-5 *3 (-121)) (-4 *7 (-1061 *4 *5 *6)) (-4 *4 (-453)) (-4 *4 (-558)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *1 (-978 *4 *5 *6 *7))))) +(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1246)))) ((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1246))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-634 (-944 *4))) (-4 *1 (-1122 *4)) (-4 *4 (-1047)) (-5 *2 (-763))))) +(((*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-842)) (-5 *3 (-634 *6)) (-5 *5 (-634 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-634 *5)) (|:| |f3| *5) (|:| |f4| (-634 *5)))) (-5 *1 (-1167 *6)) (-5 *4 (-634 *5))))) +(((*1 *1 *1) (-12 (-4 *1 (-1061 *2 *3 *4)) (-4 *2 (-1047)) (-4 *3 (-788)) (-4 *4 (-842))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-568)) (-5 *2 (-1249)) (-5 *1 (-899 *4)) (-4 *4 (-1090)))) ((*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-899 *3)) (-4 *3 (-1090))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-679 *5))) (-5 *4 (-1244 *5)) (-4 *5 (-301)) (-4 *5 (-1047)) (-5 *2 (-679 *5)) (-5 *1 (-1029 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-1249)) (-5 *1 (-582))))) +(((*1 *1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1047)) (-4 *2 (-365))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-643 (-409 *6))) (-5 *4 (-409 *6)) (-4 *6 (-1219 *5)) (-4 *5 (-13 (-365) (-150) (-1037 (-568)) (-1037 (-409 (-568))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3746 (-634 *4)))) (-5 *1 (-805 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-643 (-409 *6))) (-4 *6 (-1219 *5)) (-4 *5 (-13 (-365) (-150) (-1037 (-568)) (-1037 (-409 (-568))))) (-5 *2 (-2 (|:| -3746 (-634 (-409 *6))) (|:| -2928 (-679 *5)))) (-5 *1 (-805 *5 *6)) (-5 *4 (-634 (-409 *6))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-644 *6 (-409 *6))) (-5 *4 (-409 *6)) (-4 *6 (-1219 *5)) (-4 *5 (-13 (-365) (-150) (-1037 (-568)) (-1037 (-409 (-568))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3746 (-634 *4)))) (-5 *1 (-805 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-644 *6 (-409 *6))) (-4 *6 (-1219 *5)) (-4 *5 (-13 (-365) (-150) (-1037 (-568)) (-1037 (-409 (-568))))) (-5 *2 (-2 (|:| -3746 (-634 (-409 *6))) (|:| -2928 (-679 *5)))) (-5 *1 (-805 *5 *6)) (-5 *4 (-634 (-409 *6)))))) +(((*1 *2 *3 *4) (-12 (-4 *5 (-788)) (-4 *4 (-842)) (-4 *6 (-301)) (-5 *2 (-420 *3)) (-5 *1 (-732 *5 *4 *6 *3)) (-4 *3 (-950 *6 *5 *4))))) +(((*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-443 *3)) (-4 *3 (-1219 (-568))))) ((*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-443 *3)) (-4 *3 (-1219 (-568)))))) +(((*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-751))))) +(((*1 *2 *2) (-12 (-5 *2 (-634 (-492 *3 *4))) (-14 *3 (-634 (-1161))) (-4 *4 (-453)) (-5 *1 (-622 *3 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-634 *6)) (-4 *6 (-950 *3 *4 *5)) (-4 *3 (-365)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *1 (-514 *3 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-1216 *5 *4)) (-4 *4 (-453)) (-4 *4 (-815)) (-14 *5 (-1161)) (-5 *2 (-568)) (-5 *1 (-1104 *4 *5))))) +(((*1 *2) (-12 (-5 *2 (-1249)) (-5 *1 (-1076 *3)) (-4 *3 (-138))))) +(((*1 *2 *2) (-12 (-5 *2 (-679 *3)) (-4 *3 (-365)) (-5 *1 (-653 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 (-465))) (-5 *2 (-763)) (-5 *1 (-464)))) ((*1 *1 *2) (-12 (-5 *2 (-763)) (-5 *1 (-465))))) +(((*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-121)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-121))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-679 (-169 (-409 (-568))))) (-5 *2 (-634 (-2 (|:| |outval| (-169 *4)) (|:| |outmult| (-568)) (|:| |outvect| (-634 (-679 (-169 *4))))))) (-5 *1 (-756 *4)) (-4 *4 (-13 (-365) (-840)))))) +(((*1 *1 *1) (-12 (-5 *1 (-212 *2)) (-4 *2 (-1090)))) ((*1 *1 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1195)))) ((*1 *1 *1) (-12 (|has| *1 (-6 -4520)) (-4 *1 (-375 *2)) (-4 *2 (-1195)))) ((*1 *1 *1) (-12 (-5 *1 (-638 *2 *3 *4)) (-4 *2 (-1090)) (-4 *3 (-23)) (-14 *4 *3)))) +(((*1 *2 *3) (-12 (-4 *4 (-1047)) (-5 *2 (-568)) (-5 *1 (-444 *4 *3 *5)) (-4 *3 (-1219 *4)) (-4 *5 (-13 (-406) (-1037 *4) (-365) (-1181) (-279)))))) +(((*1 *2 *3) (-12 (-4 *4 (-1195)) (-5 *2 (-763)) (-5 *1 (-179 *4 *3)) (-4 *3 (-665 *4))))) +(((*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-585 *3) *3 (-1161))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1161))) (-4 *3 (-279)) (-4 *3 (-620)) (-4 *3 (-1037 *4)) (-4 *3 (-432 *7)) (-5 *4 (-1161)) (-4 *7 (-609 (-887 (-568)))) (-4 *7 (-453)) (-4 *7 (-881 (-568))) (-4 *7 (-842)) (-5 *2 (-585 *3)) (-5 *1 (-577 *7 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-819)) (-5 *1 (-820))))) +(((*1 *2 *1) (-12 (-4 *1 (-558)) (-5 *2 (-121))))) +(((*1 *2 *1) (-12 (-4 *1 (-1122 *3)) (-4 *3 (-1047)) (-5 *2 (-763))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-453))) (-5 *1 (-1187 *3 *2)) (-4 *2 (-13 (-432 *3) (-1181)))))) +(((*1 *1) (-5 *1 (-818)))) +(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-634 *6) "failed") (-568) *6 *6)) (-4 *6 (-365)) (-4 *7 (-1219 *6)) (-5 *2 (-2 (|:| |answer| (-585 (-409 *7))) (|:| |a0| *6))) (-5 *1 (-578 *6 *7)) (-5 *3 (-409 *7))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-634 (-1069 *4 *5 *2))) (-4 *4 (-1090)) (-4 *5 (-13 (-1047) (-881 *4) (-842) (-609 (-887 *4)))) (-4 *2 (-13 (-432 *5) (-881 *4) (-609 (-887 *4)))) (-5 *1 (-60 *4 *5 *2)))) ((*1 *2 *3 *2 *4) (-12 (-5 *3 (-634 (-1069 *5 *6 *2))) (-5 *4 (-917)) (-4 *5 (-1090)) (-4 *6 (-13 (-1047) (-881 *5) (-842) (-609 (-887 *5)))) (-4 *2 (-13 (-432 *6) (-881 *5) (-609 (-887 *5)))) (-5 *1 (-60 *5 *6 *2))))) +(((*1 *1 *1) (-12 (-4 *1 (-1189 *2 *3 *4 *5)) (-4 *2 (-558)) (-4 *3 (-788)) (-4 *4 (-842)) (-4 *5 (-1061 *2 *3 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-634 (-1182 *3))) (-5 *1 (-1182 *3)) (-4 *3 (-1090))))) +(((*1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1061 *3 *4 *5)) (-4 *3 (-558)) (-5 *2 (-121))))) +(((*1 *2 *3) (-12 (-5 *3 (-763)) (-4 *4 (-13 (-558) (-453))) (-5 *2 (-634 *4)) (-5 *1 (-346 *4 *5)) (-4 *5 (-52 *4 *3))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002)))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-887 *4)) (-5 *3 (-1 (-121) *5)) (-4 *4 (-1090)) (-4 *5 (-1195)) (-5 *1 (-885 *4 *5)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-887 *4)) (-5 *3 (-634 (-1 (-121) *5))) (-4 *4 (-1090)) (-4 *5 (-1195)) (-5 *1 (-885 *4 *5)))) ((*1 *2 *2 *3 *4) (-12 (-5 *2 (-887 *5)) (-5 *3 (-634 (-1161))) (-5 *4 (-1 (-121) (-634 *6))) (-4 *5 (-1090)) (-4 *6 (-1195)) (-5 *1 (-885 *5 *6)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-121) *5)) (-4 *5 (-1195)) (-4 *4 (-842)) (-5 *1 (-938 *4 *2 *5)) (-4 *2 (-432 *4)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-634 (-1 (-121) *5))) (-4 *5 (-1195)) (-4 *4 (-842)) (-5 *1 (-938 *4 *2 *5)) (-4 *2 (-432 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1161)) (-5 *4 (-1 (-121) *5)) (-4 *5 (-1195)) (-5 *2 (-310 (-568))) (-5 *1 (-939 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1161)) (-5 *4 (-634 (-1 (-121) *5))) (-4 *5 (-1195)) (-5 *2 (-310 (-568))) (-5 *1 (-939 *5)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-634 (-1161))) (-5 *3 (-1 (-121) (-634 *6))) (-4 *6 (-13 (-432 *5) (-881 *4) (-609 (-887 *4)))) (-4 *4 (-1090)) (-4 *5 (-13 (-1047) (-881 *4) (-842) (-609 (-887 *4)))) (-5 *1 (-1069 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *3 (-1090)) (-4 *4 (-13 (-1047) (-881 *3) (-842) (-609 *2))) (-5 *2 (-887 *3)) (-5 *1 (-1069 *3 *4 *5)) (-4 *5 (-13 (-432 *4) (-881 *3) (-609 *2)))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-634 (-953 *3))) (-4 *3 (-453)) (-5 *1 (-362 *3 *4)) (-14 *4 (-634 (-1161))))) ((*1 *2 *2) (|partial| -12 (-5 *2 (-634 (-775 *3 (-852 *4)))) (-4 *3 (-453)) (-14 *4 (-634 (-1161))) (-5 *1 (-619 *3 *4))))) +(((*1 *2 *3) (-12 (-4 *4 (-13 (-301) (-150))) (-4 *5 (-13 (-842) (-609 (-1161)))) (-4 *6 (-788)) (-5 *2 (-409 (-953 *4))) (-5 *1 (-924 *4 *5 *6 *3)) (-4 *3 (-950 *4 *6 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-679 *7)) (-4 *7 (-950 *4 *6 *5)) (-4 *4 (-13 (-301) (-150))) (-4 *5 (-13 (-842) (-609 (-1161)))) (-4 *6 (-788)) (-5 *2 (-679 (-409 (-953 *4)))) (-5 *1 (-924 *4 *5 *6 *7)))) ((*1 *2 *3) (-12 (-5 *3 (-634 *7)) (-4 *7 (-950 *4 *6 *5)) (-4 *4 (-13 (-301) (-150))) (-4 *5 (-13 (-842) (-609 (-1161)))) (-4 *6 (-788)) (-5 *2 (-634 (-409 (-953 *4)))) (-5 *1 (-924 *4 *5 *6 *7))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1219 *6)) (-4 *6 (-13 (-27) (-432 *5))) (-4 *5 (-13 (-842) (-558) (-1037 (-568)))) (-4 *8 (-1219 (-409 *7))) (-5 *2 (-585 *3)) (-5 *1 (-553 *5 *6 *7 *8 *3)) (-4 *3 (-340 *6 *7 *8))))) +(((*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-340 *4 *5 *6)) (-4 *4 (-1199)) (-4 *5 (-1219 *4)) (-4 *6 (-1219 (-409 *5))) (-5 *2 (-2 (|:| |num| (-679 *5)) (|:| |den| *5)))))) +(((*1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) ((*1 *1) (-5 *1 (-541))) ((*1 *1) (-4 *1 (-712))) ((*1 *1) (-4 *1 (-716))) ((*1 *1) (-12 (-5 *1 (-887 *2)) (-4 *2 (-1090)))) ((*1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-842))))) +(((*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-634 *3)) (-5 *1 (-48 *4 *3)) (-4 *3 (-419 *4))))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4265 *4))) (-5 *1 (-970 *4 *3)) (-4 *3 (-1219 *4))))) +(((*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-917)) (-5 *1 (-326 *3 *4)) (-4 *3 (-327 *4)))) ((*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-828 (-917))) (-5 *1 (-326 *3 *4)) (-4 *3 (-327 *4)))) ((*1 *2) (-12 (-4 *1 (-327 *3)) (-4 *3 (-365)) (-5 *2 (-917)))) ((*1 *2) (-12 (-4 *1 (-1261 *3)) (-4 *3 (-365)) (-5 *2 (-828 (-917)))))) +(((*1 *2 *1) (-12 (-4 *1 (-333 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 (-409 *4))) (-4 *6 (-340 *3 *4 *5)) (-5 *2 (-415 *4 (-409 *4) *5 *6)))) ((*1 *1 *2) (-12 (-5 *2 (-1244 *6)) (-4 *6 (-13 (-411 *4 *5) (-1037 *4))) (-4 *4 (-993 *3)) (-4 *5 (-1219 *4)) (-4 *3 (-301)) (-5 *1 (-415 *3 *4 *5 *6)))) ((*1 *1 *2) (-12 (-5 *2 (-634 *6)) (-4 *6 (-950 *3 *4 *5)) (-4 *3 (-365)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *1 (-514 *3 *4 *5 *6))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-763)) (-5 *1 (-123)))) ((*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-123)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1047)) (-4 *3 (-842)) (-4 *5 (-262 *3)) (-4 *6 (-788)) (-5 *2 (-763)))) ((*1 *2 *1) (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-842)) (-4 *5 (-262 *4)) (-4 *6 (-788)) (-5 *2 (-763)))) ((*1 *2 *1) (-12 (-4 *1 (-262 *3)) (-4 *3 (-842)) (-5 *2 (-763))))) +(((*1 *2 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1195)) (-4 *2 (-1002)) (-4 *2 (-1047))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -2850 *4) (|:| -2183 *4) (|:| |totalpts| (-568)) (|:| |success| (-121)))) (-5 *1 (-784)) (-5 *5 (-568))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-638 *2 *3 *4)) (-4 *2 (-1090)) (-4 *3 (-23)) (-14 *4 *3))) ((*1 *1 *2 *3 *1) (-12 (-5 *1 (-638 *2 *3 *4)) (-4 *2 (-1090)) (-4 *3 (-23)) (-14 *4 *3))) ((*1 *1 *1 *1) (-12 (-5 *1 (-666 *2)) (-4 *2 (-1047)) (-4 *2 (-1090))))) +(((*1 *2 *3) (-12 (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *6 (-950 *4 *7 (-852 *5))) (-4 *7 (-230 (-1697 *5) (-763))) (-4 *3 (-971 *4)) (-4 *8 (-641 *4)) (-4 *9 (-920 *4 *8)) (-4 *10 (-235 *9)) (-4 *11 (-536 *4 *5 *6 *7 *3 *8 *9 *10 *13)) (-4 *13 (-117)) (-5 *2 (-634 *9)) (-5 *1 (-467 *4 *5 *6 *7 *3 *8 *9 *10 *11 *12 *13)) (-4 *12 (-258 *11)))) ((*1 *2 *3) (-12 (-5 *3 (-967 *4)) (-4 *4 (-350)) (-5 *2 (-634 (-922 *4))) (-5 *1 (-867 *4 *5 *6)) (-14 *5 (-634 (-1161))) (-4 *6 (-117)))) ((*1 *2 *3) (-12 (-5 *3 (-966 *4)) (-4 *4 (-365)) (-5 *2 (-634 (-921 *4))) (-5 *1 (-868 *4 *5 *6)) (-14 *5 (-634 (-1161))) (-4 *6 (-117))))) +(((*1 *2 *2) (-12 (-5 *2 (-215)) (-5 *1 (-250))))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-13 (-301) (-150))) (-4 *5 (-13 (-842) (-609 (-1161)))) (-4 *6 (-788)) (-4 *7 (-950 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-121)) (|:| |z0| (-634 *7)) (|:| |n0| (-634 *7)))) (-5 *1 (-924 *4 *5 *6 *7)) (-5 *3 (-634 *7))))) +(((*1 *2) (-12 (-4 *3 (-13 (-842) (-558) (-1037 (-568)))) (-5 *2 (-1249)) (-5 *1 (-435 *3 *4)) (-4 *4 (-432 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-568)) (-5 *1 (-420 *2)) (-4 *2 (-558))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-1161)) (-4 *5 (-13 (-558) (-842) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-634 (-607 *3))) (|:| |vals| (-634 *3)))) (-5 *1 (-273 *5 *3)) (-4 *3 (-13 (-27) (-1181) (-432 *5)))))) +(((*1 *2 *2) (-12 (-5 *2 (-944 *3)) (-4 *3 (-13 (-365) (-1181) (-1002))) (-5 *1 (-174 *3))))) +(((*1 *2 *3) (-12 (-5 *2 (-123)) (-5 *1 (-122 *3)) (-4 *3 (-842)) (-4 *3 (-1090))))) +(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (-5 *2 (-1141 (-215))) (-5 *1 (-184)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-310 (-215))) (-5 *4 (-634 (-1161))) (-5 *5 (-1084 (-835 (-215)))) (-5 *2 (-1141 (-215))) (-5 *1 (-294)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1244 (-310 (-215)))) (-5 *4 (-634 (-1161))) (-5 *5 (-1084 (-835 (-215)))) (-5 *2 (-1141 (-215))) (-5 *1 (-294))))) +(((*1 *2 *1) (-12 (-5 *2 (-634 (-1143))) (-5 *1 (-396)))) ((*1 *2 *1) (-12 (-5 *2 (-634 (-1143))) (-5 *1 (-1176))))) +(((*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-121)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-121))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1090))))) +(((*1 *2 *3) (-12 (-5 *2 (-1163 (-409 (-568)))) (-5 *1 (-182)) (-5 *3 (-568))))) +(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-147))))) +(((*1 *2 *3 *2) (-12 (-4 *2 (-13 (-365) (-840))) (-5 *1 (-178 *2 *3)) (-4 *3 (-1219 (-169 *2))))) ((*1 *2 *3) (-12 (-4 *2 (-13 (-365) (-840))) (-5 *1 (-178 *2 *3)) (-4 *3 (-1219 (-169 *2)))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-634 (-953 *4))) (-5 *3 (-634 (-1161))) (-4 *4 (-453)) (-5 *1 (-914 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1234 *4)) (-4 *4 (-43 (-409 (-568)))) (-5 *2 (-1 (-1141 *4) (-1141 *4) (-1141 *4))) (-5 *1 (-1236 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 *4)) (-4 *4 (-840)) (-4 *4 (-365)) (-5 *2 (-763)) (-5 *1 (-946 *4 *5)) (-4 *5 (-1219 *4))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 (-944 *3) (-944 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-365) (-1181) (-1002)))))) +(((*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-568)) (-4 *3 (-172)) (-4 *5 (-375 *3)) (-4 *6 (-375 *3)) (-5 *1 (-678 *3 *5 *6 *2)) (-4 *2 (-677 *3 *5 *6))))) +(((*1 *1 *1) (-12 (-4 *1 (-1093 *2 *3 *4 *5 *6)) (-4 *2 (-1090)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090))))) +(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-917)) (-5 *4 (-1143)) (-5 *2 (-1249)) (-5 *1 (-1245))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-365)) (-5 *1 (-758 *2 *3)) (-4 *2 (-698 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-844 *2)) (-4 *2 (-1047)) (-4 *2 (-365))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-763)) (-5 *3 (-944 *4)) (-4 *1 (-1122 *4)) (-4 *4 (-1047)))) ((*1 *2 *1 *3 *4) (-12 (-5 *3 (-763)) (-5 *4 (-944 (-215))) (-5 *2 (-1249)) (-5 *1 (-1246))))) +(((*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *3 (-1047)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2704 *1))) (-4 *1 (-844 *3))))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-1047)) (-4 *2 (-677 *4 *5 *6)) (-5 *1 (-108 *4 *3 *2 *5 *6)) (-4 *3 (-1219 *4)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-679 *3)) (-4 *3 (-301)) (-5 *1 (-689 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-1093 *2 *3 *4 *5 *6)) (-4 *2 (-1090)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090))))) +(((*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-558)) (-4 *2 (-550)))) ((*1 *1 *1) (-4 *1 (-1056)))) +(((*1 *2 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-917)) (-5 *1 (-781))))) +(((*1 *2 *3) (-12 (-5 *3 (-1157 *7)) (-4 *7 (-950 *6 *4 *5)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1047)) (-5 *2 (-1157 *6)) (-5 *1 (-318 *4 *5 *6 *7))))) +(((*1 *2 *3) (-12 (-5 *2 (-121)) (-5 *1 (-129 *3)) (-4 *3 (-1219 (-568)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-121) (-123) (-123))) (-5 *1 (-123))))) +(((*1 *2 *3) (-12 (-4 *4 (-13 (-301) (-150))) (-4 *5 (-13 (-842) (-609 (-1161)))) (-4 *6 (-788)) (-5 *2 (-634 *3)) (-5 *1 (-924 *4 *5 *6 *3)) (-4 *3 (-950 *4 *6 *5))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-365)) (-5 *1 (-280 *3 *2)) (-4 *2 (-1234 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-409 *5)) (-4 *5 (-1219 *4)) (-4 *4 (-558)) (-4 *4 (-1047)) (-4 *2 (-1234 *4)) (-5 *1 (-1237 *4 *5 *6 *2)) (-4 *6 (-646 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 (-634 (-944 (-215))))) (-5 *2 (-634 (-215))) (-5 *1 (-473))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-917)) (-4 *1 (-920 *4 *5)) (-4 *4 (-365)) (-4 *5 (-641 *4)) (-5 *2 (-1249))))) +(((*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-634 (-1244 *4))) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-558)) (-5 *2 (-634 (-1244 *3)))))) +(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-634 *7)) (-5 *3 (-568)) (-4 *7 (-950 *4 *5 *6)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *1 (-450 *4 *5 *6 *7))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-256))) (-5 *4 (-1161)) (-5 *2 (-121)) (-5 *1 (-256)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-465))) (-5 *4 (-1161)) (-5 *2 (-121)) (-5 *1 (-465))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1161)) (-5 *2 (-1165)) (-5 *1 (-1164))))) +(((*1 *1 *2) (-12 (-5 *1 (-1026 *2)) (-4 *2 (-1195))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002)))))) +(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1090)) (-5 *1 (-106 *3)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-106 *2)) (-4 *2 (-1090))))) +(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-473)) (-5 *4 (-917)) (-5 *2 (-1249)) (-5 *1 (-1245))))) +(((*1 *2 *2) (-12 (-5 *2 (-634 *1)) (-4 *1 (-37 *3)) (-4 *3 (-365)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-634 *1)) (-5 *3 (-763)) (-4 *1 (-37 *4)) (-4 *4 (-365)))) ((*1 *2 *2) (-12 (-5 *2 (-634 *1)) (-4 *1 (-971 *3)) (-4 *3 (-365)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-634 *1)) (-5 *3 (-763)) (-4 *1 (-971 *4)) (-4 *4 (-365))))) +(((*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *5 *6 *3)) (-4 *4 (-1047)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *3 (-1061 *4 *5 *6)) (-4 *4 (-558)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) +(((*1 *2 *3) (-12 (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-1249)) (-5 *1 (-450 *4 *5 *6 *3)) (-4 *3 (-950 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-4 *4 (-1047)) (-4 *2 (-13 (-406) (-1037 *4) (-365) (-1181) (-279))) (-5 *1 (-444 *4 *3 *2)) (-4 *3 (-1219 *4))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-301)) (-5 *2 (-121))))) +(((*1 *1 *1) (-12 (-4 *1 (-665 *2)) (-4 *2 (-1195))))) +(((*1 *1 *2) (-12 (-5 *2 (-634 (-850))) (-5 *1 (-850))))) +(((*1 *2 *3) (-12 (-4 *4 (-1219 (-409 *2))) (-5 *2 (-568)) (-5 *1 (-909 *4 *3)) (-4 *3 (-1219 (-409 *4)))))) +(((*1 *2 *3 *4) (-12 (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *3 (-1061 *5 *6 *7)) (-5 *2 (-634 (-2 (|:| |val| (-121)) (|:| -3001 *4)))) (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-5 *1 (-173 *2)) (-4 *2 (-301)))) ((*1 *2 *1) (-12 (-5 *1 (-910 *2)) (-4 *2 (-301)))) ((*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-558)) (-4 *2 (-301)))) ((*1 *2 *1) (-12 (-4 *1 (-1056)) (-5 *2 (-568))))) +(((*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-328))))) +(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-634 (-568))) (-5 *1 (-1100)) (-5 *3 (-568))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-340 *4 *3 *5)) (-4 *4 (-1199)) (-4 *3 (-1219 *4)) (-4 *5 (-1219 (-409 *3))) (-5 *2 (-121)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-340 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 (-409 *4))) (-5 *2 (-121)))) ((*1 *2 *1) (-12 (-4 *1 (-340 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 (-409 *4))) (-5 *2 (-121))))) +(((*1 *2 *1) (-12 (-4 *1 (-1122 *3)) (-4 *3 (-1047)) (-5 *2 (-121))))) +(((*1 *2 *1) (-12 (-4 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *3 (-1090)) (-4 *4 (-1090)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *7 (-1090)) (-5 *2 (-121))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-634 *5) *6)) (-4 *5 (-13 (-365) (-150) (-1037 (-409 (-568))))) (-4 *6 (-1219 *5)) (-5 *2 (-634 (-2 (|:| -3495 *5) (|:| -1853 *3)))) (-5 *1 (-804 *5 *6 *3 *7)) (-4 *3 (-646 *6)) (-4 *7 (-646 (-409 *6)))))) +(((*1 *1 *2 *2 *2 *2 *2 *3 *4) (-12 (-5 *2 (-568)) (-5 *3 (-121)) (-5 *4 (-3 "left" "center" "right" "vertical" "horizontal")) (-4 *1 (-117))))) +(((*1 *1 *1) (-12 (-4 *1 (-246 *2 *3 *4 *5)) (-4 *2 (-1047)) (-4 *3 (-842)) (-4 *4 (-262 *3)) (-4 *5 (-788))))) +(((*1 *2 *3) (-12 (-5 *2 (-1092 (-1161))) (-5 *1 (-58)) (-5 *3 (-1161))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-121)) (-5 *3 (-634 (-256))) (-5 *1 (-254))))) +(((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-123)) (-5 *4 (-634 *2)) (-5 *1 (-122 *2)) (-4 *2 (-1090)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-123)) (-5 *3 (-1 *4 (-634 *4))) (-4 *4 (-1090)) (-5 *1 (-122 *4)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-123)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1090)) (-5 *1 (-122 *4)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-123)) (-5 *2 (-1 *4 (-634 *4))) (-5 *1 (-122 *4)) (-4 *4 (-1090)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-637 *3)) (-4 *3 (-1047)) (-5 *1 (-704 *3 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1047)) (-5 *1 (-829 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-634 (-256))) (-5 *1 (-1245)))) ((*1 *2 *1) (-12 (-5 *2 (-634 (-256))) (-5 *1 (-1245)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-634 (-256))) (-5 *1 (-1246)))) ((*1 *2 *1) (-12 (-5 *2 (-634 (-256))) (-5 *1 (-1246))))) +(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1246)))) ((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1246))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-763)) (-5 *2 (-1 (-381))) (-5 *1 (-1039))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-634 *2)) (-4 *2 (-950 *4 *5 *6)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *1 (-450 *4 *5 *6 *2))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1249)) (-5 *1 (-1245)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1249)) (-5 *1 (-1246))))) +(((*1 *2 *3) (-12 (-4 *4 (-842)) (-5 *2 (-2 (|:| |f1| (-634 *4)) (|:| |f2| (-634 (-634 (-634 *4)))) (|:| |f3| (-634 (-634 *4))) (|:| |f4| (-634 (-634 (-634 *4)))))) (-5 *1 (-1167 *4)) (-5 *3 (-634 (-634 (-634 *4))))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-1047)) (-5 *1 (-889 *2 *3)) (-4 *2 (-1219 *3)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-1047)) (-5 *1 (-1145 *3))))) +(((*1 *1 *1) (-4 *1 (-858)))) +(((*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-1090)) (-5 *1 (-1132 *3))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-634 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-763)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-788)) (-4 *3 (-950 *4 *5 *6)) (-4 *4 (-453)) (-4 *6 (-842)) (-5 *1 (-450 *4 *5 *6 *3))))) +(((*1 *2) (-12 (-5 *2 (-1249)) (-5 *1 (-563))))) +(((*1 *2 *3) (-12 (-5 *3 (-568)) (-5 *2 (-1249)) (-5 *1 (-1006))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-288 (-409 (-953 *5)))) (-5 *4 (-1161)) (-4 *5 (-13 (-301) (-842) (-150))) (-5 *2 (-1150 (-634 (-310 *5)) (-634 (-288 (-310 *5))))) (-5 *1 (-1117 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-409 (-953 *5))) (-5 *4 (-1161)) (-4 *5 (-13 (-301) (-842) (-150))) (-5 *2 (-1150 (-634 (-310 *5)) (-634 (-288 (-310 *5))))) (-5 *1 (-1117 *5))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-1161)) (-4 *1 (-536 *3 *4 *5 *6 *7 *8 *9 *10 *11)) (-4 *3 (-365)) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *6 (-230 (-1697 *4) (-763))) (-4 *7 (-971 *3)) (-4 *8 (-641 *3)) (-4 *9 (-920 *3 *8)) (-4 *10 (-235 *9)) (-4 *11 (-117))))) +(((*1 *2 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1195)))) ((*1 *2 *1) (-12 (-4 *3 (-1090)) (-4 *2 (-13 (-432 *4) (-881 *3) (-609 (-887 *3)))) (-5 *1 (-1069 *3 *4 *2)) (-4 *4 (-13 (-1047) (-881 *3) (-842) (-609 (-887 *3)))))) ((*1 *2 *1) (-12 (-4 *2 (-1090)) (-5 *1 (-1150 *2 *3)) (-4 *3 (-1090))))) +(((*1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-234))))) +(((*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-817))))) +(((*1 *2 *2) (-12 (-4 *3 (-365)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-529 *3 *4 *5 *2)) (-4 *2 (-677 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-555 *2)) (-4 *2 (-13 (-406) (-1181))))) ((*1 *1 *1 *1) (-4 *1 (-788)))) +(((*1 *2) (-12 (-4 *1 (-406)) (-5 *2 (-917)))) ((*1 *1) (-4 *1 (-550))) ((*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-688)))) ((*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-688)))) ((*1 *2 *1) (-12 (-5 *2 (-634 *3)) (-5 *1 (-899 *3)) (-4 *3 (-1090))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1108)) (-5 *2 (-121)) (-5 *1 (-816))))) +(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-171))))) +(((*1 *1 *1) (-12 (-4 *1 (-37 *2)) (-4 *2 (-365)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-763)) (-4 *1 (-37 *3)) (-4 *3 (-365)))) ((*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) ((*1 *1 *1 *1) (-4 *1 (-478))) ((*1 *1 *1) (-12 (-4 *1 (-792 *2)) (-4 *2 (-172)))) ((*1 *1 *1) (-4 *1 (-858))) ((*1 *2 *2) (-12 (-5 *2 (-634 (-568))) (-5 *1 (-878)))) ((*1 *1 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-365)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-763)) (-4 *1 (-971 *3)) (-4 *3 (-365)))) ((*1 *1 *1) (-5 *1 (-972))) ((*1 *1 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-550)))) +(((*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-763)) (-4 *4 (-1047)) (-5 *1 (-1215 *4 *2)) (-4 *2 (-1219 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-673 *4 *5 *6)) (-4 *4 (-1090))))) +(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-568)) (-5 *4 (-679 (-215))) (-5 *5 (-215)) (-5 *2 (-1035)) (-5 *1 (-743))))) +(((*1 *2 *3) (-12 (-5 *3 (-1157 *4)) (-4 *4 (-350)) (-5 *2 (-958 (-1108))) (-5 *1 (-347 *4))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -2850 *4) (|:| -2183 *4) (|:| |totalpts| (-568)) (|:| |success| (-121)))) (-5 *1 (-784)) (-5 *5 (-568))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-1157 *3)) (-4 *3 (-350)) (-5 *1 (-358 *3))))) +(((*1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-751))))) +(((*1 *2) (-12 (-4 *3 (-1047)) (-5 *2 (-958 (-702 *3 *4))) (-5 *1 (-702 *3 *4)) (-4 *4 (-1219 *3))))) +(((*1 *2 *3 *4 *4) (-12 (-5 *4 (-607 *3)) (-4 *3 (-13 (-432 *5) (-27) (-1181))) (-4 *5 (-13 (-453) (-1037 (-568)) (-842) (-150) (-630 (-568)))) (-5 *2 (-585 *3)) (-5 *1 (-570 *5 *3 *6)) (-4 *6 (-1090))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-634 *2)) (-4 *2 (-950 *4 *5 *6)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *1 (-450 *4 *5 *6 *2))))) +(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1090)) (-4 *6 (-1090)) (-4 *2 (-1090)) (-5 *1 (-670 *5 *6 *2))))) +(((*1 *2 *1) (-12 (-14 *3 (-634 (-1161))) (-4 *4 (-172)) (-4 *5 (-230 (-1697 *3) (-763))) (-14 *6 (-1 (-121) (-2 (|:| -4355 *2) (|:| -3438 *5)) (-2 (|:| -4355 *2) (|:| -3438 *5)))) (-4 *2 (-842)) (-5 *1 (-463 *3 *4 *2 *5 *6 *7)) (-4 *7 (-950 *4 *5 (-852 *3)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-568)) (-4 *1 (-320 *4 *2)) (-4 *4 (-1090)) (-4 *2 (-137))))) +(((*1 *2 *1) (-12 (-4 *1 (-1122 *3)) (-4 *3 (-1047)) (-5 *2 (-2 (|:| -1526 (-763)) (|:| |curves| (-763)) (|:| |polygons| (-763)) (|:| |constructs| (-763))))))) +(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-634 *6)) (-5 *4 (-1 *6 (-763) (-1244 (-1157 *6)))) (-5 *5 (-634 (-763))) (-4 *6 (-13 (-558) (-453))) (-5 *2 (-679 (-1157 *6))) (-5 *1 (-346 *6 *7)) (-4 *7 (-52 *6 (-763)))))) +(((*1 *2 *3) (-12 (-5 *3 (-763)) (-5 *2 (-1249)) (-5 *1 (-381)))) ((*1 *2) (-12 (-5 *2 (-1249)) (-5 *1 (-381))))) +(((*1 *1 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1090))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002)))))) +(((*1 *2 *3 *2 *4) (-12 (-5 *3 (-123)) (-5 *4 (-763)) (-4 *5 (-453)) (-4 *5 (-842)) (-4 *5 (-1037 (-568))) (-4 *5 (-558)) (-5 *1 (-46 *5 *2)) (-4 *2 (-432 *5)) (-4 *2 (-13 (-365) (-296) (-10 -8 (-15 -2317 ((-1113 *5 (-607 $)) $)) (-15 -2324 ((-1113 *5 (-607 $)) $)) (-15 -2745 ($ (-1113 *5 (-607 $)))))))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1195))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-634 (-850))) (-5 *1 (-1161))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 *7)) (-4 *7 (-1061 *4 *5 *6)) (-4 *4 (-558)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-121)) (-5 *1 (-978 *4 *5 *6 *7))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-763)) (-5 *1 (-64 *3)) (-4 *3 (-1195)))) ((*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-1195)) (-5 *1 (-64 *3))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-679 *5))) (-5 *4 (-568)) (-4 *5 (-365)) (-4 *5 (-1047)) (-5 *2 (-121)) (-5 *1 (-1029 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-679 *4))) (-4 *4 (-365)) (-4 *4 (-1047)) (-5 *2 (-121)) (-5 *1 (-1029 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1061 *3 *4 *5)) (-5 *2 (-634 *5))))) +(((*1 *2 *3) (-12 (-4 *4 (-43 (-409 (-568)))) (-5 *2 (-2 (|:| -2786 (-1141 *4)) (|:| -2790 (-1141 *4)))) (-5 *1 (-1147 *4)) (-5 *3 (-1141 *4))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-328))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-568)) (-5 *1 (-126 *3)) (-14 *3 *2))) ((*1 *1 *1) (-12 (-5 *1 (-126 *2)) (-14 *2 (-568)))) ((*1 *1 *1) (-12 (-4 *1 (-641 *2)) (-4 *2 (-365)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-568)) (-4 *1 (-641 *3)) (-4 *3 (-365)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-568)) (-5 *1 (-865 *3)) (-14 *3 *2))) ((*1 *1 *1) (-12 (-5 *1 (-865 *2)) (-14 *2 (-568)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-568)) (-14 *3 *2) (-5 *1 (-866 *3 *4)) (-4 *4 (-863 *3)))) ((*1 *1 *1) (-12 (-14 *2 (-568)) (-5 *1 (-866 *2 *3)) (-4 *3 (-863 *2)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-568)) (-4 *1 (-1205 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-1234 *3)))) ((*1 *1 *1) (-12 (-4 *1 (-1205 *2 *3)) (-4 *2 (-1047)) (-4 *3 (-1234 *2))))) +(((*1 *1 *2) (-12 (-5 *2 (-634 *5)) (-4 *5 (-172)) (-5 *1 (-141 *3 *4 *5)) (-14 *3 (-568)) (-14 *4 (-763))))) +(((*1 *2 *1) (-12 (-5 *2 (-568)) (-5 *1 (-910 *3)) (-4 *3 (-301))))) +(((*1 *2 *2 *3) (-12 (-4 *4 (-1090)) (-4 *2 (-895 *4)) (-5 *1 (-681 *4 *2 *5 *3)) (-4 *5 (-375 *2)) (-4 *3 (-13 (-375 *4) (-10 -7 (-6 -4519))))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-634 (-634 *8))) (-5 *3 (-634 *8)) (-4 *8 (-950 *5 *7 *6)) (-4 *5 (-13 (-301) (-150))) (-4 *6 (-13 (-842) (-609 (-1161)))) (-4 *7 (-788)) (-5 *2 (-121)) (-5 *1 (-924 *5 *6 *7 *8))))) +(((*1 *2 *3) (-12 (-4 *4 (-1047)) (-4 *2 (-13 (-406) (-1037 *4) (-365) (-1181) (-279))) (-5 *1 (-444 *4 *3 *2)) (-4 *3 (-1219 *4)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-917)) (-4 *5 (-1047)) (-4 *2 (-13 (-406) (-1037 *5) (-365) (-1181) (-279))) (-5 *1 (-444 *5 *3 *2)) (-4 *3 (-1219 *5))))) +(((*1 *2 *2) (-12 (-4 *3 (-453)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *1 (-450 *3 *4 *5 *2)) (-4 *2 (-950 *3 *4 *5))))) +(((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-327 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-1157 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-327 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-1157 *3))))) +(((*1 *2 *3 *4) (-12 (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *3 (-1061 *5 *6 *7)) (-5 *2 (-121)) (-5 *1 (-1067 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *3 (-1061 *5 *6 *7)) (-5 *2 (-634 (-2 (|:| |val| (-121)) (|:| -3001 *4)))) (-5 *1 (-1067 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3))))) +(((*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-1173 *3 *4)) (-4 *3 (-1090)) (-4 *4 (-1090))))) +(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-917)) (-5 *4 (-1143)) (-5 *2 (-1249)) (-5 *1 (-1245))))) +(((*1 *2) (-12 (-4 *1 (-350)) (-5 *2 (-634 (-2 (|:| -3848 (-568)) (|:| -3438 (-568)))))))) +(((*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-842)) (-5 *1 (-135 *3))))) +(((*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-763)) (-5 *1 (-48 *4 *3)) (-4 *3 (-419 *4))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-634 *1)) (-4 *1 (-1061 *4 *5 *6)) (-4 *4 (-1047)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-121)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-1061 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-121)))) ((*1 *2 *1) (-12 (-4 *1 (-1189 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1061 *3 *4 *5)) (-5 *2 (-121)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-1189 *4 *5 *6 *3)) (-4 *4 (-558)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *3 (-1061 *4 *5 *6)) (-5 *2 (-121))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-53))) (-5 *4 (-634 (-465))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-482)))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-53))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-482)))) ((*1 *2 *3) (-12 (-4 (-53) (-1037 *3)) (-5 *3 (-1161)) (-5 *2 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-53)) (-634 (-465)))) (-5 *1 (-482)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 *5)) (-5 *4 (-634 (-465))) (-4 *5 (-13 (-350) (-609 (-568)))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-484 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-634 *4)) (-4 *4 (-13 (-350) (-609 (-568)))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-484 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 *4) (-634 (-465)))) (-5 *1 (-484 *4)) (-4 *4 (-1037 *3)) (-4 *4 (-13 (-350) (-609 (-568)))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-568)))) (-5 *4 (-634 (-465))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-485)))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-409 (-568)))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-485)))) ((*1 *2 *3) (-12 (-4 (-409 (-568)) (-1037 *3)) (-4 (-568) (-1037 *3)) (-5 *3 (-1161)) (-5 *2 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-568))) (-634 (-465)))) (-5 *1 (-485)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 *5)) (-5 *4 (-634 (-465))) (-4 *5 (-365)) (-14 *10 (-1 *7 *5)) (-4 *8 (-13 (-842) (-558))) (-14 *9 (-1 *5 *8)) (-5 *2 (-634 (-2 (|:| -1864 *7) (|:| -4477 (-763))))) (-5 *1 (-486 *5 *6 *7 *8 *9 *10)) (-4 *6 (-453)) (-4 *7 (-13 (-432 (-568)) (-558) (-1037 *8) (-1037 (-1161)) (-1037 (-568)) (-161) (-895 (-1161)) (-10 -8 (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -1332 ($ $)) (-15 -3013 ($ $)) (-15 -2086 ((-121) $))))))) ((*1 *2 *3) (-12 (-5 *3 (-634 *4)) (-4 *4 (-365)) (-14 *9 (-1 *6 *4)) (-4 *7 (-13 (-842) (-558))) (-14 *8 (-1 *4 *7)) (-5 *2 (-634 (-2 (|:| -1864 *6) (|:| -4477 (-763))))) (-5 *1 (-486 *4 *5 *6 *7 *8 *9)) (-4 *5 (-453)) (-4 *6 (-13 (-432 (-568)) (-558) (-1037 *7) (-1037 (-1161)) (-1037 (-568)) (-161) (-895 (-1161)) (-10 -8 (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -1332 ($ $)) (-15 -3013 ($ $)) (-15 -2086 ((-121) $))))))) ((*1 *2 *3) (-12 (-5 *3 (-1161)) (-4 *7 (-13 (-842) (-558))) (-14 *8 (-1 *4 *7)) (-5 *2 (-1 (-634 (-2 (|:| -1864 *6) (|:| -4477 (-763)))) (-634 *4) (-634 (-465)))) (-5 *1 (-486 *4 *5 *6 *7 *8 *9)) (-4 *4 (-1037 *3)) (-4 *5 (-1037 *3)) (-4 *4 (-365)) (-4 *5 (-453)) (-4 *6 (-13 (-432 (-568)) (-558) (-1037 *7) (-1037 *3) (-1037 (-568)) (-161) (-895 *3) (-10 -8 (-15 * ($ $ $)) (-15 -1779 ($ $ $)) (-15 ** ($ $ $)) (-15 -1332 ($ $)) (-15 -3013 ($ $)) (-15 -2086 ((-121) $))))) (-14 *9 (-1 *6 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-953 (-568))))) (-5 *4 (-634 (-465))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-487)))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-409 (-953 (-568))))) (-5 *2 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763))))) (-5 *1 (-487)))) ((*1 *2 *3) (-12 (-4 (-409 (-953 (-568))) (-1037 *3)) (-4 (-953 (-568)) (-1037 *3)) (-5 *3 (-1161)) (-5 *2 (-1 (-634 (-2 (|:| -1864 (-310 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-953 (-568)))) (-634 (-465)))) (-5 *1 (-487)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-409 (-734 *5 (-568))))) (-5 *4 (-634 (-465))) (-14 *5 (-1161)) (-5 *2 (-634 (-2 (|:| -1864 (-733 *5 (-568))) (|:| -4477 (-763))))) (-5 *1 (-488 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-634 (-409 (-734 *4 (-568))))) (-14 *4 (-1161)) (-5 *2 (-634 (-2 (|:| -1864 (-733 *4 (-568))) (|:| -4477 (-763))))) (-5 *1 (-488 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1 (-634 (-2 (|:| -1864 (-733 *4 (-568))) (|:| -4477 (-763)))) (-634 (-409 (-734 *4 (-568)))) (-634 (-465)))) (-5 *1 (-488 *4)) (-14 *4 *3)))) +(((*1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-1006))))) +(((*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-121)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-950 *3 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-1157 *4)) (-4 *4 (-350)) (-4 *2 (-13 (-404) (-10 -7 (-15 -2745 (*2 *4)) (-15 -3683 ((-917) *2)) (-15 -3746 ((-1244 *2) (-917))) (-15 -1316 (*2 *2))))) (-5 *1 (-357 *2 *4))))) +(((*1 *2 *3) (-12 (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *6 (-950 *4 *7 (-852 *5))) (-4 *7 (-230 (-1697 *5) (-763))) (-4 *8 (-971 *4)) (-4 *9 (-641 *4)) (-4 *10 (-920 *4 *9)) (-4 *11 (-235 *10)) (-4 *12 (-536 *4 *5 *6 *7 *8 *9 *10 *11 *13)) (-4 *13 (-117)) (-5 *2 (-1249)) (-5 *1 (-260 *4 *5 *6 *7 *8 *9 *10 *11 *12 *3 *13)) (-4 *3 (-258 *12))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-634 (-763))) (-5 *1 (-1149 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1047))))) +(((*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-690)))) ((*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-690))))) +(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3029 (-381)) (|:| -3391 (-1143)) (|:| |explanations| (-634 (-1143))))) (-5 *2 (-1035)) (-5 *1 (-299)))) ((*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3029 (-381)) (|:| -3391 (-1143)) (|:| |explanations| (-634 (-1143))) (|:| |extra| (-1035)))) (-5 *2 (-1035)) (-5 *1 (-299))))) +(((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1177)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-1177))))) +(((*1 *2 *3) (-12 (-5 *3 (-763)) (-5 *2 (-1 (-1141 (-953 *4)) (-1141 (-953 *4)))) (-5 *1 (-1252 *4)) (-4 *4 (-365))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002)))))) +(((*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-842)) (-5 *1 (-240 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 (-465))) (-5 *2 (-1161)) (-5 *1 (-464)))) ((*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-465))))) +(((*1 *2 *3) (-12 (-5 *3 (-169 (-215))) (-5 *2 (-215)) (-5 *1 (-115))))) +(((*1 *1 *1) (-12 (-5 *1 (-1149 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1047))))) +(((*1 *2 *1) (-12 (-5 *2 (-634 (-568))) (-5 *1 (-1004 *3)) (-14 *3 (-568))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-242 (-4287 (QUOTE X) (QUOTE -2926)) *3)) (-4 *1 (-536 *3 *4 *5 *6 *7 *8 *9 *10 *11)) (-4 *3 (-365)) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *6 (-230 (-1697 *4) (-763))) (-4 *7 (-971 *3)) (-4 *8 (-641 *3)) (-4 *9 (-920 *3 *8)) (-4 *10 (-235 *9)) (-4 *11 (-117))))) +(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-184))))) +(((*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-121)) (-5 *1 (-514 *3 *4 *5 *6)) (-4 *6 (-950 *3 *4 *5)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-634 *6)) (-4 *6 (-842)) (-4 *4 (-365)) (-4 *5 (-788)) (-5 *2 (-121)) (-5 *1 (-514 *4 *5 *6 *7)) (-4 *7 (-950 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *2 (-121)) (-5 *1 (-44 *3)) (-4 *3 (-1219 (-53)))))) +(((*1 *1 *2) (-12 (-5 *2 (-917)) (-4 *1 (-230 *3 *4)) (-4 *4 (-1047)) (-4 *4 (-1195)))) ((*1 *1 *2) (-12 (-14 *3 (-634 (-1161))) (-4 *4 (-172)) (-4 *5 (-230 (-1697 *3) (-763))) (-14 *6 (-1 (-121) (-2 (|:| -4355 *2) (|:| -3438 *5)) (-2 (|:| -4355 *2) (|:| -3438 *5)))) (-5 *1 (-463 *3 *4 *2 *5 *6 *7)) (-4 *2 (-842)) (-4 *7 (-950 *4 *5 (-852 *3))))) ((*1 *2 *2) (-12 (-5 *2 (-944 (-215))) (-5 *1 (-1192))))) +(((*1 *2 *2) (-12 (-5 *2 (-679 *3)) (-4 *3 (-365)) (-5 *1 (-653 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-887 *4)) (-4 *4 (-1090)) (-5 *2 (-1 (-121) *5)) (-5 *1 (-885 *4 *5)) (-4 *5 (-1195))))) +(((*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-43 (-409 (-568)))) (-4 *2 (-1047))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1181))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-634 (-850))) (-5 *1 (-1161))))) +(((*1 *2 *3 *4) (-12 (-4 *6 (-558)) (-4 *2 (-950 *3 *5 *4)) (-5 *1 (-722 *5 *4 *6 *2)) (-5 *3 (-409 (-953 *6))) (-4 *5 (-788)) (-4 *4 (-13 (-842) (-10 -8 (-15 -4278 ((-1161) $)))))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| $ (-6 -4519)) (-4 *4 (-1090)) (-5 *2 (-121)) (-5 *1 (-96 *4)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| $ (-6 -4519)) (-4 *4 (-1090)) (-5 *2 (-121)) (-5 *1 (-212 *4)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| $ (-6 -4519)) (-4 *4 (-842)) (-5 *2 (-121)) (-5 *1 (-494 *4)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| *1 (-6 -4519)) (-4 *1 (-499 *4)) (-4 *4 (-1195)) (-5 *2 (-121)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| $ (-6 -4519)) (-4 *4 (-1090)) (-5 *2 (-121)) (-5 *1 (-1000 *4)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| $ (-6 -4519)) (-4 *4 (-1090)) (-5 *2 (-121)) (-5 *1 (-1132 *4))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1129)) (-5 *2 (-1210 (-568)))))) +(((*1 *2 *1) (-12 (-5 *2 (-634 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-568))))) (-5 *1 (-420 *3)) (-4 *3 (-558)))) ((*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-763)) (-4 *3 (-350)) (-4 *5 (-1219 *3)) (-5 *2 (-634 (-1157 *3))) (-5 *1 (-507 *3 *5 *6)) (-4 *6 (-1219 *5))))) +(((*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-101 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1047)) (-5 *1 (-845 *5 *2)) (-4 *2 (-844 *5))))) +(((*1 *2 *2 *1) (-12 (-5 *1 (-212 *2)) (-4 *2 (-1090)))) ((*1 *2 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1195)))) ((*1 *2 *2 *1) (-12 (-5 *1 (-1000 *2)) (-4 *2 (-1090))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-365)) (-5 *1 (-758 *2 *3)) (-4 *2 (-698 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-844 *2)) (-4 *2 (-1047)) (-4 *2 (-365))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-568)) (-5 *2 (-1249)) (-5 *1 (-817))))) +(((*1 *1) (-5 *1 (-439)))) +(((*1 *2 *1) (-12 (-5 *2 (-568)) (-5 *1 (-147))))) +(((*1 *2 *1) (-12 (-4 *1 (-536 *3 *4 *5 *6 *7 *8 *9 *10 *2)) (-4 *3 (-365)) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *6 (-230 (-1697 *4) (-763))) (-4 *7 (-971 *3)) (-4 *8 (-641 *3)) (-4 *9 (-920 *3 *8)) (-4 *10 (-235 *9)) (-4 *2 (-117))))) +(((*1 *2 *1) (-12 (-4 *1 (-1189 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1061 *3 *4 *5)) (-5 *2 (-634 *6))))) +(((*1 *2) (-12 (-5 *2 (-634 (-1143))) (-5 *1 (-1247))))) +(((*1 *2 *3) (-12 (-5 *3 (-917)) (-4 *4 (-370)) (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *6 (-950 *4 *7 (-852 *5))) (-4 *7 (-230 (-1697 *5) (-763))) (-4 *8 (-971 *4)) (-4 *9 (-641 *4)) (-4 *10 (-920 *4 *9)) (-4 *11 (-235 *10)) (-4 *12 (-536 *4 *5 *6 *7 *8 *9 *10 *11 *14)) (-4 *14 (-117)) (-5 *2 (-634 *10)) (-5 *1 (-467 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13 *14)) (-4 *13 (-258 *12)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-917)) (-5 *5 (-634 *9)) (-4 *9 (-971 *6)) (-4 *6 (-365)) (-14 *7 (-634 (-1161))) (-4 *4 (-950 *6 *8 (-852 *7))) (-4 *8 (-230 (-1697 *7) (-763))) (-4 *10 (-641 *6)) (-4 *11 (-920 *6 *10)) (-4 *12 (-235 *11)) (-4 *13 (-536 *6 *7 *4 *8 *9 *10 *11 *12 *15)) (-4 *15 (-117)) (-5 *2 (-1249)) (-5 *1 (-556 *6 *7 *4 *8 *9 *10 *11 *12 *13 *14 *15)) (-4 *14 (-258 *13)))) ((*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-634 (-922 *4))) (-5 *1 (-867 *4 *5 *6)) (-4 (-857 *4) (-370)) (-4 *4 (-350)) (-14 *5 (-634 (-1161))) (-4 *6 (-117)))) ((*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-634 (-921 *4))) (-5 *1 (-868 *4 *5 *6)) (-4 *4 (-370)) (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *6 (-117))))) +(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1143)) (-5 *3 (-568)) (-5 *1 (-234)))) ((*1 *2 *2 *3 *4) (-12 (-5 *2 (-634 (-1143))) (-5 *3 (-568)) (-5 *4 (-1143)) (-5 *1 (-234)))) ((*1 *1 *1) (-5 *1 (-850))) ((*1 *1 *1 *2) (-12 (-5 *2 (-568)) (-5 *1 (-850)))) ((*1 *2 *1) (-12 (-4 *1 (-1221 *2 *3)) (-4 *3 (-787)) (-4 *2 (-1047))))) +(((*1 *2 *3 *3 *3) (-12 (-5 *3 (-1143)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *7 (-1061 *4 *5 *6)) (-5 *2 (-1249)) (-5 *1 (-989 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-1143)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *7 (-1061 *4 *5 *6)) (-5 *2 (-1249)) (-5 *1 (-1097 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-365)) (-4 *6 (-1219 (-409 *2))) (-4 *2 (-1219 *5)) (-5 *1 (-206 *5 *2 *6 *3)) (-4 *3 (-340 *5 *2 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-558)) (-5 *2 (-1157 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1143)) (-4 *4 (-13 (-301) (-150))) (-4 *5 (-13 (-842) (-609 (-1161)))) (-4 *6 (-788)) (-5 *2 (-634 (-2 (|:| |eqzro| (-634 *7)) (|:| |neqzro| (-634 *7)) (|:| |wcond| (-634 (-953 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1244 (-409 (-953 *4)))) (|:| -3746 (-634 (-1244 (-409 (-953 *4)))))))))) (-5 *1 (-924 *4 *5 *6 *7)) (-4 *7 (-950 *4 *6 *5))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-215)) (-5 *1 (-217)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-215))) (-5 *1 (-217)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) ((*1 *1 *1 *1) (-4 *1 (-1124)))) +(((*1 *2 *1) (-12 (-4 *1 (-665 *3)) (-4 *3 (-1195)) (-5 *2 (-121))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-763)) (-4 *1 (-730 *4 *5)) (-4 *4 (-1047)) (-4 *5 (-842)) (-5 *2 (-953 *4)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-4 *1 (-730 *4 *5)) (-4 *4 (-1047)) (-4 *5 (-842)) (-5 *2 (-953 *4)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-763)) (-4 *1 (-1234 *4)) (-4 *4 (-1047)) (-5 *2 (-953 *4)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-763)) (-4 *1 (-1234 *4)) (-4 *4 (-1047)) (-5 *2 (-953 *4))))) +(((*1 *2 *3 *4) (-12 (-4 *5 (-558)) (-5 *2 (-2 (|:| -2928 (-679 *5)) (|:| |vec| (-1244 (-634 (-917)))))) (-5 *1 (-95 *5 *3)) (-5 *4 (-917)) (-4 *3 (-646 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-763)) (-5 *1 (-1149 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1047))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 (-568))) (-5 *2 (-634 (-679 (-568)))) (-5 *1 (-1100))))) +(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-763)) (-4 *6 (-365)) (-5 *4 (-1190 *6)) (-5 *2 (-1 (-1141 *4) (-1141 *4))) (-5 *1 (-1252 *6)) (-5 *5 (-1141 *4))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-634 *1)) (-4 *1 (-1061 *4 *5 *6)) (-4 *4 (-1047)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-121)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-1061 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-121)))) ((*1 *2 *1) (-12 (-4 *1 (-1189 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-788)) (-4 *5 (-842)) (-4 *6 (-1061 *3 *4 *5)) (-5 *2 (-121)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-1189 *4 *5 *6 *3)) (-4 *4 (-558)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *3 (-1061 *4 *5 *6)) (-5 *2 (-121))))) +(((*1 *2 *1) (-12 (-5 *2 (-1244 (-763))) (-5 *1 (-666 *3)) (-4 *3 (-1090))))) +(((*1 *1) (-5 *1 (-439)))) +(((*1 *1 *2) (-12 (-5 *2 (-634 *3)) (-4 *3 (-842)) (-5 *1 (-494 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-130 *2)) (-4 *2 (-842))))) +(((*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-607 *3)) (-5 *5 (-634 *3)) (-4 *3 (-13 (-432 *6) (-27) (-1181))) (-4 *6 (-13 (-453) (-1037 (-568)) (-842) (-150) (-630 (-568)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-634 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-570 *6 *3 *7)) (-4 *7 (-1090))))) +(((*1 *1) (-5 *1 (-818)))) +(((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-634 (-1157 *7))) (-5 *3 (-1157 *7)) (-4 *7 (-950 *4 *5 *6)) (-4 *4 (-904)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *1 (-901 *4 *5 *6 *7)))) ((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-634 (-1157 *5))) (-5 *3 (-1157 *5)) (-4 *5 (-1219 *4)) (-4 *4 (-904)) (-5 *1 (-902 *4 *5))))) +(((*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -1924 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-365)) (-4 *7 (-1219 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-409 *7)) (|:| |a0| *6)) (-2 (|:| -1924 (-409 *7)) (|:| |coeff| (-409 *7))) "failed")) (-5 *1 (-578 *6 *7)) (-5 *3 (-409 *7))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-1161)) (-5 *4 (-953 (-568))) (-5 *2 (-328)) (-5 *1 (-330))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1249)) (-5 *1 (-205 *4)) (-4 *4 (-13 (-842) (-10 -8 (-15 -2779 ((-1143) $ (-1161))) (-15 -4125 (*2 $)) (-15 -1352 (*2 $))))))) ((*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-205 *3)) (-4 *3 (-13 (-842) (-10 -8 (-15 -2779 ((-1143) $ (-1161))) (-15 -4125 (*2 $)) (-15 -1352 (*2 $))))))) ((*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-511))))) +(((*1 *2 *1) (-12 (-4 *1 (-955)) (-5 *2 (-1084 (-215))))) ((*1 *2 *1) (-12 (-4 *1 (-975)) (-5 *2 (-1084 (-215)))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -3746 (-679 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-679 *3)))) (-4 *3 (-13 (-301) (-10 -8 (-15 -1678 ((-420 $) $))))) (-4 *4 (-1219 *3)) (-5 *1 (-508 *3 *4 *5)) (-4 *5 (-411 *3 *4))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-643 *4)) (-4 *4 (-340 *5 *6 *7)) (-4 *5 (-13 (-365) (-150) (-1037 (-568)) (-1037 (-409 (-568))))) (-4 *6 (-1219 *5)) (-4 *7 (-1219 (-409 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3746 (-634 *4)))) (-5 *1 (-801 *5 *6 *7 *4))))) +(((*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1161)) (-5 *6 (-634 (-607 *3))) (-5 *5 (-607 *3)) (-4 *3 (-13 (-27) (-1181) (-432 *7))) (-4 *7 (-13 (-453) (-842) (-150) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-2 (|:| -1924 *3) (|:| |coeff| *3))) (-5 *1 (-559 *7 *3))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1195)) (-4 *2 (-842)))) ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-121) *3 *3)) (-4 *1 (-375 *3)) (-4 *3 (-1195)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-494 *2)) (-4 *2 (-842)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-842)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1122 *2)) (-4 *2 (-1047)))) ((*1 *1 *2) (-12 (-5 *2 (-634 *1)) (-4 *1 (-1122 *3)) (-4 *3 (-1047)))) ((*1 *1 *2) (-12 (-5 *2 (-634 (-1149 *3 *4))) (-5 *1 (-1149 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1047)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-1149 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1047))))) +(((*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-121)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-121))))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2721 *3))) (-5 *1 (-970 *4 *3)) (-4 *3 (-1219 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1157 *4)) (-5 *1 (-587 *4)) (-4 *4 (-350))))) +(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1161)) (-5 *5 (-1084 (-215))) (-5 *2 (-927)) (-5 *1 (-925 *3)) (-4 *3 (-609 (-541))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1161)) (-5 *2 (-927)) (-5 *1 (-925 *3)) (-4 *3 (-609 (-541))))) ((*1 *1 *2) (-12 (-5 *2 (-1 (-215) (-215))) (-5 *1 (-927)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1 (-215) (-215))) (-5 *3 (-1084 (-215))) (-5 *1 (-927))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-381)) (-5 *1 (-1059))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1057 (-1023 *3) (-1157 (-1023 *3)))) (-5 *1 (-1023 *3)) (-4 *3 (-13 (-840) (-365) (-1021)))))) +(((*1 *2) (-12 (-5 *2 (-121)) (-5 *1 (-1141 *3)) (-4 *3 (-1090)) (-4 *3 (-1195))))) +(((*1 *2 *2 *3 *3) (-12 (-5 *3 (-409 *5)) (-4 *4 (-1199)) (-4 *5 (-1219 *4)) (-5 *1 (-151 *4 *5 *2)) (-4 *2 (-1219 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-1163 (-409 (-568)))) (-5 *2 (-409 (-568))) (-5 *1 (-182)))) ((*1 *2 *2 *3 *4) (-12 (-5 *2 (-679 (-310 (-215)))) (-5 *3 (-634 (-1161))) (-5 *4 (-1244 (-310 (-215)))) (-5 *1 (-197)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-634 (-288 *3))) (-4 *3 (-303 *3)) (-4 *3 (-1090)) (-4 *3 (-1195)) (-5 *1 (-288 *3)))) ((*1 *1 *1 *1) (-12 (-4 *2 (-303 *2)) (-4 *2 (-1090)) (-4 *2 (-1195)) (-5 *1 (-288 *2)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-123)) (-5 *3 (-1 *1 *1)) (-4 *1 (-296)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-123)) (-5 *3 (-1 *1 (-634 *1))) (-4 *1 (-296)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-634 (-123))) (-5 *3 (-634 (-1 *1 (-634 *1)))) (-4 *1 (-296)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-634 (-123))) (-5 *3 (-634 (-1 *1 *1))) (-4 *1 (-296)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-1 *1 *1)) (-4 *1 (-296)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-1 *1 (-634 *1))) (-4 *1 (-296)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-634 (-1161))) (-5 *3 (-634 (-1 *1 (-634 *1)))) (-4 *1 (-296)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-634 (-1161))) (-5 *3 (-634 (-1 *1 *1))) (-4 *1 (-296)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-634 (-288 *3))) (-4 *1 (-303 *3)) (-4 *3 (-1090)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-288 *3)) (-4 *1 (-303 *3)) (-4 *3 (-1090)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-568))) (-5 *4 (-1163 (-409 (-568)))) (-5 *1 (-304 *2)) (-4 *2 (-43 (-409 (-568)))))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-634 *4)) (-5 *3 (-634 *1)) (-4 *1 (-376 *4 *5)) (-4 *4 (-842)) (-4 *5 (-172)))) ((*1 *1 *1 *2 *1) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-842)) (-4 *3 (-172)))) ((*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1161)) (-5 *3 (-763)) (-5 *4 (-1 *1 *1)) (-4 *1 (-432 *5)) (-4 *5 (-842)) (-4 *5 (-1047)))) ((*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1161)) (-5 *3 (-763)) (-5 *4 (-1 *1 (-634 *1))) (-4 *1 (-432 *5)) (-4 *5 (-842)) (-4 *5 (-1047)))) ((*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-634 (-1161))) (-5 *3 (-634 (-763))) (-5 *4 (-634 (-1 *1 (-634 *1)))) (-4 *1 (-432 *5)) (-4 *5 (-842)) (-4 *5 (-1047)))) ((*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-634 (-1161))) (-5 *3 (-634 (-763))) (-5 *4 (-634 (-1 *1 *1))) (-4 *1 (-432 *5)) (-4 *5 (-842)) (-4 *5 (-1047)))) ((*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-634 (-123))) (-5 *3 (-634 *1)) (-5 *4 (-1161)) (-4 *1 (-432 *5)) (-4 *5 (-842)) (-4 *5 (-609 (-541))))) ((*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-123)) (-5 *3 (-1161)) (-4 *1 (-432 *4)) (-4 *4 (-842)) (-4 *4 (-609 (-541))))) ((*1 *1 *1) (-12 (-4 *1 (-432 *2)) (-4 *2 (-842)) (-4 *2 (-609 (-541))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-634 (-1161))) (-4 *1 (-432 *3)) (-4 *3 (-842)) (-4 *3 (-609 (-541))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1161)) (-4 *1 (-432 *3)) (-4 *3 (-842)) (-4 *3 (-609 (-541))))) ((*1 *2 *3 *4) (-12 (-14 *5 (-634 (-1161))) (-4 *3 (-950 *2 *6 (-852 *5))) (-4 *6 (-230 (-1697 *5) (-763))) (-4 *7 (-971 *2)) (-4 *8 (-641 *2)) (-4 *4 (-920 *2 *8)) (-4 *9 (-235 *4)) (-4 *10 (-536 *2 *5 *3 *6 *7 *8 *4 *9 *12)) (-4 *12 (-117)) (-4 *2 (-365)) (-5 *1 (-467 *2 *5 *3 *6 *7 *8 *4 *9 *10 *11 *12)) (-4 *11 (-258 *10)))) ((*1 *2 *3 *3 *4) (-12 (-14 *5 (-634 (-1161))) (-4 *3 (-950 *2 *6 (-852 *5))) (-4 *6 (-230 (-1697 *5) (-763))) (-4 *7 (-971 *2)) (-4 *8 (-641 *2)) (-4 *4 (-920 *2 *8)) (-4 *9 (-235 *4)) (-4 *10 (-536 *2 *5 *3 *6 *7 *8 *4 *9 *12)) (-4 *12 (-117)) (-4 *2 (-365)) (-5 *1 (-467 *2 *5 *3 *6 *7 *8 *4 *9 *10 *11 *12)) (-4 *11 (-258 *10)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-409 *6)) (-4 *6 (-950 *2 *7 (-852 *5))) (-4 *7 (-230 (-1697 *5) (-763))) (-14 *5 (-634 (-1161))) (-4 *8 (-971 *2)) (-4 *9 (-641 *2)) (-4 *4 (-920 *2 *9)) (-4 *10 (-235 *4)) (-4 *11 (-536 *2 *5 *6 *7 *8 *9 *4 *10 *13)) (-4 *13 (-117)) (-4 *2 (-365)) (-5 *1 (-467 *2 *5 *6 *7 *8 *9 *4 *10 *11 *12 *13)) (-4 *12 (-258 *11)))) ((*1 *1 *1 *2 *3) (-12 (-4 *1 (-523 *2 *3)) (-4 *2 (-1090)) (-4 *3 (-1195)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-634 *4)) (-5 *3 (-634 *5)) (-4 *1 (-523 *4 *5)) (-4 *4 (-1090)) (-4 *5 (-1195)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-828 *3)) (-4 *3 (-365)) (-5 *1 (-708 *3)))) ((*1 *2 *1 *2) (-12 (-5 *1 (-708 *2)) (-4 *2 (-365)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-242 *5 *2)) (-5 *4 (-922 *2)) (-14 *5 (-634 (-1161))) (-4 *2 (-350)) (-5 *1 (-867 *2 *5 *6)) (-4 *6 (-117)))) ((*1 *2 *3 *3 *4) (-12 (-5 *3 (-242 *5 *2)) (-5 *4 (-922 *2)) (-14 *5 (-634 (-1161))) (-4 *2 (-350)) (-5 *1 (-867 *2 *5 *6)) (-4 *6 (-117)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-409 (-242 *5 *2))) (-5 *4 (-922 *2)) (-14 *5 (-634 (-1161))) (-4 *2 (-350)) (-5 *1 (-867 *2 *5 *6)) (-4 *6 (-117)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-242 *5 *2)) (-5 *4 (-921 *2)) (-14 *5 (-634 (-1161))) (-4 *2 (-365)) (-5 *1 (-868 *2 *5 *6)) (-4 *6 (-117)))) ((*1 *2 *3 *3 *4) (-12 (-5 *3 (-242 *5 *2)) (-5 *4 (-921 *2)) (-14 *5 (-634 (-1161))) (-4 *2 (-365)) (-5 *1 (-868 *2 *5 *6)) (-4 *6 (-117)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-409 (-242 *5 *2))) (-5 *4 (-921 *2)) (-14 *5 (-634 (-1161))) (-4 *2 (-365)) (-5 *1 (-868 *2 *5 *6)) (-4 *6 (-117)))) ((*1 *2 *1 *2) (-12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-230 *6 (-763))) (-14 *6 (-763)) (-4 *2 (-365)) (-5 *1 (-929 *2 *3 *5 *6 *4)) (-4 *3 (-324 *2 *5)) (-4 *4 (-971 *2)))) ((*1 *2 *2 *3 *2) (-12 (-5 *2 (-409 (-953 *4))) (-5 *3 (-1161)) (-4 *4 (-558)) (-5 *1 (-1042 *4)))) ((*1 *2 *2 *3 *4) (-12 (-5 *3 (-634 (-1161))) (-5 *4 (-634 (-409 (-953 *5)))) (-5 *2 (-409 (-953 *5))) (-4 *5 (-558)) (-5 *1 (-1042 *5)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-288 (-409 (-953 *4)))) (-5 *2 (-409 (-953 *4))) (-4 *4 (-558)) (-5 *1 (-1042 *4)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-634 (-288 (-409 (-953 *4))))) (-5 *2 (-409 (-953 *4))) (-4 *4 (-558)) (-5 *1 (-1042 *4)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-1047)) (-5 *1 (-1145 *3)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-1221 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-787)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1141 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-634 (-1084 (-409 (-568))))) (-5 *1 (-256)))) ((*1 *1 *2) (-12 (-5 *2 (-634 (-1084 (-381)))) (-5 *1 (-256))))) +(((*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-634 *9)) (-5 *3 (-1 (-121) *9)) (-5 *4 (-1 (-121) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1061 *6 *7 *8)) (-4 *6 (-558)) (-4 *7 (-788)) (-4 *8 (-842)) (-5 *1 (-978 *6 *7 *8 *9))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 *2)) (-4 *2 (-1219 *4)) (-5 *1 (-544 *4 *2 *5 *6)) (-4 *4 (-301)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-763)))))) +(((*1 *2 *1) (-12 (-4 *1 (-677 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-121)))) ((*1 *2 *1) (-12 (-4 *1 (-1050 *3 *4 *5 *6 *7)) (-4 *5 (-1047)) (-4 *6 (-230 *4 *5)) (-4 *7 (-230 *3 *5)) (-5 *2 (-121))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-121) *4 *4)) (-4 *4 (-1195)) (-5 *1 (-1120 *4 *2)) (-4 *2 (-13 (-601 (-568) *4) (-10 -7 (-6 -4519) (-6 -4520)))))) ((*1 *2 *2) (-12 (-4 *3 (-842)) (-4 *3 (-1195)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-601 (-568) *3) (-10 -7 (-6 -4519) (-6 -4520))))))) +(((*1 *2 *1) (-12 (-5 *2 (-1249)) (-5 *1 (-817))))) +(((*1 *1 *1) (-12 (-4 *1 (-432 *2)) (-4 *2 (-842)) (-4 *2 (-1047)))) ((*1 *1 *1) (-12 (-5 *1 (-733 *2 *3)) (-14 *2 (-1161)) (-4 *3 (-13 (-1047) (-842) (-558))))) ((*1 *1 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-558))))) +(((*1 *1 *1) (-12 (-5 *1 (-173 *2)) (-4 *2 (-301))))) +(((*1 *2 *3) (-12 (-4 *3 (-1219 *2)) (-4 *2 (-1219 *4)) (-5 *1 (-986 *4 *2 *3 *5)) (-4 *4 (-350)) (-4 *5 (-714 *2 *3))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1244 (-409 (-953 *4)))) (|:| -3746 (-634 (-1244 (-409 (-953 *4))))))) (-5 *3 (-634 *7)) (-4 *4 (-13 (-301) (-150))) (-4 *7 (-950 *4 *6 *5)) (-4 *5 (-13 (-842) (-609 (-1161)))) (-4 *6 (-788)) (-5 *1 (-924 *4 *5 *6 *7))))) +(((*1 *2 *2) (-12 (-5 *2 (-634 *6)) (-4 *6 (-950 *3 *4 *5)) (-4 *3 (-301)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *1 (-448 *3 *4 *5 *6)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-634 *7)) (-5 *3 (-1143)) (-4 *7 (-950 *4 *5 *6)) (-4 *4 (-301)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *1 (-448 *4 *5 *6 *7)))) ((*1 *2 *2 *3 *3) (-12 (-5 *2 (-634 *7)) (-5 *3 (-1143)) (-4 *7 (-950 *4 *5 *6)) (-4 *4 (-301)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *1 (-448 *4 *5 *6 *7))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-634 *4)) (-4 *4 (-365)) (-4 *2 (-1219 *4)) (-5 *1 (-918 *4 *2))))) +(((*1 *2 *2) (-12 (-5 *2 (-121)) (-5 *1 (-926))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-917)) (-5 *2 (-763)) (-5 *1 (-1091 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(((*1 *2 *3) (-12 (-5 *3 (-634 *2)) (-4 *2 (-432 *4)) (-5 *1 (-433 *4 *2)) (-4 *4 (-13 (-842) (-558)))))) +(((*1 *2 *3 *4) (-12 (-5 *4 (-1161)) (-4 *5 (-13 (-301) (-842) (-150) (-1037 (-568)) (-630 (-568)))) (-5 *2 (-585 *3)) (-5 *1 (-428 *5 *3)) (-4 *3 (-13 (-1181) (-29 *5)))))) +(((*1 *2 *2) (-12 (-5 *2 (-634 *6)) (-4 *6 (-1061 *3 *4 *5)) (-4 *3 (-150)) (-4 *3 (-301)) (-4 *3 (-558)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *1 (-978 *3 *4 *5 *6))))) +(((*1 *2) (-12 (-5 *2 (-869)) (-5 *1 (-1247)))) ((*1 *2 *2) (-12 (-5 *2 (-869)) (-5 *1 (-1247))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 (-568))) (-5 *2 (-763)) (-5 *1 (-589))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| $ (-6 -4519)) (-4 *4 (-1090)) (-5 *2 (-121)) (-5 *1 (-96 *4)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| $ (-6 -4519)) (-4 *4 (-1090)) (-5 *2 (-121)) (-5 *1 (-212 *4)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| $ (-6 -4519)) (-4 *4 (-842)) (-5 *2 (-121)) (-5 *1 (-494 *4)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| *1 (-6 -4519)) (-4 *1 (-499 *4)) (-4 *4 (-1195)) (-5 *2 (-121)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| $ (-6 -4519)) (-4 *4 (-1090)) (-5 *2 (-121)) (-5 *1 (-1000 *4)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-121) *4)) (|has| $ (-6 -4519)) (-4 *4 (-1090)) (-5 *2 (-121)) (-5 *1 (-1132 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-409 (-953 *3))) (-5 *1 (-454 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-634 (-1161))) (-14 *6 (-1244 (-679 *3)))))) +(((*1 *2 *2) (-12 (-4 *3 (-13 (-842) (-453))) (-5 *1 (-1187 *3 *2)) (-4 *2 (-13 (-432 *3) (-1181)))))) +(((*1 *2 *2) (-12 (-4 *3 (-350)) (-4 *4 (-327 *3)) (-4 *5 (-1219 *4)) (-5 *1 (-769 *3 *4 *5 *2 *6)) (-4 *2 (-1219 *5)) (-14 *6 (-917)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-763)) (-4 *1 (-1261 *3)) (-4 *3 (-365)) (-4 *3 (-370)))) ((*1 *1 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-365)) (-4 *2 (-370))))) +(((*1 *2 *1) (-12 (-5 *1 (-96 *2)) (-4 *2 (-1090)))) ((*1 *2 *1) (-12 (-4 *1 (-111 *2)) (-4 *2 (-1195)))) ((*1 *2 *1) (-12 (-5 *1 (-212 *2)) (-4 *2 (-1090)))) ((*1 *2 *1) (-12 (-5 *1 (-494 *2)) (-4 *2 (-842)))) ((*1 *2 *1) (-12 (-5 *1 (-1000 *2)) (-4 *2 (-1090)))) ((*1 *2 *1) (-12 (-5 *1 (-1132 *2)) (-4 *2 (-1090))))) +(((*1 *2 *1) (-12 (-4 *1 (-536 *3 *4 *5 *6 *7 *8 *9 *10 *11)) (-4 *3 (-365)) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *6 (-230 (-1697 *4) *2)) (-4 *7 (-971 *3)) (-4 *8 (-641 *3)) (-4 *9 (-920 *3 *8)) (-4 *10 (-235 *9)) (-4 *11 (-117)) (-5 *2 (-763))))) +(((*1 *2) (-12 (-4 *3 (-558)) (-5 *2 (-634 *4)) (-5 *1 (-48 *3 *4)) (-4 *4 (-419 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-819))))) +(((*1 *2 *1) (-12 (-4 *1 (-518 *3 *2)) (-4 *3 (-1090)) (-4 *2 (-842))))) +(((*1 *2 *3 *4) (-12 (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *3 (-1061 *5 *6 *7)) (-5 *2 (-634 *4)) (-5 *1 (-1098 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3))))) +(((*1 *2) (|partial| -12 (-4 *3 (-558)) (-4 *3 (-172)) (-5 *2 (-2 (|:| |particular| *1) (|:| -3746 (-634 *1)))) (-4 *1 (-369 *3)))) ((*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-454 *3 *4 *5 *6)) (|:| -3746 (-634 (-454 *3 *4 *5 *6))))) (-5 *1 (-454 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-634 (-1161))) (-14 *6 (-1244 (-679 *3)))))) +(((*1 *2 *3) (-12 (-5 *2 (-1157 (-568))) (-5 *1 (-943)) (-5 *3 (-568)))) ((*1 *2 *2) (-12 (-4 *3 (-301)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-1112 *3 *4 *5 *2)) (-4 *2 (-677 *3 *4 *5))))) +(((*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-568)) (-5 *6 (-1 (-1249) (-1244 *5) (-1244 *5) (-381))) (-5 *3 (-1244 (-381))) (-5 *5 (-381)) (-5 *2 (-1249)) (-5 *1 (-783))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-1157 *3)) (-4 *3 (-350)) (-5 *1 (-358 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-262 *2)) (-4 *2 (-842)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1161)) (-5 *1 (-852 *3)) (-14 *3 (-634 *2)))) ((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-990)))) ((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-1082 *3)) (-4 *3 (-1195)))) ((*1 *2 *1) (-12 (-4 *1 (-1221 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-787)) (-5 *2 (-1161)))) ((*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-1240 *3)) (-14 *3 *2)))) +(((*1 *2 *3 *2) (-12 (-4 *1 (-782)) (-5 *2 (-1035)) (-5 *3 (-2 (|:| |fn| (-310 (-215))) (|:| -1338 (-634 (-1084 (-835 (-215))))) (|:| |abserr| (-215)) (|:| |relerr| (-215)))))) ((*1 *2 *3 *2) (-12 (-4 *1 (-782)) (-5 *2 (-1035)) (-5 *3 (-2 (|:| |var| (-1161)) (|:| |fn| (-310 (-215))) (|:| -1338 (-1084 (-835 (-215)))) (|:| |abserr| (-215)) (|:| |relerr| (-215))))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-215)) (-5 *3 (-763)) (-5 *1 (-217)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-169 (-215))) (-5 *3 (-763)) (-5 *1 (-217)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-842) (-558))) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) ((*1 *1 *1 *1) (-4 *1 (-1124)))) +(((*1 *2 *1) (-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-787)) (-5 *2 (-634 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-1090)) (-5 *2 (-634 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-1141 *3)) (-5 *1 (-594 *3)) (-4 *3 (-1047)))) ((*1 *2 *1) (-12 (-5 *2 (-634 *3)) (-5 *1 (-725 *3 *4)) (-4 *3 (-1047)) (-4 *4 (-716)))) ((*1 *2 *1) (-12 (-4 *1 (-844 *3)) (-4 *3 (-1047)) (-5 *2 (-634 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-1234 *3)) (-4 *3 (-1047)) (-5 *2 (-1141 *3))))) +(((*1 *2 *3) (-12 (-4 *4 (-1047)) (-4 *5 (-230 *6 *2)) (-14 *6 *2) (-5 *2 (-763)) (-5 *1 (-908 *4 *3 *5 *6)) (-4 *3 (-324 *4 *5))))) +(((*1 *2) (-12 (-4 *1 (-340 *3 *4 *5)) (-4 *3 (-1199)) (-4 *4 (-1219 *3)) (-4 *5 (-1219 (-409 *4))) (-5 *2 (-679 (-409 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-121)) (-5 *1 (-123))))) +(((*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-568))) (-5 *1 (-1045))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2721 (-777 *3)) (|:| |coef1| (-777 *3)) (|:| |coef2| (-777 *3)))) (-5 *1 (-777 *3)) (-4 *3 (-558)) (-4 *3 (-1047)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-558)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-2 (|:| -2721 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1061 *3 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-1161)) (-4 *5 (-1199)) (-4 *6 (-1219 *5)) (-4 *7 (-1219 (-409 *6))) (-5 *2 (-634 (-953 *5))) (-5 *1 (-339 *4 *5 *6 *7)) (-4 *4 (-340 *5 *6 *7)))) ((*1 *2 *3) (-12 (-5 *3 (-1161)) (-4 *1 (-340 *4 *5 *6)) (-4 *4 (-1199)) (-4 *5 (-1219 *4)) (-4 *6 (-1219 (-409 *5))) (-4 *4 (-365)) (-5 *2 (-634 (-953 *4)))))) +(((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-2 (|:| |eqzro| (-634 *8)) (|:| |neqzro| (-634 *8)) (|:| |wcond| (-634 (-953 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1244 (-409 (-953 *5)))) (|:| -3746 (-634 (-1244 (-409 (-953 *5)))))))))) (-5 *4 (-1143)) (-4 *5 (-13 (-301) (-150))) (-4 *8 (-950 *5 *7 *6)) (-4 *6 (-13 (-842) (-609 (-1161)))) (-4 *7 (-788)) (-5 *2 (-568)) (-5 *1 (-924 *5 *6 *7 *8))))) +(((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *2 (-763) (-763) *7)) (-5 *4 (-1244 *7)) (-5 *5 (-763)) (-5 *6 (-1244 (-1157 *2))) (-4 *7 (-52 *2 *5)) (-4 *2 (-13 (-558) (-453))) (-5 *1 (-346 *2 *7))))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-365)) (-5 *2 (-2 (|:| -3961 *3) (|:| -1500 *3))) (-5 *1 (-758 *3 *4)) (-4 *3 (-698 *4)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *3 (-1047)) (-5 *2 (-2 (|:| -3961 *1) (|:| -1500 *1))) (-4 *1 (-844 *3)))) ((*1 *2 *3 *3 *4) (-12 (-5 *4 (-101 *5)) (-4 *5 (-365)) (-4 *5 (-1047)) (-5 *2 (-2 (|:| -3961 *3) (|:| -1500 *3))) (-5 *1 (-845 *5 *3)) (-4 *3 (-844 *5))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-634 (-1143))) (-5 *1 (-396))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-568)) (-5 *1 (-565)))) ((*1 *2 *3) (-12 (-5 *2 (-1157 (-409 (-568)))) (-5 *1 (-943)) (-5 *3 (-568))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-977 *3 *4 *2 *5)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *2 (-842)) (-4 *5 (-1061 *3 *4 *2))))) +(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1244 *6)) (-5 *4 (-1244 (-568))) (-5 *5 (-568)) (-4 *6 (-1090)) (-5 *2 (-1 *6)) (-5 *1 (-1017 *6))))) +(((*1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-641 *3)) (-5 *2 (-634 *1)) (-4 *1 (-920 *3 *4))))) +(((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-763)) (-4 *2 (-1090)) (-5 *1 (-668 *2))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 (-568))) (-5 *2 (-899 (-568))) (-5 *1 (-913)))) ((*1 *2) (-12 (-5 *2 (-899 (-568))) (-5 *1 (-913))))) +(((*1 *2 *1) (-12 (-4 *1 (-858)) (-5 *2 (-1249))))) +(((*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-43 (-409 (-568)))) (-4 *2 (-1047))))) +(((*1 *1 *1 *1) (-4 *1 (-550)))) +(((*1 *2 *3) (-12 (-5 *3 (-568)) (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-1249)) (-5 *1 (-450 *4 *5 *6 *7)) (-4 *7 (-950 *4 *5 *6))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-634 *1)) (-4 *1 (-1061 *4 *5 *6)) (-4 *4 (-1047)) (-4 *5 (-788)) (-4 *6 (-842)) (-5 *2 (-121)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-1061 *3 *4 *5)) (-4 *3 (-1047)) (-4 *4 (-788)) (-4 *5 (-842)) (-5 *2 (-121)))) ((*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-121) *3 *3)) (-4 *1 (-1189 *5 *6 *7 *3)) (-4 *5 (-558)) (-4 *6 (-788)) (-4 *7 (-842)) (-4 *3 (-1061 *5 *6 *7)) (-5 *2 (-121))))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4265 *4))) (-5 *1 (-970 *4 *3)) (-4 *3 (-1219 *4))))) +(((*1 *2 *3) (-12 (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *6 (-950 *4 *7 (-852 *5))) (-4 *7 (-230 (-1697 *5) (-763))) (-4 *8 (-641 *4)) (-4 *3 (-920 *4 *8)) (-4 *9 (-235 *3)) (-4 *10 (-536 *4 *5 *6 *7 *2 *8 *3 *9 *12)) (-4 *12 (-117)) (-4 *2 (-971 *4)) (-5 *1 (-467 *4 *5 *6 *7 *2 *8 *3 *9 *10 *11 *12)) (-4 *11 (-258 *10)))) ((*1 *2 *3) (-12 (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *7 (-230 (-1697 *5) (-763))) (-4 *8 (-641 *4)) (-4 *2 (-971 *4)) (-5 *1 (-654 *4 *5 *6 *7 *2 *8 *3)) (-4 *6 (-950 *4 *7 (-852 *5))) (-4 *3 (-920 *4 *8)))) ((*1 *2 *3) (-12 (-5 *3 (-922 *4)) (-4 *4 (-350)) (-5 *2 (-967 *4)) (-5 *1 (-867 *4 *5 *6)) (-14 *5 (-634 (-1161))) (-4 *6 (-117)))) ((*1 *2 *3) (-12 (-5 *3 (-921 *4)) (-4 *4 (-365)) (-5 *2 (-966 *4)) (-5 *1 (-868 *4 *5 *6)) (-14 *5 (-634 (-1161))) (-4 *6 (-117))))) +(((*1 *2 *3 *3) (-12 (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *7 (-1061 *4 *5 *6)) (-5 *2 (-121)) (-5 *1 (-989 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))) ((*1 *2 *3 *3) (-12 (-4 *4 (-453)) (-4 *5 (-788)) (-4 *6 (-842)) (-4 *7 (-1061 *4 *5 *6)) (-5 *2 (-121)) (-5 *1 (-1097 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7))))) +(((*1 *2 *3) (-12 (-5 *3 (-634 (-121))) (-4 *4 (-365)) (-14 *5 (-634 (-1161))) (-4 *6 (-950 *4 *7 (-852 *5))) (-4 *7 (-230 (-1697 *5) (-763))) (-4 *8 (-971 *4)) (-4 *9 (-641 *4)) (-4 *10 (-920 *4 *9)) (-4 *11 (-235 *10)) (-4 *12 (-536 *4 *5 *6 *7 *8 *9 *10 *11 *14)) (-4 *14 (-117)) (-5 *2 (-1249)) (-5 *1 (-467 *4 *5 *6 *7 *8 *9 *10 *11 *12 *13 *14)) (-4 *13 (-258 *12)))) ((*1 *2) (-12 (-4 *1 (-641 *3)) (-4 *3 (-365)) (-5 *2 (-121)))) ((*1 *2 *2) (-12 (-5 *2 (-121)) (-4 *1 (-641 *3)) (-4 *3 (-365)))) ((*1 *2 *2) (-12 (-5 *2 (-121)) (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *6 (-230 (-1697 *4) (-763))) (-4 *8 (-641 *3)) (-5 *1 (-654 *3 *4 *5 *6 *7 *8 *9)) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *7 (-971 *3)) (-4 *9 (-920 *3 *8)))) ((*1 *2) (-12 (-4 *3 (-365)) (-14 *4 (-634 (-1161))) (-4 *6 (-230 (-1697 *4) (-763))) (-4 *8 (-641 *3)) (-5 *2 (-121)) (-5 *1 (-654 *3 *4 *5 *6 *7 *8 *9)) (-4 *5 (-950 *3 *6 (-852 *4))) (-4 *7 (-971 *3)) (-4 *9 (-920 *3 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-2 (|:| |val| (-634 *8)) (|:| -3001 *9)))) (-5 *4 (-763)) (-4 *8 (-1061 *5 *6 *7)) (-4 *9 (-1066 *5 *6 *7 *8)) (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-5 *2 (-1249)) (-5 *1 (-1064 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-634 (-2 (|:| |val| (-634 *8)) (|:| -3001 *9)))) (-5 *4 (-763)) (-4 *8 (-1061 *5 *6 *7)) (-4 *9 (-1099 *5 *6 *7 *8)) (-4 *5 (-453)) (-4 *6 (-788)) (-4 *7 (-842)) (-5 *2 (-1249)) (-5 *1 (-1130 *5 *6 *7 *8 *9))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-1047)) (-5 *1 (-1145 *3))))) +((-1276 . 830226) (-1277 . 828784) (-1278 . 828450) (-1279 . 827638) (-1280 . 827513) (-1281 . 827112) (-1282 . 826963) (-1283 . 826929) (-1284 . 826845) (-1285 . 826792) (-1286 . 826658) (-1287 . 826562) (-1288 . 826471) (-1289 . 826335) (-1290 . 826212) (-1291 . 826078) (-1292 . 826015) (-1293 . 825623) (-1294 . 825429) (-1295 . 825039) (-1296 . 824704) (-1297 . 824377) (-1298 . 824294) (-1299 . 824242) (-1300 . 824113) (-1301 . 823979) (-1302 . 823492) (-1303 . 823227) (-1304 . 822859) (-1305 . 822451) (-1306 . 822367) (-1307 . 822196) (-1308 . 821999) (-1309 . 821641) (-1310 . 821469) (-1311 . 821395) (-1312 . 821343) (-1313 . 821253) (-1314 . 821005) (-1315 . 820684) (-1316 . 820391) (-1317 . 820287) (-1318 . 820116) (-1319 . 819422) (-1320 . 819348) (-1321 . 819248) (-1322 . 819081) (-1323 . 818906) (-1324 . 818799) (-1325 . 818695) (-1326 . 818643) (-1327 . 818545) (-1328 . 818102) (-1329 . 817831) (-1330 . 817708) (-1331 . 817653) (-1332 . 817437) (-1333 . 817384) (-1334 . 817099) (-1335 . 816863) (-1336 . 816723) (-1337 . 816506) (-1338 . 816368) (-1339 . 810536) (-1340 . 810451) (-1341 . 810318) (-1342 . 810243) (-1343 . 809880) (-1344 . 809791) (-1345 . 809666) (-1346 . 809514) (-1347 . 808938) (-1348 . 808670) (-1349 . 808395) (-1350 . 808169) (-1351 . 808052) (-1352 . 807672) (-1353 . 807579) (-1354 . 807272) (-1355 . 806964) (-1356 . 806936) (-1357 . 806617) (-1358 . 806559) (-1359 . 806486) (-1360 . 806458) (-1361 . 806379) (-1362 . 805875) (-1363 . 805725) (-1364 . 805636) (-1365 . 805545) (-1366 . 805383) (-1367 . 804980) (-1368 . 804909) (-1369 . 804674) (-1370 . 804302) (-1371 . 804213) (-1372 . 804058) (-1373 . 803684) (-1374 . 803364) (-1375 . 802272) (-1376 . 802214) (-1377 . 802076) (-1378 . 801841) (-1379 . 801789) (-1380 . 801761) (-1381 . 801690) (-1382 . 801540) (-1383 . 801368) (-1384 . 801245) (-1385 . 800942) (-1386 . 800875) (-1387 . 800181) (-1388 . 799996) (-1389 . 799933) (-1390 . 799867) (-1391 . 799783) (-1392 . 799667) (-1393 . 799594) (-1394 . 799186) (-1395 . 799110) (-1396 . 798826) (-1397 . 798384) (-1398 . 798094) (-1399 . 798015) (-1400 . 797939) (-1401 . 797865) (-1402 . 797740) (-1403 . 797667) (-1404 . 797564) (-1405 . 797444) (-1406 . 797336) (-1407 . 797035) (-1408 . 796937) (-1409 . 796836) (-1410 . 796484) (-1411 . 796281) (-1412 . 796148) (-1413 . 796098) (-1414 . 792174) (-1415 . 791670) (-1416 . 791580) (-1417 . 791507) (-1418 . 791415) (-1419 . 791324) (-1420 . 791236) (-1421 . 790862) (-1422 . 790674) (-1423 . 790556) (-1424 . 790271) (-1425 . 790058) (-1426 . 789910) (-1427 . 789840) (-1428 . 789729) (-1429 . 789032) (-1430 . 788976) (-1431 . 788829) (-1432 . 788691) (-1433 . 788452) (-1434 . 788309) (-1435 . 788157) (-1436 . 788094) (-1437 . 788032) (-1438 . 787723) (-1439 . 787620) (-1440 . 787564) (-1441 . 787449) (-1442 . 787240) (-1443 . 787079) (-1444 . 786987) (-1445 . 786723) (-1446 . 786585) (-1447 . 786446) (-1448 . 786240) (-1449 . 786137) (-1450 . 786087) (-1451 . 786003) (-1452 . 785801) (-1453 . 785704) (-1454 . 785575) (-1455 . 785440) (-1456 . 785337) (-1457 . 785300) (-1458 . 784756) (-1459 . 784704) (-1460 . 784633) (-1461 . 784393) (-1462 . 784293) (-1463 . 784169) (-1464 . 784116) (-1465 . 784066) (-1466 . 783770) (-1467 . 783514) (-1468 . 783156) (-1469 . 783087) (-1470 . 783037) (-1471 . 782824) (-1472 . 782749) (-1473 . 782718) (-1474 . 782561) (-1475 . 782341) (-1476 . 782194) (-1477 . 782055) (-1478 . 781979) (-1479 . 781879) (-1480 . 781642) (-1481 . 781078) (-1482 . 781001) (-1483 . 780925) (-1484 . 780812) (-1485 . 780666) (-1486 . 780426) (-1487 . 780278) (-1488 . 780206) (-1489 . 779840) (-1490 . 779759) (-1491 . 779706) (-1492 . 779482) (-1493 . 779274) (-1494 . 779164) (-1495 . 779105) (-1496 . 779049) (-1497 . 778994) (-1498 . 778859) (-1499 . 778725) (-1500 . 778525) (-1501 . 778208) (-1502 . 778118) (-1503 . 777950) (-1504 . 777847) (-1505 . 777790) (-1506 . 777717) (-1507 . 777534) (-1508 . 777377) (-1509 . 777188) (-1510 . 777078) (-1511 . 776983) (-1512 . 776828) (-1513 . 776748) (-1514 . 776578) (-1515 . 776504) (-1516 . 776426) (-1517 . 776269) (-1518 . 776201) (-1519 . 776102) (-1520 . 775969) (-1521 . 775896) (-1522 . 775746) (-1523 . 775610) (-1524 . 775420) (-1525 . 775270) (-1526 . 775179) (-1527 . 775046) (-1528 . 774898) (-1529 . 774788) (-1530 . 774663) (-1531 . 774504) (-1532 . 774398) (-1533 . 774204) (-1534 . 774152) (-1535 . 774070) (-1536 . 774010) (-1537 . 773858) (-1538 . 773740) (-1539 . 773260) (-1540 . 773174) (-1541 . 773079) (-1542 . 772840) (-1543 . 772767) (-1544 . 772650) (-1545 . 772401) (-1546 . 772349) (-1547 . 771717) (-1548 . 771463) (-1549 . 771258) (-1550 . 771169) (-1551 . 770745) (-1552 . 770290) (-1553 . 769974) (-1554 . 769832) (-1555 . 769739) (-1556 . 769496) (-1557 . 769320) (-1558 . 769086) (-1559 . 768511) (-1560 . 768270) (-1561 . 768096) (-1562 . 766995) (-1563 . 766892) (-1564 . 766768) (-1565 . 766618) (-1566 . 766535) (-1567 . 766415) (-1568 . 765994) (-1569 . 765765) (-1570 . 765737) (-1571 . 765633) (-1572 . 765561) (-1573 . 765509) (-1574 . 765457) (-1575 . 765106) (-1576 . 765014) (-1577 . 764864) (-1578 . 764595) (-1579 . 764380) (-1580 . 764228) (-1581 . 764105) (-1582 . 764032) (-1583 . 763963) (-1584 . 763835) (-1585 . 763699) (-1586 . 763589) (-1587 . 763540) (-1588 . 763390) (-1589 . 763251) (-1590 . 762278) (-1591 . 762207) (-1592 . 762138) (-1593 . 762001) (-1594 . 761839) (-1595 . 761746) (-1596 . 761538) (-1597 . 761438) (-1598 . 761338) (-1599 . 761019) (-1600 . 760781) (-1601 . 760709) (-1602 . 760657) (-1603 . 760553) (-1604 . 760482) (-1605 . 760429) (-1606 . 760284) (-1607 . 760158) (-1608 . 760072) (-1609 . 759983) (-1610 . 759890) (-1611 . 759830) (-1612 . 759585) (-1613 . 759493) (-1614 . 759395) (-1615 . 759194) (-1616 . 759101) (-1617 . 759031) (-1618 . 758894) (-1619 . 758494) (-1620 . 758346) (-1621 . 758215) (-1622 . 758123) (-1623 . 758039) (-1624 . 757987) (-1625 . 757903) (-1626 . 757323) (-1627 . 757189) (-1628 . 757050) (-1629 . 756914) (-1630 . 756785) (-1631 . 756538) (-1632 . 756463) (-1633 . 749932) (-1634 . 749793) (-1635 . 749643) (-1636 . 749592) (-1637 . 748257) (-1638 . 748205) (-1639 . 748118) (-1640 . 747186) (-1641 . 747137) (-1642 . 746383) (-1643 . 746265) (-1644 . 746013) (-1645 . 745935) (-1646 . 745788) (-1647 . 745697) (-1648 . 745631) (-1649 . 745555) (-1650 . 745481) (-1651 . 745233) (-1652 . 745099) (-1653 . 744826) (-1654 . 744583) (-1655 . 744469) (-1656 . 744382) (-1657 . 743798) (-1658 . 743640) (-1659 . 743558) (-1660 . 743478) (-1661 . 743374) (-1662 . 743346) (-1663 . 743111) (-1664 . 742997) (-1665 . 742864) (-1666 . 742699) (-1667 . 742618) (-1668 . 742520) (-1669 . 742406) (-1670 . 742351) (-1671 . 742262) (-1672 . 742149) (-1673 . 741430) (-1674 . 741322) (-1675 . 740379) (-1676 . 739875) (-1677 . 739356) (-1678 . 738142) (-1679 . 738085) (-1680 . 737910) (-1681 . 737586) (-1682 . 737470) (-1683 . 737291) (-1684 . 737215) (-1685 . 736952) (-1686 . 736773) (-1687 . 736695) (-1688 . 736571) (-1689 . 736372) (-1690 . 736259) (-1691 . 736210) (-1692 . 735902) (-1693 . 735783) (-1694 . 735600) (-1695 . 735448) (-1696 . 735396) (-1697 . 734646) (-1698 . 734573) (-1699 . 734358) (-1700 . 734267) (-1701 . 734164) (-1702 . 734035) (-1703 . 733683) (-1704 . 733532) (-1705 . 733454) (-1706 . 733331) (-1707 . 733221) (-1708 . 733119) (-1709 . 732910) (-1710 . 732806) (-1711 . 732699) (-1712 . 732617) (-1713 . 732561) (-1714 . 732456) (-1715 . 732190) (-1716 . 731948) (-1717 . 731247) (-1718 . 730999) (-1719 . 730846) (-1720 . 730768) (-1721 . 730564) (-1722 . 730441) (-1723 . 730413) (-1724 . 730174) (-1725 . 730140) (-1726 . 729796) (-1727 . 729718) (-1728 . 729615) (-1729 . 729507) (-1730 . 729347) (-1731 . 728725) (-1732 . 728425) (-1733 . 728179) (-1734 . 728066) (-1735 . 727966) (-1736 . 727858) (-1737 . 727272) (-1738 . 727186) (-1739 . 727033) (-1740 . 726913) (-1741 . 726842) (-1742 . 726580) (-1743 . 726481) (-1744 . 726390) (-1745 . 726162) (-1746 . 726096) (-1747 . 725601) (-1748 . 725407) (-1749 . 725302) (-1750 . 725093) (-1751 . 725007) (-1752 . 724882) (-1753 . 724812) (-1754 . 724695) (-1755 . 724397) (-1756 . 724023) (-1757 . 723829) (-1758 . 723732) (-1759 . 723609) (-1760 . 723459) (-1761 . 719778) (-1762 . 719726) (-1763 . 719574) (-1764 . 719482) (-1765 . 719359) (-1766 . 719163) (-1767 . 717656) (-1768 . 717457) (-1769 . 717355) (-1770 . 717179) (-1771 . 717065) (-1772 . 716962) (-1773 . 715363) (-1774 . 715307) (-1775 . 715228) (-1776 . 715176) (-1777 . 715007) (-1778 . 714941) (-1779 . 712645) (-1780 . 712579) (-1781 . 712506) (-1782 . 712312) (-1783 . 712159) (-1784 . 711891) (-1785 . 711769) (-1786 . 711697) (-1787 . 711571) (-1788 . 711402) (-1789 . 711220) (-1790 . 711117) (-1791 . 710767) (-1792 . 710713) (-1793 . 710534) (-1794 . 709998) (-1795 . 709850) (-1796 . 709381) (-1797 . 709218) (-1798 . 709052) (-1799 . 708942) (-1800 . 708883) (-1801 . 707973) (-1802 . 707879) (-1803 . 707728) (-1804 . 707576) (-1805 . 707478) (-1806 . 707380) (-1807 . 706235) (-1808 . 706179) (-1809 . 706091) (-1810 . 705980) (-1811 . 705673) (-1812 . 705614) (-1813 . 705491) (-1814 . 705459) (-1815 . 705350) (-1816 . 705023) (-1817 . 704878) (-1818 . 704637) (-1819 . 704465) (-1820 . 704342) (-1821 . 704287) (-1822 . 703789) (-1823 . 703395) (-1824 . 703322) (-1825 . 703130) (-1826 . 703075) (-1827 . 702941) (-1828 . 701992) (-1829 . 698068) (-1830 . 697843) (-1831 . 697732) (-1832 . 697476) (-1833 . 697401) (-1834 . 697229) (-1835 . 697177) (-1836 . 697122) (-1837 . 697091) (-1838 . 697001) (-1839 . 696928) (-1840 . 696845) (-1841 . 696751) (-1842 . 696584) (-1843 . 696389) (-1844 . 696277) (-1845 . 696070) (-1846 . 695295) (-1847 . 695072) (-1848 . 694717) (-1849 . 694112) (-1850 . 693885) (-1851 . 693793) (-1852 . 693679) (-1853 . 693528) (-1854 . 693475) (-1855 . 693416) (-1856 . 693350) (-1857 . 693223) (-1858 . 692770) (-1859 . 692225) (-1860 . 692163) (-1861 . 692081) (-1862 . 691943) (-1863 . 691673) (-1864 . 691244) (-1865 . 691192) (-1866 . 691137) (-1867 . 690892) (-1868 . 690773) (-1869 . 690664) (-1870 . 690349) (-1871 . 690234) (-1872 . 690000) (-1873 . 689968) (-1874 . 689596) (-1875 . 689475) (-1876 . 689369) (-1877 . 689335) (-1878 . 689185) (-1879 . 689054) (-1880 . 688959) (-1881 . 688869) (-1882 . 688623) (-1883 . 688270) (-1884 . 688186) (-1885 . 687873) (-1886 . 687760) (-1887 . 687492) (-1888 . 687411) (-1889 . 687352) (-1890 . 687031) (-1891 . 686847) (-1892 . 685697) (-1893 . 685613) (-1894 . 685561) (-1895 . 684459) (-1896 . 684236) (-1897 . 683982) (-1898 . 683875) (-1899 . 683826) (-1900 . 683707) (-1901 . 683596) (-1902 . 683214) (-1903 . 682971) (-1904 . 682893) (-1905 . 682771) (-1906 . 682718) (-1907 . 682528) (-1908 . 682346) (-1909 . 682208) (-1910 . 681972) (-1911 . 681833) (-1912 . 681767) (-1913 . 681545) (-1914 . 681490) (-1915 . 681073) (-1916 . 680934) (-1917 . 680860) (-1918 . 680679) (-1919 . 679993) (-1920 . 679848) (-1921 . 679769) (-1922 . 679741) (-1923 . 679666) (-1924 . 679611) (-1925 . 679493) (-1926 . 679375) (-1927 . 679268) (-1928 . 679129) (-1929 . 678880) (-1930 . 678813) (-1931 . 678740) (-1932 . 678332) (-1933 . 677679) (-1934 . 677476) (-1935 . 677370) (-1936 . 677089) (-1937 . 676542) (-1938 . 676474) (-1939 . 676276) (-1940 . 676078) (-1941 . 675531) (-1942 . 675363) (-1943 . 675273) (-1944 . 675050) (-1945 . 674503) (-1946 . 673979) (-1947 . 673905) (-1948 . 673846) (-1949 . 673195) (-1950 . 673097) (-1951 . 673013) (-1952 . 672821) (-1953 . 672170) (-1954 . 672142) (-1955 . 671923) (-1956 . 671823) (-1957 . 671506) (-1958 . 670793) (-1959 . 670641) (-1960 . 670405) (-1961 . 666481) (-1962 . 665936) (-1963 . 665844) (-1964 . 665792) (-1965 . 665551) (-1966 . 665006) (-1967 . 664949) (-1968 . 664814) (-1969 . 664619) (-1970 . 664074) (-1971 . 663975) (-1972 . 663900) (-1973 . 663782) (-1974 . 663130) (-1975 . 662707) (-1976 . 662576) (-1977 . 662479) (-1978 . 661827) (-1979 . 661200) (-1980 . 661046) (-1981 . 660980) (-1982 . 660328) (-1983 . 660223) (-1984 . 659898) (-1985 . 659821) (-1986 . 659275) (-1987 . 659202) (-1988 . 658909) (-1989 . 658781) (-1990 . 658235) (-1991 . 657758) (-1992 . 657614) (-1993 . 657540) (-1994 . 656994) (-1995 . 656897) (-1996 . 656848) (-1997 . 656602) (-1998 . 656057) (-1999 . 656005) (-2000 . 655789) (-2001 . 655640) (-2002 . 655095) (-2003 . 655010) (-2004 . 654608) (-2005 . 654277) (-2006 . 653732) (-2007 . 653637) (-2008 . 653313) (-2009 . 652704) (-2010 . 652159) (-2011 . 651866) (-2012 . 651792) (-2013 . 651739) (-2014 . 651194) (-2015 . 651094) (-2016 . 650911) (-2017 . 648474) (-2018 . 648309) (-2019 . 648260) (-2020 . 648126) (-2021 . 648050) (-2022 . 647964) (-2023 . 647888) (-2024 . 647722) (-2025 . 647485) (-2026 . 647135) (-2027 . 647068) (-2028 . 646979) (-2029 . 646895) (-2030 . 646771) (-2031 . 646704) (-2032 . 646629) (-2033 . 646390) (-2034 . 646068) (-2035 . 645979) (-2036 . 645770) (-2037 . 645704) (-2038 . 645504) (-2039 . 645426) (-2040 . 644587) (-2041 . 643536) (-2042 . 643374) (-2043 . 643096) (-2044 . 642992) (-2045 . 642635) (-2046 . 642510) (-2047 . 640963) (-2048 . 640865) (-2049 . 640442) (-2050 . 640389) (-2051 . 639573) (-2052 . 639370) (-2053 . 639262) (-2054 . 639190) (-2055 . 637973) (-2056 . 637899) (-2057 . 637770) (-2058 . 637718) (-2059 . 636599) (-2060 . 636419) (-2061 . 636260) (-2062 . 636137) (-2063 . 635982) (-2064 . 635779) (-2065 . 634045) (-2066 . 633805) (-2067 . 632997) (-2068 . 632663) (-2069 . 632313) (-2070 . 630883) (-2071 . 630266) (-2072 . 630181) (-2073 . 630078) (-2074 . 630022) (-2075 . 628560) (-2076 . 628447) (-2077 . 628389) (-2078 . 628336) (-2079 . 628278) (-2080 . 628250) (-2081 . 627544) (-2082 . 627370) (-2083 . 627286) (-2084 . 627233) (-2085 . 627109) (-2086 . 626796) (-2087 . 626561) (-2088 . 626389) (-2089 . 626336) (-2090 . 626220) (-2091 . 626094) (-2092 . 625983) (-2093 . 625776) (-2094 . 625574) (-2095 . 625546) (-2096 . 625193) (-2097 . 624588) (-2098 . 624535) (-2099 . 624144) (-2100 . 623928) (-2101 . 623819) (-2102 . 622704) (-2103 . 622610) (-2104 . 622517) (-2105 . 622444) (-2106 . 622412) (-2107 . 622116) (-2108 . 622006) (-2109 . 621914) (-2110 . 621880) (-2111 . 621772) (-2112 . 621701) (-2113 . 621631) (-2114 . 620498) (-2115 . 620372) (-2116 . 620297) (-2117 . 620002) (-2118 . 619928) (-2119 . 619871) (-2120 . 619694) (-2121 . 619141) (-2122 . 618936) (-2123 . 618883) (-2124 . 618711) (-2125 . 618533) (-2126 . 617372) (-2127 . 617225) (-2128 . 617111) (-2129 . 616818) (-2130 . 616766) (-2131 . 616684) (-2132 . 616613) (-2133 . 616518) (-2134 . 616263) (-2135 . 616191) (-2136 . 616125) (-2137 . 615975) (-2138 . 615872) (-2139 . 615776) (-2140 . 615742) (-2141 . 615475) (-2142 . 615191) (-2143 . 615051) (-2144 . 614602) (-2145 . 614472) (-2146 . 613137) (-2147 . 613064) (-2148 . 613011) (-2149 . 612883) (-2150 . 612688) (-2151 . 612608) (-2152 . 612409) (-2153 . 612337) (-2154 . 612255) (-2155 . 612003) (-2156 . 611874) (-2157 . 611569) (-2158 . 611469) (-2159 . 611212) (-2160 . 611141) (-2161 . 611091) (-2162 . 610972) (-2163 . 610883) (-2164 . 610549) (-2165 . 610435) (-2166 . 609753) (-2167 . 609668) (-2168 . 609376) (-2169 . 609166) (-2170 . 609048) (-2171 . 608957) (-2172 . 608846) (-2173 . 608125) (-2174 . 608018) (-2175 . 607883) (-2176 . 606919) (-2177 . 606761) (-2178 . 606431) (-2179 . 606313) (-2180 . 606151) (-2181 . 606064) (-2182 . 605977) (-2183 . 605678) (-2184 . 605110) (-2185 . 605015) (-2186 . 604960) (-2187 . 604652) (-2188 . 604568) (-2189 . 604416) (-2190 . 603690) (-2191 . 603573) (-2192 . 603392) (-2193 . 603304) (-2194 . 603204) (-2195 . 602735) (-2196 . 602682) (-2197 . 602544) (-2198 . 602389) (-2199 . 602257) (-2200 . 602125) (-2201 . 602054) (-2202 . 601964) (-2203 . 601890) (-12 . 601735) (-2205 . 601455) (-2206 . 601402) (-2207 . 601255) (-2208 . 601227) (-2209 . 600988) (-2210 . 600875) (-2211 . 600777) (-2212 . 600076) (-2213 . 599976) (-2214 . 599917) (-2215 . 598351) (-2216 . 598242) (-2217 . 597568) (-2218 . 597478) (-2219 . 597380) (-2220 . 597189) (-2221 . 597071) (-2222 . 596567) (-2223 . 596477) (-2224 . 596100) (-2225 . 595799) (-2226 . 595659) (-2227 . 595628) (-2228 . 595545) (-2229 . 595399) (-2230 . 595163) (-2231 . 594820) (-2232 . 594629) (-2233 . 594512) (-2234 . 594238) (-2235 . 594181) (-2236 . 594115) (-2237 . 594011) (-2238 . 593813) (-2239 . 593742) (-2240 . 593638) (-2241 . 593579) (-2242 . 593503) (-2243 . 593426) (-2244 . 593004) (-2245 . 592765) (-2246 . 591646) (-2247 . 591388) (-2248 . 591300) (-2249 . 591201) (-2250 . 590996) (-2251 . 590925) (-2252 . 590617) (-2253 . 590410) (* . 585905) (-2255 . 585850) (-2256 . 585751) (-2257 . 585582) (-2258 . 585393) (-2259 . 585341) (-2260 . 585171) (-2261 . 585068) (-2262 . 584806) (-2263 . 584716) (-2264 . 584647) (-2265 . 584558) (-2266 . 584368) (-2267 . 584200) (-2268 . 584116) (-2269 . 583704) (-2270 . 583379) (-2271 . 583315) (-2272 . 583244) (-2273 . 583142) (-2274 . 582987) (-2275 . 582913) (-2276 . 582733) (-2277 . 582117) (-2278 . 581919) (-2279 . 581809) (-2280 . 581514) (-2281 . 581316) (-2282 . 580892) (-2283 . 580558) (-2284 . 580365) (-2285 . 580266) (-2286 . 580109) (-2287 . 580034) (-2288 . 579896) (-2289 . 579841) (-2290 . 579718) (-2291 . 579525) (-2292 . 579456) (-2293 . 579342) (-2294 . 579246) (-2295 . 579061) (-2296 . 578989) (-2297 . 578881) (-2298 . 578746) (-2299 . 578644) (-2300 . 578516) (-2301 . 578391) (-2302 . 578275) (-2303 . 578186) (-2304 . 578100) (-2305 . 578047) (-2306 . 577979) (-2307 . 577898) (-2308 . 577845) (-2309 . 577605) (-2310 . 577553) (-2311 . 577393) (-2312 . 577156) (-2313 . 576920) (-2314 . 576843) (-2315 . 576729) (-2316 . 576280) (-2317 . 575608) (-2318 . 575458) (-2319 . 575402) (-2320 . 575324) (-2321 . 575087) (-2322 . 575003) (-2323 . 574618) (-2324 . 573966) (-2325 . 573856) (-2326 . 573786) (-2327 . 573736) (-2328 . 573639) (-2329 . 573528) (-2330 . 573500) (-2331 . 573346) (-2332 . 573249) (-2333 . 573082) (-2334 . 573022) (-2335 . 572881) (-2336 . 569015) (-2337 . 568987) (-2338 . 568909) (-2339 . 568787) (-2340 . 568730) (-2341 . 568582) (-2342 . 566347) (-2343 . 566288) (-2344 . 566220) (-2345 . 565407) (-2346 . 565289) (-2347 . 565207) (-2348 . 564866) (-2349 . 564835) (-2350 . 564782) (-2351 . 564535) (-2352 . 564447) (-2353 . 564382) (-2354 . 564120) (-2355 . 563964) (-2356 . 563754) (-2357 . 563531) (-2358 . 563458) (-2359 . 563366) (-2360 . 563293) (-2361 . 563161) (-2362 . 563029) (-2363 . 562948) (-2364 . 562741) (-2365 . 562610) (-2366 . 562336) (-2367 . 561907) (-2368 . 561744) (-2369 . 561678) (-2370 . 561625) (-2371 . 561459) (-2372 . 561166) (-2373 . 560360) (-2374 . 560139) (-2375 . 559904) (-2376 . 559815) (-2377 . 559656) (-2378 . 559540) (-2379 . 559390) (-2380 . 559279) (-2381 . 559210) (-2382 . 558895) (-2383 . 558843) (-2384 . 558752) (-2385 . 558382) (-2386 . 558300) (-2387 . 558105) (-2388 . 557769) (-2389 . 557633) (-2390 . 557281) (-2391 . 557060) (-2392 . 556927) (-2393 . 556817) (-2394 . 556265) (-2395 . 556183) (-2396 . 556028) (-2397 . 555866) (-2398 . 555766) (-2399 . 555692) (-2400 . 555640) (-2401 . 555544) (-2402 . 555409) (-2403 . 555295) (-2404 . 555223) (-2405 . 555087) (-2406 . 554923) (-2407 . 554558) (-2408 . 554210) (-2409 . 553894) (-2410 . 553810) (-2411 . 552811) (-2412 . 552715) (-2413 . 552537) (-2414 . 552478) (-2415 . 550609) (-2416 . 550511) (-2417 . 550418) (-2418 . 550366) (-2419 . 550189) (-2420 . 550115) (-2421 . 550060) (-2422 . 549924) (-2423 . 549855) (-2424 . 549789) (-2425 . 549115) (-2426 . 548850) (-2427 . 548681) (-2428 . 548586) (-2429 . 548493) (-2430 . 548427) (-2431 . 548327) (-2432 . 548256) (-2433 . 548104) (-2434 . 548003) (-2435 . 547899) (-2436 . 546514) (-2437 . 546380) (-2438 . 546306) (-2439 . 546169) (-2440 . 546120) (-2441 . 546031) (-2442 . 545879) (-2443 . 545326) (-2444 . 545258) (-2445 . 544754) (-2446 . 544702) (-2447 . 544212) (-2448 . 543984) (-2449 . 543869) (-2450 . 543719) (-2451 . 543601) (-2452 . 543526) (-2453 . 543423) (-2454 . 543334) (-2455 . 543254) (-2456 . 543202) (-2457 . 543138) (-2458 . 543086) (-2459 . 543034) (-2460 . 542969) (-2461 . 542917) (-2462 . 542840) (-2463 . 542653) (-2464 . 542580) (-2465 . 542079) (-2466 . 541992) (-2467 . 541901) (-2468 . 541647) (-2469 . 541230) (-2470 . 541115) (-2471 . 540647) (-2472 . 540565) (-2473 . 540475) (-2474 . 540375) (-2475 . 540089) (-2476 . 540038) (-2477 . 539943) (-2478 . 539782) (-2479 . 539613) (-2480 . 538717) (-2481 . 538613) (-2482 . 538426) (-2483 . 538367) (-2484 . 538182) (-2485 . 538098) (-2486 . 537998) (-2487 . 537692) (-2488 . 537606) (-2489 . 537525) (-2490 . 537391) (-2491 . 537243) (-2492 . 537087) (-2493 . 536988) (-2494 . 536870) (-2495 . 536784) (-2496 . 536752) (-2497 . 535717) (-2498 . 535617) (-2499 . 535394) (-2500 . 535178) (-2501 . 533941) (-2502 . 533888) (-2503 . 533792) (-2504 . 533716) (-2505 . 533440) (-2506 . 533291) (-2507 . 533139) (-2508 . 533088) (-2509 . 532993) (-2510 . 532494) (-2511 . 532400) (-2512 . 531269) (-2513 . 531131) (-2514 . 531071) (-2515 . 530946) (-2516 . 530808) (-2517 . 530726) (-2518 . 530582) (-2519 . 530384) (-2520 . 530333) (-2521 . 530062) (-2522 . 529691) (-2523 . 529380) (-2524 . 529296) (-2525 . 528339) (-2526 . 528173) (-2527 . 528027) (-2528 . 527767) (-2529 . 527639) (-2530 . 527434) (-2531 . 527365) (-2532 . 526828) (-2533 . 526754) (-2534 . 526622) (-2535 . 526442) (-2536 . 526266) (-2537 . 525979) (-2538 . 525837) (-2539 . 525781) (-2540 . 525709) (-2541 . 525608) (-2542 . 525455) (-2543 . 525364) (-2544 . 525248) (-2545 . 525111) (-2546 . 525058) (-2547 . 525009) (-2548 . 524322) (-2549 . 524169) (-2550 . 524026) (-2551 . 523790) (-2552 . 523652) (-2553 . 523618) (-2554 . 523549) (-2555 . 523314) (-2556 . 523236) (-2557 . 523158) (-2558 . 523103) (-2559 . 523015) (-2560 . 522898) (-2561 . 522794) (-2562 . 522699) (-2563 . 522260) (-2564 . 522208) (-2565 . 522089) (-2566 . 521943) (-2567 . 521809) (-2568 . 521514) (-2569 . 521346) (-2570 . 521294) (-2571 . 521139) (-2572 . 520989) (-2573 . 520900) (-2574 . 520309) (-2575 . 520256) (-2576 . 520148) (-2577 . 519993) (-2578 . 519433) (-2579 . 519363) (-2580 . 519219) (-2581 . 519153) (-2582 . 518584) (-2583 . 518220) (-2584 . 518072) (-2585 . 517969) (-2586 . 517812) (-2587 . 517479) (-2588 . 517413) (-2589 . 517260) (-2590 . 517177) (-2591 . 517148) (-2592 . 516777) (-2593 . 516700) (-2594 . 516596) (-2595 . 515779) (-2596 . 514408) (-2597 . 514337) (-2598 . 513940) (-2599 . 513863) (-2600 . 513650) (-2601 . 513616) (-2602 . 513294) (-2603 . 513244) (-2604 . 511726) (-2605 . 511667) (-2606 . 511109) (-2607 . 511035) (-2608 . 510742) (-2609 . 510100) (-2610 . 509997) (-2611 . 509702) (-2612 . 509668) (-2613 . 509375) (-2614 . 509307) (-2615 . 509236) (-2616 . 509020) (-2617 . 508835) (-2618 . 508688) (-2619 . 508553) (-2620 . 508153) (-2621 . 508057) (-2622 . 507960) (-2623 . 507807) (-2624 . 507708) (-2625 . 507373) (-2626 . 507277) (-2627 . 505880) (-2628 . 505343) (-2629 . 505294) (-2630 . 504445) (-2631 . 504338) (-2632 . 504026) (-2633 . 503687) (-2634 . 503592) (-2635 . 503540) (-2636 . 503194) (-2637 . 503122) (-2638 . 503093) (-2639 . 503008) (-2640 . 502923) (-2641 . 502895) (-2642 . 502723) (-2643 . 502520) (-2644 . 501907) (-2645 . 501855) (-2646 . 501697) (-2647 . 501644) (-2648 . 501545) (-2649 . 501463) (-2650 . 501353) (-2651 . 500976) (-2652 . 500897) (-2653 . 500615) (-2654 . 500482) (-2655 . 500430) (-2656 . 500348) (-2657 . 498636) (-2658 . 498534) (-2659 . 496097) (-2660 . 496024) (-2661 . 495187) (-2662 . 495071) (-2663 . 494915) (-2664 . 493928) (-2665 . 493780) (-2666 . 493713) (-2667 . 493268) (-2668 . 493042) (-2669 . 492769) (-2670 . 492496) (-2671 . 492057) (-2672 . 491546) (-2673 . 491438) (-2674 . 491350) (-2675 . 491186) (-2676 . 491090) (-2677 . 490900) (-2678 . 489871) (-2679 . 489791) (-2680 . 489700) (-2681 . 489626) (-2682 . 489410) (-2683 . 489357) (-2684 . 489202) (-2685 . 489017) (-2686 . 488845) (-2687 . 488817) (-2688 . 487886) (-2689 . 487834) (-2690 . 487797) (-2691 . 487739) (-2692 . 487666) (-2693 . 487400) (-2694 . 487338) (-2695 . 487035) (-2696 . 486916) (-2697 . 486841) (-2698 . 486769) (-2699 . 486567) (-2700 . 486474) (-2701 . 486398) (-2702 . 486331) (-2703 . 486153) (-2704 . 485576) (-2705 . 485395) (-2706 . 485262) (-2707 . 485153) (-2708 . 484997) (-2709 . 484945) (-2710 . 484522) (-2711 . 484363) (-2712 . 484122) (-2713 . 484055) (-2714 . 483976) (-2715 . 483040) (-2716 . 482936) (-2717 . 482784) (-2718 . 482650) (-2719 . 482561) (-2720 . 482506) (-2721 . 481455) (-2722 . 481047) (-2723 . 480892) (-2724 . 480163) (-2725 . 479951) (-2726 . 479772) (-2727 . 479367) (-2728 . 479315) (-2729 . 479029) (-2730 . 478686) (-2731 . 478583) (-2732 . 478408) (-2733 . 478297) (-2734 . 478204) (-2735 . 477973) (-2736 . 477561) (-2737 . 477484) (-2738 . 477346) (-2739 . 477208) (-2740 . 477134) (-2741 . 477037) (-2742 . 476972) (-2743 . 476790) (-2744 . 476701) (-2745 . 453193) (-2746 . 453136) (-2747 . 453030) (-2748 . 452838) (-2749 . 452712) (-2750 . 452594) (-2751 . 452469) (-2752 . 452377) (-2753 . 452325) (-2754 . 452268) (-2755 . 452197) (-2756 . 452025) (-2757 . 451574) (-2758 . 451158) (-2759 . 450993) (-2760 . 450928) (-2761 . 450813) (-2762 . 450738) (-2763 . 449554) (-2764 . 449054) (-2765 . 448916) (-2766 . 448291) (-2767 . 448139) (-2768 . 447469) (-2769 . 446931) (-2770 . 446860) (-2771 . 446560) (-2772 . 446461) (-2773 . 446098) (-2774 . 445943) (-2775 . 445871) (-2776 . 445208) (-2777 . 445105) (-2778 . 445029) (-2779 . 439931) (-2780 . 439879) (-2781 . 439573) (-2782 . 439385) (-2783 . 439165) (-2784 . 438890) (-2785 . 438804) (-2786 . 438099) (-2787 . 437792) (-2788 . 433868) (-2789 . 432909) (-2790 . 432204) (-2791 . 432149) (-2792 . 431778) (-2793 . 431687) (-2794 . 431525) (-2795 . 417693) (-2796 . 417493) (-2797 . 417404) (-2798 . 417242) (-2799 . 417171) (-2800 . 417097) (-2801 . 416633) (-2802 . 416503) (-2803 . 415542) (-2804 . 415441) (-2805 . 415360) (-2806 . 414854) (-2807 . 414802) (-2808 . 414729) (-2809 . 414609) (-2810 . 414410) (-2811 . 414313) (-2812 . 414058) (-2813 . 413977) (-2814 . 413759) (-2815 . 413670) (-2816 . 413572) (-2817 . 413447) (-2818 . 412878) (-2819 . 412755) (-2820 . 412468) (-2821 . 412287) (-2822 . 412122) (-2823 . 412041) (-2824 . 411912) (-2825 . 411839) (-2826 . 411686) (-2827 . 411578) (-2828 . 411502) (-2829 . 411307) (-2830 . 411168) (-2831 . 411021) (-2832 . 410647) (-2833 . 410522) (-2834 . 410372) (-2835 . 410254) (-2836 . 410129) (-2837 . 409841) (-2838 . 409731) (-2839 . 409590) (-2840 . 409498) (-2841 . 408863) (-2842 . 408811) (-2843 . 408489) (-2844 . 408347) (-2845 . 407389) (-2846 . 407276) (-2847 . 405786) (-2848 . 405696) (-2849 . 404973) (-2850 . 404720) (-2851 . 404692) (-2852 . 404592) (-2853 . 404437) (-2854 . 399375) (-2855 . 399040) (-2856 . 398957) (-2857 . 398824) (-2858 . 398723) (-2859 . 398670) (-2860 . 398518) (-2861 . 398382) (-2862 . 398316) (-2863 . 398206) (-2864 . 398135) (-2865 . 397921) (-2866 . 397781) (-2867 . 397678) (-2868 . 397342) (-2869 . 397267) (-2870 . 396804) (-2871 . 396663) (-2872 . 396629) (-2873 . 396565) (-2874 . 396491) (-2875 . 396299) (-2876 . 396091) (-2877 . 395972) (-2878 . 395856) (-2879 . 395570) (-2880 . 395396) (-2881 . 395326) (-2882 . 394849) (-2883 . 394696) (-2884 . 394573) (-2885 . 394520) (-2886 . 394372) (-2887 . 393505) (-2888 . 393425) (-2889 . 393370) (-2890 . 393042) (-2891 . 392972) (-2892 . 392916) (-2893 . 392681) (-2894 . 392544) (-2895 . 392454) (-2896 . 392336) (-2897 . 391851) (-2898 . 391761) (-2899 . 391545) (-2900 . 391467) (-2901 . 391209) (-2902 . 391070) (-2903 . 390985) (-2904 . 390893) (-2905 . 390811) (-2906 . 390777) (-2907 . 390681) (-2908 . 390631) (-2909 . 390578) (-2910 . 390498) (-2911 . 390423) (-2912 . 390310) (-2913 . 390239) (-2914 . 390163) (-2915 . 390106) (-2916 . 390004) (-2917 . 389406) (-2918 . 389178) (-2919 . 389026) (-2920 . 388902) (-2921 . 388821) (-2922 . 388681) (-2923 . 388593) (-2924 . 388478) (-2925 . 387340) (-2926 . 387082) (-2927 . 386930) (-2928 . 386831) (-2929 . 386682) (-2930 . 386531) (-2931 . 386406) (-2932 . 385661) (-2933 . 385562) (-2934 . 385445) (-2935 . 385378) (-2936 . 385048) (-2937 . 384992) (-2938 . 384823) (-2939 . 384762) (-2940 . 384626) (-2941 . 384573) (-2942 . 383694) (-2943 . 383534) (-2944 . 383419) (-2945 . 383329) (-2946 . 383116) (-2947 . 382820) (-2948 . 382705) (-2949 . 382131) (-2950 . 381968) (-2951 . 381864) (-2952 . 381719) (-2953 . 381502) (-2954 . 381158) (-2955 . 381067) (-2956 . 380929) (-2957 . 380845) (-2958 . 380707) (-2959 . 380012) (-2960 . 379707) (-2961 . 379225) (-2962 . 378710) (-2963 . 378630) (-2964 . 378578) (-2965 . 378504) (-2966 . 378360) (-2967 . 378270) (-2968 . 377721) (-2969 . 377396) (-2970 . 377299) (-2971 . 377242) (-2972 . 377116) (-2973 . 377007) (-2974 . 376879) (-2975 . 376596) (-2976 . 376155) (-2977 . 376044) (-2978 . 375887) (-2979 . 375707) (-2980 . 375546) (-2981 . 375441) (-2982 . 375293) (-2983 . 375216) (-2984 . 375139) (-2985 . 375065) (-2986 . 374869) (-2987 . 374758) (-2988 . 374535) (-2989 . 374461) (-2990 . 374157) (-2991 . 374039) (-2992 . 373934) (-2993 . 373779) (-2994 . 373598) (-2995 . 373566) (-2996 . 373463) (-2997 . 373358) (-2998 . 373278) (-2999 . 373216) (-3000 . 373133) (-3001 . 373071) (-3002 . 373011) (-3003 . 372760) (-3004 . 372527) (-3005 . 372436) (-3006 . 372337) (-3007 . 372102) (-3008 . 371998) (-3009 . 371945) (-3010 . 371867) (-3011 . 371759) (-3012 . 371687) (-3013 . 371472) (-3014 . 371405) (-3015 . 371300) (-3016 . 371174) (-3017 . 371048) (-3018 . 370912) (-3019 . 370808) (-3020 . 370706) (-3021 . 370509) (-3022 . 370434) (-3023 . 370356) (-3024 . 370257) (-3025 . 370084) (-3026 . 369987) (-3027 . 369617) (-3028 . 369289) (-3029 . 366334) (-3030 . 366214) (-3031 . 365922) (-3032 . 365800) (-3033 . 365652) (-3034 . 365579) (-3035 . 365512) (-3036 . 365383) (-3037 . 365235) (-3038 . 365193) (-3039 . 364305) (-3040 . 364016) (-3041 . 363941) (-3042 . 363776) (-3043 . 363541) (-3044 . 363425) (-3045 . 363372) (-3046 . 363247) (-3047 . 363215) (-3048 . 363075) (-3049 . 362996) (-3050 . 362876) (-3051 . 362735) (-3052 . 362612) (-3053 . 362546) (-3054 . 362468) (-3055 . 362249) (-3056 . 362081) (-3057 . 361757) (-3058 . 361363) (-3059 . 361257) (-3060 . 361150) (-3061 . 361069) (-3062 . 360917) (-3063 . 360807) (-3064 . 360724) (-3065 . 360696) (-3066 . 360644) (-3067 . 360595) (-3068 . 360447) (-3069 . 360339) (-3070 . 360286) (-3071 . 360144) (-3072 . 360091) (-3073 . 359939) (-3074 . 359850) (-3075 . 359754) (-3076 . 359632) (-3077 . 359534) (-3078 . 359420) (-3079 . 359339) (-3080 . 359140) (-3081 . 359081) (-3082 . 358701) (-3083 . 358600) (-3084 . 357967) (-3085 . 357059) (-3086 . 356925) (-3087 . 356754) (-3088 . 356671) (-3089 . 356590) (-3090 . 356538) (-3091 . 356441) (-3092 . 352831) (-3093 . 352432) (-3094 . 351752) (-3095 . 351658) (-3096 . 351544) (-3097 . 351420) (-3098 . 351367) (-3099 . 351264) (-3100 . 351180) (-3101 . 351111) (-3102 . 350940) (-3103 . 350678) (-3104 . 350582) (-3105 . 349382) (-3106 . 349229) (-3107 . 348772) (-3108 . 348693) (-3109 . 347854) (-3110 . 347788) (-3111 . 347692) (-3112 . 347257) (-3113 . 347092) (-3114 . 346409) (-3115 . 346096) (-3116 . 345738) (-3117 . 345683) (-3118 . 345524) (-3119 . 345360) (-3120 . 345307) (-3121 . 345251) (-3122 . 344795) (-3123 . 344740) (-3124 . 344656) (-3125 . 344205) (-3126 . 344153) (-3127 . 344075) (-3128 . 343964) (-3129 . 343876) (-3130 . 343769) (-3131 . 343679) (-3132 . 343481) (-3133 . 343377) (-3134 . 343333) (-3135 . 343305) (-3136 . 343135) (-3137 . 342961) (-3138 . 342890) (-3139 . 342809) (-3140 . 341909) (-3141 . 341757) (-3142 . 341637) (-3143 . 341523) (-3144 . 341379) (-3145 . 341069) (-3146 . 340976) (-3147 . 340691) (-3148 . 340574) (-3149 . 340500) (-3150 . 340181) (-3151 . 340106) (-3152 . 340025) (-3153 . 339966) (-3154 . 339858) (-3155 . 339746) (-3156 . 339348) (-3157 . 339149) (-3158 . 339015) (-3159 . 338956) (-3160 . 338830) (-3161 . 338717) (-3162 . 338628) (-3163 . 338537) (-3164 . 338294) (-3165 . 338157) (-3166 . 338017) (-3167 . 337885) (-3168 . 337696) (-3169 . 337575) (-3170 . 337508) (-3171 . 337099) (-3172 . 336886) (-3173 . 336760) (-3174 . 336505) (-3175 . 336240) (-3176 . 336181) (-3177 . 335999) (-3178 . 335868) (-3179 . 335493) (-3180 . 335360) (-3181 . 334982) (-3182 . 334139) (-3183 . 334069) (-3184 . 333989) (-3185 . 333904) (-3186 . 333852) (-3187 . 333493) (-3188 . 333227) (-3189 . 333104) (-3190 . 332308) (-3191 . 331767) (-3192 . 331620) (-3193 . 331350) (-3194 . 330975) (-3195 . 330828) (-3196 . 330350) (-3197 . 330274) (-3198 . 330185) (-3199 . 330035) (-3200 . 329937) (-3201 . 329722) (-3202 . 329615) (-3203 . 329329) (-3204 . 329160) (-3205 . 328961) (-3206 . 326671) (-3207 . 326561) (-3208 . 326226) (-3209 . 326134) (-3210 . 325574) (-3211 . 325492) (-3212 . 324577) (-3213 . 324414) (-3214 . 324000) (-3215 . 323897) (-3216 . 323668) (-3217 . 323435) (-3218 . 323352) (-3219 . 323189) (-3220 . 323075) (-3221 . 322984) (-3222 . 322933) (-3223 . 322727) (-3224 . 322609) (-3225 . 322555) (-3226 . 322527) (-3227 . 322412) (-3228 . 322195) (-3229 . 322126) (-3230 . 321971) (-3231 . 321890) (-3232 . 321778) (-3233 . 321672) (-3234 . 321622) (-3235 . 321538) (-3236 . 321347) (-3237 . 321213) (-3238 . 321123) (-3239 . 321013) (-3240 . 320984) (-3241 . 320720) (-3242 . 320568) (-3243 . 320450) (-3244 . 320307) (-3245 . 320056) (-3246 . 319975) (-3247 . 319923) (-3248 . 319363) (-3249 . 319331) (-3250 . 318766) (-3251 . 318681) (-3252 . 318572) (-3253 . 318439) (-3254 . 318313) (-3255 . 318164) (-3256 . 317971) (-3257 . 317846) (-3258 . 317719) (-3259 . 317536) (-3260 . 317414) (-3261 . 317324) (-3262 . 316838) (-3263 . 316771) (-3264 . 316707) (-3265 . 316582) (-3266 . 316446) (-3267 . 316276) (-3268 . 315953) (-3269 . 315887) (-3270 . 315780) (-3271 . 315651) (-3272 . 315069) (-3273 . 314821) (-3274 . 314726) (-3275 . 314624) (-3276 . 314195) (-3277 . 314003) (-3278 . 313730) (-3279 . 313649) (-3280 . 313318) (-3281 . 312644) (-3282 . 312434) (-3283 . 312089) (-3284 . 311761) (-3285 . 311637) (-3286 . 311528) (-3287 . 311376) (-3288 . 310987) (-3289 . 310808) (-3290 . 310700) (-3291 . 310486) (-3292 . 310315) (-3293 . 310224) (-3294 . 310022) (-3295 . 309386) (-3296 . 309327) (-3297 . 307596) (-3298 . 307515) (-3299 . 307372) (-3300 . 307102) (-3301 . 307049) (-3302 . 306978) (-3303 . 306800) (-3304 . 306598) (-3305 . 306507) (-3306 . 306473) (-3307 . 306391) (-3308 . 306194) (-3309 . 306100) (-3310 . 306026) (-3311 . 305876) (-3312 . 305769) (-3313 . 305703) (-3314 . 305627) (-3315 . 305574) (-3316 . 305352) (-3317 . 305086) (-3318 . 305017) (-3319 . 304965) (-3320 . 304868) (-3321 . 304796) (-3322 . 304730) (-3323 . 304623) (-3324 . 304085) (-3325 . 303973) (-3326 . 303936) (-3327 . 303861) (-3328 . 302638) (-3329 . 302583) (-3330 . 302532) (-3331 . 302429) (-3332 . 302242) (-3333 . 302064) (-3334 . 301939) (-3335 . 301882) (-3336 . 301762) (-3337 . 301580) (-3338 . 301441) (-3339 . 301376) (-3340 . 300707) (-3341 . 300645) (-3342 . 300413) (-3343 . 300291) (-3344 . 300193) (-3345 . 300041) (-3346 . 299908) (-3347 . 299807) (-3348 . 299732) (-3349 . 299463) (-3350 . 299378) (-3351 . 299275) (-3352 . 298677) (-3353 . 298593) (-3354 . 297919) (-3355 . 297669) (-3356 . 297585) (-3357 . 297413) (-3358 . 297282) (-3359 . 297067) (-3360 . 296698) (-3361 . 296604) (-3362 . 296529) (-3363 . 296352) (-3364 . 296117) (-3365 . 296089) (-3366 . 296003) (-3367 . 295639) (-3368 . 295419) (-3369 . 295294) (-3370 . 295227) (-3371 . 295103) (-3372 . 295032) (-3373 . 294781) (-3374 . 294294) (-3375 . 294144) (-3376 . 294012) (-3377 . 293960) (-3378 . 293832) (-3379 . 293591) (-3380 . 293507) (-3381 . 293366) (-3382 . 293257) (-3383 . 293173) (-3384 . 293021) (-3385 . 292819) (-3386 . 292729) (-3387 . 292438) (-3388 . 292350) (-3389 . 292267) (-3390 . 292205) (-3391 . 291802) (-3392 . 291664) (-3393 . 291413) (-3394 . 291352) (-3395 . 291235) (-3396 . 290924) (-3397 . 290824) (-3398 . 290719) (-3399 . 290309) (-3400 . 289918) (-3401 . 289654) (-3402 . 289452) (-3403 . 289312) (-3404 . 288569) (-3405 . 287858) (-3406 . 287390) (-3407 . 287302) (-3408 . 286624) (-3409 . 286385) (-3410 . 286305) (-3411 . 286212) (-3412 . 286155) (-3413 . 285963) (-3414 . 285907) (-3415 . 285839) (-3416 . 285703) (-3417 . 285585) (-3418 . 285381) (-3419 . 285173) (-3420 . 284891) (-3421 . 284687) (-3422 . 284466) (-3423 . 284343) (-3424 . 284290) (-3425 . 284182) (-3426 . 283969) (-3427 . 283748) (-3428 . 283588) (-3429 . 283509) (-3430 . 277120) (-3431 . 277012) (-3432 . 276952) (-3433 . 276800) (-3434 . 276726) (-3435 . 276667) (-3436 . 276573) (-3437 . 276286) (-3438 . 275828) (-3439 . 275705) (-3440 . 275564) (-3441 . 275239) (-3442 . 275172) (-3443 . 274873) (-3444 . 274777) (-3445 . 274674) (-3446 . 274604) (-3447 . 274426) (-3448 . 274228) (-3449 . 274040) (-3450 . 273737) (-3451 . 273408) (-3452 . 273236) (-3453 . 273162) (-3454 . 272983) (-3455 . 272760) (-3456 . 272586) (-3457 . 272458) (-3458 . 272392) (-3459 . 272204) (-3460 . 272116) (-3461 . 271838) (-3462 . 271698) (-3463 . 271515) (-3464 . 271431) (-3465 . 271361) (-3466 . 271291) (-3467 . 271113) (-3468 . 271029) (-3469 . 270976) (-3470 . 270725) (-3471 . 270424) (-3472 . 270361) (-3473 . 269730) (-3474 . 269548) (-3475 . 269385) (-3476 . 269357) (-3477 . 269207) (-3478 . 268922) (-3479 . 268869) (-3480 . 268841) (-3481 . 268359) (-3482 . 268330) (-3483 . 268168) (-3484 . 268034) (-3485 . 267908) (-3486 . 267805) (-3487 . 267752) (-3488 . 266755) (-3489 . 266678) (-3490 . 266621) (-3491 . 266530) (-3492 . 266457) (-3493 . 266335) (-3494 . 266013) (-3495 . 265490) (-3496 . 265244) (-3497 . 265163) (-3498 . 264591) (-3499 . 264514) (-3500 . 264480) (-3501 . 264302) (-3502 . 264240) (-3503 . 264166) (-3504 . 263959) (-3505 . 263855) (-3506 . 263778) (-3507 . 263595) (-3508 . 263411) (-3509 . 263345) (-3510 . 263282) (-3511 . 263216) (-3512 . 263164) (-3513 . 263061) (-3514 . 262871) (-3515 . 262818) (-3516 . 262709) (-3517 . 262643) (-3518 . 262591) (-3519 . 262510) (-3520 . 262440) (-3521 . 262317) (-3522 . 262110) (-3523 . 261921) (-3524 . 261683) (-3525 . 261617) (-3526 . 261543) (-3527 . 261509) (-3528 . 261405) (-3529 . 261203) (-3530 . 261128) (-3531 . 261047) (-3532 . 260979) (-3533 . 260878) (-3534 . 260532) (-3535 . 260374) (-3536 . 260130) (-3537 . 259756) (-3538 . 259687) (-3539 . 259631) (-3540 . 259559) (-3541 . 259307) (-3542 . 259225) (-3543 . 259118) (-3544 . 259017) (-3545 . 258808) (-3546 . 258774) (-3547 . 258281) (-3548 . 258188) (-3549 . 257679) (-3550 . 257561) (-3551 . 257454) (-3552 . 257383) (-3553 . 256797) (-3554 . 256378) (-3555 . 255929) (-3556 . 255452) (-3557 . 255349) (-3558 . 255242) (-3559 . 255140) (-3560 . 255018) (-3561 . 254746) (-3562 . 254678) (-3563 . 254370) (-3564 . 254269) (-3565 . 254160) (-3566 . 254081) (-3567 . 254049) (-3568 . 253980) (-3569 . 253787) (-3570 . 253551) (-3571 . 253425) (-3572 . 253373) (-3573 . 253302) (-3574 . 253201) (-3575 . 253043) (-3576 . 252969) (-3577 . 252892) (-3578 . 252799) (-3579 . 252637) (-3580 . 252545) (-3581 . 252470) (-3582 . 252401) (-3583 . 252264) (-3584 . 252109) (-3585 . 252057) (-3586 . 251958) (-3587 . 251905) (-3588 . 251792) (-3589 . 251515) (-3590 . 251427) (-3591 . 251293) (-3592 . 251225) (-3593 . 251130) (-3594 . 251024) (-3595 . 250241) (-3596 . 250189) (-3597 . 250137) (-3598 . 249929) (-3599 . 248712) (-3600 . 248473) (-3601 . 248352) (-3602 . 248246) (-3603 . 248139) (-3604 . 247965) (-3605 . 247873) (-3606 . 247802) (-3607 . 247635) (-3608 . 247549) (-3609 . 247476) (-3610 . 247234) (-3611 . 247205) (-3612 . 247044) (-3613 . 246965) (-3614 . 246910) (-3615 . 246705) (-3616 . 246637) (-3617 . 246534) (-3618 . 246437) (-3619 . 246333) (-3620 . 246207) (-3621 . 246005) (-3622 . 245886) (-3623 . 245536) (-3624 . 245285) (-3625 . 245172) (-3626 . 245098) (-3627 . 244819) (-3628 . 244299) (-3629 . 244001) (-3630 . 243897) (-3631 . 243763) (-3632 . 243523) (-3633 . 243164) (-3634 . 243039) (-3635 . 242862) (-3636 . 242793) (-3637 . 242690) (-3638 . 242539) (-3639 . 242391) (-3640 . 242178) (-3641 . 238254) (-3642 . 238019) (-3643 . 237900) (-3644 . 237487) (-3645 . 237387) (-3646 . 237115) (-3647 . 236996) (-3648 . 236633) (-3649 . 236481) (-3650 . 236425) (-3651 . 236394) (-3652 . 236296) (-3653 . 236185) (-3654 . 236101) (-3655 . 236050) (-3656 . 235910) (-3657 . 235675) (-3658 . 235579) (-3659 . 235551) (-3660 . 235184) (-3661 . 234266) (-3662 . 232996) (-3663 . 232756) (-3664 . 232659) (-3665 . 232607) (-3666 . 228432) (-3667 . 228329) (-3668 . 228142) (-3669 . 227985) (-3670 . 227930) (-3671 . 227830) (-3672 . 227758) (-3673 . 227702) (-3674 . 227006) (-3675 . 226749) (-3676 . 226624) (-3677 . 226525) (-3678 . 225734) (-3679 . 225632) (-3680 . 225085) (-3681 . 225035) (-3682 . 224729) (-3683 . 224591) (-3684 . 224378) (-3685 . 224194) (-3686 . 223760) (-3687 . 223516) (-3688 . 223307) (-3689 . 223221) (-3690 . 222707) (-3691 . 222140) (-3692 . 222014) (-3693 . 221949) (-3694 . 221851) (-3695 . 221701) (-3696 . 221614) (-3697 . 221016) (-3698 . 220908) (-3699 . 220786) (-3700 . 219599) (-3701 . 219442) (-3702 . 219308) (-3703 . 219065) (-3704 . 218961) (-3705 . 218801) (-3706 . 218697) (-3707 . 218624) (-3708 . 218439) (-3709 . 218339) (-3710 . 218024) (-3711 . 217953) (-3712 . 217852) (-3713 . 217086) (-3714 . 216281) (-3715 . 215998) (-3716 . 215939) (-3717 . 215158) (-3718 . 214795) (-3719 . 214742) (-3720 . 214668) (-3721 . 214465) (-3722 . 213945) (-3723 . 213818) (-3724 . 213621) (-3725 . 213568) (-3726 . 213467) (-3727 . 213388) (-3728 . 210549) (-3729 . 210296) (-3730 . 210003) (-3731 . 209762) (-3732 . 209639) (-3733 . 209497) (-3734 . 209314) (-3735 . 209259) (-3736 . 209066) (-3737 . 208831) (-3738 . 208571) (-3739 . 208422) (-3740 . 208284) (-3741 . 208190) (-3742 . 208060) (-3743 . 207978) (-3744 . 207607) (-3745 . 207519) (-3746 . 206696) (-3747 . 206574) (-3748 . 206424) (-3749 . 206280) (-3750 . 206138) (-3751 . 205176) (-3752 . 204868) (-3753 . 204723) (-3754 . 203948) (-3755 . 203681) (-3756 . 203581) (-3757 . 203037) (-3758 . 202901) (-3759 . 202804) (-3760 . 202730) (-3761 . 202496) (-3762 . 202416) (-3763 . 202325) (-3764 . 202249) (-3765 . 202126) (-3766 . 202070) (-3767 . 201996) (-3768 . 201741) (-3769 . 201502) (-3770 . 201449) (-3771 . 201347) (-3772 . 201272) (-3773 . 201216) (-3774 . 201024) (-3775 . 200932) (-3776 . 200763) (-3777 . 200711) (-3778 . 200582) (-3779 . 200509) (-3780 . 200426) (-3781 . 198462) (-3782 . 198288) (-3783 . 198167) (-3784 . 198078) (-3785 . 198044) (-3786 . 197964) (-3787 . 197882) (-3788 . 197637) (-3789 . 197529) (-3790 . 197388) (-3791 . 197278) (-3792 . 196939) (-3793 . 196735) (-3794 . 196596) (-3795 . 196465) (-3796 . 196362) (-3797 . 195940) (-3798 . 195756) (-3799 . 195567) (-3800 . 195420) (-3801 . 195339) (-3802 . 195175) (-3803 . 195094) (-3804 . 195032) (-3805 . 194943) (-3806 . 194860) (-3807 . 194612) (-3808 . 194403) (-3809 . 194143) (-3810 . 194059) (-3811 . 193985) (-3812 . 193951) (-3813 . 193483) (-3814 . 193287) (-3815 . 193179) (-3816 . 193062) (-3817 . 193007) (-3818 . 192682) (-3819 . 190645) (-3820 . 190355) (-3821 . 189783) (-3822 . 189548) (-3823 . 189171) (-3824 . 189021) (-3825 . 188918) (-3826 . 188770) (-3827 . 188670) (-3828 . 188447) (-3829 . 188395) (-3830 . 188285) (-3831 . 188064) (-3832 . 187932) (-3833 . 187793) (-3834 . 187694) (-3835 . 187540) (-3836 . 187469) (-3837 . 180629) (-3838 . 180521) (-3839 . 179056) (-3840 . 178904) (-3841 . 178774) (-3842 . 178532) (-3843 . 178479) (-3844 . 178269) (-3845 . 177918) (-3846 . 177765) (-3847 . 177529) (-3848 . 172039) (-3849 . 171904) (-3850 . 171873) (-3851 . 171802) (-3852 . 171718) (-3853 . 171602) (-3854 . 171498) (-3855 . 171291) (-3856 . 171235) (-3857 . 170794) (-3858 . 170587) (-3859 . 170390) (-3860 . 170227) (-3861 . 170040) (-3862 . 169985) (-3863 . 169402) (-3864 . 169336) (-3865 . 169233) (-3866 . 168896) (-3867 . 168824) (-3868 . 168753) (-3869 . 168596) (-3870 . 165930) (-3871 . 165902) (-3872 . 165750) (-3873 . 165676) (-3874 . 165554) (-3875 . 165165) (-3876 . 164648) (-3877 . 164484) (-3878 . 163993) (-3879 . 163964) (-3880 . 163621) (-3881 . 163004) (-3882 . 162967) (-3883 . 162895) (-3884 . 162548) (-3885 . 162345) (-3886 . 162182) (-3887 . 162129) (-3888 . 161999) (-3889 . 161784) (-3890 . 161642) (-3891 . 161308) (-3892 . 161280) (-3893 . 161060) (-3894 . 160979) (-3895 . 160898) (-3896 . 160645) (-3897 . 160541) (-3898 . 160348) (-3899 . 160143) (-3900 . 159812) (-3901 . 159731) (-3902 . 159461) (-3903 . 159370) (-3904 . 159315) (-3905 . 159185) (-3906 . 159114) (-3907 . 159024) (-3908 . 158827) (-3909 . 158698) (-3910 . 158601) (-3911 . 158573) (-3912 . 158397) (-3913 . 158132) (-3914 . 157906) (-3915 . 157851) (-3916 . 157761) (-3917 . 157504) (-3918 . 157416) (-3919 . 157005) (-3920 . 156863) (-3921 . 156358) (-3922 . 156284) (-3923 . 156175) (-3924 . 156081) (-3925 . 155842) (-3926 . 155723) (-3927 . 155357) (-3928 . 155291) (-3929 . 154919) (-3930 . 154887) (-3931 . 154699) (-3932 . 154527) (-3933 . 154435) (-3934 . 154181) (-3935 . 153769) (-3936 . 152415) (-3937 . 152142) (-3938 . 152025) (-3939 . 151850) (-3940 . 151698) (-3941 . 151623) (-3942 . 151276) (-3943 . 151060) (-3944 . 150884) (-3945 . 150476) (-3946 . 150424) (-3947 . 150154) (-3948 . 150055) (-3949 . 149730) (-3950 . 149473) (-3951 . 149398) (-3952 . 149285) (-3953 . 149099) (-3954 . 149028) (-3955 . 148938) (-3956 . 148839) (-3957 . 148754) (-3958 . 148686) (-3959 . 148583) (-3960 . 148508) (-3961 . 148269) (-3962 . 148163) (-3963 . 148067) (-3964 . 147923) (-3965 . 147771) (-3966 . 147616) (-3967 . 147537) (-3968 . 147272) (-3969 . 146144) (-3970 . 146025) (-3971 . 145950) (-3972 . 145854) (-3973 . 145801) (-3974 . 145767) (-3975 . 145709) (-3976 . 145611) (-3977 . 145535) (-3978 . 145390) (-3979 . 145309) (-3980 . 145182) (-3981 . 145098) (-3982 . 144967) (-3983 . 144009) (-3984 . 143943) (-3985 . 143875) (-3986 . 143826) (-3987 . 143631) (-3988 . 143507) (-3989 . 143286) (-3990 . 142876) (-3991 . 142814) (-3992 . 142639) (-3993 . 142565) (-3994 . 142420) (-3995 . 142299) (-3996 . 141657) (-3997 . 141585) (-3998 . 141134) (-3999 . 140816) (-4000 . 140744) (-4001 . 140612) (-4002 . 140473) (-4003 . 140415) (-4004 . 140294) (-4005 . 140235) (-4006 . 140084) (-4007 . 139470) (-4008 . 139355) (-4009 . 139214) (-4010 . 139162) (-4011 . 139020) (-4012 . 138918) (-4013 . 138067) (-4014 . 137864) (-4015 . 137784) (-4016 . 137695) (-4017 . 137578) (-4018 . 137468) (-4019 . 137296) (-4020 . 137225) (-4021 . 137126) (-4022 . 136506) (-4023 . 135961) (-4024 . 135911) (-4025 . 135695) (-4026 . 135380) (-4027 . 135217) (-4028 . 135121) (-4029 . 134636) (-4030 . 134279) (-4031 . 134223) (-4032 . 133816) (-4033 . 133691) (-4034 . 133595) (-4035 . 133451) (-4036 . 133146) (-4037 . 133078) (-4038 . 133044) (-4039 . 132960) (-4040 . 132827) (-4041 . 132528) (-4042 . 132341) (-4043 . 132240) (-4044 . 132022) (-4045 . 131739) (-4046 . 131606) (-4047 . 131572) (-4048 . 131202) (-4049 . 130983) (-4050 . 130902) (-4051 . 130851) (-4052 . 130765) (-4053 . 130388) (-4054 . 130280) (-4055 . 130189) (-4056 . 130003) (-4057 . 129895) (-4058 . 129809) (-4059 . 129686) (-4060 . 129600) (-4061 . 129272) (-4062 . 129198) (-4063 . 128932) (-4064 . 128787) (-4065 . 128701) (-4066 . 128643) (-4067 . 128462) (-4068 . 128379) (-4069 . 127367) (-4070 . 127235) (-4071 . 127149) (-4072 . 127076) (-4073 . 125942) (-4074 . 125833) (-4075 . 125758) (-4076 . 125672) (-4077 . 125640) (-4078 . 124819) (-4079 . 124696) (-4080 . 124573) (-4081 . 124360) (-4082 . 124304) (-4083 . 123371) (-4084 . 123285) (-4085 . 123161) (-4086 . 122512) (-4087 . 122438) (-4088 . 122362) (-4089 . 115973) (-4090 . 115887) (-4091 . 115812) (-4092 . 115655) (-4093 . 115544) (-4094 . 115453) (-4095 . 115404) (-4096 . 115224) (-4097 . 114905) (-4098 . 114819) (-4099 . 114722) (-4100 . 114665) (-4101 . 114637) (-4102 . 112200) (-4103 . 112119) (-4104 . 111985) (-4105 . 111899) (-4106 . 111817) (-4107 . 111665) (-4108 . 111395) (-4109 . 111099) (-4110 . 110833) (-4111 . 110774) (-4112 . 110688) (-4113 . 110584) (-4114 . 109764) (-4115 . 109595) (-4116 . 109406) (-4117 . 109308) (-4118 . 108952) (-4119 . 108902) (-4120 . 108810) (-4121 . 108695) (-4122 . 108544) (-4123 . 108271) (-4124 . 107749) (-4125 . 106960) (-4126 . 106820) (-4127 . 106734) (-4128 . 106194) (-4129 . 106166) (-4130 . 106111) (-4131 . 106041) (-4132 . 105912) (-4133 . 105800) (-4134 . 105748) (-4135 . 105662) (-4136 . 105573) (-4137 . 105474) (-4138 . 105368) (-4139 . 105264) (-4140 . 105178) (-4141 . 105106) (-4142 . 104940) (-4143 . 104865) (-4144 . 104461) (-4145 . 104409) (-4146 . 104164) (-4147 . 104012) (-4148 . 103926) (-4149 . 103330) (-4150 . 103278) (-4151 . 103145) (-4152 . 102961) (-4153 . 102891) (-4154 . 102547) (-4155 . 102461) (-4156 . 102400) (-4157 . 101559) (-4158 . 101304) (-4159 . 101186) (-4160 . 101075) (-4161 . 100982) (-4162 . 100673) (-4163 . 100483) (-4164 . 100358) (-4165 . 100286) (-4166 . 100212) (-4167 . 99435) (-4168 . 98092) (-4169 . 98001) (-4170 . 97906) (-4171 . 97796) (-4172 . 97699) (-4173 . 97520) (-4174 . 97427) (-4175 . 97335) (-4176 . 96912) (-4177 . 96760) (-4178 . 96498) (-4179 . 96391) (-4180 . 96278) (-4181 . 95945) (-4182 . 95853) (-4183 . 95472) (-4184 . 95365) (-4185 . 95306) (-4186 . 95255) (-4187 . 95171) (-4188 . 95082) (-4189 . 92837) (-4190 . 92674) (-4191 . 92594) (-4192 . 92517) (-4193 . 92447) (-4194 . 92283) (-4195 . 92123) (-4196 . 92037) (-4197 . 91910) (-4198 . 91842) (-4199 . 91723) (-4200 . 91387) (-4201 . 91314) (-4202 . 91142) (-4203 . 90528) (-4204 . 90472) (-4205 . 90362) (-4206 . 90296) (-4207 . 89906) (-4208 . 89820) (-4209 . 89682) (-4210 . 89435) (-4211 . 89300) (-4212 . 89225) (-4213 . 89089) (-4214 . 88932) (-4215 . 88740) (-4216 . 88241) (-4217 . 88080) (-4218 . 87955) (-4219 . 87869) (-4220 . 86803) (-4221 . 86696) (-4222 . 86589) (-4223 . 86557) (-4224 . 86443) (-4225 . 86384) (-4226 . 86221) (-4227 . 86075) (-4228 . 86009) (-4229 . 85898) (-4230 . 85684) (-4231 . 85411) (-4232 . 85325) (-4233 . 85209) (-4234 . 85091) (-4235 . 85038) (-4236 . 84836) (-4237 . 84722) (-4238 . 84562) (-4239 . 84482) (-4240 . 84395) (-4241 . 84306) (-4242 . 84190) (-4243 . 83974) (-4244 . 83816) (-4245 . 83525) (-4246 . 83419) (-4247 . 83316) (-4248 . 83081) (-4249 . 82988) (-4250 . 82802) (-4251 . 80691) (-4252 . 80432) (-4253 . 80259) (-4254 . 80206) (-4255 . 79890) (-4256 . 79804) (-4257 . 79713) (-4258 . 79580) (-4259 . 79467) (-4260 . 79418) (-4261 . 79323) (-4262 . 79165) (-4263 . 79099) (-4264 . 79025) (-4265 . 78655) (-4266 . 78582) (-4267 . 78304) (-4268 . 78218) (-4269 . 78105) (-4270 . 78002) (-4271 . 77906) (-4272 . 77066) (-4273 . 76993) (-4274 . 76835) (-4275 . 76640) (-4276 . 76073) (-4277 . 75984) (-4278 . 71576) (-4279 . 71485) (-4280 . 71310) (-4281 . 71114) (-4282 . 70981) (-4283 . 70793) (-4284 . 70762) (-4285 . 70191) (-4286 . 70053) (-4287 . 67515) (-4288 . 67463) (-4289 . 67330) (-4290 . 67199) (-4291 . 67120) (-4292 . 67031) (-4293 . 66839) (-4294 . 66753) (-4295 . 66346) (-4296 . 66286) (-4297 . 65919) (-4298 . 65776) (-4299 . 65692) (-4300 . 65338) (-4301 . 65252) (-4302 . 64882) (-4303 . 64787) (-4304 . 64714) (-4305 . 64291) (-4306 . 64188) (-4307 . 64102) (-4308 . 63987) (-4309 . 63419) (-4310 . 63362) (-4311 . 63191) (-4312 . 63105) (-4313 . 62992) (-4314 . 62453) (-4315 . 62381) (-4316 . 62315) (-4317 . 62214) (-4318 . 61981) (-4319 . 61786) (-4320 . 61671) (-4321 . 60967) (-4322 . 60868) (-4323 . 60787) (-4324 . 60690) (-4325 . 60426) (-4326 . 60284) (-4327 . 60086) (-4328 . 59516) (-4329 . 55592) (-4330 . 55160) (-4331 . 54898) (-4332 . 54844) (-4333 . 54679) (-4334 . 54579) (-4335 . 54452) (-4336 . 54353) (-4337 . 54202) (-4338 . 53898) (-4339 . 53721) (-4340 . 53669) (-4341 . 53614) (-4342 . 53562) (-4343 . 53443) (-4344 . 53317) (-4345 . 53246) (-4346 . 53042) (-4347 . 52538) (-4348 . 52464) (-4349 . 52359) (-4350 . 52005) (-4351 . 43112) (-4352 . 42792) (-4353 . 42718) (-4354 . 42348) (-4355 . 42042) (-4356 . 41901) (-4357 . 41768) (-4358 . 41715) (-4359 . 41611) (-4360 . 40943) (-4361 . 40803) (-4362 . 40690) (-4363 . 40585) (-4364 . 40302) (-4365 . 40188) (-4366 . 39828) (-4367 . 39669) (-4368 . 39540) (-4369 . 39438) (-4370 . 39371) (-4371 . 39243) (-4372 . 39191) (-4373 . 39118) (-4374 . 39058) (-4375 . 38962) (-4376 . 35224) (-4377 . 35126) (-4378 . 35011) (-4379 . 34921) (-4380 . 34819) (-4381 . 34628) (-4382 . 34511) (-4383 . 34360) (-4384 . 34252) (-4385 . 34061) (-4386 . 33938) (-4387 . 33787) (-4388 . 33495) (-4389 . 33445) (-4390 . 33239) (-4391 . 32678) (-4392 . 32491) (-4393 . 32288) (-4394 . 32053) (-4395 . 31901) (-4396 . 31784) (-4397 . 31182) (-4398 . 31088) (-4399 . 30886) (-4400 . 30714) (-4401 . 30683) (-4402 . 30631) (-4403 . 30522) (-4404 . 30440) (-4405 . 30224) (-4406 . 30044) (-4407 . 29914) (-4408 . 29552) (-4409 . 29497) (-4410 . 27350) (-4411 . 27133) (-4412 . 25438) (-4413 . 25343) (-4414 . 25209) (-4415 . 24262) (-4416 . 23086) (-4417 . 22997) (-4418 . 22938) (-4419 . 22901) (-4420 . 22764) (-4421 . 22664) (-4422 . 22613) (-4423 . 22539) (-4424 . 22168) (-4425 . 21814) (-4426 . 21761) (-4427 . 21674) (-4428 . 21497) (-4429 . 21247) (-4430 . 20807) (-4431 . 20737) (-4432 . 20571) (-4433 . 20124) (-4434 . 20005) (-4435 . 19909) (-4436 . 19656) (-4437 . 19598) (-4438 . 19546) (-4439 . 19465) (-4440 . 19412) (-4441 . 19229) (-4442 . 19148) (-4443 . 19078) (-4444 . 19012) (-4445 . 18699) (-4446 . 18469) (-4447 . 18414) (-4448 . 17713) (-4449 . 17594) (-4450 . 15467) (-4451 . 15279) (-4452 . 14954) (-4453 . 14879) (-4454 . 14517) (-4455 . 14354) (-4456 . 14216) (-4457 . 14098) (-4458 . 13875) (-4459 . 13588) (** . 10523) (-4461 . 10460) (-4462 . 10389) (-4463 . 10305) (-4464 . 10168) (-4465 . 10006) (-4466 . 9835) (-4467 . 9704) (-4468 . 9550) (-4469 . 9278) (-4470 . 8931) (-4471 . 8702) (-4472 . 8573) (-4473 . 8462) (-4474 . 8201) (-4475 . 6596) (-4476 . 6358) (-4477 . 4074) (-4478 . 4000) (-4479 . 3945) (-4480 . 3832) (-4481 . 3591) (-4482 . 3101) (-4483 . 3000) (-4484 . 2905) (-4485 . 2604) (-4486 . 2552) (-4487 . 2073) (-4488 . 1923) (-4489 . 1871) (-4490 . 1787) (-4491 . 1260) (-4492 . 1184) (-4493 . 1035) (-4494 . 830) (-4495 . 627) (-4496 . 470) (-4497 . 271) (-4498 . 197) (-4499 . 30)) \ No newline at end of file diff --git a/src/share/algebra/users.daase/users.daase/index.kaf b/src/share/algebra/users.daase/users.daase/index.kaf index e87cf79..2daa077 100644 --- a/src/share/algebra/users.daase/users.daase/index.kaf +++ b/src/share/algebra/users.daase/users.daase/index.kaf @@ -1,4 +1,4 @@ -232776 (|ProjectiveAlgebraicSetPackage|) +234547 (|ProjectiveAlgebraicSetPackage|) (|ProjectiveAlgebraicSetPackage|) (|AffinePlaneOverPseudoAlgebraicClosureOfFiniteField| |BlowUpPackage| |DesingTreePackage| |InfClsPt| |InfinitlyClosePoint| |InfinitlyClosePointOverPseudoAlgebraicClosureOfFiniteField|) (|AffinePlane|) @@ -57,13 +57,13 @@ (|BalancedBinaryTree| |BinarySearchTree| |BinaryTournament|) (|SetOfMIntegersInOneToN|) (|DesingTreePackage|) -(|AbelianMonoid&| |AbelianMonoidRing&| |AffineAlgebraicSetComputeWithGroebnerBasis| |AffineAlgebraicSetComputeWithResultant| |AffinePlane| |AffinePlaneOverPseudoAlgebraicClosureOfFiniteField| |AffineSpace| |Aggregate&| |AlgFactor| |AlgebraGivenByStructuralConstants| |AlgebraPackage| |AlgebraicFunction| |AlgebraicFunctionField| |AlgebraicHermiteIntegration| |AlgebraicIntegrate| |AlgebraicIntegration| |AlgebraicManipulations| |AlgebraicNumber| |AlgebraicallyClosedField&| |AnnaNumericalIntegrationPackage| |AnnaNumericalOptimizationPackage| |AnnaOrdinaryDifferentialEquationPackage| |AnnaPartialDifferentialEquationPackage| |AnonymousFunction| |AntiSymm| |Any| |AnyFunctions1| |ApplyRules| |ArrayStack| |Asp1| |Asp10| |Asp12| |Asp19| |Asp20| |Asp24| |Asp27| |Asp28| |Asp29| |Asp30| |Asp31| |Asp33| |Asp34| |Asp35| |Asp4| |Asp41| |Asp42| |Asp49| |Asp50| |Asp55| |Asp6| |Asp7| |Asp73| |Asp74| |Asp77| |Asp78| |Asp8| |Asp80| |Asp9| |AssociatedEquations| |AssociatedJordanAlgebra| |AssociatedLieAlgebra| |AssociationList| |AttributeButtons| |Automorphism| |AxiomServer| |BalancedBinaryTree| |BalancedFactorisation| |BalancedPAdicInteger| |BalancedPAdicRational| |BasicFunctions| |BasicOperator| |BasicOperatorFunctions1| |BasicType&| |BezoutMatrix| |BinaryExpansion| |BinaryFile| |BinaryRecursiveAggregate&| |BinarySearchTree| |BinaryTournament| |BinaryTree| |BinaryTreeCategory&| |BitAggregate&| |Bits| |BlowUpPackage| |BlowUpWithHamburgerNoether| |BlowUpWithQuadTrans| |Boolean| |BoundIntegerRoots| |BrillhartTests| |CardinalNumber| |CartesianTensor| |ChangeOfVariable| |Character| |CharacterClass| |ChineseRemainderToolsForIntegralBases| |CliffordAlgebra| |Collection&| |Color| |CombinatorialFunction| |CommonOperators| |Commutator| |CommuteUnivariatePolynomialCategory| |Complex| |ComplexCategory&| |ComplexFactorization| |ComplexIntegerSolveLinearPolynomialEquation| |ComplexPattern| |ComplexPatternMatch| |ComplexRootFindingPackage| |ComplexTrigonometricManipulations| |ConstantLODE| |ContinuedFraction| |CycleIndicators| |CyclicStreamTools| |DataList| |Database| |DeRhamComplex| |DecimalExpansion| |DefiniteIntegrationTools| |DegreeReductionPackage| |DenavitHartenbergMatrix| |Dequeue| |DesingTree| |DesingTreePackage| |Dictionary&| |DifferentialPolynomialCategory&| |DifferentialSparseMultivariatePolynomial| |DifferentialVariableCategory&| |DiophantineSolutionPackage| |DirectProduct| |DirectProductCategory&| |DirectProductMatrixModule| |DirectProductModule| |DiscreteLogarithmPackage| |DistinctDegreeFactorize| |DistributedMultivariatePolynomial| |DivisionRing&| |Divisor| |DoubleFloat| |DoubleFloatSpecialFunctions| |DrawComplex| |DrawOption| |DrawOptionFunctions0| |EigenPackage| |ElementaryFunction| |ElementaryFunctionDefiniteIntegration| |ElementaryFunctionLODESolver| |ElementaryFunctionODESolver| |ElementaryFunctionSign| |ElementaryFunctionStructurePackage| |ElementaryFunctionsUnivariateLaurentSeries| |ElementaryFunctionsUnivariatePuiseuxSeries| |ElementaryIntegration| |ElementaryRischDE| |ElementaryRischDESystem| |EllipticFunctionsUnivariateTaylorSeries| |EqTable| |Equation| |EuclideanDomain&| |EuclideanGroebnerBasisPackage| |EuclideanModularRing| |EvaluateCycleIndicators| |Exit| |ExpertSystemContinuityPackage| |ExpertSystemContinuityPackage1| |ExpertSystemToolsPackage| |ExpertSystemToolsPackage1| |ExponentialExpansion| |ExponentialOfUnivariatePuiseuxSeries| |Expression| |ExpressionSolve| |ExpressionSpace&| |ExpressionSpaceODESolver| |ExpressionToOpenMath| |ExpressionToUnivariatePowerSeries| |ExpressionTubePlot| |ExtAlgBasis| |ExtensibleLinearAggregate&| |ExtensionField&| |FGLMIfCanPackage| |Factored| |FactoredFunctions| |FactoringUtilities| |FactorisationOverPseudoAlgebraicClosureOfAlgExtOfRationalNumber| |FactorisationOverPseudoAlgebraicClosureOfRationalNumber| |Field&| |File| |FileName| |FindOrderFinite| |FiniteAbelianMonoidRing&| |FiniteAbelianMonoidRingFunctions2| |FiniteAlgebraicExtensionField&| |FiniteDivisor| |FiniteDivisorCategory&| |FiniteField| |FiniteFieldCategory&| |FiniteFieldCyclicGroup| |FiniteFieldCyclicGroupExtension| |FiniteFieldCyclicGroupExtensionByPolynomial| |FiniteFieldExtension| |FiniteFieldExtensionByPolynomial| |FiniteFieldFactorizationWithSizeParseBySideEffect| |FiniteFieldFunctions| |FiniteFieldHomomorphisms| |FiniteFieldNormalBasis| |FiniteFieldNormalBasisExtension| |FiniteFieldNormalBasisExtensionByPolynomial| |FiniteFieldPolynomialPackage| |FiniteFieldPolynomialPackage2| |FiniteFieldSolveLinearPolynomialEquation| |FiniteFieldSquareFreeDecomposition| |FiniteLinearAggregate&| |FiniteLinearAggregateFunctions2| |FiniteRankNonAssociativeAlgebra&| |FiniteSetAggregate&| |FlexibleArray| |Float| |FloatingComplexPackage| |FloatingRealPackage| |FortranCode| |FortranExpression| |FortranOutputStackPackage| |FortranPackage| |FortranProgram| |FortranScalarType| |FortranTemplate| |FortranType| |FourierComponent| |FourierSeries| |Fraction| |FractionFreeFastGaussian| |FractionalIdeal| |FramedModule| |FreeAbelianGroup| |FreeAbelianMonoid| |FreeGroup| |FreeModule| |FreeModule1| |FreeMonoid| |FreeNilpotentLie| |FullPartialFractionExpansion| |FunctionCalled| |FunctionFieldCategory&| |FunctionFieldIntegralBasis| |FunctionSpace&| |FunctionSpaceAssertions| |FunctionSpaceComplexIntegration| |FunctionSpaceIntegration| |FunctionSpacePrimitiveElement| |FunctionSpaceReduce| |FunctionSpaceSum| |FunctionSpaceToExponentialExpansion| |FunctionSpaceToUnivariatePowerSeries| |FunctionSpaceUnivariatePolynomialFactor| |FunctionalSpecialFunction| |GaloisGroupFactorizationUtilities| |GaloisGroupFactorizer| |GaloisGroupPolynomialUtilities| |GaussianFactorizationPackage| |GcdDomain&| |GenExEuclid| |GeneralDistributedMultivariatePolynomial| |GeneralHenselPackage| |GeneralModulePolynomial| |GeneralPackageForAlgebraicFunctionField| |GeneralPolynomialGcdPackage| |GeneralPolynomialSet| |GeneralSparseTable| |GeneralTriangularSet| |GeneralUnivariatePowerSeries| |GenerateUnivariatePowerSeries| |GenericNonAssociativeAlgebra| |GenusZeroIntegration| |GosperSummationMethod| |GraphImage| |GraphicsDefaults| |GroebnerFactorizationPackage| |GroebnerInternalPackage| |GroebnerPackage| |GroebnerSolve| |Guess| |GuessOption| |GuessOptionFunctions0| |HallBasis| |HashTable| |Heap| |HeuGcd| |HexadecimalExpansion| |HomogeneousAggregate&| |HomogeneousDirectProduct| |HomogeneousDistributedMultivariatePolynomial| |HyperellipticFiniteDivisor| |IdealDecompositionPackage| |IndexCard| |IndexedAggregate&| |IndexedBits| |IndexedDirectProductAbelianGroup| |IndexedDirectProductAbelianMonoid| |IndexedDirectProductObject| |IndexedDirectProductOrderedAbelianMonoid| |IndexedDirectProductOrderedAbelianMonoidSup| |IndexedExponents| |IndexedFlexibleArray| |IndexedList| |IndexedMatrix| |IndexedOneDimensionalArray| |IndexedString| |IndexedTwoDimensionalArray| |IndexedVector| |InfClsPt| |InfiniteProductFiniteField| |InfinitlyClosePoint| |InfinitlyClosePointOverPseudoAlgebraicClosureOfFiniteField| |InnerAlgebraicNumber| |InnerFiniteField| |InnerFreeAbelianMonoid| |InnerIndexedTwoDimensionalArray| |InnerMatrixLinearAlgebraFunctions| |InnerModularGcd| |InnerMultFact| |InnerNormalBasisFieldFunctions| |InnerNumericEigenPackage| |InnerNumericFloatSolvePackage| |InnerPAdicInteger| |InnerPolySign| |InnerPolySum| |InnerPrimeField| |InnerSparseUnivariatePowerSeries| |InnerTable| |InnerTaylorSeries| |InnerTrigonometricManipulations| |InputForm| |Integer| |IntegerBits| |IntegerCombinatoricFunctions| |IntegerFactorizationPackage| |IntegerLinearDependence| |IntegerMod| |IntegerNumberSystem&| |IntegerNumberTheoryFunctions| |IntegerPrimesPackage| |IntegerRetractions| |IntegerRoots| |IntegerSolveLinearPolynomialEquation| |IntegralBasisPolynomialTools| |IntegralBasisTools| |IntegralDomain&| |IntegrationResult| |IntegrationResultToFunction| |IntegrationTools| |InternalRationalUnivariateRepresentationPackage| |IntersectionDivisorPackage| |Interval| |InverseLaplaceTransform| |IrrRepSymNatPackage| |IrredPolyOverFiniteField| |Kernel| |KeyedAccessFile| |KeyedDictionary&| |LaplaceTransform| |LaurentPolynomial| |LazardSetSolvingPackage| |LazyStreamAggregate&| |LeadingCoefDetermination| |LexTriangularPackage| |Library| |LieExponentials| |LiePolynomial| |LieSquareMatrix| |LinGroebnerPackage| |LinearAggregate&| |LinearDependence| |LinearOrdinaryDifferentialOperator| |LinearOrdinaryDifferentialOperator1| |LinearOrdinaryDifferentialOperator2| |LinearOrdinaryDifferentialOperatorCategory&| |LinearOrdinaryDifferentialOperatorFactorizer| |LinearOrdinaryDifferentialOperatorsOps| |LinearPolynomialEquationByFractions| |LinearSystemFromPowerSeriesPackage| |LinearSystemMatrixPackage| |LinearSystemMatrixPackage1| |LinearSystemPolynomialPackage| |LinesOpPack| |LiouvillianFunction| |List| |ListAggregate&| |ListMonoidOps| |ListMultiDictionary| |LocalAlgebra| |LocalParametrizationOfSimplePointPackage| |Localize| |LyndonWord| |MPolyCatFunctions2| |MPolyCatFunctions3| |MPolyCatPolyFactorizer| |MPolyCatRationalFunctionFactorizer| |MachineComplex| |MachineFloat| |MachineInteger| |Magma| |MakeCachableSet| |MakeFloatCompiledFunction| |MathMLFormat| |Matrix| |MatrixCategory&| |MatrixCategoryFunctions2| |MatrixLinearAlgebraFunctions| |MergeThing| |MeshCreationRoutinesForThreeDimensions| |ModMonic| |ModularDistinctDegreeFactorizer| |ModularField| |ModularHermitianRowReduction| |ModularRing| |ModuleMonomial| |ModuleOperator| |MoebiusTransform| |MonadWithUnit&| |Monoid&| |MonoidRing| |MonomialExtensionTools| |MultFiniteFactorize| |Multiset| |MultivariateLifting| |MultivariatePolynomial| |MultivariateSquareFree| |MyExpression| |MyUnivariatePolynomial| |NAGLinkSupportPackage| |NPCoef| |NagEigenPackage| |NagLinearEquationSolvingPackage| |NagMatrixOperationsPackage| |NagOptimisationPackage| |NagPolynomialRootsPackage| |NeitherSparseOrDensePowerSeries| |NewSparseMultivariatePolynomial| |NewSparseUnivariatePolynomial| |NewtonPolygon| |NonCommutativeOperatorDivision| |NonLinearFirstOrderODESolver| |NonNegativeInteger| |None| |NormInMonogenicAlgebra| |NormRetractPackage| |NormalizationPackage| |NottinghamGroup| |NumberFieldIntegralBasis| |NumberFormats| |NumberTheoreticPolynomialFunctions| |NumericContinuedFraction| |NumericTubePlot| |NumericalIntegrationProblem| |NumericalODEProblem| |NumericalOptimizationProblem| |NumericalOrdinaryDifferentialEquations| |NumericalPDEProblem| |NumericalQuadrature| |ODEIntegration| |ODETools| |Octonion| |OctonionCategory&| |OneDimensionalArray| |OneDimensionalArrayAggregate&| |OnePointCompletion| |OpenMathConnection| |OpenMathEncoding| |OpenMathError| |OpenMathErrorKind| |OpenMathPackage| |OpenMathServerPackage| |Operator| |OppositeMonogenicLinearOperator| |OrdSetInts| |OrderedCompletion| |OrderedDirectProduct| |OrderedFreeMonoid| |OrderedRing&| |OrderedSet&| |OrderedVariableList| |OrderingFunctions| |OrderlyDifferentialPolynomial| |OrderlyDifferentialVariable| |OrdinaryDifferentialRing| |OrdinaryWeightedPolynomials| |OutputForm| |OutputPackage| |PAdicInteger| |PAdicRational| |PAdicRationalConstructor| |PackageForAlgebraicFunctionField| |PackageForAlgebraicFunctionFieldOverFiniteField| |PackageForPoly| |PadeApproximantPackage| |PadeApproximants| |Palette| |ParametricLinearEquations| |ParametrizationPackage| |PartialFraction| |Partition| |Pattern| |PatternFunctions1| |PatternMatch| |PatternMatchFunctionSpace| |PatternMatchIntegerNumberSystem| |PatternMatchIntegration| |PatternMatchKernel| |PatternMatchListAggregate| |PatternMatchListResult| |PatternMatchPolynomialCategory| |PatternMatchPushDown| |PatternMatchQuotientFieldCategory| |PatternMatchResult| |PatternMatchResultFunctions2| |PatternMatchSymbol| |PatternMatchTools| |PendantTree| |Permanent| |Permutation| |PermutationGroup| |Pi| |Places| |PlacesOverPseudoAlgebraicClosureOfFiniteField| |PlaneAlgebraicCurvePlot| |Plcs| |Plot| |Plot3D| |PlotTools| |PoincareBirkhoffWittLyndonBasis| |Point| |PointsOfFiniteOrder| |PointsOfFiniteOrderRational| |PolToPol| |Polynomial| |PolynomialCategory&| |PolynomialCategoryLifting| |PolynomialCategoryQuotientFunctions| |PolynomialComposition| |PolynomialDecomposition| |PolynomialFactorizationByRecursion| |PolynomialFactorizationByRecursionUnivariate| |PolynomialFactorizationExplicit&| |PolynomialGcdPackage| |PolynomialIdeals| |PolynomialNumberTheoryFunctions| |PolynomialPackageForCurve| |PolynomialRing| |PolynomialRoots| |PolynomialSetCategory&| |PolynomialSetUtilitiesPackage| |PolynomialSolveByFormulas| |PolynomialSquareFree| |PositiveInteger| |PowerSeriesCategory&| |PowerSeriesLimitPackage| |PrimeField| |PrimitiveArray| |PrimitiveElement| |PrimitiveRatDE| |PrimitiveRatRicDE| |Product| |ProjectiveAlgebraicSetPackage| |ProjectivePlane| |ProjectivePlaneOverPseudoAlgebraicClosureOfFiniteField| |ProjectiveSpace| |PseudoAlgebraicClosureOfAlgExtOfRationalNumber| |PseudoAlgebraicClosureOfFiniteField| |PseudoAlgebraicClosureOfRationalNumber| |PseudoLinearNormalForm| |PseudoRemainderSequence| |PureAlgebraicIntegration| |PushVariables| |QuadraticForm| |QuasiAlgebraicSet| |QuasiAlgebraicSet2| |QuasiComponentPackage| |Quaternion| |QuaternionCategory&| |Queue| |QuotientFieldCategory&| |RadicalEigenPackage| |RadicalFunctionField| |RadicalSolvePackage| |RadixExpansion| |RandomDistributions| |RandomFloatDistributions| |RandomIntegerDistributions| |RationalFactorize| |RationalFunctionDefiniteIntegration| |RationalFunctionLimitPackage| |RationalInterpolation| |RationalLODE| |RationalRetractions| |RationalRicDE| |RationalUnivariateRepresentationPackage| |RealClosedField&| |RealClosure| |RealNumberSystem&| |RealPolynomialUtilitiesPackage| |RealRootCharacterizationCategory&| |RealZeroPackage| |RectangularMatrix| |RectangularMatrixCategory&| |RecurrenceOperator| |RecursiveAggregate&| |RecursivePolynomialCategory&| |ReductionOfOrder| |Reference| |RegularChain| |RegularSetDecompositionPackage| |RegularTriangularSet| |RegularTriangularSetCategory&| |RegularTriangularSetGcdPackage| |RepresentationPackage1| |RepresentationPackage2| |ResidueRing| |Result| |RetractSolvePackage| |RewriteRule| |RightOpenIntervalRootCharacterization| |RomanNumeral| |RootsFindingPackage| |RoutinesTable| |RuleCalled| |Ruleset| |SExpression| |SExpressionOf| |ScriptFormulaFormat| |Segment| |SegmentBinding| |SegmentFunctions2| |SequentialDifferentialPolynomial| |SequentialDifferentialVariable| |Set| |SetOfMIntegersInOneToN| |SimpleAlgebraicExtension| |SingleInteger| |SingletonAsOrderedSet| |SmithNormalForm| |SortPackage| |SparseMultivariatePolynomial| |SparseMultivariateTaylorSeries| |SparseTable| |SparseUnivariateLaurentSeries| |SparseUnivariatePolynomial| |SparseUnivariatePolynomialExpressions| |SparseUnivariatePuiseuxSeries| |SparseUnivariateSkewPolynomial| |SparseUnivariateTaylorSeries| |SplitHomogeneousDirectProduct| |SplittingNode| |SplittingTree| |SquareFreeQuasiComponentPackage| |SquareFreeRegularSetDecompositionPackage| |SquareFreeRegularTriangularSet| |SquareFreeRegularTriangularSetGcdPackage| |SquareMatrix| |SquareMatrixCategory&| |Stack| |StorageEfficientMatrixOperations| |Stream| |StreamAggregate&| |StreamFunctions1| |StreamFunctions2| |StreamFunctions3| |StreamTaylorSeriesOperations| |StreamTranscendentalFunctions| |StreamTranscendentalFunctionsNonCommutative| |String| |StringAggregate&| |StringTable| |StructuralConstantsPackage| |SturmHabichtPackage| |SubResultantPackage| |SubSpace| |SubSpaceComponentProperty| |SuchThat| |SupFractionFactorizer| |Switch| |Symbol| |SymbolTable| |SymmetricGroupCombinatoricFunctions| |SymmetricPolynomial| |SystemODESolver| |SystemSolvePackage| |Table| |TableAggregate&| |TableauxBumpers| |TabulatedComputationPackage| |TaylorSeries| |TaylorSolve| |TexFormat| |TextFile| |TheSymbolTable| |ThreeDimensionalMatrix| |ThreeDimensionalViewport| |ThreeSpace| |ToolsForSign| |TopLevelDrawFunctions| |TopLevelDrawFunctionsForAlgebraicCurves| |TopLevelDrawFunctionsForCompiledFunctions| |TopLevelDrawFunctionsForPoints| |TransSolvePackage| |TransSolvePackageService| |TranscendentalIntegration| |TranscendentalManipulations| |TranscendentalRischDE| |TranscendentalRischDESystem| |Tree| |TriangularSetCategory&| |TrigonometricManipulations| |TubePlot| |Tuple| |TwoDimensionalArray| |TwoDimensionalArrayCategory&| |TwoDimensionalPlotClipping| |TwoDimensionalViewport| |TwoFactorize| |UnaryRecursiveAggregate&| |UniqueFactorizationDomain&| |UnivariateFactorize| |UnivariateFormalPowerSeries| |UnivariateLaurentSeries| |UnivariateLaurentSeriesConstructor| |UnivariateLaurentSeriesConstructorCategory&| |UnivariatePolynomial| |UnivariatePolynomialCategory&| |UnivariatePolynomialCategoryFunctions2| |UnivariatePolynomialDecompositionPackage| |UnivariatePolynomialDivisionPackage| |UnivariatePolynomialMultiplicationPackage| |UnivariatePuiseuxSeries| |UnivariatePuiseuxSeriesConstructor| |UnivariatePuiseuxSeriesConstructorCategory&| |UnivariatePuiseuxSeriesWithExponentialSingularity| |UnivariateSkewPolynomial| |UnivariateSkewPolynomialCategory&| |UnivariateSkewPolynomialCategoryOps| |UnivariateTaylorSeries| |UnivariateTaylorSeriesCZero| |UnivariateTaylorSeriesCategory&| |UnivariateTaylorSeriesODESolver| |UniversalSegment| |UniversalSegmentFunctions2| |UserDefinedPartialOrdering| |Variable| |Vector| |VectorFunctions2| |ViewDefaultsPackage| |WeierstrassPreparation| |WeightedPolynomials| |WildFunctionFieldIntegralBasis| |WuWenTsunTriangularSet| |XDistributedPolynomial| |XExponentialPackage| |XPBWPolynomial| |XPolynomial| |XPolynomialRing| |XRecursivePolynomial| |ZeroDimensionalSolvePackage| |d01AgentsPackage| |d01TransformFunctionType| |d01WeightsPackage| |d01ajfAnnaType| |d01akfAnnaType| |d01alfAnnaType| |d01amfAnnaType| |d01anfAnnaType| |d01apfAnnaType| |d01aqfAnnaType| |d01asfAnnaType| |d01fcfAnnaType| |d01gbfAnnaType| |d02AgentsPackage| |d02bbfAnnaType| |d02bhfAnnaType| |d02cjfAnnaType| |d02ejfAnnaType| |d03AgentsPackage| |d03eefAnnaType| |d03fafAnnaType| |e04AgentsPackage| |e04dgfAnnaType| |e04fdfAnnaType| |e04gcfAnnaType| |e04jafAnnaType| |e04mbfAnnaType| |e04nafAnnaType| |e04ucfAnnaType|) +(|AbelianMonoid&| |AbelianMonoidRing&| |AffineAlgebraicSetComputeWithGroebnerBasis| |AffineAlgebraicSetComputeWithResultant| |AffinePlane| |AffinePlaneOverPseudoAlgebraicClosureOfFiniteField| |AffineSpace| |Aggregate&| |AlgFactor| |AlgebraGivenByStructuralConstants| |AlgebraPackage| |AlgebraicFunction| |AlgebraicFunctionField| |AlgebraicHermiteIntegration| |AlgebraicIntegrate| |AlgebraicIntegration| |AlgebraicManipulations| |AlgebraicNumber| |AlgebraicallyClosedField&| |AnnaNumericalIntegrationPackage| |AnnaNumericalOptimizationPackage| |AnnaOrdinaryDifferentialEquationPackage| |AnnaPartialDifferentialEquationPackage| |AnonymousFunction| |AntiSymm| |Any| |AnyFunctions1| |ApplyRules| |ArrayStack| |Asp1| |Asp10| |Asp12| |Asp19| |Asp20| |Asp24| |Asp27| |Asp28| |Asp29| |Asp30| |Asp31| |Asp33| |Asp34| |Asp35| |Asp4| |Asp41| |Asp42| |Asp49| |Asp50| |Asp55| |Asp6| |Asp7| |Asp73| |Asp74| |Asp77| |Asp78| |Asp8| |Asp80| |Asp9| |AssociatedEquations| |AssociatedJordanAlgebra| |AssociatedLieAlgebra| |AssociationList| |AttributeButtons| |Automorphism| |AxiomServer| |BalancedBinaryTree| |BalancedFactorisation| |BalancedPAdicInteger| |BalancedPAdicRational| |BasicFunctions| |BasicOperator| |BasicOperatorFunctions1| |BasicType&| |BezoutMatrix| |BinaryExpansion| |BinaryFile| |BinaryRecursiveAggregate&| |BinarySearchTree| |BinaryTournament| |BinaryTree| |BinaryTreeCategory&| |BitAggregate&| |Bits| |BlowUpPackage| |BlowUpWithHamburgerNoether| |BlowUpWithQuadTrans| |Boolean| |BoundIntegerRoots| |BrillhartTests| |CardinalNumber| |CartesianTensor| |ChangeOfVariable| |Character| |CharacterClass| |ChineseRemainderToolsForIntegralBases| |CliffordAlgebra| |Collection&| |Color| |CombinatorialFunction| |CommonOperators| |Commutator| |CommuteUnivariatePolynomialCategory| |Complex| |ComplexCategory&| |ComplexDoubleFloatMatrix| |ComplexDoubleFloatVector| |ComplexFactorization| |ComplexIntegerSolveLinearPolynomialEquation| |ComplexPattern| |ComplexPatternMatch| |ComplexRootFindingPackage| |ComplexTrigonometricManipulations| |ConstantLODE| |ContinuedFraction| |CycleIndicators| |CyclicStreamTools| |DataList| |Database| |DeRhamComplex| |DecimalExpansion| |DefiniteIntegrationTools| |DegreeReductionPackage| |DenavitHartenbergMatrix| |Dequeue| |DesingTree| |DesingTreePackage| |Dictionary&| |DifferentialPolynomialCategory&| |DifferentialSparseMultivariatePolynomial| |DifferentialVariableCategory&| |DiophantineSolutionPackage| |DirectProduct| |DirectProductCategory&| |DirectProductMatrixModule| |DirectProductModule| |DirichletRing| |DiscreteLogarithmPackage| |DistinctDegreeFactorize| |DistributedMultivariatePolynomial| |DivisionRing&| |Divisor| |DoubleFloat| |DoubleFloatMatrix| |DoubleFloatSpecialFunctions| |DoubleFloatVector| |DrawComplex| |DrawOption| |DrawOptionFunctions0| |EigenPackage| |ElementaryFunction| |ElementaryFunctionDefiniteIntegration| |ElementaryFunctionLODESolver| |ElementaryFunctionODESolver| |ElementaryFunctionSign| |ElementaryFunctionStructurePackage| |ElementaryFunctionsUnivariateLaurentSeries| |ElementaryFunctionsUnivariatePuiseuxSeries| |ElementaryIntegration| |ElementaryRischDE| |ElementaryRischDESystem| |EllipticFunctionsUnivariateTaylorSeries| |EqTable| |Equation| |EuclideanDomain&| |EuclideanGroebnerBasisPackage| |EuclideanModularRing| |EvaluateCycleIndicators| |Exit| |ExpertSystemContinuityPackage| |ExpertSystemContinuityPackage1| |ExpertSystemToolsPackage| |ExpertSystemToolsPackage1| |ExponentialExpansion| |ExponentialOfUnivariatePuiseuxSeries| |Expression| |ExpressionSolve| |ExpressionSpace&| |ExpressionSpaceODESolver| |ExpressionToOpenMath| |ExpressionToUnivariatePowerSeries| |ExpressionTubePlot| |ExtAlgBasis| |ExtensibleLinearAggregate&| |ExtensionField&| |FGLMIfCanPackage| |Factored| |FactoredFunctions| |FactoringUtilities| |FactorisationOverPseudoAlgebraicClosureOfAlgExtOfRationalNumber| |FactorisationOverPseudoAlgebraicClosureOfRationalNumber| |Field&| |File| |FileName| |FindOrderFinite| |FiniteAbelianMonoidRing&| |FiniteAbelianMonoidRingFunctions2| |FiniteAlgebraicExtensionField&| |FiniteDivisor| |FiniteDivisorCategory&| |FiniteField| |FiniteFieldCategory&| |FiniteFieldCyclicGroup| |FiniteFieldCyclicGroupExtension| |FiniteFieldCyclicGroupExtensionByPolynomial| |FiniteFieldExtension| |FiniteFieldExtensionByPolynomial| |FiniteFieldFactorizationWithSizeParseBySideEffect| |FiniteFieldFunctions| |FiniteFieldHomomorphisms| |FiniteFieldNormalBasis| |FiniteFieldNormalBasisExtension| |FiniteFieldNormalBasisExtensionByPolynomial| |FiniteFieldPolynomialPackage| |FiniteFieldPolynomialPackage2| |FiniteFieldSolveLinearPolynomialEquation| |FiniteFieldSquareFreeDecomposition| |FiniteLinearAggregate&| |FiniteLinearAggregateFunctions2| |FiniteRankNonAssociativeAlgebra&| |FiniteSetAggregate&| |FlexibleArray| |Float| |FloatingComplexPackage| |FloatingRealPackage| |FortranCode| |FortranExpression| |FortranOutputStackPackage| |FortranPackage| |FortranProgram| |FortranScalarType| |FortranTemplate| |FortranType| |FourierComponent| |FourierSeries| |Fraction| |FractionFreeFastGaussian| |FractionalIdeal| |FramedModule| |FreeAbelianGroup| |FreeAbelianMonoid| |FreeGroup| |FreeModule| |FreeModule1| |FreeMonoid| |FreeNilpotentLie| |FullPartialFractionExpansion| |FunctionCalled| |FunctionFieldCategory&| |FunctionFieldIntegralBasis| |FunctionSpace&| |FunctionSpaceAssertions| |FunctionSpaceComplexIntegration| |FunctionSpaceIntegration| |FunctionSpacePrimitiveElement| |FunctionSpaceReduce| |FunctionSpaceSum| |FunctionSpaceToExponentialExpansion| |FunctionSpaceToUnivariatePowerSeries| |FunctionSpaceUnivariatePolynomialFactor| |FunctionalSpecialFunction| |GaloisGroupFactorizationUtilities| |GaloisGroupFactorizer| |GaloisGroupPolynomialUtilities| |GaussianFactorizationPackage| |GcdDomain&| |GenExEuclid| |GeneralDistributedMultivariatePolynomial| |GeneralHenselPackage| |GeneralModulePolynomial| |GeneralPackageForAlgebraicFunctionField| |GeneralPolynomialGcdPackage| |GeneralPolynomialSet| |GeneralSparseTable| |GeneralTriangularSet| |GeneralUnivariatePowerSeries| |GenerateUnivariatePowerSeries| |GenericNonAssociativeAlgebra| |GenusZeroIntegration| |GosperSummationMethod| |GraphImage| |GraphicsDefaults| |GroebnerFactorizationPackage| |GroebnerInternalPackage| |GroebnerPackage| |GroebnerSolve| |Guess| |GuessOption| |GuessOptionFunctions0| |HTMLFormat| |HallBasis| |HashTable| |Heap| |HeuGcd| |HexadecimalExpansion| |HomogeneousAggregate&| |HomogeneousDirectProduct| |HomogeneousDistributedMultivariatePolynomial| |HyperellipticFiniteDivisor| |IdealDecompositionPackage| |IndexCard| |IndexedAggregate&| |IndexedBits| |IndexedDirectProductAbelianGroup| |IndexedDirectProductAbelianMonoid| |IndexedDirectProductObject| |IndexedDirectProductOrderedAbelianMonoid| |IndexedDirectProductOrderedAbelianMonoidSup| |IndexedExponents| |IndexedFlexibleArray| |IndexedList| |IndexedMatrix| |IndexedOneDimensionalArray| |IndexedString| |IndexedTwoDimensionalArray| |IndexedVector| |InfClsPt| |InfiniteProductFiniteField| |InfinitlyClosePoint| |InfinitlyClosePointOverPseudoAlgebraicClosureOfFiniteField| |InnerAlgebraicNumber| |InnerFiniteField| |InnerFreeAbelianMonoid| |InnerIndexedTwoDimensionalArray| |InnerMatrixLinearAlgebraFunctions| |InnerModularGcd| |InnerMultFact| |InnerNormalBasisFieldFunctions| |InnerNumericEigenPackage| |InnerNumericFloatSolvePackage| |InnerPAdicInteger| |InnerPolySign| |InnerPolySum| |InnerPrimeField| |InnerSparseUnivariatePowerSeries| |InnerTable| |InnerTaylorSeries| |InnerTrigonometricManipulations| |InputForm| |Integer| |IntegerBits| |IntegerCombinatoricFunctions| |IntegerFactorizationPackage| |IntegerLinearDependence| |IntegerMod| |IntegerNumberSystem&| |IntegerNumberTheoryFunctions| |IntegerPrimesPackage| |IntegerRetractions| |IntegerRoots| |IntegerSolveLinearPolynomialEquation| |IntegralBasisPolynomialTools| |IntegralBasisTools| |IntegralDomain&| |IntegrationResult| |IntegrationResultToFunction| |IntegrationTools| |InternalRationalUnivariateRepresentationPackage| |IntersectionDivisorPackage| |Interval| |InverseLaplaceTransform| |IrrRepSymNatPackage| |IrredPolyOverFiniteField| |Kernel| |KeyedAccessFile| |KeyedDictionary&| |LaplaceTransform| |LaurentPolynomial| |LazardSetSolvingPackage| |LazyStreamAggregate&| |LeadingCoefDetermination| |LexTriangularPackage| |Library| |LieExponentials| |LiePolynomial| |LieSquareMatrix| |LinGroebnerPackage| |LinearAggregate&| |LinearDependence| |LinearOrdinaryDifferentialOperator| |LinearOrdinaryDifferentialOperator1| |LinearOrdinaryDifferentialOperator2| |LinearOrdinaryDifferentialOperatorCategory&| |LinearOrdinaryDifferentialOperatorFactorizer| |LinearOrdinaryDifferentialOperatorsOps| |LinearPolynomialEquationByFractions| |LinearSystemFromPowerSeriesPackage| |LinearSystemMatrixPackage| |LinearSystemMatrixPackage1| |LinearSystemPolynomialPackage| |LinesOpPack| |LiouvillianFunction| |List| |ListAggregate&| |ListMonoidOps| |ListMultiDictionary| |LocalAlgebra| |LocalParametrizationOfSimplePointPackage| |Localize| |LyndonWord| |MPolyCatFunctions2| |MPolyCatFunctions3| |MPolyCatPolyFactorizer| |MPolyCatRationalFunctionFactorizer| |MachineComplex| |MachineFloat| |MachineInteger| |Magma| |MakeCachableSet| |MakeFloatCompiledFunction| |MathMLFormat| |Matrix| |MatrixCategory&| |MatrixCategoryFunctions2| |MatrixLinearAlgebraFunctions| |MergeThing| |MeshCreationRoutinesForThreeDimensions| |ModMonic| |ModularDistinctDegreeFactorizer| |ModularField| |ModularHermitianRowReduction| |ModularRing| |ModuleMonomial| |ModuleOperator| |MoebiusTransform| |MonadWithUnit&| |Monoid&| |MonoidRing| |MonomialExtensionTools| |MultFiniteFactorize| |Multiset| |MultivariateLifting| |MultivariatePolynomial| |MultivariateSquareFree| |MyExpression| |MyUnivariatePolynomial| |NAGLinkSupportPackage| |NPCoef| |NagEigenPackage| |NagLinearEquationSolvingPackage| |NagMatrixOperationsPackage| |NagOptimisationPackage| |NagPolynomialRootsPackage| |NeitherSparseOrDensePowerSeries| |NewSparseMultivariatePolynomial| |NewSparseUnivariatePolynomial| |NewtonPolygon| |NonCommutativeOperatorDivision| |NonLinearFirstOrderODESolver| |NonNegativeInteger| |None| |NormInMonogenicAlgebra| |NormRetractPackage| |NormalizationPackage| |NottinghamGroup| |NumberFieldIntegralBasis| |NumberFormats| |NumberTheoreticPolynomialFunctions| |NumericContinuedFraction| |NumericTubePlot| |NumericalIntegrationProblem| |NumericalODEProblem| |NumericalOptimizationProblem| |NumericalOrdinaryDifferentialEquations| |NumericalPDEProblem| |NumericalQuadrature| |ODEIntegration| |ODETools| |Octonion| |OctonionCategory&| |OneDimensionalArray| |OneDimensionalArrayAggregate&| |OnePointCompletion| |OpenMathConnection| |OpenMathEncoding| |OpenMathError| |OpenMathErrorKind| |OpenMathPackage| |OpenMathServerPackage| |Operator| |OppositeMonogenicLinearOperator| |OrdSetInts| |OrderedCompletion| |OrderedDirectProduct| |OrderedFreeMonoid| |OrderedRing&| |OrderedSet&| |OrderedVariableList| |OrderingFunctions| |OrderlyDifferentialPolynomial| |OrderlyDifferentialVariable| |OrdinaryDifferentialRing| |OrdinaryWeightedPolynomials| |OutputForm| |OutputPackage| |PAdicInteger| |PAdicRational| |PAdicRationalConstructor| |PackageForAlgebraicFunctionField| |PackageForAlgebraicFunctionFieldOverFiniteField| |PackageForPoly| |PadeApproximantPackage| |PadeApproximants| |Palette| |ParametricLinearEquations| |ParametrizationPackage| |PartialFraction| |Partition| |Pattern| |PatternFunctions1| |PatternMatch| |PatternMatchFunctionSpace| |PatternMatchIntegerNumberSystem| |PatternMatchIntegration| |PatternMatchKernel| |PatternMatchListAggregate| |PatternMatchListResult| |PatternMatchPolynomialCategory| |PatternMatchPushDown| |PatternMatchQuotientFieldCategory| |PatternMatchResult| |PatternMatchResultFunctions2| |PatternMatchSymbol| |PatternMatchTools| |PendantTree| |Permanent| |Permutation| |PermutationGroup| |Pi| |Places| |PlacesOverPseudoAlgebraicClosureOfFiniteField| |PlaneAlgebraicCurvePlot| |Plcs| |Plot| |Plot3D| |PlotTools| |PoincareBirkhoffWittLyndonBasis| |Point| |PointsOfFiniteOrder| |PointsOfFiniteOrderRational| |PolToPol| |Polynomial| |PolynomialCategory&| |PolynomialCategoryLifting| |PolynomialCategoryQuotientFunctions| |PolynomialComposition| |PolynomialDecomposition| |PolynomialFactorizationByRecursion| |PolynomialFactorizationByRecursionUnivariate| |PolynomialFactorizationExplicit&| |PolynomialGcdPackage| |PolynomialIdeals| |PolynomialNumberTheoryFunctions| |PolynomialPackageForCurve| |PolynomialRing| |PolynomialRoots| |PolynomialSetCategory&| |PolynomialSetUtilitiesPackage| |PolynomialSolveByFormulas| |PolynomialSquareFree| |PositiveInteger| |PowerSeriesCategory&| |PowerSeriesLimitPackage| |PrimeField| |PrimitiveArray| |PrimitiveElement| |PrimitiveRatDE| |PrimitiveRatRicDE| |Product| |ProjectiveAlgebraicSetPackage| |ProjectivePlane| |ProjectivePlaneOverPseudoAlgebraicClosureOfFiniteField| |ProjectiveSpace| |PseudoAlgebraicClosureOfAlgExtOfRationalNumber| |PseudoAlgebraicClosureOfFiniteField| |PseudoAlgebraicClosureOfRationalNumber| |PseudoLinearNormalForm| |PseudoRemainderSequence| |PureAlgebraicIntegration| |PushVariables| |QuadraticForm| |QuasiAlgebraicSet| |QuasiAlgebraicSet2| |QuasiComponentPackage| |Quaternion| |QuaternionCategory&| |Queue| |QuotientFieldCategory&| |RadicalEigenPackage| |RadicalFunctionField| |RadicalSolvePackage| |RadixExpansion| |RandomDistributions| |RandomFloatDistributions| |RandomIntegerDistributions| |RationalFactorize| |RationalFunctionDefiniteIntegration| |RationalFunctionLimitPackage| |RationalInterpolation| |RationalLODE| |RationalRetractions| |RationalRicDE| |RationalUnivariateRepresentationPackage| |RealClosedField&| |RealClosure| |RealNumberSystem&| |RealPolynomialUtilitiesPackage| |RealRootCharacterizationCategory&| |RealZeroPackage| |RectangularMatrix| |RectangularMatrixCategory&| |RecurrenceOperator| |RecursiveAggregate&| |RecursivePolynomialCategory&| |ReductionOfOrder| |Reference| |RegularChain| |RegularSetDecompositionPackage| |RegularTriangularSet| |RegularTriangularSetCategory&| |RegularTriangularSetGcdPackage| |RepresentationPackage1| |RepresentationPackage2| |ResidueRing| |Result| |RetractSolvePackage| |RewriteRule| |RightOpenIntervalRootCharacterization| |RomanNumeral| |RootsFindingPackage| |RoutinesTable| |RuleCalled| |Ruleset| |SExpression| |SExpressionOf| |ScriptFormulaFormat| |Segment| |SegmentBinding| |SegmentFunctions2| |SequentialDifferentialPolynomial| |SequentialDifferentialVariable| |Set| |SetOfMIntegersInOneToN| |SimpleAlgebraicExtension| |SingleInteger| |SingletonAsOrderedSet| |SmithNormalForm| |SortPackage| |SparseMultivariatePolynomial| |SparseMultivariateTaylorSeries| |SparseTable| |SparseUnivariateLaurentSeries| |SparseUnivariatePolynomial| |SparseUnivariatePolynomialExpressions| |SparseUnivariatePuiseuxSeries| |SparseUnivariateSkewPolynomial| |SparseUnivariateTaylorSeries| |SplitHomogeneousDirectProduct| |SplittingNode| |SplittingTree| |SquareFreeQuasiComponentPackage| |SquareFreeRegularSetDecompositionPackage| |SquareFreeRegularTriangularSet| |SquareFreeRegularTriangularSetGcdPackage| |SquareMatrix| |SquareMatrixCategory&| |Stack| |StorageEfficientMatrixOperations| |Stream| |StreamAggregate&| |StreamFunctions1| |StreamFunctions2| |StreamFunctions3| |StreamTaylorSeriesOperations| |StreamTranscendentalFunctions| |StreamTranscendentalFunctionsNonCommutative| |String| |StringAggregate&| |StringTable| |StructuralConstantsPackage| |SturmHabichtPackage| |SubResultantPackage| |SubSpace| |SubSpaceComponentProperty| |SuchThat| |SupFractionFactorizer| |Switch| |Symbol| |SymbolTable| |SymmetricGroupCombinatoricFunctions| |SymmetricPolynomial| |SystemODESolver| |SystemSolvePackage| |Table| |TableAggregate&| |TableauxBumpers| |TabulatedComputationPackage| |TaylorSeries| |TaylorSolve| |TexFormat| |TextFile| |TheSymbolTable| |ThreeDimensionalMatrix| |ThreeDimensionalViewport| |ThreeSpace| |ToolsForSign| |TopLevelDrawFunctions| |TopLevelDrawFunctionsForAlgebraicCurves| |TopLevelDrawFunctionsForCompiledFunctions| |TopLevelDrawFunctionsForPoints| |TransSolvePackage| |TransSolvePackageService| |TranscendentalIntegration| |TranscendentalManipulations| |TranscendentalRischDE| |TranscendentalRischDESystem| |Tree| |TriangularSetCategory&| |TrigonometricManipulations| |TubePlot| |Tuple| |TwoDimensionalArray| |TwoDimensionalArrayCategory&| |TwoDimensionalPlotClipping| |TwoDimensionalViewport| |TwoFactorize| |UnaryRecursiveAggregate&| |UniqueFactorizationDomain&| |UnivariateFactorize| |UnivariateFormalPowerSeries| |UnivariateLaurentSeries| |UnivariateLaurentSeriesConstructor| |UnivariateLaurentSeriesConstructorCategory&| |UnivariatePolynomial| |UnivariatePolynomialCategory&| |UnivariatePolynomialCategoryFunctions2| |UnivariatePolynomialDecompositionPackage| |UnivariatePolynomialDivisionPackage| |UnivariatePolynomialMultiplicationPackage| |UnivariatePuiseuxSeries| |UnivariatePuiseuxSeriesConstructor| |UnivariatePuiseuxSeriesConstructorCategory&| |UnivariatePuiseuxSeriesWithExponentialSingularity| |UnivariateSkewPolynomial| |UnivariateSkewPolynomialCategory&| |UnivariateSkewPolynomialCategoryOps| |UnivariateTaylorSeries| |UnivariateTaylorSeriesCZero| |UnivariateTaylorSeriesCategory&| |UnivariateTaylorSeriesODESolver| |UniversalSegment| |UniversalSegmentFunctions2| |UserDefinedPartialOrdering| |Variable| |Vector| |VectorFunctions2| |ViewDefaultsPackage| |WeierstrassPreparation| |WeightedPolynomials| |WildFunctionFieldIntegralBasis| |WuWenTsunTriangularSet| |XDistributedPolynomial| |XExponentialPackage| |XPBWPolynomial| |XPolynomial| |XPolynomialRing| |XRecursivePolynomial| |ZeroDimensionalSolvePackage| |d01AgentsPackage| |d01TransformFunctionType| |d01WeightsPackage| |d01ajfAnnaType| |d01akfAnnaType| |d01alfAnnaType| |d01amfAnnaType| |d01anfAnnaType| |d01apfAnnaType| |d01aqfAnnaType| |d01asfAnnaType| |d01fcfAnnaType| |d01gbfAnnaType| |d02AgentsPackage| |d02bbfAnnaType| |d02bhfAnnaType| |d02cjfAnnaType| |d02ejfAnnaType| |d03AgentsPackage| |d03eefAnnaType| |d03fafAnnaType| |e04AgentsPackage| |e04dgfAnnaType| |e04fdfAnnaType| |e04gcfAnnaType| |e04jafAnnaType| |e04mbfAnnaType| |e04nafAnnaType| |e04ucfAnnaType|) (|PrimitiveRatDE| |RationalLODE|) (|GaloisGroupFactorizer|) (|CliffordAlgebra| |DirectProduct| |DirectProductCategory&| |DirectProductMatrixModule| |DirectProductModule| |Equation| |FiniteAlgebraicExtensionField&| |FiniteField| |FiniteFieldCyclicGroup| |FiniteFieldCyclicGroupExtension| |FiniteFieldCyclicGroupExtensionByPolynomial| |FiniteFieldExtension| |FiniteFieldExtensionByPolynomial| |FiniteFieldNormalBasis| |FiniteFieldNormalBasisExtension| |FiniteFieldNormalBasisExtensionByPolynomial| |HomogeneousDirectProduct| |InnerFiniteField| |InnerPrimeField| |OrderedDirectProduct| |PrimeField| |PseudoAlgebraicClosureOfAlgExtOfRationalNumber| |PseudoAlgebraicClosureOfFiniteField| |PseudoAlgebraicClosureOfRationalNumber| |RectangularMatrix| |SplitHomogeneousDirectProduct|) (|CartesianTensorFunctions2|) (|AlgebraicFunctionField| |AlgebraicIntegration| |PureAlgebraicIntegration| |RadicalFunctionField|) -(|AxiomServer| |Character| |CharacterClass| |Float| |FortranTemplate| |IndexedBits| |IndexedString| |LieExponentials| |MathMLFormat| |NumberFormats| |OutputForm| |RadixExpansion| |RecursivePolynomialCategory&| |ScriptFormulaFormat| |String| |StringAggregate&| |Symbol| |TemplateUtilities| |TexFormat| |Tree|) +(|AxiomServer| |Character| |CharacterClass| |Float| |FortranTemplate| |HTMLFormat| |IndexedBits| |IndexedString| |LieExponentials| |MathMLFormat| |NumberFormats| |OutputForm| |RadixExpansion| |RecursivePolynomialCategory&| |ScriptFormulaFormat| |String| |StringAggregate&| |Symbol| |TemplateUtilities| |TexFormat| |Tree|) (|Character| |IndexedString| |MathMLFormat| |String| |StringAggregate&|) (|MonogenicAlgebra&|) (|PAdicWildFunctionFieldIntegralBasis|) @@ -74,7 +74,8 @@ (|AlgebraicFunction| |CombinatorialFunction| |ElementaryFunction| |ExpressionSpace&| |FunctionSpace&| |FunctionalSpecialFunction| |LiouvillianFunction|) (|FreeNilpotentLie|) (|DoubleResultantPackage| |InnerAlgFactor| |InnerAlgebraicNumber| |PolynomialFactorizationByRecursion| |TranscendentalIntegration| |TwoFactorize|) -(|AlgebraicNumber| |BlasLevelOne| |Complex| |ComplexCategory&| |ComplexFactorization| |ComplexFunctions2| |ComplexRootFindingPackage| |ComplexRootPackage| |ComplexTrigonometricManipulations| |DoubleFloatSpecialFunctions| |DrawComplex| |FloatingComplexPackage| |GaussianFactorizationPackage| |InnerAlgebraicNumber| |InnerNumericEigenPackage| |InnerNumericFloatSolvePackage| |InnerTrigonometricManipulations| |MachineComplex| |NagSpecialFunctionsPackage| |Numeric| |TransSolvePackage| |TrigonometricManipulations| |d02AgentsPackage|) +(|AlgebraicNumber| |BlasLevelOne| |Complex| |ComplexCategory&| |ComplexDoubleFloatMatrix| |ComplexDoubleFloatVector| |ComplexFactorization| |ComplexFunctions2| |ComplexRootFindingPackage| |ComplexRootPackage| |ComplexTrigonometricManipulations| |DoubleFloatSpecialFunctions| |DrawComplex| |FloatingComplexPackage| |GaussianFactorizationPackage| |InnerAlgebraicNumber| |InnerNumericEigenPackage| |InnerNumericFloatSolvePackage| |InnerTrigonometricManipulations| |MachineComplex| |NagSpecialFunctionsPackage| |Numeric| |TransSolvePackage| |TrigonometricManipulations| |d02AgentsPackage|) +(|ComplexDoubleFloatMatrix|) (|ComplexRootPackage| |GenUFactorize| |NumericComplexEigenPackage|) (|Numeric| |TransSolvePackage|) (|ComplexCategory&|) @@ -99,11 +100,12 @@ (|ChineseRemainderToolsForIntegralBases| |FiniteFieldCategory&| |FiniteFieldPolynomialPackage| |FiniteFieldSolveLinearPolynomialEquation| |GenUFactorize| |IrredPolyOverFiniteField| |MultFiniteFactorize| |PAdicWildFunctionFieldIntegralBasis| |SparseUnivariatePolynomial| |TwoFactorize| |WildFunctionFieldIntegralBasis|) (|AffineAlgebraicSetComputeWithGroebnerBasis| |BlowUpPackage| |DesingTreePackage| |FGLMIfCanPackage| |GroebnerSolve| |IdealDecompositionPackage| |InfClsPt| |InfinitlyClosePoint| |InfinitlyClosePointOverPseudoAlgebraicClosureOfFiniteField| |InterfaceGroebnerPackage| |LinGroebnerPackage| |PackageForAlgebraicFunctionField| |PackageForAlgebraicFunctionFieldOverFiniteField| |PolToPol| |QuasiAlgebraicSet2|) (|InfClsPt| |InfinitlyClosePointOverPseudoAlgebraicClosureOfFiniteField| |PackageForAlgebraicFunctionField| |PackageForAlgebraicFunctionFieldOverFiniteField| |Places| |PlacesOverPseudoAlgebraicClosureOfFiniteField| |Plcs|) -(|AlgebraicNumber| |AnnaNumericalIntegrationPackage| |AnnaNumericalOptimizationPackage| |AnnaOrdinaryDifferentialEquationPackage| |AnnaPartialDifferentialEquationPackage| |BalancedPAdicRational| |BasicFunctions| |BinaryExpansion| |BlasLevelOne| |Color| |ComplexCategory&| |DecimalExpansion| |DoubleFloat| |DoubleFloatSpecialFunctions| |DrawComplex| |ExpertSystemContinuityPackage| |ExpertSystemContinuityPackage1| |ExpertSystemToolsPackage| |ExponentialExpansion| |ExpressionTubePlot| |Factored| |Float| |FortranCode| |Fraction| |GraphImage| |HexadecimalExpansion| |InnerAlgebraicNumber| |InputForm| |Integer| |IntegerNumberSystem&| |MachineFloat| |MachineInteger| |MeshCreationRoutinesForThreeDimensions| |NagEigenPackage| |NagFittingPackage| |NagIntegrationPackage| |NagInterpolationPackage| |NagLinearEquationSolvingPackage| |NagMatrixOperationsPackage| |NagOptimisationPackage| |NagOrdinaryDifferentialEquationsPackage| |NagPartialDifferentialEquationsPackage| |NagRootFindingPackage| |NagSpecialFunctionsPackage| |NumericTubePlot| |OpenMathDevice| |OpenMathServerPackage| |OutputForm| |PAdicRational| |PAdicRationalConstructor| |Pi| |PlaneAlgebraicCurvePlot| |Plot| |Plot3D| |PlotTools| |QuotientFieldCategory&| |RadixExpansion| |RealNumberSystem&| |RomanNumeral| |SExpression| |SingleInteger| |SparseUnivariateLaurentSeries| |ThreeDimensionalViewport| |TopLevelDrawFunctionsForCompiledFunctions| |TopLevelDrawFunctionsForPoints| |TubePlotTools| |TwoDimensionalPlotClipping| |TwoDimensionalViewport| |UnivariateLaurentSeries| |UnivariateLaurentSeriesConstructor| |ViewDefaultsPackage| |d01AgentsPackage| |d01TransformFunctionType| |d01WeightsPackage| |d01ajfAnnaType| |d01akfAnnaType| |d01alfAnnaType| |d01amfAnnaType| |d01anfAnnaType| |d01apfAnnaType| |d01aqfAnnaType| |d01asfAnnaType| |d01fcfAnnaType| |d01gbfAnnaType| |d02AgentsPackage| |d02bbfAnnaType| |d02bhfAnnaType| |d02cjfAnnaType| |d02ejfAnnaType| |d03AgentsPackage| |d03eefAnnaType| |e04AgentsPackage| |e04dgfAnnaType| |e04gcfAnnaType| |e04jafAnnaType| |e04mbfAnnaType| |e04nafAnnaType| |e04ucfAnnaType|) +(|AlgebraicNumber| |AnnaNumericalIntegrationPackage| |AnnaNumericalOptimizationPackage| |AnnaOrdinaryDifferentialEquationPackage| |AnnaPartialDifferentialEquationPackage| |BalancedPAdicRational| |BasicFunctions| |BinaryExpansion| |BlasLevelOne| |Color| |ComplexCategory&| |DecimalExpansion| |DoubleFloat| |DoubleFloatMatrix| |DoubleFloatSpecialFunctions| |DoubleFloatVector| |DrawComplex| |ExpertSystemContinuityPackage| |ExpertSystemContinuityPackage1| |ExpertSystemToolsPackage| |ExponentialExpansion| |Export3D| |ExpressionTubePlot| |Factored| |Float| |FortranCode| |Fraction| |GnuDraw| |GraphImage| |HexadecimalExpansion| |InnerAlgebraicNumber| |InputForm| |Integer| |IntegerNumberSystem&| |MachineFloat| |MachineInteger| |MeshCreationRoutinesForThreeDimensions| |NagEigenPackage| |NagFittingPackage| |NagIntegrationPackage| |NagInterpolationPackage| |NagLinearEquationSolvingPackage| |NagMatrixOperationsPackage| |NagOptimisationPackage| |NagOrdinaryDifferentialEquationsPackage| |NagPartialDifferentialEquationsPackage| |NagRootFindingPackage| |NagSpecialFunctionsPackage| |NumericTubePlot| |OpenMathDevice| |OpenMathServerPackage| |OutputForm| |PAdicRational| |PAdicRationalConstructor| |Pi| |PlaneAlgebraicCurvePlot| |Plot| |Plot3D| |PlotTools| |QuotientFieldCategory&| |RadixExpansion| |RealNumberSystem&| |RomanNumeral| |SExpression| |SingleInteger| |SparseUnivariateLaurentSeries| |ThreeDimensionalViewport| |TopLevelDrawFunctionsForCompiledFunctions| |TopLevelDrawFunctionsForPoints| |TubePlotTools| |TwoDimensionalPlotClipping| |TwoDimensionalViewport| |UnivariateLaurentSeries| |UnivariateLaurentSeriesConstructor| |ViewDefaultsPackage| |d01AgentsPackage| |d01TransformFunctionType| |d01WeightsPackage| |d01ajfAnnaType| |d01akfAnnaType| |d01alfAnnaType| |d01amfAnnaType| |d01anfAnnaType| |d01apfAnnaType| |d01aqfAnnaType| |d01asfAnnaType| |d01fcfAnnaType| |d01gbfAnnaType| |d02AgentsPackage| |d02bbfAnnaType| |d02bhfAnnaType| |d02cjfAnnaType| |d02ejfAnnaType| |d03AgentsPackage| |d03eefAnnaType| |e04AgentsPackage| |e04dgfAnnaType| |e04gcfAnnaType| |e04jafAnnaType| |e04mbfAnnaType| |e04nafAnnaType| |e04ucfAnnaType|) (|DoubleFloat|) +(|DoubleFloatMatrix|) (|AlgebraicIntegrate|) -(|DrawOptionFunctions1| |ThreeDimensionalViewport| |TopLevelDrawFunctions| |TopLevelDrawFunctionsForAlgebraicCurves| |TopLevelDrawFunctionsForCompiledFunctions|) -(|GraphImage| |MeshCreationRoutinesForThreeDimensions| |ThreeDimensionalViewport| |TopLevelDrawFunctionsForAlgebraicCurves| |TopLevelDrawFunctionsForCompiledFunctions| |TwoDimensionalViewport|) +(|DrawOptionFunctions1| |GnuDraw| |ThreeDimensionalViewport| |TopLevelDrawFunctions| |TopLevelDrawFunctionsForAlgebraicCurves| |TopLevelDrawFunctionsForCompiledFunctions|) +(|GnuDraw| |GraphImage| |MeshCreationRoutinesForThreeDimensions| |ThreeDimensionalViewport| |TopLevelDrawFunctionsForAlgebraicCurves| |TopLevelDrawFunctionsForCompiledFunctions| |TwoDimensionalViewport|) (|DrawOptionFunctions0|) (|RadicalEigenPackage|) (|Expression|) @@ -115,7 +117,7 @@ (|FunctionSpaceComplexIntegration| |FunctionSpaceIntegration|) (|ElementaryIntegration|) (|ElementaryIntegration|) -(|AlgebraicNumber| |ApplyRules| |ArrayStack| |AssociationList| |BalancedBinaryTree| |BalancedPAdicRational| |BinaryExpansion| |BinarySearchTree| |BinaryTournament| |BinaryTree| |Bits| |CharacterClass| |Complex| |ComplexRootFindingPackage| |DataList| |DecimalExpansion| |DefiniteIntegrationTools| |DenavitHartenbergMatrix| |Dequeue| |DesingTree| |DifferentialPolynomialCategory&| |DifferentialSparseMultivariatePolynomial| |DiophantineSolutionPackage| |DirectProduct| |DirectProductMatrixModule| |DirectProductModule| |DistributedMultivariatePolynomial| |EigenPackage| |ElementaryFunctionODESolver| |ElementaryFunctionSign| |EqTable| |Equation| |EquationFunctions2| |Evalable&| |ExpertSystemContinuityPackage| |ExponentialExpansion| |Expression| |ExpressionSolve| |ExpressionSpace&| |ExpressionSpaceODESolver| |ExpressionToUnivariatePowerSeries| |Factored| |FlexibleArray| |FloatingComplexPackage| |FloatingRealPackage| |FortranExpression| |FortranProgram| |Fraction| |FullyEvalableOver&| |FunctionSpace&| |GeneralDistributedMultivariatePolynomial| |GeneralPolynomialSet| |GeneralSparseTable| |GeneralTriangularSet| |GenerateUnivariatePowerSeries| |GenericNonAssociativeAlgebra| |HashTable| |Heap| |HexadecimalExpansion| |HomogeneousAggregate&| |HomogeneousDirectProduct| |HomogeneousDistributedMultivariatePolynomial| |IndexedBits| |IndexedFlexibleArray| |IndexedList| |IndexedMatrix| |IndexedOneDimensionalArray| |IndexedString| |IndexedTwoDimensionalArray| |IndexedVector| |InnerAlgebraicNumber| |InnerIndexedTwoDimensionalArray| |InnerNumericFloatSolvePackage| |InnerTable| |KeyedAccessFile| |LaplaceTransform| |Library| |LieExponentials| |LieSquareMatrix| |List| |ListMultiDictionary| |MachineComplex| |Matrix| |ModMonic| |Multiset| |MultivariatePolynomial| |MyExpression| |MyUnivariatePolynomial| |NeitherSparseOrDensePowerSeries| |NewSparseMultivariatePolynomial| |NewSparseUnivariatePolynomial| |NonLinearSolvePackage| |Octonion| |OneDimensionalArray| |OrderedDirectProduct| |OrderlyDifferentialPolynomial| |PAdicRational| |PAdicRationalConstructor| |PatternMatch| |PendantTree| |Point| |Polynomial| |PolynomialCategory&| |PolynomialIdeals| |PowerSeriesLimitPackage| |PrimitiveArray| |Quaternion| |Queue| |RadicalSolvePackage| |RadixExpansion| |RationalFunction| |RationalFunctionLimitPackage| |RationalRicDE| |RectangularMatrix| |RecurrenceOperator| |RegularChain| |RegularTriangularSet| |Result| |RetractSolvePackage| |RewriteRule| |RoutinesTable| |SequentialDifferentialPolynomial| |Set| |SparseMultivariatePolynomial| |SparseMultivariateTaylorSeries| |SparseTable| |SparseUnivariateLaurentSeries| |SparseUnivariatePolynomial| |SparseUnivariatePolynomialExpressions| |SplitHomogeneousDirectProduct| |SplittingTree| |SquareFreeRegularTriangularSet| |SquareMatrix| |Stack| |Stream| |String| |StringTable| |SystemSolvePackage| |Table| |TaylorSeries| |ThreeDimensionalMatrix| |TopLevelDrawFunctionsForAlgebraicCurves| |TransSolvePackage| |Tree| |TwoDimensionalArray| |UnivariateLaurentSeries| |UnivariateLaurentSeriesConstructor| |UnivariatePolynomial| |UnivariatePolynomialCategory&| |Vector| |WuWenTsunTriangularSet| |d01AgentsPackage| |d01TransformFunctionType| |d02AgentsPackage| |d03AgentsPackage|) +(|AlgebraicNumber| |ApplyRules| |ArrayStack| |AssociationList| |BalancedBinaryTree| |BalancedPAdicRational| |BinaryExpansion| |BinarySearchTree| |BinaryTournament| |BinaryTree| |Bits| |CharacterClass| |Complex| |ComplexDoubleFloatMatrix| |ComplexDoubleFloatVector| |ComplexRootFindingPackage| |DataList| |DecimalExpansion| |DefiniteIntegrationTools| |DenavitHartenbergMatrix| |Dequeue| |DesingTree| |DifferentialPolynomialCategory&| |DifferentialSparseMultivariatePolynomial| |DiophantineSolutionPackage| |DirectProduct| |DirectProductMatrixModule| |DirectProductModule| |DistributedMultivariatePolynomial| |DoubleFloatMatrix| |DoubleFloatVector| |EigenPackage| |ElementaryFunctionODESolver| |ElementaryFunctionSign| |EqTable| |Equation| |EquationFunctions2| |Evalable&| |ExpertSystemContinuityPackage| |ExponentialExpansion| |Expression| |ExpressionSolve| |ExpressionSpace&| |ExpressionSpaceODESolver| |ExpressionToUnivariatePowerSeries| |Factored| |FlexibleArray| |FloatingComplexPackage| |FloatingRealPackage| |FortranExpression| |FortranProgram| |Fraction| |FullyEvalableOver&| |FunctionSpace&| |GeneralDistributedMultivariatePolynomial| |GeneralPolynomialSet| |GeneralSparseTable| |GeneralTriangularSet| |GenerateUnivariatePowerSeries| |GenericNonAssociativeAlgebra| |HashTable| |Heap| |HexadecimalExpansion| |HomogeneousAggregate&| |HomogeneousDirectProduct| |HomogeneousDistributedMultivariatePolynomial| |IndexedBits| |IndexedFlexibleArray| |IndexedList| |IndexedMatrix| |IndexedOneDimensionalArray| |IndexedString| |IndexedTwoDimensionalArray| |IndexedVector| |InnerAlgebraicNumber| |InnerIndexedTwoDimensionalArray| |InnerNumericFloatSolvePackage| |InnerTable| |KeyedAccessFile| |LaplaceTransform| |Library| |LieExponentials| |LieSquareMatrix| |List| |ListMultiDictionary| |MachineComplex| |Matrix| |ModMonic| |Multiset| |MultivariatePolynomial| |MyExpression| |MyUnivariatePolynomial| |NeitherSparseOrDensePowerSeries| |NewSparseMultivariatePolynomial| |NewSparseUnivariatePolynomial| |NonLinearSolvePackage| |Octonion| |OneDimensionalArray| |OrderedDirectProduct| |OrderlyDifferentialPolynomial| |PAdicRational| |PAdicRationalConstructor| |PatternMatch| |PendantTree| |Point| |Polynomial| |PolynomialCategory&| |PolynomialIdeals| |PowerSeriesLimitPackage| |PrimitiveArray| |Quaternion| |Queue| |RadicalSolvePackage| |RadixExpansion| |RationalFunction| |RationalFunctionLimitPackage| |RationalRicDE| |RectangularMatrix| |RecurrenceOperator| |RegularChain| |RegularTriangularSet| |Result| |RetractSolvePackage| |RewriteRule| |RoutinesTable| |SequentialDifferentialPolynomial| |Set| |SparseMultivariatePolynomial| |SparseMultivariateTaylorSeries| |SparseTable| |SparseUnivariateLaurentSeries| |SparseUnivariatePolynomial| |SparseUnivariatePolynomialExpressions| |SplitHomogeneousDirectProduct| |SplittingTree| |SquareFreeRegularTriangularSet| |SquareMatrix| |Stack| |Stream| |String| |StringTable| |SystemSolvePackage| |Table| |TaylorSeries| |ThreeDimensionalMatrix| |TopLevelDrawFunctionsForAlgebraicCurves| |TransSolvePackage| |Tree| |TwoDimensionalArray| |UnivariateLaurentSeries| |UnivariateLaurentSeriesConstructor| |UnivariatePolynomial| |UnivariatePolynomialCategory&| |Vector| |WuWenTsunTriangularSet| |d01AgentsPackage| |d01TransformFunctionType| |d02AgentsPackage| |d03AgentsPackage|) (|AnnaNumericalIntegrationPackage| |AnnaNumericalOptimizationPackage| |AnnaOrdinaryDifferentialEquationPackage| |AnnaPartialDifferentialEquationPackage| |AttributeButtons| |RoutinesTable| |d01AgentsPackage|) (|ParametricLinearEquations|) (|InnerModularGcd|) @@ -126,12 +128,12 @@ (|d02AgentsPackage| |e04nafAnnaType|) (|FunctionSpaceToExponentialExpansion|) (|ExponentialExpansion| |FunctionSpaceToExponentialExpansion| |UnivariatePuiseuxSeriesWithExponentialSingularity|) -(|AnnaNumericalIntegrationPackage| |AnnaNumericalOptimizationPackage| |AnnaOrdinaryDifferentialEquationPackage| |AnnaPartialDifferentialEquationPackage| |Asp1| |Asp10| |Asp12| |Asp19| |Asp20| |Asp24| |Asp27| |Asp28| |Asp30| |Asp31| |Asp34| |Asp35| |Asp4| |Asp41| |Asp42| |Asp49| |Asp50| |Asp55| |Asp6| |Asp7| |Asp73| |Asp74| |Asp77| |Asp78| |Asp8| |Asp80| |Asp9| |AttachPredicates| |ComplexTrigonometricManipulations| |DeRhamComplex| |DegreeReductionPackage| |DrawNumericHack| |ElementaryFunctionSign| |ExpertSystemContinuityPackage| |ExpertSystemToolsPackage| |ExpressionFunctions2| |ExpressionToOpenMath| |ExpressionTubePlot| |FortranCode| |FortranCodePackage1| |FortranExpression| |FortranProgram| |FunctionSpaceComplexIntegration| |FunctionSpaceIntegration| |GuessAlgebraicNumber| |GuessFinite| |GuessFiniteFunctions| |GuessInteger| |GuessPolynomial| |InnerAlgebraicNumber| |IntegrationResultRFToFunction| |MachineInteger| |MappingPackage4| |MeshCreationRoutinesForThreeDimensions| |MyExpression| |Numeric| |PatternMatchAssertions| |PiCoercions| |PolynomialAN2Expression| |RadicalEigenPackage| |RadicalSolvePackage| |RationalFunctionDefiniteIntegration| |RationalFunctionSum| |SimplifyAlgebraicNumberConvertPackage| |Switch| |ToolsForSign| |TransSolvePackage| |TransSolvePackageService| |TrigonometricManipulations| |d01AgentsPackage| |d01TransformFunctionType| |d01WeightsPackage| |d01ajfAnnaType| |d01akfAnnaType| |d01alfAnnaType| |d01amfAnnaType| |d01anfAnnaType| |d01apfAnnaType| |d01aqfAnnaType| |d01asfAnnaType| |d01fcfAnnaType| |d01gbfAnnaType| |d02AgentsPackage| |d02bhfAnnaType| |d02cjfAnnaType| |d02ejfAnnaType| |d03AgentsPackage| |d03eefAnnaType| |e04AgentsPackage| |e04dgfAnnaType| |e04fdfAnnaType| |e04gcfAnnaType| |e04jafAnnaType| |e04mbfAnnaType| |e04nafAnnaType| |e04ucfAnnaType|) +(|AnnaNumericalIntegrationPackage| |AnnaNumericalOptimizationPackage| |AnnaOrdinaryDifferentialEquationPackage| |AnnaPartialDifferentialEquationPackage| |Asp1| |Asp10| |Asp12| |Asp19| |Asp20| |Asp24| |Asp27| |Asp28| |Asp30| |Asp31| |Asp34| |Asp35| |Asp4| |Asp41| |Asp42| |Asp49| |Asp50| |Asp55| |Asp6| |Asp7| |Asp73| |Asp74| |Asp77| |Asp78| |Asp8| |Asp80| |Asp9| |AttachPredicates| |ComplexTrigonometricManipulations| |DeRhamComplex| |DegreeReductionPackage| |DrawNumericHack| |ElementaryFunctionSign| |ExpertSystemContinuityPackage| |ExpertSystemToolsPackage| |ExpressionFunctions2| |ExpressionToOpenMath| |ExpressionTubePlot| |FortranCode| |FortranCodePackage1| |FortranExpression| |FortranProgram| |FunctionSpaceComplexIntegration| |FunctionSpaceIntegration| |GnuDraw| |GuessAlgebraicNumber| |GuessFinite| |GuessFiniteFunctions| |GuessInteger| |GuessPolynomial| |InnerAlgebraicNumber| |IntegrationResultRFToFunction| |MachineInteger| |MappingPackage4| |MeshCreationRoutinesForThreeDimensions| |MyExpression| |Numeric| |PatternMatchAssertions| |PiCoercions| |PolynomialAN2Expression| |RadicalEigenPackage| |RadicalSolvePackage| |RationalFunctionDefiniteIntegration| |RationalFunctionSum| |SimplifyAlgebraicNumberConvertPackage| |Switch| |ToolsForSign| |TransSolvePackage| |TransSolvePackageService| |TrigonometricManipulations| |d01AgentsPackage| |d01TransformFunctionType| |d01WeightsPackage| |d01ajfAnnaType| |d01akfAnnaType| |d01alfAnnaType| |d01amfAnnaType| |d01anfAnnaType| |d01apfAnnaType| |d01aqfAnnaType| |d01asfAnnaType| |d01fcfAnnaType| |d01gbfAnnaType| |d02AgentsPackage| |d02bhfAnnaType| |d02cjfAnnaType| |d02ejfAnnaType| |d03AgentsPackage| |d03eefAnnaType| |e04AgentsPackage| |e04dgfAnnaType| |e04fdfAnnaType| |e04gcfAnnaType| |e04jafAnnaType| |e04mbfAnnaType| |e04nafAnnaType| |e04ucfAnnaType|) (|AnnaOrdinaryDifferentialEquationPackage| |ExpertSystemToolsPackage| |FortranExpression| |InnerAlgebraicNumber| |MachineInteger| |Numeric| |TransSolvePackage| |d01TransformFunctionType| |d01ajfAnnaType| |d01akfAnnaType| |d01alfAnnaType| |d01amfAnnaType| |d01anfAnnaType| |d01apfAnnaType| |d01aqfAnnaType| |d01asfAnnaType| |d01fcfAnnaType| |d01gbfAnnaType| |e04AgentsPackage|) (|RecurrenceOperator|) (|Expression| |ExpressionFunctions2| |FunctionSpaceFunctions2| |InnerTrigonometricManipulations|) (|AntiSymm| |DeRhamComplex|) -(|AlgFactor| |AlgebraicFunctionField| |AlgebraicHermiteIntegration| |AlgebraicIntegrate| |AlgebraicMultFact| |AlgebraicNumber| |BalancedFactorisation| |BalancedPAdicRational| |BinaryExpansion| |BoundIntegerRoots| |ChangeOfVariable| |ChineseRemainderToolsForIntegralBases| |Complex| |ComplexCategory&| |ComplexFactorization| |ComplexRootFindingPackage| |ComplexRootPackage| |ConstantLODE| |ContinuedFraction| |CycleIndicators| |CyclotomicPolynomialPackage| |DecimalExpansion| |DifferentialSparseMultivariatePolynomial| |DistinctDegreeFactorize| |DistributedMultivariatePolynomial| |DoubleFloat| |EigenPackage| |ElementaryFunctionLODESolver| |ElementaryFunctionSign| |Equation| |ExponentialExpansion| |ExponentialOfUnivariatePuiseuxSeries| |Expression| |Factored| |FactoredFunctionUtilities| |FactoredFunctions| |FactoredFunctions2| |FactorisationOverPseudoAlgebraicClosureOfAlgExtOfRationalNumber| |FactorisationOverPseudoAlgebraicClosureOfRationalNumber| |Field&| |FiniteField| |FiniteFieldCategory&| |FiniteFieldCyclicGroup| |FiniteFieldCyclicGroupExtension| |FiniteFieldCyclicGroupExtensionByPolynomial| |FiniteFieldExtension| |FiniteFieldExtensionByPolynomial| |FiniteFieldFactorizationWithSizeParseBySideEffect| |FiniteFieldNormalBasis| |FiniteFieldNormalBasisExtension| |FiniteFieldNormalBasisExtensionByPolynomial| |FiniteFieldPolynomialPackage| |FiniteFieldSquareFreeDecomposition| |Float| |Fraction| |FullPartialFractionExpansion| |FunctionFieldIntegralBasis| |FunctionSpace&| |FunctionSpaceUnivariatePolynomialFactor| |GaloisGroupFactorizer| |GaloisGroupPolynomialUtilities| |GaussianFactorizationPackage| |GenUFactorize| |GeneralDistributedMultivariatePolynomial| |GeneralUnivariatePowerSeries| |GeneralizedMultivariateFactorize| |GosperSummationMethod| |GroebnerFactorizationPackage| |GroebnerSolve| |Guess| |HexadecimalExpansion| |HomogeneousDistributedMultivariatePolynomial| |IdealDecompositionPackage| |InnerAlgFactor| |InnerAlgebraicNumber| |InnerFiniteField| |InnerMultFact| |InnerNumericEigenPackage| |InnerPrimeField| |Integer| |IntegerFactorizationPackage| |IntegerNumberSystem&| |IntegerNumberTheoryFunctions| |IntegrationResultToFunction| |InverseLaplaceTransform| |Kovacic| |LinearOrdinaryDifferentialOperatorFactorizer| |MPolyCatPolyFactorizer| |MPolyCatRationalFunctionFactorizer| |MRationalFactorize| |MachineComplex| |MachineFloat| |MachineInteger| |ModMonic| |ModularField| |MonomialExtensionTools| |MultFiniteFactorize| |MultivariateFactorize| |MultivariatePolynomial| |MultivariateSquareFree| |MyExpression| |MyUnivariatePolynomial| |NeitherSparseOrDensePowerSeries| |NewSparseMultivariatePolynomial| |NewSparseUnivariatePolynomial| |NumberFieldIntegralBasis| |NumericComplexEigenPackage| |NumericRealEigenPackage| |OrderlyDifferentialPolynomial| |OrdinaryDifferentialRing| |PAdicRational| |PAdicRationalConstructor| |PAdicWildFunctionFieldIntegralBasis| |ParametricLinearEquations| |PartialFraction| |PartialFractionPackage| |Pi| |PlaneAlgebraicCurvePlot| |PointsOfFiniteOrder| |Polynomial| |PolynomialCategory&| |PolynomialFactorizationByRecursion| |PolynomialFactorizationByRecursionUnivariate| |PolynomialRoots| |PolynomialSetUtilitiesPackage| |PolynomialSolveByFormulas| |PolynomialSquareFree| |PrimeField| |PrimitiveRatDE| |PrimitiveRatRicDE| |PseudoAlgebraicClosureOfAlgExtOfRationalNumber| |PseudoAlgebraicClosureOfFiniteField| |PseudoAlgebraicClosureOfRationalNumber| |QuasiAlgebraicSet| |RadicalFunctionField| |RadicalSolvePackage| |RadixExpansion| |RationalFactorize| |RationalFunctionFactor| |RationalFunctionFactorizer| |RationalFunctionSign| |RationalRicDE| |RealClosure| |RealZeroPackage| |RomanNumeral| |RootsFindingPackage| |SAERationalFunctionAlgFactor| |SequentialDifferentialPolynomial| |SimpleAlgebraicExtension| |SimpleAlgebraicExtensionAlgFactor| |SingleInteger| |SparseMultivariatePolynomial| |SparseUnivariateLaurentSeries| |SparseUnivariatePolynomial| |SparseUnivariatePolynomialExpressions| |SparseUnivariatePuiseuxSeries| |SturmHabichtPackage| |SupFractionFactorizer| |SystemSolvePackage| |TransSolvePackage| |TranscendentalIntegration| |TranscendentalManipulations| |TwoFactorize| |UniqueFactorizationDomain&| |UnivariateFactorize| |UnivariateLaurentSeries| |UnivariateLaurentSeriesConstructor| |UnivariatePolynomial| |UnivariatePolynomialCategory&| |UnivariatePolynomialSquareFree| |UnivariatePuiseuxSeries| |UnivariatePuiseuxSeriesConstructor| |WildFunctionFieldIntegralBasis|) +(|AlgFactor| |AlgebraicFunctionField| |AlgebraicHermiteIntegration| |AlgebraicIntegrate| |AlgebraicMultFact| |AlgebraicNumber| |BalancedFactorisation| |BalancedPAdicRational| |BinaryExpansion| |BoundIntegerRoots| |ChangeOfVariable| |ChineseRemainderToolsForIntegralBases| |Complex| |ComplexCategory&| |ComplexFactorization| |ComplexRootFindingPackage| |ComplexRootPackage| |ConstantLODE| |ContinuedFraction| |CycleIndicators| |CyclotomicPolynomialPackage| |DecimalExpansion| |DifferentialSparseMultivariatePolynomial| |DirichletRing| |DistinctDegreeFactorize| |DistributedMultivariatePolynomial| |DoubleFloat| |EigenPackage| |ElementaryFunctionLODESolver| |ElementaryFunctionSign| |Equation| |ExponentialExpansion| |ExponentialOfUnivariatePuiseuxSeries| |Expression| |Factored| |FactoredFunctionUtilities| |FactoredFunctions| |FactoredFunctions2| |FactorisationOverPseudoAlgebraicClosureOfAlgExtOfRationalNumber| |FactorisationOverPseudoAlgebraicClosureOfRationalNumber| |Field&| |FiniteField| |FiniteFieldCategory&| |FiniteFieldCyclicGroup| |FiniteFieldCyclicGroupExtension| |FiniteFieldCyclicGroupExtensionByPolynomial| |FiniteFieldExtension| |FiniteFieldExtensionByPolynomial| |FiniteFieldFactorizationWithSizeParseBySideEffect| |FiniteFieldNormalBasis| |FiniteFieldNormalBasisExtension| |FiniteFieldNormalBasisExtensionByPolynomial| |FiniteFieldPolynomialPackage| |FiniteFieldSquareFreeDecomposition| |Float| |Fraction| |FullPartialFractionExpansion| |FunctionFieldIntegralBasis| |FunctionSpace&| |FunctionSpaceUnivariatePolynomialFactor| |GaloisGroupFactorizer| |GaloisGroupPolynomialUtilities| |GaussianFactorizationPackage| |GenUFactorize| |GeneralDistributedMultivariatePolynomial| |GeneralUnivariatePowerSeries| |GeneralizedMultivariateFactorize| |GosperSummationMethod| |GroebnerFactorizationPackage| |GroebnerSolve| |Guess| |HexadecimalExpansion| |HomogeneousDistributedMultivariatePolynomial| |IdealDecompositionPackage| |InnerAlgFactor| |InnerAlgebraicNumber| |InnerFiniteField| |InnerMultFact| |InnerNumericEigenPackage| |InnerPrimeField| |Integer| |IntegerFactorizationPackage| |IntegerNumberSystem&| |IntegerNumberTheoryFunctions| |IntegrationResultToFunction| |InverseLaplaceTransform| |Kovacic| |LinearOrdinaryDifferentialOperatorFactorizer| |MPolyCatPolyFactorizer| |MPolyCatRationalFunctionFactorizer| |MRationalFactorize| |MachineComplex| |MachineFloat| |MachineInteger| |ModMonic| |ModularField| |MonomialExtensionTools| |MultFiniteFactorize| |MultivariateFactorize| |MultivariatePolynomial| |MultivariateSquareFree| |MyExpression| |MyUnivariatePolynomial| |NeitherSparseOrDensePowerSeries| |NewSparseMultivariatePolynomial| |NewSparseUnivariatePolynomial| |NumberFieldIntegralBasis| |NumericComplexEigenPackage| |NumericRealEigenPackage| |OrderlyDifferentialPolynomial| |OrdinaryDifferentialRing| |PAdicRational| |PAdicRationalConstructor| |PAdicWildFunctionFieldIntegralBasis| |ParametricLinearEquations| |PartialFraction| |PartialFractionPackage| |Pi| |PlaneAlgebraicCurvePlot| |PointsOfFiniteOrder| |Polynomial| |PolynomialCategory&| |PolynomialFactorizationByRecursion| |PolynomialFactorizationByRecursionUnivariate| |PolynomialRoots| |PolynomialSetUtilitiesPackage| |PolynomialSolveByFormulas| |PolynomialSquareFree| |PrimeField| |PrimitiveRatDE| |PrimitiveRatRicDE| |PseudoAlgebraicClosureOfAlgExtOfRationalNumber| |PseudoAlgebraicClosureOfFiniteField| |PseudoAlgebraicClosureOfRationalNumber| |QuasiAlgebraicSet| |RadicalFunctionField| |RadicalSolvePackage| |RadixExpansion| |RationalFactorize| |RationalFunctionFactor| |RationalFunctionFactorizer| |RationalFunctionSign| |RationalRicDE| |RealClosure| |RealZeroPackage| |RomanNumeral| |RootsFindingPackage| |SAERationalFunctionAlgFactor| |SequentialDifferentialPolynomial| |SimpleAlgebraicExtension| |SimpleAlgebraicExtensionAlgFactor| |SingleInteger| |SparseMultivariatePolynomial| |SparseUnivariateLaurentSeries| |SparseUnivariatePolynomial| |SparseUnivariatePolynomialExpressions| |SparseUnivariatePuiseuxSeries| |SturmHabichtPackage| |SupFractionFactorizer| |SystemSolvePackage| |TransSolvePackage| |TranscendentalIntegration| |TranscendentalManipulations| |TwoFactorize| |UniqueFactorizationDomain&| |UnivariateFactorize| |UnivariateLaurentSeries| |UnivariateLaurentSeriesConstructor| |UnivariatePolynomial| |UnivariatePolynomialCategory&| |UnivariatePolynomialSquareFree| |UnivariatePuiseuxSeries| |UnivariatePuiseuxSeriesConstructor| |WildFunctionFieldIntegralBasis|) (|ComplexCategory&| |Integer| |PolynomialFactorizationByRecursion| |PolynomialFactorizationByRecursionUnivariate|) (|ChangeOfVariable| |PolynomialRoots| |TranscendentalManipulations|) (|FunctionSpaceUnivariatePolynomialFactor| |Integer| |PolynomialFactorizationByRecursion| |PolynomialFactorizationByRecursionUnivariate| |RationalFunctionFactor| |UnivariatePolynomialCategory&|) @@ -139,7 +141,7 @@ (|PseudoAlgebraicClosureOfAlgExtOfRationalNumber|) (|FactorisationOverPseudoAlgebraicClosureOfAlgExtOfRationalNumber| |PseudoAlgebraicClosureOfRationalNumber|) (|BinaryFile| |ParametricLinearEquations| |TextFile|) -(|BinaryFile| |File| |FortranOutputStackPackage| |FortranPackage| |FortranTemplate| |KeyedAccessFile| |Library| |NagEigenPackage| |NagIntegrationPackage| |NagLinearEquationSolvingPackage| |NagOptimisationPackage| |NagOrdinaryDifferentialEquationsPackage| |NagPartialDifferentialEquationsPackage| |NagRootFindingPackage| |ParametricLinearEquations| |TextFile|) +(|BinaryFile| |Export3D| |File| |FortranOutputStackPackage| |FortranPackage| |FortranTemplate| |GnuDraw| |KeyedAccessFile| |Library| |NagEigenPackage| |NagIntegrationPackage| |NagLinearEquationSolvingPackage| |NagOptimisationPackage| |NagOrdinaryDifferentialEquationsPackage| |NagPartialDifferentialEquationsPackage| |NagRootFindingPackage| |ParametricLinearEquations| |TextFile|) (|FractionFreeFastGaussianFractions|) (|AlgebraicIntegrate| |FindOrderFinite| |FiniteDivisorFunctions2| |PointsOfFiniteOrder| |PointsOfFiniteOrderRational| |ReducedDivisor|) (|FiniteFieldCyclicGroup| |FiniteFieldCyclicGroupExtension|) @@ -200,7 +202,7 @@ (|GroebnerSolve| |Guess| |MPolyCatPolyFactorizer| |SystemSolvePackage|) (|PureAlgebraicIntegration|) (|FunctionSpaceSum| |RationalFunctionSum|) -(|TopLevelDrawFunctionsForPoints| |TwoDimensionalViewport| |ViewportPackage|) +(|GnuDraw| |TopLevelDrawFunctionsForPoints| |TwoDimensionalViewport| |ViewportPackage|) (|PlotTools| |TopLevelDrawFunctionsForAlgebraicCurves| |TopLevelDrawFunctionsForCompiledFunctions|) (|Permanent|) (|GroebnerFactorizationPackage| |GroebnerPackage| |GroebnerSolve| |LinGroebnerPackage| |PolynomialIdeals| |QuasiAlgebraicSet|) @@ -250,15 +252,15 @@ (|Table|) (|SparseMultivariateTaylorSeries| |UnivariateTaylorSeries| |UnivariateTaylorSeriesCZero|) (|ComplexTrigonometricManipulations| |FunctionSpaceComplexIntegration| |FunctionSpaceIntegration| |TrigonometricManipulations|) -(|AssociationList| |BalancedPAdicRational| |BasicOperatorFunctions1| |BinaryExpansion| |Bits| |Boolean| |CharacterClass| |CommonOperators| |Complex| |ComplexCategory&| |DataList| |DecimalExpansion| |DifferentialSparseMultivariatePolynomial| |DistributedMultivariatePolynomial| |DoubleFloat| |EqTable| |ExponentialExpansion| |Expression| |Factored| |FlexibleArray| |Float| |FortranPackage| |FortranProgram| |Fraction| |FunctionSpace&| |GenUFactorize| |GeneralDistributedMultivariatePolynomial| |GeneralPolynomialSet| |GeneralSparseTable| |GeneralTriangularSet| |HashTable| |HexadecimalExpansion| |HomogeneousDistributedMultivariatePolynomial| |IndexedBits| |IndexedFlexibleArray| |IndexedList| |IndexedOneDimensionalArray| |IndexedString| |IndexedVector| |InnerTable| |InputFormFunctions1| |Integer| |IntegerNumberSystem&| |Kernel| |KeyedAccessFile| |Library| |LiouvillianFunction| |List| |ListMultiDictionary| |MachineComplex| |MachineInteger| |MakeBinaryCompiledFunction| |MakeFloatCompiledFunction| |MakeFunction| |MakeUnaryCompiledFunction| |Matrix| |ModMonic| |Multiset| |MultivariatePolynomial| |MyExpression| |MyUnivariatePolynomial| |NeitherSparseOrDensePowerSeries| |NewSparseMultivariatePolynomial| |NewSparseUnivariatePolynomial| |Octonion| |OctonionCategory&| |OneDimensionalArray| |OpenMathPackage| |OrderedVariableList| |OrderlyDifferentialPolynomial| |PAdicRational| |PAdicRationalConstructor| |Pi| |Point| |Polynomial| |PolynomialCategory&| |PrimitiveArray| |Quaternion| |QuaternionCategory&| |QuotientFieldCategory&| |RadixExpansion| |RectangularMatrix| |RecursivePolynomialCategory&| |RegularChain| |RegularTriangularSet| |Result| |RomanNumeral| |RoutinesTable| |SequentialDifferentialPolynomial| |Set| |SingleInteger| |SparseMultivariatePolynomial| |SparseTable| |SparseUnivariateLaurentSeries| |SparseUnivariatePolynomial| |SparseUnivariatePolynomialExpressions| |SquareFreeRegularTriangularSet| |SquareMatrix| |Stream| |String| |StringTable| |Symbol| |SymbolTable| |Table| |TemplateUtilities| |TopLevelDrawFunctions| |UnivariateLaurentSeries| |UnivariateLaurentSeriesConstructor| |UnivariatePolynomial| |Vector| |WuWenTsunTriangularSet|) +(|AssociationList| |BalancedPAdicRational| |BasicOperatorFunctions1| |BinaryExpansion| |Bits| |Boolean| |CharacterClass| |CommonOperators| |Complex| |ComplexCategory&| |ComplexDoubleFloatVector| |DataList| |DecimalExpansion| |DifferentialSparseMultivariatePolynomial| |DistributedMultivariatePolynomial| |DoubleFloat| |DoubleFloatVector| |EqTable| |ExponentialExpansion| |Export3D| |Expression| |Factored| |FlexibleArray| |Float| |FortranPackage| |FortranProgram| |Fraction| |FunctionSpace&| |GenUFactorize| |GeneralDistributedMultivariatePolynomial| |GeneralPolynomialSet| |GeneralSparseTable| |GeneralTriangularSet| |GnuDraw| |HashTable| |HexadecimalExpansion| |HomogeneousDistributedMultivariatePolynomial| |IndexedBits| |IndexedFlexibleArray| |IndexedList| |IndexedOneDimensionalArray| |IndexedString| |IndexedVector| |InnerTable| |InputFormFunctions1| |Integer| |IntegerNumberSystem&| |Kernel| |KeyedAccessFile| |Library| |LiouvillianFunction| |List| |ListMultiDictionary| |MachineComplex| |MachineInteger| |MakeBinaryCompiledFunction| |MakeFloatCompiledFunction| |MakeFunction| |MakeUnaryCompiledFunction| |Matrix| |ModMonic| |Multiset| |MultivariatePolynomial| |MyExpression| |MyUnivariatePolynomial| |NeitherSparseOrDensePowerSeries| |NewSparseMultivariatePolynomial| |NewSparseUnivariatePolynomial| |Octonion| |OctonionCategory&| |OneDimensionalArray| |OpenMathPackage| |OrderedVariableList| |OrderlyDifferentialPolynomial| |PAdicRational| |PAdicRationalConstructor| |Pi| |Point| |Polynomial| |PolynomialCategory&| |PrimitiveArray| |Quaternion| |QuaternionCategory&| |QuotientFieldCategory&| |RadixExpansion| |RectangularMatrix| |RecursivePolynomialCategory&| |RegularChain| |RegularTriangularSet| |Result| |RomanNumeral| |RoutinesTable| |SequentialDifferentialPolynomial| |Set| |SingleInteger| |SparseMultivariatePolynomial| |SparseTable| |SparseUnivariateLaurentSeries| |SparseUnivariatePolynomial| |SparseUnivariatePolynomialExpressions| |SquareFreeRegularTriangularSet| |SquareMatrix| |Stream| |String| |StringTable| |Symbol| |SymbolTable| |Table| |TemplateUtilities| |TopLevelDrawFunctions| |UnivariateLaurentSeries| |UnivariateLaurentSeriesConstructor| |UnivariatePolynomial| |Vector| |WuWenTsunTriangularSet|) (|FunctionSpace&|) -(|AbelianGroup&| |AbelianMonoidRing&| |AffineAlgebraicSetComputeWithGroebnerBasis| |AffineAlgebraicSetComputeWithResultant| |AffinePlane| |AffinePlaneOverPseudoAlgebraicClosureOfFiniteField| |AffineSpace| |AlgFactor| |Algebra&| |AlgebraGivenByStructuralConstants| |AlgebraPackage| |AlgebraicFunction| |AlgebraicFunctionField| |AlgebraicHermiteIntegration| |AlgebraicIntegrate| |AlgebraicManipulations| |AlgebraicNumber| |AlgebraicallyClosedField&| |AnnaNumericalIntegrationPackage| |AnnaNumericalOptimizationPackage| |AnnaOrdinaryDifferentialEquationPackage| |AnnaPartialDifferentialEquationPackage| |AntiSymm| |ApplyRules| |ArrayStack| |Asp10| |Asp19| |Asp27| |Asp28| |Asp30| |Asp31| |Asp34| |Asp35| |Asp55| |Asp73| |Asp74| |Asp77| |Asp8| |Asp80| |Asp9| |AssociatedEquations| |AssociatedJordanAlgebra| |AssociatedLieAlgebra| |AssociationList| |AttributeButtons| |Automorphism| |AxiomServer| |BalancedBinaryTree| |BalancedFactorisation| |BalancedPAdicInteger| |BalancedPAdicRational| |BasicFunctions| |BasicOperator| |Bezier| |BezoutMatrix| |BinaryExpansion| |BinarySearchTree| |BinaryTournament| |BinaryTree| |Bits| |BlowUpPackage| |BlowUpWithHamburgerNoether| |BlowUpWithQuadTrans| |Boolean| |BoundIntegerRoots| |BrillhartTests| |CardinalNumber| |CartesianTensor| |ChangeOfVariable| |Character| |CharacterClass| |CharacteristicPolynomialPackage| |ChineseRemainderToolsForIntegralBases| |CliffordAlgebra| |Color| |CombinatorialFunction| |Commutator| |Complex| |ComplexCategory&| |ComplexFactorization| |ComplexIntegerSolveLinearPolynomialEquation| |ComplexRootFindingPackage| |ComplexRootPackage| |ContinuedFraction| |CoordinateSystems| |CycleIndicators| |CyclotomicPolynomialPackage| |DataList| |DeRhamComplex| |DecimalExpansion| |DefiniteIntegrationTools| |DegreeReductionPackage| |DenavitHartenbergMatrix| |Dequeue| |DesingTree| |DesingTreePackage| |DifferentialPolynomialCategory&| |DifferentialSparseMultivariatePolynomial| |DifferentialVariableCategory&| |DiophantineSolutionPackage| |DirectProduct| |DirectProductCategory&| |DirectProductMatrixModule| |DirectProductModule| |DiscreteLogarithmPackage| |DisplayPackage| |DistributedMultivariatePolynomial| |DivisionRing&| |Divisor| |DoubleFloat| |DoubleFloatSpecialFunctions| |DrawComplex| |EigenPackage| |ElementaryFunction| |ElementaryFunctionLODESolver| |ElementaryFunctionODESolver| |ElementaryFunctionSign| |ElementaryFunctionStructurePackage| |ElementaryFunctionsUnivariateLaurentSeries| |ElementaryFunctionsUnivariatePuiseuxSeries| |ElementaryIntegration| |ElementaryRischDE| |ElementaryRischDESystem| |EllipticFunctionsUnivariateTaylorSeries| |Equation| |EuclideanDomain&| |EuclideanGroebnerBasisPackage| |EuclideanModularRing| |ExpertSystemContinuityPackage| |ExpertSystemToolsPackage| |ExponentialExpansion| |ExponentialOfUnivariatePuiseuxSeries| |Expression| |ExpressionSolve| |ExpressionSpace&| |ExpressionSpaceODESolver| |ExpressionToOpenMath| |ExpressionToUnivariatePowerSeries| |ExpressionTubePlot| |ExtensibleLinearAggregate&| |Factored| |FactoredFunctions| |FactoredFunctions2| |FactoringUtilities| |FactorisationOverPseudoAlgebraicClosureOfAlgExtOfRationalNumber| |FactorisationOverPseudoAlgebraicClosureOfRationalNumber| |FiniteAbelianMonoidRing&| |FiniteAlgebraicExtensionField&| |FiniteDivisor| |FiniteField| |FiniteFieldCategory&| |FiniteFieldCyclicGroup| |FiniteFieldCyclicGroupExtension| |FiniteFieldCyclicGroupExtensionByPolynomial| |FiniteFieldExtension| |FiniteFieldExtensionByPolynomial| |FiniteFieldFactorizationWithSizeParseBySideEffect| |FiniteFieldFunctions| |FiniteFieldHomomorphisms| |FiniteFieldNormalBasis| |FiniteFieldNormalBasisExtension| |FiniteFieldNormalBasisExtensionByPolynomial| |FiniteFieldPolynomialPackage| |FiniteFieldPolynomialPackage2| |FiniteFieldSquareFreeDecomposition| |FiniteLinearAggregate&| |FiniteLinearAggregateFunctions2| |FiniteLinearAggregateSort| |FiniteRankAlgebra&| |FiniteRankNonAssociativeAlgebra&| |FiniteSetAggregate&| |FlexibleArray| |Float| |FloatingPointSystem&| |FortranCode| |FortranExpression| |FortranProgram| |FortranTemplate| |FourierSeries| |Fraction| |FractionFreeFastGaussian| |FractionFreeFastGaussianFractions| |FractionalIdeal| |FractionalIdealFunctions2| |FramedAlgebra&| |FramedModule| |FramedNonAssociativeAlgebra&| |FramedNonAssociativeAlgebraFunctions2| |FreeAbelianGroup| |FreeAbelianMonoid| |FreeGroup| |FreeModule| |FreeModule1| |FreeMonoid| |FreeNilpotentLie| |FullPartialFractionExpansion| |FullyRetractableTo&| |FunctionFieldCategory&| |FunctionSpace&| |FunctionSpacePrimitiveElement| |FunctionSpaceReduce| |FunctionSpaceToExponentialExpansion| |FunctionSpaceToUnivariatePowerSeries| |FunctionalSpecialFunction| |GaloisGroupFactorizationUtilities| |GaloisGroupFactorizer| |GaloisGroupPolynomialUtilities| |GaloisGroupUtilities| |GaussianFactorizationPackage| |GenExEuclid| |GeneralDistributedMultivariatePolynomial| |GeneralHenselPackage| |GeneralModulePolynomial| |GeneralPackageForAlgebraicFunctionField| |GeneralPolynomialGcdPackage| |GeneralUnivariatePowerSeries| |GenerateUnivariatePowerSeries| |GenericNonAssociativeAlgebra| |GosperSummationMethod| |GraphImage| |GraphicsDefaults| |GrayCode| |GroebnerInternalPackage| |GroebnerPackage| |GroebnerSolve| |Group&| |Guess| |GuessFinite| |GuessFiniteFunctions| |GuessOption| |GuessOptionFunctions0| |HallBasis| |Heap| |HeuGcd| |HexadecimalExpansion| |HomogeneousDirectProduct| |HomogeneousDistributedMultivariatePolynomial| |HyperbolicFunctionCategory&| |HyperellipticFiniteDivisor| |IdealDecompositionPackage| |IndexedBits| |IndexedDirectProductAbelianGroup| |IndexedExponents| |IndexedFlexibleArray| |IndexedList| |IndexedMatrix| |IndexedOneDimensionalArray| |IndexedString| |IndexedTwoDimensionalArray| |IndexedVector| |InfiniteProductCharacteristicZero| |InfiniteProductFiniteField| |InfiniteProductPrimeField| |InfinitlyClosePoint| |InnerAlgFactor| |InnerAlgebraicNumber| |InnerFiniteField| |InnerFreeAbelianMonoid| |InnerIndexedTwoDimensionalArray| |InnerMatrixLinearAlgebraFunctions| |InnerModularGcd| |InnerMultFact| |InnerNormalBasisFieldFunctions| |InnerNumericEigenPackage| |InnerNumericFloatSolvePackage| |InnerPAdicInteger| |InnerPolySign| |InnerPolySum| |InnerPrimeField| |InnerSparseUnivariatePowerSeries| |InnerTaylorSeries| |InnerTrigonometricManipulations| |InputForm| |Integer| |IntegerBits| |IntegerCombinatoricFunctions| |IntegerFactorizationPackage| |IntegerMod| |IntegerNumberSystem&| |IntegerNumberTheoryFunctions| |IntegerPrimesPackage| |IntegerRetractions| |IntegerRoots| |IntegerSolveLinearPolynomialEquation| |IntegralBasisPolynomialTools| |IntegralBasisTools| |IntegrationResult| |IntegrationResultToFunction| |IntegrationTools| |InternalRationalUnivariateRepresentationPackage| |InterpolateFormsPackage| |IntersectionDivisorPackage| |Interval| |InverseLaplaceTransform| |IrrRepSymNatPackage| |KeyedAccessFile| |Kovacic| |LaplaceTransform| |LaurentPolynomial| |LazyStreamAggregate&| |LeadingCoefDetermination| |LeftAlgebra&| |LieExponentials| |LiePolynomial| |LieSquareMatrix| |LinGroebnerPackage| |LinearAggregate&| |LinearDependence| |LinearOrdinaryDifferentialOperator| |LinearOrdinaryDifferentialOperator1| |LinearOrdinaryDifferentialOperator2| |LinearOrdinaryDifferentialOperatorsOps| |LinearSystemFromPowerSeriesPackage| |LinearSystemMatrixPackage| |LinearSystemPolynomialPackage| |LinesOpPack| |LiouvillianFunction| |List| |ListAggregate&| |ListMonoidOps| |ListToMap| |LocalAlgebra| |LocalParametrizationOfSimplePointPackage| |Localize| |LyndonWord| |MPolyCatPolyFactorizer| |MPolyCatRationalFunctionFactorizer| |MRationalFactorize| |MachineComplex| |MachineFloat| |MachineInteger| |MakeFloatCompiledFunction| |MappingPackage1| |MathMLFormat| |Matrix| |MatrixCategory&| |MatrixCategoryFunctions2| |MatrixLinearAlgebraFunctions| |MeshCreationRoutinesForThreeDimensions| |ModMonic| |ModularDistinctDegreeFactorizer| |ModularField| |ModularHermitianRowReduction| |ModularRing| |Module&| |ModuleOperator| |MoebiusTransform| |MonogenicAlgebra&| |MonoidRing| |MonomialExtensionTools| |MultFiniteFactorize| |MultiVariableCalculusFunctions| |Multiset| |MultivariateLifting| |MultivariatePolynomial| |MultivariateSquareFree| |MyExpression| |MyUnivariatePolynomial| |NPCoef| |NagEigenPackage| |NagFittingPackage| |NagIntegrationPackage| |NagInterpolationPackage| |NagLapack| |NagLinearEquationSolvingPackage| |NagMatrixOperationsPackage| |NagOptimisationPackage| |NagOrdinaryDifferentialEquationsPackage| |NagPartialDifferentialEquationsPackage| |NagPolynomialRootsPackage| |NagRootFindingPackage| |NagSeriesSummationPackage| |NagSpecialFunctionsPackage| |NeitherSparseOrDensePowerSeries| |NewSparseMultivariatePolynomial| |NewSparseUnivariatePolynomial| |NewtonInterpolation| |NewtonPolygon| |NonAssociativeRing&| |NonLinearFirstOrderODESolver| |NonNegativeInteger| |NottinghamGroup| |NumberFieldIntegralBasis| |NumberFormats| |NumberTheoreticPolynomialFunctions| |NumericContinuedFraction| |NumericTubePlot| |NumericalOrdinaryDifferentialEquations| |NumericalQuadrature| |ODEIntegration| |ODETools| |Octonion| |OctonionCategory&| |OneDimensionalArray| |OneDimensionalArrayAggregate&| |OnePointCompletion| |OpenMathDevice| |OpenMathEncoding| |OpenMathError| |OpenMathServerPackage| |Operator| |OppositeMonogenicLinearOperator| |OrdSetInts| |OrderedCompletion| |OrderedDirectProduct| |OrderedFreeMonoid| |OrderedRing&| |OrderedVariableList| |OrderingFunctions| |OrderlyDifferentialPolynomial| |OrdinaryDifferentialRing| |OrdinaryWeightedPolynomials| |OrthogonalPolynomialFunctions| |OutputForm| |PAdicInteger| |PAdicRational| |PAdicRationalConstructor| |PackageForAlgebraicFunctionField| |PackageForAlgebraicFunctionFieldOverFiniteField| |PackageForPoly| |Palette| |ParadoxicalCombinatorsForStreams| |ParametricLinearEquations| |ParametrizationPackage| |PartialFraction| |Partition| |PartitionsAndPermutations| |Pattern| |PatternMatchFunctionSpace| |PatternMatchIntegerNumberSystem| |PatternMatchIntegration| |PatternMatchPolynomialCategory| |PendantTree| |Permanent| |Permutation| |PermutationGroup| |PermutationGroupExamples| |Pi| |PiCoercions| |Places| |PlacesOverPseudoAlgebraicClosureOfFiniteField| |PlaneAlgebraicCurvePlot| |Plcs| |Plot| |Plot3D| |PoincareBirkhoffWittLyndonBasis| |Point| |PointFunctions2| |PointPackage| |PointsOfFiniteOrder| |PointsOfFiniteOrderRational| |PointsOfFiniteOrderTools| |Polynomial| |PolynomialCategory&| |PolynomialDecomposition| |PolynomialFactorizationByRecursion| |PolynomialFactorizationByRecursionUnivariate| |PolynomialFactorizationExplicit&| |PolynomialGcdPackage| |PolynomialIdeals| |PolynomialNumberTheoryFunctions| |PolynomialPackageForCurve| |PolynomialRing| |PolynomialRoots| |PolynomialSolveByFormulas| |PowerSeriesCategory&| |PowerSeriesLimitPackage| |PrecomputedAssociatedEquations| |PrimeField| |PrimitiveArray| |PrimitiveElement| |PrimitiveRatDE| |PrimitiveRatRicDE| |Product| |ProjectiveAlgebraicSetPackage| |ProjectivePlane| |ProjectivePlaneOverPseudoAlgebraicClosureOfFiniteField| |ProjectiveSpace| |PseudoAlgebraicClosureOfAlgExtOfRationalNumber| |PseudoAlgebraicClosureOfFiniteField| |PseudoAlgebraicClosureOfRationalNumber| |PseudoLinearNormalForm| |PseudoRemainderSequence| |PureAlgebraicIntegration| |QuadraticForm| |Quaternion| |QuaternionCategory&| |QuotientFieldCategory&| |RadicalCategory&| |RadicalEigenPackage| |RadicalFunctionField| |RadicalSolvePackage| |RadixExpansion| |RadixUtilities| |RandomDistributions| |RandomFloatDistributions| |RandomIntegerDistributions| |RandomNumberSource| |RationalFactorize| |RationalFunctionLimitPackage| |RationalFunctionSign| |RationalFunctionSum| |RationalInterpolation| |RationalLODE| |RealClosedField&| |RealClosure| |RealNumberSystem&| |RealPolynomialUtilitiesPackage| |RealRootCharacterizationCategory&| |RealSolvePackage| |RealZeroPackage| |RealZeroPackageQ| |RectangularMatrix| |RectangularMatrixCategory&| |RectangularMatrixCategoryFunctions2| |RecurrenceOperator| |RecursivePolynomialCategory&| |ReduceLODE| |ReductionOfOrder| |RegularTriangularSet| |RegularTriangularSetGcdPackage| |RepresentationPackage1| |RepresentationPackage2| |ResidueRing| |Result| |RightOpenIntervalRootCharacterization| |Ring&| |RomanNumeral| |RootsFindingPackage| |RoutinesTable| |SExpression| |SExpressionOf| |ScriptFormulaFormat| |Segment| |SegmentFunctions2| |SequentialDifferentialPolynomial| |Set| |SetOfMIntegersInOneToN| |SimpleAlgebraicExtension| |SingleInteger| |SmithNormalForm| |SortPackage| |SparseMultivariatePolynomial| |SparseMultivariateTaylorSeries| |SparseUnivariateLaurentSeries| |SparseUnivariatePolynomial| |SparseUnivariatePolynomialExpressions| |SparseUnivariatePuiseuxSeries| |SparseUnivariateSkewPolynomial| |SparseUnivariateTaylorSeries| |SplitHomogeneousDirectProduct| |SplittingTree| |SquareFreeRegularTriangularSet| |SquareFreeRegularTriangularSetGcdPackage| |SquareMatrix| |SquareMatrixCategory&| |Stream| |StreamAggregate&| |StreamInfiniteProduct| |StreamTaylorSeriesOperations| |StreamTranscendentalFunctions| |StreamTranscendentalFunctionsNonCommutative| |String| |StringAggregate&| |StructuralConstantsPackage| |SturmHabichtPackage| |SubSpace| |Symbol| |SymmetricFunctions| |SymmetricGroupCombinatoricFunctions| |SymmetricPolynomial| |SystemODESolver| |SystemSolvePackage| |Tableau| |TableauxBumpers| |TangentExpansions| |TaylorSeries| |TaylorSolve| |TemplateUtilities| |TexFormat| |ThreeDimensionalMatrix| |ThreeDimensionalViewport| |ToolsForSign| |TopLevelDrawFunctions| |TopLevelDrawFunctionsForAlgebraicCurves| |TopLevelDrawFunctionsForCompiledFunctions| |TopLevelDrawFunctionsForPoints| |TransSolvePackage| |TransSolvePackageService| |TranscendentalFunctionCategory&| |TranscendentalIntegration| |TranscendentalManipulations| |TranscendentalRischDE| |TranscendentalRischDESystem| |Tree| |TriangularMatrixOperations| |TriangularSetCategory&| |TrigonometricManipulations| |TubePlotTools| |Tuple| |TwoDimensionalArray| |TwoDimensionalArrayCategory&| |TwoDimensionalPlotClipping| |TwoDimensionalViewport| |TwoFactorize| |UTSodetools| |UnaryRecursiveAggregate&| |UnivariateFactorize| |UnivariateFormalPowerSeries| |UnivariateLaurentSeries| |UnivariateLaurentSeriesConstructor| |UnivariateLaurentSeriesConstructorCategory&| |UnivariateLaurentSeriesFunctions2| |UnivariatePolynomial| |UnivariatePolynomialCategory&| |UnivariatePolynomialDecompositionPackage| |UnivariatePolynomialSquareFree| |UnivariatePuiseuxSeries| |UnivariatePuiseuxSeriesConstructor| |UnivariatePuiseuxSeriesWithExponentialSingularity| |UnivariateSkewPolynomial| |UnivariateSkewPolynomialCategory&| |UnivariateSkewPolynomialCategoryOps| |UnivariateTaylorSeries| |UnivariateTaylorSeriesCZero| |UnivariateTaylorSeriesCategory&| |UnivariateTaylorSeriesODESolver| |UniversalSegment| |Vector| |VectorCategory&| |ViewDefaultsPackage| |ViewportPackage| |WeierstrassPreparation| |WeightedPolynomials| |WildFunctionFieldIntegralBasis| |XDistributedPolynomial| |XExponentialPackage| |XPBWPolynomial| |XPolynomial| |XPolynomialRing| |XRecursivePolynomial| |d01AgentsPackage| |d01TransformFunctionType| |d01WeightsPackage| |d01ajfAnnaType| |d01akfAnnaType| |d01alfAnnaType| |d01amfAnnaType| |d01anfAnnaType| |d01apfAnnaType| |d01aqfAnnaType| |d01asfAnnaType| |d01fcfAnnaType| |d01gbfAnnaType| |d02AgentsPackage| |d02bbfAnnaType| |d02bhfAnnaType| |d02cjfAnnaType| |d02ejfAnnaType| |d03AgentsPackage| |d03eefAnnaType| |e04AgentsPackage| |e04dgfAnnaType| |e04fdfAnnaType| |e04gcfAnnaType| |e04jafAnnaType| |e04mbfAnnaType| |e04nafAnnaType| |e04ucfAnnaType|) +(|AbelianGroup&| |AbelianMonoidRing&| |AffineAlgebraicSetComputeWithGroebnerBasis| |AffineAlgebraicSetComputeWithResultant| |AffinePlane| |AffinePlaneOverPseudoAlgebraicClosureOfFiniteField| |AffineSpace| |AlgFactor| |Algebra&| |AlgebraGivenByStructuralConstants| |AlgebraPackage| |AlgebraicFunction| |AlgebraicFunctionField| |AlgebraicHermiteIntegration| |AlgebraicIntegrate| |AlgebraicManipulations| |AlgebraicNumber| |AlgebraicallyClosedField&| |AnnaNumericalIntegrationPackage| |AnnaNumericalOptimizationPackage| |AnnaOrdinaryDifferentialEquationPackage| |AnnaPartialDifferentialEquationPackage| |AntiSymm| |ApplyRules| |ArrayStack| |Asp10| |Asp19| |Asp27| |Asp28| |Asp30| |Asp31| |Asp34| |Asp35| |Asp55| |Asp73| |Asp74| |Asp77| |Asp8| |Asp80| |Asp9| |AssociatedEquations| |AssociatedJordanAlgebra| |AssociatedLieAlgebra| |AssociationList| |AttributeButtons| |Automorphism| |AxiomServer| |BalancedBinaryTree| |BalancedFactorisation| |BalancedPAdicInteger| |BalancedPAdicRational| |BasicFunctions| |BasicOperator| |Bezier| |BezoutMatrix| |BinaryExpansion| |BinarySearchTree| |BinaryTournament| |BinaryTree| |Bits| |BlowUpPackage| |BlowUpWithHamburgerNoether| |BlowUpWithQuadTrans| |Boolean| |BoundIntegerRoots| |BrillhartTests| |CardinalNumber| |CartesianTensor| |ChangeOfVariable| |Character| |CharacterClass| |CharacteristicPolynomialPackage| |ChineseRemainderToolsForIntegralBases| |CliffordAlgebra| |Color| |CombinatorialFunction| |Commutator| |Complex| |ComplexCategory&| |ComplexDoubleFloatMatrix| |ComplexDoubleFloatVector| |ComplexFactorization| |ComplexIntegerSolveLinearPolynomialEquation| |ComplexRootFindingPackage| |ComplexRootPackage| |ContinuedFraction| |CoordinateSystems| |CycleIndicators| |CyclotomicPolynomialPackage| |DataList| |DeRhamComplex| |DecimalExpansion| |DefiniteIntegrationTools| |DegreeReductionPackage| |DenavitHartenbergMatrix| |Dequeue| |DesingTree| |DesingTreePackage| |DifferentialPolynomialCategory&| |DifferentialSparseMultivariatePolynomial| |DifferentialVariableCategory&| |DiophantineSolutionPackage| |DirectProduct| |DirectProductCategory&| |DirectProductMatrixModule| |DirectProductModule| |DirichletRing| |DiscreteLogarithmPackage| |DisplayPackage| |DistributedMultivariatePolynomial| |DivisionRing&| |Divisor| |DoubleFloat| |DoubleFloatMatrix| |DoubleFloatSpecialFunctions| |DoubleFloatVector| |DrawComplex| |EigenPackage| |ElementaryFunction| |ElementaryFunctionLODESolver| |ElementaryFunctionODESolver| |ElementaryFunctionSign| |ElementaryFunctionStructurePackage| |ElementaryFunctionsUnivariateLaurentSeries| |ElementaryFunctionsUnivariatePuiseuxSeries| |ElementaryIntegration| |ElementaryRischDE| |ElementaryRischDESystem| |EllipticFunctionsUnivariateTaylorSeries| |Equation| |EuclideanDomain&| |EuclideanGroebnerBasisPackage| |EuclideanModularRing| |ExpertSystemContinuityPackage| |ExpertSystemToolsPackage| |ExponentialExpansion| |ExponentialOfUnivariatePuiseuxSeries| |Export3D| |Expression| |ExpressionSolve| |ExpressionSpace&| |ExpressionSpaceODESolver| |ExpressionToOpenMath| |ExpressionToUnivariatePowerSeries| |ExpressionTubePlot| |ExtensibleLinearAggregate&| |Factored| |FactoredFunctions| |FactoredFunctions2| |FactoringUtilities| |FactorisationOverPseudoAlgebraicClosureOfAlgExtOfRationalNumber| |FactorisationOverPseudoAlgebraicClosureOfRationalNumber| |FiniteAbelianMonoidRing&| |FiniteAlgebraicExtensionField&| |FiniteDivisor| |FiniteField| |FiniteFieldCategory&| |FiniteFieldCyclicGroup| |FiniteFieldCyclicGroupExtension| |FiniteFieldCyclicGroupExtensionByPolynomial| |FiniteFieldExtension| |FiniteFieldExtensionByPolynomial| |FiniteFieldFactorizationWithSizeParseBySideEffect| |FiniteFieldFunctions| |FiniteFieldHomomorphisms| |FiniteFieldNormalBasis| |FiniteFieldNormalBasisExtension| |FiniteFieldNormalBasisExtensionByPolynomial| |FiniteFieldPolynomialPackage| |FiniteFieldPolynomialPackage2| |FiniteFieldSquareFreeDecomposition| |FiniteLinearAggregate&| |FiniteLinearAggregateFunctions2| |FiniteLinearAggregateSort| |FiniteRankAlgebra&| |FiniteRankNonAssociativeAlgebra&| |FiniteSetAggregate&| |FlexibleArray| |Float| |FloatingPointSystem&| |FortranCode| |FortranExpression| |FortranProgram| |FortranTemplate| |FourierSeries| |Fraction| |FractionFreeFastGaussian| |FractionFreeFastGaussianFractions| |FractionalIdeal| |FractionalIdealFunctions2| |FramedAlgebra&| |FramedModule| |FramedNonAssociativeAlgebra&| |FramedNonAssociativeAlgebraFunctions2| |FreeAbelianGroup| |FreeAbelianMonoid| |FreeGroup| |FreeModule| |FreeModule1| |FreeMonoid| |FreeNilpotentLie| |FullPartialFractionExpansion| |FullyRetractableTo&| |FunctionFieldCategory&| |FunctionSpace&| |FunctionSpacePrimitiveElement| |FunctionSpaceReduce| |FunctionSpaceToExponentialExpansion| |FunctionSpaceToUnivariatePowerSeries| |FunctionalSpecialFunction| |GaloisGroupFactorizationUtilities| |GaloisGroupFactorizer| |GaloisGroupPolynomialUtilities| |GaloisGroupUtilities| |GaussianFactorizationPackage| |GenExEuclid| |GeneralDistributedMultivariatePolynomial| |GeneralHenselPackage| |GeneralModulePolynomial| |GeneralPackageForAlgebraicFunctionField| |GeneralPolynomialGcdPackage| |GeneralUnivariatePowerSeries| |GenerateUnivariatePowerSeries| |GenericNonAssociativeAlgebra| |GnuDraw| |GosperSummationMethod| |GraphImage| |GraphicsDefaults| |GrayCode| |GroebnerInternalPackage| |GroebnerPackage| |GroebnerSolve| |Group&| |Guess| |GuessFinite| |GuessFiniteFunctions| |GuessOption| |GuessOptionFunctions0| |HTMLFormat| |HallBasis| |Heap| |HeuGcd| |HexadecimalExpansion| |HomogeneousDirectProduct| |HomogeneousDistributedMultivariatePolynomial| |HyperbolicFunctionCategory&| |HyperellipticFiniteDivisor| |IdealDecompositionPackage| |IndexedBits| |IndexedDirectProductAbelianGroup| |IndexedExponents| |IndexedFlexibleArray| |IndexedList| |IndexedMatrix| |IndexedOneDimensionalArray| |IndexedString| |IndexedTwoDimensionalArray| |IndexedVector| |InfiniteProductCharacteristicZero| |InfiniteProductFiniteField| |InfiniteProductPrimeField| |InfinitlyClosePoint| |InnerAlgFactor| |InnerAlgebraicNumber| |InnerFiniteField| |InnerFreeAbelianMonoid| |InnerIndexedTwoDimensionalArray| |InnerMatrixLinearAlgebraFunctions| |InnerModularGcd| |InnerMultFact| |InnerNormalBasisFieldFunctions| |InnerNumericEigenPackage| |InnerNumericFloatSolvePackage| |InnerPAdicInteger| |InnerPolySign| |InnerPolySum| |InnerPrimeField| |InnerSparseUnivariatePowerSeries| |InnerTaylorSeries| |InnerTrigonometricManipulations| |InputForm| |Integer| |IntegerBits| |IntegerCombinatoricFunctions| |IntegerFactorizationPackage| |IntegerMod| |IntegerNumberSystem&| |IntegerNumberTheoryFunctions| |IntegerPrimesPackage| |IntegerRetractions| |IntegerRoots| |IntegerSolveLinearPolynomialEquation| |IntegralBasisPolynomialTools| |IntegralBasisTools| |IntegrationResult| |IntegrationResultToFunction| |IntegrationTools| |InternalRationalUnivariateRepresentationPackage| |InterpolateFormsPackage| |IntersectionDivisorPackage| |Interval| |InverseLaplaceTransform| |IrrRepSymNatPackage| |KeyedAccessFile| |Kovacic| |LaplaceTransform| |LaurentPolynomial| |LazyStreamAggregate&| |LeadingCoefDetermination| |LeftAlgebra&| |LieExponentials| |LiePolynomial| |LieSquareMatrix| |LinGroebnerPackage| |LinearAggregate&| |LinearDependence| |LinearOrdinaryDifferentialOperator| |LinearOrdinaryDifferentialOperator1| |LinearOrdinaryDifferentialOperator2| |LinearOrdinaryDifferentialOperatorsOps| |LinearSystemFromPowerSeriesPackage| |LinearSystemMatrixPackage| |LinearSystemPolynomialPackage| |LinesOpPack| |LiouvillianFunction| |List| |ListAggregate&| |ListMonoidOps| |ListToMap| |LocalAlgebra| |LocalParametrizationOfSimplePointPackage| |Localize| |LyndonWord| |MPolyCatPolyFactorizer| |MPolyCatRationalFunctionFactorizer| |MRationalFactorize| |MachineComplex| |MachineFloat| |MachineInteger| |MakeFloatCompiledFunction| |MappingPackage1| |MathMLFormat| |Matrix| |MatrixCategory&| |MatrixCategoryFunctions2| |MatrixLinearAlgebraFunctions| |MeshCreationRoutinesForThreeDimensions| |ModMonic| |ModularDistinctDegreeFactorizer| |ModularField| |ModularHermitianRowReduction| |ModularRing| |Module&| |ModuleOperator| |MoebiusTransform| |MonogenicAlgebra&| |MonoidRing| |MonomialExtensionTools| |MultFiniteFactorize| |MultiVariableCalculusFunctions| |Multiset| |MultivariateLifting| |MultivariatePolynomial| |MultivariateSquareFree| |MyExpression| |MyUnivariatePolynomial| |NPCoef| |NagEigenPackage| |NagFittingPackage| |NagIntegrationPackage| |NagInterpolationPackage| |NagLapack| |NagLinearEquationSolvingPackage| |NagMatrixOperationsPackage| |NagOptimisationPackage| |NagOrdinaryDifferentialEquationsPackage| |NagPartialDifferentialEquationsPackage| |NagPolynomialRootsPackage| |NagRootFindingPackage| |NagSeriesSummationPackage| |NagSpecialFunctionsPackage| |NeitherSparseOrDensePowerSeries| |NewSparseMultivariatePolynomial| |NewSparseUnivariatePolynomial| |NewtonInterpolation| |NewtonPolygon| |NonAssociativeRing&| |NonLinearFirstOrderODESolver| |NonNegativeInteger| |NottinghamGroup| |NumberFieldIntegralBasis| |NumberFormats| |NumberTheoreticPolynomialFunctions| |NumericContinuedFraction| |NumericTubePlot| |NumericalOrdinaryDifferentialEquations| |NumericalQuadrature| |ODEIntegration| |ODETools| |Octonion| |OctonionCategory&| |OneDimensionalArray| |OneDimensionalArrayAggregate&| |OnePointCompletion| |OpenMathDevice| |OpenMathEncoding| |OpenMathError| |OpenMathServerPackage| |Operator| |OppositeMonogenicLinearOperator| |OrdSetInts| |OrderedCompletion| |OrderedDirectProduct| |OrderedFreeMonoid| |OrderedRing&| |OrderedVariableList| |OrderingFunctions| |OrderlyDifferentialPolynomial| |OrdinaryDifferentialRing| |OrdinaryWeightedPolynomials| |OrthogonalPolynomialFunctions| |OutputForm| |PAdicInteger| |PAdicRational| |PAdicRationalConstructor| |PackageForAlgebraicFunctionField| |PackageForAlgebraicFunctionFieldOverFiniteField| |PackageForPoly| |Palette| |ParadoxicalCombinatorsForStreams| |ParametricLinearEquations| |ParametrizationPackage| |PartialFraction| |Partition| |PartitionsAndPermutations| |Pattern| |PatternMatchFunctionSpace| |PatternMatchIntegerNumberSystem| |PatternMatchIntegration| |PatternMatchPolynomialCategory| |PendantTree| |Permanent| |Permutation| |PermutationGroup| |PermutationGroupExamples| |Pi| |PiCoercions| |Places| |PlacesOverPseudoAlgebraicClosureOfFiniteField| |PlaneAlgebraicCurvePlot| |Plcs| |Plot| |Plot3D| |PoincareBirkhoffWittLyndonBasis| |Point| |PointFunctions2| |PointPackage| |PointsOfFiniteOrder| |PointsOfFiniteOrderRational| |PointsOfFiniteOrderTools| |Polynomial| |PolynomialCategory&| |PolynomialDecomposition| |PolynomialFactorizationByRecursion| |PolynomialFactorizationByRecursionUnivariate| |PolynomialFactorizationExplicit&| |PolynomialGcdPackage| |PolynomialIdeals| |PolynomialNumberTheoryFunctions| |PolynomialPackageForCurve| |PolynomialRing| |PolynomialRoots| |PolynomialSolveByFormulas| |PowerSeriesCategory&| |PowerSeriesLimitPackage| |PrecomputedAssociatedEquations| |PrimeField| |PrimitiveArray| |PrimitiveElement| |PrimitiveRatDE| |PrimitiveRatRicDE| |Product| |ProjectiveAlgebraicSetPackage| |ProjectivePlane| |ProjectivePlaneOverPseudoAlgebraicClosureOfFiniteField| |ProjectiveSpace| |PseudoAlgebraicClosureOfAlgExtOfRationalNumber| |PseudoAlgebraicClosureOfFiniteField| |PseudoAlgebraicClosureOfRationalNumber| |PseudoLinearNormalForm| |PseudoRemainderSequence| |PureAlgebraicIntegration| |QuadraticForm| |Quaternion| |QuaternionCategory&| |QuotientFieldCategory&| |RadicalCategory&| |RadicalEigenPackage| |RadicalFunctionField| |RadicalSolvePackage| |RadixExpansion| |RadixUtilities| |RandomDistributions| |RandomFloatDistributions| |RandomIntegerDistributions| |RandomNumberSource| |RationalFactorize| |RationalFunctionLimitPackage| |RationalFunctionSign| |RationalFunctionSum| |RationalInterpolation| |RationalLODE| |RealClosedField&| |RealClosure| |RealNumberSystem&| |RealPolynomialUtilitiesPackage| |RealRootCharacterizationCategory&| |RealSolvePackage| |RealZeroPackage| |RealZeroPackageQ| |RectangularMatrix| |RectangularMatrixCategory&| |RectangularMatrixCategoryFunctions2| |RecurrenceOperator| |RecursivePolynomialCategory&| |ReduceLODE| |ReductionOfOrder| |RegularTriangularSet| |RegularTriangularSetGcdPackage| |RepresentationPackage1| |RepresentationPackage2| |ResidueRing| |Result| |RightOpenIntervalRootCharacterization| |Ring&| |RomanNumeral| |RootsFindingPackage| |RoutinesTable| |SExpression| |SExpressionOf| |ScriptFormulaFormat| |Segment| |SegmentFunctions2| |SequentialDifferentialPolynomial| |Set| |SetOfMIntegersInOneToN| |SimpleAlgebraicExtension| |SingleInteger| |SmithNormalForm| |SortPackage| |SparseMultivariatePolynomial| |SparseMultivariateTaylorSeries| |SparseUnivariateLaurentSeries| |SparseUnivariatePolynomial| |SparseUnivariatePolynomialExpressions| |SparseUnivariatePuiseuxSeries| |SparseUnivariateSkewPolynomial| |SparseUnivariateTaylorSeries| |SplitHomogeneousDirectProduct| |SplittingTree| |SquareFreeRegularTriangularSet| |SquareFreeRegularTriangularSetGcdPackage| |SquareMatrix| |SquareMatrixCategory&| |Stream| |StreamAggregate&| |StreamInfiniteProduct| |StreamTaylorSeriesOperations| |StreamTranscendentalFunctions| |StreamTranscendentalFunctionsNonCommutative| |String| |StringAggregate&| |StructuralConstantsPackage| |SturmHabichtPackage| |SubSpace| |Symbol| |SymmetricFunctions| |SymmetricGroupCombinatoricFunctions| |SymmetricPolynomial| |SystemODESolver| |SystemSolvePackage| |Tableau| |TableauxBumpers| |TangentExpansions| |TaylorSeries| |TaylorSolve| |TemplateUtilities| |TexFormat| |ThreeDimensionalMatrix| |ThreeDimensionalViewport| |ToolsForSign| |TopLevelDrawFunctions| |TopLevelDrawFunctionsForAlgebraicCurves| |TopLevelDrawFunctionsForCompiledFunctions| |TopLevelDrawFunctionsForPoints| |TransSolvePackage| |TransSolvePackageService| |TranscendentalFunctionCategory&| |TranscendentalIntegration| |TranscendentalManipulations| |TranscendentalRischDE| |TranscendentalRischDESystem| |Tree| |TriangularMatrixOperations| |TriangularSetCategory&| |TrigonometricManipulations| |TubePlotTools| |Tuple| |TwoDimensionalArray| |TwoDimensionalArrayCategory&| |TwoDimensionalPlotClipping| |TwoDimensionalViewport| |TwoFactorize| |UTSodetools| |UnaryRecursiveAggregate&| |UnivariateFactorize| |UnivariateFormalPowerSeries| |UnivariateLaurentSeries| |UnivariateLaurentSeriesConstructor| |UnivariateLaurentSeriesConstructorCategory&| |UnivariateLaurentSeriesFunctions2| |UnivariatePolynomial| |UnivariatePolynomialCategory&| |UnivariatePolynomialDecompositionPackage| |UnivariatePolynomialSquareFree| |UnivariatePuiseuxSeries| |UnivariatePuiseuxSeriesConstructor| |UnivariatePuiseuxSeriesWithExponentialSingularity| |UnivariateSkewPolynomial| |UnivariateSkewPolynomialCategory&| |UnivariateSkewPolynomialCategoryOps| |UnivariateTaylorSeries| |UnivariateTaylorSeriesCZero| |UnivariateTaylorSeriesCategory&| |UnivariateTaylorSeriesODESolver| |UniversalSegment| |Vector| |VectorCategory&| |ViewDefaultsPackage| |ViewportPackage| |WeierstrassPreparation| |WeightedPolynomials| |WildFunctionFieldIntegralBasis| |XDistributedPolynomial| |XExponentialPackage| |XPBWPolynomial| |XPolynomial| |XPolynomialRing| |XRecursivePolynomial| |d01AgentsPackage| |d01TransformFunctionType| |d01WeightsPackage| |d01ajfAnnaType| |d01akfAnnaType| |d01alfAnnaType| |d01amfAnnaType| |d01anfAnnaType| |d01apfAnnaType| |d01aqfAnnaType| |d01asfAnnaType| |d01fcfAnnaType| |d01gbfAnnaType| |d02AgentsPackage| |d02bbfAnnaType| |d02bhfAnnaType| |d02cjfAnnaType| |d02ejfAnnaType| |d03AgentsPackage| |d03eefAnnaType| |e04AgentsPackage| |e04dgfAnnaType| |e04fdfAnnaType| |e04gcfAnnaType| |e04jafAnnaType| |e04mbfAnnaType| |e04nafAnnaType| |e04ucfAnnaType|) (|RandomIntegerDistributions|) (|ComplexRootFindingPackage| |GaloisGroupUtilities| |Guess| |IntegerNumberSystem&| |IrrRepSymNatPackage| |MultivariateLifting| |RepresentationPackage1| |SetOfMIntegersInOneToN| |SymmetricGroupCombinatoricFunctions|) (|CyclotomicPolynomialPackage| |Factored| |GaussianFactorizationPackage| |IntegerNumberSystem&| |NumberFieldIntegralBasis|) (|ElementaryFunctionStructurePackage|) (|InnerPrimeField|) -(|CycleIndicators| |FiniteFieldPolynomialPackage| |PolynomialNumberTheoryFunctions|) +(|CycleIndicators| |DirichletRing| |FiniteFieldPolynomialPackage| |PolynomialNumberTheoryFunctions|) (|ComplexIntegerSolveLinearPolynomialEquation| |GaloisGroupFactorizer| |GaussianFactorizationPackage| |HeuGcd| |InnerMultFact| |IntegerFactorizationPackage| |IntegerNumberSystem&| |IntegerNumberTheoryFunctions| |IntegerRoots| |IntegerSolveLinearPolynomialEquation| |MultivariateSquareFree| |PointsOfFiniteOrder| |PointsOfFiniteOrderTools| |PolynomialGcdPackage| |PolynomialNumberTheoryFunctions| |PrimeField| |UnivariateFactorize|) (|DoubleFloatSpecialFunctions|) (|ComplexRootFindingPackage| |Float| |GaloisGroupFactorizer| |GenExEuclid| |IntegerFactorizationPackage| |IntegerPrimesPackage| |PatternMatchIntegerNumberSystem| |UnivariateFactorize|) @@ -299,8 +301,8 @@ (|SystemSolvePackage|) (|InterpolateFormsPackage| |LinearSystemFromPowerSeriesPackage|) (|Expression| |PowerSeriesLimitPackage|) -(|AffineAlgebraicSetComputeWithGroebnerBasis| |AffineAlgebraicSetComputeWithResultant| |AffinePlane| |AffinePlaneOverPseudoAlgebraicClosureOfFiniteField| |AffineSpace| |AlgFactor| |AlgebraGivenByStructuralConstants| |AlgebraPackage| |AlgebraicFunction| |AlgebraicFunctionField| |AlgebraicHermiteIntegration| |AlgebraicIntegrate| |AlgebraicManipulations| |AlgebraicMultFact| |AlgebraicNumber| |AlgebraicallyClosedField&| |AlgebraicallyClosedFunctionSpace&| |AnnaNumericalIntegrationPackage| |AnnaNumericalOptimizationPackage| |AnnaOrdinaryDifferentialEquationPackage| |AnnaPartialDifferentialEquationPackage| |AntiSymm| |Any| |ApplicationProgramInterface| |ApplyRules| |ArrayStack| |Asp1| |Asp10| |Asp12| |Asp19| |Asp20| |Asp24| |Asp27| |Asp28| |Asp29| |Asp30| |Asp31| |Asp33| |Asp34| |Asp35| |Asp4| |Asp41| |Asp42| |Asp49| |Asp50| |Asp55| |Asp6| |Asp7| |Asp73| |Asp74| |Asp77| |Asp78| |Asp8| |Asp80| |Asp9| |AssociatedEquations| |AssociatedJordanAlgebra| |AssociatedLieAlgebra| |AssociationList| |AttachPredicates| |AttributeButtons| |AxiomServer| |BagAggregate&| |BalancedBinaryTree| |BalancedFactorisation| |BalancedPAdicInteger| |BalancedPAdicRational| |BasicFunctions| |BasicOperator| |BasicOperatorFunctions1| |Bezier| |BinaryExpansion| |BinaryRecursiveAggregate&| |BinarySearchTree| |BinaryTournament| |BinaryTree| |Bits| |BlowUpPackage| |BlowUpWithHamburgerNoether| |BlowUpWithQuadTrans| |BoundIntegerRoots| |CRApackage| |CardinalNumber| |CartesianTensor| |CartesianTensorFunctions2| |Character| |CharacterClass| |ChineseRemainderToolsForIntegralBases| |CliffordAlgebra| |CoerceVectorMatrixPackage| |Collection&| |Color| |CombinatorialFunction| |CommonOperators| |Commutator| |Complex| |ComplexCategory&| |ComplexFactorization| |ComplexIntegerSolveLinearPolynomialEquation| |ComplexRootFindingPackage| |ComplexRootPackage| |ComplexTrigonometricManipulations| |ConstantLODE| |ContinuedFraction| |CycleIndicators| |CyclotomicPolynomialPackage| |DataList| |Database| |DeRhamComplex| |DecimalExpansion| |DefiniteIntegrationTools| |DegreeReductionPackage| |DenavitHartenbergMatrix| |Dequeue| |DesingTree| |DesingTreePackage| |Dictionary&| |DictionaryOperations&| |DifferentialExtension&| |DifferentialPolynomialCategory&| |DifferentialSparseMultivariatePolynomial| |DiophantineSolutionPackage| |DirectProduct| |DirectProductCategory&| |DirectProductMatrixModule| |DirectProductModule| |DisplayPackage| |DistinctDegreeFactorize| |DistributedMultivariatePolynomial| |Divisor| |DoubleFloat| |DrawComplex| |DrawOption| |DrawOptionFunctions0| |DrawOptionFunctions1| |EigenPackage| |ElementaryFunction| |ElementaryFunctionDefiniteIntegration| |ElementaryFunctionLODESolver| |ElementaryFunctionODESolver| |ElementaryFunctionSign| |ElementaryFunctionStructurePackage| |ElementaryIntegration| |ElementaryRischDE| |ElementaryRischDESystem| |EllipticFunctionsUnivariateTaylorSeries| |EqTable| |Equation| |ErrorFunctions| |EuclideanDomain&| |EuclideanGroebnerBasisPackage| |EuclideanModularRing| |Evalable&| |EvaluateCycleIndicators| |ExpertSystemContinuityPackage| |ExpertSystemToolsPackage| |ExpertSystemToolsPackage1| |ExpertSystemToolsPackage2| |ExponentialExpansion| |ExponentialOfUnivariatePuiseuxSeries| |Expression| |ExpressionSolve| |ExpressionSpace&| |ExpressionSpaceFunctions1| |ExpressionSpaceFunctions2| |ExpressionSpaceODESolver| |ExpressionToOpenMath| |ExpressionToUnivariatePowerSeries| |ExpressionTubePlot| |ExtAlgBasis| |ExtensibleLinearAggregate&| |FGLMIfCanPackage| |Factored| |FactoredFunctionUtilities| |FactoredFunctions| |FactoredFunctions2| |FactoringUtilities| |FactorisationOverPseudoAlgebraicClosureOfAlgExtOfRationalNumber| |FactorisationOverPseudoAlgebraicClosureOfRationalNumber| |Field&| |FiniteAbelianMonoidRing&| |FiniteAlgebraicExtensionField&| |FiniteField| |FiniteFieldCategory&| |FiniteFieldCyclicGroup| |FiniteFieldCyclicGroupExtension| |FiniteFieldCyclicGroupExtensionByPolynomial| |FiniteFieldExtension| |FiniteFieldExtensionByPolynomial| |FiniteFieldFactorizationWithSizeParseBySideEffect| |FiniteFieldFunctions| |FiniteFieldNormalBasis| |FiniteFieldNormalBasisExtension| |FiniteFieldNormalBasisExtensionByPolynomial| |FiniteFieldPolynomialPackage| |FiniteFieldSolveLinearPolynomialEquation| |FiniteFieldSquareFreeDecomposition| |FiniteLinearAggregateFunctions2| |FiniteRankAlgebra&| |FiniteRankNonAssociativeAlgebra&| |FiniteSetAggregate&| |FiniteSetAggregateFunctions2| |FlexibleArray| |Float| |FloatingComplexPackage| |FloatingRealPackage| |FortranCode| |FortranCodePackage1| |FortranExpression| |FortranOutputStackPackage| |FortranPackage| |FortranProgram| |FortranScalarType| |FortranTemplate| |FortranType| |Fraction| |FractionFreeFastGaussian| |FractionFreeFastGaussianFractions| |FractionalIdeal| |FramedAlgebra&| |FramedNonAssociativeAlgebra&| |FreeAbelianGroup| |FreeAbelianMonoid| |FreeGroup| |FreeModule| |FreeModule1| |FreeMonoid| |FreeNilpotentLie| |FullPartialFractionExpansion| |FullyEvalableOver&| |FunctionFieldCategory&| |FunctionFieldIntegralBasis| |FunctionSpace&| |FunctionSpaceAssertions| |FunctionSpaceAttachPredicates| |FunctionSpaceComplexIntegration| |FunctionSpaceIntegration| |FunctionSpacePrimitiveElement| |FunctionSpaceReduce| |FunctionSpaceSum| |FunctionSpaceToExponentialExpansion| |FunctionSpaceToUnivariatePowerSeries| |FunctionSpaceUnivariatePolynomialFactor| |FunctionalSpecialFunction| |GaloisGroupFactorizationUtilities| |GaloisGroupFactorizer| |GaloisGroupPolynomialUtilities| |GaussianFactorizationPackage| |GcdDomain&| |GenExEuclid| |GenUFactorize| |GeneralDistributedMultivariatePolynomial| |GeneralHenselPackage| |GeneralPackageForAlgebraicFunctionField| |GeneralPolynomialGcdPackage| |GeneralPolynomialSet| |GeneralSparseTable| |GeneralTriangularSet| |GeneralUnivariatePowerSeries| |GenericNonAssociativeAlgebra| |GenusZeroIntegration| |GosperSummationMethod| |GraphImage| |GroebnerFactorizationPackage| |GroebnerInternalPackage| |GroebnerPackage| |GroebnerSolve| |Guess| |GuessAlgebraicNumber| |GuessFinite| |GuessInteger| |GuessOption| |GuessOptionFunctions0| |GuessPolynomial| |GuessUnivariatePolynomial| |HallBasis| |HashTable| |Heap| |HeuGcd| |HexadecimalExpansion| |HomogeneousAggregate&| |HomogeneousDirectProduct| |HomogeneousDistributedMultivariatePolynomial| |HyperellipticFiniteDivisor| |IdealDecompositionPackage| |IndexedAggregate&| |IndexedBits| |IndexedDirectProductObject| |IndexedExponents| |IndexedFlexibleArray| |IndexedList| |IndexedMatrix| |IndexedOneDimensionalArray| |IndexedString| |IndexedTwoDimensionalArray| |IndexedVector| |InfClsPt| |InfinitlyClosePoint| |InfinitlyClosePointOverPseudoAlgebraicClosureOfFiniteField| |InnerAlgFactor| |InnerAlgebraicNumber| |InnerEvalable&| |InnerFiniteField| |InnerFreeAbelianMonoid| |InnerIndexedTwoDimensionalArray| |InnerMatrixLinearAlgebraFunctions| |InnerMatrixQuotientFieldFunctions| |InnerModularGcd| |InnerMultFact| |InnerNormalBasisFieldFunctions| |InnerNumericEigenPackage| |InnerNumericFloatSolvePackage| |InnerPAdicInteger| |InnerPolySum| |InnerPrimeField| |InnerSparseUnivariatePowerSeries| |InnerTable| |InnerTrigonometricManipulations| |InputForm| |InputFormFunctions1| |Integer| |IntegerCombinatoricFunctions| |IntegerFactorizationPackage| |IntegerNumberTheoryFunctions| |IntegerPrimesPackage| |IntegerRoots| |IntegerSolveLinearPolynomialEquation| |IntegrationFunctionsTable| |IntegrationResult| |IntegrationResultFunctions2| |IntegrationResultRFToFunction| |IntegrationResultToFunction| |IntegrationTools| |InterfaceGroebnerPackage| |InternalRationalUnivariateRepresentationPackage| |InterpolateFormsPackage| |IntersectionDivisorPackage| |Interval| |InverseLaplaceTransform| |IrrRepSymNatPackage| |Kernel| |KernelFunctions2| |KeyedAccessFile| |KeyedDictionary&| |Kovacic| |LaplaceTransform| |LaurentPolynomial| |LazardSetSolvingPackage| |LazyStreamAggregate&| |LeadingCoefDetermination| |LexTriangularPackage| |Library| |LieExponentials| |LiePolynomial| |LieSquareMatrix| |LinGroebnerPackage| |LinearAggregate&| |LinearDependence| |LinearOrdinaryDifferentialOperator| |LinearOrdinaryDifferentialOperator1| |LinearOrdinaryDifferentialOperator2| |LinearOrdinaryDifferentialOperatorFactorizer| |LinearOrdinaryDifferentialOperatorsOps| |LinearPolynomialEquationByFractions| |LinearSystemFromPowerSeriesPackage| |LinearSystemMatrixPackage| |LinearSystemMatrixPackage1| |LinearSystemPolynomialPackage| |LinesOpPack| |LiouvillianFunction| |List| |ListFunctions2| |ListFunctions3| |ListMonoidOps| |ListMultiDictionary| |ListToMap| |LocalParametrizationOfSimplePointPackage| |LyndonWord| |MPolyCatFunctions2| |MPolyCatPolyFactorizer| |MPolyCatRationalFunctionFactorizer| |MRationalFactorize| |MachineComplex| |MachineFloat| |MachineInteger| |Magma| |MakeBinaryCompiledFunction| |MakeFloatCompiledFunction| |MakeFunction| |MakeUnaryCompiledFunction| |MappingPackage1| |MathMLFormat| |Matrix| |MatrixCategory&| |MatrixCommonDenominator| |MatrixLinearAlgebraFunctions| |MergeThing| |MeshCreationRoutinesForThreeDimensions| |ModMonic| |ModularDistinctDegreeFactorizer| |ModularField| |ModularHermitianRowReduction| |ModuleOperator| |MoebiusTransform| |MonogenicAlgebra&| |MonoidRing| |MonoidRingFunctions2| |MonomialExtensionTools| |MultFiniteFactorize| |MultiVariableCalculusFunctions| |Multiset| |MultivariateLifting| |MultivariatePolynomial| |MultivariateSquareFree| |MyExpression| |MyUnivariatePolynomial| |NAGLinkSupportPackage| |NPCoef| |NagEigenPackage| |NagFittingPackage| |NagIntegrationPackage| |NagInterpolationPackage| |NagLapack| |NagLinearEquationSolvingPackage| |NagMatrixOperationsPackage| |NagOptimisationPackage| |NagOrdinaryDifferentialEquationsPackage| |NagPartialDifferentialEquationsPackage| |NagPolynomialRootsPackage| |NagRootFindingPackage| |NagSeriesSummationPackage| |NagSpecialFunctionsPackage| |NeitherSparseOrDensePowerSeries| |NewSparseMultivariatePolynomial| |NewSparseUnivariatePolynomial| |NewtonInterpolation| |NewtonPolygon| |NonLinearFirstOrderODESolver| |NonLinearSolvePackage| |NormRetractPackage| |NormalizationPackage| |NumberFieldIntegralBasis| |NumberFormats| |NumericComplexEigenPackage| |NumericRealEigenPackage| |NumericTubePlot| |NumericalOrdinaryDifferentialEquations| |NumericalQuadrature| |ODEIntegration| |ODEIntensityFunctionsTable| |ODETools| |Octonion| |OctonionCategory&| |OneDimensionalArray| |OneDimensionalArrayAggregate&| |OpenMathError| |OpenMathPackage| |OppositeMonogenicLinearOperator| |OrderedDirectProduct| |OrderedFreeMonoid| |OrderedVariableList| |OrderlyDifferentialPolynomial| |OrdinaryDifferentialRing| |OutputForm| |OutputPackage| |PAdicInteger| |PAdicRational| |PAdicRationalConstructor| |PAdicWildFunctionFieldIntegralBasis| |PackageForAlgebraicFunctionField| |PackageForAlgebraicFunctionFieldOverFiniteField| |PackageForPoly| |PadeApproximants| |Palette| |ParadoxicalCombinatorsForStreams| |ParametricLinearEquations| |ParametrizationPackage| |PartialDifferentialRing&| |PartialFraction| |PartialFractionPackage| |Partition| |PartitionsAndPermutations| |Pattern| |PatternFunctions1| |PatternFunctions2| |PatternMatch| |PatternMatchFunctionSpace| |PatternMatchIntegerNumberSystem| |PatternMatchIntegration| |PatternMatchKernel| |PatternMatchPolynomialCategory| |PatternMatchPushDown| |PatternMatchResult| |PatternMatchResultFunctions2| |PatternMatchTools| |PendantTree| |Permutation| |PermutationGroup| |PermutationGroupExamples| |Pi| |Places| |PlacesOverPseudoAlgebraicClosureOfFiniteField| |PlaneAlgebraicCurvePlot| |Plcs| |Plot| |Plot3D| |PlotTools| |PoincareBirkhoffWittLyndonBasis| |Point| |PointFunctions2| |PointsOfFiniteOrder| |PointsOfFiniteOrderRational| |PointsOfFiniteOrderTools| |PolyGroebner| |Polynomial| |PolynomialCategory&| |PolynomialCategoryQuotientFunctions| |PolynomialDecomposition| |PolynomialFactorizationByRecursion| |PolynomialFactorizationByRecursionUnivariate| |PolynomialFactorizationExplicit&| |PolynomialGcdPackage| |PolynomialIdeals| |PolynomialInterpolation| |PolynomialInterpolationAlgorithms| |PolynomialPackageForCurve| |PolynomialRing| |PolynomialRoots| |PolynomialSetCategory&| |PolynomialSetUtilitiesPackage| |PolynomialSolveByFormulas| |PolynomialSquareFree| |PowerSeriesLimitPackage| |PrecomputedAssociatedEquations| |PrimeField| |PrimitiveArray| |PrimitiveElement| |PrimitiveRatDE| |PrimitiveRatRicDE| |Product| |ProjectiveAlgebraicSetPackage| |ProjectivePlane| |ProjectivePlaneOverPseudoAlgebraicClosureOfFiniteField| |ProjectiveSpace| |PseudoAlgebraicClosureOfAlgExtOfRationalNumber| |PseudoAlgebraicClosureOfFiniteField| |PseudoAlgebraicClosureOfRationalNumber| |PseudoLinearNormalForm| |PseudoRemainderSequence| |PureAlgebraicIntegration| |PushVariables| |QuasiAlgebraicSet| |QuasiAlgebraicSet2| |QuasiComponentPackage| |Quaternion| |QuaternionCategory&| |Queue| |QuotientFieldCategory&| |RadicalEigenPackage| |RadicalFunctionField| |RadicalSolvePackage| |RadixExpansion| |RandomDistributions| |RationalFactorize| |RationalFunction| |RationalFunctionDefiniteIntegration| |RationalFunctionIntegration| |RationalFunctionSign| |RationalIntegration| |RationalInterpolation| |RationalLODE| |RationalRicDE| |RationalUnivariateRepresentationPackage| |RealClosedField&| |RealClosure| |RealPolynomialUtilitiesPackage| |RealRootCharacterizationCategory&| |RealSolvePackage| |RealZeroPackage| |RealZeroPackageQ| |RectangularMatrix| |RecurrenceOperator| |RecursiveAggregate&| |RecursivePolynomialCategory&| |ReductionOfOrder| |Reference| |RegularChain| |RegularSetDecompositionPackage| |RegularTriangularSet| |RegularTriangularSetCategory&| |RegularTriangularSetGcdPackage| |RepresentationPackage1| |RepresentationPackage2| |ResidueRing| |Result| |RetractSolvePackage| |RewriteRule| |RightOpenIntervalRootCharacterization| |RomanNumeral| |RootsFindingPackage| |RoutinesTable| |Ruleset| |SExpression| |SExpressionOf| |ScriptFormulaFormat| |Segment| |SegmentFunctions2| |SequentialDifferentialPolynomial| |Set| |SetAggregate&| |SetOfMIntegersInOneToN| |SimpleAlgebraicExtension| |SimpleFortranProgram| |SingleInteger| |SmithNormalForm| |SortedCache| |SparseMultivariatePolynomial| |SparseMultivariateTaylorSeries| |SparseTable| |SparseUnivariateLaurentSeries| |SparseUnivariatePolynomial| |SparseUnivariatePolynomialExpressions| |SparseUnivariatePuiseuxSeries| |SparseUnivariateSkewPolynomial| |SparseUnivariateTaylorSeries| |SpecialOutputPackage| |SplitHomogeneousDirectProduct| |SplittingNode| |SplittingTree| |SquareFreeQuasiComponentPackage| |SquareFreeRegularSetDecompositionPackage| |SquareFreeRegularTriangularSet| |SquareFreeRegularTriangularSetGcdPackage| |SquareMatrix| |SquareMatrixCategory&| |Stack| |Stream| |StreamAggregate&| |StreamFunctions2| |StreamTaylorSeriesOperations| |StreamTranscendentalFunctions| |String| |StringTable| |StructuralConstantsPackage| |SturmHabichtPackage| |SubResultantPackage| |SubSpace| |SubSpaceComponentProperty| |SupFractionFactorizer| |Switch| |Symbol| |SymbolTable| |SymmetricFunctions| |SymmetricGroupCombinatoricFunctions| |SymmetricPolynomial| |SystemODESolver| |SystemSolvePackage| |Table| |TableAggregate&| |Tableau| |TableauxBumpers| |TangentExpansions| |TaylorSeries| |TaylorSolve| |TexFormat| |TheSymbolTable| |ThreeDimensionalMatrix| |ThreeDimensionalViewport| |ThreeSpace| |TopLevelDrawFunctions| |TopLevelDrawFunctionsForAlgebraicCurves| |TopLevelDrawFunctionsForCompiledFunctions| |TopLevelDrawFunctionsForPoints| |TransSolvePackage| |TransSolvePackageService| |TranscendentalIntegration| |TranscendentalManipulations| |TranscendentalRischDESystem| |Tree| |TriangularSetCategory&| |TrigonometricManipulations| |TubePlot| |TubePlotTools| |Tuple| |TwoDimensionalArray| |TwoDimensionalArrayCategory&| |TwoDimensionalPlotClipping| |TwoDimensionalViewport| |TwoFactorize| |UnaryRecursiveAggregate&| |UniqueFactorizationDomain&| |UnivariateFactorize| |UnivariateFormalPowerSeries| |UnivariateLaurentSeries| |UnivariateLaurentSeriesConstructor| |UnivariatePolynomial| |UnivariatePolynomialCategory&| |UnivariatePolynomialCommonDenominator| |UnivariatePolynomialDecompositionPackage| |UnivariatePolynomialMultiplicationPackage| |UnivariatePolynomialSquareFree| |UnivariatePowerSeriesCategory&| |UnivariatePuiseuxSeries| |UnivariatePuiseuxSeriesConstructor| |UnivariatePuiseuxSeriesWithExponentialSingularity| |UnivariateSkewPolynomial| |UnivariateSkewPolynomialCategory&| |UnivariateTaylorSeries| |UnivariateTaylorSeriesCZero| |UnivariateTaylorSeriesCategory&| |UnivariateTaylorSeriesODESolver| |UniversalSegment| |UserDefinedPartialOrdering| |UserDefinedVariableOrdering| |Vector| |VectorCategory&| |VectorFunctions2| |ViewDefaultsPackage| |ViewportPackage| |WeierstrassPreparation| |WeightedPolynomials| |WildFunctionFieldIntegralBasis| |WuWenTsunTriangularSet| |XDistributedPolynomial| |XPBWPolynomial| |XPolynomial| |XPolynomialRing| |XRecursivePolynomial| |ZeroDimensionalSolvePackage| |d01AgentsPackage| |d01TransformFunctionType| |d01WeightsPackage| |d01ajfAnnaType| |d01akfAnnaType| |d01alfAnnaType| |d01amfAnnaType| |d01apfAnnaType| |d01aqfAnnaType| |d01fcfAnnaType| |d01gbfAnnaType| |d02AgentsPackage| |d02bbfAnnaType| |d02bhfAnnaType| |d02cjfAnnaType| |d02ejfAnnaType| |d03AgentsPackage| |d03eefAnnaType| |e04AgentsPackage| |e04dgfAnnaType| |e04fdfAnnaType| |e04gcfAnnaType| |e04jafAnnaType| |e04mbfAnnaType| |e04nafAnnaType| |e04ucfAnnaType|) -(|AlgebraPackage| |Asp19| |Asp55| |ElementaryFunctionSign| |FiniteSetAggregateFunctions2| |FramedNonAssociativeAlgebra&| |GaloisGroupFactorizer| |GenericNonAssociativeAlgebra| |Guess| |LieSquareMatrix| |MatrixCommonDenominator| |PAdicWildFunctionFieldIntegralBasis| |PermutationGroupExamples| |RealSolvePackage| |TaylorSolve| |ThreeSpace| |TwoDimensionalPlotClipping| |UnivariateTaylorSeriesODESolver|) +(|AffineAlgebraicSetComputeWithGroebnerBasis| |AffineAlgebraicSetComputeWithResultant| |AffinePlane| |AffinePlaneOverPseudoAlgebraicClosureOfFiniteField| |AffineSpace| |AlgFactor| |AlgebraGivenByStructuralConstants| |AlgebraPackage| |AlgebraicFunction| |AlgebraicFunctionField| |AlgebraicHermiteIntegration| |AlgebraicIntegrate| |AlgebraicManipulations| |AlgebraicMultFact| |AlgebraicNumber| |AlgebraicallyClosedField&| |AlgebraicallyClosedFunctionSpace&| |AnnaNumericalIntegrationPackage| |AnnaNumericalOptimizationPackage| |AnnaOrdinaryDifferentialEquationPackage| |AnnaPartialDifferentialEquationPackage| |AntiSymm| |Any| |ApplicationProgramInterface| |ApplyRules| |ArrayStack| |Asp1| |Asp10| |Asp12| |Asp19| |Asp20| |Asp24| |Asp27| |Asp28| |Asp29| |Asp30| |Asp31| |Asp33| |Asp34| |Asp35| |Asp4| |Asp41| |Asp42| |Asp49| |Asp50| |Asp55| |Asp6| |Asp7| |Asp73| |Asp74| |Asp77| |Asp78| |Asp8| |Asp80| |Asp9| |AssociatedEquations| |AssociatedJordanAlgebra| |AssociatedLieAlgebra| |AssociationList| |AttachPredicates| |AttributeButtons| |AxiomServer| |BagAggregate&| |BalancedBinaryTree| |BalancedFactorisation| |BalancedPAdicInteger| |BalancedPAdicRational| |BasicFunctions| |BasicOperator| |BasicOperatorFunctions1| |Bezier| |BinaryExpansion| |BinaryRecursiveAggregate&| |BinarySearchTree| |BinaryTournament| |BinaryTree| |Bits| |BlowUpPackage| |BlowUpWithHamburgerNoether| |BlowUpWithQuadTrans| |BoundIntegerRoots| |CRApackage| |CardinalNumber| |CartesianTensor| |CartesianTensorFunctions2| |Character| |CharacterClass| |ChineseRemainderToolsForIntegralBases| |CliffordAlgebra| |CoerceVectorMatrixPackage| |Collection&| |Color| |CombinatorialFunction| |CommonOperators| |Commutator| |Complex| |ComplexCategory&| |ComplexDoubleFloatMatrix| |ComplexDoubleFloatVector| |ComplexFactorization| |ComplexIntegerSolveLinearPolynomialEquation| |ComplexRootFindingPackage| |ComplexRootPackage| |ComplexTrigonometricManipulations| |ConstantLODE| |ContinuedFraction| |CycleIndicators| |CyclotomicPolynomialPackage| |DataList| |Database| |DeRhamComplex| |DecimalExpansion| |DefiniteIntegrationTools| |DegreeReductionPackage| |DenavitHartenbergMatrix| |Dequeue| |DesingTree| |DesingTreePackage| |Dictionary&| |DictionaryOperations&| |DifferentialExtension&| |DifferentialPolynomialCategory&| |DifferentialSparseMultivariatePolynomial| |DiophantineSolutionPackage| |DirectProduct| |DirectProductCategory&| |DirectProductMatrixModule| |DirectProductModule| |DirichletRing| |DisplayPackage| |DistinctDegreeFactorize| |DistributedMultivariatePolynomial| |Divisor| |DoubleFloat| |DoubleFloatMatrix| |DoubleFloatVector| |DrawComplex| |DrawOption| |DrawOptionFunctions0| |DrawOptionFunctions1| |EigenPackage| |ElementaryFunction| |ElementaryFunctionDefiniteIntegration| |ElementaryFunctionLODESolver| |ElementaryFunctionODESolver| |ElementaryFunctionSign| |ElementaryFunctionStructurePackage| |ElementaryIntegration| |ElementaryRischDE| |ElementaryRischDESystem| |EllipticFunctionsUnivariateTaylorSeries| |EqTable| |Equation| |ErrorFunctions| |EuclideanDomain&| |EuclideanGroebnerBasisPackage| |EuclideanModularRing| |Evalable&| |EvaluateCycleIndicators| |ExpertSystemContinuityPackage| |ExpertSystemToolsPackage| |ExpertSystemToolsPackage1| |ExpertSystemToolsPackage2| |ExponentialExpansion| |ExponentialOfUnivariatePuiseuxSeries| |Export3D| |Expression| |ExpressionSolve| |ExpressionSpace&| |ExpressionSpaceFunctions1| |ExpressionSpaceFunctions2| |ExpressionSpaceODESolver| |ExpressionToOpenMath| |ExpressionToUnivariatePowerSeries| |ExpressionTubePlot| |ExtAlgBasis| |ExtensibleLinearAggregate&| |FGLMIfCanPackage| |Factored| |FactoredFunctionUtilities| |FactoredFunctions| |FactoredFunctions2| |FactoringUtilities| |FactorisationOverPseudoAlgebraicClosureOfAlgExtOfRationalNumber| |FactorisationOverPseudoAlgebraicClosureOfRationalNumber| |Field&| |FiniteAbelianMonoidRing&| |FiniteAlgebraicExtensionField&| |FiniteField| |FiniteFieldCategory&| |FiniteFieldCyclicGroup| |FiniteFieldCyclicGroupExtension| |FiniteFieldCyclicGroupExtensionByPolynomial| |FiniteFieldExtension| |FiniteFieldExtensionByPolynomial| |FiniteFieldFactorizationWithSizeParseBySideEffect| |FiniteFieldFunctions| |FiniteFieldNormalBasis| |FiniteFieldNormalBasisExtension| |FiniteFieldNormalBasisExtensionByPolynomial| |FiniteFieldPolynomialPackage| |FiniteFieldSolveLinearPolynomialEquation| |FiniteFieldSquareFreeDecomposition| |FiniteLinearAggregateFunctions2| |FiniteRankAlgebra&| |FiniteRankNonAssociativeAlgebra&| |FiniteSetAggregate&| |FiniteSetAggregateFunctions2| |FlexibleArray| |Float| |FloatingComplexPackage| |FloatingRealPackage| |FortranCode| |FortranCodePackage1| |FortranExpression| |FortranOutputStackPackage| |FortranPackage| |FortranProgram| |FortranScalarType| |FortranTemplate| |FortranType| |Fraction| |FractionFreeFastGaussian| |FractionFreeFastGaussianFractions| |FractionalIdeal| |FramedAlgebra&| |FramedNonAssociativeAlgebra&| |FreeAbelianGroup| |FreeAbelianMonoid| |FreeGroup| |FreeModule| |FreeModule1| |FreeMonoid| |FreeNilpotentLie| |FullPartialFractionExpansion| |FullyEvalableOver&| |FunctionFieldCategory&| |FunctionFieldIntegralBasis| |FunctionSpace&| |FunctionSpaceAssertions| |FunctionSpaceAttachPredicates| |FunctionSpaceComplexIntegration| |FunctionSpaceIntegration| |FunctionSpacePrimitiveElement| |FunctionSpaceReduce| |FunctionSpaceSum| |FunctionSpaceToExponentialExpansion| |FunctionSpaceToUnivariatePowerSeries| |FunctionSpaceUnivariatePolynomialFactor| |FunctionalSpecialFunction| |GaloisGroupFactorizationUtilities| |GaloisGroupFactorizer| |GaloisGroupPolynomialUtilities| |GaussianFactorizationPackage| |GcdDomain&| |GenExEuclid| |GenUFactorize| |GeneralDistributedMultivariatePolynomial| |GeneralHenselPackage| |GeneralPackageForAlgebraicFunctionField| |GeneralPolynomialGcdPackage| |GeneralPolynomialSet| |GeneralSparseTable| |GeneralTriangularSet| |GeneralUnivariatePowerSeries| |GenericNonAssociativeAlgebra| |GenusZeroIntegration| |GnuDraw| |GosperSummationMethod| |GraphImage| |GroebnerFactorizationPackage| |GroebnerInternalPackage| |GroebnerPackage| |GroebnerSolve| |Guess| |GuessAlgebraicNumber| |GuessFinite| |GuessInteger| |GuessOption| |GuessOptionFunctions0| |GuessPolynomial| |GuessUnivariatePolynomial| |HTMLFormat| |HallBasis| |HashTable| |Heap| |HeuGcd| |HexadecimalExpansion| |HomogeneousAggregate&| |HomogeneousDirectProduct| |HomogeneousDistributedMultivariatePolynomial| |HyperellipticFiniteDivisor| |IdealDecompositionPackage| |IndexedAggregate&| |IndexedBits| |IndexedDirectProductObject| |IndexedExponents| |IndexedFlexibleArray| |IndexedList| |IndexedMatrix| |IndexedOneDimensionalArray| |IndexedString| |IndexedTwoDimensionalArray| |IndexedVector| |InfClsPt| |InfinitlyClosePoint| |InfinitlyClosePointOverPseudoAlgebraicClosureOfFiniteField| |InnerAlgFactor| |InnerAlgebraicNumber| |InnerEvalable&| |InnerFiniteField| |InnerFreeAbelianMonoid| |InnerIndexedTwoDimensionalArray| |InnerMatrixLinearAlgebraFunctions| |InnerMatrixQuotientFieldFunctions| |InnerModularGcd| |InnerMultFact| |InnerNormalBasisFieldFunctions| |InnerNumericEigenPackage| |InnerNumericFloatSolvePackage| |InnerPAdicInteger| |InnerPolySum| |InnerPrimeField| |InnerSparseUnivariatePowerSeries| |InnerTable| |InnerTrigonometricManipulations| |InputForm| |InputFormFunctions1| |Integer| |IntegerCombinatoricFunctions| |IntegerFactorizationPackage| |IntegerNumberTheoryFunctions| |IntegerPrimesPackage| |IntegerRoots| |IntegerSolveLinearPolynomialEquation| |IntegrationFunctionsTable| |IntegrationResult| |IntegrationResultFunctions2| |IntegrationResultRFToFunction| |IntegrationResultToFunction| |IntegrationTools| |InterfaceGroebnerPackage| |InternalRationalUnivariateRepresentationPackage| |InterpolateFormsPackage| |IntersectionDivisorPackage| |Interval| |InverseLaplaceTransform| |IrrRepSymNatPackage| |Kernel| |KernelFunctions2| |KeyedAccessFile| |KeyedDictionary&| |Kovacic| |LaplaceTransform| |LaurentPolynomial| |LazardSetSolvingPackage| |LazyStreamAggregate&| |LeadingCoefDetermination| |LexTriangularPackage| |Library| |LieExponentials| |LiePolynomial| |LieSquareMatrix| |LinGroebnerPackage| |LinearAggregate&| |LinearDependence| |LinearOrdinaryDifferentialOperator| |LinearOrdinaryDifferentialOperator1| |LinearOrdinaryDifferentialOperator2| |LinearOrdinaryDifferentialOperatorFactorizer| |LinearOrdinaryDifferentialOperatorsOps| |LinearPolynomialEquationByFractions| |LinearSystemFromPowerSeriesPackage| |LinearSystemMatrixPackage| |LinearSystemMatrixPackage1| |LinearSystemPolynomialPackage| |LinesOpPack| |LiouvillianFunction| |List| |ListFunctions2| |ListFunctions3| |ListMonoidOps| |ListMultiDictionary| |ListToMap| |LocalParametrizationOfSimplePointPackage| |LyndonWord| |MPolyCatFunctions2| |MPolyCatPolyFactorizer| |MPolyCatRationalFunctionFactorizer| |MRationalFactorize| |MachineComplex| |MachineFloat| |MachineInteger| |Magma| |MakeBinaryCompiledFunction| |MakeFloatCompiledFunction| |MakeFunction| |MakeUnaryCompiledFunction| |MappingPackage1| |MathMLFormat| |Matrix| |MatrixCategory&| |MatrixCommonDenominator| |MatrixLinearAlgebraFunctions| |MergeThing| |MeshCreationRoutinesForThreeDimensions| |ModMonic| |ModularDistinctDegreeFactorizer| |ModularField| |ModularHermitianRowReduction| |ModuleOperator| |MoebiusTransform| |MonogenicAlgebra&| |MonoidRing| |MonoidRingFunctions2| |MonomialExtensionTools| |MultFiniteFactorize| |MultiVariableCalculusFunctions| |Multiset| |MultivariateLifting| |MultivariatePolynomial| |MultivariateSquareFree| |MyExpression| |MyUnivariatePolynomial| |NAGLinkSupportPackage| |NPCoef| |NagEigenPackage| |NagFittingPackage| |NagIntegrationPackage| |NagInterpolationPackage| |NagLapack| |NagLinearEquationSolvingPackage| |NagMatrixOperationsPackage| |NagOptimisationPackage| |NagOrdinaryDifferentialEquationsPackage| |NagPartialDifferentialEquationsPackage| |NagPolynomialRootsPackage| |NagRootFindingPackage| |NagSeriesSummationPackage| |NagSpecialFunctionsPackage| |NeitherSparseOrDensePowerSeries| |NewSparseMultivariatePolynomial| |NewSparseUnivariatePolynomial| |NewtonInterpolation| |NewtonPolygon| |NonLinearFirstOrderODESolver| |NonLinearSolvePackage| |NormRetractPackage| |NormalizationPackage| |NumberFieldIntegralBasis| |NumberFormats| |NumericComplexEigenPackage| |NumericRealEigenPackage| |NumericTubePlot| |NumericalOrdinaryDifferentialEquations| |NumericalQuadrature| |ODEIntegration| |ODEIntensityFunctionsTable| |ODETools| |Octonion| |OctonionCategory&| |OneDimensionalArray| |OneDimensionalArrayAggregate&| |OpenMathError| |OpenMathPackage| |OppositeMonogenicLinearOperator| |OrderedDirectProduct| |OrderedFreeMonoid| |OrderedVariableList| |OrderlyDifferentialPolynomial| |OrdinaryDifferentialRing| |OutputForm| |OutputPackage| |PAdicInteger| |PAdicRational| |PAdicRationalConstructor| |PAdicWildFunctionFieldIntegralBasis| |PackageForAlgebraicFunctionField| |PackageForAlgebraicFunctionFieldOverFiniteField| |PackageForPoly| |PadeApproximants| |Palette| |ParadoxicalCombinatorsForStreams| |ParametricLinearEquations| |ParametrizationPackage| |PartialDifferentialRing&| |PartialFraction| |PartialFractionPackage| |Partition| |PartitionsAndPermutations| |Pattern| |PatternFunctions1| |PatternFunctions2| |PatternMatch| |PatternMatchFunctionSpace| |PatternMatchIntegerNumberSystem| |PatternMatchIntegration| |PatternMatchKernel| |PatternMatchPolynomialCategory| |PatternMatchPushDown| |PatternMatchResult| |PatternMatchResultFunctions2| |PatternMatchTools| |PendantTree| |Permutation| |PermutationGroup| |PermutationGroupExamples| |Pi| |Places| |PlacesOverPseudoAlgebraicClosureOfFiniteField| |PlaneAlgebraicCurvePlot| |Plcs| |Plot| |Plot3D| |PlotTools| |PoincareBirkhoffWittLyndonBasis| |Point| |PointFunctions2| |PointsOfFiniteOrder| |PointsOfFiniteOrderRational| |PointsOfFiniteOrderTools| |PolyGroebner| |Polynomial| |PolynomialCategory&| |PolynomialCategoryQuotientFunctions| |PolynomialDecomposition| |PolynomialFactorizationByRecursion| |PolynomialFactorizationByRecursionUnivariate| |PolynomialFactorizationExplicit&| |PolynomialGcdPackage| |PolynomialIdeals| |PolynomialInterpolation| |PolynomialInterpolationAlgorithms| |PolynomialPackageForCurve| |PolynomialRing| |PolynomialRoots| |PolynomialSetCategory&| |PolynomialSetUtilitiesPackage| |PolynomialSolveByFormulas| |PolynomialSquareFree| |PowerSeriesLimitPackage| |PrecomputedAssociatedEquations| |PrimeField| |PrimitiveArray| |PrimitiveElement| |PrimitiveRatDE| |PrimitiveRatRicDE| |Product| |ProjectiveAlgebraicSetPackage| |ProjectivePlane| |ProjectivePlaneOverPseudoAlgebraicClosureOfFiniteField| |ProjectiveSpace| |PseudoAlgebraicClosureOfAlgExtOfRationalNumber| |PseudoAlgebraicClosureOfFiniteField| |PseudoAlgebraicClosureOfRationalNumber| |PseudoLinearNormalForm| |PseudoRemainderSequence| |PureAlgebraicIntegration| |PushVariables| |QuasiAlgebraicSet| |QuasiAlgebraicSet2| |QuasiComponentPackage| |Quaternion| |QuaternionCategory&| |Queue| |QuotientFieldCategory&| |RadicalEigenPackage| |RadicalFunctionField| |RadicalSolvePackage| |RadixExpansion| |RandomDistributions| |RationalFactorize| |RationalFunction| |RationalFunctionDefiniteIntegration| |RationalFunctionIntegration| |RationalFunctionSign| |RationalIntegration| |RationalInterpolation| |RationalLODE| |RationalRicDE| |RationalUnivariateRepresentationPackage| |RealClosedField&| |RealClosure| |RealPolynomialUtilitiesPackage| |RealRootCharacterizationCategory&| |RealSolvePackage| |RealZeroPackage| |RealZeroPackageQ| |RectangularMatrix| |RecurrenceOperator| |RecursiveAggregate&| |RecursivePolynomialCategory&| |ReductionOfOrder| |Reference| |RegularChain| |RegularSetDecompositionPackage| |RegularTriangularSet| |RegularTriangularSetCategory&| |RegularTriangularSetGcdPackage| |RepresentationPackage1| |RepresentationPackage2| |ResidueRing| |Result| |RetractSolvePackage| |RewriteRule| |RightOpenIntervalRootCharacterization| |RomanNumeral| |RootsFindingPackage| |RoutinesTable| |Ruleset| |SExpression| |SExpressionOf| |ScriptFormulaFormat| |Segment| |SegmentFunctions2| |SequentialDifferentialPolynomial| |Set| |SetAggregate&| |SetOfMIntegersInOneToN| |SimpleAlgebraicExtension| |SimpleFortranProgram| |SingleInteger| |SmithNormalForm| |SortedCache| |SparseMultivariatePolynomial| |SparseMultivariateTaylorSeries| |SparseTable| |SparseUnivariateLaurentSeries| |SparseUnivariatePolynomial| |SparseUnivariatePolynomialExpressions| |SparseUnivariatePuiseuxSeries| |SparseUnivariateSkewPolynomial| |SparseUnivariateTaylorSeries| |SpecialOutputPackage| |SplitHomogeneousDirectProduct| |SplittingNode| |SplittingTree| |SquareFreeQuasiComponentPackage| |SquareFreeRegularSetDecompositionPackage| |SquareFreeRegularTriangularSet| |SquareFreeRegularTriangularSetGcdPackage| |SquareMatrix| |SquareMatrixCategory&| |Stack| |Stream| |StreamAggregate&| |StreamFunctions2| |StreamTaylorSeriesOperations| |StreamTranscendentalFunctions| |String| |StringTable| |StructuralConstantsPackage| |SturmHabichtPackage| |SubResultantPackage| |SubSpace| |SubSpaceComponentProperty| |SupFractionFactorizer| |Switch| |Symbol| |SymbolTable| |SymmetricFunctions| |SymmetricGroupCombinatoricFunctions| |SymmetricPolynomial| |SystemODESolver| |SystemSolvePackage| |Table| |TableAggregate&| |Tableau| |TableauxBumpers| |TangentExpansions| |TaylorSeries| |TaylorSolve| |TexFormat| |TheSymbolTable| |ThreeDimensionalMatrix| |ThreeDimensionalViewport| |ThreeSpace| |TopLevelDrawFunctions| |TopLevelDrawFunctionsForAlgebraicCurves| |TopLevelDrawFunctionsForCompiledFunctions| |TopLevelDrawFunctionsForPoints| |TransSolvePackage| |TransSolvePackageService| |TranscendentalIntegration| |TranscendentalManipulations| |TranscendentalRischDESystem| |Tree| |TriangularSetCategory&| |TrigonometricManipulations| |TubePlot| |TubePlotTools| |Tuple| |TwoDimensionalArray| |TwoDimensionalArrayCategory&| |TwoDimensionalPlotClipping| |TwoDimensionalViewport| |TwoFactorize| |UnaryRecursiveAggregate&| |UniqueFactorizationDomain&| |UnivariateFactorize| |UnivariateFormalPowerSeries| |UnivariateLaurentSeries| |UnivariateLaurentSeriesConstructor| |UnivariatePolynomial| |UnivariatePolynomialCategory&| |UnivariatePolynomialCommonDenominator| |UnivariatePolynomialDecompositionPackage| |UnivariatePolynomialMultiplicationPackage| |UnivariatePolynomialSquareFree| |UnivariatePowerSeriesCategory&| |UnivariatePuiseuxSeries| |UnivariatePuiseuxSeriesConstructor| |UnivariatePuiseuxSeriesWithExponentialSingularity| |UnivariateSkewPolynomial| |UnivariateSkewPolynomialCategory&| |UnivariateTaylorSeries| |UnivariateTaylorSeriesCZero| |UnivariateTaylorSeriesCategory&| |UnivariateTaylorSeriesODESolver| |UniversalSegment| |UserDefinedPartialOrdering| |UserDefinedVariableOrdering| |Vector| |VectorCategory&| |VectorFunctions2| |ViewDefaultsPackage| |ViewportPackage| |WeierstrassPreparation| |WeightedPolynomials| |WildFunctionFieldIntegralBasis| |WuWenTsunTriangularSet| |XDistributedPolynomial| |XPBWPolynomial| |XPolynomial| |XPolynomialRing| |XRecursivePolynomial| |ZeroDimensionalSolvePackage| |d01AgentsPackage| |d01TransformFunctionType| |d01WeightsPackage| |d01ajfAnnaType| |d01akfAnnaType| |d01alfAnnaType| |d01amfAnnaType| |d01apfAnnaType| |d01aqfAnnaType| |d01fcfAnnaType| |d01gbfAnnaType| |d02AgentsPackage| |d02bbfAnnaType| |d02bhfAnnaType| |d02cjfAnnaType| |d02ejfAnnaType| |d03AgentsPackage| |d03eefAnnaType| |e04AgentsPackage| |e04dgfAnnaType| |e04fdfAnnaType| |e04gcfAnnaType| |e04jafAnnaType| |e04mbfAnnaType| |e04nafAnnaType| |e04ucfAnnaType|) +(|AlgebraPackage| |Asp19| |Asp55| |DirichletRing| |ElementaryFunctionSign| |FiniteSetAggregateFunctions2| |FramedNonAssociativeAlgebra&| |GaloisGroupFactorizer| |GenericNonAssociativeAlgebra| |Guess| |LieSquareMatrix| |MatrixCommonDenominator| |PAdicWildFunctionFieldIntegralBasis| |PermutationGroupExamples| |RealSolvePackage| |TaylorSolve| |ThreeSpace| |TwoDimensionalPlotClipping| |UnivariateTaylorSeriesODESolver|) (|FreeGroup| |FreeMonoid| |InnerFreeAbelianMonoid|) (|IntegerFactorizationPackage|) (|Expression| |FunctionSpace&| |RationalFunction|) @@ -324,7 +326,7 @@ (|MappingPackage1|) (|MappingPackage2|) (|MappingPackage3|) -(|AlgebraGivenByStructuralConstants| |AlgebraPackage| |AlgebraicFunctionField| |AlgebraicHermiteIntegration| |AlgebraicNumber| |AnnaNumericalOptimizationPackage| |AnnaPartialDifferentialEquationPackage| |Asp19| |Asp20| |Asp27| |Asp28| |Asp30| |Asp31| |Asp34| |Asp35| |Asp41| |Asp42| |Asp55| |Asp74| |Asp77| |Asp80| |AssociatedEquations| |AssociatedJordanAlgebra| |AssociatedLieAlgebra| |BalancedPAdicRational| |BinaryExpansion| |CharacteristicPolynomialPackage| |ChineseRemainderToolsForIntegralBases| |CliffordAlgebra| |CoerceVectorMatrixPackage| |Complex| |ComplexCategory&| |CycleIndicators| |DecimalExpansion| |DenavitHartenbergMatrix| |DifferentialSparseMultivariatePolynomial| |DirectProduct| |DirectProductCategory&| |DirectProductMatrixModule| |DirectProductModule| |DistributedMultivariatePolynomial| |EigenPackage| |ElementaryFunctionLODESolver| |ElementaryFunctionODESolver| |ExpertSystemToolsPackage| |ExpertSystemToolsPackage2| |ExponentialExpansion| |Expression| |FiniteAlgebraicExtensionField&| |FiniteField| |FiniteFieldCategory&| |FiniteFieldCyclicGroup| |FiniteFieldCyclicGroupExtension| |FiniteFieldCyclicGroupExtensionByPolynomial| |FiniteFieldExtension| |FiniteFieldExtensionByPolynomial| |FiniteFieldFunctions| |FiniteFieldHomomorphisms| |FiniteFieldNormalBasis| |FiniteFieldNormalBasisExtension| |FiniteFieldNormalBasisExtensionByPolynomial| |FiniteFieldPolynomialPackage| |FiniteRankAlgebra&| |FiniteRankNonAssociativeAlgebra&| |FortranCode| |Fraction| |FractionFreeFastGaussian| |FractionFreeFastGaussianFractions| |FractionalIdeal| |FramedAlgebra&| |FramedModule| |FramedNonAssociativeAlgebra&| |FullyLinearlyExplicitRingOver&| |FunctionFieldCategory&| |FunctionFieldIntegralBasis| |GeneralDistributedMultivariatePolynomial| |GenericNonAssociativeAlgebra| |GosperSummationMethod| |Guess| |HexadecimalExpansion| |HomogeneousDirectProduct| |HomogeneousDistributedMultivariatePolynomial| |IndexedVector| |InnerAlgebraicNumber| |InnerFiniteField| |InnerNormalBasisFieldFunctions| |InnerNumericEigenPackage| |InnerPrimeField| |Integer| |IntegralBasisPolynomialTools| |IntegralBasisTools| |InterpolateFormsPackage| |IrrRepSymNatPackage| |LieSquareMatrix| |LinGroebnerPackage| |LinearDependence| |LinearOrdinaryDifferentialOperatorsOps| |LinearSystemFromPowerSeriesPackage| |LinearSystemMatrixPackage1| |LinearSystemPolynomialPackage| |LinesOpPack| |MachineComplex| |MachineInteger| |Matrix| |MatrixCommonDenominator| |MatrixLinearAlgebraFunctions| |ModMonic| |ModularHermitianRowReduction| |MonogenicAlgebra&| |MultiVariableCalculusFunctions| |MultivariatePolynomial| |MyExpression| |MyUnivariatePolynomial| |NAGLinkSupportPackage| |NagEigenPackage| |NagFittingPackage| |NagIntegrationPackage| |NagInterpolationPackage| |NagLapack| |NagLinearEquationSolvingPackage| |NagMatrixOperationsPackage| |NagOptimisationPackage| |NagOrdinaryDifferentialEquationsPackage| |NagPartialDifferentialEquationsPackage| |NagPolynomialRootsPackage| |NagRootFindingPackage| |NagSeriesSummationPackage| |NewSparseMultivariatePolynomial| |NewSparseUnivariatePolynomial| |NumberFieldIntegralBasis| |NumericComplexEigenPackage| |NumericRealEigenPackage| |ODETools| |OrderedDirectProduct| |OrderlyDifferentialPolynomial| |PAdicRational| |PAdicRationalConstructor| |PAdicWildFunctionFieldIntegralBasis| |PackageForAlgebraicFunctionField| |PackageForAlgebraicFunctionFieldOverFiniteField| |ParametricLinearEquations| |Point| |Polynomial| |PolynomialCategory&| |PolynomialFactorizationExplicit&| |PrecomputedAssociatedEquations| |PrimeField| |PseudoAlgebraicClosureOfFiniteField| |PseudoLinearNormalForm| |PureAlgebraicLODE| |Quaternion| |QuotientFieldCategory&| |RadicalEigenPackage| |RadicalFunctionField| |RadixExpansion| |RationalInterpolation| |RationalLODE| |RectangularMatrix| |RectangularMatrixCategoryFunctions2| |ReduceLODE| |RepresentationPackage1| |RepresentationPackage2| |RomanNumeral| |SequentialDifferentialPolynomial| |SimpleAlgebraicExtension| |SingleInteger| |SmithNormalForm| |SparseMultivariatePolynomial| |SparseUnivariateLaurentSeries| |SparseUnivariatePolynomial| |SparseUnivariatePolynomialExpressions| |SplitHomogeneousDirectProduct| |SquareMatrix| |SquareMatrixCategory&| |StorageEfficientMatrixOperations| |StructuralConstantsPackage| |SymmetricGroupCombinatoricFunctions| |SystemODESolver| |TransSolvePackageService| |TranscendentalIntegration| |TranscendentalRischDESystem| |UnivariateLaurentSeries| |UnivariateLaurentSeriesConstructor| |UnivariatePolynomial| |Vector| |VectorCategory&| |WildFunctionFieldIntegralBasis| |d01alfAnnaType| |d01fcfAnnaType| |d01gbfAnnaType| |d02AgentsPackage| |d02bbfAnnaType| |d02bhfAnnaType| |d02cjfAnnaType| |d02ejfAnnaType| |d03eefAnnaType| |e04AgentsPackage| |e04dgfAnnaType| |e04fdfAnnaType| |e04gcfAnnaType| |e04jafAnnaType| |e04mbfAnnaType| |e04nafAnnaType| |e04ucfAnnaType|) +(|AlgebraGivenByStructuralConstants| |AlgebraPackage| |AlgebraicFunctionField| |AlgebraicHermiteIntegration| |AlgebraicNumber| |AnnaNumericalOptimizationPackage| |AnnaPartialDifferentialEquationPackage| |Asp19| |Asp20| |Asp27| |Asp28| |Asp30| |Asp31| |Asp34| |Asp35| |Asp41| |Asp42| |Asp55| |Asp74| |Asp77| |Asp80| |AssociatedEquations| |AssociatedJordanAlgebra| |AssociatedLieAlgebra| |BalancedPAdicRational| |BinaryExpansion| |CharacteristicPolynomialPackage| |ChineseRemainderToolsForIntegralBases| |CliffordAlgebra| |CoerceVectorMatrixPackage| |Complex| |ComplexCategory&| |ComplexDoubleFloatVector| |CycleIndicators| |DecimalExpansion| |DenavitHartenbergMatrix| |DifferentialSparseMultivariatePolynomial| |DirectProduct| |DirectProductCategory&| |DirectProductMatrixModule| |DirectProductModule| |DistributedMultivariatePolynomial| |DoubleFloatVector| |EigenPackage| |ElementaryFunctionLODESolver| |ElementaryFunctionODESolver| |ExpertSystemToolsPackage| |ExpertSystemToolsPackage2| |ExponentialExpansion| |Expression| |FiniteAlgebraicExtensionField&| |FiniteField| |FiniteFieldCategory&| |FiniteFieldCyclicGroup| |FiniteFieldCyclicGroupExtension| |FiniteFieldCyclicGroupExtensionByPolynomial| |FiniteFieldExtension| |FiniteFieldExtensionByPolynomial| |FiniteFieldFunctions| |FiniteFieldHomomorphisms| |FiniteFieldNormalBasis| |FiniteFieldNormalBasisExtension| |FiniteFieldNormalBasisExtensionByPolynomial| |FiniteFieldPolynomialPackage| |FiniteRankAlgebra&| |FiniteRankNonAssociativeAlgebra&| |FortranCode| |Fraction| |FractionFreeFastGaussian| |FractionFreeFastGaussianFractions| |FractionalIdeal| |FramedAlgebra&| |FramedModule| |FramedNonAssociativeAlgebra&| |FullyLinearlyExplicitRingOver&| |FunctionFieldCategory&| |FunctionFieldIntegralBasis| |GeneralDistributedMultivariatePolynomial| |GenericNonAssociativeAlgebra| |GosperSummationMethod| |Guess| |HexadecimalExpansion| |HomogeneousDirectProduct| |HomogeneousDistributedMultivariatePolynomial| |IndexedVector| |InnerAlgebraicNumber| |InnerFiniteField| |InnerNormalBasisFieldFunctions| |InnerNumericEigenPackage| |InnerPrimeField| |Integer| |IntegralBasisPolynomialTools| |IntegralBasisTools| |InterpolateFormsPackage| |IrrRepSymNatPackage| |LieSquareMatrix| |LinGroebnerPackage| |LinearDependence| |LinearOrdinaryDifferentialOperatorsOps| |LinearSystemFromPowerSeriesPackage| |LinearSystemMatrixPackage1| |LinearSystemPolynomialPackage| |LinesOpPack| |MachineComplex| |MachineInteger| |Matrix| |MatrixCommonDenominator| |MatrixLinearAlgebraFunctions| |ModMonic| |ModularHermitianRowReduction| |MonogenicAlgebra&| |MultiVariableCalculusFunctions| |MultivariatePolynomial| |MyExpression| |MyUnivariatePolynomial| |NAGLinkSupportPackage| |NagEigenPackage| |NagFittingPackage| |NagIntegrationPackage| |NagInterpolationPackage| |NagLapack| |NagLinearEquationSolvingPackage| |NagMatrixOperationsPackage| |NagOptimisationPackage| |NagOrdinaryDifferentialEquationsPackage| |NagPartialDifferentialEquationsPackage| |NagPolynomialRootsPackage| |NagRootFindingPackage| |NagSeriesSummationPackage| |NewSparseMultivariatePolynomial| |NewSparseUnivariatePolynomial| |NumberFieldIntegralBasis| |NumericComplexEigenPackage| |NumericRealEigenPackage| |ODETools| |OrderedDirectProduct| |OrderlyDifferentialPolynomial| |PAdicRational| |PAdicRationalConstructor| |PAdicWildFunctionFieldIntegralBasis| |PackageForAlgebraicFunctionField| |PackageForAlgebraicFunctionFieldOverFiniteField| |ParametricLinearEquations| |Point| |Polynomial| |PolynomialCategory&| |PolynomialFactorizationExplicit&| |PrecomputedAssociatedEquations| |PrimeField| |PseudoAlgebraicClosureOfFiniteField| |PseudoLinearNormalForm| |PureAlgebraicLODE| |Quaternion| |QuotientFieldCategory&| |RadicalEigenPackage| |RadicalFunctionField| |RadixExpansion| |RationalInterpolation| |RationalLODE| |RectangularMatrix| |RectangularMatrixCategoryFunctions2| |ReduceLODE| |RepresentationPackage1| |RepresentationPackage2| |RomanNumeral| |SequentialDifferentialPolynomial| |SimpleAlgebraicExtension| |SingleInteger| |SmithNormalForm| |SparseMultivariatePolynomial| |SparseUnivariateLaurentSeries| |SparseUnivariatePolynomial| |SparseUnivariatePolynomialExpressions| |SplitHomogeneousDirectProduct| |SquareMatrix| |SquareMatrixCategory&| |StorageEfficientMatrixOperations| |StructuralConstantsPackage| |SymmetricGroupCombinatoricFunctions| |SystemODESolver| |TransSolvePackageService| |TranscendentalIntegration| |TranscendentalRischDESystem| |UnivariateLaurentSeries| |UnivariateLaurentSeriesConstructor| |UnivariatePolynomial| |Vector| |VectorCategory&| |WildFunctionFieldIntegralBasis| |d01alfAnnaType| |d01fcfAnnaType| |d01gbfAnnaType| |d02AgentsPackage| |d02bbfAnnaType| |d02bhfAnnaType| |d02cjfAnnaType| |d02ejfAnnaType| |d03eefAnnaType| |e04AgentsPackage| |e04dgfAnnaType| |e04fdfAnnaType| |e04gcfAnnaType| |e04jafAnnaType| |e04mbfAnnaType| |e04nafAnnaType| |e04ucfAnnaType|) (|AlgebraicHermiteIntegration| |Asp19| |Asp20| |Asp31| |Asp35| |Asp41| |Asp42| |Asp74| |Asp77| |Asp80| |CoerceVectorMatrixPackage| |ComplexCategory&| |FractionalIdeal| |FramedAlgebra&| |FunctionFieldCategory&| |InnerMatrixQuotientFieldFunctions| |LinearDependence| |MatrixCommonDenominator| |MatrixLinearAlgebraFunctions| |ReduceLODE| |SimpleAlgebraicExtension| |SmithNormalForm|) (|AlgebraicFunctionField| |FractionalIdeal| |FramedModule| |FunctionFieldCategory&| |QuotientFieldCategory&|) (|IndexedMatrix| |Matrix|) @@ -364,7 +366,7 @@ (|BlowUpPackage|) (|ElementaryFunctionODESolver|) (|RationalRicDE|) -(|AbelianGroup&| |AbelianMonoid&| |AbelianMonoidRing&| |AffineAlgebraicSetComputeWithGroebnerBasis| |AffineAlgebraicSetComputeWithResultant| |AffinePlane| |AffinePlaneOverPseudoAlgebraicClosureOfFiniteField| |AffineSpace| |Aggregate&| |AlgFactor| |AlgebraGivenByStructuralConstants| |AlgebraPackage| |AlgebraicFunction| |AlgebraicFunctionField| |AlgebraicHermiteIntegration| |AlgebraicIntegrate| |AlgebraicIntegration| |AlgebraicManipulations| |AlgebraicNumber| |AlgebraicallyClosedField&| |AlgebraicallyClosedFunctionSpace&| |AnnaNumericalIntegrationPackage| |AnnaNumericalOptimizationPackage| |AnnaOrdinaryDifferentialEquationPackage| |AnnaPartialDifferentialEquationPackage| |AntiSymm| |ApplyRules| |ApplyUnivariateSkewPolynomial| |ArrayStack| |Asp19| |Asp20| |Asp27| |Asp28| |Asp30| |Asp31| |Asp34| |Asp35| |Asp41| |Asp42| |Asp55| |Asp74| |Asp77| |AssociatedEquations| |AssociatedJordanAlgebra| |AssociatedLieAlgebra| |AssociationList| |Automorphism| |BalancedBinaryTree| |BalancedFactorisation| |BalancedPAdicInteger| |BalancedPAdicRational| |BasicOperator| |BasicOperatorFunctions1| |BezoutMatrix| |BinaryExpansion| |BinaryRecursiveAggregate&| |BinarySearchTree| |BinaryTournament| |BinaryTree| |BinaryTreeCategory&| |Bits| |BlowUpPackage| |Boolean| |BoundIntegerRoots| |BrillhartTests| |CRApackage| |CardinalNumber| |CartesianTensor| |ChangeOfVariable| |Character| |CharacterClass| |CharacteristicPolynomialInMonogenicalAlgebra| |CharacteristicPolynomialPackage| |ChineseRemainderToolsForIntegralBases| |CliffordAlgebra| |Collection&| |CommonOperators| |CommuteUnivariatePolynomialCategory| |Complex| |ComplexCategory&| |ComplexFactorization| |ComplexIntegerSolveLinearPolynomialEquation| |ComplexPatternMatch| |ComplexRootFindingPackage| |ConstantLODE| |ContinuedFraction| |CoordinateSystems| |CyclicStreamTools| |CyclotomicPolynomialPackage| |DataList| |Database| |DeRhamComplex| |DecimalExpansion| |DefiniteIntegrationTools| |DegreeReductionPackage| |DenavitHartenbergMatrix| |Dequeue| |DesingTree| |DesingTreePackage| |Dictionary&| |DifferentialExtension&| |DifferentialPolynomialCategory&| |DifferentialRing&| |DifferentialSparseMultivariatePolynomial| |DifferentialVariableCategory&| |DiophantineSolutionPackage| |DirectProduct| |DirectProductCategory&| |DirectProductMatrixModule| |DirectProductModule| |DiscreteLogarithmPackage| |DistinctDegreeFactorize| |DistributedMultivariatePolynomial| |DivisionRing&| |Divisor| |DoubleFloat| |DoubleFloatSpecialFunctions| |DoubleResultantPackage| |DrawComplex| |EigenPackage| |ElementaryFunctionDefiniteIntegration| |ElementaryFunctionLODESolver| |ElementaryFunctionODESolver| |ElementaryFunctionSign| |ElementaryFunctionStructurePackage| |ElementaryFunctionsUnivariateLaurentSeries| |ElementaryFunctionsUnivariatePuiseuxSeries| |ElementaryIntegration| |ElementaryRischDE| |EqTable| |Equation| |EuclideanDomain&| |EuclideanModularRing| |ExpertSystemToolsPackage| |ExponentialExpansion| |ExponentialOfUnivariatePuiseuxSeries| |Expression| |ExpressionSolve| |ExpressionSpace&| |ExpressionSpaceODESolver| |ExpressionToUnivariatePowerSeries| |ExtAlgBasis| |ExtensibleLinearAggregate&| |ExtensionField&| |Factored| |FactoredFunctionUtilities| |FactoredFunctions| |FactoringUtilities| |FactorisationOverPseudoAlgebraicClosureOfAlgExtOfRationalNumber| |FactorisationOverPseudoAlgebraicClosureOfRationalNumber| |Field&| |FieldOfPrimeCharacteristic&| |FindOrderFinite| |FiniteAbelianMonoidRing&| |FiniteAlgebraicExtensionField&| |FiniteDivisor| |FiniteField| |FiniteFieldCategory&| |FiniteFieldCyclicGroup| |FiniteFieldCyclicGroupExtension| |FiniteFieldCyclicGroupExtensionByPolynomial| |FiniteFieldExtension| |FiniteFieldExtensionByPolynomial| |FiniteFieldFactorizationWithSizeParseBySideEffect| |FiniteFieldFunctions| |FiniteFieldHomomorphisms| |FiniteFieldNormalBasis| |FiniteFieldNormalBasisExtension| |FiniteFieldNormalBasisExtensionByPolynomial| |FiniteFieldPolynomialPackage| |FiniteFieldPolynomialPackage2| |FiniteFieldSolveLinearPolynomialEquation| |FiniteFieldSquareFreeDecomposition| |FiniteLinearAggregateFunctions2| |FiniteLinearAggregateSort| |FiniteRankAlgebra&| |FiniteRankNonAssociativeAlgebra&| |FiniteSetAggregate&| |FlexibleArray| |Float| |FortranExpression| |FourierSeries| |Fraction| |FractionFreeFastGaussian| |FractionFreeFastGaussianFractions| |FractionalIdeal| |FramedAlgebra&| |FramedModule| |FramedNonAssociativeAlgebra&| |FreeAbelianGroup| |FreeAbelianMonoid| |FreeGroup| |FreeModule| |FreeModule1| |FreeMonoid| |FreeNilpotentLie| |FullPartialFractionExpansion| |FunctionFieldCategory&| |FunctionFieldIntegralBasis| |FunctionSpace&| |FunctionSpaceIntegration| |FunctionSpacePrimitiveElement| |FunctionSpaceToExponentialExpansion| |FunctionSpaceToUnivariatePowerSeries| |FunctionSpaceUnivariatePolynomialFactor| |GaloisGroupFactorizationUtilities| |GaloisGroupFactorizer| |GaloisGroupPolynomialUtilities| |GaloisGroupUtilities| |GaussianFactorizationPackage| |GcdDomain&| |GenExEuclid| |GeneralDistributedMultivariatePolynomial| |GeneralHenselPackage| |GeneralModulePolynomial| |GeneralPackageForAlgebraicFunctionField| |GeneralPolynomialGcdPackage| |GeneralPolynomialSet| |GeneralSparseTable| |GeneralTriangularSet| |GeneralUnivariatePowerSeries| |GenerateUnivariatePowerSeries| |GenericNonAssociativeAlgebra| |GenusZeroIntegration| |GosperSummationMethod| |GraphImage| |GrayCode| |GroebnerFactorizationPackage| |GroebnerInternalPackage| |GroebnerSolve| |Group&| |Guess| |GuessOption| |GuessOptionFunctions0| |HallBasis| |HashTable| |Heap| |HeuGcd| |HexadecimalExpansion| |HomogeneousAggregate&| |HomogeneousDirectProduct| |HomogeneousDistributedMultivariatePolynomial| |HyperellipticFiniteDivisor| |IdealDecompositionPackage| |IndexedBits| |IndexedDirectProductAbelianGroup| |IndexedDirectProductAbelianMonoid| |IndexedDirectProductOrderedAbelianMonoid| |IndexedDirectProductOrderedAbelianMonoidSup| |IndexedExponents| |IndexedFlexibleArray| |IndexedList| |IndexedMatrix| |IndexedOneDimensionalArray| |IndexedString| |IndexedTwoDimensionalArray| |IndexedVector| |InfClsPt| |InfiniteProductFiniteField| |InfinitlyClosePoint| |InfinitlyClosePointOverPseudoAlgebraicClosureOfFiniteField| |InnerAlgFactor| |InnerAlgebraicNumber| |InnerFiniteField| |InnerFreeAbelianMonoid| |InnerIndexedTwoDimensionalArray| |InnerMatrixLinearAlgebraFunctions| |InnerModularGcd| |InnerMultFact| |InnerNormalBasisFieldFunctions| |InnerNumericEigenPackage| |InnerNumericFloatSolvePackage| |InnerPAdicInteger| |InnerPolySign| |InnerPolySum| |InnerPrimeField| |InnerSparseUnivariatePowerSeries| |InnerTable| |InnerTaylorSeries| |InnerTrigonometricManipulations| |InputForm| |Integer| |IntegerCombinatoricFunctions| |IntegerFactorizationPackage| |IntegerMod| |IntegerNumberSystem&| |IntegerNumberTheoryFunctions| |IntegerPrimesPackage| |IntegerRoots| |IntegerSolveLinearPolynomialEquation| |IntegralBasisPolynomialTools| |IntegralBasisTools| |IntegrationResult| |IntegrationResultToFunction| |IntegrationTools| |InterfaceGroebnerPackage| |InternalRationalUnivariateRepresentationPackage| |InterpolateFormsPackage| |IntersectionDivisorPackage| |Interval| |InverseLaplaceTransform| |IrrRepSymNatPackage| |IrredPolyOverFiniteField| |Kernel| |KernelFunctions2| |KeyedAccessFile| |Kovacic| |LaplaceTransform| |LaurentPolynomial| |LazyStreamAggregate&| |LeadingCoefDetermination| |Library| |LieExponentials| |LiePolynomial| |LieSquareMatrix| |LinGroebnerPackage| |LinearAggregate&| |LinearDependence| |LinearOrdinaryDifferentialOperator| |LinearOrdinaryDifferentialOperator1| |LinearOrdinaryDifferentialOperator2| |LinearOrdinaryDifferentialOperatorCategory&| |LinearOrdinaryDifferentialOperatorFactorizer| |LinearOrdinaryDifferentialOperatorsOps| |LinearPolynomialEquationByFractions| |LinearSystemFromPowerSeriesPackage| |LinearSystemMatrixPackage| |LinearSystemMatrixPackage1| |LinearSystemPolynomialPackage| |LinesOpPack| |List| |ListAggregate&| |ListMonoidOps| |ListMultiDictionary| |LocalAlgebra| |LocalParametrizationOfSimplePointPackage| |Localize| |LyndonWord| |MPolyCatFunctions2| |MPolyCatFunctions3| |MPolyCatRationalFunctionFactorizer| |MachineComplex| |MachineFloat| |MachineInteger| |MakeCachableSet| |MappingPackage1| |MappingPackageInternalHacks1| |Matrix| |MatrixCategory&| |MatrixCategoryFunctions2| |MatrixLinearAlgebraFunctions| |ModMonic| |ModularDistinctDegreeFactorizer| |ModularField| |ModularHermitianRowReduction| |ModularRing| |Module&| |ModuleOperator| |MoebiusTransform| |MonadWithUnit&| |MonogenicAlgebra&| |Monoid&| |MonoidRing| |MonomialExtensionTools| |MultFiniteFactorize| |MultiVariableCalculusFunctions| |Multiset| |MultivariateLifting| |MultivariatePolynomial| |MultivariateSquareFree| |MyExpression| |MyUnivariatePolynomial| |NAGLinkSupportPackage| |NPCoef| |NeitherSparseOrDensePowerSeries| |NewSparseMultivariatePolynomial| |NewSparseUnivariatePolynomial| |NewtonInterpolation| |NewtonPolygon| |NonCommutativeOperatorDivision| |NonLinearFirstOrderODESolver| |NonNegativeInteger| |NormInMonogenicAlgebra| |NormRetractPackage| |NormalizationPackage| |NottinghamGroup| |NumberFieldIntegralBasis| |NumberFormats| |NumberTheoreticPolynomialFunctions| |NumericalOrdinaryDifferentialEquations| |NumericalQuadrature| |ODETools| |Octonion| |OctonionCategory&| |OneDimensionalArray| |OneDimensionalArrayAggregate&| |OnePointCompletion| |Operator| |OppositeMonogenicLinearOperator| |OrderedCompletion| |OrderedDirectProduct| |OrderedFreeMonoid| |OrderedVariableList| |OrderlyDifferentialPolynomial| |OrderlyDifferentialVariable| |OrdinaryDifferentialRing| |OrdinaryWeightedPolynomials| |OrthogonalPolynomialFunctions| |OutputForm| |PAdicInteger| |PAdicRational| |PAdicRationalConstructor| |PAdicWildFunctionFieldIntegralBasis| |PackageForAlgebraicFunctionField| |PackageForAlgebraicFunctionFieldOverFiniteField| |PackageForPoly| |PadeApproximantPackage| |PadeApproximants| |ParametricLinearEquations| |ParametricPlaneCurve| |ParametricPlaneCurveFunctions2| |ParametricSpaceCurve| |ParametricSpaceCurveFunctions2| |ParametricSurface| |ParametricSurfaceFunctions2| |ParametrizationPackage| |PartialDifferentialRing&| |PartialFraction| |Partition| |Pattern| |PatternFunctions2| |PatternMatchIntegerNumberSystem| |PatternMatchIntegration| |PatternMatchPushDown| |PatternMatchTools| |PendantTree| |Permanent| |Permutation| |PermutationGroup| |Pi| |PlaneAlgebraicCurvePlot| |PoincareBirkhoffWittLyndonBasis| |Point| |PointPackage| |PointsOfFiniteOrder| |PointsOfFiniteOrderRational| |Polynomial| |PolynomialCategory&| |PolynomialCategoryLifting| |PolynomialComposition| |PolynomialDecomposition| |PolynomialFactorizationByRecursion| |PolynomialFactorizationByRecursionUnivariate| |PolynomialGcdPackage| |PolynomialIdeals| |PolynomialInterpolationAlgorithms| |PolynomialNumberTheoryFunctions| |PolynomialPackageForCurve| |PolynomialRing| |PolynomialRoots| |PolynomialSetUtilitiesPackage| |PolynomialSolveByFormulas| |PolynomialSquareFree| |PositiveInteger| |PowerSeriesCategory&| |PrecomputedAssociatedEquations| |PrimeField| |PrimitiveArray| |PrimitiveElement| |PrimitiveRatDE| |PrimitiveRatRicDE| |Product| |ProjectiveAlgebraicSetPackage| |ProjectivePlane| |ProjectivePlaneOverPseudoAlgebraicClosureOfFiniteField| |ProjectiveSpace| |PseudoAlgebraicClosureOfAlgExtOfRationalNumber| |PseudoAlgebraicClosureOfFiniteField| |PseudoAlgebraicClosureOfRationalNumber| |PseudoLinearNormalForm| |PseudoRemainderSequence| |PureAlgebraicIntegration| |PushVariables| |QuadraticForm| |QuasiAlgebraicSet| |QuasiComponentPackage| |Quaternion| |QuaternionCategory&| |Queue| |QuotientFieldCategory&| |RadicalEigenPackage| |RadicalFunctionField| |RadicalSolvePackage| |RadixExpansion| |RandomDistributions| |RandomFloatDistributions| |RandomIntegerDistributions| |RationalFunctionLimitPackage| |RationalFunctionSign| |RationalInterpolation| |RationalLODE| |RationalRicDE| |RealClosedField&| |RealClosure| |RealNumberSystem&| |RealPolynomialUtilitiesPackage| |RealRootCharacterizationCategory&| |RealZeroPackage| |RectangularMatrix| |RectangularMatrixCategory&| |RectangularMatrixCategoryFunctions2| |RecurrenceOperator| |RecursivePolynomialCategory&| |ReduceLODE| |ReducedDivisor| |ReductionOfOrder| |RegularChain| |RegularSetDecompositionPackage| |RegularTriangularSet| |RegularTriangularSetCategory&| |RegularTriangularSetGcdPackage| |RepresentationPackage1| |RepresentationPackage2| |ResidueRing| |Result| |RetractSolvePackage| |RightOpenIntervalRootCharacterization| |RomanNumeral| |RootsFindingPackage| |RoutinesTable| |SExpressionOf| |SequentialDifferentialPolynomial| |SequentialDifferentialVariable| |Set| |SetOfMIntegersInOneToN| |SimpleAlgebraicExtension| |SingleInteger| |SmithNormalForm| |SortPackage| |SortedCache| |SparseMultivariatePolynomial| |SparseMultivariateTaylorSeries| |SparseTable| |SparseUnivariateLaurentSeries| |SparseUnivariatePolynomial| |SparseUnivariatePolynomialExpressions| |SparseUnivariatePuiseuxSeries| |SparseUnivariateSkewPolynomial| |SparseUnivariateTaylorSeries| |SplitHomogeneousDirectProduct| |SplittingTree| |SquareFreeQuasiComponentPackage| |SquareFreeRegularSetDecompositionPackage| |SquareFreeRegularTriangularSet| |SquareFreeRegularTriangularSetGcdPackage| |SquareMatrix| |SquareMatrixCategory&| |Stack| |StorageEfficientMatrixOperations| |Stream| |StreamAggregate&| |StreamTaylorSeriesOperations| |StreamTranscendentalFunctions| |String| |StringAggregate&| |StringTable| |StructuralConstantsPackage| |SturmHabichtPackage| |SubResultantPackage| |SubSpace| |Symbol| |SymmetricFunctions| |SymmetricGroupCombinatoricFunctions| |SymmetricPolynomial| |SystemODESolver| |SystemSolvePackage| |Table| |TableAggregate&| |Tableau| |TabulatedComputationPackage| |TangentExpansions| |TaylorSeries| |TaylorSolve| |ThreeDimensionalMatrix| |ThreeDimensionalViewport| |ThreeSpace| |TopLevelDrawFunctions| |TopLevelDrawFunctionsForAlgebraicCurves| |TopLevelDrawFunctionsForCompiledFunctions| |TransSolvePackage| |TransSolvePackageService| |TranscendentalHermiteIntegration| |TranscendentalIntegration| |TranscendentalManipulations| |TranscendentalRischDE| |TranscendentalRischDESystem| |Tree| |TriangularMatrixOperations| |TriangularSetCategory&| |TubePlotTools| |Tuple| |TwoDimensionalArray| |TwoDimensionalArrayCategory&| |TwoDimensionalPlotClipping| |TwoDimensionalViewport| |TwoFactorize| |UTSodetools| |UnaryRecursiveAggregate&| |UnivariateFactorize| |UnivariateFormalPowerSeries| |UnivariateLaurentSeries| |UnivariateLaurentSeriesConstructor| |UnivariatePolynomial| |UnivariatePolynomialCategory&| |UnivariatePolynomialCategoryFunctions2| |UnivariatePolynomialDecompositionPackage| |UnivariatePolynomialDivisionPackage| |UnivariatePolynomialMultiplicationPackage| |UnivariatePolynomialSquareFree| |UnivariatePuiseuxSeries| |UnivariatePuiseuxSeriesConstructor| |UnivariatePuiseuxSeriesWithExponentialSingularity| |UnivariateSkewPolynomial| |UnivariateSkewPolynomialCategory&| |UnivariateSkewPolynomialCategoryOps| |UnivariateTaylorSeries| |UnivariateTaylorSeriesCZero| |UnivariateTaylorSeriesCategory&| |Vector| |VectorCategory&| |ViewDefaultsPackage| |WeierstrassPreparation| |WeightedPolynomials| |WildFunctionFieldIntegralBasis| |WuWenTsunTriangularSet| |XDistributedPolynomial| |XExponentialPackage| |XPBWPolynomial| |XPolynomial| |XPolynomialRing| |XRecursivePolynomial| |ZeroDimensionalSolvePackage| |d01AgentsPackage| |d01aqfAnnaType| |d01fcfAnnaType| |d02AgentsPackage| |d03AgentsPackage| |d03eefAnnaType| |e04AgentsPackage| |e04dgfAnnaType| |e04fdfAnnaType| |e04gcfAnnaType| |e04jafAnnaType| |e04mbfAnnaType| |e04nafAnnaType| |e04ucfAnnaType|) +(|AbelianGroup&| |AbelianMonoid&| |AbelianMonoidRing&| |AffineAlgebraicSetComputeWithGroebnerBasis| |AffineAlgebraicSetComputeWithResultant| |AffinePlane| |AffinePlaneOverPseudoAlgebraicClosureOfFiniteField| |AffineSpace| |Aggregate&| |AlgFactor| |AlgebraGivenByStructuralConstants| |AlgebraPackage| |AlgebraicFunction| |AlgebraicFunctionField| |AlgebraicHermiteIntegration| |AlgebraicIntegrate| |AlgebraicIntegration| |AlgebraicManipulations| |AlgebraicNumber| |AlgebraicallyClosedField&| |AlgebraicallyClosedFunctionSpace&| |AnnaNumericalIntegrationPackage| |AnnaNumericalOptimizationPackage| |AnnaOrdinaryDifferentialEquationPackage| |AnnaPartialDifferentialEquationPackage| |AntiSymm| |ApplyRules| |ApplyUnivariateSkewPolynomial| |ArrayStack| |Asp19| |Asp20| |Asp27| |Asp28| |Asp30| |Asp31| |Asp34| |Asp35| |Asp41| |Asp42| |Asp55| |Asp74| |Asp77| |AssociatedEquations| |AssociatedJordanAlgebra| |AssociatedLieAlgebra| |AssociationList| |Automorphism| |BalancedBinaryTree| |BalancedFactorisation| |BalancedPAdicInteger| |BalancedPAdicRational| |BasicOperator| |BasicOperatorFunctions1| |BezoutMatrix| |BinaryExpansion| |BinaryRecursiveAggregate&| |BinarySearchTree| |BinaryTournament| |BinaryTree| |BinaryTreeCategory&| |Bits| |BlowUpPackage| |Boolean| |BoundIntegerRoots| |BrillhartTests| |CRApackage| |CardinalNumber| |CartesianTensor| |ChangeOfVariable| |Character| |CharacterClass| |CharacteristicPolynomialInMonogenicalAlgebra| |CharacteristicPolynomialPackage| |ChineseRemainderToolsForIntegralBases| |CliffordAlgebra| |Collection&| |CommonOperators| |CommuteUnivariatePolynomialCategory| |Complex| |ComplexCategory&| |ComplexDoubleFloatMatrix| |ComplexDoubleFloatVector| |ComplexFactorization| |ComplexIntegerSolveLinearPolynomialEquation| |ComplexPatternMatch| |ComplexRootFindingPackage| |ConstantLODE| |ContinuedFraction| |CoordinateSystems| |CyclicStreamTools| |CyclotomicPolynomialPackage| |DataList| |Database| |DeRhamComplex| |DecimalExpansion| |DefiniteIntegrationTools| |DegreeReductionPackage| |DenavitHartenbergMatrix| |Dequeue| |DesingTree| |DesingTreePackage| |Dictionary&| |DifferentialExtension&| |DifferentialPolynomialCategory&| |DifferentialRing&| |DifferentialSparseMultivariatePolynomial| |DifferentialVariableCategory&| |DiophantineSolutionPackage| |DirectProduct| |DirectProductCategory&| |DirectProductMatrixModule| |DirectProductModule| |DirichletRing| |DiscreteLogarithmPackage| |DistinctDegreeFactorize| |DistributedMultivariatePolynomial| |DivisionRing&| |Divisor| |DoubleFloat| |DoubleFloatMatrix| |DoubleFloatSpecialFunctions| |DoubleFloatVector| |DoubleResultantPackage| |DrawComplex| |EigenPackage| |ElementaryFunctionDefiniteIntegration| |ElementaryFunctionLODESolver| |ElementaryFunctionODESolver| |ElementaryFunctionSign| |ElementaryFunctionStructurePackage| |ElementaryFunctionsUnivariateLaurentSeries| |ElementaryFunctionsUnivariatePuiseuxSeries| |ElementaryIntegration| |ElementaryRischDE| |EqTable| |Equation| |EuclideanDomain&| |EuclideanModularRing| |ExpertSystemToolsPackage| |ExponentialExpansion| |ExponentialOfUnivariatePuiseuxSeries| |Export3D| |Expression| |ExpressionSolve| |ExpressionSpace&| |ExpressionSpaceODESolver| |ExpressionToUnivariatePowerSeries| |ExtAlgBasis| |ExtensibleLinearAggregate&| |ExtensionField&| |Factored| |FactoredFunctionUtilities| |FactoredFunctions| |FactoringUtilities| |FactorisationOverPseudoAlgebraicClosureOfAlgExtOfRationalNumber| |FactorisationOverPseudoAlgebraicClosureOfRationalNumber| |Field&| |FieldOfPrimeCharacteristic&| |FindOrderFinite| |FiniteAbelianMonoidRing&| |FiniteAlgebraicExtensionField&| |FiniteDivisor| |FiniteField| |FiniteFieldCategory&| |FiniteFieldCyclicGroup| |FiniteFieldCyclicGroupExtension| |FiniteFieldCyclicGroupExtensionByPolynomial| |FiniteFieldExtension| |FiniteFieldExtensionByPolynomial| |FiniteFieldFactorizationWithSizeParseBySideEffect| |FiniteFieldFunctions| |FiniteFieldHomomorphisms| |FiniteFieldNormalBasis| |FiniteFieldNormalBasisExtension| |FiniteFieldNormalBasisExtensionByPolynomial| |FiniteFieldPolynomialPackage| |FiniteFieldPolynomialPackage2| |FiniteFieldSolveLinearPolynomialEquation| |FiniteFieldSquareFreeDecomposition| |FiniteLinearAggregateFunctions2| |FiniteLinearAggregateSort| |FiniteRankAlgebra&| |FiniteRankNonAssociativeAlgebra&| |FiniteSetAggregate&| |FlexibleArray| |Float| |FortranExpression| |FourierSeries| |Fraction| |FractionFreeFastGaussian| |FractionFreeFastGaussianFractions| |FractionalIdeal| |FramedAlgebra&| |FramedModule| |FramedNonAssociativeAlgebra&| |FreeAbelianGroup| |FreeAbelianMonoid| |FreeGroup| |FreeModule| |FreeModule1| |FreeMonoid| |FreeNilpotentLie| |FullPartialFractionExpansion| |FunctionFieldCategory&| |FunctionFieldIntegralBasis| |FunctionSpace&| |FunctionSpaceIntegration| |FunctionSpacePrimitiveElement| |FunctionSpaceToExponentialExpansion| |FunctionSpaceToUnivariatePowerSeries| |FunctionSpaceUnivariatePolynomialFactor| |GaloisGroupFactorizationUtilities| |GaloisGroupFactorizer| |GaloisGroupPolynomialUtilities| |GaloisGroupUtilities| |GaussianFactorizationPackage| |GcdDomain&| |GenExEuclid| |GeneralDistributedMultivariatePolynomial| |GeneralHenselPackage| |GeneralModulePolynomial| |GeneralPackageForAlgebraicFunctionField| |GeneralPolynomialGcdPackage| |GeneralPolynomialSet| |GeneralSparseTable| |GeneralTriangularSet| |GeneralUnivariatePowerSeries| |GenerateUnivariatePowerSeries| |GenericNonAssociativeAlgebra| |GenusZeroIntegration| |GosperSummationMethod| |GraphImage| |GrayCode| |GroebnerFactorizationPackage| |GroebnerInternalPackage| |GroebnerSolve| |Group&| |Guess| |GuessOption| |GuessOptionFunctions0| |HallBasis| |HashTable| |Heap| |HeuGcd| |HexadecimalExpansion| |HomogeneousAggregate&| |HomogeneousDirectProduct| |HomogeneousDistributedMultivariatePolynomial| |HyperellipticFiniteDivisor| |IdealDecompositionPackage| |IndexedBits| |IndexedDirectProductAbelianGroup| |IndexedDirectProductAbelianMonoid| |IndexedDirectProductOrderedAbelianMonoid| |IndexedDirectProductOrderedAbelianMonoidSup| |IndexedExponents| |IndexedFlexibleArray| |IndexedList| |IndexedMatrix| |IndexedOneDimensionalArray| |IndexedString| |IndexedTwoDimensionalArray| |IndexedVector| |InfClsPt| |InfiniteProductFiniteField| |InfinitlyClosePoint| |InfinitlyClosePointOverPseudoAlgebraicClosureOfFiniteField| |InnerAlgFactor| |InnerAlgebraicNumber| |InnerFiniteField| |InnerFreeAbelianMonoid| |InnerIndexedTwoDimensionalArray| |InnerMatrixLinearAlgebraFunctions| |InnerModularGcd| |InnerMultFact| |InnerNormalBasisFieldFunctions| |InnerNumericEigenPackage| |InnerNumericFloatSolvePackage| |InnerPAdicInteger| |InnerPolySign| |InnerPolySum| |InnerPrimeField| |InnerSparseUnivariatePowerSeries| |InnerTable| |InnerTaylorSeries| |InnerTrigonometricManipulations| |InputForm| |Integer| |IntegerCombinatoricFunctions| |IntegerFactorizationPackage| |IntegerMod| |IntegerNumberSystem&| |IntegerNumberTheoryFunctions| |IntegerPrimesPackage| |IntegerRoots| |IntegerSolveLinearPolynomialEquation| |IntegralBasisPolynomialTools| |IntegralBasisTools| |IntegrationResult| |IntegrationResultToFunction| |IntegrationTools| |InterfaceGroebnerPackage| |InternalRationalUnivariateRepresentationPackage| |InterpolateFormsPackage| |IntersectionDivisorPackage| |Interval| |InverseLaplaceTransform| |IrrRepSymNatPackage| |IrredPolyOverFiniteField| |Kernel| |KernelFunctions2| |KeyedAccessFile| |Kovacic| |LaplaceTransform| |LaurentPolynomial| |LazyStreamAggregate&| |LeadingCoefDetermination| |Library| |LieExponentials| |LiePolynomial| |LieSquareMatrix| |LinGroebnerPackage| |LinearAggregate&| |LinearDependence| |LinearOrdinaryDifferentialOperator| |LinearOrdinaryDifferentialOperator1| |LinearOrdinaryDifferentialOperator2| |LinearOrdinaryDifferentialOperatorCategory&| |LinearOrdinaryDifferentialOperatorFactorizer| |LinearOrdinaryDifferentialOperatorsOps| |LinearPolynomialEquationByFractions| |LinearSystemFromPowerSeriesPackage| |LinearSystemMatrixPackage| |LinearSystemMatrixPackage1| |LinearSystemPolynomialPackage| |LinesOpPack| |List| |ListAggregate&| |ListMonoidOps| |ListMultiDictionary| |LocalAlgebra| |LocalParametrizationOfSimplePointPackage| |Localize| |LyndonWord| |MPolyCatFunctions2| |MPolyCatFunctions3| |MPolyCatRationalFunctionFactorizer| |MachineComplex| |MachineFloat| |MachineInteger| |MakeCachableSet| |MappingPackage1| |MappingPackageInternalHacks1| |Matrix| |MatrixCategory&| |MatrixCategoryFunctions2| |MatrixLinearAlgebraFunctions| |ModMonic| |ModularDistinctDegreeFactorizer| |ModularField| |ModularHermitianRowReduction| |ModularRing| |Module&| |ModuleOperator| |MoebiusTransform| |MonadWithUnit&| |MonogenicAlgebra&| |Monoid&| |MonoidRing| |MonomialExtensionTools| |MultFiniteFactorize| |MultiVariableCalculusFunctions| |Multiset| |MultivariateLifting| |MultivariatePolynomial| |MultivariateSquareFree| |MyExpression| |MyUnivariatePolynomial| |NAGLinkSupportPackage| |NPCoef| |NeitherSparseOrDensePowerSeries| |NewSparseMultivariatePolynomial| |NewSparseUnivariatePolynomial| |NewtonInterpolation| |NewtonPolygon| |NonCommutativeOperatorDivision| |NonLinearFirstOrderODESolver| |NonNegativeInteger| |NormInMonogenicAlgebra| |NormRetractPackage| |NormalizationPackage| |NottinghamGroup| |NumberFieldIntegralBasis| |NumberFormats| |NumberTheoreticPolynomialFunctions| |NumericalOrdinaryDifferentialEquations| |NumericalQuadrature| |ODETools| |Octonion| |OctonionCategory&| |OneDimensionalArray| |OneDimensionalArrayAggregate&| |OnePointCompletion| |Operator| |OppositeMonogenicLinearOperator| |OrderedCompletion| |OrderedDirectProduct| |OrderedFreeMonoid| |OrderedVariableList| |OrderlyDifferentialPolynomial| |OrderlyDifferentialVariable| |OrdinaryDifferentialRing| |OrdinaryWeightedPolynomials| |OrthogonalPolynomialFunctions| |OutputForm| |PAdicInteger| |PAdicRational| |PAdicRationalConstructor| |PAdicWildFunctionFieldIntegralBasis| |PackageForAlgebraicFunctionField| |PackageForAlgebraicFunctionFieldOverFiniteField| |PackageForPoly| |PadeApproximantPackage| |PadeApproximants| |ParametricLinearEquations| |ParametricPlaneCurve| |ParametricPlaneCurveFunctions2| |ParametricSpaceCurve| |ParametricSpaceCurveFunctions2| |ParametricSurface| |ParametricSurfaceFunctions2| |ParametrizationPackage| |PartialDifferentialRing&| |PartialFraction| |Partition| |Pattern| |PatternFunctions2| |PatternMatchIntegerNumberSystem| |PatternMatchIntegration| |PatternMatchPushDown| |PatternMatchTools| |PendantTree| |Permanent| |Permutation| |PermutationGroup| |Pi| |PlaneAlgebraicCurvePlot| |PoincareBirkhoffWittLyndonBasis| |Point| |PointPackage| |PointsOfFiniteOrder| |PointsOfFiniteOrderRational| |Polynomial| |PolynomialCategory&| |PolynomialCategoryLifting| |PolynomialComposition| |PolynomialDecomposition| |PolynomialFactorizationByRecursion| |PolynomialFactorizationByRecursionUnivariate| |PolynomialGcdPackage| |PolynomialIdeals| |PolynomialInterpolationAlgorithms| |PolynomialNumberTheoryFunctions| |PolynomialPackageForCurve| |PolynomialRing| |PolynomialRoots| |PolynomialSetUtilitiesPackage| |PolynomialSolveByFormulas| |PolynomialSquareFree| |PositiveInteger| |PowerSeriesCategory&| |PrecomputedAssociatedEquations| |PrimeField| |PrimitiveArray| |PrimitiveElement| |PrimitiveRatDE| |PrimitiveRatRicDE| |Product| |ProjectiveAlgebraicSetPackage| |ProjectivePlane| |ProjectivePlaneOverPseudoAlgebraicClosureOfFiniteField| |ProjectiveSpace| |PseudoAlgebraicClosureOfAlgExtOfRationalNumber| |PseudoAlgebraicClosureOfFiniteField| |PseudoAlgebraicClosureOfRationalNumber| |PseudoLinearNormalForm| |PseudoRemainderSequence| |PureAlgebraicIntegration| |PushVariables| |QuadraticForm| |QuasiAlgebraicSet| |QuasiComponentPackage| |Quaternion| |QuaternionCategory&| |Queue| |QuotientFieldCategory&| |RadicalEigenPackage| |RadicalFunctionField| |RadicalSolvePackage| |RadixExpansion| |RandomDistributions| |RandomFloatDistributions| |RandomIntegerDistributions| |RationalFunctionLimitPackage| |RationalFunctionSign| |RationalInterpolation| |RationalLODE| |RationalRicDE| |RealClosedField&| |RealClosure| |RealNumberSystem&| |RealPolynomialUtilitiesPackage| |RealRootCharacterizationCategory&| |RealZeroPackage| |RectangularMatrix| |RectangularMatrixCategory&| |RectangularMatrixCategoryFunctions2| |RecurrenceOperator| |RecursivePolynomialCategory&| |ReduceLODE| |ReducedDivisor| |ReductionOfOrder| |RegularChain| |RegularSetDecompositionPackage| |RegularTriangularSet| |RegularTriangularSetCategory&| |RegularTriangularSetGcdPackage| |RepresentationPackage1| |RepresentationPackage2| |ResidueRing| |Result| |RetractSolvePackage| |RightOpenIntervalRootCharacterization| |RomanNumeral| |RootsFindingPackage| |RoutinesTable| |SExpressionOf| |SequentialDifferentialPolynomial| |SequentialDifferentialVariable| |Set| |SetOfMIntegersInOneToN| |SimpleAlgebraicExtension| |SingleInteger| |SmithNormalForm| |SortPackage| |SortedCache| |SparseMultivariatePolynomial| |SparseMultivariateTaylorSeries| |SparseTable| |SparseUnivariateLaurentSeries| |SparseUnivariatePolynomial| |SparseUnivariatePolynomialExpressions| |SparseUnivariatePuiseuxSeries| |SparseUnivariateSkewPolynomial| |SparseUnivariateTaylorSeries| |SplitHomogeneousDirectProduct| |SplittingTree| |SquareFreeQuasiComponentPackage| |SquareFreeRegularSetDecompositionPackage| |SquareFreeRegularTriangularSet| |SquareFreeRegularTriangularSetGcdPackage| |SquareMatrix| |SquareMatrixCategory&| |Stack| |StorageEfficientMatrixOperations| |Stream| |StreamAggregate&| |StreamTaylorSeriesOperations| |StreamTranscendentalFunctions| |String| |StringAggregate&| |StringTable| |StructuralConstantsPackage| |SturmHabichtPackage| |SubResultantPackage| |SubSpace| |Symbol| |SymmetricFunctions| |SymmetricGroupCombinatoricFunctions| |SymmetricPolynomial| |SystemODESolver| |SystemSolvePackage| |Table| |TableAggregate&| |Tableau| |TabulatedComputationPackage| |TangentExpansions| |TaylorSeries| |TaylorSolve| |ThreeDimensionalMatrix| |ThreeDimensionalViewport| |ThreeSpace| |TopLevelDrawFunctions| |TopLevelDrawFunctionsForAlgebraicCurves| |TopLevelDrawFunctionsForCompiledFunctions| |TransSolvePackage| |TransSolvePackageService| |TranscendentalHermiteIntegration| |TranscendentalIntegration| |TranscendentalManipulations| |TranscendentalRischDE| |TranscendentalRischDESystem| |Tree| |TriangularMatrixOperations| |TriangularSetCategory&| |TubePlotTools| |Tuple| |TwoDimensionalArray| |TwoDimensionalArrayCategory&| |TwoDimensionalPlotClipping| |TwoDimensionalViewport| |TwoFactorize| |UTSodetools| |UnaryRecursiveAggregate&| |UnivariateFactorize| |UnivariateFormalPowerSeries| |UnivariateLaurentSeries| |UnivariateLaurentSeriesConstructor| |UnivariatePolynomial| |UnivariatePolynomialCategory&| |UnivariatePolynomialCategoryFunctions2| |UnivariatePolynomialDecompositionPackage| |UnivariatePolynomialDivisionPackage| |UnivariatePolynomialMultiplicationPackage| |UnivariatePolynomialSquareFree| |UnivariatePuiseuxSeries| |UnivariatePuiseuxSeriesConstructor| |UnivariatePuiseuxSeriesWithExponentialSingularity| |UnivariateSkewPolynomial| |UnivariateSkewPolynomialCategory&| |UnivariateSkewPolynomialCategoryOps| |UnivariateTaylorSeries| |UnivariateTaylorSeriesCZero| |UnivariateTaylorSeriesCategory&| |Vector| |VectorCategory&| |ViewDefaultsPackage| |WeierstrassPreparation| |WeightedPolynomials| |WildFunctionFieldIntegralBasis| |WuWenTsunTriangularSet| |XDistributedPolynomial| |XExponentialPackage| |XPBWPolynomial| |XPolynomial| |XPolynomialRing| |XRecursivePolynomial| |ZeroDimensionalSolvePackage| |d01AgentsPackage| |d01aqfAnnaType| |d01fcfAnnaType| |d02AgentsPackage| |d03AgentsPackage| |d03eefAnnaType| |e04AgentsPackage| |e04dgfAnnaType| |e04fdfAnnaType| |e04gcfAnnaType| |e04jafAnnaType| |e04mbfAnnaType| |e04nafAnnaType| |e04ucfAnnaType|) (|AlgebraicFunction| |Any| |AnyFunctions1| |BasicOperator| |BasicOperatorFunctions1| |CombinatorialFunction| |CommonOperators| |FunctionSpace&| |FunctionSpaceAttachPredicates| |FunctionalSpecialFunction| |LaplaceTransform| |LiouvillianFunction| |ModuleOperator| |NoneFunctions1| |RecurrenceOperator|) (|AnyFunctions1| |ModuleOperator|) (|InternalRationalUnivariateRepresentationPackage| |LazardSetSolvingPackage| |LexTriangularPackage| |RationalUnivariateRepresentationPackage| |ZeroDimensionalSolvePackage|) @@ -395,8 +397,8 @@ (|AffineAlgebraicSetComputeWithGroebnerBasis| |DesingTreePackage| |DistributedMultivariatePolynomial| |FGLMIfCanPackage| |GeneralDistributedMultivariatePolynomial| |GroebnerSolve| |Guess| |HomogeneousDistributedMultivariatePolynomial| |IdealDecompositionPackage| |InterpolateFormsPackage| |LexTriangularPackage| |LinGroebnerPackage| |LocalParametrizationOfSimplePointPackage| |MultivariatePolynomial| |PolToPol| |ProjectiveAlgebraicSetPackage| |QuasiAlgebraicSet2| |RationalUnivariateRepresentationPackage| |RegularChain| |ZeroDimensionalSolvePackage|) (|FullPartialFractionExpansion|) (|FullPartialFractionExpansion| |LinearOrdinaryDifferentialOperatorsOps| |OrderlyDifferentialPolynomial|) -(|AffineAlgebraicSetComputeWithGroebnerBasis| |AffineAlgebraicSetComputeWithResultant| |AffinePlane| |AffinePlaneOverPseudoAlgebraicClosureOfFiniteField| |AffineSpace| |Algebra&| |AlgebraGivenByStructuralConstants| |AlgebraicFunction| |AlgebraicFunctionField| |AlgebraicNumber| |AnonymousFunction| |AntiSymm| |Any| |ArrayStack| |Asp1| |Asp10| |Asp12| |Asp19| |Asp20| |Asp24| |Asp27| |Asp28| |Asp29| |Asp30| |Asp31| |Asp33| |Asp34| |Asp35| |Asp4| |Asp41| |Asp42| |Asp49| |Asp50| |Asp55| |Asp6| |Asp7| |Asp73| |Asp74| |Asp77| |Asp78| |Asp8| |Asp80| |Asp9| |AssociatedJordanAlgebra| |AssociatedLieAlgebra| |AssociationList| |AttributeButtons| |Automorphism| |BalancedBinaryTree| |BalancedPAdicInteger| |BalancedPAdicRational| |BasicFunctions| |BasicOperator| |BasicOperatorFunctions1| |BinaryExpansion| |BinaryFile| |BinaryRecursiveAggregate&| |BinarySearchTree| |BinaryTournament| |BinaryTree| |Bits| |BlowUpPackage| |BlowUpWithHamburgerNoether| |BlowUpWithQuadTrans| |Boolean| |CRApackage| |CardinalNumber| |CartesianTensor| |Character| |CharacterClass| |CliffordAlgebra| |Color| |CombinatorialFunction| |CommonOperators| |Commutator| |Complex| |ComplexCategory&| |ComplexRootFindingPackage| |ContinuedFraction| |DataList| |Database| |DeRhamComplex| |DecimalExpansion| |DenavitHartenbergMatrix| |Dequeue| |DesingTree| |DesingTreePackage| |DictionaryOperations&| |DifferentialPolynomialCategory&| |DifferentialSparseMultivariatePolynomial| |DifferentialVariableCategory&| |DirectProduct| |DirectProductCategory&| |DirectProductMatrixModule| |DirectProductModule| |DiscreteLogarithmPackage| |DistributedMultivariatePolynomial| |Divisor| |DoubleFloat| |DrawOption| |ElementaryFunctionODESolver| |ElementaryFunctionsUnivariateLaurentSeries| |ElementaryFunctionsUnivariatePuiseuxSeries| |EqTable| |Equation| |EuclideanGroebnerBasisPackage| |EuclideanModularRing| |Exit| |ExponentialExpansion| |ExponentialOfUnivariatePuiseuxSeries| |Expression| |ExpressionToOpenMath| |ExtAlgBasis| |Factored| |File| |FileName| |FiniteAlgebraicExtensionField&| |FiniteDivisor| |FiniteField| |FiniteFieldCategory&| |FiniteFieldCyclicGroup| |FiniteFieldCyclicGroupExtension| |FiniteFieldCyclicGroupExtensionByPolynomial| |FiniteFieldExtension| |FiniteFieldExtensionByPolynomial| |FiniteFieldNormalBasis| |FiniteFieldNormalBasisExtension| |FiniteFieldNormalBasisExtensionByPolynomial| |FiniteRankNonAssociativeAlgebra&| |FiniteSetAggregate&| |FlexibleArray| |Float| |FortranCode| |FortranExpression| |FortranPackage| |FortranProgram| |FortranScalarType| |FortranTemplate| |FortranType| |FourierComponent| |FourierSeries| |Fraction| |FractionalIdeal| |FramedModule| |FramedNonAssociativeAlgebra&| |FreeAbelianGroup| |FreeAbelianMonoid| |FreeGroup| |FreeModule| |FreeModule1| |FreeMonoid| |FreeNilpotentLie| |FullPartialFractionExpansion| |FunctionCalled| |FunctionSpace&| |GaloisGroupFactorizationUtilities| |GenUFactorize| |GeneralDistributedMultivariatePolynomial| |GeneralModulePolynomial| |GeneralPackageForAlgebraicFunctionField| |GeneralPolynomialSet| |GeneralSparseTable| |GeneralTriangularSet| |GeneralUnivariatePowerSeries| |GenericNonAssociativeAlgebra| |GraphImage| |GroebnerFactorizationPackage| |GroebnerInternalPackage| |GroebnerPackage| |Guess| |GuessOption| |GuessOptionFunctions0| |HashTable| |Heap| |HexadecimalExpansion| |HomogeneousAggregate&| |HomogeneousDirectProduct| |HomogeneousDistributedMultivariatePolynomial| |HyperellipticFiniteDivisor| |IndexCard| |IndexedBits| |IndexedDirectProductAbelianGroup| |IndexedDirectProductAbelianMonoid| |IndexedDirectProductObject| |IndexedDirectProductOrderedAbelianMonoid| |IndexedDirectProductOrderedAbelianMonoidSup| |IndexedExponents| |IndexedFlexibleArray| |IndexedList| |IndexedMatrix| |IndexedOneDimensionalArray| |IndexedString| |IndexedTwoDimensionalArray| |IndexedVector| |InfClsPt| |InfiniteTuple| |InfinitlyClosePoint| |InfinitlyClosePointOverPseudoAlgebraicClosureOfFiniteField| |InnerAlgebraicNumber| |InnerFiniteField| |InnerFreeAbelianMonoid| |InnerIndexedTwoDimensionalArray| |InnerPAdicInteger| |InnerPrimeField| |InnerSparseUnivariatePowerSeries| |InnerTable| |InnerTaylorSeries| |InputForm| |Integer| |IntegerMod| |IntegrationResult| |InternalRationalUnivariateRepresentationPackage| |IntersectionDivisorPackage| |Interval| |Kernel| |KeyedAccessFile| |LaurentPolynomial| |LeftAlgebra&| |Library| |LieExponentials| |LiePolynomial| |LieSquareMatrix| |LinearOrdinaryDifferentialOperator| |LinearOrdinaryDifferentialOperator1| |LinearOrdinaryDifferentialOperator2| |LiouvillianFunction| |List| |ListMonoidOps| |ListMultiDictionary| |LocalAlgebra| |Localize| |LyndonWord| |MachineComplex| |MachineFloat| |MachineInteger| |Magma| |MakeCachableSet| |MathMLFormat| |Matrix| |MatrixCategory&| |ModMonic| |ModularField| |ModularRing| |ModuleMonomial| |ModuleOperator| |MoebiusTransform| |MonoidRing| |Multiset| |MultivariatePolynomial| |MyExpression| |MyUnivariatePolynomial| |NAGLinkSupportPackage| |NeitherSparseOrDensePowerSeries| |NewSparseMultivariatePolynomial| |NewSparseUnivariatePolynomial| |NonAssociativeRing&| |NonNegativeInteger| |None| |NormalizationPackage| |NottinghamGroup| |NumberFormats| |NumericalIntegrationProblem| |NumericalODEProblem| |NumericalOptimizationProblem| |NumericalOrdinaryDifferentialEquations| |NumericalPDEProblem| |NumericalQuadrature| |Octonion| |OctonionCategory&| |OneDimensionalArray| |OneDimensionalArrayAggregate&| |OnePointCompletion| |OpenMathEncoding| |OpenMathError| |OpenMathErrorKind| |OpenMathPackage| |Operator| |OppositeMonogenicLinearOperator| |OrdSetInts| |OrderedCompletion| |OrderedDirectProduct| |OrderedFreeMonoid| |OrderedVariableList| |OrderlyDifferentialPolynomial| |OrderlyDifferentialVariable| |OrdinaryDifferentialRing| |OrdinaryWeightedPolynomials| |OutputForm| |OutputPackage| |PAdicInteger| |PAdicRational| |PAdicRationalConstructor| |Palette| |PartialFraction| |Partition| |Pattern| |PatternMatchListResult| |PatternMatchResult| |PendantTree| |Permutation| |PermutationGroup| |Pi| |Places| |PlacesOverPseudoAlgebraicClosureOfFiniteField| |PlaneAlgebraicCurvePlot| |Plcs| |Plot| |Plot3D| |PoincareBirkhoffWittLyndonBasis| |Point| |Polynomial| |PolynomialIdeals| |PolynomialRing| |PositiveInteger| |PrimeField| |PrimitiveArray| |PrintPackage| |Product| |ProjectiveAlgebraicSetPackage| |ProjectivePlane| |ProjectivePlaneOverPseudoAlgebraicClosureOfFiniteField| |ProjectiveSpace| |PseudoAlgebraicClosureOfAlgExtOfRationalNumber| |PseudoAlgebraicClosureOfFiniteField| |PseudoAlgebraicClosureOfRationalNumber| |QuadraticForm| |QuasiAlgebraicSet| |Quaternion| |QuaternionCategory&| |QueryEquation| |Queue| |QuotientFieldCategory&| |RadicalFunctionField| |RadixExpansion| |RationalInterpolation| |RationalUnivariateRepresentationPackage| |RealClosedField&| |RealClosure| |RealNumberSystem&| |RealZeroPackage| |RectangularMatrix| |RecurrenceOperator| |RecursivePolynomialCategory&| |Reference| |RegularChain| |RegularTriangularSet| |RepresentationPackage1| |RepresentationPackage2| |ResidueRing| |Result| |RewriteRule| |RightOpenIntervalRootCharacterization| |Ring&| |RomanNumeral| |RoutinesTable| |RuleCalled| |Ruleset| |SExpression| |SExpressionOf| |ScriptFormulaFormat| |ScriptFormulaFormat1| |Segment| |SegmentBinding| |SequentialDifferentialPolynomial| |SequentialDifferentialVariable| |Set| |SetOfMIntegersInOneToN| |SimpleAlgebraicExtension| |SimpleFortranProgram| |SingleInteger| |SingletonAsOrderedSet| |SparseMultivariatePolynomial| |SparseMultivariateTaylorSeries| |SparseTable| |SparseUnivariateLaurentSeries| |SparseUnivariatePolynomial| |SparseUnivariatePolynomialExpressions| |SparseUnivariatePuiseuxSeries| |SparseUnivariateSkewPolynomial| |SparseUnivariateTaylorSeries| |SpecialOutputPackage| |SplitHomogeneousDirectProduct| |SplittingNode| |SplittingTree| |SquareFreeRegularTriangularSet| |SquareMatrix| |SquareMatrixCategory&| |Stack| |Stream| |StreamTranscendentalFunctions| |StreamTranscendentalFunctionsNonCommutative| |String| |StringAggregate&| |StringTable| |SubSpace| |SubSpaceComponentProperty| |SuchThat| |Switch| |Symbol| |SymbolTable| |SymmetricPolynomial| |Table| |TableAggregate&| |Tableau| |TabulatedComputationPackage| |TaylorSeries| |TaylorSolve| |TexFormat| |TexFormat1| |TextFile| |TheSymbolTable| |ThreeDimensionalMatrix| |ThreeDimensionalViewport| |ThreeSpace| |TopLevelDrawFunctionsForCompiledFunctions| |Tree| |TriangularSetCategory&| |Tuple| |TwoDimensionalArray| |TwoDimensionalArrayCategory&| |TwoDimensionalViewport| |UnivariateFormalPowerSeries| |UnivariateLaurentSeries| |UnivariateLaurentSeriesConstructor| |UnivariatePolynomial| |UnivariatePolynomialCategory&| |UnivariatePuiseuxSeries| |UnivariatePuiseuxSeriesConstructor| |UnivariatePuiseuxSeriesWithExponentialSingularity| |UnivariateSkewPolynomial| |UnivariateSkewPolynomialCategory&| |UnivariateTaylorSeries| |UnivariateTaylorSeriesCZero| |UnivariateTaylorSeriesCategory&| |UniversalSegment| |Variable| |Vector| |Void| |WeightedPolynomials| |WuWenTsunTriangularSet| |XDistributedPolynomial| |XPBWPolynomial| |XPolynomial| |XPolynomialRing| |XRecursivePolynomial| |ZeroDimensionalSolvePackage| |d01TransformFunctionType| |d01ajfAnnaType| |d01akfAnnaType| |d01alfAnnaType| |d01amfAnnaType| |d01anfAnnaType| |d01apfAnnaType| |d01aqfAnnaType| |d01asfAnnaType| |d01fcfAnnaType| |d01gbfAnnaType| |d02AgentsPackage| |d02bbfAnnaType| |d02bhfAnnaType| |d02cjfAnnaType| |d02ejfAnnaType| |d03AgentsPackage| |d03eefAnnaType| |d03fafAnnaType| |e04AgentsPackage| |e04dgfAnnaType| |e04fdfAnnaType| |e04gcfAnnaType| |e04jafAnnaType| |e04mbfAnnaType| |e04nafAnnaType| |e04ucfAnnaType|) -(|GenUFactorize| |Guess| |IndexCard| |InternalRationalUnivariateRepresentationPackage| |NormalizationPackage| |NumericalOrdinaryDifferentialEquations| |NumericalQuadrature| |RationalInterpolation| |RationalUnivariateRepresentationPackage| |SparseUnivariatePolynomialExpressions| |TabulatedComputationPackage| |TaylorSolve| |ZeroDimensionalSolvePackage|) +(|AffineAlgebraicSetComputeWithGroebnerBasis| |AffineAlgebraicSetComputeWithResultant| |AffinePlane| |AffinePlaneOverPseudoAlgebraicClosureOfFiniteField| |AffineSpace| |Algebra&| |AlgebraGivenByStructuralConstants| |AlgebraicFunction| |AlgebraicFunctionField| |AlgebraicNumber| |AnonymousFunction| |AntiSymm| |Any| |ArrayStack| |Asp1| |Asp10| |Asp12| |Asp19| |Asp20| |Asp24| |Asp27| |Asp28| |Asp29| |Asp30| |Asp31| |Asp33| |Asp34| |Asp35| |Asp4| |Asp41| |Asp42| |Asp49| |Asp50| |Asp55| |Asp6| |Asp7| |Asp73| |Asp74| |Asp77| |Asp78| |Asp8| |Asp80| |Asp9| |AssociatedJordanAlgebra| |AssociatedLieAlgebra| |AssociationList| |AttributeButtons| |Automorphism| |BalancedBinaryTree| |BalancedPAdicInteger| |BalancedPAdicRational| |BasicFunctions| |BasicOperator| |BasicOperatorFunctions1| |BinaryExpansion| |BinaryFile| |BinaryRecursiveAggregate&| |BinarySearchTree| |BinaryTournament| |BinaryTree| |Bits| |BlowUpPackage| |BlowUpWithHamburgerNoether| |BlowUpWithQuadTrans| |Boolean| |CRApackage| |CardinalNumber| |CartesianTensor| |Character| |CharacterClass| |CliffordAlgebra| |Color| |CombinatorialFunction| |CommonOperators| |Commutator| |Complex| |ComplexCategory&| |ComplexDoubleFloatMatrix| |ComplexDoubleFloatVector| |ComplexRootFindingPackage| |ContinuedFraction| |DataList| |Database| |DeRhamComplex| |DecimalExpansion| |DenavitHartenbergMatrix| |Dequeue| |DesingTree| |DesingTreePackage| |DictionaryOperations&| |DifferentialPolynomialCategory&| |DifferentialSparseMultivariatePolynomial| |DifferentialVariableCategory&| |DirectProduct| |DirectProductCategory&| |DirectProductMatrixModule| |DirectProductModule| |DirichletRing| |DiscreteLogarithmPackage| |DistributedMultivariatePolynomial| |Divisor| |DoubleFloat| |DoubleFloatMatrix| |DoubleFloatVector| |DrawOption| |ElementaryFunctionODESolver| |ElementaryFunctionsUnivariateLaurentSeries| |ElementaryFunctionsUnivariatePuiseuxSeries| |EqTable| |Equation| |EuclideanGroebnerBasisPackage| |EuclideanModularRing| |Exit| |ExponentialExpansion| |ExponentialOfUnivariatePuiseuxSeries| |Expression| |ExpressionToOpenMath| |ExtAlgBasis| |Factored| |File| |FileName| |FiniteAlgebraicExtensionField&| |FiniteDivisor| |FiniteField| |FiniteFieldCategory&| |FiniteFieldCyclicGroup| |FiniteFieldCyclicGroupExtension| |FiniteFieldCyclicGroupExtensionByPolynomial| |FiniteFieldExtension| |FiniteFieldExtensionByPolynomial| |FiniteFieldNormalBasis| |FiniteFieldNormalBasisExtension| |FiniteFieldNormalBasisExtensionByPolynomial| |FiniteRankNonAssociativeAlgebra&| |FiniteSetAggregate&| |FlexibleArray| |Float| |FortranCode| |FortranExpression| |FortranPackage| |FortranProgram| |FortranScalarType| |FortranTemplate| |FortranType| |FourierComponent| |FourierSeries| |Fraction| |FractionalIdeal| |FramedModule| |FramedNonAssociativeAlgebra&| |FreeAbelianGroup| |FreeAbelianMonoid| |FreeGroup| |FreeModule| |FreeModule1| |FreeMonoid| |FreeNilpotentLie| |FullPartialFractionExpansion| |FunctionCalled| |FunctionSpace&| |GaloisGroupFactorizationUtilities| |GenUFactorize| |GeneralDistributedMultivariatePolynomial| |GeneralModulePolynomial| |GeneralPackageForAlgebraicFunctionField| |GeneralPolynomialSet| |GeneralSparseTable| |GeneralTriangularSet| |GeneralUnivariatePowerSeries| |GenericNonAssociativeAlgebra| |GraphImage| |GroebnerFactorizationPackage| |GroebnerInternalPackage| |GroebnerPackage| |Guess| |GuessOption| |GuessOptionFunctions0| |HTMLFormat| |HashTable| |Heap| |HexadecimalExpansion| |HomogeneousAggregate&| |HomogeneousDirectProduct| |HomogeneousDistributedMultivariatePolynomial| |HyperellipticFiniteDivisor| |IndexCard| |IndexedBits| |IndexedDirectProductAbelianGroup| |IndexedDirectProductAbelianMonoid| |IndexedDirectProductObject| |IndexedDirectProductOrderedAbelianMonoid| |IndexedDirectProductOrderedAbelianMonoidSup| |IndexedExponents| |IndexedFlexibleArray| |IndexedList| |IndexedMatrix| |IndexedOneDimensionalArray| |IndexedString| |IndexedTwoDimensionalArray| |IndexedVector| |InfClsPt| |InfiniteTuple| |InfinitlyClosePoint| |InfinitlyClosePointOverPseudoAlgebraicClosureOfFiniteField| |InnerAlgebraicNumber| |InnerFiniteField| |InnerFreeAbelianMonoid| |InnerIndexedTwoDimensionalArray| |InnerPAdicInteger| |InnerPrimeField| |InnerSparseUnivariatePowerSeries| |InnerTable| |InnerTaylorSeries| |InputForm| |Integer| |IntegerMod| |IntegrationResult| |InternalRationalUnivariateRepresentationPackage| |IntersectionDivisorPackage| |Interval| |Kernel| |KeyedAccessFile| |LaurentPolynomial| |LeftAlgebra&| |Library| |LieExponentials| |LiePolynomial| |LieSquareMatrix| |LinearOrdinaryDifferentialOperator| |LinearOrdinaryDifferentialOperator1| |LinearOrdinaryDifferentialOperator2| |LiouvillianFunction| |List| |ListMonoidOps| |ListMultiDictionary| |LocalAlgebra| |Localize| |LyndonWord| |MachineComplex| |MachineFloat| |MachineInteger| |Magma| |MakeCachableSet| |MathMLFormat| |Matrix| |MatrixCategory&| |ModMonic| |ModularField| |ModularRing| |ModuleMonomial| |ModuleOperator| |MoebiusTransform| |MonoidRing| |Multiset| |MultivariatePolynomial| |MyExpression| |MyUnivariatePolynomial| |NAGLinkSupportPackage| |NeitherSparseOrDensePowerSeries| |NewSparseMultivariatePolynomial| |NewSparseUnivariatePolynomial| |NonAssociativeRing&| |NonNegativeInteger| |None| |NormalizationPackage| |NottinghamGroup| |NumberFormats| |NumericalIntegrationProblem| |NumericalODEProblem| |NumericalOptimizationProblem| |NumericalOrdinaryDifferentialEquations| |NumericalPDEProblem| |NumericalQuadrature| |Octonion| |OctonionCategory&| |OneDimensionalArray| |OneDimensionalArrayAggregate&| |OnePointCompletion| |OpenMathEncoding| |OpenMathError| |OpenMathErrorKind| |OpenMathPackage| |Operator| |OppositeMonogenicLinearOperator| |OrdSetInts| |OrderedCompletion| |OrderedDirectProduct| |OrderedFreeMonoid| |OrderedVariableList| |OrderlyDifferentialPolynomial| |OrderlyDifferentialVariable| |OrdinaryDifferentialRing| |OrdinaryWeightedPolynomials| |OutputForm| |OutputPackage| |PAdicInteger| |PAdicRational| |PAdicRationalConstructor| |Palette| |PartialFraction| |Partition| |Pattern| |PatternMatchListResult| |PatternMatchResult| |PendantTree| |Permutation| |PermutationGroup| |Pi| |Places| |PlacesOverPseudoAlgebraicClosureOfFiniteField| |PlaneAlgebraicCurvePlot| |Plcs| |Plot| |Plot3D| |PoincareBirkhoffWittLyndonBasis| |Point| |Polynomial| |PolynomialIdeals| |PolynomialRing| |PositiveInteger| |PrimeField| |PrimitiveArray| |PrintPackage| |Product| |ProjectiveAlgebraicSetPackage| |ProjectivePlane| |ProjectivePlaneOverPseudoAlgebraicClosureOfFiniteField| |ProjectiveSpace| |PseudoAlgebraicClosureOfAlgExtOfRationalNumber| |PseudoAlgebraicClosureOfFiniteField| |PseudoAlgebraicClosureOfRationalNumber| |QuadraticForm| |QuasiAlgebraicSet| |Quaternion| |QuaternionCategory&| |QueryEquation| |Queue| |QuotientFieldCategory&| |RadicalFunctionField| |RadixExpansion| |RationalInterpolation| |RationalUnivariateRepresentationPackage| |RealClosedField&| |RealClosure| |RealNumberSystem&| |RealZeroPackage| |RectangularMatrix| |RecurrenceOperator| |RecursivePolynomialCategory&| |Reference| |RegularChain| |RegularTriangularSet| |RepresentationPackage1| |RepresentationPackage2| |ResidueRing| |Result| |RewriteRule| |RightOpenIntervalRootCharacterization| |Ring&| |RomanNumeral| |RoutinesTable| |RuleCalled| |Ruleset| |SExpression| |SExpressionOf| |ScriptFormulaFormat| |ScriptFormulaFormat1| |Segment| |SegmentBinding| |SequentialDifferentialPolynomial| |SequentialDifferentialVariable| |Set| |SetOfMIntegersInOneToN| |SimpleAlgebraicExtension| |SimpleFortranProgram| |SingleInteger| |SingletonAsOrderedSet| |SparseMultivariatePolynomial| |SparseMultivariateTaylorSeries| |SparseTable| |SparseUnivariateLaurentSeries| |SparseUnivariatePolynomial| |SparseUnivariatePolynomialExpressions| |SparseUnivariatePuiseuxSeries| |SparseUnivariateSkewPolynomial| |SparseUnivariateTaylorSeries| |SpecialOutputPackage| |SplitHomogeneousDirectProduct| |SplittingNode| |SplittingTree| |SquareFreeRegularTriangularSet| |SquareMatrix| |SquareMatrixCategory&| |Stack| |Stream| |StreamTranscendentalFunctions| |StreamTranscendentalFunctionsNonCommutative| |String| |StringAggregate&| |StringTable| |SubSpace| |SubSpaceComponentProperty| |SuchThat| |Switch| |Symbol| |SymbolTable| |SymmetricPolynomial| |Table| |TableAggregate&| |Tableau| |TabulatedComputationPackage| |TaylorSeries| |TaylorSolve| |TexFormat| |TexFormat1| |TextFile| |TheSymbolTable| |ThreeDimensionalMatrix| |ThreeDimensionalViewport| |ThreeSpace| |TopLevelDrawFunctionsForCompiledFunctions| |Tree| |TriangularSetCategory&| |Tuple| |TwoDimensionalArray| |TwoDimensionalArrayCategory&| |TwoDimensionalViewport| |UnivariateFormalPowerSeries| |UnivariateLaurentSeries| |UnivariateLaurentSeriesConstructor| |UnivariatePolynomial| |UnivariatePolynomialCategory&| |UnivariatePuiseuxSeries| |UnivariatePuiseuxSeriesConstructor| |UnivariatePuiseuxSeriesWithExponentialSingularity| |UnivariateSkewPolynomial| |UnivariateSkewPolynomialCategory&| |UnivariateTaylorSeries| |UnivariateTaylorSeriesCZero| |UnivariateTaylorSeriesCategory&| |UniversalSegment| |Variable| |Vector| |Void| |WeightedPolynomials| |WuWenTsunTriangularSet| |XDistributedPolynomial| |XPBWPolynomial| |XPolynomial| |XPolynomialRing| |XRecursivePolynomial| |ZeroDimensionalSolvePackage| |d01TransformFunctionType| |d01ajfAnnaType| |d01akfAnnaType| |d01alfAnnaType| |d01amfAnnaType| |d01anfAnnaType| |d01apfAnnaType| |d01aqfAnnaType| |d01asfAnnaType| |d01fcfAnnaType| |d01gbfAnnaType| |d02AgentsPackage| |d02bbfAnnaType| |d02bhfAnnaType| |d02cjfAnnaType| |d02ejfAnnaType| |d03AgentsPackage| |d03eefAnnaType| |d03fafAnnaType| |e04AgentsPackage| |e04dgfAnnaType| |e04fdfAnnaType| |e04gcfAnnaType| |e04jafAnnaType| |e04mbfAnnaType| |e04nafAnnaType| |e04ucfAnnaType|) +(|DirichletRing| |GenUFactorize| |Guess| |IndexCard| |InternalRationalUnivariateRepresentationPackage| |NormalizationPackage| |NumericalOrdinaryDifferentialEquations| |NumericalQuadrature| |RationalInterpolation| |RationalUnivariateRepresentationPackage| |SparseUnivariatePolynomialExpressions| |TabulatedComputationPackage| |TaylorSolve| |ZeroDimensionalSolvePackage|) (|PAdicRational|) (|BalancedPAdicRational| |PAdicRational|) (|BlowUpPackage| |DesingTreePackage| |GeneralPackageForAlgebraicFunctionField| |InterpolateFormsPackage| |IntersectionDivisorPackage| |LocalParametrizationOfSimplePointPackage| |NewtonPolygon| |PackageForAlgebraicFunctionField| |PackageForAlgebraicFunctionFieldOverFiniteField| |PolynomialPackageForCurve|) @@ -435,7 +437,7 @@ (|ExpressionTubePlot| |TopLevelDrawFunctionsForCompiledFunctions|) (|GraphImage|) (|LieExponentials| |XPBWPolynomial|) -(|CoordinateSystems| |DenavitHartenbergMatrix| |DrawComplex| |ExpressionTubePlot| |GraphImage| |MeshCreationRoutinesForThreeDimensions| |NumericTubePlot| |PlaneAlgebraicCurvePlot| |Plot| |Plot3D| |PlotTools| |PointFunctions2| |PointPackage| |SubSpace| |ThreeDimensionalViewport| |ThreeSpace| |TopLevelDrawFunctionsForCompiledFunctions| |TopLevelDrawFunctionsForPoints| |TubePlotTools| |TwoDimensionalPlotClipping|) +(|CoordinateSystems| |DenavitHartenbergMatrix| |DrawComplex| |Export3D| |ExpressionTubePlot| |GnuDraw| |GraphImage| |MeshCreationRoutinesForThreeDimensions| |NumericTubePlot| |PlaneAlgebraicCurvePlot| |Plot| |Plot3D| |PlotTools| |PointFunctions2| |PointPackage| |SubSpace| |ThreeDimensionalViewport| |ThreeSpace| |TopLevelDrawFunctionsForCompiledFunctions| |TopLevelDrawFunctionsForPoints| |TubePlotTools| |TwoDimensionalPlotClipping|) (|GraphImage| |PlaneAlgebraicCurvePlot| |Plot| |Plot3D| |PlotTools| |ThreeDimensionalViewport| |TubePlotTools| |TwoDimensionalPlotClipping|) (|AlgebraicIntegrate|) (|PointsOfFiniteOrder| |PointsOfFiniteOrderRational|) @@ -458,7 +460,7 @@ (|InternalRationalUnivariateRepresentationPackage| |LazardSetSolvingPackage| |QuasiComponentPackage| |RationalUnivariateRepresentationPackage| |RegularSetDecompositionPackage| |RegularTriangularSet| |RegularTriangularSetCategory&| |SquareFreeQuasiComponentPackage| |SquareFreeRegularSetDecompositionPackage| |SquareFreeRegularTriangularSet| |WuWenTsunTriangularSet| |ZeroDimensionalSolvePackage|) (|RadicalSolvePackage|) (|PolynomialCategory&|) -(|AbelianGroup&| |AbelianMonoid&| |AbelianMonoidRing&| |AbelianSemiGroup&| |AffineAlgebraicSetComputeWithGroebnerBasis| |AffineAlgebraicSetComputeWithResultant| |AffinePlane| |AffinePlaneOverPseudoAlgebraicClosureOfFiniteField| |AffineSpace| |AlgebraGivenByStructuralConstants| |AlgebraPackage| |AlgebraicFunctionField| |AlgebraicHermiteIntegration| |AlgebraicNumber| |AlgebraicallyClosedField&| |AnnaNumericalIntegrationPackage| |AnnaNumericalOptimizationPackage| |AnnaOrdinaryDifferentialEquationPackage| |AnnaPartialDifferentialEquationPackage| |AntiSymm| |ApplyRules| |Asp19| |AssociatedEquations| |AssociatedJordanAlgebra| |AssociatedLieAlgebra| |AttributeButtons| |Automorphism| |BalancedPAdicInteger| |BalancedPAdicRational| |BasicFunctions| |Bezier| |BinaryExpansion| |BlowUpPackage| |Boolean| |CardinalNumber| |CartesianTensor| |Character| |CharacterClass| |CliffordAlgebra| |Color| |Complex| |ComplexCategory&| |ComplexRootFindingPackage| |ConstantLODE| |ContinuedFraction| |CoordinateSystems| |CycleIndicators| |Database| |DeRhamComplex| |DecimalExpansion| |DefiniteIntegrationTools| |DegreeReductionPackage| |DesingTreePackage| |DifferentialSparseMultivariatePolynomial| |DirectProduct| |DirectProductMatrixModule| |DirectProductModule| |DiscreteLogarithmPackage| |DistinctDegreeFactorize| |DistributedMultivariatePolynomial| |DivisionRing&| |Divisor| |DoubleFloat| |DoubleFloatSpecialFunctions| |DrawComplex| |DrawOption| |DrawOptionFunctions0| |ElementaryFunction| |ElementaryFunctionLODESolver| |ElementaryFunctionStructurePackage| |ElementaryIntegration| |ElementaryRischDE| |EllipticFunctionsUnivariateTaylorSeries| |Equation| |EuclideanModularRing| |ExpertSystemToolsPackage| |ExponentialExpansion| |ExponentialOfUnivariatePuiseuxSeries| |Expression| |ExpressionTubePlot| |Factored| |FactoringUtilities| |FiniteAlgebraicExtensionField&| |FiniteDivisor| |FiniteField| |FiniteFieldCategory&| |FiniteFieldCyclicGroup| |FiniteFieldCyclicGroupExtension| |FiniteFieldCyclicGroupExtensionByPolynomial| |FiniteFieldExtension| |FiniteFieldExtensionByPolynomial| |FiniteFieldFunctions| |FiniteFieldHomomorphisms| |FiniteFieldNormalBasis| |FiniteFieldNormalBasisExtension| |FiniteFieldNormalBasisExtensionByPolynomial| |FiniteFieldPolynomialPackage| |FiniteFieldPolynomialPackage2| |FiniteLinearAggregateSort| |FiniteRankAlgebra&| |FiniteRankNonAssociativeAlgebra&| |FiniteSetAggregate&| |Float| |FloatingPointSystem&| |FortranExpression| |FourierSeries| |Fraction| |FractionFreeFastGaussian| |FractionFreeFastGaussianFractions| |FractionalIdeal| |FramedAlgebra&| |FramedModule| |FramedNonAssociativeAlgebra&| |FramedNonAssociativeAlgebraFunctions2| |FreeAbelianGroup| |FreeAbelianMonoid| |FreeGroup| |FreeModule| |FreeModule1| |FreeMonoid| |FreeNilpotentLie| |FunctionFieldCategory&| |FunctionFieldIntegralBasis| |FunctionSpace&| |FunctionSpaceIntegration| |FunctionSpaceToExponentialExpansion| |FunctionSpaceToUnivariatePowerSeries| |FunctionalSpecialFunction| |GaloisGroupFactorizationUtilities| |GaloisGroupFactorizer| |GaloisGroupPolynomialUtilities| |GaloisGroupUtilities| |GaussianFactorizationPackage| |GenExEuclid| |GeneralDistributedMultivariatePolynomial| |GeneralHenselPackage| |GeneralModulePolynomial| |GeneralPackageForAlgebraicFunctionField| |GeneralUnivariatePowerSeries| |GenericNonAssociativeAlgebra| |GenusZeroIntegration| |GraphImage| |GrayCode| |Group&| |Guess| |Heap| |HeuGcd| |HexadecimalExpansion| |HomogeneousDirectProduct| |HomogeneousDistributedMultivariatePolynomial| |HyperellipticFiniteDivisor| |IndexedDirectProductAbelianGroup| |IndexedDirectProductAbelianMonoid| |IndexedDirectProductOrderedAbelianMonoid| |IndexedDirectProductOrderedAbelianMonoidSup| |IndexedExponents| |IndexedFlexibleArray| |InfClsPt| |InfinitlyClosePoint| |InfinitlyClosePointOverPseudoAlgebraicClosureOfFiniteField| |InnerAlgebraicNumber| |InnerFiniteField| |InnerFreeAbelianMonoid| |InnerModularGcd| |InnerMultFact| |InnerNormalBasisFieldFunctions| |InnerPAdicInteger| |InnerPrimeField| |InnerSparseUnivariatePowerSeries| |InnerTaylorSeries| |InnerTrigonometricManipulations| |Integer| |IntegerCombinatoricFunctions| |IntegerFactorizationPackage| |IntegerMod| |IntegerNumberSystem&| |IntegerNumberTheoryFunctions| |IntegerPrimesPackage| |IntegerRoots| |IntegralBasisTools| |IntegrationResult| |IntegrationResultToFunction| |InterfaceGroebnerPackage| |InterpolateFormsPackage| |IntersectionDivisorPackage| |Interval| |InverseLaplaceTransform| |IrredPolyOverFiniteField| |Kovacic| |LaplaceTransform| |LaurentPolynomial| |LieExponentials| |LiePolynomial| |LieSquareMatrix| |LinearOrdinaryDifferentialOperator| |LinearOrdinaryDifferentialOperator1| |LinearOrdinaryDifferentialOperator2| |LinearOrdinaryDifferentialOperatorFactorizer| |LiouvillianFunction| |LocalAlgebra| |LocalParametrizationOfSimplePointPackage| |Localize| |LyndonWord| |MachineComplex| |MachineFloat| |MachineInteger| |Magma| |MeshCreationRoutinesForThreeDimensions| |ModMonic| |ModularField| |ModularRing| |Module&| |ModuleOperator| |MoebiusTransform| |Monad&| |MonadWithUnit&| |MonogenicAlgebra&| |Monoid&| |MonoidRing| |MultFiniteFactorize| |MultivariatePolynomial| |MultivariateSquareFree| |MyExpression| |MyUnivariatePolynomial| |NagEigenPackage| |NeitherSparseOrDensePowerSeries| |NewSparseMultivariatePolynomial| |NewSparseUnivariatePolynomial| |NonAssociativeAlgebra&| |NonLinearFirstOrderODESolver| |NonNegativeInteger| |NottinghamGroup| |NumberFieldIntegralBasis| |NumberFormats| |Numeric| |NumericTubePlot| |NumericalOrdinaryDifferentialEquations| |NumericalQuadrature| |Octonion| |OctonionCategory&| |OnePointCompletion| |Operator| |OppositeMonogenicLinearOperator| |OrderedCompletion| |OrderedDirectProduct| |OrderedFreeMonoid| |OrderedVariableList| |OrderlyDifferentialPolynomial| |OrdinaryDifferentialRing| |OrdinaryWeightedPolynomials| |OrthogonalPolynomialFunctions| |OutputForm| |PAdicInteger| |PAdicRational| |PAdicRationalConstructor| |PAdicWildFunctionFieldIntegralBasis| |PackageForAlgebraicFunctionField| |PackageForAlgebraicFunctionFieldOverFiniteField| |PackageForPoly| |ParametricLinearEquations| |PartialFraction| |Partition| |PatternMatchIntegration| |Permanent| |Permutation| |PermutationGroupExamples| |Pi| |Places| |PlacesOverPseudoAlgebraicClosureOfFiniteField| |PlaneAlgebraicCurvePlot| |Plcs| |Plot| |Plot3D| |PoincareBirkhoffWittLyndonBasis| |Point| |PointsOfFiniteOrder| |PointsOfFiniteOrderRational| |PointsOfFiniteOrderTools| |Polynomial| |PolynomialFactorizationByRecursion| |PolynomialGcdPackage| |PolynomialNumberTheoryFunctions| |PolynomialRing| |PolynomialSolveByFormulas| |PositiveInteger| |PowerSeriesCategory&| |PrecomputedAssociatedEquations| |PrimeField| |Product| |ProjectiveAlgebraicSetPackage| |ProjectivePlane| |ProjectivePlaneOverPseudoAlgebraicClosureOfFiniteField| |ProjectiveSpace| |PseudoAlgebraicClosureOfAlgExtOfRationalNumber| |PseudoAlgebraicClosureOfFiniteField| |PseudoAlgebraicClosureOfRationalNumber| |PseudoRemainderSequence| |PureAlgebraicIntegration| |QuadraticForm| |Quaternion| |QuaternionCategory&| |QuotientFieldCategory&| |RadicalFunctionField| |RadicalSolvePackage| |RadixExpansion| |RandomFloatDistributions| |RandomIntegerDistributions| |RandomNumberSource| |RealClosedField&| |RealClosure| |RealRootCharacterizationCategory&| |RealZeroPackage| |RectangularMatrix| |RecursivePolynomialCategory&| |ReduceLODE| |RegularTriangularSetCategory&| |RepeatedDoubling| |RepeatedSquaring| |RepresentationPackage1| |RepresentationPackage2| |ResidueRing| |RewriteRule| |RightOpenIntervalRootCharacterization| |RomanNumeral| |RoutinesTable| |Ruleset| |SemiGroup&| |SequentialDifferentialPolynomial| |Set| |SetOfMIntegersInOneToN| |SimpleAlgebraicExtension| |SingleInteger| |SmithNormalForm| |SparseMultivariatePolynomial| |SparseMultivariateTaylorSeries| |SparseUnivariateLaurentSeries| |SparseUnivariatePolynomial| |SparseUnivariatePolynomialExpressions| |SparseUnivariatePuiseuxSeries| |SparseUnivariateSkewPolynomial| |SparseUnivariateTaylorSeries| |SplitHomogeneousDirectProduct| |SquareMatrix| |SquareMatrixCategory&| |StreamTranscendentalFunctions| |SturmHabichtPackage| |SubSpace| |SymmetricFunctions| |SymmetricPolynomial| |TangentExpansions| |TaylorSeries| |TaylorSolve| |ThreeDimensionalViewport| |TopLevelDrawFunctionsForAlgebraicCurves| |TopLevelDrawFunctionsForCompiledFunctions| |TransSolvePackage| |TranscendentalFunctionCategory&| |TranscendentalIntegration| |TranscendentalManipulations| |TubePlotTools| |TwoDimensionalPlotClipping| |TwoDimensionalViewport| |TwoFactorize| |UnivariateFactorize| |UnivariateFormalPowerSeries| |UnivariateLaurentSeries| |UnivariateLaurentSeriesConstructor| |UnivariatePolynomial| |UnivariatePolynomialMultiplicationPackage| |UnivariatePuiseuxSeries| |UnivariatePuiseuxSeriesConstructor| |UnivariatePuiseuxSeriesWithExponentialSingularity| |UnivariateSkewPolynomial| |UnivariateSkewPolynomialCategory&| |UnivariateTaylorSeries| |UnivariateTaylorSeriesCZero| |UnivariateTaylorSeriesCategory&| |ViewDefaultsPackage| |ViewportPackage| |WeightedPolynomials| |WildFunctionFieldIntegralBasis| |XDistributedPolynomial| |XPBWPolynomial| |XPolynomial| |XPolynomialRing| |XRecursivePolynomial| |d01AgentsPackage| |d01TransformFunctionType| |d01ajfAnnaType| |d01akfAnnaType| |d01alfAnnaType| |d01amfAnnaType| |d01anfAnnaType| |d01apfAnnaType| |d01aqfAnnaType| |d01asfAnnaType| |d01fcfAnnaType| |d01gbfAnnaType| |d02AgentsPackage| |d02bbfAnnaType| |d02bhfAnnaType| |d02cjfAnnaType| |d02ejfAnnaType| |d03AgentsPackage| |d03eefAnnaType| |e04AgentsPackage| |e04dgfAnnaType| |e04fdfAnnaType| |e04gcfAnnaType| |e04jafAnnaType| |e04mbfAnnaType| |e04nafAnnaType| |e04ucfAnnaType|) +(|AbelianGroup&| |AbelianMonoid&| |AbelianMonoidRing&| |AbelianSemiGroup&| |AffineAlgebraicSetComputeWithGroebnerBasis| |AffineAlgebraicSetComputeWithResultant| |AffinePlane| |AffinePlaneOverPseudoAlgebraicClosureOfFiniteField| |AffineSpace| |AlgebraGivenByStructuralConstants| |AlgebraPackage| |AlgebraicFunctionField| |AlgebraicHermiteIntegration| |AlgebraicNumber| |AlgebraicallyClosedField&| |AnnaNumericalIntegrationPackage| |AnnaNumericalOptimizationPackage| |AnnaOrdinaryDifferentialEquationPackage| |AnnaPartialDifferentialEquationPackage| |AntiSymm| |ApplyRules| |Asp19| |AssociatedEquations| |AssociatedJordanAlgebra| |AssociatedLieAlgebra| |AttributeButtons| |Automorphism| |BalancedPAdicInteger| |BalancedPAdicRational| |BasicFunctions| |Bezier| |BinaryExpansion| |BlowUpPackage| |Boolean| |CardinalNumber| |CartesianTensor| |Character| |CharacterClass| |CliffordAlgebra| |Color| |Complex| |ComplexCategory&| |ComplexRootFindingPackage| |ConstantLODE| |ContinuedFraction| |CoordinateSystems| |CycleIndicators| |Database| |DeRhamComplex| |DecimalExpansion| |DefiniteIntegrationTools| |DegreeReductionPackage| |DesingTreePackage| |DifferentialSparseMultivariatePolynomial| |DirectProduct| |DirectProductMatrixModule| |DirectProductModule| |DirichletRing| |DiscreteLogarithmPackage| |DistinctDegreeFactorize| |DistributedMultivariatePolynomial| |DivisionRing&| |Divisor| |DoubleFloat| |DoubleFloatSpecialFunctions| |DrawComplex| |DrawOption| |DrawOptionFunctions0| |ElementaryFunction| |ElementaryFunctionLODESolver| |ElementaryFunctionStructurePackage| |ElementaryIntegration| |ElementaryRischDE| |EllipticFunctionsUnivariateTaylorSeries| |Equation| |EuclideanModularRing| |ExpertSystemToolsPackage| |ExponentialExpansion| |ExponentialOfUnivariatePuiseuxSeries| |Expression| |ExpressionTubePlot| |Factored| |FactoringUtilities| |FiniteAlgebraicExtensionField&| |FiniteDivisor| |FiniteField| |FiniteFieldCategory&| |FiniteFieldCyclicGroup| |FiniteFieldCyclicGroupExtension| |FiniteFieldCyclicGroupExtensionByPolynomial| |FiniteFieldExtension| |FiniteFieldExtensionByPolynomial| |FiniteFieldFunctions| |FiniteFieldHomomorphisms| |FiniteFieldNormalBasis| |FiniteFieldNormalBasisExtension| |FiniteFieldNormalBasisExtensionByPolynomial| |FiniteFieldPolynomialPackage| |FiniteFieldPolynomialPackage2| |FiniteLinearAggregateSort| |FiniteRankAlgebra&| |FiniteRankNonAssociativeAlgebra&| |FiniteSetAggregate&| |Float| |FloatingPointSystem&| |FortranExpression| |FourierSeries| |Fraction| |FractionFreeFastGaussian| |FractionFreeFastGaussianFractions| |FractionalIdeal| |FramedAlgebra&| |FramedModule| |FramedNonAssociativeAlgebra&| |FramedNonAssociativeAlgebraFunctions2| |FreeAbelianGroup| |FreeAbelianMonoid| |FreeGroup| |FreeModule| |FreeModule1| |FreeMonoid| |FreeNilpotentLie| |FunctionFieldCategory&| |FunctionFieldIntegralBasis| |FunctionSpace&| |FunctionSpaceIntegration| |FunctionSpaceToExponentialExpansion| |FunctionSpaceToUnivariatePowerSeries| |FunctionalSpecialFunction| |GaloisGroupFactorizationUtilities| |GaloisGroupFactorizer| |GaloisGroupPolynomialUtilities| |GaloisGroupUtilities| |GaussianFactorizationPackage| |GenExEuclid| |GeneralDistributedMultivariatePolynomial| |GeneralHenselPackage| |GeneralModulePolynomial| |GeneralPackageForAlgebraicFunctionField| |GeneralUnivariatePowerSeries| |GenericNonAssociativeAlgebra| |GenusZeroIntegration| |GnuDraw| |GraphImage| |GrayCode| |Group&| |Guess| |Heap| |HeuGcd| |HexadecimalExpansion| |HomogeneousDirectProduct| |HomogeneousDistributedMultivariatePolynomial| |HyperellipticFiniteDivisor| |IndexedDirectProductAbelianGroup| |IndexedDirectProductAbelianMonoid| |IndexedDirectProductOrderedAbelianMonoid| |IndexedDirectProductOrderedAbelianMonoidSup| |IndexedExponents| |IndexedFlexibleArray| |InfClsPt| |InfinitlyClosePoint| |InfinitlyClosePointOverPseudoAlgebraicClosureOfFiniteField| |InnerAlgebraicNumber| |InnerFiniteField| |InnerFreeAbelianMonoid| |InnerModularGcd| |InnerMultFact| |InnerNormalBasisFieldFunctions| |InnerPAdicInteger| |InnerPrimeField| |InnerSparseUnivariatePowerSeries| |InnerTaylorSeries| |InnerTrigonometricManipulations| |Integer| |IntegerCombinatoricFunctions| |IntegerFactorizationPackage| |IntegerMod| |IntegerNumberSystem&| |IntegerNumberTheoryFunctions| |IntegerPrimesPackage| |IntegerRoots| |IntegralBasisTools| |IntegrationResult| |IntegrationResultToFunction| |InterfaceGroebnerPackage| |InterpolateFormsPackage| |IntersectionDivisorPackage| |Interval| |InverseLaplaceTransform| |IrredPolyOverFiniteField| |Kovacic| |LaplaceTransform| |LaurentPolynomial| |LieExponentials| |LiePolynomial| |LieSquareMatrix| |LinearOrdinaryDifferentialOperator| |LinearOrdinaryDifferentialOperator1| |LinearOrdinaryDifferentialOperator2| |LinearOrdinaryDifferentialOperatorFactorizer| |LiouvillianFunction| |LocalAlgebra| |LocalParametrizationOfSimplePointPackage| |Localize| |LyndonWord| |MachineComplex| |MachineFloat| |MachineInteger| |Magma| |MeshCreationRoutinesForThreeDimensions| |ModMonic| |ModularField| |ModularRing| |Module&| |ModuleOperator| |MoebiusTransform| |Monad&| |MonadWithUnit&| |MonogenicAlgebra&| |Monoid&| |MonoidRing| |MultFiniteFactorize| |MultivariatePolynomial| |MultivariateSquareFree| |MyExpression| |MyUnivariatePolynomial| |NagEigenPackage| |NeitherSparseOrDensePowerSeries| |NewSparseMultivariatePolynomial| |NewSparseUnivariatePolynomial| |NonAssociativeAlgebra&| |NonLinearFirstOrderODESolver| |NonNegativeInteger| |NottinghamGroup| |NumberFieldIntegralBasis| |NumberFormats| |Numeric| |NumericTubePlot| |NumericalOrdinaryDifferentialEquations| |NumericalQuadrature| |Octonion| |OctonionCategory&| |OnePointCompletion| |Operator| |OppositeMonogenicLinearOperator| |OrderedCompletion| |OrderedDirectProduct| |OrderedFreeMonoid| |OrderedVariableList| |OrderlyDifferentialPolynomial| |OrdinaryDifferentialRing| |OrdinaryWeightedPolynomials| |OrthogonalPolynomialFunctions| |OutputForm| |PAdicInteger| |PAdicRational| |PAdicRationalConstructor| |PAdicWildFunctionFieldIntegralBasis| |PackageForAlgebraicFunctionField| |PackageForAlgebraicFunctionFieldOverFiniteField| |PackageForPoly| |ParametricLinearEquations| |PartialFraction| |Partition| |PatternMatchIntegration| |Permanent| |Permutation| |PermutationGroupExamples| |Pi| |Places| |PlacesOverPseudoAlgebraicClosureOfFiniteField| |PlaneAlgebraicCurvePlot| |Plcs| |Plot| |Plot3D| |PoincareBirkhoffWittLyndonBasis| |Point| |PointsOfFiniteOrder| |PointsOfFiniteOrderRational| |PointsOfFiniteOrderTools| |Polynomial| |PolynomialFactorizationByRecursion| |PolynomialGcdPackage| |PolynomialNumberTheoryFunctions| |PolynomialRing| |PolynomialSolveByFormulas| |PositiveInteger| |PowerSeriesCategory&| |PrecomputedAssociatedEquations| |PrimeField| |Product| |ProjectiveAlgebraicSetPackage| |ProjectivePlane| |ProjectivePlaneOverPseudoAlgebraicClosureOfFiniteField| |ProjectiveSpace| |PseudoAlgebraicClosureOfAlgExtOfRationalNumber| |PseudoAlgebraicClosureOfFiniteField| |PseudoAlgebraicClosureOfRationalNumber| |PseudoRemainderSequence| |PureAlgebraicIntegration| |QuadraticForm| |Quaternion| |QuaternionCategory&| |QuotientFieldCategory&| |RadicalFunctionField| |RadicalSolvePackage| |RadixExpansion| |RandomFloatDistributions| |RandomIntegerDistributions| |RandomNumberSource| |RealClosedField&| |RealClosure| |RealRootCharacterizationCategory&| |RealZeroPackage| |RectangularMatrix| |RecursivePolynomialCategory&| |ReduceLODE| |RegularTriangularSetCategory&| |RepeatedDoubling| |RepeatedSquaring| |RepresentationPackage1| |RepresentationPackage2| |ResidueRing| |RewriteRule| |RightOpenIntervalRootCharacterization| |RomanNumeral| |RoutinesTable| |Ruleset| |SemiGroup&| |SequentialDifferentialPolynomial| |Set| |SetOfMIntegersInOneToN| |SimpleAlgebraicExtension| |SingleInteger| |SmithNormalForm| |SparseMultivariatePolynomial| |SparseMultivariateTaylorSeries| |SparseUnivariateLaurentSeries| |SparseUnivariatePolynomial| |SparseUnivariatePolynomialExpressions| |SparseUnivariatePuiseuxSeries| |SparseUnivariateSkewPolynomial| |SparseUnivariateTaylorSeries| |SplitHomogeneousDirectProduct| |SquareMatrix| |SquareMatrixCategory&| |StreamTranscendentalFunctions| |SturmHabichtPackage| |SubSpace| |SymmetricFunctions| |SymmetricPolynomial| |TangentExpansions| |TaylorSeries| |TaylorSolve| |ThreeDimensionalViewport| |TopLevelDrawFunctionsForAlgebraicCurves| |TopLevelDrawFunctionsForCompiledFunctions| |TransSolvePackage| |TranscendentalFunctionCategory&| |TranscendentalIntegration| |TranscendentalManipulations| |TubePlotTools| |TwoDimensionalPlotClipping| |TwoDimensionalViewport| |TwoFactorize| |UnivariateFactorize| |UnivariateFormalPowerSeries| |UnivariateLaurentSeries| |UnivariateLaurentSeriesConstructor| |UnivariatePolynomial| |UnivariatePolynomialMultiplicationPackage| |UnivariatePuiseuxSeries| |UnivariatePuiseuxSeriesConstructor| |UnivariatePuiseuxSeriesWithExponentialSingularity| |UnivariateSkewPolynomial| |UnivariateSkewPolynomialCategory&| |UnivariateTaylorSeries| |UnivariateTaylorSeriesCZero| |UnivariateTaylorSeriesCategory&| |ViewDefaultsPackage| |ViewportPackage| |WeightedPolynomials| |WildFunctionFieldIntegralBasis| |XDistributedPolynomial| |XPBWPolynomial| |XPolynomial| |XPolynomialRing| |XRecursivePolynomial| |d01AgentsPackage| |d01TransformFunctionType| |d01ajfAnnaType| |d01akfAnnaType| |d01alfAnnaType| |d01amfAnnaType| |d01anfAnnaType| |d01apfAnnaType| |d01aqfAnnaType| |d01asfAnnaType| |d01fcfAnnaType| |d01gbfAnnaType| |d02AgentsPackage| |d02bbfAnnaType| |d02bhfAnnaType| |d02cjfAnnaType| |d02ejfAnnaType| |d03AgentsPackage| |d03eefAnnaType| |e04AgentsPackage| |e04dgfAnnaType| |e04fdfAnnaType| |e04gcfAnnaType| |e04jafAnnaType| |e04mbfAnnaType| |e04nafAnnaType| |e04ucfAnnaType|) (|DefiniteIntegrationTools| |ElementaryFunctionSign| |LaplaceTransform| |d01AgentsPackage|) (|AssociatedEquations|) (|FiniteField| |FiniteFieldCyclicGroup| |FiniteFieldNormalBasis| |InterfaceGroebnerPackage|) @@ -520,13 +522,13 @@ (|SExpression|) (|ScriptFormulaFormat1|) (|AnnaNumericalIntegrationPackage| |Asp19| |Asp8| |CombinatorialFunction| |DrawComplex| |ElementaryFunctionDefiniteIntegration| |ExpertSystemContinuityPackage| |ExpertSystemToolsPackage| |ExpressionTubePlot| |FortranCode| |FortranCodePackage1| |FunctionSpaceSum| |GraphImage| |Guess| |InnerPolySum| |LiouvillianFunction| |MeshCreationRoutinesForThreeDimensions| |ParametricLinearEquations| |PlaneAlgebraicCurvePlot| |Plot| |Plot3D| |PlotFunctions1| |PlotTools| |RandomIntegerDistributions| |RationalFunctionDefiniteIntegration| |RationalFunctionSum| |SegmentBinding| |SegmentBindingFunctions2| |SegmentFunctions2| |TopLevelDrawFunctions| |TopLevelDrawFunctionsForAlgebraicCurves| |TopLevelDrawFunctionsForCompiledFunctions| |TwoDimensionalPlotClipping| |UniversalSegment| |d01AgentsPackage| |d01TransformFunctionType| |d01WeightsPackage| |d01ajfAnnaType| |d01akfAnnaType| |d01alfAnnaType| |d01amfAnnaType| |d01anfAnnaType| |d01apfAnnaType| |d01aqfAnnaType| |d01asfAnnaType| |d01fcfAnnaType| |d01gbfAnnaType| |d03AgentsPackage| |e04AgentsPackage| |e04gcfAnnaType|) -(|AnnaNumericalIntegrationPackage| |Asp19| |Asp8| |CombinatorialFunction| |DrawNumericHack| |ElementaryFunctionDefiniteIntegration| |Expression| |FortranCode| |FortranCodePackage1| |FunctionSpaceSum| |Guess| |LiouvillianFunction| |MyExpression| |RationalFunctionDefiniteIntegration| |RationalFunctionSum| |SegmentBindingFunctions2| |TopLevelDrawFunctions|) +(|AnnaNumericalIntegrationPackage| |Asp19| |Asp8| |CombinatorialFunction| |DrawNumericHack| |ElementaryFunctionDefiniteIntegration| |Expression| |FortranCode| |FortranCodePackage1| |FunctionSpaceSum| |GnuDraw| |Guess| |LiouvillianFunction| |MyExpression| |RationalFunctionDefiniteIntegration| |RationalFunctionSum| |SegmentBindingFunctions2| |TopLevelDrawFunctions|) (|DrawNumericHack| |RationalFunctionSum|) (|SegmentBindingFunctions2| |TopLevelDrawFunctionsForAlgebraicCurves| |TopLevelDrawFunctionsForCompiledFunctions|) (|SequentialDifferentialPolynomial|) (|ApplicationProgramInterface| |BasicOperator| |ExpressionSpace&| |Factored| |GaloisGroupFactorizer| |GeneralPolynomialSet| |IntegerPrimesPackage| |ModularHermitianRowReduction| |MonoidRing| |ParametricLinearEquations| |Pattern| |Permutation| |PermutationGroup| |PolynomialSetCategory&| |QuasiAlgebraicSet| |RandomDistributions| |SymmetricGroupCombinatoricFunctions| |ThreeDimensionalViewport| |ThreeSpace|) (|AlgebraicFunctionField| |FiniteFieldCyclicGroupExtensionByPolynomial| |FiniteFieldExtensionByPolynomial| |RadicalFunctionField|) -(|AffinePlane| |AffinePlaneOverPseudoAlgebraicClosureOfFiniteField| |AffineSpace| |AlgebraGivenByStructuralConstants| |AlgebraicFunctionField| |AlgebraicNumber| |AnonymousFunction| |AntiSymm| |Any| |ArrayStack| |AssociatedJordanAlgebra| |AssociatedLieAlgebra| |AssociationList| |AttributeButtons| |Automorphism| |BalancedBinaryTree| |BalancedPAdicInteger| |BalancedPAdicRational| |BasicFunctions| |BasicOperator| |BinaryExpansion| |BinaryFile| |BinarySearchTree| |BinaryTournament| |BinaryTree| |Bits| |BlasLevelOne| |BlowUpWithHamburgerNoether| |BlowUpWithQuadTrans| |Boolean| |CardinalNumber| |CartesianTensor| |Character| |CharacterClass| |CliffordAlgebra| |Color| |Commutator| |Complex| |ComplexRootFindingPackage| |ContinuedFraction| |DataList| |Database| |DeRhamComplex| |DecimalExpansion| |DefiniteIntegrationTools| |DenavitHartenbergMatrix| |Dequeue| |DesingTree| |DifferentialSparseMultivariatePolynomial| |DirectProduct| |DirectProductMatrixModule| |DirectProductModule| |DistributedMultivariatePolynomial| |Divisor| |DoubleFloat| |DrawOption| |ElementaryFunctionDefiniteIntegration| |ElementaryFunctionSign| |EqTable| |Equation| |EuclideanModularRing| |Exit| |ExponentialExpansion| |ExponentialOfUnivariatePuiseuxSeries| |Expression| |ExtAlgBasis| |Factored| |File| |FileName| |FiniteDivisor| |FiniteField| |FiniteFieldCyclicGroup| |FiniteFieldCyclicGroupExtension| |FiniteFieldCyclicGroupExtensionByPolynomial| |FiniteFieldExtension| |FiniteFieldExtensionByPolynomial| |FiniteFieldFunctions| |FiniteFieldNormalBasis| |FiniteFieldNormalBasisExtension| |FiniteFieldNormalBasisExtensionByPolynomial| |FlexibleArray| |Float| |FortranCode| |FortranExpression| |FortranProgram| |FortranTemplate| |FortranType| |FourierComponent| |FourierSeries| |Fraction| |FractionalIdeal| |FramedModule| |FreeAbelianGroup| |FreeAbelianMonoid| |FreeGroup| |FreeModule| |FreeModule1| |FreeMonoid| |FreeNilpotentLie| |FullPartialFractionExpansion| |FunctionCalled| |GeneralDistributedMultivariatePolynomial| |GeneralModulePolynomial| |GeneralPolynomialSet| |GeneralSparseTable| |GeneralTriangularSet| |GeneralUnivariatePowerSeries| |GenericNonAssociativeAlgebra| |GraphImage| |GuessOption| |GuessOptionFunctions0| |HashTable| |Heap| |HexadecimalExpansion| |HomogeneousDirectProduct| |HomogeneousDistributedMultivariatePolynomial| |HyperellipticFiniteDivisor| |IndexCard| |IndexedBits| |IndexedDirectProductAbelianGroup| |IndexedDirectProductAbelianMonoid| |IndexedDirectProductObject| |IndexedDirectProductOrderedAbelianMonoid| |IndexedDirectProductOrderedAbelianMonoidSup| |IndexedExponents| |IndexedFlexibleArray| |IndexedList| |IndexedMatrix| |IndexedOneDimensionalArray| |IndexedString| |IndexedTwoDimensionalArray| |IndexedVector| |InfClsPt| |InfinitlyClosePoint| |InfinitlyClosePointOverPseudoAlgebraicClosureOfFiniteField| |InnerAlgebraicNumber| |InnerFiniteField| |InnerFreeAbelianMonoid| |InnerIndexedTwoDimensionalArray| |InnerNormalBasisFieldFunctions| |InnerPAdicInteger| |InnerPrimeField| |InnerSparseUnivariatePowerSeries| |InnerTable| |InnerTaylorSeries| |InputForm| |Integer| |IntegerMod| |IntegrationResult| |Interval| |Kernel| |KeyedAccessFile| |LaurentPolynomial| |Library| |LieExponentials| |LiePolynomial| |LieSquareMatrix| |LinearOrdinaryDifferentialOperator| |LinearOrdinaryDifferentialOperator1| |LinearOrdinaryDifferentialOperator2| |List| |ListMonoidOps| |ListMultiDictionary| |LocalAlgebra| |Localize| |LyndonWord| |MachineComplex| |MachineFloat| |MachineInteger| |Magma| |MakeCachableSet| |MathMLFormat| |Matrix| |MatrixLinearAlgebraFunctions| |ModMonic| |ModularField| |ModularRing| |ModuleMonomial| |ModuleOperator| |MoebiusTransform| |MonoidRing| |Multiset| |MultivariatePolynomial| |MyExpression| |MyUnivariatePolynomial| |NeitherSparseOrDensePowerSeries| |NewSparseMultivariatePolynomial| |NewSparseUnivariatePolynomial| |NonNegativeInteger| |None| |NottinghamGroup| |NumericalIntegrationProblem| |NumericalODEProblem| |NumericalOptimizationProblem| |NumericalPDEProblem| |NumericalQuadrature| |Octonion| |OneDimensionalArray| |OnePointCompletion| |OpenMathConnection| |OpenMathEncoding| |OpenMathError| |OpenMathErrorKind| |OpenMathServerPackage| |Operator| |OppositeMonogenicLinearOperator| |OrdSetInts| |OrderedCompletion| |OrderedCompletionFunctions2| |OrderedDirectProduct| |OrderedFreeMonoid| |OrderedVariableList| |OrderlyDifferentialPolynomial| |OrderlyDifferentialVariable| |OrdinaryDifferentialRing| |OrdinaryWeightedPolynomials| |OutputForm| |PAdicInteger| |PAdicRational| |PAdicRationalConstructor| |Palette| |PartialFraction| |Partition| |Pattern| |PatternMatchIntegration| |PatternMatchListResult| |PatternMatchResult| |PendantTree| |Permutation| |PermutationGroup| |Pi| |Places| |PlacesOverPseudoAlgebraicClosureOfFiniteField| |Plcs| |PoincareBirkhoffWittLyndonBasis| |Point| |Polynomial| |PolynomialIdeals| |PolynomialRing| |PositiveInteger| |PowerSeriesLimitPackage| |PrimeField| |PrimitiveArray| |Product| |ProjectivePlane| |ProjectivePlaneOverPseudoAlgebraicClosureOfFiniteField| |ProjectiveSpace| |PseudoAlgebraicClosureOfAlgExtOfRationalNumber| |PseudoAlgebraicClosureOfFiniteField| |PseudoAlgebraicClosureOfRationalNumber| |QuadraticForm| |QuasiAlgebraicSet| |Quaternion| |Queue| |RadicalFunctionField| |RadixExpansion| |RandomDistributions| |RationalFunctionLimitPackage| |RationalFunctionSign| |RealClosure| |RectangularMatrix| |Reference| |RegularChain| |RegularTriangularSet| |ResidueRing| |Result| |RewriteRule| |RightOpenIntervalRootCharacterization| |RomanNumeral| |RoutinesTable| |RuleCalled| |Ruleset| |SExpression| |SExpressionOf| |ScriptFormulaFormat| |Segment| |SegmentBinding| |SequentialDifferentialPolynomial| |SequentialDifferentialVariable| |Set| |SetCategory&| |SetOfMIntegersInOneToN| |SimpleAlgebraicExtension| |SingleInteger| |SingletonAsOrderedSet| |SparseMultivariatePolynomial| |SparseMultivariateTaylorSeries| |SparseTable| |SparseUnivariateLaurentSeries| |SparseUnivariatePolynomial| |SparseUnivariatePolynomialExpressions| |SparseUnivariatePuiseuxSeries| |SparseUnivariateSkewPolynomial| |SparseUnivariateTaylorSeries| |SplitHomogeneousDirectProduct| |SplittingNode| |SplittingTree| |SquareFreeRegularTriangularSet| |SquareMatrix| |Stack| |Stream| |String| |StringTable| |SubSpace| |SubSpaceComponentProperty| |SuchThat| |Symbol| |SymmetricPolynomial| |Table| |TaylorSeries| |TexFormat| |TextFile| |ThreeDimensionalMatrix| |ThreeDimensionalViewport| |ThreeSpace| |Tree| |Tuple| |TwoDimensionalArray| |TwoDimensionalViewport| |UTSodetools| |UnivariateFormalPowerSeries| |UnivariateLaurentSeries| |UnivariateLaurentSeriesConstructor| |UnivariatePolynomial| |UnivariatePuiseuxSeries| |UnivariatePuiseuxSeriesConstructor| |UnivariatePuiseuxSeriesWithExponentialSingularity| |UnivariateSkewPolynomial| |UnivariateTaylorSeries| |UnivariateTaylorSeriesCZero| |UniversalSegment| |Variable| |Vector| |WeightedPolynomials| |WuWenTsunTriangularSet| |XDistributedPolynomial| |XPBWPolynomial| |XPolynomial| |XPolynomialRing| |XRecursivePolynomial| |d01AgentsPackage| |d01TransformFunctionType| |d01ajfAnnaType| |d01akfAnnaType| |d01alfAnnaType| |d01amfAnnaType| |d01anfAnnaType| |d01apfAnnaType| |d01aqfAnnaType| |d01asfAnnaType| |d01fcfAnnaType| |d01gbfAnnaType| |d02bbfAnnaType| |d02bhfAnnaType| |d02cjfAnnaType| |d02ejfAnnaType| |d03eefAnnaType| |d03fafAnnaType| |e04dgfAnnaType| |e04fdfAnnaType| |e04gcfAnnaType| |e04jafAnnaType| |e04mbfAnnaType| |e04nafAnnaType| |e04ucfAnnaType|) +(|AffinePlane| |AffinePlaneOverPseudoAlgebraicClosureOfFiniteField| |AffineSpace| |AlgebraGivenByStructuralConstants| |AlgebraicFunctionField| |AlgebraicNumber| |AnonymousFunction| |AntiSymm| |Any| |ArrayStack| |AssociatedJordanAlgebra| |AssociatedLieAlgebra| |AssociationList| |AttributeButtons| |Automorphism| |BalancedBinaryTree| |BalancedPAdicInteger| |BalancedPAdicRational| |BasicFunctions| |BasicOperator| |BinaryExpansion| |BinaryFile| |BinarySearchTree| |BinaryTournament| |BinaryTree| |Bits| |BlasLevelOne| |BlowUpWithHamburgerNoether| |BlowUpWithQuadTrans| |Boolean| |CardinalNumber| |CartesianTensor| |Character| |CharacterClass| |CliffordAlgebra| |Color| |Commutator| |Complex| |ComplexDoubleFloatMatrix| |ComplexDoubleFloatVector| |ComplexRootFindingPackage| |ContinuedFraction| |DataList| |Database| |DeRhamComplex| |DecimalExpansion| |DefiniteIntegrationTools| |DenavitHartenbergMatrix| |Dequeue| |DesingTree| |DifferentialSparseMultivariatePolynomial| |DirectProduct| |DirectProductMatrixModule| |DirectProductModule| |DirichletRing| |DistributedMultivariatePolynomial| |Divisor| |DoubleFloat| |DoubleFloatMatrix| |DoubleFloatVector| |DrawOption| |ElementaryFunctionDefiniteIntegration| |ElementaryFunctionSign| |EqTable| |Equation| |EuclideanModularRing| |Exit| |ExponentialExpansion| |ExponentialOfUnivariatePuiseuxSeries| |Expression| |ExtAlgBasis| |Factored| |File| |FileName| |FiniteDivisor| |FiniteField| |FiniteFieldCyclicGroup| |FiniteFieldCyclicGroupExtension| |FiniteFieldCyclicGroupExtensionByPolynomial| |FiniteFieldExtension| |FiniteFieldExtensionByPolynomial| |FiniteFieldFunctions| |FiniteFieldNormalBasis| |FiniteFieldNormalBasisExtension| |FiniteFieldNormalBasisExtensionByPolynomial| |FlexibleArray| |Float| |FortranCode| |FortranExpression| |FortranProgram| |FortranTemplate| |FortranType| |FourierComponent| |FourierSeries| |Fraction| |FractionalIdeal| |FramedModule| |FreeAbelianGroup| |FreeAbelianMonoid| |FreeGroup| |FreeModule| |FreeModule1| |FreeMonoid| |FreeNilpotentLie| |FullPartialFractionExpansion| |FunctionCalled| |GeneralDistributedMultivariatePolynomial| |GeneralModulePolynomial| |GeneralPolynomialSet| |GeneralSparseTable| |GeneralTriangularSet| |GeneralUnivariatePowerSeries| |GenericNonAssociativeAlgebra| |GraphImage| |GuessOption| |GuessOptionFunctions0| |HTMLFormat| |HashTable| |Heap| |HexadecimalExpansion| |HomogeneousDirectProduct| |HomogeneousDistributedMultivariatePolynomial| |HyperellipticFiniteDivisor| |IndexCard| |IndexedBits| |IndexedDirectProductAbelianGroup| |IndexedDirectProductAbelianMonoid| |IndexedDirectProductObject| |IndexedDirectProductOrderedAbelianMonoid| |IndexedDirectProductOrderedAbelianMonoidSup| |IndexedExponents| |IndexedFlexibleArray| |IndexedList| |IndexedMatrix| |IndexedOneDimensionalArray| |IndexedString| |IndexedTwoDimensionalArray| |IndexedVector| |InfClsPt| |InfinitlyClosePoint| |InfinitlyClosePointOverPseudoAlgebraicClosureOfFiniteField| |InnerAlgebraicNumber| |InnerFiniteField| |InnerFreeAbelianMonoid| |InnerIndexedTwoDimensionalArray| |InnerNormalBasisFieldFunctions| |InnerPAdicInteger| |InnerPrimeField| |InnerSparseUnivariatePowerSeries| |InnerTable| |InnerTaylorSeries| |InputForm| |Integer| |IntegerMod| |IntegrationResult| |Interval| |Kernel| |KeyedAccessFile| |LaurentPolynomial| |Library| |LieExponentials| |LiePolynomial| |LieSquareMatrix| |LinearOrdinaryDifferentialOperator| |LinearOrdinaryDifferentialOperator1| |LinearOrdinaryDifferentialOperator2| |List| |ListMonoidOps| |ListMultiDictionary| |LocalAlgebra| |Localize| |LyndonWord| |MachineComplex| |MachineFloat| |MachineInteger| |Magma| |MakeCachableSet| |MathMLFormat| |Matrix| |MatrixLinearAlgebraFunctions| |ModMonic| |ModularField| |ModularRing| |ModuleMonomial| |ModuleOperator| |MoebiusTransform| |MonoidRing| |Multiset| |MultivariatePolynomial| |MyExpression| |MyUnivariatePolynomial| |NeitherSparseOrDensePowerSeries| |NewSparseMultivariatePolynomial| |NewSparseUnivariatePolynomial| |NonNegativeInteger| |None| |NottinghamGroup| |NumericalIntegrationProblem| |NumericalODEProblem| |NumericalOptimizationProblem| |NumericalPDEProblem| |NumericalQuadrature| |Octonion| |OneDimensionalArray| |OnePointCompletion| |OpenMathConnection| |OpenMathEncoding| |OpenMathError| |OpenMathErrorKind| |OpenMathServerPackage| |Operator| |OppositeMonogenicLinearOperator| |OrdSetInts| |OrderedCompletion| |OrderedCompletionFunctions2| |OrderedDirectProduct| |OrderedFreeMonoid| |OrderedVariableList| |OrderlyDifferentialPolynomial| |OrderlyDifferentialVariable| |OrdinaryDifferentialRing| |OrdinaryWeightedPolynomials| |OutputForm| |PAdicInteger| |PAdicRational| |PAdicRationalConstructor| |Palette| |PartialFraction| |Partition| |Pattern| |PatternMatchIntegration| |PatternMatchListResult| |PatternMatchResult| |PendantTree| |Permutation| |PermutationGroup| |Pi| |Places| |PlacesOverPseudoAlgebraicClosureOfFiniteField| |Plcs| |PoincareBirkhoffWittLyndonBasis| |Point| |Polynomial| |PolynomialIdeals| |PolynomialRing| |PositiveInteger| |PowerSeriesLimitPackage| |PrimeField| |PrimitiveArray| |Product| |ProjectivePlane| |ProjectivePlaneOverPseudoAlgebraicClosureOfFiniteField| |ProjectiveSpace| |PseudoAlgebraicClosureOfAlgExtOfRationalNumber| |PseudoAlgebraicClosureOfFiniteField| |PseudoAlgebraicClosureOfRationalNumber| |QuadraticForm| |QuasiAlgebraicSet| |Quaternion| |Queue| |RadicalFunctionField| |RadixExpansion| |RandomDistributions| |RationalFunctionLimitPackage| |RationalFunctionSign| |RealClosure| |RectangularMatrix| |Reference| |RegularChain| |RegularTriangularSet| |ResidueRing| |Result| |RewriteRule| |RightOpenIntervalRootCharacterization| |RomanNumeral| |RoutinesTable| |RuleCalled| |Ruleset| |SExpression| |SExpressionOf| |ScriptFormulaFormat| |Segment| |SegmentBinding| |SequentialDifferentialPolynomial| |SequentialDifferentialVariable| |Set| |SetCategory&| |SetOfMIntegersInOneToN| |SimpleAlgebraicExtension| |SingleInteger| |SingletonAsOrderedSet| |SparseMultivariatePolynomial| |SparseMultivariateTaylorSeries| |SparseTable| |SparseUnivariateLaurentSeries| |SparseUnivariatePolynomial| |SparseUnivariatePolynomialExpressions| |SparseUnivariatePuiseuxSeries| |SparseUnivariateSkewPolynomial| |SparseUnivariateTaylorSeries| |SplitHomogeneousDirectProduct| |SplittingNode| |SplittingTree| |SquareFreeRegularTriangularSet| |SquareMatrix| |Stack| |Stream| |String| |StringTable| |SubSpace| |SubSpaceComponentProperty| |SuchThat| |Symbol| |SymmetricPolynomial| |Table| |TaylorSeries| |TexFormat| |TextFile| |ThreeDimensionalMatrix| |ThreeDimensionalViewport| |ThreeSpace| |Tree| |Tuple| |TwoDimensionalArray| |TwoDimensionalViewport| |UTSodetools| |UnivariateFormalPowerSeries| |UnivariateLaurentSeries| |UnivariateLaurentSeriesConstructor| |UnivariatePolynomial| |UnivariatePuiseuxSeries| |UnivariatePuiseuxSeriesConstructor| |UnivariatePuiseuxSeriesWithExponentialSingularity| |UnivariateSkewPolynomial| |UnivariateTaylorSeries| |UnivariateTaylorSeriesCZero| |UniversalSegment| |Variable| |Vector| |WeightedPolynomials| |WuWenTsunTriangularSet| |XDistributedPolynomial| |XPBWPolynomial| |XPolynomial| |XPolynomialRing| |XRecursivePolynomial| |d01AgentsPackage| |d01TransformFunctionType| |d01ajfAnnaType| |d01akfAnnaType| |d01alfAnnaType| |d01amfAnnaType| |d01anfAnnaType| |d01apfAnnaType| |d01aqfAnnaType| |d01asfAnnaType| |d01fcfAnnaType| |d01gbfAnnaType| |d02bbfAnnaType| |d02bhfAnnaType| |d02cjfAnnaType| |d02ejfAnnaType| |d03eefAnnaType| |d03fafAnnaType| |e04dgfAnnaType| |e04fdfAnnaType| |e04gcfAnnaType| |e04jafAnnaType| |e04mbfAnnaType| |e04nafAnnaType| |e04ucfAnnaType|) (|ExponentialOfUnivariatePuiseuxSeries| |GeneralUnivariatePowerSeries| |InnerSparseUnivariatePowerSeries| |ModMonic| |MultivariateSquareFree| |MyUnivariatePolynomial| |NeitherSparseOrDensePowerSeries| |NewSparseUnivariatePolynomial| |SparseUnivariateLaurentSeries| |SparseUnivariatePolynomial| |SparseUnivariatePolynomialExpressions| |SparseUnivariatePuiseuxSeries| |SparseUnivariateTaylorSeries| |UnivariateFormalPowerSeries| |UnivariateLaurentSeries| |UnivariateLaurentSeriesConstructor| |UnivariatePolynomial| |UnivariatePolynomialCategory&| |UnivariatePowerSeriesCategory&| |UnivariatePuiseuxSeries| |UnivariatePuiseuxSeriesConstructor| |UnivariateTaylorSeries| |UnivariateTaylorSeriesCZero|) (|TranscendentalRischDESystem|) (|Kernel| |MakeCachableSet|) @@ -547,17 +549,17 @@ (|AlgebraGivenByStructuralConstants| |CartesianTensor| |GenericNonAssociativeAlgebra| |LieSquareMatrix| |Permanent| |QuadraticForm|) (|FortranOutputStackPackage| |Queue|) (|Matrix|) -(|BalancedPAdicInteger| |BasicFunctions| |ContinuedFraction| |CycleIndicators| |ElementaryFunctionsUnivariateLaurentSeries| |EllipticFunctionsUnivariateTaylorSeries| |ExpertSystemContinuityPackage| |ExpertSystemToolsPackage| |ExponentialOfUnivariatePuiseuxSeries| |FractionFreeFastGaussian| |FractionFreeFastGaussianFractions| |GeneralUnivariatePowerSeries| |GenerateUnivariatePowerSeries| |Guess| |InfiniteProductCharacteristicZero| |InfiniteProductFiniteField| |InfiniteProductPrimeField| |InfiniteTuple| |InfiniteTupleFunctions2| |InfiniteTupleFunctions3| |InnerPAdicInteger| |InnerSparseUnivariatePowerSeries| |InnerTaylorSeries| |LinearSystemFromPowerSeriesPackage| |NeitherSparseOrDensePowerSeries| |NumericContinuedFraction| |PAdicInteger| |PAdicRationalConstructor| |PadeApproximants| |ParadoxicalCombinatorsForStreams| |PartitionsAndPermutations| |RadixExpansion| |SparseMultivariateTaylorSeries| |SparseUnivariateLaurentSeries| |SparseUnivariatePuiseuxSeries| |SparseUnivariateTaylorSeries| |Stream| |StreamFunctions1| |StreamFunctions2| |StreamFunctions3| |StreamInfiniteProduct| |StreamTaylorSeriesOperations| |StreamTranscendentalFunctions| |StreamTranscendentalFunctionsNonCommutative| |TableauxBumpers| |TaylorSolve| |UnivariateFormalPowerSeries| |UnivariateFormalPowerSeriesFunctions| |UnivariateLaurentSeries| |UnivariateLaurentSeriesConstructor| |UnivariatePuiseuxSeries| |UnivariatePuiseuxSeriesConstructor| |UnivariatePuiseuxSeriesWithExponentialSingularity| |UnivariateTaylorSeries| |UnivariateTaylorSeriesCZero| |UnivariateTaylorSeriesCategory&| |UnivariateTaylorSeriesFunctions2| |UnivariateTaylorSeriesODESolver| |UniversalSegment| |UniversalSegmentFunctions2| |WeierstrassPreparation| |d01AgentsPackage| |d01ajfAnnaType| |d01akfAnnaType| |d01alfAnnaType| |d01amfAnnaType| |d01aqfAnnaType| |e04gcfAnnaType|) +(|BalancedPAdicInteger| |BasicFunctions| |ContinuedFraction| |CycleIndicators| |DirichletRing| |ElementaryFunctionsUnivariateLaurentSeries| |EllipticFunctionsUnivariateTaylorSeries| |ExpertSystemContinuityPackage| |ExpertSystemToolsPackage| |ExponentialOfUnivariatePuiseuxSeries| |FractionFreeFastGaussian| |FractionFreeFastGaussianFractions| |GeneralUnivariatePowerSeries| |GenerateUnivariatePowerSeries| |Guess| |InfiniteProductCharacteristicZero| |InfiniteProductFiniteField| |InfiniteProductPrimeField| |InfiniteTuple| |InfiniteTupleFunctions2| |InfiniteTupleFunctions3| |InnerPAdicInteger| |InnerSparseUnivariatePowerSeries| |InnerTaylorSeries| |LinearSystemFromPowerSeriesPackage| |NeitherSparseOrDensePowerSeries| |NumericContinuedFraction| |PAdicInteger| |PAdicRationalConstructor| |PadeApproximants| |ParadoxicalCombinatorsForStreams| |PartitionsAndPermutations| |RadixExpansion| |SparseMultivariateTaylorSeries| |SparseUnivariateLaurentSeries| |SparseUnivariatePuiseuxSeries| |SparseUnivariateTaylorSeries| |Stream| |StreamFunctions1| |StreamFunctions2| |StreamFunctions3| |StreamInfiniteProduct| |StreamTaylorSeriesOperations| |StreamTranscendentalFunctions| |StreamTranscendentalFunctionsNonCommutative| |TableauxBumpers| |TaylorSolve| |UnivariateFormalPowerSeries| |UnivariateFormalPowerSeriesFunctions| |UnivariateLaurentSeries| |UnivariateLaurentSeriesConstructor| |UnivariatePuiseuxSeries| |UnivariatePuiseuxSeriesConstructor| |UnivariatePuiseuxSeriesWithExponentialSingularity| |UnivariateTaylorSeries| |UnivariateTaylorSeriesCZero| |UnivariateTaylorSeriesCategory&| |UnivariateTaylorSeriesFunctions2| |UnivariateTaylorSeriesODESolver| |UniversalSegment| |UniversalSegmentFunctions2| |WeierstrassPreparation| |d01AgentsPackage| |d01ajfAnnaType| |d01akfAnnaType| |d01alfAnnaType| |d01amfAnnaType| |d01aqfAnnaType| |e04gcfAnnaType|) (|Guess| |PartitionsAndPermutations|) -(|ContinuedFraction| |ExpertSystemContinuityPackage| |ExpertSystemToolsPackage| |FractionFreeFastGaussian| |Guess| |InfiniteProductFiniteField| |InfiniteProductPrimeField| |InfiniteTupleFunctions2| |PartitionsAndPermutations| |SparseMultivariateTaylorSeries| |Stream| |StreamFunctions3| |StreamInfiniteProduct| |StreamTaylorSeriesOperations| |TableauxBumpers| |UnivariatePuiseuxSeriesConstructor| |UnivariateTaylorSeriesFunctions2| |UniversalSegmentFunctions2| |WeierstrassPreparation|) +(|ContinuedFraction| |DirichletRing| |ExpertSystemContinuityPackage| |ExpertSystemToolsPackage| |FractionFreeFastGaussian| |Guess| |InfiniteProductFiniteField| |InfiniteProductPrimeField| |InfiniteTupleFunctions2| |PartitionsAndPermutations| |SparseMultivariateTaylorSeries| |Stream| |StreamFunctions3| |StreamInfiniteProduct| |StreamTaylorSeriesOperations| |TableauxBumpers| |UnivariatePuiseuxSeriesConstructor| |UnivariateTaylorSeriesFunctions2| |UniversalSegmentFunctions2| |WeierstrassPreparation|) (|InfiniteTupleFunctions3| |PartitionsAndPermutations| |SparseMultivariateTaylorSeries| |Stream| |StreamTaylorSeriesOperations| |UnivariateFormalPowerSeriesFunctions| |WeierstrassPreparation|) (|InfiniteProductCharacteristicZero| |InfiniteProductPrimeField|) -(|EllipticFunctionsUnivariateTaylorSeries| |InfiniteProductFiniteField| |InnerTaylorSeries| |SparseMultivariateTaylorSeries| |StreamInfiniteProduct| |StreamTranscendentalFunctions| |StreamTranscendentalFunctionsNonCommutative| |UnivariateLaurentSeriesConstructor| |UnivariateTaylorSeries| |UnivariateTaylorSeriesCZero| |UnivariateTaylorSeriesCategory&| |UnivariateTaylorSeriesODESolver| |WeierstrassPreparation|) +(|DirichletRing| |EllipticFunctionsUnivariateTaylorSeries| |InfiniteProductFiniteField| |InnerTaylorSeries| |SparseMultivariateTaylorSeries| |StreamInfiniteProduct| |StreamTranscendentalFunctions| |StreamTranscendentalFunctionsNonCommutative| |UnivariateLaurentSeriesConstructor| |UnivariateTaylorSeries| |UnivariateTaylorSeriesCZero| |UnivariateTaylorSeriesCategory&| |UnivariateTaylorSeriesODESolver| |WeierstrassPreparation|) (|ElementaryFunctionsUnivariateLaurentSeries| |InfiniteProductFiniteField| |SparseMultivariateTaylorSeries| |StreamInfiniteProduct| |StreamTranscendentalFunctionsNonCommutative| |UnivariateTaylorSeriesCategory&|) (|UnivariateTaylorSeriesCategory&|) -(|AffinePlane| |AffinePlaneOverPseudoAlgebraicClosureOfFiniteField| |AffineSpace| |AlgebraGivenByStructuralConstants| |AlgebraicFunction| |AlgebraicFunctionField| |AlgebraicIntegration| |AlgebraicManipulations| |AlgebraicNumber| |AnnaNumericalIntegrationPackage| |AnnaNumericalOptimizationPackage| |AnnaOrdinaryDifferentialEquationPackage| |AnnaPartialDifferentialEquationPackage| |AnonymousFunction| |AntiSymm| |Any| |ArrayStack| |Asp1| |Asp10| |Asp12| |Asp19| |Asp20| |Asp24| |Asp27| |Asp28| |Asp29| |Asp30| |Asp31| |Asp33| |Asp34| |Asp35| |Asp4| |Asp41| |Asp42| |Asp49| |Asp50| |Asp55| |Asp6| |Asp7| |Asp77| |Asp78| |Asp8| |Asp80| |Asp9| |AssociatedJordanAlgebra| |AssociatedLieAlgebra| |AssociationList| |AttributeButtons| |Automorphism| |AxiomServer| |BalancedBinaryTree| |BalancedPAdicInteger| |BalancedPAdicRational| |BasicFunctions| |BasicOperator| |BasicOperatorFunctions1| |BinaryExpansion| |BinaryFile| |BinarySearchTree| |BinaryTournament| |BinaryTree| |Bits| |BlowUpWithHamburgerNoether| |BlowUpWithQuadTrans| |Boolean| |CardinalNumber| |CartesianTensor| |Character| |CharacterClass| |CliffordAlgebra| |Color| |CombinatorialFunction| |CommonOperators| |Commutator| |Complex| |ComplexCategory&| |ComplexPattern| |ComplexPatternMatch| |ComplexRootFindingPackage| |ComplexTrigonometricManipulations| |ContinuedFraction| |DataList| |Database| |DeRhamComplex| |DecimalExpansion| |DefiniteIntegrationTools| |DenavitHartenbergMatrix| |Dequeue| |DesingTree| |DictionaryOperations&| |DifferentialSparseMultivariatePolynomial| |DirectProduct| |DirectProductMatrixModule| |DirectProductModule| |DiscreteLogarithmPackage| |DisplayPackage| |DistributedMultivariatePolynomial| |Divisor| |DoubleFloat| |DrawComplex| |DrawOption| |DrawOptionFunctions0| |ElementaryFunction| |ElementaryFunctionDefiniteIntegration| |ElementaryFunctionLODESolver| |ElementaryFunctionODESolver| |ElementaryFunctionSign| |ElementaryFunctionStructurePackage| |ElementaryFunctionsUnivariateLaurentSeries| |ElementaryFunctionsUnivariatePuiseuxSeries| |ElementaryIntegration| |ElementaryRischDE| |EqTable| |Equation| |ErrorFunctions| |EuclideanGroebnerBasisPackage| |EuclideanModularRing| |Exit| |ExpertSystemContinuityPackage| |ExpertSystemToolsPackage| |ExponentialExpansion| |ExponentialOfUnivariatePuiseuxSeries| |Expression| |ExpressionSolve| |ExpressionSpace&| |ExpressionSpaceFunctions1| |ExpressionSpaceODESolver| |ExpressionToOpenMath| |ExpressionTubePlot| |ExtAlgBasis| |Factored| |File| |FileName| |FiniteAlgebraicExtensionField&| |FiniteDivisor| |FiniteField| |FiniteFieldCategory&| |FiniteFieldCyclicGroup| |FiniteFieldCyclicGroupExtension| |FiniteFieldCyclicGroupExtensionByPolynomial| |FiniteFieldExtension| |FiniteFieldExtensionByPolynomial| |FiniteFieldNormalBasis| |FiniteFieldNormalBasisExtension| |FiniteFieldNormalBasisExtensionByPolynomial| |FiniteRankNonAssociativeAlgebra&| |FlexibleArray| |Float| |FortranCode| |FortranCodePackage1| |FortranExpression| |FortranOutputStackPackage| |FortranPackage| |FortranProgram| |FortranScalarType| |FortranTemplate| |FortranType| |FourierComponent| |FourierSeries| |Fraction| |FractionalIdeal| |FramedModule| |FramedNonAssociativeAlgebra&| |FreeAbelianGroup| |FreeAbelianMonoid| |FreeGroup| |FreeModule| |FreeModule1| |FreeMonoid| |FreeNilpotentLie| |FullPartialFractionExpansion| |FunctionCalled| |FunctionFieldCategory&| |FunctionSpace&| |FunctionSpaceAssertions| |FunctionSpaceAttachPredicates| |FunctionSpaceComplexIntegration| |FunctionSpaceIntegration| |FunctionSpacePrimitiveElement| |FunctionSpaceReduce| |FunctionSpaceToExponentialExpansion| |FunctionSpaceToUnivariatePowerSeries| |FunctionalSpecialFunction| |GenUFactorize| |GeneralDistributedMultivariatePolynomial| |GeneralModulePolynomial| |GeneralPolynomialSet| |GeneralSparseTable| |GeneralTriangularSet| |GeneralUnivariatePowerSeries| |GenericNonAssociativeAlgebra| |GraphImage| |GroebnerFactorizationPackage| |GroebnerInternalPackage| |GroebnerPackage| |Guess| |GuessOption| |GuessOptionFunctions0| |HashTable| |Heap| |HexadecimalExpansion| |HomogeneousDirectProduct| |HomogeneousDistributedMultivariatePolynomial| |HyperellipticFiniteDivisor| |IndexCard| |IndexedBits| |IndexedDirectProductAbelianGroup| |IndexedDirectProductAbelianMonoid| |IndexedDirectProductObject| |IndexedDirectProductOrderedAbelianMonoid| |IndexedDirectProductOrderedAbelianMonoidSup| |IndexedExponents| |IndexedFlexibleArray| |IndexedList| |IndexedMatrix| |IndexedOneDimensionalArray| |IndexedString| |IndexedTwoDimensionalArray| |IndexedVector| |InfClsPt| |InfinitlyClosePoint| |InfinitlyClosePointOverPseudoAlgebraicClosureOfFiniteField| |InnerAlgebraicNumber| |InnerFiniteField| |InnerFreeAbelianMonoid| |InnerIndexedTwoDimensionalArray| |InnerPAdicInteger| |InnerPrimeField| |InnerSparseUnivariatePowerSeries| |InnerTable| |InnerTaylorSeries| |InnerTrigonometricManipulations| |InputForm| |InputFormFunctions1| |Integer| |IntegerMod| |IntegrationResult| |IntegrationResultToFunction| |IntegrationTools| |InternalPrintPackage| |InternalRationalUnivariateRepresentationPackage| |Interval| |Kernel| |KeyedAccessFile| |LaplaceTransform| |LaurentPolynomial| |Library| |LieExponentials| |LiePolynomial| |LieSquareMatrix| |LinearOrdinaryDifferentialOperator| |LinearOrdinaryDifferentialOperator1| |LinearOrdinaryDifferentialOperator2| |LiouvillianFunction| |List| |ListMonoidOps| |ListMultiDictionary| |LocalAlgebra| |Localize| |LyndonWord| |MachineComplex| |MachineFloat| |MachineInteger| |Magma| |MakeCachableSet| |MakeFloatCompiledFunction| |MathMLFormat| |Matrix| |ModMonic| |ModularField| |ModularRing| |ModuleMonomial| |ModuleOperator| |MoebiusTransform| |MonoidRing| |MoreSystemCommands| |Multiset| |MultivariatePolynomial| |MyExpression| |MyUnivariatePolynomial| |NAGLinkSupportPackage| |NagEigenPackage| |NagFittingPackage| |NagIntegrationPackage| |NagInterpolationPackage| |NagLapack| |NagLinearEquationSolvingPackage| |NagMatrixOperationsPackage| |NagOptimisationPackage| |NagOrdinaryDifferentialEquationsPackage| |NagPartialDifferentialEquationsPackage| |NagPolynomialRootsPackage| |NagRootFindingPackage| |NagSeriesSummationPackage| |NagSpecialFunctionsPackage| |NeitherSparseOrDensePowerSeries| |NewSparseMultivariatePolynomial| |NewSparseUnivariatePolynomial| |NonNegativeInteger| |None| |NormalizationPackage| |NottinghamGroup| |NumberFormats| |NumericalIntegrationProblem| |NumericalODEProblem| |NumericalOptimizationProblem| |NumericalOrdinaryDifferentialEquations| |NumericalPDEProblem| |NumericalQuadrature| |ODEIntegration| |Octonion| |OctonionCategory&| |OneDimensionalArray| |OnePointCompletion| |OpenMathConnection| |OpenMathDevice| |OpenMathEncoding| |OpenMathError| |OpenMathErrorKind| |OpenMathPackage| |OpenMathServerPackage| |OperationsQuery| |Operator| |OppositeMonogenicLinearOperator| |OrdSetInts| |OrderedCompletion| |OrderedDirectProduct| |OrderedFreeMonoid| |OrderedVariableList| |OrderlyDifferentialPolynomial| |OrderlyDifferentialVariable| |OrdinaryDifferentialRing| |OrdinaryWeightedPolynomials| |OutputForm| |OutputPackage| |PAdicInteger| |PAdicRational| |PAdicRationalConstructor| |Palette| |ParametricLinearEquations| |PartialFraction| |Partition| |Pattern| |PatternMatchAssertions| |PatternMatchIntegration| |PatternMatchKernel| |PatternMatchListResult| |PatternMatchResult| |PendantTree| |Permutation| |PermutationGroup| |Pi| |Places| |PlacesOverPseudoAlgebraicClosureOfFiniteField| |PlaneAlgebraicCurvePlot| |Plcs| |PoincareBirkhoffWittLyndonBasis| |Point| |PointsOfFiniteOrder| |Polynomial| |PolynomialIdeals| |PolynomialRing| |PositiveInteger| |PowerSeriesLimitPackage| |PrimeField| |PrimitiveArray| |Product| |ProjectivePlane| |ProjectivePlaneOverPseudoAlgebraicClosureOfFiniteField| |ProjectiveSpace| |PseudoAlgebraicClosureOfAlgExtOfRationalNumber| |PseudoAlgebraicClosureOfFiniteField| |PseudoAlgebraicClosureOfRationalNumber| |PureAlgebraicIntegration| |QuadraticForm| |QuasiAlgebraicSet| |QuasiComponentPackage| |Quaternion| |QuaternionCategory&| |QueryEquation| |Queue| |RadicalFunctionField| |RadixExpansion| |RationalFunctionDefiniteIntegration| |RationalFunctionLimitPackage| |RationalFunctionSign| |RationalUnivariateRepresentationPackage| |RealClosure| |RectangularMatrix| |RecurrenceOperator| |RecursivePolynomialCategory&| |Reference| |RegularChain| |RegularSetDecompositionPackage| |RegularTriangularSet| |RegularTriangularSetGcdPackage| |RepresentationPackage2| |ResidueRing| |Result| |RewriteRule| |RightOpenIntervalRootCharacterization| |RomanNumeral| |RoutinesTable| |RuleCalled| |Ruleset| |SExpression| |SExpressionOf| |ScriptFormulaFormat| |Segment| |SegmentBinding| |SequentialDifferentialPolynomial| |SequentialDifferentialVariable| |Set| |SetCategory&| |SetOfMIntegersInOneToN| |SimpleAlgebraicExtension| |SingleInteger| |SingletonAsOrderedSet| |SparseMultivariatePolynomial| |SparseMultivariateTaylorSeries| |SparseTable| |SparseUnivariateLaurentSeries| |SparseUnivariatePolynomial| |SparseUnivariatePolynomialExpressions| |SparseUnivariatePuiseuxSeries| |SparseUnivariateSkewPolynomial| |SparseUnivariateTaylorSeries| |SpecialOutputPackage| |SplitHomogeneousDirectProduct| |SplittingNode| |SplittingTree| |SquareFreeQuasiComponentPackage| |SquareFreeRegularSetDecompositionPackage| |SquareFreeRegularTriangularSet| |SquareFreeRegularTriangularSetGcdPackage| |SquareMatrix| |Stack| |Stream| |StreamTranscendentalFunctions| |StreamTranscendentalFunctionsNonCommutative| |String| |StringTable| |SubSpace| |SubSpaceComponentProperty| |SuchThat| |Switch| |Symbol| |SymbolTable| |SymmetricPolynomial| |Table| |Tableau| |TabulatedComputationPackage| |TaylorSeries| |TemplateUtilities| |TexFormat| |TextFile| |ThreeDimensionalMatrix| |ThreeDimensionalViewport| |ThreeSpace| |ToolsForSign| |TopLevelDrawFunctions| |TopLevelDrawFunctionsForAlgebraicCurves| |TopLevelDrawFunctionsForCompiledFunctions| |TransSolvePackage| |TranscendentalManipulations| |Tree| |TrigonometricManipulations| |Tuple| |TwoDimensionalArray| |TwoDimensionalViewport| |UnivariateFormalPowerSeries| |UnivariateLaurentSeries| |UnivariateLaurentSeriesConstructor| |UnivariatePolynomial| |UnivariatePuiseuxSeries| |UnivariatePuiseuxSeriesConstructor| |UnivariatePuiseuxSeriesWithExponentialSingularity| |UnivariateSkewPolynomial| |UnivariateTaylorSeries| |UnivariateTaylorSeriesCZero| |UniversalSegment| |Variable| |Vector| |ViewDefaultsPackage| |ViewportPackage| |WeightedPolynomials| |WuWenTsunTriangularSet| |XDistributedPolynomial| |XPBWPolynomial| |XPolynomial| |XPolynomialRing| |XRecursivePolynomial| |ZeroDimensionalSolvePackage| |d01AgentsPackage| |d01TransformFunctionType| |d01ajfAnnaType| |d01akfAnnaType| |d01alfAnnaType| |d01amfAnnaType| |d01anfAnnaType| |d01apfAnnaType| |d01aqfAnnaType| |d01asfAnnaType| |d01fcfAnnaType| |d01gbfAnnaType| |d02bbfAnnaType| |d02bhfAnnaType| |d02cjfAnnaType| |d02ejfAnnaType| |d03eefAnnaType| |d03fafAnnaType| |e04AgentsPackage| |e04dgfAnnaType| |e04fdfAnnaType| |e04gcfAnnaType| |e04jafAnnaType| |e04mbfAnnaType| |e04nafAnnaType| |e04ucfAnnaType|) +(|AffinePlane| |AffinePlaneOverPseudoAlgebraicClosureOfFiniteField| |AffineSpace| |AlgebraGivenByStructuralConstants| |AlgebraicFunction| |AlgebraicFunctionField| |AlgebraicIntegration| |AlgebraicManipulations| |AlgebraicNumber| |AnnaNumericalIntegrationPackage| |AnnaNumericalOptimizationPackage| |AnnaOrdinaryDifferentialEquationPackage| |AnnaPartialDifferentialEquationPackage| |AnonymousFunction| |AntiSymm| |Any| |ArrayStack| |Asp1| |Asp10| |Asp12| |Asp19| |Asp20| |Asp24| |Asp27| |Asp28| |Asp29| |Asp30| |Asp31| |Asp33| |Asp34| |Asp35| |Asp4| |Asp41| |Asp42| |Asp49| |Asp50| |Asp55| |Asp6| |Asp7| |Asp77| |Asp78| |Asp8| |Asp80| |Asp9| |AssociatedJordanAlgebra| |AssociatedLieAlgebra| |AssociationList| |AttributeButtons| |Automorphism| |AxiomServer| |BalancedBinaryTree| |BalancedPAdicInteger| |BalancedPAdicRational| |BasicFunctions| |BasicOperator| |BasicOperatorFunctions1| |BinaryExpansion| |BinaryFile| |BinarySearchTree| |BinaryTournament| |BinaryTree| |Bits| |BlowUpWithHamburgerNoether| |BlowUpWithQuadTrans| |Boolean| |CardinalNumber| |CartesianTensor| |Character| |CharacterClass| |CliffordAlgebra| |Color| |CombinatorialFunction| |CommonOperators| |Commutator| |Complex| |ComplexCategory&| |ComplexDoubleFloatMatrix| |ComplexDoubleFloatVector| |ComplexPattern| |ComplexPatternMatch| |ComplexRootFindingPackage| |ComplexTrigonometricManipulations| |ContinuedFraction| |DataList| |Database| |DeRhamComplex| |DecimalExpansion| |DefiniteIntegrationTools| |DenavitHartenbergMatrix| |Dequeue| |DesingTree| |DictionaryOperations&| |DifferentialSparseMultivariatePolynomial| |DirectProduct| |DirectProductMatrixModule| |DirectProductModule| |DirichletRing| |DiscreteLogarithmPackage| |DisplayPackage| |DistributedMultivariatePolynomial| |Divisor| |DoubleFloat| |DoubleFloatMatrix| |DoubleFloatVector| |DrawComplex| |DrawOption| |DrawOptionFunctions0| |ElementaryFunction| |ElementaryFunctionDefiniteIntegration| |ElementaryFunctionLODESolver| |ElementaryFunctionODESolver| |ElementaryFunctionSign| |ElementaryFunctionStructurePackage| |ElementaryFunctionsUnivariateLaurentSeries| |ElementaryFunctionsUnivariatePuiseuxSeries| |ElementaryIntegration| |ElementaryRischDE| |EqTable| |Equation| |ErrorFunctions| |EuclideanGroebnerBasisPackage| |EuclideanModularRing| |Exit| |ExpertSystemContinuityPackage| |ExpertSystemToolsPackage| |ExponentialExpansion| |ExponentialOfUnivariatePuiseuxSeries| |Export3D| |Expression| |ExpressionSolve| |ExpressionSpace&| |ExpressionSpaceFunctions1| |ExpressionSpaceODESolver| |ExpressionToOpenMath| |ExpressionTubePlot| |ExtAlgBasis| |Factored| |File| |FileName| |FiniteAlgebraicExtensionField&| |FiniteDivisor| |FiniteField| |FiniteFieldCategory&| |FiniteFieldCyclicGroup| |FiniteFieldCyclicGroupExtension| |FiniteFieldCyclicGroupExtensionByPolynomial| |FiniteFieldExtension| |FiniteFieldExtensionByPolynomial| |FiniteFieldNormalBasis| |FiniteFieldNormalBasisExtension| |FiniteFieldNormalBasisExtensionByPolynomial| |FiniteRankNonAssociativeAlgebra&| |FlexibleArray| |Float| |FortranCode| |FortranCodePackage1| |FortranExpression| |FortranOutputStackPackage| |FortranPackage| |FortranProgram| |FortranScalarType| |FortranTemplate| |FortranType| |FourierComponent| |FourierSeries| |Fraction| |FractionalIdeal| |FramedModule| |FramedNonAssociativeAlgebra&| |FreeAbelianGroup| |FreeAbelianMonoid| |FreeGroup| |FreeModule| |FreeModule1| |FreeMonoid| |FreeNilpotentLie| |FullPartialFractionExpansion| |FunctionCalled| |FunctionFieldCategory&| |FunctionSpace&| |FunctionSpaceAssertions| |FunctionSpaceAttachPredicates| |FunctionSpaceComplexIntegration| |FunctionSpaceIntegration| |FunctionSpacePrimitiveElement| |FunctionSpaceReduce| |FunctionSpaceToExponentialExpansion| |FunctionSpaceToUnivariatePowerSeries| |FunctionalSpecialFunction| |GenUFactorize| |GeneralDistributedMultivariatePolynomial| |GeneralModulePolynomial| |GeneralPolynomialSet| |GeneralSparseTable| |GeneralTriangularSet| |GeneralUnivariatePowerSeries| |GenericNonAssociativeAlgebra| |GnuDraw| |GraphImage| |GroebnerFactorizationPackage| |GroebnerInternalPackage| |GroebnerPackage| |Guess| |GuessOption| |GuessOptionFunctions0| |HTMLFormat| |HashTable| |Heap| |HexadecimalExpansion| |HomogeneousDirectProduct| |HomogeneousDistributedMultivariatePolynomial| |HyperellipticFiniteDivisor| |IndexCard| |IndexedBits| |IndexedDirectProductAbelianGroup| |IndexedDirectProductAbelianMonoid| |IndexedDirectProductObject| |IndexedDirectProductOrderedAbelianMonoid| |IndexedDirectProductOrderedAbelianMonoidSup| |IndexedExponents| |IndexedFlexibleArray| |IndexedList| |IndexedMatrix| |IndexedOneDimensionalArray| |IndexedString| |IndexedTwoDimensionalArray| |IndexedVector| |InfClsPt| |InfinitlyClosePoint| |InfinitlyClosePointOverPseudoAlgebraicClosureOfFiniteField| |InnerAlgebraicNumber| |InnerFiniteField| |InnerFreeAbelianMonoid| |InnerIndexedTwoDimensionalArray| |InnerPAdicInteger| |InnerPrimeField| |InnerSparseUnivariatePowerSeries| |InnerTable| |InnerTaylorSeries| |InnerTrigonometricManipulations| |InputForm| |InputFormFunctions1| |Integer| |IntegerMod| |IntegrationResult| |IntegrationResultToFunction| |IntegrationTools| |InternalPrintPackage| |InternalRationalUnivariateRepresentationPackage| |Interval| |Kernel| |KeyedAccessFile| |LaplaceTransform| |LaurentPolynomial| |Library| |LieExponentials| |LiePolynomial| |LieSquareMatrix| |LinearOrdinaryDifferentialOperator| |LinearOrdinaryDifferentialOperator1| |LinearOrdinaryDifferentialOperator2| |LiouvillianFunction| |List| |ListMonoidOps| |ListMultiDictionary| |LocalAlgebra| |Localize| |LyndonWord| |MachineComplex| |MachineFloat| |MachineInteger| |Magma| |MakeCachableSet| |MakeFloatCompiledFunction| |MathMLFormat| |Matrix| |ModMonic| |ModularField| |ModularRing| |ModuleMonomial| |ModuleOperator| |MoebiusTransform| |MonoidRing| |MoreSystemCommands| |Multiset| |MultivariatePolynomial| |MyExpression| |MyUnivariatePolynomial| |NAGLinkSupportPackage| |NagEigenPackage| |NagFittingPackage| |NagIntegrationPackage| |NagInterpolationPackage| |NagLapack| |NagLinearEquationSolvingPackage| |NagMatrixOperationsPackage| |NagOptimisationPackage| |NagOrdinaryDifferentialEquationsPackage| |NagPartialDifferentialEquationsPackage| |NagPolynomialRootsPackage| |NagRootFindingPackage| |NagSeriesSummationPackage| |NagSpecialFunctionsPackage| |NeitherSparseOrDensePowerSeries| |NewSparseMultivariatePolynomial| |NewSparseUnivariatePolynomial| |NonNegativeInteger| |None| |NormalizationPackage| |NottinghamGroup| |NumberFormats| |NumericalIntegrationProblem| |NumericalODEProblem| |NumericalOptimizationProblem| |NumericalOrdinaryDifferentialEquations| |NumericalPDEProblem| |NumericalQuadrature| |ODEIntegration| |Octonion| |OctonionCategory&| |OneDimensionalArray| |OnePointCompletion| |OpenMathConnection| |OpenMathDevice| |OpenMathEncoding| |OpenMathError| |OpenMathErrorKind| |OpenMathPackage| |OpenMathServerPackage| |OperationsQuery| |Operator| |OppositeMonogenicLinearOperator| |OrdSetInts| |OrderedCompletion| |OrderedDirectProduct| |OrderedFreeMonoid| |OrderedVariableList| |OrderlyDifferentialPolynomial| |OrderlyDifferentialVariable| |OrdinaryDifferentialRing| |OrdinaryWeightedPolynomials| |OutputForm| |OutputPackage| |PAdicInteger| |PAdicRational| |PAdicRationalConstructor| |Palette| |ParametricLinearEquations| |PartialFraction| |Partition| |Pattern| |PatternMatchAssertions| |PatternMatchIntegration| |PatternMatchKernel| |PatternMatchListResult| |PatternMatchResult| |PendantTree| |Permutation| |PermutationGroup| |Pi| |Places| |PlacesOverPseudoAlgebraicClosureOfFiniteField| |PlaneAlgebraicCurvePlot| |Plcs| |PoincareBirkhoffWittLyndonBasis| |Point| |PointsOfFiniteOrder| |Polynomial| |PolynomialIdeals| |PolynomialRing| |PositiveInteger| |PowerSeriesLimitPackage| |PrimeField| |PrimitiveArray| |Product| |ProjectivePlane| |ProjectivePlaneOverPseudoAlgebraicClosureOfFiniteField| |ProjectiveSpace| |PseudoAlgebraicClosureOfAlgExtOfRationalNumber| |PseudoAlgebraicClosureOfFiniteField| |PseudoAlgebraicClosureOfRationalNumber| |PureAlgebraicIntegration| |QuadraticForm| |QuasiAlgebraicSet| |QuasiComponentPackage| |Quaternion| |QuaternionCategory&| |QueryEquation| |Queue| |RadicalFunctionField| |RadixExpansion| |RationalFunctionDefiniteIntegration| |RationalFunctionLimitPackage| |RationalFunctionSign| |RationalUnivariateRepresentationPackage| |RealClosure| |RectangularMatrix| |RecurrenceOperator| |RecursivePolynomialCategory&| |Reference| |RegularChain| |RegularSetDecompositionPackage| |RegularTriangularSet| |RegularTriangularSetGcdPackage| |RepresentationPackage2| |ResidueRing| |Result| |RewriteRule| |RightOpenIntervalRootCharacterization| |RomanNumeral| |RoutinesTable| |RuleCalled| |Ruleset| |SExpression| |SExpressionOf| |ScriptFormulaFormat| |Segment| |SegmentBinding| |SequentialDifferentialPolynomial| |SequentialDifferentialVariable| |Set| |SetCategory&| |SetOfMIntegersInOneToN| |SimpleAlgebraicExtension| |SingleInteger| |SingletonAsOrderedSet| |SparseMultivariatePolynomial| |SparseMultivariateTaylorSeries| |SparseTable| |SparseUnivariateLaurentSeries| |SparseUnivariatePolynomial| |SparseUnivariatePolynomialExpressions| |SparseUnivariatePuiseuxSeries| |SparseUnivariateSkewPolynomial| |SparseUnivariateTaylorSeries| |SpecialOutputPackage| |SplitHomogeneousDirectProduct| |SplittingNode| |SplittingTree| |SquareFreeQuasiComponentPackage| |SquareFreeRegularSetDecompositionPackage| |SquareFreeRegularTriangularSet| |SquareFreeRegularTriangularSetGcdPackage| |SquareMatrix| |Stack| |Stream| |StreamTranscendentalFunctions| |StreamTranscendentalFunctionsNonCommutative| |String| |StringTable| |SubSpace| |SubSpaceComponentProperty| |SuchThat| |Switch| |Symbol| |SymbolTable| |SymmetricPolynomial| |Table| |Tableau| |TabulatedComputationPackage| |TaylorSeries| |TemplateUtilities| |TexFormat| |TextFile| |ThreeDimensionalMatrix| |ThreeDimensionalViewport| |ThreeSpace| |ToolsForSign| |TopLevelDrawFunctions| |TopLevelDrawFunctionsForAlgebraicCurves| |TopLevelDrawFunctionsForCompiledFunctions| |TransSolvePackage| |TranscendentalManipulations| |Tree| |TrigonometricManipulations| |Tuple| |TwoDimensionalArray| |TwoDimensionalViewport| |UnivariateFormalPowerSeries| |UnivariateLaurentSeries| |UnivariateLaurentSeriesConstructor| |UnivariatePolynomial| |UnivariatePuiseuxSeries| |UnivariatePuiseuxSeriesConstructor| |UnivariatePuiseuxSeriesWithExponentialSingularity| |UnivariateSkewPolynomial| |UnivariateTaylorSeries| |UnivariateTaylorSeriesCZero| |UniversalSegment| |Variable| |Vector| |ViewDefaultsPackage| |ViewportPackage| |WeightedPolynomials| |WuWenTsunTriangularSet| |XDistributedPolynomial| |XPBWPolynomial| |XPolynomial| |XPolynomialRing| |XRecursivePolynomial| |ZeroDimensionalSolvePackage| |d01AgentsPackage| |d01TransformFunctionType| |d01ajfAnnaType| |d01akfAnnaType| |d01alfAnnaType| |d01amfAnnaType| |d01anfAnnaType| |d01apfAnnaType| |d01aqfAnnaType| |d01asfAnnaType| |d01fcfAnnaType| |d01gbfAnnaType| |d02bbfAnnaType| |d02bhfAnnaType| |d02cjfAnnaType| |d02ejfAnnaType| |d03eefAnnaType| |d03fafAnnaType| |e04AgentsPackage| |e04dgfAnnaType| |e04fdfAnnaType| |e04gcfAnnaType| |e04jafAnnaType| |e04mbfAnnaType| |e04nafAnnaType| |e04ucfAnnaType|) (|InnerNumericFloatSolvePackage| |TranscendentalIntegration|) -(|ThreeSpace|) +(|Export3D| |ThreeSpace|) (|MeshCreationRoutinesForThreeDimensions| |SubSpace| |ThreeDimensionalViewport| |ThreeSpace|) (|EigenPackage| |PolynomialIdeals| |RadicalEigenPackage| |RadicalSolvePackage|) (|Expression|) @@ -577,12 +579,13 @@ (|ExpressionSolve|) (|FortranTemplate|) (|TexFormat1|) -(|FortranTemplate|) +(|Export3D| |FortranTemplate| |GnuDraw|) (|FortranCode| |FortranPackage| |FortranProgram|) (|NagPartialDifferentialEquationsPackage|) -(|DrawComplex| |TopLevelDrawFunctions| |TopLevelDrawFunctionsForCompiledFunctions| |TopLevelDrawFunctionsForPoints|) -(|DrawComplex| |DrawOption| |DrawOptionFunctions0| |MeshCreationRoutinesForThreeDimensions| |ThreeDimensionalViewport| |TopLevelDrawFunctions| |TopLevelDrawFunctionsForCompiledFunctions| |TopLevelDrawFunctionsForPoints| |TopLevelThreeSpace|) +(|DrawComplex| |GnuDraw| |TopLevelDrawFunctions| |TopLevelDrawFunctionsForCompiledFunctions| |TopLevelDrawFunctionsForPoints|) +(|DrawComplex| |DrawOption| |DrawOptionFunctions0| |GnuDraw| |MeshCreationRoutinesForThreeDimensions| |ThreeDimensionalViewport| |TopLevelDrawFunctions| |TopLevelDrawFunctionsForCompiledFunctions| |TopLevelDrawFunctionsForPoints| |TopLevelThreeSpace|) (|ElementaryFunctionSign| |PowerSeriesLimitPackage| |RationalFunctionLimitPackage| |RationalFunctionSign|) +(|GnuDraw|) (|TopLevelDrawFunctions|) (|TransSolvePackage|) (|TranscendentalIntegration|) @@ -590,14 +593,14 @@ (|FunctionSpaceIntegration| |SimplifyAlgebraicNumberConvertPackage| |TransSolvePackage| |d01TransformFunctionType|) (|ElementaryRischDE| |RationalIntegration|) (|ElementaryRischDESystem|) -(|BinaryTree| |PendantTree|) +(|BinaryTree| |HTMLFormat| |PendantTree|) (|ChineseRemainderToolsForIntegralBases| |FunctionFieldIntegralBasis| |IntegralBasisTools| |NumberFieldIntegralBasis| |PAdicWildFunctionFieldIntegralBasis| |WildFunctionFieldIntegralBasis|) (|ElementaryFunctionSign| |FunctionSpaceComplexIntegration| |FunctionSpaceIntegration| |IntegrationResultRFToFunction| |LaplaceTransform| |PatternMatchIntegration| |TransSolvePackage|) (|ExpressionTubePlot| |NumericTubePlot| |TopLevelDrawFunctionsForCompiledFunctions|) (|ExpressionTubePlot| |NumericTubePlot|) (|DrawComplex|) (|TopLevelDrawFunctionsForCompiledFunctions|) -(|TopLevelDrawFunctions| |TopLevelDrawFunctionsForAlgebraicCurves| |TopLevelDrawFunctionsForCompiledFunctions| |TopLevelDrawFunctionsForPoints| |ViewportPackage|) +(|GnuDraw| |TopLevelDrawFunctions| |TopLevelDrawFunctionsForAlgebraicCurves| |TopLevelDrawFunctionsForCompiledFunctions| |TopLevelDrawFunctionsForPoints| |ViewportPackage|) (|MultFiniteFactorize| |SparseUnivariatePolynomial|) (|Guess| |NottinghamGroup| |RecurrenceOperator| |UnivariateFormalPowerSeriesFunctions|) (|Guess|) @@ -617,7 +620,7 @@ (|PadeApproximantPackage| |RationalRicDE| |UnivariateFormalPowerSeries| |UnivariateLaurentSeries| |UnivariateLaurentSeriesFunctions2| |UnivariatePuiseuxSeries|) (|GeneralPackageForAlgebraicFunctionField| |PackageForAlgebraicFunctionField| |PackageForAlgebraicFunctionFieldOverFiniteField|) (|UnivariateLaurentSeriesFunctions2|) -(|AnnaNumericalIntegrationPackage| |AnnaNumericalOptimizationPackage| |AnnaOrdinaryDifferentialEquationPackage| |AnnaPartialDifferentialEquationPackage| |AssociationList| |AxiomServer| |Bits| |DataList| |DisplayPackage| |ExtensibleLinearAggregate&| |FlexibleArray| |Float| |GaloisGroupUtilities| |GenerateUnivariatePowerSeries| |IndexedBits| |IndexedFlexibleArray| |IndexedList| |IndexedOneDimensionalArray| |IndexedString| |IndexedVector| |InnerNormalBasisFieldFunctions| |LazyStreamAggregate&| |List| |ListAggregate&| |MathMLFormat| |NeitherSparseOrDensePowerSeries| |OneDimensionalArray| |OneDimensionalArrayAggregate&| |Point| |PrimitiveArray| |Stream| |StreamAggregate&| |String| |StringAggregate&| |Symbol| |TemplateUtilities| |TexFormat| |UniversalSegmentFunctions2| |Vector|) +(|AnnaNumericalIntegrationPackage| |AnnaNumericalOptimizationPackage| |AnnaOrdinaryDifferentialEquationPackage| |AnnaPartialDifferentialEquationPackage| |AssociationList| |AxiomServer| |Bits| |ComplexDoubleFloatVector| |DataList| |DisplayPackage| |DoubleFloatVector| |ExtensibleLinearAggregate&| |FlexibleArray| |Float| |GaloisGroupUtilities| |GenerateUnivariatePowerSeries| |IndexedBits| |IndexedFlexibleArray| |IndexedList| |IndexedOneDimensionalArray| |IndexedString| |IndexedVector| |InnerNormalBasisFieldFunctions| |LazyStreamAggregate&| |List| |ListAggregate&| |MathMLFormat| |NeitherSparseOrDensePowerSeries| |OneDimensionalArray| |OneDimensionalArrayAggregate&| |Point| |PrimitiveArray| |Stream| |StreamAggregate&| |String| |StringAggregate&| |Symbol| |TemplateUtilities| |TexFormat| |UniversalSegmentFunctions2| |Vector|) (|GenerateUnivariatePowerSeries|) (|FunctionSpace&| |Polynomial| |UserDefinedVariableOrdering|) (|GeneralUnivariatePowerSeries| |MyUnivariatePolynomial| |PolynomialToUnivariatePolynomial| |SparseUnivariateLaurentSeries| |SparseUnivariatePuiseuxSeries| |SparseUnivariateTaylorSeries| |UnivariateFormalPowerSeries| |UnivariateLaurentSeries| |UnivariatePolynomial| |UnivariatePuiseuxSeries| |UnivariateSkewPolynomial| |UnivariateTaylorSeries| |UnivariateTaylorSeriesCZero|) @@ -625,7 +628,7 @@ (|AlgebraicHermiteIntegration| |AlgebraicIntegrate| |Asp10| |Asp19| |Asp20| |Asp31| |Asp35| |Asp41| |Asp42| |Asp49| |Asp50| |Asp55| |Asp6| |Asp7| |Asp73| |Asp78| |Asp8| |Asp80| |FramedNonAssociativeAlgebraFunctions2| |GenExEuclid| |GenericNonAssociativeAlgebra| |LinearDependence| |SimpleAlgebraicExtension|) (|GraphImage| |MeshCreationRoutinesForThreeDimensions| |ThreeDimensionalViewport| |TopLevelDrawFunctionsForAlgebraicCurves| |TopLevelDrawFunctionsForCompiledFunctions| |TwoDimensionalViewport| |ViewportPackage|) (|TopLevelDrawFunctionsForAlgebraicCurves| |TopLevelDrawFunctionsForCompiledFunctions|) -(|AffineAlgebraicSetComputeWithGroebnerBasis| |AffineAlgebraicSetComputeWithResultant| |AlgebraGivenByStructuralConstants| |AlgebraicFunctionField| |ApplicationProgramInterface| |Asp1| |Asp10| |Asp12| |Asp19| |Asp20| |Asp24| |Asp27| |Asp28| |Asp29| |Asp30| |Asp31| |Asp33| |Asp34| |Asp35| |Asp4| |Asp41| |Asp42| |Asp49| |Asp50| |Asp55| |Asp6| |Asp7| |Asp73| |Asp74| |Asp77| |Asp78| |Asp8| |Asp80| |Asp9| |AssociationList| |AttributeButtons| |AxiomServer| |BinaryFile| |Bits| |BlowUpPackage| |CommonOperators| |Complex| |ComplexRootFindingPackage| |DataList| |Database| |DesingTreePackage| |DirectProduct| |DirectProductMatrixModule| |DirectProductModule| |DiscreteLogarithmPackage| |DisplayPackage| |DoubleFloat| |EqTable| |EuclideanGroebnerBasisPackage| |ExpressionToOpenMath| |File| |FiniteAlgebraicExtensionField&| |FiniteFieldCategory&| |FiniteFieldCyclicGroupExtensionByPolynomial| |FiniteFieldExtensionByPolynomial| |FiniteFieldHomomorphisms| |FiniteFieldNormalBasisExtensionByPolynomial| |FiniteLinearAggregateSort| |FiniteRankNonAssociativeAlgebra&| |FlexibleArray| |Float| |FortranCode| |FortranExpression| |FortranOutputStackPackage| |FortranPackage| |FortranProgram| |FortranTemplate| |Fraction| |FramedNonAssociativeAlgebra&| |FunctionSpaceReduce| |GaloisGroupFactorizer| |GaloisGroupUtilities| |GenUFactorize| |GeneralPackageForAlgebraicFunctionField| |GeneralSparseTable| |GenericNonAssociativeAlgebra| |GraphImage| |GroebnerFactorizationPackage| |GroebnerInternalPackage| |GroebnerPackage| |Guess| |GuessOption| |HashTable| |HomogeneousDirectProduct| |IndexCard| |IndexedAggregate&| |IndexedBits| |IndexedFlexibleArray| |IndexedList| |IndexedOneDimensionalArray| |IndexedString| |IndexedVector| |InnerNormalBasisFieldFunctions| |InnerPrimeField| |InnerSparseUnivariatePowerSeries| |InnerTable| |Integer| |IntegrationFunctionsTable| |InternalPrintPackage| |InternalRationalUnivariateRepresentationPackage| |IntersectionDivisorPackage| |Kernel| |KeyedAccessFile| |Library| |List| |LocalParametrizationOfSimplePointPackage| |MachineFloat| |MakeCachableSet| |MathMLFormat| |MoreSystemCommands| |NAGLinkSupportPackage| |NagEigenPackage| |NagIntegrationPackage| |NagLinearEquationSolvingPackage| |NagOptimisationPackage| |NagOrdinaryDifferentialEquationsPackage| |NagPartialDifferentialEquationsPackage| |NagRootFindingPackage| |NeitherSparseOrDensePowerSeries| |NormalizationPackage| |NumericalOrdinaryDifferentialEquations| |NumericalQuadrature| |ODEIntensityFunctionsTable| |OneDimensionalArray| |OneDimensionalArrayAggregate&| |OpenMathConnection| |OpenMathDevice| |OpenMathPackage| |OpenMathServerPackage| |OrderedDirectProduct| |OrdinaryWeightedPolynomials| |OutputForm| |OutputPackage| |PackageForAlgebraicFunctionField| |PackageForAlgebraicFunctionFieldOverFiniteField| |PermutationGroup| |Places| |PlacesOverPseudoAlgebraicClosureOfFiniteField| |Plcs| |Point| |PointsOfFiniteOrder| |PrimitiveArray| |PrintPackage| |ProjectiveAlgebraicSetPackage| |PseudoAlgebraicClosureOfAlgExtOfRationalNumber| |PseudoAlgebraicClosureOfFiniteField| |PseudoAlgebraicClosureOfRationalNumber| |QuasiComponentPackage| |RadicalFunctionField| |RandomNumberSource| |RationalInterpolation| |RationalUnivariateRepresentationPackage| |RegularSetDecompositionPackage| |RegularTriangularSet| |RegularTriangularSetGcdPackage| |RepresentationPackage2| |ResolveLatticeCompletion| |Result| |RoutinesTable| |ScriptFormulaFormat| |SimpleAlgebraicExtension| |SimpleFortranProgram| |SingleInteger| |SortPackage| |SortedCache| |SparseTable| |SparseUnivariatePolynomialExpressions| |SpecialOutputPackage| |SplitHomogeneousDirectProduct| |SquareFreeQuasiComponentPackage| |SquareFreeRegularSetDecompositionPackage| |SquareFreeRegularTriangularSet| |SquareFreeRegularTriangularSetGcdPackage| |Stream| |String| |StringTable| |Symbol| |SymbolTable| |SystemODESolver| |Table| |TabulatedComputationPackage| |TaylorSolve| |TexFormat| |TextFile| |TheSymbolTable| |ThreeDimensionalViewport| |TwoDimensionalViewport| |UserDefinedPartialOrdering| |UserDefinedVariableOrdering| |Vector| |ViewDefaultsPackage| |ViewportPackage| |WeightedPolynomials| |ZeroDimensionalSolvePackage| |e04AgentsPackage|) +(|AffineAlgebraicSetComputeWithGroebnerBasis| |AffineAlgebraicSetComputeWithResultant| |AlgebraGivenByStructuralConstants| |AlgebraicFunctionField| |ApplicationProgramInterface| |Asp1| |Asp10| |Asp12| |Asp19| |Asp20| |Asp24| |Asp27| |Asp28| |Asp29| |Asp30| |Asp31| |Asp33| |Asp34| |Asp35| |Asp4| |Asp41| |Asp42| |Asp49| |Asp50| |Asp55| |Asp6| |Asp7| |Asp73| |Asp74| |Asp77| |Asp78| |Asp8| |Asp80| |Asp9| |AssociationList| |AttributeButtons| |AxiomServer| |BinaryFile| |Bits| |BlowUpPackage| |CommonOperators| |Complex| |ComplexDoubleFloatVector| |ComplexRootFindingPackage| |DataList| |Database| |DesingTreePackage| |DirectProduct| |DirectProductMatrixModule| |DirectProductModule| |DirichletRing| |DiscreteLogarithmPackage| |DisplayPackage| |DoubleFloat| |DoubleFloatVector| |EqTable| |EuclideanGroebnerBasisPackage| |Export3D| |ExpressionToOpenMath| |File| |FiniteAlgebraicExtensionField&| |FiniteFieldCategory&| |FiniteFieldCyclicGroupExtensionByPolynomial| |FiniteFieldExtensionByPolynomial| |FiniteFieldHomomorphisms| |FiniteFieldNormalBasisExtensionByPolynomial| |FiniteLinearAggregateSort| |FiniteRankNonAssociativeAlgebra&| |FlexibleArray| |Float| |FortranCode| |FortranExpression| |FortranOutputStackPackage| |FortranPackage| |FortranProgram| |FortranTemplate| |Fraction| |FramedNonAssociativeAlgebra&| |FunctionSpaceReduce| |GaloisGroupFactorizer| |GaloisGroupUtilities| |GenUFactorize| |GeneralPackageForAlgebraicFunctionField| |GeneralSparseTable| |GenericNonAssociativeAlgebra| |GnuDraw| |GraphImage| |GroebnerFactorizationPackage| |GroebnerInternalPackage| |GroebnerPackage| |Guess| |GuessOption| |HTMLFormat| |HashTable| |HomogeneousDirectProduct| |IndexCard| |IndexedAggregate&| |IndexedBits| |IndexedFlexibleArray| |IndexedList| |IndexedOneDimensionalArray| |IndexedString| |IndexedVector| |InnerNormalBasisFieldFunctions| |InnerPrimeField| |InnerSparseUnivariatePowerSeries| |InnerTable| |Integer| |IntegrationFunctionsTable| |InternalPrintPackage| |InternalRationalUnivariateRepresentationPackage| |IntersectionDivisorPackage| |Kernel| |KeyedAccessFile| |Library| |List| |LocalParametrizationOfSimplePointPackage| |MachineFloat| |MakeCachableSet| |MathMLFormat| |MoreSystemCommands| |NAGLinkSupportPackage| |NagEigenPackage| |NagIntegrationPackage| |NagLinearEquationSolvingPackage| |NagOptimisationPackage| |NagOrdinaryDifferentialEquationsPackage| |NagPartialDifferentialEquationsPackage| |NagRootFindingPackage| |NeitherSparseOrDensePowerSeries| |NormalizationPackage| |NumericalOrdinaryDifferentialEquations| |NumericalQuadrature| |ODEIntensityFunctionsTable| |OneDimensionalArray| |OneDimensionalArrayAggregate&| |OpenMathConnection| |OpenMathDevice| |OpenMathPackage| |OpenMathServerPackage| |OrderedDirectProduct| |OrdinaryWeightedPolynomials| |OutputForm| |OutputPackage| |PackageForAlgebraicFunctionField| |PackageForAlgebraicFunctionFieldOverFiniteField| |PermutationGroup| |Places| |PlacesOverPseudoAlgebraicClosureOfFiniteField| |Plcs| |Point| |PointsOfFiniteOrder| |PrimitiveArray| |PrintPackage| |ProjectiveAlgebraicSetPackage| |PseudoAlgebraicClosureOfAlgExtOfRationalNumber| |PseudoAlgebraicClosureOfFiniteField| |PseudoAlgebraicClosureOfRationalNumber| |QuasiComponentPackage| |RadicalFunctionField| |RandomNumberSource| |RationalInterpolation| |RationalUnivariateRepresentationPackage| |RegularSetDecompositionPackage| |RegularTriangularSet| |RegularTriangularSetGcdPackage| |RepresentationPackage2| |ResolveLatticeCompletion| |Result| |RoutinesTable| |ScriptFormulaFormat| |SimpleAlgebraicExtension| |SimpleFortranProgram| |SingleInteger| |SortPackage| |SortedCache| |SparseTable| |SparseUnivariatePolynomialExpressions| |SpecialOutputPackage| |SplitHomogeneousDirectProduct| |SquareFreeQuasiComponentPackage| |SquareFreeRegularSetDecompositionPackage| |SquareFreeRegularTriangularSet| |SquareFreeRegularTriangularSetGcdPackage| |Stream| |String| |StringTable| |Symbol| |SymbolTable| |SystemODESolver| |Table| |TabulatedComputationPackage| |TaylorSolve| |TexFormat| |TextFile| |TheSymbolTable| |ThreeDimensionalViewport| |TwoDimensionalViewport| |UserDefinedPartialOrdering| |UserDefinedVariableOrdering| |Vector| |ViewDefaultsPackage| |ViewportPackage| |WeightedPolynomials| |ZeroDimensionalSolvePackage| |e04AgentsPackage|) (|OrdinaryWeightedPolynomials|) (|PAdicWildFunctionFieldIntegralBasis|) (|LieExponentials| |LiePolynomial| |XPBWPolynomial| |XPolynomial| |XRecursivePolynomial|) @@ -660,4 +663,4 @@ (|AnnaNumericalOptimizationPackage|) (|AnnaNumericalOptimizationPackage|) (|AnnaNumericalOptimizationPackage|) -(("e04ucfAnnaType" 0 232739) ("e04nafAnnaType" 0 232702) ("e04mbfAnnaType" 0 232665) ("e04jafAnnaType" 0 232628) ("e04gcfAnnaType" 0 232591) ("e04fdfAnnaType" 0 232554) ("e04dgfAnnaType" 0 232517) ("e04AgentsPackage" 0 232378) ("d03eefAnnaType" 0 232335) ("d03AgentsPackage" 0 232316) ("d02ejfAnnaType" 0 232272) ("d02cjfAnnaType" 0 232228) ("d02bhfAnnaType" 0 232184) ("d02bbfAnnaType" 0 232140) ("d02AgentsPackage" 0 232070) ("d01gbfAnnaType" 0 232034) ("d01fcfAnnaType" 0 231998) ("d01asfAnnaType" 0 231962) ("d01aqfAnnaType" 0 231926) ("d01apfAnnaType" 0 231890) ("d01anfAnnaType" 0 231854) ("d01amfAnnaType" 0 231818) ("d01alfAnnaType" 0 231782) ("d01akfAnnaType" 0 231746) ("d01ajfAnnaType" 0 231710) ("d01WeightsPackage" 0 231657) ("d01TransformFunctionType" 0 231621) ("d01AgentsPackage" 0 231368) ("XRecursivePolynomial" 0 231319) ("XPolynomialRing" 0 231292) ("XPBWPolynomial" 0 231272) ("XDistributedPolynomial" 0 231182) ("WildFunctionFieldIntegralBasis" 0 231142) ("WeightedPolynomials" 0 231110) ("Void" 0 226943) ("ViewportPackage" 0 226855) ("ViewDefaultsPackage" 0 226643) ("VectorSpace&" 0 NIL) ("VectorFunctions2" 0 226334) ("VectorCategory&" 0 NIL) ("Vector" 0 221218) ("Variable" 0 220843) ("UserDefinedPartialOrdering" 0 220781) ("UniversalSegmentFunctions2" 0 220747) ("UniversalSegment" 0 219963) ("UnivariateTaylorSeriesFunctions2" 0 219925) ("UnivariateTaylorSeriesCategory&" 0 NIL) ("UnivariateTaylorSeriesCZero" 0 219796) ("UnivariateTaylorSeries" 0 219635) ("UnivariateSkewPolynomialCategoryOps" 0 219600) ("UnivariateSkewPolynomialCategory&" 0 NIL) ("UnivariatePuiseuxSeriesWithExponentialSingularity" 0 219537) ("UnivariatePuiseuxSeriesConstructorCategory&" 0 NIL) ("UnivariatePuiseuxSeriesConstructor" 0 219477) ("UnivariatePuiseuxSeries" 0 219256) ("UnivariatePowerSeriesCategory&" 0 NIL) ("UnivariatePolynomialSquareFree" 0 219137) ("UnivariatePolynomialDivisionPackage" 0 219092) ("UnivariatePolynomialDecompositionPackage" 0 219066) ("UnivariatePolynomialCommonDenominator" 0 218853) ("UnivariatePolynomialCategoryFunctions2" 0 217729) ("UnivariatePolynomialCategory&" 0 NIL) ("UnivariatePolynomial" 0 217420) ("UnivariateLaurentSeriesFunctions2" 0 217382) ("UnivariateLaurentSeriesConstructorCategory&" 0 NIL) ("UnivariateLaurentSeriesConstructor" 0 217354) ("UnivariateLaurentSeries" 0 217254) ("UnivariateFormalPowerSeriesFunctions" 0 217244) ("UnivariateFormalPowerSeries" 0 217156) ("UniqueFactorizationDomain&" 0 NIL) ("UnaryRecursiveAggregate&" 0 NIL) ("TwoFactorize" 0 217103) ("TwoDimensionalViewport" 0 216940) ("TwoDimensionalPlotClipping" 0 216894) ("TwoDimensionalArrayCategory&" 0 NIL) ("TwoDimensionalArray" 0 216878) ("TubePlotTools" 0 216837) ("TubePlot" 0 216752) ("TrigonometricManipulations" 0 216567) ("TrigonometricFunctionCategory&" 0 NIL) ("TriangularSetCategory&" 0 NIL) ("TriangularMatrixOperations" 0 216377) ("Tree" 0 216348) ("TranscendentalRischDESystem" 0 216320) ("TranscendentalRischDE" 0 216276) ("TranscendentalManipulations" 0 216160) ("TranscendentalIntegration" 0 216092) ("TranscendentalHermiteIntegration" 0 216062) ("TranscendentalFunctionCategory&" 0 NIL) ("TransSolvePackageService" 0 216040) ("TopLevelDrawFunctionsForCompiledFunctions" 0 216014) ("ToolsForSign" 0 215907) ("ThreeSpace" 0 215665) ("ThreeDimensionalViewport" 0 215548) ("ThreeDimensionalMatrix" 0 215505) ("TheSymbolTable" 0 215455) ("TextFile" 0 215435) ("TexFormat" 0 215420) ("TemplateUtilities" 0 215400) ("TaylorSolve" 0 215380) ("TaylorSeries" 0 215353) ("TangentExpansions" 0 215314) ("TabulatedComputationPackage" 0 215178) ("Tableau" 0 215158) ("TableAggregate&" 0 NIL) ("Table" 0 214558) ("SystemSolvePackage" 0 214453) ("SystemODESolver" 0 214431) ("SymmetricPolynomial" 0 214385) ("SymmetricGroupCombinatoricFunctions" 0 214336) ("SymmetricFunctions" 0 214314) ("SymbolTable" 0 214035) ("Symbol" 0 205962) ("Switch" 0 205899) ("SupFractionFactorizer" 0 205884) ("SuchThat" 0 205804) ("SubSpaceComponentProperty" 0 205710) ("SubSpace" 0 205695) ("SubResultantPackage" 0 205633) ("StringAggregate&" 0 NIL) ("String" 0 194633) ("StreamTranscendentalFunctionsNonCommutative" 0 194597) ("StreamTranscendentalFunctions" 0 194384) ("StreamTaylorSeriesOperations" 0 193971) ("StreamInfiniteProduct" 0 193905) ("StreamFunctions3" 0 193712) ("StreamFunctions2" 0 193225) ("StreamFunctions1" 0 193187) ("StreamAggregate&" 0 NIL) ("Stream" 0 191355) ("StorageEfficientMatrixOperations" 0 191344) ("Stack" 0 191306) ("SquareMatrixCategory&" 0 NIL) ("SquareMatrix" 0 191173) ("SquareFreeRegularTriangularSetGcdPackage" 0 191046) ("SquareFreeRegularTriangularSet" 0 190949) ("SquareFreeRegularSetDecompositionPackage" 0 190914) ("SquareFreeQuasiComponentPackage" 0 190737) ("SplittingTree" 0 190710) ("SplittingNode" 0 190667) ("SparseUnivariateTaylorSeries" 0 190601) ("SparseUnivariateSkewPolynomial" 0 190535) ("SparseUnivariatePolynomialFunctions2" 0 190021) ("SparseUnivariatePolynomialExpressions" 0 189987) ("SparseUnivariatePolynomial" 0 183348) ("SparseUnivariateLaurentSeries" 0 183314) ("SparseMultivariateTaylorSeries" 0 183297) ("SparseMultivariatePolynomial" 0 182065) ("SortedCache" 0 182036) ("SmithNormalForm" 0 182004) ("SingletonAsOrderedSet" 0 181307) ("SingleInteger" 0 173864) ("SimpleAlgebraicExtension" 0 173733) ("SetCategory&" 0 NIL) ("SetAggregate&" 0 NIL) ("Set" 0 173325) ("SequentialDifferentialVariable" 0 173288) ("SemiGroup&" 0 NIL) ("SegmentFunctions2" 0 173173) ("SegmentBindingFunctions2" 0 173131) ("SegmentBinding" 0 172774) ("Segment" 0 171710) ("ScriptFormulaFormat" 0 171685) ("SExpressionOf" 0 171669) ("SExpression" 0 171440) ("RoutinesTable" 0 170849) ("RootsFindingPackage" 0 170713) ("Ring&" 0 NIL) ("RightOpenIntervalRootCharacterization" 0 170697) ("RewriteRule" 0 170652) ("RetractableTo&" 0 NIL) ("RetractSolvePackage" 0 170626) ("Result" 0 169555) ("RepeatedSquaring" 0 169314) ("RepeatedDoubling" 0 169131) ("RegularTriangularSetGcdPackage" 0 169073) ("RegularTriangularSetCategory&" 0 NIL) ("RegularTriangularSet" 0 169056) ("RegularSetDecompositionPackage" 0 169031) ("RegularChain" 0 168976) ("Reference" 0 168593) ("ReductionOfOrder" 0 168560) ("ReduceLODE" 0 168538) ("RecursivePolynomialCategory&" 0 NIL) ("RecursiveAggregate&" 0 NIL) ("RecurrenceOperator" 0 168528) ("RectangularMatrixCategory&" 0 NIL) ("RealZeroPackage" 0 168448) ("RealSolvePackage" 0 168420) ("RealRootCharacterizationCategory&" 0 NIL) ("RealPolynomialUtilitiesPackage" 0 168378) ("RealNumberSystem&" 0 NIL) ("RealClosure" 0 168346) ("RealClosedField&" 0 NIL) ("RationalRicDE" 0 168256) ("RationalLODE" 0 168117) ("RationalIntegration" 0 167996) ("RationalFunctionSign" 0 167938) ("RationalFunctionIntegration" 0 167904) ("RationalFunctionFactor" 0 167871) ("RationalFunction" 0 167823) ("RationalFactorize" 0 167593) ("RandomNumberSource" 0 167513) ("RadixExpansion" 0 167451) ("RadicalSolvePackage" 0 167429) ("RadicalCategory&" 0 NIL) ("QuotientFieldCategoryFunctions2" 0 167406) ("QuotientFieldCategory&" 0 NIL) ("Queue" 0 167394) ("QueryEquation" 0 167381) ("QuaternionCategory&" 0 NIL) ("Quaternion" 0 167368) ("QuasiComponentPackage" 0 167254) ("QuasiAlgebraicSet" 0 167231) ("QuadraticForm" 0 167211) ("PushVariables" 0 167184) ("PureAlgebraicIntegration" 0 167107) ("PseudoRemainderSequence" 0 167022) ("PseudoLinearNormalForm" 0 167002) ("PseudoAlgebraicClosureOfRationalNumber" 0 166885) ("PseudoAlgebraicClosureOfFiniteField" 0 166614) ("ProjectiveSpace" 0 166594) ("ProjectivePlaneOverPseudoAlgebraicClosureOfFiniteField" 0 166481) ("ProjectivePlane" 0 166376) ("ProjectiveAlgebraicSetPackage" 0 166283) ("Product" 0 166242) ("PrintPackage" 0 166216) ("PrimitiveRatRicDE" 0 166198) ("PrimitiveRatDE" 0 166145) ("PrimitiveElement" 0 166111) ("PrimitiveArray" 0 165382) ("PrimeField" 0 165289) ("PrecomputedAssociatedEquations" 0 165265) ("PowerSeriesLimitPackage" 0 165173) ("PowerSeriesCategory&" 0 NIL) ("PositiveInteger" 0 155522) ("PolynomialSquareFree" 0 155498) ("PolynomialSolveByFormulas" 0 155474) ("PolynomialSetUtilitiesPackage" 0 155077) ("PolynomialSetCategory&" 0 NIL) ("PolynomialRoots" 0 154974) ("PolynomialRing" 0 154806) ("PolynomialPackageForCurve" 0 154709) ("PolynomialNumberTheoryFunctions" 0 154655) ("PolynomialInterpolationAlgorithms" 0 154627) ("PolynomialIdeals" 0 154576) ("PolynomialGcdPackage" 0 154500) ("PolynomialFunctions2" 0 154304) ("PolynomialFactorizationExplicit&" 0 NIL) ("PolynomialFactorizationByRecursionUnivariate" 0 154241) ("PolynomialFactorizationByRecursion" 0 154217) ("PolynomialDecomposition" 0 154187) ("PolynomialCategoryQuotientFunctions" 0 153788) ("PolynomialCategoryLifting" 0 153153) ("PolynomialCategory&" 0 NIL) ("Polynomial" 0 150783) ("PolyGroebner" 0 150737) ("PolToPol" 0 150700) ("PointsOfFiniteOrderTools" 0 150646) ("PointsOfFiniteOrder" 0 150623) ("PointPackage" 0 150482) ("Point" 0 150067) ("PoincareBirkhoffWittLyndonBasis" 0 150030) ("PlotTools" 0 150015) ("Plot3D" 0 149948) ("Plot" 0 149811) ("Plcs" 0 149752) ("PlaneAlgebraicCurvePlot" 0 149708) ("PlacesOverPseudoAlgebraicClosureOfFiniteField" 0 149656) ("Places" 0 149619) ("PiCoercions" 0 149597) ("Pi" 0 149561) ("PermutationGroup" 0 149532) ("Permutation" 0 149437) ("PatternMatchTools" 0 149374) ("PatternMatchSymbol" 0 149363) ("PatternMatchResultFunctions2" 0 149316) ("PatternMatchResult" 0 147898) ("PatternMatchQuotientFieldCategory" 0 147871) ("PatternMatchPushDown" 0 147750) ("PatternMatchPolynomialCategory" 0 147713) ("PatternMatchListResult" 0 147668) ("PatternMatchListAggregate" 0 147651) ("PatternMatchKernel" 0 147608) ("PatternMatchIntegration" 0 147489) ("PatternMatchIntegerNumberSystem" 0 147464) ("PatternMatchFunctionSpace" 0 147449) ("PatternFunctions1" 0 147379) ("Pattern" 0 145846) ("PartitionsAndPermutations" 0 145746) ("Partition" 0 145629) ("PartialDifferentialRing&" 0 NIL) ("ParametrizationPackage" 0 145510) ("ParametricSurface" 0 145410) ("ParametricSpaceCurve" 0 145307) ("ParametricPlaneCurve" 0 145204) ("ParadoxicalCombinatorsForStreams" 0 145003) ("Palette" 0 144801) ("PackageForPoly" 0 144494) ("PAdicRationalConstructor" 0 144452) ("PAdicInteger" 0 144434) ("OutputPackage" 0 144080) ("OutputForm" 0 134501) ("OrderlyDifferentialVariable" 0 134395) ("OrderlyDifferentialPolynomial" 0 134362) ("OrderedVariableList" 0 133809) ("OrderedSet&" 0 NIL) ("OrderedRing&" 0 NIL) ("OrderedFreeMonoid" 0 133657) ("OrderedCompletionFunctions2" 0 133586) ("OrderedCompletion" 0 132803) ("OrdSetInts" 0 132769) ("OpenMathPackage" 0 132743) ("OpenMathErrorKind" 0 132725) ("OpenMathEncoding" 0 132547) ("OpenMathDevice" 0 132365) ("OpenMathConnection" 0 132339) ("OnePointCompletionFunctions2" 0 132306) ("OnePointCompletion" 0 131493) ("OneDimensionalArrayAggregate&" 0 NIL) ("OneDimensionalArray" 0 131424) ("OctonionCategory&" 0 NIL) ("ODETools" 0 131376) ("ODEIntensityFunctionsTable" 0 131313) ("ODEIntegration" 0 131204) ("NumericalPDEProblem" 0 131161) ("NumericalOptimizationProblem" 0 131105) ("NumericalODEProblem" 0 131061) ("NumericalIntegrationProblem" 0 130998) ("NumericTubePlot" 0 130952) ("NumericRealEigenPackage" 0 130931) ("Numeric" 0 130892) ("NumberTheoreticPolynomialFunctions" 0 130862) ("NumberFormats" 0 130832) ("NormalizationPackage" 0 130659) ("NoneFunctions1" 0 130624) ("None" 0 130323) ("NonNegativeInteger" 0 114787) ("NonLinearSolvePackage" 0 114769) ("NonLinearFirstOrderODESolver" 0 114737) ("NonAssociativeRng&" 0 NIL) ("NonAssociativeRing&" 0 NIL) ("NonAssociativeAlgebra&" 0 NIL) ("NewtonPolygon" 0 114719) ("NewtonInterpolation" 0 114709) ("NewSparseUnivariatePolynomialFunctions2" 0 114673) ("NewSparseUnivariatePolynomial" 0 114595) ("NewSparseMultivariatePolynomial" 0 114483) ("NeitherSparseOrDensePowerSeries" 0 114396) ("NagPartialDifferentialEquationsPackage" 0 114377) ("NagOrdinaryDifferentialEquationsPackage" 0 114307) ("NagOptimisationPackage" 0 114151) ("NagIntegrationPackage" 0 113979) ("NagEigenPackage" 0 113958) ("NPCoef" 0 113934) ("NAGLinkSupportPackage" 0 113522) ("MyUnivariatePolynomial" 0 113505) ("MyExpression" 0 113475) ("MultivariateSquareFree" 0 113411) ("MultivariateLifting" 0 113323) ("MultivariateFactorize" 0 112990) ("Multiset" 0 112931) ("MultipleMap" 0 112856) ("MultiVariableCalculusFunctions" 0 112762) ("MultFiniteFactorize" 0 112688) ("MoreSystemCommands" 0 112609) ("MonomialExtensionTools" 0 112490) ("MonoidRing" 0 112465) ("Monoid&" 0 NIL) ("MonogenicAlgebra&" 0 NIL) ("MonadWithUnit&" 0 NIL) ("Monad&" 0 NIL) ("MoebiusTransform" 0 112443) ("ModuleOperator" 0 112430) ("ModuleMonomial" 0 112402) ("Module&" 0 NIL) ("ModularRing" 0 112362) ("ModularHermitianRowReduction" 0 112157) ("ModularDistinctDegreeFactorizer" 0 112100) ("ModMonic" 0 111990) ("MeshCreationRoutinesForThreeDimensions" 0 111944) ("MergeThing" 0 111931) ("MatrixLinearAlgebraFunctions" 0 111904) ("MatrixCommonDenominator" 0 111794) ("MatrixCategoryFunctions2" 0 111413) ("MatrixCategory&" 0 NIL) ("Matrix" 0 106576) ("MappingPackageInternalHacks3" 0 106556) ("MappingPackageInternalHacks2" 0 106536) ("MappingPackageInternalHacks1" 0 106516) ("MappingPackage1" 0 106422) ("MakeUnaryCompiledFunction" 0 106362) ("MakeFunction" 0 106303) ("MakeFloatCompiledFunction" 0 106239) ("MakeBinaryCompiledFunction" 0 106191) ("Magma" 0 106160) ("MachineInteger" 0 106126) ("MachineFloat" 0 106057) ("MRationalFactorize" 0 105893) ("MPolyCatRationalFunctionFactorizer" 0 105783) ("MPolyCatPolyFactorizer" 0 105746) ("MPolyCatFunctions3" 0 105733) ("MPolyCatFunctions2" 0 105646) ("LyndonWord" 0 105559) ("Logic&" 0 NIL) ("Localize" 0 105542) ("LocalParametrizationOfSimplePointPackage" 0 105449) ("LocalAlgebra" 0 105436) ("ListToMap" 0 105385) ("ListMultiDictionary" 0 105353) ("ListMonoidOps" 0 105301) ("ListFunctions2" 0 104898) ("ListAggregate&" 0 NIL) ("List" 0 87642) ("LiouvillianFunction" 0 87601) ("LinesOpPack" 0 87536) ("LinearSystemPolynomialPackage" 0 87513) ("LinearSystemMatrixPackage" 0 87179) ("LinearSystemFromPowerSeriesPackage" 0 87151) ("LinearPolynomialEquationByFractions" 0 87030) ("LinearOrdinaryDifferentialOperatorsOps" 0 86991) ("LinearOrdinaryDifferentialOperatorFactorizer" 0 86958) ("LinearOrdinaryDifferentialOperatorCategory&" 0 NIL) ("LinearOrdinaryDifferentialOperator2" 0 86925) ("LinearOrdinaryDifferentialOperator1" 0 86761) ("LinearOrdinaryDifferentialOperator" 0 86683) ("LinearDependence" 0 86655) ("LinearAggregate&" 0 NIL) ("LinGroebnerPackage" 0 86618) ("LiePolynomial" 0 86581) ("LieAlgebra&" 0 NIL) ("LexTriangularPackage" 0 86549) ("LeftAlgebra&" 0 NIL) ("LeadingCoefDetermination" 0 86509) ("LazyStreamAggregate&" 0 NIL) ("LaurentPolynomial" 0 86438) ("Kovacic" 0 86405) ("KeyedDictionary&" 0 NIL) ("KeyedAccessFile" 0 86393) ("KernelFunctions2" 0 86378) ("Kernel" 0 84529) ("IrredPolyOverFiniteField" 0 84489) ("Interval" 0 84442) ("IntersectionDivisorPackage" 0 84398) ("InterpolateFormsPackage" 0 84354) ("InternalRationalUnivariateRepresentationPackage" 0 84280) ("InternalPrintPackage" 0 84172) ("InterfaceGroebnerPackage" 0 84125) ("IntegrationTools" 0 83816) ("IntegrationResultToFunction" 0 83721) ("IntegrationResultRFToFunction" 0 83681) ("IntegrationResultFunctions2" 0 83482) ("IntegrationResult" 0 83110) ("IntegrationFunctionsTable" 0 83055) ("IntegralDomain&" 0 NIL) ("IntegralBasisTools" 0 82926) ("IntegralBasisPolynomialTools" 0 82886) ("IntegerSolveLinearPolynomialEquation" 0 82874) ("IntegerRoots" 0 82689) ("IntegerRetractions" 0 82657) ("IntegerPrimesPackage" 0 82225) ("IntegerNumberTheoryFunctions" 0 82140) ("IntegerNumberSystem&" 0 NIL) ("IntegerMod" 0 82120) ("IntegerLinearDependence" 0 82081) ("IntegerFactorizationPackage" 0 81957) ("IntegerCombinatoricFunctions" 0 81741) ("IntegerBits" 0 81710) ("Integer" 0 66244) ("InputFormFunctions1" 0 66225) ("InputForm" 0 64067) ("InnerTrigonometricManipulations" 0 63939) ("InnerTaylorSeries" 0 63849) ("InnerTable" 0 63839) ("InnerSparseUnivariatePowerSeries" 0 63742) ("InnerPrimeField" 0 63708) ("InnerPolySum" 0 63684) ("InnerPolySign" 0 63601) ("InnerPAdicInteger" 0 63561) ("InnerNumericFloatSolvePackage" 0 63464) ("InnerNumericEigenPackage" 0 63407) ("InnerNormalBasisFieldFunctions" 0 63359) ("InnerMultFact" 0 63313) ("InnerMatrixQuotientFieldFunctions" 0 63280) ("InnerMatrixLinearAlgebraFunctions" 0 63211) ("InnerIndexedTwoDimensionalArray" 0 63133) ("InnerFreeAbelianMonoid" 0 63092) ("InnerEvalable&" 0 NIL) ("InnerCommonDenominator" 0 62846) ("InnerAlgebraicNumber" 0 62826) ("InnerAlgFactor" 0 62757) ("InfinitlyClosePointOverPseudoAlgebraicClosureOfFiniteField" 0 62705) ("InfinitlyClosePoint" 0 62631) ("InfiniteTuple" 0 62577) ("InfClsPt" 0 62540) ("IndexedVector" 0 62513) ("IndexedString" 0 62502) ("IndexedOneDimensionalArray" 0 62433) ("IndexedList" 0 62424) ("IndexedFlexibleArray" 0 62337) ("IndexedExponents" 0 62061) ("IndexedDirectProductOrderedAbelianMonoidSup" 0 62040) ("IndexedDirectProductOrderedAbelianMonoid" 0 61992) ("IndexedDirectProductObject" 0 61954) ("IndexedDirectProductAbelianMonoid" 0 61874) ("IndexedDirectProductAbelianGroup" 0 61859) ("IndexedBits" 0 61850) ("IndexedAggregate&" 0 NIL) ("IdealDecompositionPackage" 0 61827) ("HyperbolicFunctionCategory&" 0 NIL) ("HomogeneousDistributedMultivariatePolynomial" 0 61758) ("HomogeneousDirectProduct" 0 61677) ("HomogeneousAggregate&" 0 NIL) ("HeuGcd" 0 61665) ("HashTable" 0 61609) ("HallBasis" 0 61588) ("GuessOptionFunctions0" 0 61578) ("GuessOption" 0 61544) ("GuessFiniteFunctions" 0 61528) ("Guess" 0 61428) ("Group&" 0 NIL) ("GroebnerPackage" 0 61199) ("GroebnerInternalPackage" 0 61072) ("GrayCode" 0 61058) ("GraphicsDefaults" 0 60958) ("GraphImage" 0 60880) ("GradedModule&" 0 NIL) ("GradedAlgebra&" 0 NIL) ("GosperSummationMethod" 0 60837) ("GenusZeroIntegration" 0 60808) ("GeneralizedMultivariateFactorize" 0 60736) ("GeneralTriangularSet" 0 60677) ("GeneralSparseTable" 0 60661) ("GeneralPolynomialSet" 0 60470) ("GeneralPolynomialGcdPackage" 0 60446) ("GeneralPackageForAlgebraicFunctionField" 0 60359) ("GeneralHenselPackage" 0 60273) ("GeneralDistributedMultivariatePolynomial" 0 60188) ("GenUFactorize" 0 60136) ("GenExEuclid" 0 59962) ("GcdDomain&" 0 NIL) ("GaloisGroupUtilities" 0 59924) ("GaloisGroupPolynomialUtilities" 0 59898) ("GaloisGroupFactorizer" 0 59850) ("GaloisGroupFactorizationUtilities" 0 59807) ("FunctionalSpecialFunction" 0 59792) ("FunctionSpaceUnivariatePolynomialFactor" 0 59693) ("FunctionSpaceToUnivariatePowerSeries" 0 59653) ("FunctionSpacePrimitiveElement" 0 59576) ("FunctionSpaceIntegration" 0 59338) ("FunctionSpaceFunctions2" 0 59254) ("FunctionSpaceComplexIntegration" 0 59225) ("FunctionSpaceAttachPredicates" 0 59178) ("FunctionSpaceAssertions" 0 59111) ("FunctionSpace&" 0 NIL) ("FunctionFieldCategoryFunctions2" 0 59083) ("FunctionFieldCategory&" 0 NIL) ("FullyRetractableTo&" 0 NIL) ("FullyLinearlyExplicitRingOver&" 0 NIL) ("FullyEvalableOver&" 0 NIL) ("FreeMonoid" 0 59061) ("FreeModule1" 0 58985) ("FreeModule" 0 58880) ("FreeGroup" 0 58850) ("FreeAbelianGroup" 0 58831) ("FramedNonAssociativeAlgebra&" 0 NIL) ("FramedModule" 0 58813) ("FramedAlgebra&" 0 NIL) ("FractionalIdealFunctions2" 0 58785) ("FractionalIdeal" 0 58617) ("FractionFreeFastGaussianFractions" 0 58607) ("FractionFreeFastGaussian" 0 58561) ("Fraction" 0 50743) ("FourierComponent" 0 50725) ("FortranType" 0 50435) ("FortranScalarType" 0 50155) ("FortranPackage" 0 49945) ("FortranOutputStackPackage" 0 49700) ("FortranExpression" 0 49535) ("FortranCode" 0 49268) ("FloatingRealPackage" 0 49247) ("FloatingPointSystem&" 0 NIL) ("Float" 0 47393) ("FlexibleArray" 0 47368) ("FiniteSetAggregate&" 0 NIL) ("FiniteRankNonAssociativeAlgebra&" 0 NIL) ("FiniteRankAlgebra&" 0 NIL) ("FiniteLinearAggregateSort" 0 47334) ("FiniteLinearAggregateFunctions2" 0 47155) ("FiniteLinearAggregate&" 0 NIL) ("FiniteFieldSquareFreeDecomposition" 0 47101) ("FiniteFieldSolveLinearPolynomialEquation" 0 47070) ("FiniteFieldPolynomialPackage" 0 46868) ("FiniteFieldNormalBasisExtensionByPolynomial" 0 46807) ("FiniteFieldFunctions" 0 46654) ("FiniteFieldFactorizationWithSizeParseBySideEffect" 0 46592) ("FiniteFieldExtensionByPolynomial" 0 46507) ("FiniteFieldExtension" 0 46486) ("FiniteFieldCyclicGroupExtensionByPolynomial" 0 46425) ("FiniteFieldCategory&" 0 NIL) ("FiniteDivisorCategory&" 0 NIL) ("FiniteDivisor" 0 46289) ("FiniteAlgebraicExtensionField&" 0 NIL) ("FiniteAbelianMonoidRingFunctions2" 0 46251) ("FiniteAbelianMonoidRing&" 0 NIL) ("FileName" 0 45891) ("File" 0 45837) ("FieldOfPrimeCharacteristic&" 0 NIL) ("Field&" 0 NIL) ("FactorisationOverPseudoAlgebraicClosureOfRationalNumber" 0 45728) ("FactorisationOverPseudoAlgebraicClosureOfAlgExtOfRationalNumber" 0 45677) ("FactoringUtilities" 0 45589) ("FactoredFunctions2" 0 45394) ("FactoredFunctions" 0 45325) ("FactoredFunctionUtilities" 0 45210) ("Factored" 0 40771) ("ExtensionField&" 0 NIL) ("ExtensibleLinearAggregate&" 0 NIL) ("ExtAlgBasis" 0 40742) ("ExpressionSpaceFunctions2" 0 40644) ("ExpressionSpace&" 0 NIL) ("ExpressionSolve" 0 40621) ("ExpressionFunctions2" 0 40244) ("Expression" 0 38443) ("ExponentialOfUnivariatePuiseuxSeries" 0 38328) ("ExponentialExpansion" 0 38288) ("ExpertSystemToolsPackage2" 0 38250) ("ExpertSystemToolsPackage1" 0 38229) ("ExpertSystemToolsPackage" 0 37738) ("ExpertSystemContinuityPackage" 0 37700) ("Exit" 0 37430) ("Evalable&" 0 NIL) ("EuclideanModularRing" 0 37410) ("EuclideanGroebnerBasisPackage" 0 37380) ("EuclideanDomain&" 0 NIL) ("ErrorFunctions" 0 37172) ("Equation" 0 33962) ("EltableAggregate&" 0 NIL) ("ElementaryRischDESystem" 0 33936) ("ElementaryRischDE" 0 33910) ("ElementaryIntegration" 0 33847) ("ElementaryFunctionsUnivariatePuiseuxSeries" 0 33807) ("ElementaryFunctionsUnivariateLaurentSeries" 0 33736) ("ElementaryFunctionStructurePackage" 0 33406) ("ElementaryFunctionSign" 0 33044) ("ElementaryFunctionODESolver" 0 33011) ("ElementaryFunctionCategory&" 0 NIL) ("ElementaryFunction" 0 32996) ("EigenPackage" 0 32972) ("DrawOptionFunctions1" 0 32947) ("DrawOptionFunctions0" 0 32753) ("DrawOption" 0 32591) ("DoubleResultantPackage" 0 32568) ("DoubleFloatSpecialFunctions" 0 32552) ("DoubleFloat" 0 30481) ("Divisor" 0 30258) ("DivisionRing&" 0 NIL) ("DistributedMultivariatePolynomial" 0 29853) ("DistinctDegreeFactorize" 0 29534) ("DisplayPackage" 0 29508) ("DiscreteLogarithmPackage" 0 29483) ("DirectProductCategory&" 0 NIL) ("DirectProduct" 0 28921) ("DifferentialVariableCategory&" 0 NIL) ("DifferentialSparseMultivariatePolynomial" 0 28811) ("DifferentialRing&" 0 NIL) ("DifferentialPolynomialCategory&" 0 NIL) ("DifferentialExtension&" 0 NIL) ("DictionaryOperations&" 0 NIL) ("Dictionary&" 0 NIL) ("DesingTreePackage" 0 28738) ("DesingTree" 0 28651) ("DegreeReductionPackage" 0 28627) ("DefiniteIntegrationTools" 0 28547) ("Database" 0 28527) ("DataList" 0 28514) ("CyclotomicPolynomialPackage" 0 28466) ("CyclicStreamTools" 0 28432) ("CoordinateSystems" 0 28390) ("ContinuedFraction" 0 28275) ("ConstantLODE" 0 28242) ("ComplexRootPackage" 0 28183) ("ComplexPatternMatch" 0 28162) ("ComplexPattern" 0 28141) ("ComplexIntegerSolveLinearPolynomialEquation" 0 28120) ("ComplexFunctions2" 0 28088) ("ComplexFactorization" 0 28020) ("ComplexCategory&" 0 NIL) ("Complex" 0 27488) ("CommuteUnivariatePolynomialCategory" 0 27341) ("Commutator" 0 27320) ("CommonOperators" 0 27167) ("CommonDenominator" 0 27033) ("CombinatorialFunction" 0 27018) ("Color" 0 26919) ("Collection&" 0 NIL) ("CoerceVectorMatrixPackage" 0 26855) ("ChineseRemainderToolsForIntegralBases" 0 26815) ("CharacteristicPolynomialInMonogenicalAlgebra" 0 26793) ("CharacterClass" 0 26720) ("Character" 0 26411) ("ChangeOfVariable" 0 26311) ("CartesianTensor" 0 26281) ("CardinalNumber" 0 25564) ("BrillhartTests" 0 25538) ("BoundIntegerRoots" 0 25504) ("Boolean" 0 7548) ("BlowUpPackage" 0 7526) ("Bits" 0 7499) ("BitAggregate&" 0 NIL) ("BinaryTreeCategory&" 0 NIL) ("BinaryTree" 0 7438) ("BinaryRecursiveAggregate&" 0 NIL) ("BasicType&" 0 NIL) ("BasicOperatorFunctions1" 0 7245) ("BasicOperator" 0 5838) ("BasicFunctions" 0 5804) ("BalancedPAdicInteger" 0 5778) ("BalancedFactorisation" 0 5739) ("BagAggregate&" 0 NIL) ("Automorphism" 0 5559) ("AttributeButtons" 0 5285) ("AssociationList" 0 5133) ("AssociatedLieAlgebra" 0 5113) ("Asp9" 0 5018) ("Asp80" 0 4974) ("Asp8" 0 4879) ("Asp78" 0 4835) ("Asp77" 0 4791) ("Asp74" 0 4731) ("Asp73" 0 4671) ("Asp7" 0 4559) ("Asp6" 0 4533) ("Asp55" 0 4489) ("Asp50" 0 4445) ("Asp49" 0 4384) ("Asp42" 0 4340) ("Asp41" 0 4296) ("Asp4" 0 4236) ("Asp35" 0 4210) ("Asp34" 0 4174) ("Asp33" 0 4130) ("Asp31" 0 4069) ("Asp30" 0 4033) ("Asp29" 0 4013) ("Asp28" 0 3959) ("Asp27" 0 3939) ("Asp24" 0 3895) ("Asp20" 0 3851) ("Asp19" 0 3807) ("Asp12" 0 3763) ("Asp10" 0 3719) ("Asp1" 0 3533) ("ArcTrigonometricFunctionCategory&" 0 NIL) ("ApplyUnivariateSkewPolynomial" 0 3493) ("ApplyRules" 0 3437) ("AnyFunctions1" 0 2370) ("Any" 0 1020) ("AntiSymm" 0 1002) ("AnnaNumericalOptimizationPackage" 0 981) ("AnnaNumericalIntegrationPackage" 0 952) ("AlgebraicallyClosedFunctionSpace&" 0 NIL) ("AlgebraicallyClosedField&" 0 NIL) ("AlgebraicNumber" 0 779) ("AlgebraicManipulations" 0 493) ("AlgebraicIntegration" 0 467) ("AlgebraicHermiteIntegration" 0 444) ("AlgebraicFunction" 0 429) ("AlgebraGivenByStructuralConstants" 0 396) ("Algebra&" 0 NIL) ("AlgFactor" 0 289) ("Aggregate&" 0 NIL) ("AffineSpace" 0 273) ("AffinePlane" 0 88) ("AffineAlgebraicSetComputeWithResultant" 0 54) ("AffineAlgebraicSetComputeWithGroebnerBasis" 0 20) ("AbelianSemiGroup&" 0 NIL) ("AbelianMonoidRing&" 0 NIL) ("AbelianMonoid&" 0 NIL) ("AbelianGroup&" 0 NIL)) \ No newline at end of file +(("e04ucfAnnaType" 0 234510) ("e04nafAnnaType" 0 234473) ("e04mbfAnnaType" 0 234436) ("e04jafAnnaType" 0 234399) ("e04gcfAnnaType" 0 234362) ("e04fdfAnnaType" 0 234325) ("e04dgfAnnaType" 0 234288) ("e04AgentsPackage" 0 234149) ("d03eefAnnaType" 0 234106) ("d03AgentsPackage" 0 234087) ("d02ejfAnnaType" 0 234043) ("d02cjfAnnaType" 0 233999) ("d02bhfAnnaType" 0 233955) ("d02bbfAnnaType" 0 233911) ("d02AgentsPackage" 0 233841) ("d01gbfAnnaType" 0 233805) ("d01fcfAnnaType" 0 233769) ("d01asfAnnaType" 0 233733) ("d01aqfAnnaType" 0 233697) ("d01apfAnnaType" 0 233661) ("d01anfAnnaType" 0 233625) ("d01amfAnnaType" 0 233589) ("d01alfAnnaType" 0 233553) ("d01akfAnnaType" 0 233517) ("d01ajfAnnaType" 0 233481) ("d01WeightsPackage" 0 233428) ("d01TransformFunctionType" 0 233392) ("d01AgentsPackage" 0 233139) ("XRecursivePolynomial" 0 233090) ("XPolynomialRing" 0 233063) ("XPBWPolynomial" 0 233043) ("XDistributedPolynomial" 0 232953) ("WildFunctionFieldIntegralBasis" 0 232913) ("WeightedPolynomials" 0 232881) ("Void" 0 228617) ("ViewportPackage" 0 228529) ("ViewDefaultsPackage" 0 228317) ("VectorSpace&" 0 NIL) ("VectorFunctions2" 0 228008) ("VectorCategory&" 0 NIL) ("Vector" 0 222892) ("Variable" 0 222517) ("UserDefinedPartialOrdering" 0 222455) ("UniversalSegmentFunctions2" 0 222421) ("UniversalSegment" 0 221590) ("UnivariateTaylorSeriesFunctions2" 0 221552) ("UnivariateTaylorSeriesCategory&" 0 NIL) ("UnivariateTaylorSeriesCZero" 0 221423) ("UnivariateTaylorSeries" 0 221262) ("UnivariateSkewPolynomialCategoryOps" 0 221227) ("UnivariateSkewPolynomialCategory&" 0 NIL) ("UnivariatePuiseuxSeriesWithExponentialSingularity" 0 221164) ("UnivariatePuiseuxSeriesConstructorCategory&" 0 NIL) ("UnivariatePuiseuxSeriesConstructor" 0 221104) ("UnivariatePuiseuxSeries" 0 220883) ("UnivariatePowerSeriesCategory&" 0 NIL) ("UnivariatePolynomialSquareFree" 0 220764) ("UnivariatePolynomialDivisionPackage" 0 220719) ("UnivariatePolynomialDecompositionPackage" 0 220693) ("UnivariatePolynomialCommonDenominator" 0 220480) ("UnivariatePolynomialCategoryFunctions2" 0 219356) ("UnivariatePolynomialCategory&" 0 NIL) ("UnivariatePolynomial" 0 219047) ("UnivariateLaurentSeriesFunctions2" 0 219009) ("UnivariateLaurentSeriesConstructorCategory&" 0 NIL) ("UnivariateLaurentSeriesConstructor" 0 218981) ("UnivariateLaurentSeries" 0 218881) ("UnivariateFormalPowerSeriesFunctions" 0 218871) ("UnivariateFormalPowerSeries" 0 218783) ("UniqueFactorizationDomain&" 0 NIL) ("UnaryRecursiveAggregate&" 0 NIL) ("TwoFactorize" 0 218730) ("TwoDimensionalViewport" 0 218557) ("TwoDimensionalPlotClipping" 0 218511) ("TwoDimensionalArrayCategory&" 0 NIL) ("TwoDimensionalArray" 0 218495) ("TubePlotTools" 0 218454) ("TubePlot" 0 218369) ("TrigonometricManipulations" 0 218184) ("TrigonometricFunctionCategory&" 0 NIL) ("TriangularSetCategory&" 0 NIL) ("TriangularMatrixOperations" 0 217994) ("Tree" 0 217952) ("TranscendentalRischDESystem" 0 217924) ("TranscendentalRischDE" 0 217880) ("TranscendentalManipulations" 0 217764) ("TranscendentalIntegration" 0 217696) ("TranscendentalHermiteIntegration" 0 217666) ("TranscendentalFunctionCategory&" 0 NIL) ("TransSolvePackageService" 0 217644) ("TopLevelDrawFunctionsForCompiledFunctions" 0 217618) ("TopLevelDrawFunctions" 0 217606) ("ToolsForSign" 0 217499) ("ThreeSpace" 0 217247) ("ThreeDimensionalViewport" 0 217120) ("ThreeDimensionalMatrix" 0 217077) ("TheSymbolTable" 0 217027) ("TextFile" 0 216986) ("TexFormat" 0 216971) ("TemplateUtilities" 0 216951) ("TaylorSolve" 0 216931) ("TaylorSeries" 0 216904) ("TangentExpansions" 0 216865) ("TabulatedComputationPackage" 0 216729) ("Tableau" 0 216709) ("TableAggregate&" 0 NIL) ("Table" 0 216109) ("SystemSolvePackage" 0 216004) ("SystemODESolver" 0 215982) ("SymmetricPolynomial" 0 215936) ("SymmetricGroupCombinatoricFunctions" 0 215887) ("SymmetricFunctions" 0 215865) ("SymbolTable" 0 215586) ("Symbol" 0 207513) ("Switch" 0 207450) ("SupFractionFactorizer" 0 207435) ("SuchThat" 0 207355) ("SubSpaceComponentProperty" 0 207261) ("SubSpace" 0 207235) ("SubResultantPackage" 0 207173) ("StringAggregate&" 0 NIL) ("String" 0 196029) ("StreamTranscendentalFunctionsNonCommutative" 0 195993) ("StreamTranscendentalFunctions" 0 195780) ("StreamTaylorSeriesOperations" 0 195351) ("StreamInfiniteProduct" 0 195285) ("StreamFunctions3" 0 195092) ("StreamFunctions2" 0 194589) ("StreamFunctions1" 0 194551) ("StreamAggregate&" 0 NIL) ("Stream" 0 192703) ("StorageEfficientMatrixOperations" 0 192692) ("Stack" 0 192654) ("SquareMatrixCategory&" 0 NIL) ("SquareMatrix" 0 192521) ("SquareFreeRegularTriangularSetGcdPackage" 0 192394) ("SquareFreeRegularTriangularSet" 0 192297) ("SquareFreeRegularSetDecompositionPackage" 0 192262) ("SquareFreeQuasiComponentPackage" 0 192085) ("SplittingTree" 0 192058) ("SplittingNode" 0 192015) ("SparseUnivariateTaylorSeries" 0 191949) ("SparseUnivariateSkewPolynomial" 0 191883) ("SparseUnivariatePolynomialFunctions2" 0 191369) ("SparseUnivariatePolynomialExpressions" 0 191335) ("SparseUnivariatePolynomial" 0 184696) ("SparseUnivariateLaurentSeries" 0 184662) ("SparseMultivariateTaylorSeries" 0 184645) ("SparseMultivariatePolynomial" 0 183413) ("SortedCache" 0 183384) ("SmithNormalForm" 0 183352) ("SingletonAsOrderedSet" 0 182655) ("SingleInteger" 0 175089) ("SimpleAlgebraicExtension" 0 174958) ("SetCategory&" 0 NIL) ("SetAggregate&" 0 NIL) ("Set" 0 174550) ("SequentialDifferentialVariable" 0 174513) ("SemiGroup&" 0 NIL) ("SegmentFunctions2" 0 174398) ("SegmentBindingFunctions2" 0 174356) ("SegmentBinding" 0 173989) ("Segment" 0 172925) ("ScriptFormulaFormat" 0 172900) ("SExpressionOf" 0 172884) ("SExpression" 0 172655) ("RoutinesTable" 0 172064) ("RootsFindingPackage" 0 171928) ("Ring&" 0 NIL) ("RightOpenIntervalRootCharacterization" 0 171912) ("RewriteRule" 0 171867) ("RetractableTo&" 0 NIL) ("RetractSolvePackage" 0 171841) ("Result" 0 170770) ("RepeatedSquaring" 0 170529) ("RepeatedDoubling" 0 170346) ("RegularTriangularSetGcdPackage" 0 170288) ("RegularTriangularSetCategory&" 0 NIL) ("RegularTriangularSet" 0 170271) ("RegularSetDecompositionPackage" 0 170246) ("RegularChain" 0 170191) ("Reference" 0 169808) ("ReductionOfOrder" 0 169775) ("ReduceLODE" 0 169753) ("RecursivePolynomialCategory&" 0 NIL) ("RecursiveAggregate&" 0 NIL) ("RecurrenceOperator" 0 169743) ("RectangularMatrixCategory&" 0 NIL) ("RealZeroPackage" 0 169663) ("RealSolvePackage" 0 169635) ("RealRootCharacterizationCategory&" 0 NIL) ("RealPolynomialUtilitiesPackage" 0 169593) ("RealNumberSystem&" 0 NIL) ("RealClosure" 0 169561) ("RealClosedField&" 0 NIL) ("RationalRicDE" 0 169471) ("RationalLODE" 0 169332) ("RationalIntegration" 0 169211) ("RationalFunctionSign" 0 169153) ("RationalFunctionIntegration" 0 169119) ("RationalFunctionFactor" 0 169086) ("RationalFunction" 0 169038) ("RationalFactorize" 0 168808) ("RandomNumberSource" 0 168728) ("RadixExpansion" 0 168666) ("RadicalSolvePackage" 0 168644) ("RadicalCategory&" 0 NIL) ("QuotientFieldCategoryFunctions2" 0 168621) ("QuotientFieldCategory&" 0 NIL) ("Queue" 0 168609) ("QueryEquation" 0 168596) ("QuaternionCategory&" 0 NIL) ("Quaternion" 0 168583) ("QuasiComponentPackage" 0 168469) ("QuasiAlgebraicSet" 0 168446) ("QuadraticForm" 0 168426) ("PushVariables" 0 168399) ("PureAlgebraicIntegration" 0 168322) ("PseudoRemainderSequence" 0 168237) ("PseudoLinearNormalForm" 0 168217) ("PseudoAlgebraicClosureOfRationalNumber" 0 168100) ("PseudoAlgebraicClosureOfFiniteField" 0 167829) ("ProjectiveSpace" 0 167809) ("ProjectivePlaneOverPseudoAlgebraicClosureOfFiniteField" 0 167696) ("ProjectivePlane" 0 167591) ("ProjectiveAlgebraicSetPackage" 0 167498) ("Product" 0 167457) ("PrintPackage" 0 167431) ("PrimitiveRatRicDE" 0 167413) ("PrimitiveRatDE" 0 167360) ("PrimitiveElement" 0 167326) ("PrimitiveArray" 0 166597) ("PrimeField" 0 166504) ("PrecomputedAssociatedEquations" 0 166480) ("PowerSeriesLimitPackage" 0 166388) ("PowerSeriesCategory&" 0 NIL) ("PositiveInteger" 0 156711) ("PolynomialSquareFree" 0 156687) ("PolynomialSolveByFormulas" 0 156663) ("PolynomialSetUtilitiesPackage" 0 156266) ("PolynomialSetCategory&" 0 NIL) ("PolynomialRoots" 0 156163) ("PolynomialRing" 0 155995) ("PolynomialPackageForCurve" 0 155898) ("PolynomialNumberTheoryFunctions" 0 155844) ("PolynomialInterpolationAlgorithms" 0 155816) ("PolynomialIdeals" 0 155765) ("PolynomialGcdPackage" 0 155689) ("PolynomialFunctions2" 0 155493) ("PolynomialFactorizationExplicit&" 0 NIL) ("PolynomialFactorizationByRecursionUnivariate" 0 155430) ("PolynomialFactorizationByRecursion" 0 155406) ("PolynomialDecomposition" 0 155376) ("PolynomialCategoryQuotientFunctions" 0 154977) ("PolynomialCategoryLifting" 0 154342) ("PolynomialCategory&" 0 NIL) ("Polynomial" 0 151972) ("PolyGroebner" 0 151926) ("PolToPol" 0 151889) ("PointsOfFiniteOrderTools" 0 151835) ("PointsOfFiniteOrder" 0 151812) ("PointPackage" 0 151671) ("Point" 0 151235) ("PoincareBirkhoffWittLyndonBasis" 0 151198) ("PlotTools" 0 151183) ("Plot3D" 0 151116) ("Plot" 0 150979) ("Plcs" 0 150920) ("PlaneAlgebraicCurvePlot" 0 150876) ("PlacesOverPseudoAlgebraicClosureOfFiniteField" 0 150824) ("Places" 0 150787) ("PiCoercions" 0 150765) ("Pi" 0 150729) ("PermutationGroup" 0 150700) ("Permutation" 0 150605) ("PatternMatchTools" 0 150542) ("PatternMatchSymbol" 0 150531) ("PatternMatchResultFunctions2" 0 150484) ("PatternMatchResult" 0 149066) ("PatternMatchQuotientFieldCategory" 0 149039) ("PatternMatchPushDown" 0 148918) ("PatternMatchPolynomialCategory" 0 148881) ("PatternMatchListResult" 0 148836) ("PatternMatchListAggregate" 0 148819) ("PatternMatchKernel" 0 148776) ("PatternMatchIntegration" 0 148657) ("PatternMatchIntegerNumberSystem" 0 148632) ("PatternMatchFunctionSpace" 0 148617) ("PatternFunctions1" 0 148547) ("Pattern" 0 147014) ("PartitionsAndPermutations" 0 146914) ("Partition" 0 146797) ("PartialDifferentialRing&" 0 NIL) ("ParametrizationPackage" 0 146678) ("ParametricSurface" 0 146578) ("ParametricSpaceCurve" 0 146475) ("ParametricPlaneCurve" 0 146372) ("ParadoxicalCombinatorsForStreams" 0 146171) ("Palette" 0 145969) ("PackageForPoly" 0 145662) ("PAdicRationalConstructor" 0 145620) ("PAdicInteger" 0 145602) ("OutputPackage" 0 145232) ("OutputForm" 0 135530) ("OrderlyDifferentialVariable" 0 135424) ("OrderlyDifferentialPolynomial" 0 135391) ("OrderedVariableList" 0 134838) ("OrderedSet&" 0 NIL) ("OrderedRing&" 0 NIL) ("OrderedFreeMonoid" 0 134686) ("OrderedCompletionFunctions2" 0 134615) ("OrderedCompletion" 0 133832) ("OrdSetInts" 0 133798) ("OpenMathPackage" 0 133772) ("OpenMathErrorKind" 0 133754) ("OpenMathEncoding" 0 133576) ("OpenMathDevice" 0 133394) ("OpenMathConnection" 0 133368) ("OnePointCompletionFunctions2" 0 133335) ("OnePointCompletion" 0 132522) ("OneDimensionalArrayAggregate&" 0 NIL) ("OneDimensionalArray" 0 132453) ("OctonionCategory&" 0 NIL) ("ODETools" 0 132405) ("ODEIntensityFunctionsTable" 0 132342) ("ODEIntegration" 0 132233) ("NumericalPDEProblem" 0 132190) ("NumericalOptimizationProblem" 0 132134) ("NumericalODEProblem" 0 132090) ("NumericalIntegrationProblem" 0 132027) ("NumericTubePlot" 0 131981) ("NumericRealEigenPackage" 0 131960) ("Numeric" 0 131921) ("NumberTheoreticPolynomialFunctions" 0 131891) ("NumberFormats" 0 131861) ("NormalizationPackage" 0 131688) ("NoneFunctions1" 0 131653) ("None" 0 131352) ("NonNegativeInteger" 0 115695) ("NonLinearSolvePackage" 0 115677) ("NonLinearFirstOrderODESolver" 0 115645) ("NonAssociativeRng&" 0 NIL) ("NonAssociativeRing&" 0 NIL) ("NonAssociativeAlgebra&" 0 NIL) ("NewtonPolygon" 0 115627) ("NewtonInterpolation" 0 115617) ("NewSparseUnivariatePolynomialFunctions2" 0 115581) ("NewSparseUnivariatePolynomial" 0 115503) ("NewSparseMultivariatePolynomial" 0 115391) ("NeitherSparseOrDensePowerSeries" 0 115304) ("NagPartialDifferentialEquationsPackage" 0 115285) ("NagOrdinaryDifferentialEquationsPackage" 0 115215) ("NagOptimisationPackage" 0 115059) ("NagIntegrationPackage" 0 114887) ("NagEigenPackage" 0 114866) ("NPCoef" 0 114842) ("NAGLinkSupportPackage" 0 114430) ("MyUnivariatePolynomial" 0 114413) ("MyExpression" 0 114383) ("MultivariateSquareFree" 0 114319) ("MultivariateLifting" 0 114231) ("MultivariateFactorize" 0 113898) ("Multiset" 0 113839) ("MultipleMap" 0 113764) ("MultiVariableCalculusFunctions" 0 113670) ("MultFiniteFactorize" 0 113596) ("MoreSystemCommands" 0 113517) ("MonomialExtensionTools" 0 113398) ("MonoidRing" 0 113373) ("Monoid&" 0 NIL) ("MonogenicAlgebra&" 0 NIL) ("MonadWithUnit&" 0 NIL) ("Monad&" 0 NIL) ("MoebiusTransform" 0 113351) ("ModuleOperator" 0 113338) ("ModuleMonomial" 0 113310) ("Module&" 0 NIL) ("ModularRing" 0 113270) ("ModularHermitianRowReduction" 0 113065) ("ModularDistinctDegreeFactorizer" 0 113008) ("ModMonic" 0 112898) ("MeshCreationRoutinesForThreeDimensions" 0 112852) ("MergeThing" 0 112839) ("MatrixLinearAlgebraFunctions" 0 112812) ("MatrixCommonDenominator" 0 112702) ("MatrixCategoryFunctions2" 0 112321) ("MatrixCategory&" 0 NIL) ("Matrix" 0 107437) ("MappingPackageInternalHacks3" 0 107417) ("MappingPackageInternalHacks2" 0 107397) ("MappingPackageInternalHacks1" 0 107377) ("MappingPackage1" 0 107283) ("MakeUnaryCompiledFunction" 0 107223) ("MakeFunction" 0 107164) ("MakeFloatCompiledFunction" 0 107100) ("MakeBinaryCompiledFunction" 0 107052) ("Magma" 0 107021) ("MachineInteger" 0 106987) ("MachineFloat" 0 106918) ("MRationalFactorize" 0 106754) ("MPolyCatRationalFunctionFactorizer" 0 106644) ("MPolyCatPolyFactorizer" 0 106607) ("MPolyCatFunctions3" 0 106594) ("MPolyCatFunctions2" 0 106507) ("LyndonWord" 0 106420) ("Logic&" 0 NIL) ("Localize" 0 106403) ("LocalParametrizationOfSimplePointPackage" 0 106310) ("LocalAlgebra" 0 106297) ("ListToMap" 0 106246) ("ListMultiDictionary" 0 106214) ("ListMonoidOps" 0 106162) ("ListFunctions2" 0 105743) ("ListAggregate&" 0 NIL) ("List" 0 88343) ("LiouvillianFunction" 0 88302) ("LinesOpPack" 0 88237) ("LinearSystemPolynomialPackage" 0 88214) ("LinearSystemMatrixPackage" 0 87880) ("LinearSystemFromPowerSeriesPackage" 0 87852) ("LinearPolynomialEquationByFractions" 0 87731) ("LinearOrdinaryDifferentialOperatorsOps" 0 87692) ("LinearOrdinaryDifferentialOperatorFactorizer" 0 87659) ("LinearOrdinaryDifferentialOperatorCategory&" 0 NIL) ("LinearOrdinaryDifferentialOperator2" 0 87626) ("LinearOrdinaryDifferentialOperator1" 0 87462) ("LinearOrdinaryDifferentialOperator" 0 87384) ("LinearDependence" 0 87356) ("LinearAggregate&" 0 NIL) ("LinGroebnerPackage" 0 87319) ("LiePolynomial" 0 87282) ("LieAlgebra&" 0 NIL) ("LexTriangularPackage" 0 87250) ("LeftAlgebra&" 0 NIL) ("LeadingCoefDetermination" 0 87210) ("LazyStreamAggregate&" 0 NIL) ("LaurentPolynomial" 0 87139) ("Kovacic" 0 87106) ("KeyedDictionary&" 0 NIL) ("KeyedAccessFile" 0 87094) ("KernelFunctions2" 0 87079) ("Kernel" 0 85230) ("IrredPolyOverFiniteField" 0 85190) ("Interval" 0 85143) ("IntersectionDivisorPackage" 0 85099) ("InterpolateFormsPackage" 0 85055) ("InternalRationalUnivariateRepresentationPackage" 0 84981) ("InternalPrintPackage" 0 84873) ("InterfaceGroebnerPackage" 0 84826) ("IntegrationTools" 0 84517) ("IntegrationResultToFunction" 0 84422) ("IntegrationResultRFToFunction" 0 84382) ("IntegrationResultFunctions2" 0 84183) ("IntegrationResult" 0 83811) ("IntegrationFunctionsTable" 0 83756) ("IntegralDomain&" 0 NIL) ("IntegralBasisTools" 0 83627) ("IntegralBasisPolynomialTools" 0 83587) ("IntegerSolveLinearPolynomialEquation" 0 83575) ("IntegerRoots" 0 83390) ("IntegerRetractions" 0 83358) ("IntegerPrimesPackage" 0 82926) ("IntegerNumberTheoryFunctions" 0 82825) ("IntegerNumberSystem&" 0 NIL) ("IntegerMod" 0 82805) ("IntegerLinearDependence" 0 82766) ("IntegerFactorizationPackage" 0 82642) ("IntegerCombinatoricFunctions" 0 82426) ("IntegerBits" 0 82395) ("Integer" 0 66785) ("InputFormFunctions1" 0 66766) ("InputForm" 0 64540) ("InnerTrigonometricManipulations" 0 64412) ("InnerTaylorSeries" 0 64322) ("InnerTable" 0 64312) ("InnerSparseUnivariatePowerSeries" 0 64215) ("InnerPrimeField" 0 64181) ("InnerPolySum" 0 64157) ("InnerPolySign" 0 64074) ("InnerPAdicInteger" 0 64034) ("InnerNumericFloatSolvePackage" 0 63937) ("InnerNumericEigenPackage" 0 63880) ("InnerNormalBasisFieldFunctions" 0 63832) ("InnerMultFact" 0 63786) ("InnerMatrixQuotientFieldFunctions" 0 63753) ("InnerMatrixLinearAlgebraFunctions" 0 63684) ("InnerIndexedTwoDimensionalArray" 0 63606) ("InnerFreeAbelianMonoid" 0 63565) ("InnerEvalable&" 0 NIL) ("InnerCommonDenominator" 0 63319) ("InnerAlgebraicNumber" 0 63299) ("InnerAlgFactor" 0 63230) ("InfinitlyClosePointOverPseudoAlgebraicClosureOfFiniteField" 0 63178) ("InfinitlyClosePoint" 0 63104) ("InfiniteTuple" 0 63050) ("InfClsPt" 0 63013) ("IndexedVector" 0 62986) ("IndexedString" 0 62975) ("IndexedOneDimensionalArray" 0 62906) ("IndexedList" 0 62897) ("IndexedFlexibleArray" 0 62810) ("IndexedExponents" 0 62534) ("IndexedDirectProductOrderedAbelianMonoidSup" 0 62513) ("IndexedDirectProductOrderedAbelianMonoid" 0 62465) ("IndexedDirectProductObject" 0 62427) ("IndexedDirectProductAbelianMonoid" 0 62347) ("IndexedDirectProductAbelianGroup" 0 62332) ("IndexedBits" 0 62323) ("IndexedAggregate&" 0 NIL) ("IdealDecompositionPackage" 0 62300) ("HyperbolicFunctionCategory&" 0 NIL) ("HomogeneousDistributedMultivariatePolynomial" 0 62231) ("HomogeneousDirectProduct" 0 62150) ("HomogeneousAggregate&" 0 NIL) ("HeuGcd" 0 62138) ("HashTable" 0 62082) ("HallBasis" 0 62061) ("GuessOptionFunctions0" 0 62051) ("GuessOption" 0 62017) ("GuessFiniteFunctions" 0 62001) ("Guess" 0 61901) ("Group&" 0 NIL) ("GroebnerPackage" 0 61672) ("GroebnerInternalPackage" 0 61545) ("GrayCode" 0 61531) ("GraphicsDefaults" 0 61431) ("GraphImage" 0 61343) ("GradedModule&" 0 NIL) ("GradedAlgebra&" 0 NIL) ("GosperSummationMethod" 0 61300) ("GenusZeroIntegration" 0 61271) ("GeneralizedMultivariateFactorize" 0 61199) ("GeneralTriangularSet" 0 61140) ("GeneralSparseTable" 0 61124) ("GeneralPolynomialSet" 0 60933) ("GeneralPolynomialGcdPackage" 0 60909) ("GeneralPackageForAlgebraicFunctionField" 0 60822) ("GeneralHenselPackage" 0 60736) ("GeneralDistributedMultivariatePolynomial" 0 60651) ("GenUFactorize" 0 60599) ("GenExEuclid" 0 60425) ("GcdDomain&" 0 NIL) ("GaloisGroupUtilities" 0 60387) ("GaloisGroupPolynomialUtilities" 0 60361) ("GaloisGroupFactorizer" 0 60313) ("GaloisGroupFactorizationUtilities" 0 60270) ("FunctionalSpecialFunction" 0 60255) ("FunctionSpaceUnivariatePolynomialFactor" 0 60156) ("FunctionSpaceToUnivariatePowerSeries" 0 60116) ("FunctionSpacePrimitiveElement" 0 60039) ("FunctionSpaceIntegration" 0 59801) ("FunctionSpaceFunctions2" 0 59717) ("FunctionSpaceComplexIntegration" 0 59688) ("FunctionSpaceAttachPredicates" 0 59641) ("FunctionSpaceAssertions" 0 59574) ("FunctionSpace&" 0 NIL) ("FunctionFieldCategoryFunctions2" 0 59546) ("FunctionFieldCategory&" 0 NIL) ("FullyRetractableTo&" 0 NIL) ("FullyLinearlyExplicitRingOver&" 0 NIL) ("FullyEvalableOver&" 0 NIL) ("FreeMonoid" 0 59524) ("FreeModule1" 0 59448) ("FreeModule" 0 59343) ("FreeGroup" 0 59313) ("FreeAbelianGroup" 0 59294) ("FramedNonAssociativeAlgebra&" 0 NIL) ("FramedModule" 0 59276) ("FramedAlgebra&" 0 NIL) ("FractionalIdealFunctions2" 0 59248) ("FractionalIdeal" 0 59080) ("FractionFreeFastGaussianFractions" 0 59070) ("FractionFreeFastGaussian" 0 59024) ("Fraction" 0 51206) ("FourierComponent" 0 51188) ("FortranType" 0 50898) ("FortranScalarType" 0 50618) ("FortranPackage" 0 50408) ("FortranOutputStackPackage" 0 50163) ("FortranExpression" 0 49998) ("FortranCode" 0 49731) ("FloatingRealPackage" 0 49710) ("FloatingPointSystem&" 0 NIL) ("Float" 0 47856) ("FlexibleArray" 0 47831) ("FiniteSetAggregate&" 0 NIL) ("FiniteRankNonAssociativeAlgebra&" 0 NIL) ("FiniteRankAlgebra&" 0 NIL) ("FiniteLinearAggregateSort" 0 47797) ("FiniteLinearAggregateFunctions2" 0 47618) ("FiniteLinearAggregate&" 0 NIL) ("FiniteFieldSquareFreeDecomposition" 0 47564) ("FiniteFieldSolveLinearPolynomialEquation" 0 47533) ("FiniteFieldPolynomialPackage" 0 47331) ("FiniteFieldNormalBasisExtensionByPolynomial" 0 47270) ("FiniteFieldFunctions" 0 47117) ("FiniteFieldFactorizationWithSizeParseBySideEffect" 0 47055) ("FiniteFieldExtensionByPolynomial" 0 46970) ("FiniteFieldExtension" 0 46949) ("FiniteFieldCyclicGroupExtensionByPolynomial" 0 46888) ("FiniteFieldCategory&" 0 NIL) ("FiniteDivisorCategory&" 0 NIL) ("FiniteDivisor" 0 46752) ("FiniteAlgebraicExtensionField&" 0 NIL) ("FiniteAbelianMonoidRingFunctions2" 0 46714) ("FiniteAbelianMonoidRing&" 0 NIL) ("FileName" 0 46333) ("File" 0 46279) ("FieldOfPrimeCharacteristic&" 0 NIL) ("Field&" 0 NIL) ("FactorisationOverPseudoAlgebraicClosureOfRationalNumber" 0 46170) ("FactorisationOverPseudoAlgebraicClosureOfAlgExtOfRationalNumber" 0 46119) ("FactoringUtilities" 0 46031) ("FactoredFunctions2" 0 45836) ("FactoredFunctions" 0 45767) ("FactoredFunctionUtilities" 0 45652) ("Factored" 0 41197) ("ExtensionField&" 0 NIL) ("ExtensibleLinearAggregate&" 0 NIL) ("ExtAlgBasis" 0 41168) ("ExpressionSpaceFunctions2" 0 41070) ("ExpressionSpace&" 0 NIL) ("ExpressionSolve" 0 41047) ("ExpressionFunctions2" 0 40670) ("Expression" 0 38859) ("ExponentialOfUnivariatePuiseuxSeries" 0 38744) ("ExponentialExpansion" 0 38704) ("ExpertSystemToolsPackage2" 0 38666) ("ExpertSystemToolsPackage1" 0 38645) ("ExpertSystemToolsPackage" 0 38154) ("ExpertSystemContinuityPackage" 0 38116) ("Exit" 0 37846) ("Evalable&" 0 NIL) ("EuclideanModularRing" 0 37826) ("EuclideanGroebnerBasisPackage" 0 37796) ("EuclideanDomain&" 0 NIL) ("ErrorFunctions" 0 37588) ("Equation" 0 34284) ("EltableAggregate&" 0 NIL) ("ElementaryRischDESystem" 0 34258) ("ElementaryRischDE" 0 34232) ("ElementaryIntegration" 0 34169) ("ElementaryFunctionsUnivariatePuiseuxSeries" 0 34129) ("ElementaryFunctionsUnivariateLaurentSeries" 0 34058) ("ElementaryFunctionStructurePackage" 0 33728) ("ElementaryFunctionSign" 0 33366) ("ElementaryFunctionODESolver" 0 33333) ("ElementaryFunctionCategory&" 0 NIL) ("ElementaryFunction" 0 33318) ("EigenPackage" 0 33294) ("DrawOptionFunctions1" 0 33269) ("DrawOptionFunctions0" 0 33065) ("DrawOption" 0 32893) ("DoubleResultantPackage" 0 32870) ("DoubleFloatVector" 0 32848) ("DoubleFloatSpecialFunctions" 0 32832) ("DoubleFloat" 0 30700) ("Divisor" 0 30477) ("DivisionRing&" 0 NIL) ("DistributedMultivariatePolynomial" 0 30072) ("DistinctDegreeFactorize" 0 29753) ("DisplayPackage" 0 29727) ("DiscreteLogarithmPackage" 0 29702) ("DirectProductCategory&" 0 NIL) ("DirectProduct" 0 29140) ("DifferentialVariableCategory&" 0 NIL) ("DifferentialSparseMultivariatePolynomial" 0 29030) ("DifferentialRing&" 0 NIL) ("DifferentialPolynomialCategory&" 0 NIL) ("DifferentialExtension&" 0 NIL) ("DictionaryOperations&" 0 NIL) ("Dictionary&" 0 NIL) ("DesingTreePackage" 0 28957) ("DesingTree" 0 28870) ("DegreeReductionPackage" 0 28846) ("DefiniteIntegrationTools" 0 28766) ("Database" 0 28746) ("DataList" 0 28733) ("CyclotomicPolynomialPackage" 0 28685) ("CyclicStreamTools" 0 28651) ("CoordinateSystems" 0 28609) ("ContinuedFraction" 0 28494) ("ConstantLODE" 0 28461) ("ComplexRootPackage" 0 28402) ("ComplexPatternMatch" 0 28381) ("ComplexPattern" 0 28360) ("ComplexIntegerSolveLinearPolynomialEquation" 0 28339) ("ComplexFunctions2" 0 28307) ("ComplexFactorization" 0 28239) ("ComplexDoubleFloatVector" 0 28210) ("ComplexCategory&" 0 NIL) ("Complex" 0 27624) ("CommuteUnivariatePolynomialCategory" 0 27477) ("Commutator" 0 27456) ("CommonOperators" 0 27303) ("CommonDenominator" 0 27169) ("CombinatorialFunction" 0 27154) ("Color" 0 27055) ("Collection&" 0 NIL) ("CoerceVectorMatrixPackage" 0 26991) ("ChineseRemainderToolsForIntegralBases" 0 26951) ("CharacteristicPolynomialInMonogenicalAlgebra" 0 26929) ("CharacterClass" 0 26856) ("Character" 0 26534) ("ChangeOfVariable" 0 26434) ("CartesianTensor" 0 26404) ("CardinalNumber" 0 25687) ("BrillhartTests" 0 25661) ("BoundIntegerRoots" 0 25627) ("Boolean" 0 7548) ("BlowUpPackage" 0 7526) ("Bits" 0 7499) ("BitAggregate&" 0 NIL) ("BinaryTreeCategory&" 0 NIL) ("BinaryTree" 0 7438) ("BinaryRecursiveAggregate&" 0 NIL) ("BasicType&" 0 NIL) ("BasicOperatorFunctions1" 0 7245) ("BasicOperator" 0 5838) ("BasicFunctions" 0 5804) ("BalancedPAdicInteger" 0 5778) ("BalancedFactorisation" 0 5739) ("BagAggregate&" 0 NIL) ("Automorphism" 0 5559) ("AttributeButtons" 0 5285) ("AssociationList" 0 5133) ("AssociatedLieAlgebra" 0 5113) ("Asp9" 0 5018) ("Asp80" 0 4974) ("Asp8" 0 4879) ("Asp78" 0 4835) ("Asp77" 0 4791) ("Asp74" 0 4731) ("Asp73" 0 4671) ("Asp7" 0 4559) ("Asp6" 0 4533) ("Asp55" 0 4489) ("Asp50" 0 4445) ("Asp49" 0 4384) ("Asp42" 0 4340) ("Asp41" 0 4296) ("Asp4" 0 4236) ("Asp35" 0 4210) ("Asp34" 0 4174) ("Asp33" 0 4130) ("Asp31" 0 4069) ("Asp30" 0 4033) ("Asp29" 0 4013) ("Asp28" 0 3959) ("Asp27" 0 3939) ("Asp24" 0 3895) ("Asp20" 0 3851) ("Asp19" 0 3807) ("Asp12" 0 3763) ("Asp10" 0 3719) ("Asp1" 0 3533) ("ArcTrigonometricFunctionCategory&" 0 NIL) ("ApplyUnivariateSkewPolynomial" 0 3493) ("ApplyRules" 0 3437) ("AnyFunctions1" 0 2370) ("Any" 0 1020) ("AntiSymm" 0 1002) ("AnnaNumericalOptimizationPackage" 0 981) ("AnnaNumericalIntegrationPackage" 0 952) ("AlgebraicallyClosedFunctionSpace&" 0 NIL) ("AlgebraicallyClosedField&" 0 NIL) ("AlgebraicNumber" 0 779) ("AlgebraicManipulations" 0 493) ("AlgebraicIntegration" 0 467) ("AlgebraicHermiteIntegration" 0 444) ("AlgebraicFunction" 0 429) ("AlgebraGivenByStructuralConstants" 0 396) ("Algebra&" 0 NIL) ("AlgFactor" 0 289) ("Aggregate&" 0 NIL) ("AffineSpace" 0 273) ("AffinePlane" 0 88) ("AffineAlgebraicSetComputeWithResultant" 0 54) ("AffineAlgebraicSetComputeWithGroebnerBasis" 0 20) ("AbelianSemiGroup&" 0 NIL) ("AbelianMonoidRing&" 0 NIL) ("AbelianMonoid&" 0 NIL) ("AbelianGroup&" 0 NIL)) \ No newline at end of file